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Preface 

 

This text is one of a series of masters level monographs, which have been produced for taught 

modules within a common course designed for Advanced Informatics and Control. The new 

common course development forms a collaboration between Coventry University, United 

Kingdom and Wroclaw University of Technology, Poland. The new course recognises the 

complexity of new and emerging advanced technologies in informatics and control, and each 

text is matched to the topics covered in an individual taught module. The source of much of 

the material contained in each text is derived from lecture notes, which have evolved over the 

years, combined with illustrative examples which may well have been used by many other 

authors of similar texts that can be found. Whilst the sources of the material may be many 

any errors that may be found are the sole responsibility of the authors. 
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Abstract 

 

A concise technical overview of some of the key ‘landmark’ developments in self-

tuning control (STC) is presented. The notion of two coupled sub-algorithms forming the 

basis of STC together with enhancements to produce adaptive on-line procedures is discussed 

as well as the potential limitations of such schemes. The techniques covered include optimal 

minimum variance, sub-optimal pole-placement and long range model-based predictive 

control. Based on the experiences of the authors in the industrial application of STC, 

extensions of the standard linear model-based approaches to encompass a class of bilinear 

model-based schemes, is presented. Some on-going developments and future research 

directions in STC for bilinear systems are highlighted. These include the requirements for 

combined algorithms for control and fault diagnosis and the need for models of differing 

complexities. 
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Chapter 1 

Introduction 

 

The general aim of the text is to provide the reader with an overview of some of the 

key developments in the field of linear model-based STC. It also includes an introduction to 

some of the definitions that allow the classification of the resulting STC forms.  The 

definition of STC as being one form of adaptive control which requires two coupled sub-

algorithms, one for on-line estimation of a discrete-time mathematical model of a plant and 

the other for control law design and implementation, is presented. The notion of repeatedly 

updating the model parameters via recursive estimation is introduced. Whilst reference is 

made to authoritative texts on the subject, a brief review of recursive least squares and 

Kalman filtering is given, together with extensions to enhance the adaptivity of the schemes. 

Then, three main categorisations of control law design are considered in the order of their 

historical development, namely: optimal d-step ahead control strategies (where d  is defined 

later), sub-optimal pole-placement control strategies and long range model-based predictive 

control.  

The above developments are based on assuming a linear model representation for the 

system to be controlled. Various extensions and refinements have been proposed, and the text 

will provide the details of some of these developments, particularly those proposed by the 

authors and their colleagues. In particular, research conducted by the first author has shown 

that it is often the case that the on-line parameter estimation algorithms can produce wildly 

varying estimations in cases when STC is applied to nonlinear systems. The self-tuning 

8



 

 

 

 

 
principle may become violated, and an extension of the above STC strategies to deal with a 

class of bilinear systems are considered. Adopting such a bilinear model representation 

potentially allows STC to be applied to a wider range of systems for which the notion of 

linearisation at a point is replaced by that of bilinearisation over a range. A review of some of 

the more recent developments in the area of STC assuming a bilinear model representation is 

therefore included. Finally, chapter containing concluding remarks resumes the overall 

coverage of the text. 

A discussion on future open research directions in which the notion of a combined 

approach for realising control and fault diagnosis and the need for different model 

complexities is presented in a section on additional reading.  
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Chapter 2 

Background – technical review of self-tuning 

control 

 

This chapter on aims to inform the reader of the major developments and historical 

landmarks in the topic up to the present day. The earliest reference dates back to the first 

International Symposium on Self-Adaptive Flight Control in 1959 which was held at what is 

now the Wright-Patterson Air Force Base, Dayton, Ohio, USA (Gregory, 1959), where the 

concept of ‘self learning’ control was first proposed. However, due to the lack of available 

technology at that time, in terms of reliable computer hardware and software, it was a decade 

before this concept was to re-emerge. In fact it re-emerged under the name of self-tuning 

control (STC) in the 1970s and was notably driven in those earlier years by Kalman (1960), 

Peterka (1970), and Astrom and Wittenmark (1973), who are now recognized as the early 

pioneers in this field. The major breakthrough by Astrom and Wittenmark (1973) with the 

optimal d-step ahead minimum variance (MV) self-tuning regulator/controller (STR)/STC, in 

which convergence was proved for the simplest case, was perhaps the first landmark which 

led to a positive resurgence and increased interest in the subject. This was followed with the 

development by Clarke and Gawthrop (1975) of the generalised minimum variance (GMV) 

STC in which constraints on control effort could be implemented to achieve a realizable 

control system. This led naturally to the incremental forms of MV and GMV STC, in which 

inherent integral action is automatically achieved.  
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The reader is reminded that a model is only an approximation, however sophisticated 

it may appear, and that all models are developed and used for purpose and convenience. In 

fact, the notion of ‘models for purpose’ will feature as an underlying thread throughout this 

text, with models for the purpose of control being necessarily simpler in structure than some 

of their counterparts, e.g. those for fault diagnosis. The above MV and GMV schemes belong 

to a family of control systems which can be described as Linear Quadratic Gaussian (LQG) 

since the assumed plant model is linear, the cost function to be minimized is quadratic and 

the noise affecting the output of system is assumed to be Gaussian. The resulting MV and 

GMV controllers were developed initially for the auto-regressive with exogenous inputs 

(ARX) model representations and subsequently extended to the auto-regressive moving 

average with exogenous inputs (ARMAX) case. The development of the incremental forms 

led to proposals which made use of ARIMAX model representations, in which the assumed 

noise model is modified. It should be noted that model structures are normally adopted for 

convenience and the models commonly used in STC are outlined in Section 3.1. As stated 

earlier the MV and GMV STR/C strategies are also known, as stated earlier, as optimal d-step 

ahead predictive schemes, since it is possible to predict the output d-steps ahead with 

knowledge of the system input at the current time step. Indeed, this forms the basis of the 

schemes, since knowing the desired output allows a quadratic cost function to be minimised 

in order to determine the optimal input. Unfortunately, however, to achieve this goal the 

resulting optimal STC cancels the process zeros, consequently rendering these approaches 

inadequate when dealing with non-minimum phase (NMP) systems.  

Recognition of the shortfalls of the d-step ahead optimal schemes led to another 

landmark, namely the proposal for sub-optimal pole-placement STC strategies. These 

schemes are able to achieve their goals without affecting or utilizing the process zeros. Such a 

scheme was proposed by Wellstead et al. (1979), and developed within the ARX and 
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ARMAX framework. The resulting controllers were demonstrated to be able to overcome the 

implementational problems with NMP systems, as experienced by the optimal schemes. The 

development led to alternative forms, and the state-space pole-placement STC was 

subsequently proposed by Warwick (1981). This made use of the so-called implicit delay 

observable canonical form within an innovations state-space setting. Whilst both control 

strategies are identical in the absence of output measurement noise, they differ in their 

behaviour in the presence of noise: the latter being due to the increased degree of filtering 

through the state space model structure. An interesting observation in the state-space 

equivalent of the ARX model is that the steady-state Kalman filter (SKF) used within the 

state-variable feedback (SVF) control law, is that the SKF converges to the true states in n-

steps, with n being the order of the system. In the case of the equivalent ARMAX model, 

convergence is dependent on the locations of the zeros of the noise colouring polynomial. 

Perhaps the most significant landmark in the development of control law design 

procedures to date has been that of long range (i.e. greater than d-steps ahead) model-based 

predictive control. Such an approach was proposed by Clarke et al. (1987). This approach 

differs from the previous proposals in that the controller not only utilises the actual measured 

signals, but it also utilises future predicted signals, based on knowledge of the set point in 

advance. The approach developed in (Clarke et al., 1987) is known as generalised predictive 

control (GPC) and this is formulated in the incremental control framework, i.e. it utilises the 

ARIMAX model structure. The basis of the approach is to assume that no further action in 

terms of incremental controls will take place so that the future control remains constant up to 

a user defined prediction horizon h-steps ahead (where h is greater than d). By separating the 

contributions to the future outputs which can be accounted for at the current time, due to 

current and previous controls, allows a deficit to be predicted, which is essentially the 

predicted future error that would appear if no adjustment to the control action is made. Then, 
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by representing these future predicted errors in vector form, it is possible to design a suitable 

quadratic cost function, the minimisation of which will yield a vector of optimal future 

incremental controls. At each time step the procedure is repeated, thus leading to the notion 

of a receding horizon approach. Details regarding these key developments of the control law 

design procedures are provided in Section 4. 

In this review developments of on-line parameter estimation algorithms for use in 

STC are also considered. Whilst only briefly outlined detailed references to original works 

are provided. In particular, readers should find the original development of the recursive least 

squares (RLS) algorithm of Plackett (1950), extensions to include extended least squares 

(ELS), use of forgetting factors and variable forms of forgetting (e.g. due to Fortescue et al. 

(1981)) to be of value. Utilisation of the Kalman filter (KF) for parameter estimation 

(following a brief review of its original development for linear state estimation, (Kalman, 

1960)) is presented. Whilst the use of coupled KFs for joint state and parameter estimation 

will be briefly discussed, as well as the extended KF (EKF), e.g. (Young, 1974), for 

simultaneous state and parameter estimation, a detailed discussion is not given here. In 

parallel with developments in computer technology, the middle 1980s witnessed some 

important developments and enhancements in regard to the estimation algorithms used in 

STC. For example, for the first time it became possible to make repeated on-line use of 

forgetting factors (leading to variable forgetting factors), covariance matrix resetting 

techniques and the realisation of methods based on instrumental variables (Young, 1984). 

Aspects regarding the developments of the on-line parameter estimation algorithms are 

provided in Section 3.2. 
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Chapter 3 

Self-tuning control concept 

 

Essentially a STC comprises two coupled subalgorithms, one for the online estimation 

of the parameters of an assumed model and the other for evaluating the control action from a 

suitable control law design procedure. In principle any estimation algorithm can be combined 

with any control law design algorithm, thus the scope is wide and the final choice of this 

combination will depend on the particular application. In this chapter, the estimation and 

control law design algorithms will be introduced separately. Later, in the simulation study in 

Section 5.1 the algorithms are combined when a self-tuning linear GPC scheme is applied to 

a nonlinear system.   

In order to fully exploit the STC concept the models upon which the model-based 

controllers are based are required to be repeatedly updated as the system is driven over the 

operational range of interest. If the operating range is small then a local linear model with 

fixed parameters may be sufficient. If, however, the operational range is increased the 

assumptions on local linearity for the system to be controlled may become violated. Under 

such conditions the overall closed-loop performance will become reduced due to the increase 

in the mismatch between the system and model. Alternative approaches using controller gain 

scheduling, look-up tables as well as multiple switched/blended model solutions have been 

considered. However, the notion of STC whereby the model parameters are continually 

14



 

 

 

 

 
updated, as the operating range is traversed, is in effect an infinite model approach, with the 

advantage that as the system and/or subsystem components change over time, then so do the 

resulting models. This repeated updating of the model parameters exploites the notion of 

certainty equivalence in that the estimated values are at each time step assumed to be correct. 

Taking the approach one step further, it may also be possible, using the same measured 

input/output data, to detect the onset of a fault condition. Such a concept enables the 

establishment of thresholds within which non-violation of certain inequalities allows the 

implementation of adaptive control via STC, and conversely allows a fault detection, or an 

active fault tolerant control scheme to be triggered. Whilst it is possible, in principle, to 

combine any model-based control law design procedure with any suitable estimation 

algorithm, there are certain classifications of STC. The first is to consider the indirect (or 

explicit) and direct (or implicit) STC schemes. In an indirect direct approach, or explicit 

scheme, the control law is obtained from the estimated model parameters; the latter are 

explicitly available for interrogation/monitoring, thus allowing some degree of intervention 

between the two coupled algorithms. In the direct approach, on the other hand, the control 

law is directly estimated from the input/output data along with the estimated model 

parameters; the latter being implicit within the scheme (i.e. not explicitly available). A further 

classification which, is possible in the case of both direct and indirect STC schemes is to 

make the distinction between non-dual and dual STC. In a non-dual STC the control action is 

required to perform the role of an ideal control signal only, whereas in the dual approach the 

control action is not only ideal for control, but is also an ideal signal from an estimation view 

point. In the remainder of the work is this chapter consideration is given to an explicit non-

dual STC. In other words the control action is ideal for control only and the parameters are 

explicitly available from the estimation algorithm. It is also worth noting in the context of a 

linear STC applied to nonlinear systems that the self-tuning principle, which holds when 
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estimated model parameters converge to steady values, may become invalidated; thus further 

justifing a nonlinear, restricted here to bilinear, STC approach. A block diagram 

representation of a general explicit non-dual STC scheme is given in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 STC model structures 

 A widely used and relatively simple model is the so-called ARX (auto regressive with 

exogenous inputs) model, where the additive disturbance on the output is assumed to be a 

white signal having zero mean value. An extension of this model structure is the so-called 

ARMAX (auto regressive moving average with exogenous inputs) model structure, where the 

noise is no longer assumed to be white, but is modelled as the output of a moving average 

process. A further extension is the ARIMAX (auto regressive integrated moving average with 

Figure 1. Block diagram representation of an explicit non-dual STC, where 

( ),  ( ),  ( ),  su t y t r t τ  and θ  are defined later. 
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exogenous inputs) model. In order to proceed, the various model structures are briefly 

introduced. The ARMAX/ARIMAX model structure can be expressed in the form  

 1 1( ) ( ) = ( ) ( ) ( )dA q y t q B q u t tξ− − − + ,                                          (0.1) 

where 1q−  denotes the backward shift operator defined such that ( ) = ( )iq y t y t i− −  and t  is 

the discrete-time index. When dealing with discrete time control it is normal to assume the 

existence of a zero-order-hold in the input channels, such that 1d ≥  represents the integer 

valued quantity / sD τ  rounded up; D  being the system time delay and sτ  the adopted 

sampling interval. As such, d  is regarded as the normalised system time delay. The sampled 

discrete-time system output and input signals at time t  are denoted ( )y t  and ( )u t , 

respectively, and the polynomials 1( )A q−  and 1( )B q−  are defined as    

 1 1 2

0 1 2 0( ) = , =1
n
a

n
a

A q a a q a q a q a
−− − −+ + + +  L ,                               (0.2) 

1 1 2

0 1 2 0( ) = , 0
n
b

n
b

B q b b q b q b q b
−− − −+ + + +  ≠L .                                (0.3) 

In STC the model parameter vector, denoted 

1 0a b

T

n na a b bθ  =  K K                                            (0.4) 

of the ARX model is required to be estimated (i.e. continuously updated) at each time step. 

The ARMAX and ARIMAX structures differ in the way the additive output disturbance 

signal, denoted ( )tξ , is modelled. The disturbance term in the case of the ARMAX model 

structure is described as a moving average process 

 1( ) = ( ) ( )t C q e tξ −                                                        (0.5) 

where ( )e t  is a discrete white noise signal having variance 2

eσ  and which is coloured by the 

polynomial 1( )C q−  defined as 

 1 1 2

0 1 2 0( ) = , = 1
n
c

n
c

C q c c q c q c q c
−− − −+ + + +  L .                               (0.6) 
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However, in many practical problems the disturbance process cannot sufficiently be 

described as a moving average process. Common examples for such situations are cases when 

the noise term contains an offset value, i.e. if 1( ) = ( ) ( ) ( )t C q e t o tξ − + , where ( )o t  denotes a 

(potentially time-varying) offset. The disturbance term of the ARIMAX model structure can 

successfully deal with these cases and is defined as an integrated moving average process  

 
1( )

( ) = ( )
C q

t e tξ
−

∆
                                                       (0.7) 

where ∆  is defined such that 1=1 q−∆ − . The ARIMAX model structure also offers inherent 

integration action which is exploited for the controller design in incremental form. Finally, 

the ARX model structure can be considered as a subset of the ARMAX model structure for 

the case where 0cn = , i.e. the noise colouring polynomial 1( ) =1C q− . Note that in the case of 

0cn >  the parameter vector θ  is extended to include the coefficients of the noise colouring 

polynomial, denoted ic , 1 ci n=   K , i.e. 

1 0 1a b c

T

n n na a b b c cθ  =  K K K ,                             (0.8) 

thus requiring ELS techniques to be employed.  

 

18



 

 

 

 

 
3.2 Parameter estimation procedures 

3.2.1 Linear least squares 

The method of linear least squares (LLS) is perhaps the most basic and yet widely 

used approach for estimating the parameters of an assumed model structure of a system in 

control engineering. LLS is used as an off-line parameter estimator, i.e. for estimating the 

parameter vector, denoted θ , based on a batch of past input/output data pairs. This section 

provides a summary of the properties of the LLS method. Assume an ARX model structure, 

i.e. 1( ) 1C q− = , expressed in the form  

)()()()()1()( 01 tendtubdtubntyatyaty bnan ba
+−−++−+−−−−−= KK                (0.9) 

or alternatively as a linear regression, i.e. 

( ) ( ) ( )Ty t t e tϕ θ= + ,                                                        (0.10) 

where the vector of observations, also known as the regression vector, is given by 

[ ]( ) ( 1) ( ) ( ) ( )
T

a bt y t y t n u t d u t d nϕ = − − − − − − −K K .                 (0.11) 

The regression vector comprises of 1a bn n+ +  regressors, which are observed data in discrete 

time 1, ,t (= K , where (  denotes the number of observations (measurements). The 

regression vector consists of the past values of the system output and the system input. It is 

interesting to note that the word ‘regression’ is derived from the Latin word ‘regredi’, which 

means ‘to go back’.  

The predicted system output, denoted ˆ( | )y t θ , based on the parameter vector θ  can 

then be computed as 

ˆ( | ) ( )Ty t tθ ϕ θ= .                                                      (0.12) 

Thus the prediction error, or residual, between the measured and the predicted output can be 

expressed as 
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ˆ( ) ( ) ( | )t y t y tε θ= − .                                                    (0.13) 

The method of LLS estimates the parameter vector as a best fit between the measured output 

( )y t  and predicted output ˆ( | )y t θ  over 1, ,t (=   K , such that the sum of squared residuals is 

minimised, i.e. 

[ ]
22

1 1

1 1
( ) ( ) ( )

( (
T

(

t t

J t y t t
( (

θ ε ϕ θ
= =

 = ( ) = − ∑ ∑ .                                 (0.14) 

The quadratic cost function eq. (0.14) can be solved analytically 

ˆ = argmin ( )(Jθ
θ θ                                                   (0.15) 

and the algorithm of LLS is then given by 

1

1 1

ˆ( ) ( ) ( ) ( ) ( )
( (

T

t t

t t t t y tθ ϕ ϕ ϕ
−

= =

 
=  
 
∑ ∑ .                                      (0.16) 

In order to evaluate the accuracy of the estimator consider the estimation error vector defined 

as 

ˆθ θ θ= −% .                                                           (0.17) 

Since in practice the true parameter vector θ  is not exactly known, it follows that the 

estimation error vector is also unknown. However, considering the covariance matrix 

corresponding to the estimation error vector, defined by 

TR E θθ =  
% % ,                                                         (0.18) 

where [ ]E ⋅  denotes the mathematical expectation operator, it can be shown that 

1

2

1

( ) ( )
(

T

e

t

R t tϕ ϕ σ
−

=

 
=  
 
∑ .                                               (0.19) 

Commonly only the approximate scaled error covariance matrix is available, i.e. 

1

1

( ) ( )
(

T

t

P t tϕ ϕ
−

=

 
=  
 
∑ ,                                                   (0.20)     
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which is readily observed to be related to the true covariance matrix via the unknown positive 

scalar 2

eσ . The scaled, matrix P  can be computed together with θ̂  from eq. (0.16). The 

square roots of the diagonal elements of P  correspond to the standard deviations of the 

individual estimated parameters. This is a useful observation which can be exploited, hence 

the LLS algorithm, via the error covariance matrix, automatically provides information about 

the accuracy of the estimates. 

 

3.2.2 Recursive linear least squares 

In the STC framework there are practical issues, which require that it is necessary to 

perform on-line estimation at each time step in order to repeatedly update the estimated 

parameter vector ˆ( )tθ  as new observation data are obtained. For this type of problem the 

offline LLS method is inefficient, because the observed data set grows larger and larger at 

each time step. Consequently the computation which ultimately results in the inversion of the 

matrix P becomes more costly and the demand on computer memory becomes higher as new 

observations are made. An efficient way to perform this type of on-line estimation is to make 

use of a RLS scheme. The general form of the RLS algorithm may be stated as  

 

[ ] [ ]
[ ][ ]

New Parameter Vector Previous Parameter Vector

Correction Measured Output  Predicted Output ,

=

                                           + −
     (0.21) 

where the new parameter vector, denoted ˆ( )tθ , is updated based on its previous value, 

denoted ˆ( 1)tθ − , and the latest measured output ( )y t . The RLS algorithm originally 

developed by Plackett (1950), is simply stated here, see e.g. (Ljung, 1999), as:  
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1

1

( ) ( 1) ( ) ( ) ( 1) ( ) ,

ˆ ˆ ˆ( ) ( 1) ( ) ( ) ( ) ( 1) ,

( ) ( 1) ( ) ( ) ( 1) ,

T

T

T

L t P t t t P t t

t t L t y t t t

P t P t L t t P t

ϕ λ ϕ ϕ

θ θ ϕ θ

ϕ λ

−

−

 = − + − 

 = − + − − 

 = − − − 

                               (0.22) 

where 0 1λ< ≤  is a forgetting factor used to repeatedly inflate elements of the covariance 

matrix, thus keeping the algorithm alert and assisting adaptation (Hsia, 1977). The choice of 

the forgetting factor is a compromise between algorithm alertness and noise sensitivity 

(Burnham et al., 1985). To alleviate this problem, use may be made of a variable forgetting 

factor λ(t) which is adjusted as a function of the estimation prediction error to retain the 

information content within the algorithm (Fortescue et al., 1981; Wellstead and Sanoff, 

1981). Whilst use of a forgetting factor facilitates the tracking of slow variation in 

parameters, a technique that facilitates the tracking of rapid parameter variation is that of 

covariance matrix reset. Such a scheme, which can be operated in conjunction with forgetting 

factors, may trigger reset on set point change, periodically or on detection of large errors in 

estimation. 

It should be noted that unbiased parameter estimates can only be obtained from RLS 

if the observation vector and the noise sequence are uncorrelated (Young, 1974); true only in 

the case of a white output noise sequence. Alternatively the problem of biased estimates may 

be alleviated using algorithms such as ELS, recursive maximum likelihood (Hsia, 1977), 

recursive instrumental variables (Young, 1970) or a KF configured for parameter estimation 

(Randall et al., 1991), which is reviewed in Subsection 3.2.2. If poor parameter estimates are 

obtained due to insufficient input signal excitation cautious least squares (CLS) may be 

employed (Burnham and James, 1986; Randall and Burnham, 1994) in which the algorithm is 

kept alert without disturbing the plant. CLS is also useful when attempting to constrain the 

estimated parameters to remain within sensible regions based on experience and knowledge 
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of the plant. CLS has been shown to be an adaptive form of online Tikhonov regularisation 

(Linden, 2005).  

 

3.2.3 Kalman filter configured for parameter estimation 

 The KF was originally developed for estimating the unmeasurable state vector of a 

linear dynamic system, however the KF finds application in parameter estimation as well. 

This is due in part to the fact that the KF allows individual forgetting for each parameter, i.e. 

selective adaptivity. Consider a time varying state-space representation of an unforced 

discrete-time system subject to white process noise 

( 1) ( ) ( ),

( ) ( ) ( ),

x t Ax t v t

y t Cx t e t

+ = +

     = +
                                                    (0.23) 

where ( )x t  is the state vector of dimension 1n× , A  is an n n×  state transition matrix, ( )v t is 

an 1n×  process noise vector, ( )y t  is the measured system output, C  is an 1 n×  output vector 

and ( )e t  is the measurement noise. The random processes ( )v t  and ( )e t have zero mean 

values, i.e. 

[ ] [ ] [ ] [ ] .0)(,0)()()( 21 ===== teEtvEtvEtvE nK                               (0.24) 

The covariance matrices are 

[ ( ) ( )] ,

[ ( ) ( )] ,

T

ij

T

ij

E v i v j V

E e i e j R

δ

δ

=

=
                                                      (0.25) 

where ijδ  is the Kronecker delta function, i.e. having value of unity if j i=  and null if j i≠ . 

The processes are independent of each other, hence 

[ ( ) ( )] 0E v t e t = .                                                         (0.26) 

The KF for state estimation comprises of two parts and is given by 

Prediction (between samples based on the state equation):   
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The estimated state ˆ( | 1)x t t −  at time step t  given information up to and including time step 

1t −  is computed as             

 ˆ ˆ( | 1) ( 1) ( 1| 1)x t t A t x t t− = − − −                                                (0.27) 

and the update of the covariance matrix is 

( | 1) ( 1) ( 1| 1) ( 1) ( 1)TP t t A t P t t A t V t− = − − − − + − .                               (0.28) 

Correction (at the sample instants based on the output equation): 

The Kalman gain vector is given by 

( | 1) ( )
( )

( ) ( ) ( | 1) ( )

T

T

P t t C t
K t

R t C t P t t C t

−
=

+ −
                                            (0.29) 

and the new corrected state estimate is then obtained from 

[ ]ˆ ˆ ˆ( | ) ( | 1) ( ) ( ) ( ) ( | 1)x t t x t t K t y t C t x t t= − + − − .                                (0.30) 

The updated error covariance matrix is computed as 

( | ) ( | 1) ( ) ( ) ( | 1)P t t P t t K t C t P t t= − − − .                                     (0.31) 

The KF can also be configured for parameter estimation. Consider the ARX model 

structure expressed in the regression form  

( ) ( ) ( ) ( )Ty t t t e tϕ θ= + ,                                                       (0.32) 

where the parameter vector is time-varying and may be defined as 

( ) ( 1) ( )t t v tθ θ= − + .                                                      (0.33) 

The task is now to estimate the parameter vector ( )tθ . The similarity of the state equation in 

eq. (0.23) to eq. (0.33) and the output equation in eq. (0.23) to eq. (0.32) becomes obvious, 

hence the state-space model for the parameter estimation problem is stated  

( ) ( 1) ( ),

( ) ( ) ( ) ( ),T

t t v t

y t t t e t

θ θ

ϕ θ

= − +

= +
                                                   (0.34) 

where the state transition matrix is simply the identity matrix and the output vector is the 

observation vector. The KF algorithm configured for parameter estimation is thus given by 
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Prediction (between samples based on the state equation and any other a prior knowledge):   

ˆ ˆ( | 1) ( 1| 1)t t t tθ θ− = − −                                                (0.35) 

( | 1) ( 1| 1) ( 1)P t t P t t V t− = − − + −                                        (0.36) 

Correction (at the sampling instants based on the measurement from the output equation): 

( | 1) ( )
( )

( ) ( ) ( | 1) ( )T

P t t t
K t

R t t P t t t

ϕ
ϕ ϕ

−
=

+ −
                                          (0.37) 

ˆ ˆ ˆ( | ) ( | 1) ( ) ( ) ( ) ( | 1)Tt t t t K t y t t t tθ θ ϕ θ = − + − −                                (0.38) 

( | ) ( | 1) ( ) ( ) ( | 1)TP t t P t t K t t P t tϕ= − − −                                  (0.39) 

The main difference between RLS and the KF for parameter estimation is the way in which 

the algorithms are tuned to track parameter variation. Whereas the RLS algorithm uses a 

scalar valued forgetting factor to give equal adaptivity for all parameters, the KF, via the 

diagonal elements in V  in the covariance matrix prediction step, utilises selective adaptivity. 

In other words, rather than inflating the covariance matrix by dividing by a scalar less than 

unity as in RLS, the inflation step in the KF is carried out by addition of the matrix V . In this 

way varying degrees of adaptation may be realised, thus allowing a priori knowledge to be 

incorporated into the algorithm. Whilst it is usual to consider only the null or positive entries 

on the diagonal, the off-diagonal entries may also be exploited to build-in further knowledge 

on the cross-correlation between certain model parameters.       
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Chapter 4 

Control law design procedures 

 

4.1  Minimum variance regulator/controller 

 The minimum variance (MV) regulators and controllers are considered as a class of 

optimal schemes, where the optimality is defined by a prescribed cost function. The aim is to 

minimise the variance of the system output ( )y t  via an optimal control input ( )u t . The 

optimal value of ( )u t , in the MV sense, is fulfilled when the following assumptions hold:  

Assumption 1  The system to be controlled is linear.   

Assumption 2  The cost function J  is quadratic.   

Assumption 3  (oise affecting the system output is Gaussian.  

Thus the MV regulators/controllers are also regarded as belonging to the family of LQG 

(linear, quadratic, Gaussian)  regulators/controllers.  

 

4.1.1 Minimum variance regulator 

Consideration is initially restricted here to the regulator problem, i.e. the desired output or set 

point, denoted ( )r t , is equal to zero. The MV regulator cost function is defined as follows  

2= ( )RJ E y t d +                                                        (0.40) 

where d  denotes the normalised system time delay. The objective is to determine the 

optimum value of the current system input ( )u t , which minimises the cost function eq. (0.40)

.  Note that the current system input at discrete time t  affects the future system output at time 
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( )t d+ . The MV algorithm can be derived assuming different model structures. However, for 

ease of derivation only the ARX models are considered here.  

 Prior to deriving the general form of the MV algorithm for any ARX model structure 

it is helpful and intuitive to consider the following particular example. 

 

Example 1. Consider the system described by an ARX model structure, i.e. 1( ) =1C q− , 

having = 2an , = 1bn  and =1d  expressed as a linear difference equation  

 1 2 1 1

1 2 0 1(1 ) ( ) = ( ) ( ) ( )a q a q y t q b b q u t e t− − − −+ + + + .                            (0.41) 

Expanding and rearranging to a more convenient form leads to 

1 2 0 1( ) = ( 1) ( 2) ( 1) ( 2) ( )y t a y t a y t b u t b u t e t− − − − + − + − + ,                   (0.42) 

where ( )y t  is a linear combination of the past outputs and past inputs with the most recent 

input affecting the current output being delayed by one sample step. Since the objective is to 

determine the current input ( )u t , shifting forward by one step leads to  

1 2 0 1( 1) = ( ) ( 1) ( ) ( 1) ( 1)y t a y t a y t b u t b u t e t+ − − − + + − + + .                  (0.43) 

Note that in general (i.e. for any 1d ≥ ) it is possible to predict the output values up to time 

( )t d+  based on the current and past values of control actions. Consequently the MV 

schemes are also known as d-step ahead predictive schemes. In general, the optimal value of 

( )u t  is obtained by differentiating the cost function eq. (0.40) with respect to (w.r.t) the 

argument ( )u t  and equating to zero for minimum, i.e.  

( )
( ) = argmin ( ( ))R

u t
u t J u t .                                             (0.44) 

This procedure can be performed in four steps: 

Step 1) Expand quadratic cost function  
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 Prior to expanding the cost function RJ  a number of preliminary issues are 

highlighted. The output ( 1)y t +  in eq. (0.43) is unknown since the future random disturbance 

( 1)e t +  is unpredictable. The quantity ( 1)y t +  can be separated in two parts as follows  

ˆ( 1) = ( 1| ) ( 1)y t y t t e t+ + + + ,                                          (0.45) 

where ˆ( 1| )y t t+  denotes the best prediction of ( 1)y t +  based on information available up to 

and including time t  (in the sense of minimising the squared prediction error) and ( 1)e t +  is 

the unknown noise term. The term ˆ( 1| )y t t+  is then expressed as  

1 2 0 1
ˆ( 1| ) = ( ) ( 1) ( ) ( 1)y t t a y t a y t b u t b u t+ − − − + + − .                            (0.46) 

The cost function eq. (0.40) can then be expressed in the form  

[ ]
[ ] [ ] [ ]

2

2

2 2

= ( 1)

ˆ= ( 1| ) ( 1)

ˆ ˆ= ( 1| ) 2 ( 1| ) ( 1) ( 1) .

RJ E y t

E y t t e t

E y t t E y t t e t E e t

 + 

       + + +

       + + + + + +

                 (0.47) 

Since the noise is independent of the predicted output the second term of eq. (0.47) vanishes. 

The third term, by definition, is the noise variance 2

eσ . The cost function RJ  can thus be 

expressed as  

[ ]2 2ˆ= ( 1| )R eJ E y t t σ+ + .                                              (0.48) 

Note that the minimal achievable cost of the above expression is the noise variance 2

eσ , since 

the term 2ˆ[ ( 1| )]y t t+  is forced to be null by the control action. The expansion of the cost 

function RJ  can be carried out as follows  

[ ]2 2

2 2

1 2 0 1

ˆ= ( 1| )

( ( ) ( 1) ( ) ( 1))

R e

e

J E y t t

a y t a y t b u t b u t

σ

σ

+ +

       = − − − + + − +
                    (0.49) 

by omitting terms that do not involve ( )u t , define the modified cost function RJ
% , i.e.  

2 2

0 1 2 1 0= 2 ( )( ( ) ( 1) ( 1)) ( )RJ b u t a y t a y t b u t b u t− − − + − +% .                     (0.50) 
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Step 2) Differentiate with respect to the argument  

The expanded cost function eq. (0.50) is differentiated w.r.t. ( )u t  as follows  

2

0 1 2 1 0= 2 ( ( ) ( 1) ( 1)) 2 ( )
( )

RJ b a y t a y t b u t b u t
u t

∂
− − − + − +

∂

%
.                          (0.51) 

 

Step 3) Equate to zero for a minimum  

The next step is to equate eq. (0.51) to zero for obtaining a minimum, hence  

2

0 1 2 1 0( ( ) ( 1) ( 1)) ( ) = 0b a y t a y t b u t b u t− − − + − + .                                 (0.52) 

Note that since the system is linear a global minimum is obtained. 

Step 4) Determine control action  

Rearranging eq. (0.52) to solve for ( )u t  gives the MV regulator algorithm 

1 2 1

0

( ) ( 1) ( 1)
( ) =

a y t a y t b u t
u t

b

+ − − −
 .                                        (0.53) 

Note that the above result reinforces the need for 0 0b ≠ . The MV regulator algorithm in the 

case of any value of an  and bn  and for a fixed value of 1d =  is then given by  

=1 =10

1
( ) = ( ) ( )

n n
a b

i i

i i

u t a y t d i bu t i
b

 
+ − − − 

  
∑ ∑ .                                   (0.54) 

                                                 �  

 The general form of the MV regulator for an ARX model structure assuming 1d ≥ is 

now cosidered. The d-step ahead prediction of the system output is required. This is 

accomplished through the linear predictor. The predictor of ( )y t d+  minimises the 

mathematical expectation of the squared prediction error ( )tε , i.e. 

[ ]

2

ˆ ( | )

2

ˆ ( | )

ˆ( | ) = arg min ( ) ,

ˆ= arg min ( ) ( | ) ,

y t j t

y t j t

y t j t E t j

E y t j y t j t

+

+

 + ε + 

                + − +
                              (0.55) 
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where ˆ( | )y t j t+  denotes the prediction of ( )y t j+  based on information available up to and 

including time t  and over the range 1, ,j d= K . Computing the prediction of the output by 

minimisation of eq. (0.55) for higher values of the delay 1d >  is rather impractical and a 

recursive form of the d-step ahead predictor is developed instead, which can be relatively 

straightforwardly programmed. The d-step ahead predictor of the system output for the ARX 

model structure is given by  

1 1ˆ( | ) = ( ) ( ) ( ) ( )j jy t j t M q y t ( q u t− −+ + ,                                     (0.56) 

where the polynomials 1( )jM q−  and 1( )j( q−  are, respectively, defined as   

1 1 2

,0 ,1 ,2 ,( ) = , = 1=i

j j j j j i a mM q m m q m q m q i n n− − − −+ + + +  −L ,                  (0.57) 

1 1 2

,0 ,1 ,2 ,( ) = , = 1=i

j j j j j i b n( q n n q n q n q i n j n− − − −+ + + +  + −L .                  (0.58) 

The individual coefficients ,j im  and ,j in  are generated, respectively, as follows   

, ,

=1

= [ ]
j

j i l j l i j i

l

m a m a− +− −∑                                             (0.59) 

and 

, ,

=1

= [ ]
j

j i i l j l i l

l

n b a n − −−∑ ,                                                (0.60) 

where , 0j l im − =  if subscript j l= , and the term , 0j l i ln − − =  if j l= or l i≥ . The procedure for 

generating the polynomials 1( )jM q−  and 1( )j( q−  is shown in the following illustrative 

example. 

 

Example 2. Generate the coefficients of the polynomials 1( )jM q−  and 1( )j( q−  for the ARX 

model structure having = 3an , = 2bn  and = 2d . The model is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 0 1 21 2 3 2 3 4y t a y t a y t a y t b u t b u t b u t= − − − − − − − − − − − − .      (0.61) 
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Shifting forward by one step the prediction at time ( 1)t +  is computed as 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 0 1 2
ˆ 1| 1 2 1 2 3y t t a y t a y t a y t b u t b u t b u t+ = − − − − − − − − − − −       (0.62) 

and shifting forward by one more step the prediction at time ( 2)t +  becomes 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 0 1 2
ˆ ˆ2 | 1| 1 1 2y t t a y t t a y t a y t b u t b u t b u t+ = − + − − − − − − − − .      (0.63) 

Substituting eq. (0.62) for ˆ( 1| )y t t+  in eq. (0.63) leads to 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2

1 2 1 2 2 1 3 0

1 1 0 2 1 1 1 2

ˆ( 2 | ) 1 2

1 2 3 ,

y t t a a y t a a a y t a a y t b u t

b a b u t b a b u t a b u t

+ = − + − − + − +

                   + − − + − − + − −
          (0.64) 

which is the desired prediction of the system output at time ( )t d+ . The same results will 

now be obtained utilizing the predictor eq. (0.56). The 1( )jM q−  and 1( )j( q−  polynomials are 

computed recursively for 1, ,j d= K . Starting with the prediction 1j = , the 1

1( )M q−  

polynomial has order 1 2m an n= − =  and, making use of eq. (0.59), its coefficients are 

computed as 

1,0 1 0,0 1 1

1,1 1 0,1 2 2

1,2 1 0,2 3 3

,

,

.

m a m a a

m a m a a

m a m a a

= − − = −

= − − = −

= − − = −

                                             (0.65) 

The 1

1( )( q−  polynomial has order = 1 2n bn n j+ − =  and, utilizing eq. (0.60), the individual 

coefficients are computed as 

1,0 0 1 0, 1 0

1,1 1 1 0,0 1

1,2 2 1 0,1 2

,

,

.

n b a n b

n b a n b

n b a n b

−= − =

= − =

= − =

                                                  (0.66) 

For the prediction 2j = , the orders of the corresponding 1

2 ( )M q−  and 1

2 ( )( q−  polynomials 

are 1 2m an n= − =  and = 1 3n bn n j+ − = , respectively, so that the individual coefficients are 

obtained as 
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( )
( )

2,0 1 1,0 2 0,0 2 1 1 2

2,1 1 1,1 2 0,1 3 1 2 3

2,2 1 1,2 2 0,2 4 1 3

,

,

( ) ,

m a m a m a a a a

m a m a m a a a a

m a m a m a a a

= − − − = −

= − − − = −

= − − − =

                                 (0.67) 

and 

( )
( )
( )
( )

2,0 0 1 1, 1 2 0, 2 0

2,1 1 1 1,0 2 0, 1 1 1 0

2,2 2 1 1,1 2 0,0 2 1 1

2,3 3 1 1,2 2 0,1 1 2

,

,

,

,

n b a n a n b

n b a n a n b a b

n b a n a n b a b

n b a n a n a b

− −

−

= − + =

= − + = −

= − + = −

= − + = −

                                      (0.68) 

respectively. 

�  

 Minimising the cost function eq. (0.40) and utilisng the d-step ahead predictor eq. 

(0.56) leads to the general MV regulator algorithm for an ARX model structure  

, ,

=0 =10

1
( ) = ( ) ( )

n n
m n

j i j i

i i

u t m y t i n u t i
b

 
− − − − 
  
∑ ∑ ,                                      (0.69) 

where j d=  and 0 ,0db n= . Note that the recursive generation of ˆ( | )y t j t+  from eq. (0.56) is 

not the only approach for developing the MV controller. A widely utilised alternative is the 

adoption of the so-called Diophantine equation (Clarke et al., 1987; Wellstead and Zarrop, 

1991). This approach is directly applicable for any ARX, ARMAX and ARIMAX model 

structure. 

 

4.1.2 Minimum variance controller 

 In many industrial applications the aim is not just to drive the output to a zero value, 

as in the regulator case, but to track a reference signal ( )r t , which is then referred to as a 

servo controller. The reference signal ( )r t  is known up to and inlcuding time t . The servo 

controller MV cost function is defind as  
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[ ]2= ( ) ( )SJ E y t d r t+ − .                                                 (0.70)                                               

In a similar manner to the regulator case, a derivation of the MV control algorithm is 

highlighted initially via a particular example which is then followed by a generalised 

algorithm for an ARX model structure. 

 

Example 3. Consider a system described by an ARX model structure having = 2an , = 1bn  

and =1d . As for the MV regulator, following the four step procedure, the first step is the 

expansion of the quadratic cost function, which is now defined by 

[ ]2= ( 1) ( )SJ E y t r t+ − ,                                                  (0.71) 

where, substituting ˆ( 1| ) ( 1)y t t e t+ + +  for ( 1)y t +  defined in eq. (0.45), the cost function SJ  

becomes  

[ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

2

2 2

2

ˆ= ( 1| ) ( 1) ( )

ˆ ˆ= ( 1| ) 2 ( 1| ) ( ) ( )

ˆ( 1) 2 ( 1) ( ) 2 ( 1| ) ( 1) .

SJ E y t t e t r t

E y t t E y t t r t E r t

E e t E e t r t E y t t e t

+ + + −

    + − + +

+ + − + + + +

               (0.72) 

Since the noise ( 1)e t +  is independent of ( )r t  and ˆ( 1| )y t t+  the last two terms of eq. (0.72) 

vanish. Note that the variance of the reference signal [ ]2 2( ) = rE r t σ  enters the cost function 

and increases its reachable minimal value. Defining the modified cost function SJ
% , by 

omitting terms that do not involve ( )u t , leads to  

2 2

0 1 2 1 0= 2 ( )( ( ) ( 1) ( 1) ( )) ( )SJ b u t a y t a y t b u t r t b u t− − − + − − +% .                    (0.73) 

The minimisation of the modified cost function SJ
%  can be computed analytically by 

differentiating SJ
%  w.r.t. the argument and subsequently setting the derivative  

( )

SJ

u t

∂
∂

%
 to zero. 

So that differentiating gives 
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2

0 1 2 1 0= 2 ( ( ) ( 1) ( 1) ( )) 2 ( )
( )

SJ b a y t a y t b u t r t b u t
u t

∂
− − − + − − +

∂

%
                    (0.74) 

and setting to zero for a minimum yields 

1 2 1 0( ) ( 1) ( 1) ( ) ( ) = 0a y t a y t b u t r t b u t− − − + − − + .                              (0.75) 

Rearranging to solve for ( )u t  gives 

1 2 1

0

( ) ( 1) ( 1) ( )
( ) =

a y t a y t b u t r t
u t

b

+ − − − +
.                                    (0.76) 

�  

In a similar manner to the regulator case, it is straightforward to show that the general form of 

the MV controller for an ARX model can be derived as  

, ,

=0 =10

1
( ) = ( ) ( ) ( )

n n
m n

j i j i

i i

u t m y t i n u t i r t
b

 
− − − − + 
  
∑ ∑ ,                          (0.77) 

which may be directly compared to the regulator case given by eq. (0.69). 

 

Simulation Study: MV Controller 

 Consider the system described by the ARX model given by 

 ( ) 1.5 ( 1) 0.7 ( 2) 0.7 ( 1) 0.3 ( 2) ( )y t y t y t u t u t e t= − − − + − + − +                    (0.78) 

having the noise variance 2 1eσ = .  The system runs in an open-loop setting during the time 

interval 1, 25t = 〈 〉  and in a closed-loop setting with the MV controller eq. (0.77) during the 

time interval (25,100t = 〉 . The reference signal switches between 5±  units with a period of 

25 samples. In order to assess the ability of the controller to track the reference signal the 

mean square error (MSE) criterion is introduced. The MSE is defined as  

0

2

0

1
( ( ) ( ))

(

t t

MSE y t r t
( t =

 
= − 

−  
∑ ,                                              (0.79) 
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where 100( =  denotes the total number of discrete time steps and 0t denotes the start of the 

evaluation. The mean square control (MSC) criterion is introduced in order to evaluate the 

usage of control effort, e.g. energy, and this is defined as 

0

2

0

1
( )

(

t t

MSC u t
( t =

 
=  

−  
∑ .                                                  (0.80) 

The results of simulation of the system together with the MV controller are shown in Figure 

2. The performance in terms of MSE and MSC are 4.22MSE =  and 19.46MSC = , 

respectively, for 0 30t = . It is evident that the MV algorithm achieves its control objectives 

during the closed-loop period.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Simulation of the MV controller for 1,25t = 〈 〉  in the open-loop setting and 
for (25,100t = 〉  in the closed-loop setting. 
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4.1.3 General remarks on the MV controller 

 The practical problems of choosing the sampling interval for the estimation of the 

model parameters are discussed in this section with connection to the MV controllers. 

Properties of the MV control are also discussed.  

To illustrate some of the MV controller properties consider an ARX model structure 

having = 2an , = 1bn  and =1d . The discrete time transfer function for this system is 

1 11

0 1

1 1 2

1 2

( )( )
=

( ) 1

q b b qY q

U q a q a q

− −−

− − −

+
+ +

.                                            (0.81) 

The MV control algorithm for this system is 

1 2 1

0

( ) ( 1) ( 1)
( ) =

a y t a y t b u t
u t

b

+ − − −
                                     (0.82) 

or in transfer function form 

11

1 2

1 1

0 1

( )
=

( )

a a qU q

Y q b b q

−−

− −

+
+

.                                                 (0.83) 

Note that the denominator of the controller eq. (0.83) consists of the numerator of the system 

eq. (0.81), hence if the system zeros are outside the unit circle the controller poles become 

unstable. A system with the zeros outside the unit circle is known as an NMP system.  This 

phenomenon occurs naturally or can be caused by inappropriate selection of the sampling 

interval sτ ; choice of sτ  is therefore crucial. It is recommended by the authors to choose sτ  

such that 1,5d ∈< > , where 5 is considered to be high. In summary, since it is noted that MV 

controllers achieve their objectives by cancelling process zeros and that choosing of  sτ  too 

small can give rise to a NMP representation. It is important when dealing with MV control in 

practice to consider such factors.  
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The closed-loop transfer function for the given system and MV controller is   

1 2

2

( )
=

( )

a q aY q

R q q

+
.                                                   (0.84) 

Hence the closed-loop poles lie at the origin and the response of such a system is as fast as 

possible; sometimes referred to as ‘dead beat’ response. This leads to excessively large 

demands on control action ( )u t , which can be practically infeasible to realise. 

 

4.2 Generalised minimum variance controller 

 The GMV controller has been proposed in order to overcome some of the issues 

connected with the concept of MV controllers. The issues are namely the excessive use of 

control effort in achieving the control objectives and the shortfall of controlling NMP 

systems. Introducing the cost function  

2 2= ( ( ) ( )) ( ( ))GMVJ E Py t d Rr t Qu t + − +                                    (0.85) 

 allows for a trade-off between tracking performance and cost of control. The scalars P , R  

and Q  are user specified cost weighting parameters. Another formulation of the GMV cost 

function can be found in (Wellstead and Zarrop, 1991), where the cost weighting parameters 

are assumed to be polynomials. The cost weighting parameter Q  is of particular importance, 

since for 0Q >  the control effort is constrained, having the effect of displacing the closed-

loop poles away from the origin; i.e. no longer a deadbeat response and more practically 

realisable. In Example 4 an illustrative GMV controller is derived. 

 

Example 4. Consider a system described by an ARX model structure having = 2an , = 1bn  

and =1d  expressed as a linear difference equation  

1 2 0 1( 1) = ( ) ( 1) ( ) ( 1) ( 1)y t a y t a y t b u t b u t e t+ − − − + + − + + .                    (0.86) 
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 Separation of known (current and past) and unknown (future) information leads to  

ˆ( 1) = ( 1| ) ( 1)y t y t t e t+ + + + ,                                             (0.87) 

 where  

1 2 0 1
ˆ( 1| ) = ( ) ( 1) ( ) ( 1)y t t a y t a y t b u t b u t+ − − − + + − .                         (0.88)                            

The next step is to expand the quadratic cost function GMVJ , hence substituting eq. (0.87) into 

the cost function eq. (0.85) gives  

( ) ( )[ ]
[ ] [ ] [ ]

[ ] [ ] .)1()(

)()()|1(ˆ2)|1(ˆ

)()()1()|1(ˆ

22

22

22

+++

++−+=

+−+++=

tPeEtRrE

tQuEtrttyPREttyPE

tQutRrtPettyPEJGMV

                   (0.89) 

The last two terms are weighted variances of ( )r t  and ( 1)e t + , which forms the minimum 

achievable cost for GMVJ . Omitting terms which do not involve ( )u t  leads to the modified 

cost function, which takes the form  

( )

( ) ( ) .)()()(2)(

)1()1()()(2
~

2

0

2

0

1210

2

tQutrtuPRbtuPb

tubtyatyatubPJGMV

+−+

−+−−−=
                              (0.90) 

Differentiation of the modified cost function GMVJ%  w.r.t. ( )u t  is computed as 

( )

( ) )(2)(2)(2

)1()1()(2
)(

~

2

0

2

0

1210

2

tuQtrPRbtuPb

tubtyatyabP
tu

JGMV

+−+

−+−−−=
∂
∂

                                (0.91) 

and setting to zero for a minimum 

( )( ) 0)()()()1()1()( 2

0

2

01210

2 =+−+−+−−− tuQtrPRbtuPbtubtyatyabP           (0.92) 

leads to the GMV control algorithm  

 0 1 2 1

2 2 2

0

[ ( ( ) ( 1) ( 1)) ( )]
( ) =

Pb P a y t a y t b u t Rr t
u t

P b Q

+ − − − +
+

.                    (0.93) 
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The general form of GMV controller for an ARX model structure, which holds for any value 

of an , bn  and d  can be derived by adopting the d-step ahead predictor  

1 1ˆ( | ) = ( ) ( ) ( ) ( )j jy t j t M q y t ( q u t− −+ + ,                                     (0.94) 

 where =1, ,j dK  and the polynomials 1( )jM q−  and 1( )j( q−  are defined in eq. (0.57) and 

eq. (0.58), respectively. The same procedure as for obtaining the controller for the special 

case of =1d  is followed, but with use made of the d-step ahead predictor eq. (0.94). The 

GMV control algorithm for an ARX model structure is then given by  

1
2 2 2

,0 ,0 , ,

=0 =1

( ) = ( ) ( ) ( )

n n
m n

j j j i j i

i i

u t P n Q Pn Rr t P m y t i P n u t i
−  

 + − − − −  
  

∑ ∑ ,              (0.95) 

 where =j d  and ,0 0=jn b . The GMV controller has advantageous over the MV scheme, but 

choice of the controller weighting P , R  and Q  is not immediately straightforward. For 

example too large a value for Q  may result in the output not achieving the set point. Whilst 

there are ways to overcome this via careful choice of the other weightings, alternative 

incremental formulations offer immediate advantages. 

 

4.2.1 General Remarks on the GMV Controller 

 The GMV controller is a natural extension of the MV controller. Whereby 

constraining the control effort of  the MV controller the issues connected with NMP systems 

and excessive use of control action can be overcome. The choice of the cost weighting 

parameters is crucial and application specific. The P , R  and Q  parameters can be chosen 

either by an operator or adaptively (with some initial a priori values) within a STC 

framework. The former is discussed here. Setting 1P R= =  and 0Q =  results in MV control. 

Setting 1P R= =  and varying 0Q >  allows a trade-off between tracking ability and 
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reduction of control effort. Hence, by over-constraining the control effort (e.g. energy) the 

GMV controller may not achieve the set point and steady-state errors occur. This can be 

overcome by retaining 1P =  and setting 1R > , which results in a new ‘dummy’ set point 

aim. Note that the importance of tracking ability versus reducing control cost is governed by 

the ratio :P Q  and not by their absolute values. The steady-state offset problems can also be 

overcome by using IGMV control, where inherent integral action guarantees type-1 

performance. In addition only one tuning parameter λ  is required. Note that choice of 0λ =  

results in incremental MV control. 

 

4.3 Incremental GMV controller 

 Recognising the difficulties in achieving a satisfactory trade-off via the cost weighting 

parameters and the additional potential problems due to the presence of non-zero mean output 

disturbances with the standard GMV scheme, prompted the need for an alternative approach 

and the incremental form of GMV (IGMV) was proposed. Such an approach guarantees a 

type-1 servo mechanism performance, hence a zero steady-state error is achieved for a 

constant reference signal. This is due to the inherent integral action within the IGMV scheme. 

To realise this scheme, the IGMV cost function is defined as  

2 2= [ ( ) ( )] [ ( )]IGMVJ E y t d r t E u tλ + − +  ∆ ,                                 (0.96) 

in which only a single weighting parameter λ  is required. The derivation of the control 

algorithm is illustrated in Example 5. 

 

Example 5.  An ARIMAX model structure is used to derive the IGMV control algorithm. 

The model is given by  

1
1 1 ( )

( ) ( ) = ( ) ( ) ( )d C q
A q y t q B q u t e t

−
− − − +

∆
,                                  (0.97) 
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where, for simplicity, the case of 1( ) =1C q−  is considered, hence yielding the ARIX model. 

Consider for example the system in which = 2an , = 1bn  and =1d . The model given by eq. 

(0.97) can be expressed as 

1 2 1 1

1 2 0 1(1 ) ( ) = ( ) ( ) ( )a q a q y t q b b q u t e t− − − −+ + ∆ + ∆ + .                         (0.98) 

 Defining the polynomial 1 1( ) = ( )A q A q− −∆%  an expression for eq. (0.98) takes the form  

1 2 3 1 1

1 2 3 0 1(1 ) ( ) = ( ) ( ) ( )a q a q a q y t q b b q u t e t− − − − −+ + + + ∆ +% % % ,                    (0.99) 

 where  

1= ( )i i ia a a −−% .                                               (0.100) 

 The aim is to determine ( )u t , hence shifting the output d-steps forward leads to 

1 2 3 0 1( 1) = ( ) ( 1) ( 2) ( ) ( 1) ( 1)y t a y t a y t a y t b u t b u t e t+ − − − − − + ∆ + ∆ − + +% % % .         (0.101) 

Assuming a zero mean Gaussian distributed white noise signal, the best prediction for ( 1)e t +  

is zero. The predicted output at time ( )t d+  is then expressed as  

1 2 3 0 1
ˆ( 1| ) = ( ) ( 1) ( 2) ( ) ( 1)y t t a y t a y t a y t b u t b u t+ − − − − − + ∆ + ∆ −% % %              (0.102) 

and the system output at time ( 1)t + can be re-expressed as 

ˆ( 1) = ( 1| ) ( 1)y t y t t e t+ + + + .                                          (0.103) 

The next step in deriving the IGMV controller is the expansion of the quadratic cost function 

IGMVJ . Substituting eq. (0.103) into the cost function IGMVJ  given in (0.96) returns  

2 2

2 2

2 2

= [ ( ) ( )] [ ( )] ,

ˆ ˆ= [ ( 1| )] 2 [ ( 1| ) ( )] [ ( )]

[ ( )] [ ( 1)] .

IGMVJ E y t d r t E u t

E y t t E y t t r t E u t

E r t E e t

λ

λ

+ − + ∆

          + − + + ∆

             + + +

                     (0.104) 

Defining the modified cost function IGMVJ% , (omitting terms which do not involve ( )u t∆ ) and 

expanding leads to  

0 1 2 3 1

2 2 2

0

= 2 ( )( ( ) ( 1) ( 2) ( 1) ( ))

( ( )) ( ( )) .

IGMVJ b u t a y t a y t a y t b u t r t

b u t u tλ

∆ − − − − − + ∆ − −

            + ∆ + ∆

% % % %
          (0.105) 
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Differentiating w.r.t. the argument ( )u t∆  and equating to zero for a minimum, leads to 

0 1 2 3 1

2

0

= 2 ( ( ) ( 1) ( 2) ( 1) ( ))
( )

2 ( ) 2 ( )

IGMVJ
b a y t a y t a y t b u t r t

u t

b u t u tλ

∂
− − − − − + ∆ − −

∂∆

                + ∆ + ∆

% % %
             (0.106) 

and 

2

0 1 2 3 1 0( ( ) ( 1) ( 2) ( 1) ( )) ( ) ( ) = 0b a y t a y t a y t b u t r t b u t u tλ− − − − − + ∆ − − + ∆ + ∆% % % .       (0.107) 

Rearranging the eq. (0.107) to solve for ( )u t∆ , the IGMV control algorithm is given by 

0 1 2 3 1

2

0

( ( ) ( 1) ( 2) ( 1) ( ))
( ) =

b a y t a y t a y t b u t r t
u t

b λ
+ − + − − ∆ − +

∆
+

% % %
.                   (0.108) 

 The applied control action to the plant is then computed as  

 ( ) = ( 1) ( )u t u t u t− + ∆ ,                                                 (0.109) 

thus guaranteeing type-1 servo-mechanism performance. 

            �  

 The general form of the IGMV controller requires a d-step ahead predictor. In an 

ARIX case the predictor is derived in a similar manner to that for an ARX model structure eq. 

(0.55). The predictor for an ARIX model is given by  

1 1ˆ( | ) = ( ) ( ) ( ) ( )j jy t j t P q y t G q u t− −+ + ∆ ,                                     (0.110) 

where =1, ,j dK  and the polynomials 1( )jP q−  and 1( )jG q−  are defined as    

1 1 2

,0 ,1 ,2 ,( ) = , = 1=i

j j j j j i a pP q p p q p q p q i n n− − − −+ + + +  −
%

L ,                    (0.111) 

1
1

,0

=0 =0

( ) = ( ), = 1

nj b
l i

j l i g b

l i

G q p q b q n n j
−

− − −  + −∑ ∑ ,                                (0.112) 

respectively, where the individual coefficients ,j ip  of the successive 1( )jP q−  polynomials are 

evaluated as follows  

, 1, 1 1 1,0 0,0= ( ) , = 1j i j i i i jp p a a p p− + + −+ −  .                                    (0.113) 
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Note that the polynomial order gn  linearly increases as the number of  predictions j  

increases. Minimising the cost function IGMVJ  with respect to ( )u t∆ , utilising the d-step 

ahead predictor eq. (0.110) for an ARIX model structure leads to the IGMV controller  

2 1

,0 ,0 , ,

=1 =0

( ) = [ ] ( ) ( ) ( )

n n
g p

j j j i j i

i i

u t g g r t g u t i p y t iλ −
 

∆ + − ∆ − − − 
  

∑ ∑ ,                     (0.114) 

 where =j d  and ,0 0=jg b , with ( )u t  finally being obtained as indicated in eq. (0.109). 

 

4.4 Pole placement control 

 The next chronological development in the historic-technical review is that of self-

tuning pole-placement (or pole-assignment) control (Wellstead et al., 1979). The aim of pole-

placement control (PPC) is to match the closed-loop transient behaviour of a feedback system 

to a desired user prescribed form. Often referred to as eigenvalue assignment, the effect of 

PPC is that of relocation of the closed-loop poles of the system. The method is suitable for 

controller design where the performance criteria may be expressed in terms of the classical 

frequency or transient response. The approach has proven to be attractive to practising 

engineers, due probably to its close links with classical control. For the development of the 

PPC the system represented by noise free ARX model is considered  

)()(=)()( 11 tuqBqtyqA d −−− .                                           (0.115) 

The control law of the PPC is defined as 

1 1( ) ( ) ( ) ( ) ( )F q u t G q y t Mr t− −= + ,                                       (0.116) 

where the controller polynomials )( 1−qF  and )( 1−qG  are, respectively, defined as   

1 1 2

0 1 2 0( ) = , =1
n
f

n
f

F q f f q f q f q f
−− − −+ + + +  L ,                              (0.117) 

1 1 2

0 1 2 0( ) = , 0
n
g

n
g

G q g g q g q g q g
−− − −+ + + +  ≠L                              (0.118) 
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having the corresponding recommended orders 1= −+ dnn bf  and 1= −ag nn , respectively. 

The system configured in closed-loop with the controller is depicted in Figure 3. The closed-

loop transfer function is given by  

1
1 1 1 1

1 1 1 1 1

1

1 1 1 1

( ) ( ) ( ) ( )
= 1 ,

( ) ( ) ( ) ( ) ( )

( )
= .

( ) ( ) ( ) ( )

d d

d

d

Y q MB q G q B q
q q

R q F q A q F q A q

q B q M

F q A q q G q B q

−− − − −
− −

− − − − −

− −

− − − − −

   
−   

   

            
−

                      (0.119) 

The aim is to assign the closed-loop poles to a specified location by equating the 

characteristic equation (denominator) of eq. (0.119) to a user specified design polynomial 

)( 1−Γ q , i.e.  

1 1 1 1 1( ) ( ) ( ) ( ) = ( )dF q A q q G q B q q− − − − − −− Γ ,                                  (0.120) 

where  

1 1 2

0 1 2 0( ) = , =1
n

nq q q q γ

γ
γ γ γ γ γ

−− − −Γ + + + +  L                              (0.121) 

is the desired closed-loop characteristic polynomial having order an nγ = . The controller 

polynomials )( 1−qF  and )( 1−qG  are related to model polynomials )( 1−qA  and )( 1−qB  via the 

Figure 3. Pole-placement controller with compensator. 
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Diophantine eq. (0.120). The desired transient response is designed through the polynomial 

)( 1−Γ q , however by assigning poles for the closed-loop system the steady-state gain (SSG) 

will be affected. Making use of the final value theorem the closed-loop SSG is computed as  

1

1
1=1

( ) (1)
SSG =

( ) (1)

d

q

B q M B M
q

q

−
−

−
−

 
= Γ Γ 

.                                    (0.122) 

The idea is to design the gain M such that 1SSG = , hence the compensator for such a SSG is 

then 

1

1
M

B

Γ( )
=

( )
.                                                             (0.123) 

This approach, literally, cancels the offset due to )( 1−Γ q  on the closed-loop SSG, so that, 

provided there is no model mismatch, the steady-state output match the reference signal )(tr . 

Such a gain compensated PPC is then able to achieve both the transient response and desired 

steady-state gain simultaneously. The illustrative Example 6 shows the design approach and 

the implementation of PPC.  

 

Example 6. Consider the system having 2=an , 1=bn  and 1d =  given by  

)()()0.3(0.7=)()0.71.5(1 1121 tetuqqtyqq +++− −−−− ,                      (0.124) 

where )(te  is zero mean white Gaussian distributed measurement noise with variance 

0.5=2

eσ . The open-loop poles of the system are 0.7500 0.3708 i±  , i.e. underdamped 

response. The aim is to achieve a critically damped response such that repeated closed-loop 

poles are defined to be 0.5  and 0.5 , so that  

1 1 2=1.0000 1.0000 0.2500q q q− − −Γ( ) − + .                                  (0.125) 

 The Diophantine equation eq. (0.120) for 1fn =  and 1gn =  becomes  

)(1=))(())(1(1 2

2

1

1

1

10

1

10

12

2

1

1

1

1

−−−−−−−− ++++−+++ qqqbbqggqqaqaqf γγ .      (0.126) 
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By equating coefficients of like powers, the above expression may be reformulated in the 

convenient matrix form.  

 

                                      (0.127) 

 

The unknown controller parameters may be computed directly from eq. (0.127) via matrix 

inversion or using Cramer's rule  

1 1 1 1 0 2

0 1 1 2 0 1 1 2

1 2 1 1 0 2

= ( ) / ,

= (( ) ) / ,

= ( ) / ,

f b b s b s

g a b a b s b s

g a b s b s

ρ

ρ

ρ

−

− −

−

                                    (0.128) 

where  

2 2

1 2 0 1 0 1

1 1 1

2 2 2

= ,

= ,

= .

b a b a b b

s a

s a

ρ

γ

γ

+ −

−

−

                                             (0.129) 

Note that ρ  is the determinant of the matrix in eq. (0.127). In order to compensate for the 

steady-state error, which occurs by relocating the original open-loop poles, the compensator 

M is introduced, i.e.  

1 2

0 1

11
= =

1
M

B b b

γ γ+ +Γ( )
( ) +

.                                                (0.130) 

The control action can then be determined from eq. (0.116) and expressed in the difference 

equation form 

1 0 1( ) = ( 1) ( ) ( 1) ( )u t f u t g y t g y t Mr t− − + + − + .                                (0.131) 

                                                                                                                                           Ω  

The above pole placement controller has also been realised in state-space form utilising a 

minimal realisation representation, see (Warwick, 1981). 
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4.5 Outline of long range predictive control 

  The GMV and IGMV schemes are model-based d-step ahead predictive controllers. 

The accuracy of the prediction is closely related to the quality of the model. Not only the 

model parameters are required to be estimated, but also the integer valued normalised time 

delay of the system. If the estimated delay is less than the true system delay, then the 

controller attempts to generate large control action, which can destabilize the system. In the 

case of an overestimated delay the control is no longer optimal and the variance of the output 

signal may increase. The issues connected with the estimation of the delay or even a varying 

time delay of the system can be resolved by adopting a long range predictive control strategy. 

Instead of a d-step ahead prediction of the output, a prediction of the output up to a prediction 

horizon, denoted pH d≥ , is performed, where pH  is a controller tuning parameter. Via long 

range prediction beyond the delay of the system and beyond the inverse response of NMP 

systems the control becomes stable and robust against model mismatch. One member of the 

class of long range predictive controllers, namely the GPC algorithm, is considered in Section 

4.6. 

 

 

4.6 Generalised predictive control 

 GPC has had a significant impact in terms of recent developments in control, as the 

currently widely adopted three term PID controller, when it become a popular choice as an 

industry standard. It is a popular model-based control method and is used in industry. The 

approach was proposed and developed by Clarke et al. during the 1980's, see (Clarke et al., 

1987). The idea of GPC is to minimise the variance of the future error between the output and 

set point by predicting the long range output of the system and separating the known 
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contributions to future output from the unknown contributions. In this way a vector of future 

predicted errors can be used to generate a vector of future incremental controls. The aim is to 

minimise the GPC composite multi-stage quadratic cost function defined by 

[ ] [ ]2 2

= =1

= ( ) ( ) ( 1)

H Hp c

GPC

j d j

J E y t j r t j u t jλ
 

+ − + + ∆ + − 
  
∑ ∑                        (0.132) 

with respect to current and future values of the incremental control action ( 1)u t j∆ + − . The 

user specific tuning parameters are the prediction horizon, denoted dH p ≥ , the control 

horizon, denoted 1≥cH , and a cost weighting parameter λ . It is convenient here, during the 

derivation of the GPC algorithm, to consider the control horizon to be such that pc HH = ; in 

practice however pc HH ≤ . Note that, beyond cH  further incremental controls are assumed 

to be zero. The structure of the cost function for GPC can be seen as an extension of the cost 

function for IGMV, where the main difference is the idea of a long range receding horizon. 

Following this idea not only )( dty +  is required to be predicted as in IGMV, but also the 

predictions )( jty + , pHdj ,,= K ; with this concept providing a basic framework for long 

range predictive control. In the development of the GPC algorithm the ARIMAX model 

structure is considered  

)(
)(

)()(=)()(
1

11 te
qC

tuqBqtyqA d

∆
+

−
−−− ,                               (0.133) 

where for simplicity 1=)( 1−qC , i.e. an ARIX model structure is assumed. The case of 

1>)( 1−qC  is investigated in (Clarke and Mohtadi, 1989; Camacho and Bordons, 2004). The 

cost function GPCJ  consists of future values of the reference signal )( jtr + , pHdj ,,= K , 

which are assumed to be known in advance. Future values of the output are required to be 

predicted and future incremental values of the control action 1)( −+∆ jtu , cHj ,1,= K , are 
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yet to be determined. The following example illustrates the prediction of the output up to an 

horizon of 3== cp HH  steps.  

 

Example 7. Consider a model having 2=an , 1=bn  and 1d = , hence  

)()()(=)()(1 1

10

12

2

1

1 tetuqbbqtyqaqa +∆+∆++ −−−−                             (0.134) 

and defining the polynomial 1 1( ) ( )A q A q− −= ∆%  model (0.134) becomes  

 )()()(=)()~~~(1 1

10

13

3

2

2

1

1 tetuqbbqtyqaqaqa +∆++++ −−−−− ,                   (0.135) 

where  

1= ( )i i ia a a −−% .                                                         (0.136) 

The output at time ( 1)t +  is then  

1)(1)()(2)(~1)(~)(~=1)( 10321 ++−∆+∆+−−−−−+ tetubtubtyatyatyaty .         (0.137) 

Assuming zero mean white noise the prediction of 1)( +te  is null. The best prediction of the 

output in the sense of minimising the squared prediction error then becomes  

1)()(2)(~1)(~)(~=)|1(ˆ 10321 −∆+∆+−−−−−+ tubtubtyatyatyatty .             (0.138) 

The prediction at time ( 2)t +  and ( 3)t +  is computed, respectively, as  

1 2 3 0 1

2 1 1 3 1 2 1 3

0 1 1 0 1 1

ˆ ˆ( 2 | ) = ( 1| ) ( ) ( 1) ( 1) ( )

= ( ) ( ) ( ) ( 1) (0 ) ( 2)

( 1) ( ) ( ) (0 ) ( 1)

y t t a y t t a y t a y t b u t b u t

a a a y t a a a y t a a y t

b u t b a b u t a b u t

+ − + − − − + ∆ + + ∆

                − − − − − − − −

                   + ∆ + + − ∆ + − ∆ −

% % %

% % % % % % % %

% %

                 (0.139) 

 and  

1 2 3 0 1

1 2 1 1 2 1 3 1 3 1 2 2 2

1 1 3 2 3 0

ˆ ˆ ˆ( 3 | ) = ( 2 | ) ( 1| ) ( ) ( 2) ( 1)

= ( ( ) ) ( ) ( ( ) ) ( 1)

( (0 ) ) ( 2)

y t t a y t t a y t t a y t b u t b u t

a a a a a a a y t a a a a a a y t

a a a a a y t b

+ − + − + − + ∆ + + ∆ +

                − − − − + − − − − −

                   − − − − − + ∆

% % %

% % % % % % % % % % % % %

% % % % %
1 1 0

1 1 1 0 2 0 1 1 1 2 1

( 2) ( ) ( 1)

( ( ) ) ( ) ( (0 ) ) ( 1).

u t b a b u t

a b a b a b u t a a b a b u t

+ + − ∆ +

                   + − − − ∆ + − − − ∆ −

%

% % % % % %

     (0.140) 

Note that 1)(,),( −+∆∆ jtutu K , cHj ,1,= K , are unknown values of the future incremental 

control action, which are yet to be determined by minimisation of the multistage quadratic 
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cost function GPCJ . Note that when pH d= , IGMV is a special case of GPC where the only 

unknown is ( )u t∆ .  

              Ω  

 The predictor for an ARIMAX model structure, when considering the case of 

1=)( 1−qC , can be computed as follows  

1)()()()(=)|(ˆ 11 −+∆++ −− jtuqGtyqPtjty jj ,                           (0.141) 

where pHj ,1,= K  denotes the prediction and only last pHdj ,,= K  values are used in the 

development of the GPC algorithm. The polynomials )( 1−qPj  and )( 1−qG j  are defined as   

1 1 2

,0 ,1 ,2 ,( ) = , 1i

j j j j j i p aP q p p q p q p q i n n− − − −+ + + +  = = −
%

K ,                   (0.142) 

and 

1
1

,0

=0 =0

( ) = ( ), = 1

nj b
l i

j l i g b

l i

G q p q b q n n j
−

− − −  + −∑ ∑ ,                               (0.143) 

respectively, and where the individual coefficients ijp ,  of successive )( 1−qPj  polynomials 

can be computed as follows  

 , 1, 1 1 1,0 0,0= ( ) , = 1j i j i i i jp p a a p p− + + −+ −  .                                 (0.144) 

Note, that the order of the )( 1−qG j  polynomial linearly increases as the number of the 

predictions j  increases. The following illustrative example shows the prediction 

3== cp HH  utilising the predictor eq. (0.141). 

 

Example 8. Consider a model having 2=an , 1=bn  and 1d = . The prediction of the future 

outputs utilizing the predictor eq. (0.141) then becomes  
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1,0 1,1 1,2 1,0 1,1

2,0 2,1 2,2 2,0 2,1

2,2

3,0 3,1 3,2 3

ˆ( 1| ) = ( ) ( 1) ( 2) ( ) ( 1),

ˆ( 2 | ) = ( ) ( 1) ( 2) ( 1) ( )

( 1),

ˆ( 3 | ) = ( ) ( 1) ( 2)

y t t p y t p y t p y t g u t g u t

y t t p y t p y t p y t g u t g u t

g u t

y t t p y t p y t p y t g

+ + − + − + ∆ + ∆ −

+ + − + − + ∆ + + ∆

                   + ∆ −

+ + − + − + ,0 3,1

3,2 3,3

( 2) ( 1)

( ) ( 1).

u t g u t

g u t g u t

∆ + + ∆ +

                   + ∆ + ∆ −

    (0.145) 

The above predictions of the system output can be expressed in matrix form, where the 

known and unknown contributions to the predicted outputs are separated as follows  

1,0 1,1 1,2 1,1

2,0 2,1 2,2 2,2

3,0 3,1 3,2 3,3

1,0

2,1 2,0

3,2 3,1 3,0

( )
ˆ( 1| )

( 1)
ˆ( 2 | ) = known

( 2)
ˆ( 3 | )

( 1)

0 0

0

y t
y t t p p p g

y t
y t t p p p g

y t
y t t p p p g

u t

g

g g

g g g

 
 +   −     +     −   +      ∆ − 

                             +

( )

( 1) unknown

( 2)

u t

u t

u t

  ∆ 
   ∆ +    
   ∆ +  

                    (0.146) 

hence transforming the derivation of the GPC algorithm into a straightforward problem 

involving matrix algebra.  

Ω  

In general, eq. (0.146) can be express as  

Gufy +=ˆ                                                         (0.147) 

 where the vector of predicted outputs is given by  

[ ]Tp tHtytdtytdtyy )|(ˆ)|1(ˆ)|(ˆ=ˆ ++++ K                            (0.148) 

and the vector of known contributions to ŷ , which forms the free response of the system 

(Maciejowski, 2002), assuming zero incremental controls is given by  

( )
( )

( )









−∆





















−−−

−−

−

=

−−
−++

−−
+

−
++

−
+

−
+

−−

)1(

)(

)()(

)()(

)()(

)1(

1,0,

11

21

1,10,1

1

1

1

1

0,

11

tu

ty

qqggqGqP

qqggqGqP

qgqGqP

f

pp

ppppp

HH

HHdHdHHd

dddd

ddd

K

MM
.      (0.149) 

The Toeplitz lower triangular matrix G is defined as  

51



 

 

 

 

 





















=

−−− 01)(

01

0

0

00

ggg

gg

g

G

dHdH pp
L

MOMM

L

L

,                                           (0.150) 

where the leading j  subscripts on the elements in G are omitted, since the diagonal (main 

and minor) elements are the same and not dependent on j . The vector of control actions, 

which is yet to be determined is given by  

[ ]Tp dHtututuu )()1()( −+∆+∆∆= K .                               (0.151) 

The cost function GPCJ  can be expressed in the vector form as  

uuryryJ TT

GPC λ+−− )ˆ()ˆ(= ,                                (0.152) 

where the vector of future set points (or reference signal) is defined as  

[ ]TpHtrdtrdtrr )(1)()(= ++++ K .                               (0.153) 

The next step of the derivation of the GPC algorithm is to differentiate the cost function eq. 

(0.152) with respect to the vector of future incremental controls, i.e.  

( ) ( ) ( ) ( )

( )[ ] [ ] [ ]

( ) uryG

uIuryGGry

uu
u

u
u

u

ryry
u

ry
u

ry
u

J

T

TTT
TT

T

T

T

T

TT

TGPC

λ

λλ

λλ

2ˆ2

ˆˆ

ˆˆˆˆ

+−=

++−+−=







∂

∂
+





∂

∂
+

−




 −
∂
∂

+




 −
∂
∂

−=
∂

∂

                  (0.154) 

and substituting eq. (0.147) for the vector of predicted outputs ŷ  leads to  

( )

,)(2)(2

22

uIGGrfG

urGufG
u

J

TT

TGPC

λ

λ

++−=

+−+=
∂

∂

                                (0.155) 
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where I denotes an identity matrix of appropriate dimension. (In the case of c pH H=  it is of 

dimension ( 1 ) ( 1 )p pH d H d+ − × + − .) The minimisation procedure is accomplished by 

setting 0=
u

JGPC

∂
∂

, hence  

 ( ) ( ) 0=++− uIGGrfG TT λ .                                           (0.156) 

Rearranging the expression eq. (0.156) to solve for vector u leads to the GPC algorithm  

 [ ] [ ]frGIGGu TT −+=
−1

λ ,                                           (0.157) 

where only the first term of the vector u is applied to the plant, hence  

 )(1)(=)( tututu ∆+− .                                             (0.158) 

 Throughout the derivation of the GPC algorithm the control horizon has been set such 

that =c pH H . However, the use of pc HH ≤  is common in practice, which decreases the 

computational load. The control horizon is relatively simply implemented by reducing the 

dimension of the lower triangular matrix G by considering only the first cH  columns of G 

and the dimension of u is then 1cH × . The corresponding weighting matrix λI is also required 

to be suitably truncated. The matrix inversion in eq. (0.157) for the special case of 1=cH , 

reduces to the division by a scalar, which is often used in practice due to ease of computation.  

 

4.6.1 Choice of the control and prediction horizons 

The choice of the control and prediction horizons cH  and pH  is a crucial issue when 

implementing the GPC algorithm. The horizons act as tuning or design parameters and are 

application specific. The choice of these is rather difficult and only a basic introduction is 

presented here. A detailed discussion of choosing the horizons and the cost weighting 

parameter λ  can be found in (Clarke and Mohtadi, 1989; Clarke, 1996). The prediction 

horizon should be large enough to incorporate the delay and transients of the system plus any 
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possible NMP response. It is suggested that the prediction horizon should incorporate the rise 

time of the plant, in order to encompass the transient effects of the plant.  

 

:umerical Study: GPC 

 Consider an ARX model structure having 2=an , 1=bn  and 1d =  given by  

)(2)(0.31)(0.72)(0.71)(1.5=)( tetututytyty +−+−+−−− .              (0.159) 

To illustrate the calculation of  the 1( )jP q−  and 1( )jG q−  polynomials the first prediction for 

1=j  is performed. Utilising the predictor eq. (0.141) the polynomial )( 1

1

−qP  for 

2=1= ~ −ap nn  is then  

1 1 1

1 1,0 1,1 1,2( ) =P q p p q p q− − −+ + ,                                        (0.160) 

where the individual coefficients ip1, , 0 2i =   K , are computed utilising eq. (0.144) and eq. 

(0.136), hence  

1,0 0,1 0 1 0,0 1 1

1,1 0,2 1 2 0,0 1 2 2

1,2 0,3 2 3 0,0 2 3

= ( ) = 0 (1 )1= ,

= ( ) = 0 ( )1= ,

= ( ) = 0 ( 0)1= .

p p a a p a a

p p a a p a a a

p p a a p a a

+ − + − −

+ − + − −

+ − + − −

%

%

%

                                (0.161) 

Utilisng eq. (0.143) the )( 1

1

−qG  polynomial is computed as  

1

101 =
−+ qbbG  .                                                       (0.162) 

The predicted output at time ( 1)t +  is then  

1)()(2)(~1)(~)(~=)|1(ˆ 10321 −∆+∆+−−−−−+ tubtubtyatyatyatty ,             (0.163) 

which is exactly the same solution as in eq. (0.138). Following the same procedure the 

prediction for 2=j  and 3=j  can be computed.  

 

 The simulation setup, as previously, involves the open-loop operation during the time 

interval = 1, 25t 〈 〉  and closed-loop operation with the GPC controller eq. (0.157) during the 
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time interval (25,100t = 〉 . The reference signal switches between 5±  units with a period of 

25 samples. The performance criteria are the same as used previously, see eq. (0.79) and eq. 

(0.80) . The noise variance is assumed to be 0.5=2

eσ  and the start of the performance 

evaluation is taken to be 0 = 30t . The horizons are chosen as 3=pH  and 2=cH  and the 

cost weighting parameter 0.1=λ . 

 The results of the simulation are shown in Figure 4. The performance in terms of the 

MSE and MSC criteria are = 0.77MSE  and = 3.15MSC , respectively, which in comparison 

to the MV performance, is a superior result. Note that the first change of the system output 

starts before the actual reference signal changes. Indeed this is one of the advantages of GPC 

over alternative conventional control strategies.   

 

 

 

 

 

 

 

 

 

 

Figure 4. Simulation of the GPC controller for 1,25t = 〈 〉  in the open-loop setting 
and for (25,100t = 〉  in the closed-loop setting. 
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Chapter 5 

A bilinear approach to STC for nonlinear 

industrial systems 

 

Recognition that real-world nonlinear systems exhibit different behaviour over the 

operating range, and locally linearised models are valid only for small regions about a single 

operating point, has prompted the desire to extend the STC concept to encompass a wider 

range of nonlinear systems. Since bilinear systems represent a small, but important subset of 

nonlinear systems within which linear systems coexist as a special subclass, attention is 

focused here on extensions of STC for bilinear systems. A diagrammatic representation of 

linear, bilinear and nonlinear systems is shown in Figure 5. Indeed many real-world processes 

can be more appropriately described using bilinear models, and a good summary can be 

found in (Mohler, 1970; Bruni et al., 1974; Espana and Landau, 1978; Figalli et al., 1984). 

Bilinear systems are characterised by linear behaviour in both state and control when 

considered separately, with the nonlinearity arising as a product of system state and control 

(Mohler, 1973). These processes may be found in areas such as engineering, ecology, 

medicine and socioeconomics. Thus the adoption of bilinear models and the development of 

bilinear model-based control, represent a significant step towards dealing with practical real-

world systems.  
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Based on the above observations coupled with the potential advantages of improved 

control, e.g. improved efficiency, reduced wastage, increased profitability and improved 

product quality, the need to develop bilinear model-based control strategies is justified. 

Indeed, this has formed the topic of much research, with potential benefits, in practical 

applications, see (Burnham, 1991; Goodhart, 1991; Disdell, 1995; Dunoyer, 1996; Minihan, 

2001; Ziemian, 2002; Martineau, 2004). This concept of adoption of the bilinear model-based 

approach is demonstrated  by extending the linear GPC scheme to the bilinear case. The use 

of bilinear GPC (BGPC) increases the operational range of the controller over the use of the 

linear model-based GPC when applied to systems for which a bilinear model is more 

appropriate. A general single-input single-output bilinear system can be modelled using a 

nonlinear ARMAX (NARMAX) model representation, i.e. 

1 0

,

0 1

( ) ( ) ( )

( ) ( 1) ( ),

a b

b a

n n

i i

i i

n n

i j

i j

y t a y t i b u t d i

y t i d u t i j d tη ξ

= =

= =

= − − + − −

          + − − − − − + +

∑ ∑

∑∑
                        (0.164) 

where the ia  and ib  are assumed to correspond to the linear ARMAX model eq. (0.1) with 

the ,i jη  being the discrete bilinear coefficients which are required to be identified either on-

line or off-line along with the ia  and ib  (Dunoyer, 1996). 

  

 

 

 

 

Figure 5. Diagrammatic representation of bilinear systems as a subset of the wider 

class of nonlinear systems, and linear systems as a subclass of bilinear systems. 
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5.1 Bilinear GPC  

The predictive control law is based on a bilinear model eq. (0.164), which for the 

purpose of obtaining an explicit solution to the multi stage quadratic cost function eq. (0.132) 

is interpreted as a time-step quasi-linear model such that the bilinear coefficients are 

combined with either the ia  or ib  parameters. The combined parameters are either given by 

( ) ( ) ( 1)i ia t a u t d i iη= − − − −%                                              (0.165) 

or by 

( ) ( ) ( ).i ib t b y t i iη= + −%                                                   (0.166) 

For example, by recombining the bilinear terms with the ia  coefficinets the bilinear model 

eq. (0.164) can be expressed as input dependent and potentially time varying linear model, 

i.e. 

1 0

( ) ( ) ( )
a bn n

i i

i i

y t a y t i b u t d i
= =

= − − + − −∑ ∑% .                                   (0.167) 

The decision to accommodate the bilinearity with the ia  or ib  coefficients depends on a 

particular control situation and, to some extent, user choice.  Since the vector of future 

incremental control actions eq. (0.151) is computed at each time instance this knowledge can 

be utilised during the cost function minimisation. For example, one can obtain the predictions 

of the future outputs by utilising the combination approach of eq. (0.165) with the most 

recent solution for the vector of incremental controls u. Subsequently it may be advantageous 

to compute the next vector of incremental controls utilisng the combination approach of eq. 

(0.166). This latter approach of cyclic recombination of the bilinear terms has been shown to 

give rise to an improved overall performance (Dunoyer, 1996). 

As a consequence of utilising the bilinear (bilinearised) model for the purpose  of 

predicting the system output the prediction error decreases, hence the BGPC is more effective 
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over the standard GPC. The BGPC algorithm retains the same structure as in the case of GPC 

eq. (0.157). However, since the ( )ia t%  or ( )ib t%  coefficients are potentially time varying and 

input or output dependent, respectively,  the Toeplitz lower triangular matrix G and vector f, 

which comprise of these coefficients, are required to be updated at each time step. Note that 

some of the complexity can be overcome by taking advantage of the common factors in the 

case when 1cH =  (Vinsonneau, 2007). In general, however, the use of the BGPC leads to a 

higher computational load over the standard GPC.  

 

:umerical Study: GPC, Self-tuning GPC, and BGPC 

The system (plant) is represented by a second order single-input single-output ARX 

model having additional Hammerstein and bilinear nonlinearities. Similar structured 

nonlinear models have been assumed previously for replicating the characteristics of high 

temperature industrial furnaces, see (Goodhart et al., 1994; Dunoyer et al., 1997; Martineau et 

al., 2004), or for representing the thermodynamic processes within a heating ventilation and 

air conditioning system, see (Larkowski et al., 2009; Zajic et al., 2009). The nonlinear system 

has been chosen to show that bilinear controllers can be used to control nonlinear systems 

without using the adaptive control approach, leading to the use of less complex and robust 

controllers. The system takes the form 

2

( ) 1.56 ( 1) 0.607 ( 2) 0.042 ( 1) 0.036 ( 2)

0.01 ( 1) ( 1) 0.01 ( 1) ( ).

y t y t y t u t u t

y t u t u t e t

= − − + − + − + −

          − − − + − +
              (0.168) 

where the noise variance is 2 0.002eσ = .  The coefficient of the bilinear term is 0 0.01η = − and 

the coefficient of the Hammerstein term is 0.01 . The negative bilinear term is indicative of a 

system with saturation. 
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 Three controllers are investigated and compared, which are namely: GPC, self-tuning 

GPC (ST-GPC) and BGPC. The GPC is based on a second order linearised ARX model of 

the system eq. (0.168) given by 

( ) -1.552 ( -1) 0.600 ( - 2) 0.0423 ( 1) 0.037 ( - 2)y t y t y t u t u t= + + − + .            (0.169) 

The linearised model eq. (0.169) of the system has been estimated off-line using LLS applied 

to recorded data obtained when the system was simulated in an open-loop seting spanning the 

expected working points in the operational range. The BGPC is based on the bilinearised 

model of the system, which is given by 

( ) 1.552 ( 1) 0.600 ( 2) 0.0423 ( 1)

0.037 ( 2) 0.006 ( 1) ( 1).

y t y t y t u t

u t y t u t

= − − + − + −

          + − − − −
                         (0.170)   

This has been similarly obtained using LLS as described for the linearised model eq. (0.169). 

The ST-GPC is based on the linear second order ARX model, where the model parameters 

are estimated on-line utilising the RLS method. 

 A Monte-Carlo simulation study with 100M =  runs, 200( =  samples and 0 30t = , 

is performed. For all three controllers the tuning parameters are for the two horizons = 5pH  

and =1cH  and for the cost weighting parameter 0.1=λ . The system is subjected to a 

reference signal, switching between ±1 with a period of 50 samples. The results are given in 

Table 1, where the mean values of MSE and MSC for each controller are presented along with 

a benchmark comparison expressed in normalised form with respect to the GPC (where 

indices are all normalised to 100%). 
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The results given in Table 1 show the superior performance of the BGPC over the 

standard GPC for this particular case. The tracking ability improves by 11% and the control 

effort decreases by 19%. The ST-GPC provides moderate improvement over the GPC. It is 

noted, however, that for a lower demand on the tracking accuracy (slow control), e.g. 

=10pH , = 1cH  and = 0.2λ , the three investigated controllers perform in an almost 

undistinguishable manner.  

The above results highlight the benefits of adopting a bilinear model-based approach  

over standard linear model-based approaches. The BGPC is able to achieve its objective 

through the effective automatic gain scheduling via the nonlinear (bilinear) controller model 

structure. It is conjectured that, in the case when the set point is required to change over a 

wide operational range, and/or where the system may change over time, a self-tuning form of 

the BGPC should be beneficial. 

 

5.2 Future research directions 

 This Section on Future Research Directions has been included to highlight the 

potential of combined algorithms for control together with fault diagnosis, condition 

 MSE MSC MSE [%]  MSC [%]  

GPC 0.0586 1.0021 100.00 100.00 

ST-GPC 0.0564 0.9361 96.246 93.414 

BGPC 0.0523 0.8134 89.249 81.170 

Table 1. Mean values of MSE and MSC from a Monte-Carlo simulation together with 

the normalised [%] benchmark comparison between the GPC (where its values 

represent 100%) and the ST-GPC and BGPC. 
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monitoring and active fault tolerant reconfigurability. Current and future control systems will 

be required to handle systems of increased complexity (Bonfe et al., 2009). It is anticipated 

that there will be increased computer power and that it will be possible in the future to handle 

systems with increasingly higher bandwidths. Many of the dicrete algorithms and techniquies 

developed up to date will be required to be extended using hybrid delta operator type models 

and other approximations to continuous time representations (Young, 2008), including 

continuous and discrete-time bilinear model approaches (Dunoyer et al., 1997). Such a future 

development will require parsimonious models for control and models of higher complexity 

for fault diagnosis for both plant and sensors.  

New methods to deal with the above complexity issues are required and whilst some 

recent work in this area has already been reported, see for example (Vinsonneau, 2009; 

Linden, 2008; Larkowski, 2009; Larkowski et al., 2009) these algorithms are still in their 

infancy. Consequently, much research needs to be reddressed to bring these algorithms to 

application readiness. It is considered that extended estimation algorithms incorporating 

errors-in-variables and bias elimination procedures could be beneficial for fault diagnosis in 

addition to the standard algorithms used for control of complex interconnected systems. This 

is particulary important in applications where causality is not so clearly defined and there are 

safety critical issues involved, e.g. hybrid-electric vehicles (Cieslar et al., 2009). Other 

potential future developments in the field include nonlinear model-based STC, including but 

not limited to bilinear models, e.g. Hammerstein, Wiener and combinations of these, together 

with the more general polynomial nonlinearities and state dependent representations . 
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Chapter 6  

Concluding remarks 

 

By reviewing from a historic-technical perspective the text has provided a concise 

overview of some of the major developments in self-tuning control (STC). Emphasis has 

been placed on illuminating and demystfying the key stages in the derivation of a number of 

control law procedures, with a detailed account of advantages, limitations and 

implementational issues considered. Prior to considering control law procedures in Section 4 

the reader was introduced, in Section 3.1, to model structures for STC, where it was stressed 

that the models were chosen for both purpose and for convenience; and in Section 3.2, to 

parameter estimation schemes for STC, where standard linear least squares (LLS), recursive 

least squares (RLS) and the Kalman filter (KF) configured for parameter estimation were 

introduced.  

 In a book of limited size only a subset of the many control law design procedures 

could be included and these have been restricted to those which could be described using the 

polynomial model structures expressed as ARX (auto-regressive with exogenous inputs), and 

ARIX (auto-regressive integrated with exogenous inputs). Extending the methods to the more 

general case of coloured output noise, as well as to the various equivalent extensions in 

minimal and non-minimal realisations of the state-space framework, are left as further 

exercises for the reader. 
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 The continual need for improved control systems, which are able to operate 

effectively on real-world nonlinear systems over wide operational ranges with a minimum of 

operator intevention as well as implementational simplicity, has been motivated by numerous 

factors.  The drivers for such demands include: improved product quality, reduced energy 

consumption, increased efficiency, conformation to environmental regulations, and incresed 

profitability, to name but a few. Indeed it was in recognition of such demands from virtually 

all sectors of the man-made technological world, eg. industrial, commertial and sociological, 

that prompted many of the early, as well as the current and future, developments in STC. 

 In regard to the earlier developments the text has provided the reader with a flavour of 

some of this pioneering work in a attempt to re-capture the enthusiasm and to gain an in-

depth insight into the details of the algorithms. The following key developments in 

chronological technical-historic order have been reviewed: the optimal d-step ahead 

predictive schemes of minimum variance (both regulator and controller), generalised 

minimum variance (GMV) controller, incremental GMV (IGMV) controller, the sub-optimal 

pole placement controller and last but not least the long range generalised predictive control 

(GPC) scheme. 

Having informed the reader of the algorithms together with their advantages and 

limitations, the scope for potential extensions to handle complex systems was considered. In 

this regard a section on bilinear systems and bilinear model-based control with particular 

emphasis on bilinear forms of GPC has been included. The results presented demonstrate the 

superiority of the bilinear GPC (BGPC) when applied to an arbitrarily chosen nonlinear 

system when there are high demands for accurate setpoint tracking. It has been shown in this 

particular example that the BGPC achieved its objectives whilst using less control effort.     
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Throughout the text the reader has been given an insight into the exciting and 

pioneering technical-historic developments of STC, and in this regard the authors hope that 

the reader will be encouraged to follow up the references herein and go further in this field of 

control engineering and gain deeper knowledge. 
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