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Preface

This is one of a series of Masters level monographs, which have been produced
for taught modules within a common course designed for Advanced Informat-
ics and Control. The new common course development forms a collaboration
between Coventry University, United Kingdom and Wroclaw University of Tech-
nology, Poland. The new course recognises the complexity of new and emerging
advanced technologies in informatics and control, and each text is matched to
the topics covered in an individual taught module. The source of much of the
material contained in each text is derived from lecture notes, which have evolved
over the years, combined with illustrative examples which may well have been
used by many other authors of similar texts that can be found. Whilst the
sources of the material may be many any errors that may be found are the sole
responsibility of the authors.
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Chapter 1

Introduction

The ‘art’ of system identification is an experimental process, where by making
use of the available input and output data and a priori knowledge, one aims to
mathematically describe the causalities that govern the behaviour of a system
(Söderström & Stoica 1989) and (Ljung 1999). The task of identifying a system
or a process1 , where these terms could refer to a standard mass-spring-damper
example or, likewise, greenhouse effect, is a commonly encountered problem
which is not necessarily restricted to only the control engineering domain but it
is equally faced within various other fields of sciences. These range from econ-
omy, finance, social science through biology, medicine, chemistry to computer
and earth science, to mention only few examples. A survey summarising some
important developments in the subject of system identification has relatively
recently been given in (Ljung 2008). Parameter estimation can be considered
as a subtask of the system identification procedure, during which the parame-
ters that describe a particular model structure are determined making use of a
chosen algorithm, which can be referred as a parameter estimator. There is no
single parameter estimation algorithm which is suitable for all model structures.
Similarly, there is no single model structure which is capable of adequately mod-
elling all systems. Consequently, the choice of a tandem - model structure and
parameter estimator is not trivial. Whilst in the case of system identification one
is interested in building a model of a process based on measured input/output
data, filtering deals with a dual problem of recovering noise-free signals based on
a known (or, in practice, estimated) system model. This script aims to provide

1Terms ‘system’ and ‘process’ are used interchangeably in the sequel.
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Figure 1.1: The methodology of system identification.

an introduction into basic concepts of system identification and filtering.
The process of system identification, depicted in Figure 1.1, cf. (Ljung 1999)

and (Ikonen & Najim 2002), is of iterative nature and can be divided into the
following steps:

1. Experiment design - This refers to the planning and preparation of exper-
iments, which should be carried out such that they will provide suitable
data, ideally, with maximum information content subject to constraints
imposed by the process. For instance, the choice of an appropriate sam-



pling period and input signal are both crucial. The sampling time must
be specified such that all system dynamics of interest can be captured,
whilst the input should excite the system sufficiently in order to obtain
data which is informative. These can be approximately found from a
priori knowledge regarding the system bandwidth, the expected range of
operation, typical system behaviour etc.

2. Data acquisition - This step refers to the acquisition of signals and their
pre-treatment before utilising them for model calculation. Data recorded
can contain undesired components such as measurement noise, quantisa-
tion noise, outliers etc. Some parts of data can even be missing or/and
discrepancies in the time stamp between different signals measured can
be present. All these factors can significantly reduce the information con-
tent of interest and prevent obtaining a good model. Therefore, the data
recorded should be examined first and pre-treated appropriately. For in-
stance, by possessing approximate a priori knowledge about the system
bandwidth, all frequencies higher than twice the system bandwidth should
be filtered via a low-pass filter.

3. Selection of model structure - Model structure refers to the choice of a par-
ticular candidate class of models from which the best model (for a given
purpose) is sought. This also includes specification of inputs and outputs.
Loosely speaking, it is expected the chosen model structure will be suf-
ficiently flexible to capture the main and/or important dynamics of the
system and at the same time to be of parsimonious complexity, so that
it can be handled by practically available hardware equipment. Conse-
quently, in practice there exists a trade-off between the model complexity
and its modelling capabilities. More complex model structures yield more
precise representation of the actual process, whilst more simple model
structures are easier to be estimated, require less computational power
and their behaviour and properties are easier to understand and analyse.
In general, the choice of an appropriate model structure is very difficult
and requires at least some prior engineering knowledge, intuition and/or
insight into the actual process properties.

4. Selection of fit criterion - Prior to the calculation of a model one has
to choose a criterion against which the model validity is to be assessed.
The most commonly used and straightforward criteria are based, at least
partially, on a goodness of fit of the data generated by the estimated model
to the measured data.



5. Model calculation - This step deals with the choice of the algorithm for
estimating the model parameters, and is often referred to as a parameter
estimation phase. Such decisions depend on the model structure to which
the model belongs and the data. The data quality can influence the ability
of a chosen algorithm to estimate the model parameters. For instance,
some algorithms are more susceptible to a high noise contamination than
others.

6. Model validation - In this step the ability of the model to reproduce the
behaviour of the actual system is quantified and assessed with respect to
the intended purpose of its later usage. Usually, the stability and confi-
dence in the parameters of the estimated model are checked. The most
important validation step is to check the degree to which the estimated
model reproduces the actual process behaviour using data sets not used
in the parameter estimation phase (validation data sets). This procedure
is called cross-validation. It verifies that the estimated model can be gen-
eralised to a wider sets of data than just those used for its estimation
(training data sets).

It is observed from Figure 1.1 that the entire process of system identification
is of iterative nature, since it is very unlikely to arrive at a satisfactory model at
the first run. Usually, it takes several iterations during which some previously
made choices are revisited. For instance, it may be found the the chosen model
structure is not flexible enough or that it is too complex and needs to be changed.

Summarising, it should be emphasised that the final model should not be
considered as a ‘true’ description of the actual process, since such notion does
not exist in practice. At most the final model can be regarded as a good enough
description for a given purpose. Following (Ljung 1999), ‘Our acceptance of
models should thus be guided by ”usefulness” rather then ”truth”’.

Questions

• Describe briefly the steps of the system identification process.

• Discuss the existence of a trade-off between model complexity and mod-
elling capabilities.

• Explain why in practice the system identification procedure is of an iter-
ative nature.

• Does the notion of a ‘true’ system model exist in practice?

• Explain what is meant by a ‘model for purpose’.



Chapter 2

Basic concepts

2.1 White-box, grey-box and black-box modelling
approaches

1. White-box models (or, alternatively, first principles/fundamental/physical
models) - based on physical laws and relationships such as conservation of
force, mass, energy, momentum etc. The parameters of such models have
physical interpretation, e.g. mass, thermal conductivity or capacitance.
Their development requires certain a priori knowledge about the pro-
cess behaviour and relatively detailed engineering insight into the system.
Hence, usually the modelling procedure involved is laborious. White-box
models are in the form of ordinary/partial differential equations, integral
equations or both, with appropriate initial/boundary conditions. The
overall model complexity depends directly on the inherent complexity of
the process being modelled and on the level of intended precision that is
desired. In general, the resulting model can be quite complex and contain
a significant number of parameters as well as non trivial nonlinear func-
tional relationships between model components. In order to simplify such
models it is often possible, for example, to substitute certain functions
with less complex counterparts, neglect components which are not of a
prime importance, consider using lumped parameters, introduce idealised
assumptions etc. At least in principle, the white-box models can be ob-
tained without the need of employing any identification tools.
Advantages:
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+ Model structure directly reflects the phenomena being modelled

+ Parameters possess physical meaning

Disadvantages:

– Usually complex models

– Detailed engineering knowledge required

– Laborious modelling procedure

2. Black-box models (or, alternatively empirical/experimental models) -
constructed through the observation of the process input and output data,
which is subsequently used to fit a model. Consequently, the model pa-
rameters do not (necessarily) possess any physical significance, i.e. they
can be considered as auxiliary vehicles that help to explain the relationship
between the system input and output, hence the name black-box models.
Such models are obtained via identification procedure from experimental
data, where the user can impose a particular model structure. There-
fore, the model identified describes rather qualitatively the relationship
between input and output, and not necessary the actual phenomena being
modelled. Furthermore, their validity and reliability are both constrained
by quality and information content of the data used for identification.

Advantages:

+ Relatively simple models

+ Models created based solely on the input-output data, i.e. no prior
engineering knowledge required

+ Relatively simple modelling procedure

Disadvantages:

– Lack of physical interpretation of the model hence parameters does
not have physical meaning

– Validity and reliability depend on data used for identification

3. Grey-box models (or, alternatively semi-physical models) - Grey-box
models lie between the two extremes of white-box and black-box models.
In brief, when constructing grey-box models some knowledge regarding
the physics of the process is used, however not to the extent that a first
principle model is built. For instance, if a given model comprises of two



sub-models, where the first sub-model is modelled as a white-box and the
second is modelled as a black-box, the resulting overall model will be a
grey-box model. The grey-box modelling overcomes (to some extent) lim-
itations of white-box and black-box modelling approaches, whilst at the
same time retains some of their corresponding advantages. As an example,
one can consider a case where a process has a fairly linear dynamic be-
haviour but possesses a nonlinear steady-state characteristic. It is noted,
that the knowledge regarding the steady-state characteristic, whose gen-
eral shape can typically be inferred from the nature of a process under con-
sideration, can be treated as an additional engineering insight. A grey-box
modelling procedure could be to exploit this knowledge and approximate
the system nonlinear steady-state characteristic via an appropriate static
function (white-box modelling), whilst deriving a linear model to describe
the process dynamics using only the measure data (black-box modelling).

Another illustrative example of a grey-box modelling methodology could
be that presented in (Lindskog & Ljung 1993). There the additional engi-
neering knowledge is used to transform the measured signals into new
auxiliary signals that are more suitable for explaining the actual pro-
cess behaviour, with standard black-box identification. With reference
to (Lindskog & Ljung 1993), this idea is illustrated by a following exam-
ple - the goal is to find a model relating the voltage applied to an electric
heater to room temperature. On the one hand, the white-box modelling
approach can be followed which requires writing down all physical equa-
tions for the conversion of the voltage to the power of the heater, the heat
transfer via radiation and convection from the radiator to the room etc.
The resulting set of equations can be relatively complex and include sev-
eral coefficients, such as heat transfer coefficient, specific heat capacities,
radiator exponent etc., which may not all be known. On the other hand,
a black-box approach could be chosen and a simple linear dynamic model
structure fitted to the data yielding a model, which will explain to some
extent the data observed. However, it is very likely that it cannot be gen-
eralised to other data sets and different operating conditions. A grey-box
modelling approach would use the fact that it is not the voltage but the
heater power that actually changes the room temperature. Consequently,
the black-box identification procedure can be used with same structure
but with squared voltage as the input. This minor transformation is a di-
rect result of additional engineering insight, hence the method represents
the grey-box modelling approach.



Advantages:

+ Models of medium complexity

+ Allows exploitation of potential engineering knowledge

+ Knowledge of all parameters unnecessary

Disadvantages:

– Only some parameters possess physical meaning

– Validity and reliability depend to some extent on data used for iden-
tification

2.2 Treatment of disturbances on measurements

In black-box and grey-box modelling approaches, the model is constructed by
observing the system input and output. In a general case, these signals have to
be measured via sensors. Every measuring device introduces a measurement er-
ror into the signals being measured. Consequently, the input-output data used
for the model calculation will not correspond exactly the actual input-output
signals, see Figure 2.1, where such a situation is illustrated diagrammatically.
This configuration is called errors-in-variables (EIV), since it assumes potential
measurement errors in all variables (signals) measured, see (Söderström 2007)
for further details. The EIV system setup is utilised mainly for the purpose
of obtaining an accurate insight into the internal system behaviour, i.e. pre-
cise determination of system parameters, especially if these parameters possess
meaningful physical interpretation.

A somewhat simplified setup is given in Figure 2.2, where only the output
signal is measured, whilst the input is assumed to be known exactly. Although
this configuration may appear less realistic, in fact, it is not. This is due to
the property that in the case of most (if not all) control problems the input is
produced by a controller, hence it is known and not required to be measured,
which, in turn, automatically avoids any potential measurement errors. Config-
uration in Figure 2.2 can be considered as a classical (or non-EIV) setup. It is
relevant primarily where the task of the model is to anticipate the future system
behaviour, i.e. prediction of signals. Note that the classical system setup is a
special case of the EIV setup.

As an illustration of the EIV situation consider a task of constructing a
model of some natural phenomena where both the input and the output signals



Figure 2.1: A general representation of the EIV estimation setup where both
the input and output are measured.
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Figure 2.2: A general representation of the classical estimation setup where the
input is known and only the output is measured.

are unknown and have to be measured. Such an example could be a rainfall
model relating the amount of rain to the level of water in a river. Both of the
quantities measured contain errors. Another example could be the greenhouse
effect, where the input is the amount of emitted CO2 into the atmosphere and
the output the thickness of the ozone layer. Sometimes, although a given input
signal could, at least theoretically, be calculated this is not feasible from a
practical point of view. For instance, consider a radiator whose input is the
mass-flow and the output being heat emitted. If one has access to the boiler,



which supplies the water, then the mass-flow entering the radiator can be found
(i.e. non-EIV setup), otherwise it has to be measured (i.e. EIV setup). The task
of obtaining the actual mass-flow becomes increasingly less feasible when one
considers a block of flats each with a number of rooms and radiators and where
the water is supplied by a single boiler located in the basement. In this case,
even if one had an access to the boiler the problem of determining a mass-flow
to each individual radiator, taking into account inherent losses, leaks, pressure
drops etc., would be very difficult.

A classical (non-EIV) configuration could be a control setup, where, for
instance, one utilises a DC motor to change the azimuth position of a radar
antenna. The voltage applied is set by a user (or by a controller) and is known,
whilst the azimuth position of the antenna needs to be measured and thus is
corrupted by measurement errors. Another example is the control of a green-
house where the input is the speed of a ventilator and the output is the humidity
inside the greenhouse. The ventilator speed depending directly on the voltage
applied by a controller is known exactly whilst the humidity has to be measured
via an appropriate sensor.

A pragmatic approach to cope with EIV situation, see (Ljung 1999), is to
either filter the input or/and regard the measured noisy inputs as the noise-free
inputs, while lumping their deviations from the actual inputs in the process noise
or/and the noise on model output. Consequently, the influence of erroneous
inputs is absorbed (to some extent) by other processes that model uncertainty.
If such an approach is undertaken then identification algorithms suitable for a
classical, i.e. non-EIV, setup can be used. In this script the main attention is
given to the classical (control oriented) configuration.

Questions

• Explain what is meant by white-box, grey-box and black-box modelling
approaches. Provide examples and discuss the corresponding advantages
and disadvantages of the three modelling methodologies.

• Explain the differences between classical control setup and an EIV setup.
Give examples of situations where these two frameworks can be advanta-
geous.



Chapter 3

Linear and nonlinear
systems

3.1 Introduction

In this chapter some basic notions regarding linear systems and their different
representations are introduced. This is followed by a brief description of selected
and frequently met nonlinear model structures.

3.2 Systems and their classification

3.2.1 Linearity

A linear system is defined as a system that fulfils the so-called principle of
superposition. The principle of superposition states that the sum of responses
of a system subjected to two separate inputs is the same as the response of
that system when subjected to the input which is the sum of the two inputs.
Expressed more formally it means that:

• if f(u1) is the output of a system to the input u1, where f(·) is a continuous
function, and

• if f(u2) is the output of a system to the input u2

• then the system is said to be linear if f(u1 + u2) = f(u1) + f(u2)
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Furthermore, if the system is linear, then the above condition also implies that

• if f(u1) is the output of a system to the input u1

• then αf(u1) is the output of a system to the input αu1, i.e. f(αu1) =
αf(u1), where α is a scalar

The above proportionality property is called homogeneity (of degree one). If
the principle of superposition does not hold a model or a system is said to be
nonlinear. Most (if not all) systems, although nonlinear in nature, can behave
approximately linearly within a certain range of operation.

It is also useful to distinguish the linearity in terms of the relationship be-
tween the input-output data and in terms of the system parameters. The first
type of linearity, defined above via the principle of superposition, concerns the
linear dependence of the output on the input. The second type of linearity, i.e.
linearity in parameters, concerns the linear dependence of the output on the
parameters. Consider the following examples, where y, u and α are the output,
input and a scalar parameter, respectively, i.e.

• y = αu - system linear in both, i.e. input-output and parameter

• y = α2u - system linear in input-output, nonlinear in parameter

• y = αu2 - system nonlinear in input-output, linear in parameter

• y = uα - system nonlinear in both, i.e. input-output and parameter

Dynamic and static systems

Systems (and models) can be divided into static and dynamic. The former
class is a particular case of the latter class, where the output at a given time
instance depends only on the value of the input at the same time instance,
exclusively. In contrast, in the dynamic case, the system has memory and, as a
consequence, the output at a given time instance can be expressed as a function
of the past input and past output signals. This property extends their potential
applicability into many areas, but can also lead to an increase in complexity
in terms of modelling and identification. As an example consider the following
systems, where the subscript k denotes a discrete-time instance, i.e.

• yk = αuk - static system

• yk = αuk−1 - dynamic system



Note that in the case of static models there is no need to introduce the time
index. A dynamic model is said to be casual if the output at a certain time
instance is dependent on the input up to (and including) this time exclusively,
i.e. it cannot depend on future values of the input. For instance consider the
following dynamic systems, i.e.

• yk = αuk−1 - casual dynamic system

• yk = αuk+1 - not casual dynamic system

Time-invariant and time-varying systems

A model is defined as time-invariant if its response to a given input does not
explicitly depend on time, e.g. it is assumed that laws that the system describes
are identical regardless of time (hence the system parameters are constant). As
an example consider the following systems, where αk denotes that the parameter
α varies over time, i.e.

• yk = αuk - linear time-invariant (LTI) system

• yk = αkuk with αk = sin(k) - linear time-varying (LTV) system

Continuous-time and discrete-time systems

Systems can be continuous in time or discrete. The former class of systems
appears to be the more natural and intuitive because models of such systems
can be obtained directly by writing down, for instance, balance equations of
a given process. This usually gives rise to a set of ordinary or partial differ-
ential equations. Discrete-time systems describe the relationship between the
input and the output only at certain time instances. They are useful because
the process data is usually available only at discrete-time instances at which
it is sampled. Moreover, control and identification algorithms are inherently
discrete-time, since they are implemented on digital platforms. If the sam-
pling frequency is chosen appropriately then a continuous-time system can be
approximated well by a corresponding discrete-time counterpart. As an ex-
ample consider the following unforced first order systems, which both describe
the process of exponential decay and where Ts is the sampling time and t is a
continuous-time index, i.e

• dy(t)
dt = −αy(t) - continuous-time system

• yk = e−αTsyk−1 - discrete-time system



Deterministic and stochastic systems

In systems which are deterministic the output can be completely determined
from the knowledge of the input. That means there is no uncertainty embedded
in the system. Such a case is however rather unrealistic in practice because
there are always some signals present which are unmeasurable or/and dynamics
which is not captured. These can be interpreted as unknown stochastic signals.
Consequently, in a stochastic model, contrary to the deterministic case, at least
one component is present within a system that is attributed to an unknown,
hence unpredictable, portion of the output. This means that the output cannot
be calculated completely knowing the input only. As an example consider the
following systems:

• yk = αuk - deterministic system

• yk = αuk + ek where ek is an unknown noise sequence - stochastic system

In this text considerations are restricted mainly to dynamic discrete-time LTI
stochastic models. However, some consideration is given to the LTV models and
some selected nonlinear models too.

3.2.2 Different representations of linear systems

There are several ways to describe the dynamics of LTI systems such as differen-
tial/difference equations, transfer functions, impulse responses and state-space
equations. If any of these representations is given the system is considered to
be completely characterised (Hsia 1977).

Differential equation representation

Consider the general form of a continuous-time ordinary differential equation,
(Nise 2008), i.e.

ana

dnay(t)

dtna

+ ana−1
dna−1y(t)

dtna−1
+ . . . + a0y(t) =

bnb

dnbu(t)

dtnb

+ bnb−1
dnb−1u(t)

dtnb−1
+ . . . + b0u(t), (3.1)

where u(t) and y(t) are the input and the output, respectively. The parameters
ai and bi as well as the orders na and nb (with na > nb) define the particular



process which is modelled. By applying the Laplace transform1 to the both
sides of equation (3.1) one obtains

(
ana

sna + ana−1s
na−1 + . . . + a0

)
Y (s) + Yinitial =

(
bnb

snb + bnb−1s
nb−1 + . . . + b0

)
U(s) + Uinitial, (3.2)

where

Yinitial = −ana

na∑

i=1

sna−i d
i−1y(0)

dti−1
− ana−1

na−1∑

i=1

sna−1−i d
i−1y(0)

dti−1
− . . .− a1y(0),

(3.3)

Uinitial = −bnb

nb∑

i=1

snb−i d
i−1u(0)

dti−1
− bnb−1

nb−1∑

i=1

snb−1−i d
i−1u(0)

dti−1
− . . .− b1u(0).

(3.4)

It is noted that in contrast to (3.1) equation (3.2) is algebraic. By postulating
that all initial conditions are null, i.e. Yinitial = Uinitial = 0, (3.2) simplifies to

(
ana

sna + ana−1s
na−1 + . . . + a0

)
Y (s) =

(
bnb

snb + bnb−1s
nb−1 + . . . + b0

)
U(s).
(3.5)

This can be written in a form of a ratio of the output over the input signal, i.e.

G(s) =
Y (s)

U(s)
=

bnb
snb + bnb−1s

nb−1 + . . . + b0
ana

sna + ana−1sna−1 + . . . + a0
=

∑nb

j=0 bjs
j

∑na

l=0 als
l
. (3.6)

The ratio of the Laplace transformed input and output is called the transfer
function and it is usually denoted by G(s). The transfer function characterises
a given system, and due to the property that the input and the output are
separated, the response of a system to any excitation can be calculated via
Y (s) = G(s)U(s). Note that this useful property was not present in the original
formulation of the differential equation (3.1). In general, LTI systems, such
as electrical networks, mechanical/pneumatic/hydraulic/heat-transfer systems,
can all be described by transfer functions.

1Laplace transform, denoted L(·), of derivative of n-th order is given by L

[

dny(t)
dtn

]

=

snF (s)−
∑n

i=1 s
n−i d

i−1f(0)

dti−1
.



Difference equation representation

Nowadays, most control and identification algorithms are implemented on dig-
ital computers, hence it is of interest to consider a discrete-time counterpart
of the continuous-time ordinary differential equation (3.1). Discrete-time tech-
niques operate on samples of continuous-time signals, which are recorded at
(usually equidistant) discrete-time instances. The time between sampling is
utilised to perform necessary calculations (the more complex the algorithm the
more computationally demanding and time consuming it is) as well as for send-
ing the calculated signals to the system being under control (Dutton, Thompson
& Barraclough 1997). Consequently, discrete-time models disregard information
between the samples and provide only snapshots of the actual signal. As long
as the sampling time is short enough, such that there is not much change in
between the samples, a discrete-time approximation will constitute a good de-
scription of the continuous system. A discrete-time counterpart of equation
(3.1) is called a difference equation (since it involves difference operations on
successive samples) and it is given by

a0yk + a1yk−1 + . . . + ana
yk−na

= b0uk + b1uk−1 + . . . + bnb
uk−nb

(3.7)

where na ≥ nb. It must be emphasised here that there is no direct correspon-
dence of the a and b parameters between the discrete-time difference equation
(3.7) and the continuous-time differential equation (3.1) (hence also the trans-
fer function (3.6)). For example a1 in (3.1) will not, in general, be the same
value as a1 in (3.7). Equation (3.7) can be more conveniently re-written using
a polynomial formulation as

A(q−1)yk = B(q−1)uk, (3.8)

where the polynomials A(q−1) and B(q−1) are, respectively, given by

A(q−1) = a0 + a1q
−1 + . . . + ana

q−na , (3.9)

B(q−1) = b0 + b1q
−1 + . . . + bnb

q−nb (3.10)

with q−1 denoting a discrete-time shift operator defined as q−dyk = yk−d. For
convenience, it is usually assumed that a0 is unity, i.e. a0 = 1 by definition,
which implies that the polynomial A(q−1) is monic. Because most discrete-time
dynamic systems have an internal delay, denoted d ≥ 0, it is sometimes useful
to incorporate that property explicitly into the difference equation, which leads
to

A(q−1)yk = q−dB(q−1)uk. (3.11)



It is noted that equation (3.11) can be interpreted as a special case of equation
(3.7) with an additional constraint that b0 = b1 = . . . = bd−1 = 0. Therefore,
the form without an explicit delay (3.7) is used in the sequel.

It is instructive to consider the relationship between the difference equation
and the Z-transform. Following (Pearson 1999), taking the Z-transform of
the difference equation (3.8) (which is defined in the discrete-time domain) one
obtains the following equivalent representation (defined in the discrete frequency
domain), i.e.

A(z−1)Y (z) = B(z−1)U(z), (3.12)

where Y (z) and U(z) represent the Z-transforms of the output and the input,
respectively. These are, in general, given by

Y (z) =

∞∑

k=−∞

ykz
−k, (3.13)

U(z) =

∞∑

k=−∞

ukz
−k, (3.14)

where z is a complex number. By assuming zero initial conditions, i.e. yk =
uk = 0 ∀ k < 0, the summation can start from k = 0. The polynomials
A(z−1) and B(z−1) have analogous structures to those given in (3.9)-(3.10).
Consequently, a discrete-time transfer function is defined as follows

G(z) =
Y (z)

U(z)
=

B(z−1)

A(z−1)
=

∑nb

j=0 bjz
−j

∑na

l=0 alz
−l

. (3.15)

It is important to emphasise that the difference equation representation given
in (3.8) is equivalent to the transfer function representation (3.15). Also note
the similarity of the continuous-time transfer function (3.6) to its discrete-time
counterpart (3.15). Again a lack of direct correspondence between the a and b
parameters of the two representations is stressed.

State-space representation

Alternatively to differential or difference equations one can make use of the cor-
responding continuous-time or discrete-time state-space equations. A continuous-
time state-space representation is defined by

ẋ(t) = Ac(θ)x(t) + Bc(θ)u(t), (3.16)

y(t) = Cc(θ)x(t) + Dc(θ)u(t), (3.17)



where ẋ(t) = dx(t)
dt and Ac(θ) ∈ R

n×n, Bc(θ) ∈ R
n, Cc(θ) ∈ R

1×n, Dc(θ) ∈ R

are model matrices built from the parameters contained in the parameter vector
θ. The continuous-time state vector x(t) ∈ R

n comprises of model states that
usually have direct physical interpretation such as position, velocity, acceleration
etc. It is observed that (3.16) comprises of n ordinary first-order differential
equations and that the model output (3.17) is a linear combination of states.
The continuous-time transfer function can be obtained from (3.16)-(3.17) as
follows

G(s) = Cc(θ) [sI −Ac(θ)]
−1

Bc(θ) + Dc(θ), (3.18)

where I denotes an identity matrix of appropriate dimension.
A discrete-time state-space representation is defined, analogously to (3.16)-

(3.17), as follows

xk+1 = A(θ)xk + B(θ)uk, (3.19)

yk = C(θ)xk + D(θ)uk, (3.20)

where, similarly as in the continuous-time case, model matrices A(θ) ∈ R
n×n,

B(θ) ∈ R
n, C(θ) ∈ R

1×n, D(θ) ∈ R are constructed from the model parameters
θ and xk ∈ R

n is a discrete-time state vector. It is to be emphasised that there
is no direct correspondence between the model matrices of the continuous-time
state-space model and its discrete-time counterpart. A discrete-time transfer
function can be obtained from (3.19)-(3.20) by

G(z) = C(θ) [zI −A(θ)]
−1

B(θ). (3.21)

Relationships between continuous-time and discrete-time systems

Until now, continuous-time and discrete-time systems have been treated sep-
arately, however it is important to examine their mutual relationships. The
question of deciding between the continuous-time and discrete-time modelling
depends on a particular application. Following (Ljung 1999), relationships be-
tween these two modelling approaches are interesting for two main reasons.
Firstly, when a discrete-time model has been obtained from measured (sam-
pled) input-output data, it is often desirable to compare that model against the
continuous-time counterpart, whose parameters possess physical meaning. Sec-
ondly, when a continuous-time model has been constructed one may wish to de-
termine how the output and states vary between successive sampling instances,
with the input kept piece-wise constant. With the reference to (Ljung 1999),



relationships between the continuous-time and discrete-time models can be di-
vided into two categories, i.e. approximate and exact relations. Whilst the
approximate relations are based on some approximation of the differential op-
erator, the exact relations correspond to exact solutions of continuous-time sys-
tem over a chosen sampling period, denoted Ts = tk+1 − tk. The basis of an
approximate realisation of continuous-time models is an approximation of the
differential operator via a difference operator such as

ẋ(t) ≈
x(tk+1) − x(tk)

Ts
, (3.22)

which corresponds to the so-called Euler approximation. Another, more precise,
possibility is the so-called Tustin (or bilinear) transformation defined as

ẋ(t) ≈
2

Ts

x(tk+1) − x(tk)

x(tk+1) + x(tk)
. (3.23)

The goodness of approximation depends on the variability of the input u(t)
and the state vector x(t) between the sampling instances. Therefore, if Ts is
sufficiently small compared to the smallest time constant of the system then the
discrete-time approximation will be accurate. The exact relationship between
the continuous-time and the discrete-time representation can be obtained if it is
assumed that the input signal is piece-wise constant between sampling instances,
i.e.

u(t) = u(tk) for tk ≤ t < tk+1. (3.24)

In fact this, at least to some extent, is not a too unrealistic assumption, es-
pecially when dealing with control systems where the control signal, being the
output of a digital controller, is kept constant in between sampling instances.
In such cases the differential equations can be solved analytically and provide
exact solution from tk to tk+1, where

A(θ) = eAc(θ)Ts , (3.25)

B(θ) =

∫ Ts

0

eAc(θ)(Ts−τ)Bc(θ)dτ

= A−1
c (θ)

[

eAc(θ)Ts − I
]

Bc(θ). (3.26)

If the condition stated in (3.24) is satisfied then no approximation is made and
hence equations (3.25)-(3.26) form an exact discrete-time representation of the



continuous-time system (Mańczak & Nahorski 1983). However, because Ac(θ) is
usually quite a complex function of θ, the computation of the matrix exponential
is difficult in practice. Therefore, use is frequently made of approximations such
as those defined in (3.22) and (3.23). In fact, one can simplify the calculation
of eAc(θ)τ by making use of the Taylor series expansion, i.e.

eAc(θ)τ = I + Ac(θ) +
A2

c(θ)τ2

2!
+

A3
c(θ)τ3

3!
+ . . . . (3.27)

Note that the usage of (3.27) implies that the discrete-time system is an approx-
imation of the continuous-time model even if (3.24) holds. Another possibility
to convert a continuous-time system to a discrete form is to describe the input
as a series of pulses. This is carried out via a sampler, which samples and then
holds the input over a specified sampling interval Ts. Once a given sampling
period expires, the sampler discards the stored value of the input and acquires
a new value. The overall procedure is realised by a so-called zero-order hold
(ZOH), whose transfer function is given by

GZOH(s) =
1

s
−

1

s
e−sTs =

1 − e−sTs

s
. (3.28)

By using (3.28) the corresponding discrete-time model can be calculated via

G(z) = Z {GZOH(s)G(s)} = (1 − z−1)Z

{
G(s)

s

}

. (3.29)

Note that equation (3.28) can be written more conveniently as

GZOH(s) =
1 − z−1

s
, (3.30)

where z = esTs . Alternatively to the ZOH, which is regarded as an interpolator
of a zero order, also higher order interpolators can be utilised. Whilst the
ZOH provides a rectangular approximation of signals sampled, for instance a
first order interpolation results in a triangular approximation. The transfer
functions of a first order interpolator, referred to as the first order hold (FOH),
is defined by

GFOH =
(1 − z−1)2

Tsz−1s
. (3.31)



In the case when the transfer function of a discrete-time model is available (for
instance it has been estimated via some identification technique), the corre-
sponding continuous-time model, for the ZOH method, can be obtained from

G(s) =
L{G(z)}

GZOH(s)
(3.32)

and, analogously, for the FOH method from

G(s) =
L{G(z)}

GFOH(s)
. (3.33)

Impulse response representation

Another possibility to represent a linear system is the so-called impulse re-
sponse. In fact an LTI casual system can be completely characterised by its
impulse response only, see (Ljung 1999). Considering a continuous-time sys-
tem, an impulse response is defined via a weighting sequence {g(τ)}∞τ=0, which
is the response of a relaxed2 system to an excitation by the Dirac delta func-
tion. Loosely speaking, an impulse response is a reaction in time of a relaxed
dynamic system to some very brief external excitation or disturbance. As an
example consider a car moving forward in a centre of a road with a constant
velocity which is suddenly stricken by some object from a lateral direction. If
a momentum of the object is relatively small compared to that of the car, the
result of this external excitation is that a driver will by manoeuvring the car
left and right direction, until the car is in its initial position, i.e. in the centre
of a road. By knowing the weighting sequence and the input u(s) for s ≤ t,
the output y(s) with s ≤ t to an arbitrary input signal (because any input can
be considered as being a sum of impulses) can be calculated via the following
convolution integral

y(t) = (u ∗ g)(t) =

∫ ∞

τ=0

g(τ)u(t− τ)dτ

=

∫ t

τ=−∞

g(t− τ)u(τ)dτ, (3.34)

where τ is a dummy variable and t corresponds to a time offset. It is assumed
in (3.34) that initial conditions are null. Since the system is postulated to

2A casual system is said to be relaxed if no energy is stored in the system, i.e. all initial
conditions are null.



be casual, the response is null before excitation, i.e. u(t) = 0 ∀t < 0, hence
g(τ) = 0 ∀τ < 0. By assuming that the input is piece-wise constant between
sampling instances, cf. (3.24), an exact discrete-time equivalent of equation
(3.34) is the convolution summation given by

yk = (u ∗ g)k =

∞∑

l=0

gluk−l

=

k∑

l=−∞

ulgk−l, (3.35)

where {gl}
∞
l=0 and k = 0, 1, . . .. The relationship between the system transfer

function and its impulse response, for a discrete-time case, is obtained via the
observation that the transfer function is, in fact, an infinite sum of the weighting
sequence, see (Ljung 1999), i.e.

yk =

∞∑

l=0

gl
(
q−luk

)
=

[
∞∑

l=0

glq
−l

]

uk = G(q)uk, (3.36)

where

G(q) =

∞∑

k=0

gkq
−k. (3.37)

Consequently, the transfer function is related to the weighting sequence via

G(z) =
∞∑

k=0

gkz
−k. (3.38)

It is remarked that although theoretically appealing, the description of the im-
pulse response requires specification of an infinite number of parameters. From
a pragmatic point of view it is considerably more convenient to parametrise a
system in terms of a finite number of variables (Ljung 1999). Consequently,
system description via a rational transfer function, cf. (3.15), and state-space
equations, cf. (3.19)-(3.20), is preferable in most practical cases.

Simple process identification example

As a relatively simple example of system identification a process of an exponen-
tial radioactive decay is considered. A given substance undergoes an exponential



decay if the mass of that substance changes, i.e. decreases, at a rate which is
proportional to the mass. Such a process can be described by the following
ordinary differential equation of first order:

dm(t)

dt
= −

1

τ
m(t), (3.39)

where m(t) denotes the mass and τ is a time constant of the process. A solution
to (3.39) is given by

m(t) = m0e
− t

τ , (3.40)

where m0 denotes the initial mass at time t = 0, i.e. m(0) = m0. Note
that (3.40) is characterised completely by two parameters only, i.e. m0 and
τ . Imagine the task consists of the following: having measured data describing
an exponential decay of some unknown material, model such a process and
potentially identify the actual radioactive substance using the associated time
constant. The time constant is related to the so-called half-life, denoted t1/2,
which can be used to characterise a particular radioactive material. This is
because the half-time corresponds to a time taken for half of the initial mass to
decay. It is related to the time constant via t1/2 = τ ln 2. Figure 3.1 shows an
exemplary plot of the exponential decay process, i.e. the grey line, and the data
points which were actually measured, i.e. circles, using a relatively inaccurate
measuring device. For the purpose of identification only noisy data are available,
the actual noise-free data are unavailable. It is assumed that neither m0 nor
t1/2 are known a priori. The white-box approach would use the initial mass of
the material, m0, and its half-life, t1/2, to construct the model using equation
(3.39). The measured data would only be used to verify the model is correct.
However, the material type is unknown so this method cannot be used. The
grey-box approach would be to obtain as much information as possible and
estimate the remaining unknowns from the measured data. For instance, one
could confirm that the process in question is indeed of an exponential nature and
that it is due to only one material undergoing a radioactive decay. The value of
the initial mass of the material with the half-time would have to be determined
from the data. Additionally, it should be noted that it is not feasible for mass to
be negative, therefore all such data points should be pretreated. For example,
the data could be processed and all measurements where m(t) < 0 set to null.
The black-box approach would attempt to infer all the information from the
measured data only, including the nature of the decay, i.e. the exponential
characteristic, as well as its order. (Note that in the ideal, i.e. noise-free, case
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Figure 3.1: An exponential decay process of unknown radioactive substance.

the unknowns m0 and t1/2 can be found by knowing only a single arbitrary pair
of measurements.)

Here, the grey-box approach is followed. First, the analysis of data suggests
that the process is of first order, because the response does not overshoot the
zero y-axis (which is rather obvious from a physical point of view as mass cannot
be negative) and the gradient at zero of x-axis is nonzero. The initial mass is
obtained from the plot at t = 0, i.e. m̂0 = m(0) = 10.05, and the time constant
is found by determining a time for which the value of mass reaches approximately
37% of its initial value, i.e. 0.37m̂0 = 3.72, hence τ̂ = 7500.

An alternative approach would be to note that using a logarithmic transfor-
mation equation (3.40) can be expressed as

lnm(t) = lnm0 −
t

τ
. (3.41)

The estimate of m0 can again be obtained directly from the plot and the time
constant can be found from

τ = −
t

ln m(t)
m0

. (3.42)



Because equation (3.42) provides a value of τ for every data point, τ can be
calculated as their mean value yielding the estimate

τ̂ = −
1

N

N∑

t=1

t

ln m(t)
m̂0

, (3.43)

where N is the total number of measurements taken. It can be expected that the
accuracy yielded by (3.43) is better than that of the previous method because
all measurements are used for the estimation of τ and not only a single data
point. In this case the time constant is estimated to be τ̂ = 8109.5. A visual
comparison of the results obtained by these two approaches is shown in Figure
3.2, where, for completeness the noise-free and measured data are also given.
It is observed that the latter approach is superior to the former, because the
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Figure 3.2: A visual comparison of the two estimated models against the mea-
sured data and the noise-free data.

model obtained fits data more precisely. In fact, it almost completely coincides
with the noise-free data. The corresponding half-time is 5621.1 years. Because
it is known that the half-life of Carbon-14 is 5730 ± 40 years, it is quite likely
that this set of data corresponds to the exponential decay of Carbon-14. The



relative error with respect to the half-life parameter is only approximately 1.9%.
In the case of the first approach the corresponding half-life parameter is 5198.6
years, hence the relative error is of approximately 9.3%. Note that although
the estimate of τ has improved, the estimate of m0 remained the same with
the relative error of approximately 0.5%. In fact, accuracies of both parameters
can be improved further via computer aided estimation procedures described in
later chapters by using, for instance, the least squares method.

3.2.3 Linear model structures

In this subsection some commonly used discrete-time dynamic LTI model struc-
tures are reviewed. In practice the notion of a ‘true’ system does not exist and
means to account for this fact are necessary. A widely used method is to add
signals (usually assumed to be random and unknown) to the input and output
signals of the model. Their task is to absorb (or account for) the mismatch
between the actual measured data and the data produced by the model.

In general, the model structures which will be considered can all be written
in the following form:

yk = G(q; θ)uk + H(q; θ)ek, (3.44)

where ek is a noise (or disturbance) sequence representing uncertainties within
the model. The transfer functions3 G(q; θ) and H(q; θ) relate the input uk to
the output yk and the disturbances ek to the output yk, respectively. They are
both assumed to be stable and of finite orders. Note that G(q; θ) and H(q; θ)
are both explicit functions of the parameter vector θ ∈ R

nθ . Here G(q; θ)
and H(q; θ) are rational functions of some polynomials (i.e. comprising of a
ratio of two polynomials), therefore θ contains their coefficients. The vector
θ parametrises the model, or more precisely the transfer functions G(q; θ) and
H(q; θ). A particular model can be obtained from the general structure (3.44) by
specifying G(q; θ), H(q; θ) and the probability density function of the sequence
ek, see (Ljung 1999). In practice, it is best to specify ek in as simple terms as
possible. Therefore ek is usually assumed to be a random, zero-mean, white
sequence that is uncorrelated with the input (thus also uncorrelated with the
output). Additionally, it is postulated that ek is Gaussian distributed and can

3Formally the term transfer function should be used with the Z-transform only, but here,
for simplicity, no differentiation is made and transfer function is used with both, i.e. G(z) and
G(q).



be completely characterised by the two first moments only, i.e.

E[ek] = 0 (mean), (3.45)

E[e2k] = σ2
e (variance). (3.46)

Summarising, the definition of a given model involves specification of: i) the
parameter vector θ and ii) the noise variance σ2

e .

Auto-regressive with exogenous input

Probably the simplest dynamic model structure is the auto-regressive with ex-
ogenous4 input (ARX) structure defined by

A(q−1)yk = B(q−1)uk + ek. (3.47)

Note the lack of an exact relationship in (3.47) between yk and uk. This ad-
ditional degree of freedom is accounted for by the introduction of sequence ek.
Because the signal ek enters as a direct error into the difference equation (3.47),
the ARX model structure belongs to the category of so-called equation error
(EE) models and ek is called the equation error. A block diagram of the ARX
model structure is shown in Figure 3.3, where the arguments of polynomials are
ignored for convenience. By considering the ARX model structure within the

Figure 3.3: The ARX model structure.

4The term exogenous means that this signal enters into the system from outside and
represents a manipulated time-varying process variable, i.e. a reference signal.



general model framework (3.44), the following relationships follow, i.e.

G(q; θ) =
B(q−1)

A(q−1)
, (3.48)

H(q; θ) =
1

A(q−1)
, (3.49)

which can be verified by re-expressing (3.47) as

yk =
B(q−1)

A(q−1)
uk +

1

A(q−1)
ek. (3.50)

The parameter vector is given by

θ =
[
a1 . . . ana

b0 . . . bnb

]T
∈ R

nθ , (3.51)

where nθ = na +nb +1. Because by definition the coefficient a0 is unity it is not
included in θ. Note, that because ek is a stochastic process hence, the overall
ARX model is also stochastic, even though the input, uk, is deterministic.

Auto-regressive moving average with exogenous input

The equation error ek should not only include effects of measurement noise but
also uncaptured dynamics, unmodelled nonlinearities, unmeasured inputs and
etc., i.e. the combined effect of all uncertainties. In the ARX case, equation
(3.47), all these effects are modelled jointly by the single term ek, which, in
practice, may lack sufficient flexibility. The degrees of freedom in the description
of the input-output mismatch can be increased by allowing the overall equation
error sequence to be coloured. One method to achieve this is to use the auto-
regressive moving average with exogenous input (ARMAX) model. This models
the disturbance by a moving average (MA) process, i.e.

A(q−1)yk = B(q−1)uk + C(q−1)ek, (3.52)

where

C(q−1) = 1 + c1q
−1 + . . . + cnc

q−nc . (3.53)

Note that in this case the input-output mismatch is accounted by a coloured
sequence C(q−1)ek. Because, as with the ARX case, the noise sequence enters
the difference equation directly, the ARMAX model also belongs to the class of



Figure 3.4: The ARMAX model structure.

EE models. A block diagram depicting the ARMAX model structure is given
in Figure 3.4. In this case the parameter vector is defined as

θ =
[
a1 . . . ana

b0 . . . bnb
c1 . . . cnc

]T
∈ R

nθ (3.54)

with nθ = na + nb + nc + 1. In terms of the general model structure (3.44) the
ARMAX model corresponds to

G(q; θ) =
B(q−1)

A(q−1)
, (3.55)

H(q; θ) =
C(q−1)

A(q−1)
, (3.56)

which can be verified by re-writing (3.52) as

yk =
B(q−1)

A(q−1)
uk +

C(q−1)

A(q−1)
ek. (3.57)

It is interesting to consider some specific models which all are special cases of
the ARMAX structure, see (Söderström & Stoica 1989):

• Choosing nb = nc = 0 leads to auto-regression (AR), i.e.

A(q−1)yk = ek. (3.58)

Note that the model (3.58) is not driven by a manipulated (or controlled)
input and the only innovation is due to noise.



• Choosing na = nb = 0 leads to moving average (MA) model, i.e.

yk = C(q−1)ek. (3.59)

• Choosing nb = 0 leads to auto-regressive moving average (ARMA) model,
i.e.

A(q−1)yk = C(q−1)ek. (3.60)

• Choosing na = nc = 0 leads to finite impulse response (FIR) model, i.e.

yk = B(q−1)uk + ek. (3.61)

• Choosing nc = 0 leads to ARX model defined by equation (3.47).

The ARMAX model structure is especially useful to model systems in which
disturbances enter the system relatively close to the manipulated input.

Auto-regressive integrated moving average with exogenous input

In cases where a slow random drift is present a MA process of the ARMAX model
may not be appropriate for representing the disturbances. In such circumstances
an additional integral action is included, i.e.

vk = vk−1 +
C(q−1)

A(q−1)
ek =

C(q−1)

∆A(q−1)
ek, (3.62)

where ∆ = 1− q−1. This leads to an auto-regressive integrated moving average
with exogenous input (ARIMAX) model given by

yk =
B(q−1)

A(q−1)
uk +

C(q−1)

∆A(q−1)
ek. (3.63)

Auto-regressive auto-regressive with exogenous input

Instead of modelling the equation error as a MA process, it can be modelled as
an AR process, i.e.

A(q−1)yk = B(q−1)uk +
1

D(q−1)
ek, (3.64)



where

D(q−1) = 1 + d1q
−1 + . . . + dnd

q−nd . (3.65)

In accordance with the terminology introduced, this is called an auto-regressive
auto-regressive with exogenous input (ARARX) model, where the second AR
term corresponds to the description of disturbances. As in the ARMAX case,
the equation error sequence 1

D(q−1)ek is coloured. The ARARX model structure

is depicted in Figure 3.5. Alternatively, using block manipulations, it can be
represented as shown in Figure 3.6. In this case the parameter vector is defined

Figure 3.5: The ARARX model structure.

as

θ =
[
a1 . . . ana

b0 . . . bnb
d1 . . . dnd

]T
∈ R

nθ (3.66)

with nθ = na + nb + nd + 1. With reference to the general model structure
(3.44), the ARARX model corresponds to

G(q; θ) =
B(q−1)

A(q−1)
, (3.67)

H(q; θ) =
1

A(q−1)D(q−1)
, (3.68)

which can be verified by re-writing (3.64) as

yk =
B(q−1)

A(q−1)
uk +

1

A(q−1)D(q−1)
ek. (3.69)



Figure 3.6: An alternative representation of the ARARX model structure.

Furthermore, since a MA process can be approximated arbitrarily closely to the
AR process, i.e.

C(q−1) ≃
1

D(q−1)
, (3.70)

the ARARX structure can be seen as an approximation of the ARMAX structure
and vice-versa.

General equation error type structure

All EE type model structures can be seen to be special cases of the following
structure

A(q−1)yk = B(q−1)uk +
C(q−1)

D(q−1)
ek, (3.71)

which is called auto-regressive auto-regressive moving average with exogenous
input (ARARMAX). It allows an increased flexibility in describing the prop-
erties of the disturbances, since the equation error is modelled by an ARMA
process, see Figure 3.7. Recalling the general model structure (3.44), the ARAR-
MAX model corresponds to

G(q; θ) =
B(q−1)

A(q−1)
, (3.72)

H(q; θ) =
C(q−1)

A(q−1)D(q−1)
, (3.73)



Figure 3.7: The EE model structure.

which can be verified by re-writing (3.64) as

yk =
B(q−1)

A(q−1)
uk +

C(q−1

A(q−1)D(q−1)
ek. (3.74)

Output error

Note that in the case of the EE type structures both transfer functions G(q; θ)
and H(q; θ) have a common polynomial in their corresponding denominators, i.e.
the polynomial A(q−1). However, the common polynomial in the denominator of
both transfer functions may be difficult to justify from a physical point of view,
see (Ljung 1999). Consequently, an alternative family of model structures, called
the output error (OE) models, can be considered, where the transfer functions
are parametrised independently, i.e. they do not share common polynomials.

In this case it is assumed that there is an exact relationship between the
input uk and the undisturbed (noise-free) output y0k , which is unmeasurable
and available only via the noisy signal yk. This leads to the following system
setup, i.e.

A(q−1)y0k = B(q−1)uk, (3.75)

yk = y0k + ek. (3.76)

By considering the OE model structure within the general model framework



(3.44), one obtains the following relationships

G(q; θ) =
B(q−1)

A(q−1)
, (3.77)

H(q; θ) = ek, (3.78)

which can be verified by re-writing (3.75)-(3.76) as

yk =
B(q−1)

A(q−1)
uk + ek. (3.79)

Note that the error ek is added to the noise-free output of the system y0k , which
is exactly the reason why this model structure belongs to a class of OE models.
A block diagram of the OE model structure (3.75)-(3.76) is given in Figure 3.8.

Figure 3.8: The OE model structure.

Box-Jenkins

A natural extension of the basic OE configuration is for the output error to
be described as a separate transfer function, which is possibly different to that
relating uk to y0k . In the case when the output error is defined as an ARMA
process, this leads to the so-called Box-Jenkins (BJ) model structure. With
reference to (Ljung 1999), such description seems to be the most natural as it
allows to separate parametrisations of the transfer functions G(q; θ) and H(q; θ).
The BJ model structure is given by

A(q−1)y0k = B(q−1)uk, (3.80)

yk = y0k +
C(q−1)

D(q−1)
ek. (3.81)



Consideration of the BJ model structure within the general model framework
(3.44) leads to the following relationships

G(q; θ) =
B(q−1)

A(q−1)
, (3.82)

H(q; θ) =
C(q−1)

D(q−1)
, (3.83)

which can be verified by re-writing (3.80)-(3.81) as

yk =
B(q−1)

A(q−1)
uk +

C(q−1)

D(q−1)
ek. (3.84)

Note that in this case both transfer functions are described as separate ARMA
processes. That means the description of disturbances is completely independent
of the system dynamics. A diagrammatic description of the BJ model structure
is given in Figure 3.9. It is instructive to note that some of the model structures

Figure 3.9: The BJ model structure.

introduced so far can be considered as being special cases of the BJ model.
More precisely the OE is obtained by setting C(q−1) = D(q−1) = 1, whilst the
EE type structures can be obtained by choosing D(q−1) = A(q−1), which yields
the ARMAX model, and by setting C(q−1) = 1 leading to the ARX model.
Consequently, the EE type structures ARX and ARMAX can be interpreted as
the BJ structures with an additional constraint imposed that D(q−1) = A(q−1).
Furthermore, if the OE type model structures can be re-written in a form of
the the EE type model structures and vice-versa, the same algorithms can be
utilised for the estimation of their parameters.



Pragmatic approach for treatment of model uncertainty

The term ‘measurement noise’ refers to unavoidable uncertainties arising when
signal is measured by a sensor, whilst the term ‘process noise’ corresponds to a
model uncertainty arising from the fact that every model is just an approxima-
tion of the actual physical process. These concepts are illustrated in an upper
block diagram in Figure 3.10, where dk and ỹk denote the process noise and
measurement noise, respectively. In practice, these two sources of uncertainties

������
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Figure 3.10: Two equivalent system configurations illustrating notions of process
and measurement noise.

can be lumped together yielding an equivalent sequence of disturbances that ac-
counts for the effects of both, i.e. the process and measurement noise. A setup
illustrating such a pragmatic approach is given in a lower block diagram in Fig-
ure 3.10, where vk is the equivalent noise sequence. Although this approach
is dominant for the purpose of system identification, it is not the case when
dealing with the task of filtering, where, in fact, it is preferable to distinguish
between the process and measurement noise disturbances.

3.2.4 Prediction and simulation

A predictor for a given system is a model of that system which allows to predict
the future system output based on past outputs and current and past inputs.
Prediction can be made one-step ahead, n-steps ahead with n < N , or N -steps
ahead. The N -steps ahead prediction is referred to as simulation. A diagram-
matic representations of the one-step/n-steps ahead prediction and the simula-
tion are given in Figures 3.11 and 3.12, respectively, where ŷk is the predictor



output and vk denotes disturbances added to the system noise-free output. An
optimal predictor yields the best prediction in some pre-defined sense. Since the
predictor is defined based on a model of the system, its predicting capabilities
depend on the goodness of that model.

������

��	�


Figure 3.11: The setup for a one-step/n-steps ahead ahead prediction.

������
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Figure 3.12: The setup for system simulation.

Consider a general structure of a discrete-time SISO LTI system given by
(3.44), see Subsection 3.2.3, where the same assumptions are made with re-
spect to the noise sequence ek, i.e. that it is white, zero-mean Gaussian and
uncorrelated with the input, see equations (3.45)-(3.46). With reference to
(Ljung 1999), it can be demonstrated that the optimal one-step ahead predic-



tor, denoted ŷk, in the following sense

ŷk = arg min
ŷ∗
k

E
[

(yk − ŷ∗k)2
]
, (3.85)

where ŷ∗k denotes some arbitrary predictor, is given by

ŷk = H−1(q; θ)G(q; θ)uk +
[
1 −H−1(q; θ)

]
yk. (3.86)

Note that this formulation requires for H(q; θ) to be invertible, i.e. non minimum-
phase. In order to verify optimality of the predictor defined by (3.86),equation
(3.44) is re-expressed to separate ek from the regular part of the system, i.e.

yk = G(q; θ)uk + [H(q; θ) − 1] ek + ek

= G(q; θ)uk + [H(q; θ) − 1]H−1(q; θ) [yk −G(q; θ)uk] + ek

= H−1(q; θ)G(q; θ)uk +
[
1 −H−1(q; θ)

]
yk + ek

= zk + ek, (3.87)

where

zk = H−1(q; θ)G(q; θ)uk +
[
1 −H−1(q; θ)

]
yk. (3.88)

Substitution of expression (3.87) into (3.85) leads to

ŷk = arg min
ŷ∗
k

E
[

(zk + ek − ŷ∗k)
2]

= arg min
ŷ∗
k

{
E
[

(zk − ŷ∗k)
2]+ σ2

e

}
. (3.89)

The second equality follows from the fact that ek is uncorrelated with zk and it
must also be uncorrelated with ŷ∗k (since ŷ∗k utilises only past values of output).
The expression minimised is always greater than σ2

e and equal to σ2
e only in the

case when ŷ∗k = zk. This shows in turn that the optimal predictor ŷk = zk,
hence it is given by expression (3.86).

Predictor for ARX model

By recalling formula (3.86), the one-step ahead predictor for ARX model struc-
ture is given by

ŷk = B(q−1)uk +
[
1 −A(q−1)

]
yk

= ϕT
k θ, (3.90)



where

ϕk =
[
−yk−1 . . . −yk−na

, uk . . . uk−nb

]T
∈ R

nθ , (3.91)

θ =
[
a1 . . . ana

b0 . . . bnb

]T
∈ R

nθ (3.92)

with nθ = na + nb + 1. Note that this is identical to the corresponding regres-
sion form of (3.50), see Subsection 3.2.3, but with ek discarded, since a natural
prediction of ek is to assume that it is null (due to the property that E[ek] = 0).

Predictor for ARMAX model

By recalling formula (3.86), the predictor for ARMAX model structure is given
by

ŷk =
B(q−1)

C(q−1)
uk +

[

1 −
A(q−1)

C(q−1)

]

yk. (3.93)

Consider (3.93) in a more convenient form, i.e.

C(q−1)ŷk = B(q−1)uk +
[
C(q−1) −A(q−1)

]
yk,

C(q−1)ŷk +
[
1 − C(q−1)

]
ŷk = B(q−1)uk +

[
C(q−1) −A(q−1)

]
yk

+
[
1 − C(q−1)

]
ŷk. (3.94)

This leads to

ŷk = B(q−1)uk + C(q−1)yk −A(q−1)yk + ŷk − C(q−1)ŷk

= B(q−1)uk + C(q−1)yk −A(q−1)yk + ŷk − C(q−1)ŷk + yk − yk, (3.95)

which can be transformed into

ŷk = B(q−1)uk +
[
1 −A(q−1)

]
yk +

[
C(q−1) − 1

]
εk(θ)

= ϕT
k (θ)θ, (3.96)

where the (model dependent) residuals are defined by

εk(θ) = yk − ŷk. (3.97)

The regressor and the parameter vector are given, respectively, by

ϕk(θ) =
[
− yk−1 . . . − yk−na

uk . . . uk−nb

εk−1(θ) . . . εk−nc
(θ)
]T

∈ R
nθ , (3.98)

θ =
[
a1 . . . ana

b0 . . . bnb
c1 . . . cnc

]T
∈ R

nθ (3.99)



with nθ = na + nb + nc + 1. It is noted that (3.96) is similar to the correspond-
ing regression form of (3.57). The differences are that, first, ek is discarded
and, second, past values of signal ek are substituted by residuals εk(θ). This
is due to that ek is unmeasurable in practice, thus unknown, and have to be
approximated using residuals, which through ŷk are dependent on θ. In the case
when θ is known exactly, in fact, no approximation is made, i.e. εk(θ) = ek.

However, in practice θ must be estimated hence εk(θ̂) ≃ ek and depends on the

goodness of θ̂. Furthermore, since the regressor vector comprises the residuals
generated based on θ it is nonlinear in the parameter vector and hence, strictly
speaking, equation (3.97) is no longer a linear regression. Nevertheless, to stress
a close relationship, it is termed a pseudo-linear regression.

Predictor for OE model

With reference to formula (3.86), the predictor for OE model structure is given
by

ŷk =
B(q−1)

A(q−1)
uk = y0k(θ). (3.100)

Note that this predictor is constructed from the current and past values of the
input exclusively. A corresponding pseudo-linear regression is given by

ŷk = ϕT
k (θ)θ, (3.101)

where

ϕk(θ) =
[
−y0k−1

(θ) . . . −y0k−na
(θ), uk . . . uk−nb

]T
∈ R

nθ , (3.102)

θ =
[
a1 . . . ana

b0 . . . bnb

]T
∈ R

nθ (3.103)

with nθ = na + nb + 1. The sequence y0k(θ) although unobserved in practice
can be calculated via (3.100). Moreover, (3.101) is in a formal agreement with
the predictor for the ARMAX model structure, see equation (3.96).

Predictor for BJ model

With reference to formula (3.86), the predictor for BJ model structure is given
by

ŷk =
D(q−1)

C(q−1)

B(q−1)

A(q−1)
uk +

[

1 −
D(q−1)

C(q−1)

]

yk (3.104)



and it is equivalent to the following recursion

C(q−1)A(q−1)ŷk = A(q−1)
[
C(q−1) −D(q−1)

]
yk + D(q−1)B(q−1)uk. (3.105)

The prediction error εk(θ) is given by

εk(θ) =
1

A(q−1)C(q−1)

[
A(q−1)D(q−1)yk −D(q−1)B(q−1)uk

]

=
D(q−1)

C(q−1)

[

yk −
B(q−1)

A(q−1)
uk

]

. (3.106)

Introduce y0k(θ) denoting the regular part of the system, i.e.

y0k(θ) =
B(q−1)

A(q−1)
uk. (3.107)

Additionally, introduce vk(θ) defined by

vk(θ) = yk − y0k(θ). (3.108)

This allows to express equation (3.106) as

εk(θ) =
D(q−1)

C(q−1)
vk(θ). (3.109)

Equations (3.107) and (3.109) can, respectively, be rewritten as

y0k(θ) = −
[
A(q−1) − 1

]
y0k(θ) + B(q−1)uk (3.110)

and

εk(θ) = −
[
C(q−1) − 1

]
εk(θ) + D(q−1)vk(θ)

= −
[
C(q−1) − 1

]
εk(θ) +

[
D(q−1) − 1

]
vk(θ) + vk(θ). (3.111)

Consequently, by inserting (3.110) into (3.108) and then substituting the result-
ing expression into (3.111) one obtains

εk(θ) = −
[
C(q−1) − 1

]
εk(θ) +

[
D(q−1) − 1

]
vk(θ) + yk

+
[
A(q−1) − 1

]
y0k(θ) −B(q−1)uk. (3.112)

Note that expressions (3.106), (3.107) and (3.109) imply that

ŷk = yk − εk(θ). (3.113)



By inserting (3.112) into (3.113) the following difference equation is obtained,
i.e.

ŷk = −
[
A(q−1) − 1

]
y0k(θ) + B(q−1)uk +

[
C(q−1) − 1

]
εk(θ)

−
[
D(q−1) − 1

]
vk(θ). (3.114)

Equation (3.114) can be written in a pseudo-linear regression form as follows

ŷk = ϕT
k (θ)θ, (3.115)

where

ϕk(θ) =
[
− y0k−1

(θ) . . . − y0k−na
(θ) uk . . . uk−nb

(3.116)

εk−1(θ) . . . εk−nc
(θ) − vk−1(θ) . . . − vk−nd

(θ)
]T

∈ R
nθ ,

θ =
[
a1 . . . ana

b0 . . . bnb

]T
∈ R

nθ (3.117)

with nθ = na + nb + nc + nd + 1. Note that for the generation of the optimal
one-step ahead prediction two auxiliary signals have to be computed, i.e. y0k
and vk, via expressions (3.107) and (3.108), respectively.

3.3 Nonlinear systems

Although it has been through linear systems and approaches based on linear
models that have provided a fundamental and solid ground for control systems
engineering, with the increased demands for wider operating ranges hence im-
proved flexibility of models and potential for more precise descriptions of various
phenomena, the need for appropriate nonlinear models has become a prominent
and indeed an important topics of research in the control community. In gen-
eral, all models as the name itself suggests provide only approximations to the
actual, i.e. real-word, systems and natural phenomena. The degree of fidelity
to which a model matches a given system will depend upon the purpose, hence
the notion of ‘model for purpose’ must be borne in mind. Whilst the precision
of these approximations as well as the notion of their adequateness are both
strongly dependent on the particular application, it is required that models de-
veloped are also of a reasonable complexity (Pearson 1999). Loosely speaking,
it is therefore expected for the identified model to be sufficiently flexible to cap-
ture the main and/or important dynamics of the system, whilst at the same
time to be of parsimonious complexity, such that it can be handled by practi-
cally available hardware equipment. Whilst the general term ‘nonlinear system’



has a considerably broad meaning (as it does not reflect the exact form of the
manifested nonlinearity), in this section the attention is drawn to particular
classes of nonlinear systems, namely Hammerstein systems, Wiener systems,
Hammerstein-Wiener systems, bilinear systems and nonlinear ARX (NARX)
systems.

In the following, since the emphasis is placed on the qualitative input-output
behaviour, it is assumed, for simplicity, that that there is no uncertainty present
on the output measurements.

3.3.1 Hammerstein and Wiener systems

Hammerstein and Wiener systems both belong to a class of block oriented mod-
els where the nonlinear function is static, i.e. it has no memory. These systems
are especially useful in situations where the dynamic behaviour of the process
can be well described by an LTI model, whilst there are nonlinear effects present
that influence the system input, output or both.

Figure 3.13: Structure of the Hammerstein model.

A Hammerstein model is given by

yk =
B(q−1)

A(q−1)
f(uk), (3.118)

where f(·) denotes a general static nonlinear function. A diagrammatic repre-
sentation of a Hammerstein system is given in Figure 3.13, where it is observed
that it consists of a cascade connection of a static nonlinearity block followed by
an LTI dynamic block. Note that the input undergoes a nonlinear transforma-
tion before entering the dynamic subsystem. A Hammerstein model structure
is particularly useful to model nonlinear characteristics of system actuators.

A Wiener system is a dual of a Hammerstein system, which is obtained by
reversing the order of the static nonlinearlity and the LTI block (Pearson &
Pottmann 2000). A Wiener model structure is shown in Figure 3.14, where it



is observed that it consists of a cascade of an LTI block followed by a static
nonlinearity, and it can be described as follows

vk =
B(q−1)

A(q−1)
uk, (3.119)

yk = f(vk). (3.120)

Wiener systems are especially useful in cases when modelling systems with non-
linear characteristics of sensors.

Figure 3.14: Structure of the Wiener model.

Note that both, i.e. Wiener and Hammerstein, models combine a dynamic
LTI model with a nonlinear steady-state curve defined by the function f(·).
However, although both can exhibit the same steady-state behaviour, their dy-
namic responses can be profoundly different, see (Pearson & Pottmann 2000).

By combining together the Hammerstein and Wiener model structures a
so-called Wiener-Hammerstein model arises. It is given by a cascade of three
blocks, namely, static nonlinearity on the system input, an LTI part and a
static nonlinearity on the system output, where the two static nonlinearities are
typically different. A Wiener-Hammerstein model is defined by

vk =
B(q−1)

A(q−1)
f(uk), (3.121)

yk = g(vk), (3.122)

where g(·) is a general static nonlinear function. It is remarked the in all three
cases the transient behaviour, including stability properties, is governed by the
LTI block exclusively, whilst the steady-state characteristic is given by the static
nonlinear function(s).

3.3.2 Bilinear systems

Bilinear model structures, while retaining to large extent the well understood
properties of linear models, such as time constants, damping/natural frequency



and steady-state gain, are characterised by improved capabilities of replicating
certain nonlinear phenomena. Due to aforementioned advantages as well as
the parsimony of description bilinear system models can be considered as one
possibility for permitting a satisfactory approximation to many nonlinear sys-
tems. Although being nonlinear in terms of input-output characteristics, they
are still relatively closely related to linear models (via the possibility of their
interpretation as LTV systems), and, therefore, are often considered as a step-
ping stone when modelling nonlinear systems. Especially when dealing with
applications where there is heat exchange and/or transfer of heat is involved.
Bilinear models can also arise when a nonlinear system is approximated by in-
cluding linear and bilinear terms in a Taylor approximation series. Moreover, a
bilinear model structure can often appear naturally, especially in the context of
chemical processes. In such cases it is quite common for the exogenous inputs
to be flow-rates. By choosing system states to correspond to concentrations of
substances of interest and by considering a balance of energy, a model obtained
comprises a (bilinear) product between the input and the state variables.

A discrete-time bilinear models can be defined using at least two forms,
namely a state-space and input-output representation, see (Pearson 1999). How-
ever, it must be emphasised that these two representations are, in fact, not
equivalent. In general, a given state-space bilinear system may not possess a
corresponding input-output representation. In the state-space form, in which
the bilinear systems have been originally proposed, the bilinearity is defined by a
product between system state and control input. A discrete-time time-invariant
SISO bilinear system can be described by:

xk+1 = A(θ)xk + B(θ)uk + ukG(θ)xk, x0 = x̄0, (3.123)

yk = C(θ)xk + D(θ)uk, (3.124)

where xk ∈ R
n denotes the state vector and x̄0 its initial value. The time-

invariant matrices A(θ), B(θ), C(θ), D(θ) and G(θ) are of appropriate dimen-
sions and characterise the dynamical behaviour of the system. It is to be noted
that an input dependent (hence time-varying) system matrix can be expressed
as

Ak(θ) = A(θ) + ukG(θ) (3.125)

yielding input dependent steady-state and dynamic characteristics of the system.

A discrete-time time-invariant SISO bilinear system can also be represented



by the following input-output difference equation, i.e.

A(q−1)yk = B(q−1)uk +

nb∑

i=1

na∑

j=1

ηijuk−iyk−j , (3.126)

where the polynomials A(q−1) and B(q−1) are defined identically as in the case
of LTI systems.

In general, input-output bilinear system models can be partitioned into sub-,
super- and diagonal categories, see (Pearson 1999) for details, i.e.

• Subdiagonal ηij = 0 ∀j > i,

• Superdiagonal ηij = 0 ∀j < i,

• Diagonal ηij = 0 ∀j 6= i.

It is noted that, similarly to the state-space description (3.123)-(3.124), the
input-output representation (3.126) can be re-expressed such that the resulting
system is LTV with the input or, alternatively, the output dependency of the
parameters. The corresponding LTV system with input dependent parameters
is given by

yk = −

na∑

j=1

akj yk−j +

nb∑

i=0

biuk−i =
[
1 −Ak(q−1)

]
yk + B(q−1)uk, (3.127)

where the time-varying polynomial Ak(q−1) comprises of the time-varying co-
efficients

akj = aj −

nb∑

i=1

ηijuk−i. (3.128)

Similarly, the corresponding LTV system with output dependent parameters is
defined by

yk = −

na∑

j=1

ajyk−j +

nb∑

i=0

bki uk−i =
[
1 −A(q−1)

]
yk + Bk(q−1)uk, (3.129)

where the time-varying polynomial Bk(q−1) comprises of the time-varying co-
efficients

bki = bi +

na∑

j=1

ηijyk−j (3.130)



Figure 3.15: Steady-state input-output characteristic of bilinear system.

with η0j = 0 ∀j.
Since the bilinear systems can be interpreted as LTV systems, the system

dynamics (via the corresponding poles of the equivalent LTV system) is de-
pendent on the input signal. Therefore, loosely speaking, the input must be
specified such that the equivalent poles of an equivalent LTV system will re-
main within a unit disk. It is hence common to postulate that the input is
confined within some specified upper and lower limits, say ±M . With reference
to (Pearson 1999) it can be shown that the discrete-time SISO bilinear system
defined by equation (3.126) is stable if the following two conditions are satisfied,
i.e.

|λj | < 1 ∀ j, (3.131)
nb∑

i=1

na∑

j=1

|ηij | <
Πna

j=1(1 − |λj |)

M
, (3.132)

where λj are the roots of the polynomial A(q−1).
The steady-state characteristic of the bilinear systems is given by

Yss =
Ussb̄

ā− Ussη̄
, (3.133)



where Yss and Uss are the steady-state output and steady-state input, respec-
tively, and

ā =

na∑

j=0

aj, b̄ =

nb∑

i=0

bi, η̄ =

nb∑

i=1

na∑

j=1

ηij . (3.134)

The steady-state input-output characteristics for the three different cases of the
bilinear term η̄ are illustrated in Figure 3.15. Clearly, if η̄ is zero, equation
(3.133) represents steady-state characteristics of a linear system, hence linear
systems may be considered as a special subclass5. Positive values of η̄ result in a
gain which increases as Uss increases, typical of exothermic chemical processes.
Conversely, negative η̄ produces a gain, which decreases as Uss increases, leading
to eventual saturation, and is typical of many industrial systems. Should a
system exhibit bilinear characteristics of the form illustrated in Figure 3.15,
then it is pertinent to consider adopting a bilinear systems modelling and control
approach.

3.3.3 Class of NARX models

The general class of nonlinear ARX (NARX) models is defined, see (Pearson
1999), as follows

yk = F(yk−1, . . . , yk−na
, uk, . . . , uk−nb

), (3.135)

where F(·) is a nonlinear function in na + nb + 1 arguments. It is noted that
the discrete-time index k is not present explicitly in the equation (3.135). A
particular case of the NARX models is a class of so-called (structurally) additive
NARX models where the nonlinear mapping F(·) is constrained to be additive
in its arguments. The additive NARX (NAARX) models are defined by

yk =

na∑

j=1

gj(yk−j) +

nb∑

i=0

fi(uk−i), (3.136)

where gj(·) and fi(·) are static nonlinear functions.
The Hammerstein model structure belongs to the family of the NAARX

(hence also NARX) models, where gj(x) = −ajx and fi(x) = bif(x) with f(·)

5However, note that η̄ = 0 does not imply that all ηij are null and hence the system is
linear.



being a static input nonlinearity of the Hammerstein model. Consequently, the
NAARX representation of the Hammerstein model is given by

yk = −

na∑

j=1

ajyk−j +

nb∑

i=0

bif(uk−i). (3.137)

In contrast, Wiener models do not belong to the class of NARX (nor NAARX)
models, since, in general, they cannot be directly expressed in a form of a dif-
ference equation relating the output at time instance k to the previous outputs
and current previous inputs. The Wiener system can be written as follows

yk = g



−

na∑

j=1

ajvk−j +

nb∑

i=0

biuk−i



 . (3.138)

Note that (3.138) includes the auxiliary signals vk, hence does not conform to
the NARX representation. A Wiener model can possess a NARX representation
only if the nonlinear static function g(·) is invertible. By assuming that g−1(·)
exists a Wiener model is re-written with the intermediate signal vk eliminated
by substituting vk = g−1(yk), i.e.

yk = g



−

na∑

j=1

ajg
−1(yk−j) +

nb∑

i=0

biuk−i



 . (3.139)

Although in this case the system (3.139) belongs to the class of NARX models,
it is still not a member of NAARX models.

Analogous observation is also valid with respect to the Hammerstein-Wiener
models. Namely, if the static nonlinear function on the output is invertible then
the Hammerstein-Wiener model has the following NARX (but not NAARX)
representation, i.e.

yk = g



−

na∑

j=1

ajg
−1(yk−j) +

nb∑

i=0

bif(uk−i)



 . (3.140)

Bilinear system models although belong to the family of NARX models, can-
not be considered as a part of the class of NAARX models defined by equation
(3.136).



Questions

• Explain the difference between linearity in terms of input-output signals
and linearity in terms of model parameters. Provide examples.

• Discuss the difference between static and dynamic models. Provide exam-
ples.

• Discuss the difference between LTI and LTV models. Provide examples.

• Discuss the difference between discrete-time and continuous-time models.
Provide examples.

• Discuss the difference between deterministic and stochastic models. Pro-
vide examples.

• Explain possible representations of continuous-time/discrete-time systems.
Give examples of each.

• Explain the motivation for using continuous-time/discrete-time models.

• Explain how discrete-time models can be obtained from corresponding
continuous-time models.

• Discuss differences between transfer function and state-space representa-
tions.

• Write down the transfer function representation for the general stochastic
LTI model.

• Explain the main motivation for postulating that disturbances follow a
Gaussian distribution. Is this assumption realistic?

• Explain the abbreviations AR, MA, FIR, ARX, ARMA, ARMAX, ARI-
MAX, ARARX, ARARMAX, OE, BJ. Draw the corresponding block dia-
grams and write down the corresponding transfer function representations.

• Explain the differences between EE and OE type model structures.

• What is the pragmatic approach for coping with uncertainties?

• Explain differences between prediction and simulation. Which output, i.e.
predicted or simulated, can be expected to be closer to the actual system
output?

• Explain the concept of an optimal one-step ahead predictor.

• Explain why there is often a need to use nonlinear models in practice.

• Explain Hammerstein and Wiener models, draw the corresponding block
diagrams and write down the corresponding input-output relations. Com-
ment on the steady-state behaviour and stability properties.



• Discuss bilinear systems and their interpretation as LTV systems. Write
down the corresponding state-space and input-output representations. Com-
ment on the steady-state behaviour and stability properties.

• Discuss the class of NARX models.





Chapter 4

Identification of low order
continuous-time linear
time-invariant systems from
step response

4.1 Introduction

In this chapter relatively simple identification procedures for first and second or-
der continuous-time LTI systems, when subject to step excitation, are explained.
The material is a summary of Subsection 3.9 of (Wellstead & Zarrop 1991). Rea-
soning analogous to that described here can also be applied in the case when
the input is an impulse, by using a fact that a step response is an integrated
impulse response.

4.2 First order system

A first order continuous-time LTI system is completely characterised by a steady-
state value, called system/process/d.c. gain, denoted gss, and the time constant,
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denoted τ . The corresponding transfer function is given by

G(s) =
b

s + a
=

gss
τs + 1

, (4.1)

where τ = 1
a and gss = b

a . By assuming zero initial conditions, the response of

system (4.1) to a unit step of magnitude K, i.e. U(s) = K
s , is given by

Y (s) = G(s)U(s) = K
gss

s(τs + 1)
= Kgss

(
1

s
−

τ

τs + 1

)

, (4.2)

which, by using the inverse Laplace transform, converted to a time domain yields

y(t) = Kgss

(

1 − e−
t

τ

)

. (4.3)

Figure 4.1 shows and exemplary response of a first order system subject to a
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Figure 4.1: A typical response of a first order LTI system.

unity step input. By analysing Figure 4.1 it is observed that the steady-state
gain is equal 2, i.e. gss = 2 and that the time constant is 0.5, hence the system



is given by

G(s) =
2

0.5s + 1
=

4

s + 2
(4.4)

or, equivalently, by

y(t) = 2
(

1 − e−
t

2

)

. (4.5)

Moreover, it is observed that the response reaches the steady-state value already
at approximately t = 2.5, which is five times the time constant. It can be verified
that the value equal 0.99gss is reached after t = 5τ . Consider an analogous
response, given in Figure 4.2, where the only difference to Figure 4.1 is that
it is delayed in time by Td ≥ 0, i.e. a transportation lag is present. Since
L{f(t− T )} = e−sTdF (s), a corresponding response of such a system is defined
by
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Figure 4.2: A typical response of a first order LTI system with a transportation
lag of unity.

Y (s) = e−sTdK
gss

s(τs + 1)
= Kgss

(
e−sTd

s
−

e−sTdτ

τs + 1

)

, (4.6)



which, in a time domain, is given by

y(t− Td) = Kgss

(

1 − e−
t

τ

)

. (4.7)

In the case presented in Figure 4.2 the transportation lag is equal unity, i.e.
Td = 1, hence the corresponding transfer function is given by

G(s) = e−s 4

s + 2
(4.8)

or, equivalently in a time domain, by

y(t− 1) = 2
(

1 − e−
t

2

)

. (4.9)

4.3 Second order system

A transfer function of a second order continuous-time LTI system with no zeros
is, in general, given by

G(s) =
gssω

2
n

s2 + 2ζωns + ω2
n

, (4.10)

where ωn and ζ are the natural frequency of oscillations and damping factor,
respectively. A damped natural frequency ωd is related to ωn by the relation
ωd = ωn

√

1 − ζ2. Consequently, a second order system is completely charac-
terised by three parameters, i.e. gss, ωn and ζ. The response to a step input of
magnitude K is given by

G(s) = K
gssω

2
n

s(s2 + 2ζωns + ω2
n)

= Kgss




1

s
+

− 1
2

(

ζ ωn

ωd

+ j
)

s + ζωn − jωd
+

− 1
2

(

ζ ωn

ωd

− j
)

s + ζωn + jωd



 ,

(4.11)

where j denotes the imaginary part. The inverse Laplace transform of equation
(4.11) yields

y(t) = Kgss

[

1 − e−ζωnt

(

ζ
ωn

ωd
sinωdt + cosωdt

)]

. (4.12)

Depending on the general character of the step response two cases are distin-
guished, i.e. overdamped and underdamped response.
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Figure 4.3: A typical response of an overdamped second order LTI system.

4.3.1 Overdamped response

Although the actual system is of second order a simple identification procedure,
by using a Ziegler-Nichols method, involves an approximation by a first order
model with a transportation lag, i.e.

G(s) = e−sTd
gss

τs + 1
. (4.13)

The main reason for utilising this approximation is that, since no oscillations
are present in an overdamped response, it is not feasible to infer information
regarding their natural frequency. The system gain is found as described previ-
ously in the case of the first order system. The transportation lag and the time
constant are both determined by drawing a straight line tangent at the steepest
ascent of the system response. The time value at which this line intersect the
x-axis corresponds to the system lag, whilst the time value at which an inter-
section with the system gain occurs corresponds to the system time constant.
In this case it is found that Td = 0.19 and τ = 1.1, hence a first order system
with a transportation lag, which approximates the second order underdamped



system is given by

G(s) =
2e−0.19s

1.1s + 1
. (4.14)

The response of the estimated model (4.14) juxtaposed with that of the actual
system is depicted in Figure 4.14. It is observed that the approximation obtained
shows a relatively good resemblance of the actual system response.
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Figure 4.4: A figure showing a result of the approximation of a second order
system via a first order system with a transportation delay.

4.3.2 Underdamped response

The underdamped response, see Figure 4.4, provides much more information
than the overdamped response allowing to infer information of both, i.e. the
natural frequency and the damping ratio. Note that, since a first order model
exhibits no oscillations, it is not feasible to use it for the purpose of approxi-
mating the underdamped second order system. By considering Figure 4.4, the
frequency of damped oscillations, denoted ωd, can be determined by estimating
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Figure 4.5: A typical response of a second order.

the distance between two neighbouring peaks, denoted here P1 and P2, which
is equal to 1

2Td . Therefore, the damped frequency of oscillations is given by

ωd =
2π

Td
. (4.15)

By recalling equation (4.12), it is noticed that the decay of oscillations is due to
the exponential term e−ζωnt. Therefore, the ratio of decrease in heights of two
neighbouring peaks P1 and P2, with respect to the steady-state value, can be
related to the distance between them via

|P2 − gss|

|P1 − gss|
= e−

1

2
ζωnTd (4.16)

from which the term ζωn is calculated as

ζωn =
2

Td
(ln |P1 − gss| − ln |P2 − gss|) . (4.17)

The damped frequency of oscillations is related to the natural frequency via

ωd = ωn

√

1 − ζ2, (4.18)



which leads to

ω2
n = ω2

d + (ζωn)
2
. (4.19)

Consequently, the natural frequency of oscillations can be determined from
(4.19) by substituting equations (4.17) and (4.15), whilst the steady-state gain
is determined directly from the plot of the system step response. By applying
the reasoning introduced to the response shown in Figure 4.4 it is found that
Td = 2.28, hence ωd = 2.76. The steady-state gain gss is equal 2, thus the rel-
ative heights at points P1 and P2 are 0.51 and 0.13, respectively, which means
that the term ζωn is equal to 1.2. Subsequently, by using (4.19) the value of ω2

n

is estimated to be 9.06. Consequently, the overall estimated transfer function is
described by

G(s) =
18.12

s2 + 2.4s + 9.06
. (4.20)

Since the actual system was given by

G(s) =
18

s2 + 2.4s + 9
(4.21)

the close values of parameters obtained support the validity and appropriateness
of the reasoning conducted (note also the agreement of the steady-state gains).

4.4 Noisy measurements

It is noted that the identification procedures carried out in this chapter postu-
lated an idealised setup, where no measurement noise was present. In practice,
one can expect that the system response is corrupted by disturbances, whose
strength will depend on the quality of sensors used and the environment in which
the experiments are conducted. Figure 4.6 shows an exemplary step response
of first order system considered previously in Section 4.2 with Gaussian white
noise sequences of progressively increasing strength imposed, i.e. no noise, low
noise, medium noise and high noise contamination. It is observed from Figure
4.6 that with an increasing strength of noise it becomes also increasingly more
difficult to precisely determine the time constant and the steady-state gain of
the system. In particular, even if in all cases it is assumed that the steady-state
vales are guessed correctly to be 2, the time constants corresponding to the three
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Figure 4.6: A typical response of a first order LTI system with Gaussian white
measurement noise sequences of different strengths imposed. Top-left - no noise,
top-right - low noise, bottom-left - medium noise, bottom-right - high noise
contamination.

noisy cases are determined to be: 0.49, 0.46 and 0.58. Consequently, by a com-
parison with the actual time constant, the corresponding relative errors are 2%,
8% and 16%, respectively. Additionally, it is remarked that in the case of noisy
measurements a single value on the y-axis can correspond to multiple values on
the x-axis, hence the determination of the time constant is not straightforward.
In fact, even in the case of relatively noisy measurements, it is still possible to
obtain relatively accurate estimates of system parameters by using a computer
assistance, which will be described in details in the sequel. Furthermore, when
using a computer aid the input is not restricted to any particular signal.

Questions

• Explain the steps required for identification of a first order continuous-time
model from a step response.



• Explain the steps required for identification of a second order continuous-
time model from a step response. Consider two cases, i.e. underdamped
and overdamped system.

• Discuss advantages and disadvantages of system identification from a step
input.



Chapter 5

Least squares

In this chapter an introduction into the method of least squares (LS) is pre-
sented. The LS technique was developed by C. F. Gauss around year 1795 and
its development was motivated by a desire to accurately calculate orbits of plan-
ets, motion of which was characterised by Kepler laws. This task required six
parameters to be inferred from raw measurements taken by a telescope. Due
to various reasons the work of Gauss was not published until 1809. It is worth
mentioning that within this period, the method of LS was actually re-discovered
independently by A. M. Legendre, see (Sorenson 1970) for more historical de-
tails.

5.1 Least squares for static systems

In general, the method of LS can be used for estimating the parameters of
differential/difference equations, weighting sequences as well as static systems,
cf. Subsection 3.2.2. The crucial requirement is that the model has to be linear
with respect to the estimated parameters.

Table 5.1: An exemplary table consisting of three measurements.
no. xk yk
1 1 2.00
2 2 5.25
3 3 5.75
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5.1.1 Introductory example

The introduction into the method of LS is given based on an archetypical prob-
lem of fitting a curve (in the case considered being a straight line), into a set
of inconsistent, i.e. noisy, measurements. Consider a problem of describing the
relationship between two arbitrary signals, denoted xk and yk, based on the
following three measurements given in Table 5.1. This example is based on
that given in (Mańczak & Nahorski 1983). The three data points, marked with
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Figure 5.1: Two straight lines fitted to inconsistent set of three measurements.

crosses, are shown visually in Figure 5.1. It is observed that the relationship
between the xk and yk values seems to be approximately linear. However, it is
not possible to draw a single straight line coinciding with all points. It can be
stipulated that although, in fact, all points should be laying on a single straight
line, due to measuring inaccuracies on yk, this is not the case. Consequently,
a following question arises - is it possible to draw a straight line in some opti-
mal manner such that it will lay as close to data points as possible? A general
equation for a straight line is defined by

y0k = αxk + β, (5.1)



where α and β are unknown parameters that are required to be determined.
Since the set of equations is inconsistent, i.e.

yk ≈ αxk + β, (5.2)

the actual measurement had to be generated according to

yk = αxk + β + ek, (5.3)

where ek = yk − y0k is the measurement noise (or a model uncertainty, in
general). Note that in generic terms equation (5.1) can be considered to be
a (static) system, which is parametrised by only two parameters. A rather
straightforward engineering solution would be to draw a straight line through
the first value of yk and approximately in between of the two remaining values.
The result of such approach, referred to as a manual fitting, is shown in Figure
5.1 using a grey dashed straight line. The corresponding parameters are

α̂ = 2.333 and β̂ = −0.333 (5.4)

where a hat over a parameter indicates that the corresponding value is an esti-
mate.

A more scientific approach would be, first, to define the notion of optimality,
second, to introduce a performance index, which would quantify a given result,
and, third, obtain the minimum of such performance index yielding optimal
estimates. In the framework of LS the optimality is defined in terms of min-
imising vertical distances of data points to the curve fitted. The performance
index (called also a cost function) is a sum of squared vertical distances, which,
in the case considered, can be written as

V (α, β) =
1

2

3∑

k=1

ε2k =
1

2

3∑

k=1

[yk − y0k(α, β)]
2

=
1

2

3∑

k=1

(yk − αxk − β)
2
, (5.5)

where terms εk and y0k(α, β) are the residual and the value of y0k obtained from
a particular model (dependent on the choice of α and β), respectively. In order
to find a minimum of the cost function (5.5) partial derivatives, with respect to
α and β, are calculated, i.e.

∂V (α, β)

∂α
= −

3∑

k=1

xk (yk − αxk − β) , (5.6)

∂V (α, β)

∂β
= −

3∑

k=1

yk − αxk − β. (5.7)



The optimal values of the parameters are found by comparing the partial deriva-
tives to zero, i.e.

0 = −2

3∑

k=1

xk (yk − αxk − β) , (5.8)

0 = −2

3∑

k=1

yk − αxk − β. (5.9)

By re-arranging (5.8) one obtains a set of so-called normal equations

3∑

k=1

yk = 3β + α

3∑

k=1

xk, (5.10)

3∑

k=1

xkyk = β

3∑

k=1

xk + α

3∑

k=1

x2
k. (5.11)

After some algebraic manipulations the optimal (in the LS sense) estimates of
the parameters are obtained, i.e.

β̂ =
1

3

(
3∑

k=1

yk − α

3∑

k=1

xk

)

,

α̂ =
3
∑3

k=1 xkyk −
∑3

k=1 xk

∑3
k=1 yk

3
∑3

k=1 x
2
k −

∑3
k=1 xk

∑3
k=1 xk

. (5.12)

In order to confirm that the extremum found is a minimum and not a maximum,
a second derivative of the cost function (5.5), called the Hessian matrix, is
calculated, which is given by

∂2V (α, β)

∂[α β]T
=

[
∂2V (α,β)

∂α2

∂2V (α,β)
∂α∂β

∂2V (α,β)
∂β∂α

∂2V (α,β)
∂β2

]

(5.13)

=

[∑3
k=1 x

2
k

∑3
k=1 xk

∑3
k=1 xk 3

]

=

[
14 6
6 3

]

. (5.14)

Since the Hessian matrix is positive definite the extremum corresponds to a
minimum of the cost function (5.5).

In the LS case the values of the estimated parameters are

α̂ = 1.875 and β̂ = 0.583, (5.15)
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Figure 5.2: The LS cost function with marked values corresponding to the LS
estimate (cross) and the estimate obtained manually (star).

and the corresponding curve is shown in Figure 5.1 as a solid black straight line.
In order to assess which of the two sets of parameters provides a curve which is
closer to the data points, the corresponding values of the cost function (5.5) can
be considered. In the case of the curve fitted manually V (2.333,−0.333) = 0.841,
whilst in the case of the LS estimates V (1.875, 0.583) = 0.630. Therefore, it is
clearly observed that the line corresponding to the estimates calculated using
the LS method yields a superior fitting. In fact, it can be shown that under
some further assumptions regarding the properties of the measurement noise,
the LS method is the best linear unbiased estimator (BLUE). Moreover, it is
interesting to note that a sum of residuals is in both cases, in fact, identical and
equal zero.

It is also instructive to plot the LS cost function, which, in the simple case
considered here, is feasible, since it is parametrised by two parameters only. The
LS cost function is shown in Figure 5.2, where, in order to improve readability, it
is transformed via natural logarithm. Additionally, the corresponding values of
the two solutions obtained via manual fitting and the LS method are presented.
It is observed that, first, the cost function is convex, and, second, that the LS
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solution lies in the middle of the valley, exactly at the minimum. In contrast,
the solution obtained manually, although close, is not located at the minimum
(note the estimated negative value of β). The LS cost function projected onto
the plane lnV (α, β) = 0 is given in Figure 5.3.

5.1.2 General case

The methodology for calculating the LS estimate described in the previous sub-
section for a particular simple example can be extended to a general case of
static system defined by

y0k = β1xk1 + β2xk2 + . . . + βnxkn, (5.16)

where, for the ease of notation, the n parameters are denoted as β with sub-
scripts from 1 to n. Note that the simple system considered in Subsection 5.1.1
and given by equation (5.1) is a special case of (5.16) with n = 2, β1 = β,
xk1 = 1 ∀k, β2 = α and xk2 = xk. Equation (5.16), due to the linearity in



parameters, can be re-expressed as

y0k =
[
xk1 xk2 . . . xkn

]








β1

β2

...
βn








= ϕT
k θ, (5.17)

where the vector consisting of available signals ϕk ∈ R
n is termed a regressor

vector and the vector comprising of unknown parameters θ ∈ R
n is termed a

parameter vector. By assuming that the output of (5.16) is observed N times,
the following set of equations can be formulated

y01 = β1x11 + β2x12 + . . . + βnx1n

y02 = β1x21 + β2x22 + . . . + βnx2n

...

y0N = β1xN1 + β2xN2 + . . . + βnxNn. (5.18)

It is noted that in the case of an example considered in the previous subsection
N = 3. The set of equations (5.18) can be re-expressed more conveniently using
matrix notation as

Y0 = Φθ, (5.19)

where Y ∈ R
N is a vector of stacked output signals, i.e. left-hand side of the set

of equations (5.18), and the data (or observation) matrix Φ ∈ R
N×n is given by

Φ =








ϕT
1

ϕT
2
...

ϕT
N








=








x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xN1 xN2 . . . xNn







. (5.20)

The task, similarly as in Subsection 5.1.1, comprises of determining the pa-
rameter vector θ in the case when the set of equations (5.19) is inconsistent,
i.e.

Y ≈ Φθ. (5.21)

Consequently, it is assumed that the measured values in Y are generated by

Y = Φθ + e, (5.22)



where e = Y −Y0 denotes a vector of stacked values of the noise sequence ek. In
the case when N < n there exist more unknowns than equations, thus no single
solution exists. The minimum number of measurements required to obtain a
solution to the problem is N = n. In this case equation (5.22) is a set N linear
equations in N unknown parameters. These can be directly and easily solved
for the parameters by, for example, the Gaussian elimination method. However,
in practice one aims to record as many measurements as possible in order to
reduce the effects of measurement uncertainty etc. and to improve the accuracy
of estimates (Söderström & Stoica 1989). Consequently, if N > n the set of
equations is overdetermined (in practice N >> n). Analogously to Subsection
5.1.1, a following cost function is introduced, i.e.

V (θ) =
1

2

N∑

k=1

ε2k =
1

2
εT ε =

1

2
‖ε‖2, (5.23)

where ‖ · ‖ denotes a square, i.e. Euclidean, vector norm. The LS solution is
obtained by solving the following optimisation, i.e. minimisation, problem

θ̂ = arg min
θ

V (θ) =
1

2
(Y − Y0)

T
(Y − Y0) =

1

2
(Y − Φθ)

T
(Y − Φθ)

=
1

2

(
Y TY − Y T Φθ − θT ΦTY + θT ΦTΦθ

)
. (5.24)

The minimum value of (5.24) is obtained by calculating a partial derivative with
respect to the parameter vector θ1 and setting it to zero, i.e.

∂V (θ)

∂θ
= −ΦTY + ΦT Φθ = 0. (5.25)

This leads to the following set of normal equations

ΦTY = ΦTΦθ. (5.26)

Hence, the optimal (in the LS sense) solution is given by2

θ̂ =
(
ΦT Φ

)−1
ΦTY. (5.27)

1The rules for calculating partial derivatives for vectors and matrices are: ∂(Mx)
∂x

= MT ,

∂(xT M)
∂x

= M ,
∂(xTHx)

∂x
= 2Hx, where x is a vector, M is a matrix and H is a symmetric

matrix.
2Equation (5.27) can also be expressed as θ̂ = Φ†Y , where Φ† =

(

ΦTΦ
)−1

ΦT denotes the
Moore-Penrose pseudoinverse.



The LS solution (5.27) can be, alternatively, expressed as

θ̂ =

(
N∑

k=1

ϕkϕ
T
k

)−1( N∑

k=1

ϕkyk

)

, (5.28)

which is the basis of a recursive version of the LS estimator described in the next
chapter. Note that a single solution exists only if

(
ΦTΦ

)−1
, called a covariance

matrix, exists, i.e. if ΦT Φ is invertible. This requires the rows of the matrix Φ
to be linearly independent, or equivalently, for the matrix product ΦT Φ to be
of full rank. In order to verify that the extremum obtained corresponds to a
minimum of the cost function (5.23) the Hessian matrix is calculated, i.e.

∂2V (θ)

∂θ2
= ΦT Φ. (5.29)

Since the quadratic matrix product ΦTΦ is non negative definite by definition,
the solution found is a minimum.

5.1.3 Properties of LS

In this section a few properties of interest in the LS estimator are described
in detail; see (Hsia 1977) or (Söderström & Stoica 1989) for a more thorough
discussion. First some, rather mild, assumptions regarding the properties of the
noise sequence ek are made, namely:

i) ek is a zero mean random sequence, i.e. E[ek] = 0 (where E[·] is the
expectation operator)

ii) ek is serially (mutually) uncorrelated and possesses a constant variance
(i.e. it is a stationary process) σ2

e , i.e.

E[ekej ] = σ2
eδkj , (5.30)

where δkj is a Kronecker delta function defined by

δkj =

{
1 k = j
0 k 6= j

(5.31)

iii) ek is uncorrelated with signals contained in the regressor vector ϕk, i.e.

E[ekϕj ] = 0 ∀ k, j (5.32)



Having assumed the properties of the stochastic part of the system, it is now
possible to quantify the accuracy of estimates yielded by the LS method.

First, a notion of bias is discussed. In the case where the estimate is unbiased
its expectation is equal to the true value, i.e. E[θ̂] = θ. This property can be
determined by substituting equation (5.22) into (5.27) yielding

θ̂ =
(
ΦTΦ

)−1
ΦT (Φθ + e) = θ +

(
ΦTΦ

)−1
ΦT e. (5.33)

By taking the expectation of both side of equation (5.33) and recalling assump-
tions i) and iii), one obtains

E[θ̂] = E[θ] + E[
(
ΦTΦ

)−1
ΦT ]E[e] = E[θ], (5.34)

which shows that the LS estimate is unbiased, i.e. the estimation error can be
expected to be zero.

Now consider a covariance matrix, denoted P ∗ = cov(θ̃) of the estimation

error θ̃ = θ − θ̂, which is defined as

P ∗ = E[(θ − θ̂)(θ − θ̂)T ] = E[(ΦTΦ)−1ΦT e
(
(ΦT Φ)−1ΦT e

)T
]. (5.35)

By taking into account assumption iii) it follows that

P ∗ = E[(ΦTΦ)−1ΦT ]E[eeT ]E[
(
(ΦTΦ)−1ΦT

)T
]

= (ΦTΦ)−1ΦTE[eeT ]Φ(ΦT Φ)−1. (5.36)

It is noted that due to assumption ii) the matrix E[eeT ] is given by

E[eeT ] = σ2
eI, (5.37)

where I is the identity matrix of an appropriate dimension. Consequently, the
error covariance matrix simplifies to

P ∗ = σ2
e(ΦT Φ)−1ΦTΦ(ΦT Φ)−1 = σ2

e(ΦTΦ)−1. (5.38)

Note further that by comparing this with equation (5.27) the error covariance
matrix is the estimation covariance matrix multiplied by the variance of noise.
This property allows to the inference of information regarding the accuracy of
individual parameter estimates directly from the LS covariance matrix. This is
because the variance of the i-th estimated parameter is given by i-th column
and i-th row of (ΦTΦ)−1 multiplied by σ2

e . Note also that P ∗ is proportional to



the noise variance σ2
e and inversely proportional to the power of the input signal

(P ∗ is also inversely proportional to the so-called signal-to-noise (SNR) ratio).
Therefore, during the phase of the experiment design, see Figure 1.1 in Chapter
1, one aims to choose the input so that the matrix product ΦTΦ is maximised
(Ljung 1999).

In practice one does not have access to the true value of the noise variance,
it also has to be estimated from data. It will be demonstrated that it can be
estimated based on the LS residuals. Consider the following expression for the
LS residuals

ε = Y − Φθ̂ = Φθ + e− Φ
[(

ΦT Φ
)−1

ΦT (Φθ + e)
]

, (5.39)

which is found by using equations (5.22) and (5.27). This can be simplified to

ε = e− Φ
(
ΦT Φ

)−1
ΦT e = Be, (5.40)

where the symmetric idempotent matrix3 B is given by

B = I − Φ
(
ΦTΦ

)−1
ΦT . (5.41)

The sum of squared LS residuals can now be expressed as

N∑

k=1

ε2k = εT ε = eTBTBe = eTBe. (5.42)

Consequently, the estimate of the variance of the LS residuals can be calculated
as follows

E[εT ε] = E[eTBe] = E[eT
(
I − Φ(ΦTΦ)−1ΦT

)
e]

= E[eT e] − E[eTΦ(ΦT Φ)−1ΦT e]. (5.43)

By noting that

E[eT e] = σ2
eN,

E[eTΦ(ΦTΦ)−1ΦT e] = σ2
etr
[
Φ(ΦT Φ)−1ΦT

]
, (5.44)

3The matrix B is said to be idempotent if B2 = B.



where tr(·) denotes the trace of a matrix4. Consequently, equation (5.43) can
be simplified to

E[εT ε] = σ2
e

{
N − tr

[
(ΦT Φ)−1ΦTΦ

]}

= σ2
e (N − trI) = σ2

e(N − n), (5.45)

since the matrix product ΦTΦ is of order n. Finally, the estimate of the noise
variance is given by

σ̂2
e =

1

N − n
εT ε =

1

N − n

N∑

k=1

ε2k. (5.46)

Note that equation (5.46) means that the variance of noise can be inferred
from the variance of the LS residuals. However, in order for the estimate to be
unbiased, i.e. to account for degrees of freedom, the sum of squared LS residuals
has to be normalised by one over N − n and not N only.

It can be shown that LS provides consistent estimates, i.e. the estimates
converge asymptotically (in probability) to their true values. This requires that
the associated distribution of the estimates becomes more concentrated in vicin-
ity of the true values as N → ∞ and the corresponding error covariance matrix
approaches a zero matrix, see (Hsia 1977). Consider the following expression

P ∗ = σ2
e(ΦTΦ)−1 =

σ2
e

N

(
1

N
ΦTΦ

)−1

. (5.47)

By assuming that the term
(

1
N ΦTΦ

)−1
converges to some nonsingular matrix,

say Γ, as N increases5, i.e.

lim
N→∞

(
1

N
ΦTΦ

)−1

= Γ, (5.48)

it follows that

lim
N→∞

P ∗ = Γ lim
N→∞

σ2
e

N
= 0. (5.49)

4A trace of a square matrix A ∈ R
n×n is a sum of its diagonal elements, i.e. tr(A) =

∑n
i=1 aii.
5In the case of dynamic systems, this assumption is directly related to the notion of so-

called sufficient excitation of the input signal. Loosely speaking, the input is said to be
sufficiently exciting if it is of sufficiently informative content, e.g. changes relatively quickly
and over a relatively wide range, such that it allows the maximum information to be obtained
from the system response, see (Hsia 1977) or (Söderström & Stoica 1989) for details.



This demonstrates that lim
N→∞

θ̂ = θ and therefore the LS estimator is a consistent

estimator. It is said that a system is identifiable (within a given subset of mod-
els) if the parameter estimates are consistent, see (Söderström & Stoica 1989).
It can be shown that in the case when the equation error is white, cf. assump-
tion ii), the LS estimate is BLUE. If additionally the equation error is also
Gaussian, then the LS estimate is the best of all both linear and nonlinear esti-
mators and it is identical to the maximum likelihood estimator, see (Söderström
& Stoica 1989).

5.1.4 Geometrical interpretation of LS

Referring to (Söderström & Stoica 1989), the LS estimate can be interpreted
geometrically as the orthogonal projection of the residual vector ε onto the n-
dimensional sub-space spanned by columns of the data matrix Φ. Such situation
is depicted visually in Figure 5.4 for a simple two dimensional case, i.e. n = 2,
with three measurements considered, i.e. N = 3, cf. the example from Sub-
section (5.1.1). Denote the i-th column of the data matrix Φ by vec(Φi). The
LS forces the system of equations (5.21), see Subsection 5.1.2, to be consistent
by minimising the distance, corresponding to the residual vector ε, between the
output vector Y and the sub-space spanned by vec(Φi) for i = 1, . . . , n. The
minimal distance is obtained in the case when ε is orthogonal (i.e. perpendicu-
lar) to the sub-space spanned by vec(Φi) for i = 1, . . . , n, which can be expressed
as

vec(Φi) ⊥ ε ∀ i. (5.50)

This condition is equivalent to requiring that the following dot products are all
null, i.e.

ΦT
i ε = ΦT

i

(

Y − Ŷ
)

= 0 ∀ i, (5.51)

where Ŷ denotes the projected output vector Y . Since Ŷ belongs to the sub-
space spanned by vec(Φi) for i = 1, . . . , n, it can be expressed as a weighted
sum of the vectors vec(Φi), which leads to

ΦT
i



Y −

n∑

j=1

Φjθj



 = 0 ∀ i. (5.52)

By recalling that the overall task is to determine θj the following set of equations



Figure 5.4: A geometrical interpretation of the LS method for a two dimensional
case, i.e. n = 2, with three measurements, i.e. N = 3.

is obtained

ΦT
i Y −

n∑

j=1

ΦT
i Φjθj = 0 ∀ i, (5.53)

which, written for all i and by using a matrix notation, yields





vecT (Φ1)Y
...

vecT (Φn)Y




 =






vecT (Φ1)vec(Φ1) . . . vecT (Φ1)vec(Φn)
...

. . .
...

vecT (Φn)vec(Φ1) . . . vecT (Φn)vec(Φn)











θ1
...
θn




 . (5.54)

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸︷︷︸

ΦTY ΦT Φ θ

It is noted that (5.54) is identical to the normal equations obtained when cal-
culating the minimum of the LS cost function, cf. (5.26).

5.2 Least squares for dynamic systems

In this section the LS method is used for the purpose of estimating the param-
eters of the ARX model structure, cf. Subsection 3.2.3 and equation (3.47).
Because (3.47) is linear in the nθ = na +nb + 1 parameters, it can be expressed
in terms of the following regression equation

yk = ϕT
k θ + ek, (5.55)



where the regressor vector ϕk ∈ R
nθ is given by

ϕk =
[
−yk−1 . . . −yk−na

uk . . . uk−nb

]T
(5.56)

and the parameter vector θ ∈ R
nθ comprises the model parameters, i.e.

θ =
[
a1 . . . ana

b0 . . . bnb

]T
. (5.57)

With reference to the reasoning conducted in Subsection 5.1.2, the LS cost
function is given by (5.23), where in the case of the dynamic system (5.55)
considered, the residuals are

εk = yk − ϕT
k θ. (5.58)

The procedure of determining a minimum of the LS cost function is analogous
to that carried out in Subsection 5.1.2 and the solution is given by expression
(5.27) or equivalently (5.28). Note, however, that the statistical analysis pre-
sented in Subsection 5.1.3 is not entirely valid in the case of dynamical system
because the regressor vector is not deterministic. The regressor vector, thus data
matrix Φ, contains uncertain output signals, and therefore should be treated as
a realisation of stochastic process, see (Söderström & Stoica 1989).

With reference to the analysis presented in (Söderström & Stoica 1989),

consider the parameter estimation error θ̂ − θ. This is done by making use of
equation (5.28) and the following transformations

1

N

N∑

k=1

ϕkϕ
T
k θ̂ =

1

N

N∑

k=1

ϕkyk

1

N

N∑

k=1

ϕkϕ
T
k θ̂ =

1

N

N∑

k=1

ϕk

(
ϕT
k θ + ek

)

θ̂ − θ =

(

1

N

N∑

k=1

ϕkϕ
T
k

)−1

1

N

N∑

k=1

ϕkek. (5.59)

It can be shown that under some rather mild assumptions (e.g. that ϕk and ek
are stationary stochastic realisations of white noise, see (Söderström & Stoica
1989) for details) the sums in (5.59) converge asymptotically to their corre-



sponding expected values, i.e.

1

N

N∑

k=1

ϕkϕ
T
k → E

[
ϕkϕ

T
k

]
as N → ∞, (5.60)

1

N

N∑

k=1

ϕkek → E [ϕkek] as N → ∞. (5.61)

Consequently, a reasoning similar to that conducted for a static case can be
applied. In particular, equation (5.59) shows that the LS estimator is consistent
if the two following conditions are satisfied, i.e.

i) The covariance matrix E
[
ϕkϕ

T
k

]
is nonsingular, i.e. det

(
E
[
ϕkϕ

T
k

])
6= 0.

ii) The covariance vector E [ϕkek] is null, i.e. E [ϕkek] = 0.

The first assumption means that the input signal is persistently exciting of
sufficiently high order (in this case of order at least nb +1), cf. Subsection 5.1.3.
This may not hold if, for instance, linear feedback is present in the system loop,
see (Wellstead & Zarrop 1991). The second assumption is fulfilled if the noise
sequence ek is white as only in this case is ek uncorrelated with all previous
signals, in particular, those contained in the regressor vector ϕk. Note that this
assumption is quite restrictive and rarely met in practice. Another situation
where the second condition holds is with na = 0, corresponding to a FIR model,
as in this case ϕk contains only input signals.

If condition ii) is not satisfied, for example ek is coloured, the LS estimate
will not be consistent (nor unbiased). However, there are, at least, two particular
situations in which the LS estimate can still retain the consistency properties
(Ljung 1999). These cases are as follows:

a) The properties of a stable (and inversely stable) filter, say F (q), colouring
the equation error are known a priori, i.e.

A(q−1)yk = B(q−1)uk + F (q)ek. (5.62)

In this case the input and output signals can both be filtered via F−1(q)
leading to the expression in which the equation error is white, hence the
LS method can be readily applied, i.e.

A(q−1)yFk = B(q−1)uF
k + ek, (5.63)



where

yFk = F−1(q)yk and uF
k = F−1(q)uk. (5.64)

In particular, if the filter F (q) is rational, i.e. F (q) = C(q−1)
D(q−1) then this

corresponds to the case of the general EE type model structure, cf. Sub-
section 3.2.3 and equations (3.71). In such a case the input and the output

are to be filtered via F−1(q) = D(q−1)
C(q−1) . Note that this situation, i.e. the

knowledge regarding the filter F (q) prior the identification, is rather im-
practical. Therefore, identification algorithms typically estimate the pa-
rameter vector θ and the parameters of the filter F (q) simultaneously in
an alternating fashion, see (Young 1984).

b) The coloured equation noise can be approximated by an autoregression
process. This situation corresponds to the ARARX model structure de-
scribed in Subsection 3.2.3, cf. equations (3.64). In this case by multiply-
ing both sides of the difference equation (3.64) by the polynomial D(q−1)
one obtains

AD(q−1)yk = BD(q−1)uk + ek, (5.65)

where the auxiliary polynomials AD(q−1) and BD(q−1) of orders na + nd

and nb + nd, respectively, are defined by

AD(q−1) = D(q−1)A(q−1) and BD(q−1) = D(q−1)B(q−1). (5.66)

Because the equation error in (5.65) is white, the LS method will yield
a consistent estimate. Note that in this case the computed parameter
vector does not directly comprise the coefficients of A(q−1) and B(q−1)
polynomials but the corresponding coefficients of polynomials AD(q−1)
and BD(q−1), from which subsequently the a and b parameters can be
obtained.

Questions

• Explain the main motivation for using the LS method.

• Explain type of problems/model structures the method of LS is applicable.
Provide examples.

• Explain which error criterion the method of LS is based on.



• Discuss steps involved in the derivation of the LS method.

• Specify conditions that are required for the LS estimate to be unbiased
and consistent.

• Explain how to assess the confidence in the values of LS estimates.

• Explain how to estimate the variance of the equation error based on resid-
uals.

• Explain the abbreviation BLUE in the context of LS.

• Explain the geometrical interpretation of the method of LS.

• Explain the differences arising in the LS method when used for static and
dynamic models.

• Explain what is meant by the property of persistent excitation of an input
signal.

• Are there any cases in which the LS method can be used to yield unbiased
estimates although the equation error is coloured?

• Write down the formula for LS estimator in a matrix-vector form and then
in a covariance matrix/vector form. Comment on both representations.



Chapter 6

Recursive least squares

This section provides an introduction to the recursive identification methods,
in particular the recursive least squares (RLS) algorithm is discussed in detail.
Recursive methods allow the update of the model parameter estimates in a
continuous manner while the process of interest is operating in real time. The
main motivations for the usage of recursive techniques are as follows:

i) Decrease in the computational burden required for the continuous com-
putation of new parameter estimates in an off-line, i.e. batch, fashion.

ii) Decrease in the memory storage requirements, i.e. information is stored in
a ‘compressed’ form, independent of the continuously increasing number
of measurements.

iii) Ability to track parameter variations on-line. This is especially useful in
applications related to fault detection and isolation, where an instanta-
neous detection and accommodation of incipient faults (e.g. via adaptive
reconfigurable control schemes) is critical for safety reasons. Changes of
system parameters can be used as indicators of such faulty conditions, e.g.
detected alteration of resistance in an electric circuit can allow for a re-
placement before the entire circuit stops functioning leading to potentially
major unrecoverable damage.

iv) Adaptive control strategies, i.e. self-tuning control, where the control
action is continuously adjusted based on a changing parametrisation of
the model. Such control is useful when dealing with nonlinear systems,
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which can frequently be approximated (to some extent) by LTV models.
In such a case the parameters of LTV models, varying in time, are required
to be estimated on-line.

v) Trajectories of estimated parameters can provide additional insight into
the functionality of a given algorithm. For instance, a continuous trend in
estimates leading to a lack of convergence can indicate that the model is
overparametrised or/and non-identifiable.

vi) Trajectories of estimates can also lead to a better understanding of the
physics of a given process. A variation of the parameter trajectory may
be a result of changing operational conditions, i.e. changing state of the
system, in which case such parameter can be interpreted as a so-called
state-dependent, see (Young 1984). Subsequently, such state dependence
can be incorporated into the model structure improving its modelling ca-
pabilities. For instance, a resistor can exhibit a significant dependence on
the temperature.
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Figure 6.1: A diagrammatic representation of a recursive algorithm. For sim-
plicity, disturbances are not included.



6.1 General structure of recursive algorithms

In general, a recursive estimation algorithm at time instance k can be described
by the following recursion, see (Ikonen & Najim 2002), i.e.

θ̂k = θ̂k−1 + Lk

[

yk − ŷk(θ̂k−1)
]

, (6.1)

where θ̂k is the new (i.e. present) estimate, θ̂k−1 is the old (i.e. previous) esti-

mate, Lk is a (possibly variable) correction gain and yk − ŷk(θ̂k−1) denotes the
correction factor. The correction factor is defined as a difference between the
actual system output yk and that of the model ŷk(θ̂k−1) obtained (or predicted)

using a previous estimate of the parameter vector, i.e. θ̂k−1. A diagrammatic
visualisation of such a recursive procedure is given in Figure 6.1, cf. (Wellstead
& Zarrop 1991), where the system is defined by a true parameter vector θ,

the model by an estimate θ̂k and the term εk|k−1, being the correction fac-
tor, is called a one-step ahead prediction error1. The update mechanism is a
method/algorithm chose to update the estimate based on εk|k−1, which, with
the reference to equation (6.1), corresponds to the specification of the vector
Lk. The diagonal dashed line with an arrow symbolises the property that the
model, because it is continuously updated, changes over time.

6.2 Derivation of RLS

In order to develop a recursive formula for the LS method, consider the off-line
LS estimate at time instance k given by

θ̂k =

(
k∑

i=1

ϕiϕ
T
i

)−1( k∑

i=1

ϕiyi

)

. (6.2)

For ease of notation, denote the inverse of the covariance matrix at time instance
k by Pk, i.e.

Pk =

(
k∑

i=1

ϕiϕ
T
i

)−1

. (6.3)

1The subscript notation εk|k−1 means that the signal εk has been obtained at time instance
k by utilising (for prediction purpose) information up to and including time instance k − 1
only, i.e. knowledge/data available at time instance k is not used.



It is noted that the inverse of Pk can be updated recursively as follows

P−1
k = P−1

k−1 + ϕkϕ
T
k (6.4)

and, similarly, the expression
∑k

i=1 ϕiyi can also be expressed in a recursive
fashion as

k∑

i=1

ϕiyi =

k−1∑

i=1

ϕiyi + ϕkyk. (6.5)

This allows (6.2) to be re-write as follows

θ̂k = Pk

(
k−1∑

i=1

ϕiyi + ϕkyk

)

. (6.6)

Because the estimate at the time instance k − 1 is given by

θ̂k−1 = Pk−1

k−1∑

i=1

ϕiyi (6.7)

the expression
∑k−1

i=1 ϕiyi can be written as

k−1∑

i=1

ϕiyi = P−1
k−1 θ̂k−1 (6.8)

and substituting into equation (6.6) yields

θ̂k = Pk

(

P−1
k−1θ̂k−1 + ϕkyk

)

. (6.9)

By using (6.4) it follows that

θ̂k = Pk

[(
P−1
k − ϕkϕ

T
k

)
θ̂k−1 + ϕkyk

]

= θ̂k−1 + Pkϕk

(

yk − ϕT
k θ̂k−1

)

. (6.10)

Note the agreement with the general formula of a recursive algorithm given by
(6.1), where, in this case, the predicted (one-step ahead) output is ŷk(θ̂k−1) =

ϕT
k θ̂k−1 and Lk = Pkϕk. The remaining task is to find a tractable method for



updating the inverse of the covariance matrix, i.e. Pk, because the required
inversion of P−1

k at each time step can lead to a considerable computational
burden (especially for large nθ). This problem can be solved by employing
the so-called matrix inversion lemma, defined as follows, see (Söderström &
Stoica 1989):

Lemma 1 (Matrix inversion lemma) If there exist inverses of matrices A,
C and C−1 + DA−1B then it follows that

(A + BCD)
−1

= A−1 −A−1B
(
C−1 + DA−1B

)−1
DA−1. (6.11)

Proof can be found by multiplying the right-hand side of (6.11) by expression
A + BCD and showing that it will yield a unity matrix.

Applying the matrix inversion lemma to the update of Pk, i.e. equation
(6.4), with

A = P−1
k−1,

B = ϕk,

C = 1,

D = ϕT
k , (6.12)

leads to

Pk =
(
P−1
k−1 + ϕkϕ

T
k

)−1

= Pk−1 − Pk−1ϕk

(
1 + ϕT

k Pk−1ϕk

)−1
ϕT
k Pk−1

= Pk−1 − Lkϕ
T
k Pk−1, (6.13)

where the gain vector Lk defined by

Lk = Pk−1ϕk

(
1 + ϕT

k Pk−1ϕk

)−1
. (6.14)

Finally, by gathering expressions (6.10), (6.13) and (6.14) the overall RLS algo-
rithm is summarised in the three steps as follows

Lk = Pk−1ϕk

(
1 + ϕT

k Pk−1ϕk

)−1
, (6.15)

Pk = Pk−1 − Lkϕ
T
k Pk−1, (6.16)

θ̂k = θ̂k−1 + Pkϕk

(

yk − ϕT
k θ̂k−1

)

, (6.17)



or, alternatively, as

Lk = Pk−1ϕk

(
1 + ϕT

k Pk−1ϕk

)−1
, (6.18)

θ̂k = θ̂k−1 + Lk

(

yk − ϕT
k θ̂k−1

)

, (6.19)

Pk = Pk−1 − Lkϕ
T
k Pk−1, (6.20)

which is obtained by exploiting the property that Lk = Pkϕk (i.e. multiply Lk

by PkP
−1
k and substitute equation (6.4) for P−1

k ).
Note that the inversion in the first step, i.e. (6.18), is, in fact, simply a scalar

division, which decreases considerably the computational burden. Therefore,
the first equation could also be written as Lk = Pk−1ϕk

1+ϕT

k
Pk−1ϕk

. Alternatively, the

RLS algorithm can be expressed in two steps as

Pk = Pk−1 − Pk−1ϕk

(
1 + ϕT

k Pk−1ϕk

)−1
ϕT
k Pk−1, (6.21)

θ̂k = θ̂k−1 + Pkϕk

(

yk − ϕT
k θ̂k−1

)

. (6.22)

By including the property given by equation (5.38) obtained in Subsection
5.1.3 for the off-line LS method, i.e. that P ∗

k = σ2
ePk, another alternative version

of the RLS algorithm follows

Lk = P ∗
k−1ϕk

(
σ2
e + ϕT

k P
∗
k−1ϕk

)−1
, (6.23)

θ̂k = θ̂k−1 + Lk

(

yk − ϕT
k θ̂k−1

)

, (6.24)

P ∗
k = P ∗

k−1 − Lkϕ
T
k P

∗
k−1. (6.25)

Note that the above algorithm2 not only uses all the potentially available in-
formation regarding the noise variance but also provides a direct indication of
the accuracy of the estimated parameters at each recursion via the error covari-
ance matrix P ∗

k . This feature combined with the fact that no matrix inverse is
required forms a particularly useful method for practical, i.e. industrial, appli-
cations (Young 1984).

6.3 Estimator initialisation

In order to use the RLS algorithm initialisation of Pk and θ̂k at k = 0, i.e. P0 and
θ̂0, is required. Sometimes a priori knowledge regarding the system parameters

2This version of the RLS algorithm is sometimes referred to as a stochastic RLS algorithm,
whilst the standard RLS method is called a deterministic RLS algorithm.



exists. For instance, when the model is constructed using the white/grey-box
approach, it is often possible to choose relatively good initial estimates (at least
for some of the parameters). However, if no prior knowledge is available one
possibility is to use the off-line LS for first k0 ≥ nθ samples in order to obtain
an estimate of the parameter vector. Note that only if kgenθ is the covariance
matrix P−1

k invertible. Another possibility is to set the parameter vector to

zero, i.e. θ̂0 = 0, and to initialise the covariance matrix P0 with some relatively
large positive scalar value, i.e.

P0 = µI, (6.26)

where µ >> 0. The choice of µ reflects the confidence in the a priori knowledge
of θ̂0 as follows: a large value, say µ = 103, corresponds to a lack of confidence
in θ̂0, whilst a small value, say µ = 10, implies the opposite, i.e. confidence
that θ̂0 is close to the true parameter vector. Consequently, if µ is large the
parameter estimates adapt rapidly, when µ is small the adaptation is slower.
In order to better understand this property consider the following expression,
which follows from (6.2) when using initial values at k = 0, i.e.

θ̂k =

(

P−1
0 +

k∑

i=1

ϕiϕ
T
i

)−1(

P−1
0 θ̂0 +

k∑

i=1

ϕiyi

)

. (6.27)

It can be observed that the relative importance of the initial values chosen de-
creases over time as the summation terms come to dominate and the correspond-
ing estimates approach the off-line LS solution (Ljung & Söderström 1983). An-
other method to start up the estimator (see (Wellstead & Zarrop 1991)) is to
assume initially that the system is an integrator of unity gain in the continuous-

time domain, i.e. 1
s , which corresponds to Ts

q−1 = Tsq
−1

1−q−1 in the discrete-time

domain (using the ZOH), hence

a1 = −1, ai = 0 ∀i 6= 1,

b1 = Ts, bi = 0 ∀i 6= 1. (6.28)

Moreover, when utilising recursive methods to analyse data off-line, it is a com-
mon practice to re-run algorithm several times on the same data and use the
final estimates obtained in previous runs as initial values for subsequent runs.
In general, a particular choice of initial parameters should not influence the
convergence behaviour of estimates, especially if N is large.



6.4 Residual vs. one-step ahead prediction er-

ror

It should be emphasised that the expression εk|k−1 present in the RLS algorithm
is not equivalent to the residual εk, see (Wellstead & Zarrop 1991). While the
one-step ahead error εk|k−1, sometimes called the a priori prediction error, is
defined by

εk|k−1 = yk − ϕT
k θ̂k−1, (6.29)

the residual εk = εk|k, sometimes called the posteriori prediction error, is given
by

εk|k = yk − ϕT
k θ̂k. (6.30)

Note that the difference between expressions (6.29) and (6.30) is that the former
is based on the estimate of the parameter vector at recursion k − 1, while the
latter utilises the estimate at recursion k. As the recursion progresses this
difference diminishes, however it can be relatively significant in the initial period
of the estimation procedure. By comparing (6.29) with (6.30) one obtains

εk|k = εk|k−1 + ϕT
k

(

θ̂k−1 − θ̂k

)

, (6.31)

which, by making use of equation (6.19), can be re-expressed as

εk|k = εk|k−1

(
1 − ϕT

k Lk

)

= εk|k−1

(
1 + ϕT

k Pk−1ϕk

)−1
. (6.32)

Note that the expression to be inverted in (6.31), as in the case of the RLS
algorithm, is a scalar.

6.5 RLS with forgetting factor

The RLS algorithm can be modified in order to allow for tracking of time-varying
parameters. This idea to reduce the relative importance of past measurements
that are stored in compressed form inside the covariance expressions. Heuris-
tically, such an approach can be interpreted as affecting directly the memory



of the estimator by discounting the importance of old measurements, i.e. for-
getting past data. Consider the following weighted LS cost function at time
instance k, i.e.

θ̂ = arg min
θ

V̄k(θ), (6.33)

where

V̄k(θ) =
1

2
εTΛε =

1

2

k∑

i=1

λk−iε2i .

The scalar λ ∈ (0, 1] is called the forgetting factor (typically λ ∈ (0.95, 0.995))
and Λ ∈ R

N×N is a diagonal weighting matrix given by

Λ =








λk−1

. . .

λ1

λ0








= diag
[
λk−1 . . . λ1 λ0

]
, (6.34)

where diag
[
·
]

denotes a diagonal matrix. The idea of discounting old measure-
ments can be seen better by re-expressing (6.33) as follows

V̄k(θ) =
1

2

k∑

i=1

λk−i
(
yi − ϕT

i θ
)2

=
1

2
λ

k−1∑

i=1

λk−1−i
(
yi − ϕT

i θ
)2

+
1

2

(
yk − ϕT

k θ
)2

= λV̄k−1(θ) +
1

2

(
yk − ϕT

k θ
)2

. (6.35)

By considering expression (6.35) it is observed that the importance of past data
is progressively reduced because λ ≤ 1.

Carrying out reasoning analogous to that presented in Subsection 5.1.2, it
can be shown that the minimum of the weighted LS cost function (6.33) at time
instant k is given by

θ̂k =
(
ΦT ΛΦ

)−1
ΦT ΛY, (6.36)

or, alternatively, by

θ̂k =

(
k∑

i=1

λk−iϕiϕ
T
i

)−1( k∑

i=1

λk−iϕiyi

)

. (6.37)



By following a methodology similar to that used for the derivation of the RLS in
Section 6.2, the weighted covariance matrix, denoted with a bar, can be written
as

P̄−1
k =

k∑

i=1

λk−iϕiϕ
T
i = λ

k−1∑

i=1

λk−1−iϕiϕ
T
i + ϕkϕ

T
k = λP̄−1

k−1 + ϕkϕ
T
k , (6.38)

which leads to

θ̂k = P̄k

(

λ

k−1∑

i=1

λk−1−iϕiyi + ϕkyk

)

. (6.39)

Since the estimate at time instant k − 1 is given by

θ̂k−1 = P̄k−1

k−1∑

i=1

λk−1−iϕiyi, (6.40)

the term
∑k−1

i=1 λk−1−iϕiyi can be expressed as

P̄−1
k−1θ̂k−1 =

k−1∑

i=1

λk−1−iϕiyi. (6.41)

By substituting equation (6.41) into (6.39) one obtains

θ̂k = P̄k

(

λP̄−1
k−1θ̂k−1 + ϕkyk

)

, (6.42)

which, by using (6.38), leads to

θ̂k = P̄k

[(
P̄−1
k − ϕkϕ

T
k

)
θ̂k−1 + ϕkyk

]

= θ̂k−1 + P̄kϕk

(

yk − ϕT
k θ̂k−1

)

. (6.43)

In order to update P̄k recursively the matrix inversion lemma is used, cf. Section
6.2 and equation (6.11), with the following settings

A = λP̄−1
k−1,

B = ϕk,

C = 1,

D = ϕT
k . (6.44)



This leads to

(
λP̄−1

k−1 + ϕkϕ
T
k

)−1
=

1

λ

[

P̄k−1 − P̄k−1ϕk

(
λ + ϕT

k P̄k−1ϕk

)−1
ϕT
k P̄k−1

]

, (6.45)

which when combined with equation (6.43) gives the RLS algorithm with (fixed)
forgetting factor, i.e.

Lk = P̄k−1ϕk

(
λ + ϕT

k P̄k−1ϕk

)−1
, (6.46)

θ̂k = θ̂k−1 + Lk

(

yk − ϕT
k θ̂k−1

)

, (6.47)

P̄k =
1

λ

(
P̄k−1 − Lkϕ

T
k P̄k−1

)
. (6.48)

Note that since the forgetting factor λ ∈ (0, 1], it has the effect of inflating the
covariance matrix P̄k. Therefore, the gain vector Lk is kept larger, which results
in a larger correction of the parameter vector. Consequently, the covariance
matrix will not tend to zero as k increases and the RLS algorithm will always
be able to track potential variations in the system parameters. Observe that
it implies that, even if the true parameters are constant, the corresponding
estimates will not be consistent as k → ∞. The adaptive RLS algorithm (6.46)-
(6.48) reduces to that given by equations (6.18)-(6.20), i.e. the standard non-
adaptive RLS algorithm, if no forgetting of past information occurs, i.e. when
λ = 1.

An alternative modification of the RLS algorithm used to cope with track-
ing of time-varying parameters is the implementation of a moving (or sliding)
rectangular window technique, see (Young 1984) for details. In this case the
estimates are calculated based on an interval of past data with a pre-specified
length, say h. The required modification of the standard RLS algorithm com-
prises the incorporation of an additional step in which the data received at the
recursion k − h is removed.

6.6 Memory of RLS with forgetting factor

Because the forgetting factor λ influences the memory of the estimator, it is of
interest to estimate approximately its length. This can be obtained by consid-
ering the weighting at time instance k, i.e.

λk−i = elnλk−i

≈ e−(k−i)(1−λ), (6.49)



which holds because lnλ ≈ 1 − λ at λ ≈ 1. Consequently, expression (6.49)
can be interpreted as an impulse response of a first order system with a time
constant given by

M =
1

1 − λ
. (6.50)

Therefore, the measurements older than M are collectively assigned a weight of
only e−1 ≈ 36%, see (Ljung 1999). This also explains the reason the forgetting
factor of the form (6.49) is often called an exponential forgetting factor. Figure
6.2 shows weightings corresponding to different forgetting factors, where k is at
i = 0. The time constant M is usually referred to as the memory of the estima-
tor. If the system remains relatively constant over M samples, the appropriate
value of the forgetting factor can be obtained from (6.50), i.e.

λ =
M − 1

M
. (6.51)

The choice of the forgetting factor results in a trade-off between the ability to
track time-varying parameters and sensitivity of estimates. Because all elements
of the covariance matrix are scaled by the same factor, one disadvantage of such
approach is that all estimates are considered to exhibit equal variations, which
may not be the case in practice. In the case if some parameters are known to
vary with a different speed to others it may be better to use individually adjusted
forgetting factors. For instance one parameter may vary, whilst the other can be
constant. To realise this idea, it is possible to scale selected diagonal elements of
the covariance matrix by a chosen forgetting factor (Wellstead & Zarrop 1991)3.
Another problem occurs in situations when the input signal is not sufficiently
exciting, i.e. it does not provide new information to the estimator. In this
case P̄k ≈ P̄k−1/λ, cf. (6.48), which means that the covariance matrix will be
continuously inflated leading to a phenomena called a covariance blow-up and,
consequently, a potential numerical overflow. A useful measure which can be
used to detect this behaviour is to monitor the trace of the covariance matrix
P̄k, i.e. tr(P̄k), see Subsection 6.8 later.

6.7 Variable forgetting factor

The problem of the appropriate choice of the forgetting factor can be helped to
some extent by allowing the forgetting factor λ to be time-varying or adaptive,

3In fact, this approach is conceptually similar to the KF tuned for parameter estimation
introduced later in Section 6.9, cf. also Section 7.4.
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Figure 6.2: Illustration of weighting corresponding to different forgetting factors
λ.

i.e. λk. In such a case the memory of the estimator can be adjusted based
on, for instance, a value of the instantaneous one-step ahead prediction error.
The rationale is that if εk|k−1 increases it means that the model is not capable
of predicting accurately the system output, therefore the parameter estimates
should be allowed to adapt. If εk|k−1 decreases the present estimates are good,
therefore they should be kept and there is no need for adaptation. Some ap-
proaches selected from the literature for the implementation of this strategy are
presented below:

• An adaptive variable forgetting factor proposed in (Fortescue, Kershen-
baum & Ydstie 1981) is given by

λk = 1 −
(1 − ϕT

k P̄k−1ϕk)ε2k|k−1

σ2
eM0

, (6.52)

where M0 denotes the initial memory of the estimator. Additionally, care
must be taken to ensure that λk ∈ (0, 1] ∀k, hence it is advisable to



include additional constraints, i.e.

λk =

{
1 if λk > 1
λ0 if λk < 0

, (6.53)

where λ0 denotes a default value of the forgetting factor.

• An adaptive variable forgetting factor proposed in (Wellstead & Zarrop
1991) is given by

λk =
sk−1

sk
, (6.54)

where

sk =
τ − 1

τ
sk−1 +

ε2k|k−1

τ
. (6.55)

The scalar τ determines the rate of adaptation and sk is a weighted average
of the past values of ε2k|k−1. As in the previous case, it is advisable to

append constraints given by (6.53).

• Start-up forgetting factor is useful during the initial period of the estima-
tion. Initially, λk should be small, thus allowing for a quick adaptation
and subsequently converge to unity as time progresses. This means that
any undesired effects present in the initial period of the estimation are
quickly discounted, i.e. forgotten. Such a variable forgetting factor, see
(Young 1984) and (Wellstead & Zarrop 1991), is given by

λk = λ0 + (1 − λ0)
(

1 − e−
k

τ

)

, (6.56)

where λ0 denotes the initial value of the forgetting factor at k = 0, τ is
the time constant of the forgetting factor determining the speed of change
of λk. Expression (6.56) can be conveniently re-written as the following
recursion

λk = e−
1

τ λk−1 + (1 − e−
1

τ ). (6.57)

Note that as k → N the forgetting factor tends to unity. Further, it is
possible to combine the start-up variable forgetting factor with any other
adaptive or constant forgetting factors.



6.8 Other modifications of RLS

This subsection describes some other possible modifications of the standard RLS
algorithm, which can be found in the literature.

• Constant trace method described in (Wellstead & Zarrop 1991) - the idea
of this method is to keep the trace of the covariance matrix Pk constant,
hence preventing it from blowing up. The approach is to add to Pk at each
recursion a matrix Rk ∈ R

nθ×nθ , chosen to ensure that tr(Pk) = tr(Pk−1),
i.e.

Pk = Pk−1 − Pk−1ϕk

(
1 + ϕT

k Pk−1ϕk

)−1
ϕT
k Pk−1 + Rk. (6.58)

The appropriate value of Rk is found as follows, i.e.

tr(Pk) = tr(Pk−1) − tr
(

Pk−1ϕk

(
1 + ϕT

k Pk−1ϕk

)−1
ϕT
k Pk−1

)

+ tr(Rk),

(6.59)

which by including the constraint tr(Pk) = tr(Pk−1) leads to

tr(Rk) = tr
(

Pk−1ϕk

(
1 + ϕT

k Pk−1ϕk

)−1
ϕT
k Pk−1

)

. (6.60)

This can be further simplified yielding

tr(Rk) = tr

(

ϕT
k P

2
k−1ϕk

1 + ϕT
k Pk−1ϕk

)

=
ϕT
k P

2
k−1ϕk

1 + ϕT
k Pk−1ϕk

. (6.61)

A matrix which satisfies (6.61), hence ensures a constant trace condition
is, for instance, given by

Rk =
tr(Rk)

nθ
I, (6.62)

where the identity matrix is of dimension nθ. Note that although the
constant trace method prevents blow-up of the covariance matrix, the lack
of new information can lead the it to become almost singular. To cope
with this problem an excitation should be input to the system or/and the
matrix Rk should be bounded from below (Wellstead & Zarrop 1991).

• Directional forgetting described in (Wellstead & Zarrop 1991) - in this
case covariance blow-up is avoided by using the forgetting factor only in



directions of the parameter space for which new information enters the
system. Using the directional forgetting the update of P−1

k is defined as

P−1
k = P−1

k−1 + rk−1ϕkϕ
T
k , (6.63)

by using the matrix inversion lemma with C = rk−1, cf. Section 6.2 and
equation (6.11). This yields the following update of the covariance matrix
Pk

Pk = Pk−1 − Pk−1ϕk

(
1

rk−1
+ ϕT

k Pk−1ϕk

)−1

ϕT
k Pk−1. (6.64)

While the standard forgetting factor controls the outflow of old informa-
tion (i.e. forgetting) in all directions, the directional forgetting factor
controls the inflow of the new information (i.e. remembering) associated
with the rank one update of Pk via ϕkϕ

T
k . A choice for rk proposed in

(Wellstead & Zarrop 1991) is as follows

rk−1 = λ− (1 − λ)
(
ϕT
k Pk−1ϕk

)−1
, (6.65)

where λ is the standard constant forgetting factor. Note that when λ = 1
the RLS algorithm with no forgetting is obtained.

• Covariance reset techniques proposed in (Balmer 1986) and (Hagglund
1993) - the main motivation for using a covariance reset is to improve the
speed of parameters tracking. Note that in the case of variable forgetting
factors even if λ is relatively small, some memory of the past data is still
retained in the covariance matrix. Consequently, in order to track rapid
changes in the model parametrisation all past information is required to
be discarded, i.e. forgotten. This is realised via a reset of the covariance
matrix. Such a reset can be obtained by setting the covariance matrix to
an identity matrix with relatively large values on its diagonal, i.e. Pk = µI.
This is similar to the initialisation of the estimator, however in this case
the value of µ is typically chosen to be smaller, e.g. µ = 102. The
reset can be realised when operation conditions change or if some prior
knowledge regarding the occurrence of nonlinearities exists (James 1998).
The covariance reset can be implemented as follows

Pk =

{
Pk−1 − Lkϕ

T
k Pk−1 if k 6= mnθ

µI if k = mnθ
, (6.66)



where m >> nθ corresponds to the interval between successive reset ac-
tions. The choice of the resetting interval m as well as the value of µ is
crucial since bad tuning can lead to undesirable transient effects in the es-
timates. Another approach is to use a logical reset based on the detection
of the set point change, i.e.

Pk =

{
Pk−1 − Lkϕ

T
k Pk−1 if uk = uk−1

µI if uk 6= uk−1
, (6.67)

where uk is the reference signal. Additionally, care must be taken in
the case where the set point changes frequently or in a continuous fashion.
Note, if it is known that only a certain parameter varies rapidly the covari-
ance reset method can be applied to a diagonal element of the covariance
matrix corresponding to this particular parameter exclusively.

6.9 RLS with an inherent mechanism for track-
ing time-varying parameters (KF tuned for

parameter estimation)

In this section the RLS algorithm with an inherent mechanism for tracking time-
varying parameters is described. The main difference between this approach and
techniques introduced in previous sections is that, in this case, the time-varying
nature of parameters will be incorporated directly into the model. This means
that the underlying model of the system is considered as time-varying. Note that
this is in contrast to the RLS algorithm with forgetting factor, where the model
was postulated to be time-invariant, i.e. θk = θk−1. The adaptivity properties
of the RLS were obtained in a rather heuristic or engineering fashion by not
allowing the elements of the covariance matrix to converge to zero (via inflation
of the covariance matrix). In the case of the algorithm described in this section
adaptivity is achieved by describing the evolution of the model parameters in a
stochastic framework. The reasoning and derivation presented have both been
taken from (Young 1974).

Consider the following model describing a random walk evolution of the
parameters

θk = θk−1 + vk, (6.68)

where vk ∈ R
nθ is a vector consisting of serially uncorrelated random variables

of zero mean, i.e. E[vk] = 0 and E[vkvj ] = Σvδkj . The expression (6.68)



corresponds to a so-called (multivariable) Markov model4. If additionally vk
is assumed to be Gaussian distributed, then equation (6.68) corresponds to a
so-called Gauss-Markov model. The system model is considered to be given by
the following regression

yk = θTk ϕk + ek, (6.69)

where ek is a scalar sequence of zero mean purely random equation errors hav-
ing variance E[e2k] = σ2

e and the parameter vector θk is allowed to vary (be-
tween sampling instances) with accordance to (6.68). Assuming that the prior
knowledge regarding the values of Σv and σ2

e exists it is possible to utilise this
information to make a priori predictions of both the parameter vector and the
error covariance matrix. These predictions are denoted by θ̂k|k−1 and P ∗

k|k−1,

respectively, where the subscript notation k|k−1 means that a given expression
depends on the measurements up to (and including) time instance k − 1. The

prediction θ̂k|k−1 is found by considering the expected value of the evolution of
the parameter vector (6.68), which, since E[vk] = 0, is given by

E[θk] = θk−1. (6.70)

Consequently, the a priori prediction of θk based on the past information at
k − 1 and the knowledge of the parameter evolution law (6.68) is given by

θ̂k|k−1 = θ̂k−1|k−1, (6.71)

which is simply the estimate of the parameter vector at the previous time in-
stance. In order to find an analogous expression for the a priori prediction of
the error covariance matrix P ∗

k , consider the a priori prediction error of the

parameter estimate, denoted by θ̃k|k−1, i.e.

θ̃k|k−1 = θ̂k|k−1 − θk. (6.72)

With reference to (6.68) and (6.71), this can be transformed into

θ̃k|k−1 = θ̂k−1|k−1 − θk−1 − vk = θ̃k−1|k−1 − vk, (6.73)

where θ̃k−1|k−1 denotes the posteriori parameter estimation error at the time
instance k−1. Equation (6.73) is now used to determine the a priori prediction

4The main property of the Markov process is that it is memoryless, i.e. loosely speaking
its future state depends upon the present state exclusively and not on past states.



of the covariance matrix P ∗
k as follows

P ∗
k|k−1 = E[θ̃k|k−1θ̃

T
k|k−1] = E[(θ̃k−1|k−1 − vk)(θ̃k−1|k−1 − vk)T ]

= E[θ̃k−1|k−1θ̃
T
k−1|k−1] + E[vkv

T
k ] − E[θ̃k−1|k−1v

T
k ] − E[vkθ̃

T
k−1|k−1]

= P ∗
k−1|k−1 + Σv. (6.74)

The last equality follows from the fact that θ̃k−1|k−1 comprises the signal vk−1

and because vk is white, E[θ̃k−1|k−1v
T
k ] = E[vkθ̃

T
k−1|k−1] = 0.

Consequently, equations (6.71) and (6.74) provide the sought expressions for
the prior predictions of the parameter vector and the error covariance matrix.
These can be combined with the recursive equations of the RLS algorithm, see
(6.23)-(6.25), to yield the following two phase prediction-correction approach
for parameter estimation, which is summarised below:

Prediction step:

θ̂k|k−1 = θ̂k−1|k−1, (6.75)

P ∗
k|k−1 = P ∗

k−1|k−1 + Σv. (6.76)

Correction step:

Lk = P ∗
k|k−1ϕk(ϕT

k P
∗
k|k−1ϕk + σ2

e)−1, (6.77)

θ̂k|k = θ̂k|k−1 + Lk(yk − ϕT
k θ̂k|k−1), (6.78)

P ∗
k|k = (I − Lkϕ

T
k )P ∗

k|k−1. (6.79)

In fact, the above algorithm, denoted KFPE, is equivalent to the KF tuned for
parameter estimation, see Section 7.4 later, where this relationship is demon-
strated. Provided that σ2

e and Σv are both known, it means the KFPE is optimal
in the sense of minimising the estimation error θ̃k.

The KFPE requires the specification of σ2
e and Σv. While σ2

e reflects level
of noise contamination in the measurements, the diagonal elements of Σv are
chosen to reflect the expected rates of variation of individual parameters and
correspond to their expected variances, denoted var(·), i.e.

Σv = diag
[
var(a1) . . . var(bnb

) var(b0) . . . var(bnb
)
]
. (6.80)

Note that this setting is valid if the parameters evolve according to a random
walk process (6.68) and if additionally their corresponding variances are known.
Otherwise, appropriate values to construct Σv must be found experimentally.



Analogously to the RLS with a forgetting factor, the KFPE allows the tra-
jectories of time-varying parameters to be tracked by inflating the covariance
matrix. Because Lk = P ∗

k|kϕk the gain Lk will not tend to zero as k → ∞.
Therefore, the parameter estimate will be continuously subject to corrections,
i.e. it will be continuously updated thus inconsistent. The difference between
the KFPE and the RLS with a forgetting factor is that while in the case of
the RLS this property is achieved by a post-division of P ∗

k|k by a forgetting
factor λ, in the case of the KFPE a diagonal matrix is pre-added to P ∗

k|k−1 in
the prediction step of the algorithm. However, the final effect resulting from
both approaches is similar. The other difference between the two techniques
is that the KFPE is inherently more flexible than the RLS with a forgetting
factor, because different expected rates of variation can be specified for each
parameter. For instance, if a particular parameter is known to be constant the
corresponding diagonal value of Σv can be simply set to null. A similar effect
can be achieved heuristically in the case of the RLS by dividing the diagonal
elements of P ∗

k|k by different forgetting factors, see Section 6.6. Additionally,
the KPFE provides a statistical interpretation of the initial values provided to
the RLS algorithm. Namely, the initial value of the parameter vector, i.e. θ̂0, is
the prior mean and the initial value of P ∗

0 is the prior error covariance matrix
(Ikonen & Najim 2002). Furthermore, the KPFE substantiates the rationale for
including the variance of the noise into the RLS algorithm, cf. Section 6.2 and
equations (6.23)-(6.25).

6.10 Pseudo-regression and RLS

The RLS described in this chapter has been developed for the case of an ARX
model structure. When the RLS algorithm is directly used for the purpose
of estimating parameters of other linear model structures, then the estimates
obtained will be biased in general (excluding the specific cases described in
Section 5.2). This is because the necessary assumption of the whiteness of
equation errors is violated, see Section 5.1.3. However, it is possible to modify
the RLS method and to obtain unbiased estimates by making use of the idea
of the optimal one-step ahead predictor described in Section 3.2.4. Considering
the RLS alagorithm given by equations (6.18)-(6.20), this modification requires

the prediction in (6.19) to be optimal. This means that the product ϕT
k θ̂k−1 is

to be replaced by the corresponding (to a particular model structure) optimal
one-step ahead predictor. As an example consider the ARMAX model structure,
where the corresponding predictor is given by equation (3.96), see Subsection



3.2.4. Note, that in this case the regressor vector contains residuals, which can
be generated based on θ̂k−1 as a posteriori prediction errors. Moreover, the
parameter vector is appended with the coefficients of polynomial C(q−1), which
also have to be estimated together with the a and b parameters. Because the
residual at time instance k is generated based on the estimated parameter vector
at time instance k−1, the overall procedure corresponds to a pseudo-regression.
Modification of the RLS method for other model structures is analogous. In
general, it involves, first, approximations of unmeasurable signals (present in the
corresponding regressor vectors) that are made based on a recursively estimated
parameter vector as the recursion progresses and estimation of the parameter
vector extended with parameters of polynomials that model the equation error.

Questions

• Explain the motivation for recursive estimation.

• Draw a diagram of a general recursive algorithm.

• Explain the idea of the matrix inversion lemma and its application in the
derivation of the RLS algorithm.

• Comment on differences between standard and stochastic RLS algorithms.

• Discuss initialisation of the RLS algorithm and its significance.

• Comment on differences between the one-step ahead prediction error and
the residual.

• Explain the motivation for the introduction of a forgetting factor. Com-
ment on the notion of estimator memory.

• Explain motivations for using variable forgetting factors and provide ex-
amples of different approaches to this problem.

• Discuss the constant trace method, directional forgetting and covariance
reset technique. Explain the motivations for their usage.

• Explain how to incorporate an inherent mechanism for tracking time-
varying parameters into the RLS method, which leads to the KFPE. Dis-
cuss estimator initialisation and analogies with the RLS algorithm with
fixed forgetting factor.

• Describe modifications that are required for the RLS algorithm to yield
unbiased estimates for model structures other than ARX.





Chapter 7

Kalman filtering

7.1 Introduction

This section provides a brief introduction to the Kalman filtering. First, the
notion of an observer is introduced, which, in a non-deterministic setup leads to
the KF. Subsequently, some modifications of the standard KF are described
including the steady-state KF, KF tuned for parameter estimation and the
extended KF (EKF).

7.2 Notion of an observer

In contrast to the parameter estimation task, where the goal is to estimate the
unknown vector of the parameters describing the system, state estimation is
concerned with the estimation of system states under the assumption that the
system model is available. The main motivations for using the state estimation
are as follows, see (Nise 2008) and (Dutton et al. 1997), i.e.

• Some controllers rely on access to system states, e.g. state variable feed-
back controllers.

• System states usually possess a physical meaning, hence can provide valu-
able information regarding the system behaviour and its current state.
This is useful, for instance, for the purpose of condition monitoring and
fault detection.
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• Typically direct access to system states is infeasible or impractical due to
the costs and installation complexity involved with the additional hard-
ware required. As an example of such a situation consider a state corre-
sponding to a temperature inside a hot furnace or a diesel engine.

• A plant model may result from an identification procedure that is ex-
pressed in terms of an input-output transfer function, which can be con-
verted to a state-space description. Typically, in such a case the only states
which can be interpreted as physically meaningful, and hence measured
directly with hardware, are those related to the system output. Because
other states do not possess a clear physical meaning, it is not possible to
measure them.

Consequently, it is desirable to be able to reconstruct the system states using
an algorithm, which is called an observer, because it observers (or mimics)
the system states. The concept of an observer is similar to that of a parameter
estimator with the crucial difference that, while the latter estimates parameters,
the former estimates states, i.e. an observer is a state estimator.

7.2.1 Identity observer

Because an observer it is required to provide estimates of the system states, the
simplest observer is just a copy (model) of the true system. Recalling the state-
space representation, see Subsection 3.2.2 and equations (3.19)-(3.20), means
that the observer is given by

x̂k+1 = Ax̂k + Buk, (7.1)

ŷk = Cx̂k, (7.2)

where a hat indicates that the state vector xk and the system output yk are
reconstructed (or estimated). For simplicity the feedforward term D and the
dependency of the matrices on the parameter vector are both omitted. By
inspecting the difference between the true state vector and that estimated via
observer, denoted x̃k = xk − x̂k, one obtains

x̃k+1 = xk+1 − x̂k+1 = Ax̃k, (7.3)

ỹk = yk − ŷk = Cx̃k. (7.4)

Assuming that the actual process is stable the state estimation difference de-
creases as time progresses, hence the observer output will eventually approach



the true output. However, this property holds only asymptotically and the speed
of convergence can be slow. In fact, in such a case the speed of convergence is
the same as the transient response of the actual system. The other major dis-
advantage of such an approach is that it requires the system model, i.e. the
matrices A, B and C, to be extremely accurate.

7.2.2 Luenberger observer

To increase the speed of convergence and to simultaneously allow for the exis-
tence of potential discrepancies between the actual plan and its model, the idea
of a feedback is incorporated into the observer. This allows the state estimates
to be corrected based on the mismatch between the output of the observer and
that of the actual process. The design procedure comprises of the selection of a
vector of gains

L =
[
l1 l2 . . . ln

]T
∈ R

n (7.5)

that will yield the desired transient performance of the observer, i.e.

x̂k+1 = Ax̂k + Buk + L(yk − ŷk), (7.6)

ŷk = Cx̂k. (7.7)

Note the agreement with the general formula for a recursive algorithm given by
equation (6.1) in Section 6.1. A comparison of the difference between the true
and the estimated state vector gives

x̃k+1 = Ax̃k − L(yk − ŷk), (7.8)

ỹk = yk − ŷk = Cx̃k. (7.9)

This leads to the following expression

x̃k+1 = (A− LC)x̃k, (7.10)

where the speed of convergence of x̃k to zero can be influenced by a choice of
the gain vector L. The first step in the procedure of choosing L is to form the
characteristic equation of the state estimation error, i.e.

det [qI − (A− LC)] = 0 (7.11)

and, the second step is to choose the eigenvalues to yield the desired transient
response. The eigenvalues are specified so that the observer is much faster than



the actual system (typically 5 to 10 times). The design of the observer can be
conveniently carried out using a system model described in an observer canonical
or in a phase variable form. Other state-space representations can lead to quite
complex calculations. Note, the incorporation of the feedback allows for some
degree of imprecision to be present in the matrices A and B but the matrix
C, because it appears in the feedback action, still has to be known accurately.
Fortunately, this condition is not difficult to satisfy as typically the elements of
the matrix C are chosen so that one of the states is the system output (Dutton
et al. 1997). The feedback observer described is called the Luenberger observer.

A possible refinement of the observer given by (7.6)-(7.7) is to remove the in-
herent delay, which is present because the state vector depends on the measure-
ments up to (and including) time instance k− 1 (Åström & Wittenmark 1997).
This undesired property is apparent if the observer equations are expressed more
precisely as follows

x̂k+1|k = Ax̂k|k−1 + Buk + L(yk − ŷk), (7.12)

ŷk = Cx̂k|k−1. (7.13)

The delay is removed by considering the following expression for the estimate
of the state vector, i.e.

x̂k|k = Ax̂k−1|k−1 + Buk−1 + L
[
yk − C(Ax̂k−1|k−1 + Buk−1)

]
(7.14)

= (I − LC)(Ax̂k−1|k−1 + Buk−1) + Lyk. (7.15)

The error corresponding to the reconstructed state vector is given by

x̃k|k = xk − x̂k|k = (A− LCA)x̃k−1|k−1, (7.16)

where, as previously, the transient of x̃k−1|k−1 is controlled by the choice of the
gain vector L. The output equation is given by

ŷk = Cx̂k|k. (7.17)

Notice that

yk − Cx̂k|k = Cx̃k|k = (1 − CL)CAx̃k−1|k−1 . (7.18)

If L is chosen such that CL = 1 then yk = Cx̂k|k and the system output is esti-
mated without any error. This observation also makes possible the elimination
of one state from (7.14) and the design of a so-called reduced order observer,
see (Dutton et al. 1997) for details.



7.2.3 Observability

In order to be able to design an observer the reconstructed states all need to be
observable. Loosely, this means that it must be feasible to infer the information
regarding the system states based on the input-output data. If any of the states
does not influence the system output then its value cannot be deduced from
observing the output. A formal definition of observability is as follows (Dutton
et al. 1997): a system is (completely) state observable if the initial value of the
state vector, i.e. x0, can be determined from the knowledge of uk and yk in
a finite time interval. The observability of the system representation can be
determined by considering the rank of the so-called observability matrix OM

defined as

OM =








C
CA

...
CAn−1







. (7.19)

If rankOM = n (or, equivalently, if detOM 6= 0) the system model is said to be
observable. Otherwise, the system model is unobservable, which implies that
it is not possible to reconstruct the system states. It is emphasised that the
observability property is related to a particular state-space representation and
not to the system itself. Therefore, whilst one state-space representation of a
given system may be observable, another (different) state-space representation
of the same system may not.

7.3 Kalman filter

7.3.1 Introduction

A drawback of the feedback observer described in the previous section is that
any potential noise on output measurements is ignored, i.e. the problem of
the system states reconstructing is posed in a completely deterministic manner.
Theoretically, as long as the system model is chosen to be sufficiently accurate,
the state vector and the output can be precisely predicted. However, in practice
this is not the case due to uncertainty in measurements (i.e. measurement noise)
as well as a presence of unknown inputs that enter the system, errors due to
discretisation, etc. (i.e. process noise). Consequently, in order to cope with
practical problems a stochastic framework has to be employed and the state



estimation needs to be considered by making use of statistical tools. These
considerations lead to the KF which is an optimal filter that minimises the
covariance matrix of the state estimation errors.

7.3.2 Derivation of KF

Consider the following modified state-space description of the actual process

xk+1 = Axk + Buk + Γvk, x0 = x̄0, (7.20)

yk = Cxk + ek, (7.21)

where x̄0 is the expected value of the initial state vector. Vector vk ∈ R
n is a

set zero-mean stationary noise sequences with covariance matrix Σv ∈ R
n×n,

ek is a zero-mean stationary noise signal of variance σ2
e and ξve ∈ R

n is the
covariance vector between vk and ek.

E

[[
vk
ek

]
[
vj ej

]
]

=

[
Σv ξve
ξTve σ2

e

]

, (7.22)

E[vk] = 0 and E[ek] = 0. (7.23)

Usually, it is also assumed that both vk and ek are white and mutually uncor-
related, which means that expression (7.22) simplifies to

E

[[
vk
ek

]
[
vj ej

]
]

=

[
Σvδkj 0

0 σ2
e

]

. (7.24)

Additionally, it is postulated that both vk and ek are uncorrelated with the
input uk.

The inclusion of noise sequences in the system state description means that
the internal system behaviour can be considered to be uncertain with all the non-
deterministic components collectively represented by a random vector vk. This
allows the introduction of some degree of flexibility into the model. Note that
the vector vk enters states directly and it is distributed via the matrix Γ ∈ R

n×n.
The output is considered to be also uncertain, which is accounted by the addition
of a random scalar ek. Because vk is added to states of a process/system it is
typically referred to as a process noise. Similarly, because ek is added to the
measured system output it is usually referred to as a measurement noise.

Discarding the input, the evolution of the state vector is given by

xk+1 = Axk + Γvk, (7.25)



which in the case of A = Γ = I is called a multivariable random walk; when
Γ = I it corresponds to a Markov process. If Γ = I and additionally vk is
Gaussian this leads to a multivariable Gauss-Markov process.

Assuming that one has uk, yk as well as the model of the process, the task
consists of reconstructing optimally the system state vector xk, such that the
undesired effects of process and measurement noise are both minimised. Con-
sider the estimated state vector without a delay that was developed in the case
of the Luenberger observer, i.e. equation (7.14). The estimation error x̃k in the
case of the system (7.20)-(7.21) is given by

x̃k|k = Axk−1 + Buk−1 + Γvk−1 − (I − LC)(Ax̂k−1|k−1 + Buk−1) − Lyk.
(7.26)

The optimally condition considered is expressed in terms of the minimisation of
the estimation error x̃k = x̃k|k. This is achieved by forming the following cost
function

Vk = E[x̃kx̃
T
k ] = Pk, (7.27)

and by choosing L appropriately so that the resulting observer is a minimum
variance estimator of the actual state vector. The following derivation is based
on that presented in (Dutton et al. 1997)

Equation (7.26) can be transformed by the inclusion of (7.21) to

x̃k = Axk−1 + Buk−1 + Γvk−1 − (I − LC)(Ax̂k−1|k−1 + Buk−1)

− L(Cxk + ek)

= Axk−1 + Buk−1 + Γvk−1 − (I − LC)(Ax̂k−1|k−1 + Buk−1)

− L [C(Axk−1 + Buk−1 + Γvk−1) + ek] , (7.28)

which can be simplified yielding

x̃k = Ax̃k−1 − LCAx̃k−1 + Γvk−1 − LCΓvk−1 − Lek

= FAx̃k−1 + FΓvk−1 − Lek (7.29)

with F = I − LC. Recall that the task consists of selecting the gain vector L
such that (7.27) is minimised. The product x̃kx̃

T
k can now be written as

x̃kx̃
T
k = (FAx̃k−1 + FΓvk−1 − Lek) (FAx̃k−1 + FΓvk−1 − Lek)T

= FAx̃k−1x̃
T
k−1A

TFT + FAx̃k−1v
T
k−1ΓTFT − FAx̃k−1ekL

T

+ FΓvk−1x̃
T
k−1A

TFT + FΓvk−1v
T
k−1ΓTFT − FΓvk−1ekL

T

− Lekx̃
T
k−1A

TFT − Lekv
T
k−1ΓTFT + LekekL

T . (7.30)



By taking the expectation of (7.30) one obtains the KF cost function (7.27), i.e.

Pk = E[FAx̃k−1x̃
T
k−1A

TFT ] + E[FAx̃k−1v
T
k−1ΓTFT ] − E[FAx̃k−1ekL

T ]

+ E[FΓvk−1x̃
T
k−1A

TFT ] + E[FΓvk−1v
T
k−1ΓTFT ] − E[FΓvk−1ekL

T ]

− E[Lekx̃
T
k−1A

TFT ] − E[Lekv
T
k−1ΓTFT ] + E[LekekL

T ]. (7.31)

Subsequently, by utilising the assumptions regarding the uncorrelated nature of
the noise sequences vk and ek, cf. (7.24), equation (7.31) is greatly simplified to

Pk = FAE[x̃k−1x̃
T
k−1]ATFT + FΓE[vk−1v

T
k−1]ΓTFT + LE[ekek]LT

= FAPk−1A
TFT + FΓΣvΓTFT + σ2

eLL
T

= F (APk−1A
T + ΓΣvΓT )FT + σ2

eLL
T . (7.32)

By introducing an auxiliary variable P̆k−1, i.e.

P̆k−1 = APk−1A
T + ΓΣvΓT (7.33)

equation (7.32) is expressed as follows

Pk = LCP̆k−1C
TLT + σ2

eLL
T − P̆k−1C

TLT − LCP̆k−1 + P̆k−1

= L(CP̆k−1C
T + σ2

e)LT − P̆k−1C
TLT − LCP̆k−1 + P̆k−1. (7.34)

Equation (7.34) is the so-called Riccati equation and it is analogous to a quadratic
equation in a scalar case. As a consequence, the value of L which minimises
(7.34) is found by completing squares of terms containing L. It is desired to
re-express (7.34) so that it will have the following structure

Pk = (L−M)G(L−M)T −MGMT + P̆k−1

= LGLT −MGLT − LGMT + P̆k−1, (7.35)

where M and G are auxiliary variables of appropriate dimension yet to be deter-
mined. Note that the minimum of expression (7.35) is found simply by setting
L = M . By comparing equations (7.35) and (7.34) the following equalities arise,
i.e.

G = CP̆k−1C
T + σ2

e , (7.36)

P̆k−1C
T = MG, (7.37)

CP̆k−1 = GMT . (7.38)



It is noted that because G and P̆k−1 are both symmetric, the two last equations
are transposes of each other and the condition that P̆k−1C

T = MG can be used
to find M by substituting (7.36), i.e.

M = P̆k−1C
TG−1 = P̆k−1C

T (CP̆k−1C
T + σ2

e)−1. (7.39)

Consequently, the minimum of the covariance matrix Pk is obtained with a gain
vector L = M , i.e. L is the optimal gain, which is called the Kalman gain.
Because L varies with time, it is denoted with a discrete-time subscript k, i.e.
Lk. Substituting (7.39) into (7.35) gives

Pk = −LkGLT
k + P̆k−1 = −Lk(CP̆k−1C

T + σ2
e)LT

k + P̆k−1, (7.40)

which by noting from (7.39) that

Lk(CP̆k−1C
T + σ2

e) = P̆k−1C
T (7.41)

is simplified to

Pk = −P̆k−1C
TLT

k + P̆k−1 = P̆k−1(I − CTLT
k ) = (I − LkC)P̆k−1. (7.42)

The last equality in (7.42) follows from the fact that Pk is symmetric.
Collecting all equations the overall KF algorithm is given by the following

recursion:

P̆k−1 = APk−1A
T + ΓΣvΓT , (7.43)

Lk = P̆k−1C
T (CP̆k−1C

T + σ2
e)−1, (7.44)

x̂k|k = (I − LkC)(Ax̂k−1|k−1 + Buk−1) + Lkyk, (7.45)

Pk = (I − LkC)P̆k−1. (7.46)

The KF given by equations (7.43)-(7.46) can be expressed more conveniently by
noting that the matrix P̆k−1 is the a priori error covariance matrix, i.e. it is the
covariance matrix of x̃k|k−1 = xk − x̂k|k−1, where x̂k|k−1 is the state estimate
predicted based upon data up to k−1. Because E[vk] = 0, the best prediction of
xk given data up to k−1 is obtained from the state equation by simply ignoring
the contribution of the process noise, i.e.

x̂k|k−1 = Ax̂k−1|k−1 + Buk−1. (7.47)

Consequently

x̃k|k−1 = xk − x̂k|k−1 = Axk−1 + Buk−1 + Γvk−1 −Ax̂k−1|k−1 −Buk−1

= Ax̃k−1 + Γvk−1, (7.48)



which, due to the postulated lack of correlation between vk and ek, leads to

Pk|k−1 = E[x̃k|k−1x̃
T
k|k−1] = AE[x̃k−1x̃

T
k−1]AT + AE[x̃k−1v

T
k−1]ΓT

+ ΓE[vk−1x̃
T
k−1]AT + ΓE[vk−1v

T
k−1]ΓT

= APk−1|k−1A + ΓΣvΓT

= P̆k−1. (7.49)

Substituting Pk|k−1 for P̆k−1 and separating equations into a prediction step
(using data only up to k − 1) and a subsequent correction step (inclusion of
data at k via yk) the KF algorithm can be alternatively expressed in the follow-
ing two step procedure:

Prediction step:

x̂k|k−1 = Ax̂k−1|k−1 + Buk−1, (7.50)

Pk|k−1 = APk−1|k−1A
T + ΓΣvΓT . (7.51)

Correction step:

Lk = Pk|k−1C
T (CPk|k−1C

T + σ2
e)−1, (7.52)

x̂k|k = x̂k|k−1 + Lk(yk − Cx̂k|k−1), (7.53)

Pk|k = (I − LkC)Pk|k−1. (7.54)

Note the agreement with the formula of a general recursive method defined by
equation (6.1) in Section 6.1. The a priori one-step ahead predicted output
yielded by the KF (in fact, present in equation (7.53)) is given by

ŷk|k−1 = Cx̂k|k−1. (7.55)

The a posteriori estimate of the system output is obtained from

ŷk|k = Cx̂k|k, (7.56)

i.e. after x̂k|k in equation (7.53) has been calculated.

7.4 KF tuned for parameter estimation

The structure of the KF is similar to that of the RLS algorithm given by equa-
tions (6.23)-(6.25) in Section 6.2. In fact, the RLS can be interpreted as a



special case of the KF, where the parameters to be estimated are treated as
system states, i.e. xk = θk. The KF tuned for parameter estimation, denoted
KFPE, is obtained by considering the regression equation written in a state-
space form, i.e.

θk = θk−1, (7.57)

yk = ϕT
k θk, (7.58)

where

A = I, (7.59)

B = 0, (7.60)

C = ϕT
k , (7.61)

Γ = 0. (7.62)

The KF tuned for parameter estimation is obtained by modifying equations
(7.50)-(7.54) as follows:

Prediction step:

θ̂k|k−1 = θ̂k−1|k−1, (7.63)

Pk|k−1 = Pk−1|k−1. (7.64)

Correction step:

Lk = Pk|k−1ϕk(ϕT
k Pk|k−1ϕk + σ2

e)−1, (7.65)

θ̂k|k = θ̂k|k−1 + Lk(yk − ϕT
k θ̂k|k−1), (7.66)

Pk|k = (I − Lkϕ
T
k )Pk|k−1. (7.67)

By comparing the above KFPE algorithm with the RLS, cf. (6.23)-(6.25) in
Section 6.2, it is observed that the two approach are, in fact, identical. Fur-
thermore, if the estimated parameters, as for states, are treated as potentially
time-varying according to a random walk:

θk = θk−1 + vk (7.68)

with Γ = I, the second equation in the prediction step, i.e. (7.64), will change
to

Pk|k−1 = Pk−1|k−1 + Σv. (7.69)



7.5 Stationary KF

If the system is time-invariant, i.e. matrices A, B and C are constant, the noise
sequences vk and ek are stationary and the pair (C,A) is detectable1 then, it
can be shown, that the covariance matrix Pk−1|k−1 tends to a constant value as
k → ∞, see (Walter & Pronzato 1997). Introduce

P = lim
k→∞

Pk−1|k−1, (7.70)

P+ = lim
k→∞

Pk|k−1. (7.71)

Consequently, Lk also tends to a constant value L, see (7.52), i.e.

L = lim
k→∞

Lk = P+CT (CP+CT + σ2
e)−1. (7.72)

The matrix P+ can be obtained by recalling equation (7.51)

P+ = APAT + ΓΣvΓT , (7.73)

which combined with equations (7.52) and (7.54) yields

P = P+ − P+CT (CP+CT + σ2
e)−1CP+. (7.74)

Then, by, first, pre-multiplying (7.74) by A and, second, by post-multiplying by
AT one obtains the Riccati equation, i.e.

P+ = AP+AT −AP+CT (CP+CT + σ2
e)−1CP+AT + ΓΣvΓT , (7.75)

where equation (7.73) was also used. Finally, the matrix P+ can be calculated
either by i) determining the positive definite solution of the Riccati equation
(7.75) or by ii) iterating the evolution of the covariance matrix P+ until it
becomes constant (Walter & Pronzato 1997).

To summarise, the stationary (or steady-state) KF, denoted SKF, is given
by

x̂k+1|k+1 = Ax̂k|k + Buk + L(yk − ŷk), (7.76)

ŷk = Cx̂k|k, (7.77)

where L is obtained from expression (7.72).

1The system is detectable if all of its unobservable modes are stable. This is a slightly
weaker assumption than the observability.



7.6 Innovations form and directly parametris-

able representation

An alternative form for the state-space equations of the SKF is the so-called
innovations representation, see (Ljung 1999). Consider equations of the SKF,
i.e. (7.76)-(7.77), where the prediction error is given by

yk − Cx̂k|k = C(xk − x̂k|k) + ek. (7.78)

The prediction error can be interpreted as the part of the system output, that
cannot be predicted from past data (i.e. past outputs and present and past
inputs), hence the name - the innovation sequence. By denoting the innovation
sequence by ǫk, i.e.

ǫk = yk − Cx̂k|k, (7.79)

the equations of the SKF can be expressed as

x̂k+1|k+1 = Ax̂k|k + Buk + Lǫk, (7.80)

yk = Cx̂k|k + ǫk. (7.81)

Note that the innovations sequence appears explicitly in both equations. More-
over, by utilising the properties of the forward shift operator q, expressions
(7.80)-(7.81) can be re-written in transfer function form, see (Ljung 1999), as
follows

yk = G(q)uk + H(q)ǫk, (7.82)

where

G(q) = C (qI −A)−1 B, (7.83)

H(q) = C (qI −A)
−1

L + 1. (7.84)

In Section 7.5, it has been shown that the Kalman gain L can be calculated
in two ways, both, however, involving rather complicated expressions. Alter-
natively, use of the innovations representation can be made by parametrising
the Kalman gain in terms of the model parameter vector θ. This simplifies
the task of determining L greatly and leads to a so-called directly parametrised
innovations form. As an example, see (Ljung 1999), consider the following



system in an observer canonical form, where for simplicity it is assumed that
na = nb = nc = n, i.e.

A =








−a1 1 0 . . . 0
−a2 0 1 . . . 0

...
...

...
. . .

...
−an 0 0 . . . 0







, B =








b1
b2
...
bn







, C =

[
1 0 . . . 0

]
. (7.85)

The Kalman gain L is defined by

L =
[
l1 l2 . . . ln

]T
. (7.86)

By utilising expressions (7.83)-(7.84) it can be deduced that the parameters
contained in L are given by

li = ci − ai, (7.87)

where ci are the coefficients of the C(q−1) polynomial of an ARMAX system.
Consequently, the vector

L =
[
c1 − a1 c2 − a2 . . . cn − an

]T
(7.88)

is the gain of the SKF for the ARMAX model structure in the case of a directly
parametrised innovations form.

7.7 Extended KF

The KF relies on the assumption that the underlying set of equations describing
the system is linear. However, in most practical applications the system (hence
its model) is nonlinear, which makes the direct application of the KF infeasible.
To cope with this problem an extension of the KF for nonlinear systems, called
the EKF, has been developed. The fundamental idea of the EKF is to linearise
the nonlinear set of equations at instantaneous operating point providing a
linearised model of the nonlinear system. Therefore, the EKF can be considered
a tool for solving a nonlinear set of inconsistent stochastic equations.

The following state-space description of a nonlinear system is considered

zk+1 = F(zk, uk) + Γ̄v̄k, z0 = z̄0, (7.89)

yk = H(zk) + ek, (7.90)



where zk denotes the extended state vector and z̄0 its expected initial value.
Assumptions regarding the noise sequences v̄k and ek are the same as those
for the KF case, see equations (7.22)-(7.23) in Subsection 7.3.2. The nonlinear
functions describing transition of states and the output are denoted by F(·)
and H(·), respectively, and it is postulated that both are differentiable. Note,
that since F(·) and H(·) are nonlinear, in general, the KF can not be used
directly. However, both functions can be replaced by their corresponding first
order Taylor series expansions around current working point. This yields a
linearised version of the original system for which the KF can be applied. A
first order approximation of F(·) around ẑk−1|k−1 is given by

F(zk−1, uk−1) ≈ F(ẑk−1|k−1, uk−1) + F∗
k−1(zk−1 − ẑk−1|k−1), (7.91)

where the Jacobian matrix is defined by

F∗
k−1 =

∂F(zk−1, uk−1)

∂zk−1

∣
∣
∣
ẑk−1|k−1

. (7.92)

Similarly, a first order approximation of H(·) around ẑk|k−1 is given by

H(zk) ≈ H(ẑk|k−1) + H∗
k(zk − ẑk|k−1), (7.93)

where the Jacobian matrix is defined by

H∗
k =

∂H(zk)

∂zk

∣
∣
∣
ẑk|k−1

. (7.94)

Consequently, the approximate linearised state-space system is given by

zk+1 = F∗
kzk + F(ẑk|k, uk) −F∗

k ẑk|k + Γ̄v̄k, z0 = z̄0, (7.95)

yk = H∗
kzk + H(ẑk|k−1) −H∗

kẑk|k−1 + ek. (7.96)

Since equations (7.95) and (7.96) are now linear in zk the KF can be used. The
overall EKF algorithm is summarised as follows:

Prediction step:

ẑk|k−1 = F(ẑk−1|k−1, uk−1), (7.97)

Pk|k−1 = F∗
k−1Pk−1|k−1F

∗T
k−1 + Γ̄ΣvΓ̄T . (7.98)



Correction step:

Lk = Pk|k−1H
∗T
k (H∗

kPk|k−1H
∗T
k + σ2

e)−1, (7.99)

ẑk|k = ẑk|k−1 + Lk[yk −H(ẑk|k−1)], (7.100)

Pk|k = (I − LkH
∗
k)Pk|k−1, (7.101)

where the Jacobians of F(zk−1, uk−1) and H(zk) are given by equations (7.92)
and (7.94), respectively.

Note that the structure of the EKF is very similar to that of the KF with
the crucial differences that nonlinear functions describing state transition and
system output are replaced by their corresponding Jacobian matrices calculated
at a current operating point in equations (7.98), (7.99) and (7.101). In equation
(7.97) the original nonlinear state equation F(·) is utilised to calculate the a
priori prediction of the extended state vector and in equation (7.100) the non-
linear output equation H(·) is used to compute the one-step ahead prediction
of the system output.

Unlike the KF, the EKF is no longer an optimal filter and in general it is
considerably more difficult to tune. The EKF can also diverge if the initial values
are not selected with care. Moreover, since the EKF relies on the linearisation
of the nonlinear system, it only represents the actual system reliably within
a small locality around the linearisation point. Therefore, if the sampling is
too slow or/and the process dynamics is fast, the validity of the linearisation is
restricted and the EKF can exhibit problems with tracking.

7.8 Extended KF for joint parameter and state

estimation

The EKF introduced in the previous section can be used to estimate the state
and parameter vectors of a linear system in a joint fashion. The necessity for
using the EKF and not simply the KF is that if both, i.e. xk and θk, are treated
as unknown, the overall estimation problem becomes nonlinear with respect to
the new extended parameter vector regardless of the fact that the underlying
system is, in fact, linear. This is because of the products of the state transition
matrix A(θk) and the output vector C(θk), which both are constructed from the
elements of θk, with the state vector xk, i.e.

xk+1 = A(θk)xk + B(θk)uk + Γvk, x0 = x̄0, (7.102)

yk = C(θk)xk + ek. (7.103)



The extended parameter vector zk is in this case given by

zk =

[
xk

θk

]

∈ R
n+nθ . (7.104)

The state-space description (7.102)-(7.103) can be added to with an additional
equation describing the (random walk) evolution of the parameter vector, i.e.

θk+1 = θk + qk (7.105)

where qk ∈ R
nθ is a vector consisting of serially uncorrelated random variables

of zero mean, i.e. E[qk] = 0 and E[qkqj ] = Σqδkj . This leads to the extended
state-space form, i.e.

zk+1 = F(zk, uk) + Γ̄v̄k, (7.106)

yk = H(zk) + ek, (7.107)

where

F(zk, uk) =

[
A(θk)xk + B(θk)uk

θk

]

, Γ̄ =

[
Γ 0
0 I

]

, (7.108)

H(zk) = C(θk)xk, v̄k =

[
vk
qk

]

. (7.109)

This satisfies the general nonlinear state-space description defined by expres-
sions (7.89)-(7.90). Consequently, the EKF tuned for joint state and parameter
estimation uses the model where ẑk|k is substituted for zk in the parametrisa-
tion of functions F(zk, uk) and H(zk). The corresponding Jacobian matrices
are calculated as follows

F∗
k−1 =

[

A(θ̂k−1|k−1) R1

0 I

]

, (7.110)

H∗
k =

[

C(θ̂k|k−1) R2

]
(7.111)

and

R1 =
∂ [A(θk)xk + B(θk)uk]

∂θk

∣
∣
∣
ẑk−1|k−1

, (7.112)

R2 =
∂ [C(θk)xk]

∂θk

∣
∣
∣
ẑk|k−1

. (7.113)



The initial values for the estimation can be chosen as

ẑ0|0 =

[
0

θ̂0

]

, P0|0 =

[
P1 0
0 P2

]

, (7.114)

where P1 and P2 reflects the prior confidence in the initial values set for the
state and parameter vector, respectively.

As alternative to the EKF for joint state and parameter estimation, denoted
JEKF, it is possible to use a parameter estimation method cross-coupled with
a state estimation algorithm. For example, the following combinations can be
considered:

• RLS & SKF

• RLS & KF

• KFPE & SKF

• KFPE & KF

The cross-coupled or tandem methods of parameter and state estimation are
typically easier to tune compared to the JEKF. However, the JEKF provides a
more elegant solution, because both state and parameter vector are estimated
together by a single algorithm.

Questions

• Explain the notion of an observer.

• Discuss the practical motivations for using observers.

• Explain the concept of an identity observer. Discuss disadvantages of such
an approach.

• Explain the idea of incorporating feedback into an observer. Discuss ad-
vantages and disadvantages of such an approach.

• Explain what is meant by the observability property.

• Discuss the optimality properties of the KF.

• Explain how to obtain the KFPE from the KF algorithm.

• Discuss the idea of the SKF.

• Comment on the link between the Riccati equation and the KF, SKF and
a directly parametrisable innovation representation.



• Explain the advantages and disadvantages of using the KF, SKF and a
directly parametrisable innovation representation.

• Explain the motivation for using the EKF. Discuss the drawbacks and
advantages.

• Explain how the EKF can be used for joint state and parameter estimation.
Why is there a need to use the EKF and not the KF?

• Are there any other alternatives to the EKF for joint state and parameter
estimation?





Chapter 8

Summary and concluding
remarks

This text aimed at providing a sound introductory basis to the subject of system
identification and filtering. In Chapter 1 the concept of system identification
was divided into several stages. The various stages have been discussed and
diagrammatically depicted in terms of an iterative procedure.

Subsequently, in Chapter 2, three modelling methodologies, i.e. white-box,
grey-box and black-box have been introduced and their corresponding advan-
tages and disadvantages have been discussed. A treatment of disturbances on
measured signals has been addressed and a distinction between the classical, i.e.
control, framework and the EIV framework has been made.

In Chapter 3 several important properties of system models supported by
examples have been introduced and discussed. Distinctions have been made be-
tween: linear and nonlinear, dynamic and static, LTI and LTV, continuous-time
and discrete-time models. Different representations of linear models for both
discrete-time and continuous-time have been introduced and the relationships
between them have been highlighted. Different linear model structures have
been analysed and the concept of a one-step ahead optimal predictor has been
introduced. The chapter ends with a description of frequently adopted nonlin-
ear system structures such as Wiener and Hammerstein models, bilinear system
models and the NARX class of models.

Chapter 4 has addressed the estimation problem of low order, i.e. first
and second order, continuous-time models directly from step response tests. In
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the case of second order models the notion of underdamped and overdamped
responses have been considered.

In Chapter 5 the method of LS has been introduced with an aid of a simple
example. Subsequently, it has been demonstrated for the general case of linear
static models. Properties of LS estimates such as bias and consistency have
been analysed thoroughly and a geometrical interpretation of the LS method
has been explained. The chapter ends with a discussion on the application of
the LS estimation method to linear dynamic models.

Chapter 6 provides an introduction to recursive estimation algorithms where
the emphasis has been placed on the RLS technique. First, a general diagram-
matic structure of a recursive method has been described, which is followed by
a derivation of the RLS algorithm. Issues involved with initialisation of RLS
have been discussed and a distinction between one-step ahead prediction and
system simulation has been explained. Subsequently, modifications of the stan-
dard RLS algorithm for the purpose of coping with LTV models as well as for the
purpose of covariance matrix management have been introduced. Also the no-
tion of estimator memory has been considered. Furthermore, a modification of
RLS incorporating an inherent mechanism for tracking time-varying parameters
leading to the KFPE has been described.

Chapter 7 has dealt with the problem of state estimation and filtering. The
concept of a state observer has been introduced. The Luenberger observer
and the identity observer have then been described together with the notion
of system observability. This has formed the basis for a derivation of the KF
algorithm. Subsequently, the KF has been configured and tuned for parameter
estimation. SKF and a directly parametrisable innovation representation have
been discussed. Finally the chapter ends with an introduction to the EKF,
which has been demonstrated to be applicable for joint state and parameter
estimation.
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