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Preface 

 

   A common feature in mathematical formulations of mechanical behavior of solid 

material is an explicit assumption of that the material is homogeneous within itself. 

Apparently, in real materials, given their discrete structure, the presence of 

heterogeneities and discontinuities is evident at the level of grain clusters and/or 

microcracks. In this context, the postulate of homogeneity must be understood in a 

broader, more abstract sense and should be applied only with respect to the natural scale 

of observation. 

 

   The homogeneity of material is understood in a statistical sense; i.e., in a homogeneous 

system the local arrangement of grains/microcracks is said to be invariant with respect to 

translation. In other words, the mechanical as well as geometric properties of grain 

clusters/microckracks, are independent of position relative to the chosen frame of 

reference. 

 

   For materials that in the actual scale of observation may be considered as statistically 

homogeneous, it seems natural to employ smoothing techniques to develop descriptions 

that are similar to those used for homogeneous continua. Indeed, the existing 

experimental data indicates that for a material containing a large number of 

heterogeneities, the response at the macro-level is virtually the same, in an average sense, 

as that of a homogeneous body. Thus, in order to solve a boundary value problem 

formulated for a material with a sufficiently large number of inhomogeneities, the notion 

of ‘equivalent’ continuum is introduced whose average macroscopic response is 

synonymous with that of the original material. In other words, from an engineering 

perspective, the material is considered to be homogeneous on the macro-scale. In civil 

engineering, this approximation forms the basis of vast majority of numerical approaches 

employed in engineering practice. 

 

   The primary objective of the homogenization method is to define for a given 

heterogeneous medium, which possesses the property of statistical homogeneity, an 
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‘equivalent’ homogeneous material that has the same ‘average’ properties. In other 

words, the homogenization approach is aimed at establishing an equivalent macroscopic 

description of a given physical process based on the description of the same phenomenon 

at the level of micro-inhomegeneities.  

 

   There are two distinct approaches in formulating the homogenization problem (e.g. 

Refs. [1,2]). The first methodology incorporates the notion of representative volume 

element (RVE) and is based on volume averaging of the basic field variables. As a result, 

the fields that are strongly discontinuous at the level of inhomogeneities undergo 

‘smoothing’ through the process of volume averaging. Thus, this approach is often 

referred to as a smoothing method or a micromechanics. The other methodology is 

known as the mathematical theory of homogenization. In this case, the mathematical 

transition from micro- to macro-level is accomplished by introducing a scale parameter 

0ε > , which is associated with a characteristic dimension of inhomogeneity (i.e. average 

pore size), and imposing the requirement of 0ε → . The formulation that is obtained in 

the limit corresponds to the macroscopic description for an equivalent homogeneous 

continuum. 

 

   In this book, the basic principles of homogenization technique are reviewed with 

emphasis on application to problems related to civil engineering. In order to distinguish 

between different scales employed, the description developed at the level of 

inhomogeneities is referred to as microscopic, while that corresponding to equivalent 

continuum is termed as macroscopic. Similarly, the physical field variables employed at 

the micro-level are referred to as micro-fields, while those at the equivalent continuum 

level as macro-fields (e.g. micro-stress/strain vs. macro-stress/strain tensors, etc.). 

Special attention is paid on the methods of effective properties estimation. Two different 

approaches are presented, i.e. methods based on a single inclusion solution called as 

analytical methods and numerical estimation of effective properties from a digital image 

of microstructure. 

 

   Throughout the book an index notation with Einstein convention is used that the 

repeated indices indicates summation from 1 to 3. An example of the notation used is 

presented below: 

 1 1 2 2 3 3i ix e x e x e x e= + +  

 

1 1 2 2 3 3

11 11 12 12 13 13

21 21 22 22 23 23

31 31 32 32 33 33

        

        

        

ij ij j j j j j j
σ ε σ ε σ ε σ ε

σ ε σ ε σ ε

σ ε σ ε σ ε

σ ε σ ε σ ε

= + + =

= + + +

+ + + +

+ + +
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CHAPTER 1  
__________________________________________________________________________________ 

 

 

Micro-Macro Passage 
 

 

 

 

 

 

 

 

 

The basic assumption in the homogenization approach that is perceived as a smoothing 

method, is the postulate of the existence of a representative volume element (RVE). The 

latter is defined as the smallest volume that contains all the essential information required 

to describe the structure and properties of the material on the macro-scale [3].  

 

   In order to take into account the statistical nature of the microstructure of random 

heterogeneous media, RVE must be large enough to be statistically representative, i.e. it 

must include all elements of a microstuctural arrangement. This implies that RVE should 

contain a sufficiently large number of inhomogeneities, such as grains, inclusions, voids, 

microcracks, etc. [4]. At the same time, RVE must be small compared to entire volume of 

the considered material so that the equivalent medium may be defined as macroscopically 

homogeneous. 

 

      The transition from micro to macro-scale is based on the averaging operation. If ( )u Y  

is the considered physical field in micro-description, then the associated macro-field is 

represented by its average over RVE, i.e. 

   
 

RVE

( ) ( ) ( )
V

u X u Y m Y X dV= −∫  (1.1) 

 
In eq. (1.1) two sets of coordinates are engaged;  ( )1 2 3, ,X x x x=  - defining the location 

of the centroid of RVE and ( )1 2 3, ,Y y y y=  specifying the position of a material point 

within RVE. Clearly, both these spatial coordinates X  and Y  describe the same 
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geometric domain (Fig.1.1). Furthermore, ( )m Y  is a weight function and integration is 

carried over the elementary volume RVEV . 

 
 

Fig.1.1. Schematic view at averaging process 

 

 

   In physical terms, the averaging (1.1) implies that to each material point X  (i.e. 

centroid of RVE) a physical field is attributed that represents the average, with weight 

( )m Y , of the original micro-field. If the material contains a number of phases, e.g. solid 

skeleton with voids filled with a fluid, as a result of averaging a hypothetical equivalent 

continuum is created that has a homogeneous structure, i.e. each point contains all phases 

simultaneously (Fig. 1.2). Furthermore, it is clear from (1.1) that in the smoothing 

process two families of variables are employed, i.e. macroscopic variables u  describing 

the equivalent continuum and the microscopic variables ( )u Y  that define the state within 

RVE.  

   The weight function ( )m Y must be selected in such a way that all macroscopic variables 

have a clear physical significance, i.e. they are measurable from experiments conducted 

at the macro-scale. Note that if the weight function is a constant and has the value equal 

to RVE1/V , then the macro-variable is identified with the volume average of the 

corresponding micro-field. In case of density, for example, such an average is physically 

justified. However, when the stress field is concerned, the macroscopic variable should 

represent the force per unit area, so that it should be taken as the average of microstress 

per unit area. Similar situation arises in case of fluid flow through porous media. Here, 

the macroscopic variable should represent the flux, i.e. the averaging should be 

conducted over the area. 

X 

X+dX 

dX 

 

X 

X 

Y 

Y-X 

Y 
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Fig.1.2. Schematic of a smoothing method 

 

 

   The micro-macro transition, i.e. development of a macroscopic description from that at 

the micro-level, consists of transforming the latter, through appropriate averaging 

procedure, into a framework in which only the macroscopic variables are employed. In 

what follows, two basic smoothing techniques are reviewed. The first one is typically 

applied to analysis of flow in porous media, while the second one is representative of 
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problems involving specification of equivalent mechanical properties of heterogeneous 

media. 

 

 

1.1 Methods of weight and volume averaging 
 

   In mechanics of multiphase media, the most commonly used smoothing techniques are 

the weight and volume averaging (see Refs. [5-8]). Let us examine first the weight 

averaging approach, as the other one is a particular case of it. 

 

 

x
1

y
1

x
2

y
2

x
3
y
3

X

D(0)

y

D(0)

.y

ΓΓΓΓ

m(y)

D(X)αβαβαβαβ

 
 

Fig.1.3. Change of the observation scale by the spatial  
convolution with a weight function m(y) 

 

 

   Let ( )m Y be a positive even function, with compact support in D(0), such that (Fig. 1.3) 

 ( )
(0)

1
D

m Y dV =∫  (1.2) 

By definition, the macroscopic quantity gα  associated with a given microscopic field 

( )g Yα  is the convolution with respect to the spatial variable 

 

 ( )
( )

( ) ( ) ( )
D X

m g g h Y g Y m Y X dVα α α α∗ = = −∫  (1.3) 
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where ( )h Yα is a characteristic function for the phase α , occupying the volume 

REVV Vα ⊂ , defined as 

 
1 for

( )
0 for

Y V
h Y

Y V

αα

α

∈
= 

∉
 (1.4) 

 

The transformation laws governing the ‘micro-macro’ transition are the consequence of 

definition (1.2) and the standard rules of differentiation. The derivation, in case of a two-

phase medium, is provided below. 

 

   Consider a medium containing two distinct phases α  and β , whose distribution is 

defined by the characteristic functions ( ), ( )h Y h Yα β . Denote by ( )Yψ  the microscopic 

variable to be transformed to macro-level and assume that 

 

 ( )
( )
( )

 h Y  
Y

h Y

α α

β β

ψ ψ
ψ

ψ ψ

 =
= 

=
 (1.5) 

According to definition (1.3) 
 

 
( )

( )
i i iD X

m h h m Y X dV
y y y

α β
α βψ ψ ψ   ∂ ∂ ∂

∗ = + −  
∂ ∂ ∂   

∫  (1.6) 

 
The right-hand side of eq.(1.6) may be expressed as 

 

 

( )
( )

( ) ( )
( )

{ }
( )

( )

i iD X

i iD X

iD X

h h m Y X dV
y y

m Y X m Y X
h h

y y

m Y X
h h dV

y

α β
α β

α β
α β

α α β β

ψ ψ

ψ ψ

ψ ψ

 ∂ ∂
+ − 

∂ ∂ 

 ∂ − ∂ − 
= + 

∂ ∂  

∂ −
− +

∂

∫

∫

∫

 (1.7) 

 
Applying now Green’s theorem to the first of the integrals on the right-hand side of (1.7) 

leads to 
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( )
( )

( ) ( )

( )

{ }
( )

( )

i iD X

i i

A A

i

iD X

h h m Y X dV
y y

m Y X n dS m Y X n dS

m Y X n dS

m Y X
h h dV

y

α β
α β

α α β β

α β

α β αβ

αβ

α α β β

ψ ψ

ψ ψ

ψ ψ

ψ ψ

Γ

 ∂ ∂
+ − 

∂ ∂ 

= − + − +

 + − − − 

∂ −
− +

∂

∫

∫ ∫

∫

∫

 (1.8) 

 
The geometric parameters employed in (1.8) above, are schematically shown in Fig. 1.4a. 

In particular: ,A Aα β  are the boundaries of the region ( )D X that belong to individual 

phases α  and β , respectively; αβΓ  is the interphase boundary; ,i in n
α β  are the unit 

vectors normal to ,A Aα β , respectively, and 
in
αβ  is the unit normal to the interphase 

boundary. Note that the latter, i.e.  
in
αβ , is directed towards the phase β .  

 

   The integrals over ,A Aα β  are both identically zero. This is because the weight function 

( )m Y X−  has compact support in D(0), so that ( ) 0m Y X− =  for all points that belong to 

Aα  and Aβ . Thus, in view of  (1.6) and (1.8), the following rule applies 

 

 

( )

{ }
( )

( )

i

i Γ

iD X

m m Y X n dS
y

m Y X
h h dV

y

α β αβ

αβ

α α β β

ψ
ψ ψ

ψ ψ

 ∂
 ∗ = − −   ∂ 

∂ −
− +

∂

∫

∫
 (1.9) 

 
 
   Let us define now the partial derivative of  m ψ∗  with respect to the macroscopic 

spatial variable ix . Again, according to the definition (1.3), there is 

 ( ) { } ( )
( )i i D X

m h h m Y X dV
x x

α α β βψ ψ ψ
∂ ∂

∗ = + −
∂ ∂ ∫  (1.10) 

 

In this case, the partial derivative of volume integral over a variable domain needs to be 

evaluated; i.e. as X X dX→ +  the domain ( )D X  moves to a neighboring ( )D X dX+ , 

Fig. 1.4b. Such a derivative is defined as (see Ref.[9]) 
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Fig.1.4. Representative elementary volume of two-phase medium considered (a),  
geometrical interpretation of partial macroscopic space derivative (b),  

geometrical interpretation of partial time derivative (c) 
 
 

( ) { } ( )
( )

{ } ( )
( )

0

1
lim

ddxi
i i D X dX

D X

m h h m Y X dV
x x

h h m Y X dV

α α β β

α α β β

ψ ψ ψ

ψ ψ

→
+

∂ 
∗ = + −

∂ 


− + − 



∫

∫

 (1.11) 

 

 

In general, there are two distinct contributions to the difference on the right-hand side of 

eq.(1.11); one over the region that is common to both ( )D X  and ( )D X dX+ and one 

where they differ [9]. The former contribution is 

X 

 

β 

α 

A
α
 

Aβ 

Γ 

αβ 

D(x) 

X 

 
X + dX 

 

dX 

 

D(x) D(x + dx) 

β 

α 

X 

 

β 

α 

Γ 

αβ(t) 

D(x) 

Γ 

αβ(t + dt) 

A
α(t) 

A
α(t + dt) 

a) b) 

c) 
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 { } ( )
( ) iD X

m Y X
h h dV

x

α α β βψ ψ
∂ −

+
∂∫  (1.12) 

 
The latter contribution comes from the value of ( ) ( )Y m Y Xψ −  on the boundary 

multiplied by the volume swept by boundary particles during the translation dX . The 

displacement of a point on the boundary of ( )D X  is dX ; thus, the volume swept by 

particles of a surface element dS is 
i idV dx n dS= . The contribution from the region 

( ) ( ) ( ) ( )D X D X dX D X D X dX∪ + − ∩ +  is therefore equal to 

 

 ( ) ( )i i

A A

m Y X n dS m Y X n dSα α β β

α β

ψ ψ− + −∫ ∫  (1.13) 

 
so that eq.(1.11) becomes 
 

 

( ) { } ( )
( )

( ) ( )
1 iD X

i i

A A

m Y X
m h h dV

x x

m Y X n dS m Y X n dS

α α β β

α α β β

α β

ψ ψ ψ

ψ ψ

∂ −∂
∗ = + +

∂ ∂

+ − + −

∫

∫ ∫
 (1.14) 

 
 

Again, the integrals over ,A Aα β  are both identically zero as the weight function 

( )m Y X−  has compact support in D(0). In addition, there is 

 
( ) ( )

i i

m Y X m Y X

x y

∂ − ∂ −
= −

∂ ∂
 (1.15) 

 
which allows to express the relation (1.14) in an equivalent form 

 ( ) { } ( )
( )i iD X

m Y X
m h h dV

x y

α α β βψ ψ ψ
∂ −∂

∗ = − +
∂ ∂∫  (1.16) 

 
Comparing now eqs. (1.16) and (1.9), the first ‘micro-macro’ transformation rule is 

obtained for the weight averaging scheme, i.e. 

 

 ( ) ( )i i i

i i

m m n m y x dS
y x

α β αβ

αβ

ψ
ψ ψ ψ

Γ

 ∂ ∂
 ∗ = ∗ + − −   ∂ ∂ 

∫  (1.17) 
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   The second transformation rule is the relation between the averaged value of the time 

derivative of ψ  and the partial derivative with respect to time of the average value of ψ . 

Note that 

 
( )

( )
D X

m h h m Y X dV
t t t

α β
α βψ ψ ψ ∂ ∂ ∂ ∗ = + −  ∂ ∂ ∂   

∫  (1.18) 

while 

 ( ) { }
( )

( )
D X

m h h m Y X dV
t t

α α β βψ ψ ψ
∂ ∂

∗ = + −
∂ ∂ ∫  (1.19) 

 
In this case, in contrast to (1.10), the integration domain remains fixed, while the phase 

distribution in ( )iD x , described by characteristic functions andh hα β , undergoes the 

evolution, Fig.1.4c. By analogy to the former case involving representation (1.11), two 

distinct contributions can be identified to the derivative (1.19). The first is the 

contribution from the region that is common to both phases, i.e. 

 

 ( ) ( )
( )D X

h m Y X h m Y X dV
t t

α α β βψ ψ
∂ ∂    − + −    ∂ ∂ ∫  (1.20) 

 

while the second is the contribution from moving boundaries, i.e. 

 

 

( ) ( )

( )

i i i i

A A

i i

Γ

m Y X v n dS m Y X v n dS

m Y X v n dS

α α α β β β

α β

α β αβ αβ

αβ

ψ ψ

ψ ψ

− + −

 + − − 

∫ ∫

∫
 (1.21) 

 
Here, ,i iv vα β  are the velocities of ,A Aα β  and iv

αβ  refers to the velocity of the interphase 

boundary. 

 

   Since the boundary of  D(X) = Aα(t) ∪ Aβ(t) = Aα(t + dt) ∪ Aβ(t + dt)  is now fixed, 

Fig.1.4c, the volume swept by boundary particles over dt is equal to zero, so that 

0i i i iv n dS v n dSα α β β= = . Thus, 

 

 

( ) ( ) ( )
( )

( )
D X

i i

Γ

m h m Y X h m Y X dV
t t t

m Y X v n dS

α α β β

α β αβ αβ

αβ

ψ ψ ψ

ψ ψ

∂ ∂ ∂    ∗ = − + −    ∂ ∂ ∂ 

 + − − 

∫

∫
 (1.22) 
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Furthermore, the weight function ( )m Y X−  is independent of time, so that eq.(1.22) can 

be expressed in the form 

 

( ) ( )
( )

( )
D X

i i

Γ

m h h m Y X dV
t t t

m Y X v n dS

α α β β

α β αβ αβ

αβ

ψ ψ ψ

ψ ψ

∂ ∂ ∂ ∗ = + − 
∂ ∂ ∂ 

 + − − 

∫

∫
 (1.23) 

 

Comparing now eqs. (1.23) and (1.18), the second ‘micro-macro’ transformation rule is 

obtained for the weight averaging scheme, i.e. 

 

 ( ) ( ) ( )i i

Γ

m m n v m Y X dS
t t

α β αβ αβ

αβ

ψ
ψ ψ ψ

∂ ∂ ∗ = ∗ − − − ∂ ∂  ∫  (1.24) 

 
 

   For a special case, when the weight function is constant and equal 1/ REVV within a 

sphere of volume RVEV  while it vanishes outside this sphere, the transformation rules 

(1.17) and (1.24) reduce to a form that is representative of spatial averaging (see Ref. 

[10]) 

 
REV

REV

1
( )

1
( )

i

i i Γ

i i

Γ

n dS
y x V

n v dS
t t V

α β αβ

αβ

α β αβ αβ

αβ

∂ψ ∂
ψ ψ ψ

∂ ∂

∂ψ ∂
ψ ψ ψ

∂ ∂

= + −

= − −

∫

∫
 (1.25) 

 
Note that in this case the weight function is said to be discontinuous at the boundary of 

( )D X . This, however, has no implications on the spatial averaging rules. Indeed, the 

transformation rule for the time derivative (1.24) was obtained without imposing any 

restrictions on the value of the weight function along the boundary. At the same time, the 

derivation of the spatial derivative (1.17) employed the condition of vanishing of the 

weight function at the boundary of ( )D X , viz. eqs. (1.9) and (1.16). Comparing, 

however, the earlier representation (1.8) with the corresponding form (1.14), it is evident 

that the transformation rule (1.17) holds good without invoking the constraint of 

vanishing of the respective surface integrals. Thus, the discontinuity of the weight 

function does not affect the structure of the micro-macro transformation in the spatial 

averaging approach. 

 

   Summarizing, eqs. (1.17) and (1.24) are the basic transformation rules for a transition 

from micro- to macro-scale that employs the weight averaging approach, i.e. 

15



 

 

 

( ) ( ) ( )i i i

i i

m m n m y x dS
y x

α β αβ

αβ

ψ
ψ ψ ψ

Γ

 ∂ ∂
∗ = ∗ + − − 

∂ ∂ 
∫  

( ) ( ) ( )i i i i

Γ

m m n v m y x dS
t t

α β αβ αβ

αβ

ψ
ψ ψ ψ

∂ ∂ ∗ = ∗ − − − ∂ ∂  ∫  

 

At the same time, eqs.(1.25) give the rules corresponding to the volume averaging 

scheme, i.e. 

 

REV

REV

1
( )

1
( )

i

i i Γ

i i

Γ

n dS
y x V

n v dS
t t V

α β αβ

αβ

α β αβ αβ

αβ

∂ψ ∂
ψ ψ ψ

∂ ∂

∂ψ ∂
ψ ψ ψ

∂ ∂

= + −

= − −

∫

∫
 

  

 

   The transformation rules specified above define the averaging procedure only; i.e. they 

do not incorporate any information on the interaction between RVE and the rest of the 

body. As a consequence, the micro-macro transition cannot, in general, be fully described 

by employing these relations alone. This is illustrated below by an example in which an 

attempt is made to transform the local microscopic description of a flow of an 

incompressible viscous fluid in a rigid porous medium using the transformation rules 

(1.25). 

 

The microscopic description incorporates the following governing equations: 

- incompressibility condition 

 0 ini
f

i

v
V

y

∂
=

∂
 (1.26) 

 

- kinematic constraint along the solid-fluid interface 

 

  = 0  on   iv Γ  (1.27) 

 
- equilibrium requirement 

 0 inij

f

i

V
y

σ∂
=

∂
 (1.28) 
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- constitutive relation 

 inji
ij ij f

j i

vv
p V

y y
σ δ µ

 ∂∂
= − + +  ∂ ∂ 

 (1.29) 

 
In the equations above, Vf is the volume of fluid in RVE,  iv is the fluid velocity, p is the 

fluid pressure and µ is the viscosity coefficient. Employing now the averaging scheme 

(1.25) in relation (1.26), together with (1.27), gives the macroscopic form of 

incompressibility condition, i.e. 

 0i

i

v

x

∂
=

∂
 (1.30) 

Apparently, eq.(1.30) is a standard constraint for an incompressible continuum. Applying 

the averaging procedure to equations of static equilibrium yields 

 

 
REV

1
0

ij

ij i

i Γ

n dS
x V

σ
σ

∂
+ =

∂ ∫  (1.31) 

 

while the averaging of the constitutive relation (1.29) gives 

 
ji

ij ij

j i

vv
p

x x
σ δ µ

 ∂∂
 = − + +
 ∂ ∂ 

 (1.32) 

 

Finally, substituting eq.(1.32) as well as (1.29) in eq.(1.31), and employing the 

incompressibility condition (1.30), yields 

 

 2

REV

1
0 ji

x j ij i

j j iΓ

vp v
v p n dΓ

x V y y
µ δ µ

  ∂∂ ∂
= − + ∇ + − + +   ∂ ∂ ∂   

∫  (1.33) 

 

 

   It is apparent that eq.(1.33) contains not only macro- but also micro-variables. Thus, 

without additional assumptions, the averaged form (1.33) cannot be perceived as a 

macroscopic description. The reason behind it is the lack of hypothesis that would define 

the response along boundaries between RVE and the rest of the medium. Therefore, the 

averaging scheme alone leads to a macroscopic equilibrium statement that incorporates 

unidentified terms responsible for the interaction between constituents; such as the last 

term in representation (1.33).  
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   In order to complete a transformation between different observation scales, the 

microscopic description needs, in general, to be supplemented by suitable boundary 

conditions at the peripheries of RVE. These conditions should reflect, as closely as 

possible, the actual state of RVE within the considered medium (cf. [11]). 

 

   Incorporation of specific boundary conditions in the local description is often referred 

to as a ‘closing hypothesis’. It allows isolating RVE from its environment and, thus, 

narrowing the scope of analysis to the examination of mechanical characteristics of RVE 

alone. Furthermore, the specification of boundary conditions for RVE allows to define 

appropriate ‘localization laws’, i.e. relations between macroscopic variables and their 

micro-counterparts, for a given microstructure of the material. 

 

   For composite solids, the simplest and most frequently employed closing hypothesis is 

the assumption of uniform stress/strain state. However, such a hypothesis is justified only 

when the size of individual inhomegeneities is small compared to dimensions of RVE. In 

case of periodic media, i.e. when the material structure can be reconstructed based on a 

single RVE cell, the boundary conditions incorporate the local periodicity of the 

considered physical fields. 
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1.2. Continuum micromechanics 
 
    As mentioned earlier, the applicability of weight/volume averaging alone is limited due 
to the absence of boundary conditions between RVE and the rest of the body. The 
specification of these conditions supplements the micro-description and leads to a 
boundary value problem which, in turn, allows for transition from micro to macro-level. 
This is illustrated by an example that is provided below. 
 
     Consider diffusion process in a micro-heterogeneous solid material. Assume that the 
solid matrix contains several constituents that have different coefficients of diffusion. Let 
the distribution of constituents be random and the medium be statistically homogeneous 
on the macro-scale. The micro-description of the diffusion process is based on: 
- Fick’s law, which assumes a linear relation between the mass flux of the diffusing 
substance and the concentration gradient, i.e. 
 

 ini

i

C
q D V

y

α

α α α∂
= −

∂
 (1.34) 

- the conservation of mass 

 0 ini

i

C q
V

t y

α α

α∂ ∂
+ =

∂ ∂
 (1.35) 

 

In the equations above, the index α  refers to a given constituent. Thus, V α  is the volume 

occupied by this constituent in RVE, so that 
1

N

RVEV V α

α=

=∑  and 1,2,...Nα = . 

Furthermore, iq
α  is the mass flux of the diffusing substance, Cα  is the concentration and 

Dα  is the coefficient of diffusion in constituent α . The flux is said to be continuous at 
the interfaces between the constituents. 
 
Applying the spatial averaging rules, described in the preceding section, eq.(1.35) can be 
written as 

 0i

i

qC

t x

∂∂
+ =

∂ ∂
 (1.36) 

where 

 i

i

C
q D

y

α

α ∂= −
∂

 (1.37) 
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Note that without specifying the boundary conditions at the peripheries of RVE, the 

average flux iq  cannot be expressed as an explicit function of macroscopic variables 

C  and ix .  

 

   In order to formulate the boundary conditions, note that since C Cα =  and 

i i

CC

y x

α ∂∂
=

∂ ∂
, the concentration of the considered substance at any point within RVE 

can be defined as  
 

 ( )i i

i

C
C y x C C

x

∂
= − + +
∂

 (1.38) 

 

Here, the index α  has been omitted as the concentration is defined as a function of 

position within RVE, i.e. ( )C C Y X= − . The coordinatesix  specify, once again, the 

location of the centroid of RVE, while ( )C C Y X= −  is referred to as corrector. The 

presence of corrector function in (1.38) is the result of the heterogeneity of solid matrix; 

for a homogeneous medium ( ) 0C Y X− = , while for an inhomogeneous one there is 

( ) 0C Y X− = . The latter constraint can be formally obtained by averaging (1.38) and 

noting that 0i iy x− = .  

 
   Now, the boundary conditions for RVE are typically formulated by assigning specific 
values to corrector or its gradient. For a periodic structure, the periodicity of corrector 
function is postulated; whereas for random media, the vanishing of the corrector or its 
gradient is assumed. 
 

In order to express the average flux iq  in terms of macroscopic variables, consider a 

stationary diffusion process within RVE 
 

 0 ini
RVE

i

q
V

y

∂
=

∂
 (1.39) 

 
Assigning a zero value to the corrector along boundaries of RVE and substituting the 
Fick’s law (1.34) together with (1.38) in (1.39), one obtains 
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0 in

0 on

RVE

i i i

RVE

C C
D V

y x y

C V

     ∂∂ ∂   − + =      ∂ ∂ ∂     = ∂

 (1.40) 

 
 

where D D for Y Vα α= ∈ . Note that the variables ix , C  and 
i

C

x

∂

∂
 are associated 

with the centroid of RVE and are thus independent of the spatial coordinates iy . 

 

     The boundary value problem (1.40) has a linear form, so that C  is linearly dependent 

on the macroscopic gradient 
i

C

x

∂

∂
, i.e. 

 i

i

C
C A

x

∂
=

∂
 (1.41) 

where ( )j jA A Y X= −  is the solution of (1.40) corresponding to macroscopic gradient 

with its j-component equal to one and the remaining ones equal to zero. 

By introducing now a tensor field ( )ij ijB B Y X= −  defined as 

 i
ij

j

A
B

y

∂=
∂

 (1.42) 

the gradient of the corrector can be expressed as 
 

 ij

i j

CC
B

y x

∂∂
=

∂ ∂
 (1.43) 

 
Finally, utilizing eqs.(1.38) and (1.43), the so-called ‘localization law’ can be established 
that relates the local value of the concentration gradient, at an arbitrary point within RVE, 
to its macroscopic counterpart, i.e. 

 ij

i i i j

C CC C
P

y x y x

∂ ∂∂ ∂
= + =

∂ ∂ ∂ ∂
 (1.44) 

  

where ( )( )ij ij ijP B Y Xδ= + −  is referred to as the localization operator. The relation 

(1.44) allows now to express the macroscopic flux of the diffusing substance as a 
function of the concentration gradient, i.e. 
 

 hom
i ij ij

j j

C C
q DP D

x x

∂ ∂
= − = −

∂ ∂
 (1.45) 
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The equation above represents the macroscopic constitutive relation which describes the 

diffusion process in a medium that is homogeneous at the macro-scale. The tensor hom
ijD  

is the effective (homogenized) diffusion tensor. 
 

     It should be noted that by introducing the volume average of ijP  for constituent α , i.e. 

 
1

ij ij

V

P P dV
V α

α

α= ∫  (1.46) 

 
 the effective diffusion tensor can be expressed in the equivalent form 
 

 hom

1

N

ij ijD c D P
α

α α

α=

=∑  (1.47) 

 
where / RVEc V Vα α=  is the volume fraction of constituent α . 

 
In special cases that involve simple microstructures, a straightforward assessment of  
hom
ijD  can be made. Assume, for example, that the constituents are distributed in such a 

way that in each of them the average value of the concentration gradient is the same as 

the value representative of the macroscale. In this case ij ijP
α

δ= , so that 

 hom

1

N

ij ijD c Dα α

α

δ

=

=∑  (1.48) 

 
The distribution of constituents and the average direction of diffusion corresponding to 
this scenario are shown schematically in Fig.1.5a. 
 

 
Fig.1.5. Composite with a layered microstructure 

 

a b 
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On the other hand, if the distribution of constituents is such that in each of them the 
average mass flux is the same as that at the macro-scale, then 
 

 hom
ij ijD D P

αα=  (1.49) 

 

Note that the averaging of eq.(1.44)  results in ij ijP δ= , therefore 

 

 
1

N

ij ijc P
αα

α
δ

=

=∑  (1.50) 

 
Taking now into account eqs.(1.49) and (1.50), the following relation is obtained 
 

 
hom

hom

1 1

1

N N
ij ij

ij ij ij N

D
c P c D

cD
D

αα α
αα

α α
α

α

δ
δ

= =

=

= = ⇒ =∑ ∑
∑

 (1.51) 

 
The values of components of the effective diffusion tensor are again representative of a 
layered structure; this time, however, the direction of diffusion is along the layering. 
 
It is evident from the discussion above that by supplementing the micro-description with 
suitable boundary conditions a macroscopic form of the diffusion law is obtained. In 
addition, in case when the geometry of microstructure is specified, the components of the 
effective diffusion tensor can be defined as an explicit function of diffusion coefficients 
of constituents. The later requires, in a general case, the solution of the boundary value 

problem (1.40) and the specification of the localization operator ( )ij ijP P Y X= − . 

 
     It is noted that if the boundary conditions invoke periodicity of corrector, or if the 
gradient of the corrector is said to be zero along the boundary of RVE, then the general 
form of the constitutive relation remains the same as that of (1.45). Moreover, if RVE is 
large enough then the effective diffusion tensor is independent of the type of boundary 
condition employed. 
 
     Diffusion process consists of random molecular motions. At the same time, in 
formulating the response at the micro-level, viz. eqs.(1.34) and (1.35), a classical 
approach of continuum mechanics has been employed. Thus, the framework does not 
take into account the existence of substructures at a lower level of magnification. In 
general, the application of the tools of continuum mechanics at the micro-level for the 
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description of physical processes (such as heat transfer, mass transport, deformation, etc.) 
is referred to as continuum micromechanics. This approach is aimed primarily at 
assessing the macroscopic ‘effective’ response for a given microstructure under a 
prescribed change in external agencies. Clearly, the framework allows for examining the 
influence of micro-structural parameters on the characteristics at the macro-level. 
 
     Apparently, the specific mathematical description and its solution at the micro-level 
both depend on properties of constituents and the type of physical phenomena that 
occurs; viz. diffusion, filtration, chemical dissolution, brittle fracture, plastic deformation, 
etc. The class of problems is clearly quite broad. In what follows, the discussion is 
limited to fundamental definitions and description of procedures employed in continuum 
micromechanics in relation to quasi-static deformation in composite solid bodies. 
 
   To begin with, consider a composite medium in which all constituents are linearly 
elastic. In this case, the formulation at the micro-level is based on: 
 
- equations of static equilibrium 

 0ij

iy

σ∂
=

∂
 (1.52) 

 
- constitutive relations that govern the response of constituents 

 ( )ij ijkl klD Uσ ε=  (1.53) 

 
where ( )1 2 3, ,U u u u=  is a displacement vector andijklD  is the elastic stiffness tensor, 

 
- kinematic strain-displacement relations (small deformation regime) 

 
1

( )
2

ji
ij

j i

uu
U

y y
ε

 ∂∂= +  ∂ ∂ 
 (1.54) 

 
- continuity requirements for displacement and traction vectors at the interfaces between 
the constituents. 
 

The macroscopic measure of strain, associated with the micro-strain tensor ( )ij Uε , is 

defined as the average over the volume of RVE, i.e. 
 

 
RVE RVE

1
( )ij ij

V

U dV
V

ε ε= ∫  (1.55) 
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Similarly, the macroscopic variable associated with given micro-stress field ijσ  is 

defined as 

 ( )
RVE RVERVE RVE

1 1
ij ij ik k j j

V V

dV n y x dS
V V

σ σ σ
∂

= = −∫ ∫  (1.56) 

 
 
The relations above indicate that the macro-strain tensor is implicitly defined through the 
kinematic boundary conditions, while the macro-stress is defined by the traction acting at 
the boundaries of RVE. Furthermore, if RVE is perceived as a parallelepiped, then the 
volume average of the stress tensor is the same as the average taken over the 
corresponding surface area. The ‘effective’ response of the composite, regarded as an 

equivalent homogeneous medium, is defined by the relation between ijε  and ijσ . It 

should also be noted that since the displacement is continuous at the interface between 
constituents then, according to the spatial averaging rules, 
 

 
1

( )
2

ji
ij

j i

uu
U

x x
ε

 ∂∂
 = +
 ∂ ∂
 

 (1.57) 

 
     The microscopic displacement field can be expressed in the form analogous to that 
employed in the context of diffusion problem, eq.(1.38), i.e.  
 

 ( )i ij j j i iu y x u uε= − + +  (1.58) 

 

Here, ( )i iu u Y X= −  are components of vector U  which is again viewed as a corrector 

that accounts for heterogeneity of the microstructure of RVE. For random media, the 

boundary conditions are normally defined by assuming a zero value for the corrector iu  

or by imposing a uniform traction ij j in Tσ =  on RVEV∂ , where in  is the unit normal to the 

boundary. For periodic media, the periodicity of corrector and its derivative is assumed. 
 
     The functional form (1.58) implies that 

 ( ) ( )ij ij ijU Uε ε ε= +  (1.59) 

 
 
Substituting the above equation in the constitutive relation (1.53) and utilizing the 
equilibrium constraints (1.52), the following relation is obtained 
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 ( ) 0ijkl kl ijkl kl
i

D D U
y

ε ε∂
 + = ∂

 (1.60) 

 
Adopting now one of the boundary conditions, i.e. vanishing of the corrector, its 
periodicity or uniformity of traction along the boundary, the general solution to the 
boundary value problem for RVE can be expressed in the form 
 

 ( )i ijk jku Y X A ε− =  (1.61) 

 

where the tensorial field ( )ijk ijkA A Y X= −  is the solution to eq.(1.60), for a specific 

boundary condition, under ( )
1

2
lm lj mk lk mjε δ δ δ δ= +  . 

Following the same procedure as that outlined for the diffusion problem, the ‘localization 
law’ can be established as 

 ( )ij ijkl klU Pε ε=  (1.62) 

 
The tensorial field ( )ijkl ijklP P Y X= −  is the localization operator that defines the micro-

strain in terms of the macroscopic effective strain measure. The averaging of eq.(1.62) 
leads to the following constraint 
 

 ( )
1

2
ijkl ik jl il jkP δ δ δ δ= +  (1.63) 

 
The constitutive relation at the macro-level has the form 
 

 ( )ij ijkl kl ijkl klmn mnD U D Pσ ε ε= =  (1.64) 

 
so that the effective elastic stiffness tensor is defined as 
 

 hom
ijmn ijkl klmnD D P=  (1.65) 

 

If the composite medium within RVE contains N distinct constituents α = 1, 2, ..., N, then 

by employing the averaging over the respective volumes V α , the relation (1.65) can be 
expressed in the equivalent form 

 hom

1

N

ijkl ijmn mnklD c D P
α αα

α=

=∑  (1.66) 

 
where cα  are the volume fractions. 
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Furthermore, by analogy to relation (1.62), a similar localization law can be formulated 
for the stress tensor, i.e. 

 ( )ij ijkl klS Y Xσ σ= −  (1.67) 

 
where the localization operator is defined as 

 
1hom

ijkl ijmn mnpq pqklS D P D
−

 =    (1.68) 

 

Here, 
1hom

pqklD
−

    represents the effective compliance operator, which is defined as the 

inverse of the elastic stiffness. 
 
     Quite often, when formulating the macroscopic relations the closing hypothesis 
employs, instead of boundary conditions, the so-called Hill’s macro-homogeneity 
condition. The latter is expressed as 
 

 ij ij ij ijσ ε σ ε=  (1.69) 

 
In this case, the basic hypothesis defining the equivalent medium is that of equivalence in 
energy. It needs to be emphasized that the equality (1.69) needs to be satisfied for 

arbitrary ijε  and ijσ , even when these quantities are not explicitly related through a 

constitutive law. The only requirement is that the microscopic stress field must be a self-
equilibrated one, it must satisfy the equilibrium conditions (1.52). It should also be noted 
that Hill’s macro-homogeneity condition is identically satisfied in case when the 
boundary conditions described earlier are employed (cf. Ref.[11]). 
 
     As an equivalent approach, the problem can be formulated by invoking the principle 

of minimum potential energy. Among all virtual displacement fields ( )i iu y  satisfying the 

kinematic boundary conditions, the actual one is characterized by the minimum value of 
the potential energy. For composite comprising N constituents, the actual displacement 
field within RVE is the one that minimizes the average strain energy density, i.e. 
 

 ( )
( ) ( ) 1

inf ( , ( ) inf ( )
N

ij ij
U K U Kij ij

w Y U h w Uα α

ε ε α
ε ε

∈ ∈ =

= ∑  (1.70) 

 
where inf stands for infimum and 

 ( ) ( )1
( ( ))  

2ij ijkl ij klw U D U Uα αε ε ε=  (1.71) 

 

27



 

is the strain energy in constituent α . Invoking, as the closing hypothesis, the uniformity 
of the strain field, the kinematically admissible displacement field is represented by the 
set 

 ( ){ }REV( )   onij i ij j jK U u y x Vε ε= = − ∂  (1.72) 

 
The expression (1.70) defines the macroscopic (equivalent) strain energy potential 
 

 ( ) ( )
( )

inf , ( )ij ij
U K ij

W w Y U
ε

ε ε
∈

=  (1.73) 

 
which, in turn, defines implicitly the form of the macroscopic constitutive relation. 
 
Note that 

 
( )ij

ij ij ij
kh ij kh kh

W w U Uε
ε σ ε

ε ε ε ε
∂    ∂ ∂ ∂= =      ∂ ∂ ∂ ∂   

 (1.74) 

 
where the last transformation makes use of the property that the micro-stress tensor is a 
derivative of the strain energy with respect to micro-strain.  
 

Components of 
kl

U

ε
∂

∂
, in view of eq. (1.72), verify the following relation, i.e.: 

 ( ) ( )1
on

2
i

ik ml il mk m m REV
kl

u
y x Vδ δ δ δ

ε
∂ = + − ∂

∂
 (1.75) 

 

It means that 
kl

U

ε
∂

∂
 is a kinematically admissible field corresponding to a unit macro-

strain. According now to Hill’s macro-homogeneity condition (1.69), one can write 

 ( )1

2ij ij ij ik jh ih jk kh
kh

Uσ ε σ δ δ δ δ σ
ε

 ∂ = + =  ∂ 
 (1.76) 

 
Thus, the macroscopic constitutive relation is defined by 
 

 
( )kl

ij

ij

W ε
σ

ε
∂

=
∂

 (1.77) 
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   Following an analogous procedure, the macroscopic complimentary energy potential 
can be defined as 

 ( )
( ) ( )

1

inf ( , ) inf ( ) ( )
ij ij

N

ij ij ij
S S

W w Y h y uα α

τ σ τ σ α
σ τ τ∗ ∗

∈ ∈ =

= = ∑  (1.78) 

 

where ( )ijw τ∗ is the complimentary energy in constituent α  and the statically admissible 

stress field is defined by the set 

 REV( )  0 in ,ij
ij ij ij ij

i

S V
y

τ
σ τ τ σ

∂ 
= = = ∂ 

 (1.79) 

 
In this case, the complimentary form of representation (1.77) becomes 
 

 
( )kl

ij

ij

W σ
ε

σ

∗∂
=

∂
 (1.80) 

 
It is noted that if the stress-strain relations for constituents (defined at the micro-level by 
means of derivatives of strain or complimentary strain energy) are non-linear and, at the 
same time, the strain energy function is strictly convex, then the macroscopic 
representation remains the same as that in eqs.(1.77) or (1.80). Thus, the formulation of 
the constitutive law at the macro-scale reduces to specification of macroscopic strain or 
complementary strain energy potentials. 
 
     In case when the constituents are rigid perfectly-plastic, the dissipation function is 
convex, but not strictly convex. As a result, such composite media should be treated 
differently (cf. Bouchitte [12], Suquet [13, 14]). For random media, the closing 
hypothesis is then the condition of uniformity of plastic strain rate; while for periodic 
media, the condition of periodicity. The macroscopic form of the yield function becomes 
 

 

( )
( ) ( )

0

, 0, , 0   

h
ij ij

ij
ij ij ij ij ij

i

F P

y f y V
y

α
α

σ σ

τ
τ τ τ σ τ α

≤ ⇔ ∈ =

∂ 
= ∃ = = ≤ ∀ ∈ ∧ ∀ ∂ 

 (1.81) 

 
while the flow rule takes the form 

 
( )klp

ij

ij

F σ
ε λ

σ
∂

=
∂

ɺɺ  (1.82) 
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   In summary, the specification of the effective response of a composite medium requires 
the solution of an appropriately formulated boundary value problem and the averaging of 
the primary variables. In case of deterministic heterogeneous media, such as periodic 
composites, the continuum micromechanics approach allows to uniquely define the 
effective response at the macro-scale. In case of random composites though, the statistical 
information on the microstructure is only partial, so that the precise evaluation of 
effective properties is not possible. In this case, the micromechanical considerations are 
used to establish the bounds for the effective properties, based on given statistical 
information, and/or to provide estimates corresponding to specific types of composites 
(Refs. [15,16,17,18]). The particular methods used for assessment of effective properties 
are discussed in the next section. 
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CHAPTER 2  
__________________________________________________________________________________ 

 

 

Analytical Methods Of Estimating  

The Effective Properties 
 

 

 

 

 

 

 

 

   In case of micro-heterogeneous media with a periodic structure, the problem of 

assessment of effective properties reduces to solution of a boundary value problem that is 

formulated for a periodic cell. If the geometry, the distribution and physical properties of 

constituents are known, then the effective properties can be determined in a unique 

manner. For random composites the distribution of constituents and their geometry are 

not strictly defined, i.e. only limited statistical information is available. Typically, the 

primary information which can be obtained is that on volume fractions of individual 

constituents. Furthermore, if there is no preferred arrangement of constituents, i.e. the 

structure is not ordered, the other statistical information available is that stipulating the 

isotropy of the medium at the macro-scale. 

 

   Apparently, for random materials that are statistically homogeneous, one can invoke the 

hypothesis of periodicity in order to formulate the macroscopic description. It is noted, 

however, that methodologies for the assessment of effective properties in periodic and 

random media are different. In particular, in the former case, since the statistical 

information is incomplete, only the estimates of effective properties and the range of their 

admissible values can be provided. Clearly, the most established and rigorous approaches 

are those for estimating the effective parameters of random media in the linear range, e.g. 

the effective linear-elastic constants. The problem of the assessment of the response in 

non-linear range is still wide-open, although in the last decade some significant advances 

have been made (cf. Suquet & Ponte Castaneda [19]). The most common approach is the 

concept of a homogeneous linear comparison medium. In this case, the effective non-
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linear response is estimated from the classical approach for linear media through an 

appropriate selection of properties of the comparison material [19]. 

 

   For random media, it is important to establish the range of admissible values of 

effective properties. For a macroscopically isotropic medium, the narrowest range of 

estimates, expressed in terms of volume fractions, can be obtained using the Hashin-

Shtrikman bounds (cf. Torquato [20]). For example, for a composite medium 

comprising " homogeneous constituents with different diffusion properties, the 

primary information available is that on the values of diffusion coefficients Dα, volume 

fractions cα, as well as that on the isotropy of the medium at the macroscale. In this case, 

the Hashin-Shtrikman bounds take the form (see Ref.[20]) 

 

 hom
min max

1 1min max

1 1
2 2

2 2

" "
D D D

c c

D D D D

α α

α α
α α= =

− ≤ ≤ −

+ +∑ ∑
 (2.1) 

where 

 ( ) ( )min maxmin maxD D D Dα α

α α
= =  (2.2) 

 

 

A similar structure of the Hashin-Shtrikman bounds is obtained for estimates of effective 

mechanical properties for a macroscopically isotropic linear-elastic composite comprising 

" constituents (see Ref.[20]), i.e. 

 

 hom
min max

1 1
min max

1 4 1 4

3 3
4 4

3 3

" "
G K G

c c

G K G K

α α

α αα α= =

− ≤ ≤ −

+ +
∑ ∑

 (2.3) 

 hom
min max

1 1min max

1 1
" "

H G H
c c

H G H G

α α

α α
α α= =

− ≤ ≤ −

+ +∑ ∑
 (2.4) 

 min max

3 3
2 2

2 2min max
2 2

K G K G

H G H G
K G K G

α α α α

α α
α α α αα α

   + +   
= =   

+ +   
   

 (2.5) 

 
where Kα and Gα are the bulk and shear moduli, respectively, of the constituent α. 
 

32



 

   The inequalities given above define the range of acceptable values of effective 

properties. Apart from volume fractions and the isotropy of properties at the macroscale, 

no other information about the microstructure is incorporated. In general, the estimates of 

effective properties are typically established by using approximate schemes that employ 

more information about the material structure, e.g. that on the geometry of constituents. 

Most of the existing schemes are based on a solution of a single inclusion problem. 

Examples include approximations of Maxwell, Mori-Tanaka as well as the self-consistent 

scheme [41].  

 

 

 

2.1. Diffusion problem 
 

2.1.1. Single inclusion solution 

   The considerations here start with a discussion related to a diffusion problem in an 

infinite domain that contains a single spherical inclusion. For ellipsoidal inclusions only 

the final form of the solution is provided. 

    Consider a diffusion process in an infinite homogeneous medium that contains a single 

spherical inclusion of radius R (Fig.2.1). Assume that both the matrix and the inclusion 

are isotropic and have diffusion coefficients mD  and Dα , respectively. In order to 

define the geometry, introduce a spherical coordinate system with the origin fixed at 

the centroid of the sphere (Fig.2.1). As a boundary condition, assume that at infinity 

the 3x -component of the concentration gradient has a specified constant value, while 

the remaining components are equal to zero. 

 

 
Fig.2.1. Coordinate system for sphere of radius R embedded within an infinite matrix 

R 
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D
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   The concentration of the diffusing substance, C, satisfies the Laplace equation 

 2
2 2

1 1
sin 0

sin

C C
r

r r r r
θ

θ θ θ
∂ ∂ ∂ ∂   + =   ∂ ∂ ∂ ∂   

 (2.6) 

 
where θ  is an angle between the 3x -axis and the radial direction r. 

Along the surface of the inclusion, both the concentration as well as the radial 

component of the flux vector must remain continuous. Thus, 

 

 0RR
C C

+−
− =  (2.7) 

 0m

R R

C C
D D

r r

α

− +

∂ ∂
− =

∂ ∂
 (2.8) 

 
where 

R
C

−
and RC

+
are the values of C at the surface (r=R) taken from the inside and 

outside, respectively. A similar notation is used for the flux vector as well, viz. 

eq.(2.8). 

The boundary condition for the radial component of concentration gradient requires 

 

 3 cosr C W r θ→∞ ⇒ →  (2.9) 

 

where 3W  is the assumed constant value at 3x →∞ . 

The general solution of eq.(2.6) takes the form 

 

 ( ) 1 3 1 3 2

cos
, cosC r AW r BW

r

θ
θ θ= +  (2.10) 

where 1A  and 1B  are constants that can be determined from the boundary condition and 

the continuity requirement. Since outside the sphere, the boundary condition (2.9) 

must be satisfied; the solution in this region takes the form 

 

 ( ) 3 1 3 2

cos
, cosC r W r BW r R

r

θ
θ θ= + ≥  (2.11) 

 
For the domain enclosed within the sphere, the concentration C must assume a finite 

value at r=0, so that 

 ( ) 1 3, cosC r AW r r Rθ θ= ≤  (2.12) 

 
Imposing now the continuity requirements (2.7)-(2.8) in eqs.(2.11) and (2.12), a set of 

two simultaneous linear equations is obtained for 1A  and 1B , from which 
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 3
1 1

3
,

2 2

m m

m m

D D D
A B R

D D D D

α

α α

−
= =

+ +
 (2.13) 

 

Substituting the above values in the expressions (2.10) and (2.11) leads to the following 

representation 

 ( )

3

3 3

3 3

cos cos
,

cos cos

m

m

R
W r W r r R

C r r

W r W r r R

α

α

θ β θ
θ

θ β θ

  + ≥  =   
 + ≤

 (2.14) 

where 
 

 
2

m
m

m

D D

D D

α

α αβ
−

=
+

 (2.15) 

 
The coefficient m

αβ  is commonly referred to as ‘polarizability coefficient’ through an 

analogy to electric/magnetic polarizabilities. 

The value of the 3x -component of the concentration gradient inside the sphere ( r R≤ ) 

is defined by the relation 

 
3

1
cos sin

C C C

x r r
θ θ

θ
∂ ∂ ∂

= −
∂ ∂ ∂

 (2.16) 

 

which, after substitution of the second equation in (2.13), reduces to 

 

 ( ) 3
3

1 mC
W

x
αβ

∂
= +

∂
 (2.17) 

 
The remaining components of the concentration gradient inside the inclusion, i.e. those in 

1x  and 2x -directions, are equal to zero. 

Note that by invoking now the notion of a localization tensor, as introduced in 

Section 1.2, the relation between the concentration gradient within the sphere and its 

value at infinity can be established, viz. 

 

 ( ), , 1m m m

ij j ij ij

i

C
P W P

x

α α
αβ δ

∂
= = +

∂
 (2.18) 

 
The localization tensor ,m

ijP
α is an isotropic second-order tensor whose value depends on 

the diffusion coefficients of both the inclusion and the matrix.  
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   A similar methodology can be employed to analyze the case of an ellipsoidal 

inclusion embedded in an infinite matrix. In this case, the solution is more complex so 

that only the final results, which are later employed in various approximation schemes, 

are provided here. If the axes of the ellipse are aligned with the coordinate axes 
ix , 

then the latter also define the principal directions of the localization tensor ,m
ijP
α . The 

principal values ( )
,m

i
Pα  (i=1,2,3) are identified as 

 ( )
,

( )

1

1

m

i m

i m

P
D D

A
D

α
α=
−

+
 (2.19) 

 
where the coefficients ( )iA  are defined by an elliptic integral 

 

 
( ) ( ) ( )( )

( ) 1 2 3
2 2 2 2

0 1 2 3

1

2i

i

dz
A R R R

z R z R z R z R

∞

=
+ + + +

∫  (2.20) 

 
and the symbol 

iR  denotes the length of the semi-axis of the ellipse in the direction 
ix . 

The orientation average of the localization tensor represents an isotropic tensor 
, ,m m

ij ijP Pα α δ= , whose eigenvalues are equal to 

 

 
3

,

1
( )

1 1

3
1

m

m
i

i m

P
D D

A
D

α
α

=

=
−

+
∑  (2.21) 

 

Particular cases of an ellipsoidal inclusion include a sphere (R1=R2=R3), a needle-shaped 

inclusion (R1= R2,  R3/ R1→∞) and a disk-shaped inclusion (R1= R2,  R3/ R1→0). 

Apparently, for a spherical inclusion there is 1 2 3 1/ 3A A A= = = , so that the relation 

(2.20) reduces to that obtained earlier. For a disk-shaped inclusion, the eigenvalues of 

the localization tensor become  

 

 , 2

3

m
m D D

P
D

α
α

α

+
=  (2.22) 

 
while for a needle-shaped inclusion there is 
 

 
( )

, 5

3

m
m

m

D D
P

D D

α
α

α

+
=

+
 (2.23) 
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   Before moving on to the single inclusion problem in elasticity, let us examine first 

different approximation schemes for dealing with assessment of effective properties 

within the context of a diffusion problem.  

 

   For this purpose, consider composite medium comprising N homogeneous constituents 

that have different diffusion properties. Assume that all constituents are isotropic within 

themselves and that their distribution is random. Once again, the statistical information 

given is that pertaining to volume fractions of constituents and the lack of preferred 

orientation, i.e. the isotropy of the structure at the macroscale. The problem to be solved 

is the assessment of the components of the effective diffusion tensor. 

 

   In what follows, all the basic approximation schemes are illustrated by considering an 

abstract auxiliary problem. In this problem, the analyzed composite material is perceived 

as a sphere of radius R that is embedded in an infinite continuum with known diffusion 

properties. The sphere is said to be large enough and its constituents small enough, so 

that the analyzed problem can be conceptually reduced to that of a single spherical 

inclusion contained in an infinite homogeneous domain. In this case, one can again 

assume that at infinity the concentration gradient is constant. 

 

 

2.1.2. Maxwell approximation scheme 

 
   This scheme is typically applied to composites in which one of the constituents forms 

the matrix, while the remaining ones represent the spherical inclusions. Let nα be the 

number of inclusions made of constituent α  and contained within the primary sphere of 

radius R. If the radius of the inclusion is Rα , then the volume fraction of a given 

constituent α  becomes 

 
3

R
c n

R

α
α α  
=  

 
 (2.24) 

 

A similar expression holds for the remaining constituents 1, 2,....., 1"α = − ; except, of 

course, the constituent "α =  which forms the matrix material. 

 

   In the Maxwell’s scheme it is assumed that the continuum which contains the primary 

sphere of radius R has the properties of the constituent that forms the matrix of this 

sphere. Furthermore, it is assumed that volume fraction of inclusions is small (i.e. the 

distribution is dilute), so that the interaction between them is neglected. In other words, 

far from the primary sphere, the variation in concentration field is approximated by 
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superimposing the variations triggered by each individual inclusion that is contained 

within this sphere. Thus, according to eq.(2.14), the value of the concentration 

sufficiently far from the sphere is determined as 

 ( )
3

1

3 3
1

, cos cos
"

m R
C r W r n W r

r

α
α

α
α

θ θ β θ
−

=

 
= +  

 
∑  (2.25) 

 

Taking now into account the definition (2.24) and noting that 

 

 
3 3 31 1
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α α

α α
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     =     
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∑ ∑  (2.26) 

 

the relation (2.25) can be expressed as 

 ( )
31

3
1

, cos 1
"

m R
C r W r c

r

α
α

α

θ θ β
−

=

  = +     
∑  (2.27) 

 

The primary sphere may be considered as a homogeneous medium with an equivalent 

diffusion coefficient Dhom. Thus, the concentration away from the sphere may also be 

defined as  

 ( )
3

3 hom, cos 1 m R
C r W r

r
θ θ β

  = +     
 (2.28) 

where 
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D D

D D
β

−
=

+
 (2.29) 

 

Thus, comparing eqs.(2.28) and (2.29), there is 

 
1

hom
1

"
m mcα α

α

β β
−

=

=∑  (2.30) 

 

Employing now the definition of ‘polarizability’ coefficient, viz. eq.(2.15), one finally 

obtains 

 
hom 1

hom
12 2

m m"

m m

D D D D
c

D D D D

α
α

α
α

−

=

− −
=

+ +∑  (2.31) 

 

   Maxwell’s approximation is an explicit approach, in the sense that the effective 

diffusion coefficient is obtained directly from parameters that define the properties of 

constituents. In fact, eq.(2.31) can be expressed as 
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 (2.32) 

 

which, after some further transformations leads to 

 hom

1

1
2

2

m

"

m

D D
c

D D

α

α
α =

= −

+∑
 (2.33) 

 

The general form of the equation above is analogous to the representation (2.1) that 

defines Hashin-Shtrikman bounds. It is noted that if the diffusion coefficients of 

inclusions, Dα , are smaller/larger than the value corresponding to the matrix, mD , then 

the estimate from Maxwell’s scheme is identical to upper/lower bounds of Hashin-

Shtrikman. 

 

 

2.1.3. Mori-Tanaka approximation scheme 

 
   Like the Maxwell’s approach, this scheme has been formulated for composite media in 

which one of the constituents forms the matrix, while the remaining ones are the 

inclusions. The composite is, once again, said to be embedded within an infinite 

continuum whose diffusive properties are the same as those of the matrix. The 

distribution of inclusions is assumed to be dilute, so that the value of the concentration 

gradient in constituent α  is assessed based on the solution for a single inclusion in an 

infinite matrix. Furthermore, the localization operator for the matrix is assumed to be a 

unit tensor. Unlike Maxwell’s approach though, the Mori-Tanaka’s scheme makes no a 

priori assumptions regarding the geometry of the inclusions; shapes other than sphere can 

be employed. The effective diffusion tensor is estimated based on the analysis of the flux 

of the substance diffusing within the composite. 

 

   The value of the flux vector in constituent α  is equal to 

 

 ,m
i ij jq D P W

α α α= −  (2.34) 

 

while for the whole composite medium 

 ,

1 1

" "
m

i i ij jq c q c D P W
αα α α α

α α= =

= = −∑ ∑  (2.35) 
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where 
jx

W is the value of the concentration gradient at infinity. 

On the other hand, the flux vector can also be defined in terms of effective diffusion 

tensor, i.e. 

 hom ,

1

"
m

i ik kj jq D c P Wα α

α =

= − ∑  (2.36) 

 

Thus, comparing the above representations, there is 

 ( )hom ,

1

0
"

m

ik ik kj jc D D P Wα α α

α

δ
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− =∑  (2.37) 

 

Eq.(2.37) must be satisfied for arbitrary values of the components of 
jx

W , which implies 

that 

 ( )hom ,

1

0
"

m

ik ik kjc D D Pα α α

α

δ
=

− =∑  (2.38) 

 

Furthermore, if the distribution of constituents is random, then both tensors hom
ijD  and 

,m
ijP
α  are isotropic, i.e. hom hom

ij ijD D δ=  and , ,m m

ij ijP Pα α δ= . In view of this, eq.(2.38) can 

be simplified to 
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hom 1

,

1

"
m

"
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c D P

D

c P

α α α

α
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α

=

=

=
∑

∑
 (2.39) 

 

Note that if the inclusions are spherical then the above estimate is identical to that 

obtained from Maxwell’s scheme. This can be shown by substituting eq.(2.18), together 

with (2.15), into eq.(2.39). Thus, the framework outlined here is often referred to as 

generalized Maxwell’s approximation scheme. This approach covers a broad spectrum of 

geometrical arrangements. It applies, for examples, to composites that are anisotropic at 

the macroscale, e.g. those containing aligned elliptical inclusions. 

 

   It is evident from the considerations above that, for spherical inclusions, both Mori-

Tanaka and Maxwell schemes are identical, in the sense that they yield the same estimate 

of effective properties. Within both schemes, however, the formulation of the problem is 

different. A common feature in these approaches is the notion of the composite medium 

being embedded in an infinite homogeneous domain that has the same properties as those 

of the matrix material. As a result, the localization tensor is determined based on the 

solution to the problem involving a single inclusion in an infinite continuum.  
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   Originally, the Mori-Tanaka scheme was developed within the context of assessment of 

effective elastic properties of composite media with multiple constituents (Mori-Tanaka 

[21]). The approach outlined above gives an analogous scheme in relation to assessment 

of diffusive properties of composite materials. Note that for spherical inclusions, the 

estimate obtained here satisfies the Hashin-Shtrikman bounds. However, for 

macroscopically isotropic composites with elliptical inclusions the relation (2.39) may 

yield values that do not fall within those bounds (see, e.g. Ref.[22]). In general, the  

Mori-Tanaka’s scheme is not realizable, in the sense that one cannot always construct a 

microstructure that will poses the effective properties predicted by this approach. 

 

   Figures 2.2 - 2.5 present the estimates of a homogenized diffusion coefficient of two-

phase composite corresponding to the generalized Maxwell (Mori-Tanaka) 

approximation scheme. The estimates have been obtained as functions of volume fraction 

of inclusions embedded in the matrix. The inclusions are assumed to be of a spheroid 

type with semiaxes: R1=R2 and R3=ω*R1. The contrast in the diffusion coefficients of 

composite components is assumed as D1/D2=0.01.  
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Fig.2.2. Maxwell approximation –oblate spheroids α=1  immersed in a matrix α=2 
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Fig.2.3. Maxwell approximation - oblate spheroids α=2 immersed in a matrix α=1 
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Fig.2.4. Maxwell approximation - prolate spheroids α=1 immersed in matrix α=2 
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Fig.2.5. Maxwell approximation - prolate spheroids α=2 immersed in matrix α=1 
 
 

2.1.4. Self-consistent approximation scheme 

 
   If the composite medium is embedded in an infinite homogeneous domain whose 

diffusion properties are the same as the effective properties of the composite itself, then 

the average value of the concentration gradient remains uniform and equal to that at 

infinity. In other words, the sum of perturbations triggered by individual inclusions 

contained within the composite is equal to zero. In the self-consistent scheme, the 

effective properties are assessed by approximating complex interactions among 

constituents by those between the constituent and the homogenized composite. Thus, a 

perturbation in the concentration field caused by a single inclusion within the composite 

is approximated by solving a problem of an inclusion embedded in a uniform matrix 

whose effective diffusion coefficient is the same as that of the composite. If the 

composite contains only spherical inclusions then, according to the solution presented 

earlier 

  

 
hom

hom hom
hom

1
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" D D
c

D D

α
α

α α α
α

β β
=

−
= =

+∑  (2.40) 
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which leads to 

 
hom

hom
1

0
2

" D D
c

D D

α
α

α
α =

−
=

+∑  (2.41) 

 

The expression above indicates that the self-consistent scheme is an implicit scheme, i.e. 

the assessment of Dhom requires a solution to an implicit equation. Furthermore, in contrast 

to Maxwell’s scheme, the self-consistent scheme treats all constituents as equivalent, in the 

sense that an exchange of constituents D Dα β↔  and c cα β↔  has no impact on the 

macroscopic response of the composite. This means that the self-consistent scheme is 

particularly suited for assessing the properties of composites with polycrystalline 

morphology. 

 

   Note that the same estimate of effective diffusion coefficient may be obtained if the 

problem is formulated in terms of the flux of diffusing substance. Following the procedure 

analogous to that employed earlier in Mori-Tanaka’s scheme, one can write 

 

 ( )hom ,hom

1

0
"

ik ik kjc D D Pα α α

α

δ
=

− =∑  (2.42) 

 

which for a macroscopically isotropic medium simplifies to 

 

 ( )hom ,hom

1

0
"

c D D Pα α α

α =

− =∑  (2.43) 

 

Substituting in (2.43) the value of ,homPα that corresponds to spherical inclusions leads to 

representation (2.41). If the composite contains randomly distributed inclusions of 

different shapes then eq.(2.43) leads to a different estimate than that corresponding to 

(2.40). The relation (2.43), which is valid for isotropic composites, and (2.42) which 

includes composites that are anisotropic at macroscale, are considered as generalized 

expressions of the self-consistent scheme. It is noted that this scheme is realizable 

(Ref.[23]), in the sense that one can always construct a microstructure that will poses the 

estimated properties. 

 

   The estimate corresponding to the self-consistent scheme in comparison to that 

resulting from the Maxwell approximation is presented in Fig.2.6. The two-phase 

composite with spherical inclusions is considered. The two Maxwell estimates presented 

in Fig.2.6 are obtained by analyzing two different composite morphology. The first one 

corresponds to the case in which the component α=1 is the inclusion whereas in the 
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second one – the component α=1 is the matrix. The contrast in the diffusion coefficients 

is assumed as D1/D2=0.01, similarly as in the cases considered before.  
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Fig.2.6. Comparison of the Maxwell and Self-consistent estimates 

 

   The estimates of the self-consistent scheme obtained for the composite with spheroidal 

inclusions are presented in figures 2.7-2.10. 
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Fig.2.7. Self-Consistent approximation - oblate spheroids α=1 immersed in matrix α=2 
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Fig.2.8. Self-Consistent approximation - oblate spheroids α=2 immersed in matrix α=1 
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Fig.2.9. Self-Consistent approximation - prolate spheroids α=1 immersed in matrix α=2 
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Fig.2.10. Self-Consistent approximation - prolate spheroids α=2 immersed in matrix α=1 
 

 

 

2.2. Elasticity problem 
 

2.2.1. Single inclusion solution 
     Consider an infinitely extended material with the elastic moduli ijkhD  containing a 

single ellipsoidal inclusion Ω  with the elastic moduli 
ijkhDΩ  subjected to a constant strain 

field o

ijε  at infinity (Fig.2.11). We investigate the disturbance in the stress and strain 

fields caused by this ellipsoidal inclusion.  

 
     The total strain and stress fields in the material can be described by a sum of an 
uniform field and a corrector one, i.e.: o d

ij ij ijε ε ε= +  and o d

ij ij ijσ σ σ= + . The fields o

ijε  and 
o

ijσ  correspond to the case when the material is homogeneous, i.e. having no inclusion, 

and are induced by the constant uniform strain applied at infinity. The fields d

ijε and d

ijσ  

represent therefore the disturbance in the strain and stress fields caused by the ellipsoidal 
inclusion. Using the representations introduced above, the constitutive equations of 
elasticity (Hooke’s law) can be presented as 
 

 ( ) ino d o d

ij ij ijkh kh khD Vσ σ ε ε+ = + −Ω  (2.44) 
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 ( ) ino d o d

ij ij ijkh kh khDσ σ ε εΩ+ = + Ω  (2.45) 

 
where o o

ij ijkh khDσ ε= . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2.11. Ellipsoidal inclusion Ω with semi-axes (R1, R2, R3)  embedded in an infinite homogeneous 
medium V 

 
 
The total stress field has to satisfy an equilibrium equation 
 

 0ij

ix

σ∂
=

∂
 (2.46) 

 
therefore 
 

 0
D

ij

i
x

σ∂
=

∂
 (2.47) 

 
is also an self-equilibrated field, since o

ijσ  is the uniform one. Furthermore 0d

ijσ = , at 

infinity. 
     To solve the problem stated above, i.e. to determine of the strain and stress corrector 
fields, the Eshelby-Mura’s equivalent eigenstrain principle ([24],[25]) is used in a 
following. This principle states that any strain field generated by an ellipsoidal 
inhomogeneity has a one-to-one correspondence to a fictitious eigenstrain field imposed 
in a domain of the inhomogeneity. In other words, instead to consider the problem of an 
inclusion embedded in an infinite medium one can consider the infinite homogeneous 

V 

Ω x1 

x2 

x3 

R1 

R2 

R3 

( )
22 2
31 2, , 11 2 3 2 2 2

1 2 3

xx x
x x x

R R R
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48



 

medium in which the proper eigenstrain field is prescribed in a domain of the inclusion 
(Fig. 2.12). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2.12. Illustration of Eshelby-Mura’s equivalent principle; a) initial heterogeneous body b) equivalent 

homogeneous body 
 
 
     “Eigenstrain” is a generic name to describe a transformation field that can 
equivalently represent induced strain due to misfit of inhomogeneities, thermal 
expansion, plastic strain, residual strain, etc. ; “Eigenstress” is a generic name given to a 
self-equilibrated transformation stress filed that can generate equivalent perturbed stress 
and strain distributions caused by one or several of eigenstrains in bodies which are free 
from any other external forces and surface constraints [24]. 
 
     Consider the infinitely extended homogeneous material with the elastic moduli 

ijkhD  

everywhere, containing domain Ω with an eigenstrain r

ijε  (Fig.2.12b). Then, Hooke’s law 

yields:  
 

 
( )
( )

in

in

o d o d

ij ij ijkh kh kh

o d o d r

ij ij ijkh kh kh kh

D V

D

σ σ ε ε

σ σ ε ε ε

+ = + −Ω

+ = + − Ω
 (2.48) 

 
The necessary and sufficient condition for the equivalency of stresses and strains is 
 

 ( ) ( ) ino d o d r

ijkh kh kh ijkh kh kh khD Dε ε ε ε εΩ + = + − Ω  (2.49) 

 

Ω 

V 

Ω 

V 

( )o d

ijkh ij ijD ε εΩ +  ( )o d r

ijkh ij ij ijD ε ε ε+ −  

( )o d

ijkh ij ijD ε ε+  a) b) 
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The relations (2.48) imply also: 
 

 
( )

in

in

d d

ij ijkh kh

d d r

ij ijkh kh kh

D V

D

σ ε

σ ε ε

= −Ω

= − Ω
 (2.50) 

 
The equilibrium equation (2.47) together with the constitutive equations (2.50) create so-
called eigenstrain boundary value problem: 
 

 

in

0 in

0 at infinity

d r

kh kh
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i i

d
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D D
x x
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ε ε
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∂
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∂

=

 (2.51) 

 
It can be seen that the contribution of eigenstrain r

ijε  to the equations of equilibrium is 

similar to that of a body force since the equations of equilibrium under body force Xj 
with zero r

ijε  are: 
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0 in

0 at infinity

d
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ijkh j

i

d

kh
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i

d

ijkh kh

D X
x

D V
x

D

ε

ε

ε

∂
= − Ω

∂

∂
= −Ω

∂

=

 (2.52) 

 
The simplest way to get the solution of (2.52) is by an application of Green’s function,  
i.e.: 
 

 ( ) ( ) ( ){ }, ,

1

2
d

kh j kj h hj kx X G x y G x y dyε
Ω

= − + −∫  (2.53) 

 
where ( ) ( ), /kj h kj hG x y G x y x− = ∂ − ∂ , ( )mkG x y−  is the Green’s function representing the 

displacement component in the xm- direction at point x when a unit body force in the xk – 
direction is applied at point y in infinitely extended material . For an infinite linear elastic 
medium, the Green’s function is a solution of the following equation  
 

 ( )
2

0mk
ijkl mi

l j

G
D x y

y y
δ δ

∂
+ − =

∂ ∂
 (2.54) 
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and its analytical form can be presented as [24]: 
 

 ( )
( )

( ) 2

1
3 4 where

16 1
i j

ij ij i i

x x
G x x x x

G x x
ν δ

π ν

 
= − + = 

−   
 (2.55) 

 
Constants G and ν are shear modulus and Poisson’s ratio, respectively.  
     Using the Green’s function, the solution of eigenstrain boundary value problem (2.51) 
can be written as: 
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ε

ε

Ω
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∂
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∂
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∫

∫
 (2.55) 

 
Finally, it can be proved (detailed proof one can find in the book of Mura [24]) that for 
the ellipsoidal inclusion the above integral is independent on the space coordinate x and 
the relation (2.55) can be presented as 
 
 d r

ij ijmn mnTε εΩ=  (2.56) 

 
where ijmnT Ω  is so-called Eshelby’s tensor.  

     The most amazing fact of this result is that the induced strain field in the inclusion is 
uniform, and the Eshelby’s tensor for any ellipsoidal inclusion is a constant tensor.  
     The Eshelby’s tensor can be explicitly expressed by elliptic integrals through the 
following identity [24,25]: 
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π ν δ δ ν δ δ δ δ
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 (2.57) 

 
where the upper case indices are not summed with lower case indices, the Poisson’s ratio 
ν is of the host material in which the inclusion is embedded  and 
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2 2

2 2

2 2
I J J I

IJ J IJ I I IJ J IJ

R R I I
J R I I R I I I

+ +
= − = − = −  (2.60) 

 
Symbols R1, R2, and R3 denote the semi-axes of the ellipsoidal inclusion.  
     In applications, the following invariant formulas are very useful [24]: 
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 (2.61) 

 
as well as a symmetry property of the Eshelby’s tensor: 
 
 ijkl jikl ijlkT T TΩ Ω Ω= =  (2.62) 

 
All non-zero components of the Eshelby’s tensor are presented, in terms of the elliptic 
integrals, below: 
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     The eigenstrain r

ijε , as it has been pointed above, should verify the condition (2.49) in 

order to preserve the equivalence between the stresses and strains induced by the 
inclusion and that by the eigenstrain field. This condition can be rewritten as: 
 

 ( )( ) 0o d r

ijkh ijkh kh kh ijkh khD D Dε ε εΩ − + + =  (2.64) 

 
or  
 

 ( )( )1 0o d r

mnij ijkh ijkh kh kh mnD D D ε ε ε− Ω − + + =  (2.65) 

 
where 1

mnijD− is a compliance tensor, which is defined as the inverse of the elastic stiffness. 

Using the relation (2.56), the equation (2.65) can be transformed to: 
 

 ( )( ) ( )1 o d o d o

pqmn mnij ijkh ijkh kh kh pq pq pqT D D D ε ε ε ε εΩ − Ω − + + + =  (2.66) 

 
and finally 
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P I T D D D

ε ε εΩ

−
Ω Ω − Ω

+ =

 = + − 
 (2.67) 

 
where 1/ 2( )pqkh pk qh ph qkI δ δ δ δ= + is a fourth order unit tensor. 

The constant-valued fourth order tensor khpqPΩ  is the localization tensor that defines the 

strain within the ellipsoidal inclusion in term of the uniform strain applied at the infinity 
to homogeneous medium in which the inclusion is embedded.  
     Determination of the Eshelby’s tensor corresponding to some special types of 
inclusions like spherical, needle-shaped or disk-shaped is provided in a following. 
 
 
2.2.1.1. Spherical inclusion 

 
     For a spherical inclusion of radius R the integrals (2.58)-(2.60) are simply estimated: 
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2 8

15IJ J IJ IJ R I I
π

= − = −  

 
Substitution of the above results in the relation (2.57) leads to: 
 

 
( ) ( ) ( )5 1 4 5

1 5 1 1 5 1i j k l i j k l i k j l j k i lT
ν ν

δ δ δ δ δ δ
ν ν

Ω − −
= + +

− −
 (2.68) 

 
The relation obtained above can be equivalently presented as 
 

 
( ) ( )
1 8 10

3 1 15 1
H S

ijkl ijkl ijklT
ν ν
ν ν

Ω + −
= Λ + Λ

− −
 (2.69) 

 
where the fourth order tensors  and H S

ijkh ijkhΛ Λ  are defined as 

 

 ( )1 1 1

3 2 3
H S H

ijkh ij kh ijkh ik jh ik jk ij kh ijkh ijkhIδ δ δ δ δ δ δ δΛ = Λ = + − = −Λ  (2.70) 

 
It can be shown, by simple algebraic transformations, that these tensors are orthogonal: 
 
 0H S

ijkh khlmΛ Λ =  (2.71) 

 
and fulfill the following equalities: 
 

 
1

5

H H H

ijkh khlm ijlm

S S S
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H H

ijkh ijkh

S S

ijkh ijkh

Λ Λ = Λ

Λ Λ = Λ

Λ Λ =

Λ Λ =

 (2.72) 

 
Furthermore, any fourth order isotropic tensor ijkhS  can be presented as 

 
 H S

ijkh ijkh ijkhS a b= Λ + Λ  (2.73) 

 
 
where a and b are scalar-valued constants. 
Comparing (2.69) and (2.73) one can conclude that the Eshelby’s tensor for the spherical 
inclusion is the isotropic one. The result is obvious since a spherical inclusion does not 
posses any preferential orientation; any orientation is equivalent. 
 
     The inclusion and the matrix are considered to be isotropic materials. Thus, their 
stiffness tensors as well as the compliance tensors are the isotropic fourth order tensors 
and have representations 
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 (2.74) 

 
where ,  and ,K G K GΩ Ω  denote bulk and shear modulus for the inclusion and for the 
matrix, respectively. 
 
The relations (2.74), (2.69) imply 
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since: 
 

 ( )1 H S
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K K G G
D D D

K G

Ω Ω
− Ω − −

− = Λ + Λ  (2.76) 

 
The localization tensor khpqPΩ  is, according to the definition (2.67), an inverse of the tensor 

defined by (2.75), therefore  
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 (2.77) 

 
The elasticity constants: ν, K and G are connected by 
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K G

G K
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+
 (2.78) 

 
Substituting (2.78) in (2.77) leads, after some simple transformations, to a following final 
form of the strain localization tensor 
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where 
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( )
( )
8 9

6 2

G G K

G K
ζ

+
=

+
 (2.80) 

 
Evidently, the strain localization  tensor khpqPΩ  for spherical inclusion, Eq. (2.79), is the 

fourth order isotropic tensor. 
 
 
2.2.1.2. Eshelby’s tensor for particular shapes of ellipsoidal inclusion 

 

     The Eshelby’s tensor as well as the strain localization tensor is so simply determine 
only for a spherical inclusion. Other types of ellipsoidal inclusions need much more effort 
in order to calculate components of the Eshelby’s tensor and the strain polarization 
tensor. This is brought about by a lack of isotropy of these tensors. If the Eshelby’s tensor 
is not the isotropic tensor then determination of the strain localization tensor is not so 
straightforward as has been presented for the spherical inclusion. The procedure is quite 
complex and it is postponed up to the next section.  
     Different particulate shapes of ellipsoidal inclusion are considered only in the context 
of determination of the Eshelby’s tensor components, in this section. The analytical form 
of this tensor is presented for a needle-shaped inclusion, a disk-shaped inclusion as well 
as for oblate and prolate spheroids. 
 
"eedle-shaped inclusion (R1=R2=R, R3->∞)   
For a needle-shaped inclusion with the semi-axes: R1=R2=R and R3->∞ , the elliptic 
integrals (2.58)-(2.59) yield 
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 (2.81) 

 
Bearing in mind Eq. (2.63), the non-zero components of the Eshelby’s tensor are as 
follows: 
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Disk-shaped inclusion (R1=R2=R, R3->0) 
For a disk-shaped inclusion with semi-axes R1=R2=R and R3->0 , the elliptic integrals 
(2.58)-(2.59) yield 
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 (2.83) 

 
The above values imply, according to the relations (2.63), the following values of non-
vanishing components of the Eshelby’s tensor: 
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Oblate spheroid (R1=R2=R, R>R3) 

An oblate spheroid is characterized by two geometrical parameters, i.e. R=R1=R2 being 
the length of two semi-axes and 3 / 1R Rω = <  being an aspect ratio of the spheroid. For 

such inclusion the elliptic integrals (2.58)-(2.59) imply  
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Introducing a parameter λ defined as 
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the relations (2.85) can be written in a more convenient form: 
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Implementing the relations (2.87) in the equations (2.63) enables to determine the 
Eshelby’s tensor components. The non-zero components are as follows: 
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 (2.88) 

 
 
Prolate spheroid (R1=R2=R, R<R3) 

A prolate spheroid is, geometrically, characterized by the same parameters as that of the 
oblate spheroid, i.e. by R and 3 /R Rω = . The spheroid is, however, classified as prolate 

if 3 / 1R Rω = > . For such geometry of inclusion, the elliptic integral (2.58) is analytically 

determined and can be presented as: 
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( )

( )2 1/ 2 1
1 2 3/ 22

2 1 cosh
1

I I
ω

π ω ω ω
ω

− = = − − 
−

 (2.89) 

 
Using a parameter λ defined as: 
 

 
( )

( )2 1/ 2 1
3/ 22

1 cosh
1

ω
λ ω ω ω

ω
− = − − 

−
 (2.90) 

 
the relation (2.89) can be rewritten as: 
 
 1 2 2I I πλ= =  (2.91) 

 
The equation (2.91) together with the invariant formulas (2.61) imply 
 

 
( )

( ) ( ) ( )

3

2

2 2 2
11 12 22 2

2
2 2 2 2

13 23 332 2

 4 (1 )

3

2
1

3
1 424 ,  1 2 3

31 1

I

R I R I R I

R I R I R I

π λ

λ ω
π

ω

λ π ω
π ω λ

ω ω

= −

−
= = =

−

−  
 = = = − −

− −  

 (2.92) 

 
Obviously, the elliptic integrals corresponding to prolate spheroid fulfill exactly the same 
relations as the integrals corresponding to the oblate spheroid; compare the Eqs. (2.91)-
(2.92) with the Eqs. (2.87). Since the Eshelby’s tensor components are evaluated by the 
elliptic integrals (2.63) therefore the relations (2.88) are also valid for the Eshelby’s 
tensor for prolate spheroid, except the parameter λ is defined by the equation (2.90). 
 
 
2.2.1.3. The strain localization tensor for particular shapes of ellipsoidal inclusion 

 
     The strain localization tensor is defined by the relation (2.67). This relation is not so 
convenient for a determination of components of the strain localization tensor since to do 
that one need to invert a following fourth order tensor: 
 

 ( )1
pqkh pqkh pqmn mnij ijkh ijkhB I T D D DΩ − Ω= + −  (2.93) 

 
     Evaluation of the inverse of the tensor pqkhB  is quite simple task if the Eshelby’s 

tensor and the stiffness tensors  and ijkh ijkhD DΩ  are the isotropic ones, as in a case of a 

spherical inclusion. In a following the stiffness tensors are still considered as the isotropic 
ones but any constraints on a form of the Eshelby’s tensor are not laid.  
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     The stiffness tensors are isotropic, therefore: 
 

 
( )

( )

1

1

1 1
3 2 ,

3 2
1 1

3 2 ,
3 2

H S H S

ijkh ijkh ijkh ijkh ijkh ijkh

H S H S

ijkh ijkh ijkh ijkh ijkh ijkh

D K G D
K G

D K G D
K G

−Ω Ω Ω Ω
Ω Ω

−

= Λ + Λ = Λ + Λ

= Λ + Λ = Λ + Λ
 (2.94) 

 
where the tensors  and H S

ijkh ijkhΛ Λ  are defined as: 

 

 ( )1 1 1

3 2 3
H S H

ijkh ij kh ijkh ik jh ik jk ij kh ijkh ijkhIδ δ δ δ δ δ δ δΛ = Λ = + − = −Λ  (2.95) 

 
Since the tensor  and H S

ijkh ijkhΛ Λ  are orthogonal, therefore 

 

 ( )1 H S

mnij ijkh ijkh mnkh mnkh

K K G G
D D D

K G

Ω Ω
− Ω − −

− = Λ + Λ  (2.96) 

 
Bearing in mind the definitions (2.95) it is simply evaluated that: 
 

 

( )

11 22 331

3 3
1

3

pq pq pqH

pqmn mnkh pqmm kh kh

S H

pqmn mnkh pqmn mnkh mnkh pqkh pqmm kh

T T T
T T

T T I T T

δ δ

δ

Ω Ω Ω
Ω Ω

Ω Ω Ω Ω

+
Λ = =

Λ = −Λ = −

 (2.97) 

 
By virtue of Eqs. (2.96) and (2.97) one gets: 
 

 
( )1

1
                                   

3

H S

pqmn mnij ijkh ijkh pqmn mnkh pqmn mnkh

pqmm kh pqkh

K K G G
T D D D T T

K G

K K G G G G
T T

K G G
δ

Ω Ω
Ω − Ω Ω Ω

Ω Ω Ω
Ω Ω

− −
− = Λ + Λ =

 − − −
= − + 

 

 (2.98) 

 
Finally, the tensor 

pqkhB , defined by Eq.(2.93), can be presented as: 

 

 
1

3pqkh pqkh pqmm kh pqkh

K K G G G G
B I T T

K G G
δ

Ω Ω Ω
Ω Ω − − −

= + − + 
 

 (2.99) 

 
The strain localization tensor 

pqkhPΩ  is the inverse of the tensor 
pqkhB . In order to invert 

this tensor it is more convenient to operate with its representation IP, in a matrix form:  
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11 12 13

21 22 23

31 32 33

44 45

54 55

66 67

76 77

88 89

98 99

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

IP IP IP

IP IP IP

IP IP IP

IP IP

IP IP

IP IP

IP IP

IP IP

IP IP

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

IP  (2.100) 

where: 
 

 

11 1 1111

12 1 1122

13 1 1133

21 2 2211

22 2 2222

23 2

1

1

K K G G G G
IP A T

K G G

K K G G G G
IP A T

K G G

K K G G G G
IP A T

K G G

K K G G G G
IP A T

K G G

K K G G G G
IP A T

K G G

K K G
IP A

K

Ω Ω Ω
Ω

Ω Ω Ω
Ω

Ω Ω Ω
Ω

Ω Ω Ω
Ω

Ω Ω Ω
Ω

Ω Ω

 − − −
= + − + 

 

 − − −
= − + 

 

 − − −
= − + 

 

 − − −
= − + 

 

 − − −
= + − + 

 

− −
= − 2233

31 3 3311

32 3 3322

33 3 3333

44 45 54 55 1212

66 67 76 77 1313

1

1

2

1

2

G G G
T

G G

K K G G G G
IP A T

K G G

K K G G G G
IP A T

K G G

K K G G G G
IP A T

K G G

G G
IP IP IP IP T

G

G G
IP IP IP IP T

G

IP

Ω
Ω

Ω Ω Ω
Ω

Ω Ω Ω
Ω

Ω Ω Ω
Ω

Ω
Ω

Ω
Ω

  −
+ 

 

 − − −
= − + 

 

 − − −
= − + 

 

 − − −
= + − + 

 

−
= = = = +

−
= = = = +

88 89 98 99 2323

1

2

G G
IP IP IP T

G

Ω
Ω−

= = = = +

 (2.101) 
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The structure (2.100) of the matrix, a few of non-zero components, is a consequence of 
the equation (2.99) and the general form (2.63) of the Eshelby’s tensor for the ellipsoidal 
inclusion. The equivalence: 
 

 
44 45 54 55

66 67 76 77

88 89 98 99

IP IP IP IP

IP IP IP IP

IP IP IP IP

= = =

= = =

= = =

 (2.102) 

 
is a direct consequence of the symmetry the Eshelby’s tensor, i.e.: ijkh jikh jihk ijhkT T T TΩ Ω Ω Ω= = = . 

Furthermore: 
 

 

1111 1122 1133
1

2211 2222 2233
2

3311 3322 3333
3

3

3

3

T T T
A

T T T
A

T T T
A

Ω Ω Ω

Ω Ω Ω

Ω Ω Ω

+ +
=

+ +
=

+ +
=

 (2.103) 

 
Since the strain localization tensor pqkhPΩ  is the inverse of the tensor pqkhB , or equivalently 

it is the inverse of the matrix IP, the form (2.100) implies a similar format of the tensor 

pqkhPΩ , i.e.: 

 

 

1111 1122 1133

2211 2222 2233

3311 3322 3333

1212 1221

2112 2121

1313 1331

3113 3131

2323 2332

3223 3232

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

ijkh

P P P

P P P

P P P

P P

P P P

P P

P P

P P

P P

Ω Ω Ω

Ω Ω Ω

Ω Ω Ω

Ω Ω

Ω Ω Ω

Ω Ω

Ω Ω

Ω Ω

Ω Ω








=










 
 
 
 
 
 
 



 (2.104) 

 
with following symmetries: 
 

 

1212 1221 2121 2112

1313 1331 3131 3113

2323 2332 3232 3223

P P P P

P P P P

P P P P

Ω Ω Ω Ω

Ω Ω Ω Ω

Ω Ω Ω Ω

= = =

= = =

= = =

 (2.105) 
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The tensors pqkhPΩ  and pqkhB  have to verify the identity equation, i.e.: 

 

 

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1/ 2 1/ 2 0 0 0 0

0 0 0 1/ 2 1/ 2 0 0 0 0

0 0 0 0 0 1/ 2 1/ 2 0 0

0 0 0 0 0 1/ 2 1/ 2 0 0

0 0 0 0 0 0 0 1/ 2 1/ 2

0 0 0 0 0 0 0 1/ 2 1/ 2

ijkh khlm ijlmP B IΩ

 
 
 
 
 
 
 = =
 
 
 
 
 
 
 

 (2.106) 

 
From properties of the matrix calculus one gets that: 
 

 

1

1111 1122 1133 11 12 13

2211 2222 2233 21 22 23

3311 3322 3333 31 32 33

P P P IP IP IP

P P P IP IP IP

P P P IP IP IP

−Ω Ω Ω

Ω Ω Ω

Ω Ω Ω

   
   =   
     

 (2.107) 

 
which finally results in: 
 

 

22 33 23 32 13 32 12 33
1111 1122

12 23 13 22 23 31 21 33
1133 2211

11 33 13 31 13 21 11 23
2222 2233

21 32 22
3311

, ,
det det

, ,
det det

, ,
det det

IP IP IP IP IP IP IP IP
P P

IP IP

IP IP IP IP IP IP IP IP
P P

IP IP

IP IP IP IP IP IP IP IP
P P

IP IP

IP IP IP
P

Ω Ω

Ω Ω

Ω Ω

Ω

− −
= =

− −
= =

− −
= =

−
= 31 12 31 11 32

3322

11 22 12 21
3333

13 22 31 12 23 31 13 21 32

11 23 32 12 21 33 11 22 33

, ,
det det

,
det

det

             

IP IP IP IP IP
P

IP IP

IP IP IP IP
P

IP

IP IP IP IP IP IP IP IP IP IP

IP IP IP IP IP IP IP IP IP

Ω

Ω

−
=

−
=

= − + + −

− − +

 (2.108) 

 
Furthermore, due to the symmetry properties (2.102), (2.105), the identity equation 
(2.106) implies also: 
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66 66 88 8844 44 1313 1331 2323 23321212 1221

3113 3131 3223 32322112 2121

44 44 66 66 88 88

1 1 1 11 1

1 1 1
,  ,  

1 1 1 1 1 14 4 4

IP IP IP IPIP IP P P P PP P

P P P PP P

IP IP IP IP IP IP

Ω Ω Ω ΩΩ Ω

Ω Ω Ω ΩΩ Ω

    
              = = =              
    

     
 
which, using the relations (2.101), leads to: 
 

 

1212
44

1212

1313
66

1313

2323
88

2323

1 1

4
2 4

1 1

4
2 4

1 1

4
2 4

P
G GIP

T
G

P
G GIP

T
G

P
G GIP

T
G

Ω
Ω

Ω

Ω
Ω

Ω

Ω
Ω

Ω

= =
−

+

= =
−

+

= =
−

+

 (2.109) 

 
 
     Summing up, determination of the strain localization tensor consists in two following 
steps: determination of the components of the matrix IP according to the relations (2.101) 
and (2.103) and then direct use of the equations (2.108) and (2.109). The procedure is, 
from a mathematics point of view, quite simple but simultaneously, from a practical point 
of view, it is very tedious since it involves a lot of algebraic transformations.  
 
     The final form of the strain localization tensor is presented for the particular shapes of 
ellipsoidal inclusions, i.e. for a needle shaped inclusion and for a disk shaped inclusion.  
 
"eedle-shaped inclusion (R1=R2=R, R3->∞)   
For a needle-shaped inclusion with the semi-axes: R1=R2=R and R3->∞ , the non-
vanishing components of the strain localization tensor are as follows: 
 

 

( ) ( ) ( )

( ) ( ) ( )
( )

1111 2222

1122 2211

1133 2233 3333

1 2 1
4 3 ,

2 3 37 3

1 2 1
4 3 ,

2 3 37 3

31
1 , 1,

2 3 3

G
P P G K

G K GG G G G G K

G
P P G K

G K GG G G G G K

G G K
P P P

G K G

Ω Ω
Ω ΩΩ Ω

Ω Ω
Ω ΩΩ Ω

Ω

Ω Ω Ω
Ω Ω

 
 = = + +

+ ++ + +  

 −
 = = + +

+ ++ + +  

 + +
 = = − =

+ +  

(2.110a) 

 
 

64



 

 

( )
( ) ( )1212 1221 2112 2121

1313 1331 3113 3131

2323 2332 3223 3232

4 3
,

7 3

G G K
P P P P

G G G G G K

G
P P P P

G G

G
P P P P

G G

Ω Ω Ω Ω

Ω Ω

Ω Ω Ω Ω
Ω

Ω Ω Ω Ω
Ω

+
= = = =

+ + +

= = = =
+

= = = =
+

 (2.110b) 

 
 
Disk-shaped inclusion (R1=R2=R, R3->0) 
For a disk-shaped inclusion with semi-axes R1=R2=R and R3->0 , the non-vanishing 
components of the strain localization tensor read: 
 

 

1111 2222

3333

3311 3322

1,

4 3
,

4 3

2 6 3
1

4 3

P P

G K
P

G K

G G K
P P

G K

Ω Ω

Ω
Ω Ω

Ω
Ω Ω

Ω Ω

= =

+
=

+
− + +

= = − +
+

 (2.111a) 

 

 

1212 1221 2112 2121

1313 1331 3113 3131

2323 2332 3223 3232

1
,

2

2

2

P P P P

G
P P P P

G

G
P P P P

G

Ω Ω Ω Ω

Ω Ω Ω Ω
Ω

Ω Ω Ω Ω
Ω

= = = =

= = = =

= = = =

 (2.111b) 

 
 
     It is obvious, comparing the tensorial representation (2.73) of a fourth order isotropic 
tensor, that both the strain localization tensors for a needle shaped inclusion and for a 
disk shaped inclusion are not the isotropic tensors. This is a consequence of a lack of the 
isotropy of the Eshelby’s tensor corresponding to these shapes of inclusions. The same 
goes for an  oblate and a prolate spheroids.  
 
Oblate/Prolate spheroid  

     For the oblate or prolate spheroid the analytical form of the strain localization tensor, 
expressed by the geometrical parameters of the spheroid as well as the bulk and shear 
moduli of the matrix and the inclusion, involves a lot of algebraic terms and it is not of a 
practical use. A more convenient way to work with the oblate/prolate spheroid is, at each 
time when is needed, a determination of the strain localization tensor for given values of 
the geometrical parameters and that of the elasticity moduli. As an example, a final result 
of such calculation, i.e. the strain localization tensor for the oblate spheroid is presented 
below (Eq.(2.112)). The components were determined assuming the aspect ration of 

semi-axes to be =0.5ω  and / / 3 / 5 and / 10G K G K K K
Ω Ω Ω= = = . 
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1111 1122 1133

2211 2222 2233
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Ω Ω Ω

Ω Ω Ω

Ω Ω

Ω Ω

Ω Ω

Ω Ω

Ω Ω

Ω

   
   =   
     

232

0.741 0.741

0.741 0.741

1.041 1.041

1.041 1.041

1.041 1.041

1.041 1.041Ω

   
   
   
   

=   
   
   
   
    

 (2.112) 

 
The same values of the elasticity moduli were used to determine the strain localization 
tensor for a prolate spheroid. The aspect ratio of semi-axes were assumed to be =2.0ω . 
 

 

1111 1122 1133

2211 2222 2233
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0.178 0.178PΩ Ω

   
   
   
   

=   
   
   
   
    

 (2.113) 

 
 
2.2.1.4. Isotropization of the strain localization tensor 

 
     The strain localization tensor for a single ellipsoidal inclusion embedded in an infinite 
homogenous medium depends on the orientation of the ellipsoid relative to the direction 
of the applied strain. In a composite medium the inclusions are, however, distributed over 
all orientations. If the distribution of inclusions is perfectly random, i.e. any preferential 
direction can be distinguished, then the distribution is isotropic. This implies, in a 
practical application, a necessity of averaging of the strain localization tensor over all 
orientations of the ellipsoid. The averaging process over all orientations, in case of the 
isotropic distribution, is equivalent to a so-called isotropization operation.  
     Consider an isotropic fourth order tensor. Its tensorial representation can be presented 
as: 
 
 H S

ijkh H ijkh S ijkhP P PΩ Ω Ω= Λ + Λ  (2.114) 
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where the tensors ,  H S

ijkh ijkhΛ Λ  are defined by Eqs. (2.70),  and H SP PΩ Ω represent a 

hydrostatic and a shearing part of the tensor ijkhPΩ .  

The above relation implies  
 
 H H H S H

ijkh ijkh H ijkh ijkh S ijkh ijkh HP P P PΩ Ω Ω ΩΛ = Λ Λ + Λ Λ =  (2.115) 

 
since the tensors ,  H S

ijkh ijkhΛ Λ  are orthogonal and 1H H

ijkh ijkhΛ Λ = .  

Furthermore, it can be shown that 
 

    1111 1122 1133 2211 2222 2233 3311 3322 33331

3 3
H

ijkh ijkh iikk

P P P P P P P P P
P P

Ω Ω Ω Ω Ω Ω Ω Ω Ω
Ω Ω + + + + + + + +
Λ = =        (2.116) 

 
Comparing Eq.(2.115) and Eq.(2.116) one can immediately conclude that: 
 

 1111 1122 1133 2211 2222 2233 3311 3322 33331

3 3H iikk

P P P P P P P P P
P P

Ω Ω Ω Ω Ω Ω Ω Ω Ω
Ω Ω + + + + + + + +
= =  (2.117) 

 
The equation (2.114) implies also 
 
 5S H S S S

ijkh ijkh H ijkh ijkh S ijkh ijkh SP P P PΩ Ω Ω ΩΛ = Λ Λ + Λ Λ =  (2.118) 

 
since 5S S

ijkh ijkhΛ Λ = . 

Simple algebraic transformations yield: 
 
 S

ijkh ijkh ijij HP P PΩ Ω ΩΛ = −  (2.119) 

 
where: 
 
 1111 1212 1313 2121 2222 2323 3131 3232 3333ijijP P P P P P P P P PΩ Ω Ω Ω Ω Ω Ω Ω Ω Ω= + + + + + + + +  (2.120) 

 
By virtue of Eq.(2.118) and Eq.(2.119), one can finally obtain that: 
 

 
5

ijij H

S

P P
P

Ω Ω
Ω −
=  (2.121) 

 
     Consider now any fourth order tensor ijkhPΩ  being not isotropic one, in general. The 

isotropization operation consists in a determination of the hydrostatic and the shearing 
part of the tensor 

ijkhPΩ , i.e.  and H SP PΩ Ω . These parts are defined by the relations (2.117) 

and (2.121), respectively. Values of  and H SP PΩ Ω for the cases of spheres, needles and 

disks are given in a table below in terms of the moduli K and G. Symbols with superscript 
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Ω correspond to the parameters of the inclusion whereas that without superscript 
correspond to the matrix. 
 
 

Inclusion shape 
HP
Ω
 

SP
Ω α 
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ζ
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γ

γ

Ω

Ω Ω
Ω Ω

+
+

+ +
+ +

+ +

 
 
 
 
 

 

 

G

G

υ

υΩ

Ω
+

Ω
+

 

 
The variables , ,  γ ζ υ  are defined as: 
 

 ( )
( )

( )9 8 3 / 2 4 / 33
, ,  

3 4 6 2 2

G K G G K GK G
G

K G K G K G
γ ζ υ

+ ++
= = =

+ + +
 (2.122) 

 
 
 
2.2.2. Mori-Tanaka approximation scheme 
 
     The main idea and principles of the Mori-Tanaka approximation have been presented 
in section 2.1.2 where its formulation with respect to the diffusion problem has been 
discussed. The Mori-Tanaka scheme is typically applied to composites in which one of 
the constituents forms the matrix, while the remaining ones represent the inclusions.   
     Consider a composite material composed of M different constituents. One of the 
constituents forms the matrix and the remaining ones are the inclusions. Assume that the 
composite is embedded in an infinite homogeneous medium with elastic properties of the 
matrix of the composite. The distribution of inclusions is dilute, so that the strain tensor 
in constituent α can be approximated based on the solution for a single inclusion in an 
infinite matrix. Furthermore, the strain localization tensor for the matrix is assumed to be 
a unit tensor. The effective elasticity tensor is estimated based on the analysis of the 
stress tensor within the composite. 
     The strain tensor within the constituent α can be expressed in terms of the strain 
localization tensor 

ijkhPα  and the strain tensor o

khe  applied at infinity to the homogeneous 

medium in which the composite is embedded. Therefore: 
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          1,2,..., ,o

ij ijkh khe P e M
α α α= =  (2.123) 

 

where 
ije

α
 is an averaged strain tensor within the constituent α. 

The averaged strain tensor in the composite can be expressed as: 
 

 
1

M

ij ije c e
αα

α =

=∑  (2.124) 

 
where cα  represents a volume fraction of the constituent α within the composite. 
The relations (2.124) and (2.123) imply 
 

 
1

M
o

ij ijkh khe c P eα α

α =

=∑  (2.125) 

 
Volume averaging of the constitutive equations of the elasticity results in: 
 

  ij ijkh khC e
α αασ =  (2.126) 

 
or, using the strain localization tensor 
 

 o

ij ijkh khlm lmC P e
α α ασ =  (2.127) 

 
 
Since the averaged stress tensor within the composite is defined as 
 

 
1

 
M

ij ijc
αα

α

σ σ
=

=∑  (2.128) 

 
therefore 
 

 
1

  
M

o

ij ijkh khlm lmc C P eα α α

α

σ
=

=∑  (2.129) 

 
The effective elasticity tensor for the composite fulfills the elasticity constitutive equation 
 

 hom  ij ijkh khC eσ =  (2.130) 

 
thus, combining the relations (2.125),(2.129) and (2.130), one immediately gets: 
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 hom

1 1

  
M M

o o

ij ijkh khlm lm ijkh khlm lmc C P e c C P eα α α α α

α α

σ
= =

= =∑ ∑  (2.131) 

 
The above relation has to be satisfied for any values of components of the strain tensor 
o

lme , therefore 

 

 ( )hom

1

0
M

ijkh ijkh khlmc C C Pα α α

α =

− =∑  (2.132) 

 
Furthermore, if the distribution of constituents within the composite is random, then both 
tensors hom  and ijkh khlmC Pα  are isotropic, i.e.  

 

 
eff hom hom3 +2

+

H S

ijkh ijkh ijkh

H S

khlm H khlm S khlm

C K G

P P Pα α α

= Λ Λ

= Λ Λ
 (2.133) 

 
In view of this, Eq. (2.132) can be simplified to: 
 

 hom 1

1

"

H

"

H

c K P

K

c P

α α α

α

α α

α

=

=

=
∑

∑
 (2.134) 

 

 hom 1

1

"

S

"

S

c G P

G

c P

α α α

α

α α

α

=

=

=
∑

∑
 (2.135) 

 
     Mori-Tanaka approximation scheme is an explicit approach, in the sense that the 
effective elasticity constants are obtained directly from parameters that define the 
properties of constituents.  
     For the composite with spherical inclusions the estimates (2.134) and (2.135) are 
identical to Hashin-Shtrikman bounds. Namely, for the spherical inclusions the estimate 
(2.134) implies 
 

 

1 1
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 (2.136) 
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     Comparing the Hashin-Shtrikman inequalities (2.3) one can note that if the elasticity 
moduli of inclusions are smaller/larger than the values corresponding to the matrix, then 
the Mori-Tanaka estimates are identical to upper/lower bounds of Hashin-Shtrikman. 
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Fig.2.13. Mori-Tanaka approximation –oblate spheroids α=1 immersed in a matrix α=2 
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     Figures 2.13-2.14 present estimates of the effective bulk modulus and effective shear 
modulus predicted by Mori-Tanaka approximation scheme. The estimates have been 
obtained as functions of volume fraction of inclusions α=1 embedded in the matrix α=2. 
The inclusions are assumed to be of a spheroid type with semi-axes R1=R2 and R3=ωR1. 
The elastic constants are assumed as G1/K1=3/5, G2/K2=3/5 and K1/K2=1/100. 
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Fig.2.14. Mori-Tanaka approximation –prolate spheroids α=1 immersed in a matrix α=2 
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          Figures 2.15-2.16 present also estimates of the effective bulk modulus and 
effective shear modulus predicted by Mori-Tanaka approximation scheme. This time the 
inclusions are made of stiffer material α=2 and are embedded in the matrix α=1.  
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Fig.2.15. Mori-Tanaka approximation –oblate spheroids α=2 immersed in a matrix α=1 
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Fig.2.16. Mori-Tanaka approximation –prolate spheroids α=2 immersed in a matrix α=1 
 

     Using the well-known relation defining a value E of Young modulus: 
 

 
9

3

KG
E

K G
=

+
 (2.137) 
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Mori-Tanaka approximation scheme allows also for a prediction of an effective Young 
modulus of a composite medium.  
     Figures (2.17) and (2.18) present the prediction of the Young modulus corresponding 
to the bulk and shear moduli presented in figures (2.15) and (2.16), respectively. 
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Fig.2.17. Mori-Tanaka approximation –oblate spheroids α=2 immersed in a matrix α=1 
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Fig.2.18. Mori-Tanaka approximation –prolate spheroids α=2 immersed in a matrix α=1 
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2.2.3. Self-consistent approximation scheme 
 
     In the Self-consistent scheme, the effective properties are assessed by approximating 
complex interactions among constituents by those between constituent and the 
homogenized composite. In other words, the effect of all of the material outside a type α 
inclusion is to produce a homogeneous matrix whose effective elastic constants are the 
unknowns to be calculated. The strain localization tensor for the inclusion α is therefore 
determined based on a single inclusion solution assuming that the inclusion is embedded 
in the matrix with the unknowns effective elastic constants. For instance, in case of a 
spherical inclusion α, a hydrostatic part HP

α  of the strain localization tensor is 

approximated within the self-consistent scheme as: 
 

 

hom hom

,hom

hom

4

3
4

3

H

K G

P

K G

α

α

+
=

+
 (2.138) 

 
Following the procedure analogous to that employed earlier in Mori-Tanaka scheme, one 
can write: 
 

 ( )hom ,hom

1

0
M

ijkh ijkh khlmc C C Pα α α

α =

− =∑  (2.139) 

 
which for a macroscopically isotropic medium simplifies to: 
 

 
( )

( )

hom ,hom

1

hom ,hom

1

0

0

M

H

M

S

c K K P

c G G P

α α α

α

α α α

α

=

=

− =

− =

∑

∑
 (2.140) 

 
The above system represents a set of two conjugate nonlinear equations. Solution to this 
system is, typically, searched using an iteration procedure. The self-consistent scheme is 
therefore an implicit scheme, i.e. the assessment of effective properties requires a 
solution to an implicit system of equations.  
     As an example, consider a composite composed of M different types of spherical 
inclusions. Bearing in mind the form of a strain localization tensor for spherical 
inclusions (see table), the system (2.140) can be transformed to: 
 

 
( ) ( )

( )
( )

hom hom

hom hom homhom1 1

hom hom

0,  0
4 9 8
3

6 2

M MK K G G
c c

G K GK G
G

K G

α α
α α

αα α
α

= =

− −
= =

++
+

+

∑ ∑  (2.141) 
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     Estimations of the effective bulk and shear moduli predicted by the self-consistent 
scheme are presented in figures 2.19 and 2.20. The composite is modeled as two-
component medium with spherical inclusions. Elastic parameters of the components are 
assumed as G1/K1=3/5, G2/K2=3/5 and K1/K2=1/100. 
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Fig.2.19. Bulk modulus: comparison of the self-consistent and Mori-Tanaka estimates 
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Fig.2.20. Shear modulus: comparison of the self-consistent and Mori-Tanaka estimates 
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     The equations (2.141) show that the self-consistent scheme treats all the composite 
constituents as equivalent, in the sense that an exchange of constituents 

( ) ( ), ,K G K Gα α β β↔  and c cα β↔ has no impact on the macroscopic response of the 

composite. The self-consistent approximation scheme is, therefore, particularly suited for 
assessing the effective properties of composites with polycrystalline morphology. 
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CHAPTER 3  
__________________________________________________________________________________ 

 

 

1umerical Determination Of The Effective 

Properties From Digital Images  

Of Microstructure 
 

 

 

 

 

 

 

 

     A sample of random heterogeneous material is assumed to be a realization of a 
specific random or stochastic process. More precisely, a realization is an event, ω, that 
belongs to a sample space, Ω. Furthermore, a collection of all the possible realization of a 
random medium generated by a specific random/stochastic process is an ensemble. Since 
composite media are assumed to be a statistically homogeneous thus these realizations 
are different in the view of microscopic scale, while within the point of view of 
macroscopic details the realizations are identical (for more information see: [26]-[28]).  
     Consider a sample space Ω over which a probability density function p(ω) is defined, 
ω∈Ω. Then any particular random medium property η(x; ω), called also as a structure 
function [20], is a function of a space position and a realization ω. An ensemble average 
of η(x; ω) is defined as:  
 

 ( ) ( ) ( ); p dη η ω ω ω
Ω

= ∫x x  (3.1) 

 
     One can remark that the ensemble average is equivalent to an expectation of the 
function η(x; ω). Furthermore, since the composite media are statistically homogeneous 
therefore the ensemble average of the structure function does not depend on the space 
variable x, for such the media.  
     The definition (3.1) implies a necessity of generation of all the realizations forming 
ensemble in order to determine the ensemble average. This exceptionally complex 
procedure is usually overcome using an ergodic hypothesis which allows replacing the 
ensemble average with a volume average, providing that a volume of the medium 
considered tends to infinity, i.e.: 
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 ( )1
lim
V

V

d
V

η η η
→∞

= = +∫ x y y  (3.2) 

 
The relation (3.2) gives the possibility of considering only one arbitrary realization 
providing that the sample volume is infinite. The term a sample with infinite volume 
means, in an engineering application, a sufficiently large sample. This sufficiently large 
sample is called as Representative Volume Element (RVE). 
     In the wide literature a large number of specific RVE definitions can be found ([29]-
[32]). These definitions are usually mathematically strict, however, none of them 
provides precise information on the RVE size - in other words, the definitions do not 
quantify the size of RVE.  
     A lot of attempt has been made in order to quantify the RVE size on the basis of 
statistical and numerical analysis. Within all the methods proposed (e.g.[29], [33]-[34]) 
the RVE size is usually determined by investigating the convergence of apparent 
property, with increasing the size of RVE. It causes that the process of RVE size 
evaluation requires a very large number of numerical calculations, e.g. the finite element 
method analysis. 
 
     In this book a methodology developed and presented in a series of papers [35]-[39] is 
adopted for an estimation of the ensemble average (3.1) or (3.2). The sample is here 
considered as a set of a finite number n of RVE elements (Fig.3.1), each having the same 
finite size, "RVE, being a number of pixels in a row of RVE digital image. The ensemble 
average is then estimated as: 
 

 ( )1 1

1 1

1

RVE

n n

j j

j j RVE V

n n d
V

η η η− −

= =

≈ =∑ ∑ ∫ y y  (3.3) 

 
where ηj is a structural function corresponding to the j-realization of RVE and n is the 
size of the sample. 

 

Fig. 3.1. The graphical illustration of the notion of a sample 

 
     The crucial role in this approach plays a proper determination of the RVE size, "RVE, 
as well as the size, n, of the sample. The both values are related to each other, i.e. larger 
size of RVE then a smaller sample size n can be used or inversely smaller size of RVE 
requires necessity of larger size of the sample use. It has to be, however, underlined that 
the RVE size can not be as small as one may wish. There exist some critical value, a 
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minimum size of RVE, which can not be decreased if a proper estimation of the ensemble 
average has to be assured. In other words, use of the RVE size smaller than the critical 
one will improperly estimate the ensemble average (3.1), usually will result in an 
overestimation of this value. It appears also that the minimum size of RVE strongly 
depends on a type of a structural function, η(x; ω), considered.  
      
     The condition for the minimum size of RVE used in this book is such that it preserves 
a satisfactory replica of so-called 2-point correlation function ([20], [39]). Różanski, in 
his PhD thesis [38], has shown that this minimum size of RVE can be also successfully 
used for determination of effective mechanical properties of random composites. In fact, 
his result is much stronger: there exists a one to one mapping between the minimum RVE 
size preserving a satisfactory replica of 2-point probability function and the minimum 
RVE size corresponding to the effective transport properties, i.e.: 
 
 ( ) ( )( )2 pointK" " bε ε θ−=  (3.4) 

 
where: ( ) ( )2 point and K" "ε ε−  are the minimum RVE sizes corresponding to the 

effective transport property and the 2-point correlation function, respectively. Symbol ε 
denotes an assumed value of an error tolerance whereas 2 1/k kθ =  is a measure of a 

contrast in transport properties of composite constituents. Function ( )  b θ is defined as: 

 

 ( )
( )( )
( )( )

( )
2

1 2

2 2
1

1
  with  min ,

1

c a c
b a

a c

θ
θ θ θ

θθ

+  = =  
 −

 (3.5) 

 
where c1 and c2 are the volume fractions of constituents in a composite. 
     The relation (3.4) indicates that the RVE size corresponding to the effective transport 
property, estimated with the error tolerance ε, is equated to the RVE size corresponding 
to the 2-point probability function, estimated with the error tolerance ( )bε θ . Since 

( ) 1b θ ≥  and ( )2 point" ε−  is a decreasing function of ε, therefore: 

 
 ( ) ( )2 pointK" "ε ε−≤  (3.6) 

 
     The inequality (3.6) indicates that the RVE size resulting from the 2-point probability 
function can be always used for determination of the effective mechanical properties of 
composite media since it is never smaller than the minimum RVE size corresponding to 
the effective mechanical properties. 
     This innovative procedure of RVE size determination (Eq.(3.4) utilizes only the 
microstructure morphology that is contained within the 2-point correlation function, and 
therefore, it gives the possibility of RVE size determination with no large number of 
numerical calculations - the numerical analysis like those of Finite Element Method or 
other methods as Generalized Method of Cells [40] are not necessary. 
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3.1. Microstructure descriptors 
 

     Consider an M-phase random medium. The total volume of ς is partitioned into M-
disjoint random sets or phases. Let ςi(ω) denotes region occupied by a phase i. Introduce 
now a structure function η(x; ω), for phase i, such that: 
 

 ( ) ( ) ( ) ( )1,  if 
; ;

0,    otherwise
i iI

ω
η ω ω

 ∈
= = 



x
x x

V
 (3.7) 

 
The function introduced above is just the indicator function, i.e. for fixed x it has only 
two possible values: 0 or 1, depending on the realization ω.  
     For an M-phase random medium a following relation holds true: 
 

 ( ) ( )
1

1
M

i

i

I
=

=∑ x  (3.8) 

 
The expectation or probability of finding phase i at a chosen point, x, is then evaluated as: 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 , , 1i i iiS x I x I x p d P I xω ω ω ω
Ω

= = = =∫  (3.9) 

 
The above function is referred to as a 1-point probability function for phase, i, since it 
gives the probability to find phase i at position x. It is also referred to as 1-point 

correlation function for the phase indicator function, ( ) ( )i
I x . 

     We focus now on the n-point probability function, also called the n-point correlation 
function. This function denotes the probability that n points at positions x1, x2, ..., xn  are 

simultaneously found in phase i. According to its definition ( )i
nS  can be expressed in term 

of probability that the indicator function is 1 for all points x1, x2, ..., xn , i.e. 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 1 2, ,..., 1, 1,..., 1i i i i

n n nS P I I I= = = =x x x x x x  (3.10) 

 
or equivalently 
 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2, ,..., , , ... ,i i i i

n n nS I I I p dω ω ω ω ω
Ω

= ∫x x x x x x  (3.11) 

 
Above and in what follows, ω is omitted from the notation, for brevity of a description. 
     For composite media which are statistically homogeneous and, in addition, isotropic 
ones, the probability given by relation (3.11) is invariant under any translation and 
rotation of the space origin [20], thus  
 

 ( ) ( ) ( ) ( )1 2 12 1, ,..., ,...,i i

n n n nS S x x=x x x  (3.12) 
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where 
 

( ) ( ) ( )2 2 2

1 1 2 2 3 3
i j i j i j

ij i jx x x x x x x= − = − + − + −x x   (3.13) 

 
     Geometrical interpretation of 2-point and 3-point probability functions are sketched in 

figure 3.2. The 2-point probability for phase i, ( )
2
i

S , is the probability that two ends of a 

line segment of length r lie in ςi when randomly placed in the sample (Fig. 3.2). In the 

same manner the geometrical meaning of 3-point probability, ( )
3
i

S , for phase i can be 

easily formulated: it is the probability that all three vertices of a triangle are found in ςi 
when randomly placed in the volume ς (Fig. 3.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.2. Geometrical interpretation of 2-point and 3-point probability. 
 
     Hereafter, the primary attention is limited to the 2-point probability function, since a 
determination of the minimum RVE size used in this book is based only on this 
microstructure descriptor. One can interpret the 2-point probability function as a measure 
of morphology of phase distribution within composite medium, i.e. the information of 
how the end points of line segment of length r are correlated within the microstructure. 

The limit of ( ) ( )2
i

S r , for r→∞ , is equal to the square of the volume fraction of phase i. 

If this limit is reached before r→∞ , say for certain value *r r= , then the points within 
the microstructure with a distance larger than r* are not correlated. 
     The two-point probability provides, in addition, the information on specific surface s 
of the system which is defined as the interface area per unit volume of composite. The 
slope of S2(r), at r=0, is related to the specific surface s by a following relation [20,45]: 
 

 ( ) ( )2
0

4 i

r

d
s S r

dr =

= −  (3.14) 

     An example of the 2-point probability function is plotted in figure 3.3.  
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Fig.3.3 The 2-point probability function  for system of non-overlapping spheres; one function corresponds 
to composite with spherical inclusions of diameter D=0.22 pixels whereas the second one -  D=0.11 pixels. 
 
 
3.1.1. 1umerical estimation of 2-point probability function from digital 

image of microstructure 

 
In general, evaluation of the 2-point correlation function can be successfully 

performed by simple Monte Carlo simulations [20] i.e. by randomly tossing the line 
segment of length r and counting the fraction of times the end points are found in the 
phase for which the correlation function is evaluated. If one works, however, with a 
digital image of microstructure, this procedure can lead to a large computational cost. For 
an isotropic digitised systems, more accurate procedure is that one proposed in [43].  
     Consider a binary -M M×  pixels – an image of random microstructure. We attribute 
to each pixel only one of two possible values: 0 or 1. Therefore, the digital image can be 
expressed by a square matrix [ ]M M×A , in such a way, that each element of matrix A is 

equal to 0 or 1, i.e.: [ ], 1A i j =  if pixel “contains” the phase for which the 2-point 

correlation function is going to be evaluated. Indices i and j correspond to the localization 
of the pixel within the image and denote the number of a row and a column, respectively. 
Then, the 2-point correlation function for phase 1 can be expressed as: 

 

 ( ) ( )
[ ] [ ]( )1

2 2
1 1

, , [ , ]1
= ,           1, 2,...

2

M M

j i

A i j A i j r A i r j
S r r

M = =

+ + +
=∑∑  (3.14) 

 

     Geometrical interpretation of this procedure is as follows (Fig.3.4). The 2-point 
correlation function is evaluated by translating a line segment of length r (in pixels) at a 
distance of one pixel at a time and spanning the whole image. Each time the end points of 
r are located at the pixel centers. The number of successful events, such that two end 
points of line segment of length  r are found in phase 1, are counted and divided by the 

 

D=0.22 

D=0.11 
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total number of trials. Note that by the assumption of system isotropy sampling is 
performed only along two orthogonal directions: rows and columns. 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.4. Geometrical interpretation of numerical evaluation of the 2-point probability function 

 

 

3.1.2. Microstructure reconstruction based on 2-point probability 

function 

 
A reconstruction process of a microstructure consists in finding such realization for 

which the calculated 2-point correlation function, ( )�
2
i

S , best matches the “target” 2-point 

correlation function ( )
2
i

S  (note that ( )
2
i

S  is the phase i 2-point correlation function). 

Starting from some initial realization, preserving volume fractions of phases, the 

microstructure is evolved towards ( )
2
i

S  by minimizing an fictitious energy E, which at any 

time step, is defined as: 
 

 ( )� ( ) ( ) ( )
2

2 2
i i

r

E S r S r = −  ∑  (3.15) 

 
The minimization of E (at any time step) is performed by simulated annealing algorithm 
[44]. Namely, the states of two randomly chosen pixels of different phases are 
interchanged - white pixel is changed into black one, while black pixel is changed into 
white one. Interchanging the states of two pixels causes the change in energy, such that 

E E→ . The phase interchange is accepted with the following probability 
 

 
( )

1,                      0

exp ,  0E

E
P

E T E
∆

∆ ≤
=  −∆ ∆ >

 (3.16) 

 

"min 

r 

"min 

r 

"min 

r 

"min 

r 
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where: 

 E E E∆ = −  (3.17) 
 

and T is a fictitious temperature which its actual value is defined by the cooling schedule 
procedure applied. Starting with a high value of T the cooling procedure is performed. 
The cooling process which governs the value and the rate of T should be chosen to be 
sufficiently slow to allow the system to evolve to the desired state as quickly as possible 
without getting any meta-stable local energy minima [20]. Usually, the cooling algorithm 
is adopted in the form of geometrical series, i.e.  
 
 ( )   with  1k

oT k T q q= ≤  (3.18) 

 
A value of q is taken as 0.8 or 0.9. At each cooling step, say at actual value of T, the 
system is allowed to evolve long enough to thermalize, about 10000-20000 iteration, i.e. 
10000-20000 interchanges of pixels are performed. The solution is obtained as 0T → . 

 
At the starting point of the reconstruction algorithm outlined above a checkerboard 

microstructure is typically used. Such a microstructure is shown in figure 3.5, for 
different resolutions.  

 

 
Fig.3.5. Checkerboard microstructures corresponding to different number of pixels per 

row in a digital image 
 

Examples of microstructures reconstructed by the author’s own algorithm are 
presented in figures 3.6-3.8. The final picture of the microstructure reconstructed are 
presented together with pictures corresponding to some intermediate steps of the process. 

The microstructure shown in the figure 3.6 is characterized by a following target 
2-point probability function: 

 

 ( )( ) 2
2 1 1 1i

i i i

r r
S c c H c

d d

   = − − − +   
   

 (3.19) 

 
where d is a parameter characterizing a size of rectangular inclusions embedded in a 
matrix and ci represents a volume fraction of the composite constituent for which the 
target function is given. It has been assumed d=6 pixels, in the example studied in figure 
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3.6. The plot presented in the figure 3.6 shows a target 2-point probability function 
(continuous line in the plot) and that of the microstructure reconstructed (dots in the plot).  

 

 
Fig.3.6. Snapshots of the microstructure corresponding to some steps of reconstruction process. The 

target 2-point probability function defined by Eq. (3.19). 
 

The target 2-point correlation function corresponding to the microstructure shown in 
the figure 3.7 is: 

 

 ( ) 2
2 (1 )

r

i d
i i iS c c e c

−
= − +  (3.20) 

whereas  
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( )( ) 2

2

sin
(1 )

r

i d
i i i

qd
S c c e c

qd

−
= − +  (3.21) 

 
corresponds to the microstructure presented in the figure 3.8.  

The equation (3.20) and (3.21) characterize so-called Debye and modified Debye 
microstructure, respectively [20]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.7. Reconstruction of Debye microstructure. 
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Fig.3.8. Reconstruction of modified Debye microstructure. 

 
      The reconstruction process shown in the figures presented above has been done in 
2D. The algorithm outlined above can, however, be successively applied to 3D 
reconstruction of the microstructure.  
     It can be seen that the 2-point probability function contains enough morphological 
information to reconstruct the microstructure of random composites. Furthermore, from 
2D digital image of the microstructure one can always determine, using the method 
outlined in section 3.1.1, the 2-point probability function. Then a 3D reconstruction of the 
microstructure can be done using the reconstruction algorithm presented above. The 3D 
microstructure, reconstructed from 2D digital image of the microstructure, can then be 
used for an estimation of the effective properties of the composite medium. The crucial 
role, as has been discussed previously, plays a determination of an appropriate size of 
RVE. Solution to this problem is presented in the next section. 
     It has to be marked that the 2-point correlation function provides only some partial 
information on the microstructure, so the reconstruction process is not unique. In other 

  

  

89



 

words, the infinite number of microstructure corresponds to a given 2-point probability 
function. 
 
 
 

3.2. Minimum RVE size 
 

     The condition for minimum size of RVE, adopted in this book, is that one proposed in 
[42] and [38]. It is presented, in a slightly modified form, below: 
 
 ( ) ( ) ( ){ }2 poin t 1 2max , ,2 c" " " lε ε ε− =  (3.22) 

 
where ε is an assumed error tolerance, lc is so-called correlation length defined as: 
 

 ( ) ( ) 2
2 1

2
1

c

S r c
r l

c
ε ε

−
∀ ≥ ⇒ ≤  (3.23) 

 
The numbers ( ) ( )1 2 and " "ε ε are such that the following inequalities hold true, i.e.: 

 

 ( ) ( )
2

var
1, 2i

i

i

c
" " i

c
ε ε∀ ≥ ⇒ ≤ =  (3.24) 

 
The variance of volume fraction, ( )var ic , is related to the 2-point probability function 

and the size of RVE used by a following relation [38],[45]: 
 
2D case 
 

( ) ( ) ( )( )( )( )1 2 2 2
2 1 2 1 2 1 24

0 0

4
var

RVE RVE

RVE

" "

i i RVE RVE"
RVE

c S x x c " x " x dx dx
"

= + − − −∫ ∫  

 
 
3D case 
 

 

( )

( ) ( )( )( )( )( )1 2 2 2 2
2 1 2 3 1 2 3 1 2 36

0 0 0

                                                  var

8

RVE

RVE RVE RVE

i "

" " "

i RVE RVE RVE

RVE

c

S x x x c " x " x " x dx dx dx
"

=

= + + − − − −∫ ∫ ∫
  

 
The above relations together with the condition (3.24) lead to the following implicit 
equations for the numbers ( ) ( )1 2 and " "ε ε , i.e.: 
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2D case 
 

 ( )

( ) ( )( ) ( )( ) ( )( )
1 1

1 2 2 2
2 1 2 1 1 1 1 2 1 2

4
0 0

1 2
1

4
" "

S x x c " x " x dx dx

"
c

ε ε
ε

ε

+ − − −

=
∫ ∫

  

(3.25) 

 ( )

( ) ( )( ) ( )( ) ( )( )
2 2

1 2 2 2
2 1 2 1 2 1 2 2 1 2

4
0 0

2 2
2

4
" "

S x x c " x " x dx dx

"
c

ε ε
ε

ε

+ − − −

=
∫ ∫

  

 
 
3D case 
 

 

( )

( ) ( )( ) ( )( ) ( )( ) ( )( )
1 1 1

1

1 2 2 2 2
2 1 2 3 1 1 1 1 2 1 3 1 2 3

6
0 0

2
1

                                                               

8
" " "

o

"

S x x x c " x " x " x dx dx dx

c

ε

ε ε ε

ε

=

+ + − − − −

=
∫ ∫ ∫  

 
(3.26) 

 

( )

( ) ( )( ) ( )( ) ( )( ) ( )( )
2 2 2

2

1 2 2 2 2
2 1 2 3 1 2 1 2 2 2 3 1 2 3

6
0 0

2
2

                                                               

8
" " "

o

"

S x x x c " x " x " x dx dx dx

c

ε

ε ε ε

ε

=

+ + − − − −

=
∫ ∫ ∫  

 
 
     The relations (3.22), (3.23) and (3.25) (or (3.26)) allow for determination of the 
minimum size, "2-point, of RVE. It requires, however, numerical calculations. This 
problem is carefully discussed in the next paragraph. 
 

 

3.2.1. 1umerical determination of minimum RVE size 

 
     In order to evaluate the integral of the 2-point correlation function involved in the 

definition of the minimum size of RVE (Eqs. (3.25) or (3.26)), the Monte Carlo 
integration approach is convenient to use [38, 50]. Interested reader of the Monte Carlo 
method is referred to [47,48,49] for fundamentals and methodology of the approach. 
Hereafter, we assume that RVE is a square/cube consisted of 2" /"3

 pixels (square for 
2D whereas cube for 3D). 
     Consider the function g given by the following formula: 
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2D case 
 

 ( ) ( ) ( )( )( )( )2 2 2
2 2 1 2 1 2 1 24

0 0

4 " "
i

ig " S x x c " x " x dx dx
"

= + − − −∫ ∫  (3.27) 

 
 

3D case 
 

( ) ( ) ( )( )( )( )( )2 2 2 2
3 2 1 2 3 1 2 3 1 2 36

0 0 0

8 " " "
i

ig " S x x x c " x " x " x dx dx dx
"

= + + − − − −∫ ∫ ∫  (3.28) 

 
Note that a following equivalence holds true, i.e.: 

 

 ( )2
0

2
1

"

" t dt
"

− =∫  (3.29) 

 
which allows, in turn, to define a probability function: 
 

 ( ) ( )2

2
p t " t

"
= −  (3.30) 

 
Furthermore 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2 1 2 2 1 2 3 1 2 3,  or , ,p x x p x p x p x x x p x p x p x= =  (3.31) 

 
can be treated as the probability density functions in Ω  for 2D and 3D case, respectively. 
Introducing functions defined as:  

 

 ( ) ( ) ( )( )2 2 2
2 1 2 2 1 2, i

i
h x x S x x c= + −   

(3.32) 

( ) ( ) ( )( )2 2 2 2
3 1 2 3 2 1 2 3, , i

ih x x x S x x x c= + + −  

 
the integrals (3.27) and (3.28) can be interpreted, within the probability theory, as an 
expectation of functions h2 and h3, respectively: 
 

 

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

2 2 1 2 1 2 1 2 2 1 2

0 0

3 3 1 2 3 1 2 3 1 2 3 2 1 2 2

0 0 0

, , ,

, , , , , ,

" "

" " "

g " h x x p x x dx dx E h X X

g " h x x x p x x x dx dx dx E h X X X

= =

= =

∫ ∫

∫ ∫ ∫
 (3.33) 
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where { }E  stands for the expectation operator. 

According the Monte Carlo (MC) technique, evaluation of the expectation consists in 

generating random numbers ( )1 2,X Xα α  from the density function p(t) and then computing 

the mean of h2(x1, x2), (respectively ( )1 2 3, ,X X Xα α α  and h3(x1, x2,x3)) i.e.: 

 

 ( ) ( ) ( ) ( )2 2 1 2 3 3 1 2 3
1 1

1 1
,  and , ,

M M

g " h X X g " h X X X
M M

α α α α α

α α= =

≈ ≈∑ ∑  (3.34) 

 
where M stands for number of MC realization. 
In order to evaluate the MC estimator (3.34), pseudo random numbers from a non-
uniform distribution have to be drawn. Following [51] this problem is divided into two 
parts. First, a simple generator is used to generate uniformly distributed random numbers, 
which in a second step are transformed to follow the required distribution. This 
generation process is referred to as the inverse method. 
Note, the non-decreasing cumulative distribution function (CDF) of p(t) reads: 
 

 ( ) ( ) ( )2
2 2

0

2
1

X " X
Q X " x dx

" "

−
== − = −∫  (3.35) 

 
Note that the CDF always grows monotonically from 0 to 1, such that Q values are 
uniformly distributed. Therefore, the problem of generating the numbers of any 
distribution consists in drawing a uniformly distributed random number, say R", such 
that ( )R" Q X=  and, if the inverse function exists, setting ( )1X Q R"−= . It is evident 

that in the case of relation (3.35) the inverse function exists and has the following form: 
 

 ( ) ( )( )1 1X Q " Q X= − −  (3.36) 

 
The estimator of the integral (3.34) is therefore evaluated as: 
 

 

( ) ( ) ( )

( ) ( ) ( )

2 2 2
2 2

1 1

3 2 2
3 2

1 1

1

1

M
i

j i

j

M
i

j i

j

g " S X Q c
M

g " S X Q c
M

α

α

= =

= =

  
 ≅ −     

  
 ≅ −     

∑ ∑

∑ ∑
 (3.37) 

 
The values of Qj are obtained from the uniform distribution on the interval [0,1], while 

X(Qi) are the non-uniformly distributed random numbers determined via relation (3.36). 
 

The process of the minimum size of RVE determination, from the digital image of 
microstructure, can be summarized in the following steps: 

 

93



 

• having a digital image of microstructure, evaluate the 2-point correlation function 
of one of the phases, say phase i, using relation (3.14), 

• assume the value of error tolerance ε and determine the correlation length lc(ε) 
defined by the inequality (3.23), 

• using MC approach (Eq.(3.37)), outlined above, determine numerically g2(") 
(respectively g3(")) as a function of variable ", 

• evaluate values of "1(ε) and "2(ε) from the following equations (for 3D case use 
the function g3("), respectively): 

 

 
( )( ) ( )( )2 1 2 2

2 2
1 2

 and 
g " g "

c c

ε ε
ε ε= =  (3.38) 

• determine the minimum RVE size as (Eq.(3.22)): 

 

 ( ) ( ) ( ){ }2 point 1 2max , ,2 c" " " lε ε ε− =  (3.39) 

 

 

3.2.2. Evaluation of sample size 

      
     The proper estimation of the effective properties of composite media, as has been 
marked before, needs evaluation of the sample size, n, in addition to determination the 
minimum RVE size.  
     To begin with, let us recall some useful theorems:  
Theorem 1 (Weak Law of Large Numbers): Let X1, X2, … be a sequence of independent 

and identically distributed random variables, each with mean µ and variance σ2. Then for 

every 0ε > , 

 
1

1
limP 0

n

i
n

i

X
n

µ ε
→∞

=

 
− > = 

 
∑  (3.40) 

 

If Xi is a structure function η(x; ω) then the Weak Law of Large Numbers assures that the 

estimator (3.3) converges in probability to the expectation value (3.1) being the ensemble 

average of a structure function. The next theorem enables to determine the sample size, n.  

Theorem 2 (Central Limit Theorem): Let X1, X2, … be a sequence of independent and 

identically distributed random variables, each with mean µ and variance σ2. Let 

 

1

1

/

n

i

i
n

n X

Z
n

µ

σ

−

=

−
=

∑
 (3.41) 
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then 
nZ  converges in distribution to Z, where Z is a standard normal random variable. 

In other words, the Central Limit Theorem says that mean of independent identically 
distributed random variables can be approximated by a standard normal distribution, for a 
large number n. 
     The estimator of the ensemble average of the structure function η(x; ω), according to 
the equation (3.3), is defined as: 
 

 ( )1

1

1

RVE

n
app

j

j RVE V

n d
V

η η−

=

= ∑ ∫ y y  (3.42) 

 
This estimator should satisfy the following condition  
 

 ( ) 1
app

absP η η ε α− ≤ ≥ −  (3.43) 

 
where εabs>0 and 0<α are the absolute error and the significance level, respectively. The 
values of εabs as well as α are a priori known.  
The relation (3.43) can be transform to a following equivalent form, i.e.: 
 

 
( ) ( )

1
var var

app

absP
n n

η η ε
α

η η

 − ≤ ≥ −
 
 

 (3.44) 

 
Now, according to the Central Limit Theorem, the distribution of random variable 

( )var

app

n

η η

η

−
 can be approximated by the standard normal distribution, for large values 

of n, therefore the inequalities (3.44) implies:  
 

 
( )

1
2var

abs

n

ε α

η

 
 Φ ≥ −
 
 

 (3.45) 

 
or equivalently: 
 

 
( ) 2

1

2

var
1

2abs

n
η α

ε
−  ≥ Φ −  
  

 (3.46) 

 
where ( )*Φ  is the cumulative distribution function of standard normal random variable.  

In the descriptions (3.22) and (3.23) the error tolerance ε represents the relative error, 
therefore the inequality (3.46) is rewritten as:  
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( ) 2

1
2

2

var
1

2
n

η α

η ε

−  ≥ Φ −  
  

 (3.47) 

 
where 
 

 absε
ε

η
=  (3.48) 

 

     The inequality (3.47) defines the sample size, n, in term of the effective property, η , 

to be determined, still unknown. It appears, however, that the size of the sample required 
for assuring a satisfactory replica of the 2-point probability function is larger than that 
one required for evaluation of the effective mechanical properties of composite media. To 
preserve a satisfactory replica of the 2-point correlation function a following 
approximation can be applied [38]: 
 

 
( ) ( )
2 2

var var
4 i

i

c

c

η

η
≤  (3.49) 

 
Since the RVE size satisfies the inequality (3.24), i.e: 
 

 
( )
2

var
1,2i

i

c
i

c
ε≤ =  (3.50) 

 
therefore the sample size determined such that 
 

 
2

14
1

2
n

α
ε

−  ≥ Φ −  
  

 (3.51) 

 
assures a proper estimation of the ensemble average (3.1) of the effective mechanical 
properties of composite media. 
      
     The significance level is typically assumed as: 5%, 3% or 1% , which corresponds to: 
α=0.05, α=0.03 and α=0.01, respectively. These values, according to the table of 

standard normal distribution, imply: 1 0.05
1 1.96

2
−  Φ − = 
 

, 1 0.03
1 2.17

2
−  Φ − = 
 

 and 

1 0.01
1 2.575

2
−  Φ − = 
 

. Substituting these values to the inequality (3.51) leads to: 

96



 

 

5%

3%

1%

15.37

18.84

26.52

n

n n

n

ε

ε

ε

 =



≥ =



=

 (3.52) 

 
     The sample size, n, given by the above inequalities corresponds to the minimum RVE 
size. If the RVE size would be used larger than the critical one then the sample size can 
be decreased. In such a case, determine numerically, as has been presented in the 
previous section, the value: 
 

( ) ( )( ) ( ) ( )( )2 3

2 2 2 2
2

var var
 or i i

i i i

g " g "c c

c c c c

ε ε
= =  

 
and use inequalities (3.47) and (3.49) for evaluation of the proper sample size. 
According to the inequality (3.44), the correctness of the ensemble average estimator is 
assured only with some probability value. The significance levels assumed above imply: 
 

 
5%

3%

1%

0.95   for  

0.97   for  

0.99   for  

app n n

P n n

n n

η η
ε

η

≥ −  ≤ ≥ ≥    ≥

 (3.53) 

 
Of course, with increasing the sample size this probability will also increase.  
 
 
 

3.3. Procedure of numerical estimation of effective properties 
 

     The determination of effective mechanical properties of random composites from 
digital image of microstructure consists of the following main steps: 
1. determine the minimum size of RVE according to the method presented in the section 

3.2.1 
� having a digital image of microstructure evaluate the two-point probability 

function using the relation (3.14), 
� determine the variance of local volume fraction, var(ci), use the Monte 

Carlo approach, 
� set the wanted precision, ε, and evaluate the minimum size of RVE- use 

condition (3.22), 
� choose RVE size, "RVE, larger than or equal to the minimum one, 

2. evaluate, according to the methodology presented in the section 3.2.2, the sample size, 
n, for a chosen RVE size, 
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� set the significance level, α, and determine the sample size, n, according 
the relations (3.52), 

 
3. choose randomly n windows, "RVEx"RVE, from the digital image of microstructure, 
4. solve, for any chosen window, an appropriate boundary value problem using Finite 

Element or Finite Volume numerical procedure, 
� the appropriate boundary value problem for determination of transport 

properties reads: 
 

 ( )
( )

0 in j

ij RVE

i i

k V
x x

ξ
δ

 ∂ ∂  
+ =  

∂ ∂    

x
x  (3.54) 

   
 ( ) ( ) on j j RVE RVE" Vξ ξ= + ∂x x  (3.55) 

 
� the appropriate boundary value problem for determination of elasticity 

constants reads: 
 

 ( ) ( )1
0   

2
kh

ijlm lk mh lh mk ijlm lm RVE

i

D D in V
y

δ δ δ δ ε ξ
∂  + + = ∂  

 (3.56) 

 ( ) ( ) on kh kh

RVE RVE" Vξ ξ= + ∂x x  (3.57) 

 
 

5. evaluate the volume averaged value of the solution of the boundary value problem for 
each window 

� for transport properties 

 ( )1 1
1

3
RVE

j

j

RVE jV

K k d
V x

ξ ∂ 
= + 

∂  
∫ x x  (3.58) 

 
� for elasticity constants 

 ( ){ }1 1

3
RVE

kh

j ijkh kh ijlm lm kh

RVE V

K D D e d
V

δ ξ δ= +∫ x  (3.59) 

 

 ( ){ }12
12

1

RVE

j ij ijlm lm kh

RVE V

G D D e d
V

ξ δ= +∫ x  (3.60) 

 
 
6. determine the effective property  using the Monte Carlo estimator, i.e: 

1

1 n

j

j

K K
n =

= ∑  

1

1 n

j

j

G G
n =

= ∑  
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CHAPTER 4  
__________________________________________________________________________________ 

 

 

Final Remarks 
 

The chapter devoted to a micro-macro passage presents only a general methodology of 

upscalling of mathematical description of the processes taking place in composite media. 

The presentation is limited to the heuristic/engineering methods as volume averaging or 

micromechanics. Special attention is paid for a practical use of this procedure, so the 

transport processes as diffusion or heat conduction as well as the elasticity problem are 

discussed in details. 

The mathematical theory of homogenization is omitted in this book. The interested 
reader for the asymptotic homogenization method, two-scale convergence method, G- or 

H- or Γ- convergence method is referred to the exhaustive literature on the subject as, for 

instance, [1], [18], [20], [41].  

The analytical methods of effective properties estimation are mainly based on, so 

called, single inclusion solution. The final results presented in the book are valid only for 

ellipsoidal inclusions embedded in an isotropic matrix. The inclusion as well as the 

matrix considered in the book are assumed to be governed by the linear constitutive 

equations. Typically, such composite are called in the literature as the “linear 

composites”.  

The matrix anisotropy is still an open and challenging problem. The non-linear 

composites need a special treatment even analytical methods of estimation of effective 

behavior of such composites use a methodology and results stated for linear composites 

[3],[14],[19]. 

Strong development of powerful computers has been triggered in the last two decades 

a strong development of numerical procedures of composites’ effective properties 

determination. These techniques need mainly precise definitions of the Representative 

Volume Element and the Sample. This problem has been studied in details in the chapter 

3 of this book. The results presented in this chapter are really recent and original. The 

methodology proposed uses a 2-point probability function for determination of the size of 

Representative Volume Element and the size of the sample. The method is very fast, 

simple and efficient. Usefulness and correctness of this methodology has been proved by 

my PhD student, Adrian Różański, in his dissertation [38] in which a lot of different 

complex microstructures of random composites is investigated.  
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