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1. Dynamic Systems Modelling and Analysis

1.1. Differential Equation

Example 1.1 — Pendulum. Let us consider a pendulum, composed of a ball attached to a solid wire
(see Figure 1.1). The pendulum hangs down below the pivot point. Mass of the ball is m, | is the

wire’s length, s stands for the distance made by the ball from its resting equilibrium position, and y

denotes the angular displacement measured from the equilibrium position.
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Figure 1.1. Pendulum.

After being displaced from its equilibrium position and released, pendulum begins to swing back and

forth. Its motion may be described by changes of the angle y over time t. This description is given
by a function y(t). The question is: what does the function y(t) look like? For a given pendulum,
specified by parameters I,m and for the initial displacement, function y(t) should describe the

system behavior.
Later on we work out dynamic model of the pendulum in the form of differential equation and we
introduce a method of solving linear differential equations.

Model. We start analysis from the specification of forces that act upon a ball (see Figure 1.2). F, is
gravity, F, denotes its component tangent to direction of movement and F, stands for inertia. The
force of interest is F_, because it acts along the ball’s trajectory. Note that

F,=Fsiny(). (1.1)



For simplicity, let us assume that friction that acts in the pivot point is proportional to ball’s velocity:

ds(t)

F =k
" dt

) (1.2)

where k is constant of proportionality.

Figure 1.2. Forces acting upon a ball.

Now, we can apply the second Newton’s law of motion, which states that:

2
SE-mdSO,
: dt

where Z F, is the net force acting upon the system. Thus, we have:
i

d?s(t)

o (1.3)

F-F=m

Evaluating formula (1.1):
F, = F,siny(t) =mgsin y(t),
and substituting it, together with (1.2), to equation (1.3), yields:

ds(t) . d?s(t)
k—2_m t)=m—2.
dt gsiny(® dt?

Rearranging above formula in accordance with order of derivative gives:



d’s() K ds(t) iy -
a2 P +gsiny(t)=0. (1.4)

Variable s may be expressed it terms of y and |. Figure 1.3 illustrates that proportion between the

angle y and 2x radians equals to proportion between the sector s and the circle circumference

2zl :
y_.s .
27 2rl
The proportion given above results in:
s=ly.

Figure 1.3. Relation between the angle y and the distance s.

Equation (1.4) may be rewritten in the form:

d?y(t) k dy(t .
OO0 By -0

To simplify notation, let us use y'(t) to denote derivative of y with respect t:

y'(t)+a,y'(t) +a,sin y(t) =0, (1.5)

where

’

ya():%

ook
m
and initial conditions y(0) are known.
Equation (1.5) is the second order nonlinear differential equation describing motion of the pendulum
presented on Figure 1.1.

Note, that for small angles sin y ~ y holds, which allows to propose linear differential equation:



y'(t) +ay'(t) +a,y(t) =0. (1.6)

This equations describes the system behavior only for small displacements from the resting position.

Example 1.2 — Damper. Let us consider a forced mass-spring-damper system, composed of a block

attached to the spring and a dashpot filled up with liquid (see Figure 1.4). Mass of the blockis m, u
is the damping factor, k stands for modulus of the spring elasticity, y is displacement from the

equilibrium position and u is the force acting on the spring.

Figure 1.4. Forced mass-spring-damper system.

Model. The damping force generated by the dashpot is proportional to velocity of the block:

L0

u dt (1.7)

The spring generates a force proportional to displacement:
Fo=ky(). (1.8)
The net force acting upon the block equals to u(t) — F, — F, which gives the following form of the

second Newton’s law of motion:

2
u@—ﬁ—ﬁ:m%%g- (1.9)

Substituting (1.7) and (1.8) to (1.9) yields:



’

u(®) - 12—y - m X0

and applying % =y'(t):

my”(t) + 2 y'(t) + ky(t) = u(t).
Dividing both sides by m gives:

y(t)+ y(t)+ y(t) = —U(t)~

Denoting:

Mgk
& =",8= o’ b, = m

We obtain the second order differential equation:
y'(t) +a,y'(t) +a,y(t) =bu(t) - (1.10)
Compare models (1.6) and (1.10). The first model describes linearized unforced system, but left sides
of equations are identical. For u(t) = 0(t) both models are identical. Different physical objects have
similar description, which means that variables of both systems are related in the same way.
Therefore, analysis made on the model (1.10) applies for all possible systems that may be described

by this equation. Another example of the system with description (1.10) is RLC circuit. Interpretation

of variables is different, but model remains the same.

In general, differential equation is equation of the form (Bro06, Oga02):

d™y(t) d™ty(t) dy(t) JdYu(t) du(t) du(t)
( dtm dtm -1 dt y( ) dtv dtv,l U( ) (1 11)
Linear differential equation is particular example of the above equation:
m m-1
TX0 1, S0 e By
(1.12)

d'u(t d"Mu(t dut
=h, dts) +b,, dtvp+...+bl ()+bu(t)

where m>v holds.



Exercises

Exercise 1.1. Work out differential equation describing the process of hot cup of coffee cooling
down. Assume, that temperature of environment is constant during the process. As a time varying

variable take temperature of a cup of coffee y(t) . Initial value of this variable denote by y, = y(0) .

Exercise 1.2. Work out the model of commonly known RLC circuit, where R stands for electrical

resistance, L for inductance and C for capacitance. Potential drop across a capacitor equals to g,
Cc

where q is the charge on the capacitor. Applied voltage e(t) is an input and resulting current i(t) is

an output.
Exercise 1.3. Note similarities between models from exercise 1.1 and 1.2. Point out analogy between

variables and parameters of both systems.

1.2. State Vector Description

In order to relate variables defined in the system, the following state vector description may be used

(Oga02, Vuk03):
dx(t) _
Cdt Fx®.uw), x(0), u(t) (1.13)
y(t) = G(x(t), u(t))
where
x®(t) u®(v) yo ()
(2) (2) 2)
x(t)=| X :(t), u=| “ :(t)’ vy =| ¥ :(t)
x® (1) u®(t) y©

The vector x contains time-varying variables that uniquely describe system’s state. The vector u
contains input variables associated to external action upon the system. The vector y contains output
variables associated to the system action upon its environment. Vector functions F and G define
the system of state equations and output equations, respectively. Note that in contrary to
differential equations, the state vector description uses intermediate state variables X to express

relation between the input u(t) and the output y(t). There is differential equation relating u(t) and

X(t) and static function G describing the output signal y(t).

10



State equations have form:

B0 0 620, (OO 0,47 ..., u 0)
wz 100 XA O),... PO ©.u? O, uO )
dX:i(t) = fo (O X @), X O O O, O),... v )

and output equations have form:

yO ) = g, (x® @), x2t),..., xXP ©);u” ©),u@(t),...,u®(t))
y@ () = g, (X9 (), X2 (1),..., x® ©);u® (), u? 1),...,u (1))

yO 1) = g, (X9 (), x? @),...., x® t);u® (1), u® 1),...,u® 1))

Linear system is described by a particular form of state vector description (1.13):

? = Ax(t) + Bu(t)
, (1.14)

y(t) = Cx(t) + Du(t)

where A, B, C, D are matrices of the form: A e R¥R Be R Ce R“R, DeR"S.

Example 1.3 — Damper. Let us take differential equation (1.10) describing behavior of the forced
spring-mass-damper system. In order to describe it by state vector description, we introduce two
state variables:

x®(t) = x(t)

dx(t)

0 ="5

Variable x® stands for displacement and x? is velocity. These two time varying variables give full

information about the current state of the system. Now, we work out state vector description on the

® @)
basis of differential equation (1.10). It is required to find formulas for dxd ® and dxd ® as
t t

2

relations involving x®, Xx? and system parameters. The first formula is a consequence of state

variable definition:

11



(Y]
W) _ IO _ o).
dt dt

The second formula is derived from (1.10):

(2) @
OO L5 XTO 5 30 (1) = byu(t).

dt dt
which gives:
(2
dxdt(t) =—a,x? (1) —ax® (1) +bu(t)-

As the output we decide to take y® (t) = x®(t).

Eventually, we obtain state vector description in the form:

dx® (t) @

20 o
B xoq
(2)

PO __Kyom-£xom e tuw - (1.15)
dt m m m

y(t) = x®(t)

Equivalent matrix representation has the form:

dx) [ © 1 0
dt {—k/m —u/m}x(t){l/m}u(t) : (1.16)
yt)=[1 0Jx()

Example 1.4 — State vector description and SIMULINK. On the basis of state vector description it is
easy to implement the system model in SIMULINK environment, which is a part of MATLAB software.
Implementation of state vector (1.15) is illustrated in Figure 1.5.

The model is composed of pre-defined building blocks representing mathematical operations. Blocks

labeled by 1 are integrators and they integrate input value over time, beginning from the initial
S

value, up to the total simulation time. Initial values are set up in the block’s parameters window.
Outputs of these two blocks are values of x®(t) and x®(t) at the time t solved numerically by
Runge-Kutty method (Bro06). Another blocks allow to define constant parameters: square blocks
with no inputs give constant value as output (‘m’ is m = 2), triangle blocks are constant gains (‘k’ is

k=11land‘mu’is z=1.2).

12



There are also blocks that do summation, division, and multiplication (the ‘product’ block). The

‘clock’ block returns current time t. The group of blocks on the bottom left implement input signal

u(t) =e®"sint. Output signals x®(t) and x®(t) are illustrated in Figure 1.6.

i
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Figure 1.5. SIMULINK implementation of a forced mass-spring-damper system model.
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Figure 1.6. Solution of the model for initial conditions x® (0) = 3, x?(0) = 0.

Another view on the solution is given on the so called phase plane (see Figure 1.7) where axis stand

for state variables.

13



Note that there is no time axis. Current state of the system is represented by a point and trajectory
of this point represents systems behavior. Trajectory may be illustrated as a motion of a point or as a

trace of this point (which is the case in Figure 1.7). We observe, that oscillation of a mass-spring-

damper system driven by force u(t) =e®"sint tends to vanish.

(1)

xO (1)

velocity
hbue

angle

Figure 1.7. Solution of the model in the (x(l), X(Z)) phase plane.

Exercises

Exercise 1.4. Simulate forced mass-spring-damper system in SIMULINK for different initial conditions
and for different input signals: step, impulse, constant, harmonic. Draw solution in the time domain
and the phase plane. Could you decide when the system is stable or unstable?

Exercise 1.5. Simulate the so called Lotka-Volterra system describing relation between numbers of
two populations individuals: preys (x®) and predators ( x® ). It is assumed that the number of preys
grows exponentially and is reduced proportionally to the number of predators. Moreover, the
predators growth factor is proportional to the number of preys. State vector description of the Lotka-

Volterra system has the form:

B0 _ 3, -ax® ()
LU ORI

where a,,a;,h,,b, are constant parameters, characteristic for investigated pair of population. Try out

different initial conditions. Work out SIMULINK model of the Lotka-Volterra system.

14



For different values of parameters and initial conditions analyze its behavior on the time domain and
the phase plane. Does the system have any equilibrium states?

Exercise 1.6. Simulate the human heart dynamics using the Zeeman model of the form:

—dxz)t(t) —ax? (1) - x? () - (xO )]
AWM '
T =xY(t)-b

where x® denotes length of heart’s muscle fibers, x® is electrochemical stimulus’ strength, a
stands for effect of blood pressure and parameter b determines position of the equilibrium point.
Implement Zeeman model in SIMULINK. Analyze its behavior in the time domain and on the phase
plane, trying different initial conditions. Can you observe the so called limit cycle? Simulate the
system for different values of parameter a: a <0, small value of a>0, high value of a>0, and

different values of parameter b: b<./a/3 and b>,/a/3. On the (a,b) parameters plane draw

areas where the system is stable and unstable.

Exercise 1.7. A simplified model of the weather behavior proposed by Lorenz has the form:

dx® (t) _ O'(X(Z) ()= x® (t))

dt
dx(t) _ O () —x@ — xOx©
dX:i(t) = xOx@) _ gy© 1)

where x@ is velocity of the air ascendance, x® is the difference between ascendant and
descendant air columns temperatures, x® is a measure of deviation of x(t) over time from
linearity, o, p, B are constant parameters. Work out SIMULINK model of the Lorenz system taking:

o =10, p=28, #=8/3. Analyze its behavior in the time domain and on the phase plane. How to
visualize three dimensional trajectory covered by the system? Compare two trajectories with slightly
different initial positions. Do they stay close to each other as long as time goes by? Try also to
analyze the system with p e [145,170].

Exercise 1.8. Work out state vector description for inverted pendulum on a cart (see Figure 1.8),

described by following set of differential equations:

15



(M +m) 320 d°00 ml(d'z:t))zsin o) = F (1)

2 2
d2a(t) § 1dc: 2(t) ’ 147
re =Igsin 0(t)+i e cos o(t)

where X — position coordinate along the road, & —angular displacement, F —force driving the cart,

m — mass of the block, M —mass of the cart, | —length of the wire, g =9.81- gravity constant.

m [

Figure 1.8. Inverted pendulum on a cart.

Work out SIMULINK model of the system and analyze its behavior in time domain and on the phase

plane. Try out different values of parameters and different functions F(t) describing driving force.

1.3. Transfer Function

The Laplace transform relates functions f(t) of real variable t with functions F(s) of complex
variable s. Laplace transform is defined as:

df

F(s)=2[f O] 2 [ 1()-et, (118)

where f(t)=0 fort=0.

Inverse Laplace transform is defined as:

16



df 1 C+ joo

f(t)=<[F(s)]= == [F(s)-e"ds. (1.19)
21 %,

Example 1.5 — Working out Laplace transform using definition. Let us evaluate Laplace transform for

function f (’[) =e™, where a € R is constant parameter. Following definition (1.19), we obtain:

0

%[eat] — Teat . e—stdt — Teat—stdt — Te—t(s—a)dt — ]')e—t(s—a)dt - Le—t(s—a)
o

s—a
- _ 1 (e—t(s—a)

”) __ 1 (efao(s—a) _eo-(s—a)).
0 S—a
Solution exists only if real part of (S—a) is greater than 0, which holds if Res>a. Then we have:

_ L (e o)1 0-1 Lt
s—a(e ¢ ) s—a( ) s-a’

o o o 0
S—a

Eventually we obtain:

1

bf[ea']:a.

For functions commonly used in systems analysis mathematicians worked out Laplace transform and
put results in tables, such as Table 1.1. Instead of performing integration, we may read out the
transform directly from the table. Note, that we may also read the table backwards, i.e. for given

function F(S) the table gives original function f (t). The question arises: how to work out Laplace

transform of more sophisticated functions, that are not found in the Laplace transforms table?

In order to do this, properties of Laplace transform may be applied.

Laplace transform properties. Laplace transform has following properties:

Property 1. Linearity: %[al fl(t)+ a, fz(’[)] = alf[fl(t)]+ a,zi[fz(t)] = 31F1(5)+ aze(s),
where a,, @, € R are constant parameters.

Linearity property is a direct consequence of integral property.

17



Table 1.1. Table of commonly used Laplace transforms.

f(t) F(s) f(t) F(s)
2as
S(t) 1(s) tsinat IR
(s?+a?)
s’ —a’
1(t) L tcosat 5
; e’
e b e*sinbt T 2
s—a (s—a)® +b?
sinat a at bt __s-a
s’+a’ & cos (s—a)® +b?
n
cosat > > > t—, neot” %
s“+a n! S
t" 1
at > e
e n!, neco/ (S_a)n+1
Property 2. Differentiation: %[f (”)(t)] =s"F(s)—s"'f (O)— "2 f'(0)—...— £ 2(0),

where f™(t) is the n-th order derivative of function f(t) and f(0), f'(0),..., f "™ (0) are initial
values.

Note, that when initial values are all equal to zero, we have simple rule to remember:

2O (t)]=5s"F(s).

Now, we prove the differentiation property in the case N =1: Z[f'(t)]=sF(s) - f(0).

Following the Laplace transform definition (1.18), we may write: %[f '(t)] :J f'(t)e™dt. By making
0

use of integration by parts, where h(t) =e™, h'(t) = —se™™, we obtain:

18



j f'(t)e'dt = f (h(t)|, - j f(t)h(t)dt—f(t)e’s‘ j f (t)(~ se ).

Assuming Res >0 gives: f(t)e™ — f(0)e™*° + SI f(t)e™'dt =sF(s)— f(0).
0

t
Property 3. Integration: :ZD‘ f (T)d r} = % F(s).

1
Recall, that in SIMULINK the integration block is labeled by —.
S

d
Property 4. Multiplication of a function by t: Z[if (t)]= s F(s).
S
Now, we present short proof of the property above:

d d —st ©d —st T —st K —st C
—Ebf[f(t)]:—g_f[f(t)e dt:—gEe f(t)dt:!te f(t)dt:_gtf(t)e dt = <[tf (t)].

Property 5. Division of a function by t: &fl: } J‘F(S) ds .

Now, we present short proof of the property above:

j Z[f@)]ds = | ( [f (t)e‘s‘dt]ds = j f (t)( | e‘s‘dstt = j f (t)( ( e
10w o 10]
o I t

Property 6. Multiplication of a function by €*: ;‘Z[eat f (t)]z F(s—a).

]jdt - j f (t)(O 1 e‘s‘jdt -

Property 7. Change of time scale: Z[f (at)] = 1 F(EJ, where a>0.
a a

Now, we prove the property above. Following the Laplace transform definition (1.18), we may write:

19



<Z[f(at)] .[f(at)e’s’dt Taking X = at we obtain: j f(x)e ag X :é j f(x)e’?dx:%FGJ.
0

Property 8. Delay: Z|[f(t—t,)-Ut—t,)] =" F(s).

Now, we prove the delay property. Following the Laplace transform definition (1.18), we may write:

Z[ft-t,)-1t—t)]= jf(t—to)-l(t—to)e‘s‘dt:jf(t—to)e‘s‘dt.Taking T =t—t, we obtain:

0 to

T f(r)eC*dt = T f(r)e e vdr= e-S'oT f(re"dr=e " Z[f(t)]=eF(s).

0 0

Property 9. Convolution:
Z[f,0)* f,0)]= { [ft-o)f (r)dr} = Z[f,O)[f,O]= RE)F.©),

where f,(t) * f,(t) is convolution of functions f,(t) and f,(t).

Now, we prove the convolution property. At the beginning note, that f,(t —7z)1(t —z) =0 holds for

7 >1, which was assumed while defining Laplace transform (1.18). Following the Laplace transform

t 0
definition (1.18), we may write: [ f,(t—7)f,(z)dz = [ f,(t— )Lt - 7) f,(z)d7 . Then:
0 0

¢ jfl(t—r) f,(r)dr |=< Tfl(t—r)l(t—r) fz(r)dr}:Te‘s‘ﬁ f.(t— D)t —7) f,(z)d7 [dt

Substituting t —7 = A and changing the order of integration gives:

& jf(t—r)f(r)dr

O'—.S

f,(t—7)a(t—7)f,(r)e “dt j f,(r)dr = j f,(A)e ¢+ d/lj f,(r)dr =

f,(A)e**dA j f,(r)e*"dz = Z[f,(t)|Z[f, ()] = R (s)F,(s).

o'—.s .

Example 1.6 — Using table of Laplace transforms. Work out Laplace transform of function
f(t)=3e™ +5sin2t —4.

With use of linearity property no. 1 together with table 1, we write:

20



s+2 s*+4 s’

[3e +5sin2t — 4]=37[e * |+ 5¢[sin 2t] - 42 ] = 3Si +5

2 13 10 4
+2 s?+4 s

Let us consider linear system with zero initial conditions, where dynamic relation between input

u(t) and output y(t) is described by differential equation (1.12):

d™y(t d™ty(t d
(_jtynf)+amf1 dtn{f)+...+a1 i’j()+a0y(t)

du) 47 | du(t)
b b
g TP g e th

(1.20)

+byu(t).

To transform both sides of this equation:
Lly™ ) +a,,y ™ @) +...+ 2y ) +a,y®)]= Z[ou® @) +b, ,u¢ P @) +...+bu'(t) + bu(t)].
Applying linearity property yields:

2y )+ a,, 2y P O]+ ...+ a2y ]+ a2 [y®)]=
=b, 2 ®)]+b, . L O]+ ...+ b L [u )]+ b u(t)]

Applying differentiation property no. 2, with zero initial values assumed, gives:
s"Y () +a, ,S"Y(S) +...+aSY(s) +a,Y(s) =b,s'U(s) +Db, s U(S) +...+bsU(s) +bU(s).
Pulling Y (s) and U (s) before the bracket gives:

Y (s)(sm +a,,S"" +...+as+ a0)= u (s)(bvsv +b, s +...+bs+b, )
The transfer function K(s) of linear system with zero initial conditions is the ratio between Laplace

transform of the system output and the system input:

b;s'
“Y(s) _bs'+b, s+ +bs+by ; ' )
U@s) s"+a,,s" +...+as+a, sm+Eavs‘

K(s)= (1.21)

Example 1.7 — Evaluation of transfer function from differential equation. A linear system is

described by differential equation:

0B y0)= L0 . (122)

Passing both sides by Laplace transform gives:
S2Y (s) +3sY(s)+2Y (s) =sU(s) +2U(s)-

Pulling Y (s) and U (s) before the bracket gives:

21



Y (s)(s2 +35+2)=U(s)(s+2)-
Rearranging above equation gives transfer function:

Y (s) s+2
—t == = =K(s).

U(s) s®°+3s+2 ©) (1.23)
Note, that description (1.23) makes sense for the system (1.22) only for zero initial conditions.
Example 1.8 — Evaluation of differential equation from transfer function. A linear system is

described by following transfer function:

K(s) =$- (1.24)
We ask about differential equation describing the system:
AMONSRI
U(s) s+1
Cross multiplication gives:
Y (s)(s+1)=U(s),
which is
sY(s)+Y(s)=U(s).
Now we may deduce original difference equation:
YO y0 -0 (1.25)

Let us take a closer look at solution (1.23) of example 1.7:

s+2 s+2 1
$?+35+2 (s+2)(s+1) s+1

K(s)=

We observe that two different differential equations (1.22) and (1.25) have the same transfer
function. Transfer function loses some information about the system. Differential equation is more
accurate description, however, transfer function is more convenient. When dealing with complex
systems, that are composed of many input-output dynamic elements, it is easy to work out the
complex system model on the basis of its elements transfer functions.

Example 1.9 — SIMULINK model. Consider a system described by transfer function (1.23):

2

K(s)= % SIMULINK implementation of the system is illustrated in Figure 1.9. Two vector of
s*+3s+

parameters were set up in the ‘Transfer Fcn’ block parameters window. The first one, [1 2], is for
nominator and the second one is for denominator [l 3 2]. As an input signal, Dirac delta &(t) is

applied. For such an input signal the output signal is called impulse response (see Figure 1.10).
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Step Derivative Transfer Fcn

To Workspacé

Scope

Figure 1.9. SIMULINK implementation of a system described by transfer function (1.23).

0,05 7 y(¢)
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time

Figure 1.10. Impulse response of a system described by transfer function (1.23).

Exercises

Exercise 1.9. Find Laplace transforms of the following functions:
a) f(t)=cos3t—2 d) f(t)=e?sint+5(t)

b) f(t)=%(0052t+tsint) e) f(t)=3t%™

4t

e' —¢' f) f(t)=2t*-t%™

—e
) f(t)= %
Exercise 1.10. Proof: — linearity, — differential, — integration, — multiplication of a function by e,
properties of Laplace transform.
Exercise 1.11. Linear system fed up with step function u(t)=1(t), returned the output signal

y(t) =e™". Work out the system’s transfer function K(s).

Exercise 1.12. Work out transfer function of forced mass-spring-damper system described by

differential equation (1.10).
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Exercise 1.13. With use of SIMULINK implement models of systems described by transfer functions
(1.23), (1.24) and differential equations (1.22), (1.25). Compare their responses for different input

signals. What do you observe?

1.4. Linear Systems Analysis

In general, we treat the system as a black box with input u(t) and output y(t) (see Figure 1.11).

Dynamic relation between input and output signals may be expressed it terms of state vector

description, differential equation or transfer function.

u(t) y(®

System F——>

Figure 1.11. An input-output system.

The task of system analysis is to find output signal y(t) (system’s behavior) for a given input signal
u(t) (describing our activity upon the system). Having differential equation describing system’s
dynamics and initial conditions determining system’s state at the beginning of the dynamic process,
we ask about an unknown function y(t), which is solution of differential equation. Thus, the task of

system analysis reduces to solving differential equations describing the process.

The procedure of solving differential equations using Laplace transform involves the following steps
(Bro06):

Step 1. Pass both sides of differential equation through Laplace transform. As a result, algebraic
equation of complex variable is obtained.

Step 2. Rearrange algebraic equation in order to find formula for transform Y (s) of unknown
function y(t) . As a result, rational function of complex variable s is obtained.

Step 3. If needed, apply partial fraction decomposition of rational function worked out in the
previous step.

Step 4. Apply inverse Laplace transform in order to find solution y(t).

The procedure described above applies for linear differential equations only.
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Example 1.10 — Solving linear differential equation.

Let us consider an input-output system described by following differential equation:

d?y(t)
dt?

Fy®=u().

Let us analyze the systems’ behavior activated by input signal u(t)=cos2t from zero initial

conditions: y(0) = dy_(tO) =0 . What does the output signal y(t) look like?

d

The problem reduces to solving unknown function y(t) from differential equation:

d?y(t)
dt?

+y(t) =cos2t.

At first, we pass both sides of the equation above by Laplace transform:

2 0.y |- fosar)

Applying linearity property yields:

‘%{d;)t/§t)j|+%[y(t)]=,:{,[cos 2t].

(1.26)

Using differentiation property for the left side and Laplace transform table for the right side gives

algebraic equation:

s
s? 422

SZ(Y (s) —sy(0) — %j +Y(s)=
Since all initial conditions are zero, we have:
SY(S) +Y(8) = >t
s? 422
Taking Y (s) before the bracket gives:

Y(s)(s2 +1): SZS+4 .

We obtain rational function:

S

YO aE

which partial fraction decomposition has the following form:

S As+B Cs+D
=72 2 =2 +— ’
(s°+4)(s°+1) s°+4 s°+1

Y(s)

(1.27)
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where A B,C,D are coefficients to be determined in such a way, that equation above holds true. To

determine values of these coefficients, let us multiple both sides by denominator (S2 +4)(S2 +1):
s=(As+B)(s? +1)+(Cs + D)(s? +4).

Brackets multiplication gives:

s=As®+ As+Bs? + B+Cs® +4Cs + Ds? +4D.

After elements of the same order are joined:
s=(A+C)s’+(B+D)s*+(A+4C)s+(B+4D).

The equation above holds still if and only if the system of equations:

A+C=0 (a)
B+D=0 (b)
A+4C =1 (c)
B+4D=0 (d)

holds true. By subtraction of equation (a) from (c) and equation (b) from (d):

{3C:1 (©)-(a)

3D=0 (d)-(b)

we find that D=0 and C=1/3. Then, from (b) we find that B=0 and from (a)we have
A=-1/3. Going back to expression (1.27), we may write its form after partial fraction
decomposition:

S 1 s 1 s

Y(s)= =—= += .
©) (s?+4)(s*+1) 3s*+4 3s?+1

Now, it is easy to apply inverse Laplace transform:

vo-2 @l et e et o

7_—+_—
3s°+4 3s*+1 3 s?+22] 3 s?+1

Eventually, using Laplace transforms table backwards, we obtain solution of differential equation

(1.26):
y(t) = —%cos 2t + %cost. (1.28)

As a result of analysis we found that considered system, driven by the signal u(t) =cos2t from the

zero state, responds with the signal y(t) = —1/3cos 2t +1/3cost .
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Exercises

Exercise 1.14. Work out numerical solution of differential equation (1.26) and compare it with the

exact one (1.28).

Exercise 1.15. Solve following differential equations:

d2y(t . d3y(t d2y(t dy(t .
a) d¥§)+4y(t)=5|nt, g d)t/3() 3 d)tlz()+3 )(lji)+y(t)=66‘
zero initial conditions zero initial conditions
d* dy@® . d®y(t) d?y(t) |, dy()
b) T ae = cost, h) S +92 it +14y(t) = smt,
zero initial conditions ¥(0) =0, d)(/j(tO) 1
dy(t) d2y(t) . dy(t)
t _ 43
02 a TYo= i) G 3 TRy =4,
0)=4
y(0) y(O)=2, dy(0) _g
dt
d2y(t . . diy(t 39t dy(t
d) d>t/2( ) +4y(t) =3sint +10cos 3t , i) d¥3( ) d>t/2( )3 )éi ) _ y(t) =t%"
dy(0) dy(O) d’y(0)
0)=2, =3 alliP A \f
yO)=2=4 yO) =1, == =2—5==3
2 2
e) d yz(t) 0] +5y(t) =3e7%, k) d yz(t) —y(t):e"(t2—3t+3),
dt dt dt
y(0) =1 d3/(0) _1 y(0) =1 dY(O) -1

d’y(t) _ dy(t) du(t)
=g ——q ~HO+3==4~-u0

zero initial conditions

2 3,
Exercise 1.16. Try to solve differential equation d d)tlz(t) +y(t) = ddligt) for zero initial conditions. Use

analytical method and numerical (in SIMULINK). Do you find anything wrong about this equation?

Exercise 1.17. Work out step response u(t) =1(t) of linear system described by the transfer function

1

KO=g1
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Exercise 1.18. Work out impulse and step responses of a system described by differential equation:

d?y(t) +2dy(t)
dt? dt

+y()=u(®)-

1.5. Nonlinear Systems Analysis

Analysis of nonlinear systems is more challenging problem, due to limited possibilities of solving
nonlinear differential equations. There are some analytical methods, but for most nonlinear
equations that arise in practice only numerical solutions may be obtained. However, it is possible to
work out linear approximation of nonlinear system around a given state (usually called set point).
Usually set point is chosen as an equilibrium state of interest. Results of linearized system analysis
also apply for original nonlinear system in the neighborhood of a set point. For example, the stability
of nonlinear system may be stated on the basis of its linear approximation around a set point of
interest. Control algorithms may be designed for linearized systems and they should perform well as
long as the systems’ state stays close to the set point. If the systems goes far away from the chosen
set point, it should be linearized once again for different set point.

One of the simplest linearization procedure (Vuk03), based on the Taylor’s expansion, is given below.

Let us consider nonlinear system with the state vector description:

dx(t) _
e F(x@®),u() (1.29)
y(t) = G(x(t),u(t))

Nonlinear functions F,G are vector functions of the form:

fl(X(t)! U(t)) gl(x(t)v U(t))

Fx.u)-| OO G- | HHOUO)
i (x(®),u() 9 (x(),u()
]
Let us denote a set point of interest by: [7} _ x®
al |a®
U;S)
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Linear approximation of the system (1.29) has the general form:

? = Ax(t) + Bu(t)
, (1.30)

y(t) = Cx(t) + Du(t)

where A,B,C,D are matrices containing constant number determined using the following

definitions:
of, ot |
(] (R)
= OX OX
P L s
X u=u afR afR
ox®W ox® |ix
- “u=u
[ of, _of, |
ou® ou®
S L .
ulss | ofe g
au® U |iex
- “u=u
[ &9, 9, |
oG oxW ox®
=== =] - (1.33)
OXpx | 09, 9,
| ox® X Jix
[ 09, o9, |
® ()
G ou ou
o8| ML s
UR 09, o9,
ou® ou® |z
Example 1.11 - Linearization of state vector description.
Let us take a system described by the following state vector description:
dx® (t 2
—dt( ) _3x® (1) + xO 0)x2 (1) + (A (1)) —(u(t)?
) i
_dxdt(t) = —2x (1) + e sin X (1) + 2u(t) (1.35)

y(t) = x® () +u(t)

State vector for the system above has two dimensions:

X(0) = {Xw “’},, and u(®) =[u(o)].

x@(t)
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Functions F,G also have two dimensions:

F(x(),u(t))= [ :((f(((?) Ei?)ﬂ G(x(),u(®) =[g(x(),u))]

where functions f,, f,, g are:

f,(x(8),u(©) =3x? @) + xO Ox? @) + (x2 @) ) - () ?
f,(x(t), u(t)) =—2x@ (t) + eV sin x® (t) + 2u(t)
g(x(),u(t))=x® () +u(t)

Matrices introduced in (1.30) have the form given by (1.31)-(1.34):

af1 8f1 ﬁ
® @
A OX OX B ou co ag g b g .
- S T ax® ax®@ e’ T | au fxx (1.36)
8f2 8f2 % u=u u=u
x®  ox®@ |x=x ou |x=x
Components of these matrices are evaluated as:
of (2) of @ (2)
ax‘ll) =x%u(t), ax(lz) =3+ xY(t) +2x (1),
6f _x(2 af _x(2) .
6X(21) =-2+e" Wcosx?(t), 6X(22) =—e7 Usinx®(t),
N ouy, Moo,
ou au
0
9 21, %8 _o, By
ox® ox? ou
Introducing the formulas above to (1.36), we obtain description of linearized systems:
dx(t) xA(t) 3+ xO(t) +2x2(t) <) +] 2u(t) u(t)
dt | -2+eOcosx@(t) —e*?OsinxO(t) |xx 2 |xx
-0 v (1.37)
y®=[L oJx®+u(t)
x@ 1 [0
As an example, we chose the set point as the zero vector: | x@ |~ | |-
a 0
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For this particular point the system (1.37) has the form:

dx@) [0 3 0
T{—l o}x(t){z}u(t),

y®) =[ 0Jx(t)+u(t)

Exercises

Exercise 1.19. Linearize the system below:

dx@(t) X@ (t)
dt 1+ (x2@)f + (x2)f
dx®

—dl(t) —uxO )1 xO 1))

—u(t)sinu(t)

y® =x2Ox? 1) +(u®) -1

x® 0
around the zero set point: | x@ |=|q |-
) 0

Exercise 1.20.

Linearize the state vector description of inverted pendulum, obtained when solving exercise 1.8
around the unstable equilibrium position (zero angle of displacement and zero angular velocity).
When the system is more sensitive to control actions and disturbances: for long or for short

pendulum?
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2. lIdentification

Identification is the term describing mathematical tools and algorithms to build models of real
systems from measured data. These models are significant in many disciplines. They can be used to
formulate both new research and engineering problems. The models are useful for system analysis,
to get better understanding of the real systems (Bub80, Nel01).

In Figure 2.1., the process of model development and its applications is illustrated. In order to build a
model of a real system, the process or phenomenon investigator collects measured data, information
and observations. Then, applying identification tools and algorithms model of the real system is
obtained. It must be stressed that the first results cannot be satisfying for investigator. In Figure 2.1,
the process of model improvement is indicated in a block comparison and adaptation.

The real system model can be useful for formulating some new investigation problems, control and
management. Other problems, in which models may be helpful, are related to diagnosis or fault
detection.

Effect:

i - I
Hypothesis - ’\';‘:V‘CV;Z?]\:V edge,
Methods, algorithms: ) Managemlent rolls.
- Projects : !

> Review - New controllers,
- Management - Measurement and
- Control diagnostic devices.
- Diagnosis
Identification
system
Investigator
Goal:
- investigation,
- project, X
- management, Comparison
- control,
- diagnosis,

Adaptation

Figure 2.1. The Model in a System Analysis.
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As the result of findings mentioned above problems, we have obtained some hypothesis and
methods for new control, management and diagnosis algorithms. After verification of acquired
outcomes, we have some new knowledge on investigated real systems. Developed control and
management algorithms are applied in a design process of new controllers and management systems
(Figure 2.1).

2.1 Determination of the System Parameters

Let us assume that we have a static system characteristic of the identification system (Figure 2.2) but
we do not know its parameters (Bub80).

u
n Identification Vi
system

Figure 2.2. The identification system.
The problem formulation:
The static system characteristic: y = F(u,6);
F - known function;
U - input vector U e % < R*, Y - input domain;
y - output vector Yy € & < R, Y - output domain;
6 - unknown vector of the system characteristics parameters 8 € © — RR ;

® - parameters’ domain.

As it was mentioned, in order to determine some parameters of the static system characteristic
y= F(u, 9), collected data are needed.

In this case we assume, that we have noise free measurements, which means that these collected
data are some selected points in the static system characteristic (Figure 2.4). In this case our problem
is to determine parameters of the static system characteristic. Next few examples illustrates main
issues connected with this problem.
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Yo | f

Figure 2.3. The static system characteristic.

Example 2.1 — Determination of the system parameters. Let us assume, that we have the static
system characteristic described by the following set of equations:

Yy = gy 4 gY@

. (2.1)
y(2) — Hél)u(l) + 92(2)u(2)
As a result of an experiment, the following data are collected:
Table 2.1. Measurements for 1.1.
n 1 3 4 5 6
u® 1 0 -1 -1 1 2
u®@ 1 1 1 -1 0 1
yY 0 1 -2 0 1 1
y? 5 3 1 -5 2 7
The problem: To calculate some parameters of the static system characteristic (2.1).
The solution:
A given description of the system can be rewritten in the form:
y=6u, (2.2)

where:
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® @ © g

u g’ 6,

u=l o, [y= y(z) 0= ol (2.3)
u y 0" 6

In the first step we have to decide, how many measurements are needed to solve the given

problem. As we know, to calculate unknown parameters of the static system characteristic (2.1),
following condition must be fulfilled:

NxL>R, (2.4)

where:

N - number of measurements;

L - dimensionality of the output vector;

R - dimensionality of unknown vector of parameters for the static system characteristic.

Because, in our example, L =2, R =4, it means that the minimal number of measurements, which
are needed to solve the problem,is N =2.

In the next step we have to select N = 2 measurements from the table 2.1, which fulfills identification

conditions. It means that for matrix of input measurements U, we must obtain:

det(U, )=0. (2.5)

Let us choose from table 2.1 measurement N =1 and n=4. Matrix U has form:

T
= . 2.6
T P (2.6)
The identification condition can be verified in the following way:
1 -1
det(U, )= =0. 2.7
Uy) L _J (2.7)

The obtained result means that for selected measurements (N=1 and N=4) it is not possible to
find the solution: a proposed sequence does not form identifiable sequence.
Let us try with a new set of measurements: N=2 and n=5. Determinant of U, is as follows:

01
det(U, )= L 0} =-1. (2.8)

Because det(U, )= 0 means that we have found identifiable sequence, it can possible determine a

set of parameters of static system’s characteristic (2.1).
In the next step we have to determine identification algorithm, to calculate unknown parameters of a
given characteristic (2.1).
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Let us rewrite an equation (2.2), taking into account that N =2
Y, =6U,, (2.9)

where:

YZ:[yl yz],U2=[Ul uz]l (2.10)

©) ® &) )
yl y2 ul u2
= y = , u, = ’u = . 211
yl |:y£1):| y2 |:y£1):| 1 |:U£1):| 2 |:U£1):| ( )
In order to determine @, we have to solve the matrix equation (2.9):
Y,U;'=6U,U;" (2.12)

and

Finally, the algorithm to determine vector of parameters & has the form:

6=Y,U;". (2.13)

Now, we can substitute in (2.13) measurements N =2 and N =5. As the result, the following matrix

-1 1[0 17!
0= , (2.14)
3 2||1 0
and then we can get this solution:
-1 1[0 17" [-1 1[0 1] [1 -1
6= = = . (2.15)
3 2||1 0 3 2||1 0 2 3

Verification of the solution:

equations are obtained:

Let us choose N=1 and N=6. We can verify obtained results substituting in matrix U, (2.9) data

n=1, n=6 and check that the determined values of the output are the same, as in the table 2.1:

[t -1 2] fo 1
212 31 1|75 7/ (2.16)

It is easy to notice that the same results will be obtained for other measurements set, providing that
they form identifiable sequence.

Example 2.2 — Determination of the system’s parameter. Let us assume that we have some static
system characteristic described by following equation:

y=0Y +6%u +6®u2. (2.17)
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The problem: To determine the parameters of the given characteristic (2.17) for the following set of
measurements:
Table 2.2. Measurements for example 2.2.

n 1 2 3 4 5 6
u -2 2 0 -1 3 1
y 9 25 5 4 44 12

Let us rewrite (2.17) in the form:

y= [9(1) Pl 9@)] Llj (2.18)
u?
Substituting:
o = [6(1) 9@ 9<3>] '
and
fu)=b vl (2.19)
we can write connection (2.17) in the following form:
y=671(). (2.20)

As it was considered in the first example, now we have to find some measurements, which form an
identifiable sequence. Since, in this example L=1 and ,R=3, it means that we need N =3
measurements. For a given model (2.20) the system of equations has the form:

y,=6"f(u,), n=123. (2.21)
The system of equations (2.21) can be rewritten in the form (for N =3):
Ya=[y, v, y3]=[ Tf(u,) 6 f(u,) 6 f(u3)] , (2.22)
or:
Y, =f7(U,)0, (2.23)

where:
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f(U3)=[f(u1) f(uz) f(u3)]' (2.24)
is square matrix.

In our example, (2.24) can be written as follows (for N =1, 2,3):

1
fU,)=|-2 2 0|,
4 40 (2.25)
and Y;:
Y,=[9 25 5] (2.26)
Let us verify the identification condition:
det(f(U,))=—-16. (2.27)

It means that the proposed sequence is identifiable.
Now we may determine a vector of parameters €. Taking into account (2.23), the
identification algorithm has the form:

,9:l1—'3(U31Y3):[f_T(Ua)}lYST, (2.28)

In the next step, substituting (2.25) and (2.26) to (2.28) results in obtaining some values of
the parameter vector 6:

111 5
0=|-2 2 0| | [0 25 5] =|4/|. (2.29)
4 40 3

Verification of the solution:

Let us choose N=4,n=5 and n=6. We can verify obtained results substitute in (2.23) matrix

fT(U3) for n=4,n=5,n=6and deduce that the determined values of the output are the same

asin table 2.2:
1 151 [4
Y, =fT(U,)0=|-1 3 1||4|=|44]. (2.30)
1 9 1][3] |12
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It is easy to notice that the same results will be obtained for other measurements set, provided that
they form the identifiable sequence.

Exercises

Exercise 2.1. Let us assume that we have some static system’s characteristic, described by the
following set of equations:

y® = gy 4 9@ 1 g
Yy = g0y 4 gY@ 4 GOy

As a result of the experiment, the following data are collected:

Table 2.3. Measurements for exercise 2.1.

n 1 2 3 4 5 6
u® 1 -1 -1 2 1 1
u®@ 1 1 1 -1 -1 -1
u® 1 2 1 -1 1 2
y(l) 6 7 4 -3 2 5
y? 4 -9 -6 11 0 3

The problem: To calculate some parameters of the static system’s characteristic.

Exercise 2.2. Let us assume that we have the static system’s characteristic, described by the
following set of equations:

y(i) - 01(1) + gl(Z)U(Z) + 6’1(3)<u(3))2
y@ =00 1 92@ 4 92(3)(u(3))2
As the result of the experiment, the following data are measured:

Table 2.4. Measurements for exercise 2.2.

n 1 2 3 4 5 6
u® 2 2 1 1 1 3
u®@ 0 2 -1 3 1 1
yW 1 3 0 8 0 4
y? 2 -6 0 -8 0 2
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The problem: To calculate some parameters of the static system’s characteristic.

2.2. The choice of the Best Model: Deterministic Case

In this case we do not have any exact model of the static characteristic for investigated system,
process or phenomenon. In order to solve given identification problem, an investigator determines
arbitrary class of a model. Then, taking into account measured data, it is possible to find the best
model for arbitrary given class of the model. This problem is called “the choice of the best model”
(Bub80). In this section we assume, that the collected data are free noise measurements (Figure 2.4).

A Yy

y=Fu)

Figure 2.4. The choice of the best model — measurements and model’s output.

As it is shown in Figure 2.4, our problem is to find approximation of the static system’s characteristic,

F(u) by use an arbitrary given function ®(U, &) based on collected data of inputs and outputs.

In order to compare obtained results with collected data for each measurement point, it is necessary
to define performance index, which is the measurement of difference between F(u) and ®(u,0)
(Figure 2.5).
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Identification

system

Performance |
index

Model 4T

Y

Up Y

Figure 2.5. The choice of the best model.

The problem formulation:

Approximation function (model): ¥ = ®(u,6) ;

@ - arbitrary given function;

Y - model output vector Y Y <R, Y- output domain;
U - input vector U e % < R°, U - input domain;

@ - vector of model parameters: 8 € ® c R¥;

Experiment U = [u1 U, .. Uy ], Yy = [y1 Y, o Yu ];

Measure of difference: Yn=1,2,..., N q(y,,¥,)=q(y,, ®(u,,8)).

Example 2.3 — The choice of the best model. Let us assume that we have one dimensional system
(SISO - Single Input Single Output) and measurements for three different values of the input and
output:

Table 2.5. Measurements for 2.1.
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Measurements

Figure 2.6. Measurements for 2.1.

The problem: To determine the optimal parameter value @ for model ¥ =6U for given

measurements and the following performance index:

Q®)=X(v, -, .

P (2.31)

In the first step we can substitute given measurements (table 2.5) in the performance index Qy (9)
(2.31):

Qu(0)=(-2-20) +(1-00) +(3-30). (2.32)
After a few simple transformations, we determine:
Q. (6)=130* - 260 +14. (2.33)

In order to calculate some optimal value of & for model ¥ =68U, some data (from table 2.5) and the

performance index (2.31), we have to solve the following equation:

dQ, (0)
—nZ -0,
do » (2.34)

Taking into account (2.33) and (2.34), we obtain such equation as:
2649,?, -26=0, (2.35)

which means, that the optimal value of @ for given conditions is:
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0, =1. (2.36)

Figure 2.7. The results of parameters estimation.

Example 2.4 - The choice of the best model. For given measurements matrix U, Y, and quadratic

performance index, the identification algorithm for following models must be found:

a) y=60u;
b) y=6"u+6".
We start with first example (a). Taking into account the performance index and the model ¥y =6u,
we can write the following formula:
N 2
Q@)= (v, —0u,) . (2:37)

n=1

In order to determine the optimal parameter @, we have to solve the following equation:

dQ, (6)
b NG/ -
40 |y (2.38)
Next, we can make some transformations:
N N
9O S aly, ~0u,)(-u,) =250y, +0u2). (239
n=1 n=1
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and then

N ., (2.40)
22(—unyn +9Nun) =0,
n=1
N N .
DUy, + > 6 Ui =0, (2.41)
n=1 =1
N P N
Guui=>uy,. (2.42)
n=1 n=1L
Finally, the algorithm to calculate the optimal value of parameter @ has a form:
N
A
Oy == . (2.43)

2 U

=1

>

Let us now consider the same problem of calculating some optimal values of the parameters vector,
@ but for the second model (b) y = 6’(1) u +9(°). All conditions remain the same. The performance

index for this problem has the form:

N N

QN (9) = Z(yn _(9(1) u, + 9(0)))2 = z<yn _0(1) u, _9(0))2 . (2~44)

n=1 n=l

In this example the performance index depends on two variables i.e.: 0 and 6’(1). It means that we
have to solve the set of equations which fulfills the following condition:

V,Q(0),., =0, (2.45)
We can rewrite it as:
aQ(0)
=0,
00 oo (2.46)
aQ(0)
=0
00, (2:47)

Taking into account equations (2.44) and (2.45), we can determine such derivatives for

variable 6.
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n

oQ() _ S2(y, ~ 6%y, ~69) (-u,)=2

D

<

i
M=

- Z Yot 29:1(0) +z gN(l) u, = 0
n=1 n=1 n=1
N N N
=Yy, +00Y 14003 u, =0
n=1 n=1 n=1
GON + e;“)i u, = i Y,
n=1 n=1

and (2.49):

N N N
“>uy, + D600, +> a0z =0,
n=1 n=1 n=1

(— u,y, +6Yu? + H(O)Un) .

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)
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N N N (2.57)
930)2un+9;(”2 uz =>uy,.

n=1 n=1 n=1

L1 o1
For sake of simplicity, let us substitute: U :W E u,and y= N E Y, - Now, we can rewrite some
=] =]

connections between (2.54) and (2.57) in the form:

60 +oMa=y, (2.58)
(0) A ) 1 N, 18
G+ =D Ul == uy,. (2.59)
N n=1 N n=.
From (2.58) we can determine:
9 =y-6%. (2.60)

Substituting (2.60) in (2.59) we obtain:

g0 g LS 2 L
(y—HN u)u+9N WZ u? :ﬁz Yo (2.61)
n=1 n=1
and then
. N 1 N 1 N (2.62)
yu—0[,(1)u2+0,](1)ﬁ§ u? :Wgunyn.

We can rewrite (2.61) in the form:

*(1) 1 ) " . 1 N (2.63)
OV = uk -0 [+9a==>"uy,,
N n=1 N n=1
and finally:
N
ﬁ u,y, 90
o = 1“N17 (2.64)
- uZ _ljZ
Ne

Let us summarize our calculations determining the algorithm to estimate two-dimensional variable
0,ie.
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69 =y-6%a, (2.65)

1 i . n
unyn yu
A :7'\'1 = . (2.66)
=3 ui -0?
N n=1

Example 2.5 — The static system’s approximation with the weight function. For system described by
the following static characteristic y = F(u)= @u?find the best approximation ¥ = ®(u,0)=6uin
) ={u e R:0<u <1} with weight function g, (u), presented in Figure 2.8:

gu(u)A

2

1 u

Figure 2.8. The weight function.

and the performance index: Q(0)= j(F(u)—@(u,@))zgu(u)du . The given problem of the static

q

0

system’s approximation is illustrated in the Figure 2.9.

Let us start with the substituting system’s characteristic and model to the quadratic performance
index:

Q)= .[(uz —0u)2(2u)du. (2.67)
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1 i S pp——
i
y=a(u,0)=0u '
1
]
1
1
|
1
!
1
y=F()=6u? |
Ly
>
9, (u) 1 u
2 I E Sy S,

»
»

1 u

Figure 2.9. Approximation of the static system’s characteristic with the weight function (U)

In order to find the optimal value of the parameter &, we have to solve the following equation:

90)_4 {2 —pu)u)(-u)dy =0, (2.68)

0=6"

AN

Since 7 ={ue R:0<u<1}:

Y o4, pr08 _
L(—u +6"u®)du =0, (2.69)
and then:
51 41
L 7 (2.70)
0 4 0
—£+9*1=0. (2.71)
5 4
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. 4
Finally, the optimal value of fis: 6 = 5 (2.72)

Verification of the solution:

Figure 2.10. Characteristic of the system and its approximation.

Exercises

Exercise 2.3. Let us assume that we have one dimensional system (SISO - Single Input Single Output)
and some measurements for three different values of the input and output:

Table 2.6. Measurements for exercise 2.3.

u -1 1 3

y -2 1 2

The problem: To determine the optimal parameter value @ for the model Yy=686uU for given

N
measurements and the following performance index: Qy (9) = Z(yn -V, )2 .
n=1

Exercise 2.4. For the system described by following characteristic y = F(u):euz, find the best
approximation ¥ = ®(u,0)=0uin ] ={u e %:0<u <1} with the weight function g,(u), as in

u

the Figure 2.11, and the performance index: Q(6) = I(F(u)—d)(u, 0))?g,(u)du.

%
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»
»

1 u
Figure 2.11 The weight function in Exercise 2.4.

Exercise 2.5. For the model described by the following characteristic y = F(u)= Au?, find the best
approximation Y = (D(U,H) =0Yu+6%n g = {u eR:0<u Sl} with the weight functions

g, (u), as below:

9.(u) 4 6.(u) 4

2 2

»
»

v

1 u 1 u
Figure 2.12. The weight functions for Exercise 2.5.

and the performance index: Q(6) = .[(F(u)—CD(u,e))zgu(u)du .

%
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2.3 Parameter Estimation of the System’s Characteristic

In section 2.1 we have considered the problem of the system parameters’ determination, based on
the noise free measurements. Here, we take into account that collected data are not free noise
measurements, i.e. for the given input collected output is not free noise (Bub80). This problem is
illustrated in Figure 2.13.

Immeasurable Measurement
random i
o, noise | z_
parameter
Un | Identification Yn Measurement | W
input system output system Result of
measurements
Estimation
algorithm

Parameter 1 0
- N
estimate

Figure 2.13. System parameter estimation problem.

This problem is called “parameter estimation of the system’s characteristic”. It is possible to
distinguish such following cases as:

a) Noised measurements of the physical values;
b) Estimation of the system parameter with noisy measurements;

c) Estimation of the system parameter with random value.

Noised measurements of the physical values

1 ZII

—  H@.2) ¥, () —

Figure 2.14. Noised measurements of the physical values.
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The problem formulation:

Measurement noise:

z,—value of random variable Z from space X ;

f, (Z)— probability density function;

6 — observed vector of parameters, value of random variable #,0 € ® %R;
fg(é’) — probability density function;

Measurements: Vy =[V1 v, - VN].

Estimation of the system parameter with noisy measurements

» W,
F(u,@) Ya

y (U‘\-""WA")

Figure 2.15. Estimation of the system parameter with noisy measurements.

The problem formulation:

Measurement system’s description: W= h(y, Z);
Where: We 9 his known one-to-one function such as h: &/ x X —Y.;
W —measurements domain (dimy =dimz=L);

Measurement noise:

Z, —the observed vector of parameters, value of random variable 8,0 € ® < %R;
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f,(6) - value of random variable f,(8) from space X" ;
fZ (Z)— probability density function;

Measurements:UNz[u1 u, - UN], WN=[W1 W, - WN].

Estimation of the system parameter with random value

lwn

1 F(u,H,a))

Yn

A

Y, (U, Yy)
D

Figure 2.16. Estimation of the system parameter with random value.

The problem formulation:

Static system characteristic: y = F(u,6,);

Random system parameter: @€ Qc %", (dimy=dimo=L);
F - one-to-one mapping @ = F,*(u,6,y);

@ —value of random variable @ from Q¢ Z%L;

Probability density function fm(a)) is given;

Measurements:U,\,z[u1 u, --- UN], YN=[y1 Y, - yN]'
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Example 2.6 — Estimation of the system parameter with noisy measurements: Least Squares
Method. For linear system with static characteristic y = QT(p(u), we have N measurements. Input
and  output  sequences are  collected in  matrix U, = [ul u, .. UN]and
W, = [W1 w, .. WN] respectively. We also know that the noise is additive, i.e. W, =Yy, +2Z,,
with m, =0 (which means that expected value of the noise signal is zero) and &, < oo (variance of

the noise is not infinite). The problem: To determine the estimator of & parameter.

The solution: The given problem of the parameter estimation is depicted in the figure below:

— s F(u,0)

Figure 2.17. Noised measurements of the identification system known as static’s characteristics.

Since the noise is additive, the expected value of the noise signal is zero (M, =0) and the variance
of the noise is not infinite (o, < ). It means that it is possible to apply Lest Squares Method. Our

problem is to find 6, , which minimize an empirical variance of a noise signal, i.e.:

. 1 13 T 2
var, (0:U,, Y, )= (w, -y, == D (w, —0"olu, )f - (2.73)
N n=1 N n=1
Let us formulate the given problem as an optimization task:
Oy — Vaer (BN U, Wy ): rp|(r)1 Vaer (6;U oWy ) (2.74)

To determine 6 (2.74) we have to solve the following set of equations:

V,Var, (6:U, W, XMN =0g. (2.75)

Taking into account (2.73) and (2.75), we can write the following connection:
N
v, Z(w ~0lo(u,)f =0,. (2.76)

n=1

In order to solve the following equation, we have to make some transformations:
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we can simplify our connection:

~Swple,) -3 ole el ol )] =0,

-3 wle,)+ ol ol 0,) =0,
- mle)+ 3ol ole,) 6, =0,

Finally, an algorithm to determine 6, has form:

-1 N

0, =X lofun ol ) Swos,).

n=1

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)

Example 2.7 — Estimation of the system parameter with noisy measurements: Maximum Likelihood

Method. For fixed sequence of inputs U,,U,,...,Uy and for linear system with characteristicy = ou,

it was collected following sequence of noised outputs W,, W,,..., W, . The problem: to determine the

estimator of @ parameter for the additive noise (W, =Y, +Z,) and probability density function

f2)- J%crexp(—@;;f}

The solution: A given problem of the parameter estimation is illustrated in Figure 2.17.

Since these following assumptions are fulfilled:

a) The measurement system is described by W, =Y, +Z, ,which is one-to-one invertible

function,
b) Probability density function for fZ(Z) is given,
it is possible to apply Maximum Likelihood Method.

At the beginning, let us denote a measurement system W, =Y, +Z, as:

w, =h(y,,z,).

(2.82)
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In order to build the likelihood function, we need to determine fW(Wn,H),which is probability
density function of W variable. Because the function describes the influence of noise,
(W, =Y, +2,) is one-to-one invertible function, we can find unknown connection from the

following equations:
fw(wn ’ 0) = fz (hz_l(yn W, ))

where J, is Jacobi matrix of inverse transformation and h; is inverse function with respect to Z .

(2.83)

In our example, function h; (yn, ) is equal:

hgl(yniwn):Wn ~Yn- (2.84)

Now, we can determine Jacobi J, matrix by using the following formula:

ot (y,,w,) d
J =22z V") _ = — =1. 2.85
. : Gy (W= v0) (2:85)

The likelihood function has the form:

N N
Ly (0:Wy, U ) =T fu,,0) =TT f.(0;* (v, W, )|34 - (2.86)
n=1

n=1

Because J, =land y=6U, we can rewrite (2.86) as below:
N
Lo (6:W,, U, ) =TT f.(0;* (6, w,)) - (2.87)
n=1

In order to find the optimal value of the parameter & for the connection (2.87), we have to formulate
and then solve an optimization problem. In our example, the optimization task can be formulated as
follows:

Oy — LN(H;WN’UN):”HL%X LN(H;WN’UN)' (2.88)

Taking into account given probability density function for fZ(Z), we can rewrite (2.88) as

Nl (w, —0u, —m, )
L, (G;W, U, )= —~n n z . .
N( N N) gmo_z exp( 20_22 (2.89)
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Let us now rewrite (2.89) in the form:

L, (O:W, U, )= ﬁ \/%G exp(_ (w, —

It is possible to write (2.90) in the form:

n=!

1 W, —6u.—m
Ly(O:W,, Uy )= mm{—}]%

(2.90)

(2.90)

To find the estimated value of @, we need to consider only a part of connection(2.90). Let us denote:

N 2
S~ (w,~6u, -m,)*

M

Let us formulate the following optimization problem:

ar(o)
do

0=6y

Substituting (2.91) in (2.92), we obtain:

do

n=1

In the next few steps, we will determine an algorithm to find the optimal value of 8:

de( 2 ZZ eNun_mz)zJZOl

2 N
ZO'Z2 m

N

N N
%(anun -6y u? —mZZunj =0
o, n=1

n=1 n=1

. 2 .
Since o, is constant:

N N N
Oy D UZ =D WU, —m, > u,.
n=1 n=1

n=1

dr() [iw ~6,u, m)

(W, =6, u, —m, Y~u,)=0
=1

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)
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Finally, the formula to determine the optimal value of 6, has the form:

N N N
ZWnUn—mzZ“n Z(W" _mZ)u"
eN _ n=l e n=1 — =l o . (2.98)
Dul du?
n=1 n=1

Example 2.8 — Estimation of the system’s parameter with noisy measurements: Bayesian Method.

For linear system Yy =0@Uit was obtained N measurements, i.e. for input sequence U, U,,..., Uy
output sequence W, W,,..., W, was collected. It is assumed that the noise is additive (W, =Y, +Z,)

and probability density function is Gaussian, which means m, =0 and variance o, <0. The
problem: to determine the estimator of @ parameter for following loss function

L(H, 5):—5(9—5) and probability density function for @ parameter population described by

o)== [_Mj

270, 20,
The solution: The given problem of the parameter estimation is illustrated in Figure 2.17.

To solve the problem by use of Bayesian method, we have to start with the verification that following
conditions for this method are fulfilled:

a) Measurement system is described by W, =Yy, + Z, which is one-to-one invertible function;
b) Probability density functions for f,(z) and f,(6)are given;
c) Loss function is defined i.e.: L(H, §)= —5(9 - 9), where J is Dirac delta function.

Since L(é’, 5) = —6(49 - 5), the condition risk has form:
r(@.w,)=—[sl0-0)f (oW, )do =-1"(@w, ). (2.99)
€]

For (2.99) we can formulate an optimization problem:

O — 10y )=max f(OW, ), (2.100)
such as
N N _
0L 1. (0 (F (U, 6,)w,))|3, = max £, @) ] £, (Flu,. 0)w )| 210m)
n=1 n=1
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In this example the noise is additive i.e.: W, =Y, +Z,. Let us denote it as follows:
w, =h(y,.z,)=Y, +2,. (2.102)
Because W, = h(yn, Zn) is one-to-one invertible function, we can find:
z, =h(y,.w,). (2.103)
which hz_lis an inverse function with respectto z .
Substituting Y, = @U, in (2.102), we have obtained:

z, =h*(0u,,w,)=w, —0u,. (2.104)

n

Let us now determine Jacobi matrix:

-1
g, = iOuw) _d g (2.105)
ow dw

Taking into account above calculations (2.102 — 2.105), we can determine probability density

function of the observed value fw(wn‘ﬁ) ie.:

— -1 _ 1 _(Wn_eun)2 .
fw(Wn‘g)_ fz(hz (gunvwn ))“]h‘_ O_ZmeXp|: 20_22 :| ]-l, (2.106)
and rewrite the connection(2.101):
— N -
t@) .02 (F 2w, =
n=1
= 1 exp _(g_mﬁ)z ﬁ 1 exp| — (Wn -0 un)2 ’ (2207)
O',,\/Z 20—92 n=1 O'Z\/Z 20'22

which is a posteriori of probability density function.

Let us rearrange the formula (2.107):

ey (UGN AR
1 1 Y @-m,f &w,-0u,)| (2.108)
_%m(asz eXp{— 252 _; 20?7 }
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In order to find value of 8, ,we have to maximize the following part of (2.108) the equation:

= 2 2
F(§)=—(9_m”) —i(w”gezu") ) (2.109)
O-Z

2
2 o-g n=1

which means that we have to solve the following equation:

dr()

— = O
Y (2.110)

0=0y

Substituting (2.109) in (2.110):

dr(_)_d_ _(g_mﬂ)z _i(wn_gun)2 =0 2111
0 4o\ 20, & 27 ) T (2111)
Then, we obtain an algorithm to determine the value of 6, :
2(0N_m0) N (W —6yu )(_u )
_ ) n "IN Tn nl-0. 2.112
20} ; 207 (2.112)
We can simplify this equation (2.112):
—0,+m, & (-wu, +6, v?)
- — =0, 2.113
D (2.113)
1 1 1 1
O —— -2 Ur |[=—= D WU, ——m,, 2114
N[ p i D) J o7 2t = 7™M, (2.114)
1 1
?2wnun+?m,,
O =—+"= ——. (2.115)
! +i2u2
; o
Finally:
2 N
m0+[6"] > wu,
Oy = %y (2.116)
N 2 N : .
o
1+ ¢ u
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Discussion of the results:

1. N isasmall number, (O‘Z >> 0'0) - some poor quality measurements and G ~m,.
2. N>oo, (O'Z << 0'9) - some good quality measurements and 6 =

Example 2.9 — Estimation of the system parameter with noisy measurements: Maximum Likelihood
Method. Parameter 6 of the system was measured with some noise. Probability density function of

1+§ ze[-2 0]
0 ze[-2 0]

means that V, =@+ 2, for Nn=12. The measurements of noised value of the parameter fare

the noise is described by fZ(Z)z . It is known that the noise is additive, which

v, =1land Vv, =2. The problem: determination of the parameter @ estimator for given

measurements and probability density function.
The solution:

In the first step we have to decide which method can be applied in this example. Let us calculate
mean value of variable Z :

m, :j[fz(z)z dz = Jq[l+%jz dz= _T[Z+Z—22]dz =

-2 -2
(2.117)

-2 -2

Mean value of Zis not equal 0. We are limited to methods such as Maximum Likelihood Method
(MLM). Let us check some conditions for MLM:

d) Measurement system is described by V, = 6 + Z, which is one-to-one invertible function;
e) Probability density function for fZ(Z) is given.
Let us denote V, = @+ Z, in general form:
v, =h(6,z,). (2.118)

Next, we have to calculate the probability density function fv(v, 9) of observed variable V. To end

it, we can apply the following formula:
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f,(v,0)= f,(h;*(6.v))-|3,], (2.119)
where J, is Jacobi matrix of the inverse transformation.
In our example f,(v,8) has form:

f,(v,0)=f,(v,-60)-]3,]. (2.120)

Jacobi matrix can be determined using the following formula:

-1
_ 6hza(v91V) :%(Vn_g):]_. (2.121)

I
Finally, we can write the probability density function of f, (V, 6’) as:
f,(v,0)=f,(v, - 0). (2.122)

Taking into account the probability density function of fZ(Z), which is given, we can rewrite the

formula (2.122) in the form:

v,—0
f(v,60)= 1+ > for vn (v,-0)e[-2 0]' (2.123)
0 otherwise
Now we rewrite (2.123) in the form:
v, -6
F(v,60)= 1+ > for vn Oelv, vn+2]. (2.124)
0 otherwise
The maximum likelihood function has form:
N N )
Ly V. 0) =TT 1,000 0) =T T . (0;2(0.v,)) 34, (2.125)
n=1 n=1
where V = [V1 V, ..oV ] For our example formula (2.125) can be written as:
v, -6 v,—6
L (,.0)= (1+ 5 J(l+ 5 j for Oelv, v,+2]alv, v,+ 2]. (2.126)

0 otherwise

Taking into account V; =1and V, =2, we can rewrite (2.126):
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Ly(vy,0)= (“%)(Hﬁ) for  Oefl 1+2]A[2 2+2].

2 (2.127)
0 otherwise
Let us rewrite (2.127) in the form:
3 0 0
———=2-= for fel2 3
Ly(Vy.0)= (2 2)( 2) <l ] (2.128)
0 otherwise
After a few simple transformations we obtain:
9—2—Ze+3 for  fel2 3
Ly(Vy.0)=172 "2 . (2.129)
0 otherwise
Now, we can formulate an optimization problem:
O > Ly (VN Oy ): n;'sex Ly (VN ’0)' (2.130)
In order to find 6, ,we have to solve the following equation:
dL, (vy,0)
—_— =0.
do o, (2.131)
Substituting (2.129) in (2.131) we obtain:
i 6—2 - Z 6+3 =0
40\ 7 3 B . (2.132)

Before we solve the problem (2.132), we have to take into account that it is the optimization
problem with some inequality constraints (2.129). Let us solve the problem graphically. The
likelihood function, for example, is shown in Figure 2.18. It can be seen that this is a quadratic
function, which has the minimal value (without taking constraints into account):

(2.132)

It is worth stressing that the considered function is convex and monotonic decreasing at the left on
the minimal point and monotonic increasing at the right side on minimal point (Figure 2.18).
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N L(3)=0

Figure 2.18. Likelihood function in solved example.

Our problem is to find the maximum value of the likelihood function L(@N) for given range
Oy € [2 3]. Because the considered function is monotonic decreasing at the left on the minimal
point and we know that minimal point is outside the range 6 € [2 3], it means that we may find

the proper value of @ in point 6 =2 or 6, =3. After the function’s analysis in Figure 2.18, we
1

can say that the solution of a given problem is the point € =2 where L(2)= >

Exercises

Exercise 2.6. Parameter @ was measured with additive noise described by Gaussian function with

mean M, =0and variance &,. The problem: determination of Bayesian estimator of & parameter
for loss function L(0,§)= —5(6’—0). Probability density function characterising @ parameter
population has the following form: f, (9) =",

Exercise 2.7. The problem: To determine an algorithm based on the Maximum Likelihood Method, to
determine estimation of the @ parameter for N noised measurements which are additive:
v,=0+12,, for n=12,...,N. It is assumed that the probability density function is Gaussian with

mean equal M, and variance o, .

Exercise 2.8. For some fixed sequence of inputs U,U,,...,Uyfor linear system with

characteristic y = 8U ,it was given following sequence of outputs W,, W,,..., W, .
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The problem: to determine the estimator of & parameter for the additive noise (V, =€+ z,) and

the probability density function f,(z) {1 for z¢fo 1]
€ probabllity density runction = .
: 0 for ze[0 1]

2.4 The choice of the Best Model: Probabilistic Case

In this section the choice of the best model problem in probabilistic conditions is considered. We
start with the explanation why for the same value of input U, different values of output Yy, are

collected. It can be caused by immeasurable variable @ which is changing randomly. It is illustrated
in Figure 2.19:

la)

F(u,a))

Yn

Figure 2.19. System identification with random immeasurable variable.

Consequently, it can be assumed that the investigated system is described by a set of characteristics
indexed by random value @ (Bub80). These problem is pictured in Figure 2.20.

The problem formulation:

The system’s characteristic: Yy = F(U,Q),’
,— value of random variable — system parameter, @ (a) eQc ?A’,L), fw(a));
Y, — value of random variable Yy — transformation of variable @; y € & < R,

F —invertible function with respect @: @ = Fw'l(u, y);

U, —value of random variable u, f,(u); ue % c %#°;
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’

f,(y|u) - Probability density function y on conditionthat u=u: f (y|u)= fm(F,;l(u, y)) ‘JF
oF, (uy)

where Jp = —2—==.

oy

Yn

u

>
>

Figure 2.20. Static characteristic of SISO system with immeasurable variable.

Example 2.10 — Regression of the type I. The problem: to determine regression of the type |, for

y
given probabilistic density function: f(u, y)= u? for ue [0 2]’ ye [0 u].

0 otherwise

The solution:

In order to solve regression of problem I, we have to find the best model by use the following
equation:

y =" () = Elyu=u]= [y f(yu)dy. (2.137)

&

The problem is illustrated in the Figure 2.21.
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= d)‘(u)=]§[z‘£ ~u]
/—

Figure 2.21. Regression of the type I.

First, we have to find the probability density function f, (u):

y
Zdy=25| ==. (2.138)

y
fuy) _u? _2y
f,lyu)= =——=—. 2.139
)= = T3 (2.139)
2
Finally, we can solve some regression of the type | problem applied equation (2.137):
. 42y 2y3[" 2w 2
=® (u)=E|yju=ul= flyju)dy = | —=ydy == ==—=—=u. 2.140
Y= () = Elyju ]J/v Ole)oy = [ Tviy =357 =37=3 (2140)

_ 2
It means that the best model for given conditions is § = 5 ufor U e [0 2].
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Example 2.11 — Regression of the type Il. The problem: to determine regression of the type Il for

s for uelo 2Jyefo uz].
0 otherwise
Assume: model Y= dD( ) Wy +0©

y
given conditional probability density function: f(u y)

and the quadratic performance index
0)= [ [ly-o(u,0)F f(u,y)dydu.
wU Yy
The solution:
Taking:
flu,y)=f,(ylu)f, @), (2.141)
we can rewrite proposed quadratic performance index as

Q)= [ly-o(u,0)f f,(ylu)f,(u)du .

(2.142)

w
In order to find an optimal value of the & ,we have to solve the following optimization problem (see
lecture 10):

¢" — min Q)= min :[(tb*(u)—d)(u, 0)f f,(u)du.

(2.143)

We have to start with solving regression of the type | problem ((D*(u)) To be patterned on
calculations from example 2.10, first we have to find the probability density function

u2

fu(u)=.[f(u,y)dy:j'lgdy: y?

0

(2.144)
Then, the conditional probability density function (see 2.141) must be determined
(uy) Y
fluy) ud 2y
f u)= ==—=—, 2.145
W= (200
2
and
Y2y 2y? 2u® 5
=@ (u)=E|ylu= u flylu)d —ydy == =——==U". (2.146)
() =Ely iy (yju)dy = !u4yy | "33
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Then, we can rewrite the performance index Q(H) in the form:

Q(0)= I(%uz —d)(u,e))z £ (U)du. (2147)

w

u
Taking into account, that f,(u)= r and ®(u,0)= 0Yu+6, we can rewrite (2.147) in the form:

2
Q(6)= j@u? —g%y —9<°)) %du. (2.148)

w

In order to solve the optimization problem (2.147) we have to consider the following system of
equations:

v,Q(0),., =0, (2.149)

Substituting (2.148) in (2.149) and taking into account that %/ = {u eR:0<u< 2}, we obtain:

=0,.
g0 2 (2.150)
0“':6*(1'

2 2
v,Q(0)= ng@u2 ~6% —9<°>j %du
0

In order to find the optimal value of parameters vector &, we have to solve the following set of
equations (2.150):

2
Q0) 22,050 Yoo
0

009
(2.151)
Q) .1 2( 2 5 ) 0
=2=||=u"-6 u-6 u)—u)du=0
o =231(3 (u)-u)d
After a few transformations, we obtain the following equations:
2
I(—§u3+¢9*(1)u2 +¢9*(°)u]du -0, (2.152)
0

And
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2
I(—%u“ +¢9*(1)u3+¢9*(0)u2jdu =0. (2.153)
0

Let us now focus on a connection (2.152):

2
J‘(—éﬁ +0" 2+ 0*(0)ujdu =0
0

4 2 3 2 2 2
—2”7 +9*“)”? +6r*(°)“7 -0
0 0 0 (2.154)
Then, we obtain:
o 4 4
0 © =———0 (1). (2.155)
3 3
In the next step, we determine 0*(1) from the equation (2.153):
2 2 2
2u° «u o) u®
L L L (2.156)
35 0 4 0 3 0
and then we obtain:
« 16 2 .
0 @ =—-=0 (0). (2.157)
15 3
Finally, taking (2.155) and (2.157), we obtain such optimal values of parameters vector @ as:
" 4 8
e -2 gW_2 (2.158)
5 5

It means, that the best model as regression of the type Il for given systemis 'y :CD(u, 9)= %u —g .
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Verification of the solution:

Figure 2.22. Results for determination of regression of the type Il.

Exercises

Exercise 2.9. Determine regression of the type | for given probabilistic density function:

f(uy)= 1 for  uelo 2}yefu? u2+1]
' 0 otherwise '

Exercise 2.10. Determine regression of the type Il for given conditional probability density function:

f(y,u)= 2 for . uel ty<p-u 1].Assume: model ¥ =(D(u,0)=9(l)u+6’(°) and
0 otherwise

quadratic performance index Q(6) = f J-[y —®(u,0)f f(u,y)dydu.

U

2.5 Example Application of the System Identification for Real Life
Problem

One of the most popular model in the system identification is Takagi-Sugeno system (T-S). In this
system we have a sequence of [f...Then sentences (antecedents) and affine linear functions
(consequents). For example, one rule of T-S can be written as follows (Nel01, Bab03):
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R :IFuis A THEN y, =6 u+6”, (2.159)

where A are some antecedent linguistic terms such as “small”, “large” and k =12,..Kis the

number of rules. Takagi-Sugeno model combines the linguistic description with some regression
functions. In order to determine the input of the system, we usually use the following formula:

, (2.160)

where S, (u) is the degree of fulfillment for k-th rule. Taking into account that Yy, =6 U+ 0&0), we

can rewrite above formula as:

Y 4. )eru+60)

y= . (2.161)

Example 2.12 - Simple example.
Let us propose T-S system with the following set of rules:
R,:IF u is Large THEN y, =6u+6"°

R,:IF u is Normal THEN vy, =6,u+6 . (2.162)
R,:IF u is Small THEN y, =6,u + 6"

and

y — ﬂLarge(uxelu + 91(0))+ ﬁNormal(u)(ezu + 61(0))+ ﬂSmaII(U)(BC%u + 9]?0))
)BLarge(u)+ﬂNormal(U)+ﬁSmall(u)

) (2.163)

At the computational level, rules in the form (2.163) are not easy to implement. In a real life
applications, in order to describe the antecedent linguistic terms, we usually use some smooth
function, such as Gaussian function. This function in Takagi-Sugeno models is called membership
function. It has the following form:

©) _m®Y
u -
uﬁs)(u(s);mﬁs),af))zexp[—i( ) j (2.164)
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where ml((s) is the mean value for s-th input and k-th rule and O'lﬁs) is the standard deviation for s-th

input and k-th rule of Gaussian function. Taking into account (2.164), we can rewrite (2.161) as:

y= ; (ru+o). (2.165)

Example 2.13 — Takagi-Sugeno model. In the figure below some data set is shown. Our task is to find
an estimation of the Takagi-Sugeno model’s parameters, based on given measurements.

140{- -
120~ . -

100~ . ; ¢ -

2 & - -

Figure 2.23. Data set for example 2.13.

At the beginning, let us set Takagi-Sugeno system with only 2 rules. The results are shown in the
figure below:

200

T T T T
150 |- { /»‘/'ﬁ
. = —
y 100 .
Sn?dj/ |
o . i i i i -
0 5 10 15 20 % El E3
! T \ T
08 -

Figure 2.24. The results for 2 rules.
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In the next figure, results obtained from 5 rules are presented:

00—

ol //O-—"

04

Figure 2.25. The results for 5 rules.

In the last figure, the results obtained from 11 rules are illustrated:

o
20|
20| ;
.
y =
.
100 _"/-L/”/
: ;-’“_'_‘/"/
o
. | | i i | |
0, 5 0 i5 E 2% E] 3
1
T

Figure 2.26. The results for 11 rules.
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