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1.1 Classification of materials depending on electric conductance 

Electric conductivity of natural and artificial materials can differ by many ranges. 

Materials conducting electric current are called electricity conductors. The conductors are 

metals and electrolytes. Electric conductance of metals exceeds 105Ω-1cm-1. Materials which 

do not conduct electric current, or those in which the conductivity is very low, are called 

dielectrics or insulators and their electric conductance is lower than 10-10 Ω-1cm-1. Materials 

with intermediate conductance are called semiconductors. There are also materials, known as 

superconductors, in which the electrical resistance in specific conditions is zero (it is not 

measurable). Fig.1. 1 presents the division of materials depending on the electric conductivity, 

as well as examples of conductivity values of some groups of materials (metals, 

semiconductors and insulators). 

 

Fig.1. 1 Division of materials, depending on electric conductivity and examples of conductivity values of 

dielectrics, semiconductors, metals and electrolytes. 

It is worth noting that the value of conductivity is not the deciding factor in classifying the 

material as a dielectric, semiconductor or conductor. There are no definite values of 
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conductivity which determine the type of material; the important point is the mechanism of 

conductance, which is the result of the band structure of the considered material. Before 

starting a description of the conductivity mechanism, it is important to recall basic 

information related to electric current conductivity. 

 

1.2 Basic information related to conductivity of electric current 

 

The current intensity I is defined as a quotient of electric charge Q which is flowing 

through the conductor cross-section to the time of the flow t. 

dt

dQ
I = .                        (1. 1) 

The unit of the current intensity is 1A=1C/1s. The Ampere is a basic SI unit. 

The current density  is equal to: 

dS

dJ
j = ,    (1. 2) 

where dS is the field of cross-section of the conductor. If the current is uniform across the 

cross-section, then 

S

J
j = .    (1. 3) 

The unit of current density is 1A/m. 

The electric charges can be transmitted with the positively and negatively charged 

carriers, so the current density can be described: 

∑ ∑ −−−+++ +=
i j

jjjiii
vqnvqnj ,  (1. 4) 

where ni+, (ni+) is the concentration of the positive (negative) carriers – the number of 

carriers in the unit volume, qi+, qi+  positive (negative) electric charge of the carriers, and vi+, 

vi- is the velocity of corresponding carriers. The carriers velocity depends on their mobility µ 

and the intensity of electric field E.  

Ev ++ = µ ,        Ev −− = µ    (1. 5) 

 

 

 

Mobility of the electric carriers is the average value of velocity of the carriers in the unit 

intensity of electric field (1V/m): 
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E

v
=µ     (1. 6) 

  

Taking equation (4), the mobility of the positive and negative carriers and assuming that there 

is only one type of positive and negative carriers we obtain: 

( )Eqnqnj −−−+++ += µµ .    (1. 7) 

Designating the part in the bracket in equation (1.7 ( )Eqnqnj −−−+++ += µµ .  

  (1. 7) as σ (σ – specific conductivity of material) gives: 

ρ
σ

E
Ej ==  .   (1. 8) 

It is a differential form of Ohm's law (ρ=1/σ is called specific resistivity).  

Specific conductivity of material consisting of only one type of positive and negative carriers: 

−−−+++ += µµσ qnqn .   (1. 9) 

Equation (1.9) presents the conductivity dependence of material upon concentration and 

mobility of the carriers. Using this equation and the band model for the basic mechanism of 

electric current flow, conductivity in various types of materials will be presented .  

 

1.3 Mechanism of electric current conductivity in various type of materials 

1.3.1 Electric conductivity of gases 

In standard conditions, gases do not conduct electric current, because of high value of 

ionisation energy. Gases can be ionised by ionising radiation (ultraviolet, Roentgen or γ-

radiation), streams of charged particles (electrons or protons), strong electric fields or high 

temperatures. The current carrying particles in gases are electrons and ions. The concentration 

of charges depends on many external factors, such as temperature, pressure, intensity of 

electric field or radiation. Detailed description of current conductance in gases is very wide 

area, which is beyond the scope of this work. It is worth noting that electric current 

conductivity in gases plays important role in many sources of light such as fluorescent lamps, 

neons, gas lasers, electron lamps, plasma displays; it is also used in ionic radiation counters 

and various other types of sensors and transducers. 
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1.3.2 Electric conductivity of electrolytes 

a) Liquid electrolytes 

During dissolving of acids, bases or salts in certain solutions (mostly in water) 

electrolytic dissociation occurs, meaning that there is a decomposition into ions, positive - 

cations and negative - anions. Electrolytic dissociation also occurs during melting of the 

above mentioned materials. The carriers (particles) in liquid electrolytes are both cations and 

anions. In the presence of current conduction, ion transportation occurs and there is a 

deposition of electrolysis products on the electrodes.  

The electrolytes can be divided into strong, for which the level of dissociation (ratio of 

dissociated particles to particle concentration in the solution) is large (almost equal to 1) and 

weak – where the level of dissociation is less than 1. The level of dissociation of electrolytes 

also depends on the temperature and strength of the solution. The electrolytes specific 

conductivity is described by the following equation: 

( )−+ += µµκσ cwe ,   (1. 10) 

where κ – the level of dissociation, c – the concentration of solution, w – the valency, e – the 

elementary charge. 

In strong electrolytes the concentration of the particles does not depend on the 

temperature. An increase of temperature causes reduction of viscosity of the solution; that is 

why the electric conductivity increases with the temperature. In strong electrolytes the ratio of 

conductivity and viscosity within a wide temperature range is constant (Walden's rule). The 

level of dissociation of weak electrolytes increases with the temperature. Such an increase is 

caused by an increase in the concentration of particles in the solution (increase of level of 

dissociation) and decrease of viscosity.  

Conductivity of liquids find applications in electrolysis processes: obtaining various 

materials such as chlorine, sodium hydroxide, copper; coating of protective layers – 

electroplating – e.g. nickel plating, and is also used in batteries, chemical analysis 

(conductometry) and lithography. 

b) Solid electrolytes 

A separate group of ionic conductors are the solid electrolytes (super-ionic conductors). 

Such materials are solids having ionic conductivity with similar values to liquid electrolytes 
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(solutions of electrolytes or molten salts). Concentration and mobility of ions in super-ionic 

conductors is similar to the values in liquid electrolytes.  

The transition from insulator to ionic conductor phase can be continuous (conductivity 

grows exponentially with the temperature); there are also materials that with a certain 

temperature one can observe rapid decrease of energy of activation in it or a step change of 

electrical conductivity (many ranges) and change of its activation energy. The temperature at 

which a change of activation energy or a change of conductivity occurs is called the 

temperature of super-ionic phase transition. The carriers are usually light, positive ions (e.g. 

protons, Li+, K+, Na+, Ag+, Cu2+), but there are also known some super-ionic conductors with 

negative carriers, such as F-, O2-.  

The occurrence of high ionic conductivity in solid electrolytes can be explained in a 

simple way as the melt down of crystal sub-lattice. It is worth noting that the specific heat of 

super-ionic phase transition is similar to the specific heat of melting of that material. Ions of 

the so-called “melting sub-lattice” are able to move in relation to the stationary matrix created 

by the other sub-lattices during reconfiguration of the crystal structure (vibration of the atoms 

of non moving sub-lattice around their position of equilibrium has not been considered).  

The charge transport in solid electrolytes is related to mass transport materials of 

particular scientific interest are those with hydrogen bonding. Such materials are called 

super-protonic conductors. An area of interest in super-ionic conductors is related to the 

possibility of application such materials in batteries and fuel cells. More information about 

solid electrolytes can be found in the monography [1]. 

1.3.3 Electric conductivity of metals 

Typical metals are the elements of from first and second group of periodic table, e.g. 

lithium, sodium, potassium, copper, silver, gold, mercury, platinum. In metals, the carriers of 

the current are free electrons, which partially filled the conduction band. Electric conductivity 

can be expressed: 

ee
en µσ = ,     (1. 11) 

where: ne – the concentration of free electrons, e – the electric charge of electron and µe – the 

mobility of free electrons. Concentration of electrons does not depend on a temperature. 

During movement in an external electric field free electrons are dispersed in a non-uniform 

crystal lattice (defects and vibration of crystal lattice called phonons). The vibrational energy 
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of the crystal lattice increases with temperature. This phenomena yields to electrons scattering 

and thus decreases their mobility and as a result to a decrease in electrical conductivity.  

It is worth noting that alloys can be considered as strongly defected crystals. Because of 

the high concentration of defects the conductivity is smaller than the conductivity of pure 

metals. In the case of alloys the dominant factor of electron dissipation is defects of crystal 

lattice (not phonons). That is why thermal resistance coefficients in alloys are smaller than in 

pure metals. Thermal resistance coefficient α is defined as 

dT

dR

R

1
=α ,     (1. 12) 

In Table 1 there are several examples of specific resistance and thermal resistance coefficients 

of some metals and alloys. 

Table 1. Specific resistance and thermal resistance coefficients of some metals and alloys. 

Material ρ [Ωm] α [1/K]*10-3 temperature range [OC] 

from   to  

Platinium  0.107 3.92 -250 600 

Copper 0.0175 4.25 -50 150 

Nickel 0.12 6.4 -50 200 

Aluminium 0.0278 3.8   

Silver 0.016 3.8   

Tungsten 0.055 4.1   

Konstantan 0.50 0.0005   

Manganin 0.43 0.004   

Cupro-nickel 0.043 0.23   

Nickel chrome steel 1.0 0.25   

 

Thermal dependence resistivity is used for temperature measurement. Metallic 

temperature sensors are mainly made of platinum or thin layers of gold. Those materials are 

resistant to the environment, ensuring stability of parameters over time. From Table 1, one 

can notice that the resistivity of platinum is linear over a wide temperature range (from -250 

to 600 °C). Platinum temperature sensors with a resistance of 100 Ω at 0 °C are commercially 

produced and their parameters meet international standards. 

11



 
 

 
 

 

1.3.4 Semiconductors 

In semiconductors the width of energy gap is in the range from 0.1 to 2eV. Treating 

electrons as an ideal gas and using energy equipartition rule it is possible to calculate the 

average kinetic energy of thermal movement at room temperature 

eVJTkE Bśr

221 108.3102.6
2

3 −− ⋅=⋅== ,  (1. 13) 

where kB – Boltzmann constant. The vast majority of electrons have higher energy than  

average energy of thermal movement or the width of gap energy. Electrons concentration in 

the conduction band increases with temperature, resulting in the increase of conductivity  

semiconductors with temperature, according to following relationship: 

Tk

E

Be
2

0

∆
−

=σσ ,    (1. 14) 

where ∆E is the width of energy gap. In doped semiconductors there are energy levels located 

close to the conduction band (acceptor levels) or valence band (donor levels). In p-type 

semiconductors, electrons from valence band move to acceptor levels creating “holes” in the 

valence band, which in presence of electric field behave as positive charges. In n-type 

semiconductors, carriers having negative charge move from the donor level to conduction 

band.  Scheme of a silicon crystal lattice doped with impurities to produce n-type (arsenic ) 

and p-type semiconductor (gallium) material is presented in Fig.1.2. 

 

 

 

 

 

 

Fig.1. 2 Band structure of an n-type  and p-type semiconductor 

 
In materials, there are both types of impurities, but one of them called majority carriers plays 

a dominant role in conductivity. The temperature dependence of conductivity in both types of 
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semiconductors is described by an equation similar to (1.14), while ∆E is the energy 

difference between localized acceptor levels and valence band or donor levels and conduction 

band. Semiconductors find their application in many areas of modern technology, e.g. 

electronic circuits, processors, computer memories or in optoelectronics. 

 

1.3.5 Insulators (dielectrics) 

In insulators the width of the energy gap between the valence band and the empty 

conduction band is usually higher then few 3eV, that the probability of electrons moving from 

the valence level into the conduction band is very small under normal conditions (lack of 

current carriers). Thus the conductivity of dielectric is very small.  

 
Fig.1. 3 Schematic representation of  insulator 

 
An electric field applied to dielectrics can induce dipole moments of atoms or particles 

and in case of polar dielectrics (built of dipole particles) creates ordering of chaotic oriented 

dipoles. The main feature of dielectrics is the almost complete lack of electric conductivity, 

and that in an electric field polarization is induced. It is worth noting that there are some 

dielectrics with non-zero polarization in the absence of electric field. 

 

1.4 Basic information about dielectrics 

Electric dipole is a system of two electric charges q with opposite signs which are 

located at a distance d between each other. Dipole momentum µ of such system is given: 

dq=µ    (1. 15) 

Distance d is measured from negative to positive charge. It is worth noting, that in nature 

there are lots of dipole molecules, e.g. molecule of water. The water molecule is composed of 

oxygen O-2 and two protons and which are located in a distance of 1.015Å. The angle  
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between the oxygen and protons bonds is 104o45'. Such structure causes the centre of positive 

and negative charges to be moved from each other followed by dipole creation. The dipole 

momentum of the water molecule determines its extraordinary physical properties, which are 

so crucial to life on Earth. 

 

1.4.1 Electrical polarisation 

The electrical polarization P – is a dipole momentum of a volume unit  

∑=
i

i
V

P µ
1

.   (1. 16) 

A polarization unit is C/m², so it is a measure of charge surface density (polarization 

can be treated as a surface density of bonded (charges). In the majority of dielectrics when 

electric field is E=0 the polarization is also P=0. Materials with 0≠P at E=0 are called 

piroelectrics and specially interesting as sub-group one ferroelectrics. The polarization value  

of the materials at E=0 is called spontaneous polarization. In ferroelectrics the direction of 

spontaneous polarization can be changed with the help of an external electric field. The 

dependence of spontaneous polarization on the electric field shows a hysteresis loop similar 

to hysteresis in ferromagnetic materials. Ferroelectrics are very interesting thanks to their 

electromechanical and optical properties and their application.  

There are four basic mechanisms of polarization: electronic, atomic, orientational 

polarization and polarization of the space charges.  

Electron polarization is present in all of dielectrics and is related to the displacement of 

electron clouds in relation to the nucleons, which is caused by external electric fields (see 

Fig.1. 4). Relative displacement of electron clouds and the nucleus: 

E
k

Eq
r eα== ,  (1. 17) 

where: k is the force constant, q is the electric charge of the nucleus, E is the intensity of the 

local electric field. The intensity of the field acting on the particles inside the dielectric is 

generally different than a field which is acting from outside. The term αe is called an 

electronic polarizability. 
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Fig.1. 4 Schematic representation of electronic polarizability 

 

The principle of atomic polarization is connected with relative displacement of atoms 

(ions) forming molecules of dielectrics and is described by an equation similar to (1.17). 

However the proportional coefficient in (1.17) is denoted by αa and is called atomic (ionic) 

polarizability (Fig.1. 5). 

 
Fig.1. 5 Schematic representation of atomic polarizability 

 
As it was mentioned before, in certain dielectrics there are dipole molecules. Usually 

dipole moments are oriented in random directions due to thermal movement which is causing 

the polarization of such material to be zero. The electric field, which is acting on the dipole, is 

creating momentum of force which is causing the orientation of the dipole in the parallel 

direction to the field. 

EM ×= µ    (1. 18) 

The thermal movements are acting against the ordering possibilities of the electric field, but 

there is still resultant polarization which depends on the electric field intensity. Such 

polarization is called orientational polarization. Characteristic feature of the molecules after 

removing the electric field fades with a relaxation time. The coefficient, which is connecting 

orientational polarization and the electric field intensity (for not very strong fields) is denoted 

by αd and is called dipole or orientational  polarizability (Fig.1. 6). 
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Fig.1. 6 Schematic representation of orientational polarizability 

An introduction of non-uniform distribution of charge (e.g. by injection of electrons) 

causes the creation of a resultant polarization Pp, called polarization of space charges. This 

type of polarization plays an important role in special types of material, called electrets. The 

lifetime of spatial charges can be long (tens or hundreds of years). Such materials are used for 

manufacturing microphones and electromechanical transducers.  

Total polarization is: 

pdae PPPPP +++= .   (1. 19) 

The sum of electronic and atomic polarization is called spring polarization, as after 

removing the electric field the polarization rapidly fades away.  

1.4.2 Electric permittivity 

Electric permittivity ε is defined by the relation between electrical induction D and 

intensity of electric field E.  

ED ε= .    (1. 20) 

In various handbooks and scientific publications the dielectric constant term is used. It is 

worth noting that the value of electrical permittivity depends on frequency, temperature, 

pressure, intensity of electric field and many other external factors, so the use of the term 

'constant' is not strictly correct. Relative electric permittivity εr is a ratio of the electric 

permittivity of the medium to the electric permittivity of a vacuum εo=8.854187818 F/m, 

                    

0ε
ε

ε =r .                                                                                                                      (1. 21) 

The electric permittivity of a vacuum is one of the basic constants in nature. 

Dependence of electric permittivity upon frequency is called dispersion (relative 

permittivity of water measured at low frequencies is around 80 while at optical frequencies is 

around 1.77). Electric permittivity can be regarded as a scalar quantity only for isotropic 
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media (isotropic means that physical properties do not depend on the orientation). In 

anisotropic media some of the physical properties measured in different directions can be 

different. The relationship between electrical induction and intensity of the electric field for 

anisotropic media can be expressed (using summation convention) 

jiji
ED ε= ,  where  i, j =1, 2,3.                                                                (1. 22) 

Electrical permittivity is a second range symmetrical tensor. Electrical permittivity as a 

tensor can be expressed as a 3x3 matrix: 

ε11 ε11  ε13 

            ε21 ε22  ε23                                                                                                                                                                                                                   (1. 23) 

ε31 ε32  ε33, 

 where εij = εji.  The number of components of the tensor of electrical permittivity depends on 

the media symmetry. Using the von �euman rule it is possible to find non-zero components 

of the tensor, which describe physical properties of the medium and relationships between 

them. In Table 2 the components of the symmetrical second range tensor in various 

crystallographic systems (e.g. electrical permittivity and thermal deformation) are presented. 

Table 2. Components of symmetrical tensor of second range in seven crystallographic systems and 

polarized ceramics or films. 

Crystallographic system  linearly independent 
components of 
symmetrical second 
rank tensor 

triclinic  εεεε11     εεεε12      εεεε13 
εεεε21     εεεε22      εεεε23 
εεεε31     εεεε32      εεεε33 

monoclinic  εεεε11     0      εεεε13 
0       εεεε22      0 
εεεε31     0      εεεε33 

rhombic εεεε11     0      0 
0       εεεε22      0 
0       0      εεεε33 

tetrahedral, trigonal, hexagonal  
 

εεεε11     0      0 
0       εεεε11      0 
0       0      εεεε33 

cubic εεεε11     0      0 
0       εεεε11      0 
0       0      εεεε11 

polarized ceramics and films 
  

εεεε11     0      0 
0       εεεε11      0 
0       0      εεεε33 
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It is worth mentioning that it is always possible to choose the coordinate system in such 

way that non-diagonal components of the tensor of electric permittivity are equal to zero 

(εij=0, for ji ≠ ). For the triclinic system, monoclinic and rhombic 332211 εεε ≠≠ , for 

tetrahedral, triagonal and hexagonal 332211 εεε ≠=  and for regular and isotropic media 

332211 εεε == .  

It should be noted the relationship between electric permittivity and optical properties of 

media. Speed of light in vacuum: 

00

1

εµ
=c ,   (1. 24) 

while in the medium with electrical permittivity εoεr (for optical frequencies) is: 

r

o
c

εεµ 00

1
= ,           (1. 25) 

where µ0 is magnetic permittivity of vacuum. Absolute value of refraction coefficient (index) 

is equal to the ratio of the speed of light in vacuum to the speed of light in the media 

r

o
c

c
n ε== .                                       (1. 26) 

From equation (1.26) one can notice that anisotropy of electrical permittivity is related to the 

anisotropy of optical properties (in anisotropic media there is birefringence phenomena). The 

quantity εr in equation( r

o
c

c
n ε== .                                       (1. 26) is 

measured at optical frequencies. 

The relationship between electrical induction and intensity of the electric field is linear 

only for linear dielectrics and weak electric fields. If the relationship is non-linear, then the 

electrical permittivity can be defined as dD/dE. Another frequently used approach is to 

develop the relationship between induction and field intensity as a power series (e.g. to 

describe the generation of second harmonic of the light).  

...3
3

2
21 +++= EEED εεε ,                    (1. 27) 

 where  ε2, ε3 are nonlinear permittivity. 

The values of electrical permittivity in the frequency range from 10-6 to 107 Hz are 

evaluated by measuring of electrical capacitance C of a capacitors. Knowing dimensions of 

the capacitor with dielectric. We may calculate its capacity C as:  

0CC
r

ε= ,                              (1. 28) 
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where C0 is the capacitance of the vacuum capacitor with the same dimensions as the 

capacitor with the dielectric. In order to evaluate the electrical permittivity at higher 

frequencies the microwave or optical methods are used. 

Electrical induction of the media can be described: 

( ) EEEPDEED
r 00000 1 εχχεεεεε +=+=+=== .      (1. 29) 

The χ coefficient is called electric susceptibility. From the equation 

(1.29 ( ) EEEPDEED
r 00000 1 εχχεεεεε +=+=+=== .      (1. 29)  

χε +=1
r

.               (1. 30) 

In some materials, e.g. ferroelectrics at a temperature in the neighbourhood of the phase 

transition temperature the electric permittivity can reach very high values (103-106). In such 

cases it is possible to assume, that χε ≈ .  

1.4.3 Complex form of electric permittivity   

Assuming that the system consists of the source of alternating current with the amplitude 

U0 and frequency ω and flat vacuum capacitor with the capacitance C0 (see Fig.1. 7 ).  

 
Fig.1. 7 Vacuum capacitor in the alternating current circuit   

and vector representation of the current and voltage 

 

The current in the circuit is given by: 

                                     
dt

dQ
I = ,                        (1. 31) 

The charge on the plates of the capacitor is 

                                                                                 UCQ 0= .                                          (1. 32) 

where 
d

S
C 0

0

ε
= . 

In equation (1.32) S is the surface of capacitor and d is the distance between the plates. The 

voltage on the plates of the capacitor changes according to the equation: 

                                      ( ) ti

o eUtUU ωω 0Recos ==        (1. 33) 

The current in the circuit: 
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

= ,  (1. 34) 

where 
d

U
E 0

0 =  is the intensity of electric field between the plates of the capacitor.  

The current density is: 

( )tE
S

I
j ωωε sin00−== .    (1. 35) 

In this circuit the phase of the current 'overtakes' the phase of the voltage with the factor π/2 

(see figure 1.7) 

To describe the real capacitor filled with dielectric it is necessary to use the complex form 

of the capacitance  

d

S
C ** ε= ,   (1. 36) 

where  

,,,* εεε i−= .       (1. 37) 

In equations (1.36) and (1.37) the term ε* is the complex form of electrical permittivity, ε' – is 

a real part of the electrical permittivity, ε" is the imaginary part. From the equations (1.36) 

and (1.37) the capacitance of the capacitor can be computed as: 

( )
d

S
iC ,,,* εε −= .  (1. 38) 

The charge on the plates of the capacitor can be calculated as UCQ *= , and the current in the 

circuit is: 

( ) ( ) ( )
d

U
SiieU

d

S
iieU

d

S
i

dt

d
I titi ,,,

0
,,,

0
,,, εεωεεωεε ωω −=−=






 −= .       (1. 39) 

The current density  

( ) EEi
S

I
j

a

*,,, σωεωε =+== .  (1. 40) 

The term *
a

σ  is the complex conductivity. The factor in the brackets in equation (1.40) 

*,,,
a

i σωεωε =+  describes total electrical conductivity (admittance), the product σωε =,, – real 

electric conductivity, and 
s

σωε =,  imaginary part of electric conductivity (susceptance). The 

real term of conductance describes losses of electrical energy in the dielectric (conversion of 

energy into heat), while the imaginary part describes the current of the 'shift' related to 

induction of polarization. The equation Ejk
,,ωε=  and Eijs

,ωε=  describes real part and 

imaginary part of the current density. The Fig.1. 8 presents the relationships between total 
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current density j and its real and imaginary parts for real dielectric. It is worth noting that the 

real part of the current is in phase with voltage and total current density creates the phase 

angle δ with the current direction. 

 
Fig.1. 8 Real capacitor in the circuit of alternating current a), substitute circuit diagram of a real 

capacitor b) and relationships between total current density and its real and imaginary parts for real 

dielectrics c). 
 

From the figure 1.8 one can notice that the tangents of δ (δ is called the angle of dielectric 

losses) is:  

,

,,

ε
ε

δ ==
s

k

j

j
tg .   (1. 41) 

Writing relationship between electrical permittivity and susceptibility in complex form: 

,,,*,,'* 11 χχχεεε ii −+=+=−=   (1. 42) 

and comparing the real and imaginary parts one obtains 

,, 1 χε += and ,,,, χε = .   (1. 43) 

In some cases instead of imaginary electrical permittivity it is more comfortable to use the 

electric modulus defined as the inverse of complex electrical permittivity 

2,,2,

,,

2,,2,

,

,,,*
* 11

εε
ε

εε
ε

εεε +
+

+
=

−
==

i

i
M   (1. 44) 

In order to describe behaviour of real dielectrics in the alternating electric field the 

components ε' and ε" , ε' and tgδ, ,,ωεσ =  or χ' and χ" are often used.    

As a conclusion of the description of the behaviour of dielectrics in alternating electric fields 

it is necessary to define impedance Z. The relationship between the voltage and current in the 

circuit of alternating current is described: 

                                                             ( )
( )

( )ω
ω

ω
Z

U
I

t

t

,
, =                                              (1. 45) 

Impedance  

                                                            iXRZ +=*
.                                                                  (1. 46)

   

In equation (1.46) R is the resistance and X is called reactance. Modulus of the impedance is 

denoted as Z. Impedance of loss-less capacitor: 
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Ci
XZ

C ω
1* == .   (1. 47) 

Quantity Xc is called capacitance (capacity impedance). Inductive impedance 

                                                                 LiX
L

ω=                  (1. 48) 

 is called inductance. The total impedance of series or parallel connected elements is 

calculated in a similar way as the total resistance of resistors connected in series or parallel. 

Very often the loss capacitor is described as a parallel connection of resistor R and capacity 

impedance Xc. 

 

1.5 Electrical capacity, energy of electric field 

Electric capacity C of the set of two electrodes (conductors) is called the ratio of the 

charge Q on the surface to the voltage U between them: 

                                                                 
U

Q
C ≡ .                                   (1. 49) 

In the SI system the capacity unit is Farad 
V

C
F

1

1
1 = . It is very large unit comparing to practice 

where capacity is in the range of µF, nF, pF and fF. 

To derive the equation describing the electrical capacity of the set of electrodes (plates of 

the capacitor) it is necessary to calculate distribution of the electric field between the plates of 

the capacitor (using Gaussian Law), then integrate the obtained equation, calculate the 

difference of potential between the plates and introduce the obtained relationship in equation 

(1.49). 

 

1.5.1 Parallel plate capacitor 

 Flat capacitor  consist of two parallel conducting plates separated by the free space or a 

dielectric medium. The capacitance depends on the geometry of capacitor but the charge Q 

and potential different U does not affect the capacitance value (Fig.1.9) . 
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Fig.1. 9 Parallel plate capacitor 

Electrical capacity C0 of flat capacitor with vacuum with the surface S and distance 

between plates d is equal: 

d

S
C 0

0

ε
= ,             (1. 50) 

while the capacity of such capacitor filled with dielectric with relative electric permittivity εr 

0
0 C

d

S

d

S
C r

r ε
εεε

=== .                                  (1. 51) 

 
The capacitance is independent of  charge and the potential difference across the plates but 

only of the geometrical dimensions of the capacitor.   

It is worth noting, that eq. (1.50) and (1.51) are approximate, because they have been derived 

for two infinite parallel planes (electric field 'leaving' the capacitor has not been considered), 

so it can be used for large surface of electrodes which are located at small distance. Equation 

(1.50) and (1.51) are frequently used to derive electric permittivity of various types of 

materials. On a sample of tested material with known dimensions: thickness d and surface 

area S, the electrodes are installed and the electric capacity is measured. Relative dielectric 

permittivity of the sample is calculated by dividing the electric capacity C by the capacity of 

the vacuum capacitor C0
 with the same dimensions 

`   

0C

C
r =ε .    (1. 52) 

It is important to add that capacitance measurement is very often used for liquid level 

measurement, to measure the ingredients of the liquids and gases, small deformations 

(thermal expansion, piezoelectric deformation, electrostriction, magnetostriction or 

23



 
 

 
 

 

measurement of the dielectric layers thickness on the conductive bases, for example to 

measure the distribution of the thickness of the paint on the cars elements). Capacity 

measurement is also used in nanoactuators (actuators with actuating ranges of nm). For small 

distances between the plates of the capacitor the sensitivity of measurement is more sensitive 

by a couple of orders than interference measurement!. 

 

1.5.2 Capacity of cylindrical capacitor 

Cylindrical capacitor is created by two coaxial cylinders with the length l and radius of 

inner plate r1 and outer plate r2, charged with the two opposite signs +Q and –Q (Fig.1. 10).  

 
Fig.1. 10 Cylindrical capacitor 

 
Using Gauss Law, it is possible to derive the intensity of electric field between the 

cylinders and then electric capacity: 

( )12 /ln

2

rr

l
C

πε
= .                                                                    (1. 53) 

From the equation (1.53) one way to conclude that the capacitance of the cylindrical capacitor 

depends on the length of the cylinder and the ratio of the radii of the cylinders. One can also 

notice that coaxial cables, made of conductive core and conductive screen, are forming a 

cylindrical capacitor. In electrical capacity measurement it is important to minimize the 

capacity of the cables. During very accurate measurement of capacitance (especially small 

values) it is necessary to compensate the capacitance of the cables, or to take it into account 

capacitance of cables during measurement. 
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1.5.3 Capacity of spherical capacitors 

 
Fig.1. 11 Spherical capacitor with two spherical concentric shells of radii a and b. 

 
A spherical capacitor consists of two concentric spherical conductors, the inner one of radius 

a and outer of radius b (Fig.1. 11). The capacitance for spherical conductors can be obtained 

from Gauss Law and is given as: 

  

                                                                                                (1. 54) 

 

 
 
1.5.4 Energy of charged capacitor  

 

 The capacitor energy change (energy stored inside of the capacitor) 

∫∫ ===
UU

E CUCUdUQdUW
0

2

0
2

1
.  (1. 55) 

For the flat capacitor with the surface of plates S and the distance between them d filled with 

dielectric with the permittivity ε  

DEVVE
d

SdU

d

SU
WE 2

1

2

1

22
2

2

22

==== ε
εε

.  (1. 56) 

where: the intensity of electric field 
d

U
E = ,  Sd =V – the volume of the capacitor and DE =ε  

is the electric inductivity. 

Energy density of electric field is: 

( ) PEEEEEE
V

W
w E

E 2

1

2

1

2

1

2

1
1

2

1

2

1 2
0

2
0

2
0

2
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2 +=+=+=== εχεεχεε . (1. 57) 
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From equation (1.57) one can notice that the energy of electric field is proportional to the 

square of its intensity. Factor PE
2

1
 describes energy of the interaction of dielectric with 

external electric field. 

 

1.6 Methods of capacity (permittivity) measurement 

1.6.1 Static methods 

There are two methods, which are considered as static methods: the method of “pick up 

electrode” and the method of “ballistic galvanometer”. Above methods principle is related to 

measurement of charges on the surface of the dielectric and can be used for the measurement 

of the dielectrics with small losses. In the method of “pick up electrode” the charge flowing 

from the electrode during the disconnection from the surface of the dielectric is determined.  

The schematic of the method of ballistic galvanometer is presented in Fig. 1.12. 

 
   Fig.1. 12 The schema of the method of ballistic 

                galvanometer method of measurement of capacitance 

 

Setting the switch in position 1 charge the capacitor filled with tested dielectric from the 

source of direct current to the voltage U. After charging the capacitor the switch is set to 

position 2. The capacitor is discharged through the ballistic galvanometer, which is used to 

measure the charge (ballistic galvanometer is a device which does not have a return torque – 

the displacement of such a galvanometer is proportional to the charge which flows through 

the coils of the device). Measuring the charge flowing through the coils of galvanometer 

during discharging the capacitor without the dielectric, it is possible to derive the relative 

dielectric permittivity of measured dielectric according to the equation: 

0Q

Q
r
=ε .   (1. 58) 

Currently to measure electric charge, very sensitive and accurate electrometers are used. 
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1.6.2 Quasi-static methods 

In quasi-static methods an alternating current is used. The frequency f<<fr, where fr is the 

resonant frequency of that circuit. Capacitance of the capacitor can be derived by measuring 

the impedance of the circuit, which contains a series at connected resistances with known 

value R and the capacitor to be tested. 

 
Fig.1. 13 Scheme of measurement of capacitance by measuring the impedance modulus. 

Current in the circuit is measured using the ammeter A 

Z

U
I RMS

RMS = .   (1. 59) 

Using the equation to calculate the impedance and deriving the RMS of voltage and the RMS 

of current it is possible to derive the impedance of the circuit, and thus capacitance of tested 

capacitor. 

2

2 1







+=
C

RZ
ω

  (1. 60) 

Between quasi-static methods is the integration method of capacitance measurement. The 

schematic of the method is presented in Fig.1. 14. The set up of the system consists of the test 

capacitor Cx, the switch, two resistances, a source of direct current with known voltage U, 

rectifying bridge and ammeter.  

 
Fig.1. 14 Diagram of the measurement of capacitance by integration method. 

 

When the switch is in position 1 the capacitor is charged to the voltage V, charge Q=CU 

flows through the ammeter. After switching the switch to position 2 discharge occurs and 

charge Q flows through the ammeter in the same direction. If the switch is switched with 
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frequency f (most often 50Hz) then the average current which flows through ammeter is given 

by: 

x
fUCI 2=    (1. 61) 

From equation (1.61), the mean value of the current is proportional to the tested capacitance, 

so the ammeter can be scaled in units of capacitance. The integration method is often used in 

multimeters and cheap capacitance meters. 

 

1.6.3 Bridge method 

Bridge methods are used to derive complex values of electric permittivity in a very wide 

frequency range (from 10-6 to 107Hz). The principles of the method are described by the 

example of  Schering's bridge, the schematic of which is presented in Fig.1.15. 

 
                      Fig.1. 15 Schering bridge diagram 

 

The test capacitor with losses C* is presented as a parallel connection of the resistance Rx 

and ideal capacitor Cx, R2 is an adjustable resistance, R3 and R4 are the resistances of lower 

branches of the bridge. The bridge is supplied with a source of alternating current with 

frequency ω. A voltmeter measuring alternating voltage is used as an indicator of the balance 

of the bridge.  

The inversion of the impedance of the upper branches of the bridge is: 

x

x

x

x

Ci
R

Ci

RZ
ω

ω

+=+=
1

1
111

1

,   2

22

11
Ci

RZ
ω+= .

                                    
(
 
1. 62) 

The bridge is balanced (in the diagonal used for measurement the current is equal to zero) 

when  

                                                                   3211 ZIZI =  and 4221 ZIZI = .                (1. 63) 

Dividing the equations one obtains: 
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Replacing the inversion of impedance (Eq.1.62) yields:  


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ωω .  (1. 65) 

Comparing the real parts and imaginary parts are obtains: 

23

4 11

RR

R

R
x

=    and  2CC
x
= .  (1. 66) 

Most often 34 RR = , so Σ==
2

11

RR
x

, where Σ is the electric conductance of the capacitor. The 

bridge can be scaled in the units of conductivity (siemens S) or (as it will be described below) 

showing the tangents of the angle of dielectric losses and the capacitance units. Knowing the 

geometric dimensions of the capacitor one can derive the specific conductivity σ of the test 

material using the equation 
d

Sσ
=Σ . 

Electric permittivity is derived by dividing capacitance of the capacitor with the dielectric 

by capacitance of the vacuum capacitor with the same dimensions. It is worth noting that 

measured capacity Cx is the sum of capacitance of the connections and tested capacitance. In 

some bridges it is possible to compensate capacitance of the connections. If it is not possible 

it is necessary to measure the capacitance of the set up Cd without the tested capacitor and 

subtract it from measured capacitance Cx. Using the expression to calculate complex electric 

permittivity of the dielectric it is possible to write it in a form: 

                                                 







+=+== 2
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CCiCi

Z
ωωεωεωε                (1. 67) 

Comparing real parts and imaginary parts we obtain: 

23

4
0

,, 1

RR

R
C =ωε  ,   (1. 68) 

If 34 RR =  then  

                

02

,, 1

CRω
ε = ,                 (1. 69) 

From equation (1.69) one concludes that to derive ε" it is necessary to know value of C0, and 

so the geometrical dimensions of tested capacitor. Please notice that: 
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Expression (1.70) contains quantities measured using the bridge, so the bridge can be used to 

measure capacitance of the capacitor and the value of tgδ or electric conductivity.  

Description of other types of bridges and the details of their operation is very wide area of 

research and it exceeds the content of this paper. 

There are other bridges commercially available, they work with various frequencies (most 

often 1kHz, 100kHz or 1MHz) or in wide range of frequencies (from 10-6 to 107Hz) and 

measurement fields – variable amplitude of measurement field, measurement on the 

background or slow variable electric field). Suppliers are attaching specialized software, 

which enables computerized recording of measurement data and specialized result data 

processing. 

 

1.6.4 Resonance methods of capacity measurement. 

Resonance methods enable measurement of complex electric permittivity in the frequency 

range from 104 to 109Hz. A schematic of the method is presented in Fig.1. 16. It is worth 

mentioning that frequency measurement is very accurate (measurement of frequencies in the 

range of MHz with an accuracy of 1Hz is not problematic), so the resonance methods are used 

to measure very small changes of capacitance. There are various methods to derive resonance 

curves and measure electric capacitance. 

 
Fig.1. 16 Diagram of the resonance method 

 

In the simplest case the current dependence in the circuit at constant supply voltage at the 

supplied frequency is derived. The current in the circuit is maximal when the inductive 

impedance is equal the capacity impedance so 
C

L
ω

ω
1

= . Knowing L of the resonance circuit 
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and the resonance frequency it is possible to derive measured capacitance C. Knowing the 

resonance curve it is possible to measure the quality factor of the circuit (goodness) Qr. The 

goodness of the resonance circuit is defined as a ratio of energy stored in the system to energy 

dissipated during one period. It is possible to prove that the goodness of the system is equal to 

the ratio of resonant frequency to the width of the half maximum of the resonance curve 

(difference of the frequencies for which the amplitude is equal to half of the amplitude at the 

resonance frequency). Quality factor (goodness) of the LC system is equal to the inverse of 

the tangent of the angle of dielectric losses:  

                                                                  
δtg

Q
r

1
= .        (1. 71) 

The resonance curve can be obtained also at the given supplied frequency ω and the induction 

L of the circuit by varying the capacitance of the model (known) capacitor Cn. First it is 

necessary to derive the frequency of the circuit which contains known capacity Cn1. After 

installation of the test capacitance C in the system the resonance will appear at lower value of 

known capacity Cn2.  

Real part of the electric permittivity of the tested dielectric which fills the capacitor can be 

derived from: 

0

21'
C

CC
nn

−
=ε    

12

11

rr
QQ

tg −=δ   (1. 72) 

The resonance curve can be obtained using the Q-meter. In such a case the current 

dependence on the capacity is derived. The resonance curve is obtained for known model of 

capacitor and for the test capacitor. 

When describing resonance methods it is worth mentioning the 'substitution method'. In 

this method the test capacitor is connected parallel to the adjustable capacity (Fig.1. 17). It is 

also possible to connect the loss-less capacitor and in parallel the resistor. 

 

 

Fig.1. 17 Scheme of measurement of capacitance by substituting method. 
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Changing the adjustable capacitor and the resistor it is possible to tune the system in such 

way, that the resonance curve parameters (amplitude and resonance frequency) are not 

changed during switching the position of the switch. 

 

1.6.5 Beat method 

The schematic of the beat method is presented in Fig.1. 18. The test set up is made of two 

generators and the mixer in which the beat occurs, the filter which cuts off the high 

frequencies and the frequency meter. The capacitor to be tested Cx is connected to the 

resonance circuit of one of the generators (on the figure ω2)  

 

 
Fig.1. 18  Scheme of measurement of capacitance by beat method 

 

To simplify we assume that the amplitude of the voltages on the outputs of both of the 

generators are equal 00201 UUU == . The resultant voltage (after mixing both signals)  

( ) ( ) ttUtUtUU
2

cos
2

sin2sinsin 2121
020210112

ωωωω
ωω

−+
=+=                (1. 73) 

The output signal of the mixer contains the sum part 
2

21 ωω +
  and difference part 

2
21 ωω −
 . 

The filter cuts off the high frequency. The frequency meter is used to measure the difference 

frequency. The resonance frequency of the generator ω2 depends on the capacitance 

connected to the resonance circuit, so the measurement of the difference frequency enables 

accurate derivation of the capacitance changes in the circuit of that generator. 
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It is worth noting that beat frequencies are used in many areas of science and technology, 

for example modulation of radio frequencies, optical mixing of frequencies, second harmonic 

generation of light (SHG), Raman and Brillouin scatering. 

 

1.7 Thermodynamics of dielectrics – linear expansion and thermodynamic 

identities. 

Phenomenological descriptions concerning the macroscopic scale (bulk materials) are not 

generally considered as being due to microscopic mechanisms of the particular phenomena in 

question. This fact enables us to make a description of macroscopic system response to 

external factors such as the electric field E, hydrostatic pressure p or mechanical stress σ 

E →P, 

p →V, 

σ → η, 

where: P – the polarization, V – the volume,  η – the deformation,  

Macroscopic properties can however be linked with microscopic phenomena; for 

example polarization microscopy is related to the dipole moment. Usually external factors 

(generalized forces) to be considered are: 

mechanical stress                        – σ, 

electric field   – E, 

temperature  – T, 

pressure  – p, 

magnetic field  – H. 

System response to external factors is manifested in the form of changes in such 

parameters (generalized coordinates) as: 

deformation   – η, 

polarization   – P, 

entropy   – S, 

volume   – V, 

magnetization                       – M. 

The choice of variables depends on the type of phenomena under investigation; 

considering the dielectric properties, generalized forces are usually σ, E, T and p and the 
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generalized coordinates are: η, P, S and V, the variables being chosen to suit the appropriate 

thermodynamic function. The most frequently used functions, witch are describing dielectric 

properties are free energy or Gibbs function. The definitions of those functions are given in 

Table 3.  

Table 3. Thermodynamic potentials used to describe the physical properties of dielectrics. 

The name of the 

potential 

Definition of 

potential 

Independent variables 

 

Proposed by 

 

Free energy  F = A = U –TS T, η, P Helmholtz in 1882 

Gibbs function  G + U +x⋅X –TS T, σ, p, E Gibbs in 1930 

U – internal energy. 

Let us recall definition of entropy TdQdS /=  and generalized work XdxdW = . 

Examples of generalized work are: pdVdW = , EdPdW =  and ησddW = . Thermodynamic 

potentials are the functions of the state. 

Consider the Gibbs Function: 

EPpVTSUG +++−= ση .               (1.74) 

If we would like to take into account the magnetic and magnetoelectric phenomena to the 

thermodynamic potential the MH term should be added. 

Derivatives of the Gibbs function have a definite physical meaning:  

S
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∂      
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∂G     
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∂
∂   and    
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G
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∂
∂                        (1.75) 

Each of these physical quantities (derivatives) depends on all independent variables: 

                   ( )EpTSS ,,,σ= , 

                   ( )EpT ,,,σηη = , 

                  ( )EpTVV ,,,σ= ,                                                      (1.76)

                    ( )EpTPP ,,,σ= . 

Developing a linear function of the first derivatives of Gibbs functions and limiting the 

expansion to the linear terms we obtain: 
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. 

In some cases components of the second row should be taken into account, for example, 

electrostriction or Kerr effect.  

The last line includes terms describing the phenomena that allow conversion of non-

electric properties into electrical ones, the last column describes the phenomena that control 

non-electrical quantities by means of an electric field.  

Materials exhibiting piezoelectric and pyroelectric properties are classified as smart 

materials. An element made of such material can be used simultaneously as a detector and 

actuator; an example of an element made of a smart material is a piezoelectric transducer 

which can be used to detect elastic waves (acoustic or ultrasonic) and also to generate these 

types of waves. 

The second derivatives of thermodynamic potential (the first in line expansions) have the 

following physical meaning: 
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, piezoelectric effect. 

The number of non-zero components of tensors describing the physical properties of 

materials and the relationships between these components is determined by the symmetry of 

the material. It should be noted that the physical properties are described by the even-order 

tensors in all materials. 

Since the thermodynamic potential is a function of the state then the mixed derivatives do 

not depend on the order of differentiation. With this condition, we get six equations – the 

thermodynamic identities: 
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Pyroelectric coefficient is equal to the coefficient describing the electrocaloric effect, 
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In a similar way it can be demonstrated equality of coefficients describing the direct and 

inverse piezoelectric effect and the equality of coefficient of thermal expansion and the 

coefficient describing piezocaloric effect: 

i

jk

ij

i

ijk
E

P
d

∂

∂
=

∂

∂
=

η

σ
 and

ij

ij

S

T

ij

σ
η

α
∂
∂
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∂

∂
= .                                    (1.80) 

Thermodynamic identity plays a very important role in experimental research and 

technical applications of dielectrics. When setting the piezoelectric coefficients in the direct of 

a piezoelectric effect or pyroelectric coefficient we can calculate the deformation of material 

under the influence of an electric field or the value of the  electrocaloric effect. 
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2.1. Short history of the piezoelectric effect 

The direct piezoelectric effect was first observed in 1880, and was initiated by the 

brothers Pierre and Jacques Curie [1,2]. By combining their knowledge of pyroelectricity with 

their understanding of crystal structures and behavior, the Curie brothers demonstrated the 

first piezoelectric effect by using crystals of tourmaline, quartz, topaz, cane sugar, and 

Rochelle salt. Their initial demonstration showed that quartz and Rochelle salt exhibited the 

most piezoelectricity ability at the time. 

 

2
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“We have found a new method for the development of polar electricity, 

consisting in subjecting them to variations in pressure along their hemihedral 

axes” 

         J&P Curie 

  

Working on the piezoelectric phenomena Curie Brothers reported a series of results 

presenting experiments that could use this effect for measuring force and high voltages [3, 4]. 

The most famous device was the “quartz piezoelectrique” applied to produce known electric 

charges for the measurement of voltages, currents, capacitances. This piezo-quartz instrument 

was used by Maria Curie in her work on radioactivity. The experimental device set up by 

Pierre and Maria Curie is shown in Fig. 2.1. A powder to be studied is spread on the lower 

plate of a crude ionization chamber. The charges collected on the upper plate are compensated 

by opposite charges obtained by progressively applying a weight to the piezoelectric quartz. 

The compensation is continuously controlled by the electrometer. The absolute value of the 

ionization current could be calculated knowing the applied weight and the time during which 

the compensation could be maintained. For the radium and polonium discoveries Maria Curie 

was awarded the Nobel Price in Chemistry in 1911 [5, 6].  

 

Fig. 2.1 Scheme of Pierre and Marie Curie’s experimental set up (from Marie Curie’s thesis) [7]. A, B 

ionization chamber plates, E electrometer, Q piezoelectric quartz. 

 

The name “piezoelectric” comes from Greek (πιεζειν= piezein which means to squeeze 

or press) and means “electricity caused by pressure”. This word was proposed by Wilhelm 

Gottlieb Hankel [8] in 1881. 
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A reverse piezoelectric effect is the term given to the phenomenon in which an applied 

electric field produces a mechanical strain in the same materials, the piezoelectric materials. 

The reverse piezoelectric effect was first predicted by Gabriel Lippmann, and shortly 

afterwards demonstrated experimentally by Jacques and Pierre Curie [9]. 

Just after the discovery of piezoelectricity, much more work has been done to define 

crystallographic principles of the effect. In 1893 Lord Kelvin made a significant contribution 

to piezoelectricity by presenting analogy models and laying down some of the basic 

framework that led to the modern theory of piezoelectricity. Examination of the impressive 

papers of 1892–94 of Eduard Riecke and Woldemar Voigt confirms that these scientists 

contributed greatly to the development of the theory of piezoelectricity. Additionally in 1910, 

Voigt published the first textbook on physical crystallography, in which the correct 

description of the piezoelectric effect in different crystallographic classes and the word 

‘tensor’ to describe mechanical stress were given [10]. 

However, at that time the phenomenon of piezoelectricity was obscured because of 

a complicated description in crystals with low symmetry and no visible applications. Over the 

next few decades, piezoelectricity remained in the laboratory, something to be experimented 

on as more work was undertaken to explore the great potential of the piezoelectric effect. The 

breakout of World War I marked the introduction of the first practical application for 

piezoelectric devices, which was the sonar device. This initial use of piezoelectricity in sonar 

created intense international developmental interest in piezoelectric devices. Over the next 

few decades, new piezoelectric materials and new applications for those materials were 

explored and developed. 

During World War II, research groups in the US, Russia and Japan discovered a new 

class of man-made materials, called ferroelectrics, which exhibited piezoelectric constants 

many times higher than natural piezoelectric materials. Although quartz crystals were the first 

commercially exploited piezoelectric material and still used in sonar detection applications, 

scientists kept searching for higher performance materials. This intense research resulted in 

the development of barium titanate and lead zirconate titanate, two materials that had very 

specific properties suitable for particular applications.  

The reverse piezoelectric effect was used by Pound and Rebka for testing the 

gravitational shift predicted by Einstein [11, 12]. They used the resonant absorption without 
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recoil of γ quanta discovered by Mössbauer for compessation of changes in photon energy in 

the gravitational field of the Earth by relative movement of the radiation source γ and 

absorbent.  For precise control of this small movement the piezoelectric transducers were used, 

which allowed to define changes in photon energy with an accuracy of 10
-16
. 

Another important example of scientific application of reverse piezoelectric effect is 

scanning tunneling microscope (STM). The operating principle of a scanning tunneling 

microscope (STM) is based on the so-called tunneling current, which starts to flow when a 

sharp tip approaches a conducting surface at a distance of approximately one nanometer. The 

tip is mounted on a piezoelectric tube, which allows tiny movements by applying a voltage at 

its electrodes. Thereby, the electronics of the STM system control the tip position in such a 

way that the tunneling current and, hence, the tip-surface distance is kept constant, while at 

the same time scanning a small area of the sample surface. This movement is recorded and 

can be displayed as an image of the surface topography. Gerd Binnig and Heinrich Rohrer, 

have been awarded the Nobel Prize in Physics 1986 for the STM construction [13, 14]. The 

reverse piezoelectric effect was similarly used in needle positioning in atomic force 

microscope (AFM) [15]. 

In the 20th century metal oxide-based piezoelectric ceramics and other man-made 

materials enabled designers to employ the piezoelectric effect and the inverse piezoelectric 

effect in many new applications. These materials generally are physically strong and 

chemically inert, and they are relatively inexpensive to manufacture. The composition, shape, 

and dimensions of a piezoelectric ceramic element can be tailored to meet the requirements of 

a specific purpose. Ceramics manufactured from formulations of lead zirconate / lead titanate 

exhibit greater sensitivity and higher operating temperatures, relative to ceramics of other 

compositions, and "PZT" materials currently are widely used piezoelectric ceramics [16]. 

2.2.  Simple molecular model of piezoelectric effect 

In Figure 2.2 simple molecular model of the piezoelectric effect is presented. It explains 

the generation of an electric charge as the result of a force applied on the material. Before 

subjecting the material to some external stress, the gravity centers of the negative and positive 

charges of each molecule coincide (Fig. 2.2(a)). Therefore, the external effect of the negative 
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and positive charges are reciprocally cancelled. As a result, an electrically neutral molecule 

appears. When exerting some stress on the material, its internal reticular structure can be 

deformed, causing the separation of the positive and negative centers of the molecules and 

generating little dipoles (Fig. 2.2(b)). The facing poles inside the materials are mutually 

cancelled and a distribution of a linked charge appear on the material’s surface (Fig. 2.2(c)). 

That is to say, the material is polarized. This polarization generates an electric field and can 

be used to transform the mechanical energy used in the material’s deformation into electrical 

energy [17].  

 

Fig. 2.2 Simple molecular model for explaining the piezoelectric effect. (a) before subjecting the material 
to some external stress where the centers of the negative and positive charges of each molecule coincide 

and the external effect of the charges are reciprocally cancelled, as a result, an electrically neutral 

molecule appears. (b) After exerting some pressure on the material where the internal structure is 

deformed and that causes the separation of the positive and negative centers of the molecules, as a result, 

little dipoles are generated. (c) the facing poles inside the material are mutually cancelled and the 

polarization generate an electric field and can be used to transform the mechanical energy of the 

material’s deformation into electrical energy. 

 
In Fig. 2.3 the piezoelectric material on which external stresses are applied is 

presented. Two electrodes are deposited on the surface where the linked charges of opposite 

sign appear. These electrodes are externally short circuited through a wire to galvanometer. 

When exerting some stresses on the piezoelectric material, a linked charge density appears on 

the surface of the crystal in contact with the electrodes. This polarization generates an electric 

field which causes the flow of the free charges existing in the conductor. Depending on their 

sign, the free charges will move towards the ends where the linked charges generated by the 

crystal’s polarization is of opposite sign. This flow of free charges will remain until the free 

charges neutralizes the polarization effect. When the stresses on the crystal stops, the 
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polarization will disappear, and the flow of free charges will be reserved, coming back to the 

initial standstill condition.  

 
Fig. 2.3 Schematic representation of the direct piezoelectric effect. 

 

2.3.  Theory of piezoelectricity 

Crystals are anisotropic materials. This means that their physical properties are different in 

different crystallographic directions. The exact description of the physical properties of 

crystals, taking into account their anisotropic character, is possible only through the vector 

and tensor calculi. More information considering this problem can be found in [18].  

Tensor theory of piezoelectric effect 

Piezoelectric properties of crystals can be described by two different linear equations 

defining the relationship between electrical and mechanical quantities. The direct 

piezoelectric phenomenon, is the ability of some materials to generate an electric field in 

response to applied mechanical strain. The effect is closely related to a change of polarization 

within the material's volume due to applied stress. The relationship between these two 

physical quantities, where the Einstein’s summation rule for repeated indices is implied, can 

be represented as follows 

),,(m,i,jσdP ijmijm 321==      (2.1) 

where Pm means the polarization of a crystal, being a vector, is specified by three components 

while σij means stress which is specified by a second-rank tensor with nine components. 

According to the general mathematical rule the piezoelectric modules form third-rank tensor. 
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In developed form, components of polarization in a direct piezoelectric phenomenon 

can be described as follows: 

Polarization component in X1 direction           

331333213231131

231232212221121

1311312112111111

σdσdσd

σdσdσd

σdσdσdP

+++

++++

+++=

. 

Polarization component in X2 direction     
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232232222221221

1321312212112112
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.      (2.2) 

Polarization component in X3 direction   

333333233231331

233232232221321

1331312312113113

σdσdσd

σdσdσd

σdσdσdP

+++

++++

+++=
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 Stress arises from applying a force to a surface, and its units are N/m
2
 (force/area). 

Force is a vector quantity, and hence is a first-rank tensor. But when one apply force to 

a surface one have to consider also the relative orientations of the force vector and the normal 

to the surface. This problem is illustrated in Fig. 2.4. The first index informs about the 

direction of the axis along which the stress is applied and the second indicates the direction of 

the normal of the crystal wall exposed to this stress. In the case of isotropic materials, if the 

force is applied normal to the surface, the result will be a compression of the crystal in the 

direction of the force. But if the force is applied in a direction parallel to the face of the crystal, 

the result is a shear of the crystal. If the direction of the force and the direction of the normal 

to the face the force is acting are parallel, we have a tensile stress, and if the two directions are 

orthogonal we have a shear stress. When a force is applied at an arbitrary direction to 

a surface, we have a mixture of the two types of stress, which can be obtained by separating 

the force vector into the components normal and parallel to the face [19]. 
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Fig. 2.4 Distribution of mechanical stress. 

When mechanical stress do not cause rotations of the crystal around axis passing through 

its center, then the following condition σij = σji must be fulfilled. Number of independent 

components of the stress tensor decrease, by 3. Therefore, for a full description of this state of 

stress, it is sufficient to take into consideration just six different non-zero tensor components 

of σij. The symmetry of the stress tensor involves the symmetry of the piezoelectric module 

due to the indices ij. In the most general case there may be 3 components of polarization Pm 

and the 6 components of stress and therefore maximal number of independent and non-zero 

piezoelectric modules will be equal to 3 x 6 = 18. 

Consider, for example the case where the normal stress 022 ≠σ  while other tensor 

components 0=σ , then the direct piezoelectric effect can be described by  three simple 

equations: 

.,, 223223222222221221 σdPσdPσdP ===   (3) 

Polarization in these directions occurs only when the values of the crystal piezoelectric 

d122, d222, d322 modules will be different from zero. Fig. 2.5 schematically illustrates the 

possible directions of polarization in the crystal under non-zero mechanical stresses 22σ . 
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Fig. 2.5 Possible directions of polarization creation in the crystal under the mechanical stress σ22. 

Now consider the case when the crystal is subjected to the shear stresses 3223 σσ = , and 

other components of  stress tensor ijσ  are equal to zero, then following equations can be 

obtained: 

( )
( )
( ) .

,

,

2333232332332233233

2323222332232232232

2313212332132231231

σddσdσdP

σddσdσdP

σddσdσdP

+=+=

+=+=

+=+=

     (2.4) 

In this case physical meaning can be only attributed to the sum of modules (d123+d132), 

(d223+d232) and (d323+d332). Fig. 2.6 schematically illustrates the possible direction of 

polarization formed in the crystal under the non-zero shear stresses 3223 σσ = . 

 

Fig. 2.6 Possible directions of polarization creation in the crystal under the shear stresses σ23= σ32. 

Reverse piezoelectric effect relies on the change the shape of the solid by a small amount 

(up to a 4% change in volume) under an applied voltage: 

),,(m,i,jEdη mmijij 321==      (2.5) 

where ijη  denotes the components of strain tensor, Em – the electric field, dmij – the 

components of piezoelectric modules. Method of  determination of strain tensor components 

is illustrated in Fig. 2.7. Components containing the same indices determine the normal strain 

of the crystal in the direction of the axis of reference system. Components containing mixed 
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indices define the so-called proper shearing, which does not include any rotations. In this case 

jiij ηη = . So defined components form a symmetric strain tensor ijη . 

 

 

Fig. 2.7 The notation of normal and shear strains. 
 

The developed form of reverse piezoelectric effect can be write 

Direct strains 

           in X1 direction   33112211111111 EdEdEdη ++=  

           in X2 direction   33222222112222 EdEdEdη ++=  

           in X3 direction   33332233113333 EdEdEdη ++=  

Shear strains 

           in X1 direction  3323222311233223 EdEdEdηη ++==  

           in X2 direction  3313221311133113 EdEdEdηη ++==  

           in X3 direction  3312221211122112 EdEdEdηη ++==  

Matrix notation of piezoelectric effect 

A general second-rank tensor used to describe the stress ijσ  and strain ijη  has 3
2
 = 9 

independent components. When the components are written out explicetely they form 

square array where the first suffix refers to the row and second to the column. The fact 

that second-rank tensor is symmetrical in i and j allows to use more concise notation 

known as the matrix notation.  

47



 

 

 

345

426

561

333231

232221

131211

σσσ

σσσ

σσσ

σσσ

σσσ

σσσ

=    

345

426

561

333231

232221

131211

2

1

2

1
2

1

2

1
2

1

2

1

ηηη

ηηη

ηηη

ηηη

ηηη

ηηη

=  

Up to this point all the equations described piezoelectric effect have been used in full tensor 

notation, because only in this way their true character be displayed. But when calculating in 

particular problems it is advantageous to reduce the number of suffixes as much as possible. 

This is done by defining new symbols d11, d12 etc. In terms of these new symbols the 

piezoelectric modules can be rewritten as:    
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 In the matrix notation the equations describe the direct and reverse piezoelectric 

effects take the following form: 

),...j;,,(iEdησdP iijjjiji 61321and ====    (2.6) 

The following scheme summarizes the piezoelectric equations in the matrix notation. Read 

horizontally by rows it gives the direct effect and read vertically by columns it gives the 

reverse effect. 
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Thermodynamic description of piezoelectricity 

From the thermodynamic considerations, assuming thermodynamic equilibrium in 

which all described physical phenomena are reversible, it follows a uniform description of 

all the physical properties of crystals. Properties of piezoelectric crystals in a constant 

temperature T = const., can easily be represented by a simple diagram shown in Fig. 2.8. 

 

Fig. 2.8 Auxiliary diagram for the thermodynamic description of the dielectric, elastic and piezoelectric 

properties of the crystals. 

Physical quantities appearing on the right side of this diagram describe the elastic 

properties of a crystal, while on the left side the dielectric one. Change of the crystal 

deformation causes, according to the Hook’s law, changes of the stress klijklij dηcdσ = , where 

cijkl denotes elasticity tensor. Similarly, the change of the electric field dEn causes changes of 

the crystal polarization nmnm dEχεdP 0=  where mnχ  states from a component of the electric 

susceptibility tensor and 0ε  is the vacuum electric permittivity. Both of these equations 

describe the principal phenomena occurring also in crystals, which do not exhibit 

piezoelectric effect. In piezoelectric crystals, with no center of symmetry, there is a mutual 
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coupling between all physical quantities which are located in different corners of the 

quadrangle shown on the diagram. Assuming that for small electric field and small 

mechanical stress, polarization Pm and deformation klη  are linear functions of all other 

physical quantities En and ijσ  we obtain ( )
ijnmm ,σEPP =  and ( )ijnklkl ,σEηη = . Any small 

change of Pm and klη can be written as 

ij
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where:  

σ,T

mnχ  - the electric susceptibility (where mechanical stress is constant), 

E,T

klijs - the elastic coefficient (where electric field is constant), 

E,T

mijd - the piezoelectric constant in direct effect, 

σ,T

nkld  - the piezoelectric constant in reverse effect. 

When E = 0 and 0=σ  it is said that the crystal is electrically and mechanically free. 

All coefficients should be fixed at a constant temperature T. Assuming that the initial value of 

electric field and stress are equal to zero, after integration of the equations (2.7) and (2.8), we 

obtain: 

ij

E,T

mijn

σ,T

mnm σdEχεP += 0                   (2.9) 

ij

E,T

klijn

σ,T

nklkl σsEdη +=       (2.10) 

The first of these equations defines a complete change of crystal polarization Pm caused by an 

external electric field En and stress ijσ . The second equation determines the total deformation 

of the crystal klη  caused by an external electric field En and by a stress ijσ . When in the first 

equation En = 0 and in the second one 0=ijσ  - these equations adequately describe the simple 

and reverse piezoelectric effects. 

 According to the First Thermodynamic Law the change of internal energy U per unit 

volume of a crystal is determined by the equation: 
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TdSdPEdησdU nnijij ++=       (2.11) 

where ijσ , klη , nndPE  and TdS denote total changes of mechanical, electric and thermal 

energies respectively. Defining the thermodynamic potential Φ  in the form 

STPEησUΦ nnijij −−−=       (2.12) 

after differentiating and taking into account the equations (2.11) the following formula can be 

obtained 

SdTdEPdσηdΦ nnijij −−−=       (2.13) 

Assuming that the thermodynamic potential is a function only of independent variables 

( ),T,EσΦΦ nij=  we may write: 
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    (2.14) 

This equation shows the mutual equivalence of the relevant modules defining the simple and 

reverse piezoelectric phenomena occurring in the mechanically and electrically free crystals. 

2.4.  Crystal symmetry and piezoelectricity 

It is well known from the very beginning that the crystallographic symmetry of materials 

plays an important role in the piezoelectric phenomena. According to the definition of the 

piezoelectric effect, in crystals possessing the center of symmetry all components of the 

piezoelectric tensor should vanish.  

 
Fig. 2.9 Symmetry hierarchy for piezoelectricity. 
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As illustrated in Fig. 2.9 of the 32 crystallographic point groups, only 21 are 

noncentrosymmetric. Odd-rank tensor properties are symmetry forbidden in centrosymmetric 

structures. In the remaining 21 point groups, the piezoelectricity may exist, except for the 

cubic class 432, where the piezoelectric charges developed along the <111> polar axes cancel 

each other. However, the absence of piezoelectricity in this particular case does not play any 

significant role, because there are only few crystals that belong to this class. In this context, it 

should be mentioned that statistically about 30% of all materials (from about several millions 

known by now) are non-centrosymmetric. However, the piezoelectric properties are revealed 

in only few thousands of them, with about several hundreds having piezoelectric activity 

valuable for the applications. Therefore, it can be concluded that the absence of the center of 

symmetry represents the necessary but not sufficient requirement for a material to exhibit any 

sizeable piezoelectric effect. In Table. 2.1 the point groups that permit piezoelectricity for all 

crystallographic systems are listed [20]. 

 

Table. 2.1 Centrosymmetric and noncentrosymmetric point groups in crystals with different symmetries 

Crystal system Symmetry elements Noncentro-symmetric Centro-symmetric 

Cubic center, axis, plane 432,34,23 m  m3m m3,  

Hexagonal center, axis, plane 26,6,622,6,6 mmm  mmmm /6,/6  

Trigonal center, axis, plane m3,32,3  m3,3  

Tetragonal center, axis, plane mmm 24,4,422,4,4  mmmm /4,/4  

Orthorhombic center, axis, plane 2,222 mm  mmm  

Monoclinic center, axis, plane m,2  m/2  

Triclinic center 1 1  

 

The number . of independent components of a third-rank tensor, in principle, may be 

as large as 3
3
 = 27. The piezoelectric tensor, however, can have maximum of 18 independent 

components because dijk = djik owing to the symmetry of the stress and strain tensors (σij = σji; 

Sij = Sji). The case of . = 18 corresponds to triclinic crystals of class 1. In crystals with higher 

symmetry, the number . reduces further. This feature follows from the Neumann’s principle:  
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The symmetry elements of any physical property of a crystal must include 

the symmetry elements of the point group of this crystal.  

Symmetry of the crystals significantly reduces the number of independent 

piezoelectric modules. As an example, consider the effect of the symmetry center. Suppose 

that we stress the crystal which possesses the symmetry center, and as a result of this we 

induce polarization. Then,  the whole system - crystal plus stress  - is transformed with the 

respect to the symmetry center. Stress remains unchanged, because symmetrical with the 

respect to the symmetry center and also the crystal will not change, while the direction of 

polarization will reverse. So we have to deal with the same crystal, with the same stress, but 

opposite polarization. Such a situation is possible only if the polarization is zero. Therefore, 

the crystal, which has a symmetry center, can not have piezoelectric properties [21]. 

Transforming the axis of the coordinate system of the piezoelectric tensor with the 

respect to the one of an symmetry elements, it is easy to show how the piezoelectric modules 

vanishes for different symmetry. Consider two simple cases: 

(a) Symmetry center 

Transformation matrix can be written as 





≠

=
=

−=

ji

ji
δ

δa

ij

ijij

0

1        (2.15)  

After the transformation the piezoelectric modules will be equal to: 

ijklmnknjmillmnknjmil

'

ijk ddδδδdaaad −=−== .    (2.16) 

But since the crystal has center of symmetry 

ijk

'

ijk dd = ,        (2.17) 

and therefore 

0=ijkd .        (2.18) 
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(b) Two-fold axis 2 

Let us suppose that the two-fold axis is parallel to the OX3, then the transformation leads to 

the following expressions 

332211 xx,xx,xx →−→−→ ,      (2.19) 

or simply 

332211 →−→−→ ,, .       (2.20) 

Then each piezoelectric module is transformed according to equation (2.20). If the sign 

changes, the modulus must be equal to zero, if remains unchanged, the modulus does not 

vanish. Thus, for example, 133133 dd −→ so 0133 =d , but 123123 dd → so 123d remaining non zero. 

It is easy to show that only those moduli which have a single 3 or three 3’s suffixes will 

remain. So the non-vanishing dijk are those marked below  

133

123122

113112111

d

dd

ddd

              

233

223222

213212211

d

dd

ddd

           

333

323322

313312311

d

dd

ddd

             (2.21) 

In the matrix notation (with two indices) the corresponding moduli will take a following form 

















36

2524

1514

333231 00

0

0

000

000

d

dd

dd

ddd

     (2.22) 

In Table. 2.2 the comparison for all crystallographic classes is presented. According to 

the legend shown at the end of the table, small dots denote modules which are equal to zero. 

Bold dots indicate non-zero modules. Two lines connecting bold dots indicate that these two 

modules have equal numerical values. When the bold line is connected with an empty circle, 

it means that these two modules have the same value but an opposite signs. 
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2.5.  Piezoelectric materials 

Many materials exhibit the piezoelectric effect:  

�aturally-occurring crystals: 

� Rochelle salt (NaKC4H4O6). Ferroelectric having a large piezoelectric effect, making 

it useful in sensitive acoustical and vibrational devices. The Rochelle salt crystal 

exhibits ferroelectricity in the temperature region between -18 and 24
o
C in which the 

Table. 2.2 Piezoelectric modules for 21 class symmetry. 
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crystal is monoclinic and outside this temperature range, the crystal presents 

a paraelectric phase, for which the space group is orthorhombic [22,23,24]. 

� Quartz.  The chemical composition of quartz corresponds to nearly pure silica (~100% 

SiO2). Still, the crystal structure of quartz incorporates some amount of trace elements. 

Al, Fe, Ga, Ge, Ti, and P in natural quartz occupy the Si position [25]. Quartz exhibits 

a strong piezoelectric effect perpendicularly to the prism axis [26]. 

� Tourmaline is a group name applied to the natural silicate minerals of the general 

formula XY3Z6(BO3)3Si6O18(OH)4 where X can be Na or Ca; Y can be substitutions of 

monovalent, divalent, trivalent or quadrivalent cations (Li, Mg, Mn, Fe, Al etc.); and Z 

can be occupied by Al, Mg, Cr, Fe3+, Fe2+. Tourmaline crystal shows parallel grouping 

(or growth), and has a rhombohedral (trigonal) crystal structure with a space group of 

R3m [27,28]. 

� Berlinite (AlPO4). Aluminum orthophosphate is a rhombic crystal made of sodium 

phosphate and aluminum salt. In this chemical configuration, aluminum is present as 

three-way positively charged cation (Al3+) reciprocal electrostaticaly to the phosphate 

anion (PO4) [29].  

� Topaz. The crystal structure is based on monolayers of oxygen anions alternating with 

monolayers of iron. One-third of the available octahedral sites are filled with Al and 

one-twelfth of the tetrahedral sites with Si. The oxygens are coordinated by one Si and 

two Al atoms, and the fluorine by two Al atoms [30].  

� Bone: Dry bone exhibits some piezoelectric properties due to the apatite crystals, and 

the piezoelectric effect is generally thought to act as a biological force sensor [31, 32].  

Synthesized crystals  

� Gallium orthophosphate (GaPO4, GP). GP is colorless crystal crystallizing in 

a trigonal crystal system which is similar to quartz due to the fact that the silicon 

atoms are alternating replaced by gallium and phosphor. The material is purely 

piezoelectric (no pyroelectric discharge) and has excellent high temperature properties 

up to 970° C, with excellent stability of many physical constants [33]. 
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� Langasite (La3Ga5SiO14, LGS). LGS is a piezoelectric material which is similar to 

quartz, LN (LiNbO3) and LT (LiTaO3) in its acoustic behavior [34]. 

Ceramics  

An important group of piezoelectric materials are the piezoelectric ceramics. These are 

polycrystalline materials with the perovskite crystal structure – a tetragonal / rhombohedral 

structure very close to cubic. They have the general formula A
2+
B
1
+O

2-
3, in which A denotes 

a large divalent metal ion such as for example barium, lead or strontium, and B denotes a 

tetravalent metal ion such as titanium or zirconium etc. When a temperature exceeds certain 

value known as the Curie temperature, these crystallites exhibit simple cubic symmetry, the 

elementary cell of which is shown FIG. 2.10(a). This structure is centrosymmetric with 

positive and negative charge site coinciding, so there are no dipoles present in the materials. 

Below the Curie point, however, the crystallites take on tetragonal symmetry changes to one 

in which the positive and negative charge sites no longer coincide (FIG. 2.10(b)), so each 

elementary cell then has a built-in electric dipole which may be reversed, and also switched to 

certain allowed directions by the application of an electric field. 

 

FIG. 2.10 PZT elementary cell. (a) cubic lattice (above Curie temperature); (b) tetragonal lattice (below 

Curie temperature). 

� Lead Zirconate Titanate ((Pb[ZrxTi1-x]O3 0<x<1))-more commonly known as "PZT", 

is the most common piezoelectric ceramic in use today [35]. PZT is a binary solid 

solution of PbZrO3 an antiferroelectric (orthorhombic structure) and PbTiO3 

a ferroelectric (tetragonal perovskite structure). PZT has a perovskite type structure 

with the Ti
4+
 and Zr

4+
 ions occupying the B site at random. At high temperatures PZT 

has the cubic perovskite structure which is paraelectric. On cooling below the Curie 
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temperature, the structure undergoes a phase transition to form a ferroelectric 

tetragonal or rhombohedral phase. In the tetragonal phase, the spontaneous 

polarization is along the <100> set of directions while in the rhombohedral phase the 

polarization is along the <111> set of directions [36]. 

� Lead Lanthanum Zirconate Titanate ((Pb1-xLax)(Zr1-yTiy)1-x/4 O3 V
B
0.25x O3, PLZT). 

This long formula assumes that La
3+
 ions go to the A site and vacancies (V

B
) are 

created on the B site to maintain charge balance. PLZT is a transparent ferroelectric 

ceramic formed by doping La
3+
 ions on the A sites of lead zirconate titanate (PZT). 

The PLZT ceramics have the same perovskite structure as BaTiO3 and PZT. The 

transparent nature of PLZT has led to its use in electro-optic applications. Before the 

development of PLZT, the electro-optic effect was seen only for single crystals [37]. 

� Barium Titanate (BaTiO3, BT). BT was the first discovered piezoelectric ceramic. It 

has five phases as a solid, listing from high temperature to low temperature: hexagonal, 

cubic, tetragonal, orthorhombic, and rhombohedral crystal structure. All of the 

structures exhibit the ferroelectric effect except cubic [38]. BT has a paraelectric cubic 

phase above its Curie point of about 130° C. In the temperature range of 130° C to 0° 

C it exhibit the ferroelectric tetragonal phase. The spontaneous polarization is along 

one of the [001] directions in the original cubic structure. Between 0° C and -90° C, 

the ferroelectric orthorhombic phase occurs. On decreasing the temperature below -

90° C the phase transition from the orthorhombic to ferroelectric rhombohedral phase 

leads to polarization along one of the [111] cubic directions [39]. 

� Lead Titanate (PbTiO3, PT) is a well-known ferroelectric material with a perovskite 

structure with a high Curie temperature (490° C). On decreasing the temperature 

through the Curie point a phase transition from the paraelectric cubic phase to the 

ferroelectric tetragonal phase takes place [40]. 

� Lithium Niobate (LiNbO3) and Tantalate (LiTaO3). They have similar structure which 

is actually a variant of the perovskite structure with a much more restrictive 

arrangement. The LiNbO3 and LiTaO3 are ferroelectrics which are stable with very 

high Curie points of 1210° C and 620° C for LiNbO3 and LiTaO3 respectively [41].  
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Polymers  

� Polyvinylidene fluoride (PVDF): PVDF exhibits piezoelectricity several times greater 

than quartz. Unlike ceramics, where the crystal structure of the material creates the 

piezoelectric effect, in polymers the intertwined long-chain molecules attract and repel 

each other when an electric field is applied [42,43].  

Lead-free piezoceramics  

More recently, there is growing concern regarding the toxicity in lead-containing devices 

driven by the result of restriction of hazardous substances directive regulations. To address 

this concern, there has been a resurgence in the compositional development of lead-free 

piezoelectric materials.  

� Sodium Potassium Niobate (KNN). In 2004, Saito el al. [44] have found for the 

composition close to MPB, the material’s properties are close to PZT ceramics, and its 

Curie temperature is also high. For an grain-orientated ceramics can be match to those 

optimum modified PZT compositions.  

� Bismuth Ferrite (BiFeO3 also commonly referred to as BFO). It is one of the most 

promising lead-free piezoelectric materials by exhibiting multiferroic properties at 

room temperature [45]. 

2.6.  Equivalent circuit of piezoelectrics 

The electromechanical behavior of a piezoelectric material in oscillation can be represented 

by an electrical equivalent circuit. The equation describing the elastic vibrations of crystal of 

mass m, friction coefficient r = 2β and force constant g, occurring under the action of periodic 

force Fsin(ωt) in the x-axis direction has the following form 

t)(ωFγx
dt

dx
β

dt

xd
m ⋅=++ sin2 02

2

      (2.23) 

From above equation in the case of a piezoelectric crystal, mechanical quantities may be 

expressed by electrical ones. Employing equation describing direct piezoelectric effect of 

a charge Q induced on the crystal surface during the vibration, the Q = αx relation may be 

obtain, where α is a constant dependent on elastic and piezoelectric properties of the crystal. 
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On the other hand equation describing the reverse piezoelectric effect yields F = αU 

relationship, where U is the voltage applied to the crystal electrodes. Substituting these results 

into above equation and differentiating with respect to time t the following equation can be 

obtained 

dt

d
t)(ωUQ

α

γ

dt

dQ

α

β

dt

Qd

α

m
⋅=++ sin2

2
02

2

,          

t)(ωωUI
α

γ

dt

dI

α

β

dt

Id

α

m
⋅=++ cos

2
0222

2

2
,    (2.24) 

where I means current intensity. Substituting L
α

m
=

2
, R
α

β
=

2

2
, 

Cα

γ 1
2
=  we get 

ωtUω
C

I

dt

dI
R

dt

Id
L cos02

2

=++  .     (2.25) 

From the above consideration follows that the piezoelectric crystal placed in alternating 

electric field behaves the same way as an electrical circuit connected in series with inductance 

L, capacitance C and resistance R. Generally the piezoelectric crystal in alternating electric 

field acts behaves not only as an electromechanical transducer, but also as a capacitor of 

a given capacity C0 (Fig. 2.11) 

 

Fig. 2.11 The alternate electric circuit of oscillating piezoelectric crystal. 

Left branch impedance of the equivalent circuit containing capacity C0 of a crystal has the 

following form: 

0

1

Ciω
ZL =         (2.26) 

Right branch impedance of the equivalent circuit, containing the inductance L, the capacity C 

and the resistance R can be written as: 
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Ciω
LiωRZR

1
++= .       (2.27) 

Resultant impedance of the entire circuit is equal to 

CCC iXRZ +=        (2.28) 

where RC and XC denote resultant resistance and reactance of the entire circuit, respectively 

[46]. The resultant resistance has the form 
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and the resultant reactance 
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For R = 0, the dependence of the reactance CX  and the admittance CC /XY 1=  on the 

frequency of alternating field ω are illustrated on curves given in Fig. 2.12. From this 

relationship one may conclude that the equivalent circuit of the piezoelectric crystal has two 

different resonant frequencies at which the reactance and admittance of the circuit take their 

values equal to zero. These frequencies can be expressed as follows 

⇒= 0CX    
LC

fπω rr

1
2 == ,       

⇒== 0
1

C

C
X

Y   

0

0

1
2

CC

CC
L

fπω aa

+

== .     (31) 
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Fig. 2.12 The reactance Xc and the admittance Yc of the equivalent circuit of piezoelectric as a function of 

probing frequency. 

Experimentally, when piezoelectric element is exposed to an AC electric field, it will 

change its dimensions cyclically, with a frequency of the field. The frequency at which the 

ceramic element vibrates most readily, and most efficiently converts the electrical energy 

input into mechanical energy, is the resonance frequency. As the probing frequency is 

increased, the piezoelectric’s oscillations first approach a frequency at which admittance is 

maximum (minimum impedance). This maximum admittance frequency approximates the 

series resonance frequency, ωr, the frequency at which reactance in an electrical circuit 

describing the piezoelectric is zero, if resistance caused by mechanical losses is ignored. The 

minimum admittance frequency also corresponds is the resonance frequency ωr. As the 

probing frequency is further increased, admittance increases and reaches zero (maximum 

impedance). The maximum impedance frequency approximates the parallel resonance 

frequency ωa, the frequency at which reactance in the equivalent electrical circuit is infinite if 

resistance caused by mechanical losses is ignored. The maximum reactance frequency is 

called the anti-resonance frequency. The composition of the ceramic material and the shape 

and volume of the element determine the resonance frequency - generally, a thicker element 

has a lower resonance frequency than a thinner element of the same shape. 

2.7.  Experimental investigations of piezoelectric effects 

Methods for measurements of the piezoelectric properties of materials can be divided into 

static, quasistatic and dynamic. 
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Static methods rely on direct measurement of the charges induced on the surfaces of 

piezoelectric crystals under the influence of external mechanical stress or on the measurement 

of the crystal strains under the influence of external electric field. 

Quasistatic methods rely on measurement of deformation of the crystal under the 

influence of periodically alternating electric field (reverse piezoelectric phenomenon), or on 

the measurement of the charges generated on the crystal surface under the influence of 

variable mechanical stress (direct piezoelectric effect) of much smaller frequency than the 

resonant frequency. 

Dynamic methods rely on measurement of the resonance frequency and antiresonance 

eigenvibrations of plates cut out of piezoelectric materials (crystals, ceramics or film) and 

setting the parameters of alternative electrical circuits of the samples. 

The idea of measurements of direct piezoelectric phenomena is presented in Fig. 2.13. 

The methods rely on a placement of the piezoelectric crystal between two electrodes which 

are connected with the electrometer. A reference capacitor with known capacity C0 is 

connected parallel to the crystal. All elements of the system, including the sample, have 

capacity Cu.  In case of the reference capacitor absence under an influence of the external 

force, the electric charges q1 are induced on the crystal surface (with area of S). This results 

that the system capacitance Cu is charged to potential U1. In the case of the parallel connection 

of capacity C0, to potential U2. So it can be written as: 

( ) 1112011 FdUCCUCq uu ⋅=⋅+=⋅= .      (2.32) 

It follows that a capacity of the measured system Cu is 
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.        (2.33) 

Then piezoelectric module d11 equals to  
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Fig. 2.13 Measurement scheme of the direct piezoelectric phenomena 

Simple setup based on this method is presented in Fig. 2.14. The weight is placed on the lever 

arm in a known unilateral distance from the axis of rotation. Shoulder through the rod presses 

on a sample and generates electric charges on its surface Q. These charges are accumulated on 

the capacitance Cp of the sample. By measuring the voltage U on the sample and knowing its 

capacity, we may calculate the electric charge Q generated by applying known stress σ to 

the sample. 

The charge Q induced on the surfaces of the sample is determined by the equation: 

SdσQ = .        (2.35) 

This charge may be calculated from the formula: 

pUCQ =         (2.36) 

where Cp means electric capacity of the sample. 

Mechanical stress σ applied to the sample can be determined from the formula: 

'S

F
σ =          (2.37) 

F is the force with which the rod is pushing for the sample while S’ is its area subjected to the 

action of this force. It should be noted that the surface S and S’ are equal only when we 

examine the longitudinal piezoelectric effect (electrodes are put down on the surface exposed 

to stress). The force in gravitational field can be expressed 

R

Mgr
F =         (2.38) 

where M denotes the mass of the weight, g – gravity constant, r – distance between weight 

and the axis of rotation, R – distance between pressing pin and the axis of rotations. Using the 

above equations it can be easily shown that for longitudinal piezoelectric phenomenon: 

r
RC

dMg
F

C

d
U

pp

==        (2.39) 
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Fig. 2.14 Setup for measurement of direct piezoelectric effect. 

It is worth noticing that using the formula (2.36), we disregard the losses of a charge 

and the input resistance of the voltmeter (assuming that the time constant of the system is 

much greater than the time of measurement). To increase the time constant of the sample an 

additional capacitor with a known capacity Cd in parallel should be added. In this case the 

capacity Cp in equation (2.30) should be replaced by the sum of the capacity of a sample Cp 

and additional capacity Cd. 

Simple setup of reverse piezoelectric effect investigations is presented in Fig. 2.15. 

The experimental method is based on Caspari and Merz method [47] and rely on a capacity 

measurements of a parallel capacitor. On the measured sample stays a “finger” to which the 

bottom of air capacitor is attached.  The second plate of this capacitor is mounted to the 

micrometric screw allowing to precisely control a distance between their plates and this way a 

sensitivity of the deformation measurements.  

 

Fig. 2.15 Simple setup for reverse piezoelectric effect measurements. 
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The density of surface charge in this capacitor is given by: 

dS

dQ

S

Q
σ == .        (2.40) 

 The capacity of parallel capacitor obtained from the Gauss law can be written as: 

d

Sε
dS

d

ε
C

S

00 == ∫∫ .       (2.41) 

Relative deformation of reverse piezoelectric effect is given by   

L

U
dEd

L

∆h
η

′
⋅=⋅==       (2.42) 

where L – the length of sample, U – the applied voltage, and L’ – the distance between the 

electrodes of the sample.  

For longitudinal piezoelectric effect L=L’ and equation can be written down as follows 

Ud∆h ⋅= .        (2.43) 

By applying electric field we cause change in dimensions ∆h. This will in turn cause change 

in capacity given by equation 
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⋅
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⋅
=∆

εε
       (2.44) 

where 0ε  is the permittivity of a vacuum, S is the area of electrodes and h0 and h1 are distance 

between capacitor electrodes before and after we apply the electric field. 

Thus the piezoelectric module d and the deformation ∆h of the sample can be calculated from 

the following equation 

  







−=⋅⋅=⋅=

12

0

11

CC
SεhEdhη∆h .     (2.45) 

 Knowing the area of electrodes S and capacities C0 and C1 we may obtain h1 , h0 and 

h∆  (Fig. 2.16). Now if we consider h∆ vs. U we can use a linker regression method to obtain 

the piezoelectric modulus d. During measurements it is necessary to take into account the 

capacity of wires and dispersed capacities. Sum of these capacities can be obtained through 

measuring capacity of system in the function of electrode separation. To change distance 

between electrodes we use a micrometer screw. High precision of manufacturing slides and 

high parallelism of plates is crucial for correct functioning of this setup. It is worth pointing 

out that if the distance between electrodes is few tenths of millimeter and we use cheap and 
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simple capacitance meter we can obtain resolution of order 10
-6 
10

-8 
m. And if we use precise 

dilatometer and high resolution bridge we can obtain even higher precisions up to 10
-12 

m – 

which is less than diameter of an atom. 
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Fig. 2.16 The results of reverse piezoelectric effect measurements using capacitance method. 

2.8.  Applications 

The first application of piezoelectric power was a piezoelectric transducer. The piezoelectric 

transducer uses a piezoelectric ceramics to convert vibration to electrical signals and vice 

versa. Other uses of piezoelectric power is your everyday electric cigarette lighter. This same 

mechanical construction can also be found in gas grill lighter or stove sparkler which uses 

built in igniters incorporating piezoelectric materials. Another useful everyday example is 

your car's air bag. The piezoelectric sensors detect the amount of shock and sends an electrical 

signal to activate the air bag. The application of piezoelectric power to ultrasonic scaler 

allows for a more effective cost and efficiency. Piezoelectric transducers are capable of 

extended use without overheating and have a higher temperature of the Curie point than 

magnetostrictive transducers. The piezoelectric transducer converts the ultrasonic electrical 

signal into ultrasonic vibration and then applied to the scaler. There are dozens of application 

for piezoelectricity. The piezoelectric pick-up in your acoustic guitar is one of them, your 

microphones, in medical imaging devices, loudspeakers, diesel engines. Ink jet printers use 

piezoelectric power to push the ink to paper from the ink jet print head. The quartz clock was 

one of the first application of piezoelectricity with a quartz tuning fork create a series of 
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electrical pulses. Radio transmitters uses the same exact technique as with radio receivers. 

Auto focus cameras uses piezoelectric motors. Piezoelectricity is being researched and in 

continued development finding new and better ways to improve and discover many more new 

and exciting application. 
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3.1. Brief history of the pyroelectric effect 

Pyroelectricity as a phenomenon has been known for 24 centuries - the Greek philosopher 

Theophrastus probably wrote the earliest known account. He described a stone, called 

lyngourion in Greek or lyncurium in Latin, that had the property of attracting straws and bits 

of wood. Those attractions were no doubt the effects of electrostatic charges produced by 

temperature changes most probably in the mineral tourmaline. Theophrastus and other writers 

of the two millennia that followed were far more interested in the origin of the stone and its 

possible therapeutic properties than they were in physical explanations. Theophrastus 

proposed that lyngourion was formed from the urine of a wild animal [1]. 

3
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Two thousand years after Theophrastus, tourmaline’s unusual physical properties were 

reintroduced to Europe through the book entitled “Curious Speculations During Sleepless 

Nights. It author Johann Georg Schmidt wrote a series of 48 dialogs, one of which contained a 

section describing hard and glassy bodies that were not magnetic. He described the 

experiences of Dutch gem cutters when they tested the durability of tourmaline in a fire: 

“The ingenious Dr. Daumius, chief physician to the Polish and Saxon troops 

on the Rhine, told me that, in the year 1703, the Dutch first brought from 

Ceylon in the East Indies a precious stone called tourmaline, turmale, or trip, 

which had the property of not only attracting the ashes from the warm or 

burning coals, as the magnet does iron, but also repelling them again.” 

In 1717 chemist and physician Louis Lemery wrote the first scientific paper of 

pyroelectricity in a journal. The naturalist Carl von Linné (Linnaeus) was the first to relate the 

pyroelectric property of tourmaline to electricity; he called the mineral lapis electricus – an 

electric stone [2]. Experiments on tourmaline during the 18th century performed by Franz 

Ulrich Theodor Aepinus,  Johann Karl Wilcke, Benjamin Wilson, Joseph Priestley, John 

Canton, and Torben Bergman made major contributions to the rapidly developing field of 

electrostatics [ 3 ]. In 1824 David Brewster, was the first author to use the term 

“pyroelectricity” [4]. One of the materials he studied was a “tartrate of soda and potash” - 

Rochelle salt. John Mothée Gaugain made the first precise measurements of pyroelectric 

charges in 1859 [5]. He reached some important conclusions: The total quantity of electricity 

produced by a crystal of tourmaline depends uniquely upon the limits within which its 

temperature is varied; within those limits, the amount of electricity produced during heating is 

the same as that produced during cooling, but with the signs of the charges reversed; and the 

amount of charge produced is proportional to the crosssectional area of the crystal and is 

independent of its length. William Thomson (Lord Kelvin) published the first major 

theoretical treatment of pyroelectricity in 1878; his paper included the electrocaloric effect 

prediction [6]. Jacques and Pierre Curie proposed that the electrical effects due to nonuniform 

heating of quartz crystals might have been caused by pressure, a speculation that led to their 

1880 discovery of piezoelectricity. W. Voigt established an outstanding school of 

crystallography, thermodynamics and crystal physics [7]. During the latter part of the 19th 

century and the early decades of the 20th century, seven Nobel laureates - Wilhelm Röntgen, 
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Pierre Curie, Gabriel Lippman, Heike Kammerlingh Onnes, Erwin Schrödinger, Archer J. P. 

Martin, and Max Born - published papers on pyroelectricity. In 1938 Yeou Ta published a 

paper that initiated the great growth that continues in the field today [8]. In the paper for the 

first time it was proposed that tourmaline crystals could be used as IR sensors in spectroscopy. 

Some research was conducted on pyroelectric IR detectors during and immediately after 

World War II in the UK, US, and Germany, but the results appeared only in classified 

documents. In 1962 J. Cooper made the first detailed analysis of the behavior of fast IR 

detector using BaTiO3 [9]. In the same year, he proposed the use of pyroelectric devices for 

measuring temperature changes as small as 0.2µK [10]. In 1969, Le Carvennec proposed the 

use of pyroelectric elements for thermal imaging [11]. Pyroelectric devices have been also 

used for applications in space for example in Net-flux Radiometer contained in the Galileo 

Probe [12].   

 

3.2.  Definitions 

Pyroelectricity is the property presented by certain materials that exhibit an electric 

polarization ∆P when a temperature variation ∆T is applied uniformly:  

TP ∆γ∆ ⋅=        (3.1) 

where γ  is the pyroelectric coefficient at constant stress. Pyroelectric crystals actually have 

a spontaneous polarization, but the pyroelectric effect can only be observed during 

a temperature change. 

Pyroelectric coefficient can be expressed as: 

T

P

∂
∂

= Sγ        (3.2) 

where: PS – the spontaneous polarization. 

The unit of pyroelectric coefficient is 





⋅Km

C
2

. 

If a pyroelectric crystal with an intrinsic dipole moment (top) is fashioned into 

a circuit with electrodes attached on each surface (Fig. 3.1), an increase in the temperature T 

prompts the spontaneous polarization PS to decrease as the dipole moments, on average, 

diminish in magnitude. The horizontal tilting of the dipoles, (pictured at bottom of Fig. 3.1), 
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signifies the effect. A current flows to compensate for the change in bound charge that 

accumulates on the crystal edges. 

 

Fig. 3.1 Schematic drawing showing the origin of the pyroelectric current. 

Another definition of pyroelectricity is an ability to generate induced charges on the crystal 

surface when they are heated or cooled. It is explained as  a migration of positive and negative 

charges (and therefore establishment of electric polarization) to opposite ends of a crystal's 

polar axis as a result of a change in the temperature. This can be expressed as follows: 

TSQ ∆γ∆ ⋅=        (3.3) 

where: 

 ∆Q – the charges generated on the crystal surface, 

 S – the surface of the crystal. 

The relation between generated charges and polarization is:  

SPQ ⋅= ∆ .       (3.4) 

The unit of the polarization is 





2m

C
. 

For detailed description of pyroelectric effect the dimensional analysis of used physical 

quantities is required. So, if there is a small temperature change ∆T (scalar), uniform over the 

crystal, the change in the polarization in the vector ∆Pi is given by 

∆Tγ∆P ii ⋅=       (3.5) 

where the iγ  are the three pyroelectric coefficients (i = 1, 2, 3). The pyroelectric effect in 

a crystals is thus specified by the vector γ
r
. 
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Pyroelectricity can be visualized as one side of a triangle, where each corner 

represents kinetic, electrical, and thermal energy states in the crystal (Fig. 3.2). The lines 

joining pairs of circles signify that a small change in one of the variables produces 

a corresponding change in the other. The three short bold lines that connect pairs of thermal, 

elastic, and electric variables define the physical properties of a heat capacity, elasticity, and 

electrical permittivity, respectively. As an example, a small increase in the temperature T 

produces an increase in an entropy S proportional to the heat capacity divided by temperature. 

The diagram also illustrates coupled effects, denoted by lines joining pairs of circles at 

different corners of the diagram. The diagram’s colored lines indicate that the two 

contributions make up pyroelectric effect. In the first, the crystal is rigidly clamped under 

constant strain S, to prevent expansion or contraction. A change in the temperature causes 

a change in electric displacement as shown by the green line, which signifies the primary 

pyroelectric effect. The second contribution - the secondary pyroelectric effect - is a result of 

crystal deformation: Thermal expansion causes a strain that alters the electric displacement 

via a piezoelectric process, as shown by the dashed red lines. Measuring the primary effect 

directly is extremely difficult. But the secondary effect can be readily calculated from the 

values of the thermal expansion coefficient, the elastic stiffness, and the piezoelectric strain 

constant. So experimentally, the pyroelectric effect under the constraint of constant stress-the 

so-called total effect, the sum of red and green lines is what is usually measured [3]. 

 

Fig. 3.2 The triangular diagram illustrating the thermodynamically reversible interactions 

that may occur among the thermal, mechanical, and electrical properties of a crystal. 
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3.3.  Simple model of the pyroelectric effect 

In the microscopic scale, the pyroelectric effect occurs because of the asymmetric 

interaction potential caused by electrically charged atoms within the crystal structure of the 

material. Schematically it may be presented as in Fig. 3.3. In the two-dimensional lattice of 

cations and anions, the cations are displaced relative to the unit cells “centre” to giving rise to 

an electrical dipole moment (or spontaneous polarization PS) along the (x1 – x2) line. 

 

Fig. 3.3 Schematic two-dimensional presentation of pyroelectricity. 

The potential energy of any cation along this line will have an asymmetric form as 

illustrated in Fig. 3.4. Any excitation caused by an increase in lattice temperature, will  

change its quantised energy level (E1 to En) within the well leading to a change in its mean 

equilibrium position in the lattice (along the line A-B in Fig. 3.4). This gives a change in the 

overall electrical dipole moment, which appears as the macroscopic pyroelectric effect [13]. 

 

Fig. 3.4 Potential energy of cation in lattice of Fig. 3.3 along the line x1-x2, E1 to 

En represent the quantised energy levels for the cation and the locus A-B is the 

change in its equilibrium position with change in energy [13]. 
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In dielectrics exhibiting pyroelectricity the dipole moment can arise as a consequence 

of the packing in an ionic crystal, because of the alignment of polarized covalent bonds in 

molecular crystals or crystalline polymers or because of atomic displacements controlled by 

the position of hydrogen ions in a hydrogen bonded crystal [13]. 

3.4.  Thermodynamic description of pyroelectricity 

Polarization of the crystal is a function of the temperature, the deformation η ij and the 

electric field Ei: 

( )iijkk E,ηT,PP =      (3.6) 

On the other hand deformation depends on the temperature, the mechanical stresses and the 

electric field 

( )ilmijij E,σT,ηη =                     (3.7777) 

If the intensity of electric field equals to zero Ei = 0, then changes of the polarization and the 

deformation can be written as follows: 

ij

Tij

k

η

k
k dη

η

P
dT

T

P
dP

ij












∂
∂

+







∂
∂

= ,     (3.8) 
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Assuming that in whole crystal the stresses are uniform const=lmσ , from equations (8) and 

(9) the total pyroelectric effect can be written as:  
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where: 

σ
k

σ

k γ
T

P

lm

=







∂
∂

- the total pyroelectric coefficient, 

η
k

η

k γ
T

P

ij

=







∂
∂

 - the primary pyroelectric coefficient, 
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- the piezoelectric moduli, 
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∂

- the elastic compliance coefficients, 

σ
ij

σ

ij α
T

η

lm

=








∂

∂
- the coefficients of thermal expansion. 

Hence for a free crystal the total pyroelectric effect in equation (10) can be rewritten as: 

σ
ij

T
lmij

η
klm

η
k

σ
k αCdγγ ⋅⋅+=                     (3.11111111) 

Distinctly the secondary pyroelectric coefficient is given by the product of η
klmd , T

lmijC  and σ
ijα . 

Though secondary pyroelectricity is due to piezoelectricity, only those piezoelectric crystals 

which belong to the ten polar classes are permitted by crystal symmetry to exhibit secondary 

pyroelectricity. 

3.5.  Theory of pyroelectricity 

The first quantum theory of primary pyroelectric effect for the case of ionic crystals was 

formulated by Max Born in the year 1945 [14]. In his paper, Born had indicated that primary 

pyroelectric coefficient would be proportional to the temperature T. However in his later 

treatise on lattice dynamics he predicted the T3
 law for the pyroelectric coefficient [15]. 

Successively the physicists in their papers have proved clearly many interesting features of 

the theory, especially the role of mechanical and electrical anharmonicity in primary 

pyroelectricity which in fact was not noticed by Born [16, 17, 18]. 

In principle, in order to understand pyroelectricity in any material, one has to consider the 

various mechanisms of the spontaneous polarization (such as ionic, electronic, orientational or 

surface charge) and study their variation with temperature. Generally in dielectrics, both the 

electronic polarization and the ionic polarization are mainly due to the elastic displacement of 

electron clouds and lattice vibrations within the atoms or molecules. Their interaction is an 

intramolecular phenomenon, and restoring force against the displacement is relatively 

insensitive to temperature, so electronic and ionic polarization processes are only slightly 

dependent on temperature. However, orientational polarization is a rotational process, which 
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includes not only the thermal stimulation, but also mechanical friction processes. The rotation 

of a dipole in a material is like a small ball rotating in a viscous fluid. Under an external force, 

it tends to change from its original equilibrium state to a new, dynamic equilibrium state. 

When the force is removed, it relaxes back to its original equilibrium state. This polarization 

involves the inelastic movement of particles, and its interaction is an intermolecular 

phenomenon and so orientational polarization is strongly temperature-dependent [19]. 

In the case of ionic crystals, there are two important mechanisms of polarization. One 

being responsible for an absorption in the infrared i.e. the lattice or ionic polarization and the 

other in the ultraviolet i.e. the electronic polarization. In the very simplest and crude model 

known as the rigid ion model, the electron cloud around the ion is assumed to be rigid and 

consequently there is no contribution from electronic polarization. For such a model, the total 

dipole moment of the crystal is given by: 

∑=
a

aa QαM       (3.12) 

where Qa are the active normal coordinates i.e. those which produce uniform polarization in 

the direction of M. aα  are suitable normalizing constants. Following Szigeti’s procedure the 

macroscopic dipole moment M is normalized with respect to the number of moles /m as 

p = M / /m [16]. This normalization to a mole is better than to a unit volume, because  

changing of density one should compare the dipole moment produced by the same amount of 

material. 

In reality the electrons are deformed during the lattice vibrations as they experience 

short range forces and also the dipolar field due to ions. The electron deformation is not just 

linearly proportional to lattice displacements but also involves higher terms. Hence when one 

takes into consideration the electronic polarization, the normalized macroscopic dipole 

moment of the crystal is given by: 

∑∑ ++=
j'j

j'jj'j
a

aa QQβQαpp 0     (3.13) 

where p0 is the moment in the undisplaced configuration and αa and βjj’ are the expansion 

coefficients. An important point to note is that αa includes both the effects due to lattice 

displacements and also the first order effects due to electron deformation. The Qa are the 

active normal coordinates, those which produce uniform polarization in the direction of p [16]. 
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The above expression for the dipole moment clearly implies the presence of electrical 

anharmonicity in the crystal. 

 For the ease of harmonic crystal, the potential energy is proportional to the square of 

the normal coordinates. In reality crystals are not harmonic and the mechanical anharmonicity 

has to be taken into account. For such a crystal the potential energy involves the cubic and 

higher powers of the normal coordinates: 

...
2

1 22 ++= ∑∑
j"j'j

j"j'jj"j'j
j

jj QQQbQωW  .    (3.14) 

The primary pyroelectric coefficients ηγ could be expressed in terms of coefficients 

which appear in the expansion of dipole moment and potential energy 

22

j

j

j a a

ajja
jj

η

ω

C

ω

bα
βγ ∑ ∑ 








−=     (3.15) 

Here Cj is the contribution of the j
th
 mode to the specific heat and is given by ( )T/nω jj ∂∂h , 

jn  being the average occupation number of the phonons with energy jωh  [20]. 

3.6.  Pyroelectricity and a crystal symmetry 

From a Neumann’s Principle polarization P must conform to the point-group symmetry of 

the crystal. It follows immediately that a pyroelectric effect cannot exist in a crystal 

possessing a centre of symmetry, a fact which provides a practical method of testing for the 

absence of the centre. A little thought allows to realize that a pyroelectric effect can only 

proceed along a direction in a crystal which is unique, in the sense that it is not repeated by 

any symmetry element. If there should exist in the point group a unique direction which is an 

axis of symmetry (2-, 3-, 4- or 6-fold), this will necessarily be the direction of P. But the 

presence of such a unique symmetry axis is not essential for the existence of a pyroelectric 

effect. It may be noted, in passing, that a unique direction as defined above is not synonymous 

with a polar direction. A polar direction is any direction of which the two ends are not related 

by any symmetry element of the point group. Thus, a diad axis in class 32 is a polar direction, 

but it is not a unique direction. All unique direction are polar, but only some polar directions 

are unique. 
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The direction of the polarization vector P and the form of it components in the 21 non-

centrosymmetrical classes are depicted in Table 3.1. 

Table 3.1. Crystal symmetry and the direction of polarization P. 

System Symmetry class 
Polarization 

components 
Direction of polarization 

Triclinic 1 P1 P2 P3 
no symmetry restricted on the 

direction of P 

Monoclinic 

2 0 P2 0 
x2 parallel to the diad axis, 

rotation or inverse 

m P1 0 P3 
P has any direction in the 

symmetry plane 

Orthorhombic 
mm2 0 0 P3 P parallel to the diad axis 

222 0 0 0  

Tetragonal, 

trigonal, 

hexagonal 

4, 4mm, 3, 3m, 6, 

6mm 
0 0 P3 P parallel to the 4, 3 or 6 axis 

Tetragonal, 

trigonal, 

hexagonal 

4 , 2m4 , 422, 

32, m26,6 , 622 
0 0 0  

Cubic 432, 3m4 , 23 0 0 0  

 

Thus, the following 10 classes may theoretically show pyroelectricity under uniform 

heating or cooling: 

1   2 3 4 6 

m mm2 3m 4mm 6mm        

They are called the polar classes.          

3.7.  Measurements 

Qualitative methods 

 For the first time the quantity study of electrical distribution in pyroelectric effect was 

done by a experimental method invented by Kundt that display the electric effect clearly [21]. 

Kundt spread a mixture of sulphur and minium (red lead oxide) that was sifted through 

a cotton sieve, a process that electrifield the sulphur with negative and the minimum with 

positive electric charges. Dusting an electrified object like a pyroelectric crystal with this 
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powder provides a picture of its surface electric tension in red and yellow - the red minium 

colors the areas of negative voltage and the yellow sulphur colors the positive parts [22]. 

 Another qualitative method for observing the pyroelectric effect was proposed by 

Bleekrode [23]. In this case, the pyroelectric crystal is cooled by vapours of liquid air, and 

then it hangs freely in the atmospheric air. Crystal cooled to a low temperature causes to 

condensate of water vapor in the air and the formation of tiny ice crystals. Crystals settle and 

grow on the surface towards the direction of the force lines of the electric field produced by 

pyroelectric charges, reaching a size finally several millimeters. This method can be used only 

in case of "strong" pyroelectric effect. 

 The qualitative method for observing the "weak" pyroelectric effect was developed by 

Martin [24]. A small piece of a crystal was hung on a very fine glass capillary near a flat 

metal electrode. The temperature of the crystal and the electrodes is reduced by the vapours of 

liquid air. If  on the crystal surface the pyroelectric charges appears due to the change of its 

temperature, the crystal will be attracted to the metal electrodes due to the normal electrostatic 

interaction. 

Static method 

Direct measurement of pyroelectric charges caused by temperature changes is difficult 

because each of a tested crystal has a non-zero conductivity. Thus, each measuring method 

used in investigations of pyroelectric properties should be design so that during the 

measurement of pyroelectric charges, voltage between the electrodes of the test crystal is 

practically equal to zero. The first system fulfilling all above conditions was first developed 

by the Curie brothers [25]. Diagram of this test method is illustrated in Fig. 3.5. 

 

 

Fig. 3.5 Simplified diagram of the system using static method to study the pyroelectric properties.  
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The tested crystal with metal electrodes, is in parallel connected to the quartz plate 

through an electrometer which plays the role of the zero device. Pyroelectric charges formed 

on the crystal surface is compensated by the piezoelectric charges induced on the surface of 

a quartz plate under the influence of known external mechanical stress. From the values of the 

piezoelectric modulus of quartz and applied mechanical stresses needed for mutual 

compensation of piezoelectric and pyroelectric charges, the magnitude of these charges q can 

be specified. Knowing the pyroelectric charge q and the surface S of the crystal electrodes, the 

change of spontaneous polarization ∆PS crystal can be determined. By measuring the 

temperature changes ∆T which alters the polarization of the crystal, the pyroelectric 

coefficient can be calculated from the following equation: 

∆T

∆P

∆TS

q
γ

S
σ == .      (3.16) 

Quasistatic method 

 The simple quasistatic method of straightforward measurement of pyroelectric 

coefficient was developed by Byer and Roundy [26] in which the current produced by an 

constant temperature changes is measured. In this method thermally induced pyroelectric 

charges produces a flow of current parallel to the polar axis described by  

dt

dT
Sγ

t

T

T

P
S

dt

dP
S

dt

dQ
I =

∂
∂

∂
∂

===     (3.17) 

where dP/dTγ =  is the pyroelectric coefficient evaluated at temperature T and S is the 

surface area normal to the polar axis. It is easy to see that when dT/dt is held constant over 

a wide temperature range, a measurement of the current I gives a direct plot of γ(T)  over that 

temperature range. The measurement apparatus and its equivalent circuit is shown in Fig. 3.6 

where R, is the crystal leakage resistance and R, is the meter input resistance. For this circuit 

the pyroelectric current is given by:  

MC

C
M RR

R
II

+
= .      (3.18) 
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Fig. 3.6 (a) Scheme of the experimental setup for pyroelectric measurements by quasidynamic method. (b) 

The equivalent electrical circuit of measurement apparatus. 

To use this method the resistance condition RC >> RM should be fulfilled, because than the 

measured current IM equals I to within 1%. This is easily arranged experimentally since 

typically RM =105 Ω and RC > 10
10
 Ω. 

 The second quasistatic method widely used is the charge integration method. The 

measurement under short-circuit (constant E) conditions developed by Glass [ 27 ]. The 

apparatus of this method is presented in Fig. 3.7. A calibrated capacitor CF is connected in the 

feedback loop and the pyroelectric charge developed across the crystal is instantaneously 

transferred to the feedback capacitor in order to maintain zero-field conditions across the 

amplifier input. Since the field across the crystal is zero the current through the crystal is zero 

and the change of measurement is not affected by the crystal resistance. The change of 

spontaneous polarization as a function of temperature can be easily obtained by integration of 

the pyroelectric charge [28].  

 

Fig. 3.7 Scheme of apparatus for pyroelectric measurements by charge integration method. 

84



 

 

 

Dynamic method 

Substantial progress in the development of methods testing pyroelectric properties 

arisen through Chynoweth research [29], who proposed a simple dynamic method (Fig. 3.8). 

This method is based on the pulse heating pyroelectric crystal with electroded surfaces. The 

plate is heated by a modulated light beam intensity. In an external circuit the flow of electric 

current induced by pyroelectric charges induced on the surface can be detected.  

Specifically, it can be described as follows: Light radiation with power W(t) periodically 

modulated at a frequency ω  

dt

dT
CρhSeSWW(t) tiω == 0      (3.19) 

is incident on the surface of the pyroelectric crystal plate (area S and thickness d), which has 

emissivity η. 

 

Fig. 3.8 Schematic diagram of dynamic method for pyroelectric measurements. 

A square-wave radiation input, for example, will tend to give a current response of the form 

shown in Fig. 3.9. The element has a thermal capacity CT and a thermal conductance to the 

surroundings G. Then the formed electrical signal is amplified. The temperature difference 

between the element and its surroundings, θ, is described by the following equation:  

 
tiω

T eWSεGθ
dt

dθ
C ⋅=+ 01       (3.20) 
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which has the solution 

tiω

T

e
CiωG

WSε
θ(t)

+
= 01

       (3.21) 

On the other hand the generated pyroelectric current is 

dt

dT
pS

dt

dT

dT

dP
S

dt

dP
SI σ

m

S
m

S
m ⋅⋅===      (3.22) 

and thus the pyroelectric current per input power is 

T

σ
m

T

s

Cρh

p

dt

dT
CρhS

dt

dT
S

dt

dP

W(t)

I(t)
==       (3.23) 

and hence the pyroelectric coefficient is 

CρhI(t)

W(t)
pσ
m ⋅
=         (3.24) 

 

 

Fig. 3.9 Schematic presentation of measured quantities: W(t) - square-wave shape of radiation input; T(t) – 

shape of temperature changes; I(t) – typical current response for square-wave radiation modulation. 

 

The dynamic method used in low temperatures allows to measure the specific heat. 

From the third law of thermodynamics because the coefficient is negative and the specific 

heat is proportional to T3
 it is easy to show that the primary pyroelectric coefficient when 

temperature goes to zero cannot have a linear temperature dependence [30].  
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3.8.  Pyroelectric materials 

The highest pyroelectric figures of merit have been observed in ferroelectric materials. 

The transition from the paraelectric to ferroelectric states in most of these (the 'proper' 

ferroelectrics) can be modeled in terms of an expansion of the free energy in a power series of 

the spontaneous polarization. It is possible to derive expressions for γ and ε  from this in 

terms of the coefficients of the expansion. Liu and Long [31] have done this and concluded 

that εγ/ does not vary widely from one ferroelectric to another and that, therefore, 

improvements in material performance must be sought in the dielectric loss. To a large extent, 

this is borne out by the discussion which follows.  

A second important point about the proper ferroelectrics is that both their dielectric 

properties and the pyroelectric coefficient tend to diverge as TC is approached. This means 

that the ratio εγ/  and hence the pyroelectric responsivity, stay reasonably constant over 

a wide temperature range below TC. This is important from a technological point of view as it 

means that the devices require no thermal stabilization. The following discussion reviews the 

present state of the art in pyroelectric materials and assesses their relative merits for different 

applications. 

Table 3.2 summarizes the selected pyroelectric materials studied so far along with 

their figures of merit for voltage responsivity and detectivity. 

The choice of the pyroelectric material is mainly determined by (a) its figure of merit, (b) 

the detector size, (c) availability and durability of the pyroelectric material, (d) environment in 

which the material has to operate, (e) the radiation levels to be detected, (f) the purpose for 

which the detector is employed, (g) the maximum ambient temperature of operation and the 

range over which stable operation is desired. The importance of factors (b) and (c) in the 

choice of pyroelectric material does not need much of an explanation. It should be possible to 

grow large crystals of pyroelectric material and fabricate them into thin slices. The durability 

is also an important factor [20]. 
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Table 3.2 Figure of merit for various pyroelectric materials. 

Material TC (
o
C) T (

o
C) ε γ ( 

x
 10

-8
) Reference 

TGS 49 -25 

0 

25 

40 

20 

20 

35 

100 

0.44 

1.3 

4.0 

12.0 

[32] 

BaTiO3 135 25 

60 

100 

135 

200 

400 

1.9 

7.0 

20.0 

[32] 

PbTiO3 492 25 142 2.7 [32] 

Li�bO3 1210 -25 

25 

100 

51 

30 

31 

2.1 

0.4 

0.5 

[32] 

LiTaO3 618 0 

25 

50 

100 

52 

54 

56 

60 

2.2 

2.3 

2.5 

2.7 

[32] 

�a�O2 163 25 7.4 0.5 [34] 

K�O3  

(thin layer 8.9µm) 

135  

125 

180 - 6000 
[33] 

PZT4 (clevite) 328 -25 1410 4.6 [32] 

PLZT (0/65/35) 380 - 515 3.5 [34] 

TC (
o
C) - Curie temperature;  T (

o
C) - temperature in °C at which measurements 

were made; ε - dielectric permittivity; γ - pyroelectric coefficient in KC/cm 2 . 

3.9.  Applications 

Pyroelectric detectors possess a number of characteristics which are of significance when 

considering their use in a given application. Their ‘AC coupled’ nature makes them 

insensitive to unvarying fluxes of radiation so that they are ideally suited to detecting small 

changes in a relatively large background level of incident energy. They can be used over 

a large spectral bandwidth, the only requirement being that the energy be absorbed. However 

they can be used over a wide range of temperatures without recourse to cooling systems. 

Furthermore they have low power requirements and can operate for long periods on battery 

power, and last, but not least, they are generally low-cost devices [35]. 
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Movement detector 

This is an ideal application for pyroelectric detectors. In the absence of an intruder, the 

interior of an unoccupied building present a fairly constant thermal scene. An intruder moving 

into the area surveyed by the detector provides a varying flux of IR radiation, which can be 

detected and used to trigger an alarm. Most commercial detectors use a series of faceted 

mirrors designed to concentrate the radiation and improve the detection efficiency. Signals are 

generated as the intruder moves into and out of the areas covered by the mirrors. These 

signals are usually in the range 0.1-10 Hz, where the detectors work very well. The alarms 

usually operate in the 8 to 14 pm wavelength range, around the emission peak at 10 pm for 

bodies at 300 K. Using a filter which blocks all radiation at wavelengths shorter than 6 or 7 

pm makes the detector insensitive to visible radiation and prevents false signals from, for 

example, sun glint. It is usual to use compensated detectors in this application to prevent false 

alarm signals due to environmental temperature changes.  

Pollution monitoring and gas analysis 

The concentrations of gases in the atmosphere can be measured from the strength of 

particular lines in their absorption spectra. For example, CO2 has a strong absorption at 4.3pm. 

The analysis systems generally employ a modulated broad-band source of IR illuminating two 

pyroelectric detectors equipped with filters at the chosen wavelength. The radiation falling on 

one detector is allowed to pass through the gas being analyzed, while that falling on the other 

passes through a reference cell. By taking the ratio of the outputs from the detectors, the 

concentration of the pollutant can be measured. 

Fire alarms 

  To detect fires, it is normal to operate at shorter wavelengths than for intruder alarms, 

typically around 4 pm. The systems usually sense the flicker frequency of the flames, at 5-

40Hz to avoid false alarms. 
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Pyroelectric thermal imaging 

  Thermal imaging utilizes the different powers radiated in the far-infrared by objects in 

the scene which are at different temperatures [36]. There are two useful atmospheric windows 

in the far-IR; 3-5 pm and 8-14 pm. For objects near 300 K, the power radiated at 3-5 pm is 

about 6 Wm
-2
, compared with 150 Wm

-2
 in the 8-14 pm band. This difference in radiance, 

coupled with the better penetration of haze and smoke by the longer wavelengths, has made 

operation in the 8 to 14pm band the preferred choice for general-purpose pyroelectric imaging 

systems. Nevertheless, the broad-band operation of pyroelectric targets means that, for 

specialist applications, similar devices (usually with just a change of window) can be used at 

the shorter wavelengths. Such techniques can be used for ‘multi-color’ IR imaging where 

absolute temperatures in the scene can be measured remotely by their radiances in the 

different bands. This has application to, for example, industrial process control or, in the 

military field, target/decoy discrimination. 
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4.1 The Gibbs Law 

4.2 The Ehrenfest classification of the phase transition 

4.2.1 First order phase transition  

4.2.2 Second order phase transition 

 

 

4.1 The Gibbs Law 

The thermodynamic phase of a system is a phase of uniform physical and 

chemical properties. Under some conditions two (or more) phases can coexist at 

equilibrium when their thermodynamic potentials are equal [1]: 

),(),( xTxT BA Φ=Φ .          ( 4. 1) 

 

The conditions for the equilibrium in the system of c components and φ phases, 

and the number of independent variables necessary to specify the state of each 

phase was determined by Josiah Willard Gibbs in 1875 [2, 3]. This condition is 

known as the Gibbs phase rule and can be written as 

4
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2+−= ϕcd         (4. 2) 

where 

−c the number of components, 

−ϕ the number of phases in the thermodynamic equilibrium, 

−d the number of independent variables. 

Let’s consider the simple phase diagram for water with pressure ( p ) and 

temperature (T ) as axes (Fig.4. 1) 

 

Fig.4. 1. The phase diagram for water 

 

 The phase diagram shows lines corresponding to the phase boundaries between 

three possible phases: solid, liquid and gas.  

It is easy to identify regions where a single phase remains in equilibrium. 

According the Phase Rule Eq.(4.1) 

),(),( xTxT BA Φ=Φ .          ( 4. 1)  

we have 

2211 =+−=d .  

93



 

This implies that two variables ( p and T ) can be varied independently in the 

region when one phase only (liquid, gas or solid) can exist in an equilibrium 

state.  

The curves in the phase diagram represent points where the free energy of two 

phases are existing at the same time. In this case, the Phase Rule Eq.  (4.2) states 

that  

1221 =+−=d . 

Therefore, as long as there are two phases in equilibrium, there is only ne degree 

of freedom corresponding to the position along the phase boundaries. Now, lets 

consider the situation in the phase diagram where the three lines meet together. 

Three phases can exist in the same time, so the phase rule gives:  

0231 =+−=d .  

Zero corresponds to none of the independent variables. This means that there is 

only one temperature and pressure at which three phases (liquid, water and gas) 

coexist in thermodynamic equilibrium, called the triple point. The triple point of 

pure water is at 0.01 degrees Celsius and 0.00603 atm and is used to calibrate 

thermometers. 

The point at which the critical temperature and the critical pressure meet is 

marked in Fig.4. 1. This point is called the critical point of the substance. The 

critical point for water exists at 374 
o
C and 218 atm. Above this point, the liquid 

and gas phases cannot be distinguished and become a single phase. 

 A phase transition is the transformation from one phase to another.  

Phases are different states of matter. During a phase transition the main 

properties of a given medium change, continuously or discontinuously, under 

some external conditions such as pressure or temperature. For example, water 

becomes gas in a high temperature. Examples of phase transitions contain 

freezing or sublimation of solids, polarization of ferroelectrics, condensation and 

the superfluid transition in liquid helium. Typical examples of the phase 

transitions are presented in Fig. 4. 2.  
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Fig. 4. 2 Diagram of different types of the phase transition 

 

Some materials have been known for a long time to exhibit mechanisms forming 

permanent magnets or the magnetization direction can be changed in the external 

magnetic field. Materials exhibiting spontaneous magnetization are called 

ferromagnetics. In the 20
th

 century it was found that for some materials known as 

ferroelectrics [4] the external electric field can change the direction of the 

spontaneous electric polarization. In paraelectrics the dipole alignment is small, 

whereas in ferroelectric crystals the alignment is almost absolutely over same 

region. In such crystals the dipole moments of the unit cells differs depending on 

the crystal region. Such regions are called a “domain”, and a cross section 

through a crystal is illustrated below. 

 

 

Fig. 4. 3 Schematic representation of the “domains” 
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Materials are polarized along one of crystallographic axes when a dipole moment 

appears on this axis. Depending on the crystal structure, there are a few or more 

possible ferroelectric  axes. Ferroic materials exhibit a history-dependent 

behavior called hysteresis  [5 -6, 7, 8,9,10, 11, 12]. An example of the hysteresis loop is shown 

below (Fig. 4. 4). The hysteresis loop illustrates the relationship between the 

polarization (P) and the electric field (E). 

 

 

Fig. 4. 4 Ferroelectric hysteresis loop. 

 

 

When a ferroelectric was not polarized before, its primary polarization line 

would go from “0” point to “1” under increasing of the electric field (Fig. 4. 4).  

At point "1" almost all of the domains are aligned and during the further 

increasing of the electric field very little changes in the polarization. The 

material reached the limit-point of the electric saturation. When the electric field 

is reduced to zero, the curve will move from point "1" to point "2". It can be seen 

that in this point some part of the polarization remains in the material even when 

the electric field is equal to zero. It can be concluded that some of the domains 

still remain aligned, and some have lost their alignment. When the electric field 
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is reversed, the curve moves to point "3", where the polarization is reduced to 

zero. This point is called the coercive field or coercive force. The classical 

coercive field Ec is defined as the external electric field necessary to reduce the 

total polarization to zero after being previously saturated. When the electric field 

is increasing in the negative direction the saturation can be observed again (see 

point “4”).  When the electric filed is reduced back to zero the curve goes to 

point "5" In this point material have a residual polarization equal to that achieved 

in the point “2”. When the electric field is increasing once more in the positive 

direction the polarization will reached zero. It is worth to notice that the curve 

did not return to the point “0” any more ( Fig. 4. 4 ) because the certain field is 

necessary to remove the residual electricity.  

 

4.2 . The Ehrenfest classification of the phase transition 

 

The first attempt to classify phase transitions was a model introduced by 

the Dutch physicist Paul Ehrenfest (1880-1933) [13]. Based on this classification 

the phase transitions are grouped with respect to the behavior of the 

thermodynamic free energy as a function of other thermodynamic variables. 

Following Ehrenfests, the type of the phase transitions are related with  the 

derivative discontinuity of the thermodynamic potential [14,15]. In general the 

criterion of the phase transition classification according to the Ehrenfest rule can 

be formulated as follows: 

 

the phase transition is called n
th
 -order if both the thermodynamic potential 

)....,( 221 xxxΦ and its (n-1)
th
 derivative are continuous functions, while n-th 

derivative is discontinuous.  
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4.2.1 First order phase transition  

 

For the first order phase transition the first derivative of the thermodynamic 

potential is discontinuous so 

)...,()...,( 2121 nBnA XXXXXX Φ=Φ                               (4. 3) 

 and  

 

i
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i

PA

X

TT

X

TT

∂

=Φ∂
≠

∂

=Φ∂ )()(
      (4. 4) 

 

In the first-order phase transition there is a nonzero change in the value of the 

entropy S, the polarization P (for ferroelectrics) and the deformation η at the 

transition temperature  

 

 

 

                                                       

                                                                                                                                          (4. 5) 

 

 

 

The examples of anomalies in physical properties described by the first 

derivative of the thermodynamic potential during the 1
st
 order phase transition 

are shown in Fig.4. 5.  
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Fig.4. 5. Anomaly of physical properties  described by the first derivative of 

thermodynamic potential during the ferroelectric first order phase transition 

 

It is worth noting that during the phase transition the volume jump can be 

positive or negative whereas the entropy jump can only be positive. The negative 

volume jump can be observed during the phase transition in water. During the 

melting process a water volume decreases by about 10%.  

The thermal (pressure) hysteresis and the latent heat are characteristic for the 

phase transitions. The latent heat is the energy required (released or absorbed) to 

change the phase of a substance. When the phase change is from solid to liquid 

the latent heat of fusion must be used, while the latent heat of vaporization is 

used to change the phase from liquid to  gas. The specific latent heats of fusion 

and of evaporation is equal to 
kg

kJ
334 and 

kg

kJ
2258 , respectively. The entropy 

jump, defined as 
P

p

T

Q
S =∆ , where Tp is the phase transition temperature, during 

the melting is equal to  
kgK

kJ
S

⋅
==∆ 22.1

273

334
.  

 

4.2.2 Second order phase transition  

 

In the second-order phase transition, the first derivative of the thermodynamic 

potential is continuous while its second derivative is not. 
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     and for example 

 

 

 

 

 

 

 

 

 In the second-order phase transition there is a zero change in the enthalpy, the 

entropy, and the volume at the transition temperature while there is an jump of 

the piezoelectric module (α ), elastic coefficient ( χ ), pyroelectric coefficient 

(γ ), specific heat ( PC ),(see Fig. 4. 6) .  
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Fig. 4. 6. Examples of anomaly of the thermal expansion coefficient (α ), the susceptibility 

( χ ), the pyroelectric coefficient (γ ) and the specific heat (C ) during the 2
nd

 order phase 

transition 

 

 

The Ehrenfest approach provides information on stability relations between 

different phases of a chemical compound and on the direction of the phase 

transitions. 

 

 

 

There are few more classifications of the phase transitions, e.g. [11]: 

� by Münster – the phase transition are classified according to the temperature 

dependence of the specific heat and theenthalpy; 

� by Buerger - the classification of the structural phase transition|: 

reconstructive, displactive and order/disorder phase transition[16,17], 

� by Landau. 

 

According to Buerger approach the phase transitions, not involving the strong 

bond breaking are called displacive. In general, the crystal structures of two 
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phases involved in a displacive phase transition show subgroup – supergroup 

symmetry relations [18]. 

 

Basing on changes in the symmetry the phase transitions can be divided into 

structural and isostructural ones. During the isostructural phase transition the 

system symmetry is not changed. The difference betweens the structural and 

isostructural phase transitions is presented in Fig. 4. 7.  

 

 

Fig. 4. 7. Schematic illustration of the structural and isostructural phase transitions 
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5.1 Introduction 

In introductory physics a phase transition is described by 

phenomenological theories, considering the phenomena on a macroscopic scale 

containing many atoms. The first equation of the state representing a phase 

transition was proposed by van der Waals in 1873 [1]. 

5
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 The fundamental idea of the phenomenological treatment of the phase 

transition for the first time was given by Landau in 1937 [1]. The 

thermodynamic theory of ferroelectrics based on Landau theory was formed by 

Ginzburg [2] and Devonshire [3],[4].  

The great majority of physical properties of crystalline solids near the 

phase transition can be described by Landau theory. The theory is based on the 

assumption that there exists the thermodynamic parameter characteristic of the 

order degree called the order parameter, denoted as η. The magnetization for 

ferromagnetic-paramagnetic transitions, the polarization for ferroelectric-

paraelectric transitions, or the spontaneous deformation for ferroelastic-

paraelastic transitions are examples of such order parameters. 

The order parameter which described the system symmetry changes  

has a following properties: 

� in the phase with the highest symmetry (a symmetric, disordered phase) the 

order parameter disappears 0→η and in a nonsymmetric phase the order 

parameter 0≠η ; 

� for the continuous phase transition 0→η when CTT → ; 

� below the critical point the order parameter can have more than one value. 

 

In principle, the order parameter can be a scalar, vector or some other quantity 

[5]. The ferroelectric equation of state can be derived from the Gibbs free energy 

density Φ , which is appropriate when the independent thermodynamic variables 

are: a stress, an electric field, and a temperature. 

),,( ηTpΦ=Φ .      (5. 1) 

It is worth noting that the thermodynamic potential describes both 

nonsymmetrical and symmetrical phases  as a consequence of: 

)()( ∗Φ=Φ ηη                                                       (5. 2) 

where ∗η - is the order parameter transformed by symmetry operations[678-910]. 

The order parameter can be found by minimizing of the thermodynamic 

potential. At all temperatures the following condition must be fulfilled: 
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Assuming that the order parameter η  is small near the phase transition 

temperature, the Gibbs free energy can be expand in a Taylor series  with respect 

to η  

...,
6

1

4

1

2

1
),( 642

0 ++++Φ=Φ γηβηαηηT                                                              (5. 4) 

where  

0Φ - is the free energy density of the paraelectric phase at zero electric field, 

α - the coefficient in the Landau expansion dependent of p and T , 

γβ , - the coefficient in the Landau expansion. 

 

The various types of phase transitions which can be described within the 

Landau-, Devonshire- and Ginzburg-Landau  theories are  depicted in a table 

below. 

 

 

The ferromagnetic phase transition, with the magnetization as an order 

parameter, is a typical problem for the Landau theory. In antiferromagnetic 
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crystals the magnetic moments of adjacent atoms located  on different sublattices 

are antiparallel. The difference between the magnetizations of  both neighbourig 

sublattices is the order parameter of antifermomagnetics. Ferroelectric phase 

transitions with the polarization as an order parameter were described by 

Devnshire [3,4].     

 

5.2 Second order phase transition 

 

In order to describe the second order phase transition the expansion of the free 

energy up to 4th power is needed 

.
4

1

2

1
),( 42

0 βηαηη ++Φ=Φ T        (5. 5) 

In such a model it is assumed that α  coefficient depends on temperature 

)(' cTT −= αα , whereas 0>β and does not depend on temperature.  

Based on the condition for a stable state Eq.(5.3) the behavior of the order 

parameter can be found from 
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ηβα
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βηαη
η

T

T
                                              (5. 6) 

 

It can be noticed that for cTT >  one minimum (one phase) exists only which 

corresponds to 0=η  (see Fig. 5. 1.-curve 1). For cTT < the order parameter 

corresponding to the stability of phase II is shown in Fig. 5. 1.curve 3. 

β
α

η
)( cTT −

±=    (5. 7)  

The curve 2 presents free energy as a function of order parameter at cTT ≈ .  
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Fig. 5. 1 The order parameter dependence on thermodynamic potential for the case m = 4 

[5]. 

 

In Fig.5. 2 the temperature dependence on the order parameter for the 

thermodynamic potential expanded to 4
th
 power. Such a transition is called the 

continuous phase transition, because of continuous changes of the order 

parameter. It is also the second-order phase transition in the Ehrenfest 

classification (see Chapter 4).  

 

α'=α
.
(T-T

c
)

η

 

Fig.5. 2 Temperature dependence on order parameter for continuous phase transition. 
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5.2.1. Anomaly of electrical properties 

 

Now let us consider the dependence of the thermodynamic potential of a 

ferroelectric crystal on the temperature, the order parameter and the electric field. 

If we insert the electric field into equation (5.3) the expansion of the 

thermodynamic potential can be written as follows:  

EaTTET C ηβηηαη −+−+Φ=Φ 42

0
4

1
)(

2

1
),,(                                                 (5. 8) 

where E – is the vector component of the electric field. 

 

One can easily show from Eq (5.5) that the polarization (the order parameter for 

ferroelectrics) and the susceptibility are given as  

  ,ηa
E

P =
∂
Φ∂

=      (5. 9) 

,
E

a
E

P

∂
∂

=
∂

∂
=

η
χ      (5. 10) 

 

The order parameter in equilibrium states can be determined from a condition of 

minimizing of the energy  Eq. (5.3) 

.0)( 3 =−+−=
∂
Φ∂

aETcT βηα
η

            (5. 11) 

At the absence of the external electric field (when E=0) the solution of equation  

(5.11) is given by: 

.|

,
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c

c

c
TT

TT

for

for
TT

<

>








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


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

 −
−±

=
β

αη                                  (5. 12) 

 

Using equation (5.9) the spontaneous polarization in the case of absence of the 

external electric field can be determined as: 

109



 

 

 









<

>








 −
±

=
.

,
)(

0
2

1

c

c

cs
TT

TT

for

for
TT

a
P

β
α            (5. 13) 

 

The equation of state
P

E
∂
Φ∂

= defines the theoretical dependence of the 

polarization P versus E in a form of a hysteresis loop.  

 

 

 
Fig. 5. 3 Polarization vs electric field –ferroelectric hysteresis loop. 

 

 

The coercive field cEE =  is defined as the turning point 0=







∂
∂

= cEEP

E
 which 

determines the polarization Pc at the coercive field as: 

β
α )( c

s

TT
P

−
= .  

Substitution of this value back in the equation of state yields the coercive field 

Ec as 

 
β
α 3

33

2
±=cE . 

  

Substitution of the solution of equation (5.11) into (5.10) we obtain 

23)( βηα
χ

η
+−

==
∂
∂

cTT

a

E
.            (5. 14) 

Now the dielectric permittivity can be found as: 
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for a temperature region of cTT >  and 

,
)(

2
2

cTT

a

−
−=

α
πε       (5. 16) 

for cTT < temperatures.  

In summary, ferroelectric materials loose their spontaneous polarization at the 

temperature above the phase transition temperature ( cT )  and become the 

paraelectrics. It can be shown that above and below the phase transition 

temperature the dielectric permittivity depends on temperature according to the 

Curie-Weiss law 

,
cTT

A

−
=ε           (5. 17) 

where  A is the Curie-Weiss constant. 

 

A plot of the real part of reciprocal of the dielectric permittivity as a function of 

temperature for the TGS crystals is presented in Fig. 5. 5. It can be seen that 

there is a difference between the both sides of phase transition temperature cT  in  

ε
1
 slope.   
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Fig. 5. 4 Plot of the dielectric permittivity versus the temperature for TGS crystals. 
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Fig. 5. 5 Temperature dependence of reciprocal of dielectric  permittivity for TGS crystals. 
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Fig. 5. 6 Temperature dependence of the spontaneous polarization for MAPBB crystals 

[11]. 

 

 

In Fig. 5. 6 the spontaneous polarization as a function of temperature is 

presented. Above the phase transition the continuous temperature changes of  the 

spontaneous polarization can be observed whereas below cT  the spontaneous 

polarization is equal to zero.  

 

5.2.2. Anomaly of thermal properties 

 

Let us now study a change in the specific heat and the entropy in the second-

order phase transition. In general, the entropy is defined as 

T
S

∂
Φ∂

−=         (5. 18)  

 

From Eq (5.8) (with 0=E )  and (5.18), we find the entropy 
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where 0S is the entropy in the symmetric phase.  

 

Fig.5. 7 Schematic representation of the crystal entropy changes near the second-order 

phase transition region. 

 

 

It is worth noticing that absence of the entropy jump corresponds to the second-

order phase transition.  

 

Fig.5. 8 Temperature dependence of the entropy of the TGS crystals in a wide temperature 

range and near the Tc. 
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The heat capacity of the crystals is defined as 
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Fig.5. 9 Temperature dependence of the specific heat for the TGS crystals. 

 

 

 

It is easy to see that at the phase transition temperature heat capacity undergoes a 

jumps according to 
( )

.
2

2

β
α T

 

It is worth noticing that three determined parameters: the polarization (P), the 

dielectric permittivity (εεεε) and the specific heat (Cp) expressed by three 

coefficients in the free energy expansion α, β are related near the phase 

transition temperature in the following way 

 

                                                                                        (5. 21) 
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5.3. First-order phase transition  

 

In order to describe the first order phase transition it is necessary to take into 

account the coefficient at sixth order term in expression   Eq. (5.4)  

,
6

1

4

1

2

1
),( 642

0 γηβηαηη +++Φ=Φ T         (5. 22) 

where 0, >γα  and 0<β [5]. 

 

As before, the order parameter can be found from condition of the minimum of 

the thermodynamic potential (5.3) 
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It can be easily shown that there are following solutions of Eq. (5.23) 










>++−=
∂

Φ∂

=++−=
∂
Φ∂

,053)(

,0))((

42

2

2

42

γηβηα
η

γηβηαη
η

c

c

TT

TT

                                                                 

00 =η                                                 (5. 24) 

and for the high-temperature phase and 
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for the low-temperature  phase. 
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Fig. 5. 10 Dependence of the thermodynamic potential on the order parameter for several 

different temperatures and temperature dependence of the order parameter in the case of 

the first order phase transition [5, 12]. 

 

 

 

Conditions of Eq(5.23) are presented in Fig. 5. 10 which shows the order 

parameter dependence of the thermodynamic potential. The curve “1” in Fig. 5. 

10 corresponds to the temperatures region 
αγ
β
4

2

2 +=> cTTT , where  crystals 

can remain in the symmetric phase with one minimum of the thermodynamic 

potential at 0=η . At 2TT = (curve “2” in Fig. 5. 10) a dependence of the 

thermodynamic potential on the order parameter displays inflection points. 

During the cooling the minima appears  (stability of the phase II increasing). The 

equilibrium state of the phases I and II is when the )0()0( =Φ=≠Φ ηη  

condition is fulfilled. It corresponds to the temperature 
γα
β

16

3 2

1 += cTT  (curve “3” 

in Fig. 5. 10). Below 1T  the phase I becomes unstable and remains metastable 

unless the α coefficient changes the sign at cTT = . 

Temperature Tc corresponds to the temperature range where the symmetric phase 

can exit. The temperature dependence of the spontaneous polarization in the case 
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of the first order phase transition for the PbTiO3 crystals is presented in Fig. 5. 

11. 

 

 

Fig. 5. 11 Temperature dependence of the spontaneous polarization of the PbTiO3 [9] . 
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Fig. 5. 12 Plot of the polarization against the electric field for the first order phase 

transition for several temperatures [5, 9, 12] 

 

 

5.3.1. Electrical properties  

 

The dependence of the polarization on the electric field for the first order 

phase transition is shown in Fig. 5. 12. It can be seen that far from the transition 

temperature the dependence of the polarization on the electric field has a form of 

double hysteresis loop shifted to the higher electric filed. It should be mentioned 

that a presence of a double hysteresis loop is sometimes considered to be a 

property of the same special group of materials well known as antiferroelectrics.  
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Fig. 5. 13 The polarization P of antiferroelectric PbZrO3 versus 

an externally applied electric field E[12]. 

 

 

Lead zirconate (PbZrO3) is an example of a crystal which exhibits the first order 

phase transition. The polarization P of antiferroelectric PbZrO3 as a function of 

the applied electric filed E is shown in Fig. 5. 13. Strong fields “switch” the 

antiferroelectric phase into a ferroelectric state. The phase transition sequence in 

PbZrO3 crystals can be explained with the aid of the  schematic representation of 

temperature dependence of the thermodynamic potential. Below, a diagram of 

the thermodynamic potentials as the temperature function of a PbZrO3 crystals is 

presented (Fig. 5. 14).  

 

 

 

Fig. 5. 14 Diagram of the thermodynamic potentials of three phases of antiferroelectric 

crystals PbZrO3 [5, 12]. 
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It can be observed that when the external electric field is equal to zero (E 

= 0) the transition from the symmetric phase to the nonpolar nonsymmetric 

phase (see phase sequence 1→2 in Fig. 5. 14) can be realized with a decreasing 

of the temperature. When the external electric field is greater than the critical 

electric field (E > Ecr) in the temperature region of the phase transition the 

thermodynamic potential of the ferroelectric phase is found to be the lowest and 

therefore the ferroelectric phase appears to be stable.  

(sequence 1→3 in Fig. 5. 14).  

 

If we take into account the sixth-degree invariants into Eq.(5.4) with 

0=β  and  0>γ the condition of the thermodynamic potential minimum can be 

written as 

 

.)(0 5ηγηα
η

⋅+⋅−==
∂
Φ∂

cTT              (5. 26) 

 

We can find, that the order parameter is equal to zero 0=η  for cTT >  and for 

cTT <  

.
)(4

γ
α

η cTT −
−=         (5. 27) 

Finally, the dependence of the order parameter on the temperature for cTT < will 

take the following form 

.
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η cTT
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It turns out that a strong decreasing of the order parameter upon approach to the 

phase transition temperature by the law 4

1

)( cTT −  results in a strong dependence 

of the specific heat on the temperature.  

 

 

5.3.2. Anomaly of thermal properties  
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For the entropy we have 

)2(

)(

2

1

2

1

2

3

0

γ

α

⋅

−
+=

∂
Φ∂

−= cTT
S

T
S  .         (5. 29) 

 

Fig. 5. 15 Temperature dependence of the entropy changes of a TEA2MnCl4 crystals [13]. 

 

 

Fig. 5. 15 presents the temperature dependence of the entropy changes in the 

wide temperature rage. TEA2MnCl4 crystals exhibit two first order phase 

transitions  at T1= 221 K and T1= 228 K.  The jumps of the entropy changes at 

the phase transition temperatures can be seen. 

 

Then, the heat capacity of the crystal is equal to: 
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+= cpp TT
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The temperature dependence of the specific heat of the TEA2MnCl4 crystals 

measured during the heating process is presented in Fig. 5. 16.  Two anomalies 

typical for the first-order phase transitions at T1 = 221 K and T2 = 228 K are 

clearly seen. One can see that the specific heat in the critical temperature (when 

cTT = ) approaches to infinity according to Eq.(5.30).  
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Fig. 5. 16 Temperature dependence of the anomalous part of the specific heat for 

TEA2MnCl4 crystals [13]. 

 

 

 

5.3.2. General properties of the first order phase transition 

 

Using a model with 6η  we could describe the phase transition on ( βα , )  

plane [5,9]. When 0<β the phase transition is of the first order while for the 

positive value of β  the phase transition is of the second order, likewise for 

4η model (Fig.5. 17). For the first order phase transition the coexistence region 

of  two phases can exist only  in the temperature range:  

γα
β
4

2

2 =−=∆ cTTT  .      (5. 31) 

 

The two phases are interchangeable for 1TT >  and 2TT > , at each point of the 

range T∆ the phase transition can occur. A temperature when the energy of both 

phases are equal is the most probable for the phase transition. 
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Fig.5. 17 Phase diagram ( )(βα ) for 
6η model [8] 

 

The thermal hysteresis phenomenon is characteristic for the first order phase 

transition, as a results of a metastable region existing for both phases. During the 

first-order phase transition a jump of the order parameter can be observed  

.
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γ
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η T                                                    (5. 32) 

 

According to Eq. (5.25), below the temperature 1T  the increase of the order 

parameter can be observed. The emission or the absorption of latent heat of the 

phase transition is connected with a discontinuous character of the order 

parameter ( )(Tη ). 

Under some special circumstances with β=0 in equation (5.22) the phase 

transition becomes tricritical (see red point in Fig.5. 17).   
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5.3.3. Tricritical point 

 

A thermodynamic system where the phase transition going from the 

continuous phase to the discontinuous one is described by the tricritical point. 

The critical state is characterized by regularities following from an equation of 

the free energy.  The tricritical point is defined by following conditions 

.0),(

,0),(

=

=

Tp

Tp

t

t

β

α
                  (5. 33) 

 

Using equation (5.22)[14] the properties of the tricritical point can be concluded  

  

a) if ( ) ,4
1

~ TTpp ct −→= η  

b) specific heat below cT  is proportional to 5.0)( −−TTc , 

c) thermal hysteresis connected with the phase transition approaches zero 

when tpp → . 

The tricritical point has been widely studied by Landau and Lifshits [8,15], 

Ginzburg (called the Curie critical point) [16] and Griffiths [17].  The 

tricritical point exists in the case of the liquid and gaseous phases which are 

similar by the symmetry (example see Chapter 4). BaTiO3 is one of examples 

of ferroelectric materials showing tricritical point determined from dielectric 

measurements. Pressure dependence of the ferroelectric-paraelectric 

transition temperatures for BaTiO3 crystals is presented in Fig. 5. 18 [18]. 

One can observe that the temperature hysteresis between the phase transition 

temperature on heating and on cooling decreases with the increasing pressure 

and approaches zero at pressure equal to 34 kbar.  
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Fig. 5. 18 Phase transition temperature dependence on pressure for BaTiO3 crystals [18]. 

 

For 34 kbar we can observe that the line corresponding to the first order phase 

transition transforms into the line corresponding to the second order phase 

transition.  

 

 

 

Fig. 5. 19 Phase diagram for KDP crystal [19]. 
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A similar situation as presented above was observed for KDP crystals 

[19]. The tricritical point in the pressure-temperature-electric field three-

dimensional space  is presented in Fig. 5. 19. From dielectric measurements the 

tricritical point near 2 kbar is indicated.  

 

5.4. General properties of the thermodynamic potential with the one 

component order parameter 

 

The thermodynamic potential allowing one-component order parameter 

can be generalized to any even value of n. An expansion with 8≥m  performed 

with respect of one component order parameter may describe the isostructural 

phase transition (Larin and Guffan [20]). In that case the thermodynamic 

potential can be presented as: 

 

.)( 8642

0 δηγηβηαηη ++++Φ=Φ                                                          (5. 34) 

 

The equation of state can be written in the case of  m = 8  

( ) 0642 =+++ δηγηβηαη .                                                                             (5. 35) 

 

 

Fig. 5. 20  Temperature dependence of the order parameter (a) and the order parameter as 

a function of the thermodynamic potential (b) in the case of m = 8 [9]. 

 

It can be summarized  that depending on a sign of γ  the Eq. (5.23) may posses 

one solution or three positive solutions of 2η . If γ > 0, then only one low-
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temperature stable phase is possible,  as it was for the case of m=6. For 

0<γ (and 0>δ ) two low temperature stable phases with the identical 

symmetries can be found and it corresponds to m = 8.  In Fig. 5. 20 a succession 

of the phase transition for the case of m = 8  is presented. One can see that the 

second order phase transition is followed by the first order transition. The 

sequences of the possible phase transitions when the thermodynamic potential 

can be expanded to any even value of m can be generalized as follows : 

the thermodynamic potential describes a sequence of one-to-second order phase 

transitions and 1
2

−
m

 first order phase transitions when m is even, otherwise for 

odd m’s all phase transitions are of the first order and the transition number is 

2

1
−m  , see Fig. 5. 21 [8, 9]. 

  

Fig. 5. 21 Temperature dependence of the order parameter and order parameter as a 

function of thermodynamic potential  for several odd ( on the right) and even (on the left) 

value of d [9]. 
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5.5. Two component order parameter 

 

In order to describe a structural phase transition from 4/mmm symmetry group to 

mmm symmetry with a twining unit cell two-component order parameter must 

be considered [8, 9].  

The thermodynamic potential as a function of the order parameters and the 

mechanical stress can be written as 

 

,)(

)()(4)()()(

2

11

522

6

422

5

322

3

2

3

222

2

22

1

σρσξηδξηα

ξηαξηαξηαξηαξηα

⋅−⋅⋅⋅−++

++++⋅++++=Φ
 (5. 36) 

where 

η, ξ – the order parameter component, 

σ – the strain tensor component, 

α1, α2, α3, α4, α5, α6,  – the expansion terms (where α1 = α1(T) i α6 > 0), 

ρ1 – the elastic susceptibility, 

δ1 – the constant connected with the deformation and the order parameters. 

 

In the case of crystals without any mechanical stress (σσσσ = 0) and any 

electric field (E = 0) the equilibrium conditions of the thermodynamic potential 

minimum are given by 
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Using the first condition in Eq. (5.37) , we obtain 
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with a following solution : 

,0i0 == ξη            (5. 39) 

,0543)2(,0i0
8

6

6

5

4

4

2

321 =⋅⋅+⋅⋅+⋅⋅+⋅+⋅+≠= ξαξαξαξαααξη      (5. 40) 
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         (5. 42)                                

 

The first solution (Eq.5.39)  corresponds to the improper ferroelectric (high 

temperature) phase, where the spontaneous deformation is equal to zero, the 

other solution (5.40)-(5.42) corresponds to the condition T < Tc.  In the 

ferroelectric phase the crystal deformation u = δ1
.
η
.
ξ + 2

.
ρ
.
σ has the following 

form  

.22

1 σρηδ ⋅⋅+⋅±=u            (5. 43)  

 

As it follows from Eq. (5.43) the spontaneous deformation is proportional to the 

square of order parameter, opposite as it is in the case of the proper ferroelastic, 

where the spontaneous deformation is proportional to the order parameter.    

In the paraelastic phase the elastic susceptibility is equal 

ρχ ⋅= 2  ,                                (5. 44)  

 

whereas, in the ferroelastic phase  

[ ]
.2

803212)4(2 8642

321

2

1 ρ

ηηηηααα

ηδ
χ ⋅+

⋅+⋅+⋅+⋅+⋅+⋅

⋅
=   (5. 45) 

 

The phase diagram representing the solution in the plane of ( '

21,αα ) 

obtained from numerical calculations ),4(
2

1
32

'

2 ααα +⋅⋅= for ,13 =α  

,25.04 =α  ,225.05 =α  
6

1
6 =α is presented in Fig.5. 22. 
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Fig.5. 22 Phase diagram in the plane of (
'

21,αα ) [20, 9]. 

 

 

 

The curves “1” and “2” in Fig.5. 22 determine the limits of stability of the 

paraelastic phase η = ξ = 0 (phase 0) and the ferroelastic phase 

02

1

2

1 ≠= ξη (phase 1).  

Transition from 0 (phase 0) to “1” phase or “2” describes the isostructural phase 

transitions. The limits of the stability of the improper ferroelastic phase (phase 1 

and phase 2) 02

2

2

2 ≠= ξη are represented by curves 3 and 4 in Fig.5. 22. The 

region between “3” and ”4” curves corresponds to the region of a coexistence of 

two phases. Point K in Fig.5. 22 corresponds to the critical point.  Curves “5” 

and “6” determine the limits of the stability of the paraelectric phase and the 

improper ferroelastic phase. A point where the ends of curves “1” and “2” are 

spliced is called the tricritical point and it is a point where the first order phase 

transition becomes a second order one.  
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