

Wojciech Bożejko

A New Class of Parallel
Scheduling Algorithms

Oficyna Wydawnicza Politechniki Wrocławskiej
Wrocław 2010

Reviewers
Zbigniew BANASZAK
Jerzy JÓZEFCZYK

Proof-reading
Halina MARCINIAK

Cover design
Marcin ZAWADZKI

All rights reserved. No part of this book may be reproduced by any means,
electronic, photocopying or otherwise, without the prior permission in writing of the Publisher

© Copyright by Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2010

OFICYNA WYDAWNICZA POLITECHNIKI WROCŁAWSKIEJ
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
http://www.oficyna.pwr.wroc.pl
e-mail: oficwyd@pwr.wroc.pl

ISBN 978-83-7493-564-7

Drukarnia Oficyny Wydawniczej Politechniki Wrocławskiej. Zam. nr 1098/2010.

Contents

Preface . 9

Scope . 11

List of symbols . 13

List of abbreviations . 15

I INTRODUCTION TO PARALLELISM AND JOB
SCHEDULING 17

1. Introduction . 19

1.1. Performance metrics of parallel algorithms 22
1.1.1. Performance metrics for parallel metaheuristics 26

1.2. Parallel architectures . 28
1.2.1. Taxonomy . 28
1.2.2. Memory architectures . 29
1.2.3. Recent trends . 33

1.3. Metaheuristic parallelization strategies 33

2. The methodology of metaheuristic parallelization 37

2.1. Parallel local search methods . 38
2.1.1. Parallel local search strategies 39
2.1.2. Simulated Annealing . 41
2.1.3. Tabu Search . 42

2.2. Parallel population-based algorithms 44
2.2.1. Genetic Algorithm . 44
2.2.2. Scatter Search . 46
2.2.3. Memetic Algorithm . 47

2.3. Other methods . 48
2.4. Remarks and conclusions . 53

4

3. Scheduling problems . 55

3.1. Basic notions and notation . 55
3.2. Taxonomy . 56
3.3. Single machine scheduling problems 59

3.3.1. Overview . 59
3.3.2. Fundamental case . 59
3.3.3. Setup times . 61
3.3.4. Earliness/tardiness penalties 68

3.4. Flow shop problems . 71
3.4.1. Formulation of problems 71
3.4.2. Models . 74
3.4.3. Properties . 74
3.4.4. Transport times . 76

3.5. Job shop problems . 76
3.5.1. Problem de�nition . 77
3.5.2. Models and properties . 78

3.6. Flexible job shop problems . 81
3.6.1. Problem formulation . 82
3.6.2. Graph models . 85

II SINGLE-WALK PARALLELIZATION 89

4. Single machine scheduling . 91

4.1. Introduction . 91
4.2. PRAM computation model . 92
4.3. Calculations for single-walk parallelization 93
4.4. Huge neighborhoods . 94
4.5. Huge neighborhood searching method 97
4.6. Parallel huge neighborhood searching method 99
4.7. Remarks and conclusions . 101

5. Job shop scheduling . 103

5.1. Introduction . 103
5.2. Sequential determination of the cost function 104
5.3. Parallel determination of the cost function 104

5.3.1. Methods based on matrix multiplication 105
5.3.2. Methods based on partitioning into layers 110

5.4. Remarks and conclusions . 113

6. Hybrid scheduling . 115

5

6.1. Solution method . 115
6.2. Machine workload . 116

6.2.1. Neighborhood determination 118
6.2.2. Methods of the cost function value estimation 124
6.2.3. Machine workload rearrangement 130
6.2.4. Parallel determination of the workload 131

6.3. Remarks and conclusions . 134

7. Theoretical properties of a single-walk parallel GA 137

7.1. Sequential broadcasting . 137
7.2. Tree-based broadcasting . 140
7.3. Remarks and conclusions . 141

III MULTIPLE-WALK PARALLELIZATION 143

8. Parallel memetic approach . 145

8.1. Introduction . 145
8.1.1. Independent searching threads 146
8.1.2. Cooperative searching threads 146

8.2. Memetic algorithm . 147
8.3. Parallel memetic algorithm . 147
8.4. Computer simulations . 151
8.5. Remarks and conclusions . 151

9. Parallel population-based approach 153

9.1. Population-based metaheuristic 153
9.1.1. A set of �xed elements and positions 155
9.1.2. Element age modi�cation 156
9.1.3. Element insertion . 156
9.1.4. Element deletion . 156
9.1.5. Auto-tuning of the acceptance level 157
9.1.6. A new population . 157

9.2. Parallel Population-Based Metaheuristic 158
9.3. Computational experiments . 159
9.4. Remarks and conclusions . 163

10.Parallel branch and bound approach 165

10.1. Enumeration scheme . 166
10.1.1. Lower bound . 167
10.1.2. Branching rule . 169

6

10.2. Branch and bound algorithm . 171
10.2.1. Parallel algorithm . 172

10.3. Computer simulations . 173
10.4. Remarks and conclusions . 175

11.Parallel simulated annealing . 177

11.1. Makespan criterion . 177
11.1.1. Simulated annealing method 178
11.1.2. Parallel concepts . 179
11.1.3. Computational experiments 180

11.2. Total completion time criterion 182
11.2.1. Intensi�cation and diversi�cation of calculations 182
11.2.2. Parallel simulated annealing 183
11.2.3. Computational results . 184

11.3. Remarks and conclusions . 185

12.Parallel scatter search . 187

12.1. Scatter search method . 187
12.1.1. Path relinking . 187

12.2. Parallel scatter search algorithm 188
12.3. Computer simulations . 191

12.3.1. Calculations of the Cmax criterion 191
12.3.2. Calculations of the Csum criterion 191

12.4. Speedup anomalies . 193
12.5. Remarks and conclusions . 195

13.Parallel genetic approach . 197

13.1. Parallel genetic algorithm . 197
13.2. Computational experiments . 198
13.3. Remarks and conclusions . 201

14.Parallel hybrid approach . 203

14.1. Hybrid metaheuristics . 203
14.2. Algorithms proposed . 205

14.2.1. Parallel Tabu Search Based Meta2Heuristic 205
14.2.2. Parallel Population-Based Meta2Heuristic 206

14.3. Computational results . 210
14.4. Remarks and conclusions . 212

15.Application: parallel tabu search approach 215

15.1. Introduction . 215

7

15.2. Parallel tabu search method . 216
15.3. Computational experiments . 218
15.4. Application of the tabu search algorithm � road building 220
15.5. Case study . 222
15.6. Remarks and conclusions . 224

16.Final remarks . 225
16.1. New approaches . 226
16.2. Open problems . 227

16.2.1. Continuous optimization 227
16.2.2. Multiobjective optimization 228
16.2.3. Uncertain data . 229

16.3. Future work . 230

A. Supplementary tables . 231

Bibliography . 243

List of Tables . 264

List of Figures . 266

Index . 270

Abstract (in Polish) . 273

Preface

The main issue discussed in this book is concerned with solving job scheduling
problems in parallel calculating environments, such as multiprocessor comput-
ers, clusters or distributed calculation nodes in networks, by applying algorithms
which use various parallelization technologies starting from multiple calculation
threads (multithread technique) up to distributed calculation processes. Strongly
sequential character of the scheduling algorithms is considered to be the main
obstacle in designing su�ciently e�ective parallel algorithms. On the one hand,
up till now sequential algorithms exhausted the possibilities of signi�cant growth
in the power of solution methods. On the other hand, parallel computations o�er
essential advantages of solving di�cult problems of combinatorial optimization,
pushing towards theory, methodology and engineering of solution algorithms.

The book is divided into a `state-of-the-art' part followed by two original
parts, concerning single-walk and multiple-walk multiple-threads optimization al-
gorithms applied to solve scheduling problems. At �rst, an introductional part
is placed, including a methodology for parallelization of metaheuristics, intro-
duction to scheduling issues, scheduling problems, classical and the most recent
discrete optimization tendencies. This constitutes the `state-of-the-art', worked
out for author's parallel computing and prepared on the basis of the extensive
bibliography.

The next two parts make up the core of the book and deal with the au-
thor's own novel results. The division into two parts (single- and multiple-walk
parallelization) is adjusted to structurally di�erent approaches applied to design
parallel algorithms. There are plenty of genuine single-thread search methods
proposed in Part II which are designed for homogeneous parallel systems. These
methods take into consideration a variety of techniques of parallel algorithm de-
signing process as well as di�erent necessities of modern algorithms of discrete
optimization (analysis of the cost function determination, analysis of theoreti-
cal speedup). Theoretical estimations of the properties of particular algorithms
are derived; a comparative analysis of advantages resulting from application of
di�erent approaches has been made.

The third part of this book is concerned with multithread search dedicated
for homogeneous and heterogeneous multiprocessor systems, such as mainframe
computers, clusters, di�use systems connected by networks. Some parallel vari-
ants of the most promising current methods of combinatorial optimization (tabu
search, simulated annealing, genetic methods) have been designed and examined
experimentally in the application to selected scheduling problems. Di�erent tech-
niques of computation threads realization and their communication have been
discussed, especially for migration models (so-called island models) in evolution
methods. A superlinear (orthodox) speedup e�ect has been observed. In the case

10 Preface

of parallel variants of branch and bound scheme, dedicated for homogeneous and
heterogeneous parallel systems, this type of algorithms has been designed and
examined for selected class of scheduling problems. In particular chapters not
only the parallelization bene�t was shown, but (�rst of all) the methodology for
designing parallel algorithms was described on examples of optimization prob-
lems. Complex scheduling problems (job shops, �exible and hybrid problems),
for which even a feasible solution construction constitutes a hard computation
problem, were chosen to be a case study for showing the parallelization process.

The book contains a wealth of information for a wide body of readers, including
advanced students, researchers and professionals working in the �eld of discrete
optimization and management. A new methodology of solving strongly NP-hard
real-world job scheduling problems is presented here. It allows us to design very
e�cient and fast approximate and exact algorithms for solving a wide class of
discrete optimization problems, not only scheduling problems. E�ciency of the
present research has been proved by comprehensive computational experiments
conducted in parallel processing environments such as supercomputers, clusters
of workstations, multi-core CPUs and GPUs.

The author would like to thank the Wrocªaw Center of Networking and Super-
computing (WCNS, [266]) for enabling numerical experiments in multiprocessor
environment.

Scope

Chapter 1 provides theoretical and practical basis of parallel computations. A me-
thodology for the parallelization of known sequential algorithms is discussed in
Chapter 2. Chapter 3 contains a short introduction to job scheduling problems
with the extension of some special properties of problems which are generated by
the practice for their use in designing parallel algorithms.

Chapters 4 through 7 concern the methodology of designing parallel algorithms
for single-walk calculations. The contents of particular chapters is presented be-
low. A methodology for transferring huge neighborhood search technologies in
the local search methods into the parallel computing environment is presented in
Chapter 4. The methodology is illustrated by examples of several single-machine
scheduling problems met in practice. In Chapter 5 there are the new approaches
to e�cient parallel algorithm design shown for a single solution cost function value
determination. The approach is presented on the case of a job shop scheduling
problem, enjoying a great interest to practitioners of operations research. Chap-
ter 6 presents the new integrated approaches to the neighborhood structure design
and to the methodology of its searching from the point of view of the e�cient par-
allel computing environment usage. This approach is described on the special case
of so-called hybrid job shop scheduling problem (scheduling and resources allo-
cation) constituting a base of FMS systems functioning. Chapter 7 provides the
new theoretical results in single-walk exploration, complementing the state of the
�eld of knowledge.

Chapters 8 through 14 concern a methodology for designing multiple-walk
parallel algorithms. Chapter 8 presents the methodology of parallel algorithm
designing based on memetic approach (Lamarck and Baldwin evolution theory)
making use of speci�c properties of the problem and distributed island model.
This approach is illustrated by an example of the single machine scheduling prob-
lem with E/T penalties. A new genuine population-based approach is proposed
in Chapter 9 on the example of the single machine scheduling problem with setup
times, modelling single bottleneck industrial nest functioning. In Chapter 10
there is presented a methodology for transferring sequential B&B algorithm into
its parallel variant as an exact method and cut B&B as an approximate method.
Load balancing of processors has been discussed. This approach has been de-
scribed on the example of the single machine total weighted tardiness problem.
Chapter 11 proposes the methodology of parallel simulated annealing algorithms
design on the example of �ow shop scheduling problem with the objective of min-
imizing the makespan as well as with the sum of job completion times objective.
An unprecedented methodology of threads cooperating creation has been pro-
posed. A methodology for solving the �ow shop problem by using scatter search
algorithm is presented in Chapter 12. The proposed parallelization methodology

12 Scope

constitutes a general approach, which increases the quality of obtained solutions
keeping comparable costs of computations. A superlinear speedup is observed
in cooperative model of parallelism. Chapter 13 presents a multiple-walk paral-
lelization of the island model based genetic algorithm in application to the �ow
shop scheduling problem. The multi-step crossover fusion operator (MSXF) is
used as an inter-island communication method. As compared to the sequential
algorithm, parallelization enhances the quality of solutions obtained. Computer
experiments show, that the parallel algorithm is considerably more e�cient with
relation to the sequential algorithm. In Chapter 14 there are two new double-level
metaheuristic optimization algorithms applied to solve the �exible job shop prob-
lem (FJSP) with makespan criterion. Algorithms proposed in this chapter have
two major modules: the machine selection module and the operation scheduling
module On each level a parallel metaheuristic algorithm is used, therefore this
method is called Meta2Heuristic.

In Chapter 15 there is proposed the new methodology of parallel tabu search
approach created with the use of cooperation between concurrently running search-
ing threads. The approach is shown on the example of the �ow shop scheduling
problem and applied to solved a real-world optimization problem of roadwork
scheduling. Some special properties of the problem considered (so-called blocks
on the critical path) connected with representatives are used for calculation di-
versi�cation among searching threads.

List of symbols

Ap � a parallel algorithm executed on p processors
B � a partition into blocks
Bk � the k-th block
cAp,M (p) � the cost of solving a problem by using an algorithm Ap in

a p-processor parallel machine M
Ci � a term of a job i execution �nishing
Cj � a term of an operation j execution �nishing
Cmax � makespan (goal function)
Csum � the total execution time (goal function)
di � due date of the job i execution �nishing
d � number of layers
∆ � an upper bound of the goal function value
Ei � earliness of the job i execution �nishing
ηAp,M (p) � e�ciency of algorithm Ap solving problem P on the machine

M making use of p processors
Fi � a time of �ow of the job i through the system
F � the goal (cost) function
fi(t) � non-decreasing cost function connected with job i execution

�nishing in time t
Φ◦ � feasible solution
Φn � the set of all permutations of an n-element set
G � granularity
J � a set of jobs
Li � non-timeliness of the job i execution �nishing
M � a set of machine types
Mj � a sequence of machine subsets which de�ne alternative meth-

ods of operation execution
m � number of machines
N (π) � neighborhood of solution π
n � number of jobs
O � a set of operations
o � number of operations
oi � number of operations in the job i
Θ � feasible solution
p � number of processors
pij � a time of execution of an operation j by the i-th method

14 List of symbols

π � permutation
π∗ � the best known permutation
Q � machine workload (an assignment of operations to ma-

chines)
ri � the earliest possible term of the job i execution beginning
SAp,M (p) � the speedup of algorithm Ap solving the problem P on

machine M making use of p processors
Sj � a term of an operation j execution beginning
Si � a term of the job i execution beginning
Tpar � the computations time of parallel algorithm
Tseq � the computations time of sequential algorithm
TAp,M (p) � the time of calculations of the algorithm Ap solving the

problem P on machine M making use of p processors
TAs � the time of calculations of the sequential algorithm As

Ti � tardiness of the job i execution �nishing
Tc � computations time
Tt � communication time
Ui � unitary tardiness of the job i
U � a set of conjunctive arcs
V � a set of disjunctive arcs
vj � a method of the operation execution
xbest � the best known solution

List of abbreviations

ACO � Ant Colony Optimization, the method
APRD � Average Percentage Relative Deviation
B&B � Branch and Bound, the method
CC-NUMA � Cache Coherent Non-Uniform Memory Access
COW � Cluster Of Workstations
CRCW � Concurrent Read Concurrent Write, a kind of PRAM
CREW � Concurrent Read Exclusive Write, a kind of PRAM
CUDA � Compute Uni�ed Device Architecture, a parallel pro-

gramming library for GPUs
DM � distributed memory
EDA � Estimated Distribution Algorithms, the method
EREW � Exclusive Read Exclusive Write, a kind of PRAM
ERCW � Exclusive Read Concurrent Write, a kind of PRAM
ES � Evolution Strategies, the method
E/T � Earliness/Tardiness
FJSP � Flexible Job Shop Problem
GA � Genetic Algorithm, the method
GP � Genetic Programming, the method
GPGPU � General Purpose Graphic Processing Unit
GPU � Graphic Processing Unit
GRASP � Greedy Randomized Adaptive Search Procedure, the

method
LB � Lower Bound, of the goal function
LM � Long-term Memory, in the Tabu Search algorithm
MA � Memetic Algorithm, the method
MIMD � Multiple Instruction set, Multiple Data set, a model of

parallel architecture
MISD � Multiple Instruction set, Single Data set, a model of

parallel architecture
MPI � Message Passing Interface, the parallel programming li-

brary
MPP � Massively Parallel Processor
NC-NUMA � Non-cache Coherent Non-Uniform Memory Access
NEH � Navaz, Enscore and Ham, an algorithm
NUMA � Non-Uniform Memory Access
ParPBM � Parallel Population-Based Metaheuristic, the method
ParSS � Parallel Scatter Search, the method

16 List of abbreviations

PATS � Parallel Asynchronous Tabu Search, the method
pSA � Parallel Simulated Annealing, the method
PSTS � Parallel Synchronous Tabu Search, the method
PBM � Population-Based Metaheuristic
PRAM � Parallel Random Access Machine, a theoretical model of

parallel computations
PRD � percentage relative deviation
PVM � Parallel Virtual Machine, the parallel programming library
SA � Simulated Annealing, the method
SGI � Silicon Graphics
SIMD � Single Instruction set, Multiple Data set, a model of par-

allel architecture
SISD � Single Instruction set, Single Data set, a model of sequen-

tial architecture
SS � Scatter Search, the method
sSA � Sequential Simulated Annealing, the method
TS � Tabu Search, the method
UB � Upper Bound, of the goal function
UMA � Uniform Memory Access
VNS � Variable Neighborhood Search, the method
WCNS � Wrocªaw Center of Networking and Supercomputing

Part I

INTRODUCTION TO

PARALLELISM AND JOB

SCHEDULING

Chapter 1

Introduction

The development of optimization methods, particularly applied in production
tasks arrangement, has proceeded towards modern and more e�ective sequence
approaches since the beginning of this �eld. At the end of the 1970s, the turn-
ing point in the combinatorial optimization methods was the branch and bound
(B&B) method regarded those days as a remedy for nearly all problems of great
size which could not be solved by means of methods applied at that time. How-
ever, it soon occurred that the B&B method only slightly extended the scope
of solvable problems (e.g. for a sum-cost, single-machine scheduling problem this
size extended from 20 to 40�50 tasks). What is more, the cost necessary to obtain
an optimal solution is much too high compared to economic bene�ts and its use
in practice. The conclusion of these investigations was the de�nition of a bounded
area of the B&B scheme application (see Figure 1.1).

The next breakthrough concerned the occurrence of advanced metaheuristic
methods: �rst the simulated annealing method and next the method of genetic
algorithms and the tabu search method. Enthusiasm lasted much longer: until
around 2005 several dozen of di�erent metaheuristics had been proposed though
again those methods reached the limit of their abilities to the moment where the
size of e�ectively solvable problems (i.e., these for which an average deviation
from the optimal solutions was smaller than 1%) might be shifted to a number
reaching thousands, but not millions or hundred millions. Eventually the concept
of `no-free-lunch' by Wolpert and Macready [271] �nished the discussion. With
reference to rough methods this concept may be paraphrased in the following way:
without using special attributes of examined problems considerable advantage
of one metaheuristic over the other cannot be obtained. What is interesting
Wolpert and Macready proved that `free-lunch' was possible to be obtained in
co-evolutional, multi-cultural metaheuristics, i.e., parallel in a natural way. Since
the mid-1980s, indeed, parallel many-levelled metaheuristics had been developed,

20 Chapter 1. Introduction

1950 1960 1970 1980 1990 2000 2010 priority rules computational complexity exact methods approximation schemes metaheuristics parallel metaheuristics

year
Fig. 1.1. History of the development of solution methods for job scheduling problems.

�rstly as simple paralleling of the most time-consuming elements of sequence
algorithms (usually as the goal function determination), then since the end of the
1990s as multi-track methods.

A marked enhancement of the quality of designed algorithms started when
producers of computer equipment realized that further increase of the speed (i.e.,
the clock frequency) of processors was very costly, while this goal could be more
easily obtained applying multi-core constructions, i.e., parallel calculating envi-
ronments (and in this context among producers of hardware there also exist the
term `no-free-lunch'). Today processors of popular producers such as Intel or
AMD have got 4 cores (some Intel processors have 9 cores, and prototypes even
80 cores) and GPU processors (Graphic Processing Unit) at �rst being used exclu-
sively as graphic processors and nowadays also as strictly computing ones posses
even 960 processors (e.g. products of nVidia Tesla series).

Increasing the number of cores requires however a wide range of algorithms
� a sequence metaheuristic algorithm activation on a multi-core processor makes
use of just one core, i.e., only a small part of the whole equipment potentiality.
The speci�city of optimization algorithms as well as procedures concerning deter-
mination of the key elements of a problem instance (e.g. the goal function value
which is usually formulated in a recurrent way) makes automatic methods of par-
alleling unsuccessful. Specialized algorithms designed for the purpose of being
activated in an environment of parallel calculations for speci�c kinds of problems
are needed.

To date, very few works dealing with the application of parallel metaheuristic
for job scheduling problems have been published, which follows from the fact that
this is an interdisciplinary area connected with two science disciplines: computer
science � as far as algorithm theory and parallel computing are concerned, and

Chapter 1. Introduction 21

automation � with regard to applications. There is a lack of theoretical properties
of parallel scheduling algorithms. A complex synthetic approach would allow us
to summarize the present state of research and �ll up this gap. This book should
ful�ll this task.

There are plenty of genuine single-thread search methods proposed in this
book, designed for homogeneous parallel systems. These methods take into con-
sideration both dissimilar techniques of parallel algorithm design process and
di�erent necessities of modern algorithms of discrete optimization (analysis of
one solution, analysis of a local neighborhood). E�ciency, cost and computation
speedup depending on the type of problem, its size and environment of parallel
system used is given special consideration in this part of the chapter. Theoret-
ical estimations of properties have been derived for particular algorithms, and
a comparative analysis of the advantages resulting from application of di�erent
approaches has been done.

In the area of multithread search, dedicated to homogeneous and heteroge-
neous multiprocessor systems (such as mainframe computers, clusters, di�use
systems connected by networks) a parallel variant of metaheuristic methods, such
as tabu search, scatter search, simulated annealing, evolutionary algorithm, path-
relinking method, population-based approach, has been designed and researched
experimentally, in the application of scheduling problems. A concurrent exact
method � branch and bound � has also been analyzed as a multiple-walk paral-
lelization.

The present research is of interdisciplinary character, including inter alia: the-
ory and practice of the algorithm design, theory and practice of parallel comput-
ing, theory and practice of job scheduling, exact and approximate methods of
solving combinatorial optimization problems, arti�cial intelligence methods and
theory of computational complexity.

The results presented in this monograph were obtained by the author while
he was working on the following projects:

• 2002�2005 research project founded by the State Committee for Scienti�c
Research No. 4T11A01624 (Wrocªaw University of Technology);

• 2009�2012, research project founded by the Ministry of Science and Higher
Education No. N N514 23223 (Wrocªaw University of Technology),

• 2010�2011, habilitation research project founded by the Ministry of Sci-
ence and Higher Education No. N N514 470439 (Wrocªaw University of
Technology),

and as a result of cooperation in the �eld of practical applications with the In-
stitute of Construction of the Wrocªaw University of Technology and with Lublin
University of Technology [225, 224].

22 Chapter 1. Introduction

1.1. Performance metrics of parallel algorithms

A parallel algorithm can be de�ned as one that is concurrently executed on many
di�erent processing devices. In the language of operating systems a parallel al-
gorithm can be equivalent to a process (or a group of processes), as an instance
of a computer program being executed which is made up of multiple threads
(multithreaded process) that follow instructions concurrently.

Many metrics have been applied based on the desired outcome of performance,
due to determining the best version of the multithread parallel algorithm, evaluat-
ing hardware of the parallel system and examining the bene�ts of parallelization.
In many cases the goal is to design a parallel algorithm whose execution cost (cor-
related with an electrical energy used or economical cost) is identical to the cost
of a sequential algorithm execution solving the same problem. Such an algorithm
is called cost-optimal. In the further part of this chapter, the performance metrics
of parallel algorithms are de�ned precisely.

Parallel runtime. The execution time of the sequential algorithm is measured
as the time elapsed between the beginning and the end of execution on a serial
processor. We will denote such a serial runtime by Ts. By analogy, the parallel
runtime Tp is the time which elapses from the moment the parallel computations
begin till the moment the last processor stops the calculations.

Speedup. Let us consider a problem P , a parallel algorithm Ap and a parallel
machine M with q identical processors. Let us de�ne by TAp,M (p) the time of
calculations the algorithm Ap needs to solve the problem P on the machine M
making use of p ≤ q processors. Let TAs be the time of calculations needed
by the best (the fastest) known sequential algorithm As which solves the same
problem P on the sequential machine with the processor identical to processors
of the parallel machine M . We de�ne the speedup as

SAp,M (p) =
TAs

TAp,M (p)
. (1.1)

Thanks to the de�nition of speedup we can distinguish between: sublinear
speedup (SAp,M (p) < p), linear speedup (SAp,M (p) = p) and superlinear speedup
(SAp,M (p) > p), however the last one is still controversial. From the theoretical
point of view it is not possible to obtain superlinearity of the speedup. If it
were possible then one could construct a sequential algorithm by executing a
parallel algorithm on p = 1 processors and such a sequential algorithm would
be faster than the fastest one known. In fact many authors [9, 84, 64, 65, 269,
164, 165, 171, 178, 209] have reported superlinear speedup. One can point out

1.1. Performance metrics of parallel algorithms 23 I. Strong
speedup

II. Weak speedup

II.A. Speedup with solution stop II.B.
Speedup

with
predefined

effort

II.A.1.
Versus

panmixia

II.A.2
Orthodox

Fig. 1.2. Taxonomy of speedup measures proposed by Alba [7].

several sources behind superlinear speedup, such as cache memory in�uence, data
structure properties or non-optimal decision made by sequential algorithm (see
Kwiatkowski et al. [160]). More elaborate discussion of the superlinear speedup
is given in Section 12.4.

Another di�culty is connected with the meaning of `the best known sequential
algorithm As'. For many problems, it is di�cult to determine the best algorithm,
especially for metaheuristics, where in fact we did not solve the problem (in the
sense of �nding the optimal solution) but we approximated the optimal solution
� results obtained by using di�erent metaheuristics are usually di�erent. Two
approaches to the problem of speedup de�nition for metaheuristics are proposed
in the literature.

Alba [7] proposes the following taxonomy (Figure 1.2). Strong speedup (type I)
compares the parallel runtime with the best-so-far sequential algorithm, therefore
this de�nition equals de�nition (1.1). However due to the di�culty of �nding the
current most e�cient algorithm most researches do not use it. Weak speedup
(type II) compares the parallel algorithm against its serial version. Two stopping
criteria can be used: result (solution) quality or maximum e�ort. The author
proposes two variants of the weak speedup with solution stop: to compare the
parallel algorithm with the `canonical' sequential version (so-called versus pan-
mixia, type II.A.1) or to compare the runtime of the parallel algorithm on p
processors against the runtime of the same algorithm on one processor (orthodox,
type II.A.2). The problem is that versus panmixia speedup measure compares two
di�erent algorithms. The orthodox speedup measure does not cause that kind of
problem, that is why this method is usually applied to determine the speedup
value of metaheuristics.

24 Chapter 1. Introduction

Barr and Hickman [20] propose a di�erent taxonomy: speedup, relative speedup
and absolute speedup. The speedup is de�ned by the ratio between the time of the
parallel code using p processors of parallel machine against the time of the fastest
sequential code on the same parallel machine. The relative speedup is the ratio
of the execution time of the parallel code on p processors to the time of the
sequential execution with parallel code on one processor (i.e., we set p = 1) of
the same parallel machine. The absolute speedup compares the parallel time on p
processors with the fastest sequential algorithm time on any computer.

Both approaches have similarities: strong speedup is identi�ed with absolute
speedup and relative speedup is similar to orthodox speedup with solution stop (type
II.A.2). The last de�nition seems to be the most practical since there is no need
to use the best algorithm.

E�ciency. The e�ciency ηAp,M (p) of the parallel algorithm Ap executed on
the parallel machine M is de�ned as

ηAp,M (p) =
SAp,M (p)

p
(1.2)

and describes an average fraction of time used by each processor e�ectively. The
value of e�ciency belongs to the range [0,1]. An ideal value of e�ciency is 1
(in such a situation we can speak about a linear speedup) and it means that
each processor is used as long as possible; therefore, there are no idle times of
processors.

Cost. The cost cAp,M (p) of solving a problem by using an algorithm Ap in a
p-processor parallel machine M is de�ned as

cAp,M (p) = p · TAp,M (p). (1.3)

The cost re�ects the sum of times of each processor work for solving the problem
(see Figure 1.3). For sequential algorithms the time of problem solving by the
fastest known algorithm using one processor constitutes also its cost. We can say
that a parallel algorithm is cost optimal if its executing cost in a parallel system
is proportional to the time of execution of the fastest known sequential algorithm
on one processor. In such a case the e�ciency equals O(1).

Granularity. In parallel computing, granularity G is a qualitative measure of
the ratio of computation Tc to communication Tt time units

G =
Tc

Tt
. (1.4)

1.1. Performance metrics of parallel algorithms 25 sequential algorithm time
parallel algorithm ���,�(�) time processor 1 processor 2 processor 3 processor 4

���
���,�(�) ���,�(�) ���,�(�) cost of the parallel algorithm

cost of the sequential algorithm

Fig. 1.3. An illustration of the cost de�nition (4-processor implementation).

Computation periods are typically separated from periods of communication by
synchronization events. In �ne-grained parallelism relatively small amounts of
computational work are done between communication events. We can observe
low computation to communication ratio. On the contrary in coarse-grained par-
allelism relatively large amounts of computational work are done between com-
munication or synchronization events (see Figure 1.4). High computation to com- process Tt Tc time (a)

process Tt Tc time (b) communication computations
Fig. 1.4. An illustration of the �ne-grained (a) and the coarse-grained (b) granularity.

munication ratio can be noticed in this case. This implies more opportunity for
performance increase and it is harder to achieve e�cient load balance. In order to
attain the best parallel performance, the best balance between load and communi-
cation overhead needs to be found. If the granularity is too �ne, the performance
can su�er from the increased communication overhead. On the other hand, if
the granularity is too coarse, the performance can su�er from load imbalance.
The granularity G can be measured as Tc vs. Tt unit times as well as the sum
of computation and communication times during the whole program execution
(average empirical granularity). The results of granularity calculations for two
supercomputers and two GPUs are shown in Table 1.1. Both supercomputers are
coarse-grained parallel computing environments, G > 100 FLO/B (Floating Point

26 Chapter 1. Introduction

Operations per communication Byte). The GPUs presented are �ne-grained com-
puting environments, G < 10 FLO/B. Systems with 10 ≥ G ≥ 100 can be named
medium-grained, however it is di�cult to �nd such hardware nowadays. Besides,
G ranges change with time (e.g. every decade).

Table 1.1. The granularity G values for various parallel computing environments.

System Tc Tt G (FLO/B)∗

SGI Altix 3700 Bx2∗∗ 768 GFLOPS 0.54GB/s 1428
Cluster (329 Intel Xeon)∗∗ 19 TFLOPS 2.5 GB/s 760

GPU Tesla C1060 933 GFLOPS 102 GB/s 9.15
GPU Tesla C2050 1.3 TFLOPS 148 GB/s 8.78

∗ FLO/B � Floating Point Operations per communication Byte
∗∗ placed in the Wrocªaw Centre of Networking and Supercomputing [266]

1.1.1. Performance metrics for parallel metaheuristics

Quality metrics of parallel algorithms de�ned in Section 1.1 works well for pro-
grams which provide the same �nal result as their respective sequential version
(e.g. matrix multiplication, determination of paths in graphs, etc.). A given
metric can be applied to exact optimization algorithms, because their work e�ect
is a global optimal solution. Metaheuristics create a completely di�erent situ-
ation. Each metaheuristic run can give a solution with di�erent goal function
value. The quality of solutions thus obtained depends on the time of calculations,
i.e., the shorter the time, the worse the quality of solutions. What is more, a
sequence of metaheuristics realizes a search trajectory which depends on random
variables which are parameters of the algorithm (e.g. simulated annealing, sim-
ulated jumping, genetic algorithm, scatter search, etc.). Therefore an output of
a parallel algorithm Ap is incomparable with an output of a sequential As con-
sidering the result obtained � both depend on a data instance I and a vector Z
of random parameters. Additionally, let us notice that the quality of the solu-
tion obtained by the sequential algorithm As depends on the number of executed
iterations iter. Hence we have to consider a sequential runtime TAs(I;Z; iter),
a parallel runtime TAp(p; I;Z) and a speedup SAp,M (p, I;Z). Therefore we can
de�ne metrics mentioned above as

T iter
As

= sup
I,Z

TAs(I;Z; iter), (1.5)

TAp(p; ϵ; iter) = sup
I,Z

TAp(p; I;Z), |KAp −KAs
iter| < ϵ, (1.6)

1.1. Performance metrics of parallel algorithms 27

where ϵ is an assumed absolute deviation from the parallel algorithm solutionKAp

to the sequential algorithm solution KAs
iter obtained by executing iter iterations of

the algorithm As. A speedup

SAp,M (p; ϵ; iter) =
T iter
As

TAp(p; ϵ; iter).
(1.7)

Finally, we can approximate a speedup metric by

Slim
Ap,M (p) = lim

ϵ→0
lim

iter→∞

T iter
As

TAp(p; ϵ; iter).
(1.8)

Obtaining analytical results for the metrics thus de�ned is di�cult, so we will use

experimental metrics of the parallel runtime and speedup.
Apart from designing metrics for parallel algorithms, also standard (i.e., taken

form sequential approach) quality and time metaheuristic metrics will be used in
the further part of the book:

• PRD � Percentage Relative Deviation from reference solutions given by the
formula

PRD =
Fref − Falg

Fref
· 100%,

where Fref is the reference criterion function value and Falg is the result

obtained by the parallel algorithm examined. This formula is not used when
Fref = 0,

• APRD � Average Percentage Relative Deviation

APRD =
1

ninst
PRDi,

where ninst is the number of benchmark instances and PRDi is the PRD
of the i-th problem instance.

• ttotal (in seconds) � real time of an algorithm execution,

• tcpu (in seconds) � the sum of time consumption on all processors.

28 Chapter 1. Introduction

1.2. Parallel architectures

In recent years, several theoretical models of parallel computing systems were pro-
posed. Up till now some of them have been physically realized. These theoretical
models take into account only the ways of manipulating instructions (instruction
set) and the type of data streams. We extend this taxonomy by adding memory
architectures.

1.2.1. Taxonomy

The fundamental classi�cation of parallel architectures was given by Flynn [108].
Here we present it based on a survey taken from [91] and [89].

• SISD machines. Single Instruction stream, Single Data stream. Classic
serial machines belong to this class. They contain one CPU and hence
can accommodate one instruction stream that is executed serially. Many
large mainframes can have more than one CPU but each of them execute
instruction streams that are unrelated. Therefore, such systems still should
be regarded as multiple SISD machines acting on di�erent data spaces.
Examples of SISD machines are mainly workstations like those of DEC,
Hewlett-Packard, IBM and Silicon Graphics.

• SIMD machines. Single Instruction stream, Multiple Data stream. These
systems often possess a large number of processing units, ranging from 100
to 100,000 all of which can execute the same instruction on di�erent data.
Thus, a single instruction manipulates many data items in parallel. Ex-
amples of SIMD machines are the CPP DAP Gamma II and the Quadrics
Apemille. Other subclasses of the SIMD systems embrace the vector proces-
sors which manipulate on arrays of similar data rather than on single data
items using CPUs with special instructions (e.g. MMX, SSE2). If data can
be manipulated by these vector units the results can be delivered at a rate
of one, two and three per clock cycle. That is why vector processors work
on their data in a parallel way but this only refers to the vector mode. In
this case they are several times faster than when executing in conventional
scalar mode. An extension of the vector processing idea is GPGPU (general
purpose graphic processing unit, see Figure 1.5).

• MISD machines. Multiple Instruction stream, Single Data stream. This
category includes only a few machines, none of them being commercially
successful or having any impact on computational science. One type of
system that �ts the description of an MISD computer is a systolic array
which is a network of small computing elements connected in a regular

1.2. Parallel architectures 29

Fig. 1.5. The nVidia Tesla C2050 with 448 cores (515 GFLOPS).

grid. All the elements are controlled by a global clock. In each cycle, an
element will read a piece of data from one of its neighbors, perform a simple
operation and prepare a value to be written to a neighbor in the next step.

• MIMD machines. Multiple Instruction stream, Multiple Data stream.
MIMD machines execute several instruction streams in parallel on di�erent
data. Compared to the multi-processor SISD machines mentioned above the
di�erence lies in the fact that the instructions and data are related because
they represent di�erent parts of the same task to be executed. Therefore,
MIMD systems can run many subtasks in parallel in order to shorten the
time-to-solution for the main task to be executed. There is a large variety
of MIMD systems and especially in this class the Flynn taxonomy proves
to be not fully adequate for the classi�cation of systems. If we focus on
the number of system processors this class becomes very wide, from a NEC
SX-9/B system with 4-512 CPUs or clusters of workstations (see Figure 1.6)
to a thousand processors IBM Blue Gene/P supercomputer (see Figure 1.7)
and Cray XT5-HE (224162 cores) which breaks the peta�ops barrier.

1.2.2. Memory architectures

The Flynn taxonomy does not recognize memory architecture. In our opinion
memory architecture types have an in�uence on parallel algorithm e�ciency.
Therefore, we propose to select two classes here (see [228]).

• Shared memory systems. They have multiple CPUs all of which share the
same address space (shared memory). It means that the knowledge of where
data is stored is of no concern to the user as there is only one memory

30 Chapter 1. Introduction

Fig. 1.6. The Nova cluster from the Wrocªaw Centre of Networking and

Supercomputing, 2016 cores (19 TFLOPS). Source: WCNS [266].

Fig. 1.7. The IBM Blue Gene/P supercomputer at Argonne National Laboratory,

163840 cores (459 TFLOPS).

1.2. Parallel architectures 31

accessed by all CPUs on equal basis. Shared memory systems can be both
SIMD and MIMD. Single-CPU vector processors can be regarded as an
example of the former, while the multi-CPU models of these machines are
examples of the latter. The abbreviations SM-SIMD and SM-MIMD are
usually used for the two subclasses.

• Distributed memory systems. Each CPU possesses its own associated mem-
ory in this class. The CPUs are connected by a network and they may
exchange data between their respective memories if necessary. Unlike with
the shared memory machines the user has to be aware of the data location
in the local memories, besides they will have to move or distribute these
data explicitly if necessary. The distributed memory systems may be either
SIMD or MIMD.

Although the di�erence between shared- and distributed-memory machines
seems to be clear, this is not always entirely the case from the user's point of
view. Virtual shared memory can be simulated at the programming level. For
example, a speci�cation of High Performance Fortran (HPF) was published in
1993 [134] which, by means of compiler directives, distributes the data over the
available processors. That is why the system on which HPF is implemented in
this case will look like a shared memory machine to the user. Other vendors of
Massively Parallel Processing systems (sometimes called MPP systems), like HP
and SGI, are also able to support proprietary virtual shared-memory programming
models due to the fact that these physically distributed memory systems are able
to address the whole collective address space. Therefore, for a user such systems
have one global address space spanning all of the memory in the system. Also
packages like TreadMarks [11] provide a virtual shared memory environment for
networks of workstations.

The other important issue from the user's point of view is the access time
to each memory address of the shared memory. If this access time is constant,
we say that the system is of UMA (uniform memory access) type, if it is not
we call it NUMA (non-uniform memory access). Additionally, there is a dis-
tinction if the caches are kept coherent (coherent cache or CC-NUMA) or not
(non-coherent cache or NC-NUMA). The extended full classi�cation �rst devel-
oped by Flynn [108] and then improved by Alba [7] is presented in Figure 1.8.

For SM-MIMD systems we can mention OpenMP [76] that can be applied to
parallelize Fortran and C++ programs by inserting comment directives (Fortran
77/90/95) or pragmas (C/C++) into the code. Also many packages to realize
distributed computing are available. Their examples are PVM (Parallel Virtual
Machine, [116]), and MPI (Message Passing Interface, [235]). This programming
style, called the `message passing' model has become so accepted that PVM and

32 Chapter 1. Introduction

MIMD

Multi-processor

UMA NUMA

Multi-computers

Bus

Switched

CC
NUMA

NC
NUMA

MPP

Grid

Hyper-
cube

COW

MISD

SIMD

SISD

Vector processor Array processor

Fig. 1.8. Taxonomy of parallel architectures.

MPI have been adopted by nearly all major vendors of distributed-memory MIMD
systems and even on shared-memory MIMD systems for compatibility reasons. In
addition, there is a tendency to cluster shared-memory systems, for instance by
HiPPI channels, to obtain systems with a very high computational power. E.g.,
the NEC SX-8, and the Cray X1 have this structure. Thus within the clustered
nodes a shared-memory programming style can be applied, whereas between clus-
ters a message-passing should be used. Nowadays, PVM is not applied a lot any
longer and MPI has become the standard.

Distributed systems are usually composed of a set of workstations (so-called
cluster) connected by a communication network such as In�niband, Myrinet
or Fast Ethernet. Such a cluster of workstations (COW) has better price-to-
performance ratio, and it is more scalable and �exible compared to multiproces-
sor systems. On the other hand, MPP (massively parallel processor) systems are
composed of thousands of processors, which can belong to multiple organizations
and administrative domains, creating so-called grids, built on the basis of the
Internet infrastructure.

1.3. Metaheuristic parallelization strategies 33

1.2.3. Recent trends

For the last few years GPGPU parallel programming model has been used for
massive shared-memory applications. GPUs are regarded as SIMD processors (or
MIMD when the processors can handle multiple copies of the same code executing
with di�erent program fragments, e.g. counters, see Robilliard et al. [223]). In
the CUDA programming environment, developed by nVidia, the GPU is viewed
as a computing device capable of running a very high number of threads in par-
allel, operating as a coprocessor of the main CPU. Both the host (CPU) and
the device (GPU) maintain their own DRAM, referred to as the host memory
and device memory, respectively. One can copy data from one DRAM to the
other through optimized API calls that utilize the device's Direct Memory Access
(DMA) engines.

The GPU is especially well-suited to address problems that can be expressed
as data-parallel computations � SIMD � with high arithmetic intensity (the num-
ber of arithmetic operations is signi�cantly greater than the number of memory
operations). Because the same program is executed on many data elements and
has high arithmetic intensity, the memory access latency can be hidden with cal-
culations instead of big data caches. This property was used by Janiak et al. [147]
to design a tabu search metaheuristic for GPU. In practice GPU programming is
very close to the PRAM machine model (see Section 4.2) from the programmers'
point of view, o�ering a simple tool for checking the theoretical PRAMs algorithm
e�ciency (see Bo»ejko et al. [35]).

1.3. Metaheuristic parallelization strategies

Metaheuristics based on the local search method can be presented as processes
of a graph searching in which vertices are the points of the solution space (e.g.
permutations) and arcs correspond to the neighborhood relation � they connect
vertices which are neighbors in the solution space. We will call it neighborhood
graph. For all NP-hard problems the related neighborhood has an exponential
size. Moving on such a graph de�nes some path (in other words, trajectory) in the
solution space. Parallel metaheuristic algorithms make use of many processes for
parallel generation or search of the neighborhood graph.

One can de�ne two approaches to parallelization of the local search process
in relation to the number of trajectories which are concurrently generated in the
neighborhood graph:

1. single-walk parallelization (single trajectory): �ne-grained algorithms for
fast communication purposes (the most computationally expensive parts
of the algorithm are parallelized),

34 Chapter 1. Introduction

2. multiple-walk parallelization (many trajectories): coarse-grained algorithms,
communication is less frequent, compared to the single-walk parallelized al-
gorithms.

These approaches demand that the algorithm meet some requirements as regards
communication and synchronization frequency, which implies the kind of granular-
ity. Single-walk parallel metaheuristics are usually �ne-grained algorithms (e.g.
Bo»ejko, Pempera and Smutnicki, [39]), multiple-walk metaheuristics � coarse-
grained (e.g. Bo»ejko, Pempera and Smutnicki, [37]).

Table 1.2. Parallel architectures and programming languages presented in particular
chapters.

Chapter
Parallel Parallel Programming Scheduling
method architecture language problem

single-walk methods

4
huge

CREW PRAM
single machine

neighborhoods problem

5
cost function SIMD C++ job shop
calculation (GPU) CUDA problem

6
workload

CREW PRAM
�exible job

determination shop problem
multiple-walk methods

8
memetic

MIMD Ada95
single machine

algorithm problem

9
population-based

MIMD
C++ single machine

approach MPI problem

10
branch and SIMD

Ada95
single machine

bound DM problem

11
simulated SIMD

Ada95
�ow shop

annealing DM problem

12
scatter SIMD C++ �ow shop
search DM MPI problem

13
genetic

MIMD Ada95
�ow shop

algorithm problem

14
hybrid MIMD C �exible job

approach SIMD CUDA shop problem

15
tabu

SIMD Ada95
�ow shop

search problem

1.3. Metaheuristic parallelization strategies 35

Single-walk parallel algorithms. Single walk algorithms go along the single
trajectory, but they can use multithread calculations for the neighborhood decom-
position (see representatives method, [195]) or parallel cost function computation.
For example, calculations of the cost function value for more complicated cases
are frequently equivalent to determining the longest (critical) path in a graph, as
well as maximal or minimal �ow. This kind of parallelization will be described in
Part II of this book.

Multiple-walk parallel algorithms. Algorithms which make use of a multi-
thread multiple-walk model search concurrently a solution space by searching
threads working in parallel. Additionally, these algorithms can be divided into
subclasses due to communication among threads (information about current search
status): (1) independent search processes and (2) cooperative search processes. If
the multithread application (i.e., concurrently running search processes) does not
exchange any information we can talk about independent processes of search.
However, if information accumulated during an exploration of the trajectory is
sent to another searching process and used by it, then we can talk about coop-
erative processes (see Bo»ejko et al. [37]). We can also come across a mixed
model, so-called semi-independent (see Czech [92]) executing independent search
processes keeping a part of common data. Examples of such a method of paral-
lelization are described in Part III of this book.

Implementation Due to the speci�city of the metaheuristic type, as well as
parallel environment architecture (SIMD, MIMD, shared memory, etc.) di�erent
programming languages are used for coding. As we can see in Table 1.2 SIMD
algorithms for GPU are implemented in C++ with CUDA programming library
� nowadays it is the most commonly used programming environment for nVidia
GPUs. SIMD algorithms for multiprocessor computers without shared memory
are implemented in Ada95 high-level programming language, due to the simplicity
of designing them. Algorithms for distributed MIMD clusters are implemented
in C++ programming language with the use of MPI (Message Passing Inter-
face) communication library, also the most commonly used tool for programming
clusters.

Chapter 2

The methodology of

metaheuristic parallelization

This chapter is aimed at presenting and discussing the methodology of the meta-
heuristic algorithm parallelization. The majority of practical job scheduling is-
sues belong to the class of strongly NP-hard problems, which require complex
and time-consuming solution algorithms. Two main approaches are used to solve
these problems: exact methods and metaheuristics. On the one hand, existing
exact algorithms solving NP-hard problems are characterized by an exponential
computational complexity � in practice they are extremely time-consuming. Al-
though in recent years (1993�2008, see www.top500.org) the speed of the best
supercomputer increases 10 times each 3 years (as 10n function), this increase has
only a little in�uence on the size of solvable NP-hard problems (e.g. most per-
mutational job scheduling problems have the solution space of the size n! which
behaves1 as nn). On the other hand, metaheuristics, a subclass of approximate
methods, provide suboptimal solutions in a reasonable time, even being applied
in real-time systems.

Quality of the best solutions determined by approximate algorithms depends,
in most cases, on the number of solutions being analyzed, therefore on the time
of computations. Time and quality demonstrate opposite tendencies in the sense
that obtaining a better solution requires signi�cant increase of computing time.
The construction of parallel algorithms makes it possible to increase signi�cantly
the number of solutions considered (in a unit of time) using e�ectively multi-
processor computing environment.

The process of an optimization algorithm parallelization is strongly connected
with the solution space search method used by this algorithm. The most fre-
quent are the following two approaches: exploitation (or search intensi�cation)

1From the Stirling equation, n! ∼ (n
e
)n
√
2πn.

38 Chapter 2. The methodology of metaheuristic parallelization

and exploration (or search diversi�cation) of the solution space. Due to this classi-
�cation we can consider major categories of the metaheuristic class such as: local
search methods (e.g. tabu search TS, simulated annealing SA, greedy random-
ized adaptive search procedure GRASP, variable neighborhood search VNS) and
population-based algorithms (e.g. genetic algorithm GA, evolutionary strategies
ESs, genetic programming GP, scatter search SS, ant colony optimization ACO,
memetic algorithm MA, estimated distribution algorithms EDAs). Local search
methods (LSM) start with a single initial solution improving it in each step by
neighborhood searching. LSMs often �nd a locally optimal solution � they are
focused on the solution space exploitation. Population-based algorithms (PBAs)
use a population of individuals (solutions), which is improved in each generation.
Thus the average goal function of the whole population usually improves, which
does not mean that all the individuals are improved. The whole process in ran-
domized, so these methods are almost always non-deterministic. We can say that
PBAs are focused on the solution space exploration.

2.1. Parallel local search methods

Let us consider a discrete optimization problem formulated as follows. Let X be
a discrete solution space and let F : X ← R+ be a non-negative function de�ned
on the solution space X . We are looking for the optimal element x∗ ∈ X such
that

F (x∗) = min
x∈X

F (x). (2.1)

A major class of discrete optimization problems solving algorithms (apart from
population-based methods) is a local search approach, in which an algorithm
creates a searching trajectory which passes through the solution space X . Before
its parallelization, let us formally describe this class of methods.

The well-known local optimization procedure begins with an initial solution
x0. In each iteration for the current solution xi the neighborhood N (xi) is de-
termined. Next, from the neighborhood the best element xi+1 ∈ N (xi) is chosen
(i.e., with the best cost function value F (xi+1)) constituting the current solution
in the next iteration. The method is exhaustive. An outline of the local search
method is presented in Figure 2.1. The method generates a solutions sequence
x0, x1, x2, . . . , xs such that xi+1 ∈ N (xi). We called this sequence a trajectory.
The problem (2.1) can be replaced by

F (xA) = min
x∈Y

F (x). (2.2)

where

Y = {x0, x1, x2, . . . , xs} ⊆ X . (2.3)

2.1. Parallel local search methods 39

We call the mechanism of a neighbor generation a move. More precisely, the move
µ is a function µ : X → X which generates solutions µ(xi) = xi+1 ∈ N (xi) ⊆ X
from a solution xi ∈ X .

Algorithm 1. Local Search Method (LSM)

Select a starting point x0;
xbest ← x0 i← 0;

repeat

choose the best element y from the neighborhood N (xi)
according to a given criterion based on the

goal function's value F (y);
xi ← y i← i+ 1;
if F (y) < F (xbest) then

xbest ← y;
until F (y) ̸= F (xbest).

Fig. 2.1. Outline of the Local Search Method (LSM).

A crucial ingredient of the local search algorithm is the de�nition of the neighbor-
hood function in combination with the solution representation. It is obvious that
the choice of a good neighborhood is one of the key factors ensuring e�ciency of
the neighborhood search method. A neighborhood N(x) is de�ned as a subset
N(x) ⊂ X of solutions `close to' a solution x ∈ X . A metric of the `nearness' can
be a distance metric in this solution space (e.g. Hamming's or Caley's, see [99]),
or the number of moves.

2.1.1. Parallel local search strategies

Generally, several approaches to convert LSM to parallel LSM (p-LMS) can be
formulated:

(a) calculating F (x) faster for a given x ∈ X ,
(b) making a choice of xi+1 ∈ N(xi) faster,
(c) making a space decomposition among p searching threads, i.e.,

F (xA) = min
1≤k≤p

F (xAk) (2.4)

where

F (xAk) = min
x∈Yk

F (x),Yk = {x0k, x1k, . . . , xsk}. (2.5)

(d) using cooperative trajectories.

40 Chapter 2. The methodology of metaheuristic parallelization

Alba [7] proposed the following classi�cation:

• Parallel multi-start model. In this model several local search processes are
executed concurrently, each one starting from the di�erent solution. Ei-
ther homogeneous or heterogeneous version of this model can be applied.
They can be based on the same searching strategy, or have di�erent strate-
gies. Multiple working searching processes can also start from the same
starting point, but with di�erent searching strategies (e.g. with di�erent
parameters). Simple classi�cation of such algorithms on the tabu search
metaheuristic example was proposed by Voss in [261]. This model belongs
to the multiple-walk parallelization class.

• Parallel moves model. This is a low-level parallelization model which con-
sists in neighborhoods concurrent searching. The main metaheuristic which
uses this kind of parallelism, computes the same results as the sequen-
tial version but faster. Each processor evaluates a part of neighborhood
preparing the best element (so-called representative) as the proposition for
the controlling processor which chooses the best solution from all repre-
sentatives. This model is usually implemented as a master-slave model of
parallelization, yet it can be developed both as the single-walk method and
the multiple-walk parallelization (i.e., inside a hybrid method as a low level
parallelism).

• Move acceleration model. The goal function value is calculated in a parallel
way in this model. Such a parallelization is problem-oriented and strongly
dependent on the goal function form. For example, it is di�cult or even
impossible to parallelize the function which has a recurrent form. Usually
loops, minimum or sum calculations, are parallelized in this model. Because
of the input-output intensity that kind of parallelism needs a shared-memory
�ne-grained parallel environments such as multi-processor mainframe com-
puters or GPUs. Similarly to the previous (parallel moves) model it can be
developed both as the single-walk method and as the multiple-walk paral-
lelization.

Most survey works consider only parallel multi-start model of parallel local
search metaheuristics, see [7, 8, 13, 16, 58, 61, 85, 106, 155, 177, 244, 245]. This
is due to the di�culty of designing parallel moves and move acceleration mod-
els which are strongly dependent on the optimization problem formulation (see
Bo»ejko [25] and Steinhöfel et al. [237]). This parallelization also needs to take
advantage of the special properties of the optimization approach, i.e., neighbor-
hood determination method, cost function calculation and methods of calculations
distribution among processors. In Chapters 4, 5 and 6, we propose genuine single-
walk parallelization methods, using special theoretical properties of a problem.

2.1. Parallel local search methods 41

The taxonomy of Alba [7] corresponds with approaches (a)�(c) proposed at the
beginning of this section, but it does not include tree-based searching metaheuris-
tics (cooperative trajectories � approach (d)), in which a single processor starts
from an initial solution, and next processors begin their searching processes from
(usually very good) solution on the trajectory visited. Such concurrent threads
create a tree-like trajectory. Therefore, we propose an extension of Alba taxonomy
of parallel local search methods by including (at least) the following additional
model:

• Parallel tree-based model. In this model, local search processes are con-
currently executed; each one starting from the solution found by another
process, i.e., as soon as its best solution is found. The most frequent ap-
proaches are: the blackboard broadcasting method using shared memory,
and the master-slave model in which the master process is controlling the
whole searching process and local search threads are executed on slave pro-
cessors.

The methods listed above can also be used together as hybrid parallel metaheuris-
tics (see Chapter 14.1).

2.1.2. Simulated Annealing

Simulated Annealing (SA) is a stochastic heuristic algorithm which explores the
solution space using randomized search procedure. The method uses a control
parameter called temperature to determine the probability of accepting a solution
with a worse cost function value (non-improving). The temperature decreases
as the algorithm proceeds according to the so-called cooling scheme such that
non-improving solutions are accepted at the end of the algorithm work. The
main objective is to escape from local optima keeping the convergence of the
whole searching process. Because of quick implementation, simulated annealing
is a popular method for solving discrete optimization problems, such as single
and multi-machine scheduling problems, TSP, QAP, timetabling, etc. Simulated
annealing produces the proof of its theoretical convergence to the global optimum,
also in its move acceleration model parallelization (see Meise [183]).

Simulated annealing method can be parallelized in several ways:

(i) parallel goal function calculations of a single solution (single-walk paral-
lelization, �ne-grained, convergent),

(ii) parallel goal function calculations of a few solutions (single-walk paralleliza-
tion, �ne- or medium-grained, convergent),

(iii) acceleration of achieving thermodynamic equilibrium state in the �xed tem-
perature (single-walk parallelization, medium-grained, convergent),

42 Chapter 2. The methodology of metaheuristic parallelization

(iv) multi-threaded independent work (multiple-walk parallelization, coarse-
grained, convergent),

(v) multi-threaded cooperative work (multiple-walk parallelization, coarse-
grained, convergent).

Most of the SA parallelizations (pSA) can be classi�ed into two categories: (i)
move acceleration (Kravitz and Rutenbar [159]) and (ii) parallel moves (Roussel-
Ragot and Dreyfus [227]). The parallel moves model has been most frequently
investigated. It relies on concurrent evaluation of di�erent moves. This approach
has to tackle the problem of inconsistency: the cost function value may be incor-
rectly computed due to moves executed by other processors. Such an inconsistency
can by managed in two ways:

(1) only non-interacting moves are accepted (domain decomposition approach),
(2) interacting moves are evaluated and accepted and some errors in the cost

function value calculation are allowed � they are corrected after a certain
number of moves or before temperature change, using synchronization of
processors.

The speed of convergence of the parallel SA, based on the parallel moves
model, is comparable to the sequential algorithm convergence. The cost of syn-
chronization has an adverse in�uence on the parallel algorithm � some authors
report negative speedups obtained, as in Haldar et al. [131].

Several parallelizations follow the parallel multi-start model using multiple
Markov chains (e.g. Haldar et al. [131], Lee and Lee [167]) and many of them are
applied to the cell placement problem. In this approach each processor executes
SA on a local copy of the problem data dynamically combining solutions by ex-
changing the best ones synchronously or asynchronously (see Haldar et al. [131]).

2.1.3. Tabu Search

Tabu Search (TS) method was introduced by Glover [126] in 1986 as an extension
of classical local search methods (LSM). It explores the solution space by local
search procedure with the use of neighborhoods, that is speci�c inner heuristic
designed to evaluate solutions. Usually the candidate solution is the best found
in the neighborhood (the best improvement rule), however it can be the �rst one
found, too (the �rst improvement rule). Classic local search procedures such as
Descent Search (DS) rely on the monotonic improvement stopping after obtaining
local minimal solutions, for which all solutions in the neighborhood are worse (or
not better). The main improvement of TS method compared to classic DS is that
it can overcome local optima and keep the search going. To prevent its searching
trajectory from making cycles, TS keeps the history of the searching process,

2.1. Parallel local search methods 43

e.g. visited solutions on the trajectory. Usually it is enough to remember only a
few (e.g. seven) last solutions, however in some theoretical cases it is useful to
remember the whole searching history, which makes it possible to prove theoretical
convergence of such a TS algorithm (see Hana� [132]).

Most of TS parallel implementations are based on the multi-start model (Talbi
et al. [249] for Quadratic Assignment Problem (QAP), Crainic and Gendreau
[86] for capacitated network design) or a neighborhood decomposition (Porto and
Ribeiro [209] for task scheduling under precedence constraints) or both of them
(Cahon et al. [70]) In [209] also the parallel moves model, apart from a neigh-
borhood decomposition, is applied to solve the problem, obtaining near-linear
speedup for large problem instances.

From the theoretical point of view, the �rst taxonomy of parallel tabu search
algorithms was proposed by Voss [261] based on the Flynn [108] classi�cation of
parallel architectures (SIMD, MIMD, MISD and SISD). Voss proposed to classify
parallel tabu search algorithms into four categories with reference to starting
points and searching strategies.

� SPSS (Single Point Single Strategy) � search starts from a single solution
along a single strategy. This model allows us to parallelize on the lowest
level only (parallel moves or move acceleration models),

� SPDS (Single Point Di�erent Strategies) � all searching threads start from
the same solution with di�erent search strategies, i.e., di�erent neighbor-
hoods, tabu list length, elements remembered on the tabu list, etc.,

� MPSS (Multiple Point Single Strategy) � threads begin from di�erent start-
ing solutions using the same searching strategy,

� MPDS (Multiple Point Di�erent Strategies) � threads begin from di�erent
starting solutions applying di�erent search strategies; this class is the widest
and includes all previous classes.

The taxonomy presented above was extended by Crainic, Toulouse and Gen-
dreau [85] by introducing two additional classi�cations: (1) due to the number of
processors which keep control over the algorithm work and (2) the way of control
and the type of communication. Considering the number of controlling processors
two models can be distinguished:

a) 1-control � determined central processor controls the work of a parallel
algorithm,

b) p-control � the algorithm execution control is distributed among p concur-
rently working processors.

The way of control and the type of communication are determined by the following
classes:

44 Chapter 2. The methodology of metaheuristic parallelization

(i) rigid synchronization,
(ii) knowledge synchronization,
(iii) collegial, and
(iv) knowledge collegial.

The �rst categorization is connected with the quantity and quality of the informa-
tion exchanged and shared � �rst two cases are synchronized ones, next two cases
are collegial. The second categorization shows the possibility of using additional
knowledge which can be derived from information exchange � cases (ii) and (iv)
are using a base of knowledge, cases (i) and (iii) are not.

2.2. Parallel population-based algorithms

Population-based algorithms (genetic, memetic, particle swarm optimization, etc.)
are well-suited to parallelization due to their natural partitioning into separate
groups of solutions, which are concurrently processed. The method of using pop-
ulation of individuals allows us to diversify searching process onto the whole solu-
tion space. On the other hand, using cooperation, it is easy to intensify searching
after �nding a good region by focusing individuals onto it. Thanks to its concur-
rent nature, population-based algorithms are very handy to parallelize, especially
in the independent way using multi-start model. Low level parallelization is not
so easy because special properties of the problem being considered have to be
usually used. We present and discuss such an approach in Chapters 9 and 14.

2.2.1. Genetic Algorithm

Genetic Algorithm (GA) method is an iterative technique that applies stochastic
operators on a set of individuals (population). Each individual of the population
encodes the complete solution. Starting population is usually generated randomly.
A GA applies a recombination operator (crossover) on two solutions in order to
introduce diversity of population. Additionally, a mutation operator which ran-
domly modi�es an individual is applied being the insurance against stagnation
of the search process. Traditionally GA was associated with the binary repre-
sentation of a solution, however in job scheduling area a permutational solution
representation is more popular and useful.

The performance of population-based algorithms, such as GAs, is specially
improved when running concurrently. Two strategies of parallelization are com-
monly used:

1. parallelization of computations, in which operations allied to each individ-
ual (i.e., goal function or genetic operators) are performed in parallel, as
well as

2.2. Parallel population-based algorithms 45

2. population parallelization in which the population is partitioned into dif-
ferent parts which can be evolved concurrently or exchanged.

We distinguish the following kinds of parallelization techniques which are usually
applied to genetic algorithms:

• Global parallelization. This model is based on the master-slave type concur-
rent processes. Calculations of objective functions are distributed among
several slave processors while the main loop of the genetic algorithm is ex-
ecuted by the master processor.

• Independent runs. This approach runs several versions of the same algo-
rithm with di�erent parameters on various processors, allowing the parallel
method to be more e�cient. The independent runs model can also be con-
sidered as the distribution model without migration.

• Distributed (island) model. This model assumes that a population is par-
titioned into smaller subpopulations (islands), for which sequential or par-
allel GAs (usually with di�erent crossover and mutation parameters) are
executed. The main characteristic of this model is that individuals within
a particular island can occasionally migrate to another island.

• Cellular (di�usion) model. In this model the population is mapped onto
neighborhood structure and individuals may only interact with their neigh-
bors. The neighborhood topology is usually taken from the physical network
of processors, so this is a �ne-grained parallelism where processors hold just
a few individuals.

The distribution model is the most common parallelization of parallel GAs since it
can be implemented in distributed-memory MIMD machines, such as clusters and
grids. This approach leads to coarse-grain parallelization (Bo»ejko and Wodecki
[50], Bo»ejko et al. [42]). Fine-grained parallel implementations of the cellular
(also called di�usion) model are strongly associated with the machines on which
they are executed ([94]). Master-slave implementations are also available as gen-
eral frameworks (e.g. ParadisEO of Cahon et al. [70]).

A special case of GA is Genetic Programming (GP) approach, in which evolv-
ing individuals are themselves programs instead of �nite-length vectors or permu-
tations. The method was proposed by Koza [157] as an extension of evolutionary
approach � the GP is a machine learning technique aimed at helping computers
to program themselves; it allows us to discover automatically programs that solve
or approximately solve a given problem.

Several �ne-grained parallelizations of GP were proposed, see e.g. Juille and
Pollack [151], Folino et al. [109] for cellular model on distributed-memory comput-
ers. The authors also introduced coarse-grained approaches: a master-slave and

46 Chapter 2. The methodology of metaheuristic parallelization

a distributed model (Fernández et al. [104]), as multiple-population island-based
parallel genetic programming.

Generally, models of parallel and distributed genetic programming presented
in the literature can be categorized as follows:

1. parallelizing at �tness level,
2. parallelizing at population level � the island and the grid (cellular) models.

Since individuals in genetic programming method feature both di�erent sizes
and complexities, as a result the problem of imbalance in parallelizing at �tness
level appears. Load balancing can be obtained in an automatic way if a steady-
state reproduction is used (instead of generation reproduction).

The island GP model can be easily implemented on both distributed mem-
ory machines and clusters of networked workstations or grids due to the rare
communication frequency. The migration between islands is usually implemented
using message-passing interface (such as MPI or PVM). Each island executes a
standard GP and individuals are exchanged at �xed synchronization points, or
asynchronously, using an additional processor.

In the grid (cellular) GP model each individual is placed in a �xed location
on a low dimensional grid. A scalable implementation of cellular GP model was
proposed by Folino et al. [109]. They proposed three replacement policies for this
model of GP: direct (the best of the o�spring replaces the current individual),
probabilistic (the o�spring replaces the parent according to the di�erence between
their �tness) and greedy (the o�spring replaces the parent if the o�spring is �tter).

2.2.2. Scatter Search

Scatter Search (SS) is a population-based algorithm which evaluates solutions
from a starting set to create new solutions added to this set. The chosen pairs
of solutions are used to build a new one using a special procedure (e.g. linear
combination, path-relinking). This approach involves di�erent starting solution
generation procedures, reference set update procedures, constructed solutions im-
proving procedures, etc. To improve built solutions, local search procedures are
usually applied.

Parallelization can be used on each level of the scatter search method: the
local improvement procedure (parallel moves model, Synchronous Parallel Scat-
ter Search in García-López et al. [113] for the p-median problem), the solution
combination procedure (García-López et al. [114], also Replicated Combination
Scatter Search in [113]) and by parallelizing the whole method by introducing a
multi-start model (Replicated Parallel Scatter Search in [113]).

The local improvement procedure parallelization can be obtained by using the
di�erent parallel models of local search methods. Not only does it allow us to

2.2. Parallel population-based algorithms 47

reduce the computational time, but it also lets us obtain better results than a
sequential algorithm in the same number of iterations. The solution combination
procedure parallelization can be obtained by dividing the set of possible combi-
nations among a set of processors. Di�erent combination methods and di�erent
parameter settings can be applied in such a parallelization (see [114]). This ap-
proach increases the stability (i.e., parameter setting invulnerability) of the paral-
lel SS algorithm and improves its precision without increasing the computational
time (see Bo»ejko and Wodecki [40] for the �ow shop scheduling problem). In the
whole scatter search parallelization model each processor executes an SS proce-
dure. Such a model is a multi-start approach and it increases the diversi�cation
of solutions. Its intensi�cation is obtained by exchanging the information about
the best solution found.

2.2.3. Memetic Algorithm

Memetic Algorithm (MA) is an evolutionary approach based on the process of
natural evolution adhering to the principles of natural selection, crossover and
survival. Lamarck's model (see Michalewicz [187]) of evolution is applied to in-
tensify the optimization process. In each generation a certain part of the popu-
lation is replaced by their local minima simulating a learning e�ect which can be
succeeded by the next generation as a `meme'. From the current population some
subset is drawn. Each individual of this subset is a starting solution for the local
optimization algorithm. Thus, there are �ve essential steps of the MA:

1. selection � choosing some subset of individuals, so-called parents,

2. crossover � combining parts from pairs of parents to generate new ones,

3. mutation � transformation that creates a new individual by small changes
applied to an existing one taken from the population,

4. learning � an individual is improved (e.g. by a local optimization),

5. succession � determining the next generation's population.

New individuals created by crossover or mutation replace all or a part of the
old population. The process of evaluating �tness and creating a new population
generation is repeated until a termination criterion is achieved.

Similar to the GA, the following kinds of parallelization are usually applied
to MAs:

• global parallelization,
• independent runs,
• island model,
• di�usion model,

48 Chapter 2. The methodology of metaheuristic parallelization

with similar properties as applied to the classic GA. Additionally, a local search
procedure can be parallelized in MA. Such an approach is proposed by Berger and
Barkaoui [23] and applied to the Vehicle Routing Problem with Time Windows
(VRPTW) by using a master-slave parallel approach. The master controls the
memetic algorithm execution, synchronizes and handles parent selection while the
slaves execute genetic operations together with local search in parallel. Parallel
memetic algorithm was also considered by Bradwell and Brown [66] (asynchronous
MA) and Tang et al. [252] (MA based on population entropy).

2.3. Other methods

Greedy Random Search. The so called Greedy Randomized Adaptive Search
Procedure (GRASP) is an iterated (i.e., multi-start) procedure where each itera-
tion consists of two phases: construction of the solution and local search from the
given solution. In the construction phase a feasible solution is built. A set of can-
didate elements is made up of those elements which can be added to the partial
solution without making it unfeasible. Next, the candidate element is evaluated
by the greedy function which measures the bene�t of including it to the partial
solution producing a restricted candidate list which consists of those elements for
which the greedy function is not lower than the chosen parameter (threshold).
The element to be included into the partial solution is randomly selected from
this restricted candidate list. The iterated process is terminated when all the ele-
ments are added to the partial solution, that is when the set of candidate elements
is empty. The second phase � local search � allows us to provide a local optimum
(in the chosen neighborhood) of the solution constructed in the �rst phase.

Most parallel GRASP implementations are based on the parallel multi-start
model, both as multiple-walk independent search (Verhoeven and Aarts [260])
and multiple-walk cooperative search (Cung et al. [90]), also with the path-
relinking procedure (Ribeiro and Rosseti [221]). Parallelizations are based on
executing the same algorithm on the distributed data (Single Program Multiple
Data SPMD model). Even in the independent computations very little informa-
tion is exchanged between processors so almost-liner speedups are often obtained.

A natural way to obtain an e�cient load balancing of processors is to distribute
iterations among the processors, usually in a dynamic distribution approach. Each
processor receives a copy of the sequential algorithm and a copy of the problem
instance data. The cost of communication is low because of the independency
of iterations. This approach is especially e�cient in a heterogeneous multiuser
execution environment, e.g. clusters and grids. Such a dynamic approach for
parallel GRASP applied to the Steiner problem in graphs is presented in the
paper of Martins et al. [179] based on the farmer-worker cycle stealing strategy.

2.3. Other methods 49

Initially, each worker is assigned a small number of iterations. After performing its
iterations, the processor requests additional iterations from the farmer processor,
thus faster processors perform more iterations than slower ones.

Recently, there have appeared some works on GRASP hybridization by im-
plementing it together with the path-relinking approach [219], which can be cate-
gorized as multiple-walk independent or cooperative-thread where processors ex-
change information about elite solutions visited during previous algorithm itera-
tions.

Variable Neighborhood Search. The Variable Neighborhood Search (VNS)
method is based on the idea of exploring the solution space by a single trajec-
tory using successively changed neighborhoods from the prede�ned set, as well
as descent search method to get the local minimum. It can also explore a ran-
dom neighborhood instead of changing it in the prede�ned order (however such a
way makes this method non-deterministic). The VNS method makes use of the
following observations:

1. the local minimum de�ned in one neighborhood structure is not necessarily
the local minimum in another neighborhood structure,

2. the global minimum (or minima) is also a local minimum for all neighbor-
hood structures we can de�ne.

Of course VNS, as a metaheuristic, is not an exact optimization method � it does
not need to �nd a global optimum, it is enough to �nd a very good approximation
of this solution (a suboptimal solution). We assume that for suboptimal solutions
the second observation is true, too.

Parallel VNS method is quite a new method, so only a few parallelizations
have been designed. We can mark out two major approaches here: simple par-
allelizations consisting in parallelizing the local search procedure and replicating
the whole algorithm in the processors (García-López et al. [112]). More complex
approaches to parallelization are based on a synchronous cooperation mechanism
through a master-slave model (Replicated-Shaking VNS from [112]) or apply a
cooperative multi-search method based on a central-memory mechanism (Coop-
erative Neighborhood VNS from Crainic et al. [87] for p-median problem). In
[87] the former keeps current the best solution, also updating it, making commu-
nications among processors, initiates and terminates the overall procedure. The
communication is initiated by workers asynchronously.

In the Replicated-Shaking VNS (RS VNS, proposed in [112]) the master pro-
cessor executes a sequential VNS algorithm sending the current solution to each
slave processor which makes a random perturbation obtaining a starting solution
for the local search procedure. Solutions obtained by slaves after execution of

50 Chapter 2. The methodology of metaheuristic parallelization

the local search algorithm are sent to the master which selects the best one and
continues the parallel VNS algorithm.

The Cooperative Neighborhood VNS (CN VNS, described in [87]) is also based
on the centralized approach, in this case in the form of central-memory mechanism
connected with the multi-start parallelization model. Several independent VNS
threads cooperate by using asynchronous communication � the information about
the best solution found so far is exchanged which allows us to intensify solution
space exploration by a number of VNS cooperative threads.

Both GRASP and VNS belong to the parallel local search class. In the further
part of this section we brie�y present other parallel population-based approaches
which were not mentioned in Section 2.2.

Evolution Strategies. Evolution Strategies (ESs) belong to Evolutionary Al-
gorithms (e.g. Genetic Algorithm and Genetic Programming), a big subclass of
the population-based algorithms. This method is designed to solve continuous
optimization problems, usually using elitist selection model and speci�c muta-
tion without crossover operators. The individual consists of �oat objective vari-
ables and additional parameters guiding the search process. Therefore, Evolution
Strategies algorithms are characterized by a self-adaptive control by evaluating
the problem variables as well as the strategy parameters.

Parallelization of ESs is based on cellular and distributed models. In the cel-
lular approach individuals are connected with neighbors and can interact only
through these communication canals (Weinert et al. [265]). Also distributed par-
allelizations are provided (De Falco et al. [95], Schütz and Sprave [230]). Parallel
models of ESs can be categorized into migration (for MIMD machines) and pol-
lination (for SIMD machines) models. Another model usually used for describing
population-based metaheuristics, especially evolutionary ones, is a cellular model,
also called either a neighborhood or a di�usion model.

In the migration approach to parallel Evolution Strategies the population is
partitioned into p subpopulations (where p is the number of processors). Pro-
cessors connected with subpopulations exchange individuals from time to time.
Variables which have to be de�ned are:

1. migration paths,
2. migration frequency,
3. number of migrants,
4. selection policy for migrants,
5. integration policy for migrants.

The pollination model of parallel ESs consists in spreading the genetic in-
formation by means of pollination but without moving individuals. On SIMD

2.3. Other methods 51

machines each individual of the population is placed on a processor and the in-
teraction takes place in the neighborhood de�ned by the hardware (processors)
connection structure, e.g. two or three-dimensional torus, ring or hypercube. For
example, if we consider a ring topology and a certain radius r, the neighborhood
of each individual could be de�ned as r individuals to the right and left. This
approach can be implemented on MIMD machines, too [236].

Ant Colony Optimization. The Ant Colony Optimization (ACO) method
was inspired by the behavior of real ants which deposit a pheromone on the
ground. This special chemical substance in�uences choices of an ant, i.e., it in-
creases the probability that an ant selects the path proportionally to the amount
of pheromone lying on this path. An ACO algorithm constitutes a method in
which arti�cial ants are stochastic construction procedures which build a solution
using heuristic information about the problem and pheromone trails.

Most of the ACO parallelizations use a master-slave model (Talbi et al. [248],
Doerner et al. [100]). In this model a pheromone matrix is stored by the master
processor and slaves are used to evaluate a portion of solutions as ant colonies.
Similarly, a distributed (island) model also uses colonies of ants, however with
greater independence � such a multicolony ant algorithm relatively rarely ex-
changes information between colonies (Mendes et al. [184], Middendorf et al.
[188]). An independent model, without communication, was considered in the
literature (Stützle [241]), too.

Usually parallel ACO algorithms put more than one ant on each processor.
Such a group of ants if called a colony � several ants placed on a single processor
cooperate better than ants placed on other processors. We call a parallel ACO
muli-colony if a colony of this algorithm uses its own pheromone matrix and if
this matrix is di�erent from the matrixes of other colonies.

Multi-colony ACO algorithms have been originally designed to be applied
together with multi-objective optimization (see Kawamura et al. [192]), however
this approach also improves the behavior of the standard ACO. Multi-colony ACO
algorithms are well suited for parallelization � each processor keeps a colony of
ants and there is less information exchanged between colonies than would have
been between groups of ants in the standard ACO approach. Most multi-colony
parallel ACO algorithms are based on the decentralized approach � this model
possesses some similarities with the island model of the parallel genetic algorithm.
Designing a parallel multi-colony ACO we have to take under consideration the
following parameters:

1. communication structure and neighborhood topology:

(a) all-to-all topology (colonies have connection with each other),
(b) ring topology (in the directed or undirected version),

52 Chapter 2. The methodology of metaheuristic parallelization

(c) hypercube topology (for p colonies, each colony has log p neighbors),
(d) random topology (the neighbors of each colony are de�ned as a random

structure for each communication step,

2. type of information exchanged:

(a) solutions,
(b) pheromone vectors,
(c) pheromone matrix,

3. usage of information received from other colonies:

(a) making comparison with its own elitist solutions,
(b) adding it to the current generation,
(c) adding pheromone vector or matrix obtained from another colony to

its own pheromone matrix,

4. communication frequency.

Homogenous as well as heterogenous approaches are applied in the parallel
multi-colony ACO algorithm implementation. In the homogenous approach all
colonies make use of the same ACO parameters and heuristics. In the heteroge-
nous approach parameters and heuristics in each colony are di�erent.

Estimation of Distribution Algorithms. A class of Estimation of Distri-
bution Algorithms (EDAs, also called Estimated Distribution Algorithms) was
initially proposed by Mühlenbein and Paaÿ [192] in 1996. The method uses a
population of individuals to estimate the distribution of the probability of each
variable being kept by each individual. In the further part of algorithms this dis-
tribution is used to generate a new set of solutions that are hopefully the nearest
to the global optimum. EDAs, as distinct from other evolutionary approaches,
use neither crossover operators nor mutation operators.

An EDA algorithm can be parallelized on several levels:

1. learning (or estimation) level, on which an estimation of probability distri-
bution is made (Lobo et al. [176], Mendiburu et al. [185]),

2. simulation level, on which sampling of the new individuals is executed
(Mendiburu et al. [185], Oceanásek and Schwarz [200]),

3. population level (Ahn et al. [5]),
4. �tness evaluation level.

Most learning approaches possess an exponential computational complexity
(e.g. if they use a Bayesian network). This kind of parallelization is the most
time-consuming. The problem seems to be even worse because of incomplete data

2.4. Remarks and conclusions 53

presence, if it is necessary to resort to approximate algorithms. Parallelization on
this level is still a major challenge. In the parallelization on the sampling level the
generation of the new individuals is accomplished in a parallel fashion. However,
there are cases where the problem representation is complex and sampling from
the corresponding distributions is a hard task.

Population level parallelization consists in decentralizing the search process
on the population level � a global population is de�ned virtually on a set of
local subpopulations which interact with each other. One of the most popular
approaches is the island framework. Parameters of information exchange in the
island model are the same as de�ned in Section 2.3, in the description of the
migration model of Evolution Strategies.

Parallel �tness evaluation is almost always based on the master-slave paral-
lelization model. There are not any new approaches on this level compared to
other population-based algorithms � the method used for the �tness function eval-
uation has to be �tted to the problem speci�city, e.g. if the �tness function has
the recurrent nature, it has to be transformed into the iterative form. On the
other hand, the load balance between processors which execute the evaluation of
the �tness has to be taken into consideration in the master-slave model.

The parallelization process can also be used on several levels concurrently as
a hybrid parallelization. As we can see, most approaches proposed in the literature
make use of parallelization on the simulation or the learning level. Only a few
works use a di�erent level of parallelism [5]. There is a lack of the low-level
�tness evaluation module for EDAs, due to its strong relation with the problem
formulation (see also similar problem for p-LSMs described in Section 2.1.1).

2.4. Remarks and conclusions

A great deal of parallel metaheuristic approaches from the literature presented
in this chapter use multiple-walk parallelization based on hybridization of the
search process or broadcast information about good solution space regions. In
the literature there is almost nothing in the �eld of the parallel single-walk algo-
rithms. Parallel algorithms used to solve job scheduling problems employ from
30 to 50% of time to determine the order of jobs, but only in a few cases some
special properties of this problem are utilized. Apart from the approaches pre-
sented, there are many metaheuristics which have no parallel versions yet, e.g.
arti�cial immune systems, beam search, music harmony optimization, simulated
jumping, bee search, particle swarm optimization, etc. As we have mentioned
above, the alternative approach to parallelization, rarely used, is to consider a
problem speci�city to build a low-level single-walk parallelization based on the
special properties. Such an approach is shown in Part II of this book.

Chapter 3

Scheduling problems

This chapter addresses job scheduling problems together with their properties
and models. These properties are independent of the computing environment
(sequential, parallel). Some of them are new and original and they were designed
for improving the e�ciency of particular algorithms. Others, known from the
literature, were applied for the �rst time to the parallel algorithm designing.
Generally, scheduling problems allow us to model and analyze separate stages of
the production systems (distinguished, single machine scheduling problems, see
[128]) as well as production systems (�ow shop, job shop problems). All the
problems described in the sequel belong to the NP-hard class.

3.1. Basic notions and notation

Some elementary notions are used in mathematical model building of a job schedul-
ing problem: a job and a resource. The job consists in executing a sequence of
operations which need some resources. A number of data can be connected with
the job: due date or deadline, possibility of breaking the job (divisibility), ways
of operation execution (speci�c requirements of resources, alternative ways of ex-
ecution), etc. Resources can be renewable (processor, machine, memory) or non-
renewable (operational materials, natural resources) and dual-bounded (energy,
capital). The features of the resources include: accessibility (in time windows),
cost, amount, divisibility. All of these features have to be mathematically formal-
ized by constructing a mathematical model of a problem.

Let J = {1, 2, . . . , n} be a set of jobs which have to be executed by using a set
of types of machines M = {1, 2, . . . ,m}. Each job i is a sequence of oi operations
Oi = (li−1+1, li−1+2, . . . , li), li =

∑i
k=1 ok, l0 = 0. Operations inside a job have

to be executed in a de�ned technological order (in the de�ned sequence), i.e., an
operation j has to be executed after having �nished an operation j−1 execution

56 Chapter 3. Scheduling problems

and before starting the execution of an operation j + 1. A set of operations of a
job i will be denoted by Oi for simplicity of notation. For each operation j ∈ O,
O =

∪n
i=1Oi the following terms are determined:

Mj � sequence of mj subsets of machines which de�ne alternative methods
of operation execution; Mj = (M1j ,M2j , . . . ,Mmj ,j),Mij ⊆ M ; an operation j
needs a set of machines Mij for its execution, where 1 ≤ i ≤ mj ,

pij � time of execution of an operation j by the i-th method (i.e., on the i-th
machine),

vj � method of executing the operation (decision variable),
Sj � term of an operation execution beginning (decision variable),
Cj � term of an operation execution �nishing, Cj = Sj + pvjj if the operation

cannot be broken.
In turn, for a job i the following terms are needed to be determined:

oi � number of operations in the job,
ri � the earliest possible term of the job execution beginning,
di � due date of the job execution �nishing,
Si � term of the job execution beginning, Si = Sli−1+1,
Ci � term of the job execution �nishing, Ci = Cli ,
Li � non-timeliness of the job execution �nishing, i.e., being tardy or early,

Li = Ci − di,
Ti � tardiness of the job execution �nishing, Ti = max{0, Ci − di},
Ei � earliness of the job execution �nishing, Ei = max{0, ei − Ci},
fi(t) � non-decreasing cost function connected with the job i execution �nish-

ing in a time t ≥ 0,
Fi � a time of �ow of the job i through the system, Fi = Ci − ri,
Ui � unitary tardiness of the job i de�ned as

Ui =
{

0 if Ci ≤ di,
1 otherwise.

(3.1)

The majority of scheduling problems do not need to de�ne all the above data
and decision variables. Usually a minimal set of notions which is su�cient to
describe the model is used. For example, if for each j ∈ O we have mj = 1,
|M1j | = 1 it means that the problem has dedicated machines, therefore decision
variables vj do not undergo any choice. Then v does not occur in the model of
the problem.

3.2. Taxonomy

To describe precisely the scheduling problem a three-�eld notation α|β|γ is ap-
plied. This notation was proposed in [123] and next developed in papers [169, 220].

3.2. Taxonomy 57

It has three �elds α|β|γ specifying the execution environment α, additional con-
straints β, and the objective function γ.

Here we propose an extended Graham notation which includes representations
of hybrid systems (e.g. hybrid �ow shop, see Janiak et al. [148]) or �exible systems
with parallel machines (e.g. �exible job shop problem, see Bo»ejko et al. [30]).
This kind of scheduling problems cannot be described by the original Graham
notation. We propose to set the symbol α as a composition of three symbols
α3α2α1 which have the following meaning. The symbol α1 describes a �nite
number of machines in the system: 1, 2, . . . ; if this number is not speci�ed then
an empty symbol is put here which means any number of machine m. The symbol
α2 describes the method of jobs �owing through the system, where the following
traditional ways are enhanced:

• F � �ow shop in which all the jobs have the same technological path and
they all have to be executed on all the machines; each machine needs to
determine di�erent sequence of input jobs,

• F ∗ � permutation �ow shop, a model which has the same assumptions as F
with an additional requirement that a sequence of job execution on all the
machines has to be the same (compatible with the order of the sequence of
jobs input into the system),

• J � job shop, in which jobs can have di�erent (in terms of the number and
the order of visiting machines) technological paths,

• G � general shop, in which each job is a single operation and technological
relationship is given by a graph,

• O � open shop, in which all the operations of jobs have to be executed, but
the technological order of operations inside the job is not speci�ed.

The number of machines α1 = 1 implicates that both α3 and α1 symbols have
to be empty. The symbol α3 determines the mode of executing each operation.
If α3 is an empty symbol then we assume that for each operation a machine has
been dedicated on which it will be executed, that is mj = 1, |Mij | = 1, j ∈ O.
Otherwise, we assume that mj ≥ 1, |Mij | = 1, i = 1, 2, . . . ,mj , j ∈ O and an
operation can be executed on exactly one machine from a set of:

• P � identical parallel machines,

• Q � uniform machines, or

• R � non-uniform machines.

58 Chapter 3. Scheduling problems

As we have already mentioned both α3 and α1 symbols can be empty, which
means that any realization mode can be accepted, or (α1 empty symbol) any (but
�xed) number of machines can be used.

The symbol β determines the existence of additional assumptions and con-
straints, e.g. di�erent release times (the earliest possible times of beginning job
execution, ri), existence of a partial technological order of job execution (prec),
constraints no wait, no store, no idle (without time gaps), pij = 1 (all times are
identical and equal 1), pmtn (jobs can be stopped and started again), etc.

The last parameter γ has the symbolic form of the criteria function. Two
classes of this function occur in theory and practice of job scheduling, namely

fmax = max
1≤i≤n

fi(Ci) (3.2)

and

∑
fi =

n∑
i=1

fi(Ci), (3.3)

where fi(t) are some non-decreasing functions. These classes include, among
others, many frequent criteria from the practice, for example: the length of the
schedule (makespan)

Cmax = max
1≤i≤n

Ci, (3.4)

an average time of the job �ow

∑
Fi =

1

n

n∑
i=1

Fi, (3.5)

In the second case we may include a di�erent weight of jobs wi ≥ 0 in the cost
function fi(t) = wit. For jobs with due dates di one can construct measures fi(t)
= max{0, t− di} or fi(t) = wimax{0, t− di}. Therefore, we obtain

Tmax = max
1≤i≤n

Ti = max
1≤i≤n

max{0, Ci − di) (3.6)

or the weighted sum of job tardiness

∑
wiTi =

n∑
i=1

wiTi =
n∑

i=1

wimax{0, Ci − di}. (3.7)

In the further parts of this book we will concentrate mainly on the following
criteria: makespan (Cmax), sum of job �nishing times (Csum,

∑
Ci) and weighted

3.3. Single machine scheduling problems 59

sum of job tardiness (
∑

wiTi). The criteria cited above are known as typical in
practice and they generate troubles during optimization (they are di�cult).

3.3. Single machine scheduling problems

In this section, we present and discuss a fundamental case of the single machine
problem as well as an industrial case (with using setup times) and a single machine
problem case with earliness and tardiness penalties.

3.3.1. Overview

Single machine scheduling problems constitute a dominant class of optimization
problems. There are a number of reasons for such a situation. They are easy to
de�ne and explain. Although weak usable in practice, single machine problems
can be applied to analyze an allocated critical element of a production system.
Single machine scheduling problems are the base of OPT (Optimized Production
Technology, critical nest monitoring). Some of them can be almost directly trans-
formed to the traveling salesman problem (TSP), o�ering the possibility to use a
wide class of methods and approaches designed for TSP, probably the oldest com-
binatorial optimization problem (i.e., exponential-size neighborhoods searched in
the polynomial time) to solve a scheduling problem under consideration.

Single machine problems can be met both as an element of the more complex,
multi-machine systems (e.g. it can be a bottleneck element of this system), and
as a stand-alone optimization problem. A solution is usually represented as a per-
mutation, so it is easy to design exact or approximate solution algorithms because
of their clarity. While the problem formulation is simple, solution methods are
universal and they can be used to solve more complex systems, such as parallel
shops, job shops or �exible scheduling problem based on the same concept.

3.3.2. Fundamental case

In the single machine total weighted tardiness problem (TWTP), a set of jobs
J = {1, 2, . . . , n} has to be processed without interruption on a single machine
that can handle only one job at a time. All jobs become available for processing at
time zero. Each job i ∈ J has an integer processing time pi, a necessary �nishing
time called a due date di, and a positive weight wi. For a given sequence of the
jobs (earliest) completion time Ci, the tardiness Ti = max{0, Ci−di} and the cost
fi(Ci) = wi · Ti of job i ∈ J can be computed. The goal is to �nd a job sequence
which minimizes the sum of the costs given by

∑n
i=1 fi(Ci) =

∑n
i=1wi · Ti. Each

schedule of jobs can be represented by a permutation π = (π(1), π(2), . . . , π(n)).

60 Chapter 3. Scheduling problems

The total cost is

F (π) =

n∑
i=1

fπ(i)(Cπ(i)), (3.8)

where Cπ(i) is a completion time of a job π(i).

The single machine total weighted tardiness problem is denoted by 1||
∑

iwiTi

in the literature and it belongs to the strongly NP-hard class (Lawler [162],
Lenstra et al. [168]). A large number of studies have been devoted to the problem.
Emmons [102] proposed several dominance rules that restrict the search process
for an optimal solution. These rules are used in many algorithms. Enumera-
tive algorithms that make use of dynamic programming and branch and bound
(B&B) approaches to the problem were described by Fischer [105], Potts and Van
Wassenhove [214] and Wodecki [268] (a parallel B&B algorithm). Other proposed
algorithms were discussed and tested in a review paper by Abdul-Razaq et al. [3].
Although these algorithms constitute a signi�cant improvement to the exhaus-
tive search, they still remain laborious and are applicable only to relatively small
problems (with the number of jobs not exceeding 50 for sequential algorithms and
120 jobs for parallel B&B algorithm [268]). The enumerative algorithms require
considerable computer resources both in terms of computation times and the core
storage. Thus, many algorithms have been proposed to �nd near optimal sched-
ules in a reasonable time. These algorithms can be classi�ed as construction and
improvement methods.

The construction methods use dispatching rules to come up with a solution
by �xing a job in a position at each step. Several constructive heuristics were
described by Fischer [105] and in a review paper by Potts and Van Wassenhove
[213]. Despite of being very fast, their quality is not good.

The improvement methods start from an initial solution and repeatedly try
to improve the current solution by local changes. The interchanges are continued
until a solution which cannot be improved is obtained. Such a solution is a local
minimum. To increase the performance of local search algorithms, there are used
metaheuristics like tabu search (Crauwels et al. [88], Bo»ejko, Grabowski and
Wodecki [53]), simulated annealing (Potts and Van Wassenhove [213]), genetic
algorithms (Crauwels et al. [88]), ant colony optimization (Den Basten et al.
[96]). A very e�ective local search method was proposed by Congram et al. [81]
and next improved by Grosso et al. [125]. The key aspect of the method is its
ability to explore an exponential-size neighborhood in polynomial time, using a
dynamic programming technique.

3.3. Single machine scheduling problems 61

3.3.3. Setup times

We employ setup times in the problem formulation described above. These setups
are taken from practice: they are encountered in real industrial applications to
model times needed for servicing machines between operations execution. Let J =
{1, 2, . . . , n} be a set of n jobs for which we de�ne a time of execution pi, a weight
of the cost function wi and a deadline di for each job i ∈ J as in the previous
section. Let sij be a setup time representing a time needed to prepare the machine
for executing a job j after having completed a job i. Additionally, s0i is a time
required to prepare a machine for executing the �rst job i (at the beginning of the
machine work). The problem considered consists in determining such a sequence
of executing of jobs which minimizes the sum of costs of tardiness, i.e.,

∑
wiTi

where Ci (i = 1, 2, . . . , n) is the time of completing a job i, Ti = max {0, Ci − di}
denotes a tardiness and fi(Ci) = wiTi represents a cost of tardiness of a job i.

The single machine total weighted tardiness problem with sequence-dependent
setup times (SDST) is denoted in the literature as 1|sij |

∑
wiTi and it is strongly

NP-hard, as 1||
∑

wiTi (with sij = 0) is strongly NP-hard (see Lenstra, Rinnoy
Kan and Brucker [168]). To date the best construction heuristics for this problem
has been the Apparent Tardiness Cost with Setups (ATCS � Lee, Bhaskaran and
Pinedo [166]).

Many metaheuristics have been proposed, too. Tan et al. [250] presented
a comparison of four methods of solving this problem: branch and bound, ge-
netic search, random-start pair-wise interchange and simulated annealing. Gagné,
Price and Gravel [110] compared the ant colony optimization algorithm with
other heuristics. Cicirello and Smith [78] proposed benchmarks for the sin-
gle machine total tardiness problem with sequence-dependent setups by gener-
ated 120 instances and applied stochastic sampling approaches: Limited Dis-
crepancy Search (LDS), Heuristic-Biased Stochastic Sampling (HBSS), Value Bi-
ased Stochastic Sampling (VBSS), Value Biased Stochastic Sampling seeded Hill-
Climber (VBSS-HS) and simulated annealing. The best goal function value ob-
tained by their approaches was published in the literature and presented on the
web site http://www.ozone.ri.cmu.edu/benchmarks.html as upper bounds of
the benchmark problems. These upper bounds were next improved by Cicirello
[79] by genetic algorithm, Lin and Ying [173] by tabu search, simulated annealing
and genetic algorithm, and Liao and Juan [172] by the ant optimization. Bo»ejko
and Wodecki [45] proposed a parallel metaheuristic for the problem under consid-
eration improving the best known solution values for the benchmark instances of
Cicirello and Smith [78].

62 Chapter 3. Scheduling problems

The lower bound from the assignment problem

The linear Assignment Problem (AP) can be applied to determine the lower bound
of the value of the sequence dependent setup times (SDST) problem solution. This
problem can be formulated as follows

min
π∈Φn

k∑
i=1

ciπ(i), (3.9)

where π ∈ Φn is a permutation and elements of the matrix [ci,j]k×k are called
costs. Next, we de�ne a cost matrix by using setup times such that the solution
of AP gives us a lower bound of the goal function.

Blocks in solutions

For the SDST problem, each schedule of jobs can be represented by permutation
π = (π(1), π(2), . . . , π(n − 1), π(n)) of the set of jobs J . If Cπ(i) is the time of
�nishing a job π(i) ∈ J then the job is considered on time if it is completed
before its due date (Cπ(i) ≤ dπ(i)), and tardy if completed after its due date (i.e.,
Cπ(i) > dπ(i)).

Let

Bab = (π(a), π(a+ 1), . . . , π(b− 1), π(b)) (3.10)

be a subsequence (1 ≤ a < b ≤ n) of a permutation π ∈ Φn. Therefore

WT(Bab) =

b∑
i=a

wπ(i) · Tπ(i), (3.11)

is a cost and L(Bab) = Cπ(b) + sπ(b),π(b+1) is a length Bab, where

Cπ(j) = s0,π(1) +

j−1∑
i=1

(pπ(i) + sπ(i),π(i+1)) + pπ(j), i = 1, 2, . . . , n. (3.12)

By Φ(Bab) ∈ Φn we de�ne a set of permutations which di�er from π only in the
sequence of elements in positions a, a+ 1, . . . , b, that is,

Φ(Bab) = {β ∈ Φ : π(i) = β(i), i = 1, 2, . . . , a− 1, b+ 1, . . . , n

and Y(Bab) = Y(βB)}, (3.13)

where Y(Bab) = {π(a), π(a+1), . . . , π(b− 1), π(b)} is a set of elements belonging
to a subsequence Bab. For Bab, let

Fmin(Bab) ≤ min{F (δ) : δ ∈ Φ(Bab)}, (3.14)

3.3. Single machine scheduling problems 63

Fmax(Bab) ≥ max{F (δ) : δ ∈ Φ(Bab)}. (3.15)

That is why it is the lower (3.14) and upper bound (3.15) of value of the goal
function F for permutations from a set Φ(Bab). Then, if a permutation γ ∈
Φ(Bab), so Fmin(Bab) ≤ F (γ) ≤ Fmax(Bab). Function F can be a cost WT or a
length L of a permutation.

Subsequence Bab is θ-close to optimal subsequence (we call it θ-optimal), if

F (Bab) ∈ [Fmin(Bab), F
min(Bab) + θ · (Fmax(Bab)− Fmin(Bab))] (3.16)

where θ ∈ [0, 1] is a parameter determined experimentally.
For an SDST problem the goal is to minimize the sum of tardiness costs. Let

Bab be a subsequence (de�ned in (3.10)) of permutation π ∈ Φ. The sum of
tardiness costs can be found as

WT (π) =
n∑

i=1

wπ(i)Tπ(i) =
a−1∑
i=1

wπ(i)Tπ(i) +
b∑

i=a

wπ(i)Tπ(i)+

+

n∑
i=b+1

wπ(i)Tπ(i). (3.17)

The change of the schedule of elements in Bab can generate a permutation with
lower cost from the permutation π, if

1. the cost of execution of jobs from Bab decreases, or
2. the length of Bab gets shorter.

Next, we shall de�ne two types of subsequences consisting of on-time and tardy
jobs, which we call T -blocks or D-blocks, respectively. They are applied to elim-
inate `worse' elements from neighborhoods determined in a scatter search algo-
rithm. We will not consider permutations generated from π by changing an order
of elements in any T or D block.

Blocks of on-time jobs

A subsequence Tab = (π(a), π(a+1), . . . , π(b−1), π(b)) is a T -block in permutation
π ∈ Φn, if

(a) each job from Tab is on-time in a permutation π, that is,
∀j ∈ Y(Tab), Cπ(j) ≤ dπ(j),

(b) due to the length L, subsequence Tab is θ-optimal.
Further on, we shall present procedures of calculating the lower bound Lmin(Tab)
and the upper bound Lmax(Tab) of the length L(β) (β ∈ Φn(Tab), that is, values
which appear in the de�nition of θ-optimality (see 3.16).

64 Chapter 3. Scheduling problems

Lower bound of the length Lmin(Tab)

Execution times of jobs from Y(Tab) and setup times in�uence the length L(Tab).
Changing an order of jobs changes setup times but it does not have any in�uence
on times of job �nishing. Therefore, to minimize L(Tab) we have to determine an
order of elements from Y(Tab) due to setup times. A lower bound of the length
Lmin(Tab) will be determined by solving an assignment problem.

By h = b− a+ 1 we mean a number of jobs in Tab. For a job AP we de�ne a
matrix of costs C of size (h+ 2)× (h+ 2):

cij = sπ(a+i−1)π(a+i), i, j = 0, 1, 2, . . . , h+ 1, i ̸= j (3.18)

and cii =∞, i = 0, 1, 2, . . . , h+ 1, c0(h+1) =∞.

If a = 1 (a job π(a) is the �rst element in π), then π(0) = 0 and c1,i = s0π(i).
Similarly, if b = n, thus π(n + 1) = n + 1 and cπ(n)π(n+1) = sπ(n)0. If Cmin

AP is a
value of optimal solution of an Assignment Problem (with a cost matrix de�ned
in (3.18)), then

LBL(Tab) = Cπ(a−1) + Cmin
AP +

b∑
i=a

pπ(i) (3.19)

is the lower bound of the length L(βT) of any subsequence βT , where β ∈ Φn(Tab).
Thus, as the lower bound of the length of permutations from a set Φn(Tab) we
can take

Lmin(Tab) = LBL(Tab) +
n∑

i=b+1

pπ(i) + sπ(i)π(i+1). (3.20)

Upper bound of the length Lmax(Tab)

The de�nition of cost matrix C = [ci,j](h+2)×(h+2) for the Assignment Problem
has been presented in the previous section (Lower bound of the length Lmin(Tab)).
We change the weight of the edge {0, h+1} in C by assigning c0(h+1) = −∞ and
cii = −∞, i = 0, 1, . . . , h+ 1. Next, we solve the `modi�ed' assignment problem
(with a new matrix C) to determine the maximal solution. Let Cmax

AP be the value
of this solution. Then

UBL(Tab) = Cπ(a−1) + Cmax
AP +

b∑
i=a

pπ(i), (3.21)

3.3. Single machine scheduling problems 65

is an upper bound of the length L(βT) of any subsequence βT , β ∈ Φn(Tab). That
is why we take

Lmax(Tab) = UBL(Tab) +
n∑

i=b+1

pπ(i) + sπ(i),π(i+1) (3.22)

as the upper bound of the length of permutation from the set Φn(Tab).

Blocks of tardy jobs

The subsequence

Dab = (π(a), π(a+ 1), . . . , π(b)) (1 ≤ a < b ≤ n) (3.23)

is a D-block in a permutation π ∈ Φn, if

(a1) any job from Y(Dab) moved in the �rst position in Dab is tardy,

(b1) Dab is θ-optimal (due to cost function WT),

(c1) Dab is θ-optimal (due to the length (function L).

In the sequel, methods of determining constraints for the goal function value will
be presented. They appear in the θ-optimality de�nition (point b1).

Lower bound of a cost WTmin(Dab)

The lower bound of a cost will be determined by solving an assignment prob-
lem. Elements of the matrix are determined as follows: let Dab be a subsequence
determined by (3.23) and h = b − a + 1 number of its elements. We construct
a full graph G(Dab) = (V, E) with weighted vertices and arcs. A set of vertices
V = {0, 1, 2, . . . , h, h + 1} and arcs E = {{u, v} : u, v ∈ V ∧ u ̸= v}. A vertex i
(i = 0, 1, 2, . . . , h+1) is connected with a job π(a− i−1) when 0 represents a job
Dab which is a predecessor: π(a−1) (if a = 1 then π(0) = 0). On the other hand,
h+1 represents a �rst job after Dab, a job π(b+1) (if b = n then π(n+1) = n+1).
A weight of a vertex i is the time of executing a job pπ(a+i−1), (i = 1, 2, . . . , h).
A weight of the vertex 0 is 0 and a weight of a vertex h+1 is ∞. This graph has
also weighted arcs. A weight of an arc {u, v} ∈ E equals the setup time between
jobs π(a + u − 1) and π(a + v − 1) (therefore sπ(a+u−1)π(a+v−1)), and a weight
of an arc {0, h + 1} is ∞. A model graph G(Dab) for a 3-element subsequence is
presented in Figure 3.1 (only some weights of arcs and vertices have been shown).
Based on this kind of a graph we shall determine the earliest times of �nishing
jobs placed in particular positions in Dab.

66 Chapter 3. Scheduling problems

0

1

2

3

4

A

Fig. 3.1. An example of a graph with weighted vertices and arcs for a 3-element
subsequence.

Let tk,j be the earliest possible time of �nishing a job k ∈ Y(Dab) which is in
the position j, a ≤ j ≤ b (then a job k is preceded by j−a elements from Y(Dab)).
From the construction of the graph G(Dab) it follows that tk,j is a length of the
shortest path from the vertex 0 to k consisting of exactly j−a vertices (excluding
vertices 0 and k). These paths and their lengths can be determined by using the
Floyd-Warshall algorithm. Using these paths we can determine elements of the
cost matrix D = [dij]h×h for the assignment problem in the following way

dij = wπ(a+i−1) ·max{0, tπ(a+i−1),j − dπ(a+i−1)} (3.24)

for i ̸= j, i, j = 1, 2, . . . , h and for djj =∞, j = 1, 2, . . . , h i d1h =∞. The value
of dij is lower bound of the cost of job i, executed as the j -th one among all jobs
from the set Y(Dab).

Let Wmin
AP (Dab) be the value of the optimal (i.e., minimal) solution of an as-

signment problem with the cost matrix determined in (3.24). In the beginning
part of Section 3.3.3 the method of calculation of the lower bound value for the
length LBL(Tab) was introduced (see (3.19)). Applying this procedure we can
calculate LBL(Dab) � the same approximation for the D-block. Hence, the lower
bound of �nishing times of jobs which follow Dab in π, Ci (i = b + 1, . . . , n) can
be determined from the following recurrent relations

Cπ(b+i) = Cπ(b+i−1) + sπ(b+i−1)π(b+i) + pπ(b+i), i = 2, 3, . . . , n, (3.25)

where Cπ(b+1) = LBL(Tab) +min{siπ(b+1 : i ∈ Y(Dab)}+ pπ(b+i).
Therefore, the lower bound of costs of permutations from the set Φn(Dab)

WTmin(Dab) =

a−1∑
i=1

wπ(i) ·max{0, Cπ(i) − dπ(i)}+Wmin
AP (Dab) +

3.3. Single machine scheduling problems 67

+

n∑
i=b+1

wπ(i) ·max{0, Cπ(i) − dπ(i)}. (3.26)

The �rst sum is the cost of executing jobs π(1), π(2), . . . , π(a − 1). The second
component of the sum is a lower bound of cost of executing jobs from Dab. The
last sum is the lower bound of execution of jobs π(b+ 1), π(b+ 2), . . . , π(n).

Upper bound of the cost WTmax(Dab)

On the basis of the graph (presented in the last section) with weighted vertices
and arcs G(Dab) we determine a cost matrix D = [dij]h×h (due to (3.24)), where
djj = −∞, j = 1, 2, . . . , h and d1h = −∞. Next, we solve the modi�ed assignment
problem (with cost matrix D) determining a maximal solution. Let Wmax

AP be the
value of this solution.

Similarly as in the determination procedure of the upper bound of the length
Lmax(Tab), we can calculate approximation of the length of a D-block. Then
the upper bound of �nishing times of jobs from Dab can be calculated from the
following recurrent relation

Cπ(b+i) = Cπ(b+i−1) + sπ(b+i−1)sπ(b+i) + pπ(b+i), i = 2, 3, . . . , n, (3.27)

where Cπ(b+1) = UBL(Dab) + min{siπ(b+1 : i ∈ Y(Dab)} + pπ(b+i). The upper
bound of costs of permutations from the set Φn(Dab) is expressed by

WTmax(Dab) =

a−1∑
i=1

wπ(i) ·max{0, Cπ(i) − dπ(i)}+Wmax
AP (Dab) +

+

n∑
i=b+1

wπ(i) ·max{0, Cπ(i) − dπ(i)}. (3.28)

The �rst sum is the cost of execution of jobs π(1), π(2), . . . , π(a− 1). The second
component of the sum is the upper bound of cost of jobs from the set Dab. The
last sum is the upper bound of cost of jobs π(b+ 1), π(b+ 2), . . . , π(n). An algo-
rithm of determining this upper bound has computational complexity O(n3).

Determining blocks in permutation

At the beginning the value of θ parameter (which appears in the de�nition of
θ-optimality, see (3.16)) has to be experimentally determined. We will consider
only blocks which contain at least 3 elements. So we are �nding a subsequence

68 Chapter 3. Scheduling problems

which ful�lls condition (a) (or (a1)) and next we are checking all the remaining
conditions.

Let a permutation π ∈ Φn. We consider consecutively elements of permutation
π(1), π(2), . . . , π(n) distinguishing two situations (cases): a current job is on-time
or it is late.
Case 1. Let us assume that a job π(1) is on-time in the permutation π. Then,
it is a candidate to be the �rst element in a T -block. If jobs π(2) and π(3) are
also on-time then we are checking if subsequence Tab = (π(1)π(2), π(3)) ful�lls
constraint (b) in the de�nition of T -block. If yes, we have the �rst 3-element
block, which we would like to enhance by checking if after adding succeeding jobs
we will also obtain a T -block. If it is impossible to enhance the block by adding
the next job then this job becomes the �rst one of the consecutive block. In turn,
if a job π(2) or π(3) is not on-time, or jobs π(1), π(2) and π(3) are on-time but do
not ful�ll constraint (b) in the de�nition of T -block, then the construction of the
next block has to start with job π(2), which is a candidate to be the �rst element
in the block.
Case 2. Let us assume that a job π(1) is late in a permutation π. Then, this
job is a candidate to be the �rst one in a D-block. Next, we proceed as in Case 1
(checking constraints (a), (b1) and (c1) for a D-block).

In such a way we determine blocks (if they exist) in any permutation from the
set of solutions Φn. The sequential computational complexity of the algorithm of
block determination in permutation is O(n3). The existence of blocks and their
number depend largely on the value of parameter θ.

3.3.4. Earliness/tardiness penalties

There are some types of manufacturing systems, called Just In Time (JIT), where
costs are connected not only with executing a job too late, but also too early.
Such a situation occurs especially when tasks are connected directly with the
Web, e.g. routing, agents, similarity classi�cation, etc. This induces formulation
of many optimization problems with goal functions, where there is a penalty for
both tardiness and earliness of a job. The problem of scheduling with earliness
and tardiness (total weighted earliness/tardiness problem, TWET) is one of the
most frequently considered in the literature. In this problem, each job from a set
J = {1, 2, . . . , n} has to be processed, without interruption, on a machine, which
can execute at most one job at a time. By pi we represent the execution time of
a job i ∈ J , and by ei and di we mean the required earliest and latest moments
of �nishing the processing of a job. If scheduling of jobs is established and Ci is
the moment of �nishing a job i, then we call Ei = max{0, ei − Ci} an earliness
and Ti = max{0, Ci − di} a tardiness. The expression uiEi + wiT is the cost of
executing a job, where ui and wi (i ∈ J) are nonnegative coe�cients of a goal

3.3. Single machine scheduling problems 69

function. The problem consists in minimizing the sum of costs of jobs, that is, in
�nding a job sequence π∗ ∈ Φn such that for the goal function

F (π) =

n∑
i=1

(uπ(i)Eπ(i) + wπ(i)Tπ(i)), π ∈ Φn, (3.29)

we have

F (π∗) = min
π∈Φn

F (π). (3.30)

This problem is represented by 1||
∑

(uiEi + wiTi) in the literature and it belongs
to a strongly NP-hard class (if we assume ui = 0, i = 1, 2, . . . , n, we will obtain
a strongly NP-hard problem 1||

∑
wiTi, Lawler [162] and Lenstra et al. [168]).

Baker and Scudder [17] proved that there can be an idle time in an optimal
solution (jobs need not to be processed directly one after another), that is Cπ(i+1)−
pπ(i+1) ≥ Cπ(i), i = 1, 2, . . . , n − 1. Solving the problem amounts to establishing
a sequence of jobs and their starting times. Hoogeven and van de Velde [138]
proposed an algorithm based on the branch and bound method. Because of the
computation time growing exponentially, this algorithm can be applied only to
solve instances where the number of jobs is not greater than 20. Therefore, in
practice almost always approximate algorithms are used. The best ones are based
on arti�cial intelligence methods. Calculations are performed in two stages.

• Determining the scheduling of jobs (with no idle times).

• Establishing optimal starting times of jobs.

There is an algorithm in the paper of Wan and Yen [262] based on this scheme � a
tabu search algorithm is used to determine a schedule. Bo»ejko and Wodecki [57]
proposed a parallel coevolutionary algorithm for the problem under consideration.

Block properties

For the TWET-no-idle problem, each schedule of jobs can be represented by
permutation π = (π(1), π(2), . . . , π(n)) of elements of the set of jobs J . Let
Φn denote the set of all such permutations. The total cost π ∈ Φn is F (π) =∑n

i=1 fπ(i)(Cπ(i)), where Cπ(i) is the completion time of the job π(i), Cπ(i) =∑i
j=1 pπ(j). The job π(i) is considered early if it is completed before its earli-

est moment of �nishing (Cπ(i) < eπ(i)), on time if eπ(i) ≤ Cπ(i) ≤ dπ(i), and tardy
if the job is completed after its due date (i.e., Cπ(i) > dπ(i)).

Each permutation π ∈ Φn is decomposed into subpermutations (subsequences
of jobs) B = (B1, B2, . . . , Bv) called blocks in π, where

70 Chapter 3. Scheduling problems

1. Bi = (π(ai), π(ai + 1), . . . , π(bi − 1), π(bi)), and
ai = bi−1 + 1, 1 ≤ i ≤ v, a0 = 0, bv = n.

2. All the jobs j ∈ Bi satisfy the following conditions:
ej > Cπ(bi), (C1)
ej ≤ Cπ(bi−1) + pj and dj ≥ Cπ(bi), (C2)
dj < Cπ(bi−1) + pj . (C3)

3. Bi are maximal subsequences of π in which all the jobs satisfy either Con-
dition C1 or Condition C2 or Condition C3.

By de�nition, there exist three types of blocks implied by either C1 or C2 or
C3. To distinguish them, we will use the E-block, O-block and T-block notions
respectively. For any block Υ in a partition B of permutation π ∈ Φn, let

FΥ(π) =
∑

i∈Υ
(uiEi + wiTi). (3.31)

Therefore, the value of a goal function

F (π) =
∑n

i=1
(uiEi + wiTi) =

∑
Υ∈B

FΥ(π). (3.32)

If Υ is a T -block, then every job inside is early. Therefore, an optimal sequence
of the jobs within Υ of the permutation π (that is minimizing FΥ(π)) can be
obtained, using the well-known Weighted Shortest Processing Time (WSPT) rule,
proposed by Smith [229]. The WSPT rule creates an optimal sequence of jobs
in a non-increasing order of the ratios wj/pj . Similarly, if Υ is an E-block, then
an optimal sequence of the jobs within it can be obtained, using the Weighted
Longest Processing Time (WLPT) rule which creates a sequence of jobs in a non-
decreasing order of the ratios uj/pj . Partition B of the permutation π is ordered
if there are jobs in the WSPT sequence in any T -block, and if there are jobs in
the WLPT sequence in any E-block.

Theorem 3.1 ([53]). Let Υ be an ordered partition of a permutation π ∈ Φn into
blocks. If β ∈ Φn and F (β) < F (π), so at least one job of some block of π has
been moved before the �rst or after the last job of this block in the permutation β.

Note that Theorem 3.1 provides the necessary condition for obtaining a permu-
tation β from π such that F (β) < F (π). Let B = (B1, B2, . . . , Bv) be an ordered
partition of the permutation π ∈ Φn into blocks. If a job π(j) ∈ Bi (Bi ∈ B),
then moves which can improve the goal function value consist in reordering a job
π(j) before the �rst or after the last job of this block. Let N bf

j and Naf
j be sets

3.4. Flow shop problems 71

of such moves (N bf
j = ∅ for j ∈ B1 and Naf

j = ∅ for j ∈ Bv). Therefore, the
neighborhood of the permutation π ∈ Φn,

N(π) =

n∪
j=1

N bf
j ∪

n∪
j=1

Naf
j . (3.33)

As computational experiments show, the size of the neighborhood de�ned in (3.33)
is half that of the neighborhood of all the insert moves.

3.4. Flow shop problems

We can see the process of jobs �owing through machines (processors) in many
practical problems of scheduling: in computer systems as well as in production
systems. Thus the �ow shop scheduling problem represents a wide class of pos-
sible applications, depending on the cost function de�nition. For each of them,
an corresponding discrete model has to be constructed and analyzed. Some of
them (e.g. with the makespan criterion and with total weighted tardiness cost
function) have got a special elimination-criteria (so-called block properties) which
signi�cantly speed up the calculation, especially in the multithread computing
environment.

3.4.1. Formulation of problems

The problem has been introduced as follows. There are n jobs from a set J =
{1, 2, . . . , n} to be processed in a production system having m machines, indexed
by 1, 2, . . . ,m, organized in the line (sequential structure). A single job re�ects
one �nal product (or sub product) manufacturing. Each job is performed in m
subsequent stages, in a way common to all the tasks. The stage i is performed
by a machine i, i = 1, 2, . . . ,m. Each job j ∈ J is split into a sequence of m
operations O1j , O2j , . . . , Omj performed on machines. The operation Oij re�ects
processing of job j on machine i with processing time pij > 0. Once started the
job cannot be interrupted. Each machine can execute at most one job at a time,
each job can be processed on at most one machine at a time.

The �ow shop problem with makespan criterion

The sequence of loading jobs into a system is represented by a permutation π =
(π(1), . . . , π(n)) of elements of the set J . The optimization problem is to �nd the
optimal sequence π∗ so that

Cmax(π
∗) = min

π∈Φn

Cmax(π) (3.34)

72 Chapter 3. Scheduling problems

where Cmax(π) is the makespan for a permutation π and Φn is the set of all
permutations of elements of the set J . Denoting by Cij the completion time of
job j on machine i we have Cmax(π) = Cm,π(n). Values Cij can be found by using
either the recursive formula

Ciπ(j) = max{Ci−1,π(j), Ci,π(j−1)}+ piπ(j), (3.35)

i = 1, 2, . . . ,m, j = 1, 2, . . . , n, with initial conditions Ciπ(0) = 0, i = 1, 2, . . . ,m,
C0π(j) = 0, j = 1, 2, . . . , n, or a non-recursive one

Ciπ(j) = max
1=j0≤j1≤...≤ji=j

i∑
s=1

ji∑
k=ji−1

psπ(k). (3.36)

Computational complexity of (3.35) is O(mn), whereas for (3.36) it is

O((
j+i−2
i−1)(j + i− 1)) = O(

(n+m)n−1

(n− 1)!
). (3.37)

In practice the former formula has been commonly used. It should be noticed
that the problem of transforming sequential algorithm for scheduling problems
into parallel one is nontrivial because of the strongly sequential character of com-
putations carried out using (3.35) and other known scheduling algorithms.

Johnson [150] gave an O(n log n) algorithm for F |2|Cmax and Garey et al. [115]
shown that F |3|Cmax is strongly NP-hard. The best available branch and bound
algorithms are these of Ignall, Schrage [140], Lageweg, Lenstra & Rinnooy Kan
[161] and Grabowski [120]. Their performance is not entirely satisfactory though
they experience di�culty in solving instances with 20 jobs and 5 machines.

Various serial and parallel local search methods are available for the permu-
tation �ow shop problem. Tabu search algorithms were proposed by Taillard
[243], Reeves [216], Nowicki and Smutnicki [196], Grabowski and Wodecki [118].
Simulated annealing algorithms were proposed by Osman, Potts [203], Ogbu and
Smith [201] and Ishibushi, Misaki and Tanaka [142]. Reeves [217] proposed a ge-
netic algorithm which uses the reorder crossover. Bo»ejko and Wodecki [38] ap-
plied this method in the parallel path-relinking method used to solve the �ow
shop scheduling problem. Bo»ejko and Wodecki also proposed a parallel scatter
search [40] and parallel tabu search [58] method for this problem. Bo»ejko and
Pempera [41] presented a parallel tabu search algorithm for the permutation �ow
shop problem of minimizing the criterion of the sum of job completion times.
Bo»ejko and Wodecki also proposed a simulated annealing algorithm for the �ow
shop problem with Cmax [63] and Csum [59] criterion. Bo»ejko, Hejducki and
Wodecki [42] proposed the fuzzy blocks conception in application to the genetic

3.4. Flow shop problems 73

algorithm for this problem. Bo»ejko and Wodecki [43] proposed applying multi-
moves in parallel genetic algorithm for the �ow shop problem. The theoretical
properties of these multi-moves were considered by Bo»ejko and Wodecki in papers
[46, 48, 49]. A survey of single-walk parallelization methods of the cost function
calculation and neighborhood searching for the �ow shop problem can be found in
Bo»ejko [62].

In the batching systems (all jobs are available at the beginning) a rating is
made by a maximal �ow time (makespan) or an average �ow time (equivalent to∑

Cj). Thus these two problems are most interesting from the practical point
of view. The minimal makespan maximizes simultaneously the utilization rate of
the machine park;

∑
Cj minimizes the volume of the work in progress.

The �ow shop problem with Csum criterion

The objective is to �nd a schedule which minimizes the sum of job completion
times. The problem is denoted by F ||Csum. There are plenty of good heuristic al-
gorithms for solving F ||Cmax �ow shop problem, with the objective of minimizing
maximal job completion times. Due to the special properties (blocks of a critical
path, see previous section and [121]) it is regarded as an easier one than a problem
with objective Csum. Unfortunately, there are no similar properties (which can
speed up computations) for the F ||Csum �ow shop problem. Constructive algo-
rithms (LIT and SPD from [264]) possess low e�ciency and can only be applied
to a limited range. There is a hybrid algorithm in [215], consisting of elements of
tabu search, simulated annealing and path relinking methods. The results of this
algorithm, applied to Taillard benchmark tests [243] are the best known ones in
the literature nowadays. A theoretical analysis of the �ow shop problem with the
mean completion time criterion, which is a derivative of the criterion considered
here, was made by Smutnicki [232, 233].

The �ow shop problem with the criterion of the sum of job completion times
can be formulated using notations from the previous paragraph. We wish to �nd
a permutation π∗ ∈ Φn such that

Csum(π
∗) = min

π∈Φn

Csum(π), where Csum(π) =

n∑
j=1

Cmπ(j). (3.38)

The formula Ciπ(j) denotes the time required to complete the j-th job on the
machine i in the processing order given by the permutation π. The completion
time of job π(j) on machine m can be found by applying the same formulas (3.35)
or (3.36) as in the problem with a makespan criterion.

74 Chapter 3. Scheduling problems

3.4.2. Models

Values Cij from equations (3.35) and (3.36) can also be determined by means of
a graph model of the �ow shop problem. For a given sequence of job execution
π ∈ Φn we create a graph G(π) = (M ×N , F 0 ∪ F ∗), where M = {1, 2, . . . ,m},
N = {1, 2, . . . , n}.

F 0 =

m−1∪
s=1

n∪
t=1

{((s, t), (s+ 1, t))} (3.39)

is a set of technological arcs (vertical) and

F ∗ =
m∪
s=1

n−1∪
t=1

{((s, t), (s, t+ 1))} (3.40)

is a set of sequencing arcs (horizontal).
Arcs of the graph G(π) have no weights, but each vertex (s,t) has as weight

psπ(t). A time Cij of �nishing a job π(j), j = 1, 2, . . . , n on machine i, i =
1, 2, . . . ,m equals the length of the longest path from vertex (1,1) to vertex (i,j)
including the weight of the last one. A sample `mesh' graph G(π) is shown in
Figure 3.2. The mesh is always the same, vertices weights depend on the π. For
the F ||Cmax problem the value of the criterion function for �xed sequence π equals
the length of the critical path in the graph G(π). For the F ||Csum problem the
value of the criterion function is the sum of lengths of the longest paths which
begin from vertex (1, 1) and ends on vertices (m, 1), (m, 2), . . . , (m,n).

The graph G(π) is also strongly connected with formulas (3.35) and (3.36) of
completion times Cij calculation. By using formula (3.35), it is enough to generate
consecutive vertices, column after column (or row after row) taking in the vertex
(i, j), connected with the Cij , a greater value from the left vertex, Ci,j−1, and
from the upper one, Ci−1,j , and adding pij to it. Such a procedure generates
the longest path in the graph G(π) in time O(nm). Formula (3.36) can also be
presented as the longest path generation algorithm, but its conception is based
on the all horizontal sub-paths generation and its computational complexity is
exponential.

3.4.3. Properties

The longest path in graph G(π) for a solution π of the �ow shop problem de�ned
in Section 3.4.2 is called a critical path with respective π. Its length is Cmax(π).
The critical path is decomposed into subsequences B1, B2, . . . , Bm called blocks
in π, where

3.4. Flow shop problems 75

(1,1) (1,2) (1,3) (1,n-1) (1,n)

(2,1) (2,2) (2,3) (2,n-1) (2,n)

(m,1) (m,2) (m,3) (m,n-1) (m,n)

(3,1) (3,2) (3,3) (3,n-1) (3,n)

1 2 3 n-1 n ... jobs

machines

1

2

3

m

M

Fig. 3.2. Graph G(π) (from Bo»ejko et al. [35]).

a) Bk = (π(fk), π(fk + 1), . . . , π(lk − 1), π(lk)), fk ≤ lk, f1 = 1, lk = k and
π(lk) = π(fk+1), k = 1, 2, . . . ,m− 1,

b) Bk contains operations processed on the same machine, for k = 1, 2, . . . ,m,

c) two consecutive blocks contain operations processed on di�erent machines.

In other words, the block is a maximal subsequence of the critical path which
contains operations processed on the same machine. Operations π(fk) and π(lk)
in Bk are called the �rst and the last ones, respectively.

Theorem 3.2 ([120]). Let G(π) be a graph with blocks Bk, k = 1, 2, . . . ,m. If
the graph G(ω) has been obtained from G(π) by the interchange of jobs and if
Cmax(ω) < Cmax(π), then in G(ω):

(i) at least one job j ∈ Bk precedes job π(fk), for some k = 2, . . . ,m, or

(ii) at least one job j ∈ Bk succeeds job π(lk), for some k = 1, 2, . . . ,m− 1.

This theorem provides the necessary condition for obtaining a permutation
such that Cmax(ω) < Cmax(π). We need to move jobs from the set Bk before the
�rst job π(fk), and jobs from the set Bk after the last π(lk), k = 1, 2, . . . ,m to
obtain a permutation ω from a permutation π such that Cmax(ω) < Cmax(π).

For a job j ∈ Bk\{π(fk)} let

∆+
k (j) =

{
pj,k−1 − pπ(fk),k−1, j ̸= π(lk),

pj,k−1 − pπ(fk),k−1 + pπ(lk−1),k+1 − pj,k+1, j = π(lk),
(3.41)

76 Chapter 3. Scheduling problems

and for j ∈ Bk\{π(lk)}

∆−
k (j) =

{
pj,k+1 − pπ(lk),k+1, j ̸= π(fk),

pπ(fk+1),k−1 − pj,k−1 + pj,k+1 − pπ(lk),k+1, j = π(fk),
(3.42)

where k = 1, 2, . . . ,m and pπ(i)j = 0, i > n, j < 1 or j > k.

Theorem 3.3 ([120]). For each π ∈ Φn, if β is the permutation obtained from
π by moving job j, (j ∈ Bk) before the �rst or after the last job in block Bk, then
we obtain

Cmax(β) ≥ Cmax(π) + ∆+
k (j) or Cmax(β) ≥ Cmax(π) + ∆−

k (j). (3.43)

By moving job j ∈ Bk before π(fk) or after π(lk) in π, we generate permutation
β and the lower bound on the value Cmax(β) is ≥ Cmax(π)+∆−

k (j) or Cmax(π)+
∆+

k (j). Thus, the values ∆
−
k (j) and ∆+

k (j) can be used to decide which job should
be moved.

3.4.4. Transport times

The �ow shop problem with transport times can be de�ned as follows. For each
job there is de�ned the transport time of jobs between machines. Variable tij
determines the transport time of a job j from machine i to machine i + 1,
i = 1, . . . ,m − 1. A case tij ≥ 0 has a natural practical justi�cation and it
requires no commentary. A case tij < 0 means the permission for `overlapping' of
subsequent job operations, or the start of the next job operation with some time
delay compared to the start of the current operation and before its completion.

Assuming that the sequence of carrying out jobs is determined by a permu-
tation π in a permutational �ow shop problem with transport, the times of job
completion can be determined on the basis of the following conditions

Ciπ(j) ≥ Ciπ(j−1) + piπ(j), i = 1, 2, . . . ,m, j = 1, 2, . . . , n, (3.44)

Ciπ(j) ≥ Ci−1,π(j) + piπ(j) + ti−1,π(j), i = 1, 2, . . . ,m, j = 1, 2, . . . , n, (3.45)

which let us obtain the recurrent formula (for Cmax and Csum criteria)

Ciπ(j) = max{Ci,π(j−1), Ci−1,π(j) + ti−1,π(j)}+ piπ(j), (3.46)

for i = 1, 2, . . . ,m, j = 1, 2, . . . , n, where π(0) = 0, but for negative tij there
should be Ci0 = 0, i = 1, 2, . . . , n, C01 = 0, C0j = −∞, j = 2, 3, . . . ,m.

3.5. Job shop problems

Job shop scheduling problems follow from many real-world cases, which means
that they have good practical applications as well as industrial signi�cance.

3.5. Job shop problems 77

3.5.1. Problem de�nition

Let us consider a set of jobs J = {1, 2, . . . , n}, a set of machinesM = {1, 2, . . . ,m}
and a set of operations O = {1, 2, . . . , o}. The set O is decomposed into subsets
connected with jobs. A job j consists of a sequence of oj operations indexed
consecutively by (lj−1+1, lj−1+2, . . . , lj) which have to be executed in this order,
where lj =

∑j
i=1 oi is the total number of operations of the �rst j jobs, j = 1,

2, . . . , n, l0 = 0,
∑n

i=1 oi = o. An operation i has to be executed on machine
vi ∈ M without any idleness in time pi > 0, i ∈ O. Each machine can execute
at most one operation at a time. A feasible solution constitutes a vector of times
of the operation execution beginning S= (S1, S2, . . . , So) such that the following
constraints are ful�lled

Slj−1+1 ≥ 0, j = 1, 2, . . . , n, (3.47)

Si + pi ≤ Si+1, i = lj−1 + 1, lj−1 + 2, . . . , lj − 1, j = 1, 2, . . . , n, (3.48)

Si + pi ≤ Sj or Sj + pj ≤ Si, i, j ∈ O, vi = vj , i ̸= j. (3.49)

Certainly, Cj = Sj +pj . An appropriate criterion function has to be added to the
above constraints. The most frequent are the following two criteria: minimization
of the time of �nishing all the jobs and minimization of the sum of job �nishing
times. From the formulation of the problem we have Cj ≡ Clj , j ∈ J .

The �rst criterion, the time of �nishing all the jobs

Cmax(S) = max
1≤j≤n

Clj , (3.50)

corresponds to the problem denoted as J ||Cmax in the literature. The second
criterion, the sum of job �nishing times

C(S) =

n∑
j=1

Clj , (3.51)

corresponds to the problem denoted as J ||
∑

Ci in the literature.
Both problems described are strongly NP-hard and although they are similarly

modelled, the second one is found to be harder because of the lack of some speci�c
properties (so-called block properties, see [196]) used in optimization of execution
time of solution algorithms. Because of NP-hardness of the problem heuristics
and metaheuristics are recommended as `the most reasonable' solution methods.
The majority of these methods refer to the makespan minimization. We mention
here a few recent studies: Jain, Rangaswamy, and Meeran [145]; Pezzella and
Merelli [206]; Grabowski and Wodecki [119]; Nowicki and Smutnicki [198]; Bo»ejko
and Uchro«ski [32]. Smutnicki and Ty«ski [231] proposed a new crossover operator

78 Chapter 3. Scheduling problems

jobs

9

1 2 3
1

2

3

4

4

5 6

7

8

10

Fig. 3.3. An example of disjunctive graph for the job shop problem.

for the job shop problem used in a genetic algorithm. Also heuristics algorithms
based on dispatching rules are proposed in papers of Holthaus and Rajendran
[137], Bushee and Svestka [69] for the problem under consideration. For the other
regular criteria such as the total tardiness there are proposed metaheuristics based
on various local search techniques: simulated annealing [133], [263], tabu search
[14] and genetic search [182].

3.5.2. Models and properties

The most commonly used models of job shop scheduling problems are based on
the disjunctive or the combinatorial approaches. Both these models are presented
in this section.

Disjunctive model

The disjunctive model is most commonly used, however it is very unpractical from
the point of view of e�ciency (and computational complexity). It is based on the
notion of disjunctive graph G = (O,U ∪ V). This graph has a set of vertices
O which represent operations, a set of conjunctive arcs (directed) which show
technological order of operation execution

U =
n∪

j=1

lj−1∪
i=lj−1+1

{(i, i+ 1)} (3.52)

3.5. Job shop problems 79

jobs

9

1 2 3
1

2

3

4

4

5 6

7

8

10

Fig. 3.4. An example of the graph G(W) for the job shop problem.

and the set of disjunctive arcs (non-directed) which show possible schedule of
operations execution on each machine

V =
∪

i,j∈O,i ̸=j,vi=vj

{(i, j), (j, i)}. (3.53)

An example of the disjunctive graph is presented on Figure 3.3 (numbers near
vertices are operation numbers, jobs are placed in rows and connected by solid
arrows; disjunctive arcs are drawn as broken lines). Disjunctive arcs {(i, j),(j, i)}
are in fact pairs of directed arcs with inverted directions, which connect vertices
i and j.

A vertex i ∈ O has a weight pi which equals the time of execution of operation
Oi. Arcs have the weight zero. A choice of exactly one arc from the set {(i, j),(j, i)}
corresponds to determining a schedule of operations execution � `i before j' or `j
before i'. A subset W ⊂ V consisting of exclusively directed arcs, at most one
from each pair {(i, j),(j, i)}, we call a representation of disjunctive arcs. Such
a representation is complete if all the disjunctive arcs have determined direction.
A complete representation, de�ning a precedence relation of jobs execution on the
same machine, generates one solution, not always feasible, if it includes cycles.
A feasible solution is generated by a complete representation W such that the
graph G(W) = (O,U ∪W) is acyclic (see Figure 3.4). For a feasible schedule
values Si of the vector of operations execution starting times S= (S1, S2, . . . ,
So) can be determined as a length of the longest path incoming to the vertex i
(without pi). As the graph G(W) includes o vertices and O(o2) arcs, therefore
determining the value of the cost function for a given representation W takes the
time O(o2) by using Bellman algorithm of paths in graphs determination.

80 Chapter 3. Scheduling problems

9

1 2 3

jobs

1

2

3

4

4

5 6

7

8

10

Fig. 3.5. An example of the G(π) graph of combinatorial model for the job shop
problem.

Combinatorial model

In the case of many applications a combinatorial representation of a solution is
better than a disjunctive model for the job shop problem. The presented model
follows that of Smutnicki [234]. It is void of redundance, characteristic of the
disjunctive graph, that is, the situation where many disjunctive graphs represent
the same solution of the job shop problem. A set of operations O can be decom-
posed into subsets of operations executed on a single, determined machine k ∈M ,
Mk = {i ∈ O : vi = k} and let mk = |Mk|. The schedule of operations execution
on a machine k is determined by a permutation πk = (πk(1), πk(2), . . . , πk(mk))
of elements of the set Mk, k ∈ M , where πk(i) means such an element from Mk

which is in position i in πk. Let Φn(Mk) be a set of all permutations of ele-
ments of Mk. A schedule of operations execution on all machines is de�ned as
π = (π1, π2, . . . , πm), where π ∈ Φn, Φn = Φn(M1) × Φn(M2) × . . . × Φn(Mm).
For a schedule π we create a directed graph (digraph) G(π) = (O, U ∪E(π)) with
a set of vertices O and a set of arcs U ∪E(π)), where U is a set of constant arcs
representing the technological order of operations execution inside a job, and a
set of arcs representing an order of operations execution on machines is de�ned as

E(π) =

m∪
k=1

mk−1∪
i=1

{(πk(i), πk(i+ 1))} (3.54)

Each vertex i ∈ O has the weight pi, each arc has the weight zero. A schedule
π is feasible if the graph G(π) does not include a cycle. For a given π, terms of

3.6. Flexible job shop problems 81

operations beginning can be determined in time O(o) from the recurrent formula

Sj = max{Si + pi, Sk + pk}, j ∈ O. (3.55)

where an operation i is a direct technological predecessor of the operation j ∈ O
and an operation k is a directed machine predecessor of the operation j ∈ O for a
�xed π. We assume Sj = 0 for these operations j which have not any technological
or machine predecessors.

An example of the graph G(π) is given in Figure 3.5 for the same data, as
a disjunctive graph from Figure 3.3 � it is visible that the G(π) has a more
transparent structure and is void of redundance connected with super�uous arcs
of the disjunctive representation. For a given feasible schedule π the process of
determining the cost function value requires the time O(o), which is thus shorter
than for the disjunctive representation.

3.6. Flexible job shop problems

Flexible job shop problems constitute a generalization (hybridization) of the clas-
sic job shop problem. In this section, we discuss a �exible job shop problem in
which operations have to be executed on one machine from a set of dedicated
machines. Then, as a job shop problem it also belongs to the strongly NP-hard
class. Although exact algorithms based on a disjunctive graph representation of
the solution have been developed (see Pinedo [208]), they are not e�ective for
instances with more than 20 jobs and 10 machines.

Many approximate algorithms, chie�y metaheuristic, have been proposed.
Nowicki and Smutnicki [197] proposed a tabu search approach using block prop-
erties for the special case of the problem considered (�ow shop problem with par-
allel machines). Hurink [139] developed the tabu search method for this problem.
Also Dauzère-Pérès and Pauli [93] used the tabu search approach extending the
disjunctive graph representation for the classic job shop problem taking into con-
sideration the assignment of operations to machines. Mastrolilli and Gambardella
[180] proposed a tabu search procedure with e�ective neighborhood functions for
the �exible job shop problem.

Many authors have proposed a method of assigning operations to machines
and then determining sequence of operations on each machine. This approach was
followed by Brandimarte [67] and Pauli [204]. These authors solved the assignment
problem (i.e., using dispatching rules) and next applied metaheuristics to solve
the job shop problem. Genetic approaches have been adopted to solve the �exible
job shop problem, too. Recent works are those of Jia et al. [149], Ho and Tay
[135], Kacem et al. [152], Pezzella et al. [207] and Bo»ejko et al. [31]. Gao et al.

82 Chapter 3. Scheduling problems

[111] proposed the hybrid genetic and variable neighborhood descent algorithm
for this problem.

3.6.1. Problem formulation

The �exible job shop problem (FJSP), also called the general job shop problem
with parallel machines, can be formulated as follows. Let J = {1, 2, . . . , n} be a
set of jobs which have to be executed on machines from the setM = {1, 2, . . . ,m}.
There exists a partition of the set of machines into types, i.e., subsets of machines
with the same functional properties. A job constitutes a sequence of some oper-
ations. Each operation has to be executed on a dedicated type of machine (from
the nest) within a �xed time. The problem consists in the allocation of jobs to
machines of dedicated type and in determining the schedule of jobs execution on
each machine to minimize the total jobs �nishing time. The following constraints
have to be ful�lled:

(i) each job has to be executed on only one machine of a determined type at
a time,

(ii) machines cannot execute more than one job at a time,
(iii) there are no idle times (i.e., the job execution must not be broken),
(iv) the technological order has to be obeyed.

Let O = {1, 2, . . . , o} be the set of all operations. This set can be partitioned
into sequences corresponding to jobs where the job j ∈ J is a sequence of oj
operations which have to be executed in an order on dedicated machines (i.e., in
the so-called technological order). Operations are indexed by numbers (lj−1 +

1, . . . , lj−1+oj) where lj =
∑j

i=1 oi is the number of operations of the �rst j jobs,
j = 1, 2, . . . , n, where l0 = 0 and o =

∑n
i=1 oi.

The set of machinesM = {1, 2, . . . ,m} can be partitioned into q subsets of the
same type (nests) where the i-th (i = 1, 2, . . . , q) typeMi includes mi machines
which are indexed by numbers (ti−1 + 1, . . . , ti−1 + mi), where ti =

∑i
j=1mj is

the number of machines in the �rst i types, i = 1, 2, . . . , q, where t0 = 0 and
m =

∑q
j=1mj .

An operation v ∈ O has to be executed on machines of the type µ(v), i.e., on
one of the machines from the set (nest)Mµ(v) in time pvj where j ∈Mµ(v).

Let

Ok = {v ∈ O : µ(v) = k} (3.56)

be a set of operations executed in the k -th nest (k = 1, 2, . . . , q). A sequence of
operations sets

Q = (Q1,Q2, . . . ,Qm), (3.57)

3.6. Flexible job shop problems 83

such that for each k = 1, 2, . . . , q

Ok =

tk−1+mk∪
i=tk−1+1

Qi and Qi ∩Qj = ∅, i ̸= j, i, j = 1, 2, . . . ,m, (3.58)

we call an assignment of operations from the set O to machines from the set M
(or shortly, machine workload).

A sequence (Qtk−1+1,Qtk−1+2, . . . ,Qtk−1+mk) is an assignment of operations
to machines in the i-th nest (shortly, an assignment in the i-th nest). In a special
case a machine can execute no operations and then a set of operations assigned
to be executed by this machine is an empty set.

Example 3.1. Let J = {J1, J2, J3} (n = 3) be a set of jobs which have to be
executed on machines from the set M = {M1,M2,M3,M4,M5,M6} (m = 6).
The set of machines can be partitioned into three types (nests):

a) M1 = {M1,M2},
b) M2 = {M3,M4},
c) M3 = {M5,M6}.

Due to the notion introduced above, the number of machines m = 6, the number
of machine types (nests) q = 3 and t0 = 0, t1 = 2, t2 = 4, t3 = 6.

Each job has to be executed on one machine from the nestM1, next from the
nestM2 and at the end from the nestM3 (satisfying technological requirements).
Each job consists of three operations. If O = {O1, O2, O3, O4, O5,O6, O7,O8, O9}
is the set of all operations, then the job J1 = {O1, O2, O3}, J2 = {O4, O5, O6}
and J3 = {O7, O8, O9}. Therefore, µ(O1) = µ(O4) = µ(O7) = 1 (these operations
have to be executed on one of the 1-st type machines, i.e.,M1), µ(O2) = µ(O5) =
µ(O8) = 2 (type M2) and µ(O3) = µ(O6) = µ(O9) = 3 (type M3). In this
example the number of operations o = 9 and l0 = 0, l1 = 3, l2 = 6, l3 = 9. Job
execution times on each machine are presented in Table 3.1.

If the assignment of operations to machines has been completed, then the
optimal schedule of operations execution determination (including a sequence of
operations execution on machines) leads to the classic scheduling problem solving,
that is, the job shop problem (see Section 3.5 and Grabowski and Wodecki [119]).

Let K = (K1,K2, . . . ,Km) be a sequence of sets where Ki ∈ 2O
i
, i =

1, 2, . . . ,m (in a particular case elements of this sequence can be empty sets).
By K we denote the set of all such sequences. The number of elements of the set
K is 2|O

1| · 2|O2| · . . . · 2|Om|.

84 Chapter 3. Scheduling problems

Table 3.1. Job execution times on machines.

NestM1 NestM2 NestM3

M1 M2 M3 M4 M5 M6

job J1 1 2 2 3 3 2

job J2 1 3 3 1 5 2

job J3 2 3 3 3 4 2

If Q is an assignment of operations to machines then Q ∈ K (of course, the
set K includes also sequences which are not feasible; that is, such sequences do
not constitute assignments of operations to machines).

For any sequence of sets K = (K1,K2, . . . ,Km) (K ∈ K) by Πi(K) we denote
the set of all permutations of elements from Ki. Thereafter, let

π(K) = (π1(K), π2(K), . . . , πm(K)) (3.59)

be a concatenation of m sequences (permutations), where πi(K) ∈ Πi(K). There-
fore

π(K) ∈ Π(K) = Π1(K)×Π2(K)×, . . . ,Πm(K). (3.60)

It is easy to observe that if K = (K1,K2, . . . ,Km) is an assignment of opera-
tions to machines then the set πi(K) (i = 1, 2, . . . ,m) includes all permutations
(possible sequences of execution) of operations from the set Ki on the machine i.
Further, let

Φ = {(K,π(K)) : K ∈ K ∧ π(K) ∈ Π(K)} (3.61)

be a set of pairs, where the �rst element is a sequence set and the second � a
concatenation of permutations of elements of these sets. Any feasible solution of
the FJSP is a pair (Q, π(Q)) ∈ Φ where Q is an assignment of operations to ma-
chines and π(Q) is a concatenation of permutations determining the operations
execution sequence which are assigned to each machine ful�lling constraints (i)�
(iv). By Φ◦ we denote a set of feasible solutions for the FJSP. Of course, there is
Φ◦ ⊂ Φ.

Example 3.2. For the data from Example 3.1, operations:

• O1, O4, O7 should be executed on machines of the nestM1 (i.e., machines
from the set {M1,M2}),

• O2, O5, O8 should be executed on machines of the nestM2 (i.e., machines
from the set {M3,M4}),

3.6. Flexible job shop problems 85

• O3, O6, O9 should be executed on machines of the nestM3 (i.e., machines
from the set {M5,M6}.

Set of operations:

• Q1 = {O1, O4, O7} and Q2 = ∅ constitute a machine-to-operation assign-
ment in the nestM1 (all the operations are executed on machine M1),

• Q3 = {O2, O5, O8} and Q4 = ∅ constitute a machine-to-operation assign-
ment in the nestM2 (all the operations are executed on machine M3),

• Q5 = {O3, O6, O9} and Q6 = ∅ constitute a machine-to-operation assign-
ment in the nestM3 (all the operations are executed on machine M5).

Let us take a sequence of sets

Q = (Q1,Q2,Q3,Q4,Q5,Q6), (3.62)

where Qi, 1 = 1, 2, . . . , 6 is a set of operations assigned to be executed on machine
Mi ∈ M. It is easy to present that Q constitutes an assignment of operations of
the set O to machines from the setM.

Now, we shall determine a sequence of operations execution on each machine.
Let π1 = (O1, O4, O7) be a permutation (execution schedule) of operations from
the set Q1 on machine M1. Similarly let π3 = (O2, O5, O8) be a permutation
of operations from the set Q3 on the machine M3 and let π5 = (O3, O5, O8)
be a permutation of operations from the set Q5 on machine M5. Moreover, we
presuppose π2 = π4 = π6 = ∅.

Permutation concatenation

π(Q) = (π1, π2, π3, π4, π5, π6), (3.63)

determines an operations execution sequence on each machine. It is easy to check
out that the pair Θ = (Q, π(Q)) constitutes a feasible solution of the FJSP
instance described in Example 3.1.

3.6.2. Graph models

Any feasible solution Θ = (Q, π(Q)) ∈ Φ◦ (where Q is an assignment of oper-
ations to machines and π(Q) determines the operations execution sequence on
each machine) of the FJSP can be presented as a directed graph with weighted
vertices G(Θ) = (V,R ∪ E(Θ)) where V is a set of vertices and a R ∪ E(Θ) is a
set of arcs, with:

1) V = O ∪ {s, c}, where s and c are additional (�ctitious) operations which
represent `start' and `�nish', respectively. A vertex v ∈ V \ {s, c} possesses
two attributes:

86 Chapter 3. Scheduling problems

• λ(v) � a number of machines on which an operation v ∈ O has to be
executed,

• pv,λ(v) � a weight of vertex which equals the time of operation v ∈ O
execution on the assigned machine λ(v).

Weights of additional vertices ps = pc = 0.

2)

R =

n∪
j=1

oj−1∪
i=1

{(lj−1 + i, lj−1 + i+ 1)}∪ {(s, lj−1 + 1)}∪ {(lj−1 + oj , c)}
]
.

(3.64)
A set R includes arcs which connect successive operations of the job, arcs
from vertex s to the �rst operation of each job and arcs from the last
operation of each job to vertex c.

3)

E(Θ) =

m∪
k=1

|Ok|−1∪
i=1

{(πk(i), πk(i+ 1))} . (3.65)

It is easy to notice that arcs from the set E(Θ) connect operations executed
on the same machine (πk is a permutation of operations executed on the
machine Mk, that is, operations from the set Ok).

Arcs from the set R determine the operations execution sequence inside jobs (a
technological order) and arcs from the set E(π) the operations execution sequence
on each machine.

Remark 3.1. A pair Θ = (Q, π(Q)) ∈ Φ is a feasible solution for the FJSP if
and only if the graph G(Θ) does not include cycles.

Example 3.3. A directed graph G(Θ) for the FJSP instance from Example 3.1 is
presented in Figure 3.6 for the feasible solution Θ = (Q, π(Q)) from Example 3.2.
Arcs from the set R are represented by a solid line; a dashed line represents arcs
from the set E(Θ). The number inside a circle is the vertex number; the number
near a circle presents the vertex weight.

A sequence of vertices (v1, v2, . . . , vk) in G(Θ) such that an arc (vi, vi+1) ∈
R∪E(Θ) for i = 1, 2, . . . , k−1, we call a path from vertex v1 to vk. By C(v, u) we
denote the longest path (called a critical path) in the graph G(Θ) from the vertex
v to u (v, u ∈ V) and by L(v, u) we denote a length (sum of vertex weights) of
this path.

3.6. Flexible job shop problems 87

M1

1 2 3

4 5 6

7 8 9

c s

M3 M5

M1 M3 M5

M1 M3 M5

0 0

1 2 3

1 3 5

2 3 4

Fig. 3.6. A directed graph for a solution Θ = (Q, π(Q)) from Example 3.2.

It is easy to notice that the time of all operations execution Cmax(Θ) related
with the assignment of operations Q and schedule π(Q) equals the length L(s, c)
of the critical path C(s, c) in the graph G(Θ). A solution of the FJSP amounts to
determining a feasible solution Θ = (Q, π(Q)) ∈ Φ◦ for which the graph connected
with this solution G(Θ) has the shortest critical path, that is, it minimizes L(s, c).

Let C(s, c) = (s, v1, v2, . . . , vw, c), vi ∈ O (1 ≤ i ≤ w) be a critical path in
the graph G(Θ) from the starting vertex s to the �nal vertex c. This path can be
divided into subsequences of vertices

B = (B1, B2, . . . , Br), (3.66)

called blocks in the permutations on the critical path C(s, c) (Grabowski [122],
Grabowski and Wodecki [119]) where:

(a) a block is a subsequence of verticesfrom the critical path including succes-
sive operations executed directly one after another,

(b) a block includes operations executed on the same machine,
(c) a product of any two blocks is an empty set,
(d) a block is a maximal (according to the inclusion) subset of operations from

the critical path ful�lling constraints (a)�(c).

Next, only these blocks are considered for which |Bk| > 1, i.e., non-empty
blocks. If Bk (k = 1, 2, . . . , r) is a block on the machine Mi (i = 1, 2, . . . ,m) from
the nest t (t = 1, 2, . . . , q) then we shall denote it as follows

Bk = (πi(a
k), πi(a

k + 1), . . . , πi(b
k − 1), πi(b

k)), (3.67)

where 1 ≤ ak < bk ≤ |Qi|. Operations π(ak) and π(bk) in the block Bk are
called the �rst and the last, respectively. In turn a block without the �rst and

88 Chapter 3. Scheduling problems

the last operation we call an internal block. The de�nitions given are presented
in Figure 3.7.

s c π (ak) π (bk)
k-th block

k-th internal block

...
C(s,π (ak)) C(π (bk),c)

Fig. 3.7. Blocks on the critical path.

Example 3.4. There exist two critical paths (both with the length 15) in the
graph G(Θ) shown in Figure 3.6:

1. (s,O1, O2, O5, O6, O9, c) including two blocks: B1 = (O2, O5) and B2 =
(O6, O9). As these blocks consist of two elements, there are no internal
blocks. The operation a1 = O2 is the �rst one, b1 = O5 is the last operation
of the block B1 = (O2, O5).

2. (s,O1, O2, O3, O6, O9, c) including one block B1 = (O3, O6, O9) consisting
of three elements. The operation a1 = O3 is the �rst one, b1 = O9 is
the last operation of this block. The internal block consists of the single
operation O6.

In the work of Grabowski [122] there are theorems called elimination criteria
of blocks in the job shop problem.

Theorem 3.4 ([122]). Let B = (B1, B2, . . . , Br) be a sequence of blocks of the
critical path in the acyclic graph G(Θ), Θ ∈ Φ◦. If the graph G(Ω) is feasible (i.e.,
it represents a feasible solution) and if it is generated from G(Θ) by changing the
order of operations execution on some machine and Cmax(Ω) < Cmax(Θ) then in
the G(Ω):

(i) at least one operation from a block Bk, k ∈ {1, 2, . . . , r} precedes the �rst
element π(ak) of this block, or

(ii) at least one operation from a block Bk, k ∈ {1, 2, . . . , r} occurs after the last
element π(bk) of this block.

Changing the order of operations in any block does not generate a solution
with lower value of the cost function. At least one operation from any block should
be moved before the �rst or after the last operation of this block to generate a
solution (graph) with smaller weight of the critical path. We use this property to
reduce the neighborhood size, i.e., do not generate solutions with greater values
(compared to the current solution) of the cost function.

Part II

SINGLE-WALK

PARALLELIZATION

Chapter 4

Single machine scheduling

The main aim of this chapter is to show the e�ectiveness of the transfer of an
original technology of a huge neighborhood searching into the parallel computing
environment. We propose a single-walk parallel algorithm to solve the single
machine total weighted tardiness problem using the technique of an exponential-
size neighborhood searching in polynomial time, based on dynamic programming.
The approach proposed is strong enough to solve also 1|ri|

∑
wiTi, 1||

∑
wiUi,

1||
∑

(wiEi + uiTi) and 1||
∑

wiCi problems (all of these methods are NP-hard).
Nowadays this method is one of the most powerful approximate methods for the
single machine total weighted scheduling problem. The neighborhood is generated
by executing series of swap moves.

4.1. Introduction

The goal of this section is to provide the fundamental well-known facts of the
theoretical parallel computing on the PRAM machine, as well as the literature
review for the single-walk parallelization of the discrete optimization problems
solving algorithms. We consider an algorithm which employs a single process
(thread) to guide the search. The thread performs in a cyclic way (iteratively)
two leading tasks:

(A) goal function evaluation for a single solution or a set of solutions,
(B) management, e.g. solution �ltering and selection, collection of history,

updating.

Part (B) takes statistically 1�3% total iteration time, thus its acceleration is
useless. Part (A) can be accelerated in a multithread environment in various
manners � our aim is to �nd either cost optimal method or non-optimal one in
terms of cost while o�ering the shortest running time. It is noteworthy to observe

92 Chapter 4. Single machine scheduling

that if Part (B) takes β percentage of the 1-processor algorithm and if it is not
parallelizable, the speedup of the parallel algorithm for any number of processors
p cannot be greater than 1

β (according to Amdahl's law). In practice, if Part
(B) takes 2% of the total execution time, the speedup can achieve at most the
value of 50.

4.2. PRAM computation model

We make a complexity analysis of the cost function determination algorithms
for their implementations on Parallel Random Access Machine (PRAM model).
A PRAM [91, 238] consists of many cooperating processors, each being a random
access machine (RAM), commonly used in theoretical computer science. Each
processor can make local calculations, e.g. additions, subtractions, shifts, condi-
tional and unconditional jumps and indirect addressing. All the processors in the
PRAM model are synchronized and have an access to a shared global memory in
constant time O(1). There is also no limit on the number of processors in the
machine, and any memory cell is uniformly accessible from any processor. The
amount of shared memory in the system is not limitable.

We make use of three kinds of PRAMs here: CRCW (Concurrent Read Exclu-
sive Write) in which simultaneous reading and writing are allowed, CREW (Con-
current Read Exclusive Write) where processors can read from the same memory
cell concurrently, and EREW (Exclusive Read Exclusive Write) where the concur-
rency of reading is forbidden. Both CREW and EREW models resemble GPU
programming model. The �rst, CRCWmodel is very useful to design special, very
fast parallel algorithms, although this is di�cult to achieve in practice. There are
three kinds of CRCW PRAMs with di�erent ways of handling concurrent writing:

� `common' model in which all processors writing to the same location con-
currently are required to write the same data,

� `arbitrary ' model in which an arbitrary processor succeeds,

� `priority ' model in which the lowest numbered processor succeeds with writ-
ing.

We take advantage of the following well-known facts for the PRAM parallel
computer model (Cormen et al. [83]):

Fact 4.1. A sequence of pre�x sums (y1, y2, . . . , yn) of input sequence (x1, x2, . . . ,
xn) such that yk = yk−1 + xk = x1 + x2 + . . . + xk for k = 2, 3, . . . , n where
y1 = x1 can be calculated in time O(log n) on the EREW PRAM with O(n/ log n)
processors.

4.3. Calculations for single-walk parallelization 93

In line with the statement above we can assume that the sum of n values can
be calculated in time O(log n) on O(n/ log n)-processor EREW PRAMs. We can
also calculate minimal or maximal values of a sequence based on the following
fact.

Fact 4.2. The minimal and the maximal value of input sequence (x1, x2, . . . , xn)
can be determined in time O(log n) on the EREW PRAM with O(n/ log n) pro-
cessors.

The next fact makes it possible to calculate a function in constant time O(1) on
the PRAM.

Fact 4.3. The value of y = (y1, y2, . . . , yn) where yi = f(xi), x = (x1, x2, . . . , xn)
can be calculated on the CREW PRAM with n processors in time O(c) = O(1),
where c is a time needed to calculate the single value of yi = f(xi).

We need n processors to do this. One can also formulate the following fact for
PRAM with a fewer number of processors.

Fact 4.4. The problem formulated in the previous fact can be calculated in time
O(log n) on O(n log n) processors.

If we do not possess such a big number of processors we can use the following fact
to keep the same cost:

Fact 4.5. If the algorithm A works on p-processor PRAM in time t, then for
each p′ < p there exists an algorithm A′ for the same problem which works on
p′-processor PRAM in time O(pt/p′).

The facts mentioned above give a theoretical tool for the single-walk parallel
algorithm analysis. The PRAM model gives a good approximation of the �ne-
grained concurrent computing systems behavior, such as GPUs.

4.3. Calculations for single-walk parallelization

The goal of this method is to speed up the process of a neighborhood graph pass-
ing through parallelization of the most time-consuming operations � calculations
of the cost function of parallelization of the process of neighbors generating. In the
case of parallelization of cost function calculations, the speeding up of computa-
tions can be obtained by keeping identical � as in sequence algorithm � trajectory
of passing by a neighborhood graph. In the other case, i.e., decomposition of the
neighborhood generating process into parallel processes, there occurs a situation
in which a parallel algorithm, checking concurrently a greater number of neigh-
bors than a sequential algorithm does (usually using a mechanism of reducing the

94 Chapter 4. Single machine scheduling

size of the neighborhood) will be moving along a better trajectory, determining
a more advantageous path of passing by the neighborhood graph and obtaining
better results of computations (solutions with better cost function values).

Parallelization of single-walk algorithms has to be done with �ne-grained gran-
ularity because of the frequent communication and synchronization. The �rst
application based on this model appears in the context of parallelization of simu-
lated annealing and genetic algorithm parallel metaheuristics. Although parallel
decomposition of the neighborhood does not always lead to the computations
time reduction, it is frequently applied to increase the neighborhood size consid-
ered. This type of a parallel tabu search algorithm was proposed by Fiechter
[106] for the traveling salesman problem. A synchronic tabu search was also
researched by Porto and Ribeiro [209, 210, 211]. In paper [212], Porto, Kita-
jima and Ribeiro present parallel tabu search algorithms based on a master-slave
model with dynamic load balancing of processors. Bo»ejko [25] proposed a parallel
scatter search metaheuristic with single-walk parallelization of the goal function
calculation. Bo»ejko, Smutnicki and Uchro«ski [35] propose a single-walk parallel
goal function calculation in metaheuristics with the use of 128-processor nVidia
Tesla GPU.

Aarts and Verhoeven [1, 260] distinguished two subclasses in the class of single
trajectory parallel search algorithms. A single-step class includes algorithms in
which a neighborhood is searched by concurrently running parallel processes, but
only a single neighbor is chosen as a result. In a multiple-step class a sequence of
following moves in a neighborhood graph is determined and concurrently searched.

4.4. Huge neighborhoods

In the case of traditional algorithms the neighborhood is generated by single trans-
formations (moves). Let k and l (k ̸= l) be a pair of positions in a permutation:
π = (π(1), π(2), ... , π(k− 1), π(k), π(k+1), ... , π(l− 1), π(l), π(l+1), ... , π(n)).

Of the many types of moves considered in the literature, the following two are the
most common:

1. Insert move ikl consists in removing the job π(k) from the position k and
inserting it in position l. Thus the move ikl generates a new permutation
ikl (π) = πk

l in the following way: if k < l, then
πk
l = (π(1), . . . , π(k−1), π(k+1), . . . , π(l−1), π(l), π(k), π(l+1), . . . , π(n))

else
πk
l = (π(1), . . . , π(l−1), π(k), π(l), π(l+1), . . . , π(k−1), π(k+1), . . . , π(n)).

Each of n elements can be inserted to any of n places, so insert type move
generates the neighborhood of n(n− 1) elements.

4.4. Huge neighborhoods 95

2. Swap move skl , in which the jobs π(k) and π(l) are swapped among some
positions k and l. The move skl generates permutation skl (π) = πk

l =
(π(1), π(2), . . . , π(k−1), π(l), π(k+1), . . . , π(l−1), π(k), π(l+1), . . . , π(n)).
Each of n elements can be swapped with any of the other n−1 elements, so
this move generates the neighborhood of n(n− 1)/2 (without repetitions).

The insert move can be executed in time O(n), the swap move, in constant time
O(1) in the classic, linear representation of permutation. Local search methods
typically determine a solution xi+1 from the neighborhoodN(xi) with the minimal
goal function value, i.e.,

F (xi+1) = min
x∈N(xi)

F (x). (4.1)

The aim of increasing the size of N(xi) is to search `faster' big areas of the solution
space. The question is how big N(xi) can be to search it e�ciently enough.
Several kinds of this type huge neighborhoods are discussed in the literature (see
Bo»ejko and Wodecki [46]), especially in the TSP context. The most promising
for scheduling problem seems to be that proposed by Congram et al. [81], known
as dynasearch neighborhood. Applying this method it is possible to revise this
non-polynomial size neighborhood (calculate the minimal element) in polynomial
time. Methods of dynamical programming require, however, a lot of time and
memory, so they can be applied only in limited range of large problems.

Here we present parallel algorithm in which the fundamental element is a
parallel method of generating and revising the huge neighborhood. We prove that
it is possible to show some new properties which indicate that such a method is
cost-optimal with e�ciency O(1). We apply an appropriate algorithm to solve
the single machine total weighted tardiness problem.

Let us consider two swap moves sij and skl . These moves are said to be inde-
pendent if

max{i, j} < min{l, k} or min{i, j} > max{l, k}. (4.2)

The huge swap neighborhood consists of all permutations that can be obtained
from π by a series of pairwise independent swap moves. The size of the neighbor-
hood is 2n−1 − 1 (see Congram et al. [81]).

We de�ne a partial sequence in the state (j, π), for j = 1, 2, . . . , n, if it can
be obtained from the partial sequence π(1), π(2), . . . , π(j) by applying a series of
independent swaps. Let πj be a partial sequence with minimum total weighted
tardiness for jobs π(1), π(2), . . . , π(j) among partial sequences in state (j, π). Fur-
ther, let F (πj) be the total weighted tardiness for jobs π(1), π(2), . . . , π(j) in πj ,
i.e.,

F (πj) = min{F (β) : β ∈ (j, π)}. (4.3)

96 Chapter 4. Single machine scheduling

Optimality of F (πj) understood as the `optimal substructure' property leads to
the F (πn) optimality, that is, the best move of the whole huge neighborhood will
be determined.

The partial sequence πj must be obtained from a partial sequence πi that has
the minimum objective value from all partial sequences in the �rst previous state
(i, π), where 0 ≤ i < j, by appending the job π(j) if i = j − 1, or by the �rst
appending job π(j) and then interchanging jobs π(i+1) and π(j) if 0 ≤ i < j−1.
These two possibilities are considered in detail below.

Case A. i = j − 1. In this case, the job π(j) is not involved in any π(j) swaps,
and π(j) simply appends to a partial sequence πj−1; hence πj = (πj−1, πj). Ac-
cordingly,

F (πj) = F (πj−1) + wπ(j)(Cπ(j) − dπ(j))
+, (4.4)

where, for any real x, (x)+ = max{0, x}.

Case B. 0 ≤ i < j − 1. Here, jobs π(j) and π(i + 1) are swapped; that is why
πj can be written as πj = (πi, π(j), π(j + 2), .., π(j − 1), π(i + 1)), and the total
weighted tardiness F (πj) is readily computed as

F (πj) = F (πi) + wπ(j)(Cπ(i) + pπ(j) − dπ(j))
++

+

j−1∑
k=i+2

wπ(k)(Cπ(k) + pπ(j) − pπ(i+1) − dπ(j))
++

+ wπ(i+1)(Cπ(j) − dπ(i+1))
+. (4.5)

These values can be determined recursively. For any j = 2, 3, . . . , n,

F (πj) = min

F (πj−1) +Kπ(j),π(j),

min
0≤i≤j−2

{F (πi) +Kπ(j),π(i) +Kπ(i+1),π(j)+

+
j−1∑

k=i+2

wπ(k)(Pπ(k) + pπ(j) − pπ(i+1) − dπ(k))
+,

(4.6)

where the initialization is F (π0) = 0, F (π1) = wπ(1)(pπ(1) − dπ(1))
+ and a tem-

porary variable Kπ(a),π(b) = wπ(a)(Cπ(b) − dπ(a))
+. The optimal solution is F (πn)

and this algorithm runs in time Tseq = O(n3) � there are two loops to be executed
inside equation (4.6) (a minimum of at most n− 1 elements and a sum of at most
n− 2 elements) and this formula has to be calculated n− 1 times, for each j.

4.5. Huge neighborhood searching method 97

4.5. Huge neighborhood searching method

In this section, we present application of the exponential-size neighborhood search-
ing method for some NP-hard single machine scheduling problems. Beginning
from a sequential approach (in the range of a neighborhood searching), we show
how to design an e�cient parallel huge neighborhood searching approach. Such
a methodology has not yet been proposed in the literature.

Problem 1|ri|
∑

wiTi

In this problem, a starting time Ci of a job i ∈ J is not less than the release date
ri. For any permutation (sequence) of jobs π = (π(1), π(2), . . . , π(n)), a time of
�nishing the job π(i) ∈ J

Cπ(i)) = Cπ(i−1) + (rπ(i) − Cπ(i−1))
+ + pπ(i), (4.7)

where Cπ(0) = 0. Recurrent formula (4.6) takes the form

F (πj) = min

 F (πj−1) + wπ(j)(Cπ(j) − dπ(j))
+,

min
1≤i≤j−1

Gcalc(πi),
(4.8)

where the initialization is F (π0) = 0 and F (π1) = wπ(1)(Cπ(1) − dπ(1))
+. The

value of the function Gcalc(πi) can be computed from the procedure presented in
Figure 4.1.

Algorithm 2. G_calc(π,j)
ret = F(j-1);

tmp = max{P(j-1), rπ(i)};

ret+= max{(tmp + pπ(i) - dπ(i)),0}*wπ(i);

tmp+=pπ(i);

for(v = j+1; v <= i-1; v++)

tmp=max{tmp,rπ(v)};

ret+=max{(tmp + pπ(v) - dπ(v)),0}*wπ(v);

tmp+=pπ(v);

tmp=max{tmp, rπ(j)};

ret+=max{(tmp + pπ(j) - dπ(j)), 0}*wπ(j);

return ret;

Fig. 4.1. Gcalc function.

Computational complexity of this function is O(j2). Therefore, the algorithm
of determining the value of F (πn) from formula (4.6) possesses the complexity
O(n3), as mentioned in Section 4.4.

98 Chapter 4. Single machine scheduling

Problem 1||
∑

wiUi

For a given sequence π we can compute for the job π(i) its completion time Cπ(i)

and the unit penalty Uπ(i). Uπ(i) = 1 if Cπ(i) > dπ(i) and Uπ(i) = 0 otherwise. In
another form of notation Uπ(i) = sgn((Cπ(i) − dπ(i))

+).

For j < i we can compute similarly as in the original (i.e., for 1||
∑

wiTi)
method

F (πj) = min

F (πj−1) + Uπ(j)wπ(j),

min
0≤i≤j−2

{F (πj−1) + Vπ(j−1),π(i)wπ(i) +Wπ(i),π(j)wπ(j) +

+
j−1∑

k=i+2

sgn((Cπ(k) − pπ(j) + pπ(i) − dπ(k))
+)wπ(k),

(4.9)

where temporary variables Vπ(a),π(b) = sgn((Cπ(a)+pπ(b)−dπ(b))+) andWπ(a),π(b) =
sgn((Cπ(a) − dπ(b))

+) are used. Computational complexity of the search over the
whole neighborhood is O(n3). Based on (4.8) and (4.9) it is easy to formulate
recurrence relationship for the 1|ri|

∑
wiUi problem.

Problem 1||
∑

(wiEi + uiTi)

In this problem, by ei and di we mean the expected earliest and latest moments
of completing a job i ∈ J . If the scheduling of jobs is established and Ci is
the moment of �nishing a job i, then we call Ei = [ei − Ci]

+ the earliness and
Ti = [Ci−di]

+ the tardiness. The expression uiEi+wiT is the cost of executing a
job, where ui and wi (i ∈ J) are nonnegative coe�cients of a goal function. The
problem consists in minimizing the sum of the costs of jobs, that is, the function∑n

i=1 (uiEi + wiTi).
To obtain an adequate recurrence relationship it is necessary to exchange the

cost of job wiTi for uiEi + wiTi in formula (4.6).

Problem 1||
∑

wiCi

For the problem of minimizing the costs of jobs completion the recurrence formula
(4.6) takes the form

F (πj) = min

F (πj−1) + wπ(j)Cπ(j),

min
0≤i≤j−2

{wπ(j)(Cπ(i) + pπ(j)) + wπ(i+1)Cπ(j) +

+ F (πi)}+
j−1∑

k=i+2

wπ(k)(Cπ(k) + pπ(j) − pπ(i+1)).

(4.10)

4.6. Parallel huge neighborhood searching method 99

The algorithm of determining optimal value of F (πn) has computational complex-
ity O(n3).

4.6. Parallel huge neighborhood searching method

We shall make use of the facts for the PRAM parallel computer model described
in Section 4.2.

Theorem 4.1. The best element of the huge neighborhood can be determined in

time O(n log2 n) on the PRAM with O
(

n2

log2 n

)
processors.

Proof. Let us notice that all times of job �nishing Cj , j = 1, 2, . . . , n can
be computed as pre�x sums (see Fact 4.1, Section 4.2) in time O(log n) using
O(n/ log n) processors. Next, to compute the value of F (πj) in equation (4.6) it
is necessary to determine the sum of at most n values of

j−1∑
k=i+2

wπ(k)(Pπ(k) + pπ(j) − pπ(i+1) − dπ(k))
+ (4.11)

and next the minimal element of (at most) n values

min
0≤i≤j−2

{F (πi) + wπ(j)(Cπ(i) + pπ(j) − dπ(j))
+ +

j−1∑
k=i+2

wπ(k)(Pπ(k) +

+ pπ(j) − pπ(i+1) − dπ(k))
+ + wπ(i+1)(Cπ(j) − dπ(i+1))

+}, (4.12)

with computed sums inside. Operations of addition, due to their small and, �rst of
all, constant cost, independent of the n number, can be executed in constant time
O(1), so we can omit them in our discussion. To determine the above-mentioned
minimal element we need PRAM with O(n

logn) processors (see Fact 4.2, Sec-
tion 4.2), each one of which has to execute computations of the sums (mentioned
at the beginning) also with O(n

logn) processors, so in total we need

p = O

(
n

logn

)
·O

(
n

logn

)
= O

(
n2

log2 n

)
(4.13)

processors of the PRAM and the time

Tpar(p) = O(log n) ·O(log n) = O(log2 n). (4.14)

100 Chapter 4. Single machine scheduling

1

10

100

1000

10000

100000

1000000

10 20 30 40 50 60 70 80 90 100

C
o

m
p

le
xi

ty
,

P
ro

ce
ss

o
rs

 n
u

m
b

er

n

Proc_par(n) Complex_par(n) Complex_seq(n)

Fig. 4.2. Comparison (on the logarithmic scale) of complexity functions.

At the end, it is necessary to compute the minimum of two calculated values of
(4.6), which we can do in constant time O(1) on one processor. Therefore, to
determine all values F (πj), j = 2, 3, . . . , n we need time

Tpar(p) = n ·O(log2 n) = O(n log2 n) (4.15)

and

p = O

(
n2

log2 n

)
(4.16)

processors.
The conclusion of this theorem is as follows: such a method has a speedup

S(p) =
Tseq

Tpar(p)
= O

(
n3

n log2 n

)
= O

(
n2

log2 n

)
(4.17)

in the order of the number of processors used, hence the algorithm connected with
this theorem is cost-optimal with the e�ciency O(1). The speedup obtained has
asymptotically maximal possible value.

Parallelization provides us with two possible bene�ts: shortening computa-
tion time or examining more solutions in the same time, because Fact 4.5 from
Section 4.2 allows searching huge neighborhood, e.g. with 4-processor PRAM
machine in time O(n3/4), so 4 times faster than a sequential algorithm does. It

is also possible to use all O
(

n2

log2 n

)
processors while keeping cost optimality and

obtaining maximal speedup of computation process. The aforementioned number

4.7. Remarks and conclusions 101

of processors is not potentially too big and can be encountered in real parallel
systems. A comparison of the speed of functions increasing (complexity of se-
quential and parallel method, number of processors) is presented in Figure 4.2,
where Complex_seq(n) = n3, Complex_par(n) = n

log2 n
, Proc_par(n) = n2

log2 n
.

4.7. Remarks and conclusions

The methods described in this chapter give an e�ective methodology of cost-
optimal single-walk parallelization of the huge neighborhood searching process.
Thanks to it there is a possibility to take advantage of full computational power
of parallel mainframe computers equipped with shared memory as well as GPGPU
to �nd good solutions of hard scheduling problems.

The neighborhood generated by series of swap moves, which has an exponential
size, is explored in polynomial time Tseq = O(n3). The proposed cost-optimal
parallelization makes it possible to speed up the calculations obtaining the parallel
runtime Tpar = O(n log2 n) and the speedup S(p) = O

(
n2

log2 n

)
.

The method proposed here can be applied on GPGPU environment making use
of a big number of processors working as SIMD machine and connected by the fast
shared memory. In a hybrid CPU-GPU implementation the huge neighborhood
generation function discussed can be coded on GPU as the most computational
complex element of the whole single-walk parallel algorithm.

Summing up, in this chapter we proposed the new methodology of transferring
the best huge neighborhood search technologies in the local search methods into
the parallel computing environment. These exponential-size neighborhoods are
searched in an e�ective way � not only in polynomial time, as sequential method
does, but also by a cost-optimal parallel method.

Chapter 5

Job shop scheduling

The goal of this chapter is to propose a methodology of the e�ective cost func-
tion determination for the job shop scheduling problem in parallel computing
environment. Parallel Random Access Machine (PRAM) model is applied for
the theoretical analysis of algorithm e�ciency. The methods need a �ne-grained
parallelization, therefore the approach proposed is especially devoted to paral-
lel computing systems with fast shared memory (e.g. GPGPU, General-Purpose
computing on Graphics Processing Units).

5.1. Introduction

There are only a few papers dealing with parallel algorithms for the job shop
scheduling problem. Bo»ejko et al. [34] proposed a single-walk parallelization of
the simulated annealing metaheuristic for the job shop problem. Steinhöfel et
al. [237] described the method of parallel cost function determination in time
O(log2 o) on O(o3) processors, where o is the number of all operations. Bo»ej-
ko [25] considered a method of parallel cost function calculation for the �ow shop
problem, which constitutes a special case of the job shop problem. Here we shall
propose a more e�cient version of the algorithm developed by Steinhöfel et al.,
which works in time O(log2 o) on O(o3/ log o) processors. Besides, we show a
cost-optimal parallelization which takes a time O(d), where d is the number of
layers in the topological sorted graph representing a solution. Finally, we prove
that this method has a constant O(1) time complexity if we know a value of the
upper bound of the cost function value.

104 Chapter 5. Job shop scheduling

5.2. Sequential determination of the cost function

Taking into consideration constraints (3.47)�(3.49) presented in Section 3.5 it is
possible to determine the time moments of job completion Cj , j ∈ O and job
beginning Sj , j ∈ O in time O(o) on the sequential machine using the recurrent
formula

Sj = max{Si + pi, Sk + pk}, j ∈ O. (5.1)

where an operation i is a direct technological predecessor of the operation j ∈ O
and an operation k is a directed machine predecessor of the operation j ∈ O. The
determination procedure of Sj , j ∈ O from the recurrent formula (5.1) should be
initiated by an assignment Sj = 0 for those operations j which do not possess
any technological or machine predecessors. Next, in each iteration an operation
j has to be chosen for which:

1. the execution beginning moment Sj has not been determined yet, and

2. these moments were determined for all its direct technological and machine
predecessors; for such an operation j the execution beginning moment can
be determined from (5.1).

It is easy to observe that the order of determining Sj times corresponds to the
index of the vertex of the graph G(π) connected with an operation j after the
topological sorting of this graph. The method mentioned above is in fact a simplis-
tic sequential topological sort algorithm without indexing of operations (vertices
of the graph). If we add to this algorithm an element of indexing vertices, for
which we calculate Sj value, we obtain a sequence which is the topological order of
vertices of the graph G(π). Now, we de�ne layers of the graph collecting vertices
(i.e., operations) for which we can calculate Sj in parallel, as we have calculated
starting times for all machine and technological predecessors of operations in the
layer (see Figure 5.1).

De�nition 5.1. The layer of the graph G(π) is a subsequence of the sequence
of vertices ordered by the topological sort algorithm, such that there are no arcs
between vertices of this subsequence.

We will need this de�nition in the next paragraph.

5.3. Parallel determination of the cost function

Two kinds of methods for parallel cost function determination are proposed. The
�rst class of methods is based on matrix multiplication method and it enables

5.3. Parallel determination of the cost function 105

9

1 2
3

jobs

1

2

3

4

4

5 6

7

8

10

I.

II. III.

IV.

V.

VI.

VII.

Fig. 5.1. A sample of conjunctive graph for the job shop problem with d = 7 layers.

obtaining a good parallel runtime. The second class of methods uses the parti-
tioning of a graph into layers. Algorithms based on this class are cost-optimal.
Both approaches shown in this chapter are new, original results.

5.3.1. Methods based on matrix multiplication

We propose an original method using O
(

o3

log o

)
-processor CREW PRAM with

the computational complexity O(log2 o). This algorithm is O(log o) times more
e�cient than the algorithm proposed in the paper of Steinhöfel et al. [237] and
it can be used not only for J ||Cmax but also for J ||

∑
fi problems as well as for

J ||fmax de�ned in Section 3.5.

Theorem 5.1. For a �xed feasible operations order π for the J ||
∑

fi or J ||fmax

problem, the value of the cost function can be determined in time O(log2 o) on

O
(

o3

log o

)
-processor CREW PRAMs.

Proof. For the graph G∗(π) = (O∗, U∗ ∪ E) de�ned in Section 3.5 for a job
shop problem we introduce the matrix of distances A = [au,v] with the size o × o,
where au,v is the length of the longest path between vertices u and v. We initiate
values au,v in the following way

au,v =

{
pu if (u, v) ∈ U∗ ∪ E(π),
0 if (u, v) ̸∈ U∗ ∪ E(π).

(5.2)

The matrix A will be used for calculation of the longest paths in the graph G∗(π).
Initial values of the matrix A can be determined in time O(1) using O(o2) proces-
sors, because this requires o2 independent assignment instructions, each one for
every pair (u, v), u, v = 1, 2, . . . , o.

106 Chapter 5. Job shop scheduling

The problem of determining cost function value for the J ||
∑

fi or J ||fmax

job shop problems requires �nding lengths of the longest paths from the ver-
tex 0 ∈ U∗ to vertices l1, l2, . . . , ln (which corresponds to determination of the
following values of job execution �nishing times: Cl1 , Cl2 , . . . , Cln), where n
de�nes the number of jobs, as was de�ned in Section 3.5. To determine the
length of paths it is enough to execute ⌈log(o)⌉ parallel steps, because in each
step k = 1, 2, . . . , ⌈log(o)⌉ the algorithm described below updates lengths of the
longest paths between vertices with the distance (in the sense of the number of
vertices) of at most 1, 2, 4, 8, . . . , 2log(o). After having executed the ⌈log(o)⌉ steps
the matrix A possesses information about the length of paths between vertices
with the distance (in the sense of the number of vertices) of 2log(o) = o, that is,
between all the vertices, because the number of vertices on the longest (in the
sense of the number of vertices) path in the graph G∗(π) must not be greater
than o (G∗(π) is an acyclic digraph). For technical needs of the algorithm, an
additional three-dimensional table T = [tu,w,v] of the size o × o× o is de�ned.
It is used for a transitive closure calculation of G∗(π). The algorithm requires
execution of the following identical steps ⌈log o⌉ times:

1. updating tu,w,v for all triples (u,w, v) due to the formula
tu,w,v = au,w + aw,v,

2. updating au,v for all pairs (u, v) on the basis of the equation
au,v = max{au,v,max1≤w≤o tu,w,v}.

Step 1 executed on o3 processors can take the time O(1). On ⌈o3/ log o⌉
processors the calculations have to be made ⌈log o⌉ times, so the computational
complexity of this step is O(log o).

Step 2 consists in determining a maximum of o + 1 values, which can be
done on O(o/ log o) processors in time O(log o). As such a maximum should be
determined for o2 pairs (u, v) and these calculations are independent and have to
be repeated ⌈log o⌉ times, therefore using p = O(o3/ log o) processors the whole
algorithm has a computational complexity

Tpar(p) = ⌈log o⌉O(log o) = O(log2 o). (5.3)

Finally, for the J ||
∑

fi problem, all the fj(Clj), where Clj = a0,lj , j ∈ J , should
be summarized. These values can be taken from table A. Summation takes the
time O(log n) using O(n/ log n)-processor CREW PRAMs keeping computational
complexity O(log2 o) and the number of processors O(o3/ log o) for the whole
method described, because the number of jobs n is smaller or equals the number
of operations o.

Similarly, for the J ||fmax problem it is necessary to determine maximum of all
values fj(Clj), j ∈ J . This step has also computational complexity O(log n) using

5.3. Parallel determination of the cost function 107

O(n/ log n)-processor CREW PRAM machine keeping computational complexity
O(log2 o) and the number of processors O(o3/ log o) for the entire method.

Corollary 5.1. For the method based on Theorem 5.1 the speedup and the
e�ciency are

S(p) = O

(
o

log2 o

)
, η(p) = O

(
1

o2 log o

)
. (5.4)

E�ciency of the method formulated below quickly decreases with increasing
the size of the problem. Therefore, it is not cost-optimal, however computational
complexity O(log2 o) gives a signi�cant time pro�t compared to a sequential com-
putational complexity O(o). Additionally, there is no big constant hidden in the
notation O. A comparison of the speed of functions increasing for f(o) = o and
f(o) = log2 o is given in Table 5.1.

Table 5.1. Speed of increasing f(o) = o and f(o) = ⌈log2 o⌉ functions.

o ⌈log2 o⌉
10 12
100 45

1,000 100
10,000 177
100,000 276

1,000,000 398
10,000,000 541

Table 5.2 presents times of Cmax calculations due to the matrix multiplica-
tion based method from Theorem 5.1. The 32-processor nVidia GeForce 9500
GT card (GPU) with CUDA support was used for calculation. The maximum
for each pair (u, v) of vertices was calculated in time O(o) using a single proces-
sor, because the number of processes o3

log o was too big for the hardware used in
the experiment. Therefore, the whole parallel algorithm has the computational
complexity O(o log2 o) instead of O(log2 o). Computational experiments shown in
Table 5.2 and in Figure 5.2 fully con�rm theoretical results.

It is well known that the maximum of n values can be determined on the
CRCW (concurrent read, concurrent write) PRAM of a `common' type (the value
is written to the cell of memory if all processes want to write the same value) in
constant time O(1) using O(n2) processors (see Storer [239]). Using this property
we can formulate a faster version of the previous method for CRCW PRAMs.

108 Chapter 5. Job shop scheduling

Table 5.2. Times of Cmax calculations due to the method from Theorem 5.1 on GPU.

n×m o tavp tmin
p tmax

p o log2 o

5×5 25 0.24 0.17 0.61 0.054
10×5 50 0.25 0.2 0.61 0.159
20×5 100 0.32 0.24 0.66 0.441
10×10 100 0.28 0.22 0.61 0.441
20×10 200 0.49 0.41 0.85 1.169
10×20 200 0.66 0.39 4.86 1.169
50×5 250 0.65 0.58 1.06 1.586
20×20 400 1.13 1.02 1.61 2.989
100×5 500 1.94 1.54 8.16 4.019
50×10 500 1.94 1.4 8.1 4.019
10×50 500 2.13 1.48 6.5 4.019
100×10 1,000 4.97 3.58 8.86 9.932
50×20 1,000 4.11 3.46 9.16 9.932
20×50 1,000 4.34 3.41 8.34 9.932
100×20 2,000 14.47 11.96 16.47 24.050
50×50 2,500 21.49 17.6 23.22 31.853
100×50 5,000 71.77 67.85 80.1 75.494

Theorem 5.2. For a �xed feasible operations order π for the J ||
∑

fi or J ||fmax

problem, the value of the cost function can be determined in time O(log o) on
O(o4)-processor CRCW PRAMs of a `common' type.

Proof. We apply identical procedure to that of the previous theorem so that the
maximum in Step 2 for each of o2 pairs (u, v) is determined in constant time O(1)
making use of the group of O(o2) processors connected with the pair (u, v).

It is also possible to formulate the same theorem for the `sum' type of CRCW
PRAMs when the sum of values is written to the cell of memory when multiple
processors want to write to the same cell.

Theorem 5.3. For a �xed feasible operations order π for the J ||
∑

fi or J ||fmax

problem, the value of the cost function can be determined in time O(log o log Λ)
on O(o3/ log o)-processor CREW PRAMs, where Λ is an upper bound of the cost
function value.

Proof. The proof is similar to that of Theorem 5.1. It is enough to repeat the
main loop ⌈log Λ⌉ times instead of ⌈log o⌉ times, because the maximal number of

5.3. Parallel determination of the cost function 109

0100000200000300000400000500000600000700000800000

01020304050607080

25 50 100 100 200 200 250 400 500 500 500 1000 1000 1000 2000 2500 5000
time [ms]

Ave T_p o log2o number of operations
Fig. 5.2. Comparison of execution times of the matrix multiplication based procedure

on a 32-processor GPU.

vertices on the critical path is not greater than Λ/pmin, where pmin is the shortest
operation execution time among all operations from the set O. Values of pmin

are integers, minimal value equals 1, thus the maximal number of vertices on the
critical path is Λ. To determine the length of the critical path it is enough to
execute ⌈log Λ⌉ parallel steps (compare Theorem 5.1) which decreases computa-
tional complexity of the whole method to O(log o log Λ) keeping the number of
processors O(o3/ log o).

Corollary 5.2. For the method based on Theorem 5.3 we have the speedup and
the e�ciency

S(p) = O

(
o

log o log Λ

)
, η(p) =

sAp,M (p)

p
= O

(
1

o2 log Λ

)
. (5.5)

When the value of the upper bound Λ of all the values of the cost function is
known, then the value log Λ is constant and it has no in�uence upon the compu-
tational complexity.

According to studies on popular benchmark instances for the job shop problem
(Fisher and Thomson [107], Lawrence [163], Yamada and Nakano [272], Storer et
al. [240]) there is a conjecture in the paper of Steinhöfel et al. [237] that for
the makespan of the optimal solutions λopt there exists a uniform upper bound

110 Chapter 5. Job shop scheduling

λopt ≤ pmax(n+m), where pmax is the maximal processing time of all operations,
n is the number of jobs and m is the number of machines.

5.3.2. Methods based on partitioning into layers

The main problem in obtaining a good speedup value of the methods mentioned
above is the fact that a computational complexity of the sequential method of
determining makespan value for the job shop problem is O(o). It is, however,
di�cult to parallelize it because of its recurrent nature. Now we show another
approach to determine cost function value, which is more time-consuming, but
cost-optimal. First, we need to determine the number of layers d of the graph
G(π). A sample of layer determination for the conjunctive graph from Figure 3.5
is shown in Figure 5.1.

Theorem 5.4. For a �xed feasible operations order π for the J ||Cmax problem,
the number of layers from De�nition 5.1 of the graph G(π) can be calculated in

time O(log2 o) on the CREW PRAMs with O
(

o3

log o

)
processors.

Proof. Here we use the graph G∗(π) with additional vertex 0. Let B = [bij]
be an incidence matrix for the graph G∗(π), i.e., bij = 1 if there is an arc i, j in
the graph G∗(π), otherwise bij = 0, i, j = 1, 2, . . . , o. The proof is given in three
steps.

1. Let us calculate longest paths (in the sense of the number of vertices) in
G∗(π). We can use the algorithm from the proof of Theorem 5.1 with the
incidence matrix B instead of the matrix A. We need the time O(log2 o)
and CREW PRAMs with O(o3/ log o) processors.

2. We sort distances from the vertex 0 to each vertex in an increasing order.
Their indexes after having been sorted correspond to the topological order
of vertices. This takes the time O(log o) and CREW PRAMs with o+1 =
O(o) processors, using Cole's parallel merge sort algorithm [80]. We obtain
a sequence Topo[i], i = 0, 1, 2, . . . , o.

3. Let us assign each element of the sorted sequence to one processor, without
the last one. If the next value of the sequence (distance from 0) Topo[i+1],
i = 0, 1, . . . , o− 1 is the same as Topo[i] considered by the processor i, we
assign c[i]← 1, and c[i]← 0 if Topo[i+1] ̸= Topo[i]. This step requires the
time O(1) and o processors. Next, we add all values c[i], i = 0, 1, . . . , o−1.
To make this step we need the time O(log o) and CREW PRAMs with
O(o) processors. We get d = 1 +

∑o−1
i=0 c[i] because there is an additional

layer connected with exactly one vertex 0.

5.3. Parallel determination of the cost function 111

The most time- and processor-consuming is Step 1. We need the time O(log2 o)

and the number of processors O
(

o3

log o

)
of the CREW PRAMs.

The result obtained can also be implemented on a CRCW machine in time
O(log o) and the number of processors O(o4) similarly as described in the proof
of Theorem 5.2.

Theorem 5.5. For a �xed feasible operations order π for the J ||Cmax problem,
the value of cost function can be determined in time O(d) on O(o/d)-processor
CREW PRAMs, where d is the number of layers of the graph G(π).

Proof. Let Γk, k = 1, 2, . . . , d, be the number of calculations of the operations
�nishing moment Ci, i = 1, 2, . . . , o in the k-th layer. Certainly

∑d
i=1 Γi = o. Let

p be the number of processors used. The time of computations in a single layer
k after having divided calculations into ⌈Γi

p ⌉ groups, each group containing (at

most) p elements, is ⌈Γi
p ⌉ (the last group cannot be full). Therefore, the total

computation time in all d layers equals
∑d

i=1⌈
Γi
p ⌉ ≤

∑d
i=1(

Γi
p + 1) = o

p + d. To
obtain the time of computations O(d)we should use p = O(od) processors.

This theorem provides a cost-optimal method of parallel calculation of the
cost function value for the job shop problem with the makespan criterion. For
example, if we discuss a classic permutational �ow shop problem with n jobs and
m machines, which is a special case of the job shop problem, we can observe that
d = n+m− 1 which is the length (as the number of vertices) of the longest path
in the graph G(π), then, we get the cost-optimal method which works in time
O(n+m) on O(nm/(n+m))-processor CREW PRAM machine for the �ow shop
scheduling problem. The sequence of calculations is presented in Figure 5.3.

Practical aspects of the cost function value determination. Step 1 con-
sists in determining the longest paths (in the sense of vertex number) in the graph.
We are interested in the lengths of paths from the vertex 0 to each other vertex.
In Step 2 we should sort the obtained lengths. We make use of a two-row table
and we sort it with reference to the second row together with the �rst row[

1 2 3 4 . . . o
C1 C2 C3 C4 . . . Co

]
,

which can be obtained using O(o) processors in time O(1) (each processor writes
its own number i and Ci), i.e., for the sample from Figure 5.1[

1 2 3 4 5 6 7 8 9 10
1 3 6 5 1 5 2 3 7 6

]
.

112 Chapter 5. Job shop scheduling

processor 1

processor 2

processor m

.

.

.

1

2

m

1

2

Cm,2

Cm,1

Cm,n-1

Cm,n

Fig. 5.3. A layer-based sequence of Cij calculations for the �ow shop � a special case of
the job shop problem.

Afterwards we obtain the sorted second row, however there are numbers of cor-
responding vertices in the �rst row[

1 5 7 2 8 3 4 6 10 9
1 1 2 3 3 4 5 5 6 7

]
.

This two-row table will be called Topo[1..o][1..2]. To avoid concurrent readings we
can multiply this table to the second, identical, table Topo2[1..o][1..2] using O(o)
processors in constant time O(1). Each processor i = 1, 2, . . . , o − 1 compares a
value Topo[i][1] with Topo2[i+1][1]. If Topo[i][1] < Topo2[i+1][1] then a processor
generates (writes to a variable c) 1, otherwise it generates 0. To determine the
number of layers d it is enough to get the last Topo value: d = Topo[o][1] because
it corresponds to the longest path (understood as the number of vertices) from
the vertex 0 (table Topo is sorted). In our sample the number of layers d = 7.
For the parallel algorithm to determine the cost function value it is necessary to
know what is the index of the �rst vertex in the layer, how many vertices belong
to each layer and what are their numbers. Such a table first_in[1..o] of the �rst
vertices in each layer can be created in time O(1) as follows: each processor which
generates 1 (i.e., its c = 1) writes to the table first_in[Topo[i][1]] := i. In this
way we obtain the d-elementary table first_in from which, together with the
table Topo, we can get all the information of layers.

5.4. Remarks and conclusions 113

However, in general, if we have no knowledge of the number of layers d, we
can employ the following estimation.

Theorem 5.6. For a �xed feasible operations order π for the J ||Cmax problem,
the value of cost function can be determined in time O(Λ) on O(o)-processor
CREW PRAMs, where Λ is an upper bound of the cost function value.

Proof. Let us observe that the number of layers d corresponds to the number
of vertices on the longest (in the sense of the number of vertices) path in G∗(π).
This number d can be bounded by Cmax/pmin (pmin is a minimal processing time
of all operations), where Cmax is the length (as a sum of weights) of the longest
path in G∗(π). The proof is `a contrario'.

Let us assume that there is a path with more than Cmax/pmin vertices. There-
fore, its length (as a sum of weights) would be greater than Cmax, which is im-
possible because Cmax is the length of the longest path in G∗(π). We can use
the upper bound of the cost function Λ instead of Cmax, as well as a minimal
pmin value which is 1, because Cmax/pmin < Λ/1 and we are looking for the upper
bound. The other part of the proof is similar to the proof of Theorem 5.5, as
regards the time d ≤ Λ estimation and the number of processors o

d ≤ o.

From the above theorem a surprising conclusion can be drawn, namely: if
we can determine the upper bound of the cost function value Λ, the calculations
take constant time O(Λ) = O(1). The trivial upper bound Λ of the makespan
is the sum of the processing times of all operations. Although the algorithm for
determining the d value has computational complexity O(log2), it can be executed
only once, at the very beginning. Next, one can calculate only how the d value is
changing after having executed an insert or swap move, and this can be done in
constant time O(1).

5.4. Remarks and conclusions

In this chapter, there were designed new methods of parallel goal function value
calculation for a given job execution sequence in the job shop problem. Consid-
ering the computational complexity O(o) for the sequential case, the new parallel
methods have been proposed with signi�cantly lower computational complexity
O(log2 o), O(log o log Λ), O(d) and O(Λ), where o is the number of operations,
Λ is an upper bound of the cost function value and d is the number of layers
created during the work of a topological sort algorithm. For the �rst time there
was proposed a method with complexity O(Λ) = O(1), if the Λ value can be esti-
mated. In particular, the �rst of the above algorithms, with complexity O(log2 o),
is more e�ective than is known from the literature [237]. What is more, the results

114 Chapter 5. Job shop scheduling

obtained remain valid for fmax criterion as well as for fsum criterion. The pro-
posed methodology of the single-walk parallelization is based on using the parallel
path determination in graphs as well as genuine, dedicated methods, and it can
be easily extended to �exible scheduling problems such as the job shop problem
with parallel machines.

Chapter 6

Hybrid scheduling

The aim of this chapter is to show how to determine the neighborhood and how
to search it in the parallel environment, this being illustrated by an example of
the hybrid scheduling, more precisely a �exible job shop problem. We present
a parallel single-walk approach in this respect. A theoretical analysis based on
PRAM model of parallel computing has been made. We propose a cost-optimal
method of neighborhood generation parallelization.

6.1. Solution method

There is an exponential number of possible job-to-machine assignments in rela-
tion to the number of operations. Each feasible assignment generates an NP-hard
problem (job shop) whose solution consists in determining an optimal job pro-
cessing order on machines. One has to solve an exponential number of NP-hard
problems to solve the �exible job shop problem. Therefore, we shall apply ap-
proximate algorithms consisting in executing the following two steps:

Step 1: Job-to-machine assignment determination;
Step 2: Solving a job shop problem for the assignment determined

in Step 1.

We use the tabu search algorithm in Step 1. The neighborhood of the current
solution (assignment) is generated by jobs moving between machines of the same
type. The best element of this neighborhood generates a job shop problem which
is solved in Step 2. For comparison, we also present an algorithm which uses
population-based method in Step 1, without the jobs moving between machines
of the same type.

116 Chapter 6. Hybrid scheduling

6.2. Machine workload

The problem of `good' (suboptimal) operation-to-machine determination is con-
sidered in this section. Each operation is assigned to one nest only. It is necessary
to make a partition of operations assigned to machines in each nest. The method
of partitioning has an in�uence on all jobs completion time, that is the value of
the job shop problem solution. Generally, we are looking for such a partition
whose cost function value (of the corresponding job shop problem) is minimal.

LetΘ = (Q, π(Q)) ∈ Φ◦ be a feasible solution of FJSP whereQ = (Q1,Q2, . . . ,
Qm) is the machine workload, ϱi is the number of operations executed on machine
Mi (i.e., ϱi = |Qi|) and

π(Q) = (π1(Q), π2(Q), . . . , πm(Q)) (6.1)

is a concatenation of m permutations. A permutation πi(Q) determines a se-
quence of operations from the set Qi which have to be processed on machine Mi

(i = 1, 2, . . . ,m).
In the further part of this section, in the case in which it does not evoke

ambiguity, we omit the assignment of operations Q which occurs as a permutation
parameter. Thus, the concatenation π(Q) = (π1(Q), π2(Q), . . . , πm(Q)) will be
presented as π = (π1, π2, . . . , πm).

By tij(k, l) we denote a transfer type move (a t-move, for short) which con-
sists in moving an operation from the position k in the permutation πi (i.e., the
operation πi(k)) to the position l in the permutation πj (moving operations from
positions l, l+1, . . . one position to the right). The execution of the move tij(k, l)
generates from Θ = (Q, π) ∈ Φ◦ (by Φ◦ we denote a set of feasible solutions of
the FJSP, see Section 3.6) a new solution Θ′ = (Q′, π′) such that

π′
v = πv, v ̸= i, j, v = 1, 2, . . . ,m (6.2)

and

π′
i = (πi(1), πi(2), . . . , πi(k − 1), πi(k + 1), . . . , πi(ϱi − 1), (6.3)

π′
j = (πj(1), πj(2), . . . , πj(l − 1), πi(k), πj(l), . . . , πj(ϱj + 1). (6.4)

The execution of this move causes a movement of the operation πi(k) from the
set Qi (i.e., from machine Mi) to the set Qj (i.e., to machine Mj). Therefore

Q′v = Qv, v ̸= i, j, v = 1, 2, . . . ,m (6.5)

and

Q′i = Qi \ {πi(k)}, Q′j = Qj ∪ {πi(k)}. (6.6)

6.2. Machine workload 117

The graph G(Θ′) generated by a t-move can have a cycle and then the solution
Θ′ = (Q′, π′) is not feasible.

Remark 6.1. An upper bound of the number of t-moves is O(qm2o2).

For data from Example 3.1, an upper bound of the number of t-moves equals
26244.

Example 6.1. The second critical path described in Example 3.4 (s,O1, O2,
O3, O6, O9, c) includes a block of three elementary operations B1 = (O3, O6, O9)
executed in the nest M3 on the machine M5. There is another machine M6 in
this nest to which no job is assigned. Therefore, for the assignment Q described in
Example 3.2, the operations set (assigned to the machine M5) Q5 = {O3, O6, O9}
and to the machine M6, Q6 = ∅. We are moving the operation O6 from the block
B1 onto the machine M5 (thus from the set Q5) to the set of operations which are
executed on the machine M6 (therefore to the set Q6). In this way, we generate a
new job-to-machine assignment Q′ from the assignment Q. In the new assignment
Q′ there are Q′5 = Q5 \ {O6} = {O3, O9}, Q′6 = Q6 ∪ {O6} = {O6}, with other
sets in both assignments being the same.

The execution of t-move causes an operation to transfer from one machine to
another, i.e., a new machine workload in the nest. Therefore, it is possible to
obtain any machine workload from any solution (machine workload) by executing
t-moves. If τ is a t-move, we denote by τ(Θ) a solution generated from Θ by
executing a move τ (see (6.2)�(6.6)). For a �xed feasible solution Θ, let T (Θ) be
a set of all t-moves. A neighborhood Θ is a set

N (Θ) = {τ(Θ) ∈ Φ◦ : τ ∈ T }, (6.7)

where Φ◦ is a set of feasible solutions. The feasibility τ(Θ) corresponds to the
acyclicity of the graph G(τ(Θ)).

It was mentioned at the beginning of this chapter that the solution of the
FJSP consists of two steps. The �rst, determination of machine workload and the
second, determination of processing order of operations, i.e., a job shop problem
solving. Let Θ = (Q, π) be a feasible solution of the FJSP. The new machine
workload Q′ will be generated from the workload Q as follows:

• determine a neighborhood N (Θ),

• select from the neighborhood a solution Θ′ = (Q′, π′) with the lowest goal
function value � the new machine workload Q′.

The number of all t-moves can be huge, so we omit some of them and consider
only those which can o�er an improvement of the goal function value. More-
over, we do not determine an exact goal function value of solutions generated by

118 Chapter 6. Hybrid scheduling

t-moves, but approximate them only. As computational experiments proved, this
causes a signi�cant algorithm work acceleration with little results aggravation. In
the further part, we precisely describe methods of eliminating super�uous moves
from the neighborhood (6.7) as well as methods of estimating a goal function value.

6.2.1. Neighborhood determination

Execution of a t-move can lead to a non-feasible solution, i.e., a graph connected
with this solution can have a cycle. Therefore, checking feasibility equals check-
ing if a graph has a cycle. The corresponding algorithm has a computational
complexity O(o) where o is the number of all operations. Further on we prove
theorems which make it possible to check feasibility of solutions (i.e., acyclicity
of corresponding graphs) generated by t-moves in constant time.

Let Θ = (Q, π) be a feasible solution where Q = (Q1,Q2, . . . , Qm) is the
machine workload and π = (π1, π2, . . . , πm) is a concatenation of m permutations.
A permutation πi determines a processing order of operations from the set Qi on
the machine Mi (i = 1, 2, . . . ,m).

We consider two machines Mi and Mj from the same nest. A permutation πi
determines a processing order of operations from the set Qi on the machine Mi

and πj � a processing order of operations from the set Qj on the machine Mj .
For an operation πi(k) ∈ Qi we de�ne two parameters connected with paths in
the graph G(Θ).

The �rst parameter is

ηj(k) =

1, if there is no path C(πj(v), πi(k)) ∀ v = 1, 2, . . . , ϱj ,

1 + max
1≤v≤ϱj

{there is a path C(πj(v), πi(k))}, otherwise.
(6.8)

Thus, there does not exist any path to the operation (vertex) πi(k) from any of
the operations placed in the permutation πj in positions ηj(k), ηj(k) + 1, . . . , ϱj
(where ϱj = |Qj |) in the graph G(Θ). This situation is shown in Figure 6.1.

k-1

permutation πi
...

permutation πj
k k+1 η(k) ρ(k)

C(πi(k), πj(ρ(k)+1))
C(πj(η(k)-1), πi(k))

Fig. 6.1. Visualization of parameters ηj(k) and ρj(k) for an operation πi(k).

6.2. Machine workload 119

The second parameter is

ρj(k) =

1 + ϱj , if there is no path C(πj(v), πi(k)) ∀ v = 1, 2, . . . , ϱj ,

1 + min
ηj(k)≤v≤ϱj

{there is a path C(πi(k), πj(v))}, otherwise.
(6.9)

From the de�nition formulated above it follows that in the graph there is no path
from a vertex πi(k) to any operation placed in positions ηj(k), ηj(k)+1, . . . , ρj(k)
in the permutation πj (see Figure 6.1). Now we prove two theorems characteriz-
ing a t-move whose execution generates an unfeasible solution. These theorems
constitute a constructional base for very e�cient neighborhoods. The structure
of assumptions allows an easy implementation in the parallel computing environ-
ment, such as GPUs.

Theorem 6.1. Let Θ = (Q, π) be a feasible solution for the FJSP and let πi, πj
be permutations of operations executed on machines Mi,Mj. If machines Mi,Mj

belong to the same nest then executing a t-move tij(k, l) (πi(k) ∈ Qi, l = 1, 2, . . . ,
ηj(k)− 1) generates a solution which is not feasible.

Proof. Let Θ = (Q, π) be a feasible solution and let G(Θ) be a corresponding
graph. The permutation πi determines operations executing order on machines
Mi and πj � an order on machine Mj . We consider a t-move tij(k, l) consisting in
an operation πi(k) transfer from a machineMi to a position l (1 ≤ l ≤ ηj(k)−1) in
the permutation πj , i.e., to the machine Mj . This move generates a new solution
Θ′ = (Q′, π′) (see (6.2�6.6) and a corresponding graph G(Θ′). Now, we prove
that this graph includes a cycle.

From de�nition (6.8) of the parameter ηj(k) it follows that in the graph
G(Θ) there exists a path from the vertex πj(ηj(k) − 1) to πi(k), i.e., the path
C(πj(ηj(k)− 1), πi(k)), as shown in Figure 6.2.

k-1 k k+1 η(k-1)

πi(k)
C(πj(η(k-1)), πi(k)) l -1 l l+1

 ...

machine Mi machine Mj

πi(l)
Fig. 6.2. Directed graph Θ′ = G(tij(k, l)(Θ)) = G(Q′, π′).

Moreover, there is also a path C(πj(l)) = (πi(k), πj(ηj(k)− 1)) in this graph.
Executing a move tij(k, l) causes an insertion of the operation πi(k) in position l
to the permutation πj . As a result, an arc (πi(k), πj(l)), among others, is inserted

120 Chapter 6. Hybrid scheduling

to the graph G(Θ′). This creates a cycle

((πi(k), πj(l)), C(πj(l), πj(ηj(k)− 1)), C(πj(ηj(k)− 1), πi(k))),

which completes the proof of the theorem.

A similar theorem can be proved for the ρj(k) parameter.

Theorem 6.2. Let Θ = (Q, π) be a feasible solution for the FJSP and πi, πj be
permutations of operations executing on machines Mi,Mj. If machines Mi,Mj

belong to the same nest then executing a t-move tij(k, l) (where πj(k) ∈ Qi, l =
ρj(k) + 1, ρj(k) + 2, . . . , ϱj) generates a solution which is not feasible.

Proof. Similarly as in the proof of Theorem 6.1 one can show that after having
executed a move tij(k, l) (l = ρj(k) + 1, ρj(k) + 2, . . . , ϱj) there appears a cycle
(C(πi(k), πj(ρj(k)−l)), C(πj(ρj(k)−l), πj(l−1)), (πj(l−1), πi(k)) in the generated
graph G(Θ′).

Let us denote by T noacc a set of the t-moves from T (Θ) which ful�ll assump-
tions of Theorems 6.1 or 6.2. Therefore, the moves generate non-feasible solutions
from Θ.

Theorem 6.3. Let Θ = (Q, π) be a feasible solution of the FJSP and πi, πj be per-
mutations of operations executed on machines Mi,Mj. If machines Mi,Mj belong
to the same nest then executing a t-move tij(k, l) (l = ηj(k), ηj(k) + 1, . . . , ρj(k))
generates a feasible solution.

Proof. The proof of this theorem follows directly from the de�nition of param-
eters ηj(k), ρj(k) (πi(k) ∈ Qi) and Theorems 6.1 and 6.2.

Property 6.1. For each operation πi(k) executed on machine Mi there exists a
position l in the permutation πj (i.e., on machine Mj from the same nest) such
that executing a move tij(k, l) generates a feasible solution from a solution Θ.

Proof. It is enough to observe that if Θ is a feasible solution hence for an
operation πi(k) there is ρj(k) ≥ ηj(k).

Now we prove a theorem which constitutes a base for eliminating some t-moves
during the process of neighborhood generation. Its function is similar to that of
Theorem 3.4. Let us assume that for an assignment Q the concatenation π is
the optimal operations schedule on machines, G(Θ) is a graph connected with
solution Θ = (Q, π) and Cmax(Θ) is a cost function value, i.e., the critical path
length in the graph G(Θ).

6.2. Machine workload 121

Theorem 6.4. Let Θ = (Q, π) be a feasible solution for the FJSP and let B =
(B1, B2, . . . , Br) be a sequence of critical path blocks in the graph G(Θ). If Θ′ =
(Q′, π′) is a feasible solution which was generated from Θ by machine workload
changing in a nest and Cmax(Θ

′) < Cmax(Θ) therefore in the Θ′ at least one
operation from some block was moved to a di�erent machine (in the same nest).

Proof. Let B = (B1, B2, . . . , Br) be a sequence of critical path blocks in the
graph G(Θ). Each block is an operation sequence

Bi = (π(ai), π(ai + 1), . . . , π(bi)), (6.10)

for i = 1, 2, . . . , r where 1 ≤ a1 ≤ b1 < a2 ≤ b2 <, . . . , < ak ≤ bk. For a notion
simpli�cation we assume (in the proof of this theorem) that each operation from a
critical path belongs to some block. Thus, a block can consist of a single operation.
By

Y i(π) = {π(ai), π(ai + 1), . . . , π(bi)}, (6.11)

we denote a set of jobs from the block Bi. The critical path C(s, c) in the graph
G(Θ) includes all vertices (operations) of a set

∪r
i=1 Y i and its length L(s, c) =

Cmax(Θ) =
∑r

i=1

∑
v∈Yi pv.

Let Θ′ = (Q′, π′) be a feasible solution such that Cmax(Θ
′) < Cmax(Θ). Let

us assume that no operations from any block B1, B2, . . . , Br in the workload Q′

are moved to another machine from the same nest. Thus

Y i(π) = Y i(π′), i = 1, 2, . . . , r. (6.12)

Therefore, a sequence of jobs (π(ai), π(ai+1), . . . , π(bi)) in the permutation π and
(π′(ai), π′(ai +1), . . . , π′(bi)) in π′ are permutations of the same job subsequence
Y i = {π(ai), π(ai+1), . . . , π(bi)}. We consider a path C ′(s, c) in the graph G(Θ′).
Vertices of this path belong to a set A =

∪r
i Y i(π′). The length of this path

L′(s, c) =
∑

v∈A pv so it equals the length L(s, c) = Cmax(Θ) of the critical path
C(s, c) in the graph G(Θ). Therefore Cmax(Θ

′) ≥ Cmax(Θ), which contradicts the
assumption.

Let Θ be a feasible solution, B � a sequence of critical path blocks in the graph
G(Θ) and T � a set of t-moves de�ned for the Θ. We denote by T out(Θ) a set
of those moves from T (Θ) which consider operations not belonging to any block.
Directly from Theorem 6.4 there follows a property which constitutes a base for
eliminating super�uous moves.

Property 6.2. If a feasible solution Θ′ is generated from Θ by executing a t-move
belonging to the set T out(Θ) then

Cmax(Θ
′) ≥ Cmax(Θ). (6.13)

122 Chapter 6. Hybrid scheduling

Proof. The proof results directly from Theorem 6.4.

Therefore, executing a t-move that consists in moving an operation not lying
on the critical path to another machine does not generate a solution with lower
cost function value.

Theorem 6.5. Let Θ = (Q, π) be a feasible solution for the FJSP. If Bu is a
block on the machine Mi and Bv is a block on Mj and both machines belong to
the same nest then a transfer type move consisting in moving an operation from
an internal block Bu to the internal block Bv does not generate a solution with
lower cost function value.

Proof. Let Θ = (Q, π) be a feasible solution, G(Θ) � a graph connected with it
and B = (B1, B2, . . . , Br) � block of the critical path sequence. We assume that

Bu = (π(au), π(au + 1), . . . , π(bu)), Bv = (π(av), π(av + 1), . . . , π(bv)),

are blocks (1 ≤ u < v ≤ r) on machines Mi and Mj , respectively. We consider
a t-move tij(k, l) where au < k < bu and av < l < bv moving the operation
from the block Bu to the block Bv. This move generates from Θ a new solution
Θ′ = (Q′, π′). The machine workload Q′ as well as the permutation π′ are de�ned
in (6.2)�(6.6). The critical path C(s, c) in the graph G(Θ) can be partitioned as
follows

C(s, c) = (C(s, π(au)), C(π(au), π(bu)),

C(π(bu), π(av)), C(π(av), π(bv)), C(π(bv), c)). (6.14)

This path is shown in Figure 6.3.

(a
u
)

C((a
u
), (b

u
))

(b
u
)

...

C(s, (a
u
))

(a
v
)

C((a
v
), (b

v
))

(b
v
)

...

C((b
v
), c)

......

C((b
u
), (a

v
))

Fig. 6.3. Critical path in the graph G(Q, π).

There is a path

C ′(s, c) = (C ′(s, π′(au)), C ′(π′(au), π′(bu)),

C ′(π′(bu), π′(av)), C ′(π′(av), π′(bv)), C ′(π′(bv), c)) (6.15)

in the graph G(Θ′). It is easy to observe that the following paths are the same

C ′(s, π′(au)) = C(s, π(au)), C ′(π′(bu), π′(av)) = C(π(bu), π(av)) (6.16)

6.2. Machine workload 123

and

C ′(π′(bv), s) = C(π(bv), s), (6.17)

so their lengths are also equal.
We consider paths C(π(au), π(bu)) and C(π(av), π(bv)) in the graph G(Θ),

and C ′(π(au), π(bu)) and C ′(π(av), π(bv)) in the graph G(Θ′). Because the path
C ′(π′(au), π′(bu)) includes all vertices of the path C(π(au), π(bu)) excluding the
vertex π(k) which was moved by the t-move from the block Bu, therefore the
path length is

L′(π′(au), π′(bu)) = L(π(au), π(bu))− pπ(k). (6.18)

Similarly, considering paths C(π(av), π(bv)) and C ′(π(av), π′(bv)) one can show
that

L′(π′(av), π′(bv)) = L(π(av), π(bv)) + pπ(k). (6.19)

From this it follows that L′(c, s) = L(c, s).
Summing up, the length of some path C ′(c, s) in the graph G(Θ′) equals

C(s, t) = Cmax(Θ). Accordingly, Cmax(Θ
′) ≥ Cmax(Θ), which completes the

proof of the theorem.

Therefore, to generate a better solution by executing a t-move one should
move the �rst or the last operation of the block before the �rst or after the last
operation of another block. Theorems 6.1 and 6.2 proved in this section concern
feasibility of solutions generated by t-moves. If paths between any pair of vertices
in the graph are known, then this check is executed in constant time. Moreover,
Theorems 6.4 and 6.5 de�ned the so-called blocks elimination criteria. That is
why they make it possible to omit in the generation procedure those moves which
do not generate better solutions than the current ones. From the set of moves
T (Θ) generating the neighborhood of the solution Θ we omit all moves which
ful�ll assumptions of Theorems 6.1, 6.2, 6.4 and 6.5. Therefore, t-moves from

T acc(Θ) = T (Θ) \ (T noacc ∪ T out) (6.20)

will be used for creation of neighborhood Θ, where T noacc is the set of moves gen-
erating non-feasible solutions (Theorems 6.1 and 6.2) and T out is the set of moves
generating solutions with the cost function value lower than Cmax(Θ) (Theorems
6.4 and 6.5).

If B = (B1, B2, . . . , Br) is a block from the critical path sequence in the graph
G(Θ) then the set T acc(Θ) includes moves which transfer the �rst (or the last)
operation of each block from the machine Mi to another machine (from the same
nest). If π(v) is the �rst (or the last) operation of a block and Mj is the machine
from the same nest then the set T acc(Θ) includes moves which transfer π(v) to

124 Chapter 6. Hybrid scheduling

the following positions: ηj(v), ηj(v+1), . . . , ρj(v). Such a neighborhood has a big
size, so we have limited moves which transfer the �rst (or the last) operation π(v)
of a block only in the position ηj(v) or ρj(v). So, ultimately

T subm(Θ) = {tij(v, w) ∈ T acc : v ∈ {ak, bk},

w ∈ {ηj(v), ρj(v)}, k = 1, 2, . . . , r. (6.21)

The neighborhood Θ constitutes the set of feasible solutions

N (Θ) = {τ(Θ) : τ ∈ T subm(Θ)}. (6.22)

This neighborhood has the size O(r · m), where r is the number of the critical
path blocks.

In practice, we should select the best element of the neighborhood (e.g. inside
a metaheuristic). Making use of parallel computing environment we can follow
one of the approaches below.

• We get as many processors as there are blocks r. Next, in the loop, each
processor checks the cost of the operation insertion to another machine
of the same type, concurrently calculating the minimal value of such an
insertion.

• We get as many processors as there are pairs of machines of the same type.
We calculate the minimal value in logarithmic time using a tree scheme of
parallel calculations.

The �rst approach leads to the cost-optimal method. However, the second ap-
proach, using much greater number of processors, leads us to obtaining shorter
computing time.

6.2.2. Methods of the cost function value estimation

Each solution Θ = (Q, π) is a pair whose �rst element is a set sequence � machine
workloads. A new assignment will be determined by choosing an element with
the lowest cost function value from the neighborhood (6.22). This requires a
critical path to be determined for each element of the neighborhood. To speed
this procedure up, we will compute the lower bounds of the cost function value
as a choosing criterion. In this section, we will present methods of determining
lower bounds.

Let Θ = (Q, π) be a feasible solution where Q = (Q1,Q2, . . . , Qm) constitutes
machine workload and π = (π1, π2, . . . , πm) is a concatenation of m permutations.
Further, let B = (B1, B2, . . . , Br) be a sequence of critical path blocks in the
graph G(Θ). We consider two machines Mi and Mj belonging to the same nest.

6.2. Machine workload 125

On machine Mi there are executed operations from the set Qi in the order πi =
(πi(1), πi(2), . . . , πi(ϱi)) and on machine Mj operations from the set Qj in the
order πj = (πj(1), πj(2), . . . , πj(ϱj)). Let us assume that the block

Bk = (πi(a
k), πi(a

k + 1), . . . , πi(b
k − 1), πi(b

k)), (6.23)

includes operations executed on machine Mi. For simplicity, we omit index k
which denotes the block number. Therefore, πi(a) is the �rst and πi(b) is the last
operation of the block Bk.

According to the strategy of searching neighborhood N (Θ) we are looking for
such a move τ ∈ T subm(Θ) which generates a graph G(τ(Θ)) � a feasible solution
with possibly the lowest estimation of the critical path length (i.e., cost function
value). For moves from T subm(Θ) which transfer the �rst operation πi(a

k) of the
block Bk to position ηj(a

k) or ρj(a
k) in the permutation πj we introduce the

notions

∆ak

x(ak) = max{Lx(ak)
1 , L

x(ak)
2 , L

x(ak)
3 , L

x(ak)
4 }, x(ak) ∈ {ηj(ak), ρj(ak)}, (6.24)

where

L
x(ak)
1 = L(s, πi(a

k − 1))− L(s, πi(a
k)), (6.25)

L
x(ak)
2 = L(s, πi(a

k + 1))− L(s, πi(a
k))− pπi(ak+1), (6.26)

L
x(ak)
3 = L(s, πj(1)) +

ϱj−1∑
h=2

pπi(h) + pπi(ak) + L(πj(ϱj), c) +

− L(s, πi(a
k))−

bk−1∑
h=ak+1

pπi(h) − L(πi(b
k), c), (6.27)

L
x(ak)
4 =

ϱj−1∑
h=x(ak)+1

pπj(h) + L(πj(ϱj), c) +

−
bk−1∑

h=ak+1

pπi(h) − L(πi(b
k), c). (6.28)

Similarly, for moves from T subm(Θ) which move the last operation πi(b
k) of

the block Bk to position ηj(a
k) or ρj(ak) in the permutation πj we introduce the

notions

∆bk

y(bk) = max{Ly(bk)
1 , L

y(bk)
2 , L

y(bk)
3 , L

y(bk)
4 }, y(bk) ∈ {ηj(bk), ϱj(bk)}, (6.29)

126 Chapter 6. Hybrid scheduling

where

L
y(bk)
1 = L(πi(b

k − 1), c)− pπ(bk−1) − L(πi(b
k), c), (6.30)

L
y(bk)
2 = L(πi(b

k + 1), c)− L(πi(b
k), c), (6.31)

L
y(bk)
3 = L(s, πj(1)) +

ϱj−1∑
h=2

pπj(h) + pπi(bk) + L(πj(ϱj), c) +

− L(s, πi(a
k))−

bk−1∑
h=ak+1

pπi(h) − L(πi(b
k), c), (6.32)

L
y(bk)
4 = L(s, β(1)) +

y(bk)−1∑
h=2

pπj(h) − L(s, πi(a
k)) +

−
bk−1∑

h=ak+1

pπi(h). (6.33)

Now, we will prove theorems which allow us to estimate a cost function value
for a solution generated from Θ by shifting the �rst operation πi(a) from the block
Bk (executing a t-move) to position ηj(a) or ρj(a) on machine Mj .

Theorem 6.6. If the solution Θ′ = (Q′, π′) is generated from the Θ = (Q, π) by
executing the move tij(a

k, x(ak)) ∈ T subm(Θ), x(ak) ∈ {ηj(ak), ρj(ak)} then

L′(s, c) ≥ L(s, c) + ∆ak

x(ak). (6.34)

Proof. Let πi = (πi(1), πi(2), . . . , πi(ϱi)) and πj = (πj(1), πj(2), . . . , πj(ϱj)) be
permutation of operations executing on machines Mi and Mj , respectively. The
operations sequence Bk = (πi(a

k), πi(a
k + 1), . . . , πi(b

k)) (1 ≤ ak ≤ bk ≤ ϱi) is a
block on the machine Mi, i.e., Bk is a subsequence πi.

For the notion simpli�cation we assume that a = ak, b = bk and α =
πi = (α(1), . . . , α(a), . . . , α(b), . . . , α(u)), β = πj = (β(1), . . . , β(w)) where u =
ϱi, w = ϱj .

The graph G(Θ) is acyclic, so there exists a critical path C(s, c) with the
length L(s, c). For each vertex v ∈ O there is

C(s, c) = (C(s, v), C(v, c)) (6.35)

and

L(s, c) = L(s, v) + C(v, c)− pv. (6.36)

6.2. Machine workload 127
α(a) α(b) α(a) β(1) β(w)

d1(s,c)
d2(s,c)

d3(s,c)
d4(s,c)

Fig. 6.4. Paths in the graph G(Q′, π′) generated from G(Q, π) by a move tij(a, x(a)).

Vertices of the critical path can be partitioned into subsequences

C(s, c) = (C(s, α(a)), C(α(a), α(b)), C(α(b), c))) (6.37)

We consider the following paths: d1(s, c), d2(s, c), d3(s, c) and d4(s, c) from the
vertex s to c in the graph G(Θ′). They are shown as arrows in Figure 6.4.

d1(s, c) = (C ′(s, α(a− 1)), C ′(α(a− 1), α(b)), C ′(α(b), c)), (6.38)

d2(s, c) = (C ′(s, α(a+ 1)), C ′(α(a+ 1), α(b)), C ′(α(b), c)), (6.39)

d3(s, c) = (C ′(s, β(1), C ′(β(1), β(w)), C ′(β(w), c)), (6.40)

d4(s, c) = (C ′(s, α(a)), C ′(α(a) = β(x(a)), β(w)), C ′(β(w), c). (6.41)

Taking advantage of the fact that

C ′(s, α(a− 1)) = C(s, α(a− 1)) and C ′(α(b), c)) = C(α(b), c)) (6.42)

we obtain

d1(s, c) = (C(s, α(a− 1)), C ′(α(a− 1), α(b)), C(α(b), c)) (6.43)

and similarly

d2(s, c) = (C(s, α(a+ 1)), C ′(α(a+ 1), α(b)), C(α(b), c)), (6.44)

d3(s, c) = (C(s, β(1), C ′(β(1), β(w)), C(β(w), c)), (6.45)

d4(s, c) = (C(s, α(a)), C ′(α(a) = β(x(a)), β(w)), C(β(w), c). (6.46)

Therefore the length of these paths (in the graph G(Θ′)) can be de�ned by length
of some paths in the graph G(Θ). These are as follows

l1(s, c) = L(s, α(a− 1)) +

b−1∑
h=a+1

pα(h) + L(α(b), c), (6.47)

l2(s, c) = L(s, α(a+ 1)) +

b−1∑
h=a+2

pα(h) + L(α(b), c), (6.48)

128 Chapter 6. Hybrid scheduling

l3(s, c) = L(s, β(1)) +
w−1∑
h=2

pβ(h) + pα(a) + L(β(w), c), (6.49)

l4(s, c) = L(s, α(a) +

w−1∑
h=x(a)+1

pβ(h) + L(β(w), c). (6.50)

As the graph G(Θ′) is acyclic, there exists a critical path C ′(s, c) whose length
must not be shorter than the length of any other paths from vertex s to c in
G(Θ′). Therefore

L′(s, c) ≥ l1(s, c), (6.51)

L′(s, c) ≥ l2(s, c), (6.52)

L′(s, c) ≥ l3(s, c), (6.53)

L′(s, c) ≥ l4(s, c). (6.54)

From this and using (6.37) we obtain

L′(s, c) ≥ max{l1(s, c), l2(s, c), l3(s, c), l4(s, c)} = max{L(s, α(a− 1))

+

b−1∑
h=a+1

pα(h) + L(α(b), c), L(s, α(a+ 1)) +

b−1∑
h=a+2

pα(h)

+ L(α(b), c)), L(s, β(1)) +
w−1∑
h=2

pα(h) + pα(a) + L(β(w), c),

L(s, α(a) +

w−1∑
h=x(a)

pα(h) + L(β(w), c)}

= max{L(s, c) + L(s, α(a− 1))− L(s, α(a)), L(s, c) + L(s, α(a+ 1)) +

− L(s, α(a))− pα(a+1), L(s, c) + L(s, β(1)) +

w−1∑
h=2

pβ(h) + pα(a) +

+ L(β(w), c)− L(s, πi(a
k))−

bk−1∑
h=ak+1

pπi(h) − L(πi(b
k), c),

L(s, c) +
w−1∑

h=x(a)+1

pβ(h) + L(β(w), c)−
b−1∑

h=a+1

pα(h) − L(α(b), c)}

= L(s, c) + max{Lx(ak)
1 , L

x(ak)
2 , L

x(ak)
3 , L

x(ak)
4 }

= L(s, c) + ∆a
x(a), (6.55)

which completes the proof of the theorem.

6.2. Machine workload 129

The next theorem is related with moving the last operation π(bk) from the
block Bk to machine Mj .

Theorem 6.7. If the solution Θ′ = (Q′, π′) is generated from the Θ = (Q, π) by
executing the move tij(b

k, y(bk)) ∈ T subm, y(bk) ∈ {ηj(bk), ρj(bk)} then

L′(s, c) ≥ L(s, c) + ∆bk

y(bk). (6.56)

Proof. Similarly, as in the proof of Theorem 6.6 we assume that πi = (πi(1), πi(2),
. . . , πi(ϱi)) and πj = (πj(1), πj(2), . . . , πj(ϱj)) are permutations of operations
executed on machine Mi and Mj , and Bk = (πi(a

k), πi(a
k + 1), . . . , πi(b

k))
(1 ≤ ak ≤ bk ≤ ϱi) is the block on the machine Mi.

Further, for simpli�cation purposes we assume that α = πi = (α(1), α(2),
. . . , α(u)), β = πj = (β(1), . . . , β(w)) where u = ϱi, w = ϱj , and the block
Bk = (πi(a), πi(a+ 1), . . . , πi(b)).

We consider the following paths

d1(s, c) = (C ′(s, α(a)), C ′(α(a), α(b−)), C ′(α(b− 1), c)), (6.57)

d2(s, c) = (C ′(s, α(a)), C ′(α(a), α(b+ 1)), C ′(α(b+ 1), c)), (6.58)

d3(s, c) = (C ′(s, β(1), C ′(β(1), β(w)), C ′(β(w), c)), (6.59)

d4(s, c) = (C ′(s, β(1)), C ′(β(1), β(y(b)) = α(b)), C ′(β(y(b)), c) (6.60)

in the acyclic graph G(Θ′) generated by the move tij(b
k, y(bk)). The lengths of

these paths are as follows

l1(s, c) = L(s, α(a)) +
b−2∑

h=a+1

pα(h) + L(α(b− 1), c), (6.61)

l2(s, c) = L(s, α(a)) +

b−1∑
h=a+1

pα(h) + L(α(b+), c), (6.62)

l3(s, c) = L(s, β(1)) +

w−1∑
h=2

pβ(h) + L(β(w), c), (6.63)

l4(s, c) = L(s, β(1) +

y(b)−1∑
h=2

pβ(h) + L(β(b), c). (6.64)

Because the critical path C ′(s, c) in the graph G(Θ′) is the longest one from vertex
s to c, its length equals

L′(s, c) ≥ max{l1(s, c), l2(s, c), l3(s, c), l4(s, c)}. (6.65)

130 Chapter 6. Hybrid scheduling

After having executed transformations similar to those in the proof of Theorem 6.6
we obtain

L′(s, c) ≥ L(s, c) + ∆b
y(b), (6.66)

which completes the proof of the theorem.

Remark 6.2. Values lk, k = 1, 2, 3, 4, can be determined sequentially in time
O(n) = O(o). These calculations can be done in parallel in time O(log n) =

O(log o) using O
(

n
logn

)
= O

(
o

log o

)
-processor CREW PRAM.

Moving the operation π(ak) to the position ηj(a
k) or ρj(a

k) the graph is
generated in which the lower bound of the length of the critical path from vertex
s to c is the value of the expression L(s, c) + ∆ak

ηj(ak)
(or L(s, c) + ∆ak

ρj(ak)
). That

is why the expression ∆ak

x(ak)
, x(ak) ∈ {ηj(ak), ρj(ak)} can be used to determine

the operation (i.e., an element from the neighborhood) that will be moved.
Similarly, L(s, c)+∆bk

ηj(bk)
(or L(s, c)+∆bk

ρj(bk)
) is a lower bound of the critical

path length in the graph generated by moving an operation π(bk) to positions
ηj(b

k) or ρj(b
k) and the expression ∆bk

y(bk)
, y(bk) ∈ {ηj(bk), ρj(b

k)} can be em-
ployed to select an element from the neighborhood.

We choose the operation π(v) ∈ O such that

∆v
χ(v) = min

1≤k≤r
min{∆z

µ(z) : z ∈ {ak, bk}, µ(z) ∈ {ηj(z), ρj(z)}} (6.67)

The minimal value ∆v
χ(v) is connected with the best t-move which consists in

moving the �rst or the last operation from some block to another machine. From
Theorems 6.6 and 6.7 it follows that if ∆v

χ(v) > 0, then the critical path length
L′(s, c) > L(s, c) in the generated graph G(Θ′).

Summing up, for the solution Θ = (Q, π) (�xed machine workload Q) we
propose the following method of the new assignment Q′ determination. In the
graph G(Θ) we determine the critical path C(s, c) (if there are more than one,
we choose any of them) and we calculate its length L(s, c) = Cmax(Θ). Next,
we determine the partition of the path into blocks B = (B1, B2, . . . , Br) and in
accordance with (6.21) the set of moves T subm(Θ). Using (6.67) we determine
∆v

χ(v) and choose the best t-move tij(v, χ(v)). This move generates a solution
(the new machine workload) from the neighborhood N (Θ) with the lowest value
of the lower bound of the cost function.

6.2.3. Machine workload rearrangement

The algorithm proposed here searches the neighborhood generated by t-moves
transferring the �rst and the last operations of each block from the critical path

6.2. Machine workload 131

to another machine. The computational complexity of the NewPar algorithm is
O(o3) because of the complexity of creating a t-move neighborhood (Step 3).
Determination of the longest paths (Step 1) can be done using Floyd's algorithm
in time O(o3), or applying the recursive method based on topological sorting in
time O(o), maintaining the complexity O(o3) of the whole sequential algorithm.
An outline of the algorithm is presented in Figures 6.5 and 6.6.

6.2.4. Parallel determination of the workload

Now, we will show a parallel version of the NewPar algorithm designed to be
executed on O(o2)-processor CREW PRAM in time O(o). An outline of the
algorithm is presented in Figures 6.7 and 6.8.

Step 1 consists in: (1) sequential determination of the graph G(Θ) = (V,R∪
E(Θ)) connected with the solution Θ and (2) parallel determination of the longest
paths for all pairs of vertices in this graph, which can be done using parallel
Floyd's algorithm. Because the graph has at most o vertices, parallel all-pairs
the longest paths determination algorithm works in time Θ(o) using o2-processor
CREW PRAM (see [124]). It is possible to determine the longest paths faster
(using a greater number of processors), but in this case this is useless because
Step 3 (neighborhood determination) has linear computational complexity O(o).

Step 2 (block determination) can be executed in constant time O(o) using
as many processors as there are vertices on the longest path � at most o. Let
us assign each processor to one vertex v lying on the critical path. It is enough
to check by each processor if the machine number assigned to its vertex λ(v) is
the same as the machine number λ(u) assigned to the next vertex u lying on the
critical path. If it is not the same it means that the next block begins in u (see
Section 3.6.2). Such a comparison can be made in time O(1) using O(o)-processor
CREW PRAM.

Step 3 (neighborhood determination) consists of two loops: external and in-
ternal one, which can be executed independently in parallel. Inside them each
processor needs to determine feasible positions ηj(ak), ρj(ak), ηj(bk) and ρj(b

k),
which can be done in linear time O(o). Afterwards, values∆ak

ηj(ak)
, ∆ak

ρj(ak)
, ∆bk

ηj(bk)

and ∆bk

ρj(bk)
have to be calculated, which also needs time O(o) (the sum of at most

o elements has to be determined; see Theorem 6.7). The entire Step 3 requires
O(o2) processors (to execute two loops in parallel) to be made in time O(o).

Step 4 (the best t-move move determination) consists in choosing one move
from O(4r ·mmax) moves, where mmax = max1≤i≤q mi is the maximal number of
machines in a nest. Because O(4r ·mmax) = O(rm) = O(o2) therefore we need
to use O(o2) processors to determine the minimal element of O(o2) elements in
time O(log o2) = O(2 log o) = O(log o). In fact, it is enough to use less processors,

132 Chapter 6. Hybrid scheduling

Algorithm 3. NewPar

Input: Θ = (Q, π) - a feasible solution of the FJSP;
Output: Θ′ = (Q′, π′) - a feasible solution generated by the t-move;
Step 1: {Graph creation}

Determine a graph with weighted vertices
G(Θ) = (V,R∪ E(Θ)) connected with the solution Θ;
Determine the longest paths lengths between vertices
of the graph G(Θ);

Step 2: {Blocks determination}
Determine the critical path in G(Θ)

(i.e., vertices sequence C(s, c));
Determine blocks sequence B = (B1, B2, . . . , Br)
of the critical path C(s, c));

Step 3: {Neighborhood determination}
for k :=1 to r do {consecutive blocks consideration}
if (block operations Bk = (π(ak), π(ak + 1), . . . , π(bk))

are executed on the machine Mv from the nestMu)
then

for i := tu−1 + 1 to tu−1 +mu do

{machines of the nest Mu}
if i ̸= v then

begin

determine feasible positions ηj(ak) and ρj(a
k)

for the operation ak on the machine Mi and calculate
the expression value ∆ak

ηj(ak)
and ∆ak

ρj(ak)
;

determine feasible positions ηj(bk) and ρj(b
k)

for the operation bk on the machine Mi and calculate
the expression value ∆bk

ηj(bk)
and ∆bk

ρj(bk)
;

end;
Step 4: {The best move determination}

Determine the value
∆v

χ(v) = min1≤k≤r min{∆z
µ(z) : z ∈ {ak, bk},

µ(z) ∈ {ηj(z), ρj(z)}}
corresponding to the best t-move tvχ(v) consisting in
moving the �rst or the last operation, respectively,
from some block to another machine from the same nest;

Fig. 6.5. Outline of the sequential NewPar algorithm, Part 1.

6.2. Machine workload 133

Step 5: {The new assignment determination}
Determine the new machine workload Q′

corresponding to the solution Θ′ generated by the t-move tvχ(v)
(determined by (1)�(5));

end.

Fig. 6.6. Outline of the sequential NewPar algorithm, Part 2.

Algorithm 4. ParallelNewPar

Input: Θ = (Q, π) - a feasible solution of the FJSP;
Output: Θ′ = (Q′, π′) - a feasible solution generated by the t-move;
Step 1: {Graph creation}

if proc_id = 1 then

Determine a graph with weighted vertices
G(Θ) = (V,R∪ E(Θ))

connected with the solution Θ;
parfor proc_id = 1..o2 do

Parallel determine the longest paths lengths between vertices
of the graph G(Θ);

end parfor;

Step 2: {Blocks determination}
if proc_id = 1 then

Determine the critical path in G(Θ)
(i.e., vertices sequence C(s, c));

parfor proc_id = 1..o do

Parallel determine blocks sequence B = (B1, B2, . . . , Br)
of the critical path C(s, c));

end parfor;

Step 3: {Neighborhood determination}
parfor k :=1 to r do {consecutive blocks consideration}
if (block operations Bk = (π(ak), π(ak + 1), . . . , π(bk))

are executed on the machine Mv from the nestMu)
then {machines of the nest Mu}

Fig. 6.7. Outline of the ParallelNewPar algorithm, Part 1.

namely O(o2

2 log o) instead of O(o2) to maintain the same computational complexity
O(log o); though it is not necessary because the other elements of the whole
algorithm have linear complexity O(o).

134 Chapter 6. Hybrid scheduling

parfor i := tu−1 + 1 to tu−1 +mu do

if i ̸= v then

begin

determine feasible positions ηj(ak) and ρj(a
k)

for the operation ak on the machine Mi and
calculate expressions value ∆ak

ηj(ak)
and ∆ak

ρj(ak)
;

determine feasible positions ηj(bk) and ρj(b
k)

for the operation bk on the machine Mi and
calculate expressions value ∆bk

ηj(bk)
and ∆bk

ρj(bk)
;

end;
Step 4: {The best move determination}

parfor proc_id = 1..o2 do

Parallel Determine the minimal value
∆v

χ(v) = min1≤k≤r min{∆z
µ(z) : z ∈ {ak, bk},

µ(z) ∈ {ηj(z), ρj(z)}}
connected with the best t-move tvχ(v) consisting in
moving the �rst or the last operation, respectively,
from some block to another machine from the same nest;

Step 5: {The new assignment determination}
if proc_id = 1 then

Determine the new machine workload Q′

connected with the solution Θ′ generated by the t-move tvχ(v)
end.

Fig. 6.8. Outline of the ParallelNewPar algorithm, Part 2.

Step 5 consisting in executing the t-move selected in the previous step can be
made by the single (master) processor in constant time O(1). Thus computational
complexity of the whole parallel algorithm is O(o). The algorithm needs to be
executed on O(o2)-processor CREW PRAM and it is cost-optimal with the cost
O(o3). A general scheme of the ParallelNewPar algorithm execution on GPU
for the CUDA programming environment is shown in Figure 6.9 as the case of
heterogeneous programming model (i.e., with using both CPU and GPUs).

6.3. Remarks and conclusions

A single-walk parallel approach to the �exible job shop scheduling has been pre-
sented in this chapter. We show the new integrated approach to the neighborhood
structure design and to its searching methodology from the point of view of the

6.3. Remarks and conclusions 135 Serial code Parallel kernel Kernel1<<<>>>() Serial code Parallel kernel Kernel2<<<>>>() Serial code

Host (CPU) Step 1. Determine a graph G(Θ) connected with a solution Θ; Device (GPU) (o2 threads) Determine the longest paths lengths between vertexes of the graph G(Θ) in parallel; Host (CPU) Step 2. Determine the critical path in G(Θ) Device (GPU) (o2 threads) Parallel determine blocks sequence of the critical path using o threads; Step 3. Determine feasible positions ηj(ak), ρ j(ak), ηj(bk), ρ j(bk) and calculate ∆ expressions values; Step 4. Determine the minimal ∆ value connected with the best t-move; Host (CPU) Step 5. Determine the new operations to machines assignment Q’ connected with the solution Θ’ generated by the best t-move from the Step 4;
Fig. 6.9. The general scheme of the ParallelNewPar algorithm execution on the host

(CPU) and the computational device (GPU) for the CUDA environment.

e�cient multi-thread computing environment usage. The methodology is illus-
trated by a special case of hybrid job shop scheduling problem. We propose the
new machine workload rearrangement technique used to concurrent generation of
the operations on machine schedules. Additionally, critical and sub-critical paths
lengths estimation allows us to shorten computations time by using lower bound
of the goal function instead of its exact value during neighborhood searching.

A theoretical analysis based on PRAM model of parallel computing was also
made. We proposed a cost-optimal method of the neighborhood generation par-
allelization for the CREW PRAM parallel computing model. The workload par-
allel determination algorithm decreases the computations time from O(o3) (of
the sequential approach) to O(o) time, using O(o2) processors. Applying PRAM
computing model makes it possible to convert the proposed methods to GPU
environment easily.

Chapter 7

Theoretical properties of a

single-walk parallel GA

This chapter aims at presenting theoretical properties which can be used to
approximate the theoretical speedup of parallel genetic algorithms. The most
frequent parallelization method employed in a genetic algorithm implements a
master-slave model by distributing the most computationally exhausting elements
of the algorithm (usually evaluation of the �tness function, i.e., cost function cal-
culation) among a number of processors (slaves). This master-slave parallelization
is regarded as easy in programming, which makes it popular with practitioners.
Additionally, if the master processor stores the population (and slave processors
are used only as computational units for �tness function evaluation of individ-
uals), it explores the solution space in exactly the same manner as sequential
genetic algorithm. We can thus say that we analyze the single-walk parallel ge-
netic algorithm.

We present two approaches in this chapter. The �rst one, in Section 7.1,
follows from Cantú-Paz [72] and we discuss it brie�y. The second one, described
in Section 7.2, constitutes a new idea of the broadcasting time approximation for
the master-slave parallel genetic algorithm.

7.1. Sequential broadcasting

A parallel genetic algorithm based on the master-slave model consists of two major
modules: (1) communication module, performed chie�y by the master processor
which broadcasts a part of population among slave processors, and (2) computing
modules, executed both on master and slaves, in which evaluation of the �tness
function is performed. We use notation taken from Cantú-Paz [72]. Let Tc be the
time used to send a portion of data between two processors, and let Tf denote

138 Chapter 7. Theoretical properties of a single-walk parallel GA

the time required to evaluate one individual. Each of the processors, i.e., both
master and slaves, evaluates a fraction of the population in time nTf

p , where p is
the number of processors and n is the population size. Next we assume in this
section that the master broadcasts the data to slave processors sequentially, as
Figure 7.1 shows. We omit the time consumed by genetic operators as well as
by the mutation (it is usually much shorter than the time of the �tness function
evaluation). We also assume that the part of data assigned to each processor (i.e.,
the number of individuals evaluated) is the same both for each slave processor,
and for the master processor. master Tc Tc Tc time Tc Tc Tc Tc slave 1 slave 2 slave 3 slave 4 slave 5 slave 6 slave 7

Tcomputations Tcomputations Tcomputations Tcomputations Tcomputations Tcomputations Tcomputations Tcomputations
Fig. 7.1. Sequential broadcasting in the master-slave parallel genetic algorithm.

For a sequential model of broadcasting, the parallel running time is given by
the equation

Tp = pTc +
nTf

p
. (7.1)

Let us check for which p the Tp is minimal. We denote this p by p∗1. Calculating
∂Tp

∂p = 0 we get

Tc −
nTf

p2
= 0, (7.2)

p = p∗1 =

√
nTf

Tc
, (7.3)

which provides us with an optimal number of processors p∗1 minimizing the value
of the parallel running time Tp. Calculating the maximum value of the theoretical

7.1. Sequential broadcasting 139

speedup Sp we obtain

Sp =
Ts

Tp
=

nTf

pTc +
nTf

p

. (7.4)

Substituting the optimal number of processors p∗1 we have

Sp∗1
=

nTf

p∗1Tc +
nTf

p∗1

=
nTf√

nTf

Tc
Tc +

nTf√
nTf
Tc

=

=
nTf√

nTfTc +
√

(nTf)2

nTf
Tc

=

√
(nTf)2

2
√

nTfTc

=
1

2

√
nTf

Tc
=

1

2
p∗1, (7.5)

which gives us a maximal possible speedup for this model of the single-walk
master-slave parallel genetic algorithm.

1

10
100

1000

1 10 100 1000
speedup

number of processorsg=1 g=2 g=4 linear speedup

��∗ for g=4 ��∗ for g=2
��∗ for g=1

Fig. 7.2. Theoretical speedups for the sequential broadcasting in the master-slave
parallel genetic algorithm.

Figure 7.2 shows possible theoretical speedups for a given ratio g =
Tf

Tc
. The

speedup is plotted for g = 1, 2, 4 showing that linearity of the speedup increases
with parameter g. In practice, Tf is much greater than Tc. In such a situation, the

140 Chapter 7. Theoretical properties of a single-walk parallel GA

parallel algorithm can achieve near-linear speedup for the number of processors
from the range [1, p∗1]. For the number of processors greater than p∗1 speedup
quickly decreases.

7.2. Tree-based broadcasting

Now, we propose a faster model of communication for the master-slave paral-
lel genetic algorithm. The broadcasting process is based on tree communication
scheme, which o�ers the possibility of obtaining logarithmic complexity of the
broadcasting process. This broadcasting scheme needs cooperation of all proces-
sors during the communication process. A scheme of the master-slave parallel
genetic algorithm based on this communication model is shown in Figure 7.3. master Tc Tc Tc Tcomputations time slave 1 slave 2 slave 3 slave 4 slave 5 slave 6 slave 7

Tcomputations Tcomputations Tcomputations Tcomputations Tcomputations Tcomputations Tcomputations
Tc Tc Tc Tc

Fig. 7.3. Tree-based broadcasting in the master-slave parallel genetic algorithm.

For the tree-based communication model the parallel running time Tp is esti-
mated by

Tp = Tc log2 p+
nTf

p
. (7.6)

In the case of using more processors, the parallel computing time
(
nTf

p

)
decreases,

whereas the time of communication (Tc log p) increases. We are looking for such
a number of processors p (let us call it p∗2) for which Tp is minimal. Calculating

7.3. Remarks and conclusions 141

∂Tp

∂p = 0 we obtain
Tc

p ln 2
−

nTf

p2
= 0 (7.7)

and then
p = p∗2 =

nTf ln 2

Tc
, (7.8)

which provides us with an optimal number of processors p∗2 which minimizes the
value of the parallel running time Tp for this model of broadcasting. Calculating
the maximum value of the theoretical speedup Sp we have

Sp =
Ts

Tp
=

nTf

Tc log2 p+
nTf

p

. (7.9)

Substituting the optimal number of processors p∗2 we obtain

Sp∗2
=

nTf

Tc log2 p
∗
2 +

nTf

p∗2

=
nTf

Tc
ln 2 ln

nTf ln 2
Tc

+
nTf

nTf ln 2

Tc

=

=
nTf ln 2

Tc

(
1 + ln

nTf ln 2
Tc

) =
p∗2

1 + ln p∗2
. (7.10)

This equation provides us with a maximal possible speedup for the tree-based
model of broadcasting for the single-walk master-slave parallel genetic algorithm.

Figure 7.4 shows possible theoretical speedups for a given ratio g =
Tf

Tc
, g =

1, 2, 4. As with the sequential communication plotted in Figure 7.2, linearity of the
speedup increases with an increase of the parameter g. The parallel algorithm
achieves the near-linear speedup for the number of processors from the range
[1, p∗2]. For the number of processors greater than p∗2 speedup keeps on increasing.

7.3. Remarks and conclusions

In this chapter, we discussed some theoretical properties of a metaheuristic which
can be used to solve scheduling optimization problems. The tree-based broad-
casting model seems to be more e�cient than the sequential broadcasting model
from the theoretical point of view. In practice, it is possible to make an addi-
tional improvement of the algorithm e�ciency by ful�lling the idle time of some
processors during the communication phase � if the process is executed in the
cycle, one generation of the parallel genetic algorithm after another, we can re-
move the synchronicity constraint. In such a case master processor can execute its
communication phase during a communication phase of the previous generation.

142 Chapter 7. Theoretical properties of a single-walk parallel GA

1101001000

1 10 100 1000
speedup

number of processorsg=1 g=2 g=4 linear speedup
Fig. 7.4. Theoretical speedups for the tree-based broadcasting in the master-slave

parallel genetic algorithm.

The proposed speedup estimation considered the parallel genetic algorithm
based on the master-slave model of parallelism. The analyzed approaches give a
theoretical approximation of the optimal number of processors necessary to obtain
the highest speedup. Additionally, it is possible to determine theoretical upper
bounds for the speedups obtained for the master-slave model of the parallel genetic
algorithm with a single population kept by the master processor. The results
shown in this chapter can be easily adopted to any other parallel algorithm in
which calculation and communication processes appear one after another, i.e., as
in distributed single-walk scatter search method and the majority of population-
based approaches.

Part III

MULTIPLE-WALK

PARALLELIZATION

Chapter 8

Parallel memetic approach

This chapter seeks to present a parallel memetic approach using as an example
a single machine total weighted earliness-tardiness (TWET) problem described
in Section 3.3.4. We additionally assume that the problem considered has no
idle constraint (TWET-no-idle problem), which means that the machine works
without stops. There are many service systems (especially in reservation systems,
electronic commerce, in tasks synchronized directly with the Internet), where
each task has to be executed in some �xed range of time. Violating the term
is disadvantageous and causes additional penalties. Therefore, it is necessary
to establish an optimal sequence of tasks (which minimizes penalties) and their
starting times. This amounts to some job scheduling problems with earliness
and tardiness. As tasks are usually received in the distributed system (in the
web), that is why to solve the problem presented we propose a parallel memetic
algorithm based on Lamarck's evolution and the island model of migration in
which part of a population is replaced with adequate local minima. The property
of partitioning a permutation into subsequences (blocks) was used in an algorithm
of determining local minima. This method decreases the size of a neighborhood
to about 50% (in a local optimization algorithm), improving a solution's values
and signi�cantly speeding up computations.

8.1. Introduction

Implementations of algorithms which are based on multithread multiple-walk
searching of the solution space are usually coarse-grained application, i.e., they
require sparse communication and synchronization. Algorithms of this type are
easy to apply in distributed calculation systems, as clusters which express ben-
e�cial e�ciency-to-price ratio. Apart from speeding up the calculations, it is
possible to improve the quality of results obtained. Search processes can be either
independent or cooperative.

146 Chapter 8. Parallel memetic approach

8.1.1. Independent searching threads

In this category we can distinguish two basic approaches:

• Researching of the solution space by using multiple trajectories, which be-
gin from di�erent starting solutions (or di�erent starting populations in the
case of using population-based approaches). Searching threads can use ei-
ther the same or di�erent strategies, i.e., the same or di�erent local search
algorithms, the same or di�erent parameters (tabu list length, population
size, etc.). Trajectories can cross each other in one or more places of the
neighborhood graph.

• Parallel researching of subgraphs of a neighborhood graph obtained by de-
composing the problem into a few subproblems (for example, �xing some
variables). Subgraphs of the neighborhood graph are searched concurrently
without crossing search trajectories. We obtain the partitioning of the
neighborhood graph into disjoint subgraphs.

The �rst parallel implementation of the tabu search method based on multiple-
walk searching of the solution space was proposed by Taillard for the quadratic
assignment problem (QAP) [244] and the job shop problem [245]. The multiple-
walk parallelization strategy based on independent searching threads is easy in
implementation and one can obtain good values of the speedup under condition
of proper decomposition of the solution space into searching threads (and their
trajectories). If the decomposition is done improperly, a parallel algorithm can
multiply search through the same regions of the solution space, i.e., we obtain
redundance of searching.

8.1.2. Cooperative searching threads

This model constitutes the most general and promising type of solution space
searching strategy by using parallel metaheuristics, however it requires knowl-
edge of solving problem speci�city. `Cooperative' means here the interchange of
information � experience of searching history up to now. Speci�c information,
which is characteristic of the problem and the method (e.g. the best solution
found so far, elite solutions, the frequency of moves, tabu lists, backtrack-jump
list, subpopulations and their sizes, etc.) has to be exchanged or broadcasted.

Information shared by search processes can be stored as global variables kept
in the shared memory or as records in the local memory of the dedicated cen-
tral processor which communicates with all other processors providing them with
requested data. In a model in which processes cooperate with each other and
information gathered when moving along a trajectory is used to improve other
trajectories, one can expect not only convergence of such a parallel algorithm,

8.2. Memetic algorithm 147

but also �nding at the same time a better solution than the parallel algorithm
without communication. In such a case we can say that cooperative concurrent
algorithms constitute a new class of algorithms indeed.

The �rst heuristic algorithm of this type was asynchronous parallel tabu search
algorithm proposed by Crainic, Toulouse and Gendreau [85]. Packages such as
ASA [141] and ParSA [155] o�er ready implementations of parallel simulated
annealing algorithms based on cooperative searching threads. The interaction
strategy is also very e�cient in implementation of parallel genetic algorithms
(in the sense of solutions obtained). There are plenty of ready libraries such as
PGAPack [13] and POOGAL [68]. The majority of cooperative implementations
of parallel genetic algorithm are based on themigration island model. Each process
has its own subpopulation exchanging from time to time a number of individuals
(usually the best � elite) with other processes (Bubak and Sowa [68], Crainic
and Toulouse [84]). Bubak and Sowa [68] used the migration island model to
implement a parallel genetic algorithm for the traveling salesman problem on
HP/Convex Exemplar SPP1600 with 16 processors and on heterogenous clusters:
Hewlett-Packard (D-370/2 and 712/60) and IBM (RS6000/520 and RS6000/320).
Bo»ejko [26] proposed a parallel path-relinking metaheuristic based on the parallel
scatter search algorithm.

8.2. Memetic algorithm

All operations in a coevolutionary memetic algorithm (selection, crossover, local
optimization and succession) are executed locally, on some subsets of the current
population called islands. It is a strongly decentralized model of an evolutionary
algorithm. There are independent evolution processes on each of the islands, and
communication takes place sporadically. Exchanging individuals between islands
secures diversity of populations and prevents fast imitating of an individual with a
local minimum as its goal function. On each island a hybrid algorithm is applied,
in which an evolutionary algorithm is used to determine the starting solutions
for the local search algorithm. An outline of the standard memetic algorithm is
presented in Figure 8.1.

8.3. Parallel memetic algorithm

The parallel algorithms based on the island model divide the population into
a few subpopulations. Each of them is assigned to a di�erent processor which
performs a sequential memetic algorithm based on its own subpopulation. The
crossover involves only individuals within the same population. Occasionally,
the processor exchanges individuals through a migration operator. The main

148 Chapter 8. Parallel memetic approach

Algorithm 5. Memetic algorithm

Number of iteration k :=0; P0 ← initial population;
repeat

P ′
k ←Selection(Pk); {Selection of parents}

P ′′
k ←Crossover(P ′

k); {Generating an o�spring}
P ′′
k ←Mutation(P ′′

k);
A←RandomSubSet(P ′′

k); {Subpopulation}
P ′′
k ←P ′′

k ∪LocalMinimumSet(A); {Local optimization}
Pk+1 ←Succession(Pk, P

′′
k) {A new population}

k := k + 1;
until some termination condition is satis�ed;

Fig. 8.1. Outline of the memetic algorithm.

determinants of this model are: (1) size of the subpopulations, (2) topology of
the connection network, (3) number of individuals to be exchanged, (4) frequency
of exchanging. The island model of parallel memetic algorithm is characterized by
a signi�cant reduction of the communication time, compared to the global model
(with distributed computations of the �tness function only). As shared memory
is not required, this model is also more �exible.

Below, a parallel memetic algorithm is proposed. The algorithm is based on
the island model of parallelism (see Bo»ejko and Wodecki [50]). We have adapted
the MSXF (Multi-Step Crossover Fusion) operator which is used to extend the
process of searching for better solutions of the problem. Originally, an MSXF has
been described by Reeves and Yamada [215]. Its idea is based on local search,
starting from one of the parent solutions, to �nd a new good solution, where
the other parent is used as a reference point. Here we propose to use block
properties de�ned in Section 3.3.4 to make the search process more e�ective �
prevent changes inside the block (which are unpro�table from the point of view of
the �tness function). Such a proceeding is consistent with an idea of not making
unpro�table changes between memes. In this way we design an MSXF+B (MSXF
with blocks) operator.

The neighborhood N (π) of the permutation (individual) π is de�ned as a set
of new permutations that can be obtained from π by exactly one adjacent pairwise
exchange operator which exchanges the positions of two adjacent jobs of a problem
solution connected with permutation π. The distance measure d(π,σ) is de�ned as
a number of adjacent pairwise exchanges needed to transform permutation π into
permutation σ. Such a measure is known as Kendall's τ measure (see Diaconis
[99]). An outline of the procedure is presented in Figure 8.2.

8.3. Parallel memetic algorithm 149

Algorithm 6. Multi-Step Crossover Fusion with Blocks

Let π1, π2 be parent solutions. Set x = q = π1;
repeat

Determine blocks in the solution π.
Determine restricted neighborhood N (x) according to blocks;
For each member yi ∈ N (x), calculate d(yi, π2);
Sort yi ∈ N (x) in ascending order of d(yi, π2);
repeat

Select yi from N (x) with a probability inversely
proportional to the index i;
Calculate F (yi);

Accept yi with probability 1 if F (yi) ≤ F (x), and with
probability

PT (yi) = exp((F (x)− F (yi)) / T)
otherwise (T is temperature);

Change the index of yi from i to n and the indices of
yk, k = i+1, . . . , n from k to k−1;

until yi is accepted;
x← yi;
if F (x) < F (q) then
q ← x;

until some termination condition is satis�ed ;
q is the o�spring.

Fig. 8.2. Outline of the Multi-Step Crossover Fusion with Blocks procedure.

In the implementation proposed here the Multi-Step Crossover Fusion with
Blocks (MSXF+B) is an inter-island (i.e., inter-subpopulation) crossover oper-
ator which constructs a new individual by making use of the best individuals
of di�erent islands connected with subpopulations on di�erent processors. The
condition of termination consisted in exceeding 100 iterations by the MSXF+B
function. An outline of the whole parallel memetic algorithm is presented in
Figure 8.3.

The learning phase of the proposed algorithm uses the path-relinking concep-
tion which makes it more e�cient than a standard descent search used as the
learning phase in the sequential memetic algorithm. It provides a good genetic
diversi�cation of the population together with a high quality of each individual.

Frequency of communication between processors (MSXF+B operator and mi-
gration) is very important for the parallel algorithm performance. This must not
take place very often because of the relatively long time of communication be-

150 Chapter 8. Parallel memetic approach

Algorithm 7. Parallel memetic algorithm

parfor j = 1, 2, . . . , p { p is the processors number}
i← 0;
Pj ← random subpopulation connected with processor j;
pj ← number of individuals in j subpopulation;
repeat

Selection(Pj , P
′
j);

Crossover(P ′
j , P

′′
j);

Mutation(P ′′
j);

if (k mod R = 0) then
{every R iteration}
r := random(1, p);
MSXF+B(P ′

j(1), Pr(1));
{Pr(1) is the best individual of subpopulation of processor r}

end if;
Pj ← P ′′

j ; i← i + 1;
if there is no improvement of the average �tness F then

{Partial restart}
r ← random(1,p);
Remove α = 90 percentage of individuals
in subpopulation Pj.;

Replenish Pj by random individuals;
end if;
if (k mod S = 0) then
{Migration}
r ← random(1,p);
Remove β = 20 percentage of individuals
in subpopulation Pj ;

Replenish Pj by the best individuals
from subpopulation Pr taken from processor r;

end if;
until Stop_Condition;

end parfor

Fig. 8.3. Outline of the parallel memetic algorithm.

tween processors, compared with the time of communication inside the program
of one processor. In this implementation the processor gets new individuals rather
rarely, every R = 20 (MSXF+B operator) or every S = 35 (migration) iterations.

8.4. Computer simulations 151

2.907 4.035

0.005
2.317

0.057 0.064 0.004 0.04200.511.522.533.544.5

40 50 100 average
APRD

number of jobs n1 processor 4 processors
Fig. 8.4. Average percentage relative deviations (APRD) for the sequence and parallel

memetic algorithms.

8.4. Computer simulations

The algorithm was implemented in the Ada95 language and ran on the SGI Altix
3700 Bx2 supercomputer installed in WCNS [266] under the Novell SUSE Linux
Enterprise Server operating system. Tests were based on 125 instances with 40,
50 and 100 jobs taken from the OR-Library [202]. The results were compared to
the best known ones, also taken from [202].

The computational results are presented in Figure 8.4 and in Table A.1 in
Appendix A (supplementary tables). The number of iterations is given as a sum of
iterations on processors, being permanently set to 800. For example, 4-processor
implementations make 200 iterations on each of the 4 processors, so we can obtain
comparable costs of computations. As we can observe, the parallel versions of
the algorithm achieve much better results of the average and maximal relative
deviation from the optimal (or the best known) solutions, working (parallel) in a
shorter time. Due to the small cost of communication the speedup parameter of
the parallel algorithms is almost linear.

8.5. Remarks and conclusions

The Lamarck evolution theory as well as memetic approach not only signi�cantly
extend traditional GA, but o�er more e�ective approach, too. It is well known
that the classic GA has a week search intensi�cation phase � genetic operators

152 Chapter 8. Parallel memetic approach

as well as a mutation mainly diversify the search process. Additionally, in the
memetic approach it is possible to make use of speci�c problem properties such as
the new MSXF+B operator with block properties. Embedding special properties
of the problem inside GA is usually di�cult. Further bene�ts are obtained by
using an island model with inter-island operator for the parallel asynchronous
coevolution.

As we observe MA is also able to improve convergence time compared to GA.
Compared to a sequential algorithm, in turn, the parallelization of MA shortens
the computing time and improves the quality of solutions obtained. The proposed
methodology of memetic algorithms parallelization can be applied to solve con-
currently all scheduling problems with block properties, such as �ow shop and
job shop problems with makespan criterion, single machine scheduling problems,
etc., for which a solution is represented as a permutation.

Chapter 9

Parallel population-based

approach

In this chapter, we propose parallelization of the new original population-based
method using the idea of concurrent local minima searching. It follows the
method introduced in papers of Bo»ejko and Wodecki [27, 52]. The parallelization
methodology is illustrated by a single machine scheduling problem with sequence-
dependent setup times, de�ned in Section 3.3.3.

9.1. Population-based metaheuristic

We present a method belonging to the population-based approaches which consists
in determining and searching for the local minima. This (heuristic) method is
devised on the following observation. If there are the same elements in some
positions in several solutions, which are local minima, then these elements can be
in the same position in the optimal solution. Because we propose this method
for solving problems in which a solution is a permutation that is why in the next
part of the chapter we identify these two notions.

The basic idea is to start with an initial population (any subset of the solution
space). Next, for each element of the population, a local optimization algorithm
is applied (e.g. descending search algorithm or a metaheuristic) to determine a
local minimum. In this way we obtain a set of permutations � local minima. If
there is an element which is in the same position in several permutations, then it
is �xed in this position in the permutation and other positions and elements of
permutations are still free. A new population (a set of permutations) is generated
by drawing free elements in free positions (because there are �xed elements in �xed
positions). After having determined a set of local minima (for the new population)
we can increase the number of �xed elements. To prevent the algorithm from

154 Chapter 9. Parallel population-based approach

�nishing its work after having executed a number of iterations (when all positions
are �xed and there is nothing left to draw) in each iteration `the oldest' �xed
elements are set free. The method proposed is especially helpful in solving large-
size instances of very di�cult discrete optimization problems with irregular goal
functions. A similar parallel population-based method was proposed by Bo»ejko
and Wodecki for the routing problem in work [36].

To solve the problem considered we propose a population-based algorithm
which examines local minima of the cost function. To determine the local mini-
mum a local search algorithm is used. We apply the following notation:

π∗ : suboptimal permutation determined by the algorithm,
η : number of elements in the population,

P i : population in the iteration i of the algorithm,
P i = {π1, π2, . . . , πη},

LocalOpt(π) : local optimization algorithm to determine local mini-
mum, where π is a starting solution,

LM i : a set of local minima in iteration i,
LM i = {π̂1, π̂2, . . . , π̂η},
π̂j = LocalOpt(πj), πj ∈ P i, j = 1, 2, . . . , η.

FSi : a set of �xed elements and position in permutations of
the population P i,

FixSet(LM i, FSi) : a procedure which determines a set of �xed elements
and positions in the next iteration of evolutionary algo-
rithm, FSi+1 = FixSet(LM i, FSi),

NewPopul(FSi) : a procedure which generates a new population in the
next iteration of algorithm, P i+1 = NewPopul(FSi).

In any permutation π ∈ P i positions and elements which belong to the set
FSi (in iteration i) we call �xed, whereas other elements and positions we call
free. The algorithm work begins with creating an initial population P 0 (and it
can be created randomly). We set a suboptimal solution π∗ as the best element
of the population P 0. A new population of iteration i + 1 (a set P i+1) is gen-
erated as follows: for the current population P i+1 a set of local minima LM i is
determined (for each element π ∈ P i executing procedure LocalOpt(π)). Ele-
ments which are in the same positions in local minima are established (procedure
FixSet(LM i, FSi)), and a set of �xed elements and positions FSi+1 is gener-
ated. Each permutation of a new population P i+1 includes �xed elements (in
�xed positions) from the set FSi+1. Free elements are randomly drawn in the
remaining free positions of the permutation. If permutation β ∈ LM i exists and
F (β) < F (π∗), then the permutation π∗ is set to β. The algorithm �nishes its
work after having generated a �xed number of generations.

9.1. Population-based metaheuristic 155

A general structure of the population-based metaheuristic algorithm for the
permutation optimization problem is given in Figure 9.1.

Algorithm 8. Population-Based Metaheuristic

Initialization:
a random creation of an initial population P 0 ← {π1, π2, . . . , πη};
π∗ ← the best element of the population P 0;
a set of �xed elements FS0 ← ∅; i← 0;

repeat

Determine a set of local minima LM i ← {π̂1, π̂2, . . . , π̂η}, where
π̂j ←LocalOpt(πj), πj ∈ P i;
for j ← 1 to η do

if F (π̂j) < F (π∗) then π∗ ← π̂j ;
Determine a set FSi+1 ← FixSet(LM i, FSi) and
generate a new population P i+1 ← NewPop(FSi);
i← i+ 1;

until not Stop Criterion.

Fig. 9.1. General structure of the population-based metaheuristic.

Procedures LocalOpt, FixSet and NewPopul are described in further parts of
this chapter. According to the memetic algorithm presented in Chapter 8, the
population-based approach proposed here has no genetic operators. The informa-
tion about the most common elements of local minima is collected and used for
creation of new individuals, instead.

9.1.1. A set of �xed elements and positions

A set FSi (in iteration i) includes quadruples (a, l, α, φ), where a is an element
of a set N (a ∈ N), l is a position in permutation (1 ≤ l ≤ n) and α, φ are
attributes of a pair (a, l). The parameter α means `adaptation' and decides on
inserting an element to the set, while φ � `age' � decides on deleting it from the
set. A FixSet(LM i, FSi) procedure is invoked, in which the following operations
are executed:

(a) changing the age of each element (φ parameter),
(b) deleting the oldest elements,
(c) inserting the new elements.

There are two functions of acceptance Γ(i) and Ξ(i) connected with the insert-
ing and the deleting operations, respectively. Both of them can be determined
experimentally.

156 Chapter 9. Parallel population-based approach

9.1.2. Element age modi�cation

In each iteration of the algorithm the age of each element which belongs to FSi

is increased by 1, that is

∀(a, l, α, φ) ∈ FSi+1, (9.1)

FSi+1 ← FSi\{(a, l, α, φ)} ∪ {(a, l, α, φ+ 1)}. (9.2)

The age parameter makes it possible to delete an element from the set FSi. Each
�xed element is free after some number of iterations and can be �xed again in
any free position.

9.1.3. Element insertion

Let P i = {π1, π2, . . . , πη} be a population of η elements in an iteration i. For
each permutation πj ∈ P i, applying the local search algorithm (LocalOpt(πj)
procedure) a set of local minima LM i = {π̂1, π̂2, . . . , π̂η} is determined. For any
permutation

π̂j = (π̂j(1), π̂j(2), . . . , π̂j(n)), j = 1, 2, . . . , η, (9.3)

let

nr(a, l) =
∣∣{π̂j ∈ LM i : π̂j(l) = a}

∣∣ , (9.4)

which is a number of permutations from the set LM i, wherein element a is in
the position l. Let Ξ(i) be de�ned as a �xed level of acceptance (0 < Ξ(i) < 1)
connected with the iteration i (Ξ can also be constant). If a ∈ N is a free element
and

α =
nr(a, l)

η
≥ Ξ(i), (9.5)

then the element a is �xed in the position l; φ = 1 and the quadruple (a, l, α, φ)
is inserted to the set of �xed element and positions, that is

FSi+1 ← FSi ∪ {(a, l, α, φ)}. (9.6)

9.1.4. Element deletion

To test many local minima each �xed element is released after some number of
iterations have been executed. Let the deletion level function Γ be de�ned so that

∀i, 0 < Γ(i) ≤ 1. (9.7)

Further, let

ES =

{
(a, l, α, φ) ∈ FSi+1 :

α

φ
≤ Γ(i)

}
. (9.8)

9.1. Population-based metaheuristic 157

It is a set of some elements and positions which are �xed in all permutations of the
population P i, for which α

φ (φ is an age) is under the deletion level Γ(i) de�ned
for an iteration i (Γ can be constant).

If ES ̸= ∅, then elements of this set are deleted from FSi+1, that is

FSi+1 ← FSi\ES, (9.9)

otherwise (when ES = ∅), let δ = (a′, l′, α′, φ′) ∈ FSi+1 be such that

α′

φ′ = min

{
α

φ
: (a, l, α, φ) ∈ FSi+1

}
. (9.10)

The element δ is deleted from the set FSi+1, that is

FSi+1 ← FSi\δ. (9.11)

9.1.5. Auto-tuning of the acceptance level

The function Ξ is de�ned so that for each iteration i 0 < Ξ(i) ≤ 1. It is possible
that none of the elements is acceptable to be �xed in an iteration. To prevent
this situation an auto-tune procedure for Ξ value is proposed. After calculating
the number of elements a in positions l (called nr(a, l)), in each iteration i, if

max
a,l∈{1,2,...,n}

nr(a, l)

K
< Ξ(i) (9.12)

then, Ξ(i) value is �xed as

Ξ(i)← max
a,l∈{1,2,...,n}

nr(a, l)

K
− ϵ, (9.13)

where ϵ is a small constant, e.g. ϵ = 0.05. In this way the value of Ξ(i) is
decreased. Similarly, it is possible to increase this value when it is too small
(and too many elements are �xed in one iteration). The function Γ(i) should be
de�ned in such a way that each element of the set FSi is deleted after a number
of iterations have been executed.

9.1.6. A new population

If a quadruple (a, l, α, φ) ∈ FSi+1 then in each permutation of a new population
P i+1 there is an element a in a position l. Therefore, to generate a new population
P i+1 randomly drawn free elements are inserted in remaining free positions of the
elements of population P i. An outline of the procedure is given in Figure 9.2. The
function random generates an element of the setW from the uniform distribution.
The computational complexity of the algorithm is O(η · n).

158 Chapter 9. Parallel population-based approach

Algorithm 9. New Population (NewPopul(FSi+1))
P i+1 ← ∅;
Determine a set of free elements
FE ← {a ∈ N : ¬ ∃ (a, l, α, φ) ∈ FSi+1}
and a set of free positions
FP ← {l : ¬ ∃ (a, l, α, φ) ∈ FSi+1};
for j ← to η do {inserting �xed elements}
for every (a, l, α, φ) ∈ FSi+1 do

πj(l)← a;
end for;
W ← FE;
{inserting free elements}
for s← 1 to n do

if s ∈ FP then πj(s)← w, where
w ← random(W) and W ←W\{w};

end for;
Pi+1 ← Pi+1 ∪ {πj}.

end for;

Fig. 9.2. Outline of the NewPopul procedure.

9.2. Parallel Population-Based Metaheuristic

For the parallel version of the PBM two models of parallelization have been
proposed.

Single-thread model. This model executes multiple population-based meta-
heuristics which synchronize populations in each iteration, i.e., a common global
table of �xed elements and positions is used for each processor. In each iteration
the average number nr(a, l) of permutations (for all subpopulations) in which
there is an element a in a position l is computed. This model is called coopera-
tive.

Multiple-thread model. In this model, processes execute independent algo-
rithms (working on di�erent subpopulations) with di�erent parameters of �xing
elements in positions. At the end, the best solution of each subpopulation is col-
lected and the best solution of the whole algorithm is chosen. We will call this
model independent.

A general structure of the parallel population-based metaheuristic using MPI
library is given in Figures 9.3 and 9.4.

9.3. Computational experiments 159

Algorithm 10. Parallel population-based metaheuristic

procedure ParPBM(int n, int benchm_opt, bool stops, bool communication)
n � number of jobs to schedule;
benchm_opt � value of the benchmark's near optimal solution, taken from [78];
stops � if it is true, the algorithm stops after achieving benchm_opt;
communication � if it is true the algorithm has got a common nr table;

parfor p← 1..nrtasks do

best_costp ←∞;
αp ← 0.7;
fixedp ← 0;
int nrp[N_MAX][N_MAX];
int φp[N_MAX]; for i← 1..N_MAX do φp[i]← 0; end for;

perm P p[K_MAX];
for iter ← 1..R do

for t← 0..K− 1 do

P p[t]← Random_Perm();
int f ← Descent_Search(P p[t]);
if f < best_costp then best_costp ← f ; end if;
int fmin;
if stops == true then

MPI_Allreduce(&f,&fmin, 1, MPI_INT, MPI_MIN, MPI_COMM_WORLD);

if fmin <= benchm_opt then return fmin;
end if;
for i, j ← 1..n do

nrp[i][j]← 0;
end for;

for t← 1..K− 1 do

for i← 1..fixedp do

nrp[i][P
p[i]] + +;

end for;

end for;

Fig. 9.3. Parallel population-based metaheuristic, Part 1.

9.3. Computational experiments

Parallel population-based metaheuristic was implemented in C++ language with
the MPI library and it was tested on the Silicon Graphics SGI Altix 3700 Bx2
with 128 Intel Itanium2 1.5 GHz processors and cache-coherent Non-Uniform
Memory Access (CC-NUMA), craylinks NUMA�ex4 in fat tree topology with
the bandwidth 4.3 Gbps. Up to 16 processors of the supercomputer were used.
Computational experiments were done to check the speed of convergence of the
parallel algorithm in two proposed models of communication and to compare the
results obtained with the benchmarks from the literature [78] and the latest results
obtained for this single machine problem [79, 173, 172]).

160 Chapter 9. Parallel population-based approach

if communication == true then

int new_count[N_MAX][N_MAX];
MPI_Allreduce(nrp, new_count, (n+ 1) ∗ (n+ 1),
MPI_INT, MPI_SUM, MPI_COMM_WORLD);

for i, pos← 1..n do

nrp[i][pos]← new_count[i][pos]/nrtasks;
end for;

end if;

{ change α if it is too big or too small, i.e., no elements is �xed or too}
{ many are �xed}
AutoTune(&pe);
for pos, i← 1..n do

if nrp[i][pos]/K > pe then

fixed++;
φp[i]++;

end if;
end for;

for i← 1..n do

if φp[i] > MAX_AGE then

φp[i]← 0;
fixed−−;

end if;

end for;

end for; {t}
end for; {iter}
return f ;

end parfor;

Fig. 9.4. Parallel population-based metaheuristic, Part 2.

In Tables A.5 and A.6 (Appendix A) results of computational experiments for
the scheduling problem 1|sij |

∑
wiTi are presented with the new upper bounds

marked. As we can see in Tables A.5 and A.6 it was possible to �nd 65 new
upper bounds of the optimal cost function for the 120 benchmark instances. The
average percentage deviation from the solutions of Cicirello and Smith [78] was
on the level of −12.08% and was better than in earlier approaches proposed for
this problem (Cicirello and Smith [78] and upper bounds from Cicirello [79], Lin
and Ying [173] and Liao and Juan [172]).

Two criteria of the algorithm termination were checked. The �rst one stops
the algorithm after having achieved the benchmark value from [78] or exceeding
R = 10 iterations. This criterion was helpful to determine the speedup of the
parallel algorithm tested for two models: the independent model and the model
with communication. Results of computations for this criterion of the algorithm
termination are presented in Tables A.2, A.3 (convergence), Appendix A, and in
Figures 9.5 and 9.6.

9.3. Computational experiments 161

0.73 2.09 3.48 4.20 4.47 5.00 5.47 3.63

0.70 1.76 2.94 4.13 4.53 5.01 5.29 3.48
0.001.002.003.004.005.006.00

1 2 4 6 8 12 16 average
APRD

number of processorscooperative independent
Fig. 9.5. Improvement of the reference solution of Cicirello [79] made by ParPBM

algorithms (stop criterion: exceeding 10,000 sec.).

5565.0 5383.0 5580.0 5400.0 5218.0 5065.0 6865.0 5582.36547.00 5643.00

17836.00
8548.00 12129.00 5980.00

20124.0010972.4
0.05000.010000.015000.020000.025000.0

1 2 4 6 8 12 16 average
time [s]

number of processorscooperative independentsequential algorithm
Fig. 9.6. Total time of ParPBM algorithms (stop criterion: APRD = −0.3%).

162 Chapter 9. Parallel population-based approach

Table 9.1. Results of APRD (%) of the SA, GA and TS from Lin and Ying [173]
compared to ParPBM approach.

Problem set SA GA TS ParPBM σParPBM ∗

1 to 10 20.00 22.83 19.12 21.46 3.47
11 to 20 20.89 27.60 18.46 36.94 33.62
21 to 30 30.39 30.93 29.18 26.28 31.85
31 to 40 6.86 6.42 5.81 17.71 3.59
41 to 50 5.21 5.65 5.33 5.01 2.02
51 to 60 5.29 5.65 4.44 7.96 6.11
61 to 70 7.25 6.56 7.25 7.27 3.80
71 to 80 15.39 15.02 16.32 14.28 5.80
81 to 90 0.66 0.56 0.56 4.91 0.40
91 to 100 −0.47 −0.50 −0.11 0.90 0.64
101 to 110 0.60 0.24 0.64 3.14 0.45
111 to 120 −0.23 −0.44 −0.23 0.61 1.01
average 9.32 9.97 8.90 12.08 7.73

∗ Standard deviation of the ParPBM results σPHM is determined over 10 runs.

As we can see in Tables A.5 and A.6 the cooperative model of the ParPBM
has shorter real times of execution (ttotal) than the independent one. Also the
time consumed by all the processors (tcpu) is shorter for the cooperative model
of communication. It means that the cooperative model obtains faster the same
solutions as the independent model does.

The second criterion of the algorithm termination determines the speed of
the parallel algorithm convergence. Algorithms execute exactly R = 10 itera-
tions. Results of computations for this criterion are presented in Table 9.1. Three
t-Student tests of statistical signi�cance show that the average value is better than
in other approaches for the cooperative model of communication with the stan-
dard signi�cance level α = 0.05: H0 : m1 = mi,H1 : m1 > mi, i = 2, 3, 4, where
m1,m2,m3 and m4 denote an (unknown) APRD of algorithms ParPBM, SA, GA
and TS, respectively, for any set of test instances. Values of test statistics equal
Z1 = 2.48, Z2 = 1.73 and Z3 = 2.93, respectively. The critical set for α = 0.05
is [1.65,∞) (from the normal distribution); all the values of test statistics do not
belong to the critical set, so we reject H0 and take the hypothesis H1 which says
that the APRD of the ParPBM algorithm is greater than APRDs of SA, GA and
TS approaches, respectively.

9.4. Remarks and conclusions 163

9.4. Remarks and conclusions

We proposed the new approach to the permutation optimization problems grown
on the parallel population-based technology, being the alternative and competitive
tool for solving hard scheduling problems. The usage of the population with �xed
features of local optima makes the performance of the method much better than
the iterative improvement approaches, such as in tabu search, simulated annealing
as well as classical genetic algorithms. This method can be implemented as a
multithread master-slave application as well as a distributed algorithm in which a
set of �xed elements and positions is determined independently or in cooperation.
Due to its simplicity the proposed approach can be easily accommodated to solve
any NP-hard discrete optimization problems such as vehicle routing or assignment
problems.

Chapter 10

Parallel branch and bound

approach

This chapter presents the parallel branch and bound (B&B) algorithm for the sin-
gle machine total weighted tardiness problem de�ned in Section 3.3.2. Although
this method is not a metaheuristic, it can be used as an approximate method by
stopping calculations after a �xed period of time and getting the best solution
up-to-now (i.e., the upper bound). In practice, such a method can be used as
a heuristic for bigger instances of the problem if the algorithm is executed for a
determined time period.

The method with cut tree is known as a curtailed B&B. Generally, the cut can
be realized as the limit of the amount of computational resources for an algorithm:

a) limited processor work time,

b) limited memory,

c) limited depth of the search tree,

d) limited number of successors of a node during the tree generation process
(so-called beam search, or �ltered beam search).

In the algorithm proposed here, we have made use of the new properties of a
permutation broken into blocks shown in Section 3.3.3. These properties are
much stronger than elimination criteria (see Potts and Van Wassenhove [214],
Rinnoy Kan et al. [222]) applied so far and they allow us to eliminate many
branches of the solution tree. Parallel implementation of the algorithm enables us
to reduce computational time signi�cantly as well as solve larger problems. We
have tested the algorithms on randomly generated instances (of up to 80 jobs)
and benchmark instances taken from the OR-Library [22]. The solutions obtained
have been compared with the results yielded by the best algorithms discussed in

166 Chapter 10. Parallel branch and bound approach

the literature. The results show that the proposed algorithm solves the problem
instances with high accuracy in a very short time.

10.1. Enumeration scheme

Each schedule of jobs can be represented by a permutation π = (π(1), π(2), . . . ,
π(n)) on the set of jobsN . Let Φn denote the set of all such permutations. We will
present the generation process of permutations from the set Φn as a search tree H.
We create this tree as follows: from the root node (zero level), where no jobs have
been scheduled, we branch to 2n di�erent nodes on the �rst level; each node
corresponds to a speci�c job being scheduled in the 1-st or n-th position. Each of
these nodes leads to 2(n−1) new nodes on the second level, corresponding to one
of the remaining n − 1 jobs �lling the �rst or the last position of the remaining
range of n− 1 free positions, etc., (see Figure 10.1). * * * * * 1 2 * * * * 2 3 * * 1 * * * * 3 1 * 2 1 2 * 1 3* 1 * 3

Fig. 10.1. A part of the H tree for n = 3 (an asterisk denotes a free job).

Each node π from the h-th level (h = 0, 1, 2, . . . , n) in the tree H is charac-
terized by the sets of �xed jobs

SB(π) = (π(1), . . . , π(s− 1)), SE(π) = (π(t+ 1), . . . , π(n)) (10.1)

and free jobs

S(π) = (π(s), . . . , π(t)), (10.2)

where 1 ≤ s ≤ t + 1 ≤ n,
∣∣SB(π)

∣∣ = s − 1,
∣∣SE(π)

∣∣ = n − t, |S(π)| = t − s + 1
and

∣∣SB(π)
∣∣+ ∣∣SE(π)

∣∣ = h. Therefore, a permutation π takes the form

π = (π(1), . . . , π(s− 1)︸ ︷︷ ︸
SB(π)

, π(s), . . . , π(t)︸ ︷︷ ︸
S(π)

, (π(t+ 1), . . . , π(n))︸ ︷︷ ︸
SE(π)

. (10.3)

Producing from π a new permutation β (node on the (h + 1)-th level of the
tree) consists in �xing in the s-th or t-th position in β one of the free jobs from

10.1. Enumeration scheme 167

the set S(π), i.e., changing positions of the �xed job with the job which is in the
s-th or t-th position in π and including it in the sets of �xed jobs SB(π) or SE(π).
The remaining jobs in the same positions are in both permutations. Obviously,
in each successor of permutation β the job �xed in the s-th or t-th position in β
will still remain there.

We call the generation of a new permutation (new node in a solution tree)
a move (insert move). Let k and l (k ̸= l, k < n) be a pair of positions in a
permutation

π = (π(1), . . . , π(k), π(k + 1), . . . , , π(l), π(l + 1), . . . , π(n)). (10.4)

Thus, the move rkl generates a permutation πk
l in the following way

πk
l = (. . . , π(k − 1), π(k + 1), . . . , π(l), π(k), π(l + 1), . . .), (10.5)

if k < l, and

πk
l = (. . . , π(l − 1), π(k) , π(l), . . . , π(k − 1), π(k + 1), . . .), (10.6)

if k > l. A permutation (node) πk
l (1 ≤ k, l ≤ n) is a root of a subtree in the

solution tree H. This subtree contains all permutations which can be generated
from πk

l shifting jobs from the set of free jobs S(πk
l).

10.1.1. Lower bound

Let π be a node of the tree H on the h-th level as it was de�ned in (10.1) and
(10.2). The lower bound LB(S(π)) of costs of all possible schedules generated
from π can be de�ned as follows

LB(π) = F (SB(π)) + F (SE(π)) + LB(S(π)), (10.7)

where

F (SB(π)) =

s−1∑
i=1

fπ(i)
(
Cπ(i)

)
and (10.8)

F (SE(π)) =

n∑
i=t+1

fπ(i)
(
Cπ(i)

)
, (10.9)

is the cost of executing �xed jobs and LB(S(π)) is the lower bound of executing
free jobs. We will calculate LB(S(π)) applying two methods.

168 Chapter 10. Parallel branch and bound approach

Algorithm 11. LBG

begin

LBG(S(π))← 0; W ← S(π); P ←
t∑

i=1
pπ(i);

Execute |S(π)| times:
if there exists π(i) ∈W such that dπ(i) ≥ P then

W ←W\ {π(i)} and P ← P − pπ(i)
else

LBG(S(π))← LBG(S(π)) + min
π(i)∈W

{
fπ(i)(P)

}
and P ← P − max

π(i)∈W
{pπ(i)}

end.

Fig. 10.2. Outline of the lower bound from the greedy method (LBG) algorithm.

A lower bound from the greedy method

The lower bound LBG(S(π)) of execution costs of free jobs can be calculated as
is shown in Figure 10.2. It is easy to prove that for any permutation γ of jobs
from the set S(π), F (γ) ≥ LBG(S(π)).

A lower bound from the assignment problem

Let

T (q) = min{P (Q) : Q ⊂ S(π)},

where q = |Q| for any Q ⊆ N, P (Q) =
∑

π(i)∈Q
pπ(i). Next, we calculate

tij = P (SB(π)) + pπ(i) + T (j − 1) and (10.10)

cij = fπ(i)(tij), i, j = 1, 2, . . . , k, k = |S(π)| . (10.11)

The lower bound LBAP (S(π)) of execution cost of free jobs from the set S(π)
equals the optimal solution value for the following assignment problem

k∑
i=1

k∑
j=1

cijxij → min
x

(10.12)

xij ∈ {0, 1} ,
k∑

i=1

xij = 1,

k∑
j=1

xij = 1, i, j = 1, 2, . . . , k. (10.13)

10.1. Enumeration scheme 169

In the paper of Rinnoy Kan et al. [222] the lower bound for the TWTS problem
is calculated in a similar way. Finally, we de�ne the lower bound of the execution
of free jobs as the maximum of values obtained from the greedy method and the
assignment problem

LB(S(π)) = max{LBG(S(π)), LBAP (S(π))}. (10.14)

Therefore, if π∗ is the best solution known so far and

LB(π) ≥ F (π∗), (10.15)

then permutation π (node from the tree H) can be eliminated.

10.1.2. Branching rule

Let π be a node of the tree H. Let us select a free job (the move) from the set
S(π) = {π(s), . . . , π(t)}. Fixing this job in position s or t will generate a new
permutation which is a direct successor of π in the tree H. By L(π) = {ris : i ∈
S(π)} let us denote the set of candidates of moves which determine free jobs in
position s and by R(π) = {rit : i ∈ S(π)} the set of candidates of moves which
determine jobs in position t.

Let rls ∈ L(π), and take elements

I = {i ∈ N : s ≤ i < l and Cπ(i) > dπ(i)} (10.16)

and

δls(π) = fπ(l)(Cπ(s−1) + pπ(l))− fπ(l)(Cπ(l)) + pπ(l)
∑
i∈I

wπ(i). (10.17)

Next, for rlt ∈ R(π)

δlt(π) = fπ(l)(Cπ(t))− fπ(l)(Cπ(l))− pπ(l)
∑
j∈J

wπ(j), (10.18)

where J = {j ∈ N : l < j ≤ t and Cπ(j) > dπ(j)}.

Theorem 10.1. If β is a permutation generated from π by move rls ∈ L(π), then

F (β) ≥ F (π) + δls(π), (10.19)

and, if it is generated by move rlt ∈ R(π), then

F (β) ≥ F (π) + δlt(π). (10.20)

170 Chapter 10. Parallel branch and bound approach

Proof. Let a permutation π be a vertex on the level h = s − 1 + n − t in the
solution tree H. A set of free jobs in π, S(π) = (π(s), π(s+1), . . . , π(t−1), π(t)).
A move rls ∈ L(π) (s ≤ l ≤ t) generates a new permutation (a vertex in the
solution tree H) β = rls(π) such that

β(i) = π(i), i = 1, 2, . . . , s− 1, l + 1, . . . , n, (10.21)

β(s) = π(l) and β(j + 1) = π(j), j = s, s+ 1, . . . , l − 1. (10.22)

Let

X = {i ∈ N : s ≤ i < l, Cπ(i) > dπ(i)}, (10.23)

Z = {i ∈ N : s ≤ i < l, Cπ(i) ≤ dπ(i) and Cπ(i) + pπ(l) > dπ(i)}. (10.24)

For s + 1 ≤ k < l the element β(k + 1) = π(k). We consider three exhaustive
cases: `π(k) ∈ X ', `π(k) ∈ Z' and `π(k) ̸∈ (X ∪ Z)'.

Case 1. `π(k) ∈ X '. Then

fβ(k+1)(Cβ(k+1)) = fπ(k)(Cπ(k)) + wπ(k) · pπ(l). (10.25)

Case 2. `π(k) ∈ Z'. In this case

fβ(k+1)(Cβ(k+1)) = fπ(k)(Cπ(k)) + wπ(k) · (Cπ(k) + pπ(l) − dπ(k)). (10.26)

Since fπ(k)(Cπ(k)) = 0, so
fβ(k+1)(Cβ(k+1)) =

= wπ(k) · (Cπ(k) + pπ(l) − dπ(k)) = fπ(k)(Cπ(k) + pπ(l)). (10.27)

Case 3. `π(k) ̸∈ (X ∪ Z)'. Then

fβ(k+1)(Cβ(k+1)) = fπ(k)(Cπ(k)) = 0. (10.28)

Since β(s) = π(l), so

fβ(s)(Cβ(s)) = fπ(l)(Cπ(s−1) + pπ(l)). (10.29)

The goal function value

F (β) =
s−1∑
i=1

fβ(i)(Cβ(i)) + fβ(s)(Cβ(s)) +

+

l∑
i=s+1

fβ(i)(Cβ(i)) +

n∑
i=l+1

fβ(i)(Cβ(i)) =

s−1∑
i=1

fπ(i)(Cπ(i)) +

10.2. Branch and bound algorithm 171

+ fπ(l)(Cπ(s−1) + pπ(l)) +

l−1∑
i=s

fπ(i)(Cπ(i)) +

+
∑

π(i)∈I

wπ(i) · pπ(l) +
∑

π(i)∈J

fπ(i)(Cπ(i) + pπ(l)) +

+

n∑
i=l+1

fπ(i)(Cπ(i)) =

n∑
i=1

fπ(i)(Cπ(i)) + fπ(l)(Cπ(s−1) +

+ pπ(l))− fπ(l)(Cπ(l)) + pπ(l) ·

 ∑
π(i)∈I

wπ(i)

+

+
∑

π(i)∈J

fπ(i)(Cπ(i) + pπ(l)) = F (π) + δ(rls). (10.30)

Similarly, we can prove that for a move rlt ∈ R(π) (s ≤ l < t)

F (β) = F (π) + δ(rlt), (10.31)

which ends the proof of the theorem.

Therefore, expression F (π) + δls(π) or F (π) + δlt(π) is a lower bound of a
permutation weight generated from π by �xing the free job π(l) ∈ S(π) in the
s-th or t-th position. While the algorithm progresses we will choose jobs which
after having been �xed will generate a permutation � a direct successor which has
the smallest possible weight (i.e., which has the smallest δls(π), rls ∈ L(π) and
δlt(π), r

l
t ∈ R(π)).

10.2. Branch and bound algorithm

The starting point of the algorithm (the root of solution tree H) is a permutation
π0, the sets of �xed jobs SB(π0) = SE(π0) = ∅ (s = 1, t = n) and of free jobs
S(π0) = N. Let us assume π∗ ← π0 as the best solution and let the upper bound
UB = F (π∗). The tree level is h = 0. Let π be a permutation (node) on the
h-th level of the tree H. The sets of �xed jobs SB(π) = (π(1), π(2), . . . , π(s −
1)), SE(π) = (π(t+ 1), π(t+ 2), . . . , π(n)) and of free jobs S = {π(s), . . . , π(t)} ,
where h = s − 1 + n − t. The quality of solutions calculated by the branch and
bound algorithm depends on the starting point, too. For π0 we set the best
solution determined by one of the heuristic algorithms: SWPT, EDD, AU and
COVERT, [213]. An outline of the branch and bound method is presented in
Figure 10.3.

172 Chapter 10. Parallel branch and bound approach

Algorithm 12. B&B

Step 1: {Lower bound}
if LB(π) ≥ UB then go to Step 5;

Step 2: {Upper bound}
if F (π) < UB then UB ← F (π), π∗ ← π;

Step 3: {Set of candidates}
Determine set of candidate moves L(π) and R(π);

Step 4: {Calculations}
if L(π) ∪R(π) = ∅ then go to Step 5;
Select a move rkl , such that:
δkl = min{ min

ris∈L(π)
{δis}, min

rit∈R(π)
{δit}};

Generate new permutation β (node in H) by
executing move rkl .
if rkl ∈ L(π) then
determine π(k) on position s in β

and s← s+ 1
else (i.e., rkl ∈ R(π))
determine the job π(k) on position t in β

and t← t− 1;
Let h← h+ 1; π ← β;
go to Step 1;

Step 5: {Backtrack}
if π is the root of the tree
then exit; {π∗ is an optimal solution}
if permutation π was generated from β
by move rkl then

ifrkl ∈ L(π) then
s← s− 1 and L(π)← L(π)\{rkl }
else (i.e., rkl ∈ R(π))
t← t+ 1 and R(π)← R(π)\{rkl };

h← h− 1;
go to Step 4;

Fig. 10.3. Outline of the Branch and Bound (B&B) method.

10.2.1. Parallel algorithm

The parallel algorithm was implemented for the SIMD model of parallel processors
without shared memory. Each processor has its own local memory with a short
time of access; the communication between processors is very slow (compared to

10.3. Computer simulations 173

Algorithm 13. Parallel B&B

for (each processor p = 1, 2, . . .)
begin

Heap : heap; {local for each processor }

while Heap ̸= ∅
if LB(π) < UB then

begin

π ← Get(Heap);

if F (π) < UB then

begin

UB ← F (π); π∗ ← π;
broadcast π* to other processors

end;

if L(π) ∪R(π) = ∅ then Backtrack

else select minimal move in L(π) ∪R(π)
and generate new permutation

(node in tree H);
Put(Heap, β)

end

end.

Fig. 10.4. Outline of the parallel B&B.

the local-memory access). A general scheme of the parallel algorithm is given in
Figure 10.4.

The main idea of the parallel algorithm is to make a concurrent multiple-walk
search process on the solution tree H. Each processor has a set of vertices to
search and a local value of the upper bound UB. If every processor had the latest
value of the best upper bound at any moment, the speedup (compared to the
sequential algorithm) would be the greatest. But broadcasting the upper bound
costs, i.e., the time of communication between processors is very long. That is why
the frequency of communication between processors (broadcasting of the latest
value of the upper bound) has to be low. In our implementation the processor is
getting a new value of UB when it wants to broadcast its own π∗.

10.3. Computer simulations

The algorithm was implemented in Ada95 language and ran on the SGI Altix 3700
Bx2 supercomputer installed in Wrocªaw Centre of Networking and Supercom-
puting [266] under the Novell SUSE Linux Enterprise Server operating system.

174 Chapter 10. Parallel branch and bound approach

Table 10.1. The number of iterations (over all processors) and the time of computing.

n 1 processor time∗∗ 2 processors 4 processors

20 18 821 4 18 819 18 814∗

30 53 133 27 53 123 53 125

40 96 818 54 96 818 96 818

50 160 379 126 160 337 160 315

60 246 295 381 246 306 246 290

70 347 290 589 347 267 347 260

80 490 649 937 490 650 490 535
∗ Situations where parallel algorithm executes less iterations than the sequential one

are marked with bold font.
∗∗ The average time of computing for single instance in seconds.

The tasks of Ada95 language were executed in parallel as system threads. Test
problems were randomly generated (adapting the generation scheme proposed by
[214]) and 125 instances were given for each size n = 20, . . . , 80. For each job i,
an integer processing time pi was generated from the uniform distribution [1,100]
and, for weighted tardiness problems, an integer weight wi was generated from
the uniform distribution [1,10]. Problem hardness is likely to depend on the rela-
tive range of due dates (RDD) and on the average tardiness factor (TF). Having
computed and selected values of RDD and TF from the set 0.2, 0.4, 0.6, 0.8,
1.0, an integer due date di from the uniform distribution [P(1− TF −RDD/2),
P(1−TF +RDD/2)] was generated for each job i. Five problems were generated
for each of the 25 pairs of values of RDD and TF, yielding 125 problems for each
value of n.

Table 10.1 shows average number of iterations performed by the algorithm for
varying number of processors and average computing times. As we can notice a
parallel algorithm performs on average a smaller number of iterations than the
sequential algorithm. This e�ect can also be observed in Figure 10.5. In the par-
allel algorithm the number of iterations is computed as the sum of iterations for
each processor, so the speedup we get may be almost-linear, or even superlinear,
because of the rare communication between processors. Such speedup anomalies
were seen in the context of branch and bound algorithms (Lai and Sahni [164],
Mans and Roucairol [178]), as well as in the context of parallel tabu search and
simulated annealing algorithms (Bo»ejko and Wodecki [65], Porto and Ribeiro
[209], Wodecki and Bo»ejko [269]). Anomalies can appear due to wrong decisions

10.4. Remarks and conclusions 175

0.0106 0.0000 -0.0045 -0.0002

0.0372

0.0000 0.0020
0.0232

-0.0100-0.00500.00000.00500.01000.01500.02000.02500.03000.03500.0400

20 40 60 80
nodes [%]

number of jobs n2 processors 4 processors
Fig. 10.5. Percentage improvement of the number of searched nodes of the parallel

B&B compared to the sequential B&B algorithm.

made by sequential algorithms. As we can notice the number of iterations per-
formed by algorithms grows exponentially, but much more slowly than it takes
place in the known branch and bound algorithms for this problem, which cannot
solve problems for n > 50. Our parallel algorithm can solve problems even for
n > 100, for some instances, in 90 minutes.

10.4. Remarks and conclusions

This chapter provides us with a practical, sequential and parallel branch and
bound algorithm for the single machine total weighted tardiness problem. Pre-
liminary calculation allowed us to suppose that in the case of using parallel sys-
tems it will be possible to solve bigger instances (more than 50 jobs), especially if
we use stronger lower bounds and additional elimination criteria. The proposed
methodology can be applied to any discrete optimization problem in which a so-
lution is represented as a permutation. Superlinear speedup e�ect, described also
in the literature in the context of parallel B&B as a speedup anomaly, has been
observed during computational experiments.

Chapter 11

Parallel simulated annealing

The aim of this chapter is to propose a new cooperative simulated annealing ap-
proach designed to solve hard discrete optimization problems. We present two
simulated annealing algorithms (sequential and parallel) for the permutation �ow
shop sequencing problem. Two approaches to the simulated annealing method
parallelization have been presented: (1) classic, multiple-walk, with parallel gen-
eration of trajectories, and (2) more expanded one, using additional backtrack
jump, multimoves and temperature steering which makes it possible to inten-
sify and diversify the searching process. The �rst approach is presented for the
�ow shop problems with the objective of minimizing the makespan, the second
approach � with the sum of job completion times.

We propose a neighborhood applying block properties of jobs on a critical path
and speci�c acceptance function. We also use the lower bound of cost function.
By computer simulations conducted by Taillard [243] and other random problems,
it is shown that the performance of the proposed algorithms is comparable with
other random heuristic techniques discussed in the literature, but with much
shorter computing time. The proposed methodology can be applied in any local
search procedures.

11.1. Makespan criterion

We take into consideration the permutation �ow shop scheduling problem de�ned
in Section 3.4, denoted as F ||Cmax in the literature. The objective is to �nd a
schedule that minimizes the completion time of the last job. The problem under
consideration will be used as a case study to present the general methodology of
the multithread simulated annealing method implementation as a multiple-walk
parallelization.

178 Chapter 11. Parallel simulated annealing

11.1.1. Simulated annealing method

The general idea of the SA method was described in Section 2.1.2. Here we will
extend the SA algorithm description with detailed implementable elements. Let
us consider the notion for solutions of the �ow shop problem as it was de�ned
in Section 3.4. In each iteration of simulated annealing a random perturbation
is made to the current solution π ∈ Φn, giving rise to the set N (π) of neighbors.
A neighbor β ∈ N (π) is accepted as the next con�guration with probability func-
tion Ψt(π, β). The Ψt(π,β) is known as acceptance function and depends on con-
trol parameter t (temperature). Its value changes at suitably chosen intervals. In
practice the function Ψt(π,β) is chosen in such a way that solutions corresponding
to large increases in cost have a small probability of being accepted, whereas solu-
tions corresponding to small increases in cost have a greater probability of being
accepted. A standard simulated annealing algorithm can be written as in Fig-
ure 11.1. The best solution found so far is represented by π∗, L is the number

Algorithm 14. Standard simulated annealing algorithm

Let π ∈ Φn be an initial solution; π∗ ← π; i← 0;
repeat

while i ≤ L do

begin

i← i+ 1;
Randomly generate a solution β
from the neighborhood N (π) of the current solution π;
if Cmax(β) < Cmax(π

∗) then π∗ ← β;
if Cmax(β) < Cmax(π) then π ← β else

if Ψt(π, β) > random[0, 1) then π ← β
end; {i}
i← 0; modify control parameter t;

until Stop Criterion;

Fig. 11.1. Outline of the simulated annealing algorithm.

of iterations for the �xed value of the parameter t. The initial solution π of the
algorithm is devised by the heuristic method NEH (Navaz, Enscore, Ham [194]).

Let Bk (k = 1, 2, . . . ,m) be the k-th block in permutation π, Bf
k and Bl

k

the subblocks (see Section 3.4.3). For job j ∈ Bf
k let us denote by Nf

k (j) a set
of permutations created by moving the job j to the beginning of the block Bk

(before the �rst job in the block π(fk)). Analogously, for the job j ∈ Bf
k let us

denote by N l
k(j) a set of permutations created by moving the job j to the end

of the block Bk (after the last job in the block π(lk)). The neighborhood of the

11.1. Makespan criterion 179

solution π is as follows

N (π) =

m∪
k=1

∪
j∈Bk

(Nf
k (j)∪N

l
k(j)). (11.1)

We propose a new probability acceptance function

Ψt(π, β) = exp

[
(−LB(β) + Cmax(π

∗))
−2 ln(t)
Cmax(π∗)

]
, (11.2)

where LB(β) is a lower bound of the value Cmax(β). Using blocks in neighbor-
hood creation the strong connectivity property is lost, thereby causing lack of
theoretical convergence (however there are known excellent metaheuristic algo-
rithms without strong connectivity property, e.g. TSAB algorithm of Nowicki
and Smutnicki [196], one of the best metaheuristics for the �ow shop problem).
Therefore, we propose a new acceptance function which though does not give a
theoretical convergence of the whole SA, but is experimentally more bene�cial
� theoretical convergence conditions are not ful�lled for all practical simulated
annealing implementations.

The initial value of control parameter t ← t0, (0 < t ≤ 1), where t0 is
the probability of accepting a solution which is worse by half compared to the
best solution π∗. To modify parameter t we use a geometric decreasing scheme:
t ← t ∗ a, (0 < a < 1). If there is no improvement of the best solution π∗ after
T_iter iterations, then t← t0. The algorithm stops after Max_iter iterations.

11.1.2. Parallel concepts

The chosen model of parallel computing is the SIMD machine of processors with-
out shared memory � with the time of communication between processors much
longer than the time of communication inside the process which is being executed
on one processor. There are two ways of parallelization used here. One method is
simultaneous independent search � concurrently executing a number of indepen-
dent simulated annealing algorithms without any communication between them
and selecting the best solution from solutions obtained by all processes. The other
method is to broadcast the best solution of one processor to the other processors
when the new best solution is found.

As we have mentioned in Section 2.1.2, parallel simulated annealing (with
move acceleration parallelism) has been theoretically proved to be convergent to
the global optimum. However, in our implementation even sequential SA has no
convergence (because of the lack of strong connectivity of the blocks neighbor-
hood), that is why neither the parallel SA is theoretically convergent. In practice,
convergence is only a minor property of a metaheuristic, not connected with its
real e�ciency.

180 Chapter 11. Parallel simulated annealing

Frequency of communication between processors (broadcasting of the π∗) is
very important for this parallel algorithm performance. This must not take place
very often because of the long time of communication between processors. In
this implementation processor is getting a new value of π∗ only when it wants to
broadcast its own π∗ (so it exchanges and compares the best solutions with its
own π∗). An outline of the parallel SA algorithm is presented in Figure 11.2.

Algorithm 15. Parallel SA with broadcasting

Let π ∈ Φn be an initial solution (the same for each of p processors).
π*← π; i← 0; (all variables are local)
parfor j = 1, 2, . . . , p

while i ≤ L do

begin

i← i+ 1;
Randomly generate a solution β
from the neighborhood N (π) of the current solution π;
if Cmax(β) < Cmax(π

∗) then
π∗ ← β; broadcast π∗ to other processors with
comparing to others (exchanging π∗);

if Cmax(β) < Cmax(π) then π ← β else

if Ψt(π, β) > random[0, 1) then π ← β
end; {i}
i← 0; modify control parameter t

end parfor.

Fig. 11.2. Outline of the parallel SA with broadcasting.

11.1.3. Computational experiments

The algorithm has been tested in several commonly employed instances of various
size and hardness levels:

a) 50 instances of 12 di�erent sizes with 100, . . . , 500 operations (n × m =
20 × 5, 20 × 10, 20 × 20, 50 × 5, 50 × 10) due to Taillard [243], (from the
OR-Library: [22]),

b) 100 instances of 5 di�erent sizes with 2,000, . . . , 10,000 operations (200×5,
200× 10, 200× 20, 200× 25, 200× 50).

The computational results are presented in Tables A.4 and A.7 (in Appendix A).
We used the following parameter speci�cations in algorithms:

11.1. Makespan criterion 181

t0 = 0.5 � initial value of control parameter,
a = 0.98 � constant in control parameter formula,
L = n � number of iterations for �xed parameter t,
T_iter = 10 � number of iterations without improvement of the best

solution after which parameter t is set to t0.
All algorithms were implemented in Ada95 language and ran on the SGI Altix

3700 Bx2 supercomputer installed in Wrocªaw Centre of Networking and Super-
computing [266] under the Novell SUSE Linux Enterprise Server operating system.
The maximal number of iterations Max_iter is 200 for one-processor implemen-
tation and 50 for each of the processors in the implementation for 4 processors
(thus we have the same complexity, the value of speedup is 4 � the frequency of
communication between processors is very rare so it has no in�uence at all on
complexity estimation). As we can see in Figure 11.3, the results are better for
parallel program. So speedup is even greater than 4 in a sense (parallel program
needs less than 50 iterations to obtain the same results as sequential algorithm
for 200 iterations).

We compare solutions of our algorithm with the best known in the literature
approximate algorithm NEH (Navaz, Enscore, Ham [194]).

0.87

2.29 1.94
0.13

1.87 2.75
0.64

1.82 1.91
0.08

1.31
2.32

0.62
1.7 1.82

0.13 0.92
2.29

00.51
1.52
2.53

20 x 5 20 x 10 20 x 20 50 x 5 50 x 10 50 x 20
APRD

instance size1 processor 4 processors independent 4 processors with broadcasting
Fig. 11.3. APRD for Taillard [243] instances of the sequential and parallel SA

(independent and cooperative, with broadcasting).

182 Chapter 11. Parallel simulated annealing

As we can see in Figure 11.3 as well as in Tables A.4 and A.7 in Appendix A,
results of the parallel algorithm are best for the large values of quotient n and m
(20×5, 50×5, 100×5). In such a case the size (length) of blocks is most pro�table
for sequential and parallel algorithm performance. Besides, improvement of solu-
tion value for the parallel algorithm compared to the sequential one was at the
level of 18%. The parallel algorithm with broadcasting of the upper bound value
was better than the sequential one at the level of 24%, all parallel algorithms
being executed with the same number of iterations (as the sum of iterations on
each processor) like sequential algorithm.

11.2. Total completion time criterion

In this section, we present a tool for intensifying and diversifying the SA search-
ing process. We take under consideration the �ow shop problem with the total
completion time criterion F∥Csum.

11.2.1. Intensi�cation and diversi�cation of calculations

Here we present a new acceptance function and cooling scheme. In order to
intensify calculations we introduce:

a) backtrack jump � return to the neighborhood where improvement of the
current solution takes place,

b) changes of temperature � exact exploration of the promising region.

For better diversi�cation of calculations we will apply:

a) multi-step � moving computations to another remote region of solutions,
b) changes (increasing) of temperature enabling approval of considerably worse

solutions.

Acceptance function and cooling scheme. If for randomly determined permu-
tation β ∈ N (π) there occurs F (β) < F (π), then β is the base solution in the
next iteration. On the contrary, i.e., when F (β) ≥ F (π), the probability of accep-
tance for the base solution in the next iteration is determined by the acceptance
function. We propose a new one

Ψα,λ(π, β) = exp

[(
F (β)− F (π)

F (π∗)

)
· lnλ

α

]
, (11.3)

which also depends on the best solution π∗ determined so far. Parameters α and
λ (0 < λ < 1, α > 0) play the role of changing the temperature in the classical
acceptance function. We can intensify or diversify calculations by changing these

11.2. Total completion time criterion 183

parameters (cooling scheme). By reducing them we intensify calculations, whereas
by increasing their values we make it possible to move away from the current local
minimum (diversi�cation of computations).

Backtrack-jump. Let π be the current base solution, tπ � the temperature in
the current iteration connected with the current base solution π, and π∗ � the
best solution determined so far. By LM we denote long-term memory. On LM
we will record certain attributes of the algorithm iteration: base solution and
temperature. If for a randomly chosen permutation δ ∈ N (π), F (δ) < F (π) then
we record on LM the pair (π, tπ), in other words, LM ← LM ∪ (π, tπ).

If `return condition' comes out (e.g. lack of improvement of the best solution
after having executed a �xed number of iterations), then we get the pair (β, tβ)
from the LM memory. Instead of the current base solution of the algorithm we
take permutation β, and tβ becomes the current temperature. In SA algorithms
long-term memory LM is implemented using a stack or a queue.

Multi-step. If during a certain number of iterations the value of objective
function is growing, then we execute a multi-step: generating distant permuta-
tion (in the sense of the number of moves) from the current base solution. Let
βs, βs+1, . . . , βt be a search trajectory, i.e., a sequence of consecutive base solu-
tions. If F (βs) < F (βs+1) <, . . . , < F (βt) and |t− s| > Lbp, where Lbp is a
�xed parameter, then we execute the multi-step. For �xed parameter k we gener-
ate permutation δ = rk(rk−1(, . . . , r1(βt), . . . ,)), where r1, r2, . . . , rk are randomly
generated moves. We take permutation δ as a base solution and tδ ← t0.

11.2.2. Parallel simulated annealing

The �rst parallelizations of the simulated annealing method were based on the
crossing along a single trajectory through the solution space (so-called single-walk
strategy). There were two ideas used in this strategy: move acceleration and
parallel moves. Kravitz and Rutenbar [159] described one of the �rst examples of
this type of parallelization of the simulated annealing metaheuristic.

Another method, crossing along a multiple trajectory through the solution
space (multiple-walk strategy), was proposed by Miki et al. [189] and Czech
[92]. This method is based on execution of several threads (independent, semi-
independent or cooperative) running simulated annealing at di�erent tempera-
tures. This model was the base of our research.

The new elements of the pSA method: intensi�cation and diversi�cation,
multi-step and long-term memory were implemented in parallel as follows. A mas-
ter-slave model was used in implementation of the parallel algorithm. The master
process keeps shared data, such as the best known solution and backtrack-jump
heap. Slave processes i = 1, 2, . . . , p run their own simulated annealing threads
with di�erent temperatures ti = (αi, λi). If one process �nds a new best solu-

184 Chapter 11. Parallel simulated annealing

0.23 0.27 0.14

1.51 1.97
0.820.08 0.05 0.04

1.25 1.54
0.5900.51

1.52
2.5

20 x 5 20 x 10 20 x 20 50 x 5 50 x 10 average
APRD

instance size1 processor (sSA) 4 processors (pSA)
Fig. 11.4. Results of APRD for sSA and pSA algorithms.

tion π∗, then it sends it to the master process and runs an intensi�cation procedure
for the next S = 10 iterations. Slave processes obtain up-to-date π∗ from the mas-
ter process every K = 10 iterations. If the process shows no improvement of its
own search procedure for R = 20 `big' iterations (without modi�cation of temper-
ature), it runs the backtrack-jump procedure, consisting in getting new current
solutions from the backtrack heap of the master process. Both sequential and
parallel algorithms make n iterations without modi�cation of the temperature
inside one `big' iteration.

11.2.3. Computational results

The proposed algorithm was coded in Ada95 and ran on the SGI Altix 3700 Bx2
supercomputer installed in Wrocªaw Centre of Networking and Supercomputing
[266] under the Novell SUSE Linux Enterprise Server operating system, and tested
on the benchmark problems taken from the literature (see OR-Library [22] for
more details). Main tests were based on 50 instances with 100, . . . , 500 operations.
Each instance of the test problems was executed 8 times, and the average and
minimal result was used for comparison. The standard deviation of results was
computed too � it was the measure of algorithm stability.

Results of the tests are shown in Table A.8 in Appendix A. Starting solutions
for the �rst process were taken from the quick approximate algorithm NEH, other
processes start with random solutions. For all the algorithms tested, the number of

11.3. Remarks and conclusions 185

 0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

1.00%

1000 2000 3000 4000 5000 6000 7000

di
st

an
ce

 to
 o

pt
im

al

iterationssSA pSA

Fig. 11.5. Comparison of convergence for sSA and pSA algorithms.

iterations was given as a sum of iterations on processors. All algorithms, sequential
and parallel, make 20,000 iterations, so the 4-processor implementations make
5,000 iterations on each of the 4 processors.

As we can see in Figure 11.4 (which is based on Table A.8 from Appendix A)
the average distance to reference solutions for sequential sSA and parallel pSA was
at the level of 0.82% for 1-processor implementation and at the level of 0.59% for
4-processor implementation. All algorithms have the same number of iterations
and comparable costs. Additionally, the results of the parallel algorithm in 8 runs
were more stable: standard deviations of the result equalled 0.13%, compared
to 0.18% for the sequential algorithm. Another test was made for comparing
algorithms in terms of convergence speed. Tests were conducted on the �rst 10
instances of the benchmarks [22], the average distance to reference solutions was
used for comparison. As we can see in Figure 11.5 the parallel algorithm achieves
better results than the sequential algorithm after the same number of iterations
(as the sum of iterations on each processor).

11.3. Remarks and conclusions

We discussed an approach to the permutation of �ow shop scheduling based on a
randomization version of iterative improvement, namely the parallel simulated an-
nealing algorithm based on asynchronous multiple-walk strategy. Parallelization
increases the quality of the solutions obtained, the probabilistic element of the
algorithm makes simulated annealing much better than the iterative improvement
approach. The advantage is especially visible for large problems. As compared to

186 Chapter 11. Parallel simulated annealing

the sequential algorithm parallelization increases the quality of solutions obtained.
The idea of the backtrack-jump and the multi-step was employed. Computer ex-
periments show that the parallel algorithm is also considerably more e�cient and
stable in comparison to the sequential algorithm.

The pSA algorithm is relatively easy to design. We propose the new annealing
scheme which allows cooperation between threads during parallel computations
(a classic SA does not cooperate). Making use of this skill allows us to improve
results of the pSA.

Chapter 12

Parallel scatter search

The aim of this chapter is to present a parallel variant of the scatter search method,
one of most promising methods of combinatorial optimization. The parallel algo-
rithm has been projected and researched experimentally, in the application of �ow
shop scheduling problems with Cmax and Csum criteria. The parallel algorithm
based on the scatter search method not only accelerates the computations, but
it also improves the quality of the results. In some cases the e�ect of superlinear
speedup has been observed.

12.1. Scatter search method

The main idea of the scatter search method can be found in the paper of James,
Rego and Glover [146]. The algorithm is based on the idea of evaluation of the
so-called starting solution set. In the classic version a linear combination of the
starting solution is used to construct a new solution. In the case of a permu-
tational representation of the solution using linear combination of permutations
provides us with an object which is not a permutation. Therefore, in this chapter
a path relinking procedure is followed to construct a path from one solution of the
starting set to another solution from this set. The best element of such a path is
chosen as a candidate to add to the starting solution set. The method stops after
having executed a �xed number of max_iter_num iterations. An outline of the
(sequential) scatter search method is presented in Figure 12.1.

12.1.1. Path relinking

The base of the path relinking procedure, which connects two solutions π1, π2 ∈
Φn, is a multi-step crossover fusion (MSXF) described by Reeves and Yamada
[215]. Its idea is based on a stochastic local search, starting from solution π1, to

188 Chapter 12. Parallel scatter search

Algorithm 16. Scatter search

for i ← 1 to max_iter_num do

Step 1. Generate a set of unrepeated
starting solutions S; n← |S|.

Step 2. For randomly chosen n/2 pair from the S apply
path relinking procedure generating a set S′ - of n/2 solutions
which lies on paths.

Step 3. Apply local search procedure to improve value of the cost
function of solutions from the set S′.

Step 4. Add solutions from the set S′ to the set S.
Leave in the set S at most n solutions by deleting
the worst and repeated solutions.

Step 5. if |S| < n then

Add new random solutions to the set S such,
that elements in the set S does not duplicate and |S| = n.

end for.

Fig. 12.1. Outline of the scatter search method.

�nd a new good solution where another solution π2 is used as a reference point.
The neighborhood N(π) of the permutation (individual) π is de�ned as a set of
new permutations that can be obtained from π by exactly one adjacent pairwise
exchange operator which exchanges the positions of two adjacent jobs of a problem
solution connected with permutation π. The distance measure d(π,σ) is de�ned
as a number of adjacent pairwise exchanges needed to transform permutation π
into permutation σ. Such a measure is known as Kendall's τ measure (measures
for permutations are described in Diaconis [99]). The condition of termination
consisted in exceeding a given number of iterations. An outline of the procedure
is presented in Figure 12.2.

12.2. Parallel scatter search algorithm

The parallel algorithm was designed to be executed on two machines:

• the cluster of 152 dual-core Intel Xeon 2.4 GHz processors connected by
Gigabit Ethernet with 3Com SuperStack 3870 switches (for the F ||Csum

problem),

• Silicon Graphics SGI Altix 3700 Bx2 with 128 Intel Itanium2 1.5 GHz
processors and cache-coherent Non-Uniform Memory Access (CC-NUMA),

12.2. Parallel scatter search algorithm 189

craylinks NUMA�ex4 in fat tree topology with the bandwidth 4.3 Gbps (for
the F ||Cmax problem),

installed in the Wrocªaw Center of Networking and Supercomputing (WCNS)
[266]. Both supercomputers have got a distributed memory, where each processor
has its local cache memory (in the same node) which is accessible in a very short
time (compared to the time of access to the memory in another node). Taking
into consideration this type of architecture we propose a client-server model for
the scatter search algorithm considered here, where calculations of path-relinking
procedures are executed by processors on local data and communication takes
place rarely to create a common set of new starting solutions. The process of
communication and evaluation of the starting solution set S is controlled by a
processor number 0. We call this model global. Using special properties of the �ow
shop problem (blocks in the neighborhood determination inside a path-relinking
procedure) makes it possible to obtain an e�cient method of solving this NP-hard
optimization problem.

Algorithm 17. MSXF path-relinking procedure ([215])

Let π1, π2 be reference solutions. Set x = q = π1;
repeat

For each element yi ∈ N (π), calculate d(yi, π2);
Sort yi ∈ N (π) in ascending order of d(yi, π2);
repeat

Select yi from N (π) with a probability inversely
proportional to the index i; Calculate F (yi);

Accept yi with probability 1 if F (yi) ≤ F (x), and with
probability PT (yi) = exp((F (x)− F (yi)) / t) otherwise
(t is a temperature parameter);

Change the index of yi from i to n and the indices of
yk, k = i+1, . . . , n from k to k−1;

until yi is accepted;
x← yi;
if F (x) < F (q) then q ← x;

until some termination condition is satis�ed ;
return q { q is the best solutions lying on the path from π1 to π2 }

Fig. 12.2. Outline of the path-relinking procedure.

For comparison a model without communication was also implemented in
which independent scatter search threads are executed in parallel. The result of
such an algorithm is the best solution out of solutions generated by all the search-
ing threads. We call this model independent. Here we also use block properties

190 Chapter 12. Parallel scatter search

inside path-relinking procedure, but there is no communication among concur-
rently working processors.

Algorithms were implemented in C++ language using MPI (mpich 1.2.7) li-
brary and executed under the OpenPBS batching system which measures the
times of processor usage. An outline of the procedure is presented in Figure 12.3.

Algorithm 18. Parallel scatter search algorithm

for the SIMD model without shared memory

parfor p := 1 to number_of_processors do
for i := 1 to max_iter_num do

Step 1. if (p = 0) then {only procesor number 0}
Generate a set of unrepeated starting
solutions S; n← |S|.
Broadcast a set S among all the processors.

else {other processors}
Receive from the procesor 0 a set of starting solutions S.

end if;

Step 2. For randomly chosen n/2 pair from the S
apply path relinking procedure to generate a
set S′ - of n/2 solutions which lies on paths.

Step 3. Apply local search procedure to improve
value of the cost function of solutions from the set S′.

Step 4. if (p ̸= 0) then
Send solutions from the set S′ to procesor 0

else {only processor number 0}
Receive sets S′ from other processors
and add its elements to the set S

Step 5. Leave in the set S at most n
solutions by deleting the worst and repeated solutions.
if |S| < n then

Add a new random solutions to the
set S such, that elements in the set
S does not duplicate and |S| = n.

end if;

end if;

end for;

end parfor.

Fig. 12.3. Outline of the parallel scatter search method.

12.3. Computer simulations 191

12.3. Computer simulations

Tests were based on 50 instances with 100, . . . , 500 operations (n × m = 20 ×
5, 20 × 10, 20 × 20, 50 × 5, 50 × 10) proposed by Taillard [243], taken from the
OR-Library [202]. The results were compared to the best known ones taken from
[202] for the Cmax criterion. For the Csum �ow shop problem, the results obtained
were compared to the values of solutions obtained by Reeves and Yamada [215].

12.3.1. Calculations of the Cmax criterion

Tables A.9 and A.10 in Appendix A (supplementary tables) present results of
computations of the parallel scatter search method for the number of iterations
(as a sum of iterations on all the processors) equal 9,600. The cost of computa-
tions, understood as a sum of time-consumption on all the processors, is about
7 hours for all the 50 benchmark instances of the �ow shop problem. The best re-
sults (average percentage deviations from the best known solutions) are obtained
by a 2-processor version of the global model of the scatter search algorithm (with
communication), which are 70.4% better compared to the average 1-processor im-
plementation (0.029% vs. 0.098%). Since the time-consumption on all processors
is a little bit longer than the time of the sequential version we can say that the
speedup of this version of the algorithm if almost-linear. For the 4 and 8-processor
implementations of the global model and for 2, 4 and 8-processor implementations
of the independent model the average results of APRD are better than APRD
of the 1-processor versions, but the time-consumption on all processors (tcpu) is
shorter. That is why these algorithms obtain better results with a smaller cost of
computations � the speedup is superlinear. This anomaly can be understood as
a situation where the sequential algorithm executes its search threads such that
there is a possibility to choose a better path of the solution space trespass, which
the parallel algorithm does.

12.3.2. Calculations of the Csum criterion

Tables A.11, A.12, A.13 and A.14 in Appendix A present results of computations
of the scatter search method for the number of iterations (as a sum of iterations
on all the processors) equal 1,600. Similarly as for the Cmax algorithm, the time
of sequential computations is about 7 hours for all the 50 benchmark instances
of the �ow shop problem (Table A.12, A.14, Appendix A). The best results
(average percentage deviations from the best known solutions) are obtained by
a 2-processor version of the global model of the scatter search algorithm (with
communication), see Figure 12.4. Since the time-consumption on all processors
is a little bit longer than the time of the sequential version we can say that the

192 Chapter 12. Parallel scatter search

0.
41

8

0.
49

0.
58

2 0.
73

3

0.
43

1

0.
33

0.
42

3 0.
55

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8

A
R

P
D

number of processors

independent model global model

Fig. 12.4. APRD of the global and independent scatter search (iter = 1,600) for 50
instances from [202].

speedup of this version of the algorithm if almost-linear (or even superlinear,
because sequential algorithms, for both: independent and global models, have
worse APRD).

The situation is clearer for the number of iterations equal 16,000 (Tables A.15,
A.16, A.17 and A.18, Appendix A). The cost of computations, a sum of time-
consumption an all processors, is about 75 hours for all the 50 benchmark in-
stances of the �ow shop problem (Tables A.16, A.18, Appendix A). The best
results are achieved for a 8-processor version of the global model version of scat-
ter search and they are 58.6% better than the results of sequential global scatter
search algorithm, and 52.3% better than the results of sequential independent
model of scatter search algorithm (see Figure 12.5). The time-consumption on
all 8 processors is shorter than the time of both sequential versions. We can say
that the speedup of 8-processor global version of the scatter search algorithm is
superlinear: better results are achieved with lower cost of computations.

This anomaly can be understood as the situation where the sequential algo-
rithm executes its search threads such that there is a possibility to chose a better
path of the solution space trespass, which the parallel algorithm does. As we can
observe in Table A.15 such a situation takes place only for the global model of the
scatter search algorithms � independent searches are not so e�ective. More about
this anomaly can be found in Speedup calculation (Section 12.4). The advantage
of the global model of calculations over the independent searches is specially vis-

12.4. Speedup anomalies 193

0.
36

3

0.
40

6

0.
38

8

0.
380.

41
9

0.
26

5

0.
20

2

0.
17

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8

A
R

P
D

number of processors

independent model global model

Fig. 12.5. APRD of the global and independent scatter search (iter = 16,000) for 50
instances from [202].

ible for the large instance of the �ow shop problem � for n = 50, m = 5, 10.
The APRD is about 50% better for the 8-processor implementation compared
to 1-processor version, for the same number of iterations calculated as a sum of
iterations executed on all processors.

12.4. Speedup anomalies

Since we do not know the best algorithm for the �ow shop instances, it is im-
possible to use the strong speedup de�nition, i.e., comparing the parallel runtime
against the best-so-far sequential algorithm. Therefore, we have to use the weak
de�nition of speedup. We cannot compute speedup against a sequential scat-
ter search algorithm, because we compare di�erent algorithms. Hence, we turn
to compare the same parallel scatter search algorithm on 1 versus p processors.
Such a speedup is known as the orthodox speedup (see Alba [7]).

Several authors reported superlinear speedup [9, 84] with reference to the
following sources:

• implementation source � the sequential algorithm is ine�cient, i.e., it uses
data structures which can be managed faster by the parallel algorithm,

• numerical source � the parallel algorithm �nds a good solution more quickly
because it changes the order in which solution space is searched compared

194 Chapter 12. Parallel scatter search

 1.00 2.02 4.09
8.10

1.00 1.92 3.33 5.28
1.002.003.004.005.006.007.008.009.00

1 2 3 4 5 6 7 8
speedup

number of processors p

independent model global model p

Fig. 12.6. Orthodox speedup of the parallel scatter search, iter = 16,000.

to sequential algorithm,

• physical source � the parallel algorithm is characterized by more than a
simple increase in the computational power of CPUs, i.e., other resources
such as the total size of a fast cache memory.

In this chapter, we observe a situation where the work performed by parallel
and sequential algorithms is di�erent.

Flow shop with Cmax criterion. As the time-consumption on all processors
is a little bit longer than the time of the sequential version, we can say that the
speedup of this version of an algorithm is almost-linear (see Tables A.11 and A.12).
For the 4 and 8-processor implementation of the global model and for 2, 4 and
8-processor implementation of the independent model the average results of APRD
are better than APRD of the 1-processor versions, but the time-consumption on
all the processors (tcpu) is shorter. So these algorithms obtain better results with
a smaller cost of computations � the orthodox speedup is superlinear. This e�ect
can be observed in Figure 12.6.

Flow shop with Csum criterion. Also here the orthodox superlinear speedup
e�ect has been observed for the 8 and 16-processor implementation of the global
model of parallel scatter search (see Tables A.13 and A.14). The total time-
consumption of this implementation for all 50 instances (74:38:51 and 73:13:35,
hours:minutes:seconds) was smaller than the total time of sequential algorithm
execution (75:20:42). Such a situation takes place only for the global model:

12.5. Remarks and conclusions 195

0.73 2.09 3.48 4.20 4.47 5.00 5.47 3.63

0.70 1.76 2.94 4.13 4.53 5.01 5.29 3.48
0.001.002.003.004.005.006.00

1 2 4 6 8 12 16 average
APRD

number of processorscooperative independent
Fig. 12.7. Orthodox speedup of the parallel scatter search, iter = 1,600.

independent searches are not so e�ective, considering both results (APRD) and
speedup (see Figure 12.6).

The superlinear speedup anomaly obtained here has the numerical source and
it can be understood as the situation where the sequential algorithm may have to
search a large portion of solutions before �nding a good one. Parallel algorithm
may �nd the solution of similar quality more quickly due to the change in the
order in which the space is searched. This situation can be interpreted in terms of
diversi�cation versus intensi�cation of the search in the solution space � a parallel
algorithm can achieve better solutions faster than a sequential algorithm as a
result of searching process diversi�cation in the �rst phase of the algorithm work
(due to the multiple-walk strategy) and intensi�cation in the second phase after
�nding a `good' region by one of the multiple walking parallel searching threads.

12.5. Remarks and conclusions

The methodology of solving the �ow shop problem by using scatter search algo-
rithm has been described here, however the job scheduling problem considered can
be understood only as a case study � the proposed parallelization methodology is
a general approach, which increases the quality of solutions obtained maintaining
comparable costs of computations. Superlinear speedup is observed in coopera-
tive (global) model of parallelism. This anomaly has a numerical source � the

196 Chapter 12. Parallel scatter search

parallel algorithm by using cooperation (data broadcasting) generates a shorter
path (in the sense of the number of visited solutions needed to obtain a result
with comparable quality) in the solution space than the sequential algorithm.
The parallel scatter search outline can be easily adapted to solve other NP-hard
problems with permutational solution representation, such as traveling salesman
problem (TSP), quadratic assignment problem (QAP). The most e�cient results
can be obtained for scheduling problems with block properties (such as job shop
problem with makespan or single machine total weighted tardiness problem, see
Wodecki [268, 270]), in which reduced neighborhood can be used inside the path-
relinking procedure.

Chapter 13

Parallel genetic approach

A multiple-walk parallelization of the island model based genetic algorithm is
proposed in this chapter. A multi-step crossover fusion operator, based on the
local search procedure, is used for inter-island communication. We take under
consideration the permutation �ow shop scheduling problem with Csum criterion,
indicated by the F ||Csum.

13.1. Parallel genetic algorithm

There are three basic types of parallelization strategies which can be applied
to the genetic algorithm: global, di�usion model and island model (migration
model). Algorithms based on the island model divide the population into a few
subpopulations. Each of them is assigned to a di�erent processor which performs
a sequential genetic algorithm based on its own subpopulation. The crossover
involves only individuals within the same population. Occasionally, the processor
exchanges individuals through a migration operator. The main determinants of
this model are:

• size of subpopulations,

• topology of connection network,

• number of individuals to be exchanged,

• frequency of exchanging.

The island model is characterized by a signi�cant reduction of the communi-
cation time, compared to previous models. Shared memory is not required, so
this model is more �exible, too. Bubak and Sowa [68] developed implementation
of the parallel genetic algorithm for the TSP problem using the island model.

198 Chapter 13. Parallel genetic approach

Below a parallel genetic algorithm is proposed. This algorithm is based on
the hybrid island model of parallelism, with inter-island communication. In the
standard island model of GA, individuals are just copied from one island to an-
other. Here we propose an approach in which a robust genetic operator Multi-Step
Crossover Fusion (MSXF) is used as a local search method making a solution path
from one solution taken from an island to a second solution taken from another
island (used as a reference point). MSXF has been originally described by Reeves
and Yamada [215] as a normal genetic operator. We propose to use it as a com-
munication step of the parallel GA.

The neighborhood N (π) of the permutation (individual) π in the local search
communication procedure MSXF is de�ned as a set of new permutations that
can be reached from π by exactly one adjacent pairwise exchange operator which
exchanges the positions of two adjacent jobs of a problem solution connected with
permutation π. The distance measure d(π, σ) is de�ned as a number of adjacent
pairwise exchanges needed to transform permutation π into permutation σ. Such
a measure is known as Kendall's τ measure. An outline of the MSXF procedure
was presented in Figure 12.2, Section 12.1.1.

In our implementation, MSXF is an inter-subpopulation crossover operator
which constructs a new individual using the best individuals of di�erent sub-
populations connected with di�erent processors. The condition of termination
consisted in exceeding 100 iterations by the MSXF function. Frequency of com-
munication between processors (migration and MSXF operator) is very important
for the parallel genetic algorithm performance. This must not take place very
often because of a long time of communication between processors. In this imple-
mentation the processor gets new individuals quite rarely, every R = 20 (MSXF
operator) or every S = 35 (migration) iterations. An outline of the whole parallel
genetic algorithm is presented in Figure 13.1.

13.2. Computational experiments

The algorithm was implemented in the Ada95 language and run on the SGI Altix
3700 Bx2 supercomputer installed in Wrocªaw Centre of Networking and Super-
computing [266] under the Novell SUSE Linux Enterprise Server operating sys-
tem. Tests were based on 50 instances with 100, . . . , 500 operations (n × m =
20 × 5, 20 × 10, 20 × 20, 50 × 5, 50 × 10) due to Taillard [243], taken from the
OR-Library [202]. The results were compared to the best known ones taken from
[215]. Each instance of the test problems was executed six times, and the average
result was used for comparison. The standard deviation of results was computed,
too, as a measure of algorithm stability.

13.2. Computational experiments 199

Algorithm 19. Parallel genetic algorithm

parfor j = 1, 2, . . . , p { p is number of processors }
i← 0;
Pj ← random subpopulation connected with processor j;
pj ← number of individuals in j subpopulation;
repeat

Selection(Pj , P
′
j);

Crossover(P ′
j , P

′′
j);

Mutation(P ′′
j);

if (k mod R = 0) then {every R iteration}
r ← random(1, p);
MSXF(P ′

j(1), Pr(1));
end if;
Pj ← P ′′

j ;
if there is no improvement of the average Csum then

{Partial restart}
r ← random(1,p);
Remove α = 90 percentage of individuals in subpopulation Pj.;
Replenish Pj by random individuals;

end if;
if (k mod S = 0) then {Migration}
r ← random(1,p);
Remove β = 20 percentage of individuals in subpopulation Pj ;
Replenish Pj by the best individuals from subpopulation Pr

taken from processor r;
end if;

until Stop_Condition;
end parfor

Fig. 13.1. Outline of the parallel genetic algorithm.

Firstly, we made e�ciency tests of the classical genetic operators (seek Gold-
berg [117]) for our �ow shop problem on the sequential genetic algorithm. Next,
we chose the PMX, CX and SX crossover operator and the mutation operator I
(random adjacent pairwise exchange) for further research. After having chosen
the operators, we implemented the parallel genetic algorithm. The chosen model
of parallel computing was the MIMD machine of processors without shared mem-
ory � with the time of communication between processors much longer than the
time of communication inside the process which is being executed on one proces-
sor. The implementation was based on the island model of the parallel genetic

200 Chapter 13. Parallel genetic approach

1.00 1.10 0.93

2.96 4.48
2.090.66 0.81 0.65

3.43 4.79
2.070.52 0.79 0.64

3.10 4.64
1.94

0.001.002.003.004.005.006.00

20 x 5 20 x 10 20 x 20 50 x 5 50 x 10 average
APRD

instance size1 processor 4 processors, the same operators 4 processors, different operators
Fig. 13.2. A comparison between sequential and parallel cooperative genetic algorithms.

algorithm with one central processor and slave processors. The central processor
mediated in communication and stored data of the best individuals. Slave proces-
sors executed their own genetic algorithms based on subpopulations of the main
population. Co-operation was based on migration between `islands' and execution
of the MSXF operator with parents taken from the best individuals of di�erent
subpopulations (processors).

We tested the e�ciency of the parallel algorithm which was activated with a
combination of three strategies: with the same or di�erent start subpopulations,
as independent or cooperative search threads and with the same or di�erent ge-
netic operators. The number of iterations was permanently set to 1,000. Results
of tests for di�erent start subpopulations for every processor are shown in Ta-
ble A.21, Appendix A (supplementary tables). The results of the computations
for the strategy of the same start subpopulations were similar, but slightly worse.
A comparison between sequential and the most e�cient parallel genetic algorithm
(cooperative) is also shown in Figure 13.2. A four-processor implementation of
parallel GA with the same and di�erent genetic operators kept by each island was
chosen for comparison. The best results (average) were obtained by the version
with di�erent genetic operators executed on each island.

13.3. Remarks and conclusions 201

As it turned out, the strategy of starting the computation from di�erent sub-
populations on each processor with di�erent crossover operators and co-operation,
was signi�cantly better than others. The improvement of the distance to refer-
ence solutions was at the level of 7%, compared to the sequential algorithm, with
the same number of iterations equal 1,000 for the sequential algorithm and 250
for the 4-processor parallel algorithm. The computing time amounting to a few
seconds up to a few dozen seconds, depends on the size of the problem instance.
Moreover, the parallel algorithm has more stable results � the standard deviation
of the results was on average equal to 0.12% for the best parallel algorithm, com-
pared to 0.20% for the sequential algorithm � so the improvement of the standard
deviation was at the level of 40% in relation to the sequential algorithm.

13.3. Remarks and conclusions

We discussed an approach to the permutation �ow shop scheduling based on the
parallel asynchronous genetic algorithm. The advantage is especially visible for
large problems. As compared to the sequential algorithm, parallelization increases
the quality of solutions obtained. The idea of the best individual migration and
the inter-subpopulation operator was used. Computer experiments show that
the parallel algorithm is considerably more e�cient in relation to sequential al-
gorithm. Results of tests (after a small number of iterations) are insigni�cantly
di�erent from those best known. An extension of this approach can add to the al-
gorithm more elements of coevolutionary schemas, e.g. predators (predator-prey
model), food, etc., which will cause further improvement of the parallel algorithm
e�ciency.

Chapter 14

Parallel hybrid approach

In this chapter, we propose the two new double-level metaheuristic optimization
algorithms applied to solve the �exible job shop problem (FJSP) with makespan
criterion, de�ned in Section 3.6. Algorithms proposed here include two major
modules: the machine selection module to be executed sequentially, and the op-
eration scheduling module executed in parallel. On each level a metaheuristic
algorithm is used, therefore we propose to call this method Meta2Heuristic. We
carry out computational experiment using Graphics Processing Units (GPU).

14.1. Hybrid metaheuristics

The hybrid approach to solving di�cult optimization problems by using several
metaheuristics simultaneously makes it possible to use all of them. Talbi [247]
provides a systematic characterization of parallel hybrid metaheuristics, which is
visualized in Figure 14.1.

The upper part of the �gure presents the hierarchical structure of the hy-
bridization. In high-level hybrid algorithms the di�erent metaheuristics are self-
contained � there is no direct relationship to the internal workings of metaheuris-
tics. The low-level hybridization addresses the functional composition of a single
optimization method � a given function of metaheuristic is replaced by another
metaheuristic. A teamwork hybridization represents cooperative models of opti-
mization in which many parallel agents cooperate and each agent makes a search
in its own part of the solution space. On the other hand, in relay hybrids, a
number of metaheuristics are applied one after another; each one uses the output
of the previous one as its own input, as in a pipeline.

The lower part of Figure 14.1 (so-called �at part) speci�es the features of
algorithms involved in the hybrid. In homogeneous hybrids all the combined al-
gorithms use the same metaheuristic methods. On the contrary, in heterogeneous

204 Chapter 14. Parallel hybrid approach

algorithms, di�erent metaheuristics are used. In global hybrids, all the algorithms
search in the whole solution space � the goal is to explore the space more thor-
oughly. All the algorithms solve the whole optimization problem. On the other
hand, in partial hybrids, the problem considered is decomposed into subproblems;
each one having its own solution space. Each algorithm is dedicated to search in
one of these subspaces. Subproblems are linked with each other involving con-
straints between optima which are found by each algorithm. Algorithms establish
communication to respect these constraints and create a solution of the main
problem. In general hybrids, all algorithms solve the same target optimization
problem. Specialist hybrids combine algorithms which solve di�erent problems,
i.e., by solving another optimization problem into which the main problem is
transformed. I. Hybrid Metaheuristics

II.A. Low-level

II.A.1.
Relay

II.A.2
Teamwork

II.B. High-level

II.B.1.
Relay

II.B.2
Teamwork

III.A
Homoge

neous

III.B
Heteroge

neous

III.C
Global

III.D
Partial

III.E
General

III.F
Specialist

Fig. 14.1. Classi�cation of hybrid metaheuristics proposed by Talbi [247].

To conduct a survey of parallel hybrid metaheuristics application we can cite
Bo»ejko and Makuchowski, who proposed a hybrid metaheuristic solving no-wait
job shop problem [29]. Malek et al. [177] proposed a parallel hybrid metaheuristic
based on combined simulated annealing and tabu search approaches applied to
solve the traveling salesman problem (TSP). Bo»ejko and Wodecki described a
hybrid parallel evolutionary algorithm for the traveling salesman problem (TSP,
[44, 55]), for the quadratic assignment problem (QAP, [47]), for the single ma-
chine total tardiness problem ([51, 56]) and for the �ow shop scheduling problem
([56]). Porto and Ribeiro [209] presented parallel tabu search message-passing
synchronous strategies for task scheduling under precedence constraints. Rogal-
ska, Bo»ejko and Hejducki [225, 226] proposed a hybrid population-based method
in the application to the time/cost scheduling problems. Alba et al. [10] presented
library skeletons using hybrid approaches for the resource allocation problems.

14.2. Algorithms proposed 205

14.2. Algorithms proposed

The proposed here �exible job shop problem solving algorithms include two major
modules: the machine selection module and the operation scheduling module.

• Machine selection module. This module is based on the tabu search (1st
approach) and the population-based metaheuristic (2nd approach) methods
and it works sequentially. It helps an operation to select one of the parallel
machines from the set of machine types to process it.

• Operation scheduling module. This module is used to schedule the sequence
and the timing of all operations assigned to each machine from the center.
It has to solve classic job shop problems after having assigned operations to
machines. Two approaches: constructive INSA [195] and TSAB [195] (tabu
search) were used on this level.

On each level a metaheuristic algorithm is used, so we call this method
Meta2Heuristic (meta-square-heuristic). Both algorithms proposed in this chap-
ter belong to the high-level teamwork general homogeneous hybrid metaheuristics
(according to the taxonomy from Section 14.1). Metaheuristics connected with
each module are executed one after another, acting in a pipeline fashion. The
algorithms proposed belong to the partial hybrids, because the problem in order
to be solved is decomposed into subproblems connected with machine workloads.

14.2.1. Parallel Tabu Search Based Meta2Heuristic

The tabu search method was used here as a machine selection module. The al-
gorithm operates on solutions which constitute job-to-machine assignments. The
general idea of the tabu search method applied for scheduling problems can be
found in [119] and [195]. The tabu list T stores pairs (υ, k) where υ is the position
in the assignment vector and k is the machine to which υ is assigned before the
move. The �rst assignment Q0 is generated by the search for the global minimum
in the processing time table taken from [207]. An outline of the double-layer
metaheuristic algorithm including both machine selection module and operation
scheduling module is presented in Figure 14.2.

In the second step of the algorithm a neighborhood N (Q) is divided into
disjoint sets

k∪
i=1

Ni(Q) = N (Q),
k∩

i=1

Ni(Q) = ∅. (14.1)

For each group k values of the makespan are calculated using p GPU processors.
The number of processors used in the third step depends on the neighborhood size.

206 Chapter 14. Parallel hybrid approach

Algorithm 20. Parallel Tabu Search Based

Meta2Heuristic (TSBM2h)

Θ∗ = (Q∗, π(Q∗)) � the best known solution, where
Q∗ � the best known assignment and
π(Q∗) � the operation sequence corresponding to Q∗;

Step 0: Find the starting solution Θ0 = (Q0, π(Q0)); Θ∗ ← Θ0;
Θ = (Q, π(Q)) � current solution; Θ← Θ0;

Step 1: Generate the neighborhood N (Q) of the assignment Q.
Exclude from N (Q) elements from tabu list T ;

Step 2: Divide N (Q) into k =
⌈
|N (Q)|

p

⌉
groups;

Each group consists of at most p elements;
Step 3: For each group k �nd (using p processors)

an operation sequence π(X)
corresponding to the assignment X ∈ N (Q) and value
of the makespan Cmax(X , π(X));

Step 4: Find an assignment Z ∈ N (Q) such that
Cmax(Z, π(Z)) = min{Cmax(X , π(X)) : X ∈ N (Q)};

Step 5: if Cmax(Z, π(Z)) < Cmax(Q∗, π(Q∗)) then
π(Q∗)← π(Z);
Q∗ ← Z;

Include Z to the list T;
Q ← Z;
π(Q)← π(Z);

Step 6: if (Stop condition is true) then Stop;
else go to Step 1;

Fig. 14.2. Outline of the Parallel Tabu Search Based Meta2Heuristic.

In Step 3 the value of makespan corresponding to the assignment is calculated by
means of INSA or TSAB algorithms. A general scheme of the TSBM2H execution
on GPU for the CUDA programming environment is presented in Figure 14.3 as
a case of heterogeneous programming model (i.e., using both CPU and GPUs).

14.2.2. Parallel Population-Based Meta2Heuristic

The basic idea of this approach is to start with an initial population (any subset
of the solution space) � job-to-machine assignments. Next, for each element of
the population, a local optimization algorithm is applied to determine a local
minimum. In this way we obtain a set of solutions � local minima. If there is
an element which is in the same position in several solutions, then it is �xed in

14.2. Algorithms proposed 207 Serial code Parallel kernel Kernel<<<>>>() Serial code

Host (CPU) Step 1. Generate the neighborhood N(Q); Exclude from the N(Q) elements forbidden by the tabu list T; Step 2. Divide N(Q) into k groups; Each group consists of at most p elements which will be connected with GPU processors; Device (GPU) Step 3. For each processor find an operation sequence and the makespan value; Step 4. Find the minimal element Z by using tree calculations scheme in the logarithmic time; Host (CPU) Step 5. Update the best solution if necessary; Include the solution Z to the tabu list T; Step 6. if (stop condition) then Stop else go to Step 1.
Fig. 14.3. General scheme of the TSBM2H execution on CPU and GPU for the CUDA

environment.

this position in the solution, and other positions and elements of solutions are
still free. A new population (a set of assignments) is generated by drawing free
elements in free positions (because there are �xed elements in �xed positions).
After having determined a set of local minima (for the new population) we can
increase the number of �xed elements. To prevent the algorithm from �nishing
its work after executing some number of iterations (when all positions are �xed
and there is nothing left to draw), in each iteration `the oldest' �xed elements are
set free.

The method mentioned above was proposed in paper [27] for the permuta-
tional scheduling problems. Here we have adopted this approach to �exible job
shop scheduling problem, where solution is a pair consisting of a job-to-machine
assignment and a sequence of job permutations on each machine. An outline of
the proposed approach is presented in Figure 14.4.

In the population based algorithm the initial population is generated ran-
domly. The size of generated population equals pop_size = 100. In the �rst step

208 Chapter 14. Parallel hybrid approach

Algorithm 21. Parallel Population-Based

Meta2Heuristic (PBM2H)

Θ∗ = (Q∗, π(Q∗)) � the best known solution, where
Q∗ � the best known assignment and
π(Q∗) � the operation sequence corresponding to Q∗;

Step 0: Generate an initial population P0 of assignments;
i← 1; Pi ← P0 � the �rst generation of the population;
α � a constant threshold, 0 < α < 1;

Step 1: Divide Pi into k =
⌈
|Pi|
p

⌉
groups;

Each group consist of at most p elements;
Step 2: For each element X of each group �nd (using p processors)

an operation sequence π(X)
corresponding to the assignment X ∈ Pi and value
of the makespan Cmax(X , π(X)) using tabu search algorithm;

Step 3: Find assignment Z ∈ Pi such that
Cmax(Z, π(Z)) = min{Cmax(Y, π(Y)) : Y ∈ Pi};

Step 4: if Cmax(Z, π(Z)) < Cmax(Q∗, π(Q∗)), then
π(Q∗) = π(Z);
Q∗ = Z;

Step 5: For each position in population Pi �nd a number of
assignments υ in which the machine m is in the position l;

Step 6: Fix a position in population Pi for which υ
|Pi| > α;

Step 7: Insert randomly drawn free elements (machines)
in free positions;

Pi+1 ← Pi;
Step 8: if (Stop condition is true) then Stop;

else go to Step 1;

Fig. 14.4. Outline of the Parallel Population-Based Meta2Heuristic.

of algorithm population Pi in the i-th generation is divided into disjoint sets

pop_size∪
j=1

P j
i = Pi,

pop_size∩
j=1

P j
i = ∅. (14.2)

Each element in the randomly generated initial population P0 starts an assignment
for the tabu search algorithm. The tabu search algorithm �nds a new assignment
corresponding to this assignment operation sequence and the value of makespan.
A general scheme of the PBM2H execution on GPU for the CUDA programming
environment is shown in Figure 14.5.

14.2. Algorithms proposed 209

 Serial code Parallel kernel Kernel1<<<>>>() Serial code Parallel kernel Kernel2<<<>>>() Serial code

Host (CPU) Step 0. Generate an initial population P0 of solutions; i := 0; Step 1. Divide Pi into k groups; Each group consists of at most p elements which will be connected with GPU processors; Device (GPU) Step 2. For each element of the group connected with the processor find an operation sequence and the makespan value by using tabu search algorithm; Step 3. Find the minimal element Z by using tree calculations scheme in the logarithmic time; Host (CPU) Step 4. Update the best solution if necessary; Step 5. Find a number of assignments in which the machine m is in the position l ; Device (GPU) Step 6. Fix positions; Step 7. Insert randomly drawn free elements in free positions; Host (CPU) Step 8. if (stop condition) then Stop else go to Step 1.
Fig. 14.5. General scheme of the PBM2H execution on CPU and GPU for the CUDA

environment.

210 Chapter 14. Parallel hybrid approach

The parallel population-based algorithm and the parallel tabu search algo-
rithm were coded in C++ language with MPI library and tested on the cluster
in the Wrocªaw Center of Networking and Supercomputing. Algorithms were
executed under the OpenPBS batching system.

14.3. Computational results

Parallel Meta2Heuristics (TSBM2H and PBM2H) for the �exible job shop prob-
lem were coded in C (CUDA) for GPU and were ran on the Tesla C870 GPU
(512 GFLOPS) with 128 streaming processor core and tested on the benchmark
problems from the literature. The GPU was installed on the processors with 1 MB
cache memory and 8 GB RAM working under 64-bit Linux Debian 5.0 operating
system. We compare our results with those obtained by other authors:

1. the set of 10 problem instances taken from Brandimarte [67],

2. the set of 21 problem instances taken from Barnes and Chambers [21],

3. the set of 15 problem instances taken from Hurink et al. [139].

The �rst phase of computational experiments was devoted to determination of
parallelization e�ciency by estimating experimental speedup values. The sequen-
tial algorithm using one GPU processor was coded with the aim of determining
the speedup value of the parallel algorithm. Such an approach is called ortho-
dox speedup (see Alba [7]) and it compares the execution times of algorithms
on machines with the same processors (1 versus p processors). Tables 14.1 and
14.2 show computational times for the sequential and the parallel algorithm as
well as speedup values. Flex. denotes the average number of equivalent machines
per operation. The obtained orthodox speedup measure value is visualized in
Figure 14.6. As we can notice the highest speedup values were obtained for the
problem instances with a bigger number of both jobs n and operations o. In this
phase a simple INSA algorithm was applied in the operation scheduling module
of the parallel Meta2Heuristic.

For test instances of Barnes and Chambers [21] an average number of equiva-
lent machines per operation is between 1.07 and 1.30; for test instances of Hurink
et al. [139] it equals 2 for each instance from the set. Test instances with greater
number of equivalent machines per operation are more di�cult to solve because
there are more possible assignments of operations to machines. The PBM2h gives
better result for instances of Hurink et al. (Table 14.3) because the size of the
search space in this algorithm is bigger than in TSBM2H. Increasing the explo-
ration measure (i.e., executing local optimization procedure for a longer time)
gives better results for PBM2H in comparison with TSBM2H. The PBM2H gives

14.3. Computational results 211

1.91

3.80
7.55

13.04

26.24

52.00

1.55 2.83
4.14 9.07 11.27

20.51

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 10 20 30 40 50 60 70

sp
ee

du
p

number of processors

TSBM h PBM h2 2
Fig. 14.6. Comparison of the parallel tabu search TSBM2H and population-based

PBM2H algorithms speedups.

Table 14.1. Experimental results of the TSBM2H for Brandimarte [67] tests.

Problem n×m Flex. o ts [s] tp [s] Speedup s ∗

Mk01 10× 6 2.09 55 133.61 10.79 12.38
Mk02 10× 6 4.10 58 218.02 10.55 20.67
Mk03 15× 8 3.01 150 6495.35 136.19 47.69
Mk04 15× 8 1.91 90 620.69 29.59 20.98
Mk05 15× 4 1.71 106 1449.80 74.55 19.45
Mk06 10× 15 3.27 150 8094.39 147.83 54.75
Mk07 20× 5 2.83 100 1939.33 57.92 33.48
Mk08 20× 10 1.43 225 8950.91 643.39 13.91
Mk09 20× 10 2.53 240 24586.00 641.88 38.30
Mk10 20× 15 2.98 240 31990.55 593.49 53.90
∗ The INSA algorithm was used in the operation scheduling module.

better results than TSBM2H but computation time is longer. A number of equiv-
alent machines per operation can be used for determination of parameters � if a
number of equivalent machines per operation is small in a particular test instance,
there should be executed more iterations in the operation scheduling module.

The second phase of the tests refers to obtaining as good results of the cost
function as possible. In this phase a specialized TSAB algorithm of Nowicki
and Smutnicki [195] was used in the operation scheduling module of the parallel
Meta2Heuristic. Despite of being more time-consuming the quality of the results
obtained is much better than in the case of using INSA. The results were also

212 Chapter 14. Parallel hybrid approach

Table 14.2. Experimental results of the TSBM2H for Barnes and Chambers [21]
instances.

Problem n×m Flex. o ts [s] tp [s] Speedup s ∗

mt10c1 10× 11 1.10 100 69.27 28.18 2.46
mt10cc 10× 12 1.20 100 130.47 27.28 4.78
mt10x 10× 11 1.10 100 69.26 28.04 2.47
mt10xx 10× 12 1.20 100 134.78 28.01 4.81
mt10xxx 10× 13 1.30 100 133.99 28.03 4.78
mt10xy 10× 12 1.20 100 130.93 27.43 4.77
mt10xyz 10× 13 1.30 100 187.19 26.37 7.10
setb4c9 15× 11 1.10 150 333.71 96.52 3.46
setb4cc 15× 12 1.20 150 631.39 92.71 6.81
setb4x 15× 11 1.10 150 332.64 96.90 3.43
setb4xx 15× 12 1.20 150 654.09 95.27 6.87
setb4xxx 15× 13 1.30 150 648.42 94.43 6.87
setb4xy 15× 12 1.20 150 632.55 92.95 6.81
setb4xyz 15× 13 1.30 150 896.66 88.54 10.13
seti5c12 15× 16 1.07 225 747.64 340.46 2.20
seti5cc 15× 17 1.13 225 1458.94 335.48 4.35
seti5x 15× 16 1.07 225 753.07 342.35 2.20
seti5xx 15× 17 1.13 225 1493.45 341.35 3.38
seti5xxx 15× 18 1.20 225 1481.39 339.62 4.36
seti5xy 15× 17 1.13 225 1459.27 335.42 4.35
seti5xyz 15× 18 1.20 225 2123.35 325.94 6.51
∗ The INSA algorithm was used in the operation scheduling module.

compared to other recent approaches proposed in the literature for the �exible
job shop problem. The proposed parallel TSBM2H algorithm managed to obtain
the average relative percentage deviation from the best known solution of the
Barnes and Chambers' instances on the level of 0.014% versus 0.036% of the
MG [180] algorithm of Mastrolilli and Gambardella and 0.106% of the hGA [111]
algorithm of Gao et al.

14.4. Remarks and conclusions

We have proposed a new approach to the scheduling problems with parallel ma-
chines, where the assignment of operations to machines de�nes a classical problem
without parallel machines. We propose double-level parallel metaheuristic, where
each solution of the higher level, i.e., job-to-machine assignment, de�nes an NP-

14.4. Remarks and conclusions 213

Table 14.3. Comparison of the results obtained by Mastrolilli and Gambardella [180],
TSBM2H and PBM2H algorithms.

Problem∗ n×m (LB,UB) MG [180] PBM2H TSBM2H
la01 10× 5 (570,574) 571 572 574
la02 10× 5 (529,532) 530 530 532
la03 10× 5 (477,479) 478 478 482
la04 10× 5 (502,504) 502 502 509
la05 10× 5 (457,458) 457 458 462
la06 15× 5 (799,800) 799 799 801
la07 15× 5 (749,750) 750 750 751
la08 15× 5 (765,767) 765 765 767
la09 15× 5 (853,854) 853 853 856
la10 15× 5 (804,805) 804 805 807
la11 20× 5 (1071,1072) 1071 1071 1072
la12 20× 5 936 936 936 937
la13 20× 5 1038 1038 1038 1039
la14 20× 5 1070 1070 1070 1071
la15 20× 5 (1089,1090) 1090 1090 1090

∗ For test instances taken from Hurink et al. [139].

hard job shop problem, which we solve by the second metaheuristic � we call such
an approach Meta2Heuristic. On the Machine Selection Module (higher level), we
apply two metaheuristics: the tabu search and the population-based approach to
determine an assignment of operations to machines. The distributed tabu search
threads are used as Operations Scheduling Module (lower level). Using the exact
algorithms on both levels (e.g. branch and bound) makes it possible to obtain an
optimal solution of the problem. It was possible to obtain the new best known so-
lution for Barnes and Chambers' instances [21] (TSAB algorithm was used in the
operation scheduling module of the M2H). The new best solutions are presented
in Table A.22, Appendix A.

Our proposition of Meta2Heuristic can be placed between standard meta-
heuristic and hyperheuristic classes in the taxonomy of approximate algorithms.
Hyperheuristics present a di�erent approach � they select a metaheuristic to be
used in the given optimization problem. Our approach is still a metaheuristic, but
more complex � two completely di�erent heuristic approaches have to be chosen
on two levels of the scheduling problem considered.

Chapter 15

Application: parallel tabu search

approach

The main purpose of this chapter is to present the methodology of the tabu search
method parallelization. The parallel algorithm is built for the �ow shop schedul-
ing problem. Partitioning a solution (permutation) into blocks (see Section 3.4,
block properties) enables us to decrease the neighborhood size and its division
into separated subsets, which in turn facilitates its independent generation and
reviewing. A road building process is analyzed (Section 15.4) as a real-world ap-
plication. It is also used as a case study (Section 15.5) for the parallel tabu search
algorithm application.

15.1. Introduction

Optimization of the job �ow process through the system is based on �nding some
optimal permutation in the set of all permutations of jobs. Many methods of
algorithm construction consist in reviewing (directly or indirectly) all or part of
the set of feasible solutions. Such a mechanism is based on generating from the
current (base) solution another solution, or a set of solutions (so-called neighbor-
hood), from which the best solution is chosen. This solution is the base solution
in the next iteration. Such a mechanism can be met (among others) in branch
and bound (B&B) method and in many other algorithms which consist in improv-
ing the solution, as well as in the approximate algorithms, metaheuristics: tabu
search and simulated annealing methods. The quality of these algorithm solutions
depends on: the number of iterations, the method of neighborhood description
and its reviewing. The time of computations can be shortened by performing
them in multiprocessor environment. Unfortunately direct parallelization of the
sequential algorithms (for example, by using a parallel compiler) does not result in

216 Chapter 15. Application: parallel tabu search approach

satisfactory e�ciency and speedup. In this chapter, we propose some additional
elements of the parallel local search algorithm. The �rst one, representatives ap-
proach, o�ers the possibility of parallelizing the neighborhood search process. The
second one, using block properties, makes the whole search process shorter.

15.2. Parallel tabu search method

The tabu search (TS) method is a metaheuristic approach designed to �nd a near-
optimal solution of combinatorial optimization problems. The basic version of TS
starts from an initial solution x0. The elementary step of the method performs,
for a given solution xi, a search through the neighborhood N (xi) of xi. The
neighborhoodN (xi) is de�ned by a move performed from xi. The move transforms
a solution into another solution. The aim of this elementary search is to �nd in
N (xi) a solution xi+1 with the lowest cost functions. Then the search repeats
from the best solutions found, as a new starting solution, and the process is
continued. In order to avoid cycling, becoming trapped to a local optimum, and
more general to conduct the search in `good regions' of the solution space, a
memory of the search history is introduced. Among many classes of the memory
introduced for tabu search (see Glover [127]), the most frequently used is the short
term memory, called the tabu list. This list memorizes, for a chosen span of time,
selected attributes of these solutions or moves.

There are two basic types of tabu search parallelization discussed in the li-
terature. The �rst one, called single-walk, is based on neighborhood decompo-
sition onto concurrent working processors. The solutions obtained are exactly
the same as in the sequential algorithm, but computing time is shorter. Aarts
and Verhoeven [1] make the distinction between single-step and multiple-step
parallelism within this type. In the case of single-step implementations, neigh-
bors are searched and evaluated in parallel after neighborhood partitioning. The
algorithm subsequently selects and performs one single move. In multiple-step
parallelizations, a sequence of consecutive moves in the neighborhood is made
simultaneously.

The second type of parallelization, called multiple-walk type, is based on con-
current working tabu search threads, running on di�erent processors. There are
two sub-types of this parallelism: independent search, where there is no commu-
nication between threads, and cooperative search, with exchanging e.g. the best
known solution found by the thread. Classi�cation of multiple-walk tabu search
algorithms was created by Voss in [261]. The �rst parallel implementations of tabu
search based on this type of strategy seem to concern the quadratic assignment
problem and job shop scheduling, Taillard [245, 244].

15.2. Parallel tabu search method 217

πk π3 π2 π1

π1 π2
 π3

 πk

π

β∈N(π)

← permutation ← blocks (subpermutations) ← representatives (permutations) ← the best permutation from
the neighborhood N(π)

...

...

Fig. 15.1. Outline of the PSTS algorithm. ← list of permutations α ← blocks

(subpermutations), level 1 ← representatives

(permutations), level 2

α1

αt
1

π t,1

αt

α t
 2 α t

 s

π t,2 π t,s

. . .

α2 α3 ...

Fig. 15.2. Outline of PATS algorithm.

We propose a hybrid type of tabu search parallelism in this chapter. We use
blocks (see Section 3.4.3) to partition the neighborhood of the solution. Such an
algorithm PSTS (parallel synchronous tabu search) is the classical parallel single-
walk, single-step tabu search (Figure 15.1). The new algorithm PATS (parallel
asynchronous tabu search) uses a special list α = (α1, α2, . . . , αt) of current
solutions instead of one current solution in classical tabu. The length of a list
α is permanently equal to t. This parallel algorithm is based on two-level paral-
lelism. One level is based on concurrently explored solutions from the list α by
parallel working processors. These solutions are explored concurrently by block
partitioning to �nd the best representative (solution) of each block, and added to
the list α (Figure 15.2); this is the second level of parallelism made by another
group of parallel working processors. Of course, we also use a tabu list to prevent
generating solutions on the list α serially. The second level of parallelism does not
have any in�uence on results of computations (only speedup), but the �rst level
of parallelism does. Additionally, in most parallel computing systems, we do not

218 Chapter 15. Application: parallel tabu search approach

know the order of solutions (representatives) entering list α from processors � so
such an algorithm is not deterministic. A parallel tabu search algorithm written
for the EREW PRAM model of parallel computations is given in Figure 15.3.

Algorithm 22. Parallel Tabu Search

Master processor
Commission slave processors on level 1 to determine

representatives for permutations of list α in parallel;

Get representatives from slave processors on level 2

(asynchronously, when they come);

Reject representatives forbidden by tabu list, unless

its goal value is less than the best known;

Add representatives to α list (instead of the worst

element of α, if the length of list is maximal fixed).

Slave processors on level 1
Get permutation αi to explore from the list

α of the master processor;

Partition permutation αi into blocks (compute critical

path);

Commission slave processors on level 2 to determine

representatives for each block of αi in parallel.

Slave processors on level 2

Get block αj
i of permutation αi

from the slave processor on level 1;

Determine representative (permutation πt,j)
of neighborhood generated for this block;

Send πt,j to master processor.

Fig. 15.3. Outline of the parallel tabu search algorithm.

If the length of list |α| equals 1, we obtain synchronous PSTS algorithm out
of the foregoing scheme. For |α| > 1 we obtain asynchronous PATS algorithm,
because slave processors work independently and asynchronously.

15.3. Computational experiments

The proposed algorithm was implemented in Ada95 language and ran on the SGI
Altix 3700 Bx2 supercomputer installed in Wrocªaw Centre of Networking and
Supercomputing [266] under the Novell SUSE Linux Enterprise Server operating
system. Tests ware based on 70 instances with 100, . . . , 1,000 operations (n ×

15.3. Computational experiments 219

m = 20 × 5, 20 × 10, 20 × 20, 50 × 5, 50 × 10, 50 × 20, 100 × 5) due to Taillard
[243], taken from the OR-Library [202]. The results ware compared to those of
Taillard (optimal or the best known), taken from this library. Starting solutions
were taken from quick approximate algorithm NEH (Navaz, Enscore and Ham,
[194]). For all the algorithms tested, the number of iterations was computed as a
sum of iterations on processors. For example, for 1,000 iterations, a 4-processor
implementation makes 250 iterations on each of the 4 processors.

0.92

1.98 2.68

0.39
1.86 2.57 1.73

0.05 0.77 0.63 0.03 0.63
1.67

0.6300.51
1.52
2.53

20 x 5 20 x 10 20 x 20 50 x 5 50 x 10 50 x 20 average
APRD

instance sizePSTS (1 processor) PATS (12 processors)
Fig. 15.4. APRD of the sequential (PSTS) and asynchronous parallel (PATS) tabu

search algorithm for instances of Taillard [243].

As we can see in Figure 15.4 and in Tables A.19 and A.20, Appendix A,
the algorithms produce best results for the large value of quotient n and m
(20 × 5, 50 × 5, 100 × 5). In such a case the size (length) of blocks is most prof-
itable for sequential and parallel algorithm performance. Besides, for 1,000 itera-
tions, improvement of results for parallel PATS algorithm compared to the PSTS
(which has the same results as sequential tabu search) was at the level of 14% for
1-processor implementation (by the advantage of the list α), at the level of 58% for
4 and 8-processor implementations and even at the level of 64% for 12-processor
implementation, all algorithms with the same number of iterations (as the sum
of iterations on each processor) and comparable costs (the product of the number
of processors and computation time).

220 Chapter 15. Application: parallel tabu search approach

15.4. Application of the tabu search algorithm � road

building

When planning roadworks, e.g. a road repair, the whole project can be divided
into working parcels with di�erent sizes whose boundaries are set for instance by
crossroads/intersections with existing road paths. The sequence of actions taken
by working brigades on parcels will a�ect the total time of the whole project,
the delay time of machines or working brigades. The problem of setting the
optimal sequence of works on individual parcels in compliance with the established
criterion, for example the minimal time of carrying out a project, the minimal
delay time of the working brigades or working costs concerns tasks sequencing.
To make a right division of works, it is necessary to determine the kind of works
according to the general classi�cation. The general works classi�cation in the
road and bridge construction is as follows:

1. preparatory works,

2. earthworks,

3. lands and pavements consolidation,

4. pro�led lands and gravel pavements building,

5. reinforcement of soil-surfaced road pavement and subgrade,

6. broken stone pavement building,

7. asphalt concrete pavement building,

8. cement concrete pavement building,

9. repairing, conservation, maintenance and reconstruction of pavement,

10. production, conversion and puri�cation of aggregates including aggregates
usage obtained in the process of recycling,

11. loading, unloading and transport works,

12. bridges and culverts building,

13. energy production and transfer,

14. old objects demolition.

Roadwork constitutes a special case of the general works classi�cation mentioned
above, namely the national road section, which consists of eight activities. Fig-
ure 15.5 presents works scheduling for a single road segment 766 m long. The total
time of completing works took 42 workdays. The technological order of works is
as follows:

1. earthworks,

2. sand drainage blanket preparation,

15.4. Application of the tabu search algorithm � road building 221

40

 1

 2

20

 3

 4

 5

 6

 7

 8

0 42

Fig. 15.5. Scheduling example for a 766 m long road segment (in workdays).

3. preparation of broken-stone or macadam foundation,

4. binding course preparation with asphalt medium-grained concrete,

5. surface course preparation with asphalt �ne-grained concrete,

6. roadsides preparation with stone dust,

7. drainage process,

8. planting and eventual topsoil removal.

Figure 15.6 presents the road section whose construction is the subject of the
analysis. The problem described above leads to the �ow shop problem considered
with a certain criterion, i.e., Cmax (for the minimal time of carrying out a project).

Fig. 15.6. The section of an access road to a dumping ground.

222 Chapter 15. Application: parallel tabu search approach

40

52

20

 1 4 3

78

76

4 2 5 76 1 3

4 2 5 76 1 3

4 2 5 76 1 3

4 2 5 761 3

4 2 5 761 3

1

1

3

3

6

6

7

7

5

5

4

4

2

2

60 0

Fig. 15.7. Building schedule for individual road segments for the natural permutation
(in workdays).

40

52

20

 1 4 3

75

7 6

4 2 5 7 6 1 3

4 2 5 7 6 1 3

4 2 5 7 6 1 3

4 2 5 7 6 1 3

4 2 5 7 6 1 3

1

1

3

3

6

6

7

7

5

5

4

4

2

2

60 0

Fig. 15.8. Building schedule for individual road segments for the permutation obtained
by the parallel tabu search algorithm (in workdays).

15.5. Case study

The problem presented in this section concerns scheduling of construction projects
in which � using the language of automation � jobs should start on the next ma-
chine before �nishing on the previous one. In a classical permutation �ow shop
problem each of the jobs should be carried out one after another; moreover the
sequence of carrying out jobs on each machine has to be the same; a job must

15.5. Case study 223

Table 15.1. Data for the case study. Total times of actions on working segments
represented as workdays.

jobs→ 1 2 3 4 5 6 7
length [meters] → 750 150 175 100 200 500 300

p1j 19 4 5 3 4 12 6
p2j 13 3 3 2 4 9 6
p3j 17 4 4 3 6 11 8
p4j 13 3 3 2 4 9 6
p5j 7 2 2 2 2 5 2
p6j 15 3 3 2 4 19 6
p7j 15 2 4 3 6 10 6
p8j 15 4 4 3 6 11 10
t1j −2 −2 −2 −2 −2 −2 −2
t2j −11 −2 −2 −1 −2 −7 −4
t3j −11 −1 −1 0 −2 −7 −4
t4j −5 0 0 0 0 −3 0
t5j −13 −3 −2 −1 −4 −5 −4
t6j −15 −3 −3 −2 −4 −10 −6
t7j −15 −2 −4 −3 −6 −10 −6
t8j 0 0 0 0 0 0 0

not start on a next machine until it is �nished on the previous one. Optimization
consists in determining such a sequence of jobs that will minimize the total time
of their execution. To model the phenomenon of jobs `overlapping', transport
times of jobs between machines, which could have negative values, have been
used. The problem thus described was de�ned in Section 3.4.4. Using the real-
world data presented above, the data referring to the building of road segments
with di�erent length have been generated. In Table 15.1 there have been included
data presented as the total times of actions on working segments represented as
workdays. The parallel tabu search algorithm considered has been applied to
data from Table 15.1. This algorithm operation has resulted in a permutation
π = (4, 2, 5, 7, 6, 1, 3) for which the goal function value is Cmax(π) = 75 (work-
days). In Figure 15.8, there is a building schedule for individual road segments
for the obtained permutation π. The goal function value in the case of schedul-
ing for the natural permutation id (Figure 15.7, Cmax(id) = 78) is bigger than
for a scheduling obtained from results of the tabu search algorithm operation
(Figure 15.8, Cmax(π) = 75).

224 Chapter 15. Application: parallel tabu search approach

15.6. Remarks and conclusions

We discussed a methodology of the �ow shop scheduling parallelization based on
an asynchronous hybrid version of parallel tabu search method. Parallelism of the
algorithm makes the performance much better than the iterative improvement ap-
proach. The advantage is especially visible for large problems. The method is
based on a two-level approach. On the �rst level of parallelization subpermu-
tations (blocks) are used for concurrent searching of a neighborhood. On the
second level permutations (representatives) are used to choose the best element
of a neighborhood in parallel. This method can be easily adapted to solve any
scheduling problem with block properties (e.g. single machine, job shop, etc.).

Chapter 16

Final remarks

The book concerns the new methodology of solving scheduling problems in parallel
and distributed environments by using multithread approximate methods. Two
main approaches, which do not exclude each other, are considered for designing
e�cient multithread algorithms: single-walk and multiple-walk. The approaches
proposed have been created to solve complex discrete optimization problems, and
tested using their special case which scheduling problems are. Not only are they
classical problems encountered in computer-aided manufacturing and manage-
ment systems, but also the new, much more complex problems connected with
automation in construction, logistics, telecommunication and services develop-
ment. Very big size of practical instances and exponential solution time of exact
algorithms, on the one hand, and multi-core nature of existing hardware, on the
other, cause the necessity of employing multithread approximate algorithms ready
to be used in multiprocessor environment.

For multithread single-walk parallelism, parallelization derived from a cost
function multithread implementation allows us to design cost-optimal algorithms
in many cases, especially for job shop scheduling (Chapter 5). It was possible to
answer a few interesting questions concerning theory and applicability:

(1) which approaches can be used to design parallel algorithms for scheduling
problems, in the context of needs of di�erent local search techniques used
in metaheuristics, and

(2) which variants of multithread algorithms are cost-optimal.

Especially interesting is also Chapter 7 in which it was possible to estimate
theoretical speedup of the single-walk parallel genetic algorithm based on the
master-server approach.

For multithread multiple-walk parallelism, the book presents a new paral-
lel approach based on metaheuristics: tabu search, simulated annealing, genetic

226 Chapter 16. Final remarks

algorithm, scatter search, population-based approaches, path-relinking method,
memetic algorithm, designed for solving permutational scheduling problems. In
most cases multithread search parallelization increased the quality of solutions
obtained keeping comparable costs of computations.

The methodology proposed was successfully applied by the author to solve
many scheduling optimization problems (single machine total tardiness problem
[51, 53, 54, 60], single machine total weighted tardiness problem with sequence-
dependent setups [26, 45], �ow shop problem [25, 35, 37, 38, 39, 40, 41, 43, 61, 269],
job shop problem [34], �exible job shop problem [28]) as well as other discrete
optimization problems such as TSP [36, 27, 44, 55], QAP [47] and real-world
problems of automation in construction [225, 226].

The idea of the book was to overview the `state-of-the-art' in the �eld of
parallel scheduling algorithms. However, some of the special areas can be still
researched, especially in the �eld of the new multithread optimization algorithms
for multi-core hardware environments (such as GPGPU and multi-core Cell pro-
cessors jointly developed by Sony Computer Entertainment, Toshiba and IBM).
Another challenge is the single-walk parallelization of complex scheduling prob-
lems, such as �exible multi-machine manufacturing systems, by proposing new
special properties which makes it possible to create e�cient parallelization meth-
ods. Particulary interesting are theoretical estimations of speedups possible to
obtain for a given model of parallelism. This kind of analysis was introduced in
Chapters 4, 5 and 6.

16.1. New approaches

The following new approaches have been proposed as regards single-walk parallel
algorithms design methodology for job scheduling problems solving:

• the new methods of huge neighborhoods searching in parallel for various
single machine scheduling problems (Chapter 4).

• the new methods of single-walk parallelization of the cost function calcula-
tion for multi-machine job scheduling problems (Chapter 5),

• the new methods of single-walk parallelization of the workload determina-
tion for �exible scheduling problems (Chapter 6).

For multiple-walk optimization algorithms parallelization designed to job schedul-
ing problems solving, the following new techniques have been presented:

• multithread methods of scheduling problems solving methods paralleliza-
tion were introduced for such local search approaches as tabu search (TS,
Chapter 15) and simulated annealing (SA, Chapter 11),

16.2. Open problems 227

• population-based metaheuristics such as memetic algorithm (Chapter 8),
genetic search (Chapter 13), scatter search (Chapter 12) as well as hybrid
methods (Chapters 9 and 14) were also parallelized in application to job
scheduling problems,

• a parallel branch and bound method has also been parallelized for the single
machine total weighted tardiness problem in Chapter 10.

Noteworthy is also Chapter 7 in which there were proved some new properties of
the speedup measure behavior for the master-slave model of the parallel genetic
algorithm. It has been proven, inter alia, that one can indicate the number of
processors which minimizes the parallel running time of the master-slave parallel
genetic algorithm based on miscellaneous models of data broadcasting.

16.2. Open problems

Scheduling problems are taken into consideration in this book as a di�cult-to-
solve subclass of the discrete optimization problems class. Nevertheless, most of
the approaches presented here, mainly those of multiple-walk parallelization, can
also be applied to any discrete optimization problems, especially with permuta-
tional solution representation, such as traveling salesman problem (TSP, see Bo»e-
jko and Wodecki [44] � parallel evolutionary algorithm) or quadratic assignment
problem (QAP, see Taillard [244] � parallel tabu search, Bo»ejko and Wodecki
[47] � parallel population-based approach). Metaheuristic parallelization method-
ology remains the same. However, there are open problems which can show the
direction of future work.

16.2.1. Continuous optimization

Parallelization of numerical optimization methods in continuous spaces can be
achieved in many ways. The simplest one is to implement a single-walk code by
evaluation of objective and constraint functions in parallel, however the paral-
lelization method has to be �tted to the speci�city of the problem being solved,
similarly as in single-walk parallelization of discrete optimization problems. An-
other approach is a parallel implementation of linear algebra computations, such
as solving linear system by the Newton method in parallel, as a key element
(i.e., the most computationally complex) of the whole continuous optimization
problem. It is also possible to simultaneously explore di�erent regions via multi-
ple starting points, as in parallel multiple-walk local search algorithms. Similarly,
multi-directional searches in direct search methods can be applied, beginning from
the same (or di�erent) starting solutions. Decomposition methods for structured
problems (linear, quadratic, or separable programming) are also used (see Dennis

228 Chapter 16. Final remarks

and Wu [97]). What is more, continuous optimization has a strong relationship
with partial di�erential equations and generally with numerical algebra � a typical
procedure of continuous optimization requires solving a linear system (in every
iteration of the algorithm); constraint or objective function requires solving a
partial di�erential equation. Parallelization of these elements usually maintains
convergence property of the method, accelerating the computations. However, as
was mentioned before, the programmer quest, as an open problem, is to design
a parallelization method which is adjusted directly to speci�city of the problem
under consideration.

16.2.2. Multiobjective optimization

The characteristics of the resources and the number of jobs to be allocated may
change over time in a scheduling problem. On the other hand, many of the
problems, especially taken from the real-world engineering optimization problems,
have to optimize more than one objective at a time (which are usually in con�ict).
Multiobjective optimization is not restricted to �nding a single solution, instead
it points out a set of solutions, known as the Pareto front.

Parallel processing can be useful in e�cient solving multiobjective optimiza-
tion problems in (at least) two ways:

(1) NP-hard multiobjective optimization problems demand high computational
resources � it is possible to parallelize the most complex elements of an
algorithm (single-walk parallelizations), and

(2) parallel processing gives a possibility to �nd the whole front of Pareto-
optimal solutions instead of a single Pareto-optimal solution (multiple-walk
parallelization).

Up to now, parallel multiobjective optimization has usually been connected
with population-based approach (Toro et al. [253], Van Velhuizen et al. [259]).
This state results from several reasons. Firstly, many objectives and the Pareto
dominance relationships have to be evaluated at the same time which naturally
leads us to a population evaluation. Calculating the Pareto dominance relation-
ships requires statistics of the whole population, which makes the master-worker
model of computations (called the global model in the �eld of evolutionary al-
gorithms) a well-�tted approach. Secondly, a hybrid model can be easily imple-
mented in a parallel evolutionary approach (single-walk parallelism) by parallel
goal function calculation together with diversi�cation of population among proces-
sors (multiple-walk parallelization). In practice, each processor evaluates a subset
of goal functions for a subset of the population. An open problem is theoretical
algorithm characterization. Camara et al. [71] report the superlinear speedup in

16.2. Open problems 229

parallel evolutionary algorithm for multi-objective optimization in dynamic en-
vironments � the knowledge about the source of this anomaly (also reported by
other authors � see Sections 1.1 and 12.2) is generally weak for the case of paral-
lel multiobjective evolutionary approach. Furthermore, it is interesting to study
the scalability and performance behavior, especially for the asynchronous parallel
algorithm, also with di�erent communication schemes.

16.2.3. Uncertain data

Realization of the real-world application is frequently connected with technolog-
ical and management idle times which appear during work process. External
factors (e.g. weather) and internal distractions make scheduling out-of-date and
aberrations from terms which are stated in contracts. Therefore a way of data
representation which determines real terms is required. The consequence of er-
rors is high penalties or even removing of the company from o�er processes. Most
of the discrete optimization problems presented in the literature do not take into
consideration the di�culty with assigning an exact value of parameters, e.g. times
of job execution. Such an uncertainty can be modelled by using fuzzy numbers
theory.

Scheduling problems were fuzzi�ed by using the concept of fuzzy due date
and processing times. Dumitru and Luban [101] investigate the application of
fuzzy sets to the problem of production scheduling. Tsujimura et al. [255] present
a branch and bound algorithm for the three-machine �ow shop problem when
job processing times are described by triangular fuzzy numbers. Especially fuzzy
logic application to the scheduling problems (by using fuzzy processing times) is
presented in papers: Bo»ejko et al. [42, 33], Ishibuschi and Murata [143], Izzettin
and Serpil [144] and Peng and Liu [205]. There are computational experiments
conducted for the permutational �ow shop problem in the work of Bo»ejko et
al. [42] both for deterministic and fuzzy versions of the genetic algorithm. The
obtained values of the algorithm stability level show that the fuzzy representation
of the problem data and using relevant algorithm results in solutions which are
`proof' against data distractions.

As a module, fuzzy logic can be added to almost every parallel optimization
algorithm, obtaining better stability � such an approach can be called low-level
approach of fuzzi�cation (see Bo»ejko et al. [33]). Another open problem is a
high-level approach to data uncertainty in which multiple threads of the parallel
optimization algorithm work on di�erent (disturbed) instances of data (let us call
them scenarios) and give a single solution which is ready for data distractions,
keeping a good value of the goal function.

230 Chapter 16. Final remarks

16.3. Future work

The presented comprehensive analysis of the results obtained clearly indicates
the high e�ciency of the multi-threaded approach proposed. The results ful�ll
the expectations of computing practitioners, so that many approaches presented
here can be adapted and used in solving more complex real-world job scheduling
problems. Further research is purposeful for the application of multi-threaded
approach to solving the following issues which were not analyzed in this book:

• job scheduling problems with variable job execution times,
• job scheduling problems with resources,
• scheduling with fuzzy problem parameters (fuzzy processing times, dead-
lines, etc.).

Another sphere of research can be a broader class of NP-hard discrete optimization
problems such as:

• complex variants of the traveling salesman problems (many salesmen, etc.)
and their generalizations,

• packing problems,
• assignment problems,
• task scheduling with resources � tree factorial [24, 193],

with speci�c real-world goal functions (e.g. energy or fuel optimization).
Based on the research conducted we can formulate the following proposals.

Solving scheduling problems can be speeded up in the multiprocessor environ-
ment, however proper design of an algorithm which would e�ectively use compu-
tational power is a nontrivial task. Designing acceptable in practice multithread
algorithms requires an individual approach to each problem and it is usually a
separate research problem, because properties of the multithread computing envi-
ronment strongly depend on the choice of strategic approach (single or multiple-
walk parallelization) as well as its elements, possible cooperation, hybridization,
etc. However, the robustness of parallel and distributed calculation environments
makes them a commonly used hardware. The aim of this book was to show the
methodology of its using for e�cient optimization.

Appendix A

Supplementary tables

Table A.1. Relative deviation of solutions of sequence and parallel memetic
algorithms described in Section 8.3.

n
1 processor 4 processors∗

av. dev. max. dev. av. dev. max. dev.
40 2.907 99.963 0.057 1.534
50 4.035 167.576 0.064 1.362
100 0.005 1.054 0.004 0.103

average 2.317 89.531 0.042 0.999
∗ Compared to the best known solutions (taken from Bo»ejko and Wodecki [50]).

Table A.2. Total time of the parallel population-based algorithm described in
Section 9.2.

Processors
Cooperative Independent∗

APRD ttotal(s) tcpu(s) APRD ttotal(s) tcpu(s)
1 1.48% 5658 5655 1.48% 5647 5645
2 0.65% 5383 10765 0.60% 5643 11287
4 −0.26% 5580 22323 −0.17% 17836 53516
6 −0.74% 5400 32283 −0.73% 8548 52516
8 −0.32% 5218 41753 −0.97% 12129 83196
12 −1.13% 5065 60722 −1.25% 5980 67995
16 −1.78% 6865 105670 −0.80% 20124 238615

average −0.23% 5595.6 39881.6 −0.26% 10843.9 73252.9
∗ The algorithm stops when the cost function value of the benchmark is achieved.
Times per 120 instances (taken from Bo»ejko [26]).

232 Appendix A. Supplementary tables

Table A.3. Convergence of the parallel population-based metaheuristic described
in Section 9.2.

Processors
Cooperative Independent∗

APRD ttotal(s) tcpu(s) APRD ttotal(s) tcpu(s)
1 −0.73% 9462 9459 −0.70% 8113 8113
2 −2.09% 9669 19334 −1.76% 8310 16621
4 −3.48% 10124 40166 −2.94% 11535 39998
6 −4.20% 11963 67905 −4.13% 16916 84066
8 −4.47% 10479 83108 −4.53% 12058 88930
12 −5.00% 10311 123602 −5.01% 8770 105131
16 −5.47% 10329 165150 −5.29% 8732 139760

average −3.63% 10333.9 72674.9 −3.48% 10633.4 68945.6
∗ Constant iterations number R = 10. Times per 120 benchmark instances (taken from
Bo»ejko [26]).

Table A.4. PRDs of simulated annealing solution and NEH described in
Section 11.1.3.

4 processors 4 processors with
n×m 1 processor independent broadcasting NEH∗

20×5 0.87% 0.64% 0.62% 2.87%
20×10 2.29% 1.82% 1.70% 4.74%
20×20 1.94% 1.91% 1.82% 3.69%
50×5 0.13% 0.08% 0.13% 0.89%
50×10 1.87% 1.31% 0.92% 4.53%
50×20 2.75% 2.32% 2.29% 5.24%
100×5 0.0011% 0.0003% 0.0003% 0.46%
average 1.41% 1.15% 1.07% 3.20%

∗ Compared to the best solution by Taillard [243] (taken from [63]).

233

Table A.5. Results of computational experiments of the algorithm described in
Section 9.2, Part 1.

No. F ∗∗
alg PRD No. F ∗∗

alg PRD∗

1 696 −28.83% 61 76373 −4.40%
2 5367 −17.29% 62 44869 −6.25%
3 1782 −24.11% 63 76146 −3.39%
4 6615 −20.41% 64 92860 −3.65%
5 4774 −14.84% 65 128593 −4.66%
6 7500 −9.02% 66 59852 −6.56%
7 3765 −13.39% 67 29394 −15.77%
8 153 −53.21% 68 22120 −16.22%
9 6628 −12.77% 69 71534 −5.14%
10 1943 −20.73% 70 75801 −6.65%
11 4452 −15.41% 71 148230 −8.06%
12 0 0.00% 72 50171 −11.88%
13 5225 −15.00% 73 29076 −20.26%
14 2967 −24.71% 74 31711 −17.19%
15 1788 −38.66% 75 23244 −24.97%
16 4326 −35.54% 76 56198 −16.81%
17 127 −72.51% 77 35932 −11.41%
18 1337 −46.82% 78 20294 −19.16%
19 0 −100.00% 79 117734 −6.43%
20 3273 −21.94% 80 18620 −41.53%
21 0 0.00% 81 384547 −0.67%
22 0 0.00% 82 410336 −0.76%
23 0 0.00% 83 458879 −1.54%
24 1060 −40.82% 84 330022 −0.49%
25 0 0.00% 85 556891 −0.30%
26 0 0.00% 86 363265 −0.69%
27 0 −100.00% 87 399202 −0.95%
28 0 −100.00% 88 434010 −0.65%
29 0 0.00% 89 410739 −1.48%
30 0 −100.00% 90 403601 −0.82%
∗ For the problem 1|sij |

∑
wiTi. The new 65 upper bounds are marked with bold

font (counted together with those given in Table A.6).
∗∗ Falg � values of the cost function obtained by the parallel algorithm considered.

234 Appendix A. Supplementary tables

Table A.6. Results of computational experiments of the algorithm described in
Section 9.2, Part 2.

No. F ∗∗
alg PRD No. F ∗∗

alg PRD ∗

31 0 0.00% 91 342615 −1.31%
32 0 0.00% 92 362079 −1.01%
33 0 0.00% 93 407915 −0.62%
34 0 0.00% 94 333588 −0.81%
35 0 0.00% 95 523309 −0.87%
36 0 0.00% 96 462961 −0.31%
37 551 −77.11% 97 417890 −0.57%
38 0 0.00% 98 527603 −0.92%
39 0 0.00% 99 368353 −1.72%
40 0 0.00% 100 436004 −1.33%
41 69252 −5.36% 101 353018 −0.79%
42 58183 −5.94% 102 493473 −0.54%
43 146549 −2.29% 103 378864 −0.34%
44 35511 −8.30% 104 358073 −1.09%
45 59280 −5.54% 105 350806 −23.13%
46 35442 −6.71% 106 454769 −1.12%
47 73412 −4.89% 107 352766 −1.09%
48 65943 −4.32% 108 461953 −1.32%
49 78463 −6.75% 109 413019 −0.67%
50 31996 −11.70% 110 419437 −0.44%
51 50459 −13.85% 111 344604 −1.74%
52 97052 −7.89% 112 376036 −0.37%
53 90028 −5.68% 113 260124 −1.17%
54 124708 0.93% 114 469900 −0.70%
55 71657 −6.17% 115 464415 0.91%
56 77552 −12.29% 116 537799 −0.45%
57 68415 −2.84% 117 508325 −1.98%
58 47754 −13.99% 118 357087 −0.14%
59 53693 −9.09% 119 577318 −1.14%
60 66966 −8.68% 120 402422 0.68%

Average −12.08
∗ For the problem 1|sij |

∑
wiTi.

∗∗ Falg � values of the cost function obtained by the parallel algorithm considered.

235

Table A.7. Improvement of NEH solution of algorithms from Section 11.1.3.

4 processors 4 processors with
n×m 1 processor independent broadcasting∗

20×5 1.94% 2.17% 2.19%
20×10 2.34% 2.79% 2.90%
20×20 1.69% 1.72% 1.80%
50×5 0.75% 0.80% 0.75%
50×10 2.54% 3.08% 3.45%
50×20 2.37% 2.77% 2.80%
100 ×5 0.46% 0.46% 0.46%
average 1.74% 1.98% 2.07%

∗ Taken from Bo»ejko and Wodecki [63].

Table A.8. Results of APRD for reference solutions [273] obtained by algorithms
presented in Section 11.2.3.

n×m
1 processor (sSA) 4 processors (pSA)∗

average minimal std. dev. average minimal std. dev.
20× 5 0.23% 0.05% 0.16% 0.08% 0.00% 0.08%
20× 10 0.27% 0.04% 0.17% 0.05% 0.00% 0.05%
20× 20 0.14% 0.01% 0.12% 0.04% 0.00% 0.04%
50× 5 1.51% 1.25% 0.19% 1.25% 0.91% 0.20%
50× 10 1.97% 1.56% 0.26% 1.54% 1.09% 0.29%
average 0.82% 0.58% 0.18% 0.59% 0.40% 0.13%
∗ Taken from Bo»ejko and Wodecki [59].

236 Appendix A. Supplementary tables

Table A.9. Values of APRD for parallel scatter search algorithm for the F ||Cmax

problem from Section 12.2 (global model).

n×m
Processors∗

1 2 4 8 16
iterations→ 9,600 4,800 2,400 1,200 600

20 × 5 0.000% 0.000% 0.000% 0.000% 0.096%
20 × 10 0.097% 0.060% 0.072% 0.131% 0.196%
20 × 20 0.039% 0.035% 0.061% 0.062% 0.136%
50 × 5 0.007% −0.001% −0.015% -0.001% 0.007%
50 × 10 0.345% 0.104% 0.113% 0.123% 0.272%

average 0.098% 0.029% 0.046% 0.063% 0.142%

ttotal (h:min:sec) 30:04:40 15:52:13 7:40:51 3:35:47 1:42:50
tcpu (h:min:sec) 30:05:02 31:44:21 30:41:54 28:45:30 27:24:58

∗ The sum of iterations for all processors is 9,600 (from [40]).

Table A.10. Values of APRD for parallel scatter search algorithm for the
F ||Cmax problem from Section 12.2 (independent model).

n×m
Processors∗

1 2 4 8 16
iterations→ 9,600 4,800 2,400 1,200 600

20 × 5 0.000% 0.000% 0.000% 0.000% 0.096%
20 × 10 0.097% 0.080% 0.066% 0.039% 0.109%
20 × 20 0.039% 0.062% 0.048% 0.031% 0.031%
50 × 5 0.007% 0.000% 0.007% 0.007% 0.000%
50 × 10 0.345% 0.278% 0.148% 0.238% 0.344%

average 0.098% 0.084% 0.054% 0.063% 0.097%

ttotal (h:min:sec) 30:04:40 14:38:29 6:58:59 3:15:34 1:32:46
tcpu (h:min:sec) 30:05:02 29:16:14 27:54:19 26:03:33 24:41:24

∗ The sum of iterations for all processors is 9,600 (from [40]).

237

Table A.11. The parallel scatter search (independent model � no
communication) from Section 12.2 for Csum criterion.

n×m
Processors∗

1 2 4 8
iterations→ 1,600 800 400 200

20x5 0.007 0.021 0.065 0.111
20x10 0.000 0.012 0.010 0.024
20x20 0.000 0.013 0.047 0.046
50x5 1.024 1.093 1.364 1.662
50x10 1.060 1.312 1.425 1.821
average 0.418 0.490 0.582 0.733

∗ Average percentage deviations ARPD. The sum of iterations for all processors is 1,600
(from [40]).

Table A.12. The parallel scatter search (independent model) from Section 12.2
for Csum criterion.

Processors
Cluster of Xeon 3000 2.4 GHz processors∗

ttotal(hours:min:sec) tcpu(hours:min:sec)
1 7:13:30 7:13:13
2 3:34:08 7:04:44
4 1:46:05 6:58:43
8 0:53:33 6:57:44

∗ Execution times, for all 50 instances, iter = 1,600 (taken from [40]).

Table A.13. The parallel scatter search (global model � with communication)
from Section 12.2 for Csum criterion.

n×m
Processors∗

1 2 4 8
iterations→ 1,600 800 400 200

20×5 0.21 0.020 0.007 0.077
20×10 0.037 0.006 0.004 0.013
20×20 0.008 0.000 0.004 0.015
50×5 0.917 0.762 0.978 1.208
50×10 1.171 0.860 1.126 1.448
average 0.431 0.330 0.423 0.552

∗ Average percentage deviations ARPD. The number of iterations for all processors
totals 1,600 (from [40]).

238 Appendix A. Supplementary tables

Table A.14. The parallel scatter search (global model) from Section 12.2 for
Csum criterion.

Processors
Cluster of Xeon 3000 2.4 GHz processors∗

ttotal(hours:min:sec) tcpu(hours:min:sec)
1 7:26:00 7:25:51
2 3:52:36 7:17:39
4 2:14:02 7:04:07
8 1:24:31 7:06:52

∗ Execution times, for all 50 instances, iter = 1,600 (from [40]).

Table A.15. The parallel scatter search (independent model � no
communication) from Section 12.2 for Csum criterion.

n×m
Processors∗

1 2 4 8
iterations→ 16,000 8,000 4,000 2,000

20×5 0.000 0.007 0.000 0.006
20×10 0.000 0.000 0.000 0.000
20×20 0.000 0.000 0.000 0.000
50×5 0.904 1.037 0.906 0.903
50×10 0.913 0.986 1.033 0.989
average 0.363 0.406 0.388 0.380

∗ The average percentage deviations ARPD. The number of iterations for all processors
totals 16,000 (from [40]).

Table A.16. The parallel scatter search (independent model) from Section 12.2
for Csum criterion.

Processors
Cluster of Xeon 3000 2.4 GHz processors∗

ttotal(hours:min:sec) tcpu(hours:min:sec)
1 75:27:40 75:25:48
2 37:40:08 75:02:51
4 18:38:23 74:10:18
8 9:06:24 72:19:26

∗ Execution times, for all 50 instances, iter = 16,000 (taken from [40]).

239

Table A.17. The parallel scatter search (global model � with communication)
from Section 12.2 for Csum criterion.

n×m
Processors∗

1 2 4 8
iterations→ 16,000 8,000 4,000 2,000

20×5 0.000 0.000 0.000 0.008
20×10 0.000 0.000 0.000 0.004
20×20 0.000 0.000 0.000 0.000
50×5 0.993 0.677 0.537 0.449
50×10 1.103 0.648 0.474 0.404
average 0.419 0.265 0.202 0.173

∗ The average percentage deviations ARPD. The sum of iterations for all processors is
16,000 (from [40]).

Table A.18. The parallel scatter search (global model) from Section 12.2 for
Csum criterion.

Processors
Cluster of Xeon 3000 2.4 GHz processors∗

ttotal(hours:min:sec) tcpu(hours:min:sec)
1 75:23:43 75:20:42
2 41:19:51 77:57:57
4 23:28:19 75:46:07
8 14:30:03 74:38:51

∗ Times of execution, for all 50 instances, iter = 16,000 (from [40]).

Table A.19. Relative percentage distance of parallel synchronous tabu search
(PSTS) solutions presented in Section 15.3.

n×m PSTS algorithm NEH algorithm∗

20×5 0.92% 2.87%
20×10 1.98% 4.74%
20×20 2.68% 3.69%
50×5 0.39% 0.89%
50×10 1.86% 4.53%
50×20 2.57% 5.24%
100×5 0.14% 0.46%
average 1.51% 3.20%
∗ Compared to the best solution by Taillard [243], 1,000 iterations (taken from Bo»ejko
and Wodecki [58]).

240 Appendix A. Supplementary tables

Table A.20. Relative percentage distances of parallel asynchronous tabu search
(PATS) from Section 15.3.

n×m
Processors∗

1 4 8 12
20×5 0.84% 0.19% 0.24% 0.05%
20×10 1.59% 0.89% 0.83% 0.77%
20×20 1.10% 0.62% 0.62% 0.63%
50×5 0.25% 0.01% 0.02% 0.03%
50×10 2.34% 0.87% 0.76% 0.63%
50×20 2.81% 1.81% 1.89% 1.67%
100×5 0.15% 0.01% 0.04% 0.04%
average 1.30% 0.63% 0.63% 0.55%
∗ Compared to the best solution by Taillard [243], for 1,000 iterations (taken from
Bo»ejko and Wodecki [58]).

Table A.21. Parallel genetic algorithm described in Section 13.1.

4 processors∗

n×m 1 processor independent cooperative
the same di�erent the same di�erent
operators operators operators operators

20×5 1.00% 0.81% 0.73% 0.66% 0.52%
20×10 1.10% 1.00% 0.97% 0.81% 0.79%
20×20 0.93% 0.75% 0.74% 0.65% 0.64%
50×5 2.96% 3.70% 3.44% 3.43% 3.10%
50×10 4.48% 4.97% 4.70% 4.79% 4.64%
average 2.13% 2.25% 2.11% 2.07% 1.98%

std. dev.∗∗ 0.20% 0.15% 0.12% 0.16% 0.12%
∗ Di�erent start subpopulations, various genetic operators (taken from [61]).
∗∗ Standard deviation.

241

Table A.22. Algorithms from Section 14.2.

Problem n×m (LB,UB) MG [180] hGA [111] TSBM2H∗

mt10c1 10× 11 (655,927) 928 927 927
mt10cc 10× 12 (655,914) 910 910 908
mt10x 10× 11 (655,929) 918 918 922
mt10xx 10× 12 (655,929) 918 918 918
mt10xxx 10× 13 (655,936) 918 918 918
mt10xy 10× 12 (655,913) 906 905 905
mt10xyz 10× 13 (655,849) 847 849 849
setb4c9 15× 11 (857,924) 919 914 914
setb4cc 15× 12 (857,909) 909 914 907
setb4x 15× 11 (846,937) 925 925 925
setb4xx 15× 12 (846,930) 925 925 925
setb4xxx 15× 13 (846,925) 925 925 925
setb4xy 15× 12 (845,924) 916 916 910
setb4xyz 15× 13 (838,914) 905 905 903
seti5c12 15× 16 (1027,1185) 1174 1175 1174
seti5cc 15× 17 (955,1136) 1136 1138 1136
seti5x 15× 16 (955,1218) 1201 1204 1198
seti5xx 15× 17 (955,1204) 1199 1202 1197
seti5xxx 15× 18 (955,1213) 1197 1204 1197
seti5xy 15× 17 (955,1148) 1136 1136 1136
seti5xyz 15× 18 (955,1127) 1125 1126 1128
∗ Values of solutions obtained for Barnes and Chambers [21] benchmark instances. The
TSAB algorithm was used in the operation scheduling module of the M2H. The new
best known solutions are marked with bold font.

Bibliography

[1] Aarts E.H.L., Verhoeven M., Local search, in: M. Dell'Amico, F. Ma�oli, S.
Martello (Eds.), Annotated Bibliographies in Combinatorial Optimization,
Wiley and Sons, Chichester, (1997).

[2] Aarts E., Lenstra J., Local search in combinatorial optimization, New York
(1997).

[3] Abdul-Razaq T.S. , Potts C.N., Van Wassenhove L.N., A survey of algo-
rithms for the single machine total weighted tardiness scheduling problem,
Discrete Applied Mathematics 26 (1990), 235�253.

[4] Adrabi«ski A, Wodecki M., An algorithm for solving the machine sequencing
problem with parallel machines, Zastosowania Matematyki XVI 3 (1979),
513�541.

[5] Ahn C.W., Goldberg D.E., Ramakrishna R.S., Multiple-deme parallel esti-
mation of distribution algorithms: Basic framework and application, Par-
allel Processing and Applied Mathematics PPAM 2003, Lecture Notes in
Computer Science No. 3019, Springer (2004), 544�551.

[6] Ahuja R.K., Ergun O., Orlin J.B., Punnen A.P., A survey of very large-scale
neighborhood search techniques, Discrete Applied Mathematics 123 (2002),
75�102.

[7] Alba E., Parallel Metaheuristics. A New Class of Algorithms, Wiley & Sons
Inc. (2005).

[8] Alba E., Troya J.M., Analyzing synchronous and asynchronous parallel
distributed genetic algorithms, Future Generation Computer Systems 17
(2001), 451�465.

[9] Alba E., Nebro A.J., Troya J.M., Heterogeneous Computing and Parallel Ge-
netic Algorithms, Journal of Parallel and Distributed Computing 62 (2002),
1362�1385.

[10] Alba E., Almeida F., Blesa M., Cotta C., Diaz M., Dorta I., Gabarró J.,
González J., León C., Moreno L., Petit J., Roda J., Rojas A., Xhafa F.,
Malba: A library of skeletons for combinatorial optimisation, in: B. Monien,

244 Bibliography

R. Feldman (Eds.), Euro-Par 2002 Parallel Processing, Lecture Notes in
Computer Sceince No. 2400, Springer (2002), 927�932.

[11] Amza C., Cox A.L., Dwarkadas S., Keleher P., Rajamony R., Lu H., Yu
W., Zwaenepoel W., ThreadMarks: Shared memory computing on networks
of workstations, IEEE Computer 29(2), (1996), 18�28.

[12] Angel E., Bampis E., A multi-start dynasearch algorithm for the time depen-
dent single-machine total weighted tardiness scheduling problem, European
Journal of Operational Research 162 (2005), 281�289.

[13] Argonne National Laboratory, PGAPack Parallel Genetic Algorithm Li-
brary, on-line document, http://wwwfp.mcs.anl.gov/ CCST/ research/ re-
ports/ pre1998/ comp bio/ stalk/ pgapack.html

[14] Armentano V.A., Scrich C.R., Tabu search for minimizing total tardiness
in a job shop, International Journal of Production Economics 63(2), (2000),
131�140.

[15] Babu B., Peridy L., Pison E., A branch and bound algorithm to minimize
total weighted tardiness on a single processor, Annals of Operations Research
129 (2004), 33�46.

[16] Badeau P., Guertin F., Gendreau M., Potvin J.Y., Taillard E., A parallel
tabu search heuristic for the vehicle routing problem with time windows,
Transportation Research-C 5 (1997), 109�122.

[17] Baker K.R., Scudder G.D., Sequencing with earliness and tardiness penal-
ties: a review, Operations Research 38 (1990), 22�36.

[18] Balas E, Vazacopoulos A. Guided local search with shifting bottleneck for
job-shop scheduling, Management Science 44(2), (1969), 262�275.

[19] Bank J., Werner F., Heuristic algorithm for unrelated parallel machine
scheduling with a common due date, relase dates, and linear earliness and
tardiness penalties, Mathematical and Computer Modelling 33 (2001), 363�
383.

[20] Barr R.S., Hickman B.L., Reporting Computational Experiments with Par-
allel Algorithms: Issues, Measures, and Experts' Opinions, ORSA Journal
on Computing 5(1), (1993), 2�18.

[21] Barnes J.W., Chambers J.B., Flexible job shop scheduling by tabu search,
Graduate program in operations research snd industrial engineering, The
University of Texas at Austin (1996), Technical Report Series: ORP96-09.

[22] Beasley J.E., OR-Library: distributing test problems by electronic mail,
Journal of the Operational Research Society 41 (1990), 1069�1072.
(http://people.brunel.ac.uk/�mastjjb/jeb/info.html)

Bibliography 245

[23] Berger J., Barkaoui M., A Memetic Algorithm for the Vehicle Rout-
ing Problem with Time Windows, Proceedings of the 7th Interna-
tional Command and Control Research and Technology Symposium,
http://www.dodccrp.org/events/7th_ICCRTS/Tracks/pdf/035.pdf

[24] Belinschi S., Bo»ejko M., Lehner F., Speicher R., The normal distri-
bution is �-in�nitely divisible, Advances in Mathematics (2010), doi:
10.1016/j.aim.2010.10.025

[25] Bo»ejko W., Solving the �ow shop problem by parallel programming, Journal
of Parallel and Distributed Computing 69, Elsevier (2009), 470�481.

[26] Bo»ejko W., Parallel path relinking method for the single machine total
weighted tardiness problem with sequence-dependent setups, Journal of In-
telligent Manufacturing 21(6), Springer (2010), 777�785.

[27] Bo»ejko W., Wodecki M., Solving Permutational Routing Problems by
Population-Based Metaheuristics, Computers & Industrial Engineering 57,
Elsevier (2009), 269�276.

[28] Bo»ejko W., Uchro«ski M., Wodecki M., Parallel hybrid metaheuristics for
the �exible job shop problem, Computers & Industrial Engineering 59, Else-
vier (2010), 323�333.

[29] Bo»ejko W., Makuchowski M., A fast hybrid tabu search algorithm for the
no-wait job shop problem, Computers & Industrial Engineering 56, Elsevier
(2009), 1502�1509.

[30] Bo»ejko W., Uchro«ski M., Wodecki M., The new golf neighborhood for the
�exible job shop problem, Proceedings of the ICCS 2010, Procedia Computer
Science 1, Elsevier (2010), 289�296.

[31] Bo»ejko W., Uchro«ski M., Wodecki M., Parallel Meta22heuristics for the
Flexible Job Shop Problem, in: L. Rutkowski et al. (Eds.), Proceedings of
the ICAISC 2010, Lecture Notes in Arti�cial Intellignece No. 6114 (2010),
Springer, 395�402.

[32] Bo»ejko W., Uchro«ski M., A Neuro-Tabu Search Algorithm for the Job Shop
Problem, in: L. Rutkowski et al. (Eds.), Proceedings of the ICAISC 2010,
Lecture Notes in Arti�cial Intelligence No. 6114 (2010), Springer, 387�394.

[33] Bo»ejko W., Czapi«ski M., Wodecki M., Parallel Hybrid Metaheuristics for
the Scheduling with Fuzzy Processing Times, in: L. Rutkowski et al. (Eds.),
Proceedings of the ICAISC 2010, Lecture Notes in Arti�cial Intellignece No.
6114 (2010), Springer, 379�386.

[34] Bo»ejko W., Pempera J., Smutnicki C., Parallel simulated annealing for the
job shop scheduling problem, in: Allen G et al. (Eds.) ICCS 2009, Part I,
Lecture Notes in Computer Science No. 5544, Springer (2009), 631�640.

246 Bibliography

[35] Bo»ejko W., Smutnicki C., Uchro«ski M., Parallel calculating of the goal
function in metaheuristics using GPU, in: G. Allen et al. (Eds.), ICCS 2009,
Part I, Lecture Notes in Computer Science No. 5544 (2009), 1022�1031.

[36] Bo»ejko W., Wodecki M., Parallel population training metaheuristics for the
routing problem, in: L. Zadeh, L. Rutkowski, R. Tadeusiewicz, J. Zurada
(Eds.), International Conference on Arti�cial Intelligence and Soft Com-
puting (ICAISC 2008), IEEE Computational Intelligence Society � Poland
Chapter and the Polish Neural Network Society (2008), 463�472.

[37] Bo»ejko W., Pempera J., Smutnicki A., Multi-thread parallel metaheuristics
for the �ow shop problem, in: L. Zadeh, L. Rutkowski, R. Tadeusiewicz,
J. Zurada (Eds.), International Conference on Arti�cial Intelligence and
Soft Computing (ICAISC 2008), IEEE Computational Intelligence Society
� Poland Chapter and the Polish Neural Network Society (2008), 454�462.

[38] Bo»ejko W., Wodecki M., Parallel path-relinking method for the �ow shop
scheduling problem, in: International Conference on Computational Science
(ICCS 2008), Lecture Notes in Computer Science No. 5101, Springer (2008),
264�273.

[39] Bo»ejko W., Pempera J., Smutnicki C., Parallel single-thread strategies in
scheduling, in: L. Rutkowski, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada
(Eds.), Arti�cial Intelligence and Soft Computing � ICAISC 2008, Lecture
Notes in Arti�vial Intelligence No. 5097, Springer (2008), 995�1006.

[40] Bo»ejko W., Wodecki M., Parallel scatter search algorithm for the �ow shop
sequencing problem, in: R. Wyrzykowski, J. Dongarra, K. Karczewski, J.
Wasniewski (Eds.), Seventh International Conference on Parallel Process-
ing and Applied Mathematics (PPAM 2007), Lecture Notes in Computer
Science No. 4967, Springer (2008), 180�188.

[41] Bo»ejko W., Pempera J., Parallel Tabu Search Algorithm for the Permuta-
tion Flow Shop Problem with Criterion of Minimizing Sum of Job Comple-
tion Times, Conference on Human System Interaction HSI'08, IEEE Com-
puter Society, 1-4244-1543-8/08/(c)2008 IEEE.

[42] Bo»ejko W., Hejducki Z., Wodecki M., Fuzzy Blocks in Genetic Algorithm
For the Flow Shop Problem, Conference on Human System Interaction
HSI'08, IEEE Computer Society, 1-4244-1543-8/08/(c)2008 IEEE.

[43] Bo»ejko W., Wodecki M., Applying Multi-Moves in Parallel Genetic Algo-
rithm for the Flow Shop Problem, in: Computation in Modern Science and
Engineering: Proceedings of the International Conference on Computational
Methods in Science and Engineering 2007 (ICCMSE 2007): Volume 2, Part
B, AIP Conference Proceedings Volume 963 (2007), 1162�1165.

Bibliography 247

[44] Bo»ejko W., Wodecki M., Parallel Evolutionary Algorithm for the Traveling
Salesman Problem, Journal of Numerical Analysis, Industrial and Applied
Mathematics 2(3�4), (2007), 129�137.

[45] Bo»ejko W., Wodecki M., A parallel metaheuristics for the single machine
total weighted tardiness problem with sequence-dependent setup times, Pro-
ceedings of the 3rd Multidisciplinary International Scheduling Conference:
Theory and Applications, Paris 28�31 August (2007), 96�103.

[46] Bo»ejko W., Wodecki M., On the theoretical properties of swap multimoves,
Operations Research Letters 35(2), Elsevier (2007), 227�231.

[47] Bo»ejko W., Wodecki M., Population-Based Approach for the Quadratic
Assignment Problem, International Conference on Numerical Analysis and
Applied Mathematics 2006, Wiley-VCH Verlag (2006), 61�64.

[48] Bo»ejko W., Wodecki M., The new concepts in neighborhood search for per-
mutation optimization problems, in: E.K. Burke, H. Rudová (Eds.), Prac-
tice and Theory of Automated Time-tabling PATAT 2006, Brno (2006),
363�366.

[49] Bo»ejko W., Wodecki M., Theoretical properties of multimoves in meta-
heuristics in aspect of involutions, Proceedings of Tenth International Work-
shop on Project Management and Scheduling, NAKOM, Pozna« (2006),
88�94.

[50] Bo»ejko W., Wodecki M., A new inter-island genetic operator for optimiza-
tion problems with block properties, Lecture Notes in Arti�cial Intelligence
No. 4029, Springer (2006), 324�333.

[51] Bo»ejko W., Wodecki M., Parallel population training algorithm for sin-
gle machine total tardiness problem, in: A. Cader, L. Rutkowski, R.
Tadeusiewicz, J. Zurada (Eds.), Arti�cial Intelligence and Soft Computeing,
Academic Publishing House EXIT (2006), 419�426.

[52] Bo»ejko W., Wodecki M., Evolutionary Heuristics for Hard Permutational
Optimization Problems, Internationam Journal of Computational Intelli-
gence Research 2(2), (2006), 151�158.

[53] Bo»ejko W., Grabowski J., Wodecki M., Block approach tabu search algo-
rithm for single machine total weighted tardiness problem, Computers &
Industrial Engineering 50(1�2), Elsevier (2006), 1�14.

[54] Bo»ejko W., Wodecki M., A fast parallel dynasearch algorithm for some
scheduling problems, Proceedings of PARELEC 2006, IEEE Computer So-
ciety (2006), 275�280.

[55] Bo»ejko W., Wodecki M., Parallel Evolution Heuristic Approach for the
Traveling Salesman Problem, International Conference on Numerical Anal-
ysis and Applied Mathematics 2005, Wiley-VCH Verlag (2005), 90�93.

248 Bibliography

[56] Bo»ejko W., Wodecki M., A hybrid evolutionary algorithm for some discrete
optimization problems, Proceedings of the 5th International Conference on
Intelligent Systems Design and Applications ISDA 2005, IEEE Computer
Society (2005), 326�331.

[57] Bo»ejko W., Wodecki M., Task realiation's optimization with earliness and
tardiness penalties in distributed computation systems, Lecture Notes in
Computer Science No. 3528, Springer (2005), 69�75.

[58] Bo»ejko W., Wodecki M., Parallel tabu search method approach for very
di�cult permutation scheduling problems, Proceedings of PARELEC 2004,
IEEE Computer Society Press (2004), 156�161.

[59] Bo»ejko W., Wodecki M., The new concepts in parallel simulated annealing
method, Lecture Notes in Computer Science No. 3070, Springer (2004), 853�
859.

[60] Bo»ejko W., Wodecki M., Parallel genetic algorithm for minimizing total
weighted completion time, Lecture Notes in Computer Science No. 3070,
Springer (2004), 400�405.

[61] Bo»ejko W., Wodecki M., Parallel genetic algorithm for the �ow shop
scheduling problem, Lecture Notes in Computer Science No. 3019, Springer
(2004), 566�571.

[62] Bo»ejko W., Parallel scheduling algorithms (Ph.D. thesis, in Polish), Tech-
nical Report of the Institute of Engineering Cybernetics No. 29/2003,
Wrocªaw University of Technology (2003), 1�205.

[63] Bo»ejko W., Wodecki M., Solving the �ow shop problem by parallel simulated
annealing, Lecture Notes in Computer Science No. 2328, Springer Verlag
2002, 236�247.

[64] Bo»ejko W., Wodecki M., Parallel algorithm for some single machine
scheduling problems, Automatyka 134 (2002), 81�90.

[65] Bo»ejko W., Wodecki M., Solving the �ow shop problem by parallel tabu
search, Proceedings of PARALEC 2002, IEEE Computer Society (2002),
189�194.

[66] Bradwell R., Brown K., Parallel asynchronous memetic algorithms, in:
E. Cantu-Paz, B. Punch (Eds.), Evolutionary Computation (1999), 157�
159.

[67] Brandimarte P., Routing and scheduling in a �exible job shop by tabu search,
Annals of Operations Research 41 (1993), 157�183.

[68] Bubak M., Sowa K., Objectoriented implementation of parallel genetic al-
gorithms, in: R. Buyya (Ed.), High Performance Cluster Computing: Pro-
gramming and Applications Vol. 2, Prentice Hall (1999), 331�349.

Bibliography 249

[69] Bushee D.C., Svestka. J.A., A bi-directional scheduling approach for job
shops, International Journal of Production Research 37(16), (1999), 3823�
3837.

[70] Cahon S., Melab N., Talbi E.-G., ParadisEO on Condor-MW for optimiza-
tion on computational grids, http://www.li�.fr/∼cahon/cmw/index.html
(2004).

[71] Camara M., Ortega J., Toro F.J., Parallel Processing for Multi-objective
Optimization in Dynamic Environments, 2007 IEEE International Parallel
and Distributed Processing Symposium (2007), 243�250.

[72] Cantú-Paz E., Theory of Parallel Genetic Algorithms, in: E. Alba (Ed.),
Parallel Metaheuristics, Wiley (2005), 425�444.

[73] Carlier J., Pinson E., An algorithm for solving the job shop problem, Man-
agement Science 35 (1989), 164�176.

[74] Calrier J., Villon P., A new heuristic for the traveling salesman problem,
RAIRO Operations Research 24 (1990), 245�253.

[75] �erný V., Thermodynamical approach to travelling salesman problem: An
e�cient simulation algorithm, Journal of Optimization Theory and Appli-
cations 45 (1985), 41�51.

[76] Chandra R., Dagum L., Kohr D., Maydan D., McDonald J., Menon R., Par-
allel Programming in OpenMP, Morgan Kaufmann Publishers Inc. (2001).

[77] Cheng T.C.E., Ng C.T., Yuan J.J., Liu Z.H., Single machine scheduling
to minimize total weighted tardiness, European Journal of Operational Re-
search 165 (2005), 423�443.

[78] Cicirello V.A., Smith S.F., Enhancing stochastic search performance by
value-based randomization of heuristics, Journal of Heuristics 11 (2005),
5�34.

[79] Cicirello V.A., Non-Wrapping Order Crossover: An Order Preserving
Crossover Operator that Respect Absolute Position, 8th Annual Genetic and
Evolutionary Computation Conference GECCO 2006, ACM Press (2006),
1125�1131.

[80] Cole, R., Parallel merge sort, SIAM Journal on Computing 17(4), (1988),
770�785.

[81] Congram K.R., Potts C.N., van de Velde S., An interated dynasearch al-
gorithm for the single-machine total weighted tardiness scheduling problem,
INFORMS Journal on Computing 14 (2002), 52�67.

[82] Cormen T.H., Leiserson C.E., Rivest R.L., Stein C., Introduction to Algo-
rithms, MIT Press and McGraw-Hill (1990).

[83] Cormen T.H., Leiserson C.E., Rivest R.L., Introduction to Algorithms, 2nd
revised edition, MIT Press (2001).

250 Bibliography

[84] Crainic T.G., Toulouse M., Parallel metaheuristics, in: T.G. Crainic, G.
Laporte (Eds.), Fleet management and logistics, Kluwer (1998), 205�251.

[85] Crainic T.G., Toulouse M., Gendreau M., Parallel asynchronous tabu search
in multicommodity locationallocation with balancing requirements, Annals of
Operations Research 63 (1995), 277�299.

[86] Crainic T.G., Gendreau M., Cooperative Parallel Tabu Search for Capacited
Network Design, Journal of Heuristics 8 (2002), 601�627.

[87] Crainic T.G., Gendreau M., Hansen P., Mladenovi¢ N., Cooperative parallel
variable neighbourhood search for the p-median, Journal of Heuristics 10
(2004), 293�314.

[88] Crauwels H.A.J., Potts C.N., Van Wassenhowe L.N., Local search heuris-
tics for the single machine total weighted tardiness scheduling problem, IN-
FORMS Journal on Computing 10(3), (1998), 341�350.

[89] CSEP, Computational Science Education Project, electronic book,
http://www.phy.ornl.gov/csep/

[90] Cung V.-D., Martins S.L., Ribeiro C.C., Roucairol C., Strategies for the par-
allel implementation of metaheuristics, in: C.C. Ribeiro, P. Hansen (Eds.),
Essays and surveys in metaheuristics, Kluwer Academic Publ. (2002), 263�
308.

[91] Czech Z., Wprowadzenie do oblicze« równolegªych, PWN, Warsaw (2010).

[92] Czech Z., Three parallel algorithms for simulated annealing, Lecture Notes
in Computer Science No. 2328, Springer Verlag (2002), 210�217.

[93] Dauzère-Pérès S., Pauli J., An integrated approach for modeling and solving
the general multiprocessor job shop scheduling problem using tabu search,
Annals of Operations Research 70(3), (1997), 281�306.

[94] Davidor Y., A naturally occuring niche and species phenomenon: The model
and �rst results, in: R.K. Belew, L.B. Booker (Eds.), Proceedings of the
Fourth International Conference of Genetic Algorithms, (1991), 257�263.

[95] De Falco I., Del Balio R., Tarantino E., Testing parallel evolution strategies
on the quadratic assignment problem, in: Proc. IEEE International Confer-
ence in Systems, Man and Cybernetics, Vol. 5 (1993), 254�259.

[96] Den Basten, M., Stützle T., Dorigo M., Design of Iterated Local Search
Algoritms An Example Application to the Single Machine Total Weighted
Tardiness Problem, in: J.W. Boers et al. (Eds.), Evo Worskshop 2001, Lec-
ture Notes in Computer Science No. 2037 (2001), 441�451.

[97] Dennis J.E., Wu Z., Parallel continuous optimizatin, J. Dongarra et al.
(Eds.), Sourcebook of Parallel Computing, Morgan Kau�man (2003), 649�
670.

Bibliography 251

[98] DePuy G.W., Morga R.J., Whitehouse G.E., Meta-RaPS: a simple and
e�ective approach for solving the traveling salesman problem, Transportation
Research Part E 41 (2005), 115�130.

[99] Diaconis P., Group Representations in Probability and Statistics, Lecture
Notes � Monograph Series Vol. 11, Institute of Mathematical Statistics,
Harvard University (1988).

[100] Doerner K.F., Hartl R.F., Kiechle G., Lucka M., Reimann M., Parallel
Ant Systems for the Capacited VRP, in: J. Gottlieb, G.R. Raidl (Eds.),
EvoCOP'04, Springer (2004), 72�83.

[101] Dumitru V., Luban F., Membership functions, some mathematical program-
ming models and production scheduling, Fuzzy Sets and Systems 8 (1982),
19�33.

[102] Emmons H., One machine sequencing to Minimize Certain Functions of Job
Tardiness, Operations Research 17 (1969), 701�715.

[103] Feldmann M., Biskup D., Single-machine scheduling for minimizing ear-
liness and tardiness penalties by meta-heuristic approaches, Computers &
Industrial Engineering 44 (2003), 307�323.

[104] Fernández F., Tomassini M., Punch W.F., Sánchez-Pérez J.M., Experimen-
tal study of multipopulation parallel genetic programming, in: Proc. of the
European Conf. on GP, Springer (2000), 283�293.

[105] Fisher M.L., A Dual Algorithm for the One Machine Scheduling Problem,
Mathematical Programming 11 (1976), 229�252.

[106] Fiechter C.N., A parallel tabu search algorithm for large traveling salesman
problems, Discrete Applied Mathematics 51 (1994), 243�267.

[107] Fisher, H., Thompson, G.L., Industrial scheduling, Englewood Cli�s, NJ:
Prentice-Hall (1963).

[108] Flynn M.J., Very highspeed computing systems, Proceedings of the IEEE 54
(1966), 1901�1909.

[109] Folino G., Pizzuti C., Spezzano G., CAGE: A tool for parallel genetic
programming applications, in: J. Miller et al. (Eds.), Proceedings of Eu-
roGP'2001, Lecture Notes in Computer Science No. 2038, Springer (2001),
64�73.

[110] Gagné C., Price W.L., Gravel M., Comparing an ACO algorithm with
other heuristics for the single machine scheduling problem with sequence-
dependent setup times, Journal of the Operational Research Society 53
(2002), 895�906.

[111] Gao J., Sun L., Gen M., A hybrid genetic and variable neighborhood descent
algorithm for �exible job shop scheduling problems, Computers & Operations
Research 35 (2008), 2892�2907.

252 Bibliography

[112] García-López F., Melián-Batista, Moreno-Pérez J., Moreno-Vega J.M., The
parallel variable neighborhood search for the p-median problem, Journal of
Heuristics 8 (2002), 375�388.

[113] García-López F., Melián-Batista, Moreno-Pérez J., Moreno-Vega J.M., Par-
allelization of the Scatter Search, Parallel Computing 29 (2003), 575�589.

[114] García-López F., García Torres M., Melián-Batista, Moreno-Pérez J.,
Moreno-Vega J.M., Solving Feature Subset Selection Problem by a Parallel
Scatter Search, European Journal of Operational Research Volume 169(2),
(2006), 477�489.

[115] Garey M.R., Johnson D.S., Seti R., The complexity of �owshop and jobshop
scheduling, Mathematics of Operations Research 1 (1976), 117�129.

[116] Geist A., Beguelin A., Dongarra J., Manchek R., Jaing W., Sunderam V.,
PVM: A Users' Guide and Tutorial for Networked Parallel Computing, MIT
Press, Boston (1994).

[117] Goldberg D., Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley Publishing Company, Inc., Massachusetts (1989).

[118] Grabowski J., Wodecki M., A very fast tabu search algorithm for the permu-
tation �ow shop problem with makespan criterion, Computers & Operations
Research 31 (2004), 1891�1909.

[119] Grabowski J., Wodecki M., A very fast tabu search algorithm for the job shop
problem, in: C. Rego, B. Alidaee (Eds.), Adaptive memory and evolution,
tabu search and scatter search. Kluwer Academic Publishers, Dordrecht
(2005).

[120] Grabowski J., A new algorithm of solving the �ow-shop problem, Operations
Research in Progress, D. Reidel Publishing Company (1982) 57�75.

[121] Grabowski J., Pempera J., New block properties for the permutation �ow
shop problem with application in tabu search, Journal of Operational Re-
search Society 52 (2000), 210�220.

[122] Grabowski J., Generalized problems of operations sequencing in the discrete
production systems, (in Polish), Monographs 9, Scienti�c Papers of the In-
stitute of Technical Cybernetics of Wrocªaw Technical University (1979).

[123] Graham M.R., Lawler E.L., Lenstra J.K., Rinnoy Kan A.H.G., Optimiza-
tion an approximation in detrministic sequencing and scheduling: a survey,
Annals of Discrete Mathematics 3 (1979), 287�326.

[124] Grama A., Gupta A., Karypis G., Kumar V., Introduction to Parallel Com-
puting, Second Edition, Pearson Addison Wesley (2003).

[125] Grosso A., Della Croce F., Tadei R., An enhanced dynasearch neighborhood
for the single-machine total weighter tardiness scheduling problem, Opera-
tions Research Letters 32 (2004), 68�72.

Bibliography 253

[126] Glover F., Future Paths for Integer Programming and Links to Arti�cial
Intelligence, Computers & Operations Research 1(3), (1986), 533�549.

[127] Glover F., Laguna M., Tabu Search, Kluwer Academic Publishers, Boston
(1997).

[128] Gupta S.K., Kyparisis J., Single machine scheduling research, OMEGA In-
ternational Journal of Management Science 15 (1987), 207�227.

[129] Gutin G.M., Yeo A., Small diameter neighborhood graphs for the traveling
salesman problem: at most four moves from tour to tour, Computers &
Operations Research 26 (1999), 321�327.

[130] Gutin G., Exponential neighborhood local search for the traveling salesman
problem, Special Issue of Computers & Operations Research 26 (1999), 313�
320.

[131] Haldar A.M., Nayak A., Choudhary A., Banerjee P., Parallel Algorithms
for FPGA Placement, Proceedings of the Great Lakes Symposium on VLSI
(GVLSI 2000), Chicago, IL (2000).

[132] Hana� S., On the Convergence of Tabu Search, Journal of Heuristics 7
(2000), 47�58.

[133] He Z., Yang T., Tiger A., An exchange heuristic embedded with simulated
annealing for due-dates job-shop scheduling, European Journal of Opera-
tional Research 91 (1996), 99�117.

[134] High Performance Fortran Forum, High Performance Fortran language spec-
i�cation, Scienti�c Programming 2, 13 (1993), 1�170.

[135] Ho N.B., Tay J.C., GENACE: an e�cient cultural algorithm for solving the
Flexible Job-Shop Problem, IEEE International Conference on Robotics and
Automation (2004), 1759�1766.

[136] Holland J.H., Adaptation in natural and arti�cial systems: An introduc-
tory analysis with applications to biology, control, and arti�cial intelligence,
University of Michigan Press (1975).

[137] Holthaus O., Rajendran C., E�cient jobshop dispatching rules: further de-
velopments, Production Planning and Control 11 (2000), 171�178.

[138] Hoogeveen J.A., van de Velde S.L., A branch and bound algorithm for single-
machine earliness-tardiness scheduling with idle time, INFORMS Journal on
Computing 8 (1996), 402�412.

[139] Hurink E., Jurisch B., Thole M., Tabu search for the job shop scheduling
problem with multi-purpose machine, OR Spektrum 15 (1994), 205�215.

[140] Ignall E., Schrage L.E., Application of the branch-and-bound technique to
some �ow-shop scheduling problems, Operations Research 13(3), (1965),
400�412.

254 Bibliography

[141] Ingber L., Lester Ingber's Archive, http://www.ingber.com/

[142] Ishibuschi H., Misaki S., Tanaka H., Modi�ed Simulated Annealing Algo-
rithms for the Flow Shop Sequencing Problem, European Journal of Opera-
tional Research 81 (1995), 388�398.

[143] Ishibuschi H., Murata T., Scheduling with Fuzzy Duedate and Fuzzy Process-
ing Time, in: R. Sªowi«ski, M. Hapke (Eds.), Scheduling Under Fuzziness,
Springer (2000), 113�143.

[144] Izzettin T., Serpil E., Fuzzy branch-and-bound algorithm for �ow shop
scheduling, Journal of Intelligent Manufacturing 15 (2004), 449�454.

[145] Jain A.S., Rangaswamy B., Meeran S., New and stronger job-shop neigh-
borhoods: A focus on the method of Nowicki and Smutnicki (1996), Journal
of Heuristics 6(4), (2000), 457�480.

[146] James T., Rego C., Glover F., Sequential and Parallel Path-Relinking Al-
gorithms for the Quadratic Assignment Problem, IEEE Intelligent Systems
20(4), (2005), 58�65.

[147] Janiak A., Janiak W., Lichtenstein M., Tabu search on GPU, Journal of
Universal Computer Science 14(14), (2009), 2416�2426.

[148] Janiak A., Oguz C., Zinder Y., Do Van Ha, Lichtenstein M., Hybrid �ow-
shop scheduling problems with multiprocessor task systems, European Jour-
nal of Operational Research 152(1), (2004), 115�131.

[149] Jia H.Z., Nee A.Y.C., Fuh J.Y.H., Zhang Y.F., A modi�ed genetic algorithm
for distributed scheduling problems, International Journal of Intelligent Man-
ufacturing 14 (2003), 351�362.

[150] Johnson S.M., Optimal two and three-stage production schedules with setup
times included, Naval Research Logistic Quertely 1 (1954), 61�68.

[151] Juille H., Pollack J.B., Massively parallel genetic programming, in: Peter
J. Angeline, K.E. Kinnear Jr. (Eds.), Advances in Genetic Programming 2,
MIT Press, Cambridge (1996), 339�358.

[152] Kacem I., Hammadi S., Borne P., Approach by localization and multiob-
jective evolutionary optimization for �exible job-shop scheduling problems,
IEEE Transactions on Systems, Man, and Cybernetics, Part C 32(1), (2002),
1�13.

[153] Kawamura H., Yamamoto M., Suzuki K., Ohuchi A., Multiple ant colonies
algorithm based on colony level interactions, IEICE Transactions on Funda-
mentals, E83-A(2), (2000), 371�379.

[154] Kirkpatrick S., Gellat C.D., Vecchi M.P., Optimization by simulated anneal-
ing, Science 220 (1983), 671�680.

Bibliography 255

[155] Kliewer G., Klohs K., Tschoke S., Parallel simulated annealing library
(parSA): User manual, Technical report, Computer Science Department,
University of Paderborn (1999).

[156] Knox J., Tabu search performance on the symmetric traveling salesman
problem, Computers & Operations Research 21 (1994), 867�876.

[157] Koza J.R., Genetic Programming, The MIT Press, Cambridge (1992).

[158] Knuth D.E., The art of computer programming, Vol. 3., 2nd ed., Addison
Wesley Longman, Inc. (1998).

[159] Kravitz S.A., Rutenbar R.A., Placement by simulated annealing on a multi-
processor, IEEE Transactions on Computer Aided Design 6 (1998), 534�549.

[160] Kwiatkowski J., Pawlik M., Konieczny D., Parallel Program Execution
Anomalies, Proceedings of the International Multiconference on Computer
Science and Information Technology (2006), 355�362.

[161] Lageweg B.J., Lenstra J.K., Rinnooy Kan A.H.G., A General Bouding
Scheme for the Permutation Flow-Schop Problem, Operations Research 26
(1978), 53�67.

[162] Lawler, E.L., A Pseudopolynomial Algorithm for Sequencing Jobs to Mini-
mize Total Tardiness, Annals of Discrete Mathematics 1 (1977), 331�342.

[163] Lawrence S., Resource constrained project scheduling: an experimental in-
vestigation of heuristic scheduling techniques, Technical Report, Graduate
School of Industrial Ad-ministration, Carnegie-Mellon University, Pitts-
burgh, Pennsylvania (1984).

[164] Lai H.T., Sahni S., Anomalies in parallel branchandbound algorithms, Com-
munications of the ACM 27 (1984), 594�602.

[165] Lai T.H., Sprague A., A note on anomalies in parallel branchandbound al-
gorithms with onetoone bounding functions, Information Processing Letters
23 (1986), 119�122.

[166] Lee Y.H., Bhaskaran K., Pinedo M., A heuristic to minimize the total
weighted tardiness with sequence-dependent setups, IIE Transactions 29
(1997), 45�52.

[167] Lee S.Y., Lee K.G., Synchronous and asynchronous parallel simulated an-
nealing with multiple Markov chains, IEEE Transactions on Parallel and
Distributed Systems 7 (1996), 993�1008.

[168] Lenstra J.K., Rinnoy Kan A.G.H., Brucker P., Complexity of Machine
Scheduling Problems, Annals of Discrete Mathematics, 1 (1977), 343�362.

[169] Lenstra J.K., Sequencing by Enumeration Methods, Mathematical Centre
Tract 69, Mathematisch Centrum, Amsterdam (1977).

256 Bibliography

[170] Leung K.-S., Jin H.-D., Xu Z.-B., An expanding self-organizing neural net-
work for the traveling salesman problem, Neurocomputing 62 (2004), 267�
292.

[171] Li G.J., Wah B.W., Coping with anomalies in parallel branchandbound al-
gorithms, IEEE Transactions on Computers C 35 1986, 568�573.

[172] Liao C.-J., Juan H.C. , An ant opimization for single-machine tardiness
shceduling with sequence-dependent setups, Computers & Operations Re-
search 34 (2007), 1899�1909.

[173] Lin S.-W., Ying K.-C., Solving single-machine total weighted tardiness prob-
lems with sequence-dependent setup times by meta-heuristics, International
Journal of Advanced Manufacturing Technology 34(11�12), (2007), 1183�
1190.

[174] Lin S., Kerninghan B., An e�ective heuristic algorithm for the traveling
salesman problem, Operations Research 21 (1973), 498�516.

[175] Lo C.C., Hus C.C., Annealing framework with learning memory, IEEE
Transaction on System, Man, Cybernetics, Part A 28(5), (1998), 1�13.

[176] Lobo F.G., Lima C.F., Mártires H., An architecture for massively paral-
lelization of the compact genetic algorithm, in: Proceedings of the Genetic
and Evolutionary Computation Conference GECCO 2004, Lecture Notes in
Computer Science No. 3103, Springer (2004), 412�413.

[177] Malek M., Guruswamy M., Pandya M., Owens H., Serial and parallel simu-
lated annealing and tabu search algorithms for the traveling salesman prob-
lem, Annals of Operations Research 21 (1989), 59�84.

[178] Mans B., Roucairol C., Performances of parallel branch and bound algo-
rithms with best�rst search, Discrete Applied Mathematics 66 (1996), 57�76.

[179] Martins S.L., Ribeiro C.C., Souza M.C., A Parallel Grasp for the Steiner
Problem in Graphs, Lecture Notes in Computer Science No. 1457, Springer
(1998), 285�297.

[180] Mastrolilli M., Gambardella L.M., E�ective neighborhood functions for the
�exible job shop problem, Journal of Scheduling 3(1), (2000), 3�20.

[181] Matsuo H., Suh C.J., Sullivan R.S., A controlled search simulated annealing
method for the single machine weighted tardiness problem, Working paper
87-12-2, Departament of Management, University of Texas at Austin, TX,
(1987).

[182] Mattfeld D.C., Bierwirth C., An e�cient genetic algorithm for job shop
scheduling with tardiness objectives, European Journal of Operational Re-
search 155(3), (2004), 616�630.

[183] Meise C., On the convergence of parallel simulated annealing, Stochastic
Processes and their Applications 76 (1998), 99�115.

Bibliography 257

[184] Mendes R., Pereira J.R., Neves J., A Parallel Architecture for Solving Con-
straint Satisfaction Problems, Proceedings of Metaheuristics Int. Conf. 2001,
Porto, Portugal (2001), 109�114.

[185] Mendiburu A., Miguel-Alonso J., Lozano J.A., Implementation and per-
formance evaluation of a parallelization of estimation of bayesian network
algorithms, Parallel Processing Letters 16(1), (2006), 133�148.

[186] Metropolis N., Rosenbluth A.W., Teller A.H., Tellet E., Equation of state
calculation by fast computing machines, Journal of Chemical Physics 21
(1953), 1187�1191.

[187] Michalewicz Z., Genetic Algorithms + Data Structures = Evolution Pro-
grams, 2nd ed., Springer Verlag (1994).

[188] Middendorf M., Reischle F., Schmeck H.,Multi Colony Ant Algorithm, Jour-
nal of Heuristics 8 (2002), 305�320.

[189] Miki M., Hiroyasu T., Kasai M., Application of the temperature parallel
simulated annealing to continous optimization problems, IPSL Transactions
41 (2000), 1607�1616.

[190] Morton T.E., Rachamadougu R.M., Vepsalainen A., Accurate myopic
heuristics for tardiness scheduling, GSIA Working Paper No. 36-83-84,
Cornegie-Mellon Univercity, PA, (1984).

[191] Mühlenbein H., Gorges-Schleuter M., Kramer O., Evolution algorithm in
combinatorial optimization, Parallel Computing 7 (1988), 65�85.

[192] Mühlenbein H., PaaÿG., From Recombination of Genes to the Estimation
of Distributions Binary Parameters, Parallel Problem Solving from Nature
� PPSN IV, Lecture Notes in Computer Science No. 1141, Sprinter (1996),
178�187.

[193] Naimi M., Trehel M., Arnold A, A log(n) distributed mutual exclusion algo-
rithm based on path reversal, J. Parallel Distrib. Comput. 34 (1996), 1�13.

[194] Navaz M., Enscore E.E. Jr, Ham I., A heuristic algorithm for the m-
machine, n-job �ow-shop sequencing problem, OMEGA 11(1), (1983), 91�
95.

[195] Nowicki E., Smutnicki C., A fast tabu search algorithm for the job shop
problem, Management Science 42 (1996), 797�813.

[196] Nowicki E., Smutnicki C., A fast tabu search algorithm for the permutation
�ow shop problem, European Journal of Operational Research 91 (1996),
160�175.

[197] Nowicki E., Smutnicki C., The �ow shop with parallel machines: A tabu
search approach, European Journal of Operational Research 106 (1998),
226�253.

258 Bibliography

[198] Nowicki E., Smutnicki C., An advanced tabu search algorithm for the job
shop problem, Journal of Scheduling 8(2), (2005), 145�159.

[199] Nowicki E., Smutnicki C., Some aspects of scatter search in the �ow-shop
problem, European Journal of Operational Research 169 (2006), 654�666.

[200] Oceanásek J., Schwarz J., The distributed bayesian optimization algorithm
for combinatorial optimization, in: EUROGEN 2001 � Evolutionary Meth-
ods for Design, Optimisation and Control, CIMNE, Athens, Greece, ISBN
84-89925-97-6 (2001), 115�120.

[201] Ogbu F., Smith D., The Application of the Simulated Annealing Algorithm
to the Solution of the n/m/Cmax Flowshop Problem, Computers & Opera-
tions Research 17(3), (1990), 243�253.

[202] OR-Library, http://people.brunel.ac.uk/∼mastjjb/jeb/info.html

[203] Osman I., Potts C., Simulated Annealing for Permutation Flow-Shop
Scheduling, OMEGA 17(6), (1989), 551�557.

[204] Pauli J., A hierarchical approach for the FMS schduling problem, European
Journal of Operational Research 86(1), (1995), 32�42.

[205] Peng J., Liu B., Parallel machine scheduling models with fuzzy processing
times, Information Sciences 166 (2004), 49�66.

[206] Pezzella F., Merelli E., A tabu search method guided by shifting bottleneck for
the job-shop scheduling problem, European Journal of Operational Research
120 (2000), 297�310.

[207] Pezzella F., Morganti G., Ciaschetti G., A genetic algorithm for the Flex-
ible Job-schop Scheduling Problem, Computers & Operations Research 35
(2008), 3202�3212.

[208] Pinedo M., Scheduling: theory, algorithms and systems, Englewood Cli�s,
NJ: Prentice-Hall (2002).

[209] Porto S.C., Ribeiro C.C., Parallel tabu search messagepassing synchronous
strategies for task scheduling under precedence constraints, Journal of
Heuristics 1(2), (1996), 207�223.

[210] Porto S.C., Ribeiro C.C., A tabu search approach to task scheduling on
heterogeneous processors under precedence constraints, International Journal
of High Speed Computing 7 (1995), 45�71.

[211] Porto S.C., Ribeiro C.C., A case study on parallel synchronous implemen-
tations of tabu search based on neighborhood decomposition, Investigaci'on
Operativa 5 (1996), 233�259.

[212] Porto S.C., Kitajima J.P., Ribeiro C.C., Performance evaluation of a par-
allel tabu search task scheduling algorithm, Parallel Computing 26 (2000),
73�90.

Bibliography 259

[213] Potts C.N., Van Wassenhove L.N., Single machine tardiness sequencing
heuristics, IIE Transactions 23 (1991), 346�354.

[214] Potts C.N., Van Wassenhove L.N., A Branch and Bound Algorithm for the
Total Weighted Tardiness Problem, Operations Research 33 (1985), 177�181.

[215] Reeves C.R., Yamada T., Genetic algorithms, path relinking and the �ow-
shop sequencing problem, Evolutionary Computation 6 (1998), 45�60.

[216] Reeves C., Improving the E�ciency of Tabu Search for Machine Sequencing
Problems, Journal of Operational Research Society 44(4), (1993), 375�382.

[217] Reeves C., A Genetic Algorithm for Flowshop Sequencing, Computers &
Operations Research 22(1), (1995), 5�13.

[218] Reinelt G., The traveling salesman: computational Solutions for TSP appli-
cations, Berlin, Springer (1994).

[219] Resende M.G.C., Ribeiro C.C., GRASP with path-relinking: Recent ad-
vances and applications, in: T. Ibaraki, K. Nonobe, M. Yagiura (Eds.),
Metaheuristics: Progress as real problem solvers, Springer (2005), 29�36.

[220] Rinnoy Kan A.H.G, Machine Scheduling Problems: Classi�cation, Com-
plexity and Computations, Nijho�, The Hague, (1976).

[221] Ribeiro C.C., Rosseti I., A parallel GRASP for the 2-path network design
problem, Lecture Notes in Computer Science No. 2004 (2002), Springer,
922�926.

[222] Rinnoy Kan A.G.H., Lageweg B.J., Lenstra J.K., Minimizing total cost one-
machine scheduling, Operations Research 26 (1975), 908�972.

[223] Robilliard D., Marion-Poty V., Fonlupt C., Population parallel GP on the
G80 GPU, in: O'Neil M. et al. (Eds.), Proceedings of the 11th European
Conference on Genetic Programming, EuroGP 2008, Vol. 4971, Springer
(2008).

[224] Rogalska M., Bo»ejko W., Hejducki Z., Wodecki M., Harmonogramowanie
robót budowlanych z zastosowaniem algorytmu Tabu Search z rozmytymi
czasami wykonania zada«, Przegl�ad Budowlany No. 7�8 (2009), 76�80.

[225] Rogalska M., Bo»ejko W., Hejducki Z., Time/cost optimization using hybrid
evolutionary algorithm in construction project scheduling, Automation in
Construction 18, Elsevier (2008), 24�31.

[226] Rogalska M., Bo»ejko W., Hejducki Z., Scheduling of construction projects
by means of evolutionary algorithms, Proceedings of 9th International Con-
ference Modern building materials, structures and techniques ISARC 2007,
Vilnius, Lithuania (2007), 173�174.

[227] Roussel-Ragot P., Dreyfus G., A problem-independent parallel implementa-
tion of simulated annealing: Models and experiments, IEEE Transactions
on Computer-Aided Design 9 (1990), 827�835.

260 Bibliography

[228] Savur V., Parallel computer architecture, http://sankofa.loc.edu/savur/
web/Parallel.html

[229] Smith W.E., Various optimizers for single-stage production, Naval Research
Logistic Quart 3 (1956), 59�66.

[230] Schütz M., Sprave J., Application of Parallel Mixed-Integer Evolution Strate-
gies with Mutation Rate Pooling, in: L.J. Fogel, P.J., Angeline, T. Bäck
(Eds.), Proceedings of the Fifth Annual Conference on Evolutionary Pro-
gramming (EP'96), The MIT Press (1996), 345�354.

[231] Smutnicki C., Ty«ski A., Job-shop scheduling by GA : A new crossover
operator, in: H.-D. Haasis, H. Kopfer, J. Schonberger (Eds.), Operations
Research, Berlin, Springer (2006), 715�720.

[232] Smutnicki C., Some results of the worst-case analysis for �ow shop schedul-
ing, European Journal of Operational Research 109 (1998), 66�87.

[233] Smutnicki C., Minimizing the mean completion time in a �ow shop problem.
The worst-case study, in: M. Zaborowski (Ed.), Automatyzacja procesów
dyskretnych, WNT, Warsaw (2004), 151�158.

[234] Smutnicki C., Scheduling algorithms (in Polish), EXIT, Warsaw (2002).

[235] Snir M., Otto S., Huss-Lederman S., Walker D., Dongarra J., MPI: The
Complete Reference Vol. 1, The MPI Core, MIT Press, Boston (1998).

[236] Sprave J., Linear neighborhood evolution strategies, in: A.V. Sebald, L.J.
Fogel (Eds.), Proceedings of the 3th AnnualConference on Evolutionary
Porgramming, World Scienti�c, River Edge (1994), 42�51.

[237] Steinhöfel K., Albrecht A., Wong C.K., Fast parallel heuristics for the job
shop scheduling problem, Computers & Operations Research 29 (2002), 151�
169.

[238] Stockmeyer L., Vishkin U., Simulation of parallel random access machines
by circuits, SIAM J. Comput. 13(2), (1984), 409�422.

[239] Storer J.A., An ntroduction to data structures and algorithms,
Birkhäuser�Springer (2001).

[240] Storer R.H., Wu S.D., Vaccari R., New search spaces for sequencing prob-
lems with application to job shop scheduling, Management Science 38 (1992),
1495�1509.

[241] Stützle T., Parallelization Strategies for Ant Colony Optimization, in: R.
De Leone, A. Murli, P. Pardalos, G. Toraldo (Eds.), High Performance
Algorithms and Software in Nonlinear Optimization, Vol. 24 of Applied
Optimization, Kluwer (1998), 87�100.

[242] Szwarc W., Adjacent ordering in single machine scheduling with earliness
and tardiness penalties, Neval Research Logistics 40 (1993), 229�243.

Bibliography 261

[243] Taillard E., Benchmarks for basic scheduling problems, European Journal of
Operational Research 64 (1993), 278�285.

[244] Taillard E., Robust taboo search for the quadratic assignment problem, Par-
allel Computing 17 (1991), 443-455.

[245] Taillard E., Parallel taboo search techniques for the job shop scheduling prob-
lem, ORSA Journal on Computing 6 (1994), 108-117.

[246] Taillard E., Some e�cient heuristic methods for the �ow shop sequencing
problem, European Journal of Operational Research 47(1), (1990), 65�74.

[247] Talbi E.-G., A taxonomy of hybrid metaheuristics, Journal of Heuristics
8(5), (2002), 541�564.

[248] Talbi E.-G., Roux O., Fonlupt C., Robillard D., Parallel Ant Colonies for
Combinatorial Optimization Problems, in: Feitelson, Rudolph (Eds.), Job
Scheduling Strategies for Parallel Processing: IPPS'95 Workshop, Lecture
Notes in Computer Science No. 949(11), Springer (1999).

[249] Talbi E.-G., Ha�di Z., Geib J.M., A parallel adaptive tabu search approach,
Parallel Computing 24 (1996), 2003�2019.

[250] Tan K.C., Narasimban R., Rubin P.A., Ragatz G.L., A comparison of four
methods for minimizing total tardiness on a single procesor with sequence
dependent setup times, OMEGA 28 (2000), 313�326.

[251] Tanese R., Distribued genetic algorithms, in: J.D. Scha�er (Ed.), Proc. of
the Third Intern. Conf. on Genetic Algorithms, Morgan Kaufmann (1989),
434�439.

[252] Tang, J., Lim M.H., Ong Y.S., Adaptation for parallel memetic algorithm
based on population entropy, in: Proceedings of the 8th Annual Conference
on Genetic and Evolutionary Computation (Seattle, Washington, USA, July
8�12, 2006), GECCO '06, ACM, New York, NY (2006), 575�582.

[253] Toro F., Ortega J., Ros E., Mota B., Paechter B., Martín J.M., PSFGA:
Parallel processing and evolutionary computation for multi-objective opti-
mization, Parallel Computing 30 (2004), 721�739.

[254] Tsai C.-F., Tsai C.-W., Tseng C.-C., A new hybrid heuristic approach for
solving large traveling salesman problem, Information Sciences 166 (2004),
67�81.

[255] Tsujimura Y., Park S.H., Change I.S., Gen M., An e�ective method for solv-
ing �ow shop problems with fuzzy processing times, Computers & Industrial
Engieering 25(1�4), (1993), 239�242.

[256] TSPLIB Web Page, http://www.iwr.uni-heidelberg.de/groups/comopt/
software/TSPLIB95/tsp/

[257] Vaessens R., Aarts E., Lenstra J., Job shop scheduling by local search, IN-
FORMS Journal on Computing 8 (1996), 303�317.

262 Bibliography

[258] Valente J.M.S., Alves R.A.F.S., Fildered and recovering beam search algo-
rithms for the early/tardy scheduling problem with no idle time, Computers
& Industrial Engineering 48(2), (2005), 363�375.

[259] Van Velhuizen D.A., Zydallis J.B., Lamont G.B., Considerations in Engi-
neering Parallel Multi-objective Evolutionary Algorithms, IEEE Trans. Evo-
lutionary Computation 7(2), (2003), 144�173.

[260] Verhoeven M.G.A., Aarts E.H.L., Parallel Local Search, Journal of Heuris-
tics 1 (1995), 43�65.

[261] Voss S., Tabu search: Applications and prospects, in: D.Z. Du, P.M. Pardalos
(Eds.), Network Optimization Problems, World Scienti�c (1993).

[262] Wan G., Yen B.P.C., Tabu search for single machine scheduling with distinct
due windows and weighted earliness/tardiness penalties, European Journal
of Operational Research 142 (2002), 271�281.

[263] Wang T.Y., Wu K.B., An e�cient con�guration generation mechanism to
solve job shop scheduling problems by the simulated annealing, International
Journal of Systems Science 30(5), (1999), 527�532.

[264] Wang C., Chu C., Proth J., Heuristic approaches for n/m/F/ΣCi scheduling
problems, European Journal of Operational Research 96 (1997), 636�644.

[265] Weinert K., Mehnen J., Rudolph G., Dynamic neighborhood structures in
parallel evolution strategies, Complex Systems 13(3), (2002), 227�244.

[266] Wrocªaw Centre of Networking and Supercomputing,
www.wcss.wroc.pl

[267] WinTune98, http://www.winmag.com/WinTune98/

[268] Wodecki M., A branch-and-bound parallel algorithm for single-machine total
weighted tardiness problem, The International Journal of Advanced Manu-
facturing Technology 37(9�10), (2008), 996�1004.

[269] Wodecki M., Bo»ejko W., Solving the �ow shop problem by parallel simulated
annealing, Lecture Notes in Computer Science No. 2328, Springer (2002),
236�247.

[270] Wodecki M., Agregation methods in discrete optimization problems (in Pol-
ish), Monographs series, Wroclaw University of Technology Publishing
House, Wrocªaw 2009.

[271] Wolpert D.H., Macready W.G., No Free Lunch Theorems for Optimization,
IEEE Trans. Evolutionary Computation 1(1), (1997), 67�82.

[272] Yamada T., Nakano R., A genetic algorithm applicable to large-scale job
shop problems, in: R. Manner, B. Manderick (Eds.), Parallel problem solving
from nature II. Amsterdam: North-Holland, (1992), 281�290.

Bibliography 263

[273] Yamada T., Reeves C.R., Solving the Csum Permutation Flowshop Schedul-
ing Problem by Genetic Local Search, IEEE International Conference on
Evolutionary Computation (1998), 230�234.

[274] Yano C.A., Kim Y.D., Algorithms for a class of single machine weighted
tardiness and earliness problems, European Journal of Operational Research
52 (1991), 167�178.

List of Tables

1.1 The granularity G values for various parallel computing environ-
ments. 26

1.2 Parallel architectures and programming languages presented in par-
ticular chapters. 34

3.1 Job execution times on machines. 84

5.1 Speed of increasing f(o) = o and f(o) = ⌈log2 o⌉ functions. . . . 107
5.2 Times of Cmax calculations due to the method from Theorem 5.1

on GPU. 108

9.1 Results of APRD (%) of the SA, GA and TS from Lin and Ying
[173] compared to ParPBM approach. 162

10.1 The number of iterations (over all processors) and the time of com-
puting. 174

14.1 Experimental results of the TSBM2H for Brandimarte [67] tests. 211
14.2 Experimental results of the TSBM2H for Barnes and Chambers

[21] instances. 212
14.3 Comparison of the results obtained by Mastrolilli and Gambardella

[180], TSBM2H and PBM2H algorithms. 213

15.1 Data for the case study. Total times of actions on working segments
represented as workdays. 223

A.1 Relative deviation of solutions of sequence and parallel memetic
algorithms described in Section 8.3. 231

A.2 Total time of the parallel population-based algorithm described in
Section 9.2. 231

A.3 Convergence of the parallel population-based metaheuristic described
in Section 9.2. 232

List of Tables 265

A.4 PRDs of simulated annealing solution and NEH described in Sec-
tion 11.1.3. 232

A.5 Results of computational experiments of the algorithm described
in Section 9.2, Part 1. 233

A.6 Results of computational experiments of the algorithm described
in Section 9.2, Part 2. 234

A.7 Improvement of NEH solution of algorithms from Section 11.1.3. 235
A.8 Results of APRD for reference solutions [273] obtained by algo-

rithms presented in Section 11.2.3. 235
A.9 Values of APRD for parallel scatter search algorithm for the F ||Cmax

problem from Section 12.2 (global model). 236
A.10 Values of APRD for parallel scatter search algorithm for the F ||Cmax

problem from Section 12.2 (independent model). 236
A.11 The parallel scatter search (independent model � no communica-

tion) from Section 12.2 for Csum criterion. 237
A.12 The parallel scatter search (independent model) from Section 12.2

for Csum criterion. 237
A.13 The parallel scatter search (global model � with communication)

from Section 12.2 for Csum criterion. 237
A.14 The parallel scatter search (global model) from Section 12.2 for

Csum criterion. 238
A.15 The parallel scatter search (independent model � no communica-

tion) from Section 12.2 for Csum criterion. 238
A.16 The parallel scatter search (independent model) from Section 12.2

for Csum criterion. 238
A.17 The parallel scatter search (global model � with communication)

from Section 12.2 for Csum criterion. 239
A.18 The parallel scatter search (global model) from Section 12.2 for

Csum criterion. 239
A.19 Relative percentage distance of parallel synchronous tabu search

(PSTS) solutions presented in Section 15.3. 239
A.20 Relative percentage distances of parallel asynchronous tabu search

(PATS) from Section 15.3. 240
A.21 Parallel genetic algorithm described in Section 13.1. 240
A.22 Algorithms from Section 14.2. 241

List of Figures

1.1 History of the development of solution methods for job scheduling
problems. 20

1.2 Taxonomy of speedup measures proposed by Alba [7]. 23
1.3 An illustration of the cost de�nition (4-processor implementation). 25
1.4 An illustration of the �ne-grained (a) and the coarse-grained (b)

granularity. 25
1.5 The nVidia Tesla C2050 with 448 cores (515 GFLOPS). 29
1.6 The Nova cluster from the Wrocªaw Centre of Networking and Su-

percomputing, 2016 cores (19 TFLOPS). Source: WCNS [266]. . 30
1.7 The IBM Blue Gene/P supercomputer at Argonne National Labo-

ratory, 163840 cores (459 TFLOPS). 30
1.8 Taxonomy of parallel architectures. 32

2.1 Outline of the Local Search Method (LSM). 39

3.1 An example of a graph with weighted vertices and arcs for a 3-
element subsequence. 66

3.2 Graph G(π) (from Bo»ejko et al. [35]). 75
3.3 An example of disjunctive graph for the job shop problem. 78
3.4 An example of the graph G(W) for the job shop problem. 79
3.5 An example of the G(π) graph of combinatorial model for the job

shop problem. 80
3.6 A directed graph for a solution Θ = (Q, π(Q)) from Example 3.2. 87
3.7 Blocks on the critical path. 88

4.1 Gcalc function. 97
4.2 Comparison (on the logarithmic scale) of complexity functions. . 100

5.1 A sample of conjunctive graph for the job shop problem with d = 7
layers. 105

5.2 Comparison of execution times of the matrix multiplication based
procedure on a 32-processor GPU. 109

List of Figures 267

5.3 A layer-based sequence of Cij calculations for the �ow shop � a
special case of the job shop problem. 112

6.1 Visualization of parameters ηj(k) and ρj(k) for an operation πi(k). 118
6.2 Directed graph Θ′ = G(tij(k, l)(Θ)) = G(Q′, π′). 119
6.3 Critical path in the graph G(Q, π). 122
6.4 Paths in the graph G(Q′, π′) generated from G(Q, π) by a move

tij(a, x(a)). 127
6.5 Outline of the sequential NewPar algorithm, Part 1. 132
6.6 Outline of the sequential NewPar algorithm, Part 2. 133
6.7 Outline of the ParallelNewPar algorithm, Part 1. 133
6.8 Outline of the ParallelNewPar algorithm, Part 2. 134
6.9 The general scheme of the ParallelNewPar algorithm execution

on the host (CPU) and the computational device (GPU) for the
CUDA environment. 135

7.1 Sequential broadcasting in the master-slave parallel genetic algo-
rithm. 138

7.2 Theoretical speedups for the sequential broadcasting in the master-
slave parallel genetic algorithm. 139

7.3 Tree-based broadcasting in the master-slave parallel genetic algo-
rithm. 140

7.4 Theoretical speedups for the tree-based broadcasting in the master-
slave parallel genetic algorithm. 142

8.1 Outline of the memetic algorithm. 148
8.2 Outline of the Multi-Step Crossover Fusion with Blocks procedure. 149
8.3 Outline of the parallel memetic algorithm. 150
8.4 Average percentage relative deviations (APRD) for the sequence

and parallel memetic algorithms. 151

9.1 General structure of the population-based metaheuristic. 155
9.2 Outline of the NewPopul procedure. 158
9.3 Parallel population-based metaheuristic, Part 1. 159
9.4 Parallel population-based metaheuristic, Part 2. 160
9.5 Improvement of the reference solution of Cicirello [79] made by

ParPBM algorithms (stop criterion: exceeding 10,000 sec.). . . . 161
9.6 Total time of ParPBM algorithms (stop criterion: APRD = −0.3%). 161

10.1 A part of the H tree for n = 3 (an asterisk denotes a free job). . 166
10.2 Outline of the lower bound from the greedy method (LBG) algo-

rithm. 168

268 List of Figures

10.3 Outline of the Branch and Bound (B&B) method. 172
10.4 Outline of the parallel B&B. 173
10.5 Percentage improvement of the number of searched nodes of the

parallel B&B compared to the sequential B&B algorithm. 175

11.1 Outline of the simulated annealing algorithm. 178
11.2 Outline of the parallel SA with broadcasting. 180
11.3 APRD for Taillard [243] instances of the sequential and parallel SA

(independent and cooperative, with broadcasting). 181
11.4 Results of APRD for sSA and pSA algorithms. 184
11.5 Comparison of convergence for sSA and pSA algorithms. 185

12.1 Outline of the scatter search method. 188
12.2 Outline of the path-relinking procedure. 189
12.3 Outline of the parallel scatter search method. 190
12.4 APRD of the global and independent scatter search (iter = 1,600)

for 50 instances from [202]. 192
12.5 APRD of the global and independent scatter search (iter = 16,000)

for 50 instances from [202]. 193
12.6 Orthodox speedup of the parallel scatter search, iter = 16,000 . . 194
12.7 Orthodox speedup of the parallel scatter search, iter = 1,600 . . . 195

13.1 Outline of the parallel genetic algorithm. 199
13.2 A comparison between sequential and parallel cooperative genetic

algorithms. 200

14.1 Classi�cation of hybrid metaheuristics proposed by Talbi [247]. . 204
14.2 Outline of the Parallel Tabu Search Based Meta2Heuristic. 206
14.3 General scheme of the TSBM2H execution on CPU and GPU for

the CUDA environment. 207
14.4 Outline of the Parallel Population-Based Meta2Heuristic. 208
14.5 General scheme of the PBM2H execution on CPU and GPU for the

CUDA environment. 209
14.6 Comparison of the parallel tabu search TSBM2H and population-

based PBM2H algorithms speedups. 211

15.1 Outline of the PSTS algorithm. 217
15.2 Outline of PATS algorithm. 217
15.3 Outline of the parallel tabu search algorithm. 218
15.4 APRD of the sequential (PSTS) and asynchronous parallel (PATS)

tabu search algorithm for instances of Taillard [243]. 219
15.5 Scheduling example for a 766 m long road segment (in workdays). 221

List of Figures 269

15.6 The section of an access road to a dumping ground. 221
15.7 Building schedule for individual road segments for the natural per-

mutation (in workdays). 222
15.8 Building schedule for individual road segments for the permutation

obtained by the parallel tabu search algorithm (in workdays). . . 222

Index

Ant Colony Optimization, ACO, 51
architectures, 28

MIMD, 29, 199
MISD, 28
SIMD, 28, 172, 179, 190
SISD, 28

block properties, 69, 71, 77, 81, 148,
215, 216

branch and bound, B&B, 165
broadcasting

blackboard, 41

C++, 31, 159, 190
cluster of workstations, COW, 32
cost, 24, 35

cost-optimal, 22, 24, 95, 100, 101,
103, 107, 110, 111, 115, 124,
134, 135, 225

function, 58, 79, 81, 88
tardiness, 63

cray X1, 32
craylinks NUMA�ex4, 159, 189
CUDA, 33, 107, 134, 206, 208, 210

dynasearch, 91

earliness/tardiness, E/T, 145
EDA, 52
e�ciency, 24, 100
Evolution Strategies, ES, 50

Fast Ethernet, 32
�ow shop, 57, 71, 177, 187, 197, 215

Flynn, 31

genetic algorithm, 197
genetic algorithm, GA, 44
genetic programming, GP, 45
Gigabit Ethernet, 188
GPGPU, 33, 103
GPU, 33, 92, 107�109, 119, 134, 203,

205, 208, 210
granularity, 24

coarse-grained, 25, 34
�ne-grained, 33, 94, 103

Greedy Randomized Adaptive Search Pro-
cedure, GRASP, 48

grid, 32

huge neighborhoods, 91
hybrid metaheuristic, 203

In�niband, 32

job shop, 57, 103
�exible, FJSP, 203

local search methods, 38

massively parallel processor, MPP, 32
Memetic Algorithm, MA, 47
metaheuristic, 12, 19�21, 26, 27, 33, 37,

38, 40, 53, 61, 94, 103, 141,
147, 155, 158, 159, 179, 203�
205, 213, 216

method
ant colony optimization, 51
approximate, 165

Index 271

B&B, 19, 21, 171, 215
broadcasting, 41, 179
cooperative, 49
cost-optimal, 91, 95, 111, 135
exhaustive, 38
genetic algorithm, 19, 44
genetic programming, 45
greedy, 168, 169
heuristic, 91, 153
hybrid, 40
local search, 33, 38, 60, 198
NEH, 178
non-deterministic, 49
of job-to-machine assignment, 81
of matrix multiplication, 104
of optimization, 203
of partitioning, in machine workload,

116
of the neighborhood search, 39
of the parallel cost function deter-

mination, 103
of the solution space search, 37
parallel, 45, 95
parallel B&B, 165
parallel scatter search, 191
parallelization, 137
path-relinking, 72
populatino-based, 204
population-based, 153, 154
recursive, 131
scatter search, 187, 191
simulated annealing, 19, 177, 178,

183
single-walk, 40
tabu search, 19, 42, 72, 81, 146, 205,

215, 216
variable neighborhood search, 49

MIMD, 32
model

combinatorial, 80

disjunctive, 78
MPI, 31, 32, 158, 190, 210
multiple-walk, 34, 35
multithread, 35

application, 35
calculations, 35
environment, 91
multiple-walk searching, 145, 225,

226
single-walk searching, 91, 225
technique, 9

Myrinet, 32

NEC SX-8, 32
non-uniform memory access, NUMA, 31

coherent cache, CC-NUMA, 31, 159,
188

non-coherent cache, NC-NUMA, 31
NP-hard problem, 37, 55, 60, 77, 97,

196, 213
strongly, 61, 69, 72

OpenPBS, batching system, 190, 210

parallel runtime, 22
population-based approach, 153
PRAM, 33, 92, 93, 99, 100, 103, 105,

107, 115, 135
CRCW, 107
CREW, 108, 110, 111, 113, 130, 131,

134
EREW, 218

PVM, 32

scatter search, SS, 46, 187
SGI, 31
Silicon Graphics SGI Altix 3700 Bx2,

159, 188
simulated annealing, SA, 41, 177
single machine, 91, 145, 153, 165
single-walk, 34, 91, 93, 94, 101, 103

272 Index

speedup, 22, 100, 110, 146, 151, 160,
173, 191, 193, 210

absolute, 24
anomaly, 174, 192, 193
asymptotic, 100
orthodox, 23, 24, 210
panmixia, 23
relative, 24
sublinear, 22
superlinear, 9, 22, 174, 181, 187,

191�193
supercomputer, 159, 189

tabu search, TS, 42, 215
taxonomy

Barr and Hickman, of speedup mea-
sures, 24

Alba, of speedup measures, 23
Graham, of scheduling problems, 56

uniform memory access, UMA, 31

Variable Neighborhood Search, VNS, 49

Wrocªaw Center of Networking and Su-
percomputing, WCNS, 10, 30,
151, 189

Nowa klasa równolegªych algorytmów szeregowania

Rozwój metod optymalizacji, szczególnie w zastosowaniu do rozwi¡zywania prob-
lemów szeregowania zada« produkcyjnych, sprowadzaj¡cych si¦ w ogromnej wi¦k-
szo±ci do zagadnie« silnie NP-trudnych, przebiegaª od pocz¡tku istnienia tej
dziedziny w latach 60�70-tych XX wieku w kierunku tworzenia coraz bardziej efek-
tywnych algorytmów implementowanych w ±rodowisku oblicze« sekwencyjnych
(jednoprocesorowych). Pod koniec lat 70-tych XX wieku hitem w±ród metod op-
tymalizacji kombinatorycznej byªa metoda podziaªu i ogranicze« (B&B) uwa»ana
wtedy za remedium na prawie wszystkie kªopoty zwi¡zane z NP-trudno±ci¡ oraz
rozmiarem problemów, których nie mo»na byªo rozwi¡za¢ poprzez przegl¡d wy-
czerpuj¡cy rozwi¡za«. Szybko okazaªo si¦ jednak, »e metoda B&B jedynie prze-
sun¦ªa wzwy» praktyczn¡ granic¦ rozmiaru rozwi¡zywalnych problemów, jak si¦
faktycznie okazaªo jednak tylko nieznacznie (np. dla sumo-kosztowego prob-
lemu jednomaszynowego rozmiar ten zwi¦kszyª si¦ z 20 zada« do 40�50). Co
wi¦cej, koszt oblicze« niezb¦dnych do uzyskania rozwi¡zania optymalnego okazaª
si¦ ostatecznie nieuzasadnienie wysoki w porównaniu z zyskami ekonomicznymi
i zasadno±ci¡ jego wykorzystania w praktyce. Konkluzj¡ z tych bada« byªo pre-
cyzyjne ustalenie ograniczonego obszaru stosowalno±ci schematu B&B. Pocz¡wszy
od lat 80-tych XX wieku, nast¡piª wyra¹ny zwrot w kierunku metod przybli»onych
(aproksymacyjnych). Pocz¡tkowo poszukiwanie algorytmów realizowanych w ±ro-
dowisku oblicze« sekwencyjnych, gwarantuj¡cych wysok¡ jako±¢ rozwi¡zania kosz-
tem zwi¦kszonego czasu oblicze« (w tym tak»e zªo»onych schematów aproksy-
macyjnych) zaowocowaªo szeregiem znacz¡cych rezultatów teoretycznych, które
jednak ostatecznie nie odegraªy istotnej roli w praktyce. Ten znacz¡cy teorety-
cznie kierunek w ostatnich latach zanika w sposób naturalny z powodu trudno±ci
w uzyskaniu istotnych oszacowa« teoretycznych dla problemów wyst¦puj¡cych
w realnych warunkach oraz maªej praktycznej przydatno±ci (zgrubno±ci) osza-
cowa«. Kolejnym przeªomem byªo pojawienie si¦ w latach 70�80-tych ubiegªego
wieku zaawansowanych metod metaheurystycznych o bardzo dobrych cechach nu-
merycznych. Najpierw � rozwini¦tej teorii symulowanego wy»arzania, a nast¦pnie
algorytmów genetycznych i poszukiwania z zabronieniami (tabu search). Entu-
zjazm dla tych podej±¢ trwaª znacznie dªu»ej. Do poªowy pierwszego dziesi¦ci-
olecia naszego wieku zaproponowano kilkadziesi¡t typów metaheurystyk, reali-
zowanych w ±rodowiskach oblicze« sekwencyjnych. Mniej wi¦cej po roku 2000
metody te osi¡gn¦ªy kres swych mo»liwo±ci; rozmiar efektywnie rozwi¡zywalnych
problemów (tj. takich, dla których ±redni bª¡d w odniesieniu do rozwi¡za« op-
tymalnych byª np. mniejszy ni» 1%) mo»na byªo przesun¡¢ do liczby id¡cej
w tysi¡ce, jednak w miliony czy setki milionów � ju» nie. Kropk¦ nad �i� postawiªo
twierdzenie �no-free-lunch� autorstwa Wolperta i Macready'ego, które w odniesie-
niu do metod przybli»onych mo»na parafrazowa¢ jako: �bez u»ycia specjalnych

274 Nowa klasa równolegªych algorytmów szeregowania

wªasno±ci badanych problemów nie mo»na uzyska¢ znacz¡cej przewagi jednej
metaheurystyki nad drug¡�. Co ciekawe, Wolpert i Macready pokazali, »e przewag¦
t¦ mo»na uzyska¢ w metaheurystykach koewolucyjnych, wielokulturowych, a wi¦c
w naturalny sposób równolegªych. Id¡c za t¡ ide¡, od poªowy lat osiemdziesi¡tych
XX wieku równocze±nie rozwijaªy si¦ równolegªe, wielow¡tkowe metaheurystyki,
najpierw jako proste zrównoleglenie najbardziej czasochªonnych elementów algo-
rytmów sekwencyjnych (zwykle wyznaczanie funkcji celu), pó¹niej, od ko«ca lat
dziewi¦¢dziesi¡tych XX wieku, jako tzw. metody wielo±cie»kowe (tzn. poszuki-
wania wielow¡tkowe i rozproszone). Znaczny skok jako±ciowy projektowanych
algorytmów pojawiª si¦ w chwili, gdy producenci powszechnego sprz¦tu kompute-
rowego zorientowali si¦, »e dalsze zwi¦kszanie pr¦dko±ci (cz¦stotliwo±ci taktowa-
nia zegara) w celu zwi¦kszenia mocy obliczeniowej procesorów jest bardzo kosz-
towne i znacznie ªatwiej mo»na uzyska¢ zwi¦kszenie mocy obliczeniowej stosuj¡c
konstrukcje wielordzeniowe, stanowi¡ce w naturalny sposób ±rodowisko oblicze«
równolegªych (i w tym kontek±cie w±ród producentów hardware'u tak»e istnieje
poj¦cie �no-free-lunch�). Dzi± popularne procesory takich producentów, jak Intel
czy AMD maj¡ po 4 rdzenie (niektóre procesory Intela � 9 rdzeni, a prototypy
nawet 80 rdzeni), a procesory GPU (Graphic Processing Unit) sªu»¡ce pocz¡tkowo
jako procesory wyª¡cznie gra�czne, a dzi± ju» tak»e stricte obliczeniowe, po-
siadaj¡ nawet 960 procesorów (jak np. produkty serii nVidia Tesla). Zderze-
nie dotychczasowych osi¡gni¦¢ teorii szeregowania ze zwi¦kszonymi mo»liwo±cia-
mi technologii obliczeniowej doprowadziªo do u±wiadomienia sobie ogranicze«
teorii wynikaj¡cych gªównie z sekwencyjnego charakteru oblicze« stosowanych
dotychczas. Zwi¦kszenie liczby rdzeni wymaga zastosowania specjalnie projek-
towanych algorytmów. Faktycznie, uruchomienie sekwencyjnego algorytmu meta-
heurystycznego na procesorze wielordzeniowym zwykle prowadzi do wykorzysta-
nia jednego rdzenia, a wi¦c zaledwie cz¡stki potencjalnych mo»liwo±ci sprz¦tu.
Specy�ka algorytmów optymalizacyjnych oraz procedur wyznaczania kluczowych
elementów instancji problemu (np. warto±ci funkcji celu, która jest zwykle sfor-
muªowana w sposób rekurencyjny) powoduje, »e automatyczne metody zrównole-
glenia oblicze« zupeªnie si¦ nie sprawdzaj¡. Potrzebne s¡ algorytmy wyspe-
cjalizowane, zaprojektowane specjalnie do uruchomienia w ±rodowisku oblicze«
równolegªych dla konkretnych typów problemu, wykorzystuj¡ce zarówno specy-
�czne wªasno±ci problemu, jak i ±rodowiska oblicze«. Niniejsza monogra�a obej-
muje zagadnienia projektowania algorytmów optymalizacji obci¡»enia maszyn
oraz szeregowania zada« produkcyjnych w dyskretnych systemach wytwarzania,
wykorzystuj¡cych równocze±nie specy�czne wªasno±ci problemu jak i ±rodowiska
oblicze« równolegªych, w celu uzyskania metod o niespotykanych dotychczas, do-
brych wªasno±ciach numerycznych.

Nowa klasa równolegªych algorytmów szeregowania 275

Cel naukowy monogra�i. Postawione cele obejmuj¡ od strony metodologii
nast¦puj¡ce zagadnienia:

• Opracowanie nowych klas algorytmów metaheurystycznych poprzez zapro-
ponowanie i zbadanie wªasno±ci odpowiednich problemów szeregowania za-
da« i nast¦pnie wykorzystania tych wªasno±ci w konstrukcji zarówno rów-
nolegªych wersji znanych metaheurystyk, jak i nowych algorytmów typu
populacyjnego.

• Implementacja zaproponowanych algorytmów równolegªych i rozproszonych
dla szerokiej klasy architektur programowania wspóªbie»nego, m.in. GPGPU
(General Purpose Graphic Processing Unit), procesorów wielordzeniowych
oraz klastrów obliczeniowych.

• Zbadanie wªasno±ci zaproponowanych algorytmów, a w szczególno±ci ich
efektywno±ci w kontek±cie kosztowej optymalno±ci (tj. osi¡gni¦cia kosztu
oblicze« tego samego rz¦du co koszt wykonania algorytmu sekwencyjnego)
oraz teoretycznego przyspieszenia.

• Opracowanie metod zrównoleglania algorytmów dokªadnych na przykªadzie
metody podziaªu i ogranicze« (branch and bound, B&B). Szczegóªowe cele
wymienione powy»ej nale»¡ do ogólniej sformuªowanego zagadnienia, jakim
jest opisanie nowej dziedziny, tzn. klasy algorytmów wielow¡tkowych (tak
równolegªych, jak i rozproszonych) rozwi¡zywania NP-trudnych problemów
szeregowania zada« produkcyjnych.

Cz¦±¢ z proponowanych metod mo»na prawie bez zmian przenie±¢ tak»e na
szersz¡ klas¦ bardzo trudnych zagadnie« optymalizacji dyskretnej, takich jak np.
problem komiwoja»era (TSP), kwadratowy problem przydziaªu (QAP), czy prob-
lem rozmieszczenia blokowego. W szczególno±ci, w przypadku wielow¡tkowych
algorytmów poszukiwa« jedno±cie»kowych (single-walk parallelization, o takiej
samej trajektorii analizowanych rozwi¡za« jak trajektoria algorytmu sekwencyj-
nego) zaproponowane zostan¡ nowe oryginalne metody zrównoleglenia wyznacza-
nia warto±ci funkcji celu oraz równolegªego wyznaczania otoczenia. Rozpatry-
wane b¦d¡ problemy: jednomaszynowe, przepªywowe (�ow shop), gniazdowe (job
shop) oraz elastyczne problemy gniazdowe, z maszynami równolegªymi (�exi-
ble job shop). Szczególnie ten ostatni przypadek, b¦d¡cy uogólnieniem klasy-
cznego problemu gniazdowego, jest cz¦sto spotykany w praktyce podczas mode-
lowania zagadnie« np. w budownictwie oraz organizacji produkcji. W zakre-
sie wielow¡tkowych algorytmów wielo±cie»kowych (multiple-walk parallelization)
zaproponowane zostan¡ oryginalne metody rozwi¡zywania jedno- i wielomaszy-
nowych klas problemów szeregowania zada« poprzez wielow¡tkowe algorytmy

276 Nowa klasa równolegªych algorytmów szeregowania

oparte na metodach: poszukiwania z zabronieniami (tabu search), symulowanego
wy»arzania (simulated annealing), poszukiwania rozproszonego (scatter search),
algorytmu ewolucyjnego (evolutionary algorithm) oraz populacyjnego (population-
based metaheuristic), a tak»e algorytmu genetycznego (genetic algorithm) i ich
wielow¡tkowych wersji hybrydowych. W algorytmach hybrydowych wykorzysty-
wana b¦dzie wielow¡tkowo±¢ nisko- i wysokopoziomowa, tj. zarówno na poziomie
najbardziej czasochªonnych elementów algorytmu, jak i na poziomie zwielokrot-
nienia instancji procesów poszukiwa« (w¡tków). Opracowanie metod zrównole-
glania algorytmów dokªadnych (np. metody B&B) ma na celu nie tyle stworzenie
narz¦dzia do rozwi¡zywania problemów szeregowania zada«, ile zaproponowanie
algorytmu dokªadnego wykorzystuj¡cego architektur¦ równolegª¡, mog¡cego sªu-
»y¢ do porównywania wyników metaheurystyk dla maªych instancji problemów
z rozwi¡zaniami dokªadnymi. Równolegªe algorytmy dokªadne mog¡ mie¢ tak»e
zastosowanie w rozwi¡zywaniu problemów cyklicznych szeregowania zada«.

Obecny stan wiedzy. Pomimo znacz¡cego w ostatnich latach rozwoju teorii
algorytmów oraz teorii optymalizacji, algorytmy heurystyczne wci¡» pozostaj¡
cz¦sto jedyn¡ drog¡ dla uzyskania rozwi¡za«, które s¡ zadawalaj¡ce z punktu
widzenia praktyki, zarówno co do rozmiaru rozwi¡zywanych w rozs¡dnym czasie
przykªadów, jak i dobroci (odlegªo±ci od rozwi¡zania optymalnego) otrzymanych
wyników. Zdecydowanie krótsz¡ histori¦ maj¡ metody obliczeniowe wykorzystu-
j¡ce komputery wieloprocesorowe, cho¢ klasycznego ju» dzi± podziaªu architektur
tych komputerów dosy¢ dawno dokonaª Flynn [108]. Faktycznie dopiero w latach
osiemdziesi¡tych ubiegªego wieku pojawiªy si¦ konstrukcje szybkich algorytmów
równolegªych.

Metaheurystyki oparte na metodzie lokalnych poszukiwa« mog¡ by¢ przed-
stawione jako procesy przeszukiwania grafu, w którym wierzchoªkami s¡ punkty
przestrzeni rozwi¡za« (np. permutacje), a ªuki odpowiadaj¡ relacji s¡siedztwa �
ª¡cz¡ wierzchoªki b¦d¡ce rozwi¡zaniami s¡siednimi w tej przestrzeni. Poruszanie
si¦ po takim gra�e wyznacza pewn¡ drog¦ (trajektori¦). Wielow¡tkowe algorytmy
metaheurystyczne korzystaj¡ z wielu w¡tków, zwykle uruchomionych na oddziel-
nych procesorach b¡d¹ rdzeniach, do wspóªbie»nego generowania lub przegl¡dania
grafu.

Mo»na wyró»ni¢ dwa podej±cia do zrównoleglania procesu lokalnego poszuki-
wania, w zale»no±ci od liczby trajektorii generowanych wspóªbie»nie w gra�e
s¡siedztwa.

1. Pojedyncza trajektoria: algorytmy drobno- i ±rednioziarniste.

2. Wiele trajektorii: algorytmy ±rednio- i gruboziarniste.

Nowa klasa równolegªych algorytmów szeregowania 277

Podej±cia te stawiaj¡ przed algorytmem pewne wymagania dotycz¡ce cz¦stotli-
wo±ci komunikacji, co implikuje rodzaj ziarnisto±ci. Algorytmy drobnoziarniste
odpowiadaj¡ podej±ciu z cz¦stsz¡ komunikacj¡, gruboziarniste � z rzadsz¡.
Algorytmy jedno±cie»kowe. Algorytmy jedno±cie»kowe generuj¡ pojedyncz¡ tra-
jektori¦, jednak mog¡ to czyni¢ wspóªbie»nie poprzez podziaª procesu badania
otoczenia na kilka procesorów, z których ka»dy bada pewn¡ cz¦±¢ otoczenia, szuka-
j¡c najlepszego elementu. Idea ta zostaªa zaproponowana najwcze±niej dla sek-
wencyjnych algorytmów poszukiwa«, patrz Nowicki i Smutnicki [196] pod nazw¡
metody reprezentantów (representatives). Pochodzenie nazwy jest ±ci±le zwi¡zane
z dziaªaniem metody, bowiem z ka»dej cz¦±ci otoczenia zostaje wybrany reprezen-
tant, a dopiero spo±ród nich najlepszy reprezentant jako nast¦pny punkt trajek-
torii poszukiwa«. Odpowiedniki równolegªe metody reprezentantów pojawiªy si¦
w literaturze pó¹niej.
Algorytmy wielo±cie»kowe. Algorytmy, w których konstrukcji wykorzystano model
wielo±cie»kowy badaj¡ wspóªbie»nie przestrze« rozwi¡za« za pomoc¡ równolegle
dziaªaj¡cych w¡tków poszukiwa«. Algorytmy te mo»na dodatkowo podzieli¢ na
podklasy ze wzgl¦du na wymieniane informacje o aktualnym stanie poszukiwa«:

1. Niezale»ne procesy poszukiwa«.
2. Kooperuj¡ce procesy poszukiwa«.

W przypadku, gdy wspóªbie»nie dziaªaj¡ce procesy poszukiwa« nie wymie-
niaj¡ pomi¦dzy sob¡ »adnych informacji, mówimy o niezale»nych (independent)
procesorach poszukiwa«. Je±li za± informacja uzyskana w trakcie eksploracji tra-
jektorii przez proces poszukiwa« jest przekazywana innemu procesowi, a nast¦pnie
wykorzystywana przez ten procesor, to mo»na mówi¢ o procesach kooperuj¡cych
(cooperative). Spotykany jest tak»e model mieszany, tzw. póª-niezale»ny (semi-
independent) [9], wykonuj¡cy niezale»ne procesy poszukiwa« przy zachowaniu
pewnych wspólnych parametrów.
Równolegªe obliczenia dla jednej trajektorii. Jest to metoda sªu»¡ca do przyspie-
szenia przeszukiwania grafu s¡siedztwa poprzez zrównoleglenie najbardziej czaso-
chªonnych operacji � czyli obliczania warto±ci funkcji celu, b¡d¹ zrównoleglenie
procesu generowania s¡siadów. W przypadku zrównoleglania obliczania warto±ci
funkcji celu przyspieszenie oblicze« mo»e by¢ uzyskane przy zachowaniu identy-
cznej trajektorii przej±cia przez graf, jak trajektoria algorytmu sekwencyjnego.
W drugim przypadku � dekompozycji generowania otoczenia na procesory rów-
nolegªe � zaistnie¢ mo»e sytuacja, w której algorytm, sprawdzaj¡c równolegle
wi¦ksz¡ liczb¦ s¡siadów ni» to czyni wersja sekwencyjna (najcz¦±ciej zaopatrzona
w mechanizm redukcji rozmiarów otoczenia), porusza¢ si¦ b¦dzie po trajektorii
lepszej ni» sekwencyjny odpowiednik, wyznaczaj¡c korzystniejsz¡ tras¦ przej±cia
przez graf i tym samym dochodz¡c do lepszych rezultatów oblicze« (warto±ci

278 Nowa klasa równolegªych algorytmów szeregowania

funkcji celu). Pierwsze aplikacje bazuj¡ce na opisywanym modelu pojawiªy si¦
w kontek±cie zrównoleglenia metody symulowanego wy»arzania i algorytmu gene-
tycznego. Chocia» równolegªa dekompozycja s¡siedztwa nie zawsze prowadzi do
redukcji czasu oblicze«, jest jednak cz¦sto stosowana do zwi¦kszania rozpatry-
wanego s¡siedztwa. Tego typu algorytm równolegªy tabu search dla problemu
komiwoja»era zostaª zaproponowany przez Fiechtera [106]. Synchroniczny tabu
serach byª tak»e badany przez Porto i Ribeiro [209]. Bo»ejko, Pempera i Smut-
nicki [39] zaprezentowali równolegªe podej±cie jedno±cie»kowe w rozwi¡zywaniu
problemu przepªywowego. Aarts i Verhoeven [1, 260] ró»nicuj¡ klas¦ jedno±cie»-
kowych algorytmów równolegªego przeszukiwania na dwie podklasy. Klasa jed-
nokrokowa (single-step) obejmuje algorytmy, w których badanie otoczenia jest
dzielone pomi¦dzy równolegªe procesory, ale jako wynik wybierany jest jeden ruch.
Z kolei w klasie wielokrokowej (multiple-step) sekwencja kolejnych ruchów w gra�e
s¡siedztwa jest wykonywana wspóªbie»nie.
Równolegªe obliczenia dla wielu trajektorii. Implementacje algorytmów opartych
na równolegªym wielo±cie»kowym przeszukiwaniu przestrzeni rozwi¡za« s¡ ap-
likacjami gruboziarnistymi, czyli wymagaj¡cymi rzadkiej komunikacji. S¡ one
ªatwiejsze w zastosowaniu w systemach rozproszonych, jak na przykªad klastrach
komputerów klasy PC, dysponuj¡cych korzystnym wska¹nikiem ilorazu mocy obli-
czeniowej do ceny. Oprócz przyspieszenia oblicze«, uzyska¢ mo»na tak»e popraw¦
jako±ci otrzymywanych rozwi¡za«. Procesy poszukiwa« mog¡ by¢ niezale»ne lub
kooperuj¡ce.
Niezale»ne procesy poszukiwa«. W tej kategorii rozró»ni¢ mo»emy dwa podsta-
wowe podej±cia:

1. Przeszukiwanie przestrzeni rozwi¡za« za pomoc¡ wielu trajektorii. Ka»dy
z procesorów startuje z innego rozwi¡zania pocz¡tkowego (lub ró»nych po-
pulacji w przypadku algorytmu genetycznego). W¡tki poszukiwa« mog¡
stosowa¢ ten sam lub ró»ne algorytmy lokalnego poszukiwania, z takimi
samymi lub ró»nymi warto±ciami parametrów stroj¡cych (np. dªugo±¢ listy
tabu, wielko±¢ populacji, itp.). Trajektorie mog¡ si¦ przecina¢ w jednym
lub wielu miejscach grafu s¡siedztwa.

2. Równolegªe badanie podgrafów grafu s¡siedztwa wyznaczonych przez de-
kompozycj¦ problemu na kilka podproblemów (np. przez ustalenie pewnych
zmiennych). Podgrafy grafu s¡siedztwa s¡ badane wspóªbie»nie bez przeci-
nania si¦ trajektorii. Otrzymujemy w tym przypadku caªkowit¡ dekom-
pozycj¦ grafu s¡siedztwa na rozª¡czne podgrafy.

Pierwsza równolegªa implementacja algorytmu tabu opartego na wielo±cie»-
kowym badaniu przestrzeni rozwi¡za« zostaªa zaproponowana przez Taillarda
i dotyczyªa kwadratowego zagadnienia przydziaªu (QAP) [244] oraz problemu

Nowa klasa równolegªych algorytmów szeregowania 279

gniazdowego (job shop) [245]. Zrównoleglenie algorytmu genetycznego z u»yciem
niezale»nych w¡tków poszukiwa« nawi¡zuje do tak zwanego modelu wyspowego,
bez komunikacji pomi¦dzy podpopulacjami zamieszkuj¡cymi poszczególne wyspy
(Bubak i Sowa [68]). Chocia» zauwa»ono pewne przyspieszenie, nie otrzymano
poprawy wyznaczanych w ten sposób rozwi¡za« w stosunku do wyników sek-
wencyjnego algorytmu genetycznego z jedn¡ du»¡ populacj¡. Fakt ten mo»na
wytªumaczy¢ szybk¡ stagnacj¡ podpopulacji (brakiem dalszej poprawy ±redniej
warto±ci funkcji celu po pewnej liczbie wykonanych iteracji) na ka»dym z proce-
sorów pozbawionym komunikacji z pozostaªymi.
Kooperuj¡ce procesy poszukiwa«. Model ten jest najogólniejszym i najbardziej
obiecuj¡cym typem strategii przeszukiwania przestrzeni rozwi¡za« przez równo-
legªy algorytm metaheurystyczny. Wymaga jednak wi¦kszej wiedzy programisty-
cznej i znajomo±ci specy�ki rozwi¡zywanego problemu. Kooperacja oznacza w tym
wypadku wymian¦ informacji � do±wiadcze« dotycz¡cych dotychczasowego pro-
cesu przeszukiwania przestrzeni przez równolegªe procesy. Wymienia¢ nale»y
specy�czne informacje, charakterystyczne dla problemu i metody, np. najlepsze
znalezione rozwi¡zania, rozwi¡zania elitarne (maªo ró»ni¡ce si¦ od najlepszych
znanych), cz¦stotliwo±ci ruchów, listy tabu, podpopulacje i ich rozmiary i inne.
Pierwszym tego typu algorytmem heurystycznym byª asynchroniczny algorytm
tabu przedstawiony przez Crainic'a, Toulouse i Gendreau [85]. Wi¦kszo±¢ imple-
mentacji kooperuj¡cego algorytmu genetycznego bazuje na migracyjnym modelu
wyspowym. Ka»dy z procesorów posiada swoj¡ wªasn¡ podpopulacj¦ wymienia-
j¡c co pewn¡ liczb¦ iteracji osobniki (zwykle najlepsze) z pozostaªymi procesorami
[38]. Bubak i Sowa [68] zastosowali migracyjny model wyspowy w równolegªym
algorytmie genetycznym dla problemu komiwoja»era (TSP) uruchamianym na
komputerze HP/Convex Exemplar SPP1600 z 16 procesorami oraz na klastrze
heterogenicznym. Bo»ejko [26] zaproponowaª równolegªy algorytm ±cie»ek ª¡cz¡-
cych, bazuj¡cy na równolegªej metodzie poszukiwania rozproszonego.

Metodyka bada«. W zakresie poszukiwa« jednow¡tkowych, dedykowanych
dla jednorodnych systemów wieloprocesorowych takich jak GPU, zaproponowany
zostanie szereg oryginalnych metod uwzgl¦dniaj¡cych odmienne techniki projek-
towania algorytmów równolegªych oraz ró»ne potrzeby zgªaszane przez nowoczesne
algorytmy optymalizacji dyskretnej (równolegªe wyznaczanie warto±ci funkcji celu,
analiza lokalnych otocze«, itp.). Szczególna uwaga zostanie zwrócona na problemy
efektywno±ci, kosztu oraz przyspieszenia oblicze« w zale»no±ci od typu problemu,
jego wielko±ci oraz zastosowanego ±rodowiska oblicze« równolegªych. Dla pro-
ponowanych algorytmów przeprowadzona zostanie analiza porównawcza korzy±ci
wynikaj¡cych z zastosowania odpowiednich podej±¢.

280 Nowa klasa równolegªych algorytmów szeregowania

W zakresie poszukiwa« wielow¡tkowych, dedykowanych zarówno dla jednorod-
nych, jak i niejednorodnych systemów wieloprocesorowych (takich jak du»e kom-
putery typu mainframe, klastry, gridy) zaprojektowane zostan¡ i przebadane
eksperymentalnie warianty wielow¡tkowe najbardziej obiecuj¡cych aktualnie me-
tod optymalizacji kombinatorycznej (poszukiwania tabu, symulowanego wy»arza-
nie, metod populacyjnych, poszukiwania rozproszonego, a tak»e schematu B&B)
w zastosowaniu do wybranych problemów szeregowania zada«. Szczególny nacisk
zostanie poªo»ony na zbadanie zjawiska przyspieszenia ponadliniowego (superline-
ar speedup), którego pojawianie si¦ zasygnalizowano wielokrotnie (m.in. w opra-
cowaniu Alba [7] dotycz¡cym równolegªych metaheurystyk).

	Contents
	Preface
	Scope
	List of symbols
	List of abbreviations
	I INTRODUCTION TO PARALLELISM AND JOB SCHEDULING
	1. Introduction
	1.1. Performance metrics of parallel algorithms
	1.1.1. Performance metrics for parallel metaheuristics

	1.2. Parallel architectures
	1.2.1. Taxonomy
	1.2.2. Memory architectures
	1.2.3. Recent trends

	1.3. Metaheuristic parallelization strategies

	2. The methodology of metaheuristic parallelization
	2.1. Parallel local search methods
	2.1.1. Parallel local search strategies
	2.1.2. Simulated Annealing
	2.1.3. Tabu Search

	2.2. Parallel population-based algorithms
	2.2.1. Genetic Algorithm
	2.2.2. Scatter Search
	2.2.3. Memetic Algorithm

	2.3. Other methods
	2.4. Remarks and conclusions

	3.Scheduling problems
	3.1. Basic notions and notation
	3.2. Taxonomy
	3.3. Single machine scheduling problems
	3.3.1. Overview
	3.3.2. Fundamental case
	3.3.3. Setup times
	3.3.4. Earliness/tardiness penalties

	3.4. Flow shop problems
	3.4.1. Formulation of problems
	3.4.2. Models
	3.4.3. Properties
	3.4.4. Transport times

	3.5. Job shop problems
	3.5.1. Problem definition
	3.5.2. Models and properties

	3.6. Flexible job shop problems
	3.6.1. Problem formulation
	3.6.2. Graph models

	II SINGLE-WALK PARALLELIZATION
	4. Single machine scheduling
	4.1. Introduction
	4.2. PRAM computation model
	4.3. Calculations for single-walk parallelization
	4.4. Huge neighborhoods
	4.5. Huge neighborhood searching method
	4.6. Parallel huge neighborhood searching method
	4.7. Remarks and conclusions

	5.Job shop scheduling
	5.1. Introduction
	5.2. Sequential determination of the cost function
	5.3. Parallel determination of the cost function
	5.3.1. Methods based on matrix multiplication
	5.3.2. Methods based on partitioning into layers

	5.4. Remarks and conclusions

	6.Hybrid scheduling
	6.1. Solution method
	6.2. Machine workload
	6.2.1. Neighborhood determination
	6.2.2. Methods of the cost function value estimation
	6.2.3. Machine workload rearrangement
	6.2.4. Parallel determination of the workload

	6.3. Remarks and conclusions

	7. Theoretical properties of a single-walk parallel GA
	7.1. Sequential broadcasting
	7.2. Tree-based broadcasting
	7.3. Remarks and conclusions

	III MULTIPLE-WALK PARALLELIZATION
	8.Parallel memetic approach
	8.1. Introduction
	8.1.1. Independent searching threads
	8.1.2. Cooperative searching threads

	8.2. Memetic algorithm
	8.3. Parallel memetic algorithm
	8.4. Computer simulations
	8.5. Remarks and conclusions

	9. Parallel population-based approach
	9.1. Population-based metaheuristic
	9.1.1. A set of fixed elements and positions
	9.1.2. Element age modification
	9.1.3. Element insertion
	9.1.4. Element deletion
	9.1.5. Auto-tuning of the acceptance level
	9.1.6. A new population

	9.2. Parallel Population-Based Metaheuristic
	9.3. Computational experiments
	9.4. Remarks and conclusions

	10. Parallel branch and bound approach
	10.1. Enumeration scheme
	10.1.1. Lower bound
	10.1.2. Branching rule

	10.2. Branch and bound algorithm
	10.2.1. Parallel algorithm

	10.3. Computer simulations
	10.4. Remarks and conclusions

	11.Parallel simulated annealing
	11.1. Makespan criterion
	11.1.1. Simulated annealing method
	11.1.2. Parallel concepts
	11.1.3. Computational experiments

	11.2. Total completion time criterion
	11.2.1. Intensification and diversification of calculations
	11.2.2. Parallel simulated annealing
	11.2.3. Computational results

	11.3. Remarks and conclusions

	12.Parallel scatter search
	12.1. Scatter search method
	12.1.1. Path relinking

	12.2. Parallel scatter search algorithm
	12.3. Computer simulations
	12.3.1. Calculations of the Cmax criterion
	12.3.2. Calculations of the Csum criterion

	12.4. Speedup anomalies
	12.5. Remarks and conclusions

	13.Parallel genetic approach
	13.1. Parallel genetic algorithm
	13.2. Computational experiments
	13.3. Remarks and conclusions

	14.Parallel hybrid approach
	14.1. Hybrid metaheuristics
	14.2. Algorithms proposed
	14.2.1. Parallel Tabu Search Based Meta2Heuristic
	14.2.2. Parallel Population-Based Meta2Heuristic

	14.3. Computational results
	14.4. Remarks and conclusions

	15. Application: parallel tabu search approach
	15.1. Introduction
	15.2. Parallel tabu search method
	15.3. Computational experiments
	15.4. Application of the tabu search algorithm - road building
	15.5. Case study
	15.6. Remarks and conclusions

	16.Final remarks
	16.1. New approaches
	16.2. Open problems
	16.2.1. Continuous optimization
	16.2.2. Multiobjective optimization
	16.2.3. Uncertain data

	16.3. Future work

	A. Supplementary tables
	Bibliography
	List of Tables
	List of Figures
	Index
	Abstract (in Polish)

