Biblioteka Gléwna i OINT
Politechniki Wroctawskie

“" | || || Woiciech Bozejko

1 OO‘] 00246820

W Glass of Parallel
aduling Algorithms

Wojciech Bozejko

A New Glass of Paraliel
Scheduling Algorithms

[P

Oficyna Wydawnicza Politechniki Wrociawskiej
Wrociaw 2010

Reviewers

Zbigniew BANASZAK
Jerzy JOZEFCZYK

Proof-reading
Halina MARCINIAK

Cover design
Marcin ZAWADZKI

All rights reserved. No part of this book may be reproduced by any means,
electronic, photocopying or otherwise, without the prior permission in writing of the Publisher

© Copyright by Oficyna Wydawnicza Politechniki Wroctawskiej, Wroctaw 2010

OFICYNA WYDAWNICZA POLITECHNIKI WROCLAWSKIEJ
Wybrzeze Wyspianskiego 27, 50-370 Wroctaw
http://www.oficyna.pwr.wroc.pl

e-mail: oficwyd@pwr.wroc.pl

ISBN 978-83-7493-564-7

Drukarnia Oficyny Wydawniczej Politechniki Wroctawskiej. Zam. nr 1098/2010.

Contents

Preface o o o e e e 9
SCOPE .+« v i i e 11
List of symbols i o n e 13
List of abbreviations 000 00, 15

I INTRODUCTION TO PARALLELISM AND JOB

SCHEDULING 17
1. Introduction oo o e, 19
1.1. Performance metrics of parallel algorithms 22
1.1.1. Performance metrics for parallel metaheuristics 26

1.2. Parallel architectureso 28
1.2.1. Taxonomy v v v e 28

1.2.2. Memory architectures 29

1.2.3. Recenttrends 0. 33

1.3. Metaheuristic parallelization strategies 33

2. The methodology of metaheuristic parallelization. 37
2.1. Parallel local search methods 38
2.1.1. Parallel local search strategies 39

2.1.2. Simulated Annealing 41

2.1.3. Tabu Search, 42

2.2. Parallel population-based algorithms 44
2.2.1. Genetic Algorithm, 44

2.2.2. Scatter Search Lo oL 46

2.2.3. Memetic Algorithm 0oL 47

2.3. Other methods 48

2.4. Remarks and conclusions. 53

3. Scheduling problems 000, 55
3.1. Basic notions and notation Lo L 95
3.2 Taxonomy 56
3.3. Single machine scheduling problems 59

3.3.1. Overview 29
3.3.2. Fundamentalcase. 59
3.3.3. Setup times 61
3.3.4. Earliness/tardiness penalties. 68
3.4. Flow shop problems, 71
3.4.1. Formulation of problems 71
342 Models. 74
3.4.3. Properties 74
3.44. Transport times. L. 76
3.5. Job shop problems 76
3.5.1. Problem definition L. 77
3.5.2. Models and properties L 78
3.6. Flexible job shop problems 81
3.6.1. Problem formulation 82
3.6.2. Graphmodels 85

II SINGLE-WALK PARALLELIZATION 89

4. Single machine scheduling 91
4.1. Introduction 91
4.2. PRAM computation model 92
4.3. Calculations for single-walk parallelization 93
4.4. Huge neighborhoods 94
4.5. Huge neighborhood searching method 97
4.6. Parallel huge neighborhood searching method 99
4.7. Remarks and conclusions oL 101

5. Job shop scheduling, 103
5.1. Introduction 103
5.2. Sequential determination of the cost function 104
5.3. Parallel determination of the cost function 104

5.3.1. Methods based on matrix multiplication 105

5.3.2. Methods based on partitioning into layers 110

5.4. Remarks and conclusions L. 113

6. Hybrid scheduling 115

6.1. Solution method L. 115
6.2. Machine workload 116
6.2.1. Neighborhood determination 118

6.2.2. Methods of the cost function value estimation 124

6.2.3. Machine workload rearrangement 130

6.2.4. Parallel determination of the workload 131

6.3. Remarks and conclusions L. 134

7. Theoretical properties of a single-walk parallel GA 137
7.1. Sequential broadcasting L. 137
7.2. Tree-based broadcasting 140
7.3. Remarks and conclusions, 141
IIT MULTIPLE-WALK PARALLELIZATION 143
8. Parallel memetic approach 145
8.1. Introduction 145
8.1.1. Independent searching threads 146

8.1.2. Cooperative searching threads 146

8.2. Memetic algorithm o oo 147
8.3. Parallel memetic algorithm 147
8.4. Computer simulations 151
8.5. Remarks and conclusions o L. 151

9. Parallel population-based approach 153
9.1. Population-based metaheuristic 153
9.1.1. A set of fixed elements and positions 155

9.1.2. Element age modification 156

9.1.3. Element insertion 156

9.1.4. Element deletion 156

9.1.5. Auto-tuning of the acceptance level 157

9.1.6. A new population. L. 157

9.2. Parallel Population-Based Metaheuristic 158
9.3. Computational experiments 159
9.4. Remarks and conclusions 163
10.Parallel branch and bound approach 165
10.1. Enumeration scheme 166
10.1.1. Lower bound 167

10.1.2. Branching rule o000 169

10.2. Branch and bound algorithm 171
10.2.1. Parallel algorithm 0oL 172

10.3. Computer simulationso L 173
10.4. Remarks and conclusions 175
11.Parallel simulated annealing 177
11.1. Makespan criterion L L 177
11.1.1. Simulated annealing method 178

11.1.2. Parallel concepts 179

11.1.3. Computational experiments 180

11.2. Total completion time criterion 182
11.2.1. Intensification and diversification of calculations. 182

11.2.2. Parallel simulated annealing 183

11.2.3. Computational results 184

11.3. Remarks and conclusions 185
12.Parallel scattersearch 187
12.1. Scatter search method 187
12.1.1. Path relinking oo oL 187

12.2. Parallel scatter search algorithm 188
12.3. Computer simulations oL 191
12.3.1. Calculations of the Ciuay criterion 191

12.3.2. Calculations of the Cgym criterion 191

12.4. Speedup anomalies 193
12.5. Remarks and conclusions L 195
13.Parallel genetic approach 197
13.1. Parallel genetic algorithm 197
13.2. Computational experiments 198
13.3. Remarks and conclusions L. 201
14.Parallel hybrid approach 203
14.1. Hybrid metaheuristics L. 203
14.2. Algorithms proposed 205
14.2.1. Parallel Tabu Search Based Meta?Heuristic 205

14.2.2. Parallel Population-Based Meta?Heuristic 206

14.3. Computational results oo 210
14.4. Remarks and conclusions 212
15.Application: parallel tabu search approach. 215

15.1. Introduction L. 215

15.2. Parallel tabu search method 216
15.3. Computational experiments 218
15.4. Application of the tabu search algorithm — road building 220
15.5. Casestudy 222
15.6. Remarks and conclusionso 224
16.Final remarkst een e 225
16.1. New approaches o 226
16.2. Open problems 227
16.2.1. Continuous optimization 227

16.2.2. Multiobjective optimization 228

16.2.3. Uncertain data 229

16.3. Future work 230

A. Supplementary tables 0000, 231
Bibliography o e e e 243
List of Tables ittt 264
Listof Figures it 266
Index . . . o v i i i e e e e e e e e e e e e e e e e e e 270

Preface

The main issue discussed in this book is concerned with solving job scheduling
problems in parallel calculating environments, such as multiprocessor comput-
ers, clusters or distributed calculation nodes in networks, by applying algorithms
which use various parallelization technologies starting from multiple calculation
threads (multithread technique) up to distributed calculation processes. Strongly
sequential character of the scheduling algorithms is considered to be the main
obstacle in designing sufficiently effective parallel algorithms. On the one hand,
up till now sequential algorithms exhausted the possibilities of significant growth
in the power of solution methods. On the other hand, parallel computations offer
essential advantages of solving difficult problems of combinatorial optimization,
pushing towards theory, methodology and engineering of solution algorithms.

The book is divided into a ‘state-of-the-art’ part followed by two original
parts, concerning single-walk and multiple-walk multiple-threads optimization al-
gorithms applied to solve scheduling problems. At first, an introductional part
is placed, including a methodology for parallelization of metaheuristics, intro-
duction to scheduling issues, scheduling problems, classical and the most recent
discrete optimization tendencies. This constitutes the ‘state-of-the-art’, worked
out for author’s parallel computing and prepared on the basis of the extensive
bibliography.

The next two parts make up the core of the book and deal with the au-
thor’s own novel results. The division into two parts (single- and multiple-walk
parallelization) is adjusted to structurally different approaches applied to design
parallel algorithms. There are plenty of genuine single-thread search methods
proposed in Part IT which are designed for homogeneous parallel systems. These
methods take into consideration a variety of techniques of parallel algorithm de-
signing process as well as different necessities of modern algorithms of discrete
optimization (analysis of the cost function determination, analysis of theoreti-
cal speedup). Theoretical estimations of the properties of particular algorithms
are derived; a comparative analysis of advantages resulting from application of
different approaches has been made.

The third part of this book is concerned with multithread search dedicated
for homogeneous and heterogeneous multiprocessor systems, such as mainframe
computers, clusters, diffuse systems connected by networks. Some parallel vari-
ants of the most promising current methods of combinatorial optimization (tabu
search, simulated annealing, genetic methods) have been designed and examined
experimentally in the application to selected scheduling problems. Different tech-
niques of computation threads realization and their communication have been
discussed, especially for migration models (so-called island models) in evolution
methods. A superlinear (orthodox) speedup effect has been observed. In the case

10 Preface

of parallel variants of branch and bound scheme, dedicated for homogeneous and
heterogeneous parallel systems, this type of algorithms has been designed and
examined for selected class of scheduling problems. In particular chapters not
only the parallelization benefit was shown, but (first of all) the methodology for
designing parallel algorithms was described on examples of optimization prob-
lems. Complex scheduling problems (job shops, flexible and hybrid problems),
for which even a feasible solution construction constitutes a hard computation
problem,; were chosen to be a case study for showing the parallelization process.

The book contains a wealth of information for a wide body of readers, including
advanced students, researchers and professionals working in the field of discrete
optimization and management. A new methodology of solving strongly NP-hard
real-world job scheduling problems is presented here. It allows us to design very
efficient and fast approximate and exact algorithms for solving a wide class of
discrete optimization problems, not only scheduling problems. Efficiency of the
present research has been proved by comprehensive computational experiments
conducted in parallel processing environments such as supercomputers, clusters
of workstations, multi-core CPUs and GPUs.

The author would like to thank the Wroctaw Center of Networking and Super-
computing (WCNS, [266]) for enabling numerical experiments in multiprocessor
environment.

Scope

Chapter 1 provides theoretical and practical basis of parallel computations. A me-
thodology for the parallelization of known sequential algorithms is discussed in
Chapter 2. Chapter 3 contains a short introduction to job scheduling problems
with the extension of some special properties of problems which are generated by
the practice for their use in designing parallel algorithms.

Chapters 4 through 7 concern the methodology of designing parallel algorithms
for single-walk calculations. The contents of particular chapters is presented be-
low. A methodology for transferring huge neighborhood search technologies in
the local search methods into the parallel computing environment is presented in
Chapter 4. The methodology is illustrated by examples of several single-machine
scheduling problems met in practice. In Chapter 5 there are the new approaches
to efficient parallel algorithm design shown for a single solution cost function value
determination. The approach is presented on the case of a job shop scheduling
problem, enjoying a great interest to practitioners of operations research. Chap-
ter 6 presents the new integrated approaches to the neighborhood structure design
and to the methodology of its searching from the point of view of the efficient par-
allel computing environment usage. This approach is described on the special case
of so-called hybrid job shop scheduling problem (scheduling and resources allo-
cation) constituting a base of FMS systems functioning. Chapter 7 provides the
new theoretical results in single-walk exploration, complementing the state of the
field of knowledge.

Chapters 8 through 14 concern a methodology for designing multiple-walk
parallel algorithms. Chapter 8 presents the methodology of parallel algorithm
designing based on memetic approach (Lamarck and Baldwin evolution theory)
making use of specific properties of the problem and distributed island model.
This approach is illustrated by an example of the single machine scheduling prob-
lem with E/T penalties. A new genuine population-based approach is proposed
in Chapter 9 on the example of the single machine scheduling problem with setup
times, modelling single bottleneck industrial nest functioning. In Chapter 10
there is presented a methodology for transferring sequential B&B algorithm into
its parallel variant as an exact method and cut B&B as an approximate method.
Load balancing of processors has been discussed. This approach has been de-
scribed on the example of the single machine total weighted tardiness problem.
Chapter 11 proposes the methodology of parallel simulated annealing algorithms
design on the example of flow shop scheduling problem with the objective of min-
imizing the makespan as well as with the sum of job completion times objective.
An unprecedented methodology of threads cooperating creation has been pro-
posed. A methodology for solving the flow shop problem by using scatter search
algorithm is presented in Chapter 12. The proposed parallelization methodology

12 Scope

constitutes a general approach, which increases the quality of obtained solutions
keeping comparable costs of computations. A superlinear speedup is observed
in cooperative model of parallelism. Chapter 13 presents a multiple-walk paral-
lelization of the island model based genetic algorithm in application to the flow
shop scheduling problem. The multi-step crossover fusion operator (MSXF) is
used as an inter-island communication method. As compared to the sequential
algorithm, parallelization enhances the quality of solutions obtained. Computer
experiments show, that the parallel algorithm is considerably more efficient with
relation to the sequential algorithm. In Chapter 14 there are two new double-level
metaheuristic optimization algorithms applied to solve the flexible job shop prob-
lem (FJSP) with makespan criterion. Algorithms proposed in this chapter have
two major modules: the machine selection module and the operation scheduling
module On each level a parallel metaheuristic algorithm is used, therefore this
method is called Meta?Heuristic.

In Chapter 15 there is proposed the new methodology of parallel tabu search
approach created with the use of cooperation between concurrently running search-
ing threads. The approach is shown on the example of the flow shop scheduling
problem and applied to solved a real-world optimization problem of roadwork
scheduling. Some special properties of the problem considered (so-called blocks
on the critical path) connected with representatives are used for calculation di-
versification among searching threads.

e
<

o>
o

Mm(p)

Q)
S
®

5
%

N N e N e N R
DS
8

N4, (p)

o

>
—~~
N

AlLA
o

B LRE

)

S 090 Q3 =3

S
<

List of symbols

a parallel algorithm executed on p processors

a partition into blocks

the k-th block

the cost of solving a problem by using an algorithm A, in
a p-processor parallel machine M

a term of a job 7 execution finishing

a term of an operation j execution finishing

makespan (goal function)

the total execution time (goal function)

due date of the job i execution finishing

number of layers

an upper bound of the goal function value

earliness of the job ¢ execution finishing

efficiency of algorithm A, solving problem P on the machine
M making use of p processors

a time of flow of the job ¢ through the system

the goal (cost) function

non-decreasing cost function connected with job ¢ execution
finishing in time ¢

feasible solution

the set of all permutations of an n-element set

granularity

a set of jobs

non-timeliness of the job ¢ execution finishing

a set of machine types

a sequence of machine subsets which define alternative meth-
ods of operation execution

number of machines

neighborhood of solution 7

number of jobs

a set of operations

number of operations

number of operations in the job %

feasible solution

number of processors

a time of execution of an operation j by the i¢-th method

14

List of symbols

Lhest

permutation

the best known permutation

machine workload (an assignment of operations to ma-
chines)

the earliest possible term of the job ¢ execution beginning
the speedup of algorithm A, solving the problem P on
machine M making use of p processors

a term of an operation j execution beginning

a term of the job i execution beginning

the computations time of parallel algorithm

the computations time of sequential algorithm

the time of calculations of the algorithm A, solving the
problem P on machine M making use of p processors

the time of calculations of the sequential algorithm A,
tardiness of the job 7 execution finishing

computations time

communication time

unitary tardiness of the job ¢

a set of conjunctive arcs

a set of disjunctive arcs

a method of the operation execution

the best known solution

ACO
APRD
B&B
CC-NUMA
COW
CRCW
CREW
CUDA

DM
EDA
EREW
ERCW
ES

E/T
FJSP
GA

GP
GPGPU
GPU
GRASP

LB
LM
MA
MIMD

MISD
MPI

MPP
NC-NUMA
NEH
NUMA
ParPBM
ParSS

List of abbreviations

Ant Colony Optimization, the method

Average Percentage Relative Deviation

Branch and Bound, the method

Cache Coherent Non-Uniform Memory Access

Cluster Of Workstations

Concurrent Read Concurrent Write, a kind of PRAM
Concurrent Read Exclusive Write, a kind of PRAM
Compute Unified Device Architecture, a parallel pro-
gramming library for GPUs

distributed memory

Estimated Distribution Algorithms, the method
Exclusive Read Exclusive Write, a kind of PRAM
Exclusive Read Concurrent Write, a kind of PRAM
Evolution Strategies, the method

Earliness/Tardiness

Flexible Job Shop Problem

Genetic Algorithm, the method

Genetic Programming, the method

General Purpose Graphic Processing Unit

Graphic Processing Unit

Greedy Randomized Adaptive Search Procedure, the
method

Lower Bound, of the goal function

Long-term Memory, in the Tabu Search algorithm
Memetic Algorithm, the method

Multiple Instruction set, Multiple Data set, a model of
parallel architecture

Multiple Instruction set, Single Data set, a model of
parallel architecture

Message Passing Interface, the parallel programming li-
brary

Massively Parallel Processor

Non-cache Coherent Non-Uniform Memory Access
Navaz, Enscore and Ham, an algorithm

Non-Uniform Memory Access

Parallel Population-Based Metaheuristic, the method
Parallel Scatter Search, the method

16

List of abbreviations

PATS
pSA
PSTS
PBM
PRAM

PRD
PVM
SA
SGI
SIMD

SISD

SS

sSA
TS

UB
UMA
VNS
WCNS

Parallel Asynchronous Tabu Search, the method

Parallel Simulated Annealing, the method

Parallel Synchronous Tabu Search, the method
Population-Based Metaheuristic

Parallel Random Access Machine, a theoretical model of
parallel computations

percentage relative deviation

Parallel Virtual Machine, the parallel programming library
Simulated Annealing, the method

Silicon Graphics

Single Instruction set, Multiple Data set, a model of par-
allel architecture

Single Instruction set, Single Data set, a model of sequen-
tial architecture

Scatter Search, the method

Sequential Simulated Annealing, the method

Tabu Search, the method

Upper Bound, of the goal function

Uniform Memory Access

Variable Neighborhood Search, the method

Wroctaw Center of Networking and Supercomputing

Part 1

INTRODUCTION TO
PARALLELISM AND JOB
SCHEDULING

Chapter 1

Introduction

The development of optimization methods, particularly applied in production
tasks arrangement, has proceeded towards modern and more effective sequence
approaches since the beginning of this field. At the end of the 1970s, the turn-
ing point in the combinatorial optimization methods was the branch and bound
(B&B) method regarded those days as a remedy for nearly all problems of great
size which could not be solved by means of methods applied at that time. How-
ever, it soon occurred that the B&B method only slightly extended the scope
of solvable problems (e.g. for a sum-cost, single-machine scheduling problem this
size extended from 20 to 40-50 tasks). What is more, the cost necessary to obtain
an optimal solution is much too high compared to economic benefits and its use
in practice. The conclusion of these investigations was the definition of a bounded
area of the B&B scheme application (see Figure 1.1).

The next breakthrough concerned the occurrence of advanced metaheuristic
methods: first the simulated annealing method and next the method of genetic
algorithms and the tabu search method. Enthusiasm lasted much longer: until
around 2005 several dozen of different metaheuristics had been proposed though
again those methods reached the limit of their abilities to the moment where the
size of effectively solvable problems (i.e., these for which an average deviation
from the optimal solutions was smaller than 1%) might be shifted to a number
reaching thousands, but not millions or hundred millions. Eventually the concept
of ‘no-free-lunch’ by Wolpert and Macready |271]| finished the discussion. With
reference to rough methods this concept may be paraphrased in the following way:
without using special attributes of examined problems considerable advantage
of one metaheuristic over the other cannot be obtained. What is interesting
Wolpert and Macready proved that ‘free-lunch’ was possible to be obtained in
co-evolutional, multi-cultural metaheuristics, i.e., parallel in a natural way. Since
the mid-1980s, indeed, parallel many-levelled metaheuristics had been developed,

20 Chapter 1. Introduction

| |-taheuristics
e
||-n schemes
s
| |-al complexity
|

| | | | | | | »

>

1950 1960 1970 1980 1990 2000 2010 year

Fig. 1.1. History of the development of solution methods for job scheduling problems.

firstly as simple paralleling of the most time-consuming elements of sequence
algorithms (usually as the goal function determination), then since the end of the
1990s as multi-track methods.

A marked enhancement of the quality of designed algorithms started when
producers of computer equipment realized that further increase of the speed (i.e.,
the clock frequency) of processors was very costly, while this goal could be more
easily obtained applying multi-core constructions, i.e., parallel calculating envi-
ronments (and in this context among producers of hardware there also exist the
term ‘no-free-lunch’). Today processors of popular producers such as Intel or
AMD have got 4 cores (some Intel processors have 9 cores, and prototypes even
80 cores) and GPU processors (Graphic Processing Unit) at first being used exclu-
sively as graphic processors and nowadays also as strictly computing ones posses
even 960 processors (e.g. products of nVidia Tesla series).

Increasing the number of cores requires however a wide range of algorithms
— a sequence metaheuristic algorithm activation on a multi-core processor makes
use of just one core, i.e., only a small part of the whole equipment potentiality.
The specificity of optimization algorithms as well as procedures concerning deter-
mination of the key elements of a problem instance (e.g. the goal function value
which is usually formulated in a recurrent way) makes automatic methods of par-
alleling unsuccessful. Specialized algorithms designed for the purpose of being
activated in an environment of parallel calculations for specific kinds of problems
are needed.

To date, very few works dealing with the application of parallel metaheuristic
for job scheduling problems have been published, which follows from the fact that
this is an interdisciplinary area connected with two science disciplines: computer
science — as far as algorithm theory and parallel computing are concerned, and

Chapter 1. Introduction 21

automation — with regard to applications. There is a lack of theoretical properties
of parallel scheduling algorithms. A complex synthetic approach would allow us
to summarize the present state of research and fill up this gap. This book should
fulfill this task.

There are plenty of genuine single-thread search methods proposed in this
book, designed for homogeneous parallel systems. These methods take into con-
sideration both dissimilar techniques of parallel algorithm design process and
different necessities of modern algorithms of discrete optimization (analysis of
one solution, analysis of a local neighborhood). Efficiency, cost and computation
speedup depending on the type of problem, its size and environment of parallel
system used is given special consideration in this part of the chapter. Theoret-
ical estimations of properties have been derived for particular algorithms, and
a comparative analysis of the advantages resulting from application of different
approaches has been done.

In the area of multithread search, dedicated to homogeneous and heteroge-
neous multiprocessor systems (such as mainframe computers, clusters, diffuse
systems connected by networks) a parallel variant of metaheuristic methods, such
as tabu search, scatter search, simulated annealing, evolutionary algorithm, path-
relinking method, population-based approach, has been designed and researched
experimentally, in the application of scheduling problems. A concurrent exact
method — branch and bound — has also been analyzed as a multiple-walk paral-
lelization.

The present research is of interdisciplinary character, including inter alia: the-
ory and practice of the algorithm design, theory and practice of parallel comput-
ing, theory and practice of job scheduling, exact and approximate methods of
solving combinatorial optimization problems, artificial intelligence methods and
theory of computational complexity.

The results presented in this monograph were obtained by the author while
he was working on the following projects:

e 2002-2005 research project founded by the State Committee for Scientific
Research No. 4T11A01624 (Wroctaw University of Technology);

e 2009-2012, research project founded by the Ministry of Science and Higher
Education No. N N514 23223 (Wroctaw University of Technology),

e 2010-2011, habilitation research project founded by the Ministry of Sci-
ence and Higher Education No. N N514 470439 (Wroctaw University of
Technology),

and as a result of cooperation in the field of practical applications with the In-
stitute of Construction of the Wroctaw University of Technology and with Lublin
University of Technology [225, 224].

22 Chapter 1. Introduction

1.1. Performance metrics of parallel algorithms

A parallel algorithm can be defined as one that is concurrently executed on many
different processing devices. In the language of operating systems a parallel al-
gorithm can be equivalent to a process (or a group of processes), as an instance
of a computer program being executed which is made up of multiple threads
(multithreaded process) that follow instructions concurrently.

Many metrics have been applied based on the desired outcome of performance,
due to determining the best version of the multithread parallel algorithm, evaluat-
ing hardware of the parallel system and examining the benefits of parallelization.
In many cases the goal is to design a parallel algorithm whose execution cost (cor-
related with an electrical energy used or economical cost) is identical to the cost
of a sequential algorithm execution solving the same problem. Such an algorithm
is called cost-optimal. In the further part of this chapter, the performance metrics
of parallel algorithms are defined precisely.

Parallel runtime. The execution time of the sequential algorithm is measured
as the time elapsed between the beginning and the end of execution on a serial
processor. We will denote such a serial runtime by Ts. By analogy, the parallel
runtime T, is the time which elapses from the moment the parallel computations
begin till the moment the last processor stops the calculations.

Speedup. Let us consider a problem P, a parallel algorithm A, and a parallel
machine M with ¢ identical processors. Let us define by T4, r(p) the time of
calculations the algorithm A, needs to solve the problem P on the machine M
making use of p < g processors. Let T4, be the time of calculations needed
by the best (the fastest) known sequential algorithm A which solves the same
problem P on the sequential machine with the processor identical to processors
of the parallel machine M. We define the speedup as

Ta, (1.1)

Sa,m(p) = T w(p)

Thanks to the definition of speedup we can distinguish between: sublinear
speedup (Sa, v (p) < p), linear speedup (Sa, n(p) = p) and superlinear speedup
(Sa,,m(p) > p), however the last one is still controversial. From the theoretical
point of view it is not possible to obtain superlinearity of the speedup. If it
were possible then one could construct a sequential algorithm by executing a
parallel algorithm on p = 1 processors and such a sequential algorithm would
be faster than the fastest one known. In fact many authors [9, 84, 64, 65, 269,
164, 165, 171, 178, 209] have reported superlinear speedup. One can point out

1.1. Performance metrics of parallel algorithms 23

I. Strong Il. Weak speedup
speedup
II.LA. Speedup with solution stop II.B.
Speedup
ILA.1. I.LA.2 with
Versus Orthodox predefined
panmixia effort

Fig. 1.2. Taxonomy of speedup measures proposed by Alba [7].

several sources behind superlinear speedup, such as cache memory influence, data
structure properties or non-optimal decision made by sequential algorithm (see
Kwiatkowski et al. [160]). More elaborate discussion of the superlinear speedup
is given in Section 12.4.

Another difficulty is connected with the meaning of ‘the best known sequential
algorithm Ag’. For many problems, it is difficult to determine the best algorithm,
especially for metaheuristics, where in fact we did not solve the problem (in the
sense of finding the optimal solution) but we approzimated the optimal solution
— results obtained by using different metaheuristics are usually different. Two
approaches to the problem of speedup definition for metaheuristics are proposed
in the literature.

Alba [7] proposes the following taxonomy (Figure 1.2). Strong speedup (type I)
compares the parallel runtime with the best-so-far sequential algorithm, therefore
this definition equals definition (1.1). However due to the difficulty of finding the
current most efficient algorithm most researches do not use it. Weak speedup
(type II) compares the parallel algorithm against its serial version. Two stopping
criteria can be used: result (solution) quality or maximum effort. The author
proposes two variants of the weak speedup with solution stop: to compare the
parallel algorithm with the ‘canonical’ sequential version (so-called versus pan-
mixia, type II.A.1) or to compare the runtime of the parallel algorithm on p
processors against the runtime of the same algorithm on one processor (orthodox,
type II.A.2). The problem is that versus panmixia speedup measure compares two
different algorithms. The orthodox speedup measure does not cause that kind of
problem, that is why this method is usually applied to determine the speedup
value of metaheuristics.

24 Chapter 1. Introduction

Barr and Hickman [20] propose a different taxonomy: speedup, relative speedup
and absolute speedup. The speedup is defined by the ratio between the time of the
parallel code using p processors of parallel machine against the time of the fastest
sequential code on the same parallel machine. The relative speedup is the ratio
of the execution time of the parallel code on p processors to the time of the
sequential execution with parallel code on one processor (i.e., we set p = 1) of
the same parallel machine. The absolute speedup compares the parallel time on p
processors with the fastest sequential algorithm time on any computer.

Both approaches have similarities: strong speedup is identified with absolute
speedup and relative speedup is similar to orthodox speedup with solution stop (type
II.A.2). The last definition seems to be the most practical since there is no need
to use the best algorithm.

Efficiency. The efficiency na, n(p) of the parallel algorithm A, executed on
the parallel machine M is defined as

Sa,m(p)

; (1.2)

nay,m(p) =
and describes an average fraction of time used by each processor effectively. The
value of efficiency belongs to the range [0,1]. An ideal value of efficiency is 1
(in such a situation we can speak about a linear speedup) and it means that
each processor is used as long as possible; therefore, there are no idle times of
processors.

Cost. The cost ca,n(p) of solving a problem by using an algorithm A, in a
p-processor parallel machine M is defined as

ca,m(p) =p-Ta,m(p). (1.3)

The cost reflects the sum of times of each processor work for solving the problem
(see Figure 1.3). For sequential algorithms the time of problem solving by the
fastest known algorithm using one processor constitutes also its cost. We can say
that a parallel algorithm is cost optimal if its executing cost in a parallel system
is proportional to the time of execution of the fastest known sequential algorithm
on one processor. In such a case the efficiency equals O(1).

Granularity. In parallel computing, granularity G is a qualitative measure of
the ratio of computation 7T, to communication 7; time units

T,

(1.4)

1.1. Performance metrics of parallel algorithms 25

cost of the

sequential
algorithm

1

1 .

. Ty, Y time
sequential [—
algorithm '

cost of the
parallel algorithm
|
|
Ta,m T, m Ta,m To M) | time
parallel p-M(D) i pM() i »-M(P) i pM(D) = >
algorithm N R A N Y
Y Y Y Y

processor 1 processor 2 processor 3 processor 4

Fig. 1.3. An illustration of the cost definition (4-processor implementation).

Computation periods are typically separated from periods of communication by
synchronization events. In fine-grained parallelism relatively small amounts of
computational work are done between communication events. We can observe
low computation to communication ratio. On the contrary in coarse-grained par-
allelism relatively large amounts of computational work are done between com-
munication or synchronization events (see Figure 1.4). High computation to com-

(a)

T: T. time

process — i >
(b) communication computations

\4 T: \< T. time

process I —t >

Fig. 1.4. An illustration of the fine-grained (a) and the coarse-grained (b) granularity.

munication ratio can be noticed in this case. This implies more opportunity for
performance increase and it is harder to achieve efficient load balance. In order to
attain the best parallel performance, the best balance between load and communi-
cation overhead needs to be found. If the granularity is too fine, the performance
can suffer from the increased communication overhead. On the other hand, if
the granularity is too coarse, the performance can suffer from load imbalance.
The granularity G can be measured as T, vs. T} unit times as well as the sum
of computation and communication times during the whole program execution
(average empirical granularity). The results of granularity calculations for two
supercomputers and two GPUs are shown in Table 1.1. Both supercomputers are
coarse-grained parallel computing environments, G > 100 FLO/B (Floating Point

26 Chapter 1. Introduction

Operations per communication Byte). The GPUs presented are fine-grained com-
puting environments, G < 10 FLO/B. Systems with 10 > G > 100 can be named
medium-grained, however it is difficult to find such hardware nowadays. Besides,
G ranges change with time (e.g. every decade).

Table 1.1. The granularity G values for various parallel computing environments.

System T T; G (FLO/B)*
SGI Altix 3700 Bx2** 768 GFLOPS 0.54GB/s 1428
Cluster (329 Intel Xeon)** 19 TFLOPS 2.5 GB/s 760
GPU Tesla C1060 933 GFLOPS 102 GB/s 9.15
GPU Tesla C2050 1.3 TFLOPS 148 GB/s 8.78

*

FLO/B — Floating Point Operations per communication Byte

kK

placed in the Wroclaw Centre of Networking and Supercomputing [266]

1.1.1. Performance metrics for parallel metaheuristics

Quality metrics of parallel algorithms defined in Section 1.1 works well for pro-
grams which provide the same final result as their respective sequential version
(e.g. matrix multiplication, determination of paths in graphs, etc.). A given
metric can be applied to exact optimization algorithms, because their work effect
is a global optimal solution. Metaheuristics create a completely different situ-
ation. Fach metaheuristic run can give a solution with different goal function
value. The quality of solutions thus obtained depends on the time of calculations,
i.e., the shorter the time, the worse the quality of solutions. What is more, a
sequence of metaheuristics realizes a search trajectory which depends on random
variables which are parameters of the algorithm (e.g. simulated annealing, sim-
ulated jumping, genetic algorithm, scatter search, etc.). Therefore an output of
a parallel algorithm A, is incomparable with an output of a sequential Ay con-
sidering the result obtained — both depend on a data instance Z and a vector Z
of random parameters. Additionally, let us notice that the quality of the solu-
tion obtained by the sequential algorithm A, depends on the number of executed
iterations iter. Hence we have to consider a sequential runtime T4 (Z; Z;iter),
a parallel runtime T4, (p; Z; Z) and a speedup Sa, a(p,Z; Z). Therefore we can
define metrics mentioned above as

Tﬁfr = sup Ta,(Z; Z;iter), (1.5)
1,2

Ta, (p; € iter) = sup Ta, (p;T; 2), |KY — Ki

ol <€ (1.6)
1,2

1.1. Performance metrics of parallel algorithms 27

where € is an assumed absolute deviation from the parallel algorithm solution K4
to the sequential algorithm solution K;?gr obtained by executing iter iterations of
the algorithm Ag. A speedup

ther
S € iter) = ——————— 1.7
Ava(p7 €;) TAp(p, €; iter). ()
Finally, we can approximate a speedup metric by
iter
Sim, (p) = lim lim Y (1.8)
P

e—=0iter—oo T'g, (p; €; iter).

Obtaining analytical results for the metrics thus defined is difficult, so we will use

experimental metrics of the parallel runtime and speedup.

Apart from designing metrics for parallel algorithms, also standard (i.e., taken
form sequential approach) quality and time metaheuristic metrics will be used in
the further part of the book:

e PRD — Percentage Relative Deviation from reference solutions given by the
formula
Fref - Falg

PRD =
Fref

- 100%,

where Fj..y is the reference criterion function value and Fj, is the result

obtained by the parallel algorithm examined. This formula is not used when
Fref =0,

o APRD — Average Percentage Relative Deviation

APRD = PRD;,

Ninst

where n;nst 1S the number of benchmark instances and PRD; is the PRD
of the i-th problem instance.

® tiotq; (in seconds) — real time of an algorithm execution,

® tepy (in seconds) — the sum of time consumption on all processors.

28 Chapter 1. Introduction

1.2. Parallel architectures

In recent years, several theoretical models of parallel computing systems were pro-
posed. Up till now some of them have been physically realized. These theoretical
models take into account only the ways of manipulating instructions (instruction
set) and the type of data streams. We extend this taxonomy by adding memory
architectures.

1.2.1. Taxonomy

The fundamental classification of parallel architectures was given by Flynn [108].
Here we present it based on a survey taken from [91] and [89].

e SISD machines. Single Instruction stream, Single Data stream. Classic
serial machines belong to this class. They contain one CPU and hence
can accommodate one instruction stream that is executed serially. Many
large mainframes can have more than one CPU but each of them execute
instruction streams that are unrelated. Therefore, such systems still should
be regarded as multiple SISD machines acting on different data spaces.
Examples of SISD machines are mainly workstations like those of DEC,
Hewlett-Packard, IBM and Silicon Graphics.

e SIMD machines. Single Instruction stream, Multiple Data stream. These
systems often possess a large number of processing units, ranging from 100
to 100,000 all of which can execute the same instruction on different data.
Thus, a single instruction manipulates many data items in parallel. Ex-
amples of SIMD machines are the CPP DAP Gamma II and the Quadrics
Apemille. Other subclasses of the SIMD systems embrace the vector proces-
sors which manipulate on arrays of similar data rather than on single data
items using CPUs with special instructions (e.g. MMX, SSE2). If data can
be manipulated by these vector units the results can be delivered at a rate
of one, two and three per clock cycle. That is why vector processors work
on their data in a parallel way but this only refers to the vector mode. In
this case they are several times faster than when executing in conventional
scalar mode. An extension of the vector processing idea is GPGPU (general
purpose graphic processing unit, see Figure 1.5).

e MISD machines. Multiple Instruction stream, Single Data stream. This
category includes only a few machines, none of them being commercially
successful or having any impact on computational science. One type of
system that fits the description of an MISD computer is a systolic array
which is a network of small computing elements connected in a regular

1.2. Parallel architectures 29

Fig. 1.5. The nVidia Tesla C2050 with 448 cores (515 GFLOPS).

grid. All the elements are controlled by a global clock. In each cycle, an
element will read a piece of data from one of its neighbors, perform a simple
operation and prepare a value to be written to a neighbor in the next step.

e MIMD machines. Multiple Instruction stream, Multiple Data stream.
MIMD machines execute several instruction streams in parallel on different
data. Compared to the multi-processor SISD machines mentioned above the
difference lies in the fact that the instructions and data are related because
they represent different parts of the same task to be executed. Therefore,
MIMD systems can run many subtasks in parallel in order to shorten the
time-to-solution for the main task to be executed. There is a large variety
of MIMD systems and especially in this class the Flynn taxonomy proves
to be not fully adequate for the classification of systems. If we focus on
the number of system processors this class becomes very wide, from a NEC
SX-9/B system with 4-512 CPUs or clusters of workstations (see Figure 1.6)
to a thousand processors IBM Blue Gene/P supercomputer (see Figure 1.7)
and Cray XT5-HE (224162 cores) which breaks the petaflops barrier.

1.2.2. Memory architectures

The Flynn taxonomy does not recognize memory architecture. In our opinion
memory architecture types have an influence on parallel algorithm efficiency.
Therefore, we propose to select two classes here (see [228]).

e Shared memory systems. They have multiple CPUs all of which share the
same address space (shared memory). It means that the knowledge of where
data is stored is of no concern to the user as there is only one memory

30 Chapter 1. Introduction

Fig. 1.6. The Nova cluster from the Wroctaw Centre of Networking and
Supercomputing, 2016 cores (19 TFLOPS). Source: WCNS [266].

Fig. 1.7. The IBM Blue Gene/P supercomputer at Argonne National Laboratory,
163840 cores (459 TFLOPS).

1.2. Parallel architectures 31

accessed by all CPUs on equal basis. Shared memory systems can be both
SIMD and MIMD. Single-CPU vector processors can be regarded as an
example of the former, while the multi-CPU models of these machines are
examples of the latter. The abbreviations SM-SIMD and SM-MIMD are
usually used for the two subclasses.

e Distributed memory systems. Fach CPU possesses its own associated mem-
ory in this class. The CPUs are connected by a network and they may
exchange data between their respective memories if necessary. Unlike with
the shared memory machines the user has to be aware of the data location
in the local memories, besides they will have to move or distribute these
data explicitly if necessary. The distributed memory systems may be either
SIMD or MIMD.

Although the difference between shared- and distributed-memory machines
seems to be clear, this is not always entirely the case from the user’s point of
view. Virtual shared memory can be simulated at the programming level. For
example, a specification of High Performance Fortran (HPF) was published in
1993 [134] which, by means of compiler directives, distributes the data over the
available processors. That is why the system on which HPF is implemented in
this case will look like a shared memory machine to the user. Other vendors of
Massively Parallel Processing systems (sometimes called MPP systems), like HP
and SGI, are also able to support proprietary virtual shared-memory programming
models due to the fact that these physically distributed memory systems are able
to address the whole collective address space. Therefore, for a user such systems
have one global address space spanning all of the memory in the system. Also
packages like TreadMarks [11] provide a virtual shared memory environment for
networks of workstations.

The other important issue from the user’s point of view is the access time
to each memory address of the shared memory. If this access time is constant,
we say that the system is of UMA (uniform memory access) type, if it is not
we call it NUMA (non-uniform memory access). Additionally, there is a dis-
tinction if the caches are kept coherent (coherent cache or CC-NUMA) or not
(non-coherent cache or NC-NUMA). The extended full classification first devel-
oped by Flynn [108] and then improved by Alba [7] is presented in Figure 1.8.

For SM-MIMD systems we can mention OpenMP [76] that can be applied to
parallelize Fortran and C+-+ programs by inserting comment directives (Fortran
77/90/95) or pragmas (C/C-++) into the code. Also many packages to realize
distributed computing are available. Their examples are PVM (Parallel Virtual
Machine, [116]), and MPI (Message Passing Interface, [235]). This programming
style, called the ‘message passing’ model has become so accepted that PVM and

32 Chapter 1. Introduction

SISD
SIMD
Vector processor Array processor
MISD
MIMD
Multi-processor Multi-computers
UMA NUMA MPP
Bus cc Grid
NUMA
COwW
. NC Hyper-
Switched NUMA cube

Fig. 1.8. Taxonomy of parallel architectures.

MPI have been adopted by nearly all major vendors of distributed-memory MIMD
systems and even on shared-memory MIMD systems for compatibility reasons. In
addition, there is a tendency to cluster shared-memory systems, for instance by
HiPPI channels, to obtain systems with a very high computational power. E.g.,
the NEC SX-8, and the Cray X1 have this structure. Thus within the clustered
nodes a shared-memory programming style can be applied, whereas between clus-
ters a message-passing should be used. Nowadays, PVM is not applied a lot any
longer and MPI has become the standard.

Distributed systems are usually composed of a set of workstations (so-called
cluster) connected by a communication network such as Infiniband, Myrinet
or Fast Ethernet. Such a cluster of workstations (COW) has better price-to-
performance ratio, and it is more scalable and flexible compared to multiproces-
sor systems. On the other hand, MPP (massively parallel processor) systems are
composed of thousands of processors, which can belong to multiple organizations
and administrative domains, creating so-called grids, built on the basis of the
Internet infrastructure.

1.3. Metaheuristic parallelization strategies 33

1.2.3. Recent trends

For the last few years GPGPU parallel programming model has been used for
massive shared-memory applications. GPUs are regarded as SIMD processors (or
MIMD when the processors can handle multiple copies of the same code executing
with different program fragments, e.g. counters, see Robilliard et al. [223]). In
the CUDA programming environment, developed by nVidia, the GPU is viewed
as a computing device capable of running a very high number of threads in par-
allel, operating as a coprocessor of the main CPU. Both the host (CPU) and
the device (GPU) maintain their own DRAM, referred to as the host memory
and device memory, respectively. One can copy data from one DRAM to the
other through optimized API calls that utilize the device’s Direct Memory Access
(DMA) engines.

The GPU is especially well-suited to address problems that can be expressed
as data-parallel computations — SIMD - with high arithmetic intensity (the num-
ber of arithmetic operations is significantly greater than the number of memory
operations). Because the same program is executed on many data elements and
has high arithmetic intensity, the memory access latency can be hidden with cal-
culations instead of big data caches. This property was used by Janiak et al. [147]
to design a tabu search metaheuristic for GPU. In practice GPU programming is
very close to the PRAM machine model (see Section 4.2) from the programmers’
point of view, offering a simple tool for checking the theoretical PRAMs algorithm
efficiency (see Bozejko et al. [35]).

1.3. Metaheuristic parallelization strategies

Metaheuristics based on the local search method can be presented as processes
of a graph searching in which vertices are the points of the solution space (e.g.
permutations) and arcs correspond to the neighborhood relation — they connect
vertices which are neighbors in the solution space. We will call it neighborhood
graph. For all NP-hard problems the related neighborhood has an exponential
size. Moving on such a graph defines some path (in other words, trajectory) in the
solution space. Parallel metaheuristic algorithms make use of many processes for
parallel generation or search of the neighborhood graph.

One can define two approaches to parallelization of the local search process
in relation to the number of trajectories which are concurrently generated in the
neighborhood graph:

1. single-walk parallelization (single trajectory): fine-grained algorithms for
fast communication purposes (the most computationally expensive parts
of the algorithm are parallelized),

34 Chapter 1. Introduction

2. multiple-walk parallelization (many trajectories): coarse-grained algorithms,
communication is less frequent, compared to the single-walk parallelized al-
gorithms.

These approaches demand that the algorithm meet some requirements as regards
communication and synchronization frequency, which implies the kind of granular-
ity. Single-walk parallel metaheuristics are usually fine-grained algorithms (e.g.
Bozejko, Pempera and Smutnicki, [39]), multiple-walk metaheuristics — coarse-
grained (e.g. Bozejko, Pempera and Smutnicki, [37]).

Table 1.2. Parallel architectures and programming languages presented in particular

chapters.
Chapter Parallel Pa.rallel Programming Scheduling
method architecture language problem
single-walk methods
huge single machine
4 neighborhoods CREW PRAM problem
5 cost function SIMD CH++ job shop
calculation (GPU) CUDA problem
6 Work.load. CREW PRAM flexible job
determination shop problem
multiple-walk methods
g memgtm MIMD Ada95 single machine
algorithm problem
population-based C+-+ single machine
) approach MIMD MPI problem
branch and SIMD single machine
10 bound DM Adads problem
simulated SIMD flow shop
1 annealing DM Adads problem
12 scatter SIMD C++ flow shop
search DM MPI problem
13 genetic MIMD Ada95 flow shop
algorithm problem
14 hybrid MIMD C flexible job
approach SIMD CUDA shop problem
15 tabu STMD Ada95 flow shop
search problem

1.3. Metaheuristic parallelization strategies 35

Single-walk parallel algorithms. Single walk algorithms go along the single
trajectory, but they can use multithread calculations for the neighborhood decom-
position (see representatives method, [195]) or parallel cost function computation.
For example, calculations of the cost function value for more complicated cases
are frequently equivalent to determining the longest (critical) path in a graph, as
well as maximal or minimal flow. This kind of parallelization will be described in
Part II of this book.

Multiple-walk parallel algorithms. Algorithms which make use of a multi-
thread multiple-walk model search concurrently a solution space by searching
threads working in parallel. Additionally, these algorithms can be divided into
subclasses due to communication among threads (information about current search
status): (1) independent search processes and (2) cooperative search processes. If
the multithread application (i.e., concurrently running search processes) does not
exchange any information we can talk about independent processes of search.
However, if information accumulated during an exploration of the trajectory is
sent to another searching process and used by it, then we can talk about coop-
erative processes (see Bozejko et al. [37]). We can also come across a mixed
model, so-called semi-independent (see Czech [92]) executing independent search
processes keeping a part of common data. Examples of such a method of paral-
lelization are described in Part III of this book.

Implementation Due to the specificity of the metaheuristic type, as well as
parallel environment architecture (SIMD, MIMD, shared memory, etc.) different
programming languages are used for coding. As we can see in Table 1.2 SIMD
algorithms for GPU are implemented in C++ with CUDA programming library
— nowadays it is the most commonly used programming environment for nVidia
GPUs. SIMD algorithms for multiprocessor computers without shared memory
are implemented in Ada95 high-level programming language, due to the simplicity
of designing them. Algorithms for distributed MIMD clusters are implemented
in C++ programming language with the use of MPI (Message Passing Inter-
face) communication library, also the most commonly used tool for programming
clusters.

Chapter 2

The methodology of
metaheuristic parallelization

This chapter is aimed at presenting and discussing the methodology of the meta-
heuristic algorithm parallelization. The majority of practical job scheduling is-
sues belong to the class of strongly NP-hard problems, which require complex
and time-consuming solution algorithms. Two main approaches are used to solve
these problems: exact methods and metaheuristics. On the one hand, existing
exact algorithms solving NP-hard problems are characterized by an exponential
computational complexity — in practice they are extremely time-consuming. Al-
though in recent years (1993-2008, see www.top500.0rg) the speed of the best
supercomputer increases 10 times each 3 years (as 10" function), this increase has
only a little influence on the size of solvable NP-hard problems (e.g. most per-
mutational job scheduling problems have the solution space of the size n! which
behaves! as n™). On the other hand, metaheuristics, a subclass of approximate
methods, provide suboptimal solutions in a reasonable time, even being applied
in real-time systems.

Quality of the best solutions determined by approximate algorithms depends,
in most cases, on the number of solutions being analyzed, therefore on the time
of computations. Time and quality demonstrate opposite tendencies in the sense
that obtaining a better solution requires significant increase of computing time.
The construction of parallel algorithms makes it possible to increase significantly
the number of solutions considered (in a unit of time) using effectively multi-
processor computing environment.

The process of an optimization algorithm parallelization is strongly connected
with the solution space search method used by this algorithm. The most fre-
quent are the following two approaches: ezploitation (or search intensification)

'From the Stirling equation, n! ~ (2)"/2mn.

38 Chapter 2. The methodology of metaheuristic parallelization

and ezploration (or search diversification) of the solution space. Due to this classi-
fication we can consider major categories of the metaheuristic class such as: local
search methods (e.g. tabu search TS, simulated annealing SA, greedy random-
ized adaptive search procedure GRASP, variable neighborhood search VNS) and
population-based algorithms (e.g. genetic algorithm GA, evolutionary strategies
ESs, genetic programming GP, scatter search SS, ant colony optimization ACO,
memetic algorithm MA, estimated distribution algorithms EDAs). Local search
methods (LSM) start with a single initial solution improving it in each step by
neighborhood searching. LSMs often find a locally optimal solution — they are
focused on the solution space ezploitation. Population-based algorithms (PBAs)
use a population of individuals (solutions), which is improved in each generation.
Thus the average goal function of the whole population usually improves, which
does not mean that all the individuals are improved. The whole process in ran-
domized, so these methods are almost always non-deterministic. We can say that
PBAs are focused on the solution space exploration.

2.1. Parallel local search methods

Let us consider a discrete optimization problem formulated as follows. Let X be
a discrete solution space and let F': X + R be a non-negative function defined
on the solution space X. We are looking for the optimal element x* € X such
that
X .

F(z*) = gg/rylF(a:) (2.1)
A major class of discrete optimization problems solving algorithms (apart from
population-based methods) is a local search approach, in which an algorithm
creates a searching trajectory which passes through the solution space X'. Before
its parallelization, let us formally describe this class of methods.

The well-known local optimization procedure begins with an initial solution
20, In each iteration for the current solution x’ the neighborhood N (z?) is de-
termined. Next, from the neighborhood the best element '+ € A(z?) is chosen
(i.e., with the best cost function value F(z**1)) constituting the current solution
in the next iteration. The method is exhaustive. An outline of the local search
method is presented in Figure 2.1. The method generates a solutions sequence
20,2t 22, ... 2% such that 2'T! € N (2?). We called this sequence a trajectory.
The problem (2.1) can be replaced by

F(z?) = min F(x). (2.2)

where
y={2 2 2% ... ¥} C A (2.3)

2.1. Parallel local search methods 39

We call the mechanism of a neighbor generation a move. More precisely, the move
p is a function p: X — X which generates solutions p(x?) = 1 € N(z¥) C &
from a solution z' € X.

Algorithm 1. Local Search Method (LSM)
Select a starting point x';
Tpest < 20 0 < 0;
repeat
choose the best element y from the neighborhood N (z%)
according to a given criterion based on the
goal function’s value F(y);
xh ey 041,
if F(y) < F(xpest) then
Toest < Y5
until F(y) # F(Tpest) -

Fig. 2.1. Outline of the Local Search Method (LSM).

A crucial ingredient of the local search algorithm is the definition of the neighbor-
hood function in combination with the solution representation. It is obvious that
the choice of a good neighborhood is one of the key factors ensuring efficiency of
the neighborhood search method. A neighborhood N(x) is defined as a subset
N(x) C X of solutions ‘close to’ a solution x € X. A metric of the ‘nearness’ can
be a distance metric in this solution space (e.g. Hamming’s or Caley’s, see [99]),
or the number of moves.

2.1.1. Parallel local search strategies

Generally, several approaches to convert LSM to parallel LSM (p-LMS) can be
formulated:

(a) calculating F'(z) faster for a given z € X,
(b) making a choice of z**1 € N(z%) faster,

(c) making a space decomposition among p searching threads, i.e.,

F(z?) = min F(z4* 2.4
(z) i (") (2.4)
where
F(z*%) = min F(z), V¥ = {2 2% .. 2%} (2.5)
ek

(d) using cooperative trajectories.

40 Chapter 2. The methodology of metaheuristic parallelization

Alba [7] proposed the following classification:

o Parallel multi-start model. In this model several local search processes are
executed concurrently, each one starting from the different solution. Ei-
ther homogeneous or heterogeneous version of this model can be applied.
They can be based on the same searching strategy, or have different strate-
gies. Multiple working searching processes can also start from the same
starting point, but with different searching strategies (e.g. with different
parameters). Simple classification of such algorithms on the tabu search
metaheuristic example was proposed by Voss in [261|. This model belongs
to the multiple-walk parallelization class.

o Parallel moves model. This is a low-level parallelization model which con-
sists in neighborhoods concurrent searching. The main metaheuristic which
uses this kind of parallelism, computes the same results as the sequen-
tial version but faster. Each processor evaluates a part of neighborhood
preparing the best element (so-called representative) as the proposition for
the controlling processor which chooses the best solution from all repre-
sentatives. This model is usually implemented as a master-slave model of
parallelization, yet it can be developed both as the single-walk method and
the multiple-walk parallelization (i.e., inside a hybrid method as a low level
parallelism).

e Mowe acceleration model. The goal function value is calculated in a parallel
way in this model. Such a parallelization is problem-oriented and strongly
dependent on the goal function form. For example, it is difficult or even
impossible to parallelize the function which has a recurrent form. Usually
loops, minimum or sum calculations, are parallelized in this model. Because
of the input-output intensity that kind of parallelism needs a shared-memory
fine-grained parallel environments such as multi-processor mainframe com-
puters or GPUs. Similarly to the previous (parallel moves) model it can be
developed both as the single-walk method and as the multiple-walk paral-
lelization.

Most survey works consider only parallel multi-start model of parallel local
search metaheuristics, see [7, 8, 13, 16, 58, 61, 85, 106, 155, 177, 244, 245|. This
is due to the difficulty of designing parallel moves and move acceleration mod-
els which are strongly dependent on the optimization problem formulation (see
Bozejko |25] and Steinhdfel et al. [237]). This parallelization also needs to take
advantage of the special properties of the optimization approach, i.e., neighbor-
hood determination method, cost function calculation and methods of calculations
distribution among processors. In Chapters 4, 5 and 6, we propose genuine single-
walk parallelization methods, using special theoretical properties of a problem.

2.1. Parallel local search methods 41

The taxonomy of Alba |7] corresponds with approaches (a)—(c) proposed at the
beginning of this section, but it does not include tree-based searching metaheuris-
tics (cooperative trajectories — approach (d)), in which a single processor starts
from an initial solution, and next processors begin their searching processes from
(usually very good) solution on the trajectory visited. Such concurrent threads
create a tree-like trajectory. Therefore, we propose an extension of Alba taxonomy
of parallel local search methods by including (at least) the following additional
model:

o Parallel tree-based model. In this model, local search processes are con-
currently executed; each one starting from the solution found by another
process, i.e., as soon as its best solution is found. The most frequent ap-
proaches are: the blackboard broadcasting method using shared memory,
and the master-slave model in which the master process is controlling the
whole searching process and local search threads are executed on slave pro-
Cessors.

The methods listed above can also be used together as hybrid parallel metaheuris-
tics (see Chapter 14.1).

2.1.2. Simulated Annealing

Simulated Annealing (SA) is a stochastic heuristic algorithm which explores the
solution space using randomized search procedure. The method uses a control
parameter called temperature to determine the probability of accepting a solution
with a worse cost function value (non-improving). The temperature decreases
as the algorithm proceeds according to the so-called cooling scheme such that
non-improving solutions are accepted at the end of the algorithm work. The
main objective is to escape from local optima keeping the convergence of the
whole searching process. Because of quick implementation, simulated annealing
is a popular method for solving discrete optimization problems, such as single
and multi-machine scheduling problems, TSP, QAP, timetabling, etc. Simulated
annealing produces the proof of its theoretical convergence to the global optimum,
also in its move acceleration model parallelization (see Meise [183]).

Simulated annealing method can be parallelized in several ways:

(i) parallel goal function calculations of a single solution (single-walk paral-
lelization, fine-grained, convergent),
(ii) parallel goal function calculations of a few solutions (single-walk paralleliza-
tion, fine- or medium-grained, convergent),
(iii) acceleration of achieving thermodynamic equilibrium state in the fixed tem-
perature (single-walk parallelization, medium-grained, convergent),

42 Chapter 2. The methodology of metaheuristic parallelization

(iv) multi-threaded independent work (multiple-walk parallelization, coarse-
grained, convergent),

(v) multi-threaded cooperative work (multiple-walk parallelization, coarse-
grained, convergent).

Most of the SA parallelizations (pSA) can be classified into two categories: (i)
move acceleration (Kravitz and Rutenbar [159]) and (ii) parallel moves (Roussel-
Ragot and Dreyfus [227]). The parallel moves model has been most frequently
investigated. It relies on concurrent evaluation of different moves. This approach
has to tackle the problem of inconsistency: the cost function value may be incor-
rectly computed due to moves executed by other processors. Such an inconsistency
can by managed in two ways:

(1) only non-interacting moves are accepted (domain decomposition approach),

(2) interacting moves are evaluated and accepted and some errors in the cost
function value calculation are allowed — they are corrected after a certain
number of moves or before temperature change, using synchronization of
Processors.

The speed of convergence of the parallel SA, based on the parallel moves
model, is comparable to the sequential algorithm convergence. The cost of syn-
chronization has an adverse influence on the parallel algorithm — some authors
report negative speedups obtained, as in Haldar et al. [131].

Several parallelizations follow the parallel multi-start model using multiple
Markov chains (e.g. Haldar et al. [131], Lee and Lee [167]) and many of them are
applied to the cell placement problem. In this approach each processor executes
SA on a local copy of the problem data dynamically combining solutions by ex-
changing the best ones synchronously or asynchronously (see Haldar et al. [131]).

2.1.3. Tabu Search

Tabu Search (TS) method was introduced by Glover [126] in 1986 as an extension
of classical local search methods (LSM). It explores the solution space by local
search procedure with the use of neighborhoods, that is specific inner heuristic
designed to evaluate solutions. Usually the candidate solution is the best found
in the neighborhood (the best improvement rule), however it can be the first one
found, too (the first improvement rule). Classic local search procedures such as
Descent Search (DS) rely on the monotonic improvement stopping after obtaining
local minimal solutions, for which all solutions in the neighborhood are worse (or
not better). The main improvement of TS method compared to classic DS is that
it can overcome local optima and keep the search going. To prevent its searching
trajectory from making cycles, TS keeps the history of the searching process,

2.1. Parallel local search methods 43

e.g. visited solutions on the trajectory. Usually it is enough to remember only a
few (e.g. seven) last solutions, however in some theoretical cases it is useful to
remember the whole searching history, which makes it possible to prove theoretical
convergence of such a TS algorithm (see Hanafi [132]).

Most of TS parallel implementations are based on the multi-start model (Talbi
et al. [249] for Quadratic Assignment Problem (QAP), Crainic and Gendreau
[86] for capacitated network design) or a neighborhood decomposition (Porto and
Ribeiro [209] for task scheduling under precedence constraints) or both of them
(Cahon et al. |70]) In [209] also the parallel moves model, apart from a neigh-
borhood decomposition, is applied to solve the problem, obtaining near-linear
speedup for large problem instances.

From the theoretical point of view, the first taxonomy of parallel tabu search
algorithms was proposed by Voss [261] based on the Flynn [108] classification of
parallel architectures (SIMD, MIMD, MISD and SISD). Voss proposed to classify
parallel tabu search algorithms into four categories with reference to starting
points and searching strategies.

~ SPSS (Single Point Single Strategy) — search starts from a single solution
along a single strategy. This model allows us to parallelize on the lowest
level only (parallel moves or move acceleration models),

— SPDS (Single Point Different Strategies) — all searching threads start from
the same solution with different search strategies, i.e., different neighbor-
hoods, tabu list length, elements remembered on the tabu list, etc.,

— MPSS (Multiple Point Single Strategy) — threads begin from different start-
ing solutions using the same searching strategy,

— MPDS (Multiple Point Different Strategies) — threads begin from different
starting solutions applying different search strategies; this class is the widest
and includes all previous classes.

The taxonomy presented above was extended by Crainic, Toulouse and Gen-
dreau [85] by introducing two additional classifications: (1) due to the number of
processors which keep control over the algorithm work and (2) the way of control
and the type of communication. Considering the number of controlling processors
two models can be distinguished:

a) I-control — determined central processor controls the work of a parallel
algorithm,

b) p-control — the algorithm execution control is distributed among p concur-
rently working processors.

The way of control and the type of communication are determined by the following
classes:

44 Chapter 2. The methodology of metaheuristic parallelization

(1)
(ii) knowledge synchronization,
(iii) collegial, and

(iv) knowledge collegial.

rigid synchronization,

The first categorization is connected with the quantity and quality of the informa-
tion exchanged and shared — first two cases are synchronized ones, next two cases
are collegial. The second categorization shows the possibility of using additional
knowledge which can be derived from information exchange — cases (ii) and (iv)
are using a base of knowledge, cases (i) and (iii) are not.

2.2. Parallel population-based algorithms

Population-based algorithms (genetic, memetic, particle swarm optimization, etc.)
are well-suited to parallelization due to their natural partitioning into separate
groups of solutions, which are concurrently processed. The method of using pop-
ulation of individuals allows us to diversify searching process onto the whole solu-
tion space. On the other hand, using cooperation, it is easy to intensify searching
after finding a good region by focusing individuals onto it. Thanks to its concur-
rent nature, population-based algorithms are very handy to parallelize, especially
in the independent way using multi-start model. Low level parallelization is not
so easy because special properties of the problem being considered have to be
usually used. We present and discuss such an approach in Chapters 9 and 14.

2.2.1. Genetic Algorithm

Genetic Algorithm (GA) method is an iterative technique that applies stochastic
operators on a set of individuals (population). Each individual of the population
encodes the complete solution. Starting population is usually generated randomly.
A GA applies a recombination operator (crossover) on two solutions in order to
introduce diversity of population. Additionally, a mutation operator which ran-
domly modifies an individual is applied being the insurance against stagnation
of the search process. Traditionally GA was associated with the binary repre-
sentation of a solution, however in job scheduling area a permutational solution
representation is more popular and useful.

The performance of population-based algorithms, such as GAs, is specially
improved when running concurrently. Two strategies of parallelization are com-
monly used:

1. parallelization of computations, in which operations allied to each individ-
ual (i.e., goal function or genetic operators) are performed in parallel, as
well as

2.2. Parallel population-based algorithms 45

2. population parallelization in which the population is partitioned into dif-
ferent parts which can be evolved concurrently or exchanged.

We distinguish the following kinds of parallelization techniques which are usually
applied to genetic algorithms:

e Global parallelization. This model is based on the master-slave type concur-
rent processes. Calculations of objective functions are distributed among
several slave processors while the main loop of the genetic algorithm is ex-
ecuted by the master processor.

e Independent runs. This approach runs several versions of the same algo-
rithm with different parameters on various processors, allowing the parallel
method to be more efficient. The independent runs model can also be con-
sidered as the distribution model without migration.

o Distributed (island) model. This model assumes that a population is par-
titioned into smaller subpopulations (islands), for which sequential or par-
allel GAs (usually with different crossover and mutation parameters) are
executed. The main characteristic of this model is that individuals within
a particular island can occasionally migrate to another island.

o Cellular (diffusion) model. In this model the population is mapped onto
neighborhood structure and individuals may only interact with their neigh-
bors. The neighborhood topology is usually taken from the physical network
of processors, so this is a fine-grained parallelism where processors hold just
a few individuals.

The distribution model is the most common parallelization of parallel GAs since it
can be implemented in distributed-memory MIMD machines, such as clusters and
grids. This approach leads to coarse-grain parallelization (Bozejko and Wodecki
[50], Bozejko et al. [42]). Fine-grained parallel implementations of the cellular
(also called diffusion) model are strongly associated with the machines on which
they are executed (|94]). Master-slave implementations are also available as gen-
eral frameworks (e.g. ParadisEO of Cahon et al. [70]).

A special case of GA is Genetic Programming (GP) approach, in which evolv-
ing individuals are themselves programs instead of finite-length vectors or permu-
tations. The method was proposed by Koza [157] as an extension of evolutionary
approach — the GP is a machine learning technique aimed at helping computers
to program themselves; it allows us to discover automatically programs that solve
or approximately solve a given problem.

Several fine-grained parallelizations of GP were proposed, see e.g. Juille and
Pollack [151], Folino et al. [109] for cellular model on distributed-memory comput-
ers. The authors also introduced coarse-grained approaches: a master-slave and

46 Chapter 2. The methodology of metaheuristic parallelization

a distributed model (Fernandez et al. [104]), as multiple-population island-based
parallel genetic programming.

Generally, models of parallel and distributed genetic programming presented
in the literature can be categorized as follows:

1. parallelizing at fitness level,

2. parallelizing at population level — the island and the grid (cellular) models.

Since individuals in genetic programming method feature both different sizes
and complexities, as a result the problem of imbalance in parallelizing at fitness
level appears. Load balancing can be obtained in an automatic way if a steady-
state reproduction is used (instead of generation reproduction).

The island GP model can be easily implemented on both distributed mem-
ory machines and clusters of networked workstations or grids due to the rare
communication frequency. The migration between islands is usually implemented
using message-passing interface (such as MPI or PVM). Each island executes a
standard GP and individuals are exchanged at fixed synchronization points, or
asynchronously, using an additional processor.

In the grid (cellular) GP model each individual is placed in a fixed location
on a low dimensional grid. A scalable implementation of cellular GP model was
proposed by Folino et al. [109]. They proposed three replacement policies for this
model of GP: direct (the best of the offspring replaces the current individual),
probabilistic (the offspring replaces the parent according to the difference between
their fitness) and greedy (the offspring replaces the parent if the offspring is fitter).

2.2.2. Scatter Search

Scatter Search (SS) is a population-based algorithm which evaluates solutions
from a starting set to create new solutions added to this set. The chosen pairs
of solutions are used to build a new one using a special procedure (e.g. linear
combination, path-relinking). This approach involves different starting solution
generation procedures, reference set update procedures, constructed solutions im-
proving procedures, etc. To improve built solutions, local search procedures are
usually applied.

Parallelization can be used on each level of the scatter search method: the
local improvement procedure (parallel moves model, Synchronous Parallel Scat-
ter Search in Garcia-Lopez et al. [113] for the p-median problem), the solution
combination procedure (Garcia-Lopez et al. [114], also Replicated Combination
Scatter Search in [113]) and by parallelizing the whole method by introducing a
multi-start model (Replicated Parallel Scatter Search in [113]).

The local improvement procedure parallelization can be obtained by using the
different parallel models of local search methods. Not only does it allow us to

2.2. Parallel population-based algorithms 47

reduce the computational time, but it also lets us obtain better results than a
sequential algorithm in the same number of iterations. The solution combination
procedure parallelization can be obtained by dividing the set of possible combi-
nations among a set of processors. Different combination methods and different
parameter settings can be applied in such a parallelization (see [114]). This ap-
proach increases the stability (i.e., parameter setting invulnerability) of the paral-
lel SS algorithm and improves its precision without increasing the computational
time (see Bozejko and Wodecki [40] for the flow shop scheduling problem). In the
whole scatter search parallelization model each processor executes an SS proce-
dure. Such a model is a multi-start approach and it increases the diversification
of solutions. Its intensification is obtained by exchanging the information about
the best solution found.

2.2.3. Memetic Algorithm

Memetic Algorithm (MA) is an evolutionary approach based on the process of
natural evolution adhering to the principles of natural selection, crossover and
survival. Lamarck’s model (see Michalewicz [187]) of evolution is applied to in-
tensify the optimization process. In each generation a certain part of the popu-
lation is replaced by their local minima simulating a learning effect which can be
succeeded by the next generation as a ‘meme’. From the current population some
subset is drawn. Each individual of this subset is a starting solution for the local
optimization algorithm. Thus, there are five essential steps of the MA:

—_

. selection — choosing some subset of individuals, so-called parents,
2. crossover — combining parts from pairs of parents to generate new ones,

3. mutation — transformation that creates a new individual by small changes
applied to an existing one taken from the population,

4. learning — an individual is improved (e.g. by a local optimization),

5. succession — determining the next generation’s population.

New individuals created by crossover or mutation replace all or a part of the
old population. The process of evaluating fitness and creating a new population
generation is repeated until a termination criterion is achieved.

Similar to the GA, the following kinds of parallelization are usually applied
to MAs:

global parallelization,

independent runs,

island model,

diffusion model,

48 Chapter 2. The methodology of metaheuristic parallelization

with similar properties as applied to the classic GA. Additionally, a local search
procedure can be parallelized in MA. Such an approach is proposed by Berger and
Barkaoui |23] and applied to the Vehicle Routing Problem with Time Windows
(VRPTW) by using a master-slave parallel approach. The master controls the
memetic algorithm execution, synchronizes and handles parent selection while the
slaves execute genetic operations together with local search in parallel. Parallel
memetic algorithm was also considered by Bradwell and Brown [66] (asynchronous
MA) and Tang et al. [252] (MA based on population entropy).

2.3. Other methods

Greedy Random Search. The so called Greedy Randomized Adaptive Search
Procedure (GRASP) is an iterated (i.e., multi-start) procedure where each itera-
tion consists of two phases: construction of the solution and local search from the
given solution. In the construction phase a feasible solution is built. A set of can-
didate elements is made up of those elements which can be added to the partial
solution without making it unfeasible. Next, the candidate element is evaluated
by the greedy function which measures the benefit of including it to the partial
solution producing a restricted candidate list which consists of those elements for
which the greedy function is not lower than the chosen parameter (threshold).
The element to be included into the partial solution is randomly selected from
this restricted candidate list. The iterated process is terminated when all the ele-
ments are added to the partial solution, that is when the set of candidate elements
is empty. The second phase — local search — allows us to provide a local optimum
(in the chosen neighborhood) of the solution constructed in the first phase.
Most parallel GRASP implementations are based on the parallel multi-start
model, both as multiple-walk independent search (Verhoeven and Aarts [260])
and multiple-walk cooperative search (Cung et al. [90]), also with the path-
relinking procedure (Ribeiro and Rosseti [221]). Parallelizations are based on
executing the same algorithm on the distributed data (Single Program Multiple
Data SPMD model). Even in the independent computations very little informa-
tion is exchanged between processors so almost-liner speedups are often obtained.
A natural way to obtain an efficient load balancing of processors is to distribute
iterations among the processors, usually in a dynamic distribution approach. Each
processor receives a copy of the sequential algorithm and a copy of the problem
instance data. The cost of communication is low because of the independency
of iterations. This approach is especially efficient in a heterogeneous multiuser
execution environment, e.g. clusters and grids. Such a dynamic approach for
parallel GRASP applied to the Steiner problem in graphs is presented in the
paper of Martins et al. [179] based on the farmer-worker cycle stealing strategy.

2.3. Other methods 49

Initially, each worker is assigned a small number of iterations. After performing its
iterations, the processor requests additional iterations from the farmer processor,
thus faster processors perform more iterations than slower ones.

Recently, there have appeared some works on GRASP hybridization by im-
plementing it together with the path-relinking approach [219]|, which can be cate-
gorized as multiple-walk independent or cooperative-thread where processors ex-
change information about elite solutions visited during previous algorithm itera-
tions.

Variable Neighborhood Search. The Variable Neighborhood Search (VNS)
method is based on the idea of exploring the solution space by a single trajec-
tory using successively changed neighborhoods from the predefined set, as well
as descent search method to get the local minimum. It can also explore a ran-
dom neighborhood instead of changing it in the predefined order (however such a
way makes this method non-deterministic). The VNS method makes use of the
following observations:

1. the local minimum defined in one neighborhood structure is not necessarily
the local minimum in another neighborhood structure,

2. the global minimum (or minima) is also a local minimum for all neighbor-
hood structures we can define.

Of course VNS, as a metaheuristic, is not an exact optimization method — it does
not need to find a global optimum, it is enough to find a very good approximation
of this solution (a suboptimal solution). We assume that for suboptimal solutions
the second observation is true, too.

Parallel VNS method is quite a new method, so only a few parallelizations
have been designed. We can mark out two major approaches here: simple par-
allelizations consisting in parallelizing the local search procedure and replicating
the whole algorithm in the processors (Garcia-Lopez et al. [112]). More complex
approaches to parallelization are based on a synchronous cooperation mechanism
through a master-slave model (Replicated-Shaking VNS from [112]) or apply a
cooperative multi-search method based on a central-memory mechanism (Coop-
erative Neighborhood VNS from Crainic et al. [87] for p-median problem). In
[87] the former keeps current the best solution, also updating it, making commu-
nications among processors, initiates and terminates the overall procedure. The
communication is initiated by workers asynchronously.

In the Replicated-Shaking VNS (RS VNS, proposed in [112]) the master pro-
cessor executes a sequential VNS algorithm sending the current solution to each
slave processor which makes a random perturbation obtaining a starting solution
for the local search procedure. Solutions obtained by slaves after execution of

50 Chapter 2. The methodology of metaheuristic parallelization

the local search algorithm are sent to the master which selects the best one and
continues the parallel VNS algorithm.

The Cooperative Neighborhood VNS (CN VNS, described in [87]) is also based
on the centralized approach, in this case in the form of central-memory mechanism
connected with the multi-start parallelization model. Several independent VNS
threads cooperate by using asynchronous communication — the information about
the best solution found so far is exchanged which allows us to intensify solution
space exploration by a number of VNS cooperative threads.

Both GRASP and VNS belong to the parallel local search class. In the further
part of this section we briefly present other parallel population-based approaches
which were not mentioned in Section 2.2.

Evolution Strategies. FEwvolution Strategies (ESs) belong to Evolutionary Al-
gorithms (e.g. Genetic Algorithm and Genetic Programming), a big subclass of
the population-based algorithms. This method is designed to solve continuous
optimization problems, usually using elitist selection model and specific muta-
tion without crossover operators. The individual consists of float objective vari-
ables and additional parameters guiding the search process. Therefore, Evolution
Strategies algorithms are characterized by a self-adaptive control by evaluating
the problem variables as well as the strategy parameters.

Parallelization of ESs is based on cellular and distributed models. In the cel-
lular approach individuals are connected with neighbors and can interact only
through these communication canals (Weinert et al. [265]). Also distributed par-
allelizations are provided (De Falco et al. [95], Schiitz and Sprave [230]). Parallel
models of ESs can be categorized into migration (for MIMD machines) and pol-
lination (for SIMD machines) models. Another model usually used for describing
population-based metaheuristics, especially evolutionary ones, is a cellular model,
also called either a neighborhood or a diffusion model.

In the migration approach to parallel Evolution Strategies the population is
partitioned into p subpopulations (where p is the number of processors). Pro-
cessors connected with subpopulations exchange individuals from time to time.
Variables which have to be defined are:

migration paths,
migration frequency,
number of migrants,

selection policy for migrants,

AN .

integration policy for migrants.

The pollination model of parallel ESs consists in spreading the genetic in-
formation by means of pollination but without moving individuals. On SIMD

2.3. Other methods 51

machines each individual of the population is placed on a processor and the in-
teraction takes place in the neighborhood defined by the hardware (processors)
connection structure, e.g. two or three-dimensional torus, ring or hypercube. For
example, if we consider a ring topology and a certain radius 7, the neighborhood
of each individual could be defined as r individuals to the right and left. This
approach can be implemented on MIMD machines, too [236].

Ant Colony Optimization. The Ant Colony Optimization (ACO) method
was inspired by the behavior of real ants which deposit a pheromone on the
ground. This special chemical substance influences choices of an ant, i.e., it in-
creases the probability that an ant selects the path proportionally to the amount
of pheromone lying on this path. An ACO algorithm constitutes a method in
which artificial ants are stochastic construction procedures which build a solution
using heuristic information about the problem and pheromone trails.

Most of the ACO parallelizations use a master-slave model (Talbi et al. [248],
Doerner et al. [100]). In this model a pheromone matrix is stored by the master
processor and slaves are used to evaluate a portion of solutions as ant colonies.
Similarly, a distributed (island) model also uses colonies of ants, however with
greater independence — such a multicolony ant algorithm relatively rarely ex-
changes information between colonies (Mendes et al. [184], Middendorf et al.
[188]). An independent model, without communication, was considered in the
literature (Stiitzle [241]), too.

Usually parallel ACO algorithms put more than one ant on each processor.
Such a group of ants if called a colony — several ants placed on a single processor
cooperate better than ants placed on other processors. We call a parallel ACO
muli-colony if a colony of this algorithm uses its own pheromone matrix and if
this matrix is different from the matrixes of other colonies.

Multi-colony ACO algorithms have been originally designed to be applied
together with multi-objective optimization (see Kawamura et al. [192]), however
this approach also improves the behavior of the standard ACO. Multi-colony ACO
algorithms are well suited for parallelization — each processor keeps a colony of
ants and there is less information exchanged between colonies than would have
been between groups of ants in the standard ACO approach. Most multi-colony
parallel ACO algorithms are based on the decentralized approach — this model
possesses some similarities with the island model of the parallel genetic algorithm.
Designing a parallel multi-colony ACO we have to take under consideration the
following parameters:

1. communication structure and neighborhood topology:

(a) all-to-all topology (colonies have connection with each other),
(b) ring topology (in the directed or undirected version),

52 Chapter 2. The methodology of metaheuristic parallelization

(c¢) hypercube topology (for p colonies, each colony has log p neighbors),
(d) random topology (the neighbors of each colony are defined as a random
structure for each communication step,

2. type of information exchanged:

(a) solutions,
(b) pheromone vectors,
(¢) pheromone matrix,

3. usage of information received from other colonies:

(a) making comparison with its own elitist solutions,

(b) adding it to the current generation,

(¢) adding pheromone vector or matrix obtained from another colony to
its own pheromone matrix,

4. communication frequency.

Homogenous as well as heterogenous approaches are applied in the parallel
multi-colony ACO algorithm implementation. In the homogenous approach all
colonies make use of the same ACO parameters and heuristics. In the heteroge-
nous approach parameters and heuristics in each colony are different.

Estimation of Distribution Algorithms. A class of Fstimation of Distri-
bution Algorithms (EDAs, also called Estimated Distribution Algorithms) was
initially proposed by Miihlenbein and Paaf [192] in 1996. The method uses a
population of individuals to estimate the distribution of the probability of each
variable being kept by each individual. In the further part of algorithms this dis-
tribution is used to generate a new set of solutions that are hopefully the nearest
to the global optimum. EDAs, as distinct from other evolutionary approaches,
use neither crossover operators nor mutation operators.
An EDA algorithm can be parallelized on several levels:

1. learning (or estimation) level, on which an estimation of probability distri-
bution is made (Lobo et al. [176], Mendiburu et al. [185]),

2. simulation level, on which sampling of the new individuals is executed
(Mendiburu et al. [185], Oceanasek and Schwarz [200]),

3. population level (Ahn et al. [5]),

4. fitness evaluation level.

Most learning approaches possess an exponential computational complexity
(e.g. if they use a Bayesian network). This kind of parallelization is the most
time-consuming. The problem seems to be even worse because of incomplete data

2.4. Remarks and conclusions 93

presence, if it is necessary to resort to approximate algorithms. Parallelization on
this level is still a major challenge. In the parallelization on the sampling level the
generation of the new individuals is accomplished in a parallel fashion. However,
there are cases where the problem representation is complex and sampling from
the corresponding distributions is a hard task.

Population level parallelization consists in decentralizing the search process
on the population level — a global population is defined virtually on a set of
local subpopulations which interact with each other. One of the most popular
approaches is the island framework. Parameters of information exchange in the
island model are the same as defined in Section 2.3, in the description of the
migration model of Evolution Strategies.

Parallel fitness evaluation is almost always based on the master-slave paral-
lelization model. There are not any new approaches on this level compared to
other population-based algorithms — the method used for the fitness function eval-
uation has to be fitted to the problem specificity, e.g. if the fitness function has
the recurrent nature, it has to be transformed into the iterative form. On the
other hand, the load balance between processors which execute the evaluation of
the fitness has to be taken into consideration in the master-slave model.

The parallelization process can also be used on several levels concurrently as
a hybrid parallelization. As we can see, most approaches proposed in the literature
make use of parallelization on the simulation or the learning level. Only a few
works use a different level of parallelism [5]. There is a lack of the low-level
fitness evaluation module for EDAs, due to its strong relation with the problem
formulation (see also similar problem for p-LSMs described in Section 2.1.1).

2.4. Remarks and conclusions

A great deal of parallel metaheuristic approaches from the literature presented
in this chapter use multiple-walk parallelization based on hybridization of the
search process or broadcast information about good solution space regions. In
the literature there is almost nothing in the field of the parallel single-walk algo-
rithms. Parallel algorithms used to solve job scheduling problems employ from
30 to 50% of time to determine the order of jobs, but only in a few cases some
special properties of this problem are utilized. Apart from the approaches pre-
sented, there are many metaheuristics which have no parallel versions yet, e.g.
artificial immune systems, beam search, music harmony optimization, simulated
jumping, bee search, particle swarm optimization, etc. As we have mentioned
above, the alternative approach to parallelization, rarely used, is to consider a
problem specificity to build a low-level single-walk parallelization based on the
special properties. Such an approach is shown in Part IT of this book.

Chapter 3

Scheduling problems

This chapter addresses job scheduling problems together with their properties
and models. These properties are independent of the computing environment
(sequential, parallel). Some of them are new and original and they were designed
for improving the efficiency of particular algorithms. Others, known from the
literature, were applied for the first time to the parallel algorithm designing.
Generally, scheduling problems allow us to model and analyze separate stages of
the production systems (distinguished, single machine scheduling problems, see
[128]) as well as production systems (flow shop, job shop problems). All the
problems described in the sequel belong to the NP-hard class.

3.1. Basic notions and notation

Some elementary notions are used in mathematical model building of a job schedul-
ing problem: a job and a resource. The job consists in executing a sequence of
operations which need some resources. A number of data can be connected with
the job: due date or deadline, possibility of breaking the job (divisibility), ways
of operation execution (specific requirements of resources, alternative ways of ex-
ecution), etc. Resources can be renewable (processor, machine, memory) or non-
renewable (operational materials, natural resources) and dual-bounded (energy,
capital). The features of the resources include: accessibility (in time windows),
cost, amount, divisibility. All of these features have to be mathematically formal-
ized by constructing a mathematical model of a problem.

Let J ={1,2, ..., n} beaset of jobs which have to be executed by using a set
of types of machines M = {1,2,...,m}. Each job i is a sequence of 0; operations
Oi=lia+1L,Li1+2,...,0L), ;= 22:1 ok, lp = 0. Operations inside a job have
to be executed in a defined technological order (in the defined sequence), i.e., an
operation j has to be executed after having finished an operation j—1 execution

o6 Chapter 3. Scheduling problems

and before starting the execution of an operation j + 1. A set of operations of a
job i will be denoted by O; for simplicity of notation. For each operation j € O,
O =}, O; the following terms are determined:

M; — sequence of m; subsets of machines which define alternative methods
of operation execution; M; = (My;, Maj, ..., My,), My € M; an operation j
needs a set of machines M;; for its execution, where 1 < i < m;,

pij — time of execution of an operation j by the i-th method (i.e., on the i-th
machine),

vj — method of executing the operation (decision variable),

S; — term of an operation execution beginning (decision variable),

Cj — term of an operation execution finishing, C'; = S; + p,,; if the operation
cannot be broken.
In turn, for a job ¢ the following terms are needed to be determined:

o; — number of operations in the job,

r; — the earliest possible term of the job execution beginning,

d; — due date of the job execution finishing,

S; — term of the job execution beginning, S; = S5), |41,

C; — term of the job execution finishing, C; = Cj,,

L; — non-timeliness of the job execution finishing, i.e., being tardy or early,
L; =C; —d;,

7; — tardiness of the job execution finishing, 7; = max{0,C; — d;},

&; — earliness of the job execution finishing, & = max{0,e; — C;},

fi(t) — non-decreasing cost function connected with the job i execution finish-
ing in a time t > 0,

F; —a time of flow of the job ¢ through the system, F; = C; — r;,

U; — unitary tardiness of the job i defined as

(3.1)

L0 it Gi<d,
71 1 otherwise.

The majority of scheduling problems do not need to define all the above data
and decision variables. Usually a minimal set of notions which is sufficient to
describe the model is used. For example, if for each j € O we have m; = 1,
|Mi;| = 1 it means that the problem has dedicated machines, therefore decision
variables v; do not undergo any choice. Then v does not occur in the model of
the problem.

3.2. Taxonomy

To describe precisely the scheduling problem a three-field notation «|f8|y is ap-
plied. This notation was proposed in [123] and next developed in papers [169, 220].

3.2. Tazonomy o7

It has three fields «|(|y specifying the execution environment «, additional con-
straints [, and the objective function ~.

Here we propose an extended Graham notation which includes representations
of hybrid systems (e.g. hybrid flow shop, see Janiak et al. [148]) or flexible systems
with parallel machines (e.g. flexible job shop problem, see Bozejko et al. [30]).
This kind of scheduling problems cannot be described by the original Graham
notation. We propose to set the symbol a as a composition of three symbols
asagay which have the following meaning. The symbol «; describes a finite
number of machines in the system: 1, 2, ...; if this number is not specified then
an empty symbol is put here which means any number of machine m. The symbol
g describes the method of jobs flowing through the system, where the following
traditional ways are enhanced:

e F' — flow shop in which all the jobs have the same technological path and
they all have to be executed on all the machines; each machine needs to
determine different sequence of input jobs,

e [— permutation flow shop, a model which has the same assumptions as F’
with an additional requirement that a sequence of job execution on all the
machines has to be the same (compatible with the order of the sequence of
jobs input into the system),

e J — job shop, in which jobs can have different (in terms of the number and
the order of visiting machines) technological paths,

e (G — general shop, in which each job is a single operation and technological
relationship is given by a graph,

e O — open shop, in which all the operations of jobs have to be executed, but
the technological order of operations inside the job is not specified.

The number of machines oy = 1 implicates that both a3 and «; symbols have
to be empty. The symbol as determines the mode of executing each operation.
If a3 is an empty symbol then we assume that for each operation a machine has
been dedicated on which it will be executed, that is m; = 1, [M;;| =1, j € O.
Otherwise, we assume that m; > 1, |[M;;| =1, ¢ =1,2,...,m;, j € O and an
operation can be executed on exactly one machine from a set of:

e P —identical parallel machines,
e () — uniform machines, or

e 1R — non-uniform machines.

o8 Chapter 3. Scheduling problems

As we have already mentioned both a3 and «; symbols can be empty, which
means that any realization mode can be accepted, or (a3 empty symbol) any (but
fixed) number of machines can be used.

The symbol S determines the existence of additional assumptions and con-
straints, e.g. different release times (the earliest possible times of beginning job
execution, r;), existence of a partial technological order of job execution (prec),
constraints no wait, no store, no idle (without time gaps), p;; = 1 (all times are
identical and equal 1), pmin (jobs can be stopped and started again), etc.

The last parameter v has the symbolic form of the criteria function. Two
classes of this function occur in theory and practice of job scheduling, namely

fmax = Inax fz(cz> (32)

1<i<n

and

Y fi=> filc), (3.3)
=1

where f;(t) are some non-decreasing functions. These classes include, among
others, many frequent criteria from the practice, for example: the length of the
schedule (makespan)

Crax = 11;1%}% Ci, (34)

an average time of the job flow

Y F = %Zf (3.5)
=1

In the second case we may include a different weight of jobs w; > 0 in the cost
function f;(t) = w;t. For jobs with due dates d; one can construct measures f;(t)
= max{0,t — d;} or f;(t) = w; max{0,t — d;}. Therefore, we obtain

Thax = max 7; = max max{0,C; — d;) (3.6)

1<i<n 1<i<n

or the weighted sum of job tardiness

Z w;T; = iwﬂ{ = i w; max{0,C; — d;}. (3.7)
i=1 i=1

In the further parts of this book we will concentrate mainly on the following
criteria: makespan (Cpax), sum of job finishing times (Cgym, »_ C;) and weighted

3.8. Single machine scheduling problems 99

sum of job tardiness (Y w;T;). The criteria cited above are known as typical in
practice and they generate troubles during optimization (they are difficult).

3.3. Single machine scheduling problems

In this section, we present and discuss a fundamental case of the single machine
problem as well as an industrial case (with using setup times) and a single machine
problem case with earliness and tardiness penalties.

3.3.1. Overview

Single machine scheduling problems constitute a dominant class of optimization
problems. There are a number of reasons for such a situation. They are easy to
define and explain. Although weak usable in practice, single machine problems
can be applied to analyze an allocated critical element of a production system.
Single machine scheduling problems are the base of OPT (Optimized Production
Technology, critical nest monitoring). Some of them can be almost directly trans-
formed to the traveling salesman problem (TSP), offering the possibility to use a
wide class of methods and approaches designed for TSP, probably the oldest com-
binatorial optimization problem (i.e., exponential-size neighborhoods searched in
the polynomial time) to solve a scheduling problem under consideration.

Single machine problems can be met both as an element of the more complex,
multi-machine systems (e.g. it can be a bottleneck element of this system), and
as a stand-alone optimization problem. A solution is usually represented as a per-
mutation, so it is easy to design exact or approximate solution algorithms because
of their clarity. While the problem formulation is simple, solution methods are
universal and they can be used to solve more complex systems, such as parallel
shops, job shops or flexible scheduling problem based on the same concept.

3.3.2. Fundamental case

In the single machine total weighted tardiness problem (TWTP), a set of jobs
J ={1,2,...,n} has to be processed without interruption on a single machine
that can handle only one job at a time. All jobs become available for processing at
time zero. Each job i € J has an integer processing time p;, a necessary finishing
time called a due date d;, and a positive weight w;. For a given sequence of the
jobs (earliest) completion time Cj, the tardiness T; — max{0, C; —d;} and the cost
1i(Cy) = w; - T; of job i € J can be computed. The goal is to find a job sequence
which minimizes the sum of the costs given by >, fi(Cy) = > w; - T;. Each
schedule of jobs can be represented by a permutation © = (7(1), 7(2), ..., 7(n)).

60 Chapter 3. Scheduling problems

The total cost is

F(m) = fry(Criiy)s (3.8)
=1

where Cr(;) is a completion time of a job 7(4).

The single machine total weighted tardiness problem is denoted by 1|| >, w;T;
in the literature and it belongs to the strongly NP-hard class (Lawler [162],
Lenstra et al. [168]). A large number of studies have been devoted to the problem.
Emmons [102] proposed several dominance rules that restrict the search process
for an optimal solution. These rules are used in many algorithms. Enumera-
tive algorithms that make use of dynamic programming and branch and bound
(B&B) approaches to the problem were described by Fischer [105], Potts and Van
Wassenhove [214] and Wodecki [268] (a parallel B&B algorithm). Other proposed
algorithms were discussed and tested in a review paper by Abdul-Razaq et al. [3].
Although these algorithms constitute a significant improvement to the exhaus-
tive search, they still remain laborious and are applicable only to relatively small
problems (with the number of jobs not exceeding 50 for sequential algorithms and
120 jobs for parallel B&B algorithm [268]). The enumerative algorithms require
considerable computer resources both in terms of computation times and the core
storage. Thus, many algorithms have been proposed to find near optimal sched-
ules in a reasonable time. These algorithms can be classified as construction and
improvement methods.

The construction methods use dispatching rules to come up with a solution
by fixing a job in a position at each step. Several constructive heuristics were
described by Fischer [105] and in a review paper by Potts and Van Wassenhove
[213]. Despite of being very fast, their quality is not good.

The improvement methods start from an initial solution and repeatedly try
to improve the current solution by local changes. The interchanges are continued
until a solution which cannot be improved is obtained. Such a solution is a local
minimum. To increase the performance of local search algorithms, there are used
metaheuristics like tabu search (Crauwels et al. [88|, Bozejko, Grabowski and
Wodecki [53]), simulated annealing (Potts and Van Wassenhove [213]), genetic
algorithms (Crauwels et al. [88]), ant colony optimization (Den Basten et al.
[96]). A very effective local search method was proposed by Congram et al. [81]
and next improved by Grosso et al. [125]. The key aspect of the method is its
ability to explore an exponential-size neighborhood in polynomial time, using a
dynamic programming technique.

3.8. Single machine scheduling problems 61

3.3.3. Setup times

We employ setup times in the problem formulation described above. These setups
are taken from practice: they are encountered in real industrial applications to
model times needed for servicing machines between operations execution. Let J =
{1,2,...,n} be a set of n jobs for which we define a time of execution p;, a weight
of the cost function w; and a deadline d; for each job i € J as in the previous
section. Let s;; be a setup time representing a time needed to prepare the machine
for executing a job j after having completed a job i. Additionally, sg; is a time
required to prepare a machine for executing the first job 7 (at the beginning of the
machine work). The problem considered consists in determining such a sequence
of executing of jobs which minimizes the sum of costs of tardiness, i.e., > w;T;
where C; (i = 1,2,...,n) is the time of completing a job i, T; = max {0,C; — d;}
denotes a tardiness and f;(C;) = w;T; represents a cost of tardiness of a job i.

The single machine total weighted tardiness problem with sequence-dependent
setup times (SDST') is denoted in the literature as 1|s;;| > w;7T; and it is strongly
NP-hard, as 1|| > w;T; (with s;; = 0) is strongly NP-hard (see Lenstra, Rinnoy
Kan and Brucker [168]). To date the best construction heuristics for this problem
has been the Apparent Tardiness Cost with Setups (ATCS - Lee, Bhaskaran and
Pinedo [166]).

Many metaheuristics have been proposed, too. Tan et al. [250| presented
a comparison of four methods of solving this problem: branch and bound, ge-
netic search, random-start pair-wise interchange and simulated annealing. Gagné,
Price and Gravel [110] compared the ant colony optimization algorithm with
other heuristics. Cicirello and Smith [78] proposed benchmarks for the sin-
gle machine total tardiness problem with sequence-dependent setups by gener-
ated 120 instances and applied stochastic sampling approaches: Limited Dis-
crepancy Search (LDS), Heuristic-Biased Stochastic Sampling (HBSS), Value Bi-
ased Stochastic Sampling (VBSS), Value Biased Stochastic Sampling seeded Hill-
Climber (VBSS-HS) and simulated annealing. The best goal function value ob-
tained by their approaches was published in the literature and presented on the
web site http://www.ozone.ri.cmu.edu/benchmarks.html as upper bounds of
the benchmark problems. These upper bounds were next improved by Cicirello
[79] by genetic algorithm, Lin and Ying [173] by tabu search, simulated annealing
and genetic algorithm, and Liao and Juan [172] by the ant optimization. Bozejko
and Wodecki [45] proposed a parallel metaheuristic for the problem under consid-
eration improving the best known solution values for the benchmark instances of
Cicirello and Smith [78].

62 Chapter 3. Scheduling problems

The lower bound from the assignment problem

The linear Assignment Problem (AP) can be applied to determine the lower bound
of the value of the sequence dependent setup times (SDST') problem solution. This
problem can be formulated as follows

7{2}1& £ Cin(i)s (39)
1=

where m € ®,, is a permutation and elements of the matrix [Cz‘,j] kxk are called
costs. Next, we define a cost matrix by using setup times such that the solution
of AP gives us a lower bound of the goal function.

Blocks in solutions

For the SDST problem, each schedule of jobs can be represented by permutation
7= (m(1),7(2),...,7(n — 1),7(n)) of the set of jobs J. If Cr; is the time of
finishing a job w(i) € J then the job is considered on time if it is completed
before its due date (Cr(;y < dr(;)), and tardy if completed after its due date (i.e.,
Cr(iy > dr(i))-

Let

Buy = (m(a),m(a+1),...,m(b—1),m(b)) (3.10)

be a subsequence (1 < a < b < n) of a permutation 7 € ®,,. Therefore

b
WT(Bay) =Y wa(i) - Trgiy: (3.11)

is a cost and L(Bap) = Crv) + Sx(b),x(b+1) 18 a length Bay, where

j—1

Cr(j) = Sox(1) T Z (Pr(i) + () r(i+1)) TPy 1=1,2,...,m. (3.12)
i1

By ®(Bgp) € ®,, we define a set of permutations which differ from 7 only in the
sequence of elements in positions a,a + 1,...,b, that is,

O(By)={B€®: 7(i)=p63G), i=1,2,...,a—1,b+1,...,n

and Y(Baw) = V(85)}, (3.13)

where Y(Bg) = {m(a),m(a+1),...,7(b—1),m(b)} is a set of elements belonging
to a subsequence Bgp. For By, let

F™in(B,,) < min{F(5): 6 € ®(Buw)}, (3.14)

3.8. Single machine scheduling problems 63

F™(Bgpy) > max{F(d) : 6 € ®(Bg)}- (3.15)

That is why it is the lower (3.14) and upper bound (3.15) of value of the goal
function F' for permutations from a set ®(Bgp). Then, if a permutation v €
®(By,), s0 F™(By) < F(vy) < F™3(By,). Function F can be a cost WT or a
length L of a permutation.

Subsequence By is 0-close to optimal subsequence (we call it #-optimal), if

F(Ba) € [F™™(Bgp), F™™(By) + 0 - (F™(Bg,) — F™(By))] (3.16)

where 6 € [0, 1] is a parameter determined experimentally.

For an SDST problem the goal is to minimize the sum of tardiness costs. Let
B,y be a subsequence (defined in (3.10)) of permutation 7 € ®. The sum of
tardiness costs can be found as

n a—1 b
WT(m) =Y wayTey = O wayTriy + D Wity Ty +
i1 i1 i—a
+ Z w,r(i)TW(i). (3.17)
i=bt1

The change of the schedule of elements in B, can generate a permutation with
lower cost from the permutation m, if

1. the cost of execution of jobs from B, decreases, or

2. the length of By, gets shorter.

Next, we shall define two types of subsequences consisting of on-time and tardy
jobs, which we call T-blocks or D-blocks, respectively. They are applied to elim-
inate ‘worse’ elements from neighborhoods determined in a scatter search algo-
rithm. We will not consider permutations generated from 7 by changing an order
of elements in any T or D block.

Blocks of on-time jobs
A subsequence Ty = (7(a), w(a+1),...,m(b—1),m(b)) is a T-block in permutation
m € d,, if
(a) each job from Ty, is on-time in a permutation , that is,
Vi € Y(Tab), Cr(jy < du(j);
(b) due to the length L, subsequence Ty, is 6-optimal.

Further on, we shall present procedures of calculating the lower bound L™ (7,)
and the upper bound L™#*(7g) of the length L(3) (8 € ®,(Ta), that is, values
which appear in the definition of 8-optimality (see 3.16).

64 Chapter 3. Scheduling problems

Lower bound of the length L™"(7,;,)

Execution times of jobs from) (7,5) and setup times influence the length L(7p).
Changing an order of jobs changes setup times but it does not have any influence
on times of job finishing. Therefore, to minimize L(7,5) we have to determine an
order of elements from)(7,5) due to setup times. A lower bound of the length
L™ (T,,) will be determined by solving an assignment problem.

By h =b—a+ 1 we mean a number of jobs in 7. For a job AP we define a
matrix of costs C' of size (h +2) x (h + 2):

Cij = STI'(CL+’L’*1)7T(CL+7:)7 Z7j = O)]-) 25 cevy h + 17 l # j (318)

and ¢;; =00, 1 =0,1,2,...,h+ 1, copq1) = 0.

If a =1 (ajob m(a) is the first element in 7), then 7(0) =0 and ¢;; = Som(i)-
Similarly, if b = n, thus m(n + 1) = n + 1 and crn)rn+1) = Srmyo- If CHp is a
value of optimal solution of an Assignment Problem (with a cost matrix defined
in (3.18)), then

b
LB (Tw) = Cr(a—1) + CEB + D pri) (3.19)

i=a

is the lower bound of the length L(37) of any subsequence 57, where 8 € ®,,(Tz).
Thus, as the lower bound of the length of permutations from a set ®,,(74) we
can take

L™ (Tap) = LB"(Tap) + > Da(i) + Smiimii+1)- (3.20)
i=bt1

Upper bound of the length L™*(7,;)

The definition of cost matrix C' = [¢; j](n42)x (n42) for the Assignment Problem
has been presented in the previous section (Lower bound of the length L™ (Tgp)).
We change the weight of the edge {0, + 1} in C by assigning cy(;+1) = —00 and
cii = —o00, 1 =0,1,...,h+ 1. Next, we solve the ‘modified’ assignment problem
(with a new matrix C') to determine the mazimal solution. Let C'{3* be the value
of this solution. Then

b
UB"(Tay) = Cr(ac1) + CRP + D pri (3.21)
i=a

3.8. Single machine scheduling problems 65

is an upper bound of the length L(87) of any subsequence 57, 3 € ®,,(7q). That
is why we take

L™(Tap) = UB™(Tap) + > Dr(i) + Sr(im(ic) (3.22)
i=b+1

as the upper bound of the length of permutation from the set @, (7).

Blocks of tardy jobs

The subsequence
Do = (m(a),m(a+1),...,7(b) (1 <a<b<n) (3.23)
is a D-block in a permutation m € ®,,, if

(al) any job from Y(Dg,) moved in the first position in Dy, is tardy,
(bl) Dgp is O-optimal (due to cost function WT),
(c1) Dgyp is O-optimal (due to the length (function L).

In the sequel, methods of determining constraints for the goal function value will
be presented. They appear in the 8-optimality definition (point bl).

Lower bound of a cost WT™"(D,;)

The lower bound of a cost will be determined by solving an assignment prob-
lem. Elements of the matrix are determined as follows: let Dy, be a subsequence
determined by (3.23) and h = b — a + 1 number of its elements. We construct
a full graph G(Dy) = (V,E) with weighted vertices and arcs. A set of vertices
V ={0,1,2,...,h,h+ 1} and arcs € = {{u,v} : u,v €V A u # v}. A vertex i
(1=0,1,2,...,h+1) is connected with a job m(a —i — 1) when 0 represents a job
Dy, which is a predecessor: m(a—1) (if @ = 1 then 7(0) = 0). On the other hand,
h+1 represents a first job after Dyp, a job w(b+1) (if b = n then m(n+1) = n+1).
A weight of a vertex 7 is the time of executing a job prqti—1), (i = 1,2,...,h).
A weight of the vertex 0 is 0 and a weight of a vertex h + 1 is co. This graph has
also weighted arcs. A weight of an arc {u,v} € £ equals the setup time between
jobs m(a +u — 1) and 7(a + v — 1) (therefore sr(qiu—1)r(atv—1)), and a weight
of an arc {0,h + 1} is co. A model graph G(Dy;) for a 3-element subsequence is
presented in Figure 3.1 (only some weights of arcs and vertices have been shown).
Based on this kind of a graph we shall determine the earliest times of finishing
jobs placed in particular positions in Dgy.

66 Chapter 3. Scheduling problems

© @

Fig. 3.1. An example of a graph with weighted vertices and arcs for a 3-element
subsequence.

Let tj ; be the earliest possible time of finishing a job k € J(Dgp) which is in
the position 7, a < j < b (then a job k is preceded by j —a elements from Y (Dgy)).
From the construction of the graph G(Dyp) it follows that #j ; is a length of the
shortest path from the vertex 0 to k consisting of ezactly j —a vertices (excluding
vertices 0 and k). These paths and their lengths can be determined by using the
Floyd-Warshall algorithm. Using these paths we can determine elements of the
cost matrix D = [d;j]p,.p, for the assignment problem in the following way

dij = Wr(a+i—1) 'mal’{oatn(aﬂ—l),j - dﬂ'(a-l-i—l)} (3.24)

fori#j, 1,7 =1,2,...,h and for dj; = 00, j =1,2,...,hidy, = oo. The value
of d;j is lower bound of the cost of job ¢, executed as the j-th one among all jobs
from the set Y(Dgp).

Let W3(D,,;) be the value of the optimal (i.e., minimal) solution of an as-
signment problem with the cost matrix determined in (3.24). In the beginning
part of Section 3.3.3 the method of calculation of the lower bound value for the
length LBY(T,) was introduced (see (3.19)). Applying this procedure we can
calculate LB*(Dg3) — the same approximation for the D-block. Hence, the lower
bound of finishing times of jobs which follow D,y in 7, C; (i = b+ 1,...,n) can
be determined from the following recurrent relations

Cr(pri) = Cr(pri-1) t Sa(bri-D)n(b+i) T Pr(oti)s ¢ = 2,3,...,1, (3.25)
where Crp41) = LB (Ta) + Min{Sizp41 * 1 € V(Dab)} + Pr(vti)-
Therefore, the lower bound of costs of permutations from the set ®,,(Dyp)

a—1

WTmin(Dab) — Z wﬂ'(l) . mam{O’ CTI'(Z) — dw(l)} + ng}iDn(Dab) +
i=1

3.8. Single machine scheduling problems 67

+ Z W () * max{O, Cﬂ.(l) — dﬂ.(l)} (326)
i=b+1

The first sum is the cost of executing jobs m(1),7(2),...,7(a — 1). The second
component of the sum is a lower bound of cost of executing jobs from Dg,. The
last sum is the lower bound of execution of jobs w(b+ 1), 7(b+2),...,7(n).

Upper bound of the cost WT™#(D,,)

On the basis of the graph (presented in the last section) with weighted vertices
and arcs G(Dyp) we determine a cost matrix D = [d;j]pxp (due to (3.24)), where
dj; = —o0, j=1,2,...,hand dy, = —00. Next, we solve the modified assignment
problem (with cost matrix D) determining a mazimal solution. Let W}5* be the
value of this solution.

Similarly as in the determination procedure of the upper bound of the length
L™*(Ta), we can calculate approximation of the length of a D-block. Then
the upper bound of finishing times of jobs from D, can be calculated from the
following recurrent relation

Cr(pri) = Cr(pri-1) T Sa(bri-)sn(b+i) T Pr(pri)s = 2,351 (3.27)

where Cryy1) = UBY(Dap) + min{sizpy1 : i € V(Dap)} + Pr(b+i) The upper
bound of costs of permutations from the set ®,,(D,y) is expressed by

a—1
WT™™ (D) = Y wr(sy - maa{0, Cr(iy — driiy} + WAS (D) +
i—1

+ Z W (5) - max{0, Cﬂ(i) — dw(i)}- (3.28)
i=b+1

The first sum is the cost of execution of jobs 7(1),7(2),...,7(a —1). The second
component of the sum is the upper bound of cost of jobs from the set D,,. The
last sum is the upper bound of cost of jobs w(b+ 1), 7(b+ 2),...,m(n). An algo-
rithm of determining this upper bound has computational complexity O(n?).

Determining blocks in permutation

At the beginning the value of § parameter (which appears in the definition of
0-optimality, see (3.16)) has to be experimentally determined. We will consider
only blocks which contain at least 3 elements. So we are finding a subsequence

68 Chapter 3. Scheduling problems

which fulfills condition (a) (or (al)) and next we are checking all the remaining
conditions.

Let a permutation m € ®,,. We consider consecutively elements of permutation
(1), 7(2),...,m(n) distinguishing two situations (cases): a current job is on-time
or it is late.

Case 1. Let us assume that a job m(1) is on-time in the permutation 7. Then,
it is a candidate to be the first element in a 7-block. If jobs m(2) and 7(3) are
also on-time then we are checking if subsequence Ty, = (7(1)7(2),7(3)) fulfills
constraint (b) in the definition of T-block. If yes, we have the first 3-element
block, which we would like to enhance by checking if after adding succeeding jobs
we will also obtain a T-block. If it is impossible to enhance the block by adding
the next job then this job becomes the first one of the consecutive block. In turn,
if a job 7(2) or 7(3) is not on-time, or jobs 7(1),7(2) and 7(3) are on-time but do
not fulfill constraint (b) in the definition of 7-block, then the construction of the
next block has to start with job 7(2), which is a candidate to be the first element
in the block.

Case 2. Let us assume that a job 7(1) is late in a permutation 7. Then, this
job is a candidate to be the first one in a D-block. Next, we proceed as in Case 1
(checking constraints (a), (bl) and (cl) for a D-block).

In such a way we determine blocks (if they exist) in any permutation from the
set of solutions ®,,. The sequential computational complexity of the algorithm of
block determination in permutation is O(n3). The existence of blocks and their
number depend largely on the value of parameter 6.

3.3.4. Earliness/tardiness penalties

There are some types of manufacturing systems, called Just In Time (JIT), where
costs are connected not only with executing a job too late, but also too early.
Such a situation occurs especially when tasks are connected directly with the
Web, e.g. routing, agents, similarity classification, etc. This induces formulation
of many optimization problems with goal functions, where there is a penalty for
both tardiness and earliness of a job. The problem of scheduling with earliness
and tardiness (total weighted earliness/tardiness problem, TWET') is one of the
most frequently considered in the literature. In this problem, each job from a set
J ={1,2,...,n} has to be processed, without interruption, on a machine, which
can execute at most one job at a time. By p; we represent the execution time of
a job ¢ € J, and by e; and d; we mean the required earliest and latest moments
of finishing the processing of a job. If scheduling of jobs is established and Cj is
the moment of finishing a job 7, then we call E; = max{0,e; — C;} an earliness
and T; = max{0,C; — d;} a tardiness. The expression w;F; + w;T is the cost of
executing a job, where u; and w; (i € J) are nonnegative coefficients of a goal

3.8. Single machine scheduling problems 69

function. The problem consists in minimizing the sum of costs of jobs, that is, in
finding a job sequence 7" € ®,, such that for the goal function

n

F(?T) = Z (UW(Z)Eﬂ.(Z) + ’U)ﬂ.(i)Tﬂ.(i)), e d,, (3.29)
=1
we have
F(m*) = min F(m). (3.30)

This problem is represented by 1|| Y (u; E; + w;T;) in the literature and it belongs
to a strongly NP-hard class (if we assume u; = 0,7 = 1,2,...,n, we will obtain
a strongly NP-hard problem 1|| " w;T;, Lawler [162] and Lenstra et al. [168]).
Baker and Scudder [17] proved that there can be an idle time in an optimal
solution (jobs need not to be processed directly one after another), that is Cr(it1)—
Pr(i+1) = Cr(), = 1,2,...,n — 1. Solving the problem amounts to establishing
a sequence of jobs and their starting times. Hoogeven and van de Velde [13§]
proposed an algorithm based on the branch and bound method. Because of the
computation time growing exponentially, this algorithm can be applied only to
solve instances where the number of jobs is not greater than 20. Therefore, in
practice almost always approximate algorithms are used. The best ones are based
on artificial intelligence methods. Calculations are performed in two stages.

e Determining the scheduling of jobs (with no idle times).

e Establishing optimal starting times of jobs.

There is an algorithm in the paper of Wan and Yen [262]| based on this scheme - a
tabu search algorithm is used to determine a schedule. Bozejko and Wodecki [57]
proposed a parallel coevolutionary algorithm for the problem under consideration.

Block properties

For the TWET-no-idle problem, each schedule of jobs can be represented by
permutation 7 = (7(1),7(2),...,7(n)) of elements of the set of jobs J. Let
®,, denote the set of all such permutations. The total cost 7 € ®,, is F(7) =
Y oic1 fr()(Cr(iy), where Cr(; is the completion time of the job 7(i), Cry =
22:1 Pr(j)- The job (i) is considered early if it is completed before its earli-
est moment of finishing (Cr ;) < ex(;)), on time if ex;) < Crpy < dr(iy, and tardy
if the job is completed after its due date (i.e., Cr(;) > dr(s))-

Each permutation 7 € ®,, is decomposed into subpermutations (subsequences
of jobs) B = (B!, B2,..., BY) called blocks in 7, where

70 Chapter 3. Scheduling problems

1. B'= (n(a;),n(a; +1),...,7(bj — 1), 7(b;)), and
a;=b_1+1, 1<i<w, ag=0, b, =n.

2. All the jobs j € B satisfy the following conditions:

ej > Cr(vy)s (C1)
e; < Crp,_y) +pj and dj > Crp,), (C2)

3. B; are maximal subsequences of 7 in which all the jobs satisfy either Con-
dition C'1 or Condition C2 or Condition C3.

By definition, there exist three types of blocks implied by either C1 or C2 or
C3. To distinguish them, we will use the E-block, O-block and T-block notions
respectively. For any block Y in a partition B of permutation 7 € ®,,, let

Fy(m) = ZM (wi B; + wiT}). (3.31)
Therefore, the value of a goal function

F(r) = Z; (wBi +wiT) =y Fr(m). (3.32)

If T is a T-block, then every job inside is early. Therefore, an optimal sequence
of the jobs within T of the permutation 7 (that is minimizing Fy(7)) can be
obtained, using the well-known Weighted Shortest Processing Time (WSPT) rule,
proposed by Smith [229]. The WSPT rule creates an optimal sequence of jobs
in a non-increasing order of the ratios w;/p;. Similarly, if T is an E-block, then
an optimal sequence of the jobs within it can be obtained, using the Weighted
Longest Processing Time (WLPT) rule which creates a sequence of jobs in a non-
decreasing order of the ratios u;/p;. Partition B of the permutation 7 is ordered
if there are jobs in the WSPT sequence in any T-block, and if there are jobs in
the WLPT sequence in any E-block.

Theorem 3.1 ([53]). Let Y be an ordered partition of a permutation m € ®,, into
blocks. If 5 € ®,, and F(B) < F(m), so at least one job of some block of m has
been moved before the first or after the last job of this block in the permutation .

Note that Theorem 3.1 provides the necessary condition for obtaining a permu-
tation 3 from 7 such that F(8) < F(w). Let B = (B!, B%,..., BY) be an ordered
partition of the permutation m € ®,, into blocks. If a job 7(j) € B* (B € B),
then moves which can improve the goal function value consist in reordering a job
7(7) before the first or after the last job of this block. Let le?f and N;’f be sets

3.4. Flow shop problems 71

of such moves (N]I?f = () for j € B! and N;f = () for j € B"). Therefore, the
neighborhood of the permutation 7 € ®,,,

N(r) = NI ul Ny (3.33)
j=1 j=1

As computational experiments show, the size of the neighborhood defined in (3.33)
is half that of the neighborhood of all the insert moves.

3.4. Flow shop problems

We can see the process of jobs flowing through machines (processors) in many
practical problems of scheduling: in computer systems as well as in production
systems. Thus the flow shop scheduling problem represents a wide class of pos-
sible applications, depending on the cost function definition. For each of them,
an corresponding discrete model has to be constructed and analyzed. Some of
them (e.g. with the makespan criterion and with total weighted tardiness cost
function) have got a special elimination-criteria (so-called block properties) which
significantly speed up the calculation, especially in the multithread computing
environment.

3.4.1. Formulation of problems

The problem has been introduced as follows. There are n jobs from a set J =
{1,2,...,n} to be processed in a production system having m machines, indexed
by 1,2,...,m, organized in the line (sequential structure). A single job reflects
one final product (or sub product) manufacturing. Each job is performed in m
subsequent stages, in a way common to all the tasks. The stage ¢ is performed
by a machine 7, + = 1,2,...,m. Each job j € J is split into a sequence of m
operations O1j, Ozj, ..., Onp; performed on machines. The operation O;; reflects
processing of job j on machine ¢ with processing time p;; > 0. Once started the
job cannot be interrupted. Each machine can execute at most one job at a time,
each job can be processed on at most one machine at a time.

The flow shop problem with makespan criterion

The sequence of loading jobs into a system is represented by a permutation m =
(m(1),...,m(n)) of elements of the set 7. The optimization problem is to find the
optimal sequence 7* so that

Crnax (") = min Cpyax () (3.34)

7T€¢’n

72 Chapter 3. Scheduling problems

where Cpax(7) is the makespan for a permutation 7 and ®,, is the set of all
permutations of elements of the set J. Denoting by C;; the completion time of
job j on machine i we have Cax(m) = Cp, r(n). Values Cj; can be found by using
either the recursive formula

Cin(j) = MaxX{Ci_1,x(j), Cim(j-1)} + Pin(s) (3.35)
i=1,2,...,m,j=1,2,...,n, with initial conditions Cj) =0, =1,2,...,m,
Corj) = 0,7 =1,2,...,n, or a non-recursive one

i i
Cin(j) = I—jo<i e <jimj ; kzzj;_lps”(k)' (3:36)

Computational complexity of (3.35) is O(mn), whereas for (3.36) it is

(n 4+ m)"1

O +i=1) = 0 =y,

). (3.37)
In practice the former formula has been commonly used. It should be noticed
that the problem of transforming sequential algorithm for scheduling problems
into parallel one is nontrivial because of the strongly sequential character of com-
putations carried out using (3.35) and other known scheduling algorithms.
Johnson [150] gave an O(n logn) algorithm for F'|2|Cpax and Garey et al. [115]
shown that F'|3|Cpax is strongly NP-hard. The best available branch and bound
algorithms are these of Ignall, Schrage [140], Lageweg, Lenstra & Rinnooy Kan
[161] and Grabowski [120]. Their performance is not entirely satisfactory though
they experience difficulty in solving instances with 20 jobs and 5 machines.
Various serial and parallel local search methods are available for the permu-
tation flow shop problem. Tabu search algorithms were proposed by Taillard
[243], Reeves [216], Nowicki and Smutnicki [196], Grabowski and Wodecki [118].
Simulated annealing algorithms were proposed by Osman, Potts [203], Ogbu and
Smith [201] and Ishibushi, Misaki and Tanaka [142]. Reeves [217] proposed a ge-
netic algorithm which uses the reorder crossover. Bozejko and Wodecki [38] ap-
plied this method in the parallel path-relinking method used to solve the flow
shop scheduling problem. Bozejko and Wodecki also proposed a parallel scatter
search [40] and parallel tabu search [58] method for this problem. Bozejko and
Pempera [41] presented a parallel tabu search algorithm for the permutation flow
shop problem of minimizing the criterion of the sum of job completion times.
Bozejko and Wodecki also proposed a simulated annealing algorithm for the flow
shop problem with Chax [63] and Cgum [59] criterion. Bozejko, Hejducki and
Wodecki [42] proposed the fuzzy blocks conception in application to the genetic

3.4. Flow shop problems 73

algorithm for this problem. Bozejko and Wodecki [43| proposed applying multi-
moves in parallel genetic algorithm for the flow shop problem. The theoretical
properties of these multi-moves were considered by Bozejko and Wodecki in papers
[46, 48, 49]. A survey of single-walk parallelization methods of the cost function
calculation and neighborhood searching for the flow shop problem can be found in
Bozejko [62].

In the batching systems (all jobs are available at the beginning) a rating is
made by a maximal flow time (makespan) or an average flow time (equivalent to
>-Cj). Thus these two problems are most interesting from the practical point
of view. The minimal makespan maximizes simultaneously the utilization rate of
the machine park;) C; minimizes the volume of the work in progress.

The flow shop problem with Cgyy,, criterion

The objective is to find a schedule which minimizes the sum of job completion
times. The problem is denoted by F'||Csum. There are plenty of good heuristic al-
gorithms for solving F'||Cpax flow shop problem, with the objective of minimizing
maximal job completion times. Due to the special properties (blocks of a critical
path, see previous section and [121]) it is regarded as an easier one than a problem
with objective Cgym. Unfortunately, there are no similar properties (which can
speed up computations) for the F||Csym flow shop problem. Constructive algo-
rithms (LIT and SPD from [264]) possess low efficiency and can only be applied
to a limited range. There is a hybrid algorithm in [215], consisting of elements of
tabu search, simulated annealing and path relinking methods. The results of this
algorithm, applied to Taillard benchmark tests [243] are the best known ones in
the literature nowadays. A theoretical analysis of the flow shop problem with the
mean completion time criterion, which is a derivative of the criterion considered
here, was made by Smutnicki [232, 233|.

The flow shop problem with the criterion of the sum of job completion times
can be formulated using notations from the previous paragraph. We wish to find
a permutation 7" € ®,, such that

n

Coum (7*) = min Cuum(m), where Coum(7) = Cron(y)- (3.38)

Ted, :
J=1

The formula Cjr(;) denotes the time required to complete the j-th job on the
machine 7 in the processing order given by the permutation w. The completion
time of job 7(j) on machine m can be found by applying the same formulas (3.35)
or (3.36) as in the problem with a makespan criterion.

74 Chapter 3. Scheduling problems

3.4.2. Models

Values Cj; from equations (3.35) and (3.36) can also be determined by means of
a graph model of the flow shop problem. For a given sequence of job execution
7 € ®,, we create a graph G(7) = (M x N, FOU F*), where M = {1,2,...,m},
N ={1,2,...,n}.

HC?

O (s +1,0)) (3.39)

is a set of technological arcs (vertical) and

||C3

L_J (s,t+1))} (3.40)

is a set of sequencing arcs (horizontal).

Arcs of the graph G(7) have no weights, but each vertex (s,t) has as weight
Psr(t)- A time Cj; of finishing a job 7(j), j = 1,2,...,n on machine i, i =
1,2,...,m equals the length of the longest path from vertex (1,1) to vertex (4,7)
including the weight of the last one. A sample ‘mesh’ graph G(7) is shown in
Figure 3.2. The mesh is always the same, vertices weights depend on the 7. For
the F'||Chax problem the value of the criterion function for fixed sequence 7 equals
the length of the critical path in the graph G(w). For the F'||Csym problem the
value of the criterion function is the sum of lengths of the longest paths which
begin from vertex (1,1) and ends on vertices (m, 1), (m,2),...,(m,n).

The graph G(7) is also strongly connected with formulas (3.35) and (3.36) of
completion times Cj; calculation. By using formula (3.35), it is enough to generate
consecutive vertices, column after column (or row after row) taking in the vertex
(4,7), connected with the Cj;, a greater value from the left vertex, C;;_1, and
from the upper one, C;_1;, and adding p;; to it. Such a procedure generates
the longest path in the graph G(7) in time O(nm). Formula (3.36) can also be
presented as the longest path generation algorithm, but its conception is based
on the all horizontal sub-paths generation and its computational complexity is
exponential.

3.4.3. Properties

The longest path in graph G() for a solution 7 of the flow shop problem defined
in Section 3.4.2 is called a critical path with respective 7. Its length is Cryax (7).
The critical path is decomposed into subsequences B, Bs, ..., B,, called blocks
in m, where

3.4. Flow shop problems 75

1 2 3 . Nl n jobs
1 (1,2 o (12) o (13 (An-1) (1,n)
(2,n-1) (2,n)

(3,n-1) (3,n)

(m1n-1) (m,n)
machines
Fig. 3.2. Graph G(7) (from Bozejko et al. [35]).
a) By = (7(fi),7(fx +1),...,7(le — 1), 7(lk)), fr < I, fr = LIk = k and
™ lk) :W(fk+1), k= 172,...,m— 17

b) By contains operations processed on the same machine, for k = 1,2,...,m,

¢) two consecutive blocks contain operations processed on different machines.

In other words, the block is a maximal subsequence of the critical path which
contains operations processed on the same machine. Operations 7(fx) and 7(lx)
in By are called the first and the last ones, respectively.

Theorem 3.2 ([120]). Let G(7) be a graph with blocks By, k = 1,2,...,m. If
the graph G(w) has been obtained from G(m) by the interchange of jobs and if
Crnax(w) < Cpax(7), then in G(w):

(i) at least one job j € By, precedes job w(fi), for some k=2,...,m, or

(7) at least one job j € By, succeeds job w(ly), for some k=1,2,...,m — 1.

This theorem provides the necessary condition for obtaining a permutation
such that Cpax(w) < Chax(m). We need to move jobs from the set By before the
first job 7(f%), and jobs from the set By after the last w(lg), k = 1,2,...,m to
obtain a permutation w from a permutation 7 such that Crax(w) < Chax (7).

For a job j € Bx\{m(fx)} let

A;(j) _ { Pjk—1 = Pr(fy),k—1s] # m(lk), (3.41)
Pjk—1 = Pr(fi)h-1 + Prp—1) ki1 = Piksr, J = (),

76 Chapter 3. Scheduling problems

and for j € Bi\{m(lx)}

AL) = { Pjk+1 — Pr(ly) k41 77 7 (i), (3.42)
k Pr(fpt1)k—1 — Pjk—1 + Djk+1 = Prp)k+1, J = 7(fr),

where k =1,2,...,m and pr;);, =0,1>n,j <lorj>k.

Theorem 3.3 ([120]). For each m € ®,,, if B is the permutation obtained from
m by moving job j, (j € By) before the first or after the last job in block By, then
we obtain

Cmax(ﬁ) > Cmax(ﬂ') + AZ(]) or Cmax(,ﬁ) > Cmax(ﬂ') + A]; (]) (343)

By moving job j € By, before m(fi) or after w(I)) in 7, we generate permutation
$ and the lower bound on the value Crax(8) is > Crax(7) + A (4) or Crax(m) +
A} (j). Thus, the values A, (j) and A} (j) can be used to decide which job should
be moved.

3.4.4. Transport times

The flow shop problem with transport times can be defined as follows. For each
job there is defined the transport time of jobs between machines. Variable ¢;;
determines the transport time of a job j from machine ¢ to machine i + 1,
i =1,...,m —1. A case t;; > 0 has a natural practical justification and it
requires no commentary. A case t;; < 0 means the permission for ‘overlapping’ of
subsequent job operations, or the start of the next job operation with some time
delay compared to the start of the current operation and before its completion.
Assuming that the sequence of carrying out jobs is determined by a permu-
tation 7 in a permutational flow shop problem with transport, the times of job
completion can be determined on the basis of the following conditions

CZﬂ'(j) 2 Ciﬁ(j—l) +p27r(j)7 1=]., 2, .., M,] = 1, 2, ceey (344)

Cir(j) 2 Cic12() + Pin(j) T ticia)s 1=1,2,...,m, j=1,2,...,n, (3.45)
which let us obtain the recurrent formula (for Ciphax and Csuy, criteria)

Cir(j)y = max{C; (j—1), Ci—1,x(j) T ti=1,7()} + Pin(j) (3.46)

for i = 1,2,...,m, j = 1,2,...,n, where w(0) = 0, but for negative t;; there
should be Ci(] :0, 1= 1,2,...,n, C(]l :0, C()j = —0Q, j :2,3,...,m.

3.5. Job shop problems

Job shop scheduling problems follow from many real-world cases, which means
that they have good practical applications as well as industrial significance.

3.5. Job shop problems 77

3.5.1. Problem definition

Let us consider a set of jobs J = {1,2,...,n}, aset of machines M = {1,2,...,m}
and a set of operations O = {1,2,...,0}. The set O is decomposed into subsets
connected with jobs. A job j consists of a sequence of o; operations indexed
consecutively by (I;—1+1, [;_1+2, ..., l;) which have to be executed in this order,
where [; = Zgzl 0; is the total number of operations of the first j jobs, 7 = 1,
2, ...,n,lp =0, 0 =o0. An operation i has to be executed on machine
v; € M without any idleness in time p; > 0, ¢ € O. Each machine can execute
at most one operation at a time. A feasible solution constitutes a vector of times
of the operation execution beginning S= (51, S, ..., S,) such that the following
constraints are fulfilled

Sy 1120, j=12...n, (3.47)

Si+pi§8i+17 /L.:lj—l—i_la lj—1+2)"'alj_1) j:172)"'7n7 (348)
Si+pi<S; or Sj+p; <8 i,j€0, vi=vj, i#] (3.49)

Certainly, C; = S; +p;. An appropriate criterion function has to be added to the
above constraints. The most frequent are the following two criteria: minimization
of the time of finishing all the jobs and minimization of the sum of job finishing
times. From the formulation of the problem we have C; = Cj,, j € J.

The first criterion, the time of finishing all the jobs

Chax(S) = 11%1%)(” Cy,, (3.50)
corresponds to the problem denoted as J||Cpax in the literature. The second
criterion, the sum of job finishing times

C(S) = znjclj, (3.51)
j=1

corresponds to the problem denoted as J|| Y C; in the literature.

Both problems described are strongly NP-hard and although they are similarly
modelled, the second one is found to be harder because of the lack of some specific
properties (so-called block properties, see [196]) used in optimization of execution
time of solution algorithms. Because of NP-hardness of the problem heuristics
and metaheuristics are recommended as ‘the most reasonable’ solution methods.
The majority of these methods refer to the makespan minimization. We mention
here a few recent studies: Jain, Rangaswamy, and Meeran [145]; Pezzella and
Merelli [206]; Grabowski and Wodecki [119]; Nowicki and Smutnicki [198]; Bozejko
and Uchronski [32]. Smutnicki and Tyniski [231] proposed a new crossover operator

78 Chapter 3. Scheduling problems

- ’ . v’ 1 Pid
. P
. ‘. 2, ' .
PR 0, !
e . . | ‘
. ; P .
5 . , 6 - . | .
- , R N
. ’ e , Y
2 , . .
. .
7 e A
, .. L0
. . > P
' , ’ AN . '
] ’ ’ 4 ~ s !
. ! p , . NP 1
Jons ' 4 / 4 s
/ , .] i
[’ , ‘. . ~ I
"o , . 8 . ~
, . N i
’ , . . AN |
) S - N
A
0—‘—H
’ v
S, -
3 7 /. - 9
4 ’ -
’ ’ -
’ ’ -
S, .
.

Fig. 3.3. An example of disjunctive graph for the job shop problem.

for the job shop problem used in a genetic algorithm. Also heuristics algorithms
based on dispatching rules are proposed in papers of Holthaus and Rajendran
[137|, Bushee and Svestka [69] for the problem under consideration. For the other
regular criteria such as the total tardiness there are proposed metaheuristics based
on various local search techniques: simulated annealing [133], [263], tabu search
[14] and genetic search [182].

3.5.2. Models and properties

The most commonly used models of job shop scheduling problems are based on
the disjunctive or the combinatorial approaches. Both these models are presented
in this section.

Disjunctive model

The disjunctive model is most commonly used, however it is very unpractical from
the point of view of efficiency (and computational complexity). It is based on the
notion of disjunctive graph G = (O,U U V). This graph has a set of vertices
O which represent operations, a set of conjunctive arcs (directed) which show
technological order of operation execution

n -1
v= U {Gi+1} (3.52)

j=li=l;_1+1

3.5. Job shop problems 79

jobs

Fig. 3.4. An example of the graph G(W) for the job shop problem.

and the set of disjunctive arcs (non-directed) which show possible schedule of
operations execution on each machine

v= U {GH.Ga} (3.53)

i’jeovi#jvvi:Uj

An example of the disjunctive graph is presented on Figure 3.3 (numbers near
vertices are operation numbers, jobs are placed in rows and connected by solid
arrows; disjunctive arcs are drawn as broken lines). Disjunctive arcs {(4, j),(4,%)}
are in fact pairs of directed arcs with inverted directions, which connect vertices
? and j.

A vertex i € O has a weight p; which equals the time of execution of operation
O;. Arcs have the weight zero. A choice of exactly one arc from the set {(7, j),(7,7)}
corresponds to determining a schedule of operations execution — ‘4 before 5’ or ‘j
before i’. A subset W C V consisting of exclusively directed arcs, at most one
from each pair {(¢,7),(j,i)}, we call a representation of disjunctive arcs. Such
a representation is complete if all the disjunctive arcs have determined direction.
A complete representation, defining a precedence relation of jobs execution on the
same machine, generates one solution, not always feasible, if it includes cycles.
A feasible solution is generated by a complete representation W such that the
graph G(W) = (O,U U W) is acyclic (see Figure 3.4). For a feasible schedule
values S; of the vector of operations execution starting times S= (S1, So, ...,
S,) can be determined as a length of the longest path incoming to the vertex i
(without p;). As the graph G(W) includes o vertices and O(0?) arcs, therefore
determining the value of the cost function for a given representation W takes the
time O(0?) by using Bellman algorithm of paths in graphs determination.

80 Chapter 3. Scheduling problems

1 .—7—”—’
P -
, . .
7 Pid P
, .
’ // .
B
/ .
,
5 . 6 .- .
, . .
v Vid
, .
2 ° ..‘ .
.
y 7) .
4 v P
l ’ ’ -
I , , -
.Obs l l/ v’ -
j I , .
, .
' ’ /l //
[, .
[P 8 -7
, .
| K »
’ ’ -
3 7 -
7 -
; .- 9
/ -
’ -
’ -
, -
, -
’ -
v P
2

Fig. 3.5. An example of the G(7) graph of combinatorial model for the job shop
problem.

Combinatorial model

In the case of many applications a combinatorial representation of a solution is
better than a disjunctive model for the job shop problem. The presented model
follows that of Smutnicki [234]. It is void of redundance, characteristic of the
disjunctive graph, that is, the situation where many disjunctive graphs represent
the same solution of the job shop problem. A set of operations O can be decom-
posed into subsets of operations executed on a single, determined machine k € M,
My ={i € O:v; =k} and let my = |[Mj|. The schedule of operations execution
on a machine k is determined by a permutation 7 = (7x(1), 1,(2), ..., T (my))
of elements of the set My, k € M, where m(i) means such an element from My
which is in position 7 in 7. Let ®,(My) be a set of all permutations of ele-
ments of M. A schedule of operations execution on all machines is defined as
m = (71,72, ..., Tm), where 1 € @, &, = O, (M) X &, (Mz) x ... x &, (M,,).
For a schedule 7 we create a directed graph (digraph) G(w) = (O,U U E(n)) with
a set of vertices O and a set of arcs U U E(7)), where U is a set of constant arcs
representing the technological order of operations execution inside a job, and a
set of arcs representing an order of operations execution on machines is defined as

m mg—1
E(m) =] U {m@),mG+1)} (3.54)
k=1 =1

Each vertex ¢ € O has the weight p;, each arc has the weight zero. A schedule
7 is feasible if the graph G(m) does not include a cycle. For a given , terms of

3.6. Flexible job shop problems 81

operations beginning can be determined in time O(o) from the recurrent formula
Sj = max{S; + pi, Sk + pr},j € O. (3.55)

where an operation ¢ is a direct technological predecessor of the operation j € O
and an operation k is a directed machine predecessor of the operation j € O for a
fixed m. We assume S; = 0 for these operations j which have not any technological
or machine predecessors.

An example of the graph G(7) is given in Figure 3.5 for the same data, as
a disjunctive graph from Figure 3.3 — it is visible that the G(7) has a more
transparent structure and is void of redundance connected with superfluous arcs
of the disjunctive representation. For a given feasible schedule 7 the process of
determining the cost function value requires the time O(o), which is thus shorter
than for the disjunctive representation.

3.6. Flexible job shop problems

Flexible job shop problems constitute a generalization (hybridization) of the clas-
sic job shop problem. In this section, we discuss a flexible job shop problem in
which operations have to be executed on one machine from a set of dedicated
machines. Then, as a job shop problem it also belongs to the strongly NP-hard
class. Although exact algorithms based on a disjunctive graph representation of
the solution have been developed (see Pinedo |208]), they are not effective for
instances with more than 20 jobs and 10 machines.

Many approximate algorithms, chiefly metaheuristic, have been proposed.
Nowicki and Smutnicki [197] proposed a tabu search approach using block prop-
erties for the special case of the problem considered (flow shop problem with par-
allel machines). Hurink [139] developed the tabu search method for this problem.
Also Dauzére-Pérés and Pauli [93] used the tabu search approach extending the
disjunctive graph representation for the classic job shop problem taking into con-
sideration the assignment of operations to machines. Mastrolilli and Gambardella
[180] proposed a tabu search procedure with effective neighborhood functions for
the flexible job shop problem.

Many authors have proposed a method of assigning operations to machines
and then determining sequence of operations on each machine. This approach was
followed by Brandimarte [67] and Pauli [204]. These authors solved the assignment
problem (i.e., using dispatching rules) and next applied metaheuristics to solve
the job shop problem. Genetic approaches have been adopted to solve the flexible
job shop problem, too. Recent works are those of Jia et al. [149], Ho and Tay
[135], Kacem et al. [152], Pezzella et al. [207] and Bozejko et al. [31]. Gao et al.

82 Chapter 3. Scheduling problems

[111] proposed the hybrid genetic and variable neighborhood descent algorithm
for this problem.

3.6.1. Problem formulation

The flexible job shop problem (FJSP), also called the general job shop problem
with parallel machines, can be formulated as follows. Let J = {1,2,...,n} be a
set of jobs which have to be executed on machines from the set M = {1,2,...,m}.
There exists a partition of the set of machines into types, i.e., subsets of machines
with the same functional properties. A job constitutes a sequence of some oper-
ations. Each operation has to be executed on a dedicated type of machine (from
the nest) within a fixed time. The problem consists in the allocation of jobs to
machines of dedicated type and in determining the schedule of jobs execution on
each machine to minimize the total jobs finishing time. The following constraints
have to be fulfilled:

(i) each job has to be executed on only one machine of a determined type at
a time,
(7) machines cannot execute more than one job at a time,
(#i1) there are no idle times (i.e., the job execution must not be broken),

(iv) the technological order has to be obeyed.

Let O ={1,2,...,0} be the set of all operations. This set can be partitioned
into sequences corresponding to jobs where the job j € J is a sequence of o;
operations which have to be executed in an order on dedicated machines (i.e., in
the so-called technological order). Operations are indexed by numbers (l;_1 +
1,...,lj—14+0;) where [; = Zgzl 0; is the number of operations of the first j jobs,
j=1,2,...,n, where [y =0and 0o =Y ;" , 0;.

The set of machines M = {1,2,...,m} can be partitioned into ¢ subsets of the
same type (nests) where the i-th (i = 1,2,...,q) type M’ includes m; machines
which are indexed by numbers (t;—; + 1,...,t,_1 + m;), where t; = Z;“:l m; is
the number of machines in the first ¢ types, ¢ = 1,2,...,q, where tg = 0 and
m = 23:1 m;.

An operation v € O has to be executed on machines of the type p(v), i.e., on
one of the machines from the set (nest) M*®) in time p,; where j € MHY).

Let

OF={ve0: uk) =k} (3.56)

be a set of operations executed in the k-th nest (k = 1,2,...,¢). A sequence of
operations sets

Q: (917927"'7Qm)7 (357)

3.6. Flexible job shop problems 83

such that for each k =1,2,...,q

tg—1+mg
OF= |J Q and @NQ =0, i#j ij=12....m (358
i:tk_l-f—l

we call an assignment of operations from the set O to machines from the set M
(or shortly, machine workload).

A sequence (Qt—1+1 Qlk—1+2 Qlk—1+tMk) ig an assignment of operations
to machines in the i-th nest (shortly, an assignment in the i-th nest). In a special
case a machine can execute no operations and then a set of operations assigned
to be executed by this machine is an empty set.

Example 3.1. Let J = {J1,J2,J3} (n = 3) be a set of jobs which have to be
executed on machines from the set M = {My, Mo, M3, My, M5, Mg} (m = 6).
The set of machines can be partitioned into three types (nests):

a) Ml = {Ml,Mz},
b) M2 = { M3, M,},
¢) M? = {Ms, Mg}

Due to the notion introduced above, the number of machines m = 6, the number
of machine types (nests) ¢ =3 and t) =0, t; =2, to =4, t3 =6.

Each job has to be executed on one machine from the nest M, next from the
nest M? and at the end from the nest M? (satisfying technological requirements).
Each job consists of three operations. If O = {O1, 02, 03,04, 05,06, O7,05,09}
is the set of all operations, then the job J; = {O1,02,03}, Jo = {O4, 05,04}
and Js = {O7,0g,Og}. Therefore, u(O1) = u(O4) = pu(O7) = 1 (these operations
have to be executed on one of the 1-st type machines, i.e., M), u(O2) = p(O3) =
#(Og) = 2 (type M2) and p(0s) = u(Og) = p(Og) = 3 (type M?). In this
example the number of operations o =9 and lp =0, l; = 3,15 =6,13 =9. Job
execution times on each machine are presented in Table 3.1.]

If the assignment of operations to machines has been completed, then the
optimal schedule of operations execution determination (including a sequence of
operations execution on machines) leads to the classic scheduling problem solving,
that is, the job shop problem (see Section 3.5 and Grabowski and Wodecki [119]).

Let K = (Ki,Ks,...,K,) be a sequence of sets where K; € 29°, i =
1,2,...,m (in a particular case elements of this sequence can be empty sets).
By K we denote the set of all such sequences. The number of elements of the set
K is 210" 210%1. . glo™]

84 Chapter 3. Scheduling problems

Table 3.1. Job execution times on machines.
Nest M* || Nest M? || Nest M3
My | Mo || Ms | My || Ms | Mg
job J1 1 2 2 3 3 2
job Ja 1 3 3 1 5 2
job J3 2 3 3 3 4 2

If Q is an assignment of operations to machines then Q € K (of course, the
set IC includes also sequences which are not feasible; that is, such sequences do
not constitute assignments of operations to machines).

For any sequence of sets K = (K1, Ko, ..., K,,) (K € K) by IL;(K) we denote
the set of all permutations of elements from K;. Thereafter, let

m(K) = (m(K),m2(K),...,tm(K)) (3.59)

be a concatenation of m sequences (permutations), where 7;(K) € II;(K). There-
fore

m(K) € I(K) = I (K) x Ty(K)x, ... Iy (K). (3.60)

It is easy to observe that if K = (K, Ky,...,K,,) is an assignment of opera-
tions to machines then the set m;(K) (i = 1,2,...,m) includes all permutations
(possible sequences of execution) of operations from the set K; on the machine i.
Further, let

o= {(K,n(K)): Kek A n(K) e II(K)} (3.61)

be a set of pairs, where the first element is a sequence set and the second — a
concatenation of permutations of elements of these sets. Any feasible solution of
the FJSP is a pair (Q,7(Q)) € ® where Q is an assignment of operations to ma-
chines and 7(Q) is a concatenation of permutations determining the operations
execution sequence which are assigned to each machine fulfilling constraints (4)—
(iv). By ©° we denote a set of feasible solutions for the FJSP. Of course, there is
o° C P.

Example 3.2. For the data from Example 3.1, operations:

e 01,04, 07 should be executed on machines of the nest M! (i.e., machines
from the set { M7, Ma}),

e 03,05, 0s should be executed on machines of the nest M? (i.e., machines
from the set { M3, My}),

3.6. Flexible job shop problems 85

e 03,04,09 should be executed on machines of the nest M? (i.e., machines
from the set { M5, Mg}.

Set of operations:

o O = {01,04,07} and Q? = () constitute a machine-to-operation assign-
ment in the nest M?! (all the operations are executed on machine M),

e 9% = {0,05,08} and Q* = () constitute a machine-to-operation assign-
ment in the nest M? (all the operations are executed on machine M3),

e Q% = {03,04,00} and Q% = () constitute a machine-to-operation assign-
ment in the nest M3 (all the operations are executed on machine Ms3).

Let us take a sequence of sets
Q=(0',0%09%0" 9% 9%, (3.62)

where Q%, 1 =1,2,...,61is a set of operations assigned to be executed on machine
M; € M. It is easy to present that Q constitutes an assignment of operations of
the set O to machines from the set M.

Now, we shall determine a sequence of operations execution on each machine.
Let m = (01,04, 07) be a permutation (execution schedule) of operations from
the set Q' on machine Mj. Similarly let 73 = (O3, 05,0g) be a permutation
of operations from the set @3 on the machine Ms and let 75 = (O3, 0s5,0s)
be a permutation of operations from the set @° on machine Ms. Moreover, we
presuppose Ty = my = 7 =).

Permutation concatenation

m(Q) = (m1, 2, T3, T4, 75, 76), (3.63)

determines an operations execution sequence on each machine. It is easy to check
out that the pair © = (Q,7(Q)) constitutes a feasible solution of the FJSP
instance described in Example 3.1.]

3.6.2. Graph models

Any feasible solution © = (Q,7(Q)) € ®° (where Q is an assignment of oper-
ations to machines and 7(Q) determines the operations execution sequence on
each machine) of the FJSP can be presented as a directed graph with weighted
vertices G(©) = (V,R U E(O)) where V is a set of vertices and a RUE(O) is a
set of arcs, with:

1) V=0 U{s,c}, where s and ¢ are additional (fictitious) operations which
represent ‘start’ and ‘finish’, respectively. A vertex v € V' \ {s, ¢} possesses
two attributes:

86 Chapter 3. Scheduling problems

e \(v) — a number of machines on which an operation v € O has to be
executed,

® P, a(v) — @ weight of vertex which equals the time of operation v € O
execution on the assigned machine \(v).

Weights of additional vertices ps = p. = 0.

0j—1

UG+l +i+ D30 {41+ DI{1 +05,0)}| -
=1

n
==
i=1 | i=
(3.64)

A set R includes arcs which connect successive operations of the job, arcs
from vertex s to the first operation of each job and arcs from the last

operation of each job to vertex c.

3)
m |OF|—1
c@ =1 U {m@),mi+1)}. (3.65)
k=1 =1

It is easy to notice that arcs from the set £(©) connect operations executed
on the same machine (7 is a permutation of operations executed on the
machine My, that is, operations from the set (9’“).

Arcs from the set R determine the operations execution sequence inside jobs (a
technological order) and arcs from the set £(m) the operations execution sequence
on each machine.

Remark 3.1. A pair © = (Q,7(Q)) € ® is a feasible solution for the FJSP if
and only if the graph G(0©) does not include cycles.

Example 3.3. A directed graph G(©) for the FJSP instance from Example 3.1 is
presented in Figure 3.6 for the feasible solution © = (Q,7(Q)) from Example 3.2.
Arcs from the set R are represented by a solid line; a dashed line represents arcs
from the set £(©). The number inside a circle is the vertex number; the number
near a circle presents the vertex weight.]

A sequence of vertices (vq,ve,...,v;) in G(O) such that an arc (v, vi+1) €
RUEO) for i =1,2,...,k—1, we call a path from vertex vy to vg. By C(v,u) we
denote the longest path (called a critical path) in the graph G(©) from the vertex
v tou (v,u € V) and by L(v,u) we denote a length (sum of vertex weights) of
this path.

3.6. Flexible job shop problems 87

Fig. 3.6. A directed graph for a solution © = (Q, 7(Q)) from Example 3.2.

It is easy to notice that the time of all operations execution Cpax(©) related
with the assignment of operations Q and schedule 7(Q) equals the length L(s,c)
of the critical path C(s, ¢) in the graph G(©). A solution of the FJSP amounts to
determining a feasible solution © = (Q, 7(Q)) € ®° for which the graph connected
with this solution G(©) has the shortest critical path, that is, it minimizes L(s, ¢).

Let C(s,c) = (s,v1,v2,...,0y,¢), v; € O (1 < i < w) be a critical path in
the graph G(©) from the starting vertex s to the final vertex c¢. This path can be
divided into subsequences of vertices

B= (B B%...,B"), (3.66)

called blocks in the permutations on the critical path C(s,c) (Grabowski [122],
Grabowski and Wodecki [119]) where:

(a) a block is a subsequence of verticesfrom the critical path including succes-
sive operations executed directly one after another,

(b) a block includes operations executed on the same machine,
(c¢) a product of any two blocks is an empty set,

(d) a block is a maximal (according to the inclusion) subset of operations from
the critical path fulfilling constraints (a)—(c).

Next, only these blocks are considered for which |B¥| > 1, i.e., non-empty
blocks. If B* (k= 1,2,...,r) is a block on the machine M; (i = 1,2,...,m) from
the nest ¢ (t =1,2,...,¢q) then we shall denote it as follows

B* = (mi(a"), mi(a® +1),...,m(b" — 1), m(b")), (3.67)

where 1 < a* < b¥ < |Q!|. Operations m(a¥) and 7(b*) in the block B* are
called the first and the last, respectively. In turn a block without the first and

88 Chapter 3. Scheduling problems

the last operation we call an internal block. The definitions given are presented
in Figure 3.7.

k-th block
(s, m(d) ~ - ~ C(7(bY),c)
O @O0 2OOe 0
s ma") - -~ () c

k-th internal block

Fig. 3.7. Blocks on the critical path.

Example 3.4. There exist two critical paths (both with the length 15) in the
graph G(©) shown in Figure 3.6:

1. (5,01,02,05,0¢,0q,c) including two blocks: B! = (0s,05) and B? =
(O6,09). As these blocks consist of two elements, there are no internal
blocks. The operation a' = O is the first one, b' = Os is the last operation
of the block B! = (Os,O5).

2. (5,01,04,03, 04,0, c) including one block B' = (O3,0¢,09) consisting
of three elements. The operation a' = Oz is the first one, b = Oy is
the last operation of this block. The internal block consists of the single
operation Og. m

In the work of Grabowski [122] there are theorems called elimination criteria
of blocks in the job shop problem:.

Theorem 3.4 ([122]). Let B = (B',B?,...,B") be a sequence of blocks of the
critical path in the acyclic graph G(©), © € ®°. If the graph G(Q) is feasible (i.e.,
it represents a feasible solution) and if it is generated from G(©) by changing the
order of operations execution on some machine and Crax(2) < Ciax(0©) then in

the G(Q):

(i) at least one operation from a block B¥, k € {1,2,...,r} precedes the first
element m(aF) of this block, or

(i4) at least one operation from a block B¥, k € {1,2,...,r} occurs after the last
element 7(b¥) of this block.

Changing the order of operations in any block does not generate a solution
with lower value of the cost function. At least one operation from any block should
be moved before the first or after the last operation of this block to generate a
solution (graph) with smaller weight of the critical path. We use this property to
reduce the neighborhood size, i.e., do not generate solutions with greater values
(compared to the current solution) of the cost function.

Part 11

SINGLE-WALK
PARALLELIZATION

Chapter 4

Single machine scheduling

The main aim of this chapter is to show the effectiveness of the transfer of an
original technology of a huge neighborhood searching into the parallel computing
environment. We propose a single-walk parallel algorithm to solve the single
machine total weighted tardiness problem using the technique of an exponential-
size neighborhood searching in polynomial time, based on dynamic programming.
The approach proposed is strong enough to solve also 1|r;| Y w;T;, 1|| > w;Us,
1| Y (wiEi + u;T;) and 1]| Y w;C; problems (all of these methods are NP-hard).
Nowadays this method is one of the most powerful approximate methods for the
single machine total weighted scheduling problem. The neighborhood is generated
by executing series of swap moves.

4.1. Introduction

The goal of this section is to provide the fundamental well-known facts of the
theoretical parallel computing on the PRAM machine, as well as the literature
review for the single-walk parallelization of the discrete optimization problems
solving algorithms. We consider an algorithm which employs a single process
(thread) to guide the search. The thread performs in a cyclic way (iteratively)
two leading tasks:

(A) goal function evaluation for a single solution or a set of solutions,

B) management, e.g. solution filtering and selection, collection of history,
g g g
updating.

Part (B) takes statistically 1-3% total iteration time, thus its acceleration is
useless. Part (A) can be accelerated in a multithread environment in various
manners — our aim is to find either cost optimal method or non-optimal one in
terms of cost while offering the shortest running time. It is noteworthy to observe

92 Chapter 4. Single machine scheduling

that if Part (B) takes 8 percentage of the 1-processor algorithm and if it is not
parallelizable, the speedup of the parallel algorithm for any number of processors
p cannot be greater than % (according to Amdahl’s law). In practice, if Part
(B) takes 2% of the total execution time, the speedup can achieve at most the
value of 50.

4.2. PRAM computation model

We make a complexity analysis of the cost function determination algorithms
for their implementations on Parallel Random Access Machine (PRAM model).
A PRAM [91, 238| consists of many cooperating processors, each being a random
access machine (RAM), commonly used in theoretical computer science. Each
processor can make local calculations, e.g. additions, subtractions, shifts, condi-
tional and unconditional jumps and indirect addressing. All the processors in the
PRAM model are synchronized and have an access to a shared global memory in
constant time O(1). There is also no limit on the number of processors in the
machine, and any memory cell is uniformly accessible from any processor. The
amount of shared memory in the system is not limitable.

We make use of three kinds of PRAMs here: CRCW (Concurrent Read Exclu-
siwe Write) in which simultaneous reading and writing are allowed, CREW (Con-
current Read Exclusive Write) where processors can read from the same memory
cell concurrently, and EREW (FEzclusive Read Exzclusive Write) where the concur-
rency of reading is forbidden. Both CREW and EREW models resemble GPU
programming model. The first, CRCW model is very useful to design special, very
fast parallel algorithms, although this is difficult to achieve in practice. There are
three kinds of CRCW PRAMSs with different ways of handling concurrent writing:

— ‘common’ model in which all processors writing to the same location con-
currently are required to write the same data,

— ‘arbitrary’ model in which an arbitrary processor succeeds,

— ‘priority’ model in which the lowest numbered processor succeeds with writ-
ing.

We take advantage of the following well-known facts for the PRAM parallel
computer model (Cormen et al. [83]):

Fact 4.1. A sequence of prefix sums (y1, Y2, - . .,Yn) of input sequence (1,22, ..,
Xn) such that yx = yp—1 +xp = 1 + 22 + ... + x% for k = 2,3,...,n where
y1 = x1 can be calculated in time O(logn) on the EREW PRAM with O(n/logn)
Processors.

4.8. Calculations for single-walk parallelization 93

In line with the statement above we can assume that the sum of n values can
be calculated in time O(logn) on O(n/logn)-processor EREW PRAMs. We can
also calculate minimal or maximal values of a sequence based on the following
fact.

Fact 4.2. The minimal and the mazimal value of input sequence (x1,Ta, ..., Ty)
can be determined in time O(logn) on the EREW PRAM with O(n/logn) pro-

CESSOT'S.

The next fact makes it possible to calculate a function in constant time O(1) on
the PRAM.

Fact 4.3. The value of y = (y1,Y2,...,Yn) where y; = f(x;), v = (1,22,..., Tpn)
can be calculated on the CREW PRAM with n processors in time O(c) = O(1),
where ¢ is a time needed to calculate the single value of y; = f(z;).

We need n processors to do this. One can also formulate the following fact for
PRAM with a fewer number of processors.

Fact 4.4. The problem formulated in the previous fact can be calculated in time
O(logn) on O(nlogn) processors.

If we do not possess such a big number of processors we can use the following fact
to keep the same cost:

Fact 4.5. If the algorithm A works on p-processor PRAM in time t, then for
each p' < p there exists an algorithm A’ for the same problem which works on
p'-processor PRAM in time O(pt/p').

The facts mentioned above give a theoretical tool for the single-walk parallel
algorithm analysis. The PRAM model gives a good approximation of the fine-
grained concurrent computing systems behavior, such as GPUs.

4.3. Calculations for single-walk parallelization

The goal of this method is to speed up the process of a neighborhood graph pass-
ing through parallelization of the most time-consuming operations — calculations
of the cost function of parallelization of the process of neighbors generating. In the
case of parallelization of cost function calculations, the speeding up of computa-
tions can be obtained by keeping identical — as in sequence algorithm — trajectory
of passing by a neighborhood graph. In the other case, i.e., decomposition of the
neighborhood generating process into parallel processes, there occurs a situation
in which a parallel algorithm, checking concurrently a greater number of neigh-
bors than a sequential algorithm does (usually using a mechanism of reducing the

94 Chapter 4. Single machine scheduling

size of the neighborhood) will be moving along a better trajectory, determining
a more advantageous path of passing by the neighborhood graph and obtaining
better results of computations (solutions with better cost function values).

Parallelization of single-walk algorithms has to be done with fine-grained gran-
ularity because of the frequent communication and synchronization. The first
application based on this model appears in the context of parallelization of simu-
lated annealing and genetic algorithm parallel metaheuristics. Although parallel
decomposition of the neighborhood does not always lead to the computations
time reduction, it is frequently applied to increase the neighborhood size consid-
ered. This type of a parallel tabu search algorithm was proposed by Fiechter
[106] for the traveling salesman problem. A synchronic tabu search was also
researched by Porto and Ribeiro [209, 210, 211]. In paper [212], Porto, Kita-
jima and Ribeiro present parallel tabu search algorithms based on a master-slave
model with dynamic load balancing of processors. Bozejko [25] proposed a parallel
scatter search metaheuristic with single-walk parallelization of the goal function
calculation. Bozejko, Smutnicki and Uchroniski [35] propose a single-walk parallel
goal function calculation in metaheuristics with the use of 128-processor nVidia
Tesla GPU.

Aarts and Verhoeven [1, 260] distinguished two subclasses in the class of single
trajectory parallel search algorithms. A single-step class includes algorithms in
which a neighborhood is searched by concurrently running parallel processes, but
only a single neighbor is chosen as a result. In a multiple-step class a sequence of
following moves in a neighborhood graph is determined and concurrently searched.

4.4. Huge neighborhoods

In the case of traditional algorithms the neighborhood is generated by single trans-
formations (moves). Let k and [(k #) be a pair of positions in a permutation:
= (r(1),7(2), ... ,7(k—1),m(k),m(k+1), ..., 7(I—=1),7n(]),7n(l+1), ... ,7(n)).
Of the many types of moves considered in the literature, the following two are the
most common:

1. Insert move zf consists in removing the job m(k) from the position k& and

inserting it in position {. Thus the move zf generates a new permutation
i¥(7) = 7F in the following way: if k& < [, then

= (r(1),...,m(k=1),7(k+1),...,7(l=1),7(1), 7(k),7(l+1),...,7(n))
else

= (n(1),...,7(=1),7(k),7(1), 7 (I+1),...,7(k—1),7(k+1),...,7(n)).
Each of n elements can be inserted to any of n places, so insert type move
generates the neighborhood of n(n — 1) elements.

4.4. Huge neighborhoods 95

2. Swap move sF, in which the jobs (k) and 7(l) are swapped among some
positions k£ and [. The move Sf‘; generates permutation sf (m) = 7rlk =
(r(1),m(2),...,7(k=1),x(), n(k+1),...,7(l-1),7(k), 7(I4+1),...,m(n)).
Each of n elements can be swapped with any of the other n—1 elements, so
this move generates the neighborhood of n(n —1)/2 (without repetitions).

The insert move can be executed in time O(n), the swap move, in constant time
O(1) in the classic, linear representation of permutation. Local search methods
typically determine a solution z*! from the neighborhood N (%) with the minimal
goal function value, i.e.,

F(z™) = min F(x). (4.1)

€N (zt)

The aim of increasing the size of N (z') is to search ‘faster’ big areas of the solution
space. The question is how big N(z%) can be to search it efficiently enough.
Several kinds of this type huge neighborhoods are discussed in the literature (see
Bozejko and Wodecki [46]), especially in the TSP context. The most promising
for scheduling problem seems to be that proposed by Congram et al. [81], known
as dynasearch neighborhood. Applying this method it is possible to revise this
non-polynomial size neighborhood (calculate the minimal element) in polynomial
time. Methods of dynamical programming require, however, a lot of time and
memory, so they can be applied only in limited range of large problems.

Here we present parallel algorithm in which the fundamental element is a
parallel method of generating and revising the huge neighborhood. We prove that
it is possible to show some new properties which indicate that such a method is
cost-optimal with efficiency O(1). We apply an appropriate algorithm to solve
the single machine total weighted tardiness problem.

Let us consider two swap moves sé and sf. These moves are said to be inde-
pendent if

max{i,j} < min{l, k} or min{é,j} > max{l, k}. (4.2)

The huge swap neighborhood consists of all permutations that can be obtained
from 7 by a series of pairwise independent swap moves. The size of the neighbor-
hood is 2! — 1 (see Congram et al. [81]).

We define a partial sequence in the state (j,7), for j = 1,2,...,n, if it can
be obtained from the partial sequence 7(1),7(2),...,7(j) by applying a series of
independent swaps. Let 7m; be a partial sequence with minimum total weighted
tardiness for jobs m(1),m(2),...,m(j) among partial sequences in state (j, 7). Fur-
ther, let F'(7;) be the total weighted tardiness for jobs m(1),7(2),...,7(j) in 7,
ie.,

F(r;) = min{F(8) : 5 € (j.m)}. (4.3)

96 Chapter 4. Single machine scheduling

Optimality of F'(7;) understood as the ‘optimal substructure’ property leads to
the F'(m,) optimality, that is, the best move of the whole huge neighborhood will
be determined.

The partial sequence 7; must be obtained from a partial sequence m; that has
the minimum objective value from all partial sequences in the first previous state
(i,m), where 0 < i < j, by appending the job w(j) if ¢ = j — 1, or by the first
appending job 7(j) and then interchanging jobs w(i+1) and 7 (j) if 0 < i < j—1.
These two possibilities are considered in detail below.

Case A.i=j — 1. In this case, the job m(j) is not involved in any m(j) swaps,
and 7(j) simply appends to a partial sequence m;_1; hence m; = (mj_1,7;). Ac-
cordingly,

F(nj) = F(mj-1) + we()(Crgyy — dui) ™ (4.4)
where, for any real z, (z)* = max{0, z}.

Case B. 0 < i < j — 1. Here, jobs 7(j) and m(i 4+ 1) are swapped; that is why
mj can be written as m; = (m;, 7(j), 7(j +2),..,7(j — 1), 7(i + 1)), and the total
weighted tardiness F(7;) is readily computed as

F(mj) = F (i) + wr()(Criy + Prig) — dr()) T+
+ Z We(k) (Cr(k) + Pr(i) — Pre(in) — () T+
k=i+2
+ Wa(i+1) (Cr(j) — dn(i+1))+~ (4.5)
These values can be determined recursively. For any j =2,3,...,n,
([F(mj1) + Kr()e(y):

F (r;) = min 0<131<1Jn JE (i) + Koy na) + Kanfirn) m(i)+ (4.6)

+ Z W (k) (Pr(k) + Pr() — Pr(i41) — du(i) T
k=i+2

where the initialization is F/(mo) = 0, F(m1) = wx1)(px(1) — dr(1))* and a tem-
porary variable Kr(q) r(5) = Wr(a)(Crp) — dﬂ(a))+. The optimal solution is F'(m,)
and this algorithm runs in time Tse, = O(n3) — there are two loops to be executed
inside equation (4.6) (a minimum of at most n — 1 elements and a sum of at most
n — 2 elements) and this formula has to be calculated n — 1 times, for each j.

4.5. Huge neighborhood searching method 97

4.5. Huge neighborhood searching method

In this section, we present application of the exponential-size neighborhood search-
ing method for some NP-hard single machine scheduling problems. Beginning
from a sequential approach (in the range of a neighborhood searching), we show
how to design an efficient parallel huge neighborhood searching approach. Such
a methodology has not yet been proposed in the literature.

Problem 1|r;| > w;T;

In this problem, a starting time C; of a job ¢ € J is not less than the release date

ri. For any permutation (sequence) of jobs m = (7(1),7(2),...,7(n)), a time of
finishing the job (i) € J
Criyy = Cr(i—1) + (rr(iy = Cr(i=1)) " + Pr(i)» (4.7)

where Cr () = 0. Recurrent formula (4.6) takes the form

F(mj-1) + wa() (Crgy — da(i)) ™

1 SIingle,t 1 Gcalc (7T’i) ’

F (mj) = min (4.8)

where the initialization is F(mo) = 0 and F(m1) = wr1)(Cra) — dr1))". The
value of the function Geae(m;) can be computed from the procedure presented in
Figure 4.1.

Algorithm 2. G_calc(m,j)

ret = F(j-1);

tmp = max{P(j-1), rr()};

ret+= max{(tmp + pr(;) - dr(;)) 0 *wr();

Tmp+=pr(;);

for(v = j+1; v <= i-1; v++)
tmp=max{tmp, T (,};
ret+=max{(tmp + Pr(y) - dr(v)) >0} *Wr(y) s
tmp+=p7r(v);

tmp=max{tmp, r.(;};

ret+=max{(tmp + pr(;) - dr(;)), OF*ur();

return ret;

Fig. 4.1. Gcalc function.

Computational complexity of this function is O(j2). Therefore, the algorithm
of determining the value of F'(m,) from formula (4.6) possesses the complexity
O(n?), as mentioned in Section 4.4.

98 Chapter 4. Single machine scheduling

Problem 1|| > w;U;

For a given sequence m we can compute for the job 7(i) its completion time Cr ;)
and the unit penalty Ur;). Uz = 1 if Cry) > dr;y and Ury) = 0 otherwise. In
another form of notation Uy ;) = sgn((Cr(s) — dr(i)) ™)

For j < i we can compute similarly as in the original (i.e., for 1|| > w;T;)
method

F(mj-1) + Ur(j)wa(j),

F(rj) =min{ (20 (1) + Vag-ay i) + Wr s W)+ (4.9)

j—1

+ 2 se0(Criiy = Pr) + Prti) (i))W (1),
\ =i+

where temporary variables Vi (q) r(s) = S80((Cr(a) FPrv)—dr))) and Wi (o) rp) =
sgn((Cr(a) — dryy) ") are used. Computational complexity of the search over the
whole neighborhood is O(n?). Based on (4.8) and (4.9) it is easy to formulate
recurrence relationship for the 1|r;| > w;U; problem.

Problem 1|| > (w; E; + w;T;)

In this problem, by e; and d; we mean the expected earliest and latest moments
of completing a job ¢ € J. If the scheduling of jobs is established and Cj is
the moment of finishing a job 4, then we call E; = [e; — C;]T the earliness and
T; = [C; —d;]™ the tardiness. The expression u; E; +w;T is the cost of executing a
job, where u; and w; (i € J) are nonnegative coefficients of a goal function. The
problem consists in minimizing the sum of the costs of jobs, that is, the function
E?:l (ui B; + wiT;).

To obtain an adequate recurrence relationship it is necessary to exchange the
cost of job w;T; for uw; E; + w;T; in formula (4.6).

Problem 1|| > w;C;

For the problem of minimizing the costs of jobs completion the recurrence formula
(4.6) takes the form

F(mj1) + wr(5)Cry),

F (m;) = min o0in {wn()(Cr(o) + Pr(i)) + Wa(ir1) Cniy) + (4.10)

7j—1
+ F(m)} + . > 2w7r(k:)(CTr(k) + Pr(j) = Pr(i+1))-
=1+

4.6. Parallel huge neighborhood searching method 99

The algorithm of determining optimal value of F'(7,) has computational complex-
ity O(n?3).
4.6. Parallel huge neighborhood searching method

We shall make use of the facts for the PRAM parallel computer model described
in Section 4.2.

Theorem 4.1. The best element of the huge neighborhood can be determined in
time O(nlog®n) on the PRAM with O (

) processors.

Proof. Let us notice that all times of job finishing Cj, j = 1, 2, ..., n can
be computed as prefix sums (see Fact 4.1, Section 4.2) in time O(logn) using
O(n/logn) processors. Next, to compute the value of F'(7;) in equation (4.6) it
is necessary to determine the sum of at most n values of

Jj—1

D W) (Priy + Pri) = Pr(inn) — duiiy) (4.11)
k=i+2

and next the minimal element of (at most) n values

o Jun {F(m) +wr(y) (Criy + Prs) — dui) " + Z W ey (Pr)
k=i+2

+ D) — Pr(it1) — ()T + Wa(ir1) (Criy — dr(ivn) T} (4.12)

with computed sums inside. Operations of addition, due to their small and, first of
all, constant cost, independent of the n number, can be executed in constant time
O(1), so we can omit them in our discussion. To determine the above-mentioned
minimal element we need PRAM with O(gg;) processors (see Fact 4.2, Sec-
tion 4.2), each one of which has to execute computations of the sums (mentioned
at the beginning) also with O(processors, so in total we need

logn)

n n 7’L2
_ . _ 4.1
P O<logn> O(logn) O(log2n> (413

processors of the PRAM and the time

Tpar(p) = O(logn) - O(logn) = O(log? n). (4.14)

100 Chapter 4. Single machine scheduling

1000000 ————————————— __-===-
100000 ==
E ""
Ko} '1’
= g 10000 L]
5 c ,,I I — — —
= £ 1000 f —_—
E [%)] / -
S 3 -
O o 100
e
a
10
1 ‘ ‘ : : : ‘
10 20 30 40 50 60 70 80 90 100
n
Proc_par(n) = =Complex_par(n) ====Complex_seq(n)

Fig. 4.2. Comparison (on the logarithmic scale) of complexity functions.

At the end, it is necessary to compute the minimum of two calculated values of
(4.6), which we can do in constant time O(1) on one processor. Therefore, to

determine all values F' (7;), j = 2,3,...,n we need time
Tpar(p) = n - O(log?n) = O(nlog?n) (4.15)
and
n2
p=0 < 5 > (4.16)
log“n
Processors. n

The conclusion of this theorem is as follows: such a method has a speedup

S(p) = Tq) =0 <"3> =0 < ") (4.17)

Tpar(p nlog®n log®n

in the order of the number of processors used, hence the algorithm connected with
this theorem is cost-optimal with the efficiency O(1). The speedup obtained has
asymptotically maximal possible value.

Parallelization provides us with two possible benefits: shortening computa-
tion time or examining more solutions in the same time, because Fact 4.5 from
Section 4.2 allows searching huge neighborhood, e.g. with 4-processor PRAM
machine in time O(n3/4), so 4 times faster than a sequential algorithm does. It

is also possible to use all O log—;n) processors while keeping cost optimality and

obtaining maximal speedup of computation process. The aforementioned number

4.7. Remarks and conclusions 101

of processors is not potentially too big and can be encountered in real parallel
systems. A comparison of the speed of functions increasing (complexity of se-

quential and parallel method, number of processors) is presented in Figure 4.2,
2

n — n
ToeT Proc_par(n) = oaZn

where Complex _seq(n) = n?, Complex par(n) =

4.7. Remarks and conclusions

The methods described in this chapter give an effective methodology of cost-
optimal single-walk parallelization of the huge neighborhood searching process.
Thanks to it there is a possibility to take advantage of full computational power
of parallel mainframe computers equipped with shared memory as well as GPGPU
to find good solutions of hard scheduling problems.

The neighborhood generated by series of swap moves, which has an exponential
size, is explored in polynomial time Ty, = O(n®). The proposed cost-optimal

parallelization makes it possible to speed up the calculations obtaining the parallel

n2

logZn)"

The method proposed here can be applied on GPGPU eivironment making use
of a big number of processors working as SIMD machine and connected by the fast
shared memory. In a hybrid CPU-GPU implementation the huge neighborhood
generation function discussed can be coded on GPU as the most computational
complex element of the whole single-walk parallel algorithm.

Summing up, in this chapter we proposed the new methodology of transferring
the best huge neighborhood search technologies in the local search methods into
the parallel computing environment. These exponential-size neighborhoods are
searched in an effective way — not only in polynomial time, as sequential method
does, but also by a cost-optimal parallel method.

runtime Tpgr = O(nlog®n) and the speedup S(p) = O (

Chapter 5

Job shop scheduling

The goal of this chapter is to propose a methodology of the effective cost func-
tion determination for the job shop scheduling problem in parallel computing
environment. Parallel Random Access Machine (PRAM) model is applied for
the theoretical analysis of algorithm efficiency. The methods need a fine-grained
parallelization, therefore the approach proposed is especially devoted to paral-
lel computing systems with fast shared memory (e.g. GPGPU, General-Purpose
computing on Graphics Processing Units).

5.1. Introduction

There are only a few papers dealing with parallel algorithms for the job shop
scheduling problem. Bozejko et al. [34] proposed a single-walk parallelization of
the simulated annealing metaheuristic for the job shop problem. Steinhéfel et
al. [237] described the method of parallel cost function determination in time
O(log? 0) on O(0®) processors, where o is the number of all operations. Bozej-
ko [25] considered a method of parallel cost function calculation for the flow shop
problem, which constitutes a special case of the job shop problem. Here we shall
propose a more efficient version of the algorithm developed by Steinhéfel et al.,
which works in time O(log?0) on O(0%/logo) processors. Besides, we show a
cost-optimal parallelization which takes a time O(d), where d is the number of
layers in the topological sorted graph representing a solution. Finally, we prove
that this method has a constant O(1) time complexity if we know a value of the
upper bound of the cost function value.

104 Chapter 5. Job shop scheduling

5.2. Sequential determination of the cost function

Taking into consideration constraints (3.47)—(3.49) presented in Section 3.5 it is
possible to determine the time moments of job completion Cj, j € O and job
beginning S;, j € O in time O(o) on the sequential machine using the recurrent
formula

S; = max{S; + pi, Sk + px},j € O. (5.1)

where an operation i is a direct technological predecessor of the operation j € O
and an operation k is a directed machine predecessor of the operation j € O. The
determination procedure of Sj,j € O from the recurrent formula (5.1) should be
initiated by an assignment S; = 0 for those operations j which do not possess
any technological or machine predecessors. Next, in each iteration an operation
7 has to be chosen for which:

1. the execution beginning moment S; has not been determined yet, and

2. these moments were determined for all its direct technological and machine
predecessors; for such an operation j the execution beginning moment can
be determined from (5.1).

It is easy to observe that the order of determining S; times corresponds to the
index of the vertex of the graph G(m) connected with an operation j after the
topological sorting of this graph. The method mentioned above is in fact a simplis-
tic sequential topological sort algorithm without indexing of operations (vertices
of the graph). If we add to this algorithm an element of indexing vertices, for
which we calculate S; value, we obtain a sequence which is the topological order of
vertices of the graph G(7). Now, we define layers of the graph collecting vertices
(i.e., operations) for which we can calculate S; in parallel, as we have calculated
starting times for all machine and technological predecessors of operations in the
layer (see Figure 5.1).

Definition 5.1. The layer of the graph G(w) is a subsequence of the sequence
of vertices ordered by the topological sort algorithm, such that there are mo arcs
between vertices of this subsequence.

We will need this definition in the next paragraph.

5.3. Parallel determination of the cost function

Two kinds of methods for parallel cost function determination are proposed. The
first class of methods is based on matrix multiplication method and it enables

5.8. Parallel determination of the cost function 105

——— 4 N 27N\ 4 \
. Y /! ! Ay 3 e |
1 1 2 V. >, e 4 J
| o : // 7 L/ 13,,"// s ,9 //
, . .
" I | [y Stad Rt 7 - -
I Pie i -
| | / — . _ - -
| 5 | !y //6 ot ——— -
| [A TV _ A
\ Y -
2 N A S -7 .
i A v
1 ,
jobs H
~ \ ~
3
4

Fig. 5.1. A sample of conjunctive graph for the job shop problem with d = 7 layers.

obtaining a good parallel runtime. The second class of methods uses the parti-
tioning of a graph into layers. Algorithms based on this class are cost-optimal.
Both approaches shown in this chapter are new, original results.

5.3.1. Methods based on matrix multiplication

We propose an original method using O (10(’;0)—processor CREW PRAM with

the computational complexity O(log?0). This algorithm is O(logo) times more
efficient than the algorithm proposed in the paper of Steinhofel et al. [237] and
it can be used not only for J||Cpax but also for J|| > f; problems as well as for
J|| fmax defined in Section 3.5.

Theorem 5.1. For a fized feasible operations order w for the J|| > fi or J|| fmax
problem, the value of the cost function can be determined in time O(log2 0) on

0] (1(;);0)—])7“066850"" CREW PRAMs.

Proof. For the graph G*(w) = (O*,U* U E) defined in Section 3.5 for a job
shop problem we introduce the matrix of distances A = |ay,] with the size o x o,
where a,, is the length of the longest path between vertices v and v. We initiate
values a,, in the following way

w if (u,v) € U*UE(m),
Gup = { g if (u,v) ¢ U* U E(n). (5:2)

The matrix A will be used for calculation of the longest paths in the graph G* ().
Initial values of the matrix A can be determined in time O(1) using O(0?) proces-
sors, because this requires 0? independent assignment instructions, each one for
every pair (u,v), u,v =1,2,...,0.

106 Chapter 5. Job shop scheduling

The problem of determining cost function value for the J||Y_ fi or J||fimax
job shop problems requires finding lengths of the longest paths from the ver-
tex 0 € U* to vertices l1,lo,...,l, (which corresponds to determination of the
following values of job execution finishing times: Cj,, C,, ..., C},), where n
defines the number of jobs, as was defined in Section 3.5. To determine the
length of paths it is enough to execute [log(o)| parallel steps, because in each
step k = 1,2,...,[log(o)] the algorithm described below updates lengths of the
longest paths between vertices with the distance (in the sense of the number of
vertices) of at most 1,2,4,8,...,2'°8(0) " After having executed the [log(0)] steps
the matrix A possesses information about the length of paths between vertices
with the distance (in the sense of the number of vertices) of 2'°8(°) = o_ that is,
between all the vertices, because the number of vertices on the longest (in the
sense of the number of vertices) path in the graph G*(7) must not be greater
than o (G*(m) is an acyclic digraph). For technical needs of the algorithm, an
additional three-dimensional table T' = [ty 44| of the size 0 x ox o is defined.
It is used for a transitive closure calculation of G*(w). The algorithm requires
execution of the following identical steps [logo]| times:

1. updating ty ., for all triples (u,w,v) due to the formula

tu,w,v = Gy t Qw,

2. updating a,, for all pairs (u,v) on the basis of the equation
Ayv = max{au,va maxi<w<o tu,w,v}-

Step 1 executed on o3 processors can take the time O(1). On [0%/logo]
processors the calculations have to be made [logo]| times, so the computational
complexity of this step is O(logo).

Step 2 consists in determining a maximum of o + 1 values, which can be
done on O(o/logo) processors in time O(logo). As such a maximum should be
determined for 0? pairs (u,v) and these calculations are independent and have to
be repeated [logo] times, therefore using p = O(0%/logo) processors the whole
algorithm has a computational complexity

Ty (p) = [og 0]O(log 0) = O(log? o). (5.3)

Finally, for the J|[}_ f; problem, all the f;(C,), where Cj; = ag;, j € J, should
be summarized. These values can be taken from table A. Summation takes the
time O(logn) using O(n/ logn)-processor CREW PRAMSs keeping computational
complexity O(log?o0) and the number of processors O(0%/logo) for the whole
method described, because the number of jobs n is smaller or equals the number
of operations o.

Similarly, for the J|| fmax problem it is necessary to determine maximum of all
values f;(Cy;), j € J. This step has also computational complexity O(logn) using

5.8. Parallel determination of the cost function 107

O(n/logn)-processor CREW PRAM machine keeping computational complexity
O(log? 0) and the number of processors O(0%/log o) for the entire method. L]

Corollary 5.1. For the method based on Theorem 5.1 the speedup and the
efficiency are

501 =0 () 10 =0 (705) 54

Efficiency of the method formulated below quickly decreases with increasing
the size of the problem. Therefore, it is not cost-optimal, however computational
complexity O(log2 0) gives a significant time profit compared to a sequential com-
putational complexity O(o). Additionally, there is no big constant hidden in the
notation O. A comparison of the speed of functions increasing for f(o) = o and
f(o) = log? o is given in Table 5.1.

Table 5.1. Speed of increasing f(0) = 0 and f(0) = [log® o] functions.

0 [og? 0]

10 12

100 45

1,000 100
10,000 177
100,000 276
1,000,000 398
10,000,000 541

Table 5.2 presents times of Chyax calculations due to the matrix multiplica-
tion based method from Theorem 5.1. The 32-processor nVidia GeForce 9500
GT card (GPU) with CUDA support was used for calculation. The maximum
for each pair (u,v) of vertices was calculated in time O(0) using a single proces-
sor, because the number of processes 100; > was too big for the hardware used in
the experiment. Therefore, the whole parallel algorithm has the computational
complexity O(olog? o) instead of O(log? 0). Computational experiments shown in
Table 5.2 and in Figure 5.2 fully confirm theoretical results.

It is well known that the maximum of n values can be determined on the
CRCW (concurrent read, concurrent write) PRAM of a ‘common’ type (the value
is written to the cell of memory if all processes want to write the same value) in
constant time O(1) using O(n?) processors (see Storer [239]). Using this property
we can formulate a faster version of the previous method for CRCW PRAMs.

108 Chapter 5. Job shop scheduling

Table 5.2. Times of Cpax calculations due to the method from Theorem 5.1 on GPU.

nxm o 2 tg‘in . olog?o

5x5 25 0.24 0.17 0.61 0.054
10x5 50 0.25 0.2 0.61 0.159
20x5 100 0.32 0.24 0.66 0.441
10x10 100 0.28 0.22 0.61 0.441
20x10 200 0.49 0.41 0.85 1.169
10x20 200 0.66 0.39 4.86 1.169
50%5 250 0.65 0.58 1.06 1.586
2020 400 1.13 1.02 1.61 2.989
100x5 500 1.94 1.54 8.16 4.019
50x10 500 1.94 1.4 8.1 4.019
10x50 500 2.13 1.48 6.5 4.019
100x10 1,000 4.97 3.58 8.86 9.932
50%20 1,000 4.11 3.46 9.16 9.932
20x50 1,000 4.34 3.41 8.34 9.932
100x20 2,000 14.47 11.96 16.47 24.050
50x50 2,500 21.49 17.6 23.22 31.853
100x50 5,000 7177 67.85 80.1 75.494

Theorem 5.2. For a fized feasible operations order w for the J||>_ fi or J|| fmax
problem, the value of the cost function can be determined in time O(logo) on
O(o*)-processor CRCW PRAMs of a ‘common’ type.

Proof. We apply identical procedure to that of the previous theorem so that the
maximum in Step 2 for each of 0® pairs (u,v) is determined in constant time O(1)
making use of the group of O(0?) processors connected with the pair (u,v). =

It is also possible to formulate the same theorem for the ‘sum’ type of CRCW
PRAMs when the sum of values is written to the cell of memory when multiple
processors want to write to the same cell.

Theorem 5.3. For a fized feasible operations order 7 for the J|| Y. fi or J||fmax
problem, the value of the cost function can be determined in time O(logologA)
on O(03/log o)-processor CREW PRAMs, where A is an upper bound of the cost
function value.

Proof. The proof is similar to that of Theorem 5.1. It is enough to repeat the
main loop [log A] times instead of [logo] times, because the maximal number of

5.8. Parallel determination of the cost function 109

80 800000
70 - 700000
60 - 600000
50 - 500000
=
£
= 40 400000
£ I
“ 30] 300000
20 200000
10 - 100000
0 Lo 0
wn o o o o o o o o o o o o o o o o
o~ wn o o o o n o o o o o o o o o o
- — o o o < mn un un o o o o n o
— i — o~ o [¥p)

number of operations
AveT p o) logzo

Fig. 5.2. Comparison of execution times of the matrix multiplication based procedure
on a 32-processor GPU.

vertices on the critical path is not greater than A/ppin, where ppiy is the shortest
operation execution time among all operations from the set O. Values of ppin
are integers, minimal value equals 1, thus the maximal number of vertices on the
critical path is A. To determine the length of the critical path it is enough to
execute [log A] parallel steps (compare Theorem 5.1) which decreases computa-
tional complexity of the whole method to O(log o log A) keeping the number of
processors O(0%/log o). [

Corollary 5.2. For the method based on Theorem 5.3 we have the speedup and
the efficiency

When the value of the upper bound A of all the values of the cost function is
known, then the value log A is constant and it has no influence upon the compu-
tational complexity.

According to studies on popular benchmark instances for the job shop problem
(Fisher and Thomson [107], Lawrence [163], Yamada and Nakano [272], Storer et
al. [240]) there is a conjecture in the paper of Steinhofel et al. [237] that for
the makespan of the optimal solutions A,y there exists a uniform upper bound

110 Chapter 5. Job shop scheduling

Aopt < Pmax(n +m), where prax is the maximal processing time of all operations,
n is the number of jobs and m is the number of machines.

5.3.2. Methods based on partitioning into layers

The main problem in obtaining a good speedup value of the methods mentioned
above is the fact that a computational complexity of the sequential method of
determining makespan value for the job shop problem is O(o0). It is, however,
difficult to parallelize it because of its recurrent nature. Now we show another
approach to determine cost function value, which is more time-consuming, but
cost-optimal. First, we need to determine the number of layers d of the graph
G(7). A sample of layer determination for the conjunctive graph from Figure 3.5
is shown in Figure 5.1.

Theorem 5.4. For a fized feasible operations order w for the J||Cupax problem,
the number of layers from Definition 5.1 of the graph G(m) can be calculated in

time O(log? 0) on the CREW PRAMs with O (o’) Processors.

logo

Proof. Here we use the graph G*(7) with additional vertex 0. Let B = [b;]]
be an incidence matrix for the graph G*(r), i.e., b;j7 = 1 if there is an arc ¢,j in
the graph G*(m), otherwise b;j =0, 7,7 = 1,2,...,0. The proof is given in three
steps.

1. Let us calculate longest paths (in the sense of the number of vertices) in
G*(m). We can use the algorithm from the proof of Theorem 5.1 with the
incidence matrix B instead of the matrix A. We need the time O(log? o)
and CREW PRAMs with O(0?/log o) processors.

2. We sort distances from the vertex 0 to each vertex in an increasing order.
Their indexes after having been sorted correspond to the topological order
of vertices. This takes the time O(log o) and CREW PRAMSs with o+ 1 =
O(0) processors, using Cole’s parallel merge sort algorithm [80]. We obtain
a sequence Topoli], i =10,1,2,...,0.

3. Let us assign each element of the sorted sequence to one processor, without
the last one. If the next value of the sequence (distance from 0) Topo[i+1],
i=0,1,...,0—11is the same as Topo[i] considered by the processor i, we
assign ci] <— 1, and c[i] < 0 if T'opo[i+ 1] # Topo[i]. This step requires the
time O(1) and o processors. Next, we add all values c[i], i =0,1,...,0—1.
To make this step we need the time O(logo) and CREW PRAMs with
O(0) processors. We get d =1+ Zio:_é cli] because there is an additional
layer connected with exactly one vertex 0.

5.8. Parallel determination of the cost function 111

The most time- and processor-consuming is Step 1. We need the time O(log2 0)

%5) of the CREW PRAMs. .

and the number of processors O (

The result obtained can also be implemented on a CRCW machine in time
O(log o) and the number of processors O(o*) similarly as described in the proof
of Theorem 5.2.

Theorem 5.5. For a fized feasible operations order m for the J||Cyax problem,
the value of cost function can be determined in time O(d) on O(o/d)-processor
CREW PRAMs, where d is the number of layers of the graph G(r).

Proof. Let I'y, k=1,2,...,d, be the number of calculations of the operations
finishing moment C;, i = 1,2,...,0 in the k-th layer. Certainly Z?:l I'; = o. Let
p be the number of processors used. The time of computations in a single layer
k after having divided calculations into [%1 groups, each group containing (at

most) p elements, is [%1 (the last group cannot be full). Therefore, the total

computation time in all d layers equals Zf i [l;ﬂ <t (+1)=2+d To
obtain the time of computations O(d)we should use p = O(§ processors [

This theorem provides a cost-optimal method of parallel calculation of the
cost function value for the job shop problem with the makespan criterion. For
example, if we discuss a classic permutational flow shop problem with n jobs and
m machines, which is a special case of the job shop problem, we can observe that
d = n+m — 1 which is the length (as the number of vertices) of the longest path
in the graph G(w), then, we get the cost-optimal method which works in time
O(n+m) on O(nm/(n+m))-processor CREW PRAM machine for the flow shop
scheduling problem. The sequence of calculations is presented in Figure 5.3.

Practical aspects of the cost function value determination. Step 1 con-
sists in determining the longest paths (in the sense of vertex number) in the graph.
We are interested in the lengths of paths from the vertex 0 to each other vertex.
In Step 2 we should sort the obtained lengths. We make use of a two-row table
and we sort it with reference to the second row together with the first row

1 2 3 4 ... o
Ci1 Cy C3 Cq4 ... Cp |’

which can be obtained using O(0) processors in time O(1) (each processor writes
its own number i and C}), i.e., for the sample from Figure 5.1

123 456 7 89 10
136515237 6 |

112 Chapter 5. Job shop scheduling

processor 1

processor 2

processor m

Fig. 5.3. A layer-based sequence of Cj; calculations for the flow shop — a special case of
the job shop problem.

Afterwards we obtain the sorted second row, however there are numbers of cor-
responding vertices in the first row

157 28

3 4 6 10
112 3 3 455

9

6 7|

This two-row table will be called T'opo[1..0][1..2]. To avoid concurrent readings we
can multiply this table to the second, identical, table T'opo2[1..0][1..2] using O(0)
processors in constant time O(1). Each processor i = 1,2,...,0 — 1 compares a
value T'opo[i|[1] with T'opo2[i+1][1]. If T'opo[i][1] < T'opo2[i+1][1] then a processor
generates (writes to a variable ¢) 1, otherwise it generates 0. To determine the
number of layers d it is enough to get the last Topo value: d = Topo[o][1] because
it corresponds to the longest path (understood as the number of vertices) from
the vertex 0 (table T'opo is sorted). In our sample the number of layers d = 7.
For the parallel algorithm to determine the cost function value it is necessary to
know what is the index of the first vertex in the layer, how many vertices belong
to each layer and what are their numbers. Such a table first in[l..0] of the first
vertices in each layer can be created in time O(1) as follows: each processor which
generates 1 (i.e., its ¢ = 1) writes to the table first in[Topoli][1]] := i. In this
way we obtain the d-elementary table first in from which, together with the
table T'opo, we can get all the information of layers.

5.4. Remarks and conclusions 113

However, in general, if we have no knowledge of the number of layers d, we
can employ the following estimation.

Theorem 5.6. For a fized feasible operations order w for the J||Cpax problem,
the value of cost function can be determined in time O(A) on O(o0)-processor
CREW PRAMs, where A is an upper bound of the cost function value.

Proof. Let us observe that the number of layers d corresponds to the number
of vertices on the longest (in the sense of the number of vertices) path in G*().
This number d can be bounded by Chpax/Pmin (Pmin 18 @ minimal processing time
of all operations), where Cpax is the length (as a sum of weights) of the longest
path in G*(7). The proof is ‘a contrario’.

Let us assume that there is a path with more than Clyax/pmin vertices. There-
fore, its length (as a sum of weights) would be greater than C,ax, which is im-
possible because Chax is the length of the longest path in G*(7). We can use
the upper bound of the cost function A instead of Ciax, as well as a minimal
Pmin value which is 1, because Cryax/pmin < A/1 and we are looking for the upper
bound. The other part of the proof is similar to the proof of Theorem 5.5, as
regards the time d < A estimation and the number of processors % <o.]

From the above theorem a surprising conclusion can be drawn, namely: if
we can determine the upper bound of the cost function value A, the calculations
take constant time O(A) = O(1). The trivial upper bound A of the makespan
is the sum of the processing times of all operations. Although the algorithm for
determining the d value has computational complexity O(IogQ), it can be executed
only once, at the very beginning. Next, one can calculate only how the d value is
changing after having executed an insert or swap move, and this can be done in
constant time O(1).

5.4. Remarks and conclusions

In this chapter, there were designed new methods of parallel goal function value
calculation for a given job execution sequence in the job shop problem. Consid-
ering the computational complexity O(o) for the sequential case, the new parallel
methods have been proposed with significantly lower computational complexity
O(log?0), O(logologA), O(d) and O(A), where o is the number of operations,
A is an upper bound of the cost function value and d is the number of layers
created during the work of a topological sort algorithm. For the first time there
was proposed a method with complexity O(A) = O(1), if the A value can be esti-
mated. In particular, the first of the above algorithms, with complexity O(log2 0),
is more effective than is known from the literature [237]. What is more, the results

114 Chapter 5. Job shop scheduling

obtained remain valid for fuax criterion as well as for fsum criterion. The pro-
posed methodology of the single-walk parallelization is based on using the parallel
path determination in graphs as well as genuine, dedicated methods, and it can
be easily extended to flexible scheduling problems such as the job shop problem
with parallel machines.

Chapter 6

Hybrid scheduling

The aim of this chapter is to show how to determine the neighborhood and how
to search it in the parallel environment, this being illustrated by an example of
the hybrid scheduling, more precisely a flexible job shop problem. We present
a parallel single-walk approach in this respect. A theoretical analysis based on
PRAM model of parallel computing has been made. We propose a cost-optimal
method of neighborhood generation parallelization.

6.1. Solution method

There is an exponential number of possible job-to-machine assignments in rela-
tion to the number of operations. Each feasible assignment generates an NP-hard
problem (job shop) whose solution consists in determining an optimal job pro-
cessing order on machines. One has to solve an exponential number of NP-hard
problems to solve the flexible job shop problem. Therefore, we shall apply ap-
proximate algorithms consisting in executing the following two steps:

Step 1: Job-to-machine assignment determination;

Step 2: Solving a job shop problem for the assignment determined
in Step 1.

We use the tabu search algorithm in Step 1. The neighborhood of the current
solution (assignment) is generated by jobs moving between machines of the same
type. The best element of this neighborhood generates a job shop problem which
is solved in Step 2. For comparison, we also present an algorithm which uses
population-based method in Step 1, without the jobs moving between machines
of the same type.

116 Chapter 6. Hybrid scheduling

6.2. Machine workload

The problem of ‘good’ (suboptimal) operation-to-machine determination is con-
sidered in this section. Each operation is assigned to one nest only. It is necessary
to make a partition of operations assigned to machines in each nest. The method
of partitioning has an influence on all jobs completion time, that is the value of
the job shop problem solution. Generally, we are looking for such a partition
whose cost function value (of the corresponding job shop problem) is minimal.

Let © = (Q,7(Q)) € ®° be a feasible solution of FJSP where Q = (Q', @2, ...,
Q™) is the machine workload, g; is the number of operations executed on machine
M; (i.e., 0; = |QY) and

m(Q) = (m(Q), m2(Q); - - -, ™m(Q)) (6.1)

is a concatenation of m permutations. A permutation m;(Q) determines a se-
quence of operations from the set Q' which have to be processed on machine M;
(i=1,2,...,m).

In the further part of this section, in the case in which it does not evoke
ambiguity, we omit the assignment of operations @ which occurs as a permutation
parameter. Thus, the concatenation 7(Q) = (71(Q), m2(Q),...,mn(Q)) will be
presented as m = (w1, T2, ..., Tpm).

By t;-(k‘,l) we denote a transfer type move (a t-move, for short) which con-
sists in moving an operation from the position %k in the permutation 7; (i.e., the
operation 7;(k)) to the position [in the permutation 7; (moving operations from
positions [, [+ 1, ... one position to the right). The execution of the move té(k, 0)
generates from © = (Q,7) € ®° (by ®° we denote a set of feasible solutions of
the FJSP, see Section 3.6) a new solution ©®' = (Q', ') such that

=Ty, vEij v=12...m (6.2)

and
7= (mi(1),m(2), ..., m(k —1),m(k +1),...,m(0; — 1), (6.3)
;= (mi(1),7(2), ..., mi (L = 1), mi(k), mi(1), ..., mi (05 + 1). (6.4)

The execution of this move causes a movement of the operation m;(k) from the
set Q' (i.e., from machine M;) to the set Q7 (i.e., to machine M;). Therefore

Q"=09"% w#i,j, v=12....m (6.5)

and

Q" = '\ {m(k)}, Q7= U{m(k)}. (6.6)

6.2. Machine workload 117

The graph G(0©’) generated by a t-move can have a cycle and then the solution
© = (Q',7') is not feasible.

Remark 6.1. An upper bound of the number of t-moves is O(qgm?0?).

For data from Example 3.1, an upper bound of the number of ¢t-moves equals
26244.

Example 6.1. The second critical path described in Example 3.4 (s,O1, Oq,
O3, 0g, Oy, ¢) includes a block of three elementary operations B! = (O3, Og, Og)
executed in the nest M? on the machine Mjs. There is another machine Mg in
this nest to which no job is assigned. Therefore, for the assignment Q described in
Example 3.2, the operations set (assigned to the machine Ms) Q° = {O3, Og, Og}
and to the machine Mg, Q% = (). We are moving the operation Og from the block
B! onto the machine M5 (thus from the set Q°) to the set of operations which are
executed on the machine Mg (therefore to the set Q%). In this way, we generate a
new job-to-machine assignment Q' from the assignment Q. In the new assignment
Q' there are Q"° = Q% \ {Og} = {03,009}, Q"% = Q5 U {Og} = {Og}, with other

sets in both assignments being the same. |

The execution of t-move causes an operation to transfer from one machine to
another, i.e., a new machine workload in the nest. Therefore, it is possible to
obtain any machine workload from any solution (machine workload) by executing
t-moves. If T is a t-move, we denote by 7(©) a solution generated from © by
executing a move 7 (see (6.2)—(6.6)). For a fixed feasible solution ©, let 7(0) be
a set of all t-moves. A neighborhood © is a set

N(O)={r(0) e ®°: 1T}, (6.7)

where ®° is a set of feasible solutions. The feasibility 7(©) corresponds to the
acyclicity of the graph G(7(0)).

It was mentioned at the beginning of this chapter that the solution of the
FJSP consists of two steps. The first, determination of machine workload and the
second, determination of processing order of operations, i.e., a job shop problem
solving. Let © = (Q,m) be a feasible solution of the FJSP. The new machine
workload Q" will be generated from the workload Q as follows:

e determine a neighborhood N (0),
e select from the neighborhood a solution ©' = (Q’,7’) with the lowest goal

function value — the new machine workload Q’.

The number of all ¢-moves can be huge, so we omit some of them and consider
only those which can offer an improvement of the goal function value. More-
over, we do not determine an exact goal function value of solutions generated by

118 Chapter 6. Hybrid scheduling

t-moves, but approximate them only. As computational experiments proved, this
causes a significant algorithm work acceleration with little results aggravation. In
the further part, we precisely describe methods of eliminating superfluous moves
from the neighborhood (6.7) as well as methods of estimating a goal function value.

6.2.1. Neighborhood determination

Execution of a t-mowve can lead to a non-feasible solution, i.e., a graph connected
with this solution can have a cycle. Therefore, checking feasibility equals check-
ing if a graph has a cycle. The corresponding algorithm has a computational
complexity O(o) where o is the number of all operations. Further on we prove
theorems which make it possible to check feasibility of solutions (i.e., acyclicity
of corresponding graphs) generated by ¢-mowves in constant time.

Let © = (Q,m) be a feasible solution where @ = (Q', Q% ..., Q™) is the
machine workload and 7 = (71, 72, ..., 7y) is a concatenation of m permutations.
A permutation 7; determines a processing order of operations from the set Q% on
the machine M; (i = 1,2,...,m).

We consider two machines M; and M; from the same nest. A permutation m;
determines a processing order of operations from the set Q' on the machine M;
and 7; — a processing order of operations from the set Q7 on the machine M;.
For an operation 7;(k) € Q' we define two parameters connected with paths in
the graph G(©).

The first parameter is

1, if there is no path C(m;(v), m(k)) Vv =1,2,..., 0j,

n;i(k) = 1+ max {there is a path C'(m;(v),m;(k))}, otherwise.
<v<g;

(6.8)

Thus, there does not exist any path to the operation (vertex) m;(k) from any of
the operations placed in the permutation 7; in positions n;(k), n;(k) +1,...,0;
(where p; = |Q’]) in the graph G(©). This situation is shown in Figure 6.1.

permutation 77 permutation 77

A _A—
4 I - ™

C(rak), H(pk)+1))

k-1 k k+1 nk) 2k)

C(rg(n(k)-1), 72(k))

Fig. 6.1. Visualization of parameters n;(k) and p;(k) for an operation m;(k).

6.2. Machine workload 119

The second parameter is

1+ pj, if there is no path C(m;(v), mi(k)) Vo =1,2,..., 05,

pik) = 1+ min {thereis a path C(m;(k),m;(v))}, otherwise.
n; (k)<v<eg;

(6.9)

From the definition formulated above it follows that in the graph there is no path
from a vertex m;(k) to any operation placed in positions n;(k),n;(k)+1,..., p;j(k)
in the permutation 7; (see Figure 6.1). Now we prove two theorems characteriz-
ing a t-move whose execution generates an unfeasible solution. These theorems
constitute a constructional base for very efficient neighborhoods. The structure
of assumptions allows an easy implementation in the parallel computing environ-
ment, such as GPUs.

Theorem 6.1. Let © = (Q,) be a feasible solution for the FISP and let 7;, 7,
be permutations of operations executed on machines M;, M;. If machines M;, M;
belong to the same nest then executing a t-move tz-(k:,l) (mi(k) € @1, 1=1,2,...,
nj(k) — 1) generates a solution which is not feasible.

Proof. Let © = (Q,) be a feasible solution and let G(©) be a corresponding
graph. The permutation m; determines operations executing order on machines
M; and 7j — an order on machine M;. We consider a t-move t;(k;, l) consisting in
an operation 7; (k) transfer from a machine M; to a position [(1 <1 < n;(k)—1)in
the permutation 7}, i.e., to the machine M;. This move generates a new solution
O = (Q,n') (see (6.2-6.6) and a corresponding graph G(©’). Now, we prove
that this graph includes a cycle.

From definition (6.8) of the parameter 7;(k) it follows that in the graph
G(O©) there exists a path from the vertex m;(n;(k) — 1) to m;(k), i.e., the path
C(mj(n;(k) —1),m(k)), as shown in Figure 6.2.

machine M, machine M;
A A
4 N ~ Y
T k))
AT A AK O A OL O s

AN)

C(rg(r(k-1)), 7(k))
Fig. 6.2. Directed graph ©' = G(t%(k,1)(0)) = G(Q', 7).

k-1 k k+1

Moreover, there is also a path C(7;(1)) = (m;(k),mj(n;(k) — 1)) in this graph.
Executing a move t}(k,) causes an insertion of the operation m;(k) in position
to the permutation 7;. As a result, an arc (m;(k), 7;(1)), among others, is inserted

120 Chapter 6. Hybrid scheduling

to the graph G(©'). This creates a cycle

((mi(k), m;(1)), C(m; (1), mj(n; (k) — 1)), C(mj(nj(k) — 1), mi(k))),
which completes the proof of the theorem.]

A similar theorem can be proved for the p;(k) parameter.

Theorem 6.2. Let © = (Q,7) be a feasible solution for the FJSP and m;, 7 be
permutations of operations executing on machines M;, M;. If machines M;, M;
belong to the same nest then executing a t-move t;(k:,l) (where m;(k) € Q' | =
pi(k)+1,p;(k)+2,...,0;) generates a solution which is not feasible.

Proof. Similarly as in the proof of Theorem 6.1 one can show that after having
executed a move t;-(k:,l) (I = pj(k)+1,pi(k)+2,...,0j) there appears a cycle
(Cmsth), 7503 (6) 1)), C (s (g (k)—1), w5 (1—1)), (w3 (1—1), mi()) in the generated
graph G(©").]

Let us denote by 7% a set of the t-moves from T (©) which fulfill assump-
tions of Theorems 6.1 or 6.2. Therefore, the moves generate non-feasible solutions
from ©.

Theorem 6.3. Let © = (Q,) be a feasible solution of the FISP and m;, 7 be per-
mutations of operations executed on machines M;, M;. If machines M;, M; belong
to the same nest then executing a t-move t;(k‘,l) (U =mn;(k), nj(k)+1,...,p(k))
generates a feasible solution.

Proof. The proof of this theorem follows directly from the definition of param-
eters n;(k), p;j(k) (mi(k) € Q") and Theorems 6.1 and 6.2.]

Property 6.1. For each operation m;(k) executed on machine M; there exists a
position | in the permutation 7 (i.e., on machine M; from the same nest) such
that executing a move t;(k, 1) generates a feasible solution from a solution ©.

Proof. It is enough to observe that if © is a feasible solution hence for an
operation ;(k) there is p;j(k) > n;(k).]

Now we prove a theorem which constitutes a base for eliminating some t-moves
during the process of neighborhood generation. Its function is similar to that of
Theorem 3.4. Let us assume that for an assignment Q the concatenation w is
the optimal operations schedule on machines, G(0©) is a graph connected with
solution © = (Q,7) and Chax(0) is a cost function value, i.e., the critical path
length in the graph G(O).

6.2. Machine workload 121

Theorem 6.4. Let © = (Q,7) be a feasible solution for the FISP and let B =
(B',B2,...,B") be a sequence of critical path blocks in the graph G(©). If ©' =
(Q',7') 1s a feasible solution which was generated from © by machine workload
changing in a nest and Ciax(0') < Chpax(©) therefore in the ©' at least one
operation from some block was moved to a different machine (in the same nest).

Proof. Let B = (B',B?,...,B") be a sequence of critical path blocks in the
graph G(©). Each block is an operation sequence

B! = (n(d"),n(a’ +1),...,7(b)), (6.10)

fori=1,2,...,7 where 1 < a' <b' <a? <¥ <,...,< af < b*. For a notion
simplification we assume (in the proof of this theorem) that each operation from a
critical path belongs to some block. Thus, a block can consist of a single operation.
By

Vi(r) = {n(a"),n(a’ +1),...,7(b")}, (6.11)

we denote a set of jobs from the block B’. The critical path C(s,c) in the graph
G(©) includes all vertices (operations) of a set |Ji_; V' and its length L(s,c) =
Crnax(©) = >2i_1 D peyi Po-

Let © = (Q',7’) be a feasible solution such that Ciax(0’) < Chax(©). Let
us assume that no operations from any block B!, B2 ..., B" in the workload Q'
are moved to another machine from the same nest. Thus

Vifr)=Yi(x"), i=1,2,...,r (6.12)

Therefore, a sequence of jobs (r(a’),w(a’+1),...,7(b")) in the permutation 7 and
(7'(a%), 7' (a’ +1),...,7'(b%)) in 7’ are permutations of the same job subsequence
Vi = {r(a’), n(a*+1),...,m(b")}. We consider a path C’(s, c) in the graph G(©’).
Vertices of this path belong to a set A = |J; Y¥(n’). The length of this path
L'(s,¢) = Y ,caPv 50 it equals the length L(s, ¢) = Ciuax(©) of the critical path
C(s,¢) in the graph G(©). Therefore Cpax(0') > Cpax(©), which contradicts the
assumption.]

Let © be a feasible solution, B — a sequence of critical path blocks in the graph
G(©) and T — a set of t-moves defined for the ©. We denote by 7°“(0) a set
of those moves from 7 (©) which consider operations not belonging to any block.
Directly from Theorem 6.4 there follows a property which constitutes a base for
eliminating superfluous moves.

Property 6.2. If a feasible solution ©' is generated from © by executing a t-move
belonging to the set T (©) then

Cmax(©') > Crax(0). (6.13)

122 Chapter 6. Hybrid scheduling

Proof. The proof results directly from Theorem 6.4. |

Therefore, executing a t-mowve that consists in moving an operation not lying
on the critical path to another machine does not generate a solution with lower
cost function value.

Theorem 6.5. Let © = (Q,) be a feasible solution for the FISP. If B is a
block on the machine M; and BY is a block on M; and both machines belong to
the same nest then a transfer type move consisting in moving an operation from
an internal block B" to the internal block BY does not generate a solution with
lower cost function value.

Proof. Let © = (Q,) be a feasible solution, G(0) — a graph connected with it
and B = (B!, B2,..., B") - block of the critical path sequence. We assume that

BY = (w(a*),n(a" +1),...,7(d")), B = (n(a’),n(a” +1),...,7(b")),

are blocks (1 < u < v < r) on machines M; and M;, respectively. We consider
a t-move t;(k,l) where ¢ < k < b" and a” < | < b’ moving the operation
from the block B* to the block BY. This move generates from © a new solution
©’ = (Q', 7). The machine workload Q' as well as the permutation 7’ are defined
in (6.2)—(6.6). The critical path C(s,c) in the graph G(O) can be partitioned as
follows

C(s,¢) = (C(s,m(a")), C(m(a"), m(b")),
C(m(b"),(a”)), C(x(a®), w(b°)), C(w(b"),). (6.14)

This path is shown in Figure 6.3.

C(rda’), #(b%)) C({b"), ala”)) C(rda"), ob")) C(Ab"), c)
BENG LTS NG U NG T | YO T o Tt Yeig S *O'*.'/"O—:
a’) b’) a’) b’

C(s, (a"))
Fig. 6.3. Critical path in the graph G(Q,).

There is a path
C'(s,c) = (C'(s,7'(a")), C" (' (a"), " (b")),
C'(n'(b"), 7'(a")), C' (x'(a”), 7'(b")), C" (7' (b"), €)) (6.15)
in the graph G(©’). It is easy to observe that the following paths are the same

C'(s,7'(a")) = C(s,m(a")), C'(x'(b*),7'(a")) = C(n(b"),7(a")) (6.16)

6.2. Machine workload 123

and
C'(7'(bY),s) = C(w(b"), s), (6.17)

so their lengths are also equal.

We consider paths C(w(a"),n(b*)) and C(m(a”),n(b")) in the graph G(O),
and C'(w(a"), n(b*)) and C'(w(a¥),n(b?)) in the graph G(©’). Because the path
C'(7'(a"), 7' (b*)) includes all vertices of the path C(w(a™), 7w(b")) excluding the
vertex m(k) which was moved by the t-move from the block B“, therefore the
path length is

L'(n'(a"),x'(b")) = L(m(a"), 7(b")) = Pr(r)- (6.18)

Similarly, considering paths C(7w(a’), 7 (b)) and C'(7w(a’),n’'(b¥)) one can show
that

L'(n'(a”), 7' (b)) = L(m(a"), (b")) + Prr)- (6.19)

From this it follows that L'(c, s) = L(c,).

Summing up, the length of some path C’(¢,s) in the graph G(O') equals
C(s,t) = Cnax(0). Accordingly, Cpax(©') > Chax(©), which completes the
proof of the theorem:.]

Therefore, to generate a better solution by executing a t-mowve one should
move the first or the last operation of the block before the first or after the last
operation of another block. Theorems 6.1 and 6.2 proved in this section concern
feasibility of solutions generated by t-moves. If paths between any pair of vertices
in the graph are known, then this check is executed in constant time. Moreover,
Theorems 6.4 and 6.5 defined the so-called blocks elimination criteria. That is
why they make it possible to omit in the generation procedure those moves which
do not generate better solutions than the current ones. From the set of moves
T(©) generating the neighborhood of the solution © we omit all moves which
fulfill assumptions of Theorems 6.1, 6.2, 6.4 and 6.5. Therefore, t-moves from

TaCC(@) — 7-((_)) \ (Tnoacc U Tout) (620)

will be used for creation of neighborhood ©, where 7% is the set of moves gen-
erating non-feasible solutions (Theorems 6.1 and 6.2) and 7°% is the set of moves
generating solutions with the cost function value lower than Cipax(©) (Theorems
6.4 and 6.5).

If B=(B',B?,...,B") is a block from the critical path sequence in the graph
G(©) then the set 7%¢(0) includes moves which transfer the first (or the last)
operation of each block from the machine M; to another machine (from the same
nest). If m(v) is the first (or the last) operation of a block and Mj is the machine
from the same nest then the set 7%“(©) includes moves which transfer 7(v) to

124 Chapter 6. Hybrid scheduling

the following positions: n;(v),nj(v+1),...,p;(v). Such a neighborhood has a big
size, so we have limited moves which transfer the first (or the last) operation m(v)
of a block only in the position n;(v) or pj(v). So, ultimately

T*™(©) = {tj(v,w) € T : v € {d*, b},

w e {n;j(v),pj(v)}, k=1,2,...,r (6.21)
The neighborhood © constitutes the set of feasible solutions

N(©)={r(©): e T*%mO). (6.22)

This neighborhood has the size O(r - m), where r is the number of the critical
path blocks.

In practice, we should select the best element of the neighborhood (e.g. inside
a metaheuristic). Making use of parallel computing environment we can follow
one of the approaches below.

e We get as many processors as there are blocks r. Next, in the loop, each
processor checks the cost of the operation insertion to another machine
of the same type, concurrently calculating the minimal value of such an
insertion.

e We get as many processors as there are pairs of machines of the same type.
We calculate the minimal value in logarithmic time using a tree scheme of
parallel calculations.

The first approach leads to the cost-optimal method. However, the second ap-
proach, using much greater number of processors, leads us to obtaining shorter
computing time.

6.2.2. Methods of the cost function value estimation

Each solution © = (Q,) is a pair whose first element is a set sequence — machine
workloads. A new assignment will be determined by choosing an element with
the lowest cost function value from the neighborhood (6.22). This requires a
critical path to be determined for each element of the neighborhood. To speed
this procedure up, we will compute the lower bounds of the cost function value
as a choosing criterion. In this section, we will present methods of determining
lower bounds.

Let © = (Q, 7) be a feasible solution where Q = (Q!, Q%,..., Q™) constitutes
machine workload and 7 = (71, 7o, ..., Ty) is a concatenation of m permutations.
Further, let B = (B!, B%,...,B") be a sequence of critical path blocks in the
graph G(0©). We consider two machines M; and M; belonging to the same nest.

6.2. Machine workload 125

On machine M; there are executed operations from the set Q° in the order m; =
(m;(1),mi(2),...,m(0;)) and on machine M; operations from the set (7 in the
order m; = (m;(1),7;(2),...,mj(0;)). Let us assume that the block

B* = (m;(a"), mi(a® +1),...,m(F = 1), m;(0Y)), (6.23)

includes operations executed on machine M;. For simplicity, we omit index k
which denotes the block number. Therefore, 7;(a) is the first and 7;(b) is the last
operation of the block B*.

According to the strategy of searching neighborhood N (©) we are looking for
such a move 7 € 7°%™(©) which generates a graph G(7(0)) — a feasible solution
with possibly the lowest estimation of the critical path length (i.e., cost function
value). For moves from 7°“™(0©) which transfer the first operation 7;(a*) of the
block B* to position n;(a*) or pj(a*) in the permutation 7; we introduce the
notions

ak x(ak x(ak x(a
A%y = max{ L}, L3 3 D XY x(ab) € {n(a¥), pi(a)}, (6.24)

where
1 5 i bl KA b ’
X ak
LQ() — L(s,m(ak +1)) — L(S,Wz‘(ak)) ~ Prj(ak+1)> (6.26)
(ak) =
L3 = L(s,mj(1) + Y Drun) + Pry(ary + Ll (05),€) +
h=2
bP—1
= L(s,mi(a)) = Y prowy — L(mi(bh),c), (6.27)
h=ak+1
(ak) =
Ly = > paymy + L)), 0) +
h=x(ak)+1
bk —1
B Z Pr(h Wz(bk)) (628)
h=ak+1

Similarly, for moves from 7*%™(©) which move the last operation 7;(b*) of
the block B* to position 7;(a*) or p;(a*) in the permutation m; we introduce the
notions

k bk: bk bk: bk
Ay = max {23, L300 L300 L3OO y(oF) € {n; (0F), o507}, (6.29)

126 Chapter 6. Hybrid scheduling

where
bk
L) = Lm0 = 1),¢) = prgi_y) — Lim(b), o), (6.30)
L) = L(m(8F +1),¢) — L(m(b*), o), (6.31)
0;—1
bk
L") = L(s,mi (1) + 3 pryy + Py + LT (03),) +
h=2
bk —1
— L(s,m(a Z Pri(h m(bk) c), (6.32)
h=a*+1
. y(bF)—1
b
LZ() _ Z Drj(h) — (s,mi(a k)) +
bk —1
Y e (6.33)
h=ak+1

Now, we will prove theorems which allow us to estimate a cost function value
for a solution generated from © by shifting the first operation m;(a) from the block
B* (executing a t-move) to position n;j(a) or p;j(a) on machine M;.

Theorem 6.6. If the solution ©' = (Q', ') is generated from the © = (Q,7) b
executing the move t;(ak,x(ak)) € T59m (@), x(a¥) € {n;(a*), p;(a*)} then

L'(s,¢) > L(s,c) + A - (6.34)

Proof. Let m; = (m(1),m(2),...,mi(0i)) and m; = (m;(1),7;(2),...,m;(0j)) be
permutation of operations executing on machines M; and M;, respectively. The
operations sequence B¥ = (m;(a¥), m;(a® +1),...,m(b¥)) (1 <aF <V < ;) is a
block on the machine M;, i.e., B is a subsequence ;.

For the notion sunphﬁcatlon we assume that @ = da®, b = b¥ and a =
m = (a(1),...,a(a),...,ab),...,a(u)), B = m; = (B(1),...,5(w)) where u =
0i, W= gj.

The graph G(©) is acyclic, so there exists a critical path C(s,c) with the
length L(s,c). For each vertex v € O there is

C(s,c) = (C(s,v),C(v,c)) (6.35)

and
L(s,c) = L(s,v) + C(v,¢) — po. (6.36)

6.2. Machine workload 127

d(s,c) —— ds(s,0)
> | d,(s,c) > dy(s,c)
AVARVEVA-CER ﬁ» O 0O +@ 20> 0

o) f alb) J‘ A1) fata) Aw)

Fig. 6.4. Paths in the graph G(Q',7’) generated from G(Q,7) by a move t}(a, x(a)).

Vertices of the critical path can be partitioned into subsequences
C(s,c) = (C(s,a(a)), C(ala), a(b)), Ca(b),c))) (6.37)

We consider the following paths: di(s,c), da(s,c), ds(s,c) and dy(s,c) from the
vertex s to ¢ in the graph G(©’). They are shown as arrows in Figure 6.4.

di(s,c) = (C'(s,a(a —1)),C"(ala — 1), (b)), C'(a(b), c)), (6.38)
da(s,c) = (C'(s,a(a+1)),C"(ala+ 1), (b)), C'(a(b),c)), (6.39)
ds(s,c) = (C'(s, B(1),C"(B(1), B(w)), C"(B(w), c)), (6.40)
du(s,c) = (C'(s,a(a)), C'(ala) = B(x(a)), B(w)), C'(B(w),c). (6.41)
Taking advantage of the fact that
C'(s,a(a—1)) = C(s,a(a — 1)) and C'(a(b),c)) = C(a(b),c)) (6.42)

we obtain
di(s,c) = (C(s,ala—1)),C"(ala —1),a(b)),C(a(b),c)) (6.43)
and similarly

da(s,c) = (C(s,a(a + 1)), C'(ala+1),a(d), Cla(b), c)), (6.44)
ds(s,c) = (C(s, B(1),C"(B(1), B(w)), C(B(w), c)), (6.45)
)); B(w)), C(B(w),). (6.46)

da(s,c) = (C(s,a(a)),C"(a(a) = B(x(a

Therefore the length of these paths (in the graph G(©’)) can be defined by length
of some paths in the graph G(0). These are as follows

IN(s,¢) = L(s,a(a—1)) Z Pa(n) + L(a(b), c), (6.47)
h=a+1
(s,c) = L(s,a(a+1)) Zpa(h + L(a(b), c), (6.48)

h=a+2

128 Chapter 6. Hybrid scheduling

w—1
(s,c) = L(s,8(1)) + > _ pp(n) + Pafa) + L(B(w), 0), (6.49)
h=2
w—1
(s,c) = L(s,ala) + Y pawy + L(B(w), o). (6.50)
h=x(a)+1

As the graph G(©') is acyclic, there exists a critical path C’(s,c¢) whose length
must not be shorter than the length of any other paths from vertex s to ¢ in
G(©'). Therefore

L'(s,c) > 1'(s,c), (6.51)

L'(s,c) > 1%(s,c), (6.52)

L'(s,c) > 13(s,c), (6.53)

L'(s,¢) > 1%(s,¢) (6.54)

From this and using (6.37) we obtain
L'(s,¢) > max{l'(s,c), I*(s,c), 3(s,c), 1*(s,¢)} = max{L(s,a(a — 1))
b—1 b—1
+ > pagny + L(ad),c), Lis,ala+ 1)+ > pam
h=a+1 h=a-+2
w—1
+ L(Oé(b),C)), L(Svﬁ(l)) + Zpa(h) +pa(a) + L(/B(w)ac)v
h=2
w—1
+ Y Pa + L(B(w), c)}
h=x(a)
— max{L(s,¢) + L(s,a(a — 1)) — L(s,a(a)), L(s,c) + L(s,a(a+ 1)) +
w—1
- L(s,a(a)) _pa(a+1)7L(S C) + L(S /8 + Zpﬁ(h +poz(a) +
h=2
bE—1
+ L(B(w),c) — L(s,mi(a") = D" pryny — Llmi(bF),),
h=a*+1
w—1
L(s,c) + Z pan) + L(B Z Pa(h a(b),c)}
h=x(a)+1 h=a+1

= L(s,¢) + max{LX), £33 pxleny
= L(s,c) + A%y (6.55)

which completes the proof of the theorem.]

6.2. Machine workload 129

The next theorem is related with moving the last operation 7(b*) from the
block B* to machine M;.

Theorem 6.7. If the solution ©' = (Q',7’) is generated from the © = (Q,7) by
executing the move t;(bk,y(bk)) € Tsum v (bF) € {n;(b*), p;(b%)} then

k

L'(s,¢) > L(s,¢) + Al . (6.56)

Proof. Similarly, as in the proof of Theorem 6.6 we assume that m; = (m;(1), m;(2),
...,mi(0;)) and m; = (m;(1),7;(2),...,m;(0;)) are permutations of operations
executed on machine M; and M;, and B¥ = (m;(a"), m(a* + 1),...,m(b%))
(1< abF < bk < 0;) is the block on the machine M;.

Further, for simplification purposes we assume that « = m; = (a(1), «(2),
ooau), B=m = (B(1),...,0(w)) where u = g;, w = pj, and the block
B = (my(a), m(a+1),...,m(D)).

We consider the following paths

di(s,c) = (C'(s,a(a)),C"(a(a), a(b=)),C" (a(b — 1), ¢)), (6.57)
da(s,c) = (C'(s,a(a)),C'(a(a),a(b+ 1)), C"(a(b + 1), ¢)), (6.58)
ds(s,c) = (C'(s, B(1),C"(B(1), B(w)), C'(B(w), c)), (6.59)
da(s,c) = (C'(s,8(1)), C"(B(1), By (b)) = (D)), C"(B(y(D)),c) (6.60)

in the acyclic graph G(©’) generated by the move t;(bk,y(bk)). The lengths of
these paths are as follows

b—2

1'(s,¢) = L(s,a(a)) + Y pagy + Lla(b—1),¢), (6.61)
h=a+1

b—1
P(s,c) = L(s,a(a)) + Y Pa + L(a(b+),0), (6.62)
h=a+1

w—1

B(s,0) = L(s, B)) + > paw) + L(B(w), o), (6.63)
h=2
y(b)—1

1"(s,¢) = L(s,8(1) + > pay + L(BD),). (6.64)

h=2

Because the critical path C’(s, ¢) in the graph G(©’) is the longest one from vertex
s to c, its length equals

L'(s,¢) > max{l'(s, c), I*(s,¢), I3(s,c), 1*(s,¢)}. (6.65)

130 Chapter 6. Hybrid scheduling

After having executed transformations similar to those in the proof of Theorem 6.6
we obtain

L'(s,c) > L(s,c) + Aby, (6.66)

which completes the proof of the theorem.]

Remark 6.2. Values ¥, k = 1,2,3,4, can be determined sequentially in time
O(n) = O(o). These calculations can be done in parallel in time O(logn) =

O(log o) using O (ﬁ) =0 (logo)—processor CREW PRAM.

Moving the operation 7(a*) to the position 7;(a*) or p;(a¥) the graph is
generated in which the lower bound of the length of the critical path from vertex
k

s to ¢ is the value of the expression L(s,c) + Azlf(ak) (or L(s,c) + A7 (ak))' That
J J

is why the expression Ailzak), x(a*) € {n;(a*), p;j(a*)} can be used to determine
the operation (i.e., an element from the neighborhood) that will be moved.
Similarly, L(s,c)+ Agk_(bk) (or L(s,c) —i—Ai’j(bk)) is a lower bound of the critical
J J

path length in the graph generated by moving an operation 7(b*) to positions
n;(b) or p;(b*) and the expression Ai’,’zbk), y(b%) € {n;(b*), p;(*)} can be em-
ployed to select an element from the neighborhood.

We choose the operation m(v) € O such that
Y = min minfAs 2 e (o 1),) € () 02} (667)

The minimal value A;’() 18 connected with the best ¢-move which consists in
moving the first or the last operation from some block to another machine. From
Theorems 6.6 and 6.7 it follows that if A;(v) > 0, then the critical path length
L'(s,¢) > L(s,c) in the generated graph G(©').

Summing up, for the solution © = (Q,) (fixed machine workload Q) we
propose the following method of the new assignment Q' determination. In the
graph G(©) we determine the critical path C(s,c) (if there are more than one,
we choose any of them) and we calculate its length L(s,¢) = Ciax(©). Next,
we determine the partition of the path into blocks B = (B!, B%,...,B") and in
accordance with (6.21) the set of moves 7°%™(0). Using (6.67) we determine
A;(U) and choose the best t-mowve t;(v,x(v)). This move generates a solution
(the new machine workload) from the neighborhood N (©) with the lowest value
of the lower bound of the cost function.

6.2.3. Machine workload rearrangement

The algorithm proposed here searches the neighborhood generated by t-mowves
transferring the first and the last operations of each block from the critical path

6.2. Machine workload 131

to another machine. The computational complexity of the NewPar algorithm is
O(0%) because of the complexity of creating a t-mowe neighborhood (Step 3).
Determination of the longest paths (Step 1) can be done using Floyd’s algorithm
in time O(0?), or applying the recursive method based on topological sorting in
time O(0), maintaining the complexity O(0®) of the whole sequential algorithm.
An outline of the algorithm is presented in Figures 6.5 and 6.6.

6.2.4. Parallel determination of the workload

Now, we will show a parallel version of the NewPar algorithm designed to be
executed on O(0?)-processor CREW PRAM in time O(0). An outline of the
algorithm is presented in Figures 6.7 and 6.8.

Step 1 consists in: (1) sequential determination of the graph G(©) = (V, R U
£(0)) connected with the solution © and (2) parallel determination of the longest
paths for all pairs of vertices in this graph, which can be done using parallel
Floyd’s algorithm. Because the graph has at most o vertices, parallel all-pairs
the longest paths determination algorithm works in time ©(0) using o*-processor
CREW PRAM (see [124]). It is possible to determine the longest paths faster
(using a greater number of processors), but in this case this is useless because
Step 3 (neighborhood determination) has linear computational complexity O(o).

Step 2 (block determination) can be executed in constant time O(o0) using
as many processors as there are vertices on the longest path — at most o. Let
us assign each processor to one vertex v lying on the critical path. It is enough
to check by each processor if the machine number assigned to its vertex A(v) is
the same as the machine number A(u) assigned to the next vertex u lying on the
critical path. If it is not the same it means that the next block begins in u (see
Section 3.6.2). Such a comparison can be made in time O(1) using O(0)-processor
CREW PRAM.

Step 3 (neighborhood determination) consists of two loops: external and in-
ternal one, which can be executed independently in parallel. Inside them each
processor needs to determine feasible positions n;(a¥), p;(a®), n;(b*) and p;(b%),

. .q. . ak ak bk
which can be done in linear time O(0). Afterwards, values Am (ak)? Apj(ak), (65

and Azlj(bk) have to be calculated, which also needs time O(o) (the sum of at most
o elements has to be determined; see Theorem 6.7). The entire Step 3 requires
O(0?) processors (to execute two loops in parallel) to be made in time O(o).
Step 4 (the best t-move move determination) consists in choosing one move
from O(4r - Mmax) moves, where Mmmpmax = maxj<;<qm; is the maximal number of
machines in a nest. Because O(47 - muax) = O(rm) = O(0?) therefore we need
to use O(0?) processors to determine the minimal element of O(0?) elements in
time O(log 0?) = O(2logo) = O(log o). In fact, it is enough to use less processors,

132 Chapter 6. Hybrid scheduling

Algorithm 3. NewPar
Input: O = (Q,7) - a feasible solution of the FJSP;
Output: © = (Q,7') - a feasible solution generated by the t-mouve;
Step 1: {Graph creation}
Determine a graph with weighted vertices
G(O) = (V,RUE(O)) connected with the solution ©;
Determine the longest paths lengths between vertices
of the graph G(©);
Step 2: {Blocks determination}
Determine the critical path in G(©)
(i.e., vertices sequence C(s,c));
Determine blocks sequence B = (B', B%,...,B")
of the critical path C(s,¢));
Step 3: {Neighborhood determination}
for k:=1 to r do {consecutive blocks consideration}
if (block operations B¥ = (w(a®), w(a* +1),...,7(0%))
are executed on the machine M, from the nest M%)
then
fort:=ty 1+ 1tot,_1+my do
{machines of the nest M"}
if i # v then
begin
determine feasible positions 7;(a*) and p;(a*)
for the operation a® on the machine M; and calculate
the expression value Af]:(ak) and AZ’,C ok
determine feasible positions 7;(b*) and p;(b¥)
for the operation b* on the machine M; and calculate
the expression value Afyj(bk) and AZ(M);
end;
Step 4: {The best move determination}
Determine the value

A;(U) = minlgkgr,« mln{A;(z) T2 E {ak7 blc}7

n(z) € {n;j(z), pj(2)}}
corresponding to the best ¢-mowve t;(v) consisting in
moving the first or the last operation, respectively,
from some block to another machine from the same nest;

Fig. 6.5. Outline of the sequential NewPar algorithm, Part 1.

6.2. Machine workload 133

Step 5: {The new assignment determination}
Determine the new machine workload Q'
corresponding to the solution ©’ generated by the t-move t;’((v)
(determined by (1)-(5));
end.

Fig. 6.6. Outline of the sequential NewPar algorithm, Part 2.

Algorithm 4. ParallelNewPar
Input: © = (Q,n) - a feasible solution of the FJSP;
Output: © = (Q',7’) - a feasible solution generated by the t-move;
Step 1: {Graph creation}
if proc_id =1 then
Determine a graph with weighted vertices
G(©)=(V,RUE(O))
connected with the solution ©;
parfor proc_id = 1..0> do
Parallel determine the longest paths lengths between vertices
of the graph G(0©);
end parfor;
Step 2: {Blocks determination}
if proc_id =1 then
Determine the critical path in G(©)
(i.e., vertices sequence C(s,c));
parfor proc_id =1..0 do
Parallel determine blocks sequence B = (B!, B%,..., B")
of the critical path C(s,¢));
end parfor;
Step 3: {Neighborhood determination}
parfor k:=1 to r do {consecutive blocks consideration}
if (block operations B* = (7(a*), n(a* + 1),...,7(b*))
are executed on the machine M, from the nest M%)
then {machines of the nest M"}

Fig. 6.7. Outline of the ParallelNewPar algorithm, Part 1.

namely O(ﬁzgo) instead of O(0?) to maintain the same computational complexity

O(logo); though it is not necessary because the other elements of the whole
algorithm have linear complexity O(0).

134 Chapter 6. Hybrid scheduling

parfor i :=1t,—1 +1 to ty_1 +m, do
if i # v then
begin
determine feasible positions 7;(a*) and p;(a*)
for the operation a* on the machine M; and

calculate expressions value A“],C e and Aa’_C P
n;(a*) p;(a*)

determine feasible positions n;(b*) and p;(b*)

for the operation b* on the machine M; and

: bk bk .
calculate expressions value Anj(bk) and Ap]-(bk)’
end;
Step 4: {The best move determination}
parfor proc_id = 1..0° do
Parallel Determine the minimal value

A;(U) = minj<i<, min{AZ(Z) .z € {a¥, bk,

u(z) € (=), pi(2)})
connected with the best t-move t;(v) consisting in
moving the first or the last operation, respectively,
from some block to another machine from the same nest;
Step 5: {The new assignment determination}
if proc_id =1 then
Determine the new machine workload Q'
connected with the solution ©’ generated by the t-mowve t;(v)

end.

Fig. 6.8. Outline of the ParallelNewPar algorithm, Part 2.

Step 5 consisting in executing the t-mowve selected in the previous step can be
made by the single (master) processor in constant time O(1). Thus computational
complexity of the whole parallel algorithm is O(0). The algorithm needs to be
executed on O(0?)-processor CREW PRAM and it is cost-optimal with the cost
O(0%). A general scheme of the ParallelNewPar algorithm execution on GPU
for the CUDA programming environment is shown in Figure 6.9 as the case of
heterogeneous programming model (i.e., with using both CPU and GPUs).

6.3. Remarks and conclusions

A single-walk parallel approach to the flexible job shop scheduling has been pre-
sented in this chapter. We show the new integrated approach to the neighborhood
structure design and to its searching methodology from the point of view of the

6.3. Remarks and conclusions 135

Host (CPU)

Serial code Step 1. Determine a graph G(®) connected with a solution ©;

Device (GPU) (o threads)
Parallel kernel

Determine the longest paths lengths between vertexes

Kernell<<<>>>() of the graph G(©) in parallel;

Host (CPU
Serial code ()
Step 2. Determine the critical path in G(©)
Device (GPU) (o’ threads)
Parallel determine blocks sequence of the critical path
Parallel kernel using o threads;
Kernel2<<<>>>() Step 3. Determine feasible positions l7,(ak), p,(ak), l7,(bk), p,(bk)
and calculate A expressions values;
Step 4. Determine the minimal A value connected with
the best t-move;
Host (CPU)
Serial code

Step 5. Determine the new operations to machines assignment Q’

connected with the solution ©’ generated by the best
t-move from the Step 4;

Fig. 6.9. The general scheme of the ParallelNewPar algorithm execution on the host
(CPU) and the computational device (GPU) for the CUDA environment.

efficient multi-thread computing environment usage. The methodology is illus-
trated by a special case of hybrid job shop scheduling problem. We propose the
new machine workload rearrangement technique used to concurrent generation of
the operations on machine schedules. Additionally, critical and sub-critical paths
lengths estimation allows us to shorten computations time by using lower bound
of the goal function instead of its exact value during neighborhood searching.

A theoretical analysis based on PRAM model of parallel computing was also
made. We proposed a cost-optimal method of the neighborhood generation par-
allelization for the CREW PRAM parallel computing model. The workload par-
allel determination algorithm decreases the computations time from O(0%) (of
the sequential approach) to O(o) time, using O(0?) processors. Applying PRAM
computing model makes it possible to convert the proposed methods to GPU
environment easily.

Chapter 7

Theoretical properties of a
single-walk parallel GA

This chapter aims at presenting theoretical properties which can be used to
approximate the theoretical speedup of parallel genetic algorithms. The most
frequent parallelization method employed in a genetic algorithm implements a
master-slave model by distributing the most computationally exhausting elements
of the algorithm (usually evaluation of the fitness function, i.e., cost function cal-
culation) among a number of processors (slaves). This master-slave parallelization
is regarded as easy in programming, which makes it popular with practitioners.
Additionally, if the master processor stores the population (and slave processors
are used only as computational units for fitness function evaluation of individ-
uals), it explores the solution space in exactly the same manner as sequential
genetic algorithm. We can thus say that we analyze the single-walk parallel ge-
netic algorithm.

We present two approaches in this chapter. The first one, in Section 7.1,
follows from Cantu-Paz [72] and we discuss it briefly. The second one, described
in Section 7.2, constitutes a new idea of the broadcasting time approximation for
the master-slave parallel genetic algorithm.

7.1. Sequential broadcasting

A parallel genetic algorithm based on the master-slave model consists of two major
modules: (1) communication module, performed chiefly by the master processor
which broadcasts a part of population among slave processors, and (2) computing
modules, executed both on master and slaves, in which evaluation of the fitness
function is performed. We use notation taken from Cantu-Paz [72]. Let T, be the
time used to send a portion of data between two processors, and let Tt denote

138

Chapter 7. Theoretical properties of a single-walk parallel GA

the time required to evaluate one individual. Each of the processors, i.e., both
master and slaves, evaluates a fraction of the population in time n—Tf, where p is

the number of processors and n is the population size. Next we assume in this

section that the master broadcasts the data to slave processors sequentially, as
Figure 7.1 shows. We omit the time consumed by genetic operators as well as
by the mutation (it is usually much shorter than the time of the fitness function
evaluation). We also assume that the part of data assigned to each processor (i.e.,
the number of individuals evaluated) is the same both for each slave processor,
and for the master processor.

c TC TC TC
master |-

Tc Tc Tc Tcomputations time
1 1 1 1 1 1 1 1 »
K K 3 k h { I I v
AN N \ \ v \ \
N \ \ \ \ \ 1\
AN Tcompufqtions \ “ \ “
4 A] \ \ " " |
slave 1 | I v v v L
\
\‘ Tt\vmpura\\t/ans ‘\ “ "
\
slave 2 | ISy \ \ | |
I . \ 1‘ |‘ \‘ 1
" Teomputatho \ \
computations \ \
slave 3) 1] . |
! ' \ \ [} !
\ ‘;-,, \
computations \
slave 4 v« A g \ |
I v \ \ 1
‘ 1 \
v T .
computations
slave 5 Y i t |
‘I T lI
) \ ’
computations
slave 6 ¥ |
slave 7

Tcomputations

—4--"

Fig. 7.1. Sequential broadcasting in the master-slave parallel genetic algorithm.

For a sequential model of broadcasting, the parallel running time is given by
the equation

nT
T, = pT. + —L.

(7.1)
Let us check for which p the 7T}, is minimal. We denote this p by p]. Calculating
88—7;” =0 we get

(7.2)

(7.3)

which provides us with an optimal number of processors p] minimizing the value
of the parallel running time 7;,. Calculating the maximum value of the theoretical

7.1. Sequential broadcasting 139

speedup S}, we obtain
T nT'y (7.4)

Sp=—7=—"—+
T, pT—i—an

Substituting the optimal number of processors pj we have

an an
SpT - *T nTy - nT nT -
+ LT+ —=L
an
Tec
an (Tle)2 an 1 *
- T 7.1 2\ 1. T 2Pv (75)
anT + (n ff) 2 niygle c
Tc

which gives us a maximal possible speedup for this model of the single-walk

master-slave parallel genetic algorithm.

1000E ~
1 7
7’
7
/
7
100 - <
o] ,//— p; for g=4
T
@ p1 for g=2
% 4
10 - // \ \
] p; for g=1
1 T T T T T T T T T T T LI | T L |
1 10 100 1000

number of processors

g=2 e———g=] e == |inearspeedup

g=1

Fig. 7.2. Theoretical speedups for the sequential broadcasting in the master-slave
parallel genetic algorithm.

Figure 7.2 shows possible theoretical speedups for a given ratio g = % The
speedup is plotted for g = 1,2,4 showing that linearity of the speedup increases
with parameter g. In practice, T is much greater than 7. In such a situation, the

140 Chapter 7. Theoretical properties of a single-walk parallel GA

parallel algorithm can achieve near-linear speedup for the number of processors

from the range [1,pj]. For the number of processors greater than pj speedup
quickly decreases.

7.2. Tree-based broadcasting

Now, we propose a faster model of communication for the master-slave paral-
lel genetic algorithm. The broadcasting process is based on tree communication
scheme, which offers the possibility of obtaining logarithmic complexity of the
broadcasting process. This broadcasting scheme needs cooperation of all proces-
sors during the communication process. A scheme of the master-slave parallel
genetic algorithm based on this communication model is shown in Figure 7.3.

TC Tc Tc Tcomputations time
master } ! { y ! >
r\ N I AN | |
‘\ \\ \\ T ot
\ v N computations
\ Y] |
slave 1) . | |
\‘ \
slave 2) \‘I T I Tcomputations I
\‘ .
) e T tations

slave 3 \ ‘i computatio |

\

\

\
slave 4 “ TC | TC | Tcomputations |
r\ T\] |

\ AN
\ N
\ N T N
slave 5 \ ‘i computations I
\
\\

Slave 6 *I‘ TC I TCOmpututions I
slave 7 \Ai T computations |

Fig. 7.3. Tree-based broadcasting in the master-slave parallel genetic algorithm.

For the tree-based communication model the parallel running time 7}, is esti-
mated by

nT
T, = T,logyp + —2. (7.6)
In the case of using more processors, the parallel computing time (%) decreases,

whereas the time of communication (7¢logp) increases. We are looking for such
a number of processors p (let us call it p}) for which 7T}, is minimal. Calculating

7.3. Remarks and conclusions 141

Ty _ 0 we obtain

op T
T. nly
s =0 (7.7)
and then
% an In2

which provides us with an optimal number of processors p5 which minimizes the
value of the parallel running time 7}, for this model of broadcasting. Calculating
the maximum value of the theoretical speedup S, we have

Ts an

Sy === — (7.9)
P Ty Tcloggp—i-n%

Substituting the optimal number of processors p5 we obtain

Sp* _ ’an _ an _
w , nT 3 Ty In2 T
* T.log, ph + nﬁf mg I+ e
T,
TrIn?2 .
_ nlf “Tl = P2 (7.10)
T. (l—l—ln%) 1+ Inp;

This equation provides us with a maximal possible speedup for the tree-based
model of broadcasting for the single-walk master-slave parallel genetic algorithm.

Figure 7.4 shows possible theoretical speedups for a given ratio g = %, g=
1,2,4. As with the sequential communication plotted in Figure 7.2, linearity of the
speedup increases with an increase of the parameter g. The parallel algorithm
achieves the near-linear speedup for the number of processors from the range
[1,p3]. For the number of processors greater than p3 speedup keeps on increasing.

7.3. Remarks and conclusions

In this chapter, we discussed some theoretical properties of a metaheuristic which
can be used to solve scheduling optimization problems. The tree-based broad-
casting model seems to be more efficient than the sequential broadcasting model
from the theoretical point of view. In practice, it is possible to make an addi-
tional improvement of the algorithm efficiency by fulfilling the idle time of some
processors during the communication phase — if the process is executed in the
cycle, one generation of the parallel genetic algorithm after another, we can re-
move the synchronicity constraint. In such a case master processor can execute its
communication phase during a communication phase of the previous generation.

142 Chapter 7. Theoretical properties of a single-walk parallel GA

1000 -
100 -

.]

>

T

(]

(]

Q.

w
10 -
1 T —T— T T — T T —r—TT T

1 10 100 1000

number of processors

g=4 = = linear speedup

g=1 g=2

Fig. 7.4. Theoretical speedups for the tree-based broadcasting in the master-slave
parallel genetic algorithm.

The proposed speedup estimation considered the parallel genetic algorithm
based on the master-slave model of parallelism. The analyzed approaches give a
theoretical approximation of the optimal number of processors necessary to obtain
the highest speedup. Additionally, it is possible to determine theoretical upper
bounds for the speedups obtained for the master-slave model of the parallel genetic
algorithm with a single population kept by the master processor. The results
shown in this chapter can be easily adopted to any other parallel algorithm in
which calculation and communication processes appear one after another, i.e., as
in distributed single-walk scatter search method and the majority of population-
based approaches.

Part 111

MULTIPLE-WALK
PARALLELIZATION

Chapter 8

Parallel memetic approach

This chapter seeks to present a parallel memetic approach using as an example
a single machine total weighted earliness-tardiness (7T'WET') problem described
in Section 3.3.4. We additionally assume that the problem considered has no
idle constraint (TWET-no-idle problem), which means that the machine works
without stops. There are many service systems (especially in reservation systems,
electronic commerce, in tasks synchronized directly with the Internet), where
each task has to be executed in some fixed range of time. Violating the term
is disadvantageous and causes additional penalties. Therefore, it is necessary
to establish an optimal sequence of tasks (which minimizes penalties) and their
starting times. This amounts to some job scheduling problems with earliness
and tardiness. As tasks are usually received in the distributed system (in the
web), that is why to solve the problem presented we propose a parallel memetic
algorithm based on Lamarck’s evolution and the island model of migration in
which part of a population is replaced with adequate local minima. The property
of partitioning a permutation into subsequences (blocks) was used in an algorithm
of determining local minima. This method decreases the size of a neighborhood
to about 50% (in a local optimization algorithm), improving a solution’s values
and significantly speeding up computations.

8.1. Introduction

Implementations of algorithms which are based on multithread multiple-walk
searching of the solution space are usually coarse-grained application, i.e., they
require sparse communication and synchronization. Algorithms of this type are
easy to apply in distributed calculation systems, as clusters which express ben-
eficial efficiency-to-price ratio. Apart from speeding up the calculations, it is
possible to improve the quality of results obtained. Search processes can be either
independent or cooperative.

146 Chapter 8. Parallel memetic approach

8.1.1. Independent searching threads
In this category we can distinguish two basic approaches:

e Researching of the solution space by using multiple trajectories, which be-
gin from different starting solutions (or different starting populations in the
case of using population-based approaches). Searching threads can use ei-
ther the same or different strategies, i.e., the same or different local search
algorithms, the same or different parameters (tabu list length, population
size, etc.). Trajectories can cross each other in one or more places of the
neighborhood graph.

e Parallel researching of subgraphs of a neighborhood graph obtained by de-
composing the problem into a few subproblems (for example, fixing some
variables). Subgraphs of the neighborhood graph are searched concurrently
without crossing search trajectories. We obtain the partitioning of the
neighborhood graph into disjoint subgraphs.

The first parallel implementation of the tabu search method based on multiple-
walk searching of the solution space was proposed by Taillard for the quadratic
assignment problem (QAP) [244] and the job shop problem [245]. The multiple-
walk parallelization strategy based on independent searching threads is easy in
implementation and one can obtain good values of the speedup under condition
of proper decomposition of the solution space into searching threads (and their
trajectories). If the decomposition is done improperly, a parallel algorithm can
multiply search through the same regions of the solution space, i.e., we obtain
redundance of searching.

8.1.2. Cooperative searching threads

This model constitutes the most general and promising type of solution space
searching strategy by using parallel metaheuristics, however it requires knowl-
edge of solving problem specificity. ‘Cooperative’ means here the interchange of
information — experience of searching history up to now. Specific information,
which is characteristic of the problem and the method (e.g. the best solution
found so far, elite solutions, the frequency of moves, tabu lists, backtrack-jump
list, subpopulations and their sizes, etc.) has to be exchanged or broadcasted.
Information shared by search processes can be stored as global variables kept
in the shared memory or as records in the local memory of the dedicated cen-
tral processor which communicates with all other processors providing them with
requested data. In a model in which processes cooperate with each other and
information gathered when moving along a trajectory is used to improve other
trajectories, one can expect not only convergence of such a parallel algorithm,

8.2. Memetic algorithm 147

but also finding at the same time a better solution than the parallel algorithm
without communication. In such a case we can say that cooperative concurrent
algorithms constitute a new class of algorithms indeed.

The first heuristic algorithm of this type was asynchronous parallel tabu search
algorithm proposed by Crainic, Toulouse and Gendreau [85]. Packages such as
ASA [141] and ParSA [155] offer ready implementations of parallel simulated
annealing algorithms based on cooperative searching threads. The interaction
strategy is also very efficient in implementation of parallel genetic algorithms
(in the sense of solutions obtained). There are plenty of ready libraries such as
PGAPack [13] and POOGAL [68]. The majority of cooperative implementations
of parallel genetic algorithm are based on the migration island model. Each process
has its own subpopulation exchanging from time to time a number of individuals
(usually the best — elite) with other processes (Bubak and Sowa [68], Crainic
and Toulouse [84]). Bubak and Sowa [68] used the migration island model to
implement a parallel genetic algorithm for the traveling salesman problem on
HP /Convex Exemplar SPP1600 with 16 processors and on heterogenous clusters:
Hewlett-Packard (D-370/2 and 712/60) and IBM (RS6000/520 and RS6000/320).
Bozejko [26] proposed a parallel path-relinking metaheuristic based on the parallel
scatter search algorithm.

8.2. Memetic algorithm

All operations in a coevolutionary memetic algorithm (selection, crossover, local
optimization and succession) are executed locally, on some subsets of the current
population called islands. It is a strongly decentralized model of an evolutionary
algorithm. There are independent evolution processes on each of the islands, and
communication takes place sporadically. Exchanging individuals between islands
secures diversity of populations and prevents fast imitating of an individual with a
local minimum as its goal function. On each island a hybrid algorithm is applied,
in which an evolutionary algorithm is used to determine the starting solutions
for the local search algorithm. An outline of the standard memetic algorithm is
presented in Figure 8.1.

8.3. Parallel memetic algorithm

The parallel algorithms based on the island model divide the population into
a few subpopulations. Each of them is assigned to a different processor which
performs a sequential memetic algorithm based on its own subpopulation. The
crossover involves only individuals within the same population. Occasionally,
the processor exchanges individuals through a migration operator. The main

148 Chapter 8. Parallel memetic approach

Algorithm 5. Memetic algorithm

Number of iteration k :=0; Py < initial population;

repeat

P +Selection(Py); {Selection of parents}
P! «<—Crossover(P}); {Generating an offspring}
P! <Mutation(P});

A +RandomSubSet(P]); {Subpopulation}

P! +~P}/ULocalMinimumSet(A); {Local optimization}
Pjq1 <Succession(Py, P) {A new population}
k=Fk+ 1,

until some termination condition is satisfied;

Fig. 8.1. Outline of the memetic algorithm.

determinants of this model are: (1) size of the subpopulations, (2) topology of
the connection network, (3) number of individuals to be exchanged, (4) frequency
of exchanging. The island model of parallel memetic algorithm is characterized by
a significant reduction of the communication time, compared to the global model
(with distributed computations of the fitness function only). As shared memory
is not required, this model is also more flexible.

Below, a parallel memetic algorithm is proposed. The algorithm is based on
the island model of parallelism (see Bozejko and Wodecki [50]). We have adapted
the MSXF (Multi-Step Crossover Fusion) operator which is used to extend the
process of searching for better solutions of the problem. Originally, an MSXF has
been described by Reeves and Yamada [215]. Its idea is based on local search,
starting from one of the parent solutions, to find a new good solution, where
the other parent is used as a reference point. Here we propose to use block
properties defined in Section 3.3.4 to make the search process more effective —
prevent changes inside the block (which are unprofitable from the point of view of
the fitness function). Such a proceeding is consistent with an idea of not making
unprofitable changes between memes. In this way we design an MSXF+B (MSXF
with blocks) operator.

The neighborhood N (7) of the permutation (individual) 7 is defined as a set
of new permutations that can be obtained from 7 by exactly one adjacent pairwise
exchange operator which exchanges the positions of two adjacent jobs of a problem
solution connected with permutation w. The distance measure d(m,0) is defined as
a number of adjacent pairwise exchanges needed to transform permutation 7 into
permutation o. Such a measure is known as Kendall’'s 7 measure (see Diaconis
[99]). An outline of the procedure is presented in Figure 8.2.

8.8. Parallel memetic algorithm 149

Algorithm 6. Multi-Step Crossover Fusion with Blocks
Let w1, mo be parent solutions. Set x = ¢ = my;
repeat
Determine blocks in the solution 7.
Determine restricted neighborhood N (x) according to blocks;
For each member y; € N (x), calculate d(y;, 72);
Sort y; € N(z) in ascending order of d(y;, m2);
repeat
Select y; from N (z) with a probability inversely
proportional to the index ¢;
Calculate F(y;);
Accept y; with probability 1 if F(y;) < F(z), and with
probability
Pr(yi) = exp(F(x) — F(y:)) / T)
otherwise (7" is temperature);
Change the index of y; from % to n and the indices of
Yk, k=1+1, ..., n from k to k—1;
until y; is accepted;
T = Yis
if F(x) < F(q) then
q
until some termination condition is satisfied;
q is the offspring.

Fig. 8.2. Outline of the Multi-Step Crossover Fusion with Blocks procedure.

In the implementation proposed here the Multi-Step Crossover Fusion with
Blocks (MSXF+B) is an inter-island (i.e., inter-subpopulation) crossover oper-
ator which constructs a new individual by making use of the best individuals
of different islands connected with subpopulations on different processors. The
condition of termination consisted in exceeding 100 iterations by the MSXF+B
function. An outline of the whole parallel memetic algorithm is presented in
Figure 8.3.

The learning phase of the proposed algorithm uses the path-relinking concep-
tion which makes it more efficient than a standard descent search used as the
learning phase in the sequential memetic algorithm. It provides a good genetic
diversification of the population together with a high quality of each individual.

Frequency of communication between processors (MSXF+B operator and mi-
gration) is very important for the parallel algorithm performance. This must not
take place very often because of the relatively long time of communication be-

150 Chapter 8. Parallel memetic approach

Algorithm 7. Parallel memetic algorithm
parfor j=1,2,...,p { p is the processors number}
1 < 0;
P;j < random subpopulation connected with processor j;
pj < number of individuals in j subpopulation;
repeat
Selection (P, P});
Crossover(P}, P/');
Mutation(P}");
if (k mod R = 0) then
{every R iteration}
r := random(1, p);
MSXFJrB(P]{(I),PT(l));
{P.(1) is the best individual of subpopulation of processor r}
end if;
Pj« Plyi<i+ 1
if there is no improvement of the average fitness F' then
{Partial restart}
r < random(1,p);
Remove o = 90 percentage of individuals
in subpopulation P; ;
Replenish P; by random individuals;
end if;
if (k mod S = 0) then
{ Migration}
r < random(1,p);
Remove 8 = 20 percentage of individuals
in subpopulation Pj;
Replenish P; by the best individuals
from subpopulation P, taken from processor r;
end if;
until Stop Condition;
end parfor

Fig. 8.3. Outline of the parallel memetic algorithm.

tween processors, compared with the time of communication inside the program
of one processor. In this implementation the processor gets new individuals rather
rarely, every R = 20 (MSXF+B operator) or every S = 35 (migration) iterations.

8.4. Computer simulations 151

4.5

4.035

3.5

2.907

2.5 + 2.317

APRD

1.5 +

0.057 0.064 0.005 0.042
0.004

40 50 100 average

number of jobs n
01 processor M4 processors

Fig. 8.4. Average percentage relative deviations (APRD) for the sequence and parallel
memetic algorithms.

8.4. Computer simulations

The algorithm was implemented in the Ada95 language and ran on the SGI Altix
3700 Bx2 supercomputer installed in WCNS [266] under the Novell SUSE Linux
Enterprise Server operating system. Tests were based on 125 instances with 40,
50 and 100 jobs taken from the OR-Library [202|. The results were compared to
the best known ones, also taken from [202].

The computational results are presented in Figure 8.4 and in Table A.1 in
Appendix A (supplementary tables). The number of iterations is given as a sum of
iterations on processors, being permanently set to 800. For example, 4-processor
implementations make 200 iterations on each of the 4 processors, so we can obtain
comparable costs of computations. As we can observe, the parallel versions of
the algorithm achieve much better results of the average and maximal relative
deviation from the optimal (or the best known) solutions, working (parallel) in a
shorter time. Due to the small cost of communication the speedup parameter of
the parallel algorithms is almost linear.

8.5. Remarks and conclusions

The Lamarck evolution theory as well as memetic approach not only significantly
extend traditional GA, but offer more effective approach, too. It is well known
that the classic GA has a week search intensification phase — genetic operators

152 Chapter 8. Parallel memetic approach

as well as a mutation mainly diversify the search process. Additionally, in the
memetic approach it is possible to make use of specific problem properties such as
the new MSXF+B operator with block properties. Embedding special properties
of the problem inside GA is usually difficult. Further benefits are obtained by
using an island model with inter-island operator for the parallel asynchronous
coevolution.

As we observe MA is also able to improve convergence time compared to GA.
Compared to a sequential algorithm, in turn, the parallelization of MA shortens
the computing time and improves the quality of solutions obtained. The proposed
methodology of memetic algorithms parallelization can be applied to solve con-
currently all scheduling problems with block properties, such as flow shop and
job shop problems with makespan criterion, single machine scheduling problems,
etc., for which a solution is represented as a permutation.

Chapter 9

Parallel population-based
approach

In this chapter, we propose parallelization of the new original population-based
method using the idea of concurrent local minima searching. It follows the
method introduced in papers of Bozejko and Wodecki [27, 52]. The parallelization
methodology is illustrated by a single machine scheduling problem with sequence-
dependent setup times, defined in Section 3.3.3.

9.1. Population-based metaheuristic

We present a method belonging to the population-based approaches which consists
in determining and searching for the local minima. This (heuristic) method is
devised on the following observation. If there are the same elements in some
positions in several solutions, which are local minima, then these elements can be
in the same position in the optimal solution. Because we propose this method
for solving problems in which a solution is a permutation that is why in the next
part of the chapter we identify these two notions.

The basic idea is to start with an initial population (any subset of the solution
space). Next, for each element of the population, a local optimization algorithm
is applied (e.g. descending search algorithm or a metaheuristic) to determine a
local minimum. In this way we obtain a set of permutations — local minima. If
there is an element which is in the same position in several permutations, then it
is fixed in this position in the permutation and other positions and elements of
permutations are still free. A new population (a set of permutations) is generated
by drawing free elements in free positions (because there are fixed elements in fixed
positions). After having determined a set of local minima (for the new population)
we can increase the number of fixed elements. To prevent the algorithm from

154 Chapter 9. Parallel population-based approach

finishing its work after having executed a number of iterations (when all positions
are fixed and there is nothing left to draw) in each iteration ‘the oldest’ fixed
elements are set free. The method proposed is especially helpful in solving large-
size instances of very difficult discrete optimization problems with irregular goal
functions. A similar parallel population-based method was proposed by Bozejko
and Wodecki for the routing problem in work [36].

To solve the problem considered we propose a population-based algorithm
which examines local minima of the cost function. To determine the local mini-
mum a local search algorithm is used. We apply the following notation:

m* . suboptimal permutation determined by the algorithm,
7 : number of elements in the population,
P! : population in the iteration i of the algorithm,
Pt = {m,ma, ..., T},
LocalOpt(mw) : local optimization algorithm to determine local mini-
mum, where 7 is a starting solution,
LM : aset of local minima in iteration i,

LM = {71, o, ..., 7n},
#t; = LocalOpt(rj), mj € P, j=1,2,...,1.

FS' : aset of fixed elements and position in permutations of
the population P*,
FizSet(LM',FS") : a procedure which determines a set of fixed elements

and positions in the next iteration of evolutionary algo-
rithm, FS™! = FixSet(LM*, FS?),

NewPopul(FS*) : a procedure which generates a new population in the
next iteration of algorithm, P! = NewPopul (FS?).

In any permutation 7 € P’ positions and elements which belong to the set
FS? (in iteration i) we call fized, whereas other elements and positions we call
free. The algorithm work begins with creating an initial population P° (and it
can be created randomly). We set a suboptimal solution 7* as the best element
of the population PY. A new population of iteration i + 1 (a set P™*!) is gen-
erated as follows: for the current population P! a set of local minima LM? is
determined (for each element m € P! executing procedure LocalOpt(r)). Ele-
ments which are in the same positions in local minima are established (procedure
FixSet(LM*, FS%)), and a set of fixed elements and positions F.S*! is gener-
ated. Each permutation of a new population P! includes fixed elements (in
fixed positions) from the set F'S*1. Free elements are randomly drawn in the
remaining free positions of the permutation. If permutation 3 € LM?® exists and
F(B) < F(r*), then the permutation 7* is set to 5. The algorithm finishes its
work after having generated a fixed number of generations.

9.1. Population-based metaheuristic 155

A general structure of the population-based metaheuristic algorithm for the
permutation optimization problem is given in Figure 9.1.

Algorithm 8. Population-Based Metaheuristic
Initialization:
a random creation of an initial population P «+ {my,ma,...,m,};
7* < the best element of the population PY;
a set of fixed elements FS? < (); i< 0;
repeat
Determine a set of local minima LM* < {#1, %2, ..., 7, }, where
#t; < LocalOpt(r;), w; € P%
for j<1to ndo
if F(7j) < F(7*) then m* + 7;;
Determine a set FS'T! < FizSet(LM', FS') and
generate a new population P*! < NewPop(FS?);
11+ 1;
until not Stop Criterion.

Fig. 9.1. General structure of the population-based metaheuristic.

Procedures LocalOpt, FizSet and NewPopul are described in further parts of
this chapter. According to the memetic algorithm presented in Chapter 8, the
population-based approach proposed here has no genetic operators. The informa-
tion about the most common elements of local minima is collected and used for
creation of new individuals, instead.

9.1.1. A set of fixed elements and positions

A set F'S* (in iteration 4) includes quadruples (a,l, a,), where a is an element
of aset N (a € N), [is a position in permutation (1 <[< n) and «a, ¢ are
attributes of a pair (a,l). The parameter o means ‘adaptation’ and decides on
inserting an element to the set, while ¢ — ‘age’ — decides on deleting it from the
set. A FizSet(LM?, FS?) procedure is invoked, in which the following operations
are executed:

(a) changing the age of each element (¢ parameter),
(b) deleting the oldest elements,
(c) inserting the new elements.

There are two functions of acceptance I'(7) and Z(i) connected with the insert-
ing and the deleting operations, respectively. Both of them can be determined
experimentally.

156 Chapter 9. Parallel population-based approach

9.1.2. Element age modification

In each iteration of the algorithm the age of each element which belongs to FS?
is increased by 1, that is

V(a,l,a,p) € FS™TL (9.1)
FS™ « FS\{(a,1,0,9)} U{(a, L, 0, 0 + 1)} (9-2)
The age parameter makes it possible to delete an element from the set F'S?. Each

fixed element is free after some number of iterations and can be fixed again in
any free position.

9.1.3. Element insertion

Let P = {my,ma,...,m} be a population of 7 elements in an iteration . For
each permutation m; € P!, applying the local search algorithm (LocalOpt(r;)
procedure) a set of local minima LM® = {#1,#a,...,7,} is determined. For any
permutation

T = (7;(1),7(2),...,7(n), i=12,...,n, (9.3)
let

{#; € LM": #;(l) =a}|, (9.4)
which is a number of permutations from the set LM?, wherein element a is in
the position [. Let Z(7) be defined as a fixed level of acceptance (0 < E(i) < 1)
connected with the iteration ¢ (Z can also be constant). If @ € N is a free element
and

nr(a,l) =

nr(a,l) .
; (4), (9.5)

then the element a is fixed in the position [; ¢ = 1 and the quadruple (a,l, «,)
is inserted to the set of fixed element and positions, that is

[1]

o= >

FS™H FS U {(a,l,a,)} (9.6)

9.1.4. Element deletion

To test many local minima each fixed element is released after some number of
iterations have been executed. Let the deletion level function I' be defined so that

Vi, 0<T(i) <1. (9.7)
Further, let

ES = {(a,l,a,gp) c FS™. — < F(i)} : (9.8)

«
¥

9.1. Population-based metaheuristic 157

It is a set of some elements and positions which are fixed in all permutations of the
population P?, for which % (¢ is an age) is under the deletion level I'(7) defined
for an iteration i (I" can be constant).

If ES # (), then elements of this set are deleted from F/S**!, that is

FS™! « FS\ES, (9.9)

otherwise (when ES =0), let 6 = (a/,I', o/, ') € FS™! be such that
/ o]
— :min{ :(a,) EFSIH}. (9.10)

The element § is deleted from the set FS**!, that is

FS™ « FS\6. (9.11)

9.1.5. Auto-tuning of the acceptance level

The function = is defined so that for each iteration i 0 < Z(7) < 1. Tt is possible
that none of the elements is acceptable to be fixed in an iteration. To prevent
this situation an auto-tune procedure for = value is proposed. After calculating
the number of elements a in positions [(called nr(a,!l)), in each iteration 4, if

i nr(a,l)

< =(1 9.12
ale{1,2,..n} K Q (9-12)

then, Z(7) value is fixed as

. nr(a,l)
(D) = emax —

(1]

— ¢, (9.13)

where € is a small constant, e.g. € = 0.05. In this way the value of Z(i) is
decreased. Similarly, it is possible to increase this value when it is too small
(and too many elements are fixed in one iteration). The function I'(¢) should be
defined in such a way that each element of the set F'S? is deleted after a number
of iterations have been executed.

9.1.6. A new population

If a quadruple (a,l, a, p) € FS**! then in each permutation of a new population
Pi*! there is an element a in a position [. Therefore, to generate a new population
P! randomly drawn free elements are inserted in remaining free positions of the
elements of population P?. An outline of the procedure is given in Figure 9.2. The
function random generates an element of the set W from the uniform distribution.
The computational complexity of the algorithm is O(7 - n).

158 Chapter 9. Parallel population-based approach

Algorithm 9. New Population (NewPopul(F'S;i1))
Pt)
Determine a set of free elements
FE+ {a€eN: =3 (a,l,a,¢) € FSH}
and a set of free positions
FP«{l: =3 (a,l,a,9) € FS"™1};
for j <~ tondo {inserting fized elements}
for every (a,l, o, ¢) € FS™ do
(1) + a;
end for;
W « FF,
{inserting free elements}
for s<1tondo
if s € F'P then 7(s) < w, where
w <— random(W) and W + W\{w};
end for;
Piy1 < Py U{m}
end for;

Fig. 9.2. Outline of the NewPopul procedure.

9.2. Parallel Population-Based Metaheuristic

For the parallel version of the PBM two models of parallelization have been
proposed.

Single-thread model. This model executes multiple population-based meta-
heuristics which synchronize populations in each iteration, i.e., a common global
table of fixed elements and positions is used for each processor. In each iteration
the average number nr(a,l) of permutations (for all subpopulations) in which
there is an element a in a position [is computed. This model is called coopera-
tive.

Multiple-thread model. In this model, processes execute independent algo-
rithms (working on different subpopulations) with different parameters of fixing
elements in positions. At the end, the best solution of each subpopulation is col-
lected and the best solution of the whole algorithm is chosen. We will call this
model independent.

A general structure of the parallel population-based metaheuristic using MPI
library is given in Figures 9.3 and 9.4.

9.3. Computational experiments 159

Algorithm 10. Parallel population-based metaheuristic
procedure ParPBM(int n, int benchm__opt, bool stops, bool communication)
n — number of jobs to schedule;
benchm__opt — value of the benchmark’s near optimal solution, taken from [78];
stops — if it is true, the algorithm stops after achieving benchm_ opt;
communication — if it is true the algorithm has got a common nr table;
parfor p < l.nrtasks do
best _costy, +— 00;
ap < 0.7;
fized, < 0;
int nrp[N_MAX|[N_MAX];
int @p|N_MAX|; for i < 1..N_MAX do ¢p[i] < 0; end for;
perm PP[K_MAX];
for iter < 1..R do
fort+ 0.K—1do
PP[t] <~ Random__Perm();
int f < Descent_Search(PP?[t]);
if f < best cost, then best cost, < f; end if;
int fmin;
if stops == true then
MPI_Allreduce (& f, & fmin, 1, MPI_INT, MPI_MIN, MPI_COMM_WORLD);
if fmin <= benchm_opt then return fumin;
end if;
for ¢,j <+ 1l.n do
nry[i][j] = 0;
end for;
fort<«+ 1.K—1do
for i «+ 1..fized, do
nrp[i][PP[i]] + +;
end for;
end for;

Fig. 9.3. Parallel population-based metaheuristic, Part 1.

9.3. Computational experiments

Parallel population-based metaheuristic was implemented in C++ language with
the MPI library and it was tested on the Silicon Graphics SGI Altix 3700 Bx2
with 128 Intel Itanium2 1.5 GHz processors and cache-coherent Non-Uniform
Memory Access (CC-NUMA), craylinks NUMAflex4 in fat tree topology with
the bandwidth 4.3 Gbps. Up to 16 processors of the supercomputer were used.
Computational experiments were done to check the speed of convergence of the
parallel algorithm in two proposed models of communication and to compare the
results obtained with the benchmarks from the literature [78| and the latest results
obtained for this single machine problem [79, 173, 172]).

160 Chapter 9. Parallel population-based approach

if communication == true then
int new__count[N_MAX]|[N_MAX];
MPI_Allreduce(nry, new_count,(n+ 1) * (n+ 1),
MPI_INT, MPI_SUM, MPI_COMM_WORLD);
for 7,pos < 1..n do
nrp[i][pos] <— new__count[i][pos]/nrtasks;
end for;
end if;
{ change « if it is too big or too small, i.e., no elements is fixed or too}
{ many are fixed}
AutoTune (&pe) ;
for pos,i < 1..n do
if nrpli][pos|/K > pe then
fived++;
Ppli]++;
end if;
end for;
for ¢+ l.n do
if @pi] > MAX_AGE then
ep[i] < 0;
fized — —;
end if;
end for;
end for; {t¢}
end for; {iter}
return f;
end parfor;

Fig. 9.4. Parallel population-based metaheuristic, Part 2.

In Tables A.5 and A.6 (Appendix A) results of computational experiments for
the scheduling problem 1|s;;| Y w;T; are presented with the new upper bounds
marked. As we can see in Tables A.5 and A.6 it was possible to find 65 new
upper bounds of the optimal cost function for the 120 benchmark instances. The
average percentage deviation from the solutions of Cicirello and Smith [78] was
on the level of —12.08% and was better than in earlier approaches proposed for
this problem (Cicirello and Smith [78] and upper bounds from Cicirello [79], Lin
and Ying [173] and Liao and Juan [172]).

Two criteria of the algorithm termination were checked. The first one stops
the algorithm after having achieved the benchmark value from [78] or exceeding
R = 10 iterations. This criterion was helpful to determine the speedup of the
parallel algorithm tested for two models: the independent model and the model
with communication. Results of computations for this criterion of the algorithm
termination are presented in Tables A.2, A.3 (convergence), Appendix A, and in
Figures 9.5 and 9.6.

9.3. Computational experiments 161

6.00
5.475.29
5.005.01 —
5.00 127453
420413 —4
4.00 348 E N N 363328
A I -
£ 300 12.94 - - - L B
<
2.09
2.00 —1.76 - - || - - -
1.00 +0-730.70 — — = i — -
0.00 |
1 2 4 6 8 12 16 average
number of processors
O cooperative Oindependent
Fig. 9.5. Improvement of the reference solution of Cicirello [79] made by ParPBM
algorithms (stop criterion: exceeding 10,000 sec.).
25000.0
20000.0 [1-20124.00——
17836.00
. 15000.0
2
£ O 12129.00 I%'0972.4
* 10000.0
6547.00 O 8548.00 5980.0
0000 5643.00
' 55650 53830 5580.0 54000 52180 50650 o> 55823
0.0
1 4 6 8 12 16 average
J
sequential number of processors
algorithm .)
=== cooperative O~ independent

Fig. 9.6. Total time of ParPBM algorithms (stop criterion: APRD = —0.3%).

162 Chapter 9. Parallel population-based approach

Table 9.1. Results of APRD (%) of the SA, GA and TS from Lin and Ying [173]
compared to ParPBM approach.

Problem set SA GA TS ParPBM gParPBM
1 to 10 20.00 22.83 19.12 21.46 3.47
11 to 20 20.89 27.60 18.46 36.94 33.62
21 to 30 30.39 30.93 29.18 26.28 31.85
31 to 40 6.86 6.42 5.81 17.71 3.59
41 to 50 5.21 5.65 5.33 5.01 2.02
51 to 60 5.29 5.65 4.44 7.96 6.11
61 to 70 7.25 6.56 7.25 7.27 3.80
71 to 80 15.39 15.02 16.32 14.28 5.80
81 to 90 0.66 0.56 0.56 4.91 0.40
91 to 100 —0.47 —0.50 —0.11 0.90 0.64
101 to 110 0.60 0.24 0.64 3.14 0.45
111 to 120 —0.23 —0.44 —0.23 0.61 1.01
average 9.32 9.97 8.90 12.08 7.73

* Standard deviation of the ParPBM results oM is determined over 10 runs.

As we can see in Tables A.5 and A.6 the cooperative model of the ParPBM
has shorter real times of execution (fp4q;) than the independent one. Also the
time consumed by all the processors (tepy) is shorter for the cooperative model
of communication. It means that the cooperative model obtains faster the same
solutions as the independent model does.

The second criterion of the algorithm termination determines the speed of
the parallel algorithm convergence. Algorithms execute exactly R = 10 itera-
tions. Results of computations for this criterion are presented in Table 9.1. Three
t-Student tests of statistical significance show that the average value is better than
in other approaches for the cooperative model of communication with the stan-
dard significance level a« = 0.05: Hg : m; = m;, Hy : my > m;,i = 2, 3,4, where
m1, mg, m3 and my4 denote an (unknown) APRD of algorithms ParPBM, SA, GA
and TS, respectively, for any set of test instances. Values of test statistics equal
Z1 = 2.48,7Zy = 1.73 and Zs = 2.93, respectively. The critical set for a = 0.05
is [1.65,00) (from the normal distribution); all the values of test statistics do not
belong to the critical set, so we reject Hy and take the hypothesis H; which says
that the APRD of the ParPBM algorithm is greater than APRDs of SA, GA and
TS approaches, respectively.

9.4. Remarks and conclusions 163

9.4. Remarks and conclusions

We proposed the new approach to the permutation optimization problems grown
on the parallel population-based technology, being the alternative and competitive
tool for solving hard scheduling problems. The usage of the population with fixed
features of local optima makes the performance of the method much better than
the iterative improvement approaches, such as in tabu search, simulated annealing
as well as classical genetic algorithms. This method can be implemented as a
multithread master-slave application as well as a distributed algorithm in which a
set of fixed elements and positions is determined independently or in cooperation.
Due to its simplicity the proposed approach can be easily accommodated to solve
any NP-hard discrete optimization problems such as vehicle routing or assignment
problems.

Chapter 10

Parallel branch and bound
approach

This chapter presents the parallel branch and bound (B&B) algorithm for the sin-
gle machine total weighted tardiness problem defined in Section 3.3.2. Although
this method is not a metaheuristic, it can be used as an approximate method by
stopping calculations after a fixed period of time and getting the best solution
up-to-now (i.e., the upper bound). In practice, such a method can be used as
a heuristic for bigger instances of the problem if the algorithm is executed for a
determined time period.

The method with cut tree is known as a curtailed B&B. Generally, the cut can
be realized as the limit of the amount of computational resources for an algorithm:

a) limited processor work time,

b

)

) limited memory,

c¢) limited depth of the search tree,
)

d) limited number of successors of a node during the tree generation process
(so-called beam search, or filtered beam search).

In the algorithm proposed here, we have made use of the new properties of a
permutation broken into blocks shown in Section 3.3.3. These properties are
much stronger than elimination criteria (see Potts and Van Wassenhove [214],
Rinnoy Kan et al. [222]) applied so far and they allow us to eliminate many
branches of the solution tree. Parallel implementation of the algorithm enables us
to reduce computational time significantly as well as solve larger problems. We
have tested the algorithms on randomly generated instances (of up to 80 jobs)
and benchmark instances taken from the OR-Library [22]. The solutions obtained
have been compared with the results yielded by the best algorithms discussed in

166 Chapter 10. Parallel branch and bound approach

the literature. The results show that the proposed algorithm solves the problem
instances with high accuracy in a very short time.

10.1. Enumeration scheme

Each schedule of jobs can be represented by a permutation 7 = (7(1),7(2),...,
7(n)) on the set of jobs N. Let ®,, denote the set of all such permutations. We will
present the generation process of permutations from the set ®,, as a search tree H.
We create this tree as follows: from the root node (zero level), where no jobs have
been scheduled, we branch to 2n different nodes on the first level; each node
corresponds to a specific job being scheduled in the 1-st or n-th position. Each of
these nodes leads to 2(n — 1) new nodes on the second level, corresponding to one
of the remaining n — 1 jobs filling the first or the last position of the remaining
range of n — 1 free positions, etc., (see Figure 10.1).

N

12* 1*2 13* 1*3

Fig. 10.1. A part of the H tree for n = 3 (an asterisk denotes a free job).

Each node 7 from the h-th level (h = 0,1,2,...,n) in the tree H is charac-
terized by the sets of fixed jobs

SB(n) = (n(1),...,7(s = 1)), SE(x)=(x(t+1),...,7(n)) (10.1)
and free jobs

S(x) = (n(s),...,7(t)), (10.2)

where 1 < s <t+4+1<mn, ‘SB(TF)’ =s5—1, SE(ﬂ')| =n—t |S(n)|=t—-s+1
and |SB(m)| + |SE ()| = h. Therefore, a permutation 7 takes the form

m=(m(l),...,m(s — 1),1‘(’(8), oo m(t), (m(t+1),...,7(n)). (10.3)

-

SB(r) S(r) SB(r)

Producing from 7 a new permutation 8 (node on the (h + 1)-th level of the
tree) consists in fixing in the s-th or ¢-th position in 8 one of the free jobs from

10.1. Enumeration scheme 167

the set S(m), i.e., changing positions of the fixed job with the job which is in the
s-th or t-th position in m and including it in the sets of fixed jobs SP(7) or SE(n).
The remaining jobs in the same positions are in both permutations. Obviously,
in each successor of permutation 3 the job fixed in the s-th or ¢-th position in 3
will still remain there.

We call the generation of a new permutation (new node in a solution tree)
a move (insert move). Let k and [(k # I, k < n) be a pair of positions in a
permutation

7= (m(1),...,|7(k),m(k+1),...,,7(),7(l+1),...,7(n)). (10.4)

Thus, the move rlk generates a permutation 7le in the following way

=k =1),7(k+1),...,70),|7(k),7(l+1),...), (10.5)

if £k <, and
= (om(l = 1), 7 (k) 7 (D), - m(k = 1), 7k + 1)), (10.6)

if k> [. A permutation (node) 7 (1 < k,I < n) is a root of a subtree in the
solution tree H. This subtree contains all permutations which can be generated
from 7F shifting jobs from the set of free jobs S(7F).

10.1.1. Lower bound

Let m be a node of the tree H on the h-th level as it was defined in (10.1) and
(10.2). The lower bound LB(S(m)) of costs of all possible schedules generated
from 7 can be defined as follows

LB(r) = F(SB(n)) + F(SP(r)) + LB(S(n)), (10.7)
where
s—1
P(SP(m) = fr) (Crgpy) and (10.8)
=1
F(SP(m) = Y fri) (Cagi))s (10.9)
i=t+1

is the cost of executing fixed jobs and LB(S(r)) is the lower bound of executing
free jobs. We will calculate LB(S(w)) applying two methods.

168 Chapter 10. Parallel branch and bound approach

Algorithm 11. LB
begin
t
LBY(S(m)) ¢ 0; W« S(n); P+ 3 priiy;
i=1
Execute |S(7)| times:
if there exists 7(i) € W such that d.; > P then
W« W\{n(i)} and P + P 270
else
LB(S(m)) « LBC(S(x))+ min {f(P)}

an ng)gv{pw()}

end.

Fig. 10.2. Outline of the lower bound from the greedy method (LB%) algorithm.

A lower bound from the greedy method

The lower bound LB%(S(7)) of execution costs of free jobs can be calculated as
is shown in Figure 10.2. It is easy to prove that for any permutation v of jobs
from the set S(r), F(y) > LB (S(r)).

A lower bound from the assignment problem
Let

T(q) = min{P(Q) : Q C S(m)},
where ¢ = |Q| for any Q C N, P(Q) = }_ pr(;)- Next, we calculate

w(1)EQ
tij = P(SP(m)) + prisy + T'(j — 1) and (10.10)
cij = frey(tij), 4,3 =1,2,....k, k=1S(7)|. (10.11)

The lower bound LBAF(S(7)) of execution cost of free jobs from the set S(7)
equals the optimal solution value for the following assignment problem

kk
Z Zcijxij — min (10.12)
i=1 j=1 *

k k
zi; €{0,1}, injzl, injzl, i,j=1,2,... k. (10.13)
i=1 j=1

10.1. Enumeration scheme 169

In the paper of Rinnoy Kan et al. [222] the lower bound for the TWTS problem
is calculated in a similar way. Finally, we define the lower bound of the execution
of free jobs as the maximum of values obtained from the greedy method and the
assignment problem

LB(S(r)) = max{LB%(S(rn)), LBAY(S(n))}. (10.14)
Therefore, if 7* is the best solution known so far and
LB(m) > F(r"), (10.15)

then permutation 7 (node from the tree H) can be eliminated.

10.1.2. Branching rule

Let m be a node of the tree H. Let us select a free job (the move) from the set
S(m) = {n(s),...,n(t)}. Fixing this job in position s or ¢ will generate a new
permutation which is a direct successor of 7 in the tree H. By L(7) = {rl: i €
S(m)} let us denote the set of candidates of moves which determine free jobs in
position s and by R(w) = {rf : i € S(x)} the set of candidates of moves which
determine jobs in position ¢.
Let vl € L(m), and take elements

7= {Z eN: s <i<land Cw(z) > dﬂ(z)} (10.16)
and
62(7‘-) = fﬂ‘(l)(m(s—1) + Dr l)) fﬂ'(l 7r(l +pﬂ'(l Zw (1017)
€T

Next, for v} € R(r)

6215(71—) = fﬂ'(l)(m() f7r l) — Pr(l) Z Wr(45)s (1018)

JjeT

where J = {j € N': 1 < j < tand Cppj) > dn(j)}-

Theorem 10.1. If § is a permutation generated from 7 by move v € L(7), then
F(8) > F(r) + d.(r), (10.19)
and, if it is generated by move vt € R(), then

F(B) > F(r) + 6\ (n). (10.20)

170 Chapter 10. Parallel branch and bound approach

Proof. Let a permutation m be a vertex on the level h = s — 1 +n — ¢ in the
solution tree H. A set of free jobs in w, S(7) = (n(s), 7(s+1),...,7(t—1),7(t)).
A move 7l € L(n) (s < 1 < t) generates a new permutation (a vertex in the
solution tree H) 8 = rl(r) such that

Bi)=n(), i=1,2,....,s—L1+1,...,n, (10.21)
B(s)=n(l)and B(j +1)=7(j), j=s,s+1,...,0—1. (10.22)

Let
X={ieN:s <i<l, Crs >dp)}, (10.23)

Z= {Z eN: s <1<, Cw(z) < dﬂ(i) and Cﬂ(z) +p7r(l) > dw(z)} (10.24)

For s +1 < k < [the element S(k + 1) = w(k). We consider three exhaustive
cases: ‘m(k) € X7, ‘m(k) € Z2” and ‘n(k) ¢ (X U Z)".

Case 1. ‘w(k) € A’. Then

Fa+1) (Co1)) = fri) (Crry) + Wak) - Pr(r)- (10.25)

Case 2. ‘w(k) € Z’. In this case

T8+ (Cokt1)) = Fri) (Criry) + Waik) - (Criry + Prq) — dri))- (10.26)

Since fr (k) (Cr(r)) = 0, 50
fak+1) (Cort1)) =

= Wrky - (Criy T Pr() = du(i)) = Jr(e)(Cr(e) + Pr(t))- (10.27)
Case 3. ‘m(k) & (X U Z)’. Then
fa041)(Cer1)) = fa(e)(Crry) = 0. (10.28)
Since B(s) = (1), so
f3()(Ca(s)) = fr)(Cr(s=1) + Pr@t))- (10.29)

The goal function value

s—1

B) = Z f36)(Csaiy) + fa(5)(Cas)) +

i=1

+ Z fo) (Cpa) Z f86)(Ca)) me Criay) +

1=s+1 i=l+1

10.2. Branch and bound algorithm 171

+ Fa)(Crtsmt) + r) + Y Ity (Corgiy) +

+ Z @) Pr) D Ty (Criy + Pry) +

1)EL w(i)eT

+ Z fﬂ'(l)(Zfﬂ' +f7r (m(s—1) +

i=l+1

+ e(t) = Fr) (Cr) + 2y | Y wagey | +
w(1)eL

+ Z le'(’L +p7r l)) ()+6(ré) (1030)

w(i)eET

Similarly, we can prove that for a move ri € R(r) (s <1< t)
F(B) = F(m) + 6(r}), (10.31)

which ends the proof of the theorem.]

Therefore, expression F(r) + 6L(w) or F(r) + 6i(m) is a lower bound of a
permutation weight generated from 7 by fixing the free job 7(l) € S(7) in the
s-th or t-th position. While the algorithm progresses we will choose jobs which
after having been fixed will generate a permutation — a direct successor which has
the smallest possible weight (i.e., which has the smallest 6(r), 7\ € L(7) and
si(m), rl € R(m)).

10.2. Branch and bound algorithm

The starting point of the algorithm (the root of solution tree H) is a permutation
70, the sets of fixed jobs SB(7?) = S¥(7%) =0 (s = 1, t = n) and of free jobs
S(7%) = N. Let us assume 7* <— 7 as the best solution and let the upper bound
UB = F(7m*). The tree level is h = 0. Let m be a permutation (node) on the
h-th level of the tree H. The sets of fixed jobs SB(n) = (7(1),7(2),..., (s —

1)), SE(n) = (n(t +1),7(t +2),...,7(n)) and of free jobs S = {7 (s),...,7(t)},
where h = s — 1 +n — t. The quality of solutions calculated by the branch and
bound algorithm depends on the starting point, too. For 7° we set the best
solution determined by one of the heuristic algorithms: SWPT, EDD, AU and
COVERT, |213]. An outline of the branch and bound method is presented in
Figure 10.3.

172 Chapter 10. Parallel branch and bound approach

Algorithm 12. B&B
Step 1: {Lower bound}
if LB(w) > UB then go to Step 5;
Step 2: {Upper bound}
if F(n) <UB then UB + F(7), m* + m;
Step 3: {Set of candidates}
Determine set of candidate moves L(7) and R(7);
Step 4: {Calculations}
if L(m) U R(w) = () then go to Step 5;
Select a move rlk, such that:
6F =min{ min {0}, min {6/}};
rieL(m) T} T
Generate new permutation 5 (node in H) by
executing move rf.
if r} € L(m) then
determine 7(k) on position s in
and s < s+1
else (i.e., 7¥ € R(m))
determine the job 7 (k) on position ¢ in 8
andt +t—1;
Let h<~h+1; m<+ [
go to Step 1;
Step 5: {Backtrack}
if 7 is the root of the tree
then exit; {7* is an optimal solution}
if permutation m was generated from (3
by move rlk then
ifrf € L(m) then
s+« s—1land L(m) < L(m)\{r}}
else (i.e., r} € R(m))
t+t+1and R(m) < R(m)\{rf};
h+h-—1;
go to Step 4;

Fig. 10.3. Outline of the Branch and Bound (B&B) method.

10.2.1. Parallel algorithm

The parallel algorithm was implemented for the SIMD model of parallel processors
without shared memory. Each processor has its own local memory with a short
time of access; the communication between processors is very slow (compared to

10.3. Computer simulations 173

Algorithm 13. Parallel B&B
for (each processor p=1,2,...)
begin
Heap : heap; {local for each processor}
while Heap # 0

if LB(m) <UB then

begin
m < Get(Heap);
if F(m) <UB then
begin

UB « F(m); 7" <« m;
broadcast m* to other processors

end;
if L(r)UR(m) =0 then Backtrack
else select minimal move in L(w)U R(7)
and generate new permutation
(node in tree H);
Put (Heap, [3)

end

end.

Fig. 10.4. Outline of the parallel B&B.

the local-memory access). A general scheme of the parallel algorithm is given in
Figure 10.4.

The main idea of the parallel algorithm is to make a concurrent multiple-walk
search process on the solution tree H. Each processor has a set of vertices to
search and a local value of the upper bound UB. If every processor had the latest
value of the best upper bound at any moment, the speedup (compared to the
sequential algorithm) would be the greatest. But broadcasting the upper bound
costs, i.e., the time of communication between processors is very long. That is why
the frequency of communication between processors (broadcasting of the latest
value of the upper bound) has to be low. In our implementation the processor is
getting a new value of UB when it wants to broadcast its own 7*.

10.3. Computer simulations

The algorithm was implemented in Ada95 language and ran on the SGI Altix 3700
Bx2 supercomputer installed in Wroctaw Centre of Networking and Supercom-
puting [266] under the Novell SUSE Linux Enterprise Server operating system.

174 Chapter 10. Parallel branch and bound approach

Table 10.1. The number of iterations (over all processors) and the time of computing.

n 1 processor time** 2 processors 4 processors
20 18 821 4 18 819 18 814*
30 53 133 27 53 123 53 125
40 96 818 54 96 818 96 818
50 160 379 126 160 337 160 315
60 246 295 381 246 306 246 290
70 347 290 589 347 267 347 260
80 490 649 937 490 650 490 535

* Situations where parallel algorithm executes less iterations than the sequential one

are marked with bold font.
** The average time of computing for single instance in seconds.

The tasks of Ada95 language were executed in parallel as system threads. Test
problems were randomly generated (adapting the generation scheme proposed by
[214]) and 125 instances were given for each size n = 20,...,80. For each job i,
an integer processing time p; was generated from the uniform distribution [1,100]
and, for weighted tardiness problems, an integer weight w; was generated from
the uniform distribution [1,10]. Problem hardness is likely to depend on the rela-
tive range of due dates (RDD) and on the average tardiness factor (TF'). Having
computed and selected values of RDD and TF from the set 0.2, 0.4, 0.6, 0.8,
1.0, an integer due date d; from the uniform distribution [P(1 —TF — RDD/2),
P(1—TF + RDD/2)] was generated for each job i. Five problems were generated
for each of the 25 pairs of values of RDD and TF, yielding 125 problems for each
value of n.

Table 10.1 shows average number of iterations performed by the algorithm for
varying number of processors and average computing times. As we can notice a
parallel algorithm performs on average a smaller number of iterations than the
sequential algorithm. This effect can also be observed in Figure 10.5. In the par-
allel algorithm the number of iterations is computed as the sum of iterations for
each processor, so the speedup we get may be almost-linear, or even superlinear,
because of the rare communication between processors. Such speedup anomalies
were seen in the context of branch and bound algorithms (Lai and Sahni [164],
Mans and Roucairol [178]), as well as in the context of parallel tabu search and
simulated annealing algorithms (Bozejko and Wodecki [65], Porto and Ribeiro
[209], Wodecki and Bozejko [269]). Anomalies can appear due to wrong decisions

10.4. Remarks and conclusions 175

0.0400

0.0372
0.0350

0.0300

0.0250 0.0232

0.0200 —

0.0150 —
0.0106

0.0100 - —

nodes [%]

0.0050 - 0.0020 —
0.0000 0.0000

0.0000
20 40 I:I 60 -0.000%,
-0.0050
-0.0045

-0.0100

number of jobs n
02 processors [04 processors

Fig. 10.5. Percentage improvement of the number of searched nodes of the parallel
B&B compared to the sequential B&B algorithm.

made by sequential algorithms. As we can notice the number of iterations per-
formed by algorithms grows exponentially, but much more slowly than it takes
place in the known branch and bound algorithms for this problem, which cannot
solve problems for n > 50. Our parallel algorithm can solve problems even for
n > 100, for some instances, in 90 minutes.

10.4. Remarks and conclusions

This chapter provides us with a practical, sequential and parallel branch and
bound algorithm for the single machine total weighted tardiness problem. Pre-
liminary calculation allowed us to suppose that in the case of using parallel sys-
tems it will be possible to solve bigger instances (more than 50 jobs), especially if
we use stronger lower bounds and additional elimination criteria. The proposed
methodology can be applied to any discrete optimization problem in which a so-
lution is represented as a permutation. Superlinear speedup effect, described also
in the literature in the context of parallel B&B as a speedup anomaly, has been
observed during computational experiments.

Chapter 11

Parallel simulated annealing

The aim of this chapter is to propose a new cooperative simulated annealing ap-
proach designed to solve hard discrete optimization problems. We present two
simulated annealing algorithms (sequential and parallel) for the permutation flow
shop sequencing problem. Two approaches to the simulated annealing method
parallelization have been presented: (1) classic, multiple-walk, with parallel gen-
eration of trajectories, and (2) more expanded one, using additional backtrack
jump, multimoves and temperature steering which makes it possible to inten-
sify and diversify the searching process. The first approach is presented for the
flow shop problems with the objective of minimizing the makespan, the second
approach — with the sum of job completion times.

We propose a neighborhood applying block properties of jobs on a critical path
and specific acceptance function. We also use the lower bound of cost function.
By computer simulations conducted by Taillard [243] and other random problems,
it is shown that the performance of the proposed algorithms is comparable with
other random heuristic techniques discussed in the literature, but with much
shorter computing time. The proposed methodology can be applied in any local
search procedures.

11.1. Makespan criterion

We take into consideration the permutation flow shop scheduling problem defined
in Section 3.4, denoted as F||Ciax in the literature. The objective is to find a
schedule that minimizes the completion time of the last job. The problem under
consideration will be used as a case study to present the general methodology of
the multithread simulated annealing method implementation as a multiple-walk
parallelization.

178 Chapter 11. Parallel simulated annealing

11.1.1. Simulated annealing method

The general idea of the SA method was described in Section 2.1.2. Here we will
extend the SA algorithm description with detailed implementable elements. Let
us consider the notion for solutions of the flow shop problem as it was defined
in Section 3.4. In each iteration of simulated annealing a random perturbation
is made to the current solution m € ®,,, giving rise to the set N (7) of neighbors.
A neighbor 8 € N () is accepted as the next configuration with probability func-
tion Wy(m,). The Wy (w,B) is known as acceptance function and depends on con-
trol parameter t (temperature). Its value changes at suitably chosen intervals. In
practice the function W, (7,/3) is chosen in such a way that solutions corresponding
to large increases in cost have a small probability of being accepted, whereas solu-
tions corresponding to small increases in cost have a greater probability of being
accepted. A standard simulated annealing algorithm can be written as in Fig-
ure 11.1. The best solution found so far is represented by 7*, L is the number

Algorithm 14. Standard simulated annealing algorithm
Let m € ®,, be an initial solution; 7* < 7; ¢ < 0;

repeat

while 7 < L do

begin
11+ 1;
Randomly generate a solution g
from the neighborhood N (7) of the current solution 7;
if Cmax(B) < Cmax(7*) then 7* + f;
if Chax(8) < Chax(7) then m < 3 else

if Wy(mw, B) > random[0,1) then m « 3
end; {i}

t < 0; modify control parameter t;
until Stop Criterion;

Fig. 11.1. Outline of the simulated annealing algorithm.

of iterations for the fixed value of the parameter t. The initial solution © of the
algorithm is devised by the heuristic method NEH (Navaz, Enscore, Ham [194]).

Let By (k = 1,2,...,m) be the k-th block in permutation T, B,{ and B!
the subblocks (see Section 3.4.3). For job j € B,{ let us denote by Ng(j) a set
of permutations created by moving the job j to the beginning of the block By
(before the first job in the block 7(fx)). Analogously, for the job j € B,J: let us
denote by N!(j) a set of permutations created by moving the job j to the end
of the block By (after the last job in the block 7(lg)). The neighborhood of the

11.1. Makespan criterion 179

solution 7 is as follows
N = U WLGUNLG). (11.1)

k=15€By
We propose a new probability acceptance function
—21In(t)
Chax(7*)]’

where LB(f3) is a lower bound of the value Chax(3). Using blocks in neighbor-
hood creation the strong connectivity property is lost, thereby causing lack of
theoretical convergence (however there are known excellent metaheuristic algo-
rithms without strong connectivity property, e.g. TSAB algorithm of Nowicki
and Smutnicki [196], one of the best metaheuristics for the flow shop problem).
Therefore, we propose a new acceptance function which though does not give a
theoretical convergence of the whole SA, but is experimentally more beneficial
— theoretical convergence conditions are not fulfilled for all practical simulated
annealing implementations.

The initial value of control parameter ¢ < to, (0 < ¢t < 1), where tg is
the probability of accepting a solution which is worse by half compared to the
best solution 7*. To modify parameter ¢ we use a geometric decreasing scheme:
t < txa, (0 < a<1). If there is no improvement of the best solution 7* after
T iter iterations, then ¢ <— tg. The algorithm stops after Max_iter iterations.

Uy (m, B) = exp [(—LB(ﬁ) + Chax (7)) (11.2)

11.1.2. Parallel concepts

The chosen model of parallel computing is the SIMD machine of processors with-
out shared memory — with the time of communication between processors much
longer than the time of communication inside the process which is being executed
on one processor. There are two ways of parallelization used here. One method is
simultaneous independent search — concurrently executing a number of indepen-
dent simulated annealing algorithms without any communication between them
and selecting the best solution from solutions obtained by all processes. The other
method is to broadcast the best solution of one processor to the other processors
when the new best solution is found.

As we have mentioned in Section 2.1.2, parallel simulated annealing (with
move acceleration parallelism) has been theoretically proved to be convergent to
the global optimum. However, in our implementation even sequential SA has no
convergence (because of the lack of strong connectivity of the blocks neighbor-
hood), that is why neither the parallel SA is theoretically convergent. In practice,
convergence is only a minor property of a metaheuristic, not connected with its
real efficiency.

180 Chapter 11. Parallel simulated annealing

Frequency of communication between processors (broadcasting of the 7*) is
very important for this parallel algorithm performance. This must not take place
very often because of the long time of communication between processors. In
this implementation processor is getting a new value of 7* only when it wants to
broadcast its own 7* (so it exchanges and compares the best solutions with its
own 7*). An outline of the parallel SA algorithm is presented in Figure 11.2.

Algorithm 15. Parallel SA with broadcasting
Let m € @, be an initial solution (the same for each of p processors).
¥4 7; 1 < 0; (all variables are local)
parfor j=1,2,...,p
while ¢ < L do
begin
141+ 1;
Randomly generate a solution 3
from the neighborhood A (7) of the current solution 7;
if Chax(8) < Chax(7*) then
7 < [; broadcast 7 to other processors with
comparing to others (exchanging 7*);
if Chpax(8) < Cmax(m) then 7 + [else
if Wy(mw, B) > random|0,1) then 7 + [
end; {i}
i < 0; modify control parameter ¢
end parfor.

Fig. 11.2. Outline of the parallel SA with broadcasting.

11.1.3. Computational experiments

The algorithm has been tested in several commonly employed instances of various
size and hardness levels:

a) 50 instances of 12 different sizes with 100, ..., 500 operations (n x m =
20 x 5, 20 x 10, 20 x 20, 50 x 5, 50 x 10) due to Taillard [243], (from the
OR-Library: |22]),

b) 100 instances of 5 different sizes with 2,000, ..., 10,000 operations (200 x 5,
200 x 10, 200 x 20, 200 x 25, 200 x 50).

The computational results are presented in Tables A.4 and A.7 (in Appendix A).
We used the following parameter specifications in algorithms:

11.1. Makespan criterion 181

to = 0.5 — initial value of control parameter,

a = 0.98 - constant in control parameter formula,

L = n — number of iterations for fixed parameter ¢,

T dter = 10 — number of iterations without improvement of the best

solution after which parameter ¢ is set to tp.

All algorithms were implemented in Ada95 language and ran on the SGI Altix
3700 Bx2 supercomputer installed in Wroctaw Centre of Networking and Super-
computing [266] under the Novell SUSE Linux Enterprise Server operating system.
The maximal number of iterations Maz ster is 200 for one-processor implemen-
tation and 50 for each of the processors in the implementation for 4 processors
(thus we have the same complexity, the value of speedup is 4 — the frequency of
communication between processors is very rare so it has no influence at all on
complexity estimation). As we can see in Figure 11.3, the results are better for
parallel program. So speedup is even greater than 4 in a sense (parallel program
needs less than 50 iterations to obtain the same results as sequential algorithm
for 200 iterations).

We compare solutions of our algorithm with the best known in the literature
approximate algorithm NEH (Navaz, Enscore, Ham [194]).

3 - 0
o~
) N o
[e2]
25 - o NN
< _
~ ‘0_." N~ »
2 - = = % -
i —
g] Py
£ 15 - o
<
% o
14 S g « o
O ©
S o
0.5
-
0 - | B
20x5 20x 10 20x 20 50x5 50x 10 50x 20

instance size

MW 1 processor 04 processors independent 04 processors with broadcasting

Fig. 11.3. APRD for Taillard [243] instances of the sequential and parallel SA
(independent, and cooperative, with broadcasting).

182 Chapter 11. Parallel simulated annealing

As we can see in Figure 11.3 as well as in Tables A.4 and A.7 in Appendix A,
results of the parallel algorithm are best for the large values of quotient n and m
(20 x 5,50 x 5,100 x 5). In such a case the size (length) of blocks is most profitable
for sequential and parallel algorithm performance. Besides, improvement of solu-
tion value for the parallel algorithm compared to the sequential one was at the
level of 18%. The parallel algorithm with broadcasting of the upper bound value
was better than the sequential one at the level of 24%, all parallel algorithms
being executed with the same number of iterations (as the sum of iterations on
each processor) like sequential algorithm.

11.2. Total completion time criterion

In this section, we present a tool for intensifying and diversifying the SA search-
ing process. We take under consideration the flow shop problem with the total
completion time criterion F'||Cgym.

11.2.1. Intensification and diversification of calculations

Here we present a new acceptance function and cooling scheme. In order to
intensify calculations we introduce:

a) backtrack jump — return to the neighborhood where improvement of the
current solution takes place,

b) changes of temperature — exact exploration of the promising region.
For better diversification of calculations we will apply:

a) multi-step — moving computations to another remote region of solutions,

b) changes (increasing) of temperature enabling approval of considerably worse
solutions.

Acceptance function and cooling scheme. If for randomly determined permu-
tation 8 € N (m) there occurs F(f) < F(x), then S is the base solution in the
next iteration. On the contrary, i.e., when F'(3) > F(7), the probability of accep-
tance for the base solution in the next iteration is determined by the acceptance
function. We propose a new one

(11.3)

Van(m, B) = exp KF(B)_F(W)) ' lnw ’

F(m*) !

which also depends on the best solution 7* determined so far. Parameters o and
A (0<A<1, a>0)play the role of changing the temperature in the classical
acceptance function. We can intensify or diversify calculations by changing these

11.2. Total completion time criterion 183

parameters (cooling scheme). By reducing them we intensify calculations, whereas
by increasing their values we make it possible to move away from the current local
minimum (diversification of computations).

Backtrack-jump. Let m be the current base solution, ¢, — the temperature in
the current iteration connected with the current base solution m, and 7* — the
best solution determined so far. By LM we denote long-term memory. On LM
we will record certain attributes of the algorithm iteration: base solution and
temperature. If for a randomly chosen permutation 6 € N (), F(8) < F(7) then
we record on LM the pair (7,t,), in other words, LM <« LM U (m,t,).

If ‘return condition’ comes out (e.g. lack of improvement of the best solution
after having executed a fixed number of iterations), then we get the pair (53,3)
from the LM memory. Instead of the current base solution of the algorithm we
take permutation 3, and g becomes the current temperature. In SA algorithms
long-term memory LM is implemented using a stack or a queue.

Multi-step. If during a certain number of iterations the value of objective
function is growing, then we execute a multi-step: generating distant permuta-
tion (in the sense of the number of moves) from the current base solution. Let
Bs, Bs+1, - -, B¢ be a search trajectory, i.e., a sequence of consecutive base solu-
tions. If F(Bs) < F(Bs+1) <,...,< F(B¢) and |t —s| > Lbp, where Lbp is a
fixed parameter, then we execute the multi-step. For fixed parameter k& we gener-
ate permutation 6 = 7, (rg—1(,...,71(Bt),...,)), where r1,79,..., 7 are randomly
generated moves. We take permutation § as a base solution and t5 < to.

11.2.2. Parallel simulated annealing

The first parallelizations of the simulated annealing method were based on the
crossing along a single trajectory through the solution space (so-called single-walk
strategy). There were two ideas used in this strategy: move acceleration and
parallel moves. Kravitz and Rutenbar [159] described one of the first examples of
this type of parallelization of the simulated annealing metaheuristic.

Another method, crossing along a multiple trajectory through the solution
space (multiple-walk strategy), was proposed by Miki et al. [189] and Czech
[92]. This method is based on execution of several threads (independent, semi-
independent or cooperative) running simulated annealing at different tempera-
tures. This model was the base of our research.

The new elements of the pSA method: intensification and diversification,
multi-step and long-term memory were implemented in parallel as follows. A mas-
ter-slave model was used in implementation of the parallel algorithm. The master
process keeps shared data, such as the best known solution and backtrack-jump
heap. Slave processes ¢ = 1,2,...,p run their own simulated annealing threads
with different temperatures ¢ = (af, \?). If one process finds a new best solu-

184 Chapter 11. Parallel simulated annealing

2.5 ~
~
[*)]
-
2 ——
a 3
— —
1.5 - — Q]
[a) —
-4 I
[- %
< &
1 A)
© [e)]
mn
o
05 4 Q S =
° 8 ° 8 s 3
o =] oS
0
20x5 20x 10 20x 20 50x5 50x 10 average

instance size

01 processor (sSA) 4 processors (pSA)

Fig. 11.4. Results of APRD for sSA and pSA algorithms.

tion 77*, then it sends it to the master process and runs an intensification procedure
for the next S = 10 iterations. Slave processes obtain up-to-date 7* from the mas-
ter process every K = 10 iterations. If the process shows no improvement of its
own search procedure for R = 20 ‘big’ iterations (without modification of temper-
ature), it runs the backtrack-jump procedure, consisting in getting new current
solutions from the backtrack heap of the master process. Both sequential and
parallel algorithms make n iterations without modification of the temperature
inside one ‘big’ iteration.

11.2.3. Computational results

The proposed algorithm was coded in Ada95 and ran on the SGI Altix 3700 Bx2
supercomputer installed in Wroctaw Centre of Networking and Supercomputing
[266] under the Novell SUSE Linux Enterprise Server operating system, and tested
on the benchmark problems taken from the literature (see OR-Library [22] for
more details). Main tests were based on 50 instances with 100, ..., 500 operations.
Each instance of the test problems was executed 8 times, and the average and
minimal result was used for comparison. The standard deviation of results was
computed too — it was the measure of algorithm stability.

Results of the tests are shown in Table A.8 in Appendix A. Starting solutions
for the first process were taken from the quick approximate algorithm NEH, other
processes start with random solutions. For all the algorithms tested, the number of

11.3. Remarks and conclusions 185

1.00%
0.90%
0.80%
0.70%
0.60%
0.50%
0.40%
0.30%
0.20%
0.10%
0.00% T T :
1000 2000 3000 4000 5000 6000 7000
iterations

distance to optimal

T 1

—® -SSA =—O=pSA

Fig. 11.5. Comparison of convergence for sSA and pSA algorithms.

iterations was given as a sum of iterations on processors. All algorithms, sequential
and parallel, make 20,000 iterations, so the 4-processor implementations make
5,000 iterations on each of the 4 processors.

As we can see in Figure 11.4 (which is based on Table A.8 from Appendix A)
the average distance to reference solutions for sequential sSA and parallel pSA was
at the level of 0.82% for 1-processor implementation and at the level of 0.59% for
4-processor implementation. All algorithms have the same number of iterations
and comparable costs. Additionally, the results of the parallel algorithm in 8 runs
were more stable: standard deviations of the result equalled 0.13%, compared
to 0.18% for the sequential algorithm. Another test was made for comparing
algorithms in terms of convergence speed. Tests were conducted on the first 10
instances of the benchmarks [22], the average distance to reference solutions was
used for comparison. As we can see in Figure 11.5 the parallel algorithm achieves
better results than the sequential algorithm after the same number of iterations
(as the sum of iterations on each processor).

11.3. Remarks and conclusions

We discussed an approach to the permutation of flow shop scheduling based on a
randomization version of iterative improvement, namely the parallel simulated an-
nealing algorithm based on asynchronous multiple-walk strategy. Parallelization
increases the quality of the solutions obtained, the probabilistic element of the
algorithm makes simulated annealing much better than the iterative improvement
approach. The advantage is especially visible for large problems. As compared to

186 Chapter 11. Parallel simulated annealing

the sequential algorithm parallelization increases the quality of solutions obtained.
The idea of the backtrack-jump and the multi-step was employed. Computer ex-
periments show that the parallel algorithm is also considerably more efficient and
stable in comparison to the sequential algorithm.

The pSA algorithm is relatively easy to design. We propose the new annealing
scheme which allows cooperation between threads during parallel computations
(a classic SA does not cooperate). Making use of this skill allows us to improve
results of the pSA.

Chapter 12

Parallel scatter search

The aim of this chapter is to present a parallel variant of the scatter search method,
one of most promising methods of combinatorial optimization. The parallel algo-
rithm has been projected and researched experimentally, in the application of flow
shop scheduling problems with Cpax and Cgupy, criteria. The parallel algorithm
based on the scatter search method not only accelerates the computations, but
it also improves the quality of the results. In some cases the effect of superlinear
speedup has been observed.

12.1. Scatter search method

The main idea of the scatter search method can be found in the paper of James,
Rego and Glover [146]|. The algorithm is based on the idea of evaluation of the
so-called starting solution set. In the classic version a linear combination of the
starting solution is used to construct a new solution. In the case of a permu-
tational representation of the solution using linear combination of permutations
provides us with an object which is not a permutation. Therefore, in this chapter
a path relinking procedure is followed to construct a path from one solution of the
starting set to another solution from this set. The best element of such a path is
chosen as a candidate to add to the starting solution set. The method stops after
having executed a fixed number of max ¢ter num iterations. An outline of the
(sequential) scatter search method is presented in Figure 12.1.

12.1.1. Path relinking

The base of the path relinking procedure, which connects two solutions 71, me €
®,,, is a multi-step crossover fusion (MSXF) described by Reeves and Yamada
[215]. Its idea is based on a stochastic local search, starting from solution 71, to

188 Chapter 12. Parallel scatter search

Algorithm 16. Scatter search
for i <~ 1 to maz_iter num do
Step 1. Generate a set of unrepeated
starting solutions S; n < |5].
Step 2. For randomly chosen n/2 pair from the S apply
path relinking procedure generating a set S’ - of n/2 solutions
which lies on paths.
Step 3. Apply local search procedure to improve value of the cost
function of solutions from the set S’.
Step 4. Add solutions from the set S’ to the set S.
Leave in the set S at most n solutions by deleting
the worst and repeated solutions.
Step 5. if |S| < n then
Add new random solutions to the set .S such,
that elements in the set S does not duplicate and |S| = n.
end for.

Fig. 12.1. Outline of the scatter search method.

find a new good solution where another solution 79 is used as a reference point.
The neighborhood N (m) of the permutation (individual) 7 is defined as a set of
new permutations that can be obtained from 7 by exactly one adjacent pairwise
exchange operator which exchanges the positions of two adjacent jobs of a problem
solution connected with permutation 7. The distance measure d(m,0) is defined
as a number of adjacent pairwise exchanges needed to transform permutation
into permutation o. Such a measure is known as Kendall’s 7 measure (measures
for permutations are described in Diaconis [99]). The condition of termination
consisted in exceeding a given number of iterations. An outline of the procedure
is presented in Figure 12.2.

12.2. Parallel scatter search algorithm

The parallel algorithm was designed to be executed on two machines:

e the cluster of 152 dual-core Intel Xeon 2.4 GHz processors connected by
Gigabit Ethernet with 3Com SuperStack 3870 switches (for the F'||Csum
problem),

e Silicon Graphics SGI Altix 3700 Bx2 with 128 Intel Itanium2 1.5 GHz
processors and cache-coherent Non-Uniform Memory Access (CC-NUMA),

12.2. Parallel scatter search algorithm 189

craylinks NUMAflex4 in fat tree topology with the bandwidth 4.3 Gbps (for
the F'||Cpax problem),

installed in the Wroctaw Center of Networking and Supercomputing (WCNS)
[266]. Both supercomputers have got a distributed memory, where each processor
has its local cache memory (in the same node) which is accessible in a very short
time (compared to the time of access to the memory in another node). Taking
into consideration this type of architecture we propose a client-server model for
the scatter search algorithm considered here, where calculations of path-relinking
procedures are executed by processors on local data and communication takes
place rarely to create a common set of new starting solutions. The process of
communication and evaluation of the starting solution set S is controlled by a
processor number 0. We call this model global. Using special properties of the flow
shop problem (blocks in the neighborhood determination inside a path-relinking
procedure) makes it possible to obtain an efficient method of solving this NP-hard
optimization problem.

Algorithm 17. MSXF path-relinking procedure ([215])
Let w1, mo be reference solutions. Set x = ¢ = my;
repeat
For each element y; € N (7), calculate d(y;, m2);
Sort y; € N(7) in ascending order of d(y;, m2);
repeat
Select y; from N (m) with a probability inversely
proportional to the index i; Calculate F'(y;);
Accept y; with probability 1 if F(y;) < F(x), and with
probability Pr(y;) = exp((F(x) — F(y;)) / t) otherwise
(t is a temperature parameter);
Change the index of y; from ¢ to n and the indices of
Yk, K =1+1, ..., n from k to k—1;
until y; is accepted;
T Yis
if F(z) < F(q) then q + z;
until some termination condition is satisfied;
return ¢ { ¢ is the best solutions lying on the path from m; to w2 }

Fig. 12.2. Outline of the path-relinking procedure.

For comparison a model without communication was also implemented in
which independent scatter search threads are executed in parallel. The result of
such an algorithm is the best solution out of solutions generated by all the search-
ing threads. We call this model independent. Here we also use block properties

190 Chapter 12. Parallel scatter search

inside path-relinking procedure, but there is no communication among concur-
rently working processors.

Algorithms were implemented in C++ language using MPI (mpich 1.2.7) li-
brary and executed under the OpenPBS batching system which measures the
times of processor usage. An outline of the procedure is presented in Figure 12.3.

Algorithm 18. Parallel scatter search algorithm
for the SIMD model without shared memory

parfor p := 1 to number_ of processors do
for i:=1 to maz_ iter num do
Step 1. if (p =0) then {only procesor number 0}
Generate a set of unrepeated starting
solutions S; n < |S].
Broadcast a set S among all the processors.
else {other processors}
Receive from the procesor 0 a set of starting solutions S.
end if;
Step 2. For randomly chosen n/2 pair from the S
apply path relinking procedure to generate a
set S’ - of n/2 solutions which lies on paths.
Step 3. Apply local search procedure to improve
value of the cost function of solutions from the set S’.
Step 4. if (p # 0) then
Send solutions from the set S’ to procesor 0
else {only processor number 0}
Receive sets S’ from other processors
and add its elements to the set .S
Step 5. Leave in the set S at most n
solutions by deleting the worst and repeated solutions.
if |S| < n then
Add a new random solutions to the
set S such, that elements in the set
S does not duplicate and |S| = n.
end if;
end if;
end for;
end parfor.

Fig. 12.3. Outline of the parallel scatter search method.

12.3. Computer simulations 191

12.3. Computer simulations

Tests were based on 50 instances with 100, ..., 500 operations (n x m = 20 x
5,20 x 10,20 x 20,50 x 5,50 x 10) proposed by Taillard [243], taken from the
OR-Library |202]. The results were compared to the best known ones taken from
[202] for the Crax criterion. For the Cgum flow shop problem, the results obtained
were compared to the values of solutions obtained by Reeves and Yamada [215].

12.3.1. Calculations of the C\,,, criterion

Tables A.9 and A.10 in Appendix A (supplementary tables) present results of
computations of the parallel scatter search method for the number of iterations
(as a sum of iterations on all the processors) equal 9,600. The cost of computa-
tions, understood as a sum of time-consumption on all the processors, is about
7 hours for all the 50 benchmark instances of the flow shop problem. The best re-
sults (average percentage deviations from the best known solutions) are obtained
by a 2-processor version of the global model of the scatter search algorithm (with
communication), which are 70.4% better compared to the average 1-processor im-
plementation (0.029% vs. 0.098%). Since the time-consumption on all processors
is a little bit longer than the time of the sequential version we can say that the
speedup of this version of the algorithm if almost-linear. For the 4 and 8-processor
implementations of the global model and for 2, 4 and 8-processor implementations
of the independent model the average results of APRD are better than APRD
of the 1-processor versions, but the time-consumption on all processors (fepy) is
shorter. That is why these algorithms obtain better results with a smaller cost of
computations — the speedup is superlinear. This anomaly can be understood as
a situation where the sequential algorithm executes its search threads such that
there is a possibility to choose a better path of the solution space trespass, which
the parallel algorithm does.

12.3.2. Calculations of the C,,, criterion

Tables A.11, A.12, A.13 and A.14 in Appendix A present results of computations
of the scatter search method for the number of iterations (as a sum of iterations
on all the processors) equal 1,600. Similarly as for the Ciax algorithm, the time
of sequential computations is about 7 hours for all the 50 benchmark instances
of the flow shop problem (Table A.12, A.14, Appendix A). The best results
(average percentage deviations from the best known solutions) are obtained by
a 2-processor version of the global model of the scatter search algorithm (with
communication), see Figure 12.4. Since the time-consumption on all processors
is a little bit longer than the time of the sequential version we can say that the

192 Chapter 12. Parallel scatter search

Oindependent model Oglobal model

0.9 A
0.8 -
0.7 -
0.6
0.5

0.4
0.3
0.2
0.1

| 0.733

| 0.582
| 0.552

ARPD
0.418
0.431
0.49
0.33
0.423

1 2 4 8
number of processors

Fig. 12.4. APRD of the global and independent scatter search (iter = 1,600) for 50
instances from [202].

speedup of this version of the algorithm if almost-linear (or even superlinear,
because sequential algorithms, for both: independent and global models, have
worse APRD).

The situation is clearer for the number of iterations equal 16,000 (Tables A.15,
A.16, A.17 and A.18, Appendix A). The cost of computations, a sum of time-
consumption an all processors, is about 75 hours for all the 50 benchmark in-
stances of the flow shop problem (Tables A.16, A.18, Appendix A). The best
results are achieved for a 8-processor version of the global model version of scat-
ter search and they are 58.6% better than the results of sequential global scatter
search algorithm, and 52.3% better than the results of sequential independent
model of scatter search algorithm (see Figure 12.5). The time-consumption on
all 8 processors is shorter than the time of both sequential versions. We can say
that the speedup of 8-processor global version of the scatter search algorithm is
superlinear: better results are achieved with lower cost of computations.

This anomaly can be understood as the situation where the sequential algo-
rithm executes its search threads such that there is a possibility to chose a better
path of the solution space trespass, which the parallel algorithm does. As we can
observe in Table A.15 such a situation takes place only for the global model of the
scatter search algorithms — independent searches are not so effective. More about
this anomaly can be found in Speedup calculation (Section 12.4). The advantage
of the global model of calculations over the independent searches is specially vis-

12.4. Speedup anomalies 193

Oindependent model Oglobal model
1
0.9 -
0.8
0.7 -
0.6 o ©
[a)] — [oe]
™ o
05| 8§ 3 S & 3
< Q Lo o o
0.4 - © ©
N AN
. o o™
0.3 A © N ~
e)
0.2 -
0.1
0 T T
1 2 4 8

number of processors

Fig. 12.5. APRD of the global and independent scatter search (iter = 16,000) for 50
instances from [202].

ible for the large instance of the flow shop problem — for n = 50, m = 5, 10.
The APRD is about 50% better for the 8-processor implementation compared
to 1-processor version, for the same number of iterations calculated as a sum of
iterations executed on all processors.

12.4. Speedup anomalies

Since we do not know the best algorithm for the flow shop instances, it is im-
possible to use the strong speedup definition, i.e., comparing the parallel runtime
against the best-so-far sequential algorithm. Therefore, we have to use the weak
definition of speedup. We cannot compute speedup against a sequential scat-
ter search algorithm, because we compare different algorithms. Hence, we turn
to compare the same parallel scatter search algorithm on 1 versus p processors.
Such a speedup is known as the orthodox speedup (see Alba [7]).

Several authors reported superlinear speedup [9, 84| with reference to the
following sources:

e implementation source — the sequential algorithm is inefficient, i.e., it uses
data structures which can be managed faster by the parallel algorithm,

e numerical source — the parallel algorithm finds a good solution more quickly
because it changes the order in which solution space is searched compared

194 Chapter 12. Parallel scatter search

=== independent model === global model p

9.00

8.10
8.00 /
7.00 /

6.00

o
© 5.00 e
g 4.09 - 5.28
“ .00 -
: —
/d:| _ -
3.00 - 333
-
2.00 i%
. [
=~ 192
=
1.00 L: 1.00 T T T T T T 1
1 2 3 4 5 6 7 8

number of processors p

Fig. 12.6. Orthodox speedup of the parallel scatter search, iter = 16,000.

to sequential algorithm,

e physical source — the parallel algorithm is characterized by more than a
simple increase in the computational power of CPUs, i.e., other resources
such as the total size of a fast cache memory.

In this chapter, we observe a situation where the work performed by parallel
and sequential algorithms is different.

Flow shop with C\,,x criterion. As the time-consumption on all processors
is a little bit longer than the time of the sequential version, we can say that the
speedup of this version of an algorithm is almost-linear (see Tables A.11 and A.12).
For the 4 and 8-processor implementation of the global model and for 2, 4 and
8-processor implementation of the independent model the average results of APRD
are better than APRD of the 1-processor versions, but the time-consumption on
all the processors (tepy) is shorter. So these algorithms obtain better results with
a smaller cost of computations — the orthodox speedup is superlinear. This effect
can be observed in Figure 12.6.

Flow shop with Cy,;, criterion. Also here the orthodox superlinear speedup
effect has been observed for the 8 and 16-processor implementation of the global
model of parallel scatter search (see Tables A.13 and A.14). The total time-
consumption of this implementation for all 50 instances (74:38:51 and 73:13:35,
hours:minutes:seconds) was smaller than the total time of sequential algorithm
execution (75:20:42). Such a situation takes place only for the global model:

12.5. Remarks and conclusions 195

6.00

>475 79
5.005.01 —
5.00 4.474.53
420413 —
4.00 348 R u u 363345
A I -
£ 300 2.94 - - - - B
<
2.09
2.00 —1.76 . || || ||] -
1.00 0.730.70 |] | | | -
0.00
1 2 4 6 8 12 16 average

number of processors
O cooperative Oindependent

Fig. 12.7. Orthodox speedup of the parallel scatter search, iter = 1,600.

independent searches are not so effective, considering both results (APRD) and
speedup (see Figure 12.6).

The superlinear speedup anomaly obtained here has the numerical source and
it can be understood as the situation where the sequential algorithm may have to
search a large portion of solutions before finding a good one. Parallel algorithm
may find the solution of similar quality more quickly due to the change in the
order in which the space is searched. This situation can be interpreted in terms of
diversification versus intensification of the search in the solution space — a parallel
algorithm can achieve better solutions faster than a sequential algorithm as a
result of searching process diversification in the first phase of the algorithm work
(due to the multiple-walk strategy) and intensification in the second phase after
finding a ‘good’ region by one of the multiple walking parallel searching threads.

12.5. Remarks and conclusions

The methodology of solving the flow shop problem by using scatter search algo-
rithm has been described here, however the job scheduling problem considered can
be understood only as a case study — the proposed parallelization methodology is
a general approach, which increases the quality of solutions obtained maintaining
comparable costs of computations. Superlinear speedup is observed in coopera-
tive (global) model of parallelism. This anomaly has a numerical source — the

196 Chapter 12. Parallel scatter search

parallel algorithm by using cooperation (data broadcasting) generates a shorter
path (in the sense of the number of visited solutions needed to obtain a result
with comparable quality) in the solution space than the sequential algorithm.
The parallel scatter search outline can be easily adapted to solve other NP-hard
problems with permutational solution representation, such as traveling salesman
problem (TSP), quadratic assignment problem (QAP). The most efficient results
can be obtained for scheduling problems with block properties (such as job shop
problem with makespan or single machine total weighted tardiness problem, see
Wodecki |268, 270]), in which reduced neighborhood can be used inside the path-
relinking procedure.

Chapter 13

Parallel genetic approach

A multiple-walk parallelization of the island model based genetic algorithm is
proposed in this chapter. A multi-step crossover fusion operator, based on the
local search procedure, is used for inter-island communication. We take under
consideration the permutation flow shop scheduling problem with Cg,py, criterion,
indicated by the F||Csum-

13.1. Parallel genetic algorithm

There are three basic types of parallelization strategies which can be applied
to the genetic algorithm: global, diffusion model and island model (migration
model). Algorithms based on the island model divide the population into a few
subpopulations. Fach of them is assigned to a different processor which performs
a sequential genetic algorithm based on its own subpopulation. The crossover
involves only individuals within the same population. Occasionally, the processor
exchanges individuals through a migration operator. The main determinants of
this model are:

e size of subpopulations,

e topology of connection network,

e number of individuals to be exchanged,
e frequency of exchanging.

The island model is characterized by a significant reduction of the communi-
cation time, compared to previous models. Shared memory is not required, so
this model is more flexible, too. Bubak and Sowa [68] developed implementation
of the parallel genetic algorithm for the TSP problem using the island model.

198 Chapter 13. Parallel genetic approach

Below a parallel genetic algorithm is proposed. This algorithm is based on
the hybrid island model of parallelism, with inter-island communication. In the
standard island model of GA, individuals are just copied from one island to an-
other. Here we propose an approach in which a robust genetic operator Multi-Step
Crossover Fusion (MSXF) is used as a local search method making a solution path
from one solution taken from an island to a second solution taken from another
island (used as a reference point). MSXF has been originally described by Reeves
and Yamada [215] as a normal genetic operator. We propose to use it as a com-
munication step of the parallel GA.

The neighborhood N () of the permutation (individual) 7 in the local search
communication procedure MSXF is defined as a set of new permutations that
can be reached from 7 by exactly one adjacent pairwise exchange operator which
exchanges the positions of two adjacent jobs of a problem solution connected with
permutation 7. The distance measure d(m, o) is defined as a number of adjacent
pairwise exchanges needed to transform permutation 7 into permutation o. Such
a measure is known as Kendall’s 7 measure. An outline of the MSXF procedure
was presented in Figure 12.2, Section 12.1.1.

In our implementation, MSXF is an inter-subpopulation crossover operator
which constructs a new individual using the best individuals of different sub-
populations connected with different processors. The condition of termination
consisted in exceeding 100 iterations by the MSXF function. Frequency of com-
munication between processors (migration and MSXF operator) is very important
for the parallel genetic algorithm performance. This must not take place very
often because of a long time of communication between processors. In this imple-
mentation the processor gets new individuals quite rarely, every R = 20 (MSXF
operator) or every S = 35 (migration) iterations. An outline of the whole parallel
genetic algorithm is presented in Figure 13.1.

13.2. Computational experiments

The algorithm was implemented in the Ada95 language and run on the SGI Altix
3700 Bx2 supercomputer installed in Wroctaw Centre of Networking and Super-
computing [266] under the Novell SUSE Linux Enterprise Server operating sys-
tem. Tests were based on 50 instances with 100, ...,500 operations (n X m =
20 x 5,20 x 10,20 x 20,50 x 5,50 x 10) due to Taillard [243], taken from the
OR-Library [202]. The results were compared to the best known ones taken from
[215]. Each instance of the test problems was executed six times, and the average
result was used for comparison. The standard deviation of results was computed,
too, as a measure of algorithm stability.

13.2. Computational experiments 199

Algorithm 19. Parallel genetic algorithm
parfor j =1,2,...,p { p is number of processors }
1+ 0;
Pj < random subpopulation connected with processor j;
pj < number of individuals in j subpopulation;
repeat
Selection(Pj, P;);
Crossover(P}, P[');
Mutation(P;');
if (k mod R = 0) then {every R iteration}
r < random(1, p);
MSXF(P;(1), Pr(1));
end if;
Pj < P
if there is no improvement of the average Cgym then
{Partial restart}
r < random(1,p);
Remove o = 90 percentage of individuals in subpopulation F; ;
Replenish P; by random individuals;
end if;
if (k mod S = 0) then { Migration}
r <— random(1,p);
Remove 8 = 20 percentage of individuals in subpopulation Pj;
Replenish P; by the best individuals from subpopulation P,
taken from processor r;
end if;
until Stop Condition;
end parfor

Fig. 13.1. Outline of the parallel genetic algorithm.

Firstly, we made efficiency tests of the classical genetic operators (seek Gold-
berg [117]) for our flow shop problem on the sequential genetic algorithm. Next,
we chose the PMX, CX and SX crossover operator and the mutation operator I
(random adjacent pairwise exchange) for further research. After having chosen
the operators, we implemented the parallel genetic algorithm. The chosen model
of parallel computing was the MIMD machine of processors without shared mem-
ory — with the time of communication between processors much longer than the
time of communication inside the process which is being executed on one proces-
sor. The implementation was based on the island model of the parallel genetic

200 Chapter 13. Parallel genetic approach

6.00 -
[e)]
® 53
5.00 - S
< —
4.00 - gg
2~ 3
) ~F
> 3.00 - o
o
SINEC
—
2.00 -
o
Sgy “ER Zug
1.00 - S W © o P
1 Is
0.00 -
20x5 20x 10 20 x 20 50x5 50 x 10 average

instance size

W 1 processor 4 processors, the same operators 4 processors, different operators

Fig. 13.2. A comparison between sequential and parallel cooperative genetic algorithms.

algorithm with one central processor and slave processors. The central processor
mediated in communication and stored data of the best individuals. Slave proces-
sors executed their own genetic algorithms based on subpopulations of the main
population. Co-operation was based on migration between ‘islands’ and execution
of the MSXF operator with parents taken from the best individuals of different
subpopulations (processors).

We tested the efficiency of the parallel algorithm which was activated with a
combination of three strategies: with the same or different start subpopulations,
as independent or cooperative search threads and with the same or different ge-
netic operators. The number of iterations was permanently set to 1,000. Results
of tests for different start subpopulations for every processor are shown in Ta-
ble A.21, Appendix A (supplementary tables). The results of the computations
for the strategy of the same start subpopulations were similar, but slightly worse.
A comparison between sequential and the most efficient parallel genetic algorithm
(cooperative) is also shown in Figure 13.2. A four-processor implementation of
parallel GA with the same and different genetic operators kept by each island was
chosen for comparison. The best results (average) were obtained by the version
with different genetic operators executed on each island.

13.3. Remarks and conclusions 201

As it turned out, the strategy of starting the computation from different sub-
populations on each processor with different crossover operators and co-operation,
was significantly better than others. The improvement of the distance to refer-
ence solutions was at the level of 7%, compared to the sequential algorithm, with
the same number of iterations equal 1,000 for the sequential algorithm and 250
for the 4-processor parallel algorithm. The computing time amounting to a few
seconds up to a few dozen seconds, depends on the size of the problem instance.
Moreover, the parallel algorithm has more stable results — the standard deviation
of the results was on average equal to 0.12% for the best parallel algorithm, com-
pared to 0.20% for the sequential algorithm — so the improvement of the standard
deviation was at the level of 40% in relation to the sequential algorithm.

13.3. Remarks and conclusions

We discussed an approach to the permutation flow shop scheduling based on the
parallel asynchronous genetic algorithm. The advantage is especially visible for
large problems. As compared to the sequential algorithm, parallelization increases
the quality of solutions obtained. The idea of the best individual migration and
the inter-subpopulation operator was used. Computer experiments show that
the parallel algorithm is considerably more efficient in relation to sequential al-
gorithm. Results of tests (after a small number of iterations) are insignificantly
different from those best known. An extension of this approach can add to the al-
gorithm more elements of coevolutionary schemas, e.g. predators (predator-prey
model), food, etc., which will cause further improvement of the parallel algorithm
efficiency.

Chapter 14

Parallel hybrid approach

In this chapter, we propose the two new double-level metaheuristic optimization
algorithms applied to solve the flexible job shop problem (FJSP) with makespan
criterion, defined in Section 3.6. Algorithms proposed here include two major
modules: the machine selection module to be executed sequentially, and the op-
eration scheduling module executed in parallel. On each level a metaheuristic
algorithm is used, therefore we propose to call this method Meta?Heuristic. We
carry out computational experiment using Graphics Processing Units (GPU).

14.1. Hybrid metaheuristics

The hybrid approach to solving difficult optimization problems by using several
metaheuristics simultaneously makes it possible to use all of them. Talbi [247]
provides a systematic characterization of parallel hybrid metaheuristics, which is
visualized in Figure 14.1.

The upper part of the figure presents the hierarchical structure of the hy-
bridization. In high-level hybrid algorithms the different metaheuristics are self-
contained — there is no direct relationship to the internal workings of metaheuris-
tics. The low-level hybridization addresses the functional composition of a single
optimization method — a given function of metaheuristic is replaced by another
metaheuristic. A teamwork hybridization represents cooperative models of opti-
mization in which many parallel agents cooperate and each agent makes a search
in its own part of the solution space. On the other hand, in relay hybrids, a
number of metaheuristics are applied one after another; each one uses the output
of the previous one as its own input, as in a pipeline.

The lower part of Figure 14.1 (so-called flat part) specifies the features of
algorithms involved in the hybrid. In homogeneous hybrids all the combined al-
gorithms use the same metaheuristic methods. On the contrary, in heterogeneous

204 Chapter 14. Parallel hybrid approach

algorithms, different metaheuristics are used. In global hybrids, all the algorithms
search in the whole solution space — the goal is to explore the space more thor-
oughly. All the algorithms solve the whole optimization problem. On the other
hand, in partial hybrids, the problem considered is decomposed into subproblems;
each one having its own solution space. Each algorithm is dedicated to search in
one of these subspaces. Subproblems are linked with each other involving con-
straints between optima which are found by each algorithm. Algorithms establish
communication to respect these constraints and create a solution of the main
problem. In general hybrids, all algorithms solve the same target optimization
problem. Specialist hybrids combine algorithms which solve different problems,
i.e., by solving another optimization problem into which the main problem is
transformed.

I. Hybrid Metaheuristics
IILA. Low-level 11.B. High-level
I.A.1. I.A.2 I1.B.1. 11.B.2
Relay Teamwork Relay Teamwork
I.A 1.B I.cC 1Il.D I.E I1.F
Homoge | |Heteroge Global Partial General || Specialist
neous neous

Fig. 14.1. Classification of hybrid metaheuristics proposed by Talbi [247].

To conduct a survey of parallel hybrid metaheuristics application we can cite
Bozejko and Makuchowski, who proposed a hybrid metaheuristic solving no-wait
job shop problem [29]. Malek et al. [177] proposed a parallel hybrid metaheuristic
based on combined simulated annealing and tabu search approaches applied to
solve the traveling salesman problem (TSP). Bozejko and Wodecki described a
hybrid parallel evolutionary algorithm for the traveling salesman problem (TSP,
[44, 55|), for the quadratic assignment problem (QAP, [47]), for the single ma-
chine total tardiness problem ([51, 56]) and for the flow shop scheduling problem
(|56]). Porto and Ribeiro [209]| presented parallel tabu search message-passing
synchronous strategies for task scheduling under precedence constraints. Rogal-
ska, Bozejko and Hejducki [225, 226] proposed a hybrid population-based method
in the application to the time/cost scheduling problems. Alba et al. [10] presented
library skeletons using hybrid approaches for the resource allocation problems.

14.2. Algorithms proposed 205

14.2. Algorithms proposed

The proposed here flexible job shop problem solving algorithms include two major
modules: the machine selection module and the operation scheduling module.

e Machine selection module. This module is based on the tabu search (1st
approach) and the population-based metaheuristic (2nd approach) methods
and it works sequentially. It helps an operation to select one of the parallel
machines from the set of machine types to process it.

e Operation scheduling module. This module is used to schedule the sequence
and the timing of all operations assigned to each machine from the center.
It has to solve classic job shop problems after having assigned operations to
machines. Two approaches: constructive INSA [195] and TSAB [195] (tabu
search) were used on this level.

On each level a metaheuristic algorithm is used, so we call this method
MetaHeuristic (meta-square-heuristic). Both algorithms proposed in this chap-
ter belong to the high-level teamwork general homogeneous hybrid metaheuristics
(according to the taxonomy from Section 14.1). Metaheuristics connected with
each module are executed one after another, acting in a pipeline fashion. The
algorithms proposed belong to the partial hybrids, because the problem in order
to be solved is decomposed into subproblems connected with machine workloads.

14.2.1. Parallel Tabu Search Based Meta’?Heuristic

The tabu search method was used here as a machine selection module. The al-
gorithm operates on solutions which constitute job-to-machine assignments. The
general idea of the tabu search method applied for scheduling problems can be
found in [119] and [195]. The tabu list T stores pairs (v, k) where v is the position
in the assignment vector and k is the machine to which v is assigned before the
move. The first assignment QU is generated by the search for the global minimum
in the processing time table taken from [207]. An outline of the double-layer
metaheuristic algorithm including both machine selection module and operation
scheduling module is presented in Figure 14.2.

In the second step of the algorithm a neighborhood N(Q) is divided into
disjoint sets

k k
UNi(Q =N(Q), [Ni(Q =0. (14.1)
=1 =1

For each group k values of the makespan are calculated using p GPU processors.
The number of processors used in the third step depends on the neighborhood size.

206 Chapter 14. Parallel hybrid approach

Algorithm 20. Parallel Tabu Search Based
Meta’Heuristic (TSBM?h)
©* = (Q*,m(Q*)) — the best known solution, where
Q" — the best known assignment and
m(Q*) - the operation sequence corresponding to Q*;
Step 0: Find the starting solution ©° = (Q°, 7(Q")); ©* + OY;
0 = (Q,7(Q)) — current solution; © <+ OY;
Step 1: Generate the neighborhood N (Q) of the assignment Q.
Exclude from N(Q) elements from tabu list T’

Step 2: Divide N (Q) into k = [W(TQ)W groups;

Each group consists of at most p elements;
Step 3: For each group k find (using p processors)
an operation sequence m(X)
corresponding to the assignment X € N(Q) and value
of the makespan Chax (X, 7(X));
Step 4: Find an assignment Z € N(Q) such that
Chax(Z,7(2)) = min{Crpax(X,m(X)) : X e N(Q)};
Step 5: if Cpax(Z,7(2)) < Cnax(Q*, 7(Q*)) then
m(Q) « 7(2);
OF «+ Z;
Include Z to the list T;
0« Z;
m(Q) « m(2);
Step 6: if (Stop condition is true) then Stop;
else go to Step 1;

Fig. 14.2. Outline of the Parallel Tabu Search Based Meta?Heuristic.

In Step 3 the value of makespan corresponding to the assignment is calculated by
means of INSA or TSAB algorithms. A general scheme of the TSBM?H execution
on GPU for the CUDA programming environment is presented in Figure 14.3 as
a case of heterogeneous programming model (i.e., using both CPU and GPUs).

14.2.2. Parallel Population-Based Meta?Heuristic

The basic idea of this approach is to start with an initial population (any subset
of the solution space) — job-to-machine assignments. Next, for each element of
the population, a local optimization algorithm is applied to determine a local
minimum. In this way we obtain a set of solutions — local minima. If there is
an element which is in the same position in several solutions, then it is fixed in

14.2. Algorithms proposed 207

Host (CPU)
Serial code Step 1. Generate the neighborhood N(Q);

Exclude from the N(Q) elements forbidden by the tabu list T;
Step 2. Divide N(Q) into k groups;

Each group consists of at most p elements which will be
connected with GPU processors;

Device (GPU)
Parallel kernel Step 3. For each processor find an operation sequence
Kernel<<<>>>() and the makespan value;

Step 4. Find the minimal element Z by using tree calculations scheme

in the logarithmic time;

Host (CPU)

Serial code
Step 5. Update the best solution if necessary;

Include the solution Z to the tabu list T;

v
Step 6. if (stop condition) then Stop else go to Step 1.

Fig. 14.3. General scheme of the TSBM?H execution on CPU and GPU for the CUDA
environment.

this position in the solution, and other positions and elements of solutions are
still free. A new population (a set of assignments) is generated by drawing free
elements in free positions (because there are fixed elements in fixed positions).
After having determined a set of local minima (for the new population) we can
increase the number of fixed elements. To prevent the algorithm from finishing
its work after executing some number of iterations (when all positions are fixed
and there is nothing left to draw), in each iteration ‘the oldest’ fixed elements are
set free.

The method mentioned above was proposed in paper [27] for the permuta-
tional scheduling problems. Here we have adopted this approach to flexible job
shop scheduling problem, where solution is a pair consisting of a job-to-machine
assignment and a sequence of job permutations on each machine. An outline of
the proposed approach is presented in Figure 14.4.

In the population based algorithm the initial population is generated ran-
domly. The size of generated population equals pop size = 100. In the first step

208 Chapter 14. Parallel hybrid approach

Algorithm 21. Parallel Population-Based
Meta’Heuristic (PBM?H)

©* = (Q*,m(Q*)) — the best known solution, where

Q" — the best known assignment and

m(Q*) - the operation sequence corresponding to Q*;
Step 0: Generate an initial population Py of assignments;

1< 1; P; + Py — the first generation of the population;

a — a constant threshold, 0 < a < 1;
Step 1: Divide P; into k = [“;i'-‘ groups;

Each group consist of at most p elements;
Step 2: For each element X of each group find (using p processors)

an operation sequence w(X)

corresponding to the assignment X € P; and value

of the makespan Chax (X, 7(X)) using tabu search algorithm;
Step 3: Find assignment Z € P; such that

Cax(Z,7(2)) = min{Cpax (Y, 7(Y)) : Y € P;};
Step 4: if Chax(Z,7(2)) < Chax(Q*, 7(Q*)), then
m(Q*) = 7(2);
Q= 2Z;

Step 5: For each position in population P; find a number of

assignments v in which the machine m is in the position [;
Step 6: Fix a position in population P; for which ﬁ > q;

Step 7: Insert randomly drawn free elements (machines)
in free positions;
Py <+ P
Step 8: if (Stop condition is true) then Stop;
else go to Step 1;

Fig. 14.4. Outline of the Parallel Population-Based Meta®Heuristic.

of algorithm population P; in the ¢-th generation is divided into disjoint sets

pop size pop size

\J P/ =pr, N P =0 (14.2)
j=1 j=1

Each element in the randomly generated initial population Fy starts an assignment
for the tabu search algorithm. The tabu search algorithm finds a new assignment
corresponding to this assignment operation sequence and the value of makespan.
A general scheme of the PBM2H execution on GPU for the CUDA programming
environment is shown in Figure 14.5.

14.2. Algorithms proposed

209

Serial code

Parallel kernel

Kernell<<<>>>()

Serial code

Parallel kernel

Kernel2<<<>>>()

Serial code

v

Step 0.

Step 1.

Host (CPU)
Generate an initial population P, of solutions; i:=0;
Divide P; into k groups;

Each group consists of at most p elements which will be
connected with GPU processors;

Step 2.

Step 3.

Device (GPU)
For each element of the group connected with the processor
find an operation sequence and the makespan value
by using tabu search algorithm;
Find the minimal element Z by using tree calculations scheme

in the logarithmic time;

Step 4.

Step 5.

Host (CPU)
Update the best solution if necessary;
Find a number of assignments in which the machine m

is in the position /;

Step 6.

Step 7.

Device (GPU)
Fix positions;

Insert randomly drawn free elements in free positions;

Step 8.

Host (CPU)

if (stop condition) then Stop else go to Step 1.

Fig. 14.5. General scheme of the PBM?H execution on CPU and GPU for the CUDA

environment.

210 Chapter 14. Parallel hybrid approach

The parallel population-based algorithm and the parallel tabu search algo-
rithm were coded in C++ language with MPI library and tested on the cluster
in the Wroctaw Center of Networking and Supercomputing. Algorithms were
executed under the OpenPBS batching system.

14.3. Computational results

Parallel Meta?Heuristics (TSBM2H and PBM?2H) for the flexible job shop prob-
lem were coded in C (CUDA) for GPU and were ran on the Tesla C870 GPU
(512 GFLOPS) with 128 streaming processor core and tested on the benchmark
problems from the literature. The GPU was installed on the processors with 1 MB
cache memory and 8 GB RAM working under 64-bit Linux Debian 5.0 operating
system. We compare our results with those obtained by other authors:

1. the set of 10 problem instances taken from Brandimarte [67],
2. the set of 21 problem instances taken from Barnes and Chambers [21],

3. the set of 15 problem instances taken from Hurink et al. [139].

The first phase of computational experiments was devoted to determination of
parallelization efficiency by estimating experimental speedup values. The sequen-
tial algorithm using one GPU processor was coded with the aim of determining
the speedup value of the parallel algorithm. Such an approach is called ortho-
dox speedup (see Alba [7]) and it compares the execution times of algorithms
on machines with the same processors (1 versus p processors). Tables 14.1 and
14.2 show computational times for the sequential and the parallel algorithm as
well as speedup values. Flex. denotes the average number of equivalent machines
per operation. The obtained orthodox speedup measure value is visualized in
Figure 14.6. As we can notice the highest speedup values were obtained for the
problem instances with a bigger number of both jobs n and operations o. In this
phase a simple INSA algorithm was applied in the operation scheduling module
of the parallel Meta?Heuristic.

For test instances of Barnes and Chambers [21]| an average number of equiva-
lent machines per operation is between 1.07 and 1.30; for test instances of Hurink
et al. [139] it equals 2 for each instance from the set. Test instances with greater
number of equivalent machines per operation are more difficult to solve because
there are more possible assignments of operations to machines. The PBM?h gives
better result for instances of Hurink et al. (Table 14.3) because the size of the
search space in this algorithm is bigger than in TSBM?H. Increasing the explo-
ration measure (i.e., executing local optimization procedure for a longer time)
gives better results for PBM?H in comparison with TSBM?H. The PBM?H gives

14.3. Computational results 211

60.00
50.00 52.00
40.00

30.00

speedup

20.00 0 20.51

10.00

0.00

70

number of processors

—0=TSBM?*h =0- PBM?h

Fig. 14.6. Comparison of the parallel tabu search TSBM?H and population-based
PBM?H algorithms speedups.

Table 14.1. Experimental results of the TSBM?H for Brandimarte [67] tests.

Problem nxm Flex. 0 ts [s] ty [s] Speedup s *
MkO1 10 x 6 2.09 95 133.61 10.79 12.38
Mk02 10 x 6 4.10 58 218.02 10.55 20.67
MkO03 15 x 8 3.01 150 6495.35 136.19 47.69
Mk04 15 %8 1.91 90 620.69 29.59 20.98
Mk05 15 x4 1.71 106 1449.80 74.55 19.45
Mk06 10 x 15 3.27 150 8094.39 147.83 04.75
MkO7 20 x5 2.83 100 1939.33 57.92 33.48
MkO8 20 x 10 1.43 225 8950.91 643.39 13.91
Mk09 20 x 10 2.53 240 24586.00 641.88 38.30
Mk10 20 x 15 2.98 240 31990.55 593.49 53.90

* The INSA algorithm was used in the operation scheduling module.

better results than TSBM?H but computation time is longer. A number of equiv-
alent machines per operation can be used for determination of parameters — if a
number of equivalent machines per operation is small in a particular test instance,
there should be executed more iterations in the operation scheduling module.
The second phase of the tests refers to obtaining as good results of the cost
function as possible. In this phase a specialized TSAB algorithm of Nowicki
and Smutnicki [195] was used in the operation scheduling module of the parallel
Meta?Heuristic. Despite of being more time-consuming the quality of the results
obtained is much better than in the case of using INSA. The results were also

212 Chapter 14. Parallel hybrid approach

Table 14.2. Experimental results of the TSBM?H for Barnes and Chambers [21]

instances.
Problem nxm Flex. 0 ts |s] ty s Speedup s *
mt10cl 10 x 11 1.10 100 69.27 28.18 2.46
mt10cc 10 x 12 1.20 100 130.47 27.28 4.78
mt10x 10 x 11 1.10 100 69.26 28.04 2.47
mt10xx 10 x 12 1.20 100 134.78 28.01 4.81
mt10xxx 10 x 13 1.30 100 133.99 28.03 4.78
mt10xy 10 x 12 1.20 100 130.93 27.43 4.77
mt10xyz 10 x 13 1.30 100 187.19 26.37 7.10
setb4c9 15 x 11 1.10 150 333.71 96.52 3.46
setb4dcc 15 x 12 1.20 150 631.39 92.71 6.81
sethdx 15 x 11 1.10 150 332.64 96.90 3.43
setbdxx 15 x 12 1.20 150 654.09 95.27 6.87
setb4xxx 15 x 13 1.30 150 648.42 94.43 6.87
setbdxy 15 x 12 1.20 150 632.55 92.95 6.81
setbdxyz 15 x 13 1.30 150 896.66 88.54 10.13
setibcl2 15 x 16 1.07 225 747.64 340.46 2.20
setibce 15 x 17 1.13 225 1458.94 335.48 4.35
setibx 15 x 16 1.07 225 753.07 342.35 2.20
setidxx 15 x 17 1.13 225 1493.45 341.35 3.38
setibxxx 15 x 18 1.20 225 1481.39 339.62 4.36
setidoxy 15 x 17 1.13 225 1459.27 335.42 4.35
setibxyz 15 x 18 1.20 225 2123.35 325.94 6.51

* The INSA algorithm was used in the operation scheduling module.

compared to other recent approaches proposed in the literature for the flexible
job shop problem. The proposed parallel TSBM?H algorithm managed to obtain
the average relative percentage deviation from the best known solution of the
Barnes and Chambers’ instances on the level of 0.014% versus 0.036% of the
MG [180] algorithm of Mastrolilli and Gambardella and 0.106% of the hGA [111]
algorithm of Gao et al.

14.4. Remarks and conclusions

We have proposed a new approach to the scheduling problems with parallel ma-
chines, where the assignment of operations to machines defines a classical problem
without parallel machines. We propose double-level parallel metaheuristic, where
each solution of the higher level, i.e., job-to-machine assignment, defines an NP-

14.4. Remarks and conclusions 213

Table 14.3. Comparison of the results obtained by Mastrolilli and Gambardella [180],
TSBM?H and PBM?H algorithms.

Problem* nxm (LB,UB) MG [180] PBM?H TSBM?H
la01 10 x 5 (570,574) 571 572 574
1202 10x5 (529,532) 530 530 532
1a03 10x5 (477,479) 478 478 482
1a04 10x5 (502,504) 502 502 509
1205 10 x 5 (457,458) 457 458 462
1206 15 x5 (799,800) 799 799 801
1a07 15 x5 (749,750) 750 750 751
1a08 15 x5 (765,767) 765 765 767
1209 15x5 (853,854) 853 853 856
1a10 15 x5 (804,805) 804 805 807
lall 20 x 5 (1071,1072) 1071 1071 1072
lal2 20 x 5 936 936 936 937
lal3 20 x 5 1038 1038 1038 1039
lal4 20 x 5 1070 1070 1070 1071
lal5 20 x 5 (1089,1090) 1090 1090 1090

* For test instances taken from Hurink et al. [139].

hard job shop problem, which we solve by the second metaheuristic — we call such
an approach Meta?Heuristic. On the Machine Selection Module (higher level), we
apply two metaheuristics: the tabu search and the population-based approach to
determine an assignment of operations to machines. The distributed tabu search
threads are used as Operations Scheduling Module (lower level). Using the exact
algorithms on both levels (e.g. branch and bound) makes it possible to obtain an
optimal solution of the problem. It was possible to obtain the new best known so-
lution for Barnes and Chambers’ instances [21] (TSAB algorithm was used in the
operation scheduling module of the M?H). The new best solutions are presented
in Table A.22, Appendix A.

Our proposition of Meta?Heuristic can be placed between standard meta-
heuristic and hyperheuristic classes in the taxonomy of approximate algorithms.
Hyperheuristics present a different approach — they select a metaheuristic to be
used in the given optimization problem. Our approach is still a metaheuristic, but
more complex — two completely different heuristic approaches have to be chosen
on two levels of the scheduling problem considered.

Chapter 15

Application: parallel tabu search
approach

The main purpose of this chapter is to present the methodology of the tabu search
method parallelization. The parallel algorithm is built for the flow shop schedul-
ing problem. Partitioning a solution (permutation) into blocks (see Section 3.4,
block properties) enables us to decrease the neighborhood size and its division
into separated subsets, which in turn facilitates its independent generation and
reviewing. A road building process is analyzed (Section 15.4) as a real-world ap-
plication. It is also used as a case study (Section 15.5) for the parallel tabu search
algorithm application.

15.1. Introduction

Optimization of the job flow process through the system is based on finding some
optimal permutation in the set of all permutations of jobs. Many methods of
algorithm construction consist in reviewing (directly or indirectly) all or part of
the set of feasible solutions. Such a mechanism is based on generating from the
current (base) solution another solution, or a set of solutions (so-called neighbor-
hood), from which the best solution is chosen. This solution is the base solution
in the next iteration. Such a mechanism can be met (among others) in branch
and bound (B&B) method and in many other algorithms which consist in improv-
ing the solution, as well as in the approximate algorithms, metaheuristics: tabu
search and simulated annealing methods. The quality of these algorithm solutions
depends on: the number of iterations, the method of neighborhood description
and its reviewing. The time of computations can be shortened by performing
them in multiprocessor environment. Unfortunately direct parallelization of the
sequential algorithms (for example, by using a parallel compiler) does not result in

216 Chapter 15. Application: parallel tabu search approach

satisfactory efficiency and speedup. In this chapter, we propose some additional
elements of the parallel local search algorithm. The first one, representatives ap-
proach, offers the possibility of parallelizing the neighborhood search process. The
second one, using block properties, makes the whole search process shorter.

15.2. Parallel tabu search method

The tabu search (T'S) method is a metaheuristic approach designed to find a near-
optimal solution of combinatorial optimization problems. The basic version of TS
starts from an initial solution . The elementary step of the method performs,
for a given solution z?, a search through the neighborhood AN (x?) of z?. The
neighborhood N (z%) is defined by a move performed from z*. The move transforms
a solution into another solution. The aim of this elementary search is to find in
N(z%) a solution x**! with the lowest cost functions. Then the search repeats
from the best solutions found, as a new starting solution, and the process is
continued. In order to avoid cycling, becoming trapped to a local optimum, and
more general to conduct the search in ‘good regions’ of the solution space, a
memory of the search history is introduced. Among many classes of the memory
introduced for tabu search (see Glover [127]), the most frequently used is the short
term memory, called the tabu list. This list memorizes, for a chosen span of time,
selected attributes of these solutions or moves.

There are two basic types of tabu search parallelization discussed in the li-
terature. The first one, called single-walk, is based on neighborhood decompo-
sition onto concurrent working processors. The solutions obtained are exactly
the same as in the sequential algorithm, but computing time is shorter. Aarts
and Verhoeven [1] make the distinction between single-step and multiple-step
parallelism within this type. In the case of single-step implementations, neigh-
bors are searched and evaluated in parallel after neighborhood partitioning. The
algorithm subsequently selects and performs one single move. In multiple-step
parallelizations, a sequence of consecutive moves in the neighborhood is made
simultaneously.

The second type of parallelization, called multiple-walk type, is based on con-
current working tabu search threads, running on different processors. There are
two sub-types of this parallelism: independent search, where there is no commu-
nication between threads, and cooperative search, with exchanging e.g. the best
known solution found by the thread. Classification of multiple-walk tabu search
algorithms was created by Voss in [261]. The first parallel implementations of tabu
search based on this type of strategy seem to concern the quadratic assignment
problem and job shop scheduling, Taillard [245, 244].

15.2. Parallel tabu search method 217

o «— permutation

nt K blocks (subpermutations)
m Tk < representatives (permutations)

« the best permutation from
AN the neighborhood N(7)

Fig. 15.1. Outline of the PSTS algorithm.

(o8} a; O3 « list of permutations a

«— blocks
ol

(subpermutations), level 1
1 «— representatives

(permutations), level 2

Fig. 15.2. Outline of PATS algorithm.

We propose a hybrid type of tabu search parallelism in this chapter. We use
blocks (see Section 3.4.3) to partition the neighborhood of the solution. Such an
algorithm PSTS (parallel synchronous tabu search) is the classical parallel single-
walk, single-step tabu search (Figure 15.1). The new algorithm PATS (parallel
asynchronous tabu search) uses a special list « = (a1, ag, ..., ay) of current
solutions instead of one current solution in classical tabu. The length of a list
« is permanently equal to ¢. This parallel algorithm is based on two-level paral-
lelism. One level is based on concurrently explored solutions from the list o by
parallel working processors. These solutions are explored concurrently by block
partitioning to find the best representative (solution) of each block, and added to
the list a (Figure 15.2); this is the second level of parallelism made by another
group of parallel working processors. Of course, we also use a tabu list to prevent
generating solutions on the list « serially. The second level of parallelism does not
have any influence on results of computations (only speedup), but the first level
of parallelism does. Additionally, in most parallel computing systems, we do not

218 Chapter 15. Application: parallel tabu search approach

know the order of solutions (representatives) entering list o from processors — so
such an algorithm is not deterministic. A parallel tabu search algorithm written
for the EREW PRAM model of parallel computations is given in Figure 15.3.

Algorithm 22. Parallel Tabu Search
Master processor
Commission slave processors on level 1 to determine
representatives for permutations of list « in parallel;
Get representatives from slave processors on level 2
(asynchronously, when they come);
Reject representatives forbidden by tabu list, unless
its goal value is less than the best known;
Add representatives to o« list (instead of the worst
element of «, if the length of list is maximal fixed).
Slave processors on level 1
Get permutation «; to explore from the list
« of the master processor;
Partition permutation «; into blocks (compute critical
path);
Commission slave processors on level 2 to determine
representatives for each block of «; in parallel.
Slave processors on level 2
Get block a{ of permutation ¢;
from the slave processor on level 1;
Determine representative (permutation 7y ;)
of neighborhood generated for this block;
Send m;; to master processor.

Fig. 15.3. Outline of the parallel tabu search algorithm.

If the length of list || equals 1, we obtain synchronous PSTS algorithm out
of the foregoing scheme. For |a| > 1 we obtain asynchronous PATS algorithm,
because slave processors work independently and asynchronously.

15.3. Computational experiments

The proposed algorithm was implemented in Ada95 language and ran on the SGI
Altix 3700 Bx2 supercomputer installed in Wroctaw Centre of Networking and
Supercomputing [266] under the Novell SUSE Linux Enterprise Server operating
system. Tests ware based on 70 instances with 100, ..., 1,000 operations (n X

15.3. Computational experiments 219

m = 20 x 5,20 x 10,20 x 20,50 x 5,50 x 10,50 x 20,100 x 5) due to Taillard
[243], taken from the OR-Library [202]. The results ware compared to those of
Taillard (optimal or the best known), taken from this library. Starting solutions
were taken from quick approximate algorithm NEH (Navaz, Enscore and Ham,
[194]). For all the algorithms tested, the number of iterations was computed as a
sum of iterations on processors. For example, for 1,000 iterations, a 4-processor
implementation makes 250 iterations on each of the 4 processors.

3 Q0
~ 3
_ ~
2.5 -]
o]
(o)} Qo
— (o]
A (2]
21] el & 5
- —
2 L
g 15 -
<
()]
0’} ~
142 ~
S @ Q @
o a o o
"M
0.5 - o
3 8
o o
0
20x5 20x 10 20x 20 50x5 50x 10 50 x 20 average

instance size

OPSTS (1 processor) O PATS (12 processors)

Fig. 15.4. APRD of the sequential (PSTS) and asynchronous parallel (PATS) tabu
search algorithm for instances of Taillard [243].

As we can see in Figure 15.4 and in Tables A.19 and A.20, Appendix A,
the algorithms produce best results for the large value of quotient n and m
(20 x 5,50 x 5,100 x 5). In such a case the size (length) of blocks is most prof-
itable for sequential and parallel algorithm performance. Besides, for 1,000 itera-
tions, improvement of results for parallel PATS algorithm compared to the PSTS
(which has the same results as sequential tabu search) was at the level of 14% for
1-processor implementation (by the advantage of the list), at the level of 58% for
4 and 8-processor implementations and even at the level of 64% for 12-processor
implementation, all algorithms with the same number of iterations (as the sum
of iterations on each processor) and comparable costs (the product of the number
of processors and computation time).

220 Chapter 15. Application: parallel tabu search approach

15.4. Application of the tabu search algorithm — road
building

When planning roadworks, e.g. a road repair, the whole project can be divided
into working parcels with different sizes whose boundaries are set for instance by
crossroads/intersections with existing road paths. The sequence of actions taken
by working brigades on parcels will affect the total time of the whole project,
the delay time of machines or working brigades. The problem of setting the
optimal sequence of works on individual parcels in compliance with the established
criterion, for example the minimal time of carrying out a project, the minimal
delay time of the working brigades or working costs concerns tasks sequencing.
To make a right division of works, it is necessary to determine the kind of works
according to the general classification. The general works classification in the
road and bridge construction is as follows:

preparatory works,

earthworks,

lands and pavements consolidation,

profiled lands and gravel pavements building,
reinforcement of soil-surfaced road pavement and subgrade,
broken stone pavement building,

asphalt concrete pavement building,

cement concrete pavement building,

© 0N O W=

repairing, conservation, maintenance and reconstruction of pavement,

,_\
e

production, conversion and purification of aggregates including aggregates
usage obtained in the process of recycling,

11. loading, unloading and transport works,
12. bridges and culverts building,
13. energy production and transfer,

14. old objects demolition.

Roadwork constitutes a special case of the general works classification mentioned
above, namely the national road section, which consists of eight activities. Fig-
ure 15.5 presents works scheduling for a single road segment 766 m long. The total
time of completing works took 42 workdays. The technological order of works is
as follows:

1. earthworks,

2. sand drainage blanket preparation,

15.4. Application of the tabu search algorithm — road building 221

0 20 40 42

Fig. 15.5. Scheduling example for a 766 m long road segment (in workdays).

preparation of broken-stone or macadam foundation,

binding course preparation with asphalt medium-grained concrete,
surface course preparation with asphalt fine-grained concrete,
roadsides preparation with stone dust,

drainage process,

© N o Otk W

planting and eventual topsoil removal.

Figure 15.6 presents the road section whose construction is the subject of the
analysis. The problem described above leads to the flow shop problem considered
with a certain criterion, i.e., Cpax (for the minimal time of carrying out a project).

7.00 , 100 4050,

. L
‘ ‘ ‘ ’g.so F.so j.su

6% 0,08

s
STONE DUST 0/16, 20cm ASPHALT FINE-GRAINED CONCRETE, 5cm

0,40 ASPHALT MEDIUM-GRAINED CONCRETE, 8cm 0.40
BROKEN STONE 0/63, 32cm

SAND DRAINAGE, 15cm

Fig. 15.6. The section of an access road to a dumping ground.

222 Chapter 15. Application: parallel tabu search approach

| L [2] s [afs] o | 7|

L+ [efsfds] [s [7|

| L [2]afs] s | o [7]

[EEE I]
[TEEE O]

6

6

6

[[2]s] [4[s] |
[ENERIEY

5|
I [2] afe] s |

Fig. 15.7. Building schedule for individual road segments for the natural permutation
(in workdays).

N

o
-

L] 2[s] 7 |

L]] e]

Cal=]Cs T 7] [e] | L []

[]
(=]

[[
(4] 2] [] [[3]
[0 1] [] [[2]
L= 7] e] [[2]
0 20 w elo e

Fig. 15.8. Building schedule for individual road segments for the permutation obtained
by the parallel tabu search algorithm (in workdays).

15.5. Case study

The problem presented in this section concerns scheduling of construction projects
in which — using the language of automation — jobs should start on the next ma-
chine before finishing on the previous one. In a classical permutation flow shop
problem each of the jobs should be carried out one after another; moreover the
sequence of carrying out jobs on each machine has to be the same; a job must

15.5. Case study 223

Table 15.1. Data for the case study. Total times of actions on working segments
represented as workdays.

jobs — 1 2 3 4 5) 6 7
length [meters| — | 750 150 175 100 200 500 300
D1j 19 4) 3 4 12 6
D2j 13 3 3 2 4 9 6
D3; 17 4 4 3 6 11 8
D4 13 3 3 2 4 9 6
D5 7 2 2 2 2) 2
D6 15 3 3 2 4 19 6
D74 15 2 4 3 6 10 6
D8 15 4 4 3 6 11 10
t1; -2 -2 -2 -2 =2 -2 =2
t9; -1 -2 -2 -1 -2 -7 -4
t35 -1 -1 -1 0 -2 -7 —4
t4; -3 0 0 0 0 -3 0
t5; -3 -3 -2 -1 -4 -5 —4
te, 15 -3 -3 -2 —4 -10 —6
tr] 15 -2 -4 -3 —6 -10 -6
123 0 0 0 0 0 0 0

not start on a next machine until it is finished on the previous one. Optimization
consists in determining such a sequence of jobs that will minimize the total time
of their execution. To model the phenomenon of jobs ‘overlapping’, transport
times of jobs between machines, which could have negative values, have been
used. The problem thus described was defined in Section 3.4.4. Using the real-
world data presented above, the data referring to the building of road segments
with different length have been generated. In Table 15.1 there have been included
data presented as the total times of actions on working segments represented as
workdays. The parallel tabu search algorithm considered has been applied to
data from Table 15.1. This algorithmm operation has resulted in a permutation
T = (4,2,5,7,6,1,3) for which the goal function value is Cpax(7m) = 75 (work-
days). In Figure 15.8, there is a building schedule for individual road segments
for the obtained permutation w. The goal function value in the case of schedul-
ing for the natural permutation id (Figure 15.7, Cyax(id) = 78) is bigger than
for a scheduling obtained from results of the tabu search algorithm operation
(Figure 15.8, Ciax(m) = 75).

224 Chapter 15. Application: parallel tabu search approach

15.6. Remarks and conclusions

We discussed a methodology of the flow shop scheduling parallelization based on
an asynchronous hybrid version of parallel tabu search method. Parallelism of the
algorithm makes the performance much better than the iterative improvement ap-
proach. The advantage is especially visible for large problems. The method is
based on a two-level approach. On the first level of parallelization subpermu-
tations (blocks) are used for concurrent searching of a neighborhood. On the
second level permutations (representatives) are used to choose the best element
of a neighborhood in parallel. This method can be easily adapted to solve any
scheduling problem with block properties (e.g. single machine, job shop, etc.).

Chapter 16

Final remarks

The book concerns the new methodology of solving scheduling problems in parallel
and distributed environments by using multithread approximate methods. Two
main approaches, which do not exclude each other, are considered for designing
efficient multithread algorithms: single-walk and multiple-walk. The approaches
proposed have been created to solve complex discrete optimization problems, and
tested using their special case which scheduling problems are. Not only are they
classical problems encountered in computer-aided manufacturing and manage-
ment systems, but also the new, much more complex problems connected with
automation in construction, logistics, telecommunication and services develop-
ment. Very big size of practical instances and exponential solution time of exact
algorithms, on the one hand, and multi-core nature of existing hardware, on the
other, cause the necessity of employing multithread approximate algorithms ready
to be used in multiprocessor environment.

For multithread single-walk parallelism, parallelization derived from a cost
function multithread implementation allows us to design cost-optimal algorithms
in many cases, especially for job shop scheduling (Chapter 5). It was possible to
answer a few interesting questions concerning theory and applicability:

(1) which approaches can be used to design parallel algorithms for scheduling
problems, in the context of needs of different local search techniques used
in metaheuristics, and

(2) which variants of multithread algorithms are cost-optimal.

Especially interesting is also Chapter 7 in which it was possible to estimate
theoretical speedup of the single-walk parallel genetic algorithm based on the
master-server approach.

For multithread multiple-walk parallelism, the book presents a new paral-
lel approach based on metaheuristics: tabu search, simulated annealing, genetic

226 Chapter 16. Final remarks

algorithm, scatter search, population-based approaches, path-relinking method,
memetic algorithm, designed for solving permutational scheduling problems. In
most cases multithread search parallelization increased the quality of solutions
obtained keeping comparable costs of computations.

The methodology proposed was successfully applied by the author to solve
many scheduling optimization problems (single machine total tardiness problem
[51, 53, 54, 60], single machine total weighted tardiness problem with sequence-
dependent setups |26, 45|, flow shop problem [25, 35, 37, 38, 39, 40, 41, 43, 61, 269],
job shop problem [34], flexible job shop problem [28]) as well as other discrete
optimization problems such as TSP [36, 27, 44, 55|, QAP [47] and real-world
problems of automation in construction [225, 226].

The idea of the book was to overview the ‘state-of-the-art’ in the field of
parallel scheduling algorithms. However, some of the special areas can be still
researched, especially in the field of the new multithread optimization algorithms
for multi-core hardware environments (such as GPGPU and multi-core Cell pro-
cessors jointly developed by Sony Computer Entertainment, Toshiba and IBM).
Another challenge is the single-walk parallelization of complex scheduling prob-
lems, such as flexible multi-machine manufacturing systems, by proposing new
special properties which makes it possible to create efficient parallelization meth-
ods. Particulary interesting are theoretical estimations of speedups possible to
obtain for a given model of parallelism. This kind of analysis was introduced in
Chapters 4, 5 and 6.

16.1. New approaches

The following new approaches have been proposed as regards single-walk parallel
algorithms design methodology for job scheduling problems solving:

e the new methods of huge neighborhoods searching in parallel for various
single machine scheduling problems (Chapter 4).

e the new methods of single-walk parallelization of the cost function calcula-
tion for multi-machine job scheduling problems (Chapter 5),

e the new methods of single-walk parallelization of the workload determina-
tion for flexible scheduling problems (Chapter 6).

For multiple-walk optimization algorithms parallelization designed to job schedul-
ing problems solving, the following new techniques have been presented:

e multithread methods of scheduling problems solving methods paralleliza-
tion were introduced for such local search approaches as tabu search (TS,
Chapter 15) and simulated annealing (SA, Chapter 11),

16.2. Open problems 227

e population-based metaheuristics such as memetic algorithm (Chapter 8),
genetic search (Chapter 13), scatter search (Chapter 12) as well as hybrid
methods (Chapters 9 and 14) were also parallelized in application to job
scheduling problems,

e a parallel branch and bound method has also been parallelized for the single
machine total weighted tardiness problem in Chapter 10.

Noteworthy is also Chapter 7 in which there were proved some new properties of
the speedup measure behavior for the master-slave model of the parallel genetic
algorithm. It has been proven, inter alia, that one can indicate the number of
processors which minimizes the parallel running time of the master-slave parallel
genetic algorithm based on miscellaneous models of data broadcasting.

16.2. Open problems

Scheduling problems are taken into consideration in this book as a difficult-to-
solve subclass of the discrete optimization problems class. Nevertheless, most of
the approaches presented here, mainly those of multiple-walk parallelization, can
also be applied to any discrete optimization problems, especially with permuta-
tional solution representation, such as traveling salesman problem (TSP, see Boze-
jko and Wodecki [44]| — parallel evolutionary algorithm) or quadratic assignment
problem (QAP, see Taillard [244] — parallel tabu search, Bozejko and Wodecki
[47] — parallel population-based approach). Metaheuristic parallelization method-
ology remains the same. However, there are open problems which can show the
direction of future work.

16.2.1. Continuous optimization

Parallelization of numerical optimization methods in continuous spaces can be
achieved in many ways. The simplest one is to implement a single-walk code by
evaluation of objective and constraint functions in parallel, however the paral-
lelization method has to be fitted to the specificity of the problem being solved,
similarly as in single-walk parallelization of discrete optimization problems. An-
other approach is a parallel implementation of linear algebra computations, such
as solving linear system by the Newton method in parallel, as a key element
(i.e., the most computationally complex) of the whole continuous optimization
problem. It is also possible to simultaneously explore different regions via multi-
ple starting points, as in parallel multiple-walk local search algorithms. Similarly,
multi-directional searches in direct search methods can be applied, beginning from
the same (or different) starting solutions. Decomposition methods for structured
problems (linear, quadratic, or separable programming) are also used (see Dennis

228 Chapter 16. Final remarks

and Wu [97]). What is more, continuous optimization has a strong relationship
with partial differential equations and generally with numerical algebra — a typical
procedure of continuous optimization requires solving a linear system (in every
iteration of the algorithm); constraint or objective function requires solving a
partial differential equation. Parallelization of these elements usually maintains
convergence property of the method, accelerating the computations. However, as
was mentioned before, the programmer quest, as an open problem, is to design
a parallelization method which is adjusted directly to specificity of the problem
under consideration.

16.2.2. Multiobjective optimization

The characteristics of the resources and the number of jobs to be allocated may
change over time in a scheduling problem. On the other hand, many of the
problems, especially taken from the real-world engineering optimization problems,
have to optimize more than one objective at a time (which are usually in conflict).
Multiobjective optimization is not restricted to finding a single solution, instead
it points out a set of solutions, known as the Pareto front.

Parallel processing can be useful in efficient solving multiobjective optimiza-
tion problems in (at least) two ways:

(1) NP-hard multiobjective optimization problems demand high computational
resources — it is possible to parallelize the most complex elements of an
algorithm (single-walk parallelizations), and

(2) parallel processing gives a possibility to find the whole front of Pareto-
optimal solutions instead of a single Pareto-optimal solution (multiple-walk
parallelization).

Up to now, parallel multiobjective optimization has usually been connected
with population-based approach (Toro et al. [253]|, Van Velhuizen et al. [259]).
This state results from several reasons. Firstly, many objectives and the Pareto
dominance relationships have to be evaluated at the same time which naturally
leads us to a population evaluation. Calculating the Pareto dominance relation-
ships requires statistics of the whole population, which makes the master-worker
model of computations (called the global model in the field of evolutionary al-
gorithms) a well-fitted approach. Secondly, a hybrid model can be easily imple-
mented in a parallel evolutionary approach (single-walk parallelism) by parallel
goal function calculation together with diversification of population among proces-
sors (multiple-walk parallelization). In practice, each processor evaluates a subset
of goal functions for a subset of the population. An open problem is theoretical
algorithm characterization. Camara et al. [71] report the superlinear speedup in

16.2. Open problems 229

parallel evolutionary algorithm for multi-objective optimization in dynamic en-
vironments — the knowledge about the source of this anomaly (also reported by
other authors — see Sections 1.1 and 12.2) is generally weak for the case of paral-
lel multiobjective evolutionary approach. Furthermore, it is interesting to study
the scalability and performance behavior, especially for the asynchronous parallel
algorithm, also with different communication schemes.

16.2.3. Uncertain data

Realization of the real-world application is frequently connected with technolog-
ical and management idle times which appear during work process. External
factors (e.g. weather) and internal distractions make scheduling out-of-date and
aberrations from terms which are stated in contracts. Therefore a way of data
representation which determines real terms is required. The consequence of er-
rors is high penalties or even removing of the company from offer processes. Most
of the discrete optimization problems presented in the literature do not take into
consideration the difficulty with assigning an exact value of parameters, e.g. times
of job execution. Such an uncertainty can be modelled by using fuzzy numbers
theory.

Scheduling problems were fuzzified by using the concept of fuzzy due date
and processing times. Dumitru and Luban [101] investigate the application of
fuzzy sets to the problem of production scheduling. Tsujimura et al. [255] present
a branch and bound algorithm for the three-machine flow shop problem when
job processing times are described by triangular fuzzy numbers. Especially fuzzy
logic application to the scheduling problems (by using fuzzy processing times) is
presented in papers: Bozejko et al. [42, 33], Ishibuschi and Murata [143], Izzettin
and Serpil [144] and Peng and Liu [205]. There are computational experiments
conducted for the permutational flow shop problem in the work of Bozejko et
al. [42] both for deterministic and fuzzy versions of the genetic algorithm. The
obtained values of the algorithm stability level show that the fuzzy representation
of the problem data and using relevant algorithm results in solutions which are
‘proof’ against data distractions.

As a module, fuzzy logic can be added to almost every parallel optimization
algorithm, obtaining better stability — such an approach can be called low-level
approach of fuzzification (see Bozejko et al. [33]). Another open problem is a
high-level approach to data uncertainty in which multiple threads of the parallel
optimization algorithm work on different (disturbed) instances of data (let us call
them scenarios) and give a single solution which is ready for data distractions,
keeping a good value of the goal function.

230 Chapter 16. Final remarks

16.3. Future work

The presented comprehensive analysis of the results obtained clearly indicates
the high efficiency of the multi-threaded approach proposed. The results fulfill
the expectations of computing practitioners, so that many approaches presented
here can be adapted and used in solving more complex real-world job scheduling
problems. Further research is purposeful for the application of multi-threaded
approach to solving the following issues which were not analyzed in this book:

e job scheduling problems with variable job execution times,
e job scheduling problems with resources,

e scheduling with fuzzy problem parameters (fuzzy processing times, dead-
lines, etc.).

Another sphere of research can be a broader class of NP-hard discrete optimization
problems such as:

e complex variants of the traveling salesman problems (many salesmen, etc.)
and their generalizations,

e packing problems,
e assignment problems,

e task scheduling with resources — tree factorial |24, 193],

with specific real-world goal functions (e.g. energy or fuel optimization).

Based on the research conducted we can formulate the following proposals.
Solving scheduling problems can be speeded up in the multiprocessor environ-
ment, however proper design of an algorithm which would effectively use compu-
tational power is a nontrivial task. Designing acceptable in practice multithread
algorithms requires an individual approach to each problem and it is usually a
separate research problem, because properties of the multithread computing envi-
ronment strongly depend on the choice of strategic approach (single or multiple-
walk parallelization) as well as its elements, possible cooperation, hybridization,
etc. However, the robustness of parallel and distributed calculation environments
makes them a commonly used hardware. The aim of this book was to show the
methodology of its using for efficient optimization.

Appendix A

Supplementary tables

Table A.1. Relative deviation of solutions of sequence and parallel memetic
algorithms described in Section 8.3.

1 processor 4 processors*

n

av. dev. max. dev. av. dev. max. dev.
40 2.907 99.963 0.057 1.534
50 4.035 167.576 0.064 1.362
100 0.005 1.054 0.004 0.103
average 2.317 89.531 0.042 0.999

* Compared to the best known solutions (taken from Bozejko and Wodecki [50]).

Table A.2. Total time of the parallel population-based algorithm described in

Section 9.2.
Processors Cooperative Independent*
APRD ttotal(s) tcpu(S) APRD ttotal(s) tcpu (S)
1 1.48% 5658 5655 1.48% 5647 5645
2 0.65% 5383 10765 0.60% 5643 11287
4 —0.26% 5580 22323 —0.17% 17836 53516
6 —0.74% 5400 32283 —0.73% 8548 52516
8 —0.32% 5218 41753 —0.97% 12129 83196
12 —1.13% 5065 60722 —1.25% 5980 67995
16 —1.78% 6865 105670 —0.80% 20124 238615
average —-0.23% 5595.6 39881.6 —0.26% 10843.9 73252.9

* The algorithm stops when the cost function value of the benchmark is achieved.

Times per 120 instances (taken from Bozejko [26]).

232 Appendiz A. Supplementary tables

Table A.3. Convergence of the parallel population-based metaheuristic described
in Section 9.2.

Processors Cooperative Independent*
APRD trotal (5) tcpu(s) APRD ttotal (S) tepu (s)
1 —0.73% 9462 9459 —0.70% 8113 8113
2 —2.09% 9669 19334 —1.76% 8310 16621
4 —3.48% 10124 40166 —2.94% 11535 39998
6 —4.20% 11963 67905 —4.13% 16916 84066
8 —4.47% 10479 83108 —4.53% 12058 88930
12 —5.00% 10311 123602 —5.01% 8770 105131
16 —5.47T% 10329 165150 —5.29% 8732 139760

average —3.63% 10333.9 72674.9 —3.48% 10633.4 68945.6

* Constant iterations number R = 10. Times per 120 benchmark instances (taken from
Bozejko [26]).

Table A.4. PRDs of simulated annealing solution and NEH described in
Section 11.1.3.

4 processors 4 processors with

noxm 1 processor independent broadcasting NEH®
20x5 0.87% 0.64% 0.62% 2.87%
20x10 2.29% 1.82% 1.70% 4.74%
2020 1.94% 1.91% 1.82% 3.69%
50x5 0.13% 0.08% 0.13% 0.89%
50x10 1.87% 1.31% 0.92% 4.53%
50x20 2.75% 2.32% 2.29% 5.24%
100x5 0.0011% 0.0003% 0.0003% 0.46%
average 1.41% 1.15% 1.07% 3.20%

* Compared to the best solution by Taillard [243] (taken from [63]).

233

Table A.5. Results of computational experiments of the algorithm described in

Section 9.2, Part 1.

No. Fi PRD No. Fi PRD*
1 696 —28.83% 61 76373 —4.40%
2 5367 —17.29% 62 44869 —6.25%
3 1782 —24.11% 63 76146 ~3.39%
4 6615 —20.41% 64 92860 ~3.65%
5 ATT4 —14.84% 65 128593 ~4.66%
6 7500 ~9.02% 66 59852 —6.56%
7 3765 ~13.39% 67 29394 —15.77%
8 153 ~53.21% 68 22120 ~16.22%
9 6628 —12.77% 69 71534 —5.14%
10 1943 ~20.73% 70 75801 —6.65%
11 4452 —15.41% 71 148230 ~8.06%
12 0 0.00% 72 50171 ~11.88%
13 5225 ~15.00% 73 29076 —20.26%
14 2967 —24.71% 74 31711 ~17.19%
15 1788 —38.66% 75 23244 ~24.97%
16 4326 ~35.54% 76 56198 ~16.81%
17 127 ~72.51% 77 35932 —11.41%
18 1337 —46.82% 78 20294 ~19.16%
19 0 ~100.00% 79 117734 —6.43%
20 3273 —21.94% 80 18620 —41.53%
21 0 0.00% 81 384547 —0.67%
22 0 0.00% 82 410336 ~0.76%
23 0 0.00% 83 458879 ~1.54%
24 1060 —40.82% 84 330022 —0.49%
25 0 0.00% 85 556891 ~0.30%
26 0 0.00% 86 363265 ~0.69%
27 0 ~100.00% 87 399202 ~0.95%
28 0 ~100.00% 88 434010 ~0.65%
29 0 0.00% 89 410739 —1.48%
30 0 ~100.00% 90 403601 —0.82%

*

font (counted together with those given in Table A.6).

For the problem 1|s;;| >~ w;T;. The new 65 upper bounds are marked with bold

* Fag — values of the cost function obtained by the parallel algorithm considered.

234 Appendiz A. Supplementary tables

Table A.6. Results of computational experiments of the algorithm described in
Section 9.2, Part 2.

No. Fy PRD No. Foy PRD *
31 0 0.00% 91 342615 —1.31%
32 0 0.00% 92 362079 —1.01%
33 0 0.00% 93 407915 —0.62%
34 0 0.00% 94 333588 —0.81%
35 0 0.00% 95 523309 —0.87%
36 0 0.00% 96 462961 —0.31%
37 551 —77.11% 97 417890 —0.57%
38 0 0.00% 98 527603 —0.92%
39 0 0.00% 99 368353 —-1.72%
40 0 0.00% 100 436004 —1.33%
41 69252 —5.36% 101 353018 —0.79%
42 58183 —5.94% 102 493473 —0.54%
43 146549 —2.29% 103 378864 —0.34%
44 35511 —8.30% 104 358073 —1.09%
45 59280 —5.54% 105 350806 —23.13%
46 35442 —6.71% 106 454769 —1.12%
47 73412 —4.89% 107 352766 —1.09%
48 65943 —4.32% 108 461953 —1.32%
49 78463 —6.75% 109 413019 —0.67%
50 31996 —11.70% 110 419437 —0.44%
51 50459 —13.85% 111 344604 —1.74%
52 97052 —7.89% 112 376036 —0.37%
53 90028 —5.68% 113 260124 —-1.17%
54 124708 0.93% 114 469900 —0.70%
59 71657 —6.17% 115 464415 0.91%
26 77552 —12.29% 116 537799 —0.45%
57 68415 —2.84% 117 508325 —1.98%
58 47754 —13.99% 118 357087 —0.14%
59 53693 —9.09% 119 577318 —1.14%
60 66966 —8.68% 120 402422 0.68%

Average —12.08

* For the problem 1|s;;| > w;T;.
** Fa1g — values of the cost function obtained by the parallel algorithm considered.

235

Table A.7. Improvement of NEH solution of algorithms from Section 11.1.3.

4 processors 4 processors with
noxm 1 processor independent broadcasting*
20x5 1.94% 2.17% 2.19%
20%10 2.34% 2.79% 2.90%
20%20 1.69% 1.72% 1.80%
50x5 0.75% 0.80% 0.75%
50%10 2.54% 3.08% 3.45%
50%20 2.37% 2.77% 2.80%

100 x5 0.46% 0.46% 0.46%
average 1.74% 1.98% 2.07%

* Taken from Bozejko and Wodecki [63].

Table A.8. Results of APRD for reference solutions [273] obtained by algorithms
presented in Section 11.2.3.

1 processor (sSA) 4 processors (pSA)*
average minimal std. dev. average minimal std. dev.
20 x5 0.23% 0.05% 0.16% 0.08% 0.00% 0.08%
20 x 10 0.27% 0.04% 0.17% 0.05% 0.00% 0.05%
20 x 20 0.14% 0.01% 0.12% 0.04% 0.00% 0.04%
50 X 5 1.51% 1.25% 0.19% 1.25% 0.91% 0.20%
50 x 10 1.97% 1.56% 0.26% 1.54% 1.09% 0.29%
average 0.82% 0.58% 0.18% 0.59% 0.40% 0.13%

* Taken from Bozejko and Wodecki [59].

nXxXm

236 Appendiz A. Supplementary tables

Table A.9. Values of APRD for parallel scatter search algorithm for the F'||Cpyax
problem from Section 12.2 (global model).

" Processors*

neem 1 2 4 8 16
iterations—s 9.600 4.800 2.400 1,200 600
20 x 5 0.000% 0.000% 0.000% 0.000% 0.096%

20 x 10 0.097% 0.060% 0.072% 0.131% 0.196%

20 x 20 0.039% 0.035% 0.061% 0.062% 0.136%

50 x 5 0.007% —0.001% —0.015% -0.001% 0.007%

50 x 10 0.345% 0.104% 0.113% 0.123% 0.272%
average 0.098% 0.029% 0.046% 0.063% 0.142%
ttotar (h:min:sec) 30:04:40 15:52:13 7:40:51 3:35:47 1:42:50

tepu (himin:sec) 30:05:02 31:44:21 30:41:54 28:45:30 27:24:58

* The sum of iterations for all processors is 9,600 (from [40]).

Table A.10. Values of APRD for parallel scatter search algorithm for the
F||Cnax problem from Section 12.2 (independent model).

Processors™
ncm 1 2 4 8 16
iterations— 9,600 4,800 2,400 1,200 600
20 x 5 0.000% 0.000% 0.000% 0.000% 0.096%
20 x 10 0.097% 0.080% 0.066% 0.039% 0.109%
20 x 20 0.039% 0.062% 0.048% 0.031% 0.031%
50 x 5 0.007% 0.000% 0.007% 0.007% 0.000%
50 x 10 0.345% 0.278% 0.148% 0.238% 0.344%
average 0.098% 0.084% 0.054% 0.063% 0.097%

tiotar (h:min:sec) 30:04:40 14:38:29 6:58:59 3:15:34 1:32:46
tepu (himin:sec) 30:05:02 29:16:14 27:54:19 26:03:33 24:41:24

* The sum of iterations for all processors is 9,600 (from [40]).

237

Table A.11. The parallel scatter search (independent model — no
communication) from Section 12.2 for Cgyy criterion.

o X m Processors*
1 2 4 8
iterations— 1,600 800 400 200

20x5 0.007 0.021 0.065 0.111

20x10 0.000 0.012 0.010 0.024

20x20 0.000 0.013 0.047 0.046

50x5 1.024 1.093 1.364 1.662

50x10 1.060 1.312 1.425 1.821
average 0.418 0.490 0.582 0.733

* Average percentage deviations ARPD. The sum of iterations for all processors is 1,600
(from [40]).

Table A.12. The parallel scatter search (independent model) from Section 12.2
for Cyum criterion.

Cluster of Xeon 3000 2.4 GHz processors*
Processors

ttotar (hours:min:sec) tepu (hours:min:sec)
1 7:13:30 7:13:13
2 3:34:08 7:04:44
4 1:46:05 6:58:43
8 0:53:33 6:57:44

* Execution times, for all 50 instances, iter = 1,600 (taken from [40]).

Table A.13. The parallel scatter search (global model — with communication)
from Section 12.2 for Cgym criterion.

"X m Processors™
1 2 4 8
iterations— 1,600 800 400 200

20%x5 0.21 0.020 0.007 0.077

20x 10 0.037 0.006 0.004 0.013

20%20 0.008 0.000 0.004 0.015

50x5 0.917 0.762 0.978 1.208

50x10 1.171 0.860 1.126 1.448
average 0.431 0.330 0.423 0.552

* Average percentage deviations ARPD. The number of iterations for all processors
totals 1,600 (from [40]).

238 Appendiz A. Supplementary tables

Table A.14. The parallel scatter search (global model) from Section 12.2 for
Csum criterion.

Cluster of Xeon 3000 2.4 GHz processors*

Processors

ttotal (hours:min:sec) tepu(hours:min:sec)
1 7:26:00 7:25:51
2 3:52:36 7:17:39
4 2:14:02 7:04:07
8 1:24:31 7:06:52

* Execution times, for all 50 instances, iter = 1,600 (from [40]).

Table A.15. The parallel scatter search (independent model — no
communication) from Section 12.2 for Cgyy, criterion.

N m Processors*
1 2 4 8

iterations— 16,000 8,000 4,000 2,000
20%5 0.000 0.007 0.000 0.006
20x10 0.000 0.000 0.000 0.000
20%20 0.000 0.000 0.000 0.000
50%5 0.904 1.037 0.906 0.903
50x10 0.913 0.986 1.033 0.989
average 0.363 0.406 0.388 0.380

* The average percentage deviations ARPD. The number of iterations for all processors
totals 16,000 (from [40]).

Table A.16. The parallel scatter search (independent model) from Section 12.2
for Cyum criterion.

Cluster of Xeon 3000 2.4 GHz processors*
Processors

ttotar (hours:min:sec) tepu (hours:min:sec)
1 75:27:40 75:25:48
2 37:40:08 75:02:51
4 18:38:23 74:10:18
8 9:06:24 72:19:26

* Execution times, for all 50 instances, iter — 16,000 (taken from [40]).

239

Table A.17. The parallel scatter search (global model — with communication)
from Section 12.2 for Cyum criterion.

o m Processors*
1 2 4 8

iterations—> 16,000 8,000 4,000 2,000
20x5 0.000 0.000 0.000 0.008
20x10 0.000 0.000 0.000 0.004
20x20 0.000 0.000 0.000 0.000
50%5 0.993 0.677 0.537 0.449
50x10 1.103 0.648 0.474 0.404
average 0.419 0.265 0.202 0.173

* The average percentage deviations ARPD. The sum of iterations for all processors is
16,000 (from [40]).

Table A.18. The parallel scatter search (global model) from Section 12.2 for
Csum criterion.

Cluster of Xeon 3000 2.4 GHz processors*

Processors

ttotar (hours:min:sec) tepu (hours:min:sec)
1 75:23:43 75:20:42
2 41:19:51 77:57:57
4 23:28:19 75:46:07
8 14:30:03 74:38:51

* Times of execution, for all 50 instances, iter = 16,000 (from [40]).

Table A.19. Relative percentage distance of parallel synchronous tabu search
(PSTS) solutions presented in Section 15.3.

nxm PSTS algorithm NEH algorithm*
20x5 0.92% 2.87%
20%10 1.98% 4.74%
20%20 2.68% 3.69%
50x5 0.39% 0.89%
50x10 1.86% 4.53%
20x20 2.57% 5.24%
100x5 0.14% 0.46%
average 1.51% 3.20%

* Compared to the best solution by Taillard [243], 1,000 iterations (taken from Bozejko
and Wodecki [58]).

240 Appendiz A. Supplementary tables

Table A.20. Relative percentage distances of parallel asynchronous tabu search
(PATS) from Section 15.3.

W m Processors*
1 4 8 12
20%x5 0.84% 0.19% 0.24% 0.05%
20x10 1.59% 0.89% 0.83% 0.77%
20%20 1.10% 0.62% 0.62% 0.63%
50x5 0.25% 0.01% 0.02% 0.03%
50x10 2.34% 0.87% 0.76% 0.63%
5020 2.81% 1.81% 1.89% 1.67%
100x5 0.15% 0.01% 0.04% 0.04%
average 1.30% 0.63% 0.63% 0.55%

* Compared to the best solution by Taillard [243], for 1,000 iterations (taken from
Bozejko and Wodecki [58]).

Table A.21. Parallel genetic algorithm described in Section 13.1.

4 processors*

nxXm 1 processor independent cooperative
the same different the same different
operators operators operators operators
20x5 1.00% 0.81% 0.73% 0.66% 0.52%
20x10 1.10% 1.00% 0.97% 0.81% 0.79%
20x20 0.93% 0.75% 0.74% 0.65% 0.64%
50x5 2.96% 3.70% 3.44% 3.43% 3.10%
50x10 4.48% 4.97% 4.70% 4.79% 4.64%
average 2.13% 2.25% 2.11% 2.07% 1.98%
std. dev.* 0.20% 0.15% 0.12% 0.16% 0.12%

* Different start subpopulations, various genetic operators (taken from [61]).

** Standard deviation.

241

Table A.22. Algorithms from Section 14.2.

Problem nxm (LB,UB) MG [180] hGA [111] TSBM?H*
mt10cl 10 x 11 (655,927) 928 927 927
mt10cc 10 x 12 (655,914) 910 910 908
mt10x 10 x 11 (655,929) 918 918 922
mt10xx 10 x 12 (655,929) 918 918 918
mt10xxx 10 x 13 (655,936) 918 918 918
mt10xy 10 x 12 (655,913) 906 905 905
mtl0xyz 10 x 13 (655,849) 847 849 849
setb4c9 15 x 11 (857,924) 919 914 914
setbdcc 15 x 12 (857,909) 909 914 907
seth4x 15 x 11 (846,937) 925 925 925
sethdxx 15 x 12 (846,930) 925 925 925
sethdxxx 15 x 13 (846,925) 925 925 925
setb4xy 15 x 12 (845,924) 916 916 910
setbdxyz 15 x 13 (838,914) 905 905 903
seti5cl12 15x 16 (1027,1185) 1174 1175 1174
setibce 15x 17 (955,1136) 1136 1138 1136
seti5x 15x 16 (955,1218) 1201 1204 1198
setisxx 15 x 17 (955,1204) 1199 1202 1197
setiSxxx 15x 18 (955,1213) 1197 1204 1197
seti5xy 15x 17 (955,1148) 1136 1136 1136
setibxyz 15 x 18 (955,1127) 1125 1126 1128

* Values of solutions obtained for Barnes and Chambers [21] benchmark instances. The
TSAB algorithm was used in the operation scheduling module of the M?H. The new
best known solutions are marked with bold font.

Bibliography

1]

2]
3]

Aarts E.H.L., Verhoeven M., Local search, in: M. Dell’Amico, F. Maffioli, S.
Martello (Eds.), Annotated Bibliographies in Combinatorial Optimization,
Wiley and Sons, Chichester, (1997).

Aarts E., Lenstra J., Local search in combinatorial optimization, New York

(1997).

Abdul-Razaq T.S. , Potts C.N., Van Wassenhove L.N.; A survey of algo-
rithms for the single machine total weighted tardiness scheduling problem,
Discrete Applied Mathematics 26 (1990), 235-253.

Adrabinski A, Wodecki M., An algorithm for solving the machine sequencing
problem with parallel machines, Zastosowania Matematyki XVI 3 (1979),
513-541.

Ahn C.W., Goldberg D.E., Ramakrishna R.S., Multiple-deme parallel esti-
mation of distribution algorithms: Basic framework and application, Par-
allel Processing and Applied Mathematics PPAM 2003, Lecture Notes in
Computer Science No. 3019, Springer (2004), 544-551.

Ahuja R.K., Ergun O., Orlin J.B., Punnen A.P., A survey of very large-scale
neighborhood search techniques, Discrete Applied Mathematics 123 (2002),
75-102.

Alba E., Parallel Metaheuristics. A New Class of Algorithms, Wiley & Sons
Inc. (2005).

Alba E., Troya J.M., Analyzing synchronous and asynchronous parallel
distributed genetic algorithms, Future Generation Computer Systems 17
(2001), 451-465.

Alba E., Nebro A.J., Troya J.M., Heterogeneous Computing and Parallel Ge-
netic Algorithms, Journal of Parallel and Distributed Computing 62 (2002),
1362-1385.

Alba E., Almeida F., Blesa M., Cotta C., Diaz M., Dorta I., Gabarr6 J.,
Gonzalez J., Leéon C., Moreno L., Petit J., Roda J., Rojas A., Xhafa F.,
Malba: A library of skeletons for combinatorial optimisation, in: B. Monien,

244

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

R. Feldman (Eds.), Euro-Par 2002 Parallel Processing, Lecture Notes in
Computer Sceince No. 2400, Springer (2002), 927-932.

Amza C., Cox A.L., Dwarkadas S., Keleher P., Rajamony R., Lu H., Yu
W., Zwaenepoel W., ThreadMarks: Shared memory computing on networks
of workstations, IEEE Computer 29(2), (1996), 18-28.

Angel E., Bampis E., A multi-start dynasearch algorithm for the time depen-
dent single-machine total weighted tardiness scheduling problem, European
Journal of Operational Research 162 (2005), 281-289.

Argonne National Laboratory, PGAPack Parallel Genetic Algorithm Li-
brary, on-line document, http://wwwfp.mcs.anl.gov/ CCST/ research/ re-
ports/ prel998/ comp bio/ stalk/ pgapack.html

Armentano V.A., Scrich C.R., Tabu search for minimizing total tardiness
in a job shop, International Journal of Production Economics 63(2), (2000),
131-140.

Babu B., Peridy L., Pison E.; A branch and bound algorithm to minimize
total weighted tardiness on a single processor, Annals of Operations Research

129 (2004), 33-46.

Badeau P., Guertin F., Gendreau M., Potvin J.Y., Taillard E., A parallel
tabu search heuristic for the wvehicle routing problem with time windows,
Transportation Research-C 5 (1997), 109-122.

Baker K.R., Scudder G.D., Sequencing with earliness and tardiness penal-
ties: a review, Operations Research 38 (1990), 22-36.

Balas E, Vazacopoulos A. Guided local search with shifting bottleneck for
job-shop scheduling, Management Science 44(2), (1969), 262-275.

Bank J., Werner F., Heuristic algorithm for unrelated parallel machine
scheduling with a common due date, relase dates, and linear earliness and
tardiness penalties, Mathematical and Computer Modelling 33 (2001), 363—
383.

Barr R.S., Hickman B.L., Reporting Computational Experiments with Par-
allel Algorithms: Issues, Measures, and Experts’ Opinions, ORSA Journal
on Computing 5(1), (1993), 2-18.

Barnes J.W., Chambers J.B., Flexible job shop scheduling by tabu search,
Graduate program in operations research snd industrial engineering, The
University of Texas at Austin (1996), Technical Report Series: ORP96-09.

Beasley J.E., OR-Library: distributing test problems by electronic mail,
Journal of the Operational Research Society 41 (1990), 1069-1072.
(http://people.brunel.ac.uk/ mastjjb/jeb/info.html)

Bibliography 245

[23]

[24]

[25]

[26]

[34]

Berger J., Barkaoui M., A Memetic Algorithm for the Vehicle Rout-
ing Problem with Time Windows, Proceedings of the 7th Interna-

tional Command and Control Research and Technology Symposium,
http://www.dodcerp.org/events/7th ICCRTS/Tracks/pdf/035.pdf

Belinschi S., Bozejko M., Lehner F., Speicher R., The normal distri-
bution is H-infinitely divisible, Advances in Mathematics (2010), doi:
10.1016/j.2im.2010.10.025

Bozejko W., Solving the flow shop problem by parallel programming, Journal
of Parallel and Distributed Computing 69, Elsevier (2009), 470-481.

Bozejko W., Parallel path relinking method for the single machine total
weighted tardiness problem with sequence-dependent setups, Journal of In-
telligent Manufacturing 21(6), Springer (2010), 777-785.

Bozejko W., Wodecki M., Solving Permutational Routing Problems by
Population-Based Metaheuristics, Computers & Industrial Engineering 57,
Elsevier (2009), 269-276.

Bozejko W., Uchroniski M., Wodecki M., Parallel hybrid metaheuristics for
the flexible job shop problem, Computers & Industrial Engineering 59, Else-
vier (2010), 323—333.

Bozejko W., Makuchowski M., A fast hybrid tabu search algorithm for the
no-wait job shop problem, Computers & Industrial Engineering 56, Elsevier
(2009), 1502-1509.

Bozejko W., Uchroniski M., Wodecki M., The new golf neighborhood for the
flexible job shop problem, Proceedings of the ICCS 2010, Procedia Computer
Science 1, Elsevier (2010), 289-296.

Bozejko W., Uchronski M., Wodecki M., Parallel Meta?®2heuristics for the
Flexzible Job Shop Problem, in: L. Rutkowski et al. (Eds.), Proceedings of
the ICAISC 2010, Lecture Notes in Artificial Intellignece No. 6114 (2010),
Springer, 395-402.

Bozejko W., Uchroniski M., A Neuro-Tabu Search Algorithm for the Job Shop

Problem, in: L. Rutkowski et al. (Eds.), Proceedings of the ICAISC 2010,
Lecture Notes in Artificial Intelligence No. 6114 (2010), Springer, 387-394.

Bozejko W., Czapinski M., Wodecki M., Parallel Hybrid Metaheuristics for
the Scheduling with Fuzzy Processing Times, in: L. Rutkowski et al. (Eds.),
Proceedings of the ICAISC 2010, Lecture Notes in Artificial Intellignece No.
6114 (2010), Springer, 379-386.

Bozejko W., Pempera J., Smutnicki C., Parallel simulated annealing for the
job shop scheduling problem, in: Allen G et al. (Eds.) ICCS 2009, Part I,
Lecture Notes in Computer Science No. 5544, Springer (2009), 631-640.

246

Bibliography

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Bozejko W., Smutnicki C., Uchronski M., Parallel calculating of the goal
function in metaheuristics using GPU, in: G. Allen et al. (Eds.), ICCS 2009,
Part I, Lecture Notes in Computer Science No. 5544 (2009), 1022-1031.

Bozejko W., Wodecki M., Parallel population training metaheuristics for the
routing problem, in: L. Zadeh, L. Rutkowski, R. Tadeusiewicz, J. Zurada
(Eds.), International Conference on Artificial Intelligence and Soft Com-
puting (ICAISC 2008), IEEE Computational Intelligence Society — Poland
Chapter and the Polish Neural Network Society (2008), 463-472.

Bozejko W., Pempera J., Smutnicki A., Multi-thread parallel metaheuristics
for the flow shop problem, in: L. Zadeh, L. Rutkowski, R. Tadeusiewicz,
J. Zurada (Eds.), International Conference on Artificial Intelligence and
Soft Computing (ICAISC 2008), IEEE Computational Intelligence Society
— Poland Chapter and the Polish Neural Network Society (2008), 454—462.

Bozejko W., Wodecki M., Parallel path-relinking method for the flow shop
scheduling problem, in: International Conference on Computational Science
(ICCS 2008), Lecture Notes in Computer Science No. 5101, Springer (2008),
264-273.

Bozejko W., Pempera J., Smutnicki C., Parallel single-thread strategies in
scheduling, in: L. Rutkowski, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada
(Eds.), Artificial Intelligence and Soft Computing — ICAISC 2008, Lecture
Notes in Artifivial Intelligence No. 5097, Springer (2008), 995-1006.

Bozejko W., Wodecki M., Parallel scatter search algorithm for the flow shop
sequencing problem, in: R. Wyrzykowski, J. Dongarra, K. Karczewski, J.
Wasniewski (Eds.), Seventh International Conference on Parallel Process-
ing and Applied Mathematics (PPAM 2007), Lecture Notes in Computer
Science No. 4967, Springer (2008), 180-188.

Bozejko W., Pempera J., Parallel Tabu Search Algorithm for the Permuta-
tion Flow Shop Problem with Criterion of Minimizing Sum of Job Comple-

tion Times, Conference on Human System Interaction HSI'08, IEEE Com-
puter Society, 1-4244-1543-8/08/(c)2008 IEEE.

Bozejko W., Hejducki Z., Wodecki M., Fuzzy Blocks in Genetic Algorithm
For the Flow Shop Problem, Conference on Human System Interaction
HSI'08, IEEE Computer Society, 1-4244-1543-8/08/(c)2008 IEEE.

Bozejko W., Wodecki M., Applying Multi-Moves in Parallel Genetic Algo-
rithm for the Flow Shop Problem, in: Computation in Modern Science and
Engineering: Proceedings of the International Conference on Computational
Methods in Science and Engineering 2007 (ICCMSE 2007): Volume 2, Part
B, AIP Conference Proceedings Volume 963 (2007), 1162-1165.

Bibliography 247

[44]

[45]

[49]

[52]

[53]

[54]

Bozejko W., Wodecki M., Parallel FEvolutionary Algorithm for the Traveling
Salesman Problem, Journal of Numerical Analysis, Industrial and Applied
Mathematics 2(3-4), (2007), 129-137.

Bozejko W., Wodecki M., A parallel metaheuristics for the single machine
total weighted tardiness problem with sequence-dependent setup times, Pro-
ceedings of the 3rd Multidisciplinary International Scheduling Conference:
Theory and Applications, Paris 28-31 August (2007), 96-103.

Bozejko W., Wodecki M., On the theoretical properties of swap multimoves,
Operations Research Letters 35(2), Elsevier (2007), 227-231.

Bozejko W., Wodecki M., Population-Based Approach for the Quadratic
Assignment Problem, International Conference on Numerical Analysis and
Applied Mathematics 2006, Wiley-VCH Verlag (2006), 61-64.

Bozejko W., Wodecki M., The new concepts in neighborhood search for per-
mutation optimization problems, in: E.K. Burke, H. Rudova (Eds.), Prac-
tice and Theory of Automated Time-tabling PATAT 2006, Brno (2006),
363-366.

Bozejko W., Wodecki M., Theoretical properties of multimoves in meta-
heuristics in aspect of involutions, Proceedings of Tenth International Work-
shop on Project Management and Scheduling, NAKOM, Poznan (2006),
88-94.

Bozejko W., Wodecki M., A new inter-island genetic operator for optimiza-
tion problems with block properties, Lecture Notes in Artificial Intelligence
No. 4029, Springer (2006), 324-333.

Bozejko W., Wodecki M., Parallel population training algorithm for sin-
gle machine total tardiness problem, in: A. Cader, L. Rutkowski, R.
Tadeusiewicz, J. Zurada (Eds.), Artificial Intelligence and Soft Computeing,
Academic Publishing House EXIT (2006), 419-426.

Bozejko W., Wodecki M., Evolutionary Heuristics for Hard Permutational
Optimization Problems, Internationam Journal of Computational Intelli-
gence Research 2(2), (2006), 151-158.

Bozejko W., Grabowski J., Wodecki M., Block approach tabu search algo-
rithm for single machine total weighted tardiness problem, Computers &
Industrial Engineering 50(1-2), Elsevier (2006), 1-14.

Bozejko W., Wodecki M., A fast parallel dynasearch algorithm for some
scheduling problems, Proceedings of PARELEC 2006, IEEE Computer So-
ciety (2006), 275-280.

Bozejko W., Wodecki M., Parallel Evolution Heuristic Approach for the

Traveling Salesman Problem, International Conference on Numerical Anal-
ysis and Applied Mathematics 2005, Wiley-VCH Verlag (2005), 90-93.

248

Bibliography

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Bozejko W., Wodecki M., A hybrid evolutionary algorithm for some discrete
optimization problems, Proceedings of the 5th International Conference on
Intelligent Systems Design and Applications ISDA 2005, IEEE Computer
Society (2005), 326-331.

Bozejko W., Wodecki M., Task realiation’s optimization with earliness and
tardiness penalties in distributed computation systems, Lecture Notes in
Computer Science No. 3528, Springer (2005), 69-75.

Bozejko W., Wodecki M., Parallel tabu search method approach for very
difficult permutation scheduling problems, Proceedings of PARELEC 2004,
IEEE Computer Society Press (2004), 156-161.

Bozejko W., Wodecki M., The new concepts in parallel simulated annealing
method, Lecture Notes in Computer Science No. 3070, Springer (2004), 853
859.

Bozejko W., Wodecki M., Parallel genetic algorithm for minimizing total
weighted completion time, Lecture Notes in Computer Science No. 3070,
Springer (2004), 400-405.

Bozejko W., Wodecki M., Parallel genetic algorithm for the flow shop

scheduling problem, Lecture Notes in Computer Science No. 3019, Springer
(2004), 566-571.

Bozejko W., Parallel scheduling algorithms (Ph.D. thesis, in Polish), Tech-
nical Report of the Institute of Engineering Cybernetics No. 29/2003,
Wroctaw University of Technology (2003), 1-205.

Bozejko W., Wodecki M., Solving the flow shop problem by parallel simulated
annealing, Lecture Notes in Computer Science No. 2328, Springer Verlag
2002, 236-247.

Bozejko W., Wodecki M., Parallel algorithm for some single machine
scheduling problems, Automatyka 134 (2002), 81-90.

Bozejko W., Wodecki M., Solving the flow shop problem by parallel tabu
search, Proceedings of PARALEC 2002, IEEE Computer Society (2002),
189-194.

Bradwell R., Brown K., Parallel asynchronous memetic algorithms, in:
E. Cantu-Paz, B. Punch (Eds.), Evolutionary Computation (1999), 157—
159.

Brandimarte P., Routing and scheduling in a flexible job shop by tabu search,
Annals of Operations Research 41 (1993), 157-183.

Bubak M., Sowa K., Objectoriented implementation of parallel genetic al-
gorithms, in: R. Buyya (Ed.), High Performance Cluster Computing: Pro-
gramming and Applications Vol. 2, Prentice Hall (1999), 331-349.

Bibliography 249

[69]

[70]

Bushee D.C., Svestka. J.A., A bi-directional scheduling approach for job
shops, International Journal of Production Research 37(16), (1999), 3823
3837.

Cahon S., Melab N., Talbi E.-G., ParadisEO on Condor-MW for optimiza-
tion on computational grids, http://www.lifl.fr/~cahon/cmw /index.html
(2004).

Camara M., Ortega J., Toro F.J., Parallel Processing for Multi-objective
Optimization 1 Dynamic Environments, 2007 IEEE International Parallel
and Distributed Processing Symposium (2007), 243-250.

Cantu-Paz E., Theory of Parallel Genetic Algorithms, in: E. Alba (Ed.),
Parallel Metaheuristics, Wiley (2005), 425-444.

Carlier J., Pinson E., An algorithm for solving the job shop problem, Man-
agement Science 35 (1989), 164-176.

Calrier J., Villon P., A new heuristic for the traveling salesman problem,
RAIRO Operations Research 24 (1990), 245-253.

éerny V., Thermodynamical approach to travelling salesman problem: An
efficient simulation algorithm, Journal of Optimization Theory and Appli-
cations 45 (1985), 41-51.

Chandra R., Dagum L., Kohr D., Maydan D., McDonald J., Menon R., Par-
allel Programming in OpenMP, Morgan Kaufmann Publishers Inc. (2001).
Cheng T.C.E., Ng C.T., Yuan J.J., Liu Z.H., Single machine scheduling
to minimize total weighted tardiness, European Journal of Operational Re-
search 165 (2005), 423-443.

Cicirello V.A., Smith S.F., Enhancing stochastic search performance by
value-based randomization of heuristics, Journal of Heuristics 11 (2005),
5-34.

Cicirello V.A., Non-Wrapping Order Crossover: An Order Preserving
Crossover Operator that Respect Absolute Position, 8th Annual Genetic and
Evolutionary Computation Conference GECCO 2006, ACM Press (2006),
1125-1131.

Cole, R., Parallel merge sort, SIAM Journal on Computing 17(4), (1988),
770-785.

Congram K.R., Potts C.N., van de Velde S., An interated dynasearch al-
gorithm for the single-machine total weighted tardiness scheduling problem,
INFORMS Journal on Computing 14 (2002), 52-67.

Cormen T.H., Leiserson C.E., Rivest R.L., Stein C., Introduction to Algo-
rithms, MIT Press and McGraw-Hill (1990).

Cormen T.H., Leiserson C.E., Rivest R.L., Introduction to Algorithms, 2nd
revised edition, MIT Press (2001).

250

Bibliography

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

193]

[94]

[95]

[96]

[97]

Crainic T.G., Toulouse M., Parallel metaheuristics, in: T.G. Crainic, G.
Laporte (Eds.), Fleet management and logistics, Kluwer (1998), 205-251.

Crainic T.G., Toulouse M., Gendreau M., Parallel asynchronous tabu search
wn multicommodity locationallocation with balancing requirements, Annals of
Operations Research 63 (1995), 277-299.

Crainic T.G., Gendreau M., Cooperative Parallel Tabu Search for Capacited
Network Design, Journal of Heuristics 8 (2002), 601-627.

Crainic T.G., Gendreau M., Hansen P., Mladenovi¢ N., Cooperative parallel
variable neighbourhood search for the p-median, Journal of Heuristics 10
(2004), 293-314.

Crauwels H.A.J., Potts C.N., Van Wassenhowe L.N., Local search heuris-
tics for the single machine total weighted tardiness scheduling problem, IN-
FORMS Journal on Computing 10(3), (1998), 341-350.

CSEP, Computational Science FEducation Project, electronic book,
http://www.phy.ornl.gov /csep/

Cung V.-D., Martins S.L., Ribeiro C.C., Roucairol C., Strategies for the par-
allel implementation of metaheuristics, in: C.C. Ribeiro, P. Hansen (Eds.),
Essays and surveys in metaheuristics, Kluwer Academic Publ. (2002), 263
308.

Czech Z., Wprowadzenie do obliczeri réwnolegtych, PWN, Warsaw (2010).

Czech Z., Three parallel algorithms for simulated annealing, Lecture Notes
in Computer Science No. 2328, Springer Verlag (2002), 210-217.

Dauzére-Péres S., Pauli J., An integrated approach for modeling and solving
the general multiprocessor job shop scheduling problem using tabu search,
Annals of Operations Research 70(3), (1997), 281-306.

Davidor Y., A naturally occuring niche and species phenomenon: The model
and first results, in: R.K. Belew, L.B. Booker (Eds.), Proceedings of the
Fourth International Conference of Genetic Algorithms, (1991), 257-263.

De Falco 1., Del Balio R.., Tarantino E., Testing parallel evolution strategies
on the quadratic assignment problem, in: Proc. IEEE International Confer-
ence in Systems, Man and Cybernetics, Vol. 5 (1993), 254-259.

Den Basten, M., Stiitzle T., Dorigo M., Design of Iterated Local Search
Algoritms An Ezample Application to the Single Machine Total Weighted
Tardiness Problem, in: J.W. Boers et al. (Eds.), Evo Worskshop 2001, Lec-
ture Notes in Computer Science No. 2037 (2001), 441-451.

Dennis J.E., Wu Z., Parallel continuous optimizatin, J. Dongarra et al.
(Eds.), Sourcebook of Parallel Computing, Morgan Kauffman (2003), 649
670.

Bibliography 251

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]
[106]
[107]
[108]

109

[110]

[111]

DePuy G.W., Morga R.J., Whitehouse G.E., Meta-RaPS: a simple and
effective approach for solving the traveling salesman problem, Transportation
Research Part E 41 (2005), 115-130.

Diaconis P., Group Representations in Probability and Statistics, Lecture
Notes — Monograph Series Vol. 11, Institute of Mathematical Statistics,
Harvard University (1988).

Doerner K.F., Hartl R.F., Kiechle G., Lucka M., Reimann M., Parallel
Ant Systems for the Capacited VRP, in: J. Gottlieb, G.R. Raidl (Eds.),
EvoCOP’04, Springer (2004), 72-83.

Dumitru V., Luban F., Membership functions, some mathematical program-
ming models and production scheduling, Fuzzy Sets and Systems 8 (1982),
19-33.

Emmons H., One machine sequencing to Minimize Certain Functions of Job
Tardiness, Operations Research 17 (1969), 701-715.

Feldmann M., Biskup D., Single-machine scheduling for minimizing ear-
liness and tardiness penalties by meta-heuristic approaches, Computers &
Industrial Engineering 44 (2003), 307-323.

Fernandez F., Tomassini M., Punch W.F., Sanchez-Pérez J.M., Ezperimen-
tal study of multipopulation parallel genetic programming, in: Proc. of the
European Conf. on GP, Springer (2000), 283-293.

Fisher M.L., A Dual Algorithm for the One Machine Scheduling Problem,
Mathematical Programming 11 (1976), 229-252.

Fiechter C.N., A parallel tabu search algorithm for large traveling salesman
problems, Discrete Applied Mathematics 51 (1994), 243-267.

Fisher, H., Thompson, G.L., Industrial scheduling, Englewood Cliffs, NJ:
Prentice-Hall (1963).

Flynn M.J., Very highspeed computing systems, Proceedings of the IEEE 54
(1966), 1901-1909.

Folino G., Pizzuti C., Spezzano G., CAGE: A tool for parallel genetic
programming applications, in: J. Miller et al. (Eds.), Proceedings of Eu-
roGP’2001, Lecture Notes in Computer Science No. 2038, Springer (2001),
64-73.

Gagné C., Price W.L., Gravel M., Comparing an ACO algorithm with
other heuristics for the single machine scheduling problem with sequence-
dependent setup times, Journal of the Operational Research Society 53
(2002), 895-906.

Gao J., Sun L., Gen M., A hybrid genetic and variable neighborhood descent

algorithm for flexible job shop scheduling problems, Computers & Operations
Research 35 (2008), 2892-2907.

252

Bibliography

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

Garcia-Lopez F., Melian-Batista, Moreno-Pérez J., Moreno-Vega J.M., The
parallel variable neighborhood search for the p-median problem, Journal of
Heuristics 8 (2002), 375-388.

Garcia-Lopez F., Melian-Batista, Moreno-Pérez J., Moreno-Vega J.M., Par-
allelization of the Scatter Search, Parallel Computing 29 (2003), 575-589.
Garcia-Lopez F., Garcia Torres M., Melian-Batista, Moreno-Pérez J.,
Moreno-Vega J.M., Solving Feature Subset Selection Problem by a Parallel
Scatter Search, European Journal of Operational Research Volume 169(2),
(2006), 477-489.

Garey M.R., Johnson D.S., Seti R., The complezity of flowshop and jobshop
scheduling, Mathematics of Operations Research 1 (1976), 117-129.

Geist A., Beguelin A., Dongarra J., Manchek R., Jaing W., Sunderam V.,
PVM: A Users’ Guide and Tutorial for Networked Parallel Computing, MIT
Press, Boston (1994).

Goldberg D., Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley Publishing Company, Inc., Massachusetts (1989).
Grabowski J., Wodecki M., A very fast tabu search algorithm for the permu-

tation flow shop problem with makespan criterion, Computers & Operations
Research 31 (2004), 1891-1909.

Grabowski J., Wodecki M., A very fast tabu search algorithm for the job shop
problem, in: C. Rego, B. Alidaee (Eds.), Adaptive memory and evolution,
tabu search and scatter search. Kluwer Academic Publishers, Dordrecht
(2005).

Grabowski J., A new algorithm of solving the flow-shop problem, Operations
Research in Progress, D. Reidel Publishing Company (1982) 57-75.

Grabowski J., Pempera J., New block properties for the permutation flow
shop problem with application in tabu search, Journal of Operational Re-
search Society 52 (2000), 210-220.

Grabowski J., Generalized problems of operations sequencing in the discrete
production systems, (in Polish), Monographs 9, Scientific Papers of the In-
stitute of Technical Cybernetics of Wroctaw Technical University (1979).
Graham M.R., Lawler E.L., Lenstra J.K., Rinnoy Kan A.H.G., Optimiza-
tion an approrimation in detrministic sequencing and scheduling: a survey,
Annals of Discrete Mathematics 3 (1979), 287-326.

Grama A., Gupta A., Karypis G., Kumar V., Introduction to Parallel Com-
puting, Second Edition, Pearson Addison Wesley (2003).

Grosso A., Della Croce F., Tadei R., An enhanced dynasearch neighborhood

for the single-machine total weighter tardiness scheduling problem, Opera-
tions Research Letters 32 (2004), 68-72.

Bibliography 253

[126]
[127]
[128]

[129]

[130]

|131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

139

[140]

Glover F., Future Paths for Integer Programming and Links to Artificial
Intelligence, Computers & Operations Research 1(3), (1986), 533-549.

Glover F., Laguna M., Tabu Search, Kluwer Academic Publishers, Boston
(1997).

Gupta S.K., Kyparisis J., Single machine scheduling research, OMEGA In-
ternational Journal of Management Science 15 (1987), 207-227.

Gutin G.M., Yeo A., Small diameter neighborhood graphs for the traveling
salesman problem: at most four moves from tour to tour, Computers &
Operations Research 26 (1999), 321-327.

Gutin G., Ezponential neighborhood local search for the traveling salesman
problem, Special Issue of Computers & Operations Research 26 (1999), 313—
320.

Haldar A.M., Nayak A., Choudhary A., Banerjee P., Parallel Algorithms
for FPGA Placement, Proceedings of the Great Lakes Symposium on VLSI
(GVLSI 2000), Chicago, IL (2000).

Hanafi S., On the Convergence of Tabu Search, Journal of Heuristics 7
(2000), 47-58.

He Z., Yang T., Tiger A., An exchange heuristic embedded with simulated
annealing for due-dates job-shop scheduling, European Journal of Opera-
tional Research 91 (1996), 99-117.

High Performance Fortran Forum, High Performance Fortran language spec-
ification, Scientific Programming 2, 13 (1993), 1-170.

Ho N.B., Tay J.C., GENACE: an efficient cultural algorithm for solving the
Flexible Job-Shop Problem, IEEE International Conference on Robotics and
Automation (2004), 1759-1766.

Holland J.H., Adaptation in natural and artificial systems: An introduc-
tory analysis with applications to biology, control, and artificial intelligence,
University of Michigan Press (1975).

Holthaus O., Rajendran C., Efficient jobshop dispatching rules: further de-
velopments, Production Planning and Control 11 (2000), 171-178.

Hoogeveen J.A., van de Velde S.L., A branch and bound algorithm for single-
machine earliness-tardiness scheduling with idle time, INFORMS Journal on
Computing 8 (1996), 402-412.

Hurink E.; Jurisch B., Thole M., Tabu search for the job shop scheduling
problem with multi-purpose machine, OR Spektrum 15 (1994), 205-215.

Ignall E., Schrage L.E., Application of the branch-and-bound technique to
some flow-shop scheduling problems, Operations Research 13(3), (1965),
400-412.

254

Bibliography

[141]
[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

Ingber L., Lester Ingber’s Archive, http://www.ingber.com/

Ishibuschi H., Misaki S., Tanaka H., Modified Simulated Annealing Algo-
rithms for the Flow Shop Sequencing Problem, Furopean Journal of Opera-
tional Research 81 (1995), 388-398.

Ishibuschi H., Murata T., Scheduling with Fuzzy Duedate and Fuzzy Process-
ing Time, in: R. Stowinski, M. Hapke (Eds.), Scheduling Under Fuzziness,
Springer (2000), 113-143.

Izzettin T., Serpil E., Fuzzy branch-and-bound algorithm for flow shop
scheduling, Journal of Intelligent Manufacturing 15 (2004), 449-454.

Jain A.S., Rangaswamy B., Meeran S., New and stronger job-shop neigh-
borhoods: A focus on the method of Nowicki and Smutnicki (1996), Journal
of Heuristics 6(4), (2000), 457—480.

James T., Rego C., Glover F., Sequential and Parallel Path-Relinking Al-
gorithms for the Quadratic Assignment Problem, IEEE Intelligent Systems
20(4), (2005), 58-65.

Janiak A., Janiak W., Lichtenstein M., Tabu search on GPU, Journal of
Universal Computer Science 14(14), (2009), 2416-2426.

Janiak A., Oguz C., Zinder Y., Do Van Ha, Lichtenstein M., Hybrid flow-
shop scheduling problems with multiprocessor task systems, European Jour-
nal of Operational Research 152(1), (2004), 115-131.

Jia H.Z., Nee A.Y.C., Fuh J.Y.H., Zhang Y.F., A modified genetic algorithm
for distributed scheduling problems, International Journal of Intelligent Man-
ufacturing 14 (2003), 351-362.

Johnson S.M., Optimal two and three-stage production schedules with setup
times included, Naval Research Logistic Quertely 1 (1954), 61-68.

Juille H., Pollack J.B., Massively parallel genetic programming, in: Peter
J. Angeline, K.E. Kinnear Jr. (Eds.), Advances in Genetic Programming 2,
MIT Press, Cambridge (1996), 339-358.

Kacem I., Hammadi S., Borne P.; Approach by localization and multiob-
jective evolutionary optimization for flexible job-shop scheduling problems,
IEEE Transactions on Systems, Man, and Cybernetics, Part C 32(1), (2002),
1-13.

Kawamura H., Yamamoto M., Suzuki K., Ohuchi A., Multiple ant colonies
algorithm based on colony level interactions, IEICE Transactions on Funda-
mentals, E83-A(2), (2000), 371-379.

Kirkpatrick S., Gellat C.D., Vecchi M.P., Optimization by simulated anneal-
ing, Science 220 (1983), 671-680.

Bibliography 255

[155]

[156]

[157]
158

[159]

[160]

[161]

[162]

163

|164]

165

[166]

167]

168

[169]

Kliewer G., Klohs K., Tschoke S., Parallel simulated annealing library
(parSA): User manual, Technical report, Computer Science Department,
University of Paderborn (1999).

Knox J., Tabu search performance on the symmetric traveling salesman
problem, Computers & Operations Research 21 (1994), 867-876.

Koza J.R., Genetic Programming, The MIT Press, Cambridge (1992).

Knuth D.E., The art of computer programming, Vol. 3., 2nd ed., Addison
Wesley Longman, Inc. (1998).

Kravitz S.A., Rutenbar R.A., Placement by simulated annealing on a multi-
processor, IEEE Transactions on Computer Aided Design 6 (1998), 534-549.

Kwiatkowski J., Pawlik M., Konieczny D., Parallel Program FExecution
Anomalies, Proceedings of the International Multiconference on Computer
Science and Information Technology (2006), 355-362.

Lageweg B.J., Lenstra J.K., Rinnooy Kan A.H.G., A General Bouding
Scheme for the Permutation Flow-Schop Problem, Operations Research 26
(1978), 53-67.

Lawler, E.L., A Pseudopolynomial Algorithm for Sequencing Jobs to Mini-
mize Total Tardiness, Annals of Discrete Mathematics 1 (1977), 331-342.

Lawrence S., Resource constrained project scheduling: an erperimental in-
vestigation of heuristic scheduling techniques, Technical Report, Graduate
School of Industrial Ad-ministration, Carnegie-Mellon University, Pitts-
burgh, Pennsylvania (1984).

Lai H.T., Sahni S., Anomalies in parallel branchandbound algorithms, Com-
munications of the ACM 27 (1984), 594-602.

Lai T.H., Sprague A., A note on anomalies in parallel branchandbound al-
gorithms with onetoone bounding functions, Information Processing Letters
23 (1986), 119-122.

Lee Y.H., Bhaskaran K., Pinedo M., A heuristic to minimize the total
weighted tardiness with sequence-dependent setups, 1IE Transactions 29
(1997), 45-52.

Lee S.Y., Lee K.G., Synchronous and asynchronous parallel simulated an-
nealing with multiple Markov chains, IEEE Transactions on Parallel and
Distributed Systems 7 (1996), 993-1008.

Lenstra J.K., Rinnoy Kan A.G.H., Brucker P., Complezity of Machine
Scheduling Problems, Annals of Discrete Mathematics, 1 (1977), 343-362.

Lenstra J.K., Sequencing by Enumeration Methods, Mathematical Centre
Tract 69, Mathematisch Centrum, Amsterdam (1977).

256

Bibliography

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183)]

Leung K.-S., Jin H.-D., Xu Z.-B., An ezpanding self-organizing neural net-
work for the traveling salesman problem, Neurocomputing 62 (2004), 267
292.

Li G.J., Wah B.W., Coping with anomalies in parallel branchandbound al-
gorithms, IEEE Transactions on Computers C 35 1986, 568-573.

Liao C.-J., Juan H.C. | An ant opimization for single-machine tardiness
shceduling with sequence-dependent setups, Computers & Operations Re-
search 34 (2007), 1899-19009.

Lin S.-W., Ying K.-C., Solving single-machine total weighted tardiness prob-
lems with sequence-dependent setup times by meta-heuristics, International
Journal of Advanced Manufacturing Technology 34(11-12), (2007), 1183—
1190.

Lin S., Kerninghan B., An effective heuristic algorithm for the traveling
salesman problem, Operations Research 21 (1973), 498-516.

Lo C.C., Hus C.C., Annealing framework with learning memory, IEEE
Transaction on System, Man, Cybernetics, Part A 28(5), (1998), 1-13.

Lobo F.G., Lima C.F., Martires H., An architecture for massively paral-
lelization of the compact genetic algorithm, in: Proceedings of the Genetic
and Evolutionary Computation Conference GECCO 2004, Lecture Notes in
Computer Science No. 3103, Springer (2004), 412-413.

Malek M., Guruswamy M., Pandya M., Owens H., Serial and parallel simu-
lated annealing and tabu search algorithms for the traveling salesman prob-
lem, Annals of Operations Research 21 (1989), 59-84.

Mans B., Roucairol C., Performances of parallel branch and bound algo-
rithms with bestfirst search, Discrete Applied Mathematics 66 (1996), 57-76.

Martins S.L., Ribeiro C.C., Souza M.C., A Parallel Grasp for the Steiner
Problem in Graphs, Lecture Notes in Computer Science No. 1457, Springer
(1998), 285-297.

Mastrolilli M., Gambardella L.M., Effective neighborhood functions for the
flexible job shop problem, Journal of Scheduling 3(1), (2000), 3-20.

Matsuo H., Suh C.J., Sullivan R.S., A controlled search simulated annealing
method for the single machine weighted tardiness problem, Working paper
87-12-2, Departament of Management, University of Texas at Austin, TX,
(1987).

Mattfeld D.C., Bierwirth C., An efficient genetic algorithm for job shop
scheduling with tardiness objectives, European Journal of Operational Re-
search 155(3), (2004), 616—630.

Meise C., On the convergence of parallel simulated annealing, Stochastic
Processes and their Applications 76 (1998), 99-115.

Bibliography 257

[184]

[185]

[186]

[187]
188

[189)

[190]

[191]

[192]

193]

[194]

[195]

[196]

[197]

Mendes R., Pereira J.R., Neves J., A Parallel Architecture for Solving Con-
straint Satisfaction Problems, Proceedings of Metaheuristics Int. Conf. 2001,
Porto, Portugal (2001), 109-114.

Mendiburu A., Miguel-Alonso J., Lozano J.A., Implementation and per-
formance evaluation of a parallelization of estimation of bayesian network
algorithms, Parallel Processing Letters 16(1), (2006), 133-148.

Metropolis N., Rosenbluth A.W., Teller A.H., Tellet E., Equation of state
calculation by fast computing machines, Journal of Chemical Physics 21
(1953), 1187-1191.

Michalewicz Z., Genetic Algorithms + Data Structures — Ewvolution Pro-
grams, 2nd ed., Springer Verlag (1994).

Middendorf M., Reischle F., Schmeck H., Multi Colony Ant Algorithm, Jour-
nal of Heuristics 8 (2002), 305-320.

Miki M., Hiroyasu T., Kasai M., Application of the temperature parallel
simulated annealing to continous optimization problems, IPSL Transactions
41 (2000), 1607-1616.

Morton T.E., Rachamadougu R.M., Vepsalainen A., Accurate myopic
heuristics for tardiness scheduling, GSIA Working Paper No. 36-83-84,
Cornegie-Mellon Univercity, PA, (1984).

Miihlenbein H., Gorges-Schleuter M., Kramer O., Ewvolution algorithm in
combinatorial optimization, Parallel Computing 7 (1988), 65-85.

Miihlenbein H., PaakG., From Recombination of Genes to the Estimation
of Distributions Binary Parameters, Parallel Problem Solving from Nature
— PPSN IV, Lecture Notes in Computer Science No. 1141, Sprinter (1996),
178-187.

Naimi M., Trehel M., Arnold A, A log(n) distributed mutual exclusion algo-
rithm based on path reversal, J. Parallel Distrib. Comput. 34 (1996), 1—13.

Navaz M., Enscore E.E. Jr, Ham 1., A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem, OMEGA 11(1), (1983), 91—
95.

Nowicki E., Smutnicki C., A fast tabu search algorithm for the job shop
problem, Management Science 42 (1996), 797-813.

Nowicki E.; Smutnicki C., A fast tabu search algorithm for the permutation
flow shop problem, European Journal of Operational Research 91 (1996),
160-175.

Nowicki E., Smutnicki C., The flow shop with parallel machines: A tabu
search approach, European Journal of Operational Research 106 (1998),
226-253.

258

Bibliography

198

[199]

200]

[201]

[202]
203]

|204]
205

[206]

207]

208

209

[210]

[211]

[212]

Nowicki E., Smutnicki C., An advanced tabu search algorithm for the job
shop problem, Journal of Scheduling 8(2), (2005), 145-159.

Nowicki E., Smutnicki C., Some aspects of scatter search in the flow-shop
problem, European Journal of Operational Research 169 (2006), 654-666.

Oceanések J., Schwarz J., The distributed bayesian optimization algorithm
for combinatorial optimization, in: EUROGEN 2001 — Evolutionary Meth-
ods for Design, Optimisation and Control, CIMNE, Athens, Greece, ISBN
84-89925-97-6 (2001), 115-120.

Ogbu F., Smith D., The Application of the Simulated Annealing Algorithm
to the Solution of the n/m/Cpaz Flowshop Problem, Computers & Opera-
tions Research 17(3), (1990), 243-253.

OR-Library, http://people.brunel.ac.uk/~mastjjb/jeb/info.html

Osman 1., Potts C., Simulated Annealing for Permutation Flow-Shop
Scheduling, OMEGA 17(6), (1989), 551-557.

Pauli J., A hierarchical approach for the FMS schduling problem, European
Journal of Operational Research 86(1), (1995), 32-42.

Peng J., Liu B., Parallel machine scheduling models with fuzzy processing
times, Information Sciences 166 (2004), 49-66.

Pezzella F., Merelli E., A tabu search method guided by shifting bottleneck for
the job-shop scheduling problem, Furopean Journal of Operational Research
120 (2000), 297-310.

Pezzella F., Morganti G., Ciaschetti G., A genetic algorithm for the Flez-
tble Job-schop Scheduling Problem, Computers & Operations Research 35
(2008), 3202-3212.

Pinedo M., Scheduling: theory, algorithms and systems, Englewood Cliffs,
NJ: Prentice-Hall (2002).

Porto S.C., Ribeiro C.C., Parallel tabu search messagepassing synchronous
strategies for task scheduling under precedence constraints, Journal of
Heuristics 1(2), (1996), 207-223.

Porto S.C., Ribeiro C.C., A tabu search approach to task scheduling on
heterogeneous processors under precedence constraints, International Journal
of High Speed Computing 7 (1995), 45-71.

Porto S.C., Ribeiro C.C., A case study on parallel synchronous implemen-
tations of tabu search based on neighborhood decomposition, Investigaci’on

Operativa 5 (1996), 233-259.

Porto S.C., Kitajima J.P., Ribeiro C.C., Performance evaluation of a par-
allel tabu search task scheduling algorithm, Parallel Computing 26 (2000),
73-90.

Bibliography 259

[213]
[214]
[215]
[216]
217]
218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

Potts C.N., Van Wassenhove L.N., Single machine tardiness sequencing
heuristics, ITE Transactions 23 (1991), 346-354.

Potts C.N., Van Wassenhove L.N., A Branch and Bound Algorithm for the
Total Weighted Tardiness Problem, Operations Research 33 (1985), 177-181.
Reeves C.R., Yamada T., Genetic algorithms, path relinking and the flow-
shop sequencing problem, Evolutionary Computation 6 (1998), 45-60.
Reeves C., Improving the Efficiency of Tabu Search for Machine Sequencing
Problems, Journal of Operational Research Society 44(4), (1993), 375-382.
Reeves C., A Genetic Algorithm for Flowshop Sequencing, Computers &
Operations Research 22(1), (1995), 5-13.

Reinelt G., The traveling salesman: computational Solutions for TSP appli-
cations, Berlin, Springer (1994).

Resende M.G.C., Ribeiro C.C., GRASP with path-relinking: Recent ad-
vances and applications, in: T. Ibaraki, K. Nonobe, M. Yagiura (Eds.),
Metaheuristics: Progress as real problem solvers, Springer (2005), 29-36.
Rinnoy Kan A.H.G, Machine Scheduling Problems: Classification, Com-
plexity and Computations, Nijhoff, The Hague, (1976).

Ribeiro C.C., Rosseti 1., A parallel GRASP for the 2-path network design
problem, Lecture Notes in Computer Science No. 2004 (2002), Springer,
922-926.

Rinnoy Kan A.G.H., Lageweg B.J., Lenstra J.K., Minimizing total cost one-
machine scheduling, Operations Research 26 (1975), 908-972.

Robilliard D., Marion-Poty V., Fonlupt C., Population parallel GP on the
G80 GPU, in: O’'Neil M. et al. (Eds.), Proceedings of the 11th European
Conference on Genetic Programming, EuroGP 2008, Vol. 4971, Springer
(2008).

Rogalska M., Bozejko W., Hejducki Z., Wodecki M., Harmonogramowanie
robdt budowlanych z zastosowaniem algorytmu Tabu Search z rozmytymi
czasami wykonania zadar, Przeglad Budowlany No. 7-8 (2009), 76-80.
Rogalska M., Bozejko W., Hejducki Z., Time/cost optimization using hybrid
evolutionary algorithm in construction project scheduling, Automation in
Construction 18, Elsevier (2008), 24-31.

Rogalska M., Bozejko W., Hejducki Z., Scheduling of construction projects
by means of evolutionary algorithms, Proceedings of 9th International Con-
ference Modern building materials, structures and techniques ISARC 2007,
Vilnius, Lithuania (2007), 173-174.

Roussel-Ragot P., Dreyfus G., A problem-independent parallel implementa-

tion of simulated annealing: Models and experiments, IEEE Transactions
on Computer-Aided Design 9 (1990), 827-835.

260

Bibliography

[228]

[229]

[230]

[231]

[232]

233

[234]
[235]

[236]

237]

238
239

[240]

[241]

242

Savur V., Parallel computer architecture, http://sankofa.loc.edu/savur/
web /Parallel.html

Smith W.E., Various optimizers for single-stage production, Naval Research
Logistic Quart 3 (1956), 59-66.

Schiitz M., Sprave J., Application of Parallel Mized-Integer Evolution Strate-
gies with Mutation Rate Pooling, in: L.J. Fogel, P.J., Angeline, T. Béck
(Eds.), Proceedings of the Fifth Annual Conference on Evolutionary Pro-
gramming (EP’96), The MIT Press (1996), 345-354.

Smutnicki C., Tynski A., Job-shop scheduling by GA : A new crossover
operator, in: H.-D. Haasis, H. Kopfer, J. Schonberger (Eds.), Operations
Research, Berlin, Springer (2006), 715-720.

Smutnicki C., Some results of the worst-case analysis for flow shop schedul-
ing, European Journal of Operational Research 109 (1998), 66—87.

Smutnicki C., Minimizing the mean completion time in a flow shop problem.
The worst-case study, in: M. Zaborowski (Ed.), Automatyzacja procesow
dyskretnych, WNT, Warsaw (2004), 151-158.

Smutnicki C., Scheduling algorithms (in Polish), EXIT, Warsaw (2002).

Snir M., Otto S., Huss-Lederman S., Walker D., Dongarra J., MPI: The
Complete Reference Vol. 1, The MPI Core, MIT Press, Boston (1998).

Sprave J., Linear neighborhood evolution strategies, in: A.V. Sebald, L.J.
Fogel (Eds.), Proceedings of the 3th AnnualConference on Evolutionary
Porgramming, World Scientific, River Edge (1994), 42-51.

Steinhdfel K., Albrecht A., Wong C.K., Fast parallel heuristics for the job
shop scheduling problem, Computers & Operations Research 29 (2002), 151—
169.

Stockmeyer L., Vishkin U., Simulation of parallel random access machines
by circuits, STAM J. Comput. 13(2), (1984), 409-422.

Storer J.A., An ntroduction to data structures and algorithms,
Birkh&user—Springer (2001).
Storer R.H., Wu S.D., Vaccari R., New search spaces for sequencing prob-

lems with application to job shop scheduling, Management Science 38 (1992),
1495-1509.

Stiitzle T., Parallelization Strategies for Ant Colony Optimization, in: R.
De Leone, A. Murli, P. Pardalos, G. Toraldo (Eds.), High Performance
Algorithms and Software in Nonlinear Optimization, Vol. 24 of Applied
Optimization, Kluwer (1998), 87-100.

Szwarc W., Adjacent ordering in single machine scheduling with earliness
and tardiness penalties, Neval Research Logistics 40 (1993), 229-243.

Bibliography 261

[243]
[244]
[245]
[246]
247

[248]

[249]

[250]

[251]

[252]

253

[254]

[255]

[256]

[257]

Taillard E., Benchmarks for basic scheduling problems, European Journal of
Operational Research 64 (1993), 278-285.

Taillard E., Robust taboo search for the quadratic assignment problem, Par-
allel Computing 17 (1991), 443-455.

Taillard E., Parallel taboo search techniques for the job shop scheduling prob-
lem, ORSA Journal on Computing 6 (1994), 108-117.

Taillard E., Some efficient heuristic methods for the flow shop sequencing
problem, European Journal of Operational Research 47(1), (1990), 65-74.
Talbi E.-G., A tazonomy of hybrid metaheuristics, Journal of Heuristics
8(5), (2002), 541-564.

Talbi E.-G., Roux O., Fonlupt C., Robillard D., Parallel Ant Colonies for
Combinatorial Optimization Problems, in: Feitelson, Rudolph (Eds.), Job
Scheduling Strategies for Parallel Processing: IPPS’95 Workshop, Lecture
Notes in Computer Science No. 949(11), Springer (1999).

Talbi E.-G., Hafidi Z., Geib J.M., A parallel adaptive tabu search approach,
Parallel Computing 24 (1996), 2003-2019.

Tan K.C., Narasimban R., Rubin P.A., Ragatz G.L., A comparison of four
methods for minimizing total tardiness on a single procesor with sequence
dependent setup times, OMEGA 28 (2000), 313-326.

Tanese R., Distribued genetic algorithms, in: J.D. Schaffer (Ed.), Proc. of
the Third Intern. Conf. on Genetic Algorithms, Morgan Kaufmann (1989),
434-439.

Tang, J., Lim M.H., Ong Y.S., Adaptation for parallel memetic algorithm
based on population entropy, in: Proceedings of the 8h Annual Conference
on Genetic and Evolutionary Computation (Seattle, Washington, USA, July
8-12, 2006), GECCO ’06, ACM, New York, NY (2006), 575-582.

Toro F., Ortega J., Ros E., Mota B., Paechter B., Martin J.M., PSFGA:
Parallel processing and evolutionary computation for multi-objective opti-
mization, Parallel Computing 30 (2004), 721-739.

Tsai C.-F., Tsai C.-W., Tseng C.-C., A new hybrid heuristic approach for
solving large traveling salesman problem, Information Sciences 166 (2004),
67-81.

Tsujimura Y., Park S.H., Change 1.S., Gen M., An effective method for solv-
ing flow shop problems with fuzzy processing times, Computers & Industrial
Engieering 25(1-4), (1993), 239-242.

TSPLIB Web Page, http://www.iwr.uni-heidelberg.de/groups/comopt/
software/ TSPLIB95 /tsp/

Vaessens R., Aarts E., Lenstra J., Job shop scheduling by local search, IN-
FORMS Journal on Computing 8 (1996), 303-317.

262 Bibliography

[258] Valente J.M.S., Alves R.A.F.S., Fildered and recovering beam search algo-
rithms for the early/tardy scheduling problem with no idle time, Computers
& Industrial Engineering 48(2), (2005), 363-375.

[259] Van Velhuizen D.A., Zydallis J.B., Lamont G.B., Considerations in Engi-
neering Parallel Multi-objective Evolutionary Algorithms, IEEE Trans. Evo-
lutionary Computation 7(2), (2003), 144-173.

[260] Verhoeven M.G.A., Aarts E.H.L., Parallel Local Search, Journal of Heuris-
tics 1 (1995), 43-65.

[261] Voss S., Tabu search: Applications and prospects, in: D.Z. Du, P.M. Pardalos
(Eds.), Network Optimization Problems, World Scientific (1993).

[262] Wan G., Yen B.P.C., Tabu search for single machine scheduling with distinct
due windows and weighted earliness/tardiness penalties, European Journal
of Operational Research 142 (2002), 271-281.

[263] Wang T.Y., Wu K.B., An eficient configuration generation mechanism to
solve job shop scheduling problems by the simulated annealing, International
Journal of Systems Science 30(5), (1999), 527-532.

[264] Wang C., Chu C., Proth J., Heuristic approaches for n/m/F/%C; scheduling
problems, European Journal of Operational Research 96 (1997), 636-644.

[265] Weinert K., Mehnen J., Rudolph G., Dynamic neighborhood structures in
parallel evolution strategies, Complex Systems 13(3), (2002), 227-244.

[266] Wroctaw Centre of Networking and Supercomputing,
WWW.wcss.wroc.pl

[267] WinTune98, http://www.winmag.com/WinTune98/

[268] Wodecki M., A branch-and-bound parallel algorithm for single-machine total
weighted tardiness problem, The International Journal of Advanced Manu-
facturing Technology 37(9-10), (2008), 996-1004.

[269] Wodecki M., Bozejko W., Solving the flow shop problem by parallel simulated
annealing, Lecture Notes in Computer Science No. 2328, Springer (2002),
236-247.

[270] Wodecki M., Agregation methods in discrete optimization problems (in Pol-
ish), Monographs series, Wroclaw University of Technology Publishing
House, Wroctaw 2009.

[271] Wolpert D.H., Macready W.G., No Free Lunch Theorems for Optimization,
IEEE Trans. Evolutionary Computation 1(1), (1997), 67-82.

[272] Yamada T., Nakano R., A genetic algorithm applicable to large-scale job
shop problems, in: R. Manner, B. Manderick (Eds.), Parallel problem solving
from nature IT. Amsterdam: North-Holland, (1992), 281-290.

Bibliography 263

[273] Yamada T., Reeves C.R., Solving the Csym Permutation Flowshop Schedul-
ing Problem by Genetic Local Search, IEEE International Conference on
Evolutionary Computation (1998), 230-234.

[274] Yano C.A., Kim Y.D., Algorithms for a class of single machine weighted

tardiness and earliness problems, European Journal of Operational Research
52 (1991), 167-178.

List of Tables

1.1

1.2

3.1

5.1
5.2

9.1

10.1

14.1
14.2

14.3

15.1

Al

A2

A3

The granularity G values for various parallel computing environ-

ments. L. L 26
Parallel architectures and programming languages presented in par-

ticular chapters. oL 34
Job execution times on machines.o 84
Speed of increasing f(0) = o and f(0) = [log?o] functions. . . . 107

Times of Cihax calculations due to the method from Theorem 5.1
on GPU. e 108

Results of APRD (%) of the SA; GA and TS from Lin and Ying
[173] compared to ParPBM approach. 162

The number of iterations (over all processors) and the time of com-
puting. 174

Experimental results of the TSBM?H for Brandimarte [67] tests. 211
Experimental results of the TSBM?H for Barnes and Chambers

[21] instances. 212
Comparison of the results obtained by Mastrolilli and Gambardella
[180], TSBM?H and PBM?H algorithms. 213

Data for the case study. Total times of actions on working segments
represented as workdays.o oL 223

Relative deviation of solutions of sequence and parallel memetic

algorithms described in Section 8.3. 231
Total time of the parallel population-based algorithm described in
Section 9.2. e 231

Convergence of the parallel population-based metaheuristic described
in Section 9.2. 232

List of Tables

265

A.4 PRDs of simulated annealing solution and NEH described in Sec-
tion 11.1.3. L
A.5 Results of computational experiments of the algorithm described
in Section 9.2, Part 1. oL
A.6 Results of computational experiments of the algorithm described
in Section 9.2, Part 2.o
A.7 Improvement of NEH solution of algorithms from Section 11.1.3.
A.8 Results of APRD for reference solutions [273]| obtained by algo-
rithms presented in Section 11.2.3.
A.9 Values of APRD for parallel scatter search algorithm for the F'||Ciax
problem from Section 12.2 (global model).
A.10 Values of APRD for parallel scatter search algorithm for the F'||Cpax
problem from Section 12.2 (independent model).
A.11 The parallel scatter search (independent model — no communica-
tion) from Section 12.2 for Cgyy criterion.
A.12 The parallel scatter search (independent model) from Section 12.2
for Cgum criterion.
A.13 The parallel scatter search (global model — with communication)
from Section 12.2 for Cgym criterion.
A.14 The parallel scatter search (global model) from Section 12.2 for
Coum Criterion. e
A.15 The parallel scatter search (independent model — no communica-
tion) from Section 12.2 for Cgyy criterion.
A.16 The parallel scatter search (independent model) from Section 12.2
for Ceum criterion.
A.17 The parallel scatter search (global model — with communication)
from Section 12.2 for Cyym criterion.
A.18 The parallel scatter search (global model) from Section 12.2 for
Coum CTIterion. o o o e
A .19 Relative percentage distance of parallel synchronous tabu search
(PSTS) solutions presented in Section 15.3.
A.20 Relative percentage distances of parallel asynchronous tabu search
(PATS) from Section 15.3. L.
A .21 Parallel genetic algorithm described in Section 13.1..
A.22 Algorithms from Section 14.2.

232

233

234
235

236

237

237

237

238

238

238

239

239

239

240

240
241

List of Figures

1.1

1.2
1.3
14

1.5
1.6

1.7

1.8

2.1

3.1

3.2
3.3
34
3.5

3.6
3.7

4.1
4.2

5.1

5.2

History of the development of solution methods for job scheduling
problems.
Taxonomy of speedup measures proposed by Alba [7].

An illustration of the cost definition (4-processor implementation).

An illustration of the fine-grained (a) and the coarse-grained (b)
granularity.
The nVidia Tesla C2050 with 448 cores (515 GFLOPS).
The Nova cluster from the Wroctaw Centre of Networking and Su-
percomputing, 2016 cores (19 TFLOPS). Source: WCNS [266].

The IBM Blue Gene/P supercomputer at Argonne National Labo-
ratory, 163840 cores (459 TFLOPS).
Taxonomy of parallel architectures.

Outline of the Local Search Method (LSM).

An example of a graph with weighted vertices and arcs for a 3-
element subsequence. L
Graph G(7) (from Bozejko et al. [35]).
An example of disjunctive graph for the job shop problem.
An example of the graph G(W) for the job shop problem.

An example of the G(7) graph of combinatorial model for the job
shop problem.
A directed graph for a solution © = (Q, 7(Q)) from Example 3.2.
Blocks on the critical path.

Geale function.
Comparison (on the logarithmic scale) of complexity functions.

A sample of conjunctive graph for the job shop problem with d =7
layers.
Comparison of execution times of the matrix multiplication based
procedure on a 32-processor GPU.

20
23
25

25
29

30

30
32

39

66
75
78
79

80
87
88

97
100

105

List of Figures 267
5.3 A layer-based sequence of Cj; calculations for the flow shop — a
special case of the job shop problem. 112
6.1 Visualization of parameters n;(k) and p;(k) for an operation m;(k). 118
6.2 Directed graph ©' = G(t;(k:, NO)=G9o 7). 119
6.3 Critical path in the graph G(Q, 7). 122
6.4 Paths in the graph G(Q’,7’) generated from G(Q,7) by a move
tha,x(@). 127
6.5 Outline of the sequential NewPar algorithm, Part 1. 132
6.6 Outline of the sequential NewPar algorithm, Part 2. 133
6.7 Outline of the ParallelNewPar algorithm, Part 1. 133
6.8 Outline of the ParallelNewPar algorithm, Part 2. 134
6.9 The general scheme of the ParallelNewPar algorithm execution
on the host (CPU) and the computational device (GPU) for the
CUDA environment. 135
7.1 Sequential broadcasting in the master-slave parallel genetic algo-
rithm. 138
7.2 Theoretical speedups for the sequential broadcasting in the master-
slave parallel genetic algorithm. 139
7.3 Tree-based broadcasting in the master-slave parallel genetic algo-
rithm. . ..o 140
7.4 Theoretical speedups for the tree-based broadcasting in the master-
slave parallel genetic algorithm. 142
8.1 Outline of the memetic algorithm. 148
8.2 Outline of the Multi-Step Crossover Fusion with Blocks procedure. 149
8.3 Outline of the parallel memetic algorithm. 150
8.4 Average percentage relative deviations (APRD) for the sequence
and parallel memetic algorithms. 151
9.1 General structure of the population-based metaheuristic. 155
9.2 Outline of the NewPopul procedure. 158
9.3 Parallel population-based metaheuristic, Part 1. 159
9.4 Parallel population-based metaheuristic, Part 2. 160
9.5 Improvement of the reference solution of Cicirello [79] made by
ParPBM algorithms (stop criterion: exceeding 10,000 sec.). 161

9.6 Total time of ParPBM algorithms (stop criterion: APRD = —0.3%). 161

10.1 A part of the H tree for n = 3 (an asterisk denotes a free job).
10.2 Outline of the lower bound from the greedy method (LB%) algo-
rithm.

166

268 List of Figures
10.3 Outline of the Branch and Bound (B&B) method. 172
10.4 Outline of the parallel B&B., 173
10.5 Percentage improvement of the number of searched nodes of the

parallel B&B compared to the sequential B&B algorithm. 175
11.1 Outline of the simulated annealing algorithm. 178
11.2 Outline of the parallel SA with broadcasting. 180
11.3 APRD for Taillard [243] instances of the sequential and parallel SA

(independent and cooperative, with broadcasting). 181
11.4 Results of APRD for sSA and pSA algorithms. 184
11.5 Comparison of convergence for sSA and pSA algorithms. 185
12.1 Outline of the scatter search method. 188
12.2 Outline of the path-relinking procedure. 189
12.3 Outline of the parallel scatter search method. 190
12.4 APRD of the global and independent scatter search (iter = 1,600)

for 50 instances from [202].o 192
12.5 APRD of the global and independent scatter search (iter = 16,000)

for 50 instances from [202]. oL 193
12.6 Orthodox speedup of the parallel scatter search, iter = 16,000 . 194
12.7 Orthodox speedup of the parallel scatter search, iter = 1,600. . . 195
13.1 Outline of the parallel genetic algorithm. 199
13.2 A comparison between sequential and parallel cooperative genetic

algorithms. 200
14.1 Classification of hybrid metaheuristics proposed by Talbi [247]. 204
14.2 Outline of the Parallel Tabu Search Based Meta?Heuristic. 206
14.3 General scheme of the TSBM?H execution on CPU and GPU for

the CUDA environment. 207
14.4 Outline of the Parallel Population-Based Meta?Heuristic. 208
14.5 General scheme of the PBM?H execution on CPU and GPU for the

CUDA environment. 209
14.6 Comparison of the parallel tabu search TSBM?H and population-

based PBM?H algorithms speedups. 211
15.1 Outline of the PSTS algorithm. 217
15.2 Outline of PATS algorithm. 217
15.3 Outline of the parallel tabu search algorithm. 218
15.4 APRD of the sequential (PSTS) and asynchronous parallel (PATS)

tabu search algorithm for instances of Taillard [243]. 219
15.5 Scheduling example for a 766 m long road segment (in workdays). 221

List of Figures 269

15.6 The section of an access road to a dumping ground. 221
15.7 Building schedule for individual road segments for the natural per-
mutation (in workdays). 222

15.8 Building schedule for individual road segments for the permutation
obtained by the parallel tabu search algorithm (in workdays). . . 222

Index

Ant Colony Optimization, ACO, 51
architectures, 28

MIMD, 29, 199

MISD, 28

SIMD, 28, 172, 179, 190

SISD, 28

block properties, 69, 71, 77, 81, 148,
215, 216
branch and bound, B&B, 165
broadcasting
blackboard, 41

C++, 31, 159, 190
cluster of workstations, COW, 32
cost, 24, 35
cost-optimal, 22, 24, 95, 100, 101,
103, 107, 110, 111, 115, 124,
134, 135, 225
function, 58, 79, 81, 88
tardiness, 63
cray X1, 32
craylinks NUMAflex4, 159, 189
CUDA, 33, 107, 134, 206, 208, 210

dynasearch, 91

earliness/tardiness, E/T, 145
EDA, 52

efficiency, 24, 100

Evolution Strategies, ES, 50

Fast Ethernet, 32
flow shop, 57, 71, 177, 187, 197, 215

Flynn, 31

genetic algorithm, 197
genetic algorithm, GA, 44
genetic programming, GP, 45
Gigabit Ethernet, 188
GPGPU, 33, 103
GPU, 33, 92, 107-109, 119, 134, 203,
205, 208, 210
granularity, 24
coarse-grained, 25, 34
fine-grained, 33, 94, 103
Greedy Randomized Adaptive Search Pro-
cedure, GRASP, 48
grid, 32

huge neighborhoods, 91
hybrid metaheuristic, 203

Infiniband, 32

job shop, 57, 103
flexible, FJSP, 203

local search methods, 38

massively parallel processor, MPP, 32
Memetic Algorithm, MA, 47
metaheuristic, 12, 19-21, 26, 27, 33, 37,
38, 40, 53, 61, 94, 103, 141,
147, 155, 158, 159, 179, 203-
205, 213, 216
method
ant colony optimization, 51
approximate, 165

Index

271

B&B, 19, 21, 171, 215

broadcasting, 41, 179

cooperative, 49

cost-optimal, 91, 95, 111, 135

exhaustive, 38

genetic algorithm, 19, 44

genetic programming, 45

greedy, 168, 169

heuristic, 91, 153

hybrid, 40

local search, 33, 38, 60, 198

NEH, 178

non-deterministic, 49

of job-to-machine assignment, 81

of matrix multiplication, 104

of optimization, 203

of partitioning, in machine workload,
116

of the neighborhood search, 39

of the parallel cost function deter-
mination, 103

of the solution space search, 37

parallel, 45, 95

parallel B&B, 165

parallel scatter search, 191

parallelization, 137

path-relinking, 72

populatino-based, 204

population-based, 153, 154

recursive, 131

scatter search, 187, 191

simulated annealing, 19, 177, 178,
183

single-walk, 40

tabu search, 19, 42, 72, 81, 146, 205,
215, 216

variable neighborhood search, 49

MIMD, 32
model
combinatorial, 80

disjunctive, 78
MPI, 31, 32, 158, 190, 210
multiple-walk, 34, 35
multithread, 35
application, 35
calculations, 35
environment, 91
multiple-walk searching, 145, 225,
226
single-walk searching, 91, 225
technique, 9
Myrinet, 32

NEC SX-8, 32
non-uniform memory access, NUMA, 31
coherent cache, CC-NUMA, 31, 159,
188
non-coherent cache, NC-NUMA, 31
NP-hard problem, 37, 55, 60, 77, 97,
196, 213
strongly, 61, 69, 72

OpenPBS, batching system, 190, 210

parallel runtime, 22
population-based approach, 153
PRAM, 33, 92, 93, 99, 100, 103, 105,
107, 115, 135
CRCW, 107
CREW, 108, 110, 111, 113, 130, 131,
134
EREW, 218
PVM, 32

scatter search, SS, 46, 187

SGI, 31

Silicon Graphics SGI Altix 3700 Bx2,
159, 188

simulated annealing, SA, 41, 177

single machine, 91, 145, 153, 165

single-walk, 34, 91, 93, 94, 101, 103

272

Indez

speedup, 22, 100, 110, 146, 151, 160,
173, 191, 193, 210
absolute, 24
anomaly, 174, 192, 193
asymptotic, 100
orthodox, 23, 24, 210
panmixia, 23
relative, 24
sublinear, 22
superlinear, 9, 22, 174, 181, 187,
191-193
supercomputer, 159, 189

tabu search, TS, 42, 215
taxonomy
Barr and Hickman, of speedup mea-
sures, 24
Alba, of speedup measures, 23
Graham, of scheduling problems, 56

uniform memory access, UMA, 31
Variable Neighborhood Search, VNS, 49

Wroctaw Center of Networking and Su-
percomputing, WCNS, 10, 30,
151, 189

Nowa klasa rownoleglych algorytmoéw szeregowania

Rozw06j metod optymalizacji, szczegdlnie w zastosowaniu do rozwiazywania prob-
leméw szeregowania zadan produkcyjnych, sprowadzajacych sie w ogromnej wiek-
szosci do zagadnienn silnie NP-trudnych, przebiegal od poczatku istnienia tej
dziedziny w latach 60-70-tych XX wieku w kierunku tworzenia coraz bardziej efek-
tywnych algorytméw implementowanych w srodowisku obliczert sekwencyjnych
(jednoprocesorowych). Pod koniec lat 70-tych XX wieku hitem wér6d metod op-
tymalizacji kombinatorycznej byta metoda podziatu i ograniczenn (B&B) uwazana
wtedy za remedium na prawie wszystkie klopoty zwiazane z NP-trudnoécia oraz
rozmiarem probleméw, ktorych nie mozna bylto rozwiazaé poprzez przeglad wy-
czerpujacy rozwigzan. Szybko okazalo sie jednak, ze metoda B&B jedynie prze-
suneta wzwyz praktyczna granice rozmiaru rozwiazywalnych problemoéw, jak sie
faktycznie okazalo jednak tylko nieznacznie (np. dla sumo-kosztowego prob-
lemu jednomaszynowego rozmiar ten zwigkszyl sie z 20 zadan do 40-50). Co
wiecej, koszt obliczen niezbednych do uzyskania rozwiazania optymalnego okazat
sie ostatecznie nieuzasadnienie wysoki w poréwnaniu z zyskami ekonomicznymi
i zasadnodcia jego wykorzystania w praktyce. Konkluzja z tych badan bylo pre-
cyzyjne ustalenie ograniczonego obszaru stosowalnosci schematu B&B. Poczawszy
od lat 80-tych XX wieku, nastapil wyrazny zwrot w kierunku metod przyblizonych
(aproksymacyjnych). Poczatkowo poszukiwanie algorytmow realizowanych w §ro-
dowisku obliczen sekwencyjnych, gwarantujacych wysoka jakos¢ rozwiazania kosz-
tem zwiekszonego czasu obliczen (w tym takze ztozonych schematéow aproksy-
macyjnych) zaowocowalo szeregiem znaczacych rezultatow teoretycznych, ktore
jednak ostatecznie nie odegraly istotnej roli w praktyce. Ten znaczacy teorety-
cznie kierunek w ostatnich latach zanika w sposéb naturalny z powodu trudnosci
w uzyskaniu istotnych oszacowan teoretycznych dla probleméw wystepujacych
w realnych warunkach oraz malej praktycznej przydatnosci (zgrubnosci) osza-
cowanl. Kolejnym przelomem bylo pojawienie sie w latach 70-80-tych ubiegtego
wieku zaawansowanych metod metaheurystycznych o bardzo dobrych cechach nu-
merycznych. Najpierw — rozwinietej teorii symulowanego wyzarzania, a nastepnie
algorytmow genetycznych i poszukiwania z zabronieniami (tabu search). Entu-
zjazm dla tych podejs¢ trwat znacznie dtuzej. Do polowy pierwszego dziesieci-
olecia naszego wieku zaproponowano kilkadziesiat typéw metaheurystyk, reali-
zowanych w §rodowiskach obliczen sekwencyjnych. Mniej wiecej po roku 2000
metody te osiagnety kres swych mozliwosci; rozmiar efektywnie rozwigzywalnych
problemoéw (tj. takich, dla ktorych sredni blad w odniesieniu do rozwiazan op-
tymalnych byl np. mniejszy niz 1%) mozna bylo przesuna¢ do liczby idacej
w tysiace, jednak w miliony czy setki milionéw — juz nie. Kropke nad ,;i” postawito
twierdzenie ,no-free-lunch” autorstwa Wolperta i Macready’ego, ktore w odniesie-
niu do metod przyblizonych mozna parafrazowac jako: ,bez uzycia specjalnych

274 Nowa klasa réwnolegtych algorytmdw szeregowania

wtasnosci badanych probleméw nie mozna uzyskaé¢ znaczacej przewagi jednej
metaheurystyki nad drugg”. Co ciekawe, Wolpert i Macready pokazali, ze przewage
te mozna uzyska¢ w metaheurystykach koewolucyjnych, wielokulturowych, a wiec
w naturalny sposéb rownolegtych. Idac za ta idea, od potowy lat osiemdziesiatych
XX wieku réownoczesnie rozwijaly sie rownolegle, wielowatkowe metaheurystyki,
najpierw jako proste zréwnoleglenie najbardziej czasochtonnych elementéw algo-
rytmow sekwencyjnych (zwykle wyznaczanie funkcji celu), pozniej, od korica lat
dziewiecdziesigtych XX wieku, jako tzw. metody wielosciezkowe (tzn. poszuki-
wania wielowatkowe i rozproszone). Znaczny skok jakosciowy projektowanych
algorytmow pojawil sie w chwili, gdy producenci powszechnego sprzetu kompute-
rowego zorientowali sie, ze dalsze zwiekszanie predkosci (czestotliwosci taktowa-
nia zegara) w celu zwiekszenia mocy obliczeniowej procesoréw jest bardzo kosz-
towne i znacznie tatwiej mozna uzyskaé¢ zwiekszenie mocy obliczeniowej stosujac
konstrukcje wielordzeniowe, stanowigce w naturalny sposéb srodowisko obliczent
rownolegtych (i w tym kontekscie wérod producentéow hardware™n takze istnieje
pojecie ,no-free-lunch”). Dzi§ popularne procesory takich producentow, jak Intel
czy AMD maja po 4 rdzenie (niektére procesory Intela — 9 rdzeni, a prototypy
nawet 80 rdzeni), a procesory GPU (Graphic Processing Unit) stuzace poczatkowo
jako procesory wylacznie graficzne, a dzi§ juz takze stricte obliczeniowe, po-
siadaja nawet 960 procesoréw (jak np. produkty serii nVidia Tesla). Zderze-
nie dotychczasowych osiggnie¢ teorii szeregowania ze zwiekszonymi mozliwoscia-
mi technologii obliczeniowej doprowadzito do uswiadomienia sobie ograniczen
teorii wynikajacych gléownie z sekwencyjnego charakteru obliczen stosowanych
dotychczas. Zwiekszenie liczby rdzeni wymaga zastosowania specjalnie projek-
towanych algorytméw. Faktycznie, uruchomienie sekwencyjnego algorytmu meta-
heurystycznego na procesorze wielordzeniowym zwykle prowadzi do wykorzysta-
nia jednego rdzenia, a wiec zaledwie czastki potencjalnych mozliwosci sprzetu.
Specyfika algorytméw optymalizacyjnych oraz procedur wyznaczania kluczowych
elementow instancji problemu (np. wartosci funkeji celu, ktora jest zwykle sfor-
mutowana w sposob rekurencyjny) powoduje, ze automatyczne metody zréwnole-
glenia obliczeri zupelnie si¢ nie sprawdzaja. Potrzebne sg algorytmy wyspe-
cjalizowane, zaprojektowane specjalnie do uruchomienia w srodowisku obliczeri
rownolegtych dla konkretnych typéw problemu, wykorzystujace zaréwno specy-
ficzne wlasnosci problemu, jak i §rodowiska obliczen. Niniejsza monografia obej-
muje zagadnienia projektowania algorytmoéw optymalizacji obcigzenia maszyn
oraz szeregowania zadan produkcyjnych w dyskretnych systemach wytwarzania,
wykorzystujacych réwnoczesnie specyficzne wtasnosci problemu jak i srodowiska
obliczen réwnolegltych, w celu uzyskania metod o niespotykanych dotychczas, do-
brych wtasnodciach numerycznych.

Nowa klasa réwnolegtych algorytmdw szeregowania 275

Cel naukowy monografii. Postawione cele obejmuja od strony metodologii
nastepujace zagadnienia:

e Opracowanie nowych klas algorytméw metaheurystycznych poprzez zapro-
ponowanie i zbadanie wtasnosci odpowiednich probleméw szeregowania za-
dan i nastepnie wykorzystania tych wtasnosci w konstrukeji zar6wno row-
nolegtych wersji znanych metaheurystyk, jak i nowych algorytméw typu
populacyjnego.

e Implementacja zaproponowanych algorytméw réwnolegtych i rozproszonych
dla szerokiej klasy architektur programowania wspo6tbieznego, m.in. GPGPU
(General Purpose Graphic Processing Unit), procesoréw wielordzeniowych
oraz klastrow obliczeniowych.

e 7Zbadanie wtasnosci zaproponowanych algorytméw, a w szczegdlnosci ich
efektywnosci w kontekscie kosztowej optymalnosci (tj. osiagniecia kosztu
obliczen tego samego rzedu co koszt wykonania algorytmu sekwencyjnego)
oraz teoretycznego przyspieszenia.

e Opracowanie metod zréwnoleglania algorytméw doktadnych na przyktadzie
metody podziatu i ograniczeni (branch and bound, B&B). Szczegotowe cele
wymienione powyzej naleza do ogdlniej sformutowanego zagadnienia, jakim
jest opisanie nowej dziedziny, tzn. klasy algorytmow wielowatkowych (tak
rownolegtych, jak i rozproszonych) rozwigzywania NP-trudnych problemow
szeregowania zadan produkcyjnych.

Czes¢ z proponowanych metod mozna prawie bez zmian przenie$¢ takze na
szerszg klase bardzo trudnych zagadnien optymalizacji dyskretnej, takich jak np.
problem komiwojazera (TSP), kwadratowy problem przydziatu (QAP), czy prob-
lem rozmieszczenia blokowego. W szczegdlnosci, w przypadku wielowatkowych
algorytmoéw poszukiwari jedno$ciezkowych (single-walk parallelization, o takiej
samej trajektorii analizowanych rozwigzan jak trajektoria algorytmu sekwencyj-
nego) zaproponowane zostang nowe oryginalne metody zrownoleglenia wyznacza-
nia wartosci funkcji celu oraz réwnoleglego wyznaczania otoczenia. Rozpatry-
wane beda problemy: jednomaszynowe, przeptywowe (flow shop), gniazdowe (job
shop) oraz elastyczne problemy gniazdowe, z maszynami réwnolegltymi (flexi-
ble job shop). Szczegolnie ten ostatni przypadek, bedacy uogolnieniem klasy-
cznego problemu gniazdowego, jest czesto spotykany w praktyce podczas mode-
lowania zagadnienl np. w budownictwie oraz organizacji produkcji. W zakre-
sie wielowatkowych algorytmow wieloéciezkowych (multiple-walk parallelization)
zaproponowane zostang oryginalne metody rozwigzywania jedno- i wielomaszy-
nowych klas probleméw szeregowania zadan poprzez wielowatkowe algorytmy

276 Nowa klasa réwnolegtych algorytmdw szeregowania

oparte na metodach: poszukiwania z zabronieniami (tabu search), symulowanego
wyzarzania (simulated annealing), poszukiwania rozproszonego (scatter search),
algorytmu ewolucyjnego (evolutionary algorithm) oraz populacyjnego (population-
based metaheuristic), a takze algorytmu genetycznego (genetic algorithm) i ich
wielowatkowych wersji hybrydowych. W algorytmach hybrydowych wykorzysty-
wana bedzie wielowatkowos¢ nisko- i wysokopoziomowa, tj. zaréwno na poziomie
najbardziej czasochtonnych elementéw algorytmu, jak i na poziomie zwielokrot-
nienia instancji procesow poszukiwan (watkow). Opracowanie metod zréwnole-
glania algorytmow dokladnych (np. metody B&B) ma na celu nie tyle stworzenie
narzedzia do rozwigzywania probleméw szeregowania zadan, ile zaproponowanie
algorytmu doktadnego wykorzystujacego architekture réwnoleglta, mogacego stu-
zy¢ do porownywania wynikow metaheurystyk dla malych instancji probleméw
z rozwigzaniami doktadnymi. Roéwnolegte algorytmy doktadne moga mieé takze
zastosowanie w rozwigzywaniu probleméw cyklicznych szeregowania zadan.

Obecny stan wiedzy. Pomimo znaczacego w ostatnich latach rozwoju teorii
algorytmoéw oraz teorii optymalizacji, algorytmy heurystyczne wciaz pozostaja
czesto jedyna droga dla uzyskania rozwiazan, ktoére sa zadawalajace z punktu
widzenia praktyki, zar6wno co do rozmiaru rozwiazywanych w rozsadnym czasie
przyktadow, jak i dobroci (odlegltosci od rozwiazania optymalnego) otrzymanych
wynikéw. Zdecydowanie krotsza historie maja metody obliczeniowe wykorzystu-
jace komputery wieloprocesorowe, cho¢ klasycznego juz dzis podziatu architektur
tych komputeréow dosy¢ dawno dokonal Flynn [108|. Faktycznie dopiero w latach
osiemdziesigtych ubiegltego wieku pojawily sie kounstrukcje szybkich algorytmoéw
rownolegtych.

Metaheurystyki oparte na metodzie lokalnych poszukiwan moga by¢ przed-
stawione jako procesy przeszukiwania grafu, w ktéorym wierzchotkami sy punkty
przestrzeni rozwiazan (np. permutacje), a tuki odpowiadaja relacji sasiedztwa —
tacza wierzchotki bedace rozwiazaniami sasiednimi w tej przestrzeni. Poruszanie
si¢ po takim grafie wyznacza pewna droge (trajektorie). Wielowatkowe algorytmy
metaheurystyczne korzystajg z wielu watkow, zwykle uruchomionych na oddziel-
nych procesorach bad7 rdzeniach, do wspotbieznego generowania lub przegladania
grafu.

Mozna wyr6zni¢ dwa podejscia do zréownoleglania procesu lokalnego poszuki-
wania, w zalezno$ci od liczby trajektorii generowanych wspoétbieznie w grafie
sasiedztwa.

1. Pojedyncza trajektoria: algorytmy drobno- i srednioziarniste.

2. Wiele trajektorii: algorytmy srednio- i gruboziarniste.

Nowa klasa réwnolegtych algorytmdw szeregowania 277

Podejscia te stawiajg przed algorytmem pewne wymagania dotyczace czestotli-
wosci komunikacji, co implikuje rodzaj ziarnistosci. Algorytmy drobnoziarniste
odpowiadaja podejsciu z czestsza komunikacja, gruboziarniste — z rzadsza.
Algorytmy jednosciezkowe. Algorytmy jednosciezkowe generuja pojedyncza tra-
jektorie, jednak moga to czyni¢ wspdéibieznie poprzez podzial procesu badania
otoczenia na kilka procesordw, z ktorych kazdy bada pewng czesé otoczenia, szuka-
jac najlepszego elementu. Idea ta zostala zaproponowana najwczeéniej dla sek-
wencyjnych algorytmow poszukiwan, patrz Nowicki i Smutnicki [196] pod nazwa
metody reprezentantoéw (representatives). Pochodzenie nazwy jest §cisle zwiazane
z dziataniem metody, bowiem z kazdej czesci otoczenia zostaje wybrany reprezen-
tant, a dopiero sposrod nich najlepszy reprezentant jako nastepny punkt trajek-
torii poszukiwani. Odpowiedniki réwnolegle metody reprezentantéw pojawily sie
w literaturze poznie;j.

Algorytmy wielo$ciezkowe. Algorytmy, w ktérych konstrukeji wykorzystano model
wielosciezkowy badaja wspolbieznie przestrzen rozwigzan za pomoca rownolegle
dziatajacych watkéw poszukiwan. Algorytmy te mozna dodatkowo podzieli¢ na
podklasy ze wzgledu na wymieniane informacje o aktualnym stanie poszukiwan:

1. Niezalezne procesy poszukiwar.

2. Kooperujace procesy poszukiwan.

W przypadku, gdy wspoélbieznie dzialajace procesy poszukiwan nie wymie-
niaja pomiedzy sobg zadnych informacji, moéwimy o niezaleznych (independent)
procesorach poszukiwari. Jedli zag informacja uzyskana w trakcie eksploracji tra-
jektorii przez proces poszukiwar jest przekazywana innemu procesowi, a nastepnie
wykorzystywana przez ten procesor, to mozna méwié¢ o procesach kooperujacych
(cooperative). Spotykany jest takze model mieszany, tzw. pol-niezalezny (semi-
independent) [9], wykonujacy niezalezne procesy poszukiwan przy zachowaniu
pewnych wspolnych parametrow.

Rownolegte obliczenia dla jednej trajektorii. Jest to metoda stuzaca do przyspie-
szenia przeszukiwania grafu sasiedztwa poprzez zréwnoleglenie najbardziej czaso-
chtonnych operacji — czyli obliczania wartosci funkcji celu, badz zrownoleglenie
procesu generowania sasiadéw. W przypadku zréwnoleglania obliczania wartosci
funkcji celu przyspieszenie obliczent moze by¢ uzyskane przy zachowaniu identy-
cznej trajektorii przejscia przez graf, jak trajektoria algorytmu sekwencyjnego.
W drugim przypadku — dekompozycji generowania otoczenia na procesory row-
nolegte — zaistnie¢ moze sytuacja, w ktorej algorytm, sprawdzajac réwnolegle
wieksza liczbe sasiadow niz to czyni wersja sekwencyjna (najczesciej zaopatrzona
w mechanizm redukcji rozmiar6w otoczenia), poruszaé sie bedzie po trajektorii
lepszej niz sekwencyjny odpowiednik, wyznaczajac korzystniejsza trase przejécia
przez graf i tym samym dochodzac do lepszych rezultatéow obliczen (wartosci

278 Nowa klasa réwnolegtych algorytmdw szeregowania

funkcji celu). Pierwsze aplikacje bazujace na opisywanym modelu pojawity sie
w kontekécie zréwnoleglenia metody symulowanego wyzarzania i algorytmu gene-
tycznego. Chociaz rownolegta dekompozycja sasiedztwa nie zawsze prowadzi do
redukcji czasu obliczen, jest jednak czesto stosowana do zwiekszania rozpatry-
wanego sasiedztwa. Tego typu algorytm réwnolegly tabu search dla problemu
komiwojazera zostal zaproponowany przez Fiechtera [106]. Synchroniczny tabu
serach byl takze badany przez Porto i Ribeiro [209]. Bozejko, Pempera i Smut-
nicki [39] zaprezentowali rownolegle podejscie jednosciezkowe w rozwiazywaniu
problemu przeptywowego. Aarts i Verhoeven [1, 260| réznicuja klase jednosciez-
kowych algorytméw réwnoleglego przeszukiwania na dwie podklasy. Klasa jed-
nokrokowa (single-step) obejmuje algorytmy, w ktorych badanie otoczenia jest
dzielone pomiedzy réwnolegte procesory, ale jako wynik wybierany jest jeden ruch.
Z kolei w klasie wielokrokowej (multiple-step) sekwencja kolejnych ruchow w grafie
sasiedztwa jest wykonywana wspoélbieznie.

Rownolegte obliczenia dla wielu trajektoris. Implementacje algorytmoéw opartych
na réwnoleglym wielosciezkowym przeszukiwaniu przestrzeni rozwigzan sa ap-
likacjami gruboziarnistymi, czyli wymagajacymi rzadkiej komunikacji. Sa one
latwiejsze w zastosowaniu w systemach rozproszonych, jak na przyktad klastrach
komputerow klasy PC, dysponujacych korzystnym wskaznikiem ilorazu mocy obli-
czeniowej do ceny. Oprocz przyspieszenia obliczeni, uzyska¢ mozna takze poprawe
jakosci otrzymywanych rozwigzan. Procesy poszukiwar moga by¢ niezalezne lub
kooperujace.

Niezalezne procesy poszukiwan. W tej kategorii rozrézni¢ mozemy dwa podsta-
wowe podejscia:

1. Przeszukiwanie przestrzeni rozwigzan za pomoca wielu trajektorii. Kazdy
z procesorow startuje z innego rozwiazania poczatkowego (lub réznych po-
pulacji w przypadku algorytmu genetycznego). Watki poszukiwan moga
stosowac ten sam lub rézne algorytmy lokalnego poszukiwania, z takimi
samymi lub réznymi wartosciami parametrow strojacych (np. dlugosé listy
tabu, wielkos¢ populacji, itp.). Trajektorie moga sie przecina¢ w jednym
lub wielu miejscach grafu sasiedztwa.

2. Rownolegle badanie podgrafow grafu sasiedztwa wyznaczonych przez de-
kompozycje problemu na kilka podproblemoéw (np. przez ustalenie pewnych
zmiennych). Podgrafy grafu sasiedztwa sg badane wspolbieznie bez przeci-
nania sie trajektorii. Otrzymujemy w tym przypadku catkowita dekom-
pozycje grafu sasiedztwa na roztaczne podgrafy.

Pierwsza réwnolegla implementacja algorytmu tabu opartego na wielogciez-
kowym badaniu przestrzeni rozwigzan zostala zaproponowana przez Taillarda
i dotyczyta kwadratowego zagadnienia przydziatu (QAP) [244] oraz problemu

Nowa klasa réwnolegtych algorytmdw szeregowania 279

gniazdowego (job shop) [245]. Zrownoleglenie algorytmu genetycznego z uzyciem
niezaleznych watkéw poszukiwan nawiazuje do tak zwanego modelu wyspowego,
bez komunikacji pomiedzy podpopulacjami zamieszkujacymi poszczegdlne wyspy
(Bubak i Sowa [68]). Chociaz zauwazono pewne przyspieszenie, nie otrzymano
poprawy wyznaczanych w ten sposob rozwigzan w stosunku do wynikow sek-
wencyjnego algorytmu genetycznego z jedna duza populacja. Fakt ten mozna
wytlumaczy¢ szybka stagnacja podpopulacji (brakiem dalszej poprawy $redniej
wartosci funkcji celu po pewnej liczbie wykonanych iteracji) na kazdym z proce-
sorow pozbawionym komunikacji z pozostalymi.

Kooperujgce procesy poszukiwarn. Model ten jest najogélniejszym i najbardziej
obiecujacym typem strategii przeszukiwania przestrzeni rozwigzan przez réwno-
leglty algorytm metaheurystyczny. Wymaga jednak wiekszej wiedzy programisty-
cznej i znajomosci specyfiki rozwigzywanego problemu. Kooperacja oznacza w tym
wypadku wymiane informacji — doswiadczenn dotyczacych dotychczasowego pro-
cesu przeszukiwania przestrzeni przez réwnolegte procesy. Wymieniaé¢ nalezy
specyficzne informacje, charakterystyczne dla problemu i metody, np. najlepsze
znalezione rozwigzania, rozwigzania elitarne (malo rozniace sie od najlepszych
znanych), czestotliwosci ruchow, listy tabu, podpopulacje i ich rozmiary i inne.
Pierwszym tego typu algorytmem heurystycznym byl asynchroniczny algorytm
tabu przedstawiony przez Crainic’a, Toulouse i Gendreau [85]. Wiekszos¢ imple-
mentacji kooperujacego algorytmu genetycznego bazuje na migracyjnym modelu
wyspowym. Kazdy z procesoréw posiada swoja wlasng podpopulacje wymienia-
jac co pewna liczbe iteracji osobniki (zwykle najlepsze) z pozostalymi procesorami
[38]. Bubak i Sowa [68] zastosowali migracyjny model wyspowy w réownolegltym
algorytmie genetycznym dla problemu komiwojazera (TSP) uruchamianym na
komputerze HP/Convex Exemplar SPP1600 z 16 procesorami oraz na klastrze
heterogenicznym. Bozejko [26] zaproponowal rownolegly algorytm $ciezek tacza-
cych, bazujacy na réwnoleglej metodzie poszukiwania rozproszonego.

Metodyka badan. W zakresie poszukiwan jednowatkowych, dedykowanych
dla jednorodnych systeméw wieloprocesorowych takich jak GPU, zaproponowany
zostanie szereg oryginalnych metod uwzgledniajacych odmienne techniki projek-
towania algorytmoéw rownolegtych oraz rézne potrzeby zglaszane przez nowoczesne
algorytmy optymalizacji dyskretnej (rownolegte wyznaczanie wartosci funkeji celu,
analiza lokalnych otoczen, itp.). Szczegdlna uwaga zostanie zwrocona na problemy
efektywnosci, kosztu oraz przyspieszenia obliczen w zaleznosci od typu problemu,
jego wielkoéci oraz zastosowanego srodowiska obliczenn réwnolegtych. Dla pro-
ponowanych algorytméw przeprowadzona zostanie analiza poréwnawcza korzysci
wynikajacych z zastosowania odpowiednich podejscé.

280 Nowa klasa réwnolegtych algorytmdw szeregowania

W zakresie poszukiwan wielowatkowych, dedykowanych zaréwno dla jednorod-
nych, jak i niejednorodnych systeméw wieloprocesorowych (takich jak duze kom-
putery typu mainframe, klastry, gridy) zaprojektowane zostang i przebadane
eksperymentalnie warianty wielowatkowe najbardziej obiecujacych aktualnie me-
tod optymalizacji kombinatorycznej (poszukiwania tabu, symulowanego wyzarza-
nie, metod populacyjnych, poszukiwania rozproszonego, a takze schematu B&B)
w zastosowaniu do wybranych probleméw szeregowania zadan. Szczegblny nacisk
zostanie potozony na zbadanie zjawiska przyspieszenia ponadliniowego (superline-
ar speedup), ktorego pojawianie sie zasygnalizowano wielokrotnie (m.in. w opra-
cowaniu Alba |7] dotyczacym rownolegltych metaheurystyk).

The book contains a wealth of inforg! _
peaders. including advanced students L Lt
sionals working in the fieid of discrete optimization ant mm [

ment. A new methodology of solving stronoly NP-hard real-
job scheduling probiems Is presented nere. It allows us
sion very efficient and fast approximate and exact algorit
soluing a wide class of discrete oplimization problems, not oniy.
seheduling problems. Elficiency of he present researci has neen
proved by comprehensive computational eXperiments cnmm
in paraliel processing environmenis such as sunm nute
clusters of workstations, multi-core CPUS and GPUS,

P

Wydawnictwa Politechniki Wrociawskie)
$4 do nabycia w ksiegarni ..Tech”

plac Grunwaldzki 13, 50-377 Wrociaw
budynek D-1 PWr., tel. 71 320 29 35
Prowadzimy sprzedaz wysyikowa
zZamawianie.ksiazek@pwr.wroc.pl

ISBN 978-83-7493-564-7

	Contents
	Preface
	Scope
	List of symbols
	List of abbreviations
	I INTRODUCTION TO PARALLELISM AND JOB SCHEDULING
	1. Introduction
	1.1. Performance metrics of parallel algorithms
	1.1.1. Performance metrics for parallel metaheuristics

	1.2. Parallel architectures
	1.2.1. Taxonomy
	1.2.2. Memory architectures
	1.2.3. Recent trends

	1.3. Metaheuristic parallelization strategies

	2. The methodology of
metaheuristic parallelization
	2.1. Parallel local search methods
	2.1.1. Parallel local search strategies
	2.1.2. Simulated Annealing
	2.1.3. Tabu Search

	2.2. Parallel population-based algorithms
	2.2.1. Genetic Algorithm
	2.2.2. Scatter Search
	2.2.3. Memetic Algorithm

	2.3. Other methods
	2.4. Remarks and conclusions

	3.
Scheduling problems
	3.1. Basic notions and notation
	3.2. Taxonomy
	3.3. Single machine scheduling problems
	3.3.1. Overview
	3.3.2. Fundamental case
	3.3.3. Setup times
	3.3.4. Earliness/tardiness penalties

	3.4. Flow shop problems
	3.4.1. Formulation of problems
	3.4.2. Models
	3.4.3. Properties
	3.4.4. Transport times

	3.5. Job shop problems
	3.5.1. Problem definition
	3.5.2. Models and properties

	3.6. Flexible job shop problems
	3.6.1. Problem formulation
	3.6.2. Graph models

	II SINGLE-WALK
PARALLELIZATION
	4. Single machine scheduling
	4.1. Introduction
	4.2. PRAM computation model
	4.3. Calculations for single-walk parallelization
	4.4. Huge neighborhoods
	4.5. Huge neighborhood searching method
	4.6. Parallel huge neighborhood searching method
	4.7. Remarks and conclusions

	5.
Job shop scheduling
	5.1. Introduction
	5.2. Sequential determination of the cost function
	5.3. Parallel determination of the cost function
	5.3.1. Methods based on matrix multiplication
	5.3.2. Methods based on partitioning into layers

	5.4. Remarks and conclusions

	6.
Hybrid scheduling
	6.1. Solution method
	6.2. Machine workload
	6.2.1. Neighborhood determination
	6.2.2. Methods of the cost function value estimation
	6.2.3. Machine workload rearrangement
	6.2.4. Parallel determination of the workload

	6.3. Remarks and conclusions

	7. Theoretical properties of a single-walk parallel GA
	7.1. Sequential broadcasting
	7.2. Tree-based broadcasting
	7.3. Remarks and conclusions

	III MULTIPLE-WALK PARALLELIZATION
	8.
Parallel memetic approach
	8.1. Introduction
	8.1.1. Independent searching threads
	8.1.2. Cooperative searching threads

	8.2. Memetic algorithm
	8.3. Parallel memetic algorithm
	8.4. Computer simulations
	8.5. Remarks and conclusions

	9. Parallel population-based
approach
	9.1. Population-based metaheuristic
	9.1.1. A set of fixed elements and positions
	9.1.2. Element age modification
	9.1.3. Element insertion
	9.1.4. Element deletion
	9.1.5. Auto-tuning of the acceptance level
	9.1.6. A new population

	9.2. Parallel Population-Based Metaheuristic
	9.3. Computational experiments
	9.4. Remarks and conclusions

	10. Parallel branch and bound approach
	10.1. Enumeration scheme
	10.1.1. Lower bound
	10.1.2. Branching rule

	10.2. Branch and bound algorithm
	10.2.1. Parallel algorithm

	10.3. Computer simulations
	10.4. Remarks and conclusions

	11.
Parallel simulated annealing
	11.1. Makespan criterion
	11.1.1. Simulated annealing method
	11.1.2. Parallel concepts
	11.1.3. Computational experiments

	11.2. Total completion time criterion
	11.2.1. Intensification and diversification of calculations
	11.2.2. Parallel simulated annealing
	11.2.3. Computational results

	11.3. Remarks and conclusions

	12.
Parallel scatter search
	12.1. Scatter search method
	12.1.1. Path relinking

	12.2. Parallel scatter search algorithm
	12.3. Computer simulations
	12.3.1. Calculations of the Cmax criterion
	12.3.2. Calculations of the Csum criterion

	12.4. Speedup anomalies
	12.5. Remarks and conclusions

	13.
Parallel genetic approach
	13.1. Parallel genetic algorithm
	13.2. Computational experiments
	13.3. Remarks and conclusions

	14.
Parallel hybrid approach
	14.1. Hybrid metaheuristics
	14.2. Algorithms proposed
	14.2.1. Parallel Tabu Search Based Meta2Heuristic
	14.2.2. Parallel Population-Based Meta2Heuristic

	14.3. Computational results
	14.4. Remarks and conclusions

	15. Application: parallel tabu search approach
	15.1. Introduction
	15.2. Parallel tabu search method
	15.3. Computational experiments
	15.4. Application of the tabu search algorithm - road building
	15.5. Case study
	15.6. Remarks and conclusions

	16.
Final remarks
	16.1. New approaches
	16.2. Open problems
	16.2.1. Continuous optimization
	16.2.2. Multiobjective optimization
	16.2.3. Uncertain data

	16.3. Future work

	A. Supplementary tables
	Bibliography
	List of Tables
	List of Figures
	Index
	Abstract (in Polish)

