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Investigations of the friction
welding of Incoloy MA 956 alloy

A. AMBROZIAK
Institute of Production Engineering and Automation, Wrocław University of Technology, Poland.

Friction welded similar material (work hardened and thermally treated) alloy Incoloy MA 956 joints
and Incoloy MA 956 alloy/austenitic steel X10CrNiTi 189 joints were tested. The microstructures, micro-
hardness and tensile strength of the joints were determined. Optimum friction welding process parameters
were matched. Friction welding has been found to be useful for joining Incoloy MA 956 alloys together
and for joining the latter with austenitic steel X10CrNiTi 189.

Keywords: superalloys, MA 956, friction welding, tensile strength, hardness

1. Introduction

Iron- or nickel-based oxide-dispersion-strengthened (ODS) alloys are used in high-
temperature applications under normal atmospheric conditions. The alloys also contain
chromium, aluminium, iron, yttrium oxide as well as molybdenum, zirconium and
tantalum additions. Since metallic materials having such a composition are not in the
state of equilibrium they are produced by powder metallurgy methods. The production
process includes such operations as high-energy grinding and mixing of components,
hot extrusion and recrystallizing annealing.

Elongated grains occur in the microstructure of ODS alloys. Yttrium oxide occurs
mainly on grain boundaries and hinders their growth at high temperatures. This method
of producing ODS alloys is called mechanical alloying. When it is said that in ODS
alloys segregations occur on grain boundaries, it is meant the boundaries of the grains
introduced in the solid state or through thermal treatment (recrystallizing annealing),
by means of powder metallurgy methods. The mechanical properties of ODS alloys in
the direction conforming to the direction of strain are better than in the perpendicular
direction. Such alloys can work at temperatures up to 1300 °C (iron matrix alloys, called
ferritic ODS alloys) or up to 1100 °C (nickel matrix alloys, called austenitic ODS
alloys), preserving good resistance to oxidation and gas corrosion.

Since ODS alloys are not in a state of metallurgic equilibrium, when melted, the
alloy and the introduced yttrium oxide separate and the latter passes into slag and to
the surface of the weld or it remains inside the weld. As a result, ODS alloys lose their
original properties, particularly their heat resistance.
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ODS alloys can be joined together by thermal welding, but welding in which the
native material is partially melted results in weld porosity (especially in iron-based
alloys) and cracks (especially in nickel-based alloys), which cannot be avoided even
when electron beam welding is employed [1].

Hence attempts are made to apply solid-state welding and above all friction welding,
diffusion welding and high-temperature soldering to join ODS alloys together [1–5].

2. Test methodology

Conventional friction welding was conducted in a vertical welding machine type
KUKA RS 30 (Figure 1). The scheme of the welding process is shown in Figure 2.

Fig. 1. Friction welding machine (vertical system)

An iron-based ODS alloy of Incoloy MA 956 grade (20% Cr, 4.5% Al, 0.5% Ti,
0.05% Y2O3, the rest – Fe) in a work hardened state (specimens denoted as MA 956F)
and thermally treated (annealing at 1300 °C for 30 minutes – specimens denoted as
MA 956H) and austenitic steel of grade X10CrNiTi 189 were used in the tests. Simi-
lar- and dissimilar material joints were made.

The welding process parameters adopted for the materials (25 mm φ rods were
welded) are shown in Table 1. The obtained joints were evaluated through metal-
lographic examinations, microhardness measurements and static tensile tests.
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Fig. 2. Scheme of friction welding process used in investigations
(n = 1500 min–1, Pt – pressure during the period of friction,

Ps – pressure during the period of upsetting, tt – duration of the period of friction,
st – contraction during the period of friction, s

– total contraction during the whole period of welding)

Table 1. Friction welding parameters for tested joints

Pos. Material pairs Specimen
No.

Pt
[MPa]

Ps
[MPa]

tt
[s]

ts
[s]

st
[mm]

s
[mm]

1
2
3
4

5
6
7
8

9
10
11
12

13
14
15
16

MA 956H/MA956H

MA 956F/MA 956F

MA 956H/MA 956F

MA 956F/X10CrNiTi 189

1
2
3
4

10
11
12
13

6
7
8
9

14
15
16
17

48
48
48
48

48
48
48
48

48
48
48
48

48
48
48
48

135
135
90
110

135
135
90
110

135
135
90
110

135
135
90
110

30
40
20
20

15
10
20
20

30
40
20
20

15
10
20
20

40
40
40
40

40
40
40
40

40
40
40
40

40
40
40
40

3.4
3.1
2.5
2.4

9.4
5.0
14.2
14.4

14.0
17.5
8.4
8.8

3.8
2.4
5.6
5.6

13.6
16.8
3.9
6.4

16.3
11.1
19.3
20.6

23.1
29.2
12.1
14.6

9.1
5.9
8.7
10.2

17
18
19
20

MA 956H/X10CrNiTi 189 19
20
21
22

48
48
48
48

135
135
90
110

30
40
20
20

40
40
40
40

2.5
2.2
0.9
0.8

10.1
12.8
2.4
3.7

Pt Ps

Pt

tt ts

Ps

t

n, p, s

n n n

n

s

s t

s

s t
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3. Test results

The microstructure of the Incoloy MA 956 alloy in its initial state is shown in Fig-
ure 3. Alloy Incoloy MA 956F has a close-grained structure (Figure 3a) with a micro-
hardness of 368 HV0.025 in the longitudinal section and 403 HV0.025 in the cross sec-
tion. After an additional thermal treatment (annealing) alloy Incoloy MA 956H shows
a coarse-grained structure (Figure 3b) with elongated grains. As a result of the heat
treatment the microhardness of the alloy decreased to about 286 HV0.025 at a small
scatter of hardness measurement results for the two specimen directions.

The size of flash and the width of the heat affected zone (HAZ) in the axis of
the specimen and outside (Figure 4) were measured for the tested friction welded
joints (in their longitudinal sections). The results of the measurements are shown in
Table 2.

Fig. 3. Microstructures of ODS alloys: a) MA 956F; b) MA 956H

Fig. 4. Scheme of flash size and HAZ width measurements
in tested friction welded joints

100 μm 100 μm

100 μm 100 μm

longitudinal cross
section

transverse cross section

a)

b)

b

a
12,5

RM
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Table. 2. HAZ width and flash size in tested friction welded joints (symbols as in Figure 4)
HAZ width [µm] Flash size [mm]

No. Material pairs
Specimen

No. M R a b
1
2
3
4

5
6
7
8

9
10
11
12

13
14
15
16

17
18
19
20

MA 956H/MA 956H

MA 956F/MA 956F

MA 956H/MA 956F

MA 956F/X10CrNiTi 189

MA 956H/X10CrNiTi 189

1
2
3
4

10
11
12
13

6
7
8
9

14
15
16
17

19
20
21
22

96
75

648
360

270
170
400
250

170
140
600
370

36
10
80
30

170
60

720
860

205
150
960
600

180
170
140
140

215
300
290
360

300
150
55

130

300
290
280
300

8.5
9.3
4.1
4.4

6.8
5.8
7.5
7.6

10.8*
11.0*
8.4*
8.7*

6.7*
6.2*
7.2*
7.3*

6.9**
6.2**
2.3**
3.0**

9.0
3.3
4.0
5.8

6.7
6.1
7.5
7.6

7.4**
7.1**
4.7**
5.3**

4.8***
3.6***
3.8***
4.9***

6.9***
7.8***
2.9***
3.9***

* – flash on MA 956F side
** – flash on MA 956H side

*** – flash on steel X10CrNiTi 189 side

4. Similar-material Incoloy MA 956 joints

After alloy Incoloy MA 956 F is friction welded (whereby it is in a work hardened
state) a ca 200 µm wide weld zone characterized by large grains can be distinguished.
A weld interface passing into a fine-grained native material is visible (Figure 5a).
A material texture towards the flash, i.e. perpendicularly to the specimen’s axis, occurs
in both zones. At lower upsetting pressures inclusions and porosities occur in the weld
zone (specimen 3, Table 1).

A 75 µm (specimen middle) to 960 µm (specimen edge) wide weld zone with
a varying microstructure resembling that of similar-material MA 956 F joints (Figure 5b,
Table 2) occurs in the heat treated Incoloy MA 956 H alloy joints. Microcracks run-
ning on grain boundaries are visible in the microstructure of the specimens, particu-
larly in the outer areas of the joint (Figure 5c). It was found that the greater the upset-
ting pressure and the shorter the friction time, the larger the number of microcracks.
The microhardness in the weld zone is reduced to about 250–280 HV0.025 (by about
100 units relative to the native material) (Figure 7a).
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Fig. 5. Microstructures of friction welded joints: (a) Incoloy MA 956F/MA 956F,
(b) Incoloy MA 956H/MA 956H, (c) crack in MA 956H/MA 956H, (d) Incoloy MA 956F/MA 956H

Fig. 6. Microstructure of Incoloy MA 956F-steel X10CrNITi 189 joint:
(a) MA 956F/X10CrNiTi 189, (b) MA 956H/X10CrNiTi 189

5. Dissimilar-material joints

A 140–600 μm wide weld zone occurs in the dissimilar-material Incoloy MA 956
F/MA 956 H joints (Figure 5d). Because of the great upsetting pressures and the long
friction times, the weld zone is narrow. At great upsetting pressures microcracks occur
on the MA 956 H alloy side, but in smaller numbers than in the case of the similar-
material joint. A 10 μm (specimen axis) to 300 μm (specimen edges) wide weld zone
occurs in the dissimilar-material Incoloy MA 956/steel joints (Figure 6a).

100 μm 100 μm

100 μm 100 μm

a) b)

c) d)

microcracks

100 μm 100 μm

a) b)
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The smaller the upsetting pressure, the wider the weld zone, but then discontinui-
ties occur at the boundary of material flow from the weld zone, both on the MA 956
alloy side and the X10CrNiTi 189 steel side (Figure 6b). The tests have shown that the
pressures during upsetting should be at least 110 MPa high.

As shown by microhardness measurements (Figure 7b), hard (ca 510 HV0.025) mi-
crostructures occur in the weld zone at the material flow boundary on the X10CrNiTi
189 steel side (Figure 6a). Microhardness is slightly reduced (to about 220 HV0.025) in
the weld zone on the MA 956 alloy side.

a)

0

100

200

300

400

500

500 400 270 250 140 0 180 270 320 400 500 μm

H
ar

dn
es

s 
H

V0
,0

25

MA 956F-MA 956F MA 956H-MA 956H

b)

0
100
200
300
400
500
600

50
0

40
0
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28
0

21
0

13
0

11
0

10
0 0

12
0

15
0

22
0

29
0

31
0

50
0

51
0

60
0 µm

H
ar

dn
es

s 
H

V0
,0

25

MA 956F-X10CrNiTi 189 MA 956H-X10CrNiTi 189

Fig. 7. a) Microhardness in outer specimen areas in similar-material Incoloy MA 956 alloy joints
(specimen 4 and 10, Table 1), b)dissimilar-material Incoloy MA 956 alloy/X10CrNiTi 189

steel joints (specimen 14 and 20, Table 1)

6. Tension testing of joints

Static tension tests were carried out on specimens 20 mm in diameter in order to
evaluate the quality of the friction welded joints. The results are shown in Table 3.
The similar-material hardened Incoloy MA 956 F alloy joints show a relatively high
strength (about 927 MPa) and the fracture, without visible plastic deformations, occurs
in the weld zone.
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The thermally treated Incoloy MA 956 H alloy joints subjected to the tension test
show considerable plastic deformations and the fracture occurs in the native material
at a distance of 30–40 mm from the weld zone. The tensile strength is about 680 MPa.

In the dissimilar-material Incoloy MA 956 H/MA 956 F joints the strength of the
joint’s strength is about 694 MPa and the fracture takes place in the weld zone.

At low upsetting pressures the average strength of the dissimilar-material Incoloy
MA 956 alloy/steel X10CrNiTi 189 joints was about 497 MPa (specimen 16). At
higher upsetting pressures (above 110 MPa) a visible elongation on the steel side oc-
curs, the fracture takes place in steel X10CrNiTi 189 and strength is about 560 MPa.

Table 3. Static tensile test results for friction welded joints

No. Material pairs Specimen
No. Rp0.2 [MPa] Rm [MPa] Fracture location

1
2

3

4

5
6

7

MA 956H/MA 956H

MA 956F/MA 956F

MA 956H/MA 956F

MA 956F/X10CrNiTi 189

MA 956H/X10CrNiTi 189

2
3

10

6

15
16

20

544.9
527.9

877.4

566.25

325.75
315.95

326.75

683.75
675.8

926.75

694.3

561.4
497.15

593.1

native material
native material

weld zone

weld zone

steel
weld zone, steel

steel

7. Conclusions

The following conclusions can be drawn from the investigations:
1. Friction welding makes it possible to obtain good quality similar-material

Incoloy MA 956 alloy joints and dissimilar-material Incoloy MA 956 alloy/austenitic
steel X10CrNiTi 189 joints.

2. The original structures of the materials change in a range of only ca 10 μm (in
the specimen axis) to 1000 μm (in the outer areas of the joint).

3. The longer friction times (over 30 s) and the large upsetting pressures (from
110 MPa) result in narrower uniform weld zones.

4. Discontinuities in the hardened Incoloy MA 956 occur mainly in the specimen’s
outer areas when short friction times or small upsetting pressures are applied.

5. The tensile strength of the tested joints friction welded at an upsetting pressure
of minimum 110 MPa is close to that of the native materials.
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Badania zgrzewania tarciowego stopu Incoloy MA 956

Badano złącza zgrzewane tarciowo jednoimienne stopu Incoloy MA 956 w stanie umocnio-
nym i obrobionym cieplnie, jak i ich połączenia ze stalą austenityczną X10CrNiTi 189. Określono
mikrostruktury, mikrotwardość oraz wytrzymałość na rozciąganie wykonanych złączy. Dobra-
no optymalne parametry procesu zgrzewania tarciowego. Stwierdzono przydatność zgrzewania
tarciowego do procesu łączenia jednoimiennych stopów Incoloy MA 956, jak i ich złączy ze
stalą austenityczną X10CrNiTi 189.





ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING

Vol. X 2010 No. 2

An analysis of the load-carrying capacity
of elements subjected to complex stress states
with a focus on the microstructural failure

P.G. KOSSAKOWSKI
Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland.

The paper analyses the load-bearing capacity of S235JR steel elements subjected to complex stress
states, taking into account the effect of microstructural damage. Assessing the material required conduct-
ing a microstructural analysis and standardized tensile strength tests. A modified Gurson–Tvergaard–
Needelman (GTN) model was used to numerically analyse S235JR steel elements under the action of
complex stresses. The results of the numerical analysis were reported to be consistent with those obtained
during the strength tests. The method for the numerical calculations was described along with the
admissible results and the criteria of failure for S235JR steel basing on the modified GTN model and the
development of microdamage. As S235JR steel is a common structural material in Poland, the
investigation results will be of use to a number of engineers and other specialists responsible for
determining the load-carrying capacity and structural safety of elements or whole systems.

Keywords: Gurson–Tvergaard–Needelman model, voids, numerical calculations, S235JR steel

1. Introduction

While determining the structural safety of an element, it is necessary to measure
the actual stresses and compare them with the admissible values defining the strength
of the material. The analysis is relatively easy to conduct if an element is under the
action of uniaxial stress. If complex stress states are involved, i.e. when the failure
stress is a three-stress function, the analysis becomes more complicated. As the failure
of a material (plastic deformation or fracture) is dependent on more than one major
stresses, the safety of a structure can be assessed using the so called Huber strength
hypotheses. The tensile stress of an element in the complex stress state is determined
basing on the reduced stress compared to the failure stress, which is defined for struc-
tural steels according to the Huber–Mises (HM) hypothesis. A number of studies show
that the HM model is not always suitable to analyse the plastic state in and beyond the
range of deformations corresponding to the necking of an element subjected to ten-
sion. Assuming the continuum of the material, one cannot apply this model to estab-
lish the influence of the microstructural defects on the material strength. Such phe-
nomena can be analysed using other models defining the relationship between the
particular failure stages and the strength of the material.
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One of the first models of this type was the Kachanov model [1], in which the fail-
ure parameter is defined as the damaged area divided by the unaffected area.
Kachanov’s approach was extended by Lemaitre, who introduced the potential elastic
energy function to analyse the potential failure of the material [2–3]. Lemaitre’s model
was used mainly to describe creep rupture and fatigue of the materials. As the failure
parameter is difficult to define, especially measure, the model was not appropriate for
modeling the fracture phenomena for elements subjected to static or dynamic loads.
Kachanov’s model did not take into account the conditions of damage formation due
to loading. The models by Kachanov and Lemaitre are some of the few used in elastic-
plastic damage mechanics which take into consideration material failure. As suggested
by Murakami in Ref. [4], the other models used for describing material damage are
those of Gurson [5], Suquet [6], Cordebois and Sidoroff [7], Tvergaard [8–9], Rous-
selière [10–11], Dragon and Chihab [12 ], Chow and Lu [13], Voyiadjis and Katt [14],
Murzewski [15],] Mou and Han [16], Saanouni [17], and Taper et al. [18]. In the re-
cent years, the Gurson model, which links the degree of failure with the material
structure, has been modified extensively.

The Gurson model for a porous solid [5], which is a modified Huber–Mises crite-
rion, defines the influence of an increase in the void volume fraction on the strength
of the material. This model was further modified by Tvergaard [19], and then by
Tvergaard and Needleman [20–21]. The two scientists developed a method for the
calculation of failure loads resulting from ductile fracture by considering selected
microstructural parameters and plastic properties of a material, which is referred to
as the GTN model. All the above mentioned models will be discussed further in this
paper.

Damage in the form of voids occurs on the existing inclusions or separations. The
growth and coalescence of these voids result in the development of localized plastic
deformations. Many researchers suggest that the process of void growth is dependent
on the state of stress, particularly the stress triaxiality ratio.

The cracking of polycrystalline structures is a complex issue. The processes of crack
initiation and propagation are closely related to the material microstructure. There are
three basic types of fracture mechanisms, i.e. brittle, shear and ductile. In shear and
ductile fracture patterns, the cracking is attributable to the nucleation and coalescence
of voids (see Figures 1 and 2) [22].

The current studies conducted by using the GTN model aim at determining micro-
structural parameters for different types of materials [23–28], analyzing the plasticity
due to void initiation and growth, and defining the effect of voids on the load-carrying
capacity of elements [29–39]. A number of studies [30–32] show that, for alloys and
structural steels, the GTN model ensures better consistency of results obtained by nu-
merical calculation (modelling) with experimental results than the HM model. By
applying the GTN model to calculations, one is capable of analyzing the phenomenon
of void growth, which allows locating the “weak” points in the structure, especially
those susceptible to a local loss of load-carrying capacity.
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From the present state of knowledge concerning the numerical modelling of steel
plasticity, we can conclude that the modelling has been performed for small simple
elements made of different types of steel or metallic alloys.

                

Fig. 1. a) Schematics of the nucleation, growth, and coalescence of voids leading to shear fracture,
b) Macrophotograph of a 7075-T4 steel specimen subjected to tension which failed by shear fracture,

c) Microphotograph of a 7075-T4 steel specimen which failed by shear fracture [22]

Most results are obtained by conducting simple strength tests, mainly tensile strength
tests. Numerical analyses are performed using the method of best fit to material con-
stants (the GTN model) for elements with predetermined geometries and strength prop-
erties. Microstructural parameters are frequently determined basing on the curve fit-
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ting principle. There is no comprehensive approach that would allow performing nu-
merical calculations for arbitrary elements. Another drawback is the lack of standard-
ized microstructural parameters to develop a GTN model for steels used most com-
monly in engineering.

        

Figure 2. a) Schematics of the nucleation, growth and coalescence of voids leading to ductile fracture,
b) Macrophotograph of a 1080 spheroidized steel specimen subjected to tension that failed by ductile fracture,
c) A SEM microphotograph showing void growth in 1045 spheroidized steel subjected to axial tension, [22]

It is thus essential to develop a procedure for the numerical modelling of the load limit
for any element subjected to any load, taking into account the effect of microfailure. This
paper includes results of a load-carrying capacity analysis and discusses the void growth in
S235JR steel elements in complex stress states basing on the Gurson–Tvergaard–Needel-
man (GTN) model, which takes into consideration the material structure.

The aim of the research was to determine the standardized material parameters for
S235JR steel by conducting microstructural studies and standard tensile strength tests,
followed by numerical modelling of data. As a result, it was possible to determine the
parameters of the modified Gurson–Tvergaard–Needelman (GTN) model by analyzing
the structure of S235JR steel.
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The modified model was used to numerically analyse elements subjected to com-
plex stress states, i.e. elements with different geometries as opposed to standard
specimens subjected to tension.

The paper discusses the numerical calculation procedure, the result analysis, and the
criteria of failure for S235JR steel obtained on the basis of the modified GTN model and
the void growth. S235JR steel was selected for the tests because it is a common structural
material in Poland. The data may be used for any analyses and expertise connected with
the assessment of the load-carrying capacity and safety of structural elements and systems.

2. Gurson–Tvergaard–Needelman (GTN) damage model

As emphasized at the beginning, the classic Huber–Mises (HM) model cannot be
used to analyse the effects of damage of microstructure on the load-carrying capacity
and the strength of materials. Effective stresses (stress intensity) are a function of
principal stresses according to the formula:
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where:
σ  – von Mises effective stresses,
σ1, σ2, σ3 – principal stresses.
The first model to take into consideration microdamage (pores, voids) was the Gur-

son model [5], which assumes that the proportion of voids in the plastic potential
function is dependent on the void volume fraction f rather than the void volume, in
accordance with the following relationship:
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where:
Φ – non-dilatational strain energy,
σ – von Misses effective stress according to the HM hypothesis,
σ0 – strength of the material resulting from the tensile strength curve (yield stress),
σm – hydrostatic pressure (mean stress),
f – void volume fraction.
This condition was modified by Tvergaard [19] as:
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where:
f *– actual void volume fraction,
qi –Tvergaard coefficients describing the plastic properties of the material.
As can be seen from the GTN model, the influence of the plastic properties was

taken into consideration by introducing the Tvergaard coefficients qi, their values being
as follows:
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The above values have been confirmed in numerous studies as typical of many met-
als and steel grades. It should be noted that in the original Gurson condition, the coeffi-
cients characterizing the plastic properties of the material were q1 = q2 = q3 = 1 [5].
When f = 0, the GTN yield condition (1) is reduced to form defined according to the HM
condition. In the GTN model, the void volume fraction f * is determined as follows:
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where:
fc – critical void volume fraction,
fF – void volume fraction corresponding to the loss of material strength.
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An increase in the void volume fraction f is defined by the following relationship:

nucldfdfdf gr += (6)

where:
dfgr – time derivative of the volume fraction of voids existing in the material,
dfnucl – time derivative of the volume fraction of voids initiated by the deformation.
An increase in the volume fraction of voids dfgr existing in the material is defined as:

( ) Idfdf pl
gr :1 ε−= (7)
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An increase in the volume fraction of voids initiated by the deformation dfnucl is de-
fined as:

pl
mnucl dAdf ε= (8)

An important parameter is the intensity of the nucleation (initiation) of voids A, de-
fined as:
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where:
fN – volume fraction of voids nucleated (initiated) on inclusions,
εN – mean strain of the void nucleation (initiation),
sN – standard deviation of the nucleation strain,

pl
mε  – mean plastic strain.

3. Determining the microstructural parameters of the GTN model

3.1. Microstructural analysis

The first step of the material analysis was to obtain microstructural images of
S235JR steel [40] with a ferritic-perlitic matrix (Figure 3). As can be seen, there are
a large number of non-metallic inclusions, which are mainly sulfides and brittle ox-
ides. S235JR steel is reported to have appropriate metallurgical purity.

Fig. 3. SEM image of S235JR steel (transverse cross-section, middle layer) [40]
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Sulfide inclusions were elongated in shape, with their length reaching 61.9 μm.
Their distribution in the volume was irregular. They were arranged in bands. Table 1
shows the maximum diameter dmax and the extension ratio dmax/d2, where d2 is the
equivalent diameter.

Other non-metallic inclusions found in the tested materials are uniaxial brittle ox-
ide inclusions, which may co-occur with sulfide inclusions. To fully characterize non-
metallic inclusions in the material, it was necessary to determine the basic stereologi-
cal parameters:

–  f0  – void volume fraction,
–  A – cross-sectional area,
–  d2 – equivalent diameter,
–  dmax – maximum diameter,
–  dmax/d2 – extension ratio.

d max

d 2A

A

A = A2, d2 = π4/A

Fig. 4. Defining the stereological parameters for non-metallic inclusions [40]

Table 1. Comparing the results of the quantitative analysis of the images [40]
A

[µm2]
d2

[µm]
dmin
[µm]

dmax
[µm]

Cross-section
Cross-

sectional
area

Void
volume
fraction

n
mean
value

std.
dev

mean
value

std.
dev

mean
value

std.
dev

mean
value

std.
dev

dmax/
d2

dmax
(for the
largest

inclusion)
Transverse central 0.17% 62 5.3 13.1 2.1 1.6 1.2 0.6 4.2 5.8 2.0 61.9
Transverse outer 0.07% 66 2.5 3.3 1.5 0.9 1.0 0.5 2.5 2.2 1.6 18.2

Longitudinal central 0.06% 68 1.8 5.5 1.3 0.8 1.1 0.6 1.6 1.6 1.3 22.0
Longitudinal outer 0.03% 49 1.5 2.9 1.2 0.7 1.0 0.5 1.5 1.3 1.3 18.3

3.2 Tensile strength tests

The next step was to perform static tensile strength tests for specimens with a cir-
cular cross-section, with the diameter of the specimen φ = 10 mm, the length of the
measuring base l0 = 50 mm, and the primary cross-sectional area S0 = 78.5 mm2, ac-
cording to [41]. Two ranges of traverse speed, i.e. 1 and 4 mm/min, were analysed. No
impact of the speed was reported.
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The average values obtained during the tests were as follows: the yield point (yield
stress), R0.2 = 318 MPa, the tensile strength, Rm. = 446 MPa, and the displacement per-
centage, A5 = 33.9%. Using the averaged σ (ε) curve, it was possible to determine the
nominal normal stress σ and the longitudinal strain ε.

Determining the microstructural parameters required modelling the data from the
tensile strength tests (GTN model) numerically. The averaged tensile strength curve
was approximated using the following equation:
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where: 
σ – stress,
σ0 – yield stress,
G – coefficient of transverse elasticity,

pl
mε  – mean plastic strain,

N – strain-hardening exponent.

Table 2. Strength parameters of S235JR steel according to Equation (10)
σ0 [MPa] σm [MPa] G [MPa] N

318 446 80 000 0.183

The data obtained during tensile strength tests were numerically modeled basing on
the equation of the approximate curve (10). The Gurson–Tvergaard–Needelman
(GTN) damage model takes into account the nucleation and growth of inclusion-
related voids. The initial void volume fraction f0 was 0.0017 = 0.17 %.

The critical void volume fraction, fc, above which the material strength decreases,
was 0.06. This value coincides with the results obtained by other authors [31]. As sug-
gested by Richelsen and Tvergaard [42], the critical value of the void volume fraction,
fc, is dependent on the initial void volume fraction f0. It ranges from fc = 0.04 at
f0 = 0.0 to fc = 0.12 at f0 = 0.06. The calculated value, fc = 0.06, is consistent with the
experimental results.

The value of the void volume fraction corresponding to the loss of strength fF was
0.667.

The Tvergaard parameters were: q1 = 1.5, q2 = 1.0, and q3 = 2.25. The volume
fraction of the nucleated voids fN was 0.04, the average nucleation (initiation) strain of
inclusion-related voids εN was 0.3, and the standard deviation of the strain sN was 0.05.

Table 3. Microstructural parameters of the modified GTN model of S235JR steel
f0 fc fF q1 q2 q3 fN εN fN

0.0017 0.06 0.667 1.5 1.0 2.25 0.04 0.3 0.05
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The numerical calculations were performed using the program based on the Finite
Element Method, Abaqus Explicit version 6.7. The elements were modelled as axially
symmetrical components using standard 4-node CAX4R elements [43].

Figure 5 shows a tensile strength curve determined numerically in the form of the
load F versus displacement l function for the GTN model parameters.

Fig. 5. Load-displacement F(l ) curves obtained through experiments and numerical analysis

4. Experimental and numerical modelling of load-carrying capacity and
failure susceptibility in complex stress states

The analysis of load-carrying capacity and failure susceptibility was conducted
using stretched ring-notched specimens with circular cross-sections for different notch
radii ρ 0 (Figure 6).

The stress inside the specimens was calculated using the Bridgman analytical solu-
tion [44]. The triaxiality stress ratio σσ /m  was determined as:
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where:
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σm = (σ11+σ22+σ33)/3 – mean stress,
σ – von Misses effective stress,
2r0 – original minimum diameter,
ρ 0 – notch radius.

Fig. 6. Geometry and stress state components of a ring notched specimen

From relationship (11) it is clear that a change in the notch radius, ρ 0, has a signifi-
cant effect on the stress state in the notch area. The analysis was conducted for ele-
ments with diameters 2R0 = 14.0 mm and 2r0 = 7.0 mm and notch radii ρ 0 ranging
from 1.0 mm to 7.0 mm. It was possible to study the state of stress at different stress
triaxiality ratios, ranging from σσ /m = 0.556 for ρ 0 = 7.0mm to σσ /m  = 1.345 for
ρ 0 = 1.0 mm (Table 4).

Table 4. Stress triaxiality ratio σσ /m  for different notch radii
Notch radius Stress triaxiality ratio

ρ 0 = 1.0mm σσ /m  = 1.345

ρ 0 = 1.5mm σσ /m  = 1.107

ρ 0 = 3.5mm σσ /m  = 0.739

ρ 0 = 7.0mm σσ /m  = 0.556

The load-carrying capacity analysis included tensile strength tests, during which
specimens were subjected to static tension. The quantities measured were load F and
displacement of points distributed symmetrically along the notch l, with the exten-
someter initial length being l0s = 32.56 mm (Figure 7).
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Two ranges of traverse speed were used: 1 and 4 mm/min. The speed was reported
to have no effect on the results. The load vs. displacement curves are shown in Figures
10–13.

Fig. 7. View of a ring-notched round specimen subjected to tension in a complex stress state

The nature of the fracture (Figure 8) corresponds to the typical ductile failure, whose
mechanism was described in the introduction and illustrated in Figure 2. The cracking
resulted from the coalescence of voids through localized plastic strain. Macroscopi-
cally, the cracks were perpendicular to the maximum normal stress (tensile axis). In
the central fracture area, there were numerous folds, which are attributable to the coa-
lescence of voids due to slides down the planes inclined to the tensile axis at an angle
of 30–45°. The cracks resulted from the slide and the coalescence of voids, with the
slide occurring in the outer parts of the specimens. The cracks went along slide bands
in the plane inclined to the tensile axis at an angle of 45°. For specimens with
a high stress triaxiality ratio, at σσ /m  > 1 (where ρ 0 = 1.0 mm and ρ 0 = 1.5 mm,
Figures 8a and b), the characteristic phenomenon was plasticity in a very small area
surrounding the notch. For the other specimens (where ρ 0 = 3.5 mm and ρ 0 = 7.0 mm,
Figs 8c and d), the plasticity was more visible; it extended from the bottom of the
notch in the longitudinal direction, like in tensile strength tests conducted for smooth
specimens.
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Fig. 8. Macrographs of fracture surfaces of specimens under tension in a complex stress state:
a) ρ 0 = 1.0 mm, b) ρ 0 = 1.5 mm, c) ρ 0 = 3.5 mm, d) ρ 0 = 7.0 mm

The next stage of the analysis was numerical calculations. It was necessary to de-
velop a procedure for modelling specimens by using the GTN model, verify the ex-
perimental results, and analyse the growth of microvoids and their effect on the load-
carrying capacity.

The numerical calculations were performed using a program based on the Finite
Element Method (Abaqus Explicit version 6.7). The elements modelled were the same
as those used during the tensile strength tests. The ring-notched specimens with a cir-
cular cross-section were subjected to static tension in the complex stress state, the notch
radius ρ 0 ranging from 1.0 mm to 7.0 mm. The modelling was performed for axially
symmetrical standard 4-node CAX4R elements [42]. Because of the symmetry, the
modeling was conducted only for half-specimens (Figure 9). The height of the nu-
merical models corresponded to half of the extensometer length, i.e. 16.28 mm.

The Gurson-Tvergaard-Needleman (GTN) damage model required using the non-
linear explicit dynamic analysis. To compare the results, it was essential to perform
numerical calculations based on the classic Huber-Misses model using a static analy-
sis. The load-carrying capacity was defined by plotting the load F against displace-
ment l (Figures 10–13).
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Fig. 9. Numerical model of a ring-notched element with a circular cross-section

The void growth was analysed basing on the changes in the void volume fraction
that occurred during the plasticity process and the effect of voids on the stress state
described by the stress triaxiality ratio σσ /m . The relationship between the void vol-
ume fraction and the stress triaxiality ratio σσ /m  in the function of displacement l
was determined for a point inside a specimen designated as IN and for the bottom of
the notch at a point designated as OUT (according to Figure 6).

As can be seen from the F(l) curves plotted for the ring-notched specimens sub-
jected to tension, the load F, which was determined by applying the GTN model and
the non-linear explicit dynamic analysis, was lower than that obtained with the classic
Huber-Misses model and the static analysis. It was found that the material porosity
significantly affected the tensile strength and the load-carrying capacity.

It should be noted that the tensile strength curves obtained by applying the GTN
model and the non-linear explicit dynamic analysis are consistent with the experi-
mental results, and thus are closer to the real ones. This is not true about the results
obtained by applying the HM model and the static analysis.

The GTN model assumes that for elements with the notch radius ρ 0 ranging from
1.0 mm to 3.5 mm, which corresponds to a maximum load, the numerical data are con-
sistent with the experimental results. For a specimen with the notch radius equal to
7.0 mm, the values of load determined numerically were lower than those obtained
experimentally (Figure 13). In a wider range, the numerically calculated values of the
load F were lower than the real ones (Figures 10–13).

The F(l) curves plotted for elements with ρ 0 = 1.0 mm and ρ 0 = 1.5 mm show that
the maximum values of the load F (load-carrying capacity) were achieved at l = 0.5 mm
(Figures 10 and 11). For the other elements with ρ 0 = 3.5 mm and ρ 0 = 7.0 mm, the
load-carrying capacity was accomplished at l = 0.68 mm and l = 0.85 mm, respec-
tively (Figures 12 and 13).
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Fig. 10. Load-displacement F(l ) curves for a specimen with the notch radius ρ 0 = 1.0 mm

Fig. 11. Load-displacement F(l ) curves for a specimen with the notch radius ρ 0 = 1.5 mm

For each specimen, there was a fall in the load capacity followed by the element
failure after the maximum strength was reached. This applies both to the experimental
results and the numerical simulation data obtained by means of the GTN model. For
elements with ρ 0 = 1.0 mm and ρ 0 = 1.5 mm and the resulting high stress triaxiality
ratio, one can determine the point beyond which there occurs a sharp decrease in load
corresponding to the displacement l equal to 0.94 mm. In the range from the maximum
load-carrying capacity to the failure, the differences in load were bigger during the
experiments than during the numerical calculations.



P.G. KOSSAKOWSKI30

Fig. 12. Load-displacement F(l ) curves for a specimen with the notch radius ρ 0 = 3.5 mm

Fig. 13. Load-displacement F(l ) curves for a specimen with the notch radius ρ 0 = 7.0 mm

An increase in the void volume fraction was observed for the displacements corre-
sponding to the maximum load-carrying capacity, i.e. l = 0.5 mm for specimens with
ρ 0 = 1.0 mm and ρ 0 = 1.5 mm and l = 0.68 mm and l = 0.85 mm for specimens with
ρ 0 = 3.5 mm and ρ 0 = 7.0 mm, respectively. Figures 14 and 18 illustrate the increase
in the void volume fraction for specimens with the notch radius ρ 0 = 1.0 mm ( σσ /m

> 1) and ρ 0 = 3.5 mm ( σσ /m  < 1). The initial increase in the void volume fraction
was particularly intensive in the outer part of the specimen (point OUT in Figure 14).
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Beyond the maximum load-carrying capacity, there was a more rapid increase in the
void growth rate, especially for elements with a higher stress triaxiality ratio, σσ /m  > 1
(Figure 14). When σσ /m  > 1, the more rapid increase in the void growth rate resulted
from the considerable decrease in the load-carrying capacity; for elements with ρ 0 =
1.0 mm and ρ 0 = 1.5 mm, the displacement was l = 0.94 mm. Beyond that point, the
growth of voids inside the specimen (point IN) was more rapid than outside (point
OUT). During the process of further plasticity, the voids inside an element grew in
number more intensively and rapidly (Figure 14). Figures 15a and b show maps of the
void volume fraction for elements with the highest stress triaxiality ratio, i.e. σσ /m  =
1.345 at ρ 0 = 1.0 mm. The map of the void volume fraction in Figure 15a corresponds
to l = 0.94 mm, and accordingly, to a sudden drop in the load-carrying capacity. Fig-
ure 15b presents a map of the void volume fraction after that point was reached. In the
first case, the highest void volume fraction was in the outer part (point OUT), while in
the other case, the increase in voids was more visible in the inner part (point IN). It
could thus be concluded that the rupture would go from the inside to the outside.

Fig. 14. Void volume fraction versus displacement curve for a specimen with ρ 0 = 1.0 mm

Another characteristic phenomenon observed during the numerical simulation was
that the damage growth occurred in a very small volume of material, directly in the
plane of the smallest cross-section near the notch bottom (Figures 15 and 19).

The phenomena described above are particularly strong for elements with a high
stress triaxiality ratio, i.e. σσ /m  > 1. When σσ /m  < 1, that is for elements with ρ 0 =
3.5 mm and ρ 0 = 7.0 mm, the phenomena were less intensive. The void volume
growth rate was lower for σσ /m  < 1 than for σσ /m  > 1. The phenomenon was re-
flected in the experimental results and the numerical simulations data. The specimens
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with ρ 0 = 1.0 mm and ρ 0 = 1.5 mm were reported to fail much sooner. It is thus clear
that the material failure caused, for instance, by an increase in the number of voids,
will occur sooner if the stress traixiality ratio is high, σσ /m > 1.

Fig. 15. Void volume fraction maps for a specimen with ρ 0 = 1.0 mm, a) l = 0.94 mm, b) l = 0.97 mm

Fig. 16. Triaxiality stress ratio versus displacement curves for a specimen with ρ 0 = 1.0 mm

As can be seen, the increase in the void volume fraction affected the load-carrying
capacity and strength of the specimens considerably. This influence was particularly
visible when σσ /m  > 1. It can be concluded that for elements with σσ /m > 1, the
microstructural failure (void growth) was closely related to the changes in the stress
state.

The void volume fraction at the moment of failure ranged between 20 and 45%.
The value of 45% was obtained for elements with ρ 0 = 1.5 mm at test duration of 13s.
For the other specimens, the value was in the range of 20–29%. The minimum void
volume fraction was approximately 20%. It was possible to determine the criterion of
failure basing on the GTN model. It should be noted that the result refers to one rate of
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deformation. If the load conditions are different, the result may be different, too. It
seems that the influence of the deformation rate on the rate and intensity of void
growth needs to be analysed separately.

Fig. 17. Triaxiality stress ratio maps for a specimen with ρ 0 = 1.0 mm: a) l = 0.90 mm; b) l = 0.97 mm

Fig. 18. Void volume fraction versus displacement curves for a specimen with ρ 0 = 3.5 mm

Fig. 19. Void volume fraction maps for a specimen with ρ 0 = 3.5 mm, a) l = 1.05 mm, b) l = 1.12 mm
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Fig. 20. Triaxiality stress ratio versus displacement curves for a specimen with ρ 0 = 3.5 mm

Fig. 21. Triaxiality stress ratio maps for a specimen with ρ 0 = 3.5 mm, a) l = 1.05 mm, b) l = 1.76 mm

Another objective of the study was to evaluate the impact of the stress state on the
load-carrying capacity of elements and the material microdamage. The stress state was
expressed as the stress triaxiality ratio, while the microdamage was defined by the
increase in the void volume fraction. Prior to the rapid decline in the load-carrying
capacity, there was a slight increase in the stress triaxiality ratio σσ /m  in the inner
part of the elements and a slight decrease of this ratio in the outer. This corresponds to
l = 0–0.85 mm for elements with ρ 0 = 1.0 mm and ρ 0 = 1.5 mm. When l reached
0.85 mm, there was a significant increase in σσ /m  in the inner part; it rose until

σσ /m = 3.1 at l = 0.96 mm for an element with ρ 0 = 1.0 mm. It is clear that the rapid
decline in the load-carrying capacity and the rate of increase in the void volume frac-
tion were related to the rapid change in the stress state reflected by a sudden increase
in the stress triaxiality ratio in the inner part. In the analysed range, there was a slight
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increase in σσ /m  in the outer part of the elements. After the rapid decrease in the
load capacity at l > 0.96 mm, there was a decrease in the stress triaxiality ratio in the
inner part until σσ /m  ≈ 1.4, which corresponded to the initial value of σσ /m . Fig-
ures 17a and b show maps of the stress triaxiality ratio σσ /m  for an element with
ρ 0 = 1.0 mm at l = 0.90 mm and l = 0.97 mm.

Changes in the stress triaxiality ratio σσ /m  coinciding with microstructural changes
were observed also in elements with ρ 0 = 3.5 mm and ρ 0 = 7.0 mm; their intensity,
however, was considerably smaller (Figures 20 and 21).

5. Final remarks and conclusions

The paper deals with the results of the load capacity analysis and the growth of mi-
crostructure damage taking the form of voids for elements made of S235JR steel sub-
jected to complex stress states. The modified Gurson–Tvergaard–Needelman (GTN)
model taking account of the material structure was used.

The objective of the study was to determine the standardized material parameters
for S235JR steel by conducting a microstructural analysis and standard tensile strength
tests with their numerical modelling. The parameters were obtained by means of the
modified GTN model taking into account the steel structure.

The modified model was used for the numerical analysis of elements under the action of
complex stress states, whose geometries were different from those of the standardized
specimens. The numerical calculations including the analysis of maximum values and
the criteria of failure for S235JR steel based on the modified GTN model and the de-
velopment of microvoids.

Because of the extensive use of S235JR steel in the building industry in Poland, the
results can be applied to various analyses and expertise with the aim of estimating the
load-carrying capacity and the structural safety of elements.

The following are the conclusions drawn from the analysis results:
– By applying the modified GTN model, which takes into account the real micro-

structural parameters for S235JR steel elements, one is capable of estimating the fail-
ure loads resulting from plastic fracture.

– The tensile strength curves obtained by using the modified GTN model taking
into consideration the real microstructural parameters and the non-linear explicit-type
dynamic analysis were consistent with the experimental results, i.e. the real results, in
contrast with the data obtained by means of the HM model and the static analysis.

– The parameters of the modified GTN model taking account of the real micro-
structural parameters of S235JR steel determined on the basis of the microstructural
analysis, tensile strength tests and numerical analysis, were used to good effect during
the analysis of elements subjected to complex stress states.

– Initially, the void growth was very intensive in the outer part of the specimens.
After the maximum load-carrying capacity was reached, the rate of the void growth
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was higher, especially for elements with a higher stress triaxiality ratio, i.e. σσ /m  > 1.
When σσ /m >1, the increase in the void growth rate corresponded to the rapid fall in
the element load capacity. Once the point was reached, the voids grew in number more
rapidly in the central part of the elements rather than in the outer part. It can be as-
sumed that the failure occurring in the central part is crucial to the load capacity of the
whole element.

– An increase in the void volume fraction is observed in a very small volume of
the material; it occurs in the plane of the smallest cross-section near the notch bottom.

– An increase in the void volume fraction affected the load-carrying capacity and
strength of analysed elements. Effect was more visible for the elements with σσ /m  > 1.
When σσ /m  > 1, the void growth was attributable to changes in the stress state.

– The specimens with the notch radius ρ 0 equal to 1.0 mm or 1.5 mm was re-
ported to fail earlier than the other specimens. It can be assumed that failure caused,
for instance, by an increase in the void growth, will occur more rapidly in elements
with a high stress triaxiality ratio (i.e. σσ /m  > 1).

– The minimum void volume fraction of 20% corresponding to the element fail-
ure was determined by applying the modified GTN model, which took into considera-
tion the real microstructural parameters. The value can be treated as a criterion of fail-
ure for the S235JR specimens subjected to complex stress states.

– By analyzing the damage which takes the form of voids, one is able to analyse the
load-carrying capacity, and accordingly, the safety of structural elements. As failure is
expected to occur once the void volume fraction reaches a critical value, it is possible to
apply this procedure to analyse the failure states of structural elements made of S235JR
steel basing on the modified GTN model taking account of the real microstructural
parameters of this material.

– The modified GTN model, which takes account of the real microstructural pa-
rameters of S235JR steel, was used to analyse the growth of voids, and their number
and location in an element. Basing on the results, it was possible to establish the weak
points of the structure, i.e. areas particularly susceptible to loss of load-carrying ca-
pacity. The material structure was reported to be responsible for the load-carrying
capacity of the whole element.
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Analiza nośności elementów pracujących w złożonych stanach naprężenia
z uwzględnieniem wpływu uszkodzeń miktrostrukturalnych

W artykule przedstawiono wyniki analizy nośności elementów wykonanych ze stali S235JR
pracujących w złożonych stanach naprężenia z uwzględnieniem wpływu uszkodzeń mikro-
strukturalnych. Opracowano zmodyfikowany model Gursona–Tvergaarda–Needelmana (GTN)
dla stali S235JR poprzez wykonanie badań mikrostrukturalnych, przeprowadzenie normowych
prób rozciągania oraz ich modelowane numeryczne. Zmodyfikowany model GTN zastosowano
w analizie numerycznej elementów pracujących w złożonych stanach naprężeń. Stwierdzono
zgodność uzyskanych wyników w stosunku do rezultatów badań wytrzymałościowych. Opisa-
no sposób prowadzenia obliczeń numerycznych wraz z analizą możliwych do uzyskania wyni-
ków oraz określono kryteria zniszczenia stali S235JR w oparciu o zmodyfikowany model GTN
i rozwój mikrouszkodzeń.
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In this letter, the problem of forced convection heat transfer over a horizontal flat plate is investigated
by employing the Adomian Decomposition Method (ADM). The series solution of the nonlinear differ-
ential equations governing on the problem is developed. Comparison between results obtained and those
of numerical solution shows excellent agreement, illustrating the effectiveness of the method. The solu-
tion obtained by ADM gives an explicit expression of temperature distribution and velocity distribution
over a flat plate.

Keywords: convection heat transfer, nonlinear equations, Adomian decomposition method, numerical
method (NM )

1. Introduction

Most scientific problems such as heat transfer are inherently of nonlinearity. We
know that except a limited number of these problems, most of them do not have ana-
lytical solutions. Therefore, these nonlinear equations should be solved by using other
methods. Some of them are solved by using numerical techniques and some of them
are solved by using perturbation method. Since there are some limitations with the
common perturbation method, and also because the basis of the common perturbation
method is upon the existence of a small parameter, developing the method for differ-
ent applications is very difficult. Most boundary-layer models can be reduced to sys-
tems of nonlinear ordinary differential equations which are usually solved by numeri-
cal methods. It is however interesting to find solutions to boundary layer problems
using analytical approach. Analytical methods have significant advantages over nu-
merical methods in providing analytic, verifiable, rapidly convergent approximation.
The Adomian decomposition method based on series approximation is the newly de-
veloped method for strongly nonlinear problems. The Homotopy Perturbation Method
uses functions to obtain series solutions to boundary-layer equations [1–6] while the
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series in ADM [7] are derived from functions consisting of terms corresponding to the
initial conditions. The analytic ADM has been proven successful in solving a wide
class of nonlinear differential equations [7–13]. Hashim [8] applied ADM to the clas-
sical Blasius’ equation. Wazwaz [14] used ADM to solve the boundary layer equation
of viscous flow due to a moving sheet. Awang Kechil and Hashim [15] extended the
applicability of ADM to obtain approximate analytical solution of an unsteady bound-
ary layer problem over an impulsively stretching sheet. The first application of ADM
to a 2-by-2 system of nonlinear ordinary differential equations of free-convective
boundary layer equation was presented by Awang Kechil and Hashim [16]. Hayat et
al. [17] studied the MHD flow over a nonlinearly stretching sheet by employing the
Modified Adomian Decomposition Method.

In this paper, we revisit the steady two-dimensional laminar forced convection in
a flow of viscous fluid against a flat plate with uniform wall temperature. Fluid is as-
sumed to have constant properties. In this letter, we are interested in applying ADM to
obtain an approximate analytical solution of this problem and the results obtained will
be validated by those of numerical simulation.

2. Governing equations

Consider steady flow, with constant free stream velocity u∞ without turbulence
over a semi-infinite flat plate aligned with the flow. All fluid properties are considered
to be constant. The continuity, Navier–Stokes, and energy equations of this flow are as
follows [16]:
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with following boundary conditions:

T = 0 at y = 0, (4a)

T → T∞ when y → ∞, (4b)

T = T∞ at x = 0, (4c)
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u = 0,       v = 0 at y = 0, (4d)

u = u∞ at x = 0, (4e)

u → u∞ when y → ∞. (4f)

The solution to the momentum equation is decoupled from the energy solution.
However, the solution of the energy equation is still linked to the momentum solu-
tion. The following dimensionless variables are introduced in the transformation:
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The Reynolds number is defined as:
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Using Equations (1) through (6), the governing equations can be reduced to two
equations where f is a function of the similarity variable (η) [18]:
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where f  is related to the u velocity by [18]:
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The reference velocity is the free stream velocity of forced convection. The bound-
ary conditions are obtained from the similarity variables. For the forced convection
case [18]:

f (0) = 0,       f ′ (0) = 1,       θ′(0) = 1,       f ′(∞) = 1,       θ(∞) = 0, (10)
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3. Adomian decomposition method

We follow the standard procedure of ADM [7] by introducing two linear differential
operators L1 = d3/dη3 and L2 = d2/dη2 with inverse operators =⋅− )(1

1L ∫ ∫ ∫ ⋅
η η η

0 0 0
ddd)( ttt

and =⋅− )(1
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η η

0 0
.dd)( tt  Thus, Equation (8) in operator form,
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where the nonlinear terms in Equations (13) and (14),
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Ai, Ei are so-called Adomian polynomials [7], given by
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This yields

,000 ffA ′′= (20)

,000 θ′= fE (21)

and for i ≥ 1
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In ADM [14], f and θ are defined as infinite series,
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Substituting Equations (17) and (18) and Equations (24) and (25) into Equations
(13) and (14), we obtain
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and the individual terms for f and θ are obtained from the recursive relations
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),(
2
1 1

11 ii ALf −
+ −=        i ≥ 0, (30)

),(
2

1
21 ii ELPr −

+ −=θ        i ≥ 0, (31)

For practical numerical computation, we will compute the j-term approximation of
f (η), θ(η) which are φj(η) = ∑ −

=

1

0
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i if  ψj(η) = ∑ −

=
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i iθ  respectively, as the j-term ap-

proximations converge to the true series as j approaches infinity.

4. Results and discussion

The Adomian polynomials (20–23) and the recursive relations (28–31) are then coded
in the Maple environment computer package with the controlling significant digits set
to 11. We obtain 10-term approximation to both f and θ given by φ10(η) = ∑=

9

0
,

i if

and ψ10(η) =∑ =

9

0
,

i iθ  respectively, but for lack of space, only the first 3 terms produced

from (28–31) are given below:
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The undetermined values of α1 and α2 are calculated from the boundary conditions
at infinity in (10). The difficulty at infinity is overcome by employing the diagonal
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Padé approximants [19] that approximate f ' (η) and θ(η) using φ10(η) and ψ '10(η),
respectively. The numerical results of α1 and α2 from 1lim 10 =′

→∞
φ

η
 and 0lim 10 =

∞→
ψ

η
 for

selected m in the range from 8 to 11 are presented in Table 1 for Pr = 1. Since Equa-
tion (8) can not be easily solved by the analytical method; Equation (8) is, therefore,
solved by the numerical method using the software MAPLE whose results are given in
Tables 2 and 3, and also the consequent results of the numerical and Adomian
Decomposition are compared in Figures 1, 2 and 3. As you can see in Pr = 1, the
ADM has a high accuracy.

Table 1. Numerical values of f ′′(0), θ′(0), for Pr = 1
[8.8] [9.9] [10.10] [11.11] Exact

α1 0.2683198 0.44927 0.3293037 0.3293037 0.3293037
α2 –0.2797056 –0.426513 –0.3487661 –0.3487661 –0.3487661

Table 2. The results of ADM, HPM and NM for f (η), f ′(η) if Pr = 1
f (η) f ′(η)

η ADM NM ADM NM
0 0 0 0 0

0.2 0.0065859 0.0066412 0.0658571 0.0664077
0.4 0.0263396 0.0266762 0.1316636 0.1327641
0.6 0.0592395 0.0597215 0.1972899 0.1989372
0.8 0.1052295 0.1061082 0.2625216 0.2647094
1 0.1642024 0.1655717 0.3270638 0.32978

1.2 0.2359847 0.2379487 0.3905487 0.3937761
1.4 0.3203229 0.3229819 0.4525474 0.4562617
1.6 0.4168731 0.4203207 0.5125869 0.5167567
1.8 0.525194 0.529518 0.5701715 0.5747581
2 0.6447451 0.6500243 0.6248074 0.6297657

2.2 0.7748894 0.7811933 0.6760307 0.6813103
2.4 0.9149026 0.9222901 0.7234349 0.7289819
2.6 1.0639869 1.0725059 0.7666961 0.772455
2.8 1.2212899 1.2309773 0.8055934 0.8115096
3 1.3859262 1.3968082 0.8400224 0.8460444

3.2 1.5570018 1.5690949 0.8699999 0.8760814
3.4 1.7336381 1.7469501 0.89565596 0.9017612
3.6 1.9149935 1.9295251 0.9172393 0.9233296
3.8 2.1002831 2.1160298 0.9350592 0.9411181
4 2.2887911 2.3057464 0.9494855 0.9555182

4.2 2.4798731 2.4980396 0.9608389 0.966957
4.4 2.6729204 2.6923609 0.969051 0.9758708
4.6 2.8671706 2.888248 0.9722134 0.9826835
4.8 3.0608776 3.0853206 0.9815741 0.9877895
5 3.2479336 3.2832736 0.9896845 0.9915419
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Fig. 1. The comparison of the answers resulted by ADM and NM for f (η)

Table 3. The results of ADM, HPM and NM for θ(η) if Pr = 1
η ADM NM η ADM NM
0 1 1 2.6 0.2333038 0.2275449

0.2 0.9341428 0.9335922 2.8 0.1944065 0.1884903
0.4 0.8683363 0.8672358 3 0.1599775 0.1439554
0.6 0.80271 0.8010627 3.2 0.13012 0.1239183
0.8 0.7374783 0.7352908 3.4 0.1043403 0.0882386
1 0.6729361 0.6702199 3.6 0.0827606 0.0666702

1.2 0.6094512 0.6062238 3.8 0.0649412 0.0588819
1.4 0.5474525 0.5437381 4 0.0505144 0.0314817
1.6 0.487413 0.4832432 4.2 0.03916103 0.0330429
1.8 0.4298284 0.4252418 4.4 0.0309489 0.0241292
2 0.3751925 0.3702342 4.6 0.0277865 0.0173165

2.2 0.3239692 0.3186896 4.8 0.0186443 0.0122105
2.4 0.276565 0.271018 5 0.01264024 0.0084581

Fig. 2. The comparison of the answers resulted by ADM and NM for θ(η)
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Fig. 3. The comparison of the answers resulted by ADM and NM for f ′(η)

5. Conclusions

In this letter, Adomian Decomposition Method has been successfully applied to
natural convection heat transfer problem with specified boundary conditions. The ob-
tained solutions are compared with ones from numerical method and Homotopy Per-
turbation Method. The excellent agreement of the ADM solutions and the exact solu-
tions shows the reliability and the efficiency of the method. This new method
accelerated the convergence to the solutions. The ADM combined with the Padé ap-
proximant provide efficient alternative tools in solving nonlinear models.

Nomenclature

g – gravitational force
v – velocity component in the y direction
ADM – Adomian Decomposition Method
x – dimensional vertical coordinate
HPM – Homotopy Perturbation Method
y – dimensional horizontal coordinate
NM – numerical method
P – pressure
Pr – Prandtl number
Ρ – density
T – temperature
TW – temperature imposed on the plate
ν – kinematic viscosity
T∞ – local ambient temperature
α – thermal diffusivity
u – velocity component in the x direction
θ – dimensionless temperature
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Analityczne rozwiązanie wymuszonego konwekcyjnie przepływu
w warstwie przyściennej płaskiej płyty

W artykule przedstawiono zastosowanie metody dekompozycji Adomiana do wymuszonego,
konwekcyjnie przepływu ciepła w poziomej, płaskiej płycie. Rozwiązania nieliniowych rów-
nań różniczkowych opisujących zagadnienie poszukiwana w postaci szeregów Adomiana.
Z porównania otrzymanych wyników z wynikami innych metod numerycznych wynika dosko-
nała ich zgodność, która potwierdza skuteczność zastosowanej metody. Otrzymane rozwiąza-
nie pozwoliło jednoznacznie wyznaczyć rozkład i prędkości mian temperatury w analizowanej
płycie.
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Application of photoelastic coating technique in tests
of solid wooden beams reinforced with CFRP strips

T.P. NOWAK, L.J. JANKOWSKI, J. JASIEŃKO
Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

The paper presents selected results of tests carried out on hundred year old joists strengthened with
carbon fibre reinforced polymers (CFRP). Besides the conventional electric-resistance extensometers
(ERSG), the photoelastic coating technique (PCT) was used to measure strains in the reinforced (bonded)
cross sections. No such attempt to apply PCT has been described in the literature before. The technique
requires further studies to verify agreement between its results and the ones obtained by conventional
measuring techniques.

Keywords: timber structures, strengthening, CFRP, rehabilitation, photoelastic coating technique,
four-point bending

1. Introduction

The preservation of historic wooden components covers not only their technical
condition, but also the artistic and cultural value of the building as a whole, including
its ornamental details (often in the form of original woodcarving and polychrome).
According to the Venice Charter, any measures taken with regard to national heritage
buildings are to preserve and reveal the historic and aesthetic value the building, re-
specting the ancient substance and elements constituting authentic documents of the
past. It is, however, allowed to strengthen historic buildings using modern conserva-
tion, construction and engineering techniques, provided the principles of conservation
doctrine are adhered to [1–6].

The advances made in materials technology have significantly contributed to the
development of construction and conservation technologies. When high-strength ep-
oxy resins were synthesized in the late 1960s, attempts were made to use them to
strengthen building structures. Compositions based on synthetic resins can be used to
reinforce structural cross sections, to reproduce cross-sectional geometry and to pro-
duce joints bonding the reinforcing element with the reinforced one. The use of resins
and gluing is becoming a recognized way of conserving timber structures, except for
surface protection [3, 7–8].

The load-bearing capacity of components subjected to bending is usually determined
by the cross-sectional tension zone. Wood defects in the tension zone reduce the load-
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bearing capacity of the component much more than wood defects in the compression
zone. A possible way of strengthening is to use reinforcement in the form of, for exam-
ple, steel bars and plates and FRP (Fibre Reinforced Polymers) rods and strips [9–13].
Epoxy adhesives are mainly used to bond the reinforcement with the wood [14]. Steel
plates and FRP materials are also used to reinforce shearing zones [15–16].

FRP composite materials are increasingly often used to reinforce wooden elements,
increasing their load-bearing capacity and stiffness and endowing them with a more
uniform structure [17–20]. Moreover, the new materials can be used to strengthen
historic components in poor technical condition. FRP composites are usually rein-
forced with carbon fibres (CFRP), glass fibres (GFRP) and aramid fibres (AFRP).

This paper presents selected results of experimental research aimed at applying
CFRP strips to reinforce defective (biological corrosion, inclusions, slope of grain,
cracks) wooden beams and restore their load-bearing capacity, with a special focus on
a comparison of strains measured by electric-resistance strain gauges with the ones
determined using the photoelastic coating technique.

2. Material and method

2.1. Material

Wooden (pine) joists from a hundred (ca) year old building were the subject of the
investigations. Different ways of reinforcing the beams with CFRP strips, presented in
[e.g. 11, 20–21], were applied. Series A beams were not reinforced and served as the
reference. In total, 21 beams (including 18 one hundred year old ones; 7 types, 3 beams
in a series), each 4000 mm long and 120×220 mm in cross section, were tested. Test
results for the series F beams are presented.

The series F beams were reinforced in the maximum bending moment zone with
400–600 mm long CFRP strips in a horizontal arrangement. The weakening of the
tension zone was simulated by a cut out hole 25 mm in diameter (Figure 1).

Fig. 1. Reinforcement scheme for beams of series F [mm]
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Because of its consistency (making it easy to insert the reinforcement into the cross
section), adhesive S&P Resin 55 (based on epoxy resin) for composite mats was used.

Table 1. Technical data of CFRP strip

Kind of strip Strip width/breadth
b [mm]

Strip thickness
t [mm]

Young’s modulus
E [GPa]

Tensile strength
ft  [MPa]

CFK S&P
150/2000 50 1.2 165 2800

2.2. Method

The beams were subjected to four-point bending (Figure 2) on a testing stand shown
in Figure 3.

Fig. 2. Loading configuration and dimensions of tested beams in [mm]

Fig. 3. Beam F2 on testing stand
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Fork support, preventing loss of flexural stability (buckling), was used. Loading
was applied by a servomotor made by VEB Verkzeugstoffprüfmaschine Leipzig and
the force was measured by an ETP 7920-16 force gauge made by MOM Kalibergyár.
The results were registered by a PC and a multichannel measuring system UPM 100
made by Hottinger Baldwin Messtechnik. The measuring equipment used in the tests
was calibrated to 1% of the indication error in at least accuracy class 1.

During measurements the following were registered: the loading force (including
the ultimate force) by the computer system, beam displacement in the middle cross
section and on the supports by induction gauges W50 TS, strains in the wood by elec-
tric-resistance strain gauges RL 300/50 and strains in the strip by electric-resistance
strain gauges RL 120/20. On the lateral surfaces of the beams (in the middle of their
span) strain gauges were stuck on as shown in Figure 4. On the strips strain gauges
were stuck on at every 50 mm along the whole length of each strip (Figure 5).

Fig. 4. Arrangement of electric resistance
strain gauges on lateral surface of beam F [mm]

Fig. 5. Arrangement of electric resistance
strain gauges on strip in beam F [mm]

Strains in the middle cross section of the tested beams were measured by electric-
resistance strain gauges (ERSG) and on the opposite lateral surfaces by means of the
photoelastic coating technique (PCT).

The photoelastic coatings were made of epoxy resin Epidian 5 with an di-n-
phthalate addition, cold hardened with amino hardener Z-1 (100:12.5:10 parts by
weight). The plate was 1.9 mm thick, 400 mm wide and 200 high. The coatings were
glued to the lateral surfaces of the beams in the bending region, using an adhesive with
an aluminium dust addition. A polariscope of V type (model 031 made by Vishay) and
a digital camera were used to record images of (full- and half-order) isochromatic
fringes.

Photoelastic measurements were performed using the field method. Full- and half-
order (N = 0, 1, 2... and N = 0.5, 1.5, 2.5...) isochromatic images were recorded. The
information about the location of the particular isochromatic fringes in the analyzed
cross section was used to determine the strain pattern. The accuracy of estimating the
location of an isochromatic fringe of a given order was ± 0.1 of the isochromatic fringe
order.
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The surface of beam F2 prior to sticking on the photoelastic coating is shown in
Figure 6. A knot, a hole, slots with bonded-in strips, natural cracks and the character-
istic pattern of fibres around the knot are visible.

Fig. 6. Surface of beam F2 before photoelastic coating was stuck on [21]

3. Results

Table 2 shows ultimate force values for beams of series A and F. The increase in
load-bearing capacity for the series F beams relative to the series A beams (unrein-
forced reference beams) was calculated from formulae (1).

%100
,

,, ⋅
−

=Δ
Au

AuFu
u F

FF
F   (1)

where Fu is the mean ultimate force value for a particular beam series.
The increase in the load capacity of the tested elements reinforced with CFRP

strips is significant since it amounted to 21% for the series F beams and to slightly
above 79% for the series D beams [20–21]. The results for series F are very similar,
which should be regarded as exceptional for full-size solid wooden cross sections
(Table 2 and Figure 7).

Table 2. Ultimate force values for series A and F beams
Beam

A1 A2 A3 F1 F2 F3
Ultimate force Fu  [kN] 27.02 30.69 35.01 37.59 36.49 38.08
Mean ultimate force Fu,av  [kN] 30.91 37.39
Increase in load capacity ΔFu  [%] – 21.0

Figure 7 shows static equilibrium paths and, for comparison, a trend line
(determined by the least squares method) for the three tested reference beams. Limit
deflection L/250 for floors and deflection L/167, i.e. increased by 50% for old
(historic) building under repair are represented by vertical lines [22].
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Fig. 7. Equilibrium paths for series F beams
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Figure 8 shows the normal stress pattern in the bottom strip of beam F2 while the
tangential stress in the adhesive-bonded joint is shown in Figure 9. For the series F
beams the maximum stress in the bottom strip was 363 MPa (strain in beam F1 was
registered at a force of 37.2 kN immediately before the beam failed). The degree of
strip cross section use was less than 13%. The tensile strength of the strip is 2800 MPa
(Table 1).

The strains in the central cross sections of the tested beams were calculated on the
basis of the recorded photoelastic images, from this basic relation [23–24]:

( ) ,21 εεε fN ⋅=−   (2)

where:
ε1, ε2 – the principal strains [–],
N – the fringe order [–].

,
2 Kt

f
c ⋅

=
λ

ε   (3)

where:
λ – the wavelength of the white light used during recording [m],
tc – the thickness of the photoelastic coating [m],
K – an optical strain coefficient [–].
Strain isochromatic order fε = 1.501×10–3 was adopted for the calculations.
Figures 10–23 show exemplary images of full-order isochromatic fringes and strain

ε(h) distributions for different loading levels (beam F2).
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Fig. 13. Strain in wood in bent section
– beam F2 (F = 15.1 kN)
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Fig. 19. Strain in wood in bent section
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– beam F2 (F = 34.5 kN)

Fig. 21. Strain in wood in bent section
– beam F2 (F = 34.5 kN)
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An analysis of the isochromatic fringe images and strain ε(h) distributions in beam
F2 (Figures 10–19) showed that:

• the distribution of strain ε(h) in the analyzed cross section is nonlinear and its
disturbances increase with the load and are closely connected with the structure of the
investigated surface,

• the sign of strain ε(h) changes at a distance of ca 95 mm from the lower edge of
the beam and this point shifts only slightly as the load increases,

• the effect of the hole on strain distribution in the tensioned zone is clearly visible,
whereas the knot located at the level of the beam’s theoretical neutral axis generates
a lower strain gradient,

• changes in the ε(h) value in the extreme fibres of the tensioned zone indicate the
influence of the bottom strip: initially ε(h) increases and from the load of 25.0 kN
decreases, which is probably connected with the interference of strain fields generated
by the hole located above, the influence of the strip and the bending of the beam; after
the ultimate force value (36.49 kN) was reached, the strip came unstuck from the
wood.

Thanks to the use of the photoelastic coating the state of strain in the investigated
area of the beam could be qualitatively and quantitatively assessed for the whole
loading range. The comparison of the strain values (calculated on the basis of the
images of isochromatic fringes) for the loads of 34.5 kN (Figure 20) and 36.4 kN
(Figure 22) indicates that when the load of 34.5 kN was exceeded, the beam entered
the stage of failure. This is corroborated by the disproportionately large increase in
strain relative to the increase in force, the nonlinearity of the deflection-force function
and the characteristic patterns of isochromatic fringes around the tips of the cracks
propagating during this stage of loading. For example, Figure 24 shows a pattern of
isochromatic fringes indicating that the loading of the crack’s edges corresponds to
mode I with a small percentage of mode II. Although cracking was not closely ana-
lyzed here, one should note that the obtained information (images of isochromatic
fringes) makes such analysis possible.

Fig. 24. Characteristic pattern of isochromatic fringes at crack’s tip
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In order to quantitatively compare the strain measuring techniques, the relative dif-
ference Δε between the strains measured by strain gauges and the ones determined
using the photoelastic coating technique was calculated for the points corresponding to
the extreme strain gauges (Figure 4). The results for different load levels are compared
in Table 3. The values of Δε were calculated from the formula:

%,100⋅
−

=Δ
g

pg

ε
εε

ε   (4)

where:
εg – strain in the timber, obtained from electrical-resistance strain gauge (ERSG)

measurements,
εp – strain in the timber, obtained from photoelastic measurements (PCT).

Table 3. Comparison of strains in cross section of wood, determined by ERSG measurements
and PCT measurements, for different load levels

Force
F [kN]

Height of beam
h [mm]

Strain (ERSG)
εg [μm/mm]

Strain (PCT)
εp [μm/mm]

Relative differences in strain
Δε [%]

5 759 1037 36.610.1 210 –667 –942 41.2
5 1187 1477 24.415.1 210 –1018 –1013 1.5
5 1636 1724 5.420.1 210 –1353 –1326 2.0
5 2081 2114 1.625.0 210 –1663 –1395 16.1
5 2571 2640 2.730.0 210 –1954 –1580 19.1

34.5 5 3035 2537 16.4
36.4 5 3250 3171 0.2

Fig. 25. Failure mode of beam F2
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The mode of failure of beam F2 is shown in Figure 25. In none of the tested models
the CFRP strip was found to fail. In most cases the beam failed along wood fibres, but
not at the glue-wood boundary.

4. Conclusions

The investigations [21–22] have shown that the photoelastic coating reproduces
well the structure of wood, including its cracks, defects, nail marks and connector
(wooden plugs, screws, nails, etc.) holes.

When a photoelastic coating was stuck on, strain diagram disturbances caused by
tangential stresses could be observed in the discontinuities (notches) in the cross sec-
tion. Electric-resistance extensometry alone does not offer such possibilities since the
measurements have a quasi-pointwise character, whereas the photoelastic coating sup-
plies information from the whole surface.

The differences between the strain values measured by the strain gauges and the
ones determined using the photoelastic method (Table 3) should be ascribed to struc-
tural differences (in wood fibre patterns, concentration of fibres, structural cracks and
inclusions) between the two opposite lateral sides of the beams. It is impossible to
produce a 120×220 mm (the tested beam cross section) wooden beam which would
have an ideally parallel pattern of fibres on both sides.

To sum up, thanks to the use of the photoelastic coating the interaction between
the reinforcing elements and the reinforced structure could be assessed more pre-
cisely. Therefore, this technique can be recommended for measuring strains in the
components of timber structures. The observed differences between the strains
measured by electric-resistance strain gauges and the ones determined by means of
the photoelastic coating should not be considered as discriminating any of the meas-
uring techniques.

It should be noted that the photoelastic coating became unstuck only at an ad-
vanced stage of failure. The results presented in [21] showed that the propagation of
cracks in the wood (accompanying its failure) was reproduced in the characteristic
image of isochromatic fringes observed in the coating and the cracking of the coat-
ing proceeded in the same direction as the failure in the wood. This opens up possi-
bilities of observing the dynamics of the phenomena connected with limit states in
timber structures.
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Zastosowanie metody elastooptycznej w badaniach
drewnianych belek wzmocnionych taśmami CFRP

W pracy przedstawiono wybrane wyniki badań wzmocnionych stuletnich belek stropo-
wych. Do wzmocnienia i odtworzenia nośności drewnianych belek z defektami – korozja bio-
logiczna, inkluzje, skręt włókien, pęknięcia drewna – zastosowano taśmy CFRP (carbon fibre
reinforced polymers). Obok tradycyjnych metod pomiarowych – czujniki elektrooporowe
(ERSG) – do pomiaru odkształceń przekrojów wzmocnionych (zespolonych) zastosowano
metodę elastooptycznej warstwy powierzchniowej (PCT). Dotychczas nie opisano takiej próby
w literaturze przedmiotu. Metoda wymaga przeprowadzenia dalszych badań, mających na celu
weryfikację zgodności z pomiarami metodami tradycyjnymi.
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Scientific surveys regarding the mechanisms of transportation of bed material grains from the scour hole
are undersupplied in literature. This work takes into account the mechanisms behind a local scour, associated
with a bridge pier impact. In order to gather information about the flow field, an appropriately formulated
numerical model of flow was used, the so-called LES (large-eddy simulation). The numerical analyses car-
ried out in this work, examining the mechanisms of the transportation of bed material grains by means of
a suitably formulated flow model, constitute theoretical background for the analysis of velocity fields around
bridge piers. Those analyses will come in handy during hydraulic computations of bridges.
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1. Introduction

Bridge architectural structures are founded in complex and complicated geological-
engineering conditions [16]. Typically, in the subsoil there occur low-bearing soils
(mud aggregates and peats), large, concentrated vertical and horizontal loads trans-
ferred by the bridge supports onto the subsoil, as well as a deep scour of the river bed.
Those circumstances impose the necessity of using deep foundations, following high-
quality subsoil investigation. A designer should take into account rigorously the bed
scour next to the supports. World statistics confirm that about 80% of all bridge failures
were caused by the wash-out of piers (Figure 1). Hence, the proper designing and main-
tenance of the supports – because of that potential threat – are responsible, to a great
extent, for the bridge endurance.

Scouring is a particular form of bed erosion, caused by the impact of hydrodynamic
forces, leading to the river-bed lowering. It occurs both during the freshet as well as in
normal flow conditions. Scour intensity grows with the increase of the flow velocity.
A scour hole is a hollow, brought about by scouring. The scouring process consists of
such components as:

• aggradation (deposition of the sediment that comes from river-bed erosion) and
degradation (lowering of the stream bed level, which results from the deficiency of
sedimentation of the material coming from the river basin upper part);
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• general scour (stream bed lowering along the entire watercourse bed profile or on
its considerable part) – periodical or in course of freshets;

• local scour (the entrainment of bed material next to bridge piers and abutments),
in form of:

a) clear-water scour – when there is no rubble movement from the areas located
higher,

b) live-bed scour – when the rubble is entrained from higher areas to the scour hole
beneath.

Fig. 1. An example of bridge scour [22]

The size of the scour holes depends on the shape of the building that affects the
flow. It is the shape of the buildings that generates a turbulent flow, which, in turn,
conditions the occurrence of the structures that affect bed scour process. Most of the
researchers concentrate on the scour hole shape and its evolution in time, leaving aside
an exact survey of the behaviour of particular bed material grains.

A complex phenomenon of scouring around bridge piers is one of the leading
causes of bridge failure but its mechanisms are still under investigations [10]. Numeri-
cal models are often presently used for turbulent flow investigations [12]. The paper
exemplifies the use of such model to track mass particles in a vicinity of cylindrical
pier. Flow observations reveal that a complex ordered flow pattern (Figure 2) occurs
even in a case of simple geometry hydraulic structure [8].

Models based on Reynolds averaged Navier–Stokes (RANS) equations give as a re-
sult a statistical flow field characteristics and applying them to highly unsteady flow
objects studies is limited [20]. Flow objects are coherent fluid packets that temporarily
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move along similar trajectories. The object size (called often an object scale) can be
much diversified. There are many other works aimed at flow structure description [6],
[17]. In a case of cylindrical pier most often specified objects are: downward flow at the
upstream side of a pier, horseshoe vortex and vertical wake vortices. These vortices are
accompanied by considerable velocity and pressure gradients. Many authors suggest that
the objects participate in bed material transport [3]. The paper gives a brief description
of large-eddy simulation (LES) formulated for present study. Similarly to RANS, the
model is based on Navier–Stokes equations. Although, degrees of freedom (number of
parameters involved) of exact solution are limited by variables filtering [2].

       

         

Fig. 2. Flow pattern around cylindrical pier with a developed scour hole
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To get the exact solution all the space and time scales of the solution must be
taken into account. Then, there is no need to introduce additional assumptions con-
cerning different turbulent scales interaction, i.e. we do not need a turbulence model.
This is called a direct numerical simulation (DNS). It demands great computational
power as the grid must be very fine and accurate higher order numerical schemes
must be used. The computational cost of DNS is proportional to the Reynolds num-
ber cubed (Re3).

The computational domain was discretized by finite volume method [7]. Second
order finite difference schemes were used for equations approximation. Finally, a dis-
crete particle motion model was formulated for spherical mass particles.

Scientific surveys regarding the mechanisms of transportation of bed material grains
from the scour hole are undersupplied in literature. Due to the complex characteristics
of the flow around bridge piers, such observations inflict significant difficulties. This
work takes into account the mechanisms behind a local scour, associated with a bridge
pier impact. In order to gather information about the flow field, an appropriately for-
mulated numerical model of flow was used, the so-called LES (large-eddy simula-
tion). Even for minor average flow velocity values, the alteration of flow direction or
separation may trigger the occurrence of some remarkably durable flow structures,
with characteristic large velocity gradients.

2. Turbulent flow model

The model is based on Navier–Stokes (N-S) equations for incompressible fluid

( )Tp
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∇+∇⋅∇+∇−⋅∇+
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∂ ν

ρ
1=)( .   (1)

Equations (1) are solved only for a certain range of turbulent object scales. To
maintain influence of objects not directly included in the solution a model of their
action is introduced – this is analogous to a turbulence model in RANS. RANS, how-
ever, does not give much information about the flow objects of our interest. In LES we
solve directly large-scale anisotropic turbulence objects that can be represented on
a computational mesh. These are called resolved objects or scales. It is assumed that
the smaller objects, which cannot be represented on a mesh, are more isotropic and
much easier to model. These are subgrid scale objects. The size that separate resolved
and subgrid scales is called a cut-off length and should be placed sufficiently far in the
inertial subrange of turbulent energy spectrum, i.e. where the energy transfer is de-
scribed by the Kolmogorov law. Considering the turbulent energy spectrum the differ-
ence between RANS and LES can be easily depicted (Figure 3). In RANS, practically
all the spectrum is modelled. In LES, by variables filtering procedure [5], an exact
solution for a considerable part of the spectrum is obtained. Therefore, in LES we get
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much more detailed flow information than in RANS. Nevertheless, it should be noted
that LES comes at much bigger computational cost.

Fig. 3. Decomposition of turbulent energy spectra (E(k)) in RANS and LES, k is a wave number
(inverse characteristic length of objects) – adopted from [15]
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The influence of unresolved subgrid scales is expressed by the subgrid model. In
this work the dynamic Smagorinsky model is used in which subgrid scale viscosity
defined by Equation (2) [15]. To obtain the effect of energy transfer between resolved
and unresolved scales an eddy-viscosity concept is formulated and it is assumed that
the subgrid stress tensor τ depends on rate of strain tensor of resolved scales. Smago-
rinsky model coefficient CS is calculated during simulation on the basis of velocity
field of the resolved scales.

Filtered N-S equations together with subgrid model can be written as
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The equations represent conservation law for an infinite small space-time region.
To use them in finite volume method they must be integrated over the control volume
and time (as LES is intrinsically unsteady). In the presented work a collocated, un-
structured mesh is used.
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where:
effν  is a sum of kinematic viscosity ν  and modelled subgrid viscosity SGSν .

Solution of the algebraic equations system for all transported quantities is obtained
by iterative conjugate gradient method Bi-CGSTAB [18]. The pressure matrix is solved
in PISO procedure [9].
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3. Solid particles simulation

A discrete particle motion model is based on equation resulting from Newton's
second law. Considering forces acting on a particle, friction and gravity is taken into
account. The friction force is computed on the basis of friction coefficient CD in the
formulation of Schiller and Nauman [4]. Equation of particle motion reads
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where:
du  is velocity of particle,

u  is fluid velocity in the computational cell (volume) in which the particle resides
at the moment,

τu is particle momentum relaxation time [13].
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where:
p  applies to the discrete phase, i.e. solid particles,

m is a mass,
ρ  is density,
D is particle diameter. Equation (5) is solved independently from fluid equations –

fluid phase is frozen while the new particles positions are solved, then particles are
frozen and their momentum is added as a source term to the momentum equation of
fluid. The decoupling let us avoid stability problems in momentum calculations. Parti-
cles model includes a simple collision hard sphere model [11].

When a collision between two particles occurs, algebraic equation of momentum
conservation is used. Particles velocities after collision are computed on the basis of
coefficient of restitution )/()(/= 1212

bcbcacacbc
n
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nR uuuuuuC ξξξξ −−= (Figure 4b), where nu

is relative particles velocity magnitude before ( bc ) and after collision ( ac ). A change
of colliding particles momentum is
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Fig. 4. Illustration for particles tracking (a) and particles collision schema (b)

    

Fig. 5. Instantaneous velocity stream traces and marker particles around
a cylindrical pier with a scour hole
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Fig. 6. Positions of mass particles generated close to the bed on downstream side
of the scour hole (particles size not to scale)

Fig. 7. Example of particles positions at various levels and times. See text for details

The corrected velocities
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are used as an initial condition for particles motion Equation (5).
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When the particle enters the computational domain its position is found by check-
ing for which cell the condition iii ncx ⋅−=≤ )(  ,0 ββ is met for all walls i (Figure
4a). Then an efficient “from face to face” method is used for particles tracking [13].
Particle doesn’t change the cell if

,
)(
)(    ,1

ip

i
ii t nu

nxc
⋅Δ
⋅−

=> λλ   (8)

and passes across a face if 1<iλ  – then the new particle position is calculated as
tpoldnew Δ+= uxx λ .

   

Fig. 8. Instantaneous vertical component of velocity in scour hole [m/s] – dashed line for negative values

4. Results

The models described above are used for studies of flow and particles motion
around a cylindrical pier with a scour hole. It is not a scouring model at piers. The aim
of computations is to investigate trajectories of particles already lifted from bed – par-
ticles are randomly generated slightly above the bed. Turbulent objects that develop
around a pier: horseshoe vortex and wake vertical vortices are greatly affected by the
existence of a scour hole – all the vortices are much more intense. The previous stud-
ies [14] with marker-particles (i.e. with zero mass) indicated the possible mechanism
of transporting particles out of the scour hole. The markers tended to concentrate in
vertical vortices cores, regions of local vorticity maxima and pressure minima. Once
trapped into a vortex core, markers were transported out of the scour hole (Figure 5).
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Simulations with mass particles do not show such effect. Some of the particles
generated slightly above bed level on downstream side of pier are lifted up as shown
in Figure 7. The results of simulations performed for limited range of mass particle
diameters indicate that particles move rather in a strong jet directed towards the sur-
face. The jet is enclosed by downstream pier wall and vertical wake vortices. The ver-
tical vortices are the main driving force for the jet. Figure 7 shows example particles
positions at various levels above the bed (z = 0.5 is the initial bed level). Arrows show
velocity vectors directions and magnitude. Brightness corresponds with vertical ve-
locity component value.

5. Prevention of bed scour next to bridge piers

The numerical analyses carried out in this work, examining the mechanisms of the
transportation of bed material grains by means of a suitably formulated flow model,
constitute theoretical background for the analysis of velocity fields around bridge piers.
Those analyses will come in handy during hydraulic computations of bridges.

In contemporary designing the authors take into account the occurrence of bed
scour holes at the bridge supports, and so they adjust the pier foundations to the
maximum value of the forecasted declining of the soil around them. The largest gen-
eral and local scour is forecasted, and on that basis the foundations are designed in
such a way so that the bridge piers are stable in case of predicted wash-out.

When determining anticipated scour, one takes into consideration hydraulic condi-
tions that will occur after the bridge crossing is built; it is also indispensable to analyse
the angle of the flow to piers (angle of attack), in order to assess the rate by which the
water flow under the bridge will decrease. Hydraulic computations of bridges include:
determining minimum clear span as well as the expected deepening of the river bed in
the bridge cross-section, local scour at the piers and the height of swell under the
bridge. The minimum clear span is settled on the basis of permissible scour values in
the bridge cross-section. Bridge clear span should be estimated by means of a trial
method, which entails: determining minimum clear span, the settling of the assumed
location of abutments and piers as well as their size, the computation of predicted
scour and swell values, and then, their comparison with the conditions given in [21].
Many computational cases are taken into account, depending on: flow type, scour
proneness of the river bed, the way the rubble progresses. By means of an analysis of
the river bed scour, the size of the bed lowering in a bridge cross-section is deter-
mined, which is expressed by the degree of bridge cross-section scour. That is the
relation of average depth values after and before the river-bed scour, calculated for a
reliable datum of water level. Permissible values of the degree of scour, depending on
the support foundation type, are presented in [21].

Basic knowledge about the flow is provided by diverse measurement techniques.
Another available source includes automatic devices recording local bed scour at the
bridge piers. They work in the manner of stationary echo sounders or they are equipped
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with the sensors that are fastened to elastic tapes, arranged radially around the piers
and embedded at different depths in the river bed. The sensors may as well be attached
to the foundations or to vertical bars submerged in the river bed. By obtaining the
information on the scour progress, it is possible to undertake counteraction at the right
time. Among the methods of preventing the effects of river bed scour at the bridge
piers, the following should be enumerated: applying deep foundations, a suitable loca-
tion and shape of the supports, soil reinforcement, appropriate control of the upper
course of the river (which has the impact on the lower course), as well as the tech-
niques of preventing or reducing erosion and local scour of the river’s banks and bed.
The protection of the river bed against erosion includes the following methods: re-
ducing the hydraulic force that affects the banks and bed of a river, increasing the
resistance of the river’s banks and bed to the hydraulic force impact. The first group
entails the modification of piers (by giving them a more streamlined shape or through
the encasing of a multi-pier frame with a reinforced concrete coating, which will eas-
ily stop the remains or debris carried along by the water; finally, the devices connected
with piers that locally change the stream course – for instance horizontal slabs over the
river bed or cascades constructed across the watercourse. The second group comprises
the protections of the river’s banks and bed (by means of mattresses, rock fillings,
a sheet-pile wall etc.). The watercourse bed scour may be prevented by means of the
drowning of a mattress around the foundation and loading it with a rock filling. In-
stead of the mattress, it is possible to make a rock filling embedded below the water-
course bed level. In some cases, in order to prevent the river bed erosion, it is necessary
to apply regulating hydrotechnical architectural structures, e.g. longitudinal dams, repel-
ling spurs (wing dams), cascades or the reinforcement of the river bed on a long section
below the bridge location. To counteract the erosion of the river’s banks and bed, it is
also possible to use a cribwork in the form of wire-net containers that are filled with
stones (most frequently the container’s size is 2×1×1 m, whereas for the protection
against the bottom scour, smaller ones – 0.5 m thick – are used). The cribwork joined
with wire is a good safeguard for large surfaces of banks or bed. The protection and
reinforcement of a pier based on a shallow foundation that is located on a soft rock
prone to river erosion, may be achieved by means of embedding a reinforced well,
which would surround the foundation, into the rock or by installing piles next to the pier,
and constructing a structure that will transfer loads from the pier onto the well (piles).

An important issue is the question of how to reduce the danger posed to bridge
structures by floods. Basic principles for the designing of new bridges from that per-
spective should be as follows:

• bridge architectural structures should be located at the places where the stream di-
rection during the great water is the same as in the periods of low and average water,

• bridges should not be built at the places where islands, shoals and rubble sedi-
mentation are likely to occur,

• the foundations should be embedded at the depths that are out of the area where
scour affects horizontal and side bearing capacities of the supports,
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• the foundations should be protected against abrasion, which is caused by the bed
material carried by the stream of water,

• shallow foundations should be connected with the surrounding sheet piles, which
minimizes the inclination of piers, in case local bed scour occurs in their proximity,

• the embankment under the driveways to the bridge should be protected against
the river scour.

6. Conclusions

The study was aimed at investigation of mass particles trajectories around a pier.
Simulations for a limited range of mean flow conditions indicate that the particles
trajectories depend on intensity of wake vertical vortices being the main driving force
moving the particles out of the scour hole. These flow objects are highly unsteady and
demand sufficiently detailed modelling approach. LES has been shown to be efficient
way of modelling turbulent flow around submerged objects.

Simulations confirm strong interdependence of horseshoe vortex system and wake
vertical vortices. Wake vortices originate as corner vortices near bed on left and right side
of a pier (Figure 2c). Their character depends on horseshoe vortex strength which in turn
changes much as a scour hole develops. Therefore, it is suggested that all the major flow
structures around a pier (down flow, horseshoe and wake vortices) should be considered as
a one system rather than separate objects. As these flow structures are responsible for
scouring, investigating their mutual influence is a key to counteract their effects.
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Rozmycia i symulowanie przepływu turbulentnego przy filarach mostowych

Brakuje w literaturze opracowań naukowych z zakresu badań mechanizmów transportu zia-
ren materiału dna z dołu rozmycia. Niniejsza pracę należy zaliczyć do prac nowatorskich. Roz-
patruje ona mechanizmy rozmywania lokalnego, związanego z istnieniem filaru mostowego.
Do zdobycia informacji o polu przepływu wykorzystano odpowiednio sformułowany nume-
ryczny model przepływu, tzw. symulację dużych wirów (LES – large-eddy simulation). Prze-
prowadzone w niniejszej pracy analizy numeryczne, badające mechanizmy transportu ziaren
materiału dna z wykorzystaniem odpowiednio sformułowanego numerycznego modelu prze-
pływu, stanowią teoretyczne podstawy analiz pola prędkości wokół filarów mostów. Analizy te
będą pomocne przy obliczeniach hydraulicznych mostów.
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Mechanics of adhesive joints as a plane problem
of the theory of elasticity. Part I: general formulation

P. RAPP
Poznań University of Technology, 5 M. Skłodowskiej-Curie Sq., 60-965 Poznań, Poland.

The subject of the paper is a formulation of a general model for adhesive joints within the frame of
the plane linear theory of elasticity. Adherends can be of varying thickness and made of various aniso-
tropic materials. The adhesive surface can be curvilinear. The shape of the adherends in the joint can be
arbitrary. The adhesive joint can be loaded by shear stresses of any distribution on surfaces of adherends
as well as by normal and shear stresses of any distribution on edges of adherends.

The general case is expressed in a displacements space with a set of four partial differential equations
of the second order and in a stresses space by means of a set of six partial differential equations of the
second order. In a specific case a set of two partial differential equations of the second order was formu-
lated for shear stresses in the adhesive. The boundary conditions allow for a possibility of sharp edges for
adherends.

Keywords: adhesively bonded joints, analytical models, two-dimensional displacement-stress analysis,
anisotropy, linear elasticity

1. Introduction

Analytical methods of a stress calculation in adhesive joints were initiated by
Volkersen in [10], where he formulated and solved a one-dimensional ordinary differ-
ential equation for a shear stress in an axially loaded lap joint. Later a number of pa-
pers describing analytical models of adhesive joints appeared. However, the majority
of them still dealt with generalisations of axially loaded one-dimensional cases.

An analytical description of an adhesive joint is much complicated, if the joint is
loaded by a complex plane system of forces. For such loaded joints two-dimensional
models in the plane of the joint should be formulated.

First analytical models of a two-dimensional lap joint in the joint plane XY, loaded
by constant stresses in the direction X were presented in the papers [1–2]. It was as-
sumed, that the joint is plane, adherends are of a constant thickness and made of iso-
tropic materials. In the analysis it was assumed, that shear stresses τxy in the adherends
were zero. For each adherend a set of two partial differential equations of the second
order with constant coefficients expressed in normal stresses σx and σy was formu-
lated. Shear stresses in the adhesive, constituting a loading of the adherends were de-
termined from simplified equilibrium equations for a plane stress state, where the
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shear stress τxy was neglected. Introduction of further simplifications, i.e. neglecting
a coupling of stresses σx and σy allowed to find two uncoupled ordinary differential
equations, for which an analytical solution was given. Taking the Poisson’s ratio into
account it was shown, that the adherends loaded in the X direction are also deformed
in the Y direction. The consequence of this fact is an appearance in the adhesive the
stress τx in the load direction and the stress τy perpendicular to the load direction.

A more exact two-dimensional model of an adhesive joint based on the equations
of the theory of elasticity was presented in the papers [6–7]. A rectangular joint con-
sisting of one isotropic and one orthotropic adherend was considered. It was assumed,
that the isotropic adherend was loaded on edges by constant normal stresses in the
directions X and Y and a self-equilibrated set of constant shear stresses, while the
orthotropic adherend was not loaded. The analysis was split into two stages: a bi-axial
normal stress loading and a shear stress loading.

When considering the bi-axial normal stress loading the same simplifying assump-
tions were adopted and the same partial differential equations as in the papers [1–2]
were obtained. Due to the simultaneous action of loading in two directions the equa-
tions were not simplified to a set of ordinary differential equations. The set of partial
differential equations was solved using the Fourier series. The shear stresses τx and τy
in the adhesive were calculated from simplified equilibrium equations, where the shear
stress τxy in the adherends was neglected.

Considering the joint loaded by the shear stresses, simplified equilibrium equations
were formulated. The normal stresses σx and σy in the adherends were neglected. The
problem was formulated as a partial differential equation of the second order with
respect to the shear stress τxy in the orthotropic adherend. This equation was solved
using the Fourier series.

Earlier, in a similar way, rectangular and infinite band joints loaded by normal and
shear stresses were analysed in the papers [4–5].

A current overview of analytical models of adhesive joints and their comparison is
given in [3, 8–9].

Analytical models presented in the literature provide simplified solutions, where
some components of the stress state are neglected in joint equilibrium equations. Also
a partial neglecting of the coupling between the variables as well as simple cases of
loading of adhesive joints is featured therein.

The purpose of this paper is a formulation of a general model of an adhesive joint,
based on the plane stress problem of the theory of elasticity, which would be free of
the above mentioned simplifications.

2. General model of a two-dimensional adhesive joint

The subject of the paper is an analysis of adhesive joints consisting of two thin sheet
adherends with an adhesive in between. It is assumed, that the adherends are thin and
have constant or gently varying thickness. The middle surfaces of adherends can be
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plane or slightly curved. The adhesive between the adherends is thin and can have con-
stant or gently varying thickness. Its middle surface can be plane or gently curved. An
adherend is considered as thin if the ratio of its thickness and its dimension parallel to
a direction of loading action is less or equal to 0.1. A gentle variation of the adherend
thickness means, that absolute values of the first derivatives of the functions describ-
ing the thickness of the adherend do not exceed 0.2. The thickness of the adhesive is
measured in the direction normal to its middle surface.

The adhesive joint is modelled as a plane two-dimensional system parallel to the
plane 0XY in the orthogonal system of co-ordinates 0XYZ. Projections of the thin
sheet adherends and the adhesive on the plane 0XY form identical figures of an arbi-
trary shape. Loading of the adhesive joint can consist of forces parallel to the plane
0XY distributed on surfaces and edges of the adherends.

Fig. 1. Layout of an adhesive joint. 1 − adherend 1, 2 − adherend 2, 3 − adhesive

It is assumed, that the effects of bending and torsion of the thin sheet adherends are
of secondary importance and can be neglected in the analysis. The thickness of the
adherend is measured in the direction normal to the plane 0XY. Due to this and to the
assumption, that the adherends are thin and have constant or gently varying thickness
it is further assumed, that stresses across the adherend thickness are constant and form
a plane stress state parallel to the plane 0XY. The thin sheet adherends of the joint are
considered as plane elements parallel to the plane 0XY. The layout of the adhesive
joint is presented in Figure 1. The thickness of the adherends 1 and 2 is described by
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functions g1 = g1(x, y) and g2 = g2(x, y). It is assumed, that they are C1 – continuous
with respect to variables x, y. The functions g1 and g2 can be zero on some sections or
in a neighbourhood of certain points on the adherends edges.

The middle surface of the adhesive is described by a function s = s(x, y), which is
assumed to be C1 – continuous with respect to variables x, y. The adhesive thickness
function t = t(x, y) is positive and is C1 – continuous with respect to variables x, y.

Fig. 2. The stresses in an adhesive

The adhesive is modelled as an isotropic linearly-elastic medium with stresses τ x =
= τ x(x, y), τ y = τ y(x, y) tangent to the adhesive middle surface and a stress σN = σN(x,  y)
normal to the adhesive middle surface. The stress τx acts along the tangent sx parallel
to the plane 0YZ and the stress τ y – along the tangent sy parallel to the plane 0XZ
(Figure 2a). It is assumed, that the stresses in the adhesive are constant across its
thickness. As a result of an action of the shear stresses τ x and τ y in the adhesive, shear
strains occur. They evoke relative displacements of adhesive layers in the directions
tangent to the adhesive middle surface. The stress σN evokes strains in the adhesive,
which are normal to the adhesive middle surface.

From the assumptions, that the adhesive joint is loaded by forces parallel to the
plane 0XY and that the adherends undergo the plane stress state parallel to the plane
0XY it results, that a resultant n = n(x, y) from the stresses τ x, τ y and σN  is parallel to
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the plane 0XY. Components of the stress n parallel to the axes X and Y are denoted as
nx = nx(x, y) and ny = ny(x, y) (Figure 2b). The stresses nx and ny form actions from the
adhesive on the adherends 1 and 2.

The angles φx, φy, α, β, γ and the stresses τx, τy, σN, n, nx, ny presented in Figure 2 are
considered as positive. In particular, from these definitions it results, that angles φx, φy
as the ones between the tangents to the adhesive middle surface s and the plane 0XY
follow from the relations

x
s

x ∂
∂

−=φtg ,      .tg
y
s

y ∂
∂

−=φ   (1)

Fig. 3. Sketch of stresses in the adhesive and notation for displacements of adherends.
1 – adherend 1, 2 – adherend 2, 3 – adhesive cut along the middle surface

Displacements of the adherends 1 and 2 are described by functions u1 = u1(x,  y) and
u2 = u2(x, y) for the direction X and functions υ1 = υ1(x, y) and υ2 = υ2(x, y) for the di-
rection Y. It is assumed, that the functions u1, u2, υ1 and υ2 are C2 – continuous with
respect to variables x, y.

Uniformly distributed loading on external surfaces of the adherends 1 and 2 ex-
pressed in terms of components parallel to the axes X and Y is denoted by q1x =
= q1x(x, y), q2x = q2x(x,  y) and q1y = q1y(x,  y), q2y = q2y(x, y). The loading components
are positive when acting with the orientation of the axes X and Y. The stresses nx, ny in
the adhesive, the external loading q1x, q2x, q1y, q2y and the displacements u1, u, υ, υ2 of
the adherends 1 and 2 are shown in Figure 3.

Let ABC denote a plane tangent to the middle surface s of the adhesive at a point P
with co-ordinates x, y (Figure 2). Axes X ′, Y ′, Z ′ are parallel to the axes X, Y, Z. The
tangent lines sx and sy, along which the stresses τx, τy act, lie in the plane ABC and are
parallel to sections AB and BC, respectively. Hence, their slopes to the plane 0XY are
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ϕx  and ϕy, respectively. A sum of projections of components of the stresses τx, τy and
σN along the axis Z ′ is zero. Hence,

.0sinsincos =−− yyxxN φτφτγσ   (2)

The stresses nx, ny in the adhesive can be expressed as

,coscos ασφτ Nxxxn +=        (3.1)

.coscos βσφτ Nyyyn +=        (3.2)

Calculating σN from (2) and substituting it to (3.1–2) one gets
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The slope of the plane ABC with respect to the axes of the co-ordinate system
0XYZ (Figure 2) is uniquely defined by the angles ϕx, ϕy. Hence, angles α, β and γ
can be expressed in terms of the angles ϕx, ϕy. This yields
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From this the following formulae result
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xφγ
α tg
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Taking advantage of (5), equations (4.1–2) can be written down in the form

( ) ,sintgsintgcos yxyxxxxxn ϕϕτϕϕϕτ ++=        (6.1)

( ).sintgcossintg yyyyxyxyn ϕϕϕτϕϕτ ++=        (6.2)

The shear stresses τx and τy expressed in terms of nx and ny can be obtained from
the equations (6.1–2), and the stress σN – from the formula (2). This yields

,
sinsin1

cossinsin
sinsin1

cos
2222 y

yx

yyx
x

yx

x
x nn

ϕκ
ϕϕϕ

ϕϕ
ϕτ

−
−

−
=        (7.1)

,
sinsin1

cos
sinsin1

cossinsin
2222 y

yx

y
x

yx

xyx
y nn

ϕϕ
ϕ

ϕϕ
ϕϕϕ

τ
−

+
−

−=        (7.2)

( ) .tgtg1sinsin 22
yxyyxxN φφφτφτσ +++=   (8)

3. General equilibrium equations for adherends

The stress state at a point of an adherend k (k = 1, 2) is determined by a normal
stress σkx = σkx(x,  y), σky = σky(x,  y) and shear stresses τkxy = τkxy(x,  y) − Figure 4. It is
assumed, that the functions σkx, σky, τkxy are C2 – continuous with respect to variables x , y.

An element of the adherend k (k = 1, 2) with dimensions dx, dy is loaded by forces
qkx, qky distributed on external surfaces of the adherends, stresses nx and ny in the adhe-
sive and internal forces in adherends acting at cross-sections normal to the plane 0XY.
In the adherend 1 the stresses nx and ny have a negative orientation and in the adher-
end 2 – a positive one, according to the notation presented in Figures 2 and 3. Hence,
the stresses nx and ny acting on the adherend k (k = 1, 2) can be expressed as (–1)knx

and (–1)kny. Integration of the stresses σkx, σky and τkxy across the thickness of the ad-
herend k yields internal normal and shear forces related to the unit length dx or dy of
the rectangle dx × dy

kkxkx gN σ= ,      kkyky gN σ= ,      .kkxykxy gT τ=   (9)

The internal forces and loading of the element of the adhesive joint are shown in
Figure 5. Taking into account the fact, that the stresses (–1)knx, (–1)kny (k = 1, 2) are
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distributed on the surface s(x, y), which is oriented with respect to the axes X and Y by
the angles ϕx, ϕy, equilibrium equations of the element of the adherend k can be ex-
pressed in the form

,0
coscos

sinsin1
)1(

22

=+
−

−+
∂

∂
+

∂
∂

kxx
yx

yxkkxykx qn
y

T
x

N
ϕϕ

ϕϕ
     (10.1)

.0
coscos

sinsin1
)1(

22

=+
−

−+
∂
∂

+
∂
∂

kyy
yx

yxkkykxy qn
y

N
x

T
ϕϕ

ϕϕ
     (10.2)

Fig. 4. The stress state in an adherend Fig. 5. Internal forces and loads acting
on an element of an adherend

Taking advantage of the relations (9) in the Equations (10.1–2), the general equilib-
rium equations for the adherends (k = 1, 2) are obtained

0
coscos

sinsin1
)1(

22

=+
−

−+
∂
∂

+
∂
∂

+
∂

∂
+

∂
∂

kxx
yx

yxkk
kxy

k
kxk

kxy
k

kx qn
y
g

x
gg

y
g

x ϕϕ

ϕϕ
τσ

τσ ,      (11.1)

0
coscos

sinsin1
)1(

22

=+
−

−+
∂
∂

+
∂
∂

+
∂

∂
+

∂

∂
kyy

yx

yxkk
ky

k
kxyk

ky
k

kxy qn
y
g

x
gg

y
g

x ϕϕ

ϕϕ
στ

στ
.      (11.2)



Mechanics of adhesive joints as a plane problem of the theory of elasticity... 89

4. Constitutive equations for adherends

It is assumed, that the adherends 1 and 2 are made of anisotropic materials. Linear
strains in the directions of the axes X and Y are denoted by εkx, εky, respectively, and
γkxy denotes a shear strain for the adherend k (k = 1, 2) in the plane 0XY. With the as-
sumption of the general anisotropy a physical law for the adherends 1 and 2 takes the
form

,131211 kxykkykkxkkx sss γεεσ ++=      (12.1)

,232221 kxykkykkxkky sss γεεσ ++=       (12.2)

.333231 kxykkykkxkkxy sss γεετ ++=       (12.3)

The matrix of the coefficients in the Equations (12.1–3) must be symmetric.
The coefficients sk11 ... in the physical law (12.1–3) for the both adherends are de-

termined with respect to the common axes X and Y of the co-ordinate system 0XY.
Taking into account the Cauchy’s geometric relations
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one can express the constitutive relations for the adherend k (k = 1, 2) in the form
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5. Constitutive equations for adhesive

As a result of an action of shear stresses τx and τy shear strains are evoked in an ad-
hesive. They lead to relative displacements of the adhesive layers in the direction tan-
gent to the adhesive middle surface. The stress σN causes the strain in the adhesive that
is normal to its middle surface. The surfaces of contact between the adhesive and the
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adherends 1 and 2 are called the external layers. Their spacing is equal to the adhesive
thickness t. The relative displacements of the external layers of the adhesive in the
tangent directions sx, sy and in the normal direction N are denoted as Δsx, Δsy and ΔN,
respectively (Figure 6a).

It is assumed, that adhesive material is linearly elastic. Its Young’s and Kirchhoff’s
moduli are denoted as Es and Gs, respectively.

Fig. 6. Relative displacements of the external layers of the adhesive

A physical law for the adhesive with the thickness t takes the form

x
s

sx G
t τ=Δ ,       y

s
sy G

t τ=Δ ,       N
s

N E
t σ=Δ . (15)

Differences of displacements of the adherends 1 and 2 on the surfaces of contact
with the adhesive in the directions X and Y are denoted as (Figure 6b)

Δu = u1 – u2,      Δυ = υ1 – υ2. (16)

In further considerations a relation between the displacements uk and υk of the ad-
herends and the stresses nx and ny in the adhesive is necessary.
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The differences of the displacements Δu and Δυ defined in (16) are equal to a sum
of components of displacements Δsx, Δsy, ΔN in the directions X ′ and Y ′. Hence, ac-
cording to Figure 6a and taking into account, that the directions X ′ and Δsy as well as
Y ′ and Δsx are orthogonal, one gets

,cosΔcosΔΔ αϕ Nxsxu +=      (17.1)

.cosΔcosΔΔ βϕυ Nysy +=      (17.2)

Substitution of (15) into the Equations (17.1–2) and using the notation (16)
yields
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Substituting the stress σN expressed by (8) to the Equations (18.1–2) and using the
formulae (5), one can rewrite the Equations (18.1–2) in the form
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Relations between the displacements uk and υk of the adherends 1 and 2 and the
stresses nx and ny in the adhesive are obtained by an elimination of the shear stresses τx

and τy from the Equations (6.1–2) and (19.1–2). This operation yields
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where:



P. RAPP92

,
)tgtg(1

tgtg1

22

22

yx
s

s

y
s

s
x

u

E
G

E
G

φφ

φφ
δ

++

++
=       ,

)tgtg(1

tgtg1

22

22

yx
s

s

yx
s

s

E
G
E
G

φφ

φφ
δυ

++

++
=       (21.1)

.
)tgtg(1

tgtg1

22
yx

s

s

yx
s

s

uu

E
G

E
G

φφ

φφ
δδ υυ

++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

==       (21.2)

The Equations (20.1–2) are considered as the constitutive equations for the adhesive.

6. General equations expressed in terms of displacements

General equations of a two-dimensional adhesive joint expressed in terms of dis-
placements u1, u2 and υ1, υ2 are obtained from the equilibrium Equations (11.1–2) sub-
stituting the relations (14.1–3) and (20.1–2). After some algebra one gets a set of four
elliptic differential equations of the second order with unknown displacements u1, u2,
υ1 and υ2 for the adherends 1 and 2.
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where k = 1 for the adherend 1 and k = 2 for the adherend 2.
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In the Equations (22.1–2) the following notation was introduced:
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7. Boundary conditions

The adherends 1 and 2 are bounded by circumferential boundary surfaces normal
to the plane 0XY. A width of the boundary surface is equal to the adherend thick-
ness. Let pkx and pky (k = 1, 2) denote stresses acting on the boundary surfaces of the
adherend k. It is assumed, that the stresses pkx and pky are parallel to the axes X and
Y, respectively, and that they are constant across the thickness of the adherends.
These stresses are considered as a known external boundary loading for the adher-
ends in the plane parallel to 0XY. Let P(xp, yp) be an arbitrary point lying at an inter-
section line for the boundary surface and the middle surface of the adherend k. Be-
sides the stresses pkx and pky, also internal stresses σkx, σky, τkxy distributed on the
internal cross-sections orthogonal to the plane 0XY as well as a loading Xk and Yk

distributed on the surface of the adherend k (k = 1, 2), transformed to the plane par-
allel to 0XY (Figure 7), act on an elementary fragment of the adherend k in a neigh-
bourhood of the point P. The element is oriented in the system of axes X ′, Y ′ paral-
lel to X and Y. The external loads are
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where k = 1 for the adherend 1 and k = 2 for the adherend 2.
Equilibrium conditions of the boundary element in the adherend k (k = 1, 2) take

the form
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Fig. 7. The stress state at a boundary point of an adherend

In Figure 7b one can observe, that:

,Δ
Δ

),(),(),(),( 1112
1211 x

x
yxgyxgyxgyxg kk

kk
−

−= (26)

.Δ
Δ

),(),(),(),( 1121
2111 y

y
yxgyxgyxgyxg kk

kk
−

−= (27)

After substitution of the quantities gk (x1, y1) from the formula (26) to the first
components of the Equations (25.1–2), and from the formula (27) to the second com-
ponents of these equations and observing, that Δy/Δs = cosα = l and Δx/Δs = cosβ = m
one gets
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On the base of the equations (28.1–2) separate boundary conditions for the special
edges: “non-sharp” with gk (xp, yp) > 0 and “sharp” with gk (xp, yp) = 0 can be formu-
lated.

If Δx → 0 and Δy → 0, then x1, x2 → xp and y1, y2 → yp. Also

gk (x1, y1), gk (x2, y1), gk (x1, y2) → g (xp, yp), (29)
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Case 1. A non-sharp edge with gk(xp, yp) > 0

Taking the limits Δx → 0, Δy → 0 in the Equations (28.1–2) and considering the
conditions (29) – (32) one gets:
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),,(),()( ppkkyppkkykxy yxgpyxgml =+στ       (33.2)
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Hence, the known boundary conditions for the plane element in the plane state of
stress are obtained

,kxkxykx pml =+τσ      (34.1)

kykykxy pml =+στ .      (34.2)

Substitution of the constitutive Equations (14.1–3) to (34.1–2) yields the final form
of the boundary conditions for the non-sharp edge

,333231

131211

kx
kk

k
k

k
k

k

kk
k

k
k

k
k

pm
xy

us
y

s
x
us

l
xy

us
y

s
x
us

=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

υυ

υυ

      

(35.1)

,232221

333231

ky
kk

k
k

k
k

k

kk
k

k
k

k
k

pm
xy

us
y

s
x
us

l
xy

us
y

s
x
us

=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

υυ

υυ

      

(35.2)

where k = 1 for the adherend 1 and k = 2 for the adherend 2.

Case 2. A sharp edge with gk(xp, yp) = 0

It was assumed, that the adherend thickness could be equal to zero on some sec-
tions or in a neighbourhood of certain points on the adherend edge. If gk(xp, yp) = 0 at
the point (xp, yp), then the real numbers δx > 0 and δy > 0 exist, such that gk(x, y) = 0 for
∈x (xp – δx, xp + δx) and ∈y (yp – δy, yp + δy). Hence, if 0 < Δx < δx and 0 < Δy < δy,

then gk(x1, y1) = gk(x2, y1) = gk(x1, y2) = 0. So the Equations (28.1–2) can be written
down in the form:
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After taking into account, that 
s
yx

Δ
ΔΔ  > 0, the Equations (36.1–2) yield
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Despite that the values gk(x2, y1) and gk(x1, y2) are zero, explicit forms of the differ-
ence quotients of the function gk are kept in the Equations (37.1–2). In the limits Δx → 0,
Δy → 0 and taking into account (31) and (32), from the Equations (37.1–2) the fol-
lowing conditions are obtained
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The final form of the boundary conditions for the sharp edge is determined, when
the constitutive Equations (14.1–3) and the formulae (24) with (20.1–2) and (23) are
substituted to the conditions (38.1–2). After these calculations one gets
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where k = 1 for the adherend 1 and k = 2 for the adherend 2.
It is evident, that the boundary conditions on the sharp edge have the identical form

as the Equations (22.1–2) with gk = 0 substituted. This statement allows for an exten-
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sion of the conditions (39.1–2) as well for the case of an edge, which is sharp at a single
point.

The boundary conditions for both, the non-sharp or sharp edge constitute equilib-
rium conditions, however the type of this equilibrium differs for these two cases.

The boundary conditions for the non-sharp edge express equilibrium of internal
stresses in the adherend and the external stresses, which form a loading of the adher-
end. On the non-sharp edge the Equations (22.1–2) preserve their form, so the not
sharp edge belongs to the domain of definition of the solution of these equations.
On the sharp edge (of zero thickness) stresses are not defined. In this case the bound-
ary conditions express an internal equilibrium of stresses in the adherend at points
with the extreme location at the sharp edge.

The sharp edge causes a singularity. The equations in displacements (22.1–2) are
degenerate and take the form identical to the independently derived boundary condi-
tions (39.1–2). Along the sharp edge the set of definiteness of the displacements
equations is open. Hence, the sharp edge does not belong to the set of definiteness of
the displacements equations for the adherend at which the sharp edge is found. In the
case of the sharp edge the displacements equations are fulfilled in an open set, while
at the sharp edge itself only the boundary conditions hold. The displacements and
the resulting variables are determined on the sharp edge as the unilateral internal
limits.

Static boundary conditions are not sufficient to achieve a uniqueness of a solution
for the Equations (22.1–2). Indeed, if the functions uk(x, y) and υk(x, y) are solutions of
the Equations (22.1–2), then the functions ,),( 0uyyxuk +−θ  and 0),( υθυ ++ xyxk

are also solutions of these equations for arbitrary constants u0 , υ0 , θ. It can be proved
by a mere substitution. The constants u0 and υ0 are interpreted as arbitrary displace-
ments of the joint in the directions of the axes X and Y, while θ is interpreted as
a small rotation of the joint about the origin of the co-ordinates system.

It results from these considerations, that in a class of solutions fulfilling the
Equations (22.1–2) the adhesive joint has three degrees of freedom: two as a free
body with respect to arbitrary displacements along the axes X and Y, and the third
one as a free body with respect to a small rotation about the origin of the co-
ordinates system.

To achieve the uniqueness of the solution for the Equations (22.1–2) kinematic
boundary conditions must be enforced, restraining at least three degrees of freedom in
order to make the adhesive joint stationary.

The points of restraining, which makes the system stationary should be treated as
boundary points.

8. Equations for adherends expressed in terms of stresses

To get the full general analytical formulation it is also purposeful to express the
equations for an adhesive joint in terms of stresses in the adherends.
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Solving the Equations (20.1–2) with respect to u1 – u2 and υ1 – υ2 one gets
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Differentiation of these equations gives differences of strains in the adherends
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A constitutive relation inverse to (12.1–3) can be expressed as

,131211 kxykkykkxkkx rrr τσσε ++=      (42.1)

,232221 kxykkykkxkky rrr τσσε ++=      (42.2)

.333231 kxykkykkxkkxy rrr τσσγ ++=      (42.3)

The stresses nx and ny determined from the Equations (11.1–2) have the form
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General equations for the stresses in the adherends can be found from the Equa-
tions (41.1–2) after substitution of the expressions (42.1–3) and (43.1–2). These equa-
tions read:
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where k = 1, 2. Hence, four Equations (44.1–2) are obtained with six unknown stress
functions σ1x, σ1y, τ1xy, σ2x, σ2y, τ2xy for the adherends 1 and 2. The set of Equations
(44.1–2) must be completed with two equations of strain compatibility
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which for k = 1, 2 take the form (46) below
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after substitution of the relations (42.1–3).
The boundary conditions for the stresses at non-sharp edges are given by the

Equations (34.1–2). A sharp edge does not enter the domain of definition of the so-
lution of the Equations (44.1–2) and (46). The boundary conditions for the stresses
at the sharp edge are obtained from the Equations (44.1–2) with the adherend thick-
ness gk = 0 substituted. Stresses are not defined on the sharp edge. In order to avoid
the singularity the sharp edge must be excluded from the set of definiteness of the
Equations (44.1–2) and (46). At the sharp edge the equations in stresses are fulfilled
in an open set, while on the sharp edge itself only the boundary conditions hold. The
derivatives of stresses present in the boundary conditions must be considered as
unilateral limits of the stress derivatives defined inside the domain of equations
definiteness.

It should be pointed out, that all the quantities in brackets [ ] undergoing differen-
tiation in the Equations (44.1–2) and (46) as well as in the boundary conditions for the
sharp edges are functions of two variables.

Having found the stresses in the adherends, the quantities nx and ny can be calcu-
lated from the formulae (43.1–2) and then the stresses in the adhesive follow from the
formulae (7.1–2) and (8).

9. Equations expressed in terms of stresses in the adhesive

An adhesive joint consisting of thin sheet adherends of a constant thickness g1
and g2 is considered. It is assumed, that the adhesive is plane and has a constant thick-
ness t. The adherends and the adhesive are parallel to the plane 0XY. Assumptions on
loading are the same as in the general case.

It is assumed, that the adherends 1 and 2 are made of the same anisotropic material.
Hence, the physical law (12.1–3) for a material in both adherends 1 and 2 has an iden-
tical form

,131211 xyyxx sss γεεσ ++=      (47.1)

,232221 xyyxy sss γεεσ ++=       (47.2)

.333231 xyyxxy sss γεετ ++=       (47.3)
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The Equations (22.1–2) can be expressed as
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where k = 1 for the adherend 1 and k = 2 for the adherend 2. Subtraction of the Equa-
tions (48.1–2) for k = 2 from the same equations for k = 1 yields
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In the considered case it follows from the formulae (1), that

0== yx φφ .                                                                                                               (50)

Hence, from the Equations (50) and (4) one gets

xxn τ= ,     ,yyn τ= (51)

and from the formula (8) –

0=Nσ .                                                                                                                       (52)

Taking advantage of the formulae (50), one gets from the equations (21.1–2)

1== υδδu ,      .0== uu υυ δδ (53)

Hence, from (53) and the formulae (20.1–2) and (51) one gets

)( 21 uu
t

Gs
x −=τ ,      )( 21 υυτ −=

t
Gs

y .                                                                    (54)

The expressions (54) are the constitutive equations for the adhesive. Using these
equations one may eliminate the displacements u1 – u2 and υ1 – υ2 from the Equations
(49.1–2). In particular, multiplication of the Equations (49.1–2) by Gs /t and substitu-
tion of the expression (54), leads to the equations for the shear stresses τx and τy in the
adhesive
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The boundary condition for the shear stresses τx and τy in the adhesive can be de-
termined from the boundary conditions (35.1–2). In particular, writing down the con-
ditions (35.1–2) for the constitutive relations (47.1–3) and carrying out an analogous
procedure as in the derivation of the Equations (55.1–2), the boundary conditions for
the Equations (55.1–2) expressed in terms of τx and τy are obtained

)( 21333231131211 xx
syxyxyxyx pp

t
Gm

xy
s

y
s

x
sl

xy
s

y
s

x
s −=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂ ττττττττ

,

(56.1)

)( 21232221333231 yy
syxyxyxyx pp

t
Gm

xy
s

y
s

x
sl

xy
s

y
s

x
s −=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂ ττττττττ

(56.2)

10. Discussion and final remarks

The results obtained in this paper can be related to a two-dimensional model of the
adhesive joint based on the equations of the theory of elasticity presented in [6–7]. In
these papers a rectangular joint was considered as made of an isotropic adherend de-
scribed as a substrate s of the thickness gs, to which the second adherend – a patch of
the thickness gp made from an orthotropic material, is attached. It was assumed, that
the substrate was loaded at edges by a constant normal stress in X and Y directions
and by a self-equilibrated system of shear stress. The patch was not loaded. The analy-
sis was split into two stages: the influence of the two-directional normal stress loading
and the influence of the shear stress loading.

In the stage with the two-directional normal stress the shear stress τkxy in the adher-
ends in the OXY plane of the joint was assumed to be zero. For each adherend (k = 1, 2)
a set of two partial differential equations of the second order with constant coefficients
was obtained with the normal stresses σkx and σky. They took the form:
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where Akx, Bkx, Ckx and Aky, Bky, Cky are constants.
The set of second-order equations was transformed to two independent equations

of the fourth order with constant coefficients:
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where Ax, Bx, Cx, Dx  and Ay, By, Cy, Dy are constants, while ,p
xσ p

yσ  denote the normal
stresses in the patch in the directions X and Y. Equations (58.1–2) were solved using
the Fourier series expansion. The shear stress in the adhesive in the plane stress state
was found using the equilibrium equations
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where the shear stress τ1xy in the adherend 1 was neglected.
In the case of the shear stress loading the equilibrium equations for the adherends

were taken in the form:
– for the patch
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– for the substrate
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with the normal stress in the adherends neglected. The problem was transformed to the
second-order equation with the shear stress in the patch p

xyτ :
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where E and F are constants. This equation was solved using the Fourier series expansion.
The analytical models presented in [6–7], which based on the equations of the the-

ory of elasticity were described using incomplete sets of equations, because they in-
clude several simplifications, like neglecting of some stress components in the equa-
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tions, partial neglecting of the coupling between the unknowns, separation of loading
and lack of compatibility conditions for strains.

A complete formulation of the problem in stresses for the adherends presented in
this paper is described by the set of six Equations (44.1–2), (63).

In a particular case, if the adhesive is flat and the adherends made of an orthotropic
material have a constant thickness, one gets

1coscos == yx ϕϕ ,   0=
∂
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=
∂
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y
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x
g kk ,   1== υδδu ,   0== uu υυ δδ .

Then the equations in stresses (44.1−2) can be given in the form:
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and the equations of strain compatibility (46) read:
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The boundary conditions for the stresses are given by Equations (34.1–2), where
k = 1, 2.

After finding the stresses in the adherends the shear stress in the adhesive can be
obtained from Equations (43.1–2), which in this case take the form:
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Displacements in the adherends are found from the Equations (42.1–3) after single
integration. To find the integration constants kinematic boundary conditions must be
formulated.
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The solution of the complete two-dimensional problem is difficult, because first six
Equations (62.1–2), (63) must be solved and then three Equations (42.1–3) must be
integrated. Hence, the formulation in displacements presented in this paper is more
efficient and also more general. It requires solution of four Equations (22.1–2).

In the continuation of this paper several examples of solutions will be discussed.
Also an analysis of the following problems is planned:

– derivation of the displacement and stress states in the adhesive joints from the
equations in displacements for adherends made from orthotropic materials including
cases with a varying thickness and a curved surface of the joint,

– determination of stress state in an adhesive from the equations in stresses for
adherends of a constant thickness,

– reinforcing and reconstruction of damaged elements made of orthotropic mate-
rial using adhesive joints including cases with a varying thickness of adherends and
a curved surface of adhesive.
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Mechanika połączeń klejowych jako płaskie zadanie
teorii sprężystości. Część I: sformułowanie ogólne

Przedmiotem pracy jest sformułowanie ogólnego modelu połączeń klejowych w ramach
płaskiej liniowej teorii sprężystości. Elementy połączenia mogą mieć zmienne grubości i mogą
być wykonane z różnych materiałów anizotropowych. Powierzchnia spoiny może być zakrzy-
wiona. Kształt elementów w płaszczyźnie połączenia może być dowolny. Połączenia klejowe
mogą być obciążone naprężeniami stycznymi dowolnie rozłożonymi na powierzchniach ele-
mentów oraz naprężeniami normalnymi i stycznymi dowolnie rozłożonymi na krawędziach
elementów.

Przypadek ogólny opisano w przemieszczeniach układem czterech równań różniczkowych
cząstkowych rzędu drugiego oraz w naprężeniach układem sześciu równań różniczkowych
cząstkowych rzędu drugiego. W przypadku szczególnym sformułowano układ dwóch równań
różniczkowych cząstkowych rzędu drugiego dla naprężeń stycznych w spoinie. W warunkach
brzegowych uwzględnia się możliwość występowania ostrych krawędzi elementów.
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New non-destructive method for linear polarisation
resistance corrosion rate measurement

Ł. SADOWSKI
Wrocław University of Technology, Wybrzeże Wyspiańskiego 25, 50-370 Wrocław, Poland.

Corrosion of steel reinforcement is one of the most common causes of end service life in reinforced
concrete structures. Corrosion is initiated and propagates unseen beneath the concrete cover and it is
difficult to evaluate the severity of the problem. The most promising electrochemical method is the Linear
Polarisation Resistance method which can provide a direct evaluation of the instantaneous rate of corro-
sion. The main drawback to this technique is that it requires a localized breakout of the concrete cover to
provide an electrical connection to the steel reinforcement. This article describes an adaptation of the LPR
method and the four-point Wenner resistivity method to give an assessment of the rate of steel corrosion
without the requirement for a direct connection to the reinforcement. The measurements have been per-
formed in cooperation with Construction and Infrastructure Group in University of Liverpool.

Keywords: corrosion, concrete, non-destructive testing, resistivity methods

1. Introduction

In recent years corrosion of steel reinforcement become a leading problem facing
the civil  engineering industry. Initiation of corrosion usually happens when the passi-
vating alkaline environment provided to the steel bars by the surrounding concrete is
neutralized by carbonation or disrupted by chloride ingress. Corrosion then propagates
unseen until expansive corrosion products cause cracking or spalling of the concrete
cover. Ongoing corrosion in adjacent uncracked regions will quickly cause further crack-
ing to appear, which may be accelerated by the partial remediation [1].

In the last few years much attention has been given for developing portable meth-
ods for predicting remaining service life of the concrete structures. It is proper to note
that the conventional corrosion assessment examination methods have been the half
cell potential method [2] and the concrete resistivity method [3].

The half-cell potential technique requires breakout and an electrical access to the
steel reinforcement. This should be connected to a high impedance voltmeter and a ref-
erence half-cell, in contact with the surface of the concrete. A number of measure-
ments are taken on a regular grid and contour map of the potentials can be used to iden-
tify regions where corrosion activity is likely. Adjacent areas with a large difference in
potential are indicative of corrosion activity (Figure 1a).
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The concrete resistivity measurement technique was adapted from a method origi-
nally used for geophysical surveying [4]. A low magnitude AC current I at the spacing
of “a” is passed through the concrete using two surface electrodes. A measurement of
the potential V across the third points between the two current electrodes (Figure 1b)
gives an evaluation of the electrical resistivity of the concrete in the surface region
using the following equation:

I
Vaπ2=ρ   (1)

Fig. 1. Existing corrosion methods: a) half cell potential mapping,
b) concrete resistivity measurement

From a measurement of low resistivity, it can be inferred that if reinforcement cor-
rosion is ongoing then the rate of corrosion is likely to be relatively high.

Both methods have their disadvantages and work best when used in combination. It
is proper to note that these methods give an indication of the probability of corrosion
location and corrosion activity and do not give a direct measurement of the instanta-
neous rate of corrosion.

The most popular of the electrochemical techniques is the Linear Polarisation Re-
sistance (LPR) method [5–7]. The LPR method can be used relatively rapidly and
portable instrumentation has been developed [8] suitable for use in the field test. The
principal of LPR is based upon disturbing the corrosion equilibrium on the surface of
steel reinforcing bars by the introduction of a small perturbative DC electrical signal
using a surface counter electrode. The response of the equilibrium to this perturbation is
measured with respect to a reference half-cell on the surface of the concrete (Figure 2).
In the article a small current step ΔI may be used as the perturbative signal and the
resulting potential is ΔE measured and the polarisation resistance Rp is given by:

.
I
ERp Δ

Δ
=   (2)
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The corrosion interface comprises a capacitive double layer of charged ions Cdl on
the surface of the steel bar together with a resistive interface, known as the charge
transfer resistance. The electrical circuit can be used to describe the concrete cover
and the corrosion interface and the charge transfer resistance is obtained by subtract-
ing the concrete cover resistance often described as the solution resistance Rs from the
polarisation resistance (Figure 3). The instantaneous rate of corrosion is proportional
to the charge transfer resistance Rct:

Rct = Rp – Rs.    (3)

Fig. 2. Linear polarization resistance measurement [2] Fig. 3. Randle’s equivalent electrical circuit

On the other side the corrosion current density icorr requires knowledge of the area
of steel being assessed “A” and is given by the Equation (4):

.corr AR
Bi
ct

=   (4)

where a constant B is known as the Stern–Geary constant [9]. Typical values of corro-
sion rates from LPR measurements are presented in Table 1.

Table 1. Typical corrosion rates from LPR measurements [5]
Corrosion classification Corrosion current density icorr Corrosion penetration rate
Passive/very low Up to 0.2 μA/cm2 Up to 2 μm/year
Low/moderate 0.2 μA/cm2 to 0.5 μA/cm2 2 μm/year to 6 μm/year
Moderate/high 0.5μA/cm2 to 1.0 μA/cm2 6 μm/year to 12 μm/year
Very High > 1.0 μA/cm2 > 12 μm/year

This article describes on a novel adaptation of the resistivity and LPR methods to
provide an evaluation of the instantaneous rate of corrosion without the need the con-
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nection to the steel reinforcement and without the need to evaluate the area of pertur-
bation.

2. New corrosion rate assessment method

The proposed method takes advantage of the short-circuit effect of a steel bar on
the resistivity method rather than avoiding it. Galvanostatic resistivity measurements
were taken using a modified electrode array. To ensure the stability of potential during
the 30 sec equilibrium period, the two inner standard resistivity probes were replaced
with two copper-copper sulphate reference electrodes (Figure 4a). A small current
signal was provided by a standard laboratory galvanostat and the resulting change in
potential measures using a high impedance voltmeter (Figure 4b).

If a conventional AC four-point resistivity measurement is taken directly over a steel
bar and oriented parallel to the bar then this will maximize the reduction effect of the
short-circuiting bar on measurement of the apparent resistivity. The AC signal will
pass easily through the capacitance Cdl regardless of whether the surface of the bar is
corroding rapidly (i.e. Rct is small) or if it is corroding slowly always passive (Rct is
large).

Fig. 4. New corrosion assessment method:
a) scheme of the method, b) view of the equipment

If the same four-point resistivity measurement is again taken at the same location
and orientation but using a DC galvanostatic current then the effect of steel bar on the
apparent resistivity measurement would be expected to be influenced by the rate of cor-
rosion on the bar surface. Using a DC signal the current can no longer pass through the
capacitance Cdl, after a suitable equilibrium period.

If Rct is quite small then the apparent resistivity measurement should be close to
a similar measurement taken over the bar using an AC signal. However if Rct is large
then the apparent resistivity should be close to a measurement taken using an AC sig-
nal but when no bar is in the close vicinity.
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3. Experimental procedure

For this pilot study three concrete slab specimens size 400 × 300 × 100 mm were
available, each containing a single short 30 mm diameter steel bar made form steel class
A-III 34GS. Each of these bars had a different concrete cover (10 mm, 20 mm and 30 mm)
and different ongoing corrosion rates. The slabs were made from concrete class C 20/25
and from Portland cement CEM I 42,5R and aggregate of maximum size 5 mm. To facili-
tate the establishment of an electrical connection, each bar was cast with one end protrud-
ing from the concrete (Figure 6). The actual rate of corrosion for each specimen was veri-
fied by taking a LPR measurement within a short time of the resistivity measurements.
The surface counter electrode was sufficiently large that it was assumed that the entire
surface area of the short bar was effectively polarized by the perturbing current step.

Fig. 5. Concrete resistivity measurement system
(CNS Equipment)

Fig. 6. The view of laboratory stand

Position 1Position 2

Fig. 7. Resistivity measurement locations on concrete specimen

Measurements were taken of the AC resistivity (Figure 5) both directly over and re-
mote from the steel bar at Position 1 and Position 2 (Figure 7). The Position 2 should be
located not closer from the edges than the slab thickness. In this test it was exactly 100
mm. These measurements establish the extent of maximum influence of the bar on the
actual concrete resistivity. The galvanostatic DC resistivity measurement was then taken at
Position 1. In this test the suitable equilibrium period was 30 second which is not inde-
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pendent from the size and material of the specimen. It is proper to note that the DC resis-
tivity measurement must be taken exactly over the reinforcement.

4. Results

From the traditional Linear Polarization Resistance corrosion techniques it was
established that two of the bars were corroding actively with corrosion current densi-
ties of 8.47 μA/cm2 and 7.28 μA/cm2. From this it was expected that the surface of the
steel bar would have a relatively small charge transfer resistance Rct and that a DC
measurement of resistivity over the bar should give an apparent resistivity much closer
to the resistivity from an AC resistivity measurement over the bar than that of the ac-
tual concrete resistivity. Figure 8 shows that for both specimens over a small range of
ambient temperatures, ρDC is much closer to ρAC,bar than to ρAC,conc.

Fig. 8. Concrete resistivity measurements on specimens with actively corroding bars:
a) 10 mm cover, icorr = 8.47 μA/cm2, b) 30 mm cover, icorr = 7.28 μA/cm2
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Only one reinforcing bar exhibited a much lower corrosion current density of
icorr = 0.46 μA/cm2 which was close to passivity. For this bar with a cover of 20 mm
a much larger charge transfer resistance Rct on the surface of the steel bar is expected
and the presence of the bar should have small effect on a DC resistivity measurement
(Figure 9). Over the range of ambient temperatures investigated, ρDC is much closer to
ρAC,conc then to ρAC,bar.

Fig. 9. Concrete resistivity measurements on specimen with passive bar,
20 mm cover, icorr = 0.46 μA/cm2

5. Conclusions

This study has shown that the short-circuit influence of an embedded steel bar in
the vicinity of a concrete resistivity measurement can be used to evaluate the rate of
ongoing corrosion on the surface of the bar. The measurements and analyses clearly
shows that new method using a novel DC resistivity approach in conjunction with
conventional AC resistivity measurements offers a means of assessing directly the
instantaneous rate of corrosion using a procedure which is relatively quick and which
does not require breakout of the concrete cover.

Further measurements are required to terminate the combined method limitations.
Especially to validate the method with a range of different bar sizes and a wider range
of covers. In addition concrete with a wider range of resistivity should be investigated.
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Nowa nieniszcząca metoda pomiaru stopnia korozji z użyciem polaryzacji liniowej

Korozja stali zbrojeniowej w betonie jest jedną z głównych przyczyn degradacji konstrukcji
żelbetowych. Korozja jest inicjowana i propagowana przez otulinę zbrojenia i wobec tego jest
niezmiernie trudno ocenić znaczenie tego problemu. Najbardziej obiecującą elektrochemiczną
metodą jest metoda polaryzacji liniowej, za pomocą której można w sposób bezpośredni wyzna-
czyć stopień korozji. Główną wadą metody jest konieczność odkucia betonowej otuliny w celu
zapewnienia elektrycznego dostępu elektrody do zbrojenia. Artykuł opisuje adaptację metody
polaryzacji liniowej wraz z metodą Wennera pomiaru oporności betonu do oceny stopnia korozji
stali zbrojeniowej w betonie bez konieczności bezpośredniego kontaktu ze zbrojeniem. Badania
zostały przeprowadzone przy współpracy z Construction and Infrastructure Group z University of
Liverpool.
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Experimental study on ultimate strength of CK20 steel
cylindrical panels subjected to compressive axial load

M. SHARIATI, M. SEDIGHI, J. SAEMI, H.R. EIPAKCHI, H.R. ALLAHBAKHSH
Mechanical Engineering Faculty, Shahrood University of Technology, Shahrood, P.O. Box 316, I.R., Iran.

In this paper, the effects of the length, sector angle and boundary conditions on the buckling load and post-
buckling behaviour of cylindrical panels have been studied, experimentally. The compressive axial load has
been applied on the panels using servo-hydraulic machine and different boundary conditions have been pre-
pared by suitable fixtures. The presented results can be used in designing of these structures.

Keywords: buckling, post-buckling, cylindrical panels, experimental test

1. Introduction

The shell structures are important in various engineering fields.  The buckling load,
is usually the most criterion in designing of a long thin shell. The classification and
design codes for aircraft, space vehicles, ships, offshore platforms, trains and cold
formed sections are all based mostly on experimental findings and semi empirical
formulas. Based on the classic theories, the buckling load of thin cylindrical shells sub-
ject to uniform axial compression can be predicted using the formula:
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where:
E is the Young’s modulus,
ν is Poisson’s ratio,
t is shell thickness,
R is shell radius.
It is noteworthy that this formula gives an appropriate result for thin shells without

cutouts with L/R ≤  5 [1]. For shells with moderate thickness (R/t < 50), this formula
often overestimates the buckling load, so that buckling occurs before reaching the speci-
fied load. An analytical solution for the buckling load of isotropic and orthotropic panels
has been presented by Timoshenko [2] and Lekhnitskii [3]. Magnucki [4] solved the
Donnell’s equation for buckling of panels with three edges simply supported and one
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edge free subjected to axial load using the Galerkin method. Patel [5] discussed on static
and dynamic stability of panels with the edge harmonic loading. Jiang [6] studied the
buckling of panels subjected to compressive stress using the differential quadrature ele-
ment method. The most experimental works, relates to the buckling of columns and
cylinders. Young [7] presented an experimental investigation of concrete-filled cold-
formed high strength stainless steel tube columns subjected to uniform axial compres-
sion. He studied the effects of the tube shape, plate thickness and concrete strength. The
test results were compared with American and Australian standards. Zhu [8–9] studied
experimentally the failure modes and strengths of aluminium alloy with and without
transverse weld subjected to pure axial compression between fixed ends. The observed
failure modes include yielding and buckling for different lengths. The test results were
compared with some standards for aluminium structures. Liu [10] described a test pro-
cedure on cold-formed stainless steel square hollow sections subjected to pure axial
compression. He concluded that design rules in Australian standard are slightly more
reliable than the design rules in the American and European specifications for performed
tests. Zhang [11] presented experimental and numerical investigations on the perform-
ance of repaired thin-skinned, blade-stiffened composite panels in the post-buckling
range. The results showed that under the present repair scheme, the strength of the panel
can be recovered satisfactorily. Further, the repair scheme was seen capable of restoring
the general load path in the panels as well as the general post-buckling behaviour. Lanzi
[12] reported the results of an experimental investigation on stringer-stiffened panels
made of carbon fabric reinforced plastic. The axial compression tests were performed up
to collapse. Experimental data demonstrated the strength capabilities of the identified
structures to operate in post buckling, allowing further weight savings.

In this paper, the effects of the length, sector angle and different boundary condi-
tions on instability of steel cylindrical panels have been studied experimentally. Also,
the behaviour of the panels in post-buckling path has been shown.

2. Theoretical analysis: buckling of circular cylindrical panels
under axial compression

Consider a simply supported, cylindrical panel of length L, radius R, thickness t
and central angle φ. The panel is under a uniform axial compressive force N as shown
in Figure 1.

Fig. 1. Cylindrical panel under compression
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For the buckling of cylindrical shells, the governing differential equations are given
by
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in which u, v, w are the longitudinal displacement, tangential displacement and radial
displacement, respectively. The displacement functions are, however, given by
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where:
Amn, Bmn, Cmn are the unknown buckling amplitudes. By substituting Equations (5)

to (7) into Equations (2) to (4), we obtain
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Denoting 
L

Rmπβ = . Therefore, the buckling load for a cylindrical panel under

uniform axial compression is given by
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When the angle φ is very small, the buckling behaviour of the cylindrical panel ap-
proaches that of a longitudinally compressed rectangular plate.

3. Experimental study

Some specimens with different lengths and sector angles have been prepared. All
the specimens have been manufactured from one tube branch and so, they have the
same radius and thickness. Figure 2 shows schematic of a panel and the dimensions
have been listed in Table 1. The bucking tests were performed using a servo-hydraulic
machine (INSTRON 8802). This universal test machine includes a hydraulic actuator
for applying axial load on panels and two load cells with capacities 25 kN and 250 kN
for different applications. The test results can be transmitted to a computer.

Fig. 2. Schematic of panels

Table 1. Geometrical and mechanical properties of panels
D = 42 mm Diameter
t = 2 mm Thickness
Θ = 90°, 120°, 180°, 355°, Complete Sector angle
L = 100, 150, 250 mm Length
σy = 340 MPa Yield stress
E = 192 GPa Elasticity modulus
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3.1. Mechanical properties

The mechanical properties of the metal panels have obtained using the tensile test.
The dimensions of tensile test specimens which are cut from the original tube, have
been chosen according to

Fig. 3. Stress-strain diagram

ASTM E8 standard [13]. Figure 3 shows the stress-strain diagram for this material.
The Young's modulus and the yield stress which are listed in Table 1 have been de-
termined from Figure 3.

3.2. Boundary conditions

Two types of fixtures were designed to simulate the simply supported and clamped
boundary conditions for the arc ends. Figure (4a) shows a fixture for simply supported
conditions. It does not have any resistance to rotation. A fixture for clamped boundary
conditions has been shown in Figure (4b). It has a narrow width and a deep slot, so the
zero slope condition at the end, is reasonable.

Fig. 4. a) Simply supported fixture, b) Clamped supported fixture
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4. Buckling test

For the buckling test, an axial load was applied on the panels and by measuring the
axial displacement, the load-displacement diagram was determined. These tests were
performed for different panels with clamped and simply supported boundary condi-
tion. In all tests (except for a complete cylinder), the straight edges are free and the
simple or clamped supports were applied on arc edges of panels. Figure 5 shows the
test setup.

Fig. 5. Experimental test setup

4.1. Length effect

For investigation of the length effect, the buckling test was performed on some pan-
els with the same angle and different lengths. The load-displacement for each panel was
drawn. The peak values stand for the ultimate strength. For example, Figure 6 is the
load – displacement diagrams for different lengths with θ = 90°.

Load-Displacement
(Theta=120)

0

10

20

30

0 0.5 1 1.5 2

Displacement (mm)

Load (kN)

L=100 mm
L=150 mm
L=250 mm

Fig. 6. Load-displacement diagram (θ = 120°, simple supports)
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Figure 7 shows the variation of the buckling load in terms of the length for differ-
ent sector angles. The “Perfect” in Figure 7 stands for a cylinder (θ = 360°). Deforma-
tions of tested panels have been shown in Figure 8. The experimental tests show that
by decreasing the panel length, the buckling load will increase slightly.

Buckling Load - Length
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50 100 150 200 250 300

 Length (mm)

 Load (kN)

Theta=90
Theta=120
Theta=180
Theta=355
Perfect

Fig. 7. Buckling load in terms of the length (for different sector angles)

  

Fig. 8. Buckling mode shapes of panels with the same sector angles and different lengths
(L = 100, 150, 250 mm), a) θ = 90°, b) θ = 120°, c) θ = 180°

4.2. Sector angle effect

Some experimental tests were performed on panels with L = 100 mm and θ = 90°,
120°, 180°, 355°, 360°. In Figure 9, the load-displacement diagrams for panels with
different sector angle have been shown. θ = 355° corresponds to a narrow cutting on
the original tube as Figure 10. Figure 11 shows the variations of the buckling load in
terms of θ for different lengths and Figure 12 shows the buckling stress which it has
been defined easily as the ratio of the load to cross section.
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Load-Displacement
(L=100 mm)
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Fig. 9. Load-displacement diagram (L = 100 mm, simple supports)

Fig. 10. Panel deformation (L = 100 mm, θ = 355°)
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Fig. 11. Variations of buckling load in terms of sector angle for different lengths (simple supports)



Experimental study on ultimate strength of CK20 steel cylindrical panels... 125

Buckling stress - Sector Angle
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Fig. 12. Variations of buckling stress in terms of sector angle for different lengths (simple supports)

4.3. Boundary conditions effect

By changing the boundary conditions from simple to clamped, the degrees of free-
dom of supports reduce and the buckling load will increase. Figures 13–15 show the
load-displacement diagrams for panels (θ = 90°) with different boundary conditions
and the buckling loads have been listed in Table 2.

Load-Displacement
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Fig. 13. Load-displacement diagram for clamped and simple supports (L = 100 mm, θ = 120°)
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Fig. 14. Load-displacement diagram for clamped and simple supports (L = 150 mm, θ = 120°)
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Load-Displacement
(L=250 mm , Theta=120)
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Fig. 15. Load-displacement diagram for clamped and simple supports (L = 250 mm, θ = 120°)

Table 2. Buckling loads (kN) for panels with clamped and simple supports
θ = 90° θ = 120° θ = 180° θ = 355° θ = 360°

Simple Clamped Simple Clamped Simple Clamped Simple Clamped Simple Clamped
L = 100 (mm) 19.85 20.05 26.75 28.18 39.50 39.86 84.09 85.62 106.91 –

L = 150 (mm) 15.98 16.37 25.11 26.04 38.81 39.21 83.39 85.27 105.26 –

L = 250 (mm) 14.95 15.64 24.33 25.58 38.05 38.87 82.89 84.13 103.73 104.48

4.4. Effect of eccentric loading

In this section, the effect of eccentric loading on the buckling behaviour of cylindri-
cal panel under combined loading is studied by emphasizing on panel with similar
length and three sector angle of 90°, 120° and 180°.The results indicate that buckling
load is more sensitivity to eccentric load and only the eccentricity (X = 51 mm) for
specimens (L = 100 mm), will cause the shell to buckle at 0.02 of axial compression
load. Types of fixture were designed to simulate the combined loading and sensitivity
of the cylindrical panel buckling to eccentricity is shown in Figure 16.
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Fig. 16. Schematic of fixtures applying for combined loading and diagram
of sensitivity of the panel buckling load to eccentricity
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5. Confirmation of theoretical results with experimental findings

A curved plate loaded in axial compression buckle in the same manner as a cylin-
der when the plate curvature is large, and when the plate curvature is small it buckles
essentially as a flat plate. Between these two limits there is a transition from one type
of behaviour to the other. When load is applied to the plate it attains a critical load,
after which the load suddenly drops. Upon further axial deformation the load contin-
ues to rise again and reaches a failure load which is greater than the buckling load if
the latter occurs elastically. When the plate buckles plastically, buckling and failure
are coincident.

Fig. 17. Comparison of test data for (L = 150 mm, θ = 90°, 120°, 180°)
with theory for axially compressed panels

Some of test data, for L = 150 mm in three different sector angle (θ = 90°, 120°,
180°), are shown in Figure 17 in terms of Kc and Zb, where
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where:
E is the Young’s modulus,
ν is Poisson’s ratio,
σcr is critical stress,
t is shell thickness,
r is shell radius,
b is width of cylindrical panel.
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The boundary conditions of the panels tested were between simple supports and
clamped. Thus an average of the buckling coefficients of these two limiting cases,
Kpl = 5.7, was used for correlation purposes [14]. The theoretical results are in good
agreement with the experimental tests.

6. Results

By increasing the length, the buckling load decreases slightly (Figure 7). This re-
duction is more for shorter lengths. Also by increasing the sector angle of a panel, the
buckling load increases. It is possible to approximate the buckling load as

,m

n

L
KP θ

= (12)

where k, m, n are constants and they depend on the geometrical and mechanical prop-
erties of panels.

In Figure 8, the deformed shape of the tested panels has been shown. For a short
panel, it is snap-through like. For a long panel, it deforms like the Euler column and
for a cylinder, it has a symmetric deformation. This symmetry can be approved the
uniformity of the applied load. According to Figure 9, the existence of a narrow cut-
ting (θ = 355°) can reduce the buckling load significantly. It may be due to reduction
of the structure stiffness. Also the buckling load capacity of a complete cylinder is
more than of this panel. Figure 10 shows the deformed shape of panel for this case.
From Figures 11–12 the variations of the buckling load with respect to the sector angle
is nearly linear expect for a cylinder. The yielding occurs before buckling in cylinder
with L = 100 mm, so its results did not report in Figures 11–12. The buckling stress is
constant approximately for θ > 90° or the buckling stress is not sensitive to the sector
angle for tested specimens. For clamped boundary conditions, the buckling load is
more than the simple support (Figures 13–15 Table 2). According to Figures 13–15
there is a delay of the buckling load by using simply supported boundary condition
because the support permits the rotation in addition of axial displacement but in the
clamped boundary conditions, there is no rotation or the structure is more restricted than
the later case. In the other word, clamping the boundaries will increase the stiffness of
the structure. The behaviour of the panel in post-buckling path may not be predicted or
by changing the length (Figure 6), sector angle (Figure 9) and boundary conditions
(Figures 13, 14); the behaviour of the panel will change. The results indicate that
buckling load is more sensitivity to eccentric load (Figure 16). Figure 17 shows the
theoretical results are in good agreement with the experimental tests. To check the
repeatability of test, three tests have been performed for a panel with L = 150 mm,
θ = 120°. The load-displacement diagrams have been shown in Figure 18 There is
a good agreement between the results.
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Fig. 18. Load-displacement diagram – test repeatability (L = 150 mm, θ = 120°)

7. Conclusions

The experimental tests show that:
1. By increasing the length of the panels, the bucking load decreases slightly. It is

more important for short panels.
2. For θ > 90°, by increasing the sector angle, the buckling load increases. Ap-

proximately, for tested panels, the buckling stress is not sensitive to the sector angle.
3. Clamped boundary conditions can increase the bucking load but the post-

buckling path does not change significantly.
4. There is a delay of the buckling load by using simply supported boundary condi-

tion because, the simply support permits the rotation in addition of axial displacement
but in the clamped boundary conditions structure is more restricted than the later case.

5. The existence of a longitudinal narrow slot will decrease the buckling load no-
ticeably.

6. The results indicate that buckling load is more sensitivity to eccentric load.
7. The theoretical results are in good agreement with the experimental tests.
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Eksperymentalne badania wytrzymałości elementów cylindrycznych
wykonanych ze stali CK20 poddanych osiowemu ściskaniu

W pracy przedstawiono eksperymentalne wyniki wpływu długości i kąta sektora próbek
oraz warunków brzegowych na siłę wyboczenia oraz ich zachowanie się po wyboczeniu. Ba-
dania przeprowadzono na maszynie hydraulicznej, gdzie za pomocą odpowiednich uchwytów
uzyskano różne warunki brzegowe. Przedstawione wyniki mogą być wykorzystane w projek-
towaniu struktur cylindrycznych.
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Degradation of a geared bearing of a stacker
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Large size rolling-element bearings used for turning of upper body of machines used in open-pit mining
are made in form of single-row or double-row ball bearings. Section diameter of those bearings may be as
large as 20 m and rolling elements have diameters of 100 to 250 mm, while they are under eccentric axial
load from few to tens of MN. Due to low stiffness of supportive elements and its non-uniform presence all
over the circumference of the bearing, the load upon rolling elements is rather unequal in those bearings. The
flow of load stream concentrates in points which are in the areas with highest stiffness. This may be achieved
using modern computer-assisted design tools. The specificity of these custom made machines makes ob-
taining credible data for numeric models possible only by applying analyses of the already existing bearings
and their support structures which had been in operation for many years. Was introduced applied to opinion
of effect of long-lasting exploitation on change of parameters of bearing.

Keywords: degradation of a geared bearing, durability turn bearing, measurement methods

1. Introduction

Maintaining desired durability of the main turn bearing in basic open-cast mining
machinery is a difficult issue. Beside choosing bearing parameters, it is also required
to shape the stiffness of the supporting structures to ensure even distribution of forces
over the rolling elements of the bearing [1–2]. This may be achieved using modern
computer-assisted design tools [3–4]. The specificity of these custom made machines
makes obtaining credible data for numeric models possible only by applying analyses
of the already existing bearings and their support structures which had been in opera-
tion for many years [5–6, 9]. Below, using the example of a stacker bearing, we have
shown the methods used to assess the impact that long-term operation had on bearing
parameters.

2. Object inspected

The object subjected to inspection is a stacker bearing (Figure 1) after many years
in operation. It is a single-row thrust bearing with monolithic “soft” races.  The basic
geometric parameters of this bearing are (Figure 2):

– pitch diameter of the bearing D, 10 m,
– ball diameter dk, 120 mm,
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– number of balls z, 232,
– nominal race radius rB / congruence coefficient w, 63 mm/0.952,
– body mass M, 640 Mg.

Fig. 1. An A2RsB 5000 stacker

The geometry of this bearing is not much different from typical main turn bearings
of basic machinery [1, 5, 9] but unlike most of them, it does not have cages which
maintain an even pitch of the rolling elements and preventing friction between them.
The toothed ring is screwed down to the lower race.

Fig. 2. The bearing of A2RsB 5000 stacker
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Fig. 3. Annular girder of the lower race after disassembly

The running gear of the stacker on an equilateral triangle plane consists of three
main girders joined by three walls, which gives a regular hexagonal support structure.
The direct frame for the bearing is a low annular girder (Figure 3) supported on the
load carrying structure of the running gear in 12 points.

3. Measurement methods and results

The most common bearing degradation assessment method is inspection, which
allows to make an initial assessment of the state of cooperating surfaces.  An inspec-
tion can only show the presence of pitting, larger cracks, which have already surfaced,
determine the size and depth of lost material, and in the case of “soft” bearings the
degree of race rolling. To diagnose the state of the bearing in more detail, more ad-
vanced experimental examination methods must be used [8, 10].

In the bearing in question (Figures 3 and 4), the race was found to be in a good
condition, minor material losses were observed, a lace of minor cracks had formed, the
race was slightly rolled (the material did not “flow out” over the upper edge of the
race) or moderately rolled (a slight outflow). A sample for microstructure assessment
from a cross-section of the bearing was presented in Figure 5. This figure shows the
material structure and form of the material outflows.

The chemical composition of the race material has been identified: C – 0.510%,
Mn – 0.67%, Si – 0.35%, P – 0.005%, S – 0.010%, Cr – 1.04%, Ni – 0.10%, Cu –
0.15%.
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Fig. 4. The surface of the lower race
(visible fracturing and minor material losses, minor rolling)

Fig. 5. Structure and form of the outflows

Fig. 6. Race hardness determined by the Brinell method

Hardness measurements of the race ring were determined. The results of examina-
tion of hardness were presented on Figure 6. The hardness measurements showed that
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hardness in the area near surface of race exceeds the value of 455HB. It confirms that,
stiffness of the supporting structures to ensure even distribution of forces over the
rolling elements of the bearing is different and this cause creation of local plastic
zones with hardness.

The balls had become significantly worn – they showed concave abrasion marks
characteristic of ball blocking, which was caused by the neighbouring rolling balls.
The diameter measurements showed diameter wear of about 0.7 mm and ovalization
of 0.5 mm.

The basic method used while diagnosing surface cracks are the methods based on
magnetic field distortion caused by discontinuity in ferromagnetic materials. The
bearing in question did not show sings of larger cracks. Moreover, the long-term op-
eration caused the contact surface between the race segments to roll to a considerable
depth, so that applying the aforesaid method did not reveal the presence of a crack.

The above methods allowed damage to be detected; however, for the bearing to
work properly, correct geometry of the contact point between the rolling element and
the race must be maintained [6]. An issue largely ignored in literature for this type of
bearings is the alteration of the race geometry after a long-term operation.

The change of the race thickness as a result of rolling and abrasive wear is a crucial
issue for the distribution of loads onto the various rolling elements of the bearing.
A direct measurement is often difficult to perform as the base surface may be damaged
by cages, or by rolling of the race material over the upper race edge and therefore it is
in fact only possible after the disassembly of the segments. Applying ultrasound
methods may be helpful in this case.

Fig. 7. Points of race thickness measurement (“i” measuring point number,
thickness measurement, crack examination, o – race cast)
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Fig. 8. Change of lower race thickness along the bearing circumference

Figure 7 shows the distribution of measuring points on the bearing circumference.
The reading accuracy of 0.5 mm is sufficient for the measurement. In the bearing in
question, a reduction of lower race thickness from 5.3 mm in soft points of the sup-
portive structure to 10 mm in hard points was obtained (Figure 8).

The measurement results correspond to the observations made during rolling in-
spection. Detailed results will be published separately, after wear measurements have
been taken for the upper race as well.

Another geometrical feature necessary for the assessment of the impact of long-term
operation on the phenomena occurring on the contact surface between the rolling ele-
ment and the race is the determination of the race curvature radii and congruence coeffi-
cient. Due to the uneven race wear, both total and local, it is impossible to carry out
these measurements directly in the field. In the case of replaceable bearings, a piece of
the race can be taken out for laboratory examination. In the case of bearings used for
further work or having large rolling elements, it is easier to make a cast of the race.

A number of lower race casts have been made. The points were chosen on the basis
of the analysis of the geometry of the supportive construction and the thickness meas-
urement results. The race shape was converted to a numeric form using a DIGIBOT
scanner with a 1º radial scale and a 1 mm circumferential scale, with the accuracy of
0.01 mm. Figure 9 presents a virtual 3D model of the race cast.

This model allows further analysis of the contact surface. Due to micro-losses, sta-
tistical methods must be applied in order to determine local curvature radii with high
precision. For the bearing in question, curvature radii on the race bottom and walls
(inclination angles of 20, 40 and 60º) were determined. Results for two samples are
given in Figure 10.
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Fig. 9. A virtual model of the race surface

Fig. 10. Curvature radii for two different race sections

Fig. 11. Examples of maximum pressure envelopes along the race section obtained numerically
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It was observed that as a result of loads in force, the congruence coefficient grew to
about 0.967, which means a better fit between the ball and the race.

The largest congruence occurred in points of the heaviest pressure caused by roll-
ing element exceedance, i.e. not on the race bottom but on the race walls. This is in
line with the results of the distribution of the maximum pressure envelopes along the
race section with a 360o rotation of the body obtained from numerical models [4] in
the finite element method for another bearing of the same type. The Figure 11 pre-
sented vectors of forces distribution over the rolling race of the bearing for exploita-
tions conditions.

4. Final conclusions

An analysis of a stacker bearing degradation was carried out using advanced ex-
perimental and computer-assisted methods [7, 9–10]. The bearing under inspection is
in a good technical condition in spite of a long-term operation, both as regards the
state of its surface and its wear and tear. Various measurement methods have been
applied and results corresponding to a numerical simulation by the finite element
method have been obtained [8], which confirms the accuracy of the assumptions made
while constructing virtual models [4–7]. The results of the geometric measurements of
the bearing, in particular those related to the change in congruence coefficient (fitting
between the ball and the race) may be used for construction of numerical models of
bearings and supportive constructions of stackers. It is necessary to take measurements
of machines exposed to larger dynamic loads and larger lateral forces (excavators) in
order to verify the numerical models of bearings exposed to heavy loads.
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Degradacja łożyska wieńcowego zwałowarki

Wielkogabarytowe łożyska toczne obrotu nadwozia maszyn podstawowych górnictwa odkryw-
kowego wykonywane są w postaci jedno- lub dwurzędowych łożysk kulowych. Średnice podziało-
we tych łożysk osiągają nawet 20 m, a elementy toczne mają średnicę od 100 do 250 mm, a prze-
noszą przyłożone mimośrodowo obciążenie osiowe od kilku do kilkudziesięciu MN. Ze
względu na małą sztywność podzespołów wsporczych i jej niejednorodność po obwodzie łoży-
ska obciążenie elementów tocznych jest w tych łożyskach bardzo nierównomierne. Przepływ
strumienia obciążenia koncentruje się w miejscach, które leżą w strefach o większej sztywno-
ści. Ze względu na specyfikę tych, produkowanych jednostkowo maszyn, uzyskanie wiarygod-
nych danych do modeli numerycznych jest możliwe tylko w oparciu o analizę już istniejących
łożysk i ich konstrukcji wsporczych poddanych wieloletniej eksploatacji. W artykule przed-
stawiono metody stosowane do oceny wpływu długotrwałej eksploatacji na zmianę parame-
trów łożyska.
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