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Two different models are suggested to describe the fringe shift obtained from the two beam
interference modulated by the phase variations of transparent objects. The first model of the fringe
shift assumes a linear triangular distribution, while the second model varies as a truncated Gauss
function. The Abel transform enables computation of the refractive index distribution from the
theoretical data of the fringe shift. The fringe shift of the phase object is represented in the harmonic
term of the intensity distribution formula. A computer program is written to plot both of the fringe
shifts of the models described and the corresponding refractive indices of the phase object.
Comparative results are cited in the introduction which are based on an algebraic reconstruction
technique (ART) using two models; one of them has a cosine phantom field which constructs an
asymmetric single peak, while the other model has cosGauss function giving an asymmetric
double-peak phantom. These results are compared with our results, which gives only a single peak
in both cases of linear and quadratic variations, which is convenient for use in optical fibers.
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1. Introduction

Over the years, many different techniques have been used to measure quantitatively
the refractive index distribution of inhomogeneous media [1]–[14]. Among these are
interference methods which have been used for index measurements of thin films [15]
and optical fibers [16]. It has been shown that low-coherence interferometer is best
suited for measurements of thickness and index of refraction [17]. Methods based on
Fourier transform techniques [18] applied to speckle images and other methods based
on Abel transform techniques [19], [20] were used to compute refractive index
distribution from the measurement of light deflection [21], [22]. Also, methods based
on recording projections to measure phase variations in transparent biological 3D
objects have been investigated [23]. The method allowed us to reconstruct, plane by
plane, a map of variation of phase or refractive index making use of transverse
tomography [24], [25]. Recently, Fourier transform techniques and Abel deconvo-
lution are used to analyze a finite fringe holographic interferogram produced by an
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axisymmetric shock wave flow to draw a density map that can be compared with a
numerical model [26]. In general, interferometry, using different techniques including
Mach–Zehnder, Michelson, and holographic interferometers, has been very useful for
providing data against which computational fluid dynamic simulation can be
compared. In particular, holographic interferometry is useful for density measurements
in flow produced by shock waves [27]. Also, a recent publication utilizing an optical
method based on speckle photography to measure the refractive index gradients [28]
of a phase object has been presented. It measures the amount of dislocation of optical
speckles that linearly increases with an increasing refractive index gradient at the
measurement point. The measured refractive index gradients are then converted into
the medium temperature and density information using pertinent physical equations.
An improved technique for determining the change in the refractive index of bulk glass
samples [29] using Michelson interferometer has been presented. This method uses a
Michelson arrangement in order to characterize the induced index change in bulk glass
and optical fiber preforms. Another research work on speckle interferometry was found
to be easier than speckle photography in some applications for direct temperature
measurements [30]. The speckle photography provides only the gradient of refractive
index, while speckle interferometry gives complete information on refractive index
itself. A different method based on mathematical inversion procedure for speckle
photography has been developed using the 2D Fourier transformation. This method is
called Fourier convolution (FC) [31] which is considered to be a simple method but
suffers from reduced reconstruction accuracy when the amount of projection data
is limited.

A research work using algebraic algorithm reconstruction technique (ART) was
developed for the purpose of using tomographic reconstruction of density-gradient
optical projection method. The extended ART [32]–[34] was numerically tested by
using two models; one of them has a cosine phantom field which constructs an
asymmetric single peak while the second model has a cosGauss function which gives
an asymmetric double-peak phantom. The extended ART converts the non-algebraic
speckle projections data into algebraic interferometric projections so that the
conventional ART iteration can proceed. 

In this paper, we propose a simple method to recover 3D refractive index
distribution of phase objects from the local differential fringe shift of the proposed
linear and quadratic models as compared with the above method that uses a digitizing
oscilloscope for recording the optical path difference in order to measure the induced
index changes in the bulk glass [29] using Michelson interferometer. The motivation
for the selection of these models, cited in the abstract, lies in their resemblance with
the fringe shift occurring due to the introduction of phase object, like optical fibers, in
one of the arms of the interferometer. A triangular model is suggested as a linear
variation function, while quadratic shift variation represented by a truncated Gauss
function is set to represent the graded index fibers. Hence, these models are considered
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most suitable to describe phase shifts introduced by optical fibers. In the following
section, a theoretical analysis is presented based on two beam interference considering
monochromatic light for the illumination of the interferometer. A method of
calculation of the refractive index from the fringe shift, based on Abel transform, is
presented followed by a discussion of the results and conclusions.

2. Theoretical analysis

A Michelson arrangement illuminated with monochromatic light is used as a processor,
as shown in Fig. (1). The phase object examined is placed in one of the arms of the
interferometer, while an inclined plane wave, making an angle α with respect to the
normal working as a carrier wave is incident upon the second arm of the interferometer.
In the imaging plane of coordinates (y, z), the recorded intensity is represented by the
well known expression of the two beam interference as follows [35]: 

(1)

where γ = a2(λ) is characteristic of the illumination of the interferometer and β1 =
β2 = TsRsR1 is dependent upon the optical components of the interferometer, namely

I y z,( ) 4γβ1cos
2 Φ0

2
-------

π
λ
---  y αsin–=

Fig. 1. Two-beam interference using monochromatic light, where a phase object of thickness tp is
introduced in the arm containing the mirror M2, α is the oblique angle made between the mirror M1 and
the reflected ray, L is the imaging lens.
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the beam splitter and the mirrors M1, M2 (Rs, Ts – the intensity reflection and
transmission coefficients of the beam splitter, and R1 – the intensity reflection
coefficient of the mirror M1).

The phase variation Φo is related to the optical path difference (OPD) as follows:

(2) 

where tp is thickness of the phase object and n(y) represents the refractive index
variations.

3. Special cases

3.1. Triangular model for the fringe shift

It utilizes an inhomogeneous phase object of constant thickness tp but of variable
refractive index. The variation is represented by a triangular function given by

(3) 

where n0 is the maximum refractive index located at the center of the pattern, y0
represents the shift introduced at a certain depth z, and b  is the width of the triangular
shape. 

From Eq. (1), Eq. (3) and using Eq. (2), we get

(4)

where the phase of the object is calculated for the triangular object as

(5)

In order to compute the fringe shift introduced by the phase object, we firstly
calculate the fringe spacing ∆z from the difference between the maximum intensities
of two consecutive fringes, using Eq. (4), and we obtain [35]

(6)
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In this case, since α is a small angle, then it is rewritten approximately as follows: 

(6a)

Assuming that the shift introduced by the phase object is less than the interfringe
spacing, i.e., ∆s < ∆z, then we can write this inequality, using Eq. (5), and Eq. (6a), as
follows:

(7)

where n(y) is given by Eq. (3). 
Since mλ = OPD, for constructive interference, m is the order of interference.

Hence, substituting Eq. (3) in the above equation, the fringe shift may be calculated
from the equation of straight line fringes modulated by a triangular fringe shift as
follows :

(8)

If this condition is fulfilled n0 y0 = b (e.g., take n0 = 1.5 and b/y0 = 1.5). In this case,
Eq. (8) becomes

(9)

Consequently, the differential fringe shift becomes

(10) 

It represents an exact triangular function for the cited model and ∆z is the interfringe
spacing calculated from Eq. (6a).

3.2. Truncated Gauss model for the fringe shift

A truncated Gauss function is assumed to represent the fringe shift obtained in the case
of two-beam interference. Inhomogeneous phase object of a refractive index n(y) is
assumed to have a shifted Gauss function, i.e., 
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(11) 

where w is the truncation width, β is a parameter, and y0 represents the shift introduced
at a certain depth z. 

In this case, the intensity distribution is similar to Eq. (4) except that the refractive
index is represented by Eq. (11). The straight-line fringes are modulated by Gauss
function that represents the shift proposed as

,(12) 

The shift y0 may be compensated with the linear shift tp leading to an exact Gauss
distribution for the fringe shift. Hence, the differential fringe shift is calculated as:

(13)

4. Method of calculation

The back substitution simulation process is used to map the refractive index
distribution from the fringe shifts described by the above models. The solution is based
on the Abel transformation of the theoretical data. It is commode to cite that the
transformation occurs in the same plane at a certain depth z. The Abel integral is
explicitly written as [19]

(14) 

where no is the refractive index outside the inhomogeneous phase object. This integral
is approximated by the following summation:

(15) 

The matrix of coefficients Ψ( j, i) is reduced to the matrix summation of elements [10]
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(16) 

where h is the zone width.
The phase object of maximum radius Rm is subdivided into N zones of width h,

where    The
recursive solution of the system of equations for fj is written as follows [10]:

(17) 

If the index values fi (with j + 1 < i < N) are known, one may determine the values fj.
Hence, for arbitrary value of r = (y, z) one may derive the refractive index n by linear
interpolation between the respective values n(rj) and n(rj – 1) if rj > r > rj – 1. Hence,

Ψ j i,( ) 2h i
2

j 1–( )2–[ ]
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Fig. 2. Straight line interference fringes modulated by a triangular fringe shift corresponding the triangular
model.
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Fig. 3. Magnified portion of eight fringes modulated by triangular
fringe shift ∆s.
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the solution of the system of linear equations represented by Eq. (17) is obtained using
the back-substitution and Gauss elimination processes [36].

5. Results and discussion

A computer program is constructed to map the straight line fringes obtained from the
two beam interference modulated by the fringe shifts models. The first model of
triangular function is plotted as in Fig. 2, where 35 fringes are plotted and the
modulation of triangular function is centered symmetrically around the z-axis.
A magnified portion of only eight fringes is plotted in Fig. 3. The corresponding
refractive index computed from Eq. (10) and Eq. (17) is shown in Fig. 4. It is shown
that the refractive index distribution of the phase object has the same shape as the
proposed model of triangular distribution. The second model of truncated Gauss
function is plotted as in Fig. 5 and the corresponding refractive index distribution
computed from Eq. (13) and Eq. (17) is plotted as in Fig. 6 which is in good agreement
with the Gauss model. It follows from these results that the distribution of the refractive
indices is similar to the aforementioned models of the fringe shifts and this may be
attributed to the imaging interference manipulation. The theoretical curves of
refractive indices are computed from the back-substitution simulation process as stated
in the section on the method of calculation. The method of extraction of the 3D
refractive index of phase objects from the fringe shift may be extended to process
arbitrary refractive indices. In this case, sampling process is needed to obtain the
required data from the fringe shift. The phase encoding of the object is obtained from
the fringe shift by using the interferometer of Michelson.

Fig. 4. Theoretical contour mapping of the refractive index vs. Cartesian coordinate y using a triangular
input function.
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The interferometer is illuminated by a carrier wave that emitted from a He-Ne laser
beam.This carrier wave interferes with the object wave that carries amplitude and phase
information. Hence, phase encoding is formed in the imaging plane.

6. Conclusions

We have suggested two different models to describe the fringe shifts introduced in the
phase term appearing in the intensity distribution formula. In this study, a two-beam

Fig. 6. Theoretical contour mapping of the refractive index using a truncated Gauss function for the input
data.
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Fig. 5. Truncated Gauss function used as an input data for the processing of the refractive index distribution
of the phase object.
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interference is considered using the arrangement of Michelson introducing the phase
object in one of the arms of the interferometer. A triangular and Gauss profiles are
chosen as models to represent the fringe shifts that resemble the phase shift produced
by optical fibers. The corresponding refractive indices are computed from the
differential fringe shifts of the models using back-substitution process. The potential
of the research presented is suitable to process arbitrary phase objects. It requires 2D
sampling of the object to put it in a matrix form. Then, the back-substitution process
is applied to this arbitrary phase object. Also, this simulation process may be extended
to process the coloured-phase objects using polychromatic light for the illumination
of the interferometer. This polychromatic spatially coherent light may be obtained by
mixing He-Ne laser and argon ion laser for the illumination of the interferometer [37].
One of the advantages of this method as compared with computer tomography (CT)
based on Fourier convolution (FC) of images lies in its relative simplicity, since the
former method needs only a simple Abel transformation, while the FC method requires
a lot of time for computing the CT as it requires computing Fourier transformations
and convolution operations. 
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