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Multi-photon processes 
considering magnetic sublevels coherence

G.G. ADONTS, E.G. KANETSYAN
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The exact nonlinear theory of polarized radiation propagation is derived in adiabatic following
approximation taking into account different populations and coherence of atom magnetic sublevels.
The nonlinear refractive indices for circularly and linearly polarized waves in the resonant media
with arbitrary angular moments j1 and j2 are obtained. The exact formulas for rotation angle of
polarization ellipse axes (without deformation) are found on the sample of medium with j1 = 1/2
and j2 = 3/2. The influence of coherence of magnetic sublevels on multi-photon phenomena and
their specific behavior is analyzed. 
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1. Introduction

The propagation of polarized intense laser radiation through a resonant medium is
accompanied by specific nonlinear polarization effects, such as atomic sublevels
splitting and shift, rotation of the polarization ellipse, etc. These phenomena are
theoretically studied in different media in [1]–[4]. The general case of two-level system
with arbitrary angular moments is considered in [3], [4]. Induced by an intense wave
change of the weak probe signal polarization was first observed in alkali metal vapors
in [5], [6]. This phenomenon, in particular, becomes the base of the high-resolution
spectroscopy [7]. Interaction of quasi-monochromatic pulsed laser radiation with a
two-level medium is considered in detail in monograph [8], nonlinear magnetic and
optical coherence in coupled two-level systems is investigated in paper [9]. In paper
[10], polarization dynamics of femtosecond pulses propagating in air is studied through
computer simulation. A rich variety of dynamics that depends on the initial polarization
state and power of the pulse is found. Taking into account magnetic sublevels
coherence leads to the occurrence of new interference effects, particularly, to the
population trapping [11]–[17]. For systems with degenerate levels, the consideration
of saturation effects becomes essential since, in consequence of the optical pump of
atoms, the saturation of absorption can occur at anomalously small radiation
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intensities. For studying nonlinear interference phenomena in the field of polarized
radiation, the adiabatic following approximation is very promising. 

In this paper, the influence of different populations and coherence of magnetic
sublevels on the propagation of radiation through the two-level resonant medium is
explored. Section 2 discusses the propagation of polarized radiation through the
medium with arbitrary angular moments j1 and j2. In Sec. 3, the influence of coherence
on multi-photon effects is investigated on the sample of medium with j1 = 1/2 and
j2 = 3/2.

2. Propagation of polarized radiation 
through the resonant medium 
with arbitrary angular moments j1 and j2
Let us consider a two-level atom in the field of monochromatic wave specified by the
vector potential

 (1) 

Later on, it is convenient to turn to the circular components of waves A± = Ax ± iAy.
We assume that the atom has in the ground state an energy E1 and an angular
momentum j1, while in the excited state – E2 and j2, respectively. For an isolated atom
these states are degenerate with respect to the projection of the angular momentum. 

The Hamiltonian operator  of the atom in the field of radiation in dipole
approximation is

(2)

where  denotes the Hamiltonian operator of the isolated atom,  is the electric
-dipole-moment operator, E is the electric-field vector, and

We find the solution of the Schrödinger equation
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in the form
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where ψm, Φµ are the wave functions of the isolated atom (m = ± j1, ±( j1 – 1), µ = ± j2,
±( j2 – 1)), ε = (ω0 – ω) is the resonance detuning.

The field of radiation (1) takes off the degeneracy of atomic levels and thereby,
leads to the occurrence of m = 2j1 + 1 new quasi-stationary wave functions of the
system “atom + field”. For a circularly polarized wave  these wave
functions are 

(5)

where d is the reduced dipole matrix element, and the following notations are
introduced:

Assuming that the states Ψm are coherent prior to the switching on of the
interaction, the wave function of the entire system “atom + field” will be determined
in the form
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(6)

The coefficients γm are found from the initial data.
Substituting the average dipole momentum of the atom  into the

Maxwell equation for the slowly varying amplitudes A1–, we find the refractive index
of the medium for circularly polarized wave 

(7) 

where  (n is the density of the atoms). We have introduced the
density matrix  of coherent states Ψm and 

According to the selection rules of angular momentum projections,  is
proportional to  therefore for linearly polarized wave it is convenient to select
the x axis along the wave propagation, while the z axis is along the polarization. The
similar evaluations lead to the refractive index

 (8)

Comparing expressions (7) and (8) with corresponding formulae in papers [3], [4],
one can see that the consideration of non-uniform population of magnetic sublevels
modifies the expressions of refractive indices. In particular case, when states Ψm are
incoherent and uniformly populated, i.e.,  the results obtained
coincide with the results of the above-mentioned papers [3], [4].
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We will study the influence of non-uniform population of magnetic sublevels
coherence on the resonant rotation of polarization ellipse by the example of the medium
with angular moments j1 = 1/2 and j2 = 3/2. For this case, it is convenient to represent
the density matrix ρmn through Stock’s parameters η1, η2, η3

(9)

where the diagonal element η3 defines the different populations of magnetic sublevels
in the field of the wave, whereas the non-diagonal elements η1, η2 characterize the
coherence of magnetic sublevels.

The refractive indices for circularly components of elliptically polarized wave A±
are:

 (10)

Formula (10) describes rotation of the axes of the polarization ellipse (without
deformation) through an angle γ, where

 (11)

For simplicity, let us assume that the atom prior to the interaction was in the ground
state 1. If states ψ±1/2 are incoherent prior to the switching on of the interaction (η1 =
η2 = η3 = 0) the rotation angle is 
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For atoms with initial state ψ+1/2 (η3 = 1)

 (13)

It follows from (11) that in the general case of coherent states, the linearly polarized
light (µ1 = µ2 = µ) is exposed to polarization plane rotation. Whereas for incoherent
states, as is obvious from (12), the linear polarization is not changed through the
propagation. 

3. Propagation of two waves through the system
with j1 = 1/2 and j2 = 3/2

To study multi-photon effects such as Rayleigh scattering, three-photon scattering,
parametric four-photon interaction, let us assume that along with the intense
monochromatic wave (1) a weak quasi-monochromatic wave A2(z, t) propagates in the
medium. We have for its potential:

 (14)

It is convenient for further consideration to expand the field A2(z, t) to the Fourier
integral 

(15)

where ω' is the carrier frequency of weak quasi-monochromatic wave.
In order to exclude four-wave parametric interaction that takes place when the

intense and weak waves propagate in the same direction, let us first assume that they
propagate in opposite directions. The equations of propagation for slowly varying
amplitudes of F(z, ω' ) in the field of strong linearly polarized along the x axes (µ1 =
µ2 = µ), wave (1) are:
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where

(17)

 is the pole of Stark shifted one-photon absorption, 
 is the pole of three-photon scattering process. D1 and D1/4 charac-

terize the refractive indices of x and y polarization components of weak wave in
Eq. (16), the terms ±D1η1/2 define the energy transfer from one weak wave component
to the other one.

By solving the set of Eq. (16), the following solutions are obtained:

(18)

It is obvious from expressions obtained that under the action of intense field the energy
is transferred periodically from one weak wave component of polarization to the other.
This is caused by magnetic levels coherence and disappears when η1 = 0.

The equations of propagation for Fourier components F(z, ω' ) of wave (15) in the
case when the strong and the weak waves propagate in the same direction (the intense
wave is linearly polarized along the axes x, µ1 = µ2 = µ) are given by 
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where:

(20)

 is the pole of Stark shifted Rayleigh elastic scattering.

As is seen from (19), x and y components of weak radiation polarizations are
connected in the medium at the frequency ω' as well as 2ω – ω'. This process is due
to the non-degenerate four-photon parametric interaction of the waves and is charac-
terized by the nonlinear coefficient D2. Atom absorbs two photons of x polarization
of the intense wave and emits two photons with different polarizations of weak wave
transferring from one coherent state to the other.

The coefficient D3 defines the Rayleigh elastic scattering when an atom absorbs a
photon of the strong field polarized along the x axis and emits a photon of the weak
field polarized along the y axis. It must be noted that in the case of incoherent magnetic
sublevels [1] when η1 = 0, this process does not take place in the adiabatic following
approximation.

4. Summary

The complicated interferential polarization effects in resonant medium associated with
atom magnetic sublevels coherence are found. 

From the nonlinear refractive indices for circularly and linearly polarized waves
in the resonant media with arbitrary angular moments j1 and j2 obtained, it follows
that the linearly polarized light undergoes a rotation of the plane of polarization,
whereas in the case of uniformly populated and incoherent states, the linear
polarization remains unchanged in the process of propagation.

The allowance for different populations of the magnetic sublevels and their
coherence as well changes the behavior of multi-photon processes. So, for the
counterpropagating waves the common three-photon scattering is accomplished by
energy transfer from one polarization component of the weak wave to the other. 

For the propagation of intense and weak waves in the same direction, the picture
of nondegenerate four photon parametric interaction changes simultaneously with the
occurrence of the other process. As distinct from incoherent case, the elastic Rayleigh
scattering occurs. The atom absorbs a photon of strong wave with the x polarization
and emits a photon of the weak wave with the y polarization transferring from one
coherent state to the other. 
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