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Analysis of luminous flux transfer 
through a conical ring-core light guide
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Analysis of luminous flux transfer through a conical ring-core light guide is presented. Three
optical guides of this kind are the main elements of an original instrument for measurement of the
luminance distribution in the field of view constructed by the authors. It was found that in the case
of the output surface perpendicular to the symmetry axis of the cone having vertical angles greater
than 50° the luminous flux is not transmitted through this kind of light guide. The conical output
surface with great vertical angle considerably improves the process of transfering the luminous
flux through a conical ring-core light guide. Replacing a flat outlet surface of the light guide by a
conical one makes the transferred luminous flux more uniform to some extent. 
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1. Introduction

The measuring instrument for the assessment of the luminance distribution in the field
of view developed by the authors [1], [2] requires the use of ring-core light guides in
the form of cones with appropriately selected vertical angle and numerical aperture.
The properties of transferring the luminous flux by such a light guide are generally not
known [3], [4]. Hence the need to carry out an analysis of the physical phenomena
occurring in such an element.

In the discussion below the following simplifying assumptions have been made:
1. The following dimensions of a light guide of a step-index profile are known

(Fig. 1): the length l, the diameter of the outlet front d, half of the vertical angle of the
cone α, refractive indices of the core n1 and cladding n2. 

2. The source of light illuminating from a great distance the inlet surface of the
light guide is of small dimensions and it produces constant intensity of lighting E in
the plane perpendicular to the direction of propagation. 

3. The symmetry axis of the light guide coincides with the z axis of the rectangular
system of coordinates with its origin at 0.

4. The dimensions of the core and the cladding are many times greater than the
wavelength. The values of the refractive indices n1 and n2 are constant (also as
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functions of wavelength). The losses caused by reflection between the core and the
cladding and the losses caused by absorption of the luminous flux in the core of
the light guide are neglected. The luminous flux penetrating from the core to the
cladding is absorbed or leaves the guide through the side surface. 

5. The elementary luminous flux is represented by a vector. The element of the
surface interacting with this vector is flat both when the luminous flux passes through
the core-cladding boundary and when the flux is reflected.

6. The elementary luminous fluxes, leaving the light guide are summed.
7. Because of the waveguide symmetry with respect to the plane yz, it is enough

to analyse only the operation of half of the inlet surface.

2. Entrance of the luminous flux into the core

The inlet surface of the light guide was divided into k zones (rings) of equal width.
The width sz1 of a single zone, measured in the plane xy, is equal to (Fig. 2):

(1)

where: r1 = l tanα – inner radius of the cone base, r2 = r1 + ro cos2α – outer radius of
the cone base, kZ – number of zones, α – half of the vertical angle of the conical light
guide. The real width of the zone sz2 will be greater:

(2)
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Fig. 1. Idea of the conical light guide with cylindrical core.
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The mean radius rsr of all the zones is equal to

Half of the circumference of the circle with the radius rsr was divided into such a
number of m elements that the length of the elementary field did not differ greatly from
its width

(3)

It is convient to present the division of the front surface into elements in the polar
coordinate system.

The radius rk of the k-th zone is equal to:

for i = 1 to k, (4) 

for j = 1 to m  (5)

where szK = π/m denotes increment of the angle λK corresponding to the mean length
of the elementary surface.

The coordinates of the point K, being the centre of the elementary surface in the
system of the rectangular coordinates, are determined from the dependences:

(6)
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Fig. 2. Projection of the input surface of a light guide on the plane xy.
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The field of the elementary surface ∆SK on which the point K  is situated, is equal to

 (7)

The elementary luminous flux ∆ΦK hits the elementary surface at the angle αK.
This angle can be determined when the vectors of the incident flux P and the normal NK
to the element of the inlet surface are known: p(–sinϕ, 0, cosϕ) – unit vector,
NK(–sinα cos λK, –sinα sin λK, cosα ) – unit vector, normal to the surface at the
point K.

The cosine of the angle αK between these vectors is equal to:

(8)

Thus, the elementary luminous flux ∆ΦK = |P|, incident on the elementary surface is:

(9)

If the illuminance E is given in luxes and the field of the elementary surface in square
metres, then the luminous flux will be determined in lumens. 

Knowing the angle αK, at which the luminous flux hits the inlet surface of the light
guide, we can determine the refractive angle βK. Since sinβK = (sinαK)/n1 hence
βK = arcsin[(sinαK)/n1].

Now, we can determine Fresnel’s coefficient of reflection:

(10)

The elementary luminous flux ∆ΦT, which will enter the core of the light guide is
equal to:

(11)

3. Propagation of the luminous flux in the light guide

The vector equation of the refractive beam [2] has the form:

Thus the components of the vector T, representing the elementary luminous flux after
refraction are as follows:
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 (12) 

3.1. Case A

The vector T, running from the point K, meets the outer surface of the conical light
guide at the point A (Fig. 1). In order to determine the position of this point the
system of equations must be solved: 

i)  – equations for the straight line passing

through the point K and parallel to the vector T,

ii)  – equation of the cone (outer surface). 

As a result of substitution a quadratic equation is obtained:

(13) 

from which zA is determined, and next the other coordinates of the point A:

 (14)
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Point A lies in the plane z = zA, at the angular distance λA with respect to the axis x

 (15)

The vector NA (unit) normal to the outer cone surface at the point A is as follows:

On this basis we can determine the angle of incidence σA of the beam T on the boundary
of the cone:

Knowing the angle σA we can judge from the following condition whether at the point
under consideration the total internal reflection of the luminous flux occurs:

 (16)

If condition (16) is not satisfied, the luminous flux penetrates into the cladding and
(according to the assumptions) is absorbed; otherwise, the light beam S is reflected.
The vector equation of the reflected luminous flux has the form [2]: 

The components of the vector S are as follows:

 (17)

The value of the reflected luminous flux |S| is equal to the incident flux |T| since the
reflection is without loss.

Equations of the straight line passing through the point A and parallel to the vector S

with the equation of the cone, describing the inner surface of the light guide core:
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form a system of equations, whose solution is reduced to quadratic equation:

(18)

The coordinate zD of the point D, determined in this way allows the other coordinates
to be calculated:

 (19)

If the coordinate zD satisfies the inequality zD < l (where l is the length of the light
guide), then the flux S falls on the inner surface of the light guide core, and in the
opposite case – on the outlet surface of the guide. At the point D we must also determine
the angle of incidence σD and make sure that the total internal reflection occurs. For
this purpose the components of the normal vector ND at the point D of the inner surface
of the cone are determined  and, similarly as
Eq. (15), λD = arctan(yD /xD).

The angle of incidence σD of the flux at the point D can be determined from the
dependence:

(20)

Next, the condition of the reflection of the luminous flux from inner surface of the core
is checked:

If the above condition is satisfied, the elementary flux S will be reflected again from
the cladding surface. In the opposite case it will be lost.
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3.2. Case B

In the case of large values of the inclination angles ϕ of the incident ray P, the ray T
(after refraction) may hit the point B of the inner surface of the core (Fig. 3). On the
basis of the system of equations:

we can write the quadratic equation:

(21)

from which the coordinate zB of the point B is determined and next the other
coordinates:
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Fig. 3. Path of a light ray for great incidence angle ϕ.
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If zD < l, the angle of incidence σB must be determined in order to judge whether the
internal reflections occur. The normal vector NB at the point B has the components

 and λB = arctan(yB /xB), thus 

(22) 

If the inequality is satisfied, the elementary flux is reflected at the
point B.

The components of the vector of reflected S are as follows:

with the vector S coincident with the straight line described by the equations:

which intersects the outer surface of the core  at the
point C. 

The solution of the above system of equations consists in determining the elements
of the quadratic equation:
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(24)

where: λC = arctan(yC /xC) – angular distance of the coordinate x of the point C in the
plane z = zC,  – unit vector normal to the surface
of the cone at point C.

If the inequality  is satisfied, the total internal reflection occurs and
the elementary luminous flux S under dismission becomes reflected again.

In this way, the phenomenon of reflection of the elementary luminous flux can
occur many times along the light guide.

3.3. Case C

If the angle of incidence ϕ of the elementary light beam T is close to the angle α of
the cone generator (Fig. 1) or coincides with it, then the luminous flux, after refraction,
can hit directly the outlet surface of the light guide (Fig. 4). In this case, the coordinate
zB of the point B lies outside the exit surface of the cone (zB > l), and the light beam
hits this surface at the point W.

The conical light guide output surface can be hit by fluxes running directly from
the point K (Fig. 4) and by fluxes refracted at arbitrary points (A, D, B, C) considered
above, as well as at other points of repeated reflections. The components of the incident
vector (T or S) enable the angle of incidence βw to be determined:

or (25)
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Fig. 4. Path of light beam when ϕ ≈ α.
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If n1sinβW > 1, the inside reflection does not occur and the output angle αW of the
ray from the light guide is αW = arcsin(n1sinβW).

On the output surface there will take place Fresnel’s reflection which is defined
by the reflection coefficient ρW

(26)

The elementary luminous flux is as follows:

 (27)

Summing up all elementary luminous fluxes ∆ΦW, we can determine the value of the
luminous flux Φϕ incident from the direction ϕ, which has passed through the light
guide

 (28)

The sum obtained must be doubled, since only half of the inlet surface is analysed
(item 7 of the adopted simplifying assumptions). 

4. Results of calculations

In the calculations the following data were assumed: l = 20 mm – length of the conical
cylindrical core light guide, d = 4 mm – diameter of the outlet surface of the light guide,
n1 = 1.5400 – refractive index of the core, n2 = 1.5181 – refractive index of the cladding,
E = 1000 lx – intensity of light.

The angle of inclination of the generator of the cone with respect to the symmetry
axis of the light guide was changed in a step-like mode beginning from α0 = 15° to
45°, every 5°. The entrance surface of the conical ring-core light guide was divided
into k = 14 zones so that the width of the zone sz2 was from 0.101 mm at the angle 45°
to 0.134 mm for the angle α0 = 15°, and the number of elementary light beams was
from 794 948 to 239 232, respectively. The calculation results of the value of the
luminous flux Φϕ as a function of the angle ϕ is shown in Fig. 5. At the angle α0 = 50°
the luminous flux does not pass trough the light guide.

Computer simulation of a conical, ring-core light guide with steady inclination of
the generator α0 = 30° and changing diameter of the outlet front was also carried out.
The diameter do do was changed step-like from 0.5 to 10 mm. The calculation results
are shown in Fig. 6. 

As follows from Fig. 5, at a high value of the angle α0 (above 35°), the angle of
incidence βW of elementary beams on the output surface of the light guide is rather
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high and many beams are subjected to complete inner reflection. These elementary
light beams do not leave the light guide.

In order to reduce the probability of complete inner reflection on the outlet surface
of the light guide that surface in the form of a cone was considered (Fig. 7). In this
way, the angles of incidence βW of the beams hitting the outlet surface become
considerably reduced and the probability of complete inner reflection is smaller.
However, for this outlet shape, the vector W leaving the outlet surface, may hit it again.
This was not taken into consideration. 

The coordinates of the point W can be determined solving the system of equations:
(xW – x)/Sx = (yW – y)/Sy = (zW – z)/Sz – equations defining the straight line passing
through the point with the coordinates x, y, z, parallel to the vector S,

 – equation of the outlet surface of the light guide. Thus,
we must calculate the roots of the quadratic equation

(29)
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 (30)

At the point W we define the unit vector NW normal to the outlet surface of the light
guide:  where λW = arctan(yW /xW).

The angle between the vectors S and NW is the angle of incidence of the beam on
the output surface of the light guide (βW):

If the inequality n1sinβW < 1 is not satisfied, there takes place the total internal
reflection on the output surface of the light guide.

Next, the angle αW of the escape of the elementary light beam from the light guide
αW = arcsin(n1sinβW) and the coefficient ρW Fresnel’s reflections occurring on the
outlet surface (relation (26)) are determined. The components of vector W leaving the
light guide are defined by the dependences:
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This vector intersects the outlet surface at the point P (Fig. 7) with the coordinates:

Point P must lie on the surface of the circle with the diameter do, which is a condition
of the escape of elementary luminous flux from the light guide:

The dependences (27) and (28) in this case are also valid. 
The results of calculations of the values of the luminous flux Φϕ, passing through

the light guide with conical output surface, as a function of the angle of incidence ϕ
are presented in Fig. 8. 

5. Conclusions

This work can be sumarized as follows:
1. In the case of the outlet surface perpendicular to the symmetry axis of the cone

having greater vertical angles than 50° the luminous flux does not pass the analysed
light guide (Fig. 5). The output of conical shape with great vertical angle (90° – α)
considerably improves the transfer of the luminous flux through a conical ring-core
light guide (Fig. 8).

2. The luminous flux passing through the light guide increases with an the increase
of the outlet diameter d since the outlet surface is greater.

3. Although a constant value lighting (1000 lx) in the plane perpendicular to the
direction of the course of the luminous flux incident on the light guide has been
assumed, the value of the luminous flux leaving the light guide is not steady and
depends on the incidence angle ϕ. At greater vertical angles (α ≥ 40°) the value of the
luminous flux decreases to 10% of the maximal value. Replacing a flat outlet surface
of the light guide by a conical one makes the transferred luminous flux more uniform
to some extent.

Wx n1Sx S n1 βWcos αWcos–( ) αosin λWcos+ 1 ρw–( ),=

Wy n1Sy S n1 βWcos αWcos–( ) αosin λWcos+ 1 ρW–( ),=

Wz n1Sz S n1 βWcos αWcos–( ) αocos– 1 ρW–( ).=

xP

Wx

Wz
--------- l l2 zW–+( ) xW,+= yP

Wy

Wz
--------- l l2 zW–+( ) yW .+=

xP
2

yP
2+

do

2
-------.≤
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4. Comparing the results of calculations displayed in Figs. 5 and 8 shows that for
conical entrance surface it is possible to use conical light guides with greater vertical
angles.
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