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Random lasers are unique systems where lasing occurs due to repetitive scattering in a disordered
nanostructure. Previous descriptions of random lasing are numerous, however a full time-dependent
theory that describes the introduction of gain directly from first principles is lacking in the literature.
This paper will present an analytic self-consistent time-dependent theory of random lasing that con-
tains the results from the well-known steady-state ab initio laser theory. This theory can also describe
a number of temporal phenomena that have been observed in previous experiments and facilitates
the incorporation of these devices into their envisioned practical applications.
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1. Introduction

Since the prediction of random lasing by LETOKHOV in 1968 [1], random lasers have
been extensively studied for their rich physics and potential applications as unique light
sources [2, 3]. Random lasing has been observed in a number of systems, the most com-
mon of these systems being solid-state disordered semiconductor nanostructures, zinc
oxide (ZnO) nanoparticles, and suspensions of gainless scatterers submersed in laser
dyes [2–4]. In all of these systems, lasing arises due to repeated scattering of light with-
in the disordered system, where the scattered light causes stimulated emission at or
between successive scattering events [2, 4].

A number of classical and semiclassical theoretical models have been developed to
describe laser emission from disordered media with optical gain. While conventional la-
ser theory is based on the Maxwell–Bloch equations, early models of random lasing were
based entirely on Maxwell’s equations. One example is the work of BURIN et al. [5];
their model approximated closely packed ZnO nanoparticles as a collection of dipole
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oscillators. Although the model bears resemblance to the Maxwell–Bloch equations,
gain was introduced phenomenologically and the model could not adequately describe
the coupling between the carrier dynamics and the electromagnetic field in the disor-
dered system. The situation was improved somewhat in [6–8]; the results in these pa-
pers are derived from an inhomogeneous wave equation model for the electric field
that describes the spatial and temporal distribution of the electromagnetic field. Their
model is time-dependent and has closer resemblance to the results from conventional
laser theory, but the introduction of time-dependent gain was introduced phenomeno-
logically and suffers from the same inadequacies as the model in [5].

The theory would later advance to a description of the lasing field in terms of de-
viations from the quasimodes of the disordered system [2, 9, 10]. DEYCH [9] calculated
the deviation of a lasing mode from the eigenmodes of the system due to the introduc-
tion of optical gain in a disordered system. This work, as well as the work of TURECI

et al. [10], would later be used to develop a steady-state solution to the Maxwell–Bloch
equations in any geometry. This solution is known as steady-state ab initio laser theory
(SALT) [11–14].

Although SALT is currently the best analytical theory to describe multimodal lasing
in any geometry, it has a critical drawback that limits its application in real systems.
SALT is a purely steady-state theory and it cannot be applied to systems subjected to
time-dependent pumping. This drawback motivates the development of a self-consist-
ent lasing theory that can describe the temporal dynamics of a random laser while pre-
serving the well-known deviation of the lasing modes from the eigenmodes of the
passive system.

This paper will present a fully self-consistent time-dependent theory for lasing in ran-
dom media that is derived directly from the Maxwell–Bloch equations. The SALT solu-
tion and its associated results are only a subset of the theory derived in this paper. This
theory has the capability to describe the temporal dynamics of the system as it ap-
proaches the SALT solution under constant pumping. The theory in this paper is not
limited to constant pumping and would be immediately applicable to pulsed pump
sources. As the theory is time-dependent and treats the introduction of gain directly
from first principles, it also has the capability to describe the relaxation oscillations [8]
and emission fluctuations [15] that have been observed in ZnO random lasers under
pumping with nanosecond UV laser pulses.

2. The time-dependent random lasing equations

The Maxwell–Bloch equations form the basis of semiclassical laser theory and have
been widely applied to conventional and random lasers; a full derivation of these equa-
tions can be found in [16]. Beginning from the Maxwell–Bloch equations for an N-level
lasing medium, one can derive a nonlinear homogeneous wave equation that forms the
cornerstone of SALT. The derivation of the SALT solution for the lasing field requires
the following known inputs: the complex dielectric function ε(r) of the cavity at the
position vector r, the polarization dephasing rate of the gain medium γp, the relaxation
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rate of the inverted population γa, the atomic transition frequency ka, and the dipole
matrix element of the lasing transition g. The geometry of the system must also be well
-defined [11–14]. SALT is also applicable in N-level lasing media, provided there is
only a single radiative transition frequency that defines the peak of the gain spectrum
in the system [14]. Certain approximations were made regarding the rate constants de-
scribing the temporal behavior of the polarization and population inversion. Specifi-
cally, γp ~ 10–2ka to 10–3ka and γa ~ 10–5ka to 10–7ka; these values are typical for many
narrowband semiconducting lasing materials [11]. These values for the rate constants
also ensure that the induced polarization field closely follows the lasing field in time
and the electromagnetic field is able to rise above the lasing threshold and acquire
optical gain before population inversion is depleted via non-radiative relaxation pro-
cesses. Under these mild assumptions, the SALT solution describes the steady state
behavior in the random system and allows a full calculation of the spatial distribution
of the lasing field, the lasing mode emission frequencies, their thresholds, and the emis-
sion spectrum as a function of pump strength.

In addition to the restrictions on the values of the material parameters, the SALT
solution assumes the inversion always in the steady state under constant (i.e. time-in-
dependent) pumping. This is known within SALT formalism as the stationary inversion
approximation. This approximation allows the rate equation for population inversion
and the nonlinear wave equation to be decoupled, and the steady state solution of the
electromagnetic field can be found by a straightforward solution algorithm. The original
solution ansatz for the electromagnetic field assumed a multi-periodic time dependence
with constant amplitude coefficients, i.e. the population inversion and electromagnetic
field were in the steady state under constant pumping [11–14]. Thus the original man-
ifestation of SALT is unable to describe the transition to the steady state solution under
constant pumping. Even under constant pumping, relaxation oscillations can cause the
field amplitude to fluctuate as the system transitions to the steady state [8].

SALT can be extended into the time domain by ignoring the stationary inversion
approximation and allowing the inversion equation to have explicit time dependence.
This allows for the treatment of random lasing systems under pulsed pumping, ac-
counts for non-radiative relaxation of inverted population over time, and depletion of
population inversion via stimulated emission. It will be shown that the time dependence
of the field amplitude can be determined under the slowly-varying envelope approxi-
mation (SVEA). This approximation, along with the time-varying inversion, allows
one to describe the full temporal behavior of the system. The principle results are a pair
of coupled nonlinear rate equations for the electromagnetic field and population inver-
sion that bear remarkable resemblance to the semiclassical rate equations in conven-
tional lasers [2, 6, 7].

2.1. Spatial and temporal behavior of the lasing field

The analysis presented here will proceed under the same restrictions regarding material
parameters that are relevant in SALT. However, we will allow the inversion and field
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equations to retain their explicit time-dependence. The Maxwell–Bloch equations for
a 2 level system in Gaussian units are [11–13, 16]

(1a)

(1b)

(1c)

where E is the electric field, P is the polarization, D is the population inversion, and
D0(r, t) is the pumping term. Although (1a) refers to TM modes, the extension to
TE modes is elementary [11–13]. We will begin with a solution ansatz similar to SALT,
and we will allow the lasing modes to have time-varying amplitudes. The series solu-
tion ansatz for the lasing modes and polarization are

(2a)

(2b)

The functions Φμ(r) and Pμ (r) are the spatial and temporal distribution of the electric
field and polarization, respectively.

The solution to Eqs. (1a)–(1c) will proceed via substitution of (2a) and (2b) into (1b),
followed by application of SVEA. The SVEA is used in conventional laser physics to
reduce the derivatives of envelope functions to lower order [17]. In the following equa-
tions and in the remainder of the paper, dots will be used to denote partial derivatives
with respect to time. Let A(x, t) be an envelope function in space and time for the
amplitude of an oscillating function exp(–iω0t); SVEA can be used to approximate the
derivatives of A(x, t)exp(–iω0t) as the following:
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Equation (4) can be solved term-by-term and the summation can be dropped. Taking
the middle and right hand side of (4), the common term exp(–ikμt) is canceled and we
can solve for Pμ:

(5)

Equation (5) can now be used in (1a) to derive the wave equation for the lasing modes.
Equation (1a) can also be solved term-by-term for each value of the mode index μ.
Applying (1a) to each term in (2a) and (2b), cancelling the common factor exp(–ikμt),
and invoking (3b) for the second derivatives yields the following result:

(6)

In addition to applying SVEA, we have ignored products of first derivatives in (6)
as these terms will evolve on the same time scale as the second derivative terms. Equa-
tion (6) can be normalized by defining an inversion scale
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and a field scale

 (8)

The right hand side of (6) can be normalized using Dc:

(9)

Equation (10) is the time-dependent wave equation for the lasing modes. This equa-
tion can be solved by expanding each lasing mode in the appropriate orthonormal basis
[9–14] with time-dependent coefficients:
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serves the well-established connection between the passive eigenmodes and the lasing
modes in disordered systems with optical gain [2, 9, 10, 18]. Let C define the region
of space that encompasses the disordered system, and let ε0 be the dielectric function
for  the φm(r) functions are the solutions to

(11a)

(11b)

The non-Hermitian boundary condition at the emitting interface (also referred to
as the last scattering surface S ) is 

(12)

This condition conserves photon flux emitted from the cavity [11–13, 18]. The solution
is composed of purely outgoing waves under the condition 

(13)

where n is the dimensionality of the system. This boundary condition defines a disper-
sion relation between a kμ and km, e.g., km ≡ km(kμ) [11–13]. One can show that each
km is complex with Im(km) < 0 [11–13]. As the boundary condition typically results in
a transcendental equation with an infinite number of solutions, one can only choose
N states from the entire set. A thorough discussion on the selection of states from the
basis set can be found in [12, 13].

Equations (11a) and (11b) under the imposed non-Hermitian boundary condition de-
fine a Sturm–Liouville problem in n dimensions. It is elementary to show that an ortho-
normality condition must exist in the system. The inhomogeneous dielectric function ε(r)
is a weight function for the system and defines the orthonormality condition for the basis
states [19]:

(14)

These φm(r) functions are known as the uniform constant-flux (UCF) states within
SALT [12, 13].

2.2. The time-dependent inversion

Now that a suitable basis expansion has been established for each mode, the inversion
equation can be solved. The inversion equation in (1c) is an inhomogeneous first order
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PDE that can be quickly using variation of parameters. First, the solution ansatz in (2a)
and (2b) must be substituted into (1c). With the result from (5), this yields

(15)

where 

(16)

is the gain spectrum with width ~ γp. The cross terms  in the second sum are
negligible and the same result must hold under SVEA [11–13]. After normalizing the
remaining sum by Ec the result in (15) reduces to

(17)
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electric field nonlinearly and these equations form a pair of coupled nonlinear equa-
tions describing the full dynamics of the electric field and population inversion in space
and time. We also see that each above-threshold lasing mode is coupled to the remaining
above-threshold lasing modes via the F (r, t) term. This term embodies the nonlinear
multimode interactions between spatially overlapping lasing modes and is of infinite
order in general. In particular, the F(r, t) term also depletes the inversion and prevents
divergence of the lasing solution (i.e. gain saturation).
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2.3. The time-dependent field amplitude coefficients

The remaining task is to derive the equations describing the set of basis amplitudes 
for each mode. Substitution of the solution ansatz (10) into (9) yields:

(20)

Let ε(r) be divided into its real and imaginary components in space, i.e.

ε(r) = εR(r) + iεI(r) (21)

Gathering the differential operators with imaginary coefficients [2, 7] yields the fol-
lowing:
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where

(26)

and [M ], [ε] are square matrices; the elements of [M ] are 
and the elements of [ε] are  where n denotes the row number and m denotes
the column number. Each of the terms in [ε] and [M] are complex in general, thus [a]
may also be complex. The matrix [a] contains the phase for each of the basis states and
the terms collectively determine the temporal phase of a lasing mode. Because [ε] and
[M ] are both square matrices, we can solve for d[a]/dt:

(27)

It should be noted that Eq. (27) is valid iff [ε] is non-singular. In order to guarantee
this condition, the basis states should be indexed such that 

(28)

Due to the fact that the φm functions differ in their spatial phases and growth rates, the
off-diagonal terms are likely to be smaller than the diagonal terms. Therefore, [ε] is
likely to have a unique inverse that can be used to invert (25) into (27). Even in the
case that [ε] is singular, Eq. (25) can always be used to determine [a] self-consistently,
albeit at greater computational expense.

Upon examining (27), we see that each  function is coupled to the remaining
 due to the inherent disorder in the system. Equation (27) has the same form

as the field amplitude equation in [2, 6, 7]. However, the field amplitude equation in
[2, 6, 7] describes the introduction of gain into the system phenomenologically via rate
equations for excited charge carriers and describes the effect of the dielectric function
in terms of a spatial average. In contrast, Eq. (27) explicitly describes the temporal
behavior for each of the lasing modes in terms of the population inversion and its cou-
pling to the electric field. Clearly, (27) is a more complete description of the dynamic
behavior of the system. Given a set of basis states {φm(r)} from Eq. (11), Eqs. (19)
and (27) collectively describe the full temporal dynamics of a random laser. These
equations can be solved using finite difference methods by selecting the appropriate
initial condition on [a].

Finally, the lasing mode emission frequencies can be determined from the steady
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cy kμ determines a set of {φm(r)} that are used to compute (19) and (27). The {φm(r)}
basis is time-independent  and the coupling to the external environment via the
non-Hermitian boundary condition defines the relationship between the emission fre-
quencies and the set of complex basis state eigenvalues {km}. As it is well-known that
the system geometry determines the allowed lasing modes in random lasers [2, 9–14,
18, 20], one can certainly use the steady state solution algorithm to determine the emis-
sion frequencies. In the UCF basis, the allowed kμ values define a real-valued threshold;
these threshold values are the solution to a threshold matrix equation (see (24) and (29)
in [12]). Even above threshold, the lasing mode frequencies do not change; however,
the thresholds for higher order modes may change as the pump power increases due to
nonlinear multimodal interactions (i.e. hole-burning, gain competition, etc.) as the pump
power increases [11–13].

2.4. The time-dependent power output

The power output from the system can now be derived directly from Eq. (9) under SVEA.
Here will follow the same steps used in [12] to calculate the power output while paying
special attention to the time-dependent terms. We will show that the equation for the
power output from each mode reduces to the time-dependent analogue of Eq. (11) in [12];
the results have the same form, however the result here has a modification term due
to the time-dependence of the field amplitude.

Distributing the fraction on the right-hand side of (9), invoking the narrowband ap-
proximation 

(29)

and multiplying by  yields the following:
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yields the following:
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The power output from the disordered system is a surface integral over the last scat-
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kμ∀

kμ Γμ ka kμ–( )
γp

------------------------------------- 0 kμ∀≈

Φμ*

Φμ*∇2Φμ ε r( ) 2ikμΦμ*Φμ
· kμ

2 Φμ
2+ 

 +

2Γμ kμ D· Φμ
2 DΦμ

*Φμ
·

+ 
 – iΓμ kμ

2 D Φμ
2+=

1
2i

--------Im Φμ*∇2Φμ 
  ε r( )kμ

d
dt

-------- Φμ
2 εI r( )kμ

2 Φμ
2+ +

iΓμ kμD d
dt

-------- Φμ
2 Γμ k μ

2 D Φμ
2+=



Self-consistent theory of random lasing in the time-domain 657

(32)

The first integral on the left-hand side of (32) is 4πPμ, where Pμ is the power output
for mode kμ [12]. Here we have an equation for Pμ in terms of the first derivatives of
the field intensity. Notice that the harmonic terms in (2a) are suppressed, and we can
apply SVEA in (32) to suppress the first derivative terms proportional to ikμ. We now
have the result

(33)

Cancelling the common term kμ and solving for Pμ yields the time-dependent equation
for the power output:

(34)

2.5. Reduction to the SALT solution

If we take  and  the integrals in Eq. (19) are trivial
to evaluate. The exponential terms cancel and (19) reduces to the steady-state solution
for the population inversion:
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This is identical to the steady-state inversion equation from SALT [11–13]. Taking
   and reduces Eq. (9) to the steady-state wave

-equation from SALT 
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Finally, invoking the orthogonality condition for the basis states (14) we generate
the threshold matrix equation that defines a system of equations for the steady-state
amplitude coefficients. Multiplying (37) by  integrating, and solving for  yields:

(38)

This is the steady-state threshold matrix equation in the UCF basis from SALT the-
ory (Eq. (29) in [12]). The theory developed in Section 2 reduces to the well-known
steady-state solution of SALT as one would expect.

3. Conclusions

The results in Eqs. (19), (27), and (34), taken together with the definitions in (2a)
and (10), describe the full spatiotemporal dynamics of a random laser in any geometry.
As in the case of SALT, this theoretical framework is self-consistent; the only required
inputs are the material parameters and geometry as described in the introduction of
Section 2. These equations reduce to the well-known steady-state solution of SALT.
Thus the results from SALT are really a subset of the theory developed in this paper.
The remaining results from SALT [12] follow logically, including the existence of
nonlinear effects like mode competition, gain saturation, etc. [11–13]. These results
provide a guide to anyone intending to design optical systems based on random lasers
and obtain a dynamic description of their system.

Now that the governing equations for the full dynamic behavior have been derived,
the next step is to examine the dynamic approach to the steady state solution. A forth-
coming paper will use the theory developed here to analyze perturbations about the
steady state using a Poincaré–Bendixson analysis, and the conditions producing stable
node solutions will be examined. As will be seen in the forthcoming work, these equa-
tions can explicitly describe the relaxation oscillations in random lasers. To take this
work further, the theory should be applied to a number of random systems in order to
compare the numerical results with the forthcoming analytical results. The theory should
also be applied to systems in the presence of spontaneous emission noise, as this is
suspected to be the cause of emission fluctuations that occur in ZnO random lasers with
static disorder [15].
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