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A nanoslotted microring resonator (NSMR) with enhanced light-matter interaction has been de-
signed, which can be used for high sensitive refractive index sensing. The performance of the device
is investigated theoretically based on a three-dimensional finite-difference time-domain (3D-FDTD)
method. In order to achieve high figure of merit sensing, the nanoslot geometry is exploited to make
the optical field strongly localized inside the low index region and overlap sufficiently with
the analytes. By using the 3D-FDTD method, the proposed NSMR sensor device achieves a high
Q-factor (Q > 105) and sensitivity ~100 nm/RIU (RIU – refractive index unit). Moreover, the strong
light confinement introduced by the nanoslot in NSMR results in the sensor figure of merit as high
as 6.73 × 103. Thus, the design we proposed is a promising platform for refractive index-based
biochemical sensing and lab-on-a-chip applications.

Keywords: nanoslot, microring resonator, refractive index sensor, figure of merit, integrated nanophoton-
ics, 3D-FDTD.

1. Introduction

Over the past decades, microring resonators have been widely used in many fields due
to their simple manufacturing process, excellent performance, flexible design, and small
volume. In order to further enhance the interaction between optical fields and environ-
mental mediums [1–7], nanoslot structures were introduced into the microring reso-
nators, providing strong light confinements and localized field enhancements [8–11].
Recently, photonic crystal (PC) microring resonators have attracted great attentions for
their ultracompact footprint, high Q-factor and small mode volume [12–20]. Compared
with 2D-PC, 1D-PC nanobeam cavities have emerged as an advantageous platform for
on-chip optical technology, owing to their attractive properties such as the ability to con-
fine light in a small volume, convenient integration with bus-waveguides, ultracompact
footprint, and ultra-high Q-factors [21–33].
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However, sensitivity S and Q-factor have a trade-off in label-free optical resonator
sensors. So far, optical geometry that maximizes both factors is under active develop-
ment. The sensor figure of merit (FOM) becomes an important parameter to measure
the sensing performance, which is defined as the resonance shift upon a change in the
refractive index of the dielectric surrounding normalized by the resonance line-width,
FOM = QS /λres [22, 23, 34], where Q is the quality factor of the resonator, S = ∆λ /∆RI
characterizes the shift of resonance ∆λ in response to the surrounding index change ∆RI,
and λres is the cavity resonant wavelength. In order to obtain high FOM, a novel nanoslot-
ted microring resonator (NSMR) with enhanced light-matter interaction is designed,
which can be used for high sensitive refractive index sensing. The performance of the
device is investigated theoretically based on a three-dimensional finite-difference
time-domain (3D-FDTD) method. For the purpose of achieving a FOM sensing, the
nanoslot geometry is exploited to make the optical field strongly localized inside the
low index region and overlaps sufficiently with the analytes.

2. Nanoslotted microring resonator design

Figure 1a shows the schematic and side-view image of a NSMR device. The device is
designed from silicon-on-insulator (SOI) with 220 nm device layer on a 3 µm thick

Fig. 1. Schematic of NSMR and its side-view (wslot – the width of the nanoslot, wgap – the distance between
waveguide and microring resonator) (a). The top-view of NSMR, which consists of bus waveguide and
microring resonator (wb – the width of waveguide, wr – the width of microring, r – the hole radius); the blue
region is high refractive index material – Si (b). 
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buried oxide (BOX) layer, which is retained to provide mechanically stable support for
the NSMR structure. The refractive index of the silicon and silicon oxide substrate are
3.46 and 1.45, respectively. The background surrounding is air, and the refractive index
of air is nair = 1.0. As shown in Fig. 1b, the proposed NSMR consists of two parts, one
is a bus waveguide, utilised to couple light into and out the slotted microring wave-
guide. To achieve effective coupling between the bus waveguide and the microring res-
onator integrated with slotted waveguide, the width of the bus waveguide is reduced
with respect to that of the microring waveguide. The width of the bus waveguide is
tapered from both ends with wb = 2.0 µm to the center uniform waist region with
wb = 0.40 µm. The other is an integrated slotted microring waveguide, Rout = 5.0 µm,
Rin = 4.0 µm, and the width of microring waveguide is wr = 1.0 µm.

According to paper [32], the corresponding properties of bent slotted waveguide
modes strongly depend on the slot position. Particularly, the first-order mode is mod-
erately lossy only if the slot is symmetrically positioned within the ring. Thus, the slot
is placed symmetrically with the center of the ring. Seventy-two identical air holes are
integrated into the slot ring waveguide evenly, forming a periodic structure, to ensure
the light is evanescently coupled from the bus waveguide into the microring resonator
efficiently [35]. The distance between adjacent air holes is 392.7 nm. According to the
conventional design method, the gap (wgap) between the bus waveguide and microring
resonator is set as 150 nm. The air slot width (wslot) and hole radius (r) in the microring
waveguide are 120 and 130 nm, respectively.

Herein, in the following discussion and simulation, we only consider the TE-polar-
ized modes. The device transmission spectra are calculated by using 3D-FDTD method
(Lumerical Solutions Inc.). In the 3D-FDTD simulations, the computations accuracy
depends on the mesh accuracy. Here, the mesh accuracy in the 3D-FDTD simulation
is chosen as 4, which is a good trade-off between accuracy, memory requirements and

Fig. 2. The optical transmission spectrum of the proposed NSMR device obtained by using 3D-FDTD sim-
ulations (a). Enlarged spectra of resonance λt = 1557.97 nm showing a high quality factor. Inset: 3D-FDTD
simulation of major field distribution of a specific targeted resonance mode (b).
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simulations time [36]. And the mesh size is: x = 0.024 µm, y = 0.027 µm, z = 0.05 µm.
Figure 2a shows the 3D-FDTD transmission spectrum of the proposed NSMR device
with the wavelength changes from 1500 to 1600 nm. Non-uniform free-spectral range
(FSR) between adjacent resonances is affected by a slow-light effect [37–40]. The Q-factor
of these cavities can be defined as 1/Q = P/(ω0U), where P is the outgoing energy, U is
the electromagnetic energy localized in the cavity, ω0 is the frequency of light around
the cavity [41]. Obviously, the more energy is stored in the cavity, the higher Q-factor
will be realised. Therefore, in order to achieve a higher Q-factor, the optical mode should
be more localized in the center of cavities [42, 43]. As shown in the inset of Fig. 2b,
most of the optical energy is localized in the center of cavities when λt = 1557.97 nm.
Consequently, we choose λt as the target mode resonance.

3. Optimization and discussion

Herein, to achieve a higher Q-factor, we optimize the design of NSMR by changing three
structure parameters, i.e., air holes radius, slot width in the microring waveguide, and
gap width between the mircoring resonator and bus waveguide. The first step in the op-
timization process is to determine the radius of air holes. Figure 3a shows the simulation
results for Q-factor as a function of air holes radius r. Obviously, when r = 110 nm,
the Q-factor reaches the highest level 6.79 × 104. Therefore, we selected the holes ra-
dius as 110 nm.

Intrinsically, slot waveguide is known to suffer from larger roughness-induced scat-
tering extrinsic losses than Si waveguide due to a strong electric field interaction with
the inner rails’ walls, which is determined by lithographic and etching technological
processes. Hence, different ratios of slot width wslot to total slotted waveguide width
lead to different linear loss and Q-factors. So it is necessary for us to investigate the
relationship between Q-factor and wslot. As shown in Fig. 3b, the microring maximum
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theoretical Q-factor greatly increases up to 9.71 × 104 when wslot =160 nm, r = 110 nm.
Therefore, optimum parameters of wslot should be 160 nm.

Based on the optimization parameters mentioned above, it is shown in Fig. 3c that
Q-factor varies with gap width wgap, corresponding with what is exhibited in [10].
The microring Q-factor greatly increases up to 10.8 × 104 when the coupler gap
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Fig. 3. The 3D-FDTD simulation results for Q-factor as a function of air hole radius (a), air slot width (b)
and gap width (c). The linear least-squares fit figures of resonance wavelength varying with increased
holes radius (d), air slot width (e), and gap width (f ).
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wgap = 160 nm, meaning that the coupler losses have been reduced significantly. This
phenomenon is probably due to the minimization of the waveguide sidewall scattering
loss effects of coupler gaps.

Figures 3d–3f show the relationship between target resonance wavelength (corre-
sponding to the highest Q-factor) and air hole radius, air slot width, and gap width, re-
spectively. It can be seen from Figs. 3d and 3e, that all resonant wavelengths experience
blue shift at a constant rate with the increased filling factor f  contributed by expanded
air holes and slot. Unlike Figs. 3d and 3e, Fig. 3f  shows that the change of gap width
has little effect on wavelength shift. Finally, the optimized air holes radius, slot width,
and gap width of NSMR are 110, 160, and 160 nm, respectively. The Q-factor as high
as 10.8 × 104 can be obtained with the resonant wavelength at 1588.02 nm.

In addition, we also consider the effect of the fabrication roughness (e.g., sidewall
roughness) in our design. Our simulation was done in air, assuming a random distribution
of roughness from 0 to 5, to 10, to 15, and to 20 nm, respectively. It can be seen from
Fig. 4 that Q-factor decreases from 105 to 104. But in the practical biosensing appli-
cation, the water absorption have to be taken into account, and the absorption Q will
be limited to the order of 104 [44] at telecom wavelength range. Therefore, in the prac-
tical biosensing application, fabrication roughness is not the major factor limiting Q rel-
ative to water absorption.

4. Simulated transmission and RI sensitivity 
of the optimized sensor

Figure 5 displays the composed transmission spectra as a function of increased refractive
index changed from RI = 1.00 to RI = 1.40 with the step ∆RI = 0.05. All resonant wave-
lengths shift towards longer wavelength (namely, red-shift) as the function of the re-
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Fig. 4. The effect of fabrication roughness on the Q-factors. A random distribution of roughness from 0
to 5, to 10, to 15, and to 20 nm, respectively, is simulated. The cavity is immersed in air environment with
refractive index of RI = 1.00.
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fractive index increased. However, as seen from Fig. 5, in the investigated wavelength
range, there are multiple resonances in the transmission spectrum. As the refractive
index changes, the resonance shift is larger than the distance between the consecutive
resonances. This will result in erroneously identifying the selected target resonance.
In order to solve this problem, a method demonstrated in our previous work [22] can
be used, namely, we can introduce PC nanobeam bandgap filters in the both input and
output ports of the bus waveguide, respectively. Then, a transmission spectrum only
containing the selected target resonance for sensing purposes is created, while the other
resonances are filtered out. Thus, for application as a sensor, the selected target reso-
nance can be tracked accurately without erroneously identifying.

Next, to quantitatively analyze the refractive index RI sensitivity of the proposed
sensor device, we choose the sensitivity S of our device by observing the shifts in the
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Fig. 5. The 3D-FDTD transmission spectra as the background RI changes from RI = 1.00 to RI = 1.40
with step size 0.05.
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resonant wavelength of the sensor as a function of the variations in the refractive index.
The shift of the peak resonant wavelength ∆λ is a function of the change in the refrac-
tive index ∆RI, the sensor RI-sensitivity is expressed as S = ∆λ /∆RI. Figure 6a shows
the selected target resonant wavelength λres shift (namely, ellipse region in Fig. 5) when
the background RI varies from RI = 1.00 to RI = 1.40 (∆RI = 0.40). Figure 6b shows the
linear fit of the resonant wavelength shift (red-shift) with the increased RI. According
to Fig. 6b, the resonant wavelength shift of the proposed sensor is ∆λ = 39.61 nm. Con-
sequently, the calculated RI sensitivity is 99.03 nm/RIU, resulting in the optimized
FOM as high as 6.73× 103.

5. Conclusions

In summary, we presented a novel nanoslotted photonic crystal microring resonator for
high figure of merit refractive index sensing. By using the 3D-FDTD method, the sim-
ulation results show that high Q-factor (Q > 105) and sensitivity of 99.03 nm/RIU of
the proposed NSMR-based sensor device are obtained. Moreover, the sensor FOM as
high as 6.73 × 103 is observed, which benefits from the enhanced light-matter inter-
action due to the strong optical confinement introduced by the nanoslot in the NSMR.
In addition, the footprint of the proposed sensor device is compact, which is a prom-
ising platform for refractive index-based sensing and lab-on-a-chip applications.
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