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Abstract: The aim of the paper is to compare the forecasting potentials of two classes of 

Multiplicative Stochastic Factor – scalar BEKK (MSF-SBEKK) models which differ in the 

type of latent process. In the first class, the innovations of a first order autoregressive 

structure for the natural logarithm of latent variables are log-normal, whereas in the second 

class the innovations are inverted gamma distributed. The comparison of the models’ 

forecasting abilities by means of the predictive Bayes factor as well as the log predictive 

score and energy score were performed based on the Polish exchange rates. The author 

considered one- to ten-step-ahead predictions during the period beginning from 

3 September 2019 and ending on 2 September 2020, which covers the time of the crisis 

caused by COVID-19. The author concluded that for most of the forecast horizons, the 

considered log-normal innovations outperformed the inverted gamma ones. 

Keywords: stochastic volatility model, forecasting, predictive Bayes factor, energy score, 

log-predictive score. 

1. Introduction  

In volatility modelling of financial time series, two major classes of models 

are used: the autoregressive conditionally heteroscedastic (ARCH) and 

stochastic volatility (SV) models. The conceptual difference between the 

two classes lies in modelling conditional variance. In the ARCH-type 
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models, volatility is described by a deterministic function of the past of the 

process, whereas in the SV models the conditional variance is subject to 

unpredictable shocks. In joint modelling of multiple time series the 

following multivariate counterparts of these models are used: Multivariate 

GARCH (MGARCH) and Multivariate Stochastic Volatility (MSV) 

classes (see: Bauwens, Laurent, and Rombouts, 2006); Tsay, 2005). The 

multivariate approach to modelling financial time series is much more 

difficult than the univariate one, as it explicitly takes into account the full 

conditional covariance structure of asset prices, i.e. individual volatilities 

and correlations. Only a few of them could serve as practical tools for large 

portfolios. A solution to the problem of multivariate volatility modelling is 

using the hybrid models proposed by (Osiewalski, 2009) and (Osiewalski 

and Pajor, 2009, 2018), based on scalar BEKK (SBEKK; Baba, Engle, 

Kraft, and Kroner, 1989) correlation structure and on one latent process 

(Multiplicative Stochastic Factor, MSF). The hybrid models exploit the 

advantages of both model classes: the flexibility of the SV class, where 

volatility is modeled by latent stochastic processes, and the relative 

simplicity of the MGARCH class.  

The paper focuses on two types of the MSF-SBEKK specification: the 

LN-MSF-SBEKK and IG-MSF-SBEKK. The LN-MSF-SBEKK structure 

is obtained by multiplying the SBEKK conditional covariance matrix at 

time 𝑡, Σ𝑡 , by a scalar random variable 𝑔𝑡 such that {ln 𝑔𝑡} is a Gaussian 

AR(1) latent process with auto-regression parameter 𝜑. The LN-MSF-

SBEKK process can be treated as a direct extension of the SBEKK process 

with unknown conditional distribution. When 𝜑 =  0, the LN-MSF-

SBEKK process reduces itself to the SBEKK process with the conditional 

distribution being a continuous mixture of multivariate normal distri-

butions with covariance matrices Σ𝑡𝑔𝑡, where 𝑔𝑡′𝑠 are independent and 

log-normally distributed. On the other hand, the multivariate Student t 

distribution can be expressed as a scale mixture of normal distributions 

with the inverted gamma (IG) as a mixing distribution. This fact was 

examined in Osiewalski and Pajor (2018, 2019), where the IG-MSF-

SBEKK specification was proposed as a natural hybrid extension of the 

SBEKK process with the Student t conditional distribution (t-SBEKK). In 

the IG-MSF-SBEKK specification the latent process {ln 𝑔𝑡} remains an 

autoregressive process of order one, but with log inverted gamma 

innovations. For 𝜑 =  0 the latent variables 𝑔𝑡 (where 𝑡 ∈ 𝑍) are 

independent and have inverted gamma distribution. Thus 𝜑 =  0 leads to 

the t-SBEKK specification, in which the conditional distribution is 

represented as a continuous mixture of multivariate normal distributions 

with covariance matrices Σ𝑡𝑔𝑡 and an inverted gamma distribution of 𝑔𝑡. 

For 𝜑 ≠  0 the unconditional distribution of the latent variables 𝑔𝑡 is 
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unknown; moreover, the latent variables 𝑔𝑡 (𝑡 ∈  𝑍) are dependent, so there 

exists an additional source of dependence. The non-Gaussian character of 

the noise sources can significantly influence the explanatory and predictive 

power of the hybrid model.  

The aim of the paper is to compare the predictive capacity of the two 

models: LN-MSF-SBEKK and IG-MSF-SBEKK, as well as their reductions 

to pure SV and SBEKK ones. The data used in our empirical application are 

daily quotations on three exchange rates: USD/PLN, EUR/PLN and 

GBP/PLN. These currencies are very important for the Polish economy. The 

forecasting horizons are from one to ten trading days. The criteria used in 

this study for drawing this comparison are the predictive Bayes factor, 

logarithmic score and energy score (see e.g. Geweke, 2005; Geweke and 

Amisano, 2010; Gneiting and Raftery, 2007). 

The paper is organized as follows. In Section 2 Bayesian LN-MSF-

SBEKK and IG-MSF-SBEKK models are presented. Section 3 is devoted to 

the predictive Bayes factor and selected scoring rules. Section 4 contains the 

empirical results, and Section 5 concludes the paper. 

2. The MSF-SBEKK models  

Let us assume that 𝑟𝑡 = (𝑟𝑡,1, 𝑟𝑡,2, … , 𝑟𝑡,𝑛), 𝑡 = 1, 2, … , 𝑇 + 𝐻, be 1 × 𝑛 

vectors of observations (log-returns), which follow the first order vector 

autoregressive (VAR) structure. Thus VAR(1) can be written: 

 𝑟𝑡 = 𝛿0 + 𝑟𝑡−1Φ1 + 휀𝑡  , 𝑡 = 1, … , 𝑇 + 𝐻,  (1) 

where 𝛿0 is 1 × 𝑛 vector of parameters, Φ1is 𝑛 × 𝑛 matrix of real 

coefficients, and T is the length of the observed time series, 𝐻 is the number 

of future (forecasted) observations. The hybrid MSF-SBEKK structure for 

the 1 × 𝑛 disturbance term 휀𝑡 is defined by the following equality: 

 휀𝑡 = 휁𝑡Σ𝑡
1/2

𝑔𝑡
1/2

, (2) 

where 

 Σ𝑡 = (1 − 𝛽1
2 − 𝛽2

2)𝐴 + 𝛽1
2(휀𝑡−1

′ 휀𝑡−1) + 𝛽2
2Σ𝑡−1,  (3) 

 ln 𝑔𝑡 = 𝜑 ln 𝑔𝑡−1 + ln 𝛾𝑡, (4)  

 {휁𝑡}~𝑖𝑖𝑁(0, 𝐼𝑛), 휁𝑡 ⊥ 𝛾𝑠 for all 𝑡, 𝑠 ∈ {1, … , 𝑇 + 𝐻}, 0 < |𝜑| < 1,  (5) 

{휁𝑡} is a Gaussian white noise sequence with the mean vector zero and the 

unit covariance matrix, Σ t is a square matrix of order n, symmetric and 

positive definite for each t and having a scalar BEKK (SBEKK) form, {𝑔𝑡} 
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is a scalar stochastic latent process, {𝛾𝑡} is a sequence of independent 

positive random variables, 𝛽1 and 𝛽2 are real numbers satisfying the 

inequality 𝛽1
2 + 𝛽2

2 < 1, the notation 휁𝑡 ⊥ 𝛾𝑠 denotes that random variables 

휁𝑡 and 𝛾𝑠 are independent. Furthermore, the process defined by (1)-(5) 

contains initial conditions 𝑔0, 𝑟0 = (𝑟−1,1, … , 𝑟−1,𝑛, 𝑟0,1, … , 𝑟0,𝑛) and Σ0 of 

𝑔𝑡, 𝑟𝑡 and of Σ𝑡, respectively. 

In the IG-MSF-SBEKK process, 𝛾𝑡 is inverted gamma distributed with 

mean 
𝜈

𝜈−2
 for 𝜈 > 2, that is {𝛾𝑡}~𝑖𝑖𝐼𝐺(

𝜈

2
,

𝜈

2
), whereas in the LN-MSF-

SBEKK process 𝛾𝑡 is log normal distributed with mean 𝑒
1

2
𝜎2

 and variance 

(𝑒𝜎2
− 1)𝑒𝜎2

, in other words {𝑙𝑛𝛾𝑡}~𝑖𝑖𝑁(0, σ2). 

Under (1) to (5), the conditional distribution of 𝑟𝑡 (given the past of 𝑟𝑡 and 

the current latent variable 𝑔𝑡) is determined by the distribution of 휁𝑡. 

Therefore, given the past of 𝑟𝑡 and the current latent variable 𝑔𝑡, 𝑟𝑡 has the 

normal distribution with the mean vector 𝜇𝑡 = 𝛿0 + 𝑟𝑡−1Φ1 and the 

covariance matrix 𝑔𝑡Σ𝑡. In turn, the distribution of 𝑟𝑡 given only its past is the 

scale mixture of 𝑁(𝜇𝑡 , 𝑔𝑡Σ𝑡). In the case of the LN-MSF specification, the 

marginal distribution of 𝑔𝑡 is log-normal. In the IG-MSF specification this 

marginal distribution is unknown. However, for 𝜑 = 0 𝑔𝑡 =  𝛾𝑡, hence the 

distribution of 𝑔𝑡 is inverted gamma. Consequently, 𝜑 = 0 leads to the 

SBEKK process with conditional Student t distribution. Thus one can view the 

IG-MSF-SBEKK structure as a natural hybrid extension of the popular t-

SBEKK specification. It is worth mentioning that in the LN-MSF-SBEKK 

process, 𝜑 = 0 also leads to the SBEKK process, but with an unknown 

conditional distribution. 

The Bayesian statistical model amounts to specifying the joint 

distribution of all observations, latent variables and parameters. The 

assumptions presented so far determine the conditional distribution of the 

vector of observations and the vector of latent variables given the parameters. 

Therefore, what remains to be done is to formulate the marginal distribution 

of the parameters (the prior distribution). The author assumed independence 

among the groups of parameters and used the following prior distributions 

(cf. Osiewalski and Pajor, 2019; Pajor and Wróblewska, 2017)1: 

 
1 The following symbols are used: 

𝑓𝑚𝑁(𝑥|𝑀, 𝑈, 𝑉) – the probability density function of the matrix normal distribution 

with mean M, and positive definite matrices U and V, 

𝑓𝐼𝐺(𝑥| 𝑎, 𝑏) – the probability density function of the inverted gamma distribution with 

mean 𝑏/(𝑎 − 1) for 𝑎 > 1,  
𝑓𝐼𝑊(𝑥|𝑉, 𝑞) – the probability density function of the inverse Wishart distribution with 

𝑝 ×  𝑝 scale matrix 𝑉 and 𝑞 degrees of freedom, 

𝑓𝑁(𝑥| 𝑎, 𝑏) – the probability density function of the normal distribution with mean 𝑎 

and variance 𝑏, 

𝑓𝐺(𝑥| 𝑎, 𝑏) – the probability density function of the gamma distribution with mean 
𝑎

𝑏
,  
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• the multivariate t distribution for 𝛿 = [𝛿0 Φ1]: 𝑝(𝛿| 𝜎𝛿
2) =

𝑓𝑚𝑁(𝛿|0, 𝐼𝑛, 𝜎𝛿
2𝐼𝑛+1) with inverted gamma distribution for 𝜎𝛿

2: 𝑝(𝜎𝛿
2) =

𝑓𝐼𝐺(𝜎𝛿
2| 3, 2), 𝐸(𝜎𝛿

2) = 1, 𝑉(𝜎𝛿
2) = 1, 𝑉(𝑣𝑒𝑐(𝛿)|𝜎𝛿

2) = 𝐼𝑛 ⊗

𝜎𝛿
2𝐼𝑛+1 = 𝜎𝛿

2𝐼𝑛2+𝑛, thus 𝐸(𝛿) = 0, 𝑉(𝑣𝑒𝑐(𝛿)) = 𝐼𝑛2+𝑛, 

• the inverse Wishart distribution for 𝐴: 𝑝(𝐴) = 𝑓𝐼𝑊(A|𝐼𝑛, 𝑛 + 2), so 

𝐸(A) = 𝐼𝑛, 

• the normal distribution for 𝜑, truncated by the restriction |𝜑| < 1: 

𝑝(𝜑) ∝ 𝑓𝑁(𝜑|0, 100)𝐼(−1,1)(𝜑), 

• the inverted gamma distribution for 𝜎2 : 𝑝(𝜎2 ) = 𝑓𝐼𝐺(𝜎2 |2.5, 0.16), so 

𝐸(𝜎2 )  ≈ 0.107, 

• the gamma distribution for 𝑣: 𝑝(𝑣) = 𝑓𝐺(𝑣|3, 0.1), so 𝐸(𝑣)  ≈ 30, 

𝑀𝑜𝑑𝑒(𝑣) ≈ 20, 

• the uniform distribution over the unit square [0, 1]2 for 𝛽1and 𝛽2, 

truncated by the restriction 𝛽1
2 + β2

2 < 1: 𝑝(𝛽1, β2) ∝ 𝐼(0,1)(𝛽1
2 + 𝛽2

2), 

• the exponential distribution for 𝜎0: 𝑝(𝜎0
2) = 𝑓𝐸𝑥𝑝(𝜎0

2|1), so 𝐸(𝜎0
2) = 1.  

The prior distributions reflect little prior knowledge about the model 

parameters. As regards initial conditions for Σ𝑡, we take Σ0 = 𝜎0
2𝐼𝑛 and 

treat 𝜎0
2 > 0  as an additional parameter, exponentially distributed a priori 

with mean 1, whereas the initial value of 𝑔𝑡, 𝑔0, is assumed to be non-

random and equal to 1. When it comes to 𝑟0, the first two vectors of 

observations are used as initial conditions for 𝑟𝑡.  

3. Forecast evaluation 

The standard approach to the Bayesian forecast evaluation is based on the 

predictive likelihood – the predictive data density value at the observed 

future data. Let 𝑟0
𝑇 = (𝑟0, 𝑟1, … , 𝑟𝑇) be the vector of observations up to time 

𝑇, 𝜃 be the vector of unknown parameters and 𝑔1
𝑇+ℎ = (𝑔1, … , 𝑔𝑇+ℎ) the 

latent variable vector. The predictive density function for h-step-ahead 

forecast is as follows: 

 𝑝(𝑟𝑇+ℎ|𝑟0
𝑇) = ∫ 𝑝(𝑟𝑇+ℎ|𝑟0

𝑇 , 𝑔1
𝑇+ℎ , 𝑔0, 𝜃)𝑝(𝑔1

𝑇+ℎ, 𝜃|𝑟0
𝑇 , 𝑔0) 𝑑𝑔1

𝑇+ℎ  𝑑𝜃,  (6) 

where 𝑝(𝑟𝑇+ℎ|𝑟0
𝑇 , 𝑔1

𝑇+ℎ, 𝑔0, 𝜃) is the conditional density of the future 

observation vector given the vector of parameters, 𝜃, and latent variables, 

𝑔1, … , 𝑔𝑇+ℎ; 𝑝(𝑔1
𝑇+ℎ, 𝜃|𝑟0

𝑇 , 𝑔0) is the posterior probability density 

function of parameters and latent variables at time 𝑇. Let 𝑟0
𝑇,𝑜

 and 𝑟𝑇+ℎ
𝑜  

 
𝑓𝐸𝑥𝑝(𝑥| 𝜆) – the probability density function of the exponential distribution with mean 

1

𝜆
,  

𝐼(a,b)(𝑥)– the indicator function of the interval (𝑎, 𝑏). 
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denote observed values of 𝑟0
𝑇 and 𝑟𝑇+ℎ, respectively. The predictive 

likelihood conditional on 𝑟0
𝑇,𝑜

 is the real number 𝑝(𝑟𝑇+ℎ
𝑜 |𝑟0

𝑇,𝑜). To compute 

this predictive likelihood we draw 𝑔1
𝑇+ℎ,(𝑖)

, 𝜃(𝑖) for 𝑖 = 1, … , 𝑁 from the 

posterior distribution, next, if ℎ > 1, simulate the vector  𝑟𝑇+1
𝑇+ℎ−1,(𝑖)

 from 

conditional sampling distribution of observations given 𝑟0
𝑇,𝑜, 𝑔1

𝑇+ℎ,(𝑖)
 and 

𝜃(𝑖), and then calculate the average: 

�̂�(𝑟𝑇+ℎ
𝑜 |𝑟0

𝑇) =
1

𝑁
∑ 𝑝 (𝑟𝑇+ℎ

𝑜 |𝑟0
𝑇,𝑜, 𝑟𝑇+1

𝑇+ℎ−1,(𝑖)
, 𝑔1

𝑇+ℎ,(𝑖)
, 𝑔0, 𝜃(𝑖))𝑁

𝑖=1     

 for ℎ > 1,  (7) 

or 

 �̂�(𝑟𝑇+1
𝑜 |𝑟0

𝑇) =
1

𝑁
∑ 𝑝 (𝑟𝑇+1

𝑜 |𝑟0
𝑇,𝑜, 𝑔1

𝑇+1,(𝑖)
, 𝑔0, 𝜃(𝑖))𝑁

𝑖=1    for ℎ = 1. (8) 

Let us assume that there are two competing models: 𝑀𝑖 and 𝑀𝑗. Then 

the main Bayesian criterion of model comparison from the predictive point 

of view is the predictive Bayes factor, which is the ratio of the predictive 

likelihoods. In fact the posterior odds ratio can be expressed as the product 

of the predictive Bayes factor and the posterior odds ratio given the 

observed data 𝑟0
𝑇,𝑜: 

 
𝑝(𝑀𝑖|𝑟𝑇+ℎ

𝑜 ,𝑟0
𝑇,𝑜)

𝑝(𝑀𝑗|𝑟𝑇+ℎ
𝑜 ,𝑟0

𝑇,𝑜)
=

𝑝(𝑟𝑇+ℎ
𝑜 |𝑟0

𝑇,𝑜,𝑀𝑖)

𝑝(𝑟𝑇+ℎ
𝑜 |𝑟0

𝑇,𝑜,𝑀𝑗)

𝑝(𝑀𝑖|𝑟0
𝑇,𝑜)

𝑝(𝑀𝑗|𝑟0
𝑇,𝑜)

.  (9) 

Thus, the predictive Bayes factor: 

 𝐵𝑖𝑗(𝑟𝑇+ℎ
𝑜 |𝑟0

𝑇,𝑜) =  
𝑝(𝑟𝑇+ℎ

𝑜 |𝑟0
𝑇,𝑜,𝑀𝑖)

𝑝(𝑟𝑇+ℎ
𝑜 |𝑟0

𝑇,𝑜,𝑀𝑗)
 (10) 

updates the ratio of posterior probabilities based on the first 𝑇 observations 

after observing predicted data 𝑟𝑇+ℎ
𝑜 . It is well-known that the negative log 

predictive likelihood, − log 𝑝(𝑟𝑇+ℎ
𝑜 |𝑟0

𝑇), is the logarithmic score (log 

score) for the predictive distribution at observation 𝑟𝑇+ℎ
𝑜  (see: Bernardo 

and Smith, 1994; Dawid and Musio, 2014). Thus the logarithm of the 

Bayes factor is the difference of the log scores for the two models: 

 log 𝐵𝑖𝑗(𝑟𝑇+ℎ
𝑜 |𝑟0

𝑇,𝑜) = log 𝑝(𝑟𝑇+ℎ
𝑜 |𝑟0

𝑇,𝑜, 𝑀𝑖) − log 𝑝(𝑟𝑇+ℎ
𝑜 |𝑟0

𝑇,𝑜, 𝑀𝑗). (11) 

The logarithm of the Bayes factor measures by how much the log score 

for model 𝑀𝑖 is better (smaller) than that for model 𝑀𝑗 (see: Dawid and 

Musio, 2015). The value of log 𝐵𝑖𝑗(𝑟𝑇+ℎ
𝑜 |𝑟0

𝑇,𝑜) < 0 indicates the poor 

forecasting performance of model 𝑀𝑖 at time 𝑇 for the h-step-ahead 
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forecast in comparison to model 𝑀𝑗. The log 𝑝(𝑟𝑇+ℎ
𝑜 |𝑟0

𝑇,𝑜, 𝑀𝑖) returns 

a high value if 𝑟𝑇+ℎ
𝑜  is in the high density region of 𝑝(𝑟𝑇+ℎ|𝑟0

𝑇,𝑜, 𝑀𝑖), and 

a low value otherwise. The drawback of the log score is that it does not 

depend directly on the shape of the entire predictive density, but only on 

the value of the predictive density at the realized value of 𝑟𝑇+ℎ. 

To compare the forecasting ability of the models under consideration 

for the forecast horizon ℎ, in the period from 𝑇 + 1 to 𝑇 + 𝐻ℎ (where 𝐻ℎ 

represents the number of h-step-ahead forecasts, 𝐻ℎ ≤ 𝐻), we aggregate 

log scores and rank models by the average of the logarithms of the 

predictive likelihoods: 

𝑆(ℎ, 𝑇 + 1, 𝑇 + 𝐻ℎ , 𝑀𝑖) =
1

𝐻ℎ
∑ log 𝑝(𝑟𝑡+ℎ−1

𝑜 |𝑟0
𝑡−1,𝑜, 𝑀𝑖)

𝑇+𝐻ℎ
𝑡=𝑇+1 . (12) 

The 𝑆(ℎ, 𝑇 + 1, 𝑇 + 𝐻ℎ , 𝑀𝑖) is a positively oriented score, which 

means that its larger values indicate more accurate density forecasts (in 

other words, larger values of this score are better). Unfortunately, the 

logarithmic scoring rule is sensitive to outliers.  

Note that for ℎ = 1 𝑆(1, 𝑇 + 1, 𝑇 + 𝐻1, 𝑀𝑖) =  
1

𝐻1
 log 𝑝(𝑟𝑇+1

𝑜 , … , 

𝑟𝑇+𝐻1

𝑜 |𝑟0
𝑇,𝑜, 𝑀𝑖) thus the average of the log predictive density scores times the 

length of forecasting period amounts to the predictive likelihood of the 

observed data from 𝑇 + 1 to 𝑇 + 𝐻1. This is so because the log predictive 

likelihood at 𝑟𝑇+1
𝑜 , … , 𝑟𝑇+𝐻1

𝑜 , can be rewritten as a sum of one-step-ahead log 

predictive likelihoods: 

 log 𝑝(𝑟𝑇+1
𝑜 , … , 𝑟𝑇+𝐻1

𝑜 |𝑟0
𝑇,𝑜, 𝑀𝑖) = ∑ log 𝑝(𝑟𝑇+𝑘

𝑜 |𝑟0
𝑇+𝑘−1,𝑜, 𝑀𝑖)

𝐻1
𝑘=1 . (13) 

Consequently, for ℎ = 1 there exists a Bayesian substantiation of the 

use of the sum of logarithmic scores. Equality (12) breaks down for ℎ > 1. 

The predictive density at 𝑟𝑇+ℎ
𝑜 , … , 𝑟𝑇+𝐻ℎ

𝑜  cannot be decomposed in terms 

of the h-step-ahead predictive likelihoods. Moreover, some models can 

perform well for certain forecast horizons while other models can be better 

for other horizons. 

In the paper the author also used the energy score (ES), recommended 

for assessing the multidimensional predictive density (see e.g. Gneiting 

and Raftery, 2007; Székely and Rizzo, 2013). Let us assume that 𝑃𝑇,𝑇+ℎ 

denotes the predictive distribution for 𝑟𝑇+ℎ given the data up to time 𝑇. 

The energy score is defined as: 

 𝐸𝑆(𝑃𝑇,𝑇+ℎ, 𝑟𝑇+ℎ
𝑜 ) = 𝐸𝑃𝑇,𝑇+ℎ

‖𝑋 − 𝑟𝑇+ℎ
𝑜 ‖𝛽 −

1

2
𝐸𝑃𝑇,𝑇+ℎ

‖𝑋 − 𝑌‖𝛽 , (14) 

where 𝛽 ∈ (0, 2), X and Y are independent random vectors with 

distribution 𝑃𝑇,𝑇+ℎ, and ‖∙‖ denotes the Euclidean norm.  
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To estimate the energy score, we use the following formula: 

𝐸�̂�(𝑃𝑇,𝑇+ℎ , 𝑟𝑇+ℎ
𝑜 ) =

1

𝑚
∑‖𝑥(𝑖) − 𝑟𝑇+ℎ

𝑜 ‖
𝛽

𝑚

𝑖=1

− 

 
1

2m2
∑ ∑ ‖𝑥(𝑖) − 𝑦(𝑗)‖

𝛽𝑚
𝑖=1

𝑚
𝑗=1 , (15) 

where 𝑥(𝑖) and 𝑦(𝑗) are drawn from predictive distribution of 𝑟𝑇+ℎ, using 

the MCMC methods presented in (Osiewalski and Pajor, 2009; Pajor, 

2020). In this paper ES is applied with 𝛽 = 1, and it is aggregated over 𝑇, 

…,  𝑇 + 𝐻ℎ − 1: 

 𝐸𝑆̅̅̅̅
𝑇,ℎ
𝑇+𝐻ℎ−1

=
1

𝐻ℎ
∑ 𝐸�̂�(𝑃𝑡,𝑡+ℎ , 𝑟𝑡+ℎ

𝑜 )
𝑇+𝐻ℎ−1
𝑡=𝑇 . (16) 

The average energy score is used to rank (of course informally from 

the Bayesian point of view) competing models. 

4. Empirical results 

In this part of the paper the author analysed financial data of daily 

quotations on three major Polish exchange rates: the EURO to the Polish 

zloty (EUR/PLN), the US dollar to Polish zloty (USD/PLN), and the 

British pound to the Polish zloty (GBP/PLN, all data were downloaded 

from http://stooq.com). The daily currency return data used in this study 

cover the period from 28 December 2017 to 2 September 2020 (see Figures 

1 and 2). The dataset of the growth rates of the exchange rates consists of 

693 observations (for each series). The first two observations were treated 

as an initial condition, while the last 237 observations were used for the 

forecast evaluation, thus 𝑇 = 456. In other words, to compare the 

predictive capacity of the models under consideration, the author used 

these first 456 observations as a training sample. The predictive capacity 

of the models was analysed in the most recent 237 trading days (𝐻 = 237). 

The author took into consideration one- to ten-step-ahead predictions 

during the period beginning on 3 October 2019 and ending on 2 September 

2020, thus obtaining 228 predictive distributions for the one- to ten-day-

ahead forecast horizons. The predictive distributions were calculated based 

on the whole dataset available at time 𝑇 + 𝑡 for each 𝑡 = 0, 1, … , 𝐻 − 10. 

This resulted in 2280 estimated predictive distributions. The sequence of 

the one-step-ahead predictive distributions covers the period from 

3 October 2019 to 20 August 2020, while the sequence of the ten-step-

ahead predictive distributions covers the period 16 October 2019- 

2 September 2020.  
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Moreover, the forecasting period was split using 12 March 2020 as the 

dividing point. The first subperiod (3 October 2019-11 March 2020) is 

characterized by the relatively (as compared to the second subperiod) low 

volatility of the forecasted exchange rates, whereas the second subperiod 

(12 March 2020-2 September 2020) contains the time of the crisis caused by 

the COVID-19 pandemic (the first incidence of COVID-19 was reported by 

the Polish authorities on 4 March 2020, and the lockdown-type control 

measures started on 12 March). Due to the coronavirus (COVID-19) and 

lockdown, significant turbulences and high volatility were observed, espe-

cially at the beginning of the pandemic lockdown period (see Figures 1 and 2). 

 

Fig. 1. Daily quotations on exchange rates. The first vertical (red) line represents 

3 September 2019 (the beginning of the forecasting period), the second one represents 

12 March 2020 (when lockdown-type control measures were first implemented in Poland) 

Source: calculated by the author (based on data from www.stooq.com). 

   

Fig. 2. Logarithmic daily growth rates of USD/PLN, EUR/PLN and GBP/PLN 

(in percentage points). The first vertical (red) line represents the beginning  

of the prediction period (3 September 2019), the second one represents 12 March 2020 

Source: calculated by the author (based on data from www.stooq.com). 

http://www.stooq.com/
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As one can see from Figures 1 and 2, the EURO growth rates series 

seems to have the lowest volatility. The exchange rate series of USD/PLN 

appears to be the most volatile. The USD/PLN exchange rate strengthened 

to 4.29327 on 23 March 2020 from 3.87587 on 2 March 2020, and next fell 

below 3.6900 on 28 August 2020. A similar (but not the same) pattern 

during the forecasting period is observed in the plot of the GBP/PLN 

exchange rate. During the second predictive subperiod, relatively large 

fluctuations in all the exchange rates considered were observed. Thus it 

was possible to check how the outliers affect the predictive ability of the 

(MSF-)SBEKK models. 

The VAR(1)-MSF-SBEKK models were re-estimated at a daily 

frequency. The computations are based on the 30000 Markov chain Monte 

Carlo posterior samples after having burnt 50000 cycles in each model.  

4.1. A comparison of models with the predictive Bayes factor 

As mentioned above, the author considered two basic specifications of the 

MSF-SBEKK models, LN-MSF-SBEKK and IG-MSF-SBEKK. Additio-

nally, there are two natural reductions of the two hybrid models to SBEKK 

specifications, LN-SBEKK and IG-SBEKK (t-SBEKK), which result from 

imposing a zero restriction on 𝜑. Moreover, there are two reductions to pure 

MSF specifications, LN-MSF and IG-MSF, which result from imposing zero 

restrictions on 𝛽1 and 𝛽2. For the sake of comparison, the study also 

considered the VAR model with constant conditional covariance matrix, 

despite the fact that this model seems to be inadequate for the type of the data 

considered. The model assumptions are presented in Table 1. 

Table 1. The model assumptions  

Model 
Description of process {휀𝑡}: 

휀𝑡 = 휁𝑡Σ𝑡
1/2

𝑔𝑡
1/2

, 𝑡 = 1, … , 𝑇 + 𝐻 

LN-MSF-SBEKK 
Σ𝑡 = (1 − 𝛽1

2 − 𝛽2
2)𝐴 + 𝛽1

2(휀𝑡−1
′ 휀𝑡−1) + 𝛽2

2Σ𝑡−1, ln 𝑔𝑡 =
𝜑 ln 𝑔𝑡−1 + ln 𝛾𝑡, {𝒍𝒏𝜸𝒕}~𝒊𝒊𝑵(𝟎, 𝛔𝟐) 

IG-MSF-SBEKK 
Σ𝑡 = (1 − 𝛽1

2 − 𝛽2
2)𝐴 + 𝛽1

2(휀𝑡−1
′ 휀𝑡−1) + 𝛽2

2Σ𝑡−1, ln 𝑔𝑡 =
𝜑 ln 𝑔𝑡−1 + ln 𝛾𝑡, {𝜸𝒕}~𝒊𝒊𝑰𝑮(𝒗/𝟐, 𝒗/𝟐) 

LN-SBEKK 
Σ𝑡 = (1 − 𝛽1

2 − 𝛽2
2)𝐴 + 𝛽1

2(휀𝑡−1
′ 휀𝑡−1) + 𝛽2

2Σ𝑡−1, ln 𝑔𝑡 =
ln 𝛾𝑡, {𝒍𝒏𝜸𝒕}~𝒊𝒊𝑵(𝟎, 𝛔𝟐) 

IG-SBEKK 

(t-SBEKK) 

Σ𝑡 = (1 − 𝛽1
2 − 𝛽2

2)𝐴 + 𝛽1
2(휀𝑡−1

′ 휀𝑡−1) + 𝛽2
2Σ𝑡−1, ln 𝑔𝑡 =

ln 𝛾𝑡, {𝜸𝒕}~𝒊𝒊𝑰𝑮(𝒗/𝟐, 𝒗/𝟐) 

LN-MSF Σ𝑡 = 𝐴, ln 𝑔𝑡 = 𝜑 ln 𝑔𝑡−1 + ln 𝛾𝑡, {𝒍𝒏𝜸𝒕}~𝒊𝒊𝑵(𝟎, 𝛔𝟐) 

IG-MSF Σ𝑡 = 𝐴, ln 𝑔𝑡 = 𝜑 ln 𝑔𝑡−1 + ln 𝛾𝑡, {𝜸𝒕}~𝒊𝒊𝑰𝑮(𝒗/𝟐, 𝒗/𝟐) 

VAR Σ𝑡 = 𝐴, 𝑔𝑡 = 1 

Source:  author’s elaboration. 
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Table 2. The log predictive Bayes factors in favour of the LN-MSF-SBEKK model (𝑀1), 

obtained for the whole forecasting period and for two subperiods 

Model 

Log-predictive Bayes factor 

3 September 2019- 

20 August 2020 

3 September 2019- 

11 March 2020 

12 March 2020- 

20 August 2020 

LN-MSF-

SBEKK 
0 0 0 

IG-MSF-

SBEKK 
15.256 5.442 9.814 

LN-SBEKK 17.018 2.249 14.769 

IG-SBEKK 

(t-SBEKK) 
16.122 2.071 14.051 

LN-MSF 2.037 2.702 –0.665 

IG-MSF 2.684 3.028 –0.343 

VAR 53.915 10.490 43.425 

Source: calculated by the author. 

Table 2 presents the decimal logarithms of the predictive Bayes factors 

for the whole forecasting period (𝑇 + 1, … , 𝑇 + 228) and for two 

subperiods (𝑇 + 1, … , 𝑇 + 113 and 𝑇 + 114, … , 𝑇 + 228) in favour of the 

LN-MSF-SBEKK model (𝑀1) versus the other models under 

consideration. The predictive Bayes factors (the preferred method of the 

Bayesian forecast comparison) presented in Table 2 show how the 

additional data (the whole path of observed future data in each period 

considered) influenced the posterior probability of the LN-MSF-SBEKK 

model relative to all the specifications under consideration. As one can see 

from Table 2, the LN-MSF-SBEKK model fits the data (in terms of the 

predictive Bayes factor) much better than the IG-MSF-SBEKK one. The 

predictive power of the LN-MSF-SBEKK model within the whole period 

𝑇 + 1, … , 𝑇 + 228 (3 September 2019-20 August 2020) and within the 

first subperiod (3 September 2019-11 March 2020) dominates all the 

models considered. A different result was obtained for the lockdown period 

(12 March 2020-20 August 2020). Surprisingly, the LN-MSF model turned 

out to be the best from the predictive point of view. The predictive 

performance of the LN-MSF model dominates other models. In fact, the 

negative value of log 𝐵1𝑖(𝑟𝑇+115
𝑇+228,𝑜|𝑟0

𝑇,𝑜) means that this relative posterior 

probability of the LN-MSF-SBEKK model decreases. The IG-MSF model 

took second place, while the LN-MSF-SBEKK ranked third. However, the 

log-predictive Bayes factors in favour of the LN-MSF-SBEKK 

specification over the LN-MSF and IG-MSF ones are less than one (in 

absolute terms) each, and thus, according to the scale presented by (Kass 

and Raftery, 1995), it is only a positive (not strong) evidence against the 
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LN-MSF-SBEKK model. In general, as indicated by predictive Bayes 

factors, lognormal innovations in MSF-SBEKK and MSF structures lead 

to greater predictive capacity compared with the same structures based on 

inverted gamma innovations. 

The predictive Bayes factors provided very strong evidence in favour of 

the LN-MSF-SBEKK specification against the IG-MSF-SBEKK one in the 

three forecasting periods considered. For the whole forecasting period, 

3 September 2019 to 20 August 2020, the decimal logarithm of the 

predictive Bayes factor in favour of the LN-MSF-SBEKK model against the 

IG-MSF-SBEKK model (𝑀2) was close to 15, which indicates that the 

posterior odds ratio based on the first 𝑇 = 456 observations (𝑝(𝑀1|𝑟0
𝑇,𝑜)/

𝑝(𝑀2|𝑟0
𝑇,𝑜)) increased by about 15 orders of magnitude after observing 

predicted data 𝑟𝑇+1
𝑇+228,𝑜

. The increase of the posterior odds ratio was higher 

for the second subperiod (the lockdown period) by about 10 orders of 

magnitude. While comparing two pure SV specifications (the LN-MSF and 

the IG-MSF), the author concluded that log-normal innovations in the latent 

process were preferred by each additional set of data: 𝑟𝑇+1
𝑇+228,𝑜, 𝑟𝑇+1

𝑇+113,𝑜
 and 

𝑟𝑇+114
𝑇+228,𝑜

. The opposite conclusion can be reached if one compares the two 

pure SBEKK specifications. The SBEKK model with conditional Student t 

distribution is better from the predictive point of view than the LN-SBEKK 

one. It seems that the SBEKK structure is less flexible in dealing with 

outliers, and therefore it requires a conditional distribution with thicker tails. 

Obviously, the last position is occupied by the VAR model with constant 

conditional covariances.  

4.2. Forecast evaluation with the log-predictive score  

and energy score 

This section presents the results of comparing the predictive ability of the 

considered Bayesian models with the use of non-Bayesian tools. Tables 3 

to 5 present the average log-predictive scores along with their respective 

ranks. The first conclusion from Tables 3 to 5 is that the LN-MSF-SBEKK 

model produced the best forecasts for all the considered forecast horizons 

and for all the forecasting periods considered, except for ℎ = 1 in the 

lockdown period (11 March 2020-2 September 2020), for which the  

LN-MSF model turned out to be the best. Moreover, for the whole period 

𝑇 + ℎ, … , 𝑇 + 228 + ℎ (3 September 2019-2 September  2020) and for the 

second subperiod (11 March 2020-2 September 2020) the first four 

positions in the ranks are occupied by the LN-MSF, IG-MSF, LN-MSF-

SBEKK, and IG-MSF-SBEKK models. Thus, the second conclusion was 

that the presence of a latent process with dependent latent variables is more 
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important than allowing for the pure SBEKK structure. Both the LN-

SBEKK and IG-SBEKK models, which do not use any latent 

autoregressive processes and therefore are less flexible in dealing with 

outliers, appeared as the worst among conditional heteroscedastic models 

in terms of the average log-predictive score.  

Table 3. The average log predictive scores and ranks obtained for the whole forecasting 

period 3 September2019-2 September 2020 

Model h = 1 rank h = 2 rank h = 3 rank h = 4 rank h = 5 rank 

LN-MSF-
SBEKK 

-0.658 1 -1.122 1 -1.401 1 -1.593 1 -1.747 1 

IG-MSF-

SBEKK 
-0.725 4 -1.202 4 -1.453 4 -1.652 4 -1.817 4 

LN-SBEKK -0.733 6 -1.217 6 -1.499 6 -1.708 6 -1.893 6 

IG-SBEKK 

(t-SBEKK) 
-0.729 5 -1.209 5 -1.490 5 -1.705 5 -1.864 5 

LN-MSF -0.667 2 -1.141 2 -1.417 2 -1.618 2 -1.773 2 

IG-MSF -0.668 3 -1.142 3 -1.419 3 -1.623 3 -1.778 3 

VAR -0.894 7 -1.421 7 -1.782 7 -2.078 7 -2.410 7 

Model h = 6 rank h = 7 rank h = 8 rank h = 9 rank h = 10 rank 

LN-MSF-
SBEKK 

-1.883 1 -2.005 1 -2.117 1 -2.202 1 -2.273 1 

IG-MSF-

SBEKK 
-1.992 4 -2.103 4 -2.232 4 -2.336 4 -2.399 4 

LN-SBEKK -2.102 6 -2.247 6 -2.410 6 -2.527 6 -2.621 6 

IG-SBEKK 

(t-SBEKK) 
-2.035 5 -2.203 5 -2.293 5 -2.467 5 -2.556 5 

LN-MSF -1.928 2 -2.054 2 -2.172 2 -2.265 2 -2.334 2 

IG-MSF -1.937 3 -2.061 3 -2.190 3 -2.287 3 -2.356 3 

VAR -2.890 7 -3.144 7 -3.459 7 -3.608 7 -3.596 7 

h denotes forecast horizon. 

Source: calculated by the author. 

Surprisingly, the IG-MSF-SBEKK model fits the predicted data worse 

(in terms of the average log predictive score) than the IG-MSF and LN-

MSF ones. Both of the latter specifications used one latent process 

common to all the conditional variances and covariances. This assumption 

of common dynamics led to constant conditional correlations. While 

comparing the average log predictive score for the LN-MSF and IG-MSF 

models, the author found that the inverted gamma innovations in the 

autoregressive specification for the latent process were outperformed by 
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log-normal ones. However, the pure SBEKK-type models in most cases 

ranked in the reverse order: the IG-SBEKK (t-SBEKK) model is better 

than the LN-SBEKK one. 

Table 4. The average log-predictive scores and ranks obtained for the first forecasting 

subperiod: 3 September 2019-11March 2020 

Model h = 1 rank h = 2 rank h = 3 rank h = 4 rank h = 5 rank 

LN-MSF-

SBEKK 
-0.424 1 -0.881 1 -1.194 1 -1.389 1 -1.539 1 

IG-MSF-
SBEKK 

-0.472 6 -0.946 6 -1.251 6 -1.451 6 -1.610 6 

LN-SBEKK -0.443 3 -0.930 5 -1.230 4 -1.435 4 -1.584 4 

IG-SBEKK 

(t-SBEKK) 
-0.442 2 -0.926 4 -1.233 5 -1.444 5 -1.606 5 

LN-MSF -0.447 4 -0.914 2 -1.222 2 -1.420 2 -1.570 2 

IG-MSF -0.448 5 -0.916 3 -1.223 3 -1.426 3 -1.572 3 

VAR -0.516 7 -1.010 7 -1.328 7 -1.530 7 -1.676 7 

Model h = 6 rank h = 7 rank h = 8 rank h = 9 rank h = 10 rank 

LN-MSF-

SBEKK 
-1.662 1 -1.781 1 -1.892 1 -1.962 1 -2.011 1 

IG-MSF-
SBEKK 

-1.735 6 -1.858 5 -1.957 4 -2.033 4 -2.086 4 

LN-SBEKK -1.721 4 -1.859 6 -1.982 6 -2.050 6 -2.092 5 

IG-SBEKK 

(t-SBEKK) 
-1.722 5 -1.850 4 -1.966 5 -2.049 5 -2.097 6 

LN-MSF -1.694 2 -1.827 2 -1.922 2 -2.009 2 -2.045 2 

IG-MSF -1.698 3 -1.827 3 -1.941 3 -2.012 3 -2.063 3 

VAR -1.800 7 -1.918 7 -2.062 7 -2.150 7 -2.161 7 

h denotes forecast horizon. 

Source: calculated by the author. 

Turning attention to the energy score, one can see that the previous 

conclusion (based on the average log-predictive score) that the LN-MSF- 

-SBEKK model outperformed the other models holds for the whole 

forecasting period considered (3 September 2019-2 September 2020 as 

well as for the subperiod 12 March 2020-2 September 2020. In the case of 

these two forecasting periods, the rank correlation coefficients were large 

and positive, see Table 8. Table 6 and Figure 3 also confirm superiority of 

the LN-MSF-SBEKK model in the period: 3 September 2019-2 September 

2020. For periods containing the lockdown crisis the first four positions in 

the rank were occupied by the LN-MSF-SBEKK, IG-MSF-SBEKK,  

LN-MSF and IG-MSF models. The imposition of zero restrictions on 𝜑 led   
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Table 5. The average log-predictive scores and ranks obtained for the second forecasting 

subperiod: 12 March 2020-2 September 2020 

Model h = 1 rank h = 2 rank h = 3 rank h = 4 rank h = 5 rank 

LN-MSF-
SBEKK 

-0.888 3 -1.355 1 -1.597 1 -1.783 1 -1.936 1 

IG-MSF-

SBEKK 
-0.974 4 -1.449 4 -1.645 4 -1.840 4 -2.006 4 

LN-SBEKK -1.017 6 -1.494 6 -1.754 6 -1.963 6 -2.176 6 

IG-SBEKK 

(t-SBEKK) 
-1.010 5 -1.482 5 -1.734 5 -1.949 5 -2.102 5 

LN-MSF -0.882 1 -1.360 2 -1.602 2 -1.803 2 -1.959 2 

IG-MSF -0.884 2 -1.360 3 -1.604 3 -1.808 3 -1.967 3 

VAR -1.266 7 -1.817 7 -2.212 7 -2.588 7 -3.083 7 

Model h = 6 rank h = 7 rank h = 8 rank h = 9 rank h = 10 rank 

LN-MSF-

SBEKK 
-2.081 1 -2.202 1 -2.314 1 -2.407 1 -2.493 1 

IG-MSF-

SBEKK 
-2.223 4 -2.319 4 -2.471 4 -2.594 4 -2.662 4 

LN-SBEKK -2.445 6 -2.591 6 -2.782 6 -2.934 6 -3.065 6 

IG-SBEKK 

(t-SBEKK) 
-2.317 5 -2.515 5 -2.577 5 -2.824 5 -2.942 5 

LN-MSF -2.138 2 -2.255 2 -2.389 2 -2.484 2 -2.577 2 

IG-MSF -2.151 3 -2.267 3 -2.406 3 -2.522 3 -2.601 3 

VAR -3.871 7 -4.228 7 -4.672 7 -4.852 7 -4.800 7 

h denotes forecast horizon. 

Source: calculated by the author. 

to a substantial deterioration in forecast performance. In fact, the pure 

SBEKK models took the last two positions among the models with 

conditional heteroscedasticity. A different result was obtained for the 

period 3 September 2019-11 March 2020 (characterized by relatively low 

volatility), in which the IG-MSF-SBEKK model was clearly superior to 

the other specifications at all the forecast horizons. For ℎ = 2, … ,10 the 

second position was occupied by the IG-SBEKK model, and the fourth 

position by the LN-MSF-SBEKK one. As one can see from Table 8, for 

the subperiod 3 September 2019-11 March 2020 the rank correlation 

coefficients were negative. However, the differences between the average 

energy scores seem to be within the limits of the numerical error. 
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Table 6. The average energy score and ranks obtained for the whole forecasting period: 

3 September 2019-2 September 2020 

Model h = 1 rank h = 2 rank h = 3 rank h = 4 rank h = 5 rank 

LN-MSF-

SBEKK 
250.145 1 250.125 1 250.108 1 250.091 1 250.081 1 

IG-MSF-

SBEKK 
250.147 3 250.128 2 250.112 2 250.095 2 250.086 2 

LN-SBEKK 250.149 6 250.133 7 250.118 7 250.104 7 250.097 7 

IG-SBEKK 
(t-SBEKK) 

250.149 5 250.131 5 250.116 5 250.102 5 250.094 5 

LN-MSF 250.147 4 250.129 4 250.114 4 250.099 4 250.091 4 

IG-MSF 250.146 2 250.129 3 250.113 3 250.098 3 250.089 3 

VAR 250.149 7 250.132 6 250.117 6 250.102 6 250.094 6 

Model h = 6 rank h = 7 rank h = 8 rank h = 9 rank h = 10 rank 

LN-MSF-

SBEKK 
250.072 1 250.057 1 250.040 1 250.025 1 250.019 1 

IG-MSF-
SBEKK 

250.078 2 250.064 2 250.049 2 250.033 2 250.030 2 

LN-SBEKK 250.091 7 250.080 7 250.068 7 250.057 7 250.050 7 

IG-SBEKK 

(t-SBEKK) 
250.088 6 250.076 6 250.063 6 250.052 6 250.045 6 

LN-MSF 250.084 4 250.072 4 250.059 4 250.048 4 250.040 4 

IG-MSF 250.082 3 250.071 3 250.057 3 250.046 3 250.038 3 

VAR 250.088 5 250.076 5 250.063 5 250.051 5 250.044 5 

Source: calculated by the author. 

Table 7. The average energy score and ranks obtained for the whole forecasting period: 

3 September 2019-11 March 2020 

Model h = 1 rank h = 2 rank h = 3 rank h = 4 rank h = 5 rank 

1 2 3 4 5 6 7 8 9 10 11 

LN-MSF-

SBEKK 
247.945 4 247.932 4 247.928 4 247.923 4 247.923 4 

IG-MSF-
SBEKK 

247.944 1 247.931 1 247.927 1 247.921 1 247.921 1 

LN-SBEKK 247.945 6 247.933 5 247.930 6 247.925 6 247.925 5 

IG-SBEKK 

(t-SBEKK) 
247.945 3 247.932 2 247.928 2 247.922 2 247.923 2 

LN-MSF 247.945 7 247.934 7 247.930 7 247.925 7 247.926 7 

IG-MSF 247.945 5 247.933 6 247.930 5 247.925 5 247.925 6 

VAR 247.944 2 247.932 3 247.928 3 247.923 3 247.923 3 
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1 2 3 4 5 6 7 8 9 10 11 

Model h = 6 rank h = 7 rank h = 8 rank h = 9 rank h = 10 rank 

LN-MSF-
SBEKK 

247.926 4 247.926 4 247.923 4 247.923 4 247.920 4 

IG-MSF-

SBEKK 
247.923 1 247.923 1 247.919 1 247.918 1 247.914 1 

LN-SBEKK 247.928 6 247.929 6 247.926 6 247.927 6 247.924 6 

IG-SBEKK 

(t-SBEKK) 
247.925 2 247.926 2 247.922 2 247.922 2 247.919 2 

LN-MSF 247.929 7 247.930 7 247.927 7 247.928 7 247.925 7 

IG-MSF 247.928 5 247.929 5 247.926 5 247.927 5 247.924 5 

VAR 247.926 3 247.926 3 247.922 3 247.923 3 247.919 3 

Source: calculated by the author. 

Table 8. Rank correlation coefficients for the average log-predictive score  

and the average energy score  

Forecasting period h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10 

3September 2019  

-2September 2020 
0.89 0.82 0.82 0.82 0.82 0.75 0.75 0.75 0.75 0.75 

3September 2019  
-11March 2020 

–0.39 –0.57 –0.64 –0.64 –0.68 –0.64 –0.32 –0.29 –0.29 –0.43 

12March 2020 

-2September 2020 
0.86 0.93 0.82 0.82 0.75 0.75 0.75 0.75 0.75 0.75 

Source: calculated by the author. 

  

Fig. 3. The average log-predictive scores (positive oriented) and the average energy scores 

(negative oriented) for the whole forecasting period (3 September 2019-2 September 2020) 

Source: calculated by the author. 



ŚLĄSKI 

PRZEGLĄD 

STATYSTYCZNY 

Nr  18(24) 

214 Anna Pajor  

ℎ = 1 ℎ = 10 

LN-MSF-SBEKK 

 

LN-MSF-SBEKK 

 

LN-MSF 

 

LN-MSF 

 

LN-SBEKK 

 

LN-SBEKK 

 

Fig. 4. Quantiles of predictive distributions for USD/PLN  

Source: calculated by the author.  
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ℎ = 1 ℎ = 10 

IG-MSF-SBEKK 

 

IG-MSF-SBEKK 

 

IG-MSF 

 

IG-MSF 

 

IG-SBEKK 

 

IG-SBEKK 

 

Fig. 5. Quantiles of predictive distributions for USD/PLN   

Source: calculated by the author. 
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As expected, the dispersion of the predictive distributions (measured 

by e.g. the interquartile range) increased with the forecast horizon. In fact, 

for the USD/PLN and EUR/PLN exchange rates, the average interquartile 

range for the ten-day forecast horizon was about three times larger than for 

the one-day horizon. In turn, for the GBP/PLN the average interquartile 

range for the ten-day forecast horizon was about eight times larger than for 

the one-day horizon. To illustrate how the predictive distribution changed 

along with the increasing forecast horizon, the author presents (in Figures 

4 and 5) quantiles of the predictive distributions for ℎ = 1 and ℎ = 10, 

obtained in the models considered. The predictive distributions for ℎ = 10 

were much more spread than those for ℎ = 1. Moreover, the accuracy of 

forecasts with ℎ = 10 was not quite satisfactory – a few realized data were 

outside of the 90% confidence intervals.  

As seen from Figures 4 and 5, and while analysing the predictive 

quantiles, the predictive distributions obtained in the LN-MSF-SBEKK 

model turned out to be the most dispersed – this dispersion was measured 

by interquartile ranges and the difference between the quantile of order 

0.05 and of order 0.95. The LN-SBEKK and IG-BEKK models are 

characterized by the least spread of predictive distributions. The 

differences in the predictive distributions among the models influenced the 

values of the predictive Bayes factors, log-predictive scores and energy 

scores. 

5. Conclusion 

The paper compared the predictive ability of the LN-MSF-SBEKK and IG-

MSF-SBEKK models (and their simplifications) in the context of 

modelling the main exchange rates for PLN. According to the results 

obtained on the basis of the average log-predictive score and energy score, 

the author concluded that for most of the forecast horizons considered, the 

LN-MSF-SBEKK specification outperformed the IG-MSF-SBEKK one. 

As measured by the average log-predictive score, the predictive perfor-

mance of the stochastic volatility models with log-normal innovations 

dominated that of the SV ones with inverted gamma innovations.  

The results can be sensitive to the prior assumptions regarding the 

model parameters, especially the parameters related to the latent process: 

𝜑, 𝜎2 and 𝑣. In this paper the author did not carry out the study of the 

sensitivity of these results to a priori assumptions. It is worth mentioning 

that under the author’s prior assumptions about the parameters of latent 

processes, the marginal variances of the two latent processes (based on log-

normal and inverted gamma innovations) had similar prior distributions. In 

this sense, the prior distributions of the basic parameters in the LN-MSF-
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SBEKK and IG-MSF-SBEKK models were treated as coherent (see: 

Osiewalski and Pajor, 2019). The application of this analysis to alternative 

conditional covariance assumptions can provide a useful direction for 

future research.  
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ODWRÓCONE GAMMA A LOGARYTMICZNO-NORMALNE 
INNOWACJE W MODELACH MSF-SBEKK W PROGNOZOWANIU 
WYBRANYCH POLSKICH KURSÓW WALUTOWYCH 

Streszczenie: Celem badania jest porównanie własności prognostycznych dwóch klas 

modeli MSF-SBEKK różniących się postacią procesu ukrytego. W klasie pierwszej 

innowacje w strukturze autoregresyjnej pierwszego rzędu dla logarytmów naturalnych 

zmiennych ukrytych mają rozkład logarytmiczno-normalny, w klasie drugiej zaś innowacje 

te mają odwrócony rozkład gamma. Porównanie modeli z wykorzystaniem predyktywnego 

czynnika Bayesa, a także metod scoringowych dokonywane jest w kontekście 

prognozowania wybranych kursów walutowych: USD/PLN, EUR/PLN i GBP/PLN 

w okresie obejmującym kryzys wywołany pandemią COVID-19. Wyniki empiryczne 

pokazały, że dla większości branych pod uwagę horyzontów prognozy modele 

z innowacjami o rozkładzie logarytmiczno-normalnym mają lepsze własności predyktywne 

niż modele z innowacjami o rozkładzie odwróconym gamma. 

Słowa kluczowe: model zmienności stochastycznej, prognozowanie, predyktywny czynnik 

Bayesa. 
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