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Abstract: The main objective of this paper is to investigate the nonparametric estimation of the 

conditional density of a scalar response variable Y, given the explanatory variable X taking value in 

a Hilbert space when the sample of observations is considered as an independent random variables with 

identical distribution (i.i.d) and are linked with a single functional index structure. First of all, a kernel 

type estimator for the conditional density function (cond-df) is introduced. Afterwards, the asymptotic 

properties are stated for a conditional density estimator when the observations are linked with a single-

index structure from which one derives a central limit theorem (CLT) of the conditional density 

estimator to show the asymptotic normality of the kernel estimate of this model. As an application the 

conditional mode in functional single-index model is presented, and the asymptotic (1 – ) confidence 

interval of the conditional mode function is given for 0 <  < 1. A simulation study is also presented to 

illustrate the validity and finite sample performance of the considered estimator. Finally, the estimation 

of the functional index via the pseudo-maximum likelihood method is discussed. 

Keywords: asymptotic normality, conditional density, functional single index model, functional 

random variable, nonparametric estimation.  
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1. Introduction 

The statistical analysis of functional variables has grown considerably over the last 

two decades. Infact, an important innovation in measuring devices has emerged, 

permitting to monitor several objects in a continuous way, such as stock market index, 

pollution, climatology, and satellite images, etc. 

Thus a new branch of statistics, called functional statistics, has been developed to 

treat observations as functional random elements. 

The first results on the conditional models were obtained by (Ferraty, Laksaci, and 

Vieu, 2006). They established the almost complete convergence rate of the kernel 

estimators for the conditional distribution function, the conditional density and its 

derivatives, the conditional mode and the conditional quantiles. 

As a conditional nonparametric model, regression was one of the first predictive 

analysis tools. Quantile regression is the common way to describe the dependence 

structure between a response variable Y and some covariate X. Unlike the regression 

function (which is defined as the conditional mean) that relies only on the central 

tendency of the data, the conditional mode function allows the analyst to estimate the 

functional independence between variables for all portions of the conditional density 

of the response variable. However, compared with the standard approach based on 

functional conditional mean prediction that is sensitive to outliers, functional condition 

mode prediction could be seen as a reasonable alternative to the conditional mean 

because of its robustness, which allows to consider it as a useful alternative to the 

regression function. 

The conditional model estimator has been widely used to estimate some 

characteristic features of the data set, such as the conditional mode, the conditional 

median, and the conditional quantiles. Many authors are interested in the estimation of 

the conditional mode of a scalar response given a functional covariate. Ferraty, Laksaci 

and Vieu (2006) introduced nonparametric the kernel-type estimators of some 

characteristics of the conditional cumulative distribution function and successive 

derivatives of the conditional density, and some asymptotic properties were esta-

blished with particular attention to the conditional mode and conditional quantiles. An 

application to a chemometrical data set coming from the food industry was also 

presented. The uniform strong consistency with rates and the asymptotic normality for 

the kernel conditional mode estimator were obtained by Ezzahrioui and Ould-Saïd 

(2008) in the i.i.d case. 

In the case of censoring, Ould-Saïd and Cai (2005) established the strong uniform 

convergence (with rate) of kernel conditional mode estimator for i.i.d random 

variables, while Ould-Saïd (2006) constructed a kernel estimator of the conditional 

quantile and establish its strong uniform convergence rate. Next, (Khardani, Lemdani, 

and Ould-Saïd, 2010) obtained strong consistency with the rate and asymptotic 

normality of the conditional mode (Khardani, Lemdani, and Ould-Saïd, 2011) 

established strong consistency with the rate of the conditional mode for the censored 
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dependent case, while (Khardani, Lemdani, and Ould-Saïd, 2014) presented asymp-

totic normality. 

For infinite dimensional purpose, the study used the terminology functional 

nonparametric, where the term functional refers to the infinite dimensionality of the 

data, and where nonparametric refers to the infinite dimensionality of the model. Such 

functional nonparametric statistics is also called doubly infinite dimensional (see 

Ferraty and Vieu, 2003), for more details). Conditional density function estimation is 

one of the crucial problems in non-parametric statistics, see (De Gooijer and Zerom, 

2003). Ling and Xu (2012) established the asymptotic normality of the conditional 

density estimator and the conditional mode estimator for the α-mixing dependence 

functional time series data. (Ling, Li, and Yang, 2014) investigated the pointwise 

almost complete consistency and the uniform almost complete convergence of the 

kernel estimation with a rate for the conditional density in the setting of the α-mixing 

functional data. Attaoui (2014) investigated the nonparametric estimation of the 

conditional density of a scalar response variable given a random variable taking values 

in separable Hilbert space. The author established under general conditions the 

uniform almost complete convergence rates and the asymptotic normality of the 

conditional density kernel estimator, when the variables satisfy the strong mixing 

dependency, based on the single-index structure. 

The single index models have been used and studied in both statistical and 

econometric literature, and are very popular in the economics community as they 

address two important concerns. The first is the reduction of dimension, since this type 

of model makes it possible to solve the problem of the scourge of the dimension. The 

second is related to the interpretability of the index (parameter) introduced in these 

models. The statistical study of these models, in the context of vectorial explanatory 

random variables, was initiated by Härdle and Marron (1985). Hristache, Juditsky, and 

Spokoiny (2001) provided both new theoretical and bibliographic elements. Several 

authors have worked on simple functional index models, e.g. (Attaoui and Boudiaf, 

2014; Aït-Saidi, Ferraty, Kassa, and Vieu, 2008; Belabbaci, Rabhi, and Soltani, 2015; 

Ferraty, Peuch, and Vieu 2003)). 

These models attracted the attention of many researchers, such as Aït-Saidi, 

Ferraty and Kassa (2005). Bouchentouf, Djebbouri, Rabhi, and Sabri (2014) 

established a nonparametric estimation of some characteristics of the conditional 

cumulative distribution function and the successive derivatives of the conditional 

density of a scalar response variable Y given a Hilbertian random variable X when the 

observations are linked with a single-index structure. Attaoui, Laksaci, and Ould-Saïd 

(2011) studied the functional single-index model via its conditional density kernel 

estimator, and established its pointwise and uniform almost complete convergence 

rates, and their results were extended to the dependent case by Attaoui (2014). 

Furthermore, Ling and Xu (2012) obtained the asymptotic normality of the conditional 

density estimator and the conditional mode estimator for the α-mixing dependence 

functional time series data. 
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The single-index models are becoming incrementally important and popular, and 

have been attracting considerable attention in the last few years because of their 

importance in several areas of science such as econometrics, biostatistics, medicine, 

etc. The single-index approach is extensively and mostly used in econometrics. Such 

kind of modelization is extensively studied in the multivariate case, for example in 

(Härdle, Hall, and Ichumira, 1993, Hristache, Juditsky, and Spokoiny, 2001). Based 

on the regression function, (Delecroix, Härdle, and Hristache, 2003) studied the 

estimation of the single-index and established some asymptotic properties. The 

literature is strictly limited in the case where the explanatory variable is functional (that 

is a curve). The first asymptotic properties in the fixed functional single-model were 

obtained by Ferraty and Vieu (2003), who established the almost complete con-

vergence in the i.i.d case, of the link regression function of this model. Their results 

were extended to the dependent case by Aït-Saidi, Ferraty, and Kassa (2005).  

Aït-Saidi, Ferraty, Kassa, and Vieu (2008) studied the case where the functional single- 

-index is unknown, and proposed an estimator of this parameter, based on the  

cross-validation procedure.  

The main contribution of this work is to generalize the result of Ezzahrioui and 

Ould-Saïd (2008), where a functional parameter  is present in the model. The results 

can be used to construct prediction intervals, for instance regarding electricity when 

one wants to construct a maximum interval of demand (or need) forchemometrical 

data coming from the food industry.  

This study established the asymptotic properties of the asymptotic normality for 

the estimators of conditional density function and conditional mode of a randomly 

scalar response, given a functional covariate when the data are sampled from ani.i.d 

process with a single-index structure. 

The paper is organized as follows. The model and some basic assumptions are 

presented in Section 2. Section 3 shows the main results, and the proofs of some 

lemmas and of the main result. In Section 4 an application of the conditional mode in 

functional single-index model is presented. Finally, Section 5 illustrates those 

asymptotic properties through some simulations.  

2. The model and some basic assumptions 

In all the paper, the authors denote by C, C0or/and Cθ,x some generic constant in ℝ+
∗ . 

The authors consider that, given the (Xi, Yi)i = 1,...,n a sequence of independent pairs 

functional samples, with the same distribution as (X, Y ), where Y is a real-valued 

random variable and X is a functional random variable (frv), which takes its values in a 

separable real Hilbert space H with the norm ||·||generated by an inner product <·,· >. 

Moreover, the study considers dθ(·,·) a semi-metric associated with the single 

index θ ∈ H defined by dθ(x1, x2):= | < x1 − x2,θ>|, for x1 and x2 in H. 

For a fixed in H and let F(θ, y, x) be the conditional cumulative distribution 

function (cond-cdf) of Y given <θ,X >=<θ,x >, specifically: 
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∀y ∈ ℝ, F(θ,y,x) = P(Y ≤ y| < X,θ>=< x,θ>). 

The authors implicitly assume the existence of a regular version of the conditional 

distribution and that itis absolutely continuous with respect to the Lebesgue measure 

on ℝ, the aim was to build nonparametric estimates of several functions related with 

the conditional density of Y given <X,θ>=< x,θ>. Let 

∀y ∈ ℝ, f(y|x) =: f(y| < x, θ>), 

be the conditional density of Y given <X, θ>=< x, θ>, for x ∈ H. 

In the following, the authors denote by f(θ,·,x) the conditional density of Y given 

<x,θ> and define the kernel estimator 𝑓(θ,·,x) for f(θ,·,x) by: 

 

with the convention 0/0 = 0, where K and H are kernel functions and 

hK:= hn,K  (respectively hH:= hn,H) is a sequence of bandwidths that decrease to zero as 

n goes to infinity. 

Let for any x ∈ H, i = 1, ..., n and y ∈ ℝ: 

. 

The authors denote by Bθ(x,h) = {χ∈ H/0 <| < x −χ,θ>| < h} be a ball of centrex 

and radius h, and let dθ(x,Xi) = | < x −Xi,θ>| denote a random variable such that its 

cumulative distribution function is given by θ,x (u) = P(dθ(x,Xi) ≤ u) = P(Xi ∈Bθ(x,u)). 

Let Nx  be a fixed neighbourhood of x in ℋ, 𝑆ℝwill be a fixed compact subset  

of ℝ, now, consider the following basic assumptions that are necessary to accomplish 

the main result of this paper. 
(H1): P(X ∈Bθ(x,hK)) =: φθ,x(hK) > 0; φθ,x(hK) → 0 as hK  → 0. 

(H2): The conditional density f(θ,y,x) satisfies the Hölder condition, that is:  

∀(y1,y2) ∈ 𝑆ℝ × 𝑆ℝ, ∀(x1,x2) ∈ Nx × Nx |f(θ,y1,x1) − f(θ,y2,x2)| ≤ 

Cθ,x(||x1−x2||
b1+|y1−y2|

b2), b1 > 0, b2  > 0. 

(H3): The kernel H is a positive bounded function such that ∀(t1, t2) ∈ ℝ2, |H(t1) − 

H(t2)| ≤ C|t1 −t2|, ∫ 𝐻2(𝑡)𝑑𝑡 < ∞ and ∫|𝑡|𝑏2𝐻(𝑡)𝑑𝑡 < ∞. 

(H4): The kernel K is a positive bounded function supported on [0,1] and is 

differentiable on [0,1] with derivative such that: ∃C1, C2, − ∞ < C1 < K’(t)  

< C2 < 0, for 0 < t < 1. 

(H5): There exists a function βθ,x(·) such that lim
𝑛→∞

𝜙𝜃,𝑥(𝑠ℎ𝐾)

𝜙𝜃,𝑥(ℎ𝐾)
= 𝛽𝜃,𝑥(𝑠), for ∀s∈ [0,1]. 

(H6):  The bandwidth hK and hH, small ball probability φθ,x(hK) satisfying  
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(i) lim
𝑛→∞

ℎ𝐾 = 0, lim
𝑛→∞

ℎ𝐻 = 0 and lim
𝑛→∞

log 𝑛

𝑛ℎ𝐻𝜙𝜃,𝑥(ℎ𝐾)
= 0. 

(ii) ℎ𝐻
𝑏2√𝑛ℎ𝐻𝜙𝜃,𝑥(ℎ𝐾) ⟶ 0, 𝑎𝑠𝑛 → ∞. 

(iii) 𝑛ℎ𝐻
3 𝜑𝜃,𝑥

3 (ℎ𝐾) ⟶  0, 𝑎𝑠𝑛 → ∞. 

3. Main result 

In this section the asymptotic normality of the estimator 𝑓(𝜃, . , 𝑥) in the single functional 

index model was established. 

Theorem 3.1. Under assumptions, there are (H1)-(H6)-(ii) for all x ∈ ℋ 

 

𝒟
→means the convergence in distribution. 

Proof. In order to establish the asymptotic normality of 𝑓(θ, y, x), further notations 

and definitions were needed. First the study considered the following decomposition 

 

where 

 

and 
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It follows that, 

 

Then, the proof of Theorem 3.1 can be deduced from the following Lemmas. 
 

Lemma 3.1. Under conditions of Theorem 3.1 
 

 

Proof. 

 

Using the definition of conditional variance 

𝔼 2

1 1 1 2( ( ) ( , , )) , ,  −   = + H n nH y h f t x X J J  

where  

 J1n = V ar(H1(y)| <θ, X1 >), 

 J2n = [E(H1(y)| <θ, X1 >) − hHf(θ,y,x)]2 . 

• Concerning J1n 

J1n = E (H1
2(y)| < θ, X1 >) − E(H1(y)| <θ, X1 >)2 = J1 + J2. 

As for J1, by the property of conditional expectation and by changing variables, 

one obtains as 𝑛 → ∞ 
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On the other hand, by applying (H2) and (H3) 

𝐽1 = ∫ 𝐻1
2

ℝ

(𝑢)𝑑𝐹(𝜃, 𝑦 − 𝑢ℎ𝐻 , 𝑋1) 

= ℎ𝐻 ∫ 𝐻1
2

ℝ

(𝑢)𝑓(𝜃, 𝑦 − 𝑢ℎ𝐻 , 𝑋1)𝑑𝑢, 

≤ ℎ𝐻 ∫ 𝐻1
2

ℝ

(𝑢)(𝑓(𝜃, 𝑦 − 𝑢ℎ𝐻 , 𝑋1) − 𝑓(𝜃, 𝑦, 𝑥))𝑑𝑢 

+ℎ𝐻 ∫ 𝐻1
2

ℝ

(𝑢)𝑓(𝜃, 𝑦, 𝑥)𝑑𝑢, 

≤ ℎ𝐻 (𝐶𝑥,𝜃 ∫ 𝐻2

ℝ

(𝑢)(ℎ𝐾
𝑏1 + |𝑣|𝑏2ℎ𝐻

𝑏2)𝑑𝑢 + 𝑓(𝜃, 𝑦, 𝑥) ∫ 𝐻2

ℝ

(𝑢)𝑑𝑢), 

= 𝒪(ℎ𝐾
𝑏1 + ℎ𝐻

𝑏2) + ℎ𝐻𝑓(𝜃, 𝑦, 𝑥) ∫ 𝐻2

ℝ

(𝑢)𝑑𝑢, 

(3.2) 

 

Moreover, by changing variables one obtains: 

 

the last equality is due to the fact that H is a probability density, and thus: 

 

Finally, as 𝑛 → ∞, J2 ⟶ ∞. As for J2n, by (H1)-(H3), one obtains that 𝑛 → ∞ 

J2n ⟶ ∞. 

Meanwhile, by (H1)-(H3), it follows that 

 

which leads to combining equations (3.1) and (3.2) 
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Lemma 3.2. If the assumptions (H1)-(H6) are satisfied, then𝑛 → ∞ 

, ( ) ( , , ) 0, in probability.  →H x K nnh h B y x  

Proof. One has 

 

Firstly, the authors observed that the results below 

 
can be proved in the same way as in Ezzahrioui and Ould-Saïd (2008) corresponding 

to their lemmas Lemma 1 and Lemma 3, and then their proofs were omitted. 

Secondly, on the one hand, making use of (3.3) and (3.4). 

 

On otherhand, 

 

As K(.)H(.) is continuous with support on [0,1], then by (H3) and (H4)  

∃m= inf
[0,1]

𝐾(𝑡)𝐻(𝑡) it follows that  

 
Finally, using (H6)-(iii), completes the proof of Lemma 3.2. 

4. Application: the conditional mode in a functional  

single-index model 

The main objective of this section was to establish the asymptotic normality a of the kernel 

estimator of the conditional mode of Y given <X,θ>=< x,θ> denoted by Mθ(x). The 

authors estimated the conditional mode 𝑀�̂�(x) with a random variable Mθ(x) such that 

 �̂�(x) = argsup
𝑦∈𝑆ℝ

𝑓 �̂�  (𝑦)  (4.1) 



10 Fatima Akkal, Nadia Kadiri, Abbes Rabhi 

Note that the rest of the paper considered any value 𝑀�̂� satisfying (4.1). 

In order to present the estimation of the conditional mode in the functional single-

-index model, the following additional smoothness condition was introduced. 

(U1):  f(θ,·,x) is twice continuously differentiable around the point Mθ(x) with f (1) 

(θ,Mθ(x),x) = 0 and f (2)(θ,·,x) is uniformly continuous on 𝑆ℝsuch that f (2)  

(θ,Mθ(x),x) ≠ 0, where f (j)(θ,·,x) (j = 1,2) is the j-th order derivative of the 

conditional density f(θ,y,x). 
(U2): ∀ε > 0, ∃η > 0 ,∀y ∈ 𝑆ℝ 

|Mθ(x) − y| ≥ ε⇒ |f(θ,Mθ(x),x) − f(θ, y, x)| ≥ η. 

(U3): The conditional density function f(θ, y, x) satisfies: ∃β0 >0, ∀(y1, y2) ∈ 𝑆ℝ × 𝑆ℝ, 

|f (j)(θ, y1, x) – f (j)(θ, y2, x)| ≤ C(|y1 −y2|
β0), ∀j = 1,2. 

(U4): H’ and H” are bounded respectively with 

02( ( )) , ( ) .H t dt t H t dt


      

Theorem 4.1. Suppose that hypotheses (H1)-(H6) and (U1)-(U4) are satisfied. If 

𝑙𝑖𝑚
𝑛→∞

𝑛ℎ𝐻
3 𝜙𝜃,𝑥(ℎ𝐾) = ∞, we have as n → ∞ 

 
(4.2) 

where 

 
(4.3) 

Proof. Firstly, by (4.1) and (U1), it follows that f(1)(θ, Mθ(x),x) = 0. 

Writing the first order Taylor expansion for f(1)(θ, y, x) at point Mθ(x) leads to the 

existence of some Mθ∗(x) between 𝑀�̂�(x) and Mθ(x) such that 

 

In order to prove (4.3), one only needs to show that 

−√𝑛ℎ𝐻
3 𝜙(ℎ𝐾)𝑓(1)(θ,Mθ(x),x) 

𝒟
→ 𝒩(0,ν0

2(θ,x)), and (4.4) 

 (4.5) 
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in probability,  
where 

 

In fact, because the continuity of the function f(θ, y, x) and by (U2) and the 

definitions of 𝑀�̂�(x) and Mθ(x), there is for all ε > 0, ∃η(ε) > 0 such that: 

 

(4.6) 

Thus, similarly to Ferraty and Vieu (2006), by (H1)-(H4) and (H6)-(i), there 

is𝑓(θ,y,x) −→f(θ,y,x) in probability, which implies that 𝑀�̂�(𝑥) → 𝑀𝜃(𝑥) in probability 

by (4.6) as n → ∞. Similarly, the methodology can be also applied to obtain 𝑓(2)(θ,y,x) 
−→ f(2)(θ,y,x) in probability as n → ∞ by (H1), (H4), (H6), (U3) and (U4). Therefore, 

(4.5) is valid by the fact that f(2)(θ,y,x) is uniformly continuous with respect to y on 𝑆ℝ. 

Next, (4.4) is proved. In fact, since 

 

(4.7) 

By (U1), (U3)-(U4), (4.2) and (4.7), similar to the proof of Lemmas, Lemma 3.1 

and Lemma 3.2 respectively, (4.4) follows directly. Then the proof of Theorem 4.1 is 

completed. 

4.1. Application and confidence bands  

The asymptotic variances σ2(θ,y,x) and ν2(θ,x) in Theorem 3.1 and Corollary 4.1 

depend on some unknown quantities including α1, α2, (u), Mθ(x) and f(θ,Mθ(x),x). 
Hence Mθ(x), and f(θ,Mθ(x),x) should be replaced by their respective estimators �̂�θ(x), 

and 𝑓(θ,Mθ(x),x). 
Due to the unknown functions αj:= αj(θ,x) and f(θ,y,x) 0intervening in the 

expression of the variance, it is necessary to estimate the quantities α1(θ,x), α2(θ,x) and 

f(θ,y,x), respectively. 

By the assumptions (H1)-(H4) one knows that αj(θ,x) can be estimated by �̂�j(θ,x) 
which is defined as: 
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with 1{.} being the indicator function. 

By applying the kernel estimator f(θ,y,x) given above, the quantity σ2(θ,y,x) can 

be estimated finally by: 

 

so we can derive the following corollary: 

Corollary 4.1. Under the assumptions of Theorem 3.1, one obtains as n → ∞ 

 
. 
 

Proof. Observe that 

 

Via Theorem 3.1, one obtains 

 
. 
 

Next, by Laib and Louani (2010), one can prove that 

αb1(θ,x) −P→ α1(θ,x), αb2(θ,x) −P→ α2(θ,x), and ,    as n → ∞. 

Therefore, one obtains 

 

This yields the proof of Corollary 4.1. 
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Finally, in order to show the asymptotic (1 − ξ) confidence interval of Mθ(x), one 

needs to consider the estimator of ν2(θ,x) as follows: 

 

Thus, the following corollary is obtained. 

Corollary 4.2. Under conditions of Theorem 4.1, as n → ∞ one has 

 

Proof. Observe that 

 

Making use of Theorem 4.1, one obtains 

 

Further, by considering Lemma 3.2, (4.5) and (4.6), one obtains as n → ∞, 

 

Hence, the proof is completed. 

Remark 4.1. Thus, following the corollaries, Corollary 4.1 and Corollary 4.2, the 

asymptotic (1 − ξ) confidence interval f(θ,y,x) and Mθ(x) are given by 

and, 

 

where τξ/2 is the upper ξ/2 quantile of standard Normal N(0,1). 
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5. Simulation study 

To study the behaviour of the conditional mode estimator, in this part two examples of 

simulation were considered. In the first one, the authors compared the model FSIM 

(functional single index model) with that of NPFDA (non-parametric functional data 

analysis) and in the latter, knowing the distribution of the regression model (the 

distribution is known and usual), looked at the behaviour of this estimator of the 

conditional density function with respect to this distribution. Therefore, the best way 

to know the behaviour of the estimator of conditional density is to compute its mean 

square error. Thus this part of paper compared the conditional density estimation in 

the FSIM which is the authors’ model and the conditional density estimation in the 

NPFDA defined in (5.1). 

 

, (5.1) 

where, the authors estimated the conditional mode �̂�(x) with a random variable M(x) 
such that 

M(x) = arg sup f(x|y) and �̂�(x) = arg sup 𝑓𝑛(x|y). 
           y ∈ 𝑆ℝ                 y ∈ 𝑆ℝ 

Therefore one has to compare their respective conditional density estimators by 

computing and comparing their respective mean square errors for some values of the 

scalar response Y. 

In the following, the purpose consists in assessing the performance, in terms of 

prediction, of  �̂�𝜃(𝑥) and �̂�(x). For each given predictor (Xj)j∈ J   in the testing subsample, 

the authors were interested in the prediction of the response variable (Yj)j ∈ J   via the single 

functional index conditional mode �̂�𝜃(𝑥) and the fully nonparametric conditional mode 

�̂�(x) so as to compare the finite-sample behaviour of the estimator. As the assessment 

tool, the authors considered the mean square error (MSE) defined as follows: 

 
 
, (5.2) 

where �̂�j is a predictor of Yj obtained either semi-parametrically by �̂�𝜃(𝑥)or 

nonparametrically via �̂�(x). 

Furthermore, some tuning parameters had to be specified. The kernel K(·) was 

chosen to be the quadratic function defined as 23
[0, 1]2

( ) (1 )K u u= − 1  and the cumu-

lative df 
23

[ 1.1]4
( ) (1 ) 1 ( ) .

u

H u z z dz−
−

= −  
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The semi-metric d(·,·) is specified according to the choice of the functional  

space H discussed in the scenarios below. It is well-known that one of the crucial 

parameters in semi-parametric models is the smoothing parameters which are involved 

in defining the shape of the link function between the response and the covariate. 

Using the result given in Theorem 4.1, the variance of this estimator is obtained as 

 

 
.  

The idea is to choose the parameters hK  and hH so that the variance is minimal. Since 

the variance (CV) depends on several unknown parameters that must be estimated, the 

calculus becomes tedious. Thus, by replacing the unknown parameters by their 

respective estimators   𝛼1̂(𝜃, 𝑥), 𝛼2̂(𝜃, 𝑥), 𝑀�̂�(𝑥), 𝑓, and  ∅̂𝜃,𝑥(ℎ𝐾) one obtains 

 
. 

Now in order to simplify the implementation of the methodology, the authors took 

the bandwidths hH ∼ hK = h, where h is chosen by the cross-validation method on the  

k-nearest neighbours (see Ferraty and Vieu, 2006, p. 102). 

5.1. Simulation 1: the case of smooth curves 

Let us consider the following regression model, where the covariate is a curve and 

the response is a scalar: 

Ti = R(Xi) + 𝜀𝑖  ,i = 1, ..., n, 

where 𝜀𝑖 isa sequence of i.i.d random variables normally distributed with a variance 

equal to 0.1. 

The functional covariate X is assumed to be a diffusion process defined on [0, 1] 
and generated by the following equation: 

X(t) = acos(b + πWt) + csin(d + πWt) + (1 − A)sin(πtW), t ∈ [0, 1], 

where W, b and d are independent of normal distributions respectively ↪ 𝒩(0, 1),↪
𝒩(0, 0.03) and ↪ 𝒩(0, 0.05). The variables a and c are Bernoulli’s laws Bernoulli 

B(0.5). Figure 1 shows a sample of 200 curves representing a realization of the 

functional random variable X. 

Taking into account the smoothness of the curves Xi(t) (see Figure 1), the authors 

chose the distance deriv1 (the semi-metric based on the first derivatives of the curves) 

in H as: 

 

as semi-metric. 
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Then, the study considered a nonlinear regression function defined as 

 

Given 𝑋 ↪ 𝒩 (R(x), 0.2), and thus, the conditional median, the conditional mode 

and the conditional mean functions coincide and are equal to R(x), for any fixed x. The 

computation of the estimator was based on the observed data (Xi,Yi)i=1,...,n  and the single 

index θ which is unknown and had to be estimated. 

 

Fig. 1. A sample of 200 curves Xi=1,...,200(tj), tj=1,...,200 ∈ [0,1] 

Source: own calculations. 

In practice this parameter can be selected by the cross-validation approach (see Aït-

-Saidi et al., 2008). In this step it may be that one can select the real-valued function θ(t) 
among the eigenfunctions of the covariance operator 𝔼[(𝑋′ − 𝔼𝑋′) < 𝑋′, . >ℋ] where 

X (t) is a diffusion process defined on a real interval [a, b] and 𝑋′(𝑡) its first derivative 

(see Attaoui and Ling, 2016). Hence for the chosen training sample ℒ, by applying the 

principal component analysis (PCA) method, the computation of the eigenvectors of the 

covariance operator estimated by its empirical covariance operator: 
1

ℒ
∑ (𝑋′

𝑖 −𝑖∈ℒ

𝔼𝑋′)𝑡(𝑋′
𝑖 − 𝔼𝑋′), is the one best approximation of the functional parameter 𝜃. Now, 

let us denote 𝜃∗ the first eigenfunction corresponding to the first higher eigenvalue of 

the empirical covariance operator, which replaces 𝜃 during the simulation step. 

In the following graphs, the covariance operator for ℒ = {1, … , 200} gives the 

discretization of the first eigenfunction 𝜃(represented by a continuous curve), twenty 

and all the eigenfunctions 𝜃𝑖(𝑡) (see Figure 2, Figure 3 and Figure 4). 
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In the simulation part, the sample of 200 was divided into two parts. The first one 

from 1 to 125 was used to make the simulation, and the second from 126 to 200 served 

for the prediction. 

 

 

Fig. 2. The curves θi = 1,2,3(tj), tj = 1, ...,200 ∈ [0, 1] 

Source: own calculations on ground (Attaoui and Ling, 2016).  

 

Fig. 3. The curves θi =1, ..., 20(tj), tj = 1 ,..., 200 ∈ [0, 1]  

Source: own calculations on ground (Attaoui and Ling, 2016). 
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Fig. 4. The curves θi = 1, ..., 200(tj), tj = 1, ..., 200 ∈ [0, 1] 

Source: own calculations on ground (Attaoui and Ling, 2016).  

   

Fig. 5. Prediction via the conditional mode by FSIM with error SSR = 0.0069 against NPFDA with 

error SSR = 0.0295 

Source: own calculations.  

The following steps were taken: 

Step 1. Simulate the responses variables 𝑌𝑖. 

Step 2. For each j in the test sample ℐ = {126, ..., 200}, compute: �̂�𝑗 = 𝑀𝜃∗̂ (𝑋𝑗) 

and �̂�𝑗 = �̂�(𝑋𝑗).  
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Finally, the authors presented the results by plotting the predicted values versus 

the true values and computed the sum of squared residuals (SSR) defined by (5.2). 

One can see that the sum of squared residuals (SSR) of the method of Functional-

-Single-Index-Model (FSIM) is less than the one of the Non-Parametric-Functional- 

-Data-Analysis (NPFDA). This is confirmed by the following graphs, which compare 

the conditional mode by (FSIM) against the conditional mode by (NPFDA) (Figure 1). 

Thus the estimator is acceptable. As was intuitively expected, it can be observed that 

the mean square errors of the estimator are smaller than that of NPFDA. Therefore, the 

FSIM model produces much more accurate estimations than the NPFDA model in all 

the criteria. 

In order to construct conditional confidence bands the study proceeded by the 

following algorithm: 

Step 1. < 𝜃∗, 𝑋𝑖 >,...,< 𝜃∗, 𝑋200 >, generate independently the variables 

𝜀1, … , 𝜀200, then simulate the response variables Yi = r(< 𝜃∗, 𝑋𝑖 >)+𝜀𝑖, where 

r(< 𝜃∗, 𝑋𝑖 >) = exp(10(< 𝜃∗, 𝑋𝑖 > −0.05)) and generate independently the 

variables 𝜀1, … , 𝜀200. 
Step 2. For each i in the training sample, calculate the estimator: �̂�𝑖= 𝑀𝜃∗̂ (𝑋𝑖). 
Step 3. For each Xj  in the test sample ℐ = 126, ..., 200, set:𝑗∗:= 𝑎𝑟𝑔 min

𝑖∈ℒ
𝑑𝜃(𝑋𝑖, 𝑋𝑗).  

Step 4. For each j in the test sample ℐ = 126, ..., 200, define the confidence bands by 
 

 
One obtains the following figure which joins the asymptotic confidence bands study. 

 
Fig. 6. The 95% conditional predictive bands. The solid curve connects the true values.  

The crossed curve joins the predicted values. The dashed curve connects the predicted values 

Source: own calculations. 
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For the purpose of making a decision, the authors chose another Example (5.1) in 

which the distribution of the model is known and usual. 

Example 5.1. Let X1, ..., Xn be a standard Brownian movement in [0,1], with  

n = 100. This study focused on the linear model with defined functional index by: 

𝑌𝑖 =
|<𝜃,𝑋𝑖>|

150
 + 0.5𝒩(0,1). 

The study kept the values of 𝜃∗ and (𝑋𝑖)𝑖=1,..,100 of the precedent example (𝜃 is 

replaced by 𝜃∗). 

According to this model, it is clear that, when X = x, the variable 𝑌 ↪ 𝒩(
|<𝜃,𝑥>|

150
,4). 

In this study, as the curves are rough (see Figure 7) the study used the semi-metric pca. 

 
Fig. 7. Standard Brownian motions 

Source: own calculations. 

Table 1 presents the MSE of FSIM and NPFDA models by considering different 

values of 𝜉,$ with 100 replications. 

Table 1. Estimation accuracy of the conditional mode function between the functional single index 

model and the nonparametric functional model for different values of 𝜉 

Error Model Semi-metric 
𝑛 = 100 

𝜉 = 0.05 𝜉 = 0.50 𝜉 = 0.95 
MSE FSIM pca 0.0116 0.0112 0.0127 

 NPFDA pca 0.0634 0.0621 0.0641 

Source: own calculation. 
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From the obtained results presented in Table 1, one can confirm that the FSIM 

estimator of conditional mode is better than that of NPFDA. It gives a smaller mean 

square error, hence it allows for a more accurate estimation. 

After the calculation of the errors, one find for this method an error SSR = 0.091. 

The NPFDA method gives an error SSR = 0.1181, while the real error (knowing that 

𝑌 ↪ 𝒩(
|<𝜃,𝑥>|

150
,4) is equal to 𝑆𝑆𝑅 = 1.672 × 10−29SSR = 1.938. This confirms once 

again that this estimator is much better than that in the NPFDA case. Therefore, in the 

context of i.i.d data, this estimator is more preferable. 

 

Fig. 8. Prediction via the conditional mode by NPFDA with error SSR = 0.0763 against FSIM  

with error SSR = 0.0225 

Source: own calculations.  

6. Conclusions 

This paper focused on the nonparametric estimation of the conditional mode in the 

single functional index model for independent data. Both the asymptotic normality as 

well as a confidence interval of the resulted estimator were derived. The proofs are 

based on a combination of existing techniques. The study’s prime aim was to improve 

the performance of the single-index model for the conditional mode with a scalar 

response variable conditioned by a functional Hilbertian regressor under the inde-

pendent property. Through a series of simulations, this model out performs the 

nonparametric functional estimator. The contribution in this study is focused on  

the estimation of the conditional density function as well on the estimation of the 

regression for complete data in a functional framework. The first approach is used for 
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the estimation of the conditional mode. Then on parametric aspect is properly exploited 

in the first two sections by the given hypotheses. The proposed estimators are 

consistent an asymptotically distributed under appropriate conditions. Note that this 

approach is more significant in the presence of a simple single functional index. The 

dimensionality of the model is the bias part, while the dimensionality of the functional 

space of the explanatory variable is in the dispersion part. Then, the estimation  

and forecast accuracies between the FSIM and NPFDA models were evaluated and 

compared, and via empirical analysis, it was shown that the considered estimator has 

good finite sample behaviour for the prediction, and provides improved estimation and 

prediction accuracy compared to the NPFDA estimator. Research in the non- 

-parametric field remains an open matter that will be the subject of several future 

studies in order to improve and high light the results obtained in this study. 

In addition, in order to explore the effectiveness of the authors’ method in real 

situations, one can apply this approach to data constituting hourly electricity demand 

as well as spectrometric data. An other real example is forecasting the daily peak in 

electricity demand, as the accurate prediction of daily peak load demand is very 

important for decisions made in the energy sector. In fact, short-term load 

forecastsenable effective load shifting between transmission substations, scheduling 

of the startup times of peak stations, load flow analysis and power system security 

studies. Other real data applications (Maximum Ozone Concentration, Peak electricity 

demand) can be highlighted, asseveral attractive features of a functional prediction 

context, with unknown scale parameter estimator. 

Research in the nonparametric field remains an open matter which will be the 

subject of several future studies in order to improve and highlight the results obtained 

in this work. To extend this study of estimation of the conditional mode to the 

estimation of the conditional models of a MAR (missing at random) response to the 

independent case and the dependent case, another type of dependency could be 

considered such as the quasi-partner.  

Developing the asymptotic properties of a kernel estimator of the k-nearest 

neighbors, and generalize the results obtained by using other families of semi-metrics 

in order to improve the prediction performance of the estimators means that the choice 

of the smoothing window is important. 
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ASYMPTOTYCZNA NORMALNOŚĆ ROZKŁADU 

WARUNKOWEJ GĘSTOŚCI I WARUNKOWEJ DOMINANTY 

MODELU JEDNOWSKAŹNIKOWEGO 

Streszczenie: Celem niniejszego artykułu jest zbadanie nieparametrycznej estymacji warunkowej 

gęstości skalarnej zmiennej zależnej Y, przy założeniu, że zmienna objaśniająca X przyjmuje wartość 

w przestrzeni Hilberta, gdy próbka obserwacji jest traktowana jako niezależne zmienne losowe 

o identycznym rozkładzie i są one połączone jedną funkcjonalną strukturą indeksu. Przede wszystkim 

wprowadzono estymator typu jądrowego dla warunkowej funkcji gęstości (cond-df). Następnie 

określono asymptotyczne właściwości warunkowego estymatora gęstości, gdy obserwacje są połączone 

ze strukturą pojedynczego indeksu, i wyprowadzano centralne twierdzenie graniczne (CLT) 

warunkowego estymatora gęstości w celu zaprezentowania asymptotycznej normalności estymacji 

jądrowej tego modelu. W aplikacji przedstawiono dominantę warunkową w funkcjonalnym modelu 

z pojedynczym indeksem, a także asymptotyczny (1-) przedział ufności funkcji dominanty 

warunkowej dla 0 <  < 1. Na koniec omówiono estymację indeksu funkcjonalnego metodą 

pseudomaksymalnej wiarygodności. 

Słowa kluczowe: asymptotyczna normalność, gęstość warunkowa, funkcjonalny model pojedynczego 

wskaźnika, funkcjonalna zmienna losowa, estymacja nieparametryczna. 
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