
O P E R A T I O N S  R E S E A R C H  A N D  D E C I S I O N S 
No. 4 2017 
DOI: 10.5277/ord170405 

Wasim Akram MANDAL1 
Sahidul ISLAM2 

MULTIOBJECTIVE GEOMETRIC PROGRAMMING PROBLEM 
UNDER UNCERTAINTY 

Multiobjective geometric programming (MOGP) is a powerful optimization technique widely 
used for solving a variety of nonlinear optimization problems and engineering problems. Generally, the 
parameters of a multiobjective geometric programming (MOGP) models are assumed to be determin-
istic and fixed. However, the values observed for the parameters in real-world MOGP problems are 
often imprecise and subject to fluctuations. Therefore, we use MOGP within an uncertainty based 
framework and propose a MOGP model whose coefficients are uncertain in nature. We assume the 
uncertain variables (UVs) to have linear, normal or zigzag uncertainty distributions and show that the 
corresponding uncertain chance-constrained multiobjective geometric programming (UCCMOGP) 
problems can be transformed into conventional MOGP problems to calculate the objective values. The 
paper develops a procedure to solve a UCCMOGP problem using an MOGP technique based on 
a weighted-sum method. The efficacy of this procedure is demonstrated by some numerical examples. 

Keywords: uncertainty theory, uncertain variable, linear, normal, zigzag uncertainty distribution, multi-
objective geometric programming 

1. Introduction 

Geometric programming (GP) is one of the best techniques to solve non-linear op-
timization programming (NLOP) problems subject to linear and/or non-linear con-
straints. In 1967, Duffin, Peterson and Zener demonstrated the basic theories of geo-
metric programming [6]. Beightler and Philips [1] gave a full account of the entire 
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current theory of geometric programming (GP) and numerical applications of GP to 
real-world problems. 

Multiobjective geometric programming (MOGP) is a powerful optimization tech-
nique developed by researchers to solve various non-linear programming problems sub-
ject to linear and non-linear constraints. MOGP has been applied by many researchers 
to several optimization and engineering problems such as integrated circuit design, en-
gineering design, project management and inventory management. MOGP is a special 
type of non-linear programming problem with multiple objective functions. In many 
real-life optimization problems, multiple objectives have to be taken into account, which 
may be related to the social, economic and technical aspects of real optimization prob-
lems. Changkong and Haimes [3] presented a multiobjective decision making problem. 
Liu et al. introduced multiobjective decision making [14]. Ojha and Das [16] proposed 
a method to solve specific types of multiobjective geometric programming (MOGP) 
problems. Bishal [2] presented a fuzzy programming technique to solve multiobjective 
geometric programming problems. Islam and Roy [10] considered multiobjective geo-
metric programming (MOGP) problems and their applications. Das and Roy [4] pre-
sented multiobjective geometric programming and its application in a gravel box prob-
lem. Over the last two decades, a tremendous number of research papers have expanded 
the theory and practice of multiobjective decision making problems. 

Uncertainty theory is a new branch of mathematics founded by Liu [13]. Liu pro-
posed an uncertain stock model and a European option price formula [13]). Following 
this, Peng and Yao [19] studied a new uncertain stock model and some option price 
formulas. Also, Liu [11] and Wang et al. [22, 23] applied uncertainty theory to uncertain 
statistics. Risk analysis, reliability theory analysis, and control under uncertainty were 
presented by Liu [11, 12] and Zhu [27]. Li et al. [9] applied risk as a non-negative un-
certain variable and mainly discussed the premium for uncertain risk within the frame-
work of uncertainty theory. Han et al. [7] showed that uncertainty theory can serve as 
a powerful tool to describe the maximum flow in an network under uncertainty. Ojha 
and Biswa [17] presented the ε-constraint method for solving multiobjective geometric 
programming problems. Ojha and Ota [18] solved multiobjective geometric programming 
problems with Karush−Kuhn−Tucker conditions using the -constraint method. Ding [5] 
illustrated the maximum flow problem under uncertainty and formulated the maximum 
flow and the -maximum flow in an uncertainty based framework. Shiraz et al. [20, 21] 
considered geometric programming problems with normal, linear and zigzag uncer-
tainty and fuzzy chance-constrained geometric programming under the possibility, ne-
cessity and credibility approaches. 

In this paper, we use uncertain variables (UVs) to account for the unavoidable 
vagueness of the parameters characterizing real-world MOGP problems. More pre-
cisely, we define three chance-constrained MOGP models that can be implemented 
when the coefficients are expressed as uncertain variables (UVs) with linear, normal or 
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zigzag uncertainty distributions. We show that all of the proposed MOGPs under uncer-
tainty can be transformed into conventional MOGPs, allowing us to calculate the opti-
mal value by using their dual forms. The paper develops a procedure to solve 
a UCCMOGP problem using a technique for solving MOGPs based on a weighted-sum 
method. 

In Section 2, we present some basic definitions on uncertainty spaces and uncer-
tain variables (UVs). In Section 3, we construct a variant of the uncertain chance-
constrained multiobjective geometric programming (UCCMOGP) model and show 
how it can be converted into a conventional MOGP in the cases of linear, normal and 
zigzag uncertainty distributions. In Section 4, we present results for numerical exam-
ples illustrating the efficacy of the proposed approach. Finally, in Section 5, we dis-
cuss conclusions. 

2. Preliminaries and definitions 

Definition 2.1. Let Γ be a universal set and L be a σ-algebra on Γ. Then a set function 
M: L → [0, 1] is called an uncertain measure iff it satisfies the following axioms. 

Axiom 1 (normality). M() = 1. 
Axiom 2 (self-duality). ,    M( ) + M ( c ) = 1. 
Axiom 3 (countable sub-additivity). countable sequences of i  (i = 1, 2, ..., ) 

countable sequence 
1 1

( ).i i
i i

M M 
 

 

 
  

 
  

Note that Axioms 1–3 also imply monotonicity (i.e., M(Ʌ1) ≤ M(Ʌ2) whenever Ʌ1 ≤ Ʌ2). 

Definition 2.2. The triplet (, , M) is called an uncertainty space iff L is a -algebra 
on  and M is an uncertain measure. 

Definition 2.3. A UV  is non-negative iff { ( 0)} 0M     and positive iff 
{ ( 0)} 0.M     

Definition 2.4. Let 1 2 , .., ., n    be UVs, then    1 2( ... )n     

     1 2 ... ,n           2 1 2and ...( )n n        

Proposition 2.1. If 1 2, , ..., n   are UVs and f is a real-valued measurable function, 
then f( 1 2( , , ..., )n   is an UV. In particular, sums and products of UVs are UVs. 

Definition 2.5. Given a UV , the function :  IR  [0, 1], defined by ( )x :  
 = M{  x} for every x IR, is called the uncertainty distribution (in short: UD) of . 
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Definition 2.6. A UV  is called linear iff it has a linear UD. Symbolically:  
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To indicate that  has a linear UD (Fig. 1), we shall write : L(a, b).  

 
Fig. 1. Linear UD  Fig. 2. Normal UD 

Definition 2.7. A UV is called normal iff it has a normal UD. Symbolically: 
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1 exp , 0.1

3
e x

x x






  

        
  

To indicate that   has a normal UD (Fig. 2), we shall write  : N(e, ) .  

Definition 2.8. An UV is called zigzag iff it has a zigzag UD. Symbolically:  
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To indicate that  has a zigzag UD (Fig. 3), we write : Z(a, b, c). 
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Fig. 3. Zigzag UD 

Definition 2.9. Let ξ be a UV. The expected value of ξ is defined by 

     
0

0

E M r dr M r dr  




      

provided that at least one of the two integrals is finite. It follows that 

      
0

0

1E r dr r dr   




     

3. Multiobjective geometric programming (MOGP) problem 

A multiobjective geometric programming (MOGP) problem can be written as 

  1 2Find , , ..., T
nX x x x  (1) 
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subject to 

 
1 1

r
kri

p n

r ri k r
i k

f X c x c

 

   , r1, 2, ..., q, xk > 0, k1, 2, ..., n 

where cj0i, are positive real numbers for all j = 1, 2, ..., m, i = 1, 2, ..., pr; kj0i and kri  
– real numbers for all k = 1, 2, ..., n, j = 1, 2, ..., m, i = 1, 2, ..., pr; pj0 – number of terms 
present in the j0th objective function, pr – number of terms present in the rth constraint, 
cr – boundary value for the rth constraint. In the above multiobjective non-linear pro-
gramming model, there are m minimizing objective functions, q inequality type con-
straints and n strictly positive decision variables. 

In this section, we develop an MOGP model under uncertainty whose associated 
chance-constrained version admits an equivalent crisp formulation. First, we transform 
the conventional MOGP problem in Eq. (1) into an MOGP problem under uncertainty, 
where 0 ,j ic  ,ric j = 1, 2, ..., m; i = 1, 2, ..., pr are UVs. The model is: 

  1 2Find  ,  , ..., T
nX x x x   (2) 

So as to 
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subject to 
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where 0j ic  – uncertain positive real numbers for all j = 1, 2, ..., m; i = 1, 2, ..., pr,  
ric  – uncertain boundary value for the rth constraint. 

In the above multiobjective non-linear geometric programming model, there are 
m minimizing objective functions, q inequality type constraints and n strictly positive 
decision variables. 
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Based on the model defined by Eq. (2) and the related constraints, we can formulate 
the following generic multiobjective GP model, which is a variant of the uncertain 
chance-constrained multiobjective geometric programming (UCCMOGP) model: 

  1 2Find , , ..., T
nX x x x   (3) 

So as to 
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3.1. UCCMOGP model with linear uncertainty distributions 

Let the coefficients , joi ric c in Eq. (3) be independent positive linear UVs. That is to say, 

 0 0 0: , ,a b
j i j i j ic L c c  with 0 < 0 00 a b

j i j ic c   and  : ,  ,a b
ri ri ric L c c  with 0 .a b

ri ric c   

Lemma 3.1. Let i (i = 1, ..., n) be independent linear UVs, that is to say,  : ,  i i iL a b

with ai < bi. Let Ui be non-negative variables. Then for every  0,1 ,  

  
1 1
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n n
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Lemma 3.2. The expected value of a linear UV  : L a, bis E ( ab
From Lemma 3.2, we obtain the following deterministic objective function for the 

UCCGP problem proposed in Eq. (3): 
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0 0 0
0 0 00 0

0 0
1 1 1 1 1 1

( ) 1, 2, .., .,
2

j j j
kj i kj i kj i

p p p a bn n n
j i j i

j i k j i k k
i k i k i k

c c
E c x E c x x j m  

     

   
          
        

Moreover, from Lemma 3.1, the constraints in Eq. (3) admit the following equiva-
lent deterministic form: 

i 1, ..., n,   
1 1 1 1
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Thus, when the coefficients are UVs endowed with linear distributions, the model 
corresponding to Eq. (3) is equivalent to: 

  1 2Find , , ..., T
nX x x x  (4) 

So as to 
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Solution of MOGP problem by the weighted-sum method 

Let 
1
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  be a set of non-negative weights. Using 

the weighted sum technique, the above multiobjective model can be written as, 
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Hence, the multiobjective optimization problem under uncertainty reduces to a sin-
gle-objective crisp geometric programming problem as follows, 
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Definition 3.1. A feasible solution x* is said to be a Pareto solution to the multiobjective 
programming problem under uncertainty (5), if there is no feasible solution x such that 

       * *, and  E f x E f x E f x E f x                

for at least one index i. 

Definition 3.2. A feasible solution x* is said to be a weak Pareto solution to the multi-
objective programming problem under uncertainty (5), if there is no solution x such that 

   *E f x E f x        

Theorem 3.1. The solution of the MOGP problem (4), generated by the weighted 
sum method (5) is Pareto optimal if 0jw   for all 1, 2, ..., .j m  

Proof. Let x* be the solution of the MOGP problem (5), obtained by minimizing the 

function    
0
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     Obviously, it fol-

lows that    * (Ef x E f x , x X  , which implies that 
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     (6) 

Suppose the solution x* of the problem (4) is not Pareto optimal. Then there exists 
some solution xʹ of the problem (4) satisfying    *

0 0j jEf x Ef x  , which implies that 
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By summing these inequalities and considering the assumption of the theorem that 
the weights jw are all positive, we obtain 
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This inequality stands in contradiction to statement (6). Therefore, the solution x* is 
a Pareto solution for 0.jw   

Theorem 3.2. If x* is a Pareto-optimal solution of a convex multiobjective optimi-
zation problem, then there exists a non-zero positive weight vector w such that x* is 
a solution of the problem given by (5).  

For the proof, see Miettinen’s book on nonlinear multiobjective optimization [15]. 

3.2. UCCMOGP model with normal uncertainty distributions 

Let the coefficients 0 , j i ric c  in Eq. (3) be independent positive normal UVs, that is 

to say,  0 0 0: ,  ,j i j i j ic N c   and   0 0: , , where  , ,  and ri ri ri j i ri j i riN c cc c   are all posi-

tive real values. 
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Lemma 3.3. Let i (i 1, ..., n) be independent normal UVs, that is to say,
 : , i i iN   where ,  I i  are all positive real values. Then for every  0, 1 ,  
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Lemma 3.4. The expected value of a normal UV  : Ne,  is E ( e
From Lemma 3.4, we obtain the following deterministic objective function for the 

proposed UCCGP problem given by Eq. (3): 
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Moreover, from Lemma 3.3, the constraints in Eq. (3) admit the following equiva-
lent deterministic form: 
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Thus, when the coefficients are UVs endowed with normal distributions, the model 
corresponding to Eq. (3) is equivalent to: 

  1 2Find ,  , ..., T
nX x x x  (7) 

So as to 
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subject to  
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Solution of the MOGP problem by the weighted-sum method 

Let w
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weighted sum technique, the above multiobjective model can be written as 
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Hence, this multiobjective optimization problem reduces to a single-objective crisp 
geometric programming problem as follows: 
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3.3. UCCMOGP model with zigzag uncertainty distributions 

Let the coefficients 0 , j i ric c 
in Eq. (3) be independent positive zigzag UVs. That is 

to say, 0 0 0 0: ( ,  , ),a b a
j i j i j i j iZ c c cc  with 0 < 0 0 0,  ,a b a

j i j i j ic c c  and 0 0 0: ( ,  , ),a b a
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0 < 0 0 0,  ,a b a
j i j i j ic c c  (Fig. 3). 

Lemma 3.5. Let i (i 1, ..., n) be independent zigzag UVs, that is to say,
 : , ,  with  .i i i i i i iZ a b c a b c    Let iU be non-negative variables. Then for every 
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Lemma 3.6. The expected value of a zigzag UV :  Z(a, b, c) is ( )E  a + 2b + c)/4)
From Lemma 3.6, we obtain the following deterministic objective function for the 

proposed UCCGP problem given by Eq. (3): 
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Moreover, from Lemma 3.5, the constraints in Eq. (3) admit the following equiva-
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Thus, when the coefficients are UVs endowed with zigzag distributions, the model 
corresponding to Eq. (3) is equivalent to: 

For  < 0.5 we have 
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Solution of the MOGP problem by the weighted-sum method 

Let w
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weighted sum technique, the above multiobjective model can be written as, 
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Hence, this multiobjective optimization problem under uncertainty reduces to a sin-
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For  < 0.5 we have 
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For  > 0.5 we have 

 
0

00 0 0

1 1 1

2
Minimize 

4

j
kj i

p a b cm n
j i j i j i

j k
j i k

c c c
w x

  

  
  
 

     (12) 

subject to 

    
1 1

2 1 1 2 1
r

kri

p n
c b
ri ri k

i k

c c x  
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4. Numerical examples 

Optimization is the process of finding the point that minimizes an appropriately 
defined function. More specifically: 

 A local minimum of a function is a point where the value of the function is smaller 
than or equal to the value at nearby points, but possibly greater than at a distant point. 

 A global minimum is a point where the value of a function is smaller than or equal 
to the value at all other feasible points (the numerical examples which are given here 
give the global optimal). 
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Fig. 4. Local and global minima 

We now give some numerical examples to show the efficacy of the MOGP models. 
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4.1. Example for linear uncertainty distributions 
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Thus the UCCMOGP problem is 
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  (14) 

such that 

     1 2 1 3 1 2 30.8 1 1.2 1.6 1 2.4 4, , , 0x x x x x x x           

From Eq. (5), the problem given by Eq. (14) becomes the following deterministic 
weighted-sum MOGP: 

    1 2
1 2 3 2 1 2 3

1 2 3 1 2 3 1 2 3

40 80040 800min  40 40w wf x w x x w w x x
x x x x x x x x x

  
     

 
  (15) 
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such that 

     1 2 1 3 1 2 30.8 1 1.2 1.6 1 2.4 4, , , 0x x x x x x x           

Here, DD  4 3 1 0.     
The dual multiobjective geometric programming problem (DMOGPP) correspond-

ing to (15) is 
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and the corresponding optimal solution is  
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Table 1. Optimal solution under linear UDs   


Weight Optimal values

Primal variables Objective functions
 1w  2w  *

1x  *
2x  *

3x  *
01( )f x  *

02 ( )f x  

0.2
0.1 0.9 0.38 5.90 2.95 702.25 120.96
0.5 0.5 0.79 2.88 1.44 178.10 244.18
0.9 0.1 1.48 1.54 0.77 70.22 455.84

0.4
0.1 0.9 0.36 5.74 2.87 665.70 134.90
0.5 0.5 0.74 2.80 1.40 170.59 275.79
0.9 0.1 1.39 1.50 0.75 70.58 511.59

0.6
0.1 0.9 0.34 5.58 2.79 630.28 151.14
0.5 0.5 0.71 2.72 1.36 163.20 304.60
0.9 0.1 1.32 1.46 0.73 71.06 568.64

0.8
0.1 0.9 0.33 5.44 2.72 600.06 163.84
0.5 0.5 0.67 2.66 1.33 158.39 337.51
0.9 0.1 1.26 1.42 0.71 71.82 629.76

4.2. Example for normal uncertainty distributions  

         101 102 201 11 12: 40,4 , : 40,4 ,  : 800,80 , : 1,0.1 ,  : 2,0.2 .c N c N c N c N c N      

Then the UCCMOGP problem is  
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From Eq. (8), the problem given by Eq. (16) becomes the following deterministic 
weighted-sum MOGP:  

    1 2
1 2 3 2 1 2 3

1 2 3 1 2 3 1 2 3

40 80040 800Min 40 40w wf x w x x w w x x
x x x x x x x x x
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such that 
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1 2 1 3 1 2 3
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Here, DD = 4 – (3 + 1) = 0. 
The DMOGPP corresponding to (17) is  
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and the corresponding optimal solution is  
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Table 2. Optimal solution under normal UDs 

 
Weight Optimal values

Primal variables Objective functions
 1w 2w *

1x  *
2x  *

3x  *
01( )f x  *

02 ( )f x  

0.2
0.1 0.9 0.37 5.80 2.90 679.23 128.55
0.5 0.5 0.76 2.84 1.42 174.36 261.02
0.9 0.1 1.42 1.52 0.76 70.59 487.69

0.4
0.1 0.9 0.38 5.70 2.85 656.28 129.59
0.5 0.5 0.78 2.78 1.39 167.84 265.42
0.9 0.1 1.46 1.48 0.74 68.49 500.32

0.6
0.1 0.9 0.39 5.62 2.81 638.18 129.89
0.5 0.5 0.79 2.74 1.37 163.64 269.77
0.9 0.1 1.48 1.46 0.73 67.99 507.17

0.8
0.1 0.9 0.39 5.52 2.76 616.14 134.64
0.5 0.5 0.80 2.70 1.35 159.52 274.35
0.9 0.1 1.50 1.44 0.72 67.19 514.40

4.3. Example for zigzag uncertainty distributions 
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For  < 0.5 we have: The UCCMOGP problem is  
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From Eq. (11), the problem given by Eq. (18) becomes the following deterministic 
weighted-sum MOGP:  

   1 2
1 2 3 2 1 2 3

1 2 3 1 2 3 1 2 3
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such that  

         1 2 1 3 1 2 30.8 1 2 1.0 2 1.6 1 2 2.0 2 4, , , 0x x x x x x x           

Here, DD = 4 – (3 + 1) = 0. 
The DMOGPP corresponding to (19) is  
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For  > 0.5, we have: The UCCMOGP problem is  
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such that  
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From Eq. (12), the problem given by Eq. (20) becomes the following deterministic 
weighted-sum MOGP:  
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1 2 3 1 2 3 1 2 3

42.5 825 42.5 825min 40 40w wf x w x x w w x x
x x x x x x x x x

  
     

 
  (21) 

such that  
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Here, DD = 4 – (3 + 1) = 0. 
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Solving the above normal and orthogonal conditions, we have 

01 02 11 12
2 1 1 1,  ,  ,  
3 3 3 3

        

From the primal-dual relation, we obtain 
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Table 3. Optimal solution under zigzag UDs 

 
Weight Optimal values

Primal variables Objective functions
 1w 2w *

1x  *
2x  *

3x  *
01( )f x  *

02 ( )f x  

0.2
0.1 0.9 0.38 5.96 2.98 716.73 122.24
0.5 0.5 0.78 2.90 1.45 181.16 251.53
0.9 0.1 1.46 1.56 0.78 72.60 464.39

0.4
0.1 0.9 0.36 5.80 2.90 679.82 136.25
0.5 0.5 0.74 2.82 1.41 173.49 280.38
0.9 0.1 1.37 1.52 0.76 73.06 521.29

0.6
0.1 0.9 0.34 5.64 2.82 644.05 152.56
0.5 0.5 0.70 2.76 1.38 168.29 309.43
0.9 0.1 1.30 1.48 0.74 73.66 579.45

0.8
0.1 0.9 0.35 5.50 2.75 613.03 155.84
0.5 0.5 0.72 2.68 1.34 160.08 319.07
0.9 0.1 1.34 1.44 0.72 69.94 552.58
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 5. Conclusions 

Multiobjective geometric programming (MOGP) is a powerful optimization tech-
nique widely used for solving a variety of nonlinear optimization problems, particularly 
in engineering. Conventional MOGP models assume that the parameters are determin-
istic and crisp. However, the parameters or coefficients in real-life MOGP problems are 
often imprecise and subject to fluctuations. Therefore, we have approached the problem 
of formalizing and implementing imprecise and non-deterministic parameters using un-
certainty theory. There exists an ample literature on MOGP under uncertainty and its 
applications to problems (either chance-constrained or not) whose coefficients are fuzzy 
numbers, fuzzy variables or random variables. However, to the best of our knowledge, 
no previous study has dealt with the formulation and/or solution of MOGP problems 
where the coefficients are given by uncertain variables (UVs). In this paper, we have 
introduced an uncertain chance-constrained multiobjective GP (UCCMOGP) model and 
proposed a method of solution that applies to three of the most commonly used uncer-
tainty distributions: we assumed the coefficients to be uncertain variables with linear, 
normal or zigzag uncertainty distributions. We proved that the corresponding uncertain 
chance-constrained multiobjective geometric programming (UCCMOGP) models can 
be transformed into conventional multiobjective geometric programming (MOGP) 
problems with crisp coefficients and, hence, an optimal solution can be found using the 
duality algorithm. We have shown the efficacy of the proposed model through three 
numerical examples. We believe that the framework proposed in this paper contributes 
to shedding light on the applications of MOGP to concrete problems, opening the way 
to further research in engineering and production management. 
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