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The authors calculate the steady-state availability and the cost-benefit analysis for three different
systems with mixed standby (cold standby, warm standby) and imperfect coverage. The coverage factor
is the same for an operative-unit failure as that for a warm standby-unit failure. The failure times of the
operative unit and the warm standby unit are exponentially distributed while the repair time is arbitrarily
distributed. The supplementary variable technique is applied to derive the steady-state availability for
three different configurations. For each system, the steady-state availability is calculated according to two
different cases for repair time distributions, such as exponential, and k-stage Erlang, where £ = 2, 3. The
configurations are compared as based on availability and cost/benefit at a special numerical value given
to the distribution parameters.

Keywords: availability, cost-usefulness, imperfect coverage, mixed standby

1. Introduction

Reliability theory is a substantial concept at the planning, design and operation
stages of several complicated systems. But, in fact, we deal with a number of complex
systems consisting of one or more parts, and a failure of any of the parts results in the
decrease of competence of whole systems, and, as a result of it, the reliability of the
system decreases. Therefore, the preferable maintenance of such parts produce the best
reliability and then only we can realize the market's needs of reliability, effectiveness,
price, and performance of that system. On the other hand, it may not be economical to
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always obtain a higher order of reliability through the procedure preventive mainte-
nance, thus the maintenance and repair at the appropriate time may lead to a high degree
of availability. Regardless of these, in the literature, many attempts have been made by
the researchers to analyze the reliability of the system using various approaches [3—8,
10, 11, 14-17] studied the cost-benefit analysis for three different configurations con-
taining warm standby units with general repair times. Kuo et al. [11, 12] calculated the
reliability, the steady-state availability, and the cost/benefit analysis of four different
systems with mixed standby components. Wang et al. [17] deduced the optimal system
when they examine four different systems with warm standby unit and the switching is
imperfect. El-Sherbeny [1, 2] studied the cost function in the presence of mixed standby
components. El-Said and El-Sherbeny [9] investigated the impact of preventive mainte-
nance on two different systems, containing two operative units.

The article is devoted to searching for the optimal system from the three studied
taking into consideration the existence of mixed standby units and imperfect coverage.
This article is based on three main axes The first axis is to present a recursive method,
using the supplementary variable technique and treating the supplementary variable as
the remaining repair time, to develop the steady-state availability (4v;) for availability
model i, where i = 1, 2, 3. The second axis is the explicit expressions for the Av; for two
different repair time distributions such as exponential (M), and k-stage Erlang (E),
where k=2, 3. The third axis is to compare the three configurations with their cost/ben-
efit ratio as based on assumed numerical values given to the system parameters.

2. Description of the system

The present paper is devoted to considering the requirements of a 10 MW power
plant. We assume that generators are available in units of 10 MW and 5 MW. Standby
generators are always necessary in case of failure. We also assume that the switchover
time from warm standby unit to the operating unit, from cold standby unit to warm
standby unit, from failure to repair, or from repair to cold standby unit (or operating unit
if the system is short) is instantaneous. Operating units and warm standby units can be
considered repairable. Each of the operating units fails independently of the state of the
others and has an exponential time-to-failure distribution with parameter A.

Whenever one operating unit fails, a warm standby moves into operation if any is
available, and a cold standby is put on warm standby state if any is available. We now
assume that when a warm standby moves into an operating unit state, its failure charac-
teristics will be that of an operating unit, and when a cold standby moves into a warm
standby state, its failure characteristics will be that of a warm standby. We also assume
that each of the available warm standby units fails independently of the state of all the
others and has an exponential time-to-failure distribution with parameter (0 <a< /1) .
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When an operating unit (or warm standby unit) fails, it may be immediately de-
tected, located, and replaced with a coverage probability ¢ by a standby if one is avail-
able. It is assumed that the replacing time is instantaneous. We further assume that the
coverage factor is the same for an operating-unit failure as that for a standby-unit failure
and is denoted by c. However, we define the unsafe failure state of the system as anyone
of the breakdowns is not covered. We continue with the assumption that operating unit
failure (or warm standby unit failure) in the unsafe failure state is cleared by a reboot.
Reboot delay takes place at the rate £ for an operative unit (or warm standby unit) which
is exponentially distributed. The system fails when the standby units are emptied which
we define as the state of safe failure.

It is assumed that the times to repair of the units are independent and identically
distributed (i.i.d.) random variables having a distribution B(u) (u > 0), a probability

density function b(u)(u > 0) and mean repair time b;. If one unit is in repair, then arriv-

ing failed units have to wait in the queue until the server is available. Let us assume that
failed units arriving at the server form a single waiting line and are served in the order
of their arrivals. Suppose that the server can serve only one operating unit (or warm
standby unit) at a time and that the service is independent of the arrival of the units.
Once a unit is repaired, it is as good as new.

The following configurations are considered. The first configuration is a serial sys-
tem of one operative 10 MW unit, one warm standby 10 MW unit, and one cold standby
10 MW unit. The second configuration is a serial system of two operative 5 MW units,
one warm standby 5 MW unit, and one cold standby 5 MW unit. The last configuration
is a serial system of one operative 10 MW unit, two warm standby 10 MW units, and
one cold standby 10 MW unit.

Table 1. The size-proportional cost for the primary,
warm standby and cold standby components

Component Operative Warm standby Cold standby
P IOMW | SMW | I0MW | SMW | 10 MW | 5 MW
Cost [$] 10x10° | 5x10° | 6x10° | 3x10° | 4x10° | 2x10°

Table 2. The costs for each configurationi (i = 1, 2, 3)

Configuration 1 2 3
Cost [$] 2x10° 15%10° 24x109

Cost-benefit factor. We consider the size-proportional costs for the operative,
warm standby and cold standby components given in Table 1. Thus we calculate the
costs for each configuration i (i =12, 3) shown in Table 2. Let C, denote the cost of

the configuration 7, and B, be the benefit of the configuration i, where B, is Av,.
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3. Availability analysis of the configurations

We use the following supplementary variable: U = remaining repair time for the
component under repair. The state of the system at time ¢ is given by N(f) = a number
of working units in the system, and U(¢). Let us define

Pn(u,t)duzP{N(t)zn, u<U(t)Su+du},u20

3.1. Availability for configuration 1

Relating the state of the system at time ¢ and ¢+ dt , we obtain

D p(1)=—(a+a)B(1)+P(0.1) (1)

o 0
[5—8—uj1’2 () ==(A+ )P, (w,1) +c(A+a) P (u.1)

+ PP, (u,t)+b(u)P (0,t) (2)

ot Ou
+BF, (u,t)+b(u)PO (O,Z) 3)
0 0
[a—EJPo(“J):iPl(”J) 4)
L g (1)=-pE, (1) +(1-¢) (2+a) B (1) )
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d
E[ifz(t):_ﬂBAfz(t)+(1_c)(ﬂ’+a)P2(t) (6)
where the unsafe failure state uf incurs a reboot delay with mean 1/4.

In steady-state, let us define

P,=lim P, (1), n=3,2,1,0, uf,, uf,

—w©

Pn(u)zlimP;(u,t),n=3,2,1,0,u1,uf2

11—

and further, define
P (u)=b(u)P, ()
Py (u)=b(u)F, ®)
P, (u)=b(u) P, ©)

From (1)—(9), the steady-state equations are given by:

0=—(A+a)R+P(0) (10)
—aiP2 (u)=—(A+a)P, (u)+c(A+a)b(u)P+pb(u) P, +b(u) R (0) (11)
u
—GQP, (u)==AR (u)+c(A+a)P, (u)+pb(u)P, (t)+b(u)F (1) (12)
u
_Op (u)=AR (u) (13)
au 0 - 1
0=—-pP, +(1-c)(A+a)P, (14)
0=—-pP, +(1-c)(A+a)P, (15)

Now, from (10), (14) and (15), we obtain
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P (0)=(4+a)Pp

p _(1=c)(ra)
g ;

(l—c)(/1+a')P

2

3

By = 5

(1=)(2+a)

We further define

and

Je %pﬂ (u)du=sP’ (s)~P, (0)

Taking the LST on both sides of( 11)—(13) and using (16), we get

(A+a-s)B (s)=(B (s)-1) B, (0)+ B (5) B (0)

(A=s)B (s)=c(A+a)P (s)+B (s)

<(1-¢)(A+a) B (0)+ B (s) B(O)~ (0)

(16)

(17

(18)

(19)

(20)

e2))



Cost analysis of series systems 27

We develop a recursive method to get explicit expressions P’ (0)(n=2, 1, 0). Set-
ting s=A1+a and s=0 in (16), yields

1-B"(1+a) (A+a)(1-B"(4+a))
Ot PO sy @
and
N _(1—3*(/1+a))
O =GOy B @)
Again, setting s = 4 in (19), it follows that
P;(ﬁ):(i+a)(B*£/1)—B*(i+a)) 3 24

aB (/1 + a)
Setting s = A4 in (20) yields

P(0)-c(A+a)P (A2)—-(1-¢)(A+a)B (1) R (0)

R (0)=— 7 () (25)
Substituting (22)—(24) in (25), we have
(Ata)|a(1-B" (A+a))|-c(1+a)(B (4)-B (2+a))
PO(O)‘{ 2B (1) B (A+a)
_(1—0)(1—B*(}t+a))}P (26)
B (A+a) :

Similarly, setting s =0 in (20), we obtain
AR (0)=(A+a) P (0)+ £ (0)-R(0)

From the above equation and (20), we have
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*(O)l{(ma)[a(l_g*(ma))]_c(zm)(g*(4)_3*(4+a))
A

aB (1) B (A+a)

(A+a)

(l—c)(l—B*(/lJra))}P 7)
B ’

Differentiating (21) with respect to s and setting s = 0 in the result, we obtain
B (0)=-2P""(0) (28)
Differentiating (19) with respect to s and then setting s = 0 in the result yields

(2+a) PV (0)=P (0)-5 [P (0)+R(0)] (29)

Similarly, differentiating (20) with respect to s and setting s = 0 in the result, we
find that

ARV (0)=F (0)+[c-b (1-c)(A+a)] P (0)
b, [c(RO)+R(0))+R0)] (30)
Then, using (28), we have
F(0)+ R (0)=h[c(B(0)+A(0))+F(0)]
~[e=b (1-c)(A+a)]B (0) 31)
where P (0), P,(0), P, (0)and P, (0)are given in (23), (16), (22) and (26), respec-

tively.
Now, using the normalizing condition
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P+P (0)+F (0)+F (0)+P, +P, =1

From the above equation, we obtain P,.

We assume that one safe failure state 0 and two unsafe failure states uf, and uf, are
system down states. Then for availability model 1, the explicit expression for the Av, is
given by

Av,=1-F (0)-P, -P

ufy ufy IDS—I—])Z’k (0)+])1* (0)

Using (20) and (24), we obtain the explicit expression for the Ay,

o p |1 Arela(1-8 (2 a))-c(2ra)(5'(2)- B (2+a)))
b B (1) B (A+a)
_(/1+a)(1—c)(1—B*(/1+a))+(1—B*(/1+a)) (32)

AB" (A+a) B (A+a)

3.2. Availability for configuration 2

Following the same procedures as given in the section that analyzes the availability
of configuration 1 case, it is easy to set up the following steady-state equations:

~(24+a) P+ P (0) 33)
_aipz (u)=-QA+a)B (u)+c(24+a)b(u) P,
u
+ Bb(u) P, +b(u) B, (0) (34)

-2 () =228 (u) (24 a) B (u)+ b (u) By (1) +b () B (1) G9)

-2 p () =24, (u) (36)

ou
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0=-pP, +(1-c)(24+a) P, (37
0=—pP, +(1-c)(24+a)P, (38)

Now, from (35), (39) and (40), we obtain

P (0)=(22+a)P, (39)
P, :Mﬁ (40)

B
Pufz:(l—c)(ﬁ2/1+a)P3:(l—c)(ﬁ21+a)P;(O) @1

Taking the LST on both sides of (34)~(36) and using (39)~(41), it implies that
(24+a-s) P (s)=(B (s)-1) £ (0)+ 8" (5) £, (0) 42)
(22-5)P (s)=c(24+a) B (s)+B" (s)(1-¢)(24+a)
x P (0)+B"(s)R(0)-P,(0) (43)
sP" (s)=P (0)-24P, (s) (44)
Setting s =21+ and s =0 in (42) yields, respectively

a(o):—l;?gz(ji;‘;‘)a(o):”“”‘;fzz‘if)““))a -

and

(ulm)g(o):(l;f(ii;‘;))a (46)

P (0)=

Again, settings =24 in (42), it follows that
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(22+a)(B (22)-8 (2+a)) |
aB*(2/1+a)

P (22)=

Setting s =24 in (43) yields

P (0)—c(24+a) P (24)-

B (2,1)
Substituting (45)—(47) in (48), we have

(24+a)|a(1-B (24+a))]

£ (0)= aB (22)B (24+a)
c(24+a)(B (22)-B"(24+a)) (1-¢)(1-B"(24+a))
- aB*(Zﬂ)B*(Zﬂ,+a) - B’ (2/1+a) }B‘ 49

Similarly, setting s =0 in (43), we obtain
24P (0)=(24+a) P (0)+F(0)-P (0)

From the above equation and (48), we have

Now, using (49), we get

1| @ata)|[a(1-8 (22+a))]

E0)=57 aB (22)B (24+a)
(50)
c(24+a)(B'(24)-B (24+a)) (1-¢)(1-B 2/1+a))}P
aB (22) B (24+a) B (24+a) :

Differentiating (44) with respect to s and setting s = 0 in the result, we obtain
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B (0)=—24P"(0) (51)
Differentiating (42) with respect to s and then setting s = 0 in the result yields
(22+a) P (0)=P (0)-b,[ A (0)+5(0)] (52)

Likewise, differentiating (43) with respect to s and setting s = 0 in the result, we
find that

24P (0)=P (0)+[c=b (1-c)(24+a)]| B (0)
—b [ ¢ (P(0)+P(0))+R(0) ] (53)
Then, using (51), we have
B (0)+5 (0)=b [ c(P(0)+P(0))+R(0)]
~[e=b (1-c)(24+a) ] P (0) (54)

where 2 (0), £, (0), P, (0)and B, (0)are given in (46), (39), (45) and (49), respectively.

Now, using the normalizing condition

P+ P (0)+ £ (0)+ R (0)+F, +P, =1

from the above equation, we obtain P,.

We assume that one safe failure state 1 and two unsafe failure states uf, and uf, are
system down states. Since states 1, uf,, and uf, are system down states, then for the
availability model 2, the explicit expression for the Av, is given by

Av, =1=F"(0)=F; = F, =P+ P (0)+ £ (0)

Using (46) and (50), we obtain the explicit expression for the Av,
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(2/‘L+a)(a (1-8"(24+a))-c(24+a)(B" (22)- B’ (2/1+a)))
a2AB (24)B (24 +a)

Av, =P | 1+

gt (o Ces)]
248 (22+a) B (2A+a)

3.3. Availability for configuration 3

We use the same procedure as above to obtain the steady-state equations as follows

0=—(A+2a)P,+P(0) (56)
—83133(u)z—(/1+2a)P3(u)+c(/1+2a)b(u)P4
u
+ b (u) B, +b () B, (0) (57)

-—P (u)=—(A+a) P, (u)+c(A+2a) P (u)+pb(u) R, +b(u)F(0) (58)

—o B (u)==2R (u)ve(A+a) B (u)+po(u) By +b(u) £ (0) - (59
~ % p(u)=2P (u) (60)
ou
0=—pP, +(1-c)(A+2a)P, (61)
0=—pP, +(1-c)(A+2a)P, (62)
0=-pP, +(1-c)(A+a)P, (63)

Now from (56), and (61)—(63) we obtain

P (0)=(A+2a)P, (64)
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(1-c)(A+2a)

P =-—""7Pp 65
) 5 (65)
Ef:(l—c)(l+2a)}§:(1—0)(ﬂ+2a)}?“D (66)
bl ﬂ ﬂ
(1-c)(a+a) = (1-¢)(A+a) .
p - P2= PZO 67

Taking the LST on both sides of (57)—(60) and using (64)~(67), it implies that

(A+2a-s) P (s)=(B"(s)-1) P, (0)+B (s) B (0) (68)
(A+a-s)P (s)=c(A+2a) P (s)+B (s)(1-c)(A+2a) P (0)
+B" (s)R(0)-P,(0) (69)
(2=5) B (s)=c(+a) B (s)+ B (s)(1-¢) (2+a) B (0)
+B" (s) B (0)-P,(0) (70)
S} ()= B, (0)~ 2 (s) (n
Setting s = 2+ 2a and s = 0 in (68), respectively, yields

1-B" (2+2a) (A+2a)(1-B" (1+2a))

EO 5 PO g @

1 (1—B*(i+2a))

P (0)= P (0)= P, 73
=GO e - (73)
Again, settings =A+a and s =1 in (68), it follows that
A+2a)(B (A+a)-B (A+2

aB*(/1+2a)
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(- ZANROT DO o

Setting s = A+« in (69) yields

R(0)= 2(0)—C(ﬂ+2a)Pf(ﬂ+;f*)(—ﬂ(i:)')(i+a)3*(/1+a)1%*(0) 76)

Similarly, setting s =0 in (69), we obtain

(A+2a)P (0)+
(A+a)

v

P;(O)= (0)_1)2(0) (77)

Again, setting s =1 in (69), it follows that

Cc(A+2a) B (2)+(1-c)(A+2a) B (2) P (0)

K (4)= »
LB (4)R(0)-P(0) (78)
Setting s = 4 in (70) yields
p(0)= Q= clAr@) P (A)-(1-c)(A+) B () K (0) 79)

B'(2)
Likewise, setting s =0 in (70), we obtain

P (0)= (/1+0!)Pz*(0);%(0)—3(0) (80)

Differentiating (71) with respect to s and setting s = 0 in the result, we obtain

B (0)=-2R""(0) (81)
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Differentiating (68) with respect to s and then setting s = 0 in the result yields
(A+2a)P"(0)=P(0)-b, [133(0)+Pz(0)] (82)

Differentiating (68) with respect to s and then setting s = 0 in the result, it follows
that

(A+a) P (0)=P (0)+c(A+2a) R (0)

~b,(BO0)+(1-c)(A+2a) P (0)) (83)

Likewise, differentiating (70) with respect to s and setting s = 0 in the result, we
find that

AR (0)= B (0)+c(A+a) " (0)-b[ B©O)+(1-c)(A+a)P (0)]  (84)
Then, using (81), we have

B (0)+ P (0)=b[ RO +(1-c)(A+a) B (0)]-c(A+a)""(0)  (85)
Now, using the normalizing condition

PR (0)+ P (0)+ B (0)+ B (0)+ P

i t By, T By =1

From the above equation we obtain 7.

We assume that one safe failure state 0 and three unsafe failure states unf,, unf,and
unf, are system down states. Since states 0, unf,, unf,, and unf, are system down states.
Then for availability model 3, the explicit expression for the Av, is given by

Av 1B (0)- B, ~ B, ~ B, =P+ (0)+ B (0)+ B (0)

Using above equations, we obtain the explicit expression for the Av,
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4

[ (1—B*(/1+205)) N (A+2a) { —2a

M v 2a) 2078 (A+20)B (2+a) \A+a
x((B*(/l+a)(1+c)—1+aB*(1+2a)(1—B*(/1+a)+c(B*(/1+a)—2)))

+cﬂ(B*(/1+a)—B*(/1+2a)))—

(2°[1-B' (2 +a)+ B (4+2a)

1
4B (1)
x(B* (A+a)(c-1) —l+2c)i|(B* (/1)—1)—ca/1[3*(,1)(3* (A+a)(2+c)-2)

+ B (A+2a)(2-2B"(A+a)+3cB" (A+a)-4cB (1)) |- (B (2+2a)

x 2 (B (A+a)-2B"(A)+B (A+a)B’ (A)))}J (86)

4. Comparison of the three configurations

The purpose of this section is to present specific comparisons for the Av, (i =1,2,3)

for two different repair time distributions: exponential and k-stage Erlang, using an ef-
ficient Mathematica computer program. Basically, we consider the following values:

1 1 1 1 1
—=2500 days, —=4000 days, — =10 days, —= 10 days=10 h
A a Y7 £ 24

4.1. Comparison of all availability models

We first consider the following four cases to perform a comparison for the Av of the

configurations 1, 2, 3 when the repair time distribution is exponential, or 2-stage Erlang,
or 3-stage Erlang.

Case 1. We fix ¢ =0.00025, #=0.1, f=2.4, ¢=0.9 and vary the values of 1
from 0.0004 to 0.01.

Case 2. We fix 1 =0.0004, a =0.00025, f=2.4, ¢c=0.9 and vary the values of u
from 0.01 to 0.18.

Case 3. We fix 1 =0.0004, « =0.00025, 1=0.1, ¢=0.9 and vary the values of S
from 1 to 10.

Case 4. We fix 1 =0.0004, o =0.00025, =0.1, f=2.4 and vary the values of ¢
from 0.5 to 1.
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Numerical results of the Av, (M) and Av,(E,) for each availability model

i (i =12, 3) are shown in Tables 3—6 for cases 1-4, respectively.

4.2. Comparison of all availability models based on their cost/benefit ratios

We consider that the various configurations may have different costs when comparing
all configurations. We assume that the size-proportional costs for the operative units, cold
standby units and warm standby units are given in Table1. With this, we calculate the costs
for each configuration i (i =1, 2,3) shown in Table 2. Let C, be the cost of the configura-
tioni,and B, be the benefit of the configuration 7, where B, isthe Av,. Under the cost/ben-
efit (C,/Av,) ratio, comparisons are made based on assumed numerical values given to the
system parameters, and to the costs of configurations. Numerical results of (C,/Av,) for con-
figurations Vi =1, 2,3 are shown in Tables 7—-10 for cases 1-4, respectively.

Table 3. Comparison of the availability models 1, 2, 3 for Av (case 1)

Range of 1 Result
1. Exponential repair time
0.0004 < 1 < 0.002 Av, (M) > Avy (M )> Av, (M)
0.002 < A< 0.001 Av; (M) > Av, (M) > Av, (M)
2. 2-stage Erlange repair time
0.0004 < 4 < 0.00257 Av, (Ey)> Av, (E,)> 4v, (E, )
0.00257 < 1< 0.01 Av,(E,) > Av (E,)> 4v, (E;)
3. 3-stage Erlange repair time
0.0004 < 1 < 0.00283 AV, (E)> Av, (E; ) > Av, (E,)
0.00283 < A< 0.01 Avy (Ey)> Av, (E; ) > 4v, (E)

Table 4. Comparison of the availability models 1, 2, 3 for Av (case 2)

Range of ¢ Result
1. Exponential repair time
0.01 < 1< 0.0246 Av, (M)> Av, (M) > Av, (M)
0.0246 < < 0.2 Av, (M) > Av, (M) > Av, (M)
2. 2-stage Erlange repair time
0.01 < 1< 0.02 Avy (E,)> Av, (E,)> Av, (E, )
0.02<u<0.2 Av, (Ez)>AV3 (Ez)>AVz (Ez)
3. 3-stage Erlange repair time
0.01 < 12<0.0184 Avy (Ey)> Av, (E;)> Av, (Ey)
0.0184 < 1< 0.2 Av, (Ey)> Avy (E;)> Av, (Ey)
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Table 5. Comparison of the availability models 1, 2, 3 for Av (case 3)

Range of S Result
1. Exponential repair time

1<B<10 Av, (M) > Avy(M)> Av, (M)
2. 2-stage Erlange repair time

1<8<10 Avl(E2)>Av3(Ez)>Av2(E2)
3. 3-stage Erlange repair time

1<p<10 Av,(E,)> Avy(E,)> Av,(E;)

Table 6. Comparison of the availability models 1, 2, 3 for Av (case 4)

Range of C Result
1. Exponential repair time

0.5<C<0.9935 Av, (M) > Avy (M) > Av, (M)
0.9935<C<1 Av, (M) = Avy (M )> Av, (M)

2. 2-stage Erlange repair time
0.5<C<0.9953 Av, (E,)> Av, (E,)> Av, (E, )
0.9953 < C <0.99601 Av, (E,)> Avy (E,) = Av, (E,)
0.99601< C <0.99758 Av, (E, )= Avy (E,) > Av, (E,)
0.99758<C<1 Av, (E,)=Avy (E, )= Av, (E,)

3. 3-stage Erlange repair time
0.5<C<0.9951 Av, (Ey)> Avy (Ey)> Av, (E;)
0.9951< C <0.99601 Av, (Ey)> Avy (Ey) = Av, (Ey)
0.99601< C <0.99732 Avy (Ey) = Avy (Ey)> Av, (E,)
0.99732<C<1 Av, (Ey)=Avy (E,) = Av, (E)
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From the Tables (7-10), we can predict that the optimal system using cosz/Av,

value is system 2. It should be noted that the optimal configuration using the cos#/Av,

value does not depend on distributions of repair time and the ranges of A, 1, £, and c.

Table 7. Rank of (C/A4v,) for a=0.00025, £=0.1, f=2.4,v=10.9

Repair time distribution Range of 4 Rank (C,/Av,)
1. Exponential repair time C3/Avy(M)>Cl/Av, (M) > C2/ Av, (M)
2. 2-stage Erlange repair time | 0.0004 < 1<0.01 | C3/4v,(E,)>Cl/A4v,(E,)>C2/Av,(E,)
3. 3-stage Erlange repair time C3/Av;(E;) > C1/ Av,(E;) > C2/ Av, (E;)
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Table 8. Rank of (C/4v,) for A=0.0004, o= 0.00025, £=0.1, =2.4,v=0.9

Repair time distribution Range of ¢ Rank (Ci / AV,-)
1. Exponential repair time CyAvy(M)>C, [ Av, (M) > C, [ Av,(M)
2. 2-stage Erlange repair time | 0.01 <x<0.2 C}/Av3 (Ez) > Cl/Avl (Ez) > Cz/AV2 (Ez)
3. 3-stage Erlange repair time C}/AV3 (Ez) > CI/AVI (E3) > Cz/AVz (Ez)

Table 9. Rank of (C/A4v,) for A= 0.0004, o =0.00025, £z=0.1,c=10.9

Repair time distribution Range of # Rank (Ci/ A"f)
1. Exponential repair time C,/Av,(M)>C, [Av,(M)>C,]Av,(M)
2. 2-stage Erlange repair time 1<B<10 C,/Av,(E,)>C [ 4v,(E,)> C, [ Av, (E,)
3. 3-stage Erlange repair time C,/Avy(Ey)>C,[Av,(Ey) > C, [ Av,(E;)

Table 10. Table 9. Rank of (C/4v,) for 1= 0.0004, o= 0.00025, = 0.1, f=2.4

Repair time distribution Range of ¢ Rank (C,/A4v,)
1. Exponential repair time C3/AV3 (M) > C]/Avl (M) > CZ/AV2 (M)
2. 2-stage Erlange repair time 0.5<c<l1 C,/Av, (E,)>C,/4v, (E,)>C,/ Av, (E,)
3. 3-stage Erlange repair time C,/Avy (Ey)>C,/Av, (E;)>C,/ Av, (E;)

5. Conclusions

The authors develop analytic steady-state results for availability systems with mixed
standby components and imperfect coverage. However, the first objective of this article
was to provide a recursive method, using the supplementary variable technique, to de-
rive the steady-state availability for three systems. The second objective was to verify
the explicit expressions for two different repair time distributions such as exponential
distribution (M), and k-stage Erlang (Ey). Finally, we provided the cost/benefit analysis
of three availability models, and rank three availability models for two different repair
time distributions. We conclude that the optimal system using value is system 2.
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