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A NOVEL DATA ENVELOPMENT ANALYSIS MODEL 
WITH COMPLEX NUMBERS. MEASURING THE EFFICIENCY  

OF ELECTRIC GENERATORS IN STEAM POWER PLANTS 

The output of a generator in power plant is the electricity, and it consists of two parts, active and reactive 
power. These quantities are expressed as complex numbers in which the real part is the active power and the 
imaginary part is the reactive power. Reactive power plays an important role in an electricity network. Ignor-
ing it will exclude a lot of information. With regard to the importance of the generators in power plants, surely, 
calculating the efficiency of these units is of great importance. Data Envelopment Analysis (DEA) is a non-
parametric approach to measure the relative efficiency of Decision-Making Units (DMUs). Since the gener-
ators data are complex numbers, thus, if we the use classical DEA models in order to measure the efficiency 
of the generators in power plants, the reactive power cannot be considered, and the measurement is limited 
to the real number of electric power. In this paper, a new DEA model with complex numbers is developed in 
order to assess the performance of the power plant generators. 
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1. Introduction 

Data Envelopment Analysis (DEA) is a well-known nonparametric approach based 
on linear programming used to measure the efficiency of a group of independent ho-
mogenous Decision-Making Units (DMUs) with multiple inputs and outputs presented 
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by Charnes et al. [5]. This model is known as CCR model. Since 1978, DEA has had 
significant progress in various fields such as production, service, healthcare, economy, 
banking, insurance, agriculture, energy, and military sections. Sengupta [18] propose 
the stochastic DEA incorporating the stochastic programming which combines the mod-
els of data envelopment analysis with the Chance Constraint Programming (CCP). 
Sengupta [19] first uses fuzzy sets in DEA models and utilized three types of fuzzy 
statics, i.e., fuzzy mathematical program, fuzzy regression, and fuzzy entropy, in order 
to show the available solutions with ambiguous data. Cooper et al. [7] apply DEA using 
interval and ordinal data and utilise a unified IDEA model with weight restrictions. 
Banker [1] adds statistical elements to the efficiency evaluation techniques of DEA. 
Portela et al. [16] develop a new DEA model that can be used with negative data and 
implement this model to bank branches. Wen et al. [20] develop a DEA model with 
uncertain input and output data. 

In terms of data types, all extensions and developments of DEA models have used 
real number data sets, while there are some practical applications into which complex 
numbers are involved. For instance, we can consider the power plant industry, mechanic 
industry or telecommunication industry, etc. In the mechanical industry, for example in 
oscillators, the total force applied for oscillators is defined as a complex number [8]. In 
telecommunication systems, information is received and transmitted in the form of elec-
trical signals the data of which have a complex nature [3]. In the same way, in the elec-
tric power industry, generators of power-plants convert the mechanical power into elec-
tric power. The output data of the generators in power plants (i.e., the electric power) is 
available as a complex number consisting of two main parts, namely active power (real 
part) and reactive power (imaginary part). 

There are studies in the field of DEA to evaluate the efficiency of power plants. 
Park and Lesourd [14] examine the efficiencies of 64 steam-fuel power plants in South 
Korea using DEA and stochastic frontier. Sarika and Or [17] apply DEA to assess the 
efficiencies of 65 thermal, water, and wind power plants in private and public sectors in 
Turkey. Liu et al. [10] assess the efficiency of the thermal power plants from 2004 to 
2006 using the DEA method. Khalili-Damghani et al. [9] propose a DEA model using 
interval data and undesirable outputs in order to assess the performance of the combined 
cycle power plants. Wu and Li [21] investigate the efficiency of the Chinese wind power 
industry from the perspective of capital raise and allocation using the DEA model. 
Chandel et al. [4] calculate the performance of state-owned thermal power plants in 
northern India in the period 2009–2014 using DEA. Lyu and Shi [11] present a DEA 
model to assess the efficiency of different parts of the global renewable energy industry 
and then to apply their model to Bloomberg New Energy Finance (BNEF) data. 

Similar to the above studies, if traditional DEA models are used to measure the 
efficiency of the power plants with real numbers, the reactive power cannot be meas-
ured, and it is thus ignored. Therefore, the measurement is limited to the real number of 
electric power, i.e., to active power, while reactive power plays an important role in the 
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power generation network. The reactive power is applied to manage the voltage level to 
push the active power through the lines and, if there is no reactive power, there is no 
possibility of transferring power demanded through the lines and, ultimately, the useful 
performance is not produced [2, 12]. Thus, calculating the efficiency of the power plant 
using classical models of DEA that ignore the imaginary part of the electric power, i.e., 
the reactive power, does not yield real efficiency. 

None of the classical DEA models can deal with complex numbers. Such a technical 
gap in the field of classical the DEA models leads us to develop a new DEA model with 
complex numbers. For developing the novel model that uses the concept of the size of 
virtual input and output, we transform the assumed model into an NLP model, then 
further transform it into an LP model by interchanging variables. Eventually, the pro-
posed model is used in a real case study in order to measure the efficiency of electric 
generators in power plants. 

The present paper is organized as follows: In Section 2, the theoretical preliminaries 
to DEA method and complex numbers are stated. In Section 3, a new DEA model con-
sidering the complex numbers is introduced. In Section 4, the results of applying the 
proposed DEA model in a case study of generators of power-plants are presented. Fi-
nally, Section 5 provides concluding remarks and future research directions. 

2. Theoretical preliminaries 

2.1. Classical DEA model 

DEA is a linear programming (LP) method to assess the efficiency of several DMUs 
with multiple inputs and outputs [5]. Suppose that n DMUs are assessed by a DEA model 
in such a way that each DMU consumes m inputs to produce s outputs, where ijx  represents 
th ( 1, ..., )i i n=  input and rjy  represents the th ( 1, ..., )r r s=  output of the jth (j = 1, …, n) 

DMU. The CCR model to measure the efficiency score of DMUp is formulated as follows: 
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model (1) is known as the input-oriented envelopment model under constant returns to 
scale (CRS) assumption. The first constraint compares the size of the inputs of pth unit 
with the size of the weighted sum of inputs of all units, and the second constraint com-
pares the size of the outputs of pth unit with the size of the weighted sum of outputs of 
all units. In the real number set, the size of a real number is equal to its value. 

2.2. Complex numbers 

A complex number is defined as a + ib, where a and b are real numbers and i is an 
imaginary number with its square being –1 (i2 = –1). In this general form, a and b are 
called the real and imaginary parts, respectively. The complex number set is represented 
by C. Since the complex number a ib+  is represented exclusively by an ordered pair 
(a, b), the complex numbers have one-to-one correspondence with the points on the 
plane called a complex plane. Suppose z a ib= + , 1 1 1z a ib= +  and 2 2 2z a ib= +  are 
three complex numbers and ,k ∈ then the following relations hold true [6]) 
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In the above relation, the sign  represents the length, modulus or the size of a com-
plex number. 

3. The new DEA model with complex numbers 

Consider n DMU and that each DMU consumes m complex inputs ,a b
ij ij ijx x ix= +  

1, ...,i m=  to produce s complex outputs , 1, ..., ,a b
rj rj rjy y iy r s= + =  where a

ijx  and b
ijx  

are called the real and imaginary parts of the inputs, respectively. Also a
rjy  and b

rjy  are 
called the real and imaginary parts of the outputs, respectively. It should be noted that 
the real and imaginary parts of the inputs and outputs are assumed to be non-negative, 
and that each DMU has at least one input and output greater than zero. As mentioned 
earlier, in the constraints of model (1), the size of the combined inputs and outputs of 
all DMUs is compared to the size of inputs and outputs of DMUp, respectively. By con-
sidering this notion and the complex data in model (1), we have: 
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Taking into account the properties of complex numbers presented in relations (2), 
model (3) is converted into the model (4): 
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Sequentially, according to the definition in (2), the size of a complex number is calcu-
lated as the second root of the sum of squares of real and imaginary parts. Due to the com-
parison structure of the constraints of model (4) and for simplification, we can use the sec-
ond power of the size of a complex number. model (4) is converted as follows: 
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Model (5) is a non-linear programming (NLP) problem and it is difficult to achieve 
a global optimal solution. We use McCormick’s [13] proposed transformation and con-
sider the variables substitution 2  and = .jj j jh j hλ λ λ λ λ=  By replacing these changes in 
model (5), the following LP model is obtained: 
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The above LP problem is an input-oriented DEA model with complex numbers un-
der CRS assumption, and it is developed to evaluate the efficiency of DMUs incorpo-
rating complex inputs and outputs . 

Lemma 1. Model (6) is feasible. 

Proof. Consider 1,θ =  n0, 0, , , , a d .    ,  1jj j ph pj h j p h pλ λλ= = ∀ ≠ ≠ =  This so-
lution satisfies all constraints of model (6). So, it is a feasible solution of model (6). 

Theorem 1. The optimal value of model (6) is between 0 and 1. 

 Proof. 
A. Assume that * 0.θ <  Therefore, the right-hand side of the first set of constraints 

in model (6) will be negative. On the other hand of this constraint, we know that 
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and this will lead to conflict since a negative term is set to be greater than or equal to 
a positive term. Hence, * 0 .θ ≥  

B. Assume that * 0.θ =  So, all jjλ  and jhλ  in the first set of constraints in model (6) 
should be equal to zero. Therefore, the left-hand side of the second set of constraints in 
model (6) gets zero value and, consequently, the right-hand side of the second constraint 
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becomes zero, and this will lead to a conflict. Since there is at least one output with 
a positive value. Therefore, * 0.θ ≠  

C. Due to Lemma 1, since model (6) is feasible with θ  = 1, and this model is a min-
imization problem, it is concluded that *θ θ≤ . Hence * 1θ ≤ . This completes the proof. 

4. Application of new proposed DEA model in power plants 

4.1. Real case study of power plants 

We have applied the proposed model to a real case study in order to measure the 
efficiency of steam power plants generators. A thermal power plant (steam power plant) 
is a power station in which the electric generator is steam driven. The generator consists 
of two main parts of the rotor (rotating part) and stator (static part). In the rotating sec-
tion, a rotating magnetic field is generated using excitation current and voltage, and in 
the stator coil voltage or electricity is produced. In fact, the generator converts mechan-
ical energy created by the turbine into electrical energy. The most important part of 
a thermal power plant is the generator. The greatest variation in the design of steam-
electric power plants is due to the different fuel sources. Worldwide, most electric power 
is produced by thermal-electric power plants, which produce about 86% of all electricity 
generation. 

It should be mentioned that the efficiency of generators of the power plants as main 
parts of power plants has not been evaluated by DEA models, and in the present study, 
we will focus on measuring the performance of the generators of thermal power plants 
due to their undeniable roles in power generation. The complex nature of the power 
generation in plants makes the proposed model in this study appropriate for the assess-
ment. In the present study, the input and output data are available as real and complex 
numbers. The output of the generators, i.e., the electric power, consists of complex num-
bers with two parts: the active power (ya) is considered the real part and reactive power 
(yb) is considered the imaginary part of a complex number in the calculations. In other 
words, the output power of the generator is represented as y = ya + iyb. To this end, the 
annual data of 14 generators of the steam power plants (as DMUs) in Iran for the year 
2015 were selected. The power plants are supported by Iran Electricity Management, 
Distribution, Transfer, and Production Company (known as Tavanir Company). Table 1 
represents data of each power plant in 2015. 

 As we mentioned earlier, the mechanical energy, excitation voltages, and excitation 
current are considered as inputs of generators, and the output of generators is electrical 
power that appears in both active power and reactive power and is sent to the consump-
tion network. Figure 1 presents the schematic view of a generator in a steam power plant 
as a DMU. 
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Table 1. Inputs and outputs data of the power plants 

DMU  Power plant x1 x2 x3 yb ya 
1 Shahid Salimi Neka 3100 280 440 50 400 
2 Beeston Kermanshah 2800 222 289 32 270.4 
3 Besat Tehran 980 170 65.4 10 60 
4 Shahid Firuzi Tehran 870 180 11.2 2 10 
5 Shazand 2900 230 284 27 270 
6 Esfahan 1280 237 154 17 140 
7 East Azerbaijan (Sahand) 2800 250 277 29 260 
8 Iranshahr 1125 198 57 7 51.9 
9 Hormozgan 2980 240 263 30 250 

10 Shahid Beheshti Loshan 789 159 94.6 8.6 84.9 
11 Mofatteh Hamedan 1670 279 193.2 20 175 
12 Ramin Ahvaz 2710 230 279 23 260.1 
13 Shahid Rajaee Ghazvin 2600 250 225 22 210 
14 Zarand Kerman 680 180 23.1 9.1 19 

 
Fig. 1. Schematic view of a generator as a DMU 

The inputs and outputs of the generators are defined as follows: 
The excitation current and voltage x1, x2 – to create a magnetic field, the rotor coil 

of the generator should be fed by a current and voltage. In other words, the machine 
rotor is powered by a high-power electronic converter. These inputs have real nature. 

Mechanical power x3  – the power that is generated by the kinetic energy of steam 
turbines enters into the generator and has a real nature. 

Electric power (y) – the voltage or power that is generated in the stator section of 
the generator and is emitted by the generator. This output data have complex nature. 

Active power a
rjy  – it is a part of the electric power that is sent through the trans-

mission lines and can carry out a certain job. For instance, it rotates electric motors or 
lights up lights. It is measured in megawatt. This power is defined as the real part of 
a complex number. 
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Reactive power b
rjy  – this power is a part of the electric power, it is sent with active 

power to the consumer networks, and its performance is not seen with the eye (for ex-
ample, does not light the lamp). It manages the voltage level to send active power 
through the lines. Its unit of measurement is megavar. This power is defined as the im-
aginary part of a complex number. 

4.2. Results and discussion 

The proposed DEA model (6) was coded using the GAMS software in which the 
output of the model shows the efficiency scores of 14 DMUs. Table 2 shows the effi-
ciency scores of generators of steam power plants measured with the proposed DEA 
model (6). 

Table 2. Efficiency scores of the generators  
based on the DEA model (6) 

DMU Power plant Efficiency score 
1 Shahid Salimi Neka 1.000 
2 Beeston Kermanshah 0.990 
3 Besat Tehran 0.944 
4 Shahid Firuzi Tehran 0.905 
5 Shazand 1.000 
6 Esfahan 0.966 
7 East Azerbaijan (Sahand) 0.980 
8 Iranshahr 0.925 
9 Hormozgan 1.000 

10 Shahid Beheshti Loshan 0.936 
11 Mofatteh Hamedan 0.952 
12 Ramin Ahvaz 0.973 
13 Shahid Rajaee Ghazvin 0.961 
14 Zarand Kerman 0.915 

 
It can be concluded from Table 2 that DMU1, DMU5, and DMU9 are considered 

efficient DMUs. DMU4 enjoys the lowest rate of efficiency. These results were not very 
far from one’s mind because high and low efficiencies of the generators depend on the 
design of the generators or their technology. As an example, consider DMU1 (Shahid 
Salimi Power Plant in Neka) located on the coast of Caspian Sea. This power plant has 
a large share in producing the electricity required by the national network of Iran and it 
is considered to be the strategic power plants of the country and also one of the most 
important national assets. The generators in this unit are designed in such a way as to 
have good reactions to the severe hits of the active power and reactive power. DMU4 
(Shahid Firouzi Power Plant), located in Tehran (Tarasht district), is one of the oldest 
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power plants in Iran in which the steam units were manufactured and installed in the 
electricity generation cycle in the late 1950s. Considering the results of applying the 
research model, this power plant had the lowest efficiency value. In order to check the 
effect of including reactive power in the assessment of the efficiency of the generators 
in power plants, an analysis has been conducted. First, suppose that the imaginary part 
of the power is ignored in all power plants. Then, in the case study, we measure the 
efficiency of using just the real part of the electric power. Here, model (1) is used in 
order to calculate the efficiency of power plant generators. Table 3 shows the compara-
tive results of the classical DEA model, the proposed DEA model, and traditional effi-
ciency measurement. 

Table 3. Efficiencies calculated based on various models 
compared with the traditional efficiency 

DMU Power plant Model (1) Model (6) Traditional  
efficiency 

1 Shahid Salimi Neka 1 1 0.980 
2 Beeston Kermanshah 0.981 0.990 0.965 
3 Besat Tehran 0.956 0.944 0.915 
4 Shahid Firuzi Tehran 0.949 0.905 0.880 
5 Shazand 0.993 1 0.970 
6 Esfahan 0.988 0.966 0.920 
7 East Azerbaijan (Sahand) 0.990 0.980 0.960 
8 Iranshahr 0.960 0.925 0.900 
9 Hormozgan 0.997 1 0.970 

10 Shahid Beheshti Loshan 0.939 0.936 0.910 
11 Mofatteh Hamedan 0.960 0.952 0.930 
12 Ramin Ahvaz 0.984 0.973 0.950 
13 Shahid Rajaee Ghazvin 0.977 0.961 0.940 
14 Zarand Kerman 0.865 0.915 0.890 

 
It should be mentioned that the traditional efficiency of power generators is calcu-

lated on the basis of the amount of energy produced (electricity) compared to the amount of 
energy consumed. The results of model (1), model (6), and traditional evaluation of effi-
ciency are presented in Table 3. In order to investigate the correlation between the efficien-
cies, the Pearson correlation coefficient is utilised . The correlation coefficient between the 
obtained efficiency from the proposed DEA model and traditional efficiency is 0.979, and 
the correlation coefficient between the obtained efficiency from the classical DEA model 
and traditional efficiency is 0.756. These results show that there is a higher correlation be-
tween the efficiencies obtained from the proposed DEA model and the traditional assess-
ment of the efficiency. It can be concluded that measuring the efficiency of generators in 
power plants considering imaginary part of outputs provides more reliable results which are 
aligned with the results of the traditional evaluation of efficiency. 
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5. Concluding remarks and future research directions 

Assessing the efficiency of the generators in power plants can be of great im-
portance for various managerial purposes. Since the output data of a generator is made 
up of a complex number, the classical DEA models cannot provide reliable results in 
calculating the efficiency of the generator. Here, none of the classical DEA models can 
deal with complex numbers. If we use the classical DEA models which use real numbers 
in order to measure the efficiency of the generators of the power plants, the reactive 
power cannot be measured, and it is actually ignored. In this case, the measurement is 
limited to the real number of electric power, i.e., active power. 

In this paper, we initially address the existing DEA models to develop a DEA model 
using the complex numbers. Then, we elaborate the complex numbers and eventually 
propose a new DEA model considering complex numbers. With respect to the case 
study, we develop the input-oriented DEA model under CRS condition in order to assess 
the efficiency of DMUs using complex numbers. In order to check the applicability of 
the proposed model, we apply the model to the data set from 14 generators of steam 
power plants in Iran. The proposed models are coded in GAMS software. The results of 
the model reveal that the proposed DEA model given in this study is capable to measure 
the efficiency score of DMUs considering complex data. To clarify the main purpose of 
the research and its advantage over previous studies, we calculate the efficiency of the 
power plants, regardless of the imaginary part of the parameters (as real numbers) using 
the classical DEA model. The efficiency scores achieved by the proposed model and 
the classical DEA model are compared with the traditional efficiency measurement. The 
higher correlation coefficient between the results of the proposed model and the tradi-
tional efficiency shows a similarity of the results of these two efficiencies. So, incorpo-
rating the imaginary part of the parameters and using the proposed DEA model with 
complex numbers can be considered as a more acceptable method for evaluating the 
efficiency of steam power plants generators. One of the benefits of the proposed model 
is that it can simultaneously investigate the effect of the real and imaginary part of the 
data on efficiency. This is done by considering the size of the data combination rather 
than the size of the data in the model. Whenever we want to use the data size in the 
model, although it will be very simple, it may lead to incorrect results. 

The proposed model in this study can be extended for network DEA, dynamic DEA, 
and Malmquist models with complex numbers. Applying the present research approach 
to evaluate processes with complex negative, fuzzy, undesirable, and uncertain data can 
be interesting areas of study. 
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