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Abstract: The flotation froth surface appearance includes remarkable information, which can be 
employed as a helpful index for the qualitative evaluation of the process efficiency. Image analysis is a 
practical technology for the sake of achieving process related information that can be employed in 
expert controllers in order to amend flotation performance. In this paper, the intelligent modelling of 
relationship between froth characteristics and the metallurgical performance in a pilot column flotation 
of iron ore was established. Column flotation tests were carried out at a wide range of operating 
conditions and the froth features along with the metallurgical performances were specified for each run. 
The artificial intelligence models suggested for the performance parameters prediction include (1) 
multi-layer back propagation neural network (BPNN), (2) hybrid BPNN with principal component 
analysis (PCA). The hybrid network was on the basis of the PCA employment in order to decrease the 
number of variables to be given as input for BPNN. The relationships between the froth features and 
metallurgical performance factors were successfully modelled via the use of the two methods. The 
simulation results revealed that the prediction precision of BPNN model on the basis of all the data was 
relatively higher than the estimation precision of BPNN based on PCA algorithm. The Hybrid BPNN 
model that was trained by the pre-processed database of measurements achieved from the PCA can be 
considered a robust method when training time is of paramount importance in objectives of process 
control. 
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1. Introduction 

Though the flotation process has been used for a long time, how to assess the mineral surface properties, 
the particle characteristics, the production conditions, and the control and modelling of process robustly 
and automatically are difficult tasks and still academic issues that have not been attended to (Gao et al., 
2019; Li and Gao, 2017 and 2018; Shean and Cilliers, 2011). The weakness of adequately precise and 
trustworthy process measurements strengthens the difficulty. The experienced plant operators have 
traditionally controlled the flotation circuits through monitoring changes in the froth appearance and 
make modifications to process variables. However, because of the flotation process complexity, 
attaining optimal condition is almost impossible for the plant operators (Mehrabi et al., 2014). 
Furthermore, decision-making based on naked-eye observation of the bubble surface cannot skim all of 
cells in the flotation circuit timely (Liu et al., 2013). The process performance thus relies on the operator’s 
experience and is confined by the lack of quantitative approaches for froth characterization analysis. 

Since the accurate estimation of the exact moment for metallurgical factors (i.e. recovery and grade) 
changes leads to several issues in an effective economy, the diagnosis of a flotation process general 
conditions has a key role in the optimisation and control of process (Bergh and Yianatos, 1993). 
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The real-time prediction and measurement of performance parameters by X-ray analyser generally 
require sophisticated instruments which are costly to buy and keep and their field of application is 
commonly limited in terms of mineral size and types to be analysed (Nakhaei et al., 2012a).  Machine 
vision is an automated, non-destructive and cost-effective alternative method to predict of performance 
process and was successfully employed for monitoring, analyzing and controlling purposes.  
Previous reports have displayed that the froth optical features involve significant information and show 
changes in the flotation process status and can be employed to estimate the metallurgical parameters 
(Bonifazi et al., 2001; Kaartinen et al., 2006; Barbian et al., 2007; Morar et al., 2012a,b). Therefore, 
techniques on the basis of image analysis have been produced for observation and interpretation of 
froth images, involving the extraction of bubble size, froth velocity and other characteristics (Holtham 
and Nguyen, 2002; Aldrich et al., 2010; Farrokhpay, 2011). These studies showed that there is no unique 
procedure to quantify froth characterization, but several features should be considered at the same time 
for a more beneficial explanation of froth behaviour. 

In this paper, a machine vision system is formulated to assess and model the association between 
column flotation performance factors and the froth optical characteristics at different operating statues. 
Data acquisition is conducted on the column flotation cell so as to desulfurize an iron concentrate. Froth 
images obtained during column flotation tests are applied for image data intelligent processing aimed 
at automatic and online metallurgical parameters assessment. Artificial Neural networks (ANN) are 
designed to create a mapping from froth image input data (froth characterization) to metallurgical 
performance parameters.  

The combination of mathematical techniques provides more useful results than those obtained by 
the application of single method. In recent years, the techniques based on principal component analysis 
and artificial neural network (PCA-ANN) have been proposed as prediction tools when data were 
complex or when nonlinear and interaction interferences were present. 

The selection of input data to NN is a critical issue to prevent from over fitting when a plenty of 
input variables offered. Since the ratio between samples and variables in the ANN should be kept as 
high as possible, PCA is widely used to reduce the number of variables in a data matrix (data pre-
processing). The combined use of PCA and NN can usually improve the training speed (reduces 
computational overhead) and increase the robustness of the model. The first objective of this study is to 
illustrate if NN can estimate column flotation performance with high accuracy based on image analysis 
in the case study carried out for desulphurization of iron ore concentrate and also how the PCA can 
improve NN model. 

In this work, a new approach based on PCA and NN was developed for the simultaneous 
determination of column flotation performance parameters based on froth characteristics. Performance 
of PCA-NN was compared with a simple NN to investigate the ability of the PCA in extracting the most 
useful information from the raw data set. In summary, the suggested artificial intelligence predicting 
systems for the performance parameters of column flotation comprise two models: (1) a multi-layer feed 
forward NN (FFNN) and (2) a hybrid FFNN with PCA. Performance of the two NN models were 
compared by generalization accuracy and convergence speed that are very important indexes for 
evaluation of models. Such examinations can supply noteworthy contributions towards the progress of 
control strategies based on real time machine vision system. 

2. Experimental 

2.1. Materials 

The sample used in this study was taken from magnetic separators concentrate in hematite concentrate 
plant from Gole-Gohar iron ore complex, Iran. In this plant, the iron ore, after grinding, gravity and 
magnetic separation, enters flotation cells. As magnetic separators concentrates have a relatively high 
grade of sulphur (pyrite), the reverse flotation operation is used to reduce the amount of sulfur of the 
final product (Nakhaei and Irannajad, 2017). The flotation feed sample contained 63.3% Fe, 1.48% FeO 
and 0.48% sulfur. The particles size distribution of the sample showed that the 84% and 45% of particles 
were finer than 106µm and 44µm, respectively. The microscopic study and XRD analysis confirmed that 
hematite, magnetite and goethite were the primary minerals. Calcite, quartz and pyrite were also 
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commonly seen as gangue minerals. Based on the microscopic liberation results (point count technique), 
more than 90% of pyrite particles were liberated at -105µm. 

2.2. Column flotation 

In the present work, the column flotation operation was as the research object to set up soft-sensor 
model for the metallurgical performance estimation. Reverse flotation was applied for desulfurization 
of magnetic concentrate, whereby the pyrite was transferred to the froth. Flotation tests were conducted 
in a pilot flotation column (made of Plexiglas) with a 10 cm internal diameter and 4 m height as shown 
in Fig. 1. For reverse flotation, potassium amyl xanthate (PAX) was employed as the collector for pyrite. 
In addition, methyl isobutyl carbinol (MIBC) was employed as a frother in the flotation tests. After 
conditioning, the pulp was fed to the cell at a flowrate of 2-3 l/min with a certain air flow rate. Air was 
inserted via an air sparger for bubble generation. The air flowrate was measured by a flowmeter and 
manually adjusted by a valve. The froth pulp interface position was controlled by regulating the tailing 
flowrate and it was measured by direct observation and pressure measurements. To make sure that the 
process had reached steady state operation, the column cell was worked in a closed circuit for a further 
15 minutes before sampling of the feed, tailing and concentrate.  

 
Fig. 1. Column flotation set-up 

So as to establish the metallurgical parameters model based on the image analysis, a series of column 
flotation experiments (60 runs) have been performed in broad range of operation conditions as indicated 
in Table 1. The concentrate and tail sulphur grades (Sc and St), separation efficiency (S.E), froth solid 
weight (Sw), froth water weight (Ww) as well as the froth image characteristics were calculated and 
described for each experiment. 

Table 1. Variables ranges of column flotation experiments 

Variable Range 
Collector dosage (g/ Mg) 70 - 190 
Frother dosage (g/ Mg) 90 - 200 

Froth depth (cm) 15 - 35 
Gas flow rate (cm/s) 1.4 -1.8 

Slurry solids (%) 15 - 35 
pH 2.5 - 7 

2.3. Images acquisition  

Image acquisition was conducted using a digital colour camera (connected to a computer) placed in a 
wood structure with an adjustable arm (as depicted in Fig. 1). The distance from the camera lens to the 
top of cell was 30 cm. Lighting was supplied by a single 100W LED lamp placed in a soft box nearby the 
camera (Fig. 1). Also, all around the cell was completely isolated in a way that no external light could 
be inserted. The image and metallurgical data collections were taken 2.5 min during each set of 
experiments. Eight frames (with high resolution) for each run were selected and analysed exclusively 
and the average value of each feature was described for each test. In this study the most significant froth 
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characteristics consisting of bubble size, colour, texture, bubble collapse rate and froth velocity were 
extracted in each test. 

3. Feature extraction of froth image  

3.1. Bubble structure  

The objective of the structure analysis is to extract and measure morphological parameters, i.e., bubble 
size and shape, from the froth surface images. It is well recognized that the bubble size in both the froth 
and pulp phases plays a very important role in flotation efficiency (Aldrich et al., 2010). Various 
methods presented for bubble size measurement consist of watershed algorithm, texture spectrum and 
wavelet texture analysis (Mehrshad and Massinaei, 2011; Wang et al., 2003; Lin et al., 2008; Liu et al., 
2005). For this work, a watershed algorithm (an intensity-based topographical representation) was used 
to compute the distribution of bubble size (Lin et al., 2008). Watershed transformation is a noise-
sensitive operator so that it tends to over and under-segment the image. In this work, the pre-processing 
stages (contrast enhancement, noise removal, median and Gaussian filtering) would be applied to 
enhance quality of image and avoid the over and under-segmentation. After merging the multi-
highlights and producing a smooth area for each bubble, the image was segmented. Fig. 2 displays 
segmentation results of a froth image sample. It can be observed that this approach is able to detect 
bubbles of different sizes. 

 
Fig. 2. (a) the initial image (b) contrast enhancement (c) after using the median and Gaussian filters and noise 

reduction, (d and e) after using Watershed algorithm  

Also, after segmentation, morphological features such as roundness (circularity) and aspect ratio 
(AR) were computed for each forth image and then they were used in modelling. The AR is the ratio of 
width to length of the minimum enclosing rectangle. The circularity factor explains the closeness of a 
shape to the circular shape (Raadnui, 2005). 

3.2. Froth velocity  

Many researchers have presented that the solid and water recovery in flotation process depends on the 
froth mobility (Cutting, 1986). Froth mobility can be computed by tracking the bubbles movement in 
successive frames. Block matching (Forbes, 2007), pixel tracing (Holtham and Nguyen, 2002) and bubble 
tracking (Botha et al., 1999) are the most frequently employed methods to determine the froth speed. In 
this study, the pixel tracing technique was used to calculate the mean froth speed between the successive 
frames (Fig. 3). The particular implementation of this technique has been presented by Nakhaei et al., 
(2018). 

 
Fig. 3. Froth mobility measurement by the pixel tracing method 
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3.3. Bubble collapse rate  

Froth stability is widely identified to play an important role in specifying mineral flotation selectivity 
and recovery (Ventura-Medina et al., 2003). In this paper, the bubble collapse rate was measured by 
analysing successive frames and finding the rate of change in the images on the basis of technique which 
has been presented by Nakhaei et al., (2018). Fig. 4 illustrates this process. 

 
Fig. 4. Froth stability measurement in two successive frames  

3.4. Froth colour  

In this work, the average of the RGB, HSB (hue, saturation and brightness) and Lab values were 
extracted from images for quantifying the froth colour as model inputs to predict the metallurgical 
parameters. Both very bright and dark intensity values were omitted from the computation to avoid the 
effect of shadow and reflectance. Hue is the actual colour ranging from 0 to 360 (red = 0°, green = 120° 
and blue = 240°). Brightness refers to how much white (or black) is mixed in the colour (100% full 
saturation and 0% is a shade of grey) while saturation shows the purity of the colour (0% is black, 50% 
is normal and 100% is white). L is the luminance factor that varies from 0 to 100 and factors a (from 
green to red) and b (from blue to yellow) are the two chromatic factors that vary from -120 to 120 (Yam 
and Papadakis, 2004).  

3.5. Froth image texture feature  

It is believed that froth surface texture (roughness) is closely pertinent to the flotation operation 
condition. Thus, the extraction of texture feature as a useful index for assessment of the flotation 
performance can provide significant guidance for the optimal operation and control the process. Gray 
Level Co-occurrence Matrix (GLCM), which is the most widely used method for describing the second 
order statistical texture features of images, was suggested by Haralick et al. (1979). This approach is on 
the basis of the identification of the repeated occurrence of grey-level configurations in the texture. More 
details on GLCM matrix can be found in Haralick et al. (1979) and Pons et al. (2004). 

In this paper, based on each GLCM, four of the most typically employed descriptors (the entropy, 
contrast, inverse different moment (IDM), angular second moment (ASM) or energy) are utilized to 
elicit textural characteristics of the froth surface greyscale image data set.  
Entropy presents a degree of texture disorder or complexity of an image. The more complex texture is, 
the higher entropy will be, and the other way around. It has a minimum amount of zero once full pixels 
have the like intensity: 

	𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −∑ ∑ 𝐶(𝑖, 𝑗) log 𝐶(𝑖, 𝑗)56                                                (1)  
Contrast is a measure of intensity or grey level variations between the reference pixel and its 

neighbour. It defines the texture groove depth degree. Deeper texture groove leads to a greater image 
contrast and a better optical outcome and vice versa: 

Contrast	 = 	∑ ∑ (𝑖 − 𝑗)=𝐶(𝑖, 𝑗)56                                                     (2) 
Energy is a scale of the image homogeneity, thus it is a desirable value for finding of disorders in 

textures. For a heterogeneous image, the matrix will have a large number of small entries off the 
diagonal, and therefore the energy will be tiny: 

Energy = 	∑ ∑ 𝐶(𝑖, 𝑗)=56                                                      (3) 
IDM is a straightforward value of the local homogeneity in an image: 

𝐼𝐷𝑀 = ∑ ∑ D
DE(6F5)G

𝐶(𝑖, 𝑗)56  .                                                  (4) 
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Supposing (𝑥, 𝑦) is a two-dimensional digital image, GLCM means the simultaneous occurrence 
probability C (𝑖, 𝑗) of two pixels. They are the pixel with gray scale 𝑖 from the image (𝑥, 𝑦) and the pixel 
(𝑥 + Δ𝑥, 𝑦 + Δ𝑦) with gray scale 𝑗, declination 𝜃 and distance 𝛿. The concept of these descriptors can be 
explained by Bartolacci et al. (2006) and Elmasry and Nakauchi (2016). In this research, these features 
were acquired by Matlab software. The GLCM features were computed as the mean feature from eight 
frames of every sampling during different flotation times.  

4. Modelling strategy  

After implementing the image analysis algorithms into the froth images, data collection campaign was 
established. In these regards, both image data and process performance parameters were gathered 
during the different operation conditions of the flotation column. The feature vector resulting from the 
froth image analysis was a set of 31 parameters established by a first set of colour components (ten 
parameters), a second set of morphological factors related to bubble size and shape features (three 
parameters), a third set of components inferred from the GLCM modelling (sixteen parameters) and a 
fourth set of dynamic parameters (two parameters). On the basis of the correlation analysis results, the 
following parameters were considered to be an important contributor towards the dependent variable 
forecast by neural network. The H and b colour features were not used in the parameter set, as their 
correlations with metallurgical parameters were low and inclusion of these parameters increased the 
error values of network significantly. In Table 2 the minimum, maximum and standard deviation for 
each variable used in the modelling procedure have been reported. 

Table 2. The Statistical measures of froth features obtained different operating conditions and metallurgical 
factors used for NN 

Input variables 
Features Maximum Minimum St.d Features Maximum Minimum St.d 

Grey level 112 74 9.5 Contrast* 241 45.7 44.6 
Red 136 81 15.5 IDM * 0.34 0.14 0.04 

Green 111 79.5 7.33 Entropy* 8.75 7.5 0.25 
Blue 101 64 8.7 Bubble size 50.8 7.6 11.5 

Saturation 0.4 0.19 0.06 Aspect ratio 1.7 1.14 0.2 
Brightness 0.53 0.33 0.05 Circularity 0.8 0.36 0.1 

L 45.4 33.66 2.9 Velocity 26.4 11.5 3.84 
a 44.1 -6.3 5.06 Stability 85 55 6.1 

Energy* 1×10-3 2.5×10-4 1.5×10-4     
Output variables 

Metallurgical factor Index Maximum Minimum Average St.d  
Solid weight of tail (g) Sw 190 16 83.93 39.43  
Water weight of tail (g) Ww 380 40 222.3 77  

S grade in conc. (%) Sc 0.44 0.08 0.25 0.1  
S grade in tail (%) St 34.4 13 25.6 5.2  

Separation efficiency (%) S.E 82.5 6.5 47.3 20.8  
*Calculated for (0º) and the others (45º, 90º and 135º) were not given in this table 

NN is a non-linear computing technique including a large number of interconnected processing 
units (neurons), which simulates human brain learning. Among different kinds of NNs, the most 
commonly used one is the multi-layer feed forward NN. This kind of NN constructs a global function 
approximation and, even if the direct application of a single multi-layer feed forward NN to model a 
complex system has been proved to be better than conventional methods, there is a need for further 
improvement of its performance or generalization capability.  

The performance of a multi-layer feed forward NN for modeling the column flotation process 
depends mainly on data representation, accuracy and processing time of the model. Generally speaking, 
the performance of a network can be improved by reducing the number of input variables correctly, 
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sometimes even at the cost of losing some useful input information. A useful tool for this is the PCA. 
PCA transforms the original data set into a set of uncorrelated variables that capture all of the variance 
of the original data set. 

In this paper, the modeling strategy was led by the idea to detect the most effective NN model that 
will be able to predict metallurgical parameters with an adequate precision, but with a minimal number 
of predictors required as the input to the model. The aim of this paper was to investigate if the PCA will 
be effective in reducing training time and preserving or even improving the NN model accuracy for 
metallurgical performance prediction in a column flotation. Thus, the strategy involved the introduction 
of two models: 

• Model 1: NN with all available input variables (29 variables). 
• Model 2: NN with input variables extracted from principal component analysis. 

Model 1 is supposed to be the costliest one, owing to the higher dimension of input space, which needs 
the longer training time. Model 2 could save the time of data collection and the training time. 

4.1. Neural network  

ANNs are one of the best candidates for experimental data modelling, matching patterns, 
categorization, forecasting the future on the basis of past data, function approximation and real time 
data processing (Al-Thyabat, 2009). More details about neural networks as well as tutorials can be found 
elsewhere (Nakhaei et al., 2012b; 2013 a, b). 

In this study, a Multi-Layer Perceptron (MLP) with Levenberg Marquardt back propagation (BP) 
learning method is employed for training and testing. Working principle of BPNN includes two 
components: forward propagation and error back propagation. This fast-iterative method is on the basis 
of gradient descent and it can reduce error function by changing the biases and weight of network in 
each epoch or iteration (Nakhaei et al., 2013c). A hyperbolic tangent sigmoid transfer function was 
employed between the hidden and output layers and a linear transfer function was used in the output 
layer. Training and testing were done using the Matlab software.  

It should be pointed out that 75% of data (45 experimental data) was randomly chosen for training 
and the remaining data (15 experimental data) for testing the model. Input and output data used in the 
modelling process are shown in Table 2. Determination of the appropriate number of hidden layers and 
their neurons are very important in architecting NNs and was not determined priori. Research in this 
area has shown that one or two hidden layers with an adequate number of neurons are sufficient to 
model any solution surface of practical interest. An excessive number of hidden layer nodes have large 
number of associated undetermined parameters that leads to poor generalisation properties, such that 
the network tends to memorize rather than generalize and is unable to interpolate effectively between 
adjacent training data points. On the other hand, too few hidden neurons limit the competence of the 
net in locating adequate mapping between response and factors. In the last stage of the simulation, the 
hidden layer neurons number was specified by training different NNs with various number of hidden 
layer neurons and different transfer functions. The network doing best on a testing data collection was 
chosen as the most capable network architecture. 

5. Results and discussion  

5.1. Modelling relationship between froth characteristics and metallurgical factors by NN  

The MLP was trained by the Levenberg-Marquardt back propagation optimization algorithm using 140 
iterations (epochs). In this study, number of layers and their neurons were determined by trial and error 
procedure. Several structures of the NN with the number of neurons varying from 5 to 20 were trained 
for different learning rates and momentum coefficient values. The best architecture of the network was 
determined by calculating the root mean squares error (RMSE) for all ANN models. The architecture 
29-16-13-5 with momentum coefficient of 0.8 and learning rate of 0.2 gave the lowest estimation error 
among all the structures studied in this analysis. The architecture of this kind of NN is depicted in Fig. 
5. 

Fig. 6 shows the correlation between output and target values of the metallurgical performances 
predic00ted by the proposed NN for the testing data set. It appears that the NN model has estimated 
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values close to the measured ones. The correlation coefficient values for testing sets were 0.94, 0.93, 0.94, 
0.94 and 0.93 in Sw, Ww, Sc, St and S.E predictions, respectively. Since column flotation is a strong 
nonlinear process with changeable parameters, the correlation coefficient between estimated and 
measured values is very high. 

Fig. 7 shows the comparison between actual and output values of the metallurgical performances 
predicted by the proposed NN for the testing data set. The results display that the NN can simulate the 
complex linking between the input and target vectors with high correlation coefficient and low error; 
thus, it can be successfully applied for real-time estimation of column flotation metallurgical parameters 
using froth images.  

 
Fig. 5. NN architecture used in the simulation 

 
Fig. 6. Comparison of predicted results from the NN model with target values for the testing data set 

5.2. Modelling relationship between froth characteristics and metallurgical factors by PCANN  

For the proposed BPNN model, the input vector dimension (60×29) was too large, which makes the 
network geometry and training complicated. So, to simplify the model scale and decrease the NN 
processing time and to have very good performance, the best approach is to reduce dimensions of 
network variables. In this paper, Principal Component Analysis (PCA) technique was applied to reduce 
the dimensionality of high dimensional input vectors. PCA is used as a data reduction method to 
distinguish a small number of factors that describe most of the variance observed in a large number of 
manifest variables.  In the image analysis area, PCA has become the most usual technique to decrease 
the dimension of the information sets by keeping the pertinent data and understanding the relationship 
among the variables employed to build a model. PCs are new uncorrelated and approximately normally 
distributed variables that supply reliable representations of the image, which can be employed later as 
input data for prediction, clustering and other targets (Kara and Direngali, 2007). The order of the PC’s 
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relies on their degree of significance, like the first PC presents the most important relation with respect 
to the initial variables. The PCA method has been explained by other researchers (Prats-Montalbán et 
al., 2011; Balas et al., 2010). 

 
Fig. 7. Comparison of the predictive output and the actual output of the NN model for testing data set 

In this work, PCA was employed for data pre-processing and for simplifying the NN structure, since 
the estimation capability of the NN is more dependent on data representation than on the choice of a 
learning rule. PCA was conducted by using SPSS software version 21. At first, the Bartlett’s test of 
sphericity has been done on the correlation matrix, and the null hypothesis of correlation absence 
between the variables shows the appropriate use of PCA on this data. Kaiser criteria for determining 
the number of components were used in this study, based on which the PCs with eigenvalues bigger 
than 1 are kept for further analysis (Kaiser, 1958). Therefore, 4 was chosen as the optimum number of 
PCs. After extraction the PCs, the varimax rotation was done in order to get factors more linearly 
independent. The amount of total variance contributed by each component and the percentage of 
cumulative variance are given in Table 3. It can be realized that the first four PCs explained about 86 
percent (%) of the variance in the data set.  

Table 3. Eigenvalues and percentage of variance with and without varimax. 

Component 
Eigenvalues without varimax rotation Eigenvalues with varimax rotation 

Total  % of variance Cumulative Total  % of variance Cumulative 
1 19 63.8 63.8 10.86 37.45 37.45 
2 3.67 12.68 76.48 6.69 23.1 60.54 
3 1.5 5.24 81.73 4.14 14.27 74.81 
4 1.2 4.17 85.89 3.21 11.08 85.89 

The first PC showed a strong relation with characteristics of the texture; the second PC described the 
colour features and stability of the froth; the third PC had a relation with the movement of the froth; 
ultimately, the fourth PC showed a strong relation with the morphology of the froth. 

After the implementation of PCA pre-processing, the size of the data set applied in the BPNN model 
(29 image variables extracted) was systematically reduced to four principal components. Then, this PCs 
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data set was divided into two subsets: training (75%) and testing (25%) sets. The topology of the 
proposed methodology for PCANN model is illustrated in Fig. 8. This figure shows a network with an 
input layer of four neurons representing the PCs, two hidden layers with 12 and 10 neurons, 
respectively, and finally the output layer with 5 neurons.  The PCANN was trained using 60 epochs. 
The reduction of features reduces the number of epochs. 

The correlation coefficient values in testing stage are shown in Fig. 9. The correlation coefficient 
values for testing sets were 0.91, 0.89, 0.91, 0.92 and 0.92 Sw, Ww, Sc, St and S.E predictions, respectively. 
Comparisons of predicted values by the PCANN model at the testing stage and the database of observed 
values are presented in Fig. 10. The testing set, which actually tests how good the model is, shows that 
the model could approximate the metallurgical parameters quite satisfactorily. 

It can be observed that a well agreement was made between the predicted values of hybrid NN and 
real data set. The computed results display that PCA pre-process procedure to input data can also be 
used for prediction with much simpler network architecture. In other words, nearly the same accuracy 
of NN prediction can be gained by much fewer input data selected by PCA. 

	
Fig. 8. PCANN architecture used in the simulation 

Performance of the two NN models were compared by generalization accuracy and convergence 
speed that are very important indexes for evaluation of models. To display the accuracy of the proposed 
methods, root mean square error and other performance indexes of each model were calculated (Table 
4). The statistical parameters showed that both the ANN models were reliable, but simple ANN 
demonstrated a bit better performance in the prediction of the validation set samples, showing lower 
residual errors.  

On the other hand, convergence speed for PCA-NN (245 order) was shorter than NN (771 order), as 

 
Fig. 9. Comparison of predicted results from the PCANN model with target values for the testing data set 
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verified in the model order and reducing the NN architecture that help effectively when training time 
is of paramount importance in objectives of process control. When the accuracy of model is not 
noticeably important, the time of data collection and training process should be regarded as standard 
for model selection. This study shows a potential use of new artificial intelligence techniques such as 
the hybrid NN and the PCA in engineering problems. 

 
Fig. 10. Comparison of the predictive output and the actual output of the PCANN model for testing data set 

Table 4. Performance of ANN and PCANN for test data  

Predicted 
variable 

Neural network (Order = 771) Hybrid neural network (Order =245) 

RMSE  MAX  MIN  Average RMSE  MAX  MIN  Average 

SW (gr) 13.76 20.74 -21.6 -2.13 17.72 26.8 -28. 1 0.3 
WW (gr) 27.03 41.26 -39.38 -10.44 32.09 41.65 -66.62 -7.9 
SC (%) 0.03 0.07 -0.045 -0.007 0.04 0.07 -0.07 0.014 
ST (%) 1.99 2.69 -4.18 -0.42 2.29 2.91 -5.9 -0.77 
SE (%) 7.54 11 -13.5 -2.15 8.52 12.37 -15.4 -2 

6. Conclusions 

In this research, artificial intelligence models were successfully developed for the prediction of column 
flotation metallurgical parameters (solid and water weight of tailing, sulphur grades of concentrate and 
tail and separation efficiency) based on froth image characteristics. Bubble shape and size, texture 
features, froth colour, froth velocity and stability were elicited from the froth images at different 
operation conditions.  

Two neural network models were applied to estimate the metallurgical parameters of the column 
flotation process using a wide range of experimental conditions. The first model was on the basis of all 
experimental data and the second model was on the basis of data simulated by applying the input 
optimization strategy according to principal component analysis (PCA). The aim was to lower the 
training time of the NN, which means to find the minimal number of items needed to estimate the 
output factor. The structure of the NN model was simplified using the corresponding important PCs as 
input variables instead of the original data so that model order decreased from 771 to 245. 
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The statistical parameters showed that both the ANN models were reliable so that the correlation 
coefficients between predicted and observed values in testing stages in two models were above 0.91, 
which was very satisfactory. This fact shows that NNs are long-range tools for studying and 
performance estimation of flotation process. NN model based on all data (without any pre-process 
procedure) demonstrated a bit better performance in the estimation of the metallurgical parameters and 
has higher precision and the error curve changes smoothly, which shows better generalization 
capability and robustness. However, convergence speed for PCA-NN was shorter than NN, as verified 
in the training stages. The suggested models can be employed to simulate and find the optimal 
operation conditions for the column flotation process. These procedures can also be generalized to 
industrial operations providing the progress of more suitable process control strategies because a 
perfectly trained NN can estimate target variables very expeditiously. The significance of such probes 
is that an important contribution is made towards the improvement of a control system on the basis of 
machine vision for industrial applications. In conclusion, our work may assist the following research of 
the overall coordinated control (froth height, reagent addition, etc.) and the total process optimization. 
As the majority of flotation processes exhibit non-linear characteristics, there will be a need to further 
research that would extend the potential of these models’ application in real industrial conditions.  
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