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Abstract

The Universe undergoes a constant change. This affects every subject of our world, and ev-

ery method used to describe real-world systems should take its dynamics into account. One

of the most powerful concepts representing a complex system is a network. In this work, I

study temporal social networks that extend static networks by another degree of freedom -

time. With this additional dimension, temporal networks are able to model systems’ changes

capturing individual interactions between network nodes. In particular, I propose a set of new

entropy-based measures that are capable of quantifying temporal networks dynamics, alongside

algorithms for their iterative and parallel computation. Next, by applying those to real-world

cases, I demonstrate that human beings are much more selective in their communication over

time. In addition, I show that communication within social communities that exist in exam-

ined real-world social networks have different entropy, which can be potentially utilized for

group recognition. Furthermore, to provide a meaningful method of comparing temporal social

networks of different sizes, I define the normalization method for entropy-based measures.

In literature, there is a lack of temporal network models that are able to model humans’

cognitive processes. Making it another contribution to the field of temporal network model-

ing, I fill this gap with CogSNet - a new event-based and cognition-driven temporal network

model. It provides reinforcement by discrete events and continuous forgetting mechanism that

is capable of modeling human perception and cognition processes of mutual interactions. The

CogSNet model significantly outperforms all other reference models commonly used in the lit-

erature that was proved on the real-world data set. The model is capable to take into account

various interactions as well as the heterogeneous nature of human behavior.

Both entropy-based measures and the CogSNet model provide different but complemen-

tary information about the dynamics of social networks. This has been shown by means of

experimental studies.

The following thesis contribution is meant to extend our knowledge about dynamic systems

we are part of. And by doing so, to provide to the field new tools to deal with the complexity

of reality.
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Notation

Symbols

• G - graph

• V - set of nodes

• n - number of nodes in the network, size of set V

• vi - i-th node

• E - set of edges

• ej - j-th edge

• tij - time of event between nodes vi and vj

• cij - number of events processed for pair of nodes vi and vj

• wij - weight of relation between nodes vi and vj

• L - trace life time

• SC - set of successions

• evijk - an event between nodes vi and vj at time tk

• eij - edge between nodes vi and vj

• SN - N-th order entropy

1



LIST OF FIGURES 2

• SMN - maximum N-th order entropy

• dij - distance between nodes vi and vj

• τij - duration/latency between nodes vi and vj

• w - number of windows in static graph sequence

• h - network horizon

Acronyms

• CogSNet - Cognition-driven Social Network

• ES - event sequence



Chapter 1

Introduction

Panta Rhei - everything flows. This philosophical statement made by Heraclitus of Ephesus

refers to constant changes of everything around us. Slower or faster, things transform from

one form or state to another. Those changes are not independent - objects, things, people

- they interact with each other in many ways. Those objects can be perceived as a large

network that evolves all time. This idea is called the temporal network. In opposite to a static

network approach, where objects are connected with links that do not disappear and emerge,

temporal networks are trying to model some dynamics in that matter. From the beginning

of the concept, temporal networks were built with the most granular particles - events. An

event is an interaction of two objects in time and can be understood in many ways: face-to-face

meetings, email, handshake, an electromagnetic signal, airplane flight, touch, etc.

Typically, network science utilizes static networks to model systems, usually making an

assumption or simplification that connections between nodes are permanent. However, many

systems are time-varying in their nature. In social networks, friendship networks are commonly

presented as static ones. In fact, they rely on temporal interactions like face-to-face meetings

or communication via a number of mediums. A network of airports - also usually presented as

a static network - could not exist without flights between them - temporal events. The question

arises here if there is some benefit of using a temporal approach instead of a static one? Authors

in [71] show that in fact there is an advantage in terms of controllability of real-world networks.

3
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Similar findings in other aspects probably wait to be discovered. However, in some cases, it

may happen that the static approach would be more appropriate.

For over a decade researchers have been intensively investigating the domain of temporal

networks looking for an understanding of nature of this abstract representation of reality. They

came up with many solutions and applications, however, in this area, there are still much more

questions than answers. First, despite many proposed methods for representations of temporal

networks, still, not a single one has been pointed out as the right one as it is for static networks.

This might be because modeled systems require so different approaches that it is impossible

to pick one method for all of them. Next, a lot of measures are invented, however, there is

still a lack of versatile measure for temporal network dynamics, especially due to the number

of different representations. Researchers see the difference between human behavior in social

media, in face-to-face communication, in other media, etc. [132], but those differences should

be investigated even more. In the last couple of years, temporal networks are in the range of

interest of neurologists which are looking for applications of some social measures method to

brain activity [117], simultaneously pointing out that much more work needs to be done to find

appropriate utility. In [38] Holme, in his broad survey about temporal networks, indicates that

most of the work focuses mostly on adapting static network methods and measure into temporal

networks but this might not be the right way. The nature of temporal networks may require

fresh notions and a different approach than only adding time dimension into old methods.

Likewise, difficulties appear in visualizations methods of temporal networks - they are still far

from convenient. Some of them are sufficient only for small networks, others allow to explore

temporal networks interactively [1], but there is a lack of good approach, especially for large

networks. After over ten years of active research temporal networks are still a growing area in

many disciplines (see Fig. 1.1). Even that most of the papers involve a more standard (static)

approach, temporal networks are an important part of network science. The future will show

if temporal networks will become a major representation of real-world objects or processes.

Yet, it is still hard to confidently declare whether using temporal networks for modeling

reality is a better way than a static approach. For sure, in some cases, it is reasonable to properly

incorporate a time dimension, especially in dynamic systems. Yet, to my best knowledge, there
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Figure 1.1: Normalized number of papers with given keyword per year, according to Scopus
database. Number of documents is normalized with overall number of scientific publications.
Used keywords: ”social network”, ”temporal network”, ”network science” and ”complex net-
works”. Accessed on 2018-12-13
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is no data that can confirm that statement. The question that might be asked here is - if

temporal networks are some upgrade for static networks or just another way to model systems.

The answer is not obvious and needs to take into account a broad spectrum of modeled systems.

On one hand, we have some topology given by entities - people, companies, computers, etc.

- and relations between them respectively, e.g., friendships, contracts, physical connections

and on the other hand there are some interactions between them like messages, transactions,

signals. Topological structure and temporal interactions need to conform. Latapy et al. in [67]

introduces an elegant formalism that tries to deal with both structural and temporal aspects of

temporal networks. Comparing temporal networks given with different representations is also

still problematic since it requires transformations from one representations to another, which

not always can be made without temporal information lost. Authors proposed a number of

measurements - a number of nodes, neighborhoods, compactness, cliques, clustering coefficient

and even more - that imitate those from static networks with an additional dimension of time.

Yet, even with a number of defined measurements, researchers are not able to unambiguously

state if there is some border beyond which the temporal network’s approach is better than

static networks. In the past literature, there is also still a lack of methods that are able to

model human cognition. Another open question is what kind of temporal network structure

speeds up spreading [42].

1.1 Dissertation motivation and objectives

In the literature, to my best knowledge, there is a lack of measures for event sequence, that

are able to measure temporal networks dynamics. Such measures could be useful not only for

a better description of temporal networks and a better understanding of its nature but also

for more practical applications such as analysis of social groups in social temporal networks

or detection of network behavior changes. Another aspect that is missing in the literature is

a temporal network model that would allow simulation of the human cognition process. This

process is dynamic and continuous, yet bases on discrete events such as meetings or messages.
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My primary goal in this dissertation is to improve the state of knowledge in the area of

temporal networks by introducing a new set of measures for one of the most basic forms of

temporal networks - an event sequence. Proposed measures will be an important contribution

to computer science as a method to describe and analyze data collected by many ICT systems.

Also, proposed computation methods for measures will be designed to be efficient to handle big

amount of data.

The second goal of this work is to propose a new temporal network model that is able to

simulate human behavior on the cognition level. It would be another tool for data analysis,

especially related to computational social science. To preserve the usefulness of the proposed

model, the parameters of the model should be optimized.

Besides contribution to computer science, hopefully, my work will have a noticeable impact

on other domains. Useful methods for temporal networks analysis would potentially have an

impact on sociology, biology, medicine and economy.

1.2 Dissertation structure

This dissertation is organized as follows. First, the state-of-the-art in the area of temporal net-

works is presented: common representations, measures, processes, application, and challenges

with open questions. In the next chapter, a new temporal network model with memory is intro-

duced. The following chapter contains an introduction of a new set of entropy-based measures

for event-described, along with algorithms for its iterative and parallel computations. The next

chapter consists of experiments and analysis of proposed temporal network description methods

to examine their complementarities. In the final chapter, the summary of the dissertation is

presented, alongside ideas for future work.



Chapter 2

Temporal networks: state of the art

In this chapter state of the knowledge in the area of temporal networks is presented alongside

challenges and open questions. Firstly, basic definitions and the most popular representations

of temporal networks are described, followed by a review of developed measurements. The

next section focuses on processes that can be modeled with temporal networks, followed by a

section about temporal network applications. The chapter concludes with challenges and open

questions in the area.

2.1 Graph definition

To begin with a proper presentation of temporal networks, here, some basic definitions from

the network science are presented. One of the basic concepts is a network defined with a simple

graph as follows:

Definition 2.1 A Graph is a tuple G = (V,E), where V = {v1, ..., vn}, n ∈ N+ is the set of

vertices and E = {e1, ..., ek}, k ∈ N+ is the finite set of edges between them. An edge is a tuple

eij = (vi, vj, wij), where vi ∈ V, vj ∈ V, vi 6= vj, w ∈ [0, 1].

This definition is valid both for directed and undirected graph. However, for undirected graph

eij = eji, while for directed graph eij 6= eji. Weight wij states for how strong nodes vi and vj are

8
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connected. For unweighted graph weight is always equal 1. A directed, weighted graph can be

also interpreted as Social Network (SN) if V = {v1, ..., vn} is considered as a set of individuals

and E is a set of edges representing directed social relationship between nodes vi and vj.

2.2 Representations

In this section, representations of temporal networks introduced in the literature, in the past,

is presented. It is important to note that so far there is no established representation that is

suitable for all applications. It is one of the reasons that, on one hand, temporal networks seem

to be useful for many applications, but on the other hand they are not easy to use. Among

many proposed representations there are few that are the most common in literature, e.g., event

sequence, interval graph, snapshots [41].

2.2.1 Event sequence

The first representation is one of the basic representations of a temporal network. Event

sequence (ES) or contact sequence is a list of contacts with an additional time attribute. It

can be given as time-stamp (for instant events or those which duration time is negligible, e.g.,

text messages, emails, etc.) or with an interval (for events that takes some finite time, e.g., face-

to-face meetings, phone calls, flights). While it is a representation that preserves all information

about temporal network there is still a lack of convenient tools for graphical visualization. Most

of empirical temporal network data [38] are given as event sequence as it is the most natural

way to register temporal activity. In Fig. 2.1b an event sequence is presented on a timeline of

nodes.

In this thesis set of interactions between network individuals are formally defined as Event

Sequence (ES):

Definition 2.2 An Event Sequence is a tuple ES = (V e, EV ), where V e = {ve1, ..., vene}, ne ∈

N+ is the set of social entities and EV = {ev1, ..., evkev}, kev ∈ N+ is the finite set of events
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(contacts) between them. Each event evijkl is a tuple: evijkl = (vei , v
e
j , t

e
k, id

e
l ), where vei , v

e
j ∈

V e, vei 6= vej and tek ∈ T e. Here, T e represents a discrete time dimension consisting of timestamps

T e = {t1, ..., tmt},mt ∈ N+ in which a particular event occured or is assigned to. The set

ID = {id1, ..., idnid} contains unique event identifiers ideid ∈ ID, nid ∈ N+. The set of nodes

V e cannot possess any insolated nodes, i.e. ∀i(vei ∈ V e ⇔ ∃jkl(eijkl ∈ EV ∨ ejikl ∈ EV )).

Figure 2.1: a) Event sequence mapped into a sequence of graphs - each window size is equal
9 time units. b) Event sequence presented as a timeline of nodes. In this case, contacts are
considered as directed. Indirect timeline would not have arrows indicating direction.

Another way to present an event sequence is a timeline of contacts, which is less a represen-

tation and more way to visualize or understand a temporal network given with event sequence.

In Fig.2.2 timeline of contacts is presented.

Both presented ways to visualize event sequence are rather tough to analyze, especially for

bigger graphs.
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Figure 2.2: Event sequence presented as a timeline of contacts. Yellow points indicate when
contact emerges. Here a version of indirected communication is presented - directed version
would contain also lines for reverse communication.

2.2.2 Weighted graph

Looking for simplification of an event sequence the most intuitive approach seems to be an

aggregation of a sequence into a static graph. Such an approach, however, loses all information

about temporal aspects of network and frequency of communication. A kind of intermediate

solution is to use a weighted graph where nodes represent participants of communication and

each edge states, whether there was a contact between a pair of nodes and weight of an edge,

represents frequency of communication - given as a number of contacts or a fraction relative

to overall number of contacts in the network [65]. This approach may be partially good to

simulate some properties of the network, however more precise prediction requires information

about the order of contacts which are missing in this representation. To conclude, this approach

favors the usage of a great number of methods for static networks while misses a lot of temporal
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information. A weighted graph is also called a Social Network [122] and is formally defined as:

Definition 2.3 A Social Network SN on Event Sequence ES = (V e, EV ) is a tuple SN =

(V,E) where V = v1, ..., vn, n ∈ N+ is the set of vertices and E = e1, ..., eke , k ∈ N+ is the set

of edges between them. Each vertex vi ∈ V represents an individual vei from Event Sequence

and each edge eij corresponds to the directed social relationship from vi to vj, such that E =

{(vi, vj, wij) : vi ∈ V, vj ∈ V, vi = vei , vj = vej and ∀ij(∃klevijkl ∈ EV ⇔ eij ∈ E), wij ∈ [0, 1]}

Here, value wij =
neij
nei

denotes the importance (weight, strength) of the relationship between

individuals, such that neij is the number of events evijkl from vei to vej in ES (regardless k, l and

nei is the number of all events initiated by vei (outgoing from).

2.2.3 Static graph sequences and time-window graphs

Temporal network can be represented also with time-ordered sequence of static graphs [89, 77]

or multilayer graph in which layers are representation of time periods [11, 57, 68], see Fig. 2.1a.

In [18] authors proposed a useful framework to study multilayer networks including temporal

networks. This representation seems to be a powerful way for temporal network analysis because

it allows for the application of some algorithms from static graphs - vastly developed in the past

in literature - along with visualization methods. However, there are some drawbacks of this

solution and all of them come to the resolution of used periods. If the resolution is low - such

representation is usually denoted as a time-window graph - each layer in the multilayer network

will bring a lot of useful topological information while losing some of the information about

temporal aspects. In opposite, if the resolution is high - such structure is usually called graph

sequence - a lot of temporal information will be preserved, while layers may bring insignificant

topological information due to a very sparse structure. In an extreme situation in each layer,

there will be only one edge. Depending on an examined system it may be reasonable to use

this representation while studying, e.g., the spread of influence or disease spreading it is hard

to decide which of aspects is more important - temporal or topological - and graph sequence

seems to be a rather poor choice. Yet another problem is how to choose boundaries of periods

as well as a starting point. Consider the following example: studying communication patterns
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of people we can look at aggregated networks of communication during: day, week, month, etc.

The different aggregation will provide as different information e.g. daily aggregated network

may reveal some patterns during the week while look at the entire month some patterns about

seasons or holidays [61]. Yet another idea is proposed in [25], where authors propose aggregation

of network edges into some limited space. This solution is valuable for large graph processing,

due to limited available memory. The proposed approach at a given point of time take recent

n number of nodes of edge stream and aggregate them into a static network.

2.2.4 Reachability graphs

This representation based on a concept of the time-respecting path which states that there

exist a direct edge between nodes vi and vj or time-ordered set of edges between them. In

the reachability graph, an edge between nodes vi and vj means that in the temporal network

a time-respecting path between those nodes exists. This concept was proposed in [82] and

later independently revisited in [124]. Further research was done in [16, 41, 89, 38]. The idea

of showing the capability of a network to pass information between nodes could very useful,

however, it may lead to very dense (full or near full) graphs very fast [40, 37] which loses a lot of

information in both topological and temporal aspects. Another drawback of this representation

is that the existence of edge states for at least one time-respecting path between nodes and do

not contain information about multiple paths.

2.2.5 Concurrency graphs

This representation is based on an idea of concurrent partnerships in sexual network proposed

in [60]. In [35] author proposed an approach of event-sequence aggregation into a static network

using concurrency of contacts: 1) in a certain period of time, 2) before and after a certain period

of time and 3) in an entire network but using an exponential threshold to get rid of low weight

edges. Of course, this kind of aggregation causes some loss of temporal information, however,

it returns an analytically convenient static network.
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2.2.6 Difference graph

Snapshots of a temporal network were used in [85] to compute a difference in links between

consecutive time steps. Authors show that applying Minimum Vertex Cover can capture key

properties on the structure of changes in a dynamic network [85].

2.2.7 Transmission graph

Most of the representations previously presented aggregate a temporal network into a static

graph with nodes matching individuals in the contact sequence. In [100], authors propose

different approach - nodes in the static network represents pairs of individuals in a contact

sequence while edges represent if there is a possible transition of disease i.e. if a pair of edges

share a vertex in the same time.

2.2.8 Representations summary

Representations presented above are not the only ones, however the most common to be found

in the literature. In general, it is hard to judge which representations are good and which are

not. It strictly depends on an application and authors of those representations show usefulness

in particular cases. Holme in [38] divides temporal network representations into lossy and

lossless which is another way to compare them. However, it is hard to put a line between

those two groups. Another aspect that needs to be taken into account is the availability of

methods to analyze a network given in a particular representation. In Fig. 2.3 an attempt to

compare temporal networks representations is presented using Gartner Magic Quadrant. Please

note, that particular positions of points in the quadrant are estimated and have no numerical

meaning. Some of the representations are especially hard to put e.g. static networks sequence,

which can have very high resolution, but then it will be very hard to analyze. Grey dashed

line represents a kind of trade-off that researchers using particular representations must do in

many cases - if a network shows high resolution of temporal information, it will not be easy to
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analyze. Some representations, like the transmission graph, are located above the line which

indicates that they are able to preserve some aspects of temporal information while making it

easier to analyze.

2.3 Measures of temporal networks

In the previous section, a number of representations of temporal networks are presented. Many

of them utilize a static network concept, thus some measures for static networks can be used to

describe their topology. However, static measures are lacking information about the temporal

aspects of the network. Hence, many of them seem not to be an appropriate way to describe

temporal networks just by a straightforward application. The additional degree of freedom of

temporal networks - time - demands many measures to be rethought and redeveloped. Also,

different representations require different measurements. Researchers made many attempts

to this challenge of developing a number of measures for temporal networks. Some of those

measures focus more on topology and some of them more on temporal aspects. There are also

some attempts that try to capture both aspects at once.

The existence of so many temporal networks representations and measures raises the ques-

tion - if temporal networks are somehow comparable among themselves? Intuitively it can be

assumed that in order to compare two networks with different representations, they need to

be mapped into a common form. However, it can not be done in many cases and if even so,

such a mapping may cause a temporal information loss. Assuming that all temporal networks

are created based on a sequence of events, probably the proper way is to compare sequences.

However, there are not many measures that can be applied to event sequence and intuitively

describe it.

In this section, the most popular concepts in temporal network measures are presented.
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Figure 2.3: Gartner Magic Quadrant for temporal network representations. Vertical axis refers
to the resolution of the network or in other words how much temporal information is preserved.
The horizontal axis refers to the complexity of the analysis. It may be also understood as the
availability of methods to analyze.
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2.3.1 Time-respecting path

One of the basic ways to describe a relation between two nodes in the network is by measuring

the distance between them. In static networks distance between nodes, vi and vj is a minimum

number of jumps over existing edges to get from node vi to vj and the set of visited edges is called

path. In temporal networks, there is a similar concept. Authors use different names: time-

respecting path [54, 39], time-ordered path [92], journey [128, 26] or non-decreasing path [16]

but the idea remains the same. In simple words, a time-respecting path usually is a sequence

of temporal edges (events) connecting two nodes with non-decreasing time. If we consider a

system with events with non-negligible duration time, a time-respecting path will consist of a

sequence of events that each event: a) begins after the end of the previous event (except the

first event) or b) overlaps with the previous event. The sense of those approaches depends on

the examined system, e.g., for studying flight connections ’a)’ approach fits better, while for an

epidemic process on face-to-face meeting ’b)’ approach seems to be the right approach.

In some cases, it is reasonable to introduce an additional requirement for a time-respecting

path. In [92] authors point out that it is a good idea to introduce some limit for waiting time

between consecutive events on a path, after which path will be cut off. The notion behind this

comes from empirical data investigation. In air transportation data it is reasonable that people

would not like to wait more than a day for connecting flight and in most cases, it would be a

couple of hours. If the waiting time is longer - than the path would not be considered as a viable

option. Similarly, considering phone call data, if we want to examine information spreading

through the network we should take into account that people may forget to pass information

after some time. The cutoff threshold will vary depending on the examined system and data

- it should be different for air transportation, information spreading in email communication

and epidemic spreading (even different viruses would require a specific threshold). Such diver-

sification of events source is taken into account in a new temporal network model - CogSNet -

that is described in Chapter 3.

Without regard to the specific approach of time-respecting path definition, the most ob-

vious component of the path is its length, or in other words, the distance between two nodes.
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In static networks, a path length is a number of edges between the first and last node, alterna-

tively sum of weights on edges, which allows for a simple definition of the shortest path. In a

temporal network, it would be very useful to have a similar property defined, however, due to

the time aspect, it is not that obvious. In the literature, the nomenclature in this subject is not

uniform and sometimes might be a little confusing. The ambiguity comes from the fact, that

some authors consider path length as a time that is required to get from one node to another,

while other authors consider it more like in static networks - a number of edges between two

considered nodes. In this work, I would like to distinguish distance that measures a number

of events between nodes and duration (or latency) that measures time. Pan and Saramaki

in [92] define temporal distance from node vi to vj as the shortest time it takes to reach vj from

vi starting at time t along temporal paths:

τi,j(t) = (t′ − t) + δt (2.1)

where t’ is time of the first event from vi in the shortest path and δt is the path duration.

In [114] authors define shortest temporal distance dij(h, t
min, tmax) as a minimum number

of time windows that are required to connect two nodes through available events, assuming

that in a single window there can be a finite number of hops denoted as h, where distance is

given for node i and j in finite time window from tmin to tmax, and h is the maximum number

of hops. Authors in [7] define length of temporal path as number of hops between nodes and

similar notion in [6] is called distance.

Whatever the approach to the definition of path length is, it is crucial to use the appropriate

one to a specific application. Once defined distance or duration is a base for many further

measures.

2.3.2 Centrality measures

A property in static networks that describes how a node is placed in the network in relation

to other nodes is called centrality. With the defined distance between nodes in a temporal
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network, it is pretty straightforward to apply it to centrality measures for a temporal network,

just by replacing paths with time-respecting paths and its distance or duration. Newman in [86]

defines closeness centrality CC(i) for node vi which promotes nodes that are closer to other

nodes in the static network:

CC
i =

n∑
j di,j

(2.2)

where n is a number of nodes in the network and dij is the distance of node vi to other nodes.

In other words, this is an invert value of average distance of node i to other nodes. To apply

this notion to temporal networks we can simply apply one of previous definitions of temporal

distance defined temporal closeness centrality [115] for node vi in a sequence of static graphs:

CC
i (h) =

1

w ∗ (n− 1)

∑
j 6=i∈V

dij(h) (2.3)

where n is a number of nodes in the network, V is a set of nodes, w is a number of static graphs

in the sequence or time windows, h is network horizon - a maximum number of contacts that

information can pass in single window and dij(h) is the temporal distance between nodes i and

j for a given horizon. This idea was also developed by Kim and Anderson in [56].

Another way to describe the centrality of a node is betweenness, which is a fraction of

shortest paths that contain given node overall shortest paths in the network [122]:

CB
i =

∑
i 6=j 6=k |sijk|∑
i 6=j 6=k |sjk|

(2.4)

where |sijk| is a number of shortest paths that contain node vi and |sjk| is a number of all shortest

paths in the network. When applying this notion to temporal networks it is obvious that

temporal shortest path should be applied. However, before that, we need to take into account

that at different points of time since the network is dynamic over time, node betweenness may

vary. In [115] authors proposed a definition of temporal betweenness centrality for a node in a

given point of time:

CB
i (t) =

1

(n− 1)(n− 2)

∑
j∈V
j 6=i

∑
k∈V
k 6=i
k 6=j

|sijk(t)|
|sjk(h)|

(2.5)
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where n is a number of nodes in the network, V is a set of vertices, |sjk(h)| is a number of all

shortest path with given horizon h and |sijk(t)| is a number of temporal shortest paths from

node vj to vk such as vi is holding message from vj at time t that will be passed to vk in the

future. One of the applications of betweenness is to identify important nodes in the network

in terms of passing information - leaders, commanders, hubs, etc. In temporal networks it is

also important how long a node holds information - the longer it holds, the more important it

is. Authors of the above definition proposed also overall temporal betweenness centrality for a

node in temporal network G(tmin, tmax), that is average betweenness over time windows in the

network:

CB
i =

1

w

w∑
t=1

CB
i ((t× w) + tmin) (2.6)

where w is a number of windows in the network.

Last but not least group of centrality measures are those which measure how central are

nodes in terms of random diffusion in the network. In static networks we have PageRank [122]

which promotes nodes that are linked by other important nodes, eigenvector centrality [88]

which finds nodes that are connected to the most influential nodes or Katz centrality [53]

which extends notion of eigenvector centrality in way that a node is important if it is linked

from other important nodes or if it is highly linked. In temporal networks, Holme and Sarämaki

in [41] proposed an algorithm of a generalization of the eigenvector centrality:

Algorithm
1. Start with a centrality value 1 at each vertex.
2. At every contact between vertices vi and vj, let the CE values after the contact at timestep
t be

CE
i (t+ 1) = ζCE

i (t) + (1− ζ)CE
j (t)

and
CE
j (t+ 1) = ζCE

j (t) + (1− ζ)CE
i (t)

where ζ is a rate of how much centrality is passed from one node to another.

Larger ζ promotes recent contacts to have more influence on final centrality. This notion

was further developed in [30] to solve some problems in previous approach.
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2.3.3 Connectivity

One of the fundamental concepts in networks is the knowledge of whether nodes are connected

with a path or not. So-called connectivity gives a minimum number of nodes that need to be

removed from the network to separate remaining nodes into components. In directed static net-

works there are two definitions: 1) weak connectivity - which states that there are directed paths

between all nodes at least in one direction and 2) strong connectivity - which states that there

are directed between all nodes in both directions. We can apply this idea to temporal networks

using time-respecting paths. In [90] authors proposed definitions of: 1) strong connectedness,

where two nodes vi and vj of a time-varying graph are strongly connected if vi is temporally

connected to vj and also vj is temporally connected to vi and 2) weak connectedness, where two

nodes vi and vj of a time-varying graph are weakly connected if vi is temporally connected to

vj and also vj is temporally connected to vi in the underlying undirected time-varying graph.

Authors went a step further and proposed also a definition of a strongly connected component

as a set of nodes of a time-varying graph G is a temporal strongly connected component of G

if each node of the set is strongly connected to all the other nodes in the set.

2.3.4 Diameter and efficiency

Yet another measurement that is important in networks is a diameter, which states how far

are nodes in the network from each other. Diameter in static networks is the longest shortest

path and a simple transition into temporal networks would be to take a length of the longest

time-respecting path or its latency - depending on the aspect of interest. Those concepts of

topological diameter and temporal diameter of a temporal network was introduced in [128] and

further investigated in [15]. A related concept to diameter - efficiency - is average over inverse

path lengths of all paths. For temporal networks, temporal efficiency for a pair of nodes was

proposed in [114]:

Eij(t
min, tmax, h) =

1

dij(tmin, tmax, h)
(2.7)
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which is an inverse of distance between nodes in given time window (tmin, tmax) and horizon h,

and global temporal efficiency:

E(tmin, tmax, h) =
1

n(n− 1)

∑
ij

Eij(t
min, tmax, h) (2.8)

which is average temporal efficiency over all pairs of nodes. Authors in [114] also proposed a

concept of local efficiency for a particular node and average in the entire network.

2.3.5 Inter-event times

In temporal networks based on contact events, we can take a closer look at the time between

recorded events. There are a couple approaches to characterize inter-event times in order to

be able to replicate a network conserving contact dynamics. In [32], in addition to established

Aggregate Pairs approach [31, 14, 50, 28, 133], authors proposed two new approaches Aggregate

Nodes and Any Contact. Aggregate Pairs is an approach where we analyze distribution of times

between contacts in each pair of nodes separately. Aggregate Nodes approach focuses on the

distribution of times between events for particular nodes. Any Contact is a holistic approach

which aggregates all events and analyzes inter-event time for all nodes together. While those

approaches aggregated obtained distribution of edges and nodes respectively for convenient

network characterization, authors of work in [95] and [96] have shown that it is not always

meaningful. Another way to characterize inter-event time was proposed in [29] is burstiness

parameter. This parameter describes how a distribution of inter-event times P(τ) - with mean

στ and standard deviation mτ - differs from Poison distribution and it is given with formula:

B =
(στ/mτ − 1)

(στ/mτ + 1)
=

(στ −mτ )

(στ +mτ )
(2.9)

However, authors pointed out that this definition is meaningful when both the mean and the

standard deviation of P(τ) exist, which is always the case for real-world finite signals [29]. The

conclusion derived from available publications can be that using the smallest blocks building a

temporal network is a good way to characterize the network, however, it has to be done with
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caution.

2.3.6 Patterns and motifs

Yet another way to examine networks is to look at persistent patterns and repeats of motifs.

In [64] authors proposed an approach to find subgraphs in time windows that are more frequent

than others. Such a set of windows that contain a significantly frequent (above some threshold)

subgraph is called support set S(G′). Another way to define persistent patterns in temporal

networks was proposed in [17], where the authors proposed measurement called adjacency

correlation which results with Pearson correlation between two consecutive time windows in

terms of edges appearance. They define this measure as:

γj =

∑
i∈N(j) A

(x)
i,j A

(y)
i,j√

(
∑

i∈N(j) A
(x)
i,j )(

∑
i∈N(j) A

(y)
i,j )

(2.10)

where Ai,j is an adjacency matrix, x and y denote consecutive time windows and N(j) is a set

of nodes that appears in at least one of examined two windows.

Motifs are a similar concept to persistent patterns, yet showing another aspect of the

network. In static network motifs (also called graphlets) are, roughly speaking, small subgraphs

(usually contains 3 or 4 nodes) that appear in a network and by counting them we can say

something about network topology [48, 8, 80, 129]. In a temporal network, there are couple

proposed approaches. As a simple transition from static networks authors in [12] find motifs in

snapshots of a temporal network. In [93] authors proposed a similar approach which extends

the previous one a little bit, by counting a given motif M if all of its edges appear in a given

time period, rather in strictly defined time windows. Also, in [131] authors proposed a similar

approach based not on time windows but on time difference between two edges with the same

node. Another approach is proposed in [73] where authors are using Markov chains for motifs

detection and Bayesian framework to optimize a number of motifs. Authors in [58] try to bring

a deeper understanding of the financial market by analysis of daily patterns of the financial

network. They find that ”The ’social’ dynamics of financial interactions are highly stable and
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little affected by external shocks such as the occurrence of the global financial crisis”. Temporal

motifs are used in [75] to show the existence of homophily in the social network of students.

2.4 Processes and temporal networks

One of the utilities of temporal networks is the capability of modeling and simulating dynamic

processes that take place on a given topology. There are several known directions where tem-

poral networks seem to be the right choice in terms of precise modeling of a dynamic process.

Modeling a spread of epidemic is one of the obvious choice since a lot of work has been done

in static networks over last nearly four decades [33, 106, 112, 87, 103, 126, 107] and many

authors pointed out that network dynamic should be taken into account as it has vital impact

on disease process outcome [83, 49, 120, 21, 24, 121]. Quite a number of papers were written on

this subject in temporal networks. Authors examined the impact of network topology on speed

of epidemic outbreaks working on aspects like: burstiness [52, 81, 102, 65, 40] when it speed up

or slow down disease spreading, basic reproductive number R0 for temporal networks [102, 101]

or vaccination problem [69, 36] which can help in real-world application of temporal networks.

Another group of processes in networks is about information spreading and by the informa-

tion we can understand the news, rumors, opinions, novelty, etc. Of course, depending on the

character of spread information processes would act differently but there are several models

that are capable to simulate some of the behavior. The most known models in static networks

are: voter model [72], linear threshold model [55], independent cascades model [123]. Those

methods were adapted by researchers for temporal networks. Cascade model for temporal net-

works was developed in [51], Voter model was adopted to temporal networks in [43]. Epidemic

processes and information spreading are considered as similar in many ways and not without

reasons, authors in [84] shows that the spread of news - temporal and dynamic process - can

be modeled with SIR model known from static networks. Yet another type of process that

happens in temporal networks is an evolution of the network itself. How networks grow, if the

pace of growth is constant, if nodes disappear - answer for those questions may lead someone to

describe such process more formally. Authors in [4] try to describe the growth of online social



2.5. Applications of temporal networks 25

network - in this case, Twitter - using average node degree and try to fit a Leskovec model [70]

to predict Twitter network evolution.

2.5 Applications of temporal networks

Temporal networks provide tools to examine a vast number of systems. Data collected over

the years, that we can find in open datasets library, consists of information about commu-

nications, messages, physical proximity, biological processes, vehicles movement, social media

activities, computer networks traffic, etc. Each of those areas can be investigated in terms

of various aspects like: disease spreading, robustness to failures, traffic control, effectiveness,

social phenomena. In this chapter brief review of many applications will be presented.

Human communication is one of the most researched areas. People communicate using

different kinds of media starting from emails [22, 119, 78], short text messages [132, 113] which

is one-to-one type of communication which takes place in time but has negligible duration

time. This kind of data is usually used for research information spreading but also to find

some patterns of communication to discover the specific structure of networks like hierarchy or

groups. In such research, authors use only metadata, the content of these messages is rarely

used. Even more natural human communication is simple meeting - face-to-face contact [19, 13,

44, 110, 111] - and phone calls [91, 92] are similar in the way that contact not only is between

two people in time but also has some duration. Such additional information sometimes is used

as a parameter of methods for the research mentioned before in this chapter. Vast popularity

of social media provides enormous amount of data of one-to-many information broadcast on

blogs [63], Twitter [46, 133], Facebook [23] etc. Such data is utilized, among others, to examined

and predict information spreading in terms of how far it can reach in the network like for

example in [45]. Apart of mentioned applications, there are also authors who work on epidemic

spreading in human network [83, 44, 110] as well as in animal - livestock - network [49, 120].

By the analysis of contact data in a hospital, authors in [76] try to describe how infection can

propagate through the network.
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Temporal networks find its application also in others - maybe less intuitive - areas like

biology, medicine or ecology, which shows its interdisciplinary utility. Authors in many papers

find profits using a temporal network to examine protein interactions [10, 116]. Other biological

interactions were examined in [27] using time-varying network data. Authors in [117] examined

brain activity using temporal network methods and measures to ,, apply these measures to a

resting-state fMRI dataset to illustrate their utility”. Some authors in [94, 98] used temporal

networks in research on relations between species considering, e.g., food webs. A broad analysis

of different layers of social networks shows a strong correlation between the communication

network and the strength of friendship [75].

In this section, a wide spectrum of temporal networks application is only briefly presented.

However, we can observe that the temporal network could be a very universal tool for dynamic

systems analysis.



Chapter 3

CogSNet - Cognition-driven Temporal

Social Network

In this chapter new temporal network model with forgetting mechanism is presented. This

model is a result of international cooperation with Prof. Boles law K. Szymański from Rensselaer

Polytechnic Institute (Troy, NY, US), Prof. Christian Lebiere from Carnegie Mellon University

(Pittsburgh, PA, US) and Prof. Omar Lizardo from University of California (Los Angeles, CA,

USA). Original results are presented in [79].

3.1 Motivation

A lot of temporal network models have been proposed in the literature so far, however many

of them are very general. Some applications of networks require network models to be tuned

for special purposes. The human cognition process can be considered as such a case. Current

literature lacks a temporal network model that would be able to simulate the cognition process

of a human being. Furthermore, proposed models are usually discrete in the sense that state

of the network changes only in discrete points, such as events. In the case of sparse events, a

lack of dynamics between events is a serious drawback. Here, the goal of this research is to

propose a temporal network model that would be able to model the human cognition process,

27
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preserving the continuous nature of its dynamics.

3.2 General idea

One of the applications of temporal networks is to model social networks. Those are usually

used to model human behavior. People are involved in many social activities, but some of

them are remembered well and some fade away. Meetings, calls, messages - all of those leave

a trace in human memory [5]. If the event is repeated - the trace in memory will be stronger.

Furthermore, relationships between people much depend on memory. Here an assumption is

made, that a larger number of interactions between people indicate a stronger relationship

between them. Hence, considering human perception, memory has to be taken into account.

Among many available temporal network models, it is hard to find one that considers that

aspect too. Here a new temporal network model is proposed, with a mechanism that simulates

human perception in terms of forgetting. Forgetting usually is a rather continuous process

over time, apart from rare situations, e.g., accidents or diseases. The proposed mechanism

uses a continuous function to model that process. While forgetting can be modeled with any

continuous monotonic function - linear, power, logarithmic, etc., - in this dissertation two are

used: power and exponential, as the most accurate based on cognitive studies [47, 99]. Proposed

functions can be tuned with parameters to best fit to given data. Idea behind this model - called

CogSNet (Cognition-driven Social Network) - is to take event sequence of social activities, e.g.,

face-to-face meetings, phone calls, text messages and to give each event some reinforcement

peak µ (value from 0 to 1) that will leave trace in memory, which is also considered here as

a weight of relationship. This trace will decay over time according to used forgetting function

with parameter λ, which indicates the pace of forgetting. Due to the fact, that both used

functions reach 0 in the infinity, we assume that the trace of a social event will disappear if

its level reaches some forgetting threshold θ. For more convenient and intuitive use of the

proposed model, we combine all three parameters by introducing trace lifetime L which is time

after memory will decay from µ to a level of θ. Exact formulas for this transformation and

forgetting mechanism are to be found in further sections. In Fig. 3.1 an example of one relation
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Figure 3.1: Dynamics of a relationship in CogSNet with exponential and power forgetting
functions and with parameters set to µ = 0.4, θ = 0.1, and L=10 days.

modeled with CogSNet is presented.

3.3 Research question

At first, an exact research question needs to be asked. As was pointed out earlier in this chapter,

memory is a significant compound of human cognition. Thus, taking it into account should

provide a model that better fit real-world scenario than other known methods. The goal of this

research is to answer the question: whether real-world social networks can be modeled using

CogSNet more accurately than with other common temporal network models?
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3.4 The CogSNet model

The human brain records events as they arrive, but only a small fraction of the incoming infor-

mation is stored in long-term memory due to its limited capacity. The forgetting mechanism

dictates that the chance to recall a given event decreases gradually as we move forward from

the time of first exposure [125]. In some sense, it is similar to graph-streaming [25] and feed-

based social media network cascades [109] scenarios where incoming events are ordered by their

arrival time but only some of them are kept.

Accordingly, the CogSNet model uses a forgetting function f to account for the decreasing

probability of keeping aging of memory traces over time. Forgetting is thus a monotonically

non-increasing function of time with f(0) = 1 and f(t) ≥ 0 for all t > 0. It is defined by two

parameters: reinforcement peak 0 < µ ≤ 1 and forgetting threshold 0 < θ < µ.

Here, the Definition 2.1 of the social network is used. The model evolves in discrete steps as

follows. For each pair of nodes (vi, vj), the system maintains two variables: tij, which represent

the time of the most recent event for this pair of nodes, and cij which holds the count of events

processed for this pair of nodes. Initially, both tij and cij are set to 0, as are the weights of all

edges, i.e., for all pairs of nodes (vi, vj), wij(0) = 0.

When an event happens at a time t in the modeled social network, it is processed in

chronological order by the model. First, the weight of the corresponding edge is updated

according to the following equation:

wij(t) =


µijcij+1, if wij(tij)f(t− tij) < θ,

µijcij+1 + wij(tij)f(t− tij)(1− µijcij+1), otherwise,

(3.1)

where: µijk is the value of reinforcement peak that results from the kth event that impacts the

edge (vi, vj).

Here, the value of reinforcement peak µijk depends on the engagement and emotions in-

voked by the event that is either directly or indirectly related to the edge (vi, vj). An example
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of an event indirectly related to this edge could be node vi talking about node vj or any sit-

uation that reminds node vi about node vj. The values of µ can be individualized to node vi

perception of relation with node vj at event k. The values of µ may also be dependent on event

types: µijk ∈ {µ1, µ2, µ3, µ4, . . .}, e.g., µ1 = 0.5 for emails, µ2 = 0.55 for phone calls, µ3 = 0.8

for meetings, µ4 = 0.9 for joint collaboration in projects, etc.

Finally, the processing of the current event updates both variables associated with the

updated edge (vi, vj) as follows: tij = t, cij = cij + 1.

At any time t of the model evolution, the user can obtain the value of the weight of an

arbitrary edge (vi, vj) by computing the following equation.

wij(t) =


0, if wij(tij)f(t− tij) < θ,

wij(tij)f(t− tij), otherwise.

(3.2)

The weight wij(t) of an edge eij between two nodes at any user selected time t is computed

as follows. Once all the relevant events up to time t are processed, we simply set wij(t) =

wij(tij) ∗ f(t− tij). If the result is less than the forgetting threshold θ, wij(t) is reduced to zero

and the edge is no longer considered. A threshold is needed with forgetting functions, such as

power and exponential forgetting, that are positive for non-negative arguments. Otherwise, an

edge would get the positive weight at creation and would always stay positive, i.e., all created

memory traces would never cease to exist. The reinforcement peak µ defines the impact of an

event on the weight of the edge relevant to this event. This peak is a global model parameter

here. In principle, the peak can be adjusted according to the event or node type to allow for

individualized event perception.

In general, the forgetting function f(∆t) over time interval ∆t can be of any type (linear,

power, logarithmic, etc.), but here, informed by work in the cognitive psychology of memory [47]

we evaluate only two such functions: the exponential function f exp, and the power function fpow

defined as:

f exp(∆t) = e−λ∆t. (3.3)
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fpow(∆t) = max(1,∆t)−λ. (3.4)

where λ denotes the forgetting intensity; typically λ ∈ [0, 1]. The use of max in the power

function ensures that perception of events that happened less than a time unit ago is not

changed by forgetting. The time unit in which the forgetting function is expressed scales the

values of the parameters. In experiments one hour is used as the time unit.

To simplify optimal parameters search as well as to provide meaningful interpretation of

parameters, we aggregate all three parameters into the trace life time L defining the time after

which an unreinforced memory trace is forgotten, i.e., too hardly recalled. In the model, L is

the time over which the forgetting function reduces the edge weight from µ to θ causing the

edge to be removed, cf. Fig. 3.1. For the exponential forgetting function, equation (3.3), trace

life time Lexp is:

Lexp =
1

λ
ln
(µ
θ

)
, (3.5)

while for the power function, the formula is:

Lpow =
(µ
θ

) 1
λ
. (3.6)

3.5 Reference models

In Fig. 3.2, we compare the CogSNet model with the previous proposals for representing tem-

poral network dynamics. The most common approach for representing social network dynamics

is to use interaction sequences [41]. Under this method, each event is time-stamped and the

weights are added to the edges connecting nodes involved in this event, cf. Fig. 3.2(I) and 3.2(IIa).

Moreover, a given edge is active (exists) only at a given time t. This is the most granular ap-

proach as it is capable of tracking all the events occurring between nodes while preserving the

temporal order of events.

In contrast, a static binary network representation, as shown in Fig. 3.2(IIb), aggregates

all events by making all edges time-independent (cf. Section 2.2.2). Consequently, an edge
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Figure 3.2: Various approaches to modeling dynamic networks and edge weighting (relation
strengths) for the 4-node network at a given time t: (I) and (IIa) interaction sequence;
(IIb) static (time-aggregated) network; (IIc) sliding windows; (IId) incremental network,
all events from the beginning time t0 to the current time t are considered; the frequency of
interaction in the period constitutes the frequency-based reference FQ; (IIe) network based on
n = 3 recent events, used for recency-based reference RC; (IIf) Cognition-based Social Network
model, CogSNet, introduced here.
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exists between a pair of nodes an event between these nodes occurred at least once in the whole

observed period [34]. Such an edge representation throws away information on the temporal

the ordering of events, making it impossible to study dynamic processes in static networks.

The incremental network solution accumulates events only up to the current time t of analysis.

The classical approach, used early in [59, 9, 82], views a dynamic network as a series of time-

ordered sequences of static graphs, see Fig. 3.2IIc (cf. Section 2.2.3). More recently, this method

was applied to modeling network and community evolution [127, 104]. The drawback of this

approach is that it does not preserve the ordering of interactions within time slices. Applying

a simple frequency-based aggregation creates a frequency-based, FQ, metric, cf. Fig. 3.2IId

(cf. Section 2.2.2). Taking into account only a given number of the most recent events leads

to the recency-based, RC, model, cf. Fig. 3.2(IIe). Both of these models are used here as

baseline models. Fig. 3.2(IIf) shows an example of a dynamic social network generated using

the CogSNet model. All other social network models presented in Fig. 3.2(IIa-e) can also be

represented by CogSNet by setting appropriate parameter combinations to achieve, as needed,

no decay, instant decay, and so forth. In this way CogSNet can be thought of as a universal

generative dynamic model for temporal social networks, encompassing previous approaches as

special cases.

3.6 Validation and results

In order to verify the proposed model and baseline models, real-world dataset - NetSense [113]

- is used to validate empirically if CogSNet model is able to reproduce the dynamics of social

relations in a dynamic social network.

3.6.1 Experimental setup

NetSense dataset consists of two parts. The first includes the time-stamps and duration/length

of phone calls and text messages collected for each student participating in the study. Each

student phone device recorded all connections/messages, including those to the phones of people



3.6. Validation and results 35

Figure 3.3: The four-node CogSNet network for the sample of real NetSense data, µ = 0.4,
θ = 0.1, and L=10 days; nodes A, B, C, D correspond respectively to participants with ids
40997, 11360, 10841, and 1232. (A) Relation strengths according to the CogSNet model over
4-month period (one term). (B) Network snapshots at four time-stamps t1-t4 and at the survey
time ts.
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outside of the test group, so recording was done on both sides of the communication, by sending

and receiving calls/messages, if both belonged to the study. The second part of the dataset

includes surveys containing peers enumerated by the participants at the end of each term in

response to the following question: ”In the spaces below, please list up to 20 people (friends,

family members, acquaintances, or other people) with whom you spend time communicating

or interacting”. The data contains 6,290,772 human mobile phone communication events,

including both calls and text messages. These are augmented by 578 surveys containing self-

reports of top contacts.

This dataset is used to study the evolution of two coupled social networks of university

students. The first is a behavioral network representing interactions between individuals in the

form of the records of their mobile calls and text messages. The second one has perceptual edges

defined by the personal nominations. These nominations are based on students’ perception of

the corresponding relations as one of the top twenty most interacting peers in the surveys

administered to participants. These surveys cover the first four semesters of the student’s

college experience (beginning of Freshman year to the end of the Sophomore year). The list

of nominations predicted from the CogSNet network model purely from the communication

event data is compared with the list of nominations collected in a given survey. Fig. 3.3 shows

an example of a dynamic social network generated from a subset of NetSense data using the

CogSNet model.

3.6.2 Quality measure

To compare the performance of all the models, we use a Jaccard metric, (see equation 3.7),

which measures the ratio of the number of nominations produced by the model that are also

ground truth nominations listed in the corresponding survey divided by the number of unique

nominations on both lists. The values of Jaccard metric for a single surveyed student participant

vi has been computed as follows:

Jaccard(vi) =
|V CogSNet
i ∩ V survey

i |
|V CogSNet
i ∪ V survey

i |
, (3.7)
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where V survey
i is the set of up to 20 peers enumerated in the survey by the participating student

vi; V
CogSNet
i is the set of |V survey

i | neighbors of this student in the CogSNet network with the

largest non-zero weights on edges to this student on the day on which the given survey was

administered. Using Jaccard metric, CogSNet model for different parameters is compared to

reference models.

3.6.3 Use case

Let us consider small scale example to understand idea of CogSNet and its verification. For

example that is presented earlier in this work, see Fig.3.2, CogSNet model at time t represents

a weighted network. A rank of nodes for each node can be delivered e.g. node A would have

rank: [1.D - with value 0.5, 2. B - with value 0.4], next node B would have rank: [1. A - with

value 0.4, 2. C - with value 0.3] and so on. For the use of this example it can be assumed that

node A complete a survey at time t, and lists nodes: [D,B,E], where nodes D and B exists in

CogSNet model, but Node E not. In such situation Jaccard measure for node A in given survey

have value:

Jaccard(A) =
|V CogSNet
A ∩ V survey

A |
|V CogSNet
A ∪ V survey

A |
=
{D,B} ∩ {D,B,E}
{D,B} ∪ {D,B,E}

=
2

3
= 0.(6), (3.8)

Such computation is done for all nodes in the network and then an average value is taken

as a result.

3.6.4 Results and their analysis

In this section results of verification of CogSNet model are presented along with their analysis.

Fig. 3.4 shows the results of this comparison over the range of parameters corresponding

to reported values for a memory life time of one day to 43 weeks. As reported in [20], the

ability to recall information about social interactions starts to degrade after about one week.

The experiments using NetSense dataset reveal that the performance is the highest when the
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forgetting of unreinforced memory traces happens within one week. The results remain satis-

factory for forgetting thresholds within the range from a couple days to even two weeks. With

the threshold within a two-weeks range, the model with either power or exponential forgetting

is to be preferred over any baseline model. The performance of memory models using the power

and exponential forgetting functions are similar to one another, but with a limited range of

parameters, exponential forgetting tends to achieve a slightly higher value of Jaccard metric

than the power function does [3] for some set of parameters µ and θ. We do not observe such

superior performance of power forgetting here both functions have a similar peak of Jaccard

metric albeit for the different lifetime values. It can be also observed that the performance

of the model depends highly on parameters µ and θ, see Fig. 3.4A for µ = 0.3 and θ = 0.2 -

Jaccard measure of the model fall even below Frequency-based baseline for the most of values

of lifetime L.

When comparing the results of surveys with the states of the CogSNet network at the

times of the surveys, the Jaccard metric is as high as almost 30% for the exponential function

for L=2 days and about 28% for other parameters at about one week of memory lifetime. The

performance of the model with power forgetting function achieves 28-29% of the Jaccard metric

within the range 3-8 days for different sets of parameters µ and θ. The distant second is the

recency-based RC model which delivers a much lower Jaccard metric of 17.8%.

To compare the performance of particular sets of parameters between themselves non-

parametric statistical Kruskal-Wallis tests were performed. Results of pairwise tests performed

for selected sets of parameters are presented in Table 3.1. The outcome of tests shows no

statistical difference among the performance of the most of parameters with one exception for

power forgetting function, µ = 0.3 and θ = 0.2.
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Figure 3.4: The plot of the Jaccard metric as a function of life time L. The metric measures
the overlap between the two sets of peers, one identified by CogSNet and the other listed by
students in the survey. These plots are compared to the results achieved by the three baseline
models: recency-based with the best results obtained with the number of recent events set
to 400, frequency-based, and random. The results are plotted for the CogSNet running with
various parameters for (A) exponential and (B) power functions.
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forgetting
function

exponential power

parameters
µ=0.3,
θ=0.2

µ=0.4,
θ=0.1

µ=0.8,
θ=0.1

µ=0.8,
θ=0.3

µ=0.3,
θ=0.2

µ=0.4,
θ=0.1

µ=0.8,
θ=0.1

µ=0.8,
θ=0.3

exponential µ=0.3, θ=0.2 — 0.0567 0.0228 0.0311 0.0000 0.6462 0.0341 0.2123
µ=0.4, θ=0.1 — 0.6395 0.7490 0.0000 0.0263 0.7844 0.4118
µ=0.8, θ=0.1 * — 0.8784 0.0000 0.0098 0.8711 0.2157
µ=0.8, θ=0.3 * — 0.0000 0.0135 0.9889 0.2678

power µ=0.3, θ=0.2 *** *** *** *** — 0.0000 0.0000 0.0000
µ=0.4, θ=0.1 * *** *** — 0.0149 0.1237
µ=0.8, θ=0.1 * *** * — 0.2800
µ=0.8, θ=0.3 * *** —

Table 3.1: Numerical and symbolic p-values of pairwise Kruskal-Wallis test comparing CogSNet model performance - computed with
Jaccard measure - for selected sets of parameters and forgetting functions. The top-right section of the table shows p-value of statistical
test, while bottom-left section contains symbols which are corresponding to p-values in the top-right section in following manner: ’*’ -
p-value is less or equal 0.05, ’**’ - p-value is less or equal 0.01 and ’***’ - p-value is less or equal 0.005. Empty field state for p-value over
0.05.
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3.7 Properties of the model

A novel Cognition-driven Social Network (CogSNet) model is introduced, one that captures the

impact of human memory on the perception of accumulated events and on decisions to form,

maintain, or dissolve social relations. The model explicitly represents human memory dynamics,

such as the gradual decay of memory traces over time. With suitable data, it can be extended

to include additional cognitive aspects, such as individual levels of sensitivity to relevant events,

emotions or distractions during perception of events. Hence, the model is capable of capturing

the dynamics of social interactions in natural settings from the cognitive perspective of each

participant. The results reveal that the perception of the depth of interactions between people

is well captured by the CogSNet model. At any given point in time, the model can compute

the current strength of memory traces, including the impact of discrete events creating or

reinforcing these traces. Furthermore, the reinforcement peak value can be adjusted for a given

person and for an individual event, cf. also Equation (3.1). What is observed here, is a partial

manifestation from human memory. However, even taking into account that the model was

built based on a single data source, over 6 million telephone calls and messages among the

NetSense study participants, the model provides good accuracy in predicting the salience of

social contacts over all 578 surveys completed by 184 participants. This accuracy most likely

could have been increased if the parameters had been individually adjusted for each participant.

In future work, an extension of the model can be made, which includes accounting for dis-

tractions during interactions, individualized strength, asymmetric of interactions of significance

to participants (e.g., hierarchical relationships), and the impact of forms of interactions and

of associated emotions. Hence, the CogSNet model represents an important first step towards

modeling social network dynamics through the prism of human cognition. In literature, there

are three approaches that are used widely to understand human cognition: cognitive bandwidth

(CB), dual-process morality (DPM) and implicit association tests (IAT). In [66] those methods

are compared and their common drawback is pointed out - the lack of perspective that takes a

cultural background into account. The proposed approach makes such considerations possible

and this challenge is a promising one of the future work directions.
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The CogSNet model can be also used to measure the overall strength of the relationship

over time. Modeling the forgetting mechanism with a continuous function allows computing

integral in some period, which can be considered as quantification of relationship strength in

a given period. In Fig.3.1, this idea is presented in period from t1 to t2. As can be observed,

the value of the integral depends on the used forgetting function. This is also an interesting

direction that could be developed in the future.

3.8 Conclusions

In this chapter, a new Cognition-driven Social Network is presented. This is an important

step toward a fully cognition-aware temporal social network model that will be capable to

capture more complex human behavior. The proposed model one of the application of temporal

networks, here in cognition science, but it is not limited only to that. A brief idea is presented

further in this dissertation.



Chapter 4

Entropy-based measures for temporal

network dynamics

Through centuries people communicate with each other in many ways. Nowadays, the amount

of communications channels available for us is even hard to count - starting from text messages,

emails, multiple communicators, social media, phones, video calls and, of course, good old face-

to-face conversation. Just by looking at interactions we may have the impression that the

structure of such communication is random and we can not tell with ease if the dynamic of it is

changing or not. Some recent studies show that we people do not communicate randomly [130,

108, 97, 19], however, there are still some open questions related to its dynamics. In this

chapter, we introduce a new set of entropy-based measures for temporal networks. The notion

of entropy in temporal networks was used before in [22] to detect organization structure in the

email communication network. Yet, we propose measures that give some insights into temporal

network dynamics.

4.1 Motivation

My research motivation is to develop a measure that is able to quantify a stream of events.

Such a measure should be able to assign a value to a stream and be meaningful while comparing

43
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different streams. Since my research focuses on temporal networks, the proposed measure should

provide a possibility of comparing temporal networks of different sizes. Further, this measure

should be also useful to show the dynamic of a temporal network given by event sequence. My

assumption is that dynamics could change in time, hence the proposed measure should be able

to incorporate this factor too.

4.2 Research questions

The area of temporal networks has been researched intensively over a couple of last years,

however, there is no established temporal network representation as to the final standard. It

might be, that it is impossible to choose one. Yet, as it is mentioned in previous chapters,

among a number of representations there is one of the basic - event sequence - which I use to

compute entropy-based measures. Using such represented temporal networks, I try to answer

questions: 1) if human communication is in fact not random and 2) if there is some trend in

human communication dynamics that we can observe?

4.3 General idea

Here, I propose a new set of entropy-based measures for temporal network given as an event

sequence, which would provide some insights about human communication dynamics. In [62],

we proposed three new approaches to measure temporal network dynamics, all based on entropy.

These are the following:

1. first-order entropy, which based on the probability of node appearance in event sequence,

2. second-order entropy, based on probability of event appearance in the temporal network

or in other words probability of interaction between unique pair of nodes

3. third-order entropy, based on probability of succession, which is a pair of consecutive

events.
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Each approach is able to capture a different aspect of network dynamics and has a potential

for different applications.

Those measures based on Shannon entropy 4.1 - well-known concept from physics and

information science.

S = −
∑
i∈O

p(i) ln(p(i)) (4.1)

where p(i) is occurrence probability of state or object i, and O is the set of all possible

states/objects [105].

The proposed measures were developed in collaboration with Professor Boleslaw K. Szy-

manski from Rensselaer Polytechnic Institute, Troy, NY, USA [62] during my research visits at

RPI in 2017-18.

4.3.1 First-order entropy

At the beginning, the definition of the first-order entropy - also called node entropy - will be

presented. It is based on a probability of occurrences of individual nodes vi, vj ∈ V , i.e. humans

participating in interactions – events evijk = {vsi , vrj , tk}. This measure can be considered in

three variants depending on focus of the interests:

1. node being a speaker/sender vsi ,

2. node as a listener/receiver vrj or

3. node occurring as a speaker vsi or listener vrj .

Based on definition of Shannon entropy Eq. 4.1, the first-order entropy S1(ES) a.k.a. node

entropy is defined for a event sequence ES that contains a fixed set of nodes V . The first-order

entropy S1(ES) is defined as follows:

S1(ES) = −
∑
v∈V

p1(v) ln(p1(v)) (4.2)
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where p1(v) is a probability of occurrence for node v ∈ V in the appropriate role – the sender,

receiver or any of these two. The choice of the role (and the entropy variant) depends on what

kind of analysis we want to perform.

The node entropy measures the diversity of node popularity in the temporal network. In

other words, greater entropy means that the nodes have a rather equal probability of occurrence

and the small one denotes that some nodes occur significantly more frequently than the others.

Entropy has the maximum value when probabilities for all nodes from V are equal. The equal

probabilities emerge when all nodes occur the same number of times, e.g., only once or all twice,

etc. Hence, equal probabilities are:

p1(1) = p1(2) = ... = p1(n) =
1

n
(4.3)

Then, the maximum possible value of entropy for a given set of nodes V is defined as:

SM1 (ES) = −
∑
v∈V

1

n
ln

(
1

n

)
= −|V | ∗ 1

n
ln

(
1

n

)
= ln(n) (4.4)

Use case

The idea of the first-order entropy can be explained for the small scale example depicted

in Fig.2.1b. The network consists of four nodes: A, B, C, and D, hence the maximal entropy

value is: SM1 (ES) = ln(4) ≈ 0.6. Such case happens if occurrence of all nodes is equally

probable, i.e. ∀v∈V p1(v) = 0.25. For the case from Fig.2.1b, we have p1(A) ≈ 6/10 = 0.6,

p1(B) = p1(C) ≈ 2/10 = 0.2, p1(D) ≈ 0/10 = 0. These values together with probabilities

corresponding to the maximum value of SM1 are presented in Fig.4.1.

4.3.2 Second-order entropy

Next, the second-order entropy - also called edge entropy - will be defined. The second approach

utilizes probabilities of occurrence of edge eij ∈ E. Again, based on definition of Shannon
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Figure 4.1: Probability of nodes appearance in the sequence by time t = 10. The red line denotes
values of probabilities for the maximum possible entropy in the 4-node temporal network.

entropy, the second-order entropy a.k.a. edge entropy is defined as follows:

S2 = −
∑
eij∈E

p2(eij) ln(p2(eij)) (4.5)

where p2(eij) is a probability of edge eij, i.e. probability that events evijk are related to edge

eij. This entropy of the temporal network provides information about how uncertain (random)

pairs of nodes (individuals) interact with each other. The greater edge entropy value reflects

that the distribution of participating pairs is close to uniform distribution while the smaller

value means that some pairs interact more frequently than the others.

Now the maximum value of edge entropy can be defined, assuming that probabilities for

all possible edges are equal, i.e. all possible pairs of nodes vsi , v
r
j appear in the same number of

events evijk. The number of possible edges is |Ω(E)| = n(n− 1). Then, it is:

p2(e12) = p2(e13) = ... = p(en−1) = ... = p2(en(n−1)) =
1

n(n− 1)
(4.6)
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With this probability, the maximum value of edge entropy would be defined as:

SM2 = −
∑

eij∈Ω(E)

1

n(n− 1)
ln

(
1

n(n− 1)

)
=

= −n(n− 1) ∗ 1

n(n− 1)
ln

(
1

n(n− 1)

)
= ln(n(n− 1))

(4.7)

For larger number of nodes (large n), maximum value of the second-order entropy can be

approximated: SM2 ≈ 2SM1 .

4.3.3 Third-order entropy

Finally, the third-order entropy - also called succession entropy - definition will be presented.

This approach base on a probability of occurrence two particular node pairs (edges) in events

one directly after another. We refer to such a pair of edges as succession. Event sequence

ES is a list of M events ordered by time: ES = (ev1, ev2, ..., evk, evk+1, ..., evM), and evk =

(si, rj, tk), evk+1 = (vsi′ , v
r
j′ , tk+1) ⇔ tk ≤ tk+1. For two consecutive events evk and evk+1, we

can extract participating nodes si, rj, si′ , rj′ , respectively, i.e. edges eij, ei′j′ ∈ E. Such two

edges define the single kth edge succession occurrence sck = (eij, ei′j′) and the set of distinct

successions (unique pairs of edges) is denoted by SC. An idea of successions is presented with

simple example in Fig. 4.2. Obviously, it may happen that eij = ei′j′ . The set of all potentially

possible successions is Ω(SC) with size |Ω(SC)|. This size is limited by the maximum size of

the edge set E for a given set of nodes V : |Ω(SC)| = |Ω(E)|2 = n2(n− 1)2.

Using probability of succession we can define succession entropy:

S3 = −
∑
sc∈SC

p3(sc) ln(p3(sc)) (4.8)

where p3(sc) is a probability of edge succession sc.

The value of succession entropy quantifies information about how uncertain (random)

is the presence of a particular succession of edge pairs in the event sequence. Similarly to
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Figure 4.2: A sample network with a table of estimated probabilities of successions. Please
note that successions that do not appear in the sequence (count equal 0) are not presented.

previous approaches, we can find the maximum value of succession entropy by assuming an

equal distribution of succession probabilities:

p3(sc1) = p3(sc2) = p3(3) = ... = p3(|Ω(SC)|) =
1

|Ω(SC)|
(4.9)

For these probabilities, the maximum value of succession entropy would be:

SM3 = −
∑

sc∈Ω(SC)

1

|Ω(SC)|
ln

(
1

|Ω(SC)|

)
= −|Ω(SC)| 1

|Ω(SC)|
ln

(
1

|Ω(SC)|

)
=

= ln(|Ω(SC)|) = ln
(
|Ω(E)|2

)
= 2 ln(n(n− 1)) = 2SM2

(4.10)

For larger quantity of nodes (large n): SM3 ≈ 4SM1

4.4 Algorithms

In order to examine the computational performance of the proposed measures, appropriate

algorithms are designed for single core and parallel calculations [citation of complexity paper].

The single core algorithms are direct transition from equations 4.2, 4.5 and 4.8 while parallel

algorithms are optimized in terms of performance in the distributed computing environment.

Algorithms 1,2 and 3 presents the single core algorithms for each entropy-based measures.

Simple analysis of Algorithms 1, 2 and 3 shows that complexity is O(n). Those algorithms

compute the entropy value, the first-, second- and third-order, respectively, for the single tem-
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Algorithm 1 First-order entropy algorithm

Input: ES – sequence of events evijk
Output: entropy – the first-order entropy for the event sequence

1: size(ES)← number of events in ES
2: V ← set of unique nodes {extract distinct nodes from ES}
3: entropy ← 0
4: for each v ∈ V do
5: n← count events evijk from ES containing node v {v = vi or v = vj / v = vi / v = vj}

{depending on the entropy type: both nodes / sender / receiver}
6: entropy ← entropy + (n/size(ES)) ∗ log(n/size(ES))
7: end for
8:

9: return entropy

Algorithm 2 Second-order entropy algorithm

Input: ES – sequence of events evijk
Output: entropy – the second-order entropy for the event se-

quence

1: size(ES)← number of events in ES
2: E ← set of node pairs {extract distinct network edges eij - unique pairs of nodes from ES}

3: entropy ← 0
4: for each eij ∈ E do
5: n← count events evijk from ES that contain the pair of nodes from eij
6: entropy ← entropy + (n/size(ES)) ∗ log(n/size(ES))
7: end for
8:

9: return entropy

Algorithm 3 Third-order entropy algorithm

Input: ES – sequence of events evijk
Output: entropy – the third-order entropy for the event se-

quence

1: S ← set of successions {2-event sequences, i.e. two consecutive events ¡evijk,evi′j′k′¿ existing
in ES}

2: size(S)← number of successions {size(S) = size(ES)− 1}
3: entropy ← 0
4: US ← set of distinct successions {pairs of network edges ¡us = eij, ei′j′¿ extracted from S}
5: for each us ∈ US do
6: n← count occurences of us in S
7: entropy ← entropy + (n/size(S)) ∗ log(n/size(S))
8: end for
9:

10: return entropy
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Figure 4.3: Entropy value for a real event sequence - face-to-face contacts during the HyperText
conference. A solid line represents entropy of a real accumulative network. Dashed lines
correspond to the artificial random network with similar properties (the same number of nodes
and events); they show maximum values of entropies. Purple vertical lines are calculation
points – every 1000 events, where entropies are computed in the accumulative way to measure
network dynamics. All entropy values were normalized to show differences in entropies of
various orders. Normalization is performed using the maximum possible entropy value at the
end of the stream [62].

poral network given as an event sequence ES. However, to examine entropy changes over time

in the temporal network that reflects its dynamics, the entropy values have to be separately

computed for each time increment δt. Alternatively, they can be calculated for each event

increment. This notion is presented in Fig.4.3.

The computation of entropy in an accumulative way requires another algorithm. The

designed Algorithm 4 is generalized for all three types of entropies (node, edge and succession).

The generalized algorithm has complexity O(n), however joint complexity with algorithms for

entropies has O(n2).



4.5. Experimental setup 52

Algorithm 4 Accumulative network computing algorithm

Input: ES – sequence of events evijk
jump – number of events accumulated in every iteration

Output: entropies – list of accumulative entropies of a given or-
der

1: entropyFuction← Algorithm 1, Algorithm 2 or Algorithm 3
2: size(ES)← number of events in ES
3: step← jump
4: entropies← [] {the list of entropy values is initially empty}
5: while step < size(ES) do
6: sequence ← ES[1 : step] {extract a sequence of length step from ES starting from the

first event}
7: entropy ← entropyFunction(sequence)
8: entropies.push(entropy) {append a new entropy value to the list of computed entropies}

9: step← step+ jump {increase the length of the next sequence}
10: end while
11:

12: return entropies

For a large event sequence, the computation may take quite a long time, so to speed up

calculations, Algorithm 5 for the parallel environment was designed. The original R library for

parallel computing [2] was used for parallelization purposes.

All crucial software code implemented for entropy computation is published in the GitHub

repository and is publicly available at https://github.com/MKul/tnEntropy.

4.5 Experimental setup

This chapter contains the description of the experimental setup to examined proposed measures

and the effectiveness of algorithms. Description of experiments on entropy measures will be

provided, followed by experiments on algorithms’ effectiveness.

4.5.1 Analysis of entropy-based measures

To examine proposed entropy-based measures, entropy values for four different dataset with

data of real human interactions were computed: (1) face-to-face meetings at HyperText con-

https://github.com/MKul/tnEntropy
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Algorithm 5 Accumulative network parallel computing algorithm

Input: ES – sequence of events evijk
jump – number of events accumulated in every iteration

Output: entropies – list of accumulative entropies of a given or-
der

1: entropyFuction← Algorithm 1, Algorithm 2 or Algorithm 3
2: size(ES)← number of events in ES
3: step← jump
4: steps← []
5: while step < size(ES) do
6: steps.push(step)
7: step← step+ jump
8: end while
9: entropies← []
{for loop in parallel - distribute processing among multiple computing cores}

10: for each step in steps do
11: sequence← ES[1 : step] {extract step first events from ES}
12: entropy value← entropyFunction(sequence)
13: entropies.push(entropy value)
14: end for
15:

16: return entropies

ference, (2) text messages exchanged between students for 6 semesters (NetSense), (3) email

communications in the manufacturing company, and (4) face-to-face interactions between pa-

tients and hospital staff members. The timeline of entropy was computed by taking a window

from the beginning of network existence to some points in time - usually evenly distributed.

In other words, entropy was computed cumulatively for an online stream of interaction data.

To provide the baseline for real event sequences, 100 artificial event sequences were generated

- for each dataset with the same numbers of nodes, events, and timestamps by randomly res-

electing pairs of nodes involved in each event. In static networks, such a procedure would be

called rewiring. Distributions of random event sequences are discussed later in Subsection on

datasets. The average value of entropy for random event sequences is computed and compared

against the values for the real network using Z-score – the distance measure that, in general,

shows the number of standard deviations by which the value of entropy for real sequence is

above the mean value of random streams. The negative values of Z-score mean that entropies

for real data are smaller than random ones and greater the difference is more negative Z-scores

are. The general concept of experiments is presented in Fig. 4.4.
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Figure 4.4: General schema of experiments. K=100 was used. From the original (real) event
sequence, event time-stamps are extracted as a base for random sequence generator. Entropy
value is computed for real event sequence and artificial sequences. We compare results for real
data with summarized results for artificial data using Z-score.

In experiments, four datasets with real-world temporal networks are used. In Table 4.1 ba-

sic statistics about datasets are presented and short descriptions of used datasets are presented

below:

Real event sequences

• NetSense - text messages. The dataset contains phone and text communication among

students at University of Notre Dame. The dataset was created to map peers’ social net-

work and contains data from 3 years (6 semesters) starting from September 6, 2011. [113]

• Hospital ward dynamic contact network. This dataset contains the temporal net-

work of contacts between patients, patients and health-care workers (HCWs) and among

HCWs in a hospital ward in Lyon, France, from Monday, December 6th, 2010 to Friday,

December 10th, 2010. The study included 46 HCWs and 29 patients [118]. Contacts were

collected using proximity sensors which do not provide information about the direction
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of the contact. However, for our experiments, we consider it as directed communication

for easier comparison with other datasets.

• Hypertext 2009 dynamic contact network. The dataset was collected during the

ACM Hypertext 2009 conference, where the SocioPatterns project deployed with the Live

Social Semantics application. Conference attendees volunteered to wear radio badges

that monitored their face-to-face proximity. The dataset published here represents the

dynamical network of face-to-face proximity of 110 conference attendees over about 2.5

days [44]. The collecting method does not provide direction of contacts but for easier

comparison with other datasets, we consider contacts as directed.

• Manufacturing emails. This is the internal email communication between employees

of a mid-sized manufacturing company. The network is directed and nodes represent

employees while events correspond to individual emails [78].

Table 4.1: Datasets in numbers

# of nodes # of events
# of unique

edges
# of unique
successions

HyperText conference – meetings 113 20,818 2,498 12,060
Netsense – text messages 212 28,520 896 10,710
Manufacturing company – emails 167 82,927 5,784 56,367
Hospital ward dynamic contact network 75 32,424 1,139 13,162

Equivalent artificial event sequences

Along with real-world networks, artificial networks are generated to provide a baseline for

proposed measures. They are generated based on real networks as follows: number of nodes,

number of events as well as time-stamps were preserved, but nodes involved in the events were

drawn out from the uniform distribution. The entire process is described with the following

procedure:
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Procedure 1

1. Take the real event sequence ES and extract distinct nodes from event’s senders and

receivers – create set of nodes V .

2. Take the next event from the real event sequence, starting from the first one and keep its

timestamp tk.

3. Randomly select the sender vsi ∈ V (according to selected distribution).

4. Randomly select the receiver vrj ∈ V (according to selected distribution).

5. If the sender and receiver are the same, repeat step 4.

6. Create event evijk = (vsi , v
r
j , tk).

7. If it is the last event in the real sequence ES – stop, otherwise go to step 2.

For each real temporal network, we generate 100 artificial networks. One may ask if

the uniform distribution is the correct choice. Along with uniform distribution, normal and

exponential distribution was tested but differences were not statistically significant in terms of

entropy.

4.5.2 Analysis of algorithms’ effectiveness

In this section, experiments on the efficiency of entropy computation are described. Three

scenarios were considered: 1) single network computation on a single computational core, 2)

accumulative network estimation on a single core and 3) parallel computation for the accumu-

lative network on multiple cores. All experiments were performed in an isolated environment.

The most important specification aspects of the environment are as follows:

• OS: Linux, kernel 2.6.32-696.30.1.el6.x86 64
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• Processing unit: Intel Xeon E5-2670 v3 2.3 GHz, Haswell

• Memory: 512 GB

• Programming environment: R ver. 3.2.3

The performance of entropy computation is examined using artificial communication streams

(temporal networks) generated from the uniform distribution. In other words, all nodes had

equal probability to appear in the events. The streams contained up to 10,000,000 events

and 10,000 distinct nodes. For each stream size, 20 various event streams were independently

generated. The averaged values over these 20 streams together with the appropriate standard

deviation are shown in charts. Some studies were carried out for smaller streams only. For each

stream (network), three types of entropy were computed.

To examine the effectiveness of single network computation, single core computation is

performed. Proposed implementation in R shows high efficiency for single core computation

and - to my best knowledge - development of implementation for multiple cores is impossible

in an efficient way.

Accumulative network entropy is the way to examine network entropy dynamic evolution.

Here, entropy values are computed for the increasing (accumulative) size of the stream starting

from 100 events up to a given size with a 100-event step. In other words, for a stream of size

500 events, five entropies are calculated: for 100, 200, 300, 400, and 500 events. The processing

time captures all these 5 calculations. The increasing size of streams linearly increases the

number of streams but their average length is additionally longer and simultaneously raises the

number of distinct objects (nodes for the first-order or edges for the second-order entropies).

It means that computational time grows with the stream size much faster than linearly.

Computation for the accumulative network on multiple cores has a similar structure to

the previous, iterative approach. The only difference is parallel computation for subsequences

of the event sequence. In most cases, it is impossible to have as many cores as the number of

subsequences to evaluate. Thus, the consecutive subsequences are assigned to the cores after
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the previous computation is terminated. The overall idea of parallel computing of entropies for

the accumulative network is presented in Fig. 4.5.

Figure 4.5: Schema of parallel computation of entropies for the accumulative network.

4.6 Results

4.6.1 Analysis of entropy measures

Here results of experiments are presented. For more clear presentation only some of the results

are presented but similar results are obtained for all used datasets. The first observation about

the nature of entropy is that while cumulative computation maximum entropy is non decreasing

since it depends on a non-decreasing number of nodes in the network (disappearing of nodes is
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not considered here). The second observation is that for real event sequence all entropies seem

to converge to some value, see solid lines in Fig. 4.6A and B, and similar behavior for random

event sequence. By looking at normalized value of entropy (Fig. 4.6A) we can observe that

random sequences seem to converge to the maximum value of entropy - nearly to 1 - which

is visible for first-order entropy. The shape of second- and third-order entropy suggests the

same. The value of entropy for real sequences seems to converge to some value specific for

a given sequence. That we can observe in all datasets divided into parts in Fig. 4.7. Here,

the third observation emerges - values to which entropy tent to converge decrease over time.

In Fig. 4.7B consecutive semesters have this value decreasing while it can not be observed for

random sequences. A similar observation can be made for other datasets. The next observation

is that there are some exceptions from previous observation - some periods in datasets have

do not fall into this specific decreasing sequence. Those exceptions, however, can be explained

by deeper observation of datasets e.g. in Fig. 4.7D we can notice that the first period - 2010-

12-06 - has the smallest entropy value while according to third observation it should have the

biggest value. This dataset - face-to-face contacts of hospital staff and patients were divided

into singular days and this particular day - 6th of December is Saint Nicolas Day. Here an

assumption can be made that celebrating such day can change the typical behavior of people

and thus, change expected entropy value. Similarly, in Fig. 4.7C there is an unexpected value

of entropy in 2010 July, which can be explained by vacation time when employees do not replay

on emails as usual. The last observation is that in a particular period, a difference between the

value of entropy for real sequence and for artificial sequence seems to be bigger over time. To

examine that aspect Z-score distance measure is used. In Fig. 4.6C we can observe that the

value of Z-score is decreasing over time (absolute value is increasing), thus there is a bigger

difference between entropy value for real sequence and artificial one over time.

4.6.2 Effectiveness results

In Fig.4.8, the performance of the single network computation on a single core is presented. It

can be observed that the computational time is proportional to the number of events in the
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Figure 4.6: The NetSense dataset, the 1st semester. A) Values of normalized entropies. Solid
lines refer to the original event sequence and dashed ones present the average value for the
baseline – random sequences. B) Values of non-normalized entropies. C) Z-score for non-
normalized second-order entropy with the computed trend and marked standard deviation
(gray area). Inset (D) Standard Deviations (SD’s) of entropies of the randomized networks;
each SD is used as a denominator in the computation of the respective network Z-score.

stream. The increasing number of nodes in network increase non linearly with computational

time, see the inset in Fig.4.8.

Next, another experiment to examine whether the proposed implementation is capable to

process large networks is performed. In Fig. 4.9 a single network computation performance

for the event sequences with 10,000 nodes and from 100,000 to 10,000,000 events in total is

presented. As it can be observed, the computational time for the second- and third-order

entropy for the largest stream is about 160 seconds. The first-order entropy is computed very

fast with no so fast increase of time for the rise of stream size: from 0.066 sec to 0.416 sec for

the largest stream. It can be also observed that the time grow is non-linear. A similar relation

was seen in experiments on smaller networks and it can be explained by additional hard disk

operations during computations.

Entropy computational times for the accumulative network on single core reveals the al-

most exponential relation to the stream size, see Fig.4.10. It means that the calculation of

accumulative streams requires much more resources than the simple entropy evaluation. The

number of events seems to be the most important factor in terms of computational time. Nev-

ertheless, the number of nodes also impacts on computation time but much less, see the inset
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in Fig.4.10. The relation is similar to the one for the single network computation, compare to

the inset in Fig.4.8.

Parallel computation of accumulative networks to examine how efficient is the parallel

approach is performed. The results of parallel processing on 8 cores are presented in Fig.4.11.

Only average values without standard deviation are shown for clarity. The parallel computation

did not change the overall tendency of almost exponential growth. However, it reduced the

computational time of the largest examined network (3,000 events, 100 nodes) by 40% in

comparison to the single-core computation, see Fig.4.10. In the case of smaller networks, the

gain is smaller or calculations take even more time due to an additional cost for parallelization

itself. With the growth of the stream size, however, the parallel approach reveals its superiority

much more.

To examine the influence of a number of cores on computational time an experiment on

an artificial stream with 3,000 events and 100 nodes is performed, independently on different

numbers of computational cores: from 2 to 12. The results are depicted in Fig. 4.12. It can

be observed, that the benefit of parallel computation is visible for the second- and third-order

entropies, while the first-order entropy provides no significant gain for more computational

cores.

4.7 Discussion

Obtained results show a couple of interesting things about examined temporal networks but also

ask some questions. Decreasing entropy in nature is something opposite to universe tendency,

an entropy of particles rises over time due to the theory of thermodynamics. Yet, the presented

results show that it is not the case in human communication. An explanation of such behavior

may be that people getting know each other over time - or rather during communication - and

become more selective with their interlocutors as time flows. In other words, people seem to

limit their contacts to some group of people (probably colleagues, friends), which raises the

probability of contact with them and in consequence - decrease the entropy of network. Such
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a hypothesis makes sense for presented datasets. Students in a university (NetSense dataset)

in the first year have not many friends - they are in a new environment, new town, etc. - while

later they make relations with other students and are also bound in project groups, classes and

so on. Participants of the conference at the first two days may talk to many people, while on

the last day - probably after some social event - they prefer to talk to a fewer number of people.

Similar explanations can be made for other datasets. Here, a question can be raised: is there

any terminal value to which entropy will converge? This is an interesting aspect and can be

further investigated.

Entropy value depends also on temporal network size - the number of nodes, number of

events - thus it is possible to compare temporal networks sourcing from the same environment

e.g. same system, the same group of people, etc. Otherwise, it is not meaningful. However,

a normalized value of entropy help to overcome this issue. In Fig. 4.13 values of normalized

entropy are presented for different datasets. Those values - especially of second-order entropy

(see Fig. 4.13B) - could be explained by nature of datasets, e.g., NetSense dataset is a group

of students which are assigned to some classes which effectively limit their contacts, while

manufacture employees can correspond to each other without artificial boundaries. Those are

just hypotheses and a deeper investigation is required to confirm those.

Presented results show that entropy has some dynamics - it is changing in consecutive

periods. However, the dynamic itself is not quantified here yet. Entropy here is a measure that

shows some property of a temporal network. By analogy it can be understood as velocity in

uniformly accelerated motion - it gives information at some point in time, but does not describe

how it changes. Acceleration is what is required to quantify dynamics. In temporal networks

measure of dynamics could be derivative of entropy. In Fig.4.14 this idea is presented using

small temporal network sample presented earlier in this work (see. Fig.2.1).
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4.8 Conclusions

In this chapter research on the new set of entropy-based measures is presented. Some inter-

esting conclusions can be derived. First, people do not communicate randomly - a known fact

now confirmed in temporal networks environment. The difference between human and random

communication is even more clear over time - longer contact sequence is observed, the bigger

difference is. Second, even more interesting is that the entropy of human communication de-

crease over time. It is an interesting observation that reflects one aspect of human nature. Next,

some ideas about measuring the dynamics of a temporal network were presented, however much

deeper investigation is needed. Finally, the effectiveness of iterative and parallel algorithms for

entropy computation was examined. Parallel computation can be used to increase the effective-

ness of accumulative entropy computation. Computations of second- and third-order entropies

benefit the most on parallel computation.
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Figure 4.7: Value of non-normalized second-order entropy for all examined datasets. Solid lines
refer to the real event sequences; upper dashed lines – to average values of random sequences.
Each dataset is divided into parts for more convenient analysis. Parts were selected empirically.
Different level of entropies for random sequences (especially for NetSense and hospital) comes
from either a smaller or greater number of interacting nodes in a given period. A) In consecutive
days of conference entropy of communication decreases which is especially clear for the last
day of the conference. B) Students tend to be more selective in their communication in later
semesters than at the beginning of studies. C) Manufacturing company employees communicate
with similar dynamics over time but a decreasing tendency of the entropy can be still observed
with the exception of one month probably related to the holiday period. D) Hospital staff and
patients contacts show decreasing entropy over consecutive days with the exception of 6th of
December, usually celebrated as Saint Nicolas Day, which may influence contact dynamics.
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Figure 4.8: Average performance of the second-order entropy computation for the single network
performed on a single computational unit. The x-axis represents the number of events in the
stream and Y-axis is a computational time in seconds. Colors correspond to the number of
nodes in the network. In the inset: Y-axis is the same but X-axis represents the number of
nodes while colors state for the number of events. Grey areas denote standard deviations over
20 streams.
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Figure 4.9: Average performance of entropy computation for large temporal networks in relation
to the number of events. All examined networks have 10,000 nodes. Colors represent the type
of the computed entropy: the first-order, the second-order and the third-order entropy. Grey
areas depict standard deviations for 20 generated streams.
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Figure 4.10: Average performance of the second-order entropy for the accumulative network
performed on a single computational unit. The x-axis represents the number of events in the
network while y-axis states for the processing time in seconds and colors correspond to the
number of nodes in the network. In the inset, x-axis states for the number of nodes, while
colors represent the number of events in the network. Grey space denotes standard deviation.
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Figure 4.11: Performance of the second-order entropy computations for the accumulative net-
work performed on 8 computational cores. Colors represent the number of nodes in the stream.
In the inset, x-axis states for the number of nodes while colors distinguish the number of events
in the stream.
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Figure 4.12: Performance of entropy computations on multiple computational units for single
streams with 100 nodes and 3,000 events. The x-axis represents the number of used compu-
tational units (cores), while the y-axis corresponds to the average time in seconds. The type
of the computed entropy, i.e. the first-, the second-, and the third-order are distinguished by
different colors.
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Figure 4.13: Comparison of average value of normalized entropy obtained incrementally (mea-
sured in 50 equally distributed points in dataset period): A) the first-order, B) the second-order.
X-axis labels: hospdata - dataset of hospital face-to-face contacts, htdata - conference face-to-
face contacts, mandata - email communication in manufacturing company, netsense - student
text communication. Boxes shows median (black horizontal line) with the 1st and the 3rd
quartile. Points refers to outliers and vertical lines to range of main observations.

Figure 4.14: Accumulative second-order entropy value of sample temporal network with fitted
logistic function and first derivative.



Chapter 5

Interdependency and applications

In this chapter, an approach to compare CogSNet and entropy-based measures is presented.

Both methods proposed in the previous chapters describe an event-sequence in terms of some

features. Here, I try to address the problem of whether both methods are interdependent from

each other. Whatsmore, despite the fact that this work does not focus on the utilization of

those methods, a couple of potential applications are presented to provide some idea in which

directions those methods can be developed.

5.1 CogSNet aggregation

5.1.1 Average strength values in periods: definite integrals

As mentioned in Section 3.7, it is possible to compute an integral of CogSNet for each pair of

nodes. A definite integral in a given period can be computed as an average strength of the

relationship between given nodes. Please note, that the begin of the period can be given in

three scenarios: 1) the period can start exactly at event time, 2) the period can start before

any event or at/after a time the relationship strength drops below threshold θ and or 3) the

period starts after the event and the weight still remains above the threshold. The first case

corresponds to period [t0,t1], [t2,t3], [t3,t4], and the following. The second case occurs for period

71
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[t′0,t0] and [t1,t2], while the third scenario happens for [t”0,t1], see Fig. 5.1. Based on Eq.3.2, the

formula for CogSNet integral can be expressed in the following way using exponential forgetting

function: ∫
wij(t)dt =

∫
wij(tij)e

−λ(t−tij) = −wij(tij)e
−λ(t−tij)

λ
+ c (5.1)

and power forgetting function:

∫
wij(t)dt =

∫
wij(tij)(t− tij)−λ = wij(tij)

(t− tij)(−λ+1)

−λ+ 1
+ c (5.2)

where t is a point in time, tij is a time of the last event between nodes vi and vj and wij(tij) is a

weight after the last event between nodes vi and vj, c is the constant of integration. The above

equation can be applied to calculate relation weight for a given period [t1, t2]. If the forgetting

keeps the relation weight above the threshold (is not cut off) over this entire period, i.e. the

course of the weight is a raw exponential function, we can use the definite integral. Note that

additionally, no event may happen in this period, see the orange hatched field in Fig.3.1. In

such case, the average weight (strength) of relationship, i.e. wij(t1, t2) between node vi and vj

in period [t1, t2] can be easily computed as follows (using exponential forgetting function and

power forgetting function, respectively):

wij(t1, t2) =

∫ t2

t1

wij(t)dt = −wij(tij)e
−λ(t2−tij)

λ
+
wij(tij)e

−λ(t1−tij)

λ
=
wij(tij)

λ
(e−λ(t1−tij)−e−λ(t2−tij))

(5.3)

wij(t1, t2) =

∫ t2

t1

wij(t)dt =wij(tij)
(t2 − tij)(−λ+1)

−λ+ 1
− wij(tij)

(t1 − tij)(−λ+1)

−λ+ 1
=

wij(tij)
(t2 − tij)(−λ+1) − (t1 − tij)(−λ+1)

−λ+ 1

(5.4)

In other cases, the definite integral of CogSNet is computed sequentially within time

chunks. Each time chunk is created upon either the event or falling down weight reaching

threshold θ, which may happen inside the considered period. For period [t0,t7] or [t′′0,t7] in
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Fig.5.1, we have seven chunks, however, there are as many as eight chunks for [t′0,t7] - an addi-

tional zero-valued chunk [t′0,t0] precedes all others. The value of definite integral of the period

from t0 to tn equals the weighted average of weights for the smaller, component periods:

wij(t0, tn) =
wij(t0, t1) ∗ (t1 − t0) + wij(t1, t2) ∗ (t2 − t1) + ...+ wij(tn−1), tn) ∗ (tn − tn−1)

tn − t0
(5.5)

In such case, each smaller period is computed as follows:

wij(tx, ty) =


0, if there is no event evijtx at tx

and no relationship (wij(tx) == 0) ,

wij(tij)

λ
(e−λ(tx−tij) − e−λ(ty−tij)), otherwise,

(5.6)

Please note, that the exponential forgetting function is used in the above Equation 5.6, however.

The power forgetting function can be used in a comparable manner.

The integral is computed for each pair of nodes using Algorithm 6. The exponential

forgetting function is used there, but power forgetting function can be applied analogically.

Yet another way to look at the weight of the relationship is to consider it as a random

variable. For a random variable, we can compute an average value which is, in such case, its

expected value.

5.1.2 Temporal node degree based on CogSNet

A node degree - a common property of the node - can be defined for a temporal network in two

ways, due to its nature: 1) for a single point of time and 2) for a period.

In the first case, it can be achieved by computing a sum of weights of relationships with

other nodes at a given point of time. Then, the weight of a relationship between nodes vi and

vj is defined in Equation 3.2. Based on this definition temporal degree of node vi in time t can
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Figure 5.1: Calculation of definite integral of CogSNet for a period from t0 to t7. Note, that
the begin of the period t0 can be set also at t′0 and t′′0. Each period begins with an event, except
the period [t1,t2] where t1 is time when the weight of relationship falls below threshold level θ.
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Algorithm 6 CogSNet integral algorithm

Input: ES – sequence of events evijk
(tfrom, tto) – the begin and end of the selected period
(x, y) – nodes

Output: integral = 0 – definite integral of CogSNet for the exponential function in the
period for nodes x, y. Replace integral in line 12, 24 and 36 for other forgetting functions, e.g.
power, accordingly.

1: G – compute a weighted static graph at tfrom using CogSNet
2: ESx,y – extract communication between selected nodes x,y in period [tfrom, tto]
3: weighted integral = 0 – define the list to store partial integrals
4: for each consecutive event pair ∈ ESx,y (their time is t1 and t2) do
5: if it is the first pair of events then
6: wxy – extract weight from G
7: if the weight wxy reaches threshold θ at t′ after tfrom and before t1, tfrom < t′ < t1

then
8: dt = t′ − tfrom
9: else
10: dt = t1 − tfrom
11: end if
12: weighted integral = weighted integral + wxy

λ
(1− e−λ∗dt)) ∗ dt

13: if t′ < t1 then
14: wxy = µ
15: else
16: wxy = µ+ wxy ∗ e−λ∗dt ∗ (1− µ)
17: end if
18: end if
19: if the weight wxy reaches threshold θ at t′2 before t2, t′2 < t2 then
20: dt = t′2 − t1
21: else
22: dt = t2 − t1
23: end if
24: weighted integral = weighted integral + wxy

λ
(1− e−λ∗dt)) ∗ dt

25: if t′2 < t2 then
26: wxy = µ
27: else
28: wxy = µ+ wxy ∗ e−λ∗dt ∗ (1− µ)
29: end if
30: if it is the last pair of events then
31: if the weight wxy reaches threshold θ at t′to before tto, t

′
to < tto then

32: dt = t′to − t2
33: else
34: dt = tto − t2
35: end if
36: weighted integral = weighted integral + wxy

λ
(1− e−λ∗dt)) ∗ dt

37: end if
38: end for
39: integral = weighted integral/(tto − tfrom)
40: return integral
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be defined as follows:

dT (vi, t) =
∑

vj∈V,j 6=i

wij(t) (5.7)

Every edge that connects node vi with another node has weight wij greater than threshold θ

or is equal 0 if there is no connection.

In the second case, node temporal degree can be defined in a time period using presented

in the previous section CogSNet integral. Based on relation strength between nodes vi and vj

in a period, defined in Equation 5.5, temporal degree of node vi in a given period (t1, t2) can

be defined as follows:

dT (vi, t1, t2) =
∑

vj∈V,j 6=i

wij(t1, t2) (5.8)

Where wij(t1, t2) is an integral on the relation weight in the period (t1, t2) computed using

either forgetting or power forgetting function. Both approaches can be used to describe some

property of a temporal network. On the one hand, a degree in a point of time can be used to

describe node its importance in the network at a specific point of time. On the other hand, a

degree in a period can describe the average importance of the node in the given period. Due to

limited resources, no experimental studies were carried out on temporal degree. It is envisaged

as an interesting direction for future work.

5.1.3 CogSNet parameters vs. second-order entropy measure

To compare entropy-based measure and CogSNet, two sample artificial event sequences (6

nodes, 20 events) are manually created:

1. with maximum second-order entropy and

2. with low second-order entropy

For the first one, it is achieved by keeping the same quantity of all unique events. The second

one is done in the opposite way - the most of events occur once or twice while just a few events

have multiple occurrences. Next, CogSNet integrals 5.3 are also computed for both event
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Figure 5.2: Heatmat of differences between CogSNet integral sum for low-entropy sequence and
high-entropy sequence.

sequences (for the whole period) and then the sum of integrals of all node pairs is calculated.

Afterward, the difference between integral sums is evaluated. Since the shape of the forgetting

function depends on a couple of parameters, integrals are independently computed for a set

of parameters. In Fig.5.2, the difference between CogSNet integrals for low and high entropy

and various parameters is presented. It can be observed that the sum of integrals depends

heavily on CogSNet parameters λ and µ. Moreover, for different parameters, greater integral

can be achieved both for low and high entropy network which not directly shows that there is no

correlation between average relation weight (CogSNet integral) and entropy value (second-order

entropy).

5.1.4 Information equivalence between CogSNet and entropies

Experimental setup

To bring a better understanding of the presented models, yet another experiment is performed.

In a small-scale sample, starting from random event sequence, events are rewired in two scenar-

ios: 1) constant entropy and 2) constant CogSNet integral. If there is no possible rewire that

cannot preserve the desired fixed value, the one is applied which results in the smallest change.
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Results and discussion

Results of the described experiment are presented in Fig. 5.3. The constant entropy can be

observed in the bottom plot in Fig 5.3A, while the corresponding values of CogSNet integrals are

shown in the top plot. Changes in integral values have no clear explanations - they happen only

for few iterations (rewirings). Moreover, in this case, the integrals only decrease, but in general,

they can increase as well. In Fig 5.3B, the results of the second scenario are presented. The

value of CogSNet integral remains constant throughout all iterations except one. Nevertheless,

entropy value in every iteration - decreases almost linearly. It rises only in the last iteration of

the simulation.

These experiments reveal that it is possible to get different values of one measure while

keeping the other unchanged. This is a sign that entropy and CogSNet do not have to be

closely related to each other. Along with the experiment presented in Section 5.1.3, it is clear

that both entropy-based measures and CogSNet describe two distinct features of the temporal

network. A deeper understanding of relationships between them two as well as the nature of

information about event sequence they carry appears to be yet another direction for further

investigations.

5.2 Entropies of social communities

5.2.1 Social communities

Many social groups can be distinguished in social networks in terms of, e.g., age, gender, religion,

occupation, political option. These features (labels) may be given directly in the available data,

i.e. we can have each node labeled with appropriate features. In many cases it is expected,

that different social groups will communicate in different manners. Young people in schools

may interact very dynamically, while workers in a company maybe not that much.

In the following experiment, different groups in the temporal social network are examined
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Figure 5.3: Entropy and CogSNet integral over iterations of rewirering focused on: A) constant
entropy B) constant CogSNet integral.
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in terms of the entropy of their communication to test whether the communication in those

communities differs from each other. The dataset used is Netsense - students’ network presented

in the previous sections. This dataset contains also some additional features about students,

namely gender, age, income, political preference, etc. For the purpose of the experiment,

communication in the selected groups is extracted in the following way:

1. homogeneous communication: only communication inside the group is considered, i.e. all

events with both nodes belonging to the given group and

2. heterogeneous communication: communication with other groups, i.e. all events that only

one node belongs to the given group.

For such extracted communication, entropy-based measures are computed. Social communities

distinguished by the following features are considered: gender and parents income.

5.2.2 Results and discussion

Some results of this experiment are presented in Fig. 5.4. In general, higher entropy value

may indicate that events are more evenly distributed between nodes, which in terms of human

communication can be understood that people have no special preferences with whom they

want to interact. Lower entropy, whereas, may indicate that people have a limited group of

friends, with whom they interact more frequently. Differences between groups are clearly visible

and may help to understand human behavior, e.g., in Fig. 5.4A the group of students with a

high income has low entropy comparing to other groups, while the group with low income in the

opposite. It may lead to a similar conclusion that is made in [74], that people with low income

have a tendency to communicate much more diverse than people with high income. A possible

explanation of such observation is that poorer people have the motivation to communicate with

others to increase the chance of profitable contacts that may improve their economic situation.

Another interesting observation is homogeneous and heterogeneous communication in gender

groups. People with the same sex tend to have a more limited group of interlocutors, while
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interacting with opposite sex communication may be more equally distributed. An opposite

observation can be made in income groups - communication inside income group is less selective

than in communication outside the group.

Such a difference in entropy between social groups in the temporal network can be exploited

in clustering or in group recognition.

5.3 Conclusions

In this chapter, some basic comparisons entropy-based measures and CogSNet model are made.

Both approaches provide information about the event-sequence but they are not necessarily

closely related. Simulations show that it is possible to obtain different values of one measure

while keeping the other one fixed. The potential application of entropy-based measures to an

analysis of social communities is also appointed.
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Figure 5.4: Entropy of different groups in Netsense dataset. A) groups based on in-
come of students parents: high/middle/low - refers to events where one of interlocutors
have high/middle/low income, high only/middle only/low only - events only between stu-
dents with high/middle/low income, ingroup - communication between students in the same
income group, intergroups - events between students from different groups. B) groups
based on gender: man/woman - refers to events where one of interlocutors is man/woman,
man only/woman only - events only between men/women, womanman/manwoman - events
from woman to man and man to woman respectively, assuming direct communication, ingroup -
communication between students with the same gender, intergroups - events between students
with opposite gender.



Chapter 6

Summary

This dissertation is focused on temporal networks based on events - highly granular pieces of

information. High resolution of information requires more sophisticated methods in compari-

son to static networks, in order to preserve such temporal information, from one hand, and to

be convenient to use form the other hand. In this work, I proposed a new temporal network

model that satisfies this requirement, which is the first major contribution. CogSNet is a net-

work model that is able to capture and simulate the process of human cognition. Conducted

experiments show, that CogSNet can simulate real network communication and provide infor-

mation about relations between network nodes better than baseline methods. The success of

the proposed method lies in an applied continuous forgetting mechanism that is an important

part of human cognition. The continuous nature of CogSNet allows applying analytic methods

to compute an average weight of the relationship between individuals in the network with the

integral of weight over some period of time.

The second important contribution of this work is a new set of entropy-based measures

for temporal network dynamics. Proposed measures applied to real-world networks reveals an

interesting characteristic of human communication - the entropy of communication is decreasing

over time. That implies that people tend to be more selective in their communication over

time, which can be explained that while people getting to know each other their discover their

preferences about with whom they want to communicate. For proposed measures, algorithms

83
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for iterative and parallel computation are also designed, providing an efficient computational

method for application in large networks. Interestingly, proposed measures show some potential

in group recognition in temporal networks by showing, that different social groups in real-word

temporal networks have different entropy.

In this work, I also make an approach to compare proposed methods in terms of a numerical

description of a temporal network. CogSNet integral and entropy-based measures are able to

provide some information about event-sequence, however their cover different aspects.

6.1 Contributions

Following contribution of my work can be enumerated:

• Design of a new temporal social network model that simulates human cognition.

• Examination of proposed model properties

• Validation of proposed model on real-world temporal network

• Definition of average strength of relationship in temporal networks

• Definition of entropy for temporal network given as event sequence

• Design of maximum and normalized entropy-based measure for temporal networks

• Algorithms design for iterative and parallel computation of entropy for single network

and accumulative network

• Comparison and analysis of proposed approaches

6.2 Future Work

Many directions covered in this work showed the potential for future development. First,

entropy-based measures showed an ability to describe some aspects of temporal network dy-
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namics. However, it would be worthwhile to find applications of those measures in network

dynamics prediction. Since one of the findings of this work is that entropy is decreasing over

time in temporal social networks, those networks have the highest chance of benefit from the

proposed measures in prediction attempts. Next, some potential is recognized of entropy-based

measures in solving problems like detection of social communities from dynamic data about

human activities. The hypothesis is that entropy is able to distinguish different groups in the

event sequence since the groups may have a different dynamic profile of interactions (different

entropy levels), e.g. within hospital staff members and separately among patients. Another

direction that would be worth to develop is application of CogSNet to large temporal social

networks to find optimal parameters of the model. It would be very useful to assign some parts

of the parameter space to a particular communication method, e.g., phone calls or emails. Pre-

viously mentioned approaches of temporal network description - entropy based measurements

and the CogSNet integral - are briefly analyzed in terms of mutual dependency. Deeper studies

may bring a better understanding of those two approaches in real-world temporal networks.

6.3 Dissemination

6.3.1 Research projects

The presented work was supported by the following projects I participated in:

• Models, Methods and Algorithms of Computational Network Science, research project

funded by National Science Centre (OPUS), led by Prof. Przemys law Kazienko, 2017-

2020

• RENOIR - Reverse EngiNeering of sOcial Information pRocessing, H2020-MSCA-RISE-

2015, no. 691152, main contractor, 2016-2019

• Diffusion of Information in Temporal Social Networks, research project funded by National

Science Centre (SONATA), led by Dr. Radosaw Michalski, 2016-2020
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As well by already terminated projects:

• ENGINE - European research centre of Network intelliGence for INnovation Enhance-

ment, FP7-REGPOT-2012-2013-1, Coordination and Support Action, no. 316097, 2013-

2016

• Machine learning methods for complex networks, research project funded by National

Science Centre (OPUS), 2014-2017

• TRANSFoRm - Translational Research and Patient Safety in Europe, ICT-2011.11.3:

Supplements to Strengthen Cooperation in ICT R D in an Enlarged European Union,

FP7 247787, 2011-2015

• Mapping and analysis of the collaboration and knowledge exchange network of key experts

involved in a critical business process in KGHM Polska Mied S.A., research project funded

by KGHM Polska Miedź S.A. (in collaboration with lome.pl), 2015

• Preparation and delivery of algorithms and mathematical models for xDSL services pre-

qualification, TP S.A./Orange (Polish Telecom), 2012-2013
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• Derek Corrigan - computer scientists, Department of General Practice, HRB Centre for

Primary Care Research, Beaux Lane House, Lower Mercer Street, Dublin, Ireland

• Tomasz Kajdanowicz - computer scientist, Faculty of Computer Science and Management,

Department of Computational Intelligence, Wroc law University of Science and Technol-

ogy, Wroc law, Poland

• Roxana Danger - computer scientists, Imperial College London, London, UK

• Brendan Delaney - medical doctor, Wolfson Chair of General Practice, Kings College

London, Capital House, Guys Hospital, London, England

• Maciej Piasecki - computer scientist, linguist, Faculty of Computer Science and Man-

agement, Department of Computational Intelligence, Wroc law University of Science and

Technology, Wroc law, Poland

•  Lukasz Augustyniak - computer scientist, Faculty of Computer Science and Management,

Department of Computational Intelligence, Wroc law University of Science and Technol-

ogy, Wroc law, Poland

• W lodzimierz Tulig lowicz - computer scientist, Faculty of Computer Science and Manage-

ment, Wroc law University of Science and Technology, Wroc law, Poland

• Adrian Popiel - computer scientist, Faculty of Computer Science and Management, De-

partment of Computational Intelligence, Wroc law University of Science and Technology,

Wroc law, Poland

• Andrzej Misiaszek - computer scientist, Faculty of Computer Science and Management,

Wroc law University of Science and Technology, Wroc law, Poland
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tice to inform family practice; the learning healthcare system case study on urinary tract

infections. BMC Family Practice. 2015, vol. 16, nr 5, p. 1-6. IF=2.16

• Rados law Michalski, Boles law K. Szymański, Przemys law Kazienko, Christian Lebiere,

Omar Lizardo, Marcin Kulisiewicz (2018). Social Networks through the Prism of Cog-

nition. arXiv preprint arXiv:1806.04658.

• Marcin Kulisiewicz, Przemys law Kazienko, Rados law Michalski Parallel Entropy Com-

putation for Interaction Stream Dynamics - in reviews in the JCR-listed journal,

•  Lukasz M. Augustyniak, Tomasz Kajdanowicz, Przemys law Kazienko, Marcin Kulisiewicz,

W lodzimierz J. Tulig lowicz, An approach to sentiment analysis of movie reviews: lexicon

based vs. classification. Hybrid artificial intelligence systems : 9th international confer-

ence, HAIS 2014, Salamanca, Spain, June 11-13, 2014 : proceedings / Marios Polycarpou
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Figure 6.1: Citation overview of author publications excluding self citation of all authors.
Source: Scopus.com

• Poster at ICCSS 2016 - 2016 International Conference on Computational Social Science.

Evanston, IL, USA (2016). Michalski R., Kazienko P., Kulisiewicz M.: Core Nodes as the

Influencers in Temporal Social Networks.
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[42] P. Holme and J. Saramäki. Temporal networks. Springer, 2013.

[43] K. Hoppe and G. Rodgers. Mutual selection in time-varying networks. Physical Review

E, 88(4):042804, 2013.
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Small but slow world: How network topology and burstiness slow down spreading. Phys-

ical Review E, 83(2):025102, 2011.

[53] L. Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39–

43, Mar 1953.

[54] D. Kempe, J. Kleinberg, and A. Kumar. Connectivity and inference problems for temporal

networks. Journal of Computer and System Sciences, 64(4):820–842, 2002.
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