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Introduction

Combinatorial optimization problems are a class of problems in which we are looking
for the "best" configuration or a set of parameters to meet some objective. There is
a number of applications of combinatorial optimization in real-world situations, including
logistics, production planning, package delivery, designing networks, scheduling and more.
Among widely known combinatorial optimization problems there are the knapsack problem,
the minimum spanning tree problem, the minimum selection problem, the shortest path
problem, etc. [1].

Such an optimization problem is characterized by the cost function and the constraints
defining a set of feasible solutions. According to a classical approach the exact values of all
problem parameters are known in advance [21, 61]. Such a model is called deterministic.
However in many practical applications this is rarely the case. In many instances parameter
values can not be measured precisely but can only be estimated. They may also depend
on some future events or they may belong to an one-of-a-kind type of problem, where no
historical data exists, e.g., a realization of a specific project or development of the stock
market.

A widely adopted way to model such uncertainty is to introduce a scenario set [50].
A scenario set is a set of all possible realizations of parameters. Each individual realization
of parameters is then called a scenario. Depending on the utilized model and available
data it is possible but not necessary that a probability distribution for a scenario set is
available. This probability distribution indicates a likelihood of a specific scenario to occur.
There are several ways to define a scenario set, among the most common are discrete and
interval uncertainty representations. Additionally, some modifications to the scenario sets
may be introduced. For example, scenario sets with a budget constraint allow us to control
the degree of uncertainty by a number of parameters which are allowed to deviate from
their nominal values or by a maximum total deviation allowed from the nominal values
of parameters.

There are two main approaches to deal with the uncertainty: stochastic programming
and robust optimization. Stochastic programming requires probability distributions of un-
certain parameters to be known and it attempts to find some solution feasible (i.e., eligible,
"legal") under a number of scenarios and it minimizes some stochastic criterion, typically
the expected cost [11]. There are several drawbacks and limitations to stochastic pro-
gramming. For instance, this approach is applicable only if a probability distribution in
the scenario set is known or can be estimated. Moreover, minimizing the expected cost
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Introduction

for a solution that is used only once may be questionable. For a more detailed descrip-
tion of stochastic programming the reader may also want to check Yu and Li [70] and
bibliography compiled by van der Vlerk [65].

In contrast to stochastic programming, robust optimization tackles uncertainty by being
extremely risk averse and taking into account only the worst case scenario while maintaining
the feasibility under all considered scenarios. This approach can be used, for example,
when dealing with high risk decisions, such as related to power supply, public health or
transportation. Robust optimization is applied when no probability distribution in the
scenario set is given. Solution is chosen using several proposed robust decision rules, also
called criteria, (see, e.g., [62]), namely the min-max criterion, under which we choose
a solution minimizing the largest cost over all scenarios or the min-max-regret criterion,
under which we choose a solution minimizing the maximum difference from an optimal
solution over all scenarios.

Researches were interested whether the robust optimization problems remain compu-
tationally easy, or tractable, under different scenario sets. Additionally, new types of sce-
nario sets were introduced over time to address concerns over conservatism of the robust
approach and in attempt to somewhat relax it, see, e.g., [7, 9, 10]. Bertsimas and Sim in [8]
investigate tractability of robust optimization problems under scenario set with a budget
constraint.

Traditional robust approach has one stage nature. This means that a complete solution
must be decided before the true scenario is revealed. Thus, we have to pay a cost of the
solution induced by the actual scenario. In practice, a limited action is often allowed after
the true scenario is revealed. It is possible to construct a complete solution in a number of
stages or to partially modify a solution after the true scenario is revealed. In a two-stage
robust approach we first construct a partial first stage solution and then complement it
after the true scenario is revealed. In a recoverable robust approach a complete solution
is decided in the first stage. It is allowed to modify this solution after the true scenario
is revealed with a recourse action. It is assumed that a modified solution resides in a
neighborhood of the first stage solution defined by some distance function. In both two-
stage approaches the goal is to find a solution which minimizes overall cost in a worst
case. Multi-stage problems have gathered a considerable attention in the recent literature.
As an example, two-stage problems were discussed in [45, 47, 49]. In turn a recoverable
model was first proposed for a linear programming in [53]. The recoverable robustness was
studied in [6, 53] and recently in [27] and in [32]. It was later applied to the selected discrete
optimization problems in [13, 14, 15, 17, 33, 34]. This approach also has its drawbacks,
namely it increases the complexity of a problem rendering most of them NP-hard. On the
other hand, it comes in handy for solving many real world problems [16, 19, 20, 24, 53, 73].

It is important to note here that both two-stage and recoverable models are not required
to be used in conjunction with the robust framework. In this case the recoverable model is
reduced to a problem of finding the pair of solutions, the first stage solution and the second
stage solution in its neighborhood, which minimizes overall cost. Similarly, in a two-stage
model partial solutions are determined in a deterministic setting.

Multi-stage recoverable models also address another limitation of the robust optimiza-
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Thesis outline

tion, namely, extremely conservative, risk-averse approach to problem solving which may
be excessive in some applications. Finding a robust solution which is feasible under all
constraints and scenarios is demanding and may not be achievable at all. But even if such
a solution exists, it may generate high costs in the rest of the scenarios. Some of the draw-
backs of the robust optimization have been already discussed in the foundational work by
Soyster in [64]. Recoverable robust models discussed in this thesis are designed to tackle
the limitations of the pure robust approach.

Yager et al. in [68] proposes Ordered Weighted Averaging (OWA) aggregation operator.
This operator is commonly used to aggregate criteria in multiobjective decision problems
(see, e.g., [29, 59, 69]) and also to choose a solution under the discrete uncertainty represen-
tation. The OWA operator generalizes several criteria such as: the maximum, minimum,
average or median criterion traditionally used in decision making under uncertainty.

Thesis outline

Chapter 1 contains a short introduction to the recoverable robust models discussed in the
thesis providing the necessary definitions and some known complexity results. Chapter 2
and Chapter 3 constitute the substantial part of the thesis. These chapters are based
on the published papers (see [34, 35, 36]). Appendix A dives into technical details related
to implementation of software package used in Chapter 3. The results presented in this
thesis relate to actively researched problems and are direct continuation of research results
conducted by several research groups. For instance, Christina Büsing in [13] considers
a recoverable robust spanning tree problem and provides some results for this problem.
Our contribution has already been recognized by a scientific community. As an example,
Lendl et al. in [52] have generalized and improved some results related to a recoverable
robust matroid basis problem and Fischer et al. in [27] also refer to results related to the
recoverable robust matroid basis problem. We provide a brief overview of each chapter
below.

Chapter 1: Formal model, notation, definitions and complexity. In this chapter
we successively introduce concepts of robustness and recoverability in the context of discrete
optimization problems to the reader. We also provide definitions of different neighborhoods,
uncertainty sets, and related problems. The chapter also has a brief summary of the
complexity of recoverable robust problems under multiple uncertainty sets. We conclude
the chapter with a variety of definitions necessary for understanding this thesis.

Chapter 2: The recoverable robust spanning tree problem. Here we consider a
recoverable robust spanning tree problem with uncertain costs modeled as classical inter-
vals. In this case an uncertainty set U is the Cartesian product of uncertain intervals. The
complexity of the recoverable robust version of the spanning tree problem was not known
at that moment. We first managed to prove that the problem has polynomial complexity
and built a polynomial algorithm for it. It also turned out that the proposed algorithm can
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Introduction

be generalized to solve the recoverable robust matroid basis problem. We later construct
a combinatorial algorithm to solve the recoverable robust spanning tree problem under
the interval uncertainty representation in a strongly polynomial time. Moreover, with this
algorithm we obtained several approximation results for the recoverable robust spanning
tree problem under the Bertsimas and Sim [8, 9] interval uncertainty representation and
the interval uncertainty representation with a continuous budget constraint.

Chapter 3: Robust recoverable 0-1 optimization problems under polyhedral
uncertainty. In this chapter we discuss the robust recoverable approach to 0-1 program-
ming problems. As before, it is assumed that the initial solution is built in the first stage
and later can be modified to some extent in the second stage. This modification consists
of choosing a solution in some defined neighborhood of the first stage solution. The second
stage costs can be uncertain and this uncertainty is modeled using the interval budgeted
uncertainty. The resulting robust recoverable problem is a min-max-min problem, which
can be difficult to solve when it has a large number of variables. To tackle this limitation,
several lower bounds of the optimal solution and also approximate solutions are proposed,
which can be used for a wide class of 0-1 optimization problems. The results of computa-
tional tests for two problems, namely the minimum assignment problem and the minimum
knapsack problem are presented.

Chapter 4: Summary and conclusions. This chapter briefly summarizes the thesis
and highlights prospects of future research.
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Chapter 1

Formal model, notation, definitions and
complexity

1.1 Linear combinatorial optimization problems

In this chapter we are concerned with a class of optimization problems. In this class of
problems we are looking for a solution which is the "best" under some decision rule, or
criterion. In the most generic way the problem can be defined as follows:

P : min
X∈Φ

f(X) (1.1)

where f : Φ→ R is a cost function and Φ is a set of feasible solutions.
We call an optimization problem continuous if its variables are continuous, whereas an

optimization problem with discrete variables is called a combinatorial (discrete) problem.
In the combinatorial problems we are looking for an object from some finite set, e.g., a set,
permutation or graph. On the other hand, in the continuous problems we are looking for
a set of real numbers or a function.

Let E = {e1, . . . , en} be a finite set of elements and Φ ⊆ 2E be a set of feasible solutions,
a set of subsets of E. A linear cost function c : E → R≥0 assigns a non-negative cost
for each element e ∈ E. We seek a feasible solution X∗ ∈ Φ with the minimum cost
f(X∗) =

∑
e∈X∗ c(e). Thus, (1.1) becomes a linear combinatorial minimization problem.

As an example, E can be defined as a set of edges in a graph G = (V,E) and Φ to contain
objects like spanning trees or paths, so we get problems of finding a minimum spanning
tree or a shortest path.

In most cases problem P can be reformulated as a 0-1 programming problem. For this
purpose we associate a vector of binary decision variables xxx = (x1, . . . , xn) ∈ {0, 1}n with
an each element ei ∈ E, i ∈ {1, . . . , n}. With ci we denote a non-negative cost of element
ei ∈ E. Thus, P has the following formulation:

P : min
∑n

i=1 cixi
s.t. (x1, . . . , xn) ∈ Φ,

(1.2)

1



1. Formal model, notation, definitions and complexity

where Φ is a set of characteristic vectors describing feasibility of a solution with a system
of constraints involving xxx = (x1, . . . , xn)T . We do not make any additional assumptions
about the problem P . In particular, P can be NP-hard (see, e.g., [21]) and not at all
approximable (see Definition 1.3).

We will now provide a few examples of linear combinatorial optimization problems.

Minimum selection problem We are given a set of items E (|E| = n). A non-
negative cost ce is associated with each element e ∈ E. In a minimum selection problem
we are looking for such subset X of size p of elements E so that the total cost of its
constituent elements is minimum. For this problem a set of feasible solutions is defined as
Φ = {X ⊆ E : |X| = p}.

Minimum assignment problem We are given a bipartite graph G = (V,E), where V
is a set of vertices and E is a set of edges. Each edge has a non-negative cost ce, e ∈ E
associated with it. Recall that an independent set is a set of vertices where none of them
are adjacent. In this problem we are looking for a perfect matching of the minimum cost,
where the perfect matching is a set of pairwise non-adjacent edges covering all vertices in
the graph G. Thus, Φ consists of all perfect matchings in G. The problem may be seen
as a problem of assigning executors to tasks so that the cost of completing the tasks is
minimum.

Minimum spanning tree problem We are given a connected graph G = (V,E),
in which a non-negative cost ce is associated with each edge e ∈ E. A set of feasible
solutions Φ contains all spanning trees in G, where a spanning tree is an acyclic subgraph
of G that connects all the nodes in V . We are looking for a spanning tree X ∈ Φ whose
sum of edge costs is minimum.

Shortest path problem We are given a directed graph G = (V,E) with distinguished
vertices s and t, called a source node and a terminal node respectively. A non-negative
cost ce is associated with each arc e ∈ E. In this problem we are looking for a path from
s to t such that the sum of the costs of its constituent arcs is minimal. Set of feasible
solutions Φ consists of all paths from the source node s to the terminal node t in graph G.

Minimum matroid basis problem Let M = (E, I) be a matroid (see Definition 1.6),
where E is a non-empty ground set and I is a family of subsets of E. A basis of a matroid
M is a maximal under inclusion element of I. A non-negative cost ce is associated with
each element e ∈ E. In a minimum matroid basis problem we are looking for the basis
of the minimum total cost. A set of feasible solutions Φ contains all bases in M .

Minimum s-t cut Let G = (V,E) be a directed graph with distinguished source and
sink nodes s and t. An s-t cut is partition of the set of vertices V of a graph into two
disjoint subsets, so that nodes s and t belong to the different subsets. An s − t cut only

2



1.2. Robustness and recoverability in combinatorial optimization problems

includes edges going from the source set to the sink side. Each edge has a non-negative
capacity assigned to it. We seek an s − t cut with the minimum total capacity. A set
of feasible solutions Φ consists of all s s− t-cuts in graph G.

Travelling salesman problem We are given a complete graph G = (V,E), where
|V | = n. Each edge in E has a cost (or distance) assigned to it. A tour is a closed path
that visits each node exactly once. In this problem we want to find the tour of the minimum
total cost (length). A set of feasible solutions Φ consists of all cyclic permutations π on n
elements.

1.2 Robustness and recoverability in combinatorial op-
timization problems

1.2.1 Uncertainty representation

Let us now assume that costs assigned to elements e ∈ E can be uncertain. We model
this uncertainty by introduction of a scenario set U containing all possible realizations of
the uncertain costs. Each particular realization of the element cost S = (cSe1 , ..., c

S
en) ∈ U

is called a scenario, S ∈ U .
Over the years researchers have proposed several ways to define a scenario set U . Two

commonly utilized approaches are discrete uncertainty representation and interval uncer-
tainty representation (see, e.g., [2, 46, 50]). The discrete uncertainty scenario set is finite
and consists of K ≥ 1 explicitly enumerated scenarios, each of the scenarios defines some
realization of costs values:

UD = {S1 = (cS1
e )e∈E, . . . , SK = (cSKe )e∈E}. (1.3)

The scenarios of UD can be seen as a result of a global events influencing every parameter.
Under the interval uncertainty representation parameter values for each element e ∈ E

is known to belong to the closed interval [ce, ce+de] where ce is a nominal cost of e ∈ E and
de ≥ 0 is the maximum deviation of the cost of e from its nominal value. Thus, scenario
set is defined as the Cartesian product of all these closed intervals [9, 50]:

U I = {S = (cSe )e∈E : cSe ∈ [ce, ce + de], e ∈ E} =
∏
e∈E

[ce, ce + de]. (1.4)

Note that the scenario set defined in this way allows parameters to vary their values
independently of each other.

Several variations of the interval uncertainty representation were proposed over the
years. In [8, 9] a modification of the scenario set U I has been introduced. This modified
scenario set is called a discrete interval budgeted uncertainty and is denoted by U I1 (Γ), is a
subset of U I such that under each scenario in U I1 (Γ), the costs of at most Γ elements are

3



1. Formal model, notation, definitions and complexity

greater than their nominal values ce. Here Γ, called a budget, is assumed to be a fixed
integer in [0, n] (|E| = n). Scenario set U I1 (Γ) is formally defined as follows:

U I1 (Γ) = {S = (cSe )e∈E : cSe ∈ [ce, ce + δede], δe ∈ {0, 1}, e ∈ E,
∑
e∈E

δe ≤ Γ}. (1.5)

The parameter Γ allows us to model the degree of uncertainty. Namely, if Γ = n then
U I

1 (Γ) is equivalent to U I , on the other hand, if Γ = 0 then U I
1 (Γ) contains only the

nominal scenario, thus there is no uncertainty in this model.
There is another interesting variation of U I which allows to control the amount of

uncertainty. It is called continuous budgeted interval uncertainty (see, e.g., [58]), denoted
by U I2 (Γ) and defined as follows:

U I2 (Γ) = {S = (cSe )e∈E : cSe = ce + δe, δe ∈ [0, de], e ∈ E,
∑
e∈E

δe ≤ Γ}, (1.6)

where Γ ≥ 0 is a a fixed parameter that can be seen as a budget of an adversary, and
represents the maximum total increase of the element costs from their nominal values (an
adversary is a malicious entity whose goal is to prevent the decision maker from achieving
their optimization goal). Note that similarly to U I1 (Γ) for sufficiently large Γ, U I2 (Γ) reduces
to the traditional interval uncertainty representation U I and if Γ = 0 then U I

1 (Γ) contains
only the nominal scenario.

The last uncertainty set we will discuss in this thesis is a special case of U I2 (Γ) called
polyhedral uncertainty set U I3 (Γ). It is defined as follows:

U I3 (Γ) = {S = (cSe )e∈E : cSe = ce + δe, e ∈ E, (δe)e∈E ⊆ V ,
∑
e∈E

δe ≤ Γ}, (1.7)

where V ⊆ Rn is a polyhedron described by some additional linear constraints involving
δe∈E. To ensure that S ∈ U I3 (Γ), we assume that 000 ∈ V , where 000 is a zero vector of size n.
One can use V to model some additional relationships among the uncertainty of the costs.
For example, a constraint

∑
i∈A δi ≤ ΓA represents the situation in which a subset of the

costs has its own budget ΓA ≤ Γ. Other constraints of the form αijδi ≤ δj ≤ βijδi, for
some fixed αij ≤ βij, model a possible correlation between δi and δj. Note that if V = Rn,
then we get U I2 (Γ) [58]. As U I3 (Γ) ⊆ U I2 (Γ), the set U I2 (Γ) is a relaxation of U I3 (Γ).

This section does not cover all possible methods to model uncertainty. The interested
reader may also want to check ellipsoidal uncertainty sets [7, 30, 31, 63] among the others.

1.2.2 Robust approach to combinatorial optimization problems
under uncertainty

Risk-averse decision makers may be interested only in the worst case scenario. Robust
optimization framework was initially proposed in [64] and further discussed in a number
of papers, e.g., [5, 7, 8, 50, 71]). In most common robust optimization models we are
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1.2. Robustness and recoverability in combinatorial optimization problems

seeking a solution that minimizes the largest cost, which is also called min-max criterion
or a solution that minimizes maximum deviation from the optimum, which is also known
as min-max regret criterion (savage criterion, maximum opportunity loss) over scenario
set. The above criteria are known and frequently used in the cases where exact values
of parameters are not known and probability distribution over scenarios in U can not be
estimated.

We will now denote the total cost under scenario S by f(X,S) =
∑

e∈X c
S
e and by

f ∗(Ŝ) we denote the cost of an optimal solution under a fixed scenario Ŝ. Now, robust
combinatorial optimization problems can be defined as follows:

MinMax P : min
X∈Φ

F (X) = min
X∈Φ

max
S∈U

f(X,S), (1.8)

MinMax Regret P : min
X∈Φ

Z(X) = min
X∈Φ

max
S∈U
{f(X,S)− f ∗(S)}. (1.9)

Here F (X) and Z(X), X ∈ Φ stand for respectively the maximum cost of a solution X
over all scenarios and the maximum regret of the solution X over all scenarios.

The robust approach has its disadvantages. A serious drawback of the min-max criterion
is that it is extremely conservative and takes into consideration only the worst-case scenario.
Additionally, selected solution may not be Pareto optimal [46]. This may lead to a so called
drowning effect, i.e., when only one extremely bad scenario is taken into account, leaving
the rest of scenarios completely ignored [25]. In turn, in the min-max regret criterion we
minimize the maximum opportunity lost (see, e.g., [55]), in other words the cost of the
solution compared to the optimal solution. Decision makers should be aware that the
solution selected with respect to this criterion may have a large solution cost (this feature
is also known as the price of robustness, see, e.g., [9]).

In order to mitigate the above drawbacks of the robust optimization several modifica-
tions to the model were proposed, the recoverable robust optimization is one of them.

1.2.3 Multi-stage combinatorial optimization

In practice some applications of combinatorial optimization problems have a multi-stage
nature. In other words the decision maker may posses an ability to slightly alter an initial
solution at a later stage of the problem solution. It is rarely possible to exchange the
whole solution with a different one, but only to replace a given fraction of the elements in
the current solution. One of the models which take such a situation into account is the
recoverable model.

We will first define a class of incremental problems (Inc P) [22]. Let X ∈ Φ be an
initial feasible solution. A new feasible solution Y ∈ Φ is an increment from X by the
amount allowed by a distance function

d(X, Y ) : Φ × Φ → Z≥0.

Function d(X, Y ) is called an incremental function. It defines a neighborhood Φk
X ⊆ Φ of

solution X, where k ∈ {0, . . . , n− 1} is a recovery parameter :

Φk
X = {Y ∈ Φ : d(X, Y ) ≤ k}. (1.10)

5



1. Formal model, notation, definitions and complexity

We will also use the following definition of neighborhood for a fixed α ∈ [0, 1]:

Φα
X = {Y ∈ Φ : d(X, Y ) ≤ α|X|}. (1.11)

Consequently, Y ∈ ΦX ,ΦX ∈ {Φk
X ,Φ

α
X} is called an incremental solution.

Neighborhood ΦX is called an element inclusion neighborhood if the incremental func-
tion is defined as

d(X, Y ) = |Y \X|, (1.12)

i.e., d returns a number of elements in the incremental solution Y and not in the starting
solution X. Neighborhood ΦX is called an element exclusion neighborhood if incremental
function is defined as

d(X, Y ) = |X \ Y |, (1.13)

i.e., d returns a number of elements in the starting solution X and not in the incremen-
tal solution Y . Finally, symmetric difference neighborhood uses the incremental function
defined as

d(X, Y ) = X ⊕ Y = (X \ Y ) ∪ (Y \X). (1.14)

It is worth noting that all the above neighborhoods, namely the element inclusion, the
element exclusion and the symmetric difference neighborhoods are equivalent if |X| = m,
m ∈ {1, . . . , n} for each X ∈ Φ. We will call a problem P possessing such a property an
equal cardinality problem. For Φk

X and Φα
X respectively we can then write

Φk
X = {Y ∈ Φ : |X ∩ Y | ≥ m− k} (1.15)

and
Φα
X = {Y ∈ Φ : |X ∩ Y | ≥ m(1− α)}, (1.16)

where l = dm(1− α)e is a fixed integer, independent from solution X.
The incremental problem Inc P is defined as follows:

Inc P : min
Y ∈ΦX

∑
e∈Y

ce. (1.17)

In the incremental problem we seek for the cheapest solution within a neighborhood
ΦX ∈ {Φk

X ,Φ
α
X} of a fixed solutionX ∈ Φ. Şeref et al. in [22] examine a class of incremental

network problems and show that the incremental version of some basic network problems
(for example, the shortest path) can be already NP-hard for some natural neighborhood
definitions.

The recoverable model consists of two stages. We are given costs Ce, e ∈ E of a first
stage solution X. The total cost of the first stage solution X ∈ Φ is equal to

∑
e∈X Ce.

Additionally a neighborhood ΦX of the first stage solution X is defined. Each solution Y
in this neighborhood ΦX is within some predefined distance d(X, Y ) from the first stage
solution X. In the second stage the first stage X solution can be replaced with a solution
in its neighborhood. The second stage costs are designated as ce, e ∈ E. Similarly, the
cost of the second stage solution is equal to

∑
e∈Y ce. The goal is to compute a pair of
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1.2. Robustness and recoverability in combinatorial optimization problems

solutions, namely the first stage solution and the second stage solution in the neighborhood
of X, which minimize the total first and second stage costs. We, thus, seek the first stage
solution X ∈ Φ and the second stage solution Y ∈ ΦX , so that the total cost of X and Y
for respectively Ce and ce is minimum. The recoverable problem (Rec P for short) can be
stated formally as follows:

Rec P : min
X∈Φ

(∑
e∈X

Ce + min
Y ∈ΦX

∑
e∈Y

ce

)
. (1.18)

Note that the recoverable problems can be seen as a generalization of the class of
incremental problems Inc P (1.17).

1.2.4 Recoverable robust combinatorial optimization

Let us now turn our attention to recoverable robust models for combinatorial optimization
problems with uncertain element costs under scenario uncertainty representation.

Let us assume that the second stage costs are uncertain, then the robust approach can
be utilized (see Section 1.2.2 and [5, 50]). In this model we look for pairs of solutions
which minimize the total cost in the worst case. Recoverable robustness was first pro-
posed in [53] and it is similar to the adjustable robustness from the field of mathematical
programming [6]. It was also previously discussed in [13, 14, 15, 17, 47].

Similarly to robust models, recoverable robust models also utilize scenario sets. In these
models the second stage cost of Y under the scenario S ∈ U is equal to

∑
e∈Y c

S
e . The goal

is to find a pair of the first stage solution X ∈ Φ and the second stage solution Y ∈ Φk
X so

that the sum of the first and the second stage costs
∑

e∈X Ce +
∑

e∈Y c
S
e in the worst case

is minimum:

RR P : min
X∈Φ

(∑
e∈X

Ce + max
S∈U

min
Y ∈ΦX

∑
e∈Y

cSe

)
. (1.19)

The robust recoverable versions of some basic combinatorial problems such as the short-
est path, minimum s − t cut, minimum knapsack, and minimum matroid base, were first
studied in [13, 14], where several complexity results for them were obtained. Recently the
robust recoverable versions of the selection and traveling salesman problems were discussed
in [17, 18, 47].

The recoverable robust problem generalizes the recoverable problem (1.18). It is enough
to set U so that it contains single scenario S. Assume that neighborhood of X contains
only one solution, which is X itself. For example, this property holds for neighborhood
Φα
X when P is an equal cardinality problem and α = 0. If additionally the first stage costs

Ce = 0 for each e ∈ E, than RR P can be rewritten as

min
X∈Φ

max
S∈U

∑
e∈X

cSe ,

7



1. Formal model, notation, definitions and complexity

which is a traditional single-stage robust min-max problem (see (1.8)).
The recoverable robust problem also generalizes the following evaluation problem:

Eval(X) P :
∑
e∈X

Ce + max
S∈U

min
Y ∈ΦX

∑
e∈Y

cSe , (1.20)

where the inner maximization problem

Adv(X) P : max
S∈U

min
Y ∈ΦX

∑
e∈Y

cSe (1.21)

is called the adversarial problem [58].
Observe that solving RR P consists of minimizing Eval(X) over X ∈ Φ. The evalua-

tion problem generalizes the adversarial problem, which in turn generalizes the incremental
one, as we get the latter by fixing Ce = 0 for each e ∈ E:

RR P : min
X∈Φ

Eval(X) = min
X∈Φ

(∑
e∈X

Ce + Adv(X)

)

= min
X∈Φ

(∑
e∈X

Ce + max
S∈U

Inc(X,S)

)
.

1.2.5 Other interesting models

Two-stage robust model A two-stage robust model is another example of a multi-stage
robust models. We define it as follows. Suppose thatX ∈ Φ1 (Φ1 is a set of partial solutions
defined for a problem) is a partial solution that we can form in the first stage. As before,
by Ce and cSe we denote first stage costs and second stage costs under scenario S ∈ U ,
respectively. The cost of a first-stage solution is equal to

∑
e∈X Ce, X ∈ Φ1. Then, after a

scenario S ∈ U is revealed, decision maker completes the problem solution to X ∪ Y ∈ Φ
with a cost

∑
e∈Y c

S
e . The two-stage robust problem is formally defined as follows:

2SR P : min
X∈Φ1

{∑
e∈X

Ce + max
S∈U

min
{Y :X∪Y ∈Φ}

∑
e∈Y

cSe

}
. (1.22)

The 2SR P problem has been applied to a number of various combinatorial problems P :
the matching problem [49], the minimum spanning tree problem [45], selected network
problems [48] and the selection problem [47]. It was shown that under the interval un-
certainty representation U I , the problem is polynomially solvable, when P is polynomially
solvable. On the other hand, under the discrete uncertainty representation UD, 2SR P is
NP-hard for all considered basic problems. Some approximation ratios for the scenario set
UD were achieved by applying randomized algorithms [45, 49, 47].

A key difference between the two-stage robust model and the recoverable robust model
is that the former takes into account costs of the selected items only once, while the latter
takes them into account once in first stage and once in the second stage with the possibility
of replacing a set of items from the first to the second stage, controlled by the recovery
parameter.
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1.3. The computational complexity of problems

Rent-recoverable robust model In a rent-recoverable robust model we are given a
rental factor α ∈ (0, 1) and inflation factor β ≥ 0 [13]. We first define the rent cost of
solution X ∈ Φ under scenario S ∈ U by

fR(X,S) = αf(X,S)

and the implementation cost of solution X ∈ Φ under scenario S as

fI(X,S) = min
Y ∈Φ
{(1− α)f(Y, S) + (α + β)f(Y \X,S)},

where f(X,S) =
∑

e∈X c
S
e is a cost of solution X under scenario S. Now let us define

overall rent cost by
fRent(X) = max

S∈U
{fR(X,S) + fI(X,S)}.

Thus, the rent-recoverable robust combinatorial problem (P ) can be defined as follows:

Rent RR P : min
X∈Φ

fRent(X) = min
X∈Φ

max
S∈U
{fR(X,S) + fI(X,S)}. (1.23)

The reader may check paper by Kasperski et al. [44] to learn more about rental-
recoverable robust model.

Min-max-min robust model The reader may also be interested in a discussion of a
min-max-min approach by Buchheim and Kurtz in [12], i.e., a two-stage robust model
where no first stage variables exist. This model, instead of looking for a single worst-case
optimal solution, attempts to calculate a number of solutions. Once the actual scenario
is revealed, the best of them is getting adopted. The phase of calculating solutions for
a number of scenarios is interpreted as a robust-prepossessing phase. This phase can be
performed early and its results stored and reused multiple times when the true scenarios
are revealed.

1.3 The computational complexity of problems

The computational complexity of the incremental (1.17), adversarial (1.21), recoverable
(1.18), and recoverable robust (1.19) problems is higher than the complexity of the generic
deterministic problem P . It follows that all this problems are NP-hard if P is already NP-
hard. Even the incremental version of P can be much harder than P itself. As an example,
it has been shown in [22], that the incremental shortest path problem for the element ex-
clusion neighborhood (1.13) is NP-hard and hard to approximate. On the other hand, the
incremental shortest path problem with the element inclusion neighborhood (1.12) is poly-
nomially solvable [22]. The incremental minimum assignment problem is equivalent to the
minimum exact matching problem, for which no polynomial time algorithm is known [22].
In turn the incremental selection problem can be solved efficiently [47]. This problem
posses a matroidal structure, its set of feasible solutions Φ is composed of all bases of an
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1. Formal model, notation, definitions and complexity

uniform matroid [61]. Notice that matroidal problems have the equal cardinality property,
as each matroid base has the same number of elements. Still, the recoverable version of
the shortest path problem is NP-hard and hard to approximate for both element inclusion
and element exclusion neighborhoods [14, 22].

Let us take a look at the spanning tree problem variants. Şeref et al. in [22] consider
incremental spanning tree (denoted by Inc ST). In this problem we are given an initial
spanning tree X and we seek a spanning tree Y ∈ Φk

X whose total cost is minimal. Note
that this problem is the inner problem for RR ST, where X is fixed and U contains
only one scenario. Authors have shown in [22] that Inc ST for the element inclusion
neighborhood (1.12) can be solved in strongly polynomial time by applying the Lagrangian
relaxation technique. Authors also demonstrate several interesting practical applications
of the incremental network optimization.

As for the robust recoverable spanning tree problem (denoted by RR ST), its complexity
depends on the way scenario set U is defined. For discrete scenario representation UD (1.3)
the problem is known to be NP-hard even for two scenarios, K = 2, and any constant
recovery parameter k ∈ {0, . . . , n − 1} [44]. Furthermore, it becomes strongly NP-hard
and not at all approximable when both K and k are both part of the input [44]. On the
other hand, complexity of RR ST with scenario set U I is open up to this moment and no
strongly polynomial time combinatorial algorithm for Rec ST has been known.

Let us consider interval uncertainty representation (1.4). In [13] a polynomial algorithm
for the recoverable robust matroid basis problem under scenario set U I was constructed,
provided that the recovery parameter k is constant. In consequence, RR ST under U I is
also polynomially solvable for constant k. Unfortunately, the algorithm proposed in [13] is
exponential in k. Interestingly, the corresponding recoverable robust version of the shortest
path problem (Φ is replaced with the set of all s − t paths in G) has been proven to be
strongly NP-hard and not at all approximable even if k = 2 [14]. The problem RR ST
for scenario set U I1 (Γ) is known to be strongly NP-hard when Γ is a part of input [58]. In
fact, the inner adversarial problem Adv ST is already strongly NP-hard (it is equivalent
to the problem of finding Γ most vital edges) [28, 54, 58]. Interestingly, the corresponding
Min-Max ST problem with U I1 (Γ) is polynomially solvable [8].

Consider now the problem RR P under the uncertainty set U I2 (Γ) (see (1.6)). Obvi-
ously, this problem is not easier than Rec P . That is why it is useful to characterize its
the complexity when the underlying recoverable problem is polynomially solvable. It has
been shown that RR P is polynomially solvable under U I2 (Γ), when P is the selection prob-
lem [18]. However, the complexity of RR P under U I2 (Γ) for other matroidal problems, in
particular for the minimum spanning tree, remains open. Even though the corresponding
evaluation problem can be solved in polynomial time [58].

Table 1.1 contains a compilation of the known complexity results for basic, polynomially
solvable, problems P with comparison to their corresponding incremental, recoverable,
evaluation and recoverable robust versions under different uncertainty sets.

Under UD, |UD| = K, the evaluation problem has the same complexity as the incre-
mental problem, because it reduces to solving K incremental problems Inc P for each
S ∈ U . The single-stage robust min-max problem under discrete uncertainty representa-
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Table 1.1: Summary of complexity results for basic problems P : SEL - the selection
problem, ST - the minimum spanning tree problem, SPI - the shortest path problem with
the element inclusion neighborhood, SPE - the shortest path problem with the element
exclusion neighborhood; P - polynomially solvable, H - NP-hard.

UI1 (Γ) UI2 (Γ) UD
P Inc Rec Eval RR Eval RR Eval RR
SEL P [47] P [47] P [18] ? P [18] P [18] P [47] H [3, 47]
ST P [22] ? H [54, 58] H [54, 58] P [58] ? P [22] H [50]
SPI P [22] H [14] H [14, 4, 58] H [14, 4, 58] P [58] H [14] P [22] H [14, 50]
SPE H [22] H [22] H [22] H [22] H [22] H [22] H [22] H [22]

tion has been extensively discussed and all the negative results obtained in this area (see,
e.g., [3, 50]) remain valid for RR P . All the negative results presented in Table 1.1 remain
true even if K = 2. Observe that the complexity of the RR P version of the selection
problem under U I1 (Γ) and the minimum spanning tree problem under U I2 (Γ) is not known.
The complexity of the selection problem under U I3 (Γ) (1.7) is not known. However, the
problem is NP-hard when the uncertainty set is any polyhedron. It is enough to observe
that the single-stage robust min-max problem for two scenarios S1 and S2 is equivalent
to the single-stage robust min-max problem under U ′ = conv{S1, S2} (see Definition 1.2)
and the former problem is known to be NP-hard [3]. But, it is not clear that U ′ can be
represented as (1.7).

1.4 Additional definitions

In this section we will provide some important definitions useful in this thesis

Definition 1.1 (Linear span). Let V be a vector space over some field K. The elements of
V are called vectors and elements of K are called scalars. Then for vectors xxx1, . . . ,xxxn ∈ V
and scalars α1, . . . , αn ∈ K the linear combination of those vectors with those scalars as
coefficients is defined by:

n∑
i=1

αixxxi.

A linear span of a set of vectors xxx1, . . . ,xxxn is a set of all finite linear combinations of those
vectors:

span({xxx1, . . . ,xxxn}) = {
n∑
i=1

αixxxi : αi ∈ K}.

Definition 1.2 (Convex hull). Given xxx1, . . . ,xxxn from a real vector space V. A convex
combination of those vectors with the real numbers α1, . . . , αn is defined by

n∑
i=1

αixxxi,

11



1. Formal model, notation, definitions and complexity

where αi ≥ 0 and α1 + α2 + · · ·+ αn = 1.
A convex hull of a set of vectors xxx1, . . . ,xxxn is a set of all convex combinations of those

vectors:

conv({xxx1, . . . ,xxxn}) = {
n∑
i=1

αixxxi : αi ≥ 0, α1 + · · ·+ αn = 1, αi ∈ R}.

Definition 1.3 (Approximation algorithm). An α-approximation algorithm for minimiza-
tion problem is a polynomial-time algorithm that for all instances of the problem produces
a solution whose value is within a factor of α of the value of an optimal solution (see [67]).

Parameter α is called approximation ratio or a performance guarantee of an algorithm.

Definition 1.4 (Laminar family). Given a set V , then a collection of subsets of set V ,
L ⊆ 2V is called laminar if no two sets A, B ∈ L are intersecting, i.e., when at least one
of the sets A ∩B or A \B or B \ A is empty (see, e.g., [51]).

Definition 1.5 (Vertex solution). Let Φ = {xxx : AAAxxx = bbb, xxx ≥ 0} ⊆ Rn. Then xxx ∈ Rn is a
vertex solution (or extreme point solution) of Φ if there does not exist a non-zero vector
yyy ∈ Rn such that x+ yx+ yx+ y, x− yx− yx− y ∈ Φ (see, e.g., [51]).

Vertex solutions can be seen as corner points of the set of feasible solutions.

Definition 1.6 (Matroid). A matroid M is an ordered pair (E, I) consisting of a finite
set E, called ground set, and a collection I of subsets of E satisfying conditions (see,
e.g., [60]):

i. ∅ ∈ I,

ii. if I ∈ I and I ′ ⊆ I, then I ′ ∈ I,

iii. If I1, I2 ∈ I and |I1| < |I2|, then there is an element e of I2\I1 such that I1∪{e} ∈ I.

The elements of I are called independent sets of matroid M .
A rank function of M , rM : 2E → Z≥0, is defined by rM(U) = maxW⊆U,W∈I |W |.
A basis of M is a maximal under inclusion element of I.
The following operations can be defined on a matroid M :

• Deletion e from M , M\e = (EM\e, IM\e), is a matroid obtained by deleting e ∈ E
from M defined by EM\e = E \ {e} and IM\e = {U ⊆ E \ {e} : U ∈ I}.
The rank function of M\e is given by rM\e(U) = rM(U) for all U ⊆ E \ {e}.

• Contraction e fromM , M/e = (EM/e, IM/e), is a matroid obtained by contracting e ∈
E in M , defined by EM/e = E \ {e}; and IM/e = {U ⊆ E \ {e} : U ∪{e} ∈ I} if {e}
is independent and IM/e = I, otherwise.
The rank function ofM/e is given by rM/e(U) = rM(U)−rM({e}) for all U ⊆ E\{e}.
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Definition 1.7 (Fully Polynomial Time Approximation Scheme (FPTAS)). An algorithm
A is an FPTAS for an optimization problem P, if for a given input I for a problem P and
ε > 0, algorithm A finds in time polynomial of the size of input I and of 1

ε
, a solution S

for an the input I that satisfies

(f ∗(I)− f(S)) ≤ εf ∗(I),

where f(S) is a value of the solution S and f ∗(I) is the optimal value of a solution for the
input I (see, e.g., [66]).

Definition 1.8 (Integral polyhedron). A polyhedron P = {xxx ∈ Rn : AAAxxx ≤ bbb} is an
integral polyhedron if arg minxxx∈P ccc

Txxx has integer components for every ccc ∈ Rn (see, e.g.,
[1]).

Definition 1.9 (Unimodularity). A square integer matrix M is called unimodular if its
determinant is equal to +1 or -1.

A matrix M is called a totally unimodular if every its square non-singular submatrix is
unimodular. Equivalently, a matrix M is totally unimodular if every square submatrix has
determinant -1, 0 or +1. Note that in this case matrix M is not required to be square (see,
e.g., [61]).
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Chapter 2

The recoverable robust spanning tree
problem

2.1 Introduction

This chapter begins a main part of the thesis. In this chapter we investigate in it the
recoverable robust version of the minimum spanning tree problem (RR ST). Deterministic
version of this problem is thoroughly researched and can be solved in polynomial time by
several well known algorithms (see, e.g., [1, 61]).

The RR ST problem has been previously discussed in a number of papers [13, 14, 15, 17,
53, 58]. It is a special case of the robust spanning tree problem with incremental recourse
considered in [58]. Furthermore, if k = 0 and Ce = 0 for each e ∈ E, then the problem is
equivalent to the robust min-max spanning tree problem investigated in [45, 50].

Let us recall that the complexity of the RR ST with the interval uncertainty representa-
tion U I under the element inclusion neighborhood (1.12) is open to date (see Section 1.3).
First, we will show that RR ST for scenario set U I is polynomially solvable (see Sec-
tion 2.2). We will apply a technique called the iterative relaxation, whose framework was
described in [51]. The idea is to construct a linear programming relaxation of the prob-
lem and show that at least one variable in each optimum vertex solution is integer. Such
a variable allows us to add an edge to the partial spanning tree solution being built and
recursively solve the relaxation of the smaller problem. This technique, however, does not
imply directly a strongly polynomial algorithm for RR ST, since it requires the solution
of a linear program. This issue will be addressed in the second part of the chapter.

In the second part of the chapter we first consider a recoverable spanning tree problem
(Rec ST). Recall that Rec ST is a generalization of the incremental spanning tree problem
(Inc ST). Note that Inc ST can be seen as the Rec ST problem with a fixed first stage
spanning tree, whereas in Rec ST both the first and the second stage trees are unknown.
Şeref et al. have shown in [22] that Inc ST can be solved in strongly polynomial time by
applying the Lagrangian relaxation technique. Authors also demonstrate in [22] several
interesting practical applications of the incremental network optimization. On the other
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hand, no strongly polynomial time combinatorial algorithm for Rec ST is known to exist
to date. Thus the design of such such an algorithm for this problem is one of the main
results of this chapter. We will also apply this algorithm for solving RR ST under scenario
set U I in strongly polynomial time. Moreover, we will show how the algorithm for Rec
ST can be used to obtain several approximation results for RR ST under scenario sets
U I1 (Γ) and U I2 (Γ).

The recoverable spanning tree problem can be generalized by considering its robust
version. We are given a connected undirected graph G = (V,E), where |V | = n and
|E| = m. Recall the definition of RR P (1.19) from Section 1.2.4. Here Φ is a set of all
spanning trees of G. Hence, the problem RR ST can be formally stated as follows:

RR ST : min
X∈Φ

(∑
e∈X

Ce + max
S∈U

min
Y ∈ΦkX

∑
e∈Y

cSe

)
. (2.1)

Note that Φk
X can be seen as a neighborhood of X containing all spanning trees which can

be obtained from X by exchanging up to k edges (see (1.12) and (1.13)).
If Ce = 0 for each e ∈ E and k = 0, then RR ST is equivalent to the following min-max

spanning tree problem (1.8), examined in [2, 50, 45], in which we seek a spanning tree that
minimizes the largest cost over all scenarios:

Min-Max ST : min
X∈Φ

max
S∈U

∑
e∈X

cSe . (2.2)

If Ce = 0 for each e ∈ E and k = n−1, then RR ST becomes the following adversarial
problem [58] (see (1.21)) in which an adversary wants to find a scenario which leads to the
greatest increase in the cost of the minimum spanning tree:

Adv ST : max
S∈U

min
Y ∈Φ

∑
e∈Y

cSe . (2.3)

It is worthwhile to mention that Min-Max ST under discrete scenario uncertainty
representation UD is NP hard even when K = 2 and becomes strongly NP-hard and not
approximable within O(log1−ε n) for any ε > 0 unless NP ⊆ DTIME(npoly logn), when K is
a part of input [50, 45]. It admits an FPTAS (see Definition 1.7), when K is a constant [2]
and is approximable within O(log2 n), when K is a part of the input [45]. The Adv ST
problem, under scenario set UD, is polynomially solvable, since it boils down to solving K
traditional minimum spanning tree problems.

Recall that for the computational complexity of RR ST for scenario set U I2 (Γ) is still
open. We only know that its special cases, namely Min-Max ST and Adv ST, are
polynomially solvable [58].

2.2 Recoverable robust spanning tree problem

In this section we will use the iterative relaxation method [51] to construct a polynomial
algorithm for RR ST under scenario set U I . Notice that in this case, the formulation (2.1)
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can be rewritten as follows:

RR ST : min
X∈Φ

(∑
e∈X

Ce + min
Y ∈ΦkX

∑
e∈Y

(ce + de)

)
. (2.4)

In the recoverable spanning tree problem (2.4) we need to find a pair of spanning trees
X ∈ Φ and Y ∈ Φk

X . Since |X| = |Y | = |V | − 1, the problem (2.4) is equivalent the
following mathematical programming problem:

min
∑

e∈X Ce +
∑

e∈Y (ce + de)
s.t. |X ∩ Y | ≥ |V | − 1− k,

X, Y ∈ Φ.
(2.5)

Let VX and VY be subsets of vertices V , and EX and EY be subsets of edges E, which
induce connected graphs (multigraphs) GX = (VX , EX) and GY = (VY , EY ), respectively.
Let EZ be a subset of E such that EZ ⊆ EX ∪EY and |EZ | ≥ L for some fixed integer L.
We will use EX(U) (resp. EY (U)) to denote the set of edges that has both endpoints in
a given subset of vertices U ⊆ VX (resp. U ⊆ VY ).

Let us consider the following linear program that we will substantially use in the algo-
rithm for RR ST, denoted by LPRRST (EX , VX , EY , VY , EZ , L):

min
∑
e∈EX

Cexe +
∑
e∈EY

(ce + de)ye (2.6)

s.t.
∑
e∈EX

xe = |VX | − 1, (2.7)∑
e∈EX(U)

xe ≤ |U | − 1, ∀U ⊂ VX , (2.8)

−xe + ze ≤ 0, ∀e ∈ EX ∩ EZ , (2.9)∑
e∈EZ

ze = L, (2.10)

ze − ye ≤ 0, ∀e ∈ EY ∩ EZ , (2.11)∑
e∈EY

ye = |VY | − 1, (2.12)∑
e∈EY (U)

ye ≤ |U | − 1, ∀U ⊂ VY , (2.13)

xe ≥ 0, ∀e ∈ EX , (2.14)
ze ≥ 0, ∀e ∈ EZ , (2.15)
ye ≥ 0, ∀e ∈ EY . (2.16)

The one can observe that we can fix EX = EZ = EY = E, VX = VY = V , L = |V | − 1− k,
then the linear program LPRRST (EX , VX , EY , VY , EZ , L) becomes a linear programming re-
laxation of (2.5). Indeed, the binary variables xe, ye, ze ∈ {0, 1} indicate then the spanning
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trees X and Y and their common part X∩Y , respectively. Moreover, the constraint (2.10)
takes the form of equality, instead of the inequality, since the variables ze, e ∈ EZ , are
not present in the objective function (2.6). Problem LPRRST (EX , VX , EY , VY , EZ , L) has
exponentially many constraints. However, the constraints (2.7), (2.8) and (2.12), (2.13)
are the spanning tree ones for graphs GX = (VX , EX) and GY = (VY , EY ), respectively.
Fortunately, there exists a polynomial time separation oracle over such constraints [56].
Clearly, separating over the remaining constraints, i.e., (2.9), (2.10) and (2.11) can be
done in a polynomial time. In consequence, an optimal vertex solution to the problem can
be found in polynomial time. It is also worth noting that, alternatively, one may rewrite
the spanning tree constraints: (2.7), (2.8) and (2.12), (2.13) in an equivalent “compact”
form, with polynomial number of variables and constraints, that can be more attractive
from the computational point of view (see, for instance, the directed multicommodity flow
model [56]). However, throughout this section will use the model (2.6)-(2.16), since it is
easier to use for proving the properties of LPRRST (EX , VX , EY , VY , EZ , L).

Let us focus now on a vertex solution (xxx,zzz,yyy) ∈ R|EX |×|EZ |×|EY |≥0 of the linear program-
ming problem LPRRST (EX , VX , EY , VY , EZ , L). If EZ = ∅, than the only constraints being
left in (2.6)-(2.16) are the spanning tree constraints. Thus xxx and yyy are 0-1 incidence vectors
of the spanning trees X and Y , respectively (see [56, Theorem 3.2]).

We now turn to the more advanced case, when EX 6= ∅, EY 6= ∅ and EZ 6= ∅. We first
reduce the sets EX , EY and EZ by removing all edges e with xe = 0, or ye = 0, or ze = 0.
Removing these edges does not change the feasibility and the cost of the vertex solution
(xxx,zzz,yyy). Note that VX and VY remain unaffected. From now on, we can assume that the
variables corresponding to all edges from EX , EY and EZ are positive, i.e., xe > 0, e ∈ EX ,
ye > 0, e ∈ EY and ze > 0, e ∈ EZ . Hence the constraints (2.14), (2.15) and (2.16) are not
taken into account, since they are not tight with respect to (xxx,zzz,yyy). It is possible, after
reducing EX , EY , and EZ , to characterize (xxx,zzz,yyy) by |EX |+ |EZ |+ |EY | constraints that
are linearly independent and tight with respect to (xxx,zzz,yyy).

Let F(xxx) and F(yyy) defined in the following way:

F(xxx) = {U ⊆ VX :
∑

e∈EX(U)

xe = |U | − 1},

F(yyy) = {U ⊆ VY :
∑

e∈EY (U)

ye = |U | − 1}

stand for the sets of subsets of nodes that indicate the tight constraints (2.7), (2.8) and
(2.12), (2.13) for xxx and yyy, respectively. Similarly we define the sets of edges, E(xxx,zzz) and
E(zzz,yyy) that indicate the tight constraints (2.9) and (2.11) with respect to (xxx,zzz,yyy):

E(xxx,zzz) = {e ∈ EX ∩ EZ : −xe + ze = 0},

E(zzz,yyy) = {e ∈ EY ∩ EZ : ze − ye = 0}.
Let χX(W ), W ⊆ EX denote the characteristic vector in {0, 1}|EX | × {0}|EZ | × {0}|EY |

that has 1 if e ∈ W and 0 otherwise. In a similar manner we denote by χZ(W ), W ⊆ EZ
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and χY (W ), W ⊆ EY the characteristic vectors in {0}|EX | × {0, 1}|EZ | × {0}|EY | and
{0}|EX | × {0}|EZ | × {0, 1}|EY | respectively, both having 1 if e ∈ W and 0 otherwise.

Observe that the number of subsets in F(xxx) and F(yyy) can be exponential. Let L(xxx)
(resp. L(yyy)) be a maximal laminar subfamily of F(xxx) (resp. F(yyy)) (see Definition 1.4).
The following lemma is an extension of [51, Lemma 4.1.5] It allows us to select certain
subsets that indicate linearly independent tight constraints from F(xxx) and F(yyy). In the
following lemma span denotes a linear span (see Definition 1.1).

Lemma 2.1. For L(xxx) and L(yyy) the following equalities hold:

span({χX(EX(U)) : U ∈ L(xxx)}) = span({χX(EX(U)) : U ∈ F(xxx)}),
span({χY (EY (U)) : U ∈ L(yyy)}) = span({χY (EY (U)) : U ∈ F(yyy)}).

Proof. The proof is the same as that for the spanning tree in [51, Lemma 4.1.5].

A trivial verification shows that the following observation is true:

Observation 2.1. VX ∈ L(xxx) and VY ∈ L(yyy).

We are now ready to give a characterization of a vertex solution.

Lemma 2.2. Let (xxx,zzz,yyy) be a vertex solution of LPRRST (EX , VX , EY , VY , EZ , L) such that
xe > 0, e ∈ EX , ye > 0, e ∈ EY and ze > 0, e ∈ EZ. Then there exist laminar families
L(xxx) 6= ∅ and L(yyy) 6= ∅ and subsets E(xxx,zzz) ⊆ E(xxx,zzz) and E(zzz,yyy) ⊆ E(zzz,yyy) that must
satisfy the following:

(i) |EX |+ |EZ |+ |EY | = |L(xxx)|+ |E(xxx,zzz)|+ |E(zzz,yyy)|+ |L(yyy)|+ 1,

(ii) the vectors in {χX(EX(U)) : U ∈ L(xxx)} ∪ {χY (EY (U)) : U ∈ L(yyy)} ∪ {−χX({e}) +
χZ({e}) : e ∈ E(xxx,zzz)}∪ {χZ({e})−χY ({e}) : e ∈ E(zzz,yyy)}∪ {χZ(EZ)} are linearly
independent.

Proof. The vertex (xxx,zzz,yyy) can be uniquely characterized by any set of linearly independent
constraints with the cardinality of |EX |+ |EZ |+ |EY |, chosen from among the constraints
(2.7)-(2.13), tight with respect to (xxx,zzz,yyy). We construct such set by choosing a maximal
subset of linearly independent tight constraints that characterizes (xxx,zzz,yyy). Lemma 2.1
shows that there exist maximal laminar subfamilies L(xxx) ⊆ F(xxx) and L(yyy) ⊆ F(yyy) such
that

span({χX(EX(U)) : U ∈ L(xxx)}) = span({χX(EX(U)) : U ∈ F(xxx)})

and
span({χY (EY (U)) : U ∈ L(yyy)}) = span({χY (EY (U)) : U ∈ F(yyy)})).
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Observation 2.1 implies L(xxx) 6= ∅ and L(yyy) 6= ∅. Moreover, it is evident that

span({χX(EX(U)) : U ∈ L(xxx)} ∪ {χY (EY (U)) : U ∈ L(yyy)})
= span({χX(EX(U)) : U ∈ F(xxx)} ∪ {χY (EY (U)) : U ∈ F(yyy)}).

Thus L(xxx) ∪ L(yyy) indicate certain linearly independent tight constraints that have been
already included in the set constructed. We add (2.10) to the set constructed. Obviously, it
still consists of linearly independent constraints. We complete forming the set by choosing
a maximal number of tight constraints from among the ones (2.9) and (2.11), such that they
form a linearly independent set with the constraints previously selected. We characterize
these constraints by the sets of edges E(xxx,zzz) ⊆ E(xxx,zzz) and E(zzz,yyy) ⊆ E(zzz,yyy). Therefore,
the vectors in {χX(EX(U)) : U ∈ L(xxx)} ∪ {χY (EY (U)) : U ∈ L(yyy)} ∪ {−χX({e}) +
χZ({e}) : e ∈ E(xxx,zzz)} ∪ {χZ({e}) − χY ({e}) : e ∈ E(zzz,yyy)} ∪ {χZ(EZ)} are linearly
independent and represent the constructed maximal set of independent tight constraints,
with the cardinality of |L(xxx)| + |E(xxx,zzz)| + |E(zzz,yyy)| + |L(yyy)| + 1, that uniquely describe
(xxx,zzz,yyy). Hence |EX | + |EZ | + |EY | = |L(xxx)| + |E(xxx,zzz)| + |E(zzz,yyy)| + |L(yyy)| + 1, which
establishes the lemma.

Lemma 2.3. Let (xxx,zzz,yyy) be a vertex solution of LPRRST (EX , VX , EY , VY , EZ , L) such that
xe > 0, e ∈ EX , ye > 0, e ∈ EY and ze > 0, e ∈ EZ. Then there is an edge e′ ∈ EX with
xe′ = 1 or an edge e′′ ∈ EY with ye′′ = 1.

Proof. On the contrary, suppose that 0 < xe < 1 for every e ∈ EX and 0 < ye < 1 for every
e ∈ EY . Constraints (2.9) and (2.11) lead to 0 < ze < 1 for every e ∈ EZ . By Lemma 2.2,
there exist laminar families L(xxx) 6= ∅ and L(yyy) 6= ∅ and subsets E(xxx,zzz) ⊆ E(xxx,zzz) and
E(zzz,yyy) ⊆ E(zzz,yyy) indicating linearly independent constraints which uniquely define (xxx,zzz,yyy),
namely ∑

e∈EX(U)

xe = |U | − 1, ∀U ∈ L(xxx), (2.17)

−xe + ze = 0, ∀e ∈ E(xxx,zzz), (2.18)∑
e∈EZ

ze = L, (2.19)

ze − ye = 0, ∀e ∈ E(zzz,yyy), (2.20)∑
e∈EY (U)

ye = |U | − 1, ∀U ∈ L(yyy). (2.21)

We will arrive to a contradiction with Lemma 2.2(i) by applying a token counting argument,
frequently used in [51].

We give exactly two tokens to each edge in EX , EZ and EY . Thus we use 2|EX | +
2|EZ | + 2|EY | tokens. We then redistribute these tokens to the tight constraints (2.17)-
(2.21) as follows. For e ∈ EX the first token is assigned to the constraint indicated by
the smallest set U ∈ L(xxx) containing its two endpoints (see (2.17)) and the second one

20



2.2. Recoverable robust spanning tree problem

is assigned to the constraint represented by e (see (2.18)) if e ∈ E(xxx,zzz). Similarly, for
e ∈ EY the first token is assigned to the constraint indicated by the smallest set U ∈ L(yyy)
containing its both endpoints (see (2.21)) and the second one is assigned to the constraint
represented by e (see (2.20)) if e ∈ E(zzz,yyy). Each e ∈ EZ assigns the first token to the
constraint corresponding to e (see (2.18)) if e ∈ E(xxx,zzz); otherwise to the constraint (2.19).
The second token is assigned to the constraint indicated by e (see (2.20)) if e ∈ E(zzz,yyy).

Claim 2.1. Each of the constraints (2.18) and (2.20) receives exactly two tokens. Each of
the constraints (2.17) and (2.21) collects at least two tokens.

The first part of Claim 2.1 is obvious. In order to show the second part we apply the
same reasoning as [51, Proof of Lemma 4.2.1]. Consider the constraint represented by any
subset U ∈ L(xxx). We say that U is the parent of a subset C ∈ L(xxx) and C is the child of U
if U is the smallest set containing C. Let C1, . . . , C` be the children of U . The constraints
corresponding to these subsets are as follows∑

e∈EX(U)

xe = |U | − 1, (2.22)

∑
e∈EX(Ck)

xe = |Ck| − 1, ∀k ∈ [`]. (2.23)

Subtracting (2.23) for every k ∈ [`] from (2.22) yields:∑
e∈EX(U)\

⋃
k∈[`] EX(Ck)

xe = |U | −
∑
k∈[`]

|Ck|+ `− 1. (2.24)

Equation (2.24) holds, since the sets C1, . . . , C` are the children of U and all these sets are
in laminar family L(xxx). Observe that

EX(U) \
⋃
k∈[`]

EX(Ck) 6= ∅.

Otherwise, this leads to a contradiction with the linear independence of the constraints.
Since the right hand side of (2.24) is integer and 0 < xe < 1 for every e ∈ EX ,

|EX(U) \
⋃
k∈[`]

EX(Ck)| ≥ 2.

Hence U receives at least two tokens. The same arguments apply to the constraint repre-
sented by any subset U ∈ L(yyy). This proves the claim.

Claim 2.2. Either constraint (2.19) collects at least one token and there are at least two
extra tokens left or constraint (2.19) receives no token and there are at least three extra
tokens left.

To prove the claim we need to consider several nested cases:
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1. Case: EZ \ E(xxx,zzz) 6= ∅. Since EZ \ E(xxx,zzz) 6= ∅, at least one token is assigned to
constraint (2.19). We have yet to show that there are at least two token left.

(a) Case: EZ \ E(zzz,yyy) = ∅. Subtracting (2.20) for every e ∈ E(zzz,yyy) from (2.19)
gives: ∑

e∈E(zzz,yyy)

ye = L. (2.25)

i. Case: EY \ E(zzz,yyy) = ∅. Thus L = |VY | − 1, since (xxx,zzz,yyy) is a feasi-
ble solution. By Observation 2.1, VY ∈ L(yyy) and (2.25) has the form of
constraint (2.21) for VY , which contradicts the linear independence of the
constraints.

ii. Case: EY \ E(zzz,yyy) 6= ∅. Thus L < |VY | − 1. Since the right hand side of
(2.25) is integer and 0 < ye < 1 for every e ∈ EY , |EY \E(zzz,yyy)| ≥ 2. Hence,
there are at least two extra tokens left.

(b) Case: EZ \ E(zzz,yyy) 6= ∅. Consequently, |EZ \ E(zzz,yyy)| ≥ 1 and thus at least
one token left over, i.e at least one token is not assigned to constraints (2.20).
Therefore, yet one additional token is required.

i. Case: EY \E(zzz,yyy) = ∅. Consider the constraint (2.21) corresponding to VY .
Adding (2.20) for every e ∈ E(zzz,yyy) to this constraint yields:∑

e∈E(zzz,yyy)

ze = |VY | − 1. (2.26)

Obviously |VY |−1 < L. Since L is integer and 0 < ze < 1 for every e ∈ EZ ,
|EZ \ E(zzz,yyy)| ≥ 2. Hence there are at least two extra tokens left.

ii. Case: EY \ E(zzz,yyy) 6= ∅. One can see immediately that at least one token
left over, i.e at least one token is not assigned to constraints (2.20).

Summarizing the above cases, constraint (2.19) collects at least one token and there
are at least two extra tokens left.

2. Case: EZ \ E(xxx,zzz) = ∅. Subtracting (2.18) for every e ∈ E(xxx,zzz) from (2.19) gives:∑
e∈E(xxx,zzz)

xe = L. (2.27)

Thus constraint (2.19) receives no token. We yet need to show that there are at least
three extra tokens left.

(a) Case: EX \E(xxx,zzz) = ∅. Therefore L = |VX |− 1, since (xxx,zzz,yyy) is a feasible solu-
tion. By Observation 2.1, VX ∈ L(xxx) and (2.27) has the form of constraint (2.17)
for VX , which contradicts with the linear independence of the constraints.
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(b) Case: EX \ E(xxx,zzz) 6= ∅ Thus L < |VX | − 1. Since the right hand side of (2.27)
is integer and 0 < xe < 1 for every e ∈ EX , |EX \ E(xxx,zzz)| ≥ 2. Consequently,
there are at least two extra tokens left. Yet at least one token is required.

i. Case: EZ \ E(zzz,yyy) = ∅. Reasoning is the same as in Case 1a.
ii. Case: EZ \ E(zzz,yyy) 6= ∅. Reasoning is the same as in Case 1b.

Accordingly, constraint (2.19) receives no token and there are at least three extra
tokens left.

Thus the claim is proved. The method of assigning tokens to constraints (2.17)-(2.21) and
Claims 2.1 and 2.2 now show that either

2|EX |+ 2|EZ |+ 2|EY | − 2 ≥ 2|L(xxx)|+ 2|E(xxx,zzz)|+ 2|E(zzz,yyy)|+ 2|L(yyy)|+ 1

or
2|EX |+ 2|EZ |+ 2|EY | − 3 ≥ 2|L(xxx)|+ 2|E(xxx,zzz)|+ 2|E(zzz,yyy)|+ 2|L(yyy)|.

The above inequalities lead to |EX |+|EZ |+|EY | > |L(xxx)|+|E(xxx,zzz)|+|E(zzz,yyy)|+|L(yyy)|+1.
This contradicts Lemma 2.2(i).

It remains to verify two cases: EX = ∅ and |VX | = 1; EY = ∅ and |VY | = 1. We
consider only the first one, because the second case is symmetrical. The constraints (2.10),
(2.11) and the inclusion EZ ⊆ EY yield∑

e∈EZ

ye ≥ L. (2.28)

Lemma 2.4. Let yyy be a vertex solution of linear program: (2.6), (2.12), (2.13), (2.16) and
(2.28) such that ye > 0, e ∈ EY . Then there is an edge e′ ∈ EY with ye′ = 1. Moreover,
using yyy one can construct a vertex solution of LPRRST (∅, VX , EY , VY , EZ , L) with ye′ = 1
and the cost of yyy.

Proof. Similarly as in the proof Lemma 2.2, we construct a maximal subset of linearly
independent tight constraints that characterize yyy and get: |EY | = |L(yyy)| if (2.28) is not
tight or adding (2.28) makes the subset dependent; |EY | = |L(yyy)| + 1 otherwise. In the
first case the spanning tree constraints define yyy and, in consequence, yyy is integral (see [56,
Theorem 3.2]). Consider the second case and assume, on the contrary, that 0 < ye < 1 for
each e ∈ EY . Thus ∑

e∈EZ

ye = L, (2.29)∑
e∈EY (U)

ye = |U | − 1, ∀U ∈ L(yyy). (2.30)

We assign two tokens to each edge in EY and redistribute 2|EY | tokens to constraints
(2.29) and (2.30) in the following way. The first token is given to the constraint indicated
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by the smallest set U ∈ L(yyy) containing its two endpoints and the second one is assigned
to (2.29). Since 0 < ye < 1 and L is integer, similarly as in the proof Lemma 2.3, one
can show that each of the constraints (2.30) and (2.29) receives at least two tokens. If
EY \ EZ = ∅ then L = |VY | − 1, since yyy is a feasible solution - a contradiction with the
linear independence of the constraints. Otherwise (EY \EZ 6= ∅), at least one token is left.
Hence 2|EY | − 1 = 2|L(yyy)|+ 2 and so |EY | > |L(yyy)|+ 1, a contradiction.

By (2.28) and the fact that there are no variables ze, e ∈ EZ , in the objective (2.6), it
is obvious that using yyy one can construct zzz satisfying (2.10) and, in consequence, a vertex
solution of LPRRST (∅, VX , EY , VY , EZ , L) with ye′ = 1 and the cost of yyy.

Algorithm 2.1 Algorithm for RR ST
EX ← E, EY ← E, EZ ← E, VX ← V , VY ← V , L← |V | − 1− k, X ← ∅, Y ← ∅, Z ← ∅

2: while |VX | ≥ 2 or |VY | ≥ 2 do
Find an optimal vertex solution (xxx∗, zzz∗, yyy∗) of LPRRST (EX , VX , EY , VY , EZ , L)

4: for all e ∈ EZ with z∗e = 0 do EZ ← EZ \ {e}
end for

6: for all e ∈ EX with x∗e = 0 do EX ← EX \ {e}
end for

8: for all e ∈ EY with y∗e = 0 do EY ← EY \ {e}
end for

10: if there exists edge e′ ∈ EX with x∗e′ = 1 then
X ← X ∪ {e′}

12: contract edge e′ = {u, v} by deleting e and identifying its endpoints u and v in graph
GX = (VX , EX), induced by VX and EX , which is equivalent to: |VX | ← |VX | − 1

14: and EX ← EX \ {e′}
end if

16: if there exists edge e′ ∈ EX with y∗e′ = 1 then
Y ← Y ∪ {e′}

18: contract edge e′ = {u, v} by deleting e and identifying its endpoints u and v in graph
GY = (VY , EY ), induced by VY and EY , which is equivalent to: |VY | ← |VY | − 1

20: and EY ← EY \ {e′}
end if

22: if there exists edge e′ ∈ EZ such that e′ ∈ X ∩ Y then
Z ← Z ∪ {e′}

24: L← L− 1
EZ ← EZ \ {e′}

26: end if
return X, Y , Z

28: end while

We are now ready to give the main result of this section.

Theorem 2.1. Algorithm 2.1 solves RR ST in polynomial time.

Proof. Lemmas 2.3 and 2.4 and the case when EZ = ∅ (see the comments in this section)
ensure that Algorithm 2.1 terminates after performing O(|V |) iterations (Steps 3-25). Let
OPTLP denote the optimal objective function value of LPRRST (EX , VX , EY , VY , EZ , L),
where EX = EZ = EY = E, VX = VY = V , L = |V |−1−k. Hence OPTLP is a lower bound
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on the optimal objective value of RR ST. It is not difficult to show that after the termination
of the algorithm X and Y are two spanning trees in G such that

∑
e∈X Ce+

∑
e∈Y (ce+de) ≤

OPTLP. It remains to show that |X ∩ Y | ≥ |V | − k − 1. By induction on the number
of iterations of Algorithm 2.1 one can easily show that at any iteration the inequality
L + |Z| = |V | − 1 − k is satisfied. Accordingly, if, after the termination of the algorithm,
L = 0 holds, then we are done. Suppose, on the contrary that L ≥ 1 (L is integer). Since∑

e∈EZ z
∗
e ≥ L, |EZ | ≥ L ≥ 1 and EZ is the set with edges not belonging to X ∩ Y .

Consider any e′ ∈ EZ . Of course z∗e′ > 0 and it remained positive during the course of
Algorithm 2.1. Moreover, at least one of the constraints −xe′ + ze′ ≤ 0 or ze′ − ye′ ≤ 0
is still present in the linear program (2.6)-(2.16). Otherwise, since z∗e′ > 0, Steps 10-14,
Steps 16-20 and, in consequence, Steps 22-25 for e′ must have been executed during the
course of Algorithm 2.1 and e′ must have been included to Z, a contradiction with the fact
e′ 6∈ X ∩ Y . Since the above constraints are present, 0 < x∗e′ < 1 or 0 < y∗e′ < 1. Thus
e′ ∈ EX or e′ ∈ EY , which contradicts the termination of Algorithm 2.1.

2.3 Combinatorial algorithm for recoverable spanning
tree problem

In this section we construct a combinatorial algorithm for Rec ST with strongly polynomial
running time. Since |X| = n − 1 for each X ∈ Φ, Rec ST (1.23) is equivalent to the
following mathematical programming problem:

min
∑
e∈X

Ce +
∑
e∈Y

ce

s.t. |X ∩ Y | ≥ L,
X, Y ∈ Φ,

(2.31)

where L = n− 1− k. Problem (2.31) can be expressed as the following MIP model:

Opt = min
∑
e∈E

Cexe +
∑
e∈E

ceye (2.32)

s.t.
∑
e∈E

xe = n− 1, (2.33)∑
e∈E(U)

xe ≤ |U | − 1, ∀U ⊂ V, (2.34)

∑
e∈E

ye = n− 1, (2.35)∑
e∈E(U)

ye ≤ |U | − 1, ∀U ⊂ V, (2.36)

xe − ze ≥ 0, ∀e ∈ E, (2.37)
ye − ze ≥ 0, ∀e ∈ E, (2.38)
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∑
e∈E

ze ≥ L, (2.39)

xe, ye, ze ≥ 0, integer ∀e ∈ E, (2.40)

where E(U) stands for the set of edges that have both endpoints in U ⊆ V . We first
apply the Lagrangian relaxation (see, e.g., [1]) to (2.32)-(2.40) by relaxing the cardinal-
ity constraint (2.39) with a nonnegative multiplier θ. We also relax the integrality con-
straints (2.40). We thus get the following linear program (with the corresponding dual
variables which will be used later):

φ(θ) = min
∑
e∈E

Cexe +
∑
e∈E

ceye − θ
∑
e∈E

ze + θL (2.41)

s.t.
∑
e∈E

xe = n− 1, [µ],

−
∑

e∈E(U)

xe ≥ −(|U | − 1), ∀U ⊂ V, [wU ],

∑
e∈E

ye = n− 1, [ν],

−
∑

e∈E(U)

ye ≥ −(|U | − 1), ∀U ⊂ V, [vU ],

xe − ze ≥ 0, ∀e ∈ E, [αe],

ye − ze ≥ 0, ∀e ∈ E, [βe],

xe, ye, ze ≥ 0, ∀e ∈ E.

For any θ ≥ 0, the Lagrangian function φ(θ) is a lower bound on Opt. It is well-known
that φ(θ) is concave and piecewise linear. By the optimality test (see, e.g., [1]), we obtain
the following theorem:

Theorem 2.2. Let (xe, ye, ze)e∈E be an optimal solution to (2.41) for some θ ≥ 0, feasible
to (2.33)-(2.40) and satisfying the complementary slackness condition θ(

∑
e∈E ze−L) = 0.

Then (xe, ye, ze)e∈E is optimal to (2.32)-(2.40).

Let (X, Y ), X, Y ∈ Φ, be a pair of spanning trees of G (a pair for short). This pair
corresponds to a feasible 0 − 1 solution to (2.41), defined as follows: xe = 1 for e ∈ X,
ye = 1 for e ∈ Y , and ze = 1 for e ∈ X ∩ Y ; the values of the remaining variables are set
to 0. From now on, by a pair (X, Y ) we also mean a feasible solution to (2.41) defined as
above. Given a pair (X, Y ) with the corresponding solution (xe, ye, ze)e∈E, let us define the
partition (EX , EY , EZ , EW ) of the set of the edges E in the following way:

EX = {e ∈ E : xe = 1, ye = 0},
EY = {e ∈ E : ye = 1, xe = 0},
EZ = {e ∈ E : xe = 1, ye = 1},
EW = {e ∈ E : xe = 0, ye = 0}.
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2.3. Combinatorial algorithm for recoverable spanning tree problem

Thus equalities: X = EX∪EZ , Y = EY ∪EZ and EZ = X∩Y hold. Our goal is to establish
some sufficient optimality conditions for a given pair (X, Y ) in the problem (2.41). The
dual to (2.41) has the following form:

φD(θ) = max−
∑
U⊂V

(|U | − 1)wU + (n− 1)µ−
∑
U⊂V

(|U | − 1)vU + (n− 1)ν + θL (2.42)

s.t. −
∑

{U⊂V : e∈E(U)}

wU + µ ≤ Ce − αe, ∀e ∈ E,

−
∑

{U⊂V : e∈E(U)}

vU + ν ≤ ce − βe, ∀e ∈ E,

αe + βe ≥ θ, ∀e ∈ E,
wU , vU ≥ 0, U ⊂ V,

αe, βe ≥ 0, ∀e ∈ E.

Lemma 2.5. The dual problem (2.42) can be rewritten as follows:

φD(θ) = max
{αe≥0,βe≥0 :αe+βe≥θ, e∈E}

(
min
X∈Φ

∑
e∈X

(Ce − αe) + min
Y ∈Φ

∑
e∈Y

(ce − βe)

)
+ θL. (2.43)

Proof. Fix some αe and βe such that αe+βe ≥ θ for each e ∈ E in (2.42). For these constant
values of αe and βe, e ∈ E, using the dual to (2.42), we arrive to minX∈Φ

∑
e∈X(Ce−αe) +

minY ∈Φ

∑
e∈Y (ce − βe) + θL and the lemma follows.

Lemma 2.5 allows us to establish the following result:

Theorem 2.3 (Sufficient pair optimality conditions). A pair of spanning trees (X, Y )
is optimal to (2.41) for a fixed θ ≥ 0 if there exist αe ≥ 0, βe ≥ 0 such that αe + βe = θ
for each e ∈ E and

(i) X is a minimum spanning tree for the costs Ce − αe, Y is a minimum spanning tree
for the costs ce − βe,

(ii) αe = 0 for each e ∈ EX , βe = 0 for each e ∈ EY .

Proof. By the primal-dual relation, the inequality φD(θ) ≤ φ(θ) holds. Using (2.43), we
obtain

φD(θ) ≥
∑
e∈X

(Ce − αe) +
∑
e∈Y

(ce − βe) + θL =
∑
e∈EX

Ce +
∑
e∈EY

ce +
∑
e∈EZ

(Ce + ce − θ) + θL

=
∑
e∈EX

Ce +
∑
e∈EZ

Ce +
∑
e∈EY

ce +
∑
e∈EZ

ce − θ|EZ |+ θL

=
∑
e∈X

Ce +
∑
e∈Y

ce − θ|EZ |+ θL = φ(θ).

The Weak Duality Theorem implies the optimality of (X, Y ) in (2.41) for a fixed θ ≥ 0.
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Lemma 2.6. A pair (X, Y ), which satisfies the sufficient pair optimality conditions for
θ = 0, can be computed in polynomial time.

Proof. Let X be a minimum spanning tree for the costs Ce and Y be a minimum spanning
tree for the costs ce, e ∈ E. Since θ = 0, we set αe = 0, βe = 0 for each e ∈ E. It is clear
that (X, Y ) satisfies the sufficient pair optimality conditions.

Assume that (X, Y ) satisfies the sufficient pair optimality conditions for some θ ≥ 0.
If, for this pair, |EZ | ≥ L and θ(|EZ |−L) = 0, then we are done, because by Theorem 2.2,
the pair (X, Y ) is optimal to (2.32)-(2.40). Suppose that |EZ | < L ((X, Y ) is not feasible
to (2.32)-(2.40)). We will now show a polynomial time procedure for finding a new pair
(X ′, Y ′), which satisfies the sufficient pair optimality conditions and |EZ′ | = |EZ |+1. This
implies a polynomial time algorithm for the problem (2.32)-(2.40), since it is enough to start
with a pair satisfying the sufficient pair optimality conditions for θ = 0 (see Lemma 2.6)
and repeat the procedure at most L times, i.e., until |EZ′ | = L.

Given a spanning tree T in G = (V,E) and edge e = {k, l} 6∈ T , let us denote by PT (e)
the unique path in T connecting nodes k and l. It is well known that for any f ∈ PT (e),
T ′ = T ∪{e} \ {f} is also a spanning tree in G. We will say that T ′ is the result of a move
on T .

Consider a pair (X, Y ) that satisfies the sufficient pair optimality conditions for some
fixed θ ≥ 0. Set C∗e = Ce − αe and c∗e = ce − βe for every e ∈ E, where αe and βe, e ∈ E,
are the numbers which satisfy the conditions in Theorem 2.3. Thus, by Theorem 2.3(i)
and the path optimality conditions (see, e.g., [1]), we get the following conditions which
must be satisfied by (X, Y ):

for every e /∈ X C∗e ≥ C∗f for every f ∈ PX(e), (2.44a)
for every e /∈ Y c∗e ≥ c∗f for every f ∈ PY (e). (2.44b)

We now build a so-called admissible graph GA = (V A, EA) in two steps. We first
associate with each edge e ∈ E a node ve and include it to V A, |V A| = |E|. We then add
arc (ve, vf ) to EA if e /∈ X, f ∈ PX(e) and C∗e = C∗f . This arc is called an X-arc. We also
add arc (vf , ve) to EA if e /∈ Y , f ∈ PY (e) and c∗e = c∗f . This arc is called an Y -arc. We
say that ve ∈ V A is admissible if e ∈ EY , or ve is reachable from a node vg ∈ V A, such that
g ∈ EY , by a directed path in GA. In the second step we remove from GA all the nodes
which are not admissible, together with their incident arcs. An example of an admissible
graph is shown in Figure 2.1. Each node of this admissible graph is reachable from some
node vg, g ∈ EY . Note that the arcs (ve7 , ve6) and (ve7 , ve10) are not present in GA, because
ve7 is not reachable from any node vg, g ∈ EY . These arcs have been removed from GA in
the second step.

Observe that each X-arc (ve, vf ) ∈ EA represents a move on X, namely X ′ = X ∪
{e} \ {f} is a spanning tree in G. Similarly, each Y -arc (ve, vf ) ∈ EA represents a move
on Y , namely Y ′ = Y ∪ {f} \ {e} is a spanning tree in G. Notice that the cost, with
respect to C∗e , of X ′ is the same as X and the cost, with respect to c∗e, of Y ′ is the same
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2.3. Combinatorial algorithm for recoverable spanning tree problem

as Y . So, the moves indicated by X-arcs and Y -arcs preserve the optimality of X and Y ,
respectively. Observe that e /∈ X or e ∈ Y , which implies e /∈ EX . Also f ∈ X or f /∈ Y ,
which implies f /∈ EY . Hence, no arc in EA can start in a node corresponding to an edge
in EX and no arc in EA can end in a node corresponding to an edge in EY . Observe also
that (ve, vf ) ∈ EA can be both X-arc and Y -arc only if e ∈ EY and f ∈ EX . Such a case is
shown in Figure 2.1 (see the arc (ve1 , ve2)). Since each arc (ve, vf ) ∈ EA represents a move
on X or Y , e and f cannot both belong to EW or EZ .

e2

e1

e3

e4

(2; 2)
(2; 2)

(1; 5)

e6

e7e10

e8

e9

e5

(2; 2)(2; 3)

(2; 2) (2; 3) (2; 3)

(2; 3)

(5; 0)
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ve2 ve3
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EY
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EZ

EY

ve8
EW

ve6
EX ve10

EZ

(a) (b)

X

Y

(C∗

e
; c∗

e
) X; Y X

X

X

X

X

Y

Y

Figure 2.1: (a) A pair (X, Y ) such that X = {e2, e3, e4, e6, e10} and Y = {e1, e3, e5, e9, e10}.
(b) The admissible graph GA for (X, Y ).

We will consider two cases: EX ∩ {e ∈ E : ve ∈ V A} 6= ∅ and EX ∩ {e ∈ E : ve ∈
V A} = ∅. The first case means that there is a directed path from ve, e ∈ EY , to a node
vf , f ∈ EX , in the admissible graph GA and in the second case no such a path exists. We
will show that in the first case it is possible to find a new pair (X ′, Y ′) which satisfies the
sufficient pair optimality conditions and |EZ′ | = |EZ | + 1. The idea will be to perform
a sequence of moves on X and Y , indicated by the arcs on some suitably chosen path from
ve, e ∈ EY , to vf , f ∈ EX in the admissible graph GA. Let us formally handle this case.

Lemma 2.7. If EX ∩ {e ∈ E : ve ∈ V A} 6= ∅, then there exists a pair (X ′, Y ′) with
|EZ′| = |EZ |+ 1, which satisfies the sufficient pair optimality conditions for θ.

Proof. We begin by introducing the notion of a cycle graph G(T ) = (V T , AT ), correspond-
ing to a given spanning tree T of graph G = (V,A). We build G(T ) as follows: we associate
with each edge e ∈ E a node ve and include it to V T , |E| = |V T |; then we add arc (ve, vf )
to AT if e 6∈ T and f ∈ PT (e). An example is shown in Figure 2.2.

Claim 2.3. Given a spanning tree T of G, let F = {(ve1 , vf1), (ve2 , vf2), . . . , (ve` , vf`)} be
a subset of arcs of G(T ), where all vei and vfi (resp. ei and fi), i ∈ [`], are distinct. If
T ′ = T ∪ {e1, . . . , e`} \ {f1, . . . , f`} is not a spanning tree, then G(T ) contains a subgraph
depicted in Figure 2.3, where {j1, . . . , jκ} ⊆ [`].

Let us illustrate Claim 2.3 by using the sample graph in Figure 2.2. Suppose that F =
{(ve1 , vf5), (ve2 , vf2), (ve3 , vf3)}. Then T ′ = T ∪ {e1, e2, e3, } \ {f5, f2, f3} is not a spanning
tree and G(T ) contains the subgraph composed of the following arcs (see Figure 2.2):

(ve1 , vf2), (ve2 , vf2), (ve2 , vf3), (ve3 , vf3), (ve3 , vf5), (ve1 , vf5).
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(a) (b)

e1
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e3

f1

f2
f3

f4

f5

f6 f7

ve1 ve2

ve3

vf1 vf2 vf3 vf4vf5vf6 vf7

Figure 2.2: (a) A graph G with a spanning tree T (the solid lines). (b) The cycle graph
G(T ).

vej1 vej2

vej3vejκ

vfj1 vfj2

vfj3vfjκ

Figure 2.3: A subgraph of G(T ) from Claim 2.3.

Proof of Claim 2.3. We form T ′ by performing a sequence of moves consisting in adding
edges ei and removing edges fi ∈ PT (ei), i ∈ [`]. Suppose that, at some step, a cycle
appears, which is formed by some edges from {e1, . . . , e`} and the remaining edges of T (not
removed from T ). Such a cycle must appear, since otherwise T ′ would be a spanning tree.
Let us relabel the edges so that {e1, . . . , es} are on this cycle, i.e., the first smoves consisting
in adding ei and removing fi create the cycle, i ∈ [s]. An example of such a situation for
s = 4 is shown in Figure 2.4. The cycle is formed by the edges e1, . . . , e4 and the paths
Pv2v3 , Pv4v5 and Pv1v6 in T . Consider the edge e1 = {v1, v2}. Because T is a spanning tree,
PT (e1) ⊆ Pv2v3 ∪PT (e2)∪PT (e3)∪Pv4v5 ∪PT (e4)∪Pv1v6 . Observe that f1 ∈ PT (e1) cannot
belong to any of Pv2v3 , Pv4v5 and Pv1v6 . If it would be contained in one of these paths, then
no cycle would be created. Hence, f1 must belong to PT (e2)∪ PT (e3)∪ PT (e4). The above
argument is general and, by using it, we can show that for each i ∈ [s], fi ∈ PT (ej) for
some j ∈ [s] \ {i}.

We are now ready to build a subgraph depicted in Figure 2.3. Consider a subgraph
G′(T ) of the cycle graph G(T ) built as follows. The nodes of G′(T ) are ve1 , . . . , ves ,
vf1 , . . . , vfs . Observe that G′(T ) has exactly 2s nodes, since all the edges e1, . . . , es,
f1, . . . , fs are distinct by the assumption of the claim. For each i ∈ [s] we add to G′(T ) two
arcs, namely (vei , vfi), fi ∈ PT (ei) and (vej , vfi), fi ∈ PT (ej) for j ∈ [s]\{i} (see Figure 2.4).
The resulting graph G′(T ) is bipartite and has exactly 2s arcs. In consequence G′(T ) (and
thus G(T )) must contain a cycle which is of the form depicted in Figure 2.3.

After this preliminary step, we can now return to the main proof. If EX ∩ {e ∈ E :
ve ∈ V A} 6= ∅, then, by the construction of the admissible graph, there exists a directed
path in GA from a node ve, e ∈ EY , to a node vf , f ∈ EX . Let P be a shortest such a path
from ve to vf , i.e., a path consisting of the fewest number of arcs, called an augmenting
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e1 e2

e3

v1

v2 v3

Pv2v3

Pv4v5

Pv1v6

v4v6 e4 v5

f2

f3

f4

PT (e2)

PT (e3)

PT (e4)

ve1
f1 2 PT (e1)

ve2
f2 2 PT (e2)

ve3
f3 2 PT (e3)

vf1

vf2

vf3

(a) (b)

f1 2 PT (e2)

f2 2 PT (e3)

f3 2 PT (e2)

Figure 2.4: Illustration for the proof of Claim 2.3. (a) The bold lines represent paths in T
(not necessarily disjoint); f1 ∈ PT (e2)∪PT (e3)∪PT (e4). (b) The subgraph G′(T ) with the
corresponding cycle.

path. We need to consider the following cases:

1. The augmenting path P is of the form:

EY EX
ve → vf

If (ve, vf ) is X-arc, then X ′ = X ∪ {e} \ {f} is an updated spanning tree of G
such that |X ′ ∩ Y | = |EZ | + 1. Furthermore X ′ is a minimum spanning tree for the
costs C∗e and the new pair (X ′, Y ) satisfies the sufficient pair optimality conditions
(EX′ ⊆ EX , so condition (ii) in Theorem 2.3 is not violated). If (ve, vf ) is Y -arc, then
Y ′ = Y ∪{f}\{e} is an updated spanning tree of G such that |X∩Y ′| = |EZ |+1. Also
Y ′ is a minimum spanning tree for the costs c∗e and the new pair (X, Y ′) satisfies the
sufficient pair optimality conditions. An example can be seen in Figure 2.1. There
is a path ve1 → ve2 in the admissible graph. The arc (ve1 , ve2) is both X-arc and
Y -arc. We can thus choose one of the two possible moves X ′ = X ∪ {e1} \ {e2} or
Y ′ = Y ∪ {e2} \ {e1}, which results in (X ′, Y ) or (Y ′, X).

2. The augmenting path P is of the form:

EY EZ EW EZ EW EZ EW EZ EX

(a) ve1
X→ vf1

Y→ ve2
X→ vf2

Y→ ve3
X→ vf3

Y→ · · · Y→ ve`
X→ vf`

Y→ ve`+1

EX

(b)
X→ vf`

Let X ′ = X ∪ {e1, . . . , e`} \ {f1, . . . , f`}. Let Y ′ = Y ∪ {e2, . . . , e`+1} \ {f1, . . . f`} for
case (a), and Y ′ = Y ∪ {e2, . . . , e`} \ {f1, . . . f`−1} for case (b). We now have to show
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that the resulting pair (X ′, Y ′) is a pair of spanning trees. Suppose that X ′ is not
a spanning tree. Observe that the X-arcs (ve1 , vf1), . . . , (ve` , vf`) belong to the cycle
graph G(X). Thus, by Claim 2.3, the cycle graph G(X) must contain a subgraph
depicted in Figure 2.3, where {j1, . . . , jκ} ⊆ [`]. An easy verification shows that all
edges ei, fi, i ∈ {j1, . . . , jκ} must have the same costs with respect to C∗e . Indeed,
if some costs are different, then there exists an edge exchange which decreases the
cost of X. This contradicts our assumption that X is a minimum spanning tree with
respect to C∗e . Finally, there must be an arc (vei′ , vfi′′ ) in the subgraph such that
i′ < i′′. Since C∗ei′ = C∗fi′′ , the arc (vei′ , vfi′′ ) is present in the admissible graph GA.
This leads to a contradiction with our assumption that P is an augmenting path. Now
suppose that Y ′ is not a spanning tree. We consider only the case (a) since the proof
of case (b) is just the same. For a convenience, let us number the nodes vei on P from
i = 0 to `, so that Y ′ = {e1, . . . , e`} \ {f1, . . . , f`}. The arcs (ve1 , vf1), . . . , (ve` , vf`),
which correspond to the Y -arcs (vf1 , ve1), . . . , (vf` , ve`) of P , belong to the cycle graph
G(Y ). Hence, by Claim 2.3, G(Y ) must contain a subgraph depicted in Figure 2.3,
where {i1, . . . , iκ} ⊆ [`]. The rest of the proof is similar to the proof for X. Namely,
the edges ei and fi for i ∈ {i1, . . . , iκ} must have the same costs with respect to
c∗e. Also, there must exist an arc (vei′ , vfi′′ ) in the subgraph such that i′ > i′′. In
consequence, the arc (vfi′′ , vei′ ) belongs to the admissible graph, which contradicts
the assumption that P is an augmenting path.

An example of the case (a) is shown in Figure 2.5. Thus X ′ = X ∪ {e1, e2, e3, e4} \
{f1, f2, f3, f4} and Y ′ = Y ∪ {e2, e3, e4, e5} \ {f1, f2, f3, f4}. An example of the case
(b) is shown in Figure 2.6. In this example X ′ is the same as in the previous case
and Y ′ = Y ∪ {e2, e3, e4} \ {f1, f2, f3}.
It is easy to verify that |EZ′| = |X ′ ∩ Y ′| = |EZ | + 1 holds (see also the examples
in Figures 2.5 and 2.6). The spanning trees X ′ and Y ′ are optimal for the costs C∗e
and c∗e, respectively. Furthermore, EX′ ⊆ EX and EY ′ ⊆ EY , so (X ′, Y ′) satisfies
the sufficient pair optimality conditions (the condition (ii) in Theorem 2.3 is not
violated).
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Figure 2.5: A pair (X, Y ) and the corresponding admissible graph for the case 2a.
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Figure 2.6: A pair (X, Y ) and the corresponding admissible graph for the case 2b.

3. The augmenting path P is of the form

EY EW EZ EW EZ EW EZ EW EX

(a) ve1
Y→ vf1

X→ ve2
Y→ vf2

X→ ve3
Y→ vf3

X→ . . .
X→ ve`

Y→ vf`
X→ ve`+1

EX

(b)
Y→ vf`

LetX ′ = X∪{f1, . . . , f`}\{e2, . . . , e`+1} for the case (a) andX ′ = X∪{f1, . . . , f`−1}\
{e2, . . . e`} for the case (b). Let Y ′ = Y ∪ {f1, . . . , f`} \ {e1, . . . e`}. The proof that
X ′ and Y ′ are spanning trees follows by the same arguments as for the symmetric
case described in point 2. An example of the case (a) is shown in Figure 2.7. Thus
X ′ = X ∪ {f1, f2, f3, f4} \ {e2, e3, e4, e5} and Y ′ = Y ∪ {f1, f2, f3, f4} \ {e1, e2, e3, e4}.
An example for the case (b) is shown in Figure 2.8. The spanning tree Y ′ is the
same as in the previous case and X ′ = X ∪ {f1, f2, f3} \ {e2, e3, e4}. The equality
|EZ′| = |X ′∩Y ′| = |EZ |+1 holds. Also, the trees X ′ and Y ′ are optimal for the costs
C∗e and c∗e, respectively, EX′ ⊆ EX , EY ′ ⊆ EY , so (X ′, Y ′) satisfies the sufficient pair
optimality conditions.

We now turn to the case EX ∩ {e ∈ E : ve ∈ V A} = ∅. Fix δ > 0 (the precise value of
δ will be specified later) and set:

Ce(δ) = C∗e − δ, ce(δ) = c∗e ve ∈ V A, (2.45a)
Ce(δ) = C∗e , ce(δ) = c∗e − δ ve /∈ V A. (2.45b)
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Figure 2.7: A pair (X, Y ) and the corresponding admissible graph for the case 3a.

e1

f1

e2

f2

e3

f3

e4

f4

(0,2)

(0,0)

(0,2) (0,2)

(2,0) (2,0) (2,0)

(2,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

X

Y

(C∗

e ; c
∗

e)

ve1 vf1 ve2 vf2 ve3 vf3 ve4 vf4
EZ

EW EW EZ EW EZ EX
EY

Y Y Y YX X X

Figure 2.8: A pair (X, Y ) and the corresponding admissible graph for the case 3b.

Lemma 2.8. There exists a sufficiently small δ > 0 such that the costs Ce(δ) and ce(δ)
satisfy the path optimality conditions for X and Y , respectively, i.e:

for every e /∈ X Ce(δ) ≥ Cf (δ) for every f ∈ PX(e), (2.46a)
for every e /∈ Y ce(δ) ≥ cf (δ) for every f ∈ PY (e). (2.46b)

Proof. If C∗e > C∗f (resp. c∗e > c∗f ), e /∈ X, f ∈ PX(e) (resp. e /∈ Y, f ∈ PY (e)), then
there is δ > 0, such that after setting the new costs (2.45) the inequality Ce(δ) ≥ Cf (δ)
(resp. ce(δ) ≥ cf (δ)) holds. Hence, one can choose a sufficiently small δ > 0 such that
after setting the new costs (2.45), all the strong inequalities are not violated. Therefore,
for such a chosen δ it remains to show that all originally tight inequalities in (2.44) are
preserved for the new costs. Consider a tight inequality of the form:

C∗e = C∗f , e /∈ X, f ∈ PX(e). (2.47)
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On the contrary, suppose that Ce(δ) < Cf (δ). This is only possible when Ce(δ) = C∗e − δ
and Cf (δ) = C∗f . Hence and from the construction of the new costs, we have vf /∈ V A (see
(2.45b)) and ve ∈ V A (see (2.45a)). By (2.47), we obtain (ve, vf ) ∈ EA. Thus vf ∈ V A,
a contradiction. Consider a tight inequality of the form:

c∗e = c∗f , e /∈ Y, f ∈ PY (e). (2.48)

On the contrary, suppose that ce(δ) < cf (δ). This is only possible when ce(δ) = c∗e − δ and
cf (δ) = c∗f . Thus we deduce that ve /∈ V A and vf ∈ V A (see (2.45)). From (2.48), it follows
that (vf , ve) ∈ EA and so ve ∈ V A, a contradiction.

We are now ready to give the precise value of δ. We do this by increasing the value of δ
until some inequalities, originally not tight in (2.44), become tight. Namely, let δ∗ > 0 be
the smallest value of δ for which an inequality originally not tight becomes tight. Obviously,
it occurs when C∗e − δ∗ = C∗f for e /∈ X, f ∈ PX(e) or c∗f − δ∗ = c∗e for f /∈ Y , e ∈ PY (f).
By (2.45), ve ∈ V A and vf /∈ V A. Accordingly, if δ = δ∗, then at least one arc is added
to GA. Observe also that no arc can be removed from GA - the admissibility of the nodes
remains unchanged. It follows from the fact that each tight inequality for ve ∈ V A and
vf ∈ V A is still tight. This leads to the following lemma.

Lemma 2.9. If EX ∩ {e ∈ E : ve ∈ V A} = ∅, then (X, Y ) satisfies the sufficient pair
optimality conditions for each θ′ ∈ [θ, θ + δ∗].

Proof. Set θ′ = θ + δ, δ ∈ [0, δ∗]. Lemma 2.8 implies that X is optimal for Ce(δ) and Y
is optimal for ce(δ). From (2.45) and the definition of the costs C∗e and c∗e, it follows that
Ce(δ) = Ce − α′e and ce(δ) = ce − β′e, where α′e = αe + δ and β′e = βe for each ve ∈ V A,
α′e = αe and β′e = βe + δ for each ve /∈ V A. Notice that α′e + β′e = αe + βe + δ = θ + δ = θ′

for each e ∈ E. By (2.45), ce(δ) = ce for each e ∈ EY (recall that e ∈ EY implies ve ∈ V A),
and thus βe = 0 for each e ∈ EY . Since EX ∩ {e ∈ E : ve ∈ V A} = ∅, Ce(δ) = C∗e = Ce
holds for each e ∈ EX , and so αe = 0 for each e ∈ EX . We thus have shown that there
exist α′e, β′e ≥ 0 such that α′e + β′e = θ′ for each e ∈ E satisfying the conditions (i) and (ii)
in Theorem 2.3, which completes the proof.

We now describe a polynomial procedure that, for a given pair (X, Y ) satisfying the
sufficient pair optimality conditions for some θ ≥ 0, finds a new pair of spanning trees
(X ′, Y ′), which also satisfies the sufficient pair optimality conditions with |E ′Z | = |EZ |+ 1.
We start by building the admissible graph GA = (V A, EA) for (X, Y ). If this graph contains
an augmenting path, then by Lemma 2.7, we are done. Otherwise, we determine δ∗ and
modify the costs by using (2.45). Lemma 2.9 shows that (X, Y ) satisfies the sufficient pair
optimality conditions for θ + δ∗. For δ∗ some new arcs are added to the admissible graph
GA (all the previous arcs must be still present in GA). Thus GA is updated and we set
C∗e := Ce(δ

∗), c∗e := ce(δ
∗) for each e ∈ E, and θ := θ + δ∗. We repeat this until there

is an augmenting path in GA = (V A, EA). Note that such a path must appear after at
most m = |E| iterations, which follows from the fact that at some step a node ve such that
e ∈ EX must appear in GA.

35



2. The recoverable robust spanning tree problem

(7,2)
(5,9)

(3,2)

(2,3)

(8,3)
e1

e2

e3

e4

e5

e6

e7

e8

e9

e11

e10
(0,6)

(1,2)

(0,9)

(8,3)
(2,5)

(1,1)
ve8

ve11

EY

EY

ve7

EW

(6,2)
(5,8)

(3,1)

(1,3)

(7,3)
e1

e2

e3

e4

e5

e6

e7

e8

e9

e11

e10
(0,5)

(1,1)

(0,8)

(7,3)
(2,4)

(1,0) ve8

ve11

EY

EY

ve7

EW

ve3

EY

ve3

EY

ve5

EZ

(5,2)
(5,7)

(3,0)

(0,3)

(6,3)
e1

e2

e3

e4

e5

e6

e7

e8

e9

e11

e10
(0,4)

(0,1)

(0,7)

(6,3)
(2,3)

(1,-1) ve8

ve11

EY

EY

ve7

EW

ve3

EY

ve5

EZ

ve10

EX

ve6

EX

ve1

EW

(a)

(b)

(c)

(C∗

e
; c∗

e
)

δ
∗ = 1; θ = 1

δ
∗ = 1; θ = 2

θ = 0

Y

Y

Y

X

X

Y

X

X

X

Y

Figure 2.9: Sample computations,X = {e2, e4, e5, e6, e9, e10} and Y = {e2, e3, e5, e8, e9, e11}.

Sample computations are shown in Figure 2.9. We start with the pair (X, Y ), where
X = {e2, e4, e5, e6, e9, e10} and Y = {e2, e3, e5, e8, e9, e11}, which satisfies the sufficient pair
optimality conditions for θ = 0 (see Figure 2.9a). Observe that in this case it is enough to
check that X is optimal for the costs C∗e = Ce and Y is optimal for the costs c∗e = ce, e ∈ E.
For θ = 0, the admissible graph does not contain any augmenting path. We thus have to
modify the costs C∗e and c∗e, according to (2.45). For δ∗ = 1, a new inequality becomes
tight and one arc is added to the admissible graph (see Figure 2.9b). The admissible graph
still does not have an augmenting path, so we have to again modify the costs. For δ∗ = 1
some new inequalities become tight and three arcs are added to the admissible graph (see
Figure 2.9c). Now the admissible graph has two augmenting paths (cases 1 and 3a, see the
proof of Lemma 2.7). Choosing one of them, and performing the modification described in
the proof of Lemma 2.7 we get a new pair (X ′, Y ′) with |EZ′| = |EZ |+ 1.

Let us now estimate the running time of the procedure. The admissible graph has at
most m nodes and at most mn arcs. It can be built in O(nm) time. The augmenting path
in the admissible graph can be found in O(nm) time by applying the breath first search.
Also the number of inequalities which must be analyzed to find δ∗ is O(nm). Since we
have to update the cost of each arc of the admissible graph at most m times, until an
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augmenting path appears, the required time of the procedure is O(m2n). We thus get the
following result.

Theorem 2.4. The Rec ST problem is solvable in O(Lm2n) time, where L = n− 1− k.

2.4 Combinatorial algorithm for recoverable
robust spanning tree problem

In this section we are concerned with the RR ST problem under the interval uncertainty
representation, i.e., for the scenario sets U I , U I1 (Γ), and U I2 (Γ). Using the polynomial
algorithm for Rec ST, constructed in Section 2.3, we will provide a polynomial algorithm
for RR ST under U I and some approximation algorithms for a wide class of RR ST
under U I1 (Γ) and U I2 (Γ). The idea will be to solve Rec ST for a suitably chosen second
stage costs. Recall

Eval(X) :
∑
e∈X

Ce + max
S∈U

min
Y ∈ΦkX

∑
e∈Y

cSe .

It is worth pointing out that under scenario sets U I and U I2 (Γ), the value of Eval(X),
for a given spanning tree X, can be computed in polynomial time [22, 58]. On the other
hand, computing Eval(X) under U I1 (Γ) turns out to be strongly NP-hard [28, 58]. Given
scenario S = (cSe )e∈E, consider the following Rec ST problem:

min
X∈Φ

(∑
e∈X

Ce + min
Y ∈ΦkX

∑
e∈Y

cSe

)
. (2.49)

Problem (2.49) is equivalent to the formulation (1.23) for S = (ce)e∈E and it is polynomially
solvable, according to the result obtained in Section 2.3. As in the previous section, we
denote by pair (X, Y ) a solution to (2.49), where X ∈ Φ and Y ∈ Φk

X . Given S, we call
(X, Y ) an optimal pair under S if (X, Y ) is an optimal solution to (2.49).

The RR ST problem with scenario set U I can be rewritten as follows:

min
X∈Φ

(∑
e∈X

Ce + max
S∈UI

min
Y ∈ΦkX

∑
e∈Y

cSe

)
= min

X∈Φ

(∑
e∈X

Ce + min
Y ∈ΦkX

∑
e∈E

(ce + de)

)
. (2.50)

Thus (2.50) is (2.49) for S = (ce + de)e∈E ∈ U I . Hence and from Theorem 2.4 we immedi-
ately get the following theorem:

Theorem 2.5. For scenario set U I , the RR ST problem is solvable in O((n− 1− k)m2n)
time.

We now address RR ST under U I1 (Γ) and U I2 (Γ). Suppose that ce ≥ α(ce +de) for each
e ∈ E, where α ∈ (0, 1] is a given constant. This inequality means that for each edge e ∈ E
the nominal cost ce is positive and ce + de is at most 1/α greater than ce. It is reasonable
to assume that this condition will be true in many practical applications for not very large
value of 1/α.
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Lemma 2.10. Suppose that ce ≥ α(ce + de) for each e ∈ E, where α ∈ (0, 1], and let
(X̂, Ŷ ) be an optimal pair under S = (ce)e∈E. Then for the scenario sets U I1 (Γ) and U I2 (Γ)
the inequality Eval(X̂) ≤ 1

α
Eval(X) holds for any X ∈ Φ.

Proof. We give the proof only for the scenario set U I1 (Γ). The proof for U I2 (Γ) is the same.
Let X ∈ Φ. The following inequality is satisfied:

Eval(X) =
∑
e∈X

Ce + max
S∈UI1 (Γ)

min
Y ∈ΦkX

∑
e∈Y

cSe =
∑
e∈X

Ce +
∑
e∈Y ∗

cS
∗

e ≥
∑
e∈X

Ce +
∑
e∈Y ∗

cSe .

Clearly, (X, Y ∗) is a feasible pair to (2.49) under S. From the definition of (X̂, Ŷ ) we get

Eval(X) ≥
∑
e∈X̂

Ce +
∑
e∈Ŷ

cSe =
∑
e∈X̂

Ce +
∑
e∈Ŷ

ce ≥
∑
e∈X̂

Ce +
∑
e∈Ŷ

α(ce + de)

=
∑
e∈X̂

Ce + α
∑
e∈Ŷ

cSe ,
(2.51)

where S = (ce + de)e∈E. Hence

Eval(X) ≥
∑
e∈X̂

Ce + α max
S∈UI1 (Γ)

∑
e∈Ŷ

cSe ≥
∑
e∈X̂

Ce + α max
S∈UI1 (Γ)

min
Y ∈Φk

X̂

∑
e∈Y

cSe

≥ α

∑
e∈X̂

Ce + max
S∈UI1 (Γ)

min
Y ∈Φk

X̂

∑
e∈Y

cSe

 = αEval(X̂)

and the lemma follows.

The condition ce ≥ α(ce + de), e ∈ E, in Lemma 2.10, can be weakened and, in con-
sequence, the set of instances to which the approximation ratio of the algorithm applies
can be extended. Indeed, from inequality (2.51) it follows that the bounds of the uncer-
tainty intervals are only required to meet the condition

∑
e∈Ŷ ce ≥ α

∑
e∈Ŷ (ce + de). This

condition can be verified efficiently, since Ŷ can be computed in polynomial time.
We now focus on RR ST for U I2 (Γ). Define D =

∑
e∈E de and suppose that D > 0 (if

D = 0, then the problem is equivalent to Rec ST for the second stage costs ce, e ∈ E).
Consider scenario S ′ under which cS′e = min{ce + de, ce + Γde

D
} for each e ∈ E. Obviously,

S ′ ∈ U I2 (Γ), since
∑

e∈E δe ≤
∑

e∈E Γde
D
≤ Γ. The following theorem provides another

approximation result for RR ST with scenario set U I2 (Γ):

Lemma 2.11. Let (X̂, Ŷ ) be an optimal pair under S ′. Then the following implications
are true for scenario set U I2 (Γ):

(i) If Γ ≥ βD, β ∈ (0, 1], then Eval(X̂) ≤ 1
β
Eval(X) for any X ∈ Φ.

(ii) If Γ ≤ γEval(X̂), γ ∈ [0, 1) then Eval(X̂) ≤ 1
1−γEval(X) for any X ∈ Φ.
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Proof. Let X ∈ Φ. Since S ′ ∈ U I2 (Γ), we get

Eval(X) =
∑
e∈X

Ce + max
S∈UI2 (Γ)

min
Y ∈ΦkX

∑
e∈Y

cSe ≥
∑
e∈X

Ce + min
Y ∈ΦkX

∑
e∈Y

cS
′

e . (2.52)

We first prove implication (i). By (2.52) and the definition of (X̂, Ŷ ), we obtain

Eval(X) ≥
∑
e∈X̂

Ce +
∑
e∈Ŷ

cS
′

e =
∑
e∈X̂

Ce +
∑
e∈Ŷ

min{ce + de, ce + Γ
de
D
}

≥
∑
e∈X̂

Ce +
∑
e∈Ŷ

min{ce + de, ce + βde} =
∑
e∈X̂

Ce +
∑
e∈Ŷ

(ce + βde)

≥
∑
e∈X̂

Ce + β
∑
e∈Ŷ

cSe ,

where S = (ce + de)e∈E. The rest of the proof is the same as in the proof of Lemma 2.10.
We now prove implication (ii). By (2.52) and the definition of (X̂, Ŷ ), we have

Eval(X) ≥
∑
e∈X̂

Ce +
∑
e∈Ŷ

cS
′

e ≥
∑
e∈X̂

Ce +
∑
e∈Ŷ

cSe ≥
∑
e∈X̂

Ce + max
S∈UI2 (Γ)

∑
e∈Ŷ

cSe − Γ

≥
∑
e∈X̂

Ce + max
S∈UI2 (Γ)

min
Y ∈Φk

X̂

∑
e∈Y

cSe − Γ = Eval(X̂)− Γ.

If Γ ≤ γEval(X̂). Then Eval(X) ≥ Eval(X̂) − γEval(X̂) = (1 − γ)Eval(X̂) and
Eval(X̂) ≤ 1

1−γEval(X).

Note that the value of Eval(X̂) under U I2 (Γ) can be computed in polynomial time [58].
In consequence, the constants β and γ can be efficiently determined for every particular
instance of the problem. Clearly, we can assume that de ≤ Γ for each e ∈ E, which implies
D ≤ mΓ, where m = |E|. Hence, we can assume that Γ ≥ 1

m
D for every instance of the

problem. We thus get from Lemma 2.11 (implication (i)) that Eval(X̂) ≤ mEval(X) for
any X ∈ Φ and the problem is approximable within m. If α, β and γ are the constants
from Lemmas 2.10 and 2.11, then the following theorem summarizes the approximation
results:

Theorem 2.6. RR ST is approximable within 1
α
under scenario set U I1 (Γ) and it is ap-

proximable within min{ 1
β
, 1
α
, 1

1−γ} under scenario set U I2 (Γ).

Observe that Lemma 2.10 and Lemma 2.11 hold of any sets Φ and Φk
X (the particular

structure of these sets is not exploited). Hence the approximation algorithms can be applied
to any problem for which the recoverable version (2.49) is polynomially solvable.
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2.5 Recoverable robust matroid basis problem

The minimum spanning tree can be generalized to the following minimum matroid basis
problem. Here we make an assumption that checking the independence of a set A ⊆ E can
be done in polynomial time (see Section 1.4). The cardinality of each basis equals rM(E).
Let ce be a cost specified for each element e ∈ E. We wish to find a basis of M of the
minimum total cost,

∑
e∈M ce. It is well known that the minimum matroid basis problem

is polynomially solvable by a greedy algorithm (see, e.g., [26]). A spanning tree is a basis
of a graphic matroid, in which E is a set of edges of a given graph and I is the set of all
forests in G.

Assume now that the first stage cost of element e ∈ E equals Ce and its second stage
cost is uncertain and is modeled by interval [ce, ce + de]. The recoverable robust matroid
basis problem (RR MB for short) under scenario set U I can be stated similarly to RR ST.
Indeed, it suffices to replace the set of spanning trees by the bases of M and U by U I in
the formulation (2.1) and, in consequence, in (2.4). Here and subsequently, Φ denotes the
set of all bases of M . Likewise, RR MB under U I is equivalent to the following problem:

min
∑

e∈X Ce +
∑

e∈Y (ce + de)
s.t. |X ∩ Y | ≥ rM(E)− k,

X, Y ∈ Φ.
(2.53)

Let EX , EY ⊆ E and IX , IY be collections of subsets of EX and EY , respectively,
(independent sets), that induce matroids MX = (EX , IX) and MY = (EY , IY ). Let EZ be
a subset of E such that EZ ⊆ EX ∪EZ and |EZ | ≥ L for some fixed L. The following linear
program, denoted by LPRRMB(EX , IX , EY , IY , EZ , L), after setting EX = EY = EZ = E,
IX = IY = I and L = rM(E)− k is a relaxation of (2.53):

min
∑
e∈EX

Cexe +
∑
e∈EY

(ce + de)ye (2.54)

s.t.
∑
e∈EX

xe = rMX
(EX), (2.55)∑

e∈U

xe ≤ rMX
(U), ∀U ⊂ EX , (2.56)

− xe + ze ≤ 0, ∀e ∈ EX ∩ EZ , (2.57)∑
e∈EZ

ze = L, (2.58)

ze − ye ≤ 0, ∀e ∈ EY ∩ EZ , (2.59)∑
e∈EY

ye = rMY
(EY ), (2.60)∑

e∈U

ye ≤ rMY
(U), ∀U ⊂ EY , (2.61)

xe ≥ 0, ∀e ∈ EX , (2.62)
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ze ≥ 0, ∀e ∈ EZ , (2.63)
ye ≥ 0, ∀e ∈ EY . (2.64)

The indicator variables xe, ye, ze ∈ {0, 1}, e ∈ E, describing the bases X, Y and their
intersection X ∩ Y , respectively have been relaxed. Since there are no variables ze in the
objective function (2.54), we can use equality constraint (2.58), instead of the inequality
one. The above linear program is solvable in polynomial time. The rank constraints
(2.55), (2.56) and (2.60), (2.61) relate to matroids MX = (EX , IX) and MY = (EY , IY ),
respectively, and a separation over these constraints can be carried out in polynomial
time [23]. Obviously, a separation over (2.57), (2.58) and (2.59) can be done in polynomial
time as well.

Consider a vertex solution (xxx,zzz,yyy) ∈ R|EX |×|EZ |×|EY |≥0 of LPRRMB(EX , IX , EY , IY , EZ , L).
Note that if EZ = ∅, then the only rank constraints are left in (2.54)-(2.64). Consequently,
xxx and yyy are 0-1 incidence vectors of bases X and Y of matroids MX and MY , respectively
(see [26]). Let us turn to other cases. Assume that EX 6= ∅, EY 6= ∅ and EZ 6= ∅. Similarly
as in Section 2.2 we first reduce the sets EX , EY and EZ by removing all elements e with
xe = 0, or ye = 0, or ze = 0. Let F(xxx) and F(yyy) defined in the following way:

F(xxx) = {U ⊆ EX :
∑
e∈U

xe = rMX
(U)},

F(yyy) = {U ⊆ EY :
∑
e∈U

ye = rMY
(U)}

denote the sets of subsets of elements that indicate tight constraints (2.55), (2.56) and
(2.60), (2.61) for xxx and yyy, respectively. Similarly we define the sets of elements that
indicate tight constraints (2.57) and (2.59) with respect to (xxx,zzz,yyy), namely E(xxx,zzz) and
E(zzz,yyy):

E(xxx,zzz) = {e ∈ EX ∩ EZ : −xe + ze = 0},
E(zzz,yyy) = {e ∈ EY ∩ EZ : ze − ye = 0}.

Let χX(W ), W ⊆ EX , (resp. χZ(W ), W ⊆ EZ , and χY (W ), W ⊆ EY ) denote the
characteristic vector in {0, 1}|EX | × {0}|EZ | × {0}|EY | (resp. {0}|EX | × {0, 1}|EZ | × {0}|EY |
and {0}|EX | × {0}|EZ | × {0, 1}|EY |) that has 1 if e ∈ W and 0 otherwise.

We recall that a family L ⊆ 2E is a chain if for any A,B ∈ L, either A ⊆ B or B ⊆ A
(see, e.g., [51]). Let L(xxx) (resp. L(yyy)) be a maximal chain subfamily of F(xxx) (resp. F(yyy)).
The following lemma is a fairly straightforward adaptation of [51, Lemma 5.2.3] to the
problem under consideration and its proof may be handled in much the same way.

Lemma 2.12. For L(xxx) and L(yyy) the following equalities:

span({χX(EX(U)) : U ∈ L(xxx)}) = span({χX(EX(U)) : U ∈ F(xxx)}),
span({χY (EY (U)) : U ∈ L(yyy)}) = span({χY (EY (U)) : U ∈ F(yyy)})

hold.
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Algorithm 2.2 Algorithm for RR MB
MX = (EX , IX)← (E, I), MY = (EY , IY )← (E, I), L← rM (E)− k, X ← ∅, Y ← ∅, Z ← ∅

2: while EX 6= ∅ or EY 6= ∅ do
Find an optimal vertex solution (xxx∗, zzz∗, yyy∗) of LPRRMB(EX , IX , EY , IY , EZ , L)

4: for all e ∈ EZ with z∗e = 0 do EZ ← EZ \ {e}
end for

6: for all e ∈ EX with x∗e = 0 do MX ←MX\e
end for

8: for all e ∈ EY with y∗e = 0 do MY ←MY \e
end for

10: if there exists element e ∈ EX with x∗e = 1 then
X ← X ∪ {e}

12: MX ←MX/e
end if

14: if there exists edge e′ ∈ EX with y∗e′ = 1 then
Y ← Y ∪ {e}

16: MY ←MY /e
end if

18: if there exists edge e′ ∈ EZ such that e′ ∈ X ∩ Y then
Z ← Z ∪ {e}

20: L← L− 1
EZ ← EZ \ {e}

22: end if
return X, Y , Z

24: end while

The next lemma, which characterizes a vertex solution, is analogous to Lemma 2.2. Its
proof is based on Lemma 2.12 and is similar in spirit to the one of Lemma 2.2.

Lemma 2.13. Let (xxx,zzz,yyy) be a vertex solution of LPRRMB(EX , IX , EY , IY , EZ , L) such
that xe > 0, e ∈ EX , ye > 0, e ∈ EY and ze > 0, e ∈ EZ. Then there exist chain families
L(xxx) 6= ∅ and L(yyy) 6= ∅ and subsets E(xxx,zzz) ⊆ E(xxx,zzz) and E(zzz,yyy) ⊆ E(zzz,yyy) that must
satisfy the following:

(i) |EX |+ |EZ |+ |EY | = |L(xxx)|+ |E(xxx,zzz)|+ |E(zzz,yyy)|+ |L(yyy)|+ 1,

(ii) the vectors in {χX(EX(U)) : U ∈ L(xxx)} ∪ {χY (EY (U)) : U ∈ L(yyy)} ∪ {−χX({e}) +
χZ({e}) : e ∈ E(xxx,zzz)}∪ {χZ({e})−χY ({e}) : e ∈ E(zzz,yyy)}∪ {χZ(EZ)} are linearly
independent.

Lemma 2.12 and (2.13) now lead to the next two ones and their proofs run as the proofs
of Lemma 2.3 and 2.4.

Lemma 2.14. Let (xxx,zzz,yyy) be a vertex solution of LPRRMB(EX , IX , EY , IY , EZ , L) such
that xe > 0, e ∈ EX , ye > 0, e ∈ EY and ze > 0, e ∈ EZ. Then there is an element
e′ ∈ EX with xe′ = 1 or an element e′′ ∈ EY with ye′′ = 1.
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We now turn to two cases: EX = ∅; EY = ∅. Consider EX = ∅, the second case is
symmetrical. Observe that (Equation (2.58)) and (Equation (2.59)) and EZ ⊆ EY implies
constraint (2.28).

Lemma 2.15. Let yyy be a vertex solution of linear program: (Equation (2.54)), (Equa-
tion (2.60)), (Equation (2.61)), (Equation (2.64)) and (Equation (2.28)) such that ye > 0,
e ∈ EY . Then there is an element e′ ∈ EY with ye′ = 1. Moreover using yyy one can
construct a vertex solution of LPRRMB(∅, ∅, EY , IY , EZ , L) with ye′ = 1 and the cost of yyy.

We are thus led to the main result of this section. Its proof follows by the same
arguments as for RR ST.

Theorem 2.7. Algorithm 2.2 solves RR MB in polynomial time.

2.6 Conclusion and open issues

In this chapter we have studied the recoverable robust spanning tree problem under the
traditional interval uncertainty representation U I and the budgeted interval uncertainty
representations U I1 (Γ) and U I2 (Γ). We have shown that the recoverable robust version of the
minimum spanning tree problem with interval uncertainty representation is polynomially
solvable. The complexity of this problem was not known to date. In order to prove this
result we have applied a technique called an iterative relaxation. Since polynomial time
algorithm is based on solving linear programs, the next natural step to take is to design
a polynomial time combinatorial algorithm for this problem.

In the second part of this chapter we have constructed a polynomial time combina-
torial algorithm for the recoverable robust spanning tree problem. We have applied this
algorithm for solving the problem under the interval uncertainty representation in polyno-
mial time. Additionally, the algorithm was used to provide several approximation results
for recoverable spanning tree problem under the discrete interval budgeted uncertainty
representation U I1 (Γ) and continuous interval budgeted uncertainty representation U I2 (Γ).

Moreover, the first algorithm was generalized to the recoverable robust matroid basis
problem with interval element costs. No polynomial time combinatorial algorithm for this
problem was designed in this thesis. Lend et al. in [52] took on this task and continued our
investigation of the recoverable robust matroid basis problem under the interval uncertainty
representation and has proven the existence of a strongly polynomial time primal-dual
algorithm for this problem.

There are still several open questions regarding discussed problems. As an example, the
complexity of the robust spanning tree problem under the continuous interval budgeted
uncertainty representation U I2 (Γ) is an interesting open problem. It is possible that some of
the algorithms designed in this chapter may be extended to solve this problem in polynomial
time.
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Chapter 3

Robust recoverable 0-1 optimization
problems under polyhedral uncertainty

3.1 Introduction

The goal of this chapter is to provide a framework for solving robust recoverable 0-1 pro-
gramming problems with a specified polyhedral uncertainty U I3 (Γ) defined in Section 1.2.1,
more specifically (1.7). In general, such problems can be very complex from a computa-
tional point of view. The underlying deterministic single-stage problem can be already
NP-hard and hard to approximate. Adding recoverable robustness leads to a min-max-min
0-1 programming problem, which can be very difficult to solve. For a finite uncertainty
set, a mixed integer programming (denoted by MIP) formulation can be built and solved
by row and column generation techniques proposed, for example, in [72]. An uncertainty
set is said to be finite if it contains a finite number of scenarios or if it can be replaced
with such finite representation, e.g., replacing by the set of extreme points of a polytope
for polyhedral uncertainty. However, for the problems examined in this chapter no finite
representation of the considered uncertainty set is known. Hence, the solution method
consisting in solving a MIP formulation can be hard to apply. In Section 3.3 we propose
several lower bounds, which will be based on solving one or a sequence of special MIP
formulations. The formulations can be solved for quite large instances by using modern
solvers. We will then use these lower bounds to characterize the quality of some approx-
imate solutions in Section 3.4. Finally, in Section 3.5, we will present the results of the
experiments for robust recoverable versions of the knapsack and assignment problems. The
tested instances have large number of variables, so the proposed approach can be attractive
in practical applications.
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3. Robust recoverable 0-1 optimization problems under polyhedral uncertainty

3.1.1 On usage of a vector notation

A dot product between column vectors aaa, bbb ∈ Rn is denoted by aaa · bbb and is defined in the
following way:

aaa · bbb = aaaTbbb =
n∑
i=1

aibi.

For the purpose of clarity and the reader’s convenience from now on we will be us-
ing a vector notation to define 0-1 optimization problems. The formulation (1.1) will be
rewritten as

P : minCCC · xxx
xxx ∈ Φ ⊆ {0, 1}n, (3.1)

where CCC = (C1, . . . , Cn)T is a vector of nonnegative costs and xxx = (xe)e∈E, |E| = n is
a vector of binary decision variables.

From the above follows the following definitions of the problem discussed in Chapter 1:

IncP(ccc,xxx) : min
yyy∈Φαxxx

ccc · yyy,

Eval(xxx) : CCC · xxx+ max
ccc∈UI3 (Γ)

min
yyy∈Φαxxx

ccc · yyy = CCC · xxx+ max
ccc∈UI3 (Γ)

Inc(ccc,xxx),

RecP(ccc) : min
xxx∈Φ

min
yyy∈Φαxxx

(CCC · xxx+ ccc · yyy) = min
(xxx,yyy)∈Z

(CCC · xxx+ ccc · yyy),

RRP : min
xxx∈Φ

max
ccc∈UI3 (Γ)

min
yyy∈Φαxxx

(CCC · xxx+ ccc · yyy),

where Φα
xxx is a neighborhood of xxx (see (1.11)), (xxx,yyy) (xxx ∈ Φ and yyy ∈ Φα

xxx) is a feasible pair
of solutions and the set of all such feasible pairs is denoted by Z.

3.2 Solving the problems by MIP formulations

The incremental and recoverable problems for the element exclusion neighborhood (1.11)
can be solved by using the following MIP formulations (3.2a) and (3.2b), respectively:

min ccc · yyy∑
i∈{1,...,n}

xi(1− yi) ≤ α
∑

i∈{1,...,n}

xi,

yyy ∈ Φ;

(3.2a)
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3.2. Solving the problems by MIP formulations

min CCC · xxx+ ccc · yyy∑
i∈{1,...,n}

(xi − zi) ≤ α
∑

i∈{1,...,n}

xi,

zi ≤ xi, i ∈ {1, . . . , n},
zi ≤ yi, i ∈ {1, . . . , n},
zi ≥ xi + yi − 1, i ∈ {1, . . . , n},
zi ∈ {0, 1}, i ∈ {1, . . . , n},
xxx,yyy ∈ Φ.

(3.2b)

The MIP formulations can be simplified if P is an equal cardinality problem. The
incremental and recoverable problems can be then formulated as follows:

min ccc · yyy∑
i∈{1,...,n}

xiyi ≥ `,

yyy ∈ Φ;

(3.3a)

min CCC · xxx+ ccc · yyy∑
i∈{1,...,n}

zi ≥ `,

zi ≤ xi, i ∈ {1, . . . , n},
zi ≤ yi, i ∈ {1, . . . , n},
zi ≥ 0, i ∈ {1, . . . , n},
xxx,yyy ∈ Φ,

(3.3b)

where ` = dm(1−α)e. Observe that we can drop the assumption that zi is binary in (3.3b).
The algorithms described in the next part of this chapter will be based on the assumption
that the formulations (3.2) and (3.3) can be solved exactly in reasonable time. To this
purpose one can use a good off-the-shelf MIP solver (e.g., Gurobi, CPLEX).

Consider now the evaluation problem, i.e., the problem of computing the value of
Eval(xxx). Given xxx, the inner adversarial problem maxS∈UI3 (Γ) Inc(xxx,cccS) can be represented
as the following linear programming problem.

max t
t ≤ cccS · yyy, ∀yyy ∈ Φα

xxx ,
S ∈ U I3 (Γ).

(3.4)

If topt is the optimal value of t, then Eval(xxx) = CCC · xxx + topt. Notice that (3.4) is a linear
programming problem, since S ∈ U I3 (Γ) can be described by a system of linear constraints
with real variables and the set Φα

xxx is finite. However, formulation (3.4) has an exponential
number of constraints. If we replace Φα

xxx with a subset Y ⊆ Φα
xxx of feasible solutions, then

we get an upper bound on topt. Also the value of Inc(xxx,cccS), for any S ∈ U I3 (Γ), is a lower
bound on topt. Thus in order to find the value of topt with a given accuracy ε ≥ 0, we can
use a relaxation (constraint generation) algorithm shown in the form of Algorithm 3.1.

Algorithm 3.1 solves a sequence of the incremental problems and relaxed problems (3.4).
It is easily seen that the algorithm converges. This fact follows from the observation that
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3. Robust recoverable 0-1 optimization problems under polyhedral uncertainty

Algorithm 3.1 Compute Eval(xxx) with accuracy ε, ε > 0.
UB ←∞

2: Choose an initial scenario S0 ∈ UI3 (Γ)
Solve Inc(xxx,cccS0) obtaining yyy∗ ∈ Φαxxx , LB ← Inc(xxx,cccS0)

4: Y ← {yyy∗}
while UB−LB

LB > ε do
6: Solve the formulation (3.4) with Φαxxx = Y obtaining (ccc∗, t∗), UB ← t∗

Solve Inc(xxx,ccc∗) obtaining yyy∗ ∈ Φαxxx
8: if LB < Inc(xxx,ccc∗) then LB ← Inc(xxx,ccc∗)

Y ← Y ∪ {yyy∗}
10: end while

return CCC · xxx+ UB.

the size of Y increases by one at each step 9 of the algorithm. Indeed, suppose that yyy∗ is
already present in Y , so in formulation (3.4) solved in step 6. Then LB = Inc(xxx,ccc∗) =
ccc∗ · yyy∗ ≥ cccS · yyy∗ for each S ∈ U I3 (Γ). In consequence LB ≥ t∗ = UB and the algorithm
terminates.

Notice that each relaxed problem (3.4) is a linear programming problem, which can
be solved efficiently. Hence, the running time of the algorithm relies on the complexity of
solving the incremental problem. For larger instances the algorithm may converge slowly.
However, we can terminate it after a specified time is exceeded. In this case we get an upper
bound on Eval(xxx). We can also improve the performance of the algorithm by choosing
good initial cost scenario cccS0 in step 2. Such scenario will be proposed in Section 3.3.1.

Finally, focus on the most complex RR P problem, which can be represented as the
following program:

min CCC · xxx+ θ
θ ≥ cccS · yyyS, S ∈ U I3 (Γ),∑
i∈{1,...,n}

xi(1− ySi ) ≤ α
∑

i∈{1,...,n}

xi, S ∈ U I3 (Γ),

xxx,yyyS ∈ Φ, S ∈ U I3 (Γ).

(3.5)

Assume for a while that U I3 (Γ) is explicitly given, for instance U I3 (Γ) = UD or the
uncertainty set can be replaced with its finite representation, for example by the extreme
points of U I3 (Γ) (see, e.g., [17, 72]), then (3.5) becomes a MIP formulation for RR P .
This formulation can have exponential numbers of variables and constraints and solving it
requires special row and column generation techniques [72, 17]. For the problem discussed
in this chapter the situation seems to be more complex, because it is difficult to replace
U I3 (Γ) with its finite equivalent representation. In particular, we cannot replace U I3 (Γ)
with the set of its extreme points. We will demonstrate this fact using the following simple
example. Let Φ = {(x1, x2) ∈ {0, 1}2 : x1 + x2 = 1} and U I3 (Γ) = {(0 + δ1, 0 + δ2) : δ1, δ2 ∈
[0, 1], δ1 + δ2 ≤ 1}. When CCC = 000 and α = 1, the RR P reduces to the following adversarial
problem:

max
(S1,S2)∈UI3 (Γ)

min
(x1,x2)∈Φ

cS1x1 + cS2x2.
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This problem has a unique solution cS1 = 0.5, cS2 = 0.5 with the objective value equal
to 0.5. The set of extreme points of U I3 (Γ) is {(0, 0), (0, 1), (1, 0)} and for each of these
points the objective value is 0. In this chapter we do not consider a MIP formulation
for RR P . Instead, we will use the formulations (3.2), (3.3), (3.4) for the incremental,
recoverable and evaluation problems to construct approximate solutions for RR P .

3.3 Lower bounds

In this section we will propose several methods of computing a lower bound for the RR P
problem. We will then use these lower bounds to evaluate the quality of the approximate
solutions. We will denote by opt the optimal objective value in RR P .

3.3.1 Adversarial lower bound

It is easy to check that for each cost scenario S ∈ U I3 (Γ), the value of Rec(cccS) is a lower
bound on opt. In consequence, the following adversarial problem can provide us the first
general lower bound:

Adv : max
S∈UI3 (Γ)

Rec(cccS) = max
S∈UI3 (Γ)

min
(xxx,yyy)∈Z

(CCC · xxx+ cccS · yyy).

Let us rewrite this problem as follows:

max t
t ≤ CCC · xxx+ cccS · yyy, ∀(xxx,yyy) ∈ Z,
S ∈ U I3 (Γ).

(3.6)

In order to solve (3.6) we will use a similar technique as for the model (3.4). The corre-
sponding algorithm is shown in the form of Algorithm 3.2.

Algorithm 3.2 Compute Adv with accuracy ε, ε > 0.
UB ←∞

2: Choose an initial scenario S0 ∈ UI3 (Γ)
Solve Rec(cccS0) obtaining (xxx∗, yyy∗) ∈ Z and LB ← Rec(cccS0)

4: Z ′ ← {(xxx∗, yyy∗)}
while UB−LB

LB > ε do
6: Solve the formulation (3.6) with Z ← Z ′ obtaining (ccc∗, t∗) and UB ← t∗.

Solve Rec(ccc∗) obtaining (xxx∗, yyy∗) ∈ Z
8: if LB < Rec(ccc∗) then LB ← Rec(ccc∗)

Z ′ ← Z ′ ∪ {(xxx∗, yyy∗)}.
10: end while

return LB.

To reiterate, (3.6) is a linear programming problem, which can be solved efficiently
for a small subset Z ′ ⊆ Z. In order to prove that Algorithm 3.2 converges, one can use
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3. Robust recoverable 0-1 optimization problems under polyhedral uncertainty

the same argument as in Section 3.2. The running time of Algorithm 3.2 depends on the
complexity of solving the recoverable problem, which is not easy in general. However, we
can fix a limit for its running time, after which we still get a lower bound on opt.

For larger problems the relaxation algorithm may converge slowly. In order to speed
up the computations we can start with a good heuristic initial scenario S0 = (ci)i∈{1,...,n} ∈
U I3 (Γ) (see (1.7)), computed as follows:

max v
ci + δi ≥ min{ci + di, v},∑

i∈{1,...,n} δi ≤ Γ,

0 ≤ δi ≤ di, i ∈ {1, . . . , n},
δδδ ∈ V .

(3.7)

Recall that ci, i ∈ {1, . . . , n}, are the fixed nominal second stage costs (see 1.2.1). The idea
of (3.7) is to uniformly distribute the budget among the smallest costs. This problem can
be solved efficiently by using a binary search on [0, V ], where V = maxi∈{1,...,n}{ci + di}. If
δδδ∗ is an optimal solution to (3.7), then cccS0 = ccc+δδδ∗. An illustration for the uncertainty set
U I2 (Γ) is shown in Figure 3.1. In this case, given v ≥ 0, we fix δi = max{0,min{di, v− ci}}.
We choose the maximum value of v for which the constraint

∑
i∈{1,...,n} δi ≤ Γ is satisfied.

v

c1

c2

c3

c4

c5

c1 + d1

c2 + d2

c3 + d3

c4 + d4

c5 + d5

6

ci

δ
∗

1
= c1 + d1

δ
∗

2
= v

δ
∗

3
= v

δ
∗

4
= 0

δ
∗

5
= v

Figure 3.1: Computing the initial scenario cccS0 for a sample uncertainty set U I2 (Γ) with
Γ = 13.

For large problems we can use Rec(cccS0) as a starting lower bound on opt. We can then
try to improve the lower bound by running Algorithm 3.2 for a given time limit.

The tightness of the adversarial lower bound is likely to depend on α. Observe that
when α = 1, then Φα

xxx = Φ and RR P is equivalent to Adv. Also, for α close to 1, the
adversarial lower bound should be closer to opt.
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3.3. Lower bounds

3.3.2 Cardinality selection constraint lower bound

In this section we will propose another lower bound which, contrary to the adversarial
lower bound, can be computed by solving one MIP formulation. This lower bound should
behave better than the adversarial lower bound for smaller values of α. In order to simplify
the presentation we will use the uncertainty set U I2 (Γ). A generalization to any set U I3 (Γ)
will be straightforward. The idea will be to relax the incremental problem by relaxing the
structure of the neighborhood. We consider first the case when P is an equal cardinality
problem. Let us replace the constraint yyy ∈ Φ in (3.3a) with a weaker cardinality (selection)
constraint, namely y1 + · · · + yn = m, m ∈ {1, . . . , n}. So, the second stage solution need
not to be feasible. Only, the cardinality constraint must be satisfied. As the result, we get
the following relaxation of the incremental problem:

Inc(xxx,ccc) ≥ Inc′(xxx,ccc) = min ccc · yyy∑
i∈{1,...,n}

xiyi ≥ `,∑
i∈{1,...,n}

yi = m,

yi ∈ {0, 1}, i ∈ {1, . . . , n}.

(3.8)

Since ` is integer and xxx ∈ {0, 1}n is fixed, we get the following equivalent problem:

Inc′(xxx,ccc) = min ccc · yyy∑
i∈{1,...,n}

xiyi ≥ `,∑
i∈{1,...,n}

yi = m,

0 ≤ yi ≤ 1, i ∈ {1, . . . , n}.

(3.9)

The problems (3.8) and (3.9) have the same optimal objective values. In order to see this,
let V = {i ∈ {1, . . . , n} : xi = 1}. Then an integral optimal solution to (3.9) can be formed
by fixing first yi = 1 for t = min{`, |V |} variables yi, i ∈ V with the smallest ci and fixing
then yi = 1 for m− t out of the remaining variables with the smallest ci. Notice also that,
given xxx, the constraint matrix of (3.9) is totally unimodular (see Definition 1.9). Taking
the dual to (3.9) we get

Inc′(xxx,ccc) = max σ`+ ρm−
∑

i∈{1,...,n}

αi

σxi + ρ− αi ≤ ci, i ∈ {1, . . . , n},
σ ≥ 0.

Now the relaxed evaluation problem

Eval′(xxx) = max
ccc∈UI2 (Γ)

Inc′(xxx,ccc)
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3. Robust recoverable 0-1 optimization problems under polyhedral uncertainty

can be formulated as follows

Eval(xxx) ≥ Eval′(xxx) = CCC · xxx+ maxσ`+ ρm−
∑

i∈{1,...,n}

αi

σxi + ρ− αi ≤ ci + δi, i ∈ {1, . . . , n},∑
i∈{1,...,n}

δi ≤ Γ,

δi ≤ di, i ∈ {1, . . . , n},
δi ≥ 0, i ∈ {1, . . . , n},
σ ≥ 0.

Taking the dual to the inner maximization problem we get:

Eval′(xxx) = CCC · xxx+ min πΓ +
∑

i∈{1,...,n}

ciyi +
∑

i∈{1,...,n}

uidi∑
i∈{1,...,n}

xiyi ≥ `,∑
i∈{1,...,n}

yi = m,

yi ≤ 1, i ∈ {1, . . . , n},
−yi + π + ui ≥ 0, i ∈ {1, . . . , n},
π ≥ 0,
ui, yi ≥ 0, i ∈ {1, . . . , n}.

Finally, we obtain

min
xxx∈Φ

Eval′(xxx) = minCCC · xxx+ πΓ +
∑

i∈{1,...,n}

ciyi +
∑

i∈{1,...,n}

uidi∑
i∈{1,...,n}

xiyi ≥ `,∑
i∈{1,...,n}

yi = m,

yi ≤ 1, i ∈ {1, . . . , n},
−yi + π + ui ≥, 0 i ∈ {1, . . . , n},
π ≥ 0,
xxx ∈ Φ,
ui, yi ≥ 0, i ∈ {1, . . . , n}.

(3.10)

Since
opt = min

xxx∈Φ
Eval(xxx) ≥ min

xxx∈Φ
Eval′(xxx),

the MIP formulation (3.10) gives us a lower bound on opt. Notice that the constraint∑
i∈{1,...,n} xiyi ≥ ` can be linearized by using standard techniques (here it is enough to

introduce zi ≥ 0, substitute zi = xiyi and add constraints zi ≤ xi, zi ≤ yi for each
i ∈ {1, . . . , n}).
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3.3. Lower bounds

Let us now turn to the element exclusion neighborhood (1.13). Let us remove the
constraint yyy ∈ Φ in (3.2a) and rewrite this problem as follows:

Inc(xxx,ccc) ≥ Inc′(xxx,ccc) = min ccc · yyy∑
i∈{1,...,n}

xi(1− yi) ≤ α
∑

i∈{1,...,n}

xi,

yi ∈ {0, 1}, i ∈ {1, . . . , n}

(3.11)

which can be rewritten as

Inc′(xxx,ccc) = min ccc · yyy∑
i∈{1,...,n}

xiyi ≥ (1− α)
∑

i∈{1,...,n}

xi,

yi ∈ {0, 1}, i ∈ {1, . . . , n}.

(3.12)

We cannot add the cardinality constraint, since the size of yyy is unknown. Also, the right
hand side of the constraint need not to be integral. However, we can still obtain a lower
bound on the incremental problem by solving the following relaxation of (3.11):

Inc(xxx,ccc) ≥ Inc′′(xxx,ccc) = min ccc · yyy∑
i∈{1,...,n}

xiyi ≥ (1− α)
∑

i∈{1,...,n}

xi,

yi ≤ 1, i ∈ {1, . . . , n},
yi ≥ 0, i ∈ {1, . . . , n}.

Using similar reasoning as for the equal cardinality problem, we get the following MIP
formulation:

min
xxx∈Φ

Eval′′(xxx) = min CCC · xxx+ πΓ +
∑

i∈{1,...,n}

ciyi +
∑

i∈{1,...,n}

uidi∑
i∈{1,...,n}

xiyi ≥ (1− α)
∑

i∈{1,...,n}

xi,

yi ≤ 1, i ∈ {1, . . . , n},
−yi + π + ui ≥ 0, i ∈ {1, . . . , n},
π ≥ 0,
xxx ∈ Φ,
ui, yi ≥ 0, i ∈ {1, . . . , n}.

(3.13)

The formulation (3.13) is a lower bound on opt for the element exclusion neighborhood
(1.13). The terms xiyi in (3.13) can be linearized by using standard techniques.

Observe that for the equal cardinality problem P the cardinality selection constraint
lower bound is equal to opt when α = 0, because Φ0

xxx = {xxx}. The same property is true
for the element exclusion neighborhood under the additional assumption that ccc > 000. In
this case Φ0

xxx contains every solution yyy such that yyy is a superset of xxx. Hence the cardinality
selection constraint lower bound can be closer to the optimum for α close to 0.
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3.3.3 Lagrangian lower bound

In this section we will construct another lower bound, which will be based on the La-
grangian relaxation technique (see, e.g., [1]). Contrary to the adversarial and selection
lower bounds, this bound will be limited to a special class of problems. Namely, we will
make two assumptions about the underlying problem P . Firstly, we will assume that
Φ = {xxx ∈ {0, 1}n : AAAxxx = bbb}, where AAA is an m × n matrix, and the corresponding
polyhedron PΦ = {xxx : 000 ≤ xxx ≤ 111,AAAxxx = bbb} is integral (see Definition 1.8). This is true,
for example, when AAA is a totally unimodular matrix (see Definition 1.9). Specifically, if AAA
is totally unimodular and bbb is integral, then every extreme point of the feasible region PΦ

is integral and thus PΦ is an integral polyhedron. We will also assume that P has the equal
cardinality property, which will allow us to use the simplified neighborhood representation.
An important problem, which satisfies both assumptions, is the minimum assignment prob-
lem. Again, we will consider the uncertainty set U I2 (Γ), as the generalization to any U I3 (Γ)
is straightforward.

Let us introduce a Lagrangian multiplier µ ≥ 0 and consider the following Lagrangian
relaxation of the incremental problem (3.3a):

Inc(xxx,ccc) ≥ Inc′(xxx,ccc, µ) = min ccc · yyy + µ(`−
∑

i∈{1,...,n}

xiyi)

AAAyyy = bbb,
yyy ∈ {0, 1}n.

(3.14)

By the integrality property, (3.14) is equivalent to the following linear programming prob-
lem:

Inc′(xxx,ccc, µ) = min
∑

i∈{1,...,n}

(ci − µxi)yi + µ`

AAAyyy = bbb,
yi ≤ 1, i ∈ {1, . . . , n},
yi ≥ 0, i ∈ {1, . . . , n}.

(3.15)

Dualizing (3.15) yields

Inc′(xxx,ccc, µ) = max
∑

i∈{1,...,m}

γibi −
∑

i∈{1,...,n}

βi + µ`

γγγAAAi − βi ≤ ci − µxi, i ∈ {1, . . . , n},
βi ≥ 0, i ∈ {1, . . . , n},

where AAAi is the ith column of matrix AAA and γγγ = (γ1, . . . , γm). Now, given xxx ∈ Φ, we get
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3.3. Lower bounds

the following linear programming relaxation of the evaluation problem:

Eval(xxx) ≥ Eval′(xxx, µ) = CCC · xxx+ max
∑

i∈{1,...,m}

γibi −
∑

i∈{1,...,n}

βi + µ`

γγγAAAi − βi ≤ ci + δi − µxi, i ∈ {1, . . . , n},∑
i∈{1,...,n}

δi ≤ Γ,

δi ≤ di, i ∈ {1, . . . , n},
δi, βi ≥ 0, i ∈ {1, . . . , n}.

After dualizing the inner maximization problem, we get the following equivalent formula-
tion

Eval′(xxx, µ) = CCC · xxx+ min πΓ +
∑

i∈{1,...,n}

yi(ci − µxi) +
∑

i∈{1,...,n}

uidi+ µ`

AAAyyy = bbb,
−yi + π + ui ≥ 0,
0 ≤ yi ≤ 1, i ∈ {1, . . . , n},
ui ≥ 0, i ∈ {1, . . . , n}.

Finally, we have

min
xxx∈Φ

Eval′(xxx, µ) = min CCC · xxx+ πΓ +
∑

i∈{1,...,n}

yi(ci − µxi)+
∑

i∈{1,...,n} uidi + µ`

AAAyyy = bbb,
−yi + π + ui ≥ 0,
yi ≤ 1, i ∈ {1, . . . , n},
AAAxxx = bbb,
ui, yi ≥ 0, i ∈ {1, . . . , n},
xxx ∈ {0, 1}n.

(3.16)
The formulation (3.16) can be linearized, which results in the following linear MIP model:

min
xxx∈Φ

Eval′(xxx, µ) = min CCC · xxx+ πΓ +
∑

i∈{1,...,n}

yici − µ
∑

i∈{1,...,n}

zi+
∑

i∈{1,...,n} uidi + µ`

AAAyyy = bbb,
−yi + π + ui ≥ 0,
yi ≤ 1, i ∈ {1, . . . , n},
AAAxxx = bbb,
zi ≤ xi, i ∈ {1, . . . , n},
zi ≤ yi, i ∈ {1, . . . , n},
ui, yi, zi ≥ 0, i ∈ {1, . . . , n},
xxx ∈ {0, 1}n.

(3.17)
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Observe that (3.17) has only n binary variables. Let us denote

Eval∗(µ) = min
xxx∈Φ

Eval’(xxx, µ).

Hence, for each µ ≥ 0, we get a lower bound on opt. The best lower bound can be computed
by solving the following Lagrangian multipliers problem:

max
µ≥0

Eval∗(µ). (3.18)

The problem (3.18) can be solved by applying a search method on the single parameter
µ ≥ 0. One can also solve one problem (3.17) for a heuristically chosen value of µ, also
obtaining a lower bound on opt (but possibly not the most tight one).

3.4 Upper bounds and approximate solutions

As we make no assumptions on the underlying problem P , no general polynomial time
approximation algorithm can exist for any problem discussed in this chapter. In this
section we will explore the approximability of the robust recoverable problem, under the
assumption that we can solve the incremental and recoverable problems in reasonable time.
In general, these problems cannot be solved in polynomial time. However, good modern
solvers can solve them to optimality for quite large instances (see Section 3.5). As in
Section 3.3, we will use opt to denote the optimal objective value for RR P .

Let us fix xxx ∈ Φ. By using well-known min-max relations, we get

max
S∈UI3 (Γ)

min
yyy∈Φαxxx

cccS · yyy ≤ min
yyy∈Φαxxx

max
S∈UI3 (Γ)

cccS · yyy. (3.19)

Using (3.19) we get

opt = min
xxx∈Φ

max
S∈UI3 (Γ)

min
yyy∈Φαxxx

(CCC · xxx+ cccS · yyy) ≤ min
xxx∈Φ

min
yyy∈Φαxxx

max
S∈UI3 (Γ)

(CCC · xxx+ cccS · yyy) =

= min
(xxx,yyy)∈Z

(CCC · xxx+ max
S∈UI3 (Γ)

cccS · yyy).

Because U I3 (Γ) ⊆ U I2 (Γ), we conclude that

UB = min
(xxx,yyy)∈Z

(CCC · xxx+ max
S∈UI2 (Γ)

cccS · yyy) ≥ min
(xxx,yyy)∈Z

(CCC · xxx+ max
S∈UI3 (Γ)

cccS · yyy) ≥ opt.

Hence UB is an upper bound on opt. Given yyy, the inner maxS∈UI2 (Γ) ccc
S · yyy problem can

easily be solved by allocating the largest possible part of the budget Γ to the costs of the
elements in yyy. Hence, either the whole budget is allocated or the allocation is blocked by
the upper bounds on the second stage costs of yyy. We thus get

max
S∈UI2 (Γ)

cccS · yyy = min{ccc · yyy + Γ, (ccc+ ddd) · yyy}.
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In consequence

UB = min
(xxx,yyy)∈Z

(CCC ·xxx+min{ccc·yyy+Γ, (ccc+ddd)·yyy}) = min
(xxx,yyy)∈Z

min{CCC ·xxx+ccc·yyy+Γ,CCC ·xxx+(ccc+ddd)·yyy} =

= min{Rec(ccc) + Γ,Rec(ccc+ ddd)}.
Hence, in order to compute UB, it is enough to solve two recoverable problems. We now
investigate the quality of the solutions (xxx,yyy) ∈ Z and (xxx,yyy) ∈ Z obtained by computing
Rec(ccc) and Rec(ccc+ddd), respectively. We will choose the best of xxx and xxx as an approximate
first stage solution to RR P , i.e., we choose xxx if Eval(xxx) ≤ Eval(xxx) and xxx, otherwise.
Observe that

Eval(xxx) ≤ CCC · xxx+ max
S∈UI3 (Γ)

cccS · yyy ≤ CCC · xxx+ ccc · yyy + Γ = Rec(ccc) + Γ

and
Eval(xxx) ≤ CCC · xxx+ max

S∈UI3 (Γ)
cccS · yyy ≤ CCC · xxx+ (ccc+ ddd) · yyy = Rec(ccc+ ddd).

Hence
min{Eval(xxx),Eval(xxx)} ≤ UB. (3.20)

Since Rec(ccc) is a lower bound on opt for each S ∈ U I3 (Γ), we get

UB

opt
≤ min{Rec(cccS) + Γ,Rec(cccS + ddd)}

Rec(cccS)
= ρ(cccS), ∀S ∈ U I3 (Γ). (3.21)

Notice that we get the smallest ratio ρ∗ = minS∈UI3 (Γ) ρ(cccS) by choosing S ∈ U I3 (Γ) maximiz-
ing Rec(ccc), i.e., by solving the adversarial problem discussed in Section 3.3.1. Using (3.20)
we get

min{Eval(xxx),Eval(xxx)} ≤ ρ∗ · opt,
so the best of solutions xxx and xxx has an approximation ratio of ρ∗.

The value of ρ∗ depends on the problem data. Furthermore, its precise evaluation
requires solving recoverable and adversarial problems, which can be time-consuming. We
now show several estimations of the ratio ρ∗ from above, which can be computed more
efficiently. We will use the following lemma:

Lemma 3.1. Let (xxx∗, yyy∗) ∈ Z be an optimal solution to the recoverable problem for a fixed
scenario S0 ∈ U I3 (Γ). We then have

ρ∗ ≤ min

{
CCC · xxx∗ + ccc · yyy∗ + Γ

CCC · xxx∗ + cccS0 · yyy∗
,
CCC · xxx∗ + (ccc+ ddd) · yyy∗

CCC · xxx∗ + cccS0 · yyy∗

}
. (3.22)

Proof. Using (3.21), we get

ρ∗ ≤ ρ(cccS0) = min

{
Rec(ccc) + Γ

Rec(cccS0)
,
Rec(ccc+ ddd)

Rec(cccS0)

}
.

Now (3.22) follows from the inequalities Rec(ccc) ≤ CCC·xxx∗+ccc·yyy∗, Rec(ccc+ddd) ≤ CCC·xxx∗+(ccc+ddd)·yyy∗
and equality Rec(cccS0) = CCC · xxx∗ + cccS0 · yyy∗.
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Lemma 3.2. If ci+di
ci
≤ σ, for each i ∈ {1, . . . , n}, then ρ∗ ≤ σ

Proof. By setting cccS0 = cccS, S ∈ U I3 (Γ) in (3.22), we get (xxx∗, yyy∗) = (xxx,yyy) and

ρ∗ ≤
CCC · xxx+ (ccc+ ddd) · yyy
CCC · xxx+ ccc · yyy

≤
CCC · xxx+ (ccc+ ddd) · yyy

CCC · xxx+ (1/σ)(ccc+ ddd) · yyy
≤

CCC · xxx+ (ccc+ ddd) · yyy
(1/σ)(CCC · xxx+ (ccc+ ddd) · yyy)

= σ,

where the second inequality follows from (ccc+ddd) ·yyy ≤ σccc ·yyy and the third inequality follows
from the fact that 1

σ
≤ 1.

The value of σ in Lemma 3.2 can be interpreted as the maximal factor by which the
second stage costs can increase. For example, when σ = 2, then the second stage costs
can increase by at most 100% from their nominal values, and in this case ρ∗ ≤ 2. It is
reasonable to assume that in many practical applications σ is not large, which results in
a good approximation ratio.

Lemma 3.3. If

Γ ≤ β ·
(

min
xxx∈Φ

CCC · xxx+ max
S∈UI3 (Γ)

min
yyy∈Φ

cccS · yyy
)

for β ≥ 0 then ρ∗ ≤ 1 + β.

Proof. Let cccS0 = cccS
∗ , S∗ ∈ U I3 (Γ) be a costs of a scenario maximizing Rec(ccc) and let

(xxx∗, yyy∗) ∈ Z be an optimal solution to the recoverable problem under cccS∗ . Using the first
term in the minimum in (3.22) we get

ρ∗ ≤ 1 +
Γ

CCC · xxx∗ + cccS∗yyy∗
.

Since
Rec(cccS

∗
) = CCC · xxx∗ + cccS

∗
yyy∗ = max

S∈UI3 (Γ)

(
min
xxx∈Φ

CCC · xxx+ min
yyy∈Φαxxx

cccS · yyy
)
≥

≥ max
S∈UI3 (Γ)

(
min
xxx∈Φ

CCC · xxx+ min
yyy∈Φ

cccS · yyy
)

=

= min
xxx∈Φ

CCC · xxx+ max
S∈UI3 (Γ)

min
yyy∈Φ

cccS · yyy

the lemma follows.

Lemma 3.3 shows that ρ∗ is not large if the budget is not large in comparison with the
first and second stage solution costs. The value of

min
xxx∈Φ

CCC · xxx

can be computed in polynomial time if P is polynomially solvable. Also, the value of

max
S∈UI3 (Γ)

min
yyy∈Φ

cccS · yyy
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can be sometimes computed efficiently by dualizing the inner minimization problem and
solving a resulting linear programming formulation.

The next two lemmas are valid only for the uncertainty set U I2 (Γ).

Lemma 3.4. Assume that the uncertainty set is U I2 (Γ). If

Γ ≥ β
∑

i∈{1,...,n}

di = βD

for β ∈ (0, 1], then ρ∗ ≤ 1
β
.

Proof. Choose a cost vector ccc′ of a scenario S ′ ∈ U I2 (Γ) such that c′i = min{ci+di, ci+Γdi
D
}

for i ∈ {1, . . . , n}. It is clear that S ′ ∈ U I2 (Γ), because
∑n

i=1 δ
′
i ≤

∑n
i=1 Γdi

D
= Γ. Let

(xxx∗, yyy∗) ∈ Z be an optimal solution to the recoverable problem under ccc′. Consider the
second term in the minimum in (3.22). Because CCC ·xxx∗ ≥ 0 and (ccc+ddd) · yyy∗ ≥ ccc′ · yyy∗, we get
the following estimation:

ρ∗ ≤ (ccc+ ddd) · yyy∗

ccc′ · yyy∗
=

∑
i∈{1,...,n}(ci + di)y

∗
i∑

i∈{1,...,n}min{ci + di, ci + Γdi
D
}y∗i

.

Let I1 = {i ∈ yyy∗ : ci + di ≤ ci + Γdi
D
} and I2 = yyy∗ \ I1. We get

ρ∗ ≤
∑

i∈I1∪I2(ci + di)∑
i∈I1(ci + di) +

∑
i∈I2(ci + Γdi

D
)
≤

∑
i∈I1∪I2(ci + di)∑

i∈I1(ci + di) +
∑

i∈I2(ci + βdi)
.

Because β ∈ (0, 1],

ρ∗ ≤
∑

i∈I1∪I2(ci + di)

β(
∑

i∈I1(ci + di) +
∑

i∈I2(ci + di))
=

1

β
.

Lemma 3.4 shows that ρ∗ is not large if the budget Γ is not significantly smaller than
D, which denotes the maximum amount of the uncertainty which can be allocated to the
second stage item costs.

Lemma 3.5. Assume that the uncertainty set is U I2 (Γ). Let q = |{i ∈ {1, . . . , n} : di > 0}|.
Then, the inequality ρ∗ ≤ q + 1 holds. Furthermore, if P is an equal cardinality problem
and di ≥ Γ/n for each i ∈ {1, . . . , n}, then ρ∗ ≤ n

m
+ 1.

Proof. Choose a cost vector ccc′ of a scenario S ′ ∈ U I2 (Γ) such that c′i = min{ci+di, ci+ Γ
q
} for

i ∈ {1, . . . , n}. Indeed, ccc′ ∈ U I2 (Γ), because
∑

i∈{1,...,n} δ
′
i =

∑
{i∈{1,...,n}:di>0} δ

′
i ≤ q · Γ

q
= Γ.

Let (xxx∗, yyy∗) ∈ Z be an optimal solution to the recoverable problem under ccc′. Using the
first term in the minimum in (3.22) we get

ρ∗ ≤ 1 +
Γ

CCC · xxx∗ + ccc′ · yyy∗
≤ 1 +

Γ

ccc′ · yyy∗
= 1 +

Γ∑
i∈{1,...,n}min{ci + di, ci + Γ

q
}y∗i

.
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3. Robust recoverable 0-1 optimization problems under polyhedral uncertainty

Let I1 = {i ∈ yyy∗ : ci + di ≤ ci + Γ
q
} and I2 = yyy∗ \ I1. We get

ρ∗ ≤ 1 +
Γ∑

i∈I1(ci + di) +
∑

i∈I2(ci + Γ
q
)
.

If I2 = ∅, then we obtain ρ∗ = 1 by using the second term in the minimum in (3.22). So
|I2| ≥ 1 and we can estimate

ρ∗ ≤ 1 +
Γ
Γ
q

= 1 + q.

If di ≥ Γ
n
for each i ∈ {1, . . . , n} and P is an equal cardinality problem, then q = n, I1 = ∅,

|I2| = m and

ρ∗ ≤ 1 +
Γ∑
i∈I2

Γ
n

= 1 +
n

m
.

We can now apply Lemma 3.5 to several special cases of problem P under U I2 (Γ), with
di ≥ Γ

n
for each i ∈ {1, . . . , n}. If P is the selection problem discussed in [18], then

ρ∗ ≤ 1 + n
p
. If P is the minimum spanning tree problem in a sparse graph, in which

|E| ≤ θ|V | for some constant θ ≥ 1, then ρ∗ ≤ 1 + θ|V |
|V |−1

∼ 1 + θ for large graphs. If P is
the minimum assignment problem, then ρ∗ ≤ 1 +

√
n.

3.5 Experiments

In this section we will show the results of some experiments. We will test the lower bounds
and approximate solutions using two problems, namely the assignment and the knapsack
ones. The assignment problem is polynomially solvable and has the equal cardinality
property. Hence we can apply all the lower bounds, proposed in Section 3.3, to this
problem. On the other hand, the knapsack problem is NP-hard and does not possess the
equal cardinality property. In consequence, only the adversarial and cardinality selection
constraint lower bounds will be used for this problem. We will use scenario set U I2 (Γ), i.e.,
the continuous budgeted uncertainty. The experiments were executed on a 2 GHz computer
equipped with 80 Intel(R) Xeon(R) CPU E7-4850 processors. We used IBM ILOG CPLEX
12.8.0.0 optimizer [38] to solve the MIP formulations.

The reader is encouraged to see Appendix A for technical information about the im-
plementation of conducted experiments.
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3.5.1 The minimum assignment problem

In this section we will show the results of experiments when P is the following assignment
problem:

min
∑

i∈{1,...,m}

∑
j∈{1,...,m}

Cijxij∑
i∈{1,...,m}

xij = 1, j ∈ {1, . . . ,m},∑
j∈{1,...,m}

xij = 1, i ∈ {1, . . . ,m},

xij ∈ {0, 1}, i, j ∈ {1, . . . ,m}.

(3.23)

The experiment was performed for m ∈ {10, 25, 100}, so the number of variables n ∈
{100, 625, 10 000}. The parameters were generated in the following way:

1. The first stage costs Cij, nominal second stage costs cij are random integers uniformly
distributed in [1, 20].

2. The maximal deviations dij are random integers uniformly distributed in [0, 100].

3. The budget Γ = 0.1
∑

i,j∈{1,...,n} dij, hence it is equal to 10% of the total uncertainty
of the second stage cots.

4. α ∈ {0.1, 0.2, . . . , 0.9}.

5. The accuracy ε in Algorithm 3.1 and Algorithm 3.2 was set to 0.01 and both algo-
rithms were terminated if the running time exceeds 600 seconds. The accuracy of
computing the Lagrangian lower bound by a version of golden search method was
set to 0.1. The maximal time of solving the problem (3.17) was set to 600 seconds.
After this time the computations of the bound were terminated.

For each parameters setting, we have generated 10 random instances. In the first
experiment we have computed, for every instance, the ratio

ρ(cccS0) =
min{Rec(ccc) + Γ,Rec(ccc+ ddd)}

Rec(cccS0)
, (3.24)

where cccS0 is the heuristic scenario proposed in Section 3.3.1. Computing this ratio requires
solving three recoverable problems. Recall that the best of the solutions xxx or xxx has an
approximation ratio at most ρ(cccS0).

The average ratios ρ(cccS0) for various m and the average times required to compute it
for m = 100 are shown on Figures 3.2 and 3.3. Observe first, that ρ(cccS0) can be computed
efficiently. The average time required to compute ρ(cccS0), for m = 100, is less than 25
seconds. It can be observed that the time is significantly smaller for larger α. The average
ratios ρ(cccS0) are less than 2. Interestingly, the ratio ρ(cccS0) is smaller for larger m (for
m = 100 the average ratios ρ(cccS0) are less than 1.2). This fact is true for the particular
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Figure 3.2: The average ratios ρ(cccS0) for the assignment problem with m ∈ {10, 25, 100}.
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Figure 3.3: The average running times of computing ρ(cccS0) for the assignment problem
with m = 100.

method of data generation and may be different for other settings (verifying this requires
more tests).

We now investigate the cases m = 10 and m = 25 in more detail. For each instance
we computed: the adversarial lower bound LBAdv by executing Algorithm 3.2, the lower
bound LBh = Rec(cccS) for scenario cccS ∈ U I3 (Γ), proposed in Section 3.3.1, the cardinality
selection constraint lower bound LBSel by solving the MIP formulation (3.13) constructed
in Section 3.3.2 and the Lagrangian lower bound LBLag constructed in Section 3.3.3. Notice
that LBh ≤ LBAdv for every instance, as we start Algorithm 3.2 from the initial scenario
cccS0 . We also computed the first stage solutions xxx and xxx (see Section 3.4), and the quantities
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Eval(xxx) and Eval(xxx) by using Algorithm 3.1. We have computed the average ratios

ρk =
min{Eval(xxx),Eval(xxx)}

LBk

, (3.25)

for each lower bound LBk. We also measured the average running times of computing the
ratios.
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Figure 3.4: The average ratios ρk for the assignment problem with m = 10.
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Figure 3.5: The average times of computing ρk for the assignment problem with m = 10.

The results for m = 10 are shown on Figures 3.4 and 3.5. For m = 10, all the quantities
were solved to optimality, or with the assumed accuracy ε, when Algorithms 3.1 and 3.2
were used. One can observe in Figures 3.4 and 3.5 that one of xxx or xxx is always a good
approximate solution. The best lower bound can be computed by using the Lagrangian
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relaxation technique (the bound LBLag). On can also see in Figure 3.5 that the evaluation
and all lower bounds can be computed in reasonable time. The best lower bound is LBLag.
As one can expect, the lower bound LBSel is better than LBAdv for smaller α and worse
for larger. Notice, however, that LBSel can be computed very efficiently.

Figures 3.6 and 3.7 show the results for m = 25. We can still observe an improvement
of LBAdv over LBh. For this case, not all solutions xxx and xxx were evaluated exactly. For
some instances Algorithm 3.2 was terminated after the time of 600 seconds was exceeded.
In this case we obtained upper bounds on Eval(xxx) and Eval(xxx). The Lagrangian lower
bound LBLag was harder to compute than for m = 10. In Figure 3.7, in the brackets the
number of instances, for which LBLag was computed successfully, is shown. But, as for
m = 10, it outperforms all the remaining lower bounds and suggests that the approximate
solutions behave well. The cardinality selection constraint lower bound LBSel outperforms
LBAdv for α ≤ 0.5. The time required to compute LBSel is again small.
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Figure 3.6: The average ratios ρk for the assignment problem with m = 25. The numbers
in brackets denote the number of instances for which the value of LBLag was computed
successfully.

3.5.2 The minimum knapsack problem

In this section we will show the results of experiments when P is the following minimum
knapsack problem:

min
∑

i∈{1,...,n}

Cixi∑
i∈{1,...,n}

wixi ≥ W,

xi ∈ {0, 1}, i ∈ {1, . . . , n}.

The test were performed for n ∈ {100, 400, 1000}, with the following parameter setting:
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Figure 3.7: The average times of computing average ratios ρk for the assignment problem
with m = 25.

• The first stage costs Ci, nominal second stage costs ci, and weights wi are random in-
tegers uniformly distributed in [1, 20]. The knapsack capacity W = 0.3

∑
i∈{1,...,n}wi.

• The maximal deviations di are random integers uniformly distributed in [0, 100].

• The budget Γ = 0.1
∑

i∈{1,...,n} di.

• α ∈ {0.1, 0.2, . . . , 0.9}.

• The accuracy in Algorithm 3.1 and Algorithm 3.2 was set to 0.01. Algorithm 3.1
and Algorithm 3.2 were terminated after the time limit of 600 seconds was exceeded.
Also, the time limit on the MIP formulation (3.13), for computing the cardinality
selection constraint lower bound, was set to 600 seconds. If this time was exceeded,
then an estimation from below for this lower bound was returned.

For each parameters settings, we have generated 10 random instances. In the first
experiment we computed the ratio ρ(cccS0) by using (3.24). The average ratios and the
average running time of computing them for n = 1000 are shown on Figures 3.8 and 3.9.

Observe first that the ratio ρ(cccS0) can be computed efficiently. The largest running
times were observed for α = 0.3. The average value of this ratio is less than 2.0 and for
smaller n the figure is more chaotic. For n = 1000, the average value of ρ(cccS0) is close to
1.975 for all α. This behavior is different than for the assignment problem (see Figure 3.2),
where the ratio is significantly smaller for larger instances and slightly decreases when α
increases.

We next considered the case with n = 100. Figures 3.10 and 3.11 shows the average
ratios ρAdv, ρh and ρSel for n = 100 (see (3.25)) and the average times for computing
these ratios for various α. One can observe that the approximation algorithm proposed in
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Figure 3.8: The average ratios ρ(cccS0) for the knapsack problem with n ∈ {100, 400, 1000}.
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Figure 3.9: The average times of computing ρ(cccS0) for the knapsack problem with n = 1000.

Section 3.4 performs well for the tested instances. By using better of LBAdv and LBSel,
the average ratio for each α was not greater than 1.5. There is also an improvement of ρAdv
over ρh. The cardinality selection constraint lower bound is better than the adversarial one
for α < 0.4 and worse for α > 0.4. Observe that computing ρSel for the knapsack problem
is more time consuming than for the assignment.

On Figures 3.12 and 3.13 the results for n = 400 are shown. One can observe similar
a relation between ρSel and ρAdv as for the smaller problem with n = 100. However, the
adversarial lower bound is now harder to compute and most instances were not solved to
optimality (Algorithm 3.1 was terminated after the time of 600 seconds was exceeded).
Observe that there is no significant improvement of ρAdv over ρh.
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Figure 3.10: The average ratios ρk for the knapsack problem with n = 100.
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Figure 3.11: The average times of computing the average ratios ρk for the knapsack problem
with n = 100.

3.5.3 Summary of the tests

Let us briefly summarize the results of the tests. For the assumed method of data gen-
eration, the ratio ρ(cccS0) is almost always not greater than 2. Furthermore ρ(cccS0) can be
computed efficiently for quite large instances, with thousands of variables. This suggests
that the best of solutions xxx, xxx has, for the tested instances, the empirical approxima-
tion ratio less than 2. One can conclude that this ratio is indeed significantly smaller
than 2, by using better lower bounds. However, computing these lower bounds is more
time-consuming and can be done efficiently for smaller instances.

The solutions xxx, xxx can be computed by solving the recoverable problem. For the
assignment and knapsack problem, the recoverable problem is not particularly difficult to
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Figure 3.12: The average ratios ρk.
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Figure 3.13: The average times for computing the average ratios ρk for the knapsack
problem with n = 400. The time required to compute ρH is negligible.

solve by CPLEX. However, the evaluation problem is more difficult, as we have to use the
relaxation algorithm to perform this task. For large instances, we should assume more
time for executing Algorithm 3.1. We can then choose the solution among xxx, xxx, which has
better upper bound on the value of Eval(xxx).

Notice that the techniques proposed in this chapter are general. For specific prob-
lem P , the incremental, recoverable and evaluation problems can be solved by specialized
algorithms (even in polynomial time). So, one can obtain better estimations for larger
instances.
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3.6 Conclusion and open issues

This chapter considers a general class of 0-1 optimization problems. Problems belonging
to this class can be either polynomially solvable or NP-hard. The concept of recoverable
robustness was applied to take into account the possibility of performing a recourse ac-
tion on the current first-stage solution. In this chapter we use the polyhedral uncertainty
representation which generalizes continuous interval budgeted uncertainty. Moreover, this
uncertainty representation may lead to more tractable problems than the other uncer-
tainty representations. Unfortunately, the resulting min-max-min problem can be still too
complex to solve. Instead of solving the problem to optimality, we proposed to use some
approximate solutions. The quality of these solutions can be estimated by using various
lower bounds. One can apply this approach to relatively large instances of the recoverable
version of any 0-1 programming problem P . In this chapter we have shown the results
of computational tests when P is the knapsack problem with up to 1000 variables or the
minimum assignment problem with up to 10 000 variables.

Speaking of the open questions, one can try to solve the formulation (3.5) by using
a row and column generation technique. The corresponding computational tests should
be performed for various problems P . Notice that even the incremental and recoverable
versions of P can be nontrivial and interesting from the computational point of view.
Solving the robust version can be done more efficiently if a polynomial algorithm is known
for the incremental or recoverable problem. However, this is the case only for very specific
problems, for example, such as the selection or the minimum spanning tree problems.
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Chapter 4

Summary and conclusions

In this thesis we investigate the recoverable robust versions of a class of discrete combinato-
rial optimization problems with uncertain costs. The uncertainty is modelled by utilizing
the discrete or interval scenario sets. The advantage of using the robust approach lies
in the fact that it allows us to deal with an uncertainty of a problem parameters in an
optimization problems, especially when no probability distribution of scenarios is known.
On the other hand, this approach can be excessively risk averse in many practical appli-
cations generating a feasible solutions influenced by the worst case scenarios. In turn, the
concept of recoverability allows us to change selected solution to some extent after uncer-
tain parameters were realized. Those two concepts can be combined together giving an
opportunity to control the degree of uncertainty.

This doctorate thesis consists of the two main parts. The first part, Chapter 2, deals
with the recoverable robust spanning tree problem under interval uncertainty representa-
tion. The second part, Chapter 3, investigate recoverable robust 0-1 programming models.

In Chapter 2 we have studied the recoverable robust spanning tree problem under a
number of interval uncertainty representations. It was shown that the problem is polyno-
mially solvable under the interval uncertainty representation U I , thus resolving a problem
which has been open to date in the literature. The idea has been also generalized to the
recoverable robust matroid basis problem with interval element costs. Next we have con-
structed a polynomial time combinatorial algorithm for the recoverable robust spanning
tree problem. Additionally, the algorithm has been used to provide several approxima-
tion results for recoverable spanning tree problem with the scenario sets with a budged
constraint.

Chapter 3 considers a general class of 0-1 optimization problems without assumptions
about their complexity. We have used the polyhedral uncertainty representation which the
generalizes continuous interval budgeted uncertainty. Although, this uncertainty represen-
tation may lead to more tractable problems than other uncertainty representations, the
resulting problems may still be too hard to solve. Thus, we proposed the usage of approx-
imate solutions. The quality of these solutions can be estimated by using various lower
bounds. In this chapter we have applied this approach by performing computational exper-
iments on the knapsack problem with up to 1000 variables and the minimum assignment
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problem with up to 10 000 variables.
There is still a number of open questions regarding discussed problems. As an exam-

ple, the complexity of the recoverable robust spanning tree problem under the interval
uncertainty representation with budgeted constraint is not yet known. The complexity of
the recoverable robust matroid basis problem under different uncertainty representations
is also an interesting topic of future research.
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Appendix A

Julia, JuMP and RobRecSolver

In this appendix we briefly introduce Julia programming language, JuMP modeling lan-
guage for mathematical optimization in Julia and RobRecSolver.jl package written in Julia
and containing implementations of algorithms necessary for conducting experiments in
Chapter 3.

A.1 Introduction

A.1.1 Julia programming language

Julia[39] is an open source general purpose programming language with dynamic typing. It
was first presented in 2012 and has grown rapidly since then. The language is designed to be
very effective at numerical and scientific computing, which is achieved among other things
thanks to type inference and just-in-time compilation. Julia also has a large ecosystem of
libraries in different scientific domains including, but not limited to machine learning, data
science, differential equations and optimization tools each supported by its own community.
Julia’s syntax is somewhat similar to that of MATLAB’s, but it has a number of major
syntactic and functional differences.

The reader may want to check Julia’s home page [39], especially Learn and Documen-
tation sections for more information about the Julia programming language.

A.1.2 Mathematical optimization with JuMP

JuMP (abbr. Julia Mathematical Programming) [42] is a package of Julia programming
language introducing a modeling language for mathematical optimization. JuMP requires
a solver to be installed in order to be able to solve optimization problems. Several solvers,
e.g., CPLEX or Gurobi require a commercial license and these solvers should be installed
separately. There is also a number of solvers available for free under open source licenses,
e.g., GLPK. JuMP providers wrappers which communicate with solvers using available
APIs, for example lower-level C programming language APIs. The whole process of package
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installation and configuration is described on the JuMP package’s home page [42].
JuMP uses Julia’s metaprogramming feature to define a modeling language for math-

ematical optimization problems. Lets write the following problem:

min 12x+ 20y
s.t. 6x+ 8y ≥ 100

7x+ 12y ≥ 120
x ≥ 0
0 ≤ y ≤ 3

(A.1)

using JuMP modeling language:

Listing A.1: Simple model
1 using JuMP
2 using GLPK
3 model = Model(GLPK.Optimizer)
4 @variable(model , x >= 0)
5 @variable(model , 0 <= y <= 3)
6 @objective(model , Min , 12x + 20y)
7 @constraint(model , c1 , 6x + 8y >= 100)
8 @constraint(model , c2 , 7x + 12y >= 120)
9 print(model)
10 optimize !(model)
11 @show termination_status(model)
12 @show primal_status(model)
13 @show dual_status(model)
14 @show objective_value(model)
15 @show value(x)
16 @show value(y)
17 @show shadow_price(c1)
18 @show shadow_price(c2)
19 nothing #hide

Note that the example above is based on the examples available in JuMP GitHub source
code repository [43].

I invite the reader to review a Quickstart Guide and Documentation sections on the
JuMP home page for more information about this package.

A.2 Installation and configuration

RobRecSolver.jl [57] is a Julia programming language package containing source code for
conducting experiments described in Section 3.5. Source code utilizes Julia v0.6 since that
was the latest version of Julia working correctly with JuMP at the moment. RobRecSolver.jl
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package also has its own documentation and unit tests. We invite the reader to visit GitHub
repository for the RobRecSolver.jl package [57] for more details.

A.2.1 Getting Julia

JuMP and consequently RobRecSolver.jl require Julia programming language of the ver-
sion 0.6. One can build Julia from the source code or use the binaries. Download links
and more detailed instructions are available on the Julia website [39].

A.2.2 Getting CPLEX Optimizer

RobRecSolver.jl utilizes CPLEX.jl package [41] which in turn requires a working installation
of IBM CPLEX Optimizer [37] with a commercial license. The license is free for faculty
members and graduate teaching assistants. IBM CPLEX Optimizer must be downloaded
and installed separately.

A.2.3 Installing RobRecSolver

RobRecSolver.jl repository organization follows standard Julia’s convention of package lay-
out and can be utilized by a Julia’s builtin package manager, called Pkg. To install it, use
Pkg.clone command:
julia > Pkg.clone("https :// github.com/nikagra/RobRecSolver.jl.git")

Since RobRecSolver.jl contains REQUIRE file, that file will be used to determine which
registered packages RobRecSolver.jl depends on, and they will be automatically installed.

A.2.4 Updating RobRecSolver

In order to update package run the following sequence of commands (; symbol at the start
of the Julia’s REPL enters shell mode):
julia > cd(Pkg.dir("RobRecSolver"))
julia > ;
shell > git fetch --all --tags --prune && git checkout tags/<version >
julia > Pkg.resolve ()

A.2.5 RobRecSolver.jl

Package consists of several functions implementing algorithms described in Section 3.5 as
well as some utility functions. The easiest way to experiment with them is to use package
in Julia’s interactive session (or REPL which stands for read-eval-print loop). For example:
$ julia

_
_ _ _(_)_ | A fresh approach to technical computing

(_) | (_) (_) | Documentation: https :// docs.julialang.org
_ _ _| |_ __ _ | Type "?help" for help.
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| | | | | | |/ _‘ | |
| | |_| | | | (_| | | Version 0.6.3 (2018 -05 -28 20:20 UTC)

_/ |\__ ’_|_|_|\__’_| | Official http :// julialang.org/ release
|__/ | x86_64 -w64 -mingw32

julia > 1 + 1
2

Interactive session may be useful while prototyping programs since it outputs result of
each evaluation and allows to check intermediate results.

To leave interactive session enter exit() command or press Ctrl+D.
Alternatively, instead of running interactive session, one can evaluate source file, which

uses .jl filename extension by convention:
$ julia main.jl arg

In the example above Julia passes argument arg to a script stored in source file named
main.jl and then executes it in a non-interactive mode. Arguments passed to the script
are available within the script in a global constant ARGS. The name of the source file is also
store in global constant under the name PROGRAM_FILE.

See Julia Scripting section of the Julia’s manual [40] for more information about writing
scripts in Julia.

To start using RobRecSolver.jl library one need to import it first with a using keyword,
then call function they are interested in, i.e., incrementalProblem:
julia > using RobRecSolver.Experiments
julia > runExperiments ([100, 400, 1000], [10, 25, 100])

Check Julia Modules section of the manual page [40] for more detailed information about
using modules in Julia.

A.2.6 Additional Types and Functions

There is a number of types and helper functions defined to facilitate implementation of
algorithms described in Section 3.5. ProblemDescriptor is one of such types. It serves
as a basic interface, defining size of the problem or whether it has equal cardinality prop-
erty among the other properties. There are two subtypes of ProblemDescriptor, namely
KnapsackProblemDescriptor and AssignmentProblemDescriptor for each problem dis-
cussed in Chapter 3:

using RobRecSolver

n = 5
knapsackProblemDescriptor = KnapsackProblemDescriptor(n)
property = hasEqualCardinalityProperty(knapsackProblemDescriptor)
println("KnapsackProblemDescriptor.hasEqualCardinalityProperty: $property")

assignmentProblemDescriptor = AssignmentProblemDescriptor(n)
property = hasEqualCardinalityProperty(assignmentProblemDescriptor)
println("AssignmentProblemDescriptor.hasEqualCardinalityProperty: $property")
println("AssignmentProblemDescriptor.getCardinality: $( getCardinality(

assignmentProblemDescriptor))")
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Upon executing example above one will get the following output:
KnapsackProblemDescriptor.hasEqualCardinalityProperty: false
AssignmentProblemDescriptor.hasEqualCardinalityProperty: true
AssignmentProblemDescriptor.getCardinality: 5

Function initialScenario is another example of a helper function. It searches for a
good heuristic initial scenario in order to speed up some computations. Its behavior is
described in the Section 3.3.1. See example below on how to use this function:
using RobRecSolver

c = [2, 3]
d = [8, 9]
Γ = 10
s = initialScenario(c, d, Γ)
println("Initial scenario is ", s)

In this example c is a vector of the second stage costs, d is a vector of the maximum
deviations of the costs from their nominal values and Γ is a budget or the amount of
uncertainty, which can be allocated to the second stage costs.

Upon running the sequence of commands above one will receive the following output:
Initial scenario is [7.50073 , 7.50073]

The functions loadProperties and getProperty allow to customize package parame-
ters like solver time limits or logging for different algorithms.

Function loadProperties loads properties stored in an INI file from the specified
file location. To change default location set ROBRECSOLVER_CONFIG environment variable
either in Julia REPL or in /.julia/config/startup.jl and then reload RobRecSolver
package:
julia > ENV["ROBRECSOLVER_CONFIG"] = "<path_to_file >"
julia > Pkg.reload("RobRecSolver")

Use default properties file Pkg.dir("RobRecSolver")/conf/config.ini as a reference.
There is an extract from it below:
; Problem properties
[main]
lagrangianLowerBound.cplexLogging =0
lagrangianLowerBound.epsilon =0.000001
lagrangianLowerBound.overallTimeLimit =1800
lagrangianLowerBound.subproblemTimeLimit =600

See Appendix A.3.5 for full contents.
In order to reset the configuration changes simply delete the environment variable and

reload RobRecSolver package.
Function getProperty returns value for the key from previously loaded properties file:

using RobRecSolver

ε = getProperty("evaluationProblem.epsilon", parameterType = Float64)
timeLimit = getProperty("evaluationProblem.timeLimit")
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In the example above the value for property evaluationProblem.epsilon of type Float64
is stored in variable a ε. Then the value for property evaluationProblem.timeLimit of
type Int (default) is stored in a variable timeLimit. If properties section is not specified,
section called main is used by default.

A.3 Problems

A.3.1 Incremental and Recoverable Problems

Section 3.2 presents MIP formulations for incremental and recoverable problems for element
exclusion neighborhood as well as their simplified versions for equal cardinality problem.

Both versions of incremental problems are solved by a incrementalProblem function.
Here is an example of solving incremental problem for the minimum knapsack problem:
julia > using RobRecSolver
julia > n = 3
julia > α = 0.5
julia > c = [1, 2, 3]
julia > x = [0, 1, 1]
julia > w = [1, 2, 2]
julia > W = 3
julia > X = getKnapsackConstraints(w, W)
julia > problemDescriptor = KnapsackProblemDescriptor(n)
julia > incrementalProblem(c, α, x, X, problemDescriptor)

In this example we first import the RobRecSolver.jl package. Then we define a number of
variables, namely c for a vector of nonnegative nominal second stage costs, x for the first
stage solution, variable α for a fixed number belonging to [0,1] as described in Chapter 3.
We also define a variable w for a vector of item weights and W for the knapsack capacity.
The set of feasible solutions is prepared by a function getKnapsackConstraints. It is
represented as a list of anonymous functions each of which for a given vector of JuMP
variables returns a JuMP linear constraint. Variable problemDescriptor is an instance of
the type KnapsackProblemDescriptor which defines some useful properties of a problem,
i.e., its size or whether it has equal cardinality property. Last step is to call the function
incrementalProblem. It will return a tuple containing vector of the second stage solutions
and the objective value.

Let us solve the recoverable minimum assignment problem using a recoverableProblem
function:
julia > using RobRecSolver
julia > m = 2
julia > α = 1.0
julia > C = [1 2; 3 1]
julia > c = [5 3; 2 4]
julia > X = getAssignmentConstraints(m)
julia > problemDescriptor = AssignmentProblemDescriptor(m)
julia > recoverableProblem(C, c, X, α, problemDescriptor)

As in the previous example we first define some auxiliary variables. Here C is a vector of
nonnegative first stage costs, C is a vector of nonnegative nominal second stage costs, X is a
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set of feasible solutions, α is fixed number belonging to [0, 1] and problemDescriptor is
an instance of the AssignmentProblemDescriptor type. This example will return a tuple
consisting of a vector of the first stage solutions, a vector of the second stage solutions and
the objective value.

A.3.2 Evaluation Problem

Let us take a look at a function named evaluationProblem, which implementsAlgorithm
1 in Section 3.2. Here is an example of how one can use it for the minimum knapsack
problem:
julia > using RobRecSolver
julia > n = 2
julia > α = 1.0
julia > C = [4, 3]
julia > c = [2, 3]
julia > d = [8, 9]
julia > Γ = 9
julia > x = [0, 1]
julia > w = [1, 2]
julia > W = 1
julia > X = getKnapsackConstraints(w, W)
julia > problemDescriptor = KnapsackProblemDescriptor(n)
julia > evaluationProblem(C, c, d, Γ, α, x, X, problemDescriptor)
D- 2 constraints was added to this evaluation problem Debug

evaluation_problem.jl:1
10.0

We first define a size of the problem n, a parameter α, a vector of the first stage costs
C, a vector of a nonnegative nominal second stage costs C, a vector of the maximum
deviations of the costs from their nominal values d, a budget Γ, a set of feasible solutions
X and problemDescriptor being an instance of the type KnapsackProblemDescriptor.
We also define a vector of item weights w and knapsack capacity W. The last step is to call
evaluationProblem passing all necessary arguments.

A.3.3 Lower Bounds

Section 3.3 of the publication contains algorithms and MIP formulations to calculate ad-
versarial, lagrangian and cardinality selection constraint lower bounds. Corresponding
functions from RobRecSolver.jl package to calculate this lower bounds are respectively
adversarialProblem, lagrangianLowerBound and selectionLowerBound. All of these
functions have very similar signatures, so as an example let us take a closer look to
adversarialProblem. This function implements the Algorithm 3.2 for calculating ad-
versarial lower bound in the Section 3.2. An example of the source file solving it for the
minimum knapsack problem is provided below:
using RobRecSolver

n = 2
α = 0.5

w = [1, 2]
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W = 1
X = getKnapsackConstraints(w, W)

C = [1, 3]
c = [3, 1]
d = [2, 2]
Γ = 2

problemDescriptor = KnapsackProblemDescriptor(n)
result = adversarialProblem(C, c, d, Γ, X, α, problemDescriptor)
println("Adversarial lower bound is ", result)

Assuming the code above is saved as adv.jl, running the program will return the following
output:
$ julia adv.jl
D- 3 constraints was added to this adversarial problem Debug

adversarial_problem.jl:1
Adversarial lower bound is 5.0

In this program we first define a size of the problem n, a parameter α, a vector of the
first stage costs C, a vector of the second stage costs C, a vector of the maximal deviations
of the costs from their nominal values d, a budget Γ, a set of feasible solutions X and
problemDescriptor being an instance of the type KnapsackProblemDescriptor. Then
we call an adversarialProblem function passing all necessary arguments and printing out
result. Note that depending on package settings it also may print some additional logs.

A.3.4 Experiments

RobRecSolver.jl package also contains Experiments submodule which can serve as a ref-
erence on how to use a core package functionality in the experiments. Note that almost
all functions in RobRecSolver.Experiments are highly customized to serve purposes of
Chapter 3. Never the less let us take a closer look at functions presented here.

RobRecSolver.Experiments.runExperiments is an entry point of the experiments.
This function accepts a list of minimum knapsack problem sizes ns, a list of minimum
assignment problem sizes ms and optionally a list of values of parameter α called αs and
a number of instances to be generated for each value of α called numberOfInstances. By
default αs has values 0.1, 0.2, ..., 0.9 and numberOfInstances equals 5:
using RobRecSolver.Experiments

runExperiments ([100, 400, 1000], [10, 25, 100])

Check Chapter 3 for more information about the scope of the experiments.
RobRecSolver.Experiments.saveCsv is a helper function developed to save experi-

ment results as CSV files. It saves data described by columnNames argument using data
passed to data argument to CSV file with name filename:
using RobRecSolver

Experiments.saveCsv("item_prices.csv", ["milk" 100; "ham" 250], ["item", "price"])

The above script will save a CSV file item_prices.csv with the following content:
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item ,price
milk ,100
ham ,250

Function RobRecSolver.Experiments.drawAndSavePlot is a function used to draw
plots used in Chapter 3. It accepts a number of parameteres and is heavily based on a
PyPlot backend. As an example. the following code snippet:
using RobRecSolver , Plots

pyplot ()
Experiments.drawAndSavePlot("plot.pdf", [0.1, 0.2, 0.3], [21, 15, 12], "α", "average time

(s)", "m=100")

will produce the following plot:

A.3.5 Properties File

; Problem properties
[main]
lagrangianLowerBound.cplexLogging =0
lagrangianLowerBound.epsilon =0.000001
lagrangianLowerBound.overallTimeLimit =1800
lagrangianLowerBound.subproblemTimeLimit =600

selectionLowerBound.timeLimit =600
selectionLowerBound.cplexLogging =0

adversarialProblem.timeLimit =600
adversarialProblem.cplexLogging =0
adversarialProblem.epsilon =0.01

evaluationProblem.timeLimit =600
evaluationProblem.cplexLogging =0
evaluationProblem.epsilon =0.01

incrementalProblem.cplexLogging =0
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minimumAssignmentProblem.cplexLogging =0

minimumKnapsackProblem.cplexLogging =0

recoverableProblem.cplexLogging =0
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