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Przedmowa

Informatyka jest dyscyplin^ mlodc^ licz^c^ okolo pi^cdziesi^t lat. Sam termin infor- 
matyka pojawil siq w j^zyku polskim na pocz^tku lat siedemdziesiqtych, a termin 
komputer zadomowil siQ na dobre dopiero w koncu lat siedemdziesi^tych ubieglego 
wieku. Rozwöj informatyki byl i pozostaje stymulowany dwoma czynnikami. Pierw- 
szym jest rozwöj technologii, glöwnie elektronicznej. Dzi^ki postqpowi w tej dziedzi- 
nie stalo si$ mozliwe technicznie zrealizowanie najpierw urz^dzen licz^cych, ktörych 
koncepcje byly rozwazane znacznie wczesniej, a pözniej zbudowanie uniwersalnych 
urz^dzen licz^cych -  wspölczesnych komputeröw. Drugim czynnikiem jest potencjal- 
nie ogromne pole zastosowan informatyki. Oba te wzajemnie sprzqzone czynniki do- 
prowadzily do sytuacji, ze komputer staje si$ powszechnym narz^dziem pracy niemal 
w kazdej dziedzinie.

Miar^ tempa rozwoju obecnie dominuj^cej technologii pölprzewodnikowej jest 
fakt, ze wydajnosc sprzqtu komputerowego, mierzona czQstotliwosci^ zegara steru- 
j^cego prac^ komputera, i -  podobnie -  rozmiar pami^ci operacyjnej komputera 
podwaja siq co pöltora roku. Przewiduje si$, ze taka tendencja moze si^ utrzymac 
do lat 2015-2020. Wyznacznikiem rozpowszechnienia zastosowan informatyki jest 
obecnie nie tylko Internet -  globalna siec komputerowa, stanowi^ca federacjq setek 
tysi^cy sieci komputerowych -  ale röwniez rozpoczynaj^cy siq proces integracji 
Intemetu, telefonii komörkowej oraz telewizji cyfrowej.

Informatyka dostarcza specyficznych narzqdzi i metod, ktöre mozna wykorzystywac 
do rozwi^zywania problemöw w röznych dziedzinach. Do zrozumienia tej specyfiki 
i mozliwosci zastosowan informatyki potrzeba trwalych i niezawodnych podstaw. Tak 
jak w przypadku innych nauk scislych, podstawy informatyki ŝ _ oparte na matematy- 
ce, a dokladniej na wybranych jej dzialach, odpowiednio przystosowanych do potrzeb 
informatyki. Podstawy informatyki s^ wprawdzie ciqgle ksztaltowane, ale pewne ich 
elementy mozna obecnie uznac za ustabilizowane. W historii matematyki byl okres na 
przelomie XIX i XX wieku, gdy uswiadomiono sobie koniecznosc ustalenia podstaw 
matematyki, bez ktörych nie bylby mozliwy spöjny rozwöj röznych dzialöw: algebry, 
analizy matematycznej, rachunku prawdopodobienstwa, topologii itp. Podstawy ma­
tematyki, ktöre uformowaly siq w pierwszej polowie ubieglego wieku, obj^ly dwa 
niezalezne wczesniej dzialy -  teoriQ mnogosci i logik$. Podobnie jest z podstawami 
informatyki, za ktöre röwniez mozna uwazac teoriQ mnogosci i logik^, z polozeniem



akcentu, silniejszego niz w podstawach matematyki, na logikQ. Wynika to takze 
z tego, ze informatyk^ traktuje siq niekiedy jako dyscyplin? wyrosli z podstaw mate­
matyki.

Szczegölna rola matematyki w podstawach informatyki nie jest jednak uzasadniona 
wyi^cznie wzglqdami historycznymi. Zasadniczy powöd wynika z roli, ja k i pelni 
informatyka w zastosowaniach praktycznych. Rozwi^zywanie problemöw, przed ktö- 
rymi staje informatyk, wymaga od niego -  po pierwsze -  zrozumienia danej dziedziny 
zastosowan i zrozumienia na czym dany problem polega, po wtöre -  informatyk musi 
znad i rozumied narz^dzia i metody, ktörymi moze dysponowad, wreszcie -  po trzecie
-  musi zaproponowac jak, za pomoci posiadanych ärodköw, dany problem rozwi^zac. 
Opis problemu na tle specyficznej dziedziny jest poczqtkowo wyrazany w j^zyku na- 
turalnym. Precyzyjny jego opis wymaga wyrazenia go w jqzyku sformalizowanym, 
czyli jQzyku o Scisle okreslonej skladni i semantyce. Potrzeba taka wynika st^d, ze 
przedstawione ostatecznie komputerowi do policzenia rozwi^zanie problemu musi byc 
wyrazone w jqzyku programowania, czyli röwniez pewnym sformalizowanym jqzyku. 
Komputer, w odröznieniu od czlowieka, nie potrafi bowiem podjic zadnych innych 
akcji niz te, ktöre sei. wyrazone w pewnym jqzyku sformalizowanym.

Konieczno§d formalizacji informatyki wynika wi$c z dwöch powodöw. Po pierwsze
-  ze specyfiki komputera i tego, co potrafi, a to -  co potrafi -  mozna sprowadzic do 
umiejQtnosci przetwarzania symboli. Po drugie -  wynika z potrzeby zrozumienia abs- 
trakcji, czyli procesu budowy formalnego opisu problemu na podstawie opisu wyra- 
zonego w jqzyku naturalnym. Formalny opis problemu jest pewnym modelem rze- 
czywistego problemu wystqpujicego w realnej dziedzinie. Model jest opisem 
uproszczonym, to znaczy koncentruje si$ tylko na wybranych aspektach rzeczywiste- 
go problemu. Na jakich aspektach i jak szczegölowo ma skupiad si§ model zalezy 
oczywiscie od celu jego budowy. Sposöb budowy modelu, ocena zgodnosci modelu 
z opisywan^ rzeczywistosciq, zwi^zek pomiqdzy modelem opisu a modelem rozwi^- 
zania s i  typowymi zagadnieniami, woköt ktörych wyrastaji teorie i dzialy matematy­
ki. Klasycznym przykladem s i  analiza matematyczna i teoria röwnan rözniczkowych, 
ktöre rozwin^ly siq na skutek zapotrzebowania dziewi^tnastowiecznej techniki 
i fizyki.

Na pocz^tku XX wieku z formalizacji matematyki wi^zano zbyt wielkie nadzieje. 
Program formalizacji matematyki, zwi^zany glöwnie z nazwiskiem Dawida Hilberta, 
zalamal siq w latach trzydziestych ubieglego wieku, po odkryciach Kurta Gödla, ktöry 
wskazal na swoisti ograniczonosc metod formalnych. Gdyby siQ okazalo, ze program 
Hilberta jest realizowalny, wöwczas mozna byloby przypuszczac, ze wszystko to, co 
potrafi czlowiek, möglby röwniez zrealizowac komputer. Tak jednak nie jest, dlatego 
intuicja i kreatywnosc Si tymi wlasciwosciami czlowieka, ktöre stanowii o jego prze- 
wadze nad komputerem. Oznacza to, ze informatyk w swojej pracy powinien traktowac 
metody formalne jako uzupelnienie i wsparcie wlasnej pomyslowosci i twörczosci.



W informatyce metody formalne stanowi^ fundament podstawowych pojqc, takich 
jak: pojQcie algorytmu, obliczalnosci czy ztozonosci obliczeniowej.

Logika dostarcza jqzyka do przedstawiania i badania wlasnosci modeli informatycz- 
nych, w tym systemöw komputerowych i j^zyköw programowania, a zwlaszcza srod- 
köw do definiowania skladni i semantyki jqzyköw programowania. W jQzyku logiki 
mozna specyfikowac wymagania stawiane projektowanym systemom oprogramowa- 
nia. jQzyk logiki moze ponadto byc bezposrednio uiywany jako jqzyk programowania. 
Ogromn^ rolq odgrywa logika w zastosowaniach informatyki, na przyklad w tworze- 
niu i funkcjonowaniu baz wiedzy i systemöw ekspertowych.

Szczegöln^ toIq odgrywa logika w procesie wytwarzania oprogramowania. Na 
gruncie logiki stalo si$ mozliwe sformulowanie pojqcia poprawnosci programöw, 
a nastQpnie opracowanie metod weryfikacji ich poprawnosci. Proces wytwarzania 
oprogramowania, jak na przyklad w inzynierii oprogramowania, jest obecnie 
w coraz wiqkszym zakresie wspomagany przez komputer. Budowa narzqdzi wspo- 
magajXcych ten proces opiera si$ na formalnych metodach, maj^cych oparcie na 
gruncie logiki.

Niniejszy podrqcznik pt. Elementy logiki i teorii mnogosci dla informatyköw jest po- 
prawion^ i rozszerzon^ wersj^ wydania z 2002 roku: Elementy logiki dla informaty­
köw, Oficyna Wydawnicza Politechniki Wroclawskiej. Tak jak wydanie poprzednie, 
obejmuje glöwnie logikq klasyczn^ wraz z krötkimi informacjami o logikach niekla- 
sycznych.

W jqzyku polskim jest wiele bardzo dobrych podrqczniköw logiki, pisanych przede 
wszystkim dla matematyköw -  na przyklad: [Adamowicz, Zbierski 1991], [Grze- 
gorczyk 1975], [Hunter 1982], [Rasiowa 1998], [Slupecki, Halkowska, Pirög- 
-Rzepecka 1978], a w ostatnim okresie: skrypt [Tiuryn 2003] oraz [Guzicki, Za- 
krzewski 2005], [Kraszewski 2007], przy czym dwie ostatnie pozycje ograniczaj^ 
si$ tylko do teorii mnogosci. Warto wspomniec o krötkiej i dawno wydanej ksi^zce 
o przegl^dowym charakterze [Lyndon 1978], Natomiast, opröcz nielicznych -  na 
przyklad: [Mostowski, Pawlak 1970], [Szalas 1992] -  praktycznie nie ma takich 
podr^czniköw dla informatyköw. Zwraca uwagq fakt, ze w ostatnim okresie po- 
wstaj 3. rözne podrqczniki logiki dla informatyköw w jqzyku angielskim -  na przy­
klad: [Fitting 1990], [Kelly 1997], [Nissanke 1999], [Socher-Ambrosius, Johann 
1996], [Ben-Ari 2001]. Ostatnia pozycja -  pod wieloma wzglqdami podobna do ni- 
niejszego podrqcznika -  ukazala siq w 2005 roku w tlumaczeniu na j$zyk polski. 
Jednq. z istotnych röznic mi^dzy tymi dwiema kategoriami podr^czniköw jest spo- 
söb przedstawiania systemöw dowodzenia. Dla matematyköw zwykle jako podsta- 
wowy wybiera siq System dowodzenia Hilberta, ktöry dobrze oddaje praktykQ do- 
wodow^ „klasycznego” matematyka, w informatyce natomiast wiqksz^ rolq 
odgrywajct systemy dowodowe, ktöre -  inaczej niz System Hilberta -  pozwalaj^ na 
automatyzowanie procesu dowodzenia. W niniejszym podrqczniku omawia siq za-



tem -  jako podstawowe systemy dowodzenia -  System sekwentöw Gentzena i Sys­
tem oparty na regule rezolucji.

Pierwszy rozdzial podrqcznika jest ogölnym wprowadzeniem, wyjasniajctcym czym 
jest logika. Pozostaly material mozna podzielic na cztery czqscL

Pierwsza czqsc, obejmuj^ca rozdzialy od 2. do 8., jest krötk^ prezentacj^ elementöw 
teorii mnogosci, algebr abstrakcyjnych i j$zyköw formalnych. W obecnym wydaniu 
ksiqzki wprowadzono dodatkowe informacje na temat liczb kardynalnych oraz nieco 
poszerzono rozdzial dotycz^cy jqzyköw formalnych.

W drugiej czqsci, obejmuj^cej rozdzialy od 9. do 12., omöwiono rachunek zdan 
i kwantyfikatoröw -  ich skladniq, semantyk? oraz zwi^zane z nimi systemy dowodze­
nia oparte na sekwentach Gentzena i regule rezolucji.

W trzeciej czqsci, obejmuj^cej rozdzialy 13. i 14. o charakterze informacyjnym, kröt- 
ko omöwiono inne systemy dowodzenia oraz dokonano przegl^du innych, nieklasycz- 
nych logik. W obecnym wydaniu zamieszczono opis systemu dowodzenia opartego na 
tablicach analitycznych, jako systemu altematywnego w stosunku do systemu dowo­
dzenia opartego na regule rezolucji.

C z q s c  czwarta -  dolqczona do tego wydania ksi^zki, obejmuj^ca rozdzialy 15. i 16. -  
przedstawia zastosowanie metod logiki do definiowania skladni i semantyki jqzyköw 
programowania oraz klasyczn^ logikq programöw Hoare’a, sluzqc^ dowodzeniu po- 
prawnosci programöw.

Prezentacja materialu jest sformalizowana tylko czqsciowo i odnosi siQ w zasadzie do 
definiowania poj^c oraz do sformulowania i udowodnienia wybranych twierdzen. 
Zwröcono uwagQ przede wszystkim na twierdzenia o poprawnosci i zupelnosci syste­
mu dowodzenia opartego na rachunku sekwentöw Gentzena, w przypadku pozostalych 
przedstawianych systemöw dowodzenia ograniczono siq tylko do sformulowania od- 
powiednich twierdzen.

Do kazdego rozdzialu s^ dol^czone cwiczenia. Zebrane tu zadania pochodz^ z röznych 
zrödel: czqsc stanowi opracowania autora lub wspölpracowniköw, czqsc jest zaczerpniqta 
z podrQczniköw przedstawionych w spisie literatury: [Fitting 1990], [Gabbay 1998], 
[Gerstig 1993], [Kelly 1997], [Marek, Onyszkiewicz 1975], [Nissanke 1999], [Stanosz 
2002], [Pacholski 2004], [Lawrow, Maksimowa 2004], [Guzicki, Zakrzewski 2005].

W celu czytelnego wyodnjbnienia przykladöw wprowadzono w tekscie linie rozdziela- 
j^ce na poczqtku i koncu odpowiednich akapitöw. Zakonczenia dowodöw s^ zazna- 
czone czamym kwadracikiem ■.

PodrQcznik jest przeznaczony w zasadzie dla studentöw pierwszego roku informatyki 
na studiach politechnicznych. Zakres materialu jest jednak szerszy i dlatego mog^ 
skorzystac z niego, jako z lektury uzupelniajqcej, takze studenci lat starszych.



Skiadam serdeczne podziqkowania moim kolegom z Instytutu Informatyki Stosowanej 
Politechniki Wroclawskiej za pomoc podczas przygotowywania tego podrqcznika. 
Szczegölnie gorqco dziqkujq profesorowi Iwanowi Tabakowowi oraz doktorowi Zdzi- 
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1. Elementarne poj^cia logiczne

1.1. Czym jest logika?

Stowo logika1 bywa uzywane przez filozoföw, matematyköw i w mowie potocznej 
w licznych znaczeniach i kontekstach. Dhigotrwala tradycja terminologiczna okresla 
logikQ jako analizQ jqzyka pod kqtem jego wykorzystania do:

• definiowania,
• klasyfikowania,
• wnioskowania.

Celem takiej analizy jest podanie regul poshigiwania siq jqzykiem, aby byl on sku- 
teczny.

Logika pojmowana jako narzqdzie poprawnego myslenia, czyli wnioskowania lub 
rozumowania, byla juz przedmiotem zainteresowania starozytnych2 [Kotarbinski 
1985], [Murawski 1995]. Drugie jej narodziny przypadaj^na wiek XIX. Traktowana 
jako pomocniczy dzial matematyki, wyodr^bnila si^ na pocz^tku XX wieku w samo- 
dzieln^ dyscyplinq matematyki. Obecnie zakres pojqcia logiki jest szeroki i obejmuje 
trzy odrqbne dziedziny [Bochenski 1992]:

• logika formaln^,
• metodologiq,
• filozofiq logiki.

Przedmiotem zainteresowania logiki formalnej s^wypowiedzi w danym jqzyku, a do- 
kladniej to, czy s^one prawdziwe czy falszywe. Dan^. wypowiedz mozna oceniac albo 
jako prawdziw^, albo jako falszyw^, gdyz zadna wypowiedz nie moze byc jednocze- 
snie prawdziwa i falszywa. Prawda i falsz, jako wlasnosci wypowiedzi, s^zatem pod- 
stawowymi pojqciami logiki.

Pojqcie prawdy, chociaz uzywane powszechnie, nie jest latwe do okreslenia. Klasycz- 
ne rozumienie prawdy opiera siq na zwi^zku pomiqdzy wypowiedzi^ a rzeczywisto-

1 Slowo logika pojawia si(j po raz pierwszy w tytule dzieta Demokryta (460-371 p.n.e.).
2 Problematyka logiczna byla rozwazana przez Sokratesa (469-399 p.n.e.) i Platona (427-347 p.n.e.), ale 
za pierwszego twörcq systemu logiki uwaza siQ Arystotelesa (384—322 p.n.e.).



seiet, do ktörej dana wypowiedz siq odnosi. Ten sens oddajX slowa wypowiedziane 
blisko dwa tysi^ce lat temu przez Sekstusa Empiryka [Turski 1988]:

O kazdym bowiem zdaniu rozstrzygci siq, ze jest prawdziwe albo ze jest fatszywe ze 
wzglqdu na jego odniesienie do rzeczy, o ktörej zostalo orzeczone. Jezeli bowiem 
okazuje siq ono zgodne z rzeczq, o ktörej zostalo orzeczone, wydaje siq prawdziwe, 
jezeli niezgodne -falszywe.

Zadaniem logiki formalnej jest ustalanie prawdziwosci wypowiedzi. Pierwszym zada- 
niem jest ustalanie prawdziwosci wypowiedzi zlozonych na podstawie prawdziwosci 
wypowiedzi, ktore stanowi^ ich skladowe. Szczegölnym rodzajem s^ takie wypowie­
dzi zlozone, ktore s^ zawsze prawdziwe, niezaleznie od prawdziwosci swoich wypo­
wiedzi skladowych. Wypowiedzi takie nazywa siq prawami logicznymi. Glöwnym 
zadaniem logiki jest jednak wnioskowanie, czyli badanie tego, co na podstawie dane- 
go zestawu prawdziwych wypowiedzi -  przeslanek -  mozna s^dzic o prawdziwosci 
innych wypowiedzi. Chodzi tu o wnioskowanie niezawodne, to znaczy takie, ktore na 
podstawie prawdziwych przeslanek gwarantuje zawsze wyprowadzenie prawdziwych 
wniosköw. Przedmiotem logiki s^ röznego rodzaju schematy niezawodnego wniosko- 
wania, ich formulowanie, porz^dkowanie i uzasadnianie.

Metodologia zajmuje siq stosowaniem logiki do röznych dziedzin [Bochenski 1992], 
[Wöjcicki 1982]. W praktyce okazuje siq, ze te same prawa logiczne mog^byö stoso- 
wane w rözny sposöb. Inn^ rzeczq s^ schematy wnioskowania, a innq. przeprowadza- 
nie wnioskowania na podstawie tych schematöw. Znany na przyklad podzial wnio­
skowania na metody dedukcyjne i indukcyjne nie polega na uzyciu röznych praw 
logiki, lecz na röznym uzyciu tych samych praw. Celem metodologii -  nie wnikaj^c 
w szczegöly -  sq. ogölne sposoby zdobywania i formulowania wiedzy prawdziwej albo 
przynajmniej dobrze uzasadnionej.

Filozofia logiki obejmuje analizq podstawowych pojqc logiki [Bochenski 1992], Prö- 
buje odpowiadac na przyklad na pytania: Co to jest prawda? Co to jest prawo logicz­
ne? Skqd wiadomo, ze jest ono prawdziwe?

Ksi^zka obejmuje tylko logikq formalnq, nazywan^ inaczej logikq matematycznq lub 
logikq symbolicznq. Logika formalna wprowadza jqzyk symbolicznego zapisu wypo­
wiedzi i okresla jak mozna takim symbolicznym zapisom przypisywac pewne znacze- 
nie, czyli -  w jaki sposöb mozna okreslac ich semantykq? Zakres wypowiedzi, ktore 
mozna zapisywac w jqzyku logiki formalnej, nie obejmuje oczywiscie wszystkich 
wypowiedzi, ktore mozna sformulowac w jqzyku naturalnym. Jqzyk logiki formalnej 
jest natomiast calkowicie wystarczaj^cy do przedstawiania i analizy wypowiedzi do- 
wolnych dzialöw matematyki. Nie w tym dziwnego, gdyz narodziny wspölczesnej logi­
ki wi^z^ siq wlasnie z potrzeb^ precyzyjnego sformulowania i analizy zagadnien z za- 
kresu podstaw matematyki, ktore pojawily siq pod koniec XIX i na poczqtku XX wie- 
ku. Dlatego logikq formalnq okresla siq niekiedy jako metamatematykq, czyli jako 
naukq dostarczaj^c^Jqzyka do opisu wszystkich pozostalych dzialöw matematyki.



Celem logiki formalnej jest uj^cie procesu rozumowania, albo wnioskowania, w postaci 
przeksztalcania napisöw reprezentuj ̂ cych wypowiedzi. Chodzi o to, aby na podstawie pew- 
nych napisöw, reprezentuj ̂ cych wypowiedzi uznane za prawdziwe, uzyskiwac prawdziwe 
wnioski -  nowe napisy, reprezentuj^ce nowe, prawdziwe wypowiedzi. Inaczej: chodzi o to, 
aby przeksztalcania napisöw reprezentowaly niezawodne schematy wnioskowania.

Przeksztalcanie napisöw opiera logika formalna na systemie dedukcyjnym, czyli na 
ustalonym zbiorze regul mechanicznego przeksztalcania tekstöw. Pewne napisy 
przyjmuje siq za poprawne z zalozenia. Traktuje siQ je jako aksjomaty systemu deduk- 
cyjnego. Inne napisy przyjmuje si$ za poprawne tylko wtedy, gdy daje si$ je  wypro- 
wadzic z aksjomatöw przez stosowanie ustalonych regul systemu dedukcyjnego. Re­
gula jest mechanicznym sposobem przeksztalcania jednych napisöw w inne napisy. 
Napisy wyprowadzone w wyniku stosowania przyjqtych regul powinny byc poprawne nie 
tylko w sensie zgodnosci z przyjqtymi regulami przeksztalcania, ale röwniez powinny 
byc poprawne w sensie semantycznym, to znaczy powinny byö wypowiedziami praw- 
dziwymi.

Logik formalnych jest wiele [Marciszewski 1987, 1988]. Rözni^siq one klas^obiek- 
töw, do ktörych odnosz^ si$ wypowiedzi, rodzajami wypowiedzi (np. wypowiedzi 
oznajmuj^ce, przypuszczaj^ce, pytaj^ce, nakazujqce) oraz stosowanymi systemami 
dedukcyjnymi -  systemami wnioskowania. Szczegöln^ rolq -  zaröwno ze wzgl^du na 
historiq, a takze zastosowania -  pelni logika klasyczna. Logika klasyczna jest j^drem 
wszystkich innych logik formalnych, w tym röwniez röznych specjalistycznych logik 
stosowanych w informatyce.

1.2. J$zyk logiki formalnej

Jak wspomniano, przedmiotem logiki formalnej s^ wypowiedzi w danym jQzyku, 
a dokladniej to: czy s^ prawdziwe czy fatszywe.

Nie wszystkie wypowiedzi mog^ byc jednak oceniane jako prawdziwe albo fatszywe. 
Nie sposöb tak ocenic wypowiedzi rozkazujqcej czy pytajqcej, mozna tak oceniac co 
najwyzej wypowiedzi oznajmujqce, ale nawet co do nich mog^ powstawac w^tpliwo- 
Sci. Na przyklad, czy wypowiedz:

W 2100 roku bardzo popularnqformq wypoczynku bqdq wakacje na Marsie.

jest prawdziwa czy falszywa? Trudno to osqdzic, przynajmniej w obecnej dobie. 
Z powodu braku wiedzy historycznej nie mozna natomiast stwierdziö, czy prawdziwa 
jest wypowiedz:

Kröl Boleslaw Chrobry urodzil siq w poniedzialek.

Wypowiedzi, ktörym mozna przypisac prawdziwosc albo falszywosc, bqd^ nazywane 
zdaniami. Zdania mog^byö proste, na przyklad:



Ksiqzka lezy na stole.
Wprogramie koncertu jest symfonia Mahlern.

Warto zwröcic uwagq, ze tego rodzaju zdania ŝ _ formulowane w pewnym kontekscie 
sytuacyjnym i tylko w tym kontekscie mozna rozstrzygac, czy s .̂ prawdziwe czy fal- 
szywe. W jqzyku naturalnym spotyka siq tez wypowiedzi, ktörych prawdziwosc, na- 
wet po ustaleniu kontekstu, moze byc trudna do okreslenia. Rozpatrzmy zdania:

On jest dosyc wysokim mqzczyznq.
Samochöd jechal dosyc wolno.

Powodem trudnosci w pierwszym zdaniu jest rozumienie zwrotu dosyc wysoki. Czy 
jest dosyc wysoki mqzczyzna, ktöry ma 180 cm wzrostu, czy dopiero taki, ktöry ma 
185 cm? Podobnie w drugim zdaniu problem stwarza rozumienie zwrotu jechac dosyc 
wolno.

Ze zdan prostych mozna budowac zdania zlozone, na przyklad:
Pöjdq do kina lub pöjdq do teatru.
Jeieli wykonawcq koncertu bqdqfilharmonicy berlihscy, to zwalq siq tlumy.
W 1939 roku Hitler napadl na Czechoslowacjq i - w  roku nastqpnym -  na Polskq.

Zdania zlozone powstajct przez pol^czenie zdan prostych za pomocEt spöjniköw lo- 
gicznych. Spöjnikami logicznymi (zdaniowymi) s^ na przyklad slowa i zwroty: nie, 
lub, i (oraz),jezeli..., to ...,... wtedy i tylko wtedy, gdy ....

W jQzyku naturalnym zwroty te maj^ustalone znaczenie. Ponizej przedstawia siq prost^ 
formalizacj^ uscislaj^c^ ich znaczenie. Formalizacja spöjniköw logicznym polega na:

• nadaniu im pewnej symbolicznej notacji,
• przypisaniu im znaczenia w terminach tablic prawdziwosciowych.

Zdania b^d^ oznaczane symbolamip, q, r , ... Spöjniki logiczne b^d^oznaczane nastqpuj^co:
• Spöjnik nie — nazywany negacjq -  jest oznaczany symbolem —i. NegacjQ zdania p  

zapisujemy: —i p.
• Spöjnik i (oraz) -  nazywany koniunkcjq -  jest oznaczany symbolem a . Koniunk- 

cj$ zdanp, q zapisujemy: p  Aq.
• Spöjnik lub -  nazywany dysjunkcjq lub alternatywq -  jest oznaczany symbo­

lem v. Dysjunkcjq (alternatywq) zdanp, q zapisujemy: p v  q.
• Spöjnik je ieli ..., to ... -  nazywany implikacjq -  jest oznaczany symbolem =>. 

Implikacjq zdanp, q zapisujemy: p  q.
Implikacjqp  => q mozna takze czytac w inny sposöb, na przyklad: 

p  jest warunkiem dostatecznym do tego, ze q. 
q pod warunkiem, ze p. 
q wtedy, gdy p.
q jest warunkiem koniecznym do tego, zep.



• Spöjnik wtedy i tylko wtedy, gdy -  nazywany röwnowaznosciq -  jest oznaczany 
symbolem <=>. Röwnowaznosc zdanp, q zapisujemy: p d q .
Röwnowaznosc p  <=> q mozna takze czytac w inny sposöb, na przyklad: 

p  jest warunkiem koniecznym i wystarczajXcym do tego, ze q. 
p  dokladnie wtedy, gdy p. 
p  jest röwnowazne p.

Uwaga
Czasem negacj^ koniunkcjcL itd. nazywa siQ zdania zlozone, ktöre powstaj^ z in- 
nych zdan przez l^czenie spöjnikami negacji, koniunkcji itd.

Zapisujqc zdania zlozone w postaci symbolicznej, bqdziemy uzywac nawiasöw, gru- 
pujcLC w odpowiedni sposöb zdania skladowe. Nawiasy b^dq. opuszczane, gdy przyj- 
mie siq nast^pujqc^ kolejnosc stosowania (wi^zania) spöjniköw (od najsilniejszego do 
najslabszego):

A, V, =>, <=>.

Zamiast na przyklad

((-£>) A f ) v ( f A  s)) => t

mozna pisac

—\p a  q v  r a  s => t

Zaklada siq ponadto, ze wystQpuj^ce obok siebie spöjniki a , v l^cz^ w lewo, a wystQ- 
puj^ce obok siebie spöjniki =>, <=> l^czq. w prawo. Na przyklad:

p  a  q a  r znaczy (p a  q) a  r ,
p=> q=> r znaczy p=> (q => r).

Prawdziwosc zdania zlozonego zalezy tylko od prawdziwosci jego zdan skladowych i od 
tego, jakim spöjnikiem sei. one pokiczone. Tak̂ _ wlasnosc nazywa siq ekstensjonalnosciq.

Tablica 1.1

p <7 p<Z>q

F F P
P F F
F P F
P P P

P q p=>q

F F p
P F F
F P P
P P P

P HP
P F
F P

P q pvq

F F F
P F P
F P P
P P P

P q pA q

F F F
P F F
F P F
P P P

Rolq spöjniköw logicznych daje siq prosto wyrazic za pomoc^ tablic prawdziwoscio- 
wych -  tablica 1.1. Tablica prawdziwosciowa jest tabelarycznym zestawieniem 
wszystkich wartosciowan zdan skladowych oraz odpowiadajqcych im wartosciowa-



niom zdania ztozonego poi^czonego danym spojnikiem logicznym. W celu zmniej- 
szenia rozmiaröw tablicy zamiast prawda lub faisz pisze si$ Symbole P oraz F. Tablica 
uscisla znaczenie, ktöre siq wiqze ze spöjnikami logicznymi w jqzyku naturalnym.

Wlasnosc ekstensjonalnosci, czyli abstrahowanie od wewnqtrznych tresci zdan skla- 
dowych przy ocenie prawdziwosci zdan zlozonych, moze powodowac kolizjq z poto- 
cznym rozumieniem prawdziwosci zdan. Typowym przykladem s^ zdania polqczone 
spojnikiem implikacji. Zdanie

Jeieli ksiqzyc ma ksztalt szescianu, to dzisiaj mamy dzieh rektorski. 
uznalibysmy za bezsensowne. Formalnie jest to zdanie poprawnie zbudowane, a po- 
nadto jest to zdanie prawdziwe. Chociaz zdanie dzisiaj mamy dzien rektorski nie musi 
byc zdaniem prawdziwym, ale falszywosc zdania ksiqzyc ma ksztalt szescianu poci^ga 
prawdziwosc calej wypowiedzi. Pojqcie sensownosci, do ktörego cz^sto siQ odwotu- 
jemy w j^zyku naturalnym, nie ma bezposredniego odpowiednika w j^zyku logiki 
klasycznej. Wynika to z tego, ze jqzyk logiki klasycznej jest znacznie ubozszy od jq- 
zyka naturalnego - je s t  tylko pewnym jego przyblizeniem.

Zdania s^ wypowiedziami, ktörym -  w danym kontekscie wypowiedzi - jednoznacz- 
nie przypisuje siQ prawdziwosc lub faisz. Znane s^tez inne rodzaje wypowiedzi, ktö­
rym prawdziwosc lub faisz mozna przypisac dopiero po dodatkowych uscisleniach 
dotycz^cych elementöw wypowiedzi. Na przyklad o prawdziwosci zdania

Mqzczyzna jest wyzszy od kobiety.
mozna jednoznacznie siq wypowiedziec dopiero wtedy, gdy wiadomo, o ktörego mqz- 
czyznQ i o ktör% kobiety chodzi. Mqzczyzna i kobieta stanowi^ tu argumenty wypo­
wiedzi. Wskazuj^c na konkretnego mqzczyznQ i na konkretn^ kobiety, mozna stwier- 
dzac o prawdziwosci lub falszu tego zdania.

Zdania tego rodzaju nazywa si$ funkcjami zdaniowymi albo formami zdaniowymi. 
Mozna je traktowac jako pewien sposöb wyrazania wlasnosci elementöw pewnego 
zbioru. Zdania takie bqd^ zapisywane P(a), gdzie a jest argumentem wypowiedzi.

Funkcji zdaniowych cz^sto siq uzywa w powi^zaniu z charakterystycznymi zwrotami, 
na przyklad:

Mozliwe, ze zachodzi P(a).
Dia kazdego elementu a ze zbioru A zachodzi P(a).

Pierwszy ze zwrotöw to rodzaj zwrotu modalnego. Taki zwrot wystqpuje na przyklad 
w zdaniach:

Mozliwe, ze Piotr wypozyczyl juz potrzebnq mu ksiqzkq.
Mozliwe, ze prezes spözni siq na spotkanie.
Mozliwe, ze w 2100 roku bardzo populamq formq wypoczynku bqdq wakacje na Marsie.

Drugi ze zwrotöw to rodzaj zwrotu kwantyßkacyjnego. Przyklady wypowiedzi z tym 
zwrotem:



Kazdy Student otrzymuje indeks.
Kazdy dorosfy ponosi pelnq odpowiedzialnosc za swoje czyny.

Dalej zajmiemy siQ przede wszystkim zwrotami kwantyfikacyjnymi. rozwazane 
tylko dwa zwroty:

Dia kazdego elementu a zachodzi P(a).
Istnieje element a, dla ktörego zachodzi P(a).

Pierwszy zwrot jest nazywany kwantyfikacjq ogölnq albo uniwersalnq, a drugi -  
kwantyfikacjq szczegölowq albo egzystencjalnq.

Istnieje jeszcze inne rodzaje zwrotöw kwantyfikacyjnych, ktöre nie b$d^ rozwazane, 
na przyklad:

Dia wiqkszosci elementöw a ze zbioru A zachodzi P(a).
Dia nieskohczenie wielu elementöw a ze zbioru A zachodzi P(a).

Jezeli symbolem P(a) oznaczyc funkcj? zdaniow^, ktörej dla ustalonego elementu a ze 
zbioru A mozna w jednoznaczny sposöb przyporz^dkowac prawdq albo falsz, to wy- 
powiedz z kwantyfikatorem ogolnym dla P(a) zapisuje siq symbolicznie w postaci

\/aeA  • P(a),

a wypowiedz z kwantyfikatorem szczegölowym w postaci 

3aeA  • P(a).

Wypowiedzi z kwantyfikatorami mozna czytad w rözny sposob.

Zapis z kwantyfikatorem ogölnym VaeA  • P(a) mozna czytac:
Dla kazdego aeA  [zachodzi] P(a).
Dla dowolnego aeA  [zachodzi] P(a).
Dla wszystkich aeA  [zachodzi] P(a).
Wszystkie aeA  maj^wlasnosc P(a).
P{a) dla wszystkich aeA.

Zapis z kwantyfikatorem szczegölowym 3aeA • P{a) mozna czytac:
Dla pewnego aeA  [zachodzi] P(a).
Dlajakiegos aeA  [zachodzi] P(a).
Jakies aeA  ma wlasnosc P(a).
P(a) dla pewnego aeA.

Zapis [zachodzi] oznacza tu, ze slowo ‘zachodzi’ wystQpuje opcjonalnie -  mozna je 
czytac albo pomijad.

Uwaga
Opröcz wprowadzonej, uzywa siq röwniez innych notacji na wypowiedzi z kwan­
tyfikatorami, na przyklad:



VaeA.P(a) MaeA:P(a) (VaeA)P(a) A P(a)
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3 aeA.P(a) 3 aeA:P(a) (3 aeA)P(a) v  p ( a )
a e A

1.3. Wnioskowanie
Logika formalna zajmuje siQ schematami wnioskowania, ktöre pozwalaj^na to, aby na 
podstawie prawdziwosci jednych wypowiedzi -  przeslanek -  wnioskowac o prawdzi­
wosci innych wypowiedzi -  wniosköw. Historycznie najstarsze schematy wnioskowa­
nia, nazywane sylogizmami, pochodz^ od Arystotelesa.

Przykladem wnioskowania opartego na jednym z sylogizmöw jest nastQpuj^ce rozu- 
mowanie:

Wszyscy bogowie greccy sq zazdrosni.
Zeus jest greckim bogiem.
Zatem: Zeus jest zazdrosny.

Dwa pierwsze zdania ŝ . tu przeslankami, a ostatnie -  wnioskiem (konkluzj^).

Ogölnie schemat wnioskowania mozna przedstawic w postaci „ulamka”, w ktörego „liczni- 
ku” bqd^ zapisywane przeslanki, a w „mianowniku” b^d^ zapisywane wnioski. Rozpatrzmy 
kilka schematöw wnioskowan, ktöre mozna odniesc do wielu codziennych sytuacji.

Znanym schematem jest modus ponendo ponens, maj^cy postac

p=>q

P
q

gdzie: p  oraz q oznaczaj^ dowolne wypowiedzi.

Na podstawie takiego schematu wnioskuje siq na przyklad:

Jezeli dzisiaj jest niedziela, to jutro jestponiedzialek 
Dzisiaj jest niedziela.
Jutro jest poniedzialek.

Schemat tenjest niezawodny, co oznacza, ze jezeli przeslanki s^prawdziwe, to takze 
prawdziwy jest wyprowadzony na ich podstawie wniosek.

Inny przyklad röwniez niezawodnego schematu wnioskowania to modus ponendo tollens 

Albo p, albo q 

P



Zwrot albo ..., albo ... nie byl wczesniej omöwiony. Zgodnie z potocznym rozumie- 
niem zdanie zlozone postaci albo p, albo q jest prawdziwe tylko wtedy, gdy jest praw- 
dziwe dokladnie jedno ze zdan skladowych p, q.

Przyklad wnioskowania:
Albo pöjdq do kina, albo pöjdq do teatru.
Pöjdq do kina._______________________
Nie pöjdq do teatru.

Jeszcze inny przyklad niezawodnego schematu wnioskowania to modus tollendo ponens: 
p v q

q
Wedlug tego schematu wnioskuje si? w przykladzie:

Pöjdq do kina lub pöjdq do teatru.
Nie pöjdq do kina.
Pöjdq do teatru.

Czqsto korzysta si$ ze schematow wnioskowania nazywanych sylogizmem warunko- 
wym. Przykladem jest schemat:

p=>q
q=>r 
p=> r

Schematy wnioskowania, ktörymi zajmuje siQ logika formalna, s^ w pewien sposöb 
ograniczone. Nie bior^ pod uwagQ tresci, lecz tylko prawdziwosc zdan, dlatego me- 
chaniczne stosowanie przedstawionych schematow wnioskowania, jezeli siq nie wnika 
w tresc zdan, moze prowadzic do absurdalnych wniosköw. Jako przyklad posluzy 
nast^puj^ce rozumowanie: Niech b$d^ dane dwie wypowiedzi:

Jezeli Cezarpozostanie w domu, to Cezar nie zostanie zabity przez spiskowcöw. 
oraz

Jezeli Cezar nie zostanie zabity przez spiskowcöw, to Cezar wyglosi przemöwienie 
w Senacie.

Wprowadzmy oznaczenia. Niech:
p  oznacza: Cezar pozostanie w domu. 
q oznacza: Cezar nie zostanie zabity przez spiskowcöw. 
r oznacza: Cezar wyglosi przemöwienie w Senacie.

Z zastosowaniem tych oznaczen wnioskowanie oparte na schemacie sylogizmu wa- 
runkowego przebiega nastqpuj^co: Na podstawie przeslanek p  => q oraz q => r otrzy- 
muje siq wniosekp=>r, czyli:



Jeieli Cezar pozostanie w domu, to Cezar wyglosi przemöwienie w Senacie.

Wniosek ten jest calkowicie sprzeczny ze zdrowym rozs^dkiem. Wynika to z tego, ze 
w zastosowanym schemacie wnioskowania uwzgl^dnia siQ tylko prawdziwosd prze- 
slanek, a nie uwzglqdnia si$ tresciowego powiqzania przeslanek i konkluzji: pozosta- 
wanie w domu w pewnym okresie wyklucza przebywanie w Senacie w tym samym 
okresie i, tym samym, wygloszenie tarn przemöwienia.

To, ze zdanie jest wynikiem zastosowania pewnego schematu wnioskowania do in- 
nych zdan-przeslanek nazywa siQ konsekwencjq dowodowq albo konsekwencjq sklad- 
niowq. W rozpatrywanym przykladzie wyraza si$ to zapisem

{p= > q,q^> r}\-p= > r

Ogölnie, jezeli {p\, ..., p n) jest pewnym zbiorem zdan-przeslanek, a q jest zdaniem, 
ktöre wyprowadzono z tego zbioru na podstawie jedno- lub wielokrotnego stosowania 
pewnych schematöw wnioskowania, to zapisuje siq to w postaci

{Pu -,Pn)  i -  q

Symbol H nazywa siq symbolem konsekwencji skladniowej. Powyzszy zapis czyta siq: 
q jest konsekwencjct skladniow^ zbioru zdan {p\..... p„).

Rozpatrzmy teraz rozumowanie, ktöre nie opiera siq na przedstawionych schematach 
wnioskowania. Niech dany bqdzie przyklad:

Jeieli znany pianista da recital, to przyjdq tlumy, gdy ceny biletöw nie bqdq zbyt 
wygörowane.
Jeieli znany pianista da recital, to ceny biletöw nie bqdq zbyt wygörowane.
Zatem: Jeieli znany pianista da recital, to przyjdq tlumy.

W pierwszym z powyzszych zdan wystqpuje zwrot gdy. Zgodnie z potocznym rozu- 
mieniem, zdanie zlozone postaci p  gdy q jest röwnowazne zdaniu je ie li q, to p.

Czy jezeli przeslanki w przykladzie -  dwa pierwsze zadania -  s^prawdziwe, to czy 
prawdziwa jest röwniez konkluzja -  trzecie zdanie? Wprowadzmy oznaczenia. 
Niech:

p  oznacza: Znany pianista da recital. 
q oznacza: Przyjdq tlumy. 
r oznacza: Ceny biletöw bqdq zbyt wygörowane.

Po zastosowaniu tych oznaczen nasze wnioskowanie ma postac:

p  => (-,r => q) 
p = $ —>r 
zatem: p=>q



Mozna przytoczyc dwa sposoby uzasadnienia poprawnosci wnioskowania. Pierwszy 
sposöb mozna zilustrowac tablicy prawdziwosciow^ (tablica 1.2). Podobnie jak 
w poprzedniej tablicy, zamiast prawda i falsz pisze siq P i F.

Tablica 1.2

P 9 r —ir —ir=>q /?=>-!/* p=>(-<r => q)) p=>q
1 F F F p F P P P
2 F F P F P P P P
3 F P F P P P P P
4 F P P F P P P P
5 P F F P F P F F
6 P F P F P F P F
7 P P F P P P P P
8 P P P F P F P P

Sposöb uzasadniania jest tu nastgjuj^cy: wnioskowanie ma byc niezawodne, to zna- 
czy konkluzja ma byc prawdziwa zawsze wtedy, gdy prawdziwe przeslanki. Wy- 
starczy rozpatrzyc wszystkie wartosciowania zdan prostych p, q, r, przy ktörych 
prawdziwe s£t zdania ziozone stanowi^ce przeslanki, i sprawdzic, czy przy tych war- 
tosciowaniach prawdziwe jest röwniez zdanie stanowi^ce konkluzjq. Przypadki ta- 
kich wartosciowan reprezentuj^ wiersze 1, 2, 3, 4 i 7 w tablicy 1.2. Analiza tych 
przypadköw potwierdza poprawnosc wyprowadzonego wniosku.

Drugi sposöb opiera si$ na nastQpuj^cym rozumowaniu nie wprost: jezeli zaiozyc, ze 
nasz wniosek jest poprawny, to czy jest mozliwe, aby jednoczesnie byly prawdziwe 
przeslanki i negacja konkluzji? Inaczej -  czy zdanie

(P => (-T  => q)) a (p=> -ir) A-i(p  => q)

moze byc prawdziwe dla dowolnych wartosciowan zdan prostychp, q, r? Okazuje siQ, 
co pokazuje tablica 1.3, ze przy wszystkich wartosciowaniach zdanie to jest falszywe. 
Nie moze byö tak, ze jednoczesnie s^ prawdziwe przeslanki i negacja konkluzji. Nie 
jest zatem mozliwe, aby zdania stanowi^ce przeslanki mogly byc niezgodne ze zda- 
niem stanowi^cym konkluzji.

Oba sposoby nie polegaly na tekstowym przeksztalcaniu przeslanek, ale opieraly 
siq na analizie znaczenia zdan, dokladniej -  na analizie ich prawdziwosci. Oba spo­
soby potwierdzity, ze konkluzja jest konsekwencjq logicznq, albo konsekwencjq 
semantycznq, zbioru przeslanek. Fakt ten, w odniesieniu do przyktadu, zapisuje siq 
w postaci



Ogölnie, jezeli {p\, ..., p„} jest pewnym zbiorem zdan-przeslanek, a q jest jego lo- 
giczn^ konsekwencji, zapisuje si$ to w postaci

{Pu - ,Pn} 1= q
Symbol 1= nazywa siQ symbolem konsekwencji semantycznej. Zapis ten czyta si?: 
q jest konsekwencji semantyczni zbioru zdan {px,

Tablica 1.3

P q r —ir —ir=>q p=>(-v => q)) /7=>—iT p=>q ->(p=> q)
(P=H~r => <?))

A (/?=}-!/•)
a -i(p => q)

1 F F F p F P P P F F
2 F F P F P P P P F F
3 F P F P P P P P F F
4 F P P F P P P P F F
5 P F F P F F P F P F
6 P F P F P P F F P F
7 P P F P P P P P F F
8 P P P F P P F P F F

Majic pojicia konsekwencji skladniowej i konsekwencji semantycznej, mozna spre- 
cyzowac niezawodnosc schematöw wnioskowania. Schemat wnioskowania jest nie- 
zawodny (albo poprawny), gdy dla dowolnego zbioru zdan {pu ...,p„} oraz zdania q, 
jezeli

{Pu - , P n q
to

{pu - , pn} q
Inaczej: schemat wnioskowania jest niezawodny, gdy dla dowolnego zbioru przesla- 
nek konsekwencja skladniowa poci^ga konsekwencji semantyczni

Schemat wnioskowania, ktöry nie jest niezawodny, jest praktycznie bezuzyteczny. 
Wszystkie przedstawiane wczesniej schematy s i  schematami niezawodnymi (po- 
prawnymi), zawodnym natomiast schematem wnioskowania jest na przyklad sche­
mat postaci

P = > g

<1
Aby to stwierdzic, wystarczy rozpatrzyc wartosciowanie, w ktörym obie wypowiedzi 
p  oraz q s^ falszywe. Przy takim wartosciowaniu przeslanka schematu p  => q jest 
prawdziwa, ale wniosek q jest falszywy.



1.4. Indukcja matematyczna

Zasada indukcji matematycznej jest jednym z bardziej uzytecznych schematöw wnio- 
skowania. Bezposrednio odnosi siQ ona do badania wlasnosci wyrazanych w termi- 
nach liczb naturalnych, czyli do wlasnosci postaci Pin), gdzie neNat. Zasada indukcji 
opiera siQ na prostej obserwacji, ze caly zbiör liczb naturalnych mozna uporzqdkowac, 
zaczynajqc od 0, a nastgpnie mozna przechodzic do kolejnych liczb przez dodawanie
1. Z obserwacji tej wynika, ze udowodnienie, iz pewna wlasnosc P(n) zachodzi dla 
kazdej liczby naturalnej n wymaga pokazania, ze zachodzi ona dla n = 0, oraz ze za­
chodzi P(n + 1), gdy zachodzi Pin). Czy zachodzi P(0) wymaga zatem bezposrednie- 
go zbadania, natomiast P (l) zachodzi, poniewaz zachodzi P{0), podobnie P(2) zacho­
dzi, poniewaz zachodzi P (l) itd.

Twierdzenie 1.1 (Zasada indukcji matematycznej)

Niech P[n) b^dzie pewnq wlasnosci{\, ktöra odnosi siq do liczby naturalnej n. Aby 
pokazac, ze wlasnosc P(n) zachodzi dla kazdej liczby naturalnej neNat, wystarczy 
pokazac, ze:

krokpoczqtkowy: P  zachodzi dla n = 0, czyli zachodzi P(0), 
krok indukcyjny. jezeli zachodzi Pin), to röwniez zachodzi P(n +1).

Dowodzenie zgodnie z zasada indukcji sklada siq z dwöch kroköw. Krok poczqtkowy 
wymaga zbadania zachodzenia wlasnosci P dla n = 0. Drugi krok wymaga udowod- 
nienia implikacji: jezeli P{n), to P(n + 1). Zalozenie P{ri) w tej implikacji nazywa siq 
hipotezq indükcyjnq.

Przyklad 1.1
|------------------------------------------------------- j------------------------------------------------------1

Niech Pin) oznacza wlasnosc, ze 2" > n . Wlasnosc ta nie zachodzi dla wszystkich
liczb naturalnych, ale zachodzi dla n > 5.
Latwo sprawdzic, ze zachodzi P(5), gdyz 25 > 52, ale nie zachodzi P(4), gdyz nie- 
prawda, ze 24 > 42, i podobnie nie zachodzi P(0), P(l), P(2), P(3).
Jezeli zachodzi P(n) oraz n > 5, to zachodzi röwniez P(n + 1).
Istotnie, jezeli 2">n2, to -  ze 2"+1 > (« + 1)2 -  wynika z nastgjujqcego wnioskowania:

2n+1 = 2 x 2"
>2n2 
= n2 + n2 
>n2 + 5n 
= n2 + 2n + 3«

-  na mocy hipotezy indukcyjnej, ze 2” > n

-  na mocy zalozenia, ze n > 5

> n2 + 2n + 1 -  wlasnosö trywialna: 3n > 1 dla n > 1
= (« + !)■,2



Czasem wlasnosci, o ktörych siq s^dzi, ze mozna je latwo udowodnic metod^ indukcji, 
moget siq okazad niemozliwe do bezposredniego wykorzystania zasady indukcji. Ilu- 
struje to przyklad.

Przyklad 1.2

 ̂ Nalezy pokazac, ze suma n pocz^tkowych liczb nieparzystych jest kwadraterd 
pewnej liczby naturalnej, to znaczy ze dla kazdej liczby naturalnej n istnieje taka 
liczba naturalna k, ze

f p i  + \) = k 2
(=0

Dia n = 0 wlasnoSc P(0) zachodzi trywialnie dla k  = 1. Zatözmy teraz, ze istnieje 
k>  1 takie, ze zachodzi powyzszy wzör, wowczas

(2/ + 1) = y  ’ (2i + 1)+ (2n + 1) = k 2 + 2/i +1
1=0 1=0

Niestety, nie ma gwarancji, ze wyrazenie k2+ ln  +1 jest kwadratem pewnej licz­
by naturalnej i tym samym nie mozna dowodu kontynuowac. Moze to sugerowac, 
ze indukcja jest zbyt slabym schematem dla dowodzenia tego typu wlasnosci. 
Tak jednak nie jest. Nalezy zauwazyc, ze gdyby w rozwazanym wyrazeniu przy- 
jqö, ze k=  n, wowczas zachodzilaby röwnosc

k2 + In  + 1 = n2 + In  + 1 = (n + l )2

Obserwacja ta sugeruje rozwazenie mocniejszej wlasnosci, mianowicie

]T (2/ + 1) = /j2
1=0

I Jej udowodnienie metod^ indukcji jest juz proste i pozostawia siq je  Czytelnikowi. .

Udowodnienie pewnych wlasnosci wymaga silniejszej formy indukcji. Mianowicie, 
w indukcyjnym kroku, aby udowodnic P(n + 1) wymaga si$ zalozenia, ze nie tylko 
zachodzi P(n), ale rowniez, ze zachodz^P( 1),..., P(n -  1).

Twierdzenie 1.2 (Zasada indukcji matematycznej -  silna forma)

Niech P{n) bqdzie pewn^ wlasnosci^, ktöra odnosi siq do liczby naturalnej n. Aby 
pokazac, ze wtasnosc P(n) zachodzi dla kazdej liczby naturalnej ne Nat, wystarczy 
pokazac, ze:

krokpoczqtkowy: P  zachodzi dla n -  0, czyli zachodzi P{0), oraz
krok indukcyjny: zachodzi P(n + 1), gdy zachodzi P(k) dla kazdego k  = 0,..., n.



Przyklad 1.3

 ̂ Nalezy pokazac, ze kazda liczba naturalna n>  2 jest iloczynem liczb pierwszych) 
Wlasnosc ta zachodzi oczywiscie dla n = 2. Dalej zalözmy, ze wlasnosc ta za- 
chodzi dla 2, 3, n. Na tej podstawie nalezy pokazac, ze zachodzi ona röwniez 
dla n + 1. Jezeli n + 1 jest liczbq. pierwsz^, to wlasnosc jest oczywiscie prawdzi- 
wa. W przeciwnym razie, gdy n + 1 nie jest liczb^ pierwszq, oznacza to, ze n + 1 
moze byc wyrazone jako iloczyn km dwöch liczb, gdzie 2 < k < n  oraz 2 < m < n. 
Na mocy hipotezy indukcyjnej liczby k  oraz m s^ iloczynami liczb pierwszych, 

I zatem n + 1 wyraza siq rowniez jako iloczyn liczb pierwszych.________________ |

W przykladzie nie korzysta siq bezposrednio z hipotezy indukcyjnej dla n, ale dla 
pewnych liczb k, m mniejszych od n + 1. Ogölnie moze zachodzic potrzeba wykorzy- 
stania wielu takich liczb.

1.5. Logika w informatyce

Logika klasyczna znajduje w informatyce szerokie zastosowanie. W pierwszej kolej- 
nosci dostarcza ona jqzyka do przedstawiania i badania wlasnosci modeli informa- 
tycznych, w tym systemow komputerowych i j^zyköw programowania. Szczegöln^ 
rol? odegrala logika w formowaniu pojQcia algorytmu i obliczalnosci [Arbib 1968], 
[Davis, Hersh 1994], [Mostowski, Pawlak 1970], [Penrose 1996].

Opröcz logiki klasycznej s^ wykorzystywane logiki specjalne, przeznaczone na przy­
klad do specyfikacji oprogramowania, a takze jako j^zyki programowania.

Wazn^ rolQ w informatyce odgrywaj^ roznego rodzaju logiki nieklasyczne, miqdzy in- 
nymi w systemach eksperckich (doradczych). Zadaniem takich systemow jest wspoma- 
ganie czlowieka podczas podejmowania decyzji, na przyklad postawienie przez leka- 
rza diagnozy o stanie zdrowia pacjenta na podstawie wynikow badan. Proces 
podejmowania decyzji opiera si$ w takich przypadkach na informacji niepewnej lub 
niepelnej, a wnioski z przeprowadzonego wnioskowania nie musz^byc niezawodne.

Oto wybrane dzialy informatyki, w ktorych logika znajduje bezposrednie zastosowanie:

• Specyflkacja i weryfikacja programöw -  np. [Bicaregui, Fitzgerald, Lindsay 
1994], [Dembinski, Maluszynski 1981], [Shepard 1995].
Formuly logiczne sluz^ do wyrazenia tego, co program ma obliczac, czyli do wy- 
razania specyfikacji programu. Stwierdzenie czy dany program oblicza to, co 
powinien, czyli czy spelnia zadan^ specyfikacji, polega na odpowiednim mani- 
pulowaniu na tekscie formul specyfikacji i na tekscie programu. Inaczej: stwier- 
dzanie poprawnosci programu wzglqdem danej specyfikacji polega na przepro- 
wadzeniu dowodu w odpowiedniej logice programöw.



• Przetwarzanie rozproszone, wspölbieznoSö i sterowanie, systemy komunikacji 
w czasie rzeczywistym -  np. [Apt, Olderog 1991], [Huzar 1989],
Odpowiednie formy logiki zostaly opracowane w celu wyrazania i wnioskowania 
o zjawiskach, ktöre wystqpuj^ w przestrzeni i trwaj^ w czasie. one wykorzy- 
stywane na przyklad do wnioskowania o wspölpracy pomiqdzy mobilnymi röw- 
noleglymi procesami.

• Zarz^dzaniebazami wiedzy-np. [Bolc, Borodziewicz, Wöjcik 1991], [Tyugu 1989]. 
Zadaniem odpowiednich logik jest umozliwienie udzielenia odpowiedzi na pyta- 
nia kierowane do bazy wiedzy. Udzielanie odpowiedzi na pytania sprowadza si$ 
do zbadania, czyjest ono konsekwencj^semantyczn^nagromadzonej wiedzy.

• Projektowanie ukladöw logicznych -  np. [Harrison 1973].
Projektowanie ukladöw elektronicznych komputeröw, na przyklad ukladöw sca- 
lonych, spowodowalo powstanie specjalistycznych logik, miqdzy innymi logik 
wielowartosciowych i progowych.

• Systemy ekspertowe, planowanie i sztuczna inteligencja -  np. [Bolc, Borodzie­
wicz, Wöjcik 1991], [Baneiji 1990], [Bubnicki 1990], [Huzar, Kurzynski, Sas 
1994].
Dzial ten wyksztalcil now^ grupQ logik, ktörych istot£t jest prowadzenie wnio­
skowania w warunkach informacji niepelnej lub niepewnej.

• Przetwarzanie jqzyka naturalnego (lingwistyka informatyczna) -  np. [Camap 
1990], [Marciszewski 1987].
W celu automatycznej analizy tekstu, czy tez automatycznego przekladu z jedne- 
go jQzyka na inny, powstaly rözne logiki sluz^ce przede wszystkim do wyrazania 
znaczenia tekstu.

• Programowanie logiczne-np. [Kowalski 1989], [Wöjcik 1991].
Jqzyk logiki moze byc traktowany bezposrednio jako jqzyk programowania. To, 
co w podejsciu klasycznym jest logiczn^ specyfikacjX programu -  przy zachowa- 
niu pewnych ograniczen -  moze byc interpretowane jako wykonywalny program.

r

Cwiczenia

1. Ktöra z wypowiedzi jest zdaniem, a ktöra funkcj^ zdaniowsg
a) 'Ksiqzyc jest zrobiony z zöltego sera.
b) Ort faktycznie jest wysokim mqzczyznq.
c) Sfotice krqzy dookola Ziemi.
d) W ciqgu wieköw skladniki te tiformowaly rafy.
e) Niech zyje przyjazn miqdzy narodami!



f) Dwa jest liczbq parzystq.
g) Ktöra druzyna zdobqdzie mistrzostwo kraju w pilce noznej?
h) Oczekuje siq, ze w przyszlym roku obroty na gieldzie znacznie wzrosnq.
i) x 2 - 4  = 0.
j) Dlugi honorowe nalezy splacac w ciqgu 24 godzin.
k) Mqzczyzna jest wyzszy od kobiety.
l) Nalezy raczej zapobiegac niz leczyc.
m) Kaliforniq co roku nawiedza trzqsienie ziemi o sile 7 stopni w skali Richtera.
n) Kröl Jagiello byl raczej wysokim mqzczyznq.

2. Jak^ wartosc logiczn^ maj^ zdania:
a) 8 jest liczbq nieparzystq lub 6 jest liczbq parzystq.
b) 8 jest liczbq nieparzystq oraz 6 jest liczbq parzystq.
c) Jezeli 8 jest liczbq nieparzystq, to 6 jest liczbq parzystq.
d) Jezeli 8 jest liczbq nieparzystq oraz 6 jest liczbq parzystq, to 6 jest wiqksze od 8.

3. Ktore ze zdanjest negacj^ danego zdania:
a) Wynikiem obliczen jest albo 2, albo 3.

(i) Wynikiem nie jest ani 2, ani 3.
(ii) Wynikiem nie jest 2 lub nie jest 3.

(iii) Wynikiem nie jest 2 i nie jest 3.
b) Ogörek jest zielonq roslinq nasiennq.

(i) Ogörek nie jest zielony, ale jest roslinq nasiennq.
(ii) Ogörek nie jest zielony lub nie jest roslinq nasiennq.

(iii) Ogörek nie jest zielony i nie jest roslinq nasiennq.

4. Wskaz poprzednik i nastqanik implikacji w zdaniach:
a) Pomyslny wzrost roslin jest uwarunkowany prawidlowym nawadnianiem.
b) Wprzypadku modyfikacji programu pojawiq siq w nim blqdy.
c) Blqdy w programie pojawiq siq tylko w przypadku jego modyfikacji.
d) Oszczqdnosc energii jest zwiqzana z dobrq izolacjq scian i szczelnosciq okien.

5. W podanych zdaniach ziozonych rozpoznaj zdania proste i l^cz^ce je spöjniki:
a) Edmund Hillary i Tenzing Norgay sqpierwszymi zdobywcami Mont Everestu.
b) Indochiny lezq w strefie tropikalnej i majq gorqce lata, ale zimy w czqsci pöl- 

nocnej sq chlodne.
c) Niezaleznie od tego, ja k  wysoko skaczesz, ksiqzyca nie osiqgniesz, chyba ze po- 

lecisz tarn rakietq.

6. Przedstaw tablice prawdziwosciowe wyrazajqce znaczenie wystQpu]\cych w j^zyku 
polskim, nastQpuje^cych zwrotöw:
a) co najwyzej jedno z dwojga,
b) dokladnie jedno z dwojga,



c) o ile ....
d) an i.... ani,
e) pod warunkiem, z e ...,
f) chyba ze,
g) chocby nciwet,
h) zawsze wtedy, gdy.

7. Za pomocci dowolnych dwoch sposröd spöjniköw: negacji, koniunkcji, altematywy 
i implikacji, zdefiniuj znaczenie wyrazen podanych w zadaniu 6.

8. Rozpatrz nast^pujqce wnioskowanie oparte na sylogizmie warunkowym:
Jezeli dzisiaj jest wtorek, to jutro jest sroda.
Jezeli dzisiaj jest sroda, to jutro jest czwartek.
Zatem: Jezeli dzisiaj jest wtorek, to jutro jest czwartek.

Wyjasnid przyczyny paradoksalnego wniosku.

9. Oto fragment raportu policji sporzqdzonego przez mlodego aspiranta:
Swiadek nie byl zastraszony lub tez, jesli Henry popelnil samoböjstwo, to testa- 
ment odnaleziono. Jesli swiadek byl zastraszony, to Henry nie popelnil samo- 
böjstwa. Jesli testament odnaleziono, to Henry popelnil samoböjstwo. Jesli 
Henry nie popelnil samoböjstwo, to testament odnaleziono.

Co komendant policji moze wywnioskowaö z powyzszego raportu (poza oczywi- 
stym faktem, ze nalezy zwolnic aspiranta)? Odpowiedz na pytania:

Czy swiadek byl zastraszony?
Czy Henry popelnil samoböjstwo?
Czy testament odnaleziono?

10. Posröd czlonköw pewnego klubu lingwistycznego kazdy uczy siq francuskiego, 
niemieckiego lub hiszpanskiego. Wiadomo, ze 20 uczy siq francuskiego, 12 fran­
cuskiego i hiszpanskiego, 16 niemieckiego, 16 hiszpanskiego, 4 francuskiego 
i niemieckiego, 7 niemieckiego i hiszpanskiego, 3 wszystkich trzech jqzyköw. Ilu 
czlonköw liczy klub? Ilu z nich uczy siq dokladnie dwoch jqzyköw?

11. Oto przyklady wnioskowan przez indukcjq:
a) Pokazq, ze wszystkie liczby naturalne sq. parzyste. Oczywiscie 0 jest liczby pa- 

rzyst^. Niech n b^dzie dowoln^ liczby naturalne i zalözmy, ze dla wszystkich 
k < n, k jest parzyste. Niech n\ i «2 bqdzie dowolnym rozbiciem liczby n na su- 
mQ liczb mniejszych (tzn. n = n t + n2). Poniewaz n\ oraz n2 s^mniejsze od n, za­
tem «i i «2 s^parzyste, a wiqc n jest parzyste jako suma dwoch liczb parzystych.

b) PokazQ, ze wszystkie dodatnie liczby naturalne sq. nieparzyste. Oczywiscie 
1 jest liczby nieparzyste Niech n bqdzie dowolne liczbe naturalne i zalözmy, ze 
dla wszystkich k < n, k  jest nieparzyste. Niech 1, n\ i n2 bqdzie dowolnym roz­
biciem liczby n na sum<? trzech liczb mniejszych (tzn. n = nx + n2 + 1). Poniewaz



«i oraz «2 sei mniejsze od n, zatem n\ i n2 nieparzyste, a wiQC « jest parzyste 
jako suma dwöch liczb nieparzystych i liczby 1.

c) Pokazq, ze wszystkie proste na ptaszczyznie röwnolegte. Rozwazmy jedno- 
elementowy zbiör prostych na ptaszczyznie. Oczywiscie wszystkie proste nale- 
z^ce do tego zbioru sq. do siebie röwnolegte. Zatözmy, ze w kazdym n-elemen- 
towym zbiorze prostych wszystkie proste s^ do siebie röwnolegte. Rozwazmy 
teraz (n + l)-elementowy zbiör prostych. Ustalmy w nim jedn^ prost^/>. Na mocy 
zatozenia indukcyjnego wszystkie pozostate n prostych s^ do siebie röwnolegte. 
Ustalmy teraz innq. prost^ q. Na mocy zatozenia indukcyjnego wszystkie pozostate 
n prostych s^ röwniez do siebie röwnolegte. Poniewaz relacja röwnolegtosci pro­
stych jest przechodnia, wszystkie n + 1 proste s^ röwnolegte. Na mocy zasady in- 
dukcji matematycznej kazdy zbiör prostych na ptaszczyznie zawiera wylqcznie pro­
ste röwnolegte. Dotyczy to zbioru wszystkich prostych na ptaszczyznie.

Ktöre z tych rozumowan jest poprawne? Wskaz btqdy popetnione w blQdnym ro- 
zumowaniu.

12. Rozwazyc uogölnienie problemu przedstawionego w przyktadzie 1. Dia jakich 
liczb naturalnych n, k  zachodzi nieröwnosc: 2" > «*?

13. O wtasnosci P(n) wiadomo, ze jest prawdziwe P( 1), a ponadto dla kazdej liczby 
naturalnej n zachodzi implikacja P(n) => P(n + 10). Czy wynika st^d, ze prawdzi­
we s^implikacje:

a )  P(32)=>P(62),
b )  P (3 3 )^ P (6 1 ),
c )  P(34)=>P(63),
d) />(31) => P(64).

14. O wtasnosci P(n) wiadomo, ze jest prawdziwe P(l), natomiast P(100) jest falszy- 
we, a ponadto dla kazdej liczby naturalnej n zachodzi implikacja P(n) => P(n + 2). 
Czy wynika stqd, ze:

a) P (101) jest prawdziwe,
b) P(300) jest prawdziwe,
c) P(50) jest fatszywe,
d) P(200) jest fatszywe.

15. Przeanalizuj prawdziwosc zdania: To, co möwiq w tej chwili.jest klamstwem.

16. Oto rozmowa czterech krasnoludköw A, B, C oraz D, z ktörych kazdy zawsze 
möwi prawdQ albo zawsze kiamie:

A möwi do B: Jestes klamcq.
C möwi do A: Ty sam jestes klamcq.
D  möwi do C: Oni obaj sq klamcami. I  ty takze jestes klamcq.

Ktöry z nich möwi prawd§?



2. Elementarne poj^cia mnogosciowe

2.1. Zbiör i element zbioru

Podstaw^ wszelkiej komunikacji pomi^dzy ludzmi, a takze pomi^dzy ludzmi i kompu- 
terami, jest jqzyk, ktöry uzywa wspölnie ustalonych symboli i jednoznacznie skoja- 
rzonych z nimi pojQC. Symbole shiz^ do reprezentacji poj$c. Mog^ one miec rözn^ 
postac -  mog^ to byc dzwiqki, obrazy, znaki graficzne. Kazdy Symbol powinien repre- 
zentowac poj^cie, ktöre jest jednakowo rozumiane przez obiekty (podmioty) uczestni- 
czqce w komunikacji. Wprowadzenie j^zyka wymaga zdefmiowania odpowiedniego 
zestawu symboli oraz zdefiniowania przypisywanego im znaczenia. Z wprowadza- 
niem nowego j^zyka wi^ze si? pewien problem: definicje elementöw jqzyka wymaga- 
j^  opisu, wyrazanego w pewnym innym jqzyku. Oznacza to, ze przed wprowadzeniem 
pewnego jqzyka nalezy dysponowac innym jqzykiem stuz^cym do opisu nowego jq- 
zyka. W celu odröznienia tych jqzyköw, jqzyk definiowany nazywa siQ jqzykiem 
przedmiotowym, krötko jqzykiem, a jqzyk sluz^cy do opisu jqzyka przedmiotowego 
nazywa si$ metajqzykiem.

Uwaga
PojQcie metajQzyka funkcjonuje w wielu sytuacjach. Na przyklad podczas nauki 
jqzyka obcego, zalözmy angielskiego, j^zyk ten opisujemy i wyjasniamy za po- 
moc^jQzyka polskiego. Kazdy metajqzyk ma swöj metaj^zyk -  mozna pisac po 
niemiecku o kims, kto pisze po polsku o angielskim. Istnieje niekonczqca siq hie- 
rarchia metajQzyköw.

Elementy jqzyka formalnego (symbolicznego) zawieraj^ pojQcia odnosz^ce siq do 
dwöch obszaröw -  obszam teorii mnogosci i logiki. Elementy tego jqzyka wyjasnia 
siQ w jqzyku naturalnym. jQzyk naturalny odgrywa tu rolQ metajQzyka. Z j^zyka natu- 
ralnego wykorzystuje siq oczywiscie tylko te poj^cia, co do ktörych nie ma w^tpliwo- 
sci interpretacyjnych. Sytuacja jest podobna do tej, z ktör^ spotyka si$, studiujqc na 
przyklad encyklopedi?. Encyklopedia sluzy do wyjasniania pewnych pojQc-hasel 
i czyni to za pomoc£L innych poj^c-hasel, o ktörych si$ zaklada, ze powinny byc po- 
wszechnie znane i jednoznacznie rozumiane. Czasem wprawdzie jest tak, ze w wyja- 
snianiu pewnych hasel wystgnyX inne hasla, ale w odniesieniu do encyklopedii jako 
calosci przyjmuje siq, ze istnieje pewien zestaw poj^c pierwotnych, ktörych encyklo-



pedia uzywa, ale ich nie wyjasnia i ktöre si^ uwaza za powszechnie zrozumiate. Po- 
stQpowanie takie nie jest calkowicie scisle i czasem moze byc zrödlem niejednoznacz- 
nosci lub nawet sprzecznosci, ale praktycznie -  w wi^kszosci przypadköw -  pozwala 
na wprowadzanie i wyjasnianie potrzebnych poj$c.

Obszary teorii mnogosci i logiki silnie siQ przenikaj^. Formuhij^c pojQcia nalez^ce do 
obszaru teorii mnogosci, korzysta siq z pojqc logicznych, ale tez i odwrotnie -  formu- 
lowanie wlasnosci logicznych wymaga odwolania si$ do poj^c mnogosciowych. Moz- 
na siq zatem spotkac z dwoma podejsciami do opisu logiki klasycznej. Pierwsze po- 
dejscie polega na przyjQciu pewnych elementöw teorii mnogosci i wyprowadzaniu na 
ich podstawie pojqc logicznych. Drugie podejScie, odwrotnie, polega na przyjQciu 
podstawowych pojqc logicznych i na wyprowadzaniu na ich podstawie pojQC mnogo­
sciowych. W ksi^zce przyjqto pierwsze podejscie -  przed pelnym opisem pojqc lo­
gicznych wyjasnia siq elementame pojqcia z zakresu teorii mnogosci.

Do podstawowych poj$c mnogosciowych zalicza siq:
• pojqcie zbioru,
• pojQcie elementu zbioru,
• pojqcie nalezenia b^dz nienalezenia elementu do zbioru.

Poj^cie zbioru -  intuicyjnie zrozumiale -  okazalo siq bardzo trudne do precyzyjnego 
zdefiniowania. Poprzestaniemy tu na intuicyjnym albo naiwnym rozumieniu zbioru, 
tak jak czynil to w XIX wieku Cantor3 -  twörca teorii mnogosci -  ktöry zbiör okreslal 
jako

ujqcie w calosc okreslonych, dobrze wyröznionych obiektöw, zwanych elementami 
zbioru.

W okresleniu tym nie wskazuje siq, czym mogct byc elementy zbioru. Podane okresle- 
nie zbioru nie jest precyzyjne, gdyz przy pröbie odpowiedzi na pewne pytania mog^ 
siQ pojawic sprzecznosci. Pröby uscislenia pojqcia zbioru prowadzily do powstania 
sformalizowanej teorii mnogosci.

Nalezy podkreslic, ze w podanym okresleniu kladzie siq akcent na rozröznialnosc 
bytöw stanowiqcych elementy zbioru. Nie okresla siq natomiast jak osi^gac tQ rozröz­
nialnosc, czy na przyklad przez jednoznaczn^ identyfikacjQ bytöw, czy przez okresle- 
nie unikalnych ich wlasnosci. Oznacza to jednak, ze majqc dwa byty, potrafi siq 
stwierdzic, czy s^ one identyczne czy rözne.

Jezeli symbolem A oznacza siq pewien zbiör oraz symbolem a oznacza siq pewien 
element, to zapis aeA  czyta si$: a jest elementem zbioru A, natomiast zapis a<£A czyta 
si$: a nie jest elementem zbioru A.

Jezeli asA  oraz beA, to zapisuje siQ to skrötowo: a, beA.

3 Georg Cantor (1845-1918).



Nä ogöl zbiory bqdziemy oznaczac napisami zaczynaj^cymi siq wielkimi literami lub 
pojedynczymi literami greckimi, a elementy zbioröw odpowiednimi malymi literami, 
z ewentualnymi indeksami.

Pewne zbiory przyjmuje siqjako znane. Bqd^to zbiory: liczb naturalnych Nat, liczb cat- 
kowitych Calkowite, liczb wymiemych -  Wymieme, liczb rzeczywistych -  Rzeczywiste.

Szczegölnym zbiorem jest zbiör pusty -  zbiör, ktöry nie ma zadnego elementu. Bqdzie 
on oznaczany symbolem 0 .

W celu wyeliminowania pewnej klasy paradoksöw (zob. dalej -  paradoks Russella), 
ktöre mog^_ powstac podczas definiowania zbioröw, zaklada siq, ze zaden zbiör nie 
moze byc swoim elementem, to znaczy dla dowolnego zbioru A zachodzi: A iA .

2.2. Definiowanie zbioröw

Zbiory mozna definiowaö w rözny sposöb. Przedstawia siq trzy sposoby definiowania 
zbioröw:

• enumeracyjny,
• rekursywny,
• ekstensjonalny.

Najprostszym sposobem definiowania zbioru jest jawne wskazanie wszystkich jego 
elementöw. Sposöb ten nazywa siq enumeracjq lub wyliczeniem elementöw zbioru. 
Schemat takiej definicji ma postac

A (jef {Ul, 0.2> *••> @n\

Zapis ten czytamy: A jest nazwq zbioru, ktörego elementami sq a\, a2, ..., a„. Symbol 
=def czytamy: röwny z definicji.

Przedstawiony wyzej schemat definicji zbioru zawiera dwa elementy:
• wprowadza Symbol A jako nazwq zbioru,
• okresla znaczenie (inaczej interpretacjq), ktöre przypisujemy temu symbolowi; 

jest nim zestaw elementöw a\, a2, ..., a„, ktöre nalez^ do zbioru A. Elementy te, 
oddzielone przecinkami, tworz^ skonczony ci^g. Wystqpuj^ce tu trzy kropki s^ 
tylko zaznaczeniem, ze liczba tych elementöw moze byc dowolna, ale skonczo- 
na. Definicja konkretnego zbioru musi oczywiscie wymienic jawnie wszystkie 
jego elementy.

W zwi^zku z rozröznieniem pojqcia symbolu oraz pojqcia znaczenia symbolu nalezy 
zwröcic uwagq na nazwq zbioru. Mozliwe S£t dwa spojrzenia na nazwq.

W pierwszym spojrzeniu nazwq traktuje siq tylko jako symbol -  nazwa nie wyraza 
zadnego znaczenia, jest tylko znakiem lub ci^giem znaköw z ustalonego repertuaru



znaköw. Tak^rol? ma symbol A wystQpuj^cy po lewej stronie w podanej poprzednio 
definicji.

W drugim spojrzeniu nazw? traktuje si? jako zbiör, ktörego elementy wymienione 
w nawiasach. Aby na przykiad odpowiedziec na pytanie czy asA,  nalezy widzied A 
jako zestaw konkretnych elementöw.

CzQSto dalej uzywanym zbiorem b?dzie zbiör wartosci logicznych 

Logiczne =def {prawda,falsz}

Rozpatrzmy dalsze przyklady enumeracyjnej definicji zbioröw:
Kreski =def {|, -}
Strzalki =def {*-, ■>, f ,  4"}
DniTygodnia =<ief {poniedzialek, wtorek, sroda, czwartek, piqtek, sobota, niedziela} 
LiteryMale =def {a, b, ..., z}
LiteryDuze =der(^, B, Z)

Elementami pierwszego i drugiego zbioru Symbole graficzne, elementami pozosta- 
lych zbioröw litery lub napisy. W definicjach dwöch ostatnich zbioröw wyst?puj£i 
takie same kropki, ale z uwagi na kontekst, w ktörym wystqpujq, potrafimy nadac im 
odpowiednie rözne znaczenia.

Bezposrednio z definicji zbioröw wynika, ze na przykiad:
| e Kreski

f  e  Strzalki

Uzywane pojQcie zbioru nie narzuca ograniczen na to, czym mog^byc jego elementy. 
W szczegölnosci elementami zbioru mog^ byd inne zbiory. Rozpatrzmy przyklady 
zbioröw:

{«}
{{«}}
{{«, *},{«}}
{{{a}}, {a},a}

to zbiory anonimowe, to znaczy niemaj^ce nazw. Pierwszy zbiör sklada si? tylko 
z jednego elementu a. Drugi zbiör sklada si? röwniez z jednego elementu, ale elemen- 
tem tym jest zbiör jednoelementowy {a}. Trzeci zbiör ma dwa elementy, ktörymi s^ 
zbiory {a, b} oraz {a}. Ostatni zbiör ma trzy elementy, z ktörych kazdy ma rözn^ 
Struktur? -  pierwszy jest zbiorem postaci {{a}}, drugi jest zbiorem postaci {a}, a trze­
ci jest pojedynczym elementem a.

Enumeracyjne definiowanie zbioru nie jest mozliwe, gdy zbiör zawiera nieskonczenie 
wiele elementöw. W tym przypadku mozna stosowac podejscie rekursywne. Rekur- 
sywna definicja zbioru sklada si? z dwöch cz?sci:



• czqsci bazowej, w ktörej jawnie wskazuje si$ na pewne obiekty jako elementy 
definiowanego zbioru,

• czqsci rekursywnej, w ktörej wskazuje siQ na nowe obiekty jako elementy defi­
niowanego zbioru, przez odpowiednie odwolanie si$ do tych obiektöw, o ktö- 
rych juz wiadomo, ze nalezy do definiowanego zbioru (inaczej: czqsö rekursyw- 
na okresla jak za pomoc^ obiektöw, o ktörych wczesniej wiemy, ze elemen- 
tami zbioru, mozna wyrazic inne obiekty, ktöre röwniez elementami definio­
wanego zbioru).

Szczegölnie waznym i potrzebnym zbiorem nieskonczonym jest zbiör liczb natural- 
nych Nat. Mozna zdefiniowac go rekursywnie nastqpuj^co:

• Oe Nat
• jezeli ne Nat, to n + 1 e Nat.

Elementy zbiom w czqsci rekursywnej definicji s^ wyrazane przez napisy n oraz n + 1. 
Napisy te reprezentuj^ pewne liczby, przy czym to, jakie s^ to liczby, zalezy od tego, jak^ 
liczbq przypisze siq symbolowi n. Stosuj^c cz?sc rekursywn^po raz pierwszy, symbolowi 
n przypisuje siq 0 i na tej podstawie wnioskuje si$, ze 1 jest röwniez elementem zbiom 
Nat. Stosuj^c czqsc rekursywn^po raz dmgi, symbolowi n przypisze siQ liczbq 1 itd.

W podanej definicji zaklada siq, ze wiadomo jest, czym jest liczba i co oznacza doda- 
nie jedynki do liczby. Bez rozumienia tych pojqc nie mozna zrozumiec, czym jest 
zbiör Nat. PojQcia te nalezy do metaj^zyka, ktörego uzywamy do zdefiniowania zbiom 
liczb naturalnych. Inna, formalna definicja liczb naturalnych, ktöra nie odwohije si$ 
do pojQcia liczby i dodawania, jest podana dalej.

Uwaga
Podana definicja zbiom liczb naturalnych przyjmuje, ze liczba 0 jest najmniejsz^ 
liczby naturaln^. Spotyka siq tez definicje, ktöre przyjmuje, ze najmniejszq. liczby 
naturaln^jest 1. Konwencja ta wynika z historii powstawania liczb naturalnych, 
kiedy -  do odkrycia zera -  za liczby naturalne uwazano tylko 1 ,2 ,3  itd.

Podobnie mozna zdefiniowac zbiör dodatnich liczb parzystych:

• 2e ParzysteDodatnie
• jezeli ne ParzysteDodatnie, to n + 2e ParzysteDodatnie.

Ponownie nalezy zwröcic uwag$, ze w czqsci rekursywnej definicji zbiom uzyto kon- 
strukcji n + 2, ktöra nalezy do metaj^zyka shizqcego do definiowania zbiom, i o ktörej 
zakladamy, ze jest dla Czytelnika jednoznacznie zrozumiala.

Inny przyklad rekursywnej definicji pewnego zbiom liczb PewneLiczby jest nastqruj^cy:

• 5, l e  PewneLiczby
• jezeli n, me PewneLiczby, to n + me PewneLiczby



Czqsc bazowa okresla, ze elementami zbioru PewneLiczby liczby 5 i 7. Analizujqc 
czqsc rekursywna, latwo si$ przekonac, ze elementami tego zbioru bqd^ takze liczby 
10, 12, 14,15,17, 20 itd.

Rekursywna definicja zbioru LinieLamane, ktörego elementami s£t Symbole graficzne 
-  linie lamane, zlozone z elementöw zbioru Kreski -  ma nastQpuj^c  ̂postad:

• |, -  e LinieLamane
• jezeli a, be LinieLamane, to linia powstajqca z polqczenia a oraz b w taki spo­

söb, ze jeden z koncöw a byl pol^czony z jednym koncem b tak, aby poza miej- 
scem pol^czenia a oraz b nie mialy innych punktöw wspölnych, nalezy röwniez 
do zbioru LinieLamane.

Latwo siq przekonac, ze elementami zbioru LinieLamane bqd^ m.in. nast^pujqce linie:

j i j i  n  r
1 2 3 4 5

Rys. 2.1. Elementy zbioru LinieLamane

Linie o numerach 1 i 2 powstaj^ przez rözne powiqzania elementöw zbioru Kreski, 
linia 3 jest wynikiem pol^czenia linii 1 i 2, linia 4 -  linii 1 i 3, a linia 5 -  linii 3 i 4.

Rekursywna definicja zbioru ma Charakter konstruktywny, to znaczy okresla jak moz- 
na skonstruowac nowe elementy zbioru z innych elementöw, o ktörych juz wiemy, ze 
s^ elementami definiowanego zbioru. Inaczej mozna powiedziec, ze definicja rekur­
sywna wyznacza pewien algorytm konstrukcji elementöw zbioru. Algorytm jest w tym 
momencie rozumiany nieformalnie jako ci^g pewnych kroköw obliczeniowych pro- 
wadz^cych do rozwi^zania danego problemu. Z tego wzglqdu rekursywny sposöb 
definiowania zbioröw jest bardzo czqsto wykorzystywany w informatyce. Rekursywne 
podejscie pozwala wprawdzie na definiowanie zbioröw nieskonczonych, ale nie do- 
wolnych zbioröw, lecz tylko zbioröw przeliczalnych, tzn. takich, ktörych wszystkie 
elementy mozna zestawic w jeden cidg (poj^cie przeliczalnosci zbioru jest zdefinio- 
wane w dalszej czqsci ksicizki). Oczywiscie, w skonczonej liczbie kroköw mozna wy- 
znaczyö tylko skonczon^ liczbq elementöw zbioru.

Najogölniejszy sposöb definiowania zbioröw opiera siq na podejsciu ekstensjonalnym. 
Podejscie to polega na definiowaniu zbioru przez okreslenie wlasnosci jego elemen­
töw. Schemat definicji zbioru ma postac

A = def {a | P(a)}



Zapis ten czytamy: do zbioru o nazwie A nalezq wszystkie te i tylko te elementy a, ktö- 
re majq wlasnosc P(a), czyli takie elementy, dla ktörych wypowiedz P(a) jest praw- 
dziwa. P(a) jest funkcj^. zdaniow£b dlatego tez ten sposöb definiowania zbioröw na- 
zywa siQ takze definiowaniem przez funkcjq zdaniowq. Formalna postad fiinkcji 
zdaniowych b^dzie precyzyjnie okreslona w dalszej czqsci ksi^zki.

Uwaga
Definicja ekstensjonalna nie okreSla sk^d brad te elementy, ktöre maj^ wlasnosd 
P(a). Ogölne pytanie o to, ktöre byty nalezy rozwazac przy takim definiowaniu 
zbioru, wiqze siq ze znanym problemem filozoficznym, okreslanym jako problem 
powszechniköw albo uniwersaliöw.

Rozpatrzmy poprzedni przyldad zbioru dodatnich liczb parzystych

ParzysteDodatnie =def {x | (x jest liczbq naturalnq) a  (x > 0) a  (x jest podzielne
przez 2)}

Wlasnosd

(x jest liczbq naturalnq) a  (x > 0) a  (x jest podzielne przez 2)

ma postad wypowiedzi zlozonej. Poszczegölne jej czlony nalezq do metajqzyka -  j^zyka 
arytmetyki. Aby rozumied sens calej wypowiedzi, nalezy rozumied jej czQSci skladowe:

x jest liczbq naturalnq, czyli xeNat 
x >0
x jest liczbq naturalnq podzielnq przez 2

oraz l^czEicy je spöjnik logiczny a . Pierwsza z wypowiedzi wymaga rozumienia przy- 
naleznosci elementu do zbioru, a pozostale wymagaj^ elementamej wiedzy z zakresu 
arytmetyki. Znaczenie spöjnika a  zostalo wyjasnione w poprzednim rozdziale.

Czasem, gdy definiujemy nowy zbiör A, wygodne jest odniesienie do innego, wcze- 
sniej ustalonego zbioru B. Piszemy wtedy

A =def {xeB  | P(x)},

co jest skrötem od

{x | x6 5 a P (x}}.

Mozemy wi^c napisac

ParzysteDodatnie =def {xeNat | (x>0) a  (x jest podzielne przez 2)}

Uwaga
Czasem, definiuj^c zbiör, zamiast symbolu =def uzywa si$ röwniez innych ozna- 

czen, na przyldad *=, = , a nawet =. Ostatnim symbolem nalezy si$ poslugiwac



ostroznie, gdyz jego znaczeniem podstawowym jest stwierdzanie röwnosci (iden- 
tycznosci) elementöw nalez^cych do pewnego zbioru.

Podejscie ekstensjonalne do definiowania zbioröw jest wygodne i uniwersalne, ale nie- 
ostrozny sposöb formulowania wlasnosci moze prowadzic do absurdu. Znany przyklad 
takiego absurdu jest nazywany paradoksem Russella4. Rüssel wykorzystal w skrajnej 
postaci rozumowanie, stosowane w pocz^tkowym okresie rozwoju teorii mnogosci, 
mianowicie: niech Z bqdzie zbiorem zdefiniowanym nast^puj^co:

Z=def{ X \ X i X )

to znaczy Z jest zbiorem -  rodzin^ zbioröw -  ktörego elementami s^ wszystkie zbiory 
X, maj^ce tQ wlasnosö, ze nie s^ swoimi elementami. Odpowiedzmy teraz na pytanie: 
czy ZeZ? Jezeli Z jest swoim elementem, czyli ZeZ, to oznacza, ze ma tak^ sam^ 
wlasnoSd jak wszystkie elementy zbioru Z, czyli ZgZ. Jezeli natomiast Z nie jest swo­
im elementem, czyli ZgZ, to z definicji nalezy do rodziny zbioröw Z, czyli ZeZ. 
W obu przypadkach zachodzi sprzecznosc.

Paradoks ten uzasadnia dlaczego na poczqtku rozdziahi wprowadzono ograniczenie, 
ze dla dowolnego zbioru A zachodzi A&A.

Warto zwröcic uwagQ, ze przypuszczenie, iz zbiör moze byc swoim elementem, wcale 
nie jest absurdalne. Rozwazmy bowiem zbiör Z, ktörego elementami s^ zbiory nie- 
skonczone, to znaczy zbiory o nieskonczenie wielu elementach. Z pewnosci^ istnieje 
nieskonczenie wiele zbioröw nieskonczonych, a zatem zbiör Z jest nieskonczony, 
czyli jest swoim elementem!

Rozpatrzmy jeszcze jeden przyklad. W wiqkszosci praktycznie spotykanych przypad- 
köw mamy do czynienia ze zbiorami, ktöre nie sq. swoimi elementami -  nazwijmy je 
zbiorami zwyczajnymi, w odröznieniu od pozostalych zbioröw, ktöre nazwiemy nie- 
zwyczajnymi. Utwörzmy teraz zbiör Z, ktörego elementami s^ wszystkie zbiory zwy- 
czajne. Zapytajmy: czy zbiör Z jest zbiorem zwyczajnym czy niezwyczajnym? Jesli Z 
jest zbiorem zwyczajnym, to wchodzi w sklad swoich elementöw, lecz wöwczas 
-  zgodnie z okresleniem -  jest on zbiorem niezwyczajnym. Jesli natomiast Zjest zbio­
rem niezwyczajnym, to -  zgodnie z okresleniem niezwyczajnosci -  powinien byc swo­
im wlasnym elementem, a przeciez elementami zbioru Z s^ tylko zbiory zwyczajne. 
Ponownie, jak w poprzednim przykladzie, w obu przypadkach zachodzi sprzecznosc.

Uwaga
Potrzeba wyeliminowania sprzecznosci wynikaj^cych ze zbyt swobodnego defi­
niowania bardzo „obszemych”, prowadz^cych do antynomii, zbioröw doprowadzi- 
la do aksjomatycznego ujqcia teorii zbioröw (zob. podrozdzial 4.1). Niektöre z ta- 
kich koncepcji wi^zaly siq z wprowadzeniem pojqcia klasy. Zasadnicza idea

4 Bertrand Russell (1872-1970).



polegala na odröznieniu klasy od zbioru: zbiory mog^ byc elementami innych zbio- 
röw, klasy zas nie, dlatego -  zamiast operowac niejasnym poj?ciem zbiör wszyst- 
kich zbioröw -  möwi si? o klasie wszystkich zbioröw.

Poj?cie klasy w wyzej przedstawionym znaczeniu nalezy odrözniac od, maj^cego 
zupelnie inne znaczenie, poj?cia klasy uzywanego w informatyce -  w programo- 
waniu i projektowaniu systemöw informatycznych.

Przyklad 2.1
J Rozpatrzmy przyklady zbioröw uzywanych w j?zykach programowania. W zasa- 

dzie wszystkie takie zbiory s^ zbiorami skonczonymi. Wyröznia si? mi?dzy innymi 
predefiniowane zbiory wartosci zwiqzane z typami danych.

Zbiör wartosci logicznych

Boolean =def {false, true}

Zbiör calkowitoliczbowy

Integer =def { -N ,..., 0,..., N),

gdzie jVjest liczbei naturaln^ okreslon^ przez dan^ implementacj ? j ?zyka.

Zbiör liczb rzeczywistych

Real =def {~N*S, .... 0,.... N*S}

gdzie N  jest liczb^ naturaln^, a J je s t liczb^ wymiem^ okreslon^ przez dan^ im­
plementacj? j?zyka; jest to tzw. staloprzecinkowa reprezentacja liczb (w reprezen- 
tacji zmiennoprzecinkowej kolejne liczby s^oddalone od siebie o zmienn^ röznic?). 
Warto podkreSlic, ze wbrew temu, co sugeruje nazwa, zbiör ten zawiera skonczon^ 
ilosc liczb wymiemych.

Zbiör napisöw

String =def {s | s jest skohczonym ciqgiem znaköw ustalonego repertuarn znaköw)

W praktycznej implementacji typu napisowego dhigosc takich ci^göw jest ograni- 
czona konkretn^ liczby. Przykladem takiego repertuarn znaköw sq. na przyklad 
znaki kodöw stosowane w reprezentacji maszynowej, na przyklad jednobajtowy 
kod ASCII (American Standard Code fo r  Information Interchange) czy dwubajto- 
we kody Unicode lub BMP (Basic Multilingual Plane).

Defmiowany przez programist? zbiör wyliczeniowy to na przyklad 
DniTygodnia =def {pon, wt, sr, czw, pt, sob, nd)

gdzie pon, w t , ..., nd s^ pewnymi ustalonymi napisami. Napisy te -  w odröznieniu 
od napisöw, ktöre nalezy do zbioru String -  s^ nierozkladalne, to znaczy ich frag- 
menty nie elementami zbioru DniTygodnia.



Specyficznym dla wielu jqzyköw, nie tylko jqzyköw programowania, jest zbiör 
identyfikatoröw. Zbiör ten bqdzie dalej czQsto wykorzystywany i oznaczymy go 
symbolem Ident. Moze on byc definiowany na przyklad tak

Ident =def | s jest niepustym ciqgiem skladajqcym siq z liter lub cyfr, ktörego 
pierwszym elementem jest litera}

Nalezy zwröcic uwagQ, ze w tresci wlasnosc definiujXcych zbiory wystgjujX pojocia, 
o ktörych siq zaklada, ze s^pojociami zrozumialymi -  s^ to pojocia metajqzyka, w ktö- 
rym opisujemy dane wlasnosci. Na przyklad w definicji zbioröw String oraz Ident ta- 
kim pojociemjest ci^g, a w definicji zbioru DniTygodnia takim pojQciem jest napis. 1

2.3. Podzbiory, röwnosc zbioröw, zbiory pot^gowe

Möwimy, ze A jest podzbiorem zbioru B, co oznaczamy A c f l ,  wtedy i tylko wtedy, 
gdy dla dowolnego elementu a: jezeli aeA,  to takze aeB.  Symbol c  nazywa siq sym­
bolem zawierania lub symbolem inkluzji. Podan^ definicji zawierania zbioröw mozna 
röwniez wyrazic formalnie

A c B  <=> (Va • aeA  => aeB)

Z definicji wi^ze siq nastQpuj^cy komentarz: Jest to definicja w postaci normalnej. 
Sklada siq ona z dwöch czqsci przedzielonych symbolem röwnowaznosci <=>, ktöry 
czytamy: wtedy i tylko wtedy. Czqsc po lewej stronie symbolu röwnowaznosci jest 
wyrazeniem zawieraj^cym pojqcie definiowane -  deßniendum, a czqsc po prawej stro­
nie zawiera pojqcie definiuj^ce -  definiens. Poprawnosc definicji wymaga, aby po 
prawej stronie nie wystqpowalo poj^cie definiowane, gdyz bylby to przypadek „btqd- 
nego kola”. Oczywiscie, aby rozumieö sens definicji, pojqcia wyst^puj^ce w czqsci 
definiujqcej musz^ byc znane. Podana definicja spefnia przedstawione wymogi, gdyz 
w wyrazeniu definiujqcym po prawej stronie nie wystQpuje pojQcie podzbioru, a poj$- 
cia nalezenia elementu do zbioru, spöjnika implikacji i kwantyfikatora ogölnego byly 
wyjasnione wczesniej. Definicja normalna pozwala przelozyc kazdy zwrot j^zykowy 
zawieraj^cy wyrazenie definiowane na zwrot niezawierajqcy tego wyrazenia. Wiqk- 
szosc definicji podawanych w ksi^zce ma postac definicji normalnej.

Latwo zauwazyc, ze zachodz^ wlasnosci:

0 c J  
A <zA
( A c B a B c Q = > ( A c Q

Uzywa siq tez symbolu inkluzji wlasciwej c .  Zapis A c  B czytamy: zbiör A zawiera 
siq wlasciwie w zbiorze B. Oznacza to, ze A zawiera siq w B, czyli A cß , oraz zbiör 
B zawiera przynajmniej jeden element, ktöry nie nalezy do zbioru A. Formalnie

A c  B o  (A c  B) a (3 a • aeA  a  aeB )



Dwa zbiory A i B identyczne albo röwne, co oznacza siQ 
A - B

wtedy i tylko wtedy, gdy majet dokladnie te same elementy, czyli gdy AczB oraz BcA. 
Formalnie

A = B < ^ { A ^ B ) a { B ^ A )

Symbol = jest tu symbolem röwnosci lub identycznosci zbioröw.

W zbiorze nie odröznia siq kolejnosci ani powtörzen elementöw. Na przyklad zbiory:

A  = d e f  { 1 ,  2 ,  3 }

B=  def {1, 3, 2}
C=def{l,2, 3,2}

set identyczne, czyli A = B= C.

Jezeli A jest zbiorem, to przez 2A oznacza siQ zbiör, ktörego elementami wszystkie 
podzbiory zbioru A. Zbiör 2A jest nazywany zbiorem potqgowym zbioru A. Zbiör potQ- 
gowy jest wi^c rodzin^ zbioröw.

Uwaga
Zbiör potQgowy zbioru A oznacza siq röwniez przez IP(A) albo CP (A).

Przyklad 2.2

 ̂ Dia zbioru A =def {a, b, c} jego zbiör potqgowym 2A jest röwny zbiorowi ^

\ {0 , {a}, {b}, {c}, {a, b), {a, c), {b, c), {a, b, c}}_________________________,

Postac oznaczenia zbioru potQgowego 2Ä wynika z nastqpuj^cej wlasnosci: Jezeli 
A jest zbiorem skonezonym, to przez card(A) oznaczamy liczb$ jego elementöw. La- 
two pokazac, ze dla dowolnego skonezonego zbioru A zachodzi

card( 2a) = 2card(A)

Nalezy zwröcic uwagQ na to, ze uzyty powyzej symbol röwnosci = odnosi si$ do röw­
nosci liczb calkowitych, podezas gdy uzyty wczesniej ten sam symbol odnosil siQ do 
röwnosci zbioröw. Symbol röwnosci w röznych kontekstach moze byc uzywany do 
poröwnywania obiektöw nalez^cych do röznych kategorii.

Uwaga
Na okreslenie licznosci elementöw skonezonego zbioru A uzywa si<j röwniez in- 
nych oznaczen, na przyklad: #(A), \A\.

W przypadku zbioröw nieskonczonych nie mozna möwic o liezbie ich elementöw. 
Mozna natomiast poröwnywac dwa zbiory pod wzgl^dem röwnolicznosci. Pojqcie 
röwnolicznosci zbioröw jest zdefiniowane dalej, po wprowadzeniu pojQcia funkeji.



2.4. Operacje na zbiorach
Majqc dane pewne zbiory, mozna z nich budowac nowe zbiory. Na zbiorach wykonuje 
siQ operacje (dziaiania), ktörych wynikiem nowe zbiory. Podstawowymi operacjami 
s£t_: suma, przekröj, röznica i röznica symetryczna dwöch zbioröw. Dziaiania te sq.zde- 
finiowane przez podanie wlasnosci zbioröw wynikowych.

Suma zbioröw
A u5= def {a | aeA  v  a eB }

Przekröj zbioröw
A n B =def {a | aeA  a  aeB}

Röznica zbioröw
A \ B =  def {a | aeA  a  aeB}

Uwaga
Innym oznaczeniem röznicy zbioröw jest A - B .

Przyklad 2.3
I Rozpatrzmy zbiory: ^

A = def{{a, b},c}
B =def {c, d}
C =def {{a, {a}},a}
D=def {a, {a}}

Latwo sprawdziö, ze:
A u B =  {{a,b} ,c,d} A n B = { c }  A \ B = { { a , b } }

, C kjD =  {{q, {a}}, {fl}, fl} C n D = { a } _________ C \ D =  {{a, {fl}}} ,

Gdy interesujqce nas zbiory podzbiorami pewnego wyröznionego zbioru, nazywa- 
nego zbiorem uniwersum, uzywa siq operacji dopelnienia zbioru. Jezeli U  jest uniwer- 
sum oraz A jest pewnym jego podzbiorem, to przez A ' oznaczamy operacje dopelnie­
nia zbioru A, ktör^ definiujemy jako

A'=defU \A

Dwa zbiory A, B  nazywa siq zbiorami rozlqcznymi, jezeli ich przekröj jest pusty, czyli gdy 
A n B  = 0

Czqsto stosowanym sposobem ilustracji operacji mnogosciowych szj. wykresy Verna5. 
Zaklada si$ w nich, ze uniwersum jest zbiör punktöw na plaszczyznie, a rozwazanymi

5 John Venn (1834-1923).



zbiorami s .̂ dowolne obszary na piaszczyznie. Przykiad takiego wykresu przedstawio- 
no na rysunku 2.2. Dwa przecinajqce siq owale reprezentuj^ zbiory A oraz B. Poszcze- 
gölne podobszary oznaczajX odpowiednio podzbiory ASB, A n B  oraz B\A.

Wprowadzone operacje m aj\rözne wlasnosci. Latwo sprawdzic, ze zachodzq. nastqpu- 
jqce wlasnosci, nazywane tez prawami mnogosciowymi:

1. Prawa przemiennosci
A u B = B u A
A n B = B n A

2. Prawa Iqcznosci
( A v B ) u C  = A u ( B v C )
( A n B ) n C  = A n  ( B n Q

3. Prawa rozdzielnosci
( A v B ) n C = ( A n C ) v ( B n C )
(A n  B) u  C =  (A u  Q  n  (B u  Q

4. Prawa de Morgana
(A n B )'= A ' kj f f  
( A u B y  = A'nB'

5. Prawa dla zbioru pustego
A n 0  = 0  
A u 0  = A 
A \ 0  = A 
0 \ A  = 0  
0 ' = U

6. Prawa dla zbioru uniwersum
A n  U=A  
A u  U= U 
A \ U = 0  
U' = 0



Przykladowo pokazemy jak uzasadnic jedn^ z tych wlasnosci -  pierwsze z praw 
de Morgana.

Wlasnosc
Zachodzi nastQpuj^ca röwnosc zbioröw 

( A n B ) '  = A'  kj B'

Dowöd
Z definicji röwnosci zbioröw wynika, ze nalezy pokazac dwie inkluzje: 

( A n B ) ' c A , v B '
A ' u B ' c ( A n  B)'

Z kolei, z definicji podzbioru wynika, ze nalezy pokazac dwie implikacje:

xe (A n  B)' => xeA ' u  B' 
xeA ' u B '  =>xe ( A n  B)'

albo -  co oznacza to samo -  rownowaznosc

xe (A n  B)' d x e A '  u  B'

W naszym przypadku pokazemy wlasnie ostatni^ rownowaznosc. Dowöd ma po- 
stac ci£igu zdan pol^czonych spöjnikami röwnowaznosci. Po prawej stronie wier- 
sza, w ktörym wystQpuje rownowaznosc, po symbolu dwöch kresek, jest podany 
odpowiedni komentarz uzasadniajqcy.

xe (A n  B)' <=> 
x e U  a x i  (A n  B) <=> 
xe U a -i(xe (A n  B)) <=> 
xe U a - i(xeA a  xeB)  <=> 
xe U a (—jceA v  - i xeB )  <=> 
x e U  a  (x&A v  x € B ) d

xe U a jcgzl v  x e U  a x g B d  
xeA '  v j g B '«  

x e A ’u B '

— z definicji operacji dopelnienia
— z definicji operatora nienalezenia do zbioru
— z definicji iloczynu zbioröw
— z prawa de Morgana dla rachunku zdan
— z prawa operatora nienalezenia do zbioru
— z prawa rozdzielnosci koniunkcji wzglqdem 

dysjunkcji
— z definicji operacji dopelnienia
— z definicji sumy zbioröw

Uwaga
Przedstawimy kilka komentarzy zwi^zanych z dowodem. Pojqcie dowodu bqdzie 
omawiane dalej. Schemat przedstawionego tu dowodu ma postac ci^gu röwnowaz­
nosci

/?!<=>/?! . . . d p ,



Poszczegölne röwnowaznosci zachodz^na mocy definicji lub wynikajfj. z pewnych 
regul wnioskowania.

Röwnowaznosc ma wlasnosc przechodniosci, co oznacza, ze mozna stosowac re- 
gulQ wnioskowania:

p < * q  
q d r  
p  <=>r

gdzie: p, q, r sq. zdaniami. Na podstawie tej reguly wnioskowania mozna zatem 
stwierdzic, ze

P\*=>Pn
W treSci dowodu, poza powolaniem siq na odpowiednie definicje wystqpujqcych 
poj$d, powolalismy si$ na dwie wlasnosci rachunku zdan: prawa de Morgana i roz- 
dzielnosd koniunkcji wzglqdem dysjunkcji. Wlasnosci rachunku zdan bqd^ omö- 
wione w dalszej czQsci ksiqzki, ale -  dla czytelnoSci -  przedstawimy je röwniez tu- 
taj. Prawa de Morgana dla rachunku zdan maj^postac:

- i  (P v  q) <=» —p  a  —q

Prawa rozdzielnosci maj^nat omiast postac:
p  A (q  v  r) <=> p  a  q v  p  a  r 
p  v  (q a  r) <=> (p v  q) a  (p v  r)

Wymienione röwnowaznosci nosz^ miano praw logicznych, co oznacza, ze röw­
nowaznosci te s^ prawdziwe niezaleznie od wartosciowan zmiennych p, q, r. Moz­
na si$ o tym przekonaö, budujqc i sprawdzajqc odpowiednie tablice prawdziwo- 
sciowe (zob. rozdz. 1 .).

Zdefiniowane dla dwöch zbioröw operacje sumy i przekroju uogölnia siq na dowolne 
rodziny zbioröw. Niech /  bqdzie dowolnym zbiorem, nazywanym zbiorem indeksow, 
oraz niech {A\ \ iel}  b^dzie indeksowan^ rodziny zbioröw, wtedy:

[ J a , =def {a 13 i e l • aeA,}
i e l

(~]Ai =def {a | V i e l  • aeA/}
i e l

S£t uogölnionq sumq i uogölnionym przekrojem zbioröw. Uogölnion^ sum$ i przekröj 
rodziny zbioröw {Ai | ie l}  bqdziemy tez zapisywac w postaci:

UUil'e/}
nui'e/}



Przyklad 2.4

 ̂ Niech Aj =def {1, 2, /} bqdzie rodzinq. zbioröw, gdzie i'e ParzysteDodatnie. La-
two sprawdzic, ze:

f | 4  = 0 . 2}
fe ParzysteDodatnie

\ J a , =Nah{0}
■ »e ParzysteD odatnie i

Cwiczenia

1. Przeanalizowaö jednoznacznosc podanych nizej okreslen zbioröw. Jakie zwiqzki 
zachodz^pomiqdzy tymi zbiorami?
a) zbiör ludzi zyjqcych na jednym kontynencie,
b) zbiör narodöw europejskich,
c) zbiör zbioröw ludzi poshigujXcych siq tym samym jqzykiem,
d) zbiör obywateli polskich,
e) zbiör Polaköw.

2. Wskazaö elementy nastqpuj^cych zbioröw:
a) {a}
b) {{«}}
c) {{a, b}, {a}}
d) {{{«}}, {«},fl}
e) { x e N a t \ ^  < 7}
f) {xe Wymierne | x2 = 2}
g) {xe Wymierne | (x + 1) 2 < 0}

3. Niech A, B, C, D  b$d^ parami rozl^cznymi, niepustymi zbiorami. Jakie warunki 
powinny spetniac te zbiory, aby zachodzily nastqpuj^ce röwnosci:
a) {B, C) = {B, C, D}
b ) { { A , B ) ,C )  = {{A},C)
c)  {{A ,B) ,{D)}  = {{A}}
d) {{A, 0 } , B) -  {{0}}

4. Wykazaö, ze röwnosc zbioröw {{/!}, {A, 5}} = {{C}, {C, D}} zachodzi wtedy 
i tylko wtedy, gdy A = C oraz B = D.

5. Obliczyö A n  B, A u  B, A\B, B\A dla nast^pujqcych zbioröw A i B:

a ) A = { { a , b } , c )  B = {c ,d}
b )  A =  {{a, {a}},a} 5 = { o , {a}}



6. Sprawdzic i uzasadnic, ktöre sposröd nizej podanych röwnosci zachodz^ b^dz nie 
zachodzq. dla dowolnych zbioröw A, B, C, D:
a) (A u B)\C = (A \Q  u  (B\Q
b) (A\B) n  (CAD) = ( A n  Q \(B  u  D)
c )  ( A u B ) n B  = B
d )  ( A n B ) v (  A\B) = A
e )  (A\B) = A \ ( A n B )
f) (A\B) u B  = A

7. Niech U  bqdzie pewnym ustalonym zbiorem, zwanym uniwersum. Jezeli A er U, to 
A' =def IAA nazywa siq dopelnieniem zbioru A. Pokazac, ze dla podzbioröw z uni­
wersum U  zachodz^ prawa de Morgana:
&)(AvBy = A 'n B '  
b)(AnB)' = A 'u B '

8. Dane sq. podzbiory A, B, C pewnego uniwersum V. Ile co najwyzej röznych zbio­
röw mozna otrzymac ze zbioröw A , B , C  za pomoc^ operaeji u ,  n ,  \ ?

9. Röznica symetryczna zbioröw jest zdefiniowana nastgjuj^co:
A -  B  =def A/B u  BIA

Pokazaö, ze zachodz^nastopujqce röwnosci:

a) A - B  = B -  A
b)  { A ^ B )  -*■ C = A -  (5-=- C)
c) A n ( B  -  Q  = (A n B )  -  (A n C )
d) A u ( B  -  Q  = (A — B) -  (A n B )

10. Zdefmiowaö operaeje u ,  n ,  \ przez:
a) n
b) - , u
c) - , /

11. Ile elementöw ma najmniejsza, niepusta rodzina zbioröw A  z pewnego uniwersum 
V  taka, ze:
a) jezeli A e A  i BeA,  to A u  BeA,
b) jezeli A e A  i BeA,  to A n  BeA.

12. Udowodnic, ze:
a) 2Ar,B = 2A n  2B
b) 2AkjB= {A\ kjB\ \A \e2A s\B \e28}



13. Niech card{A) oznacza liczb$ elementöw zbioru skonczonego Pokazac, ze dla 
skonczonych zbioröw A oraz B zachodzi:
a) card(2A) = 2car(KA)
b) card(A<jB) = card(A) + card{B) -  card(AnB)

14. Dia dowolnych zbioröw skonczonych^, B i C znalezc wzory okreslaj^ce:
a) card(A u ß u Q
b) card{2Ä u B)
c) card(AXB)

15. Dowiesö, ze dladowolnej rodziny zbioröw A\,A2, ...,An, dla neNat, zachodzi röwnoäc
A i <u A2 u  ... u  An =

(AMi)  u  (^ 2̂ 3) u  ... u  (A„.,\A„) u  (4 ,\/li) u

16. Niech^ 1, ^ 2,.... A„, dla« >0, bQdq.podzbiorami zbioru U. PrzezAj oznaczmy zbiörA„ 
a przez A° oznaczmy dopehnenie tego zbioru, czyli A ' . Kazdy iloczyn postaci:

A[x n . . . n A ‘;

gdzie ij e  {0, 1} dla j=  1,..., n nazywa siq skladowq..

a) Pokazac, ze röznych skladowych jest co najwyzej 2".
b) Pokazac, ze rözne skladowe s^ rozl^czne.
c) Znalezc sumQ wszystkich skladowych.
d) Udowodniö, ze zbiör At jest röwny sumie tych skladowych, w ktörych wystQpu- 

je czynnik postaci A).

17. Zbadaö i udowodniö, ktöre z podanych nizej zwi^zköw zachodz^ dla rodzin zbio­
röw {Aj | iel},  {Bi | iel}  oraz {C,j \ i e I , j e J }:

a)  U ^ uU 5'=U ^ u5')’
iel iel iel

b) ( J ( 4 . n 5 , . ) c [ j 4 ^ U 5 < -
iel iel iel

C)
iel iel iel

d> u f K = n u cv-
iel jeJ iel jeJ

18. Rodzinq {A„ | neNat)  nazywa siq zstqpujqcq rodziny zbioröw, gdy An+\ c  An dla 
neNat. Udowodniö, ze jesli {An | neNat} oraz {B„ \ neNat} s^rodzinami zstqpu- 
j^cymi, to:

n ( 4 ^ 5 , . ) =  nA , \ v  c \B i



Podac przyktady rodzin zbiorow {A„ | neNat)  oraz {B„ | neNat},  dla ktörych po- 
wyzsza röwnosc nie zachodzi.

19. Rodzinq {A„ | neNat} nazywa siq wstqpujqcq rodzin^ zbiorow, gdy A„ c  A,l+l, dla 
neNat. Udowodnic, ze jesli {A„ | neN at} oraz {B„ \ neN at} s^rodzinami wstQ- 
pujqeymi, to

U (A,r>B,)= LM
ieNat

O
\ ie N a l  / V fe Nat 7

Podac przyktady rodzin zbiorow {A„ \ neNat)  oraz {B„ | neNat),  dla ktörych po- 
wyzsza röwnosc nie zachodzi.

20. Funkcja /  okreslona dla liczb rzeczywistych i o wartosciach rzeczywistych jest 
ci^gla, jesli

VxoeRzeczywiste»\/e>0»3S>0»VxeRzeczywiste» \x -  x0|< S=> |/(x )-/(jco j^ f 

Nie uzywajXc znaku negacji, zapisac formul$: „funkcja nie jest ci^gla”

21. Liczba g  jest granic^ w punkcie x0 funkcji /  okreslonej dla liczb rzeczywistych 
i o wartosciach rzeczywistych, jesli

Vf>0* 3<5>0 • Vxe Rzeczywiste* 0 < \x -  x0|< S=> |/(x) -  g |< f

Nie uzywaj^c znaku negacji, zapisac formulq: „liczba g  nie jest granica funkcji 
w punkcie x0”.



3. Relacje i funkcje

3.1. Produkty kartezjanskie

Podczas grupowania pewnych elementöw w zbiory kolejnosc ich wyliczenia nie jest 
istotna. W sytuacji, gdy kolejnosd jest istotna, elementy siq grapuje, uzywaj^c pojqcia 
par uporzqdkowanych i krotek. Jezeli aeA  oraz beB  dwoma elementami, nieko- 
niecznie röznymi, to zapis

<a,b>

oznacza par? uporz^dkowanq, ktörej komponentami s^ a oraz b. Uporzqdkowanie 
oznacza, ze para <a, b> nie jest tym samym, co para <b, a>. Dwie pary:

<a, b> oraz <c, d>

sq. identyczne, co pisze siq <a, b> = <c, d>, wtedy i tylko wtedy, gdy: 

a = c oraz b = d.

Wyst^puj^cy powyzej symbol = ma dwa znaczenia. Gdy pisze siq <a, b> = <c, d>, 
oznacza to identycznoSd dwöch par. Gdy natomiast pisze si$ a = b, oznacza to iden- 
tycznosc dwöch elementöw. W obu przypadkach poröwnuje siq ze sob^ obiekty röz- 
nych kategorii.

Uwaga
Para <a, b> bqdzie tez zapisywana w postaci (a, b).
Symbol identycznosci, najczQsciej reprezentowany symbolem = lub -  rzadziej -  
symbolem =, zashiguje na wyröznienie, z uwagi na czqste uzycie w röznych kon- 
tekstach. Konteksty te nalezy odrözniaö, a w konkretnym kontekscie wlasciwie ro- 
zumieö znaczenie identycznosci. Ogölnie, symbol, ktöry moze miec rözne znacze­
nia, nazywa siq symbolem przeciqzonym.
Symbol identycznosci, niezaleznie od tego, jakie kategorie obiektöw poröwnuje, 
ma pewne stale wlasnosci. S^ to wlasnosci zwrotnosci, symetrii i przechodniosci. 
Niech a, b, c b^d^ obiektami tego samego zbioru. Wlasnosc zwrotnosci oznacza, ze 
dany obiekt jest identyczny ze sob^ samym, czyli a = a. Wlasnosc symetrii ozna­
cza, ze jezeli a jest identyczne z b, to b jest identyczne z a, czyli jezeli a = b, to 
takze b = a. Wlasnosö przechodnioSci oznacza, ze jezeli a jest identyczne z b oraz



b jest identyczne z c, to a jest identyczne z c, czyli jezeli a = b oraz b = c, to a -  c. 
Symbolicznie wlasnosci te mozna przedstawic w postaci:

VaeA •  a = a
V a, b&A •  (a = b) => (b = a)
V a, b, ceA  •  (a = b) a  (b = c) => (a = c)

Pars uporz^dkowan^ <a, b> mozna tez wyrazic jako zbiör postaci {a, {a, b}}. Röw- 
nosd zbioröw {a, {a, b}} oraz {c, {c, d ) } odpowiada wöwczas röwnosci odpowiada- 
jqcych im par <a, b> oraz <c, d>. W szczegölnosci widac, ze dwie pary <a, b> oraz 
<b, a> rözne, gdyz odpowiadaj^ce im zbiory {a, {a, b}} oraz {b, {a, b}} nie 
identyczne. Poshigiwanie sis parq. uporz^dkowan^ <a, b> zamiast zbiorem {a, {a, A}} 
jest wygodniejsze i dlatego dalej bqdzie uzywana tylko taka notacja.

Przyklad 3.1
|------------------------------------------------------ ------------------------------------------------------- 1

Para uporzqdkowana postaci <x, y>, gdzie x, y e  LiczbyRzeczywiste, moze byc in-
terpretowana jako punkt na plaszczyznie, o wspölrzsdnych x, y.

Pary maj^tez interpretacje w programowaniu. Pary:
<nazwisko, Bach >
<nazwisko, Kant>,

gdzie: nazwiskoe Ident oraz Bach,Kante Nazwiska s^ przykladami danych pro- 
stych (wartoSciami pojedynczych pöl rekordöw). Podobnie, innymi przykladami 
danych prostych s^ pary:

<urodziny, XVII >
<urodziny, XVIII >

gdzie urodzinye Ident oraz XVII, XVIIIe LiczbyRzymskie.

Pary postaci:
«nazw isko, Bach >, <urodziny, XVII»
«nazw isko, Kant>, <urodziny, X V III»

I reprezentuj^ dane zlozone (wartosci rekordöw ztozonych z dwöch pöl)._________|

Ogölnie, dla dowolnej liczby naturalnej n definiuje sis tzw. n-krotki. Jezeli au an s^ 
elementami, niekoniecznie röznymi, to

<au .... a„>
jest n-krotkq, a ......... a„ s^jej komponentami. Wyröäiia sis wisc: 0-krotks o ,  1-krotks
<a>, 2-krotkq lub pars <«. A>, 3-krotks lub tröjks <a, b, c> itd.

Dwie krotki:
< a ,, .... a„> oraz <b....... An<>

s^identyczne wtedy i tylko wtedy, gdy n = m oraz a,= bi dla kazdego



Krotki:

<1, 1, 1>
« 1, 1>, 1>
<1, <1, 1»
wiqc rözne. Pierwsza z nich jest tröjkq, a pozostale parami, w ktörych jedna ze 

skladowych jest röwniez pant

Produkt (iloczyn) kartezjanski zbioröw A, B jest zbiorem par:

A x B =def {<a, b> | aeA  a  beB}.

Zauwazmy, ze jezeli zbiory A i B  niepuste oraz A *B, to A x B ^ B x A .

Ogölnie -  n-krotny produkt kartezjanski zbioröw A i , ..., A„, dla n > 1, jest zbiorem

Ai x  ... x  A„ =def {<ai,.... a„> | a^A f  dla i = 1 , n}

Zamiast pisac A x  ... x  A, gdzie A powtarza si^ n razy, dla neNat, pisze siq A". 
Z defmicji:

A° =def {<>}

A l =def A.

Uogölnionym produktem kartezjanskim na zbiorze A nazywa siQ zbiör 

( J A n = A ° v A '  v  A2 v  A* v  ...
neNat

3.2. Relacje

Okreslona na zbiorach A oraz B relacja binama R jest podzbiorem produktu karte- 
zjanskiego AxB, czyli R c  AxB.

Jezeli A = B, to möwi si$ o relacji binamej na A.

Jezeli para <a, b> jest elementem relacji binamej R, to pisze si$ <a, b>eR. Czasem 
uzywa siq röwnowaznego zapisu aRb.

Jezeli Ri, R2 £  AxB, to röwnosc relacji R\ = R2 jest röwnosci^ zbioröw par reprezen- 
towanych przez R\ oraz R2.

Ponownie warto zwröcic uwagq na now^ rolQ symbolu röwnosci =. Tym razem Sym­
bol ten oznacza röwnosö relacji, podczas gdy wczesniej oznaczal röwnosc elementöw 
w obrqbie zbiom, röwnosc zbioröw oraz röwnoSd krotek.

Zbiör wszystkich relacji binamych okreslonych na zbiorach A i B b^dzie oznaczany 
przez 2AxB, tzn.



2 / , x f l = d e f  { R  I R < ^ A x B }

Przy wprowadzonych oznaczeniach zapisy:
R c A x B  oraz Re 2AxB 
röwnowazne.

Uwaga
Na okreslenie zbioru relacji na produkcie kartezjanskim A x B  uzywa siq röwniez 
innych oznaczen, na przyklad: A <-» B lub P(AxB).

Zapis postaci 
R c A x B

nazywa si$ sygnaturq relacji. Symbol R jest nazwq relacji, a wyrazenie A x B ,  gdzie A 
oraz B nazwami zbioröw, jest typem relacji.

Jezeli R jest relacji binamEt na AxB, to jej dziedzinq jest zbiör 

dom(R) =def {aeA | 3 beB  • <a, b>eR} 

a jej przeciwdziedzinq jest zbiör

ran(R) =def {beB  | 3 aeA • <a, b> eR}

Relacja binama R £  AxB  ma swojq. relacjq odwrotnq RTl c  BxA, zdefiniowan^ nastq- 
pujEico:

R 1 =def {<0, a> | <a, b>e R}

Latwo zauwazyc, ze (TT1)-1 = R.

Wprowadzone pojqcia mozna zilustrowac graficznie. Rozpatrzmy przyklad relacji 
binamej zdefiniowanej na zbiorach A =def {<?, b, c, d) oraz B  =def {1, 2, 3, 4, 5}, przed- 
stawiony na rysunku 3.1.

Rys. 3.1. Graficzna ilustracja relacji



Luki prowadz^ce od elementöw zbioru A do elementöw zbioru B reprezentuj^ poje- 
dyncze pary -  elementy relacji R. Z rysunku wynika, ze

R = {<a, 1>, <b, 3>, <c, 1>, <c, 2>, <d, 5>}

Ponadto dom(R) = A oraz ran(R) = {1, 2, 3, 5} c  B. Przedstawienie na rysunku, zgod- 
nie z tq. sam^. konwencj^, relacji odwrotnej RTl polegatoby na odwröceniu kierunku 
strzalek.

Gdy ma siq do czynienia z relacjami binamymi okreslonymi na jednym zbiorze, czyli 
relacjami o sygnaturze R £  A2, bardzo przejrzystym sposobem reprezentacji graficznej 

grafy. Formalnie grafy sq. definiowane dalej, tutaj ograniczamy siq do przykladu. 
Niech A =def {1,2, 3 ,4 , 5} oraz

R =def {<1,1>, <3, 2>, <2, 3>, < 2 ,4>, < 5 ,2>}

Graf reprezentuj^cy relacj? R jest pokazany na rysunku 3.2.

Rys. 3.2. Graficzna ilustracja relacji R

Wierzcholki grafu reprezentuj^ elementy zbioru A, a luki grafu reprezentuj^ elementy 
relacji w taki sposöb, ze para <a, b>eR jest reprezentowana przez hik wychodz^cy 
z wierzcholka a i prowadz^cy do wierzcholka b.

Relacje maj^ rözne zastosowanie w informatyce. Tablice w bazach danych s^ typo- 
wym przykladem relacji.

Przyklad 3.2

W pewnej bazie danych dane S£t dwie tablice:

Tablica 3.1

Nazwisko Wiek urodzin
Bach XVII
Frege XVIII
Leibnitz XVII
Tarski XX

Tablica 3.2

Nazwisko Zawöd

Bach Muzyk
Frege Logik'
Leibnitz Filozof
Tarski Matematyk



Kazda z tablic reprezentuje pewn^relacjq. Pierwsza jest relacjq. typu Nazwiska x  Licz- 
by Rzymskie, druga za§ jest typu Nazwiska x Zawody. Relacje te mozna przedsta- 
wic w postaci mnogosciowej przez wyliczenie odpowiednich par:

{<Bach, XVII>, <Frege, XVIII>, <Leibnitz, XVI1>, <Tarski, XX>}

{<Bach, Muzyk>, <Frege, Logik>, <Leibnitz, Filozof>, <Tarski, Matematyk>}
I________________________________________________________________________ I
PojQcie relacji binamej uogölnia si? na relacjq n-krotnq R  jako dowolny podzbiör 
n-krotnego, produktu kartezjanskiego

R c iA \X . . . x A „  dla n e N a t \ {0 ,1}

3.3. Operacje na relacjach

Relacje zbiorami, mozna zatem na nich wykonywad wszystkie wczesniej zdefinio- 
wane operacje mnogosciowe. Jezeli na przyklad R, Q c  AxB, to zbiory R'uQ, Rf~\Q, 
R\Q s^röwniez relacjami na produkcie kartezjanskim AxB.

Wprowadza si$ tez specyficzne operacje mnogosciowe. Operacje takie wystqpuj^ na 
przyklad w systemach zarzqdzania bazami danych.

Przyklad 3.3_____________________________________________________________
Rozpatruje si$ operacje zlqczenia dwöch relacji R c i A x B  oraz Q c A  x  C. Ope- 
racja ta, oznaczana tu przez R © Q, jest zdefiniowana nast^pujqco:

Jesli dom(R) = dom(Q), to R ®  Q c A x B x C  jest relacje

R © Q =def {<a, b, c> | <a, b>eR a  <a, O e  Q}

Jezeli za R oraz Q wezmie siq relacje zdefiniowane przez tablicq 3.1 i tablic^ 3.2 
w poprzednim przykladzie, to widac, ze dom(R) = dom(Q), a wynikow^ relacje 
R © Q przedstawia tablica 3.3.

T ablica 3.3

N azw isko W iek urodzin Zaw öd

Bach XVII Muzyk

Frege XVIII Logik

Leibnitz XVII Filozof

Tarski XX Matematyk

L



Now^operacj^jest zlozenie (superpozycja) dwöch relacji R c  AxB  oraz Q c  BxC. Jest 
to nowa relacja, zapisywana w postaci R°Q, zdefiniowana nastqpujqco:

RoQ =def {<a, c> | 3 beB  • <a, b>&R/^ <b, c>e Q}

Graficzn^ ilustracj^ zlozenia dwöch relacji R c  AxB  oraz Q c  BxC, gdzie

Görna czqsc rysunku przedstawia relacje R oraz Q, a dolna czqsc -  zlozenie R°Q. 

Latwo sprawdzic, ze zlozenie relacji jest operacj^ l^czn^ to znaczy 

(R°Q) o S  = R° (Q o S) 

ale nie jest operacj^ przemienn^, to znaczy 

RoQ ^  Q o R

Dia dowolnej liczby naturalnej n, n-krotnym zlozeniem relacji binarej R c A 2 jest rela­
cja R", zdefiniowana indukcyjnie w sposöb nastQpuj^cy:

R° =def {<a, a> | aeA}

R"+i =ie(RnoR dla nsN at

Relacji /?° nazywa siq relacjq identycznosciowq lub tozsamosciowq na A.

A C

Rys. 3.3. Graficzna ilustracja zlozenia relacji



Jezeli R £  AxB, to obrazem zbioru A t ^ A  wyznaczonym przez relacjq R jest zbiör

R(At) =def {beB  13 a e A t • <a, b>eR}

Latwo pokazac, ze dlaAi,.A2 £  A zachodzi wlasnosci:

R ( A , u A 2)= R (A l) u R ( A 2)
R(Al n A 2) z R ( A 1) n R ( A 2)
R(dom(R)) = ran(R)

Jezeli R £  AxB, to przeciwobrazem zbioru 2?i £  5  wyznaczonym przez relacjq R jest 
zbiör

3.4. Podstawowe rodzaje relacji binarnych

Relacje biname na A, czyli relacje R £  A2, mogq. siq charakteryzowac röznymi wla- 
snosciami. Wsröd podstawowych wlasnosci wyröznia siq mi^dzy innymi wlasnosci 
zwrotnosci, przeciwzwrotnosci, symetrii, przeciwsymetrii, antysymetrii, przechodnio- 
sci i spöjnosci. Wlasnosci te s^ definiowane nastqpujqco:

zwrotnosc
-  symbolicznie:

dla dowolnego aeA  zachodzi: <a, a>eR 
VaeA  • <a, a>eR

przeciwzwrotnosc 
-  symbolicznie:

dla dowolnego aeA  zachodzi: <a, a>€R 
\/aeA  • <a, a>€R

symetria

-  symbolicznie:

dla dowolnych a, beA  zachodzi: 
jezeli <a, b>eR, to röwniez <b, a>eR  

Va, beA  •  <a, b>eR => <b, a>eR

przeciwsymetria 

-  symbolicznie:

dla dowolnych a, beA  zachodzi: 
jezeli <a, b>eR, to <b, a>tzR

Va, beA • <a, b>eR => <b, a>£R

antysymetria

-  symbolicznie: 

przechodniosc

-  symbolicznie: 

spöjnosc

-  symbolicznie:

dla dowolnych a, be A zachodzi: 
jezeli <a, b>e R oraz <b, a>eR, to a = b 

Va, beA • <a, b>eR a  <b, a>eR =>a = b

dla dowolnych a, b, ceA  zachodzi: 
jezeli <a, b>eR oraz <b, c>eR, to c>eR

Va, b, ceA  • <a, b>eR a  <b, c>eR  => <a> c>eR

dla dowolnych a, beA  zachodzi: 
jezeli a ^ b ,  to <a, b>eR lub <b, a>&R 

Va, beA •a±b=><a,  b>eR v  <b, a>eR



Niekiedy mamy do czynienia z sytuacjami, gdy zachodzi potrzeba takiego rozszerze- 
nia relacji, aby uzyskafy pewne z przedstawionych wlasnosci. Niech R bqdzie dowoln^ 
relacja binam^ na A. Zwrotnym domkniqciem relacji jest relacja zdefiniowana jako

R u R °

gdzie R° jest relacjq identycznosciowq na A.

Symetrycznym domkniqciem relacji R jest relacja zdefiniowana jako 

R u  {<b, a> | <a, b> e R) albo R u  RT]

Przechodnim domkniqciem relacji R jest relacja oznaczana symbolem R+, zdefiniowa­
na jako

R+=def |J ̂
n sN a l\[0 )

Zwrotne, przechodnie (tranzytywne) domkniqcie relacji R na zbiorze A jest to relacja, 
oznaczana symbolem /?*, zdefiniowana nastQpuj^co:

R* =def U Ä" 
iteN at

Podane wyzej definicje domkni$cia relacji oznaczajq, ze po domkni^ciu relacja ma 
odpowiednio wlasnosc zwrotnosci, symetrii i przechodniosci. DomkniQcie relacji 
uogölnia siq ze wzgl^du na dowoln^ wlasnosc w sposöb nastqjujqcy: Niech P  bqdzie 
pewn^ wlasnoSci^ oraz R pewn^ relacja binam^. Möwimy, ze relacja RP jest domkniq­
ciem relacji R wzglqdem wlasnosci P  wtedy i tylko wtedy, gdy:

1. relacja RP ma wlasnosc P,
2. R c  Rp,
3. nie istnieje inna relacja Q, ktöra ma wlasnosc P  taket, z e ß c  RP.

3.5. Relacja röwnowaznosci

Bardzo wazna jest relacja röwnowaznosci, bqd^ca dowoln^ relacja binamq, ktöra jest 
zwrotna, symetryczna i przechodnia.

Dia relacji röwnowaznosci R okreslonej na zbiorze A definiuje siq zbiory nazywane 
klasami abstrakcji. Dia dowolnego elementu a zbioru A definiuje si$ mianowicie zbiör

{beA | <a, b>eR}

Zbiör taki oznacza siQ przez [a]R i nazywa si$ klasq abstrakcji generowanq przez ele- 
ment a wzglqdem relacji R.



Twierdzenie 3.1

Zbiör klas abstrakcji ma nastqpujqce wlasnosci:

i- L M *=^
aeA

2. <a, b>e R wtedy i tylko wtedy, gdy [a]Ä = [ö]Ä
3. jezeli [a]Ä * [b]R, to [a]R n  [b]R = 0

Dowöd
Wlasno§c 1

Z definicji röwnosci zbioröw wynika, ze nalezy pokazac:

o e A

b) A c  |J [ a ] Ä
a e A

Przypadek a)

Niech x e  [ J [a ]Ä. Nalezy pokazac, zcxeA.
a e A

Z  definicji uogölnionej sumy zbioröw wynika, ze istnieje takie aeA,  ze xe [ä\R.

Z definicji klasy abstrakcji wynika, ze [a]Äc / t .

Z obu tych faktöw, na podstawie definicji podzbioru, wynika, ze xeA,  czyli poka- 
zalismy, ze x e  ( J [ a ]Ä =:>xeA.

a e A

Przypadek b)
Niech x e  A.  Nalezy pokazac, ze x e  U m «-

a e A

Z  definicji klasy abstrakcji i wlasnosci zwrotnosci relacji R wynika, ze xe  [jc]ä.
Z tego faktu zatem, na mocy definicji uogölnionej sumy zbioröw, wynika, ze

|J [ a ] Ä
aeA

Wlasnosc 2
Z definicji röwnowaznosci wynika, ze nalezy pokazac dwie implikacje:
a) jezeli <a, b>eR, to [a]R = [b]R,
b) jezeli [a]* = [ö]«, to <a, b>eR.



Przypadek a)

Niech <a, b>eR. Nalezy pokazaö, ze [a]R = [b]R.

Pokazemy, ze jesli <a, b>eR, to [a]Ä c  [b]R oraz, ze jesli <a, b>eR, to [6]Ä c  [a]*.

Z zalozenia, ze <a, b>eR i z defmicji klasy abstrakcji wynika, ze be [a],

Niech Jte[a]Ä. Z defmicji klasy abstrakcji wynika, ze <a, x>e R, co z wlasnosci 
symetrii relacji röwnowainosci pociqga, ze <x, a>eR.

Z wlasnoSci przechodnioSci relacji röwnowaznoSci, na podstawie stwierdzen, ze 
<x, a>eR oraz <a, b>eR wynika, ze <x, b>eR. Ponownie, z wlasnoSci symetrii 
relacji R oraz z defmicji klasy abstrakcji wynika, ze xe [b\R.

Pokazalismy, ze xe  [b\R => xe  [6]Ä, czyli [a]* £  [6]Ä.

Wykazanie, ze jeSli <a, b>eR, to [b]Ä £  [a]/j przebiega analogicznie do pokazane- 
go wyzej.

Przypadek b)

Niech [a]fi = [b]R. Nalezy pokazac, ze <a, b>eR.

Z defmicji klasy abstrakcji i zwrotnosci relacji wynika, ze ae[ä\R i b e [6]Ä. Na 
podstawie röwnoSci zbioröw [a]Ä = [6]« stwierdzamy, ze a, be [a]R, stqd -  na pod­
stawie defmicji klasy abstrakcji -  wynika, ze <a, b>eR.

Wlasnosc 3

Nalezy pokazac, ze jezeli [ä\R * [6]/?, to [a]« n  [A]Ä = 0 .

Dowöd przeprowadzimy metod£|. nie wprost. Metod? tQ stosuje si$ do twierdzen, 
ktöre majX postaö implikacyjn^. W rozwazanym przypadku zalozeniem -  po- 
przednikiem implikacji -  jest [a]Ä * [£]«)> a te z ^ -  nastqmikiem implikacji -  jest 
[a]Ä n  [b]R = 0 .  Dowöd nie wprost polega na przyjqciu zalozenia, nazywanego za­
lozeniem dowodu nie wprost, ktöre jest negacj^tezy. Nastqpnie nalezy pokazac, ze 
z tego zalozenia wynika sprzecznosc z zalozeniem twierdzenia.

W rozpatrywanym przypadku nalezy pokazaö, ze

jezeli [u]Ä n  [b]R * 0 ,  to [d\R = [b]R.

Jezeli [a]Ä n  [ö]Ä * 0 ,  to oznacza, ze istnieje element xe [a]R n  [6]Ä. Z defmicji 
przekroju zbioröw wynika, ze xe  [a]R i xe  [ö]Ä, co na podstawie definicji klasy 
abstrakcji oznacza, ze <a, x>eR  oraz <b, x>eR. Z wlasnosci symetrii i prze- 
chodniosci relacji R wynika, ze <a, b>eR, st^d -  na mocy udowodnionej wyzej 
wlasnosci 2 -  wynika, ze [a]Ä n  [ö]* = 0 ,  co oznacza sprzecznosc z zalozeniem 
twierdzenia. -



Z udowodnionych wlasnosci wynika, ze jezeli zbiorze A jest zdefiniowana relacja 
röwnowaznosci, to relacja ta wyznacza podzial zbioru A na rozlqczne podzbiory (klasy 
abstrakcji). Podzial taki nazywa siq tez partycjq. Zbiör, ktörego elementami sq 
wszystkie klasy abstrakcji, nazywa siq zbiorem ilorazowym zbioru A wzglqdem relacji 
R i oznacza siq AIR, czyli

AIR =def {W« | asA}

Przyklad 3.4
I-------------------------------------------------------------- ö---------------------------------------------- 1Niech A =def {1, 2, 3, 4, 5} oraz relacja R q A jest zdefiniowana nastqpujqco:

R =def {<1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 5>, <3, 2>, <2, 3>, <2, 5>, <5, 2>, 
<3, 5>, <5, 3>}

Latwo sprawdzic, ze relacja jest zwrotna, symetryczna i przechodnia, czyli jest 
relacja röwnowaznosci. Wyznaczone przez poszczegölne elementy zbioru A kla­
sy röwnowaznosci sq nastqpujqce:

[! ]«={!}
[2]ä = [3]« = [5]« = {2, 3,5}
[4]Ä= {4}

Zbiör ilorazowy AIR wyznaczony przez relacja R ma postaö 

I A/R= {{!}, {2, 3, 5}, {4}}____________________________________________ |

3.6. Relacje porzqdku

Opröcz relacji röwnowaznosci waznq grupq stanowiq relacjeporzqdku. Wyröznia siq:

• relacjq quasi-porzqdkujqcq, gdy jest zwrotna i przechodnia,
• relacjq czqsciowo porzqdkujqcq w scistym sensie, gdy jest antysymetryczna 

i przechodnia,
• relacja czqsciowo porzqdkujqcq, gdy jest zwrotna, antysymetryczna i przechod­

nia,
• relacja liniowego porzqdku w scislym sensie, gdy jest antysymetryczna, prze­

chodnia i spöjna,
• relacjq liniowego porzqdku (czasem tez krötko: relacjq porzqdku), gdy jest 

zwrotna, antysymetryczna, przechodnia i spöjna, czyli, gdy jest relacja czqscio- 
wego porzqdku i relacjqspöjnq.

Zbiör, na ktörym jest okreslona pewna relacja porzqdku czqsciowego, nazywa siq 
zbiorem czqsciowo uporzqdkowanym, a zbiör, na ktörym okreslono relacjq porzqdku 
liniowego -  zbiorem liniowo (albo calkowicie) uporzqdkowanym.



Przyldad 3.5_____________________________________________________________
 ̂ Rozwazmy rodzinq wszystkich podzbioröw dowolnego zbioru U, czyli zbiör po- 

tqgowy 2U. Zbiör potqgowy 2U jest zbiorem czQSciowo uporz^dkowanym przez 
relacjq R c  2u x  2U, ktöra jest okreslona nastQpuj^co:

R=  {<A,B>e2ux 2 u \ A c sB}

Relacja R jest relacja czQSciowego porzjgiku. Istotnie, R jest relacja zwrotn^, gdyz 
dla dowolnego Ae 2U zachodzi <A, A>eR, dlatego, z e A c A . R  jest relacja anty- 
symetryczn^ gdyz -  jezeli <A, B>e R oraz <B, A>e R - c o  oznacza, z e A c B  oraz 
B c  A, to A = B. R jest tez relacja przechodniq, gdyz z faktu, ze <A, B>eR oraz 
<B, C>eR,  co oznacza, ze A c  B oraz B £  C, wynika, ze <A, C>eR,  co oznacza, 
z e A c C .  Relacja R nie jest natomiast relacja liniowego porz^dku, gdyz nie jest 

I spöjna.______________________________________ I

Przyldad 3.6__________________ __________________________________________
I Relacja liniowego porz^dku jest relacja < okreslona na röznych zbiorach liczbo- 

wych, na przyklad Nat, Calkowite, Wymierne lub Rzeczywiste. Uzywaj^c tej re- 
lacji, poslugujemy siQ notacjX a < b, zamiast <a, b>e <. Zachodz^ oczywiscie 
wlasnosci:

VaeRzeczywiste • a < b  
Va, beRzeczywiste • a < b / \ a < b = > a  = b 
Va, b, cg Rzeczywiste • a < b A b < c = > a < c  
Va, be Rzeczywiste • a * b=> a < b v  a < b

Nie jest natomiast relacja liniowego porz^dku relacja <, gdyz nie spelnia wymogu 
I zwrotnosci, to znaczy nie jest prawdq, ze a < a dla dowolnego a e  Rzeczywiste. |

Zestaw relacji czQsciowego porz^dku R \ , ..., R,„ zdefiniowanych odpowiednio na zbio­
rach A i, An, mozna wykorzystaö do zdefiniowania nowej relacji cz^sciowego po- 
rz^dku R, zdefiniowanej na produkcie kartezjanskim A\ x ... x A„. Przykladem jest 
leksykograficzne zlozenie relacji R\, ..., R„, okreSlone jako relacja R, nazywana relacja 
porzqdku leksykograßcznego (alfabetycznego), zdefiniowana na A\ x  ... x A„ w sposöb 
nastqpujqcy:

< au ..., an> R < b\, ...,b„>

wtedy i tylko wtedy, gdy istnieje ze {1, ..., n) takie, ze dla kazdego j  < i zachodzi 
cij = bj oraz a R j b,.

Niektöre wlasnosci relacji cz^sciowego porz^dku mozna wyrazic za pomoc^ tzw. ele- 
mentöw wyröznionych. Niech =< bqdzie relacja czqsciowego porz^dku na zbiorze A 
oraz niech B c A .



Uwaga
Symbol =< jest czQsto stosowany na oznaczenie relacji czQsciowego porz^dku ze 
wzglqdu na graficzne podobienstwo do symbolu < przy jednoczesnym podkresle- 
niu, ze dziedzin^ relacji nie musz^byc tylko zbiory liczbowe.

Möwimy, ze aeA  jest:
-  elementem najmniejszym w zbiorze B, jesli • a < b,
-  elementem najwiqkszym w zbiorze 5, jesli • b =4 a,
-  elementem minimalnym w zbiorze B, jesli VbeB  • —>(b =4 ä),
-  elementem maksymalnym w zbiorze B, jesli V beB  •  —i(a =C b),
-  ograniczeniem dolnym zbioru B, jesli \ fbeB • a < b (zauwazmy, ze a nie musi 

nalezec do zbioru B, element najmniejszy zbioru B jest zatem jego ograniczeniem 
dolnym),

-  ograniczeniem görnym zbioru B, jesli MbeB •  b < a (zauwazmy, ze a nie musi 
nalezec do zbioru B, element najwi^kszy zbioru B jest zatem jego ograniczeniem 
görnym),

-  kresem dolnym (infimum) zbioru B, jesli a jest elementem najwiqkszym w zbio­
rze wszystkich ograniczen dolnych zbioru B,

-  kresem görnym (supremum) zbioru B, jesli a jest elementem najmniejszym 
w zbiorze wszystkich ograniczen gömych zbioru B.

Przyklad 3.7
 ̂ Rozpatrzmy zbiör pot^gowy A zbioru {a, b, c, d), czyli A = 2*°’b' c,d\ z  uporz^d- 

kowaniem czQsciowym, okreslonym przez inkluzjq. Niech B = {{a}, {a, b), {b, c}, 
{b, c, d}, {a, b, c, d}}. W zbiorze B s^dwa elementy minimalne {«} i {b, c} oraz 
jeden element najwiqkszy {a, b, c, d}.

Ilustracj^ zwi^zköw pomi^dzy elementami zbioru czQSciowo uporz^dkowanego 
jest diagram (graf -  zob. p. 3.10) Haasego na rysunku 3.4. Wierzcholki diagramu 
reprezentujit elementy zbioru, a krawqdzie diagramu l^czq. ze sob^ te wierzcholki 
x, y, tu elementy zbioru B, pomi$dzy ktörymi zachodzi zwiqzek x  =C y  oraz nie ist- 
nieje taki element z, ze x =4- z  oraz z =4 y.

{a, b, c, d)

Rys. 3.4. Diagram Haasego dla zbioru B



W zbiorze B nie ma elementu najmniejszego, element {a, b, c, d} jest natomiast je- 
I go kresem gomym._____________________________________________________ i

Pomi^dzy elementami wyröznionymi zachodz^ nastqpuj ̂ ce zwi^zki:

Twierdzenie 3.2
Niech C bedzie relacjX czqsciowego porz^dku na zbiorze A oraz niech B czA, wtedy:
1. W zbiorze B istnieje co najwyzej jeden element najwiqkszy i co najwyzej jeden 

element najmniejszy.
2. Zbi6r B ma co najwyzej jeden kres gömy i jeden kres dolny.
3. JeSli b jest najwiekszym elementem w zbiorze B, to jest on jedynym elementem 

maksymalnym w zbiorze B oraz jego kresem gomym.
4. Jesli b jest najmniejszym elementem w zbiorze B, to jest on jedynym elementem 

minimalnym w zbiorze B oraz jego kresem dolnym.
Dowöd pozostawiamy jako dwiczenie.

3.7. Funkcje

Niech A oraz B bqd^ dwoma dowolnymi zbiorami. Funkcjq albo odwzorowaniem 
z A w B nazywa sie tak^ relacje binam^ /  £  AxB, ze dla kazdego elementu aeA  ist­
nieje co najwyzej jeden element beB  taki, ze <a, b>e f.

Inne, röwnowazne sformulowanie tej samej wlasnosci:

dla kazdego elementu aeA, jezeli <a, b>e f  oraz <a, c>e f t o b  = c 

W symbolicznym zapisie wlasnosc ta przyjmuje postac 
VaeA • <a, b>e f  a  <a, c>ef=> b = c

W podanej defmicji funkcji/ zawiera sie mozliwosc, ze dla danego aeA  nie istnieje 
taki element beB, ze <a, b>e f  Oznacza to, ze dla aeA  funkcja/jest nieokreslona. 
Fakt, ze para <a, b>e f  jest elementem funkcji f  bedzie röwniez zapisywany 
w postaci

m = b .

Element a nazywa sie argumentem funkcji f a b  nazywa sie wartosciq funkcji 
/  dla argumentu a.

Napis
f . A - > B

nazywa sie sygnaturq funkcji; sym bol/jest nazwq funkcji, a wyrazenie A —» B, gdzie 
A oraz B s^nazwami zbioröw, jest typem funkcji.



Ogölnie, funkcja moze miec n argumentöw (neNat). Sygnatura takiej funkcji ma 
postac

f : A i X . . . x A „ - > B

W skrajnym przypadku, gdy funkcja ma zero argumentöw -  nazywa siq funkcja 
zeroargumentowq lub stalq, ajej sygnaturq zapisujemy

Dia funkcji o sygnaturze / :  Ai x  ... x  A„ —> B, fakt, ze <a\, ..., a„, b> ef zapisuje siq 
röwniez w postaci

citi) — b.

Zapis wartosci funkcji w postaci 

f(au .... an)
jest zapisem w tak zwanej konwencji prefiksowej lub przedrostkowej. Inn^ konwencj^, 
ktöra nie bqdzie uzywana, jest notacja przyrostkowa (postfiksowa), nazywana tez od- 
wrotnq notacjqpolskq, na czesö polskiego logika Lukasiewicza6, ktöry j^  wprowadzil. 
W tej notacji zapisowi wartosci funkcji dla argumentöw a\......a„ odpowiada zapis

(flu a„)f
Notacja ta jest stosowana w algorytmicznym obliczaniu wartosci wyrazen stanowi^- 
cych zlozenie wielu funkcji.

W przypadku funkcji dwuargumentowych, opröcz podanych notacji, powszechnie 
stosuje siq notacja wrostkowq (infiksowq). Wartosc funkcji f ( a u a2), dla argumentöw 
a\, a2, zapisuje siq w postaci

a \ f a 2

Deklaracjq uzycia notacji infiksowej mozna zaznaczyc w sygnaturze, pisz^c 

_f_ : A\ x A2 —> B

Podkreslenia po obu stronach symbolu /  wskazuj^ na miejsca umieszczania jej argu­
mentöw.

Niech/ :  A —» B. Tak jak poprzednio, przez dom(f) i ran(f) oznacza siq odpowiednio 
dziedzinq i przeciwdziedzinq funkcji f .

Jezeli dom{f) = A, to /nazyw a siq funkcja calkowicie okreslonq, albo -  krötko -  cal- 
kowitq. Zbiör wszystkich funkcji calkowicie okreslonych z A d o B  oznacza siq ̂ 4 —> B. 
Zbiör A nazywa siq zbiorem zrödlowym, a B -  zbiorem docelowym funkcji. Zbiör 
wszystkich funkcji calkowitych z A w B oznacza siq tez przez BÄ.

6 Jan Lukasiewicz (1878-1956).



W przypadku, gdy dom (f) c  A, funkcj? / nazywa si? czqsciowo okreslonq, albo -  
krötko -  czqsciowq. Funkcja cz?sciowa / jest nieokreslona dla elementöw nienalezci- 
cych do jej dziedziny, czyli do zbioru A\dom(f). Elementowi aeA\dom (f) nie odpo- 
wiada zaden element ze zbioru B. Fakt ten zapisuje si? niekiedy, piszqc f (a)  = 1 , gdzie 
Symbol _L oznacza niezdefiniowane.

Wykorzystujqc symbol J_, zbiör wszystkich funkcji z A d o B  oznacza si? (B u  ±)/‘.

Jezeli ran(f) = B, to funkcj? /  nazywa si? surjekcjq albo funkcjq. „na".

Jezeli dla dwöch röznych argumentöw au a2 funkcja/ przyjmuje rözne wartosci f(a\), 
f(a 2), to nazywa si? j % funkcj^ röznowartosciowq albo injekcjq.

Funkcja f  ktöra jest calkowicie okreslona, jest suijekcj^ oraz injekcjq nazywa si? 
funkcja wzajemnie jednoznacznq albo bijekcjq.

Bijekcj?, ktöra jest funkcja o tej samej dziedzinie i przeciwdziedzinie, czyli o sygnatu- 
r z e f : A - ) A ,  nazywa siqpermutacjq.

Funkcj?/nazywa si? funkcja skonczonq, gdy dziedzina funkcji dom (f) jest zbiorem 
skonczonym.

Jezeli relacja o d w r o tn a d la  funkcji/ :  A —» B jest funkcja to nazywa si?j£i funkcjq 
odwrotnq funkcji f .

Przyklad 3.8_____________________________________________________________
 ̂ Niech A =def {1,2, 3, 4, 5} oraz B =def {1, 2, 3, 4}. ^

Relacja R q A x B, zdefiniowana jako zbiör par:

{<1, 1>, <2, 3>, <1, 4>, <3, 3>, <4, 4>, <2, 4>, <5, 1>} 

nie jest funkcjq.

Funkcja f : A —>B, zdefiniowana jako zbiör par:

{<1,1>, <3, 5>, <4, 3>, <5, 1>> 

jest funkcjacz?sciow£i, gdyz dom(f)  = {1, 3, 4, 5} c  A.

Funkcja g:  A —» B, zdefiniowana jako zbiör par:

{<1, 1>, <2, 3>, <3, 4>, <4, 3>, <5, 2>} 

jest funkcja „Hfl” , gdyz ran(f)  = B.

Funkcja h : A —>A, zdefiniowana jako zbiör par:

{<1, 1>, <2, 3>, <3, 4>, <4, 3>, <5, 1>} 

nie ma funkcji odwrotnej.



Szczegölnq. form^ enumeracyjnej definicji funkcji jest tablica lub krotka. Na 
przyklad wyzej zdefiniowan^ funkcjq /m ozna przedstawic w postaci tablicy

1 2 3 4 5

1 ♦ 5 3 1

lub krotki

h = <l,*,  5, 3, 1>,

gdzie symbol * oznacza, ze dla danego argumentu funkcja jest niezdefiniowana.

Przedstawienie funkcji w postaci krotki wymaga dodatkowo, aby dziedzina funk­
cji byla zbiorem liniowo uporz^dkowanym. Tak jest oczywiscie w przypadku 

I dziedziny funkcji/ ,  gdzie porzqdek w zbiorze A jest wyznaczony przez relacje <. |

Funkcje mogq. byc okreslane na dowolnych zbiorach. Elementami takich zbioröw mo- 
g^ byc zfozone twory, na przyklad inne funkcje. W takich przypadkach funkcje nazy- 
wa si^funkcjonaiami.

Przyklad 3.9
I Rozpatrzmy zbiör FUN, ktorego elementami s^jednoargumentowe funkcje okre- 

slone na zbiorze liczb rzeczywistych i o wartosciach w zbiorze liczb rzeczywi- 
stych Rzeczywiste. Z definicji jest to zbiör, ktorego elementami s^ funkcje typu

Rzeczywiste —» Rzeczywiste

Rozpatrzmy operator rözniczkowania funkcji Diff. Jest to funkcja o sygnaturze 
D iff: FUN -> FUN

albo, w postaci rozwiniqtej, o sygnaturze
D iff: (Rzeczywiste —» Rzeczywiste) —» (Rzeczywiste —» Rzeczywiste)

Operator D iff jest funkcja czQSciow^, gdyz istniej^ funkcje, ktöre nie maj^ po- 
chodnej w zadnym punkcie. Istniej^ tez funkcje calkowicie okreslone, ktöre maj^ 
punkty nieci£iglosci (s^ nierözniczkowalne w tych punktach). Dia takich funkcji 

I operator rözniczkowania wyznacza funkcje czqsciowo okreslone.______________I

W rozwazanych wyzej przykladach funkcje byly definiowane enumeracyjnie. Czqsto 
spotykanym sposobem jest definiowanie funkcji przez wyrazenia funkcyjne. Definicja 
ma postac röwnosci, na przyklad

f ( x , y , z )  = x  * y +  10*z

Jest to röwnosc, po lewej stronie ktörej wystqpuje symbol funkcji z list^ zmiennych 
(argumentöw), a po prawej stronie wystqpuje wyrazenie funkcyjne (term).



W przykladowym wyrazeniu funkcje +, * znanymi dwuargumentowymi funkcjami 
arytmetycznymi, 10 jest funkcje zeroargumentowq, czyli stal^, a x, y  s<i zmiennymi. 
Wyrazenie funkcyjne jest wiqc zlozeniem pewnych fiinkcji. Ogölnie jest ono definio- 
wane nastqpuj^co:

• stala i zmienna s^ wyrazeniami funkcyjnymi,
• jezeli h jest n-argumentow^ funkcje oraz g\, ..., g„ se(_ wyrazeniami funkcyjnymi,

to h(gi, ..., gn) jest wyrazeniem fimkcyjnym.

WystQpuj^cy po lewej stronie Symbol funkcji nie moze wyst^pic po prawej stronie 
röwnosci. Jedynymi zmiennymi, ktöre mog^ wystQpowac po prawej stronie röwnosci, 
s^tylko te, ktöre wyst^puj^po lewej stronie.

Funkcje s^ pewnymi zbiorami i mog£t byc definiowane rekursywnie oraz przez okre- 
slenie wlasnosci. Definicja rekursywn^, czyli algorytmiczn^, funkcji nazywa siQ tez 
definicja intensjonalnq, a definicjq przez okreslenie wlasnosci -  definicja ekstensjo- 
nalnq.

Przyklad 3.10
 ̂ Funkcja Silnia jest typu Nat —» Nat. Jej definicja rekursywna ma postac: ^

Silnia( 0) = 1
Silnia(n) = n * Silnia(n-l) dla n > 0

Definicja sklada si$ z dwöch röwnosci. Po lewej stronie röwnosci wystqpuje 
symbol definiowanej funkcji wraz z odpowiednimi wartosciami argumentu, a po 
prawej stronie wyst^puj^ wyrazenia funkcyjne. Wyrazenie funkcyjne w pierwszej 
röwnosci jest stal^ (funkcje zeroargumentow^), a w drugiej -  jest zlozeniem 
funkcji trzech funkcji: odejmowania - ,  mnozenia * oraz definiowanej funkcji Sil­
nia. Pierwsza röwnosc definiuje wartosö funkcji dla argumentu o wartosci 0, dru- 
ga -  definiuje wartosc funkcji dla pozostalych wartosci argumentu. Zastosowanie 
drugiej röwnoSci do obliczenia wartosci funkcji dla argumentu n wymaga 
uprzedniego obliczenia wartosci funkcji dla argumentu n -  1.

W podobny sposöb jest zdefiniowana rekursywnie funkcja M : Nat —> Nat:
M(\)  = 2
M( 2) = 2
M(n) -  2 * M(n -  1) + M(n -  2) dla n > 2

Znacznie bardziej zlozony jest sposöb definicji funkcji Ackermanna o sygnaturze 
Ack: Nat x Nat —> Nat

Ack(x,y)=y + 1 gdyx = 0
Ack{x, y) = Ack{x -  1,1) gdyy = 0

I Ack{x, y) = Ack(x -  1), Ack{x, y -  1) .



Przyklad 3.11
' Niech, jak poprzednio, FUN oznacza zbiör, ktörego elementami jednoargu- 

mentowe funkcje okreslone na zbiorze liczb rzeczywistych i o wartosciach 
w zbiorze liczb rzeczywistych, czyli funkcje typu Rzeczywiste —» Rzeczywiste. 
Dia dowolnej funkcji / :  Rzeczywiste —> Rzeczywiste rozwaza siq röwnanie posta- 
ci /(x ) = 0. Röwnanie to moze nie miec pierwiastköw rzeczywistych, moze tez 
miec ich nieskonczenie wiele. Przez Pierwiastki(f) oznacza siQ wartosc funkcji, 
ktöra dla danej funkcji/ wyznacza podzbiör liczb rzeczywistych P, ktöre s^ pier- 
wiastkami röwnania /(x ) = 0. Funkcja Pierwiastki jest typu FUN  —» 2Xzeayw'sle 
Funkcjq tQ mozna zdefiniowac ekstensjonalnie w sposöb nastqpuj^cy:

Pierwiastki = {</, P>e FUN  x \ x e P  <=>/(x) = 0}

Wprawdzie funkcja Pierwiastki jest zdefmiowana jednoznacznie, jednak z defi- 
nicji tej nie wynika jak dla konkretnej funkcji /  okreslic zbiör jej pierwiastköw. 
Wiadomo, ze znajdywanie pierwiastköw rzeczywistych röwnania /(x ) = 0 jest 

I zadaniem rozwiqzywalnym efektywnie tylko dla pewnych klas funkcji._________ |

Przyklad 3.12
 ̂ Rozwazmy funkcja WartoscWielomianu, ktöra oblicza wartosc dowolnego wie-* 

lomianu dla zadanego argumentu. Jest to funkcja o sygnaturze
WartoscWielomianu : Wielomiany X  Rzeczywiste —» Rzeczywiste

Wielomian n-tego stopnia

a„ * x" + ... + a\ * x  + a0

gdzie neNat, jest jednoznacznie okreslony przez zestaw swoich n + 1 wspöl- 
czynniköw a„, ..., a\, a0eRzeczywiste. Zbiör Wielomiany moze zatem byc zdefi- 
niowanyjako

Wielomiany =de{ [ J  Rzeczywiste"
ne Na!

st^d, dla dowolnego <a„, ..., ait a0>e Wielomiany oraz xe Rzeczywiste 
WartoscWielomianu(<a„ , ..., a\, oq>, x )  = a„ * x" + ... + a\ * x  + a0

Obliczenie tak zdefiniowanej wartosci funkcji WartoscWielomianu sprowadza 
I siQ, w oczywisty sposöb, do prostego algorytmu obliczen.____________________ i

3.8. Operacje na funkcjach

Na funkcjach mozna wykonywaö rözne operacje, defmiuj^c w ten sposöb nowe funk­
cje. Funkcje s^relacjami, w szczegölnosci mozna wykonywac na nich operacje mno-



goSciowe, ale nalezy zauwazyd, ze wynikiem takich operacji nie zawsze jest funkcja. 
Jezeli na przykiad dane s i  dwie funkcje/ g: A B, to ich mnogosciowa su m a/ u  g  
moze nie byc funkcja, natomiast przekroj fu n k c ji /n g  oraz ich röznica f \ g  s i  zawsze 
funkcjami.

Operacja superpozycji albo skladania sekwencyjnego funkcji jest zdefiniowana tak 
samo jak dla relacji. Jezeli dane Si dwie funkcje:

f : A —>B oraz g:  B —» C

to zlozeniem sekwencyjnym albo superpozycji funkcji /  z funkcji oznaczanym 
przez/ og, jest funkcja typu A —> C, okreslona nastqpujico:

{f °g)(ß) =def g(f(a))
pod warunkiem, ze f (a )  oraz g(f(a)) Si okreslone.

Inne operacje specyficzne dla funkcji to operacje:

• warunkowego wyboru,
• modyßkacji funkcji przez podstawienie,
• obciqcia.

Niech b$di dane dwie funkcje/ g : A —> B oraz trzecia funkcja h : A —» Logiczne, gdzie 
Logiczne =def {prawda,falsz}. Warunkowym wyborem funkcji/ g, h, oznaczanym

Przykiad 3.13
* Niech

/ =  {<!> 2>, <2, 3>, <3, 4>} 
g =  {<1,3>, <2, 3>, <5, 5>}
h = {<1 ,prawda>, <2,falsz>, <2>,prawda >, <4,falsz >, <5,prawda >}

N ie c h / : A —> B bqdzie funkcji oraz niech aeA, beB. Modyfikacjq. funkcji f  przez 
podstawienie wartoSci b dla argumentu o wartosci a jest funkcja typu A —> B, ozna- 
czana symbolicznie f \ a  := b], zdefiniowana w sposöb nastqpujicy:

f [ a  := b](x) =def (x = a) b,f(x)

h ~ * f g

nazywa siq funkcja typu A —>B, ktöra jest okreslona nastqpujico:

{/ ( a )  gdy h{d) = prawda 
g(a) gdy h(a) = falsz

wöwczas

h ~ * f  g  = {{<1. 2>, <2, 3>, <3, 4>}



W definicji tej wykorzystano poprzednio wprowadzony operator warunkowego wybo- 
ru funkcji. Wyrazenie x  = a przedstawia funkcjq, ktöra przyjmuje wartosc logiczn^ 
prawda wtedy i tylko wtedy, gdy argument x  przyjmuje wartoSd a.

Przyklad 3.14
I Niech: ^

/ =  {<1, 2>, <2, 3>, <3, 4>} 

g=  {<2, 3>, <5, 5>} 

wöwczas:

/ [ I  := 5] = {<1, 5>, <2, 3>, <3, 4>}

, g[l :-5 ]= { < l,5 > ,< 2 ,3 > ,< 5 ,5 > } ____________________________________ j

Niech C c= A. Obciqciem funkcji / :  A —> B do podzbioru C zbioru zrödlowego A bQ- 
dzie si<? nazywad funkcji? f \c : C -»  5 , okreSlon^ nastQpuj^co:

dla dowolnego ae C : / | c(a) =def /(a ) .

Latwo sprawdzic, ze röwnowazn^ definicji obciqcia funkcji jest

/ | c = d e f / n ( C x 5 )

N iech /: A—> B oraz niech .4, c A , B \ c ;  B. Obrazem zbioru A\ dla funkcji/ nazywa 
siq zbiör

f{A\)  =def {beB  13 aeAi • f{a)  = 6}

Przechvobrazem zbioru B\ dla funkcji/ nazywa siq zbiör

f \ B \ )  =der | 3  6 e 5 ,  • /(< ,)  =  6}

Przyklad 3.15
I Jezeli ~  I

/ =  {<1, 2>, <2, 3>, <3, 4>, <4, 5>} 
to:

/ld.2} = {<1,2>, <2, 3>}

/({!»  2}) = {2, 3}

I /~ ‘({3 ,4})= {2 ,3}



3.9. Funkcje a relacje

Pomiqdzy relacjami a funkcjami zachodzq. pewne zwi^zki. Kazda funkcja jest -  z de- 
finicji -  relacje Odwrotnie tak nie jest, ale kazdej relacji R a A  x  B mozna przypo- 
rz^dkowac przynajmniej jedn^ takcL funkcja f R : A —> B,±e dla kazdego as dom{R)

flAfl) =def b

gdzie beB  jest takim elementem, ze <a, b>eR, czyli ze 

/ j C Ä  oraz domifft) = dom(R).

Funkcjq f R nazywa siq funkcjazgodnq z relacji i?.

Przyklad 3.16____________________________________________________________I |
R ={<1, 2>, <1, 3>, <2, 5>, <2, 3>, <3, 4>, <4, 5>} 

wöwczas:
{<1,2>, <2, 3>, <3, 4>, <4, 5>}
{<1.3>, <2, 3>, <3, 4>, <4, 5>}

I s^ funkcjami zgodnymi z R.______________________________________________I

Zwi^zek zgodnosci zachodzi pomi$dzy programem a jego specyfikacj^. Specyfikacj^ 
programu wyraza si$ jako pewmi relacjq Spec, program zas jest pewnq. funkcja Prag. 
Program spelnia specyfikacjQ, gdy pomi^dzy specyfikaqX Spec i programem Prog 
zachodzi zwi^zek zgodnosci, czyli dom(Prog) = dom{Spec) oraz Prog c  Spec.

Przyklad 3.17____________________________________________________________
 ̂ Przypuscmy, ze potrzebna jest funkcja obliczaj^ca pierwiastek kwadratowy^ 

z liczby rzeczywistej x, z dokladnosci^ 1. Niech y  b^dzie wartosci^tej funkcj i dla 
danego x. Zwiqzek mi^dzy x  oraz y  jest okreslony zaleznosci^

y 2 < x < (y  + l)2

Formula ta definiuje relacjq
Specsqr, =def {<x, y>e Rzeczywiste2 \ y 2 < x  < (y + l)2} 

ktöra moze byc specyßkacjq programu.

Implementacjq dla tej relacji jest dowolna funkcja (realizowana przez program) 
Implsqrt: Rzeczywiste —> Rzeczywiste 

ktöra spelnia warunki:

dom(lmplsqrt) = dom(Specsqrl) oraz Implsqr, c  Specsqrl.



Czytelnikowi proponuje siq samodzielne przedstawienie graficznej ilustracji rela- 
I cji Specsqr, oraz funkcji Implsqr, na plaszczyznie wspölrzqdnych x, y.____________ I

Dowoln^ relacje mozna przedstawiö za pomoc^jej funkcji charakterystycznej. Jezeli 
dana jest relacja R c  A\ x ... x A„, to jej funkcjq charakterystycznq jest funkcja

fn : A\ x ... x A„ —> Logiczne

zdefiniowana nastqpuj^co:

fi&qu ..., a„) = prawda wtedy i tylko wtedy, gdy <au ..., a„>eR.

Funkcja charakterystyczna dla danej relacji R jest wyznaczona jednoznacznie. Od- 
wrotnie -  dana funkcja charakterystyczna wyznacza jednoznacznie pewn^relacjq.

3.10. Grafy a relacje

Liczne zastosowania w informatyce maj^ grafy. Rozpatrzmy najpierw klasq graföw 
skierowanych. Maj^. one dwie röwnowazne definicje. W zaleznosci od potrzeb wyko- 
rzystuje siqjedn^z nich.

Pierwsza definicja okreSla graf skierowany G jako parq

G = <V,A> 
gdzie:

V jest zbiorem wierzcholköw grafu,
A jest zbiorem hiköw grafu, okreslonyin jako relacja binama na zbiorze wierzchol­

köw A c  VxV.

Interpretacja relacji A jest nastqpuj^ca: para <vi, v2>eA reprezentuje luk grafii prowa- 
dz^cy od wierzchotka vi do wierzcholka v2.

Druga definicja okresla graf skierowany G jako parq

G = <V, S>

gdzie:
V jest zbiorem wierzcholköw grafu,
S  jest funkcja, zwanq. funkcjq nastqpniköw, okreslon^ na zbiorze wierzcholköw, 

ktörej wartosciami s^podzbiory wierzcholköw S: V —>2v.

Interpretacja funkcji S  jest nastqpujXca: S(v) = {vi, ..., v*} reprezentuje zbiör wierzchol- 
köw-nastqpniköw wierzcholka v, to znaczy wierzcholköw, do ktörych prowadz^ Juki 
wychodz^ce z wierzcholka v. Jej funkcja odwrotna P(v) okresla zbiör wierzcholköw- 
poprzedniköw wierzcholka v, to znaczy wierzcholköw, od ktörych prowadz^ Juki do 
wierzcholka v. Znaj^c dla danego grafu funkcjq S, latwo jest wyznaczyc funkcjq P.



Latwo röwniez zauwazyc, ze graf zdefiniowany wedhig jednej z tych definicji daje siq 
wyrazic w röwnowazny sposob wedhig drugiej definicji.

Obie definicje graföw daji podstawq do graficznej ich reprezentacji. Pierwsza defini- 
cja pozwala takze na graficzn^ reprezentacjq relacji binamych. Pierwszy przyklad 
takiej reprezentacji przedstawiono na rysunku 3.2. Ponizej rozwazamy inny przyklad, 
bqdqcy graficzn^ reprezentacji relacji röwnowaznosci z przykladu 3.4. W tym przy- 
padku latwo siq przekonac, ze analiza niektörych wlasnosci relacji, na przyklad prze- 
chodniosci, staje siq przejrzysta.

Przyklad 3.18
 ̂ Relacja R c  A2, gdzie A =def {1, 2, 3, 4, 5}, zdefiniowana nastqpujico: ^

R  = d e f  { < 1 ,  1 > ,  < 2 ,  2 > ,  < 3 ,  3 > ,  < 4 ,  4 > ,  < 5 ,  5 > ,  < 3 ,  2 > ,  < 2 ,  3 > ,  < 2 ,  5 > ,  < 5 ,  2 > ,  

< 3 ,  5 > ,  < 5 ,  3 > }

ma postac graficzniprzedstawionina rysunku 3.5.

|_______________ Rys. 3.5. Graficzna reprezentacja relacji_____________________________________ |

Podgrafem grafu G = <V,A> nazywa siq dowolny graf G ' = <V', A’> taki, ze V'c: V 
oraz A ' c V ' x  V'.

Graf nazywa siq nieskonczonym, gdy nieskonczony jest zbiör jego wierzcholkow. 

Sciezkq w grafie G -< V ,A >  nazywa siq niepusty ciig luköw 

<Vi, v2> <v2, v3> ... <vn_1; v„> ...

gdzie <v„ vi+]>eA, dla i = 1,..., n -  1,... Sciezka przechodzi przez wierzcholki:
V |, v2, ...,v„...

gdzie V] jest poczitkowym wierzcholkiem sciezki, a jezeli sciezka jest skonczona, to 
v„ jest jej wierzcholkiem koncowym. Sciezkq skonczoni, ktöra ma taki sam wierzcho-



lek pocz^tkowy i koricowy, nazywa siq cyklem. Cykl zlozony z jednego elementu na- 
zywa siq pqtlq.

Wyröznia si$ wiele rodzajöw graföw. Okresla siq miqdzy innymi, ze graf G = <V, A> 
jest:

zwrotny, gdy relacja A jest zwrotna (przy kazdym wierzcholku jest pQtla), 
przeciwzwrotny, gdy relacja A jest przeciwzwrotna (graf nie ma pQtli), 
symetryczny, gdy relacja A jest symetryczna, 
przeciwsymetryczny, gdy relacja A jest przeciwsymetryczna, 
antysymetryczny, gdy relacja A jest antysymetryczna, 
przechodni, gdy relacja A jest przechodnia.

Grafy symetryczne nazywa siq takze grafami nieskierowanymi.

Szczegölnym, dalej wykorzystywanym grafem, jest graf nazywany drzewem. Jest to 
graf, ktöry:

• nie ma cykli,
• ma dokladnie jeden wierzcholek v0, zwany korzeniem drzewa, ktöry nie ma po- 

przedniköw, to znaczy nie istnieje wierzcholek ve V taki, ze <v, v0> eA,
• wszystkie pozostale wierzcholki maj^ dokladnie jeden poprzednik, to znaczy dla 

dowolnego wierzcholka v ^  v0 zachodzi card{v'e V \ <v', v>eA}= 1. Wierzcho­
lek v, ktöry ma nastQpniki, to znaczy card{v'e V | <v, v '>e A}> 0, nazywa siq 
wierzcholkiem rozgalqziajqcym. Wierzcholek, ktöry nie ma nast^pniköw, to 
znaczy card{ve V\ <v, v ’>eA}  = 0, nazywa si$ lisciem, a zbiör wszystkich lisci 
nazywa siq koronq drzewa.

Lemat 5.1 (Lemat Königa)

Jezeli graf G jest drzewem nieskonczonym, w ktörym kazdy wierzcholek ma skon- 
czon^ liczbQ wierzcholköw-nastQpniköw, to w grafie G istnieje sciezka o nieskon- 
czonej dlugosci.

Dowöd

Niech v0 bqdzie korzeniem grafu G. Zgodnie z zalozeniem v0 ma skonczon^ liczbq 
wierzcholköw-nastQpniköw. Wsröd nich istnieje przynajmniej jeden wierzcholek, 
niech b$dzie to vi, ktöry jest korzeniem nieskonczonego poddrzewa G\ drzewa G, 
gdyz -  w przypadku przeciwnym -  gdyby wszystkie wierzcholki-nast^pniki v0 byly 
korzeniami poddrzew skonczonych, to graf G bylby skonczony. Powtarzaj^c po- 
dobne rozumowanie do nast^pniköw wierzcholka vj, znajduje siq wsröd jego na- 
stQpniköw wierzcholek v2, ktöry jest korzeniem nieskonczonego podrzewa G2 
drzewa G\ itd. Jest zatem oczywiste, ze ciqg wierzcholköw v0, v\, v2, ... wyznacza 
nieskonczon^ sciezkq. ■



Cwiczenia

1. Ile relacji binamych mozna zdefiniowac na produkcie kartezjanskim A x  B, jezeli 
A oraz B s^zbiorami skonczonymi o licznosciach card(A) = n oraz card(B) = m.

2. Uzupelnij i udowodnij wzory:

a ) ( A n B ) x C = ( A x Q n ( B x Q
b )  ( A u B ) x C = ?
c )  ( A u B ) x ( C u D )  = ?

3. Niech card(A) = n oraz card(B) = m. Jaka jest liczba funkcji calkowitych oraz czq- 
sciowych typu A —>B?

4. Niech U  b^dzie pewnym zbiorem uniwersum oraz ciy niech bqdzie relacji zawiera- 
nia poraiQdzy podzbiorami zbioru U. Ktöre z wlasnosci: symetriQ, zwrotnosc, prze- 
chodniosc ma relacja C y?

5. Niech X  =def {a, b, c, d) oraz R c  X 2. Zbadac, ktöre sposröd wlasnosci: symetrii, 
przeciwsymetrii, zwrotnosci, przeciwzwrotnosci, przechodniosci, spöjnosci i röw­
nowaznosci majXnastqpuj^ce relacje biname:

a) R = {<a, a>, <b, b>, <a, b>}
b)  R = {<a, a>, <b, b>, <c, c>, <d, d>, <a, b>, <b, a>}

6. Pomiqdzy ludzmi wyröznia siq rözne stosunki: kolezenstwo, znajomosc, przyjazn, 
wrogosc, pokrewiehstwo itp. Stosunki te mozna modelowac relacjami binamymi 
okreslonymi na zbiorze ludzi, na przyklad: Rkoiezensiwo =def {<«, b> \ a jest koleg^ö};
a) okreslic, ktöre sposröd wlasnosci charakteryzuj^cych relacje biname mozna 

przypisac nowo zdefiniowanym relacjom,
b) jakie zwiqzki zachodz^ pomi^dzy tymi relacjami, chodzi o zwiqzki zawierania, 

na przyklad, czy R2imJom0sc £  Rkoieienstwo, a takze o inne, na przyklad: czy jezeli
, b>e Rwrogosc OraZ ^b, Rwrogoscy IO Rprzyjaziî

1. Sprawdzic, czy prawdziwe sei nastqpujqce stwierdzenia dotycz^ce relacji binamych 
naX:

a) suma dwöch relacji symetrycznych jest symetryczna,
b) czqsc wspölna (przekröj) dwu relacji przechodnich jest przechodnia,
c) jezeli R jest relacjeprzechodni^orazR c  S q X 2, to Sjest relacjeprzechodni^.

8. Sprawdzic, czy prawdziwe s^ nastqauj^ce stwierdzenia dotycz^ce relacji röwno­
waznosci na X:

a) suma dwöch relacji röwnowaznosci jest relacje röwnowaznosci,
b) przekröj dwöch relacji röwnowaznosci jest relacje röwnowaznosci.
c) röznica dwöch relacji röwnowaznosci jest relacje röwnowaznosci.



9. Niech ID bqdzie zbiorem identyfikatoröw. Czy zdefmiowane ponizej relacje bi- 
name R\, R2 c  ID2 sq. relacjami röwnowaznosci? Jezeli tak, to jakie wyznaczone 
przez nie zbiory ilorazowe?
a) R\ = d e r  {<idu idi> | pierwsza litera identyfikatora id\ jest taka sama, jak pierwsza 

litera identyfikatora id2),
b) Ri =def {<idu id2> | identyfikator id\ czytany wspak jest taki sam, jak identyfika- 

tor id2} .

10. Niech BAZA =def Nazwisko x  Wiek x Zarobek, gdzie Nazwisko jest zbiorem identy­
fikatoröw, Wiek i Zarobek sq. pewnymi podzbiorami nieujemnych liczb calkowi- 
tych. Czy relacje biname R\, Ri Q BAZA2 s^ relacjami röwnowaznosci? Jezeli tak, 
to jakie s .̂ wyznaczone przez nie zbiory ilorazowe?
a) Ri =der { « « i ,  W|, Z|>, <n2, vv2, z2»  | w, =  w2 a z , =  z2},
b) R2 =def { « « 1. wi, zi>, <n2, w2, z2»  | W| = w2 a |zi — z2| < 1000}.

11. Ile jest röznych relacji röwnowaznoSci na zbiorze /j-elementowym?

12. Niech R, S c z X 2 b$d^ relacjami röwnowaznosci. Czy relacjami röwnowaznosci s^ 
röwniez:
a ) R u S ,  
b ) R n S ,  
c ) R \ S ,
d ) R ° S .

13. Niech R c X 2 b^dzie relacje röwnowaznosci oraz x, yeA'bQdq. dwoma ustalonymi 
elementami zbioru X. Czy relacje röwnowaznosci jest relacja:

S  =def (R u  {<* , y>, <y, x > } )+

14. Jesli R\ c X 2, to R2c X 2 takie, ze Rt c  R2 nazywamy rozszerzeniem relacji Rt. Czy 
kazd^ relacje R c i X 2 mozna rozszerzyö do relacji:

a) symetrycznej,
b) przeciwsymetrycznej,
c) zwrotnej,
d) przeciwzwrotnej,
e) przechodniej,
f) spöjnej.

15. Wykazaö, ze relacja R jest przechodnia wtedy i tylko wtedy, gdy spefniony jest 
warunek

R2^ R

16. Niech S, Tb^d^. relacjami binamymi naX2. Wskaz, ktöre wlasnosci s^prawdziwc:
a) dom(S u 7 )  = dom{S) U dom(T) ,



b) dom(Su l ) c dom(S) u dom(T),
c) dom(S n  J ) c  dom(S) n  dom{T).

17. Pokazac, ze zlozenie funkcji röznowarto§ciowych jest funkcjeröznowartosciow^.

18. Niechf  : X - > Y oraz A , B c X .  Uzupelnij i udowodnij wzory:
a) f { A u B )  = f { A ) u f { B )
b) f ( A n B )  ? f { A ) n f { B )

o) ? A

19. Funkcja/jest zgodna z relacja i wtedy i tylko wtedy, g d y /c  R. Niech X = de( {a, b, 
c, d} oraz relacja R bqdzie zdefiniowana nastqpuj^co:

R =def {<a, b>, <a, d>, <c, c>, <b, b>, <b, d>, <c, c>, <d, b>, <c, d>, <d, c>,
<d, a>, <d, d>).

Zdefiniowad wszystkie funkcje/ zgodne z relacjaR takie, ze:

a) dom (f) = dom(R),
b) ran(f) = ran(R).

Ktöre sposröd tych funkcji maj^ funkcje odwrotne?

20. Podac warunki konieczne i wystarczajqce na to, aby mnogosciowa suma dwöch 
funkcji byla funkcje

21. Niech R bqdzie dowoln^ relacja röwnowaznosci na zbiorze X  oraz niech relacja Q 
bqdzie zdefiniowana nastqpuj^co:

Q =def (R u  {<a, b>, <b, a>})+,

gdzie a, beX.  Pokazac, ze Q jest relacja röwnowaznosci oraz jesli <a, b>iR, to 

X/Q = (X/R \ {[a]Ä, [b]R}) u  {[a]Ä u  [£>]*}•

22. Niech bqdzie dany pewien graf G = <V, A>, gdzie A c: V2. Jak^ interpretacjQ moz- 
na przypisaö zlozeniu relacji A? Co oznaczaj^ A2, ..., A"? W jaki sposöb mozna 
zbadac, czy graf ma p^tle oraz cykle, to jest drogi o dhigosci wi^kszej od 1, ktöre 
rozpoczynaj^ siq i koncz^ siq w tym samym wierzcholku?

23. Pokazac, w jaki sposöb na podstawie definicji grafu w postaci G = <V,A> zbudo- 
wac jego defmicjQ o postaci G = <V, S>, gdzie S : V —» 2^ jest funkcje wyznacza- 
j^c^ dla dowolnego wierzcholka ve V zbiör wierzcholköw-nastqpniköw S(y), to 
znaczy wierzcholköw, do ktörych prowadz^. luki z wierzcholka v.

24. Pokazac, w jaki sposöb na podstawie definicji grafu w postaci G = <V, S>  wyz- 
naczyc funkcje P(v), okreslaj^c^.zbiör wierzcholköw-poprzedniköw wierzcholka v.

25. Zaproponowac sposoby reprezentacji grafu w pami^ci komputera.



4. Aksjomatyczna i alternatywne teorie zbioröw

4.1. Aksjomatyczne uj^cie teorii mnogosci

Uzywane dotychczas pojQcie zbioru jest rozumiane na jeden z dwöch sposoböw, ktöre 
spotyka si$ w rozumieniu potocznym. Jest to tak zwane dystrybutywne rozumienie 
zbioru, czyli zespohi (zestawu) wielu przedmiotöw (bytöw) pol^czonych w ealose ze 
wzgl^du na pewne wspölne wlasnosci. Dystrybutywne rozumienie zbioru wiqze si^ ze 
stosunkiem pomiqdzy elementem a zbiorem: element nalezy do zbioru. Synonimami 
tak rozumianego zbioru s^ spotykane w jQzyku naturalnym takie okreslenia, jak: ‘kla- 
sa’, ‘kolekcja’, ‘wielose’, ‘mnogosd’, ‘zbiorowosd’, ‘gatunek’, ‘rodzaj’.

Drugie, nieuzywane tu, pojQcie zbioru, tak zwane kolektywne, jest rozumiane jako 
ealose ztozona z pewnych przedmiotöw, ktöre stanowi^ czQsci calosci. Na przyklad las 
moze byö traktowany jako ealose, ktörej czQSciami s^ drzewa, krzewy, runo lesne itp. 
Kolektywne rozumienie zbioru stosunek pomiqdzy elementem a zbiorem okresla, ze: 
element jest czqsciq zbioru, dlatego synonimami zbioru w sensie kolektywnym s^ na 
przyklad okreslenia: ‘ealose’, ‘agregat’, ‘kompleks’, ‘konglomerat’.

Mozna twierdzic, ze samochöd jest zbiorem w sensie kolektywnym, ktörego czqSciami 
s^podwozie, kola, silnik, nadwozie itd. Cz^sci te s^ komponentami zbioru i jednocze- 
Snie s^ röwniez zbiorami w sensie kolektywnym, gdyz skladaj^ siq z innych, mniej- 
szych komponentöw. Zbiory kolektywne s^ zbiorami tranzytywnymi, poniewaz stosu­
nek ‘bycia czQsei^” jest relacj^ przechodni^.

Zbiory w sensie kolektywnym s^ wygodne do przedstawiania wielu pojQC w naukach 
przyrodniczych, spolecznych, a takze w lingwistyce komputerowej. Rozwazania 
w ksiqzce odnosz^ si$ wyl^cznie do zbioröw w sensie dystrybutywnym.

Opröcz rozröznienia zbioröw w sensie kolektywnym i dystrybutywnym, spotyka si$ 
jeszcze inne podejscia do pojqcia zbioru, okreslane jako podejscia alternatywne. 
WSröd takich podejsc w dalszej czqsci rozdzialu omawia siq bardzo ogölnie wielo- 
zbiory, zbiory rozmyte i zbiory przyblizone, ktöre maj^ liczne zastosowania w infor- 
matyce.

W pocz^tkowym okresie swego rozwoju teoria mnogosci (teoria zbioröw w sensie 
dystrybutywnym) byla budowana na podstawie intuicyjnego pojQcia zbioru. Droga ta 
okazala siq zawodna, gdyz intuieja nie dawala jednoznacznych odpowiedzi na pewne



subtelne pytania. W konsekwencji pojawily siQ sprzecznosci, jak na przyklad omo- 
wiona wczesniej antynomia Russella. W celu ich eliminacji zbudowano rözne aksjo- 
matyczne teorie zbioröw. Ponizej przedstawiamy zestawy aksjomatöw opracowane 
przez Zermela7. Zestaw ten jest wystarczaj^cy do praktyki matematycznej, zwlaszcza 
do definiowania liczb naturalnych, calkowitych, wymiemych i rzeczywistych ze zwy- 
klymi dziataniami arytmetycznymi. Bardziej rozpowszechniona jest nieco silniejsza 
teoria, zwana teori^ Zermela-Fraenkla8. Aksjomaty Zermela tu przedstawiane za 
pomoc^jQzyka naturalnego.

1. Aksjomat ekstensjonalnosci

Dwa zbiory s^röwne wtedy i tylko wtedy, gdy maj^te same elementy.

2. Aksjomat wyrözniania

Dia dowolnego zbioru Z i dowolnego jednoargumentowego predykatu (funkcji 
zdaniowej) P  istnieje zbiör T  zawierajqcy dokladnie te elementy Z, ktöre spetniaj^ 
warunek P(x).
Jezeli zaden element Z nie spelnia predykatu P, na przyklad, gdy P(x) jest warun- 
kiem postaci x&Z, to T jest zbiorem pustym 0 .  Aksjomat wyrözniania zapewnia 
wiqc istnienie zbioru pustego 0 .

3. Aksjomat par nieuporzqdkowanych

Jezeli Z\, Z2 s£( zbiorami, to para nieuporz^dkowana {Zu Z2} jest zbiorem.

4. Aksjomat sumy zbioröw

Niech Z bqdzie niepust^ rodzin^ zbioröw, tj. zbiorem, ktörego elementy ŝ _ zbio­
rami. Dia kazdej takiej rodziny istnieje zbiör S, ktörego elementami S£( dokladnie te 
obiekty, ktöre s^ elementami zbioröw nalez^cych do Z.

5. Aksjomat nieskonczonosci

Istnieje zbiör Z, ktöry zawiera zbiör pusty i jest taki, ze jezeli x  nalezy do Z, to su- 
ma x  oraz {*} takze jest w Z.
Rozröznienie mi^dzy elementem x  a zbiorem jednoelementowym {jc} ma zasadni- 
cze znaczenie. Aksjomat gwarantuje istnienie zbioröw nieskonczonych.

6. Aksjomat zastqpowania

Niech dla kazdego x  istnieje dokladnie jedno y  takie, ze spelniony jest dwuargu- 
mentowy predykat (funkcja zdaniowa) P(x, y), wtedy dla kazdego zbioru Z istnieje 
zbiör Z', do ktörego nalezy wszystkie i tylko te elementy y, ktöre przy pewnym x  ze 
zbioru Z, spetniaj^ predykat P.

7 EmstZermelo (1871-1953).
8 Abraham Fraenkel (1891-1965).



7. Aksjomat zbioru potqgowego

Dia kazdego zbioru Z istnieje rodzina zbioröw, ktörej elementami wszystkie 
podzbiory zbioru Z. Rodziny t$ nazywa siq zbiorem potQgowym i oznacza 2Z.

8. Aksjomat wyboru

Dia dowolnej rodziny niepustych i rozlqcznych zbioröw istnieje zbiör, ktöry z kaz- 
dym ze zbioröw tej rodziny ma jeden i tylko jeden wspölny element.
Aksjomat wyboru jest z jednej strony intuicyjnie oczywisty, ale z drugiej strony 
budzi rözne kontrowersje. Ich zasadniczym powodem jest to, ze w przypadku nie- 
przeliczalnej rodziny zbioröw nie wiadomo, w jaki sposöb tworzyc nowy zbiör, 
ktöry mialby dokladnie jeden element wspölny z kazdym zbiorem tej rodziny. 
Z cal^ pewnosci^ proces tworzenia takiego zbioru nie möglby byc post^powaniem 
efektywnym, to znaczy opartym na realizacji pewnego algorytmu.

9. Aksjomat regulamosci (ufundowania)

W kazdym niepustym zbiorze Z istnieje taki element X, ze zaden element zbioru X  
nie jest elementem zbioru Z.
Konsekwencj^ aksjomatu jest to, ze nie istnieje zbiory X, Y, Z  o takich wlasnos- 
ciach, jak na przyklad, ze XeX,  ze zachodzi Xe Y oraz YeX,  ze zachodzi Xe Y, 
YeZ, Z e X  itd. Aksjomat ten ogranicza dziedzinq zlozon^ ze zbioröw przez wyeli- 
minowanie z niej obiektöw o wlasnosciach w rodzaju wyzej wymienionych.

4.2. Deflnicje zbioröw liczbowych

Na gründe aksjomatycznego uj^cia teorii mnogosci mozna formalnie zdefiniowac li- 
czby naturalne. Poniewaz jedynymi obiektami, ktörych istnienie gwarantuje teoria 
mnogosci, s^ zbiory, wiqc liczby naturalne takze definiuje siq jako szczegölne rodzaje 
zbioröw.

Dia dowolnego zbioru Zjego nastqpnikiem nazwa si$ zbiör 

SU CC{Z) =def Z u  {Z}

Zachodzi wi$c Z c  Succ{Z) oraz Ze Succ(Z).

Punktem wyjscia w konstrukcji zbioru liczb naturalnych jest przyj^cie istnienia zbioru 
pustego. Zbiör liczb naturalnych definiuje siq jako najmniejszy zbiör Nat, definiowany 
rekursywnie w sposöb nastqjuj^cy:

1. 0 e N a t
2. jezeli ZeNat, to Succ{Z)e Nat

Elementy zbioru Nat nazywa siq liczbami naturalnymi i s^ nimi:



0 ,

0 U { 0 }  = {0},
{0} U {{0}} = {0, {0}},

{0, {0}} u  {{0, {0}}} = {0, {0}, {0, {0}}} itd.
Zbiör liczb naturalnych jest wiqc rodziny zbiorow. W celu uproszczenia notacji ele- 
mentöw tej rodziny wprowadza siq powszechnie znane oznaczenia:

0 =def 0 ,
l=def{0} = {O}
2=def{0, {0}} = {O,1}
3=def{0, { 0 } ,{ 0 ,  {0}}} = {O,1,2}

n  ~  def {0 , {0}, {0 , {0}}, {0 , {0}, {...{0}...} ...} = {0, 1,2, « -  1}
ktöre s£[ znacznie wygodniejsze w uzyciu.

Uwaga
Zbiör liczb naturalnych jest przykladem tak zwanej induktywnej rodziny zbiorow. 
Rodzina zbiorow A  jest induktywna, gdy spelnia warunki:

1. 0 e A ,
2. dla kazdego zbioruX eA ,  röwniez zbiörX u  {X)eA.

Operacja, ktöra zbiorowi X  przyporz^dkowuje X  u  {X}, nazywa siq operacj^ na- 
stqpnika. Istnienie zbiorow induktywnych jest postulowane aksjomatem nieskon- 
czonosci. Zbiör liczb naturalnych Nat jest najmniejszym zbiorem induktywnym, to 
znaczy dla kazdego zbioru induktywnego A  zachodzi Nat q A.

Mozliwe sii takze inne mnogosciowe sposoby definiowania liczb naturalnych, na 
przyldad:

0 =def 0 ,
l = d e f { 0 }  =  { O }
2=def{{0}} = {l}

3=def{{{0}}} = {2}

«=def{{...{0}...}} = { » - l }

Traktuj^c liczby naturalne jako induktywnie zdefiniowane zbiory, mozna pokazac 
nastqpuj^ce twierdzenie.



Twierdzenie 4.1

Dia dowolnych liczb m , n e  Nat zachodzi zwiqzki:
1. Jesli men,  to m e n .
2.  « e « .
3. JeSli Succ(m) = Succ(ri), to m = n.
4. Jesli m c; n oraz m * n ,  to me n.
5. Zachodzi m c  n lub n c  m.
6. Zachodzi dokladnie jedna z mozliwosci: m e  n, n = m, m e  n.

Dowöd twierdzenia mozna znalezc na przyklad w ksiqzce [Tiuryn 2003].

Przy wprowadzonych oznaczeniach operaej? tworzenia nowego zbioru Succ mozna 
traktowac tez jako funkcjQ dodawania jedynki do danej liezby naturalnej. Jest to fiink- 
eja calkowicie okreslona o sygnaturze Succ : Nat —> Nat. Nazywa siQ j^. operaejq na- 
stqpnika i mozna pisac:

Succ(0) = 1
Succ(Succ(0)) = Succ( 1) = 2 
Succ(Succ(Succ(0))) = Succ(Succ(l)) = Succ(2) = 3

Operacja nastqpnika pozwala na zdefiniowanie innych operaeji (dzialan). Na przyklad 
dodawanie oraz mnozenie funkejami o sygnaturze:

_+_: Nat x  Nat —> Nat 
: Nat x  Nat —> Nat

Dodawanie mozna zdefiniowac rekursywnie:

m + 0 = m dla dowolnego me Nat
m + Succ{n) = Succ(m + n) dla dowolnych m, ne Nat

Dysponujqc dodawaniem röwniez rekursywnie mozna okreslic mnozenie:

m *  0 = 0 dla dowolnego me Nat
Succ{m) * n = m * n + n dla dowolnych m, ne Nat

Maj£ic liezby naturalne, mozna zdefiniowac inne rodzaje liczb: liezby calkowite, wy- 
mieme, rzeczywiste i zespolone.

Definicjq liczb calkowitych poprzedza si? pewnym wyjasnieniem intuicyjnym. Kazdej 
liezbie calkowitej przypisuje si§ parq liczb naturalnych <m, n> takich, ze röznica 
m -  n jest röwna tej liezbie calkowitej. Na przyklad liezbie calkowitej -2  moze byc 
przyporz^dkowana para <4, 6>, liezbie 0 -  para <10, 10>, a liezbie 3 -  para <4, 1>. 
Dwie pary <m\, nx> oraz <m2, n2>, ktöre spelniaj^ warunek

mx -  «i = m2 -  n2



reprezentu.R tQ sam^ liczbq calkowit^. Poniewaz röznica dwöch liczb naturalnych nie 
zawsze jest liczb^ naturaln^, dlatego zamiast takiego warunku mozna sformulowac 
inny warunek röwnowazny, w ktörym nie odwohije si$ do röznicy. Jest to warunek 
postaci

mi + n2 = m2 + ri\

Przyjmuje siq teraz nastQpuj^c^ definicjq relacji binamej R c  Nat2 x  Nat2, okreslonej 
na parach liczb naturalnych w sposöb nast^puj^cy:

R = def n2>, <mu n2»  \ m\ + n2 = m2 + « 1}

Latwo sprawdzic, ze R jest relacji röwnowaznosci na Nat2. Zbiör liczb calkowitych 
jest okreslony jako zbiör ilorazowy Nat2/R, czyli

Caikowite = Nat2 IR

Konstrukcja liczb wymiemych opiera siq na zalozeniu, ze kazdej liczbie wymiemej 
mozna przyporz^dkowac parq </, m>, gdzie le Caikowite oraz meNat\{0}. Dalsza 
czqsc konstrukcji jest podobna do konstrukcji zbioru liczb calkowitych. Definiuje siq 
mianowicie relacjq Q c  (Caikowite x Nat)1 w sposöb nastQpuj^cy:

Q =def { « h ,  m2>, <lu m2»  \l\*  m2 = l2* / n , }

Q jest relacji röwnowaznosci na CalkowitexNat. Zbiör liczb wymiemych jest okreslo­
ny jako zbiör ilorazowy {CalkowitexNat)!Q, czyli

Wymierne -  {CalkowitexNat)!Q

Definicja zbioru liczb rzeczywistych jest bardziej zlozona i dlatego jest tu pomijana.

4.3. Wielozbiory

Uogölnieniem pojqcia zbioru jest pojqcie wielozbiom. Zbiör jest okreslony jako ko- 
lekcja dobrze wyröznionych obiektöw -  elementöw zbioru. Czasem nie ma potrzeby 
jednoznacznego rozrözniania pomi^dzy elementami zbioru. Tak jest wtedy, gdy ele- 
mentami zbiom jest wiele kopii tego samego rodzaju obiektöw. Jezeli na przyklad 
rozwaza siq zbiör, ktörego elementami s£t rözne owoce -  jablka, gruszki, sliwki, to 
moze nas interesowaö tylko liczba poszczegölnych rodzajöw owocöw, bez rozröznia­
nia konkretnych owocöw.

Definicja 4.1

Jezeli A jest dowolnym zbiorem, to wielozbiorem (albo multizbiorem) W nad zbio- 
rem A jest para

W=äe{<A,f>



gdzie /  jest funkcjq. licznosci wielozbioru. Funkcja /  jest dowoln^, calkowicie 
okreslon^na A, o wartosciach w zbiorze liczb naturalnych, czyli jest funkcjq o syg- 
naturzef : A - * Nat oraz dziedzinie dom( f )  = A.

Jezeli aeA,  to f (a)  jest liczb^ elementöw a w danym wielozbiorze W. Wielozbiör W 
jest pusty, gdy f (a )  = 0 dla kazdego aeA.

Niech b^d^dane dwa wielozbiory nad zbiorem^4:

W\ = <A,f> oraz W2 = <A, g>

W\ jest podwielozbiorem W2, co oznacza siq W\ cW 2, jezeli f ( a ) < g(a), dla kazdego 
aeA.

Wielozbiory W, oraz W2 s^ identyczne, co pisze si^ Wt = W2, wtedy i tylko wtedy, gdy 
W\ c  W2 oraz W2 £  Wx.

Na wielozbiorach definiuje siq operacje mnogosciowe sumy, przekroju i röznicy.

Suma wielozbioröw jest zdefiniowana nastqpuj^co:

W\\j W2 = <A, h>

gdzie h jest funkcjq licznosci, spelniaj^c^ warunek 
h{a) = /(a )  + g(a) dla dowolnego aeA

Przekröj wielozbioröw jest zdefiniowany nastQpujqco:

W in  W2 = <A, h>

gdzie h jest funkcjq licznosci, spelniaj^c^ warunek 
h(a) = min(f(a), g(a)) dla dowolnego aeA  

Röznica wielozbioröw jest zdefiniowana nastqmj^co:

Wx\W2=<A,h>

gdzie h jest funkcja licznosci, spelniaj^c^ warunek 
h(a) = max(f(a) -  g(a), 0) dla dowolnego aeA

min oraz max s^funkcjami, ktöre wyliczaj^ odpowiednio wiqksz^oraz mniejsz^ liczbq 
sposröd dwöch liczb, ktöre s^jej argumentami.

Przyklad 4.1

I Niech W\ = < A , f>  oraz W2 = < A ,/2>, gdzie A -  {a, b, c, d, e} oraz funkcje licz-1 
nosci s£(_ zdefiniowane nastqjujqco:

f  = {<a, 4>, <b, 3>, <c, 2>, <d, 1>, <e, 0>} 
f 2 = {<a, 0>, <b, 1>, <c, 2>, <d, 3>, <e, 4>}



wöwczas

WiU W2 = <A, {<a, 4>, <b, 4>, <c, 4>, <d, 4>, <e, 4>}>
W\C\W,2 = </l, {<a, 0>, <6, 1>, <c, 2>, <//, 1>, <e, 0>}>

I W]\W2 = <A, {<a, 4>, <6, 2>, <c, 0>, <//, 0>, <e, 0>}>_____________________j

Uwaga
CzQSto, gdy rozwaza siQ rodzins wielozbioröw W, = <A,f>,  dla ie l, nad ustalonym 
zbiorem A, przyjmuje siq uproszczonq. notacjs -  wielozbiör W,- utozsamia siq z fun- 
kcj^licznosci f .  Wtedy, zamiast pisac na przyklad W\ u  W2, pisze sis/i u f 2.

4.4. Zbiory rozmyte

Zbiory rozmyte uogölnieniem zbioröw, ktörym mozna si$ postugiwac w sytuacjach 
okreslonych nieprecyzyjnie lub niejednoznacznie. Takie sytuacje wystqpuj^ na przy­
klad wtedy, gdy möwi siq wysoki mqzczyzna, duze miasto lub drogi samochöd. Gdy 
möwi sis o kims, ze jest wysokim mszczyznq, wyraza si$ przekonanie o stopniu przy­
naleznosci danego mqzczyzny do zbioru wysokich mQzczyzn.

Definicja 4.2
Jezeli A jest dowolnym zbiorem, to zbiorem rozmytym Z nad zbiorem A jest para 

Z —faf^-A, [A>

gdzie //je s t funkcjq przynaleznosci do zbioru rozmytego. Funkcja //je s t dowolnq. 
funkcj^ calkowicie okreslon^ na A, o wartosciach w zbiorze liczb rzeczywistych 
z przedziahi [0, 1], czyli funkcjqo sygnaturze / / :  A —> [0, 1] oraz dom(f) =A.

Jezeli aeA,  to jU(a) okresla stopien przynaleznosci elementu a do danego zbioru roz­
mytego. Dia aeA  wartosc funkcji //(fl) = 0 oznacza brak przynaleznosci, fi{a) = 1 oz- 
nacza pelnq. przynaleznosc, 0 < //(fl) < 1 oznacza zas czqscioweL przynaleznosc ele­
mentu a do zbioru rozmytego.

Zbiör rozmyty Zjest pusty, gdy fj(a) = 0 dla kazdego aeA.

Przyklad 4.2
 ̂ Przyjmuj^c, ze za wysokich mqzczyzn mozna uwazac tych, ktörzy majq. co naj-l 

mniej 170 cm wzrostu, rozmyty zbiör wysokich mqzczyzn WysocyMqzczyzni moz­
na zdefmiowac nastspuj^co:

WysocyMqzczyzni = <Wzrost, fimns?”



gdzie

Wzrost = {*e Rzeczywiste \ x  > 100}

0 dla x<170

Mwysoki W £ * (* -1 7 0 ) dla 170 < je < 185
1 dla jc > 185

Niech dane dwa zbiory rozmyte Z, = <A, juj> dla / = 1,2.

Z\ jest podzbiorem Z2) co oznacza siq Z\ £  Z2, jezeli fi\(a) < ju2(a), dla kazdego aeA.

Zbiory rozmyte Z\ oraz Z2 identyczne, co pisze si? Z\ = Z2, wtedy i tylko wtedy, gdy
W\ c  W2 oraz W2c W , .

Operacje mnogosciowe na zbiorach rozmytych definiowane nast^pujXco:

Suma zbioröw rozmytych 

Zj u  Z2 = <A, //>

gdzie //jest funkcji przynaleznosci, spelniaj^c^ warunek 

ju(a) = max(jUi(a), jU2(a)) dla dowolnego ae A

Przekröj zbioröw rozmytych 

Z| o  Z2 = *^A, //>

gdzie//jest funkcji przynaleznosci, spelniajqc^ warunek: 

fl{d) = min(ß\(a), //2(a)) dla dowolnego aeA

Röznica zbioröw rozmytych 

Z \\Z 2 — <A, ju>

gdzie //jest funkcji przynaleznosci, spelniaj^c^ warunek: 

ju(a) = max(jUi(a) -  //2(a), 0) dla dowolnego ae A

Przyklad 4.3___________________________________________________ _____
Zbiory rozmyte mozna przedstawic graficznie za pomoc^ odpowiadajqcych im! 
wykresöw funkcji przynaleznosci. Na pierwszym z rysunköw przedstawiono wy- 
kresy funkcji przynaleznosci dwöch zbioröw rozmytych nad zbiorem liczb rzeczy- 
wistych -  linia ciqgla (zbiör pierwszy) i przerywana (zbiör drugi), a na nastqpnych 
-  wykresy funkcji przynaleznosci ich sumy i przekroju.



Funkcje przynaleznosci dwöch zbioröw 
- rozmytych -  linia ci^gla i linia przerywana

\

Funkcja przynaleznosci sumy 
dwöch zbioröw rozmytych

Uwaga
Badania nad zbiorami rozmytymi zainicjowaf swoimi pracami Lofti Zadeh w polo- 
wie lat szescdziesititych ubieglego wieku. Podane wyzej definicje zawierania 
i röwnosci zbioröw rozmytych oraz operacje mnogosciowe sq. tymi, ktöre spotyka 
si$ najczQsciej. W literaturze istnieje rozmaitosc innych definicji tych pojqc: [Kac- 
przyk 1986], [Rutkowska, Pilinski, Rutkowski 1997].

Z poröwnania podanych okreslen zbioröw rozmytych z wczesniejszymi okresleniami 
dla wielozbioröw wynika, ze z obliczeniowego punktu widzenia röznice malo istot- 
ne. Istotne sq. natomiast röznice interpretacyjne, gdyz funkcja licznosci dla danego 
elementu aeA  okresla liczbq kopii samego elementu w wielozbiorze, podczas gdy 
funkcja przynaleznosci okresla stopien przynaleznosci tego elementu do zbioru roz- 
mytego.

4.5. Zbiory przyblizone

Pojqcie zbioröw przyblizonych wywodzi siq z zagadnienia klasyfikacji.

Niech U b$dzie dowolnym zbiorem uniwersum oraz niech R c U 2 bqdzie pewn^relacj^ 
röwnowaznosci okreslon^ na U. Relacja röwnowaznosci wyznacza podzial zbioru U na 
klasy abstrakcji. Przypomnijmy: dwie klasy abstrakcji s^ identyczne albo rozl^czne, 
a suma mnogosciowa wszystkich klas abstrakcji jest röwna zbiorowi U. Zbiör wszy- 
stkich klas abstrakcji, oznaczany U/R, jest nazywany zbiorem ilorazowym zbioru U.



Niech b^dzie dany pewien podzbiör X  c  U. Podzbiör X  jest oczywiscie okreslony 
przez swoje elementy, ale mozna go tez scharakteryzowac tylko poprzez elementy 
zbioru ilorazowego U/R. Charakteryzacja polega na wprowadzeniu dwöch podzbioröw 
stanowi^cych dolne i göme przyblizenie zbioru X.

Dolnym przyblizeniem zbioru X  wzgl$dem relacji R, oznaczanym RX, jest zbiör zde- 
finiowany nastqpujXco:

RX=  [ J { r e t / / r t | Y c X }

Gömym przyblizeniem zbioru X wzgl^dem relacji R, oznaczanym RX, jest zbiör zde- 
finiowany nastQpujqco:

R X  = \ J { Y e U / R \ Y n X * 0 }

Z definicji wynika, ze R X c i c  RX.

Definicja 4.3
Zbiör X  nazywa si$ zbiorem przyblizonym wzglqdem relacji R, gdy RX  ^  RX. 
W przeciwnym przypadku, gdy R X -  RX , zbiör X nazywa siQ zbiorem dokladnym 
wzgl$dem R.

Przyklad 4.4
' Ilustracj^ wprowadzonych poj$c jest rysunek 4.2. '

1 2 3 4 5 6 7

/ i
V

Rys. 4.2. Graficzna ilustracja 
zbioru przyblizonego

Zbiorem U  jest prostok^tny obszar na plaszczyznie X-Y, podzielony na mniejsze 
prostokqty -  kratki s^ jednoznacznie identyfikowane przez numery wierszy i ko- 
lumn. Kratki te s^ elementami pewnego zbioru ilorazowego dziel^cego zbiör U. 
Zbiör X  jest zaznaczony pogrubion^ lini^. Jego dolnym przyblizeniem ÄYjest ob-



szar zaznaczony trzema mocniej zacieniowanymi kratkami, a gömym jego przybli- 
zeniem R X  jest obszar zaznaczony wszystkimi zacieniowanymi kratkami.

RX= {<b, 2>, <b, 3>, <b, 4>}

R X  = {<a, 1>, <a, 2>, <a, 3>, <a, 4>, <a, 5>,

<b, 1>, <b, 2>, <b, 3>, <b, 4> <b, 5>,

|__________ <c, 1>, <c, 2>, <c, 3>, <c, 4> <c, 5>}______________________________ |

W praktycznych zastosowaniach licznosci elementöw zbiorow RX  oraz R X  daj^ pod- 
staw$ do liczbowej oceny dokladnosci przyblizenia zbioru X. Jezeli zbiory RX  oraz 
R X  S3. skonczone, to tak zwana miara dokladnosci przyblizenia zbioru X  jest okre- 
slanajako

CCr(X) = card(RX) / ccird( R X )

Oczywiscie 0 < aR(X) < 1.

Uwaga
Zbiory przyblizone zostaly wprowadzone przez Zdzislawa Pawlaka (1926-2006) 
w polowie lat osiemdziesiqtych ubieglego wieku. Znalazly one powszechne zasto- 
sowanie w informatyce, miqdzy innymi w analizie danych, przyblizonej klasyfika- 
cji i przetwarzaniu obrazöw [Pawlak 1991].

Cwiczenia

1. Niech X, Y, Z  bqd^ wielozbiorami. Pokazac, ze jezeli X c  Y oraz Y c  Z, to X c  Z.

2. Niech W = <U, F> bqdzie wielozbiorem nad zbiorem U, gdzie funkcja licznosci F  
jest zdefiniowana nastqpuj^co: F(x) = n dla kazdego xe U. Jezeli A jest podwielo- 
zbiorem wielozbioru W, to przez A' oznaczamy operacjQ dopelnienia wielozbioru A, 
ktor^definiujemy jako: A’ =def W\A.  Sprawdzic, czy zachodz^prawa de Morgana:

( A n B ) ' = A ' v B '

(A u  B)' = A 'r \B '

3. Niech X, Y, Z  bqd^ zbiorami rozmytymi. Pokazac, ze jezeli X  c  Y oraz Y c  Z, to 
Z c Z .

4. Niech Z = <U, ju> b^dzie zbiorem rozmytym, gdzie funkcja przynaleznosci //jest 
zdefiniowana nast^pujqco: ju(x) = 1 dla kazdego xe U. Jezeli A jest podzbiorem roz­
mytym zbioru Z, to przez A' oznaczamy operacjq dopelnienia zbioru A, ktör^ defi- 
niujemy jako: A' =defZ \ A .  Sprawdzic, czy zachodz^prawa de Morgana:



( A n B ) ' = A ' u B '

(A u  B)' = A ' n B '

5. Niech dany b^dzie zbiör Osoba = Nazwisko xWiek x Zarobek, gdzie Nazwisko jest 
zbiorem nazwisk, Wiek = Nat, Zarobek = Nat, oraz niech bqd^ dane dwie relacje 
röwnowaznosci: relacja W na zbiorze Wiek i relacja Z na zbiorze Zarobek. Uzasad- 
nic, ze rodzina zbioröw {bw<z c  Osoba] we Wiek, ze Zarobek), zdefiniowanych na- 
stQpujqco: bWJ =def {<ob wu z i>e Osoba \ w\s[w]Wiek a  z te[z]Zarobekj, dla we Wiek 
oraz zg Zarobek, stanowi partycjq na zbiorze Osoba, czyli wyznacza pewn^ relacja 
röwnowaznosci Rw.z na tym zbiorze. Podaö przyklady relacji W c: Wiek i Z c  Zaro­
bek. Podac dolne i göme ograniczenia dla przykladowego podzbioru B c  Osoba 
wzgl^dem relacji Rw,z-



5. Röwnolicznosc zbioröw, liczby kardynalne

5.1. Zbiory przeliczalne

PojQcie funkcji pozwala na poröwnywanie licznosci zbioröw.

Definicja 5.1

Dwa zbiory A i B röwnoliczne, co notujemy w postaci A ~ B, wtedy i tylko wte- 
dy, gdy istnieje wzajemnie jednoznaczna funkcja (bijekcja)

f : A - * B

O zbiorach röwnolicznych möwi siq tez, ze zbiorami o tej samej mocy.

Latwo zauwazyc, ze zwi^zek röwnolicznosci ma oczywiste wlasnosci:

• A ~ A ,
• jezeli A ~ B, to B ~ A ,
• jezeli A ~ B i B ~ C, to A ~ C.

Uwaga
Zwiqzek röwnolicznosci ma wlasnosci relacji röwnowaznosci. Nie möwi siq jednak 
o relacji röwnolicznosci, gdyz wymagaloby to okreslenia zbioru, na ktörym relacja 
ta jest okreslona. W tym przypadku dziedzinei powinien byö zbiör, ktörego ele- 
mentami s£t wszystkie mozliwe zbiory. Okreslenie tego, czym jest zbiör wszystkich 
zbioröw, stwarza jednak problemy interpretacyjne. Wprowadzenie pojqcia zbioru 
wszystkich zbioröw nasuwa pytanie: skoro zbiör wszystkich zbioröw jest zbiorem, 
to czy nie powinien byc swoim elementem? Pröba odpowiedzi na takie pytanie 
prowadzi do paradoksu Russella. Pojqcie zbioru wszystkich zbioröw jest zatem 
wewnqtrznie sprzeczne.

Dia zbioröw nieskonczonych zachodzi charakterystyczna wlasnoäö, polegajqca na 
tym, ze caly zbiör jest röwnoliczny z pewnym swoim podzbiorem wlasciwym. Ta 
wlasnosc jest podstaw^ formalnej definicji zbioröw nieskonczonych. Zbiör jest nie- 
skonczony wtedy i tylko wtedy, gdy ma podzbiör wlasciwy, ktöry jest z nim röwnoli­
czny.



Skonczonosc zbioru A oznacza, ze istnieje neNat takie, ze \A\ ~ n.

Zapis A ~ n wymaga komentarza. Nalezy przypomniec, ze liczby naturalne zdefinio- 
wano w podrozdziale 4.2. jako najmniejszy zbiör induktywny. Symbol n jest zatem 
nazw^ zbioru reprezentujqcego liczby naturaln^, co wyjasnia sensownosc zapisu A ~ n. 
W twierdzeniu 5.1 symbol liczby naturalnej n wystqmje w roli zbioru.

Twierdzenie 5.1

1 . Dla dowolnej liczby neNat nie istnieje funkcja röznowartosciowa z n u  {«} 
w n.

2. Dia n, meNat, jesli m ~ n , t o m  = n.
3. Zadna liczba naturalna nie jest röwnoliczna z Nat, a zatem Nat jest nieskon- 

czony.

Dowöd twierdzenia mozna znalezc na przyklad w ksi^zce [Tiuryn 2003].

W tym przypadku möwimy, ze A ma n elementöw i oznaczamy to, pisz^c card(A). 
Takie oznaczenie bylo wprowadzone juz wczesniej w rozdziale 2.

Przyklad 5.1
 ̂ a) Zbiör liczb parzystych Parzyste jest röwnoliczny ze zbiorem liczb naturalnych! 

Nat. Wystarczy zauwazyc, ze funkcja/ :  Nat —> Parzyste, ktöra wzajemnie jed- 
noznacznie odwzorowuje zbiör Nat w zbiör Parzyste, jest zdefiniowana wzo- 
rem

f ( n ) = 2*n

w ktörym: neNat, a 2*neParzyste.

b) Podobnie röwnoliczne s^zbiory Parzyste i Nieparzyste.

c) Zbiör liczb rzeczywistych odcinka [a, b\, gdzie a < b, jest röwnoliczny ze zbiorem 
liczb rzeczywistych odcinka [0, 1]. Odpowiedni^bijekcj^jest tu f  . [ a , b \ - ^  [0, 1], 
zdefiniowana wzorem

f (x )  = ( x -  a)/( b - a )

d) Zbiör liczb rzeczywistych jest röwnoliczny z podzbiorem liczb rzeczywistych 
odcinka otwartego (-zr/2, n/2). Wzajemnie jednoznaczne odwzorowanie repre-

I zentuje tu funkcja tangens. ,

Definicja 5.2

Kazdy zbiör skonczony lub röwnoliczny ze zbiorem liczb naturalnych nazywa siq 
zbiorem przeliczalnym. Zbiör nieskonczony, ktöry nie jest röwnoliczny ze zbiorem 
liczb naturalnych, nazywa siq zbiorem nieprzeliczalnym.



5.2. Zbiory nieprzeliczalne
Twierdzenie 5.2

Zbiör potQgowy zbioru liczb naturalnych nie jest röwnoliczny ze zbiorem liczb na- 
turalnych, czyli jest zbiorem nieprzeliczalnym. Oznacza to, ze nie istnieje wzajem- 
nie jednoznaczna funkcja/ :  Nat —» 2Nttl.

Dowod
Dowöd pochodzi od Cantora i jest oparty na tzw. metodzie przekqtniowej. Jezeli 
zbiör potqgowy bylby röwnoliczny zbiorowi liczb naturalnych, to wszystkie pod- 
zbiory zbioru liczb naturalnych daloby si$ ustawiö w ciqgi Z\, Z2, Z3, ... w jeden 
ci^g. Kazdy z tych zbioröw zawiera pewne liczby naturalne. Mozna to przedstawiö 
w postaci tablicy, ktörej przykladowa postac jest podana ponizej. Zbiör Z\ w tej ta- 
blicy nie zawiera liczb 0, 1, 2, 3 itd.; zbiör Z2 zawiera 0, 1, nie zawiera 2, 3 itd.

0 1 2 3

z, nie nie nie nie

Z2 tak tak nie nie

nie tak nie nie

Z4 tak tak nie tak

Z5

Defmiuje siq teraz nowy zbiör Z' w taki sposöb, aby byl on rözny od kazdego ze zbio­
röw Zu Z2, ... Poruszajqc siq wzdhiz przek^tnej tabeli od gömego lewego pola, defi- 
niuje siq w sposöb nastqmj^cy przynaleznosc kolejnej liczby naturalnej do zbioru Z': 
kazde slowo „nie” zastqpuje si$ slowem „tak”, a kazde slowo „tak” zastQpuje si$ slo- 
wem „nie”. Jezeli po takim zastqpieniu na przek^tnej w kolumnie k  znajduje siq 
„nie”, oznacza to, ze k iZ ', a jezeli znajduje si$ „tak”, oznacza to, ze keZ'.
W rozpatrywanym przykladzie otrzymuje siq mianowicie:

0 1 2 3

z, tak nie nie nie

z2 tak nie nie nie

z3 nie tak tak nie

Z4 tak tak nie nie

Z5 ,,, • ••



Zbior Z', zdefiniowany przez tak okreslon^ przekqtnq, zawiera 0, nie zawiera 1, 
zawiera 2 itd.

Tak zdefiniowany zbior Z 'jest rözny od kazdego ze zbioröw Z\, Z2, zatem Z'jest 
zbiorem, ktöry nie daje si$ zestawic w ciĉ g wszystkich podzbioröw zbioru liczb na- 
turalnych. Poniewaz rodzina podzbioröw 2Nat jest nieskonczona i nie jest röw- 
noliczna ze zbiorem liczb naturalnych, jest wiqc zbiorem nieprzeliczalnym. ■

Twierdzenie pokazuje, ze istniej^co najmniej dwa rodzaje nieskonczonosci. Pierwszy 
reprezentuje nieskonczonosc liczb naturalnych i nazywa siq nieskonczonosci^. przeli- 
czaln^. Pozostale rodzaje nieskonczonosci nazywa si$ nieskonczonosciami nieprzeli- 
czalnymi. Drugi rozpatrywany tu rodzaj nieskonczonosci, reprezentujqcy wszystkie 
podzbiory liczb naturalnych, reprezentuje rodzaj nieprzeliczalnosci zwany continuum.

Na konstrukcji podobnej do prezentowanej w poprzednim dowodzie opiera si$ dowöd 
twierdzenia 5.3.

Twierdzenie 5.3

Przeliczalna suma mnogosciowa zbioröw przeliczalnych jest zbiorem przeliczal- 
nym.

Dowöd
Niech Z\, Z2, ... b^dzie ciEigiem zbioröw przeliczalnych. Niech Z, =def { z , i ,  z ,2 ,  . . .  } 

dla i = 1, 2,... Elementy tych zbioröw mozna ustawic w tabel?:

Wszystkie te elementy, nie pomijaj^c zadnego, mozna ustawic w jeden wspölny 
ci^g w sposöb, ktöry okreslaj^strzalki. Ci^g ten zawiera wszystkie elementy wszy­
stkich ci^göw Z\, Z2, ... i jest oczywiscie röwnoliczny ze zbiorem liczb naturalnych, 
co dowodzi tezy twierdzenia. ■

Twierdzenie 5.4
Podzbiör zbioru przeliczalnego jest zbiorem przeliczalnym.



Dowöd
Niech A b^dzie zbiorem przeliczalnym oraz B q A. Jezeli A = B  lub B jest zbiorem 
skonczonym, to oczywiscie B jest zbiorem przeliczalnym. Niech B bqdzie zbiorem 
nieskonczonym, röznym od A. Poniewaz A jest zbiorem przeliczalnym, istnieje 
wzajemnie jednoznaczna funkcja/ :  Nat —> A. Nalezy pokazac, ze istnieje wzajem- 
nie jednoznaczna funkcja g : Nat —> B. Funkcja t$ mozna zdefmiowac rekursywnie, 
na podstawie funkcji f  w sposöb nast^puj^cy:

• g (0)= i), gdzie Ari jest najmniejsz^ liczb^ naturalnq, tak^. ze f(k \)e  B,
• gfji) = f ( k n), gdzie k„ jest najmniejsz^ liczb^ naturaln^ tak^ ze A„_i< k„ oraz 

f(k„)eB.

Funkcja g  jest röznowartosciowa i przeksztalca Nat na B. Zbiör B jest zatem röw- 
noliczny ze zbiorem liczb naturalnych, a wiqc jest zbiorem przeliczalnym. ■

Przykladowym, waznym zbiorem nieprzeliczalnym jest zbiör liczb rzeczywistych. 
Wynika to z nastQpuj^cego twierdzenia:

Twierdzenie 5.5

Zbiör liczb rzeczywistych z odcinka [0,1] jest zbiorem nieprzeliczalnym.

Dowöd
Wystarczy pokazac, ze nie istnieje funkcja/ :  Nat -»  [0, 1], ktöra jest bijekcj^, to 
znaczy dom(f) = Nat oraz ran(f) = [0, 1]. Funkcja / mozna przedstawic w postaci 
ci^gu -  zbioru par:

{<0, / ( 0)> ,< l ,/( l )> , <0, / ( 2)> ,...}

Dalej ci£|g ten bqdzie zapisywany w uproszczonej postaci:

/(0 ), / ( l ) ,  /(2 ),.... /(« ),...

gdzie wyrazy ci^gu/(« )  s^liczbami z przedziahi [0, 1].

Pokazemy, ze dla dowolnie wybranego ciqgu/istnieje liczba ce[0, 1], ktöra nie 
nalezy do tego ci^gu.

Oznaczmy przez [an, bn] c  [0, 1], dla neNat, ci^g przedzialöw z odcinka [0, 1]. 
Ci^g tych przedzialöw jest zdefiniowany nastqpuj^co:

Niech [a0, b0] = [0, 1], Podzielmy ten odcinek na trzy podprzedzialy: [0, 1/3], [1/3, 
2/3], [2/3,1] i wybierzmy z nich ten podprzedzial, do ktörego nie nalezy wyraz/(0). 
Wybrany podprzedzial oznaczmy przez [otj, ö|]. Podobnie postqpuj^c z przedzialem 
[au b{\, wyznaczymy przedzial [a2, bj\, do ktörego nie nalezy wyraz/ ( 1) itd.

Na mocy konstrukcji wyznaczony ci^g podprzedzialöw [a„, ö„], dla neNat, ma na- 
stopuj^ce wlasnosci:



/(« -! )£  [a„, bn], 

b„-a,,=  1/3"

0 < a„ < an+1 < bn+1 < />„ < 1.

Ci^gi liczbowe {a„}neNa, oraz sq. monotoniczne i ograniczone. one
zbiezne do tej samej granicy ce [0, 1], gdyz lim ,,^ (bn -a„ ) = 0. Liczba c nalezy 
do kazdego z przedziatöw [an, bn], a wiqc jest rözna od kazdego wyrazu/(« ), czyli 
nie nalezy do ci^gu wyznaczonego przez funkcjQ f  z czego wynika teza.

Zauwazmy, ze podzial danego odcinka na dwa podprzedzialy domkniqte, np. 
[0, V2], [1/2, 1] itd., nie pozwolilby na zastosowanie opisanego postqpowania dla
przypadköw, gdy c i^g /(0), / ( 1), / ( 2)..... f(n), ... bylby zbiezny do 1/2*, dla do-
wolnego k&Nat. Mozliwe natomiast byloby przeprowadzenie tego postqpowania 
przy zalozeniu podziahi danego odcinka na dowoln^, wiqksz^ niz 3, liczbq pod- 
przedzialöw. ■

Twierdzenie 5.6
Zbiör liczb rzeczywistych z odcinka otwartego (0, 1) jest röwnoliczny zbiorowi 
punktöw wnQtrzna kwadratu o boku dhigosci 1.

Szkic dowodu
Kazdy punkt kwadratu mozna okreslic par^ liczb <x, y>, stanowi^cych wspölrzQd- 
ne punktu. Przy zalozeniu, ze bok kwadratu ma dhigosc jeden, liczby te mozna za- 
pisac w postaci nieskonczonych ulamköw dziesiqtnych w postaci:

x = 0, cc\cc2 -  ö» •••

y  = 0, ß \ ß i ... ß „ ...

gdzie a,„ ß n (dla « = 1,2,...) s^cyframi 0, 1,..., 9.

Parze liczb <x, y> przyporz^dkowujemy liczby z na odcinku (0, 1), röwniez repre- 
zentowanEL nieskonczonym ulamkiem dziesi^tnym o postaci

z = 0, a\ß\cc2ß 2 ... a nß n ...

Jest oczywiste, ze przy takim przyporzqdkowaniu röznym punktom kwadratu od- 
powiadaj^rözne punkty odcinka. Wynika stqd, ze zbiör punktöw wnqtrza kwadratu 
o boku jednostkowym jest röwnoliczny z pewnym podzbiorem odcinka o dhigosci 
jeden. Moc zbioru punktöw kwadratu jest zatem nie wi^ksza od mocy zbioru punk­
töw odcinka.

Z drugiej strony zbiör punktöw odcinka jest podzbiorem punktöw kwadratu. Moc 
zbioru punktöw odcinka jest zatem nie wi^ksza od mocy zbioru punktöw kwadratu, 
z czego wynika, ze obie moce s^ röwne. ■



5.3. Liczby kardynalne

Pojqcie röwnolicznosci zbioröw jest bardzo wazne. Jest ono miqdzy innymi punktem 
wyjscia do wspölczesnej definicji liczby. Röwnolicznosc wprowadza pewn^ klasy- 
fikacjs zbioröw. Zbiory tego samego rodzaju röwnoliczne. Rodzaje te nazywa siq 
liczbami kardynalnymi. Takim rodzajem jest na przyklad rodzina zbioröw czteroele- 
mentowych. Liczby naturalne odpowiednikiem liczb kardynalnych dla zbioröw 
skonczonych. Liczby kardynalna zbioru wszystkich liczb naturalnych jest Ko (alef 
zero), a liczby kardynalna rodziny wszystkich podzbioröw zbioru liczb naturalnych 
jest c  (continuum). Inaczej: liczba kardynalna jest pewn^ cech^ zbioru.

Liczby kardynalna zbioru A, czyli rodzaj zbioröw, do ktörego nalezy zbiör A, bqdzie- 
my oznaczac przez \A\. Liczby kardynalnej nie nalezy utozsamiac z pojQciem liczby. 
W szczegölnosci, w przypadku zbioru skonczonego A, jego liczba kardynalna \A\ jest 
czym innym niz liczba elementöw tego zbioru card(Ä).

Liczby kardynalne mozna ze sob^poröwnywac. Niech \A\ = aroraz \B\ = ß.

Przyjmujemy, ze liczba kardynalna a jest nie wiqksza niz liczba kardynalna ß, co pi- 
szemy a<  ß, jezeli zbiör A jest röwnoliczny z podzbiorem zbioru B.

Jezeli a  < ß  oraz a  *  ß, to möwimy, ze liczba kardynalna a  jest mniejsza niz liczba 
kardynalna ß, co piszemy a<  ß.

Z wczesniejszych rozwazan wynika wiqc, ze Ko < c  .

Poröwnywanie liczb kardynalnych ma wlasnosc zwrotnosci, to znaczy

a< a

i przechodniosci, to znaczy

jezeli a< ß  oraz ß < y  to a< y.

Wazny zwiqzek pomi^dzy liczbami kardynalnymi wyraza podane nizej twierdzenie 
Cantora-Bemsteina.

Twierdzenie 5.7

Dia dowolnych liczb kardynalnych a, ß: 
jezeli a<  ß  oraz ß <  a, to a= ß.

Dowöd twierdzenia mozna znalezc na przyklad w pracy [Rasiowa 1998].

Uogölnieniem twierdzenia 5.3 jest twierdzenie Cantora.

Twierdzenie 5.8

Dia dowolnego zbioru A :\A \< \2 a \.



Dowöd
Twierdzenie oznacza, ze nie istnieje wzajemnie jednoznaczna fünkcja odwzo- 
rowujXca zbiör A w zbiör potQgowy 2Ä. Zalözmy, z e f : A - > 2 A jest fünkcja na 2A. 
Niech

A0 = {aeA  | a<£ f{a)}

Poniewaz/jest fünkcja na 2Ä, to istnieje a0eA  taki, ze f (a 0) = A0, tak wi$c a0e A 0 
wtedy i tylko wtedy, gdy a0e f(a 0).

Innymi slowy: a0e A 0 wtedy i tylko wtedy, gdy a0£A0.

Otrzymana sprzecznosc dowodzi, ze nie istnieje wzajemnie jednoznaczna funkcja 
odwzorowuj^ca zbiör A w zbiör potqgowy 2A. m

Cwiczenia

1. Pokazac röwnolicznosc zbioru liczb naturalnych i zbioru liczb pierwszych.

2. Pokazac röwnolicznosc zbioröw:
a) odcinek otwarty (0, 1) c  Rzeczywiste,
b) odcinek pölotwarty [0, 1) <z Rzeczywiste,
c) okrqg na plaszczyznie o srodku (0, 0) i promieniu 1.

3. Pokazac, ze zbiör potQgowy zbioru A jest röwnoliczny ze zbiorem funkcji okreslo- 
nych na A i o wartosciach w zbiorze {0, 1}, czyli ze zbiorem { f \ f : A —» {0, 1}}.

4. Ile jest rosn^cych ci^göw liczb wymiemych zbieznych do 1?

5. Ile jest relacji röwnowaznosci na zbiorze liczb naturalnych takich, ze wszystkie ich 
klasy abstrakcji s^skonczone?

6. Udowodnic, ze kazdy zbiör rozl^cznych odcinköw na prostej jest przeliczalny. Po­
kazac, ze istnieje nieprzeliczalny zbiör rozl^cznych odcinköw na plaszczyznie.

7. Udowodnic, ze jezeli A nie jest zbiorem przeliczalnym i B jest zbiorem przeliczal- 
nym, to A/B nie jest zbiorem przeliczalnym.

8. Udowodnic, ze produkt kartezjanski dwöch zbioröw przeliczalnych jest zbiorem 
przeliczalnym.

9. Udowodnic, ze zbiör liczb wymiemych jest przeliczalny.

10. Udowodnic, ze zbiör liczb niewymiemych jest nieprzeliczalny.

11. Udowodnic, ze kazdy zbiör nieskonczony zawiera pewien podzbiör przeliczalny.

12. Udowodnic, ze rodzina wszystkich skonczonych podzbioröw zbiom przeliczal- 
nego jest przeliczalna.



13. Udowodnic, ze dla dowolnych liczb kardynalnych a, ß ,y , zachodz^zwiqzki:
a) a<  a,
b) jezeli a <  ß oraz ß < y \ o  a <  y.

14. Czy istnieje relacja röwnowaznosci R c  Rzeczywiste2, ktörej kazda klasa abstrakcji 
jest mocy K 0 oraz:
a) zbior ilorazowy Rzeczywiste!R jest mocy Ko?
b) zbior ilorazowy Rzeczywiste!R jest mocy c?

15. Ktöre z ponizszych zdan jest prawdziwe?
a) Jesli/ :  A —» B jest roznowartosciowa oraz nie jest na B, to \A\ < |ß|.
b) Jesli \A\ < |ß| oraz C ̂  0 ,  to \A x  C| < |5 x C|.



6. Zbiory i funkcje obliczalne

6.1. Zbiory obliczalne i rekurencyjne

Z wykonywaniem obliczen za pomoc^. komputeröw wi^ze siQ pojQcie algorytmu. 
Obliczeniami na komputerach rz^dz^ scisle reguly, niekiedy möwi si? nawet o re- 
gulach mechanicznych, maj^c na mysli to, ze obliczenie mozna widziec jako skon- 
czonej dlugosci eisig czynnosci, z ktörych kazda jest jednoznacznie zdefiniowana 
i -  dodatkowo -  jest realizowalna za pomoeq. äcisle zdefiniowanych srodköw. Do 
rozwiqzania niektörych problemöw, na przyklad zadania obliczenia najwiqkszego 
wspölnego podzielnika dwöch liczb, mozna wyobrazic sobie istnienie pewnego 
algorytmu. Trudno natomiast wyobrazic sobie istnienie algorytmu do przepowiada- 
nia wyniku rzutu monetq.

Okreslone tak intuicyjnie poj^cie algorytmu jest nieformalne, co utrudnia lub nawet 
uniemozliwia jego wykorzystanie w scisiych rozwazaniach. Pröby scislego zdefmio- 
wania pojqcia algorytmu9 podjQto w pierwszej polowie ubieglego stulecia. Ich rezulta- 
tem bylo powstanie kilku -  jak siq pözniej okazalo -  röwnowaznych definieji algo­
rytmu.

Niektöre z tych podejsc wi^zaly si$ z ograniczeniem czynnosci wykonywanych w ra- 
mach algorytmu do manipulaeji na symbolach. Oznacza to, ze wykonywanie czynnos­
ci polega na tworzeniu pewnych ci^gow symboli (napisöw) na podstawie innych ciq- 
göw symboli (napisöw). Przykladem s^ tu algorytmy normalne Markowa10.

Inne podejscia byly oparte na wprowadzeniu pewnych „maszyn”, ktöre bylyby zdolne 
do samodzielnego wykonywania przetwarzania napisöw. Przykladem znanych modeli 
algorytmu s^maszyny opracowane przez Turinga11 oraz Posta12. Oba te modele, opra- 
cowane niezaleznie od siebie, s^ podobne i wi^ze si$ z nimi hipoteza, nazywana hipo- 
tezq Turinga-Posta lub -  czQsciej -  hipotezq Turinga. Z tego wzgl^du dalej przedsta-

9 Termin algorytm pochodzi od nazwiska arabskiego matematyka Abu Ja’far Muhammad ibn Musa 
Al-Kwarizmi (okoto 780-850).

10 Andriej A. Markow (ur. 1903), syn innego matematyka Andrieja A. Markowa (1856-1922).
11 Alan M. Turing (1921-1954).
12 Emil Post (1897-1954).



wiono tylko maszynq Turinga, a zwi^zana z niq, sformulowana w 1936 roku, hipoteza 
stwierdza [Arbib 1968]:

Nieformalne, intuicyjne pojqcie algorytmu na ciqgach symboli jest tozsame ze scis- 
lym pojqciem procedury, ktörq moze wykonac maszyna Turinga.

Dia hipotezy tego rodzaju nie mozna nigdy podac formalnego dowodu, poniewaz taki 
dowöd wymaga zdefiniowania pojQC, ktöre zawiera. Mozna tylko obalic przez po- 
danie przykladu intuicyjnie rozwi^zywalnego problemu, dla ktörego nie daje siq skon- 
struowac odpowiedniej maszyny Turinga. Jak dotychczas, ilekroc bylo intuicyjnie 
oczywiste, ze algorytm istnieje, tylekroc okazywalo siq mozliwe skonstruowanie ma­
szyny Turinga wykonuj^cej scisle ten algorytm i nie ma przeslanek, ktore wskazywa- 
lyby na mozliwosc zmiany tego stanu rzeczy.
Rozwi^zanie pewnego problemu przez wyszukanie odpowiedniego algorytmu spro- 
wadza siq zatem do zbudowania odpowiedniej maszyny Turinga. Maszyna Turinga 
jest tylko konstrukcj?i teoretyczn^ i nie sluzy do rozwi^zywania zagadnien prakty- 
cznych. Do celöw praktycznych wystarczy przyj^c, ze maszyny Turinga mozna utoz- 
samiac z dowolnym komputerem, ktory dysponuje nieograniczenie pojemn^ pamiqci^. 
Dokladny jej opis przedstawia siq nastqpuj^co:

Maszyna Turinga jest okreslona jako urz^dzenie skladaj^ce si$ z nieskonczenie dlugiej 
tasmy, podzielonej na kratki, zwanej pamiqciq maszyny, oraz urz^dzenia steruj^cego, 
zwanego sterowaniem maszyny. W kazdej kratce tasmy moze byc zapisany jeden 
z symboli ustalonego, skonczonego zbioru symboli A, nazywanego alfabetem ma­
szyny. Zaklada siq, ze alfabet zawiera Symbol „pusty”: nie. Urz^dzenie steruj^ce -  
kröcej: maszyna -  moze siq znajdowad w jednym ze stanow skonczonego zbioru S. 
Wyröznia siq pewien podzbior stanow F  c  S, nazywanych stanami koncowymi. 
W kazdym stanie urz^dzenie steruj^ce moze „obserwowad” (przez glowic? czytajqco- 
pisz^cq) jedn^ kratkQ tasmy T. Gdyby kratki tasmy T  mozna ponumerowac liezbami 
calkowitymi, wtedy znajduj^cy siq w obserwowanej kratce o numerze ig Calkowite 
Symbol a,&A nazywalby si? symbolem obserwowanym.

Sterowanie

Rys. 6.1. Maszyna Turinga

W danym momencie czasu maszyny charakteryzuje jej konßguraeja, na ktör^ sklada 
si$ stan pamiqci, czyli aktualna zawartosc tasmy, stan urz^dzenia steruj^eego oraz 
potozenie glowicy czytaj^co-pisz^cej przy jednym z pöl tasmy.



Maszyna rozpoczyna pracQ w konfiguracji poczqtkowej, to jest takiej, w ktörej tasma T 
ma ustalonq poczqtkowq zawartosc. Aktualnym stanem urzqdzenia sterujqcego jest wy- 
rözniony stan poczqtkowy, a glowica czytajqco-piszqca znajduje si$ przy kratce tasmy T  
wskazanej jako kratka poczqtkowa. W danej konfiguracji takiej, w ktörej stan urzqdzenia 
sterujqcego jest stanem s, maszyna „czyta” obserwowany symbol a, po czym:

• zmienia swöj stan s na nowy stan s 'g S,
• zmienia obserwowany symbol a na a'eA, w szczegölnosci moze to byc ten sam 

symbol a lub symbol pusty,
• przesuwa swojq glowicq czytajqco-piszqcq o jednq kratkq w lewo albo w prawo, 

albo pozostawia jqw  miejscu.

W ten sposöb maszyna przechodzi do nowej konfiguracji i powtarza swoje dzialanie 
wedhig opisanego schematu az do momentu, gdy osiqgnie konfiguracji koncowq, to 
jest takq, w ktörej stan aktualny urzqdzenia sterujqcego okresla si? jako stan koncowy. 
Po osiqgniqciu konfiguracji koncowej maszyna zatrzymuje si$ i nie wykonuje dal- 
szych czynnosci.

Formalnie maszyny Turinga M T  definiuje siq jako siödemkq:
MT -< S ,A , S, A, p, So, F> 

gdzie:
S  jest zbiorem stanöw,
A jest alfabetem,
S: S x A —̂  S  jest funkcjqprzejsc pomiqdzy stanami,
A\ S x A  —>A jest funkcjewyjsc,
p:  S x A  —> {-1,0, 1} jest funkcjeprzesuni$cia glowicy,
So jest stanem poczqtkowym,
F  c  S  jest podzbiorem stanöw koncowych.

Obliczenie maszyny Turinga M T  dla danej tasmy T  mozna opisac w postaci ciqgu 
tröjek:

^  S 0 ’ a i0 >*0 ^  ^ 1 » a i\ »*1 • • • »  ^  S n ’ a in Ä n  ”> ’ • • •

gdzie:
sk jest stanem urzqdzenia sterujqcego,
a,k jest zawartoSciq kratki obserwowanej przez glowicQ czytaj qco-piszqcq, 
ik oznacza kratkq tasmy T, przy ktörej znajduje si$ glowica czytajqco-piszqca.

Pierwsza tröjka <s0,aj{i,i0 >jest elementem konfiguracji poczqtkowej maszyny, a na- 
stQpne tröjki sqokreSlone nastqpujqco:

S k+1 =  S ( s k , a jk )

a'k =A(si,a,i )

h+\ = h + P ^ i ,a ik)



dla k eNat. Pierwsza z funkcji okresla nowy stan, druga -  now^ zawartosc przeczytanej 
kratki, a trzecia -  wskazuje na numer kolejnej kratki, do ktörej przesuwa si? glowica.

Ci^g ten zawsze rozpoczyna siq w konfiguracji pocz^tkowej i moze byc skonczony 
lub nieskonczony. Jezeli jest on ci^giem skonczonym, to ostatnia tröjka jest elemen- 
tem konfiguracji koncowej, co oznacza, ze s„eF.

Obliczenie maszyny rozpoczyna si$ i konczy pewnym ci^giem symboli zapisanych na 
ta£mie. Symbole na tasmie przed rozpoczQciem obliczen interpretuje si$ jako dane 
algorytmu, a Symbole po wykonaniu obliczen maszyny interpretuje siq jako wynik 
obliczen algorytmu.

Przyklad 6.1
 ̂ Alfabet maszyny Turinga A = {0, 1, nie}. Zadaniem maszyny Turinga jest stwier-' 

dzenie, czy liezba symboli 1 zapisana na taSmie, poczynaj^c od wskazanej nie- 
pustej kratki az do pierwszej kratki po prawej stronie, ktöra zawiera Symbol nie, 
jest parzysta czy nieparzysta. Wynik obliczen maszyny ma byc zapisany na tasmie, 
w kratce s^siaduj^cej po prawej stronie z pierwsz^ kratki zawieraj^cfi znaleziony 
Symbol nie (kratka pusta).

>
0 1 1 0 1 0 1 0 0 0

1
1 i

«
1

Kratka
pocz^tkowa

: i
1 Kratka ! 
| koncowa i

\
- j Wynik ! 

1______________f

Ogranicznik
poszukiwan

Rys. 6.2. Przykladowa zawartosc tasmy

Maszyny Turinga mozna w zwarty sposöb przedstawic za pomoc£(_ diagramu 
przejsc pomiqdzy stanami. Diagram ten jest grafem, ktörego wierzcholkami s^ sta- 
ny maszyny. Luki reprezentuj^ce przejscia pomiqdzy stanami s^ etykietowane na- 
pisami postaci a / b, c. Pierwszy element a jest symbolem alfabetu maszyny, Sym­
bol * oznacza, ze moze to byc dowolny element. Drugi element b jest symbolem, 
ktöry maszyna wypisuje na tasmie, Symbol _ oznacza, ze napis w danej kratce nie 
ulega zmianie. Trzeci element c moze przyj^c wartosci -1 , 0, +1, co oznacza prze- 
suniqcie glowicy maszyny odpowiednio w lewo, brak przesuniQcia lub przesuniqcie 
w prawo. Ukosnik rozdziela symbol wejsciowy od symboli, ktöre reprezentuj^ re- 
akcjQ maszyny w danej konfiguracji. L^cznie etykieta a / b, c na przejsciu ze stanu



i do stanu j  oznacza, ze: jezeli w stanie /' maszyna przeczyta w obserwowanej krat- 
ce symbol a, to zapisuje w tej kratce symbol b i przesuwa si? do nastopnej kratki 
o c, po czym przechodzi do stanu j.

0 /_ ,+ l

* / 0,0

* /1 ,0

Rys. 6.3. Diagram przejsd pomi^dzy stanami

Przedstawiony diagram wymaga uzupebiienia o wskazanie stanu pocz^tkowego -  
I stan 0 -  oraz stanöw koncowych -  stany 4, 5.________________________________t

Maszyna Posta, a takze inne maszyny, na przyklad Rabina i Scotta, maszyny wie- 
lota§mowe sq. röwnowazne maszynie Turinga w tym sensie, ze jezeli dany problem 
daje si$ rozwi^zac przez zbudowanie jakiejkolwiek z tych maszyn, to daje siq röwniez 
rozwi^zad za pomoc^ pozostalych maszyn.

Przyjmuj^c maszyn? Turinga za poj?cie algorytmu, mozna sformulowac wazne poj?- 
cia. Niech dany b?dzie pewien zbiör przeliczalny A.

Zbiör A jest rekurencyjny, jezeli istnieje algorytm rozstrzygania, czy dany element jest 
czy nie jest elementem A.

Zbiör A jest rekurencyjnie przeliczalny, jezeli istnieje algorytm, ktöry wylicza wszyst- 
kie jego elementy.

Z definicji bezposrednio wynika, ze jezeli podzbiör liczb naturalnych jest rekuren­
cyjny, to jest rekurencyjnie przeliczalny, ale nie odwrotnie, gdyz okazuje si?, ze za- 
chodzi twierdzenie:

Twierdzenie 6.1

Istnieje rekurencyjnie przeliczalny zbiör liczb naturalnych, ktöry nie jest rekuren­
cyjny.

Dowöd twierdzenia mozna znalezc na przyklad w ksi^zce [Arbib 1968],



6.2. Funkcje obliczalne i rekurencyjne

Pojqcie funkcji obliczalnych wi^ze siQ z funkcjami okreslonymi na zbiorze liczb natu- 
ralnych i o wartosciach w zbiorze liczb naturalnych. Intuicyjnie, funkcje obliczalne to 
takie funkcje, ktörych wartosci dla dowolnych argumentöw mozna obliczyc na kom- 
puterze w skonczonej liczbie kroköw. Formalnie funkcja jest obliczalna, gdy istnieje 
algorytm jej obliczenia, inaczej -  istnieje dla niej odpowiednia maszyna Turinga. Prö- 
by scharakteryzowania funkcji obliczalnych doprowadzily do wylonienia klasy funkcji 
rekurencyjnych. Okazalo siQ, ze funkcje obliczalne sq. funkcjami rekurencyjnymi. Do- 
kladniej wyraza to powszechnie akceptowana hipoteza Churcha, ktöra stwierdza, ze:

Kazda funkcja obliczalna w nieformalnym sensie jest rekurencyjna.

Definicja klasy funkcji rekurencyjnych opiera siq na zbiorze pewnych funkcji elemen- 
tamych i zbiorze operacji, ktöre pozwalaj^ na konstruowanie z funkcji elementamych 
nowych funkcji.

Zbiör funkcji elementamych zawiera:
• funkcjq nast^pnika zdefiniowan^ wzorem Succ(x) = x  + 1,
• funkcja tozsamosciow^ I(x) = x,
• funkcje rzutowania p ,(x \ , ..., x„) = x,, dla i = 1, n,
• funkcja zeroargumentow^ -  stal^O.

Zbiör operacji na funkcjach sklada siQ z trzech operacji. Pierwsz^ jest -  omöwiona 
wczesniej -  operacja skladania funkcji, dwie pozostale operacje -  nazywane operacji 
rekursji prostej i operacjiminimum -  wymagaj^ zdefiniowania.

Operacja rekursji prostej polega na tym, ze majqc dwie funkcje:
/ :  Natn~] —» Nat oraz g  : Natn+i —> Nat dla neNat\{0}

now^ funkcja 
h : Nat" —» Nat

definiuje siQ za pomocQ. dwöch nastqpuj^cych röwnosci:

h(xu ..., x„_!, 0) = f(x i , ..., x ^ )
h{xi, ..., x„_i, Succ(x„)) = g(xu ..., x„, h(xu ..., *„))

Termin rekursja prosta, wprowadzony przez Hilberta13 i Bemaysa14 w 1934 roku, nie 
jest szczQsliwy, gdyz schemat generacji wartosci funkcji bardziej si$ wiqze z iteracj^, 
z jak^mamy do czynienia w jqzykach programowania, niz z rekursji Rekursja prosta 
wyraza pewien indukcyjny sposöb definiowania wartosci.

13 David Hilbert (1862-1943).
14 Paul 1. Bemays (1888-1977).



Funkcje, ktöre daje si$ zdefmiowac za pomocq. operacji skladania i rekursji prostej, 
nazywa siQ funkcjami pierwotnie rekurencyjnymi.

Przyklad 6.2______________________________________________ ______________
 ̂ Funkcje dodawania liczb naturalnych, reprezentowan^ symbolem + w notacji 

przedrostkowej, definiuje siq za pomoc^ operacji rekursji prostej w sposöb nastQ- 
puRcy:

+(x, 0) = I(x)
+(Succ(y), x) = Succ(pi(x, y, +(x, y)))

W tym przypadku rolq definiowanej funkcji h pelni +, funkcja/  jest funkcje tozsa- 
mosciow^ I, a funkcja g  jest ziozeniem funkcji nastqpnika Succ z funkcje rzu- 
towaniap$. Tq samq. definicja, w sposöb röwnowazny, mozna zapisac prosciej:

+(x, 0) = x
+(Succ(y), x) = Succ(+(x, y))

Po zastosowaniu notacji wrostkowej dla funkcji dwuargumentowych definicja 
przyjmie jeszcze bardziej czyteln^postac:

x + 0 = x
Succ(y) + x  = Succ(x + y)

Korzystajqc z funkcji dodawania, podobnie mozna zdefiniowac funkcja mnozenia: 

x*0 = 0
■ Succiy) * x = (x * y) + x  ■

Przyklad 6.3_____________________________________________________________
 ̂ Odejmowanie w zbiorze liczb naturalnych jest funkcja zdefiniowan^ czqsciowo. 

Defmiowana ponizej funkcja dif, okreslona dla wszystkich liczb naturalnych, jest 
tylko pewnym odpowiednikiem odejmowania w zbiorze liczb calkowitych. Jej de- 
fmicja wymaga wprowadzenia funkcji pomocniczej Pred, nazywanej funkcja po- 
przednika. Rekursywna definicja jednoargumentowej funkcji poprzednika ma postaö:

Pred(0) = 0 
Pred(Succ(x)) = x

Odejmowanie w dziedzinie liczb calkowitych nieujemnych, oznaczone d if w celu 
odröznienia od symbolu odejmowania w zbiorze liczb calkowitych, jest zdefi- 
niowane metod^.rekursji prostej:

d if ix, 0) = 0
d if ix, Succiy)) = Predidifix, y))



Metod^ rekursji prostej mozna definiowac rözne fimkcje, mi^dzy innymi funkcje okre- 
slone wariantowo.

Przyklad 6.4__________________________________________ _________ _________
I Niech dana b$dzie funkcja ^

f 2x dla x < 3 
h^ ~ [ 2 x - 2  dla x > 3

Jej definicja wymaga uprzedniego zdefiniowania funkcji pomocniczych: jedno- 
argumentowej fimkcji znaku sg, defmiowanej rekursji proste (przypadek zdegene- 
rowany):

sg(0) = 0 
sg(Succ(x)) = 1

oraz funkcji poröwnan definiowanych przez wyrazenia funkcyjne:

gt(x,y) = sg(dif(x,y)) 
ge(x,y) = gt(Succ(x),y)

Definicja funkcji h przybierze zatem postac wyrazenia funkcyjnego 
. ((2*x) * ge(3, x)) + (dif((2*x), 2) * gt(x, 3)) .

Niestety, za pomoc^. operacji rekursji prostej nie mozna definiowac dowolnych fun- 
kcji. Przykladem funkcji, ktöra nie daje si$ zdefiniowac w ten sposöb, jest przed- 
stawiana juz poprzednio, w rozdziale 3, funkcja Ackermanna15

Ack(x,y)
y  + 1 gdy x = 0

• A c k (x -1,1) gdyy = 0
[.<4c&(x -1 , Ack{x, y  - 1))

W 1936 roku Kleene16 uzupelnil listq schematöw kompozycji funkcji o operacji mini- 
mum, albo inaczej -  operacjq //-rekursji.

Niech dana bqdzie funkcja 
f : N a t "+1 ->Nat

taka, ze dla kazdychxi,..., xn&Nat istniejeye/Va/ takie, ze f ( x u ..., xn,y)  = 0.
Operacja minimum dla ftinkcji/ :  Nat,tH —» Nat polega na zdefiniowaniu nowej funkcji

h : Natn —» Nat

15 Wilhelm Ackermann (1896-1962).
16 Stephen Kleene (1909-1994).



ktöra spelnia warunek

f ( x u .... x„, h(x\ , .... x„)) = 0

oraz dodatkowo -  aby zapewnic jednoznacznosc definicji funkcji h -  warunek 

h(x\ , ..., x„) jest röwne najmniejszej wartoiciyeN at takiej, zef ( x i , x„, y) = 0. 

Ostatni warunek zapisuje si$ tez w postaci 

h(xi, .... x„) = fly \f(x i , xn, y) = 0]

Symbol f iy  oznacza najmniejsz^ wartoäcy, dla ktörej, przy danych w a r to sc ia c h x i,x„, 
jest spelniony warunekf ( x \ , ..., x„, y) = 0.

Operacja minimum wyznacza wiqc funkcje, ktöra przyjmuje wartosc h(x\, x„) = y
wtedy i tylko wtedy, gdy:

•/(* ...... Xn,y )  = 0

• dla dowolnegoy'<y f(pc\ , ..., x„,y') *  0.

Jezeli dla danego zestawu wartosci x \ , ..., x„ funkcja/ nie spelnia podanych warunköw, 
to funkcja h dla tych wartosci nie jest zdefiniowana.

Przyklad 6.5

 ̂ Operacjs minimum wykorzystano do definicji funkcji ^

h\(x, y) = (juz)[isg(eq(y *z, x)) = 0]

Funkcja h\ definiuje najmniejsz^ wartoäc z takq, ze y  * z  = x. Gdy x  nie jest wielo- 
krotnoscifi y, funkcja ta nie jest okreslona.

h2(x, y) = (jlz)\y * gt(x, y  * Succ(z)) = 0]

Funkcja h2 wyznacza czqsc calkowit^ z dzielenia x  przez y.

h (x , y) = (jlz)[dif(x, z) = 0]

Funkcja A3 röwna si$ x  dla dowolnych x, y; jest wiqc röwnowazna funkcji pro- 
I jekcji j?|._________________________________ _ _ _ _ _ ______________________I

Funkcje, ktöre mozna zdefmiowac za pomoc^ operacji skladania, rekursji pierwotnej 
i minimum nazywa siq tez funkcjami ogölnie rekurencyjnymi.

Uwaga
Chociaz funkcje rekurencyjne s^ definiowane jako funkcje przeksztalcajqce liczby 
naturalne w liczby naturalne, to ich wlasnosci mozna przeniesc na dowolne fun­
kcje, ktörych zbiory argumentöw i wartosci daj£i siQ opisaö skonczonymi ci^gami 
symboli. Niech {ai, a2, ..., a,„ ...} bqdzie zbiorem symboli wykorzystywanych do



tworzenia takich opisöw. Kazdemu opisowi argumentu lub wartoSci funkcji, ktöry 
jest reprezentowany przez skonczony ciqg postaci

a i\ > a ii  > • '  a ik

mozna przyporz^dkowad w jednoznaczny sposöb liczb? naturaln^. Uniwersalny 
sposöb kodowania, zwany numeracj^ Gödla, polega na przyporz£jdkowaniu temu 
ci^gowi liczby

2''3'2

gdzie 2, 3, p k kolejnymi liczbami pierwszyrai. Dzi?ki jednoznacznosci roz- 
kladu liczb naturalnych na czynniki pierwsze mozna sprawdzic, czy dana liczba 
jest przyporzzglkowana jakiemus opisowi, a jeSli tak -  to jakiemu.

Cwiczenia

1. Maszyn? Turinga, przedstawion^w przykladzie 6.1, rozbudowac w taki sposöb, aby 
stwierdzala parzyst^ beydz nieparzyst^ liczb? symboli 1 pomi?dzy pierwsz^ kratk^ 
po lewej i pierwsz^ kratk^ po prawej stronie pocz^tkowego polozenia glowicy, ktö- 
re zawieraj^ symbol nie.

2. Zdefiniowac maszyn? Turinga, ktöra jako dan^ wejsciow^ przyjmuje liczb? natu- 
raln^ w zapisie binamym i produkuje jako wynik t? sam^ liczb? zwi?kszon^ o je­
den, röwniez w zapisie binamym.

3. Zdeflniowaö maszyn? Turinga, ktöra jako dane wejsciowe przyjmuje n-elementowy 
ci^g znaköw, neNat\{0} oraz liczb? ke {1, ..., n} i produkuje jako wynik k-ty ele- 
ment wejiciowego ci£igu.

4. Wykorzystuj^c operaej? rekursji prostej, zdefiniowac funkcj?:
a) pot?gowania,
b) minimum i maksimum dwöch liczb,
c) dzielenia calkowitego i reszty z dzielenia calkowitego.

5. Zdefiniowaöjako funkcj? rekurencyjn^ funkcj?:
a) najmniejszej wspölnej wielokrotnoSci dwöch liczb naturalnych,
b) najwi?kszego wspölnego podzielnika dwöch liczb.

6. Zakladajqc, ze znane s^ operaeje dodawania i mnozenia na liczbach naturalnych, 
defmiowaö rekursywnie operaeje dodawania i mnozenia na liczbach calkowitych.



7. J^zyki formalne i gramatyki

7.1. Ci^gi i slowa

Zbiory sq nieuporzqdkowanq kolekcjq^ pewnych elementöw. CzQsto potrzebne jest 
wprowadzenie uporzqdkowania wsröd rozwazanej kolekcji obiektöw, a jednym ze 
sposoböw uporzqdkowania jest zdefiniowanie ciqgu.

Niech A bqdzie dowolnym zbiorem. Niepustym ciqgiem o dhigosci neNat\{0} nad 
zbiorem A bqdzie siq nazywac dowolnq calkowicie okreslonqfunkcjQ o sygnaturze

j : {1, - >A
Ciqg o dhigosci zero jest ciqgiempustym i b$dzie oznaczany symbolem e.

Przez CiqgiSkonczone„(A) bqdzie oznaczany zbiör wszystkich ciqgöw skonczonych 
dhigosci neNat nad zbiorem ,4. Z definicji:

CiqgiSkonczoneo(A) =def {e}
CiqgiSkonczone„(A) =<jef {5 | s : { 1 , n) A a  dom(s) = { 1 , « } }  

dla neAfaA{0}.

Zbiorem wszystkich ciqgöw skonczonych b^dzie zatem 

CiqgiSkonczone(A) =def |^J CiqgiSkonczone„(A)
neNat

Zbiör wszystkich ciqgöw nieskonczonych nad A jest zdefiniowany jako 
CiqgiNieskonczone(A) =def {s | s : Nat\{0} —> A a  dom(s) = iVaA{0}}

Zbiorem wszystkich ciqgöw nad A jest zatem zbiör
Ciqgi(A) =def CiqgiSkonczone(A) u  CiqgiNieskonczone(A)

Dalej b$dq uzywane nastQpujqce oznaczenia: Niech s bqdzie niepustym ciqgiem nad A. 
Wartosc funkcji s dla argumentu i, czyli s(i), oznacza z'-ty element ciqgu. Skonczony 
ciqg s o dhigosci neNat\{0} nad zbiorem A jest zbiorem par:

{ < l , s ( l ) > , <n, s(n)>} 

a nieskonczony ciqg jest zbiorem par:
{ < l,s ( l)> ,...,<n, s(n)>,... }



Zwykle uzywa siQ uproszczonego zapisu ci^gu, odpowiednio w postaci:

5(1) 5(2)... s(n) lub 5(1) 5(2) ... s(n) ...
albo

0102— On lub flj 02... On ...

gdzie O/ = s(i) dla i = 1,..., n , ... dla ieNat\{0}.

Cifigi zapisywane w uproszczonej postaci bqd^ oznaczane literami greckimi a, ß, y  
itd. B^dzie si? pisac na przyklad or=def ot 02... a„, a przez len(ot) bqdzie si$ oznaczac 
dlugosc ci^gu oc. Oczywiscie len(d) = 1.

Röwnosd cüigöw oznacza röwnosc reprezentuj^cych je funkcji. Zapis a =  ß oznacza, 
ze ci^g orjest identyczny z ci^giem ß.

Przyklad 7.1
I Ciqgami nad A = {0, 1, 2, 4, 5} b$d^ napisy: I

0
001
12345

Ci^gami nad Nat bqd^. napisy:
11 
1 1
11 1 0 54

Nalezy zwröcic uwagQ na to, ze pierwszy i drugi ci^g s^ ci^gami röznymi. Pierw- 
szy sklada si$ z jednego, a drugi -  z dwöch elementöw. Aby unikad wqtpliwosci 
przy identyfikacji elementöw ciqgu, mozna stosowac elementy rozdzielajqce -  se- 
paratory, na przyklad odstqjy, jak wyzej, lub inne Symbole, rözne od elementöw 

| ciqgu.________________________________________________________________ |

Uproszczony zapis ci^göw pozwala na stwierdzenie, ze zbiör ci^göw dlugosci 
neNat\{0} nad zbiorem A mozna utozsamiac ze zbiorem wszystkich «-krotek nad 
zbiorem A, czyli z n-krotnym produktem kartezjanskim A" nad zbiorem A. Oznacza to, 
ze istnieje wzajemnie jednoznaczne odwzorowanie pomi^dzy zbiorem ci^göw o dlu­
gosci n a produktem kartezjanskim A", zatem

zbiorowi CiqgiSkonczoneo(A) odpowiada zbiör A° =def {0 } 
zbiorowi CiqgiSkonczonen(A) odpowiada zbiör A" dla oe A/aA{0}
zbiorowi CiqgiSkonczone(A) odpowiada zbiör \ j A n

n e N a t

Ci^gi zapisywane w uproszczonej postaci nazywa siq siowami, a zbiör A nazywa siq 
alfabetem. W dalszej czqsci rozdzialu bqd^uzywane wtasnie te terminy.



Zbiöp*4*jest zatem zbiorem wszystkich skonczonych slow nad alfabetem A. Zbiör wszyst- 
kich niepustych skonczonych slöw nad alfabetem A b^dzie oznaczany przez A+

A + ~is(A \{f}

7.2. Operacje na stowach

Niech dany bqdzie dowolny, co najwyzej przeliczalny, alfabet A oraz niech Al b$dzie 
zbiorem wszystkich skonczonych slöw nad A. Na slowach mozna definiowac rözne 
operacje. Podstawow^jest operacja konkatenacji slöw.

Niech a, ß  eA* b^d^dowolnymi slowami nad alfabetem.4.

Konkatenacja slöw a, ß, co zapisuje siQ a Aß, jest slowem, ktöre powstaje przez dopi- 
sanie na koncu slowa ar slowa ß. Jezeli

a  = ci\ ... a„ oraz ß  = b \ ... bm

to
a  A ß  = a \ ... a„ A ö i ... bni =def fli... an b\ ... bm 

Niech cc, ß, yeA*. Konkatenacja slöw ma nastqpujqce oczywiste wlasnosci: 

e  A e= e
£  A (X =  (X A £ =  OC

( a * ß ) A y = a A ( ß * y )

Ze wzgl^du na te wlasnosci nawiasy bqd^ dalej opuszczane.

Slowo ß  eA + jestpodslowem slowa a e A +, gdy istniejX slowa y  SeA*  takie, ze 

a= y  A ß A 5

Jezeli y  A S *  £ to  /Jjest podslowem wlasciwym slowa a, jezeli y -  $ to jest podslo­
wem poczqtkowym slowa a, a jezeli 8= £, to /Jjest podslowem koncowym slowa a.

Konkatenacja jest podstaw^do definiowania innych operacji na slowie:
• M-krotnej iteracji slowa,
• czola slowa,
• ogona slowa,
• inwersji slowa.

Niech ör= ö| ... an. Operacja w-krotnej iteracji slowa, dla neNat, jest zdefiniowana re- 
kursywnie nastqpuj^co:

a °  = d e f  £

a"+l =def a " A a  dla neNat



Operacje czola head i ogona tail, okreslone nastQpujqco: 

head(d) =def a\ oraz tail(d) =def«2 — a„

oznaczajXodpowiednio pierwszy element slowa a=  a\ ... a„ oraz nowe slowo, ktöre
powstaje z cc przez usuniQcie jego pierwszego elementu. Oczywiscie, dla dowolnego
niepustego slowa zachodzi wlasnosc

a= head(a) A tail(d)

Operacja inwersji slowa a= ... a„, zapisywana wpostaci a \  okre&lonanastgmj^co:

(X  d e f  Cln Cln-1 . . .  Q\

oznacza lustrzane odbicie tego slowa.

Przyklad 7.2
I Niech A = {a, b, c}, wöwczas slowami nad A s^na przyklad: ^

a aab cabca

Konkatenacj^. dwöch ostatnich slow jest slowo 
aabAcabca = aabcabca 

Iteracjami slöw s^ na przyklad 
a3 = aaa 
(aab)2 = aabaab 
(cabca)1 = cabca

Operacje czola i ogona dla dwöch pierwszych slow wyznaczaj^ slowa: 
head(a) = a tail(a) = e 
head(aab) = a tail(aab) = ab

Inwersjami slöw s^: 
a~x = a
(aab)~l = baa

|_____(cabca)~l = acbac_________________________________________________ |

Dla uproszczenia notacji, gdy nie bqdzie to wprowadzac niejednoznacznosci, zamiast
a A ß  A y  b^dzie si$ pisac a ß  y.

Dalej definiuje siq jeszcze dwie operacje na slowach.

Najpierw wprowadza si$ pojqcie produkcji. Para slöw ß, y&A* zapisywana w postaci 
ß : ~ y

b^dzie nazywana produkcji lub regulq przepisywania.



Produkcjq ß  ::= y  mozna traktowac tak samo jak uporzqdkowan^parQ <ß, y>.

Symbol czytany: jest zastqpowany przez, pelni rol$ separatora oddzielaj^cego dwa
elementy. Slowo ß p o  lewej stronie produkcji jest nazywane poprzednikiem, a slowo y  
po prawej stronie produkcji jest nazywane nastqpnikiem produkcji.

Niech a e  A* oraz niech ß  ::= y  bqdzie pewns). produkcji

Slowo <Jjest wyprowadzeniem ze slowa örna podstawie produkcji ß  ::= y  co zapisuje 
siq w postaci

a -™ter* >8

gdy s^ spelnione warunki:

a=  a \ß o i  
8= c(\ y a 2

Przyklad 7.3_____________________________________________________________
 ̂ Niech A = {a, b, c). Ze slowa aabcaa, stosuj^c produkcji aa ::= cba, mozna wy- 

prowadziö slowa:

cbabcaa oraz aabccba

czyli

i aabcaa—aa::=cba > cbabcaa oraz aabcaa—?a::=cba > aabccba <

Jak pokazuje przyklad, operacja wyprowadzenia nowego slowa 8  ze slowa a  na 
podstawie produkcji ß  ::= y  nie musi byc jednoznaczna. Liczba mozliwych wypro- 
wadzen zalezy od liczby wyst^pien podslowa ß  w slowie a. W szczegölnym przy- 
padku, gdy poprzednik reguly nie jest podslowem w a, nie mozna wyprowadzic 
nowego slowa.

Niech a ::= ß  bqdzie produkcji, w ktörej poprzednik jest tylko pojedynczym symbo- 
lem a eA  (slowem dlugosci jeden), a nastqpnik -  jak poprzednio -  jest dowolnym 
slowem ß eA *  nad alfabetem A. Produkcja takiej postaci bqdzie nazywana podsta- 
wieniem.

Niech a e  Al oraz niech a ::= ß  bqdzie pewnym podstawieniem.

Slowo y  powstaje ze slowa aprzezpodstawienie a ::= ß, co zapisuje siq w postaci 

a[a ::= ß\

gdy kazde wyst^pienie symbolu a w slowie arjest zastEipione slowem ß.



Przyklad 7.4___________________________________________________________
 ̂ Niech A = {a, b, c). W wyniku operacji okreslonej przez podstawienie a ::= c. 

slowo abcab zostanie przeksztalcone w slowo
cbabccbab

czyli
abcab[a ::= c6fl] = cbabccbab 

Podobnie:
a£>6flcc[fl ::= c6c] = cbcbbcbccc 
abbacc[b ::= cöc] = acbccbcacc 

I a£6flcc[c ::= cöc] = abbacbccbc

7.3. J^zyki formalne
Jqzykiem formalnym L nad alfabetem A nazywa siQ dowolny podzbiör zbioru A*, czyli 
LcA*.

jQzyk formalny jest tylko pewnym przyblizeniem j^zyka naturalnego lub sztucznego, 
gdyz wyraza on tylko skladniowy aspekt j^zyka. W mysl wprowadzonej definicji alfabe­
tem dla jqzyka naturalnego jest zbiör slow w danym jqzyku, a odpowiadajXcy mu jqzyk 
formalny moze byc zbiorem wszystkich zdan w tym jQzyku. W przypadku jqzyka pro- 
gramowania alfabetem jest zbiör symboli leksykalnych, a odpowiadajqcy mu jqzyk for­
malny definiuje zbiör wszystkich poprawnie tekstowo zbudowanych programöw. Jqzyk 
formalny nie okresla znaczenia i tym samym nie gwarantuje sensownosci zdania czy 
programu, wyraza wylqcznie poprawnosc tekstow^ (skladniowcQ zdania lub programu.

Przyklad 7.5_____________________________________________________________
 ̂ Niech A = {a, b, c}, wöwczas j^zykami formalnymi nad A s^ na przyklad skon- 

czone zbiory slow:
{«}, {aab, c}, {a, b, c, ab, cba}

Wykorzystuj^c operacjq ^-iteracji slöw, dla keNat\{0}, mozna zdefmiowac röw- 
niez pewne nieskonczone jqzyki formalne nad A, na przyklad:

{seA* | s = a*A b 'A cm a k < l < m a k, l, meNat}
|_____ {a, b, c, ab, cba} u  {seA* | s = akA bk+i a JceNat}________________________ |

Niech A oraz B b$d^ dwoma alfabetami. Funkcjs h : A* —» B* nazywa si$ morfizmem 
wtedy i tylko wtedy, gdy dla dowolnych a, ß e A *

h ( a A ß)  = h (ä )A h(ß)

Morfizm nazywa siq izomorßzmem, gdy h jest funkcj^ röznowartosciow^..



Przyklad 7.6
 ̂ Dia alfabetöw A = {0, 1, 2 , 9 }  oraz B = {0, 1} izomorfizmem jest funkcja ^

h(0) = 0000, A(l) = 0001......h{9) = 1001

I wyrazajqca kodowanie biname liczb dziesi^tnych,____________________________I

Warto zwröcid uwagQ, ze alfabet przeliczalny A nie ma wiqkszej sily ekspresji niz 
dowolny alfabet skonczony B. Oznacza to, ze dla dowolnego jqzyka formalnego 
Lyt c  A* istnieje taki jQzyk LB q  B*, ze istnieje wzajemnie jednoznaczne odwzorowa- 
nie pomiqdzy obu jgzykami f : L A-> LB.

Istotnie, niech b$dzie dany przeliczalny alfabet A o symbolach a\, a2, a3, ... oraz alfa­
bet B zawierajXcy tylko dwa Symbole, na przyklad 0, 1. Istnieje wzajemne odwzoro- 
wanie elementöw alfabetu A w pewien podzbiör ci^göw zero-jedynkowych nad alfa- 
betem B. Na przyklad ci^gi biname 1, 11, 111,... itd. mog^ byd kodami indeksöw ko- 
lejnych symboli au a2, a3, ... Dowolne slowo nad alfabetem A mozna przestawiac jako 
konkatenacji odpowiednich ci^göw kodujXcych nad alfabetem B. Na przyklad slowo 
a3 a2 a2 w alfabecie A bqdzie jednoznacznie reprezentowane przez slowo 111011011 
w alfabecie B -  symbol 0 pelni tu rolq separatora migizy kodami kolejnych symboli 
alfabetu A. Oznacza to, ze dla dowolnego jqzyka formalnego LA nad A istnieje funkcja, 
ktöra wzajemnie jednoznacznie odwzorowuje ten j$zyk w pewien j^zyk LB nad B. 
Ci^gi biname mog^ pelnic tq sam^ rolq, jak^ peinig Symbole alfabetu A, co wyjasnia 
powszechnosc stosowania kodowania binamego.

Poniewaz jqzyki formalne s^ zbiorami, mozna wiqc na nich wykonywac dowolne 
operacje mnogosciowe. Jezeli L\, L2 s^ jqzykami nad alfabetem A, to takze L\ u  L2, 
L\ n  L2 oraz L\!L2 s^ jgzykami nad A.

Naj^zykach mozna zdefiniowac operacje konkatenacji, ktöra jest uogölnieniem kon- 
katenacji zdefiniowanej na slowach. Konkatenacja jqzyköw L\ c  A , L2cz B  , ozna- 
czana L\ A L2, jest okreslona nastqpuj^co:

Lx A L2 =def { a ß | a e A \  ß e ß ' }

Korzystaj^c z konkatenacji jqzyköw, wprowadza siq operacjq iteracji jqzyköw, okre- 
slon^dla dowolnego jQzyka i liczby naturalnej n w sposöb nastgmj^cy:

L° =def {£}
Ln+'= de{Ln AL dla nsN at

oraz operacje domkniqcia jqzyka (nazywan^ takze gwiazdk^ Kleenego) okreslon^ 
jako

L '=  der U  Ln
n eN a t



Podobnie mozna uogölnic operacje czola, ogona i inwersji dla jQzyka L c  Al \

HEAD(L) =def {aeA* \ 3ßeA*» ocßeL}
TAIL(L) =def {ßeA* \ 3 cceA*» aßeL }
L~' =def {a \ oT 'eL}

7.4. Gramatyki bezkontekstowe

Nietrywialne j^zyki formalne skladaj^ si$ z nieskonczenie wielu slöw. Nie mozna ich 
definiowac enumeracyjnie, czyli przez jawne wyliczenie slöw. Nieskonczone jqzyki 
formalne definiuje siQ rekursywnie, przy czym wykorzystuje siq specyficzny mecha- 
nizm oparty na pojqciu gramatyki jqzyka formalnego.

Gramatyka bezkontekstowa G jest czwörk^

G=ier< T,N ,P ,S>

gdzie:
T  jest skoiiczonym zbiorem, nazywanym alfabetem symboli terminalnych,
N  jest skonczonym zbiorem, nazywanym alfabetem symboli nieterminalnych,
P  jest skonczonym zbioremprodukcji,
S  jest wyröznionym symbolem nieterminalnym, nazywanym symbolem poczqtko- 

wym.

Zaklada si$, ze zbiory symboli terminalnych i nieterminalnych s^ rozl^czne, to jest 
N n  T=  0

O pojedynczej produkcji pe P  zaklada siq, ze jest postaci 
v ::= a

gdzie jej poprzednik v moze byö dowolnym symbolem nieterminalnym, czyli veN,  
a jej nastqpnik a  moze byö dowolnym niepustym slowem nad sum^ mnogosciow^ 
zbioröw symboli terminalnych i nieterminalnych, czyli a e ( T \ j  N)+.

Gramatyka G generuje pewien jqzyk formalny L(G) c  T*. Nieformalnie jest to zbiör 
wszystkich slöw nad alfabetem T, ktöre mozna wyprowadzic z symbolu poczqtkowe- 
go gramatyki S, za pomocq.przeksztalcen, okreslonych przez zbiör P  produkcji grama­
tyki.

Niech dane bqd^.dwa slowa a, ß e ( T u N ) +.

Slowo ß  jest w gramatyce G bezposrednio wyprowadzane ze slowa a, gdy istnieje 
taka produkcja p e  P, ze



Fakt bezposredniego wyprowadzenia slowa ß  ze slowa a  w gramatyce G zapisu- 
je si?:

a  G~*ß 

lub

a ------>ß

gdy z kontekstu wynika, o jak^ gramatyki chodzi.

Slowo /?jest w gramatyce G wyprowadzone ze slowa a, gdy istnieje skonczony ci^g 
slöw ß\, ß i , ..., ßne (T ^ j  N)+ taki, ze

u = ß \ ßn = ß

oraz

ßi —g-> ß M dla /e {1, 2, tj-1 }

Dalej Symbol gramatyki G bqdzie pomijany.

Fakt, ze slowo ß  jest wyprowadzane ze slowa a, zapisuje siq w postaci 

a —*-^>ß

jQzykiem formalnym L(G) generowanym przez gramatyki G jest zbiör 

L{G)=M { a e r  \ S ——>a}

Slowo aeL{G) nazywa siq tez slowem wywodliwym w gramatyce G. Generowany przez 
gramatyki G jqzyk Z,(G) jest zatem zbiorem wszystkich slow wywodliwych w G.

Ponizej rozpatrujemy przyklady gramatyk i wyprowadzenia slöw, przy czym zapis 
produkcji jest oparty na powszechnie stosowanej tzw. notacji BNF (Backus17 Normal 
Form lub Backus-Naur Form). Notacja ta wprowadza bardziej zwarty zapis produkcji, 
ktöre maj^ tQ sam^ lew^ stronq. Zestaw produkcji, na przyklad:

v ::= «i 

v ::= On

zapisuje siq w postaci 

v ::= or, | ... | cfe

gdzie, jak poprzednio, ve/Zoraz CC\ , ..., a„, e ( 7 u  N)+. Symbol | czyta siq lub.

17 John Backus (ur. 1924).



Przyklad 7.7
 ̂ Zbiör identyfikatoröw tworzy pewien jqzyk formalny. Zbiör ten poprzednio byl' 

definiowany nastqpuj^co:
Ident =def {•? | s jest niepustym ciqgiem skladajqcym siq z liter lub cyfr, ktöre- 

go pierwszym elementem jest litera}

Generuj^ca zbiör identyfikatoröw Ident gramatyka Gm jest zdefiniowana nastq- 
puj^co:

Gm =def <I'm, Um, Pm, Sid> 
gdzie:

Tm =def {a, b , .... z} u  {0, 1 , 9 }
Um =def {identyfikator, znak, litera, cyfra}
P/d =def {identyfikator ::= litera \ identyfikator znak 

znak ::= litera\ cyfra 
litera ::= a \ b | ... | z 
cyfra ::= 0 | 1 | ... | 9}

S/d = identyfikator
Poszczegölne produkcje w zbiorze s£i pisane w oddzielnych wierszach, bez od- 
dzielania przecinkiem.

Rozpatruje siq dwa przyklady wyprowadzenia konkretnych identyfikatoröw. 
Pierwsze wyprowadzenie:

identyfikator —'den'yJ,kalor- ,llera > Utera

Utera-JSESL^a

z symbolu pocz^tkowego identyfikator wyprowadza jednoelementowe slowo a. 

Drugie z tego samego symbolu pocz^tkowego wyprowadza slowo 68:

identyfikator—'de",yl,ka‘or- ulen,yf'kiaormak > identyfikator znak 

identyfikator znak — ■> identyfikator cyfra 
identyfikator cyfra—,denty)'kator- b,era >litera cyfra 

litera cyfra— >6 cyfra 

b cyfra cyfra::=* >68 

Pokazano zatem dwa wyprowadzenia: 

identyfikator — > a 
identyfikator — > 68

I Oznacza to, ze aeL(Gm) oraz 68eZ,((j/D).________________________________



Przyklad 7.8_____________________________________________________________
 ̂ Przyklad pokazuje zbiör napisöw reprezentuj^cych liczby wymieme w zapisie! 

dziesiqtnym. Gramatyka Gdec jest zdefiniowana nastqpuj^co:

GdEC =def <TdEC, NpEC, PDEC, SdEC> 
gdzie:

TdEC= def {0, 1 , 9 }  u  {.}
Ndec =def {liczba, liczba_calkowita, kropka, cyfra}
Pdec =def {liczba ::= liczba_calkowita |

liczba_calkowita kropka liczba calkowita 
liczba calkowita ::= cyfra | liczba_calkowita cyfra 
kropka ::=. 
cyfra ::= 0 | 1 | ... | 9}

Sdec = liczba

Latwo sprawdzic, ze na przyklad stowa 10.9 oraz 213 wyprowadzalne 
■ w gramatyce GDEC, natomiast slowo .01 nie jest wyprowadzalne w GDec- \

Stosowane jQzyki formalne, opröcz trywialnych przypadköw, zbiorami nieskon- 
czonymi i dlatego nie ma algorytmöw generuj^cych wszystkie slowa jqzyka. Prak- 
tycznie rozwi^zuje siq dwa zadania.

Pierwsze jest zadaniem analizy -  polega na zbadaniu, czy dane slowo jest elementem 
danego j^zyka L{G). Z tym zadaniem spotyka siq podczas kompilacji programu. Celem 
pracy kompilatora jest w pierwszej kolejnosci stwierdzenie, czy program jest poprawny 
skladniowo.

Drugie jest zadaniem generacji -  polega na wygenerowaniu pewnego podzbioru 
slow jqzyka, na przyklad wszystkich slow o ustalonej dlugosci.

7.5. Klasyfikacja gramatyk
Rozpatrzona gramatyka bezkontekstowa jest szczegölnym przypadkiem szerszej klasy 
gramatyk, zwanych gramatykami Struktur frazowych. Gramatyka Struktur frazowych 
jest tak  ̂sam^ czwörk^jak gramatyka bezkontekstowa, czyli

G = <T, N, P, S>
a röznica dotyczy tylko ogolniejszej postaci produkcji. Niech V= T  u  N. Produkcja albo 
regulaprzepisywaniapePjest tu dowoln^par^slow ore V+ oraz V* zapisywan ,̂ jak 
poprzednio, w postaci a  ::=  ß. Generowanie j^zyka formalnego przez gramatykq Struktur 
frazowych jest definiowane, podobnie jak poprzednio, dla gramatyki bezkontekstowej.

Zgodnie z klasyfikacja wprowadzon .̂ przez Chomsky’ego wyröznia si$ cztery typy 
gramatyk Struktur frazowych rözni^ce siq postaci^ dopuszczalnych produkcji.



Gramatyki klasy 0, zwane gramatykami bez ograniczen, majX nastgmjeic^ postac pro- 
dukcji

a : ~ ß  &\ aaeV* , ß&V'
Gramatyki klasy 1., zwane gramatykami kontekstowymi, wymagaj^, by produkcje byly 
postaci

et] v a 2 ot\ ß  a 2 dla ot\, a 2e V\  v e N, ß e V *
Gramatyki klasy 2., zwane gramatykami bezkontekstowymi, wymagajet, by produkcje 
byly postaci

v::= ß  dla veN,  ß e  V*
Gramatyki klasy 3., zwane gramatykami regularnymi, wymagaj^, by produkcje byly 
postaci (gramatyki prawostronnie regulame)

v::=ßu  dla veN,  u e N u  { e } , ß e  K+
albo postaci (gramatyki lewostronnie regulame)

v: :=uß  dla veN,  u e N u  { e } , ß e  V*

Latwo siq przekonac, ze kazda produkcja gramatyki i jest jednoczesnie produkcje 
gramatyki j ,  dla 0 <j  < i < 3. Kazdy zatem j^zyk formalny wygenerowany przez pew- 
n^ gramatykq klasy i jest röwniez generowany przez pewn^ gramatykq klasy j .  Ozna- 
czaj^c symbolami L 0, L\, L2, L 3 zbiory j^zyköw formalnych generowanych przez gra­
matyki poszczegölnych klas, mozna stwierdzic, ze zachodz^inkluzje wlasciwe 

I 3c I 2c I i c I o
co oznacza, ze wsröd jqzyköw generowanych przez 
gramatyki klasy j istnieje co najmniej jeden j^zyk, 
ktöry nie jest generowany przez gramatyki klasy j ,  dla 
0 < i <j  (rys. 7.1).

Gramatyki klas 1., 2. i 3. S£̂  gramatykami nieskraca- 
jqcymi, co oznacza, ze diugosc nowego slowa nie jest 
mniejsza od dlugosci starego slowa, do ktörego zasto- 
sowano produkcje gramatyki.
Nieskracalnosc gramatyki umozliwia efektywne badanie,
czy dane stowo jest wywodliwe w gramatyce. Oznacza Rys- 71 • H ierarchia C hom sky’ego 

to, ze mozna zbudowac algorytm, ktöry dla dowolnego Ĵ zyk6w formalnych 
slowa, po skonczonej liczbie kroköw, rozstrzyga, czy to 
slowo jest wyprowadzalne w danej gramatyce.

Schemat takiego algorytmu jest oczywisty. Niech a  bqdzie badanym slowem. Naj- 
pierw generuje siq zbiör Z\ wszystkich slow bezposrednio wyprowadzalnych z symbolu 
poczqtkowego gramatyki, ktörych diugosc nie przekracza dlugosci badanego slowa a. 
Nastqpnie genemje si$ zbiör Z2 wszystkich slow, ktöre s^ bezposrednio wyprowadzal­
ne ze slow zbioru Z\, ktörych diugosc nie przekracza dlugosci badanego slowa (X. Da-



lej generuje siQ zbiör slow Z3, ktöry jest bezposrednio wyprowadzalny ze zbioru Z2, 
itd. Kazdy z wygenerowanych zbiorow jest oczywiscie skonczony. PostQpowanie takie 
prowadzi siq do momentu, gdy w zbiorze generowanych slöw napotka siQ na slowo a  
albo gdy dlugosc wszystkich stow nalez^cych do ostatniego zbioru bqdzie przekraczac 
dhigosc slowa a. Pierwszy przypadek oznacza, ze a  nalezy do jqzyka generowanego 
przez dan^. gramatykq, a drugi, ze ornie nalezy do tego j^zyka.

7.6. Drzewa rozbioru i diagramy skladniowe

Dysponuj^c pojQciem grafu, mozna zdefiniowac drzewo wywodu -  graf ilustrujXcy 
wyprowadzenia slowa w gramatyce, zwlaszcza w gramatyce bezkontekstowej.

Drzewem wywodu dla gramatyki G =def <T, N, P, S> jest graf-drzewo T  = <V, A>, 
gdzie A c  V2, ktörego wierzcholki V sq. etykietowane symbolami ze zbioru T  u  N  
w taki sposob, ze:

• korzen drzewa jest etykietowany symbolem pocz^tkowym S,
• kazdy lisc drzewa jest etykietowany symbolem terminalnym ze zbioru T,
• jezeli wqzet v ma etykietQ e i wQzly vi, v2 ) v„ s^jego nast^pnikami, to znaczy

<v, vi>, <v, v2>......<v, v„> eA , o etykietach et, e2, ..., en, to e ::= e\ e2 ... en musi
byc produkcj^ gramatyki.

Przyklad 7.9
I Dia przedstawionej wczesniej gramatyki GDEC = d e f  < T D e c , N D E c , P d e c , S D E c >  drzeJ 

wo wywodu dla slowa 10.9 ma postac jak na rysunku 7.1.

liczba

 ̂ Rys. 7.2. D rzewo wywodu slow a 10.9



Jezeli dla pewnego slowa istniejct dwa rözne drzewa wywodu, to gramatykQ nazywa 
siq skladniowo wieloznacznq. Gramatyka GDEc jest skladniowo jednoznaczna, nato- 
miast nie jest ni^ponizej zdefiniowana gramatyka Gw.

Przyklad 7.10
I Niech I

Gw = def <Tw> Nw, PW, Sw> 

gdzie:
Tw= {wyrazenie, skladnik, czynnik)
N w= {a, b, c, *,/,  (, )}
Pw ~ {wyrazenie ::= skladnik \ skladnik + wyrazenie | skladnik -  wyrazenie 

skladnik ::= czynnik \ czynnik * czynnik \ czynnik \ czynnik 
czynnik ::= a \ b | c | (wyrazenie)}

Sw — wyrazenie

W celu przekonania siq o niejednoznacznosci gramatyki Gw wystarczy rozpatrzyc 
I mozliwe wywody, na przyklad slowa a + b - c . __________________ __________ |

Pojqcie drzewa rozbioru stanowi mi^dzy innymi podstaw^ do okreslenia röwnowaz- 
nosci gramatyk.

Dwie gramatyki Gi oraz G2 S£t slabo röwnowazne, jezeli generuj^ te same jQzyki, to 
znaczy L{G\) -  L{G2), oraz s^ silnie röwnowazne, jezeli generuj^te same zbiory drzew 
rozbiorow.

Niech T\ = <Vh A\>, T2 = <V2, A2> bqd^drzewami rozbioru oraz niech h : Vt —> V2.

Funkcja h zachowuje relacjq wtedy i tylko wtedy, gdy dla dowolnych v, v'e Vu jezeli 
<v, v '>gA\*, to <h(v), h(v')>e A2, gdzie A* i A^ s^ zwrotnymi, przechodnimi dom- 
kni^ciami relacji A\ i A2.

Jezeli funkcja h zachowuje relacji A\ oraz dodatkowo jest bijekcj^ to jest nazywana 
izomorfizmem drzewa T\ w drzewo T2.

Grafy s^takze wykorzystywane do prezentacji produkcji gramatyki w postaci diagramow 
skladniowych. Wierzcholki tego grafu s^ etykietowane symbolami ze zbioru T u N .  Kaz- 
dej produkcji odpowiada pojedynczy graf z etykietowanymi wierzcholkami, ktory ma 
dokladnie jeden wierzcholek niemaj^cy poprzednikow, zwany poczqtkowym, i do- 
kladnie jeden wierzcholek niemaj^cy nastqpniköw, zwany koncowym. Wierzcholki te 
nie s^ etykietowane. Kazdej sciezce, ktöra w grafie prowadzi od wierzcholka pocz^t- 
kowego do wierzcholka koncowego, odpowiada pewien ci^g etykiet wierzcholkow ze 
zbioru T kj N. Ci^g etykiet stanowi ci^g symboli, ktöre mozna wygenerowac na pod- 
stawie danej produkcji.



Przyklad 7.11_________________________________
 ̂ Produkcjom wczesniej zdefmiowanej gramatyki 

diagramy skladniowe pokazane na rysunku 7.2.
Gw odpowiadajX nastqpujqce!

wyratenie
skladnik ■>

czyrmik

skladnik

czyrmik

czyrmik

>

Rys. 7.3. D iagram y skladniow e gram atyki Gw

Pierwszy z diagramöw, opisuj^cy produkcjQ wyrazenie, jest grafem zawierajqcym 
cykl. Powodem pojawienia si? cyklu jest to, ze symbol wyrazenie wystQpuje za- 
rowno po lewej, jak i po prawej stronie produkcji, przy czym po prawej stronie 
wystqpuje na koncu ci^gu symboli.

WystQpowanie takiego samego symbolu po lewej i po prawej stronie produkcji, 
a tym samym istnienie cyklu na diagramie skladniowym, mozna interpretowac 
jako rekursywn^ definicjq zbioru slöw wyprowadzanych na podstawie danej pro- 

I dukcji.________________________________________________________________I

7.7. Automaty i gramatyki

Gramatyki s^ mechanizmem generowania jqzykow formalnych. Z gramatykami scisle 
si$ wi^ze pojQcie automatow skonczonych jako mechanizmu sluz^cego do rozpozna- 
wania, czy dane slowa nalez^do danego jqzyka formalnego. Przedstawiona dalej defi- 
nicja automatu skonczonego prezentuje tylko pewnEi klasq automatow skonczonych,



shiz^cych do rozpoznawania slöw nalez^cych do j^zyköw klas L3 oraz L 2. Sei to auto- 
maty Rabina-Scotta (RS) oraz automaty ze stosein.

Automat skonczony jest modelem urz^dzenia, ktörego zadaniem jest rozpoznawanie, 
czy slowa podawane na jego wejscie s^ stowami danego j^zyka formalnego. Automat 
dziala krokowo; kolejne kroki s^ zwi^zane z analizq. kolejnej litery slowa podawanego 
na jego wejScie. Automat w kazdym kroku swego dzialania jest w okreslonym stanie. 
Dzialanie rozpoczyna w ustalonym stanie pocz^tkowym, a konczy, gdy zostanie prze- 
czytane cale badane stowo. Podczas kolejnych kroköw automat przechodzi pomi^dzy 
stanami, co nastQpuje na skutek odczytania na wejsciu kolejnej litery analizowanego 
slowa. Po zakonczenie dzialania, to znaczy po odczytaniu ostatniej litery analizowa­
nego slowa, automat znajdzie si$ w pewnym stanie. Jezeli jest to jeden z jego stanöw 
koncowych, oznacza to, ze slowo nalezy do jqzyka formalnego akceptowanego (roz- 
poznawanego) przez automat.

Formalnie skonczony automat a/cceptujqcy RS jest okreslony jako piqtka 

A = < S ,X ,S ,s0,F >  

gdzie:
S  jest skonczonym zbiorem stanöw,
X  jest alfabetem -  zbiorem symboli wejSciowych,
S: S  x X -» S  jest funkcj^ zmiany stanöw,
So jest stanem pocz^tkowym, 
f c S  jest zbiorem stanöw koncowych.

Dzialanie automatu przy analizie slowa wejsciowego xi, x2, x „ ,  dla n > 0, polega na 
wykonywaniu ci^gu kroköw, ktöre okreslaj^ ci^g stanöw:

so, *si> •••> sn 
taki, ze

• S * + 1  =  ö(sh Xk) d la k =  1 , . . . ,  n

Slowo *i, x2, ..., x„ jest akceptowane przez automat, gdy skeF , i nie jest akceptowane 
w przypadku przeciwnym. Zbiör wszystkich akceptowanych slöw, oznaczany L(RS), 
stanowi jQzyk formalny akceptowany przez automat RS.

Przyklad 7.12
I--------------------------------------------------------------------------------------------------------------1Automat RS  postaci <S, X, S, s0, F>, gdzie:

■S1 *̂1» *̂3}
X =  {a, b}
F=  {*<,}
£(•*<), a) = s2, ö(s0, b) = s{
S(s\, a) = 53, S(su b) = so



S(s2, ä) = Jo, S(s2, b) = J3
S(si, a) = j], £(j 3, 6) = j 2

mozna przedstawic graficznie w postaci pokazanej na rysunku 7.4.

Mozna tez latwo sprawdzic, ze jqzykiem formalnym akceptowanym przez automat 
jest L c  {a, b}* taki, ze

L = {ar| /en(ör|„)jest parzysta oraz /en(er|Ä) jest parzysta},

gdzie: lenket) oznacza dhigosc ci^gu a, a a |fl oraz oznaczaj^ podei^gi ci^gu er 
I zlozone wyi^cznie z symboli a oraz Z>. .

Pomiqdzy skonezonymi automatami RS  a gramatykami zachodz^nastqpuj^ce zwi^zki:

• Dia kazdego jQzyka formalnego klasy L3 istnieje skonezony automat RS  akeeptu- 
j^cy ten j$zyk, to znaczy kazde skonezone obliczenie automatu konczy siQ osi^- 
gni^ciem stanu koncowego.

• Kazdy jqzyk akeeptowany przez skonezony automat RS jest jqzykiem klasy Ly  

jQzyki klasy Z3 nazywa si$ jqzykami regularnymi.

Rozpoznawanie j^zyköw klasy L 2, czyli j^zyköw bezkontekstowych, moze byc röw- 
niez realizowane przez automaty, z tym ze s^ to bardziej zlozone automaty, nazywane 
automatami ze stosem (rys. 7.5).

Stos jest pewnego rodzaju pami^ci^ w ktörej przechowuje siq ci^gi symboli z danego 
repertuaru symboli. Na stosie mozna wykonywac dwie zasadnicze operaeje: dopisy- 
wania symbolu do stosu lub odezytywania i zdjQcia elementu ze stosu. Jezeli zawarto- 
scias. stosu jest ci^g symboli q\ q2 ... qk, to dopisanie symbolu q' polega na dolqczeniu 
go na pocz^tku eictgu, czyli zmieni jego zawartosc na q'q\ q2 ... qk, zdj^cie natomiast



elementu ze stosu polega na usuni^ciu elementu na pocz^tku ci^gu, czyli zmieni jego 
zawartosc na q i ... qic-

Rys. 7.5. Automat ze stosem

Automat ze stosem AS1 jest definiowany jako siödemka 

AS  = <S, X, Q, 8, s0, qo, F> 

gdzie:
S  jest skonczonym zbiorem stanöw,
X  jest alfabetem -  zbiorem symboli wejsciowych,
Q jest skonczonym zbiorem symboli skladowanych na stosie, 
J : S x ( J u { f } ) x Ö ^  pfi„(S x Q')

jest funkcj^ zmiany stanu i zawartosci stosu ( p fin{Z) oznacza rodzinq wszyst- 
kich skonczonych podzbioröw zbioru Z),

So jest stanem pocz^tkowym,
q0 jest symbolem pocz^tkowym znajduj^cym si$ na stosie,
F c S  jest zbiorem stanöw koncowych.

Jezeli zbiör S(s, x, q) dla kazdego seS, x&X, qe Q zawiera co najwyzej jeden element, 
to automat AS  jest automatem deterministycznym, w przypadku przeciwnym -  jest 
automatem niedeterministycznym.

Dziatanie automatu AS  przebiega krokowo, a w kazdym kroku nastqpuje zmiana kon- 
figuracji automatu. Konfiguracjami automatu s^tröjki:

< j, O), c o e S x X *  x Q*

gdzie:
s jest aktualnym stanem urz^dzenia steruj^co-czytaj^cego, 
lo jest czQsci^ analizowanego stowa, nieprzeczytanq. jeszcze przez glowicq czyta- 

jeLĉ j pierwszy symbol ci^gu ö)znajduje si$ pod glowic^ czytaj^c^; jezeli sym-



bolem tym jest £ (slowo puste) oznacza to, ze cale slowo zostalo juz przeczy- 
tane,

a  jest aktualni zawarto§cii stosu.

Krok dzialania automatu AS  polega na przejsciu z konfiguracji do konfiguracji w wy- 
niku przeczytania pojedynczego symbolu analizowanego slowa. Przejscie takie bqdzie 
opisywane re la c ji------ > i zapisywane w postaci

<s, xm, qa > ----- ><s', (0 ,ßo0

jezeli zbiör 6(s, x, q) zawiera parQ <s\ ß>, gdzie s, s'eS, x e X u  {£}, coeX*, qeQ  
oraz a, ß e  Q*.

Jezeli x  *  e, to automat AS  jest w stanie s, x  jest symbolem znajdujicym si$ pod 
glowici czytajici, q jest symbolem b$dicym siq na szczycie stosu. Automat prze- 
chodzi do nowego stanu s', przesuwa glowicq czytajici o je d n i pozycjs w prawo 
i zamienia Symbol na szczycie stosu ciqgiem ß  zlozonym z elementöw zbioru sym- 
boli Q. Jezeli ß  = e, to usuwa si$ element ze szczytu stosu, skracajqc tym samym 
jego zawartosd.

Jezeli x  = e, to oznacza, ze cale slowo zostalo przeczytane. W kroku tym, nazywanym 
e-krokiem, automat AS  nie przesuwa glowicy czytajicej, jednak stan automatu i za- 
wartosc stosu m ogi si$ zmieniac.

Poczitkowi konfiguracji automatu AS  jest <s0, (O, q0>, co oznacza, ze automat znajdu- 
je siQ w stanie poczitkowym s0eS , pod glowicy czytajici znajduje siq pierwszy Sym­
bol analizowanego slowa coeX*, a zawartoscii stosu jest tylko jeden poczitkowy 
Symbol q0e Q. Konfiguracji koncowi jest konfiguracja postaci <s, £ , e>, gdzie seF.

Slowo jest akceptowane przez automat AS, jezeli 

<s0, O), qö>—-—><s, e, e>,

gdzie — —> jest zwrotnym i przechodnim domkniqciem relacji------>.

Zbiör wszystkich akceptowanych slow, oznaczany L(AS), stanowi j^zyk formalny 
akceptowany przez automat AS.

Przyklad 7.13
' Automat AS  postaci <S, X, Q, 6, s0, q0, F>, gdzie: ~  I

S=  {50, $1, ^2}
* =  {0, 1} 
ö  = {qo, 0}
f =  {*0}

8(sq, 0, q0) = {<J!, 0qo>}



S(sh 0, 0) = {<5,,00>}
S (s i ,\ ,0 )  = {<s2, £>}
S(s2, 1, 0) = {<52) e>} 
ö(s2, e, q0) = {<so, £>}

Zilustrujmy dzialanie automatu podczas analizy konkretnego slowa 0011:

<5o,0011,9o> ------ »<si, 011, 0qö>
------ *<?i, ll,OO^o>
------ ><52, 1, 0^o>
------ > <52, £, qö>
------ ><50, £, £>

Ogölnie, mozna pokazac, ze:

<50, 0, qo> ------ > <s\,£, 0qd>
<5,, 0', 0qo> — <s, , £, 0'+l9o>
<5|, 1, O '* '^ ------ »<*2, £y
<52, 1', 0'qo>— —̂> <52, £, qd>
<$2, £, qö>------ > <^0, 5

Na tej podstawie mozna pokazad, ze dla n > 1 zachodzi

<50, 0"1", qo> 2n+i ) <50, £  f>  
oraz

<s0, £, tfo>— » <^o, £  qo>

co oznacza, ze zbiör akceptowanych slow zawiera siq w jqzyku L = {O"!" | n > 0}. 
I Pomijamy tu pokazanie faktu, ze automat akceptuje slowa tylko z tego jgzyka. |

Rozpoznawanie j^zyköw klas L\ oraz L 0 jest jeszcze bardziej zlozone. Pomijaj^c 
szczegoly, ograniczymy siq tu do stwierdzenia, ze do rozpoznawania j^zyka dowol- 
nej klasy, a wiqc röwniez klasy L 0, mozna zbudowac odpowiednict maszynq Tu- 
ringa.

Uwaga
Bardziej szczegölowe informacje o j^zykach formalnych, gramatykach i automa- 
tach skonczonych mozna znalezd na przyklad w ksi^zce [Hopcroft, Ullman 2003].

Pojqcie automatu skonczonego jest czqsto uzywane w röznych obszarach informa- 
tyki, zwlaszcza w projektowaniu ukladöw cyfrowych z pamiqci^ (w odröznieniu 
od ukladow cyfrowych bez pamiqci -  bramek logicznych, zob. rozdz. 9.). Najczqs-



ciej spotykanymi tarn pojQciami skonczone automaty Moore’a i automaty 
Mealy’ego. Oba automaty modelami „czamej skrzynki” z jednym wejsciem 
i jednym wyjsciem (rys. 7.6). Na podstawie ciqgu symboli czytanych na wejsciu 
automat podaje na swoje wyjscie inny ciqg symboli; ciqg wyjsciowy jest wynikiem 
przetworzenia ciqgu wejsciöwego. Poniewaz automaty te mozna stosowac zamien- 
nie, ponizej podaje siQ tylko defmicjq automatu Moore’a AM:

AM  = <X, Y, S, S, X, 5o>

gdzie:
X  jest skonczonym zbiorem symboli wejSciowych,
Y jest skonczonym zbiorem symboli wejsciowych,
S  jest skonczonym zbiorem stanöw,
S : X x S —>S jest funkcjq.przejsc,
A : S  Y jest funkcj^wyjSc, 
s0 jest stanem poczqtkowym.

Rys. 7.6. Schemat automatu Moore’a

Automat AM  przetwarza cizigi x2, ..., x,„ ... symboli alfabetu wejsciowego X  
w ciqgiyi,y2, — ,y«. — symboli alfabetu Y. Przetworzenie to jest okreslone nastqpu- 
jqco: Niech

Sq9 5 |j S2, - m ĥ»

b^dzie ci^giem stanöw takim, ze

% i = &(xkt ^t)i ^ 1» 2,..., n , ...

wöwczas y k = A(sjt).



Cwiczenia

1. Niech vl =def {+, =}. Ktore z ponizszych zdan s^prawdziwe?
a) Mozna utworzyc co najwyzej skonczon^ liczbQ j^zykow formalnych nad alfabe­

tem .<4.
b) Mozna utworzyc dokladnie 4 slowa nad alfabetem A.
c) Zbior { ++, +++, =, += } jest pewnym j^zykiem formalnym nad A.
d) Nad alfabetem A mozna utworzyc dokladnie 24 j^zyköw formalnych.
e) Zbior wszystkich slow nad alfabetem A definiuje pewien nowy alfabet A'.

2. Niech A =def {0, 1}, B =def {0, 1 ,2 ......n} oraz C = Nat. Ktore pary sposrod zbioröw
A \  B*, C* zbiorami röwnolicznymi?

3. Czy zbior liczb naturalnych Nat jest röwnoliczny ze zbiorem Nat* -  zbiorem 
wszystkich skoriczonych ci^göw nad Nat?

4. Czy zbior wszystkich jQzyköw formalnych nad przeliczalnym alfabetem A jest prze- 
liczalny?

5. Niech L b^dzie jQzykiem formalnym nad alfabetem {0,1}. Dwa slowa u, v e  {0,1}* 
s^ röwnowazne wzglqdem jqzyka L, co oznacza si$ u ~L v, jezeli

Vxg {0,1 }*• (w a xeL  <=> v A xeL)

Pokazac, ze ~i jest relacj^ röwnowaznosci.

6. Przedstawic klasy abstrakcji relacji röwnowaznosci slow ~l wzgl^dem nastgjuj^- 
cych jQzyköw:

a) Z, = {1"| 1 < « < 6 >
b) L2= {  0" 1” | n e  Nat}
c) Z3 = (0011)

7. Pokazad, ze jesli dla pewnych slow ueL  oraz vg {0, 1}* zachodzi uAve [w]~l, gdzie 
-i jest relacji röwnowaznosci slow wzglqdem jQzyka L, to uAv"eL  dla dowolnego 
ne Nat.

8. Dana jest gramatyka G = <T, N, P, S>, gdzie:

T=  der {A, B, C}
N =  def {a, b, c}
P=  def {a ::=A \a A \b C  

b ::= BcC
c ::= abC \A B c\A b C }



Czy slowa AAAA, ABCA nalez^ do j?zyka generowanego przez Gl Podac zbiör 
wszystkich slow dlugosci 1, 2 i 3 nalezqcych do j?zyka generowanego przez G. 
Scharakteryzowad zbiör wszystkich slow generowanych przez gramatyk? G. Czy 
mozna zdefiniowaö „prostsz^” gramatyk?, ktöra generuje taki sam j?zyk formal- 
ny jak gramatyka Gl

9. Przedstawic drzewa rozbioru skladniowego dla wszystkich slow dlugosci 4 gene­
rowanych przez gramatyk? z zadania 8.

10. Czyjednoznaczne gramatyki:
a) gramatyka z zadania 8.,
b) G = <{a, +, *}, {5}, {S ::= S + S \S * S \a } ,S > .

11. Zdefiniowaö gramatyk? generuj^c^ j?zyk L = {anb'ncm \ m, n > 1}. Zbadaö, czy 
gramatyka jest jednoznaczna.

12. Zdefiniowaö gramatyk? generuj^c^ nast^puj^ce zbiory:

a) zbiör wszystkich palindromöw (slow, ktöre mozna odczytywaö zaröwno 
w przöd, jak i wspak) nad alfabetem {a, b),

b) zbiör wszystkich slöw nad alfabetem {a, b} zawierajqcych dokladnie dwa ra- 
zy wiQcej symboli a niz symboli b,

c) L=  {a 'bJc k \ i * j  lub j * k ) .

13. Dana jest gramatyka G = <{a, b), {S}, {S ::= aS \ aSbS \ e), S>. Udowodnic, ze 
L(G) = (x | kazdy przedrostek x ma co najmniej tyle symboli a, co symboli b)

14. Dia znanego j?zyka programowania, na przyklad Pascal, C, C++, zdefiniowaö 
gramatyk? okreslaj^c^ wybrany podzbiör wyrazen arytmetycznych z tego j?zyka.

15. Przedstawic w postaci diagramöw skladniowych produkcje gramatyk zdefiniowa- 
nych w zadaniach 5., 7. i 8.

16. Symbol nieterminalny A e N  gramatyki jest zb?dny, gdy jest nieaktywny lub nie- 
osi^galny. Symbol ^eT /jest nieaktywny, gdyj?zyk generowany przez gramatyk? 
Ga = <T, N, P, A > jest pusty. .de .Af jest nieosi^galny, gdy nie wyst?puje w zadnym 
slowie wyprowadzanym w gramatyce G. Wskazac zb?dne Symbole nieterminalne 
w gramatyce G = <T, N, P, S>, gdzie:

T=öcf {d, B, C}
^=def {a, b, c, d)
P  =def {a::= A \a A \b C \ AcA 

b ::= BcC \ cAc 
c ::= abC \ ABc \ AbC 
d::= aA\ dbC)



17. Gramatyk? G = <T, N, P, S>, gdzie:

T = ä e f  { ^4,  B }

N = def {a, b, c}
P=  def {c ::= a | 6

a v.-A b \B c \B  
b ::= a6 | M  | ac 15}

S = c

przeksztalcic do slabo röwnowaznej gramatyki bezkontekstowej, niezawieraj^cej 
zbqdnych symboli.

18. Zdefiniowac automat z pami^ci^ stosow^, rozpoznajqcy slowa jqzyka

L = { a a x | a e  {a, b}+}



8. Algebry abstrakcyjne

8.1. Algebry jednorodzajowe

Jednorodzajow^ algebry abstrakcyjnq, albo krötko -  algebry nazywa siQ par$
ALG =def<A, {ci , ..., cm} u  {f\, ...,fn}> dla meNat, neNat\{0} 

w ktörej:
A jest dowolnym zbiorem, zwanym nosnikiem algebry,
Ci sSiStatymi algebry, to znaczy C/eA, dla i = 1,..., m,
fj S£(. operacjami albo dzialaniami algebry, to znaczy &-argumentowymi fvmkcjami 

o sygnaturze
f j .A k ->A

gdzie: keN at\{0},j = 1,..., n.

Stal^. algebry c,- mozna takze rozumiec jako funkcjq zeroargumentow^, to znaczy jako 
funkcjQ o sygnaturze

Cj: —>A.

Uwaga
Algebry bqd^ tez definiowane jako pary:

ALG ~def<'A, {C ], . . . ,  Cm, f \ ,  

lub
ALG = def <A, F>

gdzie drugim elementem pary jest zbiör stanowi^cy sumQ mnogosciow^ zbioru 
stalych i operacji. Wynika to z faktu, ze stale mozna traktowac jako funkcje ze- 
roargumentowe.

Przyklad 8.1
I Przykladem prostej algebry jest zbiör liczb naturalnych Nat z operacji dodawania I 

ALGnoi =def <Nat, {0, 1} u  {_+_}> 
gdzie:

0, 1 : —> Nat



s^operacjami zeroargumentowymi, a 

_+_ : Nat2 —» Nat

I jest dodawaniem._______________________________________________________ |

Nalezy przypomniec, ze podkreslenia obok symbolu funkcji wskazuj^ polozenie ar- 
gumentöw.

Przyklad 8.2
I Bardziej zlozona jest algebra okre&lona na zbiorze liczb calkowitych Calkowite] 

z operacjami dodawania, odejmowania i mnozenia

A L G C a lk o w ite  = d e f  <Calkowite, { 0 ,  1 }  U  { } >

gdzie: 0 oraz 1 s^stalymi, czyli maj^sygnatury:

0 ,  1 : —> Calkowite

a symbolami operacji dwuargumentowych o sygnaturach:

* : Calkowite2 —> Calkowite

Nalezy zauwazyc, ze odejmowanie moze byc röwniez traktowane jako zmiana 
znaku liczby. W tym przypadku symbol bylby symbolem przeciqzonym, a odpo- 
wiadaj^ca mu sygnatura mialaby postac

: Calkowite —> Calkowite

Algebra z tak dol^czon^ operacji mialaby natomiast postac 

|____ ALGCalkowite d e f  ^  Calkowite, {0, 1} O { ~ _ >   * _  } ̂ _______________|

W dalszych przykladach dla symboli funkcyjnych dwuargumentowych b^dzie stoso- 
wana notacja wrostkowa, a podkreslenia w napisach okreslaj^cych sygnaturQ bqd% 
pomijane.

Przyklad 8.3
' Algebra slow nad pewnym alfabetem A jest zdefiniowana '

ALGa* = d e f <A , {£} u  { } > 

gdzie:
A* jest nosnikiem algebry, 
e : —> A jest slowem pustym, czyli stal^ algebry,

, A : Al x A —» A jest konkatenacj^, czyli dwuargumentowym dzialaniem. .



Przyklad 8.4
I W programowaniu przez typ danych rozumie siq pewien zbiör wartosci i zestaw* 

zwi^zanych z nim operacji. Powszechnie uzywany typ logiczny jest okreslony 
przez zbiör

Boolean =def {false, true}

oraz przez zestaw operacji o nastqpuj^cych sygnaturach: 

n o t: Boolean —» Boolean 

and, or : Boolean2 —> Boolean

gdzie: not, and oraz or operacjami negacji, koniunkcji i dysjunkcji. DefinicjQ 
tych funkcji przedstawia tablica:

a b not(a) aandb aorb

false false true false false

false true true false true

true false false false true

true true false true true

Zdefiniowane funkcje warto poröwnaö z definicj^ spöjniköw logicznych okreslo- 
nych w podrozdziale 1.2. Röznica mi$dzy tymi definicjami sprowadza si$ do 
röznicy symboli.

Algebra, ktöra jest modelem typu logicznego, ma zatem postac 

ALGBoolean =&et<Boolean, [not, and, or}>

| Zbiör stalych jest tutaj pusty._____________________________________________|

Przyklad 8.5
I W jqzykach programowania odpowiednikiem wczesniej przedstawianej algebry,1 

okreSlonej na zbiorze liczb calkowitych Caikowite, jest algebra okreslona na 
zbiorze Integer z odpowiednikami operacji dodawania, odejmowania i mno- 
zenia:

ALGinleger =def < Integer, {0, 1} u  {©,©,«}> 
gdzie:

Integer =def {-N, ..., N} jest tylko skonczonym podzbiorem zbioru Caikowite, 
zaklada siqprzy tym, z e N e N a t\{ 0 ,1},



0 oraz 1 S3. stalymi o sygnaturach:
0, 1 : —» Integer

a ©,©,® s ^ -  odpowiednio -  symbolami dodawania, odejmowania i mnoze- 
nia o sygnaturach:

©,©,®: Integer1 —» Integer

Istotna röznica mi^dzy algebry ALGi,Ueger a ALGcaikowUe wyplywa z definicji operacji 
w algebrze ALGln,eger. Ze wzglqdu mianowicie na ograniczonosc zbioru Integer ope- 
racje dodawania, odejmowania i mnozenia nie ftuikcjami calkowicie okreslonymi. 
Aby odröznic je od operacji okreslonych w zbiorze liczb Calkowite, one zapisy- 
wane inaczej. Definicje operacji algebry ALGinteger przedstawiaj^ si$ nastQpuj^co:

\a  + b gdy\a + b\ < N  
a@ b  =def \

[nieokreslona w przypadku przeciwnym

a © b _  { a - b  gdy\a - b \  < N
def [nieokreslona w przypadku przeciwnym

a ® b=  l a *b z&y \ a *b\ ~ Ndef [nieokreslona w przypadku przeciwnym

Symbole wystqpuj^ce po prawej stronie definicji, czyli funkcje dodawania, 
odejmowania, mnozenia i wartosci bezwzglqdnej, okreslone na zbiorze liczb 
calkowitych i nalez^ do j^zyka arytmetyki. Bez znajomosci tych funkcji nie moz- 

I na zrozumiec definicji nowych operacji.__________________ _________________|

CzQSciowa okreslonosc operacji algebry ALGi„,eger ma interpretacjq praktyczn^. Brak 
okreslonosci operacji oznacza mozliwosc powstania nadmiaru podczas wykonywania 
programu. Powstanie nadmiaru podczas obliczenia programu prowadzi do wygenero- 
wania wyjqtku lub do zerwania obliczen z sygnalizacj^blqdu.

Algebry, ktöre maj^ operacje okreslone czqsciowo, mog^byc uci^zliwe w zastosowa- 
niach, dlatego -  zwlaszcza w programowaniu -  dokonuje siQ pewnej modyfikacji ta- 
kich algebr tak, aby uzyskac calkowit^ okreslonosc ich operacji. Sposöb tej modyfika­
cji wyjasnia przyklad algebry ALGjn,eger.

Definiowan^ w przykladzie algebry ALGi„legê jiimiimiar) mozna traktowac jako algebraicz- 
ny model calkowitoliczbowego typu danych wystQpuj^cego w jqzykach programowania.

Przyklad 8.6
1 Niech dana bqdzie algebra ^

ALGlnlegenj{imdmiar] =def <Integer u {nadmiar}, {0, 1} u  {©,©,©}>

Nosnikiem algebry jest zbiör Integer z dol^czonym elementem nadmiar. Opera- 
cjami algebry s^ operacje dodawania, odejmowania i mnozenia, oznaczane -  jak



poprzednio -  symbolami: ©,©,®. Operacje te maj^inne sygnatury:
©,©,® : {Integer KJ {nadmiar})2 —> Integer u  {nadmiar}

Wszystkie operacje arytmetyczne maj^wspöln^wtasnosc:

Jezeli wartosci^ ktöregokolwiek argumentu operacji jest nadmiar, to wynikiem 
operacji jest röwniez nadmiar, na przyklad nadmiar ©1 = nadmiar.

W pozostalych przypadkach, gdy oba argumenty operacji s^rözne od nadmiar, de- 
finicje operacji nast^puj^ce:

a ® b =  [ a + b gdyla + fel ~ N
def [nadmiar w przypadku przeciwnym

a Q b =  l a ~ b & y \a ~ b\ * Ndef [nadmiar w przypadku przeciwnym

a ® b =  l a *b S<iy\a*b\ < N
def [nadmiar w przypadku przeciwnym

Uwaga
Symbol nadmiar w powyzszym przykladzie jest odpowiednikiem symbolu _L, 
wprowadzonego w podrozdziale 3.7 na oznaczenie nieokreslonosci funkcji. Sym­
bol nadmiar odnosi siQ röwniez do sytuacji, gdy funkcja jest nieokreSlona, a ponad- 
to wskazuje na przyczynq nieokreslonosci.

8.2. Algebry wielorodzajowe
Uogölnieniem algebr jednorodzajowych s^ algebry wielorodzajowe [Ehrig, Mahr 
1985]. Uogölnienie polega na zastqpieniu pojedynczego nosnika skonczon^ rodzinct 
nosniköw. Algebra wielorodzajowa jest zdefiniowana jako uklad

ALG= def <{^n ■■■,Ak}, {c\ cm) u  {/i f,}> dlameNatorazk, neNaA{0}
gdzie:

A h ..., Ak s^dowolnymi zbiorami, nazywanymi nosnikami algebry, 
c, jest stalq algebry, to znaczy c,e Ajj, dla i = 1,..., m ,jte  {1,..., k),
fj  jest operacjq algebry, dla j  = 1, ..., n, to znaczy jest ^-argumentow^ funkcja, 
kjeN a t\{0}, o sygnaturze:

gdzie:
j\ ,  —, j kj e  {1,..., k} s^ indeksami nosniköw, ktöre s^argumentami operacji, 

j k jest indeksem nosnika, ktöry jest wynikiem operacji.



Uwaga
Algebra wielorodzajowa bqdzie tez oznaczana kröcej 

ALG =def <A, F>

gdzie: A jest zbiorem nosniköw, a F  jest zbiorem operacji, w tym operacji zeroar- 
gumentowych, czyli stalych.

Przyklad 8.7
I Rozpatruje siq dwurodzajow^ algebrQ okreslon^ na liczbach calkowitych, ktöra! 

-  opröcz operacji arytmetycznych: dodawania, odejmowania, mnozenia, dziele- 
nia caikowitoliczbowego -  obejmuje röwniez operacje poröwnywania liczb: röw- 
ny, nie mniejszy. Argumentami zaröwno dzialan arytmetycznych, jak i operato- 
röw poröwnania liczby, wynikami dzialan takze liczby, wynikami zas 
poröwnan sel wartosci logiczne. Tym samym wprowadzenie operacji poröwnan 
wprowadza niejawnie dodatkowy nosnik zawierajqcy wartosci logiczne. Moze 
nim byc na przyklad zbiör

Boolean =def {false, true}

Algebrq mozna przedstawic jako algebr? dwurodzajow^

ALGCalkov.ite ~def
<{Caikowite, Boolean}, {0,1} u  +, - ,  *, /, =, >}> 

gdzie:
0, 1 stalymi liczbowymi, zerem i jedynkq,

Calkowite —> Calkowite jest jednoargumento w^ operacji zmiany znaku 
liczby,
+, Calkowite2 —> Calkowite dwuargumentowymi operacjami doda­
wania, odejmowania, mnozenia i dzielenia,
=, > : Calkowite2 —> Boolean dwuargumentowymi operacjami poröwnan 

|_____röwny i nie mniejszy.________________________________________________ I

Algebry wielorodzajowe mog^byc modelem zlozonych typöw danych.

Algebra ALGcaikowite moze byc potraktowana jako pewna charakterystyka caikowito­
liczbowego typu danych spotykanego w j^zykach programowania. Charakterystyka ta 
nie uwzgl^dnia ograniczonosci zbioru wartosci typu. Peln^ charakterystykei. typu jest 
algebra przedstawiona w przykladzie 8.8.

Przyklad 8.8
I Typ calkowitoliczbowy na zbiorze I

Integer =def {-N, ..., 0, ..., N)



ma okreslone operacje arytmetyczne: zmiany znaku dodawania ©, odejmo- 
wania ©, mnozenia 0 , dzielenia calkowitoliczbowego 0 , oraz ma operacje po- 
röwnywania liczb: röwny =, nie mniejszy >, ktorych wartosciami elementy 
zbioru

Boolean =def {false, true)

Pelny model typu calkowitoliczbowego mozna przedstawic jako algebry dwuro- 
dzajow^

ALGInlegenj{„admiar] =de{<{Integer u {nadmiar}, Boolean), {0,1} u

©, ©, 0 , 0 , =, >}>

Stale i operacje algebry maj^sygnatury:
0, 1 : —> Integer 
-  : Integer —»Integer
©, ©, ® : {Integer yj {nadmiar})1 —»Integer u  {nadmiar} 
0  : {Integer u  {nadmiar})2 —> Integer yj {nadmiar}
=, > : Integer2 —» Boolean

Opröcz operacji dzielenia, pozostale operacje definiuje siq podobnie, jak w przy- 
kladzie 8.6. Definicja operacji dzielenia przedstawia si$ nastqpujqco:

a 0  b=.def
[alb
nadmiar
nadmiar

gdy a e  Integer, b e Integer \ {0} oraz|a/6 | < N  
gdy a e  Integer, b e Integer \ {0} oraz \a/b\ > N  
gdy b = 0 lub a = nadmiar lub b = nadmiar

Operacje poröwnan obci^ciem funkcji poröwnan = oraz >, okreslonych na 
I zbiorze liczb calkowitych Calkowite, do zbioru Integer.______________________ |

8.3. Termy

Z kazd^ algebryjest zwi^zany pewien zbiör napisöw, ktöre powstaj^ ze zlozenia sym- 
boli stalych, zmiennych i dzialan algebry. Zbiör ten nazywa siQ zbiorem termow. Po- 
nizej przedstawia siq definicja termow, najpierw dla algebr jednorodzajowych, a na- 
st^pnie dla wielorodzajowych [Ehrig, Mahr 1985]. Niech

ALG — def A, {Cj, ..., Cm }  U  {f\, ..., f n} >

bqdzie pewn^ algebry jednorodzajow^ oraz niech V bqdzie zbiorem zmiennych, to 
znaczy symboli, ktörym mozna przyporzqdkowywac pewne wartosci z dziedziny A.

Symbolem TermALc{V) oznacza si$ zbiör termow algebry ALG nad zbiorem zmien­
nych V. Zbior ten jest zdefiniowany rekursywnie w sposöb nastqpuj^cy:



• Fc= TermALG(V) oraz {ci, cm} c= TermALG(V), to znaczy, ze zmienne i stale 
termami,

• jezeli t\, ..., tkß TermALa ( F), czyli napisy t\, ..., r* s .̂ termami oraz fj jest dzia-
laniem &-argumentowym, to ..., t„)e TermALG(V ), czyli napis postaci
f j ( t i , /„) jest termem.

Uwaga
Jezeli t\, t2e  TermALG ( F) oraz f j  jest dzialaniem dwuargumentowym zapisywa- 
nym w konwencji wrostkowej, to za term bqdzie przyjmowany napis ( t \ f j  t2) e  
TermALG(V).

Termy s^ stowami nad pewnym alfabetem wyznaczonym przez dan^ algebrq. 
W sklad takiego alfabetu wchodz^ symbole stalych, zmiennych, dzialan oraz nawia- 
söw i przecinka. Jak wynika z definicji, termy s^napisami zlozonymi w tym sensie, ze 
term moze si^ sktadad z czqsci skladowych, ktöre röwniez s^ termami. Termy, ktöre s^ 
cz^iciami skladowymi innych termöw, nazywa siq podtermami. Dokladniej: term t\ 
jest podtermem  termu t2, gdy t\ jest podstowem slowa t2.

Zbiör termöw nad pustym zbiorem zmiennych, czyli TermALG (0 ), nazywa siq zbiorem 
termöw stalych.

Termy s^ napisami, ktöre wyrazaj^ pewne znaczenie -  reprezentuj^ one wartosci ze 
zbioru A. Inaczej: s^ one tekstow^. reprezentacjjt pewnych wartosci, nalez^cych do 
nosnika A. Termy stale TermALG( 0 )  wyrazaj£L bezposrednio pewne wartosci. Termy, 
w ktörych wystQpuj^ zmienne TermALG(V), röwniez reprezentuj^ pewne wartosci, ale 
wartosci te zalez^ od wartosciowania zmiennych, czyli od wartoSci, jakie s^ przypo- 
rz£|dkowane zmiennym V. Wartosciowanie zmiennych jest wyrazane przez funkcj^ v 
o sygnaturze 

v: V —>A

Wartosd funkcji v(v) dla zmiennej v wyznacza pewien element ze zbioru A, ktöry 
zmienna ta reprezentuje.

W dalszym ciqgu b^dzie siQ pisac Term(0) i Term(V), gdy z kontekstu wiadomo,
0 jak^ algebrQ chodzi.

Przyklad 8.9
1 Do zbioru termöw stalych Term (0), generowanych przez algebrq I

ALGnat =def <Nat, {0, 1} u  {+}>

gdzie + jest -  jak poprzednio -  dodawaniem w zbiorze liczb naturalnych, zapi- 
sywanym w notacji wrostkowej, nalez^na przyklad napisy:

0 , 1, (0 + 0), (0 + 1), (1 + 0), (1 + 1), (0 + (0 + 0)), (0 + (0 + 1))



Przy zapisie w notacji przedrostkowej te same napisy przyjm^ postac:
0, 1, +(0, 0), +(0, 1), +(1, 0), +(1, 1), +(0, +(0, 0)), +(0, +(0, 1))

Niektöre termy, na przykiad 1, (0 + 1), (1 + 0), ((0 + 0) + 1), reprezentuj^ t$ sam^ 
wartosc -  liczbq naturaln^ 1. Zbiör termöw reprezentuj^cych t$ sam^ wartosc jest 
oczywiscie nieskoriczony.

Niech V = {a, b, c}. Do zbioru termöw Term(V) generowanych przez algebry 
ALGNa, bqd^na przykiad nalezec:

a, b, c, (a + 0), (0 + b), (a + c), (c + b), [a + (b + 0)), (1 + (jb + 1))

Jezeli zalozyc funkcjq wartosciowania 
v = {<a, 1>, <b, 0>, <c, 1>}

to wyzej wymienione termy bqd^ kolejno reprezentowac wartosci:
I 1, 0, 1, 1, 0, 2, 1, 0, 2_________________________________________________I

Zbiör termöw dla algebry wielorodzajowej
ALG=äe{ <{AU ...,Ak}, {ci,...,cm} u  {ft, dla meNat oraz k,neNat\{0}

jest bardziej zlozony. Wynika to z podziahi termöw na rodzaje. Rodzaj termu wskazu- 
je najedn£tz dziedzin^i, ...,Ak algebry ALG, ktörej wartosci term reprezentuje.

Niech V, bqdzie zbiorem zmiennych rodzaju A,. Zbiorem wszystkich zmiennych jest 
V = V\ u  ... u  Vk. Zmienna ve V, jest rodzaju A, (i = 1, k), co b^dzie zapisywane
v: Aj. Zmiennej ve V, mozna przyporz^dkowywac wartosci tylko ze zbioru A,.

Stale takze maj^ swöj rodzaj. Dla ce {c\, cm} zapis c : A, oznacza, ze stala c jest 
rodzaju Ah czyli jest elementem zbioru A,(i = 1 , k).

Dalej, zamiast pisac rodzaj Ah bqdzie siQ pisac krötko rodzaj /'.

Zbiör termöw rodzaju i (i = 1, k) dla algebry wielorodzajowej ALG nad zbiorem 
zmiennych V, oznaczany Term,{V), jest zdefiniowany rekursywnie w sposöb nastQ- 
puj^cy:

• jezeli Cj: Ah to Cje Term, (V)
V, c  Term, ( V)

• jezeli napisy tu tk s^termami rodzajöw iu oraz f }  : Aj x ...xA Jk -> 4 .
jest dzialaniem £-argumentowym, to napis postaci tn) jest termem rodza­
ju i, czyli fj( tu t„)e Term,(V).

Zbiör wszystkich termöw dla algebry wielorodzajowej ALG nad zbiorem zmiennych 
V, oznaczany Term(V), jest okreslony jako mnogosciowa suma

k
Term(y)= (jT erm ^V ).



Uwaga
W programowaniu przyporz^dkowanie rodzajöw stalym, zmiennym oraz wyraze- 
niom nazywa siq typowaniem lub typizacjq. Typizacja przejawia siq w sposobie 
deklarowania stalych i zmiennych, w rozröznianiu na przyklad wyrazen arytme- 
tycznych i logicznych, w sprawdzaniu poprawnego uzycia zmiennych w wyraze- 
niach itd.

Przyklad 8.10
I W zdefiniowanej wczesniej algebrze ^

A L G im e g e r u  {nadm ia r} def
< {Integer u  {nadmiar}, Boolean}, {0, 1} u  {-, ©, 0 , 0 , 0 , =, >}>

wyröznia siQ dwa rodzaje termöw: Integer u  {nadmiar} oraz Boolean. Zaklada 
si$, ze:

Integer = {-10, -1 , 0, 10}.

Niech pOnadtO V ln te g e r\ j{n ad m ia r} def {̂ j OFaZ l^Boolean def 0 .

Termami rodzaju Integer u  {nadmiar} na przyklad:

0, 1 ,a , b, {a © b), (a © (a 0  b)).

Termy te reprezentuj ̂  pewne wartosci ze zbioru Integer u  {nadmiar}, przy czym za- 
lez^ one od wartosciowania v zbioru zmiennych. Niech v = {<a, 3>, <b, 4>}.

Term 0 reprezentuje wöwczas wartosc 0, term a -  wartosc 3, term b -  wartosc 4, 
a term (a © b) -  wartosc 7. Wartosci^ termu (a © (a 0  b)) jest natomiast nad­
miar, gdyz wartosci^jego podtermu (a®b) jest nadmiar, poniewaz a*b > 10.

Termami rodzaju Boolean sei na przyklad:

((a © b) = (1 0  a)), ((-a  © b) > (b 0  a))

| Wartosciami obu termöw, przy wartosciowaniu v, jest false.__________________ |

Wartosci termöw przy danym wartosciowaniu v w algebrze

ALG =def <{Au ...,Ak}, {cu ..., cm} u  {/i, ...,/„}> dla meNat oraz k, nsNat\{0} 

mozna zdefiniowac ogölnie.

Przez WARv(f) oznacza siq wartosc termu t przy wartosciowaniu v. WARV jest funkcjX 
o sygnaturze

WARV: Term{V) —> A



gdzie:
k

Term(V) = ( J  Termt (V),
i=i

a  =  ( J a ,.
i=1

Funkcj? obliczania wartosci termöw WARV mozna zdefiniowac rekursywnie w sposöb 
nastqpujqcy:

• jezeli term jest postaci v, gdzie vjest zmienn^ czyli ve V, to WARv(y) = v(v),

• jezeli term jest postaci c, gdzie c jest stalq, czyli ce { c i , cm}, to WARv(c) = c,

• jezeli term jest postaci f ( t \ , ..., tk), gdzie / je s t  /r-argumentowym dzialaniem, czyli 
/ e  {fi, tu ..., tk s^termami, czyli tu .... tkeTerm(V), to

WARv(f{ t\ , .... h)) = f(W ARv(t\ ) , ..., WARv(tk)).

Niech TermALC(0 )  b^dzie zbiorem termöw stalych pewnej algebry ALG. Wartosc ter- 
mu stalego t nie zalezy od wartosciowania v. Dia dowolnych dwöch wartosciowan v 
oraz v' zachodzi zatem

WARv{t) = WARs(t)

Niech WAR(t) oznacza wartosö termu stalego t. Definiuje si§ relacj? binam^ = na zbio- 
rze termöw stalych:

jezeli t\, h  e  TermALG(0 ), to t\ ~ t2 wtedy i tylko wtedy, gdy WAR(tt) = WAR(t2).

Relacja = jest oczywiscie relacj^ röwnowaznosci i wyznacza podzial zbioru termöw 
stalych na klasy abstrakcji. Do jednej klasy abstrakcji nalez^ wszystkie termy tego 
samego rodzaju, ktöre reprezentuj^ tq sam^ wartosö. Oznacza to, ze relacjq = mozna 
bytoby okreslic jako rodzinq relacji binamych zdefiniowanych na podzbiorze termöw 
stalych ustalonego rodzaju, czyli = =def {«!, ..., =*}, gdzie =, dla i = 1, ..., k  jest zdefi- 
niowane:

jezeli t\, t2 e Term,{0), to t\ ~ t2 wtedy i tylko wtedy, gdy WAR(tj) = WAR(t2). 

Przyklad 8.11
I Dia algebry ALGi„,eger vinadmiar), zdefiniowanej we wczesniejszym przyktadzie, re-) 

lacja R wyznacza podzial termöw stalych rodzaju Integer u  {nadmiar} na klasy 
abstrakcji, z ktörych kazda reprezentuje termy przyjmuj^ce wartosci - 10, ..., - 1, 
0, ..., 10 oraz nadmiar. Kazda z klas zawiera nieskonczenie wiele termöw. Na 
przyklad do jednej klasy termöw o wartosci 0 nalez^miqdzy innymi:

0 ((0 © 1) ® 0) (((1 ® 2) © 3) © 1)



Do klasy termöw o wartoSci nadmiar nalez^miqdzy innymi: 

j_____(1 ® nadmiar) ((0 9  nadmiar) ® 1) (((1 0  0) 9  0) 6  0) _____________ j

Niech TermAuAV) b?dzie zbiorem termöw algebry ALG na zbiorem zmiennych V. Na 
zbiorze tym mozna röwniez zdefiniowac relacj? röwnowaznosci, ktöra jest uogölnie- 
niem relacji röwnowaznosci =, zdefiniowanej na zbiorze termöw stalych. B?dzie ona 
oznaczona tym samym symbolem = i b?dzie zdefiniowana jako rodzina relacji

~ =def {~i, —. “*}.
gdzie ~j dla i = 1, fcjest zdefiniowane:

jezeli tu t2 e  Term^V), to t\ t2 wtedy i tylko wtedy, gdy WAR„(t,) = fVARv(t2) dla 
kazdego wartosciowania v.

Jezeli dwa termy nalez^ do jednej klasy abstrakcji wyznaczonej przez relacji =, to dla 
dowolnie wybranego wartosciowania reprezentuj^one t? samct wartosc.

Przyklad 8.12
I Dla poprzednio rozwazanej algebry I

ALGCalkowile def ^ {CciI/cOwit£, BOolcCITl}, {0, 1 } U { , "t“, , , A j —

i zbioru termöw nad zbiorem zmiennych VCaikowiie =def {«> b) oraz Vß00iea„ = ^ 0 , 
relacja ~y wyznacza podzial termöw rodzaju Integenj{nadmiar} na klasy abs­
trakcji, z ktörych kazda reprezentuje termy przyjmuj^ce te wartosci dla dowolnie 
ustalonego wartosciowania. Na przyklad do tej samej klasy termöw nalez^ mi?- 
dzy innymi:

1 ( ( a - a ) + l )  (((1/1 -  Ä) -  0)+*)

Do innej klasy nalez^ mi?dzy innymi termy:

, a i ( a - b )  + b) ( ( (a * l)-b )  + b) ,

8.4. Algebry Boole’a

Wsröd algebr, ktöre w informatyce maj^ szerokie zastosowania, szczegöln^ rol? od- 
grywaj^ algebry Boole ’a. Stanowi^ one pewn^ klas? algebr zdefiniowana przez okre- 
slenie pewnych wlasnosci wyrazanych w postaci röwnosci. Taki sposöb definiowania 
algebr nazywa si? deßniowaniem röwnosciowym.
Algebrq Boole ’a okresla si? kazd^ algebr? o strukturze

BOOL=m <A, {0, 1} u  {-, +, *}>



gdzie:

A jest dowolnym zbiorem, nosnikiem algebry,
0, 1 S3. stalymi, nazywanymi zerem i jeänosciq boolowskq,

jest dziaianiem jednoargumentowym, nazywanyra dopelnieniem boolowskim, 
-h, * s^dzialaniami dwuargumentowymi, nazywanymi umownie dodawaniem i mno- 

zeniem boolowskim (nie nalezy tych dzialan utozsamiac z dzialaniami arytme- 
tycznymi ani mnogosciowymi),

ktöra ponadto, dla dowolnych a, b, c eA , spebiia nastQpujqce wlasnosci:

Wlasnosci te wyrazaj^:
1. przemiennosc dodawania i mnozenia,
2. Iqcznosc dodawania i mnozenia,
3. rozdzielnosc mnozenia wzgl^dem dodawania oraz dodawania wzgl^dem mnozenia,
4. neutralnosc zera wzglqdem dodawania oraz jedynki wzglQdem mnozenia,
5. neutralnosc elementu odwrotnego wzgl^dem dodawania oraz wzgl^dem mnozenia. 

Wlasnosci s^ wyrazane poprzez röwnosci. Röwnosc jest napisem postaci t\ = t2, gdzie 
skladowe t\ i t2 s^termami ze zbioru TermßoodV) nad dowolnym zbiorem zmiennych V. 
Röwnosc t\ = t2 jest spelniona, gdy dla dowolnego wartosciowania v oba termy repre- 
zentujcttQ sam^ wartosc, czyli WARv(t{) = WARv(t2).

Od algebry Boole’a wymaga si$, aby byly spelnione wszystkie wyzej wymienione 
röwnosci.

Przyklad 8.13
I Latwo sprawdzic, ze wczesniej zdefiniowana algebra I

ALGßooiean =def <Boolean, {not, and, or}>

I ma wszystkie wymagane wlasnosci, a zatem jest algebry Boole’a._____________ I

Przyklad 8.14
I Niech U bqdzie dowolnym zbiorem, a 2U rodzin^ wszystkich jego podzbioröwJ 

Podobnie mozna sprawdzic, ze algebry Boole’a jest struktura

BOOLu =def <2U, {0, U) u  {\, u ,  n}>

w ktörej: 2U jest nosnikiem algebry, 0  oraz U ŝ _ zerem i jednosciq, a dzialania 
mnogosciowe \, u ,  n  s .̂ odpowiednio dopelnieniem, sum^ i iloczynem algebry.

1. (a + b) = (b + a)
2. ((a + b) + c) = (a + (b + c))
3. ((a + b)* c) = ( (a *  c) + (b*  c))
4. (a + 0) = a
5. (a + (-a)) = 1

{a*b) = (b*  a)
((a * b)*  c) = (a* (b*  c))
((a * b) + c ) -  ((a + c) * (b + c)) 
(a * 1) =  a  
(a*(-a)) = 0



Ogölniej, zamiast pelnej rodziny podzbioröw 2U wystarczy przyj^c dowoln^ jej 
podrodzinq, zamkniQt^ ze wzgl^du na dzialania dopelnienia, sumy i iloczynu. 
Zamkniqta jest na przyklad rodzina zlozona ze zbioru pustego i zbioru pelnego, 
czyli {0, U), to znaczy wynikiem kazdej z operacji wykonanej na elementach tej 

I rodziny jest element nalezqcy do tej rodziny._______________________________ i

8.5. Homomorfizm algebr

Defmiowanie algebry abstrakcyjnej wygodnie jest rozpoczynac od opisania jej struk- 
tury. Najprostsz^jej charakterystyk^jest sygnatura.

Sygnaturq algebry nazywa siQ parq

Sig = def <S, OP>

gdzie: 5  jest niepustym zbiorem identyfikatoröw (nazw) nosniköw (rodzajöw), ÖPjest 
zbiorem deklaracji operacji. Deklaracja operacji b$dzie zapisywana w postaci

op : S| s2 ... sn -* s

gdzie: op jest identyfikatorem (nazwrQ operacji, s\ s2 ... s„ jest listq, ktörej elementy jj, 
s2, ... s„eS s^ identyfikatorami rodzajöw argumentöw, a seS jest identyfikatorem (na- 
zw^) rodzaju wartosci operacji. Deklaracja operacji o nazwie op wskazuje na nazwy 
zbioröw jej argumentöw i nazwq zbioru jej wartoSci. Jezeli op jest operacji zeroargu- 
mentowq, czyli stalq, to jej deklaracja ma postaö

op s

Zaklada siq, ze kazda deklaracja operacji ma röznq. nazwQ operacji, dlatego dalej, za­
miast pisac (op : Si s2 ... s„ —» s)e OP, bqdzie siq pisaö krötko ope OP.

Uwaga
Zapis postaci

op : $i s2 ... sn —> s 

nie jest tym samym co zapis 
op : s \X s 2x  ... x s „ —>s

Przyklad 8tl5
* Przyklady dwöch sygnatur Sigj =def <Sh OPj> dla / = 1, 2, gdzie:

«Sj = def {A} OP\ =<jef {e : —> A, d : A A —> A}

I S2 =def {A, B } OP2 =def { e  : —» A, d : A A —> A, r : A A —» B)



Sygnatura jest tylko pewn^ charakteryzacj^ algebry, a nie okresleniem algebry. Moze 
byö wiele algebr maj^cych t? sam^ sygnaturq.
Algebrq nad sygnatur<i Sig, krötko Sig-algebrq, nazywa siq parq 

ALG = def *̂ A, F> 
gdzie:

A =def {As | se S} jest rodzinq. zbioröw zwanych nosnikami lub dziedzinami algebry,
F  =&[ {fop | ope OP} jest rodzinq. funkcji zwanych operacjami algebry, przy czym 

kazdej deklaracji operacji ope OP: 
op : s\ S2 ... sn -* s
odpowiada funkcja 
f op:As x . . .x A S' ->AS

Dwie algebry o tej samej sygnaturze nazywa siq algebrami podobnymi.

Przyldad 8.16____________________________________________________________
' Przykladami dwöch algebr podobnych o sygnaturze Sigi z poprzedniego przykla- 

du s^:

ALGX =def <Nat, {1, +}>

gdzie noSnikiem algebry ALG\ jest zbiör liczb naturalnych Nat, stala 1 jest liczb^ 
naturalnq.jeden, zas operacja + jest dodawaniem w zbiorze liczb naturalnych.

ALG2 =def <Nat, {1,*}>

NoSnikiem algebry ALG2 jest zbiör liczb naturalnych Nat, stala 1 jest liczbq. natu- 
ralnqjeden, zas operacja * jest mnozeniem w zbiorze liczb naturalnych.

Przykladami dwöch podobnych algebr dwurodzajowych o sygnaturze Sig2 s^: 
ALGi =def < {Nat, Logiczne}, {1, +, =} >

Nosnikami algebry ALGj sq. zbiör liczb naturalnych Nat oraz zbiör wartoSci lo- 
gicznych Logiczne =def {prawda, fa lsz) , 1 oraz + sq .- jak poprzednio -  stal^ je­
den i dodawaniem w zbiorze liczb naturalnych, natomiast operacja = jest röwno- 
sci^ w zbiorze liczb naturalnych.

ALGa(X) =def < {2X, Logiczne), {0, u ,  =}>

Algebra ALG4(X) jest algebry parametryzowanq. zbiorem X. Jej nosnikami s%. ro- 
dzina podzbioröw pewnego zbioru X  oraz zbiör Logiczne, a operacjami s^: stala 
0 , ktöra jest zbiorem pustym, operacja u ,  ktöra jest sumq. mnogosciow^, oraz =,

I ktöra jest röwnoSciq, zbioröw._______________________________ _____________I

Niech b<jdci dane dwie algebry: ALG] = def <A, F> oraz ALG2 = def <B, G> o sygnaturze 
Sig = <S, OP>. Oznacza to, ze



A =def {As | se S} oraz B =def {Bs \ se  5} nosnikami algebr, a
F=def {fop | ope OP} oraz G =def {gop \ ope OP} seirodzinami operacji tych algebr.

Homomorfizmem z algebry ALG\ w algebr? ALG2 nazywa si? tak^ rodzin? funkcji H

H — def {hs As —> Bs | j  e S}

ze dla kazdej funkcji f op : 4  x . . ,xA ŝ  —> As , dla ope OP, zachodzi warunek

K (f op (öi, .... an)) = gop <A, («i)...... («„))

dla dowolnych ay- e ASj, j=  1,..., n. Fakt, ze //je s t homorfizmem zapisuje si?

H : ALG\ -» ALG2 

Przyklad 8.17
 ̂ Dane s^dwie algebry jednorodzajowe: ^

ALG\= <Nat, {1, +}> 

z!LG2 = <Nat„, {1, /}>

gdzie: Nat„ = {0, 1, n -  1}, a / oznacza dodawanie modulo «.

Homomorfizmem jest funkcja h : Afaf —> JVar„, zdefiniowana wzorem 

I h(m) = reszta z dzielenia m przez n, dla meNat.__________________________ I

Jezeli kazda z funkcji hs homomorfizmu H =  {hs : As —> Bs \ seS}  jest funkcja wza- 
jemnie jednoznaczn^, to H  nazywa si? izomorfizmem.

8.6. Algebra ilorazowa termöw

Dana algebra wielorodzajowa ALG = <A, F> o sygnaturze Sig = <S, OP>, 

gdzie:

A ={AS | se 5} jest rodzin^ no§niköw algebry ALG,

F - { fop | ope OP} jest zbiorem operacji algebry ALG, 

generuje zbiör termöw nad ustalonym zbiorem zmiennych V 

Term(V) = \jT e rm s(V)
seS

Zbiör ten moze byc podstaw^ do utworzenia nowej algebry wielorodzajowej, zwanej al- 
gebrq termöw [Ehrig, Mahr 1985], [Rasiowa 1998], ktöra jest podobna do algebry ALG.



Algebry termöw 

ALGnm ~def<'A , F>

dla algebry ALG definiuje siQ nastqpujqco:

A = {Terms( V) \ se S} jest rodzin^ nosniköw algebry termöw,
F  = {fop | ope OP} jest zbiorem operacji algebry termöw, przy czym operacjaJ~op 

ma sygnatur^:
L P ■ TermSi (V)x.. .xTerm,^ (V) Term,(V)

gdy deklaracja operacji ma postaö: op : S| s2, ..., sn—>s i jest zdefmiowana nastqpuj^co: 
jezeli tj e  Term, dla j  = 1..... n, to f op( t , , ..., t„) =def f op(th ..., t„).

Kazdemu nosnikowi A, i kazdej operacji f op w algebrze ALG odpowiadaj^ nosnik 
Terms(V ) i operacjaf op w algebrze termöw ALGTerm-

Niech = b^dzie wczesniej okreslon^ rodzin^ relacji binamych ~s na zbiorze termöw 
rodzaju seS.

Relacje te s^relacjami röwnowazno£ci i maj^ nastqpuj^c^ wlasnosc:

Jezeli tSj, t's . s^termami rodzaju Sj oraz / t' , dlay = 1,..., n, to

fop(?S\> "•> ) ~S fop (̂ T| > •"> ŝ„ )
dla ope. OP.

Rodzins relacji röwnowaznosci o tej wlasnosci nazywa siq kongruencjq.

Kongruencja jest podstaw^ do zdefiniowania algebry, nazywanej ilorazowq algebrq 
termöw ALGa dla algebry ALG. Dodatkowo algebry te s^ homomorficzne, to znaczy 
istnieje homomorfizm H : ALG —> ALGa.

Definicja algebry ALG„ jest nastspuj^ca:

ALG^— def< A, F>  
gdzie:

A = {Terms(V)/~, \ se  5} jest rodzin^zbioröw ilorazowych termöw rodzajöw seS, 
F  = { fop I ope OP) jest zbiorem operacji ilorazowej algebry termöw, przy czym 

operacja f op ma sygnaturq
~fop : T e rm ^ y ) /  -  , x...xTerm ,m(V )/ Term,(V)/ 

gdy deklaracja operacji ma postac: op : si s2 ... s„ —> s i jest zdefmiowana nastgmjqco: 
jezeli [<7]e  Term,. / , dlay = 1,..., n, to f up([h},..., [/„]) =def [fop( h , ..., 03-

Nalezy przypomniec, ze \tj\ jest oznaczeniem klasy abstrakcji generowanej przez 
term tj.



Cwiczenia

1. Niech bqdzie dana algebra ALGNal =def <Nat, {0, 1}, {+, *}>. Przedstawic gra-
matykq generujXc^. poprawne wyrazenia (termy) zbudowane ze zmiennych repre- 
zentuj^cych liczby oraz z operacji podanej algebry.

2. Niech bqdzie dana algebra ALGi„, =def <Int, {+, *}>, gdzie Int =def { - 1 0 0 , 0 ,
1, 100}. Przedstawic definicjq dzialan algebry pozwalaj^c^ na okreslenie ich
wyniku dla dowolnych argumentöw.

3. Zdefiniowac algebry definiuj^Ccttyp znakowy (string) w jqzyku Pascal lub C.

4. Przedstawic wielorodzajow^ algebry, ktöra bqdzie wyrazac znaczenie typu wyli- 
czeniowego, zdefiniowanego w jqzyku Pascal w sposöb nastqpuj^cy:

type DniTygodnia = (pon, wt, sr, czw, piqt, sob, niedz).

5. Zdefiniowac gramatykQ, ktöra b^dzie generowaö zbiör termöw rodzaju DniTygo­
dnia, okreslonych przez algebrq zdefiniowan^ w zadaniu 4.

6. Dia algebry z zadania 4. zdefiniowac algebry termöw i ilorazowEi algebry termöw.

7. Niech A =def {1, 2, 3, 5, 6, 10, 15, 30}>. Pokazac, ze algebra ALG zdefiniowana 
nastQpuj^co:

ALG = <A, {1, 30} u  {-, +, *}> 
gdzie dla a, beA

-a  oznacza liczbQ s ta n o w i^  wynik dzielenia 30 przez a, 
a + b oznacza najmniejsz^ wspölnq. wielokrotnosc liczb a oraz b,
a *  b oznacza najwiqkszy wspölny podzielnik liczb a oraz b,

jest algebry Boole’a.

8. Przedstawic wszystkie homomorfizmy algebry slow ALG\ = <{«}*, {£, A}> nad 
alfabetem {a} w algebry slow ALG2 = <{a, b}*, {f; A}> nad alfabetem {a, b}, 
gdzie e jest stowem pustym, a A jest konkatenacj^ slow.

9. Niech ALG = <{a, b}*, {A}>, gdzie A jest konkatenacjX stöw, b^dzie algebry slow 
nad alfabetem {a, b}. Jaka jest moc zbioru wszystkich homomorfizmöw h : {a, b) 
—> {a, b} algebry slow ALG w sam^ siebie?

10. Pokazac, ze istnieje homomorfizm mi^dzy dowolnet algebry a generowanq. przez 
ni^ ilorazowq. algebry termöw.



9. Rachunek zdan

9.1. Skiadnia

Rachunek zdah jest podstawow^. czqsci^ logiki klasycznej. Elementy rachunku byly 
nieformalnie wprowadzone i uzywane w poprzednich rozdzialach. W tym rozdziale 
przedstawia si$ skladniq i semantyk? rachunku zdah.

Jqzyk rachunku zdan, tak jak kazdy jqzyk formalny, definiuje siq przez podanie alfa- 
betu -  zbioru symboli podstawowych, oraz przez podanie zasad tworzenia z nich napi- 
söw -  slöw nad alfabetem. Symbole alfabetu nazywa siq jednostkami leksykalnymi. 
Takie wyröznienie wynika st^d, ze jednostki leksykalne mog^byc slowami nad innym 
alfabetem.

Alfabet jqzyka rachunku zdah sklada si$ z nastgjujXcych czterech kategorii jednostek 
leksykalnych:

• symboli stalych logicznych reprezentowanych przez napisy true oraz false;
• przeliczalnej liczby symboli zmiennych zdaniowych, reprezentowanych przez 

dowolnie ustalone identyfikatory, dalej najcz^sciej bqdq_ uzywane pojedyncze
male literyp, q, r, ...;

• symboli spöjniköw logicznych:
negacji —i
koniunkcji a

dysjunkcji (lub alternatywy) v
implikacji =>
röwnowaznosci <=>

• dwöch symboli pomocniczych:
lewy nawias (
prawy nawias )

Alfabet rachunku zdah jest zbiorem nieskonczonym, ale co najwyzej przeliczalnym, 
gdyz dopuszcza siq uzywanie dowolnej liczby identyfikatoröw do reprezentacji 
zmiennych zdaniowych. W praktycznych zastosowaniach dysponuje si$ oczywiscie 
zawsze skonczon^. liczby zmiennych zdaniowych. Ich postac -  ustalana dowolnie -  nie 
ma wplywu na znaczenie j Qzyka.



Z alfabetu tworzy siQ pewne napisy -  formufy, ktöre -  z definicji -  napisami po- 
prawnie zbudowanymi. Dalej pojedyncze formuly bqd^ oznaczane malymi literami 
greckimi.

Zbiör formul rachunku zdan FORM, nad okreslonym wyzej alfabetem, jest definiowa- 
ny rekursywnie w nastqpujqcy sposöb:

•  Symbole zmiennych zdaniowych oraz Symbole stalych logicznych sei formulami, 
nazywa siq je  formulami elementamymi albo atomowymi;

• jezeli «oraz ß  s^ formulami, to formulami nazywanymi formulami zlozonymi s^ 
napisy:

->a, (a=> ß), ( « a ß), ( « v  ß), («<=> ß ) .

Zbiör formul FORM  jest j^zykiem formalnym rachunku zdan. Formuly rachunku zdan 
tez nazywa si$ zdaniami.

Jezeli « jest formuly to kazde podslowo slowa «  ktöre jest formuly, nazywa siq pod- 
formulq «

Przyklad 9.1
Jezeli dana jest formula ( « a ß), to jej podformulami s^ «oraz ß, a takze wszyst- 
kie podformuly «oraz ß. Dia formuly

(~>(p v ? )  a -,r),

gdzie: p, q, r s^zmiennymi zdaniowymi, jej podformulami s^ formuly: 

l ->(p v q),_______(p v g ) ,______ P, q, -ir, r.____________________ I

Uwaga
W celu zredukowania liczby nawiasöw w formulach dalej siq przyjmuje (jak 
w rozdziale 1.), ze spöjniki logiczne maj^ ustalon^ kolejnosc stosowania (wi^zania) 
spöjniköw (od najsilniejszego do najslabszego):

-i, a , v, =>, «=>.

Pozwala to pisac na przyklad:
- i« a ß  zamiast (-i « a ß),
- i«  a ß  v  y  zamiast ((-i « a ß )  v

gdzie: « o ra z /? dowolnymi formulami.

Gdy takie same spöjniki wyst^puj^ obok siebie, zaklada siq dodatkowo, ze wystq- 
pujXce obok siebie spöjniki a , v I^czê  w lewo, a wystQpuj^ce obok siebie spöjniki 
=>, <=> l^cz^w prawo. Na przyklad:

p  A q  A r znaczy (p a q) a r,
p=> q => r znaczy p  => (<7 => r).



Przedstawiony j$zyk formalny rachunku zdah abstrahuje od postaci zmiennych zda- 
niowychJ J^zyk ten mozna ukonkretnic, definiujqc odpowiedni^ gramatykq bezkon- 
tekstow^.

Przyjmuje siq konwencjq powszechnie stosowan^ w j^zykach programowania, ze 
identyfikatorem jest niepusty skonczony ci^g znaköw, ktorego pierwszym elementem 
jest dowolna litera alfabetu lacinskiego, a elementami pozostalymi litery lub cyfry 
arabskie.

Gramatykq generuj 3C3J  Qzyk formalny rachunku zdah (RZ) mozna zdefmiowac nastq- 
puj^co:

G r z  =def K T r z , N r z , P r z , S r z >, 

gdzie:
T r z =  def {true, false} u  {a, b, u  {0, 1 , 9 }  u  a , v , =>, <=>} u  {(,)}
Nrz =def {formula, formula-elementarna, stala-logiczna, zmienna-zdaniowa, identy- 

fiikator, litera, cyfra spöjnik-logiczny}
S r z  =def formula

a zbiör produkcji P r z , zapisany w konwencji BNF, ma postac

Prz =def {formula ::=formula-elementarna \—formula]
(formula binarny-spöjnik formula) 
binarny-spöjnik-logiczny ::= a  | v | => | <=> 
formula-elementarna ::= stala-logiczna \ zmienna-zdaniowa 
stala-logiczna ::= true | false 
zmienna-zdaniowa ::= identyfikator
identyfikator ::= litera \ identyfikator cyfra \ identyfikator litera 
litera ::= a \ b \ ... | z 
cyfra 0 | 1 | ... | 9 }

^enerowany przez podan^ gramatykq G RZ  j^zyk formalny L ( G r z ) jest konkretyzacj^ 
zdefiniowanego rekursywnie zbioru formul FORM.

W celu skröcenia zapisöw cale formuly b$d^ oznaczane pojedynczymi symbolami 
i dlatego bqdzie przydatne pojQcie röwnosci tekstowej formul. Fakt, ze dwie formuly 
a, ß  identyczne tekstowo, bqdzie zapisywany w postaci a  = ß.

9.2. Semantyka]

J?zyk formalny rachunku zdah w postaci przedstawionej wyzej jest j^zykiem bez in- 
terpretacji. Interpretacja jqzyka polega na ustaleniu znaczenia elementöw jqzyka 
-  jego jednostek leksykalnych oraz formul. W celu przedstawienia interpretacji jest 
konieczne posiadanie pewnego zestawu pojqc i sposobu ich reprezentacji w jakims



zrozumiatym jqzyku, to znaczy potrzebne jest posiadanie metajqzyka -  j^zyka siuzi- 
cego do opisu innego jqzyka. Uzywanym tu metajizykiem b^dzie jqzyk teorii mnogo- 
sci, ktöry byl przedstawiany w poprzednich rozdzialach.

Okreslenie interpretacji j^zyka polega na ustaleniu dziedzin interpretacji, to jest zbio- 
röw obiektöw, ktöre b$di wyrazac znaczenie elementöw jqzyka, oraz na ustaleniu 
sposobu przyporz^dkowania elementom jqzyka obiektöw z dziedziny interpretacji.

Dziedzinq interpretacji rachunku zdan jest zbiör wartosci logicznych:

Logiczne =def {prawda,falsz}

Dalej, zamiast pisacprawda,faisz, b^d^uzywane skröty P, F.

Przyporz^dkowanie znaczenia elementom jqzyka obiektöw nad dziedzinq interpretacji 
dokonuje siq w dwöch etapach: najpierw okresla si? znaczenie symboli stalych i spöj- 
niköw logicznych, a nast^pnie okresla si$ znaczenie formul.

W pierwszym etapie wprowadza siq funkcjq interpretacji bazowej 1, krötko -  interpre- 
tacjq, ktöra okresla znaczenie symboli stalych i spöjniköw logicznych.

Interpretacji (znaczeniem) symboli true oraz false Si wartoSci logiczne, odpowiednio 
prawda oraz falsz. Formalnie wyraza to funkcja interpretacji /  w sposöb nastqpujicy:

/(true) =defP 
/(false) =defF

Symbolom spöjniköw logicznym: -i, a , v , =>, <=>, interpretacja /  przyporz^dkowuje 
funkcje o nastqpujicych sygnaturach:

/(—i) : Logiczne —> Logiczne
_  / ( a)_ , _ /(v )_ , _ /(=>)_, _ /(<=>)_ : Logiczne2 —> Logiczne 

Funkcje te s^ okreslone szczegölowo przez tablicq 9.1.

Tablica 9.1

a b /(-)(«) a /( a )  b a I M  b a /(=>) b a /(<=>) b
p P F P P P P
F P P F P P F
F F P F F P P
P F F F P F F

Tablica okresla tak zwane^standardowq albo glöwnq interpretacji spöjniköw logicz­
nych. W dalszym ciigu symbolom spöjniköw logicznych bqdzie przyporzidkowy- 
wana wylicznie standardowa interpretacja, dlatego w zapisie symboli stalych 
i spöjniköw logicznych symbol interpretacji I  b^dzie pomijany. W zaleznosci od kon- 
tekstu Symbole spöjniköw b$di traktowane wyl^czme jako Symbole b^dz jako wyzej 
zdefiniowane funkcje. Tak wlasnie bylo w podrozdziale 1.2, w ktörym po raz pierw-



szy zdefmiowano znaczenie spöjniköw logicznych; Symbole spöjniköw logicznych 
byly tarn traktowane jako funkcje.

Dziedzina interpretacji wraz z funkcje interpretacji stalych i spöjniköw logicznych 
wyznaczaj^ algebrq jednorodzajow^ postaci

<Logiczne, {/(true),/(false)}, {/(-.), /(a), /(v), /(=>), /(<=>)}>.

Drugim etapem defmiowania interpretacji j$zyka rachunku zdan jest okreslenie zna- 
czenia (semantyki) dowolnych formul.

Dokonuje si$ tego rekursywnie -  podobnie jak dla termöw (podrozdzial 8.3) -  rozpo- 
czynajqc od formul elementamych. Stale, ktöre s^ formulami elementamymi, maj^juz 
ustalon^ interpretacji. Formulami elementamymi s^ tez zmienne zdaniowe. Pojedyn- 
cza zmienna reprezentuje prost^, niepodzieln^ wypowiedz, ktörej mozna dowolnie 
przypisac wartosc logiczn^ prawda albo falsz. Interpretacja (znaczenie) symbolu 
zmiennej zdaniowej polega wi^c na przypisaniu temu symbolowi wartosci P  {prawda) 
albo F (falsz). Niech ZmienneZdaniowe oznacza zbiör zmiennych zdaniowych. Przy- 
pisanie wartosci zmiennej b^dzie wyrazac funkcja wartosciowania zmiennych

v : ZmienneZdaniowe —> Logiczne,

ktöra zmiennej zdaniowej p& ZmienneZdaniowe przyporz^dkowuj e pewn^ wartosc 
logiczn^ v(p) g Logiczne.

Majqc ustalon^ funkcjq interpretacji bazowej /  oraz funkcjQ wartosciowania v mozna 
jednoznacznie zdefiniowac now^ fiinkcjq, ktöra kazdej formule a  eFORM  przypo- 
rz^dkowuje wartosc logiczn^ prawda albo falsz. Ta nowa funkcja

INT„ : FORM  —> Logiczne

jest zdefiniowana rekursywnie w sposöb nastqpuj^cy:
• Jezeli formula orjest formul^ w postaci stalej logicznej, to:

Z/VTv( true) =def /(true) = P 
/AT/false) = def/(false) = F

• Jezeli formula orma postac zmiennej zdaniowej p, to
IN T fä ) — def v(p).

• Jezeli formula jest formut^ zlozon^, to:
INU-.CC) = de f /( - i ) ( /^ r v(o )),
INUcc* ß) =de{INTv(a) /(•) INT,(ß),

gdzie: <•jest dowolnym binamym spöjnikiem logicznym, czyli • g {a , v , =>, <=>}, 
a /(-) jest jego interpretacji

Interpretacja stalych logicznych nie zalezy od wartosciowania v, a interpretacja 
zmiennych zdaniowych nie zalezy od interpretacji bazowej /.



Uwaga
Do opisu semantyki formalnego jqzyka rachunku zdan zostal uzyty pewien metajq- 
zyk. Warunkiem decyduj^cym o wyborze danego metajqzyka jest jego zrozumia- 
losc i dostateczna sila ekspresji, pozwalaj^ca na wyrazenie odpowiednich faktöw. 
W naszym przypadku metajqzykiem jest jqzyk elementamej teorii zbioröw, ktöry 
zostal wprowadzony w poprzednich rozdzialach. Do opisu jqzyka elementamej teo­
rii mnogosci byl natomiast uzyty jqzyk naturalny, ktöry pelnil rolq metajqzyka 
wzglqdem jqzyka teorii mnogosci. Idea definiowania znaczenia jqzyka za pomoc^ 
innego jqzyka -  metajqzyka pochodzi od polskiego logika Alfreda Tarskiego18.

Rozröznienie pomiqdzy jqzykiem a metajqzykiem wyeliminowalo wiele, znanych 
jeszcze w starozytnosci, paradoksöw lingwistycznych w rodzaju: to zdanie jest 
prawdziwe albo to zdanie jest falszywe. Przypuscimy, ze chcemy wykazac, ze Zie- 
mia jestplaska. W tym celu wystarczy rozpatrzyc zdanie:

Albo cale to zdanie jest falszywe, albo Ziemia jest plaska.

Zdanie to jest albo prawdziwe, albo falszywe. Jesli jest falszywe, to -  zgodnie z je­
go tresci^ -  Ziemia musi byc plaska. Jesli zas jest prawdziwe, to prawdziwa musi 
byc albo jego pierwsza czqsc: cale to zdanie jest falszywe, albo druga: Ziemia jest 
plaska. Skoro przyjqlismy, ze cale zdanie jest prawdziwe, prawdziwa wiqc musi 
byc jego druga czqsc, czyli ze Ziemia jest plaska. Zastqpuj^c zdanie Ziemia jest 
plaska dowolnym innym zdaniem, moc^ takiego samego rozumowania mozemy 
wykazac jego prawdziwosc.

Rozröznienie pomiqdzy jqzykiem a metajqzykiem ma jeszcze jednq. zdumiewaj^c^ 
konsekwencjq -  nie istnieje nie takiego jak prawda absolutna. Mozna prowadzic 
dowody w obrqbie jednego jqzyka, okreslaj^ce, ktöre wyrazenia jqzyka uznajemy 
za prawdziwe. Pojqcie prawdy nie jest sformulowane w tym jqzyku, lecz 
w jego metajqzyku. Z kolei, w obrqbie metajqzyka mamy do czynienia z innymi 
wyrazeniami i dowodami, ktöre okreslajq. ich prawdziwosc, ale pojqcie prawdziwo- 
sci zdan metajqzyka jest okreslone w jego metajqzyku (czyli metametajqzyku).

Formula a  spelnia interpretaejq INT przy wartosciowaniu v, co bqdzie zapisywane 
w postaci

INTV1= a

wtedy i tylko wtedy, gdyINTv(d) = P. Symbol N jest nazywany symbolem spelniania. 
Formula a  spelnia interpretaejq INT, co bqdzie zapisywane w postaci 

INT\= a
wtedy i tylko wtedy, gdy a  spelnia interpretaejq INT przy dowolnym wartosciowaniu v.

18 Alfred Tarski (1901-1983).



Poniewaz jest rozwazana tylko interpretacja standardowa, symbol INTbqdzie pomijany 

1= a
Formul? tak^nazywa siq tautologiq rachunku zdan.

Dwie formuly ex oraz ß  sq röwnowazne semantycznie, jezeli przy tej samej interpreta- 
cji i przy tym samym wartosciowaniu sq jednoczesnie spelnione albo niespelnione. 
Fakt röwnowaznosci semantycznej formul zapisuje siq w postaci

a - ß .

Uwaga
Symbol röwnowaznosci semantycznej = nalezy odröznic od symbolu röwnowaz­
nosci tekstowej Dia dwöch dowolnych formul cx, ß, jezeli a =  ß, to oczywiscie 
röwniez ex= ß, natomiast wynikanie odwrotne nie zachodzi.

Pomiqdzy spöjnikiem röwnowaznosci <=> a röwnowaznoSciq. semantycznq = zachodzi 
zwiqzek wyrazajqcy siq przez wlasnosö

Formula postaci or<=> /?jest tautologiq, wtedy i tylko wtedy, gdy ex= ß.

9.3. Dowodzenie metod^ zero-j edynkowq
Bezposrednio z definicji interpretacji wynika, ze sprawdzenie, czy dana formula jest 
tautologiq, moze polegac na wyliczeniu prawdziwosci formuly dla wszystkich mozli- 
wych wartoSciowan zmiennych zdaniowych wystqmjqcych w tej formule. Liczba takich 
wartosciowan wynosi 2", gdzie n jest liczbq zmiennych zdaniowych. Postqpowanie takie 
okresla siQ mianem metody zero-jedynkoxvej. Jej istotQ wyjasnia przyklad.

Przyklad 9.2
 ̂ W celu pokazania, ze formula ^

p^>( q=>p)
jest tautologiq rachunku zdan, wystarczy zbudowac tablicq prawdziwosciowq, 
w ktörej sq zestawione wszystkie mozliwe wartosciowania zmiennych i obliczone 
dla nich wartosci formuly i ewentualnie jej podformul.

p q q=>p p=>(q=>p)
F F P P
F P F P
P F P P
P P P P

Poniewaz formula jest spelniona przy dowolnym wartosciowaniu wystQpujqcych 
I w niej zmiennych, jest wiqc tautologiq.____________________________________ I



Metoda zero-jedynkowa oblicza wartosci formuly dla wszystkich mozliwych war- 
tosciowan jej zmiennych. Poniewaz liczba takich wartosciowan jest skonczona, za- 
tem po skonczonej liczbie krokow otrzymuje si? niezawodnq. odpowiedz na pytanie, 
czy formula jest tautologi^. Metoda zero-jedynkowa daje wiqc zawsze podstaw^ do 
stwierdzenia, czy dana formula rachunku zdan jest czy nie jest tautologici.. Problem 
badania czy formula jest tautologi^ jest rozstrzygalny. Ogölnie, poj^cie rozstrzygal- 
nosci danego problemu -  pytania, na ktöre odpowiedzi^ jest tak albo nie -  oznacza, 
ze istnieje procedura (algorytm), ktora w skonczonej liczbie krokow daje jedn^ 
z tych odpowiedzi.

Metoda zero-jedynkowa jest malo efektywna. Mozna j^  usprawnic, zauwazaj^c, ze 
obliczenie wartosci falsz dla pewnego wartosciowania przes^dza, iz formula nie moze 
byc tautologi^. Obliczenia wartosci formuly mozna zakonczyc w momencie pierwsze- 
go napotkania takiego wartosciowania.

Dla rachunku zdan istnieje jeszcze inne, efektywniejsze sposoby rozstrzygania, czy 
formula jest tautologi^..

Tautologie s^ schematami formul, ktore s^ zawsze prawdziwe, niezaleznie od wyraza- 
nych tresci. one prawdziwe z uwagi na swoj^ Struktur^. Ponizej przedstawiono 
czqsciej spotykane täutologie. one wykorzystywane w dowodach matematycznych 
i dlatego nazywa siq je  prawami logicznymi albo prawami rachunku zdan. Niektöre 
z nich maj^tez tradycyjne nazwy. Jezeli ororaz ß  dowolnymi formulami, to tauto- 
logiami s^ formuly:

Prawo implikacji

I= « = > /?<=>-.orv ß

Prawa kontrapozycji

1= -iör=> ß  <=> - iß  => a

t= a = > —iß<^> /? = > -,o r

Prawa de Morgana

N -i ( a a ß )  <=> -nerv -,/?

t= -i {a  v ß )  <=> —i(x a  -<ß

Prawa zaprzeczenia implikacji

1= - i  {a=> ß )  <=> cc a  - iß



Prawa zaprzeczenia röwnowaznosci

t= -i (ar<=> ß )  <=> -.(«=> ß) v  -,(yö => a)

Prawa podwöjnego zaprzeczenia 

1= —i—\0C<=> ar

Prawo wylqczonego srodka 

t= arv -iar<=> true 

Prawo sprzecznosci 

t= ota- . ar<=> false 

Prawa idempotentnosci

f= ata ar<=> flf 
1= arv ar<=> or 

Prawa przemiennosci

i= (XAß<?>ßA ar 
1= arv/?<=> /?v  ar 

Prawa Iqcznosci

t= flf a (/? a <=> (ar a ß ) A y
t= arv ( ß v  (arv ß ) v  y  

Prawa rozdzielnosci

\=aA(ßv?)<=>aAßvaAy 
\= arv (ßA})<^> (arv y#) a (ötv 

Prawa uproszczen

l= ar a true <=> ar 
t= arv true <=> true 
t= ota false <=> false 
t= arv false <=> ar 
1= ota (arv /?) <=> ar 
i= arv (ota y#) <=> ar

Fakt, ze przedstawione prawa sq. tautologiami latwo sprawdzic metod^ zero-jedyn- 
kow^. Na podstawie tych praw oraz twierdzenia o zast^powaniu mozna badac czy 
tautologiami inne formuly.



9.5. Dowodzenie transformacyjnej

Niech a  bqdzie formuly, w ktörej wystQpuje zmienna zdaniowa p, oraz niech ß  bqdzie 
pewny inny formuly. Przez

a[p::= ß]

oznacza siq formulq, ktöra powstaje z formuly a  przez tekstowe zastypienie kazdego 
wystypienia zmiennej p  w formule orprzez formuly ß.

Przyklad 9.3I |
a=  (p <=> q) a p  => r oraz ß = r v s ,  

to

I a [ p  ::=ß] =  ( ( r v  s)<?>q) A ( r v  ,?)=>/•________________________________ I

Bezposrednio z definicji tautologii i tekstowego zastQpowania wystypienia zmiennej 
wynika nastqpujyce uzyteczne twierdzenie o zastqjowaniu.

Twierdzenie 9.1
Jezeli formula ot\ <=> or2 jest tautologiy ß pewny formuly oraz p  -  zmienny zdanio- 
w y to formula

ß \p \:=  a{\<^> ß \p :\=  a2]

jest takze tautologiy

Na podstawie twierdzenia o zast^powaniu formuluje siq nastqpujyce reguly röwno- 
waznego semantycznie przeksztalcania formul:

Regula zastqpienia
Jezeli ör jest formuly a jest jej podformuly to zastypienie podformuly ß  do- 
wolny inny röwnowazny semantycznie formuly nie zmienia wartosci logicznej 
formuly a.

W zapisie symbolicznym, zgodnym z konwencjy wprowadzony w rozdziale 1., regulq 
mozna przedstawic w postaci

ß  jest podformuly ot

ß  = Y
a  = a [ ß \ ^ y \

lub w röwnowaznej postaci



yöjest podformul^ a

I= ß < * Y  

t= (x<=> a [ß \~ y]

gdzie a [ ß  ::= y] oznacza testowe zastcipienie podformuly ß  formuly y  w formule a.

Przyklad 9.4 ____________________________________________________
 ̂ Niech dana bqdzie formula 

a= (p <=> q) A p  => r.

Jej podformula 
ß = p < ^ q

jest röwnowazna semantycznie formule 
( p ^ q ) A (q=>p)

Formula orjest zatem röwnowazna semantycznie formule 
( P ^ ? ) A ( ? = > p ) A p = > r  

czyli
I (p<&q)Ap=>r=(p=>q)A(q=$p)Ap=>r__________________________I

Regula przechodniosci
Jezeli formuly a  i ß  sq. röwnowazne semantycznie oraz formuly ß  i y  sq. röwno­
wazne semantycznie tautologiami, to röwniez formuly a  i yss^ röwnowazne seman­
tycznie.

W zapisie symbolicznym regulQ mozna przedstawic w postaci 
a  = ß

ß = r
a - y

lub w röwnowaznej postaci 

a r o  ß  

l= ß * * Y  

t= or<=> y

Reguly zastqpienia i przechodniosci pozwalaj^ na tekstowe transfonnacje formul, 
ktöre mozna wykorzystaö do badania röwnowaznosci lub badania czy formula jest 
tautologiq,



Ogölny schemat dowodzenia transformacyjnego, w celu pokazania, ze formula a  jest 
tautologi^, mozna wyrazic w postaci ci^gu formul

a b , a u  a 2, ..., a„

gdzie: ab = orjest dowodzon^ formula a,, jest formuiq, o ktörej wiadomo, ze jest tau- 
tologiq, pomiqdzy zas kolejnymi formulami dla j = 0, 1, n -  1, zachodz^ röwno- 
waznosci semantyczne a, = 0}+j. Rownowaznosci tezachodz^na mocy definicji lub 
w wyniku stosowania reguly zast^pienia z powolaniem si$ na odpowiednie prawa 
logiczne.

Przyklad 9.5
I Dana jest formula ^

->q a  [p => q) => - p

Aby pokazac, ze jest ona tautologizg nalezy wykazac, ze jest röwnowazna formu­
le true. Prowadzi do tego nast^puj^cy ci^g transformacji:

,q a  (p = >  q) = >  ~ p  
= a ( - p  v  9) => - p  
=  (~,q a  - p )  v  (~,q a  9)  = >  - p  
= (-»7 a  - p )  v  false => - p  
=  - i #  a  —p  => —<p 
~ —'($ v  />) => —>p
=  - < - 1  ( ? v p ) ) v - p  
= (9 v p )  v-^p 
= 9 v ( p v - f )
= g v  true 
= true

-  prawo implikacji
-  prawo rozdzielnosci
-  prawo sprzecznosci
-  prawo uproszczenia
-  prawo de Morgana
-  prawo implikacji
-  prawo podwöjnej negacji
-  prawo l^cznosci
-  prawo uproszczenia
-  prawo uproszczenia

Kazdy krok transformacji jest przeprowadzony zgodnie z reguly zasteipienia wyko- 
rzystuj^c^ wskazane prawo logiczne. Na mocy reguly przechodniosci stwierdza 
siq, ze —,q a  (p => q) => —p  = true, co oznacza, ze formula —iqA (p= > q)= > —>p 
jest tautologi^.

Formula, ktör^ dowiedziono, jest prawem logicznym, nazywanym modus tollens.

9.6. Postaci kanoniczne formui

W wielu zastosowaniach jest wygodne, aby formuly mialy pewn^ standardow^ (kano- 
niczn^) postac. Pozwala to miqdzy innymi na ulatwienie badania röwnowaznosci for­
mul. Wyröznia si? dwa rodzaje postaci kanonicznych -  koniunkcyjn^ postac normaln^ 
i dysjunkcyjn^ postac normaln^.



Literalem nazywa si$ zmiennq zdaniowq lub jej negacjQ. Jezeli p, q, ... sq zmiennymi 
zdaniowymi, to p, q , ... sq literalami pozytywnymi, a —>p, -*q, ... sq literalami negatyw- 
nymi. Pojedynczy literal bqdzie oznaczany symbolem A.

Klauzulq albo dysjunkcjq elementamq bqdzie nazywana formula postaci 
Ai v  Az v  ... v  A„

gdzie: A\, Az,..., A„ sq literalami {n > 1). Pojedyncza klauzula b^dzie oznaczana sym­
bolem K .

Formula a jest w koniunkcyjnej postaci normalnej (CNF -  Conjunctive Normal Form) 
wtedy i tylko wtedy, gdy jest koniunkcjq klauzul, to znaczy gdy jest postaci

K \ A K i A ... A Kn

gdzie: K „ dla i = 1, n, sqklauzulami.

Przyklad 9.6_____________________________________________________________
 ̂ Jezeli dane sq trzy zmienne zdaniowe p, q, r, to wyznaczajq one osiem röznych* 

semantycznie klauzul. Sq to:
p v  q v  r p v  q v  —,r p v  —,q v  r p v  -}q v  —,r
—ip v  q v  r —p  v  q v  —>r —p  v —iq v r  —>p v  —\q v  —ir

Z tekstowego punktu widzenia klauzul zawierajqcych trzy zmienne jest wi^cej. 
Kazda z innych klauzul jest röwnowazna semantycznie jednej z wyzej wymienio- 
nych. Na przyklad klauzule q v  p v  —̂r oraz p  v  —>r v  q sq röwnowazne klauzuli

I p v  q v  —ir._________________________________________________________ I

Koniunkcjq elementamq b^dzie nazywana formula postaci 

A\ A Az A ... A A„

gdzie: A\, Az, ..., A,, sq literalami (n > 1). Pojedyncza koniunkcja elementama bqdzie 
oznaczana symbolem 8.

Formula ar jest w dysjunkcyjnej postaci normalnej (DNF -  Disjunctive Normal Form) 
wtedy i tylko wtedy, gdy jest dysjunkcjq koniunkcji elementamych, to znaczy gdy jest 
postaci

8\ v  8z v  ... v  8„

gdzie Sh dla i = 1, n, sqkoniunkcjami elementamymi.

Przyklad 9.7____________________________________________
 ̂ Jezeli dane sq trzy zmienne zdaniowe p, q, r, to wyznaczajq one osiem röznyclJ 

koniunkcji elementamych. Sqto:



p Aq A r p  Aq A —ir p  A —>q A r p  A —>q A —ir

I________—ip  Aq A r __________ —p  a q a  —\r —>p a —iq a r  —■p a  —i q a  —i r______________________ |

Dia kazdej formuly aristnieje röwnowazna jej semantycznie formula w koniunkcyjnej 
postaci normalnej oraz w dysjunkcyjnej postaci normalnej -  formuly te b^d^ oznacza- 
ne odpowiednio przez CNF(a) oraz DNF(a).

Uzasadnieniem tych twierdzen jest przedstawiony ponizej, ktöry dla dowolnej formuly 
a  wyznacza now^ formuly w koniunkcyjnej postaci normalnej, oznaczanq. CNF(d), 
ktöra jest röwnowazna semantycznie formule a, czyli a=  CNF(ot).

Algorytm sprowadzania formul do koniunkcyjnej postaci normalnej

Dane: dowolna formula a  e  FORM.
Wynik: formula CNF(a )e FORM taka, ze a=  CNF(ct).
Procedura: procedura postqpowania polega na etapowym, tekstowym przeksztal- 
caniu formuly a. Formula posrednia jest oznaczana przez ß, poczqtkowo przyjmie 
postaö formuly oc.

1. Eliminacja z formuly ß  spöjniköw logicznych röznych od koniunkcji, dys- 
junkcji i negacji:
•  kazd^ podformulQ formuly ß, postaci ß\ <̂> ßi, zastQpuje siq tekstowo for-

mul^ postaci (ß\ ß ß  a (ßi => ß\),
• kazdq. podformutq postaci ß\ => ßi zastopuje si$ tekstowo formuly postaci 

~yß\ ^  ßi-

2. Dopöki ß  nie jest w postaci koniunkcyjnej normalnej, dopöty powtarza siq 
zastQpowanie podformul formuly ß  zgodnie z regulami podanym w tablicy:

Lp.
Podform ula
zastg jow ana

Form ula
zastQpujqca

1 -r-\ß\ ßi
2 ~ißi v  ßi) —'ßi A —ißi
3 ~ißi *ßi) -<ßi V ~'ßl
4

«s<s>«c s < > s < 'w
'

3. Formuly ß, otrzyman^po zakonczeniu poprzedniego kroku, definiuje siQ jako 
CNF(ct).

Algorytm dokonuje na formulach przeksztalcen semantycznie röwnowaznych, a po- 
nadto rozpatruje wszystkie niezbqdne przypadki, co gwarantuje jego poprawnoSö.

Algorytm sprowadzania formuly do normalnej postaci dysjunkcyjnej jest prost^ mo- 
dyfikacj£i podanego wyzej algorytmu. Polega to na nastqpuj^cej zamianie ostatniego 
wiersza w tablicy zastqpowania formul:



Lp. Formula zastgjowana Formula zastQpujqca
4a 5» > < 0» .AÄ)v0ff ,AÄ)

Nalezy zwröcic uwagQ, ze w przypadkach stosowania ostatniej z regul zastopowania 
(przypadek 4 lub 4a) algorytm powoduje tekstowe wydluzenie przeksztalcanej formu- 
ly. W niektörych przypadkach algorytm moze prowadzic do zwi^kszenia dlugosci 
formuly.

[9.7. Funkcjonalna pclnosc

Wprowadzony jqzyk rachunku zdan uzywa zbioru spöjniköw zlozonego z negacji, 
koniunkcji, dysjunkcji, implikacji i röwnowaznosci. W poprzednim podrozdziale po- 
kazano algorytm sprowadzania formuly do postaci kanonicznej, w ktörej wystqpuj^ 
tylko spöjniki negacji, koniunkcji i dysjunkcji. Oznacza to, ze dla dowolnej formuly 
rachunku zdan istnieje röwnowazna semantycznie formula zawieraj^ca tylko te trzy 
spöjniki.

Stwierdzenie to mozna wyrazic w sposöb ogölniejszy, möwi^c, ze za pomoc^ tych 
spöjniköw mozna wyrazic dowoln^ n-argumentow^, n > 0, funkcji prawdziwosciow^, 
to jest funkcji typu: Logiczne" —» Logiczne.

Dany zbiör spöjniköw logicznych jest funkcjonalnie pelny, jezeli za ich pomoc^da sii 
wyrazic wszystkie mozliwe funkcje prawdziwosciowe, to znaczy ze dowoln^ funkcji 
prawdziwosciowe da sii przedstawic jako formulq, w ktörej wystipuje spöjniki lo­
giczne nalez^ce do tego zbioru.

Twierdzenie 9.2

Zbiör spöjniköw zlozony z negacji, koniunkcji i dysjunkcji jest funkcjonalnie pelny. 

Dowöd
Szkic dowodu przedstawia sii nastipujeco:
Zaklada sii, ze p„) jest dowolne n-argumentowe funkcje prawdziwoscio­
we. Niech INTv(f(pi, ..., p„)) oznacza interpretacji funkcji/ dla wartosciowania 
v. Interpretacje funkcji/ dla wartosciowania v jest jedna z wartosci P  lub F. Poje- 
dyncze wartosciowanie v przypisuje kazdej ze zmiennychp\, ...,p„ jedne z warto­
sci P  lub F.

Jezeli INTv(f(p u ...,p„)) = P, to koniunkcji elementame
X\ A  A  . . .  A  Afl 

okresla sii w nastipujecy sposöb

Ai=ph gdy v(p,) = P oraz X, = -,ph gdy v(p() = F.



Latwo zauwazyd, ze koniunkcja ta jest prawdziwa dla wartosciowania v i fatszywa 
dla kazdego innego wartosciowania.

Niech vi, .... vK, gdzie K  spelnia ograniczenie 0 < K  < 2", bqdzie zbiorem tych 
wszystkich wartosciowan, dla ktörych funkcja /  przyjmuje wartosc P. Dla danego 
wartosciowania Vj, dla j  = 1 , K, przez &j oznacza si? wyzej okreslon^ koniunkcji 
elementamq. Latwo sprawdzic, ze formula

a=  8\ v  &i v  ... v  Sk

jest semantycznie röwnowazna funkcji/ to znaczy dla dowolnego wartosciowania 
v, INTv( f ( p i , ...,p n)) = INTv(ot). Poniewaz w formule wystQpuj^ tylko spojniki ne- 
gacji, koniunkcji i dysjunkcji, stttd wynika teza. ■

Funkcjonalnie pelny zbiör spöjniköw jest minimalny, jezeli kazdy jego wlasciwy pod- 
zbiör nie jest zbiorem funkcjonalnie pelnym.

Zbiör spöjniköw {-i, a , v } nie jest zbiorem minimalnym. Oznacza to, ze po usuniq- 
ciu z niego pewnych spöjniköw pozostanie on nadal zbiorem funkcjonalnie pelnym. 
Latwo siQ przekonaö, ze zbiorami minimalnymi s^ zbiory spöjniköw {-i, v} oraz 
{-i, a }. Z praw de Morgana wynika, ze na przyklad koniunkcja mozna wyrazid za 
pomoc^ dysjunkcji. Zbiör {-i, a } jest zatem funkcjonalnie pelny. Za pomocfj. tylko 
samej negacji albo tylko samej koniunkcji nie mozna natomiast wyrazid dowolnej 
formuly.

Innym przykladem minimalnego zbioru funkcjonalnie pelnego jest zestaw {=>, false}. 
Wystgjuje w nim jeden spöjnik i jedna stala.

Dwa interesuj^ce przyldady minimalnych, funkcjonalnie pelnych zbioröw spöjniköw 
s^oparte na spöjnikach NAND lub NOR, ktöre s^zdefiniowane nastQpujqco:

NAND(p, q) = def —1(/7 a q)
NOR(p, q) = def (p v  q)

Latwo pokazad, ze za ich pomoc^ mozna zdefiniowac wczesniej wprowadzone spöjni- 
ki, na przyklad:

—p  = NAND(p, p)
—p  = NOR(p, p)

Spojniki sq. interesuj^ce, mi^dzy innymi dlatego, ze opieraj^c siq na kazdym z nich, 
mozna budowac uklady przel^czaj^ce -  fragmenty urz^dzen komputerowych.

Przyklad 9.8
' Stosowane w konstrukcji urz^dzen komputerowych kombinacyjne cyfrowe ukla- 

dy przel^czaj^ce charakteryzujq. siq pewn^ liczb^ wejsc, na ktöre podaje si$ dwa 
sygnaly: zero albo jeden, oraz przynajmniej jednym wyjsciem, na ktörym röw-



niez pojawia si$ taki sygnal. Wartosc sygnalu wyjsciowego jest funkcj^ sygnalöw 
wejsciowych. Sygnaly o wartosciach zero i jeden mog£(. kodowac wartosci lo- 
giczne falsz i prawda. Wyjscie ukladu mozna wiqc scharakteryzowac przez funk- 
cjq prawdziwosciow^, ktörej argumentami wejscia ukladu. Uklad realizuje si$ 
za pomoc^ ukladow elementamych. Przykladem zestawu elementamych bramek 
logicznych, za pomocq. ktörych mozna zrealizowac dowolny uklad p r z e l ^ c z a j ^ c y ,  

s^bramki nazywane NOT, AND, OR, pokazane na rysunku 9.1, ktöre s ^ r e a l i z a -  

torami spöjnikow - i ,  a , v .

Bramka NOT Bramka AND Bramka OR

Rys. 9.1. Schematy bramek logicznych NOT, AND i OR

Kazdq. z bramek mozna zbudowac za pomoc^ bramek NAND lub NOR, ktöre 
realizatorami spöjnikow NAND oraz NOR (rys. 9.2).

—i(a a  b) i(a v b)

Bramka NAND Bramka NOR

Rys. 9.2. Schematy bramek NAND i NOR

Uzywaj^c na przyklad bramki NAND, otrzymujemy konstrukcje pokazane na ry­
sunku 9.3.

a Ab

L Rys. 9.3. Przyktadowe schematy ukladow logicznych



9.8. Rekursja i indukcja strukturalna

Rekursja jest waznym i czQsto wykorzystywanym sposobem definiowania zbioröw 
(rozdziat 2.), relacji i funkcji (podrozdzial 4.6). Podane nizej twierdzenie dotyczy re- 
kursywnego definiowania funkcji okreslonych na zbiorze formul rachunku zdan. 
Twierdzenie to gwarantuje jednoznacznosc rekursywnie definiowanych funkcji.

Twierdzenie 9.3 (Zasada rekursji strukturalnej)

Niech pewna funkcja/  bqdzie okreslona na zbiorze formul FORM  w sposöb nastQ- 
puj^cy:
krokpoczqtkowy: na formulach elementamych wartosci funkcji/ sei okreslone bez- 
posrednio,
kroki indukcyjne: na formulach zlozonych wartosci funkcji /  okreslone po- 
Srednio:

• wartosc funkcji/ na formule —ia jest okreslona w terminach wartosci funkcji 
/ n a  a,

• wartosc funkcji/ na formule (ar°ß)  jest okreslona w terminach wartosci funk- 
c ji/n a  formulach a  i ß, gdzie • oznacza dowolny binamy spöjnik logiczny.

Funkcja / jest zdefiniowana jednoznacznie (istnieje dokladnie jedna tak zdefinio- 
wana funkcja).

Dowod twierdzenia pomijamy.

Przyldad 9.9
I Stosuj^c zasadq rekursji strukturalnej, na zbiorze formul FORM  definiuje siq na-' 

stQpuj^c^ funkcja d:
• jezeli orjest formula elementam^ to d(a) -  0,
• d(->a) = d(a) + 1,
• d((a  °ß)) = d(a) + d(ß) + 1 dla dowolnego spöjnika binamego »6 {a ,v ,

Funkcja d{a) okresla stopien formuly a. Stopien formuly, jak latwo zauwazyc, 
| oznacza liczbg spojniköw logicznych w formule.____________________________ |

Przyklad 9.10
 ̂ Stosujqc zasadQ rekursji strukturalnej, definiuje siq na zbiorze formul FORM  na-' 

stqpuj^ce funkcje l(a) oraz p(a), oznaczajqce odpowiednio liczbQ lewych i pra- 
wych nawiasöw w formule a. Definicja funkcji l(a):

• jezeli arjest formuly elementamq, to l(a) = 0



•  / ( - iß) = l ( a r)
• I((a°ß)) = l(ct) + l(ß) + 1 dla dowolnego spöjnika binamego °€ {a , v , =>, <=>}.

I Podobnie wyglqda definicja funkcji p(a).__________________________________ I

Rekursja strukturalna zostala tu przedstawiona tylko dla rachunku zdan. Ogölnie re- 
kursjs strukturalna mozna stosowac do dowolnych zbioröw definiowanych w sposöb 
rekursywny, zwlaszcza do jqzyköw formalnych definiowanych za pomocq. gramatyki 
bezkontekstowej.

Przyklad 9.11
' Dana jest gramatyka G =def <T, N, P, S>, gdzie:

T=  def {0, 1, @, #, +, *, (,)} u  {(a, b, ..., z }
N = äef {wyr, opjm arny, opjbinarny, zmienna}
P  =def {wyr ::= 0 | 11 zmienna | (wyr opjbinarny wyr) \ opjm arny wyr 

zmienna ::= a \ b | ... | z 
opjbinarny ::= + | * 
opjm arny  ::= @ | #}

S  =def wyr

Funkcja Iw : L(G) x {a, b, .... z} —> Nat, ktöra oblicza liczbq wystqpien wskaza- 
nej zmiennej w slowie jqzyka generowanego przez gramatykq G, jest zdefinio- 
wana nastqpujqco:

a) dla wyrazen elementamych: 
/w(0, x) = lw( 1, x) = 0 

1 dla y  = x
lw(y,x) =

0 dla y  * x

b) dla wyrazen ztozonych:
lw((a° ß ) , x) = lw{a, x) + lw(ß, x) 
lw{ oc a ,x ) = lw(a, x)

dla xe {a, b, ..., z j 

dla x ,y e  {a, b, ..., z}

dla a, ß e l ( G ) ,«e  {+, *} 
dla a eL (G ), °ce {@, #}

Omöwiona w rozdziale 1. indukcja matematyczna dotyczyla sposobu dowodzenia 
wlasnosci, ktöre zachodz^ dla wszystkich liczb naturalnych. Zbiör liczb naturalnych 
jest liniowo uporzqdkowanym zbiorem przeliczalnym. Liniowy porzqdek wyznacza 
relacja wiqkszosci pomiqdzy liczbami naturalnymi. Czqsto interesuj^ nas wlasnosci, 
ktöre zachodz^ dla innych zbioröw przeliczalnych, ale nieuporz^dkowanych liniowo. 
Przykladem takiego zbioru jest zbiör wszystkich formul rachunku zdan. Dowodzenie 
wlasnosci postaci P(a), gdzie aeFORM , opiera si$ na indukcji strukturalnej, ktöra 
jest uogölnieniem indukcji matematycznej.



Twierdzenie 9.4 (Zasada indukcji strukturalnej dla rachunku zdan)
Niech P  bqdzie pewn^ wlasnosci^ dotycz^c^ formul. Wlasnosc P(a) ma kazda 
formula a  rachunku zdan, pod warunkiem, ze:

krok poczqtkowy: wlasnosc tq ma kazda formula elementama, 
krok indukcyjny:
• jezeli wlasnosc tq ma formula a, to ma j^takze formula —>a,
• jezeli wlasnosc tq maj^formuly aroraz ß, to ma j^takze formula (a °ß ), gdzie 

- oznacza dowolny binamy spöjnik logiczny.

Dowod
Uzasadnieniem dla podanego postqpowania jest nastqpuj^ce rozwazanie: Niech 
S  bqdzie zbiorem tych formul rachunku zdan, ktöre majX wlasnosc P. Krok po- 
cz^tkowy i kroki indukcyjne stwierdzaj^, ze formuly nalez^ce do S  spelniaj^ wa- 
runki:

• jezeli arjest formuly elementam^, to a e S ,
• jezeli a e P ,  to - ia e P
• jezeli a, ß e P ,  to (a ° ß )  e S, gdzie °jest dowolnym binamym spöjnikiem

logicznym.

Poniewaz zbiör formul FORM  jest najmniejszym zbiorem spelniaj^cym wyzej 
wymienione warunki, zatem zbiör formul FORM  c  S, z czego wynika, ze kazda 
formula ma wlasnosc P. m

Przyklad 9.12
 ̂ Rozpatruje siq wlasnosc P: w dowolnej formule rachunku zdan liczba nawiasöw* 

otwieraj^cych jest röwna liczbie nawiasöw zamykajqcych. Przez lewy(a) oraz 
prawy(a) oznacza siq liczby nawiasöw otwieraj^cych i zamykaj^cych w formule a. 
Wlasnosc P(a) moze byc zapisana lewy(a) = prawy(a).

• Formuly elementame nie zawieraj^ nawiasöw, maj^ zatem wlasnosc P.
• Zaklada siq, ze wlasnosc P  maj^ dowolne formuly a, ß. Oznacza to, ze le- 

wy(a) = prawy(a) oraz lewy(ß) = prawy(ß). Rozpatruje siq dowolny for- 
mulq zlozon^: (ar° ß ), gdzie ° jest dowolnym binamym spöjnikiem logi­
cznym. Wlasnosci P  zachodzq. wiqc röwniez dla (a °ß ):

lew y((a°ß )) = lewy(a) + lewy(ß) + 1
= prawy(a) + prawyiß) + 1

|____________________ = prawy((a ° ß ))_____________________________________ I

Zasada indukcji strukturalnej zostala tu zdefmiowana tylko dla rachunku zdan. Jest 
ona röwniez stosowana w rachunku kwantyfikatoröw (zob. nastqpny rozdzial).



Cwiczenia

1. Wskazac ci^gi znaköw, ktöre s^slowami jQzyka rachunku zdah:
a) ((P v  q))
b ) p v q

c ) q v p < ^ ( v ( q , p ) )

2 .  Dan^ formuly rachunku zdan przedstawic w pelnej postaci z nawiasami, a nastgmie 
okreslic zbiör wszystkichjej podformul:
a )  a A b A c v d < z > e = > —i f v g = > h

b) a A ( i A c v r f ) « e = >  (— i fvg) =>h

3. Podac algorytm, ktöry dowoln^ formuly rachunku zdah zapisan .̂ w postaci wrost- 
kowej transformuje na formuly zapisan^ w postaci przedrostkowej.

4. Funktorem zdaniowym n-argumentowym nazywamy dowoln^ funkcjQ / o sygnaturze
/ :  { p r a w d a , f a l s z } n —» { p r a w d a , f a l s z } .

Jaka jest liczba takich funktoröw n-argumentowych? Zdefiniowac wszystkie funk- 
tory jedno- i dwuargumentowe.

5. Stosujqc metodq zero-jedynkow^, wykazac, ze nastqwj^ce formuly s^tautologiami:
a ) P  = > (? = > /> )
b) { p A  q )  <=> (- 1p  v  - , q )

# v ? ) o  ( - n p  A  - 1  q)

6. Opieraj^c siq na systemie dowodzenia opartym tylko na regulach podstawienia 
i przechodniosci, pokazac, ze nastqjujqce formuly s^tautologiami:
a) —ia  a  ( a  = >  b )  = >  - n a

b) a  a  { a  = >  b )  => b  <=> true

7. Sprawdz (w dowolny sposöb), czy s^ tautologiami nastqpujXce formuly:
a )  p v  ( q  a  r )  <z> ( p  a  q ) v  ( p  a  r )

b) p  a  ( q  v  r )  <=> ( p  a  q )  v  (p a  r )

c) «<=> ß
d) orv -i/7
e) - iöt=> ß

8. Ktöre zbiory spöjniköw logicznych s^zbiorami funkcjonalnie pelnymi:
a) {->> a }
b) K v }
c) {->, =>}
d) {false, =>}
e) K  <=>}



f) {true, =>}
g) {<=>, false}

9. Dane ŝ . dwa dwuargumentowe funktory logiczne NAND oraz NOR zdefiniowane 
nastqjujqco:

NAND(a, b) = —>{a a b) oraz NOR(a, b) = —>(a v  b).
Pokazac, w jaki sposöb, za pomoc^_ tych fiinktoröw, mozna wyrazic spöjniki lo­
giczne negacji, koniunkcji i altematywy. Narysowac sieci logiczne realizuj^ce 
funkcje prawdziwosciowe f ,  f 2 zdefiniowane przedstawionq. ponizej tablic^, 
w ktörej symbolami 0 oraz 1 oznaczono odpowiednio falsz oraz prawdQ.

a b f{a,b) m b )
0 0 1 1
0 1 0 0
1 0 1 1
1 1 0 1

10. Ktöra ze zdefiniowanych nizej relacji jest relacjX röwnowaznosci na zbiorze for­
mul rachunku zdan:
a) or~i ß  wtedy i tylko wtedy, gdy formula ar<=> ß jest spelniona,
b) a ~2 ß  wtedy i tylko wtedy, gdy formula or<=> /?jest sprzeczna,
c) a ~3 ß  wtedy i tylko wtedy, gdy formula a<^> /?jest spelniona dokladnie dla po- 

lowy wartosciowan zmiennych.

11. Niech y  b^dzie dowolnie ustalon^ formul^ rachunku zdan. Wykazad, ze relacja 
zdefiniowana nast$puj£ico:

a ~  ß  wtedy i tylko wtedy, gdy formula y=> (ör<=> ß )  jest tautologi^, 
jest relacja röwnowaznosci na zbiorze formut rachunku zdan.

12. Dana jest gramatyka G =def <T, N, P, S>, gdzie:
r=def{0, l ,@ ,  #,+ , *, (,)}
N =(\ef {wyr, opjinam y, op_binarny}
P  =def {wyr ::= 0 | 11 {wyr op_binarny wyr) \ op jinam y wyr 
op_binamy ::= + | * 
opjinam y  ::= @ | #}
S=defwyr

a) Czy gramatyka jest jednoznaczna?
b) Podaö przyklad wyprowadzenia dowolnego slowa generowanego przez grama- 

tykq G o dtugosci wiqkszej od 2.
c) Stosujqc zasadq rekursji strukturalnej, zdefiniowac funkcje lefi(a), ktöra dla do­

wolnego napisu a  eL(G) okreSla liczbQ lewostronnych nawiasöw wystgjuj^- 
cych w napisie a.



d) Stosuj^c zasadq indukcji strukturalnej, pokazac, ze dla dowolnego napisu 
aeL (G )  zachodzi nastqpujXca wlasnosc:
lefi(ä) -  liczba operatoröw binamych wystqpujXcych w napisie a.

13. Dia gramatyki G z przykladu 9.11 zdefmiowac funkcjQ, ktöra oblicza liczbq:
a) wystqpieri zmiennych w slowie jqzyka generowanego przez gramatykq G,
b) liczb? roznych zmiennych wystQpuj^cych w slowie jqzyka generowanego przez 

gramatyk^ G.

14. NastqpujXce formuly oraz ich negacje sprowadzic do koniunkcyjnej (CNF) i do 
dysjunkcyjnej (DNF) postaci normalnej:
a) ((a => t )  v  c) o  ( i  a  c),
b) - i(a A b )= > (b v  —ic),
c) (a => b )v  (b=> a).



10. Rachunek kwantyfikatoröw

10.1. Skladnia
Rachunek kwantyfikatoröw jest uogölnieniem rachunku zdan. JQzyk formalny rachun- 
ku kwantyfikatoröw jest zdefiniowany jako zbiör napisöw dwöch kategorii -  termöw 
i formul -  nad alfabetem, na ktöry skiadajq. siq nastqxijqce kategorie jednostek leksy- 
kalnych:

• przeliczalny zbiör V symboli zmiennych indywiduowych, reprezentowanych 
przez identyfikatory; dalej najczqsciej b$d^uzywane Symbole: x, y , ...,

• przeliczalny zbiör F„ symboli funkcyjnych n-argumentowych dla neNat, repre­
zentowanych przez identyfikatory; dalej najczQsciej bqdq. uzywane Symbole: 
c -  dla symboli funkcyjnych zeroargumentowych, czyli dla stalych indywidu­
owych, oraz f  g, ... -  dla pozostalych symboli funkcyjnych, zbiör wszystkich 
symboli funkcyjnych b^dzie oznaczany F  = O -

/!€ Ncit

• przeliczalny zbiör P„ symboli predykatöw «-argumentowych dla neNat, repre­
zentowanych przez identyfikatory; predykaty zeroargumentowe (co najwyzej 
dwa) s^ nazywane stalymi logicznymi; dalej najcz^sciej bqd^ uzywane Symbole 
p, q , ..., zbiör wszystkich symboli predykatöw b^dzie oznaczany P  = [ J ^ , ,

neNat

• Symbole spöjniköw logicznych:
implikacji =>
koniunkcji a

dysjunkcji (lub alternatywy) v
negacji —i
röwnowaznosci o

• Symbole kwantyfikatoröw:
kwantyfikatora ogölnego V
kwantyfikatora szczegöbwego 3

•  Symbole pomocnicze:
nawias otwierajqcy (
nawias zamykajqcy )



przecinek
kropka

Zaklada siq, ze zbiory symboli funkcyjnych F  i symboli predykatöw P  se rozleczne. 
Para

S i g  = d e f  < F ,  P >

bqdzie nazywana sygnaturq jqzyka rachunku kwantyfikatoröw. Rachunek kwantyfi­
katoröw okresla nie jeden konkretny jqzyk, ale rodzinq jqzyköw. Kazdy jqzyk jest 
jednoznacznie wyznaczony przez sygnaturq. Skladnia i semantyka rachunku kwanty­
fikatoröw jest definiowana przy zalozeniu dowolnej, ale ustalonej sygnatury. Dobör 
odpowiedniej sygnatury wynika z zamierzonego zastosowania jqzyka.

Reguly sktadni defmiuje dwa zbiory napisöw -  termy i formuly -  nad alfabetem ra­
chunku kwantyfikatoröw.

Zbiör termöw nad sygnatury Sig i zbiorem zmiennych V, oznaczany TERM(F, V), jest 
definiowany rekursywnie w sposöb nastqpujecy:

• zmienne indywiduowe i stale indywiduowe se termami, czyli

V u F 0cTERM(F, V)
• jezeli t\, ..., tk (k = 1, 2, ...) se termami, a /  jest symbolem funkcyjnym

A:-argumentowym, to f{ t \ ..... tk) jest termem.

Term, ktöry nie zawiera zmiennych indywiduowych nazywa siq termem statym.

Uwaga
Zbiör termöw wyznacza pewne algebry omöwione w rozdziale 8.

Zbiör formul nad sygnatury Sig i zbiorem zmiennych indywiduowych V, oznaczany 
FORM(F, P, V), jest definiowany rekursywnie w sposöb nastqpujecy:

1. Symbole predykatöw zeroargumentowych (stale logiczne) se formulami;
2. jezeli t\, ..., tk (k = 1, 2, ..., k) se termami oraz /»jest symbolem £-argumentowego 

predykatu, to formuly jest napis p{t\ , ..., tk)\
3. jezeli a, ß  se formulami, to formulami s^takze napisy:

->a (a=> ß )  (ä a  ß )  (crv ß )  {a<^>ß)

4. jezeli orjest formuly oraz x jest zmienne indywiduowe, to formulami setakze:

(3x • a) oraz (Vx • a)

Formuly spelniajece podane wyzej warunki (1) i (2) nazywa siq formulami atomowy- 
mi, formuly spelniajqce pozostale warunki -  formulami zlozonymi.

Zbiör formul FORM(F, P, V) jest jqzykiem formalnym rachunku kwantyfikatoröw 
o sygnaturze <F, P> nad zbiorem zmiennych V.



Uwaga
W celu zredukowania liczby nawiasöw konwencjq przyjqt^ dla rachunku zdan roz- 
szerza siq o ustalenie priorytetöw dla kwantyfikatoröw. Przyjmuje siq, ze kwanty- 
fikatory maj^ priorytet nizszy od spöjniköw logicznych. Oznacza to, ze formula 
zapisana w postaci beznawiasowej

Hx • (X A ß v  y

gdzie: a, ß, y  s .̂ dowolnymi jej podformulami, w postaci z nawiasami przedstawia 
siq nastqpujqco:

Hx •  ((«A  ß )  V  Y)

Kwantyfikatory wystqpuj^ce obok siebie l^cz^w prawo, to jest formula 

Hx • Hy • a  

oznacza

Hx • (Hy  • a)

Formula ör wystqpuj^ca po kwantyfikatorze w formule Hx.öf lub Vx. a  nazywa siq za- 
siqgiem kwantyfikatora. Symbol x wystqpuj^cy bezposrednio za symbolem kwantyfi­
katoröw nazywa siq wskaznikiem zwiqzania. Symbol wskaznika okresla rolq zmiennej 
x  wystqpuj^cej w formule a, stanowi^cej zasiqg kwantyfikatora.

W zdefiniowanym jqzyku kwantyfikatory wi^z^jedynie zmienne indywiduowe, dlate- 
go jqzyk ten nazywa siq jqzykiem kwantyfikatoröw pierwszego rzqdu. W logice rozpa- 
truje siq takze inne jqzyki, ktöre dopuszczajq. wi^zanie przez kwantyfikatory innych 
obiektöw, na przyklad rachunek kwantyfikatoröw drugiego rzqdu dodatkowo pozwala 
na wi^zanie przez kwantyfikatory symboli predykatöw. Dalsze rozwazania ogranicza- 
j^  siq wylqcznie do rachunku kwantyfikatoröw pierwszego rzqdu.

10.2. Indukcja i rekursja strukturalna

Indukcja strukturalna jest podstawow^ technik^ dowodzenia wlasnosci termow i for­
mul. Przedstawiona dla rachunku zdan zasada indukcji strukturalnej rozszerza siq na 
termy i formuly rachunku kwantyfikatoröw.

Twierdzenie 10.1 (Zasada indukcji strukturalnej dla termow)

Niech P(t) bqdzie pewn^ wlasnosci^ zachodz^c^ dla termu te TERM{F, V). Aby 
pokazac, ze wlasnosc P  zachodzi dla kazdego termu rachunku kwantyfikatoröw, 
wystarczy pokazac, ze:

krok poczqtkowy: wlasnosc P  zachodzi dla kazdej zmiennej xe V, czyli P(x),



krok indukcyjny:
jezeli wlasnosc ta zachodzi dla termöw tu ..., t„, czyli P(t\), ..., P(t„), oraz feF„, 
to wlasnosc ta zachodzi dla termu f { t \ , ..., t„), czyli P(f(t\, ■■■, („))■

Twierdzenie 10.2 (Zasada indukcji strukturalnej dla formul)
Niech P(ct) bqdzie pewn^ wlasnosci^. zachodz^c^ dla formuly aeFORM (F, P, V). 
Aby pokazac, ze wlasnosc P  zachodzi dla kazdej formuly rachunku kwantyfikato­
röw, wystarczy pokazac, ze:
krok poczqtkowy: wlasnosc ta zachodzi dla kazdej formuly atomowej, 
krok indukcyjny.

• jezeli wlasnosc P  zachodzi dla formuly a, to zachodzi takze dla formuly -i a,
• jezeli wlasnosc P maj^ a  oraz ß, to ma j^takze formula (a  »ß ), gdzie

. e  {a , v, =>, <=>} oznacza dowolny binamy spöjnik logiczny,
• jezeli wtasnosö P  zachodzi dla formuly a, a x  jest zmienn^. indywiduow^, to

P  zachodzi takze dla formuly Vx • ororaz dla Hx •

Wykorzystujqc indukcjq strukturaln^, mozna pokazaö, ze termy i formuly dekomponu- 
j^si^  jednoznacznie na komponenty skladowe.

Lemat 10.1
Niech t oraz s b$d^ termami. Jezeli t s  s w dla pewnego slowa nad alfabetem ra­
chunku kwantyfikatoröw, to w jest slowem pustym. Inaczej: zaden term nie jest 
wlasciwym prefiksem (niepustym pocz^tkowym fragmentem) innego termu.

Dowöd
Zgodnie z zasad^ indukcji strukturalnej rozpatruje siq kolejno przypadki. Jezeli 
t jest zmienn^ indywiduowEi, to t nie ma prefiksu wtasciwego. Zaklada siQ teraz, 
bez utraty ogölnosci, ze / jest postaci f( t\, ..., tn) oraz ze t = s w dla pewnego slowa 
w, wöwczas s musi byö postaci f ( s \ , ..., s„) w. Dla kazdego i = 1,..., n termy t, oraz 
Sj S3. elementami sktadowymi termu t. Na mocy zatem zalozenia indukcyjnego -  
ani th ani s, nie s .̂ swoimi prefiksami, z czego wynika, ze t, s  s,. To poci^ga, ze 
w = e, z czego ostatecznie wynika identycznosc t = s. m

Lemat 10.2
Niech ororaz ß  bQd3. dowolnymi formulami. Formula ornie jest wlasciwym prefik­
sem formuly ß.

Dowöd
Dowöd przebiega tak jak dla poprzedniego lematu i pozostawia si$ go jako cwi- 
czenie. ■

Na podstawie lematöw mozna dowiesc twierdzenia o jednoznacznosci dekompozycji 
termöw i formul.



Twierdzenie 10.3 (Twierdzenie o rozbiorze)
1. Kazdy termjest albo zraienn^ albo stafy, albo termem zlozonym postacif ( t \ , ..., t„), 

gdzie:/  jest jednoznacznie okreslonym symbolem fiinkcyjnym, a t \ , t „  s^jed- 
noznacznie okreslonymi termami.

2. Kazda formula ma dokladnie jedn^ z postaci:
a) p(tu ...,tn)
b )  ->a
c) (or° ß )  d la»e {a ,v , =>, <=>}
d) Q x  •  ordla Qe {V, 3}

Twierdzenie umozliwia jednoznaczne rekursywne definiowanie funkcji na zbiorach 
termöw i formul.

Przyklad 10.1
 ̂ Funkcja | t | okreslajqca dlugosc termu t, rozumiana jako liczba jednostek leksyJ 

kalnych wchodz^cych w sklad termu, jest definiowana nastqpuj^co:
<0 1^1 def 1

I b) 1/(^1» -» Q  I =def Ui 1 + -  + 11„ I + n + 2_______________________________ I

Podobnie, jak dla rachunku zdan, mozna röwniez definiowac rekursywnie funkcje 
okreslone na termach i formulach rachunku kwantyfikatorow.

Twierdzenie 10.4 (Zasada rekursji strukturalnej dla termöw)
Nast^puj^cy sposöb postqpowania definiuje jednoznacznie funkcjQ g  okreslona na 
zbiorze termöw TERM{F, V):
krok poczqtkowy: na termach elementamych (zmiennych i stalych indywiduowych) 
funkcja g  jest okreslona bezposrednio,
krok indukcyjny: wartosc funkcji g  dla termöw zlozonych jest okreslona posrednio: 

wartosc funkcji dla termu f( t\, ..., t„) jest okreslona w terminach wartosci funkcji 
na termach skladowych t\ , ..., tn.

Twierdzenie 10.5 (Zasada rekursji strukturalnej dla formul)

NastQpuj^cy sposöb postqpowania definiuje jednoznacznie funkcja g  okreslona na 
zbiorze formul FORM (F, P, V):
krok poczqtkowy. na formulach elementamych funkcja g  jest okreslona bezpo­
srednio,
krok indukcyjny: wartosc funkcji g dla formul zlozonych jest okreslona po­
srednio:

• wartosc funkcji g  na formule —iQrjest okreslona w terminach wartosci funkcji g 
na formule cc,



• wartosc fimkcji g  na formule (a  °ß), gdzie « e  {a , v , =>, <=>} jest okreslona 
w terminach wartosci na formulach aoraz ß,

• wartosc fimkcji g  na formulach Vjc • ororaz dla 3x •  « je st okreslona w termi­
nach wartoSci na formule a.

Przyklady rekursywnego definiowania funkcji na termach i formulach rachunku kwanty­
fikatoröw sqprzedstawione w kolejnym podrozdziale.

10.3. Zmienne woine i zwiqzane

Zmienna indywiduowa x  moze wystQpowac tekstowo w wielu miejscach termu lub 
formuly. Kazde takie pojawienie sie zmiennej -  poza miejscem bezposrednio za 
kwantyfikatorem i przed kropkq, gdzie okresla sie wskaznik wiqzania -  nazywa sie 
wystqpieniem zmiennej.

Wystqpienie zmiennej w danej formule moze byd wolne albo zwiqzane.

Wystqpienie zmiennej w danej formule nazywa sie wystqpieniem wolnym, jezeli wy­
stqpienie to nie znajduje sie w zasiegu zadnego kwantyfikatora, natomiast w przypad- 
ku przeciwnym -  nazywa sie wystqpieniem zwiqzanym. Ta sama zmienna moze 
w danej formule mied jednocze§nie wystqpienia wolne i zwiqzane.

Przyklad 10.2
I Dana jest formula I

p(x, y)= > 3x» q(x, y)

gdzie: p, q sq pewnymi dwuargumentowymi predykatami. Zmienna x  ma dwa 
wystqpienia. Pierwsze wystqpienie -  jako argument predykatu p  - je s t  wystqpie­
niem wolnym, drugie -  jako argument predykatu q -  jest wystqpieniem zwiqza- 

| nym. Zmienna y  ma tez dwa wystqpienia -  oba wolne._______________________ i

Niech V bqdzie zbiorem zmiennych indywiduowych. Definiuje sie funkcje, kföre dla 
dowolnej formuly wyznaczajq podzbiory zmiennych majqce wystqpienia wolne 
i zwiqzane. Najpierw definiuje sie pomocniczq funkcje

Var: TERM(F, V)^>2v

ktöra dla dowolnego termu wyznacza zbiör zmiennych wystepujqcych w tym termie. 
Funkcja jest zdefiniowana rekursywnie:

1. Var(c) =def 0  dla cg F0
2. Var(x) =der {*} dla xe V
3. Var{f(t\ , ..., tnj) =def Var(ti) u  ... u  Var(tn) dlaf s F n (n= 1,2 ,...)



Term t, ktöry nie zawiera zmiennych indywiduowych, czyli dla ktörego Var(t) = 0 ,  
jest termem statym.

Funkcja wyznaczaj^ca zmienne maj^ce wolne wystqpienia w formule jest fimkcj^typu 

F V : FORM(F, P, V) -> 2V 

i jest zdefiniowana rekursywnie nastqpuj^co:
1 .FV(p(tu ..., tk)) =def Var{t\) u  ... u  Var(tk)
2 .  FV(—iCt) = d e f  FV(oft
3. FF(or. ß )  =def FV(d) u  FV(ß)

gdzie ° oznacza dowolny binamy spöjnik logiczny, czyli°e (a , v , =>, <=>}
4 . FV{Q x* c?)=äetFV(ct)\{x}

gdzie Q oznacza dowolny kwantyfikator, czyli Qe {V, 3}

Funkcja wyznaczaj^ca zmienne majqce zwi^zane wyst^pienia w formule jest funkcja typu 

B V : FORM{F, P, V) -> 2 K 

i jest zdefiniowana rekursywnie nastqmj^co:
1. BV{p[t\......tk)) =def 0
2. BV(r.ct) =def5F(ö)
3. 5 F (a .  ß )  =def BV(ä) u  BV(ß)

gdzie ° oznacza dowolny spöjnik logiczny, czyli - e  ( a , v, =>, <=>}
4. BV{Qx • ct) =def5F(ö) u  {x}

gdzie g  oznacza dowolny kwantyfikator, czyli Qe {V, 3}

Przyklad 10.3
 ̂ Dia formuly orpostaci ^

P(x, y ) => Vx «Vz • (?(x) a  p(x, z)) 

zbiör zmiennych maj^cych wyst^pienia wolne jest nastqpuj^cy:

FF(ö) = FV(p(x, y) u  FF(Vx «Vz • (#(x) a p(x, z)))
= {x, y} u  FV(q(x) a p(x, z))\{x, z}
= {x,y} U 0
= {*,7}

a zbiör zmiennych maj^cych wyst^pienia zwi^zane jest nastqpujqcy:

BV(ct) = BV(p(x, y) u  5F(Vx • Vz • (q(x) a /?(x, z)))
= 0  U {x, z} u  BV(q(x) a p ( x ,  z))

l = {■*, A  .



Formula zawieraj^ca wolne wyst^pienia zmiennych nazywa siq formuly otwartq. Za- 
mkniqciem formuly otwartej nazywa siq formulq otrzyman^ przez poprzedzenie danej 
formuly otwartej kwantyfikatorami ogölnymi, wiqzqcymi wszystkie jej zmienne wol­
ne. Formula zamkniqta jest zdaniem, czyli ma jednoznacznie okreslon^ wartosc lo- 
giczn^: prawda albo falsz.

Przyklad 10.4
' Formulami otwartymi s^: '

Vx • p(x, y)

Vx *Vy • (q(x) =>/>(y, z))

Formulami zamkniQtymi (zdaniami) s^:

Vx • q(x)

, Vx • Vy • (q(x) a  p(x, y)) .

10.4. Podstawianie termöwj

Podstawieniem tekstowym termu za zmienne -  albo krötko -  podstawieniem nazywa 
si$ funkcjQ

er: V —> TERM(F, V)

tak^, ze zbiör

(xe V | o(x) ^  x}

jest skonezony. Zbiör ten bqdzie nazywany dziedzin^ podstawienia i oznaczany przez 
dom(d).

Funkcja er jest podstawieniem tozsamosciowym jezeli dom(&) = 0 .  Podstawienie takie 
bqdzie oznaczane symbolem e. Podstawienie nazywa si$ podstawieniem podstawowym 
albo staiym, jezeli przeciwdziedzina ran(o) funkeji podstawienia zawiera tylko termy 
stale.

Jezeli dom(cr) = {xi, ..., x„} oraz cr(x,) = t,, dla i = 1,2, ..., n, to funkcjq er zapisuje si$ 
w postaci

er — def [^i 11, ..., xn tj\

Zapis Xj : : =  tt czyta si$: x, jest zastqpowaneprzez t,. Element x,- : : =  ^nazywa siqprzy- 
pisaniem albo wiqzaniem, dlatego podstawienie okresla si$ tez jako skonezony zbiör 
przypisan albo wi^zan.



Podstawienie er mozna rozszerzyc na zbiör formul. Najpierw rozszerza si? je na zbiör 
termöw, to znaczy do odwzorowania

<f : TERM{F, V) -> TERM(F, V)

przyjmujqc

o'(x) =def o(x) dla xe V
.... 0)=def f W h ) ,  ..., <X'(0)

W kolejnym kroku rekursywnie rozszerza si? odwzorowanie er' na odwzorowanie er": 
FORM(F, P, V) —> FORM(F, P, V) w nastQpuj^cy sposöb:

1. er"( tu ..., t,,)) =defP(ff'(<i), •••, cr'(4))
2. er"(-iöi) =def-<o"(a)
3. o " ((a °ß ))  =def(er"(a)°er"(/?))

gdzie ° oznacza dowolny spöjnik logiczny, czyli °e {a , v , =>, <=>}
4. e r" (ß x • ct) =defQ x *  d "(ä )

gdzie: Q oznacza dowolny kwantyfikator, czyli ß e  {V, 3}, a er" jest obci?ciem 
funkcji er" do zbioru zmiennych wolnych w formule ßx • a, czyli o "  = o "\fv̂ qx. 
Oznacza to, ze w formule ß  x  • örmog^ nast^pic przypisania tylko za wolne wy- 
st£(pienia zmiennych.

Dalej, w celu uproszczenia oznaczen, wszystkie Symbole podstawienia b?d^ pisane 
bez 'oraz ". Ponadto, ze wzgl?du na wygod?, zastosowanie podstawienia er do termu 
t b?dzie zapisywane w postaci to  oraz -  podobnie -  zastosowanie do formuly a  
w postaci ao. Formul? a o  b?dzie si? nazywac ukonkretnieniem formuly orprzez pod­
stawienie o.

Przyklad 10.5
* Niech er =def [x ::= t\, y  ::= t2\ oraz a  = Vz • (p(x, y, z) => q(x, z)) I

wowezas

I a o  = (\/z»(p(x,y,z)=>q(x,z)))[x ::=tuy \:= t2]=Vz • (p(tu t2,z) => q(tuz)). [

Niech o  oraz T b?dq. dwoma podstawieniami. Zlozenie podstawien er oraz rjest defi- 
niowane tak samo jak skladanie funkcji. Jest zatem podstawieniem oznaczanym przez 
cr-T- albo krötko er r -  i zdefiniowanym nastQpuj^co:

(er z)(x) =def r(o(x)) dla xe V.

Jezeli podstawienie er jest takie, ze istnieje dla niego podstawienie odwrotne er-1 ta- 
kie, ze

erer~‘ = o xo= e



to <7jest nazywane przemianowaniem zmiennych. Term t\ nazywa siQ wariantem ter- 
mu t2, jezeli istnieje takie przemianowanie a ,ze t\ = <7(t2).

Podstawienie er nazywa si$ podstawieniem idempotentnym, jesli o(o(x))=o(x) dla 
dowolnego xe V.

Term t jest wolny w formule a z e  wzglqdu na zmiennq x, gdy zachodzi jeden z wa- 
runköw:

1. arjest formul^ atomow^,
2. a=  —\ß oraz term / jest wolny w ß  ze wzgl^du na x,
3. a  = ß x . ß 2, gdzie ° e  {a , v , =>, <=>}oraz term / jest wolny w ß \ oraz w ß 2 ze 

wzgl^du na x,
4. a=  Q x  •  ß,
5. a= Q y  • ß, x * y ,  Q g {V, 3},yg Var(t) oraz term /jest wolny w ß z e  wzgl^du na x.

Inaczej: term / jest wolny w formule a ze  wzglqdu na x  wtedy, gdy podstawienie / za x 
w formule arnie powoduje, ze ktöras ze zmiennych wystqDuj^cych w termie / stanie 
si$ zmiennq zwi^zan^.

Przyklad 10.6
I Dana jest formuta ^

P(x, y) => V* • Vz • (q(x) a  p(y, z))

Term f(x )  jest wolny w tej formule ze wzgl$du na x, ale nie jest wolny ze wzglq- 
du na y, gdyz po zast^pieniu y  przez term f(x )  otrzymano by formut$ postaci

P(f(y), y) => Vx • Vz • (q(x) a  p(f(x), z))

w ktörej podkreslone wystqpienie zmiennej x  staloby siQ wystqpieniem zwi^za- 
nym. Term g(y, w) natomiast jest wolny w formule zaröwno ze wzglqdu na x, jak 

| in a  y.________________________________________________________________ |

W dalszym ci^gu, dokonujqc podstawienia <7w formule a, b$dzie zawsze wymagane, 
by dla dowolnej zmiennej xedom(d) odpowiadaj^cy jej term a(x) byl wolny w a z e  
wzgl^du na x.

10.5. Semantyka

Rachimek kwantyfikatoröw, stanowi^c uogölnienie rachunku zdan, przejmuje znacze- 
nie przypisywane spöjnikom logicznym zgodne ze standardowq. interpretaej^.

Sposöb opisu semantyki rachunku kwantyfikatoröw jest podobny do opisu semantyki 
rachunku zdan. Opis rozpoczyna siQ ustaleniem dziedzin semantycznych, w ktörych



bqdzie wyrazane znaczenie elementöw jQzyka -  term6w i formul, a nastqpnie okresla 
si$ interpretacji symboli funkcyjnych i predykatywnych. Oba te elementy -  dziedziny 
semantyczne i interpretacja symboli funkcyjnych i predykatywnych -  stanowi^ model 
interpretacji. Po ustaleniu modelu interpretacji definiuje siQ znaczenie najpierw ter- 
möw, a nastqpnie formul.

Dziedziny interpretacji dla formul -  tak jak w rachunku zdan -  jest zbiör wartosci 
logicznych Logiczne. Dziedzina interpretacji termöw moze siq natomiast skladac 
z wielu röznych zbioröw wartoSci D u ..., Dm (m > 0) -  möwi siq, ze dziedzina jest 
wielorodzajowa. W dalszych rozwazaniach, oprocz niektörych przykladöw, dziedziny 
szczegölowe nie bqd^ rozrözniane. W celu uproszczenia prezentacji zaklada sii, ze 
istnieje jedna wspölna dziedzina D  stanowi^c^ mnogosciow^ sumq dziedzin szczegö- 
lowych. Dziedzina ta jest rozl^czna ze zbiorem wartosci logicznych.

Uwaga
Rozröznienia dziedzin interpretacji dokonuje siq w rachunku kwantyfikatoröw 
z typami.

Nowymi elementami, ktöre wymagaj^dodatkowej interpretacji, s% Symbole funkcyjne 
oraz predykatywne. Symbolom funkcyjnym b$d^ odpowiadaly pewne funkcje, symbo- 
lom predykatywnym -  pewne relacje w ustalonej dziedzinie interpretacji. Poniewaz 
dowoln^relacjq mozna w röwnowazny sposöb przedstawic za pomoc^jej funkcji cha- 
rakterystycznej, dlatego symbolom predykatywnym b^d^ röwniez przyporz^dkowy- 
wane funkcje, ale o wartosciach w zbiorze Logiczne.

Uwaga
Przypomnijmy, ze dla relacji R c  Dtx  ... xDn (n > 1) jej funkcja charakterystyczna 

f R : Di x ... x D„ —> Logiczne 
jest zdefiniowana nast^puj^co:

f R(du ..., d„) = P  wtedy i tylko wtedy, gdy <du ..., d„>eR.

Wprowadza si$ funkcje interpretacji symboli funkcyjnych i predykatywnych I, okre- 
slon^na zbiorze symboli F  u  P  tak^, ze:

• jezeli fe F n, dla neNat, to / ( / )  :/> "—» D  jest w-argumentow^ funkcje, w szcze- 
gölnym przypadku, gdy/jest stal^, czyli f e  F0,I ( f ) e D ,

• jezeli p e P n, dla ne Nat, to I(p) : LF -» Logiczne jest n-argumentow^ funkcje 
o wartosciach logicznych.

Poniewaz zostala wprowadzona jedna wspölna dziedzina interpretacji D, funkcje defi- 
niowane przez /  sq. wi$c najcz^sciej funkcjami czqsciowymi.

Para
M =  <D, I>



gdzie: D  jest niepusti dziedzini interpretacji, a I  jest interpretacji symboli funkcyj- 
nych i predykatywnych, b^dzie nazywana modelem dla formalnego j^zyka rachunku 
kwantyfikatoröw o sygnaturze Sig -  <F, P>.

Nast^pny etap definiowania semantyki rachunku kwantyfikatoröw polega na nadaniu 
interpretacji dowolnym termom. Pomocniczym poj^ciem -  podobnie jak w rachunku 
zdan-jest funkcja wartosciowania zmiennych indywiduowych.

Wartosciowaniem zmiennych jest funkcja v o nastgmjqcej sygnaturze:

v: V-> D

Niech M  = <D, />  b^dzie modelem jqzyka o sygnaturze Sig = (F, P). Kazdemu ter- 
mowi t, przy ustalonym wartoSciowaniu v, przyporzidkuje siQ pew ni wartoSc 
z dziedziny interpretacji D. Wartosc tQ wyznacza funkcja interpretacji termöw przy 
wartosciowaniu v

INTV: TERM{F, V )-> D

zdefiniowana rekursywnie wzglqdem struktury skladniowej zbioru termöw w sposöb 
nastQpujqcy:

• jezeli term jest zmienn^indywiduow^xe V, to
INTv(x) =defv(x)

• jezeli term jest postaci f ( t i , tn), gdzie f e  Fm oraz t \ , t n e TERM(F, V), to

INTv( f( tu .... O ) =def/(fm T JL tx l..... INTV{Q)

Nalezy zauwazyö, ze interpretacja zmiennych indywiduowych nie zalezy od interpre­
tacji /. WartoSö termöw stalych, przy ustalonej interpretacji I, nie zalezy od warto­
sciowania v.

Niech v bqdzie wartosciowaniem, x  -  zmienni indywiduowi oraz niech aeD . Warto- 
sciowanie v[x := a] definiuje siq jako

v[x := a](y) =
gdy y  = x
w przypadku przeciwnym

Wartosciowanie v [jc := a] jest wi$c modyfikacji wartosciowania v, polegajiCi na 
przypisaniu wartosci a ustalonej zmiennej x  i pozostawieniu niezmienionych wartoSci 
przypisanych do pozostalych zmiennym.

Uwaga
Nalezy odrözniac dwa podobne oznaczenia: [x := a] oraz [x ::=/]. Pierwsze okre- 
sla modyfikacji definicji pewnej funkcji; powyzej odnosi siQ do modyfikacji 
funkcji wartosciowania v. Drugie okreSla tekstowi modyfikacji pewnego napisu, 
na przyklad termu lub formuly.



Jezeli INTV jest interpretacj\przy pewnym wartosciowaniu v, to niech INT„[X .= n] bqdzie 
interpretacj^przy wartosciowaniu v[x := a\.

W celu unikni^cia zbyt wielu oznaczen, funkcja INTV bqdzie oznaczac interpretacjs 
zaröwno termöw, jak i formul. Interpretacjq formul w modelu M p rzy  wartosciowa­
niu v, definiuje siQ rekursywnie wzglQdem struktury skladniowej zbioru formul:

a) IN T M h  , in)) =defK p X I N U h ) , I N T J Q )
b) INTJ—td) =def—JNTJd)
c) INT J a  a. ß )  ^ f INTJd)  a  INTJß)
d) IN T J a v  ß ) =de[INTJci) v  INTJß)
e) INTJa=> ß )  =ie{INTJä) => INTv(ß)
f) I N T J a v  ß )  =de{INTv(oc) « INTJß)

Symbole P oraz F s^skrötami wartosci logicznych prawda, falsz. Spöjniki logicz- 
ne, wystqpuj^ce po prawej stronie w powyzszej definicji, ŝ . rozumiane zgodnie 
z ich standardow^ interpretacj^ przyjQt^ dla rachunku zdan. J$zyk rachunku zdan 
jest tutaj fragmentem metajqzyka sluzqcego do definiowania j^zyka rachunku 
kwantyfikatoröw. Elementami metaj^zyka sq. röwniez pojqcia dla dowolnego i dla 
pewnego, uzyte w punktach g) oraz h). Nalez^one do jqzyka teorii mnogosci.

Formula arjest spelniona w modelu M  dla wartosciowania v, gdy INT Ja )  = P. Fakt 
ten bqdzie zapisywany röwniez w postaci

INTV\= a

Formula ajest spelniona w modelu M, co oznacza siq 

M 1= a

gdy jest spelniona w tym modelu dla dowolnego wartosciowania.

Rozszerza si$ teraz funkcjq//Vr„ na zbiör formul jako funkcjq 

INTV: FORM(F, P , V ) - ^ D

[P gdy dla dowolnego d e  D  zachodzi INTv[x=d](a) = P 

|F  w  przypadku przeciwnym 

P gdy dla pewnego d e  D zachodzi INTv[x._d](a) = P 

F w przypadku przeciwnym

Uwaga



Jezeli formula ornie jest spelnialna w modelu M, bqdzie to zapisywane w postaci 

M  a

Formula a  jest spelnialna, gdy istnieje model, w ktörym jest spelniona.

Formula jest tautologiq, co oznacza siq 

I=a
gdy jest spelnialna w dowolnym modelu. Tautologia jest zatem schematem wypowie- 
dzi zawsze prawdziwej, niezaleznie od interpretacji przyjqtej dla symboli funkcyjnych 
i predykatywnych. Tautologia zaklada, oczywiscie, standardow^ interpretacji spöjni- 
köw logicznych.

Wprowadzone pojicia spelnialnosci uogölnia siq na zbiory formul.

Zbiör formut (Pjest spelniony w modelu M  dla wartosciowania v, gdy wszystkie for- 
muly zbioru 0  s^ spelnione w tym modelu Afprzy wartosciowaniu v.

Zbiör formul 0  jest spelniony w modelu M, gdy kazda formula tego zbioru jest spel­
niona w tym modelu.

Zbiör formul <Pjest spelnialny, gdy istnieje model, w ktörym zbiör ten jest spelniony.

Ilustracj^ zwi^zköw pomi^dzy röznymi rodzajami formul przedstawiono na rysimku 
10.1: zbiör formul spelnialnych jest oczywiscie podzbiorem formul, a zbiör tautologii 
jest podzbiorem zbioru formul spelnialnych.

r

v

Formuly
r

Formuly spelnialne

Tautologie

V___ J

Rys. 10.1. Zwi^zek pomi^dzy formulami spelnianymi i tautologiami 

Niech O  b^dzie zbiorem formul oraz a -  pojedyncz^ formuly. Pisze siQ 

0t= a

co czyta si$: formula awynika semantycznie ze zbioru formul 0 , albo inaczej: formula 
a  jest semantycznq konsekwencjq zbioru formul 0 , co oznacza, ze kazdy model, 
w ktörym s^ spelnione formuly zbioru 0  jest röwniez modelem, w ktörym spelniona 
jest formula oc.



Pisze siQ
ß \ =  a  zamiast { ß }  N a

oraz
t= a  zamiast 0  \= a

Pusty zbiör formul po lewej stronie symbolu 1= jest oczywiscie prawdziwy w kazdym 
modelu. Zapis 1= ar oznacza zatem, ze arjest tautologi^.

Uwaga
Nalezy zwröcic uwagQ na dwie role symbolu \=. Po jego prawej stronie wystQpuje 
zawsze formula, na przyklad a, natomiast po lewej -  moze wyst^pic model M  lub 
interpretacja INTV albo zbiör formul <P. W pierwszym przypadku symbol 1= ozna- 
cza, ze formula a  jest spelnialna w modelu M  lub w interpretacji INTV, 
w drugim -  ze jest semantyczn^ konsekwencj^ zbioru formul 0.

Möwi si$, ze dwie formuly a, ß  s^semantycznie röwnowazne, co pisze si$ 
a= ß

wtedy i tylko wtedy, gdy 
a  ß  oraz ß  t= a

Lemat 10.3
Niech 0  b^dzie zbiorem formul oraz a -  pojedynczsi formuly, wöwczas 

0\=  a
wtedy i tylko wtedy, gdy zbiör {-ia} jest niespelnialny.

Dowöd
Jezeli zachodzi 0  1= a, to oznacza, ze kazdy model, w ktörym jest spetniony 
zbiör formul 0 , jest röwniez modelem, w ktörym jest spelniona formula a. Za­
chodzi to wtedy i tylko wtedy, gdy nie istnieje model, w ktörym s^ spelnione 
formuly 0 , a w ktörym nie jest spelniona formula a. Ale to z kolei oznacza, ze nie 
istnieje model, w ktörym s^ spelnione formuly zbioru 0  u { —lör}, czyli gdy zbiör 
ten nie jest spelnialny. 0 1= a  zachodzi zatem wtedy i tylko wtedy, gdy zbiör for­
mul 0 u  {-iöt} jest niespelnialny. ■

Twierdzenie 10.6 (Twierdzenie o dedukcji)

Niech 0  =def {öTi, .... <%} bqdzie niepustym zbiorem formul oraz ß  -  pojedyncz^ 
formuly, wöwczas

0\=  ß
wtedy i tylko wtedy, gdy 

t=  « i  a  . . .  A  OCn = >  ß



Dowöd
0  N ß  zachodzi wtedy i tylko wtedy, gdy w kazdym modelu, w ktörym spelnione 

formuly CC\, ..., a „ , spelniona jest rowniez formula ß .  To dzieje siQ dokladnie 
wtedy, gdy w kazdym modelu, w ktörym jest spelniona formula d \  a ... a a „ , spel­
niona jest rowniez formula ß ,  co z kolei zachodzi wtedy i tylko wtedy, gdy

t= «i a ... a a „  => ß  ■

Twierdzenie o dedukcji ma wazne znaczenie w sytuacjach, gdy tezy badanych twierdzen 
maj  ̂schemat postaci 0  1= ß .  Bezposrednie sprawdzenie czy formula ß  jest semantyczn  ̂
konsekwencj  ̂zbioru formul 0  nie jest mozliwe, gdyz ogölnie oznacza to przebadanie nie- 
skonczonej liczby modeli. Twierdzenie o dedukcji umozliwia zast^pienie takiego sprawdza- 
nia zbadaniem, czy formula postaci a x a ... a öj, => ß j e s i  tautologi .̂ Badanie, czy formula 
jest tautologi ,̂ mozna przeprowadzic, konstruuj ĉ odpowiedni dowöd wedlug pewnego 
systemu dowodowego. W konstrukcji dowodu -  co b^dzie pokazane w nastqpnych rozdzia- 
lach -  wykorzystuje siq wylqcznie przeksztalcenia tekstowe badanej formuly.

Uzyteczn^ konsekwencj^ twierdzenia o dedukcji jest röwnowaznosc stwierdzen:

0 u  { a }  \= ß  wtedy i tylko wtedy, gdy 0 1= ar=> ß .

Fakt ten wskazuje na pewne podobienstwo symboli 1= oraz =>, nie oznacza jednak, ze 
Symbole te maj^ takie samo znaczenie. Nalezy zwröciö uwag? na to, ze Symbol konse- 
kwencji t= nalezy do metajQzyka, a symbol implikacji => do formalnego jqzyka ra- 
chunku kwantyfikatoröw. Podobna uwaga odnosi siQ do symboli spöjnika röwnowaz- 
nosci <=> oraz symbolu röwnowaznosci semantycznej =.

10.7. Wybrane prawa rachunku kwantyfikatoröw

Korzystajqc bezposrednio z defmicji interpretacji formul rachunku kwantyfikatoröw, 
mozna sprawdzic, ze zachodz^ podane ponizej röwnosci semantyczne, nazywane tez 
p r a w a m i  r a c h u n k u  k w a n t y f i k a t o r ö w .  Niektöre z nich maj^tez tradycyjne nazwy.

Jezeli aroraz ß  s^ dowolnymi formulami, to tautologiami s^ formuly:

1= (Vx • a) => ar

a = > (  3 x » a )

Pierwsze prawo wyraza to, ze jezeli dowolna formula jest spelniona dla wszystkich 
wartosciowan, to jest rowniez spelniona dla dowolnie wybranego wartosciowania. 
Drugi natomiast wyraza to, ze jezeli dowolna formula jest spelniona dla pewnego war­
tosciowania, to znaczy, ze istnieje wartosciowanie, przy ktörym formula ta jest spel­
niona.



Prawa de Morgana

1= (-iVx • o t) <=> (3x • -i o t) 

t= (-i3x • ot)<=> (Vx • -iß)

Prawa de Morgana wskazuj^ na zwi^zki semantyczne pomi^dzy kwantyfikatorem 
ogölnym i szczegölowym. OznaczajX one, ze w rachunku kwantyfikatoröw, bez utraty 
sily ekspresji j^zyka, mozna siq ograniczyc do poshigiwania siQ tylko jednym kwanty­
fikatorem. Jest to analogia do rachunku zdan, w ktörym -  bez utraty ogölnosci -  zbiör 
wykorzystywanych spöjniköw logicznych mozna ograniczyc do funkcjonalnie pehiego 
zbioru spöjniköw logicznych.

Prawa rozdzielnosci kwantyfikatoröw

1= (Vx • Ot) A (Vx • ß )  <=> (Vx • CCAß)
1= (Vx • ot) v  (Vx •/?)=>  (Vx • arv ß )
1= (3x • ot) v  (3x • ß )  <=> (3x • a v  ß )
1= (3x • a  a  ß )  => (3x • ot) a  (3x • ß )

Prawa przemianowania kwantyfikatoröw

Jezeliy  g FV(ot)\{x} orazy  jest zmienn^ wolnq. w arze wzglqdu na x, to

1= (Vx • ot) «=* (Vy • a[x ::=y])
1= (3 x • ot) <=> (3y  • a[x ::=y])

Prawo to pozwala na przemianowanie nazwy zmiennej wi^zanej przez kwantyfikator. 
Zmienn^ tak^ mozna zast^pic dowoln^ inn% zmienn^ ktöra nie jest wolna w formule 
bqd^cej w zasi^gu kwantyfikatora. Na przyklad formula

(Vx • p(x, y) => q(x)) v  (Vy • fix, y) a -,p(x, y))

jest röwnowazna formule

(Vz • p(z,y) => q{z)) v  (Vw • r(x, w) a  -,p(x, w))

Prawa przestawiania kwantyfikatoröw

1= (Vx • Vy • ot) <=> (Vy • Vx • ot)
1= (3x • 3y • dt) <=> (3y • 3x • dt)
t= (3x • Vy • ot) ■=> (Vy • 3x • ct)

Prawa wlqczania i wytqczania dla kwantyfikatoröw

Jezeli xg FV(ß), to

1= ((Q x*  ot)°ß)<=>(Qx» a  ° ß )
1= dla -e  {a , v, =>}, oraz Q e  {V, 3}



Prawa rozkladu kwantyfikatoröw

1= (fix • a=> ß )  => {{fix • a)=> {Vx • ß)) 
t= (Vx • a-=> ß )  => ((3x • ct) => (3x • ß))
\= (Vx • oc a /?) <=> ((Vx • et) a (Vx • ß)) 
t= (3x • ar a ß )  => ((3x • et) a (3x • /?))
1= (Vx • arv Vx • ß )  => (Vx • arv /?)
1= (3x* er v /?)<=> ((3x • et) v (3x* /?))
1= (Vx • er<=> /?) => ((Vx • et) o  (Vx • /?))
1= (Vx • a<=>ß) => ((3x • ct) <=> (3x

10.8. Przedrostkowa postac normalnaj

Niech erbqdzie formuly rachunku kwantyfikatoröw.

Definicja 10.1

Formula a  znajduje siQ w postaci przedrostkowej normalnej lub w postaci PNF 
{Prenex Normal Form) wtedy i tylko wtedy, gdy jest ona w postaci

Qi x x»Q 2x2 * ... Q„x„ • ß

gdzie: Qu Q2, ..., Qn e {V, 3}, a formula ß nie zawiera kwantyfikatoröw.

Czqsc ö i X|* Q i  x 2 • ... Q n x„ • nazywa si§  p r z e d r o s t k i e m  formuly oc, a ß  nazywa 
si$ m a t r y c q  formuly oc.

Dia dowolnej formuly rachunku kwantyfikatoröw istnieje röwnowaznie semantyczna 
formula, ktöra jest w przedrostkowej postaci normalnej. Jezeli erbqdzie pewn^formu- 
Iq, to przez PNF{a) bqdzie si$ oznaczac formuly, ktöra jest w przedrostkowej postaci 
normalnej, i ktöra jest semantycznie röwnowazna a.
Ponizej jest przedstawiany algorytm sprowadzania dowolnej formuly do przed­
rostkowej postaci normalnej. Algorytm ten dokonuje jeszcze dodatkowego przeksztal- 
cenia, polegajqcego na eliminacji z matrycy formuly spöjniköw röwnowaznosci i im- 
plikacji, a pozostawieniu tylko negacji, dysjunkcji i koniunkcji.

Algorytm sprowadzania do przedrostkowej postaci normalnej
Dane: formula oc.
Wynik: formula PNF{oc).
Procedura: procedura postqpowania polega na etapowym, tekstowym przeksztal- 

caniu formuly oc. Formula posrednia jest oznaczana przez ß.



1. Pocz^tkowo przyjmuje si$, ze formula /?jest tekstowo identyczna z a.
2. Eliminuje siQ z formuly ß  spojnik röwnowaznosci, zastqpuj^c tekstowo pod- 

formuly postaci / o  8 formulami postaci ( y = >  8) a  (8=> y).
3. Eliminuje si^ z formuly ß  spojnik implikacji, zastQpuj^c tekstowo podformu- 

ly postaci y=> 8  formulami postaci - i / v  8.
4. Wprowadza si$ znak negacji bezposrednio przed Symbole predykatöw, zastQ- 

puj^c (dopöki mozna) podformuly zgodnie z ponizsz^ tablicq;

Lp. Podformula zast^powana Formula zastQpujqca
1 8
2 1) —iS A  —lY

3 -i Sv->y
4 - iVx •8 Hx • —i 8
5 —3x • 8 V x»-i 8

5. Dopöki formula ß  nie jest w przedrostkowej postaci normalnej, przeksztalca 
siqj^ zgodnie z ponizsz^ tablic^:

Lp. Podformula
zastepowana

Formula
zastQpujqca

Warunek
zastqpienia

1 (Q x » 8 )v y Q x » (S v  y ) x tF V ü )
2 (Q x»8) a  y Q x » (8 a  i) x tF V O )
3 (Vx»<5MVx»j} V x» (8 A f)
4 (3x«<5)v(3x»)) 3x » (8 v  i)
5 (öi Qi x»Q2y ( S v  1) x iF V ( j) ,  y*FV(8)
6 (QiX»S)/\(Q2y ? ) Q\x»Q2y ( . 8 *  i) xe F V (f) , y iF V (8 )

gdzie Q, ö i , ß 2e{V,3}.

6. Formuly PNF(a) definiuje si^jako formulQ ß.

Uwaga
Jezeli warunki zast£(pienia bezposrednio nie sei spelnione, to mozna je  spelnic 
przez przemianowanie zmiennych wi^zanych przez kwantyfikator. Podstaw^ 
przemianowania jest röwnowaznosc semantyczna: jezeli x<£ FV(cc)\{x} oraz y  jest 
zmienn^ woln^ w arze wzglqdu na x, to

Qx •  a=  Qy •  a[x ::=y] dla Qe {V, 3}

Przyklad 10.7
' Rozpatruje siq sprowadzenie do przedrostkowej postaci normalnej formuly 

(3x • a) => (3y • ß )

Na podstawie kroku 3. algorytmu, eliminuj^c implikacjq, otrzymuje siq 

-i(3x • a) v  (3y  •  ß )



Na podstawie kroku 4. algorytmu, przypadek 4., otrzymuje siq 
(V x  • -io ) v  (3 y  •  ß )

Na podstawie kroku 5. algorytmu, przypadek 5., otrzymuje siq 
Vx • 3y • (-i a v  ß )

I przy czym zaktada sig, ze x<£ FVjß) oraz y<£ FV( a)._____ ____

10.9. Przyklad j^zyka rachunku kwantyfikatoröw

Omawia sig przyklad prostego jgzyka kwantyfikatoröw, ktöry wystgpuje w wielu 
jgzykach programowania. Jgzyk ma sluzyc do przedstawiania prostych wyrazen 
arytmetycznych, o wartosciach ze skonczonego podzbioru liczb calkowitych, i pre- 
dykatöw okreslonych na tych wyrazeniach. Jego interpretacja jest röwniez zgodna 
z interpretacja przyjmowan^w jgzykach programowania.

Alfabet jgzyka sklada sig z:
1. zbioru zmiennych indywiduowych, reprezentowanych przez identyfikatory,
2. zbioru symboli fimkcyjnych zawieraj^cego:

• dwie stale: ZERO, ONE
• jedn^ operacjg jednoargumentow^: alt
• cztery operacje dwuargumentowe: _add_, _sub_, _mult_, _div_

3. dwöch dwuargumentowych predykatöw: _eq_, _less_
4. symboli spöjniköw logicznych: _and_, _or_, not_
5. trzech symboli pomocniczych: (),

Sygnaturqjgzyka jest wigc
Sig = <{ ZERO, ONE, _add_, _sub_, _mult_, _div_}, {_eq_, less_}>

Wyznaczony zgodnie z sygnatur^ Sig zbiör termöw zawiera:
1. zmienne indywiduowe oraz stale,
2. napisy postaci:

alt t\ (fi add t2) (t\ sub t2) (t\ mult t2) (t\ div t2)
gdzie: t\, t2 s^termami.

Zbiör formul jest okreslony nastgpujqco:
1. jezeli t\, t2 s^termami, to formulami s£\.:

(/, eq t2) (t[ less t2)

2. jezeli a, ß  s^ formulami, to formulami s^takze:
( a and/?) ( a o r ß )  not a



Zbiör formul jest ubozszy od pelnego jqzyka kwantyflkatoröw, gdyz nie zawiera 
kwantyfikatoröw.

Dziedzin^ interpretacji termow niech b^dzie zbiör:
D  =def Integer u  {error} 

gdzie
Integer =def { -N ,..., 0, . . . ,  N} NeNat\{0}

Zbiör Integer reprezentuje typowy skonczony zbiör wartosci reprezentowany przez 
odpowiednik typu calkowitego w j^zykach programowania. Element error ma nato- 
miast reprezentowac tak zwany blqd abstrakcyjny, powstaj^cy podczas obliczania 
wartosci termow. Odzwierciedla to typowy sytuacjQ, ktöra powstaje na przyklad pod­
czas obliczen arytmetycznych w programie, gdy obliczona wartosc wykracza poza 
zakres wartosci dopuszczalnych. B^dzie uzywane tez oznaczenie na zbiör

Integererror =def Integer u  {error}

Interpretacja /ustala przyporz^dkowania:
1. symbolom funkcyjnym funkcje typu:

I(ZERO) : —> Integer
1(0N E ): —> Integer
I(alt) : Integererror - » Integererror
I(add), I(sub), I(mult), I(div) : Integererm  —■> Integererror

2. symbolom predykatöw funkcje typu:
I(eq ): Integer* —> Logiczne 
I(less): Integer* —»Logiczne

Stale s^zdeflniowane jako:
I(ZERO) =def 0 
I(ONE) =def 1

Jezeli wartosci^ ktöregokolwiek argumentu pozostalych operacji jest error, to wyni- 
kiem öperacji jest röwniez error. W podawanych nizej definicjach zaklada siq, ze 
argumenty a oraz b sei elementami zbioru Integer.

I(alt) a =def 

(a I(add) b) =def

— a a e  Integer 
error w przeciwnym przypadku 

I a + b a + b e  Integer 
error w przeciwnym przypadku

(a I(sub) b) =def
a - b
error

a - b e  Integer 
w przeciwnym przypadku



(a I(mult) b) =def 

(al(div) b) =def 1

f a*b
[error

a lb
[error

(a I(eq) b) =def a = b 
(a I(less) b) =def a< b

a * b e  Integer 
w przeciwnym przypadku 

albe. Integer 
w przeciwnym przypadku

Po prawej stronie powyzszych definicji wystqpuj^ Symbole znanych operacji arytme- 
tycznych i operacji poröwnan w dziedzinie liczb calkowitych. Symbole te, podobnie 
jak Symbole a, b, nalez^ do metajQzyka opisuj^cego semantykQ wprowadzonego jqzy- 
ka formalnego.

Zdefiniowany j Qzyk rachunku kwantyfikatoröw nie wprowadza symboli kwantyfikato­
röw. Formuly tego jQzyka to odpowiednik napisöw, ktöre w j^zykach programowania 
okresla siq jako wyrazenia logiczne albo wyrazenia boolowskie. Oczywiscie, wyraze- 
nia logiczne w praktycznie stosowanych j^zykach programowania s^na ogöl bogatsze, 
gdyz operujX szerszym zbiorem termöw oraz symboli predykatöw.

Obliczenie wartosci termu 
(x mult (ONE add y))

przy wartosciowaniu 
v=  {<x, 4>,<y, 5>}

przebiega nastQpuj^co: Zgodnie z defmicji funkcji interpretacji termöw INTv(t), przy
zalozeniu, ze wartoSö N w  zbiorze Integer wynosi 10, otrzymuje siQ:

INTV( (x mult (ONE addy) ) ) =
INTv(x) I(mult) INTV( (ONE addy) )  = 
v(x) * (INTv(ONE) I(add) INTv(y)) =
4*(I(O NE) + v(y)) =
4 *  (1 + 5) = 4 * 6  = error

Zgodnie z defmicji funkcji interpretacji formul INTj(d) wartosc formuly 

(x less (ONE add y))

przy wartosciowaniu v oblicza siq nastgpuj^co:
INTV{ (x less (ONE addy))) =

INTv(x) I(less) INTV( (ONE addy)) = 
v(x) < (INTy(ONE) I(add) INTv(y)) =
4 < (I(ONE) + v(y)) =
4<( 1  + 5) = 4 < 6  = P



10.10. Rachunek kwantyflkatorow z röwnosciq

jQzyk rachunku predykatöw moze byc wykorzystywany w röznych konkretnych ce- 
lach. W takich przypadkach wprowadzanym symbolom funkcji i predykatöw nadaje 
siQ specyficzn^ interpretacjs, na przyklad tak, jak przedstawiono to w poprzednim 
podrozdziale. Waznym przykladem czQsto spotykanego symbolu predykatu jest pre- 
dykat röwnosci lub identycznosci. Zawierajqcy ten predykat jqzyk rachunku predyka­
töw nazywa siQ rachunkiem predykatöw z röwnosciq lub identycznosciq. Dwuargu- 
mentowy predykat identycznosci, reprezentowany ponizej przez Symbol =, ma 
wyrazaö röwnosc wartosci termöw. Dia wprowadzanego predykatu röwnosci celowo 
przyjQto symbol =, aby odrözniac go od symbolu =, wystQpuj^cego w metajqzyku 
definiuj^cym semantykq j Qzyka zawieraj^cego symbol =.

Semantyka predykatu -  jest zdefiniowana nastQpuj^co:

INTv{t, ~ t2) = P wtedy i tylko wtedy, gdy INTj^t,) = INTv(t2)

Z podanej definicji interpretacji identycznosci wynika, ze ma ona wlasnosci zwrotno- 
sci, symetrycznosci i przechodniosci, to znaczy dla dowolnych termöw t\, t2, t2 e 
TERM(F, V) tautologiami s^ formuly:

t \~ t \  -  zwrotnosc
tx~ t2=> t2~ t\ -  symetria
t\ ~ t2 a <2 = h  => h ~ ty -  przechodniosc

Identycznosc ma ponadto wlasnosc ekstensjonalnosci, wyrazon^ przez tautologie:

t\ ~ t2 => (t[x /]] <=> t[x ::= t2]) -  ekstensjonalnosc wzglqdem termöw
tx = t2 => (a[x ::= tx\ <=> a[x ::= /2]) -  ekstensjonalnosö wzglqdem formul

gdzie: t jest dowolnym termem, a er jest dowoln^ formuly.

Wlasnosci zwrotnosci, symetrycznosci i przechodniosci okresla siq mianem specy- 
ficznych aksjomatöw teorii opisujqcej identycznoSc. Przez pojQcie teorii rozumie si$ 
j?zyk formalny wraz z systemem dowodzenia, czyli tekstowego wyprowadzania no- 
wyeh formul na podstawie formul-aksjomatöw.

10.11. Teorie elementarne

Ustalenie konkretnego jqzyka rachunku kwantyfikatoröw wi^ze si$ zwykle z zamia- 
rem opisu pewnego fragmentu interesuj^cej rzeczywistosci (realnej lub abstrakcyjnej). 
J^zyk ma z jednej strony opisywaö te zjawiska czy wlasnoSci, ktöre s^ przedmiotem 
zainteresowania, a z drugiej strony powinien umozliwiaö wyprowadzanie pewnych 
wniosköw.



Konkretnosc j$zyka oznacza ustalenie jego sygnatury, czyli skladni, oraz ustalenie 
jego modelu interpretacji, czyli semantyki. Wybrany fragment rzeczywistosci ma 
zwykle specyficzne wlasnosci, ktöre mozna wyrazic w postaci pewnych formul 
w ustalonym j^zyku. Formuly takie nazywa si$ aksjomatami i to formuly spelnio- 
ne w ustalonej interpretacji jqzyka.

Wnioski, jakich wyprowadzenia siq oczekuje, maj^ byc formulami stanowiqcymi lo- 
giczne konsekwencje przyjqtych aksjomatow. PojQcie zbioru konsekwencji jest defi- 
niowane nastQpuj^co:

Jezeli 0  jest zbiorem formul, to jego zbiorem konsekwencji semantycznych (logicz- 
nych) jest zbiör formul:

Con(0) =def {aeFORM(F, P, V) \ O  N a)

Zbiör konsekwencji jest zatem zbiorem formul spelnionych w interpretacji, w ktörej 
spelnione s^aksjomaty.

Zbiör konsekwencji logicznych ma nastgmjqce wlasnosci:

• 0 c C o n ( 0 )
• Jezeli 0 j c  02, to Con(0\) c  Con(0j).
• Con{Con(0)) = Con(0)

Uwaga
Druga z wlasnosci wyraza monotonicznosc konsekwencji logicznej. Jest to wazna 
wlasnosc, ktörej nie maj^ niektöre logiki nieklasyczne, maj^ce zastosowanie miQ- 
dzy innymi w budowie systemöw ekspertowych. Oznacza to, ze w przypadku dol^- 
czenia do zbioru aksjomatow dodatkowego aksjomatu moze si$ okazac, ze nie 
wszystkie wczesniej wyprowadzone konsekwencje pozostan^ konsekwencjami 
rozszerzonego zbioru aksjomatow.

W szczegölnosci zbiör wszystkich tautologii to Con(0), co oznacza, ze zbiör tautolo- 
gii jest podzbiorem Con{0) dla dowolnego 0.

Do efektywnego wyprowadzania nowych formul na podstawie formul-aksjomatöw 
sluzy pewien System dowodowy. Istot^ tego systemu jest to, ze wyprowadzenia no­
wych formul dokonuje si$ na podstawie tekstowego przetwarzania formul, bez analizy 
semantycznej. Na System dowodowy skladaj^ si$ dwa elementy -  pewien zbiör for­
mul, nazywanych aksjomatami, oraz zbiör regul wnioskowania. Systemy dowodowe 
b$d  ̂omawiane w nastqpnych rozdzialach.

Definicja pewnej teorii polega na wprowadzeniu jej aksjomatow specyficznych. Przy- 
kladem takiej teorii jest teoria relacji mniejszosci.



Przyklad 10.8
 ̂ Teoria jest oparta na dwoch predykatach: röwnosci i mniejszosci, reprezentowa- 

nych przez Symbole ~ oraz <. Symbole te przyjqto tylko na uzytek rozwazanego 
przykladu, aby podkreslic ich ogölnosc i nie kojarzyc wyl^cznie z konkretn^ 
dziedzin^, na przyklad z röwnoScici i mniejszosci^ w dziedzinie liczb. Teoria jest 
w pelni zdefiniowana przez podane nizej grupy specyficznych aksjomatow.

Pierwsza grupa aksjomatöw jest powtörzeniem wyzej sformulowanych wtasnosci 
i oznacza, ze röwnosc jest relacja röwnowaznosci, czyli dla dowolnych zmien- 
nych indywiduowych x, y, z  zachodzi:

Vx» x ~ x

V x » V y » x = y = > y  = x

Vx • Vy • V z » x = y A y  = z = > x = y

Druga grupa okresla, ze relacja röwnosci nie zmienia innych predykatöw, 
w tym przypadku zachowuje relacja mniejszosci:

V x » V y » V z » x = y A x ^ z : = > y X z

Vx • Vy •  V z * x = y  Az - < x = > z - < y

Aksjomaty nastQpnej grupy oznaczaj^ ze relacja mniejszosci jest relacja scislego 
porz^dku, to znaczy jest antysymetryczna, przechodnia i spöjna:

Vx • Vy • x -■< y  => -i(y -< x)

Vx • Vy » x - < y A y - < z = > x - < z

V x » V y » V z » x ~ y v x - < y v y - < x

Ponadto jest porz^dkiem gqstym, to znaczy ze miqdzy dwoma elementami x, y ta- 
kimi, ze x -< y, istnieje jeszcze trzeci element z taki, ze x -< z oraz z <y\

V x » V y » x - < y = > 3 z » x - < Z A Z - < y

Nie istnieje dla tej relacji element najmniejszy, ani najwi^kszy:

—i3x » V y » x = y v x - < y

|____ —i3x » V y » x = y v y X x ______________________________________________ I

Rozpatruje siq jeszcze inny przyklad teorii wprowadzajqcej specyficzne aksjomaty. 
Jest to teoria Peana19 opisuj^ca liczby naturalne.

19 G iuseppe Peano (1958-1932).



Przyklad 10.9
' Teoria liczb naturalnych Peana jest rozszerzeniem teorii nastqpnika. Teoria na- 

stqpnika jest oparta na symbolu jednej stalej 0, jednego symbolu funkcyjnego 
jednoargumentowego succ oraz symbolu poprzednio zdefiniowanego predykatu 
röwnoSci ==. Lista aksjomatöw teorii, opröcz aksjomatöw definiujicych röwnosc, 
jest nast^pujica:

Vx • 3y • y  ~ x

Vx • —1(0 -  succ(x))

Vx • Vy • succ(x) ~ succ(y) => x = y

(öf[x 0] a  Vx • ar=> a[x ::= s«cc(x)]) => Vx • a

Ostatnia formula nie jest aksjomatem, lecz schematem aksjomatu, gdyz wystqpu- 
jica  w niej formula a  moze byc dowolni formuli rachunku kwantyfikatoröw. 
Jest to -  omöwiony juz wczesniej -  schemat indukcji.

Teoriq liczb naturalnych Peana jest System arytmetyki naturalnej, wprowadzajicy 
dodatkowy zestaw aksjomatöw charakteryzujicych dzialania dodawania i mno- 
zenia, reprezentowanych symbolami + oraz *.

Vx • x + 0 ~ x

Vx • Vy • x + succ(y) ~ succfx + y)

Vx • x ♦ 0 ~ 0

|_____Vx ■ Vy • x * succ(y) ~ x  «y + x_________________________________________I

W teorii z dodatkowymi aksjomatami specyficznymi nabiera wlasciwego sensu pojq- 
cie konsekwencji semantycznej. Jezeli arjest pewni formuli, a <? jest zbiorem aksjo­
matöw, to mozna pytac czy <P\= a. Formula örmoze byc konsekwencji aksjomatöw 
teorii, ale nie musi byc tautologii W takim przypadku oznacza to, ze ar nie jest spel- 
niona we wszystkich modelach rachunku kwantyfikatoröw, ale tylko w tych mode­
lach, ktöre akceptuji szczegölni interpretacjq pewnych symboli predykatöw lub funk- 
cji wyrazoni przez aksjomaty. Na przyklad w teorii relacji mniejszosci konsekwencji 
semantyczni zbioru j ej aksj omatöw j est formula

Vx • 3 y  • y -< x

10.12. Teorie nieelementarne

Przedstawione wyzej przyklady s i  przykladami teorii elementarnych. Za elementami 
uwaza siQ teoriQ, ktöra powstaje przez doliczenie do jqzyka rachunku kwantyfikato-



röw specyflcznych aksjomatöw charakteryzuj^cych specyflczne Symbole funkcji 
i predykatöw, ale ktöra nie zawiera pojqcia przynaleznosci elementu do zbioru oraz 
w ktörej nie mozna möwic o dowolnych zbiorach rozwazanych elementöw. Przykla- 
dem teorii nieelementamej jest arytmetyka liczb naturalnych.

Przyklad 10.10
' Teoria ta wprowadza -  tak samo jak elementama arytmetyka Peana -  Symbole stalej 0, 

funkcji nastgsnika succ oraz symbol predykatu rownosci =. Ponadto wprowadza Sym­
bol zbioru liczb naturalnych Nat, Symbol jednoargumentowego predykatu IsSet(z), ktö- 
ry stwierdza czy z jest zbiorem, oraz Symbol dwuargumentowego predykatu przyna- 
leznosci elementu do zbioru xez. Aksjomatami tej teorii s^ wszystkie aksjomaty teorii 
zbioröw zdefiniowane w podrozdziale 4.1 oraz formuly:

Oe Nat
Vx • xe Nat => succ(x)e Nat 
i x  •  xe Nat => -i(0 = succ{x))
Vx • 3y  • succ{x) = succ(y) => x = y  
IsSet(Nat)
Vz •([IsSet(z) a Og z a  Vm »«6 z => succ(ü)ez) => Vx • xeN at => xez)

Warto zwröcic uwagQ, ze wartosciami zmiennej indywiduowej z, ktöra wyst^puje 
I w ostatnim aksjomacie, mog^byc dowolne zbiory.__________________________ I

Uwaga
W dalszym ci^gu predykat rownosci, zamiast symbolem =, b^dzie oznaczany po- 
wszechnie uzywanym symbolem =.

W praktyce czqsto korzysta siq z rozszerzonego jqzyka kwantyfikatoröw, w ktörym 
zbiory wystqpuj^ jawnie w powi^zaniu z kwantyfikatorami. Opröcz dotychczas oma- 
wianych kwantyfikatoröw zwyklych, uzywa siq kwantyfikatoröw o ograniczonym 
zakresie. Kwantyfikatory te maj^postac:

i x e X  •  a  oraz 3 x e X  • a

gdzie: A'jest pewnym ustalonym zbiorem, a arjest dowoln^ formuly.

Przyklad 10.11
 ̂ Kwantyfikatory o ograniczonym zakresie s^ wygodne w wyrazaniu wielu wla- 

snosci zwi^zanych z konkretn^ dziedzin^ interpretacji:

Dia kazdej liczby naturalnej n istnieje liczba rzeczywista x taka, ze x2= n:

'in e  Nat • 3xe  Rzeczywiste • x2= n



Dia kazdej liczby calkowitej a istniejeliczba wymiemax taka, ze a < x< a +  \ 

V/ie Calkowite •  3xe Wymierne • a < x<  a + 1

Rozszerzona notacja jest przydatna do opisu sytuacji zwiqzanych z pewnym konkret- 
nym obszarem zainteresowania. Wyraza s ii to przez wprowadzone zbiory -  dziedziny 
interpretacji, a takze przez interpretacji symboli funkcyjnych i predykatywnych wy- 
stQpujeicych w formulach z kwantyfikatorami o ograniczonym zasiigu. Tak wlasnie 
jest w przedstawionym powyzej przykladzie, gdzie wyrazenia x 2, a + 1, a < x  majX 
znan^ interpretacji arytmetyczn^.

Nalezy pamiQtac, ze z rozszerzona notacja wiqze sii zawQzenie semantyki. Wprowa- 
dzenie konkretnych zbiorow narzuca mianowicie dziedziny interpretacji. Oznacza to, 
ze formuly spelnione przy zalozeniu konkretnych zbiorow nie musz^ byd spelnione 
w innych dziedzinach interpretacji.

Cwiczenia

1. W uktadzie wspölrzidnych Oxy zaznaczyc obszary, w ktörych prawdziwe s^nasti- 
pujqce funkcje zdaniowe:
a) |x * y |= l
b) *> |y |
c) \x * y\ < 0 => x*x + y*y > 1
d) x > [y| => x*x + y*y = 1
e) sin(x) > ly|

Zaklada sii, ze wystipujqce w zadaniu Symbole funkcyjne i predykatowe maj^ 
standardow^ interpretacji.

2. Dana jest sygnatura Sig = <F, P> jizyka rachunku kwantyfikatoröw, w ktörej:

F=  der {/o} u  {fi, gi} u  {/2, g2, h2} jest zbiorem symboli funkcyjnych,
P =def (Po} u  {p\, <J\) u  {pi, qi) jest zbiorem symboli predykatöw,

dolny indeks zas wskazuje liczbi argumentöw. Podac gramatyki defmiuj^c^ zbiör 
termöw i gramatyki defmiujqc^. zbiör formul jizyka o podanej sygnaturze.

3. N iech / g, h bidq_ symbolami funkcyjnymi, p, q -  symbolami predykatöw, x, y, z -  
zmiennymi indywiduowymi. Wskazac wolne i zwiqzane wystqpienia zmiennych 
indywiduowych w formulach:
a) Vx • Vy • p(f(x, y), z) a  Vx • q(x, z, h(x, y))
b) (Vx • 3 y • q(x, z) v  p(h(x, y)) => p(f(x, y), z)
c) Vx • p(h(x), z) => (3z • (3y • q(f(h(x), z) aVz • p(z, y) <=> q(x, y))



4. Zdefmiowac funkcj?, ktöra dla dowolnej formuly a  rachunku kwantyfikatoröw 
okresla zbiör wszystkich zmiennych indywiduowych, ktöre w formule örmaj^:
a) parzyst^ liczb? wystqpien wolnych,
b) jednoczesnie wyst^pienia wolne i wyst^pienia zwi^zane,
c) dokladnie tak^ sam^ liczb? wyst^pien wolnych jak liczb? wyst<ipien zwi^zanych.

5. Niech {=, <, < } b?dzie zbiorem symboli predykatow oraz {+, », /} -  zbiorem sym- 
boli funkcyjnych okreslonych na liczbach naturalnych. Dia symboli tych przyj- 
mujemy standardow^ interpretacj^ arytmetyczn^. Korzystajcjc z tego zestawu sym­
boli oraz z symboli stalych liczbowych, zapisac formuly reprezentuj^ce nastqpujcice 
wypowiedzi:
a) x  jest liczb^podzieln^ przez ustalon^ liczb? n > 0,
b) x  jest sum^ kwadratöw dwöch liczb naturalnych,
c) x  jest liczbet pierwszei,
d) x nie jest liczba pierwsz^,
e) xjest najmniejsz^. wspöln^wielokrotnosci^ liczb y  i z,
f) x  przy dzieleniu przez 4 daje reszt? 1 lub 2,
g) kazda liczba przy dzieleniu przez inn^ liczb? daje reszt? 0 lub 1,
h) kazda liczba parzysta wi?ksza od 3 jest sum^ dwöch liczb pierwszych,
i) kazde trzy liczby maj^ najwi?kszy wspölny dzielnik,
j) nie istnieje najwi?ksza liczba naturalna.

Zapisac zaprzeczenia powyzszych formul w taki sposöb, aby nie zaczynaly si? od 
negacji.

6. Zakladaj^c, ze s^ do dyspozycji Symbole predykatow okreslone w poprzednim za- 
daniu oraz symbol przynaleznosci elementu do zbioru, wyrazic w postaci formul 
nast?puj^ce wypowiedzi:
a) zbiör X  ma dokladnie jeden element,
b) zbiör X  ma dokladnie trzy elementy,
c) zbiör X  ma przynajmniej dwa elementy.

7. Podaö formalnet definicj? sformulowania: istnieje dokladnie jedno x takie, ze spel- 
niona jest formula oc.

8. Podaö przyklady predykatow p(x), q{x), dla xeRzeczywiste, dla ktörych podane 
nizej formuly s^ zawsze prawdziwe albo zawsze falszywe:
a) V • (p(x) v  q(x))
b) V • (p(x) => q(x))
c) 3 • (p(x) a q(x))
d) 3 • (p(x) => q(x))



9. Ktore z ponizszych stwierdzen SEtprawdziwe? Jezeli INT J a  v  ß )=  prawda, to:
a) INT Jo?) -  prawda lub IN TJß ) = prawda,
b) INT Ja )  = prawda oraz INTv(ß) = prawda,
c) dla kazdego V  rözni^cego siQ od v wartosciowaniem zmiennej x, zachodzi 

INTs(cc) = prawda oraz INTyJa) = prawda.

10. Ktore z ponizszych stwierdzen s^prawdziwe? Jezeli INT J a  a  ß )  =falsz, to:
a) INT Je?) = falsz oraz INTJiß) =faisz,
b) istnieje takie v' rözni^ce siq od v wartosciowaniem pewnej zmiennej x, ze 

INTs(d) = prawda lub INTJ^a) = prawda,
c) dla kazdego v' rözni^cego si$ od v wartosciowaniem zmiennej x  zachodzi 

INTyJa) = falsz oraz INT Je?) = prawda.

11. Dana jest formula 3x • p(x, y). Interpretacja symbolu predykatu p  jest wyrazona 
przez System relacyjny SR =df < A Sr , Rsr>, gdzie A Sr  jest zbiorem, zwanym nosni- 
kiem, a RSr jest relacj^binamq, Interpretacja przypisuje symbolowi p  relacjQ Rsr.
Uwaga: Interpretacja n-argumentowego symbolu predykatu q jako pewnej n-elemen- 
towej relacji Rq £  An na zbiorze A jest rownowazna interpretaeji tego symbolu jako 
funkcji w-argumentowej f q : A" —» {prawda, falsz). Dlaczego?
Ktöre z ponizszych stwierdzen s^ prawdziwe. Jezeli nosnik systemu relacyjnego 
Asr= def {a, b) i relacja RSr =aef {<«, ä>, <b, b>, <a, b>), to dla wartosciowania 
v takiego, ze:
a) v(x) = a i v(y) = b formula jest spelniona,
b) v(x) = a i v(y) = a formula nie jest spelniona,
c) v(x) = b i v(y) = b formula jest spelniona,
d) v(x) = b i v(y) = a formula nie jest spelniona.

12. Dla kazdej z ponizszych formul podaj interpretaeje, w ktorych formula jest (a) 
spelniona dla kazdego wartosciowania, (b) nie jest spelniona dla kazdego warto­
sciowania, (c) dla niektorych wartosciowari jest spelniona, a dla pozostalych nie 
jest spelniona:
a) Vx*3y » p (x ,y )
b) 3x • Vy • p(x, y, z)
c) 3x»(q(x,y)= >q(x,y))

13. Nastqpuj^ce formuly sprowadzic do przedrostkowej postaci normalnej (PNF):
a) Vx • ((x > 2) a  (3y • (x < y)))
b) (x < y) a  3x • Vy • (x > y)
c) Vx» (3y • (y > 2) a  (y < x))

14. Sprowadzic do przedrostkowej postaci normalnej negaeje formul z poprzedniego 
zadania.



15. Przedstawic predykaty p  oraz q okreslone na zbiorze liczb calkowitych, dla ktö- 
rych ponizsze zdania S£(. falszywe:
a) (3x*3y • p(x, y)) => ( Vy*3x* p(x, y))
b) (3x*3y* p(x, y)) => (3x* p(x, x))
c) ( Vx*3y• p(x, y)) => (Vx* p(x, x))
d) (Vx* p(x, x)) => (Vx* Vy* p(x, y))
e) (3x*Vy* p(x, y)) => (Vx* Vy* p(x, y))
f) (Vx* p(x) v  q(y)) => (Vx*p(x) v  Vy* q(y))
g) (3x* p(x) a  3x* q(x)) => (3x*(p(x) a  q(x))



11. Rachunek sekwentöw Gentzena

11.1. Wstfp

W poprzednim rozdziale wprowadzono poj?cie semantycznej konsekwencji. Bezpo- 
srednie sprawdzenie -  na podstawie definicji -  czy dana formula rachunku kwantyfika- 
toröw jest, czy nie jest semantyczni konsekwencji pewnego zbioru formul rachunku 
kwantyfikatoröw, nie jest mozliwe, gdyz wymagaloby to sprawdzenia nieskonczonej 
liczby modeli danego zbioru formul. Praktyczne badanie, czy formula jest konse­
kwencji semantyczni pewnego zbioru formul, opiera si? na poj?ciu konsekwencji 
skladniowej. PojQcie konsekwencji skladniowej jest pewnym odpowiednikiem poj?cia 
konsekwencji semantycznej. Poj?cie konsekwencji skladniowej b?dzie przedstawione 
w ramach rachunku sekwentöw Gentzena. Rachunek ten -  opracowany przez Gentze­
na20 w latach trzydziestych XX wieku -  wyznacza jeden z efektywniejszych systemöw 
automatycznego dowodzenia twierdzen.

Istota podejscia opartego na poj?ciu konsekwencji skladniowej polega na zdefmiowa- 
niu pewnego systemu generowania napisöw. System taki, nazywany systemem dowo- 
dowym, zawiera dwa elementy -  zbiör aksjomatöw 'Fi zbiör regul wyprowadzania 
(albo inaczej: regul wnioskowania lub inferencji). Aksjomatami s i  pewne napisy, 
reguly zas okreslaji, w jaki sposöb na podstawie pewnych napisöw otrzymac nowe 
napisy, na przyklad jak z pewnego zbioru formul otrzymac nowe formuly.

W celu dowiedzenia, ze -  w danym systemie dowodowym -  formula «jest konsekwencji 
semantyczni zbioru formul (Ppostqpuje si? nastgiujico: Stosujic reguly wyprowadzania, 
wyprowadza si? nowe formuly ze zbioru 0  oraz zbioru aksjomatöw F  i powtarza siQ tQ 
czynnosö tak dlugo, az zostanie wyprowadzona formula OL Tak skonstmowany dowöd 
nazywa si? dowodem wprost i sluzy do pokazania, ze wynikanie logiczne 0  N orzachodzi 
w dowolnym modelu.

Mozliwy jest röwniez dowöd nie wprost faktu, ze t= a. Dowöd taki polega na do- 
prowadzeniu do sprzecznosci na podstawie zalozenia, ze zbiör formul 0  u  {—>a} jest 
spelnialny, to znaczy na podstawie zalozenia, ze formula «n ie  jest spelniona dla pew-

20 Gerhard Gentzen (1909-1945).



nego modelu zbioru formul 0. Stwierdzenie sprzeczno§ci oznacza, ze zbiör 
0  u  {-ier}, wbrew zatozeniu, jest spelnialny, a to -  na podstawie twierdzenia o de- 
dukeji z poprzedniego rozdziatu -  daje podstawq do ostatecznego orzeczenia, ze 
0\= a.

Jezeli dany jest pewien System dowodzenia S, to fakt, ze formuta arzostala wyprowa- 
dzona w tym systemie, na podstawie zbioru formul 0  bqdzie oznaczany:

0 \ - s OC
Istnieje wiele systemöw dowodzenia opartego na poj^ciu konsekweneji skladniowej. 
Niektöre sposröd nich s^ zwi^zane z dowodzeniem wprost, inne z dowodzeniem nie 
wprost. System dowodzenia Gentzena moze byc rozwazany zaröwno jako System do 
dowodzenia wprost, jak i do dowodzenia nie wprost. Zwykle dowody tworzone 
w systemie Gentzena s^ oparte na idei budowy dowodu nie wprost, ale zbudowany 
dowöd jest odezytywany jako dowöd wprost. Przedstawiany tu System dowodzenia 
Gentzena opiera si$ na idei konstrukeji dowodöw nie wprost.

Od kazdego systemu dowodzenia wymaga si$ w pierwszej kolejnosci, aby nie prowadzil 
on do falszywych wniosköw. Wlasnosc tak^ okresla si$ mianem semantycznej poprawno­
sci (albo niesprzecznosci) systemu dowodzenia. Oznacza to -  przy dowodzeniu wprost -  
ze jezeli na podstawie zbioru formul 0  wygeneruje si? formulq a, to zachodzi 01= cc, 
a przy dowodzeniu nie wprost -  ze jezeli na podstawie zalozenia o spetnialnoäci zbiom 
formul 0  u  {—iCü} uzyska siq sprzecznosc, to röwniez 0 \ = a. Wlasnosc semantycznej 
poprawnosci systemu dowodzenia S  mozna sformulowac w postaci

jezeli 0\~s(X, to 0 1= a.

Drug3_ oczekiwan^ wtasnosci^ systemu dowodzenia -  odwrotn^ w stosunku do wla- 
snosci semantycznej poprawnosci -  jest zupelnosc semantyczna. Wlasnosc ta oznacza 
-  przy dowodzeniu wprost -  ze jezeli zachodzi 0 1= a, to zawsze w systemie istnieje 
wyprowadzenie formuly a  ze zbioru formul 0. Przy dowodzeniu nie wprost wlasnosc 
ta oznacza, ze jezeli zachodzi 0  1= o; to z zalozenia o spetnialnosci zbioru formul 
0  u  {-na} zawsze uzyska si$ sprzecznosc. Wlasnosc semantycznej zupetnosci syste­
mu dowodzenia S  mozna sformulowac w postaci

jezeli 0 \ = a, to <Z> I~s a.

Z nazwiskiem Gentzena wi^z^ siq dwa systemy dowodzenia: jeden jest nazywany 
systemem dedukeji naturalnej, drugi -  rachunkiem sekwentöw. W tym rozdziale 
przedstawiono tylko rachunek sekwentöw. Rachunek ten odzwierciedla w znacznym 
stopniu sposöb postQpowania stosowany w praktyce matematycznej. Jak wspomniano, 
konstrukeja dowodöw opiera siq na idei dowodzenia nie wprost, a ponadto opiera si? 
na obserwaeji, ze konstruuj^c dowöd pewnego twierdzenia, pröbuje si$ zdekompono- 
wac go na zestaw prostszych dowodöw (poddowodöw lub dowodöw podporz^dkowa- 
nych). W przypadku rachunku kwantyfikatoröw konstrukeja poddowodöw wynika ze 
skladni formul.



11.2. Lemat o podstawieniu

Ponizej przedstawiany lemat o podstawieniu b$dzie wykorzystywany w nastQpnych 
podrozdzialach. Wskazuje on na rolq, jakq. odgrywaj^ wartosciowania w interpretacji 
termöw i formul.

Lemat 11.1
Niech t bqdzie termem nad sygnatur^ Sig oraz niech M  = <D, />  bqdzie modelem 
interpretacji, a vj, v2 niech b$d^ dwoma wartosciowaniami. Jezeli zachodzi röw- 
nosd wartosciowan v^x) = v2(x) dla wszystkich zmiennych xe Varif), to

INTVi(t) = INTVi(t).

Dowöd
Dowöd prowadzi siq metod^indukcji strukturalnej wzglqdem termöw. Jezeli term t 
jest postaci x, to INTVi(x) = vi(x) = v 2 ( jc)  = INTVi(x ) . Jezeli term t jest postaci
f ( t \ , ..., tn), to na mocy zalozenia indukcyjnego 

INTyx(ti) = INTVi(ti) d l a i = 1 , «

stqd

INTVi( f ( t l,...,tn))= I(F)(INTVi (/,)......INTVi(tn))

= / ( / ) (INTV2(r,), ..., INTV2(tn))

= INTV2 ( /(/,, t„)) m

Lemat o podstawieniu wskazuje na zwi^zek, jaki zachodzi pomi^dzy zmian^ warto­
sciowania zmiennych indywiduowych przez podstawienie za wskazan^ zmienn^ war- 
tosc termu a tekstowym zast^pieniem tej zmiennej termem w innym termie lub w for­
mule.

Lemat 11.2 (Lemat o podstawieniu)

Niech M  = <D, />  bqdzie modelem, v -  pewnym wartosciowaniem, t -  termem, 
oraz niech v' = v[x := INTv(t)]. Dla dowolnego termu t' oraz dla dowolnej formuly 
a  zachodzi wöwczas nastqpuj^ce wtasnosci:

l.IN T A t')  = INTv(t'[x ::= <])
2. INT„'(a) = INTv(a[x ::= r]) pod warunkiem, ze xeFV(a).

Dowöd
Dowöd prowadzi si$ metod^ indukcji strukturalnej najpierw. wzglqdem skladni ter­
möw, a nastQpnie formul.



1. Niech term t' =y, gdzie zmiennay jest rözna od zmiennej x, wöwczas

INTv{y) = v \y )  = v(y) = v(y[x fl) = INTv(y[x fl)

Dia f  = x, zachodzi

INTAx) = v\x)  = INTXi) = INTXx[x ::= fl)

Dia f  = ß j \ , ..., t„), na mocy zalozenia indukcyjnego, zachodzi 

IN TAt) = IN T M x  "= *]) dla i = 1,.... n, 

stqd

INTAAßu .... O ) = / ( / )  (flV7V(*i). /W7XO)
= / ( / )  T O i[jc ::= fl) ,.... INTXt„[x ::= /]))
= INTv (f( tu tn)[x ::= t])

2. Niech formula ab^dzie postaci Vy • /? oraz niech term t bqdzie wolny w orze 
wzgl^du na x. Nalezy rozpatrzed dwa przypadki: x  * y  oraz x= y .

W pierwszym przypadku, gdy x * y ,  dla kazdego deD  zachodzi

INTv{ V y ß )  = I N T ^ :=d](ß)

Nalezy zauwazyc, ze

v'\y :=d] = v[x := INTv{t)]\y =d\ = v\y := d\[x := INT dt)]

Na mocy poprzedniego lematu zachodzi 

INTv(t) = INTv[y:. d](t)

poniewazyg Var(t). Dalej niech a = INTv(t), stqd i z zalozenia indukcyjnego 
wynika

INTv\ y .= n] (/?) = := : := fl)
= INTv(V y ß [ x : :=  fl)
= M v(V y./?)[x ::= fl

W drugim przypadku, gdy x = y, dla kazdego deD  zachodzi 

INTv{ V y ß ) = INTAx:=J](ß)

Poniewaz

v[x := INTv(t)][x :=d] = v[x := cfl 

oraz

V y ß = ( \ / y ß ) [ x : : = t ] )  

dla kazdego de D  zachodzi



IN TJV y » ß )=  INTv[x:̂ ( ß )

= INTv( V y ß )

= INTv(Vy • ß)[x ::= t])

Pozostale przypadki, gdy formula a  ma inne postaci, pozostawia siq do udowod- 
nienia Czytelnikowi. ■

Przyklad 11.1___________________________________________________ ________
 ̂ Niech sygnatura Sig sklada siq z jednej stalej 0, dwöch jednoargumentowych ope- 

racji nast,pop oraz jednego symbolu predykatu dwuargumentowego Dziedzi- 
interpretacji D  niech bqdzie zbiör liczb calkowitych Calkowite. Interpretacja /  

stalej 0 przyporz^dkowuje liczbq zero, operacjom nast i pop przyporzqdkowuje 
dodawanie i odejmowanie jedynki, to znaczy:

I{nast)(n) =def n + 1,
I(pop)(n) =def n -  1,

a predykatowi przyporz^dkowuj e röwnosc liczb.

Niech dana b^dzie formula 
pop(pop(x)) ~ 0

oraz term
nast(nast( 0))

Dia dowolnego wartosciowania v i wartosciowania v' = v[x := INTv(nast(nast(0)))] 
zachodzi:

IN T, (pop(pop(x)) ~ 0) = INTv(pop(pop(x)) ~ 0[x ::= /jas/(na.yf(0))])

= INTv(pop(pop(nast(nast(P))))= 0) = P 

Ostatnia röwnoSö zachodzi, poniewaz:
I INT„(nast(nast(0))) = 2 oraz INTv(pop(pop(nast(nast(Q)))) = 0. i

Wniosek 11.1
Niech a  b^dzie formuly oraz niech term t b^dzie wolny ze wzglqdu na x  w a. Na 
podstawie lematu i definicji semantyki kwantyfikatoröw zachodzi:

1. Vx • a\= a[x ::= f]
2. a[x ::= t] 1= Hx • a

Punkt 1. wniosku, z faktu spelnialnosci formuly Vx • a, pozwala na wyprowadzanie 
wniosku o spelnialnosci dowolnej formuly postaci a[x  ::= /] dla dowolnego tennu 
t. Inaczej, aby pokazac, ze formula Vx*ar nie jest spelnialna, wystarczy pokazac, ze 
formula a[x ::= /] nie jest spelnialna dla pewnego



Punkt 2. wniosku, z faktu spelnialnosci formuly a[x ::= f], pozwala na wyprowadzanie 
wniosku o spelnialnosci formuly 3x • a. Inaczej, aby pokazac, ze formula • ornie jest 
spelnialna, nalezy pokazac, ze formula a[x ::= t] nie jest spelnialna dla dowolnego t.

11.3. Przyklady wprowadzaj^ce

Przed formalnym przedstawieniem rachunku sekwentöw Gentzena, przyklady wpro-
wadzaj^ce pozwol^na poznanie glöwnych idei, na ktörych opiera siq rachunek.

Przyklad 11.2
 ̂ Rozpatruje siq nast^puj^c^ formuly rachunku zdan ^

((a => b) a (c => d) a (a a c)) => (b a d) (1)

Formula ta -  jak mozna sprawdzic, na przyklad metod^ zero-jedynkow^ -  jest tau- 
tologi^. Istota dowodu nie wprost polega na przyjqciu zalozenia, ze formula (1) nie 
jest tautologiq, czyli wartosc formuly jest falszem dla pewnego wartosciowania 
zbioru zmiennych zdaniowych {a, b, c, d). Okaze siq, ze poszukiwanie takiego 
wartosciowania doprowadzi do sprzecznosci. W tym celu zadanie rozbija si$ na 
dwa, prostsze, podzadania. Zgodnie z twierdzeniem o rozbiorze, przedstawionym 
w poprzednim rozdziale, kazd^ formuly mozna jednoznacznie zdekomponowad na 
podformuly skladowe. Spöjnik Iqcz^cy te podformuly jest nazywany spöjnikiem 
glöwnym. Glöwnym spöjnikiem formuly (1) jest ostatni po prawej symbol impli- 
kacji. Cal^formulq (1) mozna przedstawic w postaci

a= > ß  (2)
gdzie:

or= (a = >  b) a  (c = >  d) a  (a a  c) (3)

ß = b  Ad  (4)

Aby pokazac, ze formula (2) jest falszywa dla pewnego wartosciowania, wystarczy 
pokazac, ze dla tego wartosciowania podformula orjest prawdziwa, a podformula ß  
jest falszywa -  stwierdzenie to wynika ze standardowej interpretacji spöjnika im- 
plikacji. Formula (1) zostala zatem rozbita na dwie podformuly: (3) oraz (4), 
z zadaniem pokazania prawdziwoSci podformuly (3) i falszywosci podformuly (4) 
dla pewnego wartosciowania zmiennych logicznych.

Ogölnie, dan^ formuly mozna rozbijac na dwa zbiory jej podformul z zadaniem 
pokazania, ze dla pewnego wartosciowania podformuly z jednego zbioru s^ 
prawdziwe, a podformuly z drugiego zbioru s^ falszywe. Przyjmuje siq oznacze- 
nie: jezeli

{«i, .... Onj



jest zbiorem formul, ktöre maj^byc prawdziwe dla pewnego wartosciowania, a

{ ß n . . . , ß m}

jest zbiorem formul, ktöre maj^ byc falszywe dla tego samego wartosciowania, to 
takie zadanie b^dzie zapisywane w postaci

#i> •••, fl»  ̂ß \t • ••> ßm 
a napis taki b^dzie nazywany sekwentem.

Sekwent jest wiqc pan[ dwöch zbioröw formul. Poszczegölne zbiory formul s^ za­
pisywane w postaci list, a symbol —» jest separatorem oddzielajqcym dwie listy. 
W tym zapisie sekwent jest traktowany jako umowna forma zapisu pary zbioröw.

W rozpatrywanym przykladzie pocz^tkowe zalozenie mozna zatem zapisac w po­
staci sekwentu

—> ((a => b) a  (c => d) a  (a a  c ) )  => {b a  d) (5)

natomiast to, co nalezy pokazac, jako konsekwencjQ tego zalozenie, mozna zapisac 
w postaci sekwentu

[a => b) a  (c => d) a  (a a  c) —» b a  (6)

Nalezy zwröcic uwagq na to, ze przejsciu od zadania (5) do zadania (6) towarzyszy 
eliminacja jednego spöjnika logicznego.

Aby pokazac, ze prawdziwa jest lewa stronq sekwentu (6), nalezy pokazac, ze 
prawdziwe sq. wszystkie jej skladowe polqczone symbolem koniunkcji, czyli

a=> b, c=> d, a a c  —> b A d  (7)

W ten sam sposöb, kieruj^c siq znaczeniem koniunkcji, zadanie sprowadza siq do 
pokazania

a=> b, c =$ d, a, c b A d  (8)

Po prawej stronie sekwentu (8) jest röwniez spöjnik koniunkcji, lecz nalezy poka­
zac, ze formula po tej stronie jest falszywa. Wystarczy wiqc pokazaö tylko jeden 
z przypadköw, ze falszywe jest b albo ze falszywe jest d. Rozwi^zanie zadania (8) 
sprowadza siq zatem do rozwi^zania jednego z dwöch podzadan:

a => b, c => d, a, c —» b (9a)
a => b, c => d, a, c —» d (9b)

Rozpatruje siq zadanie (9a). Mozna je sprowadzic do zadania prostszego, eliminu- 
j^c pierwszy z lewej spöjnik implikacji. Aby pokazac, ze dla pewnego wartoscio­
wania prawdziwa jest implikacja a => b, wystarczy pokazac jeden z dwöch przy­
padköw, ze falszywe jest a albo ze prawdziwe jest b. Zadanie (9a) rozbija siq zatem 
na dwa podzadania:



c => d, a, c —> b, a (10a)
b, c => d, a, c —> b (10b)

Zadanie (10a) prowadzi do sprzecznosci. Wynika to z tego, ze od zmiennej zda- 
niowej a wymaga siq jednoczesnie, by dla tego samego wartosciowania byla praw- 
dziwa (wystqpienie a lewej stronie) i falszywa (wyst^pienie a po prawej stronie). 
Podobnie do sprzecznosci prowadzi zadanie (10b). Poniewaz zadania (10a) i (10b) 
byly dekompozycjX zadania (9a), oznacza to, ze röwniez zadanie (9a) prowadzi do 
sprzecznosci.

W analogiczny sposöb przeprowadzone rozumowanie w stosunku do zadania (9b) 
prowadzi takze do sprzecznoSci. Kazda zatem pröba znalezienia odpowiedniego 
wartosciowania, ktöre potwierdzaloby, ze formula (1) nie jest tautologi^, prowadzi 
do sprzecznosci, co daje ostateczny wniosek, ze (1) jest tautologi^.

Przeprowadzone wnioskowanie mozna zapisac w postaci graficznej. Na rysunku 
11.1 przedstawiono graf-drzewo. Wierzcholkami drzewa s .̂ sekwenty, czyli napisy 
postaci r  —> A, gdzie r , A s .̂ zbiorami formut zapisywanymi w postaci list. Luki 
drzewa sq. reprezentowane przez poziome linie -  przyjmuje siq, ze sq. one skiero- 
wane z göry w döt. Przejscie mi^dzy dwoma s^siaduj^cymi wierzcholkami drzewa 
odpowiada eliminacji jednego spöjnika logicznego.

—» ( ( a  =&  b) a  (c = >  d) a  (a a  c ) )  = >  (b a  d)
(a => b) a  (c d) a  (a a  c) —» b a  d

a=> b,c => d,a,c —» b b,c^> d,a,c  —» d
b,c =» d ,a,c —» b c= *d ,a ,c -*b ,a  a ^ b , d , a , c - > d  a=$ b,a,c —» d,c

b,d,a,c  —>b b ,a ,c—>b,c d,a,c  —»b,a a ,c —>b,a,c

Rys. 11.1. Drzewo dowodowe dla formuly (1)

Korzeniem drzewa jest sekwent postaci
-> a

gdzie arjest dowodzon^ formufct W przykladzie 
or= ((a => b) a (c =>d) a (a a c)) =>(b A d)

Lisömi drzewa sq, sekwenty postaci

r , ß ^ A ß

gdzie: -  jak poprzednio -  F, A s .̂ ci^gami formul, a ß  jest pewn^ formuly, ktöra 
wystQpuje po obu stronach sekwentu.

Drzewo, ktörego liscmi s^ wylqcznie sekwenty o tej postaci jest drzewem dowodo- 
I wym tautologii._________________________________________________________I



Przyklad 11.3
I Rozpatruje si$ teraz przyklad konstrukcji drzewa dowodu dla formuly I

( ( a  = >  b) a  ( c  => d) a  a) => (b a  c) ( 1 1 )

ktöra nie jest tautologiq, PostQpuj^c jak poprzednio, mozna wnioskowanie zapisac 
w postaci drzewa (rys. 11.2).

-> ((a => b) a (c => d) a ä) => (b a c)
(a => Z») a (c => d) Ad —> b a c

________________________________ a => b,c=> d,a b a c ___________________________

a => b,c=$ d, a -» c a b,c => d , a b
c=> d,a -> c,a b,c=> d,a c .........

(1) b,d->c b,d,a —> c
(2) (3)

Rys. 11.2. Drzewo dowodowe dla formuty (11)

W drzewie dowodu lisc (1) jest sekwentem, ktöry po prawej i lewej stronie ma tq 
sam^ formulQ - tu zmienn£( zdaniow^. Sekwent ten oznacza sprzecznosc.

Liscie (2), (3) s^natomiast sekwentami postaci
b , d —>c oraz b , d , a - * c  (12)

Nie maj^ one takiej wlasnosci jak sekwent (1), ponadto nie zawieraj^ spöjniköw 
logicznych. Wyznaczaj^ one takie wartosciowania zmiennych a, b, c, d, przy ktö- 
rych wartosc dowodzonej formuly (11) jest falszem.

Znalezienie takich wartosciowan oznacza, ze formula (11) nie jest tautologi^. Zna- 
lezienie takich wartosciowan konczy dowod i nie wymaga rozwijania pozostalych 

I galqzi drzewa, tu w przykiadzie -  galqzi (4),________________________________ I

Oba przyklady mozna traktowac jako systematyczne poszukiwanie kontrprzykladu 
w celu pokazania, ze wyjsciowa formula nie jest tautologi^. W pierwszym przykiadzie 
kazda mozliwa pröba znalezienia kontrprzykladu prowadzila do sprzecznosci, co dato 
podstawQ do ostatecznego stwierdzenia, ze formula (1) jest tautologi^. W drugim 
przykiadzie kontrprzyklad taki znaleziono, co dalo podstawQ do ostatecznego stwier­
dzenia, ze formula (11) nie jest tautologi^.

Przyklad 11.4
 ̂ Rozpatruje siQ teraz formuly rachunku kwantyfikatoröw

Vx • p(x) => 3y • p(y) (13)
gdzie p  jest symbolem pewnego jednoargumentowego predykatu. Formula ta jest 
oczywiscie tautologi^. Dokonuje siq transformacji formuly polegaj^cej na zast^-



pieniu kwantyfikatora szczegölowego kwantyfikatorem ogölnym. Z praw de Mor- 
gana wynika, ze zachodzi röwnowazno§c semantyczna

3y • a=  -iVy • ->a

Formul? (13) mozna przedstawic w postaci
Vx • p(x) => —iVy • —ip(y) (14)

Jak w przykladach poprzednich, zakiada si?, ze formula nie jest tautologi^, co 
oznacza, ze istnieje pewna interpretacja predykatu / ,  w ktörej formula (14) 
-  przy pewnym wartosciowaniu zmiennych indywiduowych -  jest falszywa. 
Zgodnie z poprzednim rozumowaniem, poszukiwanie to sprowadza si? do zna- 
lezienia takiej interpretacji /  i takiego wartosciowania, dla ktörych formula 
Vx • p(x) jest prawdziwa, a formula —iVy • —<a jest falszywa, czyli formula 
Vy • —ier jest prawdziwa. Jezeli interpretacja /  jest taka, ze formula Vx • p(x) 
jest w niej spelnialna, to na podstawie wlasnosci pokazanej w poprzednim 
punkeie

Vx • a\= or[x ::=z]

mozna stwierdzic, ze /  spelnia röwniez formul?/?(z), gdyz z jest zmienn^ woln^ w p(x).

Podobnie, stosuj^c analogiczne rozumowanie w stosunku do formuly Vy* -i oc, 
mozna stwierdzic, ze /  spelnia formul? -ip(z), czyli ze /  nie spelnia formuly p(z).

Od p(z) oczekuje si? zatem, ze w interpretacji /  jest jednoczesnie prawdziwe 
i falszywe, co konczy dowöd.

Graficzna reprezentaeja tego dowodu jest pokazana na rysunku 11.3.

—» Vx • p(x) => —.Vy • -ip(y)
Vx * p(x) ->-.Vy*-jp(y)
Vx • p(x), Vy * ->p(y) -»  

p(x)[x ::= z ] ,—j?(y)[y ::= z] ->

Piz) -> P(z)

Rys. 11.3. Drzewo dowodowe dla formuly (13) i

Przyklad 11.5
I Rozpatrzmy formul? rachunku kwantyfikatoröw I

3y • p(y) => Vx • p(x) (15)
gdzie p  jest symbolem pewnego jednoargumentowego predykatu. Formula ta nie 
jest tautologi^. Jak poprzednio, zast?puje si? kwantyfikator szczegölowy kwantyfi­
katorem ogölnym, otrzymuj^c formul?

-iVy • -ip(y) => Vx • p{x) (16)



Zgodnie z poprzednim rozumowaniem, poszukuje sie takiej interpretacji /  i takiego 
wartosciowania, dla ktörych formuly Vx • p(x) oraz Vy • - 1p(y) falszywe. Jezeli
w interpretacji /  formula Vx • /?(x) nie jest spelnialna, to formulap(x) nie jest spel- 
nialna. Podobnie, z tego, ze formula Vy • -i/?(y) nie jest spelnialna, wynika, ze for- 
mula —>p(y) nie jest spelnialna, czyli formula p(y) jest spelnialna. Oczekuje sie za- 
tem, ze dla pewnej interpretacji I  i dla pewnego wartosciowania zmiennych x, y  
formula p(x) jest falszywa, a formula p(y) jest prawdziwa. Oczywiscie taka inter- 
pretacja istnieje, wystarczy na przyklad przyj^c, ze dziedzinq. interpretacji jest zbiör 
liczb calkowitych, a interpretacja predykatu p  jest nastqpujXca

I(p)(x) =defX > 0

wöwczas dla wartosciowania v = def {<*, -1>, <y, 1>} INTv(p{x)) = F oraz 
INTv(p(y)) = P. Formula (16) nie jest zatem tautologi^.

Graficzna reprezentacja tego dowodu jest pokazana na rysunku 11.4.

—» —iVy • -ip(y) => Vx • p(x)
—i Vy • —ip(y) —> Vx • p(x)

Vx»p(x),Vy»-!p(y)
- »  p W, V y - p ( y )

- » p(*),-p(y) 
p(y) - »  p(x)

Rys. 11.4. Drzewo dowodowe dla formuly (15) I

11.4. J$zyk sekwentöw -  skladnia i semantyka

Niech FORM(F, P, V) bqdzie zbiorem formul rachunku kwantyfikatoröw nad alfabe- 
tem o sygnaturze Sig = (F, P). Jezyk rachunku kwantyfikatoröw rozszerza sie o dodat- 
kow^. kategoriq napisöw nazywanych sekwentami.

Sekwentem nad alfabetem o sygnaturze Sig jest dowolny napis postaci

0 ^ > r  (i)

gdzie: <Z>oraz rsq_ dowolnymi skonczonymi, byc moze pustymi, zbiorami formul, tzn. 
0 , r<z FORM(F, P, V). Zbiör jest nazywany poprzednikiem, a r ~  nastqpnikiem 
sekwentu.

Zbiör wszystkich napisöw postaci (1) bedzie nazywany zbiorem sekwentöw nad alfa­
betem o sygnaturze Sig i bedzie oznaczany symbolem SEKW(F, P, V).

Przyjmie sie notacje: jezeli dane s^zbiory formul:



0  =def {«i , <%} dla neNat 
r  =def {ß\, .... $ .}  dla meNat

to sekwent (1) b^dzie zapisywany w postaci

0\, ..., OCn > ß\, ..., ßm

Nawiasy bqd^ wiqc opuszczane, a elementy zbioröw 0  oraz /"bqd^ przedstawiane 
w postaci list. Elementy obu zbioröw mozna na liscie przedstawiac w dowolnej kolej- 
no§ci, a dwukrotne wyst£(pienie tego samego elementu na liscie mozna pomijac.

Jezeli 0 , rSQ zbiorami formul, a örjest pojedyncz^ formulq, to zbiör formul

ö > u  {«} u  r

bqdzie zapisywany w postaci listy

0 ,a , r

Szczegölne przypadki sekwentöw zachodz^ wtedy, gdy zbiory (Poraz Fsq. puste:

-> ß i , ..., ß m gdy 0  jest pusty,
0 \ , ..., QJi > gdy r  jest pusty,
-» gdy 0oraz r  s 3. puste.

Pierwszy sekwent ma pusty poprzednik, drugi -  pusty nastopnik, a ostatni zapis ozna- 
cza sekwent pusty.

SemantykQ sekwentöw dla modelu M =  <D, />  definiuje funkcja 

INTV: SEKW(F, P, V) -> Logiczne 

okreslana jako rozszerzenie funkcji interpretacji formul 

INT, : FORM(F, P, V) -»  Logiczne

nad tym modelem. W celu zdefiniowania tej funkcji wprowadza si$ najpierw oznacze- 
nia pomocnicze: jezeli

<Z>= {au ..., <*,}

to
A 0  =def (X \ A ... A Cln 

V 0  =def« l V ... V (Xn

Symbole a 0  oraz vCPs^ wiqc uogölnionymi spöjnikami iloczynu i sumy logicznej, 
obejmuj^cymi wszystkie formuly zbioru 0 .  Jezeli CPjest zbiorem pustym, to z defi- 
nieji:

a 0  =deftrue 
vtf> =deffalse



gdzie: true oraz false stalymi logicznymi, interpretowanyrai standardowo jako war- 
tosci P (prawda) i F (falsz).

Funkcja interpretacji sekwentu 0  —» / ’przy wartosciowaniu v zmiennych indywidu- 
owych jest okreslona nastqpuj^co:

INTv{ 0  —> -T) = P wtedy i tylko wtedy, gdy INTV(a 0=> v P) = P

gdzie symbol implikacji => ma standardow^ interpretacji.

Sekwent 0  —> r je s t  spelniony w modelu M, gdy funkcja interpretacji INTv( 0  —> P) 
przyjmuje wartoSö prawdy dla dowolnego wartosciowania v.

Sekwent 0 —» /"jest spelnialny uniwersalnie, gdy jest spelnialny w dowolnym modelu.

Z podanych okreslen wynika, ze sekwent

0 - > P

jest semantycznie röwnowazny formule 

A 0= >  v P

Symbol —> mozna wiqc traktowac jako pewnego rodzaju uogölnienie spöjnika im­
plikacji =>. Podczas gdy argumentami implikacji s^ dwie formuly, argumentami 
symbolu s^ dwa zbiory formul. W szczegölnym przypadku, gdy zbiory te s^jed- 
noelementowe, znaczenie sekwentu jest takie same jak znaczenie implikacji.

Przyklad 11.6____________________________________________________________
I Sekwent ^

(ar=> ß )  —> {—>ß => —.a)

jest röwnowazny semantycznie formule

i (a=>ß)=> ( - f l  =>->($ .

11.5. System dowodzenia

System dowodzenia G w rachunku sekwentöw Gentzena sklada si$ z jednego aksjo- 
matu oraz z regul eliminacji spöjniköw logicznych i kwantyfikatoröw. Kazdy ze spöj- 
niköw i kwantyfikatoröw moze wystqpiö po lewej i prawej stronie sekwentu, dlatego 
liczba regul jest röwna dwukrotnej liczbie uzywanych spöjniköw. Kazda z regul jest 
oznaczana literami / albo p  -  ktöre oznaczaj^ lew^ albo praw^ stronq sekwentu, po 
ktörej wystQpuje eliminowany spöjnik -  oraz symbolem spöjnika. Na przyklad (/V) 
bqdzie oznaczac regulq eliminacji kwantyfikatora ogölnego stoj^cego po lewej stronie 
sekwentu. Przedstawiany dalej zestaw regul dotyczy tylko spöjniköw negacji, ko-



niunkcji i dysjunkcji, poniewaz stanowiq. one zbiör fiinkcjonalnie pelny, oraz tylko 
kwantyfikatora ogölnego, poniewaz za jego pomoc^ mozna röwniez wyrazic kwanty- 
fikator szczegötowy.

Aksjomat

Aksjomatem -  a dokladniej schematem aksjomatu -  jest dowolny sekwent:
0 ^ r

dla ktörego 0  n  / V  0 , czyli gdy istnieje co najmniej jedna taka formula, ktöra 
wystqmje po lewej i po prawej stronie sekwentu.

Uwaga
Schemat aksjomatu jest tylko jeden, generuje on natomiast nieskonczenie wiele ak- 
sjomatöw, czyli konkretnych sekwentöw. Podobna uwaga odnosi si$ do regul 
wnioskowania. Nalezy zauwazyd, ze szczegölnymi postaciami aksjomatu s£t se- 
kwenty:

false ->
—> true

Reguly

Dia negacji:

0 -^ > a ,r

( p - )
0  —► —>(x,r

0 , cc —> r

Dia koniunkcji:

aAß,0^>r
(l a )

(p a )

a ,ß ,0 - * a , r

0 - > a A ß , r
0-*r,a 0^>r,ß

Dia altematywy:

(/v) orv /? ,0 -> r
0,a->r 0,ß->r

( pv )
0 - > a v  ß , r  
0 - > a ,ß , r



Dia kwantyfikatora ogolnego:

I,wi V x » « ,0 - > r(;w)
a[x ::= t],Vx • a ,@ —> r

gdzie t jest dowolnym termem, ktöry w formule arjest wolny ze wzglqdu na x

Reguly eliminacji kwantyfikatora maj^specyficzne wlasnosci.

Po pierwsze -  regula eliminacji kwantyfikatora ogolnego (/ V) w istocie nie eliminuje 
kwantyfikatora, lecz dodatkowo wprowadza now^ formulQ. Wystqpuj^ca w przeslance 
formula Vx«arzostaje zast^piona formulami a[x ::= /] oraz Vx*ar we wniosku reguly. 
Poniewaz zachodzi implikacja

(Vx* dt) => a[x ::= /]
formuly a[x ::= /] mozna uwazac za szczegölny przypadek formuly Vx* a.

Po drugie -  nasuwa siq pytanie, jak wyznaczyc term t. Kazdorazowe wykorzystanie 
reguly (/ V) powinno byc zwi^zane z wprowadzaniem nowego termu, gdyz nie ma 
sensu tworzenie tych samych kopii formuly a[x ::= /] przy ustalonym t. Zbiör termöw 
jest oczywiscie nieskonczony -  zaklada siq, ze jest to zbiör {/0, t\, t„, ...}, dlatego
podczas tworzenia drzewa dowodu jest potrzebny pewien pomocniczy mechanizm, 
ktöry przy kolejnym k-tym uzyciu reguly (l V), zwi^zanym z eliminacji kwantyfikato­
ra przy formule Vx • a, b^dzie wyznaczac term tk.

Z uwagi na to, ze regula (/ V) nie eliminuje kwantyfikatora, zaleca si$, aby tQ reguly 
stosowac w ostatniej kolejnosci, po wyczerpaniu mozliwosci stosowania pozostalych 
regul. Zalecenie takie moze wyrazac zmodyfikowana postac reguly (/ V)

Formula Vx • orznalazla siq po prawej stronie sekwentu ze znakiem negacji, co -  przy 
tekstowym porzidku eliminacji spöjniköw -  oznacza, ze ponowne zastosowanie regu­
ly eliminacji kwantyfikatora w odniesieniu do tej formuly zostanie odlozone na ko- 
niec, to znaczy po wyczerpaniu mozliwosci stosowania innych regul eliminacji.

Dowodzenie, ze formula a  jest tautologii, polega na budowie drzewa dowodu, ktöre- 
go wierzcholki s i  etykietowane sekwentami. Korzeniem drzewa, od ktörego rozpo- 
czyna siQ budowq drzewa, jest sekwent postaci

Nastqme kroki dowodu polegaji na rozwijaniu drzewa przez wyznaczanie kolejnych 
wierzcholköw-nastqmiköw. Jezeli wczesniej zostal wyznaczony pewien wierzcholek

pod warunkiem,zexg FV(@ )'uFV(r)

—> a



etykietowany pewnym sekwentem S, to jego nastqpnikami bQd^ wierzcholki etykieto- 
wane sekwentami 5j, ..., Sk wtedy i tylko wtedy, gdy zostala zastosowana regula po- 
zwalaj^ca sekwent S  rozlozyc na sekwenty Su ..., Sk. Sekwent S  oddziela siq od jego 
nastQpniköw kresk^ poziom^.

Budowq drzewa prowadzi siq tak dhigo, az osi^gnie si$ przynajmniej jeden lisc, ktöry 
nie daje siQ dalej rozwijac i nie jest etykietowany aksjomatem -  co oznacza, ze badana 
formula nie jest tautologi^, albo -  gdy wszystkie liscie drzewa etykietowane aksjo- 
matami -  co oznacza, ze badana formula jest tautologi^.

Przedstawiony System dowodzenia bezposrednio nie wyznacza algorytmu budowy 
drzewa dowodu. Jest to spowodowane tym, ze System zawiera dwa zrödla niedetermi- 
nizmu. Pierwszym zrödlem jest brak ustalenia kolejnosci stosowania regul tego sys- 
temu, a drugim zrödlem -  brak okreslenia postaci termöw podstawianych za zmienne 
w wyniku stosowania regut eliminacji kwantyfikatoröw. Dokonanie ustalen w tym 
zakresie pozwala juz na zalgorytmizowanie postqpowania dowodowego i ma wplyw 
na efektywnoSd procesu dowodowego.

W nizej przedstawionym algorytmie wnioskowania przyjQto, ze:

• kolejnosc stosowania regut jest wyznaczona przez porz^dek tekstowy sekwentu -  
jako pierwsz^ wybiera siq regutq, ktöra siq odnosi do pierwszego od lewej strony 
tekstu daj^cego wyeliminowac siQ spöjnika. Zamiast reguly (/ V) stosuje siq po- 
nadto regulq (/ V)', co oznacza, ze ponowne stosowanie reguly eliminacji kwan- 
tyfikatora ogölnego po lewej stronie sekwentu odbywa siq po wyczerpaniu moz- 
liwosci eliminacji innych spöjniköw;

• zbiör wykorzystywanych termöw jest uporz^dkowany w dowolny, ale ustalony 
ci^g to, tu ... Intuicja podpowiada oczywiscie, aby termy uporz^dkowac w kolej­
nosci od najprostszych po coraz bardziej ztozone. Miarq. zlozonosci moze byc na 
przyklad dlugosc termu, mierzona liczb^ wystqpuj^cych w nim symboli j^zyka.

Algorytm zaktada ponadto, ze dowodzone formuly zawieraj^ tylko wybrane spöjniki 
logiczne (negacjQ i koniunkcjq) oraz kwantyfikator ogölny. Zatozenie to nie narusza 
ogölnosci, gdyz kazda formula daje siq sprowadzic do röwnowaznej semantycznie 
formuly zawieraj^cej wylqcznie te spöjniki i jeden rodzaj kwantyfikatora. Algorytm 
jest przedstawiony w konwencji pseudoprogramowej. Jedyn^ konstrukcj^, ktöra moze 
wymagac wyjasnienia, jest uzyta instrukcja pQtli postaci

while warunek do ciqg instrukcji od

Konstrukcja ta oznacza nastqjuj^cy ci^g czynnosci: obliczenie wartosci logicznej 
warunku, a nast^pnie -jeze li warunek jest prawdziwy -  wykonanie ciqgu instrukcji, 
po czym ponownie oblicza si$ warunek i -  gdy jest prawdziwy -  powtarza si$ obli­
czenie ciqgu instrukcji', jezeli po obliczaniu warunku okaze siq, ze jest on faiszywy, 
PQtla si$ konczy.



Algorytm badania tautologii 

Dane: formula a.

Wynik: odpowiedz tak, jezeli formula arjest tautologii rachunku kwantyfikatoröw, 
oraz nie w przypadku przeciwnym.

Procedura:

1. W formule a  wyeliminuj spöjniki logiczne: v, =>, <=> oraz kwantyfikator 
szczegolowy 3, zastqpujic je  tekstowo, zgodnie z ponizszymi regulami:

Formula zastopowana Formula zastopujqca
a v  ß —i( — iCC A  —i /? )

a = > ß -i a v  ß
a<& ß («=>/?) a (^=> a)
3r • or —iVx •—\(x

2. Niech ß  bqdzie przeksztalconi formuli a. W formule ß  ponumeruj wystQpu-
jice  w niej kwantyfikatory, powiedzmy od 1 do k. Wprowadz zmienne po- 
mocnicze i\, /* i nadaj im wartoSci poczitkowe 0. Zmienna i} odnosi siQ
do kwantyfikatora o numerze j ,  a wartoSd tej zmiennej b^dzie oznaczac licz- 
b$ zastosowan reguly (/ V)' do y-tego kwantyfikatora.

3. Niech D  bqdzie poczitkowym drzewem dowodu o jednym wierzcholku, ety- 
kietowanym sekwentem —> ß.

4. while
do lisci drzewa D  nieb^dicych aksjomatami daje siq zastosowac regu­
ly eliminacji spöjniköw logicznych

do
modyfikuj D, stosujic do jego lisci regulQ eliminacji, usuwajiCi 
pierwszy tekstowo (liczic od lewej do prawej strony) daj^cy si§ wy- 
eliminowac spojnik logiczny;
w przypadku zastosowania reguly (/ V)' w celu eliminacji kwantyfikatora 
o numerze y bierz pod uwags term o numerze ij ze zbioru wszystkich ter- 
mow {t0, tu ..., t„,...}, a nastqpnie zwi^ksz wartosc zmiennej /}o jeden.

od

5. Jezeli wszystkie liscie drzewa s i  aksjomatami, odpowiedz tak, w przypadku 
przeciwnym odpowiedz nie.

Krok 1. algorytmu ma znaczenie przygotowawcze -  sprowadza danq. formulQ a  do 
standardowej postaci ß, ktora jest röwnowazna semantycznie formule a. Kroki 2. i 3. 
ustalaji warunki poczitkowe dla zasadniczej czqsci algorytmu, ktori jest krok 4.



W tym kroku iteracyjnie powtarza siq eliminacjq spojniköw logicznych i kwantyflka- 
tora ogölnego. W iteracji tej moze nast^pic zapqtlenie tylko wtedy, gdy nieskonczenie 
wiele razy stosuje si$ regulq (/ V)'.

Algorytm ma nastqpuj^ce wlasnosci:

• Algorytm daje odpowiedz tak wtedy i tylko wtedy, gdy formula dana na wejsciu 
jest tautologi^.

• Gdy formula dana na wejsciu nie jest tautologii algorytm daje odpowiedz nie 
lub siQ zapQtla.

Pierwsza wlasnosd oznacza poprawnosc i zupelnosc semantyczna przedstawionej me- 
tody dowodzenia. Druga wlasnosc oznacza czQsciow^ rozstrzygalnosc metody.

11.6. Semantyczna poprawnosc

Semantyczna poprawnosd systemu dowodzenia G dla rachunku sekwentöw Gentzena 
oznacza, ze zachodzi implikacja: jezeli & I-g cx, to <P 1= cc.

Graficznq. ilustracj^ poprawnosci systemu dowodzenia jest rysunek 11.5: zbiör twier- 
dzen ma byc podzbiorem zbioru tautologii.

Formufy

Tautologie

Twierdzenia

Aksjomaty

Rys. 11.5. Ilustracja zwi^zku poini^dzy zbiorami twierdzen 
i tautologii dla poprawnego systemu dowodzenia

Poprawnosc systemu G zostanie wykazana przez udowodnienie kilku lematöw.

Lemat 11.3
Aksjomat rachunku sekwentöw jest spelnialny uniwersalnie.

Dowod
Kazdy aksjomat jest sekwentem postaci 0, a  —> T, a. Zaklada siQ, ze sekwent ten 
nie jest spelnialny uniwersalnie. Niech Mbqdzie modelem, dla ktörego sekwent nie 
jest spelniony. Oznacza to, ze jednoczesnie M  i=a oraz ze M  a, co z kolei ozna­
cza, ze M  nie j est modelem. ■



Leinst 11.4
Niech y  g FV( a)\ {x} oraz niech y  b^dzie zmienn^ wollig w formule arze wzglqdu na x, 
wöwczas

INT^x:= d\ *= (Xwtedy i tylko wtedy, gdy INT^ := ̂  t= o$x ::=y]

Dowöd -  cwiczenie.

Lemat 11.5
Dia kazdej reguly dowodzenia jej wniosek jest sekwentem spelnialnym uniwersal- 
nie wtedy i tylko wtedy, gdy uniwersalnie jest spelnialny kazdy sekwent stanowi^- 
cy jej przeslankq.

Dowöd
Dowöd prowadzi siq metod^ nie wprost. Dia kazdej reguly pokaze siq, ze pewna 
interpretacja INTV nie spelnia jej wniosku wtedy i tylko wtedy, gdy dla pewnej in- 
terpretacji INTV- nie S£t spetnione jej przesianki. Teza twierdzenia wynika bezpo- 
srednio z tego stwierdzenia.

Rozwazania przeprowadza siq tylko dla regul (/ a ), (p a ), (/ V), (p V). Dowöd dla 
pozostalych regul prowadzi siq podobnie.

Dla reguly (/ a ) zachodzi

INTV Dt 0 , a , ß - > r

wtedy i tylko wtedy, gdy

INTV t= 0  a  a  a  ß  —» s/T

wtedy i tylko wtedy, gdy

INTV £  0 , a  a  ß  -» v T

W interpretacji INTV przesianki s^ zatem faiszywe wtedy i tylko wtedy, gdy fat- 
szywy jest wniosek reguly (/ a ).

Dla reguly (p a ) zachodzi

INTyfr 0 ^ > r ,(Z A ß  

wtedy i tylko wtedy, gdy

INTV t= a  0  oraz INTV roraz INTV&CCa  ß

wtedy i tylko wtedy, gdy

INTV1= 0  oraz INTV v / ’oraz {INT, fefc orlub INTV ß )



wtedy i tylko wtedy, gdy

INTv fr <2>—> r , a  lub INTV fr 0 ^ > F ,ß

W interpretacji INTV przeslanki zatem falszywe wtedy i tylko wtedy, gdy fal- 
szywy jest wniosek reguly (p a ) .

Dia reguly (/ V) zachodzi:

Jezeli zalozyc, ze dla INTV nie jest spelniona przeslanka reguly, czyli

INT, fr 0 , Vx • a-+  r  

to oznacza, ze

IN T ,1= a <Z>aVx • oe oraz INTV fr r

Poniewaz INTV t=Vx • oe, wiqc -  na mocy wniosku z podrozdzialu 11.2 -  zachodzi
IN T ,I=a[x::= /], pod warunkiem, ze t jest termem wolnym w a  ze wzgl^du na x. 
Z tego wynika, ze dla INTV nie jest spelniony sekwent stanowi^cy wniosek, czyli

INT, fr 0 , a[x::= t ] ,V x » a —>F

Odwrotnie, jezeli zalozyc, ze dla INTV nie jest spelniony wniosek reguly, to wynika 
z tego, ze INTV fr a 0 a  ce[x ::= t] a  Vx • a  oraz INT, fr F Z  tego z kolei wynika,
ze INT, fr a 0 a  Vx • ar oraz INT, fr v  F, co oznacza, ze dla INT, nie jest spelniona 
przeslanka reguly.

Dla reguly (p V) zachodzi:

Jezeli zalozyc, ze dla INT, nie jest spelniona przeslanka reguly, czyli

INT, fr 0  -»  T, Vx •  a  

to oznacza, ze

INT, fr a  0  oraz INT, fr v  /"oraz INT, fr V x • a

Z  ostatniego faktu wynika, ze istnieje deD  takie, ze INT,[x .= ^ fra. Niech INT', 
fr INT,[y^ d], gdzie y& FV(0) u  FV(F) u  FV(a) jest zmienn^ rozn^ od x  i woln^ 
w arze wzglidu na x. Na mocy lematu 11.5 INT', fr a[x ::= y], Ponadto INT', 
fr a 0  oraz IN T ', fr vF, poniewaz y iF V (0 )  u  FV(F). Dlatego IN T', fr 0  —> F, 
Vx • oe, a[x ::= y], Oznacza to, ze jezeli przeslanka reguly jest niespelnialna przez 
pewn^ interpretacji, to wniosek reguly jest tez niespelnialny przez pewn^ interpre­
tacji.

Odwrotnie, jezeli zalozy sii, ze dla INT, nie jest spelniony wniosek reguly, to 
INT, fr a 0  oraz INT, fr vF, INT, fr a{x ::= y]. Z  lematu o podstawieniu wynika,



ze INTv[x:= o] a, gdzie d = INTv(y). Dia INTV nie jest wi$c spelniona formula 
Vx • a, co oznacza, ze nie jest röwniez spelniona przeslanka reguly. ■

Twierdzenie 11.1

Kazdy sekwent, ktöry ma dowöd w systemie Gentzena, jest sekwentem uniwersal- 
nie prawdziwym.

Dowöd
Dowöd wynika z wyzej udowodnionych lematöw przez zastosowanie indukcji na 
strukturze drzewa dowodowego. Punktem wyjsciajest fakt, ze sekwenty-liscie jako 
aksjoraaty sq_ uniwersalnie prawdziwe, a kazde przejscie od sekwentöw-wniosköw 
do sekwentu-przeslanki w drzewie dowodu gwarantuje zachowanie uniwersalnej 
prawdziwosci przeslanki. ■

Wniosek 11.2
Dia kazdej interpretacji INTV, jezeli interpretacja ta nie spelnia sekwentu etykietu- 
j^cego n-ty wierzcholek drzewa dowodu, to nie spelnia ona röwniez zadnego se­
kwentu etykietuj^cego wierzcholek lez^cy na sciezce prowadz^cej od korzenia do 
wierzcholka n.

Lemat 11.5, opröcz tego, ze pozwala dowiesc poprawnosci semantycznej systemu 
dowodzenia, wskazuje na jeszcze jedn^ jego wlasnosc. Pokazuje mianowicie, ze 
reguly prowadz^ od prawdziwych wniosköw do prawdziwych zalozen, to znaczy: 
jezeli regula pozwala z sekwentu S  otrzymac dwa sekwenty S\, S2 -  jak na przyklad 
w regule dla koniunkcji -  to prawdziwosc Si oraz S2 implikuje prawdziwosc se­
kwentu S. Oznacza to odwracalnosc wprowadzonych regul. Reguly otrzymane na 
podstawie takiego odwröcenia sq. regulami wprowadzania spöjniköw logicznych. 
Kazdej regule eliminacji spöjnika logicznego odpowiada wiqc regula wprowadzania 
tego spöjnika. Na przyklad regulom eliminacji spöjnika koniunkcji b^d^ odpowia- 
dac reguly wprowadzania spöjnika koniunkcji odpowiednio po lewej (/+ a )  i po 
prawej stronie sekwentu (p+ a ) :

(/* A) S h M i i J L
a * . ß , 0 - > r

(p * a ) * ^ r 'a
v  0 ^ > r , a  A ß

Zestaw regul wprowadzania spöjniköw logicznych i kwantyfikatora ogölnego pozwala 
na konstrukcjq takich samych drzew dowodu jak dla systemu z regulami eliminacji, 
z t^ röznic^, ze konstrukcja drzewa odbywa siq w odwrotnej kolejnosci -  od lisci do 
korzenia.



11.7. Semantyczna zupelnosc

Semantyczna zupelnosc systemu dowodzenia G dla rachunku sekwentöw Gentzena 
oznacza, ze zachodzi implikacja: jezeli 0 1= a, to 0  Hc a. Odwolujic siq do rysunku 
11.5, oznacza to, ze zbiör twierdzen i zbiör tautologii Si identyczne.

Zupelnosc systemu G zostanie wykazana przez udowodnienie kilku lematöw.

Lemat 11.6
Jezeli formula a  jest tautologii oraz drzewo dowodowe, uzyskane w wyniku sto- 
sowania podanego algorytmu, jest skonczone, to wszystkie jego liscie s i  etykieto- 
wane aksjomatami.

Dowöd
Dowöd prowadzi si$ metodi nie wprost. Zaklada si?, ze D  jest pewnym drzewem 
skonczonym zbudowanym dla formuly a  takim, ze pewien lisc jest etykietowany 
sekwentem postaci 0  —> T, gdzie 0  n  r =  0 .  Jezeli da siQ pökazac, ze istnieje 
pewna interpretacja INT„ dla ktörej sekwent ten nie jest spelniony, to z wnios- 
ku 11.2 wynika, ze nie jest rowniez spelniony sekwent stanowi^cy korzen drzewa 
dowodu. Oznacza to zatem -  wbrew zalozeniu lematu -  ze formula a nie jest tauto­
logii.

Poszukiwani interpretacja skonstruuje siq w sposöb nastQpujicy: Jako dziedzinq D 
interpretacji przyjmuje siQ zbiör wszystkich termöw TERM(F, P). Interpretacja /  
symboli funkcyjnych i symboli predykatöw jest nastQpujica:

• wynikiem zastosowana funkcji f&Fn, dla neNat, do termöw tu ..., t„ jest term
1j •••>

• dla dowolnych termöw tu ..., t„ oraz dowolnego predykatu p e P n, dla neNat,
definiuje si$ p (tu ..., t„) = prawda wtedy i tylko wtedy, gdy formula p{tu ..., 
t„)e 0 , czyli gdy wystQpuje ona po lewej stronie sekwentu 0 - *  F

Rozpatruje siq takie wartosciowanie v, ktöre dowolnej zmiennej indywiduowej 
x  przypisuje term jc, czyli v(x) =defx. Z defmicji I  oraz v wynika, ze

INTV t£ a 0  => v T

bowiem wszystkie formuly w sekwencie 0  —> r s i  nierozkladalne, a na mocy de- 
finicji wszystkie formuly z 0  s i  prawdziwe, wszystkie zas formuly z T^si fal- 
szywe. ■

Lemat 11.7
Jezeli drzewo dowodowe uzyskane w wyniku stosowania podanego algorytmu dla 
formuly arjest nieskonczone, to formula a  nie jest tautologii.



Dowöd
Jezeli drzewo jest nieskonczone, to -  na podstawie lematu Königa -  oznacza to ist- 
nienie nieskonczenie dlugiej sciezki, zaczynaj^cej siq od korzenia. Niech &, —» 77 
b$d^ sekwentami etykietuj^cymi /-te wierzcholki na nieskonczonej sciezce. Dalej 
niech 0  = oraz r= zü ieNatr i ■

Wprowadza siq teraz nastqpujXc^ interpretacja: Dziedzin^ interpretacji -  podobnie 
jak w poprzednim lemacie -  jest zbiör wszystkich termöw. Röwniez interpretacja 
symboli funkcyjnych jest taka sama, jak w poprzednim lemacie, interpretacja zas 
symboli predykatöw jest nastqpuj^ca:

dla dowolnych termöw tu ..., t„ oraz dowolnego predykatu peP„, z definicji 
p(tu ..., t„) =prawda wtedy i tylko wtedy, gdy formulap{tu ..., t„) e 0 , czyli gdy 
wystQpuje ona po lewej stronie jednego z sekwentöw 0, —> 77.

Niech v b^dzie wartosciowaniem takim, ze v(x) =def x. Z pokazanego dalej lematu 
11.8 wynika, ze dla dowolnej formuly or.

jezeli a e 0 ,  to INTV1= a

jezeli are 77 to INTV1= —>a

Stwierdzenie tego faktu konczy dowöd lematu, gdyz oznacza, ze formula a  nie jest 
tautologi^, bowiem korzen drzewa dowodu jest etykietowany sekwentem —>a, czy­
li formula a e  77 ■

Lemat 11.8
Niech 0 =  \JieNal0j oraz r = \J ieNair j , gdzie 0, —> s \  sekwentami etykietuj^- 
cymi /-te wierzcholki na nieskonczonej sciezce w drzewie dowodu. Dla dowolnej 
formuly a:

jezeli a e 0 ,  to INTV l= a  

jezeli are 77 to INTV —>a 

Dowöd

Zdefiniuje siq najpierw relacjq ■<, okreslon^ na zbiorze wszystkich formul w spo- 
söb nastgwjqcy:

1. Elementami minimalnymi relacji s% formuly elementame postaci p(t\......t„),
gdzie: p e P n jest symbolem n-argumentowego predykatu, a t \ , ..., t„ s^dowol- 
nymi termami. Oznacza to, ze dla formuly postacip{t\, ..., t„) nie istnieje for­
mula ortaka, ze a < p (tu ..., /„).

2 .  a<-ycc



3. a<  ( a  a  ß ) oraz ß < ( a  a  /?)

4. Dia dowolnego termu t zachodzi a[x := t\ -< Vx • a

Niech bqdzie przechodnim domkniqciem relacji <  Jeäli örjest dowoln^ formuly, 
to nie istnieje nieskonczony ci^g formul a x, Ok,... spelniaj^cy warunek

... -<+ Oi -<+ a x<+ a

Wynika to z obserwacji, ze po lewej stronie relacji znajduje si$ zawsze formula 
skladniowo prostsza od formuly po prawej stronie relacji. Dia danej formuly liczba 
formul skladniowo od niej prostszych jest oczywiscie skonczona.

Dowod lematu b$dzie prowadzony indukcyjnie wzgl^dem relacji -<+.

W kroku bazowym pokazuje siQ, ze teza lematu zachodzi dla elementöw mini- 
malnych wzgl?dem relacji -<+. Zaklada siq, zep{t\, ..., tn) e  0  u  r. Istnieje zatem 
keN at takie, ze p (tx, ..., t„) e 0 k u  /* oraz k  jest pierwszym takim wierzchol- 
kiem na rozpatrywanej sciezce. Oczywiscie 0 k n  Tk = 0 ,  gdyz w przeciwnym 
razie wierzcholek bylby aksjomatem i sciezka konczylaby siq w tym wierzchot- 
ku, wbrew zalozeniu o jej nieskonczonosci, zatem albo p(t\, ..., t„) e  0 k, albo
p (tx, ..., tn) e r k.

Niechp(t\......tn) e 0 k. Poniewaz do formul postaci p{t\ , ..., tn) nie da si$ juz zasto-
sowac zadnej z regul rozkladu, wi^c p(t\...... tn) e  0 m dla m > k, a tym samym
p(t\, t„) & I~idla dowolnego ie  Nat, zatemp{t\, ..., t„) e  0 o ra zp (t\,..., t„) g F  Na
mocy definicji interpretacji INTV zachodzi wiqc INTV t= p (t\ , ..., t„).

Analogicznie dla drugiego przypadku, gdyp (tx, ..., t„) e r k, mozna pokazac, ze 

INTy\r= ->p(tu ..., tn).

W kroku indukcyjnym dowodu rozpatmje siq kolejne przypadki postaci formuly a.

1. Niech orbqdzie postaci —iß. Na mocy regul eliminacji spöjnika negacji zachodzi: 

jezeli —iße 0 , to ß e  /"oraz 
jezeli —iß e T ,to  ß e 0 .

Wystarczy teraz skorzystac z zalozenia indukcyjnego. Na przyklad, gdy —iß s 0, 
to ß e F  Poniewaz ß  -<+ -iß, zatem -  korzystaj^c z zalozenia indukcyjnego 
z /?e r  wynika, ze INTV1= —iß.

2. Niech a  bqdzie postaci ß  a  y. Z postaci regut eliminacji koniunkcji wynika, ze 
formuly ß  oraz ^wystQpuj^ razem w 0  albo jedna z nich wystqpuje w 77 Oczy­
wiscie ß < + (ß  a  y) oraz y~C (ß  a  y). Z zalozenia indukcyjnego wynika, ze



INT, 1= ß  oraz INT, 1= y  

albo
INT, t= —\ß lub INT, \= ^ y  

zatem
INT, t= (J3a  y) gdy (ß  a  y ) e 0

albo
/AT„ t= -i(ß a  y) gdy ( ß A y ) e r

3. Niech arb^dzie postaci Vx • ß. Dia przypadku zastosowania reguly eliminacji 
kwantyfikatora (/ V) zaklada si? nie wprost, ze nie zachodzi INT, t= Vx • ß. 
Oznacza to, ze dla pewnego elementu z dziedziny interpretacji, czyli 
dla pewnego termu t, formula ß  nie jest spelniona, to znaczy, ze INT, 1= 
-V9[x ::=/].
Poniewaz ß[x  := f] -<+ Vx • ß, oznacza to wiQC, ze ß [x  ::= ?] musi wyst^pic po 
lewej stronie sekwentu po skonczonej liczbie zastosowan reguly (/ V), czyli 
ß[x ::= t] e 0 .  Z  zatozenia indukcyjnego wynika, ze INT, 1= ß[x  ::= /], co ozna­
cza sprzecznosc z wyprowadzonym wnioskiem, ze INT, 1= —>ß[x ::= /].

Przypadek zastosowania drugiej reguly eliminacji kwantyfikatora (p V) rozwaza 
siq podobnie. ■

Twierdzenie 11.2
System dowodzenia Gentzena jest semantycznie zupelny.

Dowöd
Niech formula a  bqdzie tautologi^. Wystarczy pokazac, ze drzewo dowodowe dla 
tej formuly jest skonczone. Z lematu 11.6 wynika bowiem, ze wszystkie jego liscie 
s^ etykietowane aksjomatami, co wskazuje na to, ze a jest tautologi^. Drzewo do­
wodowe dla örmusi bydjednak skonczone, gdyz w przeciwnym przypadku -  zgod- 
nie z lematem 11.7 -  formula ornie bylaby tautologi^. ■

Z przedstawionych rozwazan wyplywa dodatkowy wniosek:

Wniosek 11.3
System dowodzenia Gentzena jest czQsciowo rozstrzygalny.

Oznacza to, ze istnieje procedura (na przyklad algorytm przedstawiony w podrozdzia- 
le 11.5), ktora w skonczonej liczbie krokow stwierdza, ze badana formula arjest tauto- 
logiq. albo stwierdza, ze formula nie jest tautologi^, albo -  w przypadku, gdy örnie jest 
tautologi^- nie udziela zadnej odpowiedzi w skonczonej liczbie krokow.



Cwiczenia

1. Stosuj^c metodq sekwentöw Gentzena, wykazac, ze nastQpuj^ce formuiy nie 
tautologiami rachunku kwantyfikatoröw:
a) (3x*/>(x)) =>p(x)
b) (Vx • p(x)) => (Vx • —>p(x))

2. Czy formuiy z zadania 1. sq. spelnialne?

3. Stosuj^c metodq sekwentöw Gentzena, wykazac, ze nastQpuj^ce formuiy tautolo­
giami rachunku kwantyfikatoröw:
a) (3x • p(x) v  q(x)) <=> (3x • p(x)) v  (3x • q(x))
b) (Vx • p(x) <=> q{x)) => ((Vx • p(x)) <=> (Vx •  q(x)))
c) (Vx • p(x) «=> q(x)) => ((3x • p(x)) <=> (3x • q(x)))

4. Stosujc^c metodq sekwentöw Gentzena, sprawdziö, ktöre sposröd nastqpujqcych 
formul tautologiami rachunku kwantyfikatoröw:
a) (-. Vx • Vy • r(x, y)) <=> (3x • 3y • -,r(x, y))
b) (-i3x • 3y • r(x, y)) <=> (Vx •  Vy • -ir(x, y))

5. Podac dolne i göme oszacowanie liczby wierzcholköw drzewa dowodu formuiy 
rachunku zdan metod^ sekwentöw Gentzena, przy zalozeniu, ze liczba wystqpien 
spöjniköw logicznych w formule wynosi neNat.

6. Przedstawic algorytm, ktöry dla danej formuiy wyznacza pierwszy (od lewej) tek- 
stowo spöjnik, ktöry moze byc wyeliminowany przy dowodzeniu metod^ sekwen­
töw Gentzena.

7. Przedstawic algorytm, ktöry sprawdza, czy term t jest wolny w a  ze wzgl^du na 
zmienn^ indywiduow^ x.



12. Metoda rezolucji

12.1. Wst^p

Omöwiony w rozdziale 11. System dowodzenia -  oparty na rachunku sekwentöw 
Gentzena -  daje podstawq do tworzenia algorytmöw automatycznego dowodzenia 
formul rachunku kwantyfikatoröw, ale jest zwieyzany z pewnymi niedogodnosciami, 
ktöre prowadz^ do duzej zlozonosci obliczeniowej, a tym samym czasochtonnosci 
obliczen. Poszukiwanie innych, bardziej efektywnych metod dowodzenia doprowa- 
dzilo, w 1965 roku, do sformulowania przez J.A. Robinsona systemu dowodzenia 
opartego na tzw^regule rezolucji. Oparta na tej regule metoda, zwana metod^ rezolu­
cji, stanowi System dowodzenia spelnialnosci zbioru formul. Istotn^ wlasciwosci^ 
dowodzenia opartego na regule rezolucji jest koniecznosc sprowadzenia dowodzonej 
formuly do postaci znormalizowanej. Formuly muszq. byd w skolemowskiej postaci 
normalnej, a ich matryce -  w koniunkcyjnej postaci normalnej.J

Uwaga
Podejscie zaproponowane przez Robinsona okazalo si$ bardzo skuteczne i dalo 
podwaliny pod wiele zastosowan, wsröd ktorych na pierwszym miejscu nalezy 
wymienic programowanie w logice. Programowanie w logice, zwlaszcza w jqzyku 
Prolog, umozliwilo mi^dzy innymi efektywn^ implementacjq systemöw dorad- 
czych (ekspertowych), sterowanie robotami, automatyczne tlumaczenie tekstöw. 
Metoda Robinsona bazuje na wczesniejszych pracach, wsröd ktorych nalezy wy­
mienic prace Herbranda21 z 1930 roku oraz pracq Davida i Putnamana z pocz^tku 
lat szescdziesi^tych ubieglego wieku.

Stosowanie metody rezolucji wi^ze si$ z badaniem, czy dana formula a  jest lo- 
giczn^ (semantyczn^) konsekwencjX zbioru formul 0 , czyli czy 0  1= a. Zgodnie 
z lematem 10.3, 0  1= a  wtedy i tylko wtedy, gdy zbiör 0  u  {—iOr} jest niespelnial- 
ny. Jezeli 0 1= {ori, ..., to niespelnialnosc zbioru formul 0 u  {—icc} oznacza, ze 
formula

(X\ A  ... A  OCn A  —i (X

21 Jaques Herbrand (1908-1931).



jest tozsamosciowo falszywa. Niespelnialno§c zbioru <P u  {—iQr} oznacza zatem, ze 
jedyn^jego konsekwencj^ semantyczn^jest formula tozsamosciowo falszywa, czyli

0 u  {-i a )  1= false

Stosowanie metody rezolucji polega na reprezentacji zbioru formul & u  {-ia} za 
pomoc^ zbioru klauzul, a nastqpnie na pröbie wyprowadzenia z tego zbioru klauzuli 
pustej, reprezentujctcej false. Jezeli taka pröba konczy siq powodzeniem, to znaczy 
wyprowadzeniem klauzuli pustej, oznacza to, ze O  (= a. W przypadku przeciwnym, 
po wyczerpaniu wszystkich mozliwosci, oznacza to, ze «P l1 a.

12.2. Zasada rezolucji dla rachunku zdan]

Zaklada siq, ze badane formuly rachunku zdan sq. w koniunkcvinei postaci normalnej. 
co oznacza, ze s^w  postaci koniunkcji klauzul:

X i a  k 2 a  . . .  a  k „ dla neNat\{0}

Klauzulajest dysjunkcj^ literalöw:
X\ v  X2 v  ... v  X,„ dla meNat

W przypadku szczegölnym, gdy m = 0, klauzula bqdzie nazywana klauzul^ p u s t q  

i oznaczana symbolem □. Klauzula pusta oznacza formulq tozsamosciowo falszyw^.

W przypadku rachunku zdan literalami s^ zmienne zdaniowe lub ich negacje. Dwa 
literaly s .̂ komplementame, gdy jeden jest negacje drugiego.

W przypadku znormalizowanej reprezentacji formuly mozna möwic, ze formula jest 
okreslona przez pewien zbiör klauzul, klauzula zas jest okreslona przez pewien zbiör 
literalöw. Uwaga ta wyjasnia wprowadzan^ ponizej konwencjq oznaczen.

Fakt, ze pewien literal X jest elementem klauzuli K , bqdzie zapisywany w postaci 
X & k . Jezeli z klauzuli K  zostanie usuniqty nalez^cy do niej literal X, to otrzymana 
nowa, byc moze pusta, klauzula bqdzie oznaczana k\ X .

Definicja 12.1
Niech bqd^ dane dwie klauzule K \, k 2 oraz dwa literaly komplementame X\, X2 ta- 
kie, ze Xte K \, X2e k 2. Klauzula postaci

xj U i u  k 2\ X 2

bqdzie nazywana r e z o l w e n t q  klauzul Xj oraz k 2 i oznaczana symbolicznie przez 
r e z ( K u  k 2) . Literaly X\, X2 nazywa siq l i t e r a l a m i  c z y n n y m i .  O dwöch klauzulach 
majXcych rezolwentq bqdzie siq möwiö, ze s^ klauzulami, ktöre daj^ siq u z g o d n i c .  

Oznaczenie rez(x j, k 2)  ma sens tylko pod warunkiem, ze klauzule xj, k 2 daĵ _ siq 
uzgodnic.



Badanie, czy dana formula jest tautologiq, polega na sprawdzeniu zbioru reprezentuj^- 
cych j^. klauzul. Formula a  jest spelnialna wtedy i tylko wtedy, gdy jest spelnialny 
zbiör reprezentujqcychj^ klauzul K \, k 2, ..., K n. Zbiör klauzul nie jest spelnialny wtedy 
i tylko wtedy, gdy jego semantyczn^ konsekwencj 3. j est klauzula pusta.

Dowodzenie polega na generowaniu, na podstawie zbioru klauzul K\, k2, ..., Kn, no- 
wych klauzul tak dlugo, az zostanie utworzona klauzula pusta bqdz, po wyczerpaniu 
wszystkich mozliwosci, klauzula pusta nie zostanie wygenerowana. Wygenerowanie 
klauzuli pustej b^dzie oznaczac, ze badany zbiör klauzul jest niespelnialny, a przypa- 
dek przeciwny bqdzie oznaczaö spelnialnosö badanego zbioru klauzul.

Generacja nowej klauzuli opiera si$ na zastosowaniu reguly rezolucji w postaci:

Definicja 12.2
Schemat reguly rezolucji ma postac

k x , k 2

kx \ A, u  k2 \
Aj e K x, A  ̂e  k 2 oraz Â , A  ̂ s^ komplementame

Przeslankami reguly rezolucji s^klauzule, a wnioskiem -  rezolwenta tych klauzul.

Regula rezolucji jest ogöln^ reguly wnioskowania, ktörej szczegölne postaci odzwier- 
ciedlaj^ niektöre inne znane reguly wnioskowania.

Przyklad 12,1____________________________________________________________
Niech b$d^ dane dwie klauzule: p  oraz —p  v  q. Spelniajq. one wymagania oczeki- 
wane od przeslanek w regule rezolucji, literalami czynnymi s^p  oraz —p, a ich re- 
zolwent^ jest klauzula q, czyli

q

Warto zauwazyc, ze klauzula —p  v  q jest semantycznie röwnowazna formule p=> q, 
co pozwala zapisac powyzsz^ reguly w postaci

p,p=>q
q

I znanej jako regula odrywania (modus ponens).______________________________I

Przyklad 12.2____________________________________________________________
 ̂ Dia klauzul p v  q oraz —xq v  r regula rezolucji ma postac ^

—ip v q ,- \q v r
—ip v r



co odpowiada regule wnioskowania lancuchowego 

p=>q,q=>r

Przyklad 12.3
I Prosta, ale szczegölnie wazna, jest regula rezolucji w postaci I

~^P,P
□

I Qznacza ona, ze klauzula pusta wyraza sprzecznosc przeslanek.________________ I

Nalezy zwröcic uwagQ, ze rezolwenta dwöch klauzul nie zawsze jest wyznaczona 
jednoznacznie, gdyz klauzule mog^ zawierad wiqcej niz jedn^ parq literalöw komple- 
mentamych. W powstalej rezolwencie mog^ siQ ponadto powtarzac pewne literaly. 
Powtarzaj^ce siq literaly mozna usun^c bez naruszenia semantyki klauzuli. Proces 
eliminacji powtarzaj^cych siq literalöw okresla siq jako faktoryzacjq.

Przyklad 12.4
I Dia klauzul: '

—ip v  —ig v  —\T v  —iS oraz j> v  —ig v r v - i s v - . /  v—\u 

rezolwentami s^:

—ig v  —ir v  —s  v  —ig v f 'v  —iS v  —\t v—iu (literalami aktywnymi s ^ - p ip )

oraz

—p  v  —ig v  —iS v p v - , q v  —is v - it v -iu (literalami aktywnymi s^.—ir i r)

Po faktoryzacji rezolwenty przyjmuj^ odpowiednio postac:

-ig v —ir v  —>s v  r v  —<t v-i u

oraz

j____ —p  v  —i q v  —iS v p  v  —11 v—i u__________________________________________ j

Regula rezolucji jest semantycznie poprawna, co precyzuje twierdzenie.

Twierdzenie 12.1
Rezolwenta rez{K\, k2) jest semantyczn^ konsekwencj^ klauzul K\, k2, czyli 

Ku k2 □  rez(Ku k2).



Dowöd
Niech klauzule K), k2 maj^postac:

*i s  A v  A\ v  ... v  A„
K2 =  —iA V  A i V  . . .  V  A m

gdzie A, - iA literalami komplementamymi. Niech klauzule te byd^ spelnione
w pewnej interpretacji J. Oznacza to, ze spelniony jest röwniez jeden z literalöw 
A, —iA. Niech bydzie to —iA. Wobec tego nie jest spelniony literal A, ale skoro spel- 
niona jest klauzula k\, to musi byc spelniona formula A\ v ... v  A„. Formula ta jest 
skladnikiem rezolwenty rez(Ki,xz), a zatem rezolwenta jest röwniez spelniona 
w interpretacji 7. Rozumowanie przebiega podobnie, gdy zalozyc, ze spelniony jest 
literal A. m

Na podstawie reguly rezolucji mozna sformulowac algorytm badania spelnialnosci 
formuly rachunku zdan.

Algorytm badania spelnialnosci zbioru klauzul 

Dane: formula a  rachunku zdan.
Wynik: odpowiedz tak, gdy formula jest spelnialna, nie -  w przypadku przeciwnym. 
Procedura:

1. Dia formuly «rwyznaczyc CNF(d) -  algorytm z podrozdzialu 9.6.
2. Wyznaczyc zbiör klauzul S  reprezentujqcych CNF(a).
3. Powtarzac nastypuj^ce czynnosci:

while
□  Ä S  i istniej^klauzule K\, tc2e S  dajqce rezolwenty nienalez^c^do S  

do
(a) znajdz klauzule K\, k2, ktöre daj^ siy uzgodnic i wylicz ich rezolwenty 

rez(Ku k2),
(b) zast^p S przez S', gdzie S '= S  u  rez(Ku k2) 

od

4. Jezeli S  zawiera klauzuly pust^ to odpowiedz nie, w przypadku przeciwnym 
-  odpowiedz tak.

Przyklad 12.5
 ̂ Niech bydzie dany nastypuj^cy zbiör klauzul I

S =def {a v —& v  —ic, d, b, c v —,a v —b, c v  -id, —ia v —id v —ib)

Dia przejrzystosci rozwazan poszczegölne klauzule zostan^ zapisane w ponume- 
rowanych wierszach. W nastypnych wierszach s^ zapisane klauzule uzyskane ze



zbioru S  w wyniku stosowania reguly rezolucji. Po prawej stronie klauzuli s% 
podane numery klauzul, ktöre byly przeslankami do jej uzyskania:

(1) a v  —ib v  —ic
(2) d 
(3 )b
(4) c v  —>av —ib
(5) c v  —>d
(6) - ia v  —id v  - ib

(7) f lv - ic (1,3)
(8) c (2,5)
(9) —ia v  —ib (2,6)

(10) c v  —i a (3,4)
(11) -i a v  —i d (3,6)
(12) —ia (2,11)
(13) —ic (7,12)
(14) □ (8,13)

Ostatnia wygenerowana klauzula jest klauzul^ pustq, co dowodzi, ze badany zbiör 
I klauzul S  nie j est spehiialny._____________________________________________ |

12.3. Skolemowska postac normalnaj

Badaj^c spelnialnoSc formul rachunku kwantyfikatoröw wedlug metody rezolucji, zakiada 
siQ, ze formuly s^w postaci kanonicznej, zwanej skolemowsk^ postaci^ normaln^.

Niech a  e  FORM(F, P, V) b^dzie formuly rachunku kwantyfikatoröw nad sygnaturq. 
<F, P> i zbiorem zmiennych indywiduowych V.

Definicja 12.3
Formula znajduje siq w postaci Skolema, gdy jest w przedrostkowej postaci nor- 
malnej, a jej przedrostek nie zawiera kwantyfikatoröw egzystencjalnych.

Przez Skol(ct) b^dzie oznaczany skolemowski odpowiednik formuly a. Proces wyzna- 
czania odpowiednika skolemowskiego dla danej formuly nazywa siQ skolemizacjq.

W odröznieniu od przypadku, gdy dla dowolnej formuly a  istniala röwnowazna se- 
mantycznie postac przedrostkowa PNF(a), miqdzy formuly a  a odpowiadaj^cei jej 
postaci^ skolemowska Skol(oi) röwnowaznosc taka moze nie zachodzic. Zachodzi 
natomiast slabszy rodzaj röwnowaznosci oparty na zwi^zku spelnialnosci. Oznacza to, 
ze formula ar jest spelnialna wtedy i tylko wtedy, gdy spelnialna jest formula Skol(d). 
Formula orjest spelnialna, gdy istnieje model, w ktörym jest spelniona.



Istotq skolemizacji wyjasnia przyklad.

Przyklad 12.6
I Dana jest formula postaci '

Vx • Vy • ((x y) => 3z • (x z) a  (z ^  7)) (1)

lub po sprowadzeniu do przedrostkowej postaci normalnej

Vx • Vy • 3z •  (—i(x -< y) v  (x -< z) a  (z  -< y)) (2)

Jest to aksjomat elementamej teorii relacji mniejszosci, zdefiniowanej w rozdziale 
10. Modelern dla tej teorii jest na przyklad zbiör liczb wymiemych Wymierne, jako 
dziedzina interpretacji, oraz relacja mniejszosci < w zbiorze liczb wymiemych, ja­
ko interpretacja symbolu predykatu <  W modelu tym aksjomat möwi, ze dla 
dwöch dowolnych liczb wymiemych x, y  istnieje pewna posrednia liczba wymiema z, 
ktöra jest zawarta w przedziale miqdzy liczb^x a liczb^y. Liczb$ posredni^ mozna 
zawsze wskazywac bezposrednio, bior^c na przyklad sredni^ arytmetyczn^ liczb x, y, 
czyli okreslaj^c, ze wartosciowanie zmiennej z  jest funkcj^ wartosciowania zmien- 
nych x  oraz y, zdefiniowan^ wzorem z =def (x + y)l2. Dla sredniej arytmetycznej 
prawdziwa jest bowiem formula

Vx • Vy • (—,(x -< y) v  (x -< (x + y)/2) a  (x + y)/2 -< y) (3)

Formula ta jest w postaci skolemowskiej i rözni siq od poprzedniej formuly bra- 
kiem kwantyfikatora szczegölowego, ktöry zostal zastqpiony dwuargumentow^ 
funkcj^ obliczajqc^ sredni^ arytmetycznq, Ostatni^ formulQ mozna zapisac w ogöl- 
niej postaci

Vx • Vy • (-.(x -<y)v(x-<  /(x , y) a / ( x , y) -< y) (4)

gdzie/ jest pewnym symbolem funkcyjnym, ktöry nie wystQpowal w teorii relacji 
mniejszosci.

Tekstowy zwi^zek mi^dzy formuly (4) oraz formuly (2) mozna scharakteryzowac 
nastqpuj^co: formula (4) powstala z formuly (2) przez eliminacjQ kwantyfikatora 
szczegölowego oraz przez tekstowe zast^pienie kazdego wyst^pienia zmiennej z, 
wi^zanej wyeliminowanym kwantyfikatorem, przez term /(x , y), gdzie: x oraz y s^ 
zmiennymi wi^zanymi przez kwantyfikatory ogölne, poprzedzaj^ce wyeliminowa- 
ny kwantyfikator szczegölowy, a / j e s t  nowym dwuargumentowym symbolem 
funkcyjnym.

Na przykladzie widac, ze aksjomat (2) teorii relacji mniejszosci mozna byloby za- 
st^pic aksjomatem postaci (4). Nowa aksjomatyka jest spelniona w kazdym mode- 

| lu, w ktörym jest spelniona dawna aksjomatyka._____________________________ 1



Algorytm skolemizacji

Dane: formula ornad sygnatury <F, P>.
Wynik: formula Skol(d) w postaci skolemowskiej, röwnowazna w sensie spel- 

nialnosci formule cl
Procedura: procedura postq>owania polega na etapowym, tekstowym przeksztalca- 

niu formuly cl Formula posrednia jest oznaczana przez ß.
1. Niech a  bqdzie formuly w przedrostkowej postaci normalnej (otrzyman^ na 

przyklad w wyniku stosowania algorytmu przedstawionego w p. 10.8).
2. while

w przedrostku formuly ß  istnieje kwantyfikator egzystencjalny 
do

(a) Jezeli formula ß  ma postac: 3x • y  to zastQpuje siq ĵ _ formuly posta­
ci y\x  ::= c], gdzie c jest nowym symbolem stalej, to znaczy ze c nie 
nalezy do zbioru symboli stalych sygnatury <F, P>, czyli c<£F0.

(b) Jezeli formula ß  ma postac: Vxi • ... • Vx„, • 3y • y, dla m > 0, to za-
st^puje siq formuly postaci: Vx, •...• Vxra • y[y ::= /(x ........xm)],
gdzie/jest nowym m-argumentowym symbolem funkcyjnym, to zna­
czy ze/ nie nalezy do zbioru m-argumentowych symboli funkcyjnych 
sygnatury <F, P>, czyli f<tFm.

od
3. Otrzyman^ formuly ß definiuje siqjako Skol(cc).

Przyklad 12.7
I Dia formuly postaci I

3u •  Vw • 3x • Vy • Bz • (p(u, x) => q(w, y, h(z))) 

jej skolemowskim odpowiednikiem jest formula 
Vw • Vy • (p(c,f(w )) => q(w,y, h(g(w,y))))

I gdzie c ,/, g  s^ nowymi symbolami funkcyjnymi._____________________________ I

Twierdzenie 12.2

Formula orjest spelnialna wtedy i tylko wtedy, gdy spelnialna jest formula Skol(a) 
otrzymana w wyniku podanego wyzej algorytmu.

Dowöd
Jezeli formula a=  Vxi • ... • Vxm • 3y • y  jest spelnialna, to oznacza, ze jest spel- 
niona w pewnym modelu M  = <D, I> nad sygnatury Sig, czyli

INTv(Vxi • ... • Vxm • 3y • y) = prawda



dla dowolnego wartosciowania v. Z tego wynika, ze röwniez 

INTrfBy • y) = prawda

dla v' = v[;ti := d\, ..., x„, := dm], gdzie d\, dmeD  dowolnymi wartosciami 
z dziedziny interpretacji. Oznacza to, ze istnieje taka wartoSc deD , ze

INTsiv := d\(7) = prawda

Niech Sig' b^dzie rozszerzeniem sygnatury Sig o w-argumentowy symbol funkcyj- 
ny f y oraz niech / '  bqdzie takim rozszerzeniem interpretacji I, ze I '(fy) = f d jest 
funkcj^ ktöra -  z definicji -  dla d \ , ..., dmeD  przyjmuje wartosc deD , czyli

f { d u ...,dm) = d

wöwczas

v' [y := INTAfy{xu ..., *,„))] = v'[y := f{IN TAx ,),.... / ^ x m))]

= v' [y : = / V , , z / „ , ) ]

= v [y :=

Formula y  nie zawiera symbolu f y, dlatego 

INT/[y =<i](y) -  prawda 

Z lematu o podstawieniu wynika, ze 

INTs(?) = lNTdy[y -—fyixi , .... xm)]

Poniewaz d\, ...,dm byly wybrane dowolnie, zatem 

INTv(Vxt • ... •  Vx,„ • y[y ::= f/xi, ..., jc„,)]) = prawda 

dla dowolnego v.

Wynikanie odwrotne -  spelnialnosc formuly orze spelnialnosci formuly Skol(ä) jest 
oczywiste.

Przedstawienie formuly ffw  postaci skolemowskiej

V x i •  ... •  V x „  •  (X i a  . .. A  K n )

gdzie xj, ..., Kx klauzulami, pozwala na reprezentacjq formuly w postaci zbioru 
jej klauzul.

Reprezentacja ta jest jednoznaczna przy zalozeniu, ze wszystkie zmienne wystQpu- 
jElce w klauzulach sq. zwi^zane kwantyfikatorami ogölnymi. Zalozenie to zawsze 
mozna przyj^c, gdy bada siq spelnialnosc formuly. Wynika to z faktu, ze jesli na 
przyklad jest spelnialna formula Vy • Vjc • p(x, y), to röwniez spelnialna jest for­
mula Vx • p(x, y). ■



12.4. Unifikacja termöw]

Stosowanie metody rezolucji w rachunku kwantyfikatoröw wymaga dodatkowego 
procesu, polegaj^cego na sprowadzeniu literalöw do pewnej ujednoliconej postaci. 
Proces ten nazywa si$ unifikacjq termöw. Zbiör klauzul {p(x), —i/?(y)} jest oczywi- 
scie zbiorem niespelnialnym, ale literaly p(x), —>p(y) nie komplementame. Ogöl- 
nie literalami w rachunku kwantyfikatoröw sq. formuly elementame lub ich negacje,
na przyklad p{t\....... tm), —>p(t\, ..., tm), gdzie: p  jest symbolem predykatywnym,
a tu ..., tm termami. Sprowadzanie takich literalöw do ujednoliconej postaci -  
jezeli jest mozliwe -  polega na zastosowaniu do nich jednakowych podstawien tek- 
stowych (zob. podrozdzial 10.4).

Rozwazane b^d^tylko takie podstawienia <7=def [*i ■"= tu x„ ::= /„], ktöre spelniaj^ 
warunek

Var(ti) n  {xi,..., xn} = 0  dla / = 1,..., n, 

to znaczy, ze w termach t\, ...,/„ nie wystQpuj^zmienne x \ , .... x„.

Podstawienie a  nazywa siQ unifikatorem dla formul CC\ , ..., a,,, gdy
a\(X = ... = OCnff.

Formuly musz^ oczywiscie byc oparte na tym samym symbolu predykatywnym, mog^ 
siq röznic co najwyzej postaci^ termöw, ktöre sq. ich argumentami. Formuly 0C\<7, ..., a,, er 
nazywa siqformuiami ukonkretnionymi przez podstawienie er

Przyklad 12.8
 ̂ Unifikatorem dla formulp(x) orazp(y) jest [x ::=z,y::= z], gdyz I

p{x)[x ::=z,y::=z] = p(y)[x ::=z,y::= z] =p(z)

ale unifikatorami s^röwniez na przyklad:
[x ::= w ,y  ::= w], gdzie w jest zmienn^,
[x ::= 5, y  ::= 5], gdzie 5 jest stal^,
[x ::= g(z, w), y  ::= g(z, w)], gdzie g  jest symbolem funkcyjnym.

Dla formulp(x),p(6) jest tylko jeden unifikator [x ::= 6], a dla formulp(5),p(6) nie 
I ma unifikatora._________________________________________________________I

Formuly a  ukonkretnion^ przez podstawienie er mozna ukonkretniac ponownie innym 
podstawieniem r. Dwukrotne ukonkretnienie formuly, najpierw podstawieniem er, 
a nastqmie podstawieniem T, jest röwnowazne jednokrotnemu ukonkretnieniu pod­
stawieniem err, ktöre jest zlozeniem podstawien er oraz r. Oznacza to, ze

(a d )  t =



Przyklad 12.9____________________________________________________________
 ̂ Formulq p(x, y) mozna kolejno ukonkretnic podstawieniem [x ::=/(z)], co da for- 

mu\§p(f(z),y), a nastQpnie podstawieniem [y ::= g(u, w)], co da p(f(z), g(u, w)).

Zlozeniem podstawien [x ::=/(z)] oraz [y ::= g(u, w)] jest podstawienie

[x ::=f(z),y g(u, w)].

I Zastosowanie tego podstawienia do formufyp(x, y) daje röwniez p(f(z), g(u, w)). |

Jezeli dla podstawienia o  istnieje podstawienie odwrotne e r '1 takie, ze er <r_l = 
= o~l<j= e, gdzie £ jest podstawieniem tozsamosciowym, to er jest nazywane prze- 
mianowaniem zmiennych.

Przyklad 12.10
I Postawienie [x ::= z, y  ::= w] jest przemianowaniem zmiennych, gdyz ^

I [x:— z,y::= w ][z::= x,w .:= y] = [x::= x,y:—y]_________________________I

Definicja 12.4
Podstawienie o\ jest bardziej ogölne niz podstawienie Oi, jezeli dla pewnego nie- 
pustego podstawienia r, röznego od przemianowania, zachodzi 05 = O] t .

Definicja 12.5
Podstawienie er nazywa siq najbardziej ogölnym unifikatorem formul a\, ..., (Xn, 
gdy jest unifikatorem i jest bardziej ogölne od kazdego innego unifikatora tych for­
mul.

Z definieji wynika, ze najbardziej ogölny unifikator jest okreslony z dokladnosci^ do 
nazw zmiennych. Najbardziej ogölny unifikator formul a x, ..., a„ bqdzie oznaczany 
przez NOU(cx\ , ..., a,,).

Przyklad 12.11___________________________________________________________
 ̂ Najbardziej ogölnymi unifikatorami dla nastQpuj^cych par formul s^: ^

NOU(p(\0, 20),p(20, 10)) nie istnieje 
NOU(p(lO, 20), p(10, 20)) = e  ^
NOU(p(lO, x),p(y, 20)) = [x ::= 20,y  ::= 10]
NOU(p( 10, x), p( 10, y)) = [x : := y] (a takze [y : := *])
NOU{p(x, x),/?(10,y)) = [x 10, y  ::= 10]
NOU(p(f(lO), 20),p(x, 20)) = [x ::=/(10)]

■ NOU(p(f(\0), 20),/?(10, 20)) nie istnieje ,



Najbardziej ogolny unifikator mozna wyznaczyc w sposöb algorytmiczny. Istnieje 
algorytm, ktöry dla dowolnego zbioru formul ot\, ..., oc„ w skonczonej liczbie kroköw 
orzeka, czy zbiör ten jest unifikowalny, a w przypadku, gdy zbiör ten jest unifikowal- 
ny, wyznacza N O U (ai,..., ce,,). Algorytm polega na tekstowym poröwnywaniu formul, 
wykrywaniu i usuwaniu niezgodnosci, przez okreslanie odpowiednich podstawien, az 
do uzyskania pelnej zgodnosci b^dz do wyczerpania mozliwosci podstawien.

Definicja 12.6
Niech t i q b^d^termami. Parq niezgodnq nazywa siq takie podtermy t' i q’ termöw 
t i q, ze:

• pierwsze Symbole /' i q s^ rözne
• do miejsca wystqpienia podtermöw t' i q' (liczqc od lewej do prawej strony) 

termy t i q s^ identyczne.

Zbiorem niezgodnosci dla formul p\(t\, ..., t„) i p(q i, q,) jest zbiör zlozony
z pary podtermöw niezgodnych dla termöw qt dla najmniejszego /e {1......n).
Zbiorem niezgodnosci dla zbioru formul opartych na tym samym symbolu pre- 
dykatywnym jest zbiör niezgodnosci dla dowolnej pary formul z tego zbioru.

Przyklad 12.12
 ̂ Dia podanych nizej par formul zbiory niezgodnosci s^nastqpuj^ce: ’ * 1

Zbiör formul Zbiör niezgodnosci
{p(.x),p(y)} {x,yi

{q(f(x), 20), <7( 10, 20)} {(fix), 10}
{r{x,f(x, y), z), rty, z, g(x, y))} {x,y}
{r(x,f(x, y), z), iix, z, g(.x,y))} i(f(.x,y},z}

Algorytm wyznaczania najbardziej ogölnego unifikatora

Dane: zbiör formul {a \ , ..., <%}, n > 1.
Wynik: NOU(a\, ..., a,,), gdy najbardziej ogolny unifikator istnieje, oraz odpo- 

wiedz brak unifikatora w przypadku przeciwnym.
Procedura: algorytm polega na cyklicznym wyliczaniu unifikatora w kolejnych 

iteracjach numerowanych przez zmienn^ k.
1. Wartosci pocz^tkowe zmiennych algorytmu: k=  0, <̂ j = {au ..., ct̂ }, Oq = £.
2. Jezeli card{fi\)  = 1, to algorytm si$ konczy i NOU(&k) = ak, w przypadku prze­

ciwnym wylicz zbiör niezgodnosci Nk dla 0 k i przejdz do nastqmego kroku.
3. Jezeli w zbiorze niezgodnosci Nk wystgmj^ zmienna xk oraz term tk takie, ze 

xk nie wystqpuje w tk, to przejdz do nastQpnego kroku, w przypadku prze­
ciwnym zbiör 0o nie jest unifikowany i algorytm siQ konczy.



4. Oblicz nowe podstawienie ö*+i = o* [x* ::= /*], dokonaj unifikaeji zbioru 
formul 0^ unifikatorem [x* ::= /*], to znaczy 0k+\ = <P* [x* ::= f*], zwi^ksz 
k  o jeden i przejdz do kroku 2.

Przyklad 12.13___________________________________________________________
 ̂ Niech ^

0 =  {p(10, x,f(g(y))),p(z,f(z),f(u))}.

Obliczenia algorytmu unifikaeji:

Oo= £, 0o= 0 ,N q = {10,z},x0 ::=z, t0 = 10 
o\ =Oo [z  ::= 10] = e[z  ::= 10] = [z ::= 10]
0x= 0b[z  ::= 10] = {p(10, x,f(g(y))),p(z,f(z),f(u))} [z ::= 10] =

= {p (l0 ,x ,f(g (y ))),p (l0 J (l0 ), /(«))}
N \ = K / ( 10)},xi ::= x, tx = / (  10)
Ö2 =Oi [x ::= /(10>] = [z 10] [x ::= /(10)] = [z ::= 10, x ::= /(10)]
0 1= 0 x \x : := /(10)] = {p( 10, x ,f(g (y ))),p (l0 J(\0 ),f(u ))}  [x : := /(10)] =

= {^( 10, / (  10),/(g(y))), p( 10, / (  10),/(«))}
N 2 =  {g (y), u ) } ,x 2 ::= « , t2 =  göO
03 =<h [u ::=g(y)] = [z ::= 10, x ::= /(10), u ::=gO)]
<^= 0 i [u ::=g(y.)] ={p(10, / ( 10),/(g(y))),Jp(10, / ( 10),/(«))} [u ::=g(y)] =

=  { p d O . / C l O X / ^ X / K l O . / C l O ) , / ^ ) ) ) }  =
= {p(10, / ( 10),/(g(y)))}

I Zbiör <ft;jest singletonem, zatem NOU(0) = 03 = [z ::= 10,x ::=/(10), u ::=g(y)]. |

Przyklad 12.14
I Niech

<*>= { q ( f m ,g ( x ) ) ) ,q ( y ,y ) } .
Obliczenia algorytmu:

Oo=£, 0>= 0 ,N O= { /(10),x},x0 ::=y, t0= f(  10)
°i -Ob [y ::=/(10)] = [y "= /(10)]
0 , - 0 6  [x : := /(10)] = M /dO ), g(x))), q(x, x)} [x ::= /(10)] =

= {2( / ( 10) ,^ ) ) ) , ? ( / '( 10) , / ( 10))}
M = M , / ( 10)}

I W zbiorze niezgodnosci N\ nie ma zmiennej, zbiör 0  nie jest zatem unifikowalny.



Twierdzenie 12.3
Przedstawiony algorytm zawsze konczy si? po skonczonej liczbie iteracji. Jezeli 
zatrzyma si? w kroku 2., to ostatnio obliczone podstawienie ak jest najbardziej 
ogölnym unifikatorem zbioru formul <P. Jezeli zatrzyma si? w kroku 3., to zbiör 
formul <Z>nie ma najbardziej ogölnego unifikatora.

Dowöd jest zawarty na przyklad w ksiqzce [Szalas 1991].

12.5. Zasada rezolucji dla rachunku kwantyfikatoröw

Zasada rezolucji dla rachunku kwantyfikatoröw zaklada, ze formuty s^.w postaci sko- 
lemowskiej. Pozwala to na stwierdzenie, ze -  jak w przypadku rachunku zdan -  for- 
mula jest reprezentowana przez zbiör klauzul.

Literaly p(t\, ..., tn) oraz - i p(t[, ..., t'n) daj^ si? uzgodniö, gdy istnieje najbardziej 
ogölny unifikator NOU{p(t\ , ..., t„), p(t[, ..., t'n)=  <7. Mozliwosc uzgodnienia literalöw 
oznacza, ze formuly

p(tu .... t„)<? oraz ->p(t[, .... t'„) er

sq. literalami komplementamymi. er b?dzie nazywane najbardziej ogölnym unifikato­
rem skojarzonym z literalamip(t\ , ..., t„) oraz —ip(t[, ..., t'n).

Definicja 12.7
Schemat reguty rezolucji ma postac 

(Ki \A l 'uic2 \A 2) o ’

gdzie: AjG ku k2 sq. daj^cymi si? uzgodnic literalami, a erjest najbardziej ogöl­
nym, skojarzonym z nimi, unifikatorem.

Klauzul? {K\\X\ u  /c2\ä2) crnazywa si? rezolwent^ klauzul K\, k2 i oznacza symbo- 
licznie rez(rcu k2).

Dalej przyjmuje si?, ze rozpatrywane klauzule sq. sfaktoryzowane. W przypadku ra­
chunku zdan oznacza to, ze nie ma w nich powtarzaj^cych si? literalöw. W przypadku 
rachunku kwantyfikatoröw sytuaeja jest bardziej zlozona. Na przyklad -  jak latwo 
zauwazyc -  zbiör klauzul {p(x) v  p(u), p(y) v  -ip(v)} jest niespelnialny, ale nie 
mozna tego wykazac za pomoc^ reguly rezolucji, dlatego wprowadza si? poj?cie fak- 
tora klauzuli.



Definicja 12.8
Jezeli <7 jest najbardziej ogölnyra unifikatorem pewnego podzbioru literalöw klau* 
zuli K, to klauzulq k', uzyskan^z Afprzez zastosowanie do niej tri usuni^cie powta- 
rzajqcych si$ literalöw, nazywa sisfalctorem klauzuli K. Klauzula jest sfaktoryzo- 
wana, jesli dowolny podzbiör jej literalöw nie ma wspölnego unifikatora.

Przyklad 12.15
' Faktorem klauzuli p(z, y) v  p(x, g(x)) jest p(x, g(x)), gdyz '

NOU(p(z,y),p(x,g(x))) = [z ::= x ,y  ::=g(x)].

Zbiör klauzul {p(x) v  p(u), —p(y) v  —>p(y)}, po faktoryzacji, przeksztalca si? 
I wzbiör {p(x),-,p(y)}.___________________________________________________ I

Algorytm badania spelnialnosci zbioru klauzul 
Dane: formula a  rachunku kwantyfikatoröw.
Wynik: odpowiedz tak, gdy formula jest spelnialna, nie -  w przypadku prze- 

ciwnym.
Procedura:

1. Dia formuly arwyznaczyc Skol(ä) -  algorytm z podrozdzialu 12.3.
2. Wyznaczyö zbiör klauzul S reprezentujqcych Skol(a) i dokonaö ich faktoryzacji.
3. Powtarzaö nast5puj3.ce czynnosci:

while
□  £ S  i istniej^ klauzule K\, tc2e S  dajqce rezolwentq nienalezqc^ do S  

do
(a) znajdz klauzule K\, rc2, ktöre daj^ si? uzgodnic, znajdz dla nich najbar­

dziej ogölny unifikator a \  wylicz ich rezolwentQ rez{Ku /c2),
(b) zastqp S przez S', gdzie S ' = S  u  rez(K\, k2) 
od

4. Jezeli S  zawiera klauzulq pust^ odpowiedz nie, w przypadku przeciwnym -  
odpowiedz tak.

Przyklad 12.16
 ̂ Niech bqdzie dany zbiör S  klauzul: ^

{p(*> g(x)), ~>p(ti, v) v  ^(10), — g(10)) v  —1 q(w)}

Obliczenia algorytmu S3 przedstawione w podobnej konwencji jak dla rachunku 
zdan -  poszczegölne klauzule S3 zapisane w ponumerowanych wierszach. 
W nastQpnych wierszach sq. zapisane klauzule uzyskane ze zbioru S  w wyniku sto-



sowania reguly rezolucji. Po prawej stronie klauzuli podane numery ldauzul, 
ktöre byfy przeslankami do jej uzyskania oraz zastosowane unifikatory:

G)/<*,g(*))

(2) -ip(u, v) v  qr(10)

(3) -ip(w, g(10)) v  q(w)

(4) -,p(u, v) v  -./?(10, g(10)) (2), (3) [w ::= 10]

(5) -*(10,g(10)) (4) faktoryzacja

(6)D 0 ),(5 ) [x ::= 10]

Wyprowadzenie klauzuli pustej oznacza, ze 5  jest niespelnialnym zbiorem klau

Regula rezolucji wyznacza specyficzny System dowodzenia R. Specyfika polega na 
tym, ze System R nie ma aksjomatöw i ma tylko jednq. regulq wnioskowania -  reguly 
rezolucji. System R jest systemem semantycznie poprawnym i zupelnym. Dokiadnie 
precyzujXto nastQpuj^ce twierdzenia:

Twierdzenie 12.4
Jezeli istnieje wywöd rezolucyjny klauzuli Kze zbioru klauzul {/ q , Kn), to klau- 
zula A'jest semantyczn^konsekwencj^ zbioru { * } , ä̂ }, symbolicznie:

jesli {Al|, .... k,} h r ic, to { ku ..., *;,} t= k

Dowöd
Prosty dowöd twierdzenia sprowadza siq do pokazania, ze pojedynczy krok wnio­
skowania rezolucyjnego -  wyliczenie rezolwenty dla klauzul-przeslanek -  wyzna­
cza klauzulq, ktöra jest konsekwencjq. semantyczn^ klauzul-przeslanek (twierdze­
nie 12.1). ■

Twierdzenie 12.5
Jezeli zbiör klauzul {*i, ..., Kn) jest niespelnialny, to istnieje wywöd rezolucyjny 
klauzuli pustej ze zbioru {*i,..., jq,}, symbolicznie:

jesli {kx, ..., a;,} 1= false, to {Kj,.... K,} l—/? □

Dowöd twierdzenia, tu pomini^ty, jest zawarty na przyklad w ksi^zce [Szalas 1991].

Nalezy wskazaö na ograniczonosc uzytego tu pojqcia zupelnosci semantycznej 
w stosunku do pojqcia uzywanego w podrozdziale 11.7. Regula rezolucji nie pozwa- 
la bowiem na wyprowadzenie wszystkich klauzul, ktöre s^ semantyczn^ konse-



kwencj% danego zbioru klauzul, pozwala natomiast na stwierdzanie niespelnialnosci 
dowolnego zbioru klauzul. Ograniczonosc uzywanego poj?cia zupelnosci jest re- 
kompensowana wi?ksz^_ efektywnosci^ obliczeniow^ algorytmu badania spetnialno- 
sci zbioru klauzul w stosunku do algorytmu badania tautologii opartego na rachunku 
sekwentöw Gentzena.

12.6. Klauzule Horna w programowaniu logicznymj

Zasada rezolucji ma szczegölne zastosowanie wtedy, gdy formuly przedstawione 
w postaci zbioru klauzul Homa.

Definicja 12.9
Klauzul? nazywa si? klauzulq Horna, gdy zawiera co najwyzej jeden literal pozy- 
tywny.

W dalszej cz?sci rozdzialu pozytywne literaly b?d^ oznaczane symbolami: Ait Aq......
a literaly negatywne b?d^_ jawnie poprzedzane symbolem negacji: —iA\, —iA2, ... Klau- 
zula Homa ma zatem postac

A V —,Ai V ... V -1 An

gdzie: Ajest literalem opcjonalnym oraz neNat.

Klauzule Homa s .̂ podstaw^ programowania w logice. Program logiczny jest zbiorem 
klauzul Homa {x], ..., Kn)  maj^cych literal pozytywny. Obliczenie programu polega 
na udzielaniu odpowiedzi na pytanie: czy dana formula w postaci koniunkcji literalöw 
Ai a  . . .  a  A„ jest konsekwencj^ semantyczn^ klauzul stanowiqcych tresc programu, 
czyli czy {x i,..., /c„} 1= A\ a  ... a  A„?

Udzielenie odpowiedzi na zadane pytanie sprowadza si? do zbadania spelnialnosci 
zbiom formul {x j,..., Kn } u  {—i(A] a  ... a  Ah)}, czyli zbiom klauzul

{xj,..., Xi} u  {-,Ai v  ... v-,A„}.

W programowaniu w logice dla klauzul Homa uzywa si? specyficznej notacji. Wynika 
ona z nastqnij^cych röwnowaznosci semantycznych:

A V —1A1 V ... V —i An = A V —i(Ai A  . . .  A  An) = (Ai A ... A Ai) ^  A

Ostatni^implikacj? zapisuje si? w postaci odwroconej

A ^  A i,..., A„

z zast^pieniem przecinkami symboli koniunkcji. Szczegölne postaci klauzuli Homa, 
zapisywane w przedstawionej konwencji, majq_ w programowaniu logicznym specy- 
ficzne nazwy:



A <= A\, ..., A„ -  pelna postac klauzuli jest nazywana regulq,
A<= -  klauzula bez literalöw negatywnych jest nazywana faktem,
<= Ä \ , , A,i -  klauzula bez literalu pozytywnego - zanegowanepytanie,
□  -  klauzula pusta -  sprzecznosc.

Klauzule-fakty i klauzule-reguly, jako klauzule zawieraj^ce literaly pozytywne, sta- 
nowi^ tresc programu logicznego. Zbiör tych klauzul okresla siQ jako wiedzy, ktör^ 
dysponuje program. Na podstawie posiadanej wiedzy program moze udzielac odpo- 
wiedzi na kierowane do niego pytania.

W nowej konwencji zapisu regula rezolucji dla rachunku kwantyfikatoröw przyjmuje 
postac

...gdzi e<7 = NOU(A.A') d l a * , /> 0
N— A>0"9 Ajö",

Wyznaczenie rezolwenty klauzul:
<= A, Au A„

K
sprowadza siq do znalezienia najbardziej ogölnego unifikatora crdla literalöw A oraz 
A', a nastqpnie do tekstowego zastqpienia literalu A w pierwszej z klauzul, przez praw^ 
stronQ drugiej z klauzul, ukonkretnion^ podstawieniem a, i ukonkretnienie pozosta- 
lychjej literalöw, röwniez podstawieniem <x.

Wprowadzone pojqcia i oznaczenia pozwalaj^ na przedstawienie prostych programöw 
logicznych.

Przyklad 12.17___________________________________________________________
 ̂ Tresö prostego programu zlozonego tylko z faktöw przedstawia siq nastQpuj^co: ^

(1) kocha(EWA, JAN) <t=
(2) kocha(EWA, JACEK) <=
(3) kocha(JAN, KASIA) «=

Kazdy z faktöw sklada si$ z dwuargumentowego predykatu kocha. Argumentami 
faktöw s^ stale reprezentowane napisami JAN, EWA, JACEK, KASIA.
Faktom tym mozna przypisywac pewn^ interpretacjs, na przyklad kocha{Aß) 
mozna rozumiec, ze pewien obiekt (osoba), reprezentowana przez stal^zl, „kocha” 
inny obiekt (osobo), reprezentowana przez stala B. Nalezy zwröcic uwagq, ze zwrot 
,^4 kocha B” nalezy do dziedziny interpretacji.
W przypadku pytania:

Czy prawd^jest, ze kocha(JAN, KASIA)? 
program, na podstawie posiadanej wiedzy, odpowie oczywiscie tak.



Odpowiedz wynika ze stwierdzenia niespelnialnosci zbioru ztozonego z klauzul 
stanowiqcych tresc programu i klauzuli

(4) <= kocha(JAN, KASIA)
stanowi^cej negacjQ pytania. Na postawie reguly rezolucji, z klauzul (3) i (4) wyni­
ka bowiem rezolwenta pusta

<= kocha(JAN, KASIA) kocha(JAN, KASIA) <=_

Na pytanie natomiast:
Czy prawdqjest, ze kocha(KASIA, JAN)?

ten sam program da oczywiscie odpowiedz negatywnq.. Wynika to z tego, ze ze 
zbioru zawieraj^cego klauzule (1), (2), (3) oraz klauzul^ (5) postaci

(5) <= kocha(JAN, KASIA)
nie daje siQ wyprowadzic zadnej nowej klauzuli, a zbiör ten nie zawiera klauzuli 

| Pustej._____________________________________________________________  |

Nalezy zwrocic uwag$ na sens negatywnej odpowiedzi udzielanej przez program. 
Mechanizm odpowiedzi opiera si$ na tak zwanym zalozeniu o zamkniqtosci swiata. 
Oznacza to, ze program przyjmuje za falszywe wszystko to, co nie da siq udowodnic 
na gruncie posiadanej przez niego wiedzy. Odpowiedz negatywnq. nalezy scisle rozu- 
miec nastQpujXco: na gruncie posiadanej wiedzy nie daje si? stwierdzic, ze zdanie 
stanowiqce pytanie jest logiczn^ konsekwencj^ wiedzy posiadanej przez program.

Przyklad 12.18
 ̂ Niech program zlozony z faktöw i jednej reguly przedstawia siq nastQpuj^co: ^

(1) kocha(EWA, JAN) <=
(2) kocha(EWA, JACEK) <=
(3) kocha(JAN, KASIA) <=
(4) kocha(x, y) <= kocha(y, x)

W odpowiedzi na pytanie:
Czy prawd^jest, ze kocha{KASIA, JAN)? 

program dolqczy do swojej tresci klauzulq stanowi^c£(_ negacj q pytania:
(5) <= kocha(KASIA, JAN) 

i moze podj^c obliczenie:
(6) <= kocha(JAN, KASIA) z (4), (5), dla <r= [x : := KASIA, y : := JAN]
(?) □  z (3), (6)

co daje podstawQ do odpowiedzi tak.



Pytania, juz w postaci zanegowanej, mog^ miec postac ogölniejsz^, na przyklad:
(5a) <= kocha(KASIA, z)

(5b) <= kocha(z, JAN)

Odpowiedz na takie pytania nie sprowadza siq tylko do stwierdzenia tak albo nie. 
Polega ona na wskazaniu tych wszystkich obiektöw, reprezentowanych przez 
zmienn^z, dla ktörych pytanie b^dzie prawdziwe.

W celu udzielenia odpowiedzi na pierwsze z tych pytan obliczenia programu moget 
byc nastqmj^ce:

(6a) <= kocha(z, KASIA) z (4), (5a), dla [x ::= KASIA, y ::= z]
(7a) □  z (3), (6a), dla [z : ~  JAN]

Obliczenie konczy si$ wygenerowaniem klauzuli pustej, przy ustalonym warto- 
sciowaniu zmiennej z. Informacja zawarta w ostatnim unifikatorze jest podstaw^ 
do odpowiedzi, wartosc przypisywana zmiennej z wskazuje na poszukiwany 
obiekt. Odpowiedzi^na pytanie b^dzie wiqc zbior jednoelementowy {JAN}.

Odpowiedzi na pytanie (5b) mozna udzielic na podstawie dwöch röznych obliczen: 
(6b) □  z (1), (5a), dla [z : := EWA]

oraz
(6b') <= kocha(JAN, z) z (4), (5b), dla [x ::= z]
(7b) □  z (3), (5a), dla [z : := KASIA]

Obliczenia prowadz^ do wskazania dwöch röznych obiektöw, dlatego odpowiedzi^ 
I na pytanie jest zbiör dwuelementowy {EWA, KASIA}.________________________ I

Cwiczenia

1. Nastqpujqce formuly sprowadzic do postaci skolemowskiej:
a) 3y • (y < 1)
b) Vx • 3y •  (x <y)
c) Vx • Vy • 3z • ((x <y) => (x < z )  a  (z <y))

2. Pokazaö przyklad formuly, dla ktörej odpowiednik w postaci skolemowskiej nie jest 
jej röwnowazny semantycznie.

3. Sprawdzic, ktöre z podanych nizej zbioröw klauzul s^zbiorami spelnialnymi:
a) {a v—i b ,a v c ,b  a  - i c }

b) {—iö —i b, b v  —ic, b, a}
c) {a v  b, a, —>b, —\a v  c}



4. Stosujqc metodQ rezolucji, zbadac spelnialnosc nizej podanych formul:
a )  ( p v ? )  <=>(nPA-igr)
b) p v (q vr )< ^ > (p vq )v r
c) (a=> b) a  (—16 => —a) => a

5. Wyznaczyc najbardziej ogolny unifikator dla formul:
a)  p(y, 1) p(x, 2)
b) q(x, y) q(y,x)
c )p (x ,y) q(z,y)
d) p(x,f(x)) p iy j iy j )
e) r{h(x, y )) ,f(  z)) r(h(g(x), y),f(J{x)j)
gdzie p, q, r symbolami predykatöw,/, g, h -  symbolami funkcji, x, y, z  -  sym- 
bolami zmiennych indywiduowych.

6. Dany jest zbiör klauzul:
(1) samochödjx) <= pojazd(x), ma_4_kola(x)
(2) jezdzi(x) <= samochöd(x)
(3) pojctzd(x) <= polonez(x)
(4) ma_4_kola(x) <= polonez(x)
(5) <= polonez(WCL_2222)
Metod^ rezolucji znajdz odpowiedz na pytanie czy jezdzi(W  CL_2222).

7. Zagadnienia przedstawione w nizej podanej postaci sprowadzid do programu lo- 
gicznego. Sprawdzic, czy przedstawione wnioski s^poprawne.
a) Wszyscy ludzie sq smiertelni.

Sokrates jest czlowiekiem.
Zatem: Sokrates jest smiertelny.

b) Wszyscy wykladowcy sq zdecydowarti.
Kazdy kto jest zdecydowany i inteligentny swiadczy dobre uslugi.
Klara jest inteligentnym wykladowcq.
Zatem: Klara swietnie wyklada.



13. Zagadnienia uzupelniaj^ce

13.1. Wstfp

Kazdy sformalizowany System dedukcyjny (system dowodzenia) jest okreslony jako 
para <A, R>, gdzie: A jest zbiorem aksjomatöw, R -  zbiorem regul dedukcyjnych (re­
gul wnioskowania). Wyröznia si$ dwa rodzaje systemöw dedukcyjnych logiki: syste- 
my aksjomatyczne i systemy dedukcji naturalnej. Zasadnicz^ cech^ systemöw deduk­
cji naturalnej jest to, ze maj^dwa rodzaje regul wnioskowania: reguly wprowadzania 
i reguly eliminacji spöjniköw logicznych. Rodowöd systemöw aksjomatycznych 
si$ga konca XIX wieku, a systemy dedukcji naturalnej powstaly w latach trzydzie- 
stych XX wieku -  ich inicjatorami byli Gentzen i Jaskowski22.

Do systemöw aksjomatycznych zalicza siq miqdzy innymi systemy Hilberta23, systemy 
tablic analitycznych, najpowszechniej zas stosowany System dedukcji naturalnej po- 
chodzi od Gentzena. W tym rozdziale przedstawiono w zarysie System Hilberta, Sys­
tem dedukcji naturalnej Gentzena oraz metod? tablic analitycznych.

Systemy dowodzenia Hilberta uznaje si$ za tradycyjne. Majq. one zaröwno znaczenie 
historyczne, jak i powszechne zastosowanie w praktyce matematycznej. Na pocz^tku 
XX wieku Hilbert zainicjowal w zakresie podstaw matematyki kierunek okreslany 
jako formalizm. Formalizm skupial siq na poszukiwaniu systemu, dziqki zastosowaniu 
ktörego daloby siq, w skonczonym postQpowaniu, udowodnic dowolne twierdzenia 
matematyki. Gödel24, w latach trzydziestych XX wieku, zakonczyl te poszukiwania, 
pokazuj^c, ze budowa takiego systemu nie jest mozliwa. Systemy dowodzenia Hilber­
ta pozostaly jednak uzyteczne do dzisiaj.

System Hilberta byl w zasadzie pierwszym formalnym systemem aksjomatyzacji. Jest 
to System uniwersalny, gdyz znajduje zastosowanie nie tylko w logice klasycznej, ale 
takze w logikach nieklasycznych. W odröznieniu od poprzednio omawianych syste­
möw dowodzenia, ktöre opieraly si? na dowodzeniu nie wprost, dowodzenie w syste- 
mach Hilberta polega na konstrukcji dowodöw wprost.

22 Stanislaw Jaskowski (1906-1965).
23 David Hilbert (1862-1943).
24 Kurt Gödel (1906-1978).



Gentzen opracowal dwie rözne metody dedukcji, kazdq w dwöch wariantach -  jeden 
dla logiki klasycznej i drugi dla logiki intuicjonistycznej. Jedna z tych metod to omö- 
wiony wczesniej rachunek sekwentöw, a druga to metoda dedukcji naturalnej. Ponizej 
omawia sie System dedukcji naturalnej tylko dla logiki klasycznej.

System dedukcji naturalnej dla rachunku zdan przypomina System dowodzenia dla 
rachunku zdan oparty na rachunku sekwencji. System dedukcji naturalnej ma te same 
reguly eliminacji spöjniköw logicznych. W systemie sqponadto reguly wprowadzania 
spöjniköw logicznych. Specyficznq wlasciwosciq systemu jest to, ze w regulach mogq 
wystQpowac wyröznione zdania, ktöre traktuje sie jako zalozenia (hipotezy robocze). 
Zalozenia takie sq przydatne do wyprowadzania pewnych wniosköw, po czym -  po 
wyprowadzeniu takich wniosköw -  z zalozen tych mozna zrezygnowac. Oznacza to, 
ze wyprowadzone wnioski sq shiszne, niezaleznie od poczynionych poczqtkowo zalo­
zen. Ten sposöb postqpowania jest czesto stosowany w praktyce dowodowej i stqd 
bierze sie termin dedukcji naturalnej.

Metoda tablic analitycznych jest pewnego rodzaju odpowiednikiem metody rezolucji. 
Glöwne röznice sprowadzajq sie do badania formul zapisywanych w dysjunkcyjnej 
postaci normalnej.

13.2. Systemy dowodzenia Hilberta
Przedstawiany ponizej System Hilberta odnosi sie tylko do klasycznego rachunku zdan 
i rachunku kwantyfikatoröw.

System dowodzenia Hilberta H  sklada sie z dwöch elementöw: zbioru aksjomatöw 
oraz zbioru regul inferencji (lub wnioskowania), czyli zasad tekstowej transformacji 
jednych formul w inne. Na podstawie pewnych formul reguly wyprowadzajq nowe 
formuly. Möwi siQ, ze na podstawie regul pewne formuly wynikajqz innych.

Definicja 13.1
Dowodem w systemie H  nazywa sie skonczony ci^g formul Oi, ..., taki, ze kazda 
z formul jest albo aksjomatem, albo wynika z poprzednich formul w wyniku zastoso- 
wania jednej z regul wnioskowania. Formuly a„ nazywa sie twierdzeniem w systemie H.

Definicja 13.2
Derywacjq ze zbioru formul 0  w systemie H  nazywa sie skonczony ciqg formul 
Oj,..., cc„ taki, ze kazda z formul jest albo aksjomatem, albo jest jednqz formul zbio­
ru 0, albo wynika z poprzednich formul po zastosowaniu jednej z regul wnioskowa­
nia. Formule nazywa sie konsekwencjq skladniowq ze zbioru <Pw systemie H.

Fakt, ze formula a  jest konsekwencjq skladniowq ze zbioru formul 0  w systemie H, 
zapisuje sie w postaci

0  \-H a



Zamiast 0  l--H cc pisze siq l- H a, co oznacza, ze orjest twierdzeniem. Symbol I- jest 
nazywany symbolem konsekwencji skladniowej.

Dia klasycznego rachunku zdan, opartego na funkcjonalnie zupelnym zbiorze spöj- 
niköw logicznych zawierajqcym negacjQ -i, implikacjs => i stale logiczne false 
i true, przykladowy System Hilberta sklada siQ z nastQpuj^cych schematow aksjo- 
matöw:

Schematy aksjomatöw

1. a=> (ß  => et) -  prawo symplifikaeji,
2. (or=> (/? => y)) => ((a=> ß ) => (a=> y)) -  prawo Fregego,
3. false => a
4. or=>true
5. -i-ia=> a
6. or=> ( - iöt=> ß )
7. (a  a  ß)=> a
8. (öTA/?)=>/?
9. (a=> y)=>((ß=> y)= > (a v  ß=> y))

Schemat aksjomatu oznacza faktycznie nieskonezony zbiör formul, ktöre rözni^ siq od 
formuly wystqpujXcej w schemacie aksjomatu tym, ze kazde wyst^pienie symbolu a, 
ß, y  moze byd zast^pione dowoln^ formuly. Symbole (X, ß, y  ŝ _ wi^c symbolami po- 
mocniczymi, reprezentuj^cymi dowolne formuly.

Jedyn% regul^ wnioskowania j est regula odrywania (modus ponens)

a,a=> ß
ß

Sens reguty jest nastqnyXcy: jezeli w trakeie pewnej derywaeji wyprowadzono formu­
ly ororaz a=> ß, to niezaleznie od interpretaeji, jakq. siQ przypisuje formulom aroraz 
ß, dopuszczalnym wnioskiem jest ß.

Czasem System Hilberta przedstawia siq inaczej. Zamiast schematow aksjomatöw 
wprowadza siq aksjomaty i dodatkow^ regulq podstawienia (zastqpienia). Regula 
podstawienia pozwala na zasteipienie zmiennych zdaniowych wystQpuj^cych w formu­
le przez inne formuly. Formalnie regula podstawienia ma postac

a
o{a ::= ß]

gdzie: a, ß  dowolnymi formulami, a a jest zmiennq. zdaniow^. Zapis a[a ß \ 
oznacza formuly, ktöra powstaje z formuly a  przez tekstowe zast^pienie kazdego wy- 
st^pienia zmiennej a przez formuly ß.



Przyklad 13.1
Formula a => a jest twierdzeniem. Dowodem dla tej formuly jest eisig formul:

(1) (a => ((a => ä) => a)) => ((a => (a => a)) => (a=> a))

-  aksjomat 2 z [a  ::= a, y  ::= a, ß  ::=a=> ä\

d) -  aksjomat 1 z [a ::= a ,ß  ::= a=> a]

(a=> a) -  regula odrywania zastosowana do (1), (2)

-  aksjomat lz  [a  ::= a, ß  ::= a]

-  regula odrywania zastosowana do (3), (4)

(2) (a => ((a => a)

(3) (a => (a => a))

(4) a => (a => a)

(5) a => a

Przyklad wskazuje na ucisyzliwosd w prowadzeniu dowodöw dla bardziej zlozonych 
formul. Ten przyklad nie nasuwa ponadto wskazöwek dotycz^cych taktyki prowadze- 
nia dowodöw. W stosunku do wczesniej przedstawionych systemöw dowodzenia, 
System Hilberta jest trudniej algorytmizowalny.

Chociaz System Hilberta jest uci^zliwy w stosowaniu do logiki klasycznej, to czQsto 
jest on uzywany w logikach nieklasycznych, gdy zawodz^ inne systemy. Ponizej 
przedstawia siQ zarys algorytmu postQpowania przy dowodzeniu formul z zastosowa- 
niem systemu Hilberta H  =def <A, R>, zlozonego ze zbioru aksjomatöw A =def {Ah ..., A„} 
i zbioru regul R =def {i?,,..., R,,,}.

Algorytm automatycznego wnioskowania w systemie dowodzenia Hilberta H  

Dane: formula a.
Wynik: odpowiedz tak, gdy a  jest twierdzeniem w systemie Hilberta, oraz nie 

w przypadku przeciwnym.
Procedura:

1. Niech 0  bqdzie zmienn^ reprezentuj^c^ zbiör formul, a pocz^tkowa zawar-
tosc zbioru 0 =  A.

2. while arg d>oraz -iarg 0  
do

stosuj reguly ze zbioru R, przyjmuj^c za ich przeslanki formuly ze zbioru 
0 , i rozszerzaj zbiör 0  o nowo otrzymane wnioski 

od
3. Jezeli a & 0 ,  to odpowiedz tak, jezeli -iare 0 - odpowiedz nie.

Przedstawione dalej twierdzenie o dedukeji, udowodnione niezaleznie przez Tarskiego 
i Herbranda, ma znaczenie praktyczne, gdyz jego dowöd pokazuje, jak derywaejq 
{ar} \~n ß  mozna, w sposöb konstruktywny, przeksztalciö w dowöd twierdzenia a=> ß. 
Poniewaz na ogöl latwiej jest znalezc derywacjQ niz dowöd, twierdzenie pozwala na 
oszczqdnosc wysilku.



Twierdzenie 13.1 (Twierdzenie o dedukcji)
W dowolnym systemie H, zawieraj^cym przynajmniej schematy aksjomatöw 1, 2 
oraz regulq odrywania, jako jedynst regul$ wnioskowania, derywacja

d>u {or} \-Hß
zachodzi wtedy i tylko wtedy, gdy zachodzi derywacja 

0 \ - H(a=>ß).

Dowöd
Jezeli zachodzi 0 \ - H(a=> ß ), to oczywiscie zachodzi <Pu {or} \~h ß- 

Wynikanie w przeciwnym kierunku jest trudniejsze do pokazania. Niech 

<Pu {ör} \-Hß
czyli istnieje pewien ci^g formul

fl.-.X (Dt)
ktöry jest derywacjaß z c  zbioru <Pu {or}. Formula y„ dla i = 1 , n, jest demen­
tem zbioru {or} lub wynika z formul poprzedzajqcych w rezultacie zastosowa- 
nia reguly odrywania, dodatkowo y„ = ß- Ciqg (D|) mozna przeksztalcid w eisig sta- 
nowiqcy derywacja a=> ß z e  zbioru <P. Najpierw kazd^ formulq z (Di) poprzedza 
si? prefiksem a=>, tworz^c ci^g

a=> ..., ar=> y„ (D2)

Ci^g ten konczy siQ formuly a=> ß, gdyz & ß. Ciqg (D2) nie jest jeszcze prawi- 
dlowq. derywacja. Przeksztalca siq go, dolqczajqc dodatkowe formuly zgodnie z na- 
stQpuj^cymi zasadami:

Jezeli Yi jest aksjomatem lub elementem zbioru 0 , to przed or=> umieszcza si$ 
dwie dodatkowe formuly

y„ Y=>(a=> yd

Jezeli y  jest formuly a, to przed a  => ör umieszcza siq ci^g formul stanowisicych 
dowod dla formuly a=> or(zob. przyklad 12.1).

Jezeli Yi w ci^gu (Di) pojawia si$ jako wniosek z zastosowania reguly odrywania, 
to oznacza, ze istnieje takie Yj> % dla j ,  k < i, przy czym ft = Yj => Y,- W ciqgu (D2) 
elementom tym odpowiadajst formuly: or=> Yi oraz ör=> ft (czyli a=> (%=> Yd)- 
Przed formuly a=> Yj wstawia siq formulq

(flr=>-(»=> Jf))=>(«=> Yd 
ktöra jest aksjomatem, oraz formuly 

(or=> y) => (or=> Yd



ktöra wynika z zastosowania reguly odrywania do formul poprzedzajzicych. Te-
raz röwniez formula a=> y  wynika z zastosowania reguly odrywania do formul 
poprzedzaj ̂ cych. Latwo sprawdzic, ze tak zmodyfikowany ci£jg (Z)2) stanowi de- 
rywacjQ formuly a  => ß  ze zbioru <P. m

Przyklad 13.2____________________________________________________________
 ̂ Formula (ar => (/? => fl) => (ß  => (a  => y) jest twierdzeniem. Mozna to pokazacj 

korzystajqc z twierdzenia o dedukcji. Najpierw nalezy zauwazyc, ze

{a=>(ß=> y),ß , a} \-H y
co wynika z nastqpujqcej derywacji:

(1) oc=
(2 ) or
0 ) ß  = 
W ß  
(5) y

(/?=> y) -  element zbioru {a=> (ß=> y), ß, ce}
-  element zbioru {a=> (ß=> y), ß, a}
-  reguta odrywania zastosowana do (1), (2)
-  element zbioru {a=> (ß=> y), ß, a}
-  regula odrywania zastosowana do (3), (4)

Z twierdzenia o dedukcji wynika, ze

{a=>(ß=> Y),ß} \-H oc=> y
oraz ponownie

{a=> (ß=> y)} \-Hß=> (a=> y)
i ostatecznie

, & (»=>(/?=>  z)) =>(/?=>(«=> Z)

Systemöw dowodzenia Hilberta dla rachunku zdan jest wiele. Przedstawiony nizej 
System rözni siq od systemu przedstawionego poprzednio tylko zbiorem aksjomatöw. 
Wynika to z tego, ze aksjomaty zawieraj^ tylko negacjQ i implikacjQ. Przypomina siQ, 
ze rachunek zdan wykorzystuj^cy tylko te spöjniki jest funkcjonalnie zupelny. Pozo- 
staie spojniki mog^ byc definiowane za pomoc^ spöjniköw podstawowych. W defini- 
cjach tych stosuje si$ wczesniej wprowadzone pojQcie röwnowaznosci semantycznej.

Aksjomaty

1. (a=> (/?=> ctf)
2. (a=> (ß=> y)) => ((«=> ß )  => (a=> z))
3. (-!«=> ( a = >  ß ) )

4. ((— => ci)=> a)

prawo symplifikacji, 
prawo Fregego, 
prawo Dunsa Scotusa, 
prawo Claviusa.

W razie potrzeby uzycia dodatkowych spöjniköw lub stalych logicznych, wprowadza 
siq ich definicje jako zlozenie implikacji i negacji. Na przyklad:



Definicje

1. a a ^ = def-.(a= >  - .ß )
2. a v  ß=äet(->a^> ß )
3. (a<=>$ ~def (a= > ß)A (ß= >  d)
4. true =def oc=> a
5 .  false = d e f — i(ot=> d)

Definicje pozwalaj^ na tekstowe zast^pienie w dowolnej formule dowolnej jej pod- 
formuly, röwnowaznej tekstowo z jedn^ ze stron definicji, przez drug^ ze stron tej 
samej definicji.

System Hilberta dla rachunku kwantyfikatoröw ma wszystkie aksjomaty i reguly sys- 
temu dla rachunku zdan oraz dodatkowo jeden schemat aksjomatu i jedn^regulq:

Schemat aksjomatu

10. (Vx • a)=> a[x ::= /]

Regula uogölniania

——— - — pod warunkiem, ze x<£ FV(a) 
a=>Vx»ß

Szczegolna postad tej reguly jest nastqpuj^ca:

ß
Vx«£

Przyklad 13.3
 ̂ Rozpatruje siq zarys dowodu dla formufy ^

(Vx • (p(x) a  q(x)j) => (Vx • p(x)) (1)

Przyjmuj^c, ze t = x, na podstawie schematu aksjomatu 10, zachodzi implikacja 
(Vx • (p(x) a  ?(x))) => (p(x) a  q(xj) (2)

Latwo sprawdzid, ze tautologiqjest formula
(P(x) a  q{x)) =>p(x) (3)

Z implikacji (2) i implikacji (3), na podstawie wnioskowania lancuchowego, wyni- 
ka formula

(Vx • (p(x) a  q(x))) => p(x) (4)

st^d i z reguly uogölniania wynika, ze
| (Vx • (p(x) a  q(x))) => (Vx • p(x)) I



W systemie Hilberta dla rachunku kwantyfikatoröw zachodzi twierdzenie o dedukcji, 
tak jak dla systemu Hilberta dla rachunku zdan.
System Hilberta H  dla rachunku kwantyfikatoröw jest semantycznie niesprzeczny 
i semantycznie zupelny, tzn. dla dowolnego zbioru formul 0  zachodzi twierdzenie:

Twierdzenie 13.2
01~h cc wtedy i tylko wtedy, gdy 0$= a.

13.3. System dedukcji naturalnej Gentzena
Rozpatruje si$ rachunek zdan oparty na zbiorze spojniköw logicznych, zawierajqcym 
stale true, false, negacjQ - i ,  koniunkcj? a  i implikacjq =>.

Zestaw regul wprowadzania (oznaczanych symbolem 7) oraz eliminacji (oznaczanych 
symbolem E) jest nastQpuj^cy:

(true I)
true

M

false
-i a

( a  D a ,ß
a A ß

(false E)
a

[-iöt]

( a  E)

false
a

a / \ß
a

(A  E)

a,-M
false

a A ß
~ ß ~

( ^ 1 )  (=> E )a,a=i> ^
ß . ’ ß

a=> ß

Reguly zwiqzane ze stalymi logicznymi s^ specyficzne. Regula wprowadzania stalej 
true (true I) nie ma przeslanek, nie ma tez reguly eliminacji tej stalej. Regula elimi­
nacji false (false E ) pozwala na wyprowadzenie z przeslanki false dowolnego wnio- 
sku, nie ma natomiast reguly wprowadzania dla false.

Dla kbniunkcji reguly wprowadzania ( a  I) oraz eliminacji ( a  E) s ^  oczywiste: jezeli 
przeslankami s^ formuly a  oraz ß, to mozna wnioskowaö, ze cc a  ß, oraz odwrotnie -  
z przeslanki a  a  ß  mozna wnioskowaö, ze or(lub, ze ß).

Regula eliminacji implikacji (=> E) jest poznan^ wczeSniej reguly odrywania.



Pozostale regufy wymagaj^ dodatkowych wyjasnien.

Pierwsz^ z nich jest regula wprowadzenia negacji (-1 /). Pozwala ona na wprowadzenie 
symbolu negacji przed dowoln^ formul? orna podstawie przeslanki, ktörqjest wniosko- 
wanie, ze z zalozenia o prawdziwosci orwynika false. Jest ona odzwierciedleniem dowo- 
dzenia nie wprost przez sprowadzenie do sprzecznoSci. Przeslanka reguly, maj^ca postac

[«]

false

oznacza pewne wnioskowanie (oznaczone symbolicznie pionowym zestawem trzech 
kropek :), kt6re na podstawie zalozenia a  prowadzi do wniosku false, czyli do 
sprzecznosci. Jezeli na podstawie przyj?tego zalozenia, ze spelnione jest a, otrzymuje 
si? sprzecznosc -  formul? false, to wnioskiem jest, ze spelnione jest —iOr. Wniosek ten 
jest przy tym niezalezny od pocz^tkowo przyj?tego zalozenia. Oznacza to, ze od mo- 
mentu przyj?cia wniosku -1 a  zalozenie orstaje si? juz nieprzydatne do dalszych wnio- 
skowan i mozna je  usun^c, co symbolicznie oznacza si? przez zamkni?cie zalozenia 
w kwadratowe nawiasy [oi[.

Podobny komentarz odnosi si? do reguly (-1 E): jezeli przyj?te zalozenie -iOr prowadzi 
do sprzecznosci, to wnioskiem, jaki nalezy wyprowadzid, jest a.

Druga z regul eliminacji negacji (—1 E) jest oczywista: jezeli przeslankami wniosko- 
wania s^ dowolna formula i jej negacja, to wnioskiem jest stala false oznaczajqca 
sprzecznosc.

W przestance reguly wprowadzania implikacji (=> I) zalozeniem jest formula a. Jezeli 
si? pokaze, ze z tego zalozenia daje si? wyprowadzic formut? ß, to oznacza, ze nieza- 
leznie od tego zalozenia zachodzi implikacja a=> ß.

Ponizej przedstawia si? przyklady zastosowania metody dedukcji naturalnej w dowodze- 
niu prostych formul. Podobnie jak w przypadku metody sekwentöw, dowod (albo ogölniej 
derywacja) ma Struktur? drzewa: wierzcholki drzewa s£t etykietowane formulami, a luki 
-  przejscia pomi?dzy wierzcholkami -  odpowiadaj ̂  zastosowaniu odpowiednich regul.

Przyklad 13.4
 ̂ Ponizszej przedstawia si? drzewa dowodu dla trzech prostych formul. Pierwsza! 

formula ma postac: a  a  ß=> ß  a  a.

[a A ^ l i ( .  >£ -) [ Q rA ^ l i
ß a

(A  E)

ß / \  a
a A ß = > ß * a

( a / )

(=>/,)



W dowodzie tym korzysta si$ dwukrotnie tylko z jednego, tego samego zalozenia, 
ze a  a  ß. Zalozenia numerowane. Po prawej stronie kazdego przejscia podaje 
si$ symbol wykorzystywanej reguly. Dodatkowo, w tych przypadkach, gdy wyko- 
rzystanie reguly wiqze si$ z wykorzystaniem i usuniqciem wprowadzonego zaloze- 

I nia, podaje siq numer tego zalozenia.__________ ____________________________ I

Przyklad 13.5____________________________________________________________
 ̂ Kolejny dowöd dotyczy formuly a=> Tym razem wykorzystuje siq dwa za­

lozenia: ororaz —>a.

[ah
false
-I-I a

a=>-r->a

(->£)
(M ,)

( ^ / 2)
J

Przyklad 13.6____________________________________________________________
 ̂ Ostatni przyklad, najbardziej zlozony, dotyczy formuly: —i(ar <=> —■ o). W dowodziJ 

przyjmuje siq, ze röwnowaznosci przedstawia siQ jako koniunkcje implikacji, tzn. 
formula or<=> ß  jest skröcon^ form^ zapisu (a  => ß )  a  (ß  => a), stqd bior^ si$ wy- 
prowadzenia:

q <=>/? a <=> ß
a=> ß ß=>a

Ze wzglqdu na wymiary wywodu, pomini^to komentarze dotyczqce stosowanych 
regul, pozostawiaj^c tylko numeracj? zalozen i wskazania tych miejsc, w ktörych 
zalozenia zostaly wykorzystane.

[a <=» -i<af]3 
M i a  => ->a

-iCt
(=>E) [a].

false
—\Ct -M i)

[a <=> —»of]3 
-,a=>a

[a <=> —icr] 
[ah or=>-ior

-■or_____
_______ false

[a]2

J3L M 2)
false

- i ( a  «=> -io r) M >)

Przedstawione przyklady pozwalaj^ na latwiejsze zrozumienie kolejnych poj$c. 
Pierwszym z nich jest pojqcie derywacji. Derywacja jest drzewem, ktorego wierz- 
cholki s^ etykietowane formulami. Dalej takie drzewo b^dzie oznaczane symbo- 
lem D.



Definicja 13.3
Zbiorem derywacji nazywa siq zbiör DER, ktöry jest zdefiniowany rekursywnie 
w sposöb nastQpuj^cy:

(1) Drzewo zlozone z jednego wierzcholka etykietowanego formulq. öfjest derywacji

D D'
D D ' ec ß

(2) Jezeli g DER, e  DER, to - — tL e  DER
a  ß  a / \ ß

D D

(3) Jezeli °  e DER, to DER oraz ——-^-g DER
a  A ß  a  ß

(4) Jezeli
a
D g DER, to

<t>

w
D

ß  £ DER 
a=> ß

D D '

(5) Jezeli D  g DER, °  g DERIV, to a  °C~> ^  e DER 
a  a=> ß  ß

D
D folcp

(6) Jezeli g DER, to g DER 
false a

->a M
D

(7) Jezeli D g DER, to g DER
false

false
a

Formula, ktöra jest korzeniem drzewa derywacji, nazywa si$ wnioskiem. Liscmi drze- 
wa s£t zalozenia. Zalozenia mog^. byc zamkni^te (skreslone) albo otwarte.

Definicja 13.4

Relacja 0  b G a  pomi^dzy zbiorem formul 0  oraz formul^ oc, zdefiniowana nastQ- 
puj^co: istnieje pewna derywacja, w ktörej 0  stanowi zbiör nieskreslonych zalo- 
zen, a örjest wnioskiem, nazywa siQ relacjq. derywacji.



System dedukcji naturalnej dla rachunku kwantyfikatoröw jest rozszerzeniem zbioru 
regul dla rachunku zdan o dodatkowe reguly wprowadzania i eliminacji kwantyfikato- 
ra ogölnego:

(VT) a
Vx»ar

(V E) V x » a  
a\x ::= f]

W regule (V I) wymaga siq, aby zmienna x  nie wystQpowala jako zmienna wolna 
w zadnym z zalozen, od ktörych zalezy formula a, w regule (V E) wymaga siQ nato- 
miast, aby term t byl wolny w formule orze wzglqdu na zmienn^x. Wymagania te 
istotne, gdyz -  jak pokazuj^ ponizsze przyklady — ich niespelnienie prowadzi do fal- 
szywych wniosköw, czyli narusza semantycznq. poprawnosc systemu.

Przyklad 13.7__________________________
 ̂ Rozpatruje siQ nastQpuj^ce drzewo dowodu

[ x  ~ Q] i
\fx • (x = 0)

(x = 0) => Vx • (x = 0)
Vx • ((x = 0) => Vx » (x = 0)) 

(0 = 0) => Vx • (x = 0)

(V/)

( ^ / , )
(V/)
(VE)

Powodem absurdalnego wniosku jest niepoprawne zastosowanie reguly (V /).

Przyklad 13.8
Niepoprawne zastosowanie reguly (V E) prowadzi do nastQpuj^cego wywodu

[Vx • -iVy • (x = y)],
- ly y . ( x  = y)[x::= y\

I Vx • -i Vy •  (x = y) => —iVy 9 (y = y)

Kolejny przyklad jest ilustracj^ poprawnego stosowania regul wprowadzania i elimi­
nacji kwantyfikatora ogölnego.

Przyklad 13.9
 ̂ W dowodzie dwukrotnie wykorzystuje siq reguly eliminacji i wprowadzania kwan- 

tyfikatora ogölnego. Podczas eliminacji podstawienia tozsamosciowe za zmienne x, y  
zachowuj^ odpowiednie wymogi. Podobnie podczas wprowadzania kwantyfikato­
röw sq. zachowane odpowiednie wymogi, gdyz zmienne x, y  nie majq. wolnych wy- 
stcipien w wykorzystywanym zalozeniu.



[

[Vx • Vy • p(x, y)] |

Y y*l(* ..y  )[*■'•- x] 
p { x ,y ) \y :~ y ]  

V x» p (x ,y )
________ V y» V x»  p (x ,y)________
Vx • Vy •  p(x, y)  => Vy • Vx • /?(x, y)

(VE)
(VE)
(VI)
(VI)

(=>/i)
J

Zdefiniowane dla rachunku zdan pojqcie zbioru derywacji i relacji derywacji w oczy- 
wisty sposöb uogölnia si? dla rachunku kwantyfikatorow. Podobnie jak dla systemu 
Hilberta, dla dowolnego zbioru formul 0  i formuly a  zachodzi twierdzenie o seman- 
tycznej niesprzecznosci i semantycznej zupelnosci:

Twierdzenie 13.3

0  \-G arwtedy i tylko wtedy, gdy 0 \ = a.

13.4. Metoda tablic analitycznych
Metoda tablic analitycznych formalizuje dowodzenie nie wprost. Podobnie jak metoda 
rezolucji, stosuje unifikacj? termöw, inaczej natomiast jest niz w metodzie rezolucji -  
podstaw^ badania wprawdzie formuly zapisane w skolemowskiej postaci normal- 
nej, ale matryca formuly musi byc w dysjunkcyjnej postaci normalnej. Podobnie jak 
w metodzie sekwentöw Gentzena dowöd ma Struktur? drzewa, jednak z uwagi na for- 
m? zapisu möwi si? o tablicy -  tablica jest form^ zapisu drzewa, i röwniez -  jak 
w metodzie sekwentöw Gentzena -  tworzenie drzewa (tablicy) wiqze si? z eliminacj^ 
spöjniköw logicznych i kwantyfikatorow.

W celu wyjasnienia struktury tablicy analitycznej rozpatrzmy drzewo dowodu na ry- 
sunku 13.1.

V2

V3

V4

V 5 O

V l l

V , 2

Rys. 13.1. Przykladowe drzewo dowodu O v? O V10



Reprezentacj^ tego drzewajest tablica pokazana na rysunku 13.2. Zwi^zek pomi?dzy
drzewem a tablic^jest oczywisty.

• Korzen drzewa zajmuje pozycj? w komörce w najwyzszym wierszu.
• Jezeli wierzcholek ma rozgal?zienie, to komörka tablicy, ktöra znajduje si? ponizej 

kratki reprezentuj^cej ten wierzcholek, jest podzielona na tyle cz?sci, ile wierzcho­
lek ma rozgalqzien.

• Jezeli wierzcholek nie ma rozgal?zienia, to jego nastqpnik znajduje si? w tej samej 
komörce i jego symbol jest zapisany ponizej symbolu danego wierzcholka.

• Liscie drzewa znajduje si? w röznych komörkach na dole tablicy. one koncami 
galQzi drzewa, czyli sciezek prowadz^cych od korzenia do lisci.

V\

V2 v 6

V 3 V 7 V l l

V 4 Vg V 12

v 5 V9 V |0

Rys. 13.2. Struktura tablicy analitycznej 
odpowiadaj^ca drzewu z rys. 13.1

Zawartosci^ komörek tablicy formuly. Komörka w gömym wierszu jest badan^ 
formuly, a zawartoSc pozostatych komörek okresla si? kolejno, poczynaj^c od göry 
tablicy, zgodnie z odpowiednim systemem dowodzenia.

Najpierw pokazemy metod? tablic analitycznych dla rachunku zdan. Badanie, czy 
formula jest spelnialna, polega na dowodzeniu nie wprost, co oznacza, ze zaklada si?, 
iz badana formula örnie jest spelnialna i pröbuje si? to pokazac, znajduj^c takie warto- 
sciowania zmiennych zdaniowych, przy ktörych negacja formuly -iarjest prawdziwa. 
Dia formuly —lörkonstruuje si? drzewo dowodu -  tablic? analityczn^. Formula —iQrma 
byö w dysjunkcyjnej postaci normalnej, czyli w postaci

- ia=  öi v  5i v  ... v  4

gdzie ö, dla i = 1,..., n, s^koniunkcjami literalöw.

Konstrukcja tablicy analitycznej polega na stosowaniu nast?puj^cych regul eliminacji 
spöjniköw logicznych:

—i—!«■ -itrue -ifalse a  v ß  a ^ ß
a  false true a  | ß  &

ß



Regufy okreslaj^ w jaki sposöb na podstawie formuly-przeslanki, umieszczanej 
w danej komörce tablicy, okresla si$ formuly-wnioski, umieszczane w bezposrednio 
nizszych komörkach.

Trzy pierwsze reguly s^oczywiste.

Czwarta regula oznacza, ze jesli w komörce jest formula a v  ß ,  to bezposrednio pod 
ni^ znajduj^ siq dwie komörki z zawartosci^. ororaz ß .

Pi^ta regula oznacza, ze jesli w komörce jest formula a  a  ß ,  to bezposrednio pod ni^ 
znajduje siq jedna komörka, ktörej zawartosciqjest, zapisana pionowo, lista formul a  

oraz ß .

Rozpatrzmy przyklad ilustruj^cy zastosowanie tych regul.

Przyklad 13.10
 ̂ Niech badan^ formuly bqdzie nastqpuj^ca formula rachunku zdan I

—i {a v i ) ^ >  (-ia a  —i b)

Negacja tej formuly
—1( —\{a  v  b )  => (— a  —ib ) )

-  po sprowadzeniu do dysjunkcyjnej postaci normalnej -  ma postac 
—i a a  -i b a  (—i a v  —i b)

Tablica analityczna zbudowana dla tej formuly przedstawia si$ wiqc nastqmjqco:

Rys. 13.3. Tablica analityczna 
dla formuly (—<a v —. b)

Zawartosc tablicy stanowi podstawQ do stwierdzenia, czy wyjsciowa formula 
-i(a v  b) => (—ia a  —ib) jest spelnialna. W tym celu ocenia siq kazd^ gal^z tablicy. 
Gal^z tablicy reprezentuje koniunkcjq formul stanowi^cych zawartosc komörek na- 
lez^cych do gal^zi.

Gal^z tablicy uwaza si$ za zamkniqtq wtedy i tylko wtedy, gdy zawiera pewn^ for- 
mulQ wraz z jej zaprzeczeniem. Cal^ tablicy uwaza siq za zamkniqtq wtedy i tylko 
wtedy, gdy zamkni^te s^wszystkie jej galqzie.



Przykladowa tablica jest zamkniQta, gdyz zawiera dwie gal^zie, obie zamkniQte. 
Oznacza to, ze poszukiwanie wartosciowania zmiennych, dla ktörych formula 
—l ü A —i b A  (-1 a  v —>b) okazalaby siQ falszywa, prowadzi do sprzecznosci. Badana

I formula j est zatem spehiialna, j est tautologi^ rachunku zdan.__________  _____ .

Przyklad 13.11
 ̂ Niech badan^ formuly rachunku zdan b^dzie ^

( a  => b )  => ( b  => ä )

Negacja tej formuly 
->((« => b )  => ( b  => ä ) )

-  po sprowadzeniu do dysjunkcyjnej postaci normalnej -  ma postac 
(-ia  v b )  a  —ia  a  b

Tablica analityczna zbudowana dla tej formuly (rys. 13.4)

Rys. 13.4. Tablica analityczna 
dla formuly {- â v b) a  —<a a  b

nie jest zamkni^ta, gdyz otwarte obie jej galqzie, a zatem badana formula nie jest 
I spelnialna.____________________________________________________________ I

W przypadku rachunku kwantyfikatoröw z kwantyfikatorem ogölnym wymaga siq, 
aby rozwazane formuly byly w postaci skolemowskiej. Zbiör regul podanych dla ra­
chunku zdan rozszerza si§ o dwie nowe reguly. Pozwalaj^ one na wydluzanie galqzi 
i konkretyzacjq wystQpuj^cych w tablicy formul.

Pierwsza regula -  regula kwantyfikatora -  pozwala na wydluzenie gal?zi, w ktörej 
znajduje siq formula z kwantyfikatorem ogölnym \/x  • a, przez dol^czenie formuly 
postaci a[x ::= y], gdzie zmienna y  jest nie jest zwi^zana innym kwantyfikatorem 
w zadnej z formul wystQpujqcych w tej samej galqzi, co formula Vx • a. Dol^czenie 
nowej formuly symbolicznie przedstawia siQ w postaci

a[x::=y]

Stosowanie tej reguly, podobnie jak w przypadku eliminacji kwantyfikatora po lewej 
stronie sekwentu, w istocie nie eliminuje kwantyfikatora, lecz generuje nowe formuly.



Z tego powodu wprowadza siq ograniczenia na liczbi jej zastosowan przy praktycznej 
budowie tablicy. Wartosc tego ograniczenia jest podyktowana wzglqdami pragma- 
tycznymi. Dalej zaklada siq, ze ograniczenie to jest wyrazone pewn% liczb^ N. Sens 
tego ograniczenia wynika z podanego nizej algorytmu budowy tablic analitycznych. 
Podan^regulq mozna wiqc przedstawic w uogölnionej postaci:

Vx»ar

a [ x : - y N]

Wyraza ona mozliwosc generacji wielu formut z formuly Vx • OL Zmienne y\, ..., y^  
musz^ oczywiscie byc zmiennyrai, ktöre nie s^ wi^zane przez inne kwantyfikatory 
wystipuj^ce w tej samej galQzi, co formula Vx • a.

Druga regula -  regula konkretyzacji -  stwierdza, ze: jesli na danej gal^zi znajduj^ si$ 
dwa literaly komplementame CC\ i a2, ktöre daj^ siQ uzgodnic, a ich najbardziej ogölny 
unifikator NOU{(X\, a2) = er, to dopuszczalna jest zamiana kazdej formuly ß  wystqm- 
jeicej w tablicy przez jej konkretyzacji ß  o.

Algorytm automatycznego wnioskowania metod^ tablic analitycznych 
Dane: formula a.
Wynik: odpowiedz tak, gdy orjest spelnialna, oraz nie w przypadku przeciwnym. 
Procedura:

1. Negacji formuly a  sprowadz do postaci skolemowskiej (algorytm z roz- 
dziahx 12.).

2. Matryci otrzymanej formuly przedstaw w dysjunkcyjnej postaci normalnej 
(algorytm z rozdzialu 9.).

3. Poczqtkowa postac tablicy analitycznej T sklada siQ z jednej komörki, ktörej 
zawartosci^ jest ß  -  formula otrzymana w wyniku czynnosci poprzednich 
punktöw. Pocz^tkowa wartosc zmiennej pomocniczej licz^cej uzycie reguly 
kwantyfikatora n = 0.

4. while
tablica T  nie jest zamkniQta i mozna stosowaö do niej reguly eliminaeji 
spöjniköw logicznych, regulq kwantyfikatora i regulq konkretyzacji 

do
a) stosuj reguly eliminaeji spöjniköw logicznych, reguly kwantyfikatora 

az do uzyskania tablicy zamkniitej lub do chwili, gdy zmienna n nie 
przekroczy wartosci N;

b) stosuj reguly konkretyzacji, dopöki tablica T nie jest zamkniQta;
c) zwi^ksz o jeden wartosc zmiennej n; 

od



5. Jezeli zostala znaleziona tablica zamkni^ta -  odpowiedz tak.
6. Jezeli algorytm zatrzymal siq ze wzglqdu na brak mozliwosci stosowania 

regul -  odpowiedz nie.
Ponizej podaje si$ bez dowodu twierdzenie gwarantujyce poprawnosc i pelnosc algo- 
rytmu. Dyskusje na temat dowodu mozna znalezc w ksiyzce [Szalas 1992], a pelne 
formalne uzasadnienie metody tablic analitycznych -  w ksiyzce [Fitting 1990],

Twierdzenie 13.4
Przedstawiony algorytm implementuje metodq tablic analitycznych w tym sensie, ze:
• daje odpowiedz tak wtedy i tylko wtedy, gdy formuta arjest tautologiy,
• gdy formula arnie jest tautologiy, algorytm daje odpowiedz nie lub zapqtla siQ.

Rozpatrzmy przyklad zastosowania algorytmu.

Przyklad 13.12___________________________________________________________
 ̂ Dana jest formula ^

(Vx • p(x) v  q(x)) => (3x • p(x) v  Vx • q(x))

Jej negacjyjest
-i((Vx • p(x) v  q(x)) => (3x • p(x) v  Vx • q{x)))

Po przeksztalceniach, polegajycych na sprowadzeniu do przedrostkowej postaci 
normalnej, otrzymuje siq formulq

Vx • Vy • 3z • (p(x) v  q(x)) a  —p(y) a  —iq(z)

Po skolemizacji formula przyjmuje postac
Vx • Vy • (p(x) v  q(x)) a  -p (y)  a  ->q(f(x, y))

Tablica analityczna, budowana zgodnie z algorytmem, bez wykorzystania reguly 
konkretyzacji, ma postac przedstawiony na rysunku 13.5. Wiersz nr 2 uzyskano, 
stosujyc regulq kwantyfikatora, wynika z niego wiersz nr 3, po zastosowaniu regu­
ly dotyczycej koniunkcji. W wierszu nr 4 nastqpuje rozgalQzienie, ktörego podsta- 
wyjest formula zawierajyca dysjunkcjq.

Lewy galyz mozna zamknyc, stosujyc regulQ konkretyzacji z podstawieniem 
<Ti = NOU(p(x{), p(y\)), dla formulp(x\) oraz —>p(yi), ktore znajdujy si$ na tej samej 
galqzi.

ZamkniQcie prawej galqzi wymaga ponownego zastosowania reguly kwantyfikato­
ra, w celu generacji formuly (p(x2) v  q(x2)) a  ->p(y2) a  - iq ( f  (x2, y2)), znajdujycej 
siq w wierszu nr 5. Stosujyc regulq zwiyzany z koniunkcjy, otrzymuje si? dalsze 
formuly umieszczone w wierszu nr 6. Stosujyc tym razem reguly konkretyzacji dla 
formul q(x{) -  wiersz nr 4 -  oraz —iq(f(x2, y2)) -  wiersz nr 6, z podstawieniem



<h ~ NOU(q(xi), q( f  (x2, zamyka siq praw^ gal^z tablicy, i -  tym samym -
zamyka siq calq. tablicQ.

1 Vx « Vy • (p(x) v  q(x)) a  —p(y) a  ->q(J(x, y))

2 (p(,X\) V  ?(*i)) A  -npCy,) A  -,q(f(x ,, yO)

3 ~p(yi) 
->4(f(xi,yi)) 
P(xi) v  q(x,)

4 p(x 1) <?(xi)

5 (P(x2) v  q(x2)) a  -ip(y2) a  —>q(f(x2, y2))

6 ^p(yi) 
—'<](f(x2, y2)) 
p(xi) V  q(x2)

Rys. 13.5. Tablica analityczna

13.5. Wlasnosci metalogiczne rachunku kwantyflkatoröw

Logika klasyczna oparta na rachunku kwantyflkatoröw jest scharakteryzowana 
przez jqzyk o dobrze zdefiniowanej skladni i semantyce oraz przez System dowo- 
dzenia.

Systemy dowodzenia rözni^ si? od siebie doborem aksjomatöw i regul oraz wynika- 
j^cym z tego sposobem konstrukcji dowodöw twierdzen. Maj^ natomiast pewne 
wspölne wlasnosci. Przedstawione systemy dowodzenia s^ semantycznie nie- 
sprzeczne i semantycznie zupelne. Dodatkowo, co jest uznawane za szczegöln^ wta- 
sno§c logiki klasycznej, nie istnieje algorytmy dowodzenia oparte na tych syste- 
mach, ktöre gwarantowalyby, ze w skonczonej liczbie kroköw mozna rozstrzygac, 
czy dowolna formula jest, czy nie jest tautologi^. Rachunek logiki klasycznej, do- 
kladniej rachunek kwantyflkatoröw jest nierozstrzygalny, a scislej, jest czqsciowo 
nierozstrzygalny. Oznacza to, ze dla dowolnej formuly, jezeli formula jest tautolo- 
gi^, to istnieje algorytm, ktöry w skonczonej liczbie kroköw zawsze to potwierdzi, 
natomiast w przypadku przeciwnym, gdy formula nie jest tautologi^, taki algorytm 
nie istnieje. Rozstrzygalne mog^ byc natomiast pewne fragmenty rachunku logicz- 
nego, na przyklad rozstrzygalne s^ rachunek zdan, jednoargumentowy rachunek 
kwantyflkatoröw.



Jqzyk logiki pozwala na budowanie teorii elementamych (rozdzial 10.), shiz^cych do 
opisu wybranego fragmentu interesuj^cego swiata. Jqzyk teorii elementamej charakte- 
ryzuje siq przyjqciem specyficznej sygnatury jQzyka formalnego, to jest symboli funk- 
cyjnych i symboli predykatöw, oraz specyficznej interpretacji (b^dz klasy interpreta- 
cji) tych symboli. Specyfika interpretacji wyraza siq przez ustalenie zbioru formul 
spelnialnych w tej interpretacji. Wyröznione formuty nazywa siq aksjomatami specy- 
ficznymi teorii. Formuty teorii sluz^ do opisu specyficznych wlasnosci obiektöw nale- 
z^cych do wybranego fragmentu swiata. System dowodzenia pozwala natomiast na 
dowodzenie tego, czy pewne formuty wyrazaj^, czy nie wyrazaj^ wlasnosci zachodz^- 
cych w wybranym fragmencie swiata.

Okazuje siq, co pokazal Gödel, ze dostatecznie bogate teorie maj% specyficzne wtas- 
nosci, ktöre wskazuj^na ograniczenia metody aksjomatycznej. Chodzi o teorie, ktöre 
pozwalaj^ zbudowac arytmetykQ liczb naturalnych, a wi^c o prawie wszystkie nietry- 
wialne teorie maj^ce praktyczne zastosowania.

Ograniczenie nazywane niezupelnosciq teorii -  pierwsze twierdzenie Gödla -  po- 
lega na tym, ze istniej^ w takiej teorii zdania spetnione, ktöre nie s% twierdzeniami 
teorii. Inaczej: dla teorii tej klasy nie istnieje semantycznie zupetny System dowo­
dzenia.

Drugie ograniczenie odnosi siq do niesprzecznosci teorii. Niesprzecznosc oznacza, ze 
teoria nie zawiera takiej formuty a, ze er oraz -icr s^ twierdzeniami teorii. Z drugiego 
twierdzenia Gödla wynika, ze dla teorii zawieraj^cych arytmetykQ liczb naturalnych 
nie mozna podac takiego dowodu niesprzecznosci, ktöry korzystatby wyl^cznie ze 
srodköw tej teorii. Inaczej: na gründe danej teorii nie mozna podac dowodu jej nie­
sprzecznosci.

Twierdzenia Gödla maj^ znaczenie historyczne i filozoficzne. Znaczenie historyczne 
polega na tym, ze zostal obalony, sformutowany na pocz^tku XX wieku, program 
Hilberta, ktörego mysl^ przewodni^ byto zbudowanie teorii sformalizowanej, obejmu- 
j^cej cat^ matematykQ, i udowodnienie jej za pomoc^ prostych srodköw logicznych. 
Cata matematyka zawiera oczywiscie arytmetykQ liczb naturalnych, a zatem nie moz­
na udowodnic jej zupelnosci i niesprzecznosci. Znaczenie filozoficzne bierze siQ st^d, 
ze twierdzenia Gödla wskazuj^na ograniezonose podejscia aksjomatycznego. Pesymi- 
styczna interpretaeja tego faktu sprowadza si$ do stwierdzenia, ze istnieje „nieprze- 
kraczalne granice rozumu ludzkiego”, podezas gdy interpretaeja optymistyczna wska- 
zuje wlasnie na przewagq rozumowania umystu ludzkiego nad wnioskowaniem 
prowadzonym w ramach systemöw sformalizowanych. Interpretaeja twierdzen Gödla 
na gruncie informatyki wskazuje na ograniezonose tego, co mozna policzyc za parac­
e t  komputera, gdyz wszystko to, co moze wykonac komputer, da siq wyrazic tylko 
w pewnej teorii elementamej. Wynika tez z tego pogl^d, ze komputery nie b$d^ 
w stanie catkowicie zast^pic cztowieka w podejmowanych przez niego rozumowa- 
niach i decyzjach.



Cwiczenia

1. Korzystajqc z systemu dowodzenia Hilberta, dowiesc, ze nastqpujqce formuly sq 
twierdzeniami:
a) arv - ia
b) (or =>-<a:) => —.ör
c) Vx • Vy • p(pc, y) <=> Vy • Vx • p(x, y)
d) (Hx • p{x) v  g(x)) <=> (Hx • p(x)) v  (Hx • q(x))

2. Wykorzystujqc System dedukcji naturalnej Gentzena, pokazac, ze tautologiami sq 
formuly:
a) (a=> ß) => ((ß  => j) => (->/=> ->o))
b) (-ia=> ar) => ar
c) arv-iar
d )  («=> #=>((/?=> t i= > (a v ß z>  tf)
e) (Vx • p(x) <=> #(x)) => ((Vx • p(x)) <=> (Vx • q(x)))
f) (Vx • p{x) <=> q{x)) => ((Hx •p(x)) <=> (Hx • q(x)))
g) 3x • Vy • p(x, y) => Vy • Hx • p{x, y)

3. Uzupelniö System dedukcji naturalnej przez wyprowadzenie regul eliminacji i wpro- 
wadzania spöjnikow:
a) dysjunkcji,
b) röwnowaznosci,
c) NOR,
d) NAND.

4. Wykorzystujqc metodq tablic analitycznych, pokazad, ktöre formuly sq tautolo­
giami:
a) 3x *Vy • p(x, y) =>Vy • 3x • p(x, y)
b) Vx *3y • p(x, y) => 3y »Vx • p(x, y)
c) 3x • (q(x) =>Vx • q(x))
d) Vx • 3y »Vz • 3w • {p(x, y) v  —>p(x, y))
e) Vx • (<?(x) => er) => 3x • (^(x) => ar)



14. Inne logiki

14.1. Wst^p

Omawiana w poprzednich rozdzialach logika klasyczna jest jqdrem wszelkich lo- 
gik. Jej rozwöj w XX wieku wynikat glöwnie z potrzeby rozwi^zywania pro- 
blemöw z zakresu podstaw matematyki. Ogölniej mozna stwierdzic, ze motywacje 
tworzenia nowych logik byly podyktowane -  po pierwsze -  chqci^ ogamiqcia moz- 
liwie szerokiej klasy wypowiedzi spotykanych nie tylko w jezyku matematyki, ale 
i w jezyku naturalnym, i -  po drugie -  identyfikacj^ oraz ujqciem w formalne ramy 
sposobow wnioskowania stosowanych przez ludzi. Wraz z poszerzaniem sie zasto- 
sowan informatyki powstaiy nowe inspiracje do rozwoju logiki. Wynikaj^ one na 
przyklad z zastosowan systemöw ekspertowych lub rozwoju lingwistyki matema- 
tycznej i zwiqzanej z ni^ konstrukcj^ systemöw automatycznego tlumaczenia jezy- 
köw naturalnych.

W tym rozdziale przedstawia sie podstawowe informacje tylko o niektörych logikach 
nieklasycznych -  logikach wielowartosciowych i modalnych [Bolc, Borodziewicz, 
Wöjcik 1991], [Gabbay 1998]. Logiki modalne stanowi^ bardzo szerok^ grupe logik. 
Za ich szczegölne przypadki mozna uwazac, omawiane w dalszej czesci rozdzialu, 
logiki temporalne [Gabbay 1998], [Klimek 1999], a takze -  do pewnego stopnia -  
logiki intuicjonistyczne [Gabbay 1998].

Krötko wspomina sie tez o logikach niemonotonicznych [Gabbay 1998]. Omawia sie 
tylko przeslanki stanowi^ce inspiracje ich powstawania. Logiki te, obecnie intensyw- 
nie rozwijane, maj^ bezposredni zwi^zek z zastosowaniami -  z bazami wiedzy i sys- 
temami ekspertowymi. Charakterystycznym wyröznikiem dla tych logik jest to, ze 
proponuj^ one pewne sposoby wnioskowania w sytuacji posiadania niepehiej lub nie- 
pewnej informacji.

Przegl^dem nie s^ objete wszystkie galezie logiki. Nie omawia sie na przyklad logik 
relewantnych, ktöre pröbuj^oslabic ograniczenie logiki klasycznej, polegaj^ce na tym, 
ze ocena prawdziwosci zdan zlozonych zalezy tylko od prawdziwosci ich czesci skla- 
dowych (wlasnosc ekstensjonalnosci -  zob. rozdzial 1.), pomija sie natomiast zupel- 
nie tresci wyrazane przez te skladowe, a wlasnie uwzglednienie zwi^zköw trescio- 
wych jest szczegölnie wazne w systemach ekspertowych.



Obszeme, choc niewyczerpujece prezentacjq röznych logik zawieraje pozycje ency- 
klopedyczne [Marciszewski 1987, 1988].

Z podzialem nauk na scisle i empiryczne wi^ze siq podzial metod wnioskowania na 
dedukcyjne i indukcyjne. Podstawe nauk empirycznych se obserwacje interesuje- 
cych zjawisk i procesöw. Obserwacje te czQSto dostarczaje informacji cz^stkowych, 
zwykle obarczonych blqdami pomiaröw. Wnioskowania oparte na takich danych 
prowadze wiQC do niepewnych lub niepelnych wniosköw. Dodatkowo, nie zawsze 
z göry wiadomo, jak takie wnioskowanie prowadzic. Prowadzic na przyktad po raz 
pierwszy pewien eksperyment, nie zawsze wiadomo, jakich mozna si$ spodziewac 
nastqpstw. W metodologii nauk empirycznych rozwaza si$ specyficzne rodzaje lo­
gik, miqdzy innymi tak zwane logiki indukcji [Mortimer 1982]. Ogölne zamierzenie 
logik indukcji wi^ze siQ ze sposobem uzyskiwania na podstawie danych ekspery- 
mentalnych mozliwie najlepszej teorii, ktöra tlumaczylaby zwi^zki pomiqdzy ob- 
serwowanymi faktami, a takze -  jeszcze lepiej -  pozwalalaby na przewidywanie 
dotychczas nieobserwowanych faktöw. Taki ogölny mechanizm oczywiscie nie ist- 
nieje. Mozliwe jest natomiast poröwnywanie röznych konkretnych mechanizmöw 
i ocenianie stopnia ich wiarogodnosci. Logiki indukcji nie nalezy utozsamiac z uzy- 
wanym wczesniej pojQciem indukcji matematycznej czy strukturalnej.

14.2. Logiki wielowartosciowe

Logiki wielowartosciowe maje pocz^tek w latach dwudziestych XX wieku, kiedy 
Lukasiewicz jako pierwszy przedstawil propozycj? logiki tröjwartosciowej. Prace nad 
logikami wielowartosciowymi podejmowali mi$dzy innymi Post, Sobocinski, Shipec- 
ki. Lukasiewicz opisal cale rodzinq skonczenie wielowartosciowych logik Ln dla 
n = 3, 4,..., oraz jedne nieskonczenie wielowartosciowe logikq Z,Xq . Zbiorem wartosci
logicznych logiki Z,„jest zbiör

An =def {0, 1 /(« -  1),..., (» -  2)1 (n -  1), 1} dla n = 3 ,4 ,...

Ponizej przedstawia siQ tylko rachunek zdan w logice Z,3. W tej logice interpretacja 
znanych spöjniköw logiki klasycznej: =>, a , v , <=>, —i jest wyrazona tablice 14.1.

Tablica 14.1

b
a

a => b a Ab a v  b a <=> b
0 54 1 0 14 1 0 14 1 0 54 1

0 1 1 1 0 0 0 0 14 1 1 54 0 l
54 'A 1 1 0 14 14 14 54 1 54 1 54 54
1 0 A 1 0 14 1 1 1 1 0 54 1 0

Opracowanie logiki i 3 wi^zato siQ z nadawaniem wartosci logicznej zdaniom odno- 
szecym siq do przyszlosci, wartosc Zi oznaczala brak wiedzy.



Zdania o przyszlosci mog^wyrazac fakty, ktöre zajd^lub nie zajd^, na przyklad:
i

W 2100 roku ludzie bqdq mieszkac na Marsie.

Zdanie takie wypowiadane w obecnej chwili nie jest ani prawdziwe, ani falszywe, 
nadaje siq mu wiqc wartosc Vi, co wyraza nasz^ niewiedzQ o przyszlosci. Wartosd Vi 
moze byc takze interpretowana inaczej jako: niezdefiniowane, nieokreslone albo jako 
brak danych.

Pierwsza aksjomatyka Lukasiewicza byla oparta na spöjnikach implikacji i negacji. 
Inne znane spöjniki -  koniunkcji, dysjunkcji i röwnowaznosci -  byly definiowane 
przez implikacji i negacji, tak samo jak w logice klasycznej.

Zestaw spöjniköw logicznych, zlozony z implikacji, negacji, uzupelniony stal^/lo- 
giczn£i Zi, jest systemem funkcjonalnie pelnym, tzn. za ich pomoc^ mozna wyrazic 
dowolne inne spöjniki logiczne w Ly

Aksjomatyka rachunku zdan tröjelementowej logiki Lukasiewicza (opracowana przez 
Lukasiewicza, Tarskiego i Wajsberga) sklada sii z nastipuj^cych aksjomatöw:

a) q => (p => q)
b) (p => q) => ((q  => r) => (p => r))
c) ((p=>~p)=>p)=>p
d) ((->q => n P )  => (P  => ?))

e) ((p  = > ? ) = > ? )  = > ((q  = > /> )=>  P )
0  ((p => q) =>(? =>P» => (? =>P)

oraz z dwöch regul:

Regufy odrywania: z formul öroraz a=> ß  wnioskujemy ß, czyli 

a,a=> ß

ß

Regufy podstawiania: z formuly a, w ktörej wystipuje zmienna zdaniowa a, wnio­
skujemy to, co otrzymamy w rezultacie podstawienia dowolnej formuly ß  za kazde 
wyst^pienie zmiennej a, czyli

a
a [ a - ß ]

Przedstawiony zestaw aksjomatöw nie jest minimalny, gdyz ostatni aksjomat jest za- 
lezny od aksjomatöw poprzednich. System ten jest semantycznie niesprzeczny i se- 
mantycznie zupelny.

Opröcz omöwionych, do logik wielowartosciowych mozna zaliczyc röwniez miidzy 
innymi logiki prawdopodobienstwa i logiki rozmyte.



14.3. Logiki modalne

Niech bqd^ dane trzy zdania:
Ksiqzka lezy na stole.
Ksiqzka lezy na podlodze.
Ksiqzka nieruchomo (bez podparcia) utrzymuje siq w powietrzu.

0)
(2)
(3)

Jesli zaiozyc, ze wypowiedzi te odnosz^. siq do sytuacji w jakims pomieszczeniu na 
Ziemi, to zdania (1) oraz (2) mog^byc prawdziwe lub falszywe, natomiast zdanie (3) 
bqdzie zawsze falszywe. Nie jest bowiem mozliwe w zadnym pomieszczeniu ziem- 
skim, aby ksiqzka zajmowala trwale nieruchome polozenie. Rozröznienie miqdzy sy- 
tuacjami zwi^zanymi ze zdaniami (1) i (2) a zdaniem (3) stanie siq bardziej wyrazne, 
gdy rozpatruje siq pewne ich modyfikacje:

Mozliwe, ze ksiqzka lezy na stole. (4)
Mozliwe, ze ksiqzka lezy na podlodze. (5)
Mozliwe, ze ksiqzka nieruchomo (bez podparcia) utrzymuje siq w powietrzu. (6)

Zdania (4) i (5) s^ oczywiscie prawdziwe, a zdanie (6) jest falszywe. Przytoczone 
oceny prawdziwosci zdan odnosz^ siq do zjawisk w bezposrednio otaczaj^cym nas 
swiecie. Te same zdania odniesione do zjawisk zachodz^cych na przyklad w swiecie 
obserwowanym przez kosmonautow w pojezdzie kosmicznym bqd^miaty inne oceny, 
zwiaszcza zdanie (6) stanie siq prawdziwe. Warto tez zwrocic uwagq na to, ze nawet 
osoba przebywaj^ca na powierzchni Ziemi bylaby gotowa uznac prawdziwosc zdania
(6), gdyby tylko wiedziala, ze loty kosmiczne s^osi^galne.

Zdania sq. przykladami tak zwanych wypowiedzi modalnych -  wystqpujqcy w nich 
zwrot -  mozliwe jest, ze a -  jest przykiadem operatora modalnego. Symbolicznie jest 
on zapisywany 0 a. Wypowiedz dualna: konieczne jest, ze a, jest symbolicznie zapi- 
sywana □ a. Takie zwroty spotyka siq czqsto w wypowiedziach formulowanych 
w jqzyku naturalnym. Pomiqdzy oboma zwrotami zachodzi zwi^zek semantyczny

□  oc= —iO —\<x

Symbole □ oraz 0 s^traktowanejako jednoargumentowe operatory logiczne.

Uwaga
Logiki modalne korzeniami siqgajq. czasöw Arystotelesa. Nowozytne badania pod- 
j^l na pocz%tku XX wieku C.I. Lewis, ktöry pojqcie mozliwosci wykorzystal w celu 
rozröznienia miqdzy implikacja materialn^ a implikacja scisl^. Implikacja material- 
na, zdefiniowana w klasycznym rachunku zdan, ma ulomnosc (zob. rozdzial 1.), ktö- 
ra na podstawie falszywej przeslanki pozwala na wyprowadzenie dowolnego wnio- 
sku. Wady tej nie ma implikacja scisla (symbol ^>) zdefiniowana przez Lewisa jako

P ^  q “ d e f (p a  - i q)



czyli, ze q wynika scisle z p  wtedy i tylko wtedy, gdy nie jest mozliwe, by jedno- 
czesnie prawdziwe bylo p  i falszywe q. Definicja ta odröznia implikacjQ scisl^ od 
materialnej, ktörej definicjqjest

p=>q  = d e f  —> (p  a  - i q).

Implikacja scisla usuwa niektöre paradoksy implikacji materialnej, ale nadal pozo- 
stawia prawdziwe formuly, ktöre do takich paradoksöw si? zalicza, na przyklad:

p ^ i p ^  q) ( p ^ p ) ^  ( q ^  q) (p a  - ip )  q (p v  p )  ^  q

Z punktu widzenia skladni, logiki modalne rozszerzeniem j^zyka formalnego 
logiki klasycznej. W deflniowaniu semantyki logik modalnych przyjmuje siq po- 
wszechnie podejscie S. Kripkego, oparte na pojQciu zbioru mozliwych stanöw (lub 
swiatöw). Podejscie to przedstawia si$ ponizej, na przykladzie zdaniowej logiki 
modalnej.

Alfabet modalnego jqzyka rachunku zdan sklada siq z nastqpujqcych jednostek leksy- 
kalnych:

• symboli stalych logicznych reprezentowanych przez napisy true oraz false;
• przeliczalnej liczby symboli zmiennych zdaniowych,
• symboli spöjniköw logicznych klasycznego rachunku zdan: -i, a , v , =>, <=>,
• symboli spöjniköw logicznych modalnych: D,0 ,
•  symboli nawiasöw: (, ).

Zbiör formul modalnego rachunku zdan FORM  jest definiowany rekursywnie:
• Symbole zmiennych zdaniowych oraz Symbole stalych logicznych s^ formulami 

elementamymi; zbiör zmiennych zdaniowych bqdzie oznaczony symbolem V;
• jezeli a  oraz s^ formulami, to formulami zlozonymi s^ napisy:

-io; (a=>ß), (o tA ß), (arv/7), ( a <=>/?), O a ,0 a .

Semantyka jqzyka jest okreslana w strukturze Kripkego.

Definicja 14.1
Modelern Kripkego nazywa siQ tröjkq K  = <S, p, v>, gdzie: S  jest dowolnym zbio- 
rem nazywanym zbiorem stanöw (lub swiatöw), p  c  S2 jest relacj^ binam^ nazy- 
wan^ relacjX osiqgalnosci stanöw (swiatöw), v : V x S  —> Logiczne jest fiinkcj^ 
wartosciujqcq zmienne zdaniowe w kazdym ze stanöw.

Jezeli <s, s'>e p, to stan s nazywa siq stanem osi^galnym ze stanu s.

Dziedzinei interpretacji formul jest, tak samo jak w klasycznym rachunku zdan, zbiör 
wartosci Logiczne. Semantyka modalnego rachunku zdan zachowuje interpretacji kla- 
sycznych spöjniköw logicznych. Funkcja wartosciowania v jest uogölnieniem odpo- 
wiedniej funkcji wartosciuj^cej v, ktöra byla wprowadzona przy deflniowaniu semantyki



klasycznego rachunku zdan. Röznica polega na tym, ze w modalnyra rachunku zdan 
wartosciowanie zmiennej zdaniowej zalezy dodatkowo od stanu. W röznych stanach 
wartosciowania tej samej zmiennej mog^ byc rozne, podczas gdy w klasycznym 
rachunku zdan wartosciowanie zmiennej jest tylko jedno -  inaczej: w klasycznym 
rachunku zdan ma siq do czynienia tylko z jednym stanem.

Niech aeF O R M  b^dzie dowoln^. förmul^ oraz se S  bqdzie dowolnym stanem. Inter- 
pretacja formuly a  przy wartosciowaniu v w stanie s, zapisywana INTVrS(cc), jest defi- 
niowana rekursywnie wzgl^dem struktury skladniowej:

a) INTVrS(p) =def v(p, s), dla zmiennej zdaniowej p
b) /A/TVif(tnie) =def p
c) INTVi f (false) “ def F
d) INTV'S(—i(x) =def ~JNTvs(gc)
e) INTV'S(a ° ß )  = def INTVtS(ô ) °INTvs(ß), dla spöjnika binamego °e {a , v , =>, <=>}
f) INTV> s(Da) =def P  wtedy i tylko wtedy, gdy dla dowolnego stanu s' osi^galnego 

ze stanu s zachodzi INTvj(a!) = P
g) INTV, s(0 a )  =def P wtedy i tylko wtedy, gdy istnieje stan s' osi^galny ze stanu s, 

dla ktörego zachodzi INTvy(a) = P

Przedstawiona wyzej semantyka, w zaleznosci od konkretnych zastosowan, moze byc 
jeszcze zawqzana przez narzucenie dodatkowych postulatöw. Mog^ one miec postac 
formul-aksjomatöw, ktöre powinny byc spelniane w jqzyku. W zaleznosci od zestawu 
takich aksjomatow wyröznia siQ rözne rodzaje logik modalnych. Przykladami takich 
formul s%.

D(a=> ß )  => (□<*=> U ß)
na=>  0 a
na=> a
Da=> □ □  a
0 a=> n O a
Ona=> o O a
□  0 a = >  O D ar

Omawiane wyzej modalnosci okresla siq mianem modalnosci ciletycznych. Modalnosci 
mog^ miec takze inne interpretacje. W zaleznosci od przyjqtej interpretacji, modalno­
sci czyta si$ w rözny sposöb i ma siq do czynienia z röznymi rodzajami logik modal­
nych.

Na przyklad pojqciem centralnym logiki deontycznej jest pojqcie obowiqzku, for­
muly D a  oraz 0 a  odczytuje si^jako: jest obowiqzkowe to, ze a oraz jest dozwolo- 
ne to, ze a.



Logika epistemiczna odnosi si? do aktöw lub stanöw poznawczych, operuje poj?ciami
takimi, jak widziec, wierzyc, uznawac, dlatego formufy □ a  oraz 0 a  odczytuje si? 
jako: jest wiarygodne to, ze öroraz jest niewiarygodne to, ze OL

W logice temporalnej przedmiotem zainteresowania wypowiedzi, ktöre uwzgl?d-
niaj^ zwi^zki czasowe -  formufy □ a  oraz O a  czyta si? jako: zawsze zachodzi a  oraz 
czasem zachodzi a.

Obszemiejsze omöwienie logik modalnych i ich zwi^zköw z logika klasyczn^ zawiera 
ksi^zka [Szalas 1992].

14.4. Logiki temporalne

Przedmiotem logik temporalnych s£t wypowiedzi, ktöre uwzgl?dniaj^ czas. Tlem, na 
ktörym rozpatruje si? wypowiedzi, jest struktura czasowa. Zbiör stanöw S  w modelu 
Kripkego K  = <S, p, v> jest tu interpretowany jako zbiör chwil czasowych -  oznacza- 
ny T, a relacja osi^galnosci p  jest interpretowana jako uporz^dkowanie chwil w sensie 
chwila wczesniejsza-pözniejsza -  oznaczana <.

Strukturq czasowq nazywa si? par? SC =  <T, <>, gdzie =<c T2 jest relacjaporẑ dku.

W zaleznosci od ustalen dotyczqcych struktury czasowej otrzymuje si? rözne rodzaje 
logik temporalnych.

Jezeli < jest relacja porzEgiku cz?sciowego (to znaczy jest zwrotna, antysymetryczna 
i przechodnia), to mamy do czynienia ze Struktur̂  czasu rozgatqzionego, a je§li jest 
relacja porzqdku liniowego (to znaczy jest zwrotna, antysymetryczna, przechodnia 
i spöjna), to mamy do czynienia ze Struktur̂  czasu liniowego.

Struktur? czasowq nazywa si? ciqglq, gdy

Vt|G T* V/2G T* 3/3G 7* (fj t2 t\ =<! tj a t$ =<! <2)

dyskretnqprawostronnie, gdy

V/jG r»vt2s  r*((fi  ̂t2 a  t \ ^  tj)—̂

(B f jG  T*{t\ t$ A  t\ & t j ) A —i3f4G T*(t\ A  £4 =<! t i  A <3 ^  £4))

dyskretnq lewostronnie, gdy

V f,e7W f2e T»(tx < t2A t{*  f2)=>
(3<3G T * { t3 t2A t 2 ^  t j )  A  —i3f4G T * ( t4 =4 t2 A  t$ ^  <4 A t j  ̂  t j j )

Przykladem zbioru, na ktörym mozna zbudowac Struktur? ciqglq, jest zbiör liczb wy- 
miemych, a dyskretnq - zbiör liczb naturalnych.



W dalszych rozwazaniach zaklada siq dyskretn^ (lewo- i prawostronnie) Struktur^ 
czasu liniowego. Dia ustalenia uwagi przyjmuje si$, ze zbiör chwil jest zbiorem 
liczb naturalnych, a relacja osiqgalnosci jest relacj^ < w zbiorze liczb naturalnych, 
n < m oznacza: chwila n nie jest pozniejsza od chwili m. Struktura czasowa jest za- 
tem par^ <Nat, < >.

Zostanie przedstawiony rachunek zdan liniowej logiki temporalnej PLTL (Proposi- 
tional Linear Temporal Logic). Logika jest logik^ czasu przyszlego, co oznacza, ze 
formuly wyrazaj^ pewne wlasnosci, ktöre odnosz^ siq do przyszlosci, poczynaj^c od 
ustalonej chwili odniesienia. Zostala ona opracowana przez Mann? i Pnueliego na 
pocz^tku lat osiemdziesi^tych [Manna, Pnueli 1992, 1995], z przeznaczeniem do spe- 
cyfikacji i weryfikacji wlasnosci programöw.

Skladnia logiki PLTL rözni siq od skladni modalnego rachunku zdan przedstawionego 
w poprzednim podrozdziale tylko tym, ze wprowadza dwa dodatkowe spöjniki mo- 
dalne: jednoargumentowy operator next i dwuargumentowy until. Spöjniki te shiz^do 
wyrazania pewnych wlasnosci, ktöre mozna takze wyraziö za pomoc^ pozostalych 
spöjniköw.

Zbiör formul FORM  logiki PLTL jest definiowany rekursywnie:

• Symbole zmiennych zdaniowych oraz stalych logicznych s^ formulami,
• jezeli öroraz ß  sq. formulami, to formulami s^röwniez:

- ia, (ar=>ß ), ( a a ß), (orv ß), (ar<=>ß), Oa, Oa, next a, (a u n tilß ).

Interpretacja formuly temporalnej jest definiowana -  tak samo jak w przypadku mo­
dalnego rachunku zdan -  wzgl$dem struktury czasowej <Nat, < > i wartosciowania v. 
Modelern dla formul temporalnych jest wi$c tröjka <Nat, < , v>.

Niech a&FORM  b^dzie dowoln^ formuly oraz nsN at b^dzie dowoln^ chwil^. Inter­
pretacja formuly arprzy wartosciowaniu v w chwili n, zapisywana INTv„(a), jest defi­
niowana rekursywnie wzglqdem struktury skladniowej:

a) INTv„(p) =def v(p, n), dla zmiennej zdaniowej p
b) /ATv'„(true) def ^
c) /JVTVt„(false) =def F
d) INTv̂ a )  =def-JN Tv_n(a)
e) INTV'„(a°ß) =defINTVM(ot) °INTvn(ß), gdzie ° e  {a , v , =>, <=>}
f) INTvn(U a) —def P wtedy i tylko wtedy, gdy dla dowolnej chwili m takiej, ze

n< m  zachodzi INTVtm(d) = P
g) INTVM(Oä) =def P wtedy i tylko wtedy, gdy istnieje chwila m taka, z e n < m ,

dla ktörej zachodzi INTvm(a) = P
h) INTvn(nextd) =defP  wtedy i tylko wtedy, gdy dla chwili n+  1 zachodzi

INTV'„+i(cc) = P



i) INTVJ,(a  until ß )  =def P wtedy i tylko wtedy, gdy istnieje chwila j  > 0 taka, ze
zachodzi INTvi(ß) -  P oraz dla kazdej chwili i < j  zacho- 
dzi INTyj(d) = P.

Formuia a, ktörej interpretacja INTVJl(d) = P, dla dowolnego wartosciowania v i do- 
wolnej chwili n, jest tautologiq. logiki PLTL. Formuia takq. nazywa siQ tez prawem 
logiki.

Warto zwröcic uwagq na spöjnik until. Za jego pomoc^mozna byloby wyrazic spöjni- 
ki □ oraz 0, mianowicie:

□ a  =def true until a  
0 a  =def a  until false

Formuly logiki PLTL pozwalaj^ na zwarte wyrazenie zlozonych wlasnosci, na przy- 
klad:

□ Oar formuia czytana: zawsze mozliwe a, wyraza wlasnosc, ze kiedykolwiek
w przyszlosci formuia a  stanie siQ falszywa, to jest pewne, ze kiedys 
w dalszej przyszlosci stanie si$ znowu prawdziwa.

0 D a  formuia czytana: kiedys koniecznie a, wyraza wlasnosc, ze w przyszlosci 
istnieje taka chwila, od ktörej formuia a  b^dzie prawdziwa.

Oto przyktady niektörych kategorii praw:

Prawa dualizmu

D - i o r o  - i O öt

0 —iö t <=> - .D a r  
next —iCt <=> —i nexta

Prawa introspektywnosci

□ a= >  a  
a=> O a
(a  until ß )  => ( a v  ß )  
ß=> (a  until ß )

Prawa idempotencji

□□«<=> u a  
O O o r«  0 a  

Prawa rozdzielnosci

n { a A ß )  <=> (Dar) a ( aß )  
0 ( a v  ß )  <=> (Oä) v  (0ß)



Prawa przemiennosci

(□ next d) <=> (next n d )
(0  next d) 4=> (next Oa)
next (a  until ß )  <=> (next a) until (next ß )

Prawa dolqczania

( n a a  Oß) => 0 ( a a ß))
( n a  a  next ß )  = >  next (a  a  ß)
( n a  a  (ß  until y)) => (a  a  ß )  until (a  a  y)

Dia logik temporalnych byly opracowane rözne systemy aksjomatyzacji. Jeden 
z pierwszych przykladöw aksjomatyzacji logiki PLTL pochodzi z ksi^zki [Gabbay 
1998] i sklada siq z nastqjuj^cych aksjomatöw:

a) a(a=> ß )  => (aa=> aß)
b) next —i a  <=> —i nexta
c )  next (a=> ß ) => (next a  = >  next ß )
d) □<£=> (next a  a  next □ or)
e) □ ( « = >  next d) = >  (next f l r = >  n d )
f) (a  until ß )  => Oß
g) (a  until ß )  <=> (next ß  v (nexta a next (a  until ß))) 

oraz regul odrywania, podstawiania i generalizacji:

Regula generalizacji: z formuly orwnioskuje siq, ze n a ,  czyli 

a
n a

System ten jest semantycznie niesprzeczny i semantycznie zupelny.

14.5. Logiki intuicjonistyczne

Skladnia logiki intuicjonistycznej jest taka sama jak logiki klasycznej. Röznica wy- 
nika ze sposobu podejscia do oceny prawdziwosci zdan. W logice intuicjonistycznej 
podejscie to opiera siQ na specyficznej interpretacji spöjniköw logicznych i kwanty- 
flkatorow podanej przez Heytinga25 -  jednego z tworcöw tej logiki, ktöry przedsta- 
wil pierwszy System aksjomatyczny dla intuicjonistycznego rachunku zdan. Jej pod-

25 A. Heyting (1898-1980).



staw^jest intuicja, ze stwierdzic prawdziwosö zdania to tyle, co mied dowöd dla 
tego zdania.

Logika intuicjonistyczna jest jedn^ z logik konstruktywnych. Ilustracj^ röznic w sto- 
sunku do logiki klasycznej jest dowod twierdzenia:

Istniej^dwie liczby niewymieme a i b takie, ze a* jest wymieme.

Dowod twierdzenia jest niekonstruktywny: albo (V 2)^jest wymieme i wtedy a = b =

= V2 , albo (V 2)^ jest niewymieme i wtedy a  = (V 2)^ , b = V2 . Z dowodu wynika, 
ze liczby istniej^, ale oczywiscie nie wiadomo, jakie s^ to liczby.

W interpretacji Heytinga prawdziwosö formul w logice intuicjonistycznej jest rozu- 
miana w sposöb nastQpuj^cy:

• Prawdziwosö formuly a a b oznacza fakt posiadania dowodu d„ dla formuly a 
oraz dowodu db dla formuly b. Dowöd formuly a a b jest zatem parn_<da, db>.

• Dowöd formuly a v  b to konstrukcja, ktöra wybiera jedn^ z dwöch formul i daje 
dowöd wybranej formuly.

• Dowöd formuly a => b to konstrukcja, ktöra kazdemu dowodowi da formuly a 
przyporz^dkowuje dowöd db(da) formuly b.

• Dowöd formuly —>a to dowöd dla formuly a => false, czyli konstrukcja tworz^ca 
dowöd sprzecznosci z kazdego dowodu majqcego byö dowodem formuly a.

• Dowöd formuly 3x» p(x) to konstrukcja, ktöra polega na wskazaniu pewnego 
obiektu n (z danej dziedziny rozwazan) i podaniu dowodu dla formuly p(n).

• Dowöd formuly Vx* p(x) to konstmkcja, ktöra dla kazdego obiektu n (z danej 
dziedziny rozwazan) podaje dowöd dla formuly p(ri).

Aksjomatyzacja Heytinga dla intuicjonistycznego rachunku zdan sklada si$ z nastqpu- 
j^cych aksjomatöw:

(1) a => (a a  er)
(2) (a Ab) =>(b a  a)
(3) (a  a  b) => ((a a c) => (b a c))
(4) ((fl => b) a (b => c)) => (a => c)
(5) ö => (a => 6)
(6) (a a (a => b)) => b
(7) a => (a v  b)
(8) (a v b) => (b v  a)
(9) ((a => c) a (ö=> c)) => ((flv b) => c))

(10) —ia => (a=> b)
(11) ((a => b) a (a => -iö)) => —ia

Jedyn^ regulq jest regula odrywania.



Wszystkie prawa intuicjonistycznego rachunku zdan röwniez prawami logiki kla- 
sycznej, ale nie odwrotnie: s^tautologie logiki klasycznej, ktöre nie prawami logiki 
intuicjonistycznej. Przykladami takich formul s^:

—i a v  a 
—i—i a => a

Dol^czenie jednej z nich do zestawu wczesniej podanych aksjomatöw daloby rachu- 
nek röwnowazny logice klasycznej. W interpretacji intuicjonistycznej przyjQcie na 
przyklad formuly —>a v  a jako aksj omatu oznaczaloby, ze dla dowolnej formuly ma siq 
dowödjej prawdziwosci lub dowöd jej fatszywosci.

Pokrewne podejscie przedstawil A. Kolmogorow26, ktöry zaproponowal, aby zdania 
w logice intuicjonistycznej traktowac jako problemy lub zadania. Z zadaniem koja- 
rzy siq sposöb jego rozwi^zania. W logice klasycznej wypowiedzi, ktöra jest zda- 
niem, przypisuje siq wartosc prawdy albo fatszu, natomiast w logice intuicjoni­
stycznej zadaniu przypisuje si$ rozwi^zanie albo bezsensownosc, czyli brak 
mozliwosci rozwi^zania. Inaczej: ocen^ logiczn^ zadania jest jego konstruktywne 
rozwi^zanie albo bezsensownosc zadania. Niech b$d^ dane nastQpuj^ce przyklady 
zadan [Turski 1988]:

1. Znalezö cztery liczby calkowite y, z, n takie, ze: xn + yn = zn dla n > 2.
2. Udowodnic fatszywo§6 wielkiego twierdzenia Fermata.
3. Przeprowadzic okr^g przez trzy zadane punkty p, q, r, nie postuguj^c siq innymi 

narzqdziami niz cyrklem i linijk^.
4. Zakladaj^c, ze znany jest jeden pierwiastek röwnania: üuc2 + bx + c = 0, znalezc 

drugi pierwiastek tego röwnania.
5. Zakladajqc, ze liczba ;rjest wymiema, 7 t- min, znalezö podobne wyrazenia dla

liczby e.

Rozwi^zanie zadania 1. oznacza rozwi^zanie zadania 2., natomiast odwrotnie tak 
byö nie musi, gdyz mozliwe byloby rozwi^zanie zadania 2. przez sprowadzenie do 
sprzecznosci, bez podawania kontrprzykladu. Zadania 3. i 4. s^ oczywiscie rozwi^zy- 
walne, natomiast zadanie 5. jest bezsensowne, gdyz zalozenie o wymiemosci liczby K 
jest niemozliwe do spelnienia.

Jednym ze sposoböw wyrazania semantyki formul logiki intuicjonistycznej jest mo- 
del Kripkego, wprowadzony juz wczesniej przy omawianiu logik modalnych. Model 
ten dogodnie jest opisac w terminach procesu nabywania wiedzy w kolejnych chwi- 
lach (etapach).

Jak poprzednio, model Kripkego jest tröjk^ K  = <S, v>, gdzie: S  jest dowolnym
zbiorem chwil (etapöw), C jest relacj^ porzqdku czQsciowego nad S, v : V x S —> Lo-

26 Andriej Nikolajewicz Kolmogorow (1903-1987).



giczne jest funkcj^ wartosciuj^c^ zmienne zdaniowe w kazdej z chwil. Dodatkowo 
wymaga siq, aby funkcja wartosciuj^ca spelniala nastqmj^cy warunek:

jezeli s =4 t, to v(a, s) => v(a, t), dla dowolnego ae V.

Warunek ten oznacza, ze jezeli w pewnej chwili (etapie) se S  wartosciowanie zmiennej 
ae V stanie si$ prawdziwe, to pozostanie ono prawdziwe we wszystkich nastqpnych 
chwilach te S  (etapach) procesu nabywania wiedzy. Poniewaz porz£[dek =< jest cz^scio- 
wy, nie musi wiQc byc porz^dkiem liniowyra, istniej^rözne drogi nabywania wiedzy.

Niech a eF O R M b^dzie dowoln^ formul^ intuicjonistycznego rachunku zdan oraz se S  
b^dzie dowoln^ chwil^. Interpretacja formuly a  przy wartosciowaniu v w chwili s, zapi- 
sywana INTVJ(ot), jest definiowana rekursywnie wzgl^dem struktury skladniowej:

a) I N T M  =defP wtt v(a, s) = P, dla ae V,
b) INTVj ( a v  ß )  =def P wtt I N T M  = P lub INTVJ(ß) = P,
c) INTVJ( a a ß )  =defP wtt INTVj(a) = P oraz INTVrS(ß) = P,
d) INTVJ(a  =>ß )  =def P wtt dla dowolnej chwili t takiej, ze s =< t, zachodzi 

I N T M  = P  oraz INTVJ(ß) =P ,
e) INTVJ(—>a) =def P wtt dla dowolnej chwili t takiej, z e s  =4 t, nie zachodzi 

I N T M  = P,

Uzyty tu Symbol wtt jest skrötem zwrotu wtedy i tylko wtedy, gdy.

Formula arjest tautologiq. wtedy i tylko wtedy, gdy INTVJ(a) = P dla dowolnego war- 
tosciowania v i dowolnej chwili s.

Latwo sprawdzic, ze jesli S -  {0, 1}, v(a, 0) = F oraz v(a, 1) = P, to formula —>ava 
nie jest tautologi^, gdyz nie zachodzi INTVy0(—>a v a )  = P , c o z  kolei wynika z tego, ze 
nie zachodzi INTv0(a) = P  ani INTv0(—ia) = P.

14.6. O logikach niemonotonicznych

Rozpatrywane dotychczas logiki maj^ wspoln^ wlasnosc, okreslan^ mianem monotonicz- 
nosci. Oznacza to, ze jezeli arjest konsekwencj^ skladniow^ pewnego zbioru formul 0, 
symbolicznie 0  \- a, to arjest rowniez konsekwencj^ skladniow^ dowolnego rozszerze- 
nia zbioru 0, symbolicznie <ßu r  \- a, gdzie r  jest dowolnym zbiorem formul, czyli: 

jezeli 0Y- a; to <Pu T  l- oc.

Wlasnosc monotonicznosci jest zachowana w tych wszystkich praktycznych sytu- 
acjach, gdy wnioskowanie na podstawie pewnego zbioru przeslanek opiera siQ na za- 
lozeniu, ze dysponuje si$ peln^ wiedzy o ffagmencie opisywanego swiata -  zalozenie 
o zamkniQtosci swiata (rozdzial 12.). Zalozenie takie nie zawsze jest prawdziwe, gdyz 
mamy czqsto do czynienia z informacj^ niepeln^ lub niepewn^.



Rozpatrzmy na przyktad dwie bazy danych: rozklad odjazdöw poci^göw z danej stacji 
oraz ksi^zk^ telefoniczn^, Jezeli w rozkladzie poci^göw odjezdzaj^cych nie znajdzie- 
my miejscowosci, do ktörej chcemy jechac, to znaczy, ze nie ma do niej bezposred- 
niego pockigu. Jezeli w ksi^zce telefonicznej nie znajdziemy nazwiska znajomego, to 
nie znaczy, ze nie ma on telefonu, gdyz ksi^zka moze byc nieaktualna lub telefon mo- 
ze byc zastrzezony. W przypadku rozkladu jazdy poci^göw zalozenie o zamkni^tosci 
swiata jest uzasadnione, nie jest tak natomiast w przypadku ksi^zki telefonicznej.

We wnioskowaniach stosowanych na co dzien uzywa si$ regul wnioskowania opar- 
tych na posiadanej wiedzy oraz niewiedzy. Przykladami regul, ktöre na takich podsta- 
wach wyprowadzaj 3. rözne przeciwstawne rodzaje wniosköw, s^:

Jezeli nie ma dowodu winy podejrzanego, to nalezy uznac, ze jest on niewinny.
Jezeli nadlatuje samolot i nie mozna wykluczyc, ze jest to samolot wroga (nie ma do­
wodu, ze jest to „swöj" samolot), nalezy uznac, ze jest to samolot wroga (i zestrzelic).

Wnioski wyprowadzane na podstawie tych regul mog^ si$ okazac sprzeczne z dodat- 
kowo ujawnionymi faktami -  nowymi informacjami o podejrzanym, wynikami oglq- 
dzin str^conego samolotu.

Przedstawione reguly wnioskowania okresla siq jako reguty domnieman. MajX one 
czQsto postac

a, UNLESS(ß)
r

gdzie UNLESS(ß) oznacza: nie jest mozliwe wyprowadzenie ß. Logika stosuj^ca reguly 
o takiej postaci narusza wlasnosc monotonicznosci. Na przyldad, na podstawie reguly

UNLESS (a) * •

ß
mozna stwierdzic, ze 0  I- ß, ale {ä} \tß.

Przegl^d röznych podejsc do wnioskowania w sytuacji niepelnej informacji i zwi^- 
zanych z nimi problemöw mozna znalezc na przyktad w ksi^zce [Bolc, Borodzie- 
wicz, Wöjcik 1991].

W sytuacji posiadania wiedzy niepewnej powstaje problem niejednoznacznosci wnio­
skowania. Na przyktad, jaki wniosek wyprowadzic przy zalozeniu posiadania nastqpu- 
j^cej wiedzy:

• Kwakierzy sq na ogöl pacyflstami.
• Republikanie na ogöl nie sq pacyflstami.
• Nixon jest kwakierem i republikaninem.

Röwnie uzasadniony jest kazdy z dwöch nasuwaj^cych siQ przeciwstawnych wnio­
sköw, ale nie jest mozliwe jednoczesnie, ze:



Nixon jest pacyßstq.
Nixon raczej nie jest pacyfistq.

Z podobn^ niej ednoznacznosci^ ma do czynienia lekarz, gdy na podstawie badan pa- 
cjenta okazuje siq, ze moze on by6 chory na jedn^z kilku choröb.

Wnioskowanie w takich przypadkach opiera si$ na analizie scenariuszy post^powania, 
ktöremu towarzyszy dokonanie wyboröw -  podejmowanie decyzji. Praktycznie chodzi 
o ocenq skutköw (koszt) podejmowanych decyzji. Stosuje siq rözne podejscia do takich 
ocen, oparte na przyklad na miarach probabilistycznych lub miarach rozmytych. W lo- 
gikach probabilistycznych miar^ logicznej wartosci zdania jest prawdopodobienstwo 
jego prawdziwosci, a w logikach rozmytych miarami s£\. rozmyte wartosci prawdy.

Przegl^d röznych podejsc do wnioskowania w sytuacji niepewnej informacji i zwict- 
zanych z nimi problemöw mozna znalezc na przyklad w ksi^zce [Bolc, Borodziewicz, 
Wöjcik 1991].

Cwiczenia

1. Ktöra z podanych definicji jest poprawn^ definicj^ implikacji w logice Ly.
a)  P=>q =defmin(\, \ + p - q )
b) p  => q =def max( 1 - p ,  1 -  q)
c)  p=>q  =def m in(\, l - p  + q)

2. Czy formulyp=> q oraz —ipvqse^  röwnowazne w logice L{!

3. Ktore z podanych formut s^ tautologiami temporalnej logiki zdan:

a) q => (p => q)
b ) pA q = > q
c) □ (p a  q => q)

d) □ (# = > (□  (p => q))

4. Pokazac, ze dla formuly □ q temporalnej logiki zdan nie istnieje röwnowazna jej 
formula, skladaj^ca si? wyl^cznie ze spöjniköw a , v  oraz —i.

5. Ktore z podanych formul s^ tautologiami intuicjonistycznego rachunku zdan:
a) -ip v  p
b) —i—'P => P
c) p  —> i p
d) (p => q) v  {q =>p)
e) p  a  - n #  = >  (p v  q)
f) n n (n p v /)).



15. Definiowanie j^zyka programowania

15.1. Uwagi wst^pne

W tym rozdziale zilustrowano zastosowanie metod logiki klasycznej do definiowania 
j^zyköw programowania. Jqzyki programowania na ogöl bardziej zlozone niz oma- 
wiane wczesniej j^zyki logiki. Struktura definiowania kazdego j^zyka, zaröwno 
sztucznego, jak i naturalnego, jest podobna -  wspölnymi elementami definicja 
slownika, ogölniej zbioru jednostek leksykalnych, definicja skladni i semantyki.

J^zyki programowania stanowi^ bardzo obszem^ grupQ jqzyköw. Dzieli si? je  na 
trzy kategorie: j$zyki imperatywne (proceduralne), funkcyjne i logiczne. Krötkie 
informacje na temat logicznego j^zyka programowania byly przedstawione w roz­
dziale 12. W biezqcym rozdziale jest przedstawiona definicja bardzo prostego jqzy- 
ka programowania imperatywnego. Jqzyki imperatywne sq. najszersz^ stosowan£t 
kategori^, nalezEi do niej tak populame teraz j$zyki, jak Ada, C, C++, C#, Java, 
Pascal itp. Obecnie wsröd j^zyköw imperatywnych dominuj^ jqzyki programowa­
nia obiektowego, podczas gdy dziesiqc lat wczesniej przewazaly jqzyki programo­
wania strukturalnego.

Przeglcyd metod definiowania jqzyköw programowania sekwencyjnego zawiera miq- 
dzy innymi ksi^zka [Dembinski, Mahiszynski 1981], definiowanie semantyki j^zy- 
köw programowania sekwencyjnego i röwnoleglego -  ksi^zka [Apt, Olderog 1991], 
j^zyköw programowania czasu rzeczywistego -  monografia [Huzar 1989],

W tym rozdziale omawia siQ trzy coraz bardziej rozbudowywane wersje prostego 
jqzyka programowania strukturalnego. Wersje te b<jd^ oznaczane symbolami 
BPJP -  bardzo prosty j qzyk programowania, PJP -  prosty jqzyk programowania 
oraz JP  -  jQzyk programowania. Bardzo prosty j?zyk programowania BPJP jest 
skrajnie uproszczon^ wersje jqzyka programowania strukturalnego. BPJP nie 
uwzglqdnia hierarchicznej struktury blokowej programöw, nie zawiera procedur, 
nie ma typöw zlozonych, nie ma typöw referencyjnych itp. Jqzyk PJP jest rozsze- 
rzeniem BPJP o procedury nierekursywne, natomiast JP  jest kolejnym rozszerze- 
niem o procedury rekursywne. Wszystkie opisywane konstrukcje maj^ swoje 
odpowiedniki we wspölczesnych jqzykach programowania strukturalnego i obiek­
towego.



15.2. Jednostki leksykalne B P J P

Alfabet kazdego nietrywialnego jqzyka programowania jest zwykle bardzo liczny, 
czasem teoretycznie nieograniczony. Z tego wzglqdu alfabet jQzyka wymaga oddziel- 
nej definicji. Alfabet jest zbiorem napisöw nad pewnym skonczonym repertuarem 
symboli, w przypadku j$zyka BPJP jest to podzbior symboli graficznych alfabetu 
polskiego, rozszerzonego o powszechnie spotykane Symbole matematyczne. Precyzyj- 
ne okreslenie tego podzbioru nie jest konieczne, gdyz -  po pierwsze -  wynika to 
w oczywisty sposöb z przytoczonych nizej okreslen jednostek leksykalnych i -  po 
drugie -  wybor innego repertuaru symboli nie ma znaczenia dla definicji semantyki 
jqzyka.

Alfabet jqzyka BPJP zawiera nastqpuj^ce kategorie jednostek leksykalnych:

• zbior zmiennych indywiduowych, dalej krötko -  zmiennych, reprezentowa- 
nych przez identyfikatory -  elementy zbioru Identyfikator,

• zbior stalych indywiduowych typu logicznego -  wartosci logicznych ze zbioru
Boolean =def {true, false}

• zbior symboli operacji logicznych
SpLog =def {not, and, or}

• zbior stalych indywiduowych typu calkowitoliczbowego -  liczb w postaci 
dziesiQtnej ze zbioru

Integer =def {-N, ...,N} dla wybranego N sN at

• zbior symboli operacji arytmetycznych -  symboli funkcyjnych
Funint =def { -1} u  {+, - 2 ,  *, div, mod}

o sygnaturach:
- 1: Integer —> Integer,
_+_, —2_, div_, _mod_ : Integer1 —> Integer

• zbior symboli relacji arytmetycznych -  symboli predykatow
Predlnt =def { =, <}

0 sygnaturach:
_=_, _<_: Int1 —> Boolean,

• zbior stalych indywiduowych typu znakowego -  symboli ze zbioru
Character =def {‘a \  ‘b ’, ..., ‘z’} u  {‘0 ’, ‘1’, ..., ‘9’}

• zbior symboli operacji znakowych -  symboli funkcyjnych
FunChar =def {ord, ehr}



o sygnaturach: 
ord : Character —> Integer, 
ehr : Integer —> Character,

• zbiör symboli relacji znakowych -  symboli predykatöw
PredChar =def {=, *, <} 

o sygnaturach:
_=_, j t _ ,  _<_: Character* —> Boolean,

• zbiör stalych indywiduowych typu napisowego -  symboli ze zbioru
String =de{Fin-seq0(Character) u  ... U Fin-seqisdiCharacter)

Jest to zbiör cieigöw nad zbiorem Character o dlugosci ograniczonej do 256. 
Dia odröznienia napisu od identyfikatora, napisy b^d^ ujmowane w cudzy- 
slowy, na przyklad: “abc”, “ lOcd”; ci^g pusty b^dzie zapisywany w postaci “

• zbiör symboli operaeji napisowych -  symboli funkcyjnych
FunString =def {head, tail, length} u  {A} 

o sygnaturach: 
head : String —> Character, 
ta i l : String —> String, 
length : String —> Integer,
_A_ : String2 —> String.

• zbiör symboli relacji napisowych -  symboli predykatöw
PredString =def {= , *, <} 

o sygnaturach:
j£ _ , _<_: String2 —> Boolean,

• zbiör symboli pomocniczych
SymbPom =def := , “ , ” , ‘ , ’} U {, }

Jednym z symboli pomocniczych jest przecinek. W celu odröznienia przecin- 
ka jako separatora od przecinka jako symbolu pomocniczego zostal on dol^- 
czony j ako odrQbny j ednoelementowy zbiör.

• zbiör nazw typöw
SymbType = {bool, int, char, string}

• zbiör slow kluczowych
SymbKlucz =def {program, begin, end, if, then, eise, fl, while, do, od}

• zbiör elementamych instrukeji
InsElem =def {read, write, skip}



Symbole predykatöw =, < s^symbolami przecisizonymi, gdyz jako argumenty mog^
miec wartosci röznych typöw. Podobnie jest przeciqzony symbol funkcyjny - ,  gdyz 
moze wystQpowac w roli operatora jedno- b^dz dwuargumentowego, w dalszym ciqgu 
dolny indeks wskazuj^cy liczbQ argumentöw bqdzie pomijany.

Specyfik£t przedstawionego zestawu jednostek leksykalnych jest to, ze w posredni 
sposöb wyznaczaj^. one zbiory dziedzin semantycznych. Zbiory stalych indywidu- 
owych wyröznionych tu typöw (logiczne, calkowitoliczbowe, znakowe i napisowe) 
wlasnie takimi dziedzinami.

Uwaga
Symbole jednostek leksykalnych rozpatrywanych tu j^zyköw programowania bqd^ 
pisane antykw^, natomiast wszystkie pozostale Symbole pomocnicze b^d^ pisane 
kursyw^.

15.3. Skladnia B P J P

Wyröznia siQ nastqpuj^ce kategorie napisöw wystqpuj^cych w BPJP:

• deklaracje zmiennych,
• wyrazenia -  odpowiedniki termöw w jqzyku logiki -  typöw calkowitolicz- 

bowych, znakowych i napisowych,
• wyrazenia -  odpowiedniki formul w jqzyku logiki,
• instrukcje,
• programy.

Deklaracje zmiennych
Zmienne maj^ typy. Wyröznia siq zmieime typöw: logicznego, calkowitoliczbowego, 
znakowego i napisowego. Jezeli xe Ident, to pojedyncza deklaracja, ze identyfikator x 
jest zmienn^ odpowiedniego typu przyjmuje jedn^ z dwöch postaci:

bool x 
int x 
char x 
String x 

albo
bool x := tbooi 
int x := tinl 
char x := tchar 
string x := tslrlng

gdzie: tboob tinl, tciiar, tstring s^ wyrazeniami stalymi (niezawieraj^cymi zmiennych -  patrz 
nizej) odpowiednio typöw logicznego, calkowitoliczbowego, znakowego i napisowego.



Kazdy z wymienionych wyzej napisöw jest deklaracjg pojedynczej zmiennej.

Zbiör deklaracji zmiennych vor jest zapisywany w postaci ciggu pojedynczych dekla- 
racji, w ktörych kolejne elementy sg oddzielane srednikami, na przyklad:

int abc; 
int blO := 10; 
bool w := true; 
char x := ‘x’; 
string st := “aaaabb”;

Rodzina zbioröw deklaracji zmiennych Fbqdzie oznaczona przez VAR(V).

Dalej bqdguzywane nast^pujgce oznaczenia na zbiory zmiennych poszczegölnych typöw:

Vbooi= {x | (bool x e  VAR) v (bool x := tinl g VAR(V))}

Vin,= {x | (int x g VAR) v (int x := tM g VAR(V))}

Vciiar = {x | char x g VAR v  char x := tin, e VAR(V)}

Vstrmg = {x | string x g VAR v  string x := tinl e VAR(V)}

Zaklada sie, ze zbiory zmiennych röznych typöw Vbooh Vint, Vdmr oraz Vstring sg rozlgcz- 
ne. Suma wszystkich zmiennych bqdzie oznaczana przez V, czyli

V ~ Vjm U  Vc/Iar U  Vstrjng O  Vbool 

Wyrazenia

Zbiör wyrazen jezyka BPJP jest mnogosciowg sumg

TERM(V) = TERMinl(V) u  TERMchar(V ) u  TERMs,ring(V ) 

gdzie:
TERMini(V) jest zbiorem wyrazen calkowitoliczbowych nad zbiorem zmiennych V, 
TERMChar{y) jest zbiorem wyrazen znakowych nad zbiorem zmiennych V,
TERMS,ring(V ) jest zbiorem wyrazen napisowych nad zbiorem zmiennych V.

Poszczegölne zbiory wyrazen sg definiowane rekursywnie.

Zbiör TERMin,(V) jest zdefiniowany nastepujgco:

• Vinl u  Integer c  TERMlnl(V),

• jezeli t\, t2e  TERMint(V), to
~t\, (t\ + t2), ( t i - t 2), (<! * t2), (r, div t2), (r, mod t2)e TERMin,(V)

W dalszym ciggu, tarn, gdzie nie bqdzie to wprowadzac niejednoznacznosci, na- 
wiasy b^dg pomijane, a kolejnosc wykonywanych operacji bqdzie wynikac ze zna- 
nej powszechnie konwencji arytmetycznej.



• jezeli te TERMdiar(V), to
ord(/)e TERMinl(V)

• jezeli te TERMslring(V), to
length(0e TERMhl,(V)

Zbiör TERMdujy) jest zdefiniowany nastQpuj^co:

• Vci,ar u  Character c  TERMdiar( V)

• jezeli te TERMinl(V), to
chr(r)e TERMchar(V)

Zbiör TERMS,ri„g(V) jest zdefiniowany nastQpuj^co:

•  F strin g  u  String c  TERMslring(V)

• jezeli tu t2e TERMslring(V), to
head(ti), tail(rj), length(/,), (t, A t2)e TERMstring(V)

Formuly

Zbiör wyrazen logicznych FORM(V) jest definiowany rekursywnie w sposöb nastqpu- 
j^cy:

• Vbooi u  Boolean c  FORM(V),

• jezeli t\, t2e  TERMlyp(V), gdzie type {Int, Char, String}, to
t\ = h, t\ * h, t\ ^  h eFORM(V)

• jezeli a, ßeFO RM (V), to
nota, ( a and ß), (aor ß )  eFORM(V)

Zbiör formul FORM(V) jQzyka BPJP jest podzbiorem formul rachunku kwantyfikato- 
röw, gdyz nie zawiera kwantyfikatoröw -  jest zbiorem formul otwartych.

W tradycyjnych definicjach j^zyköw programowania skladniq termöw i formul defi- 
niuje siQ jako wspölny zbiör wyrazen, a formuly s^ traktowane jako wyrazenia typu 
logicznego. W celu zachowania zgodnosci opisu przedstawianego jqzyka z wczesniej- 
szymi opisami jqzyköw logiki, formuly wyrözniono jako oddzieln^ grupQ napisöw.

Instrukcje

Zbiör instrukcji INSTR j^zyka BPJP jest zdefiniowany rekursywnie:

• read(x), write(x), skip e INSTR, gdzie xe V,

• jezeli te  TERMlyp{V) oraz xe Vlyp, gdzie type {int, char, string}, to
x := te  INSTR,



• jezeli aeFO RM (V) oraz xe Vboot, to
x := a e  INSTR,

• j ezeli a  e  FORM( V) oraz ins \, ins2 e INSTR, to
if orthen ins\ eise ins2 fi e INSTR,

(ornazywa siq dozorem instrukcji)

• j ezeli a  g FORM( V) oraz ins g INSTR, to
while ordo ins od e INSTR,

(ornazywa siq dozorem, a ins -  tresciq. instrukcji)

• jezeli ins\, ins2 g INSTR, to ins\, ins2 eINSTR.

Instrukcje read(x), write(x), skip oraz instrukcja przypisania x := /  instrukcjami 
elementamymi, pozostale sel instrukcjami zlozonymi.

Programy

Programem jest napis postaci:

program  P 
var 

begin 
ins 

end

gdzie: Peldentyßkator jest nazw^ programu, vare VAR(V) jest zbiorem deklaracji glo- 
balnych zmiennych programu oraz inselNSTR jest instrukcj^ zwan^tresci^programu.

Zbiör wszystkich programow j^zyka BPJP b^dzie oznaczany przez PROGBpjp.

Przedstawione wyzej reguly skladniowe s£\. regulami bezkontekstowymi i dlatego nie 
wyrazajq. wszystkich ograniczen skladniowych. Nalezy je uzupelnic o dodatkowe re­
guly, ktöre okreslaj^ poprawnosc sktadniowq. poszczegölnych elementow programu 
bior^c pod uwagq kontekst, w ktörym elementy te wystqpuj^.

Do ograniczen tych nalezy:
• nazwa programu jest rözna od nazw zmiennych deklarowanych w progra- 

mie,
• zmienna moze byc zadeklarowana tylko jeden raz, co gwarantuje, ze zbiory 

zmiennych röznych typöw s^ rozl^czne,
• dowolna zmienna wystqpuj\ca w tresci programu musi miec deklaracjq.

Uwaga

SkladniQ kontekstow^, albo ograniczenia kontekstowe, nazywa sie czasem seman- 
tyk^ statyczn^.



15.4. Semantyka B P J P

Dziedzinami semantycznymi dla wyrazen BPJP s%.
• dla wyrazen calkowitoliczbowych dziedzin^ bqdzie zbiör 

In tegere  {nadmiar, J_},
gdzie, przypomnijmy, symbol _L oznacza wartosc niezdefiniowane,

• dla wyrazen znakowych -  zbiör
Character u  {±},

• dla wyrazen napisowych -  zbiör
String u  {_L},

• dla wyrazen logicznych (formul) -  zbiör
Boolean u  {.L}.

Interpretacja bazowa symboli operacji arytmetycznych oraz symboli relacji arytme- 
tycznych jest rozumiana podobnie jak w przykladzie 8.8. Modyfikacja tej interpreta- 
cji wynika z wprowadzenia do dziedziny interpretacji nowej wartosci _L (niezdefi- 
niowane).

W celu wyjasnienia tej modyfikacji podaje si$ interpretacjq jednej operacji dzielenia 
calkowitoliczbowego div:

a gdy a e {nadmiar, niezdefiniowane}
b gdy a e  Integer oraz b e {nadmiar, niezdefiniowane}
a lb  gdy a e  Integer,be Integer \ {0} oraz albe. Integer
nadmiar gdy a e  Integer,be Integer \ {0} oraz a ! b i  Integer

a div b =

Podana definicja reprezentuje pewien sposöb postQpowania -  algorytm -  przy obli- 
czaniu wartosci wyrazenia: najpierw jest badany pierwszy argument i jesli nie jest 
liczbe, to decyduje o wartosci calego wyrazenia, w przypadku przeciwnym jest badany 
drugi argument i jesli on röwniez nie jest liczbe, to decyduje o wartosci calego wyra­
zenia. Dopiero, gdy oba argumenty se liczbami, jest wykonywane dzielenie, a jego 
wynik, jezeli miesci siQ w zbiorze Integer, stanowi liczbowe wartosc calego wyraze­
nia. Operacja dzielenia calkowitoliczbowego alb jest zdefmiowana nastqpujeco:

alb = c, gdzie b*c + r = a, oraz 0 < r< b.

Niezb$dne modyfikacje pozostalych operacji i relacji arytmetycznych pozostawia si$ 
Czytelnikowi do samodzielnego opracowania.

Podobnie samodzielnie, kieruj^c siQ znajomoscie dowolnie wybranego jqzyka progra­
mowania, Czytelnik, zgodnie z dalej przedstawione nieformalnie okreslone interpreta-



cj^, ustanowi formaln^ bazow^ interpretacjQ symboli funkcyjnych i relacyjnych dla 
pozostalych typöw wyrazen: znakowych i napisowych.

Funkcja ‘ord’ ma znakowi przypisywac liczb? calkowitEt, odpowiadaj^c^ pozycji tego 
znaku w ci^gu: ‘a’, ‘b ’, ‘z \  ‘0’, ‘1’, ‘9’. Do tego samego ci^gu odnosi siq rela- 
cja liniowego porz^dku *<’. Funkcja ‘ehr’ ma byc funkcjaodwrotneido funkeji ‘ord’.

Funkcje ‘A’, ‘head’, ‘tail’ oraz ‘lenght’ maj^ znaczenie okreslone w rozdziale 7. Rela- 
eja ‘<’ jest relacj^ leksykograficznego porzegiku okreslonego w rozdziale 3.

Wartosciowanie zmiennych jest funkcja:

V  Vjni V cliar VString Vbool

gdzie:
v,„,: Vin, —> Integer u  {nadmiar, _L}
Vchar '■ Khar —» Character u  {-L}
V s,ring ■ Vin, -»  String u  {1}
Vbooi ■ Vboo, -> Boolean u  {JL}

Poniewaz vinh vc/mr) vslring, Vbooi funkejami o rozl^cznych dziedzinach, zatem ich 
mnogosciowa suma v jest röwniez funkcja Przez WAR(V) oznacza siQ zbior wszyst- 
kich wartosciowan zbioru zmiennych V = Vin, u  Vchar u  Vstring u  Vboo/.

Maj^c ustalon^ interpretaej? bazowsi /  wszystkich symboli funkcyjnych i relacyjnych 
oraz zdefiniowane pojqcie wartoSciowania zmiennych, mozna okreslic -  podobnie jak 
w rozdziale 10. -  interpretaej? INTv(t) dla dowolnego wyrazenia te TERM( V) oraz 
INTv(a) dla dowolnej formuly aeFO RM (V). Szczegöly tej definieji pozostawia siq 
Czytelnikowi do uzupelnienia.

Deklaracja zmiennych vare VAR(V) wyznacza pocz^tkowe wartosciowanie zmien­
nych:

• jezeli zmienna x jest zadeklarowana w var i jej deklaracja ma postad typ x, 
gdzie type, {bool, int, char, String}, to v(x) = J_,

• jesli jej deklaracja ma postac typ x := t, to v(x) = INTv(t); nalezy zwröcic uwagQ 
na to, ze t musi byd termem stalym albo formuly stal^, co oznacza, ze interpre- 
taeja INTv(t) nie zalezy od wartosciowania v.

Interpretacja instrukeji wymaga wprowadzenia nowego pojQcia -  konfiguraeji pro- 
gramu. Konfiguracja jest zdefiniowana jako para

<v, ins>,

gdzie ve WAR(V) jest wartosciowaniem zmiennych, a inselNSTR jest instrukej^.

Konfiguracja odnosi siq do stanu programu w danym momencie jego obliczen. Obli- 
czenie programu realizuje siq przez wykonanie pewnego ci^gu akeji -  elementamych



czynnosci obliczeniowych. Konfiguracje opisuji stan programu przed i po wykonaniu 
akcji. Przedstawione podejscie do opisu znaczenia programu w postaci pewnego ciigu 
konfiguracji towarzysz^cych wykonaniu obliczen programu nazywa siq podejsciem 
operacyjnym.

Jezeli program jest w konfiguracji <v, ins>, oznacza to, ze v reprezentuje aktualne 
wartosciowanie zmiennych programu, a ins jest instrukcji, ktöra pozostaje jeszcze do 
wykonania przez program.

Jezeli nie pozostaje juz nie do wykonania, czyli instrukeja ins jest pusta, zapisuje si$ 
to wyröznionym symbolem END -  konfiguracji <v, END>.

Jezeli podezas wykonywania akcji obliczeniowej zajdi warunki uniemozliwiajice jej 
wykonanie, to oznacza zerwanie obliczen programu, co bqdzie reprezentowane spe- 
cjalnie wyröznioni konfiguracji ABORT.

Zbiorem wszystkich konfiguracji jest

KONF= (WAR x (INSTR u  {END}) u  {ABORT}

Interpretacja instrukeji polega na zdefiniowaniu relacji zmian konfiguracji. Relacjq 
zmiany konfiguracji jest relacja o sygnaturze

------> c  KONF x KONF

Je§li konfi, konf2eKONF, to fakt <konfi, konf2> e ------» b$dzie zapisywany w po­
staci

konfi----- > konfi

Nieformalna interpretacja tego faktu jest nastqpujica: jezeli program jest w konfigura­
cji konfi, to po wykonaniu pewnej akcji obliczeniowej program znajdzie siQ w konfi­
guracji konf2.

Jezeli konfi jest poczitkowi konfiguraeja programu, to obliczeniem programu jest 
skonezony lub nieskonezony ciqg zmian konfiguracji. Skonczony ci^g zmian konfigu­
racji jest postaci

konfi----- > konfi------> ... ------- » konfi

gdzie konfi jest konfiguracji koncowi.

Koncowi moze byc jedna z konfiguracji: <v„, END> albo ABORT. Pierwsza z nich 
oznacza, ze program zakonczyl si$ pomyslnie, dostarczajic wartosciowanie v„ jako 
koncowy wynik obliczen, druga z nich oznacza natomiast, ze program zakonczyl si$ 
niepomyslnie -  nastqpilo zerwanie jego obliczen, i nie dostarcza zadnego wyniku kon- 
cowego.



Obliczenie programu moze byc ci^giem nieskoriczonym

konfo------ > konf\------ > ... ------ >konf„------> ...

gdy nie istnieje konfiguracja koncowa.

Jezeli dla kazdej konfiguracji relacja------> wyznacza co najwyzej jedn^ now^ konfi-
guracjq, czyli relacja jest funkcj^, to mamy do czynienia z programem deterministycz- 
nym, w przeciwnym przypadku -  z programem niedetrministycznym.

Relacja ------> jest definiowana rekursywnie przez zbior aksjomatöw i regul, do-
brany tak, aby dla dowolnej konfiguracji bylo mozliwe wyznaczenie nastQpnej kon­
figuracji. Poniewaz zasadniczym elementem röznicuj^cym konfiguracji jest in- 
strukcja, aksjomaty i reguly definiuj^ce zmiany konfiguracji s^ powiqzane 
z regulami skladniowymi, definiujqcymi zbior instrukcji. Z tego wzglqdu möwimy, 
ze definicja relacji zmiany konfiguracji jest definicj^ strukturaln^ wzgl^dem defini- 
cji skladni instrukcji.

L^cznie formalny opis relacji zmiany konfiguracji jest okreslony przez zbior aksjoma­
töw i regul wnioskowania dotycz^cych wyprowadzania obliczenia programu.

Znaczenie instrukcji czytania read(x) jest oczywiste: instrukcja oznacza, ze z otocze- 
nia programu, za pomoc^ pewnego urz^dzenia, wprowadza si$ pewn^ wartosc 
i przypisuje siq j^  zmiennej x, i tym samym zmienia siQ aktualne wartosciowanie v. 
Formalnie wyraza to aksjomat

< v, read(x) > ------> < v[x := e], END >

gdzie e jest dowoln^ wartosci^ ze zbioru tego samego typu, co typ zmiennej x.

Znaczenie instrukcji pisania write(x) jest röwniez oczywiste: program przekazuje do 
swego otoczenia, za pomoc^ pewnego urz^dzenia, aktualn^ wartosc przypisan^ zmien­
nej x. Dla instrukcji pisania write(x) mamy dwa aksjomaty:

< v, write(x) > ----- > < v, END > gdy v(x) *  _L

< v, write(x) > ----- > ABORT gdy v(x) = J.

Pierwszy aksjomat odnosi siq do przypadku, gdy wartosc zmiennej x jest zdefiniowa- 
na, a drugi -  gdy taka wartosc jest niezdefiniowana, czego rezultatem jest zerwanie 
obliczen instrukcji -  instrukcja konczy si$ w trybie awaryjnym.

Dla instrukcji skip jest tylko jeden aksjomat

< v, skip > ------> < v, END >

Aksjomat ten wyraza to, ze instrukcja „nie nie robi”. Instrukcja jest przydatna do wy- 
razenia szczegölnej postaci instrukcji warankowej.



Instrukcja przypisania x := t oznacza, ze wartosc wyrazenia t przypisuje siq zmien- 
nej x. Oczywiscie, co bylo zaznaczone wczesniej, typ zmiennej x i wyrazenia t musz^ 
byc identyczne. Formalnie instrukcja charakteryzuj^ dwa aksjomaty:

< v ,x := t> ------> < v[x := INTV (/)], END > gdy INTv(t) € {nadmiar, _L},

< v ,x := t> ------> ABORT gdy INTv(t) e {nadmiar, J.}.

Aksjomaty odnosz^ si$ do dwöch mozliwych przypadköw, gdy wartosc wyrazenia t 
nalezy do zbioru wartosci danego typu lub nie nalezy.

Instrukcja warunkowa if örthen ins\ eise ins2 f! oznacza, ze w zaleznosci od wartosci 
wyrazenia logicznego -  formuly cc, nalezy wykonac instrukcja ins\, gdy örma wartosc 
true, oraz instrukcja ins2 w przypadku przeciwnym. Takie znaczenie instrukcji warun- 
kowej wyrazaj^dwie reguly:

< v, insx > ------ > < v',ins\ >
< v,if a  then inst eise ins2 fi > ------> < v',ins[ >

gdy INTV (a) = true

< v, ins2 > ----- > < v ,  ins2 >
< v,if a  then insi eise ins2 fi > ------> < v',ins2 >

gdy INTV (a) = false

Instrukcja iteracji while a  do ins od ma siq wykonywad w taki sposöb, ze jesli war­
tosc wyrazenia logicznego a  jest falszem, to instrukcja siQ konczy, w przypadku 
przeciwnym powinna byc wykonana instrukcja ins, po czym ponownie wylicza si$ 
wyrazenie a  i -  w zaleznosci od wyliczonej wartosci -  powtarza siq opisane post$- 
powanie. Instrukcja charakteryzuj^ aksjomat i regula:

< v, while a  do ins od > -----»< v, END > gdy INTV (a) = false

< v, ins >----- > < v', ins' >
< v, while a  do ins od > ------> < while a  do ins od >

gdy INTV (or) = true

Warto zwröcic uwagQ na to, ze nowa konfiguracja 

<v', ins'; while a do ins od>,

do ktörej nastopuje przejscie, jest bardziej zlozona niz konfiguracja startowa 

<v, while ardo ins od>.

Wynika to z faktu, ze instrukcja 

ins'; while ordo ins od



reprezentuje sekwencyjne zlozenie instrukcji ins', ktöra reprezentuje czqsc instrukcji 
ins pozostaj^cej do wykonania oraz instrukcji while ardo ins od reprezentuj^cej ewen- 
tualne kolejne powtörzenia pqtli. W szczegölnym przypadku, gdy ins' = END, regula 
przyjmuje postac

< v,ins >-----> < v',END >
< v, while a  do ins od > ----- > < v ,  while a  do ins od >

gdy INTV (a) = true

Ostatnie reguly dotyczq. sekwencyjnego zlozenia instrukcji: insu ins2.

< v, insx > ----- > < v ,  ins[ >
< v, insx; ins2 > ----- > < v', ins'x; ins2 >

gdy ins[ ± ABORT

< v, insx > ------ > < v ,  END >
< v, insx; ins2 > ----- » < V, ins2 >

gdy ins[ ^  ABORT

<v,insx > -----> ABORT
<v,insx ;ins2 > ------> ABORT

Sekwencyjne ziozenie oznacza, ze najpierw ma byc wykonana instrukcja insi, na- 
stqjnie -  po jej zakonczeniu -  instrukcja ins2- Jezeli instrukcja insx nie wykona si? 
w calosci, ale podczas wykonywania nie nasteipi zerwanie obliczen, to jej czqsc 
ins[, ktora pozostaje jeszcze do wykonania, jest sekwencyjnie zlozona z instrukcja 
ins2. Druga regula odnosi si? do szczegölnego przypadku, gdy ins[ = END. Jezeli 
w trakcie wykonywania tej instrukcji nast^pi zerwanie obliczenia, to oznacza ze­
rwanie calych obliczen.

Semantyka operacyjna programu P :

program P
var

begin
ins

end

jest okreslona przez jego obliczenie (skonczone b^dz nieskonczone)

Comp(P) = <v0, inso>------> <vls insx>------> ... ------> <v„, ins„>------> ...

rozpoczqte w konfiguracji pocz^tkowej <v0, inso>, gdzie: v0 jest wartosciowaniem 
pocz^tkowym wyznaczonym przez deklaracjq zmiennych var, a ins0 = ins jest instruk- 
cjXpoczqtkow^, ktor^stanowi tresc programu.



Nalezy zauwazyc, ze program moze miec wiele obliczen. Powodem tego jest instruk- 
cja ‘read’, ktöra powoduje, ze podczas wykonywania instrukcji, w trakcie realizacji 
calego programu, zmienne programu mog^ otrzymywad wartosciowania zalezne od 
wczytywanych wartosci. To, jakie s^to wartosci, zalezy od otoczenia programu.

Jezeli natomiast w programie nie ma tej instrukcji, to program ma jedno obliczenie. 
Obliczenie nieskonczone albo skonczone osi^gni^ciem koncowej konfiguracji 
ABORT oznacza niepoprawne zachowanie programu w tym sensie, ze jego obliczenie 
nie dostarcza wartosciowych wyniköw. Wartosciowe tylko te obliczenia, ktöre 
skonczone osiqgniQciem koncowej konfiguracji postaci <v, END>. Wartosciowanie v 
reprezentuje wyniki koncowe obliczenia programu. Nalezy zwrocic uwagq, ze jezeli 
obliczenie ma tak^ postac, nie stanowi to gwarancji, ze dostarczone wyniki zgodne 
z wynikami oczekiwanymi. Inaczej: fakt, ze program liczy, nie oznacza, ze jest pro­
gramem poprawnym.

Ponizej rozpatruje siQ przyklady obliczen prostych programöw.

Przyklad 15.1
I Program mnozenie czyta dwie liczby i pisze wynik ich mnozenia: I

program mnozenie 
intx; 
inty 

begin
read(x); 
read(y); 
x := x * y; 
write(x) 

end
Obliczenie programu przebiega nastQpuĵ co:

Cow/?(mnozenie) =
<vo, read(x); read(y); x := x * y; write(x)>------>
<vi, read(y); x := x * y; write(x)>------>
<v2, x := x * y; write(x)>------>
<v3, write(x)>------>
CV4, END>

gdzie:
WartoSciowanie pocz^tkowe vo jest wyznaczone przez deklaracjQ zmien- 
nych:

v0(x) = 1 , 
v0(y) = 1 .



Zaktadaj^c, ze 10 jest pierwsz^wczytan^liczb^, V! = v0[x := 10], czyli: 
v,(x) = 10,
vi(y) = -L.

Zakladaj^c, ze 2 jest drug^wczytan^liczb^ v2 = vi[y := 2], czyli: 
v2(x)=  10,
v2(y) = 2.

Dalsze wartosciowania nie zmieniajXsiQ, czyli v2 = v3 = v4.
W przypadku, gdyby wczytane liczby byly takie, ze ich iloczyn wykraczalby poza 
zakres dla liczb calkowitych, wöwczas obliczenie mialoby postac:

Comp(mnozenie) =
<vo, read(x); read(y); x := x * y; write(x)>------>
<vi, read(y); x := x * y; write(x)>------>
<v2, x := x * y; write(x)>------>
ABORT I

Semantyka operacyjna przedstawia znaczenie programu w postaci ci^gu zmian konfi- 
guracji. Czasem jest wygodniejsze wyrazanie znaczenia programu P  w postaci relacji 
o sygnaturze Sem(P) c  WAR2. RelacjQ t$ mozna zdefiniowac na podstawie semantyki 
operacyjnej w sposöb nastopuj^cy:

Sem(P) = {<v0, v> | <v0, ins0>——> <v, END>},
gdzie: — —> jest zwrotnym, tranzytywnym domkniqciem relacji zmian konfiguracji
------>. Wartosciowanie pocz^tkowe vo reprezentuje dane pocz^tkowe programu, na-
tomiast v -  dane koncowe programu odpowiadajqce danym pocz^tkowym.

15.5. Jfzyk P J P  -  procedury nierekursywne
Skladnia
Rozszerzenie j^zyka od strony leksykalnej polega na doleiczeniu do zbioru slow klu- 
czowych jqzyka BPJP zbioru nowych slow {procedure, in, out}.

Zasadniczymi elementami rozszerzenia skladni s :̂ nowa kategoria napisow -  definicje 
procedur, oraz nowy rodzaj instrukcji -  wywolanie procedury. Wprowadzenie tych 
elementow modyfikuje oczywiscie zbiör instrukcji i postac programow.

Definicja procedury o nazwie p, gdzie pe Identyfikator, ma postac:
procedure p  (lista wejsciowych i wyjsciowych parametröw formalnych) 

varp 
begin 

insp 
end



Pierwsza linia tekstu okresla sygnaturQ procedury, druga -  jest deklaracjq. jej zmien- 
nych lokalnych, a trzecia okresla jej tresc. Struktura definicji procedury jest podobna 
do struktury definicji programu w jqzyku BPJP.

Lista parametröw formalnych jest ciqgiem, byc moze pustym, postaci 
typ\ kieriparü ... ; typn kiernpar„ 

gdzie:
typ iE {bool, int, char, string} jest typem parametru par, e Identyfikator, i = 1 , n, 
kierß  {in, out} oznacza kierunek komunikacji parametru parf. in oznacza, ze dany 
parametr jest parametrem wejsciowym procedury, a out -  ze parametrem wyjscio- 
wym,
varp jest deklaracjX zmiennych lokalnych procedury, varpe VAR(V), 
inspjest instrukcji -  tresci^. procedury; zakiada si? przy tym, ze w tresci procedury 
nie ma instrukcji wywolania tej samej czy innej procedury, czyli inspeINSTRBPJP, 
gdzie INSTRBpjp jest zbiorem instrukcji jqzyka BPJP.

Zbiör definicji procedur, oznaczany przez proc, b^dzie zapisywany w postaci listy 
pojedynczych definicji oddzielanych srednikami, na przyklad:

procedure kwadrat(int in x; int out y) 
begin 

y := x*x 
e n d ;

procedure suma(int in x; int in y; int out z) 
begin

z := x + y 
end

Rodzina zbioröw definicji procedur b^dzie oznaczana przez PROC.

Zbiör wyrazen jqzyka PJP jest taki sam jak j^zyka BPJP. Zbiör instrukcji jqzyka PJP 
bqdzie oznaczany przez INSTRPJP. Stanowi on rozszerzenie zbioru instrukcji jQzyka 
BPJP, oznaczanego INSTRBPJP, ktöre wynika z dol^czenia nowej instrukcji.

Niech procedura ma sygnaturQ
p(typ\ in par\\ ... ; t„ in parn\ typn+, out parn+[\ ... ; typn+m o u tparn+m),

w ktörej -  dla uproszczenia notacji -  zalozono, ze pierwsza grupa parametröw sta­
nowi parametry wejsciowe, a druga -  parametry wyjsciowe procedury. Instrukcja 
wywolania procedury ma wöwczas postac

p(eu ..., e„,yh ...,y m) 
gdzie:

e \ , ..., e„ Sc(_ wyrazeniami takiego samego typu jak parametry paru ...,par„, 
yu ...,y„, s^zmiennymi takiego samego typu jak parametry par„+], ...,parn+m.



Listq et, ..., e„,yt, ...,ym nazywa siq listiparametröw aktualnych.

PrzyjQty mechanizm komunikacji pomi^dzy procedura a programem jest jednym 
z kilku spotykanych we wspölczesnych jqzykach programowania.

Parametry wejsciowe sluzi do komunikacji nazywanej komunikacji przez wartosd. 
Oznacza to, ze wartosc reprezentowana przez parametr aktualny e, -  wartosc wyraze- 
nia INTv(e-,) w biez^cym wartosciowaniu v zmiennych programu -  jest przypisywana 
odpowiadajicemu mu parametrowi formalnemuparh dla i = 1 , n.

Parametry wyjsciowe shizi do komunikacji przez wartosci, ale w kierunku przeciw- 
nym -  od procedury do programu. Oznacza to, ze wartosc reprezentowana przez para­
metr formalny parn+J, czyli jego wartosciowanie, w momencie zakonczenia procedury 
jest przypisywana odpowiadajicemu mu parametrowi aktualnemu yJt dla j=  1 , m.

Nalezy dodad, ze procedura moze korzystac z dostqpu do zmiennych globalnych progra­
mu, co oznacza dodatkowy sposöb wymiany danych pomiqdzy procedury a programem.

Skladnia programöw jQzyka PJP jest okreslona nastqmjico: jezeli Peldentyfikator 
jest nazwi programu, procePROC  jest zbiorem defmicji procedur, vare VAR( V) jest 
zbiorem deklaracji zmiennych, inseINSTRPJP, to napis postaci 

program P 
var 
proc 

begin 
ins 

end

jest pro gramem jQzyka PJP.

Zbiör wszystkich programöw jqzyka PJP bqdzie oznaczany przez PROGPJP. Oczywi- 
scie PROGbpjp c  PROGpjp.

Podobnie jak poprzednio, przy defmicji jqzyka BPJP, przedstawione wyzej reguty 
skladniowe wymagaji uzupelnienia o reguly ograniczen kontekstowych. Dodatkowi 
reguli bqdzie tu wymög, aby parametry procedury oraz jej zmienne lokalne byly uni- 
katowe i rözne od zmiennych i parametröw innych procedur oraz od zmiennych glo­
balnych -  zmiennych deklarowanych w catym programie.

Semantyka

Konsekwencji wprowadzenia procedur jest wprowadzenie nowych konfiguracji po- 
mocniczych zwi^zanych z opisem wywolania i zakonczenia procedury. Wywolaniu 
i zakonczeniu procedury bqdi odpowiadac dwa nowe aksjomaty.

Dla uproszczenia zaklada siq, ze procedura ma co najwyzej jeden wejsciowy i co naj- 
wyzej jeden wyjsciowy parametr formalny, dlatego bqdi rozpatrywane instrukcje wy-



wotania procedury postaci p(e, y ), p(e), p(y), gdzie wyrazenie e jest pierwszym para- 
metrem aktualnym, a zmienna y jest drugim parametrem aktualnym.

Wywolanie procedury p(e, y), ktora ma definicjs 
p(typi in pary, typ2 out par2) 

varp 
begin 

insp 
end

b^dzie opisane nast^puj^cym aksjomatem wywolania procedury nierekursywnej
< v, p{e, y) > ----- > < v u  vp, beginp insp end'’ >

gdzie vp jest wartosciowaniem parametröw i zmiennych lokalnych procedury p.

Na mocy przyjqtego zalozenia o unikalnosci parametröw i zmiennych lokalnych, 
funkcje v oraz vp maj^ rozl^czne dziedziny, a wi?c ich suma mnogosciowa pozostaje 
funkcj^,

Wartosciowanie poczqtkowe vp jest okreslone nastQpuj^co:
• vp(par\) = INTv(e),
• vp(par2) = 1 ,
• jezeli zmienna x jest zadeklarowana w varp i jej deklaracja ma postac typ x, 

gdzie type, {bool, int, char, string}, to vp(x) = ±,
• jezeli zmienna x jest zadeklarowana w varp i jej deklaracja ma postac typ x := t, 

to vp(x) = INTv(t).

Aksjomat wyraza fakt, ze wywolanie procedury, na okres jej wykonywania, rozszerza 
zbiör zmiennych programu. Wprowadzenie bloku pomocniczego, wyznaczonego slo- 
wami beginp oraz end'1, shizy do zaznaczenia tego fragmentu instrukcji programu, 
ktöry nalezy do procedury p. We fragmencie tym obowi^zuje rozszerzony zbiör war- 
tosciowanych parametröw i zmiennych.

Z zakonczeniem wykonywania procedury nierekursywnej wiqze siq aksjomat postaci

< v u  v p, begin1’ END end'’; ins > ------> < v,, ins >

gdzie v,(y) = v[y:=  vp(par2)].

Regula opisuje przekazanie wartosci obliczonej przez procedury do tej czQsci progra­
mu, z ktörej nast^pilo jej wywolanie. Wynik obliczen jest reprezentowany przez pa- 
rametr formalny par2. Wartosciowanie tego parametru zostaje przypisane zmiennej y, 
ktora jest odpowiadaj^cym mu parametrem aktualnym.

Przedstawiane aksjomaty rozszerzaj^definicjQ relacji zmian konfiguracji.

Obliczenie programu PJP jest definiowane tak samo jak programu BPJP, z tym ze jest 
oparte na rozszerzonej relacji zmian konfiguracji.



Przyklad 15.2
I Niech dana bqdzie modyfikacja programu z poprzedniego przykladu: 

program mnozenie 
int a; 
intb; 
inte;
procedure razy(int in x; int in y, int out z) 
begin

z := x * y 
end 

begin 
read(a); 
read(b); 
razy(a, b, c); 
write(c) 

end
Obliczenie programu przebiega nastQpuj^co:

Compi mnozenie) =
<v0, read(a); read(b); razy(a, b, c); write(c)>------>
<vi, read(b); razy(a, b, c); write(c)>------»
<v2, razy(a, b, c); write(c)>------>
<V3, beginrazy z := x * y endrazy; write(c)>------>
<V4, beginrazy END endrazy; write(c)>:------»
<V5, write(c)>------»
<v6, END>

Wartosciowanie pocz^tkowe v0 jest wyznaczone przez deklaracjq zmiennych: 
v0(a) — -L» 
vo(b)— -U 
v0(c) "" -L-

Zaldadaj^c, ze 10 jest pierwsz^ wczytan^ liczb^ v, = v0[a := 10], czyli: 
vi(a) = 10, 
vi(b) = -L, 
vi(c) = -1"

Zakladaj^P, ze 2 jest drug^. wczytan^. liczb^, v2 = Vi[b := 2], czyli: 
v2(a) =10, 
v2(b) -  2, 
v2(c)" -!-■



Wywolanie procedury razy prowadzi do wartosciowania v3 = v2 u  virazy, gdzie: 
v,razy(x) = v2(a), 
v,razy(y) = v2(b), 
v,razy(z) = J..

Wykonanie tresci procedury prowadzi do wartosciowania v4 = v2 u  v2razy, gdzie: 
v2razy(x) = v2(a),
V2razy(y) = v2(b), 
v2razy(z)= INTVy(x*  y)=20.

Wyjscie z procedury i powröt do glöwnego programu prowadzi do wartosciowania 
v5 = v4[c := v2razy(z)], czyli: 

v5(a) =10, 
v5(b) = 2, 
v5(c) = 20.

I Oczywiscie v5 = v6. i

15.6. J$zyk J P  -  procedury rekursywne
Kolejne, ostatnie rozszerzenie jqzyka nie wprowadza nowych jednostek leksykalnych. 
Zmiana dotyczy skladni i polega tylko na eliminacji zalozenia, ze w tresci procedur 
nie dopuszcza siq wywofywania innych procedur. W szczegölnosci w tresci danej 
procedury moze byc wywolanie tej samej procedury.

Zmiana skladniowa poci^ga za sob^modyfikacj? relacji zmian konfiguracji, a doklad- 
niej -  modyfikacjq samej konfiguracji. Potrzeba modyfikacji wiqze si? z tym, ze wy­
wolanie procedury powoduje rozszerzenie zbioru wartosciowanych parametröw 
i zmiennych. W przypadku, gdy w trakcie wykonywania procedury nastqpuje ponow- 
ne wywolanie tej samej procedury, powstaje koniecznosc zapewnienia, by parametry 
i zmienne lokalne kolejnego wywolania byly odrözniane od parametröw i poprzednie- 
go wywolania tej procedury. W tym celu, przy kolejnym wywoianiu procedury, nalezy 
dokonac odpowiedniego przemianowania parametröw i zmiennych procedury. Me- 
chanizm stosowanego dalej przemianowania polega na tym, ze nazwa kazdego para- 
metru i zmiennej lokalnej procedury otrzymuje dodatkowy indeks -  liczb$, ktöra 
zwi^ksza siq o jeden przy kazdym kolejnym wywoianiu procedury.

Wywolanie procedury p(e , y) o definicji
p(typi in parü typ2 out par2) 

varp 
begin 

insp 
end



gdzie tym razem varp moze zawierac instrukcje wywolania procedur, b^dzie opisane 
dwoma aksjomatami wywolania procedury rekursywnej.

Pierwszy aksjomat, dotycz^cy pierwszego wywolania procedury p, stanowi uogölnie- 
nie poprzedniego aksjomatu wywolania procedury nierekursywnej

< v, p{e, y ) > ------ > < v u  vp’° , beginp0 ins endp’° >

gdzie vp’° jest wartosciowaniem parametröw i zmiennych lokalnych procedury p.

Wprowadzony blök, okreslony symbolami beginp0 ... endp'° oznacza, ze parametry 
formalne i zmienne lokalne procedury p  s^ indeksowane liczbq. 0, b$dzie to zaznacza- 
ne w postaci gömego indeksu dodanego do kazdego parametru i zmiennej lokalnej.

Drugi aksjomat dotyczy wywolania procedury p, ktöre zachodzi w trakcie wykonywa- 
nia uprzedniego, jeszcze niezakonczonego wywolania tej procedury.

<VUVP’° u . . . u v p,i,
beginp’° ...beginp'k p(e,y)\insk endp* ...ins0 endp0>
------>
< v v v p' ° v . . . u v p’k u v pM\
beginp’° ...\)tg \np’kb tg inp’k̂ m sp tnA pk+{ ins ktnApk ...ins0 endp,0>

Wartosciowanie vp'k+l jest okreslone podobnie jak bylo okreslone vp, mianowicie:
• vpMl(pari) = I N T ^  ^ ( e ) ,
• vp'k+l(par2) = -L,
• jezeli zmienna x  jest zadeklarowana w varp i jej deklaracja ma postac typ x, 

gdzie typs {bool, int, char, string}, to vpMl(x) = J_,
jezeli zmienna x  jest zadeklarowana w varp i jej deklaracja ma postac typ x  := t,
to vpk+\x )  = INTV / VI m (0-

Z zakonczeniem wykonywania procedury rekurencyjnej wi^z^ siq röwniez dwa aksjoma- 
ty. Pierwszy dotyczy ostatecznego wyjscia z procedury i powrotu do glöwnej cz^sci pro- 
gramu:

< v u  vp,0,begm p’0 ENDendp’°; ins > ------> < v,, ins >

gdzie v, (y ) = v[y:= vp’° (par2)].

Drugi aksjomat dotyczy wyjscia z (k+  l)-zagniezdzonego wykonania procedury 
i powrotu do £-zagniezdzonego wykonania procedury:

<v u  vp'° u ... u  vp'k u  vpMl,
begin1’’0... beginp* ... beginp'*+1END endp,*+l//wi endp’* ... ins0 endp,0>
------>
<V, u  vp,° u ... u  vp,k,
beginp,° ... beginp,i... insk endp ,i... ins0 endp,0>



gdzie (v, u v '1,0 u ... u  vp'k)(y) = v [y := vp'k+i(par2)].

Obliczenie programu JP  jest definiowane podobnie jak programu PJP, z tym ze 
uwzglqdnia kolejne rozszerzenie relacji zmian konfiguracji.

Podsumowuj^c kolejne rozszerzenia jqzyköw programowania, latwo stwierdzic, ze 
PROGrpip c PROGpip c PROGjp.

Przyklad 15.3
 ̂ Niech bqdzie dany program pr wykorzystuj^cy procedurQ rekursywnego obliczania! 

silni. Program ma dwie zmienne globalne, a procedura -  dwa parametry formalne
i ipH na •zm ip n n a  In lra ln ai jedn£t zmienn^ lokaln^.

program pr
int a; 
int b
procedure silnia(int in n; int out s) 

int sl 
begin

if n = 0 then s := 1 eise silnia(n -  1, sl); s = n * sl f! 
end 

begin
read(a); 
silnia(a, b); 
write(b)

Wartosciowanie v0 w poczqtkowej konfiguracji programu jest okreslone nast^puj^co: 
v0(a) = ±, 
v0(b) = l .

Pomijaj^c pierwsze zmiany konfiguracji, rozpatrzmy tQ, ktöra nastqpuje po wyko- 
naniu instrukcji czytania. Zalozmy dodatkowo, ze wczytan^ wartosci^jest liczba 2. 
Program znajdzie siq w konfiguracji:

<v2, silnia(a, b); write(b)>

gdzie: 
v2(a) = 2, 
v2(b) = l .

Zgodnie z aksjomatem wywolania procedury rekursywnej nast^pi przejscie do kon­
figuracji:

<v u  vsünia’0,



begmsilnia,°
if n° = 0 then s° := 1 eise silnia(n° -  1, sl°); s° = n° * sl° fi 

endsilnia’° ; 
write(b) >

gdzie:
vsi'nia'0(n0) = 2,
v silnia,0( s 0)  =  _L)

Vsi'ma'0(s l0) = l .

Kolejne przejscie, bez zmiany wartosciowania, nast^pi do konfiguracji:

< v u v silnia’0,
beginsilnia'°

silnia(n° -  1, sl°); s° = n° * sl° 
endsilnia,° ; 
write(b) >

Ponowne zastosowanie aksj omatu wywolania procedury9 rekurencyjnej prowadzi
do konfiguracji:

< v u v silnia’° u v silnia-1,
beginsilnia’0

beginsilnia’‘
if n1 = 0 then s1 := 1 eise silnia(n* -  1, s l '); s1 = n1 * s l 1 fi 

endsilnia’' ; 
s° = n° * sl° 

endsilnia'0; 
write(b) >

gdzie:
vsilnia-1(n1) = l ,
vsilnia’1(s1) = J.)
ySil—ia, * ( s 1 ')  =  J_

Bez zmiany wartosciowania nastqpuje przejscie do konfiguracji

beginsilnia,°
beginsilnia’1

silnia(n‘ -  1, s l 1); s1 = n1 * s l1 
endsilniai1; 
s° = n° * sl° 

endsilnia’° ; 
write(b) >



Kolejne, ostatnie zastosowanie aksj omatu wywolania procedury rekursywnej pro- 
wadzi do konfiguracji:

<v U vsilnia'° U vsilnia’1U vsilnia-2,
begin1silnia,0

begin1silnia, 1
silnia,2beginsl

if n2 = 0 then s2 := 1 eise silnia(n2 -  1, s l2); s2 = n2 * s l2
isilnia,2 .

fi;
end
s1 = n1 sl

endsilnia>‘ ; 
s° = n° * sl° 

endsilnia’° ; 
write(b) >

gdzie:
Vsilnia’2(n2) = 0,
vsilnia.2(s2) =  _U
vSilnia,2(s l 2) =  J _

Kolejne przejscie, bez zmiany wartosciowania, nastqpuje do konfiguracji:

<v u  vsilnia'° u  vsilnia'1U vsilnia'2, 
beginsilnia-° 

beginsilniaI 
beginsilnia2 

s2 := 1 
endsilnia’2; 
s1 = n1 * s l1 

endsilnia’' ; 
s° = n° * sl° 

endsilnia,° ; 
write(b) >

Po osieigniQciu tej konfiguracji b^dzie nast^powac seria powrotöw z zagniezdzo- 
nych wywolan, kolejno do:

< V  U  v « l " i a , 0 u  v s i ln ia , lu  ^ s i l n i a , 2^

beginsilnia-° 
beginsilnial 

beginsi,nia2 
END 

endsilnia’2; 
s1 = n1 * s l 1 

end5""“’1;



s° = n° * sl° 
endsilnia,° ; 
write(b) >

gdzie:
Vlsilnia'2(n2) = Ö,
Vlsilnia’2(s2) = 1, 
v,si,nia’2(s l2) = l .

NastQpnie do konfiguracji:
< v u v silnia’° u v ,si,nia’1, 

beginsilnia’° 
beginsilnial 

s1 = n1 * s l ‘ 
end5*1"“’1; 
s° = n° * sl° 

endsilnia’0; 
write(b) >

gdzie:
v1,ilnia’i(n 1) = i, 
v,silnia’1(s,) = l J 
v,,ilnial(sl 1)=  1.

I, podobnie, dalej do:
<v U vsilnia’°U  v2silnia'', 

beginsilnia-0 
beginsilnial 

END 
endsi,nia l ; 
s° = n° * sl° 

endsilnia’° ; 
write(b) >

gdzie:
v2silniaV ) =  1, 
v2silnia'1(s1) = 1, 
v2silnia'1(s l ,) = l .

Nastopna zmiana konfiguracji daje:
< v u v 1s,lnia'°, 

begmsilnia,° 
s° = n° * sl° 

endsilnia’° ; 
write(b) >



gdzie:
v,,ilnia V )  = 2,
Visilnia,0( s 0)  =  _Lj

v,si,nia0(s l0) = l .

StEid otrzymuje siq konfiguracjQ:

< v u / nW, 
beginsilnia0 

END 
endsilnM; 
write(b) >

gdzie:
V i siln ia .0 ( n 0 )  =  2 >

V , “ ( S 0 )  =  i ,  

v,silnia0(s l0) = l .

Po ostatecznym wyjsciu z procedury przechodzi siq do konfiguracji < v , write(b) >, 
gdzie:

vi(a) = 2, 
v,(b) = 2.

I po czym osiqga siQ konfiguracji koncow^ < v , END>.________________________ I

Cwiczenia

1. Przedstawic gramatyki bezkontekstowe dla omawianych j^zyköw BPJP, PJP oraz 
PJP.

2. Rozszerzyd j^zyk BPJP o nowe typy danych:
a) typ wyliczeniowy,
b) tablicowy,
c) rekordowy.

3. Przedstawid semantykQ operacyjn^nowych instrukcji pqtli:
a) for i:=l to n do ins od
b) repeat ins until orend

4. Przedstawic obliczenie programu:
program sk

int n; 
int s := 0; 
int k := 1;



begin
read(n);
w h i l e k < n d o s : = s  + k * k ; k : = k + l  od; 
write(s) 

end

5. Okreslic relacjq, ktöra okresla zwiqzek pomiqdzy danymi czytanymi przez pro­
gram a danymi pisanymi przez program:

program qq 
int n; 
int p := 1; 

begin 
read(n);
P "  0;
while n * 0 do p := p * n ; n := n -  1 od; 
write(p) 

end

6. Danajest definicja procedury:
procedure sum(int in n; int out s) 
begin

if n = 0 then s := 0 eise sum(n -  1, sl); s := s + sl fi 
end

Przedstawic obliczenia dla wywolan procedury sum: 

sum(l, x), sum(2, y), sum(3, z).

7. Dana j est definicj a procedury:
procedure pr(int in m; int in n; int out k) 

int p := 0 
begin

k := 0;
while n < 2 * m do k := k + m; n := n + 1 od 

end

Okreslic relacjq pomiqdzy formalnymi parametrami wejsciowymi i parametrami 
wyjsciowymi. Okreslic tq relacjq, gdy warunek w instrukcji iteracji ma postac: 
n * 2 * m.



16. Logika programöw Hoare’a

16.1. Programy ze specyfikacja

Program jest zapisem algorytmu w postaci jednoznacznie interpretowanej przez kom- 
puter. Interpretacja ta wyraza siq przez obliczenie, ktöre dla ustalonego zestawu da- 
nych wejSciowych dostarcza pewnego zestawu danych wyjsciowych. Od programu 
oczekuje siq, ze jest on poprawny, to znaczy ze dostarczane wyniki jego obliczen s^ 
zgodne z oczekiwanymi. Jak okreslic, jakie s^ oczekiwania od programu, czyli „co 
program ma liczyc”, i jak stwierdzac, czy dany program spehiia te oczekiwania, czy 
„liczy to, co nalezy” -  oto dwa zasadnicze pytania, na ktöre musi odpowiadac progra- 
mista.

OkreSlenie tego -  co program ma liczyc -  nazywa siq specyfikacja programu. Specy- 
fikacja moze byc wyrazana w rözny sposöb. Najprostsz^ form% jest specyfikacja 
slowna, wyrazona w jqzyku naturalnym, na przyklad:

Program ma obliczac pierwiastek z danej liczby.
Program ma obliczac najwiqkszy wspölny podzielnik dwöch liczb.
Program ma mnozyc dwie macierze.

Z kazdym przykladem wi^z^ si$ pewne niejasnosci, na przyklad:

Dia jakich liczb i z jakq dokladnosciq ma byc obliczony pierwiastek?
Dia jakich liczb ma byc obliczony najwiqkszy wspölny podzielnik?
Jakie majq byc rozmiary i jakiego typu majq byc elementy mnozonych macierzy?

Jednym ze sposoböw precyzyjnego sformulowania specyfikacji programöw jest 
uzycie pary formul, nazywanych warunkiem wstqpnym i warunkiem koncowym. 
Warunek wstQpny i warunek koncowy b$d^ oznaczane przez pre i post. S% one 
formulami ustalonego j^zyka rachunku kwantyfikatoröw. J^zyk ten bqdzie ozna- 
czany przez SPEC. Para warunköw <pre, post> stanowi specyfikacja programu, 
czyli sformulowanie wlasnosci oczekiwanych od programu. Specyfikacja taka po- 
winna byc sformulowana przed powstaniem programu, po to, aby programista wie- 
dzial, co ma napisac, natomiast -  gdy program juz powstanie -  pojawia si$ pytanie: 
czy program jest zgodny z t^ specyfikacja Inaczej: czy program jest poprawny 
wzglqdem specyfikacji.



Na dalsze potrzeby zaklada siQ, ze jako jqzyk programowania bqdzie przyj^ty j$zyk 
JP, zdefiniowany w rozdziale poprzednim.

Tröjka postaci

{pre} prog {post}

gdzie pre, poste SPEC, progePROGJP< bqdzie nazywana programem ze specyfikacji. 
Poniewaz program sklada si? z instrukcji, kazda instrukcja sldadowa ins moze miec 
wlasni specyfikacji, ktöra w pewien sposöb wynika ze specyfikacji calego programu. 
Mozna zatem rozpatrywad tröjki:

{preins} ins {postins}

wyrazajoce czQäciowi poprawnosc instrukcji inse INSTRJP wzglqdem warunköw preins 
i postins.

Programowi ze specyfikacji przypisuje siq jedno z dwöch znaczen, nazywane -  od- 
powiednio -  cz^sciowi i calkowiti poprawnoscii programu. Möwi siq tez inaczej, ze 
program jest cz^sciowo lub calkowicie zgodny ze swoji specyfikacji

Definicja 16.1
Czqsciowa poprawnosc programu prog  wzglqdem pary warunköw pre i post ozna- 
cza zachodzenie nastqpujicej wlasnosci:

Dia kazdego wartosciowania poczitkowego v0 zmiennych programu spelniajicego 
warunek wstqpny pre, jeSli program prog zakonczy siQ pomyslnie (nie ulegnie ze- 
rwaniu i nie zapQtli sii), to wartosciowanie koncowe v* zmiennych programu spei- 
nia warunek koncowy post.

CzQsciowa poprawnosc programu prog  oznacza, ze jesli INTVq (pre) = P, to jesli tylko 
jego obliczenie ma postad

Compiprog) = <v0, ins0>------ »<vi, ins\>------> . . . ------ > <vk, END>

to INTVi (post) = P.

Nalezy zwröcid uwagq, ze z podanej definicji czQsciowej poprawnoSci wynika, ze 
program, ktörego obliczenie ulegnie zerwaniu lub si$ nie zakonczy, jest cz^scio- 
wo poprawny wzglqdem dowolnej specyfikacji! Dowolny program prog  jest röw- 
niez czqsciowo poprawny wzglqdem kazdej specyfikacji, w ktörej pre  = false lub 
post = true.

Definicja 16.2
Calkowita poprawnosc programu prog wzglqdem pary warunköw pre i post ozna­
cza zachodzenie nastipujicej wlasnosci:



Dia kazdego wartosciowania pocz^tkowego v0 zmiennych programu spelniajicego 
warunek wstqpny pre, program prog konczy si$ pomyslnie (nie ulega zerwaniu 
i nie p$tli si$), a wartosciowanie koncowe v k zmiennych programu spelnia warunek 
koncowy post.

Oznacza to, ze jesli INT {pre) = P, to obliczenie programu siq konczy, czyli

Compiprog) = <v0, insä>------» <Vi, ins\>------ » ... ------> <v*, END>

oraz INTVk {post) = P.

Calkowita poprawnosc programu oznacza gwarancjQ, ze obliczenie programu zawsze 
siq konczy, jesli tylko wartosciowanie pocz^tkowe zmiennych programu spelnia wa­
runek wst^pny pre.

Calkowita poprawnosc programu poci^ga, oczywiscie, poprawnosc czQsciow^ wzglq- 
dem danej specyfikacji.

Nasuwa si$ pytanie o zwi^zek pomi^dzy j^zykiem specyfikacji SPEC a jqzykiem pro- 
gramowania, bowiem czQSci^jQzyka JP  jest zbiör formul FORM{V).

Zbiör formul FORM{V) jqzyka programowania JP  nie zawiera kwantyfikatoröw. 
Zbiör ten jest podzbiorem formul j^zyka rachunku kwantyfikatoröw, oznaczanego 
tutaj przez JRK{FJP, Pjp, V), nad sygnatur^ SigJP = <FJP, PjP>, gdzie FJP i PJP s^ zbio- 
rami symboli funkcyjnych i predykatywnych jQzyka programowania JP  oraz zbiorem 
zmiennych V, zatem FORM{V) c  JRK{FjP, PJP, V).

J$zyk specyfikacji SPEC jest röwniez zbiorem formul j^zyka rachunku kwantyfika­
toröw J R K { F SPe c , P s p e c , V) nad pewm*. sygnatur^ SigSPEc = < F SP e c , P s p e c >  i zbio­
rem zmiennych V. W szczegölnym przypadku jako j$zyk specyfikacji SPEC moze 
byc wybrany jqzyk JRK{FJP, PJP, V). Dia ulatwienia dalszych rozwazan przyjmuje 
siq zalozenie, ze jQzyk specyfikacji SPEC jest co najmniej tak bogaty jak jqzyk 
JRK{FJP, PJP, V).

16.2. System dowodzenia poprawnosci cz^sciowej

Budowa poprawnych programöw opiera siq na dwöch podejsciach: podejsciu kon- 
struktywnym i weryfikacyjnym. Podejscie konstruktywne polega na takim ci^gu prze- 
ksztalcen specyfikacji programu w konstrukcje programowe, w ktörym kazde prze- 
ksztalcenie -  na mocy konstrukcji -  jest poprawne, zapewniaj^c zachowanie 
zgodnosci ze specyfikacji Takie podejscie jest przedstawiane na przyklad w ksi^z- 
kach: [Dijkstra 1978] i [Cook 2005], W tym rozdziale omawia si$ tylko drugie podej­
scie, ktöre polega na weryfikacji (badaniu poprawnosci) gotowego programu wzglQ- 
dem specyfikacji.



Jeden ze sposobow badania poprawnosci programu opiera siq na systemie wniosko- 
wania Hoare’a. Jak kazdy System wnioskowania sklada si$ on z zestawu aksjomatöw 
i regul, ktorych elementami s^ instrukcje ze specyfikacjami. Przedstawiony nizej Sys­
tem odnosi siq do wnioskowania o czQSciowej poprawnosci programow w j^zyku 
BPJP.

Aksjomat instrukcji skip 
{pre} skip {pre}

Aksjomat wyraza to, ze instrukcja nie zmienia wartosciowana zmiennych programu: 
jezeli warunek pre jest speiniony przed wykonaniem instrukcji, to jest, oczywiscie, 
speiniony röwniez po wykonaniu tej instrukcji.

Aksjomat instrukcji pisania 
{pre} write(x) {pre}

Instrukcja pisania rowniez nie zmienia wartosciowania zmiennych programu, zatem 
jest w tym sensie röwnowazna instrukcji skip. Instrukcja daje, oczywiscie, dodatkowy 
efekt, ktörym jest przekazanie wartosci zmiennej x do otoczenia programu, za posred- 
nictwem pewnego urz^dzenia pisz^cego.

Aksjomat instrukcji przypisania
{post[x ::=;]} x := t {post} gdzie te TERM(V)

Rezultatem instrukcji przypisania jest zmiana wartosciowania zmiennej x. Jesli v jest 
wartosciowaniem przed wykonaniem instrukcji, to po jej wykonaniu nowym warto- 
sciowaniem jest v[x := INTv{t)]. Jesli po zakonczeniu instrukcji jest speiniony warunek 
post, czyli INTv[x.=int ((){post) = P, to INTv(post[x ::=/] = P -  zob. lemat 11.2.

Aksjomat instrukcji czytania
{post[x ::= i]} read(x) {post} gdzie te TERM{0)

Instrukcja czytania daje wynik podobny do instrukcji przypisania, ale istotne jest to, ze 
wartosc przypisana zmiennej x nie jest z göry okreslona. Moze to byc dowolna war- 
tosc ze zbioru wartosci odpowiadaj^cych typowi zmiennej x. Instrukcja, z punktu wi- 
dzenia wykonawcy programu, jest niedeterministyczna, gdyz wartosc przypisana 
zmiennej zalezy od otoczenia programu. Po wykonaniu tej instrukcji program moze 
miec rözne obliczenia, ktore zalezy od wartosci wczytanej zmiennej.

Regula dla instrukcji warunkowej
{pre a  a} ins] {post}, {pre a  —idf} ins2 {post}

{pre} if a  then insx eise ins2 fi {post}

Regula ma dwie przeslanki odnosz^ce siq do poprawnosci czQsciowej instrukcji skla- 
dowych ins2 oraz ins2. Sum^_ warunkow wst^pnych dla obu instrukcji skladowych jest



formula pre, ktöra jest warunkiem wstqpnym calej instrukcji warunkowej. (W przy- 
padku instrukcji warunkowej o konkretnie podanej skladni i semantyce, warunki 
wstQpne dla instrukcji skladowych s^ rozl^czne.) Poniewaz warunkami koncowymi 
obu instrukcji jest post, zatem instrukcja warunkowa jest poprawna wzglqdem warun- 
köw pre i post.

Regula dla instrukcji iteracji
_______ {pre a  (X) ins {pre}_______
{pre} while a  do ins od {pre a  ->a}

Warunek pre nazywa siQ niezmiennikiem instrukcji iteracji, co oznacza, ze jest on 
spelniony w wyröznionym miejscu instrukcji iteracji, po kazdym wykonaniu instrukcji 
ins. Postac warunku wstQpnego w przeslance reguly zakiada, ze instrukcja ins wyko- 
nywana, gdy spelniony jest dozör a, gwarantuje, ze warunek ar jest spelniony po jej 
wykonaniu. Postad warunku koncowego dla calej instrukcji wynika z kolei z faktu, ze 
spelnienie —>aoznacza koniec wykonywania calej instrukcji.

Pojqcie niezmiennika jest ogölniejsze, gdyz mozna odnosic je  do dowolnej instrukcji: 
warunek inv jest niezmiennikiem instrukcji ins w wyröznionym jej miejscu przy wa­
runku poczqtkowym init, jezeli dla kazdego obliczenia instrukcji z wartosciowaniem 
pocz^tkowym spetniajqcym init, za kazdym razem, gdy obliczenie dochodzi do wy- 
röznionego miejsca instrukcji ins, aktualne wartosciowanie zmiennych spelnia przypi- 
sany temu miejscu warunek inv.

Regula dla sekwencyjnego zlozenia instrukcji 
{pre} ins] {midi}, {midi} ins2 {post}

{pre} ins,; ins2 {post}
Regula konselcwencji

pre => prex, {prex} ins {postx}, post{ => post 
{pre} ins {post}

Regula konsekwencji pozwala na zaw^zanie warunkow wst^pnych i oslabianie wa- 
runköw koncowych. Specyfik^ reguly jest to, ze zawiera dwie przeslanki w postaci 
instrukcji ze specyfikacj^, ale w postaci implikacji, ktörych spelnienie b^dz niespel- 
nienie nie moze byc wnioskowane w ramach danego systemu wnioskowania o po- 
prawnosci cz^sciowej programöw. Mozna o tym wnioskowac na przyklad przez wy- 
korzystanie jednego z przedstawianych systemöw dowodzenia dla rachunku 
predykatöw.

Regula podstawienia dla dowolnej instrukcji

______{pre} ins {post}______
{pre{y /]} ins {post[y := /]}



dla zmiennej y, ktöra nie wystopuje w instrukcji ins, i dla termu t, ktöry nie zawiera 
zmiennych wystQpuj^cych w tej instrukcji. Regula ma Charakter pomocniczy, przydaje 
siq do orzekania o poprawnosci czqsciowej wzglqdem pary warunköw rözni^cych siq 
od pre i post zast£|pieniem zmiennej y  dowolnym termem.

Regula dla programu

___________ {pre} ins {post}___________
{pre} program p  var begin ins end {post}

Regula stwierdza, ze czqsciowa poprawnosö programu oznacza czqsciow^ poprawnosc 
jego tresci.

Przedstawione wyzej aksjomaty i reguly odnosz^ siq do jqzyka BPJP.

Przyklad 16.1
 ̂ Latwo sprawdzic, ze poprawne czQsciowo nizej podane instrukcje przypisania! 

wzgl^dem odpowiadaj^cych im specyfikacji:

{x > 9} x := x +1 {x > 10}
(y > 9} x : = y + l  {x> 10}
{x + y > 0}x := x + y {x > 0}

Czytelnikowi pozostawia si$ sprawdzenie, ze poprawne cz^sciowo nizej podane 
instrukcje warunkowe wzgl^dem odpowiadaj^cych im specyfikacji:

{x > 0} if x > 0 then x := x + 10 eise x := x + 5 fi {x > 10}
{x > 0} if x > 5 then x := x + 5 eise x := x + 10 fi {x > 10}

Bardziej zlozone jest sprawdzenie poprawnosci czQSciowej dla instrukcji iteracji 
wzglqdem specyfikacji:

{s = 0  a  i  = m }

while i < n do s := s + i ; i := i +1 od 

{ s = £ k A i  = n + l}
k = m

Zauwazmy, ze niezmiennikiem dla instrukcji iteracji jest warunek
i-l

pre s  ( s = £ k A i < n  + l)  
k = m

Mozna to sprawdzic, postuguj^c si$ aksjomatami dla instrukcji przypisania 

s := s + i ; i := i +1

stanowi^cych tresc instrukcji iteracji.



Druga z tych instrukcji jest cz^sciowo poprawna wzglqdem specyfikacji 

{s= £ k A i < n }
k = m

i := i + 1

{s= f ) k A i < n  + l}
k = m

Dia pierwszej z nich zachodzi:

{s= £ k A i < n }
k = m

s := s + i 

{s= £kAi<n}
k = m

Zauwazmy, ze
i-1

pre  a  (i < n) = s =  £ k A i < n
k = m

oraz
n

pre  a  —.(i < n) = s = £ k A i = n + l
k = m

co dowodzi czQ^ciowej poprawnosci instrukcji iteracji wzglqdem podanej specyfi- 
I kacji.____________________________________ ___________________________ I

Nastgme reguly sq. zwi^zane z instrukcjami wywolania procedur nierekursywnych -  
jqzyk PJP -  oraz rekursywnych -  jQzyk JP.

Regula wywolania procedury nierekursywnej

{pre} a, :=e,; a„ :=e„;insp; x , :=b,; :=bm {post}
{pre} p(e,, en,x u x m){post}

gdzie procedura p ma definicjq:

P(typ\ in a , ; ...; typ„ in a„; typ„+, out b , ; ...; typa+m out b„,) 
varp 

begin 
insp 

end

Ci^g instrukcji

a i -=ei> •••> a„ -= e„, insp, X].—bt; ...; x m :=bm 
stanowi zmodyfikowan^ tresc definicji procedury.



Modyfikacja polega na dol^czeniu przed insp ci^gu instrukcji przypisania, ktöre od- 
zwierciedlajEL komunikacjQ parametröw wejsciowych, oraz na dol^czeniu po insp ci^gu 
instrukcji przypisania, ktöre odzwierciedlaj^ komunikacj^ parametröw wyjsciowych. 
Efektem pierwszej grupy dolqczonych instrukcji przypisania jest modyfikacja warto- 
sciowania wejsciowych parametröw formalnych procedury, a efektem drugiej grupy -  
modyfikacja wartosciowania wyjsciowych parametröw aktualnych.

Regula wywolania procedury rekursywnej, dla procedury o takiej samej definicji ma 
postac

{pre}p(e,, ..., e„,x,, .... x m){post}
h  iPre) a i := e,; a„ :=e„;insp; x t :=b,; x„, :=bm {post}

{pre} p(ej, .... e„,xu x m){post}

Ostatnia regufa rözni siQ od pozostalych postaciq. przeslanki. Sens przeslanki jest na- 
stqmj^cy: istnieje dowöd na to, ze:

jezeii zachodzi

{pre} p(e,, e„,x,, x m){post}

to zachodzi

{pre} a, : = e , ; a„ :=ell;insp; x l : = b , ; x m :=bm {post}

Symbol I- oznacza tu fakt istnienia dowodu.

Sens calej reguly jest nastqpuj^cy: instrukcja wywolania procedury rekursywnej jest 
czqsciowo poprawna wzgl^dem danej specyfikacji, czyli:

{pre} p(e,, e„,x,, x j  {post}
>

jesli na postawie zalozenia takiej poprawnosci mozna dowiesc czQSciowej poprawno­
sci instrukcji stanowi^cej zmodyfikowan^ tresö definicji procedury.

Przedstawiony System dowodzenia cz^sciowej poprawnosci programöw jest seman- 
tycznie poprawny, nie jest natomiast semantycznie zupelny. Dowöd poprawnosci, 
a takze powody braku zupelnosci s% przedstawione w ksi^zkach: [Dembinski, Malu- 
szynski 1981], [Apt, Olderog 1991].

Przyklad 16.2
I Dana jest rekursywna procedura obliczaj^ca najwiqkszy wspölny dzielnik dwöch! 

liczb, oparta na algorytmie Euclidesa:

procedure NWD(int in x; int in y; int out z) 
int r ; 

begin



r := x mod y;
if r = 0 then z := y eise NWD(y, r, z) fi 

end

Zaklada siQ, ze dla wywolania procedury zachodzi:

{a > 0 a  b > 0} NWD(a, b, c) {c = nwd(a, b)}

gdzie nwd(a, b) jest funkcjq, ktöra okresla najwiqkszy wspölny dzielnik liczb a 
oraz b. Nalezy zbadac, czy na podstawie przyj^tego zalozenia zachodzi:

{ a > 0  A b > 0 }

x := a; y := b; 
r := x mod y;
If r = 0 then z := y eise NWD(y, r, z) fi ; 
c := z

{c = nwd(a, b)}

Latwo stwierdzic, ze poprawne czqsciowo fragmenty programu, wyröznione 
boczn^ liniau wzglqdem przedstawionych specyfikacji:

{a > 0 a  b > 0} 
x := a; y := b;

{x > 0 a  y > 0} 
r := x mod y;
if r = 0 then z := y eise NWD(y, r, z) f i ;

{z = nwd(x, y)} 
c := z

{c = nwd(a, b)}

Pozostaje zbadanie, czy poprawny jest fragment:
{x>0 A y > 0 }  

r := x mod y;
if r = 0 then z := y eise NWD(y, r, z) fi ;

{z = nwd(x, y)}

Wykazanie tego sprowadza siq do dwöch przypadköw:

Jezeli r = 0, to oczywiscie wartosc z jest najwi^kszym wspölnym dzielnikiem 
liczb x oraz y, czyli z = nwd(x, y).

Jezeli r * 0, to korzysta siq z twierdzenia arytmetyki:

jezeli r jest reszt^ z dzielenia calkowitoliczbowego x przez y, to 
nwd(x, y) = nwd(y, r),

zatem i w tym przypadku z = nwd(x, y) = nwd(y, r). ,



16.3. Dowodzenie poprawnosci calkowitej

Poprawnosc calkowita programu oznacza, ze program spehiia nastqpujqce warunki:
• jest czqsciowo poprawny wzglqdem danej specyfikacji,
•  jego obliczenie nie ulegnie zerwaniu,
• jego obliczenie nie bqdzie nieskonczone.

W dalszej czqsci rozdziahi bqdzie omöwione tylko jak mozna badac, czy obliczenie 
programu jest nieskonczone, inaczej: czy program ma wtasnosd stopu. Przyczynq nie- 
skonczonych obliczeii moze byc pqtlenie siq instrukcji iteracyjnej. Badanie stopu in- 
strukcji iteracji mozna prowadzic miqdzy innymi metodq liczniköw iteracji i metodq 
malejqcych wielkosci [Banachowski, Kreczmar 1982] oraz funkcji zmniejszajqcej 
[Dijkstra 1978]. Ponizej jest przedstawiona tylko pierwszä z tych metod -  metoda 
liczniköw iteracji.

Niech dana bqdzie instrukcja iteracji standardowej postaci 

while a d o  ins od

Zaklada siq, ze siq jej obliczenie rozpoczyna siq przy wartosciowaniu spetniajqcym 
ustalony warunek poczqtkowy init. Zatözmy ponadto, ze inv jest niezmiennikiem in­
strukcji przy warunku poczqtkowym init.

Metoda liczniköw polega na wstawieniu do tre§ci instrukcji iteracji dodatkowej 
zmiennej, innej od wszystkich innych zmiennych wystqpujqcych w tresci instrukcji, 
ktöra zwiqksza swojq wartosc o jeden po kazdorazowym wykonaniu instrukcji ins:

n = 0; while ardo ins; n := n + 1 od

a nastqpnie na okresleniu wyrazenia calkowitoliczbowego up, ktörego wartosc w trak- 
cie obliczenia programu ograniczalaby wartosc zmiennej n.

Twierdzenie 16.1
Jezeli inv a  (n < up) jest niezmiennikiem rozszerzonej instrukcji iteracji, to instruk­
cja iteracji w standardowej postaci ma wlasnosc stopu.

Dowöd jest przedstawiony w ksiqzce [Banachowski, Kreczmar 1982].

CzQSto instrukcja iteracji zawiera instrukcje, ktöre mogq pelnic rolq licznika pqtli. 
W takich przypadkach pozostaje zadanie ustalenia wyrazenia up, wyznaczajqcego 
göme ograniczenie licznika. Rozpatrzmy prosty przyklad.

Przyklad 16.3_________________________________________________________

Dana jest procedura obliczajqca wynik i resztq dzielenia calkowitoliczbowego: 

procedure dc(int in x; int in y; int out q; int out r)



{ x > 0  A y > 0 }
begin

q:=  1; 
r := x;
while y < r do q := q +1; r := r -  y od 

end
{x = q * y  + r A Ö < r < y A X > 0 A y > 0 }

Latwo stwierdzid, ze program jest czqsciowo poprawny wzglqdem przedstawio- 
nej specyfikacji. Podobnie mozna sprawdziö, ze warunek

(p s x  = q* y + r A Ö < r A X > 0 A y > 0

jest niezmiennikiem instrukcji iteracji. Kandydatem na licznik jest zmienna q. 
Wartosc przypisywana zmiennej q jest ograniczona przez x/y. Aby stwierdzic, ze 
instrukcja iteracji ma wlasnosc stopu nalezy pokazac, ze warunek

a  (q < x/y)

jest niezmiennikiem instrukcji iteracji. Poniewaz juz wiadomo, ze <p jest nie­
zmiennikiem po to, aby pokazac, ze <p a  (q < x/y) jest niezmiennikiem, wystarczy 
pokazac (por. zad. 4.), ze (q < x/y) jest niezmiennikiem, ale (q < x/y) wynika z <p, 
mianowicie:

(x = q * y  + r Ay>0) =>( q  = x/y -  r/y) => (q < x/y)

Wedlug twierdzenia 16.1 mozna stwierdzic, ze procedura ma wlasnosc stopu, 
z czego -  na podstawie cz^sciowej poprawnosci procedury -  wynika, ze procedu- 

I ra jest calkowicie poprawna wzglqdem podanej specyfikacji.__________________I

Cwiczenia

1. Sformulowaö regulq wnioskowania poprawnosci czqsciowej dla instrukcji iteracji 
postaci: repeat ins until OL

2. Udowodnic czqsciowq poprawnosc ciqgu instrukcji wzglqdem podanej specyfi­
kacji:

a) {x = y*q + r} r := r -  y; q := q + 1 {x = y*q + r}
b) {x > 0 a  y > 0}

q := 0; r := x;
whi l e r> y do r  = r-y;q = q+ l eise skip od 

{x = y*q + r A r > O A y > Ü A r < y }



3. Uzasadnic aksjomat Floyda

{a} x := e {3y • (a[x  ::= y] a  x  = e[x ::= y])}

4. Niech warunki invx oraz inv2 b$d^ niezmiennikami danej instrukcji iteracji wzglq- 
dem tego samego warunku pocz^tkowego init. Czy warunki inv\ a  inv2 oraz 
inv\ v  inv2 b^dq. niezmiennikami tej instrukcji wzgl^dem warunku poczqtkowego 
init?

5. Sformulowac specyfikacji procedury, ktöra bada, czy dana liczba typu int jest licz- 
b̂ _ parzystEt- W jQzyku PJP napisac tq procedury i udowodnic jej czqsciow^ oraz 
calkowit^poprawnosc wzgl^dem utworzonej specyfikacji.

6. Okreslic, co jest celem obliczen podanego nizej programu? Sprawdzic, czy program 
ten jest zgodny z przedstawionymi specyfikacjami wewnQtrznymi.

program bp
int x; int y; int z; int n; int m; 

begin
read(x); read(y);

{n>0}
z := x; y := 1; m := n; 
repeat
{xn = y * zm a  m > 0}

if nieparzysta(m) then y := y * z eise skip fi; 
m := m div 2; 
z := z * z;

{xn = y * zm a  m > 0} 
until m =0; 
write(y);

{ y = x n }
end

7. Przedstawic specyfikacji procedury obliczaj^cej silniq, nastipnie pokazac jej czi- 
Sciow^. poprawnosd wzglqdem tej specyfikacji. Czy procedura jest poprawna cal- 
kowicie? Jak okreslic warunek gwarantuj^cy brak zerwania obliczen i warunek 
stopu:

procedure silnia(int in n; int out s) 
int sl 

begin
if n = 0 then s := 1 eise silnia(n -  1, sl); s = n * sl fi 

end
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