Biblioteka Gtéwna i OINT
Politechniki Wroctawskiej

I Zbignieun Huzar

100100162893

->0CAB, VX"0aSJ*'!I'

a, O SR, 4 —i37*4/->a — i 3>»«d4h— R

Element» logiki
| teorii mnogosci
dia inlormatyKOui

Zbigniew Huzar

Elementy logiki I teorii mnogosci
dla informatykow

Oficyna Wydawnicza Politechniki Wroclawskiej
Wroclaw 2007

Recenzenci
Marian Adamski
Leszek Pacholski
Wieslaw Szwarc

Opracowanie redakcyjne i korekta
Alicja Kordas

Projekt okladki
Zofia i Dariusz Godlewscy

Niniejszy podrgcznikjest poprawiong i uzupelniong wersjq, wydanej w 2002 roku,
ksigzki ,,Elementy logiki dla informatykéw"

Wszelkie prawa zastrzezone. Opracowanie ,w calosci ani we fragmentach nie moze byc
powielane ani rozpowszechniane za pomoc” urzdzen elektronicznych, mechanicznych,
kopiuj~cych, nagrywaj”cych i innych bez pisemnej zgody posiadacza praw autorskich.

© Zbigniew Huzar, Wroclaw 2007

ISBN 978-83-7493-349-0

Oficyna Wydawnicza Politechniki Wroclawskiej
Wybrzeze Wyspiariskiego 27, 53-370 Wroclaw
http://lwww.oficyna.pwr.wroc.pl
oficwyd@pwr.wroc.pl

Drukamia Oficyny Wydawniczej Politechniki Wroclawskiej. Zam. nr 710/2007

http://www.oficyna.pwr.wroc.pl
mailto:oficwyd@pwr.wroc.pl

Spis tresci

PIZEAMOWA. ...ttt bbbttt st b e ettt et et 7
1 Elementame pojCia I0QICZNE........civveieice et 12
1.2, CZYMJESE IOGIKA?.....eeeiieieiiieieeieieiee st 12
1.2, JgzyK 10giKi FOrMAINE].......c.ooeiiiiiiiii et 14
1.3, WNIOSKOWANIE. ...ttt bbb 19
14, IndUKCja MAtEMALYCZNA........cceiveiverrerieiesiisie e ste e sisie e e e re e srene e 24
1.5, Logika W iNfOrMALYCe......cveiviicecice e 26
0T o7 L - OO OSSPSR 27
2. Elementame pojCia MNOGOSCIOWE.ccveiveieriiesieeresesieee et e et ra e s e 3
2.1. ZbiOr i lement ZDIOIU. ..o s 3
2.2. DefMiowanie ZDIOTOW..........cccouiiiiiieiee et 3
2.3. Podzbiory, réwnosc zbior6w, zDiory POtAJOWE.cviveireeeriec e 40
2.4. Operacje Na ZDIOKACK..........cvciiiii e 42
(0T o7 L - OSSOSO USSPV 46
3. REIACIE T TUNKCI. .ttt e bbb bbb 50
3.1. Pordukty KartezZjanskKi€.........cccuiiereiirieiieieeisesese et 50
K I (-1 - o =TSSP 52
3.3. Operacje NATEIACIACN...........cceieiceei e 55
3.4. Podstawowe rodzaje relacji binamych.............cccoeiiiniiiiiice e 57
3.5. Relacja rOWNOWAZNOSCI.........cueeerierieiiieieeee s stesieste s sae e ssesre et seesaesseanseenens 58
3.6. RelACIE POIZNUKUL.....ocviieeecieee ettt 61
BT FUNKCB... ettt bbbttt bbb e 64
3.8. Operacje Na FUNKCJACK.ciiiiiieiriere s 69
3.9. FUNKCJE @TEIACTE. .uvevecveeiice e ens 72
3.10. Grafya relaCie......ccucveiiiiciesiiieieie e 73
LORT VT4] o - TSRS SSRUSR RPN 76
4. Aksjomatyczna i altematywne teorie ZDiorOW.........ccccvvvvvieieicce e 79
4.1. Aksjomatyczne uj$cie teorii ZDIOrOW.ccovvveivericiiiersce s 79

4.2. Definicje zbiordw liCZDOWYCH........ccoiiiiiic e 81

4.3, WIBIOZDIOIY e
A4, ZDIOTY FOZMYTE .ottt ettt ettt ettt
4.5, Zbiory PrzyblizoNne.......cooviioe e
LORT A Toy 4] o I FO TSSO TSP T USROS

5. Roéwnolicznosc zbiordw, liczby Kardynalne..........cooeiiinieineniie e
5.1. Zbiory przeliCZalNe ...
5.2. Zbiory NieprzeliCzalNe........coooiecciiiie e
5.3. Liczhy Kardynalne.......coceoeiioi st
CWICZENIA. i

6. Zbiory i funkcje obliczalne......................
6.1. Zbiory obliczalne i reKUrenCYjNe......cccooieiiiiniiiie e
6.2. Funkcje obliczalne i reKUreNCY Ne......cocveiiiiiiiiriseeese e
LORT A Toy4=] o I TSRS

7. Jgzyki formalne i gramatyKi........ccccooiiveiiiiine i
7.1 CiNgi B STOWA. i
7.2. 0Operacje Na SIOWACKH ...
7.3, JOZYKI TOrMAINE.....ociiiii e s
7.4. Gramatyki DezKONtEKSIOWE.coviiiieiie e
7.5. Klasyfikacja gramatyK........ccccocevevriiriiiiiic e
7.6. Drzewa rozbioru i diagramy skladnNioWe..........ccccecvvvevierieviciine s
7.7. Automaty i gramatyKi......coccccooeiieciiiiiie s
OWICZENIA ..ttt

8. Algebry abstrakCy Ne....cci i
8.1. Algebry JednOroUdzZajOWe.couveiririeicee s
8.2. Algebry WielOrOUZajOWe.cociriiiieiiiee e
ST N =T 0 2SSOSR
8.4. AlQEDIY BOOIE .. .ccuiieeiiiccce st
8.5. Homomorfizm algebr........cccooineiiniiiiee e
8.6. Algebra i10razowa tEIrMOW.........oeiieiiee s
LORT aTo4=] o I FO ST PTTOTUUSTPTSTTN

9. RAChUNEK ZAANeciiiiiei ettt ettt e e ere e
0.1, SKIAANTA c.eieieeiieeee bbb
0.2, SEMANEYKA....cvveieeecte ettt a e
9.3. Dowodzenie metod”™zero-jedyNKOWccoveveiveine s
9.4, WyDrane tautologie.......ccoveeireiieeee s
9.5. Dowodzenie tranSfOrMAaCY Ne......cccoiioiiiiireiee e
9.6. Postaci kanoniczne FOrmul...........ccooiiiiiiiii e

101
101
106
110

111
111
113
116
118
121
123
125
132

10.

11.

12.

13.

9.7. FUNKCJONAINA PEINOSC...uiiviiiciciece sttt
9.8. Rekursja i indukcja strukturalna.........cccccoveeeiiieiieie e
LORT A To4=] o - T OO U URTURURTUURTTRRON

Rachunek KwantyfiKatOrOW.ccccoireiirinierce s
10.0. SKIAANTA.ceiuiitiieeee e
10.2. Indukcja i rekursja strukturalna.........cccccocveeiiiiiiieicscce e
10.3. Zmienne WOINE | ZWIQZANE.......cccvveieieeeeeee e
10.4. POdStaWianie tEIrMOWccoouririeieeree ettt
10,5, SeMANtYKA.....cociiieciececee s

10.6. Spelnialnosc FOrmMuUL........ccciii i
10.7. Wybrane prawa rachunku kwantyfikatorow...........ccoceorviiiincienciennen.
10.8. Przedrostkowa postac NOrMalNa.........ccoeeeiueinieinciinciece e
10.9. Przykladjgzyka rachunku kwantyfikatorow.............ccccevevvrveieicncicnennnn,
10.10. Rachunek kwantyfikatorOw z roWnoSCI™........ccceveveieeerieneseiereeeere s
10.11. Teorie eleMeNntame. ...
10.12. Teorie NIeelEMENTAME.ccci i
OWICZENIA ...ooveictce ettt

Rachunek SEKWeNtOW GeNtZENA........ccovieirieiieisieese e
I VLY (o o TS
11.2. Lemat 0 POASTAWIENIU.....ceiuiiieiiieeeseee et
11.3. PrzyKklady WProWadzZajOCe.......ccccevuevereireeeireiesiesieeesesieee e sreseee s e eneenas
11.4. J$zyk sekwentdw - skladnia i SeMantyka.........ccccoveeirrrneeienensccenens
11.5. System dOWOdZeNia.......ccovrvevreeineeneseeeeee

11.6. SemMantyCzna POPFraWNOSO.cueerueereererieeseeeste st e et seeresbereseereseerennas
11.7. Semantyczna ZUPEINOSC........ccocviiiiiiiieeeece e
OWICZENIA....oovieiic ettt st

MELOUA FEZONUCTI...eeeiieieeeieeete et
I YT o | TSR UR ORISR
12.2. Zasada rezolucji dla rachunku zdan..........cccceeeveiieinie s
12.3. Skolemowska postad NOrmMalna.........c.coieriiniiineneeee e
12.4, UNIfiKACja tEIMOW.....c.eciiiiciciee ettt
12.5. Zasada rezolucji dla rachunku kwantyfikatorow...........ccccoevcovvevcinnennnn,
12.6. Klauzule Homa w programowaniu [0giczZnym........ccccocevviviivnviinnnsesienenns
(@ TYETo72=1 1| - O

Zagadnienia UzupelniajACe......ccuvvverernieeiesienesiriesienns

131 WSEQ) oo

13.2. Systemy dowodzenia Hilherta.........ccocco i
13.3. System dedukcji naturalngj GeNtZena........cocovveereerniensenee e

207
207
209
212
217
219
224
228
232

233
233
234
238
242
246
249
252

13.4. Metoda tablic analitycznych.......cccocooeieiiiiicinne, 266

13.5. Wlasnosci metalogiczne rachunku kwantyfikatorow 272
CWICZENIA. ittt 274
14. Inne logiki............... 275
LA WWSTQP. ettt ettt bbbt eb et b et b e bbbt e b et 275
14.2. LOQiKi WIielOWartOSCIOWE.ccviieieeeicie e 276
14.3. LOGiKi MOUAINE.......e i 278
14.4. LOGiKi tEMPOFAINe. ...c.ccviiiiiieiieese e 281
14.5. LogiKi INtUICJONISTYCZNE...c..ci i 284
14.6. O logikach niemonotoniCZNYCh.......cccccoiviieiiicecee e 287
LOR T Aoy - T T VOV U VUV 289
15. Definiowanie j Qzyka programowania............c.ccceuue.. 290
ST U ATV Vo IRy (o o T TS 290
15.2. Jednostki 1eKSyKalne 5P JP ..ot 291
15.3. SKIQANIA BPIP ..ottt 293
15.4, SEMaNtYKa BP IPc.occiiiii et 297
15.5. Jgzyk PJP - procedury NiereKUISYWNE.......cccvcerieserieeeisieseseseesie e 304
15.6. Jgzyk JP - procedury reKUIrSYWNE.ccveivverieseiesesiee et seeneenaens 309
LO8Y aTo4=] o I TSP TR 315
16. Logika programow HOAIE @cccvvveieieieceei et 317
16.1. Programy ze SPeCYTiKaC)™...... coiiiriiire e 317
16.2. System dowodzenia poprawnosCi CZNSCIOWE].....ccvvvvvverreriereeieesesesie s 319
16.3. Dowodzenie poprawnosCi CalKOWILE]......ccovcvviviviieveie e 326
(@31 T2 (- ST SS 327

Literatura 329

Przedmowa

Informatyka jest dyscyplin® mlodc” liczAc” okolo pi~cdziesi*t lat. Sam termin infor-
matyka pojawil siq w j*zyku polskim na pocz~tku lat siedemdziesigtych, a termin
komputer zadomowil siQ na dobre dopiero w koncu lat siedemdziesi*tych ubieglego
wieku. Rozwdj informatyki byl i pozostaje stymulowany dwoma czynnikami. Pierw-
szym jest rozwdj technologii, gléwnie elektronicznej. Dzi”ki postqpowi w tej dziedzi-
nie stalo si$ mozliwe technicznie zrealizowanie najpierw urz*dzen licz*cych, ktérych
koncepcje byly rozwazane znacznie wczesniej, a pozniej zbudowanie uniwersalnych
urz~dzen licz*cych - wspdlczesnych komputerdw. Drugim czynnikiem jest potencjal-
nie ogromne pole zastosowan informatyki. Oba te wzajemnie sprzgzone czynniki do-
prowadzily do sytuacji, ze komputer staje si$ powszechnym narz*dziem pracy niemal
w kazdej dziedzinie.

Miar® tempa rozwoju obecnie dominuj*cej technologii polprzewodnikowej jest
fakt, ze wydajnosc sprzqtu komputerowego, mierzona czQstotliwosci® zegara steru-
j~cego prac” komputera, i - podobnie - rozmiar pami”ci operacyjnej komputera
podwaja sig co poltora roku. Przewiduje si$, ze taka tendencja moze si® utrzymac
do lat 2015-2020. Wyznacznikiem rozpowszechnienia zastosowan informatyki jest
obecnie nie tylko Internet - globalna siec komputerowa, stanowi”ca federacjq setek
tysifcy sieci komputerowych - ale réwniez rozpoczynajcy siq proces integracji
Intemetu, telefonii komdrkowej oraz telewizji cyfrowej.

Informatyka dostarcza specyficznych narzqdzi i metod, ktére mozna wykorzystywac
do rozwi“zywania probleméw w réznych dziedzinach. Do zrozumienia tej specyfiki
i mozliwosci zastosowan informatyki potrzeba trwalych i niezawodnych podstaw. Tak
jak w przypadku innych nauk scislych, podstawy informatyki s* oparte na matematy-
ce, a dokladniej na wybranych jej dzialach, odpowiednio przystosowanych do potrzeb
informatyki. Podstawy informatyki s” wprawdzie ciqgle ksztaltowane, ale pewne ich
elementy mozna obecnie uznac za ustabilizowane. W historii matematyki byl okres na
przelomie XIX i XX wieku, gdy uswiadomiono sobie koniecznosc ustalenia podstaw
matematyki, bez ktérych nie bylby mozliwy spdjny rozwdj réznych dzialéw: algebry,
analizy matematycznej, rachunku prawdopodobienstwa, topologii itp. Podstawy ma-
tematyki, ktére uformowaly siq w pierwszej polowie ubieglego wieku, obj*y dwa
niezalezne wczesniej dzialy - teoriQ mnogosci i logik$. Podobnie jest z podstawami
informatyki, za ktére réwniez mozna uwazac teoriQ mnogosci i logik®, z polozeniem

akcentu, silniejszego niz w podstawach matematyki, na logikQ. Wynika to takze
z tego, ze informatyk” traktuje siq niekiedy jako dyscyplin? wyrosli z podstaw mate-
matyki.

Szczegblna rola matematyki w podstawach informatyki nie jest jednak uzasadniona
wyi”cznie wzglgdami historycznymi. Zasadniczy powdd wynika z roli, jaki pelni
informatyka w zastosowaniach praktycznych. Rozwi”zywanie probleméw, przed kto-
rymi staje informatyk, wymaga od niego - po pierwsze - zrozumienia danej dziedziny
zastosowan i zrozumienia na czym dany problem polega, po wtére - informatyk musi
znad i rozumied narz*dzia i metody, ktérymi moze dysponowad, wreszcie - po trzecie
- musi zaproponowac jak, za pomoci posiadanych arodkéw, dany problem rozwi”zac.
Opis problemu na tle specyficznej dziedziny jest poczqtkowo wyrazany w j*zyku na-
turalnym. Precyzyjny jego opis wymaga wyrazenia go w jgzyku sformalizowanym,
czyli jQzyku o Scisle okreslonej skladni i semantyce. Potrzeba taka wynika st"d, ze
przedstawione ostatecznie komputerowi do policzenia rozwi”zanie problemu musi byc
wyrazone w jgzyku programowania, czyli réwniez pewnym sformalizowanym jgzyku.
Komputer, w odrdznieniu od czlowieka, nie potrafi bowiem podjic zadnych innych
akcji niz te, ktdre si.wyrazone w pewnym jgzyku sformalizowanym.

Konieczno8d formalizacji informatyki wynika wi$c z dwoch powoddw. Po pierwsze
- ze specyfiki komputera i tego, co potrafi, a to - co potrafi - mozna sprowadzic do
umiejQtnosci przetwarzania symboli. Po drugie - wynika z potrzeby zrozumienia abs-
trakcji, czyli procesu budowy formalnego opisu problemu na podstawie opisu wyra-
zonego w jgzyku naturalnym. Formalny opis problemu jest pewnym modelem rze-
czywistego problemu wystgpujicego w realnej dziedzinie. Model jest opisem
uproszczonym, to znaczy koncentruje si$ tylko na wybranych aspektach rzeczywiste-
go problemu. Na jakich aspektach ijak szczegdlowo ma skupiad si§ model zalezy
oczywiscie od celu jego budowy. Spostb budowy modelu, ocena zgodnosci modelu
Z opisywan” rzeczywistosciq, zwi“zek pomigdzy modelem opisu a modelem rozwi”-
zania si typowymi zagadnieniami, wokdét ktérych wyrastaji teorie i dzialy matematy-
ki. Klasycznym przykladem si analiza matematyczna i teoria rdwnan rdzniczkowych,
ktore rozwin™ly siqg na skutek zapotrzebowania dziewi’tnastowiecznej techniki
i fizyki.

Na pocz*tku XX wieku z formalizacji matematyki wi*zano zbyt wielkie nadzieje.
Program formalizacji matematyki, zwi*zany glownie z nazwiskiem Dawida Hilberta,
zalamal sig w latach trzydziestych ubieglego wieku, po odkryciach Kurta Gédla, ktory
wskazal na swoisti ograniczonosc metod formalnych. Gdyby siQ okazalo, ze program
Hilberta jest realizowalny, wéwczas mozna byloby przypuszczac, ze wszystko to, co
potrafi czlowiek, moglby réwniez zrealizowac komputer. Tak jednak nie jest, dlatego
intuicja i kreatywnosc Si tymi wlasciwosciami czlowieka, ktdre stanowii o jego prze-
wadze nad komputerem. Oznacza to, ze informatyk w swojej pracy powinien traktowac
metody formalne jako uzupelnienie i wsparcie wlasnej pomyslowosci i twérczosci.

W informatyce metody formalne stanowi” fundament podstawowych pojqc, takich
jak: pojQcie algorytmu, obliczalnosci czy ztozonosci obliczeniowe;j.

Logika dostarcza jgzyka do przedstawiania i badania wlasnosci modeli informatycz-
nych, w tym systemdw komputerowych i j*zykéw programowania, a zwlaszcza srod-
kéw do definiowania skladni i semantyki jgzykow programowania. W jQzyku logiki
mozna specyfikowac wymagania stawiane projektowanym systemom oprogramowa-
nia. jQzyk logiki moze ponadto byc bezposrednio uiywany jako jgzyk programowania.
Ogromn” rolq odgrywa logika w zastosowaniach informatyki, na przyklad w tworze-
niu i funkcjonowaniu baz wiedzy i systemow ekspertowych.

SzczegdIn™ tolg odgrywa logika w procesie wytwarzania oprogramowania. Na
gruncie logiki stalo si$ mozliwe sformulowanie pojqcia poprawnosci programéw,
a nastQpnie opracowanie metod weryfikacji ich poprawnosci. Proces wytwarzania
oprogramowania, jak na przyklad w inzynierii oprogramowania, jest obecnie
w coraz wigkszym zakresie wspomagany przez komputer. Budowa narzqdzi wspo-
magajXcych ten proces opiera si$ na formalnych metodach, maj*cych oparcie na
gruncie logiki.

Niniejszy podrgcznik pt. Elementy logiki i teorii mnogosci dla informatykéw jest po-
prawion” i rozszerzon” wersj® wydania z 2002 roku: Elementy logiki dla informaty-
kdw, Oficyna Wydawnicza Politechniki Wroclawskiej. Tak jak wydanie poprzednie,
obejmuje glownie logikq klasyczn” wraz z krétkimi informacjami o logikach niekla-
sycznych.

W jgzyku polskim jest wiele bardzo dobrych podrgcznikéw logiki, pisanych przede
wszystkim dla matematykéw - na przyklad: [Adamowicz, Zbierski 1991], [Grze-
gorczyk 1975], [Hunter 1982], [Rasiowa 1998], [Slupecki, Halkowska, Pirdg-
-Rzepecka 1978], a w ostatnim okresie: skrypt [Tiuryn 2003] oraz [Guzicki, Za-
krzewski 2005], [Kraszewski 2007], przy czym dwie ostatnie pozycje ograniczaj”
si$ tylko do teorii mnogosci. Warto wspomniec o krotkiej i dawno wydanej ksi*zce
0 przegl*dowym charakterze [Lyndon 1978], Natomiast, oprdcz nielicznych - na
przyklad: [Mostowski, Pawlak 1970], [Szalas 1992] - praktycznie nie ma takich
podricznikéw dla informatykow. Zwraca uwagq fakt, ze w ostatnim okresie po-
wstaj 3 rozne podrqczniki logiki dla informatykéw w jgzyku angielskim - na przy-
klad: [Fitting 1990], [Kelly 1997], [Nissanke 1999], [Socher-Ambrosius, Johann
1996], [Ben-Ari 2001]. Ostatnia pozycja - pod wieloma wzglgdami podobna do ni-
niejszego podrgcznika - ukazala siq w 2005 roku w tlumaczeniu na j$zyk polski.
Jedng. z istotnych réznic mi~dzy tymi dwiema kategoriami podr~cznikéw jest spo-
sOb przedstawiania systeméw dowodzenia. Dla matematykéw zwykle jako podsta-
wowy wybiera sig System dowodzenia Hilberta, ktéry dobrze oddaje praktykQ do-
wodow” , klasycznego” matematyka, w informatyce natomiast wigksz® rolq
odgrywajct systemy dowodowe, ktére - inaczej niz System Hilberta - pozwalaj”® na
automatyzowanie procesu dowodzenia. W niniejszym podrgczniku omawia siq za-

tem - jako podstawowe systemy dowodzenia - System sekwentéw Gentzena i Sys-
tem oparty na regule rezolucji.

Pierwszy rozdzial podrqgcznika jest ogdlnym wprowadzeniem, wyjasniajctcym czym
jest logika. Pozostaly material mozna podzielic na cztery czgscL

Pierwsza czgsc, obejmuj”ca rozdzialy od 2. do 8., jest krotk™ prezentacj™ elementdw
teorii mnogosci, algebr abstrakcyjnych i j$zykéw formalnych. W obecnym wydaniu
ksigzki wprowadzono dodatkowe informacje na temat liczb kardynalnych oraz nieco
poszerzono rozdzial dotycz”cy jgzykdéw formalnych.

W drugiej czgsci, obejmuj*cej rozdzialy od 9. do 12., oméwiono rachunek zdan
i kwantyfikatoréw - ich skladniq, semantyk? oraz zwi”“zane z nimi systemy dowodze-
nia oparte na sekwentach Gentzena i regule rezoluciji.

W trzeciej czgsci, obejmuj™cej rozdzialy 13. i 14. o charakterze informacyjnym, krot-
ko omowiono inne systemy dowodzenia oraz dokonano przegl*du innych, nieklasycz-
nych logik. W obecnym wydaniu zamieszczono opis systemu dowodzenia opartego na
tablicach analitycznych, jako systemu altematywnego w stosunku do systemu dowo-
dzenia opartego na regule rezolucji.

Czqsc Czwarta - dolgczona do tego wydania ksi®zki, obejmuj”ca rozdzialy 15. i 16. -
przedstawia zastosowanie metod logiki do definiowania skladni i semantyki jgzykow
programowania oraz klasyczn” logikq programéw Hoare’a, sluzgqc”® dowodzeniu po-
prawnosci programow.

Prezentacja materialu jest sformalizowana tylko czgsciowo i odnosi siQ w zasadzie do
definiowania poj*c oraz do sformulowania i udowodnienia wybranych twierdzen.
Zwrdcono uwagQ przede wszystkim na twierdzenia o poprawnosci i zupelnosci syste-
mu dowodzenia opartego na rachunku sekwentéw Gentzena, w przypadku pozostalych
przedstawianych systeméw dowodzenia ograniczono siq tylko do sformulowania od-
powiednich twierdzen.

Do kazdego rozdzialu s dol~czone cwiczenia. Zebrane tu zadania pochodz” z réznych
zrodel: czgsc stanowi opracowania autora lub wspdlpracownikéw, czgscjest zaczerpnigta
z podrQcznikdéw przedstawionych w spisie literatury: [Fitting 1990], [Gabbay 1998],
[Gerstig 1993], [Kelly 1997], [Marek, Onyszkiewicz 1975], [Nissanke 1999], [Stanosz
2002], [Pacholski 2004], [Lawrow, Maksimowa 2004], [Guzicki, Zakrzewski 2005].

W celu czytelnego wyodnjbnienia przykladéw wprowadzono w tekscie linie rozdziela-
j~ce na poczgtku i koncu odpowiednich akapitdéw. Zakonczenia dowoddéw s zazna-
czone czamym kwadracikiem m.

PodrQcznik jest przeznaczony w zasadzie dla studentéw pierwszego roku informatyki
na studiach politechnicznych. Zakres materialu jest jednak szerszy i dlatego mog”
skorzystac z niego, jako z lektury uzupelniajqcej, takze studenci lat starszych.

Skiadam serdeczne podzigkowania moim kolegom z Instytutu Informatyki Stosowanej
Politechniki Wroclawskiej za pomoc podczas przygotowywania tego podrqcznika.
Szczegblnie gorgco dzigkujq profesorowi lwanowi Tabakowowi oraz doktorowi Zdzi-
slawowi Splawskiemu za uwaznq lekturqg rgkopisu, wskazanie usterek, cenne wskazdw-
ki oraz propozycje ulepszenia tekstu, a doktor Bogumile Hnatkowskiej - za wnikliwe
uwagi dotyczqce dwdch ostatnich rozdzialow.

Oddzielne podzigkowanie kierujgq do recenzentéw - profesora Mariana Adamskiego,
profesora Leszka Pacholskiego i doktora hab. Wieslawa Szwarca, ktdrzy - oprocz
wskazania usterek - przedstawili sugestie i propozycje dotyczgce sposobu prezentaciji
materialu.

Dzigkujq tez studentom Wydzialu Informatyki i Zarzqdzania Politechniki Wroclaw-
skiej, ktorzy wychwycili usterki edytorskie wpoprzednim wydaniu ksigzki.

Niezaleznie od wszelkich uwag i sugestii, podrQcznik, jak kazdy obszemiejszy tekst,
moze zawierad przeoczenia b~dz niescislosci. Czytelnikdw, ktdrzy spostrzeg” takie
usterki, autor prosi o przekazanie odpowiedniej informacji poczt™ elektroniczn® na
adres: zbigniew.huzar@pwr.wroc.pl

Wroclaw, maj 2007 Zbigniew Huzar

mailto:zbigniew.huzar@pwr.wroc.pl

1. Elementarne poj”cia logiczne

1.1. Czym jest logika?

Stowo logikal bywa uzywane przez filozoféw, matematykdw i w mowie potocznej
w licznych znaczeniach i kontekstach. Dhigotrwala tradycja terminologiczna okresla
logikQjako analizQjgzyka pod kqtem jego wykorzystania do:

» definiowania,

* klasyfikowania,

» wnioskowania.

Celem takiej analizy jest podanie regul poshigiwania sig jgzykiem, aby byl on sku-
teczny.

Logika pojmowana jako narzqdzie poprawnego myslenia, czyli wnioskowania lub
rozumowania, byla juz przedmiotem zainteresowania starozytnych2 [Kotarbinski
1985], [Murawski 1995]. Drugie jej narodziny przypadaj*na wiek XIX. Traktowana
jako pomocniczy dzial matematyki, wyodr~bnila si® na pocztku XX wieku w samo-
dzieln” dyscypling matematyki. Obecnie zakres pojqcia logiki jest szeroki i obejmuje
trzy odrgbne dziedziny [Bochenski 1992]:

* logika formaln”,

» metodologigq,
« filozofiq logiki.

Przedmiotem zainteresowania logikiformalnej s*wypowiedzi w danym jgzyku, a do-
kladniej to, czy s™one prawdziwe czy falszywe. Dan”. wypowiedz mozna oceniac albo
jako prawdziw”, albo jako falszyw”, gdyz zadna wypowiedz nie moze byc jednocze-
snie prawdziwa i falszywa. Prawda ifalsz, jako wlasnosci wypowiedzi, s"zatem pod-
stawowymi pojqciami logiki.

Pojqcie prawdy, chociaz uzywane powszechnie, nie jest latwe do okreslenia. Klasycz-
ne rozumienie prawdy opiera siq na zwi*zku pomiqdzy wypowiedzi® a rzeczywisto-

1Slowo logika pojawia si(j po raz pierwszy w tytule dzieta Demokryta (460-371 p.n.e.).

2 Problematyka logiczna byla rozwazana przez Sokratesa (469-399 p.n.e.) i Platona (427-347 p.n.e.), ale
za pierwszego tworcq systemu logiki uwaza siQ Arystotelesa (384—322 p.n.e.).

seiet, do ktdrej dana wypowiedz sig odnosi. Ten sens oddajX slowa wypowiedziane
blisko dwa tysi~ce lat temu przez Sekstusa Empiryka [Turski 1988]:
O kazdym bowiem zdaniu rozstrzygci siq, zejest prawdziwe albo ze jestfatszywe ze
wzglgdu najego odniesienie do rzeczy, o ktorej zostalo orzeczone. Jezeli bowiem
okazuje siq ono zgodne z rzeczq, o ktorej zostalo orzeczone, wydaje siq prawdziwe,
jezeli niezgodne -falszywe.

Zadaniem logiki formalnej jest ustalanie prawdziwosci wypowiedzi. Pierwszym zada-
niem jest ustalanie prawdziwosci wypowiedzi zlozonych na podstawie prawdziwosci
wypowiedzi, ktore stanowi” ich skladowe. Szczegdlnym rodzajem s” takie wypowie-
dzi zlozone, ktore s zawsze prawdziwe, niezaleznie od prawdziwosci swoich wypo-
wiedzi skladowych. Wypowiedzi takie nazywa sig prawami logicznymi. Gléwnym
zadaniem logiki jest jednak wnioskowanie, czyli badanie tego, co na podstawie dane-
go zestawu prawdziwych wypowiedzi - przeslanek - mozna s*dzic o prawdziwosci
innych wypowiedzi. Chodzi tu o wnioskowanie niezawodne, to znaczy takie, ktore na
podstawie prawdziwych przeslanek gwarantuje zawsze wyprowadzenie prawdziwych
wnioskdw. Przedmiotem logiki s” r6znego rodzaju schematy niezawodnego wniosko-
wania, ich formulowanie, porz*dkowanie i uzasadnianie.

Metodologia zajmuje sig stosowaniem logiki do réznych dziedzin [Bochenski 1992],
[Wajcicki 1982]. W praktyce okazuje siq, ze te same prawa logiczne mog”byo stoso-
wane w rozny sposdb. Inn” rzeczq s schematy wnioskowania, a inng. przeprowadza-
nie wnioskowania na podstawie tych schematéw. Znany na przyklad podzial wnio-
skowania na metody dedukcyjne i indukcyjne nie polega na uzyciu réznych praw
logiki, lecz na réznym uzyciu tych samych praw. Celem metodologii - nie wnikaj*c
w szczegdly - sg.ogdlne sposoby zdobywania i formulowania wiedzy prawdziwej albo
przynajmniej dobrze uzasadnionej.

Filozofia logiki obejmuje analizq podstawowych pojqc logiki [Bochenski 1992], Pro-
buje odpowiadac na przyklad na pytania: Co tojestprawda? Co tojestprawo logicz-
ne? Skqd wiadomo, zejest ono prawdziwe?

Ksi“zka obejmuje tylko logikgformalng, nazywan” inaczej logikqg matematyczng lub
logikg symboliczng. Logika formalna wprowadza jgzyk symbolicznego zapisu wypo-
wiedzi i okresla jak mozna takim symbolicznym zapisom przypisywac pewne znacze-
nie, czyli - w jaki spostéb mozna okreslac ich semantykq? Zakres wypowiedzi, ktore
mozna zapisywac w jgzyku logiki formalnej, nie obejmuje oczywiscie wszystkich
wypowiedzi, ktore mozna sformulowac w jgzyku naturalnym. Jgzyk logiki formalnej
jest natomiast calkowicie wystarczajcy do przedstawiania i analizy wypowiedzi do-
wolnych dzialéw matematyki. Nie w tym dziwnego, gdyz narodziny wspdlczesnej logi-
ki wi~z” siq wlasnie z potrzeb” precyzyjnego sformulowania i analizy zagadnien z za-
kresu podstaw matematyki, ktore pojawily siq pod koniec XIX i na poczqtku XX wie-
ku. Dlatego logikg formalng okresla sig niekiedy jako metamatematykq, czyli jako
naukq dostarczaj™cJgzyka do opisu wszystkich pozostalych dzialdw matematyki.

Celem logiki formalnej jest uj”cie procesu rozumowania, albo wnioskowania, w postaci
przeksztalcania napisdéw reprezentuj”cych wypowiedzi. Chodzi o to, aby na podstawie pew-
nych napisdw, reprezentuj*cych wypowiedzi uznane za prawdziwe, uzyskiwac prawdziwe
whnioski - nowe napisy, reprezentuj”ce nowe, prawdziwe wypowiedzi. Inaczej: chodzi o to,
aby przeksztalcania napisdw reprezentowaly niezawodne schematy wnioskowania.

Przeksztalcanie napiséw opiera logika formalna na systemie dedukcyjnym, czyli na
ustalonym zbiorze regul mechanicznego przeksztalcania tekstdw. Pewne napisy
przyjmuje siq za poprawne z zalozenia. Traktuje siQje jako aksjomaty systemu deduk-
cyjnego. Inne napisy przyjmuje si$ za poprawne tylko wtedy, gdy daje si$je wypro-
wadzic z aksjomatow przez stosowanie ustalonych regul systemu dedukcyjnego. Re-
gula jest mechanicznym sposobem przeksztalcania jednych napiséw w inne napisy.
Napisy wyprowadzone w wyniku stosowania przyjqtych regul powinny byc poprawne nie
tylko w sensie zgodnosci z przyjgtymi regulami przeksztalcania, ale réwniez powinny
byc poprawne w sensie semantycznym, to znaczy powinny byd wypowiedziami praw-
dziwymi.

Logik formalnych jest wiele [Marciszewski 1987, 1988]. R6zni”siq one klas™obiek-
téw, do ktérych odnosz” si$ wypowiedzi, rodzajami wypowiedzi (np. wypowiedzi
oznajmujce, przypuszczaj™ce, pytajce, nakazujqce) oraz stosowanymi systemami
dedukcyjnymi - systemami wnioskowania. Szczeg6In” rolq - zaréwno ze wzgl*du na
historig, a takze zastosowania - pelni logika klasyczna. Logika klasyczna jest j*drem
wszystkich innych logik formalnych, w tym réwniez réznych specjalistycznych logik
stosowanych w informatyce.

1.2. J$zyk logiki formalnej

Jak wspomniano, przedmiotem logiki formalnej s* wypowiedzi w danym jQzyku,
a dokladniej to: czy s” prawdziwe czy fatszywe.

Nie wszystkie wypowiedzi mog” byc jednak oceniane jako prawdziwe albo fatszywe.
Nie sposob tak ocenic wypowiedzi rozkazujgcej czy pytajgcej, mozna tak oceniac co
najwyzej wypowiedzi oznajmujqce, ale nawet co do nich mog” powstawac w”tpliwo-
Sci. Na przyklad, czy wypowiedz:

W 2100 roku bardzo popularngformqg wypoczynku bgdg wakacje na Marsie.

jest prawdziwa czy falszywa? Trudno to osqdzic, przynajmniej w obecnej dobie.
Z powodu braku wiedzy historycznej nie mozna natomiast stwierdzi6, czy prawdziwa
jest wypowiedz:

Krél Boleslaw Chrobry urodzil sig wponiedzialek.

Wypowiedzi, ktérym mozna przypisac prawdziwosc albo falszywosc, bqd” nazywane
zdaniami. Zdania mog”byo proste, na przyklad:

Ksigzka lezy na stole.
Wprogramie koncertujest symfonia Mahlern.

Warto zwrdcic uwagq, ze tego rodzaju zdania * formulowane w pewnym kontekscie
sytuacyjnym i tylko w tym kontekscie mozna rozstrzygac, czy s™ prawdziwe czy fal-
szywe. W jgzyku naturalnym spotyka siq tez wypowiedzi, ktérych prawdziwosc, na-
wet po ustaleniu kontekstu, moze byc trudna do okreslenia. Rozpatrzmy zdania:
Onjest dosyc wysokim mqgzczyzng.
Samochddjechal dosyc wolno.

Powodem trudnosci w pierwszym zdaniu jest rozumienie zwrotu dosyc wysoki. Czy
jest dosyc wysoki mqzczyzna, ktéry ma 180 cm wzrostu, czy dopiero taki, ktéry ma
185 cm? Podobnie w drugim zdaniu problem stwarza rozumienie zwrotujechac dosyc
wolno.

Ze zdan prostych mozna budowac zdania zlozone, na przyklad:

Po6jdq do kina lub p6jdq do teatru.
Jeieli wykonawcq koncertu bgdgfilharmonicy berlihscy, to zwalq siq tlumy.
W 1939 roku Hitler napadl na Czechoslowacjqi-w roku nastgpnym - na Polskg.

Zdania zlozone powstajct przez pol“czenie zdan prostych za pomocEt spdjnikdw lo-
gicznych. Spdjnikami logicznymi (zdaniowymi) s na przyklad slowa i zwroty: nie,
lub, i (oraz),jezeli..,, to ...,... wtedy i tylko wtedy, gdy
W jQzyku naturalnym zwroty te maj*ustalone znaczenie. Ponizej przedstawia siq prost®
formalizacj™ uscislaj*c” ich znaczenie. Formalizacja spdjnikéw logicznym polega na:

* nadaniu im pewnej symbolicznej notacji,

* przypisaniu im znaczenia w terminach tablic prawdziwosciowych.

Zdania b~d” oznaczane symbolamip, g, r, ... Spojniki logiczne b*d~oznaczane nastqpuj”co:
* Spdjnik nie —azywany negacjq - jest oznaczany symbolem — NegacjQ zdaniap
zapisujemy: —p.
* Spojnik i (oraz) - nazywany koniunkcjq - jest oznaczany symbolem a. Koniunk-
cj$ zdanp, q zapisujemy: p Ag.
* Spojnik lub - nazywany dysjunkcjq lub alternatywq - jest oznaczany symbo-
lem v. Dysjunkcjq (alternatywq) zdanp, g zapisujemy: p v q.
» Spojnik jeieli ..., to .. - nazywany implikacjq - jest oznaczany symbolem =>.
Implikacjq zdanp, q zapisujemy: p @.
Implikacjgp => g mozna takze czytac w inny sposdb, na przyklad:
p jest warunkiem dostatecznym do tego, ze q.
g pod warunkiem, zep.

q wtedy, gdyp.
gjest warunkiem koniecznym do tego, zep.

» Spojnik wtedy i tylko wtedy, gdy - nazywany réwnowaznosciq - jest oznaczany
symbolem <= Réwnowaznosc zdanp, g zapisujemy:p d q .

Réwnowaznosc p <=>g mozna takze czytac w inny spostb, na przyklad:

p jest warunkiem koniecznym i wystarczajXcym do tego, ze g.
p dokladnie wtedy, gdyp.
p jest rownowaznep.

Uwaga
Czasem negacj” koniunkcjcL itd. nazywa siQ zdania zlozone, ktére powstaj” z in-
nych zdan przez 1"czenie spdjnikami negacji, koniunkcji itd.

Zapisujgc zdania zlozone w postaci symbolicznej, bgdziemy uzywac nawiaséw, gru-
pujicLC w odpowiedni sposdb zdania skladowe. Nawiasy bdg. opuszczane, gdy przyj-
mie siq nast”pujqc” kolejnosc stosowania (wi”zania) spojnikéw (od najsilniejszego do
najslabszego):

AV, = <
Zamiast na przyklad
(-£>) Af)v(fA s)) =>t
mozna pisac
—Ypaqvras=>t

Zaklada siq ponadto, ze wystQpuj”ce obok siebie spojniki a, v 1"cz” w lewo, a wystQ-
puj~ce obok siebie spdjniki =>, <=>I"czq. w prawo. Na przyklad:

pagar znaczy (paq)ar,

p=>qg=>r znaczy p=> (q =>r).

Prawdziwosc zdania zlozonego zalezy tylko od prawdziwosci jego zdan skladowych i od
tego, jakim spojnikiem ssi.one pokiczone. Tak® wlasnosc nazywa siq ekstensjonalnoscig.

Tablica 11

P HP P g PAg P q bPVO P p=>q p I P

P F F F F F F F F F p F F P

F P P F F P F P P F F P F F
F P F F P P F P P F P F
P P P P P P P P P P P P

Rolq spdjnikdéw logicznych daje siq prosto wyrazic za pomoc” tablic prawdziwoscio-
wych - tablica 1.1. Tablica prawdziwosciowa jest tabelarycznym zestawieniem
wszystkich wartosciowan zdan skladowych oraz odpowiadajgcych im wartosciowa-

niom zdania ztozonego poi“czonego danym spojnikiem logicznym. W celu zmniej-
szenia rozmiardw tablicy zamiast prawda lubfaisz pisze si$ Symbole P oraz F. Tablica
uscisla znaczenie, ktore sig wigze ze spdjnikami logicznymi w jgzyku naturalnym.

Wlasnosc ekstensjonalnosci, czyli abstrahowanie od wewnqgtrznych tresci zdan skla-
dowych przy ocenie prawdziwosci zdan zlozonych, moze powodowac kolizjq z poto-
cznym rozumieniem prawdziwosci zdan. Typowym przykladem s” zdania polgczone
spojnikiem implikacji. Zdanie

Jeieli ksigzyc ma ksztalt szescianu, to dzisiaj mamy dzieh rektorski.

uznalibysmy za bezsensowne. Formalnie jest to zdanie poprawnie zbudowane, a po-
nadto jest to zdanie prawdziwe. Chociaz zdanie dzisiaj mamy dzien rektorski nie musi
byc zdaniem prawdziwym, ale falszywosc zdania ksigzyc ma ksztalt szescianu poci*ga
prawdziwosc calej wypowiedzi. Pojqcie sensownosci, do ktérego cz”sto siQ odwotu-
jemy w jAzyku naturalnym, nie ma bezposredniego odpowiednika w j*zyku logiki
klasycznej. Wynika to z tego, ze jgzyk logiki klasycznej jest znacznie ubozszy od jg-
zyka naturalnego -jest tylko pewnym jego przyblizeniem.

Zdania s™ wypowiedziami, ktorym - w danym kontekscie wypowiedzi - jednoznacz-
nie przypisuje siQ prawdziwosc lub faisz. Znane s*tez inne rodzaje wypowiedzi, kto-
rym prawdziwosc lub faisz mozna przypisac dopiero po dodatkowych uscisleniach
dotycz”cych elementdéw wypowiedzi. Na przyklad o prawdziwosci zdania

Mgzczyznajest wyzszy od kobiety.
mozna jednoznacznie siq wypowiedziec dopiero wtedy, gdy wiadomo, o ktérego mqz-
czyznQ i o ktdr% kobiety chodzi. Mgzczyzna i kobieta stanowi” tu argumenty wypo-
wiedzi. Wskazuj*c na konkretnego mgzczyznQ i na konkretn”™ kobiety, mozna stwier-
dzac o prawdziwosci lub falszu tego zdania.

Zdania tego rodzaju nazywa si$ funkcjami zdaniowymi albo formami zdaniowymi.
Mozna je traktowac jako pewien sposob wyrazania wlasnosci elementéw pewnego
zbioru. Zdania takie bqd” zapisywane P(a), gdzie ajest argumentem wypowiedzi.

Funkcji zdaniowych cz”sto siq uzywa w powi”zaniu z charakterystycznymi zwrotami,
na przyklad:

Mozliwe, ze zachodzi P(a).
Dia kazdego elementu a ze zbioru A zachodzi P(a).

Pierwszy ze zwrotdw to rodzaj zwrotu modalnego. Taki zwrot wystgpuje na przyklad
w zdaniach:

Mozliwe, ze Piotr wypozyczyljuz potrzebng mu ksigzkg.

Mozliwe, ze prezes spozni siq na spotkanie.

Mozliwe, ze w 2100 roku bardzopopulamgq formq wypoczynku bgdg wakacje na Marsie.

Drugi ze zwrotdw to rodzaj zwrotu kwantyRkacyjnego. Przyklady wypowiedzi z tym
zwrotem:

Kazdy Student otrzymuje indeks.
Kazdy dorosfy ponosipelng odpowiedzialnosc za swoje czyny.

Dalej zajmiemy siQ przede wszystkim zwrotami kwantyfikacyjnymi. rozwazane
tylko dwa zwroty:

Dia kazdego elementu a zachodzi P(a).
Istnieje element a, dla ktérego zachodzi P(a).

Pierwszy zwrot jest nazywany kwantyfikacjq ogdlng albo uniwersalng, a drugi -
kwantyfikacjq szczeg6lowq albo egzystencjalng.

Istnieje jeszcze inne rodzaje zwrotéw kwantyfikacyjnych, ktére nie b$d” rozwazane,
na przyklad:

Dia wigkszosci elementdw a ze zbioru A zachodzi P(a).
Dia nieskohczenie wielu elementdw a ze zbioru A zachodzi P(a).

Jezeli symbolem P(a) oznaczyc funkcj? zdaniow”, ktorej dla ustalonego elementu a ze
zbioru A mozna w jednoznaczny sposob przyporz~dkowac prawdq albo falsz, to wy-
powiedz z kwantyfikatorem ogolnym dla P(a) zapisuje siq symbolicznie w postaci

\/aeA ¢ P(a),

a wypowiedz z kwantyfikatorem szczeg6lowym w postaci
3aeA « P(a).

Wypowiedzi z kwantyfikatorami mozna czytad w rézny sposob.

Zapis z kwantyfikatorem ogélnym VaeA « P(a) mozna czytac:

Dla kazdego aeA [zachodzi] P(a).
Dla dowolnego aeA [zachodzi] P(a).
Dla wszystkich aeA [zachodzi] P(a).
Wszystkie aeA maj*wlasnosc P(a).
P{a) dla wszystkich aeA.

Zapis z kwantyfikatorem szczegdlowym 3aeA « P{a) mozna czytac:

Dla pewnego aeA [zachodzi] P(a).
Dlajakiegos aeA [zachodzi] P(a).
Jakies aeA ma wlasnosc P(a).
P(a) dla pewnego aeA.

Zapis [zachodzi] oznacza tu, ze slowo ‘zachodzi’ wystQpuje opcjonalnie - mozna je
czytac albo pomijad.

Uwaga
Oprocz wprowadzonej, uzywa sig réwniez innych notacji na wypowiedzi z kwan-
tyfikatorami, na przyklad:

VaeA.P(a) MaeA:P(a) (VaeA)P(a) A P(a)

(e A

3aeA.P(a) 3aeA:P(a) (3aeA)P(a) Vv

aeA

p (a)

1.3. Wnioskowanie

Logikaformalna zajmuje siQ schematami wnioskowania, ktoére pozwalaj”*na to, aby na
podstawie prawdziwosci jednych wypowiedzi - przeslanek - wnioskowac o prawdzi-
wosci innych wypowiedzi - wnioskdéw. Historycznie najstarsze schematy wnioskowa-
nia, nazywane sylogizmami, pochodz” od Arystotelesa.

Przykladem wnioskowania opartego na jednym z sylogizméw jest nastQpuj”ce rozu-
mowanie:

Wszyscy bogowie greccy sq zazdrosni.
Zeusjest greckim bogiem.
Zatem: Zeusjest zazdrosny.

Dwa pierwsze zdania s tu przeslankami, a ostatnie - wnioskiem (konkluzj™®).

Ogdlnie schemat wnioskowania mozna przedstawic w postaci ,,ulamka”, w ktérego ,,liczni-
ku” bgd” zapisywane przeslanki, a w ,,mianowniku” b~d” zapisywane wnioski. Rozpatrzmy
kilka schematow wnioskowan, ktére mozna odniesc do wielu codziennych sytuacji.

Znanym schematem jest modus ponendo ponens, maj”cy postac
P==>q
P

q
gdzie: p oraz q oznaczaj” dowolne wypowiedzi.

Na podstawie takiego schematu wnioskuje siq na przyklad:

Jezeli dzisiajjest niedziela, tojutrojestponiedzialek
Dzisiajjest niedziela.
Jutrojestponiedzialek.

Schemat tenjest niezawodny, co oznacza, ze jezeli przeslanki s"prawdziwe, to takze
prawdziwy jest wyprowadzony na ich podstawie wniosek.

Inny przyklad réwniez niezawodnego schematu wnioskowania to modus ponendo tollens
Albo p, albo q
P

Zwrot albo ..., albo ... nie byl wczesniej omOwiony. Zgodnie z potocznym rozumie-
niem zdanie zlozone postaci albo p, albo g jest prawdziwe tylko wtedy, gdy jest praw-
dziwe dokladnie jedno ze zdan skladowychp, g.
Przyklad wnioskowania:
Albo p6jdq do kina, albo p6jdq do teatru.
P6jdq do kina.
Nie p6jdq do teatru.

Jeszcze inny przyklad niezawodnego schematu wnioskowania to modus tollendo ponens:
pvq

q
Wedlug tego schematu wnioskuje si? w przykladzie:

Pojdq do kina lub p6jdq do teatru.
Nie péjdqg do kina.
Po6jdq do teatru.

Czgsto korzysta si$ ze schematow wnioskowania nazywanych sylogizmem warunko-
wym. Przykladem jest schemat:

pP=>q

q==>r

p==>r
Schematy wnioskowania, ktérymi zajmuje siQ logika formalna, s w pewien sposéb
ograniczone. Nie bior” pod uwagQ tresci, lecz tylko prawdziwosc zdan, dlatego me-
chaniczne stosowanie przedstawionych schematow wnioskowania, jezeli siq nie wnika
w tresc zdan, moze prowadzic do absurdalnych wnioskéw. Jako przyklad posluzy
nast*puj”~ce rozumowanie: Niech b$d”" dane dwie wypowiedzi:

Jezeli Cezarpozostanie w domu, to Cezar nie zostanie zabity przez spiskowcow.
oraz

Jezeli Cezar nie zostanie zabity przez spiskowcdw, to Cezar wyglosi przemowienie
w Senacie.

Wprowadzmy oznaczenia. Niech:
p oznacza: Cezarpozostanie w domu.
g oznacza: Cezar nie zostanie zabity przez spiskowcow.
roznacza: Cezar wyglosiprzemdwienie w Senacie.

Z zastosowaniem tych oznaczen wnioskowanie oparte na schemacie sylogizmu wa-
runkowego przebiega nastgpuj”co: Na podstawie przeslanek p => q oraz q =>r otrzy-
muje sig wniosekp=>r, czyli:

Jeieli Cezarpozostanie wdomu, to Cezar wyglosiprzeméwienie w Senacie.

Whiosek ten jest calkowicie sprzeczny ze zdrowym rozs*dkiem. Wynika to z tego, ze
w zastosowanym schemacie wnioskowania uwzgl*dnia siQ tylko prawdziwosd prze-
slanek, a nie uwzglgdnia si$ tresciowego powiqzania przeslanek i konkluzji: pozosta-
wanie w domu w pewnym okresie wyklucza przebywanie w Senacie w tym samym
okresie i, tym samym, wygloszenie tarn przemoéwienia.

To, ze zdanie jest wynikiem zastosowania pewnego schematu wnioskowania do in-
nych zdan-przeslanek nazywa siQ konsekwencjg dowodowq albo konsekwencjq sklad-
niowg. W rozpatrywanym przykladzie wyraza si$ to zapisem

{p=>q,9">r}\-p=>r

Ogdlnie, jezeli {p\, ..., pn) jest pewnym zbiorem zdan-przeslanek, a g jest zdaniem,
ktore wyprowadzono z tego zbioru na podstawie jedno- lub wielokrotnego stosowania
pewnych schematdw wnioskowania, to zapisuje siq to w postaci

{Pu-,Pn)i-q

Symbol H nazywa sig symbolem konsekwencji skladniowej. Powyzszy zapis czyta siq:
g jest konsekwencjct skladniow” zbioru zdan {p\.....p,,).

Rozpatrzmy teraz rozumowanie, ktdre nie opiera siq na przedstawionych schematach
wnioskowania. Niech dany bqdzie przyklad:

Jeieli znany pianista da recital, to przyjdqg tlumy, gdy ceny biletdw nie bgdq zbyt
wygorowane.

Jeieliznany pianista da recital, to ceny biletdw nie bqdq zbyt wygtérowane.

Zatem: Jeieli znany pianista da recital, toprzyjdqg tlumy.

W pierwszym z powyzszych zdan wystqpuje zwrot gdy. Zgodnie z potocznym rozu-
mieniem, zdanie zlozone postacip gdy g jest réwnowazne zdaniujeieli g, top.

Czy jezeli przeslanki w przykladzie - dwa pierwsze zadania - s"prawdziwe, to czy
prawdziwa jest réwniez konkluzja - trzecie zdanie? Wprowadzmy oznaczenia.
Niech:

p oznacza: Znanypianista da recital.
q oznacza: Przyjdq tlumy.
roznacza: Ceny biletéw bqdq zbyt wygérowane.

Po zastosowaniu tych oznaczen nasze wnioskowanie ma postac:

p=>(-,r=>q)
p=3$—r
zatem: p=>q

Mozna przytoczyc dwa sposoby uzasadnienia poprawnosci wnioskowania. Pierwszy
sposdb mozna zilustrowac tablicy prawdziwosciow” (tablica 1.2). Podobnie jak
w poprzedniej tablicy, zamiastprawda ifalsz pisze siqP i F.

Tablica 1.2
P 9 r —F —F>q = p=(<r=q)) p=>q
1 F F F p F P P P
2 F F P F P P P P
3 F P F P P P P P
4 F P P F P P P P
5 P F F P F P F F
6 P F P F P F P F
7 P P F P P P P P
8 P P P F P F P P

Sposéb uzasadniania jest tu nastgjuj*cy: wnioskowanie ma byc niezawodne, to zna-
czy konkluzja ma byc prawdziwa zawsze wtedy, gdy prawdziwe przeslanki. Wy-
starczy rozpatrzyc wszystkie wartosciowania zdan prostych p, g, r, przy ktérych
prawdziwe skt zdania ziozone stanowi”*ce przeslanki, i sprawdzic, czy przy tych war-
tosciowaniach prawdziwe jest réwniez zdanie stanowi”ce konkluzjg. Przypadki ta-
kich wartosciowan reprezentuj® wiersze 1, 2, 3, 4 i 7 w tablicy 1.2. Analiza tych
przypadkdw potwierdza poprawnosc wyprowadzonego wniosku.

Drugi spostb opiera si$ na nastQpuj*cym rozumowaniu nie wprost: jezeli zaiozyc, ze
nasz wniosek jest poprawny, to czy jest mozliwe, aby jednoczesnie byly prawdziwe
przeslanki i negacja konkluzji? Inaczej - czy zdanie

(P=>(-T =>0q)) a (p=> -ir) A-i(p =>0)

moze byc prawdziwe dla dowolnych wartosciowan zdan prostychp, g, r? Okazuje siQ,
co pokazuje tablica 1.3, ze przy wszystkich wartosciowaniach zdanie to jest falszywe.
Nie moze byd tak, ze jednoczesnie s” prawdziwe przeslanki i negacja konkluzji. Nie
jest zatem mozliwe, aby zdania stanowi”ce przeslanki mogly byc niezgodne ze zda-
niem stanowi”“cym konkluzji.

Oba sposoby nie polegaly na tekstowym przeksztalcaniu przeslanek, ale opieraly
sig na analizie znaczenia zdan, dokladniej - na analizie ich prawdziwosci. Oba spo-
soby potwierdzity, ze konkluzja jest konsekwencjq logiczng, albo konsekwencjq
semantyczng, zbioru przeslanek. Fakt ten, w odniesieniu do przyktadu, zapisuje siq
w postaci

Ogolnie, jezeli {p\, ..., p,.} jest pewnym zbiorem zdan-przeslanek, a g jest jego lo-
giczn” konsekwencji, zapisuje si$ to w postaci

{PU - an} l=q
Symbol £ nazywa siQ symbolem konsekwencji semantycznej. Zapis ten czyta si?:
gjest konsekwencji semantyczni zbioru zdan {px

Tablica 1.3
(P=H~r=><)
P g r kg p=>(-v=>q) =T p=>q >(p=>q) AU?=R)
a-i(p=>0q)
1 F F F p F P P P F F
2 F F P F P P P P F F
3 F P F P P P P P F F
4 F P P F P P P P F F
5 P F F P F F P F P F
6 P F P F P P F F P F
7 P P F P P P P P F F
8 P P P F P P F P F F

Majic pojicia konsekwencji skladniowej i konsekwencji semantycznej, mozna spre-
cyzowac niezawodnosc schematéw wnioskowania. Schemat wnioskowania jest nie-
zawodny (albo poprawny), gdy dla dowolnego zbioru zdan {pu ...,p,,} oraz zdania q,
jezeli

{Pu-,Pnq
to

{pu- ,pny ¢
Inaczej: schemat wnioskowania jest niezawodny, gdy dla dowolnego zbioru przesla-
nek konsekwencja skladniowa poci®ga konsekwencji semantyczni

Schemat wnioskowania, ktdry nie jest niezawodny, jest praktycznie bezuzyteczny.
Wszystkie przedstawiane wczesniej schematy si schematami niezawodnymi (po-
prawnymi), zawodnym natomiast schematem wnioskowania jest na przyklad sche-
mat postaci

P=> g
Aby to stwierdzic, wystarczy rozpatrzyc wartosciowanie, w ktérym obie wypowiedzi

p oraz q s" falszywe. Przy takim wartosciowaniu przeslanka schematu p => q jest
prawdziwa, ale wniosek qjest falszywy.

1.4. Indukcja matematyczna

Zasada indukcji matematycznej jest jednym z bardziej uzytecznych schematéw wnio-

skowania. Bezposrednio odnosi siQ ona do badania wlasnosci wyrazanych w termi-

nach liczb naturalnych, czyli do wlasnosci postaci Pin), gdzie neNat. Zasada indukcji

opiera siQ na prostej obserwacji, ze caly zbior liczb naturalnych mozna uporzqdkowac,

zaczynajqc od 0, a nastgpnie mozna przechodzic do kolejnych liczb przez dodawanie

1. Z obserwacji tej wynika, ze udowodnienie, iz pewna wlasnosc P(n) zachodzi dla
kazdej liczby naturalnej n wymaga pokazania, ze zachodzi ona dla n =0, oraz ze za-

chodzi P(n + 1), gdy zachodzi Pin). Czy zachodzi P(0) wymaga zatem bezposrednie-

go zbadania, natomiast P (1) zachodzi, poniewaz zachodzi P{0), podobnie P(2) zacho-

dzi, poniewaz zachodzi P (1) itd.

Twierdzenie 1.1 (Zasada indukcji matematycznej)

Niech P[n) b~dzie pewnq wlasnosci{\, ktdra odnosi siq do liczby naturalnej n. Aby
pokazac, ze wlasnosc P(n) zachodzi dla kazdej liczby naturalnej neNat, wystarczy
pokazac, ze:

krokpoczgtkowy: P zachodzi dla n = 0, czyli zachodzi P(0),
krok indukcyjny. jezeli zachodzi Pin), to réwniez zachodzi P(n +1).

Dowaodzenie zgodnie z zasada indukcji sklada siq z dwdch krokéw. Krok poczgtkowy
wymaga zbadania zachodzenia wlasnosci P dla n = 0. Drugi krok wymaga udowod-
nienia implikacji: jezeli P{n), to P(n + 1). Zalozenie P{ri) w tej implikacji nazywa siq
hipotezq indikcyjng.

IPrzyklad 11

Niech Pin) oznacza wlasnosc, ze 2" > nJ. Wlasnosc ta nie zachodzi dla wszystkich1
liczb naturalnych, ale zachodzi dla n > 5.

Latwo sprawdzic, ze zachodzi P(5), gdyz 25> 52, ale nie zachodzi P(4), gdyz nie-
prawda, ze 24> 42 i podobnie nie zachodzi P(0), P(I), P(2), P(3).

Jezeli zachodzi P(n) oraz n > 5, to zachodzi réwniez P(n + 1).

Istotnie, jezeli 2">n2 to - ze 2" > (« + 1)2- wynika z nastgjujqcego wnioskowania:

2ntl =2x2"
>2n2 - na mocy hipotezy indukcyjnej, ze 2”>n
=n2+n2
>n2+5n - na mocy zalozenia, zen >5
=n2+ 2n + 3«
>n2+2n+1 - wlasnoso trywialna: 3n > ldlan>1

= (« + !)f

Czasem wlasnosci, o ktorych siq s*dzi, ze moznaje latwo udowodnic metod” indukciji,
moget siq okazad niemozliwe do bezposredniego wykorzystania zasady indukcji. Hu-
struje to przyklad.

Przyklad 1.2

"N Nalezy pokazac, ze suma n pocz*tkowych liczb nieparzystych jest kwadraterd
pewnej liczby naturalnej, to znaczy ze dla kazdej liczby naturalnej n istnieje taka
liczba naturalna k, ze

fpi+\)=k2

(=0
Dia n = 0 wlasnoSc P(0) zachodzi trywialnie dla k = 1. Zatézmy teraz, ze istnieje
k> 1takie, ze zachodzi powyzszy wzdr, wowczas

@1+ D=y "2+ D+(2n + = k2+ 2fi +1

1=0 1=0

Niestety, nie ma gwarancji, ze wyrazenie k2+In +1 jest kwadratem pewnej licz-
by naturalnej i tym samym nie mozna dowodu kontynuowac. Moze to sugerowac,
ze indukcja jest zbyt slabym schematem dla dowodzenia tego typu wlasnosci.
Tak jednak nie jest. Nalezy zauwazyc, ze gdyby w rozwazanym wyrazeniu przy-
jq6, ze k= n, wowczas zachodzilaby réwnosc

k2+In + 1=n2+In+1=(n+1)2

Obserwacja ta sugeruje rozwazenie mocniejszej wlasnosci, mianowicie

1721+ D)= /2

1=0

I Jej udowodnienie metod” indukcji jest juz proste i pozostawia sigje Czytelnikowi. .

Udowodnienie pewnych wlasnosci wymaga silniejszej formy indukcji. Mianowicie,
w indukcyjnym kroku, aby udowodnic P(n + 1) wymaga si$ zalozenia, ze nie tylko
zachodzi P(n), ale rowniez, ze zachodz"P(1),..., P(n - 1).

Twierdzenie 1.2 (Zasada indukcji matematycznej - silnaforma)

Niech P{n) bgdzie pewn” wlasnosci”, ktéra odnosi siq do liczby naturalnej n. Aby
pokazac, ze wtasnosc P(n) zachodzi dla kazdej liczby naturalnej ne Nat, wystarczy
pokazac, ze:

krokpoczqtkowy: P zachodzi dla n - 0, czyli zachodzi P{0), oraz

krok indukcyjny: zachodzi P(n + 1), gdy zachodzi P(k) dla kazdego k= 0,..., n.

Przyklad 1.3

" Nalezy pokazac, ze kazda liczba naturalna n> 2 jest iloczynem liczb pierwszych)
Wlasnosc ta zachodzi oczywiscie dla n = 2. Dalej zalézmy, ze wlasnosc ta za-
chodzi dla 2, 3, n. Na tej podstawie nalezy pokazac, ze zachodzi ona réwniez
dla n+ 1 Jezeli n + 1jest liczbg. pierwsz”, to wlasnosc jest oczywiscie prawdzi-
wa. W przeciwnym razie, gdy n + 1 nie jest liczb” pierwszq, oznacza to, ze n+ 1
moze byc wyrazone jako iloczyn km dwdch liczb, gdzie 2 <k<n oraz2<m <n.
Na mocy hipotezy indukcyjnej liczby k oraz m s” iloczynami liczb pierwszych,

I zatem n + 1wyraza sig rowniezjako iloczyn liczb pierwszych. |

W przykladzie nie korzysta siq bezposrednio z hipotezy indukcyjnej dla n, ale dla
pewnych liczb k, m mniejszych od n + 1. Ogdlnie moze zachodzic potrzeba wykorzy-
stania wielu takich liczb.

1.5. Logika w informatyce

Logika klasyczna znajduje w informatyce szerokie zastosowanie. W pierwszej kolej-
nosci dostarcza ona jgzyka do przedstawiania i badania wlasnosci modeli informa-
tycznych, w tym systemow komputerowych i j*zykdéw programowania. Szczegdln®
rol? odegrala logika w formowaniu pojQcia algorytmu i obliczalnosci [Arbib 1968],
[Davis, Hersh 1994], [Mostowski, Pawlak 1970], [Penrose 1996].

Oprocz logiki klasycznej s™ wykorzystywane logiki specjalne, przeznaczone na przy-
klad do specyfikacji oprogramowania, a takze jako j*zyki programowania.

Wazn” rolQ w informatyce odgrywaj” roznego rodzaju logiki nieklasyczne, migdzy in-
nymi w systemach eksperckich (doradczych). Zadaniem takich systemow jest wspoma-
ganie czlowieka podczas podejmowania decyzji, na przyklad postawienie przez leka-
rza diagnozy o stanie zdrowia pacjenta na podstawie wynikow badan. Proces
podejmowania decyzji opiera si$ w takich przypadkach na informacji niepewnej lub
niepelnej, a wnioski z przeprowadzonego wnioskowania nie musz”byc niezawodne.

Oto wybrane dzialy informatyki, w ktorych logika znajduje bezposrednie zastosowanie:

» Specyflkacja i weryfikacja programéw - np. [Bicaregui, Fitzgerald, Lindsay
1994], [Dembinski, Maluszynski 1981], [Shepard 1995].
Formuly logiczne sluz” do wyrazenia tego, co program ma obliczac, czyli do wy-
razania specyfikacji programu. Stwierdzenie czy dany program oblicza to, co
powinien, czyli czy spelnia zadan” specyfikacji, polega na odpowiednim mani-
pulowaniu na tekscie formul specyfikacji i na tekscie programu. Inaczej: stwier-
dzanie poprawnosci programu wzglgdem danej specyfikacji polega na przepro-
wadzeniu dowodu w odpowiedniej logice programdw.

 Przetwarzanie rozproszone, wspolbieznoSo6 i sterowanie, systemy komunikacji
w czasie rzeczywistym - np. [Apt, Olderog 1991], [Huzar 1989],
Odpowiednie formy logiki zostaly opracowane w celu wyrazania i wnioskowania
o0 zjawiskach, ktére wystgpuj™ w przestrzeni i trwaj® w czasie. one wykorzy-
stywane na przyklad do wnioskowania o wspélpracy pomiqdzy mobilnymi réw-
noleglymi procesami.

 Zarz"dzaniebazami wiedzy-np. [Bolc, Borodziewicz, Wojcik 1991], [Tyugu 1989].

Zadaniem odpowiednich logik jest umozliwienie udzielenia odpowiedzi na pyta-
nia kierowane do bazy wiedzy. Udzielanie odpowiedzi na pytania sprowadza si$
do zbadania, czyjest ono konsekwencj*semantyczn®nagromadzonej wiedzy.

Projektowanie ukladéw logicznych - np. [Harrison 1973].

Projektowanie ukladéw elektronicznych komputeréw, na przyklad ukladéw sca-
lonych, spowodowalo powstanie specjalistycznych logik, migdzy innymi logik
wielowartosciowych i progowych.

Systemy ekspertowe, planowanie i sztuczna inteligencja - np. [Bolc, Borodzie-
wicz, Wojcik 1991], [Baneiji 1990], [Bubnicki 1990], [Huzar, Kurzynski, Sas
1994].

Dzial ten wyksztalcil now” grupQ logik, ktorych istotft jest prowadzenie wnio-
skowania w warunkach informacji niepelnej lub niepewnej.

Przetwarzanie jgzyka naturalnego (lingwistyka informatyczna) - np. [Camap
1990], [Marciszewski 1987].

W celu automatycznej analizy tekstu, czy tez automatycznego przekladu z jedne-
go jQzyka na inny, powstaly rézne logiki sluz”ce przede wszystkim do wyrazania
znaczenia tekstu.

Programowanie logiczne-np. [Kowalski 1989], [Wdjcik 1991].

Jgzyk logiki moze byc traktowany bezposrednio jako jgzyk programowania. To,
co w podejsciu klasycznym jest logiczn” specyfikacjX programu - przy zachowa-
niu pewnych ograniczen - moze byc interpretowane jako wykonywalny program.

Cwiczenia
1. Ktdra z wypowiedzi jest zdaniem, a ktora funkcj” zdaniowsg

a) 'Ksigzycjest zrobiony z zbltego sera.

b) Ortfaktyczniejest wysokim mgzczyzng.

c) Sfotice krqzy dookola Ziemi.

d) Wciqggu wiekéw skladniki te tiformowaly rafy.
e) Niech zyje przyjazn miqdzy narodami!

f) Dwajest liczbgparzystg.
g) Ktora druzyna zdobqgdzie mistrzostwo kraju wpilce noznej?
h) Oczekuje sig, ze wprzyszlym roku obroty na gieldzie znacznie wzrosng.
i) x2-4 =0.
j) Dlugi honorowe nalezy splacac w ciggu 24 godzin.
k) Mqgzczyznajest wyzszy od kobiety.
I) Nalezy raczej zapobiegac niz leczyc.
m) Kalifornig co roku nawiedza trzgsienie ziemi o sile 7 stopni w skali Richtera.
n) KrolJagiello byl raczej wysokim mqgzczyzng.
2. Jak™ wartosc logiczn”™ maj” zdania:
a) 8jest liczbq nieparzystq lub 6jest liczbq parzystqg.
b) 8jest liczbg nieparzystq oraz 6jest liczbq parzystq.
c) Jezeli 8jest liczbg nieparzystq, to 6jest liczbg parzystqg.
d) Jezeli 8jest liczbq nieparzystq oraz 6jest liczbqparzystq, to 6jest wigksze od 8.

3. Ktore ze zdanjest negacj” danego zdania:

a) Wynikiem obliczenjest albo 2, albo 3.
(i) Wynikiem niejest ani 2, ani 3.
(ii) Wynikiem niejest 2 lub niejest 3.
(iii) Wynikiem niejest 2 i niejest 3.
b) Ogorekjest zielonq rosling nasienng.
(i) Ogorek niejest zielony, alejest rosling nasienng.
(if) Ogorek niejest zielony lub niejest rosling nasienng.
(iii) Ogorek niejest zielony i niejest rosling nasienng.

4. Wskaz poprzednik i nastganik implikacji w zdaniach:

a) Pomyslny wzrost roslinjest uwarunkowany prawidlowym nawadnianiem.

b) Wprzypadku modyfikacji programupojawig sig w nim blgdy.

c) Blgdy wprogramie pojawiq siq tylko w przypadkujego modyfikacji.

d) Oszczqdnosc energiijest zwigzana z dobrq izolacjq scian i szczelnosciq okien.

5. W podanych zdaniach ziozonych rozpoznaj zdania proste i 1*cz”*ce je spojniki:

a) Edmund Hillary i Tenzing Norgay sqpierwszymi zdobywcami Mont Everestu.

b) Indochiny lezg w strefie tropikalnej i majq gorqce lata, ale zimy w czgsci p6l-
nocnej sq chlodne.

c) Niezaleznie od tego, jak wysoko skaczesz, ksigzyca nie osiggniesz, chyba ze po-
lecisz tarn rakietq.

6. Przedstaw tablice prawdziwosciowe wyrazajgce znaczenie wystQpu]\cych w j*zyku
polskim, nastQpuje~cych zwrotow:

a) co najwyzejjedno z dwojga,
b) dokladniejedno z dwojga,

c) oile...

d) ani.... ani,

e) pod warunkiem, ze...,
f) chyba ze,

g) chocby nciwet,

h) zawsze wtedy, gdy.

7. Za pomocci dowolnych dwoch sposrdd spojnikéw: negacji, koniunkcji, altematywy
i implikacji, zdefiniuj znaczenie wyrazen podanych w zadaniu 6.

8. Rozpatrz nast"pujqce wnioskowanie oparte na sylogizmie warunkowym:

Jezeli dzisiajjest wtorek, tojutrojest sroda.
Jezeli dzisiajjest sroda, tojutrojest czwartek.
Zatem: Jezeli dzisiajjest wtorek, tojutrojest czwartek.

Wyijasnid przyczyny paradoksalnego wniosku.

9. Oto fragment raportu policji sporzqdzonego przez mlodego aspiranta:

Swiadek nie byl zastraszony lub tez, jesli Henry popelnil samobdéjstwo, to testa-
ment odnaleziono. Jesli swiadek byl zastraszony, to Henry nie popelnil samo-
bojstwa. Jesli testament odnaleziono, to Henry popelnil samobdjstwo. Jesli
Henry nie popelnil samob6jstwo, to testament odnaleziono.

Co komendant policji moze wywnioskowad z powyzszego raportu (poza oczywi-
stym faktem, ze nalezy zwolnic aspiranta)? Odpowiedz na pytania:

Czy swiadek byl zastraszony?
Czy Henrypopelnil samobdjstwo?
Czy testament odnaleziono?

10. Posrdd czlonkéw pewnego Klubu lingwistycznego kazdy uczy siq francuskiego,
niemieckiego lub hiszpanskiego. Wiadomo, ze 20 uczy siq francuskiego, 12 fran-
cuskiego i hiszpanskiego, 16 niemieckiego, 16 hiszpanskiego, 4 francuskiego
i niemieckiego, 7 niemieckiego i hiszpanskiego, 3 wszystkich trzech jgzykéw. llu
czlonkéw liczy klub? llu z nich uczy siq dokladnie dwoch jgzykow?

11. Oto przyklady wnioskowan przez indukcjg:

a) Pokazq, ze wszystkie liczby naturalne sg. parzyste. Oczywiscie 0 jest liczby pa-
rzyst”. Niech n b~dzie dowoln” liczby naturalne i zalézmy, ze dla wszystkich
k <n, k jest parzyste. Niech n\ i «2 bgdzie dowolnym rozbiciem liczby n na su-
mQ liczb mniejszych (tzn. n =nt+n2). Poniewaz n\ oraz n2s"mniejsze od n, za-
tem «i i «2 s"parzyste, a wiqc n jest parzyste jako suma dwoch liczb parzystych.

b) PokazQ, ze wszystkie dodatnie liczby naturalne sg. nieparzyste. Oczywiscie
ljest liczby nieparzyste Niech n bqgdzie dowolne liczbe naturalne i zal6zmy, ze
dla wszystkich k < n, k jest nieparzyste. Niech 1, n\ i n2 bgdzie dowolnym roz-
biciem liczby n na sum<? trzech liczb mniejszych (tzn. n = nx+ n2+ 1). Poniewaz

12.

13.

14.

15.
16.

«i oraz «2 seimniejsze od n, zatem n\ i n2 nieparzyste, a WiQC « jest parzyste
jako suma dwdch liczb nieparzystych i liczby 1.

c) Pokazq, ze wszystkie proste na ptaszczyznie réwnolegte. Rozwazmy jedno-
elementowy zbi6r prostych na ptaszczyznie. Oczywiscie wszystkie proste nale-
zce do tego zbioru sq do siebie rdwnolegte. Zatézmy, ze w kazdym n-elemen-
towym zbiorze prostych wszystkie proste s” do siebie réwnolegte. Rozwazmy
teraz (n + I)-elementowy zbi6r prostych. Ustalmy w nim jedn” prost*/>. Na mocy
zatozenia indukcyjnego wszystkie pozostate n prostych s” do siebie réwnolegte.
Ustalmy teraz inng. prost™ g. Na mocy zatozenia indukcyjnego wszystkie pozostate
n prostych s” réwniez do siebie rdwnolegte. Poniewaz relacja réwnolegtosci pro-
stych jest przechodnia, wszystkie n + 1 proste s” réwnolegte. Na mocy zasady in-
dukcji matematycznej kazdy zbitr prostych na ptaszczyznie zawiera wylqgcznie pro-
ste rownolegte. Dotyczy to zbioru wszystkich prostych na ptaszczyznie.

Ktore z tych rozumowan jest poprawne? Wskaz btqdy popetnione w blQdnym ro-
zumowaniu.

Rozwazyc uogdlnienie problemu przedstawionego w przyktadzie 1. Dia jakich
liczb naturalnych n, k zachodzi nieréwnosc: 2" > «*?

O wtasnosci P(n) wiadomo, ze jest prawdziwe P(1), a ponadto dla kazdej liczby
naturalnej n zachodzi implikacja P(n) =P(n + 10). Czy wynika st*d, ze prawdzi-
we shimplikacje:

a) P(32)=>P(62),

b) P(33)"P(61),

c) P(34)=>P(63),

d) />(31) => P(64).

O wtasnosci P(n) wiadomo, ze jest prawdziwe P(l), natomiast P(100) jest falszy-
we, a ponadto dla kazdej liczby naturalnej n zachodzi implikacja P(n) =>P(n + 2).
Czy wynika stqd, ze:

a) P (101) jest prawdziwe,

b) P(300) jest prawdziwe,

c) P(50) jest fatszywe,

d) P(200) jest fatszywe.

Przeanalizuj prawdziwosc zdania: To, co mowiq w tej chwili.jest klamstwem.

Oto rozmowa czterech krasnoludkéw A, B, C oraz D, z ktérych kazdy zawsze
mowi prawdQ albo zawsze kiamie:

A mowi do B: Jestes klamcq.

C méwi do A: Ty samjestes klamcq.

D méwi do C: Oni obaj sq klamcami. | ty takzejestes klamcq.

Ktory z nich méwi prawd8?

2. Elementarne poj”*cia mnogosciowe

2.1. Zbior i element zbioru

Podstaw” wszelkiej komunikacji pomi*dzy ludzmi, a takze pomi*dzy ludzmi i kompu-
terami, jest jgzyk, ktory uzywa wspdlnie ustalonych symboli i jednoznacznie skoja-
rzonych z nimi pojQC. Symbole shiz” do reprezentacji poj$c. Mog” one miec rézn”
postac - mog”to byc dzwigki, obrazy, znaki graficzne. Kazdy Symbol powinien repre-
zentowac poj”cie, ktore jest jednakowo rozumiane przez obiekty (podmioty) uczestni-
czqce w komunikacji. Wprowadzenie j*zyka wymaga zdefmiowania odpowiedniego
zestawu symboli oraz zdefiniowania przypisywanego im znaczenia. Z wprowadza-
niem nowego j*zyka wi”ze si? pewien problem: definicje elementdw jgzyka wymaga-
j™ opisu, wyrazanego w pewnym innym jgzyku. Oznacza to, ze przed wprowadzeniem
pewnego jqzyka nalezy dysponowac innym jgzykiem stuz”cym do opisu nowego jg-
zyka. W celu odroznienia tych jgzykdéw, jgzyk definiowany nazywa siQ jgzykiem
przedmiotowym, krotko jgzykiem, a jgzyk sluzcy do opisu jgzyka przedmiotowego
nazywa si$ metajgzykiem.

Uwaga
PojQcie metajQzyka funkcjonuje w wielu sytuacjach. Na przyklad podczas nauki
jqzyka obcego, zalézmy angielskiego, j*zyk ten opisujemy i wyjasniamy za po-
moc”jQzyka polskiego. Kazdy metajgzyk ma swdj metaj*zyk - mozna pisac po
niemiecku o kims, kto pisze po polsku o angielskim. Istnieje niekonczqca siq hie-
rarchia metajQzykdw.

Elementy jgzyka formalnego (symbolicznego) zawieraj® pojQcia odnosz”ce siq do
dwoch obszaréw - obszam teorii mnogosci i logiki. Elementy tego jgzyka wyjasnia
siQw jgzyku naturalnym. jQzyk naturalny odgrywa tu rolQ metajQzyka. Z j*zyka natu-
ralnego wykorzystuje siq oczywiscie tylko te poj“cia, co do ktdrych nie ma w”tpliwo-
sci interpretacyjnych. Sytuacja jest podobna do tej, z ktdr” spotyka si$, studiujgc na
przyklad encyklopedi?. Encyklopedia sluzy do wyjasniania pewnych pojQc-hasel
i czyni to za pomocEL innych poj~c-hasel, o ktérych si$ zaklada, ze powinny byc po-
wszechnie znane ijednoznacznie rozumiane. Czasem wprawdzie jest tak, ze w wyja-
snianiu pewnych hasel wystgnyX inne hasla, ale w odniesieniu do encyklopedii jako
calosci przyjmuje siq, ze istnieje pewien zestaw poj*c pierwotnych, ktérych encyklo-

pedia uzywa, ale ich nie wyjasnia i ktére si® uwaza za powszechnie zrozumiate. Po-
stQpowanie takie nie jest calkowicie scisle i czasem moze byc zrodlem niejednoznacz-
nosci lub nawet sprzecznosci, ale praktycznie - w wi”kszosci przypadkéw - pozwala
na wprowadzanie i wyjasnianie potrzebnych poj$c.

Obszary teorii mnogosci i logiki silnie siQ przenikaj”®. Formuhij*c pojQcia nalez”ce do
obszaru teorii mnogosci, korzysta siq z pojqc logicznych, ale tez i odwrotnie - formu-
lowanie wlasnosci logicznych wymaga odwolania si$ do poj*c mnogosciowych. Moz-
na sigq zatem spotkac z dwoma podejsciami do opisu logiki klasycznej. Pierwsze po-
dejscie polega na przyjQciu pewnych elementéw teorii mnogosci i wyprowadzaniu na
ich podstawie pojgc logicznych. Drugie podejScie, odwrotnie, polega na przyjQciu
podstawowych pojgc logicznych i na wyprowadzaniu na ich podstawie pojQC mnogo-
sciowych. W ksi“zce przyjqto pierwsze podejscie - przed pelnym opisem pojqc lo-
gicznych wyjasnia sig elementame pojqcia z zakresu teorii mnogosci.

Do podstawowych poj$c mnogosciowych zalicza sig:
* pojqcie zbioru,
* pojQcie elementu zbioru,
* pojqgcie nalezenia b~dz nienalezenia elementu do zbioru.

Poj~cie zbioru - intuicyjnie zrozumiale - okazalo siq bardzo trudne do precyzyjnego
zdefiniowania. Poprzestaniemy tu na intuicyjnym albo naiwnym rozumieniu zbioru,
tak jak czynil to w XIX wieku Cantor3- twdrca teorii mnogosci - ktory zbior okreslal
jako
ujgcie w calosc okreslonych, dobrze wyréznionych obiektdw, zwanych elementami
zbioru.

W okresleniu tym nie wskazuje sig, czym mogct byc elementy zbioru. Podane okresle-
nie zbioru nie jest precyzyjne, gdyz przy probie odpowiedzi na pewne pytania mog”
siQ pojawic sprzecznosci. Préby uscislenia pojgcia zbioru prowadzily do powstania
sformalizowanej teorii mnogosci.

Nalezy podkreslic, ze w podanym okresleniu kladzie siq akcent na rozréznialnosc
bytéw stanowiqcych elementy zbioru. Nie okresla siq natomiast jak osi*gac tQrozroz-
nialnosc, czy na przyklad przez jednoznaczn” identyfikacjQ bytéw, czy przez okresle-
nie unikalnych ich wlasnosci. Oznacza to jednak, ze majgc dwa byty, potrafi siq
stwierdzic, czy s” one identyczne czy rbzne.

Jezeli symbolem A oznacza siq pewien zbidr oraz symbolem a oznacza siq pewien

element, to zapis aeA czyta si$: ajest elementem zbioru A, natomiast zapis a<€A czyta
si$: a niejest elementem zbioru A.

Jezeli asA oraz beA, to zapisuje siQto skrotowo: a, beA.

3Georg Cantor (1845-1918).

N4& og0l zbiory bgdziemy oznaczac napisami zaczynaj*cymi siq wielkimi literami lub
pojedynczymi literami greckimi, a elementy zbioréw odpowiednimi malymi literami,
z ewentualnymi indeksami.

Pewne zbiory przyjmuje sigjako znane. Bqd”to zbiory: liczb naturalnych Nat, liczb cat-
kowitych Calkowite, liczb wymiemych - Wymieme, liczb rzeczywistych - Rzeczywiste.

SzczegOlnym zbiorem jest zbidrpusty - zbiodr, ktéry nie ma zadnego elementu. Bqdzie
on oznaczany symbolem 0 .

W celu wyeliminowania pewnej klasy paradokséw (zob. dalej - paradoks Russella),
ktére mog" powstac podczas definiowania zbiordw, zaklada sig, ze zaden zbidr nie
moze byc swoim elementem, to znaczy dla dowolnego zbioru A zachodzi: AiA.

2.2. Definiowanie zbiordéw

Zbiory mozna definiowad w rdzny sposob. Przedstawia siq trzy sposoby definiowania
zbioréw:

e enumeracyjny,
* rekursywny,
* ekstensjonalny.

Najprostszym sposobem definiowania zbioru jest jawne wskazanie wszystkich jego
elementdw. Sposdb ten nazywa siq enumeracjq lub wyliczeniem elementéw zbioru.
Schemat takiej definicji ma postac

A (6 {U, ©2>*>@n

Zapis ten czytamy: Ajest nazwq zbioru, ktérego elementami sq a\, a2 ..., a,, Symbol
=df czytamy: réwny z definicji.

Przedstawiony wyzej schemat definicji zbioru zawiera dwa elementy:

» wprowadza Symbol A jako nazwq zbioru,

 okresla znaczenie (inaczej interpretacjq), ktore przypisujemy temu symbolowi;
jest nim zestaw elementdw a\, a2, ..., a,,, ktére nalez” do zbioru A. Elementy te,
oddzielone przecinkami, tworz” skonczony ci*g. Wystgpuj”~ce tu trzy kropki s*
tylko zaznaczeniem, ze liczba tych elementéw moze byc dowolna, ale skonczo-
na. Definicja konkretnego zbioru musi oczywiscie wymienic jawnie wszystkie
jego elementy.

W zwi”zku z rozrdznieniem pojqcia symbolu oraz pojqcia znaczenia symbolu nalezy
zwrdcic uwagq na nazwq zbioru. Mozliwe Stdwa spojrzenia na nazwg.

W pierwszym spojrzeniu nazwq traktuje siq tylko jako symbol - nazwa nie wyraza
zadnego znaczenia, jest tylko znakiem lub ci*giem znakéw z ustalonego repertuaru

znakdw. Tak”rol? ma symbol A wystQpuj~cy po lewej stronie w podanej poprzednio
definicji.
W drugim spojrzeniu nazw? traktuje si? jako zbiér, ktérego elementy wymienione

w nawiasach. Aby na przykiad odpowiedziec na pytanie czy asA, nalezy widzied A
jako zestaw konkretnych elementéw.

CzQSto dalej uzywanym zbiorem b?dzie zbiér wartosci logicznych
Logiczne =def {prawda,falsz}

Rozpatrzmy dalsze przyklady enumeracyjnej definicji zbioréw:
Kreski =cef {|, -}
Strzalki =cef {*-, m>, f, 4"}
DniTygodnia =<ef {poniedzialek, wtorek, sroda, czwartek, pigtek, sobota, niedziela}
LiteryMale =df {a, b, ..., 2}
LiteryDuze =dx (™, B, 2)

Elementami pierwszego i drugiego zbioru Symbole graficzne, elementami pozosta-
lych zbiordw litery lub napisy. W definicjach dwoch ostatnich zbioréw wyst?puj£i
takie same kropki, ale z uwagi na kontekst, w ktérym wystqpujq, potrafimy nadac im
odpowiednie rézne znaczenia.

Bezposrednio z definicji zbioréw wynika, ze na przykiad:
| e Kreski
f e Strzalki

Uzywane pojQcie zbioru nie narzuca ograniczen na to, czym mog”~byc jego elementy.
W szczegdlnosci elementami zbioru mog” byd inne zbiory. Rozpatrzmy przyklady
zbiorow:

1)

{3

<, *3{<3}

{{{a}}, {a}.a}

to zbiory anonimowe, to znaczy niemaj“ce nazw. Pierwszy zbior sklada si? tylko
zjednego elementu a. Drugi zbiér sklada si? réwniez z jednego elementu, ale elemen-
tem tym jest zbior jednoelementowy {a}. Trzeci zbiér ma dwa elementy, ktérymi s
zbiory {a, b} oraz {a}. Ostatni zbior ma trzy elementy, z ktérych kazdy ma rézn”
Struktur? - pierwszy jest zbiorem postaci {{a}}, drugijest zbiorem postaci {a}, a trze-
cijest pojedynczym elementem a.

Enumeracyjne definiowanie zbioru nie jest mozliwe, gdy zbiér zawiera nieskonczenie
wiele elementéw. W tym przypadku mozna stosowac podejscie rekursywne. Rekur-
sywna definicja zbioru sklada si? z dwdch cz?sci:

* czgsci bazowej, w ktorej jawnie wskazuje si$ na pewne obiekty jako elementy
definiowanego zbioru,

 czgsci rekursywnej, w ktorej wskazuje siQ na nowe obiekty jako elementy defi-
niowanego zbioru, przez odpowiednie odwolanie si$ do tych obiektow, o ktd-
rych juz wiadomo, ze nalezy do definiowanego zbioru (inaczej: czqso rekursyw-
na okresla jak za pomoc” obiektéw, o ktérych wczesniej wiemy, ze elemen-
tami zbioru, mozna wyrazic inne obiekty, ktére roéwniez elementami definio-
wanego zbioru).

SzczegOlnie waznym i potrzebnym zbiorem nieskonczonym jest zbior liczb natural-
nych Nat. Mozna zdefiniowac go rekursywnie nastqpuj”co:

e OeNat
« jezeli neNat, to n + 1e Nat.

Elementy zbiom w czqsci rekursywnej definicji s” wyrazane przez napisy n oraz n+ 1
Napisy te reprezentuj” pewne liczby, przy czym to, jakie s to liczby, zalezy od tego, jak”
liczbq przypisze siq symbolowi n. Stosuj*c cz?sc rekursywn”po raz pierwszy, symbolowi
n przypisuje siq 0 i na tej podstawie wnioskuje si$, ze 1jest réwniez elementem zbiom
Nat. Stosuj”c czgsc rekursywn”po raz dmgi, symbolowi n przypisze siQliczbq 1 itd.

W podanej definicji zaklada siq, ze wiadomo jest, czym jest liczba i co oznacza doda-
nie jedynki do liczby. Bez rozumienia tych pojgc nie mozna zrozumiec, czym jest
zbidr Nat. PojQcia te nalezy do metaj"zyka, ktérego uzywamy do zdefiniowania zbiom
liczb naturalnych. Inna, formalna definicja liczb naturalnych, ktéra nie odwohije si$
do pojQcia liczby i dodawania, jest podana dalej.

Uwaga
Podana definicja zbiom liczb naturalnych przyjmuje, ze liczba 0 jest najmniejsz®
liczby naturaln”. Spotyka siq tez definicje, ktdre przyjmuje, ze najmniejszq. liczby
naturaln”jest 1. Konwencja ta wynika z historii powstawania liczb naturalnych,
kiedy - do odkrycia zera - za liczby naturalne uwazano tylko 1,2,3 itd.

Podobnie mozna zdefiniowac zbidr dodatnich liczb parzystych:

» 2eParzysteDodatnie
« jezeli ne ParzysteDodatnie, to n + 2e ParzysteDodatnie.

Ponownie nalezy zwrdcic uwag$, ze w czgsci rekursywnej definicji zbiom uzyto kon-
strukcji n +2, ktéra nalezy do metaj*zyka shizqcego do definiowania zbiom, i o ktorej
zakladamy, ze jest dla Czytelnikajednoznacznie zrozumiala.

Inny przyklad rekursywnej definicji pewnego zbiom liczb PewneLiczby jest nastgruj™cy:

» 5, le PewneLiczby
« jezeli n, me PewneLiczby, to n + me PewneLiczby

Czgsc bazowa okresla, ze elementami zbioru PewneLiczby liczby 5 i 7. Analizujgc
czgsc rekursywna, latwo si$ przekonac, ze elementami tego zbioru bgd” takze liczby
10, 12, 14,15,17, 20 itd.

Rekursywna definicja zbioru LinieLamane, ktérego elementami st Symbole graficzne
- linie lamane, zlozone z elementdw zbioru Kreski - ma nastQpuj”c” postad:

* |,- eLinieLamane

* jezeli a, beLinieLamane, to linia powstajgca z polgczenia a oraz b w taki spo-
sOb, ze jeden z koncdw a byl pol*czony z jednym koncem b tak, aby poza miej-
scem pol~czenia a oraz b nie mialy innych punktéw wspoélnych, nalezy réwniez
do zbioru LinieLamane.

Latwo sig przekonac, ze elementami zbioru LinieLamane bgd” m.in. nast*pujgce linie:
J g o n I

1 2 3 4 5

Rys. 2.1. Elementy zbioru LinieLamane

Linie o numerach 1 i 2 powstaj® przez r6zne powiqgzania elementdw zbioru Kreski,
linia 3jest wynikiem pol~czenia linii 112, linia 4 - linii 1i3, alinia5- linii 3i4.

Rekursywna definicja zbioru ma Charakter konstruktywny, to znaczy okresla jak moz-
na skonstruowac nowe elementy zbioru z innych elementéw, o ktérych juz wiemy, ze
s” elementami definiowanego zbioru. Inaczej mozna powiedziec, ze definicja rekur-
sywna wyznacza pewien algorytm konstrukcji elementdw zbioru. Algorytm jest w tym
momencie rozumiany nieformalnie jako ci*g pewnych krokéw obliczeniowych pro-
wadz”~cych do rozwi”zania danego problemu. Z tego wzglgdu rekursywny sposéb
definiowania zbiorow jest bardzo czgsto wykorzystywany w informatyce. Rekursywne
podejscie pozwala wprawdzie na definiowanie zbioréw nieskonczonych, ale nie do-
wolnych zbiordéw, lecz tylko zbioréw przeliczalnych, tzn. takich, ktérych wszystkie
elementy mozna zestawic w jeden cidg (poj~cie przeliczalnosci zbioru jest zdefinio-
wane w dalszej czgsci ksicizki). Oczywiscie, w skonczonej liczbie krokéw mozna wy-
znaczy0 tylko skonczon” liczbg elementéw zbioru.

Najogdlniejszy sposob definiowania zbiordw opiera siq na podejsciu ekstensjonalnym.
Podejscie to polega na definiowaniu zbioru przez okreslenie wlasnosci jego elemen-
tow. Schemat definicji zbioru ma postac

A=df {a [P(a)}

Zapis ten czytamy: do zbioru o nazwie A nalezq wszystkie te i tylko te elementy a, kto-
re majg wlasnosc P(a), czyli takie elementy, dla ktérych wypowiedz P(a) jest praw-
dziwa. P(a) jest funkcj®. zdaniowEb dlatego tez ten sposob definiowania zbioréw na-
zywa siQ takze definiowaniem przez funkcjq zdaniowq. Formalna postad fiinkcji
zdaniowych b”~dzie precyzyjnie okreslona w dalszej czqgsci ksi”zki.
Uwaga
Definicja ekstensjonalna nie okreSla sk*d brad te elementy, ktére maj” wlasnosd
P(a). Ogblne pytanie o to, ktére byty nalezy rozwazac przy takim definiowaniu
zbioru, wiqgze siq ze znanym problemem filozoficznym, okreslanym jako problem
powszechnikdéw albo uniwersaliow.

Rozpatrzmy poprzedni przyldad zbioru dodatnich liczb parzystych

ParzysteDodatnie =def {x | (xjest liczbg naturalng) a (x > 0) a (xjestpodzielne
przez 2)}

Wlasnosd
(xjest liczbg naturalng) a (x > 0) a (xjestpodzielneprzez 2)

ma postad wypowiedzi zlozonej. Poszczegdlne jej czlony nalezq do metajgzyka - j~zyka
arytmetyki. Aby rozumied sens calej wypowiedzi, nalezy rozumied jej czQSci skladowe:

xjest liczbq naturalng, czyli xeNat
x>0
xjest liczbq naturalngpodzielngprzez 2

oraz I"czEicy je spojnik logiczny a. Pierwsza z wypowiedzi wymaga rozumienia przy-
naleznosci elementu do zbioru, a pozostale wymagaj”® elementamej wiedzy z zakresu
arytmetyki. Znaczenie spdjnika a zostalo wyjasnione w poprzednim rozdziale.

Czasem, gdy definiujemy nowy zbidr A, wygodne jest odniesienie do innego, wcze-
sniej ustalonego zbioru B. Piszemy wtedy

A =def{xeB |P(x)},
co jest skrotem od
fx |x65 a P(x}}.
Mozemy wi”c napisac
ParzysteDodatnie =dif {xeNat | (x>0) a (xjestpodzielne przez 2)}
Uwaga
Czasem, definiuj*c zbiér, zamiast symbolu =def uzywa si$ réwniez innych ozna-

czen, na przyldad *= =, a nawet =. Ostatnim symbolem nalezy si$ poslugiwac

ostroznie, gdyz jego znaczeniem podstawowym jest stwierdzanie réwnosci (iden-
tycznosci) elementdw nalezcych do pewnego zbioru.

Podejscie ekstensjonalne do definiowania zbiordw jest wygodne i uniwersalne, ale nie-
ostrozny sposéb formulowania wlasnosci moze prowadzic do absurdu. Znany przyklad
takiego absurdu jest nazywany paradoksem Russella4. Russel wykorzystal w skrajnej
postaci rozumowanie, stosowane w pocz~tkowym okresie rozwoju teorii mnogosci,
mianowicie: niech Z bgdzie zbiorem zdefiniowanym nast*puj~co:

Z=def{ X\XiX)

to znaczy Zjest zbiorem - rodzin” zbiorow - ktérego elementami s” wszystkie zbiory
X, majce tQwlasnoso, ze nie s swoimi elementami. Odpowiedzmy teraz na pytanie:
czy ZeZ? Jezeli Z jest swoim elementem, czyli ZeZ, to oznacza, ze ma tak® sam”
wlasnoSd jak wszystkie elementy zbioru Z, czyli ZgZ. Jezeli natomiast Z nie jest swo-
im elementem, czyli ZgZ, to z definicji nalezy do rodziny zbioréw Z, czyli ZeZ.
W obu przypadkach zachodzi sprzecznosc.

Paradoks ten uzasadnia dlaczego na poczqtku rozdziahi wprowadzono ograniczenie,
ze dla dowolnego zbioru A zachodzi A&A.

Warto zwrdcic uwagQ, ze przypuszczenie, iz zbiér moze byc swoim elementem, wcale
nie jest absurdalne. Rozwazmy bowiem zbidér Z, ktérego elementami s” zbiory nie-
skonczone, to znaczy zbiory o nieskonczenie wielu elementach. Z pewnosci” istnieje
nieskonczenie wiele zbioréw nieskonczonych, a zatem zbiér Z jest nieskonczony,
czyli jest swoim elementem!

Rozpatrzmy jeszcze jeden przyklad. W wigkszosci praktycznie spotykanych przypad-
kéw mamy do czynienia ze zbiorami, ktdre nie sg. swoimi elementami - nazwijmy je
zbiorami zwyczajnymi, w odrdznieniu od pozostalych zbioréw, ktére nazwiemy nie-
zwyczajnymi. Utwodrzmy teraz zbior Z, ktérego elementami s™ wszystkie zbiory zwy-
czajne. Zapytajmy: czy zbi6r Z jest zbiorem zwyczajnym czy niezwyczajnym? Jesli Z
jest zbiorem zwyczajnym, to wchodzi w sklad swoich elementéw, lecz woéwczas
- zgodnie z okresleniem - jest on zbiorem niezwyczajnym. Jesli natomiast Zjest zbio-
rem niezwyczajnym, to - zgodnie z okresleniem niezwyczajnosci - powinien byc swo-
im wlasnym elementem, a przeciez elementami zbioru Z s” tylko zbiory zwyczajne.
Ponownie, jak w poprzednim przykladzie, w obu przypadkach zachodzi sprzecznosc.

Uwaga
Potrzeba wyeliminowania sprzecznosci wynikaj*cych ze zbyt swobodnego defi-
niowania bardzo ,,obszemych”, prowadz”cych do antynomii, zbioréw doprowadzi-
la do aksjomatycznego ujqcia teorii zbioréw (zob. podrozdzial 4.1). Niektore z ta-
kich koncepcji wi~zaly siq z wprowadzeniem pojqcia klasy. Zasadnicza idea

4 Bertrand Russell (1872-1970).

polegala na odrdznieniu klasy od zbioru: zbiory mog” byc elementami innych zbio-
row, klasy zas nie, dlatego - zamiast operowac niejasnym poj?ciem zbi6r wszyst-
kich zbiorow - mowi si? o klasie wszystkich zbioréw.

Poj?cie klasy w wyzej przedstawionym znaczeniu nalezy odrézniac od, maj*cego
zupelnie inne znaczenie, poj?cia klasy uzywanego w informatyce - w programo-
waniu i projektowaniu systeméw informatycznych.

Przyklad 2.1

J Rozpatrzmy przyklady zbioréw uzywanych w j?zykach programowania. W zasa-
dzie wszystkie takie zbiory s” zbiorami skonczonymi. Wyréznia si? mi?dzy innymi
predefiniowane zbiory wartosci zwigzane z typami danych.

Zbior wartosci logicznych
Boolean =d&f {false, true}
Zbior calkowitoliczbowy
Integer =cef {-N, ..., 0,..., N),
gdzie jVjest liczbei naturaln” okreslon” przez dan” implementacj? j ?zyka.
Zhior liczb rzeczywistych

Real =def {~N*S, 0,.... N*S}

gdzie N jest liczb” naturaln®, a Jjest liczb™ wymiem” okreslon” przez dan” im-
plementacj? j?zyka; jest to tzw. staloprzecinkowa reprezentacja liczb (w reprezen-
tacji zmiennoprzecinkowej kolejne liczby s~oddalone od siebie 0 zmienn” r6znic?).
Warto podkreSlic, ze wbhrew temu, co sugeruje nazwa, zbior ten zawiera skonczon”
ilosc liczb wymiemych.

Zbidr napisdw

String =def {s | sjest skohczonym ciqgiem znakéw ustalonego repertuarn znakéw)
W praktycznej implementacji typu napisowego dhigosc takich ci®gow jest ograni-
czona konkretn” liczby. Przykladem takiego repertuarn znakéw sg. na przyklad
znaki koddéw stosowane w reprezentacji maszynowej, na przyklad jednobajtowy
kod ASCII (American Standard Codefor Information Interchange) czy dwubajto-
we kody Unicode lub BMP (Basic Multilingual Plane).
Defmiowany przez programist? zbi6ér wyliczeniowy to na przyklad

DniTygodnia =def {pon, wt, sr, czw, pt, sob, nd)
gdzie pon, wt,..., nd s” pewnymi ustalonymi napisami. Napisy te - w odrdznieniu
od napisdw, ktore nalezy do zbioru String - s” nierozkladalne, to znaczy ich frag-
menty nie elementami zbioru DniTygodnia.

Specyficznym dla wielu jgzykoéw, nie tylko jgzykéw programowania, jest zbi6r
identyfikatoréw. Zbidr ten bqdzie dalej czQsto wykorzystywany i oznaczymy go
symbolem Ident. Moze on byc definiowany na przyklad tak

Ident =df | sjest niepustym ciggiem skladajgcym siq z liter lub cyfr, ktérego

pierwszym elementemjest litera}

Nalezy zwrdcic uwagQ, ze w tresci wlasnosc definiujXcych zbiory wystgjujX pojocia,
o0 ktérych siq zaklada, ze s"pojociami zrozumialymi - s”to pojocia metajgzyka, w kto-
rym opisujemy dane wlasnosci. Na przyklad w definicji zbioréw String oraz Ident ta-
kim pojociemjest ci”g, a w definicji zbioru DniTygodnia takim pojQciemjest napis. 1

2.3. Podzbiory, rownosc zbiordow, zbiory pot*gowe

Mowimy, ze A jest podzbiorem zbioru B, co oznaczamy A c¢ fl, wtedy i tylko wtedy,
gdy dla dowolnego elementu a: jezeli aeA, to takze aeB. Symbol ¢ nazywa siq sym-
bolem zawierania lub symbolem inkluzji. Podan” definicji zawierania zbioréw mozna
réwniez wyrazic formalnie

AcB <>(Va-aeA =>aeB)

Z definicji wize siq nastQpuj*cy komentarz: Jest to definicja w postaci normalnej.
Sklada siq ona z dwéch czqgsci przedzielonych symbolem réwnowaznosci <= ktory
czytamy: wtedy i tylko wtedy. Czgsc po lewej stronie symbolu réwnowaznosci jest
wyrazeniem zawieraj*cym pojqcie definiowane - del3niendum, a czgsc po prawej stro-
nie zawiera pojqcie definiuj*ce - definiens. Poprawnosc definicji wymaga, aby po
prawej stronie nie wystgpowalo poj~cie definiowane, gdyz bylby to przypadek ,,btqd-
nego kola”. Oczywiscie, aby rozumied sens definicji, pojgcia wyst*puj*ce w czgsci
definiujgcej musz” byc znane. Podana definicja spefnia przedstawione wymogi, gdyz
w wyrazeniu definiujgcym po prawej stronie nie wystQpuje pojQcie podzbioru, a poj$-
cia nalezenia elementu do zbioru, spdjnika implikacji i kwantyfikatora ogdlnego byly
wyjashione wczesniej. Definicja normalna pozwala przelozyc kazdy zwrot j*zykowy
zawieraj*cy wyrazenie definiowane na zwrot niezawierajgcy tego wyrazenia. Wigk-
szosc definicji podawanych w ksi*zce ma postac definicji normalnej.

Latwo zauwazyc, ze zachodz” wlasnosci:

0cl
A <zA
(AcBaBc Q=>(Ac Q

Uzywa siq tez symbolu inkluzji wlasciwej c. Zapis A ¢ B czytamy: zbidr A zawiera
sig wlasciwie w zbiorze B. Oznacza to, ze A zawiera siq w B, czyli Acl3, oraz zbi6r
B zawiera przynajmniej jeden element, ktory nie nalezy do zbioru A. Formalnie

AcBo (Ac B)a(3ae+aeA aaeB)

Dwa zbhiory A iB identyczne albo réwne, co oznacza siQ
A-B

wtedy i tylko wtedy, gdy majet dokladnie te same elementy, czyli gdy AczB oraz BCA.
Formalnie

A=B<"{A"B)a {B"A)
Symbol =jest tu symbolem réwnosci lub identycznosci zbiorow.
W zbiorze nie odréznia siq kolejnosci ani powtdrzen elementéw. Na przyklad zbiory:

A =def {1, 2, 3}
B=df {1, 3, 2}
C=def{l,2, 3,2}
setidentyczne, czyliA =B= C.
Jezeli A jest zbiorem, to przez 2A oznacza siQ zbior, ktérego elementami wszystkie
podzbiory zbioru A. Zbidr 2Ajest nazywany zbiorem potqgowym zbioru A. Zbidr potQ-
gowy jest wi”*c rodzin” zbioréw.
Uwaga
Zhidr potQgowy zbioru A oznacza siq rowniez przez P(A) albo (P(A).

Przyklad 2.2
AN Dia zbioru A =def {a, b, c} jego zbidr potggowym 2Ajest réwny zbiorowi A

\ {0, {a}, {b}, {c}. {a,b), {a c), {b.c), {a b, c}} ,

Postac oznaczenia zbioru potQgowego 2A wynika z nastqpuj*cej wlasnosci: Jezeli
A jest zbiorem skonezonym, to przez card(A) oznaczamy liczb$ jego elementdw. La-
two pokazac, ze dla dowolnego skonezonego zbioru A zachodzi

card(2a) = 2cadA
Nalezy zwrdcic uwagQ na to, ze uzyty powyzej symbol réwnosci = odnosi si$ do row-
nosci liczb calkowitych, podezas gdy uzyty wczesniej ten sam symbol odnosil siQ do

rownosci zbioréw. Symbol rownosci w réznych kontekstach moze byc uzywany do
poréwnywania obiektdw nalez”cych do rdznych kategorii.

Uwaga
Na okreslenie licznosci elementdéw skonezonego zbioru A uzywa sig réwniez in-
nych oznaczen, na przyklad: #(A), \A.

W przypadku zbioréw nieskonczonych nie mozna méwic o liezbie ich elementow.
Mozna natomiast pordwnywac dwa zbiory pod wzgl*dem réwnolicznosci. Pojqcie
réwnolicznosci zbioréw jest zdefiniowane dalej, po wprowadzeniu pojQcia funkeji.

2.4. Operacje na zbiorach

Majgc dane pewne zbiory, mozna z nich budowac nowe zbiory. Na zbiorach wykonuje
siQoperacje (dziaiania), ktérych wynikiem nowe zbiory. Podstawowymi operacjami
f: suma, przekroj, réznica i roznica symetryczna dwoch zbioréw. Dziaiania te sg.zde-
finiowane przez podanie wlasnosci zbioréw wynikowych.

Suma zbioréw

Au5=def {a|aeA v aeB}
Przekrdj zbiordw

A nB =df{a|aeA a aeB}
Rdéznica zbioréw

A\B=df {a|aeA a aeB}

Uwaga
Innym oznaczeniem rdznicy zbiordw jest A-B.

Przyklad 2.3

I Rozpatrzmy zbiory: n
A=def{{a, b},c}
B =def {c, d}

C=df {{a, {a}}.a}
D=def {a, {a}}

Latwo sprawdzio, ze:
AuB= {{a,b}c.d} AnB={c} A\B={{a,b}}
: Ckib= {{q, {a}}, {fl}, fi} CnD={a}___ C\D= {{a {fl}}}
Gdy interesujgce nas zbiory podzbiorami pewnego wyrdznionego zbioru, nazywa-
nego zbiorem uniwersum, uzywa siq operacji dopelnienia zbioru. Jezeli U jest uniwer-

sum oraz A jest pewnym jego podzbiorem, to przez A' oznaczamy operacje dopelnie-
nia zbioru A, ktor” definiujemy jako

A'=defU\A

Dwa zbiory A, B nazywa sig zbiorami rozlgcznymi, jezeli ich przekrdj jest pusty, czyli gdy
AnB =0

Czgsto stosowanym sposobem ilustracji operacji mnogosciowych . wykresy Vernas.
Zaklada si$ w nich, ze uniwersum jest zbior punktdw na plaszczyznie, a rozwazanymi

5John Venn (1834-1923).

zbiorami s".dowolne obszary na piaszczyznie. Przykiad takiego wykresu przedstawio-
no na rysunku 2.2. Dwa przecinajqce siq owale reprezentuj” zbiory A oraz B. Poszcze-
golne podobszary oznaczajX odpowiednio podzbiory ASB, A n B oraz B\A.

Wprowadzone operacje maj\rézne wlasnosci. Latwo sprawdzic, ze zachodzq. nastgpu-
jgce wlasnosci, hazywane tez prawami mnogosciowymi:

1. Prawa przemiennosci

AuB=BuUuA
AnB=BnA

2. Prawa lgcznosci
(AvB)uC =Au(BvC)
(AnB)nC=An (BnQ

3. Prawa rozdzielnosci

(AvB)nC=(AnC)v(BnC)
(AnB)u C=(Au Qn(BuQ

4. Prawa de Morgana
(AnB)'=A"kjff
(AuBy =A'nB"’

5. Prawa dla zbioru pustego
AnO =0
Aul0 =A
A\0 =A
0\A =0
0'=uU

6. Prawa dla zbioru uniwersum
An U=A
Au U=U
A\U=0
U =0

Przykladowo pokazemy jak uzasadnic jedn™ z tych wlasnosci - pierwsze z praw
de Morgana.

Wlasnosc
Zachodzi nastQpuj”~ca réwnosc zbioréw
(AnB)' =A' kj B’
Dowdd

Z definicji rownosci zbioréw wynika, ze nalezy pokazac dwie inkluzje:
(AnB)'cA,vB"
A'uB'c(An B)

Z kolei, z definicji podzbioru wynika, ze nalezy pokazac dwie implikacje:
xe (An B)' =>xeA'u B'
xeA'uB' =>xe (An B)'

albo - co oznacza to samo - rownowaznosc
xe (An B)'dxeA'u B’

W naszym przypadku pokazemy wlasnie ostatni® rownowaznosc. Dowdd ma po-
stac cifigu zdan pol*czonych spdjnikami réwnowaznosci. Po prawej stronie wier-
sza, w ktdrym wystQpuje rownowaznosc, po symbolu dwodch kresek, jest podany
odpowiedni komentarz uzasadniajqcy.

xe (An B)' < —z definicji operacji dopelnienia
xeU axi (An B) <= —=z definicji operatora nienalezenia do zbioru
xe Ua-i(xe (An B)) < —=z definicji iloczynu zbioréw
xe Ua-i(xeA axeB) < —z prawa de Morgana dla rachunku zdan
xe Ua (—jceAv -ixeB) < —z prawa operatora nienalezenia do zbioru
xeU a (x&A v x€B)d —z prawa rozdzielnosci koniunkcji wzglgdem
dysjunkcji

xe Uajcgzl v xeU axgB d —=z definicji operacji dopelnienia
xeA'vjgB '« —=z definicji sumy zbiorow
XeA’uB'

Uwaga

Przedstawimy kilka komentarzy zwi~zanych z dowodem. Pojqcie dowodu bgdzie
omawiane dalej. Schemat przedstawionego tu dowodu ma postac ci*gu réwnowaz-
nosci

[<=>21 ... dp,

Poszczegblne rdwnowaznosci zachodz”na mocy definicji lub wynikajfj. z pewnych
regul wnioskowania.

Roéwnowaznosc ma wlasnosc przechodniosci, co oznacza, ze mozna stosowac re-
gulQ wnioskowania:

p<*q
qdr
p <t
gdzie: p, g, r sg zdaniami. Na podstawie tej reguly wnioskowania mozna zatem
stwierdzic, ze
*=>Pn

W treSci dowodu, poza powolaniem sig na odpowiednie definicje wystqpujgcych
poj$d, powolalismy si$ na dwie wlasnosci rachunku zdan: prawa de Morgana i roz-
dzielnosd koniunkcji wzglgdem dysjunkcji. Wlasnosci rachunku zdan bgd”® omo-
wione w dalszej czQsci ksigzki, ale - dla czytelnoSci - przedstawimy je réwniez tu-
taj. Prawa de Morgana dla rachunku zdan maj~postac:

-i(PvQg)<>—p a—q
Prawa rozdzielnosci maj~natomiast postac:

pPA(Qvr)<>paqvpar

pv(@ar<(pvaa(pvr)
Wymienione réwnowaznosci nosz” miano praw logicznych, co oznacza, ze réw-
nowaznosci te s prawdziwe niezaleznie od wartosciowan zmiennychp, g, r. Moz-

na si$ o tym przekonad, budujgc i sprawdzajgc odpowiednie tablice prawdziwo-
sciowe (zob. rozdz. 1)).

Zdefiniowane dla dwoéch zbioréw operacje sumy i przekroju uogdélnia siq na dowolne
rodziny zbioréw. Niech / bgdzie dowolnym zbiorem, nazywanym zbiorem indeksow,
oraz niech {A\\iel} b~dzie indeksowan” rodziny zbioréw, wtedy:

[Ja,=df{a 13 iele aeA}

(~JAi=cf{a |Viel « aeAl}

iel

Stuog6lniong sumq i uogdlnionym przekrojem zbioréw. Uogdlnion”™ sum$ i przekroj
rodziny zbioréw {Ai |iel} bgdziemy tez zapisywac w postaci:

Ulile/}
nui'e/}

Przyklad 2.4

AN

Niech Aj =def {1, 2, [} bqdzie rodzing. zbiordéw, gdzie i'e ParzysteDodatnie. La-
two sprawdzic, ze:

fla =0.2}

fEParzysteDodatnie

\Ja, =Nah{0}

>EParzysteDodatnie

Cwiczenia

1. Przeanalizowad jednoznacznosc podanych nizej okreslen zbioréw. Jakie zwiqgzki

zachodz”pomiqdzy tymi zbiorami?

a) zbior ludzi zyjgcych najednym kontynencie,

b) zbiér narodéw europejskich,

c) zbidr zbioréw ludzi poshigujXcych sig tym samym jgzykiem,
d) zbidr obywateli polskich,

e) zbior Polakdw.

. Wskaza0 elementy nastqpuj”cych zbioréw:

a) {a}
b) {{«}}
c) {{a, b}, {a}}

d) {{{<}}, {«}.f1}
e) {xeNat\" <7}

f) {xe Wymierne |x2= 2}
g) {xe Wymierne | (x + 1) 2< 0}

. Niech A, B, C, D b$d” parami rozl*cznymi, niepustymi zbiorami. Jakie warunki

powinny spetniac te zbiory, aby zachodzily nastgpuj”~ce réwnosci:
a) {B, C) = {B, C, D}

b){{A,B),C) = {{A},C)

o {{A,B).{D)} ={{A}}

d) {{A 0}, B) - {{0}}

. Wykaza0, ze rownosc zbiorow {{/'}, {A 5}} = {{C}, {C, D}} zachodzi wtedy

i tylko wtedy, gdy A =C oraz B =D.

. Obliczy6 A n B, A u B, A\B, B\A dla nast*pujgcych zbioréw A i B:

a)A={{a,b},c) B={c,d}
b)A= {{a {a}}.a} 5={o, {a}}

6. Sprawdzic i uzasadnic, ktore sposrdd nizej podanych réwnosci zachodz” b”dz nie

10.

11.

12.

zachodzg. dla dowolnych zbioréw A, B, C, D:
a) (AuB)\C=(A\Q u (B\Q

b) (A\B) n (CAD)=(An Q\(Bu D)

c) (AuB)nB =B

d) (AnB)v(A\B)=A

e) (A\B)=A\(AnB)

f)(AAB)uB =A

Niech U bgdzie pewnym ustalonym zbiorem, zwanym uniwersum. Jezeli A er U, to
A' =cf IAA nazywa siq dopelnieniem zbioru A. Pokazac, ze dla podzbioréw z uni-
wersum U zachodz” prawa de Morgana:

&)(AvBy =A'nB"’

b)(AnB)'=A'uB’

. Dane sg. podzbiory A, B, C pewnego uniwersum V. lle co najwyzej réznych zbio-

row mozna otrzymac ze zbioréw A,B,C za pomoc” operaejiu, n, \ ?

Rdznica symetryczna zbiorow jest zdefiniowana nastgjuj”™co:
A - B=dfA/Bu BIA

Pokazad, ze zachodz”nastopujqce réwnosci:

a) A-B =B- A

b) {A"B) mC=A- 5=0C)

c)An(B - Q =(AnB) - (AnC)

dAu(B - Q =(A—B) - (AnB)

Zdefmiowad operaeje u, n, \ przez:
a) n
b) -,u
c -,/

lle elementdéw ma najmniejsza, niepusta rodzina zbioréw A z pewnego uniwersum
V taka, ze:

a)jezeliAeA iBeA, toAu BeA,

b)jezeli AeA iBeA, toAn BeA.

Udowodnic, ze:
a) 2Ar,B=2An 2B
b) 2AkjB= {A\ kjB\ \A\e2As\B\e28}

13.

14.

15.

16.

17.

18.

Niech card{A) oznacza liczb$ elementéw zbioru skonczonego Pokazac, ze dla
skonczonych zbioréw A oraz B zachodzi:

a) card(2A) = 2@y
b) card(A<jB) = card(A) + card{B) - card(AnB)
Dia dowolnych zbioréw skonczonych”?, B i C znalezc wzory okreslaj™ce:
a)card(Au B u Q
b) card{2Au B
c) card(AXB)
Dowieso, ze dladowolnej rodziny zbioréw A\,A2 ...,An dla neNat, zachodzi rownoéc
Aig A2u .. u An=
(AMi)u (*2>3u ..u (A, \A)u (4, Vli) u
Niech® 17 2.... A,, dla« >0, bQdqg.podzbiorami zbioru U. PrzezAj oznaczmy zbidrA,,
aprzez A° oznaczmy dopehnenie tego zbioru, czyli A'. Kazdy iloczyn postaci:

Axn...nA}
gdzie ije {0, 1}dlaj= 1,..., n nazywa siq skladowq..

a) Pokazac, ze roznych skladowych jest co najwyzej 2".

b) Pokazac, ze rdzne skladowe s” rozl*czne.

¢) Znalezc sumQ wszystkich skladowych.

d) Udowodnid, ze zbidr Atjest réwny sumie tych skladowych, w ktérych wystQpu-

je czynnik postaci A).
Zbadad i udowodnid, ktére z podanych nizej zwi*zkéw zachodz” dla rodzin zbio-
row {Aj |iel}, {Bi|iel} oraz {C,j\iel,jel}:
d UruUS5'=U ~u5')’
iel iel iel

b) (J(4.n5,.)c[j4"U 5<

iel

0
iel iel iel
> ufK =nucv-
iel jeJ iel jeld
Rodzing {A,, | neNat) nazywa siq zstqpujgcq rodziny zbioréw, gdy Ant\ ¢ Andla

neNat. Udowodnid, ze jesli {An|neNat} oraz {B,, \neNat} s"rodzinami zstgpu-
jAcymi, to:

n(4~5,)= Na\v c\Bi

19.

20.

21.

Podac przyktady rodzin zbiorow {A,, | neNat) oraz {B,, | neNat}, dla ktérych po-
wyzsza réwnosc hie zachodzi.

Rodzing {A,, | neNat} nazywa sig wstqpujqcq rodzin” zbiorow, gdy A,, ¢ AH, dla
neNat. Udowodnic, ze jesli {A,, | neNat} oraz {B,, \ neNat} s*rodzinami wstQ-
pujgeymi, to

Uarsey= Mo

ieNat \ieNal 7/ VfeNat 7

Podac przyktady rodzin zbiorow {A, \neNat) oraz {B,, | neNat), dla ktérych po-
wyzsza réwnosc hie zachodzi.

Funkcja/ okreslona dla liczb rzeczywistych i o wartosciach rzeczywistych jest
cirgla, jesli

VxoeRzeczywiste»\/e>0»3S>0»VxeRzeczywiste» \x- x0< S=> |/(x)-/(jcoj f
Nie uzywajXc znaku negacji, zapisac formul$: ,,funkcja nie jest ci*gla”

Liczba g jest granic® w punkcie x0 funkcji/ okreslonej dla liczb rzeczywistych
i 0 wartosciach rzeczywistych, jesli

V>0* 3<5>0 « Vxe Rzeczywiste* 0 < \x- x0< S=> |/(X) - g|<f

Nie uzywaj™c znaku negacji, zapisac formulg: ,liczba g nie jest granica funkcji
w punkcie x0".

3. Relacje i funkcje

3.1. Produkty kartezjanskie

Podczas grupowania pewnych elementéw w zbiory kolejnosc ich wyliczenia nie jest
istotna. W sytuacji, gdy kolejnosd jest istotna, elementy siq grapuje, uzywaj”c pojgcia
par uporzqdkowanych i krotek. Jezeli aeA oraz beB dwoma elementami, nieko-
niecznie roznymi, to zapis

<a,b>

oznacza par? uporz~dkowang, ktérej komponentami s* a oraz b. Uporzgdkowanie
oznacza, ze para <a, b> niejest tym samym, co para <b, a>. Dwie pary:

<a, b> oraz <c, d>
sg. identyczne, co pisze sig <a, b> = <c, d>, wtedy i tylko wtedy, gdy:
a=c oraz b=d.

Wyst*pujcy powyzej symbol = ma dwa znaczenia. Gdy pisze siq <a, b> = <c, d>,
oznacza to identycznoSd dwdch par. Gdy natomiast pisze si$ a = b, oznacza to iden-
tycznosc dwdch elementéw. W obu przypadkach poréwnuje siq ze sob” obiekty roz-
nych kategorii.

Uwaga

Para <a, b> bqdzie tez zapisywana w postaci (a, b).

Symbol identycznosci, najczQsciej reprezentowany symbolem = lub - rzadziej -
symbolem =, zashiguje na wyroznienie, z uwagi na czqgste uzycie w réznych kon-
tekstach. Konteksty te nalezy odrozniad, a w konkretnym kontekscie wlasciwie ro-
zumied znaczenie identycznosci. Ogdlnie, symbol, ktéry moze miec rézne znacze-
nia, nazywa siq symbolem przecigzonym.

Symbol identycznosci, niezaleznie od tego, jakie kategorie obiektéw pordwnuje,
ma pewne stale wlasnosci. S to wlasnosci zwrotnosci, symetrii i przechodniosci.
Niech a, b, ¢ bAd” obiektami tego samego zbioru. Wlasnosc zwrotnosci oznacza, ze
dany obiekt jest identyczny ze sob” samym, czyli a = a. Wlasnosc symetrii ozna-
cza, ze jezeli ajest identyczne z b, to b jest identyczne z a, czyli jezeli a = b, to
takze b =a. Wlasnosd przechodnioSci oznacza, ze jezeli a jest identyczne z b oraz

b jest identyczne z c, to a jest identyczne z c, czylijezelia=borazb=c,toa- c.
Symbolicznie wlasnosci te mozna przedstawic w postaci:

VaeA ¢ a=a
Va, b&A * (a=b) ==(b=a)
Va b ceAe(a=b)a(b=c)=>(a=¢)

Pars uporz~dkowan” <a, b> mozna tez wyrazic jako zbior postaci {a, {a, b}}. Row-
nosd zbioréw {a, {a, b}} oraz {c, {c, d)} odpowiada wowczas réwnosci odpowiada-
jgcych im par <a, b> oraz <c, d>. W szczegdlnosci widac, ze dwie pary <a, b> oraz
<h, a> rozne, gdyz odpowiadajce im zbiory {a, {a, b}} oraz {b, {a, b}} nie
identyczne. Poshigiwanie sis parg. uporz*dkowan” <a, b> zamiast zbiorem {a, {a, A}
jest wygodniejsze i dlatego dalej bgdzie uzywana tylko taka notacja.

IPrzyklad 3.1

1

Para uporzqdkowana postaci <x, y>, gdzie x, ye LiczbyRzeczywiste, moze byc in-
terpretowana jako punkt na plaszczyznie, o wspélrzsdnych x, y.
Pary maj”~tez interpretacje w programowaniu. Pary:

<nazwisko, Bach >
<nazwisko, Kant>,

gdzie: nazwiskoe Ident oraz Bach,Kante Nazwiska s™ przykladami danych pro-
stych (wartoSciami pojedynczych p6l rekordéw). Podobnie, innymi przykladami
danych prostych s” pary:

<urodziny, XVII >

<urodziny, XVIII >

gdzie urodzinye Ident oraz XV1I, XVlle LiczbyRzymskie.

Pary postaci:

«nazwisko, Bach >, <urodziny, XV 11»
«nazwisko, Kant>, <urodziny, XV I11»

I reprezentuj™ dane zlozone (wartosci rekordéw ztozonych z dwdéch pél). |

Ogdlnie, dla dowolnej liczby naturalnej n definiuje sis tzw. n-krotki. Jezeliau ans”
elementami, niekoniecznie réznymi, to

<ad ... a,>
jest n-krotkg, a a,, s"jej komponentami. Wyrdédiia sis wisc: 0-krotks o , 1-krotks
<a>, 2-krotkq lub pars <«. A>, 3-krotks lub trojks <a, b, c> itd.
Dwie krotki:

<a,,...a,> oraz <b... Az
s™identyczne wtedy i tylko wtedy, gdy n = m oraz a,= bi dla kazdego

Krotki:

<11 1>
« 1 1> 1>
<l <1 I»

wigc rozne. Pierwsza z nich jest trojkqg, a pozostale parami, w ktérych jedna ze
skladowych jest rowniez pant

Produkt (iloczyn) kartezjanski zbioréw A, B jest zbiorem par:
A X B =def {<a, b> |aeA a beB}.
Zauwazmy, zejezeli zbiory AiB niepuste oraz A *B, to AXB "B xA.
Ogolnie - n-krotny produkt kartezjanski zbioréw Ai, ..., A,,, dla n > 1, jest zbiorem
Ai X ... X A, =def {<ai,.... a,,>|a”Afdlai=1 , n}
Zamiast pisac A x .. X A, gdzie A powtarza si® n razy, dla neNat, pisze siq A"
Z defmiciji:
A° =def {<>}
Al =defA.

Uogdlnionym produktem kartezjanskim na zbiorze A nazywa siQ zbior

(JAn=A°VvA' v A2v A*v ..

neNat

3.2. Relacje

Okreslona na zbiorach A oraz B relacja binama R jest podzbiorem produktu karte-
zjanskiego AxB, czyli R ¢ AxB.

Jezeli A =B, to mdéwi si$ o relacji binamej na A.

Jezeli para <a, b> jest elementem relacji binamej R, to pisze si$ <a, b>eR. Czasem
uzywa siq réwnowaznego zapisu aRb.

Jezeli Ri, R2£ AxB, to réwnosc relacji R\ = R2jest réwnosci” zbioréw par reprezen-
towanych przez R\ oraz R2.

Ponownie warto zwrdcic uwagq na now” rolQ symbolu réwnosci =. Tym razem Sym-
bol ten oznacza réwnoso relacji, podczas gdy wczesniej oznaczal réwnosc elementdw
w obrgbie zbiom, réwnosc zbioréw oraz réwnoSd krotek.

Zhiodr wszystkich relacji binamych okreslonych na zbiorach A i B b”~dzie oznaczany
przez 2A®8 tzn.

2/,xfl=def {R IR<"AXB}

Przy wprowadzonych oznaczeniach zapisy:
RcAxB oraz Re2AB
rownowazne.

Uwaga
Na okreslenie zbioru relacji na produkcie kartezjanskim A x B uzywa siq réwniez
innych oznaczen, na przyklad: A <»B lub P(AxB).

Zapis postaci
RcAxB

nazywa si$ sygnaturq relacji. Symbol R jest nazwq relacji, a wyrazenie AxB, gdzie A
orazB nazwami zbioréw, jest typem relacji.

Jezeli R jest relacji binamEtna AxB, to jej dziedzing jest zbior
dom(R) =def {aeA |3 beB ¢ <a, b>eR}

ajej przeciwdziedzing jest zbior
ran(R) =def {beB |3 aeA « <a, b>¢eR}

Relacja binama R £ AxB ma swojq. relacjg odwrotng RTl ¢ BxA, zdefiniowan” nastg-
pujEico:

R 1=cf {<0, a> | <a, b>eR}
Latwo zauwazyc, ze (TT)-1=R.

Wprowadzone pojqcia mozna zilustrowac graficznie. Rozpatrzmy przyklad relacji
binamej zdefiniowanej na zbiorach A =def {<&, b, ¢, d) oraz B =def {1, 2, 3, 4, 5}, przed-
stawiony na rysunku 3.1.

Rys. 3.1. Graficzna ilustracja relacji

Luki prowadz”ce od elementdw zbioru A do elementdw zbioru B reprezentuj”™ poje-
dyncze pary - elementy relacji R. Z rysunku wynika, ze

R ={<a, 1>, <b, 3>, <c, 1>, <c, 2>, <d, 5>}

Ponadto dom(R) = A oraz ran(R) = {1, 2, 3, 5} ¢ B. Przedstawienie na rysunku, zgod-
nie z tg. sam”™. konwencj”, relacji odwrotnej RTI polegatoby na odwrdceniu kierunku
strzalek.

Gdy ma sig do czynienia z relacjami binamymi okreslonymi na jednym zbiorze, czyli
relacjami o sygnaturze R £ A2, bardzo przejrzystym sposobem reprezentacji graficznej

grafy. Formalnie grafy sq. definiowane dalej, tutaj ograniczamy sig do przykladu.
Niech A =def {1,2, 3,4, 5} oraz

R =def {<1,1>, <3, 2>, <2, 3>,<2,4>,<5,2>}

Grafreprezentuj”cy relacj? R jest pokazany na rysunku 3.2.

Rys. 3.2. Graficzna ilustracja relacji R

Wierzcholki grafu reprezentuj” elementy zbioru A, a luki grafu reprezentuj” elementy
relacji w taki spos6b, ze para <a, b>e€R jest reprezentowana przez hik wychodz”cy
z wierzcholka a i prowadz”cy do wierzcholka b.

Relacje maj” rozne zastosowanie w informatyce. Tablice w bazach danych s” typo-
wym przykladem relacji.
Przyklad 3.2

W pewnej bazie danych dane Stdwie tablice:

Tablica 3.1 Tablica 3.2
Nazwisko Wiek urodzin Nazwisko Zawbdd
Bach XVII Bach Muzyk
Frege XVIHI Frege Logik'
Leibnitz XVII Leibnitz Filozof

Tarski XX Tarski Matematyk

Kazda z tablic reprezentuje pewn”relacjq. Pierwszajest relacjqg. typu Nazwiska x Licz-
by Rzymskie, druga za§ jest typu Nazwiska x Zawody. Relacje te mozna przedsta-
wic w postaci mnogosciowej przez wyliczenie odpowiednich par:

{<Bach, XVII>, <Frege, XVIlI>, <Leibnitz, XVI1>, <Tarski, XX>}

{<Bach, Muzyk>, <Frege, Logik>, <Leibnitz, Filozof>, <Tarski, Matematyk>}
I I
PojQcie relacji binamej uogdlnia si? na relacjq n-krotng R jako dowolny podzbi6r
n-krotnego, produktu kartezjanskiego

RciA\X...xA,, dlaneNat\{0,1}

3.3. Operacje na relacjach

Relacje zbiorami, mozna zatem na nich wykonywad wszystkie wczesniej zdefinio-
wane operacje mnogosciowe. Jezeli na przyklad R, Q ¢ AxB, to zbiory R'uQ, Rf~\Q,
R\Q s*réwniez relacjami na produkcie kartezjanskim AxB.

Wprowadza si$ tez specyficzne operacje mnogosciowe. Operacje takie wystgpuj”® na
przyklad w systemach zarzqdzania bazami danych.

Przyklad 3.3

Rozpatruje si$ operacje zlgczenia dwdoch relacjiRciAxB oraz Q c A x C. Ope-
racja ta, oznaczana tu przez R © Q, jest zdefiniowana nast*pujgco:

Jesli dom(R) = dom(Q),toR® Q c A x B x C jest relacje
R © Q=def {<a, b, c>|<a, b>eR a <a, Oe Q}

Jezeli za R oraz Q wezmie siq relacje zdefiniowane przez tablicq 3.1 i tablic” 3.2
w poprzednim przykladzie, to widac, ze dom(R) = dom(Q), a wynikow” relacje
R © Q przedstawia tablica 3.3.

Tablica 3.3
Nazwisko Wiek urodzin Zawod
Bach XVII Muzyk
Frege XVII Logik
Leibnitz XVII Filozof
Tarski XX Matematyk

Now”operacj®jest zlozenie (superpozycja) dwdch relacji R ¢ AxB oraz Q ¢ BxC. Jest
to nowa relacja, zapisywana w postaci R°Q, zdefiniowana nastgpujqco:

RoQ =def {<a, c> |3 beB « <a, b>&R/" <b, c>e Q}

Graficzn”ilustracj” zlozenia dwdch relacji Rc AxB oraz Q ¢ BxC, gdzie

Rys. 3.3. Graficzna ilustracja zlozenia relacji

Gorna czgsc rysunku przedstawia relacje R oraz Q, a dolna czgsc - zlozenie R°Q.

Latwo sprawdzic, ze zlozenie relacji jest operacj” 1*czn” to znaczy
(R°Q)0S=R° (Qo0YS)

ale nie jest operacj” przemienn”, to znaczy

RoQ”™ QoR

Dia dowolnej liczby naturalnej n, n-krotnym zlozeniem relacji binarej R ¢ A 2jest rela-
cjaR", zdefiniowana indukcyjnie w sposéb nastQpuj™cy:

R° =def {<a, a> | aeA}

R"+4 =ie(RnoR dla nsNat

Relacji /?° nazywa siq relacjq identycznosciowq lub tozsamosciowq na A.

Jezeli R£ AxB, to obrazem zbioru At* A wyznaczonym przez relacjq R jest zbi6r
R(At) =def {beB 13 aeAt+ <a, b>eR}
Latwo pokazac, ze dlaAi,.A2£ A zachodziwlasnosci:

R(AJuA2=R(ANuR(A2
R(AINA2zR(ADnR(A2
R(dom(R)) =ran(R)

Jezeli R £ AxB, to przeciwobrazem zbioru 22 £ 5 wyznaczonym przez relacjq R jest
zbior

3.4. Podstawowe rodzaje relacji binarnych

Relacje biname na A, czyli relacje R £ A2 mogq. siq charakteryzowac réznymi wla-
snosciami. Wsrdd podstawowych wlasnosci wyr6znia sig mi*dzy innymi wlasnosci
zwrotnosci, przeciwzwrotnosci, symetrii, przeciwsymetrii, antysymetrii, przechodnio-
sci i spojnosci. Wlasnosci te s definiowane nastgpujgco:

zwrotnosc dla dowolnego aeA zachodzi: <a, a>eR
- symbolicznie: VaeA « <a, a>eR

przeciwzwrotnosc dla dowolnego aeA zachodzi: <a, a>€R
- symbolicznie: \/aeA « <a, a>€R

symetria dla dowolnych a, beA zachodzi:

jezeli <a, b>eR, to réwniez <b, a>eR

- symbolicznie: Va, beA ¢ <a, b>eR =><b, a>eR
przeciwsymetria dla dowolnych a, beA zachodzi:
jezeli <a, b>eR, to <b, a>tzR
- symbolicznie: Va, beA ¢ <a, b>eR =><b, a>£R
antysymetria dla dowolnych a, be A zachodzi:
jezeli <a, b>eR oraz <b, a>eR,toa=b
- symbolicznie: Va, beA ¢ <a, b>eR a <b,a>eR =>a=b
przechodniosc dla dowolnych a, b, ceA zachodzi:
jezeli <a, b>eR oraz <b, c>¢R, to c>eR
- symbolicznie: Va, b, ceA » <a, b>eR a <b, c>eR =><a>>eR
spdjnosc dla dowolnych a, beA zachodzi:

jezelia”™b, to <a, b>eR lub <b, a>&R

- symbolicznie: Va, beA cath=><a, b>eR v <b, a>eR

Niekiedy mamy do czynienia z sytuacjami, gdy zachodzi potrzeba takiego rozszerze-
nia relacji, aby uzyskafy pewne z przedstawionych wlasnosci. Niech R bqdzie dowoln”
relacjabinam” na A. Zwrotnym domkniqgciem relacji jest relacja zdefiniowana jako

RuR®

gdzie R° jest relacjq identycznosciowq na A.

Symetrycznym domknigciem relacji R jest relacja zdefiniowana jako
Ru {<b,a>|<a, b>e R) albo Ru RT]

Przechodnim domknigciem relacji R jest relacja oznaczana symbolem R+ zdefiniowa-
najako

R+=cef |\]A

nsNal\[0)

Zwrotne, przechodnie (tranzytywne) domkniqcie relacji R na zbiorze A jest to relacja,
oznaczana symbolem /?*, zdefiniowana nastQpuj”co:

R*=cef U A"
iteNat
Podane wyzej definicje domkni$cia relacji oznaczajq, ze po domkni”ciu relacja ma
odpowiednio wlasnosc zwrotnosci, symetrii i przechodniosci. DomkniQcie relacji
uog0lnia siq ze wzgl*du na dowoln” wlasnosc w spos6b nastgjujgcy: Niech P bqdzie
pewn” wlasnoSci”® oraz R pewn” relacja binam”. Mowimy, ze relacja RPjest domknig-
ciem relacji R wzglgdem wlasnosci P wtedy i tylko wtedy, gdy:

1. relacja RPma wlasnosc P,

2.R ¢ Rp,
3. nie istnieje inna relacja Q, ktdéra ma wlasnosc P taket, ze £ ¢ RP.

3.5. Relacja rownowaznosci

Bardzo wazna jest relacja réwnowaznosci, bqd”“ca dowoln” relacja binamq, ktora jest
zwrotna, symetryczna i przechodnia.

Dia relacji rownowaznosci R okreslonej na zbiorze A definiuje siq zbiory nazywane
klasami abstrakcji. Dia dowolnego elementu a zbioru A definiuje si$ mianowicie zhior

{beA |<a, b>eR}

Zbior taki oznacza siQprzez [a]Ri nazywa si$ klasq abstrakcji generowanq przez ele-
ment a wzglgdem relacji R.

Twierdzenie 3.1

Zbidr klas abstrakcji ma nastgpujqce wlasnosci:

FLM*=~

aeA
2. <a, b>eR wtedy i tylko wtedy, gdy [a]A= [6]A
3.jezeli [a]A* [b]R to [a]Rn [b]JR=0

Dowdd
Wlasno§c 1

Z definicji réwnosci zbioréw wynika, ze nalezy pokazac:

oeA

b) Ac |[J[a]A

aeA

Przypadek a)
Niech xe [J[a]JA Nalezy pokazac, zcxeA.

z definicjiaLj:)gblnionej sumy zbioréw wynika, ze istnieje takie aeA, ze xe [4\R

Z definicji klasy abstrakcji wynika, ze [a]Ac/t.

Z obu tych faktdéw, na podstawie definicji podzbioru, wynika, ze xeA, czyli poka-
zalismy, ze xe (J[a]A=>xeA.

aeA

Przypadek b)
Niech xe A. Nalezy pokazac, ze xe U m «

aeA
Z definicji klasy abstrakcji i wlasnosci zwrotnosci relacji R wynika, ze xe [jda.
Z tego faktu zatem, na mocy definicji uogdlnionej sumy zbiordéw, wynika, ze

lI[a]A

aeA

Wlasnosc 2

Z definicji rownowaznosci wynika, ze nalezy pokazac dwie implikacje:
a) jezeli <a, b>eR, to [a]R= [b]R

b) jezeli [a]* = [0]«, to <a, b>eR.

Przypadek a)

Niech <a, b>eR. Nalezy pokazad, ze [a]R= [b]R

Pokazemy, zejesli <a, b>¢eR, to [a]Ac [b]JRoraz, zejesli <a, b>eR, to [6]Ac [a]*.
Z zalozenia, ze <a, b>eR iz defmicji klasy abstrakcji wynika, ze be [a],

Niech Jte[a]A Z defmicji klasy abstrakcji wynika, ze <a, x>eR, co z wlasnosci
symetrii relacji rownowainosci pocigga, ze <x, a>eR.

Z wlasnoSci przechodnioSci relacji réwnowaznoSci, na podstawie stwierdzen, ze
<X, a>eR oraz <a, b>eR wynika, ze <x, b>eR. Ponownie, z wlasnoSci symetrii
relacji R oraz z defmicji klasy abstrakcji wynika, ze xe [b\R

Pokazalismy, ze xe [b\R=>xe [6]A czyli [a]* £ [6]A

Wykazanie, ze jeSli <a, b>eR, to [b]JA£ [a]/j przebiega analogicznie do pokazane-
go wyzej.

Przypadek b)
Niech [a]fi= [b]R Nalezy pokazac, ze <a, b>eR.

Z defmicji klasy abstrakcji i zwrotnosci relacji wynika, ze ae[4\Ri be[6]A Na
podstawie réwnoSci zbioréw [a]A= [6]« stwierdzamy, ze a, be [a]R stqd - na pod-
stawie defmicji klasy abstrakcji - wynika, ze <a, b>eR.

Wlasnosc 3
Nalezy pokazac, ze jezeli [a\R* [6])/?, to [a]l«n [AJA=0.

Dowdd przeprowadzimy metod£|. nie wprost. Metod? tQ stosuje si$ do twierdzen,
ktére majX postad implikacyjn®. W rozwazanym przypadku zalozeniem - po-
przednikiem implikacji - jest [a]A* [E]«)> a tez”- nastgmikiem implikacji - jest
[a]An [b]R= 0. Dowdd nie wprost polega na przyjqciu zalozenia, nazywanego za-
lozeniem dowodu nie wprost, ktore jest negacj*tezy. Nastqpnie nalezy pokazac, ze
z tego zalozenia wynika sprzecznosc z zalozeniem twierdzenia.

W rozpatrywanym przypadku nalezy pokazad, ze
jezeli [u]An [b]R* 0, to [d\R= [b]R

Jezeli [a]JAn [6]A* 0, to oznacza, ze istnieje element xe [a]JRn [6]A Z defmicji
przekroju zbioréw wynika, ze xe [a]R i xe [6]A co na podstawie definicji klasy
abstrakcji oznacza, ze <a, x>eR oraz <b, x>eR. Z wlasnosci symetrii i prze-
chodniosci relacji R wynika, ze <a, b>eR, st"d - na mocy udowodnionej wyzej
wlasnosci 2 - wynika, ze [a]JAn [6]* = 0, co oznacza sprzecznosc z zalozeniem
twierdzenia. -

Z udowodnionych wlasnosci wynika, ze jezeli zbiorze A jest zdefiniowana relacja
réwnowaznosci, to relacja ta wyznacza podzial zbioru A na rozlgczne podzbiory (klasy
abstrakcji). Podzial taki nazywa siq tez partycjg. Zbior, ktdérego elementami sq
wszystkie klasy abstrakcji, nazywa siq zbiorem ilorazowym zbioru A wzglgdem relacji
R i oznacza sig AIR, czyli

AIR =gef {W« |asA}

Przyklad 3.4
: Niech A =cef {1, 2, 3, 4, 5} oraz relacjaR q Aojest zdefiniowana nastgpujqco:

R =def {<1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 5>, <3, 2>, <2, 3>, <2, 5>, <5, 2>,
<3, 5>, <5, 3>}

Latwo sprawdzic, ze relacja jest zwrotna, symetryczna i przechodnia, czyli jest
relacja rownowaznosci. Wyznaczone przez poszczeg6lne elementy zbioru A kla-
sy réwnowaznosci sq nastgpujgce:

[1]«={1}
[2]a= [38l«= [Bl«= {2, 3,5}

[41A= {4}

Zbior ilorazowy AIR wyznaczony przez relacja R ma postad

I AIR= {{'}, {2, 3, 5}, {4}}

3.6. Relacje porzqdku

Oprdcz relacji réwnowaznosci waznq grupg stanowiq relacjeporzqdku. Wyréznia siq:

« relacjq quasi-porzqdkujgcq, gdy jest zwrotna i przechodnia,

* relacjq czgsciowo porzqdkujgcq w scistym sensie, gdy jest antysymetryczna
i przechodnia,

« relacja czqsciowo porzgdkujqcq, gdy jest zwrotna, antysymetryczna i przechod-
nia,

« relacja liniowego porzqdku w scislym sensie, gdy jest antysymetryczna, prze-
chodnia i spdjna,

* relacjq liniowego porzqdku (czasem tez krotko: relacjq porzqdku), gdy jest
zwrotna, antysymetryczna, przechodnia i spdjna, czyli, gdy jest relacja czgscio-
wego porzqdku i relacjgspojng.

Zbidr, na ktérym jest okreslona pewna relacja porzqdku czgsciowego, nazywa siq
zbiorem czgsciowo uporzgdkowanym, a zbior, na ktérym okreslono relacjq porzqdku
liniowego - zbiorem liniowo (albo calkowicie) uporzqdkowanym.

Przyldad 3.5

N Rozwazmy rodzing wszystkich podzbioréw dowolnego zbioru U, czyli zbiér po-
tggowy 2U Zbidr potqgowy 2Ujest zbiorem czQSciowo uporzAdkowanym przez
relacjg R ¢ 2ux 2U ktdra jest okreslona nastQpuj”co:

R= {<A,B>e2ux2u\AcsB}

Relacja R jest relacja czQSciowego porzjgiku. Istotnie, R jest relacja zwrotn”, gdyz
dla dowolnego Ae 2Uzachodzi <A, A>eR, dlatego, ze Ac A .R jest relacja anty-
symetryczn” gdyz - jezeli <A, B>e R oraz <B, A>eR-co0 o0znacza, ze AcB oraz
B c A, to A =B. R jest tez relacja przechodniq, gdyz z faktu, ze <A, B>eR oraz
<B, C>eR, co oznacza, ze A ¢ B oraz B £ C, wynika, ze <A, C>eR, co oznacza,
zeAcC. Relacja R nie jest natomiast relacja liniowego porz~dku, gdyz nie jest
I spojna. |

Przyldad 3.6

I Relacja liniowego porz~dku jest relacja < okreslona na réznych zbiorach liczbo-
wych, na przyklad Nat, Calkowite, Wymierne lub Rzeczywiste. Uzywaj*c tej re-
lacji, poslugujemy siQ notacjX a < b, zamiast <a, b>e < Zachodz” oczywiscie
wlasnosci:

VaeRzeczywiste » a<b

Va, beRzeczywiste * a<b/\a<b=>a =b
Va, b, cg Rzeczywiste ea<bAb<c=>a<c
Va, be Rzeczywiste e a * b=>a <bv a<b

Nie jest natomiast relacja liniowego porz~dku relacja <, gdyz nie spelnia wymogu
I zwrotnosci, to znaczy nie jest prawdq, ze a <a dla dowolnego a e Rzeczywiste. |

Zestaw relacji czQsciowego porz~dku R\, ..., R,,, zdefiniowanych odpowiednio na zbio-
rach Ai, An, mozna wykorzystad do zdefiniowania nowej relacji cz*sciowego po-
rz2dku R, zdefiniowanej na produkcie kartezjanskim A\ x ... X A,,. Przykladem jest
leksykograficzne zlozenie relacji R\, ..., R,,, okreSlone jako relacja R, nazywana relacja
porzqdku leksykograficznego (alfabetycznego), zdefiniowana na A\ x ... X A,, w sposob
nastgpujqgcy:

<au ..,arR <b\ ..b,>

wtedy i tylko wtedy, gdy istnieje ze {1, ..., n) takie, ze dla kazdegoj < i zachodzi
dj=bjoraz aRj b,

Niektore wlasnosci relacji cz*sciowego porz*dku mozna wyrazic za pomoc” tzw. ele-
mentdw wyréznionych. Niech = bqdzie relacja czgsciowego porz~dku na zbiorze A
oraz niech B cA.

Uwaga
Symbol =jest czQsto stosowany na oznaczenie relacji czQsciowego porz~dku ze
wzglqdu na graficzne podobienstwo do symbolu < przy jednoczesnym podkresle-
niu, ze dziedzin” relacji nie musz”byc tylko zbiory liczbowe.

Mowimy, ze aeA jest:

- elementem najmniejszym w zbiorze B, jesli ea<b,

- elementem najwigkszym w zbiorze 5, jesli *b 4a,

- elementem minimalnym w zbiorze B, jesli VbeB ¢« —(b = 4),

- elementem maksymalnym w zbiorze B, jesli VbeB ¢ —a <Cb),

- ograniczeniem dolnym zbioru B, jesli \fbeB « a < b (zauwazmy, ze a nie musi
nalezec do zbioru B, element najmniejszy zbioru B jest zatem jego ograniczeniem
dolnym),

- ograniczeniem gérnym zbioru B, jesli MbeB ¢ b < a (zauwazmy, ze a nie musi
nalezec do zbioru B, element najwi*kszy zbioru B jest zatem jego ograniczeniem
gornym),

- kresem dolnym (infimum) zbioru B, jesli a jest elementem najwigkszym w zbio-
rze wszystkich ograniczen dolnych zbioru B,

- kresem gornym (supremum) zbioru B, jesli a jest elementem najmniejszym
w zbiorze wszystkich ograniczen gémych zbioru B.

Przyklad 3.7

A Rozpatrzmy zbiér pot*gowy A zbioru {a, b, ¢, d), czyli A = 2*bc,d\ z uporz”d-
kowaniem czQsciowym, okreslonym przez inkluzjg. Niech B = {{a}, {a, b), {b, c},
{b, c, d}, {a b, c, d}}. W zbiorze B s"dwa elementy minimalne {«} i {b, c} oraz
jeden element najwigkszy {a, b, c, d}.

lustracj® zwi”zkéw pomi~dzy elementami zbioru czQSciowo uporz~dkowanego
jest diagram (graf- zob. p. 3.10) Haasego na rysunku 3.4. Wierzcholki diagramu
reprezentujit elementy zbioru, a krawqdzie diagramu I*czg. ze sob” te wierzcholki
X, ¥, tu elementy zbioru B, pomi$dzy ktérymi zachodzi zwiqzek x Cy oraz nie ist-
nieje taki element z, ze x #z oraz z Hy.

{a,b, ¢, d)

Rys. 3.4. Diagram Haasego dla zbioru B

W zbiorze B nie ma elementu najmniejszego, element {a, b, ¢, d} jest natomiast je-
I go kresem gomym. i

Pomi~dzy elementami wyréznionymi zachodz” nastqpuj”ce zwi”zki:

Twierdzenie 3.2
Niech C bedzie relacjX czgsciowego porz~dku na zbiorze A oraz niech B czA, wtedy:

1. W zbiorze B istnieje co najwyzej jeden element najwigkszy i co najwyzej jeden
element najmniejszy.

2. Zbi6r B ma co najwyzej jeden kres gémy ijeden kres dolny.

3. JeSli b jest najwiekszym elementem w zbiorze B, to jest on jedynym elementem
maksymalnym w zbiorze B oraz jego kresem gomym.

4. Jesli b jest najmniejszym elementem w zbiorze B, to jest on jedynym elementem
minimalnym w zbiorze B oraz jego kresem dolnym.

Dowdd pozostawiamy jako dwiczenie.

3.7. Funkcje

Niech A oraz B bgd" dwoma dowolnymi zbiorami. Funkcjq albo odwzorowaniem
z A w B nazywa sie tak” relacje binam” / £ AxB, ze dla kazdego elementu aeA ist-
nieje co najwyzej jeden element beB taki, ze <a, b>ef.

Inne, rownowazne sformulowanie tej samej wlasnosci:
dla kazdego elementu aeA, jezeli <a, b>ef oraz<a, c>eftob =c

W symbolicznym zapisie wlasnosc ta przyjmuje postac

VaeA » <a, b>ef a <a, c>ef=>b=c
W podanej defmicji funkcji/ zawiera sie mozliwosc, ze dla danego aeA nie istnieje
taki element beB, ze <a, b>ef Oznacza to, ze dla aeA funkcja/jest nieokreslona.

Fakt, ze para <a, b>ef jest elementem funkcji f bedzie rowniez zapisywany
w postaci

m=~"b.
Element a nazywa sie argumentem funkcji fa b nazywa sie wartosciq funkcji
/ dla argumentu a.
Napis

f.A->B

nazywa sie sygnaturg funkcji; symbol/jest nazwq funkcji, a wyrazenie A —» B, gdzie
A oraz B s”nazwami zbioréw, jest typem funkcji.

Ogdlnie, funkcja moze miec n argumentéw (neNat). Sygnatura takiej funkcji ma
postac

f:AiIX...xXA,,->B

W skrajnym przypadku, gdy funkcja ma zero argumentéw - nazywa siq funkcja
zeroargumentowq lub stalq, ajej sygnaturq zapisujemy

Dia funkcji o sygnaturze/: Aix .. x A, =B, fakt, ze <a\, ..., a,,, b>ef zapisuje siq
réwniez w postaci

ati) —b.
Zapis wartosci funkcji w postaci
f(au... an

jest zapisem w tak zwanej konwencji prefiksowej lub przedrostkowej. Inn” konwencj”,
ktdra nie bgdzie uzywana, jest notacja przyrostkowa (postfiksowa), nazywana tez od-
wrotng notacjgpolskq, na czeso polskiego logika Lukasiewicza6, ktory j» wprowadzil.
W tej notacji zapisowi wartosci funkcji dla argumentéw a\......a,, odpowiada zapis

(flu a,)f
Notacja ta jest stosowana w algorytmicznym obliczaniu wartosci wyrazen stanowi”-
cych zlozenie wielu funkciji.

W przypadku funkcji dwuargumentowych, oprécz podanych notacji, powszechnie
stosuje siq notacja wrostkowq (infiksowq). Wartosc funkcjif(au a2, dla argumentéw
a\, a2 zapisuje sig w postaci

a\fa2
Deklaracjq uzycia notacji infiksowej mozna zaznaczyc w sygnaturze, pisz’‘c

f :AAxA2—B

Podkreslenia po obu stronach symbolu/ wskazuj® na miejsca umieszczania jej argu-
mentow.

Niech/: A —»B. Tak jak poprzednio, przez dom(f) i ran(f) oznacza siq odpowiednio
dziedzing iprzeciwdziedzing funkcji f.

Jezeli dom{f) = A, to/nazywa siq funkcja calkowicie okreslong, albo - krétko - cal-
kowitg. Zbior wszystkich funkcji calkowicie okreslonych zAdoB oznacza siq”™4 —B.
Zbidr A nazywa siq zbiorem zrédlowym, a B - zbiorem docelowym funkcji. Zbior
wszystkich funkcji calkowitych z A w B oznacza siq tez przez BA

6Jan Lukasiewicz (1878-1956).

W przypadku, gdy dom(f) ¢ A, funkcj?/nazywa si? czqsciowo okreslong, albo -
krotko - czgsciowq. Funkcja cz?sciowa/ jest nieokreslona dla elementéw nienalezci-
cych do jej dziedziny, czyli do zbioru A\dom(f). Elementowi aeA\dom(f) nie odpo-
wiada zaden element ze zbioru B. Fakt ten zapisuje si? niekiedy, piszqcf(a) = 1, gdzie
Symbol L oznacza niezdefiniowane.

Wykorzystujgc symbol J , zbidr wszystkich funkcji zAdoB oznacza si? (B u £)/-
Jezeli ran(f) =B, to funkcj? / nazywa si? surjekcjq albo funkcjg. ,,na".

Jezeli dla dwéch réznych argumentéw au a2 funkcja/ przyjmuje rézne wartoscif(al),
f(a?, to nazywa si?j %funkcj” réznowartosciowq albo injekcjq.

Funkcjaf ktora jest calkowicie okreslona, jest suijekcj® oraz injekcjq nazywa si?
funkcjawzajemniejednoznacznq albo bijekcjq.

Bijekcj?, ktora jest funkcja o tej samej dziedzinie i przeciwdziedzinie, czyli o sygnatu-
rzef:A-)A, nazywa sigpermutacjq.

Funkcj?/nazywa si? funkcja skonczonq, gdy dziedzina funkcji dom(f) jest zbiorem
skonczonym.

Jezeli relacjaodw rotnadla funkcji/: A —»B jest funkcja to nazywa si?j£i funkcjq
odwrotng funkcjif.

Przyklad 3.8
N Niech A =def{1,2, 3, 4, 5} oraz B =df {1, 2, 3, 4}. N

RelacjaR g A x B, zdefiniowana jako zbior par:
{<1, 1>, <2, 3>,<1, 4>, <3, 3>, <4, 4>, <2, 4>, <5, 1>}
nie jest funkcjg.
Funkcjaf : A —B, zdefiniowanajako zbior par:
{<1,1>, <3, 5>, <4, 3>, <5, I>>
jest funkcjacz?sciow£i, gdyz dom(f) = {1, 3, 4, 5} ¢ A
Funkcjag: A —B, zdefiniowana jako zbior par:
{<1, 1>,<2, 3>,<3, 4>, <4, 3>, <5, 2>}
jest funkcja ,Hfl”, gdyz ran(f) = B.
Funkcja h : A —A, zdefiniowana jako zbior par:
{<1, 1>, <2, 3>, <3, 4>, <4, 3>, <5, 1>}

nie ma funkcji odwrotnej.

Szczegblng. form” enumeracyjnej definicji funkcji jest tablica lub krotka. Na
przyklad wyzej zdefiniowan” funkcjq /mozna przedstawic w postaci tablicy

lub krotki

h=<I,*, 5, 3, 1>,
gdzie symbol * oznacza, ze dla danego argumentu funkcjajest niezdefiniowana.
Przedstawienie funkcji w postaci krotki wymaga dodatkowo, aby dziedzina funk-

cji byla zbiorem liniowo uporz*dkowanym. Tak jest oczywiscie w przypadku
| dziedziny funkcji/, gdzie porzqdek w zbiorze A jest wyznaczony przez relacje <. |

Funkcje mogq. byc okreslane na dowolnych zbiorach. Elementami takich zbioréw mo-
g” byc zfozone twory, na przyklad inne funkcje. W takich przypadkach funkcje nazy-
wa si*funkcjonaiami.

Przyklad 3.9

I Rozpatrzmy zbiér FUN, ktorego elementami s*jednoargumentowe funkcje okre-
slone na zbiorze liczb rzeczywistych i o wartosciach w zbiorze liczb rzeczywi-
stych Rzeczywiste. Z definicji jest to zbior, ktorego elementami s” funkcje typu

Rzeczywiste —» Rzeczywiste

Rozpatrzmy operator rézniczkowania funkcji Diff. Jest to funkcja o sygnaturze
Diff: FUN -> FUN

albo, w postaci rozwiniqtej, o sygnaturze
D iff: (Rzeczywiste —» Rzeczywiste) —» (Rzeczywiste —» Rzeczywiste)

Operator Diffjest funkcja czQSciow”, gdyz istniej® funkcje, ktére nie maj” po-
chodnej w zadnym punkcie. Istniej” tez funkcje calkowicie okreslone, ktére maj”
punkty niecifiglosci (s nierézniczkowalne w tych punktach). Dia takich funkcji
I operator rézniczkowania wyznacza funkcje czgsciowo okreslone. |

W rozwazanych wyzej przykladach funkcje byly definiowane enumeracyjnie. Czgsto
spotykanym sposobem jest definiowanie funkcji przez wyrazenia funkcyjne. Definicja
ma postac réwnosci, na przyklad

f(x,y,z) =x *y+ 10*z

Jest to réwnosc, po lewej stronie ktorej wystqpuje symbol funkcji z list® zmiennych
(argumentdéw), a po prawej stronie wystgpuje wyrazenie funkcyjne (term).

W przykladowym wyrazeniu funkcje +, * znanymi dwuargumentowymi funkcjami
arytmetycznymi, 10 jest funkcje zeroargumentowq, czyli stal®, a x, y s<i zmiennymi.
Whyrazenie funkcyjne jest wigc zlozeniem pewnych fiinkcji. Ogdlnie jest ono definio-
wane nastqpuj”~co:

« stala i zmienna s” wyrazeniami funkcyjnymi,
* jezeli h jest n-argumentow” funkcje oraz g\, ..., g,, ss{ wyrazeniami funkcyjnymi,
to h(gi, ..., gn) jest wyrazeniem fimkcyjnym.

WystQpuj~cy po lewej stronie Symbol funkcji nie moze wyst*pic po prawej stronie
rownosci. Jedynymi zmiennymi, ktére mog” wystQpowac po prawej stronie réwnosci,
s™tylko te, ktdre wyst®puj™po lewej stronie.

Funkcje s™ pewnymi zbiorami i mog£t byc definiowane rekursywnie oraz przez okre-
slenie wlasnosci. Definicja rekursywn”, czyli algorytmiczn®, funkcji nazywa siQ tez
definicja intensjonalng, a definicjq przez okreslenie wlasnosci - definicja ekstensjo-
nalng.

Przyklad 3.10

A Funkcja Silnia jest typu Nat — Nat. Jej definicja rekursywna ma postac: n
Silnia(0) = 1
Silnia(n) = n * Silnia(n-I) dlan>0

Definicja sklada si$ z dwdch rownosci. Po lewej stronie réwnosci wystgpuje
symbol definiowanej funkcji wraz z odpowiednimi wartosciami argumentu, a po
prawej stronie wyst*puj™ wyrazenia funkcyjne. Wyrazenie funkcyjne w pierwszej
rownosci jest stal™ (funkcje zeroargumentow”), a w drugiej - jest zlozeniem
funkcji trzech funkcji: odejmowania -, mnozenia * oraz definiowanej funkcji Sil-
nia. Pierwsza réwnosc definiuje wartosé funkcji dla argumentu o wartosci 0, dru-
ga - definiuje wartosc funkcji dla pozostalych wartosci argumentu. Zastosowanie
drugiej réwnoSci do obliczenia wartosci funkcji dla argumentu n wymaga
uprzedniego obliczenia wartosci funkcji dla argumentu n- 1

W podobny sposdb jest zdefiniowana rekursywnie funkcja M : Nat —Nat:

M) =2
M(2) =2
M(n) - 2*M(n- 1) +M(n- 2) dlan>2

Znacznie bardziej zlozony jest sposob definicji funkcji Ackermanna o sygnaturze
Ack: Nat x Nat —Nat
Ack(x,y)=y +1 gdyx =0
Ack{x,y) =Ack{x- 1,1) gdyy =0
| Ack{x,y) =Ack(x - 1), Ack{x,y - 1)

Przyklad 3.11

Niech, jak poprzednio, FUN oznacza zbi6r, ktérego elementami jednoargu-
mentowe funkcje okreslone na zbiorze liczb rzeczywistych i o wartosciach
w zbiorze liczb rzeczywistych, czyli funkcje typu Rzeczywiste —» Rzeczywiste.
Dia dowolnej funkcji/: Rzeczywiste —Rzeczywiste rozwaza siq réwnanie posta-
ci/(x) = 0. Réwnanie to moze nie miec pierwiastkdéw rzeczywistych, moze tez
miec ich nieskonczenie wiele. Przez Pierwiastki(f) oznacza siQ wartosc funkcji,
ktora dla danej funkcji/ wyznacza podzbior liczb rzeczywistych P, ktére s” pier-
wiastkami rownania/(x) = 0. Funkcja Pierwiastki jest typu FUN —» 2Xzeawsle
Funkcjg tQmozna zdefiniowac ekstensjonalnie w spostb nastgpuj”cy:

Pierwiastki = {</,P>e FUN x \xeP <=>/(x) = 0}

Wprawdzie funkcja Pierwiastki jest zdefmiowana jednoznacznie, jednak z defi-
nicji tej nie wynika jak dla konkretnej funkcji/ okreslic zbidr jej pierwiastkow.
Wiadomo, ze znajdywanie pierwiastkdw rzeczywistych rownania/(x) = 0 jest
zadaniem rozwigzywalnym efektywnie tylko dla pewnych klas funkc;ji. |

Przyklad 3.12

AN

Rozwazmy funkcja WartoscWielomianu, ktdra oblicza wartosc dowolnego wie-*
lomianu dla zadanego argumentu. Jest to funkcja o sygnaturze

WartoscWielomianu : Wielomiany x Rzeczywiste —»Rzeczywiste
Wielomian n-tego stopnia
a,*X"+..+a\ *x +a0

gdzie neNat, jest jednoznacznie okreslony przez zestaw swoich n+ 1 wspdl-
czynnikéw a,, ..., a\, aeRzeczywiste. Zbidér Wielomiany moze zatem byc zdefi-
niowanyjako

Wielomiany =de{ [J Rzeczywiste"

ne Na!

st™d, dla dowolnego <a,, ..., ait aC>e Wielomiany oraz xe Rzeczywiste
WartoscWielomianu(<a,,, ..., a\, o> x) = a,, *X"+ ... + a\ *x +a0

Obliczenie tak zdefiniowanej wartosci funkcji WartoscWielomianu sprowadza
siQ, w oczywisty spostb, do prostego algorytmu obliczen. i

3.8. Operacje na funkcjach

Na funkcjach mozna wykonywad rézne operacje, defmiuj*c w ten sposéb nowe funk-
cje. Funkcje s”relacjami, w szczegdlnosci mozna wykonywac na nich operacje mno-

goSciowe, ale nalezy zauwazyd, ze wynikiem takich operacji nie zawsze jest funkcja.
Jezeli na przykiad dane si dwie funkcje/ g: A B, to ich mnogosciowa suma/u ¢
moze nie byc funkcja, natomiast przekroj funkcji/ng oraz ich réznicaf\g si zawsze
funkcjami.

Operacja superpozycji albo skladania sekwencyjnego funkcji jest zdefiniowana tak
samo jak dla relacji. Jezeli dane Sidwie funkcje:

f:A—B oraz g: B—»C

to zlozeniem sekwencyjnym albo superpozycji funkcji / z funkcji ~ oznaczanym
przez/ og,jest funkcja typu A —C, okreslona nastqpujico:

{f°0)(B) =defg(f(a))
pod warunkiem, zef(a) oraz g(f(a)) Siokreslone.
Inne operacje specyficzne dla funkcji to operacje:

» warunkowego wyboru,
» modyRkacjifunkcjiprzez podstawienie,
* obciqcia.

Niech b$di dane dwie funkcje/ g: A —B oraz trzecia funkcja h : A —Logiczne, gdzie
Logiczne =def {prawda,falsz}. Warunkowym wyborem funkcji/ g, h, oznaczanym
h~*fg
nazywa siq funkcja typu A —B, ktdrajest okreslona nastqgpujico:
/) gdy h{d)=prawda
(a) gdy h(a)=falsz

Przykiad 3.13
* Niech

[= {<I>2>, <2, 3>, <3, 4>}
g= {<1,3>, <2, 3>, <5, 55}
h = {<1,prawda>, <2,falsz>, <2>prawda >, <4,falsz >, <5,prawda >}

wowczas
h~*fg= {{<1. 2>, <2, 3> <3, 4>}
Niech/: A —B bqdzie funkcji oraz niech aeA, beB. Modyfikacjq. funkcjif przez

podstawienie wartoSci b dla argumentu o wartosci a jest funkcja typu A —B, ozna-
czana symbolicznief\a :=b], zdefiniowana w sposdéb nastgpujicy:

fla =b](x) =df(x=a) b,f(x)

W definicji tej wykorzystano poprzednio wprowadzony operator warunkowego wybo-
ru funkcji. Wyrazenie x = a przedstawia funkcjq, ktéra przyjmuje wartosc logiczn”
prawda wtedy i tylko wtedy, gdy argument x przyjmuje wartoSd a.

Przyklad 3.14
I Niech: n

= {<1, 2>, <2, 3> <3, 4>}
g= {<2, 3>, <5, 5>}

wowczas:
/[l :=5] = {<1, 5>, <2, 3>, <3, 4>}
. oll :-5]={<15>,<2,3>,<5,5>} j

Niech C c=A. Obcigciem funkcji/: A —B do podzbioru C zbioru zrédlowego A bQ-
dzie s<?nazywad funkcji? f ¢ : C -» 5, okreSlon” nastQpuj”co:

dla dowolnego ae C :/|c(a) =def/(a).
Latwo sprawdzic, ze rownowazn” definicji obciqgcia funkcji jest
/lc=def/n(C x5)

Niech/: A—B oraz niech .4, cA,B\c; B. Obrazem zbioru A\ dla funkcji/ nazywa
sig zbior

f{A\) =def {beB 13 aeAi *f{a) = 6}
Przechvobrazem zbioru B\ dla funkcji/ nazywa siq zbitr

fAB\) =der |3 6e5, «/(<,) = 6}

Przyklad 3.15
I Jezeli ~ I

/= {<1, 2>, <2, 3>, <3, 4>, <4, 55}
to:
d.2} = {<1,2>, <2, 3>}
I({'» 2})= {2, 3}
I 1~({3,4})={2,3}

3.9. Funkcje a relacje

Pomiqdzy relacjami a funkcjami zachodzg. pewne zwi”zki. Kazda funkcja jest - z de-
finicji - relacje Odwrotnie tak nie jest, ale kazdej relacji R a A x B mozna przypo-
rz*dkowac przynajmniej jedn” takcL funkcja f R: A —B,ze dla kazdego as dom{R)

fIAfl) =defb
gdzie beB jest takim elementem, ze <a, b>eR, czyli ze
/jC A oraz domifft) = dom(R).

Funkcjg f Rnazywa siq funkcjazgodnq z relacjii?.

Frzyklad 3.16

R ={<1, 2>, <1, 3>, <2, 5>, <2, 3>, <3, 4>, <4, 5>}
wowczas:
{<1,2>, <2, 3>, <3, 4>, <4, 55}
{<1.3>, <2, 3>, <3, 4>, <4, 5>}
I s~ funkcjami zgodnymi z R. |

Zwi”zek zgodnosci zachodzi pomi$dzy programem a jego specyfikacj®. Specyfikacj"
programu wyraza si$jako pewmi relacjq Spec, program zas jest pewng. funkcja Prag.
Program spelnia specyfikacjQ, gdy pomi~dzy specyfikagX Spec i programem Prog
zachodzi zwi”zek zgodnosci, czyli dom(Prog) = dom{Spec) oraz Prog ¢ Spec.

Przyklad 3.17

N Przypuscmy, ze potrzebna jest funkcja obliczaj*ca pierwiastek kwadratowy”
z liczby rzeczywistej x, z dokladnosci® 1. Niechy b~dzie wartosci*tej funkcji dla
danego x. Zwiqzek mi~dzy x orazy jest okreslony zaleznosci”

y2<x<(y +1)2

Formula ta definiuje relacjq
Specar, =def {<x, y>e Rzeczywiste2\y2<x <(y +)2}
ktéra moze byc specylRkacjg programu.

Implementacjq dla tej relacji jest dowolna funkcja (realizowana przez program)
Implsgrt: Rzeczywiste —Rzeczywiste
ktora spelnia warunki:

dom(Implsgt) = dom(Specsor) oraz Implsy, ¢ Specsorl.

Czytelnikowi proponuje siq samodzielne przedstawienie graficznej ilustracji rela-
I cji Specsy, oraz funkcji Implsr, na plaszczyznie wspélrzqdnych x, y. |

Dowoln” relacje mozna przedstawi6é za pomoc”jej funkcji charakterystycznej. Jezeli
danajest relacjaR ¢ A\ x ... X A,,, tojej funkcjq charakterystyczng jest funkcja

fn 1A\ X ... X A,, —Logiczne
zdefiniowana nastgpuj”co:
fi&qu ..., a,,) =prawda wtedy i tylko wtedy, gdy <au ..., a,,>€R.

Funkcja charakterystyczna dla danej relacji R jest wyznaczona jednoznacznie. Od-
wrotnie - dana funkcja charakterystyczna wyznacza jednoznacznie pewn”relacjg.

3.10. Grafy a relacje

Liczne zastosowania w informatyce maj” grafy. Rozpatrzmy najpierw klasq grafow
skierowanych. Maj”. one dwie réwnowazne definicje. W zaleznosci od potrzeb wyko-
rzystuje sigjedn”z nich.

Pierwsza definicja okreSla graf skierowany G jako parq

G=<V,A>
gdzie:
V jest zbiorem wierzcholkdw grafu,
A jest zbiorem hikoéw grafu, okreslonyin jako relacja binama na zbiorze wierzchol-
kow A ¢ VxV.

Interpretacja relacji A jest nastqpuj”ca: para <vi, vZ>eA reprezentuje luk grafii prowa-
dz”cy od wierzchotka vi do wierzcholka v2

Druga definicja okresla graf skierowany G jako parq
G=<V, S>

gdzie:
V jest zbiorem wierzcholkdéw grafu,
S jest funkcja, zwang.funkcjq nastgpnikéw, okreslon™ na zbiorze wierzcholkdw,
ktdrej wartosciami s*podzbiory wierzcholkéw S: V—2v.

Interpretacja funkcji S jest nastqpujXca: S(v) = {vi, ..., vV} reprezentuje zbiér wierzchol-
kéw-nastgpnikow wierzcholka v, to znaczy wierzcholkéw, do ktérych prowadz” Juki
wychodz”ce z wierzcholka v. Jej funkcja odwrotna P(v) okresla zbior wierzcholkdw-
poprzednikéw wierzcholka v, to znaczy wierzcholkdw, od ktérych prowadz” Juki do
wierzcholka v. Znaj"c dla danego grafu funkcjg S, latwo jest wyznaczyc funkcijq P.

Latwo réwniez zauwazyc, ze graf zdefiniowany wedhig jednej z tych definicji daje siq
wyrazic w réwnowazny sposob wedhig drugiej definicji.

Obie definicje graféw daji podstawq do graficznej ich reprezentacji. Pierwsza defini-
cja pozwala takze na graficzn” reprezentacjq relacji binamych. Pierwszy przyklad
takiej reprezentacji przedstawiono na rysunku 3.2. Ponizej rozwazamy inny przyklad,
bgdgcy graficzn” reprezentacji relacji réwnowaznosci z przykladu 3.4. W tym przy-
padku latwo sig przekonac, ze analiza niektérych wlasnosci relacji, na przyklad prze-
chodniosci, staje siq przejrzysta.

Przyklad 3.18
N RelacjaR ¢ A2 gdzie A =def {1, 2, 3, 4, 5}, zdefiniowana nastgpujico: A

R =def {<1, 1>, <2,2>,<3,3>,<4,4>,<5,5>,<3,2>,<2,3>,<2,5> <5, 2>,
<3,5>,<5, 3>}

ma postac graficzniprzedstawionina rysunku 3.5.

Rys. 3.5. Graficzna reprezentacja relacji |

Podgrafem grafu G = <V,A> nazywa siq dowolny graf G' =<V', A’>taki, ze V'c: V
orazA'cV'x V.

Grafnazywa siq nieskonczonym, gdy nieskonczony jest zbidr jego wierzcholkow.
Sciezkq w grafie G-<V,A> nazywa siq niepusty ciig lukdw
<Vi, V2> <v2 v3> ... <vnlv,> ..
gdzie <v,, vi]>eA, dlai=1,..., n- 1,... Sciezka przechodzi przez wierzcholki:
V|, V2 ...V,

gdzie V] jest poczitkowym wierzcholkiem sciezki, a jezeli sciezka jest skonczona, to
v,,jest jej wierzcholkiem koncowym. Sciezkq skonczoni, ktdra ma taki sam wierzcho-

lek pocz~tkowy i koricowy, nazywa sig cyklem. Cykl zlozony z jednego elementu na-
zywa sigpqtlg.
Wyrdznia si$ wiele rodzajow grafow. Okresla sig migdzy innymi, ze graf G = <V, A>
jest:

zwrotny, gdy relacja A jest zwrotna (przy kazdym wierzcholku jest pQtla),

przeciwzwrotny, gdy relacja A jest przeciwzwrotna (graf nie ma pQtli),

symetryczny, gdy relacja A jest symetryczna,

przeciwsymetryczny, gdy relacja A jest przeciwsymetryczna,

antysymetryczny, gdy relacja A jest antysymetryczna,

przechodni, gdy relacja A jest przechodnia.

Grafy symetryczne nazywa siq takze grafami nieskierowanymi.

Szczegblnym, dalej wykorzystywanym grafem, jest graf nazywany drzewem. Jest to
graf, ktory:
* nie ma cykli,
» ma dokladnie jeden wierzcholek v0, zwany korzeniem drzewa, ktéry nie ma po-
przednikdw, to znaczy nie istnieje wierzcholek ve Vtaki, ze <v, vO>eA,

 wszystkie pozostale wierzcholki maj” dokladnie jeden poprzednik, to znaczy dla
dowolnego wierzcholka v~ v0zachodzi card{v'e V\<v', v>eA}= 1 Wierzcho-
lek v, ktéry ma nastQpniki, to znaczy card{v'e V| <v, v'>e A}> 0, nazywa siq
wierzcholkiem rozgalqgziajgcym. Wierzcholek, ktéry nie ma nast*pnikdw, to
znaczy card{ve V\ <v, v’>eA} =0, nazywa si$ lisciem, a zbior wszystkich lisci
nazywa sig koronq drzewa.

Lemat 5.1 (Lemat Kbniga)

Jezeli graf Gjest drzewem nieskonczonym, w ktérym kazdy wierzcholek ma skon-
czon” liczbQ wierzcholkéw-nastQpnikdéw, to w grafie G istnieje sciezka o nieskon-
czonej dlugosci.

Dowdd

Niech vObqdzie korzeniem grafu G. Zgodnie z zalozeniem vOma skonczon” liczbq
wierzcholkdw-nastQpnikdw. Wsrdd nich istnieje przynajmniej jeden wierzcholek,
niech b$dzie to vi, ktdry jest korzeniem nieskonczonego poddrzewa G\ drzewa G,
gdyz - w przypadku przeciwnym - gdyby wszystkie wierzcholki-nast*pniki vObyly
korzeniami poddrzew skonczonych, to graf G bylby skonczony. Powtarzaj™c po-
dobne rozumowanie do nast*pnikéw wierzcholka vj, znajduje siq wsréd jego na-
stQpnikdéw wierzcholek v2, ktory jest korzeniem nieskonczonego podrzewa G2
drzewa G\ itd. Jest zatem oczywiste, ze ciqg wierzcholkdw VO, W\, V2, ... wyznacza
nieskonczon” sciezkq. [

Cwiczenia

1 lle relacji binamych mozna zdefiniowac na produkcie kartezjanskim A x B, jezeli
A oraz B s*zbiorami skonczonymi o licznosciach card(A) = n oraz card(B) = m.

2. Uzupelnij i udowodnij wzory:

a)(AnB)xC=(AxQn(BxQ
b) (AuB)xC=?
c) (AuB)x(CubD) =7

3. Niech card(A) = n oraz card(B) = m. Jaka jest liczba funkcji calkowitych oraz czg-
sciowych typu A —B?

4. Niech U b~dzie pewnym zbiorem uniwersum oraz ciy niech bqdzie relacji zawiera-
nia poraiQdzy podzbiorami zbioru U. Ktbre z wlasnosci: symetriQ, zwrotnosc, prze-
chodniosc ma relacja Cy?

5. Niech X =df {a, b, ¢, d) oraz R ¢ X 2 Zbadac, ktére sposrdd wlasnosci: symetrii,
przeciwsymetrii, zwrotnosci, przeciwzwrotnosci, przechodniosci, spéjnosci i réw-
nowaznosci majXnastqpuj”ce relacje biname:

a) R = {<a, a>, <b, b>, <a, b>}
b) R ={<a, a>, <b, b>, <c, ¢>, <d, d>, <a, b>, <b, a>}

6. Pomiqgdzy ludzmi wyréznia siq rozne stosunki: kolezenstwo, znajomosc, przyjazn,
wrogosc, pokrewiehstwo itp. Stosunki te mozna modelowac relacjami binamymi
okreslonymi na zbiorze ludzi, na przyklad: Roiezersinwo =def {<«, b>\ajest koleg"0};

a) okreslic, ktoére sposréd wlasnosci charakteryzuj*cych relacje biname mozna
przypisac nowo zdefiniowanym relacjom,

b) jakie zwiqzki zachodz” pomi~dzy tymi relacjami, chodzi o zwiqzki zawierania,
na przyklad, czy Ramimkc £ Roidierstwo, a takze o inne, na przyklad: czy jezeli

, b>e Rwrogosc OraZ ~b, Rarogosry 10 Rorzyjaziit

1. Sprawdzic, czy prawdziwe sei nastqpujqce stwierdzenia dotycz”ce relacji binamych
nax:

a) suma dwaoch relacji symetrycznych jest symetryczna,
b) czasc wspdlna (przekrdj) dwu relacji przechodnich jest przechodnia,
c) jezeli Rjest relacjeprzechodni®orazR ¢ S g X 2 to Sjest relacjeprzechodni”.

8. Sprawdzic, czy prawdziwe s" nastqauj“ce stwierdzenia dotycz”ce relacji réwno-
waznosci na X:

a) suma dwach relacji rownowaznosci jest relacje réwnowaznosci,
b) przekrdj dwdch relacji rownowaznosci jest relacje rownowaznosci.
c) roznica dwdch relacji réwnowaznosci jest relacje rownowaznosci.

9. Niech ID bqdzie zbiorem identyfikatorow. Czy zdefmiowane ponizej relacje bi-
name R\, R2c ID2sq.relacjami rdwnowaznosci? Jezeli tak, tojakie wyznaczone
przez nie zbiory ilorazowe?

a) R\ =der {<idu idi> | pierwsza litera identyfikatora id\ jest taka sama, jak pierwsza
litera identyfikatora id2),

b) Ri =def {<idu id2> | identyfikator id\ czytany wspak jest taki sam, jak identyfika-
tor id2}.

10. Niech BAZA =defNazwisko x Wiek x Zarobek, gdzie Nazwisko jest zbiorem identy-
fikatorow, Wiek i Zarobek sq pewnymi podzbiorami nieujemnych liczb calkowi-
tych. Czy relacje biname R\, Ri Q BAZA2s" relacjami rdwnowaznosci? Jezeli tak,
to jakie s™wyznaczone przez nie zbiory ilorazowe?

a) Ri =der {««i, W|, Z|>, <n2 w2,z |w, = W2az, = z2},
b) R2=def { « « L wi, zi>, <n2 w222 |W =w2a |zi —z2 < 1000}.

11. lle jest roznych relacji rownowaznoSci na zbiorze /j-elementowym?

12. Niech R, Scz X 2b%$d” relacjami réwnowaznosci. Czy relacjami réwnowaznosci s
rowniez:
a)Rus,
b)RnS,
C)R\S,
d)R°S.

13. Niech R ¢ X 2b”"dzie relacje réwnowaznosci oraz x, yeA'bQdg. dwoma ustalonymi
elementami zbioru X. Czy relacje réwnowaznosci jest relacja:

S=def(Ru {<* y>, <y, x>})+

14. JesliR\ ¢ X 2 to R2c X 2takie, ze Rt ¢ R2nazywamy rozszerzeniem relacji Rt. Czy
kazd” relacje R ci X 2mozna rozszerzy6 do relacji:

a) symetrycznej,
b) przeciwsymetrycznej,
c) zwrotnej,
d) przeciwzwrotnej,
e) przechodniej,
f) spdjne;.
15. Wykazad, ze relacja R jest przechodnia wtedy i tylko wtedy, gdy spefniony jest
warunek
R2"R
16. Niech S, Tb"d”. relacjami binamymi naX2 Wskaz, ktére wlasnosci s"prawdziwc:
a) dom(Su7) =dom{S) U dom(T),

17.
18.

19.

20.

21.

22.

23.

24.

25.

b) dom(Su 1) ¢ dom(S) u dom(T),
c)dom(Sn J)c dom(S) n dom{T).

Pokazac, ze zlozenie funkcji roéznowarto§ciowych jest funkcjeréznowartosciow”.
Niechf :X->YorazA,BcX. Uzupelnij i udowodnij wzory:

a) f{AuB) =f{A)uf{B)

b) f(AnB) ? f{A)nf{B)

0) ? A

Funkcjal/jest zgodna z relacja i wtedy i tylko wtedy, gdy/c R. Niech X=d({a, b,
¢, d} oraz relacja R bgdzie zdefiniowana nastqpuj”co:

R =def {<a, b>, <a, d>, <c, ¢>, <b, b>, <b, d>, <c, ¢>, <d, b>, <c, d>, <d, ¢>,
<d, a>, <d, d>).

Zdefiniowad wszystkie funkcje/ zgodne z relacjaR takie, ze:

a) dom(f) = dom(R),
b) ran(f) = ran(R).

Ktdre sposrod tych funkcji maj” funkcje odwrotne?

Podac warunki konieczne i wystarczajgce na to, aby mnogosciowa suma dwdéch
funkcji byla funkcje

Niech R bgdzie dowoln” relacja rownowaznosci na zbiorze X oraz niech relacja Q
bgdzie zdefiniowana nastqpuj”co:

Q=def(Ru {<a, b>, <b, a>})+
gdzie a, beX. Pokazac, ze Q jest relacjaréwnowaznosci oraz jesli <a, b>iR, to
XIQ = (X/R\ {[a]A [b]RY) u {[a]Au [E]F

Niech bgdzie dany pewien graf G = <V, A>, gdzie A ¢: V2 Jak” interpretacjQ moz-
na przypisad zlozeniu relacji A? Co oznaczaj® A2, ..., A"? W jaki spos6b mozna
zbadac, czy graf ma p~tle oraz cykle, to jest drogi o dhigosci wikszej od 1, ktére
rozpoczynaj” siq i koncz” siqw tym samym wierzcholku?

Pokazac, w jaki spostb na podstawie definicji grafu w postaci G = <V,A> zbudo-
wac jego defmicjQ o postaci G =<V, S>, gdzie S : V—»2”jest funkcje wyznacza-
jAc” dla dowolnego wierzcholka ve V zbior wierzcholkéw-nastgpnikoéw S(y), to
znaczy wierzcholkoéw, do ktérych prowadz”. luki z wierzcholka v.

Pokazac, w jaki sposdb na podstawie definicji grafu w postaci G = <V, S> wyz-
naczyc funkcje P(v), okreslaj*c”.zbior wierzcholkéw-poprzednikéw wierzcholka v.

Zaproponowac sposoby reprezentacji grafu w pami”ci komputera.

4. Aksjomatyczna i alternatywne teorie zbioréw

4.1. Aksjomatyczne uj”*cie teorii mnogosci

Uzywane dotychczas pojQcie zbioru jest rozumiane najeden z dwdch sposobow, ktdre
spotyka si$ w rozumieniu potocznym. Jest to tak zwane dystrybutywne rozumienie
zbioru, czyli zespohi (zestawu) wielu przedmiotéw (bytéw) pol*czonych w ealose ze
wzgl*du na pewne wspdlne wlasnosci. Dystrybutywne rozumienie zbioru wigze si* ze
stosunkiem pomiqdzy elementem a zbiorem: element nalezy do zbioru. Synonimami
tak rozumianego zbioru s” spotykane w jQzyku naturalnym takie okreslenia, jak: ‘kla-
sa’, ‘kolekcja’, ‘wielose’, ‘mnogosd’, ‘zbiorowosd’, ‘gatunek’, ‘rodzaj’.

Drugie, nieuzywane tu, pojQcie zbioru, tak zwane kolektywne, jest rozumiane jako
ealose ztozona z pewnych przedmiotdw, ktore stanowi” czQsci calosci. Na przyklad las
moze byo traktowany jako ealose, ktorej czQSciami s” drzewa, krzewy, runo lesne itp.
Kolektywne rozumienie zbioru stosunek pomigdzy elementem a zbiorem okresla, ze:
elementjest czgsciq zbioru, dlatego synonimami zbioru w sensie kolektywnym s” na
przyklad okreslenia: ‘ealose’, ‘agregat’, ‘kompleks’, ‘konglomerat’.

Mozna twierdzic, ze samochdd jest zbiorem w sensie kolektywnym, ktérego czgSciami
s"podwozie, kola, silnik, nadwozie itd. Cz”sci te s" komponentami zbioru ijednocze-
Snie s” réwniez zbiorami w sensie kolektywnym, gdyz skladaj”® siq z innych, mniej-
szych komponentdw. Zbiory kolektywne s” zbiorami tranzytywnymi, poniewaz stosu-
nek ‘bycia czQsei™” jest relacj”™ przechodni”.

Zbiory w sensie kolektywnym s” wygodne do przedstawiania wielu pojQC w naukach
przyrodniczych, spolecznych, a takze w lingwistyce komputerowej. Rozwazania
w ksigzce odnosz” si$ wyl”*cznie do zbiordw w sensie dystrybutywnym.

Oprocz rozroznienia zbioréw w sensie kolektywnym i dystrybutywnym, spotyka si$
jeszcze inne podejscia do pojqcia zbioru, okreslane jako podejscia alternatywne.
WSrdd takich podejsc w dalszej czgsci rozdzialu omawia siq bardzo ogdlnie wielo-
zbiory, zbiory rozmyte i zbiory przyblizone, ktére maj” liczne zastosowania w infor-
matyce.

W pocz™tkowym okresie swego rozwoju teoria mnogosci (teoria zbioréw w sensie
dystrybutywnym) byla budowana na podstawie intuicyjnego pojQcia zbioru. Droga ta
okazala siq zawodna, gdyz intuieja nie dawala jednoznacznych odpowiedzi na pewne

subtelne pytania. W konsekwencji pojawily siQ sprzecznosci, jak na przyklad omo-
wiona wczesniej antynomia Russella. W celu ich eliminacji zbudowano rézne aksjo-
matyczne teorie zbioréw. Ponizej przedstawiamy zestawy aksjomatdw opracowane
przez Zermela7. Zestaw ten jest wystarczaj*cy do praktyki matematycznej, zwlaszcza
do definiowania liczb naturalnych, calkowitych, wymiemych i rzeczywistych ze zwy-
klymi dziataniami arytmetycznymi. Bardziej rozpowszechniona jest nieco silniejsza
teoria, zwana teori® Zermela-Fraenkla8 Aksjomaty Zermela tu przedstawiane za
pomoc”jQzyka naturalnego.

1. Aksjomat ekstensjonalnosci
Dwa zbiory s*réwne wtedy i tylko wtedy, gdy maj~te same elementy.
2. Aksjomat wyrdzniania

Dia dowolnego zbioru Z i dowolnego jednoargumentowego predykatu (funkcji
zdaniowej) P istnieje zbidr T zawierajqcy dokladnie te elementy Z, kt6re spetniaj®
warunek P(x).

Jezeli zaden element Z nie spelnia predykatu P, na przyklad, gdy P(x) jest warun-
kiem postaci x&Z, to T jest zbiorem pustym 0. Aksjomat wyrdzniania zapewnia
wigc istnienie zbioru pustego 0.

3. Aksjomatpar nieuporzqgdkowanych
Jezeli Z\, Z2st(zbiorami, to para nieuporz~dkowana {Zu Z2} jest zbiorem.
4. Aksjomat sumy zbioréw

Niech Z bgdzie niepust™ rodzin” zbiordéw, tj. zbiorem, ktérego elementy s* zbio-
rami. Dia kazdej takiej rodziny istnieje zbior S, ktérego elementami S(dokladnie te
obiekty, ktére s elementami zbioréw nalez*cych do Z.

5. Aksjomat nieskonczonosci

Istnieje zbidr Z, ktdry zawiera zbidr pusty i jest taki, ze jezeli x nalezy do Z, to su-
max oraz {*} takze jest w Z

Rozréznienie mi~dzy elementem x a zbiorem jednoelementowym {jc} ma zasadni-
cze znaczenie. Aksjomat gwarantuje istnienie zbioréw nieskonczonych.

6. Aksjomat zastqpowania

Niech dla kazdego x istnieje dokladnie jedno y takie, ze spelniony jest dwuargu-
mentowy predykat (funkcja zdaniowa) P(x, y), wtedy dla kazdego zbioru Z istnieje
zbior Z', do ktdrego nalezy wszystkie i tylko te elementyy, ktdre przy pewnym x ze
zbioru Z, spetniaj” predykat P.

7EmstZermelo (1871-1953).
8 Abraham Fraenkel (1891-1965).

7. Aksjomat zbioru potqgowego

Dia kazdego zbioru Z istnieje rodzina zbioréw, ktorej elementami wszystkie
podzbiory zbioru Z. Rodziny t$ nazywa siq zbiorem potQgowym i oznacza 2Z

8. Aksjomat wyboru

Dia dowolnej rodziny niepustych i rozlgcznych zbioréw istnieje zbidr, ktory z kaz-
dym ze zbiordéw tej rodziny majeden i tylko jeden wspdlny element.

Aksjomat wyboru jest z jednej strony intuicyjnie oczywisty, ale z drugiej strony
budzi rézne kontrowersje. Ich zasadniczym powodem jest to, ze w przypadku nie-
przeliczalnej rodziny zbioréw nie wiadomo, w jaki sposéb tworzyc nowy zbiér,
ktory mialby dokladnie jeden element wspdélny z kazdym zbiorem tej rodziny.
Z cal™ pewnosci” proces tworzenia takiego zbioru nie méglby byc post*powaniem
efektywnym, to znaczy opartym na realizacji pewnego algorytmu.

9. Aksjomat regulamosci (ufundowania)

W kazdym niepustym zbiorze Z istnieje taki element X, ze zaden element zbioru X
nie jest elementem zbioru Z

Konsekwencj” aksjomatu jest to, ze nie istnieje zbiory X, Y, Z o takich wlasnos-
ciach, jak na przyklad, ze XeX, ze zachodzi Xe Y oraz YeX, ze zachodzi Xe Y,
YeZ, ZeX itd. Aksjomat ten ogranicza dziedzinq zlozon” ze zbioréw przez wyeli-
minowanie z niej obiektdw o wlasnosciach w rodzaju wyzej wymienionych.

4.2. Deflnicje zbiorow liczbowych

Na grinde aksjomatycznego uj”cia teorii mnogosci mozna formalnie zdefiniowac li-
czby naturalne. Poniewaz jedynymi obiektami, ktérych istnienie gwarantuje teoria
mnogosci, s” zbiory, wiqc liczby naturalne takze definiuje siqjako szczeg6lne rodzaje
zbioréw.

Dia dowolnego zbioru Zjego nastgpnikiem nazwa si$ zbhior
succ{z) =defZu {&
Zachodzi wi$c Z ¢ Succ{Z) oraz Ze Succ(Z2).

Punktem wyjscia w konstrukcji zbioru liczb naturalnych jest przyj~cie istnienia zbioru
pustego. Zbidr liczb naturalnych definiuje siqjako najmniejszy zbidr Nat, definiowany
rekursywnie w sposdb nastgjujcy:

1 OeNat
2. jezeli ZeNat, to Succ{Z)e Nat

Elementy zbioru Nat nazywa siq liczbami naturalnymi i s” nimi:

(0}

ou {0} = {0},

{0} U {{03} = {0, {0}},

{0, {0}} u {{0, {0}}} = {0, {0}, {0, {0}}} itd.

Zbior liczb naturalnych jest wiqc rodziny zbiorow. W celu uproszczenia notacji ele-
mentow tej rodziny wprowadza siq powszechnie znane oznaczenia:

0 =cH0,

I=def{0} = {O}

2=def{0, {0}} = {O,1}

3=def{0, {0},{0, {0}}} = {0,1,2}

W - {0, {0}, {0, {0}}, {0, {0}, {.{0}.}.}={0,1,2, «- 1}

ktdre sf[znacznie wygodniejsze w uzyciu.

Uwaga

Zbior liczb naturalnych jest przykladem tak zwanej induktywnej rodziny zbiorow.
Rodzina zbiorow A jest induktywna, gdy spelnia warunki:

1. 0eA,
2. dla kazdego zbioruXeA, réwniez zbiorX u {X)eA.

Operacja, ktora zbiorowi X przyporz*dkowuje X u {X}, nazywa sig operacj” na-
stgpnika. Istnienie zbiorow induktywnych jest postulowane aksjomatem nieskon-
czonosci. Zbior liczb naturalnych Nat jest najmniejszym zbiorem induktywnym, to
znaczy dla kazdego zbioru induktywnego A zachodzi Nat g A.

Mozliwe sii takze inne mnogosciowe sposoby definiowania liczb naturalnych, na
przyldad:

0 =df0,

=def{o} = {0]
2=def{{0}} = {1}
3=def{{{0}}} = {2

«=def{{..{0}..}3} = {»-1}

Traktuj*c liczby naturalne jako induktywnie zdefiniowane zbiory, mozna pokazac
nastgpuj”ce twierdzenie.

Twierdzenie 4.1

Dia dowolnych liczb m,ne Nat zachodzi zwiqzki:

1. Jesli men, tomen.

2. «e«,

3. JeSli Succ(m) = Succ(ri), to m =n.

4. Jeslimc; norazm*n, to men.

5. Zachodzimc nlubnc m.

6. Zachodzi dokladnie jedna z mozliwosci: me n,n=m, me n.

Dowdd twierdzenia mozna znalezc na przyklad w ksigzce [Tiuryn 2003].

Przy wprowadzonych oznaczeniach operaej? tworzenia nowego zbioru Succ mozna
traktowac tez jako funkcjQ dodawania jedynki do danej liezby naturalnej. Jest to fiink-
eja calkowicie okreslona o sygnaturze Succ : Nat —Nat. Nazywa siQj”. operaejq na-
stgpnika i mozna pisac:

Succ(0) =1

Succ(Succ(0)) = Succ(1) =2

Succ(Succ(Succ(0))) = Succ(Succ(l)) =Succ(2) = 3
Operacja nastgpnika pozwala na zdefiniowanie innych operaeji (dzialan). Na przyklad
dodawanie oraz mnozenie funkejami o sygnaturze:

+: Natx Nat —Nat
:Nat x Nat —=Nat

Dodawanie mozna zdefiniowac rekursywnie:

m+0=m dla dowolnego me Nat
m + Succ{n) = Succ(m + n) dla dowolnych m, ne Nat

Dysponujqgc dodawaniem réwniez rekursywnie mozna okreslic mnozenie:

m*0=0 dla dowolnego me Nat
Succ{m) *n=m *n +n dla dowolnych m, ne Nat

MajEic liezby naturalne, mozna zdefiniowac inne rodzaje liczb: liezby calkowite, wy-
mieme, rzeczywiste i zespolone.

Definicjq liczb calkowitych poprzedza si? pewnym wyjasnieniem intuicyjnym. Kazdej
liezbie calkowitej przypisuje si§ parq liczb naturalnych <m, n> takich, ze rdznica
m - n jest rowna tej liezbie calkowitej. Na przyklad liezbie calkowitej -2 moze byc
przyporz"dkowana para <4, 6>, liezbie 0 - para <10, 10>, a liezbie 3 - para <4, 1>.
Dwie pary <m\, nx> oraz <m2, n2>, ktore spelniaj™ warunek

mx- «i =m2- n2

reprezentu.R tQ sam” liczbqg calkowit®. Poniewaz réznica dwdch liczb naturalnych nie
zawsze jest liczb™ naturaln”, dlatego zamiast takiego warunku mozna sformulowac
inny warunek réwnowazny, w ktérym nie odwohije si$ do roznicy. Jest to warunek
postaci

mi +n2=m2+ ri\

Przyjmuje siq teraz nastQpuj~c” definicjq relacji binamej R ¢ Nat2x Nat2 okreslonej
na parach liczb naturalnych w sposéb nast*puj*cy:

R = def nZ>, <mun2 \m\+n2=m2+«%

Latwo sprawdzic, ze R jest relacji rownowaznosci na Nat2 Zbidér liczb calkowitych
jest okreslony jako zbior ilorazowy Nat2R, czyli

Caikowite =Nat2aR

Konstrukcja liczb wymiemych opiera siq na zalozeniu, ze kazdej liczbie wymiemej
mozna przyporz*dkowac parq </, m>, gdzie le Caikowite oraz meNat\{0}. Dalsza
czgsc konstrukcji jest podobna do konstrukcji zbioru liczb calkowitych. Definiuje siq
mianowicie relacjg Q ¢ (Caikowite x Nat)1w spostb nastQpuj*cy:

Q=def {«h, m2, <lum2 \I* m2=12%*/n3

Qjest relacji réwnowaznosci na CalkowitexNat. Zbior liczb wymiemych jest okreslo-
ny jako zbiér ilorazowy {CalkowitexNat)!Q, czyli

Wymierne - {CalkowitexNat)!Q

Definicja zbioru liczb rzeczywistychjest bardziej zlozona i dlatego jest tu pomijana.

4.3. Wielozbiory

Uogdlnieniem pojqcia zbioru jest pojgcie wielozbiom. Zbior jest okreslony jako ko-
lekcja dobrze wyrdznionych obiektéw - elementéw zbioru. Czasem nie ma potrzeby
jednoznacznego rozrdzniania pomi~dzy elementami zbioru. Tak jest wtedy, gdy ele-
mentami zbiom jest wiele kopii tego samego rodzaju obiektéw. Jezeli na przyklad
rozwaza siq zbior, ktérego elementami stt rézne owoce - jablka, gruszki, sliwki, to
moze nas interesowad tylko liczba poszczegdlnych rodzajéw owocow, bez rozréznia-
nia konkretnych owocow.

Definicja 4.1

Jezeli A jest dowolnym zbiorem, to wielozbiorem (albo multizbiorem) W nad zbio-
rem A jest para

W=ae{<A,f>

gdzie/ jest funkcjq. licznosci wielozbioru. Funkcja/ jest dowoln”®, calkowicie
okreslon™na A, o wartosciach w zbiorze liczb naturalnych, czylijest funkcjq o syg-
naturzef : A - * Nat oraz dziedzinie dom(f) =A.

Jezeli aeA, tof(a) jest liczb”™ elementéw a w danym wielozbiorze W. Wielozbiér W
jest pusty, gdyf(a) =0 dla kazdego aeA.
Niech b~d~dane dwa wielozbiory nad zbiorem”4:

W\ = <A,f> oraz W2=<A, g>

WA jest podwielozbiorem W2, co oznacza sig WA cW 2, jezelif(a) < g(a), dla kazdego
aeA.

Wielozbiory W, oraz W2s” identyczne, co pisze si® Wt = W2, wtedy i tylko wtedy, gdy
W\ ¢ W2oraz W2£ Wx

Na wielozbiorach definiuje siq operacje mnogosciowe sumy, przekroju i réznicy.
Suma wielozbioréw jest zdefiniowana nastgpuj”co:

W\\j W2=<A, h>
gdzie hjest funkcjq licznosci, spelniaj*c” warunek

h{a) =/(a) + g(a) dla dowolnego aeA
Przekroj wielozbioréw jest zdefiniowany nastQpujqco:

Win W2=<A, h>
gdzie h jest funkcjq licznosci, spelniaj*c” warunek

h(a) = min(f(a), g(a)) dla dowolnego aeA
Réznica wielozbiordw jest zdefiniowana nastgmj”co:

WAW2=<A h>
gdzie hjest funkcja licznosci, spelniaj*c” warunek

h(a) = max(f(a) - g(a), 0) dla dowolnego aeA
min oraz max s"funkcjami, ktdre wyliczaj® odpowiednio wigksz”oraz mniejsz” liczbq
sposrdd dwdch liczb, ktére s”jej argumentami.
Przyklad 4.1
I Niech WA = <A, f> oraz W2=<A,/2>, gdzie A - {a, b, c, d, e} oraz funkcje licz-1

nosci & zdefiniowane nastqjujgco:

f = {<a 4>, <b, 3>, <c, 2>, <d, 1>, <e, 0>}
f2= {<a, 0>, <b, 1>, <c, 2>, <d, 3>, <e, 4>}

wowczas
WiU W2=<A, {<a, 4>, <b, 4>, <c, 4>, <d, 4>, <e, 4>}>
WAC\W, 2= </I, {<a, 0>, <6, 1>, <c, 2>, </, 1>, <e, 0>}>
| WI\W2=<A, {<a, 4>, <6, 2>, <c, 0>, <//, 0>, <e, 0>}> j

Uwaga
CzQSto, gdy rozwaza siQrodzins wielozbioréw W, = <A f>, dla iel, nad ustalonym
zbiorem A, przyjmuje siq uproszczong. notacjs - wielozbiér W-utozsamia siq z fun-
kcjricznoscif. Wtedy, zamiast pisac na przyklad WA u W2 pisze sis/i u f2

4.4. Zbiory rozmyte

Zbiory rozmyte uogdlnieniem zbioréw, ktérym mozna si$ postugiwac w sytuacjach
okreslonych nieprecyzyjnie lub niejednoznacznie. Takie sytuacje wystgpuj”® na przy-
klad wtedy, gdy mowi siqg wysoki mgzczyzna, duze miasto lub drogi samochéd. Gdy
mowi sis o kims, ze jest wysokim mszczyzng, wyraza si$ przekonanie o stopniu przy-
naleznosci danego mqzczyzny do zbioru wysokich mQzczyzn.

Definicja 4.2
Jezeli A jest dowolnym zbiorem, to zbiorem rozmytym Z nad zbiorem A jest para
Z —fafr-A, [A>

gdzie //jest funkcjq przynaleznosci do zbioru rozmytego. Funkcja //jest dowolng.
funkcj® calkowicie okreslon” na A, o wartosciach w zbiorze liczb rzeczywistych
z przedziahi [0, 1], czyli funkcjqo sygnaturze //: A —[0, 1] oraz dom(f) =A.

Jezeli aeA, to jU(a) okresla stopien przynaleznosci elementu a do danego zbioru roz-
mytego. Dia aeA wartosc funkcji //(fl) = 0 oznacza brak przynaleznosci, fi{a) = 1 oz-
nacza pelng. przynaleznosc, 0 < //(fl) < 1 oznacza zas czgscioweL przynaleznosc ele-
mentu a do zbioru rozmytego.

Zbidr rozmyty Zjest pusty, gdy fj(a) = 0 dla kazdego aeA.

Przyklad 4.2

A Przyjmuj”c, ze za wysokich mgzczyzn mozna uwazac tych, ktérzy majg. co naj-l
mniej 170 cm wzrostu, rozmyty zbiér wysokich mgzczyzn WysocyMqgzczyzni moz-
na zdefmiowac nastspuj”co:

WysocyMgzczyzni = <Wzrost, fimns?”

gdzie

Wzrost = {*e Rzeczywiste \x > 100}

0 dla x<170
MusddW £*(*-170) dla 170<je<185
1 dla jc>185

Niech dane dwa zbiory rozmyte Z, = <A, ju>dla/= 1,2.
Z\ jest podzbiorem Z2) co oznacza siq Z\ £ Z2 jezelifi\(a) <ju(a), dla kazdego aeA.

Zbiory rozmyte Z\ oraz Z2 identyczne, co pisze si? Z\ = Z2, wtedy i tylko wtedy, gdy
W\ ¢ W2oraz W2cW,.

Operacje mnogosciowe na zbiorach rozmytych definiowane nast™pujXco:

Suma zbioréw rozmytych
Zju Z2=<A,/I>
gdzie //jest funkcji przynaleznosci, spelniaj*c” warunek
ju(a) = max(jui(a), jL2(a)) dla dowolnego ae A
Przekroj zbioréw rozmytych
Z|o Z2=""A //>
gdzie//jest funkcjiprzynaleznosci, spelniajgc” warunek:
fl{d) = min(B\(a), //2a)) dla dowolnego aeA
Rdznica zbioréw rozmytych
Z\\Z2—<A, ju>
gdzie //jest funkcji przynaleznosci, spelniaj*c” warunek:

ju(a) =max(jUi(a) - //2a), 0) dla dowolnego ae A

Przyklad 4.3

Zbiory rozmyte mozna przedstawic graficznie za pomoc” odpowiadajqcych iml
wykreséw funkcji przynaleznosci. Na pierwszym z rysunkéw przedstawiono wy-
kresy funkcji przynaleznosci dwdéch zbioréw rozmytych nad zbiorem liczb rzeczy-
wistych - linia ciggla (zbior pierwszy) i przerywana (zbior drugi), a na nastgpnych
- wykresy funkcji przynaleznosci ich sumy i przekroju.

Funkcje przynaleznosci dwdch zbiordw
- rozmytych - linia ci”gla i linia przerywana

Funkcja przynaleznosci sumy
dwdch zbioréw rozmytych

Uwaga
Badania nad zbiorami rozmytymi zainicjowaf swoimi pracami Lofti Zadeh w polo-
wie lat szescdziesititych ubieglego wieku. Podane wyzej definicje zawierania
i rownosci zbiordéw rozmytych oraz operacje mnogosciowe sg tymi, ktdre spotyka
si$ najczQsciej. W literaturze istnieje rozmaitosc innych definicji tych pojqc: [Kac-
przyk 1986], [Rutkowska, Pilinski, Rutkowski 1997].

Z pordwnania podanych okreslen zbioréw rozmytych z wczesniejszymi okresleniami
dla wielozbioréw wynika, ze z obliczeniowego punktu widzenia réznice malo istot-
ne. Istotne sq. natomiast rdznice interpretacyjne, gdyz funkcja licznosci dla danego
elementu aeA okresla liczbq kopii samego elementu w wielozbiorze, podczas gdy
funkcja przynaleznosci okresla stopien przynaleznosci tego elementu do zbioru roz-
mytego.

4.5. Zbiory przyblizone

Pojqcie zbioréw przyblizonych wywodzi siq z zagadnienia klasyfikacji.

Niech U b$dzie dowolnym zbiorem uniwersum oraz niech R ¢ U 2bqdzie pewn”relacj®
réwnowaznosci okreslon” na U. Relacja réwnowaznosci wyznacza podzial zbioru U na
klasy abstrakcji. Przypomnijmy: dwie klasy abstrakcji s™ identyczne albo rozl*czne,
a suma mnogosciowa wszystkich klas abstrakcji jest réwna zbiorowi U. Zbi6r wszy-
stkich klas abstrakcji, oznaczany U/R, jest nazywany zbiorem ilorazowym zbioru U.

Niech b"dzie dany pewien podzbidr X ¢ U. Podzbiér X jest oczywiscie okreslony
przez swoje elementy, ale mozna go tez scharakteryzowac tylko poprzez elementy
zbioru ilorazowego U/R. Charakteryzacja polega na wprowadzeniu dwéch podzbiorow
stanowi”*cych dolne i gdéme przyblizenie zbioru X.

Dolnym przyblizeniem zbioru X wzgl$dem relacji R, oznaczanym RX, jest zbidr zde-
finiowany nastgpujXco:

RX= [J{ret//rt|]YcX}

Gomym przyblizeniem zbioru X wzgl*dem relacji R, oznaczanym RX, jest zbidr zde-
finiowany nastQpujqco:

RX=\J{YeU/R\YnX*0}
Z definicji wynika, ze RXc ic RX

Definicja 4.3

Zbidr X nazywa si$ zbiorem przyblizonym wzglgdem relacji R, gdy RX ~ RX.
W przeciwnym przypadku, gdy R X - RX, zbidr X nazywa siQ zbiorem dokladnym
wzgl$dem R.

Przyklad 4.4
" llustracj™ wprowadzonych poj$cjest rysunek 4.2.

1 2 3 45 6 7

Rys. 4.2. Graficzna ilustracja
zbioru przyblizonego

Zbiorem U jest prostok™tny obszar na plaszczyznie X-Y, podzielony na mniejsze
prostokqty - kratki s” jednoznacznie identyfikowane przez numery wierszy i ko-
lumn. Kratki te s” elementami pewnego zbioru ilorazowego dziel*cego zbiér U.
Zbior X jest zaznaczony pogrubion” lini*. Jego dolnym przyblizeniem AY jest ob-

szar zaznaczony trzema mocniej zacieniowanymi kratkami, a gémym jego przybli-
zeniem RX jest obszar zaznaczony wszystkimi zacieniowanymi kratkami.

RX= {<b, 2>, <b, 3>, <b, 4>}
RX = {<a, 1>, <a, 2>, <a, 3>, <a, 4>, <a, 5>,
<b, 1>, <b, 2>, <b, 3>, <b, 4> <b, 5>,
<c, 1>, <c, 2>, <c, 3>, <c, 4> <c, 5>} |

W praktycznych zastosowaniach licznosci elementéw zbiorow RX oraz RX daj” pod-
staw$ do liczbowej oceny dokladnosci przyblizenia zbioru X. Jezeli zbiory RX oraz

RX S3.skonczone, to tak zwana miara dokladnosci przyblizenia zbioru X jest okre-
slanajako

@(X) = card(RX) / ccird(R X))
Oczywiscie 0 < aRX) <1

Uwaga
Zbiory przyblizone zostaly wprowadzone przez Zdzislawa Pawlaka (1926-2006)
w polowie lat osiemdziesigtych ubieglego wieku. Znalazly one powszechne zasto-
sowanie w informatyce, migdzy innymi w analizie danych, przyblizonej klasyfika-
cji i przetwarzaniu obrazéw [Pawlak 1991].

Cwiczenia

1 Niech X, Y, Z bqd" wielozbiorami. Pokazac, zejezeliX ¢ Yoraz Yc Z,toX ¢ Z

2. Niech W = <U, F> bqdzie wielozbiorem nad zbiorem U, gdzie funkcja licznosci F
jest zdefiniowana nastqpuj“co: F(x) = n dla kazdego xe U. Jezeli A jest podwielo-
zbiorem wielozbioru W, to przez A" oznaczamy operacjQ dopelnienia wielozbioru A,
ktor~definiujemy jako: A’ =df W\A. Sprawdzic, czy zachodz*prawa de Morgana:

(AnB)'=A'VB"
(Au B) =A'r\B'

3. Niech X, Y, Z bqd” zbiorami rozmytymi. Pokazac, ze jezeli X ¢ Yoraz Yc¢ Z, to
ZcZ.

4. Niech Z = <U, ju> b~dzie zbiorem rozmytym, gdzie funkcja przynaleznosci //jest
zdefiniowana nast*pujqgco: ju(x) = 1 dla kazdego xe U. Jezeli A jest podzbiorem roz-
mytym zbioru Z, to przez A' oznaczamy operacjq dopelnienia zbioru A, ktor” defi-
niujemy jako: A' =defZ\A. Sprawdzic, czy zachodz”prawa de Morgana:

(AnB)'=A'uB"
(Au B)'=A'nB"

5. Niech dany b~dzie zbiér Osoba = Nazwisko xWiek x Zarobek, gdzie Nazwisko jest
zbiorem nazwisk, Wiek = Nat, Zarobek = Nat, oraz niech bqd” dane dwie relacje
rownowaznosci: relacja W na zbiorze Wiek i relacja Z na zbiorze Zarobek. Uzasad-
nic, ze rodzina zbioréw {bwzc Osoba] we Wiek, ze Zarobek), zdefiniowanych na-
stQpujgco: bW =def {<ob wu zi>e Osoba \w\s[w]Wek a zte[z]Zaddq, dla we Wiek
oraz zg Zarobek, stanowi partycjq na zbiorze Osoba, czyli wyznacza pewn” relacja
réwnowaznosci Rw.z na tym zbiorze. Podad przyklady relacji Wc: Wieki Z ¢ Zaro-
bek. Podac dolne i gbme ograniczenia dla przykladowego podzbioru B ¢ Osoba
wzgl~dem relacji Rw,z-

5. Réwnolicznosc zbiordw, liczby kardynalne

5.1. Zbiory przeliczalne
PojQcie funkcji pozwala na poréwnywanie licznosci zbioréw.

Definicja 5.1

Dwa zbiory A iB rdéwnoliczne, co notujemy w postaci A ~ B, wtedy i tylko wte-
dy, gdy istnieje wzajemnie jednoznaczna funkcja (bijekcja)

f:A-*B
O zbiorach réwnolicznych mowi siq tez, ze zbiorami o tej samej mocy.

Latwo zauwazyc, ze zwi”zek réwnolicznosci ma oczywiste wlasnosci:
« A~A,
» jezeli A~B,to B~A,
« jezeliA~BiB~C/toA~C

Uwaga

Zwiqzek rownolicznosci ma wlasnosci relacji rownowaznosci. Nie mdwi siqjednak
o relacji rownolicznosci, gdyz wymagaloby to okreslenia zbioru, na ktérym relacja
ta jest okreslona. W tym przypadku dziedzinei powinien by zbiér, ktérego ele-
mentami setwszystkie mozliwe zbiory. Okreslenie tego, czym jest zbiér wszystkich
zbiordw, stwarza jednak problemy interpretacyjne. Wprowadzenie pojqcia zbioru
wszystkich zbioréw nasuwa pytanie: skoro zbi6r wszystkich zbioréw jest zbiorem,
to czy nie powinien byc swoim elementem? Proba odpowiedzi na takie pytanie
prowadzi do paradoksu Russella. Pojqcie zbioru wszystkich zbioréw jest zatem
wewnqtrznie sprzeczne.

Dia zbioréw nieskonczonych zachodzi charakterystyczna wlasnodd, polegajgca na
tym, ze caly zbidr jest réwnoliczny z pewnym swoim podzbiorem wlasciwym. Ta
wlasnosc jest podstaw” formalnej definicji zbioréw nieskonczonych. Zbior jest nie-
skonczony wtedy i tylko wtedy, gdy ma podzbior wlasciwy, ktory jest z nim réwnoli-
czny.

Skonczonosc zbioru A oznacza, ze istnieje neNat takie, ze \A\ ~ n.

Zapis A ~ n wymaga komentarza. Nalezy przypomniec, ze liczby naturalne zdefinio-
wano w podrozdziale 4.2. jako najmniejszy zbior induktywny. Symbol n jest zatem
nazw” zbioru reprezentujqcego liczby naturaln”, co wyjasnia sensownosc zapisu A ~ n.
W twierdzeniu 5.1 symbol liczby naturalnej n wystgmje w roli zbioru.

Twierdzenie 5.1

1. Dla dowolnej liczby neNat nie istnieje funkcja réznowartosciowa z n u {«}
w n.

2. Dian, meNat, jeslim~n,tom =n.

3. Zadna liczba naturalna nie jest réwnoliczna z Nat, a zatem Nat jest nieskon-

czony.
Dowdd twierdzenia mozna znalezc na przyklad w ksi*zce [Tiuryn 2003].

W tym przypadku méwimy, ze A ma n elementéw i oznaczamy to, pisz”°c card(A).
Takie oznaczenie bylo wprowadzone juz wczesniej w rozdziale 2.

Przyklad 5.1
A @) Zbior liczb parzystych Parzyste jest rownoliczny ze zbiorem liczb naturalnych!
Nat. Wystarczy zauwazyc, ze funkcja/: Nat —Parzyste, ktéra wzajemnie jed-
noznacznie odwzorowuje zbidr Nat w zbior Parzyste, jest zdefiniowana wzo-
rem
f(n)=2*n
w ktorym: neNat, a 2*neParzyste.
b) Podobnie réwnoliczne s*zbiory Parzyste i Nieparzyste.

c) Zbidr liczb rzeczywistych odcinka [a, b\, gdzie a <b, jest réwnoliczny ze zbiorem
liczb rzeczywistych odcinka [0, 1]. Odpowiedni®bijekcj®jest tuf .[a,b\-* [0, 1],
zdefiniowana wzorem

f(x) =(x- a)/(b-a)

d) Zbioér liczb rzeczywistych jest réwnoliczny z podzbiorem liczb rzeczywistych
odcinka otwartego (-zr/2, n/2). Wzajemnie jednoznaczne odwzorowanie repre-
| zentuje tu funkcja tangens. :

Definicja 5.2

Kazdy zbidr skonczony lub réwnoliczny ze zbiorem liczb naturalnych nazywa siq
zbiorem przeliczalnym. Zbi6r nieskonczony, ktdry nie jest réwnoliczny ze zbiorem
liczb naturalnych, nazywa siq zbiorem nieprzeliczalnym.

5.2. Zbiory nieprzeliczalne

Twierdzenie 5.2

Zhior potQgowy zbioru liczb naturalnych nie jest réwnoliczny ze zbiorem liczb na-
turalnych, czyli jest zbiorem nieprzeliczalnym. Oznacza to, ze nie istnieje wzajem-
nie jednoznaczna funkcja/: Nat —» 2Ntl.

Dowod
Dowdd pochodzi od Cantora i jest oparty na tzw. metodzie przekqgtniowej. Jezeli
zbior potqgowy bylby réwnoliczny zbiorowi liczb naturalnych, to wszystkie pod-
zbiory zbioru liczb naturalnych daloby si$ ustawié w ciqgi Z\, Z2 Z3 ... w jeden
ci"g. Kazdy z tych zbioréw zawiera pewne liczby naturalne. Mozna to przedstawid
w postaci tablicy, ktorej przykladowa postac jest podana ponizej. Zbior Z\ w tej ta-
blicy nie zawiera liczb 0, 1, 2, 3 itd.; zbiér Z2zawiera 0, 1, nie zawiera 2, 3 itd.

0 1 2 3
Z, nhie nie nie nie
Z2 tak tak nie nie

nie tak nie nie
74 tak tak nie tak
Z5

Defmiuje siq teraz nowy zbidr Z'w taki spostb, aby byl on rézny od kazdego ze zbio-
réw Zu Z2, ... Poruszajqc siq wzdhiz przek”tnej tabeli od gémego lewego pola, defi-
niuje siq w sposodb nastqmj”cy przynaleznosc kolejnej liczby naturalnej do zbioru Z";
kazde slowo ,,nie” zastgpuje si$ slowem ,,tak”, a kazde slowo ,,tak” zastQpuije si$ slo-
wem ,nie”. Jezeli po takim zastqpieniu na przek*tnej w kolumnie k znajduje siq
,»Nnie”, oznacza to, ze kiZ', ajezeli znajduje si$,tak”, oznacza to, ze keZ'.

W rozpatrywanym przykladzie otrzymuje sig mianowicie:

0 1 2 3
z, tak nie nie nie
z2 tak nie nie nie
z3 nie tak tak nie

Z4 tak tak nie nie

Zbior Z', zdefiniowany przez tak okreslon” przekqtng, zawiera O, nie zawiera 1,
zawiera 2 itd.

Tak zdefiniowany zbior Z'jest rézny od kazdego ze zbioréw Z\, Z2, zatem Z'jest
zbiorem, ktory nie daje si$ zestawic w cic"g wszystkich podzbioréw zbioru liczb na-
turalnych. Poniewaz rodzina podzbioréw 2Nd jest nieskonczona i nie jest row-
noliczna ze zbiorem liczb naturalnych, jest wigc zbiorem nieprzeliczalnym. |

Twierdzenie pokazuje, ze istniej*co najmniej dwa rodzaje nieskonczonosci. Pierwszy
reprezentuje nieskonczonosc liczb naturalnych i nazywa siq nieskonczonosci”®. przeli-
czaln™. Pozostale rodzaje nieskonczonosci nazywa si$ nieskonczonosciami nieprzeli-
czalnymi. Drugi rozpatrywany tu rodzaj nieskonczonosci, reprezentujgcy wszystkie
podzbiory liczb naturalnych, reprezentuje rodzaj nieprzeliczalnosci zwany continuum.

Na konstrukcji podobnej do prezentowanej w poprzednim dowodzie opiera si$ dowod
twierdzenia 5.3.

Twierdzenie 5.3

Przeliczalna suma mnogosciowa zbiordw przeliczalnych jest zbiorem przeliczal-
nym.

Dowdd

Niech zZ\, Z2, ... b~dzie ciEigiem zbioréw przeliczalnych. Niech Z, =def (2.1, 22, ... 3
dlai=1, 2,... Elementy tych zbioréw mozna ustawic w tabel?:

Wszystkie te elementy, nie pomijaj*c zadnego, mozna ustawic w jeden wspdlny
ci®g w spostb, ktory okreslaj*strzalki. Citg ten zawiera wszystkie elementy wszy-
stkich cirgéw Z\, Z2, ... ijest oczywiscie réwnoliczny ze zbiorem liczb naturalnych,
co dowodzi tezy twierdzenia. [

Twierdzenie 5.4
Podzbidr zbioru przeliczalnego jest zbiorem przeliczalnym.

Dowdd

Niech A b~dzie zbiorem przeliczalnym oraz B g A. Jezeli A =B lub B jest zbiorem
skonczonym, to oczywiscie B jest zbiorem przeliczalnym. Niech B bgdzie zbiorem
nieskonczonym, réznym od A. Poniewaz A jest zbiorem przeliczalnym, istnieje
wzajemnie jednoznaczna funkcja/: Nat —A. Nalezy pokazac, ze istnieje wzajem-
nie jednoznaczna funkcja g : Nat —B. Funkcja t$ mozna zdefmiowac rekursywnie,
na podstawie funkcjif w spostb nast*puj”cy:

*g(0)= i), gdzie Aijest najmniejsz” liczb” naturalng, tak”. zef(k\)e B,
« gfji) =f(kn), gdzie k,,jest najmniejsz” liczb™ naturaln” tak” ze A, i<k, oraz

f(k,,)eB.
Funkcja g jest roznowartosciowa i przeksztalca Nat na B. Zbi6r B jest zatem row-
noliczny ze zbiorem liczb naturalnych, a wiqc jest zbiorem przeliczalnym. |

Przykladowym, waznym zbiorem nieprzeliczalnym jest zbidr liczb rzeczywistych.
Wynika to z nastQpuj”~cego twierdzenia:

Twierdzenie 5.5
Zhior liczb rzeczywistych z odcinka [0,1] jest zbiorem nieprzeliczalnym.

Dowdd
Wystarczy pokazac, ze nie istnieje funkcja/: Nat -» [0, 1], ktora jest bijekcj”, to
znaczy dom(f) = Nat oraz ran(f) = [0, 1]. Funkcja / mozna przedstawic w postaci
ci*gu - zbioru par:
{<0./(0)>.<L./()>, <0,/(2)>,..}
Dalej cif|g ten bgdzie zapisywany w uproszczonej postaci:

1(0), 1(1), 1(2),.... I[(«),...
gdzie wyrazy ci*gu/(«) s”*liczbami z przedziahi [0, 1].

Pokazemy, ze dla dowolnie wybranego ciqgu/istnieje liczba ce[0, 1], ktéra nie
nalezy do tego ci"gu.

Oznaczmy przez [an bn] ¢ [0, 1], dla neNat, ci*g przedzialow z odcinka [0, 1].
Cing tych przedzialdw jest zdefiniowany nastqpuj”co:

Niech [a0 b(] = [0, 1], Podzielmy ten odcinek na trzy podprzedzialy: [0, 1/3], [1/3,
2/3], [2/3,1] i wybierzmy z nich ten podprzedzial, do ktérego nie nalezy wyraz/(0).
Wybrany podprzedzial oznaczmy przez [otj, 6|]. Podobnie postgpuj*c z przedzialem
[au b{\, wyznaczymy przedzial [a2 bj\, do ktdrego nie nalezy wyraz/ (1) itd.

Na mocy konstrukcji wyznaczony ci*g podprzedzialéw [a,,, 6,], dla neNat, ma na-
stopuj”ce wlasnosci:

[(«-1E [a,, bn],
b,,-a,,= 1/3"
0<a,<aml< bntl< 5,< 1

Cingi liczbowe {a,,}reNp, oraz sg. monotoniczne i ograniczone. one
zbiezne do tej samej granicy ce [0, 1], gdyz lim,,~(bn-a,,) =0. Liczba c nalezy
do kazdego z przedziatdéw [an, bn], a wiqc jest rozna od kazdego wyrazu/(«), czyli
nie nalezy do ci“gu wyznaczonego przez funkcjQ f z czego wynika teza.

Zauwazmy, ze podzial danego odcinka na dwa podprzedzialy domknigte, np.
[0, V], [V/2, 1] itd., nie pozwolilby na zastosowanie opisanego postqpowania dla
przypadkéw, gdy ci*g/(0), /(1), /(2)....f(n), ... bylby zbiezny do 1/2* dla do-
wolnego k&Nat. Mozliwe natomiast byloby przeprowadzenie tego postgpowania
przy zalozeniu podziahi danego odcinka na dowoln”, wigksz” niz 3, liczbq pod-
przedzialow.]

Twierdzenie 5.6

Zbior liczb rzeczywistych z odcinka otwartego (0, 1) jest réwnoliczny zbiorowi
punktéw wnQtrzna kwadratu o boku dhigosci 1.

Szkic dowodu

Kazdy punkt kwadratu mozna okreslic par” liczb <x, y>, stanowi”cych wspdlrzQd-
ne punktu. Przy zalozeniu, ze bok kwadratu ma dhigosc jeden, liczby te mozna za-
pisac w postaci nieskonczonych ulamkéw dziesigtnych w postaci:

X =0, cA\cc2- 0O» o=

y=0,B\Bi..R, ..
gdzie a,,, Bn(dla«=1,2,...) s*cyframi O, 1,..., 9.
Parze liczb <x, y> przyporz*dkowujemy liczby z na odcinku (0, 1), réwniez repre-
zentowanEL nieskonczonym ulamkiem dziesi“tnym o postaci

z =0, a\B\ccB2.. adn...

Jest oczywiste, ze przy takim przyporzgdkowaniu réznym punktom kwadratu od-
powiadaj*rézne punkty odcinka. Wynika stqd, ze zbiér punktdw wnqtrza kwadratu
o0 boku jednostkowym jest réwnoliczny z pewnym podzbiorem odcinka o dhigosci
jeden. Moc zbioru punktéw kwadratu jest zatem nie wi“ksza od mocy zbioru punk-
téw odcinka.

Z drugiej strony zbidr punktdéw odcinka jest podzbiorem punktéw kwadratu. Moc
zbioru punktdw odcinka jest zatem nie wi*ksza od mocy zbioru punktéw kwadratu,
z czego wynika, ze obie moce s” réwne. [

5.3. Liczby kardynalne

Pojgcie réwnolicznosci zbioréw jest bardzo wazne. Jest ono migdzy innymi punktem
wyjscia do wspdlczesnej definicji liczby. Réwnolicznosc wprowadza pewn” klasy-
fikacjs zbiordw. Zbiory tego samego rodzaju réwnoliczne. Rodzaje te nazywa siq
liczbami kardynalnymi. Takim rodzajem jest na przyklad rodzina zbioréw czteroele-
mentowych. Liczby naturalne odpowiednikiem liczb kardynalnych dla zbioréw
skonczonych. Liczby kardynalna zbioru wszystkich liczb naturalnych jest Ko (alef
zero), a liczby kardynalna rodziny wszystkich podzbioréw zbioru liczb naturalnych
jest ¢ (continuum). Inaczej: liczba kardynalnajest pewn” cech” zbioru.

Liczby kardynalna zbioru A, czyli rodzaj zbioréw, do ktérego nalezy zbidr A, bqgdzie-
my oznaczac przez \A\. Liczby kardynalnej nie nalezy utozsamiac z pojQciem liczby.
W szczegdlnosci, w przypadku zbioru skonczonego A, jego liczba kardynalna \A\ jest
czym innym niz liczba elementéw tego zbioru card(A).

Liczby kardynalne mozna ze sob”poréwnywac. Niech \A\ = aroraz \B\ = B.

Przyjmujemy, ze liczba kardynalna ajest nie wigksza niz liczba kardynalna B, co pi-
szemy a< 3, jezeli zbior A jest réwnoliczny z podzbiorem zbioru B.

Jezeli a <R oraz a * B, to méwimy, ze liczba kardynalna a jest mniejsza niz liczba
kardynalna B, co piszemy a< R.

Z wczesniejszych rozwazan wynika wiqgc, ze Ko<c .

Poréwnywanie liczb kardynalnych ma wlasnosc zwrotnosci, to znaczy
a< a

i przechodniosci, to znaczy
jezelia< B oraz B<y to a<y.

Wazny zwiqzek pomi~dzy liczbami kardynalnymi wyraza podane nizej twierdzenie
Cantora-Bemsteina.

Twierdzenie 5.7

Dia dowolnych liczb kardynalnych a, B:
jezelia<RB oraz B< a, to a= R.

Dowdd twierdzenia mozna znalezc na przyklad w pracy [Rasiowa 1998].

Uogdlnieniem twierdzenia 5.3 jest twierdzenie Cantora.

Twierdzenie 5.8
Dia dowolnego zbioru A:\A\<\2a\

Dowdd

Twierdzenie oznacza, ze nie istnieje wzajemnie jednoznaczna fiinkcja odwzo-
rowujXca zbiér A w zbioér potQgowy 2A Zalozmy, zef: A -> 2 Ajest fiinkcja na 2A
Niech

AO0= {aeA |atf{a)}

Poniewaz/jest fiinkcja na 2A to istnieje alA taki, zef(a0) = AQ, tak wi$c alAO0
wtedy i tylko wtedy, gdy aCe f(a0).

Innymi slowy: ae AOwtedy i tylko wtedy, gdy aCEAQ.

Otrzymana sprzecznosc dowodzi, ze nie istnieje wzajemnie jednoznaczna funkcja

odwzorowuj”ca zbiér A w zbidr potqgowy 2A m
Cwiczenia
1. Pokazac réwnolicznosc zbioru liczb naturalnych i zbioru liczb pierwszych.
2. Pokazac rownolicznosc zbioréw:
a) odcinek otwarty (0, 1) ¢ Rzeczywiste,
b) odcinek pdlotwarty [0, 1) <zRzeczywiste,
¢) okrgg na plaszczyznie o srodku (0, 0) i promieniu 1.
3. Pokazac, ze zbitr potQgowy zbioru A jest réwnoliczny ze zbiorem funkcji okreslo-
nych naA i o wartosciach w zbiorze {0, 1}, czyli ze zbiorem { f\f:A — {0, 1}}.
4. llejest rosn”cych ci*gdéw liczb wymiemych zbieznych do 1?
5. lle jest relacji rownowaznosci na zbiorze liczb naturalnych takich, ze wszystkie ich
klasy abstrakcji s"skonczone?
6. Udowodnic, ze kazdy zbi6r rozl*cznych odcinkéw na prostej jest przeliczalny. Po-
kazac, ze istnieje nieprzeliczalny zbi6r rozl*cznych odcinkéw na plaszczyznie.
7. Udowodnic, ze jezeli A nie jest zbiorem przeliczalnym i B jest zbiorem przeliczal-
nym, to A/B nie jest zbiorem przeliczalnym.
8. Udowodnic, ze produkt kartezjanski dwoch zbiorow przeliczalnych jest zbiorem
przeliczalnym.
9. Udowodnic, ze zbior liczb wymiemych jest przeliczalny.
10. Udowodnic, ze zbiér liczb niewymiemych jest nieprzeliczalny.
11. Udowodnic, ze kazdy zbitr nieskonczony zawiera pewien podzbidr przeliczalny.
12. Udowodnic, ze rodzina wszystkich skonczonych podzbioréw zbiom przeliczal-

nego jest przeliczalna.

13. Udowodnic, ze dla dowolnych liczb kardynalnych a, B,y, zachodz*zwiqzki:
a) a< a,
b)jezelia< B orazR<y\o a<\y.
14. Czy istnieje relacja rownowaznosci R ¢ Rzeczywiste2, ktorej kazda klasa abstrakcji
jest mocy KoOoraz:
a) zbior ilorazowy Rzeczywiste!R jest mocy Ko?
b) zbior ilorazowy Rzeczywiste!R jest mocy c?
15. Ktore z ponizszych zdan jest prawdziwe?

a) Jesli/: A —» B jest roznowartosciowa oraz nie jest na B, to \A\ <|B.
b) Jesli VW < |B| oraz C"* 0, to\ Ax C| < |5x C|.

6. Zbiory i funkcje obliczalne

6.1. Zbiory obliczalne i rekurencyjne

Z wykonywaniem obliczen za pomoc”. komputeréw wi”ze siQ pojQcie algorytmu.
Obliczeniami na komputerach rz*dz” scisle reguly, niekiedy moéwi si? nawet o re-
gulach mechanicznych, maj*c na mysli to, ze obliczenie mozna widziec jako skon-
czonej dlugosci eisig czynnosci, z ktérych kazda jest jednoznacznie zdefiniowana
i - dodatkowo - jest realizowalna za pomoeq. acisle zdefiniowanych srodkéw. Do
rozwigzania niektdrych probleméw, na przyklad zadania obliczenia najwigkszego
wspdlnego podzielnika dwdéch liczb, mozna wyobrazic sobie istnienie pewnego
algorytmu. Trudno natomiast wyobrazic sobie istnienie algorytmu do przepowiada-
nia wyniku rzutu monetg.

Okreslone tak intuicyjnie poj~cie algorytmu jest nieformalne, co utrudnia lub nawet
uniemozliwia jego wykorzystanie w scisiych rozwazaniach. Proby scislego zdefmio-
wania pojqcia algorytmu9podjQto w pierwszej polowie ubieglego stulecia. Ich rezulta-
tem bylo powstanie kilku - jak siq pozniej okazalo - réwnowaznych definieji algo-
rytmu.

Niektore z tych podejsc wi”zaly si$ z ograniczeniem czynnosci wykonywanych w ra-
mach algorytmu do manipulaeji na symbolach. Oznacza to, ze wykonywanie czynnos-
ci polega na tworzeniu pewnych ci*gow symboli (napisdéw) na podstawie innych cig-
gbw symboli (napisdéw). Przykladem s tu algorytmy normalne Markowal0

Inne podejscia byly oparte na wprowadzeniu pewnych ,,maszyn”, ktére bylyby zdolne
do samodzielnego wykonywania przetwarzania napisow. Przykladem znanych modeli
algorytmu s"maszyny opracowane przez Turingall oraz Postal2 Oba te modele, opra-
cowane niezaleznie od siebie, s” podobne i wi*ze si$ z nimi hipoteza, nazywana hipo-
tezq Turinga-Posta lub - czQsciej - hipotezq Turinga. Z tego wzgl*du dalej przedsta-

9 Termin algorytm pochodzi od nazwiska arabskiego matematyka Abu Ja’far Muhammad ibn Musa
Al-Kwarizmi (okoto 780-850).

10 Andriej A. Markow (ur. 1903), syn innego matematyka Andrieja A. Markowa (1856-1922).

U Alan M. Turing (1921-1954).

R Emil Post (1897-1954).

wiono tylko maszyng Turinga, a zwi*zana z niq, sformulowana w 1936 roku, hipoteza
stwierdza [Arbib 1968]:

Nieformalne, intuicyjne pojqcie algorytmu na ciggach symbolijest tozsame ze scis-
lym pojqciem procedury, ktdrq moze wykonac maszyna Turinga.

Dia hipotezy tego rodzaju nie mozna nigdy podac formalnego dowodu, poniewaz taki
dowdd wymaga zdefiniowania pojQC, ktdre zawiera. Mozna tylko obalic przez po-
danie przykladu intuicyjnie rozwi*zywalnego problemu, dla ktérego nie daje siq skon-
struowac odpowiedniej maszyny Turinga. Jak dotychczas, ilekroc bylo intuicyjnie
oczywiste, ze algorytm istnieje, tylekroc okazywalo sig mozliwe skonstruowanie ma-
szyny Turinga wykonuj”cej scisle ten algorytm i nie ma przeslanek, ktore wskazywa-
lyby na mozliwosc zmiany tego stanu rzeczy.

Rozwi”zanie pewnego problemu przez wyszukanie odpowiedniego algorytmu spro-
wadza siq zatem do zbudowania odpowiedniej maszyny Turinga. Maszyna Turinga
jest tylko konstrukcj?i teoretyczn” i nie sluzy do rozwi”zywania zagadnien prakty-
cznych. Do celéw praktycznych wystarczy przyj~c, ze maszyny Turinga mozna utoz-
samiac z dowolnym komputerem, ktory dysponuje nieograniczenie pojemn” pamiqci®.
Dokladny jej opis przedstawia siq nastgpuj”co:

Maszyna Turinga jest okreslonajako urz*dzenie skladaj™ce si$ z nieskonczenie dlugiej
tasmy, podzielonej na kratki, zwanej pamiqciq maszyny, oraz urz*dzenia sterujcego,
zwanego sterowaniem maszyny. W kazdej kratce tasmy moze byc zapisany jeden
z symboli ustalonego, skonczonego zbioru symboli A, nazywanego alfabetem ma-
szyny. Zaklada sig, ze alfabet zawiera Symbol ,,pusty”: nie. Urz*dzenie steruj™ce -
krocej: maszyna - moze sigq znajdowad w jednym ze stanow skonczonego zbioru S.
Wyr6znia siq pewien podzbior stanow F ¢ S, nazywanych stanami koncowymi.
W kazdym stanie urz~dzenie steruj“ce moze ,,obserwowad” (przez glowic? czytajqco-
pisz~cq) jedn” kratkQ tasmy T. Gdyby kratki tasmy T mozna ponumerowac liezbami
calkowitymi, wtedy znajduj*cy siq w obserwowanej kratce o numerze ig Calkowite
Symbol a,&A nazywalby si? symbolem obserwowanym.

Sterowanie

Rys. 6.1. Maszyna Turinga

W danym momencie czasu maszyny charakteryzuje jej konBguraeja, na ktoér” sklada
si$ stan pamiqci, czyli aktualna zawartosc tasmy, stan urz”dzenia steruj“eego oraz
potozenie glowicy czytaj™co-pisz”cej przyjednym z pél tasmy.

Maszyna rozpoczyna pracQ w konfiguracji poczgtkowej, to jest takiej, w ktorej tasma T
ma ustalonqg poczqtkowq zawartosc. Aktualnym stanem urzqdzenia sterujgcego jest wy-
rozniony stan poczqgtkowy, a glowica czytajgco-piszqca znajduje si$ przy kratce tasmy T
wskazanej jako kratka poczqtkowa. W danej konfiguracji takiej, w ktorej stan urzqdzenia
sterujgcego jest stanem s, maszyna ,,czyta” obserwowany symbol a, po czym:
 zZmienia swoj stan s na nowy stans'gS,
» zmienia obserwowany symbol a na a'eA, w szczegdlnosci moze to byc ten sam
symbol a lub symbol pusty,
* przesuwa swojq glowicq czytajgco-piszqcq o jedng kratkq w lewo albo w prawo,
albo pozostawiajgw miejscu.

W ten spostb maszyna przechodzi do nowej konfiguracji i powtarza swoje dzialanie
wedhig opisanego schematu az do momentu, gdy osiqggnie konfiguracji koncowq, to
jest takq, w ktdrej stan aktualny urzqdzenia sterujgcego okresla si? jako stan koncowy.
Po osiggniqciu konfiguracji koncowej maszyna zatrzymuje si$ i nie wykonuje dal-
szych czynnosci.
Formalnie maszyny Turinga M T definiuje siqjako siédemkq:

MT-<S,A, S Ap, o F>
gdzie:

S jest zbiorem standw,

A jest alfabetem,

S: Sx A —2S jest funkcjgprzejsc pomiqdzy stanami,

A\ SxXA —>A jest funkcjewyjsc,

p: SxA —{-1,0, 1}jest funkcjeprzesuni$cia glowicy,

Sjest stanem poczqgtkowym,

F ¢ Sjest podzbiorem stanéw koncowych.

Obliczenie maszyny Turinga MT dla danej tasmy T mozna opisac w postaci ciqgu
trojek:

A S07aid>*0 A Alvail»*l eee» A SnlainAn > e
gdzie:

skjest stanem urzgdzenia sterujgcego,

a,kjest zawartoSciq kratki obserwowanej przez glowicQ czytaj qco-piszqcq,
ik oznacza kratkq tasmy T, przy ktdrej znajduje si$ glowica czytajgco-piszqca.

Pierwsza trojka <s0,af{,i0 >jest elementem konfiguracji poczgtkowej maszyny, a na-
stQpne trojki sqokreSlone nastgpujgco:

Sk+l = S(sk,ajk)
a'k =A(si,a,i)
hA=h+P"i,aik)

dla k eNat. Pierwsza z funkcji okresla nowy stan, druga - now” zawartosc przeczytanej
kratki, a trzecia - wskazuje na numer kolejnej kratki, do ktdrej przesuwa si? glowica.

Ci”g ten zawsze rozpoczyna siq w konfiguracji pocz~tkowej i moze byc skonczony
lub nieskonczony. Jezeli jest on ci*giem skonczonym, to ostatnia trdjka jest elemen-
tem konfiguracji koncowej, co oznacza, ze s,,eF.

Obliczenie maszyny rozpoczyna si$ i konczy pewnym ci®giem symboli zapisanych na
tatmie. Symbole na tasmie przed rozpoczQciem obliczen interpretuje si$ jako dane
algorytmu, a Symbole po wykonaniu obliczen maszyny interpretuje sig jako wynik
obliczen algorytmu.

Przyklad 6.1

A Alfabet maszyny Turinga A = {0, 1, nie}. Zadaniem maszyny Turinga jest stwier-'
dzenie, czy liezba symboli 1 zapisana na taSmie, poczynaj*c od wskazanej nie-
pustej kratki az do pierwszej kratki po prawej stronie, ktdra zawiera Symbol nie,
jest parzysta czy nieparzysta. Wynik obliczen maszyny ma byc zapisany na tasmie,
w kratce s"siaduj*cej po prawej stronie z pierwsz” kratki zawierajcfi znaleziony
Symbol nie (kratka pusta).

>
0 1 1 0 1 0 1 0 0 0
l «
- ! \
Kratka ' 1 Kratka ! i J:LWynik f!
pocz~tkowa | koncowa i -
Ogranicznik
poszukiwan

Rys. 6.2. Przykladowa zawartosc tasmy

Maszyny Turinga mozna w zwarty sposdb przedstawic za pomocE(_ diagramu
przejsc pomiqdzy stanami. Diagram ten jest grafem, ktérego wierzcholkami s” sta-
ny maszyny. Luki reprezentuj®ce przejscia pomiqdzy stanami s” etykietowane na-
pisami postaci a / b, c. Pierwszy element a jest symbolem alfabetu maszyny, Sym-
bol * oznacza, ze moze to byc dowolny element. Drugi element b jest symbolem,
ktdry maszyna wypisuje na tasmie, Symbol _ oznacza, ze napis w danej kratce nie
ulega zmianie. Trzeci element ¢ moze przyj“c wartosci -1, 0, +1, co oznacza prze-
sunigcie glowicy maszyny odpowiednio w lewo, brak przesuniQcia lub przesuniqcie
w prawo. Ukosnik rozdziela symbol wejsciowy od symboli, ktdre reprezentuj” re-
akcjQ maszyny w danej konfiguracji. L"cznie etykieta a / b, ¢ na przejsciu ze stanu

i do stanuj oznacza, ze: jezeli w stanie / maszyna przeczyta w obserwowanej krat-
ce symbol a, to zapisuje w tej kratce symbol b i przesuwa si? do nastopnej kratki
0 ¢, po czym przechodzi do stanuj.

0/_,+1
*/0,0

*/1,0

Rys. 6.3. Diagram przejsd pomi”*dzy stanami

Przedstawiony diagram wymaga uzupebiienia o wskazanie stanu pocztkowego -
I stan 0- oraz standw koncowych - stany 4, 5. t

Maszyna Posta, a takze inne maszyny, na przyklad Rabina i Scotta, maszyny wie-
lotaSmowe sg. réwnowazne maszynie Turinga w tym sensie, ze jezeli dany problem
daje si$ rozwi”zac przez zbudowanie jakiejkolwiek z tych maszyn, to daje siq rowniez
rozwi”zad za pomoc” pozostalych maszyn.

Przyjmuj*c maszyn? Turinga za poj?cie algorytmu, mozna sformulowac wazne poj?-
cia. Niech dany b?dzie pewien zbi6r przeliczalny A.

Zbior A jest rekurencyjny, jezeli istnieje algorytm rozstrzygania, czy dany element jest
czy nie jest elementem A.

Zhior A jest rekurencyjnie przeliczalny, jezeli istnieje algorytm, ktéry wylicza wszyst-
kie jego elementy.

Z definicji bezposrednio wynika, ze jezeli podzbiér liczb naturalnych jest rekuren-
cyjny, to jest rekurencyjnie przeliczalny, ale nie odwrotnie, gdyz okazuje si?, ze za-
chodzi twierdzenie:
Twierdzenie 6.1
Istnieje rekurencyjnie przeliczalny zbior liczb naturalnych, ktéry nie jest rekuren-
cyjny.

Dowdd twierdzenia mozna znalezc na przyklad w ksi*zce [Arbib 1968],

6.2. Funkcje obliczalne i rekurencyjne

Pojqcie funkcji obliczalnych wi”ze siQ z funkcjami okreslonymi na zbiorze liczb natu-
ralnych i o wartosciach w zbiorze liczb naturalnych. Intuicyjnie, funkcje obliczalne to
takie funkcje, ktérych wartosci dla dowolnych argumentéw mozna obliczyc na kom-
puterze w skonczonej liczbie krokéw. Formalnie funkcja jest obliczalna, gdy istnieje
algorytm jej obliczenia, inaczej - istnieje dla niej odpowiednia maszyna Turinga. Pro-
by scharakteryzowania funkcji obliczalnych doprowadzily do wylonienia klasy funkcji
rekurencyjnych. Okazalo siQ, ze funkcje obliczalne sqg. funkcjami rekurencyjnymi. Do-
kladniej wyraza to powszechnie akceptowana hipoteza Churcha, ktdra stwierdza, ze:

Kazdafunkcja obliczalna w nieformalnym sensiejest rekurencyjna.

Definicja klasyfunkcji rekurencyjnych opiera siq na zbiorze pewnych funkcji elemen-
tamych i zbiorze operacji, ktére pozwalaj™ na konstruowanie z funkcji elementamych
nowych funkcji.

Zbidr funkcji elementamych zawiera:

« funkcjq nast*pnika zdefiniowan”™wzorem Succ(x) = x + 1,
« funkcja tozsamosciow” I(x) =X,

« funkcje rzutowaniap,(x\, ..., x,,) =x,,dlai=1 n,

« funkcja zeroargumentow” - stal™O.

Zbidr operacji na funkcjach sklada siQ z trzech operacji. Pierwsz” jest - omoOwiona
wczesniej - operacja skladania funkcji, dwie pozostale operacje - nazywane operacji
rekursji prostej i operacjiminimum - wymagaj” zdefiniowania.
Operacja rekursji prostej polega na tym, ze majgc dwie funkcje:

/: Natn]—»Nat oraz g :Natni —Nat dla neNat\{0}
now” funkcja

h :Nat" —»Nat
definiuje siQza pomocQ. dwdéch nastgpuj”*cych réwnosci:

h(xu ..., x, !, 0) =f(xi,..,x")

h{xi, ..., X,,_i, Succ(X,,)) =g(Xu ..., X,,, h(xu ..., *,.))

Termin rekursja prosta, wprowadzony przez Hilbertal3i BemaysaXdw 1934 roku, nie
jest szczQsliwy, gdyz schemat generacji wartosci funkcji bardziej si$ wiqze z iteracj”,
zjak™mamy do czynienia w jgzykach programowania, niz z rekursji Rekursja prosta
wyraza pewien indukcyjny sposdb definiowania wartosci.

BDavid Hilbert (1862-1943).
UPaul 1 Bemays (1888-1977).

Funkcje, ktore daje si$ zdefmiowac za pomocq. operacji skladania i rekursji prostej,
nazywa siQ funkcjami pierwotnie rekurencyjnymi.

Przyklad 6.2
A Funkcje dodawania liczb naturalnych, reprezentowan” symbolem + w notacji
przedrostkowej, definiuje siq za pomoc” operacji rekursji prostej w sposdb nastQ-
puRcy:
+(x, 0) = 1(x)
+(Succ(y), x) = Succ(pi(x, y, +(X,Y)))
W tym przypadku rolq definiowanej funkcji h pelni +, funkcja/ jest funkcje tozsa-
mosciow” |, a funkcja g jest ziozeniem funkcji nastgpnika Succ z funkcje rzu-
towaniap$. Tq samg. definicja, w spostb réwnowazny, mozna zapisac prosciej:
+(x, 0) =x
+(Succ(y), x) = Succ(+(x, y))

Po zastosowaniu notacji wrostkowej dla funkcji dwuargumentowych definicja
przyjmie jeszcze bardziej czyteln”postac:

x+0=x
Succ(y) +x = Succ(x +y)

Korzystajgc z funkcji dodawania, podobnie mozna zdefiniowac funkcja mnozenia:

x*0 =0
[Succiy) *x = (X *y) +x]
Przyklad 6.3

A Odejmowanie w zbiorze liczb naturalnych jest funkcja zdefiniowan” czgsciowo.
Defmiowana ponizej funkcja dif, okreslona dla wszystkich liczb naturalnych, jest
tylko pewnym odpowiednikiem odejmowania w zbiorze liczb calkowitych. Jej de-
fmicja wymaga wprowadzenia funkcji pomocniczej Pred, nazywanej funkcja po-
przednika. Rekursywna definicjajednoargumentowej funkcji poprzednika ma postao:

Pred(0) =0

Pred(Succ(x)) = x
Odejmowanie w dziedzinie liczb calkowitych nieujemnych, oznaczone difw celu
odrdznienia od symbolu odejmowania w zbiorze liczb calkowitych, jest zdefi-
niowane metod”.rekursji prostej:

difix, 0)=0

difix, Succiy)) = Predidifix, y))

Metod” rekursji prostej mozna definiowac rézne fimkcje, mi*dzy innymi funkcje okre-
slone wariantowo.

Przyklad 6.4
I Niech dana b$dzie funkcja n

f2x dla x<3
h"~[2x-2 dla x>3
Jej definicja wymaga uprzedniego zdefiniowania funkcji pomocniczych: jedno-

argumentowej fimkcji znaku sg, defmiowanej rekursji proste (przypadek zdegene-
rowany):

sg(0)=0
sg(Succ(x)) = 1

oraz funkcji pordwnan definiowanych przez wyrazenia funkcyjne:
gt(x,y) =sg(dif(x,y))
ge(x,y) =gt(Succ(x).y)

Definicja funkcji h przybierze zatem postac wyrazenia funkcyjnego
((2*x) *ge(3, x)) + (dif((2*x), 2) *gt(x, 3))

Niestety, za pomoc”. operacji rekursji prostej nie mozna definiowac dowolnych fun-
kcji. Przykladem funkcji, ktéra nie daje si$ zdefiniowac w ten sposdb, jest przed-
stawiana juz poprzednio, w rozdziale 3, funkcja Ackermanna®b
y+1 gdyx=0
Ack(x,y) <Ack(x-1] gdyy =0
[<4c&(x-1, Ack{x,y - 1))
W 1936 roku Kleenelbuzupelnil listq schematdw kompozycji funkcji o operacji mini-
mum, albo inaczej - operacjq //-rekursji.
Niech dana bqgdzie funkcja
f:Nat"+l->Nat
taka, ze dla kazdychxi,..., xn&Nat istniejeye/Va/ takie, zef(xu ..., xny) = 0.
Operacja minimum dla ftinkcji/ : NattH —»Nat polega na zdefiniowaniu nowej funkcji
h :Natn—»Nat

BWilhelm Ackermann (1896-1962).
16 Stephen Kleene (1909-1994).

ktora spelnia warunek
f(xu...%,h(x\,...x,)=0
oraz dodatkowo - aby zapewnic jednoznacznosc definicji funkcji h - warunek
h(x\,..., x,,) jest rowne najmniejszej wartoiciyeN at takiej, zef(xi , x,,Yy) =0.
Ostatni warunek zapisuje si$ tez w postaci
h(xi, x,,) =fly\M(xi , xny) =0]

Symbol fiy oznacza najmniejsz” wartodcy, dla ktorej, przy danych wartosciachxi,x,,
jest spelniony warunekf(x\, ..., x,,y) = 0.

Operacja minimum wyznacza wiqgc funkcje, ktora przyjmuje wartosc h(x\, x,,) =y
wtedy i tylko wtedy, gdy:

 dla dowolnegoy'<y f(pc\, ..., x,,,y'") * 0.

Jezeli dla danego zestawu wartosci x\, ..., x,, funkcja/ nie spelnia podanych warunkdw,
to funkcja h dla tych wartosci nie jest zdefiniowana.

Przyklad 6.5
A Operacjs minimum wykorzystano do definicji funkcji n
h\(x,y) = (uz)[isg(eq(y *z x)) = 0]

Funkcja h\ definiuje najmniejsz” wartodc z takq, zey *z = x. Gdy x nie jest wielo-
krotnoscifi y, funkcja ta nie jest okreslona.

hZAx,y) = (j12)\y *gt(x,y *Succ(z)) = 0]
Funkcja h2wyznacza czqgsc calkowit” z dzielenia x przez y.
h(x,y) = (jlz)[dif(x, z) =0]
Funkcja A3réwna si$ x dla dowolnych x, y; jest wiqc réwnowazna funkcji pro-

| jekcjij?). |

Funkcje, ktére mozna zdefmiowac za pomoc” operacji skladania, rekursji pierwotnej
i minimum nazywa siq tez funkcjami ogélnie rekurencyjnymi.

Uwaga
Chociaz funkcje rekurencyjne s” definiowane jako funkcje przeksztalcajgce liczby
naturalne w liczby naturalne, to ich wlasnosci mozna przeniesc na dowolne fun-
kcje, ktdrych zbiory argumentdw i wartosci dajEi siQ opisad skonczonymi ci*gami
symboli. Niech {ai, a2 ..., a,, ...} bgdzie zbiorem symboli wykorzystywanych do

tworzenia takich opiséw. Kazdemu opisowi argumentu lub wartoSci funkcji, ktéry
jest reprezentowany przez skonczony ciqg postaci

ail>aii>s a ik
mozna przyporz*dkowad w jednoznaczny sposdb liczb? naturaln”®. Uniwersalny

sposdb kodowania, zwany numeracj® Gddla, polega na przyporz£jdkowaniu temu
ci~gowi liczby

2"3'2
gdzie 2, 3, pk kolejnymi liczbami pierwszyrai. Dzi?ki jednoznacznosci roz-

kladu liczb naturalnych na czynniki pierwsze mozna sprawdzic, czy dana liczba
jest przyporzzglkowana jakiemus opisowi, a jeSli tak - to jakiemu.

Cwiczenia

1. Maszyn? Turinga, przedstawion”w przykladzie 6.1, rozbudowac w taki sposdb, aby
stwierdzala parzyst” beydz nieparzyst” liczb? symboli 1 pomi?dzy pierwsz” kratk”
po lewej i pierwsz” kratk”™ po prawej stronie pocz*tkowego polozenia glowicy, kt6-
re zawieraj” symbol nie.

2. Zdefiniowac maszyn? Turinga, ktora jako dan”™ wejsciow” przyjmuje liczb? natu-
raln™ w zapisie binamym i produkuje jako wynik t? sam” liczb? zwi?kszon” o je-
den, réwniez w zapisie binamym.

3. Zdeflniowad maszyn? Turinga, ktdrajako dane wejsciowe przyjmuje n-elementowy
ci*g znakéw, neNat\{0} oraz liczb? ke {1, ..., n} i produkuje jako wynik k-ty ele-
ment wejiciowego cifigu.

4. Wykorzystuj~c operaej? rekursji prostej, zdefiniowac funkcj?:

a) pot?gowania,
b) minimum i maksimum dwdch liczb,
c) dzielenia calkowitego i reszty z dzielenia calkowitego.

5. Zdefiniowadjako funkcj? rekurencyjn” funkcj?:
a) najmniejszej wspdlnej wielokrotnoSci dwdch liczb naturalnych,
b) najwi?kszego wspodlnego podzielnika dwdch liczb.

6. Zakladajgc, ze znane s” operaeje dodawania i mnozenia na liczbach naturalnych,
defmiowad rekursywnie operaeje dodawania i mnozenia na liczbach calkowitych.

7. J”zyki formalne i gramatyki

7.1. Ci~giislowa

Zbiory sq nieuporzqdkowanq kolekcjg® pewnych elementdéw. CzQsto potrzebne jest
wprowadzenie uporzqdkowania wsréd rozwazanej kolekcji obiektdw, a jednym ze
sposobdw uporzgdkowania jest zdefiniowanie ciqgu.

Niech A bgdzie dowolnym zbiorem. Niepustym ciggiem o dhigosci neNat\{0} nad
zbiorem A bqdzie sig nazywac dowolng calkowicie okreslongfunkcjQ o sygnaturze
j {4, ->A
Ciqg o dhigosci zero jest ciggiempustym i b$dzie oznaczany symbolem e.
Przez CiqgiSkonczone,,(A) bqdzie oznaczany zbi6r wszystkich ciggéw skonczonych
dhigosci neNat nad zbiorem ,4. Z definicji:
CiqggiSkonczoneo(A) =df {e}
CiqgiSkonczone,,(A) =<jef B s:{ 1 ,n) Aadom(s)={1,«}}
dla neAfaA{0}.
Zbiorem wszystkich ciqgéw skonczonych b*dzie zatem

CiqgiSkonczone(A) =df |~ CiqgiSkonczone,,(A)

neNat

Zbior wszystkich ciggéw nieskonczonych nad A jest zdefiniowany jako
CiggiNieskonczone(A) =df {s | s :Nat\{0} —A a dom(s) = iVaA{0}}

Zbiorem wszystkich ciqgdéw nad A jest zatem zbi6r
Ciqgi(A) =df CiggiSkonczone(A) u CiqgiNieskonczone(A)

Dalej b$dqg uzywane nastQpujqce oznaczenia: Niech s bgdzie niepustym ciggiem nad A.

Wartosc funkcji s dla argumentu i, czyli s(i), oznacza z-ty element ciggu. Skonczony
ciqg s o dhigosci neNat\{0} nad zbiorem A jest zbiorem par:

{<I,s()>,<n, s(n)>}
a nieskonczony ciqgjest zbiorem par:
{<Ls()>,...<n,s(n)>,.. }

Zwykle uzywa siQuproszczonego zapisu ci*gu, odpowiednio w postaci:

5(1) 5(2)... s(n) lub 5(1) 5(2) ... s(n) ...
albo
0102—(n lub flj02... On ...

gdzieo=s(i)dlai=1,...,n,.. dlaieNat\{0}.

Cifigi zapisywane w uproszczonej postaci bqd” oznaczane literami greckimi a, B, y
itd. B~dzie si? pisac na przyklad or=cfot02... a,, a przez len(ot) bqdzie si$ oznaczac
dlugosc ci*gu ac Oczywiscie len(d) = L

Réwnosd cliigbw oznacza réwnosc reprezentuj*cych je funkcji. Zapis a= 8 oznacza,
ze cig orjest identyczny z ci®giem B.

Przyklad 7.1
I Ciggaminad A = {0, 1, 2, 4, 5} b$d” napisy: I
0

001
12345

Ci~gami nad Nat bgd”. napisy:
n
11
111054

Nalezy zwrécic uwagQ na to, ze pierwszy i drugi ci®g s” ci“gami réznymi. Pierw-
szy sklada si$ z jednego, a drugi - z dwdch elementdw. Aby unikad wqtpliwosci
przy identyfikacji elementéw ciqgu, mozna stosowac elementy rozdzielajgce - se-
paratory, na przyklad odstqjy, jak wyzej, lub inne Symbole, rézne od elementéw
| ciqgu. |

Uproszczony zapis ci*gbw pozwala na stwierdzenie, ze zbidr ci*géw dlugosci
neNat\{0} nad zbiorem A mozna utozsamiac ze zbiorem wszystkich «-krotek nad
zbiorem A, czyli z n-krotnym produktem kartezjanskim A" nad zbiorem A. Oznacza to,
ze istnieje wzajemnie jednoznaczne odwzorowanie pomi~dzy zbiorem cigéw o dlu-
gosci n a produktem kartezjanskim A", zatem

zbiorowi CiqgiSkonczoneo(A) odpowiada zbior A° =cef {0 }
zbiorowi CiggiSkonczonenA) odpowiada zbiér A" dla oe A/aA{0}
zbiorowi CiqgiSkonczone(A) odpowiada zbiér \jA n

neNat

Cingi zapisywane w uproszczonej postaci nazywa sig siowami, a zbiér A nazywa siq
alfabetem. W dalszej czqgsci rozdzialu bgd*uzywane wtasnie te terminy.

Zhidp*4*jest zatem zbiorem wszystkich skonczonych slow nad alfabetem A. Zbidr wszyst-
kich niepustych skonczonych sléw nad alfabetem A bdzie oznaczany przez A+

A+~is(A \{f}

7.2. Operacje na stowach

Niech dany bqgdzie dowolny, co najwyzej przeliczalny, alfabet A oraz niech A b$dzie
zbiorem wszystkich skonczonych sléw nad A. Na slowach mozna definiowac rézne
operacje. Podstawow”jest operacja konkatenacji sléw.

Niech a, B eA* brd*dowolnymi slowami nad alfabetem.4.

Konkatenacja slow a, 8, co zapisuje siQ a A3, jest slowem, ktore powstaje przez dopi-
sanie na koncu slowa arslowa 3. Jezeli

a =ci\..a, oraz B =b\..bm
to
a AR =a\..a,Adi.. bn =dffli.. anb\... bm

Niech oc 8, yeA*. Konkatenacja sléw ma nastgpujgce oczywiste wlasnosci:

e Ae=¢
£ AXX= XAE=CC
(a*B)Ay=aA(B*y)

Ze wzgl™du na te wlasnosci nawiasy bgd” dalej opuszczane.
Slowo 3 e AHestpodslowem slowa ae A + gdy istniejX slowa y SeA™* takie, ze
a=y AR A5

Jezeliy AS* £to /Jjest podslowem wlasciwym slowa a, jezeli y- $ to jest podslo-
wem poczqtkowym slowa a, ajezeli 8= £, to /Jjest podslowem koncowym slowa a.

Konkatenacja jest podstaw”~do definiowania innych operacji na slowie:

» M-krotnej iteracji slowa,
« czola slowa,

* ogona slowa,

* inwersji slowa.

Niech 6r= &| ... an. Operacja w-krotnej iteracji slowa, dla neNat, jest zdefiniowana re-
kursywnie nastgpuj”co:

a ° =def £

a"H=defa"Aa dla neNat

Operacje czola head i ogona tail, okreslone nastQpujgco:
head(d) =defa\ oraz tail(d) =cef«2 —a,,

oznaczajXodpowiednio pierwszy element slowa a= a\ ... &, oraz nowe slowo, ktdre

powstaje z ccprzez usuniQcie jego pierwszego elementu. Oczywiscie, dla dowolnego
niepustego slowa zachodzi wlasnosc

a= head(a) Atail(d)
Operacja inwersji slowa a= ... g,, zapisywana wpostaci a \ okre&lonanastgmj”co:
(X def CInCIn-1... Q\

oznacza lustrzane odbicie tego slowa.

Przyklad 7.2
I Niech A= {a, b, c}, wowczas slowami nad A s"na przyklad: N
a aab cabca

Konkatenacj®. dwdch ostatnich slow jest slowo
aabAcabca =aabcabca

Iteracjami sléw s” na przyklad
a3= aaa
(aab)2=aabaab
(cabca)l= cabca

Operacje czola i ogona dla dwdch pierwszych slow wyznaczaj” slowa:
head(a) = a tail(a) = e
head(aab) =a tail(aab) = ab
Inwersjami slow s
ax=a
(aab)~l = baa

(cabca)~I = acbac |

Dla uproszczenia notacji, gdy nie bqdzie to wprowadzac niejednoznacznosci, zamiast
a AR Ay b”dzie si$ pisac a B .

Dalej definiuje siqjeszcze dwie operacje na slowach.

Najpierw wprowadza si$ pojgcie produkcji. Para slow 8, y&A* zapisywana w postaci
B:~y
b~dzie nazywanaprodukcji lub regulq przepisywania.

Produkcjg B ::= y mozna traktowac tak samo jak uporzqdkowan”parQ <RB, y>.

Symbol czytany: jest zastgpowany przez, pelni rol$ separatora oddzielaj*cego dwa
elementy. Slowo Bpo lewej stronie produkcji jest nazywane poprzednikiem, a slowo y
po prawej stronie produkcjijest nazywane nastgpnikiem produkcji.

Niech ae A* oraz niech 8 ::= y bqgdzie pewns). produkcji

Slowo <Jjest wyprowadzeniem ze slowa 6rna podstawie produkcji B ::=y co zapisuje
sig w postaci

a-™ter* =8

gdy s” spelnione warunki:

a= a\Boi
8=cd\ya2
Przyklad 7.3

AN Niech A = {a, b, c). Ze slowa aabcaa, stosuj*c produkcji aa ::= cba, mozna wy-
prowadzi6 slowa:

chabcaa oraz aabccba
czyli

i aabcaa—aa:=dn >cbabcaa oraz aabcaa—7a:=dn >aabccha <

Jak pokazuje przyklad, operacja wyprowadzenia nowego slowa 8 ze slowa a na
podstawie produkcji B ::= y nie musi byc jednoznaczna. Liczba mozliwych wypro-
wadzen zalezy od liczby wyst*pien podslowa B w slowie a. W szczeg6lnym przy-
padku, gdy poprzednik reguly nie jest podslowem w a, nie mozna wyprowadzic
nowego slowa.

Niech a ::= 8 bgdzie produkcji, w ktérej poprzednik jest tylko pojedynczym symbo-
lem aeA (slowem dlugosci jeden), a nastqpnik - jak poprzednio - jest dowolnym
slowem ReA* nad alfabetem A. Produkcja takiej postaci bgdzie nazywana podsta-
wieniem.

Niech ae A oraz niech a ::=[8 bqgdzie pewnym podstawieniem.
Slowo y powstaje ze slowa aprzezpodstawienie a ::= R, co zapisuje siq w postaci
afa =R\

gdy kazde wyst"pienie symbolu a w slowie arjest zastEipione slowem 3.

Przyklad 7.4
A Niech A = {a, b, ¢c). W wyniku operacji okreslonej przez podstawienie a ::=c.
slowo abcab zostanie przeksztalcone w slowo
cbabccbab
czyli
abcab[a ::= c6fl] = chabccbab
Podobnie:

a>oflcc[fl ::= cbc] = chebbebece
abbacc[b ::= coc] = acbccbcacc
| at6flcc[c ::= coc] = abbacbccbe

7.3. J”zyki formalne

Jgzykiemformalnym L nad alfabetem A nazywa siQ dowolny podzbior zbioru A*, czyli
LcA*.

jQzyk formalny jest tylko pewnym przyblizeniem j*zyka naturalnego lub sztucznego,
gdyz wyraza on tylko skladniowy aspekt j*zyka. W mysl wprowadzonej definicji alfabe-
tem dla jgzyka naturalnego jest zbioér slow w danym jgzyku, a odpowiadajXcy mu jgzyk
formalny moze byc zbiorem wszystkich zdan w tym jQzyku. W przypadku jgzyka pro-
gramowania alfabetem jest zbidr symboli leksykalnych, a odpowiadajgcy mu jqzyk for-
malny definiuje zbidr wszystkich poprawnie tekstowo zbudowanych programéw. Jgzyk
formalny nie okresla znaczenia i tym samym nie gwarantuje sensownosci zdania czy
programu, wyraza wylgcznie poprawnosc tekstow” (skladniowcQ zdania lub programu.

Przyklad 7.5
A Niech A = {a, b, ¢}, wdweczas j*zykami formalnymi nad A s” na przyklad skon-
czone zbiory slow:
{«}, {aab, c}, {a, b, c, ab, cha}
Wykorzystuj~c operacjq -iteracji slow, dla keNat\{0}, mozna zdefmiowac row-
niez pewne nieskonczone jqzyki formalne nad A, na przyklad:
{seA* |s =a*Ab'Acma k<l <m ak, I, meNat}
{a, b, c, ab, chba} u {seA* |s = akA bkH a JceNat} |

Niech A oraz B b$d” dwoma alfabetami. Funkcjs h : A* — B* nazywa si$ morfizmem
wtedy i tylko wtedy, gdy dla dowolnych a, e A*

h(aAR) =h(a)Ah(R)
Morfizm nazywa siq izomorRzmem, gdy h jest funkcj” réznowartosciow..

Przyklad 7.6
A Dia alfabetow A = {0, 1,2, 9 } orazB = {0, 1} izomorfizmem jest funkcja *

h(0) = 0000, A(l) = 0001......h{9) = 1001

I wyrazajgca kodowanie biname liczb dziesi*tnych,

Warto zwrdécid uwagQ, ze alfabet przeliczalny A nie ma wigkszej sily ekspresji niz
dowolny alfabet skonczony B. Oznacza to, ze dla dowolnego jgzyka formalnego
Lyt ¢ A* istnieje taki jQzyk LBg B* ze istnieje wzajemnie jednoznaczne odwzorowa-

nie pomiqdzy obujgzykami f: L A->LB

Istotnie, niech b$dzie dany przeliczalny alfabet A o symbolach a\, a2 a3, ... oraz alfa-
bet B zawierajXcy tylko dwa Symbole, na przyklad 0, 1 Istnieje wzajemne odwzoro-
wanie elementdw alfabetu A w pewien podzbior ci*géw zero-jedynkowych nad alfa-
betem B. Na przyklad ci*gi biname 1, 11, 111,... itd. mog” byd kodami indekséw ko-
lejnych symboli au a2 a3 ... Dowolne slowo nad alfabetem A mozna przestawiac jako
konkatenacji odpowiednich ci*géw kodujXcych nad alfabetem B. Na przyklad slowo
a3a2a2w alfabecie A bgdzie jednoznacznie reprezentowane przez slowo 111011011
w alfabecie B - symbol 0 pelni tu rolq separatora migizy kodami kolejnych symboli
alfabetu A. Oznacza to, ze dla dowolnego jgzyka formalnego LAnad A istnieje funkcja,
ktéra wzajemnie jednoznacznie odwzorowuje ten j$zyk w pewien jAzyk LB nad B.
Ci~gi biname mog” pelnic tq sam” rolg, jak”™ peinig Symbole alfabetu A, co wyjasnia
powszechnosc stosowania kodowania binamego.

Poniewaz jgzyki formalne s zbiorami, mozna wigc na nich wykonywac dowolne
operacje mnogosciowe. Jezeli L\, L2 s"jgzykami nad alfabetem A, to takze L\ u L2
L\ n L2oraz L\'L2s" jgzykami nad A.

Naj~zykach mozna zdefiniowac operacje konkatenacji, ktora jest uogdlnieniem kon-
katenacji zdefiniowanej na slowach. Konkatenacja jgzykéw L\ ¢ A ,L2czB , ozna-
czana L\ ALZ2 jest okreslona nastgpuj”co:

Lx AL2=cef {alR|ae A\ Bel'}
Korzystaj*c z konkatenacji jgzykéw, wprowadza siq operacjq iteracji jgzykow, okre-
slon~dla dowolnego jQzyka i liczby naturalnej n w sposdb nastgmj”cy:

L° =def {£}

Ln#=de{LnAL dlansNat

oraz operacje domkniqcia jgzyka (nazywan” takze gwiazdk” Kleenego) okreslon”
jako

L'=cder U Ln

neNat

Podobnie mozna uogélnic operacje czola, ogona i inwersji dlajQzykaL ¢ A\

HEAD(L) =c&f {aeA* \3BeA*» ocBRelL}
TAIL(L) =def {ReA* \3cceA*» alRel}
L~' =def {a\ 0T'eL}

7.4. Gramatyki bezkontekstowe

Nietrywialne j*zyki formalne skladaj” si$ z nieskonczenie wielu sléw. Nie mozna ich
definiowac enumeracyjnie, czyli przez jawne wyliczenie sléw. Nieskonczone jgzyki
formalne definiuje siQ rekursywnie, przy czym wykorzystuje siq specyficzny mecha-
nizm oparty na pojgciu gramatyki jgzyka formalnego.
Gramatyka bezkontekstowa G jest czwork”
G=ier<T,N,P,S>
gdzie:
T jest skoiiczonym zbiorem, nazywanym alfabetem symboli terminalnych,
N jest skonczonym zbiorem, nazywanym alfabetem symboli nieterminalnych,
P jest skonczonym zbioremprodukcji,
S jest wyr6znionym symbolem nieterminalnym, nazywanym symbolem poczgtko-
wym.
Zaklada si$, ze zbiory symboli terminalnych i nieterminalnych s” rozl*czne, to jest
NnT=0

O pojedynczej produkcjipe P zaklada siq, ze jest postaci
vi=a
gdzie jej poprzednik v moze by dowolnym symbolem nieterminalnym, czyli veN,

a jej nastgpnik a moze by dowolnym niepustym slowem nad sum” mnogosciow”
zbioréw symboli terminalnych i nieterminalnych, czyli ae (T\j N)+

Gramatyka G generuje pewien jgzyk formalny L(G) ¢ T*. Nieformalnie jest to zbi6r
wszystkich sléw nad alfabetem T, ktdre mozna wyprowadzic z symbolu poczqtkowe-
go gramatyki S, za pomocq.przeksztalcen, okreslonych przez zbiér P produkcji grama-
tyki.

Niech dane bgd”.dwa slowa a, Be (TuN) +

Slowo [jest w gramatyce G bezposrednio wyprowadzane ze slowa a, gdy istnieje
taka produkcjape P, ze

Fakt bezposredniego wyprowadzenia slowa 8 ze slowa a w gramatyce G zapisu-
je si?:

gdy z kontekstu wynika, o jak” gramatyki chodzi.

Slowo /?jest w gramatyce G wyprowadzone ze slowa a, gdy istnieje skonczony ci*g
slow B\, Bi, ..., Bne (T "j N)-+aki, ze

u=~R\ Rn=R

oraz
Ri—g->RM dla/e {1,2, 41}

Dalej Symbol gramatyki G bqgdzie pomijany.

Fakt, ze slowo B jest wyprowadzane ze slowa a, zapisuje siqw postaci
a—*">R

jQzykiem formalnym L(G) generowanym przez gramatyki G jest zbior
L{G)=M {aer \S——>a}

Slowo aelL{G) nazywa siq tez slowem wywodliwym w gramatyce G. Generowany przez
gramatyki G jgzyk Z,(G) jest zatem zbiorem wszystkich slow wywodliwych w G.

Ponizej rozpatrujemy przyklady gramatyk i wyprowadzenia sléw, przy czym zapis
produkcji jest oparty na powszechnie stosowanej tzw. notacji BNF (BackusZ/Normal
Form lub Backus-Naur Form). Notacja ta wprowadza bardziej zwarty zapis produkcji,
ktore maj" tQsam” lew” stronq. Zestaw produkcji, na przyklad:

V=«
v:=0n

zapisuje sig w postaci
vi=or,|..|cfe

gdzie, jak poprzednio, ve/Zoraz @, ..., a,,e (7 u N)+ Symbol | czyta siq lub.

17John Backus (ur. 1924).

Przyklad 7.7

A Zbior identyfikatorow tworzy pewien jgzyk formalny. Zbi6r ten poprzednio byl'
definiowany nastqpuj”co:

Ident =def {? | sjest niepustym ciggiem skladajgqcym siq z liter lub cyfr, ktore-
go pierwszym elementemjest litera}

Generuj”ca zbior identyfikatoréw ldent gramatyka Gm jest zdefiniowana nastg-
puj”co:
Gm =def <I'm, Um, Pm, Sic>
gdzie:
Tm=def{a,b,...2}u {0,1,9}
Um =df {identyfikator, znak, litera, cyfra}
P/d =def {identyfikator ::= litera \identyfikator znak
znak ::= litera\ cyfra
litera ::=a\b|.. |z
cyfra::=0|1]|..]|9}
S/d = identyfikator

PoszczegOlne produkcje w zbiorze sEi pisane w oddzielnych wierszach, bez od-
dzielania przecinkiem.

Rozpatruje sig dwa przyklady wyprowadzenia konkretnych identyfikatordw.
Pierwsze wyprowadzenie:

identyfikator—'driydkalor- llera >Utera
Utera-JSESL"a

z symbolu pocz”tkowego identyfikator wyprowadza jednoelementowe slowo a.

Drugie z tego samego symbolu pocz"tkowego wyprowadza slowo 68:
identyfikator—d'yl jtor- Uayfkiaomek >identyfikator znak
identyfikator znak — m identyfikator cyfra
identyfikator cyfra—ay)kator- hera Stitera cyfra
literacyfra— >6 cyfra
bcyfra ofra:= >68

Pokazano zatem dwa wyprowadzenia:
identyfikator — >a
identyfikator — >68

I Oznaczato, ze aeL(Gm) oraz 68eZ,((j/D.

Przyklad 7.8

AN Przyklad pokazuje zbi6r napiséw reprezentuj*cych liczby wymieme w zapisie!
dziesigtnym. Gramatyka Gdecjest zdefiniowana nastqpuj”co:

GdEC=def <TdEC NpEC, PDEC, SdEC>
gdzie:

TdEC=@f {0, 1,9} u {}

Ndec =def {liczba, liczba_calkowita, kropka, cyfra}

Pdec =def {liczba ::= liczba_calkowita |
liczba_calkowita kropka liczba calkowita
liczba calkowita ::= cyfra | liczba_calkowita cyfra
kropka ::=.
cyfra:=0]|1]..|9}

Sdec = liczba

Latwo sprawdzic, ze na przyklad stowa 10.9 oraz 213 wyprowadzalne
m w gramatyce GDEC natomiast slowo .01 nie jest wyprowadzalne w GDec- \

Stosowane jQzyki formalne, oprécz trywialnych przypadkdéw, zbiorami nieskon-
czonymi i dlatego nie ma algorytméw generuj*cych wszystkie slowa jgzyka. Prak-
tycznie rozwi”zuje siq dwa zadania.

Pierwsze jest zadaniem analizy - polega na zbadaniu, czy dane slowo jest elementem
danego j*zyka L{G). Z tym zadaniem spotyka siq podczas kompilacji programu. Celem
pracy kompilatora jest w pierwszej kolejnosci stwierdzenie, czy program jest poprawny
skladniowo.

Drugie jest zadaniem generacji - polega na wygenerowaniu pewnego podzbioru
slow jgzyka, na przyklad wszystkich slow o ustalonej dlugosci.

7.5. Klasyfikacja gramatyk

Rozpatrzona gramatyka bezkontekstowa jest szczegdlnym przypadkiem szerszej klasy
gramatyk, zwanych gramatykami Struktur frazowych. Gramatyka Struktur frazowych
jest tak” sam” czwork”jak gramatyka bezkontekstowa, czyli

G=<T,N,P, S>
a roznica dotyczy tylko ogolniejszej postaci produkcji. Niech V= T u N. Produkcja albo
regulaprzepisywaniapePjest tu dowoln”par”~slow ore V+oraz V* zapisywan”, jak
poprzednio, w postaci a ::= R. Generowanie j*zyka formalnego przez gramatykq Struktur
frazowychjest definiowane, podobnie jak poprzednio, dla gramatyki bezkontekstowej.

Zgodnie z klasyfikacja wprowadzon”. przez Chomsky’ego wyrdznia si$ cztery typy
gramatyk Struktur frazowych rézni”ce siq postaci” dopuszczalnych produkgji.

Gramatyki klasy 0, zwane gramatykami bez ograniczen, majX nastgmjeic” postac pro-
dukcji

a:~R &\aaeV* R&V'
Gramatyki klasy 1., zwane gramatykami kontekstowymi, wymagaj”, by produkcije byly
postaci

edlva2 a\R a2 dla of\, a2 V\ veN, ReV*
Gramatyki klasy 2., zwane gramatykami bezkontekstowymi, wymagajet, by produkcje
byly postaci

vi=R dla veN, Be V*
Gramatyki klasy 3., zwane gramatykami regularnymi, wymagaj”®, by produkcje byly
postaci (gramatyki prawostronnie regulame)

vii=Ru dla veN, ueNu {e},Re K+
albo postaci (gramatyki lewostronnie regulame)
Vii=uR dla veN, ueNu {e},Be V*

Latwo siq przekonac, ze kazda produkcja gramatyki i jest jednoczesnie produkcje
gramatykij, dla 0 <j <i < 3. Kazdy zatem j*zyk formalny wygenerowany przez pew-
n” gramatykq klasy i jest réwniez generowany przez pewn” gramatykq klasyj. Ozna-
czaj*c symbolami LO, L\, L2, L3zbiory j*zykéw formalnych generowanych przez gra-
matyKki poszczegoblnych klas, mozna stwierdzic, ze zachodz*inkluzje wlasciwe

I3cl2cliclo

co oznacza, ze wsrdd jgzykéw generowanych przez
gramatyki klasy j istnieje co najmniej jeden jrzyk,
ktory nie jest generowany przez gramatyki klasyj, dla
0<i<j(rys. 7.1).

Gramatyki klas 1., 2. i 3. £‘gramatykami nieskraca-
jgcymi, co oznacza, ze diugosc nowego slowa nie jest
mniejsza od dlugosci starego slowa, do ktérego zasto-
sowano produkcje gramatyki.

Nieskracalnosc gramatyki umozliwia efektywne badanie,

czy dane stowo jest wywodliwe w gramatyce. Oznacza Rys-71eHierarchia Chomsky’ego
to, ze mozna zbudowac algorytm, ktory dla dowolnego J'zyk6w formalnych

slowa, po skonczonej liczbie krokdéw, rozstrzyga, czy to

slowo jest wyprowadzalne w danej gramatyce.

Schemat takiego algorytmu jest oczywisty. Niech a bqdzie badanym slowem. Naj-
pierw generuje siq zbidr Z\ wszystkich slow bezposrednio wyprowadzalnych z symbolu
poczqgtkowego gramatyki, ktorych diugosc nie przekracza dlugosci badanego slowa a.
Nastgpnie genemje si$ zbior Z2wszystkich slow, ktore s™ bezposrednio wyprowadzal-
ne ze slow zbioru Z\, ktérych diugosc nie przekracza dlugosci badanego slowa (X Da-

lej generuje siQ zbidr slow Z3 ktory jest bezposrednio wyprowadzalny ze zbioru Z2,
itd. Kazdy z wygenerowanych zbiorow jest oczywiscie skonczony. PostQpowanie takie
prowadzi sig do momentu, gdy w zbiorze generowanych sléw napotka siQ na slowo a
albo gdy dlugosc wszystkich stow nalez”cych do ostatniego zbioru bqgdzie przekraczac
dhigosc slowa a. Pierwszy przypadek oznacza, ze a nalezy do jgzyka generowanego
przez dan™. gramatykq, a drugi, ze ornie nalezy do tego j*zyka.

7.6. Drzewa rozbioru i diagramy skladniowe

Dysponuj”c pojQciem grafu, mozna zdefiniowac drzewo wywodu - graf ilustrujXcy
wyprowadzenia slowa w gramatyce, zwlaszcza w gramatyce bezkontekstowe;.

Drzewem wywodu dla gramatyki G =def <T, N, P, S> jest graf-drzewo T = <V, A>,
gdzie A ¢ V2 ktorego wierzcholki V sg etykietowane symbolami ze zbioru Tu N
w taki sposob, ze:
* korzen drzewa jest etykietowany symbolem pocz”tkowym S,
* kazdy lisc drzewajest etykietowany symbolem terminalnym ze zbioru T,
* jezeli wqzet v ma etykietQ e i wQzly vi, v2) Vv, s"jego nast*pnikami, to znaczy
<V, Vi>, v, V2>.....<v, v,> eA, o etykietach et, e2 ..., en, to e ::= €\ e2... enmusi
byc produkcj”® gramatyki.

Przyklad 7.9

I Dia przedstawionej wczesniej gramatyki GDEC-def<Tpec,N DEc,Pdaec,speEc> drzel
wo wywodu dla slowa 10.9 ma postacjak na rysunku 7.1.

liczba

n Rys. 7.2. Drzewo wywodu slowa 10.9

Jezeli dla pewnego slowa istniejct dwa rézne drzewa wywodu, to gramatykQ nazywa
sig skladniowo wieloznaczng. Gramatyka GDEc jest skladniowo jednoznaczna, nato-
miast nie jest ni®ponizej zdefiniowana gramatyka Gw.

Przyklad 7.10
I Niech I

Gw = def < Tw>Nw, PW, Sw>

gdzie:
Tw= {wyrazenie, skladnik, czynnik)
Nw= {a, b, c, =1, ()}
Pw~ {wyrazenie ::= skladnik \skladnik + wyrazenie | skladnik - wyrazenie
skladnik ::= czynnik \czynnik * czynnik \ czynnik \ czynnik
czynnik ::=a \b | c | (wyrazenie)}
Sw —wyrazenie

W celu przekonania siq o niejednoznacznosci gramatyki Gwwystarczy rozpatrzyc
I mozliwe wywody, na przyklad slowaa+b-c. |

Pojgcie drzewa rozbioru stanowi mi~dzy innymi podstaw” do okreslenia réwnowaz-
nosci gramatyk.

Dwie gramatyki Gi oraz G2 St slabo réwnowazne, jezeli generuj” te same jQzyki, to
znaczy L{G\) - L{G2), oraz s”silnie rownowazne, jezeli generuj*te same zbiory drzew
rozbiorow.

Niech T\ =<Vh A\>, T2= <V2 A2>bqgd”~drzewami rozbioru oraz niech h : Vt—=\2

Funkcja h zachowuje relacjq wtedy i tylko wtedy, gdy dla dowolnych v, v'e Vu jezeli
<V, v’>gA*, to <h(v), h(v)>e A2, gdzie A*i A"s” zwrotnymi, przechodnimi dom-
kni~ciami relacji A\ i A2

Jezeli funkcja h zachowuje relacji A\ oraz dodatkowo jest bijekcj” to jest nazywana
izomorfizmem drzewa T\ w drzewo T2

Grafy s"takze wykorzystywane do prezentacji produkcji gramatyki w postaci diagramow
skladniowych. Wierzcholki tego grafu s” etykietowane symbolami ze zbioru TuN. Kaz-
dej produkcji odpowiada pojedynczy graf z etykietowanymi wierzcholkami, ktory ma
dokladnie jeden wierzcholek niemaj*cy poprzednikow, zwany poczqtkowym, i do-
kladnie jeden wierzcholek niemaj~cy nastgpnikéw, zwany koncowym. WierzcholKki te
nie s” etykietowane. Kazdej sciezce, ktéra w grafie prowadzi od wierzcholka pocz/t-
kowego do wierzcholka koncowego, odpowiada pewien ci®g etykiet wierzcholkow ze
zbioru T kj N. Ci”g etykiet stanowi ci®g symboli, ktére mozna wygenerowac na pod-
stawie danej produkcji.

Przyklad 7.11

A Produkcjom wczesniej zdefmiowanej gramatyki Gw odpowiadajX nastgpujqce!
diagramy skladniowe pokazane na rysunku 7.2.

skladnik -
wyratenie

czyrmik
skladnik

czyrmik

czyrmik

Rys. 7.3. Diagramy skladniowe gramatyki GwW

Pierwszy z diagramOw, opisujcy produkcjQ wyrazenie, jest grafem zawierajgcym
cykl. Powodem pojawienia si? cyklu jest to, ze symbol wyrazenie wystQpuje za-
rowno po lewej, jak i po prawej stronie produkcji, przy czym po prawej stronie
wystgpuje na koncu ci“gu symboli.

WystQpowanie takiego samego symbolu po lewej i po prawej stronie produkcji,
a tym samym istnienie cyklu na diagramie skladniowym, mozna interpretowac
jako rekursywn” definicjq zbioru sléow wyprowadzanych na podstawie danej pro-
I dukgcji. I

7.7. Automaty i gramatyki

Gramatyki s mechanizmem generowania jgzykow formalnych. Z gramatykami scisle
si$ wi”ze pojQcie automatow skonczonych jako mechanizmu sluz*cego do rozpozna-
wania, czy dane slowa nalez*do danego jgzyka formalnego. Przedstawiona dalej defi-
nicja automatu skonczonego prezentuje tylko pewnEi klasq automatow skonczonych,

shiz~cych do rozpoznawania sléw nalez*cych do j*zykow klas L3 oraz L2 Seito auto-
maty Rabina-Scotta (RS) oraz automaty ze stosein.

Automat skonczony jest modelem urz*dzenia, ktérego zadaniem jest rozpoznawanie,
czy slowa podawane na jego wejscie s” stowami danego j*zyka formalnego. Automat
dziala krokowo; kolejne kroki s” zwi”~zane z analizq. kolejnej litery slowa podawanego
najego wejScie. Automat w kazdym kroku swego dzialaniajest w okreslonym stanie.
Dzialanie rozpoczyna w ustalonym stanie pocz"tkowym, a konczy, gdy zostanie prze-
czytane cale badane stowo. Podczas kolejnych krokéw automat przechodzi pomi~dzy
stanami, co nastQpuje na skutek odczytania na wejsciu kolejnej litery analizowanego
slowa. Po zakonczenie dzialania, to znaczy po odczytaniu ostatniej litery analizowa-
nego slowa, automat znajdzie si$ w pewnym stanie. Jezeli jest to jeden z jego standw
koncowych, oznacza to, ze slowo nalezy do jgzyka formalnego akceptowanego (roz-
poznawanego) przez automat.

Formalnie skonczony automat a/cceptujqcy RS jest okreslony jako pigtka
A=<S X,S,s0F>

gdzie:
S jest skonczonym zbiorem stanéw,
X jest alfabetem - zbiorem symboli wejSciowych,
S: Sx X -» S jest funkcj™ zmiany standw,
So jest stanem pocz”tkowym,
fc S jestzbiorem standéw koncowych.

Dzialanie automatu przy analizie slowa wejsciowego xi, X2, x ,, , dla n >0, polega na
wykonywaniu ci*gu krokdw, ktdre okreslaj” ci*g standw:
S0, 4> we>3n
taki, ze
s - O(sh XK dlak=.....n
Slowo *i, X2, ..., ,,jest akceptowane przez automat, gdy skeF, i nie jest akceptowane

w przypadku przeciwnym. Zbior wszystkich akceptowanych sléw, oznaczany L(RS),
stanowi jQzyk formalny akceptowany przez automat RS.

Przyklad 7.12

I Automat RS postaci <S, X, S, sO, F>, gdzie: 1
i *» *8}
X= {a, b}
F= {<}

£, a) = s2 6(s0, b) =s{
S(s\, a) =53 S(sub)=so0

S(s2 &) = Jo, S(s2, b) = J3
S(si,a)=]j], £(i3 6)=]j2

mozna przedstawic graficznie w postaci pokazanej na rysunku 7.4.

Mozna tez latwo sprawdzic, ze jgzykiem formalnym akceptowanym przez automat
jestL ¢ {a, b¥*taki, ze

L = {ar| /en(or|,,)jest parzysta oraz /en(er|/Ajest parzysta},

gdzie: lenket) oznacza dhigosc ci®gu a, a a|fl oraz oznaczaj” podei”gi ci*gu er
I zlozone wyi~cznie z symboli a oraz 2

Pomiqdzy skonezonymi automatami RS a gramatykami zachodz”nastqpuj”~ce zwi"zki:

* Dia kazdego jQzyka formalnego klasy L3 istnieje skonezony automat RS akeeptu-
jcy ten j$zyk, to znaczy kazde skonezone obliczenie automatu konczy siQ osi”-
gni“*ciem stanu koncowego.

» Kazdy jgzyk akeeptowany przez skonezony automat RSjest jqzykiem klasy Ly
jQzyki klasy Z3nazywa si$jgqzykami regularnymi.

Rozpoznawanie j*zykdw klasy L2, czyli j*zykéw bezkontekstowych, moze byc réw-
niez realizowane przez automaty, z tym ze s™to bardziej zlozone automaty, nazywane
automatami ze stosem (rys. 7.5).

Stos jest pewnego rodzaju pami”~ci® w ktorej przechowuje siq ci“gi symboli z danego
repertuaru symboli. Na stosie mozna wykonywac dwie zasadnicze operaeje: dopisy-
wania symbolu do stosu lub odezytywania i zdjQcia elementu ze stosu. Jezeli zawarto-
scias. stosu jest ci“*g symboli g\ g2 ... gk, to dopisanie symbolu g’ polega na dolgczeniu
go na pocz™tku eictgu, czyli zmieni jego zawartosc na q'q\ g2 ... gk, zdj~cie natomiast

elementu ze stosu polega na usuniciu elementu na pocz*tku ci*gu, czyli zmieni jego
zawartosc naqi... gc

Rys. 7.5. Automat ze stosem

Automat ze stosem ASjest definiowany jako siddemka
AS=<§, X, Q, 8,0 qo, F>

gdzie:

S jest skonczonym zbiorem standéw,

X jest alfabetem - zbiorem symboli wejsciowych,

Q jest skonczonym zbiorem symboli skladowanych na stosie,

J:Sx(Ju{f})xO " pfi,(Sx Q)
jest funkcj™ zmiany stanu i zawartosci stosu (p fin{Z) oznacza rodzing wszyst-
kich skonczonych podzbioréw zbioru Z),

So jest stanem pocztkowym,

g0 jest symbolem pocztkowym znajduj*cym si$ na stosie,

F ¢S jest zbiorem stanéw koncowych.

Jezeli zbior S(s, X, q) dla kazdego seS, x&X, qe Q zawiera co najwyzej jeden element,
to automat AS jest automatem deterministycznym, w przypadku przeciwnym - jest
automatem niedeterministycznym.

Dziatanie automatu AS przebiega krokowo, a w kazdym kroku nastgpuje zmiana kon-
figuracji automatu. Konfiguracjami automatu s”trojki:

<j, O, coeSxX* x Q*

gdzie:
s jest aktualnym stanem urz”dzenia steruj*co-czytaj™cego,
lo jest czQsci™ analizowanego stowa, nieprzeczytang. jeszcze przez glowicq czyta-
jeLcy pierwszy symbol ci*gu 6)znajduje si$ pod glowic” czytaj~c”; jezeli sym-

bolem tym jest £ (slowo puste) oznacza to, ze cale slowo zostalo juz przeczy-
tane,
a jest aktualni zawarto§cii stosu.
Krok dzialania automatu AS polega na przejsciu z konfiguracji do konfiguracji w wy-
niku przeczytania pojedynczego symbolu analizowanego slowa. Przejscie takie bqdzie

opisywane relacji---—-- > | zapisywane w postaci

<s, Xxm, ga>--—-—- ><s', (0,800

jezeli zbidr 6(s, x, q) zawiera parQ <s\ >, gdzie s, s'eS, xe X u {£}, coeX*, qeQ
oraz a, Be Q*

Jezeli x * e, to automat AS jest w stanie s, x jest symbolem znajdujicym si$ pod
glowici czytajici, q jest symbolem b$dicym siq na szczycie stosu. Automat prze-
chodzi do nowego stanu s', przesuwa glowicq czytajici o jedni pozycjs w prawo
i zamienia Symbol na szczycie stosu cigqgiem 8 zlozonym z elementdw zbioru sym-
boli Q. Jezeli B = e, to usuwa si$ element ze szczytu stosu, skracajgc tym samym
jego zawartosd.

Jezeli x = e, to oznacza, ze cale slowo zostalo przeczytane. W kroku tym, nazywanym
e-krokiem, automat AS nie przesuwa glowicy czytajicej, jednak stan automatu i za-
wartosc stosu mogi si$ zmieniac.

Poczitkowi konfiguracji automatu AS jest <s0, (Q q0>, co oznacza, ze automat znajdu-
je siQw stanie poczitkowym sCeS, pod glowicy czytajici znajduje siq pierwszy Sym-
bol analizowanego slowa coeX*, a zawartoscii stosu jest tylko jeden poczitkowy
Symbol g Q. Konfiguracji koncowijest konfiguracja postaci <s, ¢, e>, gdzie seF.

Slowo jest akceptowane przez automat AS, jezeli
<s0, O, g6>——><s, e, e>,
gdzie ——=>jest zwrotnym i przechodnim domkniqgciem relacji------ >

Zbior wszystkich akceptowanych slow, oznaczany L(AS), stanowi j*zyk formalny
akceptowany przez automat AS.

Przyklad 7.13
Automat AS postaci <S, X, Q, 6, s0 g0, F>, gdzie: ~

S= {0, $1, "2}
*= {0, 1}

6 = {qo, 0}
f = {~0}

8(sa 0, g0 = {<J!, 0qgo>}

Rozpoznawanie j*zykéw klas L\ oraz LOjest jeszcze bardziej zlozone. Pomijaj™c
szczegoly, ograniczymy siqg tu do stwierdzenia, ze do rozpoznawania j*zyka dowol-
nej klasy, a wigc réwniez klasy L0, mozna zbudowac odpowiednict maszynq Tu-

S(sh 0,0) = {<5,,00>}
S(si\,0) = {<s2 £>}
S(s2 1,0) = {<52 e>}
0(s2 e, q0 = {<so, £>}

Zilustrujmy dzialanie automatu podczas analizy konkretnego slowa 0011:

<50,0011,90> ------ »<si, 011, 0qo>
—————— *<?i, 11,00"0>
—————— ><52 1, 0"o>
—————— ><52 £, q6>
—————— ><50 £, £>

Ogolnie, mozna pokazac, ze:
<50,0,90> - ><s\,£, Ogd>
<5,, 0, Ogo> — <s,, £, 0'H9%>
<5, 1,0 "* "N —mv »<*2, fy
<52, 1', 0'go>—~—><52, £, qd>
<$2 £, qo>--—-- ><N0, 5

Na tej podstawie mozna pokazad, ze dla n > 1zachodzi

<50,0"1", go> 2w)<50 £ >
oraz

<sQ, £, tfo>— »<o, £ qo>

co oznacza, ze zbior akceptowanych slow zawiera siq w jgzyku L = {O"!" | n > 0}.
Pomijamy tu pokazanie faktu, ze automat akceptuje slowa tylko z tego jgzyka.

ringa.

Uwaga

Bardziej szczeg6lowe informacje o j*zykach formalnych, gramatykach i automa-
tach skonczonych mozna znalezd na przyklad w ksi*zce [Hopcroft, Ullman 2003].

Pojgcie automatu skonczonego jest czgsto uzywane w réznych obszarach informa-
tyki, zwlaszcza w projektowaniu ukladéw cyfrowych z pamiqci® (w odroznieniu
od ukladow cyfrowych bez pamiqci - bramek logicznych, zob. rozdz. 9.). Najczgs-

ciej spotykanymi tarn pojQciami skonczone automaty Moore’a i automaty
Mealy’ego. Oba automaty modelami ,,czamej skrzynki” z jednym wejsciem
i jednym wyjsciem (rys. 7.6). Na podstawie ciqgu symboli czytanych na wejsciu
automat podaje na swoje wyjscie inny ciqg symboli; ciqg wyjsciowy jest wynikiem
przetworzenia ciqgu wejscidwego. Poniewaz automaty te mozna stosowac zamien-
nie, ponizej podaje siQtylko defmicjg automatu Moore’a AM:

AM=<X,Y,S, S, X 50>

gdzie:
X jest skonczonym zbiorem symboli wejSciowych,
Y jest skonczonym zbiorem symboli wejsciowych,
S jest skonczonym zbiorem stanéw,
S : X xS —S jest funkcjg.przejsc,
A:S Y jest funkcj*wyjSc,
sO jest stanem poczqtkowym.

Rys. 7.6. Schemat automatu Moore’a

Automat AM przetwarza cizigi X2, ..., X, ... Symboli alfabetu wejsciowego X
w ciqgiyi,y2 —y«. —symboli alfabetu Y. Przetworzenie to jest okreslone nastqpu-

jgco: Niech
SP51j S2, - m”¥w
b~dzie ci*giem standw takim, ze
%i =&t N D»2,..,n,.

wowczasy k= A(Sjt).

Cwiczenia

1 Niech vl =df {+, =}. Ktore z ponizszych zdan s"prawdziwe?

a) Mozna utworzyc co najwyzej skonczon” liczbQ j*zykow formalnych nad alfabe-
tem <

b) Mozna utworzyc dokladnie 4 slowa nad alfabetem A.

c) Zbior {++, +++, =, += }jest pewnym j*zykiem formalnym nad A.

d) Nad alfabetem A mozna utworzyc dokladnie 24j*zykéw formalnych.

e) Zbior wszystkich slow nad alfabetem A definiuje pewien nowy alfabet A'.

2. Niech A =def {0, 1}, B =df {0, 1,2......n} oraz C = Nat. Ktore pary sposrod zbiorow
A\ B*, C* zbiorami réwnolicznymi?

3. Czy zbior liczb naturalnych Nat jest rownoliczny ze zbiorem Nat* - zbiorem
wszystkich skoriczonych ci*géw nad Nat?

4. Czy zbior wszystkich jQzykéw formalnych nad przeliczalnym alfabetem A jest prze-
liczalny?

5. Niech L b*dzie jQzykiem formalnym nad alfabetem {0,1}. Dwa slowa u, v e {0,1}*
s rownowazne wzglgdem jgzyka L, co oznacza si$ u ~Lv, jezeli

Vxg {0,1 }* (wWaxelL <>v Axel)
Pokazac, ze ~i jest relacj™ rownowaznosci.

6. Przedstawic klasy abstrakcji relacji réwnowaznosci slow ~1 wzgl*dem nastgjuj”-
cych jQzykdw:

a) Z ={1"] 1<«<6>
b) L2={0" 1"| ne Nat}
c) Z3=(0011)

7. Pokazad, ze jesli dla pewnych slow uel oraz vg {0, 1}* zachodzi uAve [w~I, gdzie
-i jest relacji rownowaznosci slow wzglgdem jQzyka L, to uAv"eL dla dowolnego
ne Nat.

8. Danajest gramatyka G = <T, N, P, S>, gdzie:

T=dr {A B, C}

N=df {a, b, c}

P=df {a ::=A \aA\bC
b ::=BcC
c::=abC\ABc\AbC}

10.

11.

12.

13.

14.

15.

16.

Czy slowa AAAA, ABCA nalez” do j?zyka generowanego przez G| Podac zbidr
wszystkich slow dlugosci 1, 2 i 3 nalezqcych do j?zyka generowanego przez G.
Scharakteryzowad zbitér wszystkich slow generowanych przez gramatyk? G. Czy
mozna zdefiniowad ,,prostsz™” gramatyk?, ktdra generuje taki sam j?zyk formal-
nyjak gramatyka G|l

Przedstawic drzewa rozbioru skladniowego dla wszystkich slow dlugosci 4 gene-
rowanych przez gramatyk? z zadania 8.

Czyjednoznaczne gramatyki:

a) gramatyka z zadania 8.,
b) G=<{a, +, *}, {5}, {S::=S+S\S*S\a},S>.

Zdefiniowad gramatyk? generuj*c”j?zyk L = {arb'rcm\' m, n > 1}. Zbadad, czy
gramatyka jest jednoznaczna.

Zdefiniowad gramatyk? generuj~c” nast*puj”ce zbiory:

a) zbidr wszystkich palindromdw (slow, ktére mozna odczytywad zaréwno
w przdd, jak i wspak) nad alfabetem {a, b),

b) zbidr wszystkich slow nad alfabetem {a, b} zawierajgqcych dokladnie dwa ra-
zy wiQcej symboli a niz symboli b,

¢) L= {a'bkk\i*j lubj*k).

Dana jest gramatyka G = <{a, b), {S}, {S ::=aS\aShS \e), S>. Udowodnic, ze
L(G) = (x | kazdy przedrostek x ma co najmniej tyle symboli a, co symboli b)

Dia znanego j?zyka programowania, na przyklad Pascal, C, C++, zdefiniowad
gramatyk? okreslaj*c” wybrany podzbidr wyrazen arytmetycznych z tego j?zyka.

Przedstawic w postaci diagramdw skladniowych produkcje gramatyk zdefiniowa-
nych w zadaniach 5., 7. i 8.

Symbol nieterminalny AeN gramatyki jest zb?dny, gdy jest nieaktywny lub nie-
osi*galny. Symbol *eT/jest nieaktywny, gdyj?zyk generowany przez gramatyk?
Ga=<T, N, P, A >jest pusty. .de Ajest nieosi*galny, gdy nie wyst?puje w zadnym
slowie wyprowadzanym w gramatyce G. Wskazac zb?dne Symbole nieterminalne
w gramatyce G =<T, N, P, S>, gdzie:

T=af {d, B, C}

~=def {a, b, c, d)

P =df {a::= A\aA\bC\ AcA
b ::=BcC \cAc
c ::=abC\ABc \AbC
d::=aA\ dbC)

17. Gramatyk? G = <T, N, P, S>, gdzie:

T=aef {4, B}
N=df {a, b, c}
P=df{c:=a|6
av.-Ab \Bc\B
b:=a6|M |ac 15}
S=c¢

przeksztalcic do slabo réwnowaznej gramatyki bezkontekstowej, niezawieraj”cej
zbqgdnych symboli.

18. Zdefiniowac automat z pami”~‘ci” stosow”, rozpoznajgcy slowajgzyka

L={aax|ae {a b}+

8. Algebry abstrakcyjne

8.1. Algebry jednorodzajowe

Jednorodzajow” algebry abstrakcyjng, albo krétko - algebry nazywa siQpar$
ALG =def<A, {ci,..,cm}u {f\, ...,fn}> dlameNat, neNat\{0}
w ktorej:
A jest dowolnym zbiorem, zwanym nosnikiem algebry,
G sSiStatymi algebry, to znaczy C/eA, dlai= 1,..., m,
fj . operacjami albo dzialaniami algebry, to znaczy &-argumentowymi fvmkcjami
0 sygnaturze

fi.Ak->A
gdzie: keNat\{0},j=1,..., n.
Stal”. algebry ¢- mozna takze rozumiec jako funkcjq zeroargumentow”, to znaczy jako
funkcjQ o sygnaturze
Cj:—A.
Uwaga
Algebry bqd” tez definiowane jako pary:
ALG ~def<A, cy, ..., cm,f\,
lub
ALG =def <A, F>
gdzie drugim elementem pary jest zbidr stanowicy sumQ mnogosciow” zbioru

stalych i operacji. Wynika to z faktu, ze stale mozna traktowac jako funkcje ze-
roargumentowe.

Przyklad 8.1
I Przykladem prostej algebry jest zbior liczb naturalnych Nat z operacji dodawania |
ALGno =def<Nat, {0, 3 u { +_}>
gdzie:
0, 1: —Nat

s™operacjami zeroargumentowymi, a
+:Nat2—»Nat

I jest dodawaniem. |

Nalezy przypomniec, ze podkreslenia obok symbolu funkcji wskazuj® polozenie ar-
gumentow.

Przyklad 8.2

| Bardziej zlozona jest algebra okre&lona na zbiorze liczb calkowitych Calkowite]
z operacjami dodawania, odejmowania i mnozenia

ALGcalkowite =def <Calkowite, {0, 1} U { } >
gdzie: 0 oraz 1s”stalymi, czyli maj~sygnatury:
0, 1: —Calkowite
a symbolami operacji dwuargumentowych o sygnaturach:

* : Calkowite2 — Calkowite

Nalezy zauwazyc, ze odejmowanie moze byc réwniez traktowane jako zmiana
znaku liczby. W tym przypadku symbol bylby symbolem przeciqzonym, a odpo-
wiadajca mu sygnatura mialaby postac

: Calkowite — Calkowite
Algebra z tak dol*czon” operacji mialaby natomiast postac

[ALGocaikanite det ™ Calkowite, {O, l} O ¢-_» - }A |

W dalszych przykladach dla symboli funkcyjnych dwuargumentowych b~dzie stoso-
wana notacja wrostkowa, a podkreslenia w napisach okreslaj*cych sygnaturQ bqd%
pomijane.

Przyklad 8.3
Algebra slow nad pewnym alfabetem A jest zdefiniowana

ALGa*-qer<A , {£}u {}>

gdzie:
A*jest nosnikiem algebry,
e :—>A jest slowem pustym, czyli stal” algebry,
, A:A XA —»A jest konkatenacj”®, czyli dwuargumentowym dzialaniem.

Przyklad 8.4

W programowaniu przez typ danych rozumie siq pewien zbiér wartosci i zestaw*
zwi”zanych z nim operacji. Powszechnie uzywany typ logiczny jest okreslony
przez zbibr

Boolean =df {false, true}

oraz przez zestaw operacji 0 nastgpuj”cych sygnaturach:
not:Boolean —»Boolean
and, or : Boolean2—Boolean

gdzie: not, and oraz or operacjami negacji, koniunkcji i dysjunkcji. DefinicjQ
tych funkcji przedstawia tablica:

a b not@ aandb aorb
false false true false false
false true true false true
true false false false true
true true false true true

Zdefiniowane funkcje warto poréwnaé z definicj” spéjnikéw logicznych okreslo-
nych w podrozdziale 1.2. Rdznica mi$dzy tymi definicjami sprowadza si$ do
réznicy symboli.

Algebra, ktora jest modelem typu logicznego, ma zatem postac
ALGBoolean =&et<Boolean, [not, and, or}>
Zhior stalych jest tutaj pusty.

Przyklad 8.5

W jgzykach programowania odpowiednikiem wczesniej przedstawianej algebry 1
okreSlonej na zbiorze liczb calkowitych Caikowite, jest algebra okreslona na
zbiorze Integer z odpowiednikami operacji dodawania, odejmowania i mno-
zenia:

ALGinegr =def< Integer, {0, I} u {©,0,«}>
gdzie:

Integer =d&f {-N, ..., N} jest tylko skonczonym podzbiorem zbioru Caikowite,
zaklada sigprzy tym, zeNeNat\{0,1},

0 oraz 1 S3.stalymi o sygnaturach:

0, 1: —»Integer
a ©,0,® s”- odpowiednio - symbolami dodawania, odejmowania i mnoze-
nia o sygnaturach:

©,0,®: Integerl—»Integer

Istotna réznica mi*dzy algebry ALGi, U a ALGcaikone wyplywa z definicji operacji
w algebrze ALGInegr. Ze wzglgdu mianowicie na ograniczonosc zbioru Integer ope-
racje dodawania, odejmowania i mnozenia nie ftuikcjami calkowicie okreslonymi.
Aby odrdznic je od operacji okreslonych w zbiorze liczb Calkowite, one zapisy-
wane inaczej. Definicje operacji algebry ALGinegerprzedstawiaj” si$ nastQpuj”co:

\a +b gdy\a +b\ <N
[nleokreslona w przypadku przeciwnym

a@b =df

{[dyla-b\ <N
" oef nleokreslona w przypadku przeciwnym

A®D= I[ﬁie(l))krés%\n% wb;\)rfy%adku przeciwnym
Symbole wystgpuj*ce po prawej stronie definicji, czyli funkcje dodawania,
odejmowania, mnozenia i wartosci bezwzglqdnej, okreslone na zbiorze liczb
calkowitych i nalez” do j*zyka arytmetyki. Bez znajomosci tych funkcji nie moz-
I na zrozumiec definicji nowych operaciji. |

CzQSciowa okreslonosc operacji algebry ALGi,, eger ma interpretacjq praktyczn®. Brak
okreslonosci operacji oznacza mozliwosc powstania nadmiaru podczas wykonywania
programu. Powstanie nadmiaru podczas obliczenia programu prowadzi do wygenero-
wania wyjqgtku lub do zerwania obliczen z sygnalizacjblgdu.

Algebry, ktére maj” operacje okreslone czgsciowo, mog”byc uci*zliwe w zastosowa-
niach, dlatego - zwlaszcza w programowaniu - dokonuje siQ pewnej modyfikacji ta-
kich algebr tak, aby uzyskac calkowit” okreslonosc ich operacji. Sposéb tej modyfika-
cji wyjasnia przyklad algebry ALGjnegr.

Definiowan”™w przykladzie algebry ALGi,,leg"jiiniiniar) mozna traktowac jako algebraicz-
ny model calkowitoliczbowego typu danych wystQpuj”*cego w jgzykach programowania.

Przyklad 8.6
1 Niech dana bgdzie algebra
ALG Inlegeri{indmiar] =cef <Integer u {nadmiar}, {0, 1} u {©,0,0}>

Nosnikiem algebry jest zbior Integer z dol*czonym elementem nadmiar. Opera-
cjami algebry s” operacje dodawania, odejmowania i mnozenia, oznaczane - jak

poprzednio - symbolami: ©,©,®. Operacje te maj*inne sygnatury:
©,0,® : {Integer KI {nadmiar})2—Integer u {nadmiar}
Wszystkie operacje arytmetyczne maj*wspéln*wtasnosc:

Jezeli wartosci” ktéregokolwiek argumentu operacji jest nadmiar, to wynikiem
operacji jest réwniez nadmiar, na przyklad nadmiar ©1 = nadmiar.

W pozostalych przypadkach, gdy oba argumenty operacji s"r6zne od nadmiar, de-
finicje operacji nast“puj”ce:

a®b= [a+b gdyla+fd ~N
def [nadmiar w przypadku przeciwnym

aQb= Ckef I[%gdpnié?f' \)/lv\grgy%\adkhl przeciwnym

a®b= la*b S<iy\a*b\ <N .
def [nadmiar W przypadku przeciwnym

Uwaga
Symbol nadmiar w powyzszym przykladzie jest odpowiednikiem symbolu _L,
wprowadzonego w podrozdziale 3.7 na oznaczenie nieokreslonosci funkcji. Sym-
bol nadmiar odnosi siQ rowniez do sytuacji, gdy funkcja jest nieokreSlona, a ponad-
to wskazuje na przyczyng nieokreslonosci.

8.2. Algebry wielorodzajowe

Uogdlnieniem algebr jednorodzajowych s algebry wielorodzajowe [Ehrig, Mahr
1985]. Uogédlnienie polega na zastgpieniu pojedynczego nosnika skonczon” rodzinct
nosnikdéw. Algebra wielorodzajowa jest zdefiniowanajako uklad

ALG=df <{*n mmA}, {c\ cmu {/i f}> dlameNatorazk, neNaA{0}
gdzie:

Ah ..., Aks*dowolnymi zbiorami, nazywanymi nosnikami algebry,

c, Jeststalqalgebry, to znaczy c,e Ajj, dlai=1,..., m,jte {1,..., k),

fj jest operacjq algebry, dlaj = 1, ..., n, to znaczy jest ~-argumentow” funkcja,

kjeNat\{0}, o sygnaturze:

gdzie:
i\, —ijkie {4,..., k} s"indeksami nosnikéw, ktore s*argumentami operaciji,

j k jest indeksem nosnika, ktory jest wynikiem operaciji.

Uwaga
Algebra wielorodzajowa bqdzie tez oznaczana krocej

ALG =0 <A, F>

gdzie: A jest zbiorem nosnikéw, a F jest zbiorem operacji, w tym operacji zeroar-
gumentowych, czyli stalych.

Przyklad 8.7

I Rozpatruje sig dwurodzajow” algebrQ okreslon”™ na liczbach calkowitych, ktora!
- opr6cz operacji arytmetycznych: dodawania, odejmowania, mnozenia, dziele-
nia caikowitoliczbowego - obejmuje réwniez operacje poréwnywania liczb: row-
ny, nie mniejszy. Argumentami zaréwno dzialan arytmetycznych, jak i operato-
row poréwnania liczby, wynikami dzialan takze liczby, wynikami zas
poréwnan sel wartosci logiczne. Tym samym wprowadzenie operacji pordwnan
wprowadza niejawnie dodatkowy nosnik zawierajgcy wartosci logiczne. Moze
nim byc na przyklad zbi6r

Boolean =df {false, true}
Algebrg mozna przedstawic jako algebr? dwurodzajow”

ALGcalkov.ite ~ef
<{Caikowite, Boolean}, {0,1} u + -, %= >

gdzie:
0, 1 stalymi liczbowymi, zerem ijedynkq,
Calkowite — Calkowite jest jednoargumentow” operacji zmiany znaku
liczby,
+, Calkowite2 — Calkowite ~ dwuargumentowymi operacjami doda-

wania, odejmowania, mnozenia i dzielenia,
=, > : Calkowite2 — Boolean dwuargumentowymi operacjami pordéwnan

rowny i nie mniejszy. |

Algebry wielorodzajowe mog”~byc modelem zlozonych typéw danych.

Algebra ALGcaikowite moze byc potraktowana jako pewna charakterystyka caikowito-
liczbowego typu danych spotykanego w j*zykach programowania. Charakterystyka ta
nie uwzgl*dnia ograniczonosci zbioru wartosci typu. Peln” charakterystykei. typu jest
algebra przedstawiona w przykladzie 8.8.

Przyklad 8.8
I Typ calkowitoliczbowy na zbiorze |
Integer =cef {-N, ..., 0, ..., N)

ma okreslone operacje arytmetyczne: zmiany znaku dodawania ©, odejmo-
wania ©, mnozenia 0, dzielenia calkowitoliczbowego 0, oraz ma operacje po-
rownywania liczb: réwny =, nie mniejszy >, ktorych wartosciami elementy
zbioru

Boolean =def {false, true)

Pelny model typu calkowitoliczbowego mozna przedstawic jako algebry dwuro-
dzajow”

ALG Inlegenj{, admiar] =de{<{Integer u {nadmiar}, Boolean), {0,1} u

©1 ©1 0101=!>}>
Stale i operacje algebry maj~sygnatury:
0, 1:—=lInteger
- :Integer —»Integer
©, ©, ® : {Integer yj{nadmiar})1—»Integer u {nadmiar}
0 :{Integeru {nadmiar})2—Integeryj {nadmiar}
=, > : Integer2 —»Boolean

Oprocz operacji dzielenia, pozostale operacje definiuje siq podobnie, jak w przy-
kladzie 8.6. Definicja operacji dzielenia przedstawia si$ nastqpujgco:
[alb gdy ae Integer, be Integer\ {0} oraz|a/6|<N
a 0 b=.gf nadmiar gdy ae Integer, be Integer\ {0} oraz\a/b\>N
nadmiar gdy b=0Iuba=nadmiar lubb = nadmiar

Operacje poréwnan obci*ciem funkcji poréwnan = oraz >, okreslonych na
zbiorze liczb calkowitych Calkowite, do zbioru Integer. |

8.3. Termy

Z kazd” algebryjest zwi~zany pewien zbidr napisdw, ktore powstaj” ze zlozenia sym-
boli stalych, zmiennych i dzialan algebry. Zbi6r ten nazywa siQ zbiorem termow. Po-
nizej przedstawia siq definicja termow, najpierw dla algebr jednorodzajowych, a na-
st*pnie dla wielorodzajowych [Ehrig, Mahr 1985]. Niech

ALG —df A, {Cj, ..y Cm} U {f\, ...,fn}>

bgdzie pewn” algebry jednorodzajow” oraz niech V bqdzie zbiorem zmiennych, to
znaczy symboli, ktérym mozna przyporzqdkowywac pewne wartosci z dziedziny A.

Symbolem TermAc{V) oznacza si$ zbior termow algebry ALG nad zbiorem zmien-
nych V. Zbior ten jest zdefiniowany rekursywnie w sposéb nastqpuj”cy:

» Fc= TermALG(V) oraz {ci, = cm} c=TermALG(V), to znaczy, ze zmienne i stale
termami,

o jezeli t\, ..., tkB TermALa (F), czyli napisy t\, ..., r* "\ termami orazfj jest dzia-
laniem &-argumentowym, to ., t,)e TermALG(V), czyli napis postaci
fj(ti , /,)jest termem.

Uwaga
Jezeli t\, t2e TermALG(F) orazfj jest dzialaniem dwuargumentowym zapisywa-
nym w konwencji wrostkowej, to za term bqdzie przyjmowany napis (t\fj t2) e
TermALG(V).

Termy s” stowami nad pewnym alfabetem wyznaczonym przez dan” algebrq.
W sklad takiego alfabetu wchodz” symbole stalych, zmiennych, dzialan oraz nawia-
sOw i przecinka. Jak wynika z definicji, termy s”napisami zlozonymi w tym sensie, ze
term moze si” sktadad z czqgsci skladowych, ktore réwniez s” termami. Termy, ktére s
cziciami skladowymi innych termdw, nazywa siq podtermami. Dokladniej: term t\
jestpodtermem termu t2 gdy t\ jest podstowem slowa t2.

Zbior term6w nad pustym zbiorem zmiennych, czyli TermALG(0), nazywa siq zbiorem
termow stalych.

Termy s napisami, ktére wyrazaj® pewne znaczenie - reprezentuj® one wartosci ze
zbioru A. Inaczej: s” one tekstow”. reprezentacjjt pewnych wartosci, nalez*cych do
nosnika A. Termy stale TermALG(0) wyrazajEL bezposrednio pewne wartosci. Termy,
w ktorych wystQpuj® zmienne TermALG(V), réwniez reprezentuj® pewne wartosci, ale
wartosci te zalez” od wartosciowania zmiennych, czyli od wartoSci, jakie s” przypo-
rz£|dkowane zmiennym V. Wartosciowanie zmiennych jest wyrazane przez funkcj® v
0 sygnaturze

V: V—A

Wartosd funkcji v(v) dla zmiennej v wyznacza pewien element ze zbioru A, ktory
zmienna ta reprezentuje.

W dalszym ciqgu b”dzie siQ pisac Term(0) i Term(V), gdy z kontekstu wiadomo,
0 jak” algebrQ chodzi.

Przyklad 8.9
1 Do zbioru termdw stalych Term(0), generowanych przez algebrq |
ALGnat =def<Nat, {0, 1} u {+}>

gdzie + jest - jak poprzednio - dodawaniem w zbiorze liczb naturalnych, zapi-
sywanym w notacji wrostkowej, nalez*na przyklad napisy:

0,1,0+0),0+1H,(1+0),1+1, O0O+0O+0), 0+ 0O+ 1)

Przy zapisie w notacji przedrostkowej te same napisy przyjm” postac:
0, 1+0 0),+0 D, +0,+1 D, +©0 +O, 0y, +0,+0,)

Niektore termy, na przykiad 1, (0 + 1), (1 + 0), ((0 + 0) + 1), reprezentuj*t$ sam”
wartosc - liczbq naturaln™ 1. Zbi6r termdw reprezentuj™cych t$ sam” wartosc jest
oczywiscie nieskoriczony.

Niech V= {a, b, c}. Do zbioru terméw Term(V) generowanych przez algebry
ALGNg bgd”na przykiad nalezec:
a,bc(@a+0),(0+b),(@a+c),(c+b), [a+((b+0), 1+ (b+ 1)
Jezeli zalozyc funkcjq wartosciowania
v= {<a, 1>, <b, 0>, <c, 1>}
to wyzej wymienione termy bgd” kolejno reprezentowac wartosci:
I 1,0,1,10,2,10,2 I

Zbior termow dla algebry wielorodzajowej
ALG=&e{ <{AU...,AK}, {ci,....cmtu {ft, dla meNat oraz k,neNat\{0}

jest bardziej zlozony. Wynika to z podziahi term6w na rodzaje. Rodzaj termu wskazu-
je najedn£tz dziedzin”i, ...,Akalgebry ALG, ktbrej wartosci term reprezentuje.

Niech V, bgdzie zbiorem zmiennych rodzaju A,. Zbiorem wszystkich zmiennych jest

V=Wu ..u W Zmienna ve V,jest rodzaju A, (i = 1, k), co b~dzie zapisywane
v: Aj. Zmiennej ve V, mozna przyporz"dkowywac wartosci tylko ze zbioru A,.

Stale takze maj” swdj rodzaj. Dla ce {c\, cm} zapis ¢ : A, oznacza, ze stala c jest
rodzaju Ah czylijest elementem zbioruA,(i= 1 , k).

Dalej, zamiast pisac rodzaj Ahbqdzie siQpisac krotko rodzaj /.
Zbidr termdw rodzaju i (i = 1, k) dla algebry wielorodzajowej ALG nad zbiorem
zmiennych V, oznaczany Term,{V), jest zdefiniowany rekursywnie w spostb nastQ-
pujrey:

* jezeli Cj:Ahto Cje Term, (V)

V,c Term, (V)
* jezeli napisy tu tk s“termami rodzajow iu oraz f} :Aj X..XAXk->4.
jest dzialaniem £-argumentowym, to napis postaci tn) jest termem rodza-

ju i, czylifj(tu t,)e Term,(V).

Zbidr wszystkich termdw dla algebry wielorodzajowej ALG nad zbiorem zmiennych
V, oznaczany Term(V), jest okreslony jako mnogosciowa suma
k
Term(y)=(jTerm”V).

Uwaga

W programowaniu przyporz*dkowanie rodzajow stalym, zmiennym oraz wyraze-
niom nazywa sigq typowaniem lub typizacjq. Typizacja przejawia sig w sposobie
deklarowania stalych i zmiennych, w rozréznianiu na przyklad wyrazen arytme-
tycznych i logicznych, w sprawdzaniu poprawnego uzycia zmiennych w wyraze-
niach itd.

Przyklad 8.10
I W zdefiniowanej wczesniej algebrze A
ALGimegeru fadmiar} CBF
< {Integer u {nadmiar}, Boolean}, {0, }u {-, ©, 0, 0,0,= >}>

wyrdznia siQ dwa rodzaje terméw: Integer u {nadmiar} oraz Boolean. Zaklada
si$, ze:

Integer = {-10, -1, 0, 10}
Niech pOnadtO Vinteger\jjnadmiary def{"j OF8Z I"Bookean CEFO.
Termami rodzaju Integer u {nadmiar} na przyklad:
0,1a,b,{a®©b), (a© (a0 b)).

Termy te reprezentuj” pewne wartosci ze zbioru Integer u {nadmiar}, przy czym za-
lez” one od wartosciowania v zbioru zmiennych. Niech v= {<a, 3>, <b, 4>}.

Term 0 reprezentuje woéwczas wartosc 0, term a - wartosc 3, term b - wartosc 4,
aterm (a © b) - wartosc 7. Wartosci® termu (a © (a 0 b)) jest natomiast nad-
miar, gdyz wartosci®jego podtermu (a®b) jest nadmiar, poniewaz a*b > 10.

Termami rodzaju Boolean seina przyklad:
(a©b)=(10 a)), (-a ©b)>(b 0 &)

| Wartosciami obu termow, przy wartosciowaniu v, jestfalse.

Wartosci termoéw przy danym wartosciowaniu v w algebrze
ALG =def <{Au ...,Ak}, {cu ..,cmtu {4, .../,}> dla meNat oraz k, nsNat\{0}

mozna zdefiniowac ogdlnie.

Przez WARv(f) oznacza siq wartosc termu t przy wartosciowaniu v. WARVjest funkcjX
0 sygnaturze

WARV: Term{V) —A

gdzie:
k
Term(V) = (J Termt(V),
i=
a= (Ja,
i=1
Funkcj? obliczania wartosci terméw WARVmozna zdefiniowac rekursywnie w sposéb
nastgpujgcy:
* jezeli termjest postaci v, gdzie vjest zmienn” czyli ve V, to WARWY) = v(v),

« jezeli termjest postaci c, gdzie cjest stalg, czylice { ¢ i, cm}, to WARUc) =¢,

* jezeli term jest postacif(t\,..., tk), gdzie/jest /r-argumentowym dzialaniem, czyli
/e {fi, tu ..., tkstermami, czyli tu tkeTerm(V), to

WARV(F{t\, h)) =F(WARWL\),.... WARWK).

Niech TermALQ0) b”dzie zbiorem termow stalych pewnej algebry ALG. Wartosc ter-
mu stalego t nie zalezy od wartosciowania v. Dia dowolnych dwéch wartosciowan v
oraz v' zachodzi zatem

WARWt) = WARS(t)

Niech WAR(t) oznacza wartos6 termu stalego t. Definiuje si§ relacj? binam” = na zbio-
rze termow stalych:

jezeli t\, he TermALF0), to t\ ~ t2wtedy i tylko wtedy, gdy WAR(tt) = WAR(t2).

Relacja = jest oczywiscie relacj® rownowaznosci i wyznacza podzial zbioru terméw
stalych na klasy abstrakcji. Do jednej klasy abstrakcji nalez® wszystkie termy tego
samego rodzaju, ktbre reprezentuj” tq sam” wartosd. Oznacza to, ze relacjg = mozna
bytoby okreslic jako rodzing relacji binamych zdefiniowanych na podzbiorze terméw
stalych ustalonego rodzaju, czyli = =def {«!, ..., =%}, gdzie =, dlai =1, ..., k jest zdefi-
niowane:

jezeli t\, t2e Term,{0), to t\ ~ t2wtedy i tylko wtedy, gdy WAR(tj) = WAR(t2).

Przyklad 8.11

I Dia algebry ALGi,,,egrvinadmiar), zdefiniowanej we wczesniejszym przyktadzie, re-)
lacja R wyznacza podzial termow stalych rodzaju Integer u {nadmiar} na klasy
abstrakcji, z ktérych kazda reprezentuje termy przyjmuj”ce wartosci - 10, ..., - 1,
0, ..., 10 oraz nadmiar. Kazda z klas zawiera nieskonczenie wiele termoéw. Na
przyklad do jednej klasy termdéw o wartosci O nalez*miqdzy innymi:

0 (0 © 1) ® 0) (1 ®2) ©3)©1)

Do klasy termdw o wartoSci nadmiar nalez*miqdzy innymi:
i (1 ® nadmiar) ((0 9 nadmiar) ® 1) (((L 0 0)9 0) 6 0) i

Niech TermAUAV) b?dzie zbiorem termdw algebry ALG na zbiorem zmiennych V. Na
zbiorze tym mozna réwniez zdefiniowac relacj? réwnowaznosci, ktora jest uogdlnie-
niem relacji réwnowaznosci =, zdefiniowanej na zbiorze termow stalych. B?dzie ona
oznaczona tym samym symbolem =i b?dzie zdefiniowana jako rodzina relacji

~ =cef {~i, — “*}.
gdzie ~jdlai=1, fcjest zdefiniowane:

jezeli tu t2e Term”V), to t\ t2wtedy i tylko wtedy, gdy WAR,,(t,) = f'VARW(t29) dla
kazdego wartosciowania v.

Jezeli dwa termy nalez” do jednej klasy abstrakcji wyznaczonej przez relacji =, to dla
dowolnie wybranego wartosciowania reprezentuj®one t? samctwartosc.

Przyklad 8.12
I Dla poprzednio rozwazanej algebry |

ALGCalkowile def ~ {Ccil/cOWite, BOOleCIT}, {0, 13U { 't , A j—

i zbioru termdw nad zbiorem zmiennych VGilkoniie =cef {«> b) oraz Vi0ieg,,= ~ 0,
relacja ~y wyznacza podzial terméw rodzaju Integenj{nadmiar} na klasy abs-
trakcji, z ktorych kazda reprezentuje termy przyjmuj”ce te wartosci dla dowolnie
ustalonego wartosciowania. Na przyklad do tej samej klasy terméw nalez” mi?-
dzy innymi:

1 ((a-a)+l) (U1~ A- 0)+*)
Do innej klasy nalez” mi?dzy innymi termy:
, a i(a-b) +h) (((a*1)-b) +b) !

8.4. Algebry Boole’a

Wsrdd algebr, ktére w informatyce maj”® szerokie zastosowania, szczeg6In” rol? od-
grywaj” algebry Boole a. Stanowi” one pewn” klas? algebr zdefiniowana przez okre-
slenie pewnych wlasnosci wyrazanych w postaci rownosci. Taki sposdb definiowania
algebr nazywa si? deBniowaniem réwnosciowym.

Algebrg Boole 'a okresla si? kazd” algebr? o strukturze

BOOL=m <A {0, 1}u {-, +, *}>

gdzie:
A jest dowolnym zbiorem, nosnikiem algebry,
0, 1 S3stalymi, nazywanymi zerem ijednosciq boolowskq,
jest dziaianiem jednoargumentowym, nazywanyra dopelnieniem boolowskim,
-h, * s"dzialaniami dwuargumentowymi, nazywanymi umownie dodawaniem i mno-
zeniem boolowskim (nie nalezy tych dzialan utozsamiac z dzialaniami arytme-
tycznymi ani mnogosciowymi),
ktora ponadto, dla dowolnych a, b, ¢ e A, spebiia nastQpujgce wlasnosci:

1 (a+b)=(b+a) {a*b) =(b* a)
2.(a+b)+c)y=(a+(b+c)) ((@a*b)*c)=(a* (b*c))

3. ((@a+b)*c)=((a* c) +(b*) ((@*b)+c)- ((a+c) *(b+c))
4. (a+0)=a @*1)=a

5 (a+(-a)) =1 (a*(-a)) =0

Wlasnosci te wyrazaj™:
1.przemiennosc dodawania i mnozenia,
2. lgcznosc dodawania i mnozenia,
3. rozdzielnosc mnozenia wzgl~dem dodawania oraz dodawania wzgl*dem mnozenia,
4. neutralnosc zera wzglgdem dodawania oraz jedynki wzglQdem mnozenia,
5. neutralnosc elementu odwrotnego wzgl*dem dodawania oraz wzgl*dem mnozenia.

Wilasnosci s” wyrazane poprzez réwnosci. Réwnosc jest napisem postaci t\ = t2 gdzie
skladowe t\ i t2s"termami ze zbioru TermBoodV) nad dowolnym zbiorem zmiennych V.
Réwnosc t\ = t2jest spelniona, gdy dla dowolnego wartosciowania v oba termy repre-
zentujcttQ sam” wartosc, czyli WARV(t{) = WARV(t2).

Od algebry Boole’a wymaga si$, aby byly spelnione wszystkie wyzej wymienione
réwnosci.

Przyklad 8.13
I Latwo sprawdzic, ze wczesniej zdefiniowana algebra
ALGRooiean =def <Boolean, {not, and, or}>

I ma wszystkie wymagane wlasnosci, a zatem jest algebry Boole’a. |

Przyklad 8.14

I Niech U bgdzie dowolnym zbiorem, a 2Urodzin™ wszystkich jego podzbioréwJ
Podobnie mozna sprawdzic, ze algebry Boole’ajest struktura

BOOLu=def<2U {0, U)u {\,u, n}>

w ktorej: 2Ujest nosnikiem algebry, 0 oraz U $* zerem i jednosciq, a dzialania
mnogosciowe \, u, n s odpowiednio dopelnieniem, sum” i iloczynem algebry.

Ogdlniej, zamiast pelnej rodziny podzbioréw 2Uwystarczy przyj*c dowoln” jej
podrodzing, zamkniQt* ze wzgl*du na dzialania dopelnienia, sumy i iloczynu.
Zamkniqta jest na przyklad rodzina zlozona ze zbioru pustego i zbioru pelnego,
czyli {0, U), to znaczy wynikiem kazdej z operacji wykonanej na elementach tej
I rodziny jest element nalezqcy do tej rodziny. i

8.5. Homomorfizm algebr

Defmiowanie algebry abstrakcyjnej wygodnie jest rozpoczynac od opisania jej struk-
tury. Najprostsz”®jej charakterystyk”jest sygnatura.

Sygnaturg algebry nazywa siQ parq
Sig =def <S, OP>

gdzie: 5 jest niepustym zbiorem identyfikatoréw (nazw) nosnikéw (rodzajow), OPjest
zbiorem deklaracji operacji. Deklaracja operacji b$dzie zapisywana w postaci

op :S|s2..sn-*s

gdzie: op jest identyfikatorem (nazwrQ operacji, s\ s2... s,,jest listg, ktorej elementy jj,
s2, ... s,,eS s™ identyfikatorami rodzajow argumentdw, a seSjest identyfikatorem (na-
zw”) rodzaju wartosci operacji. Deklaracja operacji o nazwie op wskazuje na nazwy
zbiordw jej argumentdw i nazwq zbioru jej wartoSci. Jezeli op jest operacji zeroargu-
mentowq, czyli stalq, to jej deklaracja ma postad

op s
Zaklada siq, ze kazda deklaracja operacji ma rézng. nazwQ operacji, dlatego dalej, za-
miast pisac (op :Sis2...s,,—»s)e OP, bgdzie siq pisad krétko ope OP.
Uwaga
Zapis postaci
op :$is2..sn—s
niejest tym samym co zapis
op :s\Xs2x ... xs,,—>S

Przyklad 8tI5
* Przyklady dwdch sygnatur Sigj =def <Sh OPj>dla /= 1, 2, gdzie:

§ =def {A} OP\ =gef {& 1 —>A, d :AA —>A}
| S2=def{A B} OP2=def (¢ : —»A, d :AA —>A, r :AA —»B)

Sygnatura jest tylko pewn” charakteryzacj” algebry, a nie okresleniem algebry. Moze
byo wiele algebr maj*cych t? sam” sygnaturg.

Algebrq nad sygnatur<i Sig, krétko Sig-algebrg, nazywa siq parq
ALG =def*A F>
gdzie:
A =def {As | se S}jest rodzing. zbioréw zwanych nosnikami lub dziedzinami algebry,
F =&[{fop | ope OP} jest rodzing. funkcji zwanych operacjami algebry, przy czym
kazdej deklaracji operacji ope OP:
op :s\S2..sn-*s
odpowiada funkcja

fop:As x...xAS ->AS

Dwie algebry o tej samej sygnaturze nazywa siq algebramipodobnymi.

Przyldad 8.16

Przykladami dwdch algebr podobnych o sygnaturze Sigi z poprzedniego przykla-
du s

ALGX=def <Nat, {1, +}>

gdzie noSnikiem algebry ALG\ jest zbidr liczb naturalnych Nat, stala 1jest liczb”
naturalng.jeden, zas operacja + jest dodawaniem w zbiorze liczb naturalnych.

ALG2 =cef <Nat, {1,*}>

NoSnikiem algebry ALG2jest zbidr liczb naturalnych Nat, stala 1jest liczbg. natu-
ralngjeden, zas operacja *jest mnozeniem w zbiorze liczb naturalnych.

Przykladami dwdch podobnych algebr dwurodzajowych o sygnaturze Sig2s™:
ALGi =def<{Nat, Logiczne}, {1, +, =} >

Nosnikami algebry ALGj sq. zbi6r liczb naturalnych Nat oraz zbiér wartoSci lo-
gicznych Logiczne =def {prawda, falsz), 1 oraz + sq.- jak poprzednio - stal*je-
den i dodawaniem w zbiorze liczb naturalnych, natomiast operacja = jest réwno-
sci®™w zbiorze liczb naturalnych.

ALGaA(X) =def <{2X Logiczne), {0, u, =}>
Algebra ALG4(X) jest algebry parametryzowang. zbiorem X. Jej nosnikami s% ro-
dzina podzbioréw pewnego zbioru X oraz zbior Logiczne, a operacjami s stala

0 , ktdra jest zbiorem pustym, operacja u, ktdra jest sumg. mnogosciow”, oraz =,
I ktorajest rownoSciq, zbiordw. |

Niech b<jdcidane dwie algebry: ALG]=def<A, F> oraz ALG2= def<B, G> 0 sygnaturze
Sig =<S, OP>. Oznacza to, ze

A =def{As | se S} oraz B =def {Bs\se 5} nosnikami algebr, a
F=def {fqp| ope OP} oraz G =def {ggp\ope OP} seirodzinami operacji tych algebr.

Homomorfizmem z algebry ALG\ w algebr? ALG2 nazywa si? tak” rodzin? funkcji H
H —ef {hs As—Bs|j e S}
ze dla kazdej funkcji fp:4 x..,xAs*—As, dla ope OP, zachodzi warunek

K@i, ... an))=g@p<A («i)......(«,))

dla dowolnych aye ASj,j= 1,..., n. Fakt, ze //jest homorfizmem zapisuje si?
H :ALG\ -» ALG2

Przyklad 8.17
A Dane s*dwie algebry jednorodzajowe:

ALG\= <Nat, {1, +}>

ZILG2= <Nat,, {1 /}>
gdzie: Nat,, = {0, 1, n- 1}, a/ oznacza dodawanie modulo «.
Homomorfizmem jest funkcja h : Afaf —JVar,, zdefiniowana wzorem

| h(m) = reszta z dzielenia m przez n, dla meNat.

Jezeli kazda z funkcji hs homomorfizmu H= {hs : As —Bs \seS} jest funkcja wza-
jemnie jednoznaczn”, to H nazywa si? izomorfizmem.

8.6. Algebra ilorazowa terméw

Dana algebra wielorodzajowa ALG = <A, F> o sygnaturze Sig = <S, OP>,
gdzie:

A ={AS]| se 5} jest rodzin” no8nikdw algebry ALG,

F -{fp| ope OP} jest zbiorem operacji algebry ALG,
generuje zbidr terméw nad ustalonym zbiorem zmiennych V

Term(V) =\jTerms(V)

seS

Zbior ten moze byc podstaw” do utworzenia nowej algebry wielorodzajowej, zwanej al-
gebrq termdw [Ehrig, Mahr 1985], [Rasiowa 1998], ktorajest podobna do algebry ALG.

Algebry termoéw
ALGNm ~def&A, F>
dla algebry ALG definiuje siQ nastgpujqco:

A = {Terms(V) \se S} jest rodzin™ nosnikdw algebry terméw,

F = {fp| ope OP} jest zbiorem operacji algebry termow, przy czym operacja~@
ma sygnatur”:

L Parerm3(V)x.. xTerm,A (V) Term,(V)

gdy deklaracja operacji ma postad: op : S| s2 ..., sn—>s i jest zdefmiowana nastqpuj”co:
jezeli tj e Term, dlaj =1...n, to fqut,,..., t,,)=dffauth ..., t,).

Kazdemu nosnikowi A, i kazdej operacji fgp w algebrze ALG odpowiadaj”® nosnik
Terms(V) i operacjaf qow algebrze terméw ALG Tam

Niech = b~dzie wczesniej okreslon” rodzin” relacji binamych ~s na zbiorze terméw
rodzaju ses.

Relacje te s”relacjami réwnowazno£ci i maj™ nastgpuj”c” wlasnosc:

Jezeli tSj, ts. s termami rodzaju Sjoraz / t' ,dlay=1,...,n,to

fop(?8> ">) ~§ fop (" ><">"5,)
dla ope. OP.

Rodzins relacji rownowaznosci o tej wlasnosci nazywa sigq kongruencjg.

Kongruencja jest podstaw” do zdefiniowania algebry, nazywanej ilorazowq algebrq
termow ALGa dla algebry ALG. Dodatkowo algebry te s homomorficzne, to znaczy
istnieje homomorfizmH : ALG —ALGa

Definicja algebry ALG,, jest nastspuj”ca:

ALGN—af< A, F>
gdzie:
A = {Terms(V)/~, \se 5} jest rodzin*zbioréw ilorazowych termow rodzajow seS,
F = {fop lope OP) jest zbiorem operacji ilorazowej algebry termdw, przy czym
operacja fgyma sygnaturq
~fp:Term?y)/ - x..xTerm,n(V)/ Term,(V)/
gdy deklaracja operacji ma postac: op :si s2... s,,—>s ijest zdefmiowana nastgmjqco:
jezeli [<7]e Term,./ ,dlay=1,...,n,to fu([h},.., [/.]) =df[fq(h,..., 03-

Nalezy przypomniec, ze \tj\ jest oznaczeniem klasy abstrakcji generowanej przez
term 4.

Cwiczenia

1. Niech bgdzie dana algebra ALGNH =def <Nat, {0, 1}, {+, *}>. Przedstawic gra-

8.

10.

matykq generujXc™. poprawne wyrazenia (termy) zbudowane ze zmiennych repre-
zentuj™cych liczby oraz z operacji podanej algebry.

. Niech bgdzie dana algebra ALGi,,, =df <Int, {+, *}>, gdzie Int =def {-100,0,

1, 100}. Przedstawic definicjg dzialan algebry pozwalaj™c” na okreslenie ich
wyniku dla dowolnych argumentdw.

. Zdefiniowac algebry definiuj*Ccttyp znakowy (string) w jgzyku Pascal lub C.

. Przedstawic wielorodzajow” algebry, ktéra bgdzie wyrazac znaczenie typu wyli-

czeniowego, zdefiniowanego w jgzyku Pascal w spostb nastgpuj™cy:

type DniTygodnia = (pon, wt, sr, czw, piqt, sob, niedz).

. Zdefiniowac gramatykQ, ktdra b~dzie generowad zbi6r termdw rodzaju DniTygo-

dnia, okreslonych przez algebrg zdefiniowan”™ w zadaniu 4.

. Dia algebry z zadania 4. zdefiniowac algebry termdw i ilorazowEi algebry termdw.

. Niech A =df {1, 2, 3, 5, 6, 10, 15, 30}>. Pokazac, ze algebra ALG zdefiniowana

nastQpuj”co:
ALG = <A, {1,30}u {-, +, *}>

gdzie dla a, beA
-a oznacza liczbQ stanow i wynik dzielenia 30 przez a,
a+b oznacza najmniejsz” wspdlng. wielokrotnosc liczb a oraz b,
a* b oznacza najwigkszy wspdlny podzielnik liczb a oraz b,

jest algebry Boole’a.

Przedstawic wszystkie homomorfizmy algebry slow ALG\ = <{«}*, {£, A}> nad
alfabetem {a} w algebry slow ALG2= <{a, b}*, {f; A}> nad alfabetem {a, b},
gdzie ejest stowem pustym, a Ajest konkatenacj” slow.

. Niech ALG = <{a, b}*, {A}>, gdzie Ajest konkatenacjX stow, b~dzie algebry slow

nad alfabetem {a, b}. Jakajest moc zbioru wszystkich homomorfizméw h : {a, b)
—>{a, b} algebry slow ALG w sam” siebie?

Pokazac, ze istnieje homomorfizm mi~*dzy dowolnet algebry a generowang. przez
ni”~ ilorazowq. algebry termow.

9. Rachunek zdan

9.1. Skiadnia

Rachunek zdah jest podstawow”. czgsci® logiki klasycznej. Elementy rachunku byly
nieformalnie wprowadzone i uzywane w poprzednich rozdzialach. W tym rozdziale
przedstawia si$ skladniq i semantyk? rachunku zdah.

Jgzyk rachunku zdan, tak jak kazdy jgzyk formalny, definiuje siq przez podanie alfa-
betu - zbioru symboli podstawowych, oraz przez podanie zasad tworzenia z nich napi-
sow - slow nad alfabetem. Symbole alfabetu nazywa sig jednostkami leksykalnymi.
Takie wyrdznienie wynika st*d, ze jednostki leksykalne mog”~byc slowami nad innym
alfabetem.

Alfabet jgzyka rachunku zdah sklada si$ z nastgjujXcych czterech kategorii jednostek
leksykalnych:
» symboli stalych logicznych reprezentowanych przez napisy true oraz false;

* przeliczalnej liczby symboli zmiennych zdaniowych, reprezentowanych przez
dowolnie ustalone identyfikatory, dalej najcz”sciej bodg uzywane pojedyncze
male literyp, q, 1, ...;

« symboli spdjnikéw logicznych:

negacji —+
koniunkcji a
dysjunkcji (lub alternatywy) v

implikacji =
réwnowaznosci <

 dwdéch symboli pomocniczych:

lewy nawias (
prawy nawias)

Alfabet rachunku zdah jest zbiorem nieskonczonym, ale co najwyzej przeliczalnym,
gdyz dopuszcza siq uzywanie dowolnej liczby identyfikatorow do reprezentacji
zmiennych zdaniowych. W praktycznych zastosowaniach dysponuje si$ oczywiscie
zawsze skonczon”. liczby zmiennych zdaniowych. Ich postac - ustalana dowolnie - nie
ma wplywu na znaczenie j Qzyka.

Z alfabetu tworzy siQ pewne napisy - formufy, ktore - z definicji - napisami po-
prawnie zbudowanymi. Dalej pojedyncze formuly bgd”® oznaczane malymi literami
greckimi.
Zbiorformul rachunku zdan FORM, nad okreslonym wyzej alfabetem, jest definiowa-
ny rekursywnie w nastgpujqcy sposob:
» Symbole zmiennych zdaniowych oraz Symbole stalych logicznych sei formulami,
nazywa siqje formulami elementamymi albo atomowymi;
* jezeli «oraz B s” formulami, to formulami nazywanymi formulami zlozonymi s
napisy:

>3, (a=>R), («al), («v B), («x=>R).

Zbior formul FORM jest j*zykiem formalnym rachunku zdan. Formuly rachunku zdan
tez nazywa si$ zdaniami.

Jezeli «jest formuly to kazde podslowo slowa « ktore jest formuly, nazywa siqpod-
formulq «

Przyklad 9.1

Jezeli danajest formula (« a B), to jej podformulami s «oraz B, a takze wszyst-
kie podformuly «oraz B. Dia formuly

(=>pv?) a-r),
gdzie: p, g, r s"zmiennymi zdaniowymi, jej podformulami s formuly:
l >(p v q), (pva), P, g, -ir, r. |
Uwaga

W celu zredukowania liczby nawiasow w formulach dalej siq przyjmuje (jak
w rozdziale 1.), ze spdjniki logiczne maj” ustalon” kolejnosc stosowania (wi”zania)
spdjnikdw (od najsilniejszego do najslabszego):

-i, a, v, =, «
Pozwala to pisac na przyklad:

-ikald zamiast (-i « aB),

-ikaBv y zamiast ((-i«al)v
gdzie: «oraz/? dowolnymi formulami.
Gdy takie same spdjniki wyst*puj” obok siebie, zaklada siq dodatkowo, ze wystg-
pujXce obok siebie spojniki a, v 1"czew lewo, a wystQpuj”ce obok siebie spojniki
=> <>|"cz"w prawo. Na przyklad:

p Agq Ar znaczy (paqg)ar,

p=>q=>r znaczy p = =>r).

Przedstawiony j$zyk formalny rachunku zdah abstrahuje od postaci zmiennych zda-
niowychJ J*zyk ten mozna ukonkretnic, definiujgc odpowiedni”® gramatykq bezkon-
tekstow”.

Przyjmuje siq konwencjq powszechnie stosowan™ w j*zykach programowania, ze
identyfikatorem jest niepusty skonczony ci*g znakéw, ktorego pierwszym elementem
jest dowolna litera alfabetu lacinskiego, a elementami pozostalymi litery lub cyfry
arabskie.

Gramatykq generuj3C3) Qzyk formalny rachunku zdah (RZ) mozna zdefmiowac nastg-
puj™co:

Grz :defKTrz,N rz,P rz,Srz>,
gdzie:

Tr.= Gf {true, false} u {a, b, u{01,9%} u a,v,=<3}u {(\)}

Nrz =def {formula, formula-elementarna, stala-logiczna, zmienna-zdaniowa, identy-

fiikkator, litera, cyfra spojnik-logiczny}
srz =defformula

a zbior produkcji e r ., zapisany w konwencji BNF, ma postac

Prz=def {formula ::=formula-elementarna \Hormula]
(formula binarny-spdjnikformula)
binarny-spéjnik-logiczny ::=a |v |=> | <>
formula-elementarna ::=stala-logiczna \zmienna-zdaniowa
stala-logiczna ::=true |false
zmienna-zdaniowa ::= identyfikator
identyfikator ::= litera \ identyfikator cyfra \identyfikator litera
litera ::=a\b\.. |z
cyfra 0]1]..]9}

Aenerowany przez podan” gramatykq s rz j*zyk formalny . (¢ r2) jest konkretyzacj®
zdefiniowanego rekursywnie zbioru formul FORM.

W celu skrécenia zapiséw cale formuly b$d” oznaczane pojedynczymi symbolami
i dlatego bgdzie przydatne pojQcie rownosci tekstowej formul. Fakt, ze dwie formuly
a, B identyczne tekstowo, bqdzie zapisywany w postaci a =R.

9.2. Semantyka]

J?zyk formalny rachunku zdah w postaci przedstawionej wyzej jest j*zykiem bez in-
terpretacji. Interpretacja jgzyka polega na ustaleniu znaczenia elementéw jgzyka
- jego jednostek leksykalnych oraz formul. W celu przedstawienia interpretacji jest
konieczne posiadanie pewnego zestawu pojgc i sposobu ich reprezentacji w jakims

zrozumiatym jgzyku, to znaczy potrzebne jest posiadanie metajgzyka - j*zyka siuzi-
cego do opisu innego jgzyka. Uzywanym tu metajizykiem b”~dzie jgzyk teorii mnogo-
sci, ktory byl przedstawiany w poprzednich rozdzialach.

Okreslenie interpretacji j*zyka polega na ustaleniu dziedzin interpretacji, to jest zbio-
row obiektdw, ktore b$di wyrazac znaczenie elementéw jgzyka, oraz na ustaleniu
sposobu przyporz*dkowania elementom jgzyka obiektdw z dziedziny interpretacji.

Dziedzing interpretacji rachunku zdan jest zbi6ér wartosci logicznych:
Logiczne =def {prawda,falsz}
Dalej, zamiast pisacprawda,faisz, bAd*uzywane skroty P, F.

Przyporz~dkowanie znaczenia elementom jgzyka obiektéw nad dziedzing interpretacji
dokonuje siqg w dwdch etapach: najpierw okresla si? znaczenie symboli stalych i spdj-
nikdw logicznych, a nast*pnie okresla si$ znaczenie formul.

W pierwszym etapie wprowadza siqfunkcjq interpretacji bazowej 1, krétko - interpre-
tacjq, ktdra okresla znaczenie symboli stalych i spdjnikéw logicznych.

Interpretacji (znaczeniem) symboli true oraz false Si wartoSci logiczne, odpowiednio
prawda orazfalsz. Formalnie wyraza to funkcja interpretacji/ w sposéb nastqpujicy:

[(true) =defP
[/(false) =defF

Symbolom spoéjnikéw logicznym: -i, a, v, =>, < interpretacja / przyporz~dkowuje
funkcje o nastqpujicych sygnaturach:

/(—¥ : Logiczne —Logiczne
I(a),_I(v)_,_I(=>)_, I(<=>)_:Logiczne2—Logiczne

Funkcje te s™ okreslone szczegdlowo przez tablicq 9.1.

Tablica 9.1
a b 1(-)(«) al(ayb alM b al(=>)b all<=>)b
p P F P P P P
F P P F P P F
F F P F F P P
P F F F P F F

Tablica okresla tak zwane”standardowq albo gléwngq interpretacji spéjnikéw logicz-
nych. W dalszym ciigu symbolom spdjnikdéw logicznych bgdzie przyporzidkowy-
wana wylicznie standardowa interpretacja, dlatego w zapisie symboli stalych
i spojnikéw logicznych symbol interpretacji | b*dzie pomijany. W zaleznosci od kon-
tekstu Symbole spdjnikdw b$di traktowane wyl*czme jako Symbole b*dz jako wyzej
zdefiniowane funkcje. Tak wlasnie bylo w podrozdziale 1.2, w ktérym po raz pierw-

szy zdefmiowano znaczenie spdjnikdw logicznych; Symbole spdjnikéw logicznych
byly tarn traktowane jako funkcje.

Dziedzina interpretacji wraz z funkcje interpretacji stalych i spdjnikdéw logicznych
wyznaczaj” algebrq jednorodzajow” postaci

<Logiczne, {/(true),/(false)}, {/(-.), /(a), /(Vv), [(=>), [(<=>)}>.

Drugim etapem defmiowania interpretacji j$zyka rachunku zdan jest okreslenie zna-
czenia (semantyki) dowolnych formul.

Dokonuje si$ tego rekursywnie - podobnie jak dla termdw (podrozdzial 8.3) - rozpo-
czynajgc od formul elementamych. Stale, ktére s” formulami elementamymi, maj*juz
ustalon” interpretacji. Formulami elementamymi s” tez zmienne zdaniowe. Pojedyn-
cza zmienna reprezentuje prost®, niepodzieln™ wypowiedz, ktérej mozna dowolnie
przypisac wartosc logiczn”® prawda albo falsz. Interpretacja (znaczenie) symbolu
zmiennej zdaniowej polega wic na przypisaniu temu symbolowi wartosci P {prawda)
albo F (falsz). Niech ZmienneZdaniowe oznacza zbiér zmiennych zdaniowych. Przy-
pisanie wartosci zmiennej b~dzie wyrazac funkcja wartosciowania zmiennych

Vv : ZmienneZdaniowe —>Logiczne,
ktéra zmiennej zdaniowej p&ZmienneZdaniowe przyporz~*dkowuje pewn” wartosc
logiczn” v(p) g Logiczne.

Majqc ustalon” funkcjq interpretacji bazowej / oraz funkcjQ wartosciowania v mozna
jednoznacznie zdefiniowac now” fiinkcjg, ktora kazdej formule a eFORM przypo-
rz~dkowuje wartosc logiczn*prawda albofalsz. Ta nowa funkcja

INT,,: FORM —Logiczne

jest zdefiniowana rekursywnie w spostéb nastgpuj™cy:
» Jezeli formula orjest formul” w postaci stalej logicznej, to:

ZNT\(true) =df/(true) =P
[AT/false) =def/(false) = F

« Jezeli formula orma postac zmiennej zdaniowej p, to
INTfa) —dfv(p).

« Jezeli formula jest formut” zlozon”, to:
INU-.CC) = cef/(-i) (/" r\0)),
INUcc* B) =de{INTWa) /(=) INT,(R),
gdzie: gest dowolnym binamym spdjnikiem logicznym, czyli g {a, v, =>, <3},
a /(-) jestjego interpretacji
Interpretacja stalych logicznych nie zalezy od wartosciowania v, a interpretacja
zmiennych zdaniowych nie zalezy od interpretacji bazowej /.

Uwaga

Do opisu semantyki formalnego jgzyka rachunku zdan zostal uzyty pewien metajg-
zyk. Warunkiem decyduj®*cym o wyborze danego metajgzyka jest jego zrozumia-
losc i dostateczna sila ekspresji, pozwalaj*ca na wyrazenie odpowiednich faktow.
W naszym przypadku metajgzykiem jest jgzyk elementamej teorii zbiorow, ktory
zostal wprowadzony w poprzednich rozdzialach. Do opisu jgzyka elementamej teo-
rii mnogosci byl natomiast uzyty jgzyk naturalny, ktory pelnil rolg metajgzyka
wzglgdem jgzyka teorii mnogosci. ldea definiowania znaczenia jgzyka za pomoc”
innego jgzyka - metajgzyka pochodzi od polskiego logika Alfreda Tarskiego18

Rozréznienie pomiqdzy jgzykiem a metajgzykiem wyeliminowalo wiele, znanych
jeszcze w starozytnosci, paradokséw lingwistycznych w rodzaju: to zdanie jest
prawdziwe albo to zdaniejestfalszywe. Przypuscimy, ze chcemy wykazac, ze Zie-
miajestplaska. W tym celu wystarczy rozpatrzyc zdanie:

Albo cale to zdaniejestfalszywe, albo Ziemiajestplaska.

Zdanie to jest albo prawdziwe, albo falszywe. Jesli jest falszywe, to - zgodnie zje-
go tresci™ - Ziemia musi byc plaska. Jesli zas jest prawdziwe, to prawdziwa musi
byc albo jego pierwsza czgsc: cale to zdanie jestfalszywe, albo druga: Ziemiajest
plaska. Skoro przyjglismy, ze cale zdanie jest prawdziwe, prawdziwa wigc musi
byc jego druga czqgsc, czyli ze Ziemia jest plaska. Zastgpuj*c zdanie Ziemia jest
plaska dowolnym innym zdaniem, moc” takiego samego rozumowania mozemy
wykazac jego prawdziwosc.

Rozrdznienie pomiqdzy jgzykiem a metajgzykiem ma jeszcze jedng. zdumiewaj~c”
konsekwencjq - nie istnieje nie takiego jak prawda absolutna. Mozna prowadzic
dowody w obrgbie jednego jgzyka, okreslaj*ce, ktore wyrazenia jgzyka uznajemy
za prawdziwe. Pojqcie prawdy nie jest sformulowane w tym jqzyku, lecz
w jego metajgzyku. Z kolei, w obrgbie metajgzyka mamy do czynienia z innymi
wyrazeniami i dowodami, kt6re okreslajg. ich prawdziwosc, ale pojqcie prawdziwo-
sci zdan metajqzyka jest okreslone wjego metajgqzyku (czyli metametajqzyku).

Formula a spelnia interpretaejq INT przy wartosciowaniu v, co bgdzie zapisywane
W postaci

INTVE a
wtedy i tylko wtedy, gdyINTWd) = P. Symbol N jest nazywany symbolem spelniania.
Formula a spelnia interpretaejq INT, co bqdzie zapisywane w postaci

INT\= a
wtedy i tylko wtedy, gdy a spelnia interpretaejq INT przy dowolnym wartosciowaniu V.

BAlfred Tarski (1901-1983).

Poniewaz jest rozwazana tylko interpretacja standardowa, symbol INTbqdzie pomijany

fa
Formul? tak™nazywa siq tautologiq rachunku zdan.

Dwie formuly exoraz 8 sg réwnowazne semantycznie, jezeli przy tej samej interpreta-
cji i przy tym samym wartosciowaniu sg jednoczesnie spelnione albo niespelnione.
Fakt réwnowaznosci semantycznej formul zapisuje siqw postaci

a-R.

Uwaga
Symbol réwnowaznosci semantycznej = nalezy odrdznic od symbolu réwnowaz-
nosci tekstowej Dia dwdch dowolnych formul o B, jezeli a= R, to oczywiscie
rowniez ex=R, natomiast wynikanie odwrotne nie zachodzi.

Pomiqdzy spdjnikiem réwnowaznosci <=>a réwnowaznoSciq. semantyczng = zachodzi
zwiqzek wyrazajqcy siq przez wlasnoso

Formula postaci or<=>/?jest tautologiq, wtedy i tylko wtedy, gdy ex=_R.

9.3. Dowodzenie metod” zero-jedynkowq

Bezposrednio z definicji interpretacji wynika, ze sprawdzenie, czy dana formula jest
tautologig, moze polegac na wyliczeniu prawdziwosci formuly dla wszystkich mozli-
wych wartoSciowan zmiennych zdaniowych wystgmjqcych w tej formule. Liczba takich
wartosciowan wynosi 2", gdzie n jest liczbqzmiennych zdaniowych. Postgpowanie takie
okresla siQmianem metody zero-jedynkoxvej. Jej istotQ wyjasnia przyklad.

Przyklad 9.2
N W celu pokazania, ze formula "
p~>(q=>p)
jest tautologiq rachunku zdan, wystarczy zbudowac tablicq prawdziwosciowq,

w ktorej sq zestawione wszystkie mozliwe wartosciowania zmiennych i obliczone
dla nich wartosci formuly i ewentualnie jej podformul.

p q g=>p p=>(q=>p)
F F P P
F P F P
P F P P
P P P P

Poniewaz formula jest spelniona przy dowolnym wartosciowaniu wystQpujgcych
I w niej zmiennych, jest wiqc tautologig. |

Metoda zero-jedynkowa oblicza wartosci formuly dla wszystkich mozliwych war-
tosciowan jej zmiennych. Poniewaz liczba takich wartosciowan jest skonczona, za-
tem po skonczonej liczbie krokow otrzymuje si? niezawodng. odpowiedz na pytanie,
czy formula jest tautologi®. Metoda zero-jedynkowa daje wiqc zawsze podstaw” do
stwierdzenia, czy dana formula rachunku zdan jest czy nie jest tautologici.. Problem
badania czy formula jest tautologi” jest rozstrzygalny. Ogdlnie, poj~cie rozstrzygal-
nosci danego problemu - pytania, na ktére odpowiedzi” jest tak albo nie - oznacza,
ze istnieje procedura (algorytm), ktora w skonczonej liczbie krokow daje jedn”
z tych odpowiedzi.

Metoda zero-jedynkowa jest malo efektywna. Mozna j* usprawnic, zauwazaj™c, ze
obliczenie wartoscifalsz dla pewnego wartosciowania przes*dza, iz formula nie moze
byc tautologi®. Obliczenia wartosci formuly mozna zakonczyc w momencie pierwsze-
go napotkania takiego wartosciowania.

Dla rachunku zdan istnieje jeszcze inne, efektywniejsze sposoby rozstrzygania, czy
formula jest tautologi”..

Tautologie s” schematami formul, ktore s zawsze prawdziwe, niezaleznie od wyraza-
nych tresci. one prawdziwe z uwagi na swoj® Struktur®. Ponizej przedstawiono
czgsciej spotykane tautologie. one wykorzystywane w dowodach matematycznych
i dlatego nazywa sig je prawami logicznymi albo prawami rachunku zdan. Niektore
z nich maj~tez tradycyjne nazwy. Jezeli ororaz 8 dowolnymi formulami, to tauto-
logiami s” formuly:

Prawo implikacji
F«=>/[?<=>-.0rv
Prawa kontrapozycji
E-ior=>B <>-iB =>a
t= a=>—iR<r>[?=>-0r
Prawa de Morgana
N-i (aaB) <>-nerv-/?
t=-i {avRB) <>—ifxa -<B
Prawa zaprzeczenia implikacji

=-i {a=>R) <>cca -il}

Prawa zaprzeczenia réwnowaznosci
t=-i (ar<=BR) <>-.(«=>R) v -,(y6=>a)
Prawa podwdjnego zaprzeczenia
£ oCar
Prawo wylgczonego srodka
t= arv -iar<=>true
Prawo sprzecznosci
t= ota-.ar<=>false
Prawa idempotentnosci
f= ata ar<> fif
Earva<or
Prawaprzemiennosci
i= (XAR<?>RA ar
E arv/?7<=>/?v ar
Prawa lgcznosci
t=fifa (?7a <>(araB)Ay
t=arv (Bv (arvB)v y
Prawa rozdzielnosci
\=zaA(Bv?)<=>aAllvaAy
\=arv (RA})<"> (arv y#) a (6tv
Prawa uproszczen
E ara true <sar
t=arv true <>true
t= ota false <>false
t= arv false <>ar
¥ ota(arv /?) <ar
i= arv (otay#) <>ar
Fakt, ze przedstawione prawa sg. tautologiami latwo sprawdzic metod” zero-jedyn-

kow”. Na podstawie tych praw oraz twierdzenia o zast*powaniu mozna badac czy
tautologiami inne formuly.

9.5. Dowodzenie transformacyjnej

Niech a bgdzie formuly, w ktérej wystQpuje zmienna zdaniowap, oraz niech § bgdzie
pewny inny formuly. Przez

alp::=R]
oznacza siq formulg, ktéra powstaje z formuly a przez tekstowe zastypienie kazdego
wystypienia zmiennej p w formule orprzez formuly R.

Frzyklad 9.3
a= (p<>q)ap =>rorazlR=rvs,

to
| afp ::=R] = ((rv 8)<?>q) A(rv ,2)=>/e

Bezposrednio z definicji tautologii i tekstowego zastQpowania wystypienia zmiennej
wynika nastgpujyce uzyteczne twierdzenie o zastgjowaniu.

Twierdzenie 9.1

Jezeli formula of\ <> a2jest tautologiy B pewny formuly orazp - zmienny zdanio-
wy to formula

B\p\:= af\<">RB\p:\= aZ]
jest takze tautologiy
Na podstawie twierdzenia o zast*powaniu formuluje sig nastqpujyce reguly réwno-
waznego semantycznie przeksztalcania formul:

Regula zastgpienia

Jezeli drjest formuly a jest jej podformuly to zastypienie podformuly B do-
wolny inny réwnowazny semantycznie formuly nie zmienia wartosci logicznej
formuly a.

W zapisie symbolicznym, zgodnym z konwencjy wprowadzony w rozdziale 1., regulq
mozna przedstawic w postaci

R jest podformuly ot

R=Y
a=al[B\"y\

lub w réwnowaznej postaci

yo6jest podformul” a
ER<*Y
t= (x<>a[B\~y]
gdzie a[R ::=y] oznacza testowe zastcipienie podformuly 8 formuly y w formule a.
Przyklad 9.4

A Niech dana bqdzie formula
a= (p<>q) Ap =>r.

Jej podformula
B=p<”q

jest rownowazna semantycznie formule
(p"a)A(q=>p)

Formula orjest zatem réwnowazna semantycznie formule
(PA?)A(?=>p)Ap=>r

czyli

I (p<&Q)Ap=>r=(p=>q)A(q=$p)Ap=>r

Regulaprzechodniosci

Jezeli formuly a i B sg. réwnowazne semantycznie oraz formuly B i y sqg.réwno-
wazne semantycznie tautologiami, to réwniez formuly a i yss*réwnowazne seman-
tycznie.

W zapisie symbolicznym regulQ mozna przedstawic w postaci
a==R
B=r
a-y
lub w réwnowaznej postaci
aro R
ER**y
t= o<y

Reguly zastqpienia i przechodniosci pozwalaj® na tekstowe transfonnacje formul,
ktére mozna wykorzystad do badania réwnowaznosci lub badania czy formula jest
tautologiq,

Ogoblny schemat dowodzenia transformacyjnego, w celu pokazania, ze formula a jest
tautologi®, mozna wyrazic w postaci ci*gu formul

ab, au a2, vy @y

gdzie: ab = orjest dowodzon” formula a,, jest formuiqg, o ktérej wiadomo, ze jest tau-
tologiqg, pomiqdzy zas kolejnymi formulami dlaj=0,1 n- 1, zachodz” réwno-
waznosci semantyczne a, = 0}j. Rownowaznosci tezachodz”na mocy definicji lub
w wyniku stosowania reguly zast“pienia z powolaniem si$ na odpowiednie prawa
logiczne.

Przyklad 9.5
I Danajest formula A
>0a [p=>0q) =>-p

Aby pokazac, ze jest ona tautologizg nalezy wykazac, ze jest rownowazna formu-
le true. Prowadzi do tego nast*puj™cy ci*g transformacji:

da (p=>0q)=>-~p

= a(-pv9=-p - prawo implikacji

= (~ga-p)Vv(~qa9=>-p - prawo rozdzielnosci

= (-»7a -p) v false =>-p - prawo sprzecznosci

= -t a —p =>—P - prawo uproszczenia
~—v/)=>—p - prawo de Morgana
=.<-1(?2vp))Vv-p - prawo implikacji
=(Qvp) v-*p - prawo podwdjnej negacji
=9v(pv-f) - prawo I*cznosci

=gv true - prawo uproszczenia

= true - prawo uproszczenia

Kazdy krok transformacji jest przeprowadzony zgodnie z reguly zasteipienia wyko-
rzystuj*c® wskazane prawo logiczne. Na mocy reguly przechodniosci stwierdza
sig, ze -0 a (p =>q) =>—p = true, co oznacza, ze formula —gA(p=>q)=>—p
jest tautologi”.

Formula, ktér™ dowiedziono, jest prawem logicznym, nazywanym modus tollens.

9.6. Postaci kanoniczne formui

W wielu zastosowaniach jest wygodne, aby formuly mialy pewn” standardow” (kano-
niczn”) postac. Pozwala to migdzy innymi na ulatwienie badania réwnowaznosci for-
mul. Wyr6znia si? dwa rodzaje postaci kanonicznych - koniunkcyjn” postac normaln”
i dysjunkcyjn” postac normaln”.

Literalem nazywa si$ zmienng zdaniowq lub jej negacjQ. Jezelip, g, ... sq zmiennymi
zdaniowymi, top, q, ... sq literalami pozytywnymi, a —g -*q, ... sq literalami negatyw-
nymi. Pojedynczy literal bqdzie oznaczany symbolem A
Klauzulg albo dysjunkcjg elementamq bqgdzie nazywana formula postaci

Alv Azv ...V A,
gdzie: A\, Az,..., A, sq literalami {n > 1). Pojedyncza klauzula b"*dzie oznaczana sym-
bolem «.

Formula a jest w koniunkcyjnejpostaci normalnej (CNF - Conjunctive Normal Form)
wtedy i tylko wtedy, gdy jest koniunkcjq klauzul, to znaczy gdy jest postaci

K\VA KiA... Akn
gdzie: «, dlai=1, n, sgklauzulami.

Przyklad 9.6
A Jezeli dane sq trzy zmienne zdaniowe p, g, r, to wyznaczajg one osiem rfznych*
semantycznie klauzul. Sq to:
pvaqvr pv qv —r pv —=qvr pv -}qv —r
—pvqvr —pVQV—=t —pVvV-IgVvr —Ppv-\qQVv -
Z tekstowego punktu widzenia klauzul zawierajgcych trzy zmienne jest wicej.

Kazda z innych klauzul jest rownowazna semantycznie jednej z wyzej wymienio-
nych. Na przyklad klauzule gv p v —rorazp v —¥v g sq réwnowazne klauzuli

| pv qv —i. |

Koniunkcjg elementamq b”dzie nazywana formula postaci
AAAA. AA,

gdzie: A\, Az, ..., A, sq literalami (n > 1). Pojedyncza koniunkcja elementama bqdzie
oznaczana symbolem 8.

Formula arjest w dysjunkcyjnej postaci normalnej (DNF - Disjunctive Normal Form)
wtedy i tylko wtedy, gdy jest dysjunkcjq koniunkcji elementamych, to znaczy gdy jest
postaci

8\v 8zv ..v 8,

gdzie Shdlai=1, n, sgkoniunkcjami elementamymi.

Przyklad 9.7

A Jezeli dane sq trzy zmienne zdaniowe p, q, r, to wyznaczajq one osiem rdznyclJ
koniunkcji elementamych. Sqto:

p Aq Ar p Aq A—ir p A—gAr p A—=qA—ir
| —p Aq Ar —paga—\w —pa—-igar -—Wa—ga-r

Dia kazdej formuly aristnieje rownowazna jej semantycznie formula w koniunkcyjnej
postaci normalnej oraz w dysjunkcyjnej postaci normalnej - formuly te b~d” oznacza-
ne odpowiednio przez CNF(a) oraz DNF(a).

Uzasadnieniem tych twierdzen jest przedstawiony ponizej, ktéry dla dowolnej formuly
a wyznacza now” formuly w koniunkcyjnej postaci normalnej, oznaczang. CNF(d),
ktorajest rownowazna semantycznie formule a, czyli a= CNF(ot).

Algorytm sprowadzania formul do koniunkcyjnej postaci normalnej

Dane: dowolna formula a e FORM.
Wynik: formula CNF(a)e FORMtaka, ze a= CNF(ct).
Procedura: procedura postgpowania polega na etapowym, tekstowym przeksztal-
caniu formuly a. Formula posrednia jest oznaczana przez 3, poczqtkowo przyjmie
postad formuly o
1. Eliminacja z formuly B spdjnikéw logicznych réznych od koniunkcji, dys-
junkcji i negacji:
* kazd” podformulQ formuly B, postaci B\ <>Ri, zastQpuje siq tekstowo for-
mul” postaci (B\ BB a (Bi =>R\),
* kazdg. podformutq postaci B\ =>Ri zastopuje si$ tekstowo formuly postaci
~y\ A Ri-
2. DopOki B nie jest w postaci koniunkcyjnej normalnej, dopoty powtarza siq
zastQpowanie podformul formuly 8 zgodnie z regulami podanym w tablicy:

Podformula Formula
Lp. . .
zastgjowana zastQpujqca
1 -r-\R\ Ri
2 ~iRi v Ri) —Bi A—Bi
3 ~iBi *Bi) -Biv~n
4 A2 v? AZ v A v =

7] 7]

3. Formuly R, otrzyman”po zakonczeniu poprzedniego kroku, definiuje siQjako
CNF(ct).

Algorytm dokonuje na formulach przeksztalcen semantycznie réwnowaznych, a po-
nadto rozpatruje wszystkie niezbqdne przypadki, co gwarantuje jego poprawnoSo.

Algorytm sprowadzania formuly do normalnej postaci dysjunkcyjnej jest prost® mo-
dyfikacj£i podanego wyzej algorytmu. Polega to na nastgpuj®cej zamianie ostatniego
wiersza w tablicy zastgpowania formul:

Lp. Formula zastgjowana Formula zastQpujaca
4a Y Y 0».AA)VOFf,AA)

Nalezy zwrdcic uwagQ, ze w przypadkach stosowania ostatniej z regul zastopowania
(przypadek 4 lub 4a) algorytm powoduje tekstowe wydluzenie przeksztalcanej formu-
ly. W niektdrych przypadkach algorytm moze prowadzic do zwi”kszenia dlugosci
formuly.

[9.7. Funkcjonalna pclnosc

Wprowadzony jgzyk rachunku zdan uzywa zbioru spéjnikbw zlozonego z negacji,
koniunkcji, dysjunkcji, implikacji i réwnowaznosci. W poprzednim podrozdziale po-
kazano algorytm sprowadzania formuly do postaci kanonicznej, w ktérej wystqpuj®
tylko spdjniki negacji, koniunkcji i dysjunkcji. Oznacza to, ze dla dowolnej formuly
rachunku zdan istnieje rownowazna semantycznie formula zawieraj*ca tylko te trzy
spojniki.

Stwierdzenie to mozna wyrazic w sposdb og6lniejszy, mowi”c, ze za pomoc” tych
spdjnikdw mozna wyrazic dowoln” n-argumentow”, n > 0, funkcji prawdziwosciow”,
tojest funkcji typu: Logiczne"—»Logiczne.

Dany zbior spdjnikéw logicznych jestfunkcjonalnie pelny, jezeli za ich pomoc”da sii
wyrazic wszystkie mozliwe funkcje prawdziwosciowe, to znaczy ze dowoln” funkcji
prawdziwosciowe da sii przedstawic jako formulg, w ktdrej wystipuje spojniki lo-
giczne nalez”ce do tego zbioru.

Twierdzenie 9.2
Zbior spdjnikdw zlozony z negacji, koniunkcji i dysjunkcji jest funkcjonalnie pelny.

Dowdd
Szkic dowodu przedstawia sii nastipujeco:
Zaklada sii, ze p,,) jest dowolne n-argumentowe funkcje prawdziwoscio-
we. Niech INTv(f(pi, ..., p,,) 0znacza interpretacji funkcji/ dla wartosciowania

v. Interpretacje funkcji/ dla wartosciowania vjestjedna z wartosci P lub F. Poje-
dyncze wartosciowanie v przypisuje kazdej ze zmiennychp\, ...,p,, jedne z warto-
sci P lub F.

Jezeli INTV(f(pu ...,p,,)) = P, to koniunkcji elementame
X\ A A ... A NI

okresla sii w nastipujecy sposéb

Ai=phgdy v(p,) =P oraz X,=-,phgdy v(p() = F.

Latwo zauwazyd, ze koniunkcja ta jest prawdziwa dla wartosciowania v i fatszywa
dla kazdego innego wartosciowania.

Niech vi, ... vK gdzie K spelnia ograniczenie 0 < K < 2", bgdzie zbiorem tych
wszystkich wartosciowan, dla ktérych funkcja/ przyjmuje wartosc P. Dla danego
wartosciowania \j, dlaj = 1 , K, przez & oznacza si? wyzej okreslon” koniunkcji
elementamq. Latwo sprawdzic, ze formula

a=8\v & v ..v Sk

jest semantycznie réwnowazna funkcji/ to znaczy dla dowolnego wartosciowania
v, INTV(f(pi,...,pn) = INTVot). Poniewaz w formule wystQpuj” tylko spojniki ne-
gacji, koniunkcji i dysjunkc;ji, stttd wynika teza. [

Funkcjonalnie pelny zbior spojnikéw jest minimalny, jezeli kazdy jego wlasciwy pod-
zbior nie jest zbiorem funkcjonalnie pelnym.

Zbior spojnikéw {-i, a, v} nie jest zbiorem minimalnym. Oznacza to, ze po usuniqg-
ciu z niego pewnych spdjnikdw pozostanie on nadal zbiorem funkcjonalnie pelnym.
Latwo siQ przekonad, ze zbiorami minimalnymi s zbiory spdjnikéw {-i, v} oraz
{-i, a}. Z praw de Morgana wynika, ze na przyklad koniunkcja mozna wyrazid za
pomoc” dysjunkcji. Zbioér {-i, a}jest zatem funkcjonalnie pelny. Za pomocfj. tylko
samej negacji albo tylko samej koniunkcji nie mozna natomiast wyrazid dowolnej
formuly.

Innym przykladem minimalnego zbioru funkcjonalnie pelnego jest zestaw {=>, false}.
Wystgjuje w nim jeden spojnik ijedna stala.

Dwa interesuj™ce przyldady minimalnych, funkcjonalnie pelnych zbioréw spojnikéw
s™oparte na spdjnikach NAND lub NOR, ktore s*zdefiniowane nastQpujgco:

NAND(p,) = cef —4{7a q)

NOR(p, q) =cef (pv q)
Latwo pokazad, ze za ich pomoc” mozna zdefiniowac wczesniej wprowadzone spéjni-
ki, na przyklad:

—p =NAND(p, p)

— = NOR(p, p)

Spojniki sg interesuj®ce, mi*dzy innymi dlatego, ze opieraj*c siq na kazdym z nich,
mozna budowac uklady przel*czaj*ce - fragmenty urz~dzen komputerowych.

Przyklad 9.8

Stosowane w konstrukcji urz*dzen komputerowych kombinacyjne cyfrowe ukla-
dy przel~czaj”ce charakteryzujg. siqg pewn” liczb” wejsc, na ktére podaje si$ dwa
sygnaly: zero albo jeden, oraz przynajmniej jednym wyjsciem, na ktérym row-

niez pojawia si$ taki sygnal. Wartosc sygnalu wyjsciowego jest funkcj” sygnalow
wejsciowych. Sygnaly o wartosciach zero i jeden mogf(. kodowac wartosci lo-
giczne falsz i prawda. Wyjscie ukladu mozna wiqc scharakteryzowac przez funk-
cjq prawdziwosciow”, ktérej argumentami wejscia ukladu. Uklad realizuje si$
za pomoc” ukladow elementamych. Przykladem zestawu elementamych bramek
logicznych, za pomocg. ktérych mozna zrealizowac dowolny uklad przeirczajrcy,
s"bramki nazywane NOT, AND, OR, pokazane na rysunku 9.1, ktdre s~realiza-
torami spojnikow -i, a, v .

Bramka NOT Bramka AND Bramka OR

Rys. 9.1. Schematy bramek logicznych NOT, AND i OR

Kazdg. z bramek mozna zbudowac za pomoc” bramek NAND lub NOR, ktore
realizatorami spdjnikow NAND oraz NOR (rys. 9.2).

—Kaa b) i@v b)

Bramka NAND Bramka NOR

Rys. 9.2. Schematy bramek NAND i NOR

Uzywaj”c na przyklad bramki NAND, otrzymujemy konstrukcje pokazane na ry-
sunku 9.3.

aAb

Rys. 9.3. Przyktadowe schematy ukladow logicznych

9.8. Rekursjaiindukcja strukturalna

Rekursja jest waznym i czQsto wykorzystywanym sposobem definiowania zbioréw
(rozdziat 2.), relacji i funkcji (podrozdzial 4.6). Podane nizej twierdzenie dotyczy re-
kursywnego definiowania funkcji okreslonych na zbiorze formul rachunku zdan.
Twierdzenie to gwarantuje jednoznacznosc rekursywnie definiowanych funkgji.

Twierdzenie 9.3 (Zasada rekursji strukturalnej)

Niech pewna funkcja/ bqdzie okreslona na zbiorze formul FORM w spos6b nastQ-
pujiey:
krokpoczqtkowy: na formulach elementamych wartosci funkcji/ sei okreslone bez-
posrednio,
kroki indukcyjne: na formulach zlozonych wartosci funkcji / okreslone po-
Srednio:

 wartosc funkcji/ na formule —a jest okreslona w terminach wartosci funkcji

/na a,
 wartosc funkcji/ na formule (ar°R) jest okreslona w terminach wartosci funk-

cji/na formulach a i 8, gdzie « oznacza dowolny binamy spdjnik logiczny.

Funkcja/ jest zdefiniowana jednoznacznie (istnieje dokladnie jedna tak zdefinio-
wana funkcja).

Dowod twierdzenia pomijamy.

Przyldad 9.9
| Stosujc zasadq rekursji strukturalnej, na zbiorze formul FORM definiuje siq na-'
stQpuj~c” funkcja d:
* jezeli orjest formula elementam” to d(a) - O,
e d(->a) =d(a) + 1,
«d((a °R)) =d(a) + d(B) + 1 dla dowolnego spdjnika binamego »6 {a,v,

Funkcja d{a) okresla stopien formuly a. Stopien formuly, jak latwo zauwazyc,
| oznacza liczbg spojnikéw logicznych w formule. |

Przyklad 9.10

A Stosujgc zasadQ rekursji strukturalnej, definiuje siq na zbiorze formul FORM na-'
stgpuj*ce funkcje 1(a) oraz p(a), oznaczajgce odpowiednio liczbQ lewych i pra-
wych nawiaséw w formule a. Definicja funkcji 1(a):

* jezeli arjest formuly elementamq, to I(a) = 0

o [(-IB) = 1(a¥)
* I((a°R)) =I(ct) + I(BR) + 1dla dowolnego spdjnika binamego °€ {a, v, =>, <>}.
I Podobnie wyglgda definicja funkcjip(a).

Rekursja strukturalna zostala tu przedstawiona tylko dla rachunku zdan. Ogdlnie re-
kursjs strukturalna mozna stosowac do dowolnych zbioréw definiowanych w sposéb

rekursywny, zwlaszcza do jgzykéw formalnych definiowanych za pomocq. gramatyki
bezkontekstowe;j.

Przyklad 9.11
' Danajest gramatyka G =df <T, N, P, S>, gdzie:
T=df{0, L, @, # +, *, ()} u fab, ...z}
N =&ef {wyr, opjmarny, opjbinarny, zmienna}
P =def {wyr ::= 0 | 11zmienna | (wyr opjbinarny wyr) \opjmarny wyr
zmienna ::=a\b|... |z
opjbinarny =+ |*
opjmarny ::= @ | #}
S =defwyr
Funkcja lw : L(G) x {a, b, zZ} —Nat, ktdra oblicza liczbqg wystqgpien wskaza-

nej zmiennej w slowie jgzyka generowanego przez gramatykq G, jest zdefinio-
wana nastgpujqco:

a) dla wyrazen elementamych:

w(0,x) =lw(l,x)=0 dlaxe {a, b, ..., zj
w(yx)= ~ Gy =X dlax,ye {a b, .., 2}
0 dlay *x
b) dla wyrazen ztozonych:
Iw((a° R), x) = Iw{a, x) + lw(B, x) dlaa,Bel(G),« {+ *}
Iw{cca,x) =lw(a, x) dla aeL(G), °ce {@, #}

Omowiona w rozdziale 1. indukcja matematyczna dotyczyla sposobu dowodzenia
wlasnosci, ktore zachodz” dla wszystkich liczb naturalnych. Zbidr liczb naturalnych
jest liniowo uporzgdkowanym zbiorem przeliczalnym. Liniowy porzgdek wyznacza
relacja wigkszosci pomiqdzy liczbami naturalnymi. Czgsto interesuj® nas wlasnosci,
ktore zachodz” dla innych zbioréw przeliczalnych, ale nieuporz*dkowanych liniowo.
Przykladem takiego zbioru jest zbiér wszystkich formul rachunku zdan. Dowodzenie
wlasnosci postaci P(a), gdzie aeFORM, opiera si$ na indukcji strukturalnej, ktora
jest uogoélnieniem indukcji matematycznej.

Twierdzenie 9.4 (Zasada indukcji strukturalnej dla rachunku zdan)

Niech P bqgdzie pewn” wlasnosci® dotycz”c” formul. Wlasnosc P(a) ma kazda
formula a rachunku zdan, pod warunkiem, ze:

krokpoczqgtkowy: wlasnosc tqg ma kazda formula elementama,
krok indukcyjny:
* jezeli wlasnosc tq ma formula a, to maj~takze formula—g,

* jezeli wlasnosc tqg maj*formuly aroraz 8, to maj~“takze formula (a°R), gdzie
- 0znacza dowolny binamy sp6jnik logiczny.

Dowod

Uzasadnieniem dla podanego postgpowania jest nastqpuj*ce rozwazanie: Niech
S bqdzie zbiorem tych formul rachunku zdan, ktére majX wlasnosc P. Krok po-
cz™tkowy i kroki indukcyjne stwierdzaj®, ze formuly nalez”ce do S spelniaj® wa-
runki:

* jezeli arjest formuly elementam”, to aeS$,

e jezeli aeP, to-iaeP

o jezeli a, BReP, to (a° B) e S, gdzie °jest dowolnym binamym spdjnikiem

logicznym.

Poniewaz zbidr formul FORM jest najmniejszym zbiorem spelniaj*cym wyzej

wymienione warunki, zatem zbiér formul FORM ¢ S, z czego wynika, ze kazda
formula ma wlasnosc P. m

Przyklad 9.12

A Rozpatruje sig wlasnosc P: w dowolnej formule rachunku zdan liczba nawiaséw*
otwieraj*cych jest roéwna liczbie nawiasdw zamykajgcych. Przez lewy(a) oraz
prawy(a) oznacza siq liczby nawiaséw otwieraj*cych i zamykaj*cych w formule a.
Wilasnosc P(a) moze byc zapisana lewy(a) =prawy(a).

* Formuly elementame nie zawieraj™ nawiasdéw, maj” zatem wlasnosc P.

» Zaklada siqg, ze wlasnosc P maj® dowolne formuly a, B. Oznacza to, ze le-
wy(a) = prawy(a) oraz lewy(R) =prawy(R). Rozpatruje siq dowolny for-
mulq zlozon”: (ar° B), gdzie °jest dowolnym binamym spdjnikiem logi-
cznym. Wlasnosci P zachodzg. wiqc réwniez dla (a°R):

lewy((a°R)) = lewy(a) + lewy(R) + 1
=prawy(a) +prawyiB) + 1
| =prawy((a °8)) I

Zasada indukcji strukturalnej zostala tu zdefmiowana tylko dla rachunku zdan. Jest
ona réwniez stosowana w rachunku kwantyfikatoréw (zob. nastqpny rozdzial).

Cwiczenia

1. Wskazac ci”gi znakow, ktore s”*slowami jQzyka rachunku zdah:

3

[$]

(2]

~

[e¢]

a) (P v q))
b)p v q

¢)avp<~(v(a,p))
. Dan” formuly rachunku zdan przedstawic w pelnej postaci z nawiasami, a nastgmie
okreslic zbidr wszystkichjej podformul:
a) aAbAcvd<z>e=>—ifvg=>h

b) aA(iAcvrf)«e=> Cifvg) =>h

. Podac algorytm, ktéry dowoln” formuly rachunku zdah zapisan”™. w postaci wrost-
kowej transformuje na formuly zapisan”™w postaci przedrostkowe;j.

. Funktorem zdaniowym n-argumentowym nazywamy dowoln” funkcjQ/ o sygnaturze
/: {prawda,falsz}n—> {prawda,falsz}.

Jaka jest liczba takich funktorow n-argumentowych? Zdefiniowac wszystkie funk-
toryjedno- i dwuargumentowe.

. Stosujgc metodq zero-jedynkow”, wykazac, ze nastqwj”*ce formuly s"tautologiami:
a)P =>(?=>/>)
b) (bAa o) <(-1p V -.0)
#V?)O (-np A -1 @)

. Opieraj”c sig na systemie dowodzenia opartym tylko na regulach podstawienia
i przechodniosci, pokazac, ze nastgjujqce formuly s tautologiami:
a) —ja a (a => b) => -na
b)aa {a =>b) =>b <>true

. Sprawdz (w dowolny sposob), czy s~ tautologiami nastgpujXce formuly:

a)pv (@ar) <z>(padq)v (par)

D)pa(aVr)y<pagV(pPan

C) «<=>f

d) orv -i/7

e) - iot=> 3

. Ktore zbiory spdjnikéw logicznych s”zbiorami funkcjonalnie pelnymi:

a) >a}

b) K v}

c) { =}
d) {false, =>}

e) K <3}

f) {true, =>}
g) {<=> false}

9. Dane s" dwa dwuargumentowe funktory logiczne NAND oraz NOR zdefiniowane
nastqjujgco:
NAND(a, b) =—faab) oraz NOR(a, b) = —fav b).
Pokazac, w jaki spos6b, za pomoc” tych fiinktoréw, mozna wyrazic spdjniki lo-
giczne negacji, koniunkcji i altematywy. Narysowac sieci logiczne realizujce
funkcje prawdziwosciowe f, f2 zdefiniowane przedstawiong. ponizej tablic?,
w ktdrej symbolami O oraz 1 oznaczono odpowiednio falsz oraz prawdQ.

f{a,b) mb)

OO0 Y

b
0
1
0
1

O R O

b
1
0
1
1

10. Ktora ze zdefiniowanych nizej relacji jest relacjX réwnowaznosci na zbiorze for-
mul rachunku zdan:
a) or~i B wtedy i tylko wtedy, gdy formula ar<=>(jest spelniona,
b) a ~2B wtedy i tylko wtedy, gdy formula or<=>/?jest sprzeczna,

c) a ~38 wtedy i tylko wtedy, gdy formula a<>/?jest spelniona dokladnie dla po-
lowy wartosciowan zmiennych.

11. Niech y b~dzie dowolnie ustalon™ formul”® rachunku zdan. Wykazad, ze relacja
zdefiniowana nast$pujgico:
a~ B wtedy i tylko wtedy, gdy formula y=> (6r<=>R) jest tautologi”®,
jest relacja réwnowaznosci na zbiorze formut rachunku zdan.
12. Danajest gramatyka G =df <T, N, P, S>, gdzie:
r=def{0,I,@ , #,+, * ()}
N ={ef {wyr, opjinamy, op_binarny}
p =cf {wyr ::= 0 | 11{wyr op_binarny wyr) \opjinamy wyr
op_binamy =+ | *
opjinamy = @ |#}
S=defwyr
a) Czy gramatyka jest jednoznaczna?
b) Podad przyklad wyprowadzenia dowolnego slowa generowanego przez grama-
tykg G o dtugosci wigkszej od 2.
c) Stosujgc zasadq rekursji strukturalnej, zdefiniowac funkcje lefi(a), ktora dla do-

wolnego napisu a eL(G) okreSla liczbQ lewostronnych nawiaséw wystgjuj”-
cych w napisie a.

d) Stosujrc zasadq indukcji strukturalnej, pokazac, ze dla dowolnego napisu
aeL (G) zachodzi nastgpujXca wlasnosc:

lefi(d) - liczba operatoréw binamych wystgpujXcych w napisie a.
13. Dia gramatyki G z przykladu 9.11 zdefmiowac funkcjQ, ktdra oblicza liczbq:

a) wystgpieri zmiennych w slowie jgzyka generowanego przez gramatykq G,
b) liczb? roznych zmiennych wystQpuj*cych w slowie jgzyka generowanego przez
gramatyk” G.

14. NastqpujXce formuly oraz ich negacje sprowadzic do koniunkcyjnej (CNF) i do
dysjunkcyjnej (DNF) postaci normalnej:
a)((@a=>t)vc)o (iac),
b) -i(a Ab)=>(bv —ic),
c)(@a=>b)v (b=>a).

10. Rachunek kwantyfikatorow

10.1. Skladnia

Rachunek kwantyfikatoréw jest uogdlnieniem rachunku zdan. JQzyk formalny rachun-
ku kwantyfikatorow jest zdefiniowany jako zbidr napiséw dwdch kategorii - terméw
i formul - nad alfabetem, na ktory skiadajg. siq nastgxijgce kategorie jednostek leksy-
kalnych:
 przeliczalny zbiér V symboli zmiennych indywiduowych, reprezentowanych
przez identyfikatory; dalej najczgsciej b$d*uzywane Symbole: x, vy, ...,
 przeliczalny zbior F,, symboli funkcyjnych n-argumentowych dla neNat, repre-
zentowanych przez identyfikatory; dalej najczQsciej bqgdg. uzywane Symbole:
c - dla symboli funkcyjnych zeroargumentowych, czyli dla stalych indywidu-

owych, orazf g, .. - dla pozostalych symboli funkcyjnych, zbiér wszystkich
symboli funkcyjnych b"dzie oznaczany F = O -
/!€Ncil

 przeliczalny zbi6r P,, symboli predykatéw «-argumentowych dla neNat, repre-
zentowanych przez identyfikatory; predykaty zeroargumentowe (co najwyzej
dwa) s” nazywane stalymi logicznymi; dalej najcz”sciej bqd” uzywane Symbole
p, q,..., zbidr wszystkich symboli predykatéw b~dzie oznaczany P = [J*,,
neNat
» Symbole sp6jnikdéw logicznych:
implikacji =
koniunkcji a
dysjunkcji (lub alternatywy) %
negacji —+
réwnowaznosci 0
* Symbole kwantyfikatoréw:
kwantyfikatora og6lnego
kwantyfikatora szczegébwego

w <<

» Symbolepomocnicze:
nawias otwierajqcy
nawias zamykajgcy)

—~

przecinek
kropka

Zaklada sig, ze zbiory symboli funkcyjnych F i symboli predykatéw P se rozleczne.
Para
Sig =def<F, P>

bgdzie nazywana sygnaturq jgzyka rachunku kwantyfikatorow. Rachunek kwantyfi-
katoréw okresla nie jeden konkretny jgzyk, ale rodzing jgzykéw. Kazdy jgzyk jest
jednoznacznie wyznaczony przez sygnaturg. Skladnia i semantyka rachunku kwanty-
fikatorow jest definiowana przy zalozeniu dowolnej, ale ustalonej sygnatury. Dobér
odpowiedniej sygnatury wynika z zamierzonego zastosowaniajqgzyka.

Reguly sktadni defmiuje dwa zbiory napiséw - termy i formuly - nad alfabetem ra-
chunku kwantyfikatordw.

Zbidr termdw nad sygnatury Sig i zbiorem zmiennych V, oznaczany TERM(F, V), jest
definiowany rekursywnie w sposob nastgpujecy:
» zmienne indywiduowe i stale indywiduowe se termami, czyli

VuFOcTERM(F, V)
e jezeli t\, .., tk (k = 1, 2, ..) se termami, a/ jest symbolem funkcyjnym
A:-argumentowym, tof{t\..... tk) jest termem.

Term, ktory nie zawiera zmiennych indywiduowych nazywa sig termem statym.

Uwaga

Zbior termdw wyznacza pewne algebry omdwione w rozdziale 8.
Zbidrformul nad sygnatury Sig i zbiorem zmiennych indywiduowych V, oznaczany
FORM(F, P, V), jest definiowany rekursywnie w spos6b nastqpujecy:

1. Symbole predykatdw zeroargumentowych (stale logiczne) se formulami;

2. jezeli t\, .., tk(k=1, 2, .., k) se termami oraz /»jest symbolem £-argumentowego
predykatu, to formulyjest napis p{t\, ..., tk\

3. jezeli a, B se formulami, to formulami s*takze napisy:
->a (a=>R) (aa B) (crvR) {a<">R)

4. jezeli orjest formuly oraz x jest zmienne indywiduowe, to formulami setakze:
(3x* a) oraz (Vxe a)

Formuly spelniajece podane wyzej warunki (1) i (2) nazywa siq formulami atomowy-
mi, formuly spelniajqce pozostale warunki - formulami zlozonymi.

Zbior formul FORM(F, P, V) jest jazykiem formalnym rachunku kwantyfikatorow
0 sygnaturze <F, P> nad zbiorem zmiennych V.

Uwaga
W celu zredukowania liczby nawiaséw konwencjq przyjqt” dla rachunku zdan roz-
szerza siq o ustalenie priorytetow dla kwantyfikatoréw. Przyjmuje sig, ze kwanty-
fikatory maj” priorytet nizszy od sp6jnikéw logicznych. Oznacza to, ze formula
zapisana w postaci beznawiasowej

Hxe (XARvV y

gdzie: a, B, y s" dowolnymi jej podformulami, w postaci z nawiasami przedstawia
sig nastgpujqco:

Hxe ((«kARB) v Y)

Kwantyfikatory wystgpuj”ce obok siebie I*cz*w prawo, to jest formula

Hxe Hye a
oznacza
Hxe (Hy +)

Formula 6rwystgpuj*ca po kwantyfikatorze w formule Hx.6f lub Vx.a nazywa siq za-
siggiem kwantyfikatora. Symbol x wystgpuj*cy bezposrednio za symbolem kwantyfi-
katoréw nazywa sigq wskaznikiem zwigzania. Symbol wskaznika okresla rolq zmiennej
x wystgpuj~cej w formule a, stanowi”cej zasiqg kwantyfikatora.

W zdefiniowanym jgzyku kwantyfikatory wi*z”jedynie zmienne indywiduowe, dlate-
go jgzyk ten nazywa sigjgzykiem kwantyfikatoréw pierwszego rzqdu. W logice rozpa-
truje siq takze inne jgzyki, ktdre dopuszczajg. witzanie przez kwantyfikatory innych
obiektéw, na przyklad rachunek kwantyfikatoréw drugiego rzqdu dodatkowo pozwala
na wi”zanie przez kwantyfikatory symboli predykatéw. Dalsze rozwazania ogranicza-
j" siqwylqcznie do rachunku kwantyfikatoréw pierwszego rzqdu.

10.2. Indukcja i rekursja strukturalna

Indukcja strukturalna jest podstawow” technik” dowodzenia wlasnosci termow i for-
mul. Przedstawiona dla rachunku zdan zasada indukcji strukturalnej rozszerza siq na
termy i formuly rachunku kwantyfikatoréw.

Twierdzenie 10.1 (Zasada indukcji strukturalnej dla termow)

Niech P(t) bgdzie pewn” wlasnosci® zachodz”c” dla termu te TERM{F, V). Aby
pokazac, ze wlasnosc P zachodzi dla kazdego termu rachunku kwantyfikatoréw,
wystarczy pokazac, ze:

krok poczqtkowy: wlasnosc P zachodzi dla kazdej zmiennej xe V, czyli P(x),

krok indukcyjny:
jezeli wlasnosc ta zachodzi dla terméw tu ..., t,, czyli P(tY), ..., P(t,,), orazfeF,,,
to wlasnosc ta zachodzi dla termuf{t\, ..., t,,), czyli P (f(t\, mm(,))m

Twierdzenie 10.2 (Zasada indukcji strukturalnej dlaformul)

Niech P(ct) bgdzie pewn” wlasnosci®. zachodz”c” dla formuly aeFORM (F, P, V).
Aby pokazac, ze wlasnosc P zachodzi dla kazdej formuly rachunku kwantyfikato-
row, wystarczy pokazac, ze:
krokpoczqgtkowy: wlasnosc ta zachodzi dla kazdej formuly atomowej,
krok indukcyjny.
* jezeli wlasnosc P zachodzi dla formuly a, to zachodzi takze dla formuly -ia,
* jezeli wlasnosc P maj® a oraz B, to ma j*takze formula (a »R), gdzie
.e {a, v, =>, <3} oznacza dowolny binamy spdéjnik logiczny,
* jezeli wtasnoso P zachodzi dla formuly a, a x jest zmienn”. indywiduow”, to
P zachodzi takze dla formuly Vx ¢ ororaz dla Hx ¢

Wykorzystujqc indukcjq strukturaln”, mozna pokazad, ze termy i formuly dekomponu-
j7si” jednoznacznie na komponenty skladowe.

Lemat 10.1

Niech t oraz s b$d” termami. Jezeli ts s w dla pewnego slowa nad alfabetem ra-
chunku kwantyfikatoréw, to w jest slowem pustym. Inaczej: zaden term nie jest
wlasciwym prefiksem (niepustym pocz”tkowym fragmentem) innego termu.

Dowdd
Zgodnie z zasad” indukcji strukturalnej rozpatruje siq kolejno przypadki. Jezeli
t jest zmienn” indywiduowEi, to t nie ma prefiksu wtasciwego. Zaklada siQ teraz,
bez utraty ogdlnosci, ze / jest postacif(t\, ..., tn) oraz ze t ='s w dla pewnego slowa
w, wowczas s musi byo postacif(s\,..., s,,) w. Dla kazdego i = 1,..., n termy t, oraz
Sj 3. elementami sktadowymi termu t. Na mocy zatem zalozenia indukcyjnego -
ani th ani s, nie s" swoimi prefiksami, z czego wynika, ze t, s s,. To poci*ga, ze
w =g, z czego ostatecznie wynika identycznosc t =s. m

Lemat 10.2

Niech ororaz B bQd3.dowolnymi formulami. Formula ornie jest wlasciwym prefik-
sem formuly .

Dowdd
Dowdd przebiega tak jak dla poprzedniego lematu i pozostawia si$ go jako cwi-
czenie. -

Na podstawie lematéw mozna dowiesc twierdzenia o jednoznacznosci dekompozycji
termdéw i formul.

Twierdzenie 10.3 (Twierdzenie o rozbiorze)

1. Kazdy termjest albo zraienn” albo stafy, albo termem zlozonym postacif(t\,..., t,)),
gdzie:/ jestjednoznacznie okreslonym symbolem fiinkcyjnym, at\, t,, s"jed-
noznacznie okreslonymi termami.

2. Kazda formula ma dokladnie jedn” z postaci:

a)p(tu...,tn

b) ->a

c) (or°R) dla»e {a,v, =>, <3}

d) Qx < ordla Qe {V, 3}
Twierdzenie umozliwia jednoznaczne rekursywne definiowanie funkcji na zbiorach
termdéw i formul.

Przyklad 10.1

A Funkcja | t | okreslajgca dlugosc termu t, rozumiana jako liczba jednostek leksylJ
kalnych wchodz”cych w sklad termu, jest definiowana nastqpuj”co:

<0 1M defl
I b) ¥("»-» Q I=cfUi 1+ - + 11,1+ n+ 2 |

Podobnie, jak dla rachunku zdan, mozna réwniez definiowac rekursywnie funkcje
okreslone na termach i formulach rachunku kwantyfikatorow.

Twierdzenie 10.4 (Zasada rekursji strukturalnej dla termow)

Nast*puj™cy sposdb postgpowania definiuje jednoznacznie funkcjQ g okreslona na
zbiorze terméw TERM{F, V):

krok poczqtkowy: na termach elementamych (zmiennych i stalych indywiduowych)
funkcja g jest okreslona bezposrednio,

krok indukcyjny: wartosc funkcji g dla termdw zlozonych jest okreslona posrednio:
wartosc funkcji dla termuf(t\, ..., t,) jest okreslona w terminach wartosci funkcji
na termach skladowych t\, ..., tn.

Twierdzenie 10.5 (Zasada rekursji strukturalnej dlaformul)

NastQpuj*cy sposdb postgpowania definiuje jednoznacznie funkcja g okreslona na
zbiorze formul FORM (F, P, V):

krok poczqtkowy. na formulach elementamych funkcja g jest okreslona bezpo-
srednio,
krok indukcyjny: wartosc funkcji g dla formul zlozonych jest okreslona po-
srednio:
 wartosc funkcji g na formule —Qrjest okreslona w terminach wartosci funkcji g
na formule o,

» wartosc fimkcji g na formule (a °R), gdzie «e {a, v, =>, <} jest okreslona
w terminach wartosci na formulach aoraz 3,

» wartosc fimkcji g na formulach Vjce ororaz dla 3x ¢ «jest okreslona w termi-
nach wartoSci na formule a.

Przyklady rekursywnego definiowania funkcji na termach i formulach rachunku kwanty-
fikatoréw sqprzedstawione w kolejnym podrozdziale.

10.3. Zmienne woine i zwigzane

Zmienna indywiduowa x moze wystQpowac tekstowo w wielu miejscach termu lub
formuly. Kazde takie pojawienie sie zmiennej - poza miejscem bezposrednio za
kwantyfikatorem i przed kropkq, gdzie okresla sie wskaznik wigzania - nazywa sie
wystgpieniem zmiennej.

Wystgpienie zmiennej w danej formule moze byd wolne albo zwigzane.

Wystgpienie zmiennej w danej formule nazywa sie wystgpieniem wolnym, jezeli wy-
stgpienie to nie znajduje sie w zasiegu zadnego kwantyfikatora, natomiast w przypad-
ku przeciwnym - nazywa sie wystgpieniem zwigzanym. Ta sama zmienna moze
w danej formule mied jednocze8nie wystgpienia wolne i zwigzane.

Przyklad 10.2
I Danajest formula I
p(x,y)=>3x» q(x,y)
gdzie: p, q sq pewnymi dwuargumentowymi predykatami. Zmienna x ma dwa
wystgpienia. Pierwsze wystgpienie - jako argument predykatu p -jest wystgpie-
niem wolnym, drugie - jako argument predykatu q - jest wystgpieniem zwigza-
| nym. Zmiennay ma tez dwa wystqgpienia - oba wolne. i

Niech V bqgdzie zbiorem zmiennych indywiduowych. Definiuje sie funkcje, kfore dla
dowolnej formuly wyznaczajg podzbiory zmiennych majgce wystgpienia wolne
i zwigzane. Najpierw definiuje sie pomocniczq funkcje

Var: TERM(F, V)">2v

ktora dla dowolnego termu wyznacza zbidér zmiennych wystepujgcych w tym termie.
Funkcjajest zdefiniowana rekursywnie:

1. Var(c) =def0 dla cgF0

2. Var(x) =der {*} dlaxe V

3. Var{f(t\, ..., tnj) =def Var(ti) u ... u Var(tn) dlafsF n(n= 1,2,...)

Term t, ktory nie zawiera zmiennych indywiduowych, czyli dla ktérego Var(t) = 0,
jest termem statym.

Funkcja wyznaczaj™ca zmienne maj”ce wolne wystgpienia w formule jest fimkcj*typu
FV:FORM(F, P, V) ->2V
i jest zdefiniowana rekursywnie nastqpuj”co:
LFV(p(tu ..., tK) =def Var{t\) u ... u Var(tk
2. FV(—Q) =def FV(oft
3. FF(or.R) =dfFV(d) u FV(R)
gdzie °oznacza dowolny binamy spdjnik logiczny, czyli°e (a,v, =>, <3}
4. FV{Qx* c?)=aetFV (ct)\{x}
gdzie Q oznacza dowolny kwantyfikator, czyli Qe {V, 3}
Funkcja wyznaczaj”*ca zmienne majqce zwi”zane wyst”pienia w formule jest funkcjatypu
BV :FORM{F, P, V) ->2K
i jest zdefiniowana rekursywnie nastgmj~co:

1. BV{p[i\......tk)) =0
2. BV(r.ct) =cf5F(0)
3.5F(a.) =defBV(84) u BV(R)
gdzie °oznacza dowolny spdjnik logiczny, czyli -e (a, v, =>, <>}
4. BV{Qx « ct) =def5F(6) u {x}
gdzie g oznacza dowolny kwantyfikator, czyli Qe {V, 3}

Przyklad 10.3
A Dia formuly orpostaci
P(x,y) = Vx «Vz e+ (?2(X) a p(X, 2))
zbiér zmiennych maj*cych wyst"pienia wolne jest nastgpuj™cy:
FF(©) =FV(pX,Yy)u FF(VXx «Vz e (#(X) ap(X, 2)))
= {xy} u FV(a(x) ap(x, 2)){x, z}
={xy}uo
= {7}
a zbiér zmiennych maj~cych wyst*pienia zwi”zane jest nastgpujqcy:
BV(ct) =BV(p(x,y) u 5F(Vx e+ Vze (q(X) a/?(x, 2)))
=0 U {x z} u BV(Q(x) ap(x, 2))
= {",A

Formula zawieraj*ca wolne wyst"pienia zmiennych nazywa siq formuly otwartq. Za-
mknigciem formuly otwartej nazywa siq formulg otrzyman” przez poprzedzenie danej
formuly otwartej kwantyfikatorami og6lnymi, wigzgcymi wszystkie jej zmienne wol-
ne. Formula zamkniqta jest zdaniem, czyli ma jednoznacznie okreslon”™ wartosc lo-
giczn”™: prawda albo falsz.

Przyklad 10.4
Formulami otwartymi s™;
Vx e p(x,Y)
VX *Vy = (q(x) =>/>(y, 2))
Formulami zamkniQtymi (zdaniami) s™:
VX ¢ q(x)
: Vx Vy ¢ (q(x) ap(x,y))

10.4. Podstawianie termowj

Podstawieniem tekstowym termu za zmienne - albo krétko - podstawieniem nazywa
si$ funkcjQ

er: V—=TERM(F, V)
tak”, ze zbidr
(xe V] o(x) " x}

jest skonezony. Zbior ten bgdzie nazywany dziedzin” podstawienia i oznaczany przez
dom(d).

Funkcja erjest podstawieniem tozsamosciowym jezeli dom(&) = 0. Podstawienie takie
bqdzie oznaczane symbolem e. Podstawienie nazywa si$podstawieniem podstawowym
albo staiym, jezeli przeciwdziedzina ran(o) funkeji podstawienia zawiera tylko termy
stale.

Jezeli dom(cr) = {Xi, ..., x,,} oraz cr(x,) = t,, dlai= 1,2, .., n, to funkcjq er zapisuje si$
w postaci

er —eef [N 0 ..,xn)\

Zapis xj ::= tt czyta si$: x, jest zastgpowaneprzez t,. Element x- ::= “nazywa sigprzy-
pisaniem albo wigzaniem, dlatego podstawienie okresla si$ tez jako skonezony zbidr
przypisan albo wi”zan.

Podstawienie er mozna rozszerzyc na zbioér formul. Najpierw rozszerza si? je na zbi6r
termow, to znaczy do odwzorowania

<f : TERM{F, V) -> TERM(F, V)
przyjmujqc
0'(x) =defo(x) dlaxe V
... 0)=deffW h), ..., <X(0)
W kolejnym kroku rekursywnie rozszerza si? odwzorowanie er' na odwzorowanie er':
FORM(F, P, V) —FORM(F, P, V) w nastQpuj"cy spostb:
1 er"(tu .., t,)) =defP(ff'(<i), =, cr'(4))
2. er"(-i6i) =def-<0"(a)
3. 0"((a°R)) =def(er"(a)’er"(/?))
gdzie °oznacza dowolny spdjnik logiczny, czyli °e {a, v, =>, <3}
4. er"(Bxe ct) =defQ x* d"(4)
gdzie: Q oznacza dowolny kwantyfikator, czyli Be {V, 3}, a er" jest obci?ciem
funkcji er" do zbioru zmiennych wolnych w formule x ¢ a, czyli 0" = o "\f/x.

Oznacza to, ze w formule 8 x « drmog” nast”pic przypisania tylko za wolne wy-
stE(pienia zmiennych.

Dalej, w celu uproszczenia oznaczen, wszystkie Symbole podstawienia b?d” pisane
bez 'oraz ". Ponadto, ze wzgl?du na wygod?, zastosowanie podstawienia er do termu
t b?dzie zapisywane w postaci to oraz - podobnie - zastosowanie do formuly a
w postaci ao. Formul? ao b?dzie si? nazywac ukonkretnieniem formuly orprzez pod-
stawienie o.

Przyklad 10.5
* Niech er=def[x :=t\,y :=tA oraz a =Vz -« (p(x,Y, z) =>q(x, 2)) |
wowezas

[ao = (Vz»(p(x,y,2)=>q(Xx,2)))[x ::=tuy \:=t4=Vz « (p(tut2z) =>q(tuz)). [

Niech o oraz Th?dgq. dwoma podstawieniami. Zlozenie podstawien eroraz rjest defi-
niowane tak samo jak skladanie funkcji. Jest zatem podstawieniem oznaczanym przez
cr-T- albo krotko err - i zdefiniowanym nastQpuj”co:

(er2)(x) =defr(o(x)) dlaxe V.

Jezeli podstawienie erjest takie, ze istnieje dla niego podstawienie odwrotne er-1 ta-
kie, ze

erer~‘= 0 xo= e

to Jjest nazywane przemianowaniem zmiennych. Term t\ nazywa siQ wariantem ter-
mu t2 jezeli istnieje takie przemianowanie a,zet\ = <f(2).

Podstawienie er nazywa si$ podstawieniem idempotentnym, jesli o(o(x))=o(x) dla
dowolnego xe V.

Term tjest wolny wformule aze wzglgdu na zmiennq x, gdy zachodzi jeden z wa-
runkow:
1. arjest formul” atomow”,

2. a= \Boraz term /jest wolny w B ze wzgl*du nax,

3.a =Bx.R2 gdzie °e {a, v, =>, <=>}oraz term / jest wolny w B\ oraz w 2 ze
wzgl~du nax,

4. a= Qx-eR,

5 a=Qy-B,x*y, Qg {V,3},yg Var(t) oraz term /jest wolny w 3 ze wzgl*du nax.

Inaczej: term /jest wolny w formule aze wzglgdu na x wtedy, gdy podstawienie / za x
w formule arnie powoduje, ze ktdras ze zmiennych wystqDuj*cych w termie / stanie
si$ zmienng zwi~zan”.

Przyklad 10.6
| Danajest formuta
P(x,y) =>V* < Vz+ (q(x) ap(y, 2))
Termf(x) jest wolny w tej formule ze wzgl$du na x, ale nie jest wolny ze wzglg-
du nay, gdyz po zast*pieniuy przez termf(x) otrzymano by formut$ postaci
P(f(y). y) =>Vx - Vz+ (q(x) ap(f(x), 2))

w ktorej podkreslone wystgpienie zmiennej x staloby siQ wystgpieniem zwi”za-
nym. Term g(y, w) natomiast jest wolny w formule zaréwno ze wzglgdu na x, jak
| inay. |

W dalszym ci”gu, dokonujqc podstawienia Sw formule a, b$dzie zawsze wymagane,
by dla dowolnej zmiennej xedom(d) odpowiadaj™cy jej term a(x) byl wolny w aze
wzgl~du na x.

10.5. Semantyka

Rachimek kwantyfikatoréw, stanowi”c uogdlnienie rachunku zdan, przejmuje znacze-
nie przypisywane spdjnikom logicznym zgodne ze standardowq. interpretaej”.

Sposdb opisu semantyki rachunku kwantyfikatorow jest podobny do opisu semantyki
rachunku zdan. Opis rozpoczyna siQ ustaleniem dziedzin semantycznych, w ktdrych

bgdzie wyrazane znaczenie elementéw jQzyka - term6w i formul, a nastqpnie okresla
si$ interpretacji symboli funkcyjnych i predykatywnych. Oba te elementy - dziedziny
semantyczne i interpretacja symboli funkcyjnych i predykatywnych - stanowi” model
interpretacji. Po ustaleniu modelu interpretacji definiuje siQ znaczenie najpierw ter-
mow, a nastqpnie formul.

Dziedziny interpretacji dla formul - tak jak w rachunku zdan - jest zbior wartosci
logicznych Logiczne. Dziedzina interpretacji termdw moze siq natomiast skladac
z wielu réznych zbioréw wartoSci Du ..., Dm(m > 0) - mowi siq, ze dziedzina jest
wielorodzajowa. W dalszych rozwazaniach, oprocz niektdrych przykladéw, dziedziny
szczegblowe nie bgd” rozrézniane. W celu uproszczenia prezentacji zaklada sii, ze
istnieje jedna wspdlna dziedzina D stanowic mnogosciow” sumq dziedzin szczego-
lowych. Dziedzina tajest rozl*czna ze zbiorem wartosci logicznych.

Uwaga
Rozrdznienia dziedzin interpretacji dokonuje sig w rachunku kwantyfikatoréw
Z typami.
Nowymi elementami, ktére wymagaj~dodatkowej interpretacji, s%Symbole funkcyjne
oraz predykatywne. Symbolom funkcyjnym b$d” odpowiadaly pewne funkcje, symbo-
lom predykatywnym - pewne relacje w ustalonej dziedzinie interpretacji. Poniewaz
dowoln”relacjg mozna w réwnowazny sposob przedstawic za pomoc”jej funkcji cha-
rakterystycznej, dlatego symbolom predykatywnym b~d” réwniez przyporz*dkowy-
wane funkcje, ale o wartosciach w zbiorze Logiczne.

Uwaga
Przypomnijmy, ze dla relacji R ¢ Dtx ... xDn(n> 1)jej funkcja charakterystyczna
fR:Di x ... x D,, —Logiczne
jest zdefiniowana nast™puj”co:
fRdu ..., d,,) = P wtedy i tylko wtedy, gdy <du ..., d,,>€R.

Woprowadza si$ funkcje interpretacji symboli funkcyjnych i predykatywnych I, okre-
slon”na zbiorze symboli F u P tak”, ze:
* jezelifeF n dla neNat, to /(/) :/>"—»D jest w-argumentow” funkcje, w szcze-
g6lnym przypadku, gdy/jest stal®, czylife FQ,1(f)eD,
e jezeli pePn, dla neNat, to I(p) : LF -» Logiczne jest n-argumentow” funkcje
o wartosciach logicznych.

Poniewaz zostala wprowadzona jedna wspdlna dziedzina interpretacji D, funkcje defi-
niowane przez / sg wi$c najcz”sciej funkcjami czgsciowymi.

Para
M= <D, I>

gdzie: D jest niepusti dziedzini interpretacji, a | jest interpretacji symboli funkcyj-
nych i predykatywnych, b"dzie nazywana modelem dla formalnego j*zyka rachunku
kwantyfikatoréw o sygnaturze Sig - <F, P>.

Nast"pny etap definiowania semantyki rachunku kwantyfikatoréw polega na nadaniu
interpretacji dowolnym termom. Pomocniczym poj“ciem - podobnie jak w rachunku
zdan-jest funkcja wartosciowania zmiennych indywiduowych.

Wartosciowaniem zmiennych jest funkcja v o nastgmjqcej sygnaturze:
v: V->D

Niech M = <D, /> b"dzie modelem jgzyka o sygnaturze Sig = (F, P). Kazdemu ter-
mowi t, przy ustalonym wartoSciowaniu v, przyporzidkuje siQ pewni wartoSc
z dziedziny interpretacji D. Wartosc tQ wyznacza funkcja interpretacji termow przy
wartosciowaniu v

INTV: TERM{F, V)->D

zdefiniowana rekursywnie wzglgdem struktury skladniowej zbioru terméw w sposéb
nastQpujqcy:
* jezeli termjest zmienn®indywiduow”xe V, to
INTV(x) =defv(x)
« jezeli termjest postacif(ti , tn), gdziefe Fmorazt\ , t ne TERM(F, V), to

INTV(f(tu O) =def/(fm TILtxI.....INT{Q)

Nalezy zauwazyd, ze interpretacja zmiennych indywiduowych nie zalezy od interpre-
tacji /. WartoSo termow stalych, przy ustalonej interpretacji I, nie zalezy od warto-
sciowania v.

Niech v bgdzie wartosciowaniem, x - zmienni indywiduowi oraz niech aeD. Warto-
sciowanie v[x := a] definiuje sigjako

gdyy =x

v[x =al(y) = w przypadku przeciwnym

Wartosciowanie v [jc := a] jest wisc modyfikacji wartosciowania v, polegajiCi na
przypisaniu wartosci a ustalonej zmiennej x i pozostawieniu niezmienionych wartoSci
przypisanych do pozostalych zmiennym.

Uwaga
Nalezy odrdzniac dwa podobne oznaczenia: [x :=a] oraz [x ::=/]. Pierwsze okre-
sla modyfikacji definicji pewnej funkcji; powyzej odnosi siQ do modyfikacji
funkcji wartosciowania v. Drugie okreSla tekstowi modyfikacji pewnego napisu,
na przyklad termu lub formuly.

Jezeli INT\jest interpretacj\przy pewnym wartosciowaniu v, to niech INT,,[X=n] bqdzie
interpretacj®przy wartosciowaniu v[x := a\.

Rozszerza si$ teraz funkcjg//Vr,, na zbidr formuljako funkcjq
INTV: FORM(F, P,V)-"D

W celu unikni”~cia zbyt wielu oznaczen, funkcja INTVbqdzie oznaczac interpretacjs
zaréwno termow, jak i formul. Interpretacjqformul w modelu M przy wartosciowa-
niu v, definiuje siQrekursywnie wzglQdem struktury skladniowej zbioru formul:

a)INTMh , in)=defKpXINUh),INTJQ)

b) INTJ—d) =def<IINTJd)

c)INTJaa.R)” fINTJId) a INTJIR)

d)INTJav) =de[INTJci) v INTJIR)

e) INTJa=>R) =ie{INTJA) =>INTUR)

)INTJav RB) =d{INTYoC) « INTJIR)

[P gdydladowolnegode D zachodzi INTvV[x=d](a) =P

|F w przypadku przeciwnym
P gdydlapewnego de D zachodzi INTvx_d](a) =P
F w przypadku przeciwnym

Uwaga
Symbole P oraz F s”skrétami wartosci logicznych prawda, falsz. Spdjniki logicz-
ne, wystqpuj*ce po prawej stronie w powyzszej definicji, s rozumiane zgodnie
z ich standardow” interpretacj” przyjQt” dla rachunku zdan. J$zyk rachunku zdan
jest tutaj fragmentem metajqzyka sluzqcego do definiowania j*zyka rachunku
kwantyfikatoréw. Elementami metaj*zyka sq réwniez pojqcia dla dowolnego i dla
pewnego, uzyte w punktach g) oraz h). Nalez*one do jgzyka teorii mnogosci.

Formula arjest spelniona w modelu M dla wartosciowania v, gdy INTJa) = P. Fakt
ten bqdzie zapisywany réwniez w postaci

INTV\=a
Formula ajest spelniona w modelu M, co oznacza siq

M E a
gdy jest spelniona w tym modelu dla dowolnego wartosciowania.

Jezeli formula ornie jest spelnialna w modelu M, bgdzie to zapisywane w postaci

M a
Formula a jest spelnialna, gdy istnieje model, w ktérym jest spelniona.
Formulajest tautologiq, co oznacza siq

Ea

gdy jest spelnialna w dowolnym modelu. Tautologia jest zatem schematem wypowie-
dzi zawsze prawdziwej, niezaleznie od interpretacji przyjqtej dla symboli funkcyjnych
i predykatywnych. Tautologia zaklada, oczywiscie, standardow” interpretacji spojni-
kéw logicznych.

Wprowadzone pojicia spelnialnosci uogdélnia siq na zbiory formul.

Zbior formut (Pjest spelniony w modelu M dla wartosciowania v, gdy wszystkie for-
muly zbioru 0 s” spelnione w tym modelu Afprzy wartosciowaniu v.

Zbidr formul 0 jest spelniony w modelu M, gdy kazda formula tego zbioru jest spel-
niona w tym modelu.

Zbior formul <Pjest spelnialny, gdy istnieje model, w ktérym zbidr ten jest spelniony.

lHustracj® zwi*zkéw pomi~dzy réznymi rodzajami formul przedstawiono na rysimku
10.1: zbidér formul spelnialnych jest oczywiscie podzbiorem formul, a zbidr tautologii
jest podzbiorem zbioru formul spelnialnych.

r

Formuly

Formuly spelnialne
Tautologie

\Y J
Vv -

Rys. 10.1. Zwi”zek pomi~dzy formulami spelnianymi i tautologiami

Niech O b~dzie zbiorem formul oraz a - pojedyncz” formuly. Pisze siQ

0t= a

co czyta si$: formula awynika semantycznie ze zbioruformul 0, albo inaczej:formula
a jest semantycznq konsekwencjq zbioru formul 0, co oznacza, ze kazdy model,
w ktorym s” spelnione formuly zbioru 0 jest réwniez modelem, w ktérym spelniona
jest formula @

Pisze siQ
B\= a zamiast r} N a
oraz
t=a zamiast 0 =a

Pusty zbior formul po lewej stronie symbolu ¥ jest oczywiscie prawdziwy w kazdym
modelu. Zapis ¥ aroznacza zatem, ze arjest tautologi”.

Uwaga
Nalezy zwrécic uwagQ na dwie role symbolu \=. Po jego prawej stronie wystQpuje
zawsze formula, na przyklad a, natomiast po lewej - moze wyst*pic model M lub
interpretacja INTValbo zbior formul <@ W pierwszym przypadku symbol % ozna-
cza, ze formula a jest spelnialna w modelu M Ilub w interpretacji INTV
w drugim - zejest semantyczn” konsekwencj” zbioru formul 0.

Mowi si$, ze dwie formuly a, ¢ s“semantycznie réwnowazne, co pisze si$
a=ng

wtedy i tylko wtedy, gdy
a R oraze t=a

Lemat 10.3
Niech 0 b~dzie zbiorem formul oraz a - pojedynczsi formuly, wéwczas
O0\=a
wtedy i tylko wtedy, gdy zbiér {-ia} jest niespelnialny.
Dowdd

Jezeli zachodzi 0 % a, to oznacza, ze kazdy model, w ktérym jest spetniony
zbior formul 0, jest réwniez modelem, w ktérym jest spelniona formula a. Za-
chodzi to wtedy i tylko wtedy, gdy nie istnieje model, w ktérym s~ spelnione
formuly 0, aw ktérym nie jest spelniona formula a. Ale to z kolei oznacza, ze nie
istnieje model, w ktérym s” spelnione formuly zbioru 0 u{—ér}, czyli gdy zbior
ten nie jest spelnialny. 0 % a zachodzi zatem wtedy i tylko wtedy, gdy zbi6r for-
mul 0 u {-ieg}jest niespelnialny. |

Twierdzenie 10.6 (Twierdzenie o dedukcji)

Niech 0 =def {6Ti, <4 bqgdzie niepustym zbiorem formul oraz & - pojedyncz”
formuly, wowczas

0\=1
wtedy i tylko wtedy, gdy

t= «ia ... A Qnh=>1R

Dowdd

o N zachodzi wtedy i tylko wtedy, gdy w kazdym modelu, w ktérym spelnione
formuly co\, ..., a,. spelniona jest rowniez formula z. To dzieje siQ dokladnie

wtedy, gdy w kazdym modelu, w ktérym jest spelniona formula o\ a ... a a,, spel-

nionajest rowniez formula s, co z kolei zachodzi wtedy i tylko wtedy, gdy

E«ia..aa, = [

Twierdzenie o dedukcji ma wazne znaczenie w sytuacjach, gdy tezy badanych twierdzen
maj” schemat postaci o 1=s. Bezposrednie sprawdzenie czy formula s jest semantyczn™
konsekwencj” zbioru formul o nie jest mozliwe, gdyz ogdlnie oznacza to przebadanie nie-
skonczonej liczby modeli. Twierdzenie o dedukcji umozliwia zast”pienie takiego sprawdza-
nia zbadaniem, czy formula postaci a xa ... a &,=>¢ je si tautologi”. Badanie, czy formula
jest tautologi”™, mozna przeprowadzic, konstruuj“c odpowiedni dowdd wedlug pewnego
systemu dowodowego. W konstrukcji dowodu - co b*dzie pokazane w nastgpnych rozdzia-
lach- wykorzystuje siq wylqcznie przeksztalcenia tekstowe badanej formuly.

Uzyteczn”™ konsekwencj” twierdzenia o dedukcji jest réwnowaznosc stwierdzen:
0u {a} =8 wtedy i tylko wtedy, gdy o IFar=>gs.

Fakt ten wskazuje na pewne podobienstwo symboli 1= oraz =>, nie oznacza jednak, ze
Symbole te maj” takie samo znaczenie. Nalezy zwrdécié uwag? na to, ze Symbol konse-
kwencji t= nalezy do metajQzyka, a symbol implikacji => do formalnego jgzyka ra-
chunku kwantyfikatoréw. Podobna uwaga odnosi siQ do symboli spdjnika rownowaz-
nosci <=>oraz symbolu réwnowaznosci semantycznej =.

10.7. Wybrane prawa rachunku kwantyfikatoréw

Korzystajgc bezposrednio z defmicji interpretacji formul rachunku kwantyfikatoréw,
mozna sprawdzic, ze zachodz” podane ponizej réwnosci semantyczne, nazywane tez
prawamirachunku kwantyfikatorow . Niektdre z nich maj/\tez tl‘adycyjne nazwy.

Jezeli aroraze s™dowolnymi formulami, to tautologiami s” formuly:
= (Vxea)=ar
a=>(3x»a)

Pierwsze prawo wyraza to, ze jezeli dowolna formula jest spelniona dla wszystkich
wartosciowan, to jest rowniez spelniona dla dowolnie wybranego wartosciowania.
Drugi natomiast wyraza to, ze jezeli dowolna formula jest spelniona dla pewnego war-
tosciowania, to znaczy, ze istnieje wartosciowanie, przy ktérym formula ta jest spel-
niona.

Prawa de Morgana
£ (FiIVX e oty <>(3X * -ioy
= (-i3x * op<=> (VX * -iR)

Prawa de Morgana wskazuj® na zwi®zki semantyczne pomi~dzy kwantyfikatorem
ogblnym i szczegblowym. OznaczajX one, ze w rachunku kwantyfikatorow, bez utraty
sily ekspresji j*zyka, mozna sig ograniczyc do poshigiwania siQ tylko jednym kwanty-
fikatorem. Jest to analogia do rachunku zdan, w ktérym - bez utraty ogdlnosci - zbidr
wykorzystywanych spdjnikdéw logicznych mozna ograniczyc do funkcjonalnie pehiego
zbioru spojnikdw logicznych.

Prawa rozdzielnosci kwantyfikatoréw
£ (Vxe QA (VXe*RB) <>(Vxe+ CCAR)
E O (Wxea)v (Vxe/?)=> (Vx e arvR)
E (Bxead)v (3x*B) <>(3xe*av RB)
E (BxcaaB)=(3xe0at)a (3x*R)
Prawa przemianowania kwantyfikatoréw
Jezeliy g FV(ot)\{x} orazy jest zmienn™wolng.w arze wzglqdu na x, to
E O (Vxe o)« (Vye a[x :=y])
E (Bxeod)<>(3y - a[x:=y]

Prawo to pozwala na przemianowanie nazwy zmiennej wi”zanej przez kwantyfikator.
Zmienn” tak™ mozna zast*pic dowoln” inn% zmienn” ktéra nie jest wolna w formule
bgd~cej w zasi*gu kwantyfikatora. Na przyklad formula

(Vxep(x,y) =>q(x)) v (Vy « fix,y) a -,p(x,y))
jest rownowazna formule

(Vzep(z,y) = a{z)) v (VW * r(x, W) a -,p(x, W))
Prawa przestawiania kwantyfikatoréw

E O(VxeVye o) <>(Vye Vxe o)

E (3xe3ye d)<>(3y e 3x - d

= (3xe* Vye o) m>(Vy e 3x ¢ cf)
Prawa wlgczania i wytgczania dla kwantyfikatoréw
Jezeli xg FV(R), to

EFO((Qx* ot)’B)<=>(Qx» a °R)

£ dla-e {a,v, =} 0raz Qe {V, 3}

Prawa rozkladu kwantyfikatorow
E (fix e a=>B) => {{fix » a)=> {Vx * R))
= (Vxea=>R) =>((3x * ct)=>(3x * B))
= (Vxe acal?) <((Vx e et)a(VxeR))

= (BxearaB) =>((3xe* et)a (3x*/?))

E (WxearvVxeRB) =>(Vxearv/?)

E (Bx* erv /?)<=>((3x * et) v(3x*/?))
EO(Vxea<=/?)=>((Vxeet)o (Vxe/?))
E (Vxe a<=>R) =>((3x * ct) <>(3x

10.8. Przedrostkowa postac normalnaj

Niech erbgdzie formuly rachunku kwantyfikatorow.

Definicja 10.1

Formula a znajduje siQ w postaci przedrostkowej normalnej lub w postaci PNF
{Prenex Normal Form) wtedy i tylko wtedy, gdy jest ona w postaci

Qixx»Q2x2* ... Q,x,, *
gdzie: Qu Q2 ..., Qne {V, 3}, aformula B nie zawiera kwantyfikatorow.

CZC]SC 0i Xl* Qix2*® ..QnX,* Nazywa Sis przedrostkiem fOfmUly oc, a8 Nazywa
Si$ m atrycq formuly oc.

Dia dowolnej formuly rachunku kwantyfikatoréw istnieje rownowaznie semantyczna
formula, ktora jest w przedrostkowej postaci normalnej. Jezeli erbqdzie pewn”formu-
lg, to przez PNF{a) bqdzie si$ oznaczac formuly, kttra jest w przedrostkowej postaci
normalnej, i ktérajest semantycznie réwnowazna a.

Ponizej jest przedstawiany algorytm sprowadzania dowolnej formuly do przed-
rostkowej postaci normalnej. Algorytm ten dokonuje jeszcze dodatkowego przeksztal-
cenia, polegajgcego na eliminacji z matrycy formuly spdjnikéw réwnowaznosci i im-
plikacji, a pozostawieniu tylko negacji, dysjunkcji i koniunkcji.

Algorytm sprowadzania do przedrostkowej postaci normalnej

Dane: formula

Wynik: formula PNF{oc).

Procedura: procedura postgpowania polega na etapowym, tekstowym przeksztal-
caniu formuly az Formula posredniajest oznaczana przez R.

1. Pocztkowo przyjmuje si$, ze formula /?jest tekstowo identyczna z a.

2. Eliminuje siQ z formuly R spojnik réwnowaznosci, zastqpuj”c tekstowo pod-
formuly postaci / o 8 formulami postaci (y=> 8) a (8=>y).

3. Eliminuje si* z formuly 8 spojnik implikacji, zastQpuj”~c tekstowo podformu-
ly postaci y=> 8 formulami postaci -i/v 8.

4. Wprowadza si$ znak negacji bezposrednio przed Symbole predykatdw, zastQ-
puj~c (dopdki mozna) podformuly zgodnie z ponizsz” tablicq;

Lp. Podformula zast"powana Formula zastQpujgca

1 8

2 1) —45A —
3 -iSv->y
4 -iVx 8 Hx e+ —i8
5 —3x°8 VX»-i8

5. Dopoki formula & nie jest w przedrostkowej postaci normalnej, przeksztalca
siqj” zgodnie z ponizsz” tablic”:

Podformula Formula Warunek
Lp. zastepowana zastQpujgca zastgpienia
1 (Qx»8)vy Qx»(Svy) xtF Vi)
2 (Qx»8) a y Qx»(8a i) xtFVO)
3 (Vx»<5MVx»j} Vx»(8Af)
4 (Bx«<5)v(3x»)) 3x»(8v i)
5 (6i Qix»Q2y (Sv 1) XiFV(j), y*FV(8)
6 (QiX»S)\(Q2y ?) Q\W»Q2y (.8* i) xeFV(f), yiFV(8)

gdzie Q, 6i, R 2e{V,3}.
6. Formuly PNF(a) definiuje si*jako formulQ R.
Uwaga
Jezeli warunki zastE(pienia bezposrednio nie sei spelnione, to mozna je spelnic

przez przemianowanie zmiennych wi”zanych przez kwantyfikator. Podstaw”
przemianowania jest réwnowaznosc semantyczna: jezeli x<eFV(cc)\{x} orazy jest

zmienn™woln™w arze wzglgdu na x, to
Qx e+ a= Qy -+ a[x ::=y] dla Qe {V, 3}
Przyklad 10.7
Rozpatruje siq sprowadzenie do przedrostkowej postaci normalnej formuly
(3x + a) =>(3y * B)
Na podstawie kroku 3. algorytmu, eliminuj~c implikacjq, otrzymuje siq

-i(8x *a)v (3y * R)

Na podstawie kroku 4. algorytmu, przypadek 4., otrzymuje siq
(Vxe-io) v (3y *R)
Na podstawie kroku 5. algorytmu, przypadek 5., otrzymuje siq
Vxe3ye (-iav R)
| przy czym zaktada sig, ze x<EFV|jR) oraz y<€FV(a).__

10.9. Przyklad j*zyka rachunku kwantyfikatorow

Omawia sig przyklad prostego jgzyka kwantyfikatordw, ktéry wystgpuje w wielu
jgzykach programowania. Jgzyk ma sluzyc do przedstawiania prostych wyrazen
arytmetycznych, o wartosciach ze skonczonego podzbioru liczb calkowitych, i pre-
dykatow okreslonych na tych wyrazeniach. Jego interpretacja jest réwniez zgodna
z interpretacja przyjmowan”w jgzykach programowania.

Alfabetjgzyka sklada sig z:

1. zbioru zmiennych indywiduowych, reprezentowanych przez identyfikatory,
2. zbioru symboli fimkcyjnych zawieraj*cego:
» dwie stale: ZERO, ONE
* jedn” operacjg jednoargumentow”: alt
 cztery operacje dwuargumentowe: add , sub_, mult , div_
3. dwoch dwuargumentowych predykatéw: eq_, less
4. symboli spdjnikdw logicznych: _and_, or_, not_
5. trzech symboli pomocniczych: (),
Sygnaturgjgzyka jest wigc
Sig=<{ ZERO, ONE, _add_, sub_, mult_, div_}, {_eq_, less }>

Wyznaczony zgodnie z sygnatur” Sig zbidr termow zawiera:

1. zmienne indywiduowe oraz stale,
2. napisy postaci:

altt\ (fiaddt?d (t\subtd (t\multtd (t\divt2
gdzie: t\, t2s"termami.

Zbior formul jest okreslony nastgpujgco:
1.jezeli t\, t2s"termami, to formulami $.
(/, eqt?d (t[less t?
2.jezeli a, B s™ formulami, to formulami s takze:
(aand/?) (aorf) nota

Zbidr formul jest ubozszy od pelnego jgzyka kwantyflkatoréw, gdyz nie zawiera
kwantyfikatorow.

Dziedzin” interpretacji termow niech b”dzie zbior:

D =dfInteger u {error}
gdzie

Integer =def {-N,..., 0,..., N} NeNat\{0}
Zbidr Integer reprezentuje typowy skonczony zbidr wartosci reprezentowany przez
odpowiednik typu calkowitego w j*zykach programowania. Element error ma nato-
miast reprezentowac tak zwany blgd abstrakcyjny, powstaj*cy podczas obliczania
wartosci termow. Odzwierciedla to typowy sytuacjQ, ktéra powstaje na przyklad pod-

czas obliczen arytmetycznych w programie, gdy obliczona wartosc wykracza poza
zakres wartosci dopuszczalnych. B/dzie uzywane tez oznaczenie na zbior

Integeremor =definteger u {error}

Interpretacja/ustala przyporz*dkowania:
1. symbolom funkcyjnym funkcje typu:
I(ZERO) : —>Integer
1(ONE): —Integer
I(alt) : Integeraror - » Integeremar
I(add), I(sub), I(mult), I(div) :Integeram —mintegeramr

2. symbolom predykatéw funkcje typu:

I(eq):Integer* —Logiczne
I(less): Integer* —» Logiczne

Stale s”zdeflniowane jako:

I(ZERO) =ef0
I(ONE) =cef 1

Jezeli wartosci”™ ktéregokolwiek argumentu pozostalych operacji jest error, to wyni-
kiem Operacji jest rowniez error. W podawanych nizej definicjach zaklada siqg, ze
argumenty a oraz b seielementami zbioru Integer.

—a ae Integer
I(alt) a =def .
error w przeciwnym przypadku

la+b a-+be Integer
(al(add) b) =cf)
error w przeciwnym przypadku

(a I(sub) b =ckf a-b a-be Integer
error w przeciwnym przypadku

fa*b a*be Integer
(a I(mult) b) =def .
[error w przeciwnym przypadku

. alb albe. Integer
(al(div) b) =cef 1 .
[error w przeciwnym przypadku

(al(eq) b)=cfa=b

(al(less) b) =def a< b
Po prawej stronie powyzszych definicji wystqpuj” Symbole znanych operacji arytme-
tycznych i operacji poréwnan w dziedzinie liczb calkowitych. Symbole te, podobnie
jak Symbole a, b, nalez” do metajQzyka opisuj”*cego semantykQ wprowadzonego jgzy-
ka formalnego.

Zdefiniowany j Qzyk rachunku kwantyfikatoréw nie wprowadza symboli kwantyfikato-
row. Formuly tego jQzyka to odpowiednik napiséw, ktére w j*zykach programowania
okresla siqjako wyrazenia logiczne albo wyrazenia boolowskie. Oczywiscie, wyraze-
nia logiczne w praktycznie stosowanych j*zykach programowania s"na ogol bogatsze,
gdyz operujX szerszym zbiorem termdw oraz symboli predykatow.

Obliczenie wartosci termu
(x mult (ONE addy))

przy wartosciowaniu
v= {<x 4> <y, 5>}
przebiega nastQpuj~co: Zgodnie z defmicji funkcji interpretacji termoéw INTW), przy
zalozeniu, ze wartoS6 Nw zbiorze Integer wynosi 10, otrzymuje siQ
INTY (x mult (ONE addy))) =
INTVY(x) I(mult) INTY (ONE addy)) =
v(x) * (INTYONE) I(add) INTVYy)) =
4*(I(ONE) +v(y)) =
4* (1+5)=4*6 =error
Zgodnie z defmicji funkcji interpretacji formul INTj(d) wartosc formuly
(x less (ONE addy))

przy wartosciowaniu v oblicza siq nastgpuj”co:

INTY (x less (ONE addy))) =
INTUX) I(less) INTY (ONE addy)) =
v(x) < (INTy(ONE) I(add) INTWy)) =
4 < (I(ONE) +v(y)) =
4<(1 +5)=4<6 =P

10.10. Rachunek kwantyflkatorow z réwnosciq

jQzyk rachunku predykatdw moze byc wykorzystywany w réznych konkretnych ce-
lach. W takich przypadkach wprowadzanym symbolom funkcji i predykatdw nadaje
siQ specyficzn” interpretacjs, na przyklad tak, jak przedstawiono to w poprzednim
podrozdziale. Waznym przykladem czQsto spotykanego symbolu predykatu jest pre-
dykat rownosci lub identycznosci. Zawierajgcy ten predykat jgzyk rachunku predyka-
tow nazywa siQ rachunkiem predykatéw z réwnoscig lub identycznosciq. Dwuargu-
mentowy predykat identycznosci, reprezentowany ponizej przez Symbol = ma
wyrazad rownosc wartosci termdéw. Dia wprowadzanego predykatu réwnosci celowo
przyjQto symbol =, aby odrézniac go od symbolu =, wystQpuj*cego w metajgzyku
definiuj*cym semantykq j Qzyka zawieraj*cego symbol =.

Semantyka predykatu - jest zdefiniowana nastQpuj”co:
INTVt, ~ t2 = P wtedy i tylko wtedy, gdy INTjt,) = INTUt2D

Z podanej definicji interpretacji identycznosci wynika, ze ma ona wlasnosci zwrotno-
sci, symetrycznosci i przechodniosci, to znaczy dla dowolnych terméw t\, t2 t2e
TERM(F, V) tautologiami s” formuly:

t\~t\ - zwrotnosc
tx~t2=>t2~ t\ - symetria
t\~t2a<k=h=>h ~ty - przechodniosc

Identycznosc ma ponadto wlasnosc ekstensjonalnosci, wyrazon” przez tautologie:

tN~t12=>(t[x []] <t[x:=1]) - ekstensjonalnosc wzglgdem terméw
tx=t2=> (a[x == tA <>a[x ::=/7) - ekstensjonalnost wzglgdem formul

gdzie: tjest dowolnym termem, a erjest dowoln” formuly.

Wlasnosci zwrotnosci, symetrycznosci i przechodniosci okresla sig mianem specy-
ficznych aksjomatéw teorii opisujgcej identycznoSc. Przez pojQcie teorii rozumie si$
j?zyk formalny wraz z systemem dowodzenia, czyli tekstowego wyprowadzania no-
wyeh formul na podstawie formul-aksjomatoéw.

10.11. Teorie elementarne

Ustalenie konkretnego jgzyka rachunku kwantyfikatorow wi”ze si$ zwykle z zamia-
rem opisu pewnego fragmentu interesuj™cej rzeczywistosci (realnej lub abstrakcyjnej).
J*zyk ma z jednej strony opisywaé te zjawiska czy wlasnoSci, ktdre s” przedmiotem
zainteresowania, a z drugiej strony powinien umozliwiad wyprowadzanie pewnych
wnioskdw.

Konkretnosc j$zyka oznacza ustalenie jego sygnatury, czyli skladni, oraz ustalenie
jego modelu interpretacji, czyli semantyki. Wybrany fragment rzeczywistosci ma
zwykle specyficzne wlasnosci, ktére mozna wyrazic w postaci pewnych formul
w ustalonym j*zyku. Formuly takie nazywa si$ aksjomatami i to formuly spelnio-
ne w ustalonej interpretacji jgzyka.

Whioski, jakich wyprowadzenia siq oczekuje, maj” byc formulami stanowigcymi lo-
giczne konsekwencje przyjqtych aksjomatow. PojQcie zbioru konsekwencji jest defi-
niowane nastQpuj”co:

Jezeli 0 jest zbiorem formul, to jego zbiorem konsekwencji semantycznych (logicz-
nych) jest zbiér formul:

Con(0) =def {aeFORM(F, P, V)\O N a)

Zhior konsekwencji jest zatem zbiorem formul spelnionych w interpretacji, w ktorej
spelnione s"aksjomaty.

Zbior konsekwencji logicznych ma nastgmjgce wlasnosci:

« 0cCon(0)
» Jezeli 0jc 02,to Con(0\) c Con(0j).
» Con{Con(0)) = Con(0)

Uwaga
Druga z wlasnosci wyraza monotonicznosc konsekwencji logicznej. Jest to wazna
wlasnosc, ktorej nie maj” niektore logiki nieklasyczne, maj*ce zastosowanie miQ-
dzy innymi w budowie systemdw ekspertowych. Oznacza to, ze w przypadku dol”-
czenia do zbioru aksjomatow dodatkowego aksjomatu moze si$ okazac, ze nie
wszystkie wczeshiej wyprowadzone konsekwencje pozostan”® konsekwencjami
rozszerzonego zbioru aksjomatow.

W szczegdlnosci zbior wszystkich tautologii to Con(0), co oznacza, ze zbidr tautolo-
gii jest podzbiorem Con{0) dla dowolnego 0.

Do efektywnego wyprowadzania nowych formul na podstawie formul-aksjomatéw
sluzy pewien System dowodowy. Istot” tego systemu jest to, ze wyprowadzenia no-
wych formul dokonuje si$ na podstawie tekstowego przetwarzania formul, bez analizy
semantycznej. Na System dowodowy skladaj” si$ dwa elementy - pewien zbi6r for-
mul, nazywanych aksjomatami, oraz zbiér regul wnioskowania. Systemy dowodowe
b$d” omawiane w nastgpnych rozdzialach.

Definicja pewnej teorii polega na wprowadzeniu jej aksjomatow specyficznych. Przy-
kladem takiej teorii jest teoria relacji mniejszosci.

Przyklad 10.8

A Teoria jest oparta na dwoch predykatach: réwnosci i mniejszosci, reprezentowa-
nych przez Symbole ~ oraz <. Symbole te przyjqto tylko na uzytek rozwazanego
przykladu, aby podkreslic ich ogélnosc i nie kojarzyc wyl”*cznie z konkretn”
dziedzin®, na przyklad z réwnoScici i mniejszosci® w dziedzinie liczb. Teoria jest
w pelni zdefiniowana przez podane nizej grupy specyficznych aksjomatow.

Pierwsza grupa aksjomatdw jest powtdrzeniem wyzej sformulowanych wtasnosci
i oznacza, ze rdwnosc jest relacja réwnowaznosci, czyli dla dowolnych zmien-
nych indywiduowych x,y, z zachodzi:

VX» X ~ X
VX»Vy»X=y=>y =X
VXeVyeVzex=yAy =z=>x=y

Druga grupa okresla, ze relacja réwnosci nie zmienia innych predykatow,
w tym przypadku zachowuje relacja mniejszosci:

VX»Vy»VzZyXx=yAx"Nz:=>yXz
VXeVyeVz*x=y Az-<x=>z-<y

Aksjomaty nastQpnej grupy oznaczaj” ze relacja mniejszosci jest relacja scislego
porz~dku, to znaczy jest antysymetryczna, przechodnia i spdjna:

VX e Vy e X &y =>-i(y <X)
VX Vy »Xx-<yAy-<z=>x-<z
VX»VYy»VzZ»X~yVX-<yVvy-<X

Ponadto jest porz*dkiem gqgstym, to znaczy ze miqdzy dwoma elementami x, y ta-
kimi, ze x <y, istnieje jeszcze trzeci element z taki, ze x <z oraz z <y\

VX»Vy»X-<y=>3z»X-<ZAZ-<y
Nie istnieje dla tej relacji element najmniejszy, ani najwi*kszy:
X »Vy»X=yvx-<y

—A3X»Vy»X=yvyXX |

Rozpatruje siq jeszcze inny przyklad teorii wprowadzajgcej specyficzne aksjomaty.
Jest to teoria Peanalopisuj”ca liczby naturalne.

Y Giuseppe Peano (1958-1932).

Przyklad 10.9

Teoria liczb naturalnych Peana jest rozszerzeniem teorii nastgpnika. Teoria na-
stgqpnika jest oparta na symbolu jednej stalej 0, jednego symbolu funkcyjnego
jednoargumentowego succ oraz symbolu poprzednio zdefiniowanego predykatu
rownoSci = Lista aksjomatow teorii, oprocz aksjomatéw definiujicych réwnosc,
jest nast™pujica:

VXe3yey~X

Vx o =340 - succ(x))

Vx ¢ Vy » succ(x) ~succ(y) =>x =y

(6f[x 0] a Vxe ar=>a[x :=s«cc(X)]) =>Vx e+ a

Ostatnia formula nie jest aksjomatem, lecz schematem aksjomatu, gdyz wystqpu-
jica w niej formula a moze byc dowolni formuli rachunku kwantyfikatorow.
Jestto - omowiony juz wczesniej - schemat indukcji.

Teoriq liczb naturalnych Peana jest System arytmetyki naturalnej, wprowadzajicy
dodatkowy zestaw aksjomatow charakteryzujicych dzialania dodawania i mno-
zenia, reprezentowanych symbolami + oraz *

VXxex+0~Xx
Vx ¢ Vy ¢ x + succ(y) ~ succfx +y)
Vxex40~0
| VxmVyex*succ(y) ~x «y + X |

W teorii z dodatkowymi aksjomatami specyficznymi nabiera wlasciwego sensu pojg-
cie konsekwencji semantycznej. Jezeli arjest pewni formuli, a <?jest zbiorem aksjo-
matdw, to mozna pytac czy <P\= a. Formula érmoze byc konsekwencji aksjomatéw
teorii, ale nie musi byc tautologii W takim przypadku oznacza to, ze arnie jest spel-
niona we wszystkich modelach rachunku kwantyfikatoréw, ale tylko w tych mode-
lach, ktore akceptuji szczegdlIni interpretacjg pewnych symboli predykatéw lub funk-
cji wyrazoni przez aksjomaty. Na przyklad w teorii relacji mniejszosci konsekwencji
semantyczni zbioru j ej aksjomatéw jest formula

VX o3y oy <X

10.12. Teorie nieelementarne

Przedstawione wyzej przyklady si przykladami teorii elementarnych. Za elementami
uwaza siQ teoriQ, ktéra powstaje przez doliczenie do jgzyka rachunku kwantyfikato-

row specyflcznych aksjomatow charakteryzuj*cych specyflczne Symbole funkcji
i predykatéw, ale ktdra nie zawiera pojqcia przynaleznosci elementu do zbioru oraz
w ktdrej nie mozna méwic o dowolnych zbiorach rozwazanych elementéw. Przykla-
dem teorii nieelementamej jest arytmetyka liczb naturalnych.

Przyklad 10.10
' Teoriatawprowadza - tak samo jak elementama arytmetyka Peana - Symbole stalej O,
funkcji nastgsnika succ oraz symbol predykatu rownosci =. Ponadto wprowadza Sym-
bol zbioru liczb naturalnych Nat, Symbol jednoargumentowego predykatu IsSet(z), kto-
ry stwierdza czy z jest zbiorem, oraz Symbol dwuargumentowego predykatu przyna-
leznosci elementu do zbioru xez. Aksjomatami tej teorii s wszystkie aksjomaty teorii
zbioréw zdefiniowane w podrozdziale 4.1 oraz formuly:
OeNat
Vx ¢ xe Nat =>succ(x)e Nat
ix ¢ xeNat=>-i(0 = succ{x))
Vx ¢ 3y « succ{x) = succ(y) =>x=y
IsSet(Nat)
Vz ([IsSet(z) a Ogza Vm»« 6z =>succ(li)ez) => Vx » xeNat =>xez)

Warto zwrdcic uwagQ, ze wartosciami zmiennej indywiduowej z, ktéra wyst*puje
I w ostatnim aksjomacie, mog”~byc dowolne zbiory. |

Uwaga
W dalszym ci®gu predykat rownosci, zamiast symbolem =, b"dzie oznaczany po-
wszechnie uzywanym symbolem =.

W praktyce czgsto korzysta siq z rozszerzonego jgzyka kwantyfikatoréw, w ktorym
zbiory wystqpuj” jawnie w powi”zaniu z kwantyfikatorami. Oprécz dotychczas oma-
wianych kwantyfikatorow zwyklych, uzywa siq kwantyfikatoréw o ograniczonym
zakresie. Kwantyfikatory te maj”~postac:

ixeXea oraz 3xeXea

gdzie: A'jest pewnym ustalonym zbiorem, a arjest dowoln” formuly.

Przyklad 10.11

A Kwantyfikatory o ograniczonym zakresie s wygodne w wyrazaniu wielu wla-
snosci zwi~zanych z konkretn” dziedzin” interpretaciji:

Dia kazdej liczby naturalnej n istnieje liczba rzeczywista x taka, ze x2= n:

'ine Nat * 3xe Rzeczywiste ¢ x2=n

Dia kazdej liczby calkowitej a istniejeliczba wymiemax taka, zea<x<a+ \

V/ie Calkowite » 3xe Wymierne e a<x<a+1

Rozszerzona notacja jest przydatna do opisu sytuacji zwigzanych z pewnym konkret-
nym obszarem zainteresowania. Wyraza sii to przez wprowadzone zbiory - dziedziny
interpretacji, a takze przez interpretacji symboli funkcyjnych i predykatywnych wy-
stQpujeicych w formulach z kwantyfikatorami o ograniczonym zasiigu. Tak wlasnie
jest w przedstawionym powyzej przykladzie, gdzie wyrazenia x2, a + 1, a < x majX
znan” interpretacji arytmetyczn”,

Nalezy pamiQtac, ze z rozszerzona notacja wiqze sii zawQzenie semantyki. Wprowa-
dzenie konkretnych zbiorow narzuca mianowicie dziedziny interpretacji. Oznacza to,
ze formuly spelnione przy zalozeniu konkretnych zbiorow nie musz” byd spelnione
w innych dziedzinach interpretacji.

Cwiczenia

1. W uktadzie wspdlrzidnych Oxy zaznaczyc obszary, w ktérych prawdziwe s”nasti-
pujqce funkcje zdaniowe:
a) [x*y|=I
b) *>|y|
) W*W<0=>x*x+y*y>1
d x> =>x*x+y*y=1
e) sin(x) >y
Zaklada sii, ze wystipujgce w zadaniu Symbole funkcyjne i predykatowe maj*
standardow” interpretacji.

2. Danajest sygnatura Sig = <F, P>jizyka rachunku kwantyfikatoréw, w ktorej:
F=dx {/o} u {fi,gi} u {/2 g2 h2}jest zbiorem symboli funkcyjnych,
P =cf (Po} u {p\, <V u {pi, qi) jest zbiorem symboli predykatéw,
dolny indeks zas wskazuje liczbi argumentéw. Podac gramatyki defmiuj~c” zbior
termOw i gramatyki defmiujgc”. zbidr formul jizyka o podanej sygnaturze.

3. Niech/ g, h bidg_symbolami funkcyjnymi, p, q - symbolami predykatéw, X, y, z -
zmiennymi indywiduowymi. Wskazac wolne i zwigzane wystgpienia zmiennych
indywiduowych w formulach:

a) VxeVyep(f(x,y),2) a Vxeq(x z h(xy))
b) (Vxe3y-<qx z)vp(h(x,y)) =>p(f(x,y), 2)
c) Vxep(h(x), z) = (3z * 3y * q(f(h(x),) aVz * p(z, y) <>q(x, Y))

4. Zdefmiowac funkcj?, ktora dla dowolnej formuly a rachunku kwantyfikatoréw
okresla zbiér wszystkich zmiennych indywiduowych, ktére w formule érmaj”:

a) parzyst” liczb? wystgpien wolnych,
b) jednoczesnie wyst"pienia wolne i wyst”pienia zwi”zane,
c) dokladnie tak™ sam” liczb? wyst”pien wolnych jak liczb? wyst<ipien zwi*zanych.

5. Niech {=, <, < } b?dzie zbiorem symboli predykatow oraz {+ »/} - zbiorem sym-
boli funkcyjnych okreslonych na liczbach naturalnych. Dia symboli tych przyj-
mujemy standardow” interpretacj™ arytmetyczn”®. Korzystajcjc z tego zestawu sym-
boli oraz z symboli stalych liczbowych, zapisac formuly reprezentuj”ce nastqpujcice
wypowiedzi:

a) xjest liczb~podzieln” przez ustalon” liczb? n >0,

b) xjest sum” kwadratdw dwdch liczb naturalnych,

c) X jest liczbet pierwszei,

d) x nie jest liczba pierwsz”,

e) xjest najmniejsz™. wspdln~wielokrotnosci® liczby i z,

f) x przy dzieleniu przez 4 daje reszt? 1lub 2,

g) kazda liczba przy dzieleniu przez inn” liczb? daje reszt? 0 lub 1,

h) kazda liczba parzysta wi?ksza od 3jest sum” dwdch liczb pierwszych,
i) kazde trzy liczby maj” najwi?kszy wspolny dzielnik,

j) nie istnieje najwi?ksza liczba naturalna.

Zapisac zaprzeczenia powyzszych formul w taki spostb, aby nie zaczynaly si? od
negacji.

6. Zakladaj”c, ze s” do dyspozycji Symbole predykatow okreslone w poprzednim za-
daniu oraz symbol przynaleznosci elementu do zbioru, wyrazic w postaci formul
nast?puj”ce wypowiedzi:

a) zbiér X ma dokladnie jeden element,
b) zbiér X ma dokladnie trzy elementy,
c) zbiérX ma przynajmniej dwa elementy.

7. Podad formalnet definicj? sformulowania: istnieje dokladnie jedno x takie, ze spel-
nionajestformula

8. Podad przyklady predykatow p(x), g{x), dla xeRzeczywiste, dla ktérych podane
nizej formuly s” zawsze prawdziwe albo zawsze falszywe:

a) Ve (p(x) Vv a(x)
b) Ve (p(x) =>q(x))
c) 3 (p(x) aq(x))
d) 3 (p(x) =>q(x))

9.

10.

11.

12.

13.

14.

Ktore z ponizszych stwierdzen SEtprawdziwe? Jezeli INTJa v B)= prawda, to:

a) INTJo?) - prawda lub INTJR) =prawda,

b) INTJa) =prawda oraz INTR) = prawda,

c) dla kazdego V rdzni®cego siQ od v wartosciowaniem zmiennej X, zachodzi
INTs(cc) =prawda oraz INTyJa) =prawda.

Ktore z ponizszych stwierdzen s"prawdziwe? Jezeli INTJa . B) =falsz, to:

a) INTJe?) =falsz oraz INTJiR) =faisz,

b) istnieje takie v' rdzni“ce siq od v wartosciowaniem pewnej zmiennej X, ze
INTs(d) =prawda lub INTJ"a) =prawda,

c) dla kazdego v' rozni“cego si$ od v wartosciowaniem zmiennej X zachodzi
INTyJa) =falsz oraz INT Je?) = prawda.

Dana jest formula 3x * p(x, y). Interpretacja symbolu predykatu p jest wyrazona
przez System relacyjny SR =df< s s, Rsr>, gdzie a s- jest zbiorem, zwanym nosni-
kiem, a RSrjest relacj*binamgq, Interpretacja przypisuje symbolowip relacjQ Rsr.

Uwaga: Interpretacja n-argumentowego symbolu predykatu q jako pewnej n-elemen-
towej relacji RqE Anna zbiorze A jest rownowazna interpretaeji tego symbolu jako
funkcji w-argumentowejfq:A" — {prawda,falsz). Dlaczego?

Ktore z ponizszych stwierdzen s prawdziwe. Jezeli nosnik systemu relacyjnego
Asr=df {a, b) i relacja RS =aef {<«, &>, <b, b>, <a, b>), to dla wartosciowania
v takiego, ze:

a) v(x)=ai v(y) = b formulajest spelniona,

b) v(x) = a i v(y) = a formula nie jest spelniona,

c) v(x) = biv(y) = b formulajest spelniona,

d) v(xX) = biv(y) = a formula nie jest spelniona.

Dla kazdej z ponizszych formul podaj interpretagje, w ktorych formula jest (a)
spelniona dla kazdego wartosciowania, (b) nie jest spelniona dla kazdego warto-
sciowania, (c) dla niektorych wartosciowari jest spelniona, a dla pozostalych nie
jest spelniona:

a) Vx*3y»p(x.y)

b) 3x ¢« Vy e p(X,Y, 2)

c) 3x»(q(x,y)=>q(x,y))

Nastqpuj”ce formuly sprowadzic do przedrostkowej postaci normalnej (PNF):

a) Vxe ((x>2)a (By* (x<y)))

b) (x<y)a 3x e+ Vys (x>y)

) Vx» By (y>2)a (y<X))

Sprowadzic do przedrostkowej postaci normalnej negaeje formul z poprzedniego
zadania.

15. Przedstawic predykaty p oraz q okreslone na zbiorze liczb calkowitych, dla kto-
rych ponizsze zdania ¥ falszywe:

a) (3x*3yep(x,y)) => (Vy*3x*p(x, y))

b) (3x*3y* p(x,y)) => (3x* p(X, X))

c) (Vx*3ys p(x,y)) => (VX*p(x, X))

d) (Vx*p(x, x)) = (VX*Vy*p(x,y))

e) (Bx*Vy*p(x,y)) => (Vx*Vy*p(x,y))

f) (Vx*p(x) v a(y)) = (Vx*p(x) v Vy* q(y))
9) (Bx*p(x) a 3x* q(x)) => 3x*(p(X) a q(x))

11. Rachunek sekwentdw Gentzena

11.1. Wstfp

W poprzednim rozdziale wprowadzono poj?cie semantycznej konsekwencji. Bezpo-
srednie sprawdzenie - na podstawie definicji - czy dana formula rachunku kwantyfika-
toréw jest, czy nie jest semantyczni konsekwencji pewnego zbioru formul rachunku
kwantyfikatoréw, nie jest mozliwe, gdyz wymagaloby to sprawdzenia nieskonczonej
liczby modeli danego zbioru formul. Praktyczne badanie, czy formula jest konse-
kwencji semantyczni pewnego zbioru formul, opiera si? na poj?ciu konsekwencji
skladniowej. PojQcie konsekwencji skladniowej jest pewnym odpowiednikiem poj?cia
konsekwencji semantycznej. Poj?cie konsekwencji skladniowej b?dzie przedstawione
w ramach rachunku sekwentéw Gentzena. Rachunek ten - opracowany przez Gentze-
nadw latach trzydziestych XX wieku - wyznacza jeden z efektywniejszych systemoéw
automatycznego dowodzenia twierdzen.

Istota podejscia opartego na poj?ciu konsekwencji skladniowej polega na zdefmiowa-
niu pewnego systemu generowania napiséw. System taki, nazywany systemem dowo-
dowym, zawiera dwa elementy - zbidr aksjomatéw 'Fi zbidr regul wyprowadzania
(albo inaczej: regul wnioskowania lub inferencji). Aksjomatami si pewne napisy,
reguly zas okreslaji, w jaki sposéb na podstawie pewnych napiséw otrzymac nowe
napisy, na przyklad jak z pewnego zbioru formul otrzymac nowe formuly.

W celu dowiedzenia, ze - w danym systemie dowodowym - formula «jest konsekwencji
semantyczni zbioru formul (Ppostgpuje si? nastgiujico: Stosujic reguly wyprowadzania,
wyprowadza si? nowe formuly ze zbioru 0 oraz zbioru aksjomatéw F i powtarza siQ tQ
czynnoso tak dlugo, az zostanie wyprowadzona formula oL Tak skonstmowany dowéd
nazywa si? dowodem wprost i sluzy do pokazania, ze wynikanie logiczne 0 N orzachodzi
w dowolnym modelu.

Mozliwy jest rowniez dowdd nie wprost faktu, ze t= a. Dowdd taki polega na do-
prowadzeniu do sprzecznosci na podstawie zalozenia, ze zbidr formul 0 u {=g} jest
spelnialny, to znaczy na podstawie zalozenia, ze formula «nie jest spelniona dla pew-

2 Gerhard Gentzen (1909-1945).

nego modelu zbioru formul 0. Stwierdzenie sprzeczno8ci oznacza, ze zbidr
0 u {-ier}, wbrew zatozeniu, jest spelnialny, a to - na podstawie twierdzenia o de-
dukeji z poprzedniego rozdziatu - daje podstawq do ostatecznego orzeczenia, ze
0\= a.

Jezeli dany jest pewien System dowodzenia S, to fakt, ze formuta arzostala wyprowa-
dzona w tym systemie, na podstawie zbioru formul 0 bqdzie oznaczany:

0\-sC

Istnieje wiele systemdw dowodzenia opartego na poj*ciu konsekweneji skladniowej.
Niektore sposréd nich s” zwi”zane z dowodzeniem wprost, inne z dowodzeniem nie
wprost. System dowodzenia Gentzena moze byc rozwazany zaréwno jako System do
dowodzenia wprost, jak i do dowodzenia nie wprost. Zwykle dowody tworzone
w systemie Gentzena s” oparte na idei budowy dowodu nie wprost, ale zbudowany
dowdd jest odezytywany jako dowdd wprost. Przedstawiany tu System dowodzenia
Gentzena opiera si$ na idei konstrukeji dowoddw nie wprost.

Od kazdego systemu dowodzenia wymaga si$ w pierwszej kolejnosci, aby nie prowadzil
on do falszywych wnioskéw. Wlasnosc tak” okresla si$ mianem semantycznej poprawno-
sci (albo niesprzecznosci) systemu dowodzenia. Oznacza to - przy dowodzeniu wprost -
ze jezeli na podstawie zbioru formul 0 wygeneruje si? formulq a, to zachodzi 01=
a przy dowodzeniu nie wprost - ze jezeli na podstawie zalozenia o spetnialnodci zbiom
formul 0 u {—d} uzyska siq sprzecznosc, to réwniez 0 \= a. Wlasnosc semantycznej
poprawnosci systemu dowodzenia S mozna sformulowac w postaci

jezeli 0\~s(X, to 0 =a.

Drug3 oczekiwan” wtasnosci” systemu dowodzenia - odwrotn™ w stosunku do wla-
snosci semantycznej poprawnosci - jest zupelnosc semantyczna. Wlasnosc ta oznacza
- przy dowodzeniu wprost - ze jezeli zachodzi 0 ¥ a, to zawsze w systemie istnieje
wyprowadzenie formuly a ze zbioru formul 0. Przy dowodzeniu nie wprost wlasnosc
ta oznacza, ze jezeli zachodzi 0 ¥ o; to z zalozenia o spetnialnosci zbioru formul
0 u {-na} zawsze uzyska si$ sprzecznosc. Wlasnosc semantycznej zupetnosci syste-
mu dowodzenia S mozna sformulowac w postaci

jezeli 0\=a, to &ksa.

Z nazwiskiem Gentzena wi®z” siq dwa systemy dowodzenia: jeden jest nazywany
systemem dedukeji naturalnej, drugi - rachunkiem sekwentéw. W tym rozdziale
przedstawiono tylko rachunek sekwentéw. Rachunek ten odzwierciedla w znacznym
stopniu sposéb postQpowania stosowany w praktyce matematycznej. Jak wspomniano,
konstrukeja dowoddw opiera siq na idei dowodzenia nie wprost, a ponadto opiera si?
na obserwaeji, ze konstruuj*c dowdd pewnego twierdzenia, proébuje si$ zdekompono-
wac go na zestaw prostszych dowoddéw (poddowoddéw lub dowoddéw podporz”*dkowa-
nych). W przypadku rachunku kwantyfikatoréw konstrukeja poddowodéw wynika ze
skladni formul.

11.2. Lemat o podstawieniu

Ponizej przedstawiany lemat o podstawieniu b$dzie wykorzystywany w nastQpnych
podrozdzialach. Wskazuje on na rolg, jakq. odgrywaj” wartosciowania w interpretacji
termow i formul.

Lemat 11.1

Niech t bgdzie termem nad sygnatur” Sig oraz niech M = <D, /> bqdzie modelem
interpretacji, a vj, v2 niech b$d" dwoma wartosciowaniami. Jezeli zachodzi row-
nosd wartosciowan v~x) = vAx) dla wszystkich zmiennych xe Varif), to

INTVA(t) = INTVi(1).

Dowdd

Dowdd prowadzi siq metod”indukcji strukturalnej wzglgdem terméw. Jezeli term t
jest postaci x, to INTM(x) = vi(X) = vagey = INTVI(x). Jezeli term t jest postaci

f(t\,..., tn), to na mocy zalozenia indukcyjnego
INTy(ti) = INTVi(ti) dlai= 1, «

stqd
INTM(f(t1,....tn))= I(F)(INTN(/,)......INTVi(tn))

= /(/) (INTVXT,), ..., INTV(tn))
INT(/(/,, t.,) m

Lemat o podstawieniu wskazuje na zwi”zek, jaki zachodzi pomi~dzy zmian” warto-
sciowania zmiennych indywiduowych przez podstawienie za wskazan” zmienn” war-
tosc termu a tekstowym zast"pieniem tej zmiennej termem w innym termie lub w for-
mule.

Lemat 11.2 (Lemat o podstawieniu)
Niech M = <D, /> bqdzie modelem, v - pewnym wartosciowaniem, t - termem,
oraz niech v' = v[x := INT\t)]. Dla dowolnego termu t' oraz dla dowolnej formuly
a zachodziwdwczas nastqpuj~ce wtasnosci:
LINTAt) = INTYt'[x :=<)
2. INT,,'(a) = INTWa[x ::=r]) pod warunkiem, ze xeFV(a).
Dowdd

Dowdd prowadzi si$ metod” indukcji strukturalnej najpierw. wzglgdem skladni ter-
mdw, a nastQpnie formul.

1. Niech term t' =y, gdzie zmiennay jest r6zna od zmiennej x, wéwczas
INTY) =v\y) =v(y) =v(y[x fl)=INTWy[x fl)
Dia f =x, zachodzi
INTAX) = vix) = INTXi) = INTXx[x ::=fl)
Diaf =Rj\,..., t,,), na mocy zalozenia indukcyjnego, zachodzi
INTAY) = INTMx "= *)dlai=1,.... n,
stqd

INTAARBU ... O) =/(/) (fIV7IV(*¥). [/WT7XO)
=/(/) T O ific:=fl),... INTXt,[x ::=1]))
=INTv(f(tu t)[x :=t])

2. Niech formula ab”dzie postaci Vy ¢ /? oraz niech term t bgdzie wolny w orze
wzgl™du na x. Nalezy rozpatrzed dwa przypadki: x *y orazx=y.

W pierwszym przypadku, gdy x*y, dla kazdego deD zachodzi
INT{VyR) = INT":=|R)

Nalezy zauwazyc, ze
vy :=d] = v[x = INTY)]\y =d\ =vly :=d\[x :=INTdt)]

Na mocy poprzedniego lematu zachodzi
INTWt) = INTWy. d|(t)

poniewazyg Var(t). Dalej niech a = INT\(t), stqd i z zalozenia indukcyjnego
wynika

INTW y =n(?) = = m=Al)
INTU VYR [x::= fl)
M v(Vy.[?)[x::=fl

W drugim przypadku, gdy x =y, dla kazdego deD zachodzi
INT{V yB) = INTA:=J](R)

Poniewaz
VX = INTUD][X :=d] =v[x :=cfl
oraz

VyR=(\/yRB)[x::=t])
dla kazdego de D zachodzi

INTIVyY »B)= INTVx" (R)
INTV(VYR)
INTV(Vy B)[x :=1])

Pozostale przypadki, gdy formula a ma inne postaci, pozostawia siq do udowod-
nienia Czytelnikowi. [

Przyklad 11.1

A Niech sygnatura Sig sklada siq z jednej stalej 0, dwdch jednoargumentowych ope-
racji nast,pop oraz jednego symbolu predykatu dwuargumentowego Dziedzi-
interpretacji D niech bgdzie zbi6r liczb calkowitych Calkowite. Interpretacja /
stalej O przyporz*dkowuje liczbg zero, operacjom nast i pop przyporzqdkowuje
dodawanie i odejmowanie jedynki, to znaczy:
I{nast)(n) =defn + 1,
I(pop)(n) =defn - 1,
a predykatowi przyporz~dkowuje réwnosc liczb.

Niech dana b”dzie formula

pop(pop(x)) ~ 0
oraz term

nast(nast(Q)
Dia dowolnego wartosciowania v i wartosciowania v' = v[x := INTYnast(nast(0)))]
zachodzi:

INT, (pop(pop(x)) ~ 0) = INTWpop(pop(x)) ~ O[x ::= /jas/(na.yf(0))])

= INTWpop(pop(nast(nast(P))))=0) =P
Ostatnia réwnoS6 zachodzi, poniewaz:
| INT,,(nast(nast(0))) = 2 oraz INTWpop(pop(nast(nast(Q)))) = 0.

Whiosek 11.1
Niech a b~dzie formuly oraz niech term t b”dzie wolny ze wzglqdu na x w a. Na
podstawie lematu i definicji semantyki kwantyfikatoréw zachodzi:
1. Vxea\= a[x :=f]
2.a[x =t EHxea

Punkt 1. wniosku, z faktu spelnialnosci formuly Vx « a, pozwala na wyprowadzanie
wniosku o spelnialnosci dowolnej formuly postaci a[x ::= /] dla dowolnego tennu
t. Inaczej, aby pokazac, ze formula Vx*ar nie jest spelnialna, wystarczy pokazac, ze
formula a[x ::=/] niejest spelnialna dla pewnego

Punkt 2. wniosku, z faktu spelnialnosci formuly a[x ::= f], pozwala na wyprowadzanie
whniosku o spelnialnosci formuly 3x * a. Inaczej, aby pokazac, ze formula < orniejest
spelnialna, nalezy pokazac, ze formula a[x ::=] nie jest spelnialna dla dowolnego t.

11.3. Przyklady wprowadzaj”™ce

Przed formalnym przedstawieniem rachunku sekwentéw Gentzena, przyklady wpro-
wadzaj*ce pozwol”na poznanie gléwnych idei, na ktérych opiera siq rachunek.

Przyklad 11.2
N Rozpatruje siq nast*puj*c” formuly rachunku zdan
(@=>b)a(c=d)a(aac)=(bad) (D

Formula ta - jak mozna sprawdzic, na przyklad metod” zero-jedynkow” - jest tau-
tologi”. Istota dowodu nie wprost polega na przyjgciu zalozenia, ze formula (1) nie
jest tautologig, czyli wartosc formuly jest falszem dla pewnego wartosciowania
zbioru zmiennych zdaniowych {a, b, ¢, d). Okaze sig, ze poszukiwanie takiego
wartosciowania doprowadzi do sprzecznosci. W tym celu zadanie rozbija si$ na
dwa, prostsze, podzadania. Zgodnie z twierdzeniem o rozbiorze, przedstawionym
w poprzednim rozdziale, kazd” formuly mozna jednoznacznie zdekomponowad na
podformuly skladowe. Spdjnik Iqcz~cy te podformuly jest nazywany spdjnikiem
glownym. Gléwnym spdjnikiem formuly (1) jest ostatni po prawej symbol impli-
kacji. Cal*formulq (1) mozna przedstawic w postaci

N

a=>R 2
gdzie:

or=(a=>b)a(c=>d)a(aac (3)

R=b Ad 4)

Aby pokazac, ze formula (2) jest falszywa dla pewnego wartosciowania, wystarczy
pokazac, ze dla tego wartosciowania podformula orjest prawdziwa, a podformula 3
jest falszywa - stwierdzenie to wynika ze standardowej interpretacji spodjnika im-
plikacji. Formula (1) zostala zatem rozbita na dwie podformuly: (3) oraz (4),
z zadaniem pokazania prawdziwoSci podformuly (3) i falszywosci podformuly (4)
dla pewnego wartosciowania zmiennych logicznych.

Ogdlnie, dan” formuly mozna rozbijac na dwa zbiory jej podformul z zadaniem
pokazania, ze dla pewnego wartosciowania podformuly z jednego zbioru s*
prawdziwe, a podformuly z drugiego zbioru s” falszywe. Przyjmuje siq oznacze-
nie: jezeli

{«i, Onj

jest zbiorem formul, ktére maj*byc prawdziwe dla pewnego wartosciowania, a

{Bn...,8Bm}
jest zbiorem formul, ktére maj” byc falszywe dla tego samego wartosciowania, to
takie zadanie b~dzie zapisywane w postaci

Hi> oo fl» AR\t LM
a napis taki b~dzie nazywany sekwentem.

Sekwent jest wigc pan[dwoch zbiordw formul. Poszczeg6lne zbiory formul s” za-
pisywane w postaci list, a symbol —» jest separatorem oddzielajgcym dwie listy.
W tym zapisie sekwent jest traktowany jako umowna forma zapisu pary zbioréw.

W rozpatrywanym przykladzie pocz*tkowe zalozenie mozna zatem zapisac w po-
staci sekwentu

—~>((a=b)a (c=d)a (aac)={bad) (5)
natomiast to, co nalezy pokazac, jako konsekwencjQ tego zalozenie, mozna zapisac
w postaci sekwentu

[a=>b)a (c=>d)a (aac)—»ba (6)

Nalezy zwrdcic uwagq na to, ze przejsciu od zadania (5) do zadania (6) towarzyszy
eliminacja jednego spdjnika logicznego.

Aby pokazac, ze prawdziwa jest lewa strong sekwentu (6), nalezy pokazac, ze
prawdziwe sg. wszystkie jej skladowe polgczone symbolem koniunkcji, czyli

a=>b, c=>d,aac —bAd (7)

W ten sam sposdb, Kieruj*c siq znaczeniem koniunkcji, zadanie sprowadza sigq do
pokazania

a=>b,c=$d,a,c bAd (8)

Po prawej stronie sekwentu (8) jest réwniez spdjnik koniunkcji, lecz nalezy poka-
zac, ze formula po tej stronie jest falszywa. Wystarczy wiqc pokazad tylko jeden
z przypadkow, ze falszywe jest b albo ze falszywe jest d. Rozwi”~zanie zadania (8)
sprowadza siq zatem do rozwi”zania jednego z dwdch podzadan:

a=>b,c=>d, a c—»b (9a)
a=>h,c=d, a c—d (9b)

Rozpatruje siq zadanie (9a). Mozna je sprowadzic do zadania prostszego, eliminu-
j~c pierwszy z lewej spojnik implikacji. Aby pokazac, ze dla pewnego wartoscio-
wania prawdziwa jest implikacja a => b, wystarczy pokazac jeden z dwdch przy-
padkdw, ze falszywe jest a albo ze prawdziwe jest b. Zadanie (9a) rozbija siq zatem
na dwa podzadania:

c=d,a,c—h, a (10a)
b,c=d,a,c—b (10b)

Zadanie (10a) prowadzi do sprzecznosci. Wynika to z tego, ze od zmiennej zda-
niowej a wymaga siqg jednoczesnie, by dla tego samego wartosciowania byla praw-
dziwa (wystgpienie a lewej stronie) i falszywa (wyst*pienie a po prawej stronie).
Podobnie do sprzecznosci prowadzi zadanie (10b). Poniewaz zadania (10a) i (10b)
byly dekompozycjX zadania (9a), oznacza to, ze roéwniez zadanie (9a) prowadzi do
sprzecznosci.

W analogiczny sposdb przeprowadzone rozumowanie w stosunku do zadania (9b)
prowadzi takze do sprzecznoSci. Kazda zatem proba znalezienia odpowiedniego
wartosciowania, ktére potwierdzaloby, ze formula (1) nie jest tautologi®, prowadzi
do sprzecznosci, co daje ostateczny wniosek, ze (1) jest tautologi”.

Przeprowadzone wnioskowanie mozna zapisac w postaci graficznej. Na rysunku
11.1 przedstawiono graf-drzewo. Wierzcholkami drzewa s™ sekwenty, czyli napisy
postaci r — A, gdzie r, A s" zbiorami formut zapisywanymi w postaci list. Luki
drzewa sg. reprezentowane przez poziome linie - przyjmuje sig, ze sg. one skiero-
wane z gory w dot. Przejscie mi*dzy dwoma s”siaduj*cymi wierzcholkami drzewa
odpowiada eliminacji jednego spdjnika logicznego.

—»((a=2b)a (C=>d)a (aa c)) => (ba d)
(@a=b)a(c d)a(aac)—»bad
a=>b,c=>d,a,c —»b b,c~>d,a,c —d
b,c =»d,a,c —»b c=*d,a,c-*b,a a”b,d,a,c->d a=$b,a,c —d,c
b,d,a,c—b b,a,c—b,c d,a,c —-»b,a a,c—b,a,c

Rys. 11.1. Drzewo dowodowe dla formuly (1)

Korzeniem drzewa jest sekwent postaci
>a
gdzie arjest dowodzon” formufct W przykladzie
or=((a=>h)a (c =>d) a (aac)=>(bAd)
Lisémi drzewa sg, sekwenty postaci
r.,R"AR
gdzie: - jak poprzednio - F, A s" ci*gami formul, a B jest pewn” formuly, ktdra
wystQpuije po obu stronach sekwentu.

Drzewo, ktérego liscmi s™ wylqcznie sekwenty o tej postaci jest drzewem dowodo-
wym tautologii. |

Przyklad 11.3
I Rozpatruje si$ teraz przyklad konstrukcji drzewa dowodu dla formuly
((a => b)a(c :>d)a a.):>(ba C) (11)

ktora nie jest tautologiq, PostQpuj”c jak poprzednio, mozna wnioskowanie zapisac
w postaci drzewa (rys. 11.2).

> ((@a=>b)a(c=>d) ad)=>(bac)
(@a=2a(c=d) Ad—=bac
a=h,c=>d,a Dbac

a=b,c=$d, a-»c a bc=d,ab
c=>d,a->c,a bec=>da ¢ ...
(D b,d->c b,d,a—c
) ©)

Rys. 11.2. Drzewo dowodowe dla formuty (11)

W drzewie dowodu lisc (1) jest sekwentem, ktdry po prawej i lewej stronie ma tq
sam” formulQ - tu zmienn£(zdaniow”. Sekwent ten oznacza sprzecznosc.

Liscie (2), (3) s"natomiast sekwentami postaci
b,d—c oraz b,d,a-*c (12)
Nie maj” one takiej wlasnosci jak sekwent (1), ponadto nie zawieraj® spojnikdw

logicznych. Wyznaczaj” one takie wartosciowania zmiennych a, b, ¢, d, przy kto-
rych wartosc dowodzonej formuly (11) jest falszem.

Znalezienie takich wartosciowan oznacza, ze formula (11) nie jest tautologi®. Zna-
lezienie takich wartosciowan konczy dowod i nie wymaga rozwijania pozostalych
I galgzi drzewa, tu w przykiadzie - galgzi (4), |

Oba przyklady mozna traktowac jako systematyczne poszukiwanie kontrprzykladu
w celu pokazania, ze wyjsciowa formula nie jest tautologi®. W pierwszym przykiadzie
kazda mozliwa proba znalezienia kontrprzykladu prowadzila do sprzecznosci, co dato
podstawQ do ostatecznego stwierdzenia, ze formula (1) jest tautologi®. W drugim
przykiadzie kontrprzyklad taki znaleziono, co dalo podstawQ do ostatecznego stwier-
dzenia, ze formula (11) nie jest tautologi”.

Przyklad 11.4
A Rozpatruje siQteraz formuly rachunku kwantyfikatoréw
Vx ¢ p(x) =>3y *p(y) (13)

gdzie p jest symbolem pewnego jednoargumentowego predykatu. Formula ta jest
oczywiscie tautologi®. Dokonuje siq transformacji formuly polegaj*cej na zast"-

pieniu kwantyfikatora szczegdlowego kwantyfikatorem ogélnym. Z praw de Mor-
gana wynika, ze zachodzi réwnowazno8c semantyczna

3y e a=-iVye->a
Formul? (13) mozna przedstawic w postaci

VX e p(x) =—Vy « —p(y) (14)
Jak w przykladach poprzednich, zakiada si?, ze formula nie jest tautologi®, co
oznacza, ze istnieje pewna interpretacja predykatu /, w ktorej formula (14)
- przy pewnym wartosciowaniu zmiennych indywiduowych - jest falszywa.
Zgodnie z poprzednim rozumowaniem, poszukiwanie to sprowadza si? do zna-
lezienia takiej interpretacji / i takiego wartosciowania, dla ktérych formula
VX ¢ p(x) jest prawdziwa, a formula —Vy « —<ajest falszywa, czyli formula
Vy » —erjest prawdziwa. Jezeli interpretacja / jest taka, ze formula Vx < p(x)
jest w niej spelnialna, to na podstawie wlasnosci pokazanej w poprzednim
punkeie

Vx e a\= or[x ::=z]
mozna stwierdzic, ze/ spelnia rowniez formul?/?(z), gdyz z jest zmienn*woln™w p(x).

Podobnie, stosuj*c analogiczne rozumowanie w stosunku do formuly Vy*-ic
mozna stwierdzic, ze / spelnia formul? -ip(z), czyli ze / nie spelnia formuly p(z).

Od p(z) oczekuje si? zatem, ze w interpretacji / jest jednoczesnie prawdziwe
i falszywe, co konczy dowdd.

Graficzna reprezentaeja tego dowodu jest pokazana na rysunku 11.3.

—»VXe p(X) ==y -ip(y)
VX*p(x) ->-.Vy*-jp(y)
VX p(x), VY *->p(y) -»

p()[x =z],42(y)ly ==12] ->
Piz) -> P(2)

Rys. 11.3. Drzewo dowodowe dla formuly (13) i

Przyklad 11.5

Rozpatrzmy formul? rachunku kwantyfikatorow |

3y *p(y) =>Vx+p(x) (15)
gdzie p jest symbolem pewnego jednoargumentowego predykatu. Formula ta nie
jest tautologi”. Jak poprzednio, zast?puje si? kwantyfikator szczeg6lowy kwantyfi-
katorem og6lnym, otrzymuj~c formul?

-IVy < -ip(y) => Vx*p{x) (16)

Zgodnie z poprzednim rozumowaniem, poszukuje sie takiej interpretacji/ i takiego
wartosciowania, dla ktérych formuly Vx « p(x) oraz Vy « - p(y) falszywe. Jezeli
w interpretacji / formula Vx ¢ /2(X) nie jest spelnialna, to formulap(x) nie jest spel-
nialna. Podobnie, z tego, ze formula Vy « -i/?(y) nie jest spelnialna, wynika, ze for-
mula —p(y) nie jest spelnialna, czyli formula p(y) jest spelnialna. Oczekuje sie za-
tem, ze dla pewnej interpretacji | i dla pewnego wartosciowania zmiennych x, y
formula p(x) jest falszywa, a formula p(y) jest prawdziwa. Oczywiscie taka inter-
pretacja istnieje, wystarczy na przyklad przyj~c, ze dziedzing. interpretacji jest zbior
liczb calkowitych, a interpretacja predykatu p jest nastgpujXca

1(p)(X) =defX> 0

wowczas dla wartosciowania v =def {<*, -1>, <y, 1>} INTp{X)) = F oraz
INTWp(y)) =P. Formula (16) nie jest zatem tautologi”.

Graficzna reprezentacja tego dowodu jest pokazana na rysunku 11.4.

—»—y e -ip(y) =>Vxe p(x)
Ny« —ip(y) —Vx e p(x)
Vx»p(x),Vy»-b(y)
-» pW, Vy-p(y)
-» p(*),-p(y)
p(y) -» p(x)

Rys. 11.4. Drzewo dowodowe dla formuly (15) |

11.4. J$zyk sekwentdw - skladnia i semantyka

Niech FORM(F, P, V) bqgdzie zbiorem formul rachunku kwantyfikatorow nad alfabe-
tem o sygnaturze Sig = (F, P). Jezyk rachunku kwantyfikatoréw rozszerza sie o dodat-
kow”. kategoriq napiséw nazywanych sekwentami.

Sekwentem nad alfabetem o sygnaturze Sigjest dowolny napis postaci
0r>r (i)

gdzie: <Z>oraz rsq_ dowolnymi skonczonymi, byc moze pustymi, zbiorami formul, tzn.
0, r<z FORM(F, P, V). Zbior jest nazywany poprzednikiem, a r ~ nastgpnikiem
sekwentu.

Zbior wszystkich napiséw postaci (1) bedzie nazywany zbiorem sekwentdéw nad alfa-
betem o sygnaturze Sig i bedzie oznaczany symbolem SEKW(F, P, V).

Przyjmie sie notacje: jezeli dane s”zbiory formul:

0 =def {«i , <4 dlaneNat
r =def {8\,$.} dlameNat

to sekwent (1) b~dzie zapisywany w postaci
o\, .., @ >R\, ..,Bm

Nawiasy bqd” wiqgc opuszczane, a elementy zbioréw 0 oraz /"bqd” przedstawiane
w postaci list. Elementy obu zbioréw mozna na liscie przedstawiac w dowolnej kolej-
no8ci, a dwukrotne wyst£(pienie tego samego elementu na liscie mozna pomijac.

Jezeli 0, rSQ zbiorami formul, a 6rjest pojedyncz” formulq, to zbiér formul
o>u {«Jur

bgdzie zapisywany w postaci listy
O,a,r

Szczegblne przypadki sekwentéw zachodz” wtedy, gdy zbiory (Poraz Fsq. puste:

->Bi, .., Bm gdy O jest pusty,
0\,..,. Q@ > gdy r jest pusty,
-» gdy Ooraz r s3puste.

Pierwszy sekwent ma pusty poprzednik, drugi - pusty nastopnik, a ostatni zapis ozna-
cza sekwent pusty.

SemantykQ sekwentéw dla modelu M = <D, /> definiuje funkcja
INTV: SEKW(F, P, V) -> Logiczne

okreslanajako rozszerzenie funkcji interpretacji formul
INT, : FORM(F, P, V) -» Logiczne

nad tym modelem. W celu zdefiniowania tej funkcji wprowadza si$ najpierw oznacze-
nia pomocnicze: jezeli

<z={au .., <t}
to

Ao =defoy A... Acn

v o =def«lV ..V xn

Symbole a0 oraz vCPs” wigc uogdlnionymi spéjnikami iloczynu i sumy logicznej,
obejmuj~cymi wszystkie formuly zbioru o . Jezeli CPjest zbiorem pustym, to z defi-
nieji:

a0 =dftrue

vtf> =deffalse

gdzie: true oraz false stalymi logicznymi, interpretowanyrai standardowo jako war-
tosci P (prawda) i F (falsz).

Funkcja interpretacji sekwentu 0 —»/’przy wartosciowaniu v zmiennych indywidu-
owych jest okreslona nastqpuj”co:

INTYO0 —-T) = P wtedy i tylko wtedy, gdy INT(a0=>vP) =P
gdzie symbol implikacji => ma standardow” interpretacji.

Sekwent 0 —rjest spelniony w modelu M, gdy funkcja interpretacji INTW0 —P)
przyjmuje wartoSo prawdy dla dowolnego wartosciowania V.

Sekwent 0 —»/"jest spelnialny uniwersalnie, gdy jest spelnialny w dowolnym modelu.
Z podanych okreslen wynika, ze sekwent

0->P
jest semantycznie réwnowazny formule

AO0=> v p

Symbol — mozna wiqc traktowac jako pewnego rodzaju uog6lnienie spdjnika im-
plikacji =>. Podczas gdy argumentami implikacji s dwie formuly, argumentami
symbolu s dwa zbiory formul. W szczegdlnym przypadku, gdy zbiory te s*jed-
noelementowe, znaczenie sekwentu jest takie same jak znaczenie implikacji.

Przyklad 11.6
I Sekwent

(ar=>BR) —={=B=>—a)

jest rbwnowazny semantycznie formule

[(a=>R)=> (-fl =>->(3$

11.5. System dowodzenia

System dowodzenia G w rachunku sekwentdw Gentzena sklada si$ z jednego aksjo-
matu oraz z regul eliminacji spdjnikdw logicznych i kwantyfikatoréw. Kazdy ze spdj-
nikdw i kwantyfikatoréw moze wystqpio po lewej i prawej stronie sekwentu, dlatego
liczba regul jest rowna dwukrotnej liczbie uzywanych spojnikéw. Kazda z regul jest
oznaczana literami / albo p - ktdre oznaczaj® lew” albo praw” strong sekwentu, po
ktorej wystQpuje eliminowany spojnik - oraz symbolem spdjnika. Na przyklad (/V)
bgdzie oznaczac regulq eliminacji kwantyfikatora ogélnego stoj*cego po lewej stronie
sekwentu. Przedstawiany dalej zestaw regul dotyczy tylko spdjnikbw negacji, ko-

niunkcji i dysjunkcji, poniewaz stanowiq. one zbior fiinkcjonalnie pelny, oraz tylko
kwantyfikatora ogélnego, poniewaz za jego pomoc” mozna réwniez wyrazic kwanty-
fikator szczeg6towy.

Aksjomat
Aksjomatem - a dokladniej schematem aksjomatu - jest dowolny sekwent:
0~r
dla ktérego 0 n /V 0, czyli gdy istnieje co najmniej jedna taka formula, ktéra
wystgqmje po lewej i po prawej stronie sekwentu.

Uwaga
Schemat aksjomatu jest tylko jeden, generuje on natomiast nieskonczenie wiele ak-
sjomatdéw, czyli konkretnych sekwentdw. Podobna uwaga odnosi si$ do regul
whnioskowania. Nalezy zauwazyd, ze szczeg6lnymi postaciami aksjomatu sft se-
kwenty:

false ->
—>true
Reguly

Dia negacji:

0-*>a,r

0 —»—=(xr
(P-) 5 cmsr

Dia koniunkcji:

aAlR,0N>r
a,k,o-*a,r

(la)

0->aAR,r
Ca) g-xr,a 0%>r,R

Dia altematywy:

(V) orv/?,0->r
0,a->r 0,3->r
0 ->avi,r

(pv)

0->a,B,r

Dia kwantyfikatora ogolnego:

I,wi VXx»«,0->r1
w

G a[x :=t],Vxea,@—r

gdzie tjest dowolnym termem, ktéry w formule arjest wolny ze wzglgdu na x

pod warunkiem,zexg FV(@)'uFV(r)

Reguly eliminacji kwantyfikatora maj*specyficzne wlasnosci.

Po pierwsze - regula eliminacji kwantyfikatora ogolnego (/ V) w istocie nie eliminuje
kwantyfikatora, lecz dodatkowo wprowadza now” formulQ. Wystqpuj”~ca w przeslance
formula Vx«arzostaje zast"piona formulami a[x ::=/] oraz Vx*arwe wniosku reguly.
Poniewaz zachodzi implikacja

(Vx* dt)y => a[x ::=1]
formuly a[x ::=/] mozna uwazac za szczegolny przypadek formuly Vx* a.

Po drugie - nasuwa siq pytanie, jak wyznaczyc term t. Kazdorazowe wykorzystanie
reguly (/ V) powinno byc zwi*zane z wprowadzaniem nowego termu, gdyz nie ma
sensu tworzenie tych samych kopii formuly a[x ::=/] przy ustalonym t. Zbior terméw
jest oczywiscie nieskonczony - zaklada siq, ze jest to zbiér {/0, t\, t,, ...}, dlatego
podczas tworzenia drzewa dowodu jest potrzebny pewien pomocniczy mechanizm,
ktory przy kolejnym k-tym uzyciu reguly (I V), zwi*zanym z eliminacji kwantyfikato-
ra przy formule Vx ¢ a, b"dzie wyznaczac term tk.

Z uwagi na to, ze regula (/ V) nie eliminuje kwantyfikatora, zaleca si$, aby tQ reguly
stosowac w ostatniej kolejnosci, po wyczerpaniu mozliwosci stosowania pozostalych
regul. Zalecenie takie moze wyrazac zmodyfikowana postac reguly (/ V)

Formula Vx ¢ orznalazla sig po prawej stronie sekwentu ze znakiem negacji, co - przy
tekstowym porzidku eliminacji sp6jnikbéw - oznacza, ze ponowne zastosowanie regu-
ly eliminacji kwantyfikatora w odniesieniu do tej formuly zostanie odlozone na ko-
niec, to znaczy po wyczerpaniu mozliwosci stosowania innych regul eliminacji.

Dowodzenie, ze formula a jest tautologii, polega na budowie drzewa dowodu, ktore-
go wierzcholki si etykietowane sekwentami. Korzeniem drzewa, od ktérego rozpo-
czyna siQbudowq drzewa, jest sekwent postaci

—>a

Nastgme kroki dowodu polegaji na rozwijaniu drzewa przez wyznaczanie kolejnych
wierzcholkéw-nastgmikdw. Jezeli wczesniej zostal wyznaczony pewien wierzcholek

etykietowany pewnym sekwentem S, to jego nastgpnikami bQd”" wierzcholki etykieto-
wane sekwentami 5j, ..., Skwtedy i tylko wtedy, gdy zostala zastosowana regula po-
zwalaj*ca sekwent S rozlozyc na sekwenty Su ..., Sk Sekwent S oddziela siq od jego
nastQpnikéw kresk” poziom”.

Budowq drzewa prowadzi siq tak dhigo, az osi®gnie si$ przynajmniej jeden lisc, ktory
nie daje siQdalej rozwijac i nie jest etykietowany aksjomatem - co oznacza, ze badana
formula nie jest tautologi”®, albo - gdy wszystkie liscie drzewa etykietowane aksjo-
matami - co oznacza, ze badana formulajest tautologi”.

Przedstawiony System dowodzenia bezposrednio nie wyznacza algorytmu budowy
drzewa dowodu. Jest to spowodowane tym, ze System zawiera dwa zrédla niedetermi-
nizmu. Pierwszym zrddlem jest brak ustalenia kolejnosci stosowania regul tego sys-
temu, a drugim zrédlem - brak okreslenia postaci termdw podstawianych za zmienne
w wyniku stosowania regut eliminacji kwantyfikatorow. Dokonanie ustalen w tym
zakresie pozwala juz na zalgorytmizowanie postgpowania dowodowego i ma wplyw
na efektywnoSd procesu dowodowego.

W nizej przedstawionym algorytmie wnioskowania przyjQto, ze:

« kolejnosc stosowania regut jest wyznaczona przez porz~dek tekstowy sekwentu -
jako pierwsz” wybiera siq regutg, ktora sig odnosi do pierwszego od lewej strony
tekstu daj”*cego wyeliminowac siQ spdjnika. Zamiast reguly (/ V) stosuje sig po-
nadto regulq (/ V)', co oznacza, ze ponowne stosowanie reguly eliminacji kwan-
tyfikatora og6lnego po lewej stronie sekwentu odbywa siq po wyczerpaniu moz-
liwosci eliminacji innych spdjnikdéw;

 zbidr wykorzystywanych terméw jest uporzdkowany w dowolny, ale ustalony
ci™g to, tu ... Intuicja podpowiada oczywiscie, aby termy uporz~dkowac w kolej-
nosci od najprostszych po coraz bardziej ztozone. Miarg. zlozonosci moze byc na
przyklad dlugosc termu, mierzona liczb”™ wystgpuj*cych w nim symboli j*zyka.

Algorytm zaktada ponadto, ze dowodzone formuly zawieraj” tylko wybrane spojniki
logiczne (negacjQ i koniunkcjq) oraz kwantyfikator ogolny. Zatozenie to nie narusza
ogoblnosci, gdyz kazda formula daje siq sprowadzic do réwnowaznej semantycznie
formuly zawieraj*cej wylqcznie te spojniki i jeden rodzaj kwantyfikatora. Algorytm
jest przedstawiony w konwencji pseudoprogramowej. Jedyn” konstrukcj”®, ktéra moze
wymagac wyjasnienia, jest uzyta instrukcja pQtli postaci

while warunek do ciqg instrukcji od

Konstrukcja ta oznacza nastgjuj*cy ci®g czynnosci: obliczenie wartosci logicznej
warunku, a nast"pnie -jezeli warunek jest prawdziwy - wykonanie ciqgu instrukcji,
po czym ponownie oblicza si$ warunek i - gdy jest prawdziwy - powtarza si$ obli-
czenie ciqgu instrukcji', jezeli po obliczaniu warunku okaze sig, ze jest on faiszywy,
PQtla si$ konczy.

Algorytm badania tautologii

Dane: formula a.

Wynik: odpowiedz tak, jezeli formula arjest tautologii rachunku kwantyfikatordw,
oraz nie w przypadku przeciwnym.

Procedura:

1 W formule a wyeliminuj spojniki logiczne: v, =>, <> oraz kwantyfikator
szczegolowy 3, zastgpujic je tekstowo, zgodnie z ponizszymi regulami:

Formula zastopowana Formula zastopujqca
av R —i—iCCA —?)
a=>R -iav R
a<& R («=>/?) a ("=> a)
3reor —Vx e—(X

2. Niech B bqgdzie przeksztalconi formuli a. W formule § ponumeruj wystQpu-
jice w niej kwantyfikatory, powiedzmy od 1 do k. Wprowadz zmienne po-
mocnicze i\, /*i nadaj im wartoSci poczitkowe 0. Zmienna i} odnosi siQ
do kwantyfikatora o numerzej, a wartoSd tej zmiennej b~dzie oznaczac licz-

b$ zastosowan reguly (/ V)' doy-tego kwantyfikatora.

3. Niech D bqdzie poczitkowym drzewem dowodu o jednym wierzcholku, ety-
kietowanym sekwentem —R.

4. while

do lisci drzewa D nieb”dicych aksjomatami daje siq zastosowac regu-
ly eliminacji spojnikdéw logicznych

do
modyfikuj D, stosujic do jego lisci regulQ eliminacji, usuwajiCi
pierwszy tekstowo (liczic od lewej do prawej strony) daj*cy si§ wy-
eliminowac spojnik logiczny;
w przypadku zastosowania reguly (/ V)" w celu eliminacji kwantyfikatora
0 numerzey bierz pod uwags term o numerze ij ze zbioru wszystkich ter-
mow {t0 tu ..., t,,,...}, a nastgpnie zwi”ksz wartosc zmiennej /}o jeden.

od

5. Jezeli wszystkie liscie drzewa si aksjomatami, odpowiedz tak, w przypadku
przeciwnym odpowiedz nie.

Krok 1. algorytmu ma znaczenie przygotowawcze - sprowadza dang. formulQ a do
standardowej postaci 3, ktora jest rownowazna semantycznie formule a. Kroki 2. i 3.
ustalaji warunki poczitkowe dla zasadniczej czgsci algorytmu, ktori jest krok 4.

W tym kroku iteracyjnie powtarza siq eliminacjq spojnikéw logicznych i kwantyflka-
tora ogdlnego. W iteracji tej moze nast*pic zapgtlenie tylko wtedy, gdy nieskonczenie
wiele razy stosuje si$ regulq (/ V)"

Algorytm ma nastqpuj”ce wlasnosci:

» Algorytm daje odpowiedz tak wtedy i tylko wtedy, gdy formula dana na wejsciu
jest tautologi”.

» Gdy formula dana na wejsciu nie jest tautologii algorytm daje odpowiedz nie
lub siQ zapQtla.

Pierwsza wlasnosd oznacza poprawnosc i zupelnosc semantyczna przedstawionej me-
tody dowodzenia. Druga wlasnosc oznacza czQsciow” rozstrzygalnosc metody.

11.6. Semantyczna poprawnosc

Semantyczna poprawnosd systemu dowodzenia G dla rachunku sekwentéw Gentzena
oznacza, ze zachodzi implikacja: jezeli & I-gx to PE @

Graficzng. ilustracj™ poprawnosci systemu dowodzenia jest rysunek 11.5: zbidr twier-
dzen ma byc podzbiorem zbioru tautologii.

Formufy

Tautologie

Twierdzenia

Aksjomaty
Rys. 11.5. lHustracja zwi”*zku poini”*dzy zbiorami twierdzen
i tautologii dla poprawnego systemu dowodzenia

Poprawnosc systemu G zostanie wykazana przez udowodnienie kilku lematéw.

Lemat 11.3
Aksjomat rachunku sekwentdw jest spelnialny uniwersalnie.

Dowod

Kazdy aksjomat jest sekwentem postaci 0, a —T, a. Zaklada siQ, ze sekwent ten
nie jest spelnialny uniwersalnie. Niech Mbgdzie modelem, dla ktérego sekwent nie
jest spelniony. Oznacza to, ze jednoczesnie M i=aoraz ze M a, co z kolei ozna-
cza, ze M nie jest modelem. []

Leinst 11.4

Niechy g FV(a)\{x} oraz niechy b~dzie zmienn™wolligw formule arze wzglqdu nax,
wdwczas

INT Ax=d *=(Xwtedy i tylko wtedy, gdy INT" =" t=0%x ::=y]

Dowdd - cwiczenie.

Lemat 11.5

Dia kazdej reguly dowodzeniajej wniosek jest sekwentem spelnialnym uniwersal-
nie wtedy i tylko wtedy, gdy uniwersalnie jest spelnialny kazdy sekwent stanowi”-
cy jej przeslankag.

Dowadd

Dowdd prowadzi sig metod” nie wprost. Dia kazdej reguly pokaze sig, ze pewna
interpretacja INTVnie spelniajej wniosku wtedy i tylko wtedy, gdy dla pewnej in-
terpretacji INTV nie S spetnione jej przesianki. Teza twierdzenia wynika bezpo-
srednio z tego stwierdzenia.

Rozwazania przeprowadza siq tylko dla regul (/ a), (p a), (/ V), (p V). Dowdd dla
pozostalych regul prowadzi siq podobnie.

Dla reguly (/ a) zachodzi
INTV 0,a,R->Tr1

wtedy i tylko wtedy, gdy
INTM=0 a aa B —»s/T

wtedy i tylko wtedy, gdy
INTVE 0,aall-»vT

W interpretacji INTVprzesianki s” zatem faiszywe wtedy i tylko wtedy, gdy fat-
szywy jest wniosek reguly (/ a).

Dla reguly (p a) zachodzi

INTyfr 0~>r,(ZAR
wtedy i tylko wtedy, gdy

INTVt= a0 oraz INTV roraz INTV&Ca
wtedy i tylko wtedy, gdy

INTVE 0 oraz INTV v /’oraz {INT, & orlub INTV R)

wtedy i tylko wtedy, gdy
INTvfr &—r, a lubINTVfr 02> F R

W interpretacji INTVprzeslanki zatem falszywe wtedy i tylko wtedy, gdy fal-
szywy jest wniosek reguly (p a).

Dia reguly (/ V) zachodzi:

Jezeli zalozyc, ze dla INTVnie jest spelniona przeslanka reguly, czyli

INT, fr 0, Vxe a-+r

to oznacza, ze
INT,E a<ZaVx-e* ccoraz INTVfr r

Poniewaz INTVt=Vx ¢ cg wiqc - na mocy wniosku z podrozdzialu 11.2 - zachodzi

INT,Ea[x::= /], pod warunkiem, ze t jest termem wolnym w a ze wzgl*du na x.
Z tego wynika, ze dla INTVnie jest spelniony sekwent stanowi”cy wniosek, czyli

INT, fr 0, a[x::=t],Vx»a—F
Odwrotnie, jezeli zalozyc, ze dla INTVnie jest spelniony wniosek reguly, to wynika

z tego, ze INTVfr a0 a ce[x::=t] a Vx « a oraz INT, fr F Z tego z kolei wynika,
ze INT, fr a0 a Vx e« aroraz INT, fr v F, co oznacza, ze dla INT, nie jest spelniona
przeslanka reguly.

Dla reguly (p V) zachodzi:

Jezeli zalozyc, ze dla INT, nie jest spelniona przeslanka reguly, czyli

INT, fr 0 -» T, Vx e a

to oznacza, ze

INT, fr a0 oraz INT, fr v /"oraz INT,frVx e« a

Z ostatniego faktu wynika, ze istnieje deD takie, ze INT,[x =" fra. Niech INT",
fr INT,[y"d], gdziey&FV(0) u FV(F) u FV(a) jest zmienn” rozn” od x i woln”
w arze wzglidu na x. Na mocy lematu 11.5 INT', fr a[x ::=y], Ponadto INT",
fr a0 oraz INT', fr vF, poniewazyiFV (0) u FV(F). Dlatego INT', fr 0 —F,
Vx e g a[x ::=y], Oznacza to, ze jezeli przeslanka reguly jest niespelnialna przez
pewn” interpretacji, to wniosek reguly jest tez niespelnialny przez pewn” interpre-
tacji.

Odwrotnie, jezeli zalozy sii, ze dla INT, nie jest spelniony wniosek reguly, to
INT, fr a0 oraz INT, fr v, INT, fr a{x ::=y]. Z lematu o podstawieniu wynika,

ze INTMx=q a, gdzie d = INTYy). Dia INTVnie jest wi$c spelniona formula
VX ¢ a, Co 0znacza, ze nie jest réwniez spelniona przeslanka reguly. |

Twierdzenie 11.1

Kazdy sekwent, ktéry ma dowdd w systemie Gentzena, jest sekwentem uniwersal-
nie prawdziwym.

Dowod

Dowdd wynika z wyzej udowodnionych lematdw przez zastosowanie indukcji na
strukturze drzewa dowodowego. Punktem wyjsciajest fakt, ze sekwenty-liscie jako
aksjoraaty 99 _uniwersalnie prawdziwe, a kazde przejscie od sekwentéw-wnioskow
do sekwentu-przeslanki w drzewie dowodu gwarantuje zachowanie uniwersalnej
prawdziwosci przeslanki. []

Whniosek 11.2

Dia kazdej interpretacji INTV jezeli interpretacja ta nie spelnia sekwentu etykietu-
jAcego n-ty wierzcholek drzewa dowodu, to nie spelnia ona réwniez zadnego se-
kwentu etykietuj*cego wierzcholek lez*cy na sciezce prowadz”cej od korzenia do
wierzcholka n.

Lemat 11.5, oprdcz tego, ze pozwala dowiesc poprawnosci semantycznej systemu
dowodzenia, wskazuje na jeszcze jedn” jego wlasnosc. Pokazuje mianowicie, ze
reguly prowadz” od prawdziwych wnioskéw do prawdziwych zalozen, to znaczy:
jezeli regula pozwala z sekwentu S otrzymac dwa sekwenty S\, S2- jak na przyklad
w regule dla koniunkcji - to prawdziwosc Si oraz S2 implikuje prawdziwosc se-
kwentu S. Oznacza to odwracalnosc wprowadzonych regul. Reguly otrzymane na
podstawie takiego odwrdcenia sg regulami wprowadzania sp6jnikdéw logicznych.
Kazdej regule eliminacji spdjnika logicznego odpowiada wiqgc regula wprowadzania
tego spojnika. Na przyklad regulom eliminacji spojnika koniunkcji b~d”* odpowia-
dac reguly wprowadzania spdjnika koniunkcji odpowiednio po lewej (/+a) i po
prawej stronie sekwentu (p+a):

(™~ A ShM iiJL
*R3,0->

(p*a) * *r'a
v 0r>r,a AR
Zestaw regul wprowadzania spdjnikow logicznych i kwantyfikatora ogélnego pozwala
na konstrukcjq takich samych drzew dowodu jak dla systemu z regulami eliminacji,
z t” roznic”, ze konstrukcja drzewa odbywa sig w odwrotnej kolejnosci - od lisci do
korzenia.

11.7. Semantyczna zupelnosc

Semantyczna zupelnosc systemu dowodzenia G dla rachunku sekwentéw Gentzena
oznacza, ze zachodzi implikacja: jezeli 0 % a, to 0 Hc a. Odwolujic siq do rysunku
11.5, oznacza to, ze zbi6r twierdzen i zbior tautologii Si identyczne.

Zupelnosc systemu G zostanie wykazana przez udowodnienie kilku lematéw.

Lemat 11.6

Jezeli formula a jest tautologii oraz drzewo dowodowe, uzyskane w wyniku sto-
sowania podanego algorytmu, jest skonczone, to wszystkie jego liscie si etykieto-
wane aksjomatami.

Dowdd

Dowdd prowadzi si$ metodi nie wprost. Zaklada si?, ze D jest pewnym drzewem
skonczonym zbudowanym dla formuly a takim, ze pewien lisc jest etykietowany
sekwentem postaci 0 — T, gdzie 0 n r= 0. Jezeli da siQ pokazac, ze istnieje
pewna interpretacja INT,, dla ktorej sekwent ten nie jest spelniony, to z wnios-
ku 11.2 wynika, ze nie jest rowniez spelniony sekwent stanowi”cy korzen drzewa
dowodu. Oznacza to zatem - wbrew zalozeniu lematu - ze formula a nie jest tauto-
logii.

Poszukiwani interpretacja skonstruuje siq w sposdb nastQpujicy: Jako dziedzing D
interpretacji przyjmuje siQ zbior wszystkich terméw TERM(F, P). Interpretacja /
symboli funkcyjnych i symboli predykatow jest nastQpujica:

» wynikiem zastosowana funkcjif&Fn, dla neNat, do terméw tu ..., t,,jest term

T,

« dla dowolnych terméw tu ..., t,, oraz dowolnego predykatu peP n, dla neNat,

definiuje si$p(tu ..., t,) = prawda wtedy i tylko wtedy, gdy formulap{tu ...,
t,,)e 0, czyli gdy wystQpuje ona po lewej stronie sekwentu 0-* F

Rozpatruje siq takie wartosciowanie v, ktore dowolnej zmiennej indywiduowej
X przypisuje term jg czyli v(x) =defx. Z defmicji | oraz v wynika, ze
INTVEE a0 =>vVvT

bowiem wszystkie formuly w sekwencie 0 —r si nierozkladalne, a na mocy de-
finicji wszystkie formuly z 0 si prawdziwe, wszystkie zas formuly z T”si fal-
szywe. n

Lemat 11.7

Jezeli drzewo dowodowe uzyskane w wyniku stosowania podanego algorytmu dla
formuly arjest nieskonczone, to formula a nie jest tautologii.

Dowdd

Jezeli drzewo jest nieskonczone, to - na podstawie lematu Koniga - oznacza to ist-
nienie nieskonczenie dlugiej sciezki, zaczynajcej siq od korzenia. Niech & —» 77
b$d” sekwentami etykietuj*cymi /-te wierzcholki na nieskonczonej sciezce. Dalej

niech 0 = oraz r=zU ieNatr i m
Wprowadza siq teraz nastqpujXc” interpretacja: Dziedzin” interpretacji - podobnie
jak w poprzednim lemacie - jest zbior wszystkich terméw. Réwniez interpretacja

symboli funkcyjnych jest taka sama, jak w poprzednim lemacie, interpretacja zas
symboli predykatdw jest nastgpuj”ca:

dla dowolnych termdw tu ..., t,, oraz dowolnego predykatu peP,,, z definicji
p(tu ..., t,) =prawda wtedy i tylko wtedy, gdy formulap{tu ..., t,,) e 0, czyli gdy
wystQpuje ona po lewej stronie jednego z sekwentéw 0, —77.

Niech v b”dzie wartosciowaniem takim, ze v(x) =df x. Z pokazanego dalej lematu
11.8 wynika, ze dla dowolnej formuly or.

jezeliae0, toINTVE a

jezeli are 77t0 INTVE —a

Stwierdzenie tego faktu konczy dowdd lematu, gdyz oznacza, ze formula a nie jest
tautologi”®, bowiem korzen drzewa dowodu jest etykietowany sekwentem —a, czy-
li formula ae 77]

Lemat 11.8
Niech 0= \JieNalOj oraz r=\JieNair j, gdzie 0, — s\ sekwentami etykietuj”-
cymi /-te wierzcholki na nieskonczonej sciezce w drzewie dowodu. Dla dowolnej
formuly a:
jezeliae0, toINTVI= a

jezeli are 77t0 INTV —a

Dowdd
Zdefiniuje siq najpierw relacjq ms okreslon” na zbiorze wszystkich formul w spo-
s6b nastgwjqcy:

1. Elementami minimalnymi relacji s%formuly elementame postaci p(t\......t,,),
gdzie: peP njest symbolem n-argumentowego predykatu, a t\, ..., t, s*dowol-
nymi termami. Oznacza to, ze dla formuly postacip{t\, ..., t,,) nie istnieje for-
mula ortaka, ze a<p(tu ..., /,,).

2. a<-ycc

3.a< (aalB)orazfl <(aal?)
4. Dia dowolnego termu t zachodzi a[x :=t\ <Vx -+ a

Niech bqdzie przechodnim domknigciem relacji < Jeéli érjest dowoln” formuly,
to nie istnieje nieskonczony ci®g formul ax OK,... spelniaj*cy warunek

. <+ 0Oi <+ ax<+a

Wynika to z obserwacji, ze po lewej stronie relacji znajduje si$ zawsze formula
skladniowo prostsza od formuly po prawej stronie relacji. Dia danej formuly liczba
formul skladniowo od niej prostszych jest oczywiscie skonczona.

Dowod lematu b$dzie prowadzony indukcyjnie wzgl~dem relacji <

W kroku bazowym pokazuje siQ, ze teza lematu zachodzi dla elementéw mini-
malnych wzgl?dem relacji <+ Zaklada sig, zep{t\, ..., tf)e 0 u r. Istnieje zatem
keNat takie, ze p(tx ..., t,)e Oku /* oraz k jest pierwszym takim wierzchol-
kiem na rozpatrywanej sciezce. Oczywiscie Okn Tk= 0, gdyz w przeciwnym
razie wierzcholek bylby aksjomatem i sciezka konczylaby siq w tym wierzchot-
ku, wbrew zalozeniu o jej nieskonczonosci, zatem albo p(t\, ..., t,,) e Ok, albo
p(tx ..., tnNerk

Niechp(t\......tn) e 0k Poniewaz do formul postaci p{t\, ..., tn) nie da si$juz zasto-
sowac zadnej z regul rozkladu, wi*c p(t\.....tNe Omdla m >k, a tym samym
p(t\, t,) & l~idladowolnego ie Nat, zatemp{t\, ..., t,)e Oorazp(t\,..,t,)gF Na

mocy definicji interpretacji INTVzachodzi wiqc INTVt=p (t\,..., t,,).

Analogicznie dla drugiego przypadku, gdyp(tx ..., t,,) e rk mozna pokazac, ze
INTWr= ->p(tu ..., tn).

W kroku indukcyjnym dowodu rozpatmije siq kolejne przypadki postaci formuly a.
1. Niech orbgdzie postaci —if2. Na mocy regul eliminacji spdjnika negacji zachodzi:
jezeli —iBRe 0, toRe /"oraz
jezeli—iReT,toReO.

Wystarczy teraz skorzystac z zalozenia indukcyjnego. Na przyklad, gdy —Rs 0,
to BeF Poniewaz B -<+-il§, zatem - korzystaj*c z zalozenia indukcyjnego

z/?er wynika, ze INTVE —if8.
2. Niech a bqdzie postaci B a y. Z postaci regut eliminacji koniunkcji wynika, ze

formuly 8 oraz *wystQpuj”* razem w 0 albo jedna z nich wystgpuje w 77 Oczy-
wiscie B<+(B a y) oraz y~C (B a y). Z zalozenia indukcyjnego wynika, ze

INT, £ 8 oraz INT, £ y

albo
INT, t= 8 Ilub INT, ="y

zatem

INT, = (J3a y) gdy (Ra y)eO
albo

IAT, t=-i(Ba y) gdy (BAy)er

3. Niech arb”dzie postaci Vx « . Dia przypadku zastosowania reguly eliminacji

kwantyfikatora (/ V) zaklada si? nie wprost, ze nie zachodzi INT, t= Vx « [.
Oznacza to, ze dla pewnego elementu z dziedziny interpretacji, czyli
dla pewnego termu t, formula § nie jest spelniona, to znaczy, ze INT, %
-V9[x ::=/].
Poniewaz 3[x := f] <+Vx ¢ 8, oznacza to wiQC, ze B[x ::= 7] musi wyst"pic po
lewej stronie sekwentu po skonczonej liczbie zastosowan reguly (/ V), czyli
B[x :=t]e0. Z zatozenia indukcyjnego wynika, ze INT, £ B[x ::=/], co ozna-
Ccza sprzecznosc z wyprowadzonym wnioskiem, ze INT, £ —=f{[x .:=1].

Przypadek zastosowania drugiej reguly eliminacji kwantyfikatora (p V) rozwaza
sig podobnie. [

Twierdzenie 11.2
System dowodzenia Gentzena jest semantycznie zupelny.

Dowdd
Niech formula a bqgdzie tautologi®. Wystarczy pokazac, ze drzewo dowodowe dla
tej formuly jest skonczone. Z lematu 11.6 wynika bowiem, ze wszystkie jego liscie
s” etykietowane aksjomatami, co wskazuje na to, ze a jest tautologi®. Drzewo do-
wodowe dla 6rmusi bydjednak skonczone, gdyz w przeciwnym przypadku - zgod-
nie z lematem 11.7 - formula ornie bylaby tautologi”. |

Z przedstawionych rozwazan wyplywa dodatkowy wniosek:

Whiosek 11.3
System dowodzenia Gentzena jest czQsciowo rozstrzygalny.

Oznacza to, ze istnieje procedura (na przyklad algorytm przedstawiony w podrozdzia-
le 11.5), ktora w skonczonej liczbie krokow stwierdza, ze badana formula arjest tauto-
logig. albo stwierdza, ze formula nie jest tautologi®, albo - w przypadku, gdy ornie jest
tautologi”™- nie udziela zadnej odpowiedzi w skonczonej liczbie krokow.

Cwiczenia

1. Stosuj*c metodq sekwentdéw Gentzena, wykazac, ze nastQpuj*ce formuiy nie
tautologiami rachunku kwantyfikatoréw:

a) (3x*/>(x)) =>p(x)
b) (VX< p(x)) = (VX —n(x)
2. Czy formuiy z zadania 1. sg. spelnialne?

3. Stosuj*c metodq sekwentdw Gentzena, wykazac, ze nastQpujce formuiy tautolo-
giami rachunku kwantyfikatoréw:

a) (3x+p(x) v q(x)) <>(3x +p(x)) v (3x * (X))
b) (Vx*p(x) <>a{x)) => ((Vx *p(x)) <>(Vx * q(x)))
c) (Vxep(x) «q(x)) =((3x *p(x)) <>(x * q(x)))

4. Stosujc*c metodq sekwentdw Gentzena, sprawdzid, ktdre sposrdd nastqpujgcych
formul tautologiami rachunku kwantyfikatorow:

a) (--VxeVyer(xy)) <(3xe 3y -r(xy))
b) (-i3x * 3y ¢ r(x,y)) <>(Vx s Vy -« -ir(x,y))

5. Podac dolne i géme oszacowanie liczby wierzcholkéw drzewa dowodu formuiy
rachunku zdan metod” sekwentdéw Gentzena, przy zalozeniu, ze liczba wystqgpien
spdjnikdw logicznych w formule wynosi neNat.

6. Przedstawic algorytm, ktory dla danej formuiy wyznacza pierwszy (od lewej) tek-
stowo spdjnik, ktéry moze byc wyeliminowany przy dowodzeniu metod” sekwen-
tow Gentzena.

7. Przedstawic algorytm, ktdry sprawdza, czy term t jest wolny w a ze wzgl~du na
zmienn” indywiduow” x.

12. Metoda rezolucji

12.1. Wst™p

Omowiony w rozdziale 11. System dowodzenia - oparty na rachunku sekwentow
Gentzena - daje podstawq do tworzenia algorytmdw automatycznego dowodzenia
formul rachunku kwantyfikatoréw, ale jest zwieyzany z pewnymi niedogodnosciami,
ktore prowadz” do duzej zlozonosci obliczeniowej, a tym samym czasochtonnosci
obliczen. Poszukiwanie innych, bardziej efektywnych metod dowodzenia doprowa-
dzilo, w 1965 roku, do sformulowania przez J.A. Robinsona systemu dowodzenia
opartego na tzw”regule rezolucji. Oparta na tej regule metoda, zwana metod” rezolu-
cji, stanowi System dowodzenia spelnialnosci zbioru formul. Istotn™ wlasciwosci®
dowodzenia opartego na regule rezolucji jest koniecznosc sprowadzenia dowodzonej
formuly do postaci znormalizowanej. Formuly muszg. byd w skolemowskiej postaci
normalnej, a ich matryce - w koniunkcyjnej postaci normalnej.J

Uwaga

Podejscie zaproponowane przez Robinsona okazalo si$ bardzo skuteczne i dalo
podwaliny pod wiele zastosowan, wsréd ktorych na pierwszym miejscu nalezy
wymienic programowanie w logice. Programowanie w logice, zwlaszcza w jgzyku
Prolog, umozliwilo mi~dzy innymi efektywn” implementacjq systeméw dorad-
czych (ekspertowych), sterowanie robotami, automatyczne tlumaczenie tekstow.
Metoda Robinsona bazuje na wczesniejszych pracach, wsrdd ktorych nalezy wy-
mienic prace HerbrandaZl z 1930 roku oraz pracq Davida i Putnamana z pocz™tku
lat szescdziesi*tych ubieglego wieku.

Stosowanie metody rezolucji wi~ze si$ z badaniem, czy dana formula a jest lo-
giczn”™ (semantyczn”) konsekwencjX zbioru formul 0, czyli czy 0 ¥ a. Zgodnie
z lematem 10.3, 0 £ a wtedy i tylko wtedy, gdy zbiér 0 u {—Q} jest niespelnial-
ny. Jezeli 0 ¥ {ori, ..., to niespelnialnosc zbioru formul 0 u {—cc} oznacza, ze
formula

(A A ... A GhA —i(X

21 Jaques Herbrand (1908-1931).

jest tozsamosciowo falszywa. Niespelnialno§c zbioru <Pu {Q?} oznacza zatem, ze
jedyn”jego konsekwencj” semantyczn”jest formula tozsamosciowo falszywa, czyli

ou {-a) I=false

Stosowanie metody rezolucji polega na reprezentacji zbioru formul & u {-ia} za
pomoc” zbioru klauzul, a nastgpnie na prébie wyprowadzenia z tego zbioru klauzuli
pustej, reprezentujctcej false. Jezeli taka proba konczy siq powodzeniem, to znaczy
wyprowadzeniem klauzuli pustej, oznacza to, ze O (= a. W przypadku przeciwnym,
po wyczerpaniu wszystkich mozliwosci, oznacza to, ze «Pll a.

12.2. Zasada rezolucji dla rachunku zdan]

Zaklada siqg, ze badane formuly rachunku zdan sg. w koniunkcvinei postaci normalnej.
Co 0znacza, ze s™w postaci koniunkcji klauzul:

Xia k2a ...a k, dla neNat\{O}

Klauzulajest dysjunkcj” literalow:
X\v X2v ..v X,, dlameNat

W przypadku szczegdlnym, gdy m = 0, klauzula bqdzie nazywana klauzul® pustq
i 0znaczana symbolem O. Klauzula pusta oznacza formulg tozsamosciowo falszyw”.

W przypadku rachunku zdan literalami s” zmienne zdaniowe lub ich negacje. Dwa
literaly s™. komplementame, gdy jeden jest negacje drugiego.

W przypadku znormalizowanej reprezentacji formuly mozna méwic, ze formula jest
okreslona przez pewien zbidr klauzul, klauzula zas jest okreslona przez pewien zbi6r
literaldw. Uwaga ta wyjasnia wprowadzan” ponizej konwencjq oznaczen.

Fakt, ze pewien literal X jest elementem klauzuli «, bqdzie zapisywany w postaci
x & «. Jezeli z klauzuli « zostanie usuniqty nalez”cy do niej literal X, to otrzymana
nowa, byc moze pusta, klauzula bqdzie oznaczana « x .

Definicja 12.1

Niech bgd” dane dwie klauzule «\, «2 oraz dwa literaly komplementame X\, X2 ta-
kie, ze Xte k\, X2 «2. Klauzula postaci

Xjui u «2wx2

bgdzie nazywana rezoiwentq klauzul X oraz «2 i oznaczana symbolicznie przez
rez(Ku k2). Literaly X\, X2 nazywa Slq literalami czynnymi. O dwoch klauzulach
majXcych rezolwentq bgdzie sig méwio, ze s” klauzulami, ktére daj”™ siq uzgodnic.
Oznaczenie rez(xj, «2 ma sens tylko pod warunkiem, ze klauzule xj, «2 daj® siq
uzgodnic.

Badanie, czy dana formulajest tautologiq, polega na sprawdzeniu zbioru reprezentuj®-
cych j~. klauzul. Formula a jest spelnialna wtedy i tylko wtedy, gdy jest spelnialny
zbidr reprezentujgcychj” klauzul «\, w2, ..., kn. Zbidr klauzul nie jest spelnialny wtedy
i tylko wtedy, gdy jego semantyczn” konsekwencj 3 j est klauzula pusta.

Dowodzenie polega na generowaniu, na podstawie zbioru klauzul K\, k2 ..., Ky no-
wych klauzul tak dlugo, az zostanie utworzona klauzula pusta bgdz, po wyczerpaniu
wszystkich mozliwosci, klauzula pusta nie zostanie wygenerowana. Wygenerowanie
klauzuli pustej b~dzie oznaczac, ze badany zbidr klauzul jest niespelnialny, a przypa-
dek przeciwny bgdzie oznaczad spelnialnosé badanego zbioru klauzul.

Generacja nowej Klauzuli opiera si$ na zastosowaniu reguly rezolucji w postaci:

Definicja 12.2
Schemat reguly rezolucji ma postac

k x, k 2

Ae kx,A'e «2 oraz A, A" s komplementame
kx\ A U k2\

Przeslankami reguly rezolucji s"klauzule, a wnioskiem - rezolwenta tych klauzul.

Regula rezolucji jest ogdIn” reguly wnioskowania, ktorej szczegdlne postaci odzwier-
ciedlaj™ niektdre inne znane reguly wnioskowania.

Przyklad 12,1

Niech b$d” dane dwie klauzule: p oraz —p v g. Spelniajg. one wymagania oczeki-
wane od przeslanek w regule rezolucji, literalami czynnymi s*p oraz —p, a ich re-
zolwentMjest klauzula g, czyli

q
Warto zauwazyc, ze klauzula—p v qjest semantycznie réwnowazna formule p=> q,
co pozwala zapisac powyzsz” reguly w postaci
P.p==>q
q
I znanej jako regula odrywania (modus ponens). |

Przyklad 12.2
A Diaklauzul pv goraz—-qgv rregularezolucji ma postac n

—pvqg,-\qvr
—ipvr

co odpowiada regule wnioskowania lancuchowego

p==q.q==>r

Przyklad 12.3
I Prosta, ale szczeg6lnie wazna, jest regula rezolucji w postaci

~AP,P

[

I Qznacza ona, ze klauzula pusta wyraza sprzecznosc przeslanek.

Nalezy zwrdécic uwagQ, ze rezolwenta dwoéch klauzul nie zawsze jest wyznaczona
jednoznacznie, gdyz klauzule mog” zawierad wiqcej niz jedn” parq literaléw komple-
mentamych. W powstalej rezolwencie mog” siQ ponadto powtarzac pewne literaly.
Powtarzaj™ce siq literaly mozna usun~c bez naruszenia semantyki klauzuli. Proces
eliminacji powtarzaj”cych siq literalow okresla sigjakofaktoryzacjq.

Przyklad 12.4
I Diaklauzul: !

—pv—Hgv ATv—S oraz j>v—-gvrv-isv-./v-u
rezolwentami s™:

—gv v —s v —igvf'v-dSv Av—u (literalami aktywnymi s”®-pip)
oraz

—pV—igv—iSvpv-,qv —sv-itv-iu (literalami aktywnymi s*—ir)
Po faktoryzacji rezolwenty przyjmuj” odpowiednio postac:

-igv—#Hv—=8 Vvrv-—<v-iu
oraz

i —pVv—HvV-HaSvpv-Av— j

Regula rezolucji jest semantycznie poprawna, co precyzuje twierdzenie.

Twierdzenie 12.1
Rezolwenta rez{K\, k2) jest semantyczn” konsekwencj" klauzul K\, k2 czyli

Ku k20 rez(Ku k2.

Dowdd

Niech klauzule K), Kmaj”~postac:

*Is AVA\V ..VA,

K- —4Av Aiv ... v Am
gdzie A, -iA literalami komplementamymi. Niech klauzule te byd” spelnione
w pewnej interpretacji J. Oznacza to, ze spelniony jest rowniez jeden z literalow
A, —A. Niech bydzie to —A Wobec tego nie jest spelniony literal A, ale skoro spel-
niona jest klauzula K\, to musi byc spelniona formula A\ v ... v A, Formula tajest
skladnikiem rezolwenty rez(Ki,xz), a zatem rezolwenta jest réwniez spelniona
w interpretacji 7. Rozumowanie przebiega podobnie, gdy zalozyc, ze spelniony jest
literal A m

Na podstawie reguly rezolucji mozna sformulowac algorytm badania spelnialnosci
formuly rachunku zdan.

Algorytm badania spelnialnosci zbioru klauzul

Dane: formula a rachunku zdan.
Wynik: odpowiedz tak, gdy formulajest spelnialna, nie - w przypadku przeciwnym.
Procedura:

1. Dia formuly «rwyznaczyc CNF(d) - algorytm z podrozdzialu 9.6.

2. Wyznaczyc zbior klauzul S reprezentujgcych CNF(a).

3. Powtarzac nastypuj”ce czynnosci:

while
O AS i istniej*klauzule K\, t2S dajgce rezolwenty nienalez*c do S
do
(8) znajdz klauzule K\, k2, ktére daj” siy uzgodnic i wylicz ich rezolwenty
rez(Ku K2,
(b) zast™p S przez S', gdzie S'=S v rez(Ku k2
od

4. Jezeli S zawiera klauzuly pust”™ to odpowiedz nie, w przypadku przeciwnym
- odpowiedz tak.

Przyklad 12.5
A Niech bydzie dany nastypuj”cy zbior klauzul
S=df{av —&v —e, d, b,cv—av-b,cv-id, —av —dv —b)

Dia przejrzystosci rozwazan poszczegdlne klauzule zostan” zapisane w ponume-
rowanych wierszach. W nastypnych wierszach s” zapisane klauzule uzyskane ze

zbioru S w wyniku stosowania reguly rezolucji. Po prawej stronie klauzuli s%
podane numery klauzul, ktére byly przeslankami do jej uzyskania:

(1)av —bv —c

(2)d

)b

(4) cv —av —ib

(5) cv —d

(6) -iav —dv -ib

(7) flv-ic (1,3)

8) ¢ (2,5)

(9) Hav —b (2,6)
(10)cv —a (3,4)
(11) -iav —d (3,6)
(12) —a (2,11)
(13) —ic (7,12)
(14)O (8,13)

Ostatnia wygenerowana klauzula jest klauzul” pustq, co dowodzi, ze badany zbiér
I klauzul S nie jest spehiialny. |

12.3. Skolemowska postac normalnaj

Badaj”c spelnialnoSc formul rachunku kwantyfikatoréw wedlug metody rezolucji, zakiada
siQ, ze formuly s”w postaci kanonicznej, zwanej skolemowsk” postaci” normaln”.

Niech a e FORM(F, P, V) b~dzie formuly rachunku kwantyfikatoréw nad sygnaturg.
<F, P> i zbiorem zmiennych indywiduowych V.

Definicja 12.3

Formula znajduje siq w postaci Skolema, gdy jest w przedrostkowej postaci nor-
malnej, ajej przedrostek nie zawiera kwantyfikatoréw egzystencjalnych.

Przez Skol(ct) b~dzie oznaczany skolemowski odpowiednik formuly a. Proces wyzna-
czania odpowiednika skolemowskiego dla danej formuly nazywa siQ skolemizacjq.

W odrdznieniu od przypadku, gdy dla dowolnej formuly a istniala réwnowazna se-
mantycznie postac przedrostkowa PNF(a), miqdzy formuly a a odpowiadaj’cei jej
postaci® skolemowska Skol(oi) réwnowaznosc taka moze nie zachodzic. Zachodzi
natomiast slabszy rodzaj réwnowaznosci oparty na zwi*zku spelnialnosci. Oznacza to,
ze formula arjest spelnialna wtedy i tylko wtedy, gdy spelnialnajest formula Skol(d).
Formula orjest spelnialna, gdy istnieje model, w ktdrym jest spelniona.

Istotq skolemizacji wyjasnia przyklad.

Przyklad 12.6

Dana jest formula postaci

VxeVye(x y)=>3ze(x 2)a(z"7)) 1)
lub po sprowadzeniu do przedrostkowej postaci normalnej

Vx e Vy e 3z (HX<y)V (X<2)a = <Y)))

Jest to aksjomat elementamej teorii relacji mniejszosci, zdefiniowanej w rozdziale
10. Modelern dla tej teorii jest na przyklad zbiér liczb wymiemych Wymierne, jako
dziedzina interpretacji, oraz relacja mniejszosci < w zbiorze liczb wymiemych, ja-
ko interpretacja symbolu predykatu < W modelu tym aksjomat méwi, ze dla
dwdoch dowolnych liczb wymiemych x, y istnieje pewna posrednia liczba wymiemaz,
ktora jest zawarta w przedziale migdzy liczb”x a liczb™y. Liczb$ posredni® mozna
zawsze wskazywac bezposrednio, bior*c na przyklad sredni” arytmetyczn” liczb x, y,
czyli okreslaj”c, ze wartosciowanie zmiennej z jest funkcj® wartosciowania zmien-
nych x oraz y, zdefiniowan™ wzorem z =def (x +y)I2. Dla sredniej arytmetycznej
prawdziwa jest bowiem formula

VX e Vy e (X <y) v (X <(x+Yy)/2) a (x+Y)/2 <y) ©)

Formula ta jest w postaci skolemowskiej i rozni siq od poprzedniej formuly bra-
kiem kwantyfikatora szczegdlowego, ktdry zostal zastgpiony dwuargumentow”
funkcj” obliczajqc” sredni” arytmetyczng, Ostatni” formulQ mozna zapisac w ogdl-
niej postaci

VX e Vy e (-.(X -<y)V(X-</(X,y) a’(x.,Y) <Y) 4)

gdzie/ jest pewnym symbolem funkcyjnym, ktéry nie wystQpowal w teorii relacji
mniejszosci.

Tekstowy zwi*zek mitdzy formuly (4) oraz formuly (2) mozna scharakteryzowac
nastgpujco: formula (4) powstala z formuly (2) przez eliminacjQ kwantyfikatora
szczegblowego oraz przez tekstowe zast“pienie kazdego wyst*pienia zmiennej z,
wi”zanej wyeliminowanym kwantyfikatorem, przez term/(x, y), gdzie: x orazy s
zmiennymi wi*zanymi przez kwantyfikatory ogoélne, poprzedzaj*ce wyeliminowa-
ny kwantyfikator szczeg6lowy, a /jest nowym dwuargumentowym symbolem
funkcyjnym.

Na przykladzie widac, ze aksjomat (2) teorii relacji mniejszosci mozna byloby za-
st"pic aksjomatem postaci (4). Nowa aksjomatyka jest spelniona w kazdym mode-
lu, w ktérym jest spelniona dawna aksjomatyka. 1

Algorytm skolemizacji

Dane: formula ornad sygnatury <F, P>.

Wynik: formula Skol(d) w postaci skolemowskiej, réwnowazna w sensie spel-
nialnosci formule cl

Procedura: procedura postg>owania polega na etapowym, tekstowym przeksztalca-
niu formuly cl Formula posrednia jest oznaczana przez R.

1 Niech a bqdzie formuly w przedrostkowej postaci normalnej (otrzyman” na
przyklad w wyniku stosowania algorytmu przedstawionego w p. 10.8).
2. while
w przedrostku formuly B istnieje kwantyfikator egzystencjalny
do
(@) Jezeli formula 8 ma postac: 3x ¢ y to zastQpuje sigj* formuly posta-

ci y\x ;= c], gdzie ¢ jest nowym symbolem stalej, to znaczy ze c nie
nalezy do zbioru symboli stalych sygnatury <F, P>, czyli c<£F0.

(b) Jezeli formula 3 ma postac: Vxi e .. ® VX, * 3y * y,dlam >0, to za-
st"puje siq formuly postaci: VX, e...» Vxme y[y ::=/(X........ xm],
gdzie/jest nowym m-argumentowym symbolem funkcyjnym, to zna-
czy ze/ nie nalezy do zbioru m-argumentowych symboli funkcyjnych
sygnatury <F, P>, czylif<tFm

od

3. Otrzyman” formuly B definiuje sigjako Skol(cc).

Przyklad 12.7
I Dia formuly postaci |
3u* Vwe3x e VyeBze (p(u, x) =>qw,Yy, h(2)))
jej skolemowskim odpowiednikiem jest formula
Vw e Vy ¢ (p(c,f(w)) =>q(w.y, h(g(w.y))))
I gdzie c,/, g s" nowymi symbolami funkcyjnymi. |

Twierdzenie 12.2

Formula orjest spelnialna wtedy i tylko wtedy, gdy spelnialnajest formula Skol(a)
otrzymana w wyniku podanego wyzej algorytmu.

Dowdod

Jezeli formula a= Vxi e ... » Vxme 3y ¢ y jest spelnialna, to oznacza, ze jest spel-
niona w pewnym modelu M = <D, I> nad sygnatury Sig, czyli

INTWVXie ... Vxme 3y ¢ y) =prawda

dla dowolnego wartosciowania v. Z tego wynika, ze réwniez
INTrfBy « y) =prawda

dla v' = v[ti := d\, ..., X, ;= dn{, gdzie d\, dnmeD dowolnymi wartosciami
z dziedziny interpretacji. Oznacza to, ze istnieje taka wartoSc deD, ze

INTsiv =d\(7) = prawda

Niech Sig' b”dzie rozszerzeniem sygnatury Sig o w-argumentowy symbol funkcyj-
ny fy oraz niech /' bqdzie takim rozszerzeniem interpretacji I, ze I'(fy) =f djest
funkcj” ktora - z definicji - dlad\,..., dneD przyjmuje wartosc deD, czyli

f{du...,dm)=d
wowczas

V' [y == INTAfy{xu ..., *,)]

V' [y :=f{INTAX,),..../» x m)]
Viy:=1V,,z/,.)]
=v [y:=

Formula y nie zawiera symbolufy, dlatego

INT/[y =d](y) - prawda
Z lematu o podstawieniu wynika, ze

INTs(?) =INTdy[y —fyixi,.... xm]
Poniewaz d\, ...,dmbyly wybrane dowolnie, zatem

INTUVXte ... » VX,,* Y[y ::=f/xi, ..., j5,)]) =prawda

dla dowolnego v.

Wynikanie odwrotne - spelnialnosc formuly orze spelnialnosci formuly Skol(&) jest
oczywiste.

Przedstawienie formuly ffw postaci skolemowskiej
VXie ..* VX, (Xia..A Kn)

gdzie xj, ..., K klauzulami, pozwala na reprezentacjq formuly w postaci zbioru
jej klauzul.

Reprezentacja ta jest jednoznaczna przy zalozeniu, ze wszystkie zmienne wystQpu-
jElce w klauzulach sg. zwi*zane kwantyfikatorami ogdlnymi. Zalozenie to zawsze
mozna przyj~c, gdy bada sig spelnialnosc formuly. Wynika to z faktu, ze jesli na
przyklad jest spelnialna formula Vy ¢ Vijc* p(X, y), to réwniez spelnialna jest for-
mula VX « p(X, y). [

12.4. Unifikacja termow]

Stosowanie metody rezolucji w rachunku kwantyfikatorow wymaga dodatkowego
procesu, polegaj*cego na sprowadzeniu literaldow do pewnej ujednoliconej postaci.
Proces ten nazywa si$ unifikacjq termow. Zbidr klauzul {p(x), —#?2(y)} jest oczywi-
scie zbiorem niespelnialnym, ale literaly p(x), —p(y) nie komplementame. Ogdl-
nie literalami w rachunku kwantyfikatoréw sg. formuly elementame lub ich negacje,
na przyklad p{t\....... tm, —=pt\, ..., tn), gdzie: p jest symbolem predykatywnym,
a tu .., tm termami. Sprowadzanie takich literaléw do ujednoliconej postaci -
jezeli jest mozliwe - polega na zastosowaniu do nich jednakowych podstawien tek-
stowych (zob. podrozdzial 10.4).

Rozwazane b~d~tylko takie podstawienia 4 =def[*i W=tu x,, ::=1/,], ktore spelniaj”®
warunek

Var(t) n {xi,..,xn}=0 dla/=1,...,n,

to znaczy, ze w termach t\, ...,/,, nie wystQpuj*zmienne x\, X,,.

Podstawienie a nazywa siQ unifikatorem dla formul @, ..., a,,, gdy
a\(X =... = QOff.
Formuly musz” oczywiscie byc oparte na tym samym symbolu predykatywnym, mog”

sig rdznic co najwyzej postaci™termow, ktore sg. ich argumentami. Formuly 00<7, ..., a,, er
nazywa siqformuiami ukonkretnionymi przez podstawienie er

Przyklad 12.8
A Unifikatorem dla formulp(x) orazp(y) jest [x ::=z,y::= z], gdyz I
p{X)[x ::=z,y::=z] = p(Y)[x ::=z,y::= 7] =p(2)
ale unifikatorami s"réwniez na przyklad:
[X ::=w,y ::=w], gdzie wjest zmienn”,
[Xx ::= 5,y ::=5], gdzie 5jest stal®,
[x :=g(z, w),y ::=g(z, w)], gdzie g jest symbolem funkcyjnym.

Dla formulp(x),p(6) jest tylko jeden unifikator [x ::= 6], a dla formulp(5),p(6) nie
I ma unifikatora. I

Formuly a ukonkretnion” przez podstawienie er mozna ukonkretniac ponownie innym
podstawieniem r. Dwukrotne ukonkretnienie formuly, najpierw podstawieniem er,
a nastqmie podstawieniem T, jest rdwnowazne jednokrotnemu ukonkretnieniu pod-
stawieniem err, ktore jest zlozeniem podstawien eroraz r. Oznacza to, ze

(ad) t=

Przyklad 12.9

A Formulg p(x, y) mozna kolejno ukonkretnic podstawieniem [x ::=/(z)], co da for-
mu\8p (f(z),y), a nastQpnie podstawieniem [y ::= g(u, w)], co dap(f(z), g(u, w)).

Zlozeniem podstawien [x ::=/(z)] oraz [y ::= g(u, w)] jest podstawienie
[x::=f(z).y g(u, Wl
| Zastosowanie tego podstawienia do formufyp(x, y) daje rowniezp(f(z), g(u, w)). |

Jezeli dla podstawienia o istnieje podstawienie odwrotne er'l takie, ze er<r | =
= o~I<j= e, gdzie £jest podstawieniem tozsamosciowym, to erjest nazywane prze-
mianowaniem zmiennych.

Przyklad 12.10
| Postawienie [x ::=z,y ::= w]jest przemianowaniem zmiennych, gdyz

| [xi—z,y::=w][z::=x,w.:=y] =[x::=x,y:—Vy] |

Definicja 12.4

Podstawienie o\ jest bardziej ogdlne niz podstawienie Oi, jezeli dla pewnego nie-
pustego podstawienia r, réznego od przemianowania, zachodzi 05= Q] «.

Definicja 12.5

Podstawienie er nazywa siq najbardziej ogélnym unifikatorem formul a\, ..., (&
gdy jest unifikatorem i jest bardziej ogdlne od kazdego innego unifikatora tych for-
mul.

Z definieji wynika, ze najbardziej ogdlny unifikator jest okreslony z dokladnosci”® do
nazw zmiennych. Najbardziej ogdlny unifikator formul ax ..., a,, bqdzie oznaczany
przez NOU(cx\, ..., a,,).

Przyklad 12.11
A Najbardziej ogdlnymi unifikatorami dla nastQpuj~cych par formul s™: A

NOU(p(\0, 20),p(20, 10)) nie istnieje
NOU(p(lO, 20),p(10, 20)) =e ~
NOU(p(10, x),p(y, 20)) = [x::=20,y ::= 10]
NOU(p(10, x), p(10,y)) = [x ::=y] (atakze [y::=*])
NOU{p(x, x),/?(10,y)) = [x 10, y ::= 10]
NOU(p(f(10), 20),p(x, 20)) = [x ::=/(10)]
[NOU(p(f(\0), 20),/?(10, 20)) nie istnieje :

Najbardziej ogolny unifikator mozna wyznaczyc w sposéb algorytmiczny. Istnieje
algorytm, ktory dla dowolnego zbioru formul ot\, ..., @,w skonczonej liczbie krokéw
orzeka, czy zbior ten jest unifikowalny, a w przypadku, gdy zbidr ten jest unifikowal-
ny, wyznaczaNOU (ai,..., e,). Algorytm polega na tekstowym poréwnywaniu formul,
wykrywaniu i usuwaniu niezgodnosci, przez okreslanie odpowiednich podstawien, az
do uzyskania pelnej zgodnosci b*dz do wyczerpania mozliwosci podstawien.

Definicja 12.6
Niech ti g bAd*termami. Parq niezgodnq nazywa siq takie podtermy t' i q” terméw
tiq, ze:
 pierwsze Symbole /' i q s"rbzne
» do miejsca wystgpienia podterméw t' i q' (liczqc od lewej do prawej strony)
termy ti g s”identyczne.

Zbiorem niezgodnosci dla formul p\(t\, ..., t,) i p(qi, qg,) jest zbior zlozony
z pary podtermdw niezgodnych dla terméw gt dla najmniejszego /e {1......n).
Zbiorem niezgodnosci dla zbioru formul opartych na tym samym symbolu pre-
dykatywnym jest zbidr niezgodnosci dla dowolnej pary formul z tego zbioru.

Przyklad 12.12

A Dia podanych nizej par formul zbiory niezgodnosci s*nastgpuj”ce: il
Zbidr formul Zbidr niezgodnosci
{P(:x),p(y)} {xyi
{a(f(x), 20), %(10, 20)} {(fix), 10}
{r{x,f(x,y), 2), rty, z, 9(x, ¥))} {xy}
{r(xf(x,y), 2), iix, z, g(x.y))} i(f(.x,y}z}

Algorytm wyznaczania najbardziej ogélnego unifikatora

Dane: zbior formul {a\,..., g, n> 1
Wynik: NOU(a\, ..., a,), gdy najbardziej ogolny unifikator istnieje, oraz odpo-
wiedz brak unifikatora w przypadku przeciwnym.
Procedura: algorytm polega na cyklicznym wyliczaniu unifikatora w kolejnych
iteracjach numerowanych przez zmienn”k.
1. Wartosci pocz”tkowe zmiennych algorytmu: k=0, <y= {au ..., "}, y=£
2. Jezeli card{fi\) = 1, to algorytm si$ konczy i NOU(&k) = ak, w przypadku prze-
ciwnym wylicz zbior niezgodnosci Nk dla 0 ki przejdz do nastqgmego kroku.
3. Jezeli w zbiorze niezgodnosci Nkwystgmj~ zmienna xk oraz term tktakie, ze
xk nie wystgpuje w tk, to przejdz do nastQpnego kroku, w przypadku prze-
ciwnym zbioér 0o nie jest unifikowany i algorytm siQ konczy.

4. Oblicz nowe podstawienie 6%+ = o* [x* ::= /*], dokonaj unifikaeji zbioru
formul 0” unifikatorem [x* ::= /*], to znaczy Ok+\ = <P*[x* ::= *], zwi*ksz
k ojeden iprzejdz do kroku 2.

Przyklad 12.13
A Niech A
0= {p(10,x,f(g(y))).p(z.(z).f(u))}.
Obliczenia algorytmu unifikaeji:
Oo=£, 0o= 0,Ng= {10,z},x0::=2,t0=10
o\=0o [z :=10] = e[z :=10] = [z ::= 1(]
0x=0b[z ::= 10] = {p(10,x,f(g(y))).p(z,f(2),f(u))} [z::=10] =
= {p(10,x,£(g(y))).p(103(10),/(«))}
N\= K /(10)},xi ::=x, tx=/(10)
@=0i [x::=/(105=[z 10] [x::=/(10)] = [z ::= 10, x ::=/(10)]
01=0x\x ::=/(10)] = {p(10, x,f(g(y))),p(10J(\0),f(u))} [x::=/(10)] =
= {"(10,/(20)./(9(y))), p(10,/(10)./(«))}
N2= {g(y), u)} x2:=«, 2= g60
03=<h[u:=g(y)] = [z :=10,x ::=/(10), u ::=g0)]
<= 00 [u::=g(y)] ={p(10,/(10)./(9(y))),d(10,/(10)./(«))} [u::=g(y)] =
={pdO0./CIOX/~X/KIO./CIO),/™)))} =
= {p(10,/(10)./(a(y)))}

I Zbidr <ft;jest singletonem, zatem NOU (0) = 03= [z ::= 10,x ::=/(10), u ::=g(y)]. |

Przyklad 12.14
I Niech

<>={q (fm.g(x))).q(y.y)}.
Obliczenia algorytmu:
Oo=£, 0>= 0,N O= {/(10),x},x0::=y, t0=f(10)
°i -Ob [y ==/(10)] = [y "=/(10)]
0,-06 [x::=/(10)] = M/dO), g(x))), a(x, X)} [x::=/(10)] =
= {2(/(10),7))).? (/'(10),/(10)}
M =M ,/(10}

I W zbiorze niezgodnosci N\ nie ma zmiennej, zbi6ér 0 nie jest zatem unifikowalny.

Twierdzenie 12.3

Przedstawiony algorytm zawsze konczy si? po skonczonej liczbie iteracji. Jezeli
zatrzyma si? w kroku 2., to ostatnio obliczone podstawienie ak jest najbardziej
og6lnym unifikatorem zbioru formul <P Jezeli zatrzyma si? w kroku 3., to zbi6r
formul <Z>nie ma najbardziej og6lnego unifikatora.

Dowdd jest zawarty na przyklad w ksiqzce [Szalas 1991].

12.5. Zasada rezolucji dla rachunku kwantyfikatoréw

Zasada rezolucji dla rachunku kwantyfikatoréw zaklada, ze formuty s™.w postaci sko-
lemowskiej. Pozwala to na stwierdzenie, ze - jak w przypadku rachunku zdan - for-
mula jest reprezentowana przez zbior klauzul.

Literaly p(t\, ..., tn oraz -ip(t[, ..., tn) daj” si? uzgodnid, gdy istnieje najbardziej
ogdlny unifikator NOU{p(t\, ..., t,,), p(t[, ..., th)= < Mozliwosc uzgodnienia literaldw
oznacza, ze formuly

p(tu ... t)<roraz ->p(t[, ... t,)er

sq. literalami komplementamymi. er b?dzie nazywane najbardziej ogélnym unifikato-
rem skojarzonym z literalamip(t\, ..., t,,) oraz —p(t[, ..., tn).

Definicja 12.7
Schemat reguty rezolucji ma postac

(Ki\Al'uic2\A2)o"

gdzie: AiGku k2 sq. daj*cymi si? uzgodnic literalami, a erjest najbardziej ogol-
nym, skojarzonym z nimi, unifikatorem.

Klauzul? {K\X\ u /@a2 crnazywa si? rezolwent” klauzul K\, k2i oznacza symbo-
licznie rez(rcu k2.

Dalej przyjmuje si?, ze rozpatrywane klauzule sg. sfaktoryzowane. W przypadku ra-
chunku zdan oznacza to, ze nie ma w nich powtarzaj*cych si? literaléw. W przypadku
rachunku kwantyfikatorow sytuaeja jest bardziej zlozona. Na przyklad - jak latwo
zauwazyc - zbior klauzul {p(x) v p(u), p(y) v -ip(v)} jest niespelnialny, ale nie
mozna tego wykazac za pomoc” reguly rezolucji, dlatego wprowadza si? poj?cie fak-
tora klauzuli.

Definicja 12.8

Jezeli <fjest najbardziej og6lnyra unifikatorem pewnego podzbioru literaléw klau*
zuli K to klauzulg k', uzyskan”z Afprzez zastosowanie do niej tri usuni”cie powta-
rzajgcych si$ literaldw, nazywa sisfalctorem klauzuli K Klauzula jest sfaktoryzo-
wana, jesli dowolny podzbiorjej literalow nie ma wspdlnego unifikatora.

Przyklad 12.15
' Faktorem klauzulip(z, y) v p(x, g(x)) jestp(x, g(x)), gdyz
NOU(p(z,y).p(x,9(x))) = [z ==X,y ::=g(X)].

Zbior klauzul {p(x) v p(u), —p(y) v —p(y)}, po faktoryzacji, przeksztalca si?
I WZblor {p(x)l_vp(y)} I

Algorytm badania spelnialnosci zbioru klauzul

Dane: formula a rachunku kwantyfikatoréw.
Wynik: odpowiedz tak, gdy formula jest spelnialna, nie - w przypadku prze-
ciwnym.
Procedura:
1. Dia formuly arwyznaczyc Skol(8) - algorytm z podrozdzialu 12.3.
2. Wyznaczyo zbior klauzul S reprezentujgcych Skol(a) i dokonad ich faktoryzacii.
3. Powtarza® nast5puj3.ce czynnosci:
while
O £S i istniej klauzule K\, t2 S dajqce rezolwentq nienalezgc”™ do S
do

(a) znajdz klauzule K\, 12, ktére daj” si? uzgodnic, znajdz dla nich najbar-
dziej ogdlny unifikator a\ wylicz ich rezolwentQ rez{Ku /@),

(b) zastqp S przez S', gdzieS' =S u rez(K\, K
od

4. Jezeli S zawiera klauzulq pust™ odpowiedz nie, w przypadku przeciwnym -
odpowiedz tak.

Przyklad 12.16
A Niech bqgdzie dany zbior S klauzul: A

{p(>9(x)), ~>p(ti, v) v ~(10), — g(10)) v —q(w)}

Obliczenia algorytmu S3 przedstawione w podobnej konwencji jak dla rachunku
zdan - poszczegblne klauzule S3 zapisane w ponumerowanych wierszach.
W nastQpnych wierszach sg zapisane klauzule uzyskane ze zbioru S w wyniku sto-

sowania reguly rezolucji. Po prawej stronie klauzuli podane numery ldauzul,
ktore byfy przeslankami do jej uzyskania oraz zastosowane unifikatory:

G)/<*,9(*))
(2) -ip(u, v) v gr(10)
(3) -ip(w, g(10)) v a(w)

(4) -,p(u, v) v -/2(10, g(10)) NE) [w:=10]
(5) -*(10,9(10)) (4) faktoryzacja
(6)D 0).(5) [X = 10]

Wyprowadzenie klauzuli pustej oznacza, ze 5 jest niespelnialnym zbiorem klau

Regula rezolucji wyznacza specyficzny System dowodzenia R. Specyfika polega na
tym, ze System R nie ma aksjomatéw i ma tylko jedng. regulg wnioskowania - reguly
rezolucji. System R jest systemem semantycznie poprawnym i zupelnym. Dokiadnie
precyzujXto nastQpuj”ce twierdzenia:

Twierdzenie 12.4
Jezeli istnieje wywdd rezolucyjny klauzuli Kze zbioru klauzul {/ q , Kn), to klau-
zula A'jest semantyczn”konsekwencj” zbioru { * } , &%, symbolicznie:

jesli A, ... Kk} hrigto {ku.., *}t=k

Dowdd

Prosty dowdd twierdzenia sprowadza siq do pokazania, ze pojedynczy krok wnio-
skowania rezolucyjnego - wyliczenie rezolwenty dla klauzul-przeslanek - wyzna-
cza klauzulg, ktora jest konsekwencjq. semantyczn” klauzul-przeslanek (twierdze-
nie 12.1). []

Twierdzenie 12.5

Jezeli zbior klauzul {*i, ..., Kn) jest niespelnialny, to istnieje wywdd rezolucyjny
klauzuli pustej ze zbioru {*i,..., jg,}, symbolicznie:

jesli {kx ..., &} ¥ false, to {Kj,... K} 2O
Dowdd twierdzenia, tu pomini*ty, jest zawarty na przyklad w ksi*zce [Szalas 1991].

Nalezy wskaza6 na ograniczonosc uzytego tu pojgcia zupelnosci semantycznej
w stosunku do pojqgcia uzywanego w podrozdziale 11.7. Regula rezolucji nie pozwa-
la bowiem na wyprowadzenie wszystkich klauzul, ktére s semantyczn® konse-

kwencj% danego zbioru klauzul, pozwala natomiast na stwierdzanie niespelnialnosci
dowolnego zbioru klauzul. Ograniczonosc uzywanego poj?cia zupelnosci jest re-
kompensowana wi?ksz*_efektywnosci” obliczeniow” algorytmu badania spetnialno-
sci zbioru klauzul w stosunku do algorytmu badania tautologii opartego na rachunku
sekwentéw Gentzena.

12.6. Klauzule Horna w programowaniu logicznymj

Zasada rezolucji ma szczegdlne zastosowanie wtedy, gdy formuly przedstawione
w postaci zbioru klauzul Homa.

Definicja 12.9
Klauzul? nazywa si? klauzulg Horna, gdy zawiera co najwyzej jeden literal pozy-
tywny.

W dalszej cz?sci rozdzialu pozytywne literaly b?d” oznaczane symbolami: Ait Ag......
a literaly negatywne b?d" jawnie poprzedzane symbolem negacji: —A\, —A2, ... Klau-
zula Homa ma zatem postac

AV—=A V.. V-1
gdzie: Ajest literalem opcjonalnym oraz neNat.
Klauzule Homa s podstaw” programowania w logice. Program logiczny jest zbiorem
klauzul Homa {x], ..., kn) maj*cych literal pozytywny. Obliczenie programu polega
na udzielaniu odpowiedzi na pytanie: czy dana formula w postaci koniunkcji literalow

Ai a ... a A,jest konsekwencj® semantyczn” klauzul stanowigcych tresc programu,
czyli czy {xi,.., Ic.} EAa ...a A)?

Udzielenie odpowiedzi na zadane pytanie sprowadza si? do zbadania spelnialnosci
zbiom formul {xj,..., kn} U A a ... a A}, czyli zbiom klauzul

{Xj,..., X}pu {-Aiv..v-A}

W programowaniu w logice dla klauzul Homa uzywa si? specyficznej notacji. Wynika
ona z nastgnij*cych réwnowaznosci semantycznych:

AV—ALV ... VM =AV—HA A .. A A)=(ATA ... AA)N A
Ostatni*implikacj? zapisuje si? w postaci odwroconej
AN AL, A,

z zast"pieniem przecinkami symboli koniunkcji. Szczegdlne postaci klauzuli Homa,
zapisywane w przedstawionej konwencji, majg_w programowaniu logicznym specy-
ficzne nazwy:

A<=A\ ..., A, - pelnapostac klauzuli jest nazywana regulq,

A<= - klauzula bez literaléw negatywnych jest nazywanafaktem,
<=A\, ,Ai - klauzula bez literalu pozytywnego - zanegowanepytanie,
O - klauzula pusta - sprzecznosc.

Klauzule-fakty i klauzule-reguly, jako klauzule zawieraj*ce literaly pozytywne, sta-
nowi” tresc programu logicznego. Zbior tych klauzul okresla siQjako wiedzy, ktor®
dysponuje program. Na podstawie posiadanej wiedzy program moze udzielac odpo-
wiedzi na kierowane do niego pytania.

W nowej konwencji zapisu regula rezolucji dla rachunku kwantyfikatoréw przyjmuje
postac

...gdzie<t =NOU(A.A") dla*,/>0
N—A09 ,g;o",
Wyznaczenie rezolwenty klauzul:
<A Au A,
K

sprowadza siq do znalezienia najbardziej ogdlnego unifikatora crdla literaldw A oraz
A', a nastgpnie do tekstowego zastgpienia literalu A w pierwszej z klauzul, przez praw”
stronQ drugiej z klauzul, ukonkretnion” podstawieniem a, i ukonkretnienie pozosta-
lychjej literaldw, rowniez podstawieniem <x

Wprowadzone pojqgcia i oznaczenia pozwalaj™ na przedstawienie prostych programéw
logicznych.

Przyklad 12.17
A TresO prostego programu zlozonego tylko z faktéw przedstawia siq nastQpuj”co:
(1) kocha(EWA, JAN) <=
(2) kocha(EWA, JACEK) <=
(3) kocha(JAN, KASIA) «=
Kazdy z faktow sklada si$ z dwuargumentowego predykatu kocha. Argumentami
faktow s” stale reprezentowane napisami JAN, EWA, JACEK, KASIA.

Faktom tym mozna przypisywac pewn” interpretacjs, na przyklad kocha{AR)
mozna rozumiec, ze pewien obiekt (osoba), reprezentowana przez stal”zl, ,,kocha”
inny obiekt (osobo), reprezentowana przez stala B. Nalezy zwrdcic uwagq, ze zwrot
M kocha B’ nalezy do dziedziny interpretacji.

W przypadku pytania:
Czy prawd”jest, ze kocha(JAN, KASIA)?

program, na podstawie posiadanej wiedzy, odpowie oczywiscie tak.

AN

Odpowiedz wynika ze stwierdzenia niespelnialnosci zbioru ztozonego z klauzul
stanowiqcych tresc programu i klauzuli

(4) <=kocha(JAN, KASIA)
stanowi”cej negacjQ pytania. Na postawie reguly rezolucji, z klauzul (3) i (4) wyni-
ka bowiem rezolwenta pusta

<=kocha(JAN, KASIA) kocha(JAN, KASIA) <=

Na pytanie natomiast:

Czy prawdgjest, ze kocha(KASIA, JAN)?
ten sam program da oczywiscie odpowiedz negatywng.. Wynika to z tego, ze ze
zbioru zawieraj”cego klauzule (1), (2), (3) oraz klauzul”® (5) postaci

(5) <= kocha(JAN, KASIA)
nie daje siQ wyprowadzic zadnej nowej klauzuli, a zbiér ten nie zawiera klauzuli
Pustej. |

Nalezy zwrocic uwag$ na sens negatywnej odpowiedzi udzielanej przez program.
Mechanizm odpowiedzi opiera si$ na tak zwanym zalozeniu o zamknigtosci swiata.
Oznacza to, ze program przyjmuje za falszywe wszystko to, co nie da siq udowodnic
na gruncie posiadanej przez niego wiedzy. Odpowiedz negatywnq. nalezy scisle rozu-
miec nastQpujXco: na gruncie posiadanej wiedzy nie daje si? stwierdzic, ze zdanie
stanowiqce pytanie jest logiczn” konsekwencj” wiedzy posiadanej przez program.

Przyklad 12.18

AN

Niech program zlozony z faktéw ijednej reguly przedstawia siq nastQpuj”co: A
(1) kocha(EWA, JAN) <=
(2) kocha(EWA, JACEK) <=
(3) kocha(JAN, KASIA) <=
(4) kocha(x, y) <=kocha(y, x)
W odpowiedzi na pytanie:
Czy prawd”jest, ze kocha{KASIA, JAN)?
program dolgczy do swojej tresci klauzulq stanowi“cE(_negacjq pytania:
(5) <= kocha(KASIA, JAN)
i moze podj~c obliczenie:
(6) <=kocha(JAN, KASIA) z (4), (5), dla <r=[x::=KASIA,y ::=JAN]
(?) O z(3), (6)

co daje podstawQ do odpowiedzi tak.

Pytania, juz w postaci zanegowanej, mog” miec postac ogdlniejsz”, na przyklad:
(5a) <= kocha(KASIA, z)
(5b) <=kocha(z, JAN)

Odpowiedz na takie pytania nie sprowadza siq tylko do stwierdzenia tak albo nie.
Polega ona na wskazaniu tych wszystkich obiektdéw, reprezentowanych przez
zmienn”z, dla ktérych pytanie b~dzie prawdziwe.

W celu udzielenia odpowiedzi na pierwsze z tych pytan obliczenia programu moget
byc nastgmj”ce:

(6a) <=kocha(z, KASIA) z (4), (5a), dla [x :=KASIAy :=7]

(7a) O z (3), (6a), dla [z :~ JAN]
Obliczenie konczy si$ wygenerowaniem klauzuli pustej, przy ustalonym warto-
sciowaniu zmiennej z. Informacja zawarta w ostatnim unifikatorze jest podstaw”

do odpowiedzi, wartosc przypisywana zmiennej z wskazuje na poszukiwany
obiekt. Odpowiedzi”“na pytanie b"dzie wiqc zbiorjednoelementowy {JAN}.

Odpowiedzi na pytanie (5b) mozna udzielic na podstawie dwdéch réznych obliczen:

(6b) O z (1), (5a), dla [z ::= EWA]

oraz
(6b") <=kocha(JAN, z) z (4), (5b), dla [x ::=7]
(7b) O z (3), (5a), dla [z ::= KASIA]

Obliczenia prowadz” do wskazania dwdch réznych obiektdw, dlatego odpowiedzi®
na pytanie jest zbior dwuelementowy {EWA, KASIA}. |

Cwiczenia

1. Nastqpujgce formuly sprowadzic do postaci skolemowskiej:

a)3y-(y<l
b) Vx e 3y * (x<y)
C) VX e Vye3z+ ((x<y) =>(X<z)a (z<Y))

2. Pokazat przyklad formuly, dla ktérej odpowiednik w postaci skolemowskiej nie jest

jej rbwnowazny semantycznie.

3. Sprawadzic, ktdre z podanych nizej zbioréw klauzul s*zbiorami spelnialnymi:

a) fav—b,avc,b a -ic}
b) {—Ho—tb, b v —ic, b, a}
c) {av b,a,—=h-av c}

4. Stosujqc metodQ rezolucji, zbadac spelnialnosc nizej podanych formul:
a) (pv?) <=>(nPA-igr)
b) pv(qvr)<~>(pvq)vr
¢) (a=>b) a (¥6=>-a) =>a

5. Wyznaczyc najbardziej ogolny unifikator dla formul:

a) p(y,) p(x, 2)
b) a(x, y) a(y.x)
c)p(x,y) a(zy)

d) p(x.f(x)) piyjiyj) _

e) r{h(x,y)).f(2)) r(h(g(x),y).f(I{x)j)

gdziep, g, r symbolami predykatéw,/, g, h - symbolami funkcji, x, y, z - sym-
bolami zmiennych indywiduowych.

6. Dany jest zbior klauzul:
(1) samochdédjx) <=pojazd(x), ma_4_kola(x)
(2)jezdzi(x) <= samochdd(x)
(3) pojctzd(x) <=polonez(x)
(4) ma_4_kola(x) <=polonez(x)
(5) <=polonez(WCL_2222)
Metod” rezolucji znajdz odpowiedz na pytanie czyjezdzi(W CL_2222).

7. Zagadnienia przedstawione w nizej podanej postaci sprowadzid do programu lo-
gicznego. Sprawdzic, czy przedstawione wnioski s“poprawne.

a) Wszyscy ludzie sq smiertelni.
Sokratesjest czlowiekiem.
Zatem: Sokratesjest smiertelny.

b) Wszyscy wykladowcy sq zdecydowarti.
Kazdy ktojest zdecydowany i inteligentny swiadczy dobre uslugi.
Klarajest inteligentnym wykladowcq.
Zatem: Klara swietnie wyklada.

13. Zagadnienia uzupelniaj”™ce

13.1. Wstfp

Kazdy sformalizowany System dedukcyjny (system dowodzenia) jest okreslony jako
para <A, R>, gdzie: A jest zbiorem aksjomatdw, R - zbiorem regul dedukcyjnych (re-
gul wnioskowania). Wyrdznia si$ dwa rodzaje systemow dedukcyjnych logiki: syste-
my aksjomatyczne i systemy dedukcji naturalnej. Zasadnicz” cech” system6éw deduk-
cji naturalnej jest to, ze maj*dwa rodzaje regul wnioskowania: reguly wprowadzania
i reguly eliminacji spdjnikoéw logicznych. Rodowdd systemdéw aksjomatycznych
si$ga konca XIX wieku, a systemy dedukcji naturalnej powstaly w latach trzydzie-
stych XX wieku - ich inicjatorami byli Gentzen i Jaskowski22

Do systemdw aksjomatycznych zalicza sig miqdzy innymi systemy HilbertaZ3, systemy
tablic analitycznych, najpowszechniej zas stosowany System dedukcji naturalnej po-
chodzi od Gentzena. W tym rozdziale przedstawiono w zarysie System Hilberta, Sys-
tem dedukcji naturalnej Gentzena oraz metod? tablic analitycznych.

Systemy dowodzenia Hilberta uznaje si$ za tradycyjne. Majq. one zaréwno znaczenie
historyczne, jak i powszechne zastosowanie w praktyce matematycznej. Na pocz~tku
XX wieku Hilbert zainicjowal w zakresie podstaw matematyki kierunek okreslany
jakoformalizm. Formalizm skupial siq na poszukiwaniu systemu, dzigki zastosowaniu
ktérego daloby sig, w skonczonym postQpowaniu, udowodnic dowolne twierdzenia
matematyki. Godel24, w latach trzydziestych XX wieku, zakonczyl te poszukiwania,
pokazuj”c, ze budowa takiego systemu nie jest mozliwa. Systemy dowodzenia Hilber-
ta pozostaly jednak uzyteczne do dzisiaj.

System Hilberta byl w zasadzie pierwszym formalnym systemem aksjomatyzacji. Jest
to System uniwersalny, gdyz znajduje zastosowanie nie tylko w logice klasycznej, ale
takze w logikach nieklasycznych. W odrdznieniu od poprzednio omawianych syste-
moéw dowodzenia, ktdre opieraly si? na dowodzeniu nie wprost, dowodzenie w syste-
mach Hilberta polega na konstrukcji dowoddw wprost.

2 Stanislaw Jaskowski (1906-1965).
23 David Hilbert (1862-1943).
24 Kurt Godel (1906-1978).

Gentzen opracowal dwie rdzne metody dedukcji, kazdg w dwdch wariantach - jeden
dla logiki klasycznej i drugi dla logiki intuicjonistycznej. Jedna z tych metod to omo-
wiony wczesniej rachunek sekwentdéw, a druga to metoda dedukcji naturalnej. Ponizej
omawia sie System dedukcji naturalnej tylko dla logiki klasycznej.

System dedukcji naturalnej dla rachunku zdan przypomina System dowodzenia dla
rachunku zdan oparty na rachunku sekwencji. System dedukcji naturalnej ma te same
reguly eliminacji spdjnikéw logicznych. W systemie sqponadto reguly wprowadzania
spojnikdw logicznych. Specyficzng wlasciwosciq systemu jest to, ze w regulach mogq
wystQpowac wyréznione zdania, ktore traktuje sie jako zalozenia (hipotezy robocze).
Zalozenia takie sq przydatne do wyprowadzania pewnych wnioskéw, po czym - po
wyprowadzeniu takich wnioskdéw - z zalozen tych mozna zrezygnowac. Oznacza to,
ze wyprowadzone wnioski sq shiszne, niezaleznie od poczynionych poczqtkowo zalo-
zen. Ten spos6b postgpowania jest czesto stosowany w praktyce dowodowej i stqd
bierze sie termin dedukcji naturalnej.

Metoda tablic analitycznych jest pewnego rodzaju odpowiednikiem metody rezoluciji.
Gléwne roznice sprowadzajq sie do badania formul zapisywanych w dysjunkcyjnej
postaci normalnej.

13.2. Systemy dowodzenia Hilberta

Przedstawiany ponizej System Hilberta odnosi sie tylko do klasycznego rachunku zdan
i rachunku kwantyfikatorow.

System dowodzenia Hilberta H sklada sie z dwdch elementéw: zbioru aksjomatéw
oraz zbioru regul inferencji (lub wnioskowania), czyli zasad tekstowej transformacji
jednych formul w inne. Na podstawie pewnych formul reguly wyprowadzajgq nowe
formuly. Méwi siQ, ze na podstawie regul pewne formuly wynikajgz innych.

Definicja 13.1
Dowodem w systemie H nazywa sie skonczony ci*g formul Oi, ..., taki, ze kazda
z formul jest albo aksjomatem, albo wynika z poprzednich formul w wyniku zastoso-
waniajednej z regul wnioskowania. Formuly a,, nazywa sie twierdzeniem w systemie H.

Definicja 13.2

Derywacjq ze zbioruformul 0 w systemie H nazywa sie skonczony ciqg formul
0j,.., &,taki, ze kazda z formul jest albo aksjomatem, albo jestjednqz formul zbio-
ru 0, albo wynika z poprzednich formul po zastosowaniu jednej z regul wnioskowa-
nia. Formule nazywa sie konsekwencjq skladniowq ze zbioru <Pw systemie H.

Fakt, ze formula a jest konsekwencjq skladniowq ze zbioru formul 0 w systemie H,
zapisuje sie w postaci
0 \-Ha

Zamiast 0 F-H ccpisze sig F Ha, co oznacza, ze orjest twierdzeniem. Symbol I- jest
nazywany symbolem konsekwencji skladniowej.

Dia klasycznego rachunku zdan, opartego na funkcjonalnie zupelnym zbiorze spdj-
nikéw logicznych zawierajgcym negacjQ -i, implikacjs => i stale logiczne false
i true, przykladowy System Hilberta sklada siQ z nastQpuj*cych schematow aksjo-
matow:

Schematy aksjomatdw

=

a=> (B =>et) - prawo symplifikaeji,
(or=> ([?7=>y)) = ((a=>RB) => (a=>y)) - prawo Fregego,
false =a

or=>true

-i-la=> a

or=> (-ist=>R)

(aaB)=>a

(6TA/?)=>/?

(a=> y)=>((8=> y)=> (av B=> y))

©o NG A ®WN

Schemat aksjomatu oznacza faktycznie nieskonezony zbioér formul, ktére rézni” siq od
formuly wystgpujXcej w schemacie aksjomatu tym, ze kazde wyst”*pienie symbolu a,
B, y moze byd zast“pione dowoln” formuly. Symbole (X B, y s* wi*c symbolami po-
mocniczymi, reprezentuj*cymi dowolne formuly.

Jedyn%regul” wnioskowaniaj est regula odrywania (modus ponens)

a,a=> R
R

Sens reguty jest nastgnyXcy: jezeli w trakeie pewnej derywaeji wyprowadzono formu-
ly ororaz a=> 3, to niezaleznie od interpretagji, jakg. siQ przypisuje formulom aroraz
B, dopuszczalnym wnioskiem jest 3.

Czasem System Hilberta przedstawia sig inaczej. Zamiast schematow aksjomatow
wprowadza siq aksjomaty i dodatkow” regulg podstawienia (zastgpienia). Regula
podstawienia pozwala na zasteipienie zmiennych zdaniowych wystQpuj*cych w formu-
le przez inne formuly. Formalnie regula podstawienia ma postac

a
ofa ::=R]
gdzie: a, i3 dowolnymi formulami, a a jest zmienng. zdaniow”. Zapis a[a R\

oznacza formuly, ktéra powstaje z formuly a przez tekstowe zast*pienie kazdego wy-
st"pienia zmiennej a przez formuly 3.

Przyklad 13.1
Formula a =>ajest twierdzeniem. Dowodem dla tej formuly jest eisig formul:

(D) (a=>((a=>8) =a)) =>((a =>(a=>a)) =(a=> a))

aksjomat2z [a:=a,y ::=a,B ::=a=> &\

(2) @=(@@=>a) d

B) @=>(a=>a)) (a=>2a)

aksjomat 1z [a::=a,B :=a=> 3]

regula odrywania zastosowana do (1), (2)

4) a=>(a=>a) aksjomat Iz [a::=4a,B :=a]

(5) a=>a regula odrywania zastosowana do (3), (4)
Przyklad wskazuje na ucisyzliwosd w prowadzeniu dowodéw dla bardziej zlozonych
formul. Ten przyklad nie nasuwa ponadto wskazéwek dotycz”*cych taktyki prowadze-
nia dowoddéw. W stosunku do wczesniej przedstawionych systeméw dowodzenia,
System Hilberta jest trudniej algorytmizowalny.

Chociaz System Hilberta jest uci®zliwy w stosowaniu do logiki klasycznej, to czQsto
jest on uzywany w logikach nieklasycznych, gdy zawodz” inne systemy. Ponizej
przedstawia siQ zarys algorytmu postQpowania przy dowodzeniu formul z zastosowa-
niem systemu Hilberta H =def <A, R>, zlozonego ze zbioru aksjomatéw A =def {Ah ..., A}
i zbioru regul R =def {i?,,..., R,,,}.

Algorytm automatycznego wnioskowania w systemie dowodzenia Hilberta H

Dane: formula a.
Wynik: odpowiedz tak, gdy a jest twierdzeniem w systemie Hilberta, oraz nie
w przypadku przeciwnym.
Procedura:
1. Niech 0 bqdzie zmienn” reprezentuj*c” zbidr formul, a pocz"tkowa zawar-
tosc zbioru 0= A.
2. while arg d>oraz -iarg 0
do
stosuj reguly ze zbioru R, przyjmuj”~c za ich przeslanki formuly ze zbioru
0, i rozszerzaj zbior 0 0 nowo otrzymane wnioski
od
3. Jezeli a& 0, to odpowiedz tak, jezeli -iare 0 - odpowiedz nie.

Przedstawione dalej twierdzenie o dedukeji, udowodnione niezaleznie przez Tarskiego
i Herbranda, ma znaczenie praktyczne, gdyz jego dowdd pokazuje, jak derywaejq
{a} \~nk mozna, w sposdb konstruktywny, przeksztalcié w dowdd twierdzenia a=> 3.
Poniewaz na ogdl latwiej jest znalezc derywacjQ niz dowdd, twierdzenie pozwala na
oszczqdnosc wysilku.

Twierdzenie 13.1 (Twierdzenie o dedukcji)

W dowolnym systemie H, zawieraj*cym przynajmniej schematy aksjomatéw 1, 2
oraz regulg odrywania, jako jedynst regul$ wnioskowania, derywacja

d>u {or} \-HR
zachodzi wtedy i tylko wtedy, gdy zachodzi derywacja
0\-H(a=>R).
Dowdd
Jezeli zachodzi 0 \- H(a=>R), to oczywiscie zachodzi <Pu {or} \~h -

Wynikanie w przeciwnym kierunku jest trudniejsze do pokazania. Niech

<Pu {&r} \-HRB
czyli istnieje pewien ci*g formul

f1.-X (DY)
ktory jest derywacjall zc zbioru <Pu {or}. Formula y,,dlai= 1 , n,jest demen-
tem zbioru {or} lub wynika z formul poprzedzajgcych w rezultacie zastosowa-

nia reguly odrywania, dodatkowo y,,=R8- Ciqg (D|) mozna przeksztalcid w eisig sta-
nowiqcy derywacja a=> Rze zbioru <P. Najpierw kazd” formulq z (Di) poprzedza
si? prefiksem a=>, tworz”\c ci*g

a=> .. ar=>y, (D2
Cing ten konczy siQ formuly a=> R, gdyz &R. Ciqg (D2 nie jest jeszcze prawi-
dlowq. derywacja. Przeksztalca siq go, dolqczajqc dodatkowe formuly zgodnie z na-
stQpuj*cymi zasadami:

Jezeli Yijest aksjomatem lub elementem zbioru 0, to przed or=> umieszcza si$
dwie dodatkowe formuly

Vi Y=>(a=> yd
Jezeli y jest formuly a, to przed a => érumieszcza siq ci*g formul stanowisicych
dowod dla formuly a=> or(zob. przyklad 12.1).

Jezeli Yiw ci*gu (Di) pojawia si$ jako wniosek z zastosowania reguly odrywania,
to oznacza, ze istnieje takie ¥>% dlaj, k <i, przy czym ft = j=> Y- W ciqgu (D2
elementom tym odpowiadajst formuly: or=> Yioraz 6r=> ft (czyli a=> (%=> Yd)-
Przed formuly a=> Yjwstawia siq formulg

(Flr=>-(»=> J))=>(«=> Yd
ktorajest aksjomatem, oraz formuly

(or=>y)=>(or=>Yd

ktéra wynika z zastosowania reguly odrywania do formul poprzedzajzicych. Te-
raz rowniez formula a=> y wynika z zastosowania reguly odrywania do formul

poprzedzaj”cych. Latwo sprawdzic, ze tak zmodyfikowany cifjg (2)2 stanowi de-
rywacjQ formuly a =>R ze zbioru <P m

Przyklad 13.2

A Formula (ar=> (/? => fl) = (R =>(a =>y) jest twierdzeniem. Mozna to pokazacj
korzystajgc z twierdzenia o dedukcji. Najpierw nalezy zauwazyc, ze

{a=>(8=> y)yB’ a} _Hy
co wynika z nastgpujgcej derywaciji:

1) oc= ((?=>y) - element zbioru {a=> (R=>y), R, cg}

(2) or element zbioru {a=> (B=>y), R, a}

0)R = reguta odrywania zastosowana do (1), (2)

W R element zbioru {a=> (B=>y), }, a}

(5) y regula odrywania zastosowana do (3), (4)
Z twierdzenia o dedukcji wynika, ze

{a=>(R=> Y),R} \-Hoc=>y
oraz ponownie

{a=> (B=> y)} \-HB=> (a=>y)
i ostatecznie
) & (»=>(/?=> 2)) =>(1?7=>(«=> 2

System6w dowodzenia Hilberta dla rachunku zdan jest wiele. Przedstawiony nizej
System rézni siq od systemu przedstawionego poprzednio tylko zbiorem aksjomatéw.
Wynika to z tego, ze aksjomaty zawieraj" tylko negacjQ i implikacjQ. Przypomina siQ,
ze rachunek zdan wykorzystuj*cy tylko te spojniki jest funkcjonalnie zupelny. Pozo-
staie spojniki mog” byc definiowane za pomoc” spdjnikéw podstawowych. W defini-
cjach tych stosuje si$ wczesniej wprowadzone pojQcie réwnowaznosci semantycznej.

Aksjomaty
1. (a=> (/?=> ctf) prawo symplifikacji,
2. (a=> (R=>y)) = ((«=> B) => (a=> z)) prawo Fregego,
3. (-'«=>(a=> 1)) prawo Dunsa Scotusa,
4. (— =>ci)=>a) prawo Claviusa.

W razie potrzeby uzycia dodatkowych spojnikéw lub stalych logicznych, wprowadza
sig ich definicje jako zlozenie implikacji i negacji. Na przyklad:

Definicje
1l aa’=def-.(a=> -.R)
2.av B=ad(->a">R)
3. (a<=>$ ~def(a=>R)A(R=> d)
4. true =defoc=>a
5. false =def—i(ot=> d)

Definicje pozwalaj™ na tekstowe zast“pienie w dowolnej formule dowolnej jej pod-
formuly, réwnowaznej tekstowo z jedn” ze stron definicji, przez drug” ze stron tej
samej definicji.

System Hilberta dla rachunku kwantyfikatoréw ma wszystkie aksjomaty i reguly sys-
temu dla rachunku zdan oraz dodatkowo jeden schemat aksjomatu ijedn”regulq:
Schemat aksjomatu

10. (Vxe a)=> a[x ::=1]
Regula uogdlniania

———-— pod warunkiem, ze x<EFV(a)
a=>Vx»R

Szczegolna postad tej reguly jest nastgpuj”ca:
R
V X«E

Przyklad 13.3
A Rozpatruje siq zarys dowodu dla formufy

AN

(Vx e (p(X) a q(x)j) = (VX *p(X)) 1)
Przyjmuj~c, ze t =x, na podstawie schematu aksjomatu 10, zachodzi implikacja

(Vx e (p(X) a 2(x))) = (p(X) = a(x]))
Latwo sprawdzid, ze tautologigjest formula

(P(X) a afx)) =>p(x) ©)

Z implikacji (2) i implikacji (3), na podstawie wnioskowania lancuchowego, wyni-
ka formula

(Vx e (p(x) = q(x))) =>p(x) (4)
st"d i z reguly uogolniania wynika, ze
| (Vx e (p(X) a q(x))) => (VX *p(x)) l

W systemie Hilberta dla rachunku kwantyfikatoréw zachodzi twierdzenie o dedukcji,
tak jak dla systemu Hilberta dla rachunku zdan.

System Hilberta H dla rachunku kwantyfikatorow jest semantycznie niesprzeczny
i semantycznie zupelny, tzn. dla dowolnego zbioru formul 0 zachodzi twierdzenie:

Twierdzenie 13.2
01~h cc wtedy i tylko wtedy, gdy 0$= a.

13.3. System dedukcji naturalnej Gentzena

Rozpatruje si$ rachunek zdan oparty na zbiorze spojnikéw logicznych, zawierajgcym
stale true, false, negacjQ-i, koniunkcj? a i implikacjq =>.

Zestaw regul wprowadzania (oznaczanych symbolem 7) oraz eliminacji (oznaczanych
symbolem E) jest nastQpuj”cy:

(truel) ¢ (false E)
rue
M [-ied
false false a,-M
-ia a false
anf a/\B aAR
a D ! a E E
D g (a E) . wE) -
("1) (=>E)aa=i>"
. ’ f
a=>R

Reguly zwigzane ze stalymi logicznymi s” specyficzne. Regula wprowadzania stalej
true (true 1) nie ma przeslanek, nie ma tez reguly eliminacji tej stalej. Regula elimi-
nacji false (false E) pozwala na wyprowadzenie z przeslanki false dowolnego wnio-
sku, nie ma natomiast reguly wprowadzania dla false.

Dla kbniunkcji reguly wprowadzania (a 1) oraz eliminacji (a E) s~ oczywiste: jezeli
przeslankami s formuly a oraz 3, to mozna wnioskowad, ze cca B, oraz odwrotnie -
zprzeslanki a a B mozna wnioskowad, ze or(lub, ze R).

Regula eliminacji implikacji (=>E) jest poznan” wczeSniej reguly odrywania.

Pozostale regufy wymagaj” dodatkowych wyjasnien.

Pierwsz” z nich jest regula wprowadzenia negacji (-1 /). Pozwala ona na wprowadzenie
symbolu negacji przed dowoln” formul? orna podstawie przeslanki, ktdrgjest wniosko-
wanie, ze z zalozenia o prawdziwosci orwynika false. Jest ona odzwierciedleniem dowo-
dzenia nie wprost przez sprowadzenie do sprzecznoSci. Przeslanka reguly, maj”ca postac

[«]

false

oznacza pewne wnioskowanie (oznaczone symbolicznie pionowym zestawem trzech
kropek :), ktére na podstawie zalozenia a prowadzi do wniosku false, czyli do
sprzecznosci. Jezeli na podstawie przyj?tego zalozenia, ze spelnione jest a, otrzymuje
si? sprzecznosc - formul? false, to wnioskiem jest, ze spelnione jest —&. Whniosek ten
jest przy tym niezalezny od pocz~tkowo przyj?tego zalozenia. Oznacza to, ze od mo-
mentu przyj?cia wniosku -1a zalozenie orstaje si? juz nieprzydatne do dalszych wnio-
skowan i mozna je usun”c, co symbolicznie oznacza si? przez zamkni?cie zalozenia
w kwadratowe nawiasy [oi[.

Podobny komentarz odnosi si? do reguly (-1 E): jezeli przyj?te zalozenie -iOrprowadzi
do sprzecznosci, to wnioskiem, jaki nalezy wyprowadzid, jest a.

Druga z regul eliminacji negacji (—2E) jest oczywista: jezeli przeslankami wniosko-
wania s* dowolna formula i jej negacja, to wnioskiem jest stala false oznaczajgca
sprzecznosc.

W przestance reguly wprowadzania implikacji (=>1) zalozeniem jest formula a. Jezeli
si? pokaze, ze z tego zalozenia daje si? wyprowadzic formut? B, to oznacza, ze nieza-
leznie od tego zalozenia zachodzi implikacja a=> RB.

Ponizej przedstawia si? przyklady zastosowania metody dedukcji naturalnej w dowodze-
niu prostych formul. Podobnie jak w przypadku metody sekwentéw, dowod (albo ogélniej
derywacja) ma Struktur? drzewa: wierzcholki drzewa st etykietowane formulami, a luki
- przejscia pomi?dzy wierzcholkami - odpowiadaj” zastosowaniu odpowiednich regul.

Przyklad 13.4

A Ponizszej przedstawia si? drzewa dowodu dla trzech prostych formul. Pierwsza!
formula ma postac: a a B=>1 a a.

AN (SEIQIAN T () Ey
R a

R/\a @D

aAR=>R*a (=>/)

W dowodzie tym korzysta si$ dwukrotnie tylko z jednego, tego samego zalozenia,
ze a a . Zalozenia numerowane. Po prawej stronie kazdego przejscia podaje
si$ symbol wykorzystywanej reguly. Dodatkowo, w tych przypadkach, gdy wyko-
rzystanie reguly wigze si$ z wykorzystaniem i usunigciem wprowadzonego zaloze-
I nia, podaje sig numer tego zalozenia. |

Przyklad 13.5

A Kolejny dowdd dotyczy formuly a=> Tym razem wykorzystuje siq dwa za-
lozenia: ororaz —a

[ah
false (->£)
I-1 (M)
-]- a A
a=>-r->a (/2) J

Przyklad 13.6

A Ostatni przyklad, najbardziej zlozony, dotyczy formuly: —ar <<—w). W dowodziJ
przyjmuje sig, ze réwnowaznosci przedstawia siQjako koniunkcje implikacji, tzn.
formula or<=>1 jest skrécon” form” zapisu (a =>1) a (B => a), stqd bior”" si$ wy-
prowadzenia:

q<=? a<>B
a=>1R R=>a

Ze wzglgdu na wymiary wywodu, pomini*“to komentarze dotyczqce stosowanych
regul, pozostawiaj*c tylko numeracj? zalozen i wskazania tych miejsc, w ktdrych
zalozenia zostaly wykorzystane.

[a < -i<af]3 _
Mi a4a:>->a (=>E) [a] [ah [jrj:__l(lje:]
false . [a<—dP -mor [a]2
\a “Mi) -,a=>a false M 2)
J3L
false
-i(a «>-ior)

Przedstawione przyklady pozwalaj® na latwiejsze zrozumienie kolejnych pojS$c.
Pierwszym z nich jest pojqcie derywacji. Derywacja jest drzewem, ktorego wierz-
cholki s™ etykietowane formulami. Dalej takie drzewo b”~dzie oznaczane symbo-
lem D.

Definicja 13.3

Zbiorem derywacji nazywa siq zbiér DER, ktory jest zdefiniowany rekursywnie
w sposdb nastQpuj”cy:

(1) Drzewo zlozone zjednego wierzcholka etykietowanego formulg. 6fjest derywacji
D D

. D D ec [
(2) Jezeli g DER, e DER, to - — tLe DER
a R al/\R

D D

(3) Jezeli ° e DER,to DER oraz —-"-g DER
aAR a B

a
(4) Jezeli D g DER, to
+

(5) Jezeli DgDER, ° gDERIV,t0 a °C->" e DER
a a=>1R R

D

D folcp
(6) Jezeli gDER, to gDER
false a

- '\g
(7) Jezeli D gDER,to gDER
false
false
a

Formula, ktorajest korzeniem drzewa derywacji, nazywa si$ wnioskiem. Liscmi drze-
wa sftzalozenia. Zalozenia mog”™. byc zamkni~te (skreslone) albo otwarte.

Definicja 13.4

Relacja 0 b Ga pomi~*dzy zbiorem formul 0 oraz formul” o zdefiniowana nastQ-
puj™co: istnieje pewna derywacja, w ktorej 0 stanowi zbior nieskreslonych zalo-
zen, a Orjest wnioskiem, nazywa siQ relacjq. derywacji.

System dedukcji naturalnej dla rachunku kwantyfikatoréw jest rozszerzeniem zbioru
regul dla rachunku zdan o dodatkowe reguly wprowadzania i eliminacji kwantyfikato-
ra ogdlnego:

(T) a VXx»a

(VE)
Vx»ar a\x ="

W regule (V I) wymaga sig, aby zmienna x nie wystQpowala jako zmienna wolna
w zadnym z zalozen, od ktérych zalezy formula a, w regule (V E) wymaga siQ nato-
miast, aby term t byl wolny w formule orze wzglgdu na zmienn”x. Wymagania te
istotne, gdyz - jak pokazuj” ponizsze przyklady —ich niespelnienie prowadzi do fal-
szywych wnioskéw, czyli narusza semantyczng. poprawnosc systemu.

Przyklad 13.7
A Rozpatruje siQ nastQpuj”~ce drzewo dowodu

x ~ Qi
\fx e (x =0) v

x=0)=>Vxe(x=0) (1)
V)
Vxe (x=0)=>Vx»(x=0))
(VE)
(0=0)=Vxe(x=0)

Powodem absurdalnego wniosku jest niepoprawne zastosowanie reguly (V /).

Przyklad 13.8
Niepoprawne zastosowanie reguly (V E) prowadzi do nastQpuj~cego wywodu

[Vxe-iVy e (x=Y)],
-hy (x =y)[xii=y\
| Vxe-iVye (x =y) =>—iVy9(y =vy)

Kolejny przyklad jest ilustracj® poprawnego stosowania regul wprowadzania i elimi-
nacji kwantyfikatora ogolnego.

Przyklad 13.9

A W dowodzie dwukrotnie wykorzystuje siq reguly eliminacji i wprowadzania kwan-
tyfikatora og6lnego. Podczas eliminacji podstawienia tozsamosciowe za zmienne X, y
zachowuj” odpowiednie wymogi. Podobnie podczas wprowadzania kwantyfikato-
row sq zachowane odpowiednie wymogi, gdyz zmienne X, y nie majg. wolnych wy-
stcipien w wykorzystywanym zalozeniu.

[Vxe Vy e p(x, V)| (VE)

Yy*I(*..y)[*m's-x] (VE)
p{xy)\y:~y] (V1)
Vx»p(Xx,y) (V1)
Vy»Vx»p(xy) .
(=>1i)

VX.Vy-p(le) :>Vy'VX'/?(X,Y) J

[

Zdefiniowane dla rachunku zdan pojqcie zbioru derywacji i relacji derywacji w oczy-
wisty spos6b uogdlnia si? dla rachunku kwantyfikatorow. Podobnie jak dla systemu
Hilberta, dla dowolnego zbioru formul 0 i formuly a zachodzi twierdzenie o seman-
tycznej niesprzecznosci i semantycznej zupelnosci:

Twierdzenie 13.3
0 \-Garwtedy i tylko wtedy, gdy 0\=a.

13.4. Metoda tablic analitycznych

Metoda tablic analitycznych formalizuje dowodzenie nie wprost. Podobnie jak metoda
rezolucji, stosuje unifikacj? termow, inaczej natomiast jest niz w metodzie rezolucji -
podstaw” badania wprawdzie formuly zapisane w skolemowskiej postaci normal-
nej, ale matryca formuly musi byc w dysjunkcyjnej postaci normalnej. Podobnie jak
w metodzie sekwentéw Gentzena dowdd ma Struktur? drzewa, jednak z uwagi na for-
m? zapisu mowi si? o tablicy - tablica jest form” zapisu drzewa, i réwniez - jak
w metodzie sekwentdéw Gentzena - tworzenie drzewa (tablicy) wigze si? z eliminacj®
spojnikdw logicznych i kwantyfikatorow.

W celu wyjasnienia struktury tablicy analitycznej rozpatrzmy drzewo dowodu na ry-
sunku 13.1.

V2

\Z)

Rys. 13.1. Przykladowe drzewo dowodu vs O O Vv O VD

Reprezentacj” tego drzewajest tablica pokazana na rysunku 13.2. Zwi*zek pomi?dzy
drzewem a tablic”jest oczywisty.

» Korzen drzewa zajmuje pozycj? w komdrce w najwyzszym wierszu.

» Jezeli wierzcholek ma rozgal?zienie, to komdrka tablicy, ktdra znajduje si? ponizej
kratki reprezentuj™cej ten wierzcholek, jest podzielona na tyle cz?sci, ile wierzcho-
lek ma rozgalgzien.

» Jezeli wierzcholek nie ma rozgal?zienia, to jego nastqpnik znajduje si? w tej samej
komorce ijego symbol jest zapisany ponizej symbolu danego wierzcholka.

» Liscie drzewa znajduje si? w réznych komdrkach na dole tablicy. one koncami
galQzi drzewa, czyli sciezek prowadz”cych od korzenia do lisci.

V\

V2 V6
V3 V7 Vil
va Vg v12
V5 V9 V[0

Rys. 13.2. Struktura tablicy analitycznej
odpowiadaj”ca drzewu z rys. 13.1

Zawartosci®™ komdorek tablicy formuly. Komérka w gémym wierszu jest badan”
formuly, a zawartoSc pozostatych komorek okresla si? kolejno, poczynaj*c od goéry
tablicy, zgodnie z odpowiednim systemem dowodzenia.

Najpierw pokazemy metod? tablic analitycznych dla rachunku zdan. Badanie, czy
formula jest spelnialna, polega na dowodzeniu nie wprost, co oznacza, ze zaklada si?,
iz badana formula &rnie jest spelnialna i probuje si? to pokazac, znajduj”c takie warto-
sciowania zmiennych zdaniowych, przy ktorych negacja formuly -iarjest prawdziwa.
Dia formuly —drkonstruuje si? drzewo dowodu - tablic? analityczn”. Formula —Qrma
by6 w dysjunkcyjnej postaci normalnej, czyli w postaci

-ia= 6iv5iv..v4
gdzie 6, dlai=1,..., n, s"koniunkcjami literaléw.

Konstrukcja tablicy analitycznej polega na stosowaniu nast?puj”cych regul eliminacji
spodjnikdw logicznych:
—ka -itrue -ifalse avih ani
a false true a | B &
R

Regufy okreslaj® w jaki spos6b na podstawie formuly-przeslanki, umieszczanej
w danej komorce tablicy, okresla si$ formuly-wnioski, umieszczane w bezposrednio
nizszych komérkach.

Trzy pierwsze reguly soczywiste.

Czwarta regula oznacza, ze jesli w komdrce jest formula a v &, to bezposrednio pod
ni” znajduj” siq dwie komarki z zawartosci”. ororaz s .

Pi“ta regula oznacza, ze jesli w komorce jest formula a a &, to bezposrednio pod ni*
znajduje siqjedna komorka, ktorej zawartoscigjest, zapisana pionowo, lista formul a
orazs.

Rozpatrzmy przyklad ilustruj*cy zastosowanie tych regul.

Przyklad 13.10
A Niech badan” formuly bgdzie nastgpuj”ca formula rachunku zdan I
—Havi)~r> (-iaa —ib)
Negacja tej formuly
—1\aVv b)=(— a —b))
- po sprowadzeniu do dysjunkcyjnej postaci normalnej - ma postac
—iaa -iba (Hav —b)

Tablica analityczna zbudowana dla tej formuly przedstawia si$ wiqc nastgmjgco:

Rys. 13.3. Tablica analityczna
dla formuly (—=av —h)

Zawartosc tablicy stanowi podstawQ do stwierdzenia, czy wyjsciowa formula
-i(a v b) = (—a a —b) jest spelnialna. W tym celu ocenia siq kazd” gal*z tablicy.
Gal”z tablicy reprezentuje koniunkcjg formul stanowi”cych zawartosc komorek na-
lez~cych do gal”zi.

Gal”~z tablicy uwaza si$ za zamkniqtg wtedy i tylko wtedy, gdy zawiera pewn” for-
mulQ wraz z jej zaprzeczeniem. Cal” tablicy uwaza siq za zamkniqtq wtedy i tylko
wtedy, gdy zamkni*te s"wszystkie jej galgzie.

Przykladowa tablica jest zamkniQta, gdyz zawiera dwie gal*zie, obie zamkniQte.
Oznacza to, ze poszukiwanie wartosciowania zmiennych, dla ktérych formula
—uAa—iba (-la v —b) okazalaby siQ falszywa, prowadzi do sprzecznosci. Badana
I formulajest zatem spehiialna, jest tautologi” rachunku zdan.

Przyklad 13.11
A Niech badan” formuly rachunku zdan b*dzie
(a =>b) => (b => &)
Negacja tej formuly
->((« ==b) => (b =>4))
- po sprowadzeniu do dysjunkcyjnej postaci normalnej - ma postac
(-iavb)ya —hab

Tablica analityczna zbudowana dla tej formuly (rys. 13.4)

Rys. 13.4. Tablica analityczna
dla formuly {-"av b) = —<aa b

nie jest zamkni~ta, gdyz otwarte obie jej galgzie, a zatem badana formula nie jest
I spelnialna. |

W przypadku rachunku kwantyfikatoréw z kwantyfikatorem ogdélnym wymaga sig,
aby rozwazane formuly byly w postaci skolemowskiej. Zbior regul podanych dla ra-
chunku zdan rozszerza si§ o dwie nowe reguly. Pozwalaj® one na wydluzanie galqzi
i konkretyzacjq wystQpuj~cych w tablicy formul.

Pierwsza regula - regula kwantyfikatora - pozwala na wydluzenie gal?zi, w ktorej
znajduje siq formula z kwantyfikatorem ogdlnym \/x ¢ a, przez dol*czenie formuly
postaci a[x ::=y], gdzie zmienna y jest nie jest zwi*zana innym kwantyfikatorem
w zadnej z formul wystQpujgcych w tej samej galgzi, co formula Vx ¢ a. Dol*czenie
nowej formuly symbolicznie przedstawia siQw postaci

a[x::=y]

Stosowanie tej reguly, podobnie jak w przypadku eliminacji kwantyfikatora po lewej
stronie sekwentu, w istocie nie eliminuje kwantyfikatora, lecz generuje nowe formuly.

Z tego powodu wprowadza siq ograniczenia na liczbi jej zastosowan przy praktycznej
budowie tablicy. Wartosc tego ograniczenia jest podyktowana wzglgdami pragma-
tycznymi. Dalej zaklada sig, ze ograniczenie to jest wyrazone pewn% liczb”™ N. Sens
tego ograniczenia wynika z podanego nizej algorytmu budowy tablic analitycznych.
Podan”regulq mozna wiqc przedstawic w uogdélnionej postaci:

Vx»ar

a[x:-yN]

Wyraza ona mozliwosc generacji wielu formut z formuly Vx « a. Zmienne y\, ..., y*
musz” oczywiscie byc zmiennyrai, ktdre nie s wi”zane przez inne kwantyfikatory
wystipuj~ce w tej samej galQzi, co formula Vx « a.

Druga regula - regula konkretyzacji - stwierdza, ze: jesli na danej gal*zi znajduj” si$
dwa literaly komplementame @i a2, ktore daj” siQuzgodnic, a ich najbardziej og6lny
unifikator NOU{(X\, a2 = er, to dopuszczalna jest zamiana kazdej formuly R wystgm-
jeicej w tablicy przez jej konkretyzacjil3 o.

Algorytm automatycznego wnioskowania metod” tablic analitycznych

Dane: formula a.
Wynik: odpowiedz tak, gdy orjest spelnialna, oraz nie w przypadku przeciwnym.
Procedura:

1. Negacji formuly a sprowadz do postaci skolemowskiej (algorytm z roz-
dziahx 12.).

2. Matryci otrzymanej formuly przedstaw w dysjunkcyjnej postaci normalnej
(algorytm z rozdzialu 9.).

3. Poczqgtkowa postac tablicy analitycznej T sklada siQz jednej komorki, ktorej
zawartosci”® jest § - formula otrzymana w wyniku czynnosci poprzednich
punktéw. Pocz*tkowa wartosc zmiennej pomocniczej licz*cej uzycie reguly
kwantyfikatora n =0.

4. while

tablica T nie jest zamkniQta i mozna stosowad do niej reguly eliminaeji
spOjnikdw logicznych, regulq kwantyfikatora i regulq konkretyzacji
do
a) stosuj reguly eliminaeji spojnikéw logicznych, reguly kwantyfikatora
az do uzyskania tablicy zamkniitej lub do chwili, gdy zmienna n nie
przekroczy wartosci N;
b) stosuj reguly konkretyzacji, dopéki tablica T nie jest zamkniQta;
c) zwi”ksz ojeden wartosc zmiennej n;
od

5. Jezeli zostala znaleziona tablica zamkni”ta - odpowiedz tak.
6. Jezeli algorytm zatrzymal siq ze wzglgdu na brak mozliwosci stosowania
regul - odpowiedz nie.

Ponizej podaje si$ bez dowodu twierdzenie gwarantujyce poprawnosc i pelnosc algo-
rytmu. Dyskusje na temat dowodu mozna znalezc w ksiyzce [Szalas 1992], a pelne
formalne uzasadnienie metody tablic analitycznych - w ksiyzce [Fitting 1990],

Twierdzenie 13.4

Przedstawiony algorytm implementuje metodq tablic analitycznych w tym sensie, ze:

» daje odpowiedz tak wtedy i tylko wtedy, gdy formuta arjest tautologiy,
» gdy formula arnie jest tautologiy, algorytm daje odpowiedz nie lub zapgtla siQ

Rozpatrzmy przyklad zastosowania algorytmu.

Przyklad 13.12

AN

Dana jest formula A
(Vx e p(x) v q(x)) = (3x * p(x) v Vx * q(x))

Jej negacjyjest
-AI((Vx e p(x) v g(x)) => (3x * p(x) v Vx * a{x)))

Po przeksztalceniach, polegajycych na sprowadzeniu do przedrostkowej postaci
normalnej, otrzymuje siq formulq

Vxe Vy 3z (p(x) v a(x)) a —p(y) a —8(2)
Po skolemizacji formula przyjmuje postac
Vxe Vy e (p(x) v q(x)) a -p(y) a ->q(f(x,y))

Tablica analityczna, budowana zgodnie z algorytmem, bez wykorzystania reguly
konkretyzacji, ma postac przedstawiony na rysunku 13.5. Wiersz nr 2 uzyskano,
stosujyc regulg kwantyfikatora, wynika z niego wiersz nr 3, po zastosowaniu regu-
ly dotyczycej koniunkcji. W wierszu nr 4 nastgpuje rozgalQzienie, ktérego podsta-
wyjest formula zawierajyca dysjunkcjg.

Lewy galyz mozna zamknyc, stosujyc regulQ konkretyzacji z podstawieniem
<= NOU(p(x{), p(y\)), dla formulp(x\) oraz —p(yi), ktore znajdujy si$ na tej samej
galgzi.

ZamkniQcie prawej galgzi wymaga ponownego zastosowania reguly kwantyfikato-
ra, w celu generacji formuly (p(x2 v q(x2) a ->p(yd a -iq(f(x2 y2), znajdujycej
sig w wierszu nr 5. Stosujyc regulq zwiyzany z koniunkcjy, otrzymuje si? dalsze
formuly umieszczone w wierszu nr 6. Stosujyc tym razem reguly konkretyzacji dla
formul q(x{) - wiersz nr 4 - oraz —q(f(x2 y2) - wiersz nr 6, z podstawieniem

<h ~ NOU(q(xi), q(f (x2 zamyka siq praw” gal”z tablicy, i - tym samym -
zamyka siq calg. tablicQ.

1 Vx«Vye (p(x) v a(x)) = —p(y) = ->q(I(x.y))

2 (PCX) v 2(*i)) A -npCy,) A -,q(f(x,, yO)
3 ~p(yi)
->4(f(xi,yi))
P(xi) v q(x,)
4 p(x) <)
5 (P(xa) v q(x2) = -ip(yd « —>q(f(x2y2)
6 Ap(yi)
—<](f(e,y2)
p(xi) v q(x2)

Rys. 13.5. Tablica analityczna

13.5. Wilasnosci metalogiczne rachunku kwantyflkatoréw

Logika klasyczna oparta na rachunku kwantyflkatorow jest scharakteryzowana
przez jgzyk o dobrze zdefiniowanej skladni i semantyce oraz przez System dowo-
dzenia.

Systemy dowodzenia rézni” si? od siebie doborem aksjomatéw i regul oraz wynika-
jAcym z tego sposobem konstrukcji dowoddw twierdzen. Maj” natomiast pewne
wspolne wlasnosci. Przedstawione systemy dowodzenia s* semantycznie nie-
sprzeczne i semantycznie zupelne. Dodatkowo, co jest uznawane za szczegdln”® wta-
sno8c logiki klasycznej, nie istnieje algorytmy dowodzenia oparte na tych syste-
mach, ktére gwarantowalyby, ze w skonczonej liczbie krokdw mozna rozstrzygac,
czy dowolna formula jest, czy nie jest tautologi®. Rachunek logiki klasycznej, do-
kladniej rachunek kwantyflkatoréw jest nierozstrzygalny, a scislej, jest czgsciowo
nierozstrzygalny. Oznacza to, ze dla dowolnej formuly, jezeli formula jest tautolo-
gi®, to istnieje algorytm, ktéry w skonczonej liczbie krokéw zawsze to potwierdzi,
natomiast w przypadku przeciwnym, gdy formula nie jest tautologi®, taki algorytm
nie istnieje. Rozstrzygalne mog” byc natomiast pewne fragmenty rachunku logicz-
nego, na przyklad rozstrzygalne s rachunek zdan, jednoargumentowy rachunek
kwantyflkatoréw.

Jgzyk logiki pozwala na budowanie teorii elementamych (rozdzial 10.), shiz*cych do
opisu wybranego fragmentu interesuj*cego swiata. Jgzyk teorii elementamej charakte-
ryzuje siq przyjgciem specyficznej sygnatury jQzyka formalnego, to jest symboli funk-
cyjnych i symboli predykatéw, oraz specyficznej interpretacji (b”"dz klasy interpreta-
cji) tych symboli. Specyfika interpretacji wyraza siq przez ustalenie zbioru formul
spelnialnych w tej interpretacji. Wyrdznione formuty nazywa siq aksjomatami specy-
ficznymi teorii. Formuty teorii sluz” do opisu specyficznych wlasnosci obiektdw nale-
z"cych do wybranego fragmentu swiata. System dowodzenia pozwala natomiast na
dowodzenie tego, czy pewne formuty wyrazaj”®, czy nie wyrazaj”™ wlasnosci zachodz”-
cych w wybranym fragmencie swiata.

Okazuje siq, co pokazal Godel, ze dostatecznie bogate teorie maj% specyficzne wtas-
nosci, ktdre wskazuj“na ograniczenia metody aksjomatycznej. Chodzi o teorie, ktdre
pozwalaj”® zbudowac arytmetykQ liczb naturalnych, a wi*c o prawie wszystkie nietry-
wialne teorie maj”ce praktyczne zastosowania.

Ograniczenie nazywane niezupelnosciq teorii - pierwsze twierdzenie Gddla - po-
lega na tym, ze istniej™ w takiej teorii zdania spetnione, ktére nie s%twierdzeniami
teorii. Inaczej: dla teorii tej klasy nie istnieje semantycznie zupetny System dowo-
dzenia.

Drugie ograniczenie odnosi siq do niesprzecznosci teorii. Niesprzecznosc oznacza, ze
teoria nie zawiera takiej formuty a, ze eroraz -icr s” twierdzeniami teorii. Z drugiego
twierdzenia Godla wynika, ze dla teorii zawieraj*cych arytmetykQ liczb naturalnych
nie mozna podac takiego dowodu niesprzecznosci, ktory korzystatby wyl*cznie ze
srodkdw tej teorii. Inaczej: na griinde danej teorii nie mozna podac dowodu jej nie-
Sprzecznosci.

Twierdzenia Godla maj® znaczenie historyczne i filozoficzne. Znaczenie historyczne
polega na tym, ze zostal obalony, sformutowany na pocz“tku XX wieku, program
Hilberta, ktdrego mysl” przewodni” byto zbudowanie teorii sformalizowanej, obejmu-
j~cej cat™ matematykQ, i udowodnienie jej za pomoc” prostych srodkéw logicznych.
Cata matematyka zawiera oczywiscie arytmetykQ liczb naturalnych, a zatem nie moz-
na udowodnic jej zupelnosci i niesprzecznosci. Znaczenie filozoficzne bierze siQ st™d,
ze twierdzenia Godla wskazuj~na ograniezonose podejscia aksjomatycznego. Pesymi-
styczna interpretaeja tego faktu sprowadza si$ do stwierdzenia, ze istnieje ,,nieprze-
kraczalne granice rozumu ludzkiego”, podezas gdy interpretaeja optymistyczna wska-
zuje wlasnie na przewagq rozumowania umystu ludzkiego nad wnioskowaniem
prowadzonym w ramach systeméw sformalizowanych. Interpretaeja twierdzen Gddla
na gruncie informatyki wskazuje na ograniezonose tego, co mozna policzyc za parac-
et komputera, gdyz wszystko to, co moze wykonac komputer, da siq wyrazic tylko
w pewnej teorii elementamej. Wynika tez z tego pogl*d, ze komputery nie b$d”
w stanie catkowicie zast“pic cztowieka w podejmowanych przez niego rozumowa-
niach i decyzjach.

Cwiczenia

1. Korzystajqc z systemu dowodzenia Hilberta, dowiesc, ze nastgpujgce formuly sq
twierdzeniami:
a) arv -ia
b) (or=>-<a:) =>—0r
€) VX eVy e p(pc,y) <>Vy *Vx *p(X,Y)
d) (Hx * p{x) v g(x)) <>(Hx* p(x)) v (Hx * q(x))
2. Wykorzystujqc System dedukcji naturalnej Gentzena, pokazac, ze tautologiami sq
formuly:
a) (a=>B) =((8 =>) => (->/=>->0))
b) (-ia=> ar) =>ar
c) arv-iar
d) («=> #=>((/?=> ti=>(avBz> tf)
e) (Vx e p(x) <>#(x)) => ((Vx * p(x)) <>(Vx * q(x)))
f) (Vx p{x) <>a{x)) = ((Hx *p(x)) <>(Hx " q(x)))
g) 3x *Vy ¢ p(x,y) =>Vy * Hx* p{x,y)
3. Uzupelni6é System dedukcji naturalnej przez wyprowadzenie regul eliminacji i wpro-
wadzania spdjnikow:
a) dysjunkcji,
b) réwnowaznosci,
c) NOR,
d) NAND.

4. Wykorzystujgc metodq tablic analitycznych, pokazad, ktére formuly sq tautolo-
giami:
a) 3X *Vy ¢ p(x, y) =>Vy * 3x *p(x,)
b) VX *3y < p(x,y) =>3y »Vx *p(X,Yy)
c) 3x + (q(x) =>Vx* q(x))
d) Vxe 3y »Vze 3w« {p(x,y) v =pxy))
e) Vxe () =>en)=>3x° ("X)=>a)

14. Inne logiki

14.1. Wst™p

Omawiana w poprzednich rozdzialach logika klasyczna jest jgdrem wszelkich lo-
gik. Jej rozwdj w XX wieku wynikat gléwnie z potrzeby rozwi*zywania pro-
blemdéw z zakresu podstaw matematyki. Ogdlniej mozna stwierdzic, ze motywacje
tworzenia nowych logik byly podyktowane - po pierwsze - chqci® ogamiqgcia moz-
liwie szerokiej klasy wypowiedzi spotykanych nie tylko w jezyku matematyki, ale
i wjezyku naturalnym, i - po drugie - identyfikacj® oraz ujgciem w formalne ramy
sposobow wnioskowania stosowanych przez ludzi. Wraz z poszerzaniem sie zasto-
sowan informatyki powstaiy nowe inspiracje do rozwoju logiki. Wynikaj™ one na
przyklad z zastosowan systeméw ekspertowych lub rozwoju lingwistyki matema-
tycznej i zwiqgzanej z ni™ konstrukcj”® systemdw automatycznego tlumaczenia jezy-
koéw naturalnych.

W tym rozdziale przedstawia sie podstawowe informacje tylko o niektdrych logikach
nieklasycznych - logikach wielowartosciowych i modalnych [Bolc, Borodziewicz,
Wojcik 1991], [Gabbay 1998]. Logiki modalne stanowi” bardzo szerok” grupe logik.
Za ich szczegblne przypadki mozna uwazac, omawiane w dalszej czesci rozdzialu,
logiki temporalne [Gabbay 1998], [Klimek 1999], a takze - do pewnego stopnia -
logiki intuicjonistyczne [Gabbay 1998].

Krotko wspomina sie tez o logikach niemonotonicznych [Gabbay 1998]. Omawia sie
tylko przeslanki stanowi”ce inspiracje ich powstawania. Logiki te, obecnie intensyw-
nie rozwijane, maj” bezposredni zwi”zek z zastosowaniami - z bazami wiedzy i sys-
temami ekspertowymi. Charakterystycznym wyrdznikiem dla tych logik jest to, ze
proponuj”® one pewne sposoby wnioskowania w sytuacji posiadania niepehiej lub nie-
pewnej informacji.

Przegl*dem nie s” objete wszystkie galezie logiki. Nie omawia sie na przyklad logik
relewantnych, ktdre prébuj*oslabic ograniczenie logiki klasycznej, polegaj”ce na tym,
ze ocena prawdziwosci zdan zlozonych zalezy tylko od prawdziwosci ich czesci skla-
dowych (wlasnosc ekstensjonalnosci - zob. rozdzial 1.), pomija sie natomiast zupel-
nie tresci wyrazane przez te skladowe, a wlasnie uwzglednienie zwi*zkéw trescio-
wych jest szczegdlnie wazne w systemach ekspertowych.

Obszeme, choc niewyczerpujece prezentacjq roznych logik zawieraje pozycje ency-
klopedyczne [Marciszewski 1987, 1988].

Z podzialem nauk na scisle i empiryczne wi”ze siq podzial metod wnioskowania na
dedukcyjne i indukcyjne. Podstawe nauk empirycznych se obserwacje interesuje-
cych zjawisk i proceséw. Obserwacje te czQSto dostarczaje informacji cz”stkowych,
zwykle obarczonych blgdami pomiaréw. Wnioskowania oparte na takich danych
prowadze wiQC do niepewnych lub niepelnych wnioskéw. Dodatkowo, nie zawsze
z gbry wiadomo, jak takie wnioskowanie prowadzic. Prowadzic na przyktad po raz
pierwszy pewien eksperyment, nie zawsze wiadomo, jakich mozna si$ spodziewac
nastgpstw. W metodologii nauk empirycznych rozwaza si$ specyficzne rodzaje lo-
gik, migdzy innymi tak zwane logiki indukcji [Mortimer 1982]. Og6lne zamierzenie
logik indukcji wi”ze siQ ze sposobem uzyskiwania na podstawie danych ekspery-
mentalnych mozliwie najlepszej teorii, ktéra tlumaczylaby zwi~zki pomiqdzy ob-
serwowanymi faktami, a takze - jeszcze lepiej - pozwalalaby na przewidywanie
dotychczas nieobserwowanych faktéw. Taki ogélny mechanizm oczywiscie nie ist-
nieje. Mozliwe jest natomiast poréwnywanie réznych konkretnych mechanizméw
i ocenianie stopnia ich wiarogodnosci. Logiki indukcji nie nalezy utozsamiac z uzy-
wanym wczesniej pojQciem indukcji matematycznej czy strukturalne;j.

14.2. Logiki wielowartosciowe

Logiki wielowartosciowe maje pocz*tek w latach dwudziestych XX wieku, kiedy
Lukasiewicz jako pierwszy przedstawil propozycj? logiki tréjwartosciowej. Prace nad
logikami wielowartosciowymi podejmowali mi$dzy innymi Post, Sobocinski, Shipec-
ki. Lukasiewicz opisal cale rodzing skonczenie wielowartosciowych logik Ln dla
n =3, 4,..., oraz jedne nieskonczenie wielowartosciowe logikq Z>q. Zbiorem wartosci

logicznych logiki Z,,,jest zbior
An=def {0, Y(«- 1),..., (»- 21(n- 1), 1} dlan=3,4,...

Ponizej przedstawia siQ tylko rachunek zdan w logice Z3 W tej logice interpretacja
znanych spéjnikdw logiki klasycznej: =>, a, v, <> —ijest wyrazona tablice 14.1.

Tablica 14.1
b a=>b aAb avb a<b
a 0 54 1 0 14 1 0 1 1 0 54 1
0 1 1 1 0 0 0 0 14 1 1 54 0 I
54 A 1 1 0 1 1 14 54 1 54 1 54 54
1 0 A 1 0 1 1 1 1 1 0 54 1 0

Opracowanie logiki i 3wi”~zato siQ z nadawaniem wartosci logicznej zdaniom odno-
szecym siq do przyszlosci, wartosc Zi oznaczala brak wiedzy.

Zdania o przyszlosci mog”~wyrazac fakty, kt(lire zajd™ub nie zajd”, na przyklad:
W 2100 roku ludzie bgdq mieszkac na Marsie.

Zdanie takie wypowiadane w obecnej chwili nie jest ani prawdziwe, ani falszywe,
nadaje siqg mu wiqc wartosc Vi, co wyraza nasz” niewiedzQ o przyszlosci. Wartosd Vi
moze byc takze interpretowana inaczej jako: niezdefiniowane, nieokreslone albo jako
brak danych.

Pierwsza aksjomatyka Lukasiewicza byla oparta na spdjnikach implikacji i negacji.
Inne znane spéjniki - koniunkcji, dysjunkcji i rownowaznosci - byly definiowane
przez implikacji i negacji, tak samo jak w logice klasycznej.

Zestaw spOjnikéw logicznych, zlozony z implikacji, negacji, uzupelniony stal*/lo-
gicznfi Zi, jest systemem funkcjonalnie pelnym, tzn. za ich pomoc”® mozna wyrazic
dowolne inne spdjniki logiczne w Ly

Aksjomatyka rachunku zdan tréjelementowej logiki Lukasiewicza (opracowana przez
Lukasiewicza, Tarskiego i Wajsberga) sklada sii z nastipuj*cych aksjomatow:

a) q=>(p=>0)

b) (p=>a)=>(q=>r)=>(p=>T))

¢) ((p=>~p)=>p)=>p

d) ((->g=>nP)=>(P=>7?))

e) ((p=>7?)=>?)=>((q =>/>)=>P)

0 ((p=>q) =>(2=>P» =>(? =>P)
oraz z dwdch regul:

Regufy odrywania: z formul 6roraz a=> 3 wnioskujemy B, czyli
a,a=> R}
R

Regufy podstawiania: z formuly a, w ktérej wystipuje zmienna zdaniowa a, wnio-
skujemy to, co otrzymamy w rezultacie podstawienia dowolnej formuly B za kazde
wystpienie zmiennej a, czyli

a
afa-R1]

Przedstawiony zestaw aksjomatéw nie jest minimalny, gdyz ostatni aksjomat jest za-
lezny od aksjomatdw poprzednich. System ten jest semantycznie niesprzeczny i se-
mantycznie zupelny.

Oprdcz omdwionych, do logik wielowartosciowych mozna zaliczyc réwniez miidzy
innymi logiki prawdopodobienstwa i logiki rozmyte.

14.3. Logiki modalne

Niech bgd” dane trzy zdania:

Ksigzka lezy na stole.
Ksigzka lezy napodlodze. 23
Ksigzka nieruchomo (bezpodparcia) utrzymuje siq wpowietrzu. (3)

Jesli zaiozyc, ze wypowiedzi te odnosz”. siq do sytuacji w jakims pomieszczeniu na
Ziemi, to zdania (1) oraz (2) mog”byc prawdziwe lub falszywe, natomiast zdanie (3)
bgdzie zawsze falszywe. Nie jest bowiem mozliwe w zadnym pomieszczeniu ziem-
skim, aby ksiqzka zajmowala trwale nieruchome polozenie. Rozréznienie migdzy sy-
tuacjami zwi”zanymi ze zdaniami (1) i (2) a zdaniem (3) stanie siq bardziej wyrazne,
gdy rozpatruje sig pewne ich modyfikacje:

Mozliwe, ze ksigzka lezy na stole. 4)
Mozliwe, ze ksiqzka lezy napodlodze. (5)
Mozliwe, ze ksigzka nieruchomo (bez podparcia) utrzymuje siq w powietrzu. (6)

Zdania (4) i (5) s" oczywiscie prawdziwe, a zdanie (6) jest falszywe. Przytoczone
oceny prawdziwosci zdan odnosz” siq do zjawisk w bezposrednio otaczaj*cym nas
swiecie. Te same zdania odniesione do zjawisk zachodz”cych na przyklad w swiecie
obserwowanym przez kosmonautow w pojezdzie kosmicznym bgd”~miaty inne oceny,
zwiaszcza zdanie (6) stanie siq prawdziwe. Warto tez zwrocic uwagq na to, ze nawet
osoba przebywaj”ca na powierzchni Ziemi bylaby gotowa uznac prawdziwosc zdania
(6), gdyby tylko wiedziala, ze loty kosmiczne s”osi*galne.

Zdania sq przykladami tak zwanych wypowiedzi modalnych - wystgpujgcy w nich
zwrot - mozliwejest, ze a - jest przykiadem operatora modalnego. Symbolicznie jest
on zapisywany 0 a. Wypowiedz dualna: koniecznejest, ze a, jest symbolicznie zapi-
sywana Oa. Takie zwroty spotyka siq czgsto w wypowiedziach formulowanych
w jgzyku naturalnym. Pomigdzy oboma zwrotami zachodzi zwi”zek semantyczny

0 0c= —+0 —&X
Symbole O oraz 0 s*traktowanejako jednoargumentowe operatory logiczne.

Uwaga
Logiki modalne korzeniami siqgajg. czaséw Arystotelesa. Nowozytne badania pod-
j™1 na pocz%tku XX wieku C.l. Lewis, ktdry pojgcie mozliwosci wykorzystal w celu
rozréznienia migdzy implikacja materialn™ a implikacja scisl®. Implikacja material-
na, zdefiniowana w klasycznym rachunku zdan, ma ulomnosc (zob. rozdzial 1.), kt6-
ra na podstawie falszywej przeslanki pozwala na wyprowadzenie dowolnego wnio-
sku. Wady tej nie ma implikacja scisla (symbol ~>) zdefiniowana przez Lewisajako

PAQq«da et (pa-iQ)

czyli, ze g wynika scisle zp wtedy i tylko wtedy, gdy nie jest mozliwe, by jedno-
czesnie prawdziwe bylo p i falszywe g. Definicja ta odréznia implikacjQ scisl” od
materialnej, ktorej definicjqjest

P=>(Q =def—>(p a .iq).

Implikacja scisla usuwa niektére paradoksy implikacji materialnej, ale nadal pozo-
stawia prawdziwe formuly, ktdre do takich paradoksdw si? zalicza, na przyklad:

priptaq (p*p)* (9”q (Pa-» g (pv » "
Z punktu widzenia skladni, logiki modalne rozszerzeniem j*zyka formalnego
logiki klasycznej. W deflniowaniu semantyki logik modalnych przyjmuje sig po-
wszechnie podejscie S. Kripkego, oparte na pojQciu zbioru mozliwych stanéw (lub
swiatdw). Podejscie to przedstawia si$ ponizej, na przykladzie zdaniowej logiki
modalnej.

Alfabet modalnego jgzyka rachunku zdan sklada siq z nastgpujgcych jednostek leksy-
kalnych:

» symboli stalych logicznych reprezentowanych przez napisy true oraz false;
* przeliczalnej liczby symboli zmiennych zdaniowych,

» symboli spdjnikdw logicznych klasycznego rachunku zdan: -i, a, v, =>, <>
» symboli spéjnikéw logicznych modalnych: D,0,

« symboli nawiasow: (,).

Zbidrformul modalnego rachunku zdan FORM jest definiowany rekursywnie:

» Symbole zmiennych zdaniowych oraz Symbole stalych logicznych s formulami
elementamymi; zbiér zmiennych zdaniowych bqdzie oznaczony symbolem V,
* jezeli aoraz s”formulami, to formulami zlozonymi s” napisy:

-io; (a=>R), (otAR), (arv/7), (a<=>/?), 0Oa,la.

Semantyka jgzyka jest okreslana w strukturze Kripkego.

Definicja 14.1

Modelern Kripkego nazywa siQtrojkq K = <S, p, v>, gdzie: S jest dowolnym zbio-
rem nazywanym zbiorem stanéw (lub swiatéw), p ¢ S2jest relacj™ binam” nazy-
wan” relacjX osiqgalnosci standw (swiatdw), v : V x S — Logiczne jest fiinkcj®
wartosciujgcq zmienne zdaniowe w kazdym ze standw.

Jezeli <s, s'>ep, to stan s nazywa siq stanem osi*galnym ze stanu s.

Dziedzinei interpretacji formul jest, tak samo jak w klasycznym rachunku zdan, zbitr
wartosci Logiczne. Semantyka modalnego rachunku zdan zachowuje interpretacji kla-
sycznych spdjnikéw logicznych. Funkcja wartosciowania v jest uogdlnieniem odpo-
wiedniej funkcji wartosciuj™cej v, ktdra byla wprowadzona przy deflniowaniu semantyki

klasycznego rachunku zdan. Roznica polega na tym, ze w modalnyra rachunku zdan
wartosciowanie zmiennej zdaniowej zalezy dodatkowo od stanu. W réznych stanach
wartosciowania tej samej zmiennej mog” byc rozne, podczas gdy w klasycznym
rachunku zdan wartosciowanie zmiennej jest tylko jedno - inaczej: w klasycznym
rachunku zdan ma siq do czynienia tylko zjednym stanem.

Niech aeFORM b~ dzie dowoln”. formul”® oraz se S bqdzie dowolnym stanem. Inter-
pretacja formuly a przy wartosciowaniu v w stanie s, zapisywana INT\Wgcc), jest defi-
niowana rekursywnie wzgl*dem struktury skladniowe;j:

a) INT\WSp) =defv(p, s), dla zmiennej zdaniowej p

b) IAITMf(tnie) =cdefp

c) INT\if(false) “ def F

d) INTVS(—i(x) =def~INTvs(g)

e) INTVS(a°R) =def INTMY0Y) °INTvs(R), dla spdjnika binamego °e {a, v, =>, <3}

f) INTWs(Da) =df P wtedy i tylko wtedy, gdy dla dowolnego stanu s' osi“galnego
ze stanu s zachodzi INTyj(a!) =P

g) INTVs(0a) =def P wtedy i tylko wtedy, gdy istnieje stan s' osi*galny ze stanu s,
dla ktérego zachodzi INTw(a) =P

Przedstawiona wyzej semantyka, w zaleznosci od konkretnych zastosowan, moze byc
jeszcze zawqzana przez narzucenie dodatkowych postulatdw. Mog” one miec postac
formul-aksjomatow, ktére powinny byc spelniane w jgzyku. W zaleznosci od zestawu
takich aksjomatow wyroznia siQ rozne rodzaje logik modalnych. Przykladami takich
formul %

D(a=> R) => ([@O<*=> UR)

na=> 0a

na=> a

Da=>0O0Oa

0a=>n0Oa

Ona=> 00a

O0a=> ODar
Omawiane wyzej modalnosci okresla sig mianem modalnosci ciletycznych. Modalnosci
mog” miec takze inne interpretacje. W zaleznosci od przyjqtej interpretacji, modalno-
sci czyta si$ w rdzny sposob i ma siq do czynienia z réznymi rodzajami logik modal-
nych.
Na przyklad pojgciem centralnym logiki deontycznej jest pojgcie obowiqzku, for-

muly Da oraz 0 a odczytuje si®jako: jest obowigzkowe to, ze a orazjest dozwolo-
ne to, ze a.

Logika epistemiczna odnosi si? do aktéw lub stanéw poznawczych, operuje poj?ciami

takimi, jak widziec, wierzyc, uznawac, dlatego formufy Oa oraz 0 a odczytuje si?
jako: jest wiarygodne to, ze drorazjest niewiarygodne to, ze Q.

W logice temporalnej przedmiotem zainteresowania wypowiedzi, ktére uwzgl?d-

niaj™ zwi*zki czasowe - formufy Oa oraz Oa czyta si? jako: zawsze zachodzi a oraz
czasem zachodzi a.

Obszemiejsze omowienie logik modalnych i ich zwi*zkdw z logika klasyczn” zawiera
ksi“zka [Szalas 1992].

14.4. Logiki temporalne

Przedmiotem logik temporalnych sft wypowiedzi, ktére uwzgl?dniaj” czas. Tlem, na
ktérym rozpatruje si? wypowiedzi, jest struktura czasowa. Zbior stanéw S w modelu
Kripkego K = <S, p, v>jest tu interpretowany jako zbior chwil czasowych - oznacza-
ny T, a relacja osi®galnosci p jest interpretowanajako uporz~dkowanie chwil w sensie
chwila wczesniejsza-p6ézniejsza - oznaczana <.

Strukturqg czasowq nazywa si?par? SC - <T, <>, gdzie =<c T 2jest relacjaporz"dku.

W zaleznosci od ustalen dotyczqcych struktury czasowej otrzymuje si? rézne rodzaje
logik temporalnych.

Jezeli < jest relacjaporzEgiku cz?sciowego (to znaczy jest zwrotna, antysymetryczna
i przechodnia), to mamy do czynienia ze Struktur™ czasu rozgatgzionego, a jeSli jest
relacja porzqdku liniowego (o znaczy jest zwrotna, antysymetryczna, przechodnia
ispdjra), tomamy do czynienia ze Struktur™czasu liniowego.

Struktur? czasowq nazywa si? ciqglq, gdy
VG T*VIGT*3/G7*(ff 12 tdtjatsdD
dyskretngprawostronnie, gdy
VG P ™ 2 o)2
Bfjic T\ t$a & tj))a—idACT*(\ A = ti A~ £a))
dyskretnq lewostronnie, gdy
VFe7TWf2 Tr(tx< t2A t{* f)=>
(BBGT*{t3 t2A t2n tj) A —BBFAGT*(t4= 12A t8 N DAL tj))

Przykladem zbioru, na ktérym mozna zbudowac Struktur? cicglg, jest zbior liczb wy-
miemych, adyskretng- zbidr liczb naturalnych.

W dalszych rozwazaniach zaklada siq dyskretn® (lewo- i prawostronnie) Struktur®
czasu liniowego. Dia ustalenia uwagi przyjmuje si$, ze zbi6ér chwil jest zbiorem
liczb naturalnych, a relacja osiqgalnosci jest relacj® < w zbiorze liczb naturalnych,
n <m oznacza: chwila n nie jest pozniejsza od chwili m. Struktura czasowa jest za-
tem par® <Nat, <>.

Zostanie przedstawiony rachunek zdan liniowej logiki temporalnej PLTL (Proposi-
tional Linear Temporal Logic). Logika jest logik” czasu przyszlego, co oznacza, ze
formuly wyrazaj”® pewne wlasnosci, ktére odnosz” siq do przyszlosci, poczynaj*c od
ustalonej chwili odniesienia. Zostala ona opracowana przez Mann? i Pnueliego na
pocztku lat osiemdziesi®tych [Manna, Pnueli 1992, 1995], z przeznaczeniem do spe-
cyfikacji i weryfikacji wlasnosci programoéw.

Skladnia logiki PLTL r6zni sig od skladni modalnego rachunku zdan przedstawionego
w poprzednim podrozdziale tylko tym, ze wprowadza dwa dodatkowe spdjniki mo-
dalne: jednoargumentowy operator next i dwuargumentowy until. Spéjniki te shiz*do
wyrazania pewnych wlasnosci, ktére mozna takze wyrazié za pomoc” pozostalych
spojnikow.

Zbior formul FORM logiki PLTL jest definiowany rekursywnie:

» Symbole zmiennych zdaniowych oraz stalych logicznych s” formulami,
* jezeli 6roraz B sg. formulami, to formulami s*"réwniez:

-ia, (ar=>R), (aaB), (orv), (ar<=>R), Oa, Oa, next a, (auntilB).

Interpretacja formuly temporalnej jest definiowana - tak samo jak w przypadku mo-
dalnego rachunku zdan - wzgl$dem struktury czasowej <Nat, <> i wartosciowania v.
Modelern dla formul temporalnych jest wic trojka <Nat, <, v>.

Niech a&FORM b~dzie dowoln” formuly oraz nsNat b~dzie dowoln” chwil®. Inter-
pretacja formuly arprzy wartosciowaniu v w chwili n, zapisywana INTv,,(a), jest defi-
niowana rekursywnie wzglgdem struktury skladniowej:

a) INTv,,(p) =defv(p, n), dla zmiennej zdaniowej p

b) IATV,(true) ger®

c) VTV, (false) =cefF

d) INTVW a) =def-JNTvn(a)

e) INTV,,(a°R) =defINTWMot) °INTw(R), gdzie °e {a, v, => <}

f) INTW(U a) —ef P wtedy i tylko wtedy, gdy dla dowolnej chwili m takiej, ze
n<m zachodzi INTMn{d) = P

g) INTWO4) =cfP wtedy i tylko wtedy, gdy istnieje chwila m taka, zen<m,
dla ktorej zachodzi INTvm(a) = P

h) INTwn(nextd) =defP ~ wtedy i tylko wtedy, gdy dla chwili n+ 1 zachodzi
INTV,H(cc)= P

i) INTM(a until B) =def P wtedy i tylko wtedy, gdy istnieje chwilaj > 0 taka, ze
zachodzi INTvi(R) - P oraz dla kazdej chwili i <j zacho-
dzi INTyj(d) = P.

Formuia a, ktorej interpretacja INT\(d) = P, dla dowolnego wartosciowania v i do-
wolnej chwili n, jest tautologig. logiki PLTL. Formuia takg. nazywa siQ tez prawem
logiki.
Warto zwrdcic uwagqg na spdjnik until. Zajego pomoc”mozna byloby wyrazic spojni-
ki O oraz 0, mianowicie:

Oa =deftrue until a

0 a =defa until false

Formuly logiki PLTL pozwalaj® na zwarte wyrazenie zlozonych wlasnosci, na przy-
klad:

OOar formuia czytana: zawsze mozliwe a, wyraza wlasnosc, ze kiedykolwiek
w przyszlosci formuia a stanie siQ falszywa, to jest pewne, ze kiedys
w dalszej przyszlosci stanie si$ znowu prawdziwa.

0Da formuia czytana: kiedys koniecznie a, wyraza wlasnosc, ze w przyszlosci
istnieje taka chwila, od ktoérej formuia a b~dzie prawdziwa.

Oto przyktady niektdrych kategorii praw:
Prawa dualizmu
D -ioro -iOe&t

0 —ot<=-.Dar
next —Qt <>—nexta

Prawa introspektywnosci

Oa=> a

a=> Oa

(a untilB) => (av B)
B=> (a until B)

Prawa idempotencji

O«<=> U a
OOor« Oa

Prawa rozdzielnosci
n{aAR) <>(Dar) a (alk)
O(av B) <(04&) v (0R)

Prawa przemiennosci

(O next d) <> (next nd)
(0 next d) 4> (next Oa)
next (a until) <> (next a) until (nextR)
Prawa dolqgczania
(naa OR) =>0(aanR))
(naa nextB) => next (aaR)
(naa (Buntily)) = (aaRB) until(aay)
Dia logik temporalnych byly opracowane rdzne systemy aksjomatyzacji. Jeden

z pierwszych przykladow aksjomatyzacji logiki PLTL pochodzi z ksi“zki [Gabbay
1998] i sklada siq z nastgjuj*cych aksjomatdw:

a) a(a=>R) =>(aa=> al)
b) next—4a <<>—nexta
¢) hext (a=> R) => (next a => nextR)

d) O<£=> (next a a next Do)

€)o(«=> nextd)=> (next rr=> nd)

f) (a untilR) = OB

g) (a untilB) <> (next’ v (nexta a next (a until R)))

oraz regul odrywania, podstawiania i generalizacji:

Regula generalizacji: z formuly orwnioskuje siq, ze na, czyli
a
na

System ten jest semantycznie niesprzeczny i semantycznie zupelny.

14.5. Logiki intuicjonistyczne

Skladnia logiki intuicjonistycznej jest taka sama jak logiki klasycznej. Réznica wy-
nika ze sposobu podejscia do oceny prawdziwosci zdan. W logice intuicjonistycznej
podejscie to opiera siQ na specyficznej interpretacji spdjnikéw logicznych i kwanty-
flkatorow podanej przez HeytingaX - jednego z tworcow tej logiki, ktéry przedsta-
wil pierwszy System aksjomatyczny dla intuicjonistycznego rachunku zdan. Jej pod-

% A Heyting (1898-1980).

staw”jest intuicja, ze stwierdzic prawdziwos6 zdania to tyle, co mied dowdd dla
tego zdania.

Logika intuicjonistyczna jest jedn” z logik konstruktywnych. llustracj® réznic w sto-
sunku do logiki klasycznej jest dowod twierdzenia:

Istniej*dwie liczby niewymieme a i b takie, ze a*jest wymieme.

Dowaod twierdzenia jest niekonstruktywny: albo (V 2)”*jest wymieme i wtedy a=b =

=V2, albo (V2)~jest niewymieme i wtedy a = (V2)”, b=V2. Z dowodu wynika,
ze liczby istniej”®, ale oczywiscie nie wiadomo, jakie s™to liczby.

W interpretacji Heytinga prawdziwosd formul w logice intuicjonistycznej jest rozu-
miana w spos6b nastQpuj”cy:

Prawdziwosd formuly a a b oznacza fakt posiadania dowodu d,,dla formuly a
oraz dowodu db dla formuly b. Dowdd formuly a a b jest zatem parn_<da, db>.
Dowdd formuly a v b to konstrukcja, ktoéra wybiera jedn” z dwéch formul i daje
dowd6d wybranej formuly.

Dowdd formuly a =>b to konstrukcja, ktéra kazdemu dowodowi da formuly a
przyporz~dkowuje dowdd di(da) formuly b.

Dowdd formuly —ato dowdd dla formuly a => false, czyli konstrukcja tworz”ca
dowdd sprzecznosci z kazdego dowodu majqcego byé dowodem formuly a.
Dowdd formuly 3x» p(x) to konstrukcja, ktéra polega na wskazaniu pewnego
obiektu n (z danej dziedziny rozwazan) i podaniu dowodu dla formuly p(n).
Dowdd formuly Vx* p(x) to konstmkcja, ktéra dla kazdego obiektu n (z danej
dziedziny rozwazan) podaje dowdd dla formuly p(ri).

Aksjomatyzacja Heytinga dla intuicjonistycznego rachunku zdan sklada si$ z nastqpu-
j~cych aksjomatow:

1) a=>(aa @)

(2) (aAb) =>(baa)

(3) (@ab)=>((aac)=>(bad)

4) ((fl=>b)a (b=>c)) =>(a =>¢)

(5) o= (a = 6)

(6) (aa(@a=>h))=>b

(7) a=>(av b)

(8) (avb)y=>(bva)

9) ((@a=>c)a (6=>c)) =>((flv b) =>¢))

(10) —a =>(a=>b)
(11) ((a=>b)a (a =>-i0)) =>—a

Jedyn” regulq jest regula odrywania.

Wszystkie prawa intuicjonistycznego rachunku zdan réwniez prawami logiki kla-
sycznej, ale nie odwrotnie: s*tautologie logiki klasycznej, ktore nie prawami logiki
intuicjonistycznej. Przykladami takich formul s™:

—ava

——a=>a

Dol~czenie jednej z nich do zestawu wczesniej podanych aksjomatdéw daloby rachu-
nek réwnowazny logice klasycznej. W interpretacji intuicjonistycznej przyjQcie na
przyklad formuly —av ajako aksjomatu oznaczaloby, ze dla dowolnej formuly ma siq
dowddjej prawdziwosci lub dowdd jej fatszywosci.

Pokrewne podejscie przedstawil A. Kolmogorow2, ktéry zaproponowal, aby zdania
w logice intuicjonistycznej traktowac jako problemy lub zadania. Z zadaniem koja-
rzy siq sposob jego rozwi”zania. W logice klasycznej wypowiedzi, ktora jest zda-
niem, przypisuje siq wartosc prawdy albo fatszu, natomiast w logice intuicjoni-
stycznej zadaniu przypisuje si$ rozwi®zanie albo bezsensownosc, czyli brak
mozliwosci rozwi®zania. Inaczej: ocen” logiczn”™ zadania jest jego konstruktywne
rozwi”zanie albo bezsensownosc zadania. Niech b$d” dane nastQpuj*ce przyklady
zadan [Turski 1988]:

1. Znalezd cztery liczby calkowite v, z, n takie, ze: xn+yn=zndlan > 2.

2. Udowodnic fatszywo86 wielkiego twierdzenia Fermata.

3. Przeprowadzic okr*g przez trzy zadane punkty p, g, r, nie postuguj”c sig innymi
narzqdziami niz cyrklem i linijk”.

4. Zakladajc, ze znany jest jeden pierwiastek réwnania: a2+ bx + ¢ = 0, znalezc
drugi pierwiastek tego réwnania.

5. Zakladajgc, ze liczba ;rjest wymiema, 7t- min, znalez6 podobne wyrazenia dla
liczby e.

Rozwi”zanie zadania 1. oznacza rozwi”zanie zadania 2., natomiast odwrotnie tak
byd nie musi, gdyz mozliwe byloby rozwi*zanie zadania 2. przez sprowadzenie do
sprzecznosci, bez podawania kontrprzykladu. Zadania 3. i 4. s" oczywiscie rozwi”zy-
walne, natomiast zadanie 5. jest bezsensowne, gdyz zalozenie 0 wymiemosci liczby K
jest niemozliwe do spelnienia.

Jednym ze sposob6w wyrazania semantyki formul logiki intuicjonistycznej jest mo-
del Kripkego, wprowadzony juz wczesniej przy omawianiu logik modalnych. Model
ten dogodnie jest opisac w terminach procesu nabywania wiedzy w kolejnych chwi-
lach (etapach).

Jak poprzednio, model Kripkego jest trojk™ K = <S, v>, gdzie: S jest dowolnym
zbiorem chwil (etapdw), C jest relacj” porzqdku czQsciowego nad S, v : Vx S —Lo-

26 Andriej Nikolajewicz Kolmogorow (1903-1987).

giczne jest funkcj® wartosciuj*c” zmienne zdaniowe w kazdej z chwil. Dodatkowo
wymaga siq, aby funkcja wartosciujca spelniala nastqmj”~cy warunek:

jezelis =t to v(a, s) => v(a, t), dla dowolnego ae V.

Warunek ten oznacza, ze jezeli w pewnej chwili (etapie) seS wartosciowanie zmiennej
ae V stanie si$ prawdziwe, to pozostanie ono prawdziwe we wszystkich nastgpnych
chwilach teS (etapach) procesu nabywania wiedzy. Poniewaz porz£[dek =<jest cz”scio-
wy, nie musi wiQc byc porz~dkiem liniowyra, istniej*rézne drogi nabywania wiedzy.

Niech aeF O R M b~dzie dowoln” formul” intuicjonistycznego rachunku zdan oraz seS
b~dzie dowoln” chwil”. Interpretacja formuly a przy wartosciowaniu v w chwili s, zapi-
sywana INT\J(ot), jest definiowana rekursywnie wzgl*dem struktury skladniowej:

a) INTM =defP wtt v(a, s) =P, dlaae V,

b) INT(av B) =cfP WttINTM =P lubINTVYR) =P,

c) INTVYaaR) =defP wtt INT\j(a) =P orazINT\§R) =P,

d) INTVXa =>R) =cfP wtt dla dowolnej chwili t takiej, ze s =<t, zachodzi

INTM =P orazINT\R) =P,

e) INT\J(—8) =cfP wtt dla dowolnej chwili t takiej, zes =t, nie zachodzi
INTM =P,

Uzyty tu Symbol wtt jest skrotem zwrotu wtedy i tylko wtedy, gdy.

Formula arjest tautologiqg. wtedy i tylko wtedy, gdy INTVXa) = P dla dowolnego war-
tosciowania v i dowolnej chwili s.

Latwo sprawdzic, ze jesli S - {0, 1}, v(a, 0) = F oraz v(a, 1) = P, to formula —ava
nie jest tautologi”®, gdyz nie zachodzi INTWI—ava) = P,coz kolei wynika z tego, ze
nie zachodzi INTV0(a) = P ani INTVO(—a) =P.

14.6. O logikach niemonotonicznych

Rozpatrywane dotychczas logiki maj” wspoln” wlasnosc, okreslan”™ mianem monotonicz-
nosci. Oznacza to, ze jezeli arjest konsekwencj” skladniow” pewnego zbioru formul 0,
symbolicznie 0 \- a, to arjest rowniez konsekwencj” skladniow” dowolnego rozszerze-
nia zbioru 0, symbolicznie <Bu r \- a, gdzie r jest dowolnym zbiorem formul, czyli:

jezeli 0Y- a;to<PuT I- @

WIlasnosc monotonicznosci jest zachowana w tych wszystkich praktycznych sytu-
acjach, gdy wnioskowanie na podstawie pewnego zbioru przeslanek opiera siQ na za-
lozeniu, ze dysponuje si$ peln™ wiedzy o ffagmencie opisywanego swiata - zalozenie
0 zamkniQtosci swiata (rozdzial 12.). Zalozenie takie nie zawsze jest prawdziwe, gdyz
mamy czqsto do czynienia z informacj” niepeln” lub niepewn”.

Rozpatrzmy na przyktad dwie bazy danych: rozklad odjazdéw poci®géw z danej stacji
oraz ksi*zk” telefoniczn”®, Jezeli w rozkladzie poci*géw odjezdzaj*cych nie znajdzie-
my miejscowosci, do ktdrej chcemy jechac, to znaczy, ze nie ma do niej bezposred-
niego pockigu. Jezeli w ksi*zce telefonicznej nie znajdziemy nazwiska znajomego, to
nie znaczy, ze nie ma on telefonu, gdyz ksi*zka moze byc nieaktualna lub telefon mo-
ze byc zastrzezony. W przypadku rozkladu jazdy poci*géw zalozenie o zamkni™tosci
swiata jest uzasadnione, nie jest tak natomiast w przypadku ksi”*zki telefonicznej.

We wnioskowaniach stosowanych na co dzien uzywa si$ regul wnioskowania opar-
tych na posiadanej wiedzy oraz niewiedzy. Przykladami regul, ktére na takich podsta-
wach wyprowadzaj 3.rézne przeciwstawne rodzaje wnioskow, s™:

Jezeli nie ma dowodu winypodejrzanego, to nalezy uznac, zejest on niewinny.
Jezeli nadlatuje samolot i nie mozna wykluczyc, zejest to samolot wroga (nie ma do-
wodu, zejest to ,,swdj" samolot), nalezy uznac, zejest to samolot wroga (i zestrzelic).

Whioski wyprowadzane na podstawie tych regul mog” si$ okazac sprzeczne z dodat-
kowo ujawnionymi faktami - nowymi informacjami o podejrzanym, wynikami oglg-
dzin str*conego samolotu.

Przedstawione reguly wnioskowania okresla siq jako reguty domnieman. MajX one
czQsto postac
a, UNLESS(R)

r

gdzie UNLESS(R) oznacza: nie jest mozliwe wyprowadzenie B. Logika stosuj™ca reguly
o takiej postaci narusza wlasnosc monotonicznosci. Na przyldad, na podstawie reguly

UNLESS (a)#
B
mozna stwierdzic, ze 0 I- B3, ale {4} \tB.
Przegl™d réznych podejsc do wnioskowania w sytuacji niepelnej informacji i zwi”-

zanych z nimi probleméw mozna znalezc na przyktad w ksi®zce [Bolc, Borodzie-
wicz, Wojcik 1991].

W sytuacji posiadania wiedzy niepewnej powstaje problem niejednoznacznosci wnio-
skowania. Na przyktad, jaki wniosek wyprowadzic przy zalozeniu posiadania nastgpu-
jcej wiedzy:

» Kwakierzy sq na og0l pacyflstami.

* Republikanie na ogdl nie sq pacyflstami.

* Nixonjest kwakierem i republikaninem.

Réwnie uzasadniony jest kazdy z dwdch nasuwaj*cych siQ przeciwstawnych wnio-
skdw, ale nie jest mozliwe jednoczesnie, ze:

Nixonjest pacyfRstq.
Nixon raczej niejest pacyfistq.

Z podobn” niejednoznacznosci® ma do czynienia lekarz, gdy na podstawie badan pa-
cjenta okazuje sig, ze moze on by6 chory najedn”z kilku chor6b.

Whnioskowanie w takich przypadkach opiera si$ na analizie scenariuszy post“powania,
ktéremu towarzyszy dokonanie wyboréw - podejmowanie decyzji. Praktycznie chodzi
0 ocenq skutkéw (koszt) podejmowanych decyzji. Stosuje siq rézne podejscia do takich
ocen, oparte na przyklad na miarach probabilistycznych lub miarach rozmytych. W lo-
gikach probabilistycznych miar” logicznej wartosci zdania jest prawdopodobienstwo
jego prawdziwosci, a w logikach rozmytych miarami s rozmyte wartosci prawdy.

Przegl”™d réznych podejsc do wnioskowania w sytuacji niepewnej informacji i zwict-
zanych z nimi problemdw mozna znalezc na przyklad w ksi*zce [Bolc, Borodziewicz,
Wojcik 1991].

Cwiczenia

1. Ktora z podanych definicji jest poprawn” definicj” implikacji w logice Ly.
a) P=>q =defmin(\, \+ p-q)
b) p =>q =defmax(1-p, 1- q)
c) p=>q =dfmin(\, I-p +q)

2. Czy formulyp=> q oraz —pvqse” rownowazne w logice L{!

3. Ktore z podanych formut s tautologiami temporalnej logiki zdan:

a) q=>(p=>0q)
b) pAgq=>g¢
)0 (paq=>0)
d)o#=>(0 (p=>0q))
4. Pokazac, ze dla formuly Oq temporalnej logiki zdan nie istnieje réwnowazna jej
formula, skladaj”ca si? wyl~*cznie ze sp6jnikéw a ,v oraz —

5. Ktore z podanych formul s tautologiami intuicjonistycznego rachunku zdan:

a) -ipv p
b) —# P=>p
Op— ip

d) (p =>a) v {a=>p)
e) pa-n#=> (pV0)
f) nn(npv/)).

15. Definiowanie j”*zyka programowania

15.1. Uwagi wst”*pne

W tym rozdziale zilustrowano zastosowanie metod logiki klasycznej do definiowania
j~zykoéw programowania. Jgzyki programowania na ogdl bardziej zlozone niz oma-
wiane wczesniej jzyki logiki. Struktura definiowania kazdego j*zyka, zaréwno
sztucznego, jak i naturalnego, jest podobna - wspdlnymi elementami definicja
slownika, ogdlniej zbioru jednostek leksykalnych, definicja skladni i semantyki.

JAzyki programowania stanowi” bardzo obszem” grupQ jgzykdéw. Dzieli si? je na
trzy kategorie: j$zyki imperatywne (proceduralne), funkcyjne i logiczne. Krotkie
informacje na temat logicznego j*zyka programowania byly przedstawione w roz-
dziale 12. W biezqcym rozdziale jest przedstawiona definicja bardzo prostego jqzy-
ka programowania imperatywnego. Jgzyki imperatywne sg. najszersz” stosowan£t
kategori®, nalezEi do niej tak populame teraz j$zyki, jak Ada, C, C++, C#, Java,
Pascal itp. Obecnie wsrdd jAzykéw imperatywnych dominuj” jgzyki programowa-
nia obiektowego, podczas gdy dziesiqc lat wczesniej przewazaly jgzyki programo-
wania strukturalnego.

Przeglcyd metod definiowania jgzykéw programowania sekwencyjnego zawiera mig-
dzy innymi ksi*zka [Dembinski, Mahiszynski 1981], definiowanie semantyki j*zy-
kéw programowania sekwencyjnego i rdwnoleglego - ksi“zka [Apt, Olderog 1991],
j~zykobw programowania czasu rzeczywistego - monografia [Huzar 1989],

W tym rozdziale omawia siQ trzy coraz bardziej rozbudowywane wersje prostego
jgzyka programowania strukturalnego. Wersje te b<jd* oznaczane symbolami
BPJP - bardzo prosty jgzyk programowania, PJP - prosty jqzyk programowania
oraz JP - jQzyk programowania. Bardzo prosty j?zyk programowania BPJP jest
skrajnie uproszczon”™ wersje jgzyka programowania strukturalnego. BPJP nie
uwzglgdnia hierarchicznej struktury blokowej programéw, nie zawiera procedur,
nie ma typéw zlozonych, nie ma typéw referencyjnych itp. Jgzyk PJP jest rozsze-
rzeniem BPJP o procedury nierekursywne, natomiast JP jest kolejnym rozszerze-
niem o procedury rekursywne. Wszystkie opisywane konstrukcje maj® swoje
odpowiedniki we wspdlczesnych jgzykach programowania strukturalnego i obiek-
towego.

15.2. Jednostki leksykalnespap

Alfabet kazdego nietrywialnego jgzyka programowania jest zwykle bardzo liczny,
czasem teoretycznie nieograniczony. Z tego wzglgdu alfabet jQzyka wymaga oddziel-
nej definicji. Alfabet jest zbiorem napiséw nad pewnym skonczonym repertuarem
symboli, w przypadku j$zyka BPJP jest to podzbior symboli graficznych alfabetu
polskiego, rozszerzonego o powszechnie spotykane Symbole matematyczne. Precyzyj-
ne okreslenie tego podzbioru nie jest konieczne, gdyz - po pierwsze - wynika to
w oczywisty spos6b z przytoczonych nizej okreslen jednostek leksykalnych i - po
drugie - wybor innego repertuaru symboli nie ma znaczenia dla definicji semantyki

jqzyka.
Alfabetjgzyka BPJP zawiera nastqpuj”ce kategorie jednostek leksykalnych:
e zbior zmiennych indywiduowych, dalej krétko - zmiennych, reprezentowa-
nych przez identyfikatory - elementy zbioru Identyfikator,

» zbior stalych indywiduowych typu logicznego - wartosci logicznych ze zbioru
Boolean =df {true, false}

e zbior symboli operacji logicznych
SpLog =df {not, and, or}
e zbior stalych indywiduowych typu calkowitoliczbowego - liczb w postaci
dziesiQtnej ze zbioru
Integer =def {-N, ...,N} dla wybranego NsNat

» zbior symboli operacji arytmetycznych - symboli funkcyjnych
Funint=def {-u {+ -2, * div, mod}
0 sygnaturach:
- 1: Integer —Integer,
o+ 2, div_, _mod_ :Integerl—>lInteger
» zbior symboli relacji arytmetycznych - symboli predykatow
Predint =df {=, <}
0 sygnaturach:
=, _<_: Intl—Boolean,

e zbior stalych indywiduowych typu znakowego - symboli ze zbioru
Character =df {*a\ ‘b’, ..., ‘2’}u {0’, ‘1", ..., ‘9"}

» zbior symboli operacji znakowych - symboli funkcyjnych
FunChar =df {ord, ehr}

0 sygnaturach:

ord : Character —Integer,
ehr :Integer —Character,

zbior symboli relacji znakowych - symboli predykatow
PredChar =df {=, *, <}
0 sygnaturach:
= ,jt_, _<_: Character*—Boolean,

zbior stalych indywiduowych typu napisowego - symboli ze zbioru
String =de{Fin-seqQ(Character) u ... U Fin-seqisdiCharacter)

Jest to zbidr cieigbw nad zbiorem Character o dlugosci ograniczonej do 256.
Dia odrdznienia napisu od identyfikatora, napisy b~d” ujmowane w cudzy-
slowy, na przyklad: “abc”, “10cd”; ci*g pusty b~dzie zapisywany w postaci “
zbidr symboli operaeji napisowych - symboli funkcyjnych

FunString =df {head, tail, length} u {A}
0 sygnaturach:

head : String — Character,

tail: String —String,

length : String —Integer,

_A :String2—>String.
zbior symboli relacji napisowych - symboli predykatdw

PredString =def {= , *, <}
0 sygnaturach:

JE_, _<_: String2—>Boolean,

zbiér symboli pomocniczych

SymbPom =df =7 U 4
Jednym z symboli pomocniczych jest przecinek. W celu odrdznienia przecin-

ka jako separatora od przecinka jako symbolu pomocniczego zostal on dol”-
czony jako odrQbny jednoelementowy zbidr.

zbidr nazw typoéw

SymbType = {bool, int, char, string}
zbior slow kluczowych

SymbKlucz =def {program, begin, end, if, then, eise, fl, while, do, od}
zbiér elementamych instrukeji

InsElem =df {read, write, skip}

Symbole predykatéw =, <s”symbolami przecisizonymi, gdyz jako argumenty mog”"
miec wartosci réznych typéw. Podobnie jest przecigzony symbol funkcyjny -, gdyz
moze wystQpowac w roli operatora jedno- b*dz dwuargumentowego, w dalszym ciqgu
dolny indeks wskazuj”cy liczbQ argumentéw bgdzie pomijany.

SpecyfikEt przedstawionego zestawu jednostek leksykalnych jest to, ze w posredni
spos6b wyznaczaj®. one zbiory dziedzin semantycznych. Zbiory stalych indywidu-
owych wyrdznionych tu typéw (logiczne, calkowitoliczbowe, znakowe i napisowe)
wlasnie takimi dziedzinami.

Uwaga
Symbole jednostek leksykalnych rozpatrywanych tu j*zykéw programowania bqd”
pisane antykw”, natomiast wszystkie pozostale Symbole pomocnicze b”d” pisane
kursyw”.

15.3. SkladniasPripr

Wyrdznia siQ nastqpuj”ce kategorie napisdéw wystgpuj*cych w BPJP:

» deklaracje zmiennych,

e wyrazenia - odpowiedniki terméw w jgzyku logiki - typéw calkowitolicz-
bowych, znakowych i napisowych,

e wyrazenia - odpowiedniki formul w jgzyku logiki,

» instrukcje,

s programy.

Deklaracje zmiennych
Zmienne maj” typy. Wyrdznia siq zmieime typow: logicznego, calkowitoliczbowego,
znakowego i napisowego. Jezeli xe ldent, to pojedyncza deklaracja, ze identyfikator x
jest zmienn” odpowiedniego typu przyjmuje jedn” z dwdch postaci:

bool x

int x

char x

String x
albo

bool x := thoi

int x := tin

char x := tder

string x := tdrg

gdzie: thodb tinl, tdiar, taring s wyrazeniami stalymi (niezawieraj*cymi zmiennych - patrz
nizej) odpowiednio typéw logicznego, calkowitoliczbowego, znakowego i napisowego.

Kazdy z wymienionych wyzej napiséw jest deklaracjg pojedynczej zmienne;j.

Zbhior deklaracji zmiennych vor jest zapisywany w postaci ciggu pojedynczych dekla-
racji, w ktorych kolejne elementy sg oddzielane srednikami, na przyklad:

int abc;

int blO := 10;
bool w :=true;
char x := ‘x”;

string st := “aaaabb”;
Rodzina zbioréw deklaracji zmiennych Fbqdzie oznaczona przez VAR(V).
Dalej bgdguzywane nast”pujgce oznaczenia na zbiory zmiennych poszczegélnych typow:
Voooi= {X | (bool x e VAR) v (bool x :=tinlg VAR(V))}
Vin= {x | (int x g VAR) v (int x :=tMg VAR(V))}
\diar= {x | char x g VAR v char x :=tine VAR(V)}
et = {x | string X g VAR v string x :=tine VAR(V)}

Zaklada sie, ze zbiory zmiennych réznych typéw Vioch Virt, Vdnr oraz \atringsg rozlgcez-
ne. Suma wszystkich zmiennych bqdzie oznaczana przez V, czyli

V~Vjmu Wilav \stijrgo Mod

Wyrazenia
Zbior wyrazen jezyka BPJPjest mnogosciowg sumg
TERM(V) = TERMin(V) u TERMda(V) u TERMsrinyV)

gdzie:
TERMIri(V) jest zbiorem wyrazen calkowitoliczbowych nad zbiorem zmiennych V,
TERMQa{y) jest zbiorem wyrazen znakowych nad zbiorem zmiennych V,
TERMSriny V) jest zbiorem wyrazen napisowych nad zbiorem zmiennych V.

Poszczeg6lne zbiory wyrazen sg definiowane rekursywnie.
Zbior TERMin (V) jest zdefiniowany nastepujgco:
- Mirlu Integer ¢ TERMIA(V),

* jezeli t\, t2 TERMin(V), to

~t\, (\ +12), (ti-t2, & *t2), (r, div t2), (r, mod t29e TERMin(V)
W dalszym ciggu, tarn, gdzie nie bqdzie to wprowadzac niejednoznacznosci, na-
wiasy b~dg pomijane, a kolejnosc wykonywanych operacji bgdzie wynikac ze zna-
nej powszechnie konwencji arytmetycznej.

* jezeli te TERMdian(V), to
ord(/)e TERMiri(V)
* jezeli te TERMdinyV), to
length(Oe TERMH,(V)
Zbior TERMdujy) jest zdefiniowany nastQpuj”co:
 \au Characterc TERMdar(V)
» jezeli te TERMIr(V), to
chr(r)e TERMd&(V)
Zbhior TERMSn,g(V) jest zdefiniowany nastQpuj”co:
* Fswing U Stringc TERMdriny(V)

* jezeli tu t22 TERMdimyV), to
head(ti), tail(rj), length(/,), (t, Atde TERMgrinyV)

Formuly
Zbior wyrazen logicznych FORM(V) jest definiowany rekursywnie w sposéb nastgpu-
jiey:
* \booiu Boolean ¢ FORM(V),
* jezeli t\, 22 TERMW(V), gdzie type {Int, Char, String}, to
tn=h,t* h, 8 * h eFORM(V)

* jezeli a,ReFORM(V), to
nota, (aandRB), (aor B) eFORM(V)

Zbior formul FORM(V) jQzyka BPJP jest podzbiorem formul rachunku kwantyfikato-
row, gdyz nie zawiera kwantyfikatoréw - jest zbiorem formul otwartych.

W tradycyjnych definicjach j*zykéw programowania skladnigq termow i formul defi-
niuje siQjako wspdlny zbiér wyrazen, a formuly s traktowane jako wyrazenia typu
logicznego. W celu zachowania zgodnosci opisu przedstawianego jgzyka z wczesniej-
szymi opisami jgzykow logiki, formuly wyrézniono jako oddzieln” grupQ napiséw.
Instrukcje
Zbidr instrukcji INSTR j*zyka BPJP jest zdefiniowany rekursywnie:

* read(x), write(x), skip e INSTR, gdzie xe V,

» jezeli te TERMWp[V) oraz xe Wy, gdzie type {int, char, string}, to

x:=te INSTR,

* jezeli aeFORM (V) oraz xe Vg, to
X :=ae INSTR,

* jezeli a e FORM(V) oraz ins\, ins2e INSTR, to
if orthen ins\ eise ins2fi e INSTR,

(ornazywa siq dozorem instrukcji)

» jezeli a gFORM(V) oraz insgINSTR, to
while ordo ins od e INSTR,
(ornazywa siq dozorem, a ins - trescig. instrukcji)

e jezeli ins\, ins2gINSTR, to ins\, ins2eINSTR.

Instrukcje read(x), write(x), skip oraz instrukcja przypisania x := / instrukcjami
elementamymi, pozostale slinstrukcjami zlozonymi.

Programy
Programem jest napis postaci:

program P
var
begin
ins
end
gdzie: PeldentyRkator jest nazw” programu, vare VAR(V) jest zbiorem deklaracji glo-
balnych zmiennych programu oraz inseINSTR jest instrukcj® zwan”tresci*programu.

Zhiodr wszystkich programow j*zyka BPJP b”dzie oznaczany przez PROGBpjp.

Przedstawione wyzej reguly skladniowe s regulami bezkontekstowymi i dlatego nie
wyrazajq. wszystkich ograniczen skladniowych. Nalezy je uzupelnic o dodatkowe re-
guly, ktore okreslaj™ poprawnosc sktadniowq. poszczegélnych elementow programu
bior*c pod uwagq kontekst, w ktdrym elementy te wystgpuj”.

Do ograniczen tych nalezy:
e nazwa programu jest rézna od nazw zmiennych deklarowanych w progra-
mie,
* zmienna moze byc zadeklarowana tylko jeden raz, co gwarantuje, ze zbiory
zmiennych réznych typéw s” rozl*czne,
» dowolna zmienna wystgpuj\ca w tresci programu musi miec deklaracjq.

Uwaga

SkladniQ kontekstow”, albo ograniczenia kontekstowe, nazywa sie czasem seman-
tyk” statyczn”,

15.4. Semantykasrir

Dziedzinami semantycznymi dla wyrazen BPJP $%
« dlawyrazen calkowitoliczbowych dziedzin® bgdzie zbior
Integere {nadmiar, J },
gdzie, przypomnijmy, symbol Loznacza wartosc niezdefiniowane,
» dlawyrazen znakowych - zbi6r
Characteru {#},
« dlawyrazen napisowych - zbior
Stringu { L},
« dla wyrazen logicznych (formul) - zbidr
Boolean u {L}.

Interpretacja bazowa symboli operacji arytmetycznych oraz symboli relacji arytme-
tycznych jest rozumiana podobnie jak w przykladzie 8.8. Modyfikacja tej interpreta-
cji wynika z wprowadzenia do dziedziny interpretacji nowej wartosci _L (niezdefi-
niowane).

W celu wyjasnienia tej modyfikacji podaje si$ interpretacjq jednej operacji dzielenia
calkowitoliczbowego div:

a gdy ae {nadmiar, niezdefiniowane}

o divb = gdy ae Integer oraz be {nadmiar, niezdefiniowane}
alb gdy ae Integer,be Integer\ {0} oraz albe. Integer
nadmiar gdy ae Integer,be Integer\ {0} oraza!bi Integer

Podana definicja reprezentuje pewien spostb postQpowania - algorytm - przy obli-
czaniu wartosci wyrazenia: najpierw jest badany pierwszy argument i jesli nie jest
liczbe, to decyduje o wartosci calego wyrazenia, w przypadku przeciwnym jest badany
drugi argument i jesli on réwniez nie jest liczbe, to decyduje o wartosci calego wyra-
zenia. Dopiero, gdy oba argumenty se liczbami, jest wykonywane dzielenie, a jego
wynik, jezeli miesci siQ w zbiorze Integer, stanowi liczbowe wartosc calego wyraze-
nia. Operacja dzielenia calkowitoliczbowego alb jest zdefmiowana nastqpujeco:

alb = ¢, gdzie b*c +r =a, oraz 0 <r<b.

Niezb$dne modyfikacje pozostalych operacji i relacji arytmetycznych pozostawia si$
Czytelnikowi do samodzielnego opracowania.

Podobnie samodzielnie, kieruj*c siQ znajomoscie dowolnie wybranego jgzyka progra-
mowania, Czytelnik, zgodnie z dalej przedstawione nieformalnie okreslone interpreta-

cj”, ustanowi formaln™ bazow” interpretacjQ symboli funkcyjnych i relacyjnych dla
pozostalych typéw wyrazen: znakowych i napisowych.

Funkcja ‘ord” ma znakowi przypisywac liczb? calkowitEt, odpowiadaj”~c” pozycji tego
znaku w ci®gu: ‘a’, ‘b’, ‘z\ ‘0’, ‘1, ‘9’. Do tego samego ci*gu odnosi siq rela-
cja liniowego porz~dku *<’. Funkcja ‘ehr’ ma byc funkcjaodwrotneido funkeji ‘ord’.

Funkcje ‘A, ‘head’, ‘tail’ oraz ‘lenght’ maj” znaczenie okreslone w rozdziale 7. Rela-
eja ‘<’jest relacj” leksykograficznego porzegiku okreslonego w rozdziale 3.

Wartosciowanie zmiennych jest funkcja:

\% Vjni V cliar VString Vbool

gdzie:
V,,,. Vin —Integeru {nadmiar, L}
\ter mKhar —» Character u {L}
Vs,ring .\/in, -» Strlng u {l}
\booi m\boo, -> Boolean v {uL}

Poniewaz virh voim) vdring Vool funkejami o rozl*cznych dziedzinach, zatem ich
mnogosciowa suma Vv jest réwniez funkcja Przez WAR(V) oznacza siQ zbior wszyst-
kich wartosciowan zbioru zmiennych V = Vinu Vderu Vatringu Vboo.

Maj~c ustalon” interpretaej? bazowsi/ wszystkich symboli funkcyjnych i relacyjnych
oraz zdefiniowane pojqcie wartoSciowania zmiennych, mozna okreslic - podobnie jak
w rozdziale 10. - interpretagj? INTWt) dla dowolnego wyrazenia te TERM(V) oraz
INTYa) dla dowolnej formuly aeFORM (V). Szczegély tej definieji pozostawia siq
Czytelnikowi do uzupelnienia.

Deklaracja zmiennych vare VAR(V) wyznacza pocz“tkowe wartosciowanie zmien-
nych:
» jezeli zmienna x jest zadeklarowana w var i jej deklaracja ma postad typ X,
gdzie type, {bool, int, char, String}, to v(x) =J,
» jeslijej deklaracja ma postac typ x :=t, to v(x) = INT\(t); nalezy zwrécic uwagQ
na to, ze t musi byd termem stalym albo formuly stal”®, co oznacza, ze interpre-
taeja INT\(t) nie zalezy od wartosciowania v.

Interpretacja instrukeji wymaga wprowadzenia nowego pojQcia - konfiguraeji pro-
gramu. Konfiguracjajest zdefiniowana jako para

<V, ins>,
gdzie ve WAR(V) jest wartosciowaniem zmiennych, a inseINSTR jest instrukej”.

Konfiguracja odnosi siq do stanu programu w danym momencie jego obliczen. Obli-
czenie programu realizuje siq przez wykonanie pewnego ci*gu akeji - elementamych

czynnosci obliczeniowych. Konfiguracje opisuji stan programu przed i po wykonaniu
akcji. Przedstawione podejscie do opisu znaczenia programu w postaci pewnego ciigu
konfiguracji towarzysz*cych wykonaniu obliczen programu nazywa siq podejsciem
operacyjnym.

Jezeli program jest w konfiguracji <v, ins>, oznacza to, ze v reprezentuje aktualne
wartosciowanie zmiennych programu, a ins jest instrukcji, ktéra pozostaje jeszcze do
wykonania przez program.

Jezeli nie pozostaje juz nie do wykonania, czyli instrukeja ins jest pusta, zapisuje si$
to wyrdznionym symbolem END - konfiguracji <v, END>.

Jezeli podezas wykonywania akcji obliczeniowej zajdi warunki uniemozliwiajice jej
wykonanie, to oznacza zerwanie obliczen programu, co bqdzie reprezentowane spe-
cjalnie wyrdznioni konfiguracji ABORT.

Zbiorem wszystkich konfiguracji jest
KONF= (WAR x (INSTRu {END})u {ABORT}

Interpretacja instrukeji polega na zdefiniowaniu relacji zmian konfiguracji. Relacjq
zmiany konfiguracjijest relacja o sygnaturze

—————— >c KONF x KONF

Je8li konfi, konf2KONF, to fakt <konfi, konf2> e ------ » b$dzie zapisywany w po-
staci

konfi--—- >konfi

Nieformalna interpretacja tego faktu jest nastgpujica: jezeli program jest w konfigura-
cji konfi, to po wykonaniu pewnej akcji obliczeniowej program znajdzie siQw konfi-
guracji konf2.

Jezeli konfi jest poczitkowi konfiguraeja programu, to obliczeniem programu jest
skonezony lub nieskonezony ciqg zmian konfiguracji. Skonczony ci®g zmian konfigu-
racji jest postaci

konfi-——- >konfi------ > - »konfi
gdzie konfi jest konfiguracji koncowi.

Koncowi moze byc jedna z konfiguracji: <v,, END> albo ABORT. Pierwsza z nich
oznacza, ze program zakonczyl si$ pomyslinie, dostarczajic wartosciowanie v, jako
koncowy wynik obliczen, druga z nich oznacza natomiast, ze program zakonczyl si$
niepomyslnie - nastgpilo zerwanie jego obliczen, i nie dostarcza zadnego wyniku kon-
cowego.

Obliczenie programu moze byc ci“giem nieskoriczonym

konfo------ >konf\ > . >konf,, >,

gdy nie istnieje konfiguracja koncowa.

Jezeli dla kazdej konfiguracji relacja------ >wyznacza co najwyzej jedn”™ now” konfi-
guracjq, czyli relacjajest funkcj®, to mamy do czynienia z programem deterministycz-
nym, w przeciwnym przypadku - z programem niedetrministycznym.

Relacja ------ >jest definiowana rekursywnie przez zbior aksjomatéw i regul, do-
brany tak, aby dla dowolnej konfiguracji bylo mozliwe wyznaczenie nastQpnej kon-
figuracji. Poniewaz zasadniczym elementem réznicuj*cym konfiguracji jest in-
strukcja, aksjomaty i reguly definiuj*ce zmiany konfiguracji s powiqgzane
z regulami skladniowymi, definiujgcymi zbior instrukcji. Z tego wzglqdu méwimy,
ze definicja relacji zmiany konfiguracji jest definicj” strukturaln”™ wzgl~*dem defini-
cji skladni instrukciji.

L~cznie formalny opis relacji zmiany konfiguracji jest okreslony przez zbior aksjoma-
tow i regul wnioskowania dotycz”cych wyprowadzania obliczenia programu.

Znaczenie instrukcji czytania read(x) jest oczywiste: instrukcja oznacza, ze z otocze-
nia programu, za pomoc” pewnego urz"dzenia, wprowadza si$ pewn” wartosc
i przypisuje sig j~ zmiennej X, i tym samym zmienia siQ aktualne wartosciowanie v.
Formalnie wyraza to aksjomat

<v,read(x) > ------ >< v[x :=¢],END >

gdzie e jest dowoln”™ wartosci” ze zbioru tego samego typu, co typ zmiennej x.

Znaczenie instrukcji pisania write(x) jest réwniez oczywiste: program przekazuje do
swego otoczenia, za pomoc” pewnego urz*dzenia, aktualn™ wartosc przypisan” zmien-
nej x. Dla instrukcji pisania write(x) mamy dwa aksjomaty:

< v, write(x) > -—---- > Vv,END > gdy v(x) * L
<v,write(x) > --—-- >ABORT gdy v(x) = J.

Pierwszy aksjomat odnosi siq do przypadku, gdy wartosc zmiennej x jest zdefiniowa-
na, a drugi - gdy taka wartosc jest niezdefiniowana, czego rezultatem jest zerwanie
obliczen instrukcji - instrukcja konczy si$ w trybie awaryjnym.

Dla instrukcji skip jest tylko jeden aksjomat
<v,skip > ------ ><v,END >

Aksjomat ten wyraza to, ze instrukcja ,,nie nie robi”. Instrukcja jest przydatna do wy-
razenia szczegoblnej postaci instrukcji warankowe;j.

Instrukcja przypisania x := t oznacza, ze wartosc wyrazenia t przypisuje siq zmien-
nej x. Oczywiscie, co bylo zaznaczone wczesniej, typ zmiennej X i wyrazenia t musz”
byc identyczne. Formalnie instrukcja charakteryzuj® dwa aksjomaty:

<V, Xi=t> - ><V[x:=INTMU/)],END > gdy INTWt) € {nadmiar, L},
<V, Xi=t> - >ABORT gdy INTUt) e {nadmiar, J.}.

Aksjomaty odnosz” si$ do dwoch mozliwych przypadkéw, gdy wartosc wyrazenia t
nalezy do zbioru wartosci danego typu lub nie nalezy.

Instrukcja warunkowa if érthen ins\ eise ins2f! oznacza, ze w zaleznosci od wartosci
wyrazenia logicznego - formuly o nalezy wykonac instrukcja ins\, gdy 6rma wartosc
true, oraz instrukcja ins2w przypadku przeciwnym. Takie znaczenie instrukcji warun-
kowej wyrazaj*dwie reguly:

<V, insx> ---—- ><v'ins\ >
_ o . gdy INT(a) =true
<v,if a then inst eise ins2 fi > ------ ><v'ins[>
<V, ins2 > ——-- ><V,ins2>
RO gdy INTV(a) = false
<v,if a then insi eise ins2 fi > ---—--- ><Vv'ins2>

Instrukcja iteracji while a do ins od ma siq wykonywad w taki sposob, ze jesli war-
tosc wyrazenia logicznego a jest falszem, to instrukcja siQ konczy, w przypadku
przeciwnym powinna byc wykonana instrukcja ins, po czym ponownie wylicza si$
wyrazenie a i - w zaleznosci od wyliczonej wartosci - powtarza siq opisane post$-
powanie. Instrukcja charakteryzuj” aksjomat i regula:

<v,while a do ins od > ----- »<Vv,END > gdy INTWa) =false

<V,ins > ----- >V ins' >

dy INT\or) = true
<v,while a do ins od > ------ >< while a do ins od > i von

Warto zwrdécic uwagQ na to, ze nowa konfiguracja
<Vv', ins'; while a do ins od>,
do ktdrej nastopuje przejscie, jest bardziej zlozona niz konfiguracja startowa

<v, while ardo ins od>.

Wynika to z faktu, ze instrukcja

ins'; while ordo ins od

reprezentuje sekwencyjne zlozenie instrukcji ins', ktéra reprezentuje czgsc instrukcji
ins pozostaj”*cej do wykonania oraz instrukcji while ardo ins od reprezentuj™cej ewen-
tualne kolejne powtdrzenia pqtli. W szczeg6lnym przypadku, gdy ins' = END, regula
przyjmuje postac

<v,ins >----- ><Vv' END >

dy INTMa) = true
<v,whilea doinsod > --—--- ><v,whilea doinsod > ey va)

Ostatnie reguly dotyczq. sekwencyjnego zlozenia instrukcji: insu ins2.

<V,insx > -—-- ><v, ins[> .
o _ [_ gdy ins[£ ABORT
<V, Insx;ins2 >--—-- >< V', ins'x;ins2 >

<V,insx > ------ >v, END > .
o _ gdy ins[* ABORT
<V,insx;ins2 > ----- »<V,ins2 >

<V,insx > ----- SABORT
<v,insx;ins2 > ------ SABORT

Sekwencyjne ziozenie oznacza, ze najpierw ma byc wykonana instrukcja insi, na-
stgjnie - po jej zakonczeniu - instrukcja ins2- Jezeli instrukcja insxnie wykona si?
w calosci, ale podczas wykonywania nie nasteipi zerwanie obliczen, to jej czgsc
ins[, ktora pozostaje jeszcze do wykonania, jest sekwencyjnie zlozona z instrukcja

ins2 Druga regula odnosi si? do szczegdlnego przypadku, gdy ins[= END. Jezeli

w trakcie wykonywania tej instrukcji nast"pi zerwanie obliczenia, to oznacza ze-
rwanie calych obliczen.

Semantyka operacyjna programu P:

program P
var
begin
ins
end

jest okreslona przezjego obliczenie (skonczone b”dz nieskonczone)

Comp(P) = <v0, inso>------ ><vls insx>------ > - >V,,, InS,,>------ >..

rozpoczqte w konfiguracji pocz~tkowej <v0, inso>, gdzie: vO jest wartosciowaniem
pocztkowym wyznaczonym przez deklaracjg zmiennych var, a insO=ins jest instruk-
cjXpoczgtkow”, ktor*stanowi tresc programu.

Nalezy zauwazyc, ze program moze miec wiele obliczen. Powodem tego jest instruk-
cja ‘read’, ktéra powoduje, ze podczas wykonywania instrukcji, w trakcie realizacji
calego programu, zmienne programu mog” otrzymywad wartosciowania zalezne od
wczytywanych wartosci. To, jakie s"to wartosci, zalezy od otoczenia programu.

Jezeli natomiast w programie nie ma tej instrukcji, to program ma jedno obliczenie.
Obliczenie nieskonczone albo skonczone osi*gni“ciem koncowej konfiguracji
ABORT oznacza niepoprawne zachowanie programu w tym sensie, ze jego obliczenie
nie dostarcza wartosciowych wynikdéw. Wartosciowe tylko te obliczenia, ktore
skonczone osiqgniQciem koncowej konfiguracji postaci <v, END>. Wartosciowanie v
reprezentuje wyniki koncowe obliczenia programu. Nalezy zwrocic uwagq, ze jezeli
obliczenie ma tak” postac, nie stanowi to gwarancji, ze dostarczone wyniki ~ zgodne
z wynikami oczekiwanymi. Inaczej: fakt, ze program liczy, nie oznacza, ze jest pro-
gramem poprawnym.

Ponizej rozpatruje siQprzyklady obliczen prostych programoéw.

Przyklad 15.1
I Program mnozenie czyta dwie liczby i pisze wynik ich mnozenia: |

program mnozenie
intx;
inty
begin
reed(x);
reed(y);
X =X*y;
write(X)
end
Obliczenie programu przebiega nastQpuj”co:
Cow/?(mnozenie) =
<vo, read(x); read(y); x :=Xx *y; write(x)>------ >
<vi, read(y); X := X *y; write(x)>------ >

<V2 X =X *y; write(X)>------ >
<v3 write(x)>------ >
CV4, END>
gdzie:
WartoSciowanie pocz~tkowe wo jest wyznaczone przez deklaracjQ zmien-
nych:
vax) =1,

vay)=1.

Zaktadaj™c, ze 10jest pierwsz*wczytan”liczb”, M = vO[x := 10], czyli:

v,(x) = 10,
vi(y) =L
Zakladajc, ze 2jest drug”wczytan”liczb” v2= vi[y := 2], czyli:
vx)= 10,
vay) = 2.

Dalsze wartosciowania nie zmieniajXsiQ, czyli v2= v3= v4.

W przypadku, gdyby wczytane liczby byly takie, ze ich iloczyn wykraczalby poza
zakres dla liczb calkowitych, wowczas obliczenie mialoby postac:

Comp(mnozenie) =
<vo, read(x); read(y); X :=x *y; write(x)>------ >
<vi, read(y); x :=x *y; write(x)>------ >
<V2 X =X *y; write(x)>----—-- >
ABORT I

Semantyka operacyjna przedstawia znaczenie programu w postaci ci*gu zmian konfi-
guracji. Czasem jest wygodniejsze wyrazanie znaczenia programu P w postaci relacji
o sygnaturze Sem(P) ¢ WAR2 RelacjQ t$ mozna zdefiniowac na podstawie semantyki
operacyjnej w sposéb nastopuj’cy:

Sem(P) = {<v0 v>| <v0, ins0>——> <v, END>},

gdzie: ——>jest zwrotnym, tranzytywnym domkniqciem relacji zmian konfiguracji
—————— > Wartosciowanie pocz”tkowe voreprezentuje dane pocztkowe programu, na-
tomiast v- dane koncowe programu odpowiadajgce danym pocz~tkowym.

15.5. Jfzykpupr - procedury nierekursywne

Skladnia

Rozszerzenie j*zyka od strony leksykalnej polega na doleiczeniu do zbioru slow klu-
czowych jgzyka BPJP zbioru nowych slow {procedure, in, out}.

Zasadniczymi elementami rozszerzenia skladni s™ nowa kategoria napisow - definicje
procedur, oraz nowy rodzaj instrukcji - wywolanie procedury. Wprowadzenie tych
elementow modyfikuje oczywiscie zbidr instrukcji i postac programow.

Definicja procedury o nazwie p, gdzie pe ldentyfikator, ma postac:

procedure p (lista wejsciowych i wyjsciowych parametréwformalnych)
varp

begin
insp

end

Pierwsza linia tekstu okresla sygnaturQ procedury, druga - jest deklaracjq. jej zmien-
nych lokalnych, a trzecia okresla jej tresc. Struktura definicji procedury jest podobna
do struktury definicji programu w jgzyku BPJP.

Lista parametréowformalnych jest ciggiem, byc moze pustym, postaci
typ\ kieriparu ... ; typnkiernpar,,

gdzie:
typiE {bool, int, char, string} jest typem parametru par, e Identyfikator, i=1 , n,
kierR {in, out} oznacza kierunek komunikacji parametru parf. in oznacza, ze dany
parametr jest parametrem wejsciowym procedury, a out - ze parametrem wyjscio-
wym,
varpjest deklaracjX zmiennych lokalnych procedury, varpe VAR(V),
inspjest instrukcji- tresci®. procedury; zakiada si? przy tym, ze w tresci procedury
nie ma instrukcji wywolania tej samej czy innej procedury, czyli inspeINSTREBERPR,
gdzie INSTRBpjpjest zbiorem instrukcji jqzyka BPJP.

Zbior definicji procedur, oznaczany przez proc, b*dzie zapisywany w postaci listy
pojedynczych definicji oddzielanych srednikami, na przyklad:

procedure kwadrat(int in x; int out y)
begin
y = X*X
end;
procedure suma(intin X; intiny; intout z)
begin
Z:=x+y
end
Rodzina zbioréw definicji procedur b~dzie oznaczana przez PROC.

Zbidr wyrazen jgzyka PJP jest taki sam jak j*zyka BPJP. Zbior instrukcji jgzyka PJP
bgdzie oznaczany przez INSTRPP. Stanowi on rozszerzenie zbioru instrukcji jQzyka
BPJP, oznaczanego INSTRBPP, ktére wynika z dol*czenia nowej instrukciji.

Niech procedura ma sygnaturQ

p(typ\ inpar\\ ... ; t,inparn\ typnt outparnt\ ... ; typrimoutparmnj,
w ktorej - dla uproszczenia notacji - zalozono, ze pierwsza grupa parametréw sta-
nowi parametry wejsciowe, a druga - parametry wyjsciowe procedury. Instrukcja
wywolania procedury ma wowczas postac

p(eu .., e,,yh ..,ym

gdzie:
e\,...,, &, 3{ wyrazeniami takiego samego typu jak parametry paru ...,par,,,
yu¥,,, S"zmiennymi takiego samego typu jak parametry par,,H, ...,parmm

Listg et, ..., e,,,yt, ...,ymnazywa siq listiparametrow aktualnych.

PrzyjQty mechanizm komunikacji pomi~dzy procedura a programem jest jednym
z kilku spotykanych we wspdélczesnych jgzykach programowania.

Parametry wejsciowe sluzi do komunikacji nazywanej komunikacji przez wartosd.
Oznacza to, ze wartosc reprezentowana przez parametr aktualny e, - wartosc wyraze-
nia INTYe-) w biez*cym wartosciowaniu v zmiennych programu - jest przypisywana
odpowiadajicemu mu parametrowi formalnemuparhdlai=1 , n.

Parametry wyjsciowe shizi do komunikacji przez wartosci, ale w kierunku przeciw-
nym - od procedury do programu. Oznacza to, ze wartosc reprezentowana przez para-
metr formalny parnd czyli jego wartosciowanie, w momencie zakonczenia procedury
jest przypisywana odpowiadajicemu mu parametrowi aktualnemuydtdlaj= 1 , m.

Nalezy dodad, ze procedura moze korzystac z dostqpu do zmiennych globalnych progra-
mu, co oznacza dodatkowy sposéb wymiany danych pomiqdzy procedury a programem.

Skladnia programow jQzyka PJP jest okreslona nastgmjico: jezeli Peldentyfikator
jest nazwi programu, procePROC jest zbiorem defmicji procedur, vare VAR(V) jest
zbiorem deklaracji zmiennych, inseINSTRPP, to napis postaci

program P
var
proc
begin
ins
end
jest programem jQzyka PJP.

Zbidr wszystkich programéw jgzyka PJP bqdzie oznaczany przez PROGPP. Oczywi-
scie PROGbpjp c PROGpjp.

Podobnie jak poprzednio, przy defmicji jgzyka BPJP, przedstawione wyzej reguty
skladniowe wymagaji uzupelnienia o reguly ograniczen kontekstowych. Dodatkowi
reguli bgdzie tu wymdg, aby parametry procedury oraz jej zmienne lokalne byly uni-
katowe i rozne od zmiennych i parametréw innych procedur oraz od zmiennych glo-
balnych - zmiennych deklarowanych w catym programie.

Semantyka

Konsekwencji wprowadzenia procedur jest wprowadzenie nowych konfiguracji po-
mocniczych zwi”zanych z opisem wywolania i zakonczenia procedury. Wywolaniu
i zakonczeniu procedury bqdi odpowiadac dwa nowe aksjomaty.

Dla uproszczenia zaklada siq, ze procedura ma co najwyzej jeden wejsciowy i co naj-
wyzej jeden wyjsciowy parametr formalny, dlatego bqdi rozpatrywane instrukcje wy-

wotania procedury postaci p(e, y), p(e), p(y), gdzie wyrazenie e jest pierwszym para-
metrem aktualnym, a zmiennay jest drugim parametrem aktualnym.

Wywolanie procedury p(e, y), ktora ma definicjs
p(typi inpary, typ2outpar?)
varp
begin
insp
end
b/dzie opisane nast"puj*cym aksjomatem wywolania procedury nierekursywnej
<v,p{e,y) >-—- ><vu vp,beginp insp end"” >
gdzie vpjest wartosciowaniem parametréw i zmiennych lokalnych procedury p.

Na mocy przyjgtego zalozenia o unikalnosci parametrow i zmiennych lokalnych,
funkcje v oraz vp maj” rozl*czne dziedziny, a wi?c ich suma mnogosciowa pozostaje
funkcj®,

Wartosciowanie poczqtkowe vpjest okreslone nastQpuj”co:
e vp(par\) = INTWe),
* vp(pard =1,
» jezeli zmienna x jest zadeklarowana w varp i jej deklaracja ma postac typ x,
gdzie type, {bool, int, char, string}, to vp(x) ==,
» jezeli zmiennax jest zadeklarowana w varpijej deklaracja ma postac typ x :=t,
to vp(x) = INTUY).

Aksjomat wyraza fakt, ze wywolanie procedury, na okres jej wykonywania, rozszerza
zbidr zmiennych programu. Wprowadzenie bloku pomocniczego, wyznaczonego slo-
wami beginp oraz end'] shizy do zaznaczenia tego fragmentu instrukcji programu,
ktory nalezy do procedury p. We fragmencie tym obowi”zuje rozszerzony zbior war-
tosciowanych parametréw i zmiennych.

Z zakonczeniem wykonywania procedury nierekursywnej wiqze siq aksjomat postaci

<vu vp,begin END end"; ins >------ >< v, ins >

gdzie v,(y) =v[y:= vp(par2)].

Regula opisuje przekazanie wartosci obliczonej przez procedury do tej czQsci progra-
mu, z ktorej nast"pilo jej wywolanie. Wynik obliczen jest reprezentowany przez pa-
rametr formalny par2 Wartosciowanie tego parametru zostaje przypisane zmiennej y,
ktorajest odpowiadaj*cym mu parametrem aktualnym.

Przedstawiane aksjomaty rozszerzaj*definicjQ relacji zmian konfiguraciji.

Obliczenie programu PJP jest definiowane tak samo jak programu BPJP, z tym ze jest
oparte na rozszerzonej relacji zmian konfiguracji.

Przyklad 15.2
I Niech dana bqdzie modyfikacja programu z poprzedniego przykladu:
program mnozenie
int a;
intb;
inte;
procedure razy(int in x; intiny, int out z)
begin
zZ=X*y

begin
read(a);
read(b);
razy(a, b, c);
write(c)
end
Obliczenie programu przebiega nastQpuj”co:
Compimnozenie) =
<v(, read(a); read(b); razy(a, b, c); write(c)>------ >
<vi, read(b); razy(a, b, ¢); write(c)>------ »
<v2 razy(a, b, c); write(c)>------ >
A3 beginrayz := x *y endray, write(c)>------ >

<5 write(c)>------ »
<v6, END>

Wartosciowanie pocz”tkowe v0jest wyznaczone przez deklaracjq zmiennych:
v0(a) —L»
vo(b)—U
OREE

Zaldadaj”c, ze 10jest pierwsz” wczytan” liczb” v, = v0[a := 10], czyli:
vi(a) = 10,
vi(b) = -L,
vi(c) = 1

Zakladaj"P, ze 2 jest drug”. wczytan”. liczb®, v2= Vi[b := 2], czyli:
vZa) =10,
vAb) - 2,
vAc)" 1=

Wywolanie procedury razy prowadzi do wartosciowania v3= v2u viray, gdzie:

v, i@y(x) = va),
v.i@a(y) = v2Ab),
v,r@(z) = J..

Wykonanie tresci procedury prowadzi do wartosciowania v4= v2u vaazy, gdzie:
vaa(x) = va),
\=(y) = vAb),
vaay(z)= INTW(x* y)=20.

Wyijscie z procedury i powrdt do gléwnego programu prowadzi do wartosciowania
v5= VA[c := v2a(z)], czyli:

via) =10,
vib) = 2,
v5(c) = 20.

I Oczywiscie v5= V6. i

15.6. J$zyk sp - procedury rekursywne

Kolejne, ostatnie rozszerzenie jgzyka nie wprowadza nowych jednostek leksykalnych.
Zmiana dotyczy skladni i polega tylko na eliminacji zalozenia, ze w tresci procedur
nie dopuszcza siq wywofywania innych procedur. W szczegdlnosci w tresci danej
procedury moze byc wywolanie tej samej procedury.

Zmiana skladniowa poci*ga za sob”modyfikacj? relacji zmian konfiguracji, a doklad-
niej - modyfikacjq samej konfiguracji. Potrzeba modyfikacji wigze si? z tym, ze wy-
wolanie procedury powoduje rozszerzenie zbioru wartosciowanych parametrow
i zmiennych. W przypadku, gdy w trakcie wykonywania procedury nastgpuje ponow-
ne wywolanie tej samej procedury, powstaje koniecznosc zapewnienia, by parametry
i zmienne lokalne kolejnego wywolania byly odrézniane od parametréw i poprzednie-
go wywolania tej procedury. W tym celu, przy kolejnym wywoianiu procedury, nalezy
dokonac odpowiedniego przemianowania parametréw i zmiennych procedury. Me-
chanizm stosowanego dalej przemianowania polega na tym, ze nazwa kazdego para-
metru i zmiennej lokalnej procedury otrzymuje dodatkowy indeks - liczb$, ktora
zwi™ksza siq o jeden przy kazdym kolejnym wywoianiu procedury.
Wywolanie proceduryp(e,y) o definicji
p(typi inparl typ2outpar?)
varp
begin
insp
end

gdzie tym razem varp moze zawierac instrukcje wywolania procedur, b”~dzie opisane
dwoma aksjomatami wywolania procedury rekursywnej.

Pierwszy aksjomat, dotycz”cy pierwszego wywolania procedury p, stanowi uog6lnie-
nie poprzedniego aksjomatu wywolania procedury nierekursywnej

<v,p{e,y) >--—-- > vu vp®,beginp0 ins endp™ >
gdzie vp®jest wartosciowaniem parametréw i zmiennych lokalnych procedury p.

Wprowadzony blék, okreslony symbolami beginp0 ... endp® oznacza, ze parametry
formalne i zmienne lokalne procedury p s” indeksowane liczbg. 0, b$dzie to zaznacza-
ne w postaci gdmego indeksu dodanego do kazdego parametru i zmiennej lokalnej.

Drugi aksjomat dotyczy wywolania procedury p, ktére zachodzi w trakcie wykonywa-
nia uprzedniego, jeszcze niezakonczonego wywolania tej procedury.

<VUVP°uU...u vV p,i,
beginp®...beginpkp(e,y)\insk endp*...ins0 endp0>

<vvvp°v...uvpkuvpM\
beginp®...\)tg\npkbtginpk*msp tnApkHinsktnApk ...ins0 endp,0>

Wartosciowanie vpkH jest okreslone podobnie jak bylo okreslone vp, mianowicie:
- vpMi(pari)=IN T "™ ~(e),
» vpkH(par?d =-L,
» jezeli zmienna x jest zadeklarowana w varp i jej deklaracja ma postac typ x,
gdzie typs {bool, int, char, string}, to vpMI(x) =J ,
jezeli zmienna x jest zadeklarowana w varpijej deklaracja ma postac typ x :=t,
to vpkHiyy) = INTyy m (0-

Z zakonczeniem wykonywania procedury rekurencyjnej wi®z” sig rowniez dwa aksjoma-

ty. Pierwszy dotyczy ostatecznego wyjscia z procedury i powrotu do gléwnej cz”sci pro-
gramu:

<vu vp0,begmpOENDendp”; ins > ------ ><vy,,ins >
gdzie v,(y) =v[y:= vp”(par2)].

Drugi aksjomat dotyczy wyjscia z (k+ I)-zagniezdzonego wykonania procedury
i powrotu do £-zagniezdzonego wykonania procedury:

<vu vp©u ...u vpku vpMlI,
beginI0... beginp*... beginp™END endp*H//wiendp*... insOendp,0>

V, U VP U ..U VpK,
beginp,®...beginp,i... insk endp,i... insOendp,0>

gdzie (v, uv'10u ... u vpk)(y) =v [y :=vpkH(par2)].

Obliczenie programu JP jest definiowane podobnie jak programu PJP, z tym ze
uwzglgdnia kolejne rozszerzenie relacji zmian konfiguraciji.

Podsumowuj”c kolejne rozszerzenia jgzykéw programowania, latwo stwierdzic, ze
PROG rpip cPROGpip <PROG]p.

Przyklad 15.3

A Niech bqgdzie dany program pr wykorzystuj*cy procedurQ rekursywnego obliczania!
silni. Program ma dwie zmienne globalne, a procedura - dwa parametry formalne
i jedimBt zmienna lokalnea,

program pr
int a;
intb
procedure silnia(int in n; int out s)
int sl
begin
if n=0then s := leise silnia(n- 1, sl); s=n *sl| fl
end
begin
read(a);
silnia(a, b);
write(b)

Wartosciowanie vOw poczqtkowej konfiguracji programu jest okreslone nast”puj”co:
V(@) = £,
vo(b) = 1.
Pomijajc pierwsze zmiany konfiguracji, rozpatrzmy tQ, ktéra nastqpuje po wyko-
naniu instrukcji czytania. Zalozmy dodatkowo, ze wczytan”™ wartosci®jest liczba 2.
Program znajdzie siq w konfiguraciji:
<v2, silnia(a, b); write(b)>
gdzie:
V@) = 2,
vb) =1.
Zgodnie z aksjomatem wywolania procedury rekursywnej nastpi przejscie do kon-
figuraciji:

<v U vsnao,

begmsilna®
if n°= 0 then s° ;= leise silnia(n®- 1, sl°); s°=n° *sl° fi
endsina® ;
write(b) >
gdzie:
vsinid0(n0) = 2,
vsilnia,0(s0) = L)

\&mE0(s10) = 1.
Kolejne przejscie, bez zmiany wartosciowania, nast*pi do konfiguracji:

< v u YV dinag,
beginsirid®
silnia(n® - 1, sl°); s°=n° *sl°
endsilna’ ;
write(b) >

Ponowne zastosowanie aksjomatu wywolania procedury9 rekurencyjnej prowadzi
do konfiguracji:

<vuvsing® u v dinal,

beginsinald

begingina“
if n1=0 then s1:= leise silnia(n* - 1,s1"); sl=nl*sl1fi

endsina” ;
s°=n° *sl°

endsilnd0;

write(b) >

gdzie:
valnain) =1,
valngy(s) =J.)
YSiHaA(s1') = J_

Bez zmiany wartosciowania nastgpuje przejscie do konfiguraciji

beginsilna°®
beginginal
silnia(n“- 1,s1); sl=nl*sll
endsilniail;
s®=n° *s|°
endsina®;
write(b) >

Kolejne, ostatnie zastosowanie aksjomatu wywolania procedury rekursywnej pro-
wadzi do konfiguracji:
<v U vdlng® U valngJ vsilna2,
begin¥a0
begin}™@1
beginda2
if n2= 0 then s2:= 1eise silnia(n2- 1,s12); s2= n2* sl12fj;
endsﬂnla,z.
sl=nl sl
enddlna* ;
s°=n° *gl°
endsdina® ;
write(b) >

gdzie:
\4lnaAn2) = 0,

vsilnia2(s2) = _U
vSilnia,2(s 12) = J_

Kolejne przejscie, bez zmiany wartosciowania, nastqpuje do konfiguraciji:

<v u vdlnd°u valnd1 vsilnd?2,
beginglna®
beginsinal
beginsina?
s2:=1
endsina?;
sl=nl*sll
endsing”’ ;
s°=n° *sl°
endsina’ ;
write(b) >
Po osieigniQciu tej konfiguracji b~dzie nast®powac seria powrotéw z zagniezdzo-
nych wywolan, kolejno do:
<V U v«l"ia,0u vsilnia,lu ~silnia,2”
beginsina®
beginsilnia
begingna2
END
endslna2;
sl=nl*sll
end5"*1;

s°=n° *sl°
endslna® ;
write(b) >
gdzie:
Visind2(n2) = O,
Mslng(s2) = 1,
v,9na@sl?2 =1.
NastQpnie do konfiguracji:
<vuvsing®uv,snal
beginglna®
beginsilnia
sl=nl*sl*
end51*1;
s°=n°*sl°
endslnald;
write(b) >
gdzie:
viilnai(n = i,
v, dlnigys,) =11
v, ilnial(sl J= 1.
I, podobnie, dalej do:
<v U vidlna®U vaAind',
beginsdlna0
beginsina
END
enddnal ;
s°=n° *gl°
enddina® ;
write(b) >
gdzie:
vainay)= 1,
vaAlndY(s) = 1,
vaAlndlsl,)=1.
Nastopna zmiana konfiguracji daje:
<vuv klnd®,
begmadilna®
s°=n° *sl°
endsina® ;
write(b) >

gdzie:
v, ilnav) =2,
Visilnia,0(s0) = _Lj
v,sinad(slg=1.

StEid otrzymuje siq konfiguracjQ:

< Vv u/nW,
beginsinad
END
endsilnM;
write(b) >
gdzie:

Visilnia.0(n 0) = 2>

Vv, (S0) = i,
v, silnied(s1Q=1.
Po ostatecznym wyjsciu z procedury przechodzi siq do konfiguracji <v, write(b) >,
gdzie:
vi(a) = 2,
v,(b) = 2.
I poczym osigga siQkonfiguracji koncow” <v, END>.

Cwiczenia

1. Przedstawic gramatyki bezkontekstowe dla omawianych j*zykéw BPJP, PJP oraz
PJP.
2. Rozszerzydj*zyk BPJP o nowe typy danych:
a) typ wyliczeniowy,
b) tablicowy,
c) rekordowy.
3. Przedstawid semantykQ operacyjn”nowych instrukcji pqtli:

a) fori:=l ton doinsod
b) repeat ins until orend

4. Przedstawic obliczenie programu:

program sk
intn;
ints:=0;

intk:=1

begin
read(n);
whilek<ndos:=s +k*k;k:=k+1 od;
write(s)

end

Okreslic relacjq, ktora okresla zwigzek pomiqdzy danymi czytanymi przez pro-
gram a danymi pisanymi przez program:
program qq
intn;
intp := 1,
begin
read(n);
P" 0
whilen* 0dop:=p*n;n:=n- lod;
write(p)
end

Danajest definicja procedury:

procedure sum(int in n; int out s)
begin

ifn=0thens:=0eise sum(n- 1, sl); s:=s+ sl fi
end

Przedstawic obliczenia dla wywolan procedury sum:
sum(l, x), sum(2, y), sum(3, z).

Dana j est definicja procedury:
procedure pr(int in m; int in n; int out k)
intp :=0
begin
k:=0;
whilen<2*mdok:=k+m;n:=n+ 1lod
end

Okreslic relacjq pomigdzy formalnymi parametrami wejsciowymi i parametrami
wyjsciowymi. Okreslic tq relacjq, gdy warunek w instrukcji iteracji ma postac:
n*2%*m.

16. Logika programow Hoare’a

16.1. Programy ze specyfikacja

Program jest zapisem algorytmu w postaci jednoznacznie interpretowanej przez kom-
puter. Interpretacja ta wyraza siq przez obliczenie, ktore dla ustalonego zestawu da-
nych wejSciowych dostarcza pewnego zestawu danych wyjsciowych. Od programu
oczekuje sig, ze jest on poprawny, to znaczy ze dostarczane wyniki jego obliczen s®
zgodne z oczekiwanymi. Jak okreslic, jakie s™ oczekiwania od programu, czyli ,,co
program ma liczyc”, i jak stwierdzac, czy dany program spehiia te oczekiwania, czy
,»liczy to, co nalezy” - oto dwa zasadnicze pytania, na ktére musi odpowiadac progra-
mista.

OkreSlenie tego - co program ma liczyc - nazywa siq specyfikacja programu. Specy-
fikacja moze byc wyrazana w rdzny sposdb. Najprostsz” form% jest specyfikacja
slowna, wyrazona w jgzyku naturalnym, na przyklad:

Program ma obliczac pierwiastek z danej liczby.
Program ma obliczac najwigkszy wspolny podzielnik dwéch liczb.
Program ma mnozyc dwie macierze.

Z kazdym przykladem wi”z” si$ pewne niejasnosci, na przyklad:

Diajakich liczb izjakq dokladnoscig ma byc obliczony pierwiastek?
Diajakich liczb ma byc obliczony najwigkszy wspdlny podzielnik?
Jakie majq byc rozmiary ijakiego typu majqg byc elementy mnozonych macierzy?

Jednym ze sposobdw precyzyjnego sformulowania specyfikacji programoéw jest
uzycie pary formul, nazywanych warunkiem wstgpnym i warunkiem koncowym.
Warunek wstQpny i warunek koncowy b$d” oznaczane przez pre i post. S% one
formulami ustalonego j*zyka rachunku kwantyfikatoréw. J*zyk ten bqgdzie ozna-
czany przez SPEC. Para warunkdéw <pre, post> stanowi specyfikacja programu,
czyli sformulowanie wlasnosci oczekiwanych od programu. Specyfikacja taka po-
winna byc sformulowana przed powstaniem programu, po to, aby programista wie-
dzial, co ma napisac, natomiast - gdy program juz powstanie - pojawia si$ pytanie:
czy program jest zgodny z t" specyfikacja Inaczej: czy program jest poprawny
wzglgdem specyfikaciji.

Na dalsze potrzeby zaklada siQ, ze jako jgzyk programowania bqdzie przyj*ty j$zyk
JP, zdefiniowany w rozdziale poprzednim.

Trojka postaci

{pre} prog {post}

gdzie pre, poste SPEC, progePRO G Jbqdzie nazywana programem ze specyfikacji.
Poniewaz program sklada si? z instrukcji, kazda instrukcja sldadowa ins moze miec
wlasni specyfikacji, ktéra w pewien spostb wynika ze specyfikacji calego programu.
Mozna zatem rozpatrywad trojki:

{preirs} ins {postirs}
wyrazajoce czQaciowi poprawnosc instrukcji inse INSTRIJPwzglgdem warunkéw preirs
i postirs.

Programowi ze specyfikacji przypisuje siq jedno z dwdch znaczen, nazywane - od-
powiednio - cz”sciowi i calkowiti poprawnoscii programu. Méwi siq tez inaczej, ze
program jest cz”sciowo lub calkowicie zgodny ze swoji specyfikacji

Definicja 16.1
Czqgsciowa poprawnosc programu prog wzglgdem pary warunkdw pre ipost ozna-
cza zachodzenie nastgpujicej wlasnosci:

Dia kazdego wartosciowania poczitkowego v0zmiennych programu spelniajicego
warunek wstgpny pre, jeSli program prog zakonczy siQ pomyslnie (nie ulegnie ze-
rwaniu i nie zapQtli sii), to wartosciowanie koncowe v* zmiennych programu spei-
nia warunek koncowy post.

CzQsciowa poprawnosc programu prog oznacza, ze jesli INT\§(pre) = P, to jesli tylko
jego obliczenie ma postad

Compiprog) = <v0, insG>------ »<Vi, iNs\>------ > >vk, END>

to INTM(post) = P.

Nalezy zwrdcid uwagq, ze z podanej definicji czQsciowej poprawnoSci wynika, ze
program, ktdrego obliczenie ulegnie zerwaniu lub si$ nie zakonczy, jest cz”scio-
wo poprawny wzglgdem dowolnej specyfikacji! Dowolny program prog jest row-
niez czgsciowo poprawny wzglgqdem kazdej specyfikacji, w ktdrej pre = false lub
post =true.

Definicja 16.2

Calkowita poprawnosc programu prog wzglgdem pary warunkdw pre ipost ozna-
cza zachodzenie nastipujicej wlasnosci:

Dia kazdego wartosciowania pocz*tkowego v0zmiennych programu spelniajicego
warunek wstqgpny pre, program prog konczy si$ pomyslnie (nie ulega zerwaniu
i nie p$tli si$), a wartosciowanie koncowe vk zmiennych programu spelnia warunek
koncowy post.

Oznaczato, zejesliINT {pre) =P, to obliczenie programu siq konczy, czyli

Compiprog) = <v0, insg>------ »<Vi, ins\>------ » ... ———--- ><v*, END>
oraz INT\k{post) = P.

Calkowita poprawnosc programu oznacza gwarancjQ, ze obliczenie programu zawsze
sig konczy, jesli tylko wartosciowanie pocz*tkowe zmiennych programu spelnia wa-
runek wstpny pre.

Calkowita poprawnosc programu poci®ga, oczywiscie, poprawnosc czQsciow” wzglg-
dem danej specyfikaciji.

Nasuwa si$ pytanie o zwi*zek pomi~dzy j*zykiem specyfikacji SPEC a jqzykiem pro-
gramowania, bowiem czQSci®jQzyka JP jest zbior formul FORM{V).

Zbior formul FORM{V) jgzyka programowania JP nie zawiera kwantyfikatoréw.
Zbidr ten jest podzbiorem formul j*zyka rachunku kwantyfikatoréw, oznaczanego
tutaj przez JRK{FJP, Pjp, V), nad sygnatur” SiglP= <FJP, PjP>, gdzie FJPi PJPs" zbio-
rami symboli funkcyjnych i predykatywnych jQzyka programowania JP oraz zbiorem
zmiennych V, zatem FORM{V) ¢ JRK{FjP,PJP, V).

J$zyk specyfikacji SPEC jest réwniez zbiorem formul j*zyka rachunku kwantyfika-
toréw srK {Fspec, P spec, V) nad pewm®*. sygnatur® SigSPEC = <F spec, P spec> | ZbiO-
rem zmiennych V. W szczegdlnym przypadku jako j$zyk specyfikacji SPEC moze
byc wybrany jgzyk JRK{FJP, PJP, V). Dia ulatwienia dalszych rozwazan przyjmuje
sig zalozenie, ze jQzyk specyfikacji SPEC jest co najmniej tak bogaty jak jgzyk
JRK{FJP, PJP, V).

16.2. System dowodzenia poprawnosci cz/sciowej

Budowa poprawnych programdw opiera siq na dwdch podejsciach: podejsciu kon-
struktywnym i weryfikacyjnym. Podejscie konstruktywne polega na takim ci®gu prze-
ksztalcen specyfikacji programu w konstrukcje programowe, w ktorym kazde prze-
ksztalcenie - na mocy konstrukcji - jest poprawne, zapewniaj*c zachowanie
zgodnosci ze specyfikacji Takie podejscie jest przedstawiane na przyklad w ksi*z-
kach: [Dijkstra 1978] i [Cook 2005], W tym rozdziale omawia si$ tylko drugie podej-
scie, ktore polega na weryfikacji (badaniu poprawnosci) gotowego programu wzglQ-
dem specyfikaciji.

Jeden ze sposobow badania poprawnosci programu opiera sig na systemie wniosko-
wania Hoare’a. Jak kazdy System wnioskowania sklada si$ on z zestawu aksjomatow
i regul, ktorych elementami s” instrukcje ze specyfikacjami. Przedstawiony nizej Sys-
tem odnosi sig do wnioskowania o czQSciowej poprawnosci programow w j~zyku
BPJP.

Aksjomat instrukcji skip
{pre} skip {pre}

Aksjomat wyraza to, ze instrukcja nie zmienia wartosciowana zmiennych programu:
jezeli warunek pre jest speiniony przed wykonaniem instrukcji, to jest, oczywiscie,
speiniony réwniez po wykonaniu tej instrukcji.

Aksjomat instrukcji pisania
{pre} write(x) {pre}

Instrukcja pisania rowniez nie zmienia wartosciowania zmiennych programu, zatem
jest w tym sensie rownowazna instrukcji skip. Instrukcja daje, oczywiscie, dodatkowy
efekt, ktérym jest przekazanie wartosci zmiennej x do otoczenia programu, za posred-
nictwem pewnego urz”dzenia piszcego.

Aksjomat instrukcji przypisania

{post[x ::=;]} x =t {post} gdzie te TERM(V)
Rezultatem instrukcji przypisania jest zmiana wartosciowania zmiennej x. Jesli v jest
wartosciowaniem przed wykonaniem instrukcji, to po jej wykonaniu nowym warto-

sciowaniem jest v[x := INTVt)]. Jesli po zakonczeniu instrukcji jest speiniony warunek
post, czyli INTxant (({post) = P, to INTWpost[x ::=/] =P - zob. lemat 11.2.

Aksjomat instrukcji czytania
{post[x ::=i]} read(x) {post} gdzie te TERM{0)

Instrukcja czytania daje wynik podobny do instrukcji przypisania, ale istotne jest to, ze
wartosc przypisana zmiennej X nie jest z gory okreslona. Moze to byc dowolna war-
tosc ze zbioru wartosci odpowiadaj*cych typowi zmiennej x. Instrukcja, z punktu wi-
dzenia wykonawcy programu, jest niedeterministyczna, gdyz wartosc przypisana
zmiennej zalezy od otoczenia programu. Po wykonaniu tej instrukcji program moze
miec rdzne obliczenia, ktore zalezy od wartosci wczytanej zmiennej.

Regula dla instrukcji warunkowej
{pre a a} ins]{post}, {pre a —idf} ins2{post}
{pre} if a then insxeise ins2 fi {post}

Regula ma dwie przeslanki odnosz”ce siq do poprawnosci czQsciowej instrukcji skla-
dowych ins2 oraz ins2 Sum® warunkow wst*pnych dla obu instrukcji skladowych jest

formula pre, ktora jest warunkiem wstgpnym calej instrukcji warunkowej. (W przy-
padku instrukcji warunkowej o konkretnie podanej skladni i semantyce, warunki
wstQpne dla instrukcji skladowych s” rozl*czne.) Poniewaz warunkami koncowymi
obu instrukcji jest post, zatem instrukcja warunkowa jest poprawna wzglgdem warun-
kdéwpre ipost.

Regula dla instrukcji iteracji

_ {prea(X)ins{pre}
{pre} while a do ins od {pre a ->a}

Warunek pre nazywa siQ niezmiennikiem instrukcji iteracji, co oznacza, ze jest on
spelniony w wyréznionym miejscu instrukcji iteracji, po kazdym wykonaniu instrukcji
ins. Postac warunku wstQpnego w przeslance reguly zakiada, ze instrukcja ins wyko-
nywana, gdy spelniony jest doz6r a, gwarantuje, ze warunek arjest spelniony po jej
wykonaniu. Postad warunku koncowego dla calej instrukcji wynika z kolei z faktu, ze
spelnienie —>aoznacza koniec wykonywania calej instrukcji.

Pojgcie niezmiennika jest og6lniejsze, gdyz mozna odnosic je do dowolnej instrukcji:
warunek inv jest niezmiennikiem instrukcji ins w wyrdznionym jej miejscu przy wa-
runku poczqtkowym init, jezeli dla kazdego obliczenia instrukcji z wartosciowaniem
pocz tkowym spetniajgcym init, za kazdym razem, gdy obliczenie dochodzi do wy-
réznionego miejsca instrukcji ins, aktualne wartosciowanie zmiennych spelnia przypi-
sany temu miejscu warunek inv.

Regula dla sekwencyjnego zlozenia instrukcji

{pre} ins]{midi}, {midi} ins2{post}

{pre} ins,; ins2 {post}

Regula konselcwencji

pre =>prex, {prextins {postx}, post{=> post

{pre} ins {post}

Regula konsekwencji pozwala na zaw”zanie warunkow wst"pnych i oslabianie wa-
runkdéw koncowych. Specyfik” reguly jest to, ze zawiera dwie przeslanki w postaci
instrukcji ze specyfikacj”, ale w postaci implikacji, ktérych spelnienie b”dz niespel-
nienie nie moze byc wnioskowane w ramach danego systemu wnioskowania o po-
prawnosci cz~sciowej programfw. Mozna o tym wnioskowac na przyklad przez wy-

korzystanie jednego 2z przedstawianych systemdéw dowodzenia dla rachunku
predykatow.

Regulapodstawienia dla dowolnej instrukcji

_ Apre}ins {post}
{pre{y 7} ins {post[y =/}

dla zmiennej y, ktora nie wystopuje w instrukcji ins, i dla termu t, ktéry nie zawiera
zmiennych wystQpuj”cych w tej instrukcji. Regula ma Charakter pomocniczy, przydaje
sig do orzekania o poprawnosci czgsciowej wzglgdem pary warunkéw rézni®cych siq
odpre ipost zastE|pieniem zmiennej y dowolnym termem.

Regula dlaprogramu

{pre} ins {post}
{pre} program p var begin ins end {post}

Regula stwierdza, ze czqsciowa poprawnosé programu 0znacza czgsciow” poprawnosc
jego tresci.

Przedstawione wyzej aksjomaty i reguly odnosz” siq do jgzyka BPJP.

Przyklad 16.1
A Latwo sprawdzic, ze poprawne czQsciowo nizej podane instrukcje przypisanial
wzgl~rdem odpowiadajcych im specyfikacji:
{x>9} x:=x+1 {x> 10}
(y>9} x:=y+l {x> 10}
{x+y>0Ix:=x+y {x>0}
Czytelnikowi pozostawia si$ sprawdzenie, ze poprawne cz\sciowo nizej podane
instrukcje warunkowe wzgl*dem odpowiadaj*cych im specyfikaciji:
{x >0} ifx>0thenx:=x+ 10eise x :=x+ 5fi {x> 10}
{x >0} ifx>5then x:=x+5eise x :=x+ 10 fi {x> 10}
Bardziej zlozone jest sprawdzenie poprawnosci czQSciowej dla instrukcji iteracji
wzglgdem specyfikacji:

{s=o0ai=m}

whilei<ndos:=s+i;i:=i+1 od
{s=£KAi=n+1}
k=m

Zauwazmy, ze niezmiennikiem dla instrukcji iteracji jest warunek

pres (s= EkAi<n +1)

k=m
Mozna to sprawdzic, postuguj”c si$ aksjomatami dla instrukcji przypisania
si=s+i;i=i+l

stanowi”cych tresc instrukcji iteracji.

Druga z tych instrukcji jest cz*sciowo poprawna wzglgdem specyfikacji

{s= £EkAi<n}

k=m

i=i+1
{s= f)kAi<n +1}
k=m

Dia pierwszej z nich zachodzi:

{s= £kAi<n}

k=m
S:=s+i
{s= £kAi<n}
k=m

Zauwazmy, ze
- i-l -
prea (i<n)=s= £kAi<n
k=m
oraz

prea —(i<n)=s= £nkAi=n+I

k=m
co dowodzi czQ”ciowej poprawnosci instrukcji iteracji wzglqdem podanej specyfi-
I kacji. |

Nastgme reguly sg. zwi”zane z instrukcjami wywolania procedur nierekursywnych -
jazyk PJP - oraz rekursywnych - jQzyk JP.

Regula wywolania procedury nierekursywnej
{pre} a, :=e,; a,, .=e,,;insp; X, :=b,; :=bm{post}
{pre} p(e,, en,xu xm){post}
gdzie procedura p ma definicjq:

P(typ\ in a,;...; typ,, in a,; typ,+ outb,;...; typatmout b,,)
varp
begin
insp
end
Ci”g instrukcji
ai =ei>e>a, = ¢, insp, X]—bt; ...; xm:=bm
stanowi zmodyfikowan” tresc definicji procedury.

Modyfikacja polega na dol*czeniu przed insp ci*gu instrukcji przypisania, ktore od-
zwierciedlajEL komunikacjQ parametréw wejsciowych, oraz na dol”*czeniu po inspci*gu
instrukcji przypisania, ktére odzwierciedlaj® komunikacj® parametréw wyjsciowych.
Efektem pierwszej grupy dolgczonych instrukcji przypisania jest modyfikacja warto-
sciowania wejsciowych parametrow formalnych procedury, a efektem drugiej grupy -
modyfikacja wartosciowania wyjsciowych parametréw aktualnych.

Regula wywolania procedury rekursywnej, dla procedury o takiej samej definicji ma
postac

{pre}p(e,, ..., €,.X,, xm{post}
h iPre) ai :=¢,; a,, :=8,,;insp;xt:=h,; X, :=bm{post}

{pre} p(ej, e,,,xu xm){post}

Ostatnia regufa rozni siQ od pozostalych postacig. przeslanki. Sens przeslanki jest na-
stqmj”~cy: istnieje dowdd na to, ze:

jezeii zachodzi
{pre} p(e,, e, X,, xm){post}
to zachodzi
{pre}a, : = e ,; a, :=ell;insp;xl: =b,; x m=bm{post}
Symbol |- oznacza tu fakt istnienia dowodu.

Sens calej reguly jest nastgpuj”cy: instrukcja wywolania procedury rekursywnej jest
czgsciowo poprawna wzgl*dem danej specyfikacji, czyli:

{pre} p(e’l > enrxn X J {pOSt}

jesli na postawie zalozenia takiej poprawnosci mozna dowiesc czQSciowej poprawno-
sci instrukcji stanowi”*cej zmodyfikowan” tresd definicji procedury.

Przedstawiony System dowodzenia cz”sciowej poprawnosci programdw jest seman-
tycznie poprawny, nie jest natomiast semantycznie zupelny. Dowd6d poprawnosci,
a takze powody braku zupelnosci s%przedstawione w ksi“zkach: [Dembinski, Malu-
szynski 1981], [Apt, Olderog 1991].

Przyklad 16.2

I Dana jest rekursywna procedura obliczaj*ca najwigkszy wspdélny dzielnik dwbch!
liczb, oparta na algorytmie Euclidesa:

procedure NWD(int in x; int in y; int out 2)
intr ;
begin

r:=xmody;
ifr=0then z :=y eise NWD(y, r, z) fi
end

Zaklada siQ, ze dla wywolania procedury zachodzi:
{a>0a b >0} NWD(a, b, c) {c=nwd(a, b)}

gdzie nwd(a, b) jest funkcjg, ktéra okresla najwigkszy wspdlny dzielnik liczb a
oraz b. Nalezy zbadac, czy na podstawie przyj*tego zalozenia zachodzi:

{a>0 Ab>01}

X:=a;y:=b;

r:=xmody;

Ifr=0 then z :=y eise NWD(y, r, z) fi ;
c:=z2

{c = nwd(a, b)}
Latwo stwierdzic, ze poprawne czgsciowo fragmenty programu, wyréznione
boczn” liniau wzglgdem przedstawionych specyfikacji:
{a>0ab>0}
X:=ay:=b;
{x>0ay>0}
r:=xmody;
ifr=0thenz:=yeise NWD(y, r, z) fi;
{z=nwd(x,)}
ci=z
{c = nwd(a, b)}
Pozostaje zbadanie, czy poprawny jest fragment:

{x>0 Ay>0}

r:=xmody;

ifr=0thenz:=yeise NWD(y,r, 2) fi ;
{z = nwd(x, y)}

Wykazanie tego sprowadza siq do dwoch przypadkéw:

Jezeli r = 0, to oczywiscie wartosc z jest najwi*kszym wspélnym dzielnikiem
liczb x oraz y, czyli z = nwd(x, y).

Jezelir * 0, to korzysta siq z twierdzenia arytmetyki:

jezeli rjest reszt” z dzielenia calkowitoliczbowego x przez y, to
nwd(x, y) = nwd(y, r),

zatem i w tym przypadku z = nwd(X, y) = nwd(y, r). ,

16.3. Dowodzenie poprawnosci calkowitej

Poprawnosc calkowita programu oznacza, ze program spehiia nastgpujgce warunki:
* jest czgsciowo poprawny wzglgdem danej specyfikaciji,
* jego obliczenie nie ulegnie zerwaniu,
* jego obliczenie nie bgdzie nieskonczone.

W dalszej czqsci rozdziahi bgdzie oméwione tylko jak mozna badac, czy obliczenie
programu jest nieskonczone, inaczej: czy program ma wtasnosd stopu. Przyczynq nie-
skonczonych obliczeii moze byc pgtlenie siq instrukcji iteracyjnej. Badanie stopu in-
strukcji iteracji mozna prowadzic migdzy innymi metodq licznikdw iteracji i metodq
malejgcych wielkosci [Banachowski, Kreczmar 1982] oraz funkcji zmniejszajgcej
[Dijkstra 1978]. Ponizej jest przedstawiona tylko pierwsza z tych metod - metoda
licznikbw iteraciji.

Niech dana bgdzie instrukcja iteracji standardowej postaci

while ado ins od

Zaklada siq, ze siqg jej obliczenie rozpoczyna siq przy wartosciowaniu spetniajgcym
ustalony warunek poczqtkowy init. Zatézmy ponadto, ze inv jest niezmiennikiem in-
strukcji przy warunku poczgtkowym init.

Metoda licznikdw polega na wstawieniu do tre8ci instrukcji iteracji dodatkowej
zmiennej, innej od wszystkich innych zmiennych wystgpujgcych w tresci instrukcji,
ktora zwigksza swojq wartosc o jeden po kazdorazowym wykonaniu instrukcji ins:

n = 0; while ardo ins;n :=n+ 1od
a nastqpnie na okresleniu wyrazenia calkowitoliczbowego up, ktérego wartosc w trak-
cie obliczenia programu ograniczalaby wartosc zmiennej n.

Twierdzenie 16.1

Jezeli inv a (n < up) jest niezmiennikiem rozszerzonej instrukcji iteracji, to instruk-
cja iteracji w standardowej postaci ma wlasnosc stopu.

Dowadd jest przedstawiony w ksigzce [Banachowski, Kreczmar 1982].

CzQSto instrukcja iteracji zawiera instrukcje, ktére mogq pelnic rolg licznika pqtli.
W takich przypadkach pozostaje zadanie ustalenia wyrazenia up, wyznaczajqcego
géme ograniczenie licznika. Rozpatrzmy prosty przyklad.

Przyklad 16.3

Dana jest procedura obliczajgca wynik i resztq dzielenia calkowitoliczbowego:

procedure dc(int in x; intin y; int out g; int out r)

{x>0 Ay>0}
begin
q:= 1
r=x
whiley<rdoq:=q+1;r:=r- yod
end
{x=q*y +rAO<r<yAX>0Ay>0}

Latwo stwierdzid, ze program jest czgsciowo poprawny wzglgdem przedstawio-
nej specyfikacji. Podobnie mozna sprawdzio, ze warunek

Psx =gq*y +rAO<rAX>0Ay>0

jest niezmiennikiem instrukcji iteracji. Kandydatem na licznik jest zmienna g.
Wartosc przypisywana zmiennej g jest ograniczona przez x/y. Aby stwierdzic, ze
instrukcja iteracji ma wlasnosc stopu nalezy pokazac, ze warunek

a (@<xly)

jest niezmiennikiem instrukcji iteracji. Poniewaz juz wiadomo, ze <pjest nie-
zmiennikiem po to, aby pokazac, ze a (q< x/y) jest niezmiennikiem, wystarczy
pokazac (por. zad. 4.), ze (g < x/y) jest niezmiennikiem, ale (g < x/y) wynika z <
mianowicie:

(x=q*y +rAy>0)=>(q = xly - rly) => (@< xly)

Wedlug twierdzenia 16.1 mozna stwierdzic, ze procedura ma wlasnosc stopu,
z czego - na podstawie cz”sciowej poprawnosci procedury - wynika, ze procedu-
I rajest calkowicie poprawna wzglgdem podanej specyfikacji. |

Cwiczenia

1. Sformulowad regulg wnioskowania poprawnosci czgsciowej dla instrukcji iteracji
postaci: repeat ins until oo

2. Udowodnic czgsciowq poprawnosc ciqggu instrukcji wzglqdem podanej specyfi-
kacji:
a) X=y*q+r}r:=r-y q:=q+1{x=y*q+r}
b) {x>0ay>0}
q:=0;r:=x;
whiler>ydor =r-y;q=q+ leise skipod
{x=y*q+rAr>0Ay>UAr<y}

3. Uzasadnic aksjomat Floyda

{a} x :=e {3y (a[x ::=y] a x =[x = Y]}

4. Niech warunki invxoraz inv2 b$d” niezmiennikami danej instrukcji iteracji wzglg-
dem tego samego warunku pocz~tkowego init. Czy warunki inv\ a inv2 oraz
inv\ v inv2 b"dg. niezmiennikami tej instrukcji wzgl*dem warunku poczqtkowego
init?

5. Sformulowac specyfikacji procedury, ktéra bada, czy dana liczba typu intjest licz-
" parzystEt- W jQzyku PJP napisac tq procedury i udowodnic jej czgsciow” oraz
calkowit*poprawnosc wzgl*dem utworzonej specyfikacji.

6. Okreslic, co jest celem obliczen podanego nizej programu? Sprawdzic, czy program
ten jest zgodny z przedstawionymi specyfikacjami wewnQtrznymi.

program bp
intx; inty; intz; intn; int m;
begin
read(x); read(y);
{n>0}
zZ:=xy: =15 m::=n;
repeat

{xn=y *zma m > 0}
if nieparzysta(m) then y :=y *z eise skip fi;
m :=m div 2;
2:=2%*z
{xn=y *zma m > (0}
until m =0;
write(y);
{y=xn}
end
7. Przedstawic specyfikacji procedury obliczaj*cej silniq, nastipnie pokazac jej czi-
Sciow”. poprawnosd wzglgdem tej specyfikacji. Czy procedura jest poprawna cal-
kowicie? Jak okreslic warunek gwarantuj*cy brak zerwania obliczen i warunek
stopu:

procedure silnia(int in n; int out s)

int sl
begin

ifn=0then s := 1leisesilnia(n- 1,sl); s=n *sl fi
end

Literatura

ADAMOWICZ Z., ZBIERSKI P., \99\,Logika matematyczna, PWN.

APT K., OLDEROG E.R,, 1991, Verification ofSequentiell and Concurrent Programs, Springer.

ARBIB M.A., 1968, Mdzg, maszyna, matematyka, PWN.

BANACHOWSKI L., KRECZMAR A., 1982, Elementy analizy algorytméw, WNT.

BANERJI P.B. (ed.), 1990, Formal Techniques in Artificial Intelligence. A Sourcebook, North-Holland.

BEN-ARI M., 2001, Mathematical Logicfor Computer Science, Springer (tlum. na polski: Logika mate-
matyczna w informatyce, WNT, 2005).

BICARREGUI J.C., FITZGERALD J.S., LINDSAY P.A., MOORE R., RITCHIE B., 1994, Proof in

VDM: A Practitioners Guide, Springer.

BOCHENSKI J.M., 1992, Wspdlczesne metody myslenia, Wydawnictwo ,,W drodze™.

BOCHENSKI J.M., 1993, Logika ifilozofia. Wyborpism, PVWN.

BOLC L., BORODZIEWICZ W., WOICIK M., 1991, Podstawy przetwarzania informaeji niepewnej
i niepelnej, PWN.

BORZYSZKOWSKI A.M., SOKOLOWSKI S., 1995, Matematyczne podstawy informatyki, EFP, Poznan.

BUBNICKI Z., 1990, Wstap do systemdw ekspertowych, PVWN.

CARNAP R., 1990, Logiczna skladniajgzyka, PWN.

COOK J., 2005, Constructing Correct Software, Springer.

DAVIS P.J., HERSH R., 1994, Swiat matematyki, PVWN.

DEMBINSKI P., MALUSZYNSKI J., 1981, Matematyczne metody definiowaniajgzykdw programowa-
nia, WNT.

DIJKSTRA E.W,, 1978, Umiejgtnosc programowania, WNT.

EHRIG H., MAHR B., 1985, Fundamentals ofAlgebraic Specifications, Springer.

FITTING M., 1990, First-order logic and automated theorem proving, Springer.

GABBAY D., 1998, Elementary Logics: Aproceduralperspective, Prentice Hall.

GUZICKI W., ZAKRZEWSKI P., 2005, Wyklady ze wstqpu do matematyki. Wprowadzenie do teorii
mnogosci, PWN.

GUZICKI W., ZAKRZEWSKI P., 2005, Wyklady ze wstqpu do matematyki. Zbidr zadan, PWN.

HOPCROFT J.E., ULLMAN J.D., 2003, Wprowadzenie do teorii automatow, jgzykow i obliczen, PWN.

HUNTER G,, 1982, Metalogika, PWN.

HARRISON M.A., 1973, Wstap do teorii sieci przelgczajgcych i automatéw, PWN.

HUZAR Z., 1989, Programowanie proceséw komunikujgcych siq w czasie rzeczywistym, Prace Naukowe
Centrum Obliczeniowego Politechniki Wroclawskiej 8, Seria: Monografie 1, Wydawnictwo Poli-
techniki Wroclawskiej.

HUZAR Z., KURZYNSKI M., SAS J., 1994, Rule-Based Pattern Recognition with Learning, Oficyna
Wydawnicza Politechniki Wroclawskiej.

GERSTING J.L., 1993, Mathematical Structuresfor Computer Science, Computer Science Press.

GRZEGORCZYK A., 1975, Zarys logiki matematycznej, PWN.

GRZEGORCZYK A., 1983, Zarys arytmetyki teoretycznej, PWN.

KACPRZYK J., 1986, Zbiory rozmyte w analizie systemowej, PWN.

KELLY J., 1997, The Essence ofLogic, Prentice Hall.

KLIMEK R., 1999, Wprowadzenie do logiki temporalnej, Wydawnictwa AGH.

KOWALSKI R., 1989, Logika w rozwigzywaniu zadan, WWNT.

KOTARBINSK1 T., 1985, Wyklady z dziejow logiki, PVWN.

KRASZEWSKI J., 2007, Wstgp do matematyki, VWNT.

LYNDON R.C., 1978, O logice matematycznej, PWN.

LAWROW I.A.,, MAKSIMOWA L.L., 2004, Zadania z teorii mnogosci, logiki matematycznej i teorii
algorytméw, PWN.

MANNA Z., PNUELI A., 1992, Temporal Veriflcation ofReactive Systems: Speci3cation, Springer.

MANNA Z., PNUELLI A., 1995, Temporal Veriflcation of Reactive Systems: Veriflcation, Springer.

MARCISZEWSKI W. (red.), 1987, Logikaformalna. Zarys encyklopedyczny z zastosowaniem do infor-
matyki i lingwistyki, PWN.

MARCISZEWSKI W. (red.), 1988, Mala encyklopedia logiki, Ossolineum.

MAREK W., ONYSZKIEWICZ J., 1975, Elementy logiki i teorii mnogosci w zadaniach, PWN.

MIRKOWSKA G,, SALWICKI A, 1987, Algorithmic logic, PWN.

MORTIMER H., 1982, Logika indukcji, PWN.

MOSTOWSKI AW., PAWLAK Z,, 1970, Logika dla inzynieréw, PWN.

MURAWSKI R., 1995, Filozofia matematyki. Zarys dziejoéw, PWN.

NISSANKE N., 1999, Introductory Logic and Sets Theory for Computer Scientists, Addison-Wesley
Longam.

PACHOLSKI L., 2004, Logika dla informatykéw - materialy do zajqc, Uniwersytet Wroclawski, Instytut
Informatyki.

PAWLAK Z., 1991, Rotigh Sets, Theoretical Aspects of Reasoning about Data, Kluwer Academic Pub-
lishers.

PENROSE R., 1996, Nowy umysl cesarza - o komputerach, umysle i prawachfizyki, PWN.

POGORZELSKI W., 1981, Klasyczny rachunek kwantyfikatoréw. Zarys teorii, PWN.

RASIOWA H., 1998, Wst"p do matematyki wspdlczesnej, PWN.

RUTKOWSKA D., PILINSKI M., RUTKOWSKI L., 1997, Sied neuronowe, algorytmy genetyczne
i systemy rozmyte, PWN.

SHEPARD D., An Introduction to Formal Specification with Zand VDM, McGraw-Hill, 1995.

SLUPECKI J,, HALKOWSKA K,, PIROG-RZEPECKA K, 1978, Logika i teoria mnogosci, PWN.

SOCHER-AMBROSIUS R., JOHANN P,, 1996, Deduction Systems, Springer.

STANOSZ B., 2002, Cwiczenia z logiki, PWWN.

SZALAS A., 1992, Zarys dedukcyjnych metod automatycznego wnioskowania, Akademicka Oficyna
Wydawnicza RM.

TIURYN J, 2003, Wstgp do teorii mnogosci i logiki, Uniwersytet Warszawski, Wydzial Matematyki,
Informatyki i Mechaniki.

TURSKI W.M., 1988, Logiki nieklasyczne (dla informatyka pracnjgcego), materialy V Jesiennej Szkoly
PTI, Polskie Towarzystwo Informatyczne, 103-132.

WOJICICKI R., 1982, Wyklady z metodologii nauk, PWN.

TYUGU E.C., 1989, Programowanie z bazq wiedzy, WNT.

WOJCIK M., 1991, Zasada rezolucji. Metoda automatycznego wnioskowania, PWN.

Indeks

Aksjomat ekstensjonalnosci 80
nieskonczonosci 80
par nieuporz”dkowanych 80
regulamosci (ufundowania) 81
sumy zbiorow 80
wyboru 81
wyrdzniania 80
- zast”powania 80
- zbioru pot~gowego 81
aksjomaty specyficzne 199
- Zermela 80
algebra abstrakcyjna 135
- homomorfizm 150
- izomorfizm 150
- sygnatura 148
termow 150
- ilorazowa 151
algebry Boole’a 146
-podobne 149
- wielorodzajowe 139
algorytm 101
- automatycznego wnioskowania metod”®
tablic analitycznych 270
------ w systemie dowodzenia Hilberta 257
badania spelnialnosci zbioru klauzul 247
- tautologii 223
- skolemizacji 240
- wyznaczania najbardziej og6élnego uni-
fikatora 244
altematywa 15
antysymetria 57
automat akceptuj~cy 126
- Moore’a 131
- skonczony 126
- ze stosem 128

Bijekcja 66

Cinglll
continuum 95
cykl 75

Definicja ekstensjonalna 68

- intensjonalna 68

- w postaci normalnej 40
deklaracje zmiennych 293
derywacja 264

- ze zbioru formul 255
domkniqcie relacji wzglgdem wlasnosci 58
dowodzenie transformacyjne 162
dowdd nie wprost 207

- wprost 207
drzewo 75

- dowodowe 214

- korona 75

- korzen 75

- lisc 75

- wywodu 123
dysjunkcja 15

- elementama 165
dysjunkcyjna postac normalna 165
dziedzina 53

Ekstensjonalnosc 16

Faktor klauzuli 247

faktoryzacja 236

falsz 12

filozofia logiki 13

formula spelniaj~ca interpretacj”™ 158
- otwarta 183

spelnialna 189

spelniona w modelu 188

spelniona w modelu dla wartosciowania
188

ukonkretnienie 184

zamkniqgta 183

formuly atomowe 177

identyczne tekstowo 155
interpretacja w modelu przy wartoscio-
waniu 188

-postaci kanoniczne 164

réwnowazne semantycznie 159
semantycznie réwnowazne 190
sprowadzanie do koniunkcyjnej postaci
normalnej 166

ukonkretnione przez podstawienie 242
zlozone 177

formy zdaniowe 17
funkcja 64
fiinkcja ,,na"’ 66

argument 64

calkowicie okreslona 65
calkowita 65

charakterystyczna 73,186
czQS8ciowo okreslona 66
interpretacji bazowej 156
licznosci wielozbioru 85
modyfikacja przez podstawienie 70
obci~cie 70

odwrotna 66

przynaleznosci do zbioru rozmytego 86
réznowartosciowa 66

skladania sekwencyjnego 70
skonczona 66

stala 65

sygnatura 64

wartosciowania zmiennych 157
wartosc 64

warunkowy wybor 70
wzajemnie jednoznaczna 66
zeroargumentowa 65

zgodna z relacj”™ 72

funkcje obliczalne 106

ogolnie rekurencyjne 109
pierwotnie rekurencyjne 107

-rekurencyjne 106
-zdaniowe 17
funkcjonaly 67

Graf73
grafluki 73
- skierowany 73
- wierzcholki 73
grafy nieskierowane 75
gramatyka bezkontekstowa 118
- skladniowo wieloznaczna 124
gramatyki bez ograniczen 122
- bezkontekstowe 122
- kontekstowe 122
- regulame 122
- silnie réwnowazne 124
- slabo réwnowazne 124

Hipoteza Churcha 105
- indukcyjna 24
-Turinga 101

Implikacja 15
- materialna 278
- scisla 278
induktywna rodzina zbioréw 82
inferencja 207
injekcja 66
instrukcje 293
interpretacja 156
izomorfizm 116
- drzewa 124

Jednostki leksykalne BPJP 291
jgzyk domkniqcie 117
-formalny 116
- kwantyfikatoréw pierwszego rzqdu
178
- operacja czola 118
- operacja inwersji 118
- operacja ogona 118
- przedmiotowy 31
jqzyki iteracja 117
- konkatenacja 117
- regulame 127

Klasy abstrakcji 58
klauzula 165

- Horaa 249

- pusta 234
konfiguracja programu 298
kongruencja 151
koniunkcja 15

- elementama 165
koniunkcyjna postac normalna 165
konsekwencja dowodowa 21

- logiczna 22

- semantyczna 22

- skladniowa 21, 255
konwencja prefiksowa 65

- przedrostkowa 65
kwantyfikacja egzystencjalna 18

- ogblna 18

- szczegOlowa 18

- uniwersalna 18
kwantyfikatory o ograniczonym zakresie

202

Lemat Koéniga 75
liczby calkowite 83
- kardynalne 98
- naturalne 81
- wymieme 84
lista parametréow formalnych 305
literal 165
literaly czynne 234
- komplementame 234
logika 12
- deontyczna 280
- epistemiczna 281
- formalna 12,19
- klasyczna 275, 290

- rachunek cz”sciowo nierozstrzygal-

ny 272
-—-—- nierozstrzygalny 272
- matematyczna 13
- symboliczna 13
- temporalna 281
logiki indukcji 276
- intuicjonistyczne 284
- modalne 278

- niemonotoniczne 287
- wielowartosciowe 276

Metaj~zyk 31
metamatematyka 13

metoda tablic analitycznych 266

- zero-jedynkowa 159
metodologia 13
model Kripkego 279
morfizm 116

Negacja 15
niesprzecznosc 208

- teorii 273
niezdefiniowane 66
niezmiennik instrukcji 321
niezupelnosc teorii 273
n-krotki 51
notacja infiksowa 65

- przyrostkowa 65

- wrostkowa 65

Obliczenie programu 299
odwrotna notacja polska 65
odwzorowanie 64
operacja czola 114

- deklaracja 148

- minimum 108

- nast”pnika 82

- ogonall4

- rekursji prostej 106

- superpozycji 70
operator modalny 278

Paradoks Russella 38
partycja 61

pary uporz”~dkowane 50
permutacja 66

PQtla 75

podformula 154
podgraf 74
podslowo 113
podstawienie 115
podzbiér 40

postac Skolema 238

prawa logiczne 160
- rachunku kwantyfikatoréw 191
- rachunku zdan 160
prawda 12
predykat identycznosci 198
- réwnosci 198
problem powszechnikéw 37
- uniwersaliéw 37
procedury nierekursywne 304
- rekursywne 309
produkcja 114
produkt kartezjanski uogdlniony 52
program 317
- calkowita poprawnosc 318
- czgsciowa poprawnosc 318
- ze specyfikacjq 318
programy 293
przechodniosc 57
przeciwdziedzina 53
przeciwsymetria 57
przeciwzwrotnosc 57
przedrostkowa postac normalna 193
przemianowanie 243
przeslanki 19

Rachunek kwantyfikatoréw drugiego rzqdu

178

- predykatdw z identycznosci”™ 198

-z réwnosciqg 198

- sekwentdw Gentzena 207

------ semantyczna poprawnosc systemu
dowodzenia 224

--------- zupelnosc systemu dowodzenia
228

------ System dowodzenia 219

- zdan 153

- alfabetj~zyka 153

- dziedzina interpretacji 156

- formuly 154

— jednostki leksykalne 153

- tautologia 159

- zdania 154

reguia przechodniosci 163
- przepisywania 114
- rezolucji 233

-zastgpienia 162
reguly domnieman 288
- skladni 177
- wnioskowania 207
- wyprowadzania 207
relacja binama 52
- czqgsciowo porzgdkujgca 61
- czgsciowo porzgdkujgca w scislym
sensie 61
- identycznosciowa 56
liniowego porzqdku 61
liniowego porzqdku w scislym sensie
61
n-krotne zlozenie 56
odwrotna 53
porzqdku 61
leksykograficznego 62
przechodniego domkniqcia 58
quasi-porzgdkujgca 61
réwnowaznosci 58
symetryczne domkniqcie 58
- tozsamosciowa 56
- zwrotne domkniqcie 58
- derywacji 264*
relacje operacji ztqczenia 55
-porzqdku 61
rezolwenta klauzul 234
rozstrzygalnosc 160
rownosc 67
rownowaznosd 16

Schemat wnioskowania 19
- niezawodny 23
- poprawny 23
sekwent 213, 217
- nastpnik 217
-poprzednik 217
- spelnialny uniwersalnie 219
- spelniony w modelu 219
semantyczna poprawnosc systemu dowodze-
nia 208
semantyka operacyjna programu 302
- rachunku kwantyfikatoréw 185
slowa 112
- konkatenacja 113

slowo bezposrednio wyprowadzane ze
slowa 118, 119
- iteracja 113
- operacja inwersji 114
- wywodliwe 119
specyfikacja programu 317
spdjniki logiczne 153
- -interpretacja gléwna 156
------ standardowa 156
- zbior fiinkcjonalnie pelny minimalny
168
- zbior fiinkcjonalnie pelny 167
spojnosc 57
stale logiczne 153
struktura czasowa 281
superpozycja 56
suijekcja 66
sygnatura j$zyka rachunku kwantyfikato-
row 177
- relacji 53
sylogizmy 19
symbol inkluzji 40
- wlasciwej 40
- przecizony 50
- zawierania 40
Symbole fiinkcyjne 176
- kwantyfikatoréw 176
-pomocnicze 153, 176
- predykatéw 176
- spOjnikdw logicznych 176
symetria 57
System dowodzenia Hilberta 255
systemy dowodzenia semantycznie nie-
sprzeczne 272
------- zupelne 272

Sciezka w grafie 74

Tablica zamkni”ta 268
- gal~z zamkniqta 268
tautologia 189
teoria nieelementama 202
teorie elementame 198
term 67
- podstawienie tekstowe za zmienne 183

- staly 182
- wolny w formule ze wzglgdu na
zmienn” 185
- interpretacja przy wartosciowaniu 187
-zbior 141
twierdzenie o dedukcji 190,258
- 0 rozbiorze 180
typizacja 144
typowanie 144

Unifikacja termow 242
unifikator 242
- najbardziej ogdiny 243

WartoSciowanie zmiennych 142
warunek koncowy 317

- wstgpny 317
wielozbitr 84
wlasnosc ekstensjonalnosci 198
whnioski 19
wskaznik zwi”zania 178
wykresy Venna 42
wypowiedzi 14
wyrazenie fiinkcyjne 67
wystgpienie zmiennej 181
wyst~pienie wolne 181
wystgpienie zwi~zane 181

Zalozenie o zamkni”tosci swiata 251
zasada indukcji matematycznej 24

- strukturalnej dla formul 179

- strukturalnej dla rachunku zdan 172

- strukturalnej dla terméw 178

- rekursji strukturalnej 170

- strukturalnej dla formul 180

- strukturalnej dla terméw 180
zasiqg kwantyfikatora 178
zbiory anonimowe 34

- identyczne 41

- 0 tej samej mocy 92

- produkt (iloczyn) kartezjanski 52

- przekroj 42

- przyblizone 88

- rozl~czne 42

- rozmyte 86

- réwnoliczne 92
- rdznica 42
- suma 42
- uog0lniona 45
- uogOlniony przekrdj 45
zbior 32
- czQSciowo uporz~dkowany 61
- definicja rekursywna 34
- definiowanie 33
- ekstensjonalne 33, 36
enumeracyjne 33
- rekursywne 33
- docelowy 65
- dolne przyblizenie 89
- dystrybutywne rozumienie 79
- element 32
- maksymalny 63
- minimalny 63
- najmniejszy 63
- najwigkszy 63
- nalezenie 32
- nienalezenie 32
- formul 177
- semantyczna konsekwencja 189
gbéme przyblizenie 89
ilorazowy 61
- konsekwencji semantycznych 199
kres dolny (infimum) 63
kres gdmy (supremum) 63

- liniowo (albo calkowicie) uporzqdko-
wany 61
- nieprzeliczalny 93
- nieskonczony 92
- obraz 57, 71
- ograniczenie dolne 63
- gOme 63
- operacja dopelnienia 42
- poj~cie kolektywne 79
-potqgowy 41
- przeciwobraz 57, 71
- przeliczalny 93
- rekurencyjnie 105
- przyblizony wzglgdem relacji 89
rekurencyjny 105
- termoéw 177
- uniwersum 42
- zrodlowy 65
zdania 17
zdanie 183
zlozenie 56
zmienne indywiduowe 176
- przemianowanie 185
.- wartosciowanie 187
zupelnosc semantyczna 208
zwi”zek spelnialnosci 238
zwrot kwantyfikacyjny 17
-modalny 17

Zwrotnosc 57

BIBLIOTEKA GtOWNA

33159 3 WA

PodreczniK jest przeznaczony dia studeifl
euch inlormalyhe na uczefniach technlcznycr

tuprouiadzenie wyjasiuajace czum jest logiha zauiarto ui pieruiszym
pozdziaie, natomiast pozostaty materiat podzielono na czteru czesci.

czesc pieruisza. ohejmuiaca rozdziafy od 2. do 6., jest prezentaeja eie-
mentoui teorii mnogosci, algehr ahstrahcyjnuch i jezuh6ui formainych.

tu czesci drugiej. ohejmujacej rozdziafy od 7. do io., omouliono rachu-
neK zdan i huiantyfihatoréui - ich shtadnie. semantyhe oraz zuiiazane
Z ninii systemu douiodzenia oparte na seduientach Gentzena i regule re-
zoluciji.

czesc trzecia ma charahter informacyjny. tu rozdziatach ii. i 12. omo-
uiiono KRHo inne systemy douiodzenia oraz dohonano przegiadu innych,
niehlasycznych logih.

tu czesci czuiarte], ohejmujacej rozdziafy 13. i ifl., przedstauiiono za-
stosouianie metod logihi do definiouiania shfadni i semantyti jezyhéui
programouiania oraz hiasyczna logihe programoui Hoare'a stuzaca douio-
dzeniu poprauinosci programouli.

Ulydauinictuia Politectinihi uirociauusHiej
sado nadycia w ksieoarni

HTeCh“

Eiac Gruotuaidzhi 13 50-377 Ulrociaw
udyneh o-1ruir., lei. 07132029 35
rroviadzimy sprzedaz uiysyfHouia

ISBN 978-83-7493-349-0

