
WROCLAW UNIVERSITY OF SCIENCE AND TECHNOLOGY

Real-valued Anticipatory Classi�er System

by

Norbert Kozªowski

A thesis submitted in partial ful�llment for the

degree of Doctor of Philosophy

in the

Faculty of Computer Science and Telecommunications

Department of Computer Engineering

April 10, 2022

http://pwr.edu.pl/)
norbert.kozlowski@pwr.edu.pl
https://wit.pwr.edu.pl/en/
https://dce.pwr.edu.pl/

Acknowledgements

First and foremost, I would like to express my most sincere gratitude to my supervi-

sor, Prof. Olgierd Unold. It was a pleasure to pursue such a challenging goal while

maintaining huge motivation.

Thanks to my wife And»elika for her patience and generosity in giving me space for doing

this.

I would also express gratitude to my parents for sparking an idea to pursue such scienti�c

research. That would have never happened without it.

Last but not least, thanks to myself for the hard work and for not giving up in tough

times.

i

Abbreviations

ACS Anticipatory Classi�er System

AACS Averaged Anticipatory Classi�er System

AD Action Delay (exploration technique)

ALCS Anticipatory Learning Classi�er System

ALP Anticipatory Learning Process

BBA Bucket Brigade Algorithm

BEST Bayesian Estimation Supersedes the t-test

CSR Center Spread Representation

E / E Explore / Exploit

EG Epsilon Greedy (exploration technique)

FSW Finite State World

GA Genetic Algorithm

KA Knowledge Array (exploration technique)

KPI Key Performance Indicator

LCS Learning Classi�er System

MACS Modular Anticipatory Classi�er System

MDP Markov Decision Problem

ML Machine Learning

MLP Multi Layer Perceptron

MPX Multiplexer

ii

MCMC Markov Chain Monte Carlo

NHST Null Hypothesis Statistical Testing

OBR Ordered Bounded Representation

OIQ Optimistic Initial Quality (exploration technique)

rACS real Anticipatory Classi�er System [126]

rvACS real-valued Anticipatory Classi�er System

RL Reinforcement Learning

XAI eXplainable Arti�cial Intelligence

XCS eXtended Classi�er System

UBR Unordered Bounded Representation

YACS Yet Another Classi�er System

ZCS Zeroth Level Classi�er System

Symbols

β learning rate

br bid ratio

χ crossover probability

γ discount factor

ε exploration probability

εcover covering noise

εmutation mutation noise

µ mutation rate

talp time when the classi�er underwent the last ALP update

tga time when the classi�er was part of [A] in GA application

θi inadequacy threshold

θga GA application threshold

θr reliability threshold

σ perception of environment's state

ρ average reward

ζ learning rate for the average reward

iv

Abstract

The thesis focuses on the use of ACSs (Anticipatory Classi�er Systems) with the input

deliberately expressed as real-valued number. Other classi�er system families thoroughly

investigated such a research area, but no signi�cant contribution was made to systems

with explicit prediction capabilities. The aim was to present possible solutions to such in-

tegration using several benchmarking problems. Based on this assumption, the following

thesis was formulated:

Anticipatory Classi�ers Systems can build the correct internal model of the

environment using the real-valued input.

The thesis was substantiated by achieving the following goals:

Goal 1 - Propose modi�cations towards ACS system capable of handling real-

valued input

This intention was achieved and validated using two independent approaches:

1. changing the rule's attribute representations to incorporate interval predicates, re-

sulting in a proprietary system variation named rvACS (real-valued Anticipatory

Classi�er System),

2. implementing the prominent ACS algorithms with the intention of input discretiza-

tion.

The �rst approach was based on the actual advancements made for the other systems.

The rvACS managed to show promising results. Nevertheless, because of the much richer

rule complexity and the cooperation of components, the obtained conclusion is that the

nature of rvACS is not aligned with the overall ACS virtues.

The second approach maintains the characteristics and original intentions of three inves-

tigated algorithms by a�ecting only the agent-environment interface layer for discretizing

1

Abstract 2

the input signal. This approach was considered superior to interval formation by obtain-

ing promising results and better rule interpretability.

Goal 2 - Propose relevant benchmarking problems and metrics for evaluating

ACS performance

The nature of the performance was carefully reviewed in six problems using the real-

valued output as a description of an actual state. Most of them have been used as a

toy-problems in LCS (Learning Classi�er Systems) research, providing di�erent problems

of di�erent natures, like:

� single and multiple steps,

� extensive mutual feature interaction,

� vast input space,

� the need for long-action chain building.

Moreover, a famous RL (Reinforcement Learning) Cart Pole benchmarking problem was

investigated by the LCS for the �rst time, to our knowledge, obtaining encouraging

results with compact knowledge representation.

To highlight performance, �ve key metrics were selected that investigate the state of the

systems from multiple angles. Aspects like the quality of evolving solutions, size, and

e�ective application are emphasized throughout the research.

Goal 3 - Propose relevant improvements towards neoteric changes

Preliminary tests revealed two possible limitations of the system that were further stud-

ied.

First, any form of real-valued representation increased the problem's search space, im-

peding the agent's learning speed. Four techniques probing for the most promising action

selection were inspected, especially regarding knowledge acquisition rate. The novel ap-

proach, named Optimistic Initial Quality was also proposed herein.

The other limitation relates to multistep problems, where certain input discretization

might demand the agent to perform a notably larger number of actions to receive the

feedback signal. An approach replacing the credit assignment with the undiscounted

incentive distribution version resulted in a system named AACS2 (Average Anticipa-

tory Classi�er System 2). The method showed performance improvements for speci�c

problems.

Abstract 3

Goal 4 - Conduct an experimental evaluation of intended adjustments

All the experiments were tried to illustrate the evolution of selected metrics throughout

the agent's learning of selected problems.

Moreover, the Bayesian estimation approach emphasized the di�erences between inves-

tigated cases, drawing non-biased conclusions. Often, selected environments were scaled

up, where agents' behaviour was challenged with increased complexity.

Goal 5 - Developing an open-sourced Python Machine Learning framework

for evaluating various LCS algorithms

Signi�cant e�ort was put to implement the most famous classi�er systems algorithms

(i.e. ACS, ACS2, YACS, MACS, X-NCS) using the tools used nowadays by data scientist

communities. The original performance reported by authors is preserved while adding

full support for the real-valued representation of perception. By integrating with the

industry standards, all evaluated models share the same code base and operate with a

commonly agreed interface enabling e�ortless benchmarking with other state-of-the-art

systems.

Moreover, a conscious endeavour was put to simplify the usage of the developed frame-

work to spark other researchers' interest.

Keywords

learning classi�er systems; anticipatory classi�er systems; reinforcement learning; openai

gym, real-valued input

Streszczenie

Rozprawa doktorska koncentruje si¦ na wykorzystaniu antycypacyjnych ucz¡cych si¦ sys-

temów klasy�kuj¡cych ACS (ang. Anticipatory Classi�er Systems) w problemach, w któ-

rych stan przedstawiany jest z wykorzystaniem liczb rzeczywistych. Wiele podobnych

bada« zostaªo dotychczas wykonanych dla innych ucz¡cych si¦ systemów klasy�kuj¡cych

LCS (ang. Learning Classi�er Systems), jednak »aden z nich nie posiadaª mo»liwo±ci

budowania wewn¦trznej reprezentacji ±rodowiska z u»yciem mechanizmu antycypacji.

Celem pracy jest przedstawienie mo»liwych realizacji powy»szej integracji z u»yciem wy-

branych testowych problemów. W oparciu o te zaªo»enia, sformuªowana zostaªa hipoteza,

zakªadaj¡ca, »e

Antycypacyjne ucz¡ce si¦ systemy klasy�kuj¡ce s¡ w stanie poprawnie zbudo-

wa¢ wewn¦trzny model rzeczywistoliczbowego ±rodowiska.

Hipoteza zostaªa uprawdopodobniona poprzez osi¡gni¦cie poni»szych celów:

Cel 1 - Zaproponowanie mody�kacji wybranych systemów ACS umo»liwiaj¡c¡

obsªug¦ danych wej±ciowych o warto±ciach rzeczywistych

Cel zostaª osi¡gni¦ty i zwery�kowany na dwa ró»ne sposoby:

1. u»ycie dozwolonych przedziaªów warto±ci jako podstawowej jednostki sªu»¡cej do

reprezentacji danych - zapropowanie autorskiej wersji systemu rvACS (ang. real-

valued Anticipatory Classi�er System),

2. dyskretyzacj¦ danych wej±ciowych - zaproponowanie mody�kacji wybranych algo-

rytmów ACS.

Pierwszy sposób inspiruje si¦ dotychczasowymi osi¡gni¦ciami uzyskanymi dla innych sys-

temów ucz¡cych. Nowy algorytm rvACS osi¡ga zadowalaj¡ce wyniki, jednak poziom

zªo»ono±ci utworzonego rozwi¡zania, jak i zawiªo±¢ interakcji jego wewn¦trznych kompo-

nentów jest zbyt wysoki.

5

Streszczenie 6

Drugi sposób pozwala na unikni¦cie znacz¡cych mody�kacji w sposobie dziaªania trzech

testowanych systemów. Transformacja sygnaªu wyj±ciowego ±rodowiska zanim zostanie

on przetworzony przez algorytmy ucz¡ce, umo»liwia zachowanie ich charakterystycznych

cech. Dodatkowo, otrzymane rezultaty bada« s¡ bardziej obiecuj¡ce ni» w przypadku

zastosowania reprezentacji z wykorzystaniem przedziaªów warto±ci.

Cel 2 - Zaproponowanie ±rodowisk testowych i metryk do oszacowania wy-

dajno±ci systemów ACS

Charakterystyka dziaªania algorytmów antycypuj¡cych zostaªa poddana szczegóªowej

analizie wykorzystuj¡c sze±¢ testowych problemów opisuj¡cych aktualny stan za pomoc¡

warto±ci rzeczywistoliczbowych. Cz¦±¢ z nich byªa ju» wykorzystywana wcze±niej w lite-

raturze podczas bada« ucz¡cych si¦ systemów klasy�kuj¡cych.

Ka»de z badanych ±rodowisk wykazuje charakterystyczne wªasno±ci, np:

� problem uczenia nadzorowanego (jednokrokowy) lub uczenia ze wzmocnieniem

(wielokrokowy),

� wzajemna zale»no±¢ poszczególnych atrybutów percepcji,

� rozmiar przestrzeni dost¦pnych stanów,

� wymagana liczba akcji w celu osi¡gni¦cia nagrody.

Dodatkowo, po raz pierwszy w historii znany problem uczenia ze wzmocnieniem polega-

j¡cy na utrzymywaniu równowagi pr¦ta umieszczonego na wózku zostaª przetestowany

przez systemy ucz¡ce. Otrzymane wyniki s¡ szczególnie interesuj¡ce pod wzgl¦dem wy-

dajno±ci i minimalistycznej postaci otrzymanego rozwi¡zania.

Dziaªania poszczególnych algorytmów zostaªy oceniane przez pi¦¢ metryk badaj¡cych

ró»ne aspekty dziaªania. Uwag¦ zwrócono na jako±¢ generowanego rozwi¡zania, jego

rozmiar oraz praktyczne wykorzystanie wiedzy w badanym ±rodowisku.

Cel 3 - Zaproponowanie optymalizacji dziaªania systemów ACS w kontek±cie

przetwarzania wej±cia rzeczywistoliczbowego

Wst¦pne badania wskazaªy na dwa obszary maj¡ce potencjaª optymalizacji dziaªania sys-

temów antycypacyjnych w przypadku interakcji z rzeczywistoliczbowymi ±rodowiskami.

Pierwszy, zauwa»a, »e zastosowana reprezentacja wej±cia znacz¡co zwi¦ksza dost¦pn¡

przestrze« stanów, co ma znacz¡cy wpªyw na dziaªanie ka»dego badanego algorytmu.

Przetestowane zostaªy cztery strategie, skupiaj¡ce si¦ na inteligentym przeszukiwaniu

Contents 7

przestrzeni rozwi¡za« optymalizuj¡c tworzenie wewn¦trznego modelu ±rodowiska. Za-

proponowane zostaªo tak»e autorskie rozwi¡zanie, polegaj¡ce na optymistycznym gene-

rowaniu nowych reguª.

Drugie ograniczenie dotyczy ±rodowisk wielokrokowych, wymagaj¡cych wykonanie wielu

akcji w celu osi¡gni¦cia �nalnego stanu. Zaproponowano wymian¦ komponentu odpowie-

dzialnego za dystrybucj¦ sygnaªu nagrody na u±rednion¡ wersj¦. Przedstawiono autorsk¡

wersj¦ systemu - AACS2 (ang. Average Anticipatory Classi�er System 2), wykazuj¡c¡

wzrost wydajno±ci w testowanych problemach.

Cel 4 - Eksperymentalna analiza przeprowadzonych bada«

W celu zrozumiania natury przeprowadzanych eksperymentów, w ka»dym przypadku

uwzgl¦dniany zostaª aspekty czasowy ilustruj¡cy sposób ewolucji wybranych metryk w

caªym procesie uczenia.

Dodatkowo, porównania pomi¦dzy poszczególnymi algorytmami b¡d¹ wersjami ±rodo-

wisk zostaªy wykonane z wykorzystaniem technik modelowania probabilistycznego.

Cel 5 - Stworzenie ogólnodost¦pnej biblioteki programistycznej

Efektem tezy jest ogólnodost¦pna biblioteka programistyczna w j¦zyku Python imple-

mentuj¡ca szereg systemów ucz¡cych (np. ACS, ACS2, YACS, MACS, X-NCS). Zna-

cz¡cym osi¡gni¦ciem jest peªne odtworzenie dotychczasowych wyników bada« wraz z

dodaniem mo»liwo±ci obsªugi liczb rzeczywistych. Zaprojektowana ona zostaªa zgod-

nie z aktualnymi trendami, umo»liwiaj¡c szybk¡ integracj¦ i porównanie si¦ z innymi

rodzinami algorytmów.

Sªowa kluczowe

ucz¡ce si¦ systemy klasy�kuj¡ce; antycypacyjne ucz¡ce si¦ systemy klasy�kuj¡ce; uczenie

ze wzmocnieniem; openai gym, wej±cie rzeczywistoliczbowe

Contents

Acknowledgements i

Abbreviations ii

Symbols iii

Abstract 1

1 Introduction 12

1.1 Motivation and challenges . 14
1.2 Research hypothesis, its aims and goals . 16
1.3 Thesis structure . 16

2 Selected topics of LCSs 19

2.1 Road towards ALCSs . 19
2.2 Real-valued input challenge . 35
2.3 Key Performance Indicators . 42
2.4 Statistical veri�cation of results . 44
2.5 Overview of the selected environments . 49

3 Internalizing knowledge with increased input-space 56

3.1 Interval-based representation . 56
3.2 Discretizing input signal . 69

4 Biased exploration 82

4.1 Research questions . 86
4.2 Experimental evaluation . 86
4.3 Research summary . 99

5 Optimizing reward distribution through long action chains 100

5.1 Reinforcement Learning and Reward Criterion 101
5.2 Integrating Reward Criterions in ACS2 . 102
5.3 Research questions . 105
5.4 Experimental evaluation . 105
5.5 Research summary . 111

6 Summary 113

6.1 Conclusions . 113
6.2 Future Work . 116

9

Contents 10

6.3 Publications . 117

Bibliography 119

Chapter 1

Introduction

With the advancement of understanding our world, sometimes the simple structures used

for its description like linear models or decision trees become staggeringly insu�cient.

The innumerable systems that our world encompasses are composed of interconnected

parts, exhibiting imperceptible properties that interact with each other non-linearly. By

having the capacity to change over time and learn from experience, such systems become

complex and adaptive.

More than three decades ago, Holland proposed a conceptual rule-based system[49] com-

prising a set of "IF condition THEN action" rules covering di�erent situations - calling

it the cognitive systems[54]. From the holistic perspective, it can be viewed as a group of

collaborating "agents" represented by a collection of simple rules. The rules are formed

when interacting with the external "environment" and might take, for example, the

following forms:

� IF no cars on the street THEN walk forward,

� IF stock share price is dropping for 3 days THEN buy,

� IF colour of the mushroom is red THEN do not pick.

The general idea is that seeking a single, omnibus and complex rule is less desirable than

evolving a population of them to model the environment behaviour collectively. Such an

idea gave rise to the concept of LCSs [48], introducing a new abstract term - a classi�er,

which encompasses a rule itself width additional statistics (such as its quality). Despite

their somewhat misleading name, LCSs are not only systems suitable for classi�cation

problems but maybe instead viewed as a very general, distributed optimization technique.

12

Chapter 1. Introduction 13

They �t into a trend of the XAI (Explainable Arti�cial Intelligence) [41] and can be

used in a variety of �elds [13] like data mining [1, 3, 7, 31, 143] (discovering patterns in

data), supervised or RL tasks. Examples of such problems would include �ghter aircraft

manoeuvres [110], medical domains [56], robotic control [26, 58, 88, 122], game strategy

[124], modelling complex time-dependent systems (e.g., stock market) [11, 79, 123] or

design optimization (e.g., engineering applications) [96].

The desired outcome after running an LCS is a set of interpretable classi�ers being able

to model an intelligent decision-maker collectively. Two biological metaphors - evolution

and learning [30] are employed to accomplish this intention. A pair of internal mecha-

nisms - the genetic algorithm and the learning mechanism embody them respectively by

actively interacting with the outside environment, which in this work is considered as an

independent source of data for an LCS algorithm.

At this moment, plentiful di�erent LCS variations exist [129], but according to Holmes

[57], the following four major components are considered universal:

1. a �nite population of classi�ers representing current knowledge of the system,

2. a performance component regulating the interaction between the environment and

classi�er population,

3. a reinforcement (or credit assignment) component distributing the reward from the

environment to particular classi�ers,

4. a discovery component using various operators to discover better rules and improve

existing ones.

However, this work is directed on a speci�c niche of ALCSs (Anticipatory Learning Clas-

si�er Systems), capable of learning a generalized predictive model [121] of the environ-

ment online. In contrast to the traditional IF-THEN rule structure, they also have a state

prediction or anticipatory part that predicts the environmental changes caused when ex-

ecuting the speci�ed action in the speci�ed context. Forming such an internal structure

might facilitate the agent's thought processes, such as planning or re�ection, without any

immediate behaviour. Thus, beliefs about the future control the decision-making process

and behaviour in the present. This architecture also allows disambiguating perceptual

aliasing problems, where the same observation is obtained in distinct states requiring

di�erent actions.

The capabilities of ALCS were exhaustively examined in environments with discrete and

manageable observation spaces - such as navigating an agent in a maze or correctly

Chapter 1. Introduction 14

determining an answer in a binary multiplexer problem [18]. No comparative research

focused on the problems where the observation space contains the attributes expressed

as real-valued numbers - for example, a car's speed ranging from 0 to 200 km/h or a

particular temperature range have not been performed yet.

This thesis demonstrates that certain families of ALCS can be adjusted to new problem

domains. Despite the complicated and interconnected components hurdle, facilitating

certain modi�cations allows them to be taking advantage of bene�ts associated with

internal knowledge representation and prediction mechanisms. In his anticipatory sys-

tems book[102], Rosen goes one step further by putting the idea of anticipations in a

mathematical framework and later identifying them as the essence of life[101].

In anticipatory systems, as I have

de�ned them, the present change of

state depends on a future state, which

is predicted from the present

circumstances on the basis of some

model. Anticipatory, model-based

behavior provided one basis for what

I later called complexity, and which I

de�ned in "Life Itself" on the basis of

non-computability or

nonformalizability of models of a

system of this kind.

Robert Rosen in[101]

While this work does not pursue such a big claim, it proves that a greater realm of

possible problems can be expressed by ALCS frameworks, therefore bene�ting from more

comprehensive, intrinsic representation.

1.1 Motivation and challenges

ALCS were designed and thoroughly tested in problems where the concept or a function

sought is essentially �logical� - meaning that it can be expressed by a combination of log-

ical operators applied to attribute values[138]. However, in many problems, the solution

cannot be conveyed solely by and, or, not operators because its discrimination surface

is oblique - neither parallel nor perpendicular to the attribute axes. If the problem's

discrimination surface is oblique, the classi�er rule can capture parts of space within

Chapter 1. Introduction 15

hyper-rectangles, which can only approximate the function shape using multiple distinct

classi�ers.

The most popular family of LCS and the ALCS predecessor - XCS (Extended Classi�er

System) [134], was comprehensively evaluated for problems with non-linear decision sur-

faces and real-valued input. In 1999 Lanzi took an approach to use S-classi�ers[76], where

the classi�er's condition parts are Lisp S-expressions and can be based on arithmetic func-

tion primitives. In 2000 Wilson focused on continuous value inputs introducing XCSR

implementation[136]. The condition attribute was an interval represented by a pair of

numbers - the centre and the spread. He examined if the optimal decisive thresholds are

found automatically in a modi�ed Multiplexer benchmark problem. In the same year, he

introduced an XCSI system[138], forming bounded intervals for integer inputs. One year

later, in 2001, another implementation named XCSF[140] allowing piecewise-linear func-

tion approximation was proposed. For a function y = f(x), the system assumed that x is

the input, y the payo�, and after a su�cient amount of sampling, the input space XCSF

should converge to a population of rules that, over their respective input ranges, predict

payo� well. In 2003 Stone and Bull scrupulously addressed the limitations of the XCSR

system[117] and introduced two new interval representations alongside a more versatile

benchmark problem. The OBR (ordered-bounded) and UBR (unordered-bounded) rep-

resentations describe the interval using left x1 and right x2 bounds but in OBR x1 < x2.

By neglecting the explicit ordering, the system evolves better classi�ers using the UBR

representation. In 2005 Dam and Abbass also proposed a Min-Percentage approach[29],

attempting to overcome some UBR drawbacks. Recent XCSR advancements aims to gen-

erate interpretable rules for high-dimensional data by employing encoder/decoder models

for dimensionality reduction [86, 119]. Proposed modi�cations, by using deep-learning

techniques, managed to obtain almost 99% accuracy on the MNIST database [33], where

each data instance is represented by a vector of 784 values ranging [0, 1].

In 2007, Cielecki [27, 125] proposed a real-valued modi�cation towards GCS (Grammar-

based Classi�er Systems) in which the knowledge is represented by a Context-Free-

Grammar in Chomsky normal form. The system evolves a population of rules where

each one represents a single grammar. Preliminary tests were outperformed Stone's

XCSR system by creating a perfect set of easy to interpret classi�ers.

For the ALCS, only the preliminary studies transforming the real-valued input using

discretization methods were performed by Unold in 2016 [126]. This work tries to bridge

the gap between advancements from various LCS implementations mentioned earlier

and the anticipatory systems by introducing features and modi�cations for handling

input signals, especially discretization or interval encoding representations. Such changes

would greatly increase the potential applicability of the algorithm. However, due to the

Chapter 1. Introduction 16

more complex rule structure of ALCS (additional prediction part) and the presence of

other discovery components, certain limitations were observed and addressed herein.

The biased exploration enhancement investigates the impact of optimizing the action

selection method using speci�c strategies to stimulate knowledge formation [68]. On the

other side, there is also a problem with long-action chains and diminishing reward that

might occur when using �ne-grained nominal representation for continuous data [69] -

in this case, incorporating an average reward criterion resulted in a more distinct payo�

landscape and faster knowledge acquisition.

1.2 Research hypothesis, its aims and goals

The research hypothesis is formulated as follows:

Anticipatory Classi�ers Systems can build the correct internal model of the

environment using the real-valued input.

Aims and goals

In order to validate the expressed hypothesis, the following goals have been formulated:

1. Propose modi�cations towards the ACS system capable of handling real-valued

input.

2. Propose relevant benchmarking problems and metrics for evaluating ACS perfor-

mance.

3. Propose relevant improvements towards neoteric changes.

4. Conduct an empirical evaluation of intended adjustments.

5. Develop an open-sourced Python Machine Learning framework for evaluating var-

ious LCS algorithms.

1.3 Thesis structure

Chapter 2 introduces selected topics related to Learning Classi�er Systems and handling

of the real-valued input. The evolution of a system capable of predicting the conse-

quences of executed actions is emphasized. Moreover, the experimentation process is

described, including the statistical veri�cation of obtained results and the description

Chapter 1. Introduction 17

of key performance indicators alongside benchmarking problems. Chapter 3 proposes

two procedures for dealing with a real-valued input. The �rst one involves a novel sys-

tem, representing the environmental state by the interval predicates, while the other

transforms input signal before an actual algorithm perceives it. Both Chapter 4 and 5

focus on potential issues spotted when processing real-valued data - optimizations for a

more e�cient knowledge collection process and the problems when obtaining the reward

feedback requires multiple steps. Finally, Chapter 6 concludes the thesis and presents

potential future research directions.

Chapter 2

Selected topics of LCSs

2.1 Road towards ALCSs

The concept of LCS was introduced by John Holland in 1975 [48] to model the idea of

cognition based on adaptive mechanisms. From the early days, they consist of a set of

rules named classi�ers combined with mechanisms in charge of evolving them. Initially,

the goal was to handle problems related to online interaction with external environments,

as described by Wilson in [132].

To accomplish this, the emphasis was put on parallelism in the architecture and evolu-

tionary mechanisms allowing the agent to adapt to potentially changing environments

[40]. This approach was referenced as �escaping brittleness� [51] due to the problems

related to the lack of robustness of the current arti�cial intelligence systems.

The naming convention used to refer to the LCS algorithm also changed since its infancy.

Holland initially called it a classi�er system, abbreviated either as (CS) or (CFS) [100].

From that time, it was also referred to as adaptive agents [53, 54], cognitive systems [53]

and genetic-based ML (machine learning) [30, 39]. The current name of LCS was not

adopted until the late 80s [98] after extending the architecture with a credit assignment

component [51, 52].

This section provides a synopsis of crucial LCS concepts alongside the most popular

variants and their contributions to the �eld.

2.1.1 Rules and Classi�ers

LCS utilizes rules as a fundamental block of modelling knowledge in a general form.

It comprises a condition (i.e. speci�ed feature states) and an action (also referred to

19

Chapter 2. � 20

as the class). They can be interpreted using the �IF condition THEN action� logical

expression. The generalization property using the �do not care� symbol - # is possible

when the condition part is expressed with either boolean or nominal representation. Two

input situations are considered equivalent for a given classi�er if the speci�ed (non-#)

values in the condition match the corresponding attributes of the two situations.

In addition to condition and action, a rule typically has many algorithm-related pa-

rameter values associated with it (like its performance or expected reward). The term

classi�er is used to describe a rule and its associated parameters.

It is essential to realize that LCS comprise a population of single rules that collaboratively

seek to cover the problem space. The number of classi�ers needed to solve the particular

problem depends on factors like the problem complexity or rule representation used.

2.1.2 Driving Mechanisms

There are two fundamental components behind every LCS algorithm - discovery and

learning (credit assignment). Both of them have generated respective �elds of study, but

in the context of LCS, we wish to understand their function and purpose.

Discovery component

The discovery component is responsible for exploring the search space of the target

problem to uncover new rules. A vast majority of LCS algorithms employ some form

of evolutionary computation, most often a GA (genetic algorithm), employing the Neo-

Darwinist theory of natural selection [14, 39]. The evolution of rules is modelled after

the evolution of organisms using the following biological analogies:

1. a code is used to represent the genotype/genome (condition),

2. a solution (phenotype) representation is associated with that genome (action),

3. a phenotype selection process (survival of the �ttest) - the �ttest organism (rule)

has the greatest chances of reproducing and passing parts of its genome to o�spring,

4. certain genetic genome operators are utilized in order to chase after �tter organisms

(rules) [55, 108].

Two genetic operators are typically used to alter genome (rule) - mutation and crossover

(recombination). The �rst one randomly modi�es an element in an individual's genotype

(rule), while the latter recombine parts of two favourable genotypes (rules), creating a

new one. The selection pressure driving better organisms (rules) to reproduce more

Chapter 2. � 21

frequently depends on the �tness function. The �tness function quanti�es the optimality

of a given rule, allowing it to be ranked across the entire population.

GA implementation varies in particular LCS, but the overall scheme involves evaluating

all available rules, selecting the most promising o�springs (according to �tness value),

applying genetic operators, introducing new o�spring back to the population set and

�nally removing surplus or under-performing individuals.

Learning component

As mentioned, each classi�er is accompanied by speci�c parameter values. The iterative

update of them drives the process of LCS reinforcement by distributing any incoming

reward signal to the classi�ers that are accountable for it. This process serves two

purposes:

1. identi�cation of classi�ers responsible for obtaining large future rewards,

2. encourage the discoverability of new rules (by directly a�ecting the �tness value).

The learning strategy depends on the nature of the problem and is realized di�erently

in LCS implementations. In all cases, however, the process is conducted through trial-

and-error interactions with the environment, where the occasional immediate reward is

used to generate the policy (state-action mapping of agent-environment interactions),

maximizing long-term reward [84, 97, 118].

2.1.3 Functional cycle

The agent interacts with the environment in consecutive trials. Each trial consists of

sequential steps usually executed as follows:

1. Filter population [P] and select classi�ers where condition matches environmental

perception forming a match-set [M].

2. Determine the action that will be executed (depending on the strategy).

3. Narrow down the match-set by selecting only classi�ers advocating proposed action

- create the action-set [A].

4. Execute the action in the environment, obtaining a new state.

5. Re�ne classi�ers by executing discovery and learning components.

Chapter 2. � 22

Algorithm 1 LCS experiment work�ow

[P]← initialize population
while termination criteria are met do

env : reset state
RUN TRIAL(P)

end while

Algorithm 2 Proposition of single LCS trial

procedure RUN TRIAL(P)
t← 0
σ ← env: perceive situation
while trial is �nished do

if [A]−1 is not empty then
APPLY DISCOVERY COMPONENT considering σ, σ−1, a
APPLY LEARNING COMPONENT in [A]−1 considering ρ

GENERATE MATCH SET [M] out of [P] using σ
a← CHOOSE ACTION using [M]
GENERATE ACTION SET [A] according to [M] using a
σ−1 ← σ
(σ, ρ)← env : execute action a . Obtain next state and reward
t← t+ 1
[A]−1 ← [A]

end while

APPLY DISCOVERY COMPONENT considering σ, σ−1, a
APPLY LEARNING COMPONENT in [A] considering ρ

end procedure

Algorithms 2, 1 present an overall course of an experiment and an exemplary trial inter-

action for niche-based LCS implementation respectively.

The action selection and classi�ers evolution phases are implemented individually in

di�erent LCS, but the main objective of reaching the ideal generalization level is crucial

to all of them. The system should �nd a population that covers the search space as

compactly as possible without being detrimental to the optimality of behaviour.

2.1.4 Pittsburgh vs Michigan approach

One of the most fundamental distinctions in LSC research is storing knowledge by using

two di�erent approaches - Michigan-style or Pittsburgh-style. The �rst ones were pro-

posed by Holland [54] while the latter one by Kenneth DeJong and his student [111, 112].

The fundamental discrepancy is the structure of an individual. In Michigan systems,

each individual is a classi�er; in Pittsburgh, each individual is a set of classi�ers - see

Figure 2.1.

Chapter 2. � 23

Figure 2.1: Di�erences between representing knowledge in both Michigan-style and Pittsburgh-style
LCS. Figure taken from [2].

Thus, the classi�ers in Michigan-style LCS are being continuously evaluated and evolved,

while in Pittsburgh-style LCS, the same process is much more complicated because the

whole population needs to be assessed. Therefore, Michigan-style systems are typically

applied in interactive, online learning problems, while Pittsburgh ones are rather suitable

for o�ine learning [2].

This work focuses solely on the �rst class of LCS.

2.1.5 Representative LCS

This section describes Michigan-style LCS implementations contributing primarily to the

current advancements.

CS-1

Two years after presenting the theoretical model of CS, Holland and Reitman proposed

its implementation of CS-1 [54]. The system realized the Darwinian principle of the

survival of the �ttest [50, 105] and was generating adaptive behaviour by maximizing

reinforcement using the BBA (bucket brigade algorithm) [50, 105].

Some internal mechanisms like the usage of an internal message list (handling all in-

put and output communications between the system and the environment and providing

a makeshift memory) or interactions between evolving both single classi�er and entire

population were considered di�cult [39, 142]. Moreover, the obtained results were in-

consistent, signifying the need for improvements.

ZCS

The ZCS (Zeroth Level Classi�er) introduced by Wilson in 1994 [133] encompasses all

Chapter 2. � 24

LCS components while simplifying the CS-1, increasing its understandability and perfor-

mance. The signi�cant change was the removal of the internal message list (determining

the rule's format entirely by the system interface) alongside with rule-bidding credit

assignment (replacing it with BBA/Q-learning algorithm [131]).

Moreover, the classi�er �tness was based on the accumulated reward that the agent can

get from �ring the classi�er, giving rise to the "strength-based" family of LCS. As a

result, the discovery component eliminates classi�ers providing less reward than others

from the population.

ZCS achieved similar performance to CS-1, demonstrating that Holland's idea could work

even in a straightforward framework. However, the premature converge onto suboptimal

rules before search space can be explored appropriately and a stable population formed

led Wilson to consider other ways to achieve this.

XCS

In 1995 Wilson introduce yet another, groundbreaking modi�cation called the XCS (eX-

tended Classi�er System) [24, 134, 135, 137] noted for being able to reach optimal per-

formance while evolving accurate and maximally general classi�ers.

The essential changes include:

� rule �tness is based on the accuracy of predictions (forming the "accuracy-based"

LCS family),

� replacement of panmictically acting GA with a niche-GA [10] (applied only in

action set [A] instead of globally [P]),

� explicit generalization mechanism (subsumption),

� an adaptation of Q-Learning credit assignment.

The XCS design drives it to form an all-inclusive and accurate representation of the

problem space rather than focusing on higher payo� niches. Auspicious performance

results showed that RL [108] and LCS are not only linked but inherently overlapping,

rede�ning LCSs as RL endowed with generalization capabilities [74, 75]. As a result, it

becomes the most popular LCS implementation, guiding other system implementations

heavily inspired by its architecture.

Modern LCS

The latest LCS advancements focus mainly on problems related to:

Chapter 2. � 25

� Knowledge visualization and rules compaction [80, 81] - new visualization tech-

niques, termed as Feature Importance Map, Action-based Feature Importance Map

and Action-based Feature's Average value Map successfully produce human-discernable

results for the investigated complex Boolean problems. Domains, where the pat-

tern consists of 6435 di�erent cooperating rules, were translated into concise graphs,

facilitating tracking the overall training progress.

� Learning with incremental data [60, 61] - a solution for extracting knowledge and

utilizing it in further experiments using various deep convolutional blocks. The

proposed method obtained better accuracy than other state-of-the-art algorithms

using the investigated image datasets.

� Classifying images using convolutional autoencoders [59, 60, 93] - high-dimensional

problems are investigated by an ensemble of LCS with deep-learning methods.

The input is compressed using the autoencoder and later processed by the LCS

algorithm. Promising applications involve designing an intrusion detection system

[12] or classifying MNIST images [86].

� Dealing with perceptual aliasing environments [107] by utilizing a feature of verte-

brate intelligence allowing multiple simultaneous representations of an environment

at di�erent levels of abstraction. Considering states at a constituent level enables

the system to place them appropriately in holistic-level policies for multistep prob-

lems.

2.1.6 Anticipatory Learning Classi�er Systems

The �eld of cognitive psychology initially guided the investigation about the presence

and importance of anticipations. It was proved that "higher" animals form and exploit

anticipations while adopting their behaviour in distinct tasks. Wilson noted that when

simulating adaptive behaviour, the animats should be endowed with anticipations [87].

In traditional RL, the �rst approaches manifested in Dyna architecture [118], but due

to the lack of generalization capabilities, its utilization was limited. The ALCS aims to

bridge the gap for exploiting the generalization capabilities while including the explicit

notion of anticipations.

CFCS2

Riolo laid the foundations towards including predictions in 1991 by introducing a mod-

i�cation called CFCS2 [99]. It addressed the task of performing "latent learning" or

"lookahead planning" where "actions are based on predictions of future states of the

world, using both current information and past experience as embodied in the agent's

internal models of the world" [78].

Chapter 2. � 26

CFCS2 used "tags" to specify if a current action posted to a message list refers to actual

action or anticipation, claiming a reduction in the learning time for general sequential

decision tasks. Riolo was able to show the possibilities of latent learning and looka-

head planning, but the implicit formation of anticipations appeared to be misleading.

Additionally, the CFCS2 did not achieve any generalization capabilities.

ACS

The �rst system competent of evolving a maximally generalized, accurate and complete

mapping of all possible situation-e�ect-action triples observable in the environment - the

ACS (Anticipatory Classi�er System) was introduced by Stolzmann in 1997 [113, 114].

The rule structure was enhanced with an anticipatory or e�ect part that explicitly an-

ticipates the e�ects of an action in a given situation. The e�ect part could determine

which attributes change after executing an action by using a "pass-through" symbol - #,

which signi�cantly enhances the rule's interpretability. In order to perform latent learn-

ing, forming and re�ning classi�ers, a discovery component - the ALP (Anticipatory

Learning Process) was introduced.

ALP realizes the psychological Ho�mann's anticipatory behavioral control theory [44, 45]

stating that conditional action-e�ects relations are learned latently using anticipations,

which he further re�ned in [46]. The following points (visualised in Figure 2.2 can be

distinguished:

1. Any behavioural act or response (R) is accompanied by anticipation of its e�ects.

2. The anticipations of the e�ects Eant are compared with the real e�ects Ereal.

3. When the anticipations are correct, the bond between response and anticipation is

strengthened and weakened otherwise.

4. Behavioural stimuli further di�erentiate the R− Eant relations.

Chapter 2. � 27

Figure 2.2: The theory of anticipatory behavioural control. Adapted from [46].

The implementation of this component compares the obtained state σt+1 with the classi-

�er's anticipation σantt+1. Then, the quality parameter of the involved classi�er is updated

according to four possible scenarios:

1. Useless case. After performing an action, no change in perception is perceived from

the environment. The classi�er's quality decreases.

2. Expected case. When the newly observed state matches the classi�er prediction.

Classi�ers' quality is increased.

3. Correctable case. When new state σ(t+1) does not match the anticipation of cl.E.

A new classi�er with a matching e�ect part is generated.

4. Not correctable case. When new state σ(t+ 1) does not match the anticipation of

σantt+1, and it is not possible to correct the classi�er, then its quality is penalized like

in the useless case.

The classi�ers are removed from the population if they became inadequate - the quality

metrics fall below a threshold denoted by the θi parameter.

For the reward distribution, the proposed architecture is described by Algorithm 3 and

use the BBA algorithm) [50]. The performance of both components result in a system

capable of solving multistep problems, planning, speeding up learning or disambiguating

perceptual aliasing.

ACS2

Later, in 2002 Martin Butz [18, 23] extended ACS by introducing a system named ACS2.

The signi�cant changes from the previous version include:

Chapter 2. � 28

Algorithm 3 ACS Trial

procedure RUN ACS TRIAL(P)
t← 0
σ ← env: perceive situation
while trial is �nished do

if classi�er c−1 is present then
APPLY ALP considering σ, σ−1, c−1
APPLY BBA in c−1 considering ρ

GENERATE MATCH SET [M] out of [P] using σ
SELECT CLASSIFIER c from [M]
σ−1 ← σ
(σ, ρ)← env : execute classi�er's c action . Obtain next state and reward
t← t+ 1
c−1 ← c

end while

APPLY ALP considering σ, σ−1, c
APPLY BBA in c considering ρ

end procedure

� application of learning component across the whole action set [A] (all classi�ers

from [M] advocating selected action),

� introduction of GA (genetic algorithm) component,

� re�nement of learning component utilizing the Q-learning [118] algorithm,

� condition-action-e�ect triples that anticipate no change in the environment are

explicitly encompassed in population,

� addmark property to classi�er, recording the properties in which it did not perform

correctly before.

The ALP process was re�ned due to its delicate nature. The �rst improvement relates

to the process of improving new classi�er generation by covering all possible condition-

action-e�ect triples. The process called COVERING is called when there is no classi�er

in the action set [A] representing the encountered situation. A newly created classi�er

speci�es all changes from the previous situation σt−1 to situation σ in condition and

e�ect part. The idea of covering is presented by Algorithm 4.

Chapter 2. � 29

Algorithm 4 Generating new classi�er by covering condition-action-e�ect triple

procedure COVERING(σ−1, act, σ)

child← generate empty classi�er with action act

for all positions i in σ do

if σ−1 6= σt then

child.C[i]← σ−1[i]

child.E[i]← σ[i]

end for

child.q ← 0.5

return child

end procedure

Second, because the o�spring might be introduced by ALP and GA, the insertion process

must be cautious. A subsumption operation checks if one classi�er is not covered by the

other, more general one. For a classi�er clsub to subsume another classi�er cltos, the

subsumer needs to be experienced, reliable and not marked. Moreover, the subsumer's

condition part needs to be syntactically more general, and the e�ect part needs to be

identical.

The GA algorithm is responsible for generalizing the condition parts. The method starts

by determining if the GA should actually take place, controlled by the tga time stamp

and the actual time t. If a GA takes place, preferable accurate, over-speci�ed classi�ers

are selected, mutated and crossed, see Algorithm 5 and [23] for a detailed explanation.

Chapter 2. � 30

Algorithm 5 Genetic Generalization process

procedure APPLY GENETIC ALGORITHM([A], t)

if t−
∑

cl∈[A] cl.tgacl.num∑
cl∈[A] cl.num

> θGA then

for each classi�er cl in [A] do

cl.tga ← actual time t

end for

parent1 ← SELECT OFFSPRING in [A]

parent2 ← SELECT OFFSPRING in [A]

child1 ← copy classi�er parent1

child2 ← copy classi�er parent2

child1.num← child2.num← 1

child1.exp← child2.exp← 1

APPLY GENERALIZING MUTATION on child1

APPLY GENERALIZING MUTATION on child2

if RandomNumber[0, 1) < χ then

APPLY CROSSOVER on child1 and child2

child1.r ← child2.r ← parent1.r+parent2.r
2

child1.q ← child2.q ← parent1.q+parent2.q
2

child1.q ← child1.q/2

child2.q ← child2.q/2

DELETE CLASSIFIERS in [A], [P] to allow the insertion of 2 children

for each child do

if child.C is all general then

next child

else

ADD GA CLASSIFIER child to [P] and [A]

end for

end procedure

Algorithm 6, which will be used in further examples, presents the ACS2 trial work�ow

with the possibility of explicitly determining whether the GA mechanism is applied.

Experiments showed that the genetic generalization process in ACS2 decreased the pop-

ulation size and consequently speed up the computational process.

Figure 2.3 demonstrates an example of RL policy generated by a population of 322 clas-

si�ers trained over 5000 trials operating in popular Maze5 benchmarking problem. The

model knows the consequences of each available action in every possible state; therefore,

estimating the �tness value of each classi�er can suggest the most promising action. The

Chapter 2. � 31

Algorithm 6 ACS2 Trial

procedure RUN ACS2 TRIAL(P)
t← 0
σ ← env: perceive situation
while trial is �nished do

if [A]−1 is not empty then
APPLY ALP in [A]−1 considering σ, σ−1, t and [P]
APPLY REINFORCEMENT LEARNING in [A]−1 considering ρ
if genetic generalization is enabled then

APPLY GENETIC ALGORITHM in [A]−1 considering t

GENERATE MATCH SET [M] out of [P] using σ
a← CHOOSE ACTION using [M]
GENERATE ACTION SET [A] according to [M] using a
σ−1 ← σ
(σ, ρ)← env : execute action a . Obtain next state and reward
t← t+ 1
[A]−1 ← [A]

end while

APPLY ALP in [A] considering σ, σ−1, t and [P]
APPLY REINFORCEMENT LEARNING in [A] considering ρ
if genetic generalization is enabled then

APPLY GENETIC ALGORITHM in [A] considering t

end procedure

learning can be still optimized by using cognitive mechanisms like lookahead planning

[78].

Figure 2.3: Policy generated by ACS2 in Maze5 environment. The saturation of the red colour re�ects
the best classi�er �tness value. The agent is inserted randomly on the red �eld in each trial to reach the
reward state "R" by executing one of the eight possible actions.

Chapter 2. � 32

Algorithm 7 YACS Trial

procedure RUN YACS TRIAL(P)
t← 0
dv ← initialize desirability values table
σ ← env: perceive situation
while trial is �nished do

MEMORIZE PERCEPTION σ
a← CHOOSE ACTION using de�ned strategy
σ−1 ← σ
(σ, ρ)← env : execute action a . Obtain next state and reward
GENERATE MATCH SET [M] out of [P] using σ
GENERATE ACTION SET [A] according to [M] using a
if [A] is not empty then

c← APPLY CLASSIFIER COVERING considering [P], σ−1, σ, a
Append c to [P]

APPLY EFFECT COVERING considering [P], σ−1, σ, a
APPLY SPECIALIZATION OF CONDITIONS considering [P]
APPLY SELECTION OF ACCURATE CLASSIFIERS considering [P]
Update desirability values using [P], σ, dv, a, ρ
t← t+ 1

end while

end procedure

The recent advancements include the integration of the action planning mechanism [127],

PEPACS extension where the concept of Probability�Enhanced�Predictions is used for

handling non-deterministic environments [92] or BACS tackling the issue of perceptual

aliasing by building Behavioral Sequences [91].

YACS

In the same year, 2002, Gérard introduced a YACS (Yet Another Classi�er System)

[38]. It shares the same C-A-E classi�er structure as ACS and ACS2, but the essential

conceptual di�erence is that YACS is designed to decorrelate the acquisition of relevant C

and E parts by building them independently using a set of heuristics. The latent learning

process is designed to set the E parts to perceived changes in the environment and then

discover relevant C parts. Moreover, it does not take advantage of genetic generalization

mechanisms relying on the discovery process to determine signi�cant attributes correctly.

In order to compute the optimal policy YACS memorizes internally every encountered

state and uses a simpli�ed variety of value iteration. The complete trial work�ow is

depicted in - Algorithm 7

The evaluation was performed only in simple multistep maze environments reaching near

optimal solutions. The specialization process in YACS leads to less over-specialization

than the corresponding process in ACS but still su�ers from the lack of a dedicated

Chapter 2. � 33

Algorithm 8 MACS Trial

procedure RUN MACS TRIAL(P)
t← 0
dv ← initialize desirability values table
σ ← env: perceive situation
while trial is �nished do

MEMORIZE PERCEPTION σ
a← CHOOSE ACTION using de�ned strategy
σ−1 ← σ
(σ, ρ)← env : execute action a . Obtain next state and reward
σseen ← extract observed states using dv
APPLY CONDITION GENERALIZATION considering [P], σ−1, a, σ, σseen
APPLY SPECIALIZATION OF CONDITIONS considering [P], σseen
APPLY TRANSITION COVERING considering [P], σ−1, a, σ
APPLY POPULATION EVALUATION considering [P], σ−1, a, σ
APPLY ACCURATE RULES SELECTION considering [P]
t← t+ 1

end while

end procedure

generalization mechanism. Additionally, the YACS cannot deal with uncertainty and

operate only in Markov and deterministic environments.

MACS

Knowing certain limitations of ACS and YACS in 2005, Gérard proposed a MACS (Mod-

ular Anticipatory Classi�er System) [36]. He realised that speci�c problems would be

better approached with a di�erent representation of the rule formalism. While in ACS

and YACS, generalisation and selective attention are a�orded by the joint use of don't

care and pass-through symbols, it can detect if a particular attribute is changing or

not. The e�cient representation of regularities across di�erent attributes is impossible

because each situation is considered an unsecable whole.

The particularity of such regularity is that the new value of an attribute depends on

the previous value of another one. To overcome this problem, the pass-through symbol

(#) in the expected situation E was replaced with the don't know symbol (?). This

formalism allows decorrelating the attributes from E, where previously, the new value of

an attribute may only depend upon the previous value of the same attribute.

This modi�cation resulted in speci�c rule representation and modi�ed architecture for

latent learning. Each time a match-set [M] is built a rule for each attribute change

is picked, and then the �nal anticipation is combined, Algorithm 8 demonstrates the

sequence of behavioural act.

The example of di�erences between rules is illustrated using the Maze228 problem [36].

The agent's goal is to obtain the �nal reward. It perceives its surroundings (wall - 1,

Chapter 2. � 34

$

Figure 2.4: Agent located on the left side and facing north of the Maze228's reward. Two steps - rotate
right and step ahead are needed to reach it.

Step Ahead Rotate Left Rotate Right

Classi�ers

0#9###### 0 0????????

#0###10## 0 ?0???????

0#9##1### 0 ?0???????

#0####### 0 ??0??????

0#9###### 0 ???9?????

0######## 0 ????0????

0#####0## 0 ?????0???

#######0# 0 ??????0??

##9###### 0 ??????0??

##91#10## 0 ???????1?

0######## 0 ????????0

######0## 1 0????????

#######0# 1 ?0???????

0######## 1 ??0??????

#0####### 1 ???0?????

##9###### 1 ????9????

###1##### 1 ?????1???

####1#### 1 ??????1??

#####1### 1 ???????1?

######### 1 ????????0

##9###### 2 9????????

###1##### 2 ?1???????

####1#### 2 ??1??????

#####1### 2 ???1?????

######0## 2 ????0????

#######0# 2 ?????0???

0######## 2 ??????0??

#0####### 2 ???????0?

######### 2 ????????0

Anticipation 000900010 000091110 911100000

Table 2.1: MACS population of classi�ers for the perception of 009111000 in Maze228 environment -
see Figure 2.4. Notice how atomic classi�ers create �nal anticipation by using the dont-know symbol.

path - 0 or reward - 9) using the clockwise vector of nine attributes and can execute

three actions - step ahead - 0, rotate left - 1 or rotate right - 2. Assume that the current

situation is depicted in Figure 2.4, where the agent is located on the left of the reward,

and its actual perception is 009111000.

After training, MACS represents complete knowledge about this environment using 211

classi�ers. The �nal anticipation is obtained after combining particular classi�ers selected

for each action, which is visualized in Table 2.1.

On the other side, the ACS2 creates a much larger population of 402 reliable classi�ers.

There is a single classi�er describing the change of multiple attributes for each action.

The anticipation in both cases is the same, but due to the speci�c nature of this problem,

Chapter 2. � 35

Step Ahead Rotate Left Rotate Right

Classi�ers ##9111#0# 0 ##0900#1# ##911#00# 1 ##009#11# 009#11### 2 911#00###

Anticipation 000900010 000091110 911100000

Table 2.2: ACS2 population of classi�ers for the perception of 009111000. A single classi�er is used to
represent each action. Despite this, the population size is still much larger than in MACS.

MACS results in an overall more compact internal model of the environment. The

di�erence is depicted in Table 2.2.

2.2 Real-valued input challenge

Most real-world environments or datasets are represented using exclusively continue-

valued inputs or alongside discrete attributes. Unfortunately, the described ALCS im-

plementations were not initially designed for such representations. The fundamental

modi�cation required to overcome the limitation above is the adaptation of rule repre-

sentation within the system. Despite the variety of possible approaches listed in this

chapter, each comes with its own merits and perils.

Two signi�cant concepts involving the discretization and interval encoding using ded-

icated alphabets will be pursued later, while the hindmost ones involving the neural

network and fuzzy logic will be only mentioned. There are two main reasons for this

decision:

1. drastic changes in rule representation requires signi�cant modi�cations in existing

and tightly coupled components. In some cases, some of them are not usable in

their proposed form - like the ALP component in ACS systems needs a complete

rede�nition for other alphabet encodings,

2. rule interpretability is relevantly blemished.

Therefore, even if some approaches are more appealing for the problem, their usage

violates principal ALCS virtue of transparency (creating a compact set of human-readable

rules) or does not formally specify the behaviour of related inner mechanisms ful�lling

the evolution and assessing each classi�er. However, more detailed research is highly

advised but will not be pursued herein.

Chapter 2. � 36

2.2.1 Discretization

One of the approaches for handling continuous attributes is to partition them into a

number of sub-ranges and treat each sub-range as a category. This process is known as

discretization and is used across many families of ML algorithms in order to create better

models [35]. In the XCS family, the modi�cation of XCSI [139] adopted the algorithm

for the integer domain. The modi�cation was evaluated on the Wisconsin Breast Cancer

dataset and turned out to be competitive with other ML algorithms. Minding the na-

ture of ALCS, the usage of such nominal values would also be the most straightforward

approach. ALCS systems by design are not limited by ternary representation, therefore

creating an arbitrary number of potential states is achievable. The �rst such implemen-

tation called rACS (real Anticipatory Classi�er System) was proposed by Unold and Mi-

anowski in 2016 [126] and tested successfully on Corridor and Grid environments. Both

have a regular structure, meaning that the intervals are evenly distributed throughout

the investigated range.

Unfortunately, the number of ways to discretize a continuous attribute is in�nite. Kot-

siantis in [65] takes a survey of possible discretization techniques, but in this work, the

preferred method is to divide the search-space into n equally spaced intervals, referred

later as bins or buckets. When the n is large, system precision is increased, resulting

obviously in the growth of the classi�er population. Such a population can be fur-

ther optimized by compacting the classi�ers operating in the neighbouring space regions

[139, 144]. On the contrary, when the n is low, the system under-performs due to the

inability of creating accurate classi�ers.

The process of assigning a discrete value for each consecutive interval region within [0, 1]

range is depicted on Figure 2.5.

0 x 1

0 1 2 . . . n− 1

n bins

Figure 2.5: Representation of allele as a natural number of the partition. The size of the input space
is n.

Such a solution for real-value representation in a simple scenario does not require signi�-

cant changes to any components and retain the human readability and interpretability of

created rules. However, when an arbitrary number of bins for each observation attribute

Chapter 2. � 37

is used, certain modi�cations might be necessary (for example, additional restrictions for

the GA cross-over operator).

2.2.2 Interval predicates

The discretization approach assumed that a distinct value of the condition attribute

represents a �xed-length interval part of an input range. Another approach is to encode

the input using custom hyper-rectangular boundaries described by half-open interval

[pi, qi), which matches the environment signal xi if pi ≤ xi < qi.

Such approach facilitates creation of more general and compact population size, due

to arbitrarily interval ranges. In 1999 Wilson took the approach to adapt the XCS

to automatically search for optimally decisive thresholds [136]. His approach represen-

tation named CSR (center-spread representation) used to represent an interval tuple

(ci, si) where ci, si ∈ R where ci is the center of the interval, and si its spread. The

interval is therefore described in Equation 2.1:

pi = min(pmin, ci − si)

qi = max(qmax, ci + si)
(2.1)

His system, called XCSR, di�ers only at the input interface, mutation and covering

operators. Preliminary tests revealed the weakness of the crude mutation operator.

Moreover, the testing environment, which is very regular and therefore did not challenge

the agent with interesting problems like noise or data contradiction.

In 2003 Stone and Bull thoroughly addressed those problems in [117] by introducing

two new representations - OBR (ordered-bounded) and UBR (unordered-bounded). The

OBR is an extension of Wilson XCSI [138] but enhanced with real-valued interval tuple

(li, ui) where li, ui ∈ R. Here li and ui relates to lower and upper bounds, respectively.

The encoding imposes li < ui ordering; therefore, all system components that might

inadvertently change must be recognized and taken care of. This requirement was relaxed

in UBR [140], thus the same interval can be encoded by both (pi, qi) and (qi, pi). The

advantage is that no operator constraints are needed when the ordering restriction is

violated, which constitutes a form of epistasis between li and ui, as their values are

mutually dependent. The authors showed that CSR and OBR are biased in interval

generation in bounded solution spaces. The UBR obviating limitations of OBR was

assumed to yield better results in one of the testing problems and therefore considered

superior to the other ones.

Chapter 2. � 38

Finally, in 2005 Dam and Abbass [29] recognized that UBR changes the semantics of the

chromosome by alternating between min and max genes. This discrepancy is challenging

for the XCS because it disturbs the genetic process evolving the population of classi�ers

[48] [39]. They present the Min-Percentage representation of (mi, ki) where mi, ki ∈ R
tuple, where the interval is determined by the Equation 2.2, which compared with UBR

did not provide any substantial improvements.

pi = mi

si = ki · (kmax − pi)

qi = mi + si

(2.2)

It is also worth mentioning an important, subtly di�erent, family of learning classi�er sys-

tems handling real-valued input natively by approximating functions. The most popular

implementation of XCSF [42, 140] computes the payo� value locally instead of learning

its prediction through a gradient-descent type update. The classi�er's condition covers

the continuous input by an OBR interval. Enhanced with additional weights vector,

updated by regression techniques, the output prediction can be calculated. The classi�er

structure was further simpli�ed by eliminating the proposed action. Because of the lack

of explicit state anticipation capabilities, the function approximation learning classi�ers

systems are not considered in this work.

2.2.3 Neural networks

O'Hara and Bull experimented with representing the rule structure of an XCS classi-

�er with two arti�cial neural networks, introducing the system named X-NCS [89, 90].

While the �rst one, called the action-network, determines the application condition of

the classi�ers replacing the condition-action part, the latter one - anticipation network -

forms the description of the predicted next state.

Both networks are fully connected MLP (multi-layered perceptrons) with the same nodes

in their hidden layer. The input layer in both cases matches the observation state vector

provided by the environment. In the action network, the size of an output layer is equal to

the number of possible actions incremented with an extra node signifying a non-matching

situation. Hence, the anticipation network is responsible for predicting the next state;

the size of its output layer is equal to the input one. Figures 2.6 and 2.7 visualize both

topologies.

Chapter 2. � 39

The system starts with an initial random population, containing the maximum number

of classi�ers considered in a particular experiment, as opposed to standard XCS [134].

The network weights are randomly initialized in the range [−1.0, 1.0] and are updated

throughout the experiment using two search techniques - the local search performed by

backpropagation complemented by the global sampling performed by GA.

In order to assess the general system error, all of the internal mechanisms remained

unchanged except for the calculation of the rule's absolute error, which is de�ned as the

sum of prediction and lookahead error (measuring the correctness of the prediction).

The critical di�erence between the classic ternary representation is the lack of explicit

wildcard symbol and hence no explicit pass-through of input to anticipations. A concept

of a reliable classi�er cannot be applied in X-NCS - the anticipation accuracy is based

on a percentage of accurate anticipations per presentation.

The authors tested the extension in various con�gurations showing promising results,

especially on discrete multistep problems. Due to novel rule representation, the X-

NCS system is suited for real-valued data representation, but the conceptual di�erences

make it di�cult to compare it with other systems. Aspects like vague generalization

metric, constant population size or the anticipation accuracy computation would require

dedicated research solely on this implementation.

Figure 2.6: The topology of the fully connected MLP of the network determines the agent's action based
on the observed state (input layer). The number of output nodes equals the number of possible actions
with an extra state representing a non-matching case. Figure adapted from [90].

Chapter 2. � 40

Figure 2.7: The topology of fully connected MLP of the network determines the anticipated states using
the observed environmental state (input layer). Speci�c output nodes refer to particular input nodes.
Figure adapted from [90].

Interestingly, two years later, a similar system evolved. The authors take advantage

of the idea of both the function mapping [141] and the neural anticipation [90]. The

classi�er structure was extended with a parametrized anticipatory function anf , which

is trained using supervised learning based on the current state σt and the next state

σt+1. The proposed XCSAM system (XCS with anticipation mappings [15]) does not

use the lookahead error and focuses on the value of actions. The authors claim that the

anticipatory capabilities are obtained as the "side e�ects". Because of the lack of any

dedicated prediction components, the anticipatory burden falls on the function anf . Pre-

liminary experiments showed that both X-NCS and XCSAM obtain comparable results

on discrete multistep environments, however both of the systems can be generalized to

problems involving continuous inputs [77].

2.2.4 Fuzzy representation

The Michigan-style genetic fuzzy rule-based system [28] is a machine learning system that

employs linguistic rules and fuzzy sets in its representation and an evolutionary algorithm

for rule discovery. Casillas proposed relevant modi�cations to the XCS and introduced

a new modi�cation called Fuzzy-XCS [26]. The newly created system was capable of

dealing with continuous states and actions while maintaining maximal generalization. A

similar solution was also proposed later by Bonarini in [9].

Chapter 2. � 41

Kondziela undertook an approach to create a fuzzy variant of ACS in 2021 [64]. The

presented idea modi�ed the system comprising four major elements [103]:

� fuzzi�cation - assigns set membership of current environmental perception,

� inference - aggregates the results by comparing the membership functions with

collected knowledge,

� knowledge-store - stores population of classi�ers where representing rules using the

Fuzzy Inference System (Mamandi) of IF..AND..THEN statements [146],

� defuzzi�cation - provides a single value response obtained from the inference phase

determining the �nal action value.

As the �rst step the vector of environment signal determines set memberships using

prede�ned functions [9, 25]. Then using the rule representation described by Equation

2.3 the match set is formed. Each input value Xi is equal to a linguistic set of Ãi =

{Ai1∨· · ·∨Ail}meaning that classi�er internally consists of a rule described with {0, 1,#}
symbols (ternary alphabet).

IF X1 is Ã1 and . . . Xn is Ãn THEN Y is B (2.3)

In the next step, the action set [A] is formed in the same way as in traditional ACS, but

the �nal action selection procedure di�ers - it is proposed by taking advantage of each

rule's membership function values, and the Center of Gravity method for defuzzi�cation

[64].

Preliminary tests made on multistep, discrete maze environments showed that fuzzy

ACS implementation successfully predicted more than 75% of encountered situations and

maintained a limited number of reliable classi�ers (although both metrics were highly

oscillating). The author did not report any other operational performance indicators.

The usage of fuzzy logic enables the system to handle the real-valued input naturally.

The apparent impediment is the requirement to specify membership functions for each

environmental perception upfront. The selection of optimal values is complicated [8], and

further increases the number of overall system tunable parameters. The other identi�ed

�aw is the GA phase which is not suited for new representation. Both the mutation and

cross-over operators should be reviewed accordingly.

Chapter 2. � 42

2.3 Key Performance Indicators

The ALCS comprise complex mechanisms such as ALP or GA, which might be hard to

comprehend and analyse. Therefore, speci�c metrics re�ecting their nature were chosen

to visualise system behaviour over time and assess its performance. This section presents

several KPIs (key performance indicators) used across further experimental evaluations.

Each of them can be collected at a particular interval of time (for example, every ten

trials) and can access the properties of both the environment and the agent within the

single simulation.

2.3.1 Classi�er population size

Each LCS creates an internal population of classi�ers. Knowing its total size ‖P‖ rep-
resents the agent's ability to express the internal model of the environment. When

maintaining high performance, having a smaller population also means that the agent is

commendable at building a more compact and compressed representation of knowledge

[18].

Besides knowing the total population size, it's subset of reliable classi�ers size ‖Preliable‖
might also be easily obtained - Equation 2.4. The di�erence ‖P‖−‖P_reliable‖ estimates

the size of currently evolving classi�ers, where part of them gets either accepted or

dismissed. Eventually, the total population and reliable population size should converge

throughout an experiment to a single value.

Preliable = {cl ∈ P : cl.q ≥ θr} (2.4)

2.3.2 Generalization

The generalization metric [16, 18, 21, 22] re�ect the agent's generalization abilities. It

is calculated by analyzing all classi�ers in a population [P]. Equation 2.5 shows the

proportion of condition attributes containing the wildcard symbol.

Generalization(P) =

|
⋃(

cond.att‖cond ∈
(
cl.cond‖cl ∈ P

)
∧ cond.att = #

)
|

|
⋃(

cond.att‖cond ∈
(
cl.cond‖cl ∈ P

))
|

(2.5)

Chapter 2. � 43

The greater generalization score means that the algorithm creates classi�ers covering a

larger portion of the observation space, creating a more compact solution of the problem.

2.3.3 Knowledge

The knowledge KPI was proposed, which allows analyzing all possible consequences

of actions in all available states of a particular environment, giving a comprehensive

picture of the state of the agent's internal environment model [114]. The metric is a

ratio of reliable classi�ers that can predict each state-action-state' movement and the

total number of possible transitions.

Due to the possible complexity of increased observation space, not all environments can

calculate this metric. Moreover, the agent itself obviously does not have access to the

internal state of the environment.

2.3.4 Trial time

The trial time is simply a time needed to complete one agent's trial phase - either

exploration or exploitation. This metric is used to infer the computation complexity of

the examined algorithms and environments.

The computations are performed in a controlled environment on a single machine in all

cases. Therefore, the obtained results can be relatively compared to each other.

2.3.5 Exploitation performance

The exploitation performance is a measure of utilizing the agent's internal model of the

environment in order to obtain the highest possible payo� [118]. It is most often gathered

in the exploit phase, where the agent focuses solely on selecting the best possible classi�ers

for each situation.

Depending on the type of environment, this metric might di�er - for example, in a

multistep Corridor, the interest is in reaching the �nal state as fast as possible. Therefore,

the metric is simply the number of steps in each trial that should be close to the optimal

value. For a single-step environment, such as rMPX, a reward is paid out after giving

a correct answer in each trial. In this case, a good measure is to keep track of latest

obtained rewards and average them.

The metric itself depends on signi�cant components (learning and credit assignment)

involved in the agent's algorithm to estimate its practical usefulness.

Chapter 2. � 44

2.4 Statistical veri�cation of results

In order to assess the signi�cance and performance of obtained results, two statistical

approaches were used. The majority of metrics were compared using the BEST (Bayesian

estimation) method [72], while the other straightforward metrics were just averaged.

2.4.1 Bayesian analysis

The Bayesian approach towards comparing data from multiple groups was used instead

of traditional methods of NHST (null hypothesis signi�cance testing). They are more

intuitive than the calculation and interpretation of p-value scores, provides complete

information about credible parameter values and allow more coherent inferences from

data [34].

Benavoli depicted the perils of the frequentist NHST approach when comparing machine

learning classi�ers in [6], which is particularly suited for this work. He points out the

following reasons against using the NHST methods:

� it does not estimate the probability of hypotheses,

� point-wise null hypotheses are practically always false,

� the p-value does not separate between the e�ect size and the sample size,

� it ignores magnitude and uncertainty,

� it yields no information about the null hypothesis,

� there is no principled way to decide the α level.

Additionally, in 2016 the American Statistical Association made a statement against p-

values [130] which might be a motivation for other disciplines to pursue the Bayesian

approach.

In this work, we focus on establishing a descriptive mathematical model of the data

D using the Bayes' theorem deriving the posterior probability as a consequence of two

antecedents: a prior probability and a "likelihood function" derived from a statistical

model for the observed data (Equation 2.6).

p(µ, σ, ν | D)︸ ︷︷ ︸
posterior

= p(D | µ, σ, ν)︸ ︷︷ ︸
likelihood

× p(µ, σ, ν)︸ ︷︷ ︸
prior

/
p(D)︸ ︷︷ ︸
evidence

(2.6)

Chapter 2. � 45

Each experiment is performed 50 times, generating independent samples, which according

to the Central Limit Theorem, should be enough to consider it is approximating the

normal distribution [62, 73]. To further provide a robust solution towards dealing with

potential outliers, the Student t-distribution is chosen. The prior distribution, described

with three parameters - µ (expected mean value), σ (standard deviation) and ν (degrees

of freedom) is presented using the Equation 2.7. The standard deviation σ parameter

uniformly covers a vast possible parameter space. The degrees of freedom follows a

shifted exponential distribution controlling the normality of the data. When ν > 30, the

Student-t distribution is close to a normal distribution. However, if ν is small, Student

t-distributions have a heavy tail. Therefore, value of ν ∼ Exp(1
29) allows the model to

be more tolerant for potential outliers.

µ ∼ N(µD, σ
2
D)

σ ∼ U(
1

100
, 1000)

ν ∼ Exp(
1

29
)

(2.7)

The posterior distribution is approximated arbitrarily high accuracy by generating a

large representative sample using MCMC (Markov chain Monte Carlo) methods. Its

sample provides thousands of combinations of parameter values < µ, σ, ν >. Each such

combination of values is representative of credible parameter values that simultaneously

accommodate the observed data and the prior distribution. From the MCMC sample,

one can infer credible parameter values like the mean or standard deviation.

2.4.2 Example

To show an example of this technique, the performance of an ACS2 algorithm operat-

ing in a multistep, toy-problem - Simple Maze environment [37] (see Figure 2.8) will

be discussed in terms of Hypothesis H0 using three methods - the summary statistics,

frequentist approach and the Bayesian estimation.

Hypothesis H0 (Null hypothesis): The classi�er population sizes obtained by ACS2

and ACS2 GA in the last trial x are equal.

Chapter 2. � 46

Figure 2.8: The Simple Maze environment is a Partially Observable Markov Decision Problem where
the agent is placed in the starting location (denoted as "S"), at the beginning of each new trial, and the
goal is to reach the �nal state "F" by executing four possible actions � moving north, east, south or west.
The bolded lines represent the walls, and the goal can be reached optimally in seven successive steps.

The ACS2 agent will be tested in two variants - with and without the genetic algorithm

modi�cation. All other settings are identical. Both agents in each experiment will execute

500 trials, each time randomly selecting an action. Finally, each such experiment will be

independently repeated 50 times.

2.4.2.1 Descriptive statistics

The �rst option is to understand the data and extract basic summary statistics. Figure

2.9 presents a whisker plot showing basic data aggregations like the minimum, �rst

quartile, median, third quartile, maximum values alongside the histogram visualization.

While the values look similar, it is still unclear whether they can be considered the same.

Chapter 2. � 47

Figure 2.9: Descriptive statistics depicting population size obtained after executing two versions of the
ACS2 agent in the Simple Maze environment.

2.4.2.2 Frequentist approach

For the frequentist approach �rst two hypotheses about data distribution are formed:

Hypothesis H0: The classi�er population sizes obtained by ACS2 and ACS2 GA are

equal.

Hypothesis H1: The classi�er population sizes obtained by ACS2 and ACS2 GA are

di�erent.

In traditional NHST work�ow, the �rst step would be to apply normality tests to verify

whether the data is normally distributed. However, looking at the histograms from the

Figure 2.9 we might assume that the data follow the Gaussian distribution and skip it.

If the H0 hypothesis is rejected, there is no signi�cant di�erence between the means.

To do so, a p-value will be calculated and compared with a certain threshold α ≤ 0.05.

If the p-value falls below the threshold, it means that the null hypothesis H0 can be

rejected and there is 95% con�dence that both means are signi�cantly di�erent.

In this case, after running the two-sided t-Test, the calculated p-value is 0.68, which

indicates strong evidence for the H0 hypothesis, meaning that it is retained. Remember

that NHST does not accept the null hypothesis; it can be only rejected or failed to be

rejected. Stating that it is correct implies 100% certainty, which is not valid in this

methodology.

Chapter 2. � 48

2.4.2.3 Bayesian estimation

Throughout this work a PyMC31 open-sourced Python framework is used for the prob-

abilistic programming. Figure 2.10 depicts two separate Student-t posterior distribution

hyper-parameters estimated by using the MCMC method.

Figure 2.10: Parameter distributions of Student-t estimation of population size data for two agents.

The posterior distribution allows assessing the null value more credibly. Contrary to

NHST, it can also accept H0. To do so, a researcher de�nes a ROPE (region of practical

equivalence) [71], enclosing the values of the parameter that are deemed to be negligibly

di�erent from the null values for practical purposes. When nearly all the credible values

fall within the ROPE, the null value is said to be accepted for practical purposes.

Figure 2.11 shows the graphical example of verifying the null hypothesis using the dif-

ference between two posterior distributions of population means µACS2−µACS2GA. The
ROPE region (red sector) was assumed to be [−1, 1], which means that the di�erence of

one classi�er is acceptable to consider two populations equal. Blue lines represent the

area of credible values of the previously calculated di�erence. Since the credible value

region does not fall into the ROPE region, the H0 is rejected (while the NHST approach

retained it).

1https://docs.pymc.io/en/v3

Chapter 2. � 49

Figure 2.11: Assessing H0 using the probabilistic density function of µ parameter di�erence of two ex-
amined populations. The ROPE interval was chosen to [−1, 1] meaning that a di�erence of one classi�er
can be neglected in terms of population equality. Even though the mean di�erence is less than one, the
H0 is rejected because the HDI region is not contained within the ROPE.

2.5 Overview of the selected environments

The range of problem domains to which ALCS can be broadly divided into two categories:

classi�cation problems and RL problems [20]. Classi�cation problems seek to �nd a

compact set of rules that classify all problem instances with maximal accuracy. They

frequently rely on supervised learning, where feedback is provided instantly. The RL

problems seek to �nd an optimal behavioural policy represented by a compact set of

rules. These problems are typically distinguished by inconsistent environmental rewards,

requiring multiple actions before a reward is obtained. They can be further discriminated

by having Markov properties [19, 104, 108].

This section describes six single- and multi-steps environments used in further experi-

ments. All of them are stationary, Markov toy-problems exhibiting real-valued properties

facilitating the evaluation of modi�cations of anticipatory systems. Most of the environ-

ments were used as benchmarks in other works related to measuring the performance of

the LCS; however, the Cart Pole environment was never used in this class of algorithms

before.

All the mentioned environments pose the standardized interface for enabling the agent

to interact with it in a consistent manner [66]. After executing an action, the agent is

presented with the current observation (that is not equal to its internal state), possible

Chapter 2. � 50

reward from previously executed action, and whether the interaction is �nished. In most

cases, a speci�c reward state acts as an incentive, motivating the forager to reach it.

2.5.1 Corridor

The corridor is a 1D multi-step, linear environment introduced by Lanzi to evaluate the

XCSF agent [77]. The system output is de�ned over a �nite discrete interval [0, n]. On

each trial, the agent is placed randomly on the path and can execute two possible actions

- move left or right (which corresponds to moving one unit in a particular direction - see

Figure 2.12.

0 nagent

Figure 2.12: The Corridor environment. The size of the input space is n.

Lanzi used a real-valued version of this environment where the agent location is elucidated

by a value between [0, 1]. Prede�ned step size was added to the current position when

it executed an action, thus changing its value. When the agent reaches the �nal state

s = 1.0, the reward is paid out.

The environment examined herein signi�es the state already in discretized form, available

in three precon�gured sizes with increasing di�culty. The main challenge for the agent

here is mainly to learn the reward distribution in possibly long action chains successfully.

Reward scheme: The trial ends when it reaches the �nal state n (obtaining reward

r = 1000) or when the maximum number of 200 steps in each episode is exceeded.

Otherwise, the reward after each step is r = 0.

2.5.2 Grid

Grid refers to an extension of the Corridor environment [77]. A vertical dimension and

two new actions (move up, move down) are added. The raw agent perception is now

identi�ed as a pair of real numbers (s0, s1), where s ∈ [0, 1]. Similarly, the environment

is presented to the agent in a discretized form. Each dimension is divided into n − 1

equally spaced buckets - see Figure 2.13.

Reward scheme: The trial ends with reward r = 1000 when the �nal state (n, n) is

reached. Otherwise, the reward after each step is r = 0. Additionally, the episode is

terminated after exceeding the maximum number of 2000 steps.

Chapter 2. � 51

(0, 0)

(0, n)

(n, 0)

(n, n)

agent

Figure 2.13: The Grid environment. The size of the input space is n2. The agent can change its
position by moving in four di�erent directions.

2.5.3 Real Multiplexer

Wilson modi�ed the traditional MPX (Boolean Multiplexer) [136], called rMPX (Real

Multiplexer), to examine the performance in single-step environments using real-valued

data.

The Boolean n�bit multiplexer de�nes a set of single-step supervised learning problems

conceptually based on an electronic device taking multiple inputs and switching them to

the single output. A random, �xed binary string of prede�ned length is generated in each

trial. It comprises two parts - the address and register segments. The �rst one points to a

speci�c register address that is considered to be a truth value - Figure 2.14 describes the

process. This environment is also exciting because it possesses the properties of epistasis

(describes non-linear interaction e�ect between multiple features) and heterogeneity (for

di�erent sets of instances, a distinct subset of features will determine the class value),

which are often present within real-world problems such as bioinformatics, �nance or

behaviour modelling.

Chapter 2. � 52

Figure 2.14: Visualization of determining the output value of 6-bit multiplexer. The address bit points
to the �rst value of the register array that is considered the true output. Diagram taken from [128].

For the rMPX, the only di�erence between a boolean multiplexer is that generated

perception consists of real values drawn from a uniform distribution. To validate the

correct answer, the additional variable - secret threshold θ = 0.5 is used to map each

allele into binary form. See Table 2.3 for the example of such mapping.

rMPX output 0.94 0.07 0.15 0.11 0.33 0.77 0.0

MPX output 1 0 0 0 0 1 0

Table 2.3: Example of mapping a random 6-bit rMPX output into MPX problem. A threshold of θ = 0.5
was used. The last bit is set to 0 as an initial value that will be changed to 1 after performing the correct
action.

However, the standard version is still not suitable to be used with ALCS. Because an

agent utilizes perceptual causality to form new classi�ers, assuming that after executing

an action, the state will change. The MPX does not have any possibility to send feedback

about the correctness of the action. Butz suggested two solutions to this problem [18].

In this work, the assumption is that the state generated by the rMPX is extended by one

extra bit, denoting whether the classi�cation was successful. This bit is by default set

to zero. When the agent responds correctly, it is being switched, thus providing direct

feedback. A detailed example can be found in [67].

Reward scheme: If the correct answer is given, the reward r = 1000 is paid out,

otherwise r = 0.

Chapter 2. � 53

2.5.4 Checkerboard

The Checkerboard is a single-step environment introduced by Stone in [117]. It was

proposed to circumvent certain limitations of the rMPX when using the interval predi-

cates approach. Because the rMPX problem can be solved by using just a hyperplane

decision surface, it is not considered to represent arbitrary intervals in solution space. In

order to solve the Checkerboard problem, a hyper-rectangle decision surface is needed

for modelling certain interval regions.

This environment works by dividing the n-dimensional solution space into equal-sized

hypercubes. Each hypercube is assigned a white or black color (alternating in all di-

mensions), see Figure 2.15. The problem di�culty can be controlled by changing the

dimensionality n and the number of divisions in each dimension nd. In order to allow

the colours to be alternating, nd must be an odd number.

Figure 2.15: 2-dimensional Checkerboard problem with nd = 3. Precise interval predicates are needed
for representing selected regions.

In each trial, the environment presents a vector of length nd or real numbers in the

interval [0, 1), representing a point in the solution space. The agent's goal is to guess

the correct colour by performing one of two actions depending on a pointed hypercube's

colour (black or white).

Reward scheme: When the correct answer is given, the reward r = 1 is paid out,

otherwise r = 0.

Chapter 2. � 54

2.5.5 Cart Pole

Barto introduced the Cart Pole2 environment as a RL control problem [5]. The task

is to balance a pole that is hinged to a movable cart by applying forces (move left or

move right) to the cart's base (Figure 2.16). The system starts upright, and its goal is

to prevent the stick from falling over.

Figure 2.16: The Cart Pole environment. The goal is to maintain the pole upright for a maximum
number of trials. Figure taken from [85].

The observation returned by the environment is a vector of four elements - presented

in Table 2.4. The challenge for the agent is that each attribute has a speci�c range of

possible values, and two of them additionally span the whole search space.

Attribute Observation Min Max

σ0 Cart Position -2.4 2.4

σ1 Cart Velocity −∞ ∞

σ2 Pole Angle ∼-41.8° ∼41.8°

σ3 Pole Velocity at Tip −∞ ∞

Table 2.4: Agent's observation of the Cart Pole environment.

The environment is considered solved if the average reward is greater than or equal to

195 over the last 100 trials.

Reward scheme: After each step, a reward of +1 is provided. The episode ends when

the pole is more than 15 degrees from vertical or the cart moves more than 2.4 units

from the centre.
2https://gym.openai.com/envs/CartPole-v0

Chapter 2. � 55

2.5.6 Finite State World

Barry introduced the FSW (Finite State World) [4] environment to investigate the limits

of XCS performance in long multi-step environments with a delayed reward. It consists

of nodes and directed edges joining the nodes. Each node represents a distinct envi-

ronmental state and is labelled with a unique state identi�er. Each edge represents a

possible transition path from one node to another and is also labelled with the action(s)

that will cause the movement. An edge can also lead back to the same node. The graph

layout used in the experiments is presented in Figure 2.17.

Figure 2.17: A Finite State World of length 5 (FSW-5). The environment is especially suited for
measuring reward propagation for long action chains. Each trial always starts in state s0, and the
agent's goal is to reach the �nal state sr.

Although the environment does not expose any real-valued state, it can be treated as a

further extension of a discretized Corridor. Most importantly, the challenge is that the

agent is presented with the sub-optimal route at every step, which slows for the pursuit

of the reward. Additionally, the environment is easily scalable - changing the number of

nodes will change the total action chain length.

Reward scheme: A of reward r = 100 is provided when agent reaches �nal state sr,

otherwise r = 0.

Chapter 3

Internalizing knowledge with

increased input-space

3.1 Interval-based representation

There are several possible ways of representing intervals as described in Section 2.2. This

chapter deliberately selects the UBR approach introduced by Stone and Bull for XCS

[117], since it supersedes both CSR and OBR encodings and tries to apply it within the

ALCS algorithm.

However, any agent cannot be adapted to UBR just by changing the communication layer

with the environment. Therefore, the ACS2 algorithm was elected as a representative

candidate of the ALCS family due to its maturity and the considerable number of tightly

interacting components.

Moreover, to limit the �ourishing population size, a hybrid approach was taken to repre-

sent intervals, where each boundary is represented using a nominal integer value within a

certain range. It is assumed that the input attribute perception σi is de�ned as σi ∈ [0, 1].

Table 3.1 demonstrates an example of encoding real value input using particular encod-

ing resolutions. Obviously, low encoding values introduce ambiguity, and this parameter

must be chosen carefully.

The proprietary variation of the ACS2 system was named rvACS [67] and can be distin-

guished from the native implementation by:

� Don't care symbol - In rvACS the feature attributes consist solely of interval

ranges. The "don't care" and "pass-through" wildcard symbols are represented as

a full-ranged interval (e.g. using 4 bit encoding - UBR(0, 15) or UBR(15, 0)).

56

Chapter 3. � 57

Perception 1-bit 2-bit 3-bit 4-bit 5-bit 6-bit 7-bit

0.0 0 0 0 0 0 0 0

0.1 0 0 0 1 3 6 12

0.2 0 0 1 3 6 12 25

0.3 0 1 2 4 9 19 38

0.4 0 1 3 6 12 25 51

0.5 1 2 4 8 16 32 64

0.6 1 2 4 9 19 38 76

0.7 1 2 5 11 22 44 89

0.8 1 3 6 12 25 51 102

0.9 1 3 7 14 28 57 115

1.0 1 3 7 15 31 63 127

Table 3.1: Examples of encoded values for di�erent perceptions σ values. Maximum resolution is
calculated with 2n, where n is the number of bits used. E.g. a range [0.3; 0.6] encoded with 7 bits would
be [38; 76] for OBR/UBR or [76, 38] for UBR encoding (order is irrelevant).

� Covering - The covering process introduces randomness when a new classi�er is

added to the population. A new parameter - covering noise εcover de�nes the max-

imum noise that can alter current perception. The noise ε is drawn from uniform

random distribution U [0, εcover]. When creating a new classi�er each condition and

e�ect attribute is spread UBR(x1 − ε, x2 + ε) accordingly.

� Mutation - Similarly, a new parameter - mutation noise εmutation is used for intro-

ducing slight disturbances. For each attribute of condition and e�ect perception

string a noise ε is drawn from uniform distribution U [−εmutation, εmutation] and
added to the current value.

� Subsumption - The mechanism was extended accordingly to analyze incorporat-

ing ranges.

� Marking - Classi�er's mark stores only single encoded exceptional perceptions

(not intervals).

The general work�ow of a trial behavioral act is exactly like in the ACS2 (see Algorithm

6). However, several re�ned procedures are listed below.

Perception encoding - Algorithm 9

Every time a real-valued environmental perception σ ∈ (0, 1) is perceived, it is being

optionally disturbed and discretized uniformly using selected resolution.

Chapter 3. � 58

Algorithm 9 Perception encoding in rvACS

function ENCODE(σ, noise)

step ← 1/2bits

σ ← σ + noise . Disturb perception signal

if σ < 0 ∨ σ > 1 then

Trim σ to range (0, 1)

for i = 0 to 2bits do

x1 ← i · step

x2 ← (i+ 1) · step

if σ ∈ (x1, x2) then

return i

end for

end function

Perception matching operator - Algorithm 10

The perception matching investigates whether conditional UBR intervals incorporate

relevant encoded perception attributes.

Algorithm 10 Condition matching in rvACS

function DOES MATCH(condition, σ)

σ′ ← ENCODE(σ, 0.0)

for i = 0 to ‖condition‖ do
(x1, x2)← condition[i]

if σ′[i] 6∈ (x1, x2) then

return False

end for

return True

end function

Classi�er specialization - Algorithm 11

The ALP process utilizes previous σ−1 and current perception σ−1 for adjusting condition

and e�ect parts of the classi�er examined. To ensure robustness, a random noise signal

with maximal value of εcover, might be added.

Chapter 3. � 59

Algorithm 11 ALP classi�er specialization rvACS

function SPECIALIZE(cl, σ−1, σ)

σ′ ← ENCODE(σ, 0.0)

σ′−1 ← ENCODE(σ−1, 0.0)

for i = 0 to ‖cl.condition‖ do
if σ′[i] 6= σ′−1[i] then

ε← U(0, εcover)

cl.condition[i]← UBR(ENCODE(σ−1,−ε), ENCODE(σ−1, ε))
cl.effect[i]← UBR(ENCODE(σ,−ε), ENCODE(σ, ε))

end for

end function

Assure anticipation correctness - Algorithm 12

The DOES ANTICIPATE CORRECTLY function checks if the classi�er correctly anticipated

the consequences of performed action.

Algorithm 12 Classi�er anticipation correctness in rvACS

function DOES ANTICIPATE CORRECTLY(cl, σ−1, σ)

σ′ ← ENCODE(σ, 0.0)

σ′−1 ← ENCODE(σ−1, 0.0)

for i = 0 to ‖cl.effect‖ do
eubr ← cl.effect[i]

if eubr = WILDCARD then

if σ′[i] 6= σ′−1[i] then

return False

else

if σ′[i] = σ′−1[i] then

return False

if σ′[i] 6∈ eubr then
return False

end for

return True

end function

Subsumption - Algorithm 13

Two condition parts of the examined classi�ers are compared to distinguish whether the

second one is incorporated within the �rst.

Chapter 3. � 60

Algorithm 13 Condition subsumption in rvACS

function SUBSUMES(cond1, cond2)

for i = 0 to ‖cond1‖ do
if cond1[i] 6⊂ cond2[i] then return False

end for

return True

end function

Classi�er mark in rvACS

In traditional ACS2 implementation, the classi�er's mark property stores a set of at-

tributes for which the classi�er anticipated wrongly. This information was further used

to enhance the new classi�er during the creation process. In the rvACS, where each

conditional attribute is represented using the interval predicate, the mark still uses the

same representation but maintains a list of speci�c nominal values within each interval

that provided wrong predictions. This representation is su�cient to indicate problems

with a particular interval.

Mutation in rvACS - Algorithms 14, 15

The mutation operator tries to alter the classi�er's applicability by a�ecting the interval

ranges. Each non-general interval occurring in both condition and e�ect parts have µ

chances of being changed. The DISTURB process randomly creates a noise using range

de�ned by the εmutation parameter and adds it to decoded perception. Both εmutation and

encoding resolution must be chosen carefully because improper values might diminish the

e�ects of this operator - further encoding will not capture the di�erence introduced by

the noise.

Algorithm 14 Mutation operator in rvACS

function MUTATE(cl, µ, εmutation)

for i = 0 to ‖cl.condition‖ do
cubr ← cl.condition[i]

eubr ← cl.effect[i]

if cubr 6= WILDCARD ∧eubr 6= WILDCARD then

DISTURB (cubr, µ, εmutation)

DISTURB (eubr, µ, εmutation)

end for

end function

Chapter 3. � 61

Algorithm 15 Interval attribute generalization in rvACS

function DISTURB(iubr, µ, εmutation)

if Random Number < µ then

noise← U(−εmutation, εmutation)

x0 ← Decode �rst UBR boundary into real-valued number using encoder

iubr[0]← ENCODE(x0,noise)

if Random Number < µ then

noise← U(−εmutation, εmutation)

x1 ← Decode second UBR boundary into real-valued number using encoder

iubr[1]← ENCODE(x1,noise)

end function

3.1.1 Research questions

The conducted research aims to answer the following question regarding the rvACS

algorithm and the usage of interval-based representation

Q1. Can the rvACS algorithm form the internal model of the environment and exploit

it successfully?

3.1.2 Experimental evaluation

This section presents setup of the performed experiments and their results.

Goals of the experiments

Experiment 1 - Encoding precision

The impact of using di�erent numbers of bits for creating UBR ranges will be contrasted

with the ability to exploit the single-step rMPX environment. Due to the environment's

increasing complexity, a simple 3-bit variant is su�cient to demonstrate the potential

pitfalls of the proposed interval-based representation

Experiment 2 - Nature of the intervals

The main goal of the experiment is to investigate the nature and the evolution of condi-

tion intervals. An experiment using the Checkerboard environment will highlight signif-

icant di�erences between conditional attributes, but also the overall performance in this

environment will be analyzed.

Chapter 3. � 62

3.1.2.1 Experiment 1 - Encoding precision

The impact of setting the encoder bits value when forming interval predicates was vali-

dated on the single-step rMPX environment. Due to potential computational complexity

issues, the problem was scaled down to 3bit rMPX, where the perception vector is repre-

sented by four attributes (the �rst three bits are both the address and register, and the

last one indicates whether the given answer was correct).

The impact of four di�erent encoder bits values was examined by collecting metrics,

including representative metrics of the average reward in each execution phase and the

size of the evolved population.

In each trial of the experiment, the agent alternates between explore and exploit phases

for the total of 20000 trials, which allows a discerning shift in performance over time.

Moreover, to present coherent results and draw statistical inferences, each experiment is

repeated 50 times and those independent runs are averaged.

rvACS parameters: β = 0.05, γ = 0.95, θr = 0.9, θi = 0.2, ε = 1.0, θGA = 100,

mu = 0.1, χ = 1.0, εcover = 0, εmutation = 0.25.

Figure 3.1: Performance in 3bit rMPX UBR with 1 bit. The reward is averaged across 50 last runs.

Figure 3.2: Performance in 3bit rMPX UBR with 2 bits. The reward is averaged across 50 last runs.

Chapter 3. � 63

Figure 3.3: Performance in 3bit rMPX UBR with 3 bits. The reward is averaged across 50 last runs.

Figure 3.4: Performance in 3bit rMPX UBR with 4 bits. The reward is averaged across 50 last runs.

Statistical veri�cation

To statistically assess the population size, the posterior data distribution was modelled

using 50 metric values collected in the last trial and then sampled with 100,000 draws. -

Table 3.2. The average value from the last 100 exploit trials is considered a representative

state of algorithm performance for the obtained reward.

1 bit 2 bit 3 bit 4 bit

population of classi�ers 8.8 ± 0.13 29.58 ± 0.71 1392.25 ± 25.68 5892.82 ± 86.8

reliable classi�ers 8.75 ± 0.12 28.47 ± 0.54 127.08 ± 2.33 44.35 ± 1.6

reward from last 100 exploit runs 1000.0 998.6 974.6 927.6

Table 3.2: Descriptive statistic metrics obtained using Bayesian estimation of obtained results for
rMPX problem.

Observations

The rvACS algorithm implementation proved to be capable of solving 3bit rMPX prob-

lem with the hyper-plane decision surface. The performance of four distinct values of

encoding resolutions are depicted in Figures 3.1, 3.2, 3.3 and 3.4

Chapter 3. � 64

For this particular environment, the threshold mapping each real-value attribute into

binary representation was set to 0.5; therefore, satisfying performance was obtained with

very rough encoding values. The agent consistently exploited the environment with a

single encoding bit by choosing the correct answer and converging the population size.

Raising the encoding bits should lead to similar results but slower. Due to the expansion

of possible interval combinations, the learning component needs more time to evolve

proper rules. This progression is observed in Figure 3.2 where 2 encoding bits are used.

Similar performance is observed, but the �nal population size is almost three times larger

due to the lack of rule compaction ability.

The problems are emphasized when using 3 and 4 encoding bits. The average reward in

the exploit phase is still signi�cantly greater than in explore one, meaning that the agent

can pick up correct decisions most of the time, but the convergence of population size

is becoming elusive. The algorithm is struggling with increasing population size, which,

due to its nature, is a signi�cant computational bottleneck.

3.1.2.2 Experiment 2 - Nature of the intervals

In order to provide the correct answer to the checkerboard problem, the agent must be

able to correctly partition the hyper-rectangular solution space. Four categories are used

to determine the nature of the evolved condition intervals:

� Region 1 [pi, qi] - consists of speci�c intervals.

� Region 2 [pmin, qi) - interval bounded from the right side.

� Region 3 [pi, qmax) - interval bounded from the left side.

� Region 4 [pmin, qmax) - general interval ("don't care").

The two-dimensional checkerboard divided by three splits in each direction is used. The

experiment uses the rvACS agent and evaluates its performance with di�erent encoding

values. Because of the splits, the system response is dependent on precise boundaries

estimations. Figure 3.5 shows possible ambiguities near the split lines, where the same

nominal value is applicable in both regions.

As in the previous section, in each trial of the experiment, the agent alternates between

explore and exploit phases for the total of 15000 trials. Each independent pass is averaged

across 50 times. For the collected metrics, besides the average performance and the

population size, the proportion of condition interval regions is collected for each trial.

Chapter 3. � 65

Figure 3.5: Example of dividing the space into three equal splits. When using low encoding resolution
potential ambiguity is visible near the splitting lines.

Figures 3.6, 3.7 and 3.8 illustrate the metrics progression on the 3x3 Checkerboard prob-

lem using 4 bit interval encoding. Due to brevity the plots for other encoding values

were not presented, but �nal values are outlined using statistical estimation.

rvACS parameters: β = 0.05, γ = 0.95, θr = 0.9, θi = 0.3, ε = 0.9, θGA = 100,

mu = 0.2, χ = 0.6, εcover = 0.1, εmutation = 0.25.

Figure 3.6: Evolution of condition interval regions in 3x3 Checkerboard environment encoded with 4
bits.

Chapter 3. � 66

Figure 3.7: Average reward obtained in 3x3 Checkerboard environment encoded with 4 bits.

Figure 3.8: Population size of 3x3 Checkerboard environment encoded with 4 bits (notice the logarithmic
scalling of y-axis).

Statistical veri�cation

To statistically assess the population size and region ratios, the posterior data distribu-

tion was modelled using 50 metric values collected in the last trial and then sampled

with 100,000 draws. - Table 3.3. For the obtained reward, the mean value from the last

100 exploit trials is considered as a representative state of algorithm performance.

Chapter 3. � 67

1 bit 2 bit 3 bit 4 bit 5 bit

Region 1 0.0 ± 0.0 0.32 ± 0.0 0.69 ± 0.0 0.75 ± 0.0 0.71 ± 0.0

Region 2 0.46 ± 0.0 0.35 ± 0.0 0.18 ± 0.0 0.15 ± 0.0 0.2 ± 0.0

Region 3 0.26 ± 0.01 0.14 ± 0.0 0.08 ± 0.0 0.04 ± 0.0 0.02 ± 0.0

Region 4 0.27 ± 0.01 0.19 ± 0.0 0.05 ± 0.0 0.06 ± 0.0 0.08 ± 0.0

population of classi�ers 20.22 ± 0.38 52.63 ± 0.57 735.64 ± 8.67 4244.18 ± 35.75 10358.61 ± 47.0

reliable classi�ers -0.0 ± 0.0 8.0 ± 0.0 89.51 ± 1.17 14.42 ± 0.6 0.64 ± 0.16

reward from last 100 exploit runs 0.52 0.71 0.81 0.89 0.78

Table 3.3: Descriptive statistic metrics obtained using Bayesian estimation of obtained results for 3x3
Checkerboard problem.

Observations

In most experiments, the rvACS agent builds the population consisting primarily of Re-

gion 1 interval predicates. The amount of attributes represented as Region 3 and 4,

spanning to the maximum value from the right side, tends to diminish. However, the

results are correlated with the number of trials that were kept the same in all cases. More

precise boundary representation naturally would require more trials to converge. How-

ever, for the �rst four bits, there is the following trend can be noticed when intensifying

encoding resolution:

� Ratio of Region 1 attributes increases,

� Ratio of Region 2, 3, 4 attributes decreases.

This is caused by the lack of online rule compaction or consolidation mechanism. The

only possibility for the agent to create a more general attribute is due to the mutation

algorithm controlled by the εmutation parameter. However, this value must be set carefully

because limitations of selected encoding resolution can inadvertently ignore its e�ect.

The other metrics also show the hypothesis about the need for more trials. The size

of the overall population is correlated with the number of encoding bits, but it became

more di�cult for the agent to discriminate between reliable classi�ers. For example,

when using 5-bits encoding after 150000 trials, there is no single reliable classi�er despite

having a population with more than 10 thousand individuals.

The experiment with 1-bit encoding also con�rms the situation when it is impossible to

learn the environment with hyper-plane decision boundary successfully. Such represen-

tation is insu�cient to handle regularities, resulting in unreliable classi�ers and random

average rewards from exploit runs.

Chapter 3. � 68

3.1.3 Research summary

The answers to the previously formulated research questions are as follows:

Q1: Can the rvACS algorithm form the internal model of the environment

and exploit it successfully?

The performed experiments involved two single-step problems with varying di�culties.

The rvACS implementation showed promising results but revealed certain limitations

were revealed in both of them.

Rule compaction

Due to the nature of LCS systems, most of the components interact sequentially, fre-

quently iterating over the population of classi�ers. rvACS agents showed to be biased

towards creating rules capturing speci�c small niches of the solution space, therefore

signi�cantly increasing population size and making it more indecipherable. The en-

hancement merging rules a�ecting neighbouring areas of solution space would have a

heavy impact on the solution's computational performance and compactness.

Encoding resolution

The proposed approach represented interval boundaries as integer values. While this

decision has a positive impact mainly on the simpli�cation of internal operators, there are

certain drawbacks. First and foremost, there is a tradeo� between selected resolution and

the size of the population. In all performed experiments, situations with high resolution

yield the most signi�cant internal models containing very speci�c classi�ers. Second,

knowledge about environment internal regularities (like the rRMPX threshold θ described

in Section 2.5.3) is bene�cial for determining optimal encoding value because some of

the regularities might not be captured due to perceptional ambiguity (see Table 3.1).

E�ect part

The majority of rvACS modi�cations focus on building the correct condition part, ig-

noring the evolution of the e�ect side. The ALP component responsible for driving the

agent's learning mechanism was not intended for real-valued representation. Moreover,

the problem with the growing population is also related to the creation of duplicated and

overlapping classi�ers where the aforementioned processes cannot perform subsumption

and merging of classi�ers with similar rule structure while favouring more general clas-

si�ers. Therefore, in rvACS, its usage was simpli�ed, indicating a need for a dedicated

solution.

Chapter 3. � 69

3.2 Discretizing input signal

The previous chapter proved that ALCS could operate in a real-valued realm using UBR

interval representation. Due to the underlying foundations, certain limitations were

revealed, requiring major rethinking to hold virtues like balancing compact population

size while maintaining maximum accuracy and generalization.

Nevertheless, ALCS are not limited to ternary alphabets - they can be arbitrarily ex-

tended to any discrete number of symbols. This provides an opportunity to split the

range of perception value into k �xed-sized intervals (buckets). Each consecutive symbol

represents a successive interval by performing such discretization. The most signi�cant

advantage is that no modi�cations to internal components are needed for any of the

investigated systems - just an additional layer between the environment-agent interface.

The interface is capable of executing any prede�ned input transformation, like assigning

each observation attribute using the same logic or having dedicated rules for each of them

(in a case when a range of values varies signi�cantly). The di�erence between approach

suggested by Unold and Mianowski [126] is the distinct separation of discretization com-

ponent that can be applied independently in any of the ALCS algorithms.

The algorithm 16 presents the extended trial �ow with discretization process. Each

experiment uses an external discretizer d, capable of transforming raw environmental

signal σ → Σ using desired attribute resolution. All investigated ALCS algorithms share

a similar behavioural act cycle; therefore, it is possible to use a shared implementation

of an external discretizer in each of the investigated systems in a standardized approach.

Chapter 3. � 70

Algorithm 16 Proposition of single LCS trial using external discretizer

procedure RUN TRIAL(P, d)

t← 0

σ ← env: perceive situation

Σ← DISCRETIZE(σ, d)

while trial is �nished do

if [A]−1 is not empty then

APPLY DISCOVERY COMPONENT considering Σ, Σ−1, a

APPLY LEARNING COMPONENT in [A]−1 considering ρ

GENERATE MATCH SET [M] out of [P] using Σ

a← CHOOSE ACTION using [M]

GENERATE ACTION SET [A] according to [M] using a

Σ−1 ← Σ

(σ, ρ)← env : execute action a . Obtain next state and reward

Σ← DISCRETIZE(σ, d)

t← t+ 1

[A]−1 ← [A]

end while

APPLY DISCOVERY COMPONENT considering Σ, Σ−1, a

APPLY LEARNING COMPONENT in [A] considering ρ

end procedure

This chapter aims to contrast the latent learning capabilities of ACS, ACS2, YACS

systems in both single- and multistep environments. Furthermore, they were compared

to basic RL algorithm competent of building internal environmental model and lookahead

planning - Dyna-Q [118].

Dyna architecture

RL algorithms like Q-Learning cannot perform operations considered �cognitive�, such as

reasoning and planning (because they do not learn an internal model of the environment's

dynamics). Dyna architecture is an online planning agent with an internal environmental

model.

Each (St, At) tuple outputs a prediction of the resultant reward and next state (Rt+1, St+1).

The environmental model is table-based and assumes the environment is deterministic.

After each transition (St, At) → (Rt+1, St+1) the model records in its table entry for

(St, At) the prediction that (Rt+1, St+1) will deterministically follow.

Chapter 3. � 71

Real experiences are augmented by performing learning steps using the internal model

when interacting with the environment. The planning here is the random-sample one-

step tabular Q-learning method that only uses previously experienced samples.

3.2.1 Research questions

The conducted research aims to answer the following questions about bucketing dis-

cretization:

Q1. Can popular ALCS systems build the internal model of the environment when

discretizing the real-valued input into �xed-width buckets?

Q2. Which system creates the most compact and general population of classi�ers?

Q3. What is the relative trial execution time for each evaluated system?

Q4. How selected systems relate to the benchmark Dyna-Q algorithm?

3.2.2 Experimental evaluation

This section presents setup of the performed experiments and their results.

Goals of the experiments

Experiment 3 - Single-step environment performance

This experiments aim to determine the agents' latent learning competencies using the

rMPX discretized into a �xed amount of buckets.

Experiment 4 - Multiple-step environments performance

Corresponding comparison is performed for two multistep problems with similar regu-

larities - Corridor and Grid.

3.2.2.1 Experiment 3 - Single-step environment performance

The potential of evolving the internal model of the environment is explored by three

ALCS implementations - ACS, ACS2 and YACS. Moreover, two additional enhancements

are also explicitly investigated - ACS2 with enabled GA component and traditional Dyna-

Q implementation. All the algorithms use similar rule structure and their behaviour can

be compared using a set of common metrics of population size, knowledge, generalization

and trial time.

Chapter 3. � 72

The chosen environment is a single-step, 3-bit rMPX. The investigation was not car-

ried out for greater perception vectors due to the increased computational complexity

required for handling a greater amount of interacting classi�ers and calculating the met-

rics, however with su�cient resources, similar results can also be obtained for larger

problem instances.

The agent perceives an observation vector of four real-valued attributes. Then, a k bins

discretizer is used to convert them into integers, where the k value controls the accuracy

of generated rules. Thus, the input space of the environment can be calculated as 2kn,

where k refers to the number of bins and n is the length of the multiplexer output.

Because the rMPX threshold was set to the value of 0.5, a setting of k = 2 bins should be

su�cient to model the hyper-plane decision surface. The tests were, however, performed

by discretizing each attribute into 10 �xed-sized buckets. The following setting provides

excessive-resolution and substantiates the capabilities of real-valued input handling.

In each trial of the experiment, the agent executes the exploration phase for the total of

15000 trials solely. Moreover, to present coherent results and draw statistical inferences,

each experiment is repeated 50 times - see Figure 3.9.

Common parameters that were used across the experiments included the following: learn-

ing rate β = 0.1, exploration probability ε = 0.5, discount factor γ = 0.95, inadequacy

threshold θi = 0.1, reliability threshold θr = 0.9, YACS trace length 3. The Dyna-Q

algorithm performs �ve steps ahead simulation in each trial.

Chapter 3. � 73

Knowledge Generalization Population Trial time

ACS 0.0 ± 0.0 0.875 ± 0.001 4.0 ± 0.001 0.001 ± 0.001

ACS2 0.998 ± 0.001 0.174 ± 0.001 1622.405 ± 7.313 0.007 ± 0.001

ACS2 GA 1.0 ± 0.001 0.318 ± 0.001 977.517 ± 5.966 0.006 ± 0.001

YACS 0.978 ± 0.001 0.106 ± 0.005 1160.178 ± 6.192 0.03 ± 0.001

Dyna-Q 0.998 ± 0.001 0.0 ± 0.0 2000.0 ± 0.001 0.0 ± 0.0

Table 3.4: Descriptive statistic metrics obtained using Bayesian estimation of obtained results for
discretized rMPX problem.

Figure 3.9: Performance of 3bit rMPX discretized with 10 bins. Metric collected every 100 trials and
averaged across 50 independent runs.

Statistical veri�cation

The posterior data distribution was modelled using 50 metric values collected in the last

trial and then sampled with 100,000 draws. The obtained results were presented in Table

3.4 and using the radar plot in Figure 3.10. The radar plot axes were scaled accordingly,

highlighting the relative di�erences between algorithms.

Chapter 3. � 74

Figure 3.10: Normalized metrics presented on the radar plot for the 3bit rMPX environment.

Observations

The examined problem input space size is 2 · 103 = 2000 individual states. Even though

using the excessive-resolution size, almost every algorithm built the internal model of

the environment in an imposed number of trials.

ACS

Only the ACS agent could not go beyond four semi-general classi�ers in the whole exper-

iment, being incapable of learning any of the transitions. Therefore, the generalization

and trial-time metrics cannot be directly compared to other agents due to the wrong

population size.

Chapter 3. � 75

ACS2

The successor of ACS - ACS2 ultimately learned the environment using signi�cantly

fewer classi�ers than the problem input size. The GA extension has a positive e�ect on

compacting the population size and increasing generalization.

YACS

The heuristic nature of YACS allows it to gain knowledge at the beginning of the ex-

periment rapidly. However, the lack of generalization capabilities provides the worst

generalization compared to both ACS2 variants. Moreover, the trial execution time is

signi�cantly larger than in other systems because all visited states are represented and

processed inside the agent's memory.

Dyna-Q

By design, the Dyna-Q algorithm does not expose any generalization capabilities - there-

fore is unable to learn latently with more compacted knowledge representation. Due

to the lookahead capabilities, the system rapidly learned all available transitions while

operating faster than competitors.

3.2.2.2 Experiment 4 - Multiple-step environments performance

The multistep learning performance was also examined by a set of �ve algorithms - ACS,

ACS2, ACS2 with GA, YACS and Dyna-Q using the same metrics as in the single-step

experiment case.

On the contrary, the problems investigated herein does not provide immediate feedback

to the agent about the potential outcomes of the selected action. Therefore, a chain

of correct decisions needs to be formed to locate the incentive. The Corridor is a one-

dimensional grid discretized into 20 states, and Grid provides an extension by adding

another dimension of the same length alongside two more possible actions.

In each trial of the experiment, the agent executes the exploration phase for the total of

300 trials solely. Moreover, to present coherent results and draw statistical inferences,

each experiment is repeated 50 times.

Common parameters that were used across the experiments included the following: learn-

ing rate β = 0.1, exploration probability ε = 0.5, discount factor γ = 0.95, inadequacy

threshold θi = 0.1, reliability threshold θr = 0.9, YACS trace length 3. The Dyna-Q al-

gorithm performs �ve steps ahead simulation in each trial. Figures 3.11 and 3.12 present

the metrics evolution over time for Corridor and Grid environments respectively.

Statistical veri�cation

The posterior data distribution was modelled using 50 metric values collected in the last

Chapter 3. � 76

trial and then sampled with 100,000 draws. Obtained results were presented in Tables

3.5 and 3.6 and using the radar plots scaled accordingly (Figures 3.13, 3.14), highlighting

the relative di�erences between algorithms.

Figure 3.11: Performance of discretized Corridor-20 environment. Experiments were executed 50 times
and averaged.

Chapter 3. � 77

Knowledge Generalization Population Trial time

ACS 0.93 ± 0.009 0.051 ± 0.0 39.0 ± 0.0 0.007 ± 0.001

ACS2 1.0 ± 0.0 0.0 ± 0.0 38.0 ± 0.0 0.006 ± 0.001

ACS2 GA 1.0 ± 0.0 0.0 ± 0.0 38.0 ± 0.001 0.008 ± 0.001

YACS 1.0 ± 0.0 0.0 ± 0.0 38.0 ± 0.0 0.104 ± 0.012

Dyna-Q 1.0 ± 0.0 0.0 ± 0.0 38.0 ± 0.0 0.002 ± 0.001

Table 3.5: Descriptive statistic metrics obtained using Bayesian estimation of obtained results for
discretized Corridor-20 problem.

Figure 3.12: Performance of discretized Grid-20 environment with 400 distinct states. Experiments
were executed 50 times and averaged.

Chapter 3. � 78

Knowledge Generalization Population Trial time

ACS 1.0 ± 0.0 0.525 ± 0.0 80.0 ± 0.0 0.117 ± 0.002

ACS2 1.0 ± 0.0 0.461 ± 0.005 87.049 ± 0.954 0.115 ± 0.004

ACS2 GA 1.0 ± 0.0 0.5 ± 0.0 80.0 ± 0.0 0.126 ± 0.005

YACS 1.0 ± 0.001 0.022 ± 0.002 830.655 ± 50.379 4.299 ± 0.33

Dyna-Q 0.978 ± 0.008 0.0 ± 0.0 1551.849 ± 16.427 0.025 ± 0.003

Table 3.6: Descriptive statistic metrics obtained using Bayesian estimation of obtained results for
discretized Grid-20 problem.

Figure 3.13: Normalized metrics presented on the radar plot for Corridor-20 environment.

Chapter 3. � 79

Figure 3.14: Normalized metrics presented on the radar plot for Grid-20 environment.

Observations

All investigated algorithms converge towards obtaining complete knowledge of selected

problems. Interesting behavioural patterns are revealed despite the relatively small num-

ber of input-space.

ACS

For the simple Corridor environment, the ACS maintains a stable population with only

one irrelevant classi�er, therefore wrongly suggesting generalization capabilities. The

agent has the slowest learning rate.

Surprisingly, the Grid environment managed to have the smallest population of classi�ers

with the highest generalization score outperforming other agents.

Chapter 3. � 80

ACS ACS2 YACS

�

18# � 17#
18# � 17# 18# � 17#

�

18# � 19#
18# � 19#

1819 � ##

1819 � 19#

^ ## #19 ^ ## #19 ^

_

#19 _ #18
#19 _ #18

18# _ #5

18# _ #4

Table 3.7: Classi�er structure comparison in Grid environment for the (18, 19) state. The population
was created after 25 explore trials. For each action, ACS2 manages to create a correct list of classi�ers.
The ACS is slower, and an initial default classi�er accompanies each action. Finally, the YACS is unable
to create fully general and accurate classi�ers at all.

ACS2

Since the lack of generalization capabilities in the Corridor problem, the performance

of ACS2 and ACS2 GA is identical in this environment. They modelled the environ-

ment internally using a minimal possible number of rules. In the Grid environment, the

GA addition further reduced the population size by extending the applicability of rules

covering greater environmental niches.

YACS

The YACS, on average, took the longest amount of time to compute each trial. The

Corridor case started very rapidly by generating an overpopulation of classi�ers (being

the fastest of learning the whole environment) and eventually settled into optimal values.

However, it could not form the correct population size for the Grid problem. While

knowing the consequences of all actions, the under-performing generalization resulted in

an excessive number of classi�ers.

The visual comparison of rules created for certain environmental perception in the Grid

environment is shown in Table 3.7.

Dyna-Q

Dyna-Q stands out in computation time, being the fastest investigated algorithm. How-

ever, complete representation of all possible state-action transitions needs to explicitly

process each environmental interaction, which might be di�cult with potential noise

or other disturbances. Therefore, the knowledge accumulation process was signi�cantly

slower compared to other algorithms.

Chapter 3. � 81

3.2.3 Research summary

The answers to the previously formulated research questions are as follows:

Q1: Can popular ALCS systems build the internal model of the environment

when discretizing the real-valued input into �xed-width buckets?

All investigated ALCS systems with common rule structure (ACS, ACS2, YACS) man-

aged to deal with real-valued input represented as a vector of nominal values. The

corresponding changes a�ected only the interface layer, leaving agent mechanisms in-

tact. Moreover, the nature of the don't care and pass-through symbol was fully preserved

which additionally increased model interpretability.

Q2: Which system creates the most compact and general population of clas-

si�ers?

ACS2 with GA enhancement proved to evolve the most general and compact population

of classi�ers diligently. However, speci�c problems were discovered in ACS, which was

unable to progress by creating novel classi�ers or YACS that su�ers from insu�cient

heuristics and lacks a dedicated generalization mechanism.

Q3: What is the relative trial execution time for each evaluated system?

Due to its simplicity, Dyna-Q was the fastest algorithm in all comparisons. However, for

the ALCS family, the ACS and ACS2 are much faster than YACS, mainly due to YACS

processes where each visited state is stored internally despite generalization. Those states

are processed in each trial, which for large problem spaces might squander computational

resources.

Q4: How selected systems relates to the benchmark Dyna-Q algorithm?

The Dyna-Q is a traditional benchmarking RL problem capable of representing the conse-

quences of certain actions in particular states. The most obvious di�erence is the lack of

generalization capabilities, which forces the Dyna-Q to model all encountered transitions

explicitly. This leads to a larger internal model size and potentially slower formation

of an optimal policy. However, on the other side, a lack of sophisticated, interacting

components results in more transparent work�ow and swifter execution.

Chapter 4

Biased exploration

LCS are being considered as self-adaptive and autonomous learners. However, in order to

reach full autonomy, the credit assignment part must decide on their own when to exploit

the existing knowledge by taking the most promising action and when to deliberately

select an action that is not apparent best to gain additional knowledge potentially.

This decision is commonly referred to as the E/E (explore/exploit) dilemma, since ob-

taining new knowledge through exploration incurs a short-term performance loss, while

too much exploitation risks staying on an unnecessarily low level of performance in the

long term [118]. In a typical exploration phase, the action is selected randomly with the

intention of an unbiased exploration.

Such exploration might be ine�cient for real-valued environments where the search space

is presumably large. Certain regions of space might be explored multiple times, while

the other ones remain unknown. Therefore, an approach towards optimizing the process

of acquiring knowledge by suggesting more valuable actions is considered herein.

At �rst, model learning capabilities in ALCS was enhanced by Stolzmann and Butz

by using behavioural capabilities (internal reinforcement learning or lookahead action

selection) in [116] and by introducing the action planning mechanism [115, 127].

Later, Butz suggested that by using computationally inexpensive methods by biasing

exploration towards specially chosen regions of search-space, the model can be learned

locally [17].

This chapter aims to narrow the existing gap in research by experimentally comparing

four biased exploration strategies. Any ALCS agent operating a large realm of observa-

tion space might take advantage of the possibility of improving the time needed to form

an internal model. First, a baseline method - epsilon-greedy, which is a default option

82

Chapter 4. � 83

for LCS, will be described. Later two methods were introduced by Butz - action-delay

and knowledge-array bias. They examine the match set [M] searching for indications

of which action might result in the highest information gain. Eventually, the latter ap-

proach is inspired by an "Optimistic Initial Values" approach described by Sutton in

[118]. This strategy turned out to be very e�ective for Multi-armed bandit problems,

where the main objective is to select the most promising action and was never examined

in any LCS domain.

Interestingly, Hansmeier and Platzner made an e�ort to compare four strategies opti-

mizing the time for alternating E/E phases using the XCS algorithm [43]. It turned out

that despite automized parameter tuning that none of the strategies is superior to the

other. On the other side, they noticed that speci�c multi-step environments with scarce

reward signals become challenging due to setting the classi�er's accuracy value too ag-

gressively. Such problem with scarce reward and long action-chains is further discussed

in the following chapter.

Best action

The best action selection relates to the exploitation mode. The algorithm selects most

promising classi�er capable of handling certain situation using attributes like the �tness

score from the desired population [P].

Algorithm 17 Best action selection

function BEST ACTION(P)

cl← determine most promising classi�er from [P]

return cl.action

end function

Epsilon-Greedy (EG)

In the epsilon-greedy approach, the agent equally discovers all regions from the input-

space, not favouring any speci�c behaviour. In each step, random action is executed with

pexplr or ε probability. Then it is chosen uniform randomly from classi�ers composing a

match set [M]. In the case of 1−pexplr, action from the most �tted classi�er is executed.

By doing so, the agent can occasionally perform the move he thinks is the best at a given

time, reinforcing its beliefs about the consequences.

Chapter 4. � 84

Algorithm 18 Epsilon-Greedy action selection

function EPSILON GREEDY(P, ε)

if random number drawn from U[0, 1] distribution < ε then

return random possible action

else

return BEST ACTION(P)

end function

Action-Delay (AD)

This bias is based on the recency-based principle assuming that the action executed a

long time ago might introduce new situation-action-e�ect triples. To determine which

action was executed most long ago at the current time t the talp �eld of all classi�ers

in a match set [M](t) is analyzed. For situation σ(t) the action of classi�er cl with the

lowest value of talp is selected.

In case there exists an action not represented by any classi�er in [M](t) that it is assumed

to be experienced most long ago (if ever) and therefore chosen for execution.

Algorithm 19 Action-Delay biased action selection

function ACTION DELAY(P)

m← map the number of classi�ers from [P] proposing to each available action

cl← determine last executed classi�er from [P] using the talp property

if there is any action a with no classi�ers, m[a] = 0 then

return a

if cl is present then

return cl.action

else

return random possible action

end function

Knowledge Array (KA)

This method, on the contrary, is based on the error-based principle. A classi�er quality

q metric denoting the accuracy of predictions for each individual can be used to measure

it.

The bias generates the knowledge array KA from classi�ers in a match set [M] in which

each entry speci�es the averaged quality for the anticipation for each possible action -

see Equation 4.1.

Chapter 4. � 85

KA[a] =

∑
cl∈[M]∧cl.A=a cl.q · cl.num∑

cl∈[M]∧cl.A=a cl.num
(4.1)

An action with the lowest value in the knowledge array is selected for execution. Similarly,

as in the action delay bias, if any classi�ers do not express actions, they are chosen �rst.

Algorithm 20 Knowledge-array biased action selection

function KNOWLEDGE ARRAY(P)

ka[a]← initialize knowledge to 0 for each possible action

for each available action a do

C ← select classi�ers advocating action a from [P]

q ←
∑

cl∈C cl.q · cl.num
num←

∑
cl∈C cl.num

ka[a]← q
num

end for

return action a with the lowest knowledge using ka

end function

Optimistic Initial Quality (OIQ)

By default, newly created classi�ers cl have the initial quality set to cl.q = 0.5. It can

be said that they are biased towards their initial quality. In practice, it should not be a

problem because this value will converge to optimal ones over a set of trials. Changing

this parameter provides an easy way of supplying the agent with the con�dence of the

generated classi�ers.

In this method, the agent's behaviour was parametrized by an extra parameter - initial

quality - q0. Every time a new classi�er is generated, its quality is set to new value

cl.q = q0.

In all the experiments, there was �xed q0 = 0.8, expecting the agent to build an internal

model of knowledge representation faster (especially in the early stages). For the action

selection strategy, the default epsilon-greedy method was chosen.

Moreover, the AD and KA biased action selection methods have εbiased chances of being

executed when the agent is exploring the environment - see Algorithm 21.

Chapter 4. � 86

Algorithm 21 Biased exploration execution

function RUN BIASED EXPLORATION(P, ε, εbiased)

if random number drawn from U[0, 1] distribution < ε then

if random number drawn from U[0, 1] distribution < εbiased then

return action elected by biased exploration strategy

else

return random possible action

else

return BEST ACTION(P)

end function

4.1 Research questions

The conducted research aims to answer the following question regarding the biased ex-

ploration strategies

Q1. Does the biased exploration methods (AD, KA, OIQ) signi�cantly accelerate the

agent's learning speed?

Q2. Can the OIQ method improve the performance of ingesting knowledge or reducing

classi�er population size?

4.2 Experimental evaluation

This section presents setup of the performed experiments and their results.

Goals of the experiments

Experiment 1 - Single-step problem performance

Similarly, as above but in this case, a single step 6-bit rMPX environment is used,

introducing much larger possible states space. Since calculating precise model knowledge

is infeasible, the key performance indicators chosen are the average obtained reward and

model size.

Experiment 2 - Multiple-step problems performance

Use two basic multistep environments (Corridor and Grid) to determine the di�erences

between the rate of gaining knowledge, the ability to build an internal pool of classi�ers

and operating in the environments.

Chapter 4. � 87

Experiment 3 - Balancing the pole

The methods will be evaluated on the Cart Pole problem of balancing a pole on a

cart. This is a novel problem for the LCS due to speci�c observation space (where two

attributes span to in�nity) and a speci�c reward scheme based on how long the pole is

kept upright.

4.2.1 Experiment 1 - Single-step problem performance

The e�ect of biasing exploration was �rst evaluated on the single-step 6-bit rMPX en-

vironment. The input was discretized using the following buckets of sizes alongside the

respective size of the input space:

1. 5 bits - 2 · 56 = 31250 possible states,

2. 6 bits - 2 · 66 = 93312 possible states,

3. 7 bits - 2 · 76 = 235298 possible states.

Each experiment was performed by alternating explore and exploit phases for 30000

trials. The cross-over capabilities were deliberately disabled because the last bit in

perception σ was denoting the prediction result, which might inadvertently cause invalid

rule evolution.

The e�ciency of aforementioned biased exploration strategies is measured by studying

the trajectory of the average reward and classi�ers population size plots over time. Fig-

ures 4.1, 4.2 and 4.3 presents the average aggregation of results along with statistical

inference calculated over 50 independent runs using the following parameters β = 0.2,

γ = 0.95, θr = 0.9, θi = 0.1, ε = 0.8 θGA = 50, θAS = 20, θexp = 50, mu = 0.03,

umax = 4, χ = 0.0.

Statistical veri�cation

To statistically assess the population size, the posterior data distribution was modelled

using 50 metric values collected in the last trial and then sampled with 100,000 draws.

For the obtained reward, the average value from the last 100 exploit trials is considered

a representative state of algorithm performance. Tables 4.1 and 4.2 present computed

results.

Chapter 4. � 88

Figure 4.1: 6-bit rMPX discretized with 5 bins. Faded lines shows performance of explore mode, solid
ones for exploit.

Chapter 4. � 89

Figure 4.2: 6-bit rMPX discretized with 6 bins. Faded lines shows performance of explore mode, solid
ones for exploit.

Chapter 4. � 90

Epsilon Greedy Action Delay Knowledge Array Optimistic Initial Quality

5 bins 819.40 818.20 824.80 815.60

6 bins 985.40 986.20 987.40 984.80

7 bins 839.40 832.00 848.60 835.00

Table 4.1: Descriptive statistic metrics obtained using Bayesian estimation of the average reward for
the investigated 6-bit rMPX problem.

Epsilon Greedy Action Delay Knowledge Array Optimistic Initial Quality

5 bins 509.18 ± 3.67 505.28 ± 3.92 570.16 ± 4.08 508.31 ± 3.39

6 bins 781.81 ± 4.09 801.03 ± 4.03 872.07 ± 3.83 783.06 ± 3.89

7 bins 695.18 ± 3.72 698.2 ± 2.86 785.8 ± 3.22 698.58 ± 3.03

Table 4.2: Descriptive statistic metrics obtained using Bayesian estimation of the population size for
the investigated 6-bit rMPX problem.

Figure 4.3: 6-bit rMPX discretized with 7 bins. Faded lines shows performance of explore mode, solid
ones for exploit.

Observations

Despite the large size of the problem's search space, the investigated biased exploration

strategies have no impact on the average obtained reward. None of the methods can

be distinguished by introducing peculiar rules into the population, imprinting on the

Chapter 4. � 91

performance. However, the di�erences between discretization resolution are depicted.

The ACS2 agent selects valid action when six bins are used to divide the perception

input range most of the time. The exploit performance is signi�cantly worse for the

other odd values but still better than random guessing.

The rate of reliable classi�er acquisition begins equally for all the strategies and resolu-

tions. After a few thousand trials, the KA method tends to drive the exploration process

into the unknown regions of the space, therefore forming more and better novel rules.

The performance of other approaches of EG, AD and OIQ is not distinguishable.

4.2.2 Experiment 2 - Multiple-step problems performance

Both Corridor and Grid multiple-step environments were used for verifying the biased

exploration strategies. In each case the ACS2 agent starts by performing 60 explore trials

with selected strategy, followed by 20 where the evolved population is validated.

The following metrics are considered:

� knowledge - depicting the process of building an internal model,

� population size - demonstrate the total number of classi�ers,

� steps in a trial - both in explore and exploit phase.

Figures 4.4 and 4.5 present the metric evolution for the basic versions of Corridor and

Grid problems, containing 20 and 400 distinct states respectively, but the overall metrics

look similar for larger instances. Additionally, for the Corridor, the cross-over capability

of the agent was switched o� because of the unit length of the perception vector σ.

To amplify the agent's motivation for exploring possible options, each problem was ad-

ditionally increased to the sizes of n = 40 and n = 100. Last trial statistical inferences

were collected in all cases to estimate overall performance.

Corridor ACS2 parameters: β = 0.2, γ = 0.95, θr = 0.9, θi = 0.1, ε = 0.8 θGA = 50,

θAS = 20, θexp = 50, mu = 0.03, χ = 0.

Grid ACS2 parameters: β = 0.2, γ = 0.95, θr = 0.9, θi = 0.1, ε = 0.8 θGA = 50,

θAS = 20, θexp = 50, mu = 0.03, umax = 1, χ = 0.8.

Chapter 4. � 92

Figure 4.4: Performance of Corridor-20 environment. 60 exploration and 20 exploitation trials averaged
over 50 runs. Steps in a trial was plotted with a moving average of 3 last steps for clarity. No explicit
discretizer was needed. The maximum number of steps in a trial is 200. The dotted vertical line indicates
the execution of explore and exploit phases.

Figure 4.5: Performance of Grid-20 environment. 60 exploration and 20 exploitation trials averaged
over 50 runs. Steps in a trial was plotted with a moving average of 3 last steps for clarity. No explicit
discretizer was needed. The maximum number of steps in a trial is 2000. The dotted vertical line
indicates the execution of explore and exploit phases.

Statistical veri�cation

To statistically assess the population size, the posterior data distribution was modelled

Chapter 4. � 93

Epsilon Greedy Action Delay Knowledge Array Optimistic Initial Quality

population of classi�ers 38.0 ± 0.0 38.0 ± 0.0 38.0 ± 0.0 38.0 ± 0.0

reliable classi�ers 38.0 ± 0.0 38.0 ± 0.0 38.0 ± 0.0 38.0 ± 0.0

knowledge 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

trial execution time 0.02 ± 0.0 0.03 ± 0.0 0.05 ± 0.0 0.02 ± 0.0

average exploit reward 1000.0 1000.0 1000.0 1000.0

Table 4.3: Descriptive statistic metrics obtained using Bayesian estimation of Corridor-20 performance.

Epsilon Greedy Action Delay Knowledge Array Optimistic Initial Quality

population of classi�ers 78.0 ± 0.0 78.0 ± 0.0 78.0 ± 0.0 78.0 ± 0.0

reliable classi�ers 78.0 ± 0.0 78.0 ± 0.0 78.0 ± 0.0 78.0 ± 0.0

knowledge 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

trial execution time 0.06 ± 0.0 0.07 ± 0.0 0.09 ± 0.0 0.06 ± 0.0

average exploit reward 949.0 998.0 1000.0 962.0

Table 4.4: Descriptive statistic metrics obtained using Bayesian estimation of Corridor-40 performance.

Epsilon Greedy Action Delay Knowledge Array Optimistic Initial Quality

population of classi�ers 198.0 ± 0.0 198.0 ± 0.0 198.0 ± 0.0 198.0 ± 0.0

reliable classi�ers 195.25 ± 0.53 195.78 ± 0.38 196.0 ± 0.0 195.67 ± 0.39

knowledge 98.63 ± 0.27 98.88 ± 0.2 98.98 ± 0.0 98.83 ± 0.21

trial execution time 0.15 ± 0.0 0.16 ± 0.0 0.17 ± 0.0 0.16 ± 0.0

average exploit reward 228.0 222.0 329.0 217.0

Table 4.5: Descriptive statistic metrics obtained using Bayesian estimation of Corridor-100 perfor-
mance.

Epsilon Greedy Action Delay Knowledge Array Optimistic Initial Quality

population of classi�ers 80.0 ± 0.0 80.0 ± 0.0 80.0 ± 0.0 80.0 ± 0.0

reliable classi�ers 80.0 ± 0.0 80.0 ± 0.0 80.0 ± 0.0 80.0 ± 0.0

knowledge 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

trial execution time 0.73 ± 0.01 0.69 ± 0.01 1.32 ± 0.0 0.72 ± 0.01

average exploit reward 459.0 440.0 377.0 448.0

Table 4.6: Descriptive statistic metrics obtained using Bayesian estimation of Grid-20 performance.

using 50 metric values collected in the last trial and then sampled with 100,000 draws. For

the obtained reward, the average value from exploit trials is considered a representative

state of algorithm performance.

Distinct computations were performed 3 sizes of each environment. Tables 4.3, 4.4, 4.5

present results for Corridor environments, while 4.6, 4.7 and 4.8 for Grid ones.

Chapter 4. � 94

Epsilon Greedy Action Delay Knowledge Array Optimistic Initial Quality

population of classi�ers 160.0 ± 0.0 160.0 ± 0.0 161.67 ± 0.34 160.0 ± 0.0

reliable classi�ers 160.0 ± 0.0 160.0 ± 0.0 161.24 ± 0.24 160.0 ± 0.0

knowledge 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

trial execution time 1.65 ± 0.02 1.63 ± 0.01 1.74 ± 0.01 1.67 ± 0.02

average exploit reward 197.0 191.0 141.0 216.0

Table 4.7: Descriptive statistic metrics obtained using Bayesian estimation of Grid-40 performance.

Epsilon Greedy Action Delay Knowledge Array Optimistic Initial Quality

population of classi�ers 404.67 ± 0.54 401.98 ± 0.3 409.1 ± 0.87 403.7 ± 0.57

reliable classi�ers 400.0 ± 0.0 400.0 ± 0.0 401.45 ± 0.25 400.0 ± 0.0

knowledge 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

trial execution time 3.24 ± 0.02 3.33 ± 0.02 3.35 ± 0.02 3.23 ± 0.02

average exploit reward 47.0 45.0 24.0 17.0

Table 4.8: Descriptive statistic metrics obtained using Bayesian estimation of Grid-100 performance.

Chapter 4. � 95

Observations

Corridor

Based on the Figure 4.4 all methods converge to optimal population size, and after

switching to the exploitation mode, can utilize gained knowledge fully. Regardless of the

exploration technique chosen, the agent can obtain complete knowledge of the environ-

ment in about 20 trials. AD and KA techniques seem to reach this point faster than the

baseline EG and with OIQ modi�cation.

The AD and KA methods accelerate the process of investigating the search-space result-

ing in earlier classi�er creation.

Finally, the agent can fully exploit the environment after switching to "exploit" mode

performing a minimal number of steps to reach the goal in each trial. Its also worth

mentioning the constant e�ect of the KA method in explore phase, not taking the optimal

actions most of the time, by continually updating the assumptions about all possibilities.

However, when the problem size increased twice (n = 40), while all strategies obtained

full knowledge of the environment, only the KA method managed to exploit it totally

unerringly. This di�erence is highlighted more for n = 100, where only about a third

of all exploit trials were successful by KA, and other strategies performed signi�cantly

worse.

Grid

Performance plot using Grid of size n = 20 in Figure 4.5 shows that regardless of explo-

ration technique chosen, the agent is still able to obtain full knowledge of the environment

(even faster than in Corridor) and converge with the number of optimal classi�ers (KA

method here also creates much more classi�ers at the beginning of the experimentation).

Interestingly, the KA obtains the worst average reward despite having the largest amount

of reliable classi�ers for problems where n = 20 and n = 40.

Moreover, what is interesting is that the agent cannot exploit the environment even

though it knows the exact consequences of each action (non-optimal number of steps

in the exploitation phase). After investigation, it was found that most classi�ers have a

very similar cl.r value, representing the expected future reward. The agent in the current

form is unable to di�erentiate between aliasing states, resulting in an inability to form an

optimal policy. This �nding emphasizes a need for a universal metric for quantifying the

agent's performance. The current de�nition of knowledge, modelling only encountered

Chapter 4. � 96

transitions, is inaccurate when the estimated reward is not distributed correctly amongst

participating classi�ers.

4.2.3 Experiment 3 - Balancing the pole

The challenging part about the Cart Pole problem is that attributes from the perception

vector are described with di�erent scales. Moreover, two of them range to in�nity. This

situation might occur when applying the ALCS agent to the real-world domain.

Splitting each attribute into a �xed amount of buckets is infeasible. Proposed solution

involved assigning maximum, experienced values for both the cart σ1 and pole σ3 velocity.

In this case:

� cart velocity σ1 ∈ [−0.5, 0.5],

� pole velocity at tip σ3 ∈ [−3500, 3500].

Additionally, a speci�c discretizer was used to divide each attribute into a prede�ned

number of bins. This procedure implies precautions when performing the cross-over

operation; therefore, it was disabled.

The experiment analyzes both the impact of selecting the granularity of the discretization

scheme and the biased exploration technique. The ACS2 agent is �rst executing 500

explore trials using a speci�c method and then tries to use gained knowledge by selecting

best action in further 500 exploit trials.

Five di�erent discretization schemes chosen arbitrarily, de�ning a number of bins per

attribute are listed below:

� 1, 1, 6, 6,

� 4, 4, 4, 4,

� 2, 2, 6, 6,

� 1, 2, 4, 4,

� 1, 1, 8, 8.

The metrics of reliable population size and actual performance were both depicted in

Figure 4.6 and estimated probabilistically for the above-mentioned schemes using the

Chapter 4. � 97

Epsilon Greedy Action Delay Knowledge Array Optimistic Initial Quality

1,1,6,6 178.40 138.69 175.72 171.20

4,4,4,4 18.85 19.14 20.34 18.56

2,2,6,6 59.73 44.58 95.68 60.72

1,2,4,4 133.93 150.62 128.70 132.36

1,1,8,8 181.61 154.09 172.75 176.42

Table 4.9: Descriptive statistic metrics obtained using Bayesian estimation of number of steps for Cart
Pole environment.

following ACS2 parameters: β = 0.01, γ = 0.995, θr = 0.9, θi = 0.1, ε = 0.9 θGA = 50,

θAS = 20, θexp = 50, mu = 0.03, umax = 4, χ = 0.0.

Figure 4.6: Performance in CartPole environment. 500 exploration and 500 exploitation trials averaged
over 50 runs. Moving average of 5 last trials applied for clarity. The dotted vertical line indicates the
execution of explore and exploit phases. The environment is considered solved if the average reward is
greater than or equal to 195 over the last 100 trials.

Statistical veri�cation

To statistically assess the population size(Table 4.10), the posterior data distribution

was modelled using 50 metric values collected in the last trial and then sampled with

100,000 draws. For the obtained reward (Table 4.9), the average value from exploit trials

is considered a representative state of algorithm performance.

Chapter 4. � 98

Epsilon Greedy Action Delay Knowledge Array Optimistic Initial Quality

1,1,6,6 8.0 ± 0.0 9.39 ± 0.18 9.01 ± 0.23 8.0 ± 0.0

4,4,4,4 6.33 ± 0.26 4.38 ± 0.19 5.65 ± 0.23 6.06 ± 0.23

2,2,6,6 6.99 ± 0.25 7.29 ± 0.25 8.27 ± 0.33 7.48 ± 0.31

1,2,4,4 11.23 ± 0.18 9.83 ± 0.18 10.01 ± 0.18 10.86 ± 0.22

1,1,8,8 9.14 ± 0.12 8.92 ± 0.12 10.42 ± 0.21 9.18 ± 0.14

Table 4.10: Descriptive statistic metrics obtained using Bayesian estimation of reliable classi�ers for
Cart Pole environment.

Rule Mark Quality Reward Numerosity

##23 0 #### 00## 0.96 3.34 1

##32 1 #### 00## 0.96 3.24 1

##22 1 #### 00## 0.98 2.78 1

##33 0 ### 00## 0.95 2.23 3

##12 0 #### 00## 0.96 1.44 1

##12 1 #### 1.00 1.36 20

##43 1 #### 00## 0.97 1.32 6

##43 0 #### 1.00 1.22 20

Table 4.11: Example of top reliable classi�ers for Cart Pole problem with 1, 1, 6, 6 discretization.

Observations

Surprisingly, when using the discretization of 1, 1, 6, 6, the agent can keep the pole

upright for about 175 steps in each trial after performing just 500 learning trials. This

score was possible for every method except the AD. On the other side, AD created more

reliable classi�ers quicker than other methods.

The experiment's performance turned out to be very sensitive to the discretization bins

chosen. For example, a slightly larger amount of bins for pole angle and velocity (eight

bins in both cases) increased the number of upright steps. In o�cial terms, the environ-

ment is still not solved. However, it turned out that the number of reliable classi�ers

required to obtain such a score is less than 10. That allows a very compact and human-

readable form of storing knowledge - see Table 4.11 example. It can be seen that the

majority of reliable classi�ers are marked on the �rst two attributes, meaning that they

too sweep and therefore should be more distinguishable (for example, by increasing dis-

cretization). In order to set them properly, a dedicated hyper-parameter optimization

process is advised.

Chapter 4. � 99

Despite fragility, the obtained result is auspicious, showing that ALCS methods can

be compared to other highly sophisticated black-box approaches and maintain a highly

verbose problem model.

4.3 Research summary

The answers to the previously formulated research questions are as follows:

Q1: Does the biased exploration methods (AD, KA, OIQ) signi�cantly ac-

celerate the agent's learning speed?

Conducted research showed that biased exploration methods like AD and KA positively

impact the knowledge evolution process. The OIQ performance was correlated with the

basic EG method and did not yield any competitive performance.

Q2: Can the OIQ method improve the performance of ingesting knowledge

or reducing classi�er population size?

The impact of initializing classi�er quality with a higher (positive) value resulted in

having a neglectable e�ect on all evaluated metrics. The OIQ, in theory, can perform

better when forming a population of reliable classi�ers, but for the investigated problems,

the performance was highly correlated with a default EG method.

Chapter 5

Optimizing reward distribution

through long action chains

Previous chapters showed that applying real-valued input handling either by using the

interval predicates or discretization signi�cantly increases the input space. This mag-

nitude of possible states implies the growth of classi�er population size; therefore, the

traditional discounted sum of reward distribution might not be an appropriate option.

The desired intention is for the case when the rewards received in all decision instances

are equally important.

The alternative criterion applied in this situation is called the average reward criterion

and was introduced by Puterman [95]. He stated that the decision-maker might prefer

it when the decisions are made frequently (so that the discount rate is very close to 1),

or other terms cannot easily describe the performance criterion. Possible areas of an

application might include situations where system performance is assessed based on the

throughput rate (like making frequent decisions when controlling the �ow of communi-

cation networks).

The averaged reward criterion was �rst implemented in XCS by Tharakunnel and Gold-

berg [120]. They called their modi�cation AXCS and showed that it performed similarly

to the standard XCS in the Woods2 environment. Later, Zang et al. [147] formally

introduced the R-learning [106, 109] technique to XCS and called it XCSAR. They com-

pared it with XCSG (where the prediction parameters are modi�ed by applying the idea

of gradient descent) and ACXS (maximizing the average of successive rewards) in large

multistep problems (Woods1, Maze6, and Woods14).

100

Chapter 5. � 101

This chapter replaces the ACS2 credit assignment component, optimizing the perfor-

mance in the in�nite horizon (discounted reward) with an averaged version. The intro-

duced variant is AACS2 (Averaged Anticipatory Classi�er System) and is implemented

in two slightly di�erent variants - AACS2-v1 and AACS2-v2. The performance is vali-

dated using two scalable and discretized environments requiring multiple steps to pursue

reward.

5.1 Reinforcement Learning and Reward Criterion

RL is a formal framework in which the agent can in�uence the environment by executing

speci�c actions and receive corresponding feedback (reward) afterwards. Usually, it takes

multiple steps to reach the goal, which makes the process much more complicated. In

the general form, RL consists of:

� a discrete set of environment states S,

� a discrete set of available actions A,

� mapping R between a particular state s ∈ S and action a ∈ A. The environmental

payo� r ∈ R describes the expected reward obtained after executing an action in

a given state.

In each trial, the agent perceives the environmental state s. Next, it evaluates all possible

actions from A and executes action a in the environment. The environment returns a

reward r and next state s′ as intermediate feedback.

The agent's task is to represent the knowledge, using the policy π mapping states to

actions, therefore optimizing a long-run measure of reinforcement. There are two popular

optimality criteria used in MDPs (Markov Decision Problems) - a discounted reward and

an average reward [63, 83].

5.1.0.1 Discounted Reward Criterion

In discounted RL, the future rewards are geometrically discounted according to a discount

factor γ, where 0 ≤ γ < 1. The performance is usually optimized in the in�nite horizon

[118]:

lim
N→∞

Eπ

(
N−1∑
t=0

γtrt(s)

)
(5.1)

Chapter 5. � 102

The E expresses the expected value, N is the number of time steps, and rt(s) is the

reward received at time t starting from state s under the policy.

5.1.0.2 Undiscounted (Averaged) Reward Criterion

The averaged reward criterion [106], which is the undiscounted RL, is where the agent

selects actions maximizing its long-run average reward per step ρ(s):

ρπ(s) = lim
N→∞

Eπ
(∑N−1

t=0 rt(s)
)

N
(5.2)

If a policy maximizes the average reward over all states, it is a gain optimal policy.

Usually, average reward ρ(s) can be denoted as ρ, which is state-independent [82], for-

mulated as ρπ(x) = ρπ(y) = ρπ,∀x, y ∈ S when the resulting Markov chain with policy

π is ergodic (aperiodic and positive recurrent) [94].

To solve an average reward MDP problem, a stationary policy π maximizing the average

reward ρ must be determined. To do so, the average adjusted sum of rewards earned

following a policy π is de�ned as:

V π(s) = Eπ

(
N→∞∑
t=0

(rt − ρπ)

)
(5.3)

The V π(s) can also be called a bias or relative value. Therefore, the optimal relative

value for a state�action pair (s, a) can be written as:

V (s, a) = ra(s, s′)− ρ+ max
b
V (s′, b)∀s ∈ S and ∀a ∈ A (5.4)

where ra(s, s′) denotes the immediate reward of action a in state s when the next state

is s′, ρ is the average reward, and maxb V (s′, b) is the maximum relative value in state

s′ among all possible actions b. Equation 5.4 is also known as the Bellman equation for

an average reward MDP [94].

5.2 Integrating Reward Criterions in ACS2

Despite the ACS's latent-learning capabilities, the RL is realized using two classi�er

metrics - reward cl.r and immediate reward cl.ir. The latter stores the immediate reward

Chapter 5. � 103

predicted to be received after acting in a particular situation and is used mainly for

model exploitation where the reinforcement might be propagated internally. The reward

parameter cl.r stores the reward predicted to be obtained in the long run.

For the �rst version of ACS, Stolzmann proposed a bucket-brigade algorithm to update

the classi�er's reward rc [47, 114]. Let ct be the active classi�er at time t and ct+1 the

active classi�er at time t+ 1:

rct(t+ 1) =

(1− br) · rct(t) + br · r(t+ 1), if r(t+ 1) 6= 0

(1− br) · rct(t) + br · rct+1(t), if r(t+ 1) = 0
(5.5)

where br ∈ [0, 1] is the bid-ratio. The idea is that if there is no environmental reward at

time t+ 1, then the currently active classi�er ct+1 gives a payment of br · rct+1(t) to the

previous active classi�er ct. If there is an environmental reward r(t+1), then br · r(t+1)

is given to the previous active classi�er ct.

Later, Butz adopted the Q-learning idea in ACS2 alongside other modi�cations [18]. For

the agent to learn the optimal behavioural policy, both the reward cl.r and intermediate

reward cl.ir are continuously updated. To assure maximal Q-value, the quality of a

classi�er is also considered assuming that the reward converges in common with the

anticipation's accuracy. The following updates are applied to each classi�er cl in action

set [A] during every trial:

cl.r = cl.r + β

(
φ(t) + γ max

cl′∈[M](t+1)∧cl′.E 6={#}L
(cl′.q · cl′.r)− cl.r

)
cl.ir = cl.ir + β (φ(t)− cl.ir)

(5.6)

The parameter β ∈ [0, 1] denotes the learning rate and γ ∈ [0, 1) is the discount factor.

With a higher β value, the algorithm takes less care of past encountered cases. On

the other hand, γ determines to what extent the reward prediction measure depends on

future reward.

Thus, in the original ACS2, the calculation of the discounted reward estimation at a

speci�c time t is described as Q(t), which is part of Equation 5.6:

Q(t)← φ(t) + γ max
cl′∈[M](t+1)∧cl′.E 6={#}L

(cl′.q · cl′.r) (5.7)

Chapter 5. � 104

The modi�ed ACS2 implementation replacing the discounted reward with the averaged

version with the formula R(t) is de�ned below - Equation 5.8:

R(t) = φ(t)− ρ+ max
cl′∈[M](t+1)∧cl′.E 6={#}L

(cl′.q · cl′.r) (5.8)

The de�nition above requires an estimate of the average reward ρ. Equation 5.4 showed

that the maximization of the average reward is achieved by maximizing the relative value.

The following sections will propose two variants of using the average reward criterion for

internal reward distribution. The altered version is named AACS2, which stands for

Averaged ACS2.

As the next operation in both cases, the reward parameter of all classi�ers in the current

action set [A] is updated using the following formula:

cl.r ← cl.r + β(R− cl.r) (5.9)

where β is the learning rate and R was de�ned in Equation 5.8.

5.2.1 AACS2-v1

The �rst variant of the AACS2 represents the ρ parameter as the ratio of the total

reward received along the path to reward and the average number of steps needed. It

is initialized as ρ = 0, and its update is executed as the �rst operation in RL using the

Widrow-Ho� delta rule - Equation 5.10. The update is also restricted to be executed

only when the agent chooses the action greedily during the explore phase:

ρ← ρ+ ζ[φ− ρ] (5.10)

The ζ parameter denotes the learning rate for the average reward and is typically set at

a very low value. This ensures a nearly constant value of average reward for the update

of the reward, which is necessary for the convergence of average reward RL algorithms

[32].

Chapter 5. � 105

5.2.2 AACS2-v2

The second version is based on the XCSAR proposition by Zang [147]. The only di�erence

from the AACS2-v1 is that the estimate is also dependent on the maximum classi�er

�tness calculated from the previous and current match set:

ρ← ρ+ ζ[φ+ max
cl∈[M](t)∧cl.E 6={#}L

(cl.q · cl.r)− max
cl∈[M](t+1)∧cl.E 6={#}L

(cl.q · cl.r)− ρ] (5.11)

5.3 Research questions

The conducted research aims to answer the following questions:

Q1. Can the undiscounted reward criterion be used in discretized multistep environ-

ments?

Q2. Does the undiscounted reward criterion result in better environment exploitation?

5.4 Experimental evaluation

This section presents setup of the performed experiments and their results.

Goals of the experiments

Experiment 1 - Straight Corridor

The Corridor environment provides a simple, real-valued and scalable benchmark per-

fectly suited for the problem of long action chains. The agent must repeat the same

action a certain amount of times unless reaching the �nal reward state.

Experiment 2 - Deceptive Corridor

The FSW environment is an extension to the Corridor. In each state, actions alternate -

one will bring the agent closer to the reward, and the other is languishing. The forager

will have to distinguish every other state and distribute rewards properly.

5.4.1 Experiment 1 - Straight Corridor

The following section describes the di�erences observed between using the ACS2 with

standard discounted reward distribution and two proposed modi�cations. In all cases, the

experiments were performed in an explore-exploit manner for the total number of 10000

Chapter 5. � 106

trials, where the mode was alternating in each trial. Additionally, for better reference and

benchmarking purposes, basic implementations of Q-Learning and R-Learning algorithms

were also introduced and used with the same parameter settings as ACS2 and AACS2.

The most important thing was to distinguish whether the new reward distribution propo-

sition still allows the agent to successfully update the classi�er's parameter to allow the

exploitation of the environment. To illustrate this, �gures presenting the number of

steps to the �nal location, estimated average change during learning, and the reward

payo� landscape across all possible state-action pairs were plotted for the Corridor of

size n = 20 - Figure 5.2.

To assure that the modi�cation worked as expected, the statistical inference of obtained

result was performed on a scaled version of the problem. Each experiment is averaged

over 50 independent runs and run with the following parameters: β = 0.8, γ = 0.95,

ε = 0.2, θr = 0.9, θi = 0.1, mu = 0, χ = 0, ζ = 0.0001.

Figure 5.1: Performance in Corridor-20 environment. Plots averaged over 50 independent runs. Num-
ber of steps in exploit trials is averaged over 250 last data points.

Chapter 5. � 107

ACS2 AACS2v1 AACS2v2 Q-Learning R-Learning

steps in last trial 9.61 ± 0.84 9.54 ± 0.84 9.0 ± 0.82 7.91 ± 0.79 9.31 ± 0.9

average reward per step - 88.52 ± 0.16 88.65 ± 0.29 - 89.9 ± 0.19

Table 5.1: Descriptive statistic metrics obtained using Bayesian estimation of obtained results for
Corridor-20 problem.

ACS2 AACS2v1 AACS2v2 Q-Learning R-Learning

steps in last trial 19.42 ± 1.65 19.43 ± 1.7 19.47 ± 1.46 124.96 ± 14.21 17.64 ± 1.67

average reward per step - 44.7 ± 0.14 44.7 ± 0.19 - 44.93 ± 0.12

Table 5.2: Descriptive statistic metrics obtained using Bayesian estimation of obtained results for
Corridor-40 problem.

Figure 5.2: Payo� Landscape for Corridor-20 environment. Payo� values were obtained after 10000
trials. For the Q-Learning and R-Learning, the same learning parameters were applied. The ACS2 and
Q-Learning generate exactly the same payo�s for each state-action pair.

Statistical veri�cation

To statistically assess the population size, the posterior data distribution was modelled

using 50 metric values collected in the last trial and then sampled with 100,000 draws.

Tables 5.1, 5.2, 5.3 presents data for three versions of the problem.

Observations

Chapter 5. � 108

ACS2 AACS2v1 AACS2v2 Q-Learning R-Learning

steps in last trial 55.95 ± 4.13 51.25 ± 4.19 49.83 ± 4.48 200.0 ± 0.0 48.65 ± 4.37

average reward per step - 17.84 ± 0.09 17.75 ± 0.13 - 17.85 ± 0.07

Table 5.3: Descriptive statistic metrics obtained using Bayesian estimation of obtained results for
Corridor-100 problem.

The average number of steps can be calculated
∑n

0 n
n−1 , where n is the number of distinct

Corridor states. For the tested environment it gives the approximate value of 11.05,

therefore the average reward per step estimation should be close to 1000/11.05 = 90.49,

which corresponds to the Figure 5.1.

The same Figure demonstrates that all investigated agents learned the environments.

The anticipatory classi�er systems obtained an optimal number of steps after the same

number of exploit trials, which is about 200. In addition, the AACS2-v2 updates the ρ

value more aggressively in earlier phases, but the estimate converges near the optimal

reward per step.

For the payo�-landscape in Figure 5.2, all allowed state�action pairs were identi�ed

in the environment (38 in this case). The �nal population of learning classi�ers was

established after 100 trials and was the same size. Both Q-table and R-learning tables

were populated using the same parameters and number of trials.

The relative distance between adjacent state-action pairs can be divided into three

groups. The �rst one relates to the discounted reward agents (ACS2, Q-Learning).

Both generate almost a similar reward payo� for each state�action. Later, there is the

R-Learning algorithm, which estimates the ρ value and separates states evenly. Further-

more, two AACS2 agents are performing very similarly. The ρ value calculated by the

R-Learning algorithm is lower than the average estimation by the AACS2 algorithm.

Scaled problem instances revealed interesting properties:

� the Q-Learning algorithm was not capable of executing the optimal number of steps

in environments with n = 40, n = 100,

� for the most challenging problem of n = 1000, the AACS2 modi�cation yield better

performance than ACS2,

� all algorithms with undiscounted reward critera managed to calculate the average

reward ρ.

Chapter 5. � 109

5.4.2 Experiment 2 - Deceptive Corridor

FSW di�erentiate from the Corridor by the presence of futile movement available in

every step. Moreover, this action alternates between the states, demanding the agent to

discriminate between relevant perceptions.

Agent's behaviour is expected to properly distribute reward across all valuable states,

meanwhile ignoring the rest of them. The analysis was performed by executing consec-

utive 10000 trials alternating between explore and exploit phases. Similarly, as in the

previous experiment, there is only one state-observed; thus, the ACS2 genetic general-

ization mechanism remains turned o�.

Parameters: β = 0.5, γ = 0.95, ε = 0.1, θr = 0.9, θi = 0.1, mu = 0, χ = 0, ζ = 0.0001.

Figure 5.3: Performance in FSW-10 environment. Plots are averaged over 50 experiments. A moving
average with window 25 was applied for the number of steps. Notice that the abscissa on both plots is
scaled di�erently.

Chapter 5. � 110

ACS2 AACS2v1 AACS2v2 Q-Learning R-Learning

steps in last trial 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0

average reward per step - 9.93 ± 0.01 10.01 ± 0.01 - 9.81 ± 0.0

Table 5.4: Descriptive statistic metrics obtained using Bayesian estimation of obtained results for
FSW-10 problem.

ACS2 AACS2v1 AACS2v2 Q-Learning R-Learning

steps in last trial 20.0 ± 0.0 20.0 ± 0.0 20.0 ± 0.0 20.0 ± 0.0 20.0 ± 0.0

average reward per step - 4.99 ± 0.01 5.0 ± 0.01 - 4.9 ± 0.0

Table 5.5: Descriptive statistic metrics obtained using Bayesian estimation of obtained results for
FSW-20 problem.

Figure 5.4: Payo� Landscape for the FSW-10 environment. Payo� values were obtained after 10000
trials. For the Q-Learning and R-Learning, the same learning parameters were applied.

Statistical veri�cation

To statistically assess the population size, the posterior data distribution was modelled

using 50 metric values collected in the last trial and then sampled with 100,000 draws.

Tables 5.4, 5.5, 5.6 presents data for three versions of the problem.

Observations

Chapter 5. � 111

ACS2 AACS2v1 AACS2v2 Q-Learning R-Learning

steps in last trial 40.0 ± 0.0 40.0 ± 0.0 40.0 ± 0.0 40.0 ± 0.0 40.0 ± 0.0

average reward per step - 2.51 ± 0.0 2.51 ± 0.01 - 2.45 ± 0.0

Table 5.6: Descriptive statistic metrics obtained using Bayesian estimation of obtained results for
FSW-40 problem.

The size of the environment used on Figure 5.3 was chosen to be n = 10, resulting

in 2n + 1 = 21 distinct states. Statistical inference proves that the undiscounted ver-

sions of rewarding manage to properly discriminate between worthwhile states without

�uctuations for all problem sizes.

The same Figure depicts that agents can learn in a more challenging environment without

problems. It takes about 250 trials to perform an optimal number of steps to reach

the reward state. The ρ parameter converges with the same dynamics as the Corridor

environment from the previous section.

The payo�-landscape Figure 5.4 shows that the average value estimate is very close to

the one calculated by the R-learning algorithm. The di�erence is primarily visible in

the state-action pairs located afar from the �nal state. The discounted versions of the

algorithms performed precisely the same.

5.5 Research summary

The answers to the previously formulated research questions are as follows:

Q1: Can the undiscounted reward criterion be used in discretized multistep

environments?

Concluded experiments have shown that the undiscounted reward criterion can be suc-

cessfully applied to a problem requiring long-action chains such as the Corridor of FSW.

The new system AACS2 varies only in a way the classi�er reward cl.r parameter is cal-

culated. The clear di�erence between the discounted criterion is visible in the payo�

landscapes generated from the testing environments. The AACS2 can produce a distinct

payo� landscape with uniformly spaced payo� levels, similar to the one generated by

the R-learning algorithm. When taking a closer look, all algorithms generate step-like

payo�-landscape plots, but each particular state-action pairs are more distinguishable

when the reward-criterion is used. The explanation of why the agent moves toward the

goal at all can be found in Equation 5.8 - it can �nd the following best action by using

the best classi�ers' �tness from the next match-set.

Chapter 5. � 112

In addition, the rate at which the average estimate value ρ converges is di�erent for

AACS2-v1 and AACS2-v2. Figures 5.1 and 5.3 demonstrate that the AACS2-v2 settles

to the �nal value faster, but also has greater �uctuations. That is caused by the fact

that both match sets' maximum �tness is considered when updating the values. Zang

also observed this and proposed that the learning rate ζ in Equation 5.10 could decay

over time [147]:

ζ ← ζ − ζmax − ζmin

NumOfTrials
(5.12)

where ζmax is the initial value of ζ, and ζmin is the minimum learning rate required. The

update should take place at the beginning of each exploration trial.

Q2: Does the undiscounted reward criterion result in better environment

exploitation?

Number of steps during exploitation trials depicted on Figures 5.1 and 5.3 indicate that

for the investigated problems the agent is able to pick up better actions when the undis-

counted criterion is used.

In addition, the fact that the ρ converged to a slightly suboptimal value might be caused

by the exploration strategy adopted, which was set to the ε-greedy. Because the esti-

mated average reward is updated only when the greedy action is executed, the number

of greedy actions to be performed during the exploration trial is uncertain. Moreover,

the probability distribution when the agent observes the rewarding state might be too

low in order to enable the estimated average reward to reach optimal value. This was

observed during the experimentation - the ρ value was correlated with the ε parameter.

Chapter 6

Summary

6.1 Conclusions

This thesis focused on integrating anticipatory classi�er systems with problems described

by real-valued output. While this area was researched extensively in other LCS families,

no major contribution was still made for the ALCS.

The stated hypothesis - "Anticipatory Learning Classi�ers Systems are capable of building

the correct internal model of the environment using the real-valued input" is considered

as valid by achieving the following goals:

1. Propose modi�cations towards ALCS system capable of handling real-

valued input

This intention was achieved and validated using two independent approaches:

1. changing the rule's attribute representations to incorporate interval predicates, re-

sulting in a proprietary system variation named rvACS,

2. implementing the prominent ALCS algorithms with the intention of input dis-

cretization.

The �rst approach was based on the advancements made for the XCS systems. The

rvACS managed to show promising results. Nevertheless, because of the much richer

rule complexity and the cooperation of components precisely forming the condition and

e�ect parts, the obtained conclusion is that the nature of rvACS is not aligned with the

overall ALCS idea. The favoured implementation of ACS2, which is considered the most

mature algorithm, is built upon the psychological theory of behavioural control, which

113

Chapter 6. Summary 114

was not investigated for this kind of problem. The algorithm performance, while being

valid, is not elegant for the virtues of ALCS for creating the most general, compact and

accurate rules.

The second approach maintains the characteristics and original intentions of investigated

algorithms by a�ecting only the agent-environment interface layer. Hopefully, the inter-

nal representation is not limited to the ternary alphabet (binary values and generalization

symbol), so any nominal value can also be used. This enables the possibility of perform-

ing input discretization before an agent processes it. While promising results and better

transparency, this approach was considered superior to interval formation (see Figures

3.4, 3.9 using the same testing problem) and was pursued in consecutive experiments.

However, the tradeo� between interpretability and e�ciency in ALCS is evident in both

cases. The lack of dedicated compaction mechanisms results in a population of �ne-

grained rules that quickly becomes a bottleneck in algorithm performance. The potential

performance optimisations are also challenging due to complex components interactions

and the sequential nature of the considered algorithms.

The proposition of the �rst approach was published in [67], while the latent learning

experiments in discretized environments in [70].

2. Propose relevant benchmarking problems and metrics for evaluating ALCS

performance

The nature of the performance was carefully reviewed in six problems using the real-

valued input as a description of an actual state. Most of them have been used as a

toy-problems in LCS research, providing di�erent problems of di�erent natures, like:

� single and multiple steps,

� extensive mutual feature interaction,

� vast input space,

� the need for long-action chain building.

Moreover, a famous RL Cart Pole benchmarking problem was investigated by the LCS for

the �rst time, to our knowledge, obtaining encouraging results with compact knowledge

representation.

To highlight performance, �ve key metrics were selected that investigate the state of the

systems from multiple angles. Aspects like the quality of evolving solutions, size, and

e�ective application are emphasized throughout the research.

Chapter 6. Summary 115

3. Propose relevant improvements towards neoteric changes

This work's primary e�ort is to investigate the ALCS behaviour with either interval-based

rule representation (rvACS) or by the use of discretization. The rvACS adaptation re-

quires rede�ning certain internal processes and introducing new system parameters. Pre-

liminary tests revealed two possible limitations of the system that were further studied.

First, any form of continuous-valued representation increased the problem's search space,

impeding the agent's learning speed. Four techniques probing for the most promising

action selection were inspected, especially regarding knowledge acquisition rate. The

novel approach, based on the promising approach of Optimistic Initial Values in multi-

armed bandits, named Optimistic Initial Quality was proposed herein but did not provide

substantial performance gains.

The other limitation relates to multistep problems, where certain input discretization

might demand the agent to perform a notably larger number of actions to receive the

feedback signal. The default reward assignment component might distribute the signal

incorrectly amongst participating classi�ers when such long-action chains are experi-

enced. An approach replacing the credit assignment with the undiscounted incentive

distribution version resulted in a system named AACS2. The method showed perfor-

mance improvements for speci�c problems.

The biased exploration research was published in [68], and the performance of long-action

chaining in [69].

4. Conduct an experimental evaluation of intended adjustments

All the experiments were tried to illustrate the evolution of selected metrics throughout

the agent's learning of selected problems. Such characteristics of investigated strategies

of ALCS implementations were further smoothed by averaging multiple independent

experiments.

Moreover, the Bayesian estimation approach emphasized the di�erences between investi-

gated cases, allowing to draw non-biased conclusions. Often, selected environments were

scaled up, where agents' behaviour was challenged with increased complexity.

5. Developing an open-sourced Python Machine Learning framework for

evaluating various LCS algorithms

LCS algorithms are still not recognized by many ML practitioners and researchers. Sig-

ni�cant e�ort was put to implement the most famous ALCS algorithms using the tools

used nowadays by data scientist communities. Despite a limited number of reference

Chapter 6. Summary 116

resources, the historical experiments were reproduced, drastically simplifying newcom-

ers learning curve. The refreshed version of code adds adds several abstraction layers,

facilitating the introduction of new features like handling real-valued input.

By integrating with the industry standards, all algorithms share the same code base and

operate with a commonly agreed interface enabling e�ortless benchmarking with other

state-of-the-art systems. The incentives like open-source availability, a vast amount of

usage examples, possibility of interactive execution are intended to shed more light on

this promising yet underappreciated �eld of ML.

The developed PyALCS 1 framework was described in [66] research paper.

6.2 Future Work

The ideas presented in this thesis may be potentially developed in the following directions:

� Research on compacting the created population [P] [80]. The current solution

evolves a set of distinct classi�ers representing �ne-grained niches of search space.

An online process capable of merging neighbouring rules would positively impact

the overall performance and transparency.

� Examine the impact of choosing di�erent discretization strategies for speci�c prob-

lems. Example methods might include supervised learners (using class information

like entropy or error to determine cut-points) or hierarchical, where the ranges are

built incrementally [145].

� Investigation of agent's behaviour for non-stationary and non-deterministic envi-

ronments. Problems like noise perception, of concept drifting where the agent has

to re�ne population of classi�ers over time.

� Utilization of speci�c ALCS mechanisms like action planning to optimize the pro-

cess of building an internal model of the real-valued environment.

� E�cient way of tuning system parameters. ALCS comprises numerous hyper-

parameters; therefore, employing a heuristic process would contribute to better

performance.
1https://github.com/ParrotPrediction/pyalcs

Chapter 6. Summary 117

6.3 Publications

The selected parts of the thesis have been already published in:

� Norbert Kozlowski and Olgierd Unold. Integrating anticipatory classi�er systems

with OpenAI Gym. In Proceedings of the Genetic and Evolutionary Computation

Conference Companion, 1410�1417. ACM, 2018 (CORE: A, MNiSW: 140).

� Norbert Kozlowski and Olgierd Unold. Preliminary tests of a real-valued anticipa-

tory classi�er system. In Proceedings of the Genetic and Evolutionary Computa-

tion Conference Companion, 1289�1294. 2019 (CORE: A, MNiSW: 140).

� Norbert Kozlowski and Olgierd Unold. Investigating exploration techniques for

ACS in discretized real-valued environments. In Proceedings of the 2020 Genetic

and Evolutionary Computation Conference Companion, 1765�1773, 2020 (CORE:

A, MNiSW: 140).

� Norbert Kozªowski and Olgierd Unold. Anticipatory classi�er system with av-

erage reward criterion in discretized multi-step environments. Applied Sciences,

11(3):1098, 2021 (IF: 02.679, MNiSW: 100).

� Norbert Kozªowski and Olgierd Unold - Internalizing Knowledge for Anticipatory

Classi�er Systems in Discretized Real-Valued Environments. IEEE Access (10),

33816-33828, 2022 (IF: 03.557, MNiSW: 100)

During the work on the thesis I have also coauthored other research:

� Olgierd Unold, Edyta Rogula, and Norbert Kozªowski. Introducing action planning

to the anticipatory classi�er system ACS2. In International Conference on Com-

puter Recognition Systems, 264�275. Springer, 2019 (CORE: National,MNiSW:

20),

� Olgierd Unold, Norbert Kozªowski, �ukasz �mierzchaªa. Preliminary tests of an

Anticipatory Classi�er System with Experience Replay, Gecco 2022 (in review).

Selected research advancements were presented at the following conferences:

� Kraków, Poland, 2018, QIPLSIGML - PyALCS and OpenAI Gym,

� Kyoto, Japan, 2018, GECCO - Integrating anticipatory classi�er systems with Ope-

nAI Gym,

Chapter 6. Summary 118

� Wrocªaw, Poland, 2019, PP-RAI - Preliminary tests of a real-valued Anticipatory

Classi�er System,

� Prague, Czech Republic, 2019, GECCO - Preliminary tests of a real-valued Antic-

ipatory Classi�er System,

� Cancún, Mexico, 2020, GECCO - Investigating Exploration Techniques for Antici-

patory Classi�er System in Real-Valued Environments,

� Gdynia, Poland, 2022, PP-RAI - Internalizing Knowledge for Anticipatory Classi-

�er Systems in Discretized Real-Valued Environments.

The interactive 2 and reproducible 3 version of this thesis is available online.

2https://khozzy.github.io/phd
3https://zenodo.org/record/6427066

Bibliography

[1] Hussein A. Abbass, Jaume Bacardit, Martin V. Butz, and Xavier Llora. Online

adaptation in learning classi�er systems: stream data mining. Illinois Genetic

Algorithms Laboratory, (2004031), 2004.

[2] Jaume Bacardit, Ester Bernadó-Mansilla, and Martin V. Butz. Learning classi�er

systems: looking back and glimpsing ahead. In Learning Classi�er Systems, pages

1�21. Springer, 2006.

[3] Jaume Bacardit and Martin V. Butz. Data mining in learning classi�er systems:

comparing XCS with GAssist. In Learning Classi�er Systems, pages 282�290.

Springer, 2003.

[4] Alwyn Barry. XCS Performance and Population Structure in Multi-Step Environ-

ments. PhD thesis, Citeseer, 2000.

[5] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike adap-

tive elements that can solve di�cult learning control problems. IEEE transactions

on systems, man, and cybernetics, (5):834�846, 1983.

[6] Alessio Benavoli, Giorgio Corani, Janez Dem²ar, and Marco Za�alon. Time for

a change: a tutorial for comparing multiple classi�ers through bayesian analysis.

The Journal of Machine Learning Research, 18(1):2653�2688, 2017.

[7] Ester Bernadó, Xavier Llora, and Josep M. Garrell. XCS and GALE: A comparative

study of two learning classi�er systems on data mining. In International Workshop

on Learning Classi�er Systems, pages 115�132. Springer, 2001.

[8] Andrea Bonarini, Claudio Bonacina, and Matteo Matteucci. Fuzzy and crisp rep-

resentations of real-valued input for learning classi�er systems. In International

Workshop on Learning Classi�er Systems, pages 107�124. Springer, 1999.

[9] Andrea Bonarini and Matteo Matteucci. Fixcs: A fuzzy implementation of XCS.

In 2007 IEEE International Fuzzy Systems Conference, pages 1�6. IEEE, 2007.

119

Bibliography 120

[10] Lashon B. Booker. Improving the performance of genetic algorithms in classi�er

systems. In ICGA, pages 80�92, 1985.

[11] William N. Browne. The development of an industrial learning classi�er system for

data-mining in a steel hop strip mill. In Applications of learning classi�er systems,

pages 223�259. Springer, 2004.

[12] Seok-Jun Bu and Sung-Bae Cho. A convolutional neural-based learning classi�er

system for detecting database intrusion via insider attack. Information Sciences,

512:123�136, 2020.

[13] Larry Bull. Applications of learning classi�er systems, volume 150. Springer Science

& Business Media, 2004.

[14] Larry Bull and Tim Kovacs. Foundations of learning classi�er systems: An in-

troduction. In Foundations of Learning Classi�er Systems, pages 1�17. Springer,

2005.

[15] Larry Bull, Pier Luca Lanzi, and Toby O'hara. Anticipation mappings for learning

classi�er systems. In 2007 IEEE Congress on Evolutionary Computation, pages

2133�2140. IEEE, 2007.

[16] A Martin V Butz, B David E Goldberg, and C Wolfgang Stolzmann. The anticipa-

tory classi�er system and genetic generalization. Natural Computing, 1(4):427�467,

2002.

[17] Martin V. Butz. Biasing exploration in an anticipatory learning classi�er system.

In International Workshop on Learning Classi�er Systems, pages 3�22. Springer,

2001.

[18] Martin V. Butz. Anticipatory learning classi�er systems, volume 4. Springer Sci-

ence & Business Media, 2002.

[19] Martin V. Butz. Rule-based evolutionary online learning systems, volume 259.

Springer, 2006.

[20] Martin V. Butz. Combining gradient-based with evolutionary online learning: an

introduction to learning classi�er systems. In 7th International Conference on

Hybrid Intelligent Systems (HIS 2007), pages 12�17. IEEE, 2007.

[21] Martin V Butz, David E Goldberg, and Wolfgang Stolzmann. Introducing a genetic

generalization pressure to the anticipatory classi�er system-part 1: Theoretical

approach. In GECCO, pages 42�49. Citeseer, 2000.

Bibliography 121

[22] Martin V Butz, David E Goldberg, and Wolfgang Stolzmann. Introducing a genetic

generalization pressure to the anticipatory classi�er system-part 2: Performance

analysis. In Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO-2000), pages 42�49. Citeseer, 2000.

[23] Martin V. Butz and Wolfgang Stolzmann. An algorithmic description of ACS2. In

International Workshop on Learning Classi�er Systems, pages 211�229. Springer,

2001.

[24] Martin V. Butz and Stewart W. Wilson. An algorithmic description of XCS. In

International Workshop on Learning Classi�er Systems, pages 253�272. Springer,

2000.

[25] Jorge Casillas, Brian Carse, and Larry Bull. Fuzzy-XCS: A michigan genetic fuzzy

system. IEEE Transactions on Fuzzy Systems, 15(4):536�550, 2007.

[26] Jorge Casillas, Brian Carse, Larry Bull, and Brian Carse. Fuzzy XCS: an accuracy-

based fuzzy classi�er system. In Proceedings of the XII Congreso Espanol sobre

Tecnologia y Logica Fuzzy (ESTYLF 2004), pages 369�376, 2004.

[27] �ukasz Cielecki and Olgierd Unold. Real-valued GCS classi�er system. Inter-

national Journal of Applied Mathematics and Computer Science, 17(4):539�547,

2007.

[28] Oscar Cord et al. Genetic fuzzy systems: evolutionary tuning and learning of fuzzy

knowledge bases, volume 19. World Scienti�c, 2001.

[29] Hai H. Dam, Hussein A. Abbass, and Chris Lokan. Be real! XCS with continuous-

valued inputs. In Proceedings of the 7th annual workshop on Genetic and evolu-

tionary computation, pages 85�87. ACM, 2005.

[30] Hai H. Dam, Hussein A. Abbass, Chris Lokan, and Xin Yao. Neural-based learn-

ing classi�er systems. IEEE Transactions on Knowledge and Data Engineering,

20(1):26�39, 2007.

[31] Hai H. Dam, Chris Lokan, and Hussein A. Abbass. Evolutionary online data

mining: An investigation in a dynamic environment. In Evolutionary computation

in dynamic and uncertain environments, pages 153�178. Springer, 2007.

[32] Tapas K. Das, Abhijit Gosavi, Sridhar Mahadevan, and Nicholas Marchalleck. Solv-

ing semi-markov decision problems using average reward reinforcement learning.

Management Science, 45(4):560�574, Apr 1999.

[33] Li Deng. The MNIST database of handwritten digit images for machine learning

research. IEEE signal processing magazine, 29(6):141�142, 2012.

Bibliography 122

[34] Zoltan Dienes. Bayesian versus orthodox statistics: Which side are you on? Per-

spectives on Psychological Science, 6(3):274�290, 2011.

[35] Tapio Elomaa and Juho Rousu. E�cient multisplitting revisited: Optima-

preserving elimination of partition candidates. Data Mining and Knowledge Dis-

covery, 8(2):97�126, 2004.

[36] Pierre Gérard, Jean-Arcady Meyer, and Olivier Sigaud. Combining latent learning

with dynamic programming in the modular anticipatory classi�er system. European

Journal of Operational Research, 160(3):614�637, 2005.

[37] Pierre Gerard and Olivier Sigaud. YACS: Combining dynamic programming with

generalization in classi�er systems. In International Workshop on Learning Clas-

si�er Systems, pages 52�69. Springer, 2000.

[38] Pierre Gerard, Wolfgang Stolzmann, and Olivier Sigaud. YACS: a new learning

classi�er system using anticipation. Soft Computing, 6(3-4):216�228, 2002.

[39] David E. Goldberg. Genetic algorithms in search, optimization, and machine learn-

ing, 1989.

[40] David E. Goldberg and Holland John H. Genetic algorithms and machine learning.

Machine Learning, 3(2):95�99, 1988.

[41] David Gunning, Mark Ste�k, Jaesik Choi, Timothy Miller, Simone Stumpf, and

Guang-Zhong Yang. XAI � explainable arti�cial intelligence. Science Robotics,

4(37):eaay7120, 2019.

[42] Ali Hamzeh and Adel Rahmani. An evolutionary function approximation approach

to compute prediction in XCSF. In European Conference on Machine Learning,

pages 584�592. Springer, 2005.

[43] Tim Hansmeier and Marco Platzner. An experimental comparison of explore/ex-

ploit strategies for the learning classi�er system XCS. In Proceedings of the Genetic

and Evolutionary Computation Conference Companion, pages 1639�1647, 2021.

[44] Johann Friedrich Herbart. Psychologie als Wissenschaft: neu gegründet auf Er-

fahrung, Metaphysik und Mathematik, volume 2. AW Unzer, 1825.

[45] Joachim Ho�mann. Vorhersage und erkenntnis. Hogrefe, 1993.

[46] Joachim Ho�mann and Albrecht Sebald. Lernmechanismen zum erwerb verhal-

tenssteuernden wissens. Psychologische Rundschau, 2000.

[47] John H. Holladn. Properties of the bucket brigade. In Proceedings of the 1st

International Conference on Genetic Algorithms, pages 1�7, 1985.

Bibliography 123

[48] John H. Holland. Adaptation in natural and arti�cial systems. Ann Arbor, 1975.

[49] John H. Holland. Progress in theoretical biology. Adaptation, 4:264�293, 1976.

[50] John H. Holland. Properties of the bucket brigade. In Proceedings of the 1st

International Conference on Genetic Algorithms, pages 1�7, 1985.

[51] John H. Holland. Escaping brittleness: the possibilities of general purpose learning

algorithms applied to parallel rule-based system. Machine learning, pages 593�623,

1986.

[52] John H. Holland. A mathematical framework for studying learning in classi�er

systems. Physica D: Nonlinear Phenomena, 22(1-3):307�317, 1986.

[53] John H. Holland. Hidden order: How adaptation builds complexity. Addison Wesley

Longman Publishing Co., Inc., 1996.

[54] John H. Holland and Judith S. Reitman. Cognitive systems based on adaptive

algorithms. In Pattern-directed inference systems, pages 313�329. Elsevier, 1978.

[55] John H. Holmes. Learning classi�er systems applied to knowledge discovery in clin-

ical research databases. In International Workshop on Learning Classi�er Systems,

pages 243�261. Springer, 1999.

[56] John H. Holmes, Dennis R. Durbin, and Flaura K. Winston. The learning clas-

si�er system: an evolutionary computation approach to knowledge discovery in

epidemiologic surveillance. Arti�cial Intelligence in Medicine, 19(1):53�74, 2000.

[57] John H. Holmes, Pier L. Lanzi, Wolfgang Stolzmann, and Stewart W. Wilson.

Learning classi�er systems: New models, successful applications. Information Pro-

cessing Letters, 82(1):23�30, 2002.

[58] Jacob Hurst, Larry Bull, and Chris Melhuish. TCS learning classi�er system con-

troller on a real robot. In International Conference on Parallel Problem Solving

from Nature, pages 588�597. Springer, 2002.

[59] Muhammad Irfan, Zheng Jiangbin, Muhammad Iqbal, and Muhammad Hassan

Arif. Enhancing learning classi�er systems through convolutional autoencoder to

classify underwater images. Soft Computing, 25(15):10423�10440, 2021.

[60] Muhammad Irfan, Zheng Jiangbin, Muhammad Iqbal, Zafar Masood, and Muham-

mad Hassan Arif. Knowledge extraction and retention based continual learning by

using convolutional autoencoder-based learning classi�er system. Information Sci-

ences, 591:287�305, 2022.

Bibliography 124

[61] Muhammad Irfan, Zheng Jiangbin, Muhammad Iqbal, Zafar Masood, Muham-

mad Hassan Arif, and Syed Rauf ul Hassan. Brain inspired lifelong learning model

based on neural based learning classi�er system for underwater data classi�cation.

Expert Systems with Applications, 186:115798, 2021.

[62] Mohammad R. Islam. Sample size and its role in Central Limit Theorem (CLT).

Computational and Applied Mathematics Journal, 4(1):1�7, 2018.

[63] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement

learning: A survey. Journal of arti�cial intelligence research, 4:237�285, 1996.

[64] Dawid Kondziela. Design and implementation of a fuzzy anticipatory classi�er

system. Bachelor's thesis, Wroclaw Univesity of Science and Technology, 2021.

[65] Sotiris Kotsiantis and Dimitris Kanellopoulos. Discretization techniques: A recent

survey. GESTS International Transactions on Computer Science and Engineering,

32(1):47�58, 2006.

[66] Norbert Kozªowski and Olgierd Unold. Integrating anticipatory classi�er systems

with OpenAI gym. In Proceedings of the Genetic and Evolutionary Computation

Conference Companion, pages 1410�1417. ACM, 2018.

[67] Norbert Kozªowski and Olgierd Unold. Preliminary tests of a real-valued anticipa-

tory classi�er system. In Proceedings of the Genetic and Evolutionary Computation

Conference Companion, pages 1289�1294, 2019.

[68] Norbert Kozªowski and Olgierd Unold. Investigating exploration techniques for

ACS in discretized real-valued environments. In Proceedings of the 2020 Genetic

and Evolutionary Computation Conference Companion, pages 1765�1773, 2020.

[69] Norbert Kozªowski and Olgierd Unold. Anticipatory classi�er system with av-

erage reward criterion in discretized multi-step environments. Applied Sciences,

11(3):1098, 2021.

[70] Norbert Kozªowski and Olgierd Unold. Internalizing knowledge for anticipatory

classi�er systems in discretized real-valued environments. IEEE Access, 2022. (in

review).

[71] John K. Kruschke. Bayesian assessment of null values via parameter estimation

and model comparison. Perspectives on Psychological Science, 6(3):299�312, 2011.

[72] John K. Kruschke. Bayesian Estimation Supersedes the t Test. Journal of Exper-

imental Psychology: General, 142(2):573, 2013.

Bibliography 125

[73] Sang Gyu Kwak and Jong Hae Kim. Central limit theorem: the cornerstone of

modern statistics. Korean journal of anesthesiology, 70(2):144, 2017.

[74] Pier L. Lanzi. Learning classi�er systems: A reinforcement learning perspective.

In Foundations of Learning Classi�er Systems, pages 267�284. Springer, 2005.

[75] Pier L. Lanzi. Learning classi�er systems: then and now. Evolutionary Intelligence,

1(1):63�82, 2008.

[76] Pier L. Lanzi et al. Extending the representation of classi�er conditions part i:

from binary to messy coding. In Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO 99), pages 337�344. Morgan Kaufmann, 1999.

[77] Pier L. Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg.

XCS with computed prediction in multistep environments. In Proceedings of the

7th annual conference on Genetic and evolutionary computation, pages 1859�1866,

2005.

[78] Pier L. Lanzi and Rick L. Riolo. Recent trends in learning classi�er systems re-

search. In Advances in Evolutionary Computing, pages 955�988. Springer, 2003.

[79] Ju Yin Lin, Chi Pin Cheng, Wen Chih Tsai, and An-Pin Chen. Using learning

classi�er system for making investment strategies based on institutional analysis.

In Arti�cial Intelligence and Applications, pages 765�769, 2004.

[80] Yi Liu, Will N Browne, and Bing Xue. A comparison of learning classi�er systems'

rule compaction algorithms for knowledge visualization. ACM Transactions on

Evolutionary Learning and Optimization, 1(3):1�38, 2021.

[81] Yi Liu, Will N Browne, and Bing Xue. Visualizations for rule-based machine

learning. Natural Computing, pages 1�22, 2021.

[82] Sridhar Mahadevan. Average reward reinforcement learning: Foundations, algo-

rithms, and empirical results. Machine learning, 22(1-3):159�195, 1996.

[83] Sridhar Mahadevan. Sensitive discount optimality: Unifying discounted and aver-

age reward reinforcement learning. In ICML, pages 328�336. Citeseer, 1996.

[84] Harmon E. Mance and Stephanie S. Harmon. Reinforcement learning: A tutorial,

1996.

[85] Charles E Martin and Heiko Ho�mann. Fast re-learning of a controller from sparse

data. In 2014 IEEE International Conference on Systems, Man, and Cybernetics

(SMC), pages 973�978. IEEE, 2014.

Bibliography 126

[86] Kazuma Matsumoto, Ryo Takano, Takato Tatsumi, Hiroyuki Sato, Tim Kovacs,

and Keiki Takadama. XCSR based on compressed input by deep neural network

for high dimensional data. In Proceedings of the Genetic and Evolutionary Com-

putation Conference Companion, pages 1418�1425, 2018.

[87] Jean-Arcady Meyer and Stewart W. Wilson. The animat path to ai. In From Ani-

mals to Animats: Proceedings of the First International Conference on Simulation

of Adaptive Behavior, pages 15�21. MIT Press, 1991.

[88] Petr Musilek, Sa Li, and Loren Wyard-Scott. Enhanced learning classi�er system

for robot navigation. In 2005 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 3390�3395. IEEE, 2005.

[89] Toby O'Hara and Larry Bull. Prediction calculation in accuracy-based neural

learning classi�er systems. Tech report UWELCSG04-004, 2004.

[90] Toby O'Hara and Larry Bull. Building anticipations in an accuracy-based learning

classi�er system by use of an arti�cial neural network. In 2005 IEEE Congress on

Evolutionary Computation, volume 3, pages 2046�2052. IEEE, 2005.

[91] Romain Orhand, Anne Jeannin-Girardon, Pierre Parrend, and Pierre Collet.

BACS: A thorough study of using behavioral sequences in ACS2. In International

Conference on Parallel Problem Solving from Nature, pages 524�538. Springer,

2020.

[92] Romain Orhand, Anne Jeannin-Girardon, Pierre Parrend, and Pierre Collet.

PEPACS: integrating probability-enhanced predictions to ACS2. In Proceedings

of the 2020 Genetic and Evolutionary Computation Conference Companion, pages

1774�1781, 2020.

[93] Richard J Preen, Stewart WWilson, and Larry Bull. Autoencoding with a classi�er

system. IEEE Transactions on Evolutionary Computation, 25(6):1079�1090, 2021.

[94] Martin L. Puterman. Markov decision processes. Handbooks in operations research

and management science, 2:331�434, 1990.

[95] Martin L. Puterman. Markov decision processes: discrete stochastic dynamic pro-

gramming. John Wiley & Sons, 2014.

[96] Robert A Richards and Sheri D Sheppard. Three-dimensional shape optimization

utilizing a learning classi�er system. In Proceedings of the 1st annual conference

on genetic programming, pages 539�546, 1996.

[97] Michael M. Richter. Reinforcement learning: a brief overview. Adaptivity and

Learning, pages 243�264, 2003.

Bibliography 127

[98] Rick L. Riolo. Empirical studies of default hierarchies and sequences of rules in

learning classi�er systems. PhD thesis, University of Michigan, 1988.

[99] Rick L. Riolo. Lookahead planning and latent learning in a classi�er system. In

Proceedings of the First International Conference on Simulation of Adaptive Be-

havior on From Animals to Animats, page 316�326, Cambridge, MA, USA, 1991.

MIT Press.

[100] George G. Robertson and Rick L. Riolo. A tale of two classi�er systems. Machine

Learning, 3(2):139�159, 1988.

[101] R Rosen. Life itself, complexity in ecological systems series, 1991.

[102] Robert Rosen. Anticipatory Systems. Elsevier, 1985.

[103] Katarzyna Rudnik. Koncepcja i implementacja systemu wnioskuj¡cego z

probabilistyczno-rozmyt¡ baz¡ wiedzy. PhD thesis, Politechnika Opolska, 2011.

[104] Stuart Russell and Peter Norvig. Arti�cial Intelligence: A Modern Approach. Pren-

tice Hall, 3 edition, 2010.

[105] Arthur L. Samuel. Some studies in machine learning using the game of checkers.

IBM Journal of research and development, 44(1.2):206�226, 2000.

[106] Anton Schwartz. A reinforcement learning method for maximizing undiscounted

rewards. In Proceedings of the tenth international conference on machine learning,

volume 298, pages 298�305, 1993.

[107] Abubakar Siddique, Will N Browne, and Gina M Grimshaw. Frames-of-reference

based learning: Overcoming perceptual aliasing in multi-step decision making

tasks. IEEE Transactions on Evolutionary Computation, 2021.

[108] Olivier Sigaud and Stewart W. Wilson. Learning classi�er systems: a survey. Soft

Computing, 11(11):1065�1078, 2007.

[109] Satinder P. Singh. Reinforcement learning algorithms for average-payo� markovian

decision processes. In AAAI, volume 94, pages 700�705, 1994.

[110] Robert Smith, A. El-Fallah, B. Ravichandran, Raman Mehra, and Bruce Dike.

The Fighter Aircraft LCS: A Real-World, Machine Innovation Application, pages

113�142. Springer, 01 2004.

[111] Stephen Smith. A learning system based on genetic algorithms. PhD thesis, Uni-

versity of Pittsburgh, 1980.

Bibliography 128

[112] Stephen F. Smith. Flexible learning of problem solving heuristics through adaptive

search. In IJCAI, volume 83, pages 422�425, 1983.

[113] Wolfgang Stolzmann. Antizipative classi�er systems. Shaker, 1997.

[114] Wolfgang Stolzmann. An introduction to anticipatory classi�er systems. In Inter-

national Workshop on Learning Classi�er Systems, pages 175�194. Springer, 1999.

[115] Wolfgang Stolzmann and Martin V. Butz. Latent learning and action planning in

robots with anticipatory classi�er systems. In International Workshop on Learning

Classi�er Systems, pages 301�317. Springer, 1999.

[116] Wolfgang Stolzmann, Martin V. Butz, and David E. Goldberg. First cognitive

capabilities in the anticipatory classifer system. et al.[228], pages 287�296, 2000.

[117] Christopher Stone and Larry Bull. For real! XCS with continuous-valued inputs.

Evolutionary Computation, 11(3):299�336, 2003.

[118] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction.

MIT press, 2018.

[119] Masakazu Tadokoro, Satoshi Hasegawa, Takato Tatsumi, Hiroyuki Sato, and Keiki

Takadama. Knowledge extraction from XCSR based on dimensionality reduction

and deep generative models. In 2019 IEEE Congress on Evolutionary Computation

(CEC), pages 1883�1890. IEEE, 2019.

[120] Kurian Tharakunnel and David E. Goldberg. XCS with average reward criterion

in multi-step environment, 2002.

[121] Edward C. Tolman. Cognitive maps in rats and men. Psychological review,

55(4):189, 1948.

[122] Filip Tóth, Kristína Rebrová, Gregor Zat'ko, Pavol Kras¬ansk�y, and Boris Roha'l-

Ilkiv. Mobile robot control using XCS. In 2013 International Conference on Process

Control (PC), pages 504�509. IEEE, 2013.

[123] Wen-Chih Tsai and An-Pin Chen. Using the XCS classi�er system for portfolio

allocation of MSCI index component stocks. Expert Systems with Applications,

38(1):151�154, 2011.

[124] Michalis T Tsapanos, Kyriakos C Chatzidimitriou, and Pericles A Mitkas. A zeroth-

level classi�er system for real time strategy games. In 2011 IEEE/WIC/ACM

International Conferences on Web Intelligence and Intelligent Agent Technology,

volume 2, pages 244�247. IEEE, 2011.

Bibliography 129

[125] Olgierd Unold. Context-free grammar induction with grammar-based classi�er

system. Archives of Control Science, 15(4):681, 2005.

[126] Olgierd Unold and Marcin Mianowski. Real-valued ACS classi�er system: A pre-

liminary study. In Proceedings of the 9th International Conference on Computer

Recognition Systems CORES 2015, pages 203�211. Springer, 2016.

[127] Olgierd Unold, Edyta Rogula, and Norbert Kozªowski. Introducing action plan-

ning to the anticipatory classi�er system ACS2. In International Conference on

Computer Recognition Systems, pages 264�275. Springer, 2019.

[128] Ryan J. Urbanowicz and Will N. Browne. Introduction to learning classi�er sys-

tems. Springer, 2017.

[129] Ryan J. Urbanowicz and Jason H. Moore. Learning classi�er systems: a complete

introduction, review, and roadmap. Journal of Arti�cial Evolution and Applica-

tions, 2009, 2009.

[130] Ronald L. Wasserstein and Nicole A. Lazar. The ASA statement on p-values:

context, process, and purpose, 2016.

[131] Christopher Watkins. Learning from Delayed Rewards. PhD thesis, King's College,

Oxford, 1989.

[132] Stewart W. Wilson. Knowledge growth in an arti�cial animal. In Adaptive and

Learning Systems, pages 255�264. Springer, 1986.

[133] Stewart W. Wilson. ZCS: A zeroth level classi�er system. Evolutionary computa-

tion, 2(1):1�18, 1994.

[134] Stewart W. Wilson. Classi�er �tness based on accuracy. Evolutionary computation,

3(2):149�175, 1995.

[135] Stewart W. Wilson. Generalization in the XCS classi�er system. In Genetic Pro-

gramming. Proceedings of the Third Annual Conference, 1998.

[136] Stewart W. Wilson. Get real! XCS with continuous-valued inputs. In International

Workshop on Learning Classi�er Systems, pages 209�219. Springer, 1999.

[137] Stewart W. Wilson. State of XCS classi�er system research. In International

workshop on learning classi�er systems, pages 63�81. Springer, 1999.

[138] Stewart W. Wilson. Mining oblique data with XCS. In International Workshop on

Learning Classi�er Systems, pages 158�174. Springer, 2000.

Bibliography 130

[139] Stewart W. Wilson. Compact rulesets from XCSI. In International Workshop on

Learning Classi�er Systems, pages 197�208. Springer, 2001.

[140] Stewart W. Wilson. Function approximation with a classi�er system. In Proc. 3rd

Genetic and Evolutionary Computation Conf.(GECCO'01), pages 974�981, 2001.

[141] Stewart W Wilson. Classi�ers that approximate functions. Natural Computing,

1(2):211�234, 2002.

[142] Stewart W. Wilson and David E. Goldberg. A critical review of classi�er systems.

In Proceedings of the third international conference on Genetic algorithms, pages

244�255, 1989.

[143] Ian H. Witten and Eibe Frank. Data mining: practical machine learning tools and

techniques with java implementations. Acm Sigmod Record, 31(1):76�77, 2002.

[144] David Wyatt and Larry Bull. Building compact rulesets for describing continuous-

valued problem spaces using a learning classi�er system. In Adaptive computing in

design and manufacture VI, pages 235�246. Springer, 2004.

[145] Ying Yang, Geo�rey I Webb, and Xindong Wu. Discretization methods. In Data

mining and knowledge discovery handbook, pages 101�116. Springer, 2009.

[146] Lot� A. Zadeh. Fuzzy sets. In Fuzzy sets, fuzzy logic, and fuzzy systems: selected

papers, pages 394�432. World Scienti�c, 1996.

[147] Zhaoxiang Zang, Dehua Li, Junying Wang, and Dan Xia. Learning classi�er system

with average reward reinforcement learning. Knowledge-Based Systems, 40:58�71,

2013.

	Acknowledgements
	Abbreviations
	Symbols
	Abstract
	Streszczenie
	Contents
	Chapter 1 Introduction
	1.1 Motivation and challenges
	1.2 Research hypothesis, its aims and goals
	1.3 Thesis structure

	Chapter 2 Selected topics of LCSs
	2.1 Road towards ALCSs
	2.2 Real-valued input challenge
	2.3 Key Performance Indicators
	2.4 Statistical verification of results
	2.5 Overview of the selected environments

	Chapter 3 Internalizing knowledge with increased input-space
	3.1 Interval-based representation
	3.2 Discretizing input signal

	Chapter 4 Biased exploration
	4.1 Research questions
	4.2 Experimental evaluation
	4.3 Research summary

	Chapter 5 Optimizing reward distribution through long action chains
	5.1 Reinforcement Learning and Reward Criterion
	5.2 Integrating Reward Criterions in ACS2
	5.3 Research questions
	5.4 Experimental evaluation
	5.5 Research summary

	Chapter 6 Summary
	6.1 Conclusions
	6.2 Future Work
	6.3 Publications

	Bibliography

