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MODELLING SEASONALLY INTEGRATED 
PROCESSES AND PROCESSES 
WITH SEASONAL VOLATILITY FOR DAILY DATA 

Abstract: Cyclical, high frequency economic processes contain complicated internal struc-
ture with possible time-varying average and variance and cyclical varying average and va-
riance. We can ask the following questions: 

Have high frequency economic processes got deterministic or stochastic cyclicity? 
Can cyclical variability in high frequency economic processes be described by GARCH 

model with deterministic cyclicity? 
The paper contains discussion of the issues of testing seasonal unit root by new statio-

narity test for high frequency processes proposed by D.A. Dickey in 2009. 
All discussed problems will be illustrated by examples for daily data with analysis of 

heteroscedasticity by GARCH (q, p) model. 

Key words: high frequency economic data, testing seasonal unit root for high frequency 
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1. Stationarity test for seasonal high frequency processes 

In 2009 D.A. Dickey proposed new test for seasonal stationarity for high frequency 
processes and described it in Stationarity testing in high-frequency seasonal time 
series [Dickey 2009]. Proposed method for testing stationarity for cyclical high fre-
quency processes is a generalization for all possible cycles:  

d =   2 – half year data (year cycle), 
d =   4 – quarterly data (year cycle), 
d =   5 – daily data (week cycle, 5-day week), 
d =   6 – daily data (week cycle, 6-day week), 
d =   7 – daily data (week cycle, 7-day week), 
d = 12 – monthly data (year cycle), 
d = 22 – daily data (month cycle, 5 day week), 
d = 24 – hourly data (day cycle), 
d = 26 – daily data (month cycle, 6-day week), 
d = 31 – daily data (month cycle, 7-day week), 
d = 36 – decade data (year cycle), 
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d = 48   – half hour data (day cycle), 
d = 52   – weekly data (year cycle), 
d = 168 – hourly data (week cycle 7·24), 
d = 261 – daily data (year cycle, 5-day week), 
d = 313 – daily data (year cycle, 6-day week), 
d = 365 – daily data (year cycle, 7-day week). 
Testing the stationarity of processes with combined cyclicity boils down to 

checking if the process has seasonal unit roots. The null hypothesis assumes that the 
process in question is SI(0) and alternative hypothesis assumes the process in ques-
tion is nonstationary in variance SI(1)). Testing the above hypotheses is realized 
according to the following procedure. In the first step analyzed process Yt should be 
cleaned from deterministic components which are deterministic trend and combined 
deterministic cyclicity.  

 ( ) ,t t t t tη = Y f t = Y P S− − −  (1) 

where: f(t) – deterministic component containing deterministic trend and/or seasonal-
ity, t = 1, 2, 3, …, n = m · d. 

In the second step following autoregressive model for ηt and ηt–d has to be esti-
mated: 

 .t d t d tη = α η + ε−   (2) 

Table 1. Critical values from corrected normal distribution for Dickey stationarity test 
for high frequency seasonal time-series 

d ( )1 / 2 d−  α = 0.01 α = 0.02 α = 0.05 α = 0.10 

2 –0.35355 –2.67990 –2.40730 –1.99841 –1.63510 
4 –0.25000 –2.57635 –2.30375 –1.89485 –1.53155 
5 –0.22361 –2.54995 –2.27736 –1.86846 –1.50516 
6 –0.20412 –2.53047 –2.25787 –1.84898 –1.48568 
7 –0.18898 –2.51533 –2.24273 –1.83384 –1.47053 

12 –0.14434 –2.47069 –2.19809 –1.78919 –1.42589 
22 –0.10660 –2.43295 –2.16035 –1.75145 –1.38815 
24 –0.10206 –2.42841 –2.15581 –1.74692 –1.38361 
26 –0.09806 –2.42441 –2.15181 –1.74291 –1.37961 
31 –0.08980 –2.41615 –2.14355 –1.73466 –1.37135 
36 0.08333 2.40968 2.13708 1.72819 1.36488 
48 –0.07217 –2.39852 –2.12592 –1.71702 –1.35372 
52 –0.06934 –2.39569 –2.12309 –1.71419 –1.35089 

168 –0.03858 –2.36492 –2.09232 –1.68343 –1.32013 
261 –0.03095 –2.35730 –2.08470 –1.67580 –1.31250 
313 –0.02826 –2.35461 –2.08201 –1.67312 –1.30981 
365 –0.02617 –2.35252 –2.07992 –1.67102 –1.30772 

∞ 0 –2.32635 –2.05375 –1.64485 –1.28155 

Source: based on [Dickey 2009]. 
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The null hypothesis 0: dH α = 0  means that the process in question has properties 
of stationary process SI(0) against alternative 1: dH α < 0  which means, that analyzed 
process is seasonally integrated SI(1). Test statistics is given by formula 

( )/obl d du α S α=  and has critical values based on left tailed normal distribution but 

corrected by formula 1 / 2 ,d  where .m d = n∗  That means, that critical values 

come from ( )( )1/ 2 ,α; u d−∞ − −  where d = 2, 4, 5, 6, 7, 12, 22, 24, 26, 31, 36, 48, 

52, 168, 261, 313, 365. Examples of critical values are given in Table 1. 
Values in Table 1 are generalization of common DHF test which tests seasonal 

unit roots only for d = 2, 4 and 12. In the next section example of usage described 
test for empirical economic time series will be presented.  

2. Empirical example of modelling seasonally integrated process 
of retail sales 

Economic time-series varying due to several factors. Main factors for high frequency 
time-series are calendar reasons. For example daily data varying due to week cycle 
(work and free days), month cycle (salary payments) and year cycle (changes in 
chopping and production structure, different intensity in economic activity, for ex-
ample vacation time). 

 

 

Figure 1. Daily retail ice cream sales process in chosen supermarket 
in the period from 2004-01-01 to 2007-12-31 (n = 1460) 

Source: own research. 
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In current section example of modelling and predicting the daily retail ice cream 
sales process recorded in supermarket between 2004-01-01 and 2007-12-31 
(n = 1460) will be presented (Figure 1).  

Sale process has some specific properties, such as huge increase in sales in sum-
mer. In the same time variability of that process increases as well. 

Analyzed retail daily sales process (7-day week) includes complicated cyclicity 
of average which consists in: 

year cycle (m = 12 months) – harmonic approach, 
month cycle (m = 31 days in month) – harmonic approach, 
week cycle (m = 7 days in week) – dummy variables approach. 
Econometric model of combined cyclicity with use of two approaches: harmon-

ics (for 2-week cycle) and 6 dummy variables (for 1-week cycle) has following 
specification: 

 ( ) ( )
26 6

0
1 1

cos sin .t t j j j j i it
j= i=

Y f t +η = a + a ω t +b ω t + c T +η= ∑ t∑  (3) 

Describing the year cycle needs harmonic component, because simpler approach 
based on dummy variables gives imprecise model of varying average of analyzed 
process. Including in model 26 harmonics with periodicity from 365 days to 
365/26=14.04 days (2 weeks) correctly describes variability of average. Set of 6 
dummies describes 1 week cycle (see Figure 2). 

 

Figure 2. Fitted (from model (3)) and empirical values of daily retail ice cream sales 
in chosen supermarket between 2004-01-01 and 2007-12-31 (n = 1460) 

Source: own research. 
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Residuals characterize specific variability of year cycle with clearly observable 
several times bigger variability in summer months comparing to winter time. This 
characteristics points to possible seasonal integration in analyzed process for year 
cycle (d = 365), but presence of seasonal unit roots for one month cycle (d = 31) and 
one week cycle (d = 7) should be also checked. Therefore Dickey’s stationarity test 
[Dickey 2009] for high frequency time-series was used to verify different seasonal 
unit roots in residuals from model (3) (Figure 3). 

 

Figure 3. Residuals from model (3) of daily retail ice cream sales in chosen supermarket 
between 2004-01-01 and 2007-12-31 (n = 1460). 

Source: own research. 

Stationarity test for seasonal time-series has the following hypotheses: 
Test statistics, estimated by model (4): 

 t t dη = αη ε− t+  (4) 

for residuals from model (3) for d = 365,31 and 7, was computed according to the 
following formula: 

 ( )/oblu = a S a .  (5) 

Empirical result for above example were as follows: 
d = 365, a = –0.101743, uobl. = –3.452, ud=365* = –1.67102, 
d = 31, a = –0.055457, uobl. = –2.098, ud=31* = –1.73466, 
d = 7, a = 0.229201, uobl. = 8.971, ud=7* = –1.83384. 
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Critical values ud* were computed according to the following formula: 

 ( )d* 0.05 1 / 2α=u u d= − −  (6) 

and are presented in Table 1. 
Daily retail ice cream sales process in supermarket has two unit roots for: 

– year cycle (d = 365), uobl. = –3.452 < ud=365* = –1.67102, 
– month cycle (d = 31), uobl. = –2.098 < ud=31* = –1.73466. 

For week cycle (d = 7), uobl. = 8.971 > ud=7* = –1.83384, there is no seasonal inte-
gration, which means that the process in question is stationary. 

Lack of seasonal unit root for d = 7 does not mean that residuals from model (3) 
did not have ARCH effect. Results for an ARCH test for lag equal to 7 confirmed 
statistically relevance of autoregressive heteroscedasticity. 

The concept of congruent dynamic modelling worked out by Professor Zygmunt 
Zieliński [Zieliński 1995] assumes that in case of integrated processes model should 
include lagged variables Yt-d, which means that in analyzed example model should 
include additional processes Yt-365, Yt-31 and deterministic component GARCH(q, p) 
[Clements, Hendry 1998, pp. 100] for residuals.  

 
( )

26 6

0
1

2
0

1 1 1

cos sin ,

.

t j j j j i it
j= i=

q pr

t s t s i t i i t i
s= i= i=

Y a + a ω t +b ω t + c T

h γ Y + α ε + β h

1
tε

α − − −

= +

= +

∑ ∑

∑ ∑ ∑
 (7) 

Parameters of model (7) were estimated by the maximum likelihood method. 

Table 2. Model 1: Model GARCH(1,1) with component of deterministic cyclicity and autoregression 
for data of retail ice cream sales from 2005-01-02 to 2007-12-31 (n = 1094) 

Variable Coefficient Standard error Z statistics P value 
1 2 3 4 5 

Const 66.7948 6.90451 9.6741 < 0.00001 *** 
cos_1 –77.5914 8.09611 –9.5838 < 0.00001 *** 
 . . . . . . . . . . . . . . . . . . 
cos_26 0.11865 1.19529 0.0993 0.92093  
sin_26 4.93581 1.12388 4.3918 0.00001 *** 
Ddzien_tyg_1 –4.27 2.17569 –1.9626 0.04969 ** 
Ddzien_tyg_2 –4.85353 2.28997 –2.1195 0.03405 ** 
Ddzien_tyg_3 –2.45554 2.21805 –1.1071 0.26826  
Ddzien_tyg_4 –8.06458 2.19239 –3.6784 0.00023 *** 
Ddzien_tyg_5 –3.21787 2.18881 –1.4701 0.14152  
Ddzien_tyg_6 10.9912 2.23061 4.9274 < 0.00001 *** 
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Table 2, cd. 

 

1 2 3 4 5 
Lody_1 0.226058 0.0349966 6.4594 < 0.00001 *** 
Lody_5 0.0587213 0.0287235 2.0444 0.04092 ** 
Lody_364 0.129766 0.0281065 4.6169 < 0.00001 *** 
Lody_365 –0.138334 0.0281173 –4.9199 < 0.00001 *** 
Lody_366 –0.0534532 0.0262173 –2.0389 0.04146 ** 
alpha(0) 22.2316 5.64526 3.9381 0.00008 *** 
alpha(1) 0.329626 0.0466479 7.0663 < 0.00001 *** 
beta(1) 0.670374 0.0443272 15.1233 < 0.00001 *** 

Mean dependent var 104.7723 S.D. dependent var 110.7182 
R-squared 0.784407 S.E. of regression 51.591 
Log-likelihood –5306.758 Akaike criterion 10749.52 
Schwarz criterion 11089.35 Hannan–Quinn criterion 10878.11 

Source: own research. 

 

Figure 4. Fitted (from model GARCH(1,1) with seasonal and autoregressive component) 
and empirical values of daily retail ice cream sales in chosen supermarket 
between 2005-01-02 and 2007-12-31 (n = 1094)  

Source: own research. 
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Figure 5. Residuals from model (7) and values of conditional standard deviation of residuals 
for process of daily retail ice cream sales in chosen supermarket 
between 2005-01-02 and 2007-12-31 (n = 1094)  

Source: own research. 

 

Figure 6. Values of standardized residuals from model (7) for process of daily retail ice cream sales 
in chosen supermarket between 2005-01-02 and 2007-12-31 (n = 1094) 

Source: own research. 
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Process of standardized residuals has white noise properties. It means that model 
(7) correctly described variability of average and variance. 

Estimated empirical model was the basis for generating forecasts of ice cream 
sales in chosen supermarket in the period from 2008-01-01 to 2008-06-30 (Figure 7). 

 

Figure 7. Forecast of ice cream sales in chosen supermarket in period 
from 2008-01-01 to 2008-06-30 with confidence intervals  

Source: own research. 

Table 3. Forecast evaluation statistics for retail ice cream sales process generated 
from model 1 for period from 2008-01-01 to 2008-06-30 (h = 182 days) 

Forecast evaluation statistics Statistics Value 
Mean Error ME = 0.75835 
Mean Squared Error MSE = 4087.6 
Root Mean Squared Error RMSE = 63.935 
Mean Absolute Error MAE = 41.697 
Mean Percentage Error MPE = –24.192 
Mean Absolute Percentage Error MAPE = 53.411 
Theil’s U I = 0.80873 
Bias proportion, UM I1^2 = 0.00014 
Regression proportion, UR I2^2 = 0.03822 
Disturbance proportion, UD I3^2 = 0.96164 

Source: own research. 
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Forecast evaluation statistics for retail ice cream sales process are presented in 
Table 3. 

Mean errors of prediction point to quite big errors in forecasts. Root mean 
squared error had value of 63.93 PLN, while standard deviation of residuals had 
value of 51.59 PLN. Theil’s factor points to inconsistency in direction as a cause of 
forecast inconsistency. 

3. Summary 

In 2009 D.A. Dicey published the article about new stationarity test for cyclical high 
frequency processes (for example d = 2, 4, 5, 6, 7, 24, 31, 36, 48, 52, 168, 365) based 
on modified critical values from standard normal distribution with critical region 
given by the following formula: 

1 .
2α, u

d
⎛ ⎤
−∞ − −⎜ ⎥
⎝ ⎦

 

Models for seasonal integrated time-series should be extended by lagged en-
dogenous of d periods (Yt–d). 

Stochastic volatility of analyzed process should be described by GARCH(q, p) 
class model with component for modelling average value of given time-series. 

Prediction of high frequency time-series is a difficult task because of very com-
plicated internal process structure, which means combination of deterministic and 
stochastic cyclicity for periods of one year, month, week and hour. 

Furthermore, high frequency time-series characterize outliers and non-typical ob-
servations which are difficult to model econometrically. 
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MODELOWANIE PROCESÓW 
SEZONOWO ZINTEGROWANYCH ORAZ O SEZONOWEJ 
ZMIENNOŚCI DLA DANYCH DZIENNYCH 

Streszczenie: cykliczne procesy gospodarcze o wysokiej częstotliwości obserwowania mają 
złożoną strukturę, na którą składają się zmienność wartości średniej oraz cykliczna 
zmienność wartości średniej, a ponadto prosta zmienność wariancji i cykliczna zmienność 
wariancji. Zadano dwa pytania badawcze:  

Czy w procesach gospodarczych występuje cykliczność deterministyczna czy stochas-
tyczna dla danych o wysokiej częstotliwości?  

Czy cykliczną stochastyczną zmienność procesów gospodarczych można opisać mod-
elami GARCH z deterministyczną cyklicznością? 

W artykule tym omówiono zagadnienia związane z testowaniem sezonowych pier-
wiastków jednostkowych za pomocą nowego testu badania stacjonarności procesu dla da-
nych o wysokiej częstotliwości obserwowania zaproponowanego przez D.A. Dickeya w 
2009 r. Zagadnienia te zilustrowano przykładami dla danych dziennych wraz z analizą ba-
dania heteroskedastyczności reszt z wykorzystaniem modeli GARCH(q, p). 
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