
RESEARCH PAPERS OF WROCŁAW UN�VERS�TY OF ECONOM�CS
No. 85 2009

Advanced �nformation Technologies for Management � A�TM 2009

Waldemar Bojar
University of Technology & Life Sciences, Bydgoszcz, Poland

e-mail: waldemar.bojar@utp.edu.pl

TENDENCIES IN USER INTERFACE DEVELOPMENT
(MODELLING) FOR DSS NEEDS

Abstract: �n the paper some principles and trends in User �nterface (U�) design were shown. Es-
pecially selected functional and exploitation characteristics of well designed U� in context of Decision
Support Systems user needs were highlighted. Review of appropriate literature allows to conclude that
evolutionary approach and interactive process of U� updating should be preferred but some standard-
ized exploitation principles in application design have to be saved to avoid errors and too extended
costs.

1. Introduction

Because of spreading �T as a tool of majority of workers and spending much
labour time using computer it is necessary to design the most friendly and effecti-
ve user interface ensuring not only business needs of human beings but also their
psychic and emotional requirements. �n recent years the development of highly in-
teractive software systems with graphical user interfaces has become increasingly
common. The acceptance of such a system depends to a large degree on the quality
of its user interface.

The only such individual customized way for user interface design, which
ensures maximum comfort of computer users, can face current challenges in this
matter [Glushko, Tabas 2009].

Especially the problem arises due to two areas of effective Decision Support
Systems: their functional requirements and exploitation constraints. On the one hand
effective DSS can satisfy differentiated, sometimes mutually excluding themselves,
business requirements. On the other hand some technical requirements ensuring
safety of information or limited costs should be considered. Huge area networks
and common availability of different U� designs make it possible that U� process
designing mistakes made by certain U� designers can be quickly multiplied by
others, which causes danger of wrong solutions replication and even sanctioning
them as “standards”.

Księga1.indb 9 2010-03-23 11:08:39

10 Waldemar Bojar

Particularly, the circumstances mentioned above ought to be implemented in
communication interface project, which can be defined as possibilities of work of
expert with DSS through differentiated alternatives of graphical, text and sound
files.

A project of interface for complicated, hybrid DSS can be a unique solution or
can become commercial tool of extended applications.

Functionality of DSS can be expressed through, among other, intuitiveness of U�
[Takeuchi, Sugimoto 2009].

2. UI design principles

A fundamental trend in application development is user interface understood as
a system for users. User needs are to be crucial premises for programmers to cre-
ate applications. Programmes ought to satisfy them and simultaneously be simply
in operation. �n the opinion of Constantine [1999] user interface lets people, who
understand essential problem features, work with application, avoiding reading an
operation software guide or being trained. Better user interface is important because
of some reasons. First, it encourages higher number of customers to use the applica-
tion. Second, good user interface decreases training costs. Third, high quality user
interface increases satisfaction of users applying software and gives a chance for
growth in number of customers. These circumstances determine U� design principles
described below.

The simplicity principle means that U� design should make common tasks sim-
ple, communication clear and simple in the user’s own language, and provide good
shortcuts that are significantly related to longer procedures. U� design visibility
principle is expressed in keeping all needed options and materials for a given task
visible without distracting the user with irrelevant or redundant information. Good
designs do not overwhelm users with too many alternatives or confound them with
needless information. The feedback principle implies U� design which is to keep
users informed of actions or interpretations, changes of state or condition, and er-
rors or exceptions that are relevant and of interest to the user through clear, concise,
and unmistakable language well-known to users. The tolerance principle denotes
that U� design ought to be flexible and open-minded, reducing the cost of mistakes
and mistreatment by allowing undoing and redoing, while also preventing errors
wherever possible by standing for varied inputs and sequences and by inferring all
reasonable actions reasonable. The reuse principle indicates such U� design which
should reuse internal and external components and behaviours, maintaining con-
sistency with purpose rather than just arbitrary consistency, thus reducing the need
for users to rethink and remember.

With regard to the principles mentioned above user interface should satisfy the
following characteristics:

Księga1.indb 10 2010-03-23 11:08:39

 User interface development (modelling) for DSS needs 11

efficiency, effectiveness and functionality, �
adaptability and a low level of difficulty, �
flexibility, �
users preferences, �
rule of simplicity and elegance, �
rule of correct screen, �
rule of appropriate graphic representation. �
Among basic rules some key trends expressed in different models of User �n-

terface can be observed. �n my opinion, the model by Bob Baxley, described below,
shows well contemporary tendencies in U� design [Ambler 2002].

3. Increasing role of communication rules
against architecture functions to satisfy user needs

�ncreasing role of communication rules against architecture functions is expres-
sed in Bob Baxley’s Universal Model of a User �nterface [Ambler 2002]. �t begins on
the established model of structure-behaviour-presentation but adds additional levels
of granularity and specificity. Structure-behaviour-presentation can be seen across
many models of user experience. Although the traditional delineation between struc-
ture, behaviour, and presentation served as an obvious starting point, those three
elements alone did not provide sufficient granularity to describe the full set of issues
and considerations involved in more complex forms of interactive media such as
Web applications.

Baxley’s model also does a great job of cementing the role of a generalist (or
strong design lead) on complex product designs. Someone on the project team needs
to carry out the interface design from conceptual model all the way to tone and voice
(the text in the presentation layer) in a consistent and cohesive manner. When each
tier is owned by a specialist and no one owns the top-level interface vision, the user
experience lacks the focus needed to communicate a unified and clear message to
users. Like other sophisticated, multi-dimensional forms of communication, inter-
active media require the designer to harmonize and balance a variety of differing
and often opposing concerns. Even though a user encounters an interactive product
as a single, unified experience, the designer has to construct and understand the
experience one element at a time. This requires the designer to proceed with an un-
derstanding of discrete interface elements as well as appreciation of their influence
on the whole.

Characteristics and trends mentioned above can be reached only when designer
will respect more detail rules like those specified below.

Księga1.indb 11 2010-03-23 11:08:39

12 Waldemar Bojar

4. User Interface implementation recommendations
– know-how to design UI effectively

To satisfy compliance. User interface should work in a regular way, consistently.
U� consistency lets users to build up precise psychic model of their functioning and
this way facilitate work with software and decrease training and support costs.

Setting standards and meeting them. The only way of ensuring compatibility
of the application is setting U� design standards and maintaining them. �t has to be at
least Agile Modeling’s (AM) introducing and usage of those norms in practice.

Be prepared to hold the line. When one can develop the user interface for his
system one will be able to find out that holders often have some unusual ideas as to
how the user interface should be developed. Definitely the attention should be paid
to these ideas but it is also necessary to make our holders aware of business U� stan-
dards and the need to conform to them.

Explaining the rules. U� users need to know how to work with the application
built for them. When the application works consistently, it means we only have to
explain the rules once. This is a lot easier than explaining in detail exactly how to use
each feature in the application step-by-step.

Navigating between major user interface items is important. �f it is difficult
to get from one screen to another, then the users will quickly become discouraged
and give up. When the flow between screens matches the flow of the work the user
is trying to accomplish, then the application will make sense to our users. Because
different users work in different ways, your system needs to be flexible enough to
support their various approaches. User interface-flow diagrams should optionally be
developed for further understanding of the flow of the user interface (see Figure 1).

User interface-flow diagrams are typically used for one of two purposes. First,
they are used to model the interactions that users have with our software, as defined
in a single use case. For example, a use case can refer to several screens and provide
insight into how they are used. Based on this information, one can develop a user
interface-flow diagram that reflects the behavioural view of the single use case.
Second, as we see on Figure 1, they enable us to gain a high-level overview of the
user interface for your application. This overview is effectively the combination of
all the behavioural views derived from our use cases, the result being called the
architectural view of our user interface [Constantine, Lockwood 1999]. The high-
level overview approach is also referred to as the architectural approach, because it
enables to understand the complete user interface idea.

Navigating within a screen is important. �n Western societies, people read left
to right and top to bottom. Globalization and common, global �T receivers force U�
designers to invent screens that are also organized left to right and top to bottom when
designing a user interface for people from such culture. One can want to organize
navigation between widgets on your screen in a manner users will find familiar to
them.

Księga1.indb 12 2010-03-23 11:08:39

 User interface development (modelling) for DSS needs 13

Figure 1. An U� flow diagram

Source: [Ambler 2008].

Word your messages and labels effectively. The text displayed on screens is
a primary source of information for users. �f the text is worded poorly, then our
interface will be poorly recognized by your users. Using full words and sentences, as
opposed to abbreviations and codes, makes our text easier to understand. U� messages
should be worded positively, imply that the user is in control, and provide insight
into how to use the application right. For example, which message do we find more
engaging: “You have input the wrong information” or “An account number should be
eight digits in length”. Furthermore, our messages should be worded consistently and
displayed in a consistent place on the screen. Although the messages “The person’s
first name must be input” and “An account number should be input” separately are
worded well, together they are incoherent. �n light of the first message, a better
wording of the second message would be “The account number must be input” to
make the two messages consistent.

Understanding the UI widgets. Widget is a combination of a graphic symbol
and some programme code to perform a specific function, e.g. a scroll-bar or but-
ton. Windowing systems usually provide widget libraries containing commonly used
widgets drawn in a certain style and with consistent behaviour. One should use the
right widget for the right task, helping to increase the consistency in our application
and probably making it easier to build the application in the first place. The only way
we can learn how to use widgets properly is to read and understand the user-interface
standards and guidelines our organization has adopted.

Księga1.indb 13 2010-03-23 11:08:39

14 Waldemar Bojar

Looking at other applications with a grain of salt. Unless we know another
application has been verified to follow the user interface-standards and guidelines
of our organization, we should not assume the application is working correctly.
Although looking at the work of others to get ideas is always a good idea, until we
know how to distinguish between good user interface design and bad user interface
design, we must be careful. Too many developers make the mistake of imitating the
user interface of inadequately designed software.

Using colour appropriately. Colour should be used scarcely in our applications
and, if we do use it, we must also use a secondary indicator. The problem is that some
of our users may be colour blind and if we are using colour to highlight something
on a screen, then we need to do something else to make it stand out if we want these
people to notice it. We also should use colours in our application consistently, so we
have a common look and feel throughout our application.

Following the contrast rule. �f we are going to use colour in our application,
we need to ensure that our screens are still readable. The best way to do this is to
follow the contrast rule, using dark text on light backgrounds and light text on dark
backgrounds. Reading blue text on a white background is easy, but reading blue text
on a red background is difficult. The problem is insufficient contrast between blue
and red to make it easy to read, whereas there is a lot of contrast between blue and
white.

Aligning fields effectively. When a screen has more than one editing field, we
want to organize the fields in a way that is both visually appealing and efficient. The
best manner to do so is to left-justify edit fields: in other words, make the left-hand
side of each edit field line up in a straight line, one over the other. The corresponding
labels should be right-justified and placed immediately beside the field. This is
a clean and efficient technique to organize the fields on a screen in a right way.

Expecting our users to make mistakes. One can ask how many times have we
accidentally deleted some text in one of our files or in the file itself? Were we able to
recover from these mistakes or were we forced to redo hours, or even days, of work?
The reality is that in majority of cases the reason of errors is a human being. Hence,
we should design our user interface to recover from mistakes made by our users.

Justifying data appropriately. For columns of data, common practice is to
right-justify integers, decimal align floating-point numbers, and to left-justify
strings. U� design should be intuitive. That means, if our users do not know how to
use our software, they should be able to determine how to use it by making educated
guesses. Even when the guesses are wrong, our system ought to supply reasonable
results which our users can easily understand and from which they can easily learn.

Not to create busy user interfaces. Crowded screens are difficult to understand
and, hence, are difficult to use. Experimental results show that the overall density
of the screen should not exceed 40 percent, whereas local density within groupings
should not exceed 62 percent.

Grouping things effectively. �tems that are logically connected should be
grouped together on the screen to communicate they are connected, whereas items

Księga1.indb 14 2010-03-23 11:08:39

 User interface development (modelling) for DSS needs 15

that have not any relations to each other should be separated. �t is wise to use white
space between collections of items to group them and/or we can put boxes around
them to accomplish the same thing.

Taking an evolutionary approach. Techniques such as Agile Model Driven
Development (AMDD) are critical to our success in U� modelling process. Some
other new techniques like mechanical tools versus digital ones are also recommended
[Biddle, Noble 2003; Murphy 2009].

Knowing U� design principles, trends and know-how one can imagine that it is
enough to produce very effective user interface. We can say that knowing the prin-
ciples, tendencies and know-how we satisfy so called necessary condition of well-
done design but still we are not equipped with sufficient designing methods. A very
good method of effective U� design is U� prototyping which was described below.

5. User interface prototyping characteristics

Prototyping is an excellent means for generating ideas about how a user inter-
face can be designed, and it helps to assess the quality of a solution at an early stage
[Ambler 2002]. No project applied a traditional life-cycle approach, which is one of
the reasons why most of them were successful. Prototypes are increasingly used as
a vehicle for developing and demonstrating visions of innovative systems. As we see
in the activity diagram depicted on Figure 2, there are four high-level steps in the
U� prototyping process. The first step is to analyze the user interface wants of our
users. User interface modelling moves from requirements definition into analysis
at the point we decide to evolve all or part of our essential user interface prototype
into a traditional U� prototype. This implies converting our hand-drawings, flip-
-chart paper, and sticky notes into something more substantial. One can carry out this
process by making platform decisions, which in effect is an architectural decision.
For example, do we intend to deploy our system so it runs in an �nternet browser,
as an application with a windows-based graphical user interface (GU�), as a cross-
-platform Java application, or as a mainframe-based set of “green screens?” Different
platforms lead to different prototyping tools, for a browser-based application,
we call for to use an HTML-development tool, whereas a Java-based application
would require a Java development tool and a different approach to the user interface
design. So how do we use sticky notes and flip-chart paper to create an essential user
interface prototype? Let us start by defining several terms. A major user interface
element represents a large-grained item, potentially a screen, HTML page, or report.
A minor user interface element represents a small-grained item, widgets such as user
input fields, menu items, lists, or static text fields such as labels. When a team is
creating a fundamental user interface prototype, it iterates between described below
tasks [Ambler 2002].

Exploring system usage. The team will explore system usage by several means.
First, it is wise to work together on a whiteboard (Agile Modelling standard element)
to discuss ideas, work on initial drawing together, and generally take advantage of the

Księga1.indb 15 2010-03-23 11:08:40

16 Waldemar Bojar

dynamic nature of whiteboards to come to understanding quickly the portion of the
system which is discussed. For example, with the university system, we may gather
around a whiteboard to make an initial drawing of what a university transcript would
contain or what a seminar enrolment submission would contain. Second, as we have
seen, essential use case modelling is an effective technique for understanding the
behavioural requirements for our system.

Modelling major user interface elements. Major user interface elements, such
as potential screens and reports, can be modelled using flip-chart paper. One can
say “potential” because whether something is a screen or printed report is a design
decision � a university transcript could be implemented as an HTML page of our
users view in a browser, as a paper report that is printed and mailed to students,
or as an application screen. Each piece of flip-chart paper is given a name, such as
Student Transcript or Seminar Enrolment Request, and has the appropriate minor
user interface elements added to it as needed. Pieces of flip-chart paper have several
advantages: they can be taped onto a wall; they are good for working in groups
because they make it easier for everyone to see and interact; they are large enough so
we can put many smaller items such as sticky notes on them; we can draw on them;
and they can be stored away between modelling sessions.

Figure 2. U� prototyping process

Source: [Ambler 2008].

Księga1.indb 16 2010-03-23 11:08:40

 User interface development (modelling) for DSS needs 17

Modelling minor user interface elements. Minor U� elements, such as input
fields, lists, and containers (minor U� elements that aggregate other minor U� ele-
ments) are modelled using sticky notes. Constantine and Lockwood (2002a; 2002b)
suggest using different colour notes for different types of components, for example,
bright colours (yellow or red) for active user interface elements such as input fields
versus subdued colours (white or tan) for passive interface elements such as con-
tainers. One can notice that each sticky note has to be a name that describes its pur-
pose, but not how it is implemented. One can look at the sticky note and immediately
shall know how it is used. Different sizes of sticky notes are also used, indicating
the relative size of each U� element. The relative order of the U� elements is also
indicated by the order of the sticky notes. This ordering may change during design
but it should be close enough. Whenever we realize we may need a minor user in-
terface element, we simply take a sticky note, label it appropriately, and place it in
the general area on a major user interface element. Sometimes we identify a minor
U� element that may not have a major U� element on which to place it. �t is not im-
portant problem. This is an iterative process, so attempt to identify and consider an
appropriate major U� elements is necessary. The very fact that sticky notes do not
look like a real GU� widget is a constant visual reminder to our team that we are
building an abstract model of the user interface and not the real thing. Each sticky
note is, effectively, a placeholder that says we need something there, but we do not
know yet the best way to implement it, so for now, we want to keep it open.

6. Experiences showing successful UI implementation

Described in previous sections main requirements for effective user interface
design are obligatory even more in the context of Decision Support Systems that
software applied by managers is designed mainly for economical profits. So, the
money invested by companies in DSS solutions should be given back as quickly
as possible. �t will be possible only under condition that installed software and its
exploitation will satisfy managers.

Company corporations are able to use sophisticated �T tools in institutional and
formalized way ensuring permanent training and support for their workers. Second,
big companies’ agreements with software providers ensure them such conditions
which give guarantee to develop their solutions in accordance with client demand.
Other DSS solution usage conditions have SMEs. Their market power and financial
possibilities are essentially poorer than those of bigger companies, so DSS including
user interface should be different from those for extended business units.

Among SMEs special place is occupied by agricultural enterprises where both
training possibilities and supporting solutions differ strongly from companies repre-
senting other sectors of economy. One can say that DSS and U� solutions working
well at farms will be for sure working efficiently also in other firms.

Księga1.indb 17 2010-03-23 11:08:40

18 Waldemar Bojar

A good experience in this area have creators of American expert systems for far-
mers support called Ma’ayan [Agricultural Production..., 1999]. Seeking appropria-
te U� solutions designers of this system pay attention to the length of time spent by
a farmer working with computers and the most common software used by them up
to now. On the basis of the questionnaires one can find that majority of potential ES
users used MS Excel spreadsheets. Hence, the ES U� designers concluded that also
their model should save the same form (widgets) like in MS Excel sheets. Secondary
the U� ES designers applied gradual and modular process of application implemen-
tation paying attention to the complexity level and the level of user preparation and
experience. So, they have prepared the simplest input part for the least advanced
farmers and more advanced modules for more experienced managers. This way, re-
specting user �T operating habits and their level of data inserting advancement, ES
Ma’ayan designers have brought to commercial success and spreading this system
in the market.

7. Concluding remarks

The user interface of an application should satisfy both functional (business) and
exploitation (technical) requirements. Especially for the users of Decision Support
Systems the functionality that an application provides them is the most important,
although the way in which it provides that functionality is just as significant. An
application that is hard to use will not be used.

Using commonly spread user interface design standards, one should not
underestimate the value of user interface design or of usability. Effective U� designers
can find methods to work closely with their holders. Active Stakeholder Participation
principle and Evolutionary Approach rule are desired in current tendencies of user
interface development. Our holders do much of the business-related modelling using
inclusive modelling techniques. Furthermore, DSS final users should be closely
involved in user interface prototyping efforts as well. Then not only their business or
exploitation preferences will be considered but even their psychological needs, too.
Some experiences in U� implementation have verified positively an advisability of
the premises formulated above.

References

Agricultural Production Forecast 1999-2005, Ministry of Agriculture and Rural Development (the
U.S.), Planning Authority, 1999.

Ambler W.S. (2002), User Interface Prototyping Tips and Techniques, Copyright 2002 by Scott
W. Ambler.

Ambler S.W. (2008), Maturing Usability Quality in Software, Interaction, and Value, Springer-Verlag,
Berlin.

Księga1.indb 18 2010-03-23 11:08:40

 User interface development (modelling) for DSS needs 19

Biddle R., Noble J. (2003), From Essential Use Cases to Objects, Victoria University of Wellington
(New Zealand), Ewan Tempero University of Auckland (New Zealand).

Constantine L.L. (1999), Simplifying User Interfaces by Simplifying Use Cases, Constantine & Lock-
wood, Ltd., University of Technology, Sydney.

Constantine L.L., Lockwood L.A.D. (1999), Software for Use: A Practical Guide to the Essential Mod-
els and Methods of Usage-Centered Design, Addison-Wesley, Reading, MA.

Constantine L.L., Lockwood L.A.D. (2002a), �nstructive interaction, User Experience, Vol. 1, No. 3,
pp. 14-19.

Constantine L.L., Lockwood L.A.D. (2002b), Process Agility and Software Usability, Constantine
& Lockwood, Ltd., University of Technology, Sydney.

Glushko R.J., Tabas L. (2009), Designing service systems by bridging the “front stage” and “back
stage”, Information Systems and eBusiness Management, Vol. 7, No. 4.

Murphy N. (2009), Mechanical vs. digital: a GU� isn’t always the answer � User interface design is not
always an either/or decision, Embedded Systems Design, Vol. 22, No. 1.

Takeuchi Y., Sugimoto M. (2009), A user-adaptive city guide system with an unobtrusive navigation
interface, Personal and Ubiquitous Computing, Vol. 13, No. 2.

Księga1.indb 19 2010-03-23 11:08:40

	Tendencies in User Interface Development (Modelling) for DSS Needs
	1. Introduction
	2. UI design principles
	3. Increasing role of communication rules against architecture functions to satisfy user needs
	4. User Interface implementation recommendations – know-how to design UI effectively
	5. User interface prototyping characteristics
	6. Experiences showing successful UI implementation
	7. Concluding remarks
	References

