Vol. 47 DOI:10.37190/epe210308 2021

No. 3

MAŁGORZATA PAWŁOWSKA¹, LUCJAN PAWŁOWSKI (ORCID 0000-0003-0628-6735)¹ ARTUR PAWŁOWSKI (ORCID 0000-0002-8764-1534)¹ CEZARY A. KWIATKOWSKI (ORCID 0000-0001-5759-8320)² ELŻBIETA HARASIM (ORCID 0000-0002-7893-7958)²

ROLE OF INTERCROPS IN THE ABSORPTION OF CO₂ EMITTED FROM THE COMBUSTION OF FOSSIL FUELS

Intercrops can play important role in the absorption of CO₂ emitted during the combustion of fossil fuels. They allow us to grow additional biomass on agricultural land what leads to the absorption of carbon dioxide in the photosynthesis process. Biomass produced could be used for the production of syngas and biogas. Thus intercrops grown in Poland sequestrate from 1.14 to 1.84 t C/ha globally they sequestrate about 1.9 million t C/year and provide the raw material for the production of 739 million m³ of syngas/year.

1. INTRODUCTION

The growing concentration of CO_2 in the atmosphere from 277 ppm in 1751 (i.e., at the beginning of the Industrial Revolution) to 418 ppm in 2020 [14] is responsible for warming earth ecosystems, mostly due to energy generation from fossil fuels. It has reached globally 31.5 Gt CO_2 in 2020. Emissions of CO_2 from other industrial activities reached 2.57 Gt CO_2 and from land-use change 5.86 Gt CO_2 in 2020. According to various studies, many poorer developing countries of tropical and subtropical regions are especially vulnerable to global warming. The number of undernourished people in Sub-Saharan Africa may rise from 138 million in 1990 to 359 million in 2050 as a result of climate change. Some negative impacts are visible in many parts of the world.

¹Faculty of Environmental Engineering, Lublin University of Technology, Lublin, Poland, corresponding author L. Pawłowski, email address: l.pawlowski@pollub.pl

²Department of Herbology and Plant Cultivation Techniques, University of Life Science, Lublin, Poland.

To take action on mitigation of climate change it would be helpful to analyze global natural CO_2 fluxes. There are four important global natural CO_2 fluxes in the Earth ecosystems [10]:

• CO₂ absorption by plants through photosynthesis,

• CO₂ emissions as a result of organisms and plants respiration and decomposition of biomass,

• CO₂ absorption by oceans,

• CO₂ emissions by degassing of ocean water.

Photosynthesis is responsible for the absorption of about 451 Gt CO₂/year and converting it into biomass. Simultaneously 435 Gt CO₂/year is emitted from the terrestrial ecosystem as a result of organisms and plants respiration and decomposition of biomass [7–9]. Oceans are the second Earth important ecosystem which absorbs about 293 Gt CO₂/year and simultaneously emits through degassing about 278 Gt CO₂/year [2, 6–9].

As a major remedial measure, ecological organizations are recommending limiting the use of fossil fuels as a source of energy. However, the one-side approach on the only reduction of CO_2 emissions through decreasing use of fossil fuels often leads to the creation of socio-economic problems [4, 11, 17, 18]. Negative examples are the production of biodiesel fuel from the oil obtained from coconut palms grown in Indonesia on the land acquired by burning off tropical forests or the production of ethanol from corn [1, 5, 15]. The promotion of these biofuels was based on the assumption that the amount of CO_2 emitted during biofuels combustion is equal to the amount absorbed by plants from the atmosphere in the photosynthesis process. Although this statement is true, it does not take into account additional energy used during cultivation, harvesting, and processing plants into biofuels. Moreover, such an assumption omits the fact that in order to create a plantation, another ecosystem was destroyed – such as tropical forest or peatland – which would absorb greater amounts of CO_2 from the atmosphere.

While the use of biomass from plants as a source of energy is widely recommended for mitigation of CO_2 emissions, the potential role of whole agriculture in mitigation of CO_2 concentration in the atmosphere is not widely recognized [12, 13]. An increase of CO_2 absorption by plants in the photosynthesis process only by 8.9% would allow the completion of the whole annual anthropogenic CO_2 emissions. One possibility to increase CO_2 absorption by agriculture activity is increased growth of intercrops. Cultivation of intercrops allows additional absorption of CO_2 and converting it into below-ground (roots) and above-ground (shoots and leaves) biomass. The below-ground biomass is permanently sequestrated in the soil and transformed into humic substances. The above-ground biomass may be used as green fertilizer and sequesters in the soil similar to below-ground biomass or may be used as raw material for the production of syngas through its thermal gasification or the production of biogas through methane fermentation.

In Poland and other European countries, it is possible to cultivate intercrops such as white mustard, tansy phacelia, red clover, winter rye, winter vetch, narrow-leafed lupine, and mixtures of yellow lupine with serradella, spring vetch with fields pea, oat with spring vetch and field pea. Widespread cultivation of intercrops can make a significant contribution to reducing CO_2 emissions by immobilization in biomass and additionally, could provide substrate for efficient biofuel production.

Taking into account the high worldwide demand for energy, unstable and uncertain petroleum sources, and concern over global climate change more attention should be paid to the possibility of using agriculture for absorption of CO_2 from the atmosphere and providing raw materials for renewable energy production. The introduction of biomass from intercrops to the soil will increase the fertility of the soil and will consequently lead to increased production of food from main crops and as well additional CO_2 sequestration in increased food production.

2. MATERIALS AND METHODS

Intercrops were cultivated on plots $0,5 \times 0,5$ m. The plants were cut at the height of 5 cm above-ground, roots were taken from the soil and cleaned. The mass of belowground and above-ground biomass was determined after drying at the temperature of 60 °C. The carbon content was determined using a high-performance TOC analyzer (TOC Sensor 6000i). Syngas production from the above-ground biomass was determined by heating the dried biomass at 550 °C. Gas pyrolysis products were analyzed using standard gas chromatography techniques.

3. RESULTS AND DISCUSSION

Yields of above-ground, below-ground and total biomass of intercrops are presented in Table 1. The yield of below-ground biomass is the lowest (0.07 t biomass/ha) for red clover, highest (0.3 t biomass/ha) for mixture of yellow lupine and serradelle. The highest yield of above-ground biomass (4.26 t biomass/ ha) is for white mustard while the lowest (2.64 t biomass/ha) is for narrow-leafed lupine.

Table 1

Intercrops	Below-ground biomass	Above ground biomass	Total
White mustard	0.13	4.26	4.39
Tansy phacelia	0.08	3.98	4.06
Yellow lupine + serradella mixture	0.30	3.40	3.70
Oats + spring vetch + field pea mixture	0.16	3.22	3.38
Red clover	0.07	2	2.07
Winter rye	0.13	4.07	4.2
Spring vetch + field pea mixture	0.21	3.07	3.28
Winter vetch	0.12	2.97	3.09
Narrow-leaded lupiene	0.29	2.64	2.93

Yield of biomass of intercrops grown in Poland [t/ha]

Table 2

Intercrops	Below-ground biomass	Above-ground biomass	Total
White mustard	0.05	1.79	1.84
Tansy phacelia	0.03	1.67	1.70
Yellow lupine + serradella mixture	0.21	1.43	1.64
Oats + spring vetch + field pea mixture	0.07	1.35	1.42
Red clover	0.03	1.11	1.14
Winter rye	0.05	1.71	1.76
Spring vetch + field pea mixture	0.18	1.45	1.63
Winter vetch	0.05	1.25	1.30
Narrow-leaded lupiene	0.12	1.11	1.23

Carbon sequestration by intercrops grown in Poland [t C/ha]

Table 3

Yield of syngas produced from biomass of intercrops grown in Poland

I. (Yield of syngas		
Intercrops	[m ³ /t biomass]	[m ³ /ha]	
White mustard	183	780	
Tansy phacelia	171	680	
Yellow lupine + serradella mixture	185	629	
Oats + spring vetch + field pea mixture	172	554	
Red clover	172	463	
Winter rye	185	753	
Spring vetch + field pea mixture	156	540	
Winter vetch	172	511	
Narrow-leaded lupiene	193	509	

Table 4

Potential syngas production from intercrops grown in Poland

Intercrops	Area [ha]	Total amount of syngas [million m ³ /year]
White mustard	225 000	175.5
Tansy phacelia	188 000	127.8
Yellow lupine + serradella mixture	163 000	102.5
Oats + spring vetch + field pea mixture	150 000	83.1
Red clover	113 000	49
Winter rye	106 000	79.8
Spring vetch + field pea mixture	100 000	54
Winter vetch	69 000	35.3
Narrow-leaded lupiene	63 000	32.1
Total	1 177 000	739.1

Table 5

Intercrops	Area [ha]	Total amount of carbon sequestrated [t C/year]
White mustard	225 000	414 000
Tansy phacelia	188 000	320 000
Yellow lupine + serradella mixture	163 000	267 000
Oats + spring vetch + field pea mixture	150 000	231 000
Red clover	113 000	129 000
Winter rye	106 000	187 000
Spring vetch + field pea mixture	100 000	163 000
Winter vetch	69 000	90 000
Narrow-leaded lupiene	63 000	77 000
Total	1 177 000	1 860 000

Total carbon sequestration by intercrops grown in Poland

Data on carbon sequestration by the intercrops grown in Poland are presented in Table 2. The lowest below-ground sequestration (0.03 t C/ha) is for tansy phacelia and the highest (0.21 t C/ha) is for the mixture of yellow lupine with serradella. The lowest of the above group sequestration (1.11 t C/ha) is for narrow-leafed lupine and the highest (1.79 t C/ha) is for white mustard.

The below-ground biomass is deposited in the soil while above-ground biomass may be used as raw materials for the production of syngas or biogas. The use of aboveground biomass for syngas or biogas production is very beneficial from an environmental standpoint because it provides the fuel of low impact on the environment. Yields of syngas produced from intercrops cultivated in Poland are presented in Table 3 and the total potential of syngas production is presented in Table 4.

The highest yield of 193 m³/t biomass was obtained for narrow-leased lupin while the lowest yield of 156 m³/t biomass was obtained for the mixture of spring vetch and field pea. In the case of syngas yield per 1 ha, the highest yield 780 m³ of syngas/ha was obtained for white mustard while the lowest one 463 m³ of syngas/ha for red clover. It is possible to grow intercrops in Poland on the area of 1177 million ha and reach syngas production of 739 million m³/year. This would allow one to sequester 1.86 million t C/year (Table 5).

REFERENCES

- CHEN S., LIU K., DING D., YUE Z., BO Z., TANG Y., The effect of Green R&D Activities on China's SO₂ emissions. Evidence from a Panel Threshold Model. *Problems of Sustainable Development*, 2021, 16 (2), 147–151. DOI: 10.35784/pe.2021.2.15.
- [2] CIAIS P., GASSER T., PARIS J.D., CALDEIRA K., RAUPACH M.R., CANADELL J.G., PATWARDHAN A., FRIEDLINGSEIN P., PIAO S.L., GITZ V., Attributing the increase in atmospheric CO₂ to emitters and absorbers, Nat. Clim. Change, 2013, 3, 926–931. DOI: 10.1038/nclimate1942.

- [3] CIAIS P., SABINE C., Climate Change 2013. The Physical Science Basis, Chapter 6. Carbon and other biogeochemical cycles, Working Group I, Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cabridge University Press, 2013, 465–570.
- [4] CZEKAŁA W., TARKOWSKI F., POCHWATKA P., Social Aspects of Energy Production from Renewable Sorces, Probl. Sust. Dev., 2021, 16 (1), 61–66. DOI: 10.35784/pe.2021.1.04.
- [5] FARGIONE J., HILL J., TILMAN D., POLASKY S., HAWTHORNE P., Land clearing and the biofuel carbon debt, Science, 2008, 319, 1235–1238. DOI: 10.1126/science.1152747.
- [6] FRIEDLINGSTEIN P. et al., *Global Carbon Budget 2020*, Earth Syst. Sci. Data, 2020, 12, 3269–3340.
 DOI: 10.5194/essd-12-3269-2020.
- [7] IPCC 2013. Fifth IPCC Report Climate Change 2013.
- [8] IPCC, 2014 Fifth Assessment Report AR5, Climate Change.
- [9] IPCC, 2021 Sixth Assessment Report AR6, Climate Change.
- [10] LE QUÉRÉ C. et al., Global carbon budget, Earth Syst. Sci. Data, 2018, 10, 2141–2194. DOI: 10.5194/essd-10-2141-2018.
- [11] PAWŁOWSKI A., The sustainable revolution, Probl. Sust. Dev., 2009, 4 (1), 65–76.
- [12] UDO V., PAWŁOWSKI A., Human progress towards equitable sustainable development. A philosophical exploration, Probl. Ekorozw./Probl. Sust. Dev., 2009, 4 (2), 23–44.
- [13] PAWŁOWSKI L., PAWŁOWSKA M., CEL W., WANG L., LI C., MEI T., Characteristic of carbon dioxide absorption by cereals in Poland and China, Min. Res. Manage., 2019, 35 (1),165–176. DOI: 10.24425 /gsm.2019.128205.
- [14] PAWŁOWSKI L., ZHOU G., LITWIŃCZUK Z., The Role of Agriculture in Climate Change Mitigation, CRC Press, London 2020. DOI: 10.1201/9781003002734.
- [15] RITCHIE H., ROSER M., CO2 and Greenhouse Gas Emissions, Our World in Data, 2020.
- [16] SEARCHINGERT., HEIMLICH R., HOUGHTON R.A., DONG F., ELOBEID A., FABIOSA J., TOKGOZ S., HAYES D., YU T.H., Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land--use change, Science, 2008, 319, 1238–1240. DOI: 10.1126/science.1151861.
- [17] SZTUMSKI W., Reflection on the human living environment in connection with sustainable development, Probl. Ekorozw./Probl. Sust. Dev., 2021, 16 (1), 39–44. DOI: 10.35784/pe.2021.1.04.
- [18] ŻUKOWSKA G., MYSZURA M., ZDEB M., PAWŁOWSKA M., Carbon sequestration in soil as a sustainable way of greenhouse effect mitigation, Probl. Ekorozw./Probl. Sust. Dev., 2020, 15 (2), 195–205. DOI: 10.35784/pe.2020.2.19.