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Streszczenie
W rozprawie opracowano i zweryfikowano model systemu agentowego przetwarza-

jącego wiedzę o przynależności obiektów do kategorii z prototypem i komunikującego
tę wiedzę za pomocą modalnych zdań epistemicznych (w pierwszej osobie). W szcze-
gólności, rozpatrywana jest klasa zdań epistemicznych zbudowanych z modalnych ope-
ratorów wiedzy (Wiem, że ...; Jestem pewien, że ...), silnych przekonań (Sądzę, że
...) oraz słabych przekonań (Możliwe, że ...; Uważam za możliwe, że ...). Zdania tego
typu stanowić powinny ważną grupę komunikatów językowych przetwarzanych przez
interaktywne systemy agentowe.

Nadrzędnym celem badawczym zrealizowanym w rozprawie było wykazanie tezy,
że możliwe jest zaprojektowanie i efektywna realizacja systemu agentowego zdolnego
do przetwarzania rozpatrywanej grupy komunikatów językowych zgodnie ze zdrowo-
rozsądkowymi postulatami odzwierciedlającymi reguły przetwarzania tej klasy zdań
w języku naturalnym.

Autorskim i rozszerzającym aktualny stan wiedzy osiągnięciem przedstawionym
w rozprawie jest opracowanie i weryfikacja modelu przetwarzania epistemicznych zdań
modalnych o przynależności obiektów do kategorii dla przypadku kategorii z prototy-
pem. Realizacja zadania wymagała odwołania się do teorii kategoryzacji sformułowa-
nej w obszarze lingwistyki kognitywnej, w szczególności do tzw. standardowej wersji
semantyki prototypu.

Udowodnienie głównej tezy rozprawy wymagało realizacji trzech szczegółowych ce-
lów badawczych: opracowania i weryfikacji modelu wiedzy agenta, opracowania i wery-
fikacji modelu tzw. semantyki kognitywnej modalnych zdań epistemicznych oraz opra-
cowania i weryfikacji przykładowych modeli implementacyjnych.

Opracowanie modelu wiedzy agenta obejmowało: zdefiniowanie wewnętrznej repre-
zentacji obiektów świata i oryginalnego sposobu ich przetwarzania w przestrzeni men-
talnej systemu agentowego; zdefiniowanie modelu kategorii z prototypem (obejmują-
cego jądro, granicę i obszar zewnętrzny kategorii); oraz opracowanie ogólnej strategii
uczenia modelu kategorii z prototypem. Weryfikacja własności modelu wiedzy i procesu
uczenia kategorii z prototypem polegała na udowodnieniu, że model kategorii uzyska-
ny w wyniku zastosowania opracowanej strategii zachowuje właściwą relację między
jądrem, granicą i obszarem zewnętrznym wyuczonej kategorii oraz na analitycznym
wyznaczeniu złożoności obliczeniowej opracowanej strategii uczenia.

Opracowanie modelu semantyki kognitywnej modalnych zdań epistemicznych obej-
mowało: zdefiniowanie syntaktyki języka modalnej kategoryzacji wyrażającego wiedzę
systemu agentowego o przynależności obiektu do kategorii z użyciem modalnych opera-
torów wiedzy, silnych przekonań i słabych przekonań; zdefiniowanie pojęcia otoczenia



epistemicznego; adaptację, na potrzeby semantyki kognitywnej zdefiniowanej w roz-
prawie, pojęcia względnej mocy gruntowania wypowiedzi modalnych wprowadzonej
w teorii gruntowania modalnego języka komunikacji dla przypadku kategorii bez pro-
totypu; szczegółowe omówienie postulowanego sposobu aplikacji semantyki kognitywnej
modalnych wypowiedzi o przynależności obiektu do kategorii z prototypem; oraz opra-
cowanie zestawu tzw. relacji epistemicznego spełnienia formuł modalnych reprezentu-
jących poszczególne przypadki kognitywnej semantyki modalnych zdań epistemicznych
o przynależności obiektu do kategorii z prototypem w wersjach dla obiektów z kom-
pletną i niekompletną reprezentacją ich stanu. Weryfikacja oryginalnie zaproponowa-
nego modelu semantyki kognitywnej polegała na przedstawieniu dowodów dwunastu
twierdzeń o zgodności opracowanej semantyki kognitywnej z pragmatyką użycia w ję-
zyku naturalnym modalnych zdań o przynależności obiektu do kategorii z prototypem
oraz omówieniu związków zaproponowanej semantyki kognitywnej z teorią gruntowania
modalnego języka komunikacji w systemach agentowych, sformułowaną dla przypadku
kategorii bez prototypu.
W rozprawie zaproponowano i zweryfikowano trzy modele implementacyjne: mo-

del oparty na nieważonej odległości Hamminga, model oparty na ważonej odległości
Hamminga i model oparty na asymetrycznej ważonej odległości Hamminga. Dla każde-
go z powyższych modeli opracowano dwie wersje poszukiwania zbioru kandydatów na
prototyp – będących odpowiednio centroidami lub medoidami. Weryfikacja modeli im-
plementacyjnych dla każdego przypadku obejmowała dowód twierdzenia o złożoności
obliczeniowej naiwnego algorytmu poszukiwania kandydatów na prototyp oraz zopty-
malizowanego (o mniejszej złożoności obliczeniowej) algorytmu poszukiwania kandy-
datów na prototyp.
Istotny element składowy rozprawy stanowi implementacja w systemie kompute-

rowym zaproponowanej strategii uczenia i opracowanych modeli szczegółowych, a na-
stępnie przeprowadzenie szeregu symulacji z użyciem powyższej implementacji oraz na
bazie przykładowych zbiorów danych dla uczenia maszynowego (repozytoriumMachine
Learning Repository, University of California, Irvine).
W podsumowaniu rozprawy zaproponowano przyszłe kierunki badań i rozwoju mo-

delu systemu agentowego w obszarach: modelu wiedzy agenta (obejmującego sposób
reprezentacji kategorii z prototypem); strategii uczenia kategorii z prototypem; modelu
semantyki kognitywnej; oraz wydajnościowej optymalizacji modeli implementacyjnych.



Abstract
In the dissertation, a model of an agent system was developed and verified that pro-

cesses the knowledge about the membership of objects to the category with the pro-
totype and communicates this knowledge using modal epistemic statements (in the
first person). In particular, a class of epistemic statements built of modal operators of
knowledge (I know that ...; I’m sure that ...), strong beliefs (I believe that ... ) and weak
beliefs (I find it possible ...) is considered. Statements of this type should constitute
an important group of language messages processed by interactive agent systems.
The main research goal accomplished in the dissertation was to prove the thesis that

it is possible to design and effectively implement an agent system capable of processing
the considered group of language messages in accordance with common-sense postulates
reflecting the rules of processing this class of statements in natural language.
The original and extending the current state of knowledge achievement presented

in the thesis is the development and verification of a model for processing epistemic
modal statements about membership of objects to a category for the case of a category
with a prototype. The implementation of the task required reference to the theory of
categorization formulated in the field of cognitive linguistics, in particular to the so-
called standard version of prototype semantics.
The demonstration of the main thesis of the dissertation required the implementa-

tion of three detailed research objectives: the development and verification of the agent’s
knowledge model, the development and verification of the model of the so-called co-
gnitive semantics of modal epistemic statements and the development and verification
of exemplary implementation models.
The development of the agent’s knowledge model included: defining the internal

representation of world objects and the original way of processing them in the mental
space of the agent system; defining a category model with a prototype (including the co-
re, boundary, and outer region of the category); and developing an overall strategy for
training a category model with a prototype. The verification of the properties of the
knowledge model and the process of learning the category with the prototype consisted
in proving that the category model obtained as a result of applying the developed stra-
tegy maintains the correct relationship between the core, boundary, and outer region of
the learned category, and in analytical determination of the computational complexity
of the developed learning strategy.
The development of a model of cognitive semantics of modal epistemic statements

included: defining the syntax of a modal categorization language that expresses the know-
ledge of the agent system about the membership to a category using modal operators of
knowledge, strong beliefs, and weak beliefs; defining the concept of epistemic neighbor-
hood; adaptation, for the purposes of cognitive semantics defined in the dissertation, of
the concept of relative grounding strength of modal statements introduced in the the-



ory of modal grounding of the language of communication for the case of categories
without a prototype; a detailed discussion of the postulated method of applying the
cognitive semantics of modal statements about the membership of an object to a ca-
tegory with a prototype; and the development of a set of the epistemic satisfaction
relations of modal formulas representing individual cases of cognitive semantics of mo-
dal epistemic statements about the object’s membership to a category with a prototype
in versions for objects with a complete and incomplete representation of their state.
The verification of the originally proposed model of cognitive semantics consisted in
presenting proofs of twelve theorems about the compliance of the developed cognitive
semantics with the pragmatics of using modal statements in natural language about
the object’s membership to the category with a prototype, and discussing the rela-
tionships of the proposed cognitive semantics with the theory of grounding the modal
language of communication in agent systems, formulated for the case of the category
without a prototype.
Three implementation models were proposed and verified in the dissertation: a mo-

del based on an unweighted Hamming distance, a model based on a weighted Hamming
distance, and a model based on an asymmetric weighted Hamming distance. For each
of the above models, two versions of the search for a set of candidates for a prototype –
centroids or medoids, respectively – were developed. The verification of the implemen-
tation models for each case included the proof of the theorem on the computational
complexity of the naive prototype candidate search algorithm and the optimized (of
lower computational complexity) prototype candidate search algorithm.
An important component of the dissertation is the implementation of the proposed

learning strategy and developed detailed models in a computer system, and then con-
ducting a number of simulations using the above implementation on the basis of sample
data sets for machine learning (Machine Learning Repository, University of California,
Irvine).
In the summary of the dissertation, future directions of research and development

of the agent system model were proposed in the following areas: agent knowledge model
(including the method of representing categories with a prototype); a category learning
strategy with a prototype; cognitive semantics model; and optimization of performance
of implementation model.
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Chapter 1

Introduction

1.1 Motivation

It is natural that human beings create tools to help them with everyday tasks. However,
as the tools get more complex, a special training might become necessary to apply
the tools and attain desired results. Current artificial systems are extremely complex
and knowledge about specifics and technical intricacies of their insides goes beyond
understanding capabilities of a typical user of such systems.

A multidisciplinary field of Human-System Interaction (or Human-Computer Inte-
raction) aims to cross the chasm between a user and a complex technical system by
creating means of communication between these two otherwise incompatible beings.
As a result of years of research in the field[12, 29, 67], multiple abstraction layers and
intuitive means of communication have been introduced. They allow users to perform
complex technical tasks without fully understanding the detailed technical behavior of
the machine.

Due to the human nature, natural-language-based interfaces are one of the most
natural directions of the undertaken research. It might look like (and it is, in all hone-
sty) a huge overhead to add natural language capabilities to a machine that could be
otherwise controlled with just a few buttons. Still it seems to be a generally accepted
desire to be able to verbally ask a machine to “make you a large latte” rather than
being forced to memorize a particular button combination that leads to the very same
outcome. The key justification point (and, at the same time, the key design goal) for
such an approach is that users are allowed to communicate freely in unconstrained
manner and that natural language interfaces require little-to-none additional training
in order to be used.

This convenience of using ordinary speech is why the field of artificial intelligence so
often considers applications of the natural language in artificial systems. However, the
issue is extremely complex due to multiple reasons. Natural languages – at least those
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CHAPTER 1. INTRODUCTION

known to the author – are characterized by a wealth of means of expression. Moreover,
humans using natural language refer to their contextual and subjective knowledge, i.e.,
to a way they perceive, process, categorize, understand, and describe the environment
(“Robo, quickly bring that twirly toy to the crying child.”) and to their internal states
by forming modal epistemic statements (“I believe this approach might be unsuitable
in our situation.”).
The complexity of natural language directly translates into high levels of complexity

of models describing generation of even the simplest statements of natural language.
The natural language processing systems (NLP) developed in recent years[9, 14] need
hundreds of billions of parameters to work, the values of which are obtained in com-
putational processes using thousands of petaflop/s-days1. They have been significantly
successful, but they also fail in some areas[6], and their main disadvantage is the inabi-
lity to predict and explain wrong or undesirable results of their own processing. Hence,
e.g. the authors of the GPT-3 system allow a wider audience to use the API for the
above system only under their supervision[8].
The above approaches – usually based on artificial neural networks – are often

said to behave like black boxes[27, 97]. This requires pointing out a critical distinction.
While, as mentioned before, the user of the system should not be obliged to understand
technical intricacies of said system, it is a desired property of the system that its
behavior is transparent to its designer and maintainer. Rudin even insists[78, 79] that
only interpretable models should be used for high-stake decisions. In a nearby research
area of fuzzy-systems, Babuska[3] presents a contrast between approaches based on
black-box models and models that are “transparent to interpretation and analysis”,
and justifies an importance of said transparency in modern systems.

Another, nevertheless important, advantage of transparent systems is that they
can be analyzed. A natural strive to at least partially understand the way in which
humans gather, organize, process, store and convey information[20, 61] translates into
the requirement for formal and technical models trying to mimic particular processes
and behaviors within humans. Multiple existing approaches to a formulation of cogni-
tive architectures[40, 71, 81] aim to help with questions like: can a particular internal
organization of an artificial cognitive system effect in chosen elements of human-like
behavior?
One of the approaches that might be considered as an answer to the problem of

transparency of natural language models are models based on the cognitive semantics.
In cognitive semantics, models aim at describing in detail the relationship between the
spoken element of language (word or sentence) and the mental material represented by
this element, gathered in the mind of the subject using the language. It is possible to

1A petaflop/s-day (pfs-day) consists of performing 1015 neural net operations per second for one
day, or a total of about 1020 operations[2].
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give precise technical definition and conditions for the above relationship, which in turn
allows to achieve transparent behavior of the system. Nevertheless, cognitive semantics
models must take into account various aspects of the mental material, as well as the very
manner of relating to this material, which represents the actual object accessible by the
agent’s perception. Constructing a model of the meaning of even the simplest sentence
of a natural language from a theoretical and technical point of view, usually turns out
to be very complex due to the multidimensional reference of even simple sentences to
e.g. empirical material accumulated over the years. Cognitive linguistics[44] claims that
there are no distinct boundaries between language and other psychological competences
such as perception, memory, and categorization. Thus, various mental processes that
achieve the above abilities must closely cooperate with each other. The realization of
the above assumptions is described later in this work.
This dissertation presents the design and analysis of an artificial system capable

of generating a limited class of statements in a formal language inspired by a natural
language. The above system belongs to the class of cognitive agents[11], that operate
(physically or virtually) in a specific environment and interact with humans or other
artificial systems. A good example of the above agent can be a program that searches
the Internet for interesting data or a robot that moves in an environment that is
inaccessible or hostile to humans, e.g. on Mars or in the depths of the oceans. The
basic tasks of the agent are as follows:

� obtaining data from the environment,

� obtaining data from other participants of the interaction,

� processing of the obtained data,

� generating statements about the current state of the environment.

The particular methods for carrying out these tasks and the assumptions adopted in
this work are described below.

1.1.1 The tasks of the agent

Obtaining data from the environment. It is assumed that an external world of
the agent is an environment composed of atomic entities possessing certain features.
The entities are dynamic, i.e. their features may change over time. Time is represented
in a discrete form, i.e. divided into episodes (snapshots), in which the observations of
the entities are available to the agent’s perception. The duration of the episode may
vary – the most basic assumption is that a single episode corresponds to a period of
time during which the values of the features of the observed entities remain unchanged.
The above values of features are also discrete. The agent’s perception is limited, i.e.
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CHAPTER 1. INTRODUCTION

the entities may only be accessible to the agent’s perception in certain episodes, as can
their features, the values of which may not always be available to the agent.

Obtaining data from other participants of the interaction. Each entity in a
given episode can have a label informing the agent to which category the entity belongs
or does not belong. We assume the existence of an effective mechanism linking the label
with a specific entity. The source of labels is a teacher, so they represent the system
of concepts that the teacher uses. This system is related to the language used by the
teacher for communication. It has a social character, its form must be agreed on by all
participants of the interaction. Therefore, the agent’s learning is a supervised learning,
preferably with elements of student-teacher interaction, which means that the teacher
provides the agent with information that aims to influence and improve the agent’s
erroneous statements. This is in line with the evolutionary approach used by some
language researchers, which assumes that language has evolved by natural selection
to reduce mistakes in communication[58]. In this work it is assumed, that the teacher
does not have to be one being, but it can be a whole group of subjects using the same
language of communication.

Processing of the obtained data. The agent must undergo a learning process, as
a result of which it will create internal cognitive structures based on the data received
from the environment and from the teacher. These structures allow for the effective
use of the externally imposed system of concepts (categories). Difficulties in this regard
arise from the following facts:

� the agent did not participate directly in the process of creating the concept system
used by the teacher, so e.g. it does not have access to the episodes or learning
datasets on the basis of which the teacher created their own concept system; it
only has generalized (indirect) information in the form of labels,

� the agent has no access to the teacher’s internal cognitive structures,

� the teacher’s perception of the world may differ from the agent’s perception, e.g.
the teacher may have a color camera, while the agent only has a monochrome
one.

The cognitive models corresponding to the learned concepts (categories) constitute
an ontology built into the agent’s cognitive structures. In this work, the cognitive
models of categories are considered to be independent from each other. In further
research it is planned to expand them with relationships between the models, thus
creating a semantic network.
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Generating statements about the current state of the environment. The
agent should be able to present the results of exploration of the environment in a form
that is understandable to other participants of the interaction. In this work, the above
results are communicated by the agent as textual (possibly vocalized) statements. The
messages generated by the agent are based on its internal structures reflecting the
system of concepts used by other participants of the conversation. The agent is also
able to determine to some extent the correspondence of its internal structures and the
external system of concepts. The above assumptions should have a positive effect on
the reliability and usability of the information provided by the agent.
The process of generating statements in relation to the agent’s internal cognitive

structures is called semantic language grounding2[31, 84]. The language used by the
agent allows to express statements regarding the membership of an object to a category
and at the same time determine the degree of certainty of the information provided.
In linguistics, the sender’s attitude towards the communicated phenomenon, expressed
in the structure of the statement, is called the modality[22]. For this reason, the state-
ments generated by the agent are called modal atomic statements. The modal atomic
statements that the agent in this model can utter and interpret, are as follows:

� “I know that object x (belongs/does not belong) to category c” – the agent is
sure that object x belongs (or does not belong) to category c,

� “I believe that object x (belongs/does not belong) to category c” – the agent has
high confidence that object x belongs (or does not belong) to category c,

� “I find it possible that object x (belongs/does not belong) to category c” – the
agent considers that object x belongs (or does not belong) to category c, but it
is not firm confidence.

The above statements are spoken in the first person, which emphasizes the fact that
they express the beliefs of the agent and not the objective state of the outside world.
This type of modality is called epistemic modality[45].
The grounded statements must be rational from the point of view of the living

(human) participants in the conversation. For example, it is unacceptable for the agent
to simultaneously generate statements representing different states of knowledge about
the same object and concept, such as “I know that object x belongs to category bird”
and “I believe that object x belongs to category bird”.

1.1.2 Inspirations

As already mentioned, the formal language used by the agent is inspired by natural
language. It expresses various degrees of uncertainty of the subject generating a state-
2Also: symbol grounding.

9



CHAPTER 1. INTRODUCTION

ment, regarding membership to the category of objects available to the perception of
the subject. Since we want these statements to be understandable by the human par-
ticipants of the conversation, it is worth referring to the suggestions provided by the
results of research on human categorization mechanisms and their effects in language.
This dissertation refers to the so-called standard version of the prototype semantics
developed by Eleanor Rosch[72]. The experiments she carried out showed that in hu-
man categorization process, objects belonging to a category are graded, i.e. they may
be more or less representative for a given category. The best representative is called
the prototype. Its distinction influences the category structure and produces different
kinds of prototype effects, which will be described in chapter 3.2.

Hence, the adopted syntax and semantics of the statements reflect the degree of un-
certainty related to the representativeness of the object for a given category. In order to
correctly implement the generation of statements in accordance with the above prag-
matic interpretation, it is necessary to design and implement the appropriate cognitive
structures containing an embodied system of conceptual categories with prototypes, or
at least allowing for the achievement of prototype effects. The above structures must
contain at least a summary of the agent’s empirical experience, and possibly also the
experiences themselves related to the relevant conceptual categories.

The previous studies[32, 92] have already considered generating statements in for-
mal languages that express uncertainty, including the modal atomic statements. In the
mentioned previous stages of the research, the generated statements focused mostly
on values of particular physical features of the observed objects, rather than on such
abstract concepts as an inclusion of an object to a particular category. A novelty in
this work also lies in the reference of statements to the agent’s internal structures ba-
sed on the concept of a prototype. The above structures allow the agent to determine
the degree of ambiguity of categorization and to analyze the degree of convergence of
the cognitive structure with the model used by the community. Moreover, the agent
presented in this work is designed in a way not only allowing it to learn categories (and
to categorize further objects into the already-learned categories), but to express the
results of the performed categorization while further enriching it with an expression of
agent’s subjective certainty about the assignment of a particular object to the category.
The above abilities translate into greater credibility of the statements generated by the
agent.

1.2 Dissertation thesis and research tasks

Thesis It is possible to design and effectively implement an agent system capable of
processing the considered group of language messages in accordance with common-sense
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postulates reflecting the rules of processing this class of statements in natural language.

Following the assumptions stated above, a set of specific research tasks has been
defined and tackled within this dissertation:

� development of postulates for the formal representation of cognitive models and
for providing their technical definition,

� development of a method for generating the embodied ontology in the scope
covering a built-in representation of a system of conceptual categories with a
prototype,

� development and codification – in the form of a set of postulates – of the condi-
tions of permissible and unacceptable use of sets of modal statements about the
membership of an object to a category,

� definition of the original cognitive semantics of the language of modal statements
about the membership of an object to a category for a class of agent systems
with an ontology learning module,

� proposal and analysis of specific numerical models that perform the above tasks,

� simulations based on the selected methodology of implementation of the agent
and the implementation of cognitive semantics.

The original element of the work is to conduct a study, mainly based on literature
studies, leading to the development of a list of obligatory structural and procedural
components of the management module for this part of the agent’s embodied ontolo-
gy, which is responsible for representing the agent’s knowledge about the scope and
structure of conceptual categories with the prototype. Setting such a goal as one of the
main theoretical problems considered in the dissertation results from the utilitarian
assumption, according to which the developed mechanisms of grounding of atomic sta-
tements are to refer to a wide spectrum of real artificial agent systems, i.e. they must
take into account the fact that they are created using a variety of methodologies and
implementation tools, processes and knowledge representations. The developed general
architecture is to constitute a metastructure that can be mapped (projected) onto sys-
tems with different knowledge representation mechanisms. In other words, as part of
the dissertation, a certain system of structures is also developed, the implementation
of which in various contexts is to lead to the creation of an artificial agent with the
competence to express in a semi-natural language the belonging of the observed object
to one or more conceptual categories with the prototype.

In this sense, the proposed considerations are of a research and development nature.
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1.3 Components of dissertation

The text of the monograph is divided into eight parts: an above introduction, incoming
motivation, research background, four chapters dedicated to particular theoretical and
design issues, and a summary. For clarity, the text is supplemented with lists of tables
and figures, and a list of the cited literature.

The second chapter contains one of the possible scenarios that motivate the research
described in this work. It presents a practical situation in which an autonomous agent
operates in an environment that is difficult for humans to access and communicates
the results of exploration of the environment in a way that is understandable to human
recipients.

The third chapter presents the areas of cognitive science covered by this work
and the results of research to date in these areas. In particular, there are discussed
the theories of human-conducted categorization with a prototype, and the theory of
grounding along with the cognitive semantics of modal atomic statements in artificial
systems on the subject of exhibiting or not exhibiting the given property by some
object – so-called Basic Grounding Model.

Chapter four contains a general model of a category learning strategy with a proto-
type. It presents the model of the external world, the agent’s internal cognitive struc-
tures and the way of constructing these structures based on the experience gathered
by the agent. The cognitive model representing the category contains a prototype and
is divided into three areas representing a different degree of certainty regarding the
belonging of the object to the category. The chapter presents an algorithm that allows
the selection of the prototype and the division of mental space into the above areas,
but without the method of determining candidates for a prototype, which was speci-
fied in chapter six. Chapter four also contains a computational example and scheme
for evaluation of computational complexity of strategy.

Chapter five defines the cognitive semantics of modal statements about the be-
longing of an object to a category, referring to the cognitive models presented in the
previous chapters. First, the semantics for complete representation of an object is pre-
sented, and then its extended version for incomplete representation of object, that is,
for situations where not all values of the object’s features are known. The formal lan-
guage of modal atomic formulas and the conditions for generating individual formulas
were defined. Moreover, some desirable properties of semantics regarding the simultane-
ous generation of modal atomic statements have been proved. Finally, the relationship
between the model described in this dissertation and the cognitive semantics of modal
atomic statements on exhibiting or not exhibiting the given property by some object
is presented.

The sixth chapter contains three proposals of implementation models that consti-
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tute a specificity of the ideas presented in chapter four, and thus define the mechanism
of selecting candidates for a prototype and the so-called macrostructure. For each of
the models, an analysis of computational complexity and an optimized version of the
candidate selection algorithm were presented.
The seventh chapter presents the simulation results for the data downloaded from

the Machine Learning Repository, University of California, Irvine. The above simula-
tions prove the technical feasibility of the model.
The eighth chapter summarizes the doctoral dissertation. It provides a list of the-

oretical and practical problems discussed in previous chapters and formulates directions
for further research and implementation work.
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Chapter 2

Motivation scenario

We consider a situation that is frequent in practice, when the system is to operate
autonomously, without constant human supervision. In this scenario, it is the agent
managing a group of robots working on Mars. Their task is to explore the area, but
due to the communication delay, they cannot be monitored by humans in real time.
That is why they are monitored by a designated artificial agent, whose task is to warn
when the robot is in a dangerous situation. In classic automation systems, operating
e.g. in factories, the danger is usually determined by a set of strictly defined alarm
signals related e.g. to a specific position of a limit switch or exceeding a certain level
by an analog indicator such as pressure or temperature[88]. Such a system is able to
detect only situations which occurrence has been anticipated and implemented, and in
fact it happens that this approach fails, resulting in the occurrence of life and property
threatening failures[57]. Knowing this, human factory operators attach great impor-
tance to direct supervision of computer systems, also by means of physical inspection
to obtain current environment’s state[56]. In a situation of exploring a distant planet,
it is even more difficult to predict all possible configurations of variables, and the very
concept of a “dangerous situation” is inherently fuzzy and difficult to define. Therefore,
in this case, it seems to be a better solution to teach the agent the sense of the above
concept using examples. After the training process is completed, this will allow the
agent to generate messages regarding the different level of threat to individual robots.

In such applications, we must determine what cognitive potential of the agent is
necessary to achieve the assumed goals. In this case, the agent is embedded in a spe-
cific reality in which it has the ability to recognize physical entities. Establishing the
existence of an entity is based on its location in time and space. In addition, the agent
must be able to assign a specific set of features to a separate entity and, possibly,
associate a given entity with the label given to it by the teacher, which is a person or
a group of people overseeing the mission from Earth.

Suppose the agent is able to determine three attributes (features) for each robot:
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� Battery – its value is low if robot’s battery is close to exhausted, ok otherwise,

� Sunny – its value is yes if the robot is in a sunny place which, among other
things, allows its batteries to be charged by photovoltaic panels; otherwise its
value is no,

� Terrain – the type of terrain on which the robot moves, it takes the following
values: sand, rock and gravel.

The exemplary case is shown in the figure 2.1. Within the agent’s perceptual range,
there are four robots that move on different types of terrain. The darker (upper right)
part of the figure represents the shaded area where the robots cannot charge their solar
cells. The agent is in the base where robots can go to recharge their batteries or repair.
To simplify the example, we will mainly consider the danger that the robot will get
stuck outside the base with a discharged battery, which will prevent it from further
operation. Of course, in a real scenario, we expect the agent to be able to detect more
types of danger, based on more attributes.

Figure 2.1: Robots in agent’s perception perimeter.

First, the agent must separate the four entities e1, ..., e4 from the surrounding world,
corresponding to the four robots. The result of this process is the construction of four
objects x1,1, ... x1,4 in the agent’s working memory. Since the object model, in addition
to the fact of separation in the surrounding world, also specifies the recognized states
of attributes, the agent determines the values of attributes for each of the entities. The
figure 2.2 shows the mental state of the agent in such a situation1. The figure shows
the state of four robots in episode no. 1:
1The figure uses abbreviated names of attributes and their values: B=Battery, l=low, o=ok,

S=Sunny, y=yes, n=no, T=Terrain, s=sand, r=rock, g=gravel.
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� the robot represented in the agent’s working memory by the object x1,1 has a
charged battery (Battery = ok), is located in a sunny place (Sunny = yes) and
moves on rock (Terrain = rock),

� the robot represented in the agent’s working memory by the object x1,2 has a
charged battery (Battery = ok), is located in a sunny place (Sunny = yes) and
moves on rock (Terrain = rock),

� the robot represented in the agent’s working memory by the object x1,3 has a
battery that is almost drained (Battery = low), is located in a sunny place
(Sunny = yes) and moves on sand (Terrain = sand),

� the robot represented in the agent’s working memory by the object x1,4 has a
battery that is almost drained (Battery = low), is located in a shadow (Sunny =
no) and moves on gravel (Terrain = gravel).
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Figure 2.2: Mental representation of episode no. 1.
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Objects xij from working memory are projected to ok objects in the agent’s embo-
died ontology. It may happen that two xij objects will have the same set of features,
except for their location in time and space, of course. This situation means that the
recognized xij objects are cases (realizations) of the concept of an individual object ok.
For example, in the figure 2.2 the objects x1,1 i x1,2 are realizations of the individual
object o2.

Reference to the ontology allows to ground potential messages generated by the
agent. Messages that meet the conditions of proper grounding are passed by the agent
to the recipients, in this case the people supervising the entire mission from Earth.
Suppose that in episode no. 1 the agent generated the following statements:

� “I know that object x1,1 does not belong to category InDanger”,

� “I know that object x1,2 does not belong to category InDanger”,

� “I believe that object x1,3 belongs to category InDanger”,

� “I find it possible that object x1,4 belongs to category InDanger”.

We consider a situation where the agent is still in the learning phase, i.e. the teacher
supervising it believes that the agent has not yet fully learned the concept of the
category InDanger. The teacher, analyzing the agent’s statements and the features of
the robots they refer to, states that the statements about x1,3 and x1,4 objects do not
meet the teacher’s expectations, so it is worth giving labels to robots that will help in
better comprehension of the meaning of the concept by the agent. In episode no. 2 –
shown in the figure 2.3 – the relevant entities are thus labeled by the teacher:

� “is-InDanger” indicating that entity e3 belongs to the category InDanger,

� “not-InDanger” indicating that entity e4 does not belong to the category InDanger.

Associating an entity with a label updates the agent’s cognitive structures. Its
knowledge is based on the sequence of the learning situations and is included in the
embodied ontology. After updating the cognitive structures, the agent generates mes-
sages describing, according to it, the state of the robots in episode no. 2:

� “I know that object x2,1 does not belong to category InDanger”,

� “I know that object x2,2 does not belong to category InDanger”,

� “I know that object x2,3 belongs to category InDanger”,

� “I know that object x2,4 does not belong to category InDanger”.

18



e
m

b
o
d

ie
d

 o
n
to

lo
g

y

agent

working memory

e1

B S T

o y r

e2

B S T

o y r

e3

B S T

l y s

e4

B S T

l n g

x2,1

B S T
o y r

x2,2

B S T
o y r

x2,3

B S T
l y s

x2,4

B S T
l n g

o1
B S T
o n r

o2
B S T
o y r

o3
B S T
l n s

o4
B S T
l y s

o5
B S T
l n g

o6
B S T
l y g

o7
B S T
o n g

o8
B S T
o y g

o9
B S T
o n s

o10
B S T
o y s

o11
B S T
l n r

o12
B S T
l y r

lexicon level

conceptual level

is-InDanger

not-InDanger

InDanger

not-InDanger

is-InDanger

learning data repository

(inDanger: o4)+ (inDanger: o5)–
t2

t1

Figure 2.3: Mental representation of episode no. 2.

As one can see, the confidence has increased that the object x2,3 representing the
entity e4 belongs to the category InDanger. Instead of the modal operator “I believe”
expressing a strong belief in belonging to a category, the agent used the operator
“I know” to express complete certainty. In the case of the object x2,4 representing
the entity e3, the agent expressed confidence that the object did not belong to the
InDanger category, while in the episode no. 1 for the same object it allowed for the
possibility that the object belonged to the above category.

The situation corresponding to the episode no. 3 is shown in the figure 2.4. As one
can see, the entities e2 and e3 have disappeared from the agent’s perception field, but
the entity (robot) e5 has appeared in it. In addition, the entity e1 moved so that it is now
in the shaded zone, therefore the attribute value Sunny for its corresponding object
x3,1 has changed to no. The transition of the value of the attribute causes the entity
e1 to now correspond to another object in the agent’s mental space, namely o1 instead
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Figure 2.4: Mental representation of episode no. 3.

of o2 as before. The teacher re-labeled the entity e4 with the label “not-InDanger”
indicating that e4 does not belong to the category InDanger.
After the observed objects are related to the cognitive structures, the agent gene-

rates the following messages:

� “I believe that object x3,1 does not belong to category InDanger”,

� “I find it possible that object x3,2 belongs to category InDanger”,

� “I know that object x3,3 does not belong to category InDanger”.

The messages for objects x3,1 and x3,2 do not contain the modal operator “I know”
as they correspond to combinations of attribute values that are new for the agent.
The teacher can re-evaluate their rationality and on this basis try to provide more
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knowledge about the InDanger category by using the appropriate labels assigned to
the entity.
In subsequent episodes, the teacher-agent interaction may be similar. When the

teacher decides that the agent has learned the InDanger category correctly, they may
stop verifying the agent’s statements and continue with just receiving warnings from
the agent. Thanks to this, the system consisting of the agent and the robots observed
by it can operate autonomously.
In addition, we assume that while in the learning phase the agent has access to

full information on all states of the features of each robot, in the autonomous phase
it can generate statements based on incomplete information, i.e. the values of some
attributes describing the robot may not be available to the agent’s perception. Such a
situation is presented in the figure 2.5, where the agent is not able to determine the
value of the Sunny attribute for the entity e1 to which the object xn,1 in the working
memory corresponds. The object xn,1 can be the realization of the object o1 or o2
from embodied ontology, but the agent is unable to determine exactly which. For this
reason, the agent has to consider more options, which can increase uncertainty about
the object’s belonging to the InDanger category. In the given example, the agent
signals the above uncertainty by using the belief operator:

� “I believe that object xn,1 does not belong to category InDanger”.
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22



Chapter 3

Models related to the cognitive
semantics of atomic statements and
the theory of prototypes

As outlined in the previous chapters, this dissertation deals with the problem of de-
velopment of an artificial agent with embodied cognitive models allowing to generate
modal statements about the membership of objects to categories. This chapter discus-
ses the theories and research works that are the basis for the answer to the above
research problem.

3.1 Cognitive science

This work can be included in the interdisciplinary field of research on cognition known
as cognitive science. Usually it is defined[7, 53, 59] as an attempt to synthesize the
problems practiced by six traditional academic disciplines: philosophy, psychology, lin-
guistics, computer science (artificial intelligence in particular), anthropology and neuro-
science. The figure 3.1 taken from the so-called Sloan report[83] shows the components
of cognitive science as vertices of a hexagon. Similarly, the MIT Encyclopedia of the
Cognitive Sciences [94] recognizes six fields that contribute to the cognitive sciences:

� philosophy,

� psychology,

� neurosciences,

� computational intelligence,

� linguistics and language,
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� culture, cognition, and evolution.

philosophy

neuroscience

psychology

computer
science

linguistics

anthropology

Figure 3.1: Cognitive science.

The research program of cognitive science is not so much about practicing all spe-
cific disciplines as about developing or bringing to life those research areas located
between the vertices of the hexagon[55]. For example, the line between anthropology
and neuroscience represents the research on the evolution of the brain, and by com-
bining neuroscience with linguistics, we get neurolinguistics. The research areas that
cover more than two of the six output disciplines are particularly interesting. This work
meets this condition because it is an attempt to computationally represent the effects
described in the psycholinguistic research. Referring to the figure 3.1 – we operate
within the triangle delineated by psychology, linguistics and computer science.

3.2 Theories of conceptual categories with a proto-

type

Human processing of natural language has long been the subject of research by spe-
cialists in philosophy, cognitive psychology and linguistics. It seems beneficial to use
their achievements when trying to construct an artificial system that processes natural
language or at least adheres to the rules of natural language.
One of the most important aspects of language processing and one of the basic

thought processes is the categorization of objects, activities, experiences, etc. Catego-
rization makes it possible to reduce the complexity of the experienced world to a form
that can be analyzed by the human mind within a reasonable time. Thanks to this, e.g.
when entering a room with a hundred chairs, we do not have to analyze the function of
each chair separately. Harnad[24] even states that “cognition is categorization” because
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people behave in particular ways toward different kinds of things (including abstract
concepts such as prime numbers).
The classical theory of categorization was widely recognized for many centuries

on the basis of the ideas presented already by Aristotle. It is often referred to as the
necessary and sufficient condition model[38] or criterial-attribute model[43]. The
basic assumptions of the above model are[41]:

� shared properties – there are necessary and sufficient conditions (features) for
belonging to a category; each element of a category has all of these characteristics,
and there is no element outside the category that has all of these characteristics,

� clear boundaries – it is possible to unequivocally determine whether an item
belongs to a category or not; this is in line with the classical set theory,

� uniformity – all elements of the category are equal, there are no more and less
important elements; likewise, no distinction is made between the importance of
the conditions of belonging to a category,

� inflexibility – the boundaries of the categories do not change.

Research conducted in the second half of the twentieth century in virtually all
cognitive science disciplines, showed that in many cases the above assumptions are not
met. For example, Geeraerts shows[18], that for the category bird it is impossible to
find necessary and sufficient conditions for all birds. If we assume that a bird is an
animal that is oviparous and has a beak, it turns out that there are species (e.g. a
platypus) or even orders of animals (e.g. turtles) that have these features but are not
birds. On the other hand, the features that seem distinctive are missing from some
elements of the category: ostriches and penguins cannot fly, kiwis do not have wings,
and penguins do not have the typical feathers.
Furthermore, the research conducted by Rosch[72] has shown that people do not

treat all elements of a category equally. For example, some elements are considered more
representative than others. In addition, the experiments showed[74], that for different
objects belonging to a category, the categorization time, the time after which the
element is categorized in the learning process, and the prototypicality rating obtained
from the study participants differ significantly.
Rosch presented a proposal of interpretation of the above effects, called the stan-

dard version of the prototype semantics. Below, we will discuss its basic theses,
listed after [38]:

T1. The category has an internal prototype structure.

T2. The degree of representativeness of a given item corresponds to the degree of its
membership to a category.
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T3. The elements of a given category do not have properties common to all elements;
they are connected by family resemblances.

T4. The boundaries of categories or concepts are fuzzy.

T5. The belonging to a given category is based on the degree of similarity to the
prototype.

T6. The belonging to a category is not determined in an analytical manner, but in a
holistic manner.

Prototype in the above theory (T1 and T2) denotes the most representative instance
of a category. As Rosch puts it[73]: ”many natural categories are internally structured
into a prototype (clearest cases, best examples) of the category with nonprototype
members tending towards an order from better to poorer examples”. For example,
her respondents[72] named apple as the best representative of the fruit category. In
addition, it was possible to order other items belonging to the fruit category on a
scale from the most representative to the least representative, they were in turn: plum,
pineapple, strawberry, fig and olive. According to the quoted words of Rosch, in the
internal structure of the fruit category, the apple would be a prototype element, and
the remaining fruits would be non-prototypical elements, ordered from the best to
the worst examples. Other researchers have also shown that the most representative
designates are included in a given category in the shortest time[49, 93] and that new
categories are learned faster and with fewer errors when the subjects are shown more
typical representatives of the concept[52].
It should be noted that as the research progressed, Rosch herself rejected the thesis

that the category must have an internal prototype structure. She recognized the pro-
totype as the result of cognitive processes that can be based on structures built in any
way. Thus, various models of these processes can be considered, as long as they demon-
strate the prototype effects observed in the research. As Rosch puts it[76]: “prototypes
only constrain but do not specify representation and process models”. This approach
is sometimes called the extended version of the prototype semantics [38]. Nevertheless,
prototype effects occur during the categorization process by humans and have been
confirmed by scientific research.
The question naturally arises as to what determines that an element of a category

is considered to be its better or worse representative. Often, the best representative
has the most common features with the other items in the category. The exemplary
situation is shown in the figure 3.2. It depicts the features of various elements of the
category bird. The members of the category are described by the names of different
species of birds. The drawing was taken from the work of D. Geeraerts[19].
As one can see, the robin has the most common features, and that is why we can
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robinkiwi ostrich

penguin

chicken

1 - being able to fly 2 - having feathers 3 - being S-shaped
4 - having wings 5 - not domesticated 6 - being born from eggs
7 - having a beak or bill

Figure 3.2: Elements of category bird.

consider it as the prototype of the category bird. The other elements of the category
share different sets of common features. It can be said that the robin functions in the
center of the category, and the penguin, for example, in its periphery.

This is an example of a radial structure, not every category has to be compatible
with this structure. Wittgenstein[95] noted that there are categories whose elements
share common characteristics, but there is no set of attributes that all the elements be-
longing to the category have. They are connected by the so-called family resemblances
(T3), because they resemble each other just like family members who have similar hair,
eyes, facial features, etc. As an example of such a category, Wittgenstein gave the term
“game”. In most games there is an element of competition, but in some (e.g. group
dances, role-playing games) there are no winners or losers. The outcome of some games
depends entirely on luck (roulette), others partially (poker), some not at all (chess).
Some games require physical skills (soccer), some mental skills (chess). It is impossible
to provide a set of features that each game has. It is also difficult to give an example
of a typical (prototype) game. Moreover, Rosch showed[74], that the more an element
is related to other elements of a category by the family resemblance, the faster it is
categorized, the faster it is categorized in the learning process and receives a higher
prototypicality rating from survey participants.

According to the fourth of the above theses (T4), the boundaries of a category
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are fuzzy, so it is not possible to clearly say for every element whether it belongs to
a category or not. However, for such elements it can be determined to what extent
they belong to a given category. This is true for many categories, especially where the
features that describe a concept are continuous. A classic example is the analysis of
color names by Kay and McDaniel[36] based on the fuzzy set theory[98]. For example,
many shades of color can be assigned to the “red color” category, giving each of them
a degree of membership from 1 to 0. Let us consider, however, the following sentences,
taken from [38], and presenting statements about belonging to the bird category with
varying degrees of truthfulness:

a) the sparrow is a bird (true),

b) the chicken is a bird (less true than a),

c) the penguin is a bird (less true than b),

d) the bat is a bird (false or very far from the truth),

e) the cow is a bird (completely false).

The first three statements are certainly true, although there is some feeling that
some are less true than others. The statement e is definitely false. The statement d
confirms the fuzziness of the category boundary, the bat may or may not be included
in the bird category, depending on the criteria adopted by the subject communicating
the sentence or the knowledge of the subject. For example, a person who sees a bat
for the first time may classify it as a bird, due to the fact that it has three of the
seven features shown in the figure 3.2 (being able to fly, having wings, not domesti-
cated). Only the provision of further information on the method of reproduction and
upbringing of offspring by bats, may result in including them in the mammal instead
of the bird category. In conclusion, for the above example three areas that define
the structure of a category emerge: containing objects that definitely belong to
it, containing objects that definitely do not belong to it, and “uncertain” objects that
belong to the category boundary. This division will be reflected in the computational
structures presented later in the dissertation.
According to the fifth of the above theses (T5), belonging to a given category

is based on the degree of similarity to the prototype. Thus ”the best examples of a
category can serve as reference points in relation to which other category members are
judged”[73]. It follows that the categorizer must be competent to compare the elements
of the category with the prototype.
The last of the above theses (T6) says that belonging to a category is determined

holistically, not analytically. This means that it is not resolved by some specific set
of features, as in the case of the necessary and sufficient conditions model, but by the
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similarity to other elements belonging to the category. Of course in an artificial system,
the comparison must, however, be computable.

3.3 Theory of grounding

One of the tasks of the agent in this work is to generate statements about the catego-
rization of an object. An important problem is how in an artificial system the above
statements are related to the representations of concepts in the embodied ontology of
the agent. This leads directly to a problem of symbol/language grounding[90].

The problem of language grounding belongs to a broad class of basic research pro-
blems solved in the field of artificial intelligence and cognitive science. The grounding
should be understood as the product of knowledge processing mechanisms, taking place
in the agent (subject of knowledge), which are responsible for establishing and mainta-
ining the semantic relationship between the material signs of language and the objects
of the external world. The function of grounding models is to explain what form these
relationships take for particular agent types and particular communication languages.

Harnad[23] defines the grounding problem by asking questions: “How can the se-
mantic interpretation of a formal symbol system be made intrinsic to the system, rather
than just parasitic on the meanings in our heads? How can the meanings of the me-
aningless symbol tokens, manipulated solely on the basis of their (arbitrary) shapes,
be grounded in anything but other meaningless symbols?”. Harnad states that cogni-
tion cannot be just symbol manipulation. The symbol of a concept (a sign in a given
language) must be related to the meaning of the concept, where by meaning it means
structures representing the concept in a non-symbolic way. These structures should be
based on the agent’s perception, i.e. information that is a projection of objects and
events through the agent’s sensors (senses). Harnad also suggests to start from the
simplest representations, and then to build higher-order structures on them, allowing
for the categorization of objects. This approach is in line with the one adopted in this
dissertation.

The above concepts are often illustrated using the so-called semiotic triangle. It is
a concept derived from the field of semiotics[60], but it has also come to be used to
describe symbol grounding in artificial systems[77, 89]. The classic semiotic triangle is
presented in the figure 3.3.

The referent can be a physical object in the real world, but also an abstract idea or
some other sign of language. The thought is also called a reference or an interpretant.
So it is interpretation of the referent, a reference that is directed and organized[60].
The symbol is used to communicate according to an arbitrarily adopted convention.
The most frequently considered symbols are words in graphic or sound form.
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Figure 3.3: Semiotic triangle.

As shown in the figure, the grounding process relates to the relationship between
the symbol and the thought. It is defined by cognitive semantics, which decides how
this process should execute.
Classical semantics refers to the relationship between the symbol and the referent

and is marked in the figure by a dotted line. In fact, however, such a relationship does
not exist, because for example, there is no direct relationship between the word “dog”
and the real objects that we call it. That is why in this dissertation such an approach
is considered to be a too far-fetched simplification.
In this work, it is assumed that the thought is placed in the cognitive structures

of the artificial agent system. The referent is a physical entity, external to the agent
system. The entity’s features are available to the agent through appropriate receptors,
so the entity is reflected in the agent’s working memory as an object which is a com-
bination of the values of the features, obtained using the agent’s perception tools. The
symbol is a language formula that expresses a statement about the membership of the
object to a category (class) of entities. The figure 3.4 presents the above assumptions
within a semiotic triangle.
The syntax of the language used by the agent in this model will reflect the relation-

ships outlined above. This means that the agent’s statements will not be simply relating
to the (allegedly) objective state of affairs. Instead, the formulas generated by the agent
will use operators expressing the modality of the statement, i.e. conveying the agent’s
attitude towards the communicated content. In philosophy and linguistics, many types
of modality are considered, and the authors use different divisions of them[22, 45, 66].
For example, in [62] the following main types of modality are distinguished:

� epistemic – where speakers express their judgements about the factual status of
the proposition,
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Figure 3.4: Semiotic triangle for agent system.

� evidential – where speakers indicate the evidence they have for factual status of
proposition,

� deontic – where conditional factors are external to the relevant individual,

� dynamic – where conditional factors are internal to the relevant individual,

� other – presupposed propositions, negative, interrogative, wishes, fears, etc.

The statements generated by the agent in this model enable the expression of an
epistemic modality. The agent uses three different operators, which express different
levels of confidence in its judgment. This is in line with the division presented in
linguistics[22], where:

� the highest degree of certainty is expressed by declarative statements, also known
as assertions; in this model, such a formula is started with the Know operator
and its meaning is as follows: “I know that object x belongs to category c” or “I
know that object x does not belong to category c”,

� a lower degree of certainty is expressed by strong hypothetical statements; in this
model, such a formula is started with the Bel operator and its meaning is as
follows: “I believe that object x belongs to category c” or “I believe that object
x does not belong to category c”,

� the lowest degree of certainty is expressed by weak hypothetical statements; in
this model, such a formula is started with the Pos operator and its meaning is
as follows: “I find it possible that object x belongs to category c” or “I find it
possible that object x does not belong to category c”.
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The above formulas are called the modal atomic statements.

3.3.1 Basic Grounding Model

A technically feasible model for grounding the modal communication language in agent
systems is shown in [31, 32]. We will refer to this model as Basic Grounding Model
(BGM). The above works analyzed the relationships between the internal representa-
tions of the agent’s individual interactions with the outside world and the mental model
generated by the accumulation of these representations, as well as verbally oriented co-
des of meanings.
In the BGM model, the external world of the agent is a dynamic environment made

of atomic objects. The individual states of this world are relativized to points in time.
At every point in time t the state of the external world is described with so-called the
t-related base profile, that contains:

� the set of all atomic objects located in the external world,

� the set of unique names of properties assigned to objects,

� the information that for a given object at time t a given property has been
observed or not; the above information need not to be available for every property
of every object (that is, the information may not be complete).

Data for the current base profile are collected by the agent using tools for observa-
tion of the external world. The agent associates each observation (and its result, i.e.
determination of the properties assigned or not to the objects) with a specific point
in time t. Knowledge of this type is empirical in nature and is given as a set of all
the observations made. The results of observations are stored in specialized databases,
encapsulated (enclosed) in the agent’s “body”.
In the BGM model, the agent generates fixed language formulas, which are formal

representations of the state of knowledge assumed by the agent about the objects
o1, o2, ..., oM described by the properties P1, P2, ..., PK . The simplest non-modal atomic
formulas (statements) have the form:

� pi(oj) has an intuitive meaning “Object oj exhibits property Pi”,

� ¬pi(oj) has an intuitive meaning “Object oj does not exhibit property Pi”.

Unary predicate symbols p1, p2, ..., pK are related to properties P1, P2, ..., PK
respectively. Whereas epistemic modality is expressed by the use of operators that
allow the creation of modal atomic formulas on the basis of a non-modal formula ϕ:

� Pos(ϕ) has an intuitive meaning “It is possible that ϕ”,
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� Bel(ϕ) has an intuitive meaning “I believe that ϕ”,

� Know(ϕ) has an intuitive meaning “I know that ϕ”.

For example, the formula Pos(¬p2(o3)) means “It is possible that object o3 does
not exhibit property P2”, and Bel(Happy(John)) means “I believe that object John
exhibits property Happy”.
In the works [31, 32, 92] and others, more complicated cases of formulas, such as

conjunctions, alternatives, etc. were also analyzed, but in this chapter we will limit the
subject to atomic modalities.
In the BGM model, a specific modal formula is considered to be properly grounded

in the agent’s current state of knowledge if and only if a strictly defined set of conditions
imposed on that state of knowledge is met. These conditions are defined by the so-called
epistemic satisfaction relation of a formula (a modal statement), which function
is to represent cognitive semantics. Conceptually, this relation corresponds to the edge
of the semiotic triangle that connects the material sign of language with the agent –
as shown in the figure 3.5. The BGM model does not distinguish between the physical
entity and the object representing it in the agent structures. Therefore, it is a simpler
model than the one presented in this dissertation.

agent

��x�
object x

formula

state of

cognition

epistemic

satisfaction

relation

semiotic

triangle

Figure 3.5: Epistemic satisfaction relation.

In the case when the agent observes the occurrence or absence of the property P in
the object o at a given moment, the formula expressing certainty can be grounded, and
therefore provided with the Know operator. If the agent is unable to determine the
current state of the property, it must refer to empirical knowledge. The more numerous
empirical experiences of the agent in the presence of the property P in the object o, the
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stronger the agent’s confidence about the possibility of the presence of the property P
in the object o at the moment. More formally, it is expressed by means of grounding
sets, collecting the agent’s experience confirming the occurrence or absence of a given
property in o in the preceding moments of time. In turn, the inductive strength of the
grounding sets is defined as the classically understood cardinality of the grounding sets,
and is used to determine the relative grounding strength λ(t, pi(o)) and λ(t,¬pi(o)) of
atomic formulas in time point t. The relative grounding strength is therefore a measure
that is determined statistically.

The concept of modality thresholds is another element of the BGM model. They
allow to characterize the propositional attitudes adopted by the agent. The modality
thresholds are a strictly mental category. They are developed by the natural agent
as subjectively experienced boundaries that define the scope of the agent’s appeal to
modal operators of possibilities and beliefs. Establishing threshold values is undoub-
tedly one of the outcomes of the processes of semiosis. In BGM it is assumed that
modality thresholds are closely related to the concept of relative grounding strength
and the agent refers to them when deciding on use of the operators of possibilities and
beliefs. There are two modality thresholds λminPos and λmaxPos related to experiencing
possibilities and two modality thresholds λminBel and λmaxBel related to beliefs. The
threshold λminPos is to represent the subjectively perceived intensity of experiences,
the occurrence of which (for a specific area of remembered empirical experiences) is to
determine the agent’s readiness to use the Pos operator. In turn, the threshold λmaxPos
determines the upper limit of the intensity of the remembered empirical experience,
allowing the use of the possibility operator. Exceeding this threshold means that the
linguistic representation of the realized propositional attitude requires referring to ano-
ther modal operator. Modality thresholds λminBel and λmaxBel are used in analogous
way for Bel operator.

By comparing the relative grounding strengths λ(t, pi(o)) and λ(t,¬pi(o)) with the
set of the above thresholds, the agent determines whether there is a relation of epistemic
satisfaction of individual modal atomic formulas. Formulas for which this relationship
takes place are considered well-established and can be communicated by the agent to
the outside world.

In the above-mentioned works, the properties of the BGM model were analyzed
and the conditions to be met by the modality threshold system were defined, in order
for the grounded formulas to be consistent with the desired linguistic behavior of the
agent. In particular:

� the agent must be systematically unable to simultaneously ground formulas which,
due to their intuitive content, never coexist in the description of the same state of
knowledge; for example, the grounding mechanism cannot allow the simultaneous
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grounding of two modal formulas Know(p(o)) and Bel(p(o)),

� the agent must be equipped with a mechanism obligatorily grounding the collec-
tions of formulas which, due to their intuitive understanding, coexist with each
other in the description of particular state of knowledge,

� the agent must demonstrate flexibility of behavior in terms of the simultaneous
grounding of these formulas, which due to their intuitive meaning may or may
not be grounded in the same state of knowledge.

More precisely the BGM model will be presented in the chapter 5.6 where, among
others, formal definitions of the above concepts will be provided. In addition, the rela-
tionship between the model proposed in this dissertation and BGM will be presented.
The signaled relationship between the models will be used to analyze the properties of
the model originally proposed in this work. This will lead to proving for this model the
properties analogous to the BGM model.

3.4 Conceptual spaces

Gärdenfors proposes conceptual spaces as a framework for modeling the formation and
the evolution of concepts[15, 16]. These are geometrical structures based on quality di-
mensions and distance measures. Together with notion of prototypes taken from Rosch
theories, they allow for Voronoi tessellation of conceptual space between categories.
Gärdenfors states[17] that “(...) a conceptual level of representation should play a cen-
tral role in the cognitives sciences. After having been dominant for many years, the
symbolic approach was challenged by connectionism (which is nowadays broadened to
a wider study of dynamical systems). However, for many purposes the symbolic level of
representation is too coarse, and the connectionist too fine-grained. In relation to the
two goals of cognitive science, I submit that the conceptual level will add significantly
to our explanatory capacities when it comes to understanding cognitive processes, in
particular those connected with concept formation and language understanding.”

Conceptual spaces are technical model that allows for building and managing ca-
tegories. It also uses so-called Region Connection Calculus to reason about categories.
The models presented in this dissertation are also technically feasible and refer to a
similar concept: space of objects in the sense that space is a set of objects additionally
equipped with an appropriate numerical measure, e.g. distance or similarity of these
objects. Moreover, both models use the concept of a prototype as a selected object
from this space. However, the models in this work do not require boundaries betwe-
en categories. Furthermore, the dissertation contains original cognitive semantics that
enhances the explanatory power of the model.

35



CHAPTER 3. MODELS RELATED TO THE COGNITIVE SEMANTICS OF
ATOMIC STATEMENTS AND THE THEORY OF PROTOTYPES

3.5 Conclusions

The presented review shows several important premises for the research tasks defined in
the chapter 1.2. Effective implementation of the phenomenon of grounding statements
in ontological structures representing conceptual categories with a prototype, requires
to develop a system architecture on a general level, including the following components:

� the model of category representation that includes the representation of object,
the prototype of category, and the measure of the similarity or the distance of
objects to the prototype,

� the category learning and updating mechanism (at this dissertation, the focus
will be on learning with the teacher),

� the mechanism of grounding modal atomic statements in a knowledge system
with an ontology based on conceptual categories with a prototype.

These elements must be implemented regardless of the methodology of knowledge re-
presentation adopted for a given artificial system.
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Chapter 4

Model of the category learning
strategy with a prototype

4.1 Description of the strategy

4.1.1 Data acquisition

We assume that the agent observes the environment using its sensors and that it is
able to identify the entities in its surroundings. In the case of the physical world, it
can do so based on the physical position of entities. Thanks to its sensors, the agent
is able to assign values to the features (attributes) that describe the entity. The set of
attributes describing the entity is constant and depends on the field of application and
the agent’s perception capabilities. The entity is represented in the agent’s working
memory by an object that is a combination of the values of the above attributes. The
period of time in which the agent’s environment does not change – that is, it consists of
the same objects with the same values of attributes – is called an episode and treated
as a single moment of time.

As already mentioned, learning will take place with the participation of the teacher,
so this is a case of supervised learning. The aim of the learning process is to map the
concepts used by the teacher in the agent’s internal cognitive structures, to the extent
that it is possible to generate statements regarding the membership of objects to the
category. Let us note that the cognitive structures of the agent (artificial system) and
the teacher (living or artificial system) may have a completely different architecture.
Nevertheless, we expect the agent to be able to learn the concepts well enough to be
able to generate statements that the teacher deems rational. Since the agent’s cognitive
structures in this model are based on the categorization theory developed as a part of
work on human psychology, the expectation is justified that the statements will be
rational from a human point of view.
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The teacher can be a single entity or set of entities interacting with the agent.
In the latter case, additional uncertainty may arise in the agent, due to the fact that
individual teachers may have different conceptual systems. This may be caused by the
following reasons:

� each teacher may have (and usually has) different experiences, that is, they have
experienced a different set of episodes (situations, moments in time),

� even if two teachers experience the same situation, their perception of the world
may be different, e.g. depending on the physical situation of the teacher, they
may or may not have access to certain physical features of the object,

� each teacher may have differently constructed cognitive structures,

� each teacher’s perception of the world may be different, e.g. one teacher may have
a color camera, while the other only monochrome one.

All of the above issues can also be applied to the differences between teachers and the
agent.
The greater the difference in teachers’ perception of the world, the greater the

agent’s uncertainty about the application of a learned category system. To get rid of
this aspect of uncertainty, it must be ensured that all teachers assign given objects to
categories in exactly the same way. In the case of agents acting in a real environment,
the concept system used by teachers is socially sanctioned, so quite similar for all
teachers, although rather not identical. Of course, the problem disappears when there
is only one teacher.
Later in the work we will use the singular term “teacher”, although in general there

may be more teachers. However, this does not change the model presented below.
We assume that the teacher is able to name objects in a certain area of environment

by assigning labels to them, which are signs referring to categories from the system of
concepts used by the teacher. We also assume that there is a mechanism for assigning a
label to an object, available to the agent. In this way, the agent receives a label-object
association, whereby one object may be assigned multiple labels and many objects may
be assigned to the same label. In this paper, labels will be in the form of character
strings, where we distinguish two types:

� positive labels – assigned to an object by the teacher if they believe that the
object belongs to the category indicated by the label,

� negative labels – assigned to an object by the teacher if they believe that the
object does not belong to the category indicated by the label.

For the sake of clarity of the description, in examples presented in this chapter, we
will assume that when the learning process begins, the cognitive structures are empty,
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i.e. they do not contain any information. However, since the agent model presented
here contains an explicit knowledge representation, it can be equipped with some initial
knowledge in the form of ready-made structures.

4.1.2 Updating of cognitive structures

Each appearance of the object-label linked pair causes an update of the cognitive
structure describing the category indicated by the label. This structure will be called
the cognitive model of category. In this work it is proposed that the cognitive model
of the category (concept) c includes references to all cases of observations (experiences)
of objects that were labeled by the teacher with a positive or negative label indicating
the category c. However, the agent will not remember the references to a specific object,
but rather to its counterpart in mental space. Thus, the observation of the object x in
the episode referring to the time point t stored in the model of category c includes:

� information on the value of the x object features observed by the agent in the
episode referring to the time point t,

� information on the labels given by the teacher to the object x in the episode
referring to the time point t.

Let us note, that the cognitive model does not contain the following information re-
garding the above observation:

� the identifier that physically distinguishes the x object from other objects,

� the identifier distinguishing the source of the labels (teachers),

� the reference to the episode in which the observation occurred.

The set of labels associated with a given object may be empty. Such experience will
not be part of any of the agent’s cognitive models, but the object may be described by
the agent using statements about the object’s membership to the category.
The prototype is determined on the basis of all the observations stored in a given

model. According to psycholinguistic theories, it should be the most representative
member of the category. This does not mean that it must be a real observation of
the entity, it can be an abstract object, i.e. such a combination of feature values that
never appeared in the agent’s experience. The prototype should contain as many as
possible of the most important features of the objects belonging to the category. How
to determine which features are in fact the most important and how to choose the
prototype will be the subject of research in this dissertation.
Designating a prototype enables its use to organize the structure of the category

model. For this purpose, apart from the prototype, it is necessary to define a computable
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mechanism allowing for the comparison of two objects. We call this mechanism the
macrostructure and define it as a computable function, which is e.g. a measure of
the mental distance between two objects or the similarity of two objects. In turn, the
microstructure determines the internal structure of the object, it can generally be a set
of attributes, a tree structure, etc.

The macrostructure allows to sort the objects belonging to the model according to
the value of the above measure in relation to the prototype. In this way, we obtain the
prototypical effect of the agent’s “feeling” that certain objects are better examples of a
given category and others are worse. According to the results of the research described
in the chapter 3.2, this effect may lead to the division of objects in mental space into
three areas:

� objects certainly belonging to the category – we call this area the core of the
category,

� objects certainly not belonging to the category – we call this area the outer
region of the category,

� questionable objects that may belong to a category, but it is not certain – we call
this area the boundary of the category.

This model assumes a radial category structure with the prototype as the central
element. Schematically, the model areas can be shown as in the figure 4.1, where the
point o⋆c symbolizes the prototype of the category c. If we define a macrostructure as
a measure of the distance from the prototype, then the distance of the point from the
prototype in the picture is proportional to the value of this measure (the closer it is, the
smaller the distance). If we define the macrostructure as a measure of similarity to the
prototype, then the distance of the point from the prototype in the picture is inversely
proportional to the value of this measure (the closer, the greater the similarity).

By defining the macrostructure, it is also possible to determine the values of τc radii,
which allow to unambiguously describe all three areas. As one can see, τ+c is the extent
of the core of the category, while τ−c is the extent of the boundary of the category. We
assume that for any model of category in which both radii are defined, the following
condition holds:

τ+c < τ
−
c . (4.1.1)

The above condition seems to be reasonable in common sense, but it will also pro-
ve necessary for the proper linguistic behavior of the agent, as will be shown in the
chapter 5.5.

The smaller the core and the larger the boundary in the cognitive model of the
category, the greater the uncertainty with which the agent can assign objects to this
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Figure 4.1: Schematic picture of three areas of the model of a category.

category. In the extreme case, the core of the category may be empty, which means
that the agent is unable to say anything certain about whether the objects belong to
the category. The reasons for this may be as follows:

� the proposed structure of the cognitive model with a prototype is not suitable for
the representation of the category – e.g. the similarity of the category elements
to the prototype is as low as the non-category elements,

� the set of features available to the agent’s perception is insufficient to distinguish
between observations belonging to a category and not belonging to a category,

� the granularity of the values of the features available to the agent’s perception
is insufficient to distinguish between observations belonging to the category and
not belonging to the category,

� the values of the features available to the agent’s perception are burdened with
too many erroneous readings,

� the agent received too little label information, or even received incorrect label-
to-object assignments,

� the agent observed too few examples to correctly determine the prototype and/or
areas of the category model (i.e. has too little experience),

� if there is more than one teacher – too large differences in the assignment of
objects to categories by different teachers.
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Based on the sizes of the core and the boundary of category, specific conditions or
benchmarks can be defined that allow to assess the quality of the model found. For
example, the first step in determining the prototype should be to find a set of prototype
candidates. For this purpose, it is necessary to define the quality conditions that each
candidate must meet. The prototype can be selected randomly from the above set or
an additional measure can be defined that will allow the selection of the best candidate
for the prototype. Generally we expect that it would be the object that allows to obtain
the largest category core, with the smallest possible boundary.
Recognizing when the model is likely to fail is crucial for wide-scale adoption in sa-

fety critical domains such as robotics and control[37]. For example, in neural networks
there exist several approaches for estimating epistemic uncertainty which are pretty
complicated or time-consuming [1, 50]. An important feature of the proposed model is
the ability for the agent to detect categories that it is not able to model well. These
will be the categories in which the core and/or the boundary do not meet the spe-
cified qualitative conditions. We will call these category models ill-defined models.
Category models meeting the above conditions will be called well-defined models by
analogy. When the agent detects that the model of a certain category is ill-defined, it
can communicate this to the teacher. The agent will not, however, generate statements
about the membership of objects to the category with ill-defined model. In this way,
we should obtain greater rationality and certainty of the agent’s operation.
Algorithm 4.1 presents in general the above ideas about updating the agent’s co-

gnitive structures.

4.2 Agent system model

4.2.1 External world’s model

The agent’s perception enables the observation of atomic objects in some area of its
environment. These observations are grouped into episodes that are connected to rela-
tivized points in time (snapshots) t ∈ T = {t0, t1, t2, ...}. A linear order ¬TM is defined
above the set T .
By A we will denote a set of attributes representing the features of objects. Va will

be the set of values that the attribute a ∈ A can take. We assume that the sets A and
Va are constant for all episodes experienced by the agent. The domain of the attribute
depends on the use of the agent, hence it can include sets of values:

� binary – e.g. {0, 1}, {yes, no},

� nominal – e.g. {large,medium, small}, {red, green, blue, black},

� numeric – e.g. set of natural numbers, set of real numbers.
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Algorithm 4.1: A general outline of the strategy for updating of cognitive
model of category.
Input: cognitive model mc of the category c,

learning set consisting of observations related to c.
Output: updated cognitive model mc.

1 pre-process the learning experience;
2 determine a set Candidates consisting of chosen prototype candidates;
3 while there are still Candidates and a suitable prototype o⋆c has not been found
do

4 pick (and remove) an object o from Candidates;
5 evaluate Core and Boundary determined by o, basing on macrostructure;
6 calculate quality parameters related to Core and Boundary;
7 if Core and Boundary are acceptable then
8 select o as a prototype, assign o⋆c := o;
9 set the prototype o⋆c and radii τ

+
c , τ

−
c in the model mc;

10 the model mc is well-defined;

11 if no prototype has been found then
12 the model mc is ill-defined;

In this dissertation, we will focus on the first two of the above types, but it does not
limit the application of the presented model only to binary and nominal attributes.
The second perceptual ability of the agent is to receive labels assigned by the teacher

to objects in the environment. The set of labels L contains positive and negative labels
indicating categories. We will denote the labels symbolically as follows:

� is-c is a positive label indicating the category c, which means that the teacher
believes that the object belongs to the category c,

� not-c is a negative label indicating the category c, meaning that the teacher
believes the object does not belong to the category c.

Definition 4.1. The episode, i.e. the internal model of the state of the agent’s envi-
ronment, assigned by the agent to time point t is a tuple of the form Episode(t) =
⟨Xt, A, V, Lt, percept, label⟩, where

� Xt – a finite set of objects,

� A – a finite set of attributes,

� V =
⋃
a∈A
Va, Va – domain of attribute a,

� Lt – a finite set of labels,

� percept – a function representing observed values of attributes of objects, Xt ×
A −→ V , such that percept(x, a) ∈ Va for all x ∈ Xt and a ∈ A,

43



CHAPTER 4. MODEL OF THE CATEGORY LEARNING STRATEGY WITH A
PROTOTYPE

� label – a function representing the observed assignments of labels to objects,
Xt −→ Π(L), Π(L) is a power set of L.

The above definition is therefore an extension of the classic information system[64]
with a set of labels and the label function.
Each object in Xt receives an identifier that allows it to be associated with labels.

The identifier is also necessary to relate the statements generated by the agent to the
correct object. This problem is explained in more detail in chapter number 5, describing
the cognitive semantics of the agent. We do not require the agent to be able to associate
the same entity with the same object (and thus identifier) in different episodes. To
emphasize this, we will use unique identifier for each object in each episode.
The percept function is a formal representation of the agent’s perception of the

environment. It is a total function, so it is defined for all values of x and a.
The label function reflects the mechanism of assigning a label to an object. The set

of labels assigned to a given object may be empty, which means that the teacher has
not named the object in any way.

Definition 4.2. At time point tn ∈ T the state of empirical knowledge about the
external world is defined by a temporal collection of episodes given as follows:

Episodes(tn) = {Episode(ti) : ti ∈ T and ti ¬TM tn}.

Example 1. The table 4.1 shows an example of the agent’s experience collected in
two episodes, i.e. Episodes(t2) = {Episode(t1), Episode(t2)}. The set A consists of
three binary attributes, the meaning of which is as follows: a1 – having a beak or bill,
a2 – having wings, a3 – domesticated. In the first episode, the collection of objects
Xt1 = {x1,1, x1,2, x1,3}, while in the second Xt2 = {x2,1, x2,2}. In the first episode, the
set of labels Lt1 = {is-bird}, while in the second Lt2 = {not-bird, is-mammal}.

episode object a1 a2 a3 labels

Episode(t1)
x1,1 yes yes no is-bird
x1,2 yes yes yes is-bird
x1,3 yes yes yes is-bird

Episode(t2)
x2,1 yes yes no
x2,2 no no yes not-bird, is-mammal

Table 4.1: Two exemplary episodes.

The presented table corresponds to the situation when in the first episode the agent
observed three objects. All of them were marked by the teacher with a positive label
is-bird, expressing their belief that the objects x1,1, x1,2 and x1,3 fall into the category
bird. In the second episode, there are only two objects in agent’s range of perception.
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The agent does not track objects between episodes, so it is unknown whether they are
the same entities as in Episode(t1). The teacher marked the object x2,2 with two labels:
negative not-bird and positive is-mammal. This means that the teacher believes that
the object x2,2 does not fall into the category bird, but does belong to the category
mammal. There are no labels associated with the object x2,1.

4.2.2 Basic concepts and preprocessing of learning experience

The models of categories are not built on the basis of references to specific physical
objects, but on the basis of mental images representing possible combinations of the
values of attributes of the objects. For this reason, the image of the currently observed
object in the working memory must be related to mental space in embodied ontology.
Such a mental operation will be called preprocessing. For that purpose the universe of
mental representations is defined, which is a Cartesian product of all attributes domains
Va. It constitutes a domain over which categories models including their prototypes are
to be defined.

Definition 4.3. Universe of mental representations of distinguishable objects O is
defined as:

O = {o1, ..., oM} def=×
a∈A
Va.

Other symbols and notions that will be used:

� Π(O) – a power set of the universe O – it serves in strategies as a domain for sets
of prototype candidates,

� Π̂(O) – a set of all multisets defined over the universe O – its members serve as
a quantitative reflections of a cumulative experience related to a certain pheno-
menon (e.g., objects being confirmed as c),

� (o,+)c – a mental representation of a piece of a positive learning experience,
that is, of a situation in which an object from an external world which has been
perceived by the agent and reflected in its mental space as o, has been confirmed
as belonging to category c,

� (o,−)c – a mental representation of a piece of a negative learning experience,
that is, of a situation in which an object from an external world which has been
perceived by the agent and reflected in its mental space as o, has been rejected
from belonging to category c,

� Tc = {(o,+)c : o ∈ O} ∪ {(o,−)c : o ∈ O} – a universe of all possible outcomes of
a set of learning episodes,
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� Π̂(Tc) – a set of all multisets defined over Tc – a universe of multisets quantitati-
vely aggregating an overall learning experience related to concept c,

� Expc ∈ Π̂(Tc) – a multiset quantitatively aggregating an overall learning expe-
rience related to a concept c – it serves as the learning set as it constitutes an
input of a strategy for determining model of category c including its potential
prototype.

An abbreviated notational convention for multisets will be used, that is, for the
universe {a, b, c, d, e} the multiset {a, d, b, a, b, b} = {2a, 3b, 0c, 1d, 0e} = {2a, 3b, 1d},
therefore in forthcoming chapters multisets X ∈ Π̂(O) are denoted as:

X = {ko1o1, ko2o2, . . . , koMoM}, ko1 , . . . , koM ∈ N ∪ {0}

where particular koi denote multiplicities of respective objects belonging to X.

An analogous abbreviated representation is given for multisets I ∈ Π̂(Tc):

I ={k+o1(o1,+)
c, . . . , k+oM (oM ,+)

c, k−o1(o1,−)
c, . . . , k−oM (oM ,−)

c},
k+o1 , k

−
o1
, . . . , k+oM , k

−
oM
∈ N ∪ {0}

where particular k+oi (k
−
oi
, respectively) denote multiplicities of learning episodes in

which an object perceived as oi was confirmed (rejected) as belonging to category c. In
case of very large multisets, elements with multiplicity (k+oi or k

−
oi
) equal to 0 will be

ommited.

Because the cognitive models of the categories will be based on multisets Expc ∈
Π̂(Tc), the agent must preprocess data collected from the environment. As a result of
the above procedure, we obtain a set of Expc multisets, one for each model of category
c that is in the agent’s cognitive structures. The above categories can be given a priori
or added to cognitive structures as they are indicated by the teacher with a positive or
negative label.

Example 2. Continuing the example from the table 4.1, the following sets of labels
appeared in subsequent episodes: Lt1 = {is-bird} i Lt2 = {not-bird, is-mammal}. As
one can see, they concern two categories: bird and mammal. The domain of each of
the attributes ai ∈ A is also binary: {yes, no}. For this reason |O| = 23, and the space
of mental representations consists of the following objects:
o1 = [no, no, no] o2 = [no, no, yes] o3 = [no, yes, no] o4 = [no, yes, yes]
o5 = [yes, no, no] o6 = [yes, no, yes] o7 = [yes, yes, no] o8 = [yes, yes, yes].
The question at this point is how many of the episodes available to the agent

should enter its cognitive structures. It is easiest to assume that all available episodes
are reflected in them, but one can also limit their number, e.g. to n last episodes, which

46



4.2. AGENT SYSTEM MODEL

would result in the agent “forgetting” some information. Assuming that in this example
both episodes have been processed into the agent’s cognitive structures, we obtain the
following multisets:

Expbird = {0(o1,+)bird, 0(o2,+)bird, 0(o3,+)bird, 0(o4,+)bird,
0(o5,+)bird, 0(o6,+)bird, 1(o7,+)bird, 2(o8,+)bird,

0(o1,−)bird, 1(o2,−)bird, 0(o3,−)bird, 0(o4,−)bird,
0(o5,−)bird, 0(o6,−)bird, 0(o7,−)bird, 0(o8,−)bird}

Expmammal = {0(o1,+)mammal, 1(o2,+)mammal, 0(o3,+)mammal, 0(o4,+)mammal,
0(o5,+)mammal, 0(o6,+)mammal, 0(o7,+)mammal, 0(o8,+)mammal,

0(o1,−)mammal, 0(o2,−)mammal, 0(o3,−)mammal, 0(o4,−)mammal,
0(o5,−)mammal, 0(o6,−)mammal, 0(o7,−)mammal, 0(o8,−)mammal}

It should be emphasized here, that there is a difference between the objects from
the sets Xt and O. The former are representations of objects present in the agent’s
environment and its available perceptions. The latter are mental representations of all
objects that can be “imagined” by an agent. The difference between these sets and the
course of preprocessing are shown in the figure 4.2. It shows how objects xi,j observed
by agent in example 1 are related to objects ok in mental space.
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Figure 4.2: Preprocessing of two exemplary episodes.

The figure on the left shows objects from Episode(t1). The object x1,1 is observed
realization of mental object o7. The objects x1,2 and x1,3 are both observed realizations
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of one mental object o8 – the above objects have the same combination of values
of attributes. The agent differentiates objects x1,2 and x1,3 basing on their physical
location. Since objects x1,j are all marked with labels referring to category bird, they
are used to update mental structures of model of category bird – denoted mbird. A
set of all models mc will be denoted as M . The models in M can be given a priori or
constructed as needed, e.g. after first encounter of label describing new category.
The figure on the right shows objects from Episode(t2). The object x2,1 is observed

realization of mental object o7. It is not marked with any label by the teacher, so it
is not going to be used to modify structure of any category’s model. Still, it can be
preprocessed if other mental procedures are to be executed, like for example grounding
of statement regarding object x2,1. The object x2,2 is observed realization of mental
object o2. It is marked with two labels – referring to categories bird and mammal.
Thus, object x2,2 is used to update mental structures of models mbird and mmammal.
Let us note, that all models are constructed basing on the same universe of mental
representations of distinguishable objects O, but in each model this universe can be
structured differently. It is shown in the figure 4.2, as objects oi are placed differently
in models mbird and mmammal. The structure imposed on universe O will be described
in detail in the next chapters.
Note that in the agent’s cognitive structures there is no information on the basis

of which episodes and objects in the agent’s working memory the data contained in
the Expc multisets were obtained. This information is lost during preprocessing. For
example, the multiplicity of the element (o2,+)mammal in multiset Expmammal is equal
to 1 on the basis of data obtained about the object x2,2 in Episode(t2), but this fact
will not be stored in memory. The further stages of processing the agent’s learning
strategy will be the same, regardless of on which objects xi,j and in which episodes the
multiplicity of the element (o2,+)mammal was determined.
The multiset Expc can be obtained in two ways:

� calculated when necessary for a given category, based on the Episodes(t) base of
experience, and then deleted – as a result, the memory requirements are small
because we process a multiset for only one cognitive model as part of the process
related to a given category; however, it is more computationally demanding,

� calculated and stored for all models and updated after each episode – this reduces
the number of calculations but increases the agent’s memory requirements.

4.3 Cognitive model

The agent’s cognitive structures consist of cognitive models, with one cognitive model
corresponding to each category.
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Definition 4.4. Cognitive model mc of category (concept) c consists of:

� Expc – described above multiset quantitatively aggregating an overall learning
experience related to a concept c,

� prototype o⋆c ∈ O,

� threshold value (radius) τ+c separating the core of a category from the boundary
of category,

� threshold value (radius) τ−c separating the boundary of category from the outer
region of category.

Additionally, in order to be able to determine the cognitive model, it is necessary
to define:

� a macrostructure being a function f : O ×O → R+ ∪ {0},

� a mechanism for determining the set of candidates for a prototype, which is a
function extractCandidates : Π̂(O)→ Π(O).

Macrostructure f allows for a computational skill to apply a particular measu-
re of distance or similarity (proximity) to evaluate and numerically express the level
of mentally experienced difference of mental representations of two objects. Multiple
computational models to measure distance and similarity of ontological structures we-
re developed which seem appropriate to support the autonomous and encapsulated
development of categories with prototypes by artificial agents, e.g. [47]. In practical
contexts their values are usually computed basing on internal organization of objects
being compared and the internal organization is sometimes called the microstructure
of cognitive universe.
The ability to compare mental representations of objects and numerically express

the result of such comparison has a direct application to multiple steps of the strategy,
e.g. while the intensity of relationship of objects with a potential or actual prototype
of a category is determined. It can also be additionally emphasized that the nature of
comparison cognitive tool used in a specific practical context (i.e. distance vs. similari-
ty) has a significant impact on the content of decisions controlling the flow of strategy
within a specific implementation of the proposed strategy. However, it does not change
its overall logic.
The second function extractCandidates allows for a computational skill to deter-

mine mental representations of objects which can be treated (perceived) by artificial
cognitive agents as representations of mental centers for collections of objects. For each
X ∈ Π̂(O) object o ∈ extractCandidates(X) if it meets the definition of a central ob-
ject, called centroid, formulated for a specific practical context. The nature of central

49



CHAPTER 4. MODEL OF THE CATEGORY LEARNING STRATEGY WITH A
PROTOTYPE

objects can vary from one application to another. However, in the majority of practi-
cal situations they are required to fulfill a particular optimization criterium, formally
and pragmatically consistent with the nature of cognitive universe O and the internal
nature of its objects.

It is also possible to impose additional requirement on central objects, namely the
following inclusion extractCandidates(X) ⊆ X, that is the expectation that central
objects are medoids of the set X, rather then its centroids, see [91]. Again, it is worth
mentioning that the issue just raised is not purely theoretical, just as it is not irrelevant
to particular contexts whether the prototype for a collection of observed objects is to
never be observed (i.e. centroid), and not one of the objects observed at least once (i.e.
medoid). For example, in chapter 7 the model is tested on a few datasets. One of them is
based on 1984 United States congressional voting database, that contains democrat and
republican congressmen votes on various topics. From that data it is possible to derive
models of democrat category and republican category. In these models it is possible
to find the prototypical democrat and republican congressmen. They don’t have to
represent actual people, as it is not important for political analysis, so prototypes
can be centroids. On the other hand, in chapter 7 there is also a dataset containing
information about patients with different types of tumors. It seems that in that case,
a prototypical patient that has e.g. lung tumor should represent the actual person, as
there might be connections between attribute values that are important for medical
analysis.

In the above model, the category has an internal prototype structure and allows
obtaining effects corresponding to the theses of the standard version of the prototype
semantics, presented in the chapter 3.2, i.e. that the degree of representativeness of a
given instance corresponds to the degree of its belonging to the category, elements of a
given category do not have to have properties common to all elements, the boundaries
of the category are fuzzy, and the belonging to a given category is based on the degree
of similarity to the prototype. The connections to the theses of the standard version of
the prototype semantics is analyzed in more detail in the chapter 4.5.

If we take the distance between objects as the macrostructure f , then for the object
o the degree of membership and representativeness for a given category c corresponds
(inversely) to the value of the measure of distance from the prototype, i.e. f(o, o⋆c).
Thanks to this, elements of a given category do not have to have features (values of
attributes) common to all elements – they are connected by similarity to the prototype
(the greater the distance, the smaller the similarity). As in the examples from the
chapter 3.2, category elements (objects in mental space) can be ordered according to
the measure of distance from the prototype. An example of a situation is shown in the
figure 4.3, which corresponds to the figure 3.2, showing the relationship between the
elements of the bird category.
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Figure 4.3: Exemplary cognitive model of category bird with prototype.

Below the figure there are examples of the measure of the distance from the pro-
totype o⋆bird. As one can see, we expect that the objects with the most features in
common with the prototype, also have the smallest distance value. The o1 object even
has a value of 0, same as o⋆bird, because it has exactly the same attribute values as
the prototype. As it was already mentioned, such an object does not always have to
be present. The ordering of the objects according to the increasing distance from the
prototype (i.e. decreasing similarity) will look like this: o1, o3, o5, {o2, o4}.

4.4 Definition of the strategy

4.4.1 Algorithm

The algorithm 4.2 presents in more detail the strategy of learning of the category, or
more precisely, of updating the cognitive structures of the agent. Its notation assumes
that the macrostructure is some measure of distance. If a measure of similarity were
to be used, the logic of some conditions and operations would have to be reversed.

At the input of the algorithm there is a set of episodes, as already mentioned it
may cover all or part of the agent’s experiences. The algorithm works on the cognitive
model mc representing a given category, updating it. The mc model in the algorithm
input may be empty. The algorithm should be executed for a given category when new
information concerning this category becomes available. The result of the algorithm is
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Algorithm 4.2: Prototype based strategy of learning categories.
Input: cognitive model mc of the category c,

set of episodes Episodes(t).
Output: updated cognitive model mc.

1 Expc := Preprocess(Episodes(t));
2 initialize a chosen prototype as o⋆c := NULL;
3 E+ := E+c (Expc);
4 E− := E−c (Expc);
5 compute the set Candidates := extractCandidates(Ê+c (Expc));
6 while Candidates ̸= ∅ ∧ o⋆c = NULL do
7 choose a prototype candidate o ∈ Candidates;
8 Candidates := Candidates \ {o};
9 compute distance values f(o+, o) for o+ ∈ E+;
10 compute distance values f(o−, o) for o− ∈ E−;
11 f−min(o) := min

o−∈E−
{f(o−, o)};

12 f+max(o) := max
o+∈E+

{f(o+, o)};
13 F+ := {f(o+, o) : o+ ∈ E+ ∧ f(o+, o) < f−min(o)};

14 compute a radius of the core τ+c :=

max{f ∈ F+} F+ ̸= ∅
NULL F+ = ∅

;

15 F− := {f(o−, o) : o− ∈ E− ∧ f(o−, o) > f+max(o)};

16 compute a radius of the boundary τ−c :=

min{f ∈ F−} F− ̸= ∅
NULL F− = ∅

;

// Compute a core of potential c.
17 if τ+c ̸= NULL then
18 Corec(o) := {o+ : o+ ∈ E+ ∧ f(o+, o) ¬ τ+c }
19 else
20 Corec(o) := ∅;

// Compute an outer of potential c.
21 if τ−c ̸= NULL then
22 Outerc(o) := {o− : o− ∈ E− ∧ f(o−, o)  τ−c }
23 else
24 Outerc(o) := ∅;

// Compute a boundary of potential c.
25 Boundaryc(o) := (E+ ∪ E−) \ (Corec(o) ∪Outerc(o));
26 if |Corec(o)|  |Boundaryc(o) ∩ E+| then
27 assign o⋆c := o;
28 add a category c with a prototype o⋆c and τ

+
c , τ

−
c to the ontological

knowledge base of the agent;

29 if o⋆c = NULL then
30 the model mc is ill-defined and has not been learned;
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an updated model mc containing the prototype o⋆c , radius τ
+
c and radius τ

−
c , as long as

the category is well defined. If the category is ill-defined, the above parameters cannot
be determined.
In the first step of the algorithm, the set Expc is determined based on the set of

episodes, as described in the chapter 4.2.2. Next steps (lines 2-4) define a variable
o⋆c used to evaluate a STOP condition of the algorithm, determine sets of objects
confirmed as c (the set E+c (Expc)) and rejected as c (the set E

−
c (Expc)) within the

learning experience.

Definition 4.5. E+c (Expc) = {o : o ∈ O ∧ k+o > 0} where Expc ∈ Π̂(Tc).
It is a set of all mental representations of objects at least once confirmed as c in

the learning experience Expc.

Definition 4.6. E−c (Expc) = {o : o ∈ O ∧ k−o > 0} where Expc ∈ Π̂(Tc).
It is a set of all mental representations of objects at least once rejected as c in the

learning experience Expc.

Definition 4.7. Ê+c (Expc) = {k+o o : k+o (o,+)c ∈ Expc} where Expc ∈ Π̂(Tc).
It is a multiset constituting a quantitative reflection of a cumulative experience

gathered in Expc and related to objects being confirmed as c.

A testing set Candidates (line 5) is initialized using a procedure extractCandidates
(Ê+c (Expc)) which determines hypothetical candidates for a prototype. This step in-
directly evaluates a multiset quantifying an overall learning experience (a multiset
Ê+c (Expc) or possibly whole Expc multiset). Its result depends on chosen macrostruc-
ture and the conditions imposed on candidates, for example that they have to be
centroids or medoids. Specific examples of implementations of this procedure are de-
scribed in chapter 6. This procedure could involve elaborate analysis but it is advised
to keep it less complicated and not too computationally intensive.
The whole procedure runs until it succeeds, that is, a category with a prototype

o⋆c is formed, or until it fails by running out of candidates to evaluate. The presented
procedure is non-deterministic in the sense that it starts with an arbitrary object o
from the set of candidates (line 7). The non-determinity could be partially reduced by
ordering the members of Candidates in a decreasing order according to the number of
times they have been confirmed as c, and further, by always picking the most promising
(in terms of the mentioned number) candidate from the set.
For a chosen o the procedure evaluates a distribution of objects (from the learning

experience) within an agent’s mental space in relation to o. It does this by directly
calculating values of distance between o and particular objects from E+ and E−. It
evaluates, for candidate o, a value f−min(o) (line 11) which becomes an upper limit which
cannot be crossed by a chosen value of a radius of the Core. This limit guarantees that
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the Core contains only confirmed cases. A particular value of core’s radius chosen in
the algorithm is set to a distance to the farthest (from o) positive observation from
E+ but still closer than f−min(o) (lines 13-14). It could be modified according to other
commonsense justifications, e.g. to set the radius of the core to reach until the closest
negative example itself. In that case the radius would reach as far as possible until a
counter-example is found.
Similarly, it evaluates, for candidate o, a value f+max(o) (also line 12) which becomes

a lower limit which cannot be crossed by a chosen value of a radius of the Boundary.
This limit guarantees that the Outer contains only rejected cases. A particular value
of boundary’s radius chosen in the algorithm is set to a distance to the closest (from o)
negative observation from E− but still further than f+max(o) (lines 15-16).
Objects from the learning experience are further divided into Corec(o), Outerc(o),

and Boundaryc(o) (lines 17-25) in order to analyze their properties and decide whether
o becomes a successful candidate for the prototype. These steps can be seen as a pre-
paration for the evaluation of quality parameters (line 6 of the meta-strategy presented
in algorithm 4.1).
For Corec(o), Outerc(o) and Boundaryc(o) there is an analogy in rough set the-

ory[63], where the category core corresponds to the lower approximation of the set, the
category boundary corresponds to the set boundary, and the outer region of the cate-
gory corresponds to the complement of the upper approximation of the set. However,
the concepts in rough set theory are defined based on the relation of indiscernibility[85]
or dominance[21, 86, 101], while here we define them in relation to the macrostructure
expressing distance or similarity to the prototype.
The evaluation condition is explicitly checked in the line 26. If the condition is

satisfied, the candidate o gets accepted as a prototype (line 27) and together with
resulting radius of the core (τ+c ) and radius of the boundary (τ

−
c ) it is added to the

ontological knowledge base of the agent (line 28). If that happens, the procedure ends
successfully since o⋆c has been chosen. Otherwise, if it fails for all candidates, it is
considered that category can not be learned in this model of category (lines 29-30).
All objects o for which f(o, o⋆c) ¬ τ+c belong to the core of the category. All objects

o for which f(o, o⋆c)  τ−c belong to the outer region of the category. All objects o
for which τ+c < f(o, o

⋆
c) < τ

−
c belong to the boundary of the category. Calculation

of the τ+c and τ
−
c threshold values has the advantage that it allows to compare the

distance of objects from the prototype with the above radii, instead of with other
objects belonging to the category model. This reduces the computational complexity
and enables the generalization of the accumulated knowledge, because on the basis of
the above conditions also objects not existing in the model (e.g. not labeled with a label
indicating a given category) can be assigned to one of the three areas of the model.
Still, the condition from line 26 calls for at least some explanation as it might look
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as if chosen rather arbitrarily. The acceptance condition for a well-formed category is,
in general, very domain specific. The condition listed in the algorithm calls for at least
half of the objects confirmed at least once as c in the learning experience, to be located
within Corec(o). It is a very strict condition which would, for example, most probably
fail in domains (or societies) in which the nature of concepts’ meaning is more fuzzy.
Still, it seems to be a reasonable baseline to demand for the Corec(o) to contain a great
(here: at least a half) part of the objects over confirmed by the society as c.

Various meta-modifications can be analyzed and applied to the process of the Core
evaluation:

� in order to avoid meaningless (almost empty) cores, a core generated by the pro-
totype candidate needs to contain at least a certain number of positive examples,

� in order to strengthen the influence of objects appearing more often in the envi-
ronment, an overall cardinality of confirming/rejecting learning episodes could
be reflected when evaluating core’s support (e.g. imagine a case where a set of
3 commonly appearing objects is consistently confirmed as c while there are 10
other rarely appearing objects getting inconsistent labeling – it could be, in parti-
cular, related to a typical better alignment of the language in an area of frequent
or better known items),

� in order to potentially reduce a complexity of the solution, the first prototype
candidate generating a ‘good’ enough core is accepted (clearly visible in the while
condition of the algorithm 4.1); it is in particular interesting how far is an accepted
candidate from the best candidate in relation to a chosen core evaluation strategy,

� in order to deal with inconsistencies in a learning population, a certain number of
negative examples might be allowed into the core as long as they are overwhelmed
by a large number of positive examples; in such a case a different method of radii
evaluation would be needed,

� in order to better reflect a distribution of the learning experience, values of radii
τ+c , τ

−
c might be readjusted.

More excessive modifications to the overall strategy could involve:

� a density-based analysis of a category usage and a generation of a set of sub-
prototypes for respective dense sub-clusters of objects in the conceptual space;
in the case of more complex categories an application of single-sphere approach
might not be enough; still, although it is feasible in general, in the dissertation
such an approach is avoided in order to make the process computationally feasible
in runtime,
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� a more complex underlying structure of categories in the sense that instead of
relying just on a function for a comparison of objects, the categories could be deri-
ved from an internal structure of the object themselves; it surely is an interesting
direction for further studies.

The above modifications should keep the condition (4.1.1). The proof below shows
that it is true for the algorithm 4.2.

Theorem 4.1. If τ+c ̸= NULL and τ−c ̸= NULL, the thresholds τ+c and τ−c calculated
by the algorithm 4.2 satisfy the condition

τ+c < τ
−
c .

Proof. According to line 14 of the algorithm

τ+c = max{f ∈ F+} if F+ ̸= ∅

and according to line 13

F+ := {f(o+, o) : o+ ∈ E+ ∧ f(o+, o) < f−min(o)}.

From the above it is known that the value of τ+c is equal to the distance of some object
o+ ∈ E+ from the selected object o ∈ O. The above value must be smaller than the
distance of any object o− ∈ E− from the selected object o ∈ O, because according to
line 11

f−min(o) := min
o−∈E−

{f(o−, o)}.

In turn, the value of τ−c is equal to the distance of some object o
− ∈ E− from the

selected object o ∈ O, because according to line 16

τ−c = min{f ∈ F−} if F− ̸= ∅

and according to line 15

F− := {f(o−, o) : o− ∈ E− ∧ f(o−, o) > f+max(o)}.

It follows from the above that

τ+c < τ
−
c .

■
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4.4.2 Computational example

Let the cognitive universe O consist of 16 objects, namely O = {o1, ..., o16}. The fol-
lowing learning multiset be given1: Expc = {1(o1,+)c, 1(o3,+)c, 2(o4,+)c, 2(o6,+)c,
1(o6,−)c, 2(o10,−)c, 1(o13,−)c, 3(o14,−)c} and the macrostructure f is a distance func-
tion.
Execution of the strategy for the given input and the assumed macrostructure leads

to the following results.

Initial computations

� E+ = E+c (Expc) = {o1, o3, o4, o6},

� E− = E−c (Expc) = {o6, o10, o13, o14},

� Ê+c (Expc) = {1o1, 0o2, 1o3, 2o4, 0o5, 2o6, 0o7, 0o8, 0o9, 0o10, 0o11, 0o12, 0o13, 0o14,
0o15, 0o16}.

The first step is to calculate the set of candidates for prototype, basing on Ê+c (Expc)
and macrostructure. Let us assume, that procedure extractCandidates returns the set
Candidates = {o2, o4}. Let us note, that object o2 did not appear in agent’s experience
(multiplicity of o2 in Ê+c (Expc) is equal to zero), so it is imaginary object from agent’s
point of view. Such an object would be rejected from Candidates if we would impose
that all candidates have to be medoids.

Iteration 1 Let o2 ∈ Candidates be chosen as a candidate prototype o, i.e. further
o = o2 and Candidates = {o4}. Next, distance values f(o2, o+) for all o+ ∈ E+ and
f(o2, o−) for all o− ∈ E− are computed. Let us assume,that their values are as follows:

� f(o2, o1) = 1, f(o2, o3) = 2, f(o2, o4) = 1, f(o2, o6) = 1,

� f(o2, o6) = 1, f(o2, o10) = 1, f(o2, o13) = 3, f(o2, o14) = 2.

On this basis, we determine in turn f−min(o2) = 1, f
+
max(o2) = 2, F

+ = ∅, τ+c =
NULL, F− = {3}, and τ−c = 3, which leads to:

� Corec(o2) = ∅,

� Outerc(o2) = {o13},

� Boundaryc(o2) = {o1, o3, o4, o6, o10, o14}.

The results achieved do not meet the condition for category c to be learned because
|Corec(o2)| = 0 < 4 = |Boundaryc(o2) ∩ E+|. Since the set Candidates is not empty,
the next iteration is possible.
1elements with multiplicity ko = 0 are ommited
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Iteration 2 Let the only object o4 ∈ Candidates be chosen as a candidate prototy-
pe o, i.e. further o = o4 and Candidates = ∅. Again, distance values f(o4, o+) for all
o+ ∈ E+ and f(o4, o−) for all o− ∈ E− are computed. Let us assume,that their values
are as follows:

� f(o4, o1) = 2, f(o4, o3) = 1, f(o4, o4) = 0, f(o4, o6) = 2,

� f(o4, o6) = 2, f(o4, o10) = 2, f(o4, o13) = 4, f(o4, o14) = 3.

On this basis, we determine in turn f−min(o4) = 2, f
+
max(o4) = 2, F

+ = {0, 1}, τ+c = 1,
F− = {3, 4}, and τ−c = 3, which leads to:

� Corec(o4) = {o3, o4},

� Outerc(o4) = {o13, o14},

� Boundaryc(o4) = {o1, o6, o10}.

In this case, the results achieved meet the condition for category c to be learned
because |Corec(o2)| = 2  2 = |Boundaryc(o2) ∩ E+|. In consequence, the object o4
is assigned as the prototype o⋆c of the properly established category c with τ

+
c and τ

−
c

as its radii. The model of category c is well-defined and can be integrated with the
ontological knowledge base.

4.4.3 Scheme for evaluation of computational complexity of

strategy

Theorem 4.2. The computational complexity of the algorithm 4.2 is of the order:

O(
∑
t

|Xt|+ |Expc|+ e+ C · p · (|E+|+ |E−|))

where

� Xt – a set of objects in Episode(t),

� e – computational complexity of the extractCandidates function,

� C = |Candidates|,

� p – computational complexity of the expression f(oi, oj).

Proof. The first step of the algorithm is preprocessing the data collected by the agent in
subsequent episodes to the Expc multiset (line 1). The computational complexity of this
step is proportional to the number of objects observed in all the episodes considered.
If we denote the set of objects in the Episode(t) by Xt, the computational complexity
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will be of the order O(
∑
t

|Xt|). The next steps of the algorithm (lines 3 and 4) require

inspection of the Expc multiset in order to find the sets E+ and E−. The size of the
Expc multiset is |Expc| = 2|O|. In turn, the size of the set O grows exponentially
with the size of the set of attributes, because |O| =

∏
a∈A
|Va|. In a pessimistic case,

finding the sets E+ and E− can therefore have computational and memory complexity
exponentially dependent on |A|. In practice, however, we expect that a very small
fraction of the elements belonging to Expc have the multiplicity ko > 0. Hence, it is
convenient to store in the memory only elements of Expc for which the multiplicity
ko > 0. This should significantly reduce the memory requirements and the number of
operations needed to review the Expc multiset.
On line 5, the extractCandidates function is executed. Its complexity can be ve-

ry different depending on the adopted macrostructure and field of application. In the
chapter 6 we will analyze the complexity of the extractCandidates function for the va-
rious implementation models. Here it is simply denoted by e and treated as a parameter
of the formula for the computational complexity of the whole algorithm.
The number of iterations of the while loop (line 6) depends on the number of

candidates. We will abbreviate it with C = |Candidates|. In the worst case, it will be
equal to the size of the O set, but in practice the extractCandidates function should
return a much smaller set of candidates.
Inside the loop, in line 9 the macrostructure value f(o, o+) needs to be calculated

for all o+ ∈ E+. Again, the calculation of f(o, o+) strongly depends on the adopted ma-
crostructure and the field of application. As for the extractCandidates function, in the
chapter 6 we will analyze the computational complexity of the macrostructure calcula-
tion for various implementation models. Denoting by p the computational complexity
of the expression f(oi, oj), to complete the instruction from line 9, p · |E+| operations
need to be executed. Similarly, it takes p · |E−| operations to execute instruction from
line 10.
The complexity of the other instructions inside the loop (lines 11 to 28) is line-

arly dependent on the size of the sets E+ and E−. In summary, the computational
complexity of the while loop is of the order O(C · p · (|E+|+ |E−|)).
The final complexity of the entire algorithm results from the summation of the

above estimates. ■

The theorem 4.2 shows that the computational complexity of the algorithm 4.2 is
polynomial with respect to the number of objects observed by the agent in all episodes∑
t

|Xt| and the number of attributes describing them |A|, when the following conditions

are met:

� the size of the Candidates set does not grow exponentially with the number of
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attributes,

� the computational complexity of the expression f(oi, oj) does not increase expo-
nentially with the number of attributes,

� the computational complexity of the extractCandidates function does not incre-
ase exponentially with the number of objects or attributes,

� the size of the practically used part of the Expc multiset (i.e. elements with
the multiplicity ko > 0) does not increase exponentially with the number of
attributes.

The above conditions determine the area of practical application of this model.

4.5 Connection to psycholinguistic theories

The six basic theses (T1-T6) of the standard version of the prototype semantics were
introduced in chapter 3.2. The strategy and cognitive model described in this chapter
are concordant with above theses, which is shown in detail below.

ad T1. The category has an internal prototype structure.

ad T2. The degree of representativeness of a given item needs to correspond to the
degree of its membership to a category. In this model, belonging to a category
is determined, among other things, on the basis of the distance from the proto-
type. The more representative elements are those closer to the prototype, and
they are more likely to be included in the category, including its core.

ad T3. The elements of a given category do not have to possess properties common
to all elements. In this model, category elements are connected to the prototy-
pe. The model can be extended in the future to include connections between
elements.

ad T4. The boundaries of categories or concepts ought to be fuzzy. In this model, the
category boundary contains elements that may or may not belong to a category.

ad T5. The belonging to a given category needs to be based on the degree of similarity
to the prototype. In this work, the measures of distance from the prototype are
considered, due to their easier implementation. However, distance can simply
be thought of as the inverse measure of similarity, and so they can be used
interchangeably.

ad T6. The belonging to a category should not be determined in an analytical manner,
but in a holistic manner. In this model one does not analyze sets of necessary
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and sufficient conditions for the attributes of objects, like in classical definitions
of categories. Instead, a more holistic measure of distance to the prototype is
computed.

The numerical example described below corresponds to the example of category
structure from psycholinguistic research, already shown in the figure 3.2. Thus, it can
be seen that the model presented in this work enables the study of structures postulated
in psycholinguistic research.
The table 4.2 shows an example environment experienced by the agent. For sim-

plicity, data for one episode are shown. The data in the table for x1,1, ..., x1,5 objects
correspond to the dependencies shown in the figure 3.2. The whole table can therefore
be interpreted in such a way that the attributes a1, ..., a7 correspond to the features of
different species of birds (1 means feature presence, 0 means no feature), and objects
from x1,1 to x1,5 represent one individual from different species of birds.

episode object a1 a2 a3 a4 a5 a6 a7 labels

Episode(t1)

x1,1 1 1 1 1 1 1 1 is-bird
x1,2 0 0 1 0 1 1 1 is-bird
x1,3 0 1 1 1 1 1 1 is-bird
x1,4 0 0 0 1 1 1 1 is-bird
x1,5 0 1 1 1 0 1 1 is-bird
x1,6 0 0 1 1 0 1 1 not-bird
x1,7 0 0 0 0 1 1 1 not-bird
x1,8 0 0 0 0 0 1 1 not-bird

Table 4.2: Episode for psycholinguistic example.

For the above data, the execution of the algorithm 4.2 will be shown.
The universe O is a set of binary vectors of length n = 7, thus O = {o1, ..., o128}.

The multiset Expbird aggregating knowledge from all three episodes is as follows2:
Expbird = {1(o16,+)bird, 1(o24,+)bird, 1(o60,+)bird, 1(o64,+)bird, 1(o128,+)bird, 1(o4,−)bird,

1(o8,−)bird, 1(o28,−)bird}
where o4 = [0000011], o8 = [0000111], o16 = [0001111], o24 = [0010111], o28 =

[0011011], o60 = [0111011], o64 = [0111111], o128 = [1111111].
For the above data:

� E+ = E+bird(Expbird) = {o16, o24, o60, o64, o128},

� E− = E−bird(Expbird) = {o4, o8, o28}.

Suppose the extractCandidates procedure has determined a one-element set of
candidates Candidates = {o128}, and the object distances from the candidate are as
follows:
2the elements for which koi = 0 are omitted
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f(o4, o128) = 5, f(o8, o128) = 4, f(o16, o128) = 3, f(o24, o128) = 3,
f(o28, o128) = 3, f(o60, o128) = 2, f(o64, o128) = 1, f(o128, o128) = 0.
The above data can be presented graphically as shown in the figure 4.4. The situ-

ation shown in it is an extension of the case from the figure 4.3. Objects that belong
to the set E+, are marked in the figure with the symbol ⊕, and those belonging to the
set E− with the symbol ⊖. In square brackets, the distances of the objects from the
candidate o128 are given.

o   [0]128

a5

a6 a7

a4a3

a1

a2

o  [3]24 o  [1]64 o  [2]60

o  [3]16

o  [3]28

o [4]8

o [5]4

Figure 4.4: Exemplary cognitive model mbird.

On this basis, we determine in turn f−min(o128) = 3, f
+
max(o128) = 3, F

+ = {2, 1, 0},
τ+bird = 2, F

− = {5, 4}, and τ−bird = 4, which leads to:

� Corebird(o128) = {o60, o64, o128},

� Outerbird(o128) = {o4, o8},

� Boundarybird(o128) = {o16, o24, o28}.

In this case, the results achieved meet the condition for category bird to be learned
because |Corebird(o128)| = 3  2 = |Boundarybird(o128) ∩ E+|. In consequence, the
object o128 is assigned as the prototype o⋆bird of the properly established category bird
with τ+bird and τ

−
bird as its radii. The model of category bird is well-defined and can be

integrated with the ontological knowledge base.
The above sets and threshold values can be presented graphically as shown in the

figure 4.5. The object’s distance from the prototype in the drawing plane corresponds
to the distance f from the prototype. The different directions of objects in relation to
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the prototype symbolize different values of the object’s attributes. It should be empha-
sized, however, that the figure does not show the two-dimensional space of numerical
attributes, but it is an attempt to show the multidimensional space of binary attribu-
tes, taking into account an additional dimension – the distance from the prototype.
The figure cannot therefore be interpreted directly.

o   [0]128

o  [3]24
o  [1]64

core

boundary

outer

o  [2]60

o  [3]16

o  [3]28

o [4]8
o [5]4

τbird
+

τbird
-

Figure 4.5: Model mbird divided into three regions.

As in psycholinguistic experiments, we can find the best representative of the bird
category – it is the object most similar (closest) to the prototype. In this case, it is
o128, which just happens to be the prototype. We can also rank the elements belonging
to the category model according to the degree of their representativeness/belonging,
they are sequentially: o128, o64, o60, {o16, o24, o28}, o8 and o4.
It is true that the information about the association of objects oi from the mental

space with objects xij from the working memory of the agent is lost during preproces-
sing, but we can still arrange them similarly. Thus, the ranking of the objects accor-
ding to their degree of representativeness/belonging will be as follows: x1,1, x1,3, x1,5,
{x1,2, x1,4, x1,6}, x1,7 and x1,8.

4.6 Ill-defined model of category

If none of the candidates meet the acceptance condition, the agent is unable to create a
properly defined category model (learn the category). Such a model of category is called
the ill-defined model. This situation can be obtained in the example from the previous
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chapter, if, for example, we remove the observations of objects x1,3 and x1,5 from the
agent’s experience. Then the multiplicities in the multi-set Expbird will change3:
Expbird = {1(o16,+)bird, 1(o24,+)bird, 1(o128,+)bird, 1(o4,−)bird, 1(o8,−)bird, 1(o28,−)bird}
For the above data:

� E+ = E+bird(Expbird) = {o16, o24, o128},

� E− = E−bird(Expbird) = {o4, o8, o28}.

Assuming again, that the only candidate for a prototype is o128, we determine
f−min(o128) = 3, f

+
max(o128) = 3, F

+ = {0}, τ+bird = 0, F− = {5, 4}, and τ−bird = 4, which
leads to:

� Corebird(o128) = {o128},

� Outerbird(o128) = {o4, o8},

� Boundarybird(o128) = {o16, o24, o28}.

The acceptance condition will not be met because

|Corebird(o128)| = 1 < 2 = |Boundarybird(o128) ∩ E+|.

This means that the quality of the knowledge obtained about the category c is too low
for the agent to use its model. The figure 4.6 graphically illustrates this situation.

o   [0]128

o  [3]24

o  [3]16

o  [3]28

o [4]8
o [5]4

Figure 4.6: Ill-defined model of category.

3elements for which koi = 0 are omitted
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Chapter 5

Cognitive semantics of atomic
statements

5.1 Language of modal categorization

In this chapter, we will consider the part of cognitive semantics, that deals with state-
ments concerning the membership of currently observed (in the current episode) objects
to categories known to the agent.
The basic statements about the membership of the object x to the category c are

called atomic class-membership statements:

� ”Object x belongs to category c.”

� ”Object x does not belong to category c.”

The form of atomic statements suggests that they represent objective knowledge
independent of the subject expressing them. This is an approach often taken in clas-
sical semantics – assuming the existence of certain idealized categories with which the
objects of the real world can be matched in an unambiguous and objective manner. In
this dissertation, the approach is adopted in which generated statements must relate
to the knowledge of the subject expressing them. Therefore, we will take into acco-
unt epistemic modalities, described in more detail in chapter 3.3. For that reason, we
extend atomic statements with (epistemic) modal operators, thus obtaining modal
class-membership statements expressing the belief of the subject (agent) about
the truthfulness of the information transmitted:

� knowledge: ”I know that ” + [atomic statement],

� belief: ”I believe that ” + [atomic statement],

� possibility: ”I find it possible that ” + [atomic statement].
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The use of the knowledge modal operator means that the agent is sure about the
belonging (or not) of the object x to the category c. This certainty comes from the
agent’s experience, and so all knowledge accumulated by the agent must support this
belief. In other words, the agent could not experience a situation that would contradict
this belief, and is also unable to “imagine” such a situation. By imagining a situation,
we mean the generation, within the agent’s cognitive processes, of a set of attribute
values that never appeared in the reality experienced by the agent. We could write the
statements with the modal knowledge operator in a more elaborate form, emphasizing
their epistemicity:

� ”According to all my collected experience, I am certain that object x belongs
to category c.”

� ”According to all my collected experience, I am certain that object x does not
belong to category c.”

The use of the belief modal operator means that the agent is not sure about the
belonging (or not) of the object x to the category c, but it considers the appropriate
state of affairs to be most likely. Thus, the agent may have experienced (probably few)
situations that would contradict this belief, or at least is able to “imagine” such a
situation. Statements with the modal belief operator in a more extensive form would
look like this:

� ”According to all my collected experience, I believe that object x belongs to
category c.”

� ”According to allmy collected experience, I believe that object x does not belong
to category c.”

The use of the possibility modal operator means that the agent is not sure about
the belonging (or not) of the object x to the category c and that the degree of this
uncertainty is quite high. So, the agent probably has experienced situations that would
contradict this belief or is able to easily ”imagine” such a situation. Statements with
the modal possibility operator in a more extensive form would look like this:

� ”According to allmy collected experience, I find it possible that object x belongs
to category c.”

� ”According to all my collected experience, I find it possible that object x does
not belong to category c.”

Keeping in mind the extended meaning of the above statements, they are presented
below in a more formalized way, using the K modal categorization language.
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Definition 5.1. The alphabet of the modal categorization language consists of the
following elements:

� symbols {xt,1, xt,2, ...} ∈ Xt representing objects in the agent’s working memory,
unequivocally pointing to the entities in the environment of the agent,

� set of category names C; the names are string literals e.g. bird, robin,

� symbol ∈ for the binary relation specified on the set Xt × C,

� symbol /∈ for the binary relation specified on the set Xt × C,

� symbols Pos, Bel, Know for unary modal operators of possibility, belief and
knowledge,

� auxiliary symbols ‘(‘ and ‘)’.

To define the modal categorization language K, let’s first define a set of non-modal
atomic formulas KN .

Definition 5.2. The syntactic structure of non-modal atomic formulas belonging to
the KN language is given as follows:

� each string of the form “x ∈ c” where x ∈ Xt and c ∈ C, is a valid non-modal
atomic language KN formula,

� each string of the form “x /∈ c” where x ∈ Xt and c ∈ C, is a valid non-modal
atomic language KN formula.

After applying modal operators of possibility, belief and knowledge to non-modal
atomic formulas, we obtain modal atomic formulas that make up the K language.

Definition 5.3. The semantic modal categorization language K is given as follows:

K = {Know(ϕ) : ϕ ∈ KN} ∪ {Bel(ϕ) : ϕ ∈ KN} ∪ {Pos(ϕ) : ϕ ∈ KN}.

The intuitive semantics of non-modal and modal atomic formulas is presented in
the tables below.

formula intuitive meaning
x ∈ c Object x belongs to category c.
x /∈ c Object x does not belong to category c.

Table 5.1: Intuitive semantics of non-modal atomic formulas.
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formula intuitive meaning
Know(x ∈ c) I know that object x belongs to category c.
Know(x /∈ c) I know that object x does not belong to category c.
Bel(x ∈ c) I believe that object x belongs to category c.
Bel(x /∈ c) I believe that object x does not belong to category c.
Pos(x ∈ c) I find it possible that object x belongs to category c.
Pos(x /∈ c) I find it possible that object x does not belong to category c.

Table 5.2: Intuitive semantics of modal atomic formulas.

5.2 Complete representation of object

Let us recall that the agent’s actions in each episode can be summarized as follows:

1. The agent determines what objects are in its environment and what are the values
of the attributes that describe them.

2. The agent determines what labels given by the teacher are attached to the objects.

3. For each object-label association, the agent updates the cognitive structure that
describes the category that the label points to.

4. The agent generates grounded statements about the categorization of objects for
selected objects in the agent’s environment.

In this subchapter the fourth point is described in detail, i.e. the grounding of the
statement by the agent, in case when the values of all the attributes of the considered
object are known, i.e. for the selected object x is met (∀a ∈ A)(percept(x, a) ∈ Va).
Statements will be generated for the cognitive state of SP (t) at a point in time t.

Definition 5.4. At each time point t ∈ T the t-related state of cognitive processes of
agent is described by the following set

SP (t) = {M,Episode(t)}

where M is set of models of categories in agent’s ontology and Episode(t) is episode
in time point t available to agent’s perception.

The rules for grounding of statements will be presented in two equivalent ways:

� in procedural form as algorithm 5.1,

� as conditions of epistemic satisfaction relation, introduced in chapter 3.3.
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Both algorithm and epistemic satisfaction relation definitions assume, that macro-
structure is a distance function. If macrostructure is a similarity function, then the
formalizations need to be redefined accordingly.
At the input of the statements generation algorithm, there is the t-related cognitive

state consisting of a set of models belonging to the agent’s cognitive structures and an
episode including observations of objects in the agent’s environment. The result of the
algorithm is a set of statements St generated by the agent about the membership of
objects to the category. The statements refer to the current state of the environment
(in time point t), therefore the set of statements is marked with the index t. Statements
from the above set should be conveyed to the participants of the interaction using the
means of communication available to the agent, e.g. in text or audio form. The algori-
thm generates a set of all valid statements concerning all objects available to agent’s
perception, but in practical situations probably only subset of St would be provided to
other participants of communication. This subset would contain the statements rele-
vant to present context of communication, for example guided by questions like “What
is this object?” or “Does this object belong to category c?”.
The main loop processes all objects observed in the episode. The function Preprocess

finds object o ∈ O corresponding to object x (line 2). This operation is required, be-
cause the grounding of statements is based on location of objects in mental space, and
not on their observed realizations. It was already described in more detail in chapter
4.2.2.
The object o is matched to all well-defined category models found in the agent’s

cognitive structures. The omission of ill-defined category models is necessary to increase
the agent’s credibility in the subjects to which his statements are addressed (line 4).
For ill-defined categories, the agent will not generate statements about the object’s
membership to the category.
For each of the models, one or two epistemic modal atomic formulas are generated

and added to the set of statements St (lines 5-17). The form of the above formulas
depends on which of the model areas of a given category the object o will be classified
into. The object is assigned to a given area on the basis of its distance to the category
prototype. Example of grounding of statements for two categories is shown in the figure
5.1. The object x2,1 is observed realization of mental object o7. Object o7 is located
in the core of model of category bird, which is a premise for grounding the statement
expressing high certainty about the membership of the object x2,1 to the category bird.
It is also located in the boundary of model of category eagle, which is a premise for
grounding the statement expressing low certainty about the membership of the object
x2,1 to the category eagle.
In general, we consider the core of the category’s model mc to include objects that

most certainly belong to the category c. Therefore, including an object in the core

69



CHAPTER 5. COGNITIVE SEMANTICS OF ATOMIC STATEMENTS

Algorithm 5.1: Grounding of statements.
Input: state of cognitive processes SP (t) = {M , Episode(t)}.
Output: set of statements St.

1 foreach object x in Xt do
2 o := Preprocess(x);

// generate statements
3 foreach model mc in M do
4 if mc is well − defined then
5 if f(o, o⋆c) ¬ τ+c then

// object fits core
6 St := St ∪ {Know(x ∈ c)};
7 else if f(o, o⋆c)  τ−c then

// object fits outer
8 St := St ∪ {Know(x /∈ c)};
9 else

// object fits boundary
10 ε := ER(τ−c , τ

+
c );

11 ENc(o, ε) := {e ∈ E+c ∪ E−c : f(e, o) ¬ ε};
12 if λc(ENc(o, ε))  λminBel then
13 St := St ∪ {Bel(x ∈ c)};
14 St := St ∪ {Pos(x /∈ c)};
15 else
16 St := St ∪ {Bel(x /∈ c)};
17 St := St ∪ {Pos(x ∈ c)};

agent mbird

o7 Know(x2,1 is bird)

meagle

o7

working
memory

embodied
ontology

x2,1

Pos(x2,1 is eagle)

Figure 5.1: Grounding of statements.
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of the category (lines 5 to 6) is the basis for grounding the statement, the intuitive
meaning of which can be expressed as “I know that object x belongs to category c.”

Definition 5.5. Let the time point t and the state of cognitive processes SP (t) de-
scribed by the episode Episode(t) and the set of cognitive models M containing the
well-defined model mc be given. For each object x ∈ Xt and category c we assume that
the epistemic satisfaction relation SP (t) ⊨G Know(x ∈ c) holds if and only if

f(o, o⋆c) ¬ τ+c

where object x is observed realization of mental object o in time point t.

We recognize that the outer region of category’s model mc includes objects that
are definitely not included in the category c. Therefore, including an object in the
outer region of the category (lines 7 to 8) is the basis for grounding the statement, the
intuitive meaning of which can be expressed as “I know that object x does not belong
to category c.”

Definition 5.6. Let the time point t and the state of cognitive processes SP (t) de-
scribed by the episode Episode(t) and the set of cognitive models M containing the
well-defined model mc be given. For each object x ∈ Xt and category c we assume that
the epistemic satisfaction relation SP (t) ⊨G Know(x /∈ c) holds if and only if

f(o, o⋆c)  τ−c

where object x is observed realization of mental object o in time point t.

We consider that the boundary of category’s model mc includes objects that may
or may not belong to the category c. Therefore, including an object in the boundary of
category (lines 10 to 17) is the basis for establishing modal statements with operators
of beliefs and possibilities, the intuitive meaning of which can be expressed as “I believe
that object x belongs/does not belong to category c.” or “I find it possible that object
x belongs/does not belong to category c.”

The statements with the knowledge operator are grounded only on the basis of the
distance from the category prototype, which is equivalent to examining belonging to
the appropriate region of the category’s model – the core or the outer region of the
category. In case of operators of belief and possibility, the distance to the prototype
is not a sufficient basis for determining the degree of certainty of the verbal judgment
regarding membership to a category. To define it, we will use the concept of the relative
grounding strength, determined by the distance of the considered object from both
positive and negative pieces of information in the model.
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Definition 5.7. For object o ∈ O by epistemic neighborhood ENc we understand a
set of objects defined as follows:

ENc(o, ε) = {e ∈ (E+c (Expc) ∪ E−c (Expc)) : f(e, o) ¬ ε}

where ε ∈ R is called the radius of the epistemic neighborhood.

The radius of the epistemic neighborhood ε can be determined in various ways,
for example it can be an experimentally chosen constant. In this dissertation, it is
considered that the radius is determined by the function ER, depending on the value of
thresholds τ−c and τ

+
c delineating the category regions. In the following considerations,

we will assume that the value of the ER function depends linearly on the width of the
boundary of the category model, i.e. ER(τ−c , τ

+
c ) = α(τ

−
c − τ+c ) where α ∈ R is the

coefficient of the radius of the epistemic neighborhood. Thanks to this, the greater the
boundary of the category – and hence the greater the uncertainty as to whether an
observation belongs to a category – the greater the epistemic neighborhood considered
when grounding statements. A larger neighborhood will usually mean that the decision
to select a modal operator will be made on the basis of more experience.

The next definition determines the concept of relative grounding strength.

Definition 5.8. For the set of objects Q ⊆ (E+c (Expc)∪E−c (Expc)) relative grounding
strength λc(Q) is defined as follows:

λc(Q) =

0 if |Q| = 0
|Q∩E+c (Expc)|

|Q| if |Q| > 0.

Thus, it is the ratio of the number of positive objects in Q to all objects in that set.

Definition 5.9. Let the time point t, the state of cognitive processes SP (t) described
by the episode Episode(t) and the set of cognitive modelsM containing the well-defined
model mc, the radius of the epistemic neighborhood ε and λminBel ∈ (0, 1] threshold
be given. For any object x ∈ Xt and category c we assume that epistemic satisfaction
relations SP (t) ⊨G Bel(x ∈ c) and SP (t) ⊨G Pos(x /∈ c) hold if and only if(

τ+c < f(o, o
⋆
c) < τ

−
c

)
∧
(
λc(ENc(o, ε))  λminBel

)
where object x is observed realization of mental object o in time point t.

Definition 5.10. Let the time point t, the state of cognitive processes SP (t) described
by the episode Episode(t) and the set of cognitive modelsM containing the well-defined
model mc, the radius of the epistemic neighborhood ε and λminBel ∈ (0, 1] threshold
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be given. For any object x ∈ Xt and category c we assume that epistemic satisfaction
relations SP (t) ⊨G Bel(x /∈ c) and SP (t) ⊨G Pos(x ∈ c) hold if and only if(

τ+c < f(o, o
⋆
c) < τ

−
c

)
∧
(
λc(ENc(o, ε)) < λminBel

)
where object x is observed realization of mental object o in time point t.

5.2.1 Illustrative examples

Let us suppose that for model of category c the thresholds are equal to τ+c = 5 and
τ−c = 8. In Episode(t3) two objects x3,8 and x3,9 appeared in the agent’s range of
perception. Suppose that in the agent’s cognition process the object x3,8 from working
memory corresponds to the object o8 in embodied ontology, and the object x3,9 from
working memory corresponds to the object o9 in embodied ontology. The distances
between the objects and the prototype are f(o8, o⋆c) = 3 and f(o9, o

⋆
c) = 10. The above

situation is presented in the figure 5.2.

o [3]8

core

boundary

outer

o [10]9

τc
+

τc
-

oc

Figure 5.2: Grounding of objects in core and outer region of category model.

Since f(o8, o⋆c) = 3 ¬ τ+c = 5 according to the definition 5.5 epistemic satisfaction
relation holds for formula Know(x3,8 ∈ c) and such a formula should be added to the
set of statements St. The intuitive meaning of the formula can be expressed as ”I know
that object x3,8 belongs to category c.”

Since f(o9, o⋆c) = 10  τ−c = 8 according to the definition 5.6 epistemic satisfaction
relation holds for formula Know(x3,9 /∈ c) and such a formula should be added to the
set of statements St. The intuitive meaning of the formula can be expressed as ”I know
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that object x3,9 does not belong to category c.”

A more complicated case is when an object is included in the boundary of the
category. In order to establish the right statement, the agent must then compare the
considered object not only with the prototype but also with other objects in embo-
died ontology. Let’s make similar assumptions as in the previous example, except that
this time the distances between the objects and the prototype are f(o8, o⋆c) = 6 and
f(o9, o⋆c) = 6. The above situation is presented in the figure 5.3.

o [3]1

o [7]5 core

boundaryouter

o [5]2

o [6]9

o [10]6

o [7]4

o [8]7

o [1]3

τc
+

τc
-

o [6]8

ENc(o8, 2.4)

ENc(o9, 2.4)oc

Figure 5.3: Grounding of objects in boundary of category model.

Since τ+c = 5 < f(o8, o
⋆
c) = 6 < τ

−
c = 8 and τ

+
c = 5 < f(o9, o

⋆
c) = 6 < τ

−
c = 8

the relative grounding strength must be determined for both objects. The first step
is to establish the radius of the epistemic neighborhood ε. As already mentioned, we
apply the formula for the linear dependence of the radius on the width of the boundary.
Assuming α = 0.8 we get ε = ER(τ−c , τ

+
c ) = α(τ

−
c − τ+c ) = 0.8 · (8− 5) = 2.4

According to definition 5.7 we calculate the epistemic neighborhood of objects, i.e.
ENc(o8, ε) and ENc(o9, ε). For this purpose, it is necessary to calculate the distance
from the objects o8 and o9 to the objects in model of c in embodied ontology. Let us
assume that the above distances are given as in the table 5.3 and that:

� E+c (Expc) = {o1, o2, o3, o5}

� E−c (Expc) = {o4, o6, o7}.
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oi o1 o2 o3 o4 o5 o6 o7
f(o8, oi) 6 1 7 1 1 14 14
f(o9, oi) 6 11 5 11 13 8 2

Table 5.3: Distances between objects in the example for complete representation.

Based on the above data, we determine ENc(o8, ε) = ENc(o8, 2.4) = {o2, o4, o5}
and ENc(o9, ε) = ENc(o9, 2.4) = {o7}. According to the definition 5.8 we can cal-
culate the relative grounding strength λc(ENc(o8, 2.4)) =

|{o2,o5}|
|{o2,o4,o5}| = 2/3, and also

λc(ENc(o9, 2.4)) =
|∅|
|{o7}| = 0/1.

Let us assume λminBel = 0.5. Such a threshold value means that if at least half
of the elements in the epistemic neighborhood of the considered object are positive
experiences, then the agent is willing to establish a statement with the operator of the
belief that the object belongs to the category. On the other hand, if in the epistemic
neighborhood of the considered object more than half of the elements are negative
experiences, then the agent is willing to establish a statement with the operator of the
possibility regarding the membership of the object to the category.

Since λc(ENc(o8, 2.4)) = 2/3  λminBel = 0.5 according to the definition 5.9 episte-
mic satisfaction relation holds for formulas Bel(x3,8 ∈ c) and Pos(x3,8 /∈ c) and such
formulas should be added to the set of statements St. The intuitive meaning of the
formulas can be expressed as ”I believe that object x3,8 belongs to category c.” and ”I
find it possible that object x3,8 does not belong to category c.”

Since λc(ENc(o9, 2.4)) = 0 < λminBel = 0.5 according to the definition 5.10 episte-
mic satisfaction relation holds for formulas Bel(x3,9 /∈ c) and Pos(x3,9 ∈ c) and such
formulas should be added to the set of statements St. The intuitive meaning of the
formulas can be expressed as ”I believe that object x3,9 does not belong to category
c.” and ”I find it possible that object x3,9 belongs to category c.”

Note that the distance from o8 and o9 objects to the category’s prototype is the
same, but the statements generated by the agent are different due to the different
neighborhood of each object.

5.3 Incomplete representation of object

As already mentioned, the perception of the agent is limited, that is, it is not always
possible to determine the value of each attribute for each object. In this chapter, we
consider the grounding of an agent’s statement when some of the attribute values of
the object under consideration may not be known. According to definition 4.1 the
function percept : X × A −→ V is a total function, that is defined for all objects x
and attributes a. We have to lift this limitation to model a situation where some of
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the attribute values for a given object are unknown. So, the definition of an extended
episode would be as follows:

Definition 5.11. The extended episode, i.e. the state of the agent’s environment at the
moment t, is a tuple of the form ExtEpisode(t) = ⟨Xt, A,ExtV, Lt, extPercept, label⟩,
where

� Xt – a finite set of objects,

� A – a finite set of attributes,

� ExtV =
⋃
a∈A
Va∪{ϵ}, where Va is the domain of attribute a, ϵ denotes the unknown

value of the attribute,

� Lt – a finite set of labels,

� extPercept – a function representing observed values of attributes of objects,
Xt × A −→ ExtV , such that extPercept(x, a) ∈ Va ∪ {ϵ} for all x ∈ Xt and
a ∈ A,

� label – a function representing the observed assignments of labels to objects,
Xt −→ Π(L), Π(L) is a power set of L.

Similarly, the mental space of objects in the agent’s cognitive structures must be
expanded. The ExtO set is an extension of the O set with objects containing incomplete
information about the values of their attributes:

Definition 5.12. Universe of mental representations of distinguishable objects with
incomplete information ExtO is defined as:

ExtO = {o1, ..., oN} def=×
a∈A

(
Va ∪ {ϵ}

)

The proposed strategy for dealing with a missing attribute value assumes that the
missing value is replaced by one or more of the possible values for the attribute. It can
be said that the agent tries to “imagine” what the observed object could look like if
the object had some variants of a given attribute, and then – according to the rules of
cognitive semantics – to which category the object would belong to. This means that
a single object with incomplete information is replaced with one or more objects with
complete information.
Formally, it can be expressed by a function which returns a set of objects with

complete information for an object with incomplete information. We call this function
cReps for complete representation, hence cReps : ExtO −→ Π(O). Algorithm 5.2 is an
example implementation of the above function, in which the missing attribute values
are replaced with all possible values of a given attribute.

76



5.3. INCOMPLETE REPRESENTATION OF OBJECT

Algorithm 5.2: Example of cReps function
Input: object o ∈ ExtO with incomplete information.
Output: set of objects R ∈ Π(O) with complete information.

1 R := {o};
2 foreach attribute a in A do
3 if o(a) = ϵ then
4 NewR := ∅;
5 foreach value v in Va do
6 foreach object r in R do
7 r′ := duplicate of r;
8 r′(a) := v;
9 add r′ to NewR;

10 R := NewR;

Remark 5.1. If as an argument of the algorithm 5.2 we provide the object o with
complete information, the result of the function will be a one-element set containing
this object: cReps(o) = {o}.

Example 3. Let us assume a microstructure of all objects o from a cognitive universe
ExtO in a form of fixed-length binary vectors, where length n = 4. Set of attribu-
tes is denoted as A = (a1, a2, a3, a4). Let us consider object o ∈ ExtO such that
o = (ϵ, ϵ, 0, 1). The result of algorithm 5.2 is a set cReps(o) = {(0, 0, 0, 1), (0, 1, 0, 1),
(1, 0, 0, 1), (1, 1, 0, 1)}.

Obviously, the size of the set returned by algorithm 5.2 grows exponentially with
a number of unknown attribute’s values. For example if there are n binary attributes
with unknown values in object o, then algorithm 5.2 returns a set of 2n objects – with
all possible combinations of attribute’s values that the agent can “imagine”.
Additional restrictions can be imposed on the cReps function, which in practice

should limit the size of the set of objects returned by cReps. For example, for the
function cReps to return only objects that:

� were actually observed by an agent, i.e. cReps(o) ⊆ E+c (Expc) ∪ E−c (Expc),

� meet the rule forbidding the simultaneous occurrence of certain values of attri-
butes in the object description; for example, the agent may consider an animal
having hair or feathers, but not both,

� meet the rule according to which the occurrence of a certain value of an attribute
in the description of an object results in the occurrence of a certain value of
another attribute; for example, the agent may “know” that if an animal has
feathers, it must also have a beak.
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The positioning of the observation of the object within the category model becomes
more complicated as the object is then represented by a set of points, rather than a
single point in mental space. Thus, cognitive semantics must be adapted to consider a
set of objects. For each “imagined” version of the object, the value of the macrostructure
can be calculated and used to place it in the right area of the model. More formally,
the above ideas are presented in the algorithm 5.3.

Algorithm 5.3: Extended grounding of statements.
Input: state of cognitive processes SPE(t) = {M , ExtEpisode(t)}.
Output: set of statements St.

1 foreach object x in Xt do
2 o := Preprocess(x);
3 R := cReps(o);

// generate statements
4 foreach model mc in M do
5 if mc is well − defined then
6 if (∀r ∈ R) f(r, o⋆c) ¬ τ+c then

// all objects fit core
7 St := St ∪ {Know(x ∈ c)};
8 else if (∀r ∈ R) f(r, o⋆c)  τ−c then

// all objects fit outer
9 St := St ∪ {Know(x /∈ c)};
10 else

// some objects fit boundary
11 ε := ER(τ−c , τ

+
c );

12 ENc(R, ε) := ∅;
13 foreach object r in R do
14 ENc(R, ε) := ENc(R, ε) ∪ {e ∈ E+c ∪ E−c : f(e, r) ¬ ε};
15 if λc(ENc(R, ε))  λminBel then
16 St := St ∪ {Bel(x ∈ c)};
17 St := St ∪ {Pos(x /∈ c)};
18 else
19 St := St ∪ {Bel(x /∈ c)};
20 St := St ∪ {Pos(x ∈ c)};

The statements are generated for the extended cognitive state SPE(t) at a point
in time t.

Definition 5.13. At each time point t ∈ T the extended t-related state of cognitive
processes of agent is described by the following set

SPE(t) = {M,ExtEpisode(t)}
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whereM is set of models of categories in agent’s ontology and ExtEpisode(t) is exten-
ded episode in time point t available to agent’s perception.

The main loop processes all objects observed in the episode. The function Preprocess
finds object o ∈ O corresponding to object x (line 2). This operation is required, becau-
se the grounding of statements is based on the location of objects in mental space, and
not on their observed realizations. It was already described in more detail in chapter
4.2.2.
Then, for an object with incomplete information, a corresponding set of objects

with complete information R is found (line 3). All objects r ∈ R are matched to all
well-defined category models found in the agent’s cognitive structures. The omission of
poorly defined category models (line 5) is necessary to increase the agent’s credibility in
the subjects to which his statements are addressed. For ill-defined categories, the agent
will not generate statements regarding the membership of the object to the category.
For each of the models, one or two epistemic modal atomic formulas are generated

and added to the set of statements St (lines from 6 to 20). The form of the above
formulas depends on which of the model areas of a given category includes the objects in
R. The object o is assigned to a given region based on the distance of the corresponding
objects r ∈ R to the category prototype.

Remark 5.2. Algorithm 5.3 is the extended version of algorithm 5.1. It works both with
objects with complete and incomplete information. In the first case, since cReps(o) =
{o}, it will behave exactly as the algorithm 5.1.

In general, we consider the core of the category’s model mc to include objects that
most certainly belong to the category c. Therefore, including all of the objects r ∈ R
in the core of the category (lines 6 to 7) is the basis for grounding the statement,
the intuitive meaning of which can be expressed as “I know that object x belongs to
category c.”

Definition 5.14. Let the time point t and the extended state of cognitive processes
SPE(t) described by the episode ExtEpisode(t) and the set of cognitive models M
containing the well-defined model mc be given. For each object x ∈ Xt and category
c we assume that the epistemic satisfaction relation SPE(t) ⊨G Know(x ∈ c) holds if
and only if

∀r ∈ R f(r, o⋆c) ¬ τ+c

where R is a set of objects with complete information corresponding to the object o
with (possibly) incomplete information and x is observed realization of mental object
o in time point t. This definition is an extension of the definition 5.5 and can also be
used for objects with complete information, since then R = {o}.
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We recognize that the outer region of category’s model mc includes objects that
are definitely not included in the category c. Therefore, including all of the objects
r ∈ R in the outer region of the category (lines 8 to 9) is the basis for grounding the
statement, the intuitive meaning of which can be expressed as “I know that object x
does not belong to category c.”

Definition 5.15. Let the time point t and the extended state of cognitive processes
SPE(t) described by the episode ExtEpisode(t) and the set of cognitive models M
containing the well-defined model mc be given. For each object x ∈ Xt and category
c we assume that the epistemic satisfaction relation SPE(t) ⊨G Know(x /∈ c) holds if
and only if

∀r ∈ R f(r, o⋆c)  τ−c

where R is a set of objects with complete information corresponding to the object o
with (possibly) incomplete information and x is observed realization of mental object
o in time point t. This definition is an extension of the definition 5.6 and can also be
used for objects with complete information, since then R = {o}.

We consider that the boundary of category’s model mc includes objects that may
or may not belong to category c. Therefore, including an object in the boundary of
categories (lines 11 to 20) is the basis for establishing modal statements with operators
of beliefs and possibilities, the intuitive meaning of which can be expressed as “I believe
that object x belongs/does not belong to category c.” and “I find it possible that object
x belongs/does not belong to category c.”
The statements with the knowledge operator were grounded only on the basis of the

distance from the category prototype, which is equivalent to examining belonging to the
appropriate area of the category model – the core or the outer region of the category.
In the case of operators of belief and possibility, the distance to the prototype is not a
sufficient basis for determining the degree of certainty of the verbal judgment regarding
belonging to a category. Similar to chapter 5.2 for complete representation, to establish
the degree of certainty we use the concept of the relative grounding strength λc from
definition 5.8. The above coefficient is also computed for the epistemic neighborhood
ENc, but this time defined for a set of objects, rather than for a single object.

Definition 5.16. For a set of objects R ⊆ O by epistemic neighborhood ENc we
understand a set of objects defined as follows:

ENc(R, ε) =
⋃
r∈R
{e ∈ (E+c (Expc) ∪ E−c (Expc)) : f(e, r) ¬ ε}

where ε ∈ R is called the radius of the epistemic neighborhood.
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Definition 5.17. Let the time point t, the extended state of cognitive processes
SPE(t) described by the episode ExtEpisode(t) and the set of cognitive models M
containing the well-defined model mc, the radius of the epistemic neighborhood ε and
λminBel ∈ (0, 1] threshold be given. For any object x ∈ Xt and category c we assume
that epistemic satisfaction relations SPE(t) ⊨G Bel(x ∈ c) and SPE(t) ⊨G Pos(x /∈ c)
hold if and only if

(
∃r ∈ R τ+c < f(r, o⋆c) < τ−c

)
∧
(
λc(ENc(R, ε))  λminBel

)
where R is a set of objects with complete information corresponding to the object o
with (possibly) incomplete information and x is observed realization of mental object
o in time point t. This definition is an extension of the definition 5.9 and can also be
used for objects with complete information, since then R = {o}.

Definition 5.18. Let the time point t, the extended state of cognitive processes
SPE(t) described by the episode ExtEpisode(t) and the set of cognitive models M
containing the well-defined model mc, the radius of the epistemic neighborhood ε and
λminBel ∈ (0, 1] threshold be given. For any object x ∈ Xt and category c we assume
that epistemic satisfaction relations SPE(t) ⊨G Bel(x /∈ c) and SPE(t) ⊨G Pos(x ∈ c)
hold if and only if

(
∃r ∈ R τ+c < f(r, o⋆c) < τ−c

)
∧
(
λc(ENc(R, ε)) < λminBel

)
where R is a set of objects with complete information corresponding to the object o
with (possibly) incomplete information and x is observed realization of mental object
o in time point t. This definition is an extension of the definition 5.10 and can also be
used for objects with complete information, since then R = {o}.

5.3.1 Illustrative examples

Let us suppose that for model of category c the thresholds are equal to τ+c = 5 and
τ−c = 8. In Episode(t3) two objects x3,8 and x3,9 appeared in the agent’s range of
perception. Suppose that in the agent’s cognition process the object x3,8 from working
memory corresponds to the object o8 ∈ ExtO in embodied ontology, and the object
x3,9 from working memory corresponds to the object o9 ∈ ExtO in embodied ontology.
Let us suppose that object o8 does not have a specific value for one of its binary

attributes. According to the algorithm 5.3 the statements are grounded on the basis
of the set of objects o ∈ O with all attribute values determined, obtained as a result
of the cReps function. For the function defined as in the algorithm 5.2 the object o8
with incomplete information corresponds to two objects with complete information.
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Let us assume, that cReps(o8) = {o11, o12} and distances between the objects and the
prototype are f(o11, o⋆c) = 3 and f(o12, o

⋆
c) = 3. Since both objects o11 and o12 are

located in the core area, according to the definition 5.14 epistemic satisfaction relation
holds for formula Know(x3,8 ∈ c) and such a formula should be added to the set of
statements St. The intuitive meaning of the formula can be expressed as “I know that
object x3,8 belongs to category c”. The above situation is presented in the figure 5.4.

o8
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boundary

outer

o9

[10] [11]

[10][9]
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[3]
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Figure 5.4: Grounding of objects with incomplete information in the core and the outer
region of category model.

As for the object o9, let us assume that it does not have a specific value for two
binary attributes. For the function cReps defined as in the algorithm 5.2 the object o9
with incomplete information corresponds to four objects with complete information. Let
us assume, that cReps(o9) = {o21, o22, o23, o24} and distances between the objects and
the prototype are f(o21, o⋆c) = 9, f(o22, o

⋆
c) = 10, f(o23, o

⋆
c) = 10 and f(o24, o

⋆
c) = 11.

Since all objects o21...o24 are located in the outer region, according to the definition 5.15
epistemic satisfaction relation holds for formula Know(x3,9 /∈ c) and such a formula
should be added to the set of statements St. The intuitive meaning of the formula can
be expressed as “I know that object x3,9 does not belong to category c”. The above
situation is also presented in the figure 5.4.
The figure 5.5 shows the situation, in which as before cReps(o9) = {o21, o22, o23, o24}

but this time f(o21, o⋆c) = 4, f(o22, o
⋆
c) = 7, f(o23, o

⋆
c) = 7 and f(o24, o

⋆
c) = 9. Since the

objects o22 and o23 are located in the boundary of category’s model, to determine the
correct formula, it is necessary to calculate the relative grounding strength for the set
R = cReps(o9). The first step is to establish the radius of the epistemic neighborhood ε.
As already mentioned, we apply the formula for the linear dependence of the radius on
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Figure 5.5: Grounding of objects with incomplete information in multiple regions of
category model.

the width of the boundary. Assuming α = 0.8 we get ε = ER(τ−c , τ
+
c ) = α(τ

−
c − τ+c ) =

0.8 · (8− 5) = 2.4.
According to the definition 5.16 we calculate the epistemic neighborhood of the

set R = cReps(o9), i.e. ENc(R, ε) = ENc({o21, o22, o23, o24}, 2.4). For this purpose, it
is necessary to calculate the distance from the objects o21...o24 to the objects in the
model of c located in embodied ontology. Let us assume that the above distances are
given as in the table 5.4 and that:

� E+c (Expc) = {o1, o2, o3, o5}

� E−c (Expc) = {o4, o6, o7}.

oi o1 o2 o3 o4 o5 o6 o7
f(o21, oi) 1 3 3 4 4 14 10
f(o22, oi) 4 4 7 7 2 16 14
f(o23, oi) 3 5 7 2 7 16 12
f(o24, oi) 6 9 10 5 5 19 15

Table 5.4: Distances between objects in the example for incomplete representation.

Based on the above data, we determine ENc(R, ε) = ENc(R, 2.4) = {o1, o4, o5}. Ac-
cording to the definition 5.8 we can calculate the relative grounding strength λc(ENc(R, 2.4))
= |{o1,o5}|
|{o1,o4,o5}| = 2/3.
Let us assume λminBel = 0.5. Such a threshold value means that if at least half

of the elements in the epistemic neighborhood of the considered object are positive
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experiences, then the agent is willing to establish a statement with the operator of the
belief that the object belongs to the category. On the other hand, if in the epistemic
neighborhood of the considered object more than half of the elements are negative
experiences, then the agent is willing to establish a statement with the operator of the
possibility regarding the belonging of the object to the category.
Since λc(ENc(R, 2.4)) = 2/3  λminBel = 0.5 according to definition 5.17 epistemic

satisfaction relation holds for formulas Bel(x3,9 ∈ c) and Pos(x3,9 /∈ c) and such
formulas should be added to the set of statements St. The intuitive meaning of the
formulas can be expressed as ”I believe that object x3,9 belongs to category c.” and ”I
find it possible that object x3,9 does not belong to category c.”

5.4 Interaction between teacher and agent

The presented model has an explicit knowledge representation, which allows to load
ready-made structures representing categories into the agent’s memory. However, in
practice it makes more sense and is easier to use the strategy of learning the knowledge
from examples, described in the chapter 4. This strategy assumes that the teacher
labels objects in the agent’s environment in a way, that allows the agent to gather
the necessary knowledge. In practical applications, the number of objects in agent’s
perception might be quite large, so labeling all of them would be a tedious task. Which
objects should be labeled can be determined if the teacher is able to identify which
categories the agent has learned correctly and which are different from the conceptual
framework used by the teacher. This is where statements generated by the agent can
help. On their basis, the teacher can determine whether the agent has learned the
category properly and attempt to correct the agent’s improper linguistic behavior.
Therefore, we are dealing with an interactive process, which is a kind of dialogue that
allows also the agent to learn the concepts used by the teacher by interleaving the use
of the learning strategy from the chapter 4 and the principles of statements grounding
described in the chapter 5.
Situations that may arise in the above learning process are presented below, along

with an explanation of how the agent’s cognitive structures will adapt to the infor-
mation newly obtained from the teacher. It is a demonstration of the flexibility of the
model, allowing an interactive approach to be used in practice.

S1. The agent is more or less “convinced” that the object belongs to the category,
while the teacher believes that the object cannot be assigned to the category. The
teacher can therefore label the object with a negative label relating to the above
category. The result should be an update of the agent’s cognitive structures such
that in the future the object is not assigned to a given category or, if this is not
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possible, introduces more uncertainty in the cognitive semantics related to a given
category. Examples of this type of interaction will be presented in the following
scenarios.

Scenario with negative example (a) Let us suppose, that there is the entity
e1 in the agent’s range of perception. Let in Episode(tn) the entity e1 be represented
in agent’s working memory as the object xn,1, without any label assigned by the
teacher. Let this object be a realization of the object o1 from the mental space,
that is located in the boundary of the model of category c, as shown in the left
part of the figure 5.6. According to the cognitive semantics presented in previous
chapters, in such a situation it is possible to ground statements with the Bel or
Pos operator. Let us assume that due to the epistemic neighborhood of the object
o1, it is valid to ground the statement with the Pos operator. This causes the agent
to generate a statement:

– I find it possible that object xn,1 belongs to category c.
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Figure 5.6: Updating model with negative example – scenario (a).

Suppose the teacher believes that the entity e1 does not belong to the category c.
Thus, the teacher tries to correct the agent’s linguistic behavior by providing it with
new information. Let the entity e1 be represented in agent’s working memory as
the object xn+1,1 in the next episode. The teacher assigns label not-c to the object
xn+1,1. Let us assume, that the values of the attributes describing the entity have
not changed, so the object xn+1,1 is also a realization of the object o1 from mental
space. Update of the model of category c reduces the radius τ−c , which means that
the boundary area is also reduced, which can be seen in the right part of the figure
5.6. Since the object o1 is now in the outer region, according to cognitive semantics
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presented in previous chapters, a statement should be grounded with the Know
operator. Hence, the agent could generate the following statement:

– I know that object xn+1,1 does not belong to category c.

Since this statement is consistent with the teacher’s beliefs, they may finish the
training of the agent in terms of category c. Let us note, that in the scenario above,
updating the agent’s knowledge led to a reduction in the uncertainty with respect
to the category c.

Scenario with negative example (b) Let us suppose, that there is the entity
e1 in the agent’s range of perception. Let in Episode(tn) the entity e1 be represented
in agent’s working memory as the object xn,1, without any label assigned by the
teacher. Let this object be a realization of the object o1 from the mental space,
that is located in the core of the model of category c, as shown in the left part of
the figure 5.7. According to the cognitive semantics presented in previous chapters,
in such a situation it is valid to ground statements with the Know operator. This
causes the agent to generate a statement:

– I know that object xn,1 belongs to category c.
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Figure 5.7: Updating model with negative example – scenario (b).

Suppose the teacher believes that the entity e1 does not belong to the category c.
Thus, the teacher tries to correct the agent’s linguistic behavior by providing it
with new information. Let the entity e1 be represented in agent’s working memory
as the object xn+1,1 in the next episode. The teacher assigns label not-c to the
object xn+1,1. Let us assume, that the values of the attributes describing the entity
have not changed, so the object xn+1,1 is also a realization of the object o1 from
mental space. Update of the model of category c reduces the radius τ+c , that is the
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core area is also reduced, which can be seen in the right part of the figure 5.7. Since
the object o1 is now in the boundary, according to cognitive semantics presented in
previous chapters, a statement should be grounded with the Bel or Pos operator.
Let us assume that due to the epistemic neighborhood of the object o1, it is valid
to ground the statement with the Bel operator. Hence, the agent could generate
the following statement:

– I believe that object xn+1,1 belongs to category c.

Such a statement is still not in line with the teacher’s beliefs, although the agent’s
certainty that the object belongs to the c category has decreased. The teacher can
continue training the agent in terms of category c by repeating the labeling of the
e1 entity or similar objects not belonging to the c category. This may lead to a
gradual reduction in the agent’s belief that the object belongs to the category c.
However, in this case, it is not possible to achieve full agreement of the beliefs
of the agent and the teacher, due to the wide range of boundary, where positive
and negative examples are “mixed”. This may be due to the reasons discussed in
the previous chapters (different capabilities of agent and teacher perceptions, non-
radial category structure, etc.) Let us note, that in the above scenario, updating the
agent’s knowledge led to an increased uncertainty with respect to the c category.

S2. The agent expresses the low level of possibility of belonging of the object to the
category, which is consistent with the beliefs of the teacher. The teacher can label
the object with a positive label relating to the above category. This should cause
the update of the agent’s cognitive structures, such that will strengthen the agent’s
belief that the object belongs to the category. This, in turn, will result in the fact
that in the future the object with the same or similar values of attributes may be
described by the agent with a statement expressing strong belief or even certainty
regarding belonging to a category. Examples of this type of interaction will be
presented in the following scenarios.

Scenario with positive example (a) Let us suppose, that there is the entity e1
in the agent’s range of perception. Let in Episode(tn) the entity e1 be represented
in agent’s working memory as the object xn,1, without any label assigned by the
teacher. Let this object be a realization of the object o1 from the mental space,
that is located in the boundary of the model of category c, as shown in the left
part of the figure 5.8. According to the cognitive semantics presented in previous
chapters, in such a situation it is possible to ground statements with the Bel or
Pos operator. Let us assume that due to the epistemic neighborhood of the object
o1, it is valid to ground the statement with the Bel operator. This causes the agent
to generate a statement:
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– I believe that object xn,1 belongs to category c.
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Figure 5.8: Updating model with positive example – scenario (a).

Suppose the teacher believes that the entity e1 does belong to the category c. Based
on the agent’s statement, the teacher concludes that the agent is not completely
certain that the entity belongs to the category c. Thus, the teacher tries to correct
the agent’s linguistic behavior by providing it with new information. Let the entity
e1 be represented in agent’s working memory as the object xn+1,1 in the next
episode. The teacher assigns label is-c to the object xn+1,1. Let us assume, that
the values of the attributes describing the entity have not changed, so the object
xn+1,1 is also a realization of the object o1 from mental space. Update of the model
of category c causes the object o3 to be selected as the prototype o⋆c of the c
category model, instead of the o2 as before. In addition, the radius τ−c is reduced
and τ+c increases, resulting in a significant reduction of the boundary area, which
can be seen in the right part of the figure 5.8. Since the object o1 is now in the
core, according to cognitive semantics presented in previous chapters, a statement
should be grounded with the Know operator. Hence, the agent could generate the
following statement:

– I know that object xn+1,1 belongs to category c.

Since this statement is consistent with the teacher’s beliefs, they may finish the
training of the agent in terms of category c. Let us note, that in the scenario above,
updating the agent’s knowledge led to a reduction in the uncertainty with respect
to the category c, thanks to the extension of core and outer region. The provision of
new information by the teacher also shifted the “center of gravity” (the prototype)
of the category to a more favorable point in the O universe.
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Scenario with positive example (b) Let us suppose, that there is the entity e1
in the agent’s range of perception. Let in Episode(tn) the entity e1 be represented
in agent’s working memory as the object xn,1, without any label assigned by the
teacher. Let this object be a realization of the object o1 from the mental space, that
is located in the outer region of the model of category c, as shown in the left part of
the figure 5.9. According to the cognitive semantics presented in previous chapters,
in such a situation it is valid to ground statements with the Know operator. This
causes the agent to generate a statement:

– I know that object xn,1 does not belong to category c.
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Figure 5.9: Updating model with positive example – scenario (b).

Suppose the teacher believes that the entity e1 does belong to the category c.
Thus, the teacher tries to correct the agent’s linguistic behavior by providing it
with new information. Let the entity e1 be represented in agent’s working memory
as the object xn+1,1 in the next episode. The teacher assigns label is-c to the object
xn+1,1. Let us assume, that the values of the attributes describing the entity have
not changed, so the object xn+1,1 is also a realization of the object o1 from mental
space. Update of the model of category c increases the radius τ−c , that is the outer
region is also increased, which can be seen in the right part of the figure 5.9. Since
the object o1 is now in the boundary, according to cognitive semantics presented in
previous chapters, a statement should be grounded with the Bel or Pos operator.
Let us assume that due to the epistemic neighborhood of the object o1, it is valid
to ground the statement with the Pos operator. Hence, the agent could generate
the following statement:

– I find it possible that object xn+1,1 belongs to category c.

Such a statement is still not in line with the teacher’s beliefs, although the agent
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now admits the possibility that the object belongs to the category c. The teacher
can continue training the agent in terms of category c by repeating the labeling
of the e1 entity or similar objects belonging to the c category. This may lead to
a gradual increase in the agent’s belief that the object belongs to the category c.
However, in this case, it is not possible to achieve full agreement of the beliefs
of the agent and the teacher, due to the wide range of boundary, where positive
and negative examples are “mixed”. This may be due to the reasons discussed in
the previous chapters (different capabilities of agent and teacher perceptions, non-
radial category structure, etc.) Let us note, that in the above scenario, updating the
agent’s knowledge led to an increased uncertainty with respect to the c category.

S3. The agent does not express any opinion on the membership of the object to the
category, to which the teacher would like to assign the object. Such a situation is
possible when this category is unknown to the agent, because no assignment of an
object to the above category has appeared in the agent’s experience so far. The
teacher can give the object a positive label relating to the category above. As a
result, the agent should create a cognitive structure relevant to the new category.

As one can see, the agent’s learning process is highly interactive. In order for it to work
properly, at least in the initial phase, supervision by the teacher is necessary. After the
teacher determines that all the agent’s statements are rational, the learning process
can be completed and the agent can work autonomously, generating statements about
the objects in the environment.

5.5 Properties of semantics

The cognitive semantics of modal statements about the membership of an object to
a category presented in this work has several properties, that are important for the
proper conduct of a conversation with a human being. In common-sense interpretation
of agent’s statements, it is important that:

� it is not possible to utter certain statements about the same object simultane-
ously, e.g. it is not acceptable for the agent to generate the following statements
in one episode, as they would be considered nonsensical/contradictory by other
participants of communication:

– “I know that object x belongs to category c”,

– “I know/I believe/I find it possible that object x does not belong to catego-
ry c”,
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� it is possible to utter certain statements simultaneously regarding the same ob-
ject, e.g. it is permissible for the agent to generate the following statements in
one episode:

– “I believe that object x belongs to category c”,

– “I find it possible that object x does not belong to category c”.

Such properties are presented below, along with the proofs based on the definitions of
epistemic satisfaction relations.
The theorems 5.1 and 5.2 concern a fairly obvious common-sense limitation, that

the agent should not make statements indicating that it knows, that the object both
belongs to and does not belong to the category c.

Theorem 5.1. For the considered agent system, if relation SPE(t) ⊨G Know(x ∈ c)
holds, then relation SPE(t) ⊨G Know(x /∈ c) does not hold.

Proof. The epistemic satisfaction relation SPE(t) ⊨G Know(x ∈ c) holds (definition
5.14) if and only if

∀r ∈ R f(r, o⋆) ¬ τ+c

where R is a set of objects with complete information corresponding to the object o
with (possibly) incomplete information and x is observed realization of mental object o
in time point t. In previous chapters we assumed that for a well-defined model always
τ+c < τ

−
c (condition 4.1.1). It follows that

∀r ∈ R f(r, o⋆) < τ−c .

Thus, the condition ∀r ∈ R f(r, o⋆)  τ−c required for epistemic satisfaction relation
SPE(t) ⊨G Know(x /∈ c) is not fulfilled (definition 5.15). ■

Theorem 5.2. For the considered agent system, if relation SPE(t) ⊨G Know(x /∈ c)
holds, then relation SPE(t) ⊨G Know(x ∈ c) does not hold.

Proof. The epistemic satisfaction relation SPE(t) ⊨G Know(x /∈ c) holds (definition
5.15) if and only if

∀r ∈ R f(r, o⋆)  τ−c

where R is a set of objects with complete information corresponding to the object o
with (possibly) incomplete information and x is observed realization of mental object o
in time point t. In previous chapters we assumed that for a well-defined model always
τ+c < τ

−
c (condition 4.1.1). It follows that

∀r ∈ R f(r, o⋆) > τ+c .
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Thus, the condition ∀r ∈ R f(r, o⋆) ¬ τ+c required for epistemic satisfaction relation
SPE(t) ⊨G Know(x ∈ c) is not fulfilled (definition 5.14). ■

The next group of theorems (5.3 – 5.6) deals with situations where the agent gene-
rates a statement indicating that it knows that the object belongs to the category c or
that it does not belong to the category c. In both cases, the agent should not produce
simultanously statements with weaker confidence about the class-membership of the
object.

Theorem 5.3. For the considered agent system, if relation SPE(t) ⊨G Know(x ∈ c)
holds, then

� relation SPE(t) ⊨G Bel(x ∈ c) does not hold,

� relation SPE(t) ⊨G Bel(x /∈ c) does not hold,

� relation SPE(t) ⊨G Pos(x ∈ c) does not hold,

� relation SPE(t) ⊨G Pos(x /∈ c) does not hold.

Proof. The epistemic satisfaction relation SPE(t) ⊨G Know(x ∈ c) holds (definition
5.14) if and only if

∀r ∈ R f(r, o⋆) ¬ τ+c

where R is a set of objects with complete information corresponding to the object o
with (possibly) incomplete information and x is observed realization of mental object
o in time point t.
Thus, the condition ∃r ∈ R τ+c < f(r, o⋆) required for epistemic satisfaction re-

lations SPE(t) ⊨G Bel(x ∈ c) and SPE(t) ⊨G Pos(x /∈ c) is not fulfilled (definition
5.17). The same condition is required for epistemic satisfaction relations SPE(t) ⊨G
Bel(x /∈ c) and SPE(t) ⊨G Pos(x ∈ c) (definition 5.18). ■

Theorem 5.4. For the considered agent system, if any of the following relationships
hold

� SPE(t) ⊨G Bel(x ∈ c),

� SPE(t) ⊨G Bel(x /∈ c),

� SPE(t) ⊨G Pos(x ∈ c),

� SPE(t) ⊨G Pos(x /∈ c),

then relation SPE(t) ⊨G Know(x ∈ c) does not hold.

Proof. This theorem is the contraposition of theorem 5.3. ■
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Theorem 5.5. For the considered agent system, if relation SPE(t) ⊨G Know(x /∈ c)
holds, then

� relation SPE(t) ⊨G Bel(x ∈ c) does not hold,

� relation SPE(t) ⊨G Bel(x /∈ c) does not hold,

� relation SPE(t) ⊨G Pos(x ∈ c) does not hold,

� relation SPE(t) ⊨G Pos(x /∈ c) does not hold.

Proof. The epistemic satisfaction relation SPE(t) ⊨G Know(x /∈ c) holds (definition
5.15) if and only if

∀r ∈ R f(r, o⋆)  τ−c

where R is a set of objects with complete information corresponding to the object o
with (possibly) incomplete information and x is observed realization of mental object
o in time point t.
Thus, the condition ∃r ∈ R f(r, o⋆) < τ−c required for epistemic satisfaction re-

lations SPE(t) ⊨G Bel(x ∈ c) and SPE(t) ⊨G Pos(x /∈ c) is not fulfilled (definition
5.17). The same condition is required for epistemic satisfaction relations SPE(t) ⊨G
Bel(x /∈ c) and SPE(t) ⊨G Pos(x ∈ c) (definition 5.18). ■

Theorem 5.6. For the considered agent system, if any of the following relationships
hold

� SPE(t) ⊨G Bel(x ∈ c),

� SPE(t) ⊨G Bel(x /∈ c),

� SPE(t) ⊨G Pos(x ∈ c),

� SPE(t) ⊨G Pos(x /∈ c),

then relation SPE(t) ⊨G Know(x /∈ c) does not hold.

Proof. This theorem is the contraposition of theorem 5.5. ■

If the agent generates the statement indicating, that it believes that the object
belongs (or does not belong) to the category c, then it should not produce at the same
time the statement with weaker confidence. Neither should it produce the statement
indicating, that it believes the opposite state of membership. The correct behavior of
the agent in above situations is proven for theorems 5.7 and 5.8.

Theorem 5.7. For the considered agent system, if relation SPE(t) ⊨G Bel(x ∈ c)
holds, then
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� relation SPE(t) ⊨G Bel(x /∈ c) does not hold,

� relation SPE(t) ⊨G Pos(x ∈ c) does not hold.

Proof. The epistemic satisfaction relation SPE(t) ⊨G Bel(x ∈ c) holds (definition
5.17) if and only if

(
∃r ∈ R τ+c < f(r, o⋆) < τ−c

)
∧
(
λc(ENc(R, ε))  λminBel

)
where R is a set of objects with complete information corresponding to the object o
with (possibly) incomplete information, x is observed realization of mental object o in
time point t and ENc(R, ε) is epistemic neighborhood of set R with radius ε.
Thus, the condition λc(ENc(R, ε)) < λminBel required for epistemic satisfaction

relations SPE(t) ⊨G Bel(x /∈ c) and SPE(t) ⊨G Pos(x ∈ c) is not fulfilled (definition
5.18). ■

Theorem 5.8. For the considered agent system, if relation SPE(t) ⊨G Bel(x /∈ c)
holds, then

� relation SPE(t) ⊨G Bel(x ∈ c) does not hold,

� relation SPE(t) ⊨G Pos(x /∈ c) does not hold.

Proof. The epistemic satisfaction relation SPE(t) ⊨G Bel(x /∈ c) holds (definition
5.18) if and only if

(
∃r ∈ R τ+c < f(r, o⋆) < τ−c

)
∧
(
λc(ENc(R, ε)) < λminBel

)
where R is a set of objects with complete information corresponding to the object o
with (possibly) incomplete information, x is observed realization of mental object o in
time point t and ENc(R, ε) is epistemic neighborhood of set R with radius ε.
Thus, the condition λc(ENc(R, ε))  λminBel required for epistemic satisfaction

relations SPE(t) ⊨G Bel(x ∈ c) and SPE(t) ⊨G Pos(x /∈ c) is not fulfilled (definition
5.17). ■

Analogically to the above, if the agent generates the statement indicating, that it is
possible that the object belongs (or does not belong) to the category c, then it should
not produce at the same time the statement with stronger confidence – theorems 5.9
and 5.10.

Theorem 5.9. For the considered agent system, if relation SPE(t) ⊨G Pos(x ∈ c)
holds, then relation SPE(t) ⊨G Bel(x ∈ c) does not hold.

Proof. This theorem is the contraposition of second part of theorem 5.7. ■
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Theorem 5.10. For the considered agent system, if relation SPE(t) ⊨G Pos(x /∈ c)
holds, then relation SPE(t) ⊨G Bel(x /∈ c) does not hold.

Proof. This theorem is the contraposition of second part of theorem 5.8. ■

If the agent expresses belief that the object belongs to some category c, it is rational
that the agent accepts the possibility that this object does not belong to the category
c. So it should be possible for the agent to express both of above opinions at the
same state of knowledge. Possibly, such pairs of statements could be connected with
additional language connector (not defined formally in this work), e.g. “I believe that
object x belongs to category c, however I find it possible that object x does not belong
to category c”.
Similarly, if the agent expresses belief that the object does not belong to some

category c, it is rational that the agent accepts possibility that this object does belong
to the category c. The next two theorems (5.11 and 5.12) are proven for the above
situations.

Theorem 5.11. For the considered agent system, relations SPE(t) ⊨G Bel(x ∈ c) and
SPE(t) ⊨G Pos(x /∈ c) hold in the same state of knowledge.

Proof. It follows directly from definition 5.17, where the conditions of epistemic satis-
faction relation are the same for both formulas. ■

Theorem 5.12. For the considered agent system, relations SPE(t) ⊨G Bel(x /∈ c) and
SPE(t) ⊨G Pos(x ∈ c) hold in the same state of knowledge.

Proof. It follows directly from definition 5.18, where the conditions of epistemic satis-
faction relation are the same for both formulas. ■

5.6 Connection with Basic Grounding Model

In this chapter, formal definitions from the Basic Grounding Model [31, 32], presented
initially in the chapter 3.3, will be given, and the relationship between BGM and the
model described in the dissertation will be analyzed. We will refer to the latter model
as the Category Grounding Model (CGM) for convenience.
The system described by the BGM model is equipped with a mechanism/ability

to correctly identify individual objects, i.e. it observes the entity and knows that it
is the individual entity e. The consequence on the formal level is the possibility of
marking the real entity and its internal image in the system with the same symbol e
– each observed object is “transferred” one-to-one to the agent’s mental space. The
main difference between the models is therefore the fact that in the BGM model there
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is no distinction between the real entities observed by the agent and objects in the
agent’s mental space, while in the CGM model there is such a distinction. Thus, in
the BGM model it is not possible for two entities with the same values of attributes
to be mapped to one object in mental space, as is the case in the CGM model. The
differences between the models in this respect are shown in the figure 5.10.

BGM agent

e1

A B C

1 0 1

e2

A B C

1 0 1

CGM agent
e1

A B C

1 0 1

e2

A B C

1 0 1

x1,1

A B C
1 0 1

x1,2

A B C
1 0 1

o2
A B C
1 0 1

A B C

1 0 1
e1

A B C

1 0 1
e2

Figure 5.10: Difference between BGM and CGM models.

Thus, in the CGM model, for application reasons, the internal model is significantly
expanded, considering the transition: the entity → the object in the perception of the
agent → the object in the agent’s mental space. To obtain an unambiguous interpre-
tation, it was necessary to introduce more symbols in the CGM model, corresponding
to the internal and external representation of the objects. The above complication of
the model is needed to obtain behaviors closer to the natural ones in the context of
generating statements about the membership of the object to the category. The system
becomes more complex but includes more functionality as there are fewer restrictions
placed on it. In the BGM model, the agent must track entities in subsequent episodes,
i.e. unambiguously recognize a given entity ei in all experienced episodes, throughout
the entire period of the agent’s “life”. In CGM, the continuity in object identification
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is not required.
For the above reasons, it was necessary to change the original notation of the BGM

model. In publications on BGM, the set of objects O contains the set of real objects
(entities) observed by the agent, while in the CGM model the set of objects O contains
the universe of all objects that the agent can “imagine”. To avoid a name conflict, we
will call a set of BGM objects a set of entities and denote them with the letter E. The
set of objects O will only refer to the concept from the CGM model.
The basic definitions based on [31] necessary to formally define the grounding re-

lationship in the meaning of the BGM are presented below. In BGM the external
environment can be defined as a dynamic system of objectively existing atom entities.
Particular states of these entities are related to time points T = {t0, t1, t2, ...} ordered
by the relation ¬TM .

Definition 5.19. At each time point t the following tuple of sets is given

PS(t) =< E,P1(t), ..., PK(t) >

which elements are assigned the following roles and interpretations: E = {e1, e2, ..., eM}
denotes the set of all atom entities located in the external world. Members of the set
∆ = {P1, P2, ..., PK} are the names of properties that can be attributed to entities from
E. In particular, each entity e ∈ E may or may not exhibit each property P ∈ ∆.

Definition 5.20. Each internal representation of the result of observation carried out
by the cognitive agent at a time point t is given as the tuple of sets, called the base
profile:

BP (t) =< E,P+1 (t), P
−
1 (t), ..., P

+
K (t), P

−
K (t) >

where

� for each j = 1, 2, ..., K, the following relations P+j (t) ⊆ E and P−j (t) ⊆ E hold,

� for each e ∈ E the relation e ∈ P+j (t) holds if and only if the cognitive agent re-
sponsible for the creation of base profile BP (t) perceived the entity e as exhibiting
the property Pj at the time point t,

� for each e ∈ E the relation e ∈ P−j (t) holds if and only if the cognitive agent
responsible for the creation of base profile BP (t) did not perceive the entity e as
exhibiting the property Pj at the time point t,

� for each j = 1, 2, ..., K the condition P+j (t) ∩ P−j (t) = ∅ holds; it represents the
basic constraints of natural cognition, according to which it is not possible to
perceive the same entity e as exhibiting and not exhibiting the same property Pj
at the same time point t.
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Definition 5.21. At each time point t ∈ T the state of empirical knowledge about the
external world is defined by a temporal collection of base profiles given as follows:

KS(t) = {BP (tn) : tn ∈ T and tn ¬TM t}.

Definition 5.22. Let the symbols A1(t) and A2(t) denote the so called grounding sets.
The content of A1(t) and A2(t) is defined as follows:

A1(t) = {BP (tn) : tn ¬TM t and BP (tn) ∈ KS(t) and e ∈ P+(tn)},

A2(t) = {BP (tn) : tn ¬TM t and BP (tn) ∈ KS(t) and e ∈ P−(tn)}.

The set A1(t) consists of all base profiles from KS(t), which have been created by
the cognitive agent up to the time point t and represent the empirical experience of the
entity e exhibiting the property P . The set A2(t) consists of all base profiles in which
the entity e is represented as not exhibiting the property P .

Definition 5.23. The inductive strength of the grounding sets Ai(t), i ∈ {1, 2}, is
given as its cardinality G(Ai(t)) = card(Ai(t)).

Definition 5.24. For the formulas p(e) and ¬p(e) the relative grounding strength λBG
is given for each time point t by the following equations:

λBG(t, p(e)) =
G(A1(t))

G(A1(t)) +G(A2(t))

λBG(t,¬p(e)) =
G(A2(t))

G(A1(t)) +G(A2(t))

The relative grounding strength will be compared with the modality thresholds. The
following dependencies are assumed, which guarantee the basic rationality of linguistic
behavior:

0 < λminPos < λmaxPos ¬ λminBel < λmaxBel ¬ 1.

Another dimension of cognition that influences the definition of epistemic satisfac-
tion relation is the above mentioned distribution of the content of A1(t) and A2(t) over
the conscious subspaceWS(t) and non-conscious cognitive subspace LS(t).WS(t) can
be considered as a working memory and LS(t) as a long term memory.

Definition 5.25. At each time point t ∈ T the t-related state of cognition is described
by the following binary partition of KS(t):

PS(t) = {WS(t), LS(t)}

where the conditions WS(t) ∪ LS(t) = PS(t) and WS(t) ∩ LS(t) = ∅ hold.
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Definition 5.26. Let the t-related distribution of the empirical material of the formu-
las p(e) and ¬p(e), respectively, be given by the following set PS(t) = {WA1(t), LA1(t),
WA2(t), LA2(t)}, where for i=1,2,

� WAi(t) = WS(t) ∩ Ai(t),

� LAi(t) = LS(t) ∩ Ai(t),

� WAi(t) ∩ LAi(t) = ∅,

� WAi(t) ∪ LAi(t) = Ai(t).

Based on the above definitions, we can define the conditions necessary to ground
specific formulas. They use the relation of epistemic satisfaction of the formula, just
like the CGM model.

formula assigned meaning
p(e) Entity e exhibits property P .
¬p(e) Entity e does not exhibit the property P .
Pos(ϕ) It is possible that ϕ.
Bel(ϕ) I believe that ϕ.
Know(ϕ) I know that ϕ.

Table 5.5: Commonsense semantics of atomic formulas in BGM model.

The main difference in syntax is that the formulas in the BGM model refer to the
current state of the feature P in the entity e, while in the CGM model they express
the belonging (or not) of the object x to the category c. Direct observation of the state
of a feature in an object is thus replaced by the mechanism of placing the image of the
observed object in relation to the internally (cognitively) built prototype related to the
feature analyzed at the moment, i.e. the occurrence of which means belonging to the
category, and the lack of occurrence as the opposite situation.
The membership to a given category can therefore be considered a feature of the

object – e.g. belonging to the Fruit category can be modeled as the IsFruit attribute
with the values Y es/No. However, it is not possible to apply directly to the CGM
model the cognitive semantics described for the BGM model[31, 32]. Hence, it was
necessary to develop the original cognitive semantics for the CGM model, as described
in this dissertation. The definitions of epistemic satisfaction relations in both models
are compared below.

Definition 5.27. Let a time point t ∈ T and a distribution of base profiles PS(t) =
{WA1(t), LA1(t),WA2(t), LA2(t)} be given.
For each property P ∈ {P1, ..., PK} and each entity e ∈ E the epistemic satisfac-

tion relation PS(t) ⊨BG Know(p(e)) and PS(t) ⊨BG p(e) holds if and only if either
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the relation e ∈ P+(t) or the relations e ∈ E \ (P+(t) ∪ P−(t)), WA1(t) ̸= ∅ and
λBG(t, p(e)) = 1 hold.

As one can see, the conditions for grounding the non-modal formula p(e) and the
modal formula Know(p(e)) are identical. This is in line with common-sense principles
governing the generation of the modal statements. Namely, the statement “The entity
e exhibits the property P” is pronounced if and only if it is possible to equivalently
express the phrase “I know that the entity e exhibits the property P”. In the CGM
model, non-modal statements are not considered, but of course it can be extended in
a similar way. In further analysis, however, we will limit ourselves to modal formulas.

The definition distinguishes two groups of cognitive states in which the conditions
for formula Know(p(e)) are satisfied. The first group of cognitive states includes states
in which the current baseline profile (representing the last observation) asserts that the
entity e exhibits the property P . Then it is not necessary to refer to previous experience
in the exhibition of the property P by the entity e. The intensity of the latest experience
guarantees the compliance of the constructed image of the environment with the state
of external reality. Consequently, the formulas are grounded in the state of knowing
the state of the property P in the entity e. For the CGM model, in the definitions 5.5
and 5.14 of the epistemic satisfaction relation of the formula Know(x ∈ c) there is
no equivalent of this cognitive state, because we consider belonging to a category to
be something beyond the current value of a particular property or attribute. In many
cases, the membership to a category extends over the entire lifetime of the object (e.g.
the categories Bird, Table). There are also situations when the object can change
its category membership (e.g. the categories Dangerous, Beautiful) but rather, it is
likely that these changes span through more than one episode. For this reason, the
definitions of the epistemic satisfaction relations in the CGM model refer to objects in
the universe of the agent’s mental space, and not to the observed entities. Introducing
such an equivalent to the CGM model would require reference to the teacher’s current
labeling. However, it does not seem appropriate to relate the satisfiability of a relation
simultaneously to the current observation of a real, concrete entity and object from
the mental space, which is an idealized image of a certain being. This would also result
in the agent behaving differently in situations where the entity is labeled in a given
episode and where there is no such label. This would make it difficult for the teacher
to judge the degree of the agent’s mastery of the meaning of the category.

The second group of states includes ones in which it is not possible to know the
current state of the property P in the entity e by observing the above entity. The
agent must refer to previous empirical experience of the property P in the entity e.
The conditionsWA1(t) ̸= ∅ and λBG(t, p(e)) = 1 mean that A2(t) = ∅, thus the agent
never observed the property P not present in the entity e. The current view of the
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world thus supports its view of the unconditional presence of the property P in the
entity e. The status of this type of knowledge is different than for the evident presence
of P in the entity e due to its relativization to the recognized past states. However,
the experienced pattern of the outside world offers no alternative. The agent simply
knows, because it has not experienced a different state of the world. In the case of the
CGM model, the formula Know(x ∈ c) can be grounded, when the object x belongs
to the core of the model of category c. This means that all objects as close or closer to
the prototype of the category c, belong to c. As one can see, this is a broader definition
than in the BGM model, in the sense that it refers to the agent’s experience with many
objects, not only to the current entity under consideration. Nevertheless, the principle
is similar – the agent has not experienced a situation in which the object not belonging
to the c category was closer to the prototype than the object x for which the relation
of epistemic satisfaction of the formula Know(x ∈ c) is being determined. Therefore,
the situations in both models are functionally similar.

Definition 5.28. Let a time point t ∈ T and a distribution of base profiles PS(t) =
{WA1(t), LA1(t),WA2(t), LA2(t)} be given.
For each property P ∈ {P1, ..., PK} and each entity e ∈ E the epistemic satisfaction

relation PS(t) ⊨BG Know(¬p(e)) and PS(t) ⊨BG ¬p(e) hold if and only if either
the relation e ∈ P−(t) or the relations e ∈ E \ (P+(t) ∪ P−(t)), WA2(t) ̸= ∅ and
λBG(t,¬p(e)) = 1 hold.

Similar reasoning can be carried out for the relation of epistemic satisfaction of
formulas PS(t) ⊨BG Know(¬p(e)) and PS(t) ⊨BG ¬p(e). This time, in the CGM
model, the formula Know(x /∈ c) can be grounded, when the object x belongs to the
outer region of the category c. This means that the agent did not experience a situation,
where the object belonging to the category c was further from the prototype than the
object x for which the epistemic satisfaction relation of the formula Know(x /∈ c)
is determined. In the BGM model, this means that the agent has experienced only
situations when the property P is not present in the entity e (meaning A1(t) = ∅).

Definition 5.29. Let a time point t ∈ T , a distribution of base profiles PS(t) =
{WA1(t), LA1(t),WA2(t), LA2(t)} and a system of modality thresholds with the con-
straint 0 < λminPos < λmaxPos ¬ λminBel < λmaxBel ¬ 1 be given.
For each property P ∈ {P1, ..., PK} and each entity e ∈ E the epistemic satisfaction

relation PS(t) ⊨BG Bel(p(e)) holds if and only if the relations e ∈ E \ (P+(t)∪P−(t)),
WA1(t) ̸= ∅ and λminBel ¬ λBG(t, p(e)) ¬ λmaxBel hold.

The formula Bel(p(e)) is epistemically satisfied when the state of the agent’s co-
gnitive processes does not allow for an unambiguous empirical determination of the
state of the property P in the entity e. Such a situation occurs when the state of the
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property P in the entity e was not included in the last (most recent) environmental
observation. Hence, it is expected to occur e ∈ E \ (P+(t) ∪ P−(t)). Consequently,
recognition about the state of the property P in the entity e is possible only by re-
ferring to the empirical experience to date. Including all other experiences related to
the property P in the entity e (including complementary ones) is guaranteed by the
previously adopted definition of the relative grounding strength λBG(t, p(e)). If the
strength of the experience associated with the occurrence of the property P turns out
to be large enough (i.e. the condition λminBel ¬ λBG(t, p(e)) ¬ λmaxBel is met), the
state of processing the content of the property P in the entity e can be communicated
to another conversation participant by sending a message of the form Bel(p(e)). In the
case of the CGM model, the relative grounding strength λc is also used (definition 5.8),
but again it refers to many previously observed objects, instead of only the current
entity as in BGM. Also in CGM, grounding the formula Bel(x ∈ c) is possible only
when the condition λminBel ¬ λc(ENc(o, ε)) is met. In CGM the threshold λmaxBel is
not used, because the Know and Bel operators are chosen basing on the area in which
the object x is located, and not on the basis of λc. In the CGM model, grounding the
formula Bel(x ∈ c) is equivalent to grounding the formula Pos(x /∈ c), which is treated
as complementary.

Definition 5.30. Let a time point t ∈ T , a distribution of base profiles PS(t) =
{WA1(t), LA1(t),WA2(t), LA2(t)} and a system of modality thresholds with the con-
straint 0 < λminPos < λmaxPos ¬ λminBel < λmaxBel ¬ 1 be given.
For each property P ∈ {P1, ..., PK} and each entity e ∈ E the epistemic satisfaction

relation PS(t) ⊨BG Pos(p(e)) holds if and only if the relations e ∈ E \ (P+(t)∪P−(t)),
WA1(t) ̸= ∅ and λminPos ¬ λBG(t, p(e)) ¬ λmaxPos hold.

The epistemic satisfaction of the above formula can be interpreted in a very similar
way as the formula Bel(p(e)). Its definition only uses a different set of thresholds:
λminPos and λmaxPos. In the CGM model, the threshold λminPos is not needed, because
the possibility of belonging to a category is excluded on the basis of assigning the object
to the outer region of the category. Instead of the threshold λmaxPos the condition
λc(ENc(o, ε)) < λminBel is used, which corresponds to the assumption that λmaxPos =
λminBel. The fulfillment of the above condition means that it is justified to ground the
formulas Pos(x ∈ c) and Bel(x /∈ c).

Definition 5.31. Let a time point t ∈ T , a distribution of base profiles PS(t) =
{WA1(t), LA1(t),WA2(t), LA2(t)} and a system of modality thresholds with the con-
straint 0 < λminPos < λmaxPos ¬ λminBel < λmaxBel ¬ 1 be given.
For each property P ∈ {P1, ..., PK} and each entity e ∈ E the epistemic satisfaction

relation PS(t) ⊨BG Bel(¬p(e)) holds if and only if the relations e ∈ E\(P+(t)∪P−(t)),
WA2(t) ̸= ∅ and λminBel ¬ λBG(t,¬p(e)) ¬ λmaxBel hold.
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Definition 5.32. Let a time point t ∈ T , a distribution of base profiles PS(t) =
{WA1(t), LA1(t),WA2(t), LA2(t)} and a system of modality thresholds with the con-
straint 0 < λminPos < λmaxPos ¬ λminBel < λmaxBel ¬ 1 be given.
For each property P ∈ {P1, ..., PK} and each entity e ∈ E the epistemic satisfaction

relation PS(t) ⊨BG Pos(¬p(e)) holds if and only if the relations e ∈ E\(P+(t)∪P−(t)),
WA2(t) ̸= ∅ and λminPos ¬ λBG(t,¬p(e)) ¬ λmaxPos hold.

The grounding of formulas indicating not belonging to the category has already
been discussed above. In the BGM model, the satisfaction of the epistemic relation
for analogous formulas is defined using a function λBG(t,¬p(e)). Because it is com-
plementary to λBG(t, p(e)) (in the sense that λBG(t, p(e)) + λBG(t,¬p(e)) = 1), its
interpretation is analogous to that for formulas Bel(p(e)) and Pos(p(e)).
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Chapter 6

Implementation models

6.1 Introduction

6.1.1 Introductory remarks on possible implementations

Previous chapters present the general strategy of model and statement construction.
Its implementation requires specifying the particular macrostructure and mechanism
of candidate extraction. Their selection depends on the (known or assumed) structure
of the categories that we want the agent to learn. This chapter provides examples of
the use of three different macrostructures and their respective selection mechanisms.
Referring again to the psycholinguistic research[38] – the prototypical elements are

the ones that:

(a) have the most properties in common with other elements of the category,

(b) and at the same time the least common properties with the elements of opposite
categories.

In this chapter, three models are presented. The first of them is based on simple
(unweighted) Hamming distance measure and it satisfies only the condition (a), yet it
is easy to implement. The next two models are more complicated, based on Hamming
distance with weights, and they take into account both prototype conditions.
One can consider as the macrostructure many other measures described in literatu-

re, including similarity[87] measures instead of distance functions, e.g. [28, 46, 51, 70].

6.1.2 Central element in applications – k-means and k-medoids

clustering algorithms

A task of searching for candidates for a prototype is close to problem of choosing a
central element for a cluster. There is a lot of different algorithms for clustering in
literature, since there are many definitions of a cluster itself [13].
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Calculation of central elements of a set and, in particular, a calculation of centroids
and medoids constitutes a foundation of k-means[25, 26] and k-medoids[35] algorithms,
as it is performed in each cycle of those clustering algorithms. Depending on a parti-
cular case, evaluations of centroids/medoids are performed in literature for a variety of
distance functions. There is a lot of existing research focusing on optimization of the
computational complexity of k-means and k-medoids algorithms. However, most of the
approaches optimizing complexity of these algorithms focus strictly on aspects related
to those algorithms themselves. That is, they usually aim to reduce the complexity by
restricting the number of needed recalculations between the particular cycles of the
main algorithm loop[30, 65, 82]. That provides results useful in a general case as they
are independent of an underlying distance function. Moreover, the literature dealing
with weighted distance functions assign weights only to objects, while in case of We-
ighted Hamming distance introduced in next subchapters, both weights of objects and
weights of attributes are considered.

In the following examples involving Hamming distance (and some of its modifica-
tions) we will focus on showing how to effectively evaluate a centroid and a medoid of
a multiset while optimizing according to an assumed distance function.

6.2 Hamming distance

6.2.1 Macrostructure

In this model, the macrostructure influences the selection of prototype candidates. For
this reason, the selected function should allow the prototyping conditions given in the
chapter 6.1.1 to be met. The condition (a) given there can be interpreted as meaning
that the higher the number of common attributes between the elements of a category,
the greater the degree of similarity and lower the distance between these elements.
Hence, it is proposed to use the Hamming distance, i.e. the number of attributes which
values for the oi and oj objects are different. 1

Definition 6.1. The Hamming distance fH for the vectors oi and oj is defined as

1The above distance measure is also called Manhattan or city distance, and is a special case of
Minkowski distance for p = 1. The Minkowski distance f for the vectors oi and oj is defined as follows:

f(oi, oj) = (
∑
a∈A
|oi(a)− oj(a)|p)1/p

where p ∈ R. It is possible to consider using a distance measure for p > 1. The literature[80] suggests
that this may be beneficial for attributes that are continuous and represent similar attributes such as
height, width, and depth. However, this is beyond the scope of this dissertation.
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follows:

fH(oi, oj) =
∑
a∈A

0 if oi(a) = oj(a)1 if oi(a) ̸= oj(a).

Property 6.1. For any two objects oi, oj ∈ O evaluation of Hamming distance fH(oi, oj)
requires m = |A| comparison operations and m-1 additions, giving an overall compu-
tational complexity of O(m+m− 1) = O(m).

6.2.2 Mechanism of centroid candidates extraction

In this chapter, let the extractCandidates function determine the centroids of the mul-
tiset Ê+c (Expc) based on the Hamming distance, more precisely:

Definition 6.2. Given a macrostructure in a form of Hamming distance fH , an out-
put of extractCandidates(Ê+c (Expc)) is defined as a set of such o

′ ∈ O that fulfill a
condition:

FH(o′, Ê+c (Expc)) = min
o∈O
FH(o, Ê+c (Expc)) (6.2.1)

that is they minimize the following sum:

FH(o, Ê+c (Expc)) =
∑
e∈E+c

(k+e · fH(o, e)). (6.2.2)

The above condition is fulfilled by such objects o′ for which a sum of fH distance
to other objects from E+c (additionally weighted by multiplicity of respective objects
in Ê+c (Expc)) is lowest. In the centroid extraction task (as opposed to the medoid
determination task, which is analyzed in later chapters), a representative is selected
from all available space. This means that for selected objects it may happen that the
multiplicity of k+o′ is 0, which is equivalent to the fact that for a given object o

′ there is
no positive learning material about such an object and a given concept. The o′ objects
are therefore the centroids of the multiset Ê+c (Expc).
In order to find such objects o′ one can naively follow a definition 6.2 in a direct

way by performing an exhaustive search over a set O, and by calculating a sum (6.2.2)
for every potential candidate o ∈ O.

Theorem 6.1. Naive approach, that is, an exhaustive search over a set O in order
to find objects satisfying a condition (6.2.1) formulated in definition 6.2 leads to an
exponential computational complexity in relation to a number of attributes used for
describing objects from O provided that a number of values of each attribute is non-
trivial ( 2) and finite.

Proof. Assume m = |A| – a number of attributes, n = |E+c | – a cardinality of the
set of positive examples for the category c. To estimate the complexity from below,
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let us assume that all attributes a ∈ A are binary (that is, they have exactly two
distinct values each). Then a cardinality of the universe |O| = 2m. A computational
complexity of each calculation of fH(o, e) is O(m) (see property 6.1). A function fH(o, e)
needs to be evaluated for each pair of objects o ∈ O and e ∈ E+c , which leads to
n · 2m distinct evaluations. It leads to a final polynomial-exponential computational
complexity O(m · n · 2m) with an exponential component dependent on m.
Naturally, as a number of values of any attribute a ∈ A is greater than 2, a cardinali-

ty of the universe O grows, which translates to a higher number of required evaluations
of fWH and, in consequence, to higher complexity (e.g., if every attribute has exactly
three distinct values, the final complexity becomes O(m · n · 3m)).
In general, a component 2m is a multiplication of cardinalities of sets of values of

respective properties. To estimate the complexity from above, let us assume that lmax
is the largest cardinality of sets of properties’ values (it exists since there is always
a maximum integer in a finite set of finite integers). It leads to an approximation of
the upper bound of the complexity as O(m · n · (lmax)m), which is still exponential in
relation to m. ■

The use of exponential complexity algorithms in practical context is very limiting
and often imposes strict restrictions on the size of the problem. In particular, it would be
necessary to provide input data instances containing only a small number of attributes.

Let us investigate the way that for each object o that is the potential candidate for
prototype, the sum FH(o, Ê+c (Expc)) is calculated:

FH(o, Ê+c (Expc)) =
∑
e∈E+c

(k+e · fH(o, e)) =
∑
e∈E+c

k+e ·∑
a∈A

0 if o(a) = e(a)1 if o(a) ̸= e(a)

 .
It is valid to put k+e inside the internal sum. Furthermore, both sums are finite, so

the order of these sums is not important, thus

FH(o, Ê+c (Expc)) =
∑
a∈A

 ∑
e∈E+c

k+e ·
0 if o(a) = e(a)1 if o(a) ̸= e(a)


 . (6.2.3)

It is easy to notice that for a given Ê+c (Expc) and attribute a, the value of the
expression within square brackets, i.e.

∑
e∈E+c

k+e ·
0 if o(a) = e(a)1 if o(a) ̸= e(a)

 , (6.2.4)

depends only on a choice of o(a) and on values of particular e(a) of particular objects
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from the original multiset and, what is more important, it does not depend on values of
other attributes, both within object o, and within other objects e. It means that when
choosing from the whole universe O, that is, when all value combinations are allowed,
we can optimize (6.2.4) for every property separately.
Let as assume that v ∈ Va is one of values of an attribute a and let us introduce a

notion

S(v, Ê+c (Expc), a) =
∑
e∈E+c

k+e ·
0 if v = e(a)1 if v ̸= e(a)

 . (6.2.5)

Lemma 6.2. A necessary and sufficient condition for an object o′ = (o′(a1), o′(a2), . . . ,
o′(am)) to be a proper centroid (satisfying (6.2.1)) is to fulfill a set of sub-conditions:

S(o′(ai), Ê+c (Expc), ai) = min
v∈Vai
S(v, Ê+c (Expc), ai) (6.2.6)

for i = 1, 2, . . . ,m.

Proof. It follows directly from an argumentation preceding the lemma. ■

Lemma 6.3. In order for o′ to minimize S(v, Ê+c (Expc), a) it is enough for every
particular attribute a ∈ A to assign the most common (in objects from the original
multiset) value of an attribute a to o′(a). If there is more than one value of a that is
most common in Ê+c (Expc), then all these values are equally good values of o

′(a).

Proof. The expression S(v, Ê+c (Expc), a) for a respective attribute a directly evaluates
to a number of objects from the multiset Ê+c (Expc) that exhibit a different value of a
than v. It means that this expression is minimized by such values v ∈ Va that are most
frequent in objects from the multiset Ê+c (Expc). ■

A commonsense interpretation of ‘good candidates’ described in lemma 6.3 is a
vector containing most frequent values for each separate attribute. Attributes with
multiple most-frequent values (that tied in terms of their occurrences) lead to additional
optimal solutions which in some cases might lead to huge solution sets, e.g., in an initial
stage of an agent’s life where categories are not yet well defined.
Nonetheless, lemma 6.3 directly leads to a proposal of a three-phase algorithm 6.1.

In the first phase (lines 1-5) it calculates occurrences of particular values within re-
spective attributes. In the second phase (lines 6-7) the best values are chosen for each
attribute (depending on calculated occurrences in Hamming distance). In the third
phase (lines 8-17) a set of solutions (here: candidates) is constructed.
As stated in theorem 6.1, a naive approach to a Hamming distance-based evaluation

of a centroid of a multiset has a mixed polynomial-exponential complexity between
O(m ·n ·2m) and O(m ·n · (lmax)m). Let us show the reduced computational complexity
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Algorithm 6.1: extractCandidates for Hamming distance fH
Input: a multiset Ê+c (Expc), a distance function fH
Output: set of candidates Candidates

1 foreach attribute a in A do
2 Initiate a dictionary La = {⟨v, 0⟩ : v ∈ Va};
3 foreach object o in E+c do
4 foreach attribute a in A do
5 La(o(a))← La(o(a)) + k+o ;

6 foreach attribute a in A do
7 Ha ← a set of values v from Va with the highest number of occurrences

La(v);

8 o ← new object;
9 Candidates← {o};
10 foreach attribute a in A do
11 newCandidates← ∅;
12 foreach value h in Ha do
13 foreach object o in Candidates do
14 o′ ← duplicate of o;
15 o′(a)← h;
16 add o′ to newCandidates;

17 Candidates← newCandidates;

provided by algorithm 6.1. The algorithm improves on this by reducing the number of
loops and changing their order in comparison to the naive count.

Lemma 6.4. A computational complexity of the first stage (lines 1-5) of algorithm 6.1
is approximated from above by O(m · lmax) +O(n ·m) = O(m · (lmax + n)).

Proof. Initialization of dictionary La (lines 1-2) has to be performed for each of m
attributes. In worst-case scenario, the number of values for an attribute is assumed to
be equal to lmax, thus computational complexity of lines 1-2 is O(m · lmax).
Calculation of frequency of values in objects in E+c (lines 3-5) involves two loops -

iterating over n objects and m attributes. Thus computational complexity of lines 3-5
is O(n ·m).
It lets us evaluate an overall complexity of lines 1-5 as O(m · lmax) + O(n · m) =

O(m · (lmax + n)). ■

Lemma 6.5. A computational complexity of the second stage (lines 6-7) of algori-
thm 6.1 is O(m · lmax).

Proof. A loop in line 6 iterates m times. The choice of the most frequent values is
approximated as O(lmax) – their further assignment to Ha does not further raise a
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character of this complexity. It lets us evaluate an overall computational complexity of
lines 6-7 as O(m · lmax). ■

A complexity of the third stage (lines 8-17) of algorithm 6.1 requires a more exten-
ded comment. It is easy to notice that a set of optimal solutions (following the notions
used in the algorithm) takes a form of a following Cartesian product:

Candidates = Ha1 ×Ha2 × · · · ×Ham (6.2.7)

and its size is directly dependent on a cardinality of particular sets Ha. It means that
in a borderline case where there is exactly one most common value per attribute,
there is exactly one optimal solution. However, as a number of ‘ties’ grows within
particular attributes, a set Candidates grows exponentially in size (per each attribute
with more than one optimal value). It leads to an exponential evaluation of a worst-
case complexity for the third stage of the algorithm (note that in our assumptions all
optimal solutions need to be listed and returned in their final form; were it instead
required to provide just one optimal solution, it would become as simple as O(m)).

Lemma 6.6. Assume m = |A| – a number of attributes, n = |E+c | – a cardinality
of the set of positive examples for the category c. As elements of sets Ha are chosen
from corresponding sets VA, then their cardinality cannot be larger than their respective
counterparts. In consequence, |Ha| ¬ |Va| for a ∈ A, and therefore it is possible to
estimate a cardinality of all Ha from above by lmax = maxa∈A |Va|. A computational
complexity of a third stage (lines 8-17) of algorithm 6.1 is approximated from above by
O(lmmax) for the worst-case scenario.

Proof. The complexity follows directly from a need to generate a whole Cartesian pro-
duct (6.2.7) and an estimation mentioned in the lemma itself. It leads to the following
dependencies:

∏
a∈A
|Ha| ¬

∏
a∈A
|Va| ¬

∏
a∈A

(
max
a′∈A
|Va′|
)
=
∏
a∈A
lmax = lmmax.

■

A computational complexity of the worst-case scenario, as already mentioned, is
extremely higher in comparison to the complexity of the best-case scenario which is
summed up within a following straightforward lemma.

Lemma 6.7. Assume m = |A| – a number of attributes. If every Ha contains just
a single element, that is if there is a single most frequent value for each attribute
a ∈ A, then a computational complexity of a third stage (lines 8-17) of algorithm 6.1
is polynomial, O(m).
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Proof. If there is a single most frequent value for each attribute a ∈ A, then Candidates
set includes only one element through all iterations of algorithm. The construction of
that element needsm assignment operations. Thus computational complexity of lines 8-
17 is O(m). ■

It leads to the final estimation of a computational complexity of the whole algori-
thm 6.1.

Theorem 6.8. Assume m = |A| – a number of attributes, n = |E+c | – a cardinality of
the set of positive examples for the category c, lmax = maxa∈A |Va| – an overestimation
of the cardinality of sets Va for a ∈ A.
A computational complexity of the whole algorithm in the best-case scenario (with

only one optimal candidate) is not worse than O(m · (lmax + n) + m · lmax + m) =
O(m · (lmax + n)).
A computational complexity of the whole algorithm in the worst-case scenario (with

all potential candidates being optimal) is not worse than O(m · (lmax + n) +m · lmax +
lmmax) = O(m · (lmax + n) + lmmax).

Proof. A proof follows directly from previous evaluations of computational complexities
of particular parts which are simply sequentially connected in algorithm 6.1. ■

Conclusions. Two extreme situations regarding the computational complexity of the
algorithm 6.1 are presented above. In practical applications, it is unlikely that many
attributes have more than one most common value, so the computational complexity
of the algorithm should approach the polynomial. The algorithm 6.1 can therefore be
used in practice, which was confirmed by the simulation tests presented in chapter 7.

Worth noting is the fact, that compared to the naive approach, characterized by
absolutely exponential computational complexity, the obtained algorithm reviews the
original learning material (the multiset Ê+c (Expc)) only once, and a potential expo-
nential complexity element occurs only in the pessimistic case, when the size of the
set of optimal solutions is very numerous and is related only to the construction of all
instances of optimal candidates, not to their determination.

In a particular version of the algorithm 4.2, where only one optimal candidate would
be searched and not the whole set of optimal candidates, the computational complexity
of the proposed computational approach would be strictly polynomial.

6.2.3 Illustrative example – centroids

Let us assume, for the sake of simplicity, that the agent’s experience consists of only
two episodes. The world accessible to the agent’s perception is described by five binary
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attributes. Its observations collected during two episodes are presented in the table
below. As can be seen, they concern only one category c.

episode object a1 a2 a3 a4 a5 labels

Episode(t1)

x1,1 1 1 1 1 1 is-c
x1,2 0 0 1 1 0 is-c
x1,3 0 0 1 0 1 not-c
x1,4 0 1 0 1 1 not-c

Episode(t2)

x2,1 1 1 0 1 1 is-c
x2,2 0 1 1 0 0 is-c
x2,3 0 0 1 1 1 not-c
x2,4 0 1 1 0 1 not-c

Table 6.1: Example using Hamming distance.

Initial computations Based on the above observations, as a result of the preproces-
sing performed by the agent after the second episode, its experience regarding the cate-
gory c will be collected in the form of a multiset Expc = {1(o7,+)c, 1(o13,+)c, 1(o28,+)c,
1(o32,+)c, 1(o6,−)c, 1(o8,−)c, 1(o12,−)c, 1(o14,−)c} where o6 = [00101], o7 = [00110],
o8 = [00111], o12 = [01011], o13 = [01100], o14 = [01101], o28 = [11011], o32 = [11111].
Let us notice, that O = {o1, ..., o32}.
It follows from the above:

� E+ = E+c (Expc) = {o7, o13, o28, o32},

� E− = E−c (Expc) = {o6, o8, o12, o14}.

Naive extraction of candidates In order to find candidates by naively following
the definition 6.2, one has to perform an exhaustive search over the set O, involving
calculation of the sum (6.2.2) for every potential candidate o ∈ O. Most important
data produced during that process are shown in the table 6.2, naturally complete table
consists of 32 rows.

o ∈ O fH(o, o7) fH(o, o13) fH(o, o28) fH(o, o32) FH(o, Ê+c (Expc))
o1 2 2 4 5 13
o2 3 3 3 4 13

...
o15 1 1 3 2 7
o16 2 2 2 1 7

...
o31 2 2 2 1 7
o32 3 3 1 0 7

Table 6.2: Exhaustive search for centroids, Hamming distance.
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In this example m = 5, n = 4 and lmax = 2. From previous analysis, we know that
it takes (2 ·m− 1) ·n · (lmax)m+(n− 1) · (lmax)m = (2 · 5− 1) · 4 · 25+(4− 1) · 25 = 1248
basic (like comparison and addition) operations to perform an exhaustive search over
the set O.
Minimal FH(o, Ê+c (Expc)) is equal to 7. There are four objects o

′ ∈ O with that va-
lue of FH(o, Ê+c (Expc)). They constitute a set of candidates for prototype: Candidates =
{o15, o16, o31, o32}, where o15 = [01110], o16 = [01111], o31 = [11110], o32 = [11111].

Optimized extraction of candidates During the first stage of the algorithm 6.1
the number of occurrences of values of attributes is calculated, and stored in the dictio-
nary La. The result is shown in the table 6.3. It takes m · lmax = 5 · 2 = 10 assignment
operations to initialize dictionary La and n · m = 4 · 5 = 20 addition operations to
calculate the number of occurrences.

a1 a2 a3 a4 a5
La(0) 2 1 1 1 2
La(1) 2 3 3 3 2
Ha {0, 1} {1} {1} {1} {0, 1}

Table 6.3: Dictionary La and most frequent values Ha, Hamming distance.

In the second stage of the algorithm 6.1 a set of values v from Va with the highest
number of occurrences is determined for all a ∈ A. The result is also shown in the
table 6.3. It takes 7 assignment operations to memorize all Ha sets.
During the third stage of the algorithm 6.1, the candidates for prototype are con-

structed. Since there are four potential candidates, their construction takes 20 assign-
ment operations. The result is obviously identical to naive approach described above:
Candidates = {o15, o16, o31, o32}, where o15 = [01110], o16 = [01111], o31 = [11110],
o32 = [11111]. Let us note however, that obtaining this result takes much less basic
operations than in case of naive approach – 57 in total, comparing to 1248 in naive
approach. Naturally, the difference will be greater as the number of attributes m grows.

Calculation of prototype and quality of model The quality of the model of
category strongly depends on the order in which the parameters for the candidates are
calculated. If vector o31 = [11110] is selected first, then the model’s coefficients look
like this:

� τ+c = 2,

� τ−c = 3,

� Corec(o31) = {o7, o13, o28, o32},
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� Outerc(o31) = {o6, o8, o12, o14},

� Boundaryc(o31) = ∅.

In this case, the results achieved meet the condition for category c to be learned
because |Corec(o31)| = 4  0 = |Boundaryc(o31)∩E+|. In consequence, the object o31
is assigned as the prototype o⋆c of the properly established category c with τ

+
c and τ

−
c

as its radii. The category c can be integrated with the ontological knowledge base.
The above model can be shown as in the figure 6.1. Obviously, the category is

well defined – the model divides above examples into two subsets: belonging and not
belonging to the category, thus the border is empty.

o [2]7

o [3]8

o  [1]32

core

boundaryouter

o [4]6

τc
+

τc
-

o  [2]28

o  [2]13

o  [3]12

o  [3]14o
31

Figure 6.1: Model mc for Hamming distance with centroid prototype.

However, if vector o32 = [11111] is chosen as a candidate, the results will be much
worse, the boundary includes as many as 6 objects:

� τ+c = 1,

� τ−c = NULL,

� Corec(o32) = {o28, o32},

� Outerc(o32) = ∅,

� Boundaryc(o32) = {o6, o7, o8, o12, o13, o14}.

Nevertheless, the acceptance condition is met because |Corec(o32)| = 2  2 =
|Boundaryc(o32)∩E+|. Consequently, the object will be considered a prototype, despite
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the apparently lower quality of the model. This version of the model is shown in the
figure 6.2.

o [3]7

o [2]8

core

boundary

o [3]6

τc
+

o  [1]28

o  [3]13o  [2]12

o [2]14
o  [0]

32

Figure 6.2: Model mc for Hamming distance.

Grounding of statements The grounding of statements does not depend directly
on the selection of the extractCandidates function, and it is quite similar regardless of
the selection of the macrostructure. For the sake of completeness of example, a simple
statement grounding for two objects will be shown, while more complicated cases are
described in the chapter 5.

Let us assume, that in Episode(t3) two objects are available to the agent’s per-
ception – their description is given in table 6.4. The objects are not marked with any
labels by the teacher.

episode object a1 a2 a3 a4 a5 labels

Episode(t3)
x3,1 0 0 0 1 1
x3,2 1 1 1 0 0

Table 6.4: Example for grounding using Hamming distance.

The object x3,1 from working memory corresponds to object o4 = [00011] in embo-
died ontology and the object x3,2 corresponds to object o29 = [11100]. Let us assume
that the object o31 = [11110] has been chosen as category’s prototype o⋆c .

Since fH(o4, o⋆c) = 4  τ−c = 3, the object o4 is located in the outer region of catego-
ry’s model and the epistemic satisfaction relation holds for statement Know(x3,1 /∈ c)
(definition 5.6). Analogously, fH(o29, o⋆c) = 1 ¬ τ+c = 2, thus the object o29 is located in
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the core of category’s model and the epistemic satisfaction relation holds for statement
Know(x3,2 ∈ c) (definition 5.5).

Conclusions. The method strongly depends on the order in which the candidates are
selected. In future research, one could consider changing of the acceptance condition,
or testing of all candidates, instead of accepting as a prototype the first one that meets
the acceptance condition.

6.2.4 Mechanism of medoid candidates extraction

In this chapter, let the extractCandidates function determine the medoids of the mul-
tiset Ê+c (Expc) based on the Hamming distance, more precisely:

Definition 6.3. For a given multiset Ê+c (Expc) and a macrostructure in a form of Ham-
ming distance function fH , an output of the function extractCandidates(Ê+c (Expc))
is defined as a set of such objects o′ from E+c that fulfill the condition:

FH(o′, Ê+c (Expc)) = min
o∈E+c
FH(o, Ê+c (Expc)) (6.2.8)

that is they minimize the following sum:

FH(o, Ê+c (Expc)) =
∑
e∈E+c

(k+e · fH(o, e)). (6.2.9)

The definition 6.3 naturally resembles the definition 6.2, as it is still the definition
of the central element of Ê+c (Expc) multiset (given as an input parameter) based on
the Hamming distance. The difference is that the representative is selected from the
multiset and not the entire object space O.

The above condition is met by objects o′ ∈ Ê+c (Expc) for which the sum of Hamming
distances to other objects in the multiset Ê+c (Expc) is the smallest. This translates into
calculating the distance to the remaining2 elements of the E+c set, taking into account
the frequency of occurrence of individual objects in the original Ê+c (Expc) set. The
condition of selecting “from a set” is typical for medoids, and has a clear practical
interpretation here, as it translates into the fact that potential representatives must
be objects that have actually been observed by the agent and are present in a relevant
part of the learning experience. This translates into the analytical condition k+o′ > 0.

Due to the fact, that only the multiset Ê+c (Expc) (effectively, only the set E
+
c of

unique objects of the given multiset) is searched for the central element, the problem

2Distances to other instances of identical objects may be omitted as they are equal to zero, from
the definition of the metric.
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of choosing a medoid assuming a naive approach should be less complex task than
choosing a centroid.

To find objects o′ we can refer directly to the definition 6.3, performing a full search
of E+c , counting appropriate sum for each o ∈ E+c .

Theorem 6.9. Let’s assume that Ê+c (Expc) is the given multiset, m = |A| is the
cardinality of the set of attributes, and n denotes the cardinality of the set of positive
examples for the category c, i.e. n = |E+c |. A full search of E+c for medoids, i.e. objects
that satisfy the condition from the definition 6.3 has the polynomial complexity of O(m ·
n2).

Proof. A computational complexity of each calculation of fH(o, e) is O(m) (see pro-
perty 6.1). Since the fH(o, e) function needs to be computed for each pair of o, e ∈ E+c
objects, it is necessary to perform O(m · n2) basic operations. ■

Despite a polynomial computational complexity of a naive approach, it is worth
showing that it can be further reduced. In order to proceed with the reduction, we ne-
ed to analyze some properties related to medoids evaluated according to definition 6.3.
While it is impossible to directly re-apply algorithm 6.1 previously used for the eva-
luation of centroids, an overall structure of the minimized distance functions remains
the same. It is still a sum of Hamming distances between potential candidates and
the remainder of the multiset. Therefore, let us start by repeating equation (6.2.3)
which shows a transformed form of the sum which is being minimized, calculated for a
potential candidate o.

FH(o, Ê+c (Expc)) =
∑
a∈A

 ∑
e∈E+c

k+e ·
0 if o(a) = e(a)1 if o(a) ̸= e(a)


 . (6.2.10)

Let us notice that for a given Ê+c (Expc) and assumed a ∈ A, the expression in
the square brackets of (6.2.10) evaluates to a number of objects from the learning
experience Ê+c (Expc) that exhibit a value different than v within the attribute a.

To reformulate this sum, let us introduce a following notion describing a number of
objects from the learning experience Ê+c (Expc) that exhibit the same value v within
the attribute a:

S̃(v, Ê+c (Expc), a) =
∑
e∈E+c

k+e ·
0 if v ̸= e(a)1 if v = e(a)

 . (6.2.11)
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It leads us to a following re-formulation of the previous sum from (6.2.10):

∑
e∈E+c

k+e ·
0 if o(a) = e(a)1 if o(a) ̸= e(a).

 = |Ê+c (Expc)| − S̃(o(a), Ê+c (Expc), a).
Using this equality for a substitution in (6.2.10) we get the following:

FH(o, Ê+c (Expc)) =
∑
a∈A

[
|Ê+c (Expc)| − S̃(o(a), Ê+c (Expc), a)

]
=

=
∑
a∈A

[
|Ê+c (Expc)|

]
−
∑
a∈A

[
S̃(o(a), Ê+c (Expc), a)

]
,

where a component ∑
a∈A

[
|Ê+c (Expc)|

]
(6.2.12)

is constant for given Ê+c (Expc) and assumed distance function (Hamming distance).

It entails that during the optimization (minimization) of FH(o, Ê+c (Expc)), the
whole component (6.2.12) can be omitted, which leads to an equivalent minimization
of the following expression:

−
∑
a∈A

[
S̃(o(a), Ê+c (Expc), a)

]
,

which is, in turn, equivalent to the maximization of the following proposed criterion
in its final form:

F̃H(o, Ê+c (Expc)) =
∑
a∈A

[
S̃(o(a), Ê+c (Expc), a)

]
. (6.2.13)

It further leads to the formulation of the following lemma:

Lemma 6.10. For a given multiset Ê+c (Expc) and a macrostructure in a form of
Hamming distance function fH , objects o′ satisfy definition 6.3 if and only if they
satisfy the following condition

F̃H(o′, Ê+c (Expc)) = max
o∈E+c
F̃H(o, Ê+c (Expc)). (6.2.14)

Proof. A proof consists of the whole already-presented deduction preceding the lemma.
■

This leads to the formulation of the practical three-phase algorithm 6.2. In the first
phase (lines 1-5), for each attribute, the frequency of individual values of that attribute
is calculated. In the second phase (lines 6-12), these frequencies are used to determine
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the value of the optimization criterion (at the same time, the maximum value of the
criterion is determined – lines 11-12). The third phase (lines 13-16) constructs the
target set of solutions.

Algorithm 6.2: extractCandidates – evaluation of medoids for distance fH
Input: a multiset Ê+c (Expc), a distance function fH
Output: set of candidates Candidates

1 foreach attribute a in A do
2 Initialize a dictionary La = {⟨v, 0⟩ : v ∈ Va};
3 foreach object o in E+c do
4 foreach attribute a in A do
5 La(o(a))← La(o(a)) + k+o ;

6 Initialize a ‘maximal’ value of a criterion as zero: F̃H,max ← 0;
7 foreach object o in E+c do
8 Initialize a criterion for a current object: F̃H(o, Ê+c (Expc)) = 0;
9 foreach attribute a in A do
10 F̃H(o, Ê+c (Expc))← F̃H(o, Ê+c (Expc)) + La(o(a));
11 if F̃H(o, Ê+c (Expc)) > F̃H,max then
12 F̃H,max ← F̃H(o, Ê+c (Expc))

13 Initialize Candidates← ∅;
14 foreach object o in E+c do
15 if F̃H(o, Ê+c (Expc)) == F̃H,max then
16 Add o to a set Candidates ;

Remark 6.1. The third stage (lines 13-16) of the algorithm could be incorporated
into the second stage (lines 6-12), but this could lead to excessive juggling of a set
Candidates, which would need to be purged as many times as the maximum value of
the criterion is replaced in line 12.

Let us proceed with an evaluation of a computational complexity of algorithm 6.2
in the presented form. The first stage of algorithm (lines 1-5) is identical to the first
stage of algorithm 6.1, so its computational complexity is equal to O(m · (lmax + n)) –
for details refer to lemma 6.4 .

Lemma 6.11. Assume m = |A| – a number of attributes, n = |E+c | – a cardinality of
the set of positive examples for the category c, lmax = maxa∈A |Va| – an overestimation
of a cardinality of sets Va for a ∈ A. A computational complexity of second stage of
algorithm 6.2 (lines 6-12) is polynomial O(n ·m).

Proof. Line 6 has a complexity of O(1). The loop in lines 7-12 is run n times. Inside that
loop in line 8 we have variable initialization of complexity O(1), in lines 9-10 there is an
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inner loop that executes m times (inside this loop, on line 10, a variable is incremented
by the value of another variable, O(1)), and on lines 11-12 a conditional statement and
an optional assignment operation (also O(1)). The computational complexity of the
entire block (lines 6-12) can therefore be estimated at the level of O(1 + n · (1 + (m ·
1)) + 1 · 1) = O(n ·m). ■

Lemma 6.12. Let n denote the cardinality of the set of unique positive examples for
the category c (that is n = |E+c |). The computational complexity of the third phase of
the algorithm 6.2 (lines 13-16) is linear O(n).

Proof. Line 13 contains only initialization. In lines 14-16, the for loop is executed n
times. Inside loop there is a comparison O(1) and possibly addition of object to the set
of solutions O(1). So the complexity can be estimated at O(1+n · (1+1)) = O(n). ■

Theorem 6.13. Assume m = |A| – a number of attributes, n = |E+c | – a cardinality of
the set of positive examples for the category c, lmax = maxa∈A |Va| – an overestimation
of the cardinality of sets Va for a ∈ A. A computational complexity of Algorithm 6.2 is
polynomial O(m · (lmax + n)).

Proof. A proof follows directly from previous evaluations of computational complexities
of particular parts which are simply sequentially connected in algorithm 6.2: O(m ·
(lmax + n)) +O(n ·m) +O(n) = O(m · (lmax + n)). ■

In practical applications (lmax+n) component should be much lower than n2 – e.g.
in case where all attributes are binary lmax = 2, and 2+n < n2 for all n > 2. Therefore
computational complexity of algorithm 6.2 should be lower accordingly in comparison
to the naive approach. This reduction of computational complexity from O(m · n2) to
O(m · (lmax + n)) may have an influence on a fluent behavior of the system for large
sets of agent’s learning experience.
It is worth noticing, that in particular implementations many of the weighted sums

naively computed in presented algorithms using for loops, could be implemented in a
more effective way using hardware supporting fast matrix-based operations.

6.2.5 Illustrative example – medoids

Input data in this example are identical like in example using centroid candidates
extraction method – they are shown in table 6.1. Therefore, in this chapter only key
differences will be shown.

Initial computations Like in the previous example: Expc = {1(o7,+)c, 1(o13,+)c,
1(o28,+)c, 1(o32,+)c, 1(o6,−)c, 1(o8,−)c, 1(o12,−)c, 1(o14,−)c} where o6 = [00101], o7 =
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[00110], o8 = [00111], o12 = [01011], o13 = [01100], o14 = [01101], o28 = [11011],
o32 = [11111].
Also:

� E+ = E+c (Expc) = {o7, o13, o28, o32},

� E− = E−c (Expc) = {o6, o8, o12, o14}.

Naive extraction of candidates In order to find candidates by naively following
the definition 6.3, one has to perform an exhaustive search over the set E+c , involving
calculation of the sum (6.2.9) for every potential candidate o ∈ E+c . Data produced
during that process are shown in table 6.5.

o ∈ O fH(o, o7) fH(o, o13) fH(o, o28) fH(o, o32) FH(o, Ê+c (Expc))
o7 0 2 4 3 9
o13 2 0 4 3 9
o28 4 4 0 1 9
o32 3 3 1 0 7

Table 6.5: Exhaustive search for medoids, Hamming distance.

In this example m = 5 and n = 4. From previous analysis, we know that it takes
(2 ·m− 1) · n2 + (n− 1) · n = (2 · 5− 1) · 42 + (4− 1) · 4 = 156 basic (like comparison
and addition) operations to perform an exhaustive search over a set E+c . Let us note,
that it is much lower number than in case of naive search for centroids, since in that
example the set E+c is much smaller than universe O.
Minimal FH(o, Ê+c (Expc)) is equal to 7. There is only one object o

′ ∈ E+c with that
value of FH(o, Ê+c (Expc)). It is the only member of the set of candidates for prototype:
Candidates = {o32}.

Optimized extraction of candidates During the first stage of algorithm 6.2 the
number of occurrences of values of attributes is calculated, and stored in the dictionary
La (just like in centroid case). The result is shown in table 6.6. It takes m · lmax = 5 ·2 =
10 assignment operations to initialize dictionary La and n · m = 4 · 5 = 20 addition
operations to calculate the number of occurrences.

a1 a2 a3 a4 a5
La(0) 2 1 1 1 2
La(1) 2 3 3 3 2

Table 6.6: Dictionary La, Hamming distance.

In the second stage of algorithm 6.2 optimization criterion F̃H(o, Ê+c (Expc)) is cal-
culated for each object o ∈ E+c . The result is:
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� F̃H(o7, Ê+c (Expc)) = 11

� F̃H(o13, Ê+c (Expc)) = 11

� F̃H(o28, Ê+c (Expc)) = 11

� F̃H(o32, Ê+c (Expc)) = 13.

from that F̃H,max = 13. It takes n · m = 4 · 5 = 20 addition operations to calculate
optimization criteria.
During the third stage of algorithm 6.2 candidates for prototype are chosen. It takes

n = 4 comparation operations to find them. The result is obviously identical to the
naive approach described above: Candidates = {o32}. Obtaining this result takes less
basic operations that in the case of naive approach – 54 in total, comparing to 156 in
the naive approach. Let us note however, that this example is very small, for the sake
of simplicity. Naturally, there would be much bigger difference in favor of optimized
approach if n is bigger, which should be the case in practical applications.

Calculation of prototype and quality of the model The results for candidate
o32 = [11111] where already shown for the centroid case:

� τ+c = 1,

� τ−c = NULL,

� Corec(o32) = {o28, o32},

� Outerc(o32) = ∅,

� Boundaryc(o32) = {o6, o7, o8, o12, o13, o14}.

The acceptance condition is fulfilled, because |Boundaryc(o32) ∩ E+| = 2 and
|Corec(o32)| = 2 thus |Corec(o32)|  |Boundaryc(o32) ∩ E+|. In consequence, o32 will
be set as a prototype of category c. This model was shown in the figure 6.2.
Clearly, in this example the set of candidates is much smaller in medoids case,

than in centroids case. As a result, the quality of model in medoids case may be worse
than in centroids case, depending on which of the centroid candidates will be chosen.
On the other hand, searching for medoid candidates is less computationally expensive,
especially in the case of naive search.

6.3 Weighted Hamming distance

An analysis of relational datasets in a typical data mining workflow usually includes
feature selection. It is widely accepted that some features may have higher impact on
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the phenomena in question or, in general, they seem to carry more information than
the others. While dropping properties from objects’ descriptions is not examined in this
dissertation, we will investigate an assignment of importance to particular properties.
Considering Hamming distance, this can be done in a numerical way by a simple
addition of weights, as shown in the following definition of Weighted Hamming distance
(WH).

The following chapter contains description of algorithms and ideas very similar to
the ones from chapter about unweighted Hamming distance. It might seem repetitive,
but adding weights to Hamming distance forces small, but very important modifications
to the algorithms. Therefore they have to be analyzed separately. In addition, giving
even the same considerations, makes it possible to understand the content of a chapter
without going back to previous chapters.

6.3.1 Macrostructure

Definition 6.4. The Weighted Hamming distance fWH for the vectors oi and oj is
defined as follows:

fWH(oi, oj) =
∑
a∈A

0 if oi(a) = oj(a)wa if oi(a) ̸= oj(a).

where wa  0 denotes the weight3 of the attribute a ∈ A.

Property 6.2. For any two objects oi, oj ∈ O evaluation of Weighted Hamming di-
stance fWH(oi, oj) requires m = |A| comparison operations, m assignments, and m-1
additions, giving an overall computational complexity of O(m+m+m− 1) = O(m).

In this model, the introduction of weights is based on the assumption that not
all the attributes for a given category are equally important. For example, it seems
obvious that for an object in the process of including it in the bird category, the fact of
having a beak is more important than the black color of the feathers. Attribute weights
should be based on empirical data. Basing on psycholinguistic research, it seems to be
beneficial if they support the condition (b) given in the chapter 6.1.1, and thus allow
for easier distinguishing of non-category objects from category objects.

For the above reasons, the information gain was assumed as the weight of the a
attribute, which corresponds to the entropy reduction when dividing the set of examples
into |Va| subsets according to the value of the a attribute, where |Va| is the number of
values of attribute a. It is a measure often used for decision tree induction[80].

3In literature sometimes Weighted Hamming distance is normalized[39, 100].
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Definition 6.5. Given a collection S, containing positive and negative examples of
some target concept, the entropy of S relative to this Boolean classification is defined
as[54]:

Entropy(S) = −p⊕ log2 p⊕ − p⊖ log2 p⊖

where p⊕ is the proportion of positive examples in S and p⊖ is the proportion of
negative examples in S. In all calculations involving entropy we define 0 log2 0 to be 0.

Definition 6.6. Information gain Gain(S, a) of an attribute a relative to collection of
objects S, is defined as[54]:

Gain(S, a) = Entropy(S)−
∑
v∈Va

|Sv|
|S|
Entropy(Sv)

where Va is the set of all possible values for attribute a, and Sv is the subset of S for
which attribute a has value v (i.e. Sv = {s ∈ S : s(a) = v}). Note the first term in
equation is just the entropy of the original collection S, and the second term is the
expected value of the entropy after S is partitioned using attribute a.

In the following chapters, it is assumed that the weight of attribute a for the model
of category c is equal to the information gain for that attribute, calculated for the
multiset Expc representing the agent’s experience concerning category c:

wa = Gain(Expc, a).

Example 4. Let us assume a microstructure of all objects o from a cognitive universe O
in a form of fixed-length binary vectors, where length n = 2. O = {o1, o2, o3, o4} where
o1 = [00], o2 = [01], o3 = [10], o4 = [11]. Set of attributes is denoted as A = (a1, a2).

Let us assume that Expc = {2(o1,+)c, 4(o2,+)c, 2(o3,+)c, 0(o4,+)c, 0(o1,−)c,
0(o2,−)c, 4(o3,−)c, 4(o4,−)c}. In total, there are 16 objects in multiset Expc: 8 of them
are positive and 8 of them are negative. Thus:

Entropy(Expc) = −
8
16
log2
8
16
− 8
16
log2
8
16
= 1

Let us denote S1,0 = {(o,+)c, (o,−)c ∈ Expc : o(a1) = 0} and S1,1 = {(o,+)c, (o,−)c ∈
Expc : o(a1) = 1}. Entropy for these sets is calculated as follows:

Entropy(S1,0) = −
6
6
log2
6
6
− 0
6
log2
0
6
= 0

Entropy(S1,1) = −
2
10
log2
2
10
− 8
10
log2
8
10
≈ 0.722
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and finally:

Gain(Expc, a1) = Entropy(Expc)−
|S1,0|
|Expc|

Entropy(S1,0)−
|S1,1|
|Expc|

Entropy(S1,1)

= 1− 6
16
· 0− 10

16
· 0.722 ≈ 0.549

Let us denote S2,0 = {(o,+)c, (o,−)c ∈ Expc : o(a2) = 0} and S2,1 = {(o,+)c, (o,−)c ∈
Expc : o(a2) = 1}. Entropy for these sets is calculated as follows:

Entropy(S2,0) = −
4
8
log2
4
8
− 4
8
log2
4
8
= 1

Entropy(S2,1) = −
4
8
log2
4
8
− 4
8
log2
4
8
= 1

and finally:

Gain(Expc, a2) = Entropy(Expc)−
|S2,0|
|Expc|

Entropy(S2,0)−
|S2,1|
|Expc|

Entropy(S2,1)

= 1− 8
16
· 1− 8

16
· 1 = 0

To sum up, weight of attribute a1 is equal to Gain(Expc, a1) ≈ 0.549 and weight of
attribute a2 is equal to Gain(Expc, a2) = 0. Weight of a1 is much bigger than weight of
a2, because a1 is much better than a2 in separating of positive from negative objects.

Property 6.3. Assume m = |A| – a number of attributes, n = |Expc| – a cardinality
of the set of objects for model of category c, lmax – the largest cardinality of sets of
attributes’ values. Assuming that the weight of attribute a for the model of category
c is equal to the information gain for that attribute, a computational complexity of
calculation of a set of weights for all attributes in A is equal to O(m · (n+ lmax)).

6.3.2 Mechanism of centroid candidates extraction

In this chapter, let the extractCandidates function determine the centroids of the mul-
tiset Ê+c (Expc) based on the Weighted Hamming distance, more precisely:

Definition 6.7. Given a macrostructure in a form of Weighted Hamming distance
fWH , an output of extractCandidates(Ê+c (Expc)) is defined as a set of such o

′ ∈ O
that fulfill a condition:

FWH(o′, Ê+c (Expc)) = min
o∈O
FWH(o, Ê+c (Expc)) (6.3.1)
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that is they minimize the following sum:

FWH(o, Ê+c (Expc)) =
∑
e∈E+c

(k+e · fWH(o, e)). (6.3.2)

The above condition is fulfilled by such objects o′ for which a sum of Weighted
Hamming distance to other objects from E+c (additionally weighted by multiplicity
of respective objects in Ê+c (Expc)) is the lowest. In the centroid extraction task (as
opposed to the medoid determination task, which is analyzed in later chapters), a
representative is selected from all available space. This means that for selected objects
it may happen that the multiplicity of k+o′ is 0, which is equivalent to the fact that for a
given o′ object there is no positive learning material about such an object and a given
concept. The o′ objects are therefore the centroids of the multiset Ê+c (Expc). In order
to find such objects o′ one can naively follow the definition 6.7 in the direct way by
performing an exhaustive search over the set O, and by calculating the sum (6.3.2) for
every potential candidate o ∈ O.

Theorem 6.14. Naive approach, that is, an exhaustive search over the set O in order
to find objects satisfying the condition (6.3.1) formulated in definition 6.7 leads to an
exponential computational complexity in relation to a number of attributes used for
describing objects from O provided that a number of values of each attribute is non-
trivial ( 2) and finite.

Proof. Assume m = |A| – a number of attributes, n = |E+c | – a cardinality of the
set of positive examples for the category c. To estimate the complexity from below,
let us assume that all attributes a ∈ A are binary (that is, they have exactly two
distinct values each). Then the cardinality of the universe |O| = 2m. A computational
complexity of each calculation of fWH(o, e) is O(m) (see property 6.2). A function
fWH(o, e) needs to be evaluated for each pair of objects o ∈ O and e ∈ E+c , which leads
to n · 2m distinct evaluations. It leads to a final polynomial-exponential computational
complexity O(m · n · 2m) with an exponential component dependent on m.
Naturally, as a number of values of any attribute a ∈ A is greater than 2, the

cardinality of the universe O grows, which translates to a higher number of required
evaluations of fWH and, in consequence, to higher complexity (e.g., if every attribute
as exactly three distinct values, the final complexity becomes O(m · n · 3m)).
In general, a component 2m is a multiplication of cardinalities of sets of values of

respective properties. To estimate the complexity from above, let us assume that lmax
is the largest cardinality of sets of properties’ values (it exists since there is always
a maximum integer in a finite set of finite integers). It leads to an approximation of
the upper bound of the complexity as O(m · n · (lmax)m), which is still exponential in
relation to m. ■
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The use of exponential complexity algorithms in a practical context is very limiting
and often imposes strict restrictions on the size of the problem. In particular, it would be
necessary to provide input data instances containing only a small number of attributes.

Learning from experience related to the Hamming distance, let us check a structure
of fWH evaluation for a candidate o and a multiset Ê+c (Expc)):

FWH(o, Ê+c (Expc)) =
∑
e∈E+c

(k+e ·fWH(o, e)) =
∑
e∈E+c

k+e ·∑
a∈A

0 if o(a) = e(a)wa if o(a) ̸= e(a)

 .
Similar transformations to the ones performed in (6.2.3) lead to the following equ-

ality:

FWH(o, Ê+c (Expc)) =
∑
a∈A

 ∑
e∈E+c

k+e ·
0 if o(a) = e(a)wa if o(a) ̸= e(a)


 . (6.3.3)

Since wa is constant for a given a, not only can we put it in front of the curly
bracket 0 if o(a) = e(a)wa if o(a) ̸= e(a)

= wa ·

0 if o(a) = e(a)1 if o(a) ̸= e(a)

but we can also extract it from the interior of the corresponding sub-sum, leading to
the following equality:

∑
e∈E+c

k+e ·
0 if o(a) = e(a)wa if o(a) ̸= e(a)

 = wa · ∑
e∈E+c

k+e ·
0 if o(a) = e(a)1 if o(a) ̸= e(a)

 .
It leads to the following reformulation of (6.3.3):

FWH(o, Ê+c (Expc)) =
∑
a∈A

wa · ∑
e∈E+c

k+e ·
0 if o(a) = e(a)1 if o(a) ̸= e(a)


 . (6.3.4)

It is easy to notice that for a given Ê+c (Expc), for an assumed a, and provided that
values of weights wa are finite and greater than 0, a value of the expression within
square brackets of (6.3.4), that is,

wa ·
∑
e∈E+c

k+e ·
0 if o(a) = e(a)1 if o(a) ̸= e(a)

 , (6.3.5)

depends only on the choice of o(a) and on values of particular e(a) of particular objects
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from the original multiset and, what is more important, it does not depend on values
of other attributes, both within object o, and within other objects e. In a borderline
case for the particular a ∈ A the weight wa might be equal to zero. In such a situation
the value of respective o(a) does not have any influence on (6.3.4) as the whole (6.3.5)
is reduced to 0 for that a.

In terms of interpretation, an expression (6.3.5) aggregates an overall influence
related to the attribute a on the final value of fWH . It means that when choosing
from the whole universe O, that is, when all combinations of values are allowed, we
can optimize (6.3.5) for every property separately. Each particular wa is constant. The
borderline case of wa = 0 has been already described. If wa is, however, greater than 0,
it can be omitted during optimization. Let us remind the notion introduced in (6.2.5),
given that v ∈ Va is one of values of the attribute a:

S(v, Ê+c (Expc), a) =
∑
e∈E+c

k+e ·
0 if v = e(a)1 if v ̸= e(a)

 .
which makes the following lemma convenient to formulate:

Lemma 6.15. A necessary and sufficient condition for the object o′ = (o′(a1), o′(a2), . . . ,
o′(am)) to be the proper centroid (satisfying (6.3.1)) is to fulfill the set of sub-conditions:o

′(ai) ∈ Vai iff wai = 0,

S
(
o′(ai), Ê+c (Expc), ai

)
= minv∈Vai S

(
v, Ê+c (Expc), ai

)
otherwise

(6.3.6)

for i = 1, 2, . . . ,m.

Proof. It follows directly from the argumentation preceding the lemma. ■

Lemma 6.16. In order for o′ to minimize S(w, Ê+c (Expc), a) it is enough to do the
following for every particular attribute a ∈ A:

� if the respective weight wa is equal to zero, assign any value from Va to o′(a),

� otherwise, assign one of the most common values of the attribute a (in objects
from the original multiset) to o′(a).

Proof. The case of wa = 0 is trivial. If, however, wa > 0 then notice that the expression
(6.2.5) for the respective property a directly evaluates to a number of objects from a
multiset Ê+c (Expc) that exhibit a different value of a than v. It means that the (6.2.5)
is maximized by such values v ∈ Va that are most frequent in objects from a multiset
Ê+c (Expc). ■
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A common-sense interpretation of ‘good candidates’ described in lemma 6.16 is
a vector containing most frequent values for each separate attribute assigned with a
positive weight in the Weighted Hamming distance or with any of the allowed values
of attributes assigned with wa = 0. Multiple zero-weights in the Weighted Hamming
distance and/or attributes with multiple most-frequent values (that tied in terms of
their occurrences) lead to additional optimal solutions which in some cases might lead
to huge solution sets, e.g., in an initial stage of an agent’s life where categories are not
yet well defined.

Nonetheless, lemma 6.16 directly leads to the proposal of the three-phase algori-
thm 6.3. In the first phase (lines 1-6) it calculates occurrences of particular values
within respective attributes. In the second phase (lines 7-11) the best values are chosen
for each attribute (depending on calculated occurrences and/or values of correspon-
ding weights in Weighted Hamming distance). In the third phase (lines 12-21) a set of
solutions (here: candidates) is constructed.

As stated in theorem 6.14, a naive approach to a Weighted Hamming distance-based
evaluation of a centroid of a multiset has a mixed polynomial-exponential complexity
between O(m · n · 2m) and O(m · n · (lmax)m). Let us show the reduced computational
complexity provided by algorithm 6.3.

A computational complexity of the first stage (lines 1-6) of algorithm 6.3 is relatively
similar to a computational complexity of lines 1-5 of algorithm 6.1 except an additional
if -statement is added to actually skip some evaluation-cycles of the loop for attributes
where the weight wa = 0.

Theorem 6.17. A computational complexity of the first stage (lines 1-6) of algori-
thm 6.3 is approximated from above by O(m · lmax + n ·m) = O(m · (lmax + n)).

Proof. Follows directly from previous proofs. ■

Theorem 6.18. A computational complexity of the second stage (lines 7-11) of algo-
rithm 6.3 is O(m · lmax).

Proof. A loop in line 7 cycles m times. The if -statement inside is O(1) and it leads
either to the choice of the most frequent values approximated itself as O(lmax) (their
further assignment to Ha does not further raise a character of this complexity) or to an
assignment of the whole Va to Ha which is also not worse in comparison than O(lmax).

It lets us evaluate an overall complexity of lines 7-11 as O(m · 1 · lmax) = O(m ·
lmax). ■

A complexity of the third stage (lines 12-21) of algorithm 6.3 requires a more
extended comment. It is easy to notice that a set of optimal solutions (following the
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Algorithm 6.3: extractCandidates – evaluation of centroids for Weighted
Hamming distance fWH
Input: a multiset Ê+c (Expc), a distance function fWH , a set of weights wa for

all a ∈ A
Output: set of candidates Candidates

1 foreach attribute a in A do
2 Initiate a dictionary La = {⟨v, 0⟩ : v ∈ Va};
3 foreach object o in E+c do
4 foreach attribute a in A do
5 if wa > 0 then
6 La(o(a))← La(o(a)) + k+o ;

7 foreach attribute a in A do
8 if wa > 0 then
9 Ha ← a set of values v from Va with the highest number of occurrences;
10 else
11 Ha ← Va;

12 o ← new object;
13 Candidates← {o};
14 foreach attribute a in A do
15 newCandidates← ∅;
16 foreach value h in Ha do
17 foreach object o in Candidates do
18 o′ ← duplicate of o;
19 o′(a)← h;
20 add o′ to newCandidates;

21 Candidates← newCandidates;

notions used in the algorithm) takes a form of the following Cartesian product:

Candidates = Ha1 ×Ha2 × · · · ×Ham (6.3.7)

and its size is directly dependent on the cardinality of particular sets Ha. It means
that in a borderline case where there is exactly one most common value per attribute,
there is exactly one optimal solution. However, as a number of ‘ties’ grows within
particular attributes, a set Candidates grows exponentially in size (per each attribute
with more than one optimal value). It leads to an exponential evaluation of the worst-
case complexity for the third stage of the algorithm (note that in our assumptions all
optimal solutions need to be listed and returned in their final form; were it instead
required to provide just one optimal solution, it would become as simple as O(m)).
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Lemma 6.19. Assume m = |A| – a number of attributes, n = |E+c | – the cardinality
of the set of positive examples for the category c. As elements of sets Ha are chosen
from corresponding sets VA, then their cardinality cannot be larger than their respective
counterparts. In consequence, |Ha| ¬ |Va| for a ∈ A, and therefore it is possible to
estimate the cardinality of all Ha from above by lmax = maxa∈A |Va|. A computational
complexity of the third stage (lines 12-21) of algorithm 6.3 is approximated from above
by O(lmmax) for the worst-case scenario.

Proof. The complexity follows directly from the need to generate the whole Carte-
sian product (6.3.7) and an estimation mentioned in the lemma itself. It leads to the
following dependencies:

∏
a∈A
|Ha| ¬

∏
a∈A
|Va| ¬

∏
a∈A

(
max
a′∈A
|Va′ |
)
=
∏
a∈A
lmax = lmmax.

■

A computational complexity of the worst case scenario, as already mentioned, is
extremely higher in comparison to the complexity of the best case scenario which is
summed up within a following straightforward lemma.

Lemma 6.20. Assume m = |A| – a number of attributes. If every Ha contains just a
single element, that is if there is a single most frequent value for each attribute a ∈ A,
then a computational complexity of the third stage (lines 12-21) of algorithm 6.3 is
polynomial, O(m).

Proof. Straightforward. ■

It leads to the final estimation of the computational complexity of the whole algo-
rithm 6.3.

Theorem 6.21. Assume m = |A| – a number of attributes, n = |E+c | – a cardinality of
the set of positive examples for the category c, lmax = maxa∈A |Va| – an overestimation
of the cardinality of sets Va for a ∈ A.
A computational complexity of the whole algorithm in the best case scenario (with

only one optimal candidate) is not worse than O(m · (lmax + n) + m · lmax + m) =
O(m · (lmax + n)).
A computational complexity of the whole algorithm in the worst case scenario (with

all candidates being optimal) is not worse than O(m · (lmax + n) +m · lmax + lmmax) =
O(m · (lmax + n) + lmmax).

Proof. A proof follows directly from previous evaluations of computational complexities
of particular parts which are simply sequentially connected in algorithm 6.3. ■
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Conclusions. Two extreme situations regarding the computational complexity of the
algorithm 6.3 are presented above. In practical applications, it is unlikely that many
attributes have more than one most common value, so the computational complexity
of the algorithm should approach the polynomial. The algorithm 6.3 can therefore be
used in practice, which was confirmed by the simulation tests presented in chapter 7.

Worth noting is the fact, that compared to the naive approach, characterized by
absolutely exponential computational complexity, the obtained algorithm reviews the
original learning material (the multiset Ê+c (Expc)) only once, and a potential expo-
nential complexity element occurs only in the pessimistic case, when the size of the
set of optimal solutions is very numerous and is related only to the construction of all
instances of optimal candidates, not to their determination.

In the particular version of the algorithm 4.2, where only one optimal candidate
would be requested and not the whole set of optimal candidates, the computational
complexity of the proposed computational approach would be strictly polynomial.

6.3.3 Illustrative example – centroids

We assume that the agent’s experience is identical to described in the chapter 6.2.3.

episode object a1 a2 a3 a4 a5 labels

Episode(t1)

x1,1 1 1 1 1 1 is-c
x1,2 0 0 1 1 0 is-c
x1,3 0 0 1 0 1 not-c
x1,4 0 1 0 1 1 not-c

Episode(t2)

x2,1 1 1 0 1 1 is-c
x2,2 0 1 1 0 0 is-c
x2,3 0 0 1 1 1 not-c
x2,4 0 1 1 0 1 not-c

Table 6.7: Example using Weighted Hamming distance.

Initial computations Based on the above observations, as a result of the preproces-
sing performed by the agent after the second episode, its experience regarding the cate-
gory c will be collected in the form of a multiset Expc = {1(o7,+)c, 1(o13,+)c, 1(o28,+)c,
1(o32,+)c, 1(o6,−)c, 1(o8,−)c, 1(o12,−)c, 1(o14,−)c} where o6 = [00101], o7 = [00110],
o8 = [00111], o12 = [01011], o13 = [01100], o14 = [01101], o28 = [11011], o32 = [11111].
Let us note, that O = {o1, ..., o32}.
It follows from the above:

� E+ = E+c (Expc) = {o7, o13, o28, o32},

� E− = E−c (Expc) = {o6, o8, o12, o14}.
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Naive extraction of candidates For this example, the information gain (i.e. the
weight of a given attribute) for the following attributes is calculated as follows4:

� wa1 = Gain(Expc, a1) = 0.311,

� wa2 = Gain(Expc, a2) = 0.049,

� wa3 = Gain(Expc, a3) = 0,

� wa4 = Gain(Expc, a4) = 0.049

� wa5 = Gain(Expc, a5) = 0.311.

In order to find candidates by naively following the definition 6.7, one has to perform
an exhaustive search over the set O, involving calculation of the sum (6.3.2) for every
potential candidate o ∈ O. Most important data produced during that process are
shown in table 6.8, naturally complete table consists of 32 rows.

o ∈ O fWH(o, o7) fWH(o, o13) fWH(o, o28) fWH(o, o32) FWH(o, Ê+c (Expc))
o1 0.049 0.049 0.720 0.720 1.538
o2 0.360 0.360 0.409 0.409 1.538

...
o11 0.049 0.049 0.622 0.622 1.342
o12 0.360 0.360 0.311 0.311 1.342

...
o15 0.049 0.049 0.622 0.622 1.342
o16 0.360 0.360 0.311 0.311 1.342

...
o27 0.360 0.360 0.311 0.311 1.342
o28 0.671 0.671 0 0 1.342

...
o31 0.360 0.360 0.311 0.311 1.342
o32 0.671 0.671 0 0 1.342

Table 6.8: Exhaustive search for centroids, Weighted Hamming distance.

In this example m = 5, n = 4 and lmax = 2. From previous analysis, we know that
it takes (3 ·m− 1) ·n · (lmax)m+(n− 1) · (lmax)m = (3 · 5− 1) · 4 · 25+(4− 1) · 25 = 1888
basic (like comparison, assignment and addition) operations to perform an exhaustive
search over the set O.
Minimal FWH(o, Ê+c (Expc)) is equal to 1.342. There are eight objects o

′ ∈ O with
that value of FWH(o, Ê+c (Expc)). They constitute a set of candidates for prototype:
Candidates = {o11, o12, o15, o16, o27, o28, o31, o32}, where o11 = [01010], o12 = [01011],
o15 = [01110], o16 = [01111], o27 = [11010], o28 = [11011], o31 = [11110], o32 = [11111].

4The values are rounded to three decimals, these rounded values are used in subsequent calculations.
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The number of centroids is bigger than in case of unweighted Hamming distance, be-
cause information gain and consequently weight of attribute a3 is 0, so the value of this
attribute does not affect the Weighted Hamming distance value.

Optimized extraction of candidates During the first stage of algorithm 6.3 the
number of occurrences of values of attributes is calculated (for attributes with wa > 0),
and stored in dictionary La. The result is shown in table 6.9. It takes m · lmax = 5 · 2 =
10 assignment operations to initialize dictionary La and n · (m − 1) = 4 · 4 = 16
addition operations to calculate the number of occurrences (additions for attribute a3
are skipped as its weight is 0).

a1 a2 a3 a4 a5
wa 0.311 0.049 0 0.049 0.311
La(0) 2 1 0 1 2
La(1) 2 3 0 3 2
Ha {0, 1} {1} {0, 1} {1} {0, 1}

Table 6.9: Dictionary La and most frequent values Ha, Weighted Hamming distance.

In second stage of algorithm 6.3 a set of values v from Va with the highest number
of occurrences is determined for all a ∈ A. The result is also shown in table 6.9. It
takes 8 assignment operations to memorize all Ha sets.
During third stage of algorithm 6.3 candidates for prototype are constructed. Since

there are eight potential candidates, their construction takes 40 assignment operations.
The result is obviously identical to naive approach described above: Candidates =
{o11, o12, o15, o16, o27, o28, o31, o32}, where o11 = [01010], o12 = [01011], o15 = [01110],
o16 = [01111], o27 = [11010], o28 = [11011], o31 = [11110], o32 = [11111]. Let us note
however, that obtaining this result takes much less basic operations that in case of naive
approach – 74 in total, comparing to 1888 in naive approach. Naturally, the difference
will be greater as the number of attributes m grows.

Calculation of prototype and quality of model As for the unweighted Hamming
distance, the final form of the model strongly depends on which candidate will be
accepted first. Of course, the values of the radii and sets Core/Boundary/Outer may
be different than for the case of Hamming distance without weights. E.g. for a prototype
o⋆c = o31 = [11110]:

� τ+c = 0.360,

� τ−c = 0.622,

� Corec(o31) = {o7, o13, o28, o32},
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� Outerc(o31) = {o6, o8, o12, o14},

� Boundaryc(o31) = ∅.

The above model can be shown as in the figure 6.3. Obviously, the category is
well defined – the model divides above examples into two subsets: belonging and not
belonging to the category, thus the border is empty.

o [0.67]8

core

boundary

outer

o [0.72]6

τc
+

τc
-

o  [0.31]28

o  [0.36]13

o  [0.62]12

o  [0.67]14o
31o [0.36]7

o  [0.31]32

Figure 6.3: Model mc for Weighted Hamming distance, centroids.

The sets Core(o31), Boundary(o31) and Outer(o31) are identical to the model with
unweighted Hamming distance. However, the distances between the objects and the
prototype o⋆c have changed. In addition, for example, the o28 object is located slightly
closer to the prototype than the o7 and o13 objects. This is due to the different weights
of the attributes by which these objects differ from the o⋆c prototype.

Grounding of statements The grounding of statements does not depend directly
on the selection of the extractCandidates function, and it is quite similar regardless of
the selection of the macrostructure. For the sake of completeness of example, a simple
statement grounding for two objects will be shown, while more complicated cases are
described in the chapter 5.

We use the same input data as in unweighted Hamming implementation model
example (chapter 6.2.3).
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episode object a1 a2 a3 a4 a5 labels

Episode(t3)
x3,1 0 0 0 1 1
x3,2 1 1 1 0 0

Table 6.10: Example for grounding using Weighted Hamming distance.

The object x3,1 from working memory corresponds to object o4 = [00011] in embo-
died ontology and the object x3,2 corresponds to object o29 = [11100]. Let us assume
that the object o31 = [11110] has been chosen as category’s prototype o⋆c .
Since fH(o4, o⋆c) = 0.671  τ−c = 0.622, the object o4 is located in the outer re-

gion of category’s model and the epistemic satisfaction relation holds for statement
Know(x3,1 /∈ c) (definition 5.6). Analogously, fH(o29, o⋆c) = 0.049 ¬ τ+c = 0.360, thus
the object o29 is located in the core of category’s model and the epistemic satisfaction
relation holds for statement Know(x3,2 ∈ c) (definition 5.5).

6.3.4 Mechanism of medoid candidates extraction

In this chapter, let the extractCandidates function determine the medoids of the mul-
tiset Ê+c (Expc) based on the Weighted Hamming distance, more precisely:

Definition 6.8. For a given multiset Ê+c (Expc) and a macrostructure in a form of We-
ighted Hamming distance function fWH , an output of the function extractCandidates
(Ê+c (Expc)) is defined as a set of such objects o

′ from E+c that fulfill the condition:

FWH(o′, Ê+c (Expc)) = min
o∈E+c
FWH(o, Ê+c (Expc)) (6.3.8)

that is they minimize the following sum:

FWH(o, Ê+c (Expc)) =
∑
e∈E+c

(k+e · fWH(o, e)). (6.3.9)

The definition 6.8 naturally resembles the definition 6.7, as it is still the definition
of the central element of Ê+c (Expc) multiset (given as an input parameter) based on
the Weighted Hamming distance. The difference is that the representative is selected
from the multiset and not the entire object space O.
The above condition is met by objects o′ ∈ Ê+c (Expc) for which the sum of Weighted

Hamming distances to other objects in the multiset Ê+c (Expc) is the smallest. This
translates into calculating the distance to the remaining5 elements of the E+c set, taking
into account the frequency of occurrence of individual objects in the original Ê+c (Expc)
set. The condition of selecting “from a set” is typical for medoids, and has a clear

5Distances to other instances of identical objects may be omitted as they are equal to zero, from
the definition of the metric.
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practical interpretation here, as it translates into the fact that potential representatives
must be objects that have actually been observed by the agent and are present in a
relevant part of the learning experience. This translates into the analytical condition
k+o′ > 0.

Due to the fact, that only the multiset Ê+c (Expc) (effectively, only the set E
+
c of

unique objects of the given multiset) is searched for the central element, the problem
of choosing a medoid assuming a naive approach should be less complex task than
choosing a centroid.

To find objects o′ we can refer directly to the definition 6.8, performing a full search
of E+c , calculating appropriate sum for each o ∈ E+c .

Theorem 6.22. Let’s assume that Ê+c (Expc) is the given multiset, m = |A| is the
cardinality of the set of attributes, and n denotes the cardinality of the set of positive
examples for the category c, i.e. n = |E+c |. A full search of E+c for medoids, i.e. objects
that satisfy the condition from the definition 6.8 has the polynomial complexity of O(m ·
n2).

Proof. The calculation of the value of the fWH(o, e) function for the given two objects
o and e requires the execution of O(m) basic operations. Since the fWH(o, e) function
needs to be computed for each pair of o, e ∈ E+c objects, it is necessary to perform O(m·
n2) comparison operations, which means polynomial computational complexity. ■

Despite the polynomial computational complexity of a naive approach, it is worth
showing that it can be further reduced. In order to proceed with the reduction it is
required to analyze some properties related to medoids evaluated according to defini-
tion 6.8. While it is impossible to directly re-apply algorithm 6.3 previously used for
an evaluation of centroids, an overall structure of the minimized distance functions
remains the same. It is still a sum of Weighted Hamming distances between potential
candidates and the remainder of the multiset. Therefore, let us start by repeating equ-
ation (6.3.4) which shows a transformed form of the sum which is being minimized,
calculated for the candidate o

FWH(o, Ê+c (Expc)) =
∑
a∈A

wa · ∑
e∈E+c

k+e ·
0 if o(a) = e(a)1 if o(a) ̸= e(a)


 . (6.3.10)

Let us notice that for a given Ê+c (Expc) and assumed a ∈ A, an expression in the
square brackets of (6.3.10) consists of two factors, the first being the weight wa, and
the second being the sum which evaluates to a number of objects from the learning
experience Ê+c (Expc) that exhibit a value different than v within the attribute a.
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To reformulate this sum, let us re-introduce the following notion describing a num-
ber of objects from the learning experience Ê+c (Expc) that exhibit the same value v
within the attribute a:

S̃(v, Ê+c (Expc), a) =
∑
e∈E+c

k+e ·
0 if v ̸= e(a)1 if v = e(a)

 (6.3.11)

It leads us to the following re-formulation of the previous sum from (6.3.10):

∑
e∈E+c

k+e ·
0 if o(a) = e(a)1 if o(a) ̸= e(a)

 = |Ê+c (Expc)| − S̃(o(a), Ê+c (Expc), a).
Using this equality for the substitution in (6.3.10) we get the following:

FWH(o, Ê+c (Expc)) =
∑
a∈A

[
wa ·
(
|Ê+c (Expc)| − S̃(o(a), Ê+c (Expc), a)

)]
=

=
∑
a∈A

[
wa · |Ê+c (Expc)|

]
−
∑
a∈A

[
wa · S̃(o(a), Ê+c (Expc), a)

]
,

where the component ∑
a∈A

[
wa · |Ê+c (Expc)|

]
(6.3.12)

is constant for a given Ê+c (Expc)| and assumed distance function (Weighted Hamming
distance with pre-defined weights).

It entails that during an optimization (minimization) of FWH(o, Ê+c (Expc)), the
whole component (6.3.12) can be omitted, which leads to an equivalent minimization
of the following expression:

−
∑
a∈A

[
wa · S̃(o(a), Ê+c (Expc), a)

]
,

which is, in turn, equivalent to a maximization of the following proposed criterion in
its final form:

F̃WH(o, Ê+c (Expc)) =
∑
a∈A

[
wa · S̃(o(a), Ê+c (Expc), a)

]
. (6.3.13)

It further leads to a formulation of the following lemma:

Theorem 6.23. For a given multiset Ê+c (Expc) and a macrostructure in a form of
Weighted Hamming distance function fWH , objects o′ satisfy definition 6.8 if and only
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if they satisfy the following condition

F̃WH(o′, Ê+c (Expc)) = max
o∈E+c
F̃WH(o, Ê+c (Expc)). (6.3.14)

Proof. A proof consists of the whole already-presented deduction preceding the the-
orem. ■

Remark 6.2. If a weight wa for a given attribute a ∈ A is equal to 0, then a respective
component

wa · S̃(o(a), Ê+c (Expc), a)

is also reduced to 0. This property could be incorporated into the following algorithm
in a similar fashion to how it was done in algorithm 6.3. However, since it would
complicate the algorithm without reducing an overall computational complexity, we will
present it in the form provided below.

This leads to the formulation of a practical three-phase algorithm 6.4. In the first
phase (lines 1-5), for each attribute, the frequency of individual values of that attribute
is calculated. In the second phase (lines 6-12), these frequencies are used to determine
the value of the optimization criterion (at the same time, the maximum value of the
criterion is determined – lines 11-12). The third phase (lines 13-16) constructs the
target set of solutions.

Remark 6.3. The third stage (lines 13-16) of the algorithm could be incorporated into
the second stage (lines 6-12) but it could cause excessive juggling of a set Candidates
which would need to be purged as many times as the maximum value of the criterion is
replaced in line 12.

Let us proceed with an evaluation of a computational complexity of algorithm 6.4
in the presented form. It is easy to notice that algorithm 6.4 differs from algorithm 6.2
only in line 10, where the criterion F̃WH is additionally influenced by weights wa. It
does not change the overall computational complexity, leading to the folowing result
(without repeating the proof):

Theorem 6.24. Assume m = |A| – a number of attributes, n = |E+c | – the cardinality
of the set of positive examples for the category c, lmax = maxa∈A |Va| – an overestimation
of the cardinality of sets Va for a ∈ A. A computational complexity of algorithm 6.4 is
polynomial O(m · (lmax + n)).

In practical applications (lmax + n) component should be much lower than n2 –
e.g. in case where all attributes are binary lmax = 2, and 2 + n < n2 for all n > 2.
Therefore computational complexity of algorithm 6.4 should be lower accordingly in
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Algorithm 6.4: extractCandidates – evaluation of medoids for distance fWH
Input: a multiset Ê+c (Expc), a distance function fWH , a set of weights wa for

all a ∈ A
Output: set of candidates Candidates

1 foreach attribute a in A do
2 Initialize a dictionary La = {⟨v, 0⟩ : v ∈ Va};
3 foreach object o in E+c do
4 foreach attribute a in A do
5 La(o(a))← La(o(a)) + k+o ;

6 Initialize a ‘maximal’ value of a criterion as zero: F̃WH,max ← 0;
7 foreach object o in E+c do
8 Initialize a criterion for a current object: F̃WH(o, Ê+c (Expc)) = 0;
9 foreach attribute a in A do
10 F̃WH(o, Ê+c (Expc))← F̃WH(o, Ê+c (Expc)) + wa · La(o(a));
11 if F̃WH(o, Ê+c (Expc)) > F̃WH,max then
12 F̃WH,max ← F̃WH(o, Ê+c (Expc))

13 Initialize Candidates← ∅;
14 foreach object o in E+c do
15 if F̃WH(o, Ê+c (Expc)) == F̃WH,max then
16 Add o to a set Candidates ;

comparison to the naive approach. This reduction of computational complexity from
O(m ·(lmax+n)) to O(m ·n2)) may have an influence on a fluent behavior of the system
for large sets of agent’s learning experience.

It is worth noticing that in particular implementations many of the weighted sums
naively computed in presented algorithms using for loops could be implemented in a
more effective way using hardware supporting fast matrix-based operations. However,
we leave an evaluation of the complexity in the provided general form.

6.3.5 Illustrative example – medoids

Input data in this example are identical like in example using centroid candidates
extraction method - they are shown in table 6.7. Therefore, in this chapter only key
differences will be shown.

Initial computations Like in previous example: Expc = {1(o7,+)c, 1(o13,+)c, 1(o28,+)c,
1(o32,+)c, 1(o6,−)c, 1(o8,−)c, 1(o12,−)c, 1(o14,−)c} where o6 = [00101], o7 = [00110],
o8 = [00111], o12 = [01011], o13 = [01100], o14 = [01101], o28 = [11011], o32 = [11111].

Also:
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� E+ = E+c (Expc) = {o7, o13, o28, o32},

� E− = E−c (Expc) = {o6, o8, o12, o14}.

Naive extraction of candidates Again, for this example, the information gain (i.e.
the weight of a given attribute) for the following attributes is calculated as follows:

� wa1 = Gain(Expc, a1) = 0.311,

� wa2 = Gain(Expc, a2) = 0.049,

� wa3 = Gain(Expc, a3) = 0,

� wa4 = Gain(Expc, a4) = 0.049,

� wa5 = Gain(Expc, a5) = 0.311.

In order to find candidates by naively following the definition 6.8, one has to perform
an exhaustive search over the set E+c , involving calculation of the sum (6.3.9) for every
potential candidate o ∈ E+c . Data produced during that process are shown in table 6.11.

o ∈ O fWH(o, o7) fWH(o, o13) fWH(o, o28) fWH(o, o32) FWH(o, Ê+c (Expc))
o7 0 0.098 0.671 0.671 1.440
o13 0.098 0 0.671 0.671 1.440
o28 0.671 0.671 0 0 1.342
o32 0.671 0.671 0 0 1.342

Table 6.11: Exhaustive search for medoids, Weighted Hamming distance.

In this example m = 5 and n = 4. From previous analysis, we know that it takes
(3 ·m− 1) · n2 + (n− 1) · n = (3 · 5− 1) · 42 + (4− 1) · 4 = 236 basic (like comparison,
assignment and addition) operations to perform an exhaustive search over the set E+c .
Let us note, that it is much lower number than in case of naive search for centroids,
since in that example the set E+c is much smaller than O.
Minimal FWH(o, Ê+c (Expc)) is equal to 1.342. There are two objects o

′ ∈ E+c with
that value of FWH(o, Ê+c (Expc)). They constitute a set of candidates for prototype:
Candidates = {o28, o32}. The number of medoids is bigger than in case of unweighted
Hamming distance, because information gain and consequently weight of attribute a3
is 0, so the value of this attribute does not affect the Weighted Hamming distance
value.

Optimized extraction of candidates During the first stage of algorithm 6.4 the
number of occurrences of values of attributes is calculated, and stored in dictionary La
(similar to centroid case). The result is shown in table 6.12. It takes m · lmax = 5 ·2 = 10
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assignment operations to initialize dictionary La and n · m = 4 · 5 = 20 addition
operations to calculate number of occurrences.

a1 a2 a3 a4 a5
wa 0.311 0.049 0 0.049 0.311
La(0) 2 1 1 1 2
La(1) 2 3 3 3 2

Table 6.12: Dictionary La, Weighted Hamming distance.

In the second stage of algorithm 6.4 optimization criterion F̃WH(o, Ê+c (Expc)) is
calculated for each object o ∈ E+c . The result is:

� F̃WH(o7, Ê+c (Expc)) = 1.440

� F̃WH(o13, Ê+c (Expc)) = 1.440

� F̃WH(o28, Ê+c (Expc)) = 1.538

� F̃WH(o32, Ê+c (Expc)) = 1.538.

from that F̃WH,max = 1.538. It takes n·m = 4·5 = 20 addition and also 20 multiplication
operations to calculate optimization criteria.
During the third stage of algorithm 6.4 candidates for prototype are chosen. It takes

n = 4 comparation operations to find them. The result is obviously identical to naive
approach described above: Candidates = {o28, o32}. Obtaining this result takes less
basic operations that in case of naive approach – 74 in total, comparing to 236 in naive
approach. Let us note however, that this example is very small, for the sake of simplicity.
Naturally, there will be much bigger difference in favor of optimized approach if n is
bigger, which should be the case in practical applications.

Calculation of prototype and quality of model Let us assume, that candidate
o32 = [11111] is first to be checked by algorithm 4.2, then:

� τ+c = 0,

� τ−c = NULL,

� Corec(o32) = {o28, o32},

� Outerc(o32) = ∅,

� Boundaryc(o32) = {o6, o7, o8, o12, o13, o14}.

The acceptance condition is fulfilled, because |Corec(o32)| = 2  2 = |Boundaryc(o32)∩
E+|. In consequence, o32 will be set as a prototype of category c. This model is shown
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on figure 6.4. The τ+c radius is exaggerated on the figure, because it is actually equal
to 0.

o [0.67]7

o [0.36]8

core

boundary

o [0.41]6

τc
+

o  [0]28

o  [0.67]13

o  [0.31]12

o  [0.36]14

o  [0]
32

Figure 6.4: Model mc for Weighted Hamming distance, medoids.

Clearly, in this example the set of candidates is much smaller in medoids case, than
in centroids case. As a result, the quality of model in medoids case may be worse than
in centorids case, depending on which of the centroid and medoid candidates will be
chosen. On the other hand, searching for medoid candidates is less computationally
expensive, especially in case of naive search.

6.4 Asymmetric Weighted Hamming distance

As in the previous chapter, the assumption for this model is to meet the conditions
(a) and (b) from 6.1.1, i.e. to find objects that have the most properties in common
with other elements of the category, and at the same time the least properties in
common with elements of the opposite categories. Ideas in this chapter are also based
on processing model proposed by Rosch, which uses notion of cue validity[75]:
“Cue validity is a probabilistic concept; the validity of a given cue x as a predictor

of a given category y (the conditional probability y|x) increases as the frequency with
which cue x is associated with category y increases and decreases as the frequency with
which cue x is associated with category other than y increases[4, 5, 69]. (...)The cue
validity of an entire category may be defined as the summation of the cue validities
for that category of each of the attributes of the category. (...)A category with high cue
validity is, by definition, more differentiated from other categories than one of lower
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cue validity.”
Rosch argues[74] that in modeling of natural categories, prototypes and cue validity

should be incorporated into a single model, as they appear to be the basis of catego-
ries. Such model would be efficient processing mechanism of categorization, because
matching to a prototype wouldn’t need to use much of processing power for calcula-
ting cue validities. Rosch states basing on research and experiments concerning human
cognition:
“In short, humans probably incorporate probabilistic analysis of cues and com-

putation of distance from a representation of the category into the same process of
categorization;”
At first glance, it would seem that we could incorporate above ideas to be used

with Weighted Hamming distance, by assigning conditional probabilities to weights of
the attributes describing objects. The problem is, that conditional probabilities vary
for different values of attributes. Even in case of binary attributes, usually conditional
probability P (y|x) ̸= P (y|¬x). Thus we need to extend the granularity of definition
of Weighted Hamming distance, so it associates the weights (conditional probabilities)
with particular values of attributes, not the attribute as a whole. Such measure is going
to be called Asymmetric Weighted Hamming distance (AWH).

6.4.1 Macrostructure

Definition 6.9. The Asymmetric Weighted Hamming distance fAWH for the vectors
oi and oj is defined as follows:

fAWH(oi, oj) =
∑
a∈A

0 if oi(a) = oj(a)

woj(a) if oi(a) ̸= oj(a).

where oj(a) ∈ Va is a value of attribute a for object oj, and thus woj(a)  0 denotes a
weight of value v ∈ Va equal to oj(a).

Property 6.4. For any two objects oi, oj ∈ O evaluation of Asymmetric Weighted
Hamming distance fAWH(oi, oj) requires m = |A| comparison operations, m assign-
ments, and m-1 additions, giving an overall computational complexity of O(m+m+
m− 1) = O(m).

Let us note, that this function is not symmetrical, i.e. fAWH(oi, oj) does not have
to be equal to fAWH(oj, oi). This might be counter-intuitive, but it is consistent with
the results of psychological experiments[41] where there is also asymmetry, e.g. in
generalization.
Commonsense interpretation of this measure is that it represents distance from

object oi to object oj. Naturally, if for these objects the values of some attribute a are
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different, the distance is interpreted as greater, than if the values are the same. This is
also the case for symmetrical Hamming distances described in previous chapters. But
Asymmetrical Weighted Hamming distance takes into account, that specific values of
attribute a for target object oj may have varying importance, expressed numerically
as weight of this value. It may be also interpreted as an “effort” of changing the value
of attribute a in object oi to the value present in object oj – the bigger is the weight
of target value, the bigger is the “effort”.
Let us consider an example, where objects are described with two attributes: color

and shape. The domains of above attributes are:

� Vcolor = {white, gray, black}

� Vshape = {circle, square}.

The values of weights are given as:

� wwhite = 0.8, wgray = 0.2, wblack = 0.8

� wcircle = 1.0, wsquare = 0.0.

Let us assume that white circle is a target object oj. The figure 6.5 depicts distances
fAWH(oi, oj) of various objects oi from object oj. The dotted circles are radii that show
specific distance to object oj, note that they are not drawn in scale.

0.8

1.0

1.8

Figure 6.5: Example of fAWH distances calculation.

The measure fAWH forms a space in which objects that have many attribute’s values
with high weights common with target object are closest to it. The measure fAWH is
“focused” on target object, because it takes into account only its weights of values of
attributes. From that, for example in the figure 6.5 the gray and black circles are in the
same distance from target object, despite the fact that wblack = 0.8 is much higher that
wgray = 0.2. The common-sense interpretation of that effect is, that weights represent
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importance of particular value of attribute in objects that possess that value. So when
calculating the distance of these two circles to target object oj, the important factor is
that they are not white, and not their actual color.
Concordant to Rosch’s proposal, the weights of the values of the attributes will be

equal to their cue validities. Cue validity modeled on [74] is defined as the frequency
of the attribute value associated with a given category, divided by the total frequency
of this attribute value for all other relevant categories. Technically, it translates to the
definition, where cue validity is the conditional probability P (c|a = v) that tells us
how good the c category predictor is the value of v of the attribute a.

Definition 6.10. Let s+(c, v) be the number of positive learning experiences of the c
category, that have the value of v for the attribute a, so:

s+(c, v) = |{o ∈ E+c : o(a) = v}|

Let s(c, v) be the number of all learning experiences of the c category, that have the
value of v for the attribute a, so:

s(c, v) = |{o ∈ Expc : o(a) = v}|

Then the conditional probability P (c|a = v) of belonging to the category c provided
that the value of the a attribute is v, is defined as:

P (c|a = v) = s
+(c, v)
s(c, v)

.

This definition is an extension of the idea from work [34]. As can be seen, it relates
to the agent’s empirical experience and does not take into account the multiplicities
k+o and k

−
o of object observations. The consequence is, that the observation of multiple

identical objects (or multiple observations of the same object) affect the cue validity
value as much as one such observation. It seems reasonable, as for example a hundred
observations of the same bird that has wings, should not increase the cue validity of
value yes of attribute has wings for category bird, the same as observations of a hundred
different birds with wings. Rosch herself does not give any guidance on this matter,
as she does not try to approximate the value of cue validities in human processing.
If one wants to include more statistical information in cue validity, one has to take
into account multiplicities k+o and k

−
o . There are also different types of measures of the

association between a feature and a category present in literature that can be used,
like collocation or category utility, e.g. see [99].

Property 6.5. Assume m = |A| – a number of attributes, n = |Expc| – a cardinality
of the set of examples for the category c.
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Computing the set of cue validities (conditional probabilities) for all the values of
all the attributes has a computational complexity of O(m · n).

As already mentioned, in this model we equate AWH weights with conditional
probabilities, so for category c for all values v ∈ Va of attributes a ∈ A the weights are
defined as wv = P (c|a = v). Therefore, it is possible to rewrite the definition 6.9 as:

fAWH(oi, oj) =
∑
a∈A

0 if oi(a) = oj(a)

P (c|a = oj(a)) if oi(a) ̸= oj(a).

Example 5. Let us assume a microstructure of all objects o from a cognitive universe
O in a form of fixed-length binary vectors, where length n = 3 and two example objects:
o1 = [001] and o2 = [010]. The set of attributes is denoted as A = (a1, a2, a3). Let the
probabilities P (c|a = v) be given:

a1 a2 a3
P (c|ai = 0) 0.3 0.8 0.5
P (c|ai = 1) 1.0 0.4 1.0

Table 6.13: Probabilities for example of fAWH calculation.

The result of calculations is as follows:

fAWH(o1, o2) = 0 + P (c|a2 = 1) + P (c|a3 = 0) = 0 + 0.4 + 0.5 = 0.9

fAWH(o2, o1) = 0 + P (c|a2 = 0) + P (c|a3 = 1) = 0 + 0.8 + 1.0 = 1.8

6.4.2 Mechanism of centroid candidates extraction

In this chapter, let the extractCandidates function determine the centroids of the mul-
tiset Ê+c (Expc) based on maximal sum of weigths, more precisely:

Definition 6.11. Given a set of weights associated with values of attributes, such that
wv is a weight of value v ∈ Va, an output of extractCandidates(Ê+c (Expc)) is defined
as a set of such o′ ∈ O that fulfill the condition:

FAWH(o′, Ê+c (Expc)) = max
o∈O
FAWH(o, Ê+c (Expc)) (6.4.1)

that is they maximize the following sum:

FAWH(o, Ê+c (Expc)) =
∑
a∈A

∑
e∈E+c
∧

e(a)=o(a)

(k+e · wo(a)). (6.4.2)
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Again, taking into account that in this model weights are equal to cue validities,
equation (6.4.2) can be rewritten as:

FAWH(o, Ê+c (Expc)) =
∑
a∈A

∑
e∈E+c
∧

e(a)=o(a)

(k+e · P (c|a = o(a)).

The above condition is fulfilled by such objects o′ that maximize sum of cue va-
lidities on all attributes in reference to Ê+c (Expc) multiset. This criterion is derived
from model proposed by Rosch[76], where it is stated that cue validity of an entire
category may be defined as the summation of the cue validities for that category of
each of the properties of the category. Obviously it is different approach, that in case
of symmetrical Hamming functions, where sum of distances to objects from Ê+c (Expc)
is minimized. The latter type of criteria could be investigated in future research. In
that case, interesting question arises: whether to minimize a sum of distances from
other objects or to other objects, which is crucial provided that asymmetrical distance
function is used.

Let us note, that in above definition the multiplicity of object observations is taken
into account. This is not stated in any of Rosch’s works, but seems to be necessary
to avoid undesirable effect that attribute value with high cue validity but very rarely
observed, is included in a prototype. Let us consider a situation depicted in figure 6.6: 7
out of 10 white objects belong to the category, so cue validity of value white for attribute
color is equal to 7/10 = 0.7. There is also only one black object, and it does belong to
the category, so cue validity of value black for attribute color is equal to 1/1 = 1. Thus,
if we would only choose the features with highest cue validity, the black color would
be chosen as a feature of category’s prototype, when in fact it is rather uncommon
than representative for that category. However since in model proposed in this work
the multiplicity is taken into account, which is expressed as component (k+e · wo(a)) in
equation (6.4.2), the value white would be chosen, as (k+e · wwhite) = 7 · 0.7 = 4.9 and
(k+e · wblack) = 1 · 1 = 1.
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category

Figure 6.6: Cue validity calculation example.

Nevertheless, the objects fulfilling condition (6.4.1) are centroids, since they repre-
sent multiset Ê+c (Expc) and (as opposed to the medoid determination task, which is
analyzed in later chapters) they are selected from all available space. This means that
for selected objects it may happen that the multiplicity of k+o′ is 0, which is equivalent
to the fact that for a given o′ object there is no positive learning material about such
an object and a given concept. In order to find such objects o′ one can naively follow
the definition 6.11 in a direct way by performing an exhaustive search over the set O,
and by calculating the sum (6.4.2) for every potential candidate o ∈ O.

Theorem 6.25. Naive approach, that is, an exhaustive search over the set O in order
to find objects satisfying the condition (6.4.1) formulated in definition 6.11 leads to
an exponential computational complexity in relation to a number of attributes used for
describing objects from O provided that a number of values of each attribute is non-
trivial ( 2) and finite.

Proof. Assume m = |A| – a number of attributes, n = |E+c | – a cardinality of the set
of positive examples for the category c. To estimate the complexity from below, let us
assume that all attributes a ∈ A are binary (that is, they have exactly two distinct
values each). Then a cardinality of the universe |O| = 2m. A computational complexity
of each calculation of the expression (k+e · wo(a)) is O(1). This expression needs to be
evaluated for each attribute of (at most) each object e ∈ E+c , which leads to O(m · n)
multiplication and addition operations. The above calculations result in the value of
FAWH(o, Ê+c (Expc)), which has to be evaluated for each o ∈ O. It leads to a final
polynomial-exponential computational complexity O(m · n · 2m) with an exponential
component dependent on m.

Naturally, as a number of values of any attribute a ∈ A is greater than 2, a cardinali-
ty of the universe O grows, which translates to a higher number of required evaluations
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of FAWH(o, Ê+c (Expc)) and, in consequence, to higher complexity (e.g., if every attri-
bute as exactly three distinct values, the final complexity becomes O(m · n · 3m)).
In general, a component 2m is a multiplication of cardinalities of sets of values of

respective properties. To estimate the complexity from above, let us assume that lmax
is the largest cardinality of sets of properties’ values (it exists since there is always
a maximum integer in a finite set of finite integers). It leads to an approximation of
the upper bound of the complexity as O(m · n · (lmax)m), which is still exponential in
relation to m. ■

The use of exponential complexity algorithms in a practical context is very limiting
and often imposes strict restrictions on the size of the problem. In particular, it would be
necessary to provide input data instances containing only a small number of attributes.

It is easy to notice that for a given Ê+c (Expc), for an assumed a, and provided that
values of weights wo(a) are finite and greater than 0, a value of the expression on the
right side of equation (6.4.2), that is,

∑
e∈E+c
∧

e(a)=o(a)

(k+e · wo(a)), (6.4.3)

depends only on a choice of o(a) and, what is more important, it does not depend on
values of other attributes, both within object o, and within other objects e.

In terms of interpretation, an expression (6.4.3) aggregates an overall influence
related to the attribute a on the final value of FAWH . It means that when choosing
from the whole universe O, that is, when all combinations of values are allowed, we
can optimize (6.4.3) for every attribute separately. Each particular wo(a) is constant.
Let us introduce the notion, given that v ∈ Va is one of values of the attribute a:

SA(v, Ê+c (Expc), a) =
∑
e∈E+c
∧

e(a)=v

(k+e · wv) = wv ·
∑
e∈E+c
∧

e(a)=v

k+e

which makes the following lemma convenient to formulate:

Lemma 6.26. A necessary and sufficient condition for an object o′ = (o′(a1), o′(a2), . . . ,
o′(am)) to be a proper centroid (satisfying (6.4.1)) is to fulfill a set of sub-conditions:

SA(o′(ai), Ê+c (Expc), ai) = max
v∈Vai
SA(v, Ê+c (Expc), ai) (6.4.4)

for i = 1, 2, . . . ,m.

Proof. It follows directly from an argumentation preceding the lemma. ■
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From lemma 6.26 we can directly derive procedure for construction of the candidate.
We need to simply assign such a value v to attribute a, that maximizes SA(v, Ê+c (Expc), a).
If there is more than one such value, then any of them is equally good value of attribute
a, thus we need to construct multiple candidates with all values v of a, that maximi-
ze SA(v, Ê+c (Expc), a). Three-phase algorithm 6.5 implements above ideas. In the first
phase (lines 1-8) it calculates a sum of weights of particular values within respective at-
tributes, that is values of SA(v, Ê+c (Expc), a). In the second phase (lines 9-10) the best
values are chosen for each attribute (depending on calculated sum SA(v, Ê+c (Expc), a)).
In the third phase (lines 11-20) a set of solutions (here: candidates) is constructed.

Algorithm 6.5: extractCandidates for a set of weights associated with values
of attributes
Input: a multiset Ê+c (Expc), a set of weights wv for all v ∈ Va for all a ∈ A
Output: set of candidates Candidates

1 foreach attribute a in A do
2 Initiate a dictionary La = {⟨v, 0⟩ : v ∈ Va};
3 foreach object o in E+c do
4 foreach attribute a in A do
5 La(o(a))← La(o(a)) + k+o ;

6 foreach attribute a in A do
7 foreach value v in Va do
8 La(v)← La(v) · wv;

9 foreach attribute a in A do
10 Ha ← a set of values v from Va with the highest value of La(v);
11 o ← new object;
12 Candidates← {o};
13 foreach attribute a in A do
14 newCandidates← ∅;
15 foreach value h in Ha do
16 foreach object o in Candidates do
17 o′ ← duplicate of o;
18 o′(a)← h;
19 add o′ to newCandidates;

20 Candidates← newCandidates;

As stated in theorem 6.25, a naive approach to evaluation of a centroid of a multiset
has a mixed polynomial-exponential complexity between O(m · n · 2m) and O(m · n ·
(lmax)m). Let us show the reduced computational complexity provided by algorithm 6.5.

Lemma 6.27. A computational complexity of the first stage (lines 1-8) of algorithm 6.5
is approximated from above by O(m · lmax)+O(n ·m)+O(m · lmax) = O(m · (lmax+n)).
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Proof. Initialization of dictionary La (lines 1-2) has to be performed for each of m
attributes. In the worst-case scenario, the number of values for an attribute is assumed
to be equal to lmax, thus computational complexity of lines 1-2 is O(m · lmax).
Calculation of frequency of values in objects in E+c (lines 3-5) involves two loops -

iterating over n objects and m attributes. Thus computational complexity of lines 3-5
is O(n ·m).
In lines 6-8 the above frequencies are multiplied by weights in order to get values

of SA(v, Ê+c (Expc), a). It involves two loops - iterating over m attributes and at most
lmax values of respective attributes. Thus computational complexity of lines 6-8 is
O(m · lmax).
It lets us evaluate an overall complexity of lines 1-8 as O(m · lmax) + O(n · m) +

O(m · lmax) = O(m · (lmax + n)). ■

Lemma 6.28. A computational complexity of the second stage (lines 9-10) of algori-
thm 6.5 is O(m · lmax).

Proof. A loop in line 9 iterates m times. The choice of the highest values is approxi-
mated as O(lmax) – their further assignment to Ha does not further raise a character
of this complexity. It lets us evaluate an overall computational complexity of lines 9-10
as O(m · lmax). ■

A complexity of the third stage (lines 11-20) of algorithm 6.5 requires a more
extended comment. It is easy to notice that a set of optimal solutions (following the
notions used in the algorithm) takes a form of the following Cartesian product:

Candidates = Ha1 ×Ha2 × · · · ×Ham (6.4.5)

and its size is directly dependent on a cardinality of particular sets Ha. It means that
in a borderline case where there is exactly one most common value per attribute,
there is exactly one optimal solution. However, as a number of ‘ties’ grows within
particular attributes, a set Candidates grows exponentially in size (per each attribute
with more than one optimal value). It leads to an exponential evaluation of the worst-
case complexity for the third stage of the algorithm (note that in our assumptions all
optimal solutions need to be listed and returned in their final form; were it instead
required to provide just one optimal solution, it would become as simple as O(m)).

Lemma 6.29. Assume m = |A| – a number of attributes, n = |E+c | – a cardinality
of the set of positive examples for the category c. As elements of sets Ha are chosen
from corresponding sets Va, then their cardinality cannot be larger than their respective
counterparts. In consequence, |Ha| ¬ |Va| for a ∈ A, and therefore it is possible to
estimate the cardinality of all Ha from above by lmax = maxa∈A |Va|. A computational
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complexity of a third stage (lines 11-20) of algorithm 6.5 is approximated from above
by O(lmmax) for the worst-case scenario.

Proof. The complexity follows directly from a need to generate a whole Cartesian pro-
duct (6.4.5) and an estimation mentioned in the lemma itself. It leads to the following
dependencies:

∏
a∈A
|Ha| ¬

∏
a∈A
|Va| ¬

∏
a∈A

(
max
a′∈A
|Va′|
)
=
∏
a∈A
lmax = lmmax.

■

A computational complexity of the worst-case scenario, as already mentioned, is
extremely higher in comparison to the complexity of the best-case scenario which is
summed up within a following straightforward lemma.

Lemma 6.30. Assume m = |A| – a number of attributes. If every Ha contains just a
single element, that is if there is a single most frequent value for each attribute a ∈ A,
then a computational complexity of the third stage (lines 11-20) of algorithm 6.5 is
polynomial, O(m).

Proof. If there is a single most frequent value for each attribute a ∈ A, then Candidates
set includes only one element through all iterations of algorithm. The construction
of that element needs m assignment operations. Thus computational complexity of
lines 11-20 is O(m). ■

It leads to the final estimation of a computational complexity of the whole algori-
thm 6.5.

Theorem 6.31. Assume m = |A| – a number of attributes, n = |E+c | – a cardinality of
the set of positive examples for the category c, lmax = maxa∈A |Va| – an overestimation
of the cardinality of sets Va for a ∈ A.
A computational complexity of the whole algorithm in the best-case scenario (with

only one optimal candidate) is not worse than O(m · (lmax + n) + m · lmax + m) =
O(m · (lmax + n)).
A computational complexity of the whole algorithm in the worst-case scenario (with

all potential candidates being optimal) is not worse than O(m · (lmax + n) +m · lmax +
lmmax) = O(m · (lmax + n) + lmmax).

Proof. A proof follows directly from previous evaluations of computational complexities
of particular parts which are simply sequentially connected in algorithm 6.5. ■
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Conclusions. Two extreme situations regarding the computational complexity of the
algorithm 6.5 are presented above. In practical applications, it is unlikely that many
attributes have more than one most common value, so the computational complexity
of the algorithm should approach the polynomial. The algorithm 6.5 can therefore be
used in practice, which was confirmed by the simulation tests presented in chapter 7.

Worth noting is the fact, that compared to the naive approach, characterized by
absolutely exponential computational complexity, the obtained algorithm reviews the
original learning material (the multiset Ê+c (Expc)) only once, and a potential expo-
nential complexity element occurs only in the pessimistic case, when the size of the
set of optimal solutions is very numerous and is related only to the construction of all
instances of optimal candidates, not to their determination.

In a particular version of the algorithm 4.2, where only one optimal candidate would
be searched and not the whole set of optimal candidates, the computational complexity
of the proposed computational approach would be strictly polynomial.

6.4.3 Illustrative example – centroids

Let us assume, for the sake of simplicity, that the agent’s experience consists of only two
episodes. The world accessible to an agent’s perception is described by four attributes.
Three of them are binary (a1, a2, a3), one is ternary (a4). Agent’s observations collected
during two episodes are presented in the table below. As can be seen, they concern only
one category c.

episode object a1 a2 a3 a4 labels

Episode(t1)

x1,1 0 0 0 0 is-c
x1,2 1 0 1 0 is-c
x1,3 1 0 0 2 not-c
x1,4 0 0 1 2 not-c

Episode(t2)

x2,1 0 1 0 0 is-c
x2,2 0 0 1 1 is-c
x2,3 1 1 0 0 not-c
x2,4 1 0 1 2 not-c

Table 6.14: Example using Asymmetric Weighted Hamming distance.

Initial computations Based on the above observations, as a result of the preproces-
sing performed by the agent after the second episode, its experience regarding the cate-
gory c will be collected in the form of a multiset Expc = {1(o1,+)c, 1(o5,+)c, 1(o7,+)c,
1(o16,+)c, 1(o6,−)c, 1(o15,−)c, 1(o18,−)c, 1(o19,−)c} where o1 = [0000], o5 = [0011],
o6 = [0012], o7 = [0100], o15 = [1002], o16 = [1010], o18 = [1012], o19 = [1100]. Note,
that O = {o1, ..., o24}.
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It follows from the above:

� E+ = E+c (Expc) = {o1, o5, o7, o16},

� E− = E−c (Expc) = {o6, o15, o18, o19}.

Based on the data from the table 6.14, the following probability values can be
calculated:

a1 a2 a3 a4
P (c|ai = 0) 0.75 0.5 0.5 0.75
P (c|ai = 1) 0.25 0.5 0.5 1.0
P (c|ai = 2) 0.0

Table 6.15: Probabilities for example.

They also constitute the weights for all respective values v ∈ Va.

Naive extraction of candidates In order to find candidates by naively following
the definition 6.11, one has to perform an exhaustive search over the set O, involving
calculation of the sum (6.4.2) for every potential candidate o ∈ O. Most important
data produced during that process are shown in table 6.16, naturally complete table
consists of 24 rows.

o ∈ O FAWH(o, Ê+c (Expc))
o1 7
o2 5.75
o3 4.75
o4 7

...
o23 2.75
o24 1.75

Table 6.16: Exhaustive search for centroids, Asymmetric Weighted Hamming distance.

In this example m = 4, n = 4 and lmax = 3. Number of basic (like multiplication,
comparison and addition) operations to perform an exhaustive search over a set O,
depends on values of objects in E+ (only for objects o ∈ O that have the same value
of attribute the multiplication and addition is performed). Without going into more
details, it takes 352 basic operations to perform an exhaustive search over the set O in
this example.
Maximal FAWH(o, Ê+c (Expc)) is equal to 7. There are two objects o

′ ∈ O with
that value of FAWH(o, Ê+c (Expc)). They constitute a set of candidates for prototype:
Candidates = {o1, o4}, where o1 = [0000], o4 = [0010].

156



6.4. ASYMMETRIC WEIGHTED HAMMING DISTANCE

Optimized extraction of candidates During the first stage of algorithm 6.5 values
of SA(v, Ê+c (Expc), a) are calculated, and stored in dictionary La. The result is shown
in table 6.17. It takes 9 assignment operations to initialize dictionary La and n ·m =
4 · 4 = 16 addition operations to calculate number of occurrences.

a1 a2 a3 a4
La(0) 2.25 1.5 1 2.25
La(1) 0.25 0.5 1 1
La(2) 0
Ha {0} {0} {0, 1} {0}

Table 6.17: Dictionary La and most frequent values Ha, Asymmetric Weighted Ham-
ming distance.

In the second stage of algorithm 6.5 a set Ha of values v from Va with the highest
value of SA(v, Ê+c (Expc), a) is determined for all a ∈ A. The result is also shown in
table 6.17. It takes 5 assignment operations to memorize all Ha sets.
During the third stage of algorithm 6.5 candidates for prototype are constructed.

Since there are two potential candidates, their construction takes 8 assignment opera-
tions. The result is obviously identical to naive approach described above: Candidates =
{o1, o4}, where o1 = [0000], o4 = [0010]. Let us note however, that obtaining this result
takes much less basic operations than in case of naive approach – 38 in total, compa-
ring to 352 in naive approach. Naturally, the difference will be greater as the number
of attributes m grows.

Calculation of prototype and quality of model The quality of the model of
category strongly depends on the order in which the indicators for the candidates are
calculated. If vector o1 = [0000] is selected first, then the model coefficients look like
this:

� τ+c = 0.5,

� τ−c = 1.5,

� Corec(o1) = {o1, o7},

� Outerc(o1) = {o15, o18},

� Boundaryc(o1) = {o5, o6, o16, o19}.

In this case, the results achieved meet the condition for category c to be learned
because |Corec(o1)| = 2  2 = |Boundaryc(o1) ∩E+|. In consequence, the object o1 is
assigned as the prototype o⋆c of the properly established category c with τ

+
c and τ

−
c as

its radii. The category c can be integrated with the ontological knowledge base.
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The above model can be shown as in the figure 6.7. As we can see, the category is
well defined, although the boundary contains four objects. The distances of objects to
the prototype are shown in square brackets.

o  [1.25]19

core

boundary

outer

o  [1.5]15

τc
+

τc
-

o  [2.0]18

o
1

o  [1.25]16

o [0.5]7

o [1.25]6

o [1.25]5

Figure 6.7: Model mc for Asymmetric Weighted Hamming distance.

Grounding of statements The grounding of statements does not depend directly
on the selection of the extractCandidates function, and it is quite similar regardless of
the selection of the macrostructure. For the sake of completeness of example, a simple
statement grounding for two objects will be shown, while more complicated cases are
described in the chapter 5.
Let us assume, that in Episode(t3) two objects are available to agent’s perception

– their description is given in table 6.18. The objects are not marked with any labels
by the teacher.

episode object a1 a2 a3 a4 labels

Episode(t3)
x3,1 0 0 1 0
x3,2 1 1 0 2

Table 6.18: Example for grounding using Asymmetric Weighted Hamming distance.

The object x3,1 from working memory corresponds to object o4 = [0010] in embodied
ontology and the object x3,2 corresponds to object o21 = [1102]. Let us assume that
the object o1 = [0000] has been chosen as category’s prototype o⋆c .
Since fAWH(o21, o⋆c) = 2.0  τ−c = 1.5, the object o21 is located in the outer

region of category’s model and the epistemic satisfaction relation holds for statement
Know(x3,1 /∈ c) (definition 5.6). Analogously, fAWH(o4, o⋆c) = 0.5 ¬ τ+c = 0.5, thus

158



6.4. ASYMMETRIC WEIGHTED HAMMING DISTANCE

the object o4 is located in the core of category’s model and the epistemic satisfaction
relation holds for statement Know(x3,2 ∈ c) (definition 5.5).

6.4.4 Mechanism of medoid candidates extraction

In this chapter, let the extractCandidates function determine the medoids of the mul-
tiset Ê+c (Expc) based on the sum of weights, more precisely:

Definition 6.12. Given a set of weights associated with values of attributes, such that
wv is a weight of value v ∈ Va, an output of extractCandidates(Ê+c (Expc)) is defined
as a set of such o′ ∈ E+c that fulfill a condition:

FAWH(o′, Ê+c (Expc)) = max
o∈E+c
FAWH(o, Ê+c (Expc)) (6.4.6)

that is they maximize the following sum:

FAWH(o, Ê+c (Expc)) =
∑
a∈A

∑
e∈E+c
∧

e(a)=o(a)

(k+e · wo(a)). (6.4.7)

The definition 6.12 naturally resembles the definition 6.11, as it is still the definition
of the representative element of Ê+c (Expc) multiset (given as an input parameter) based
on the set of weights associated with values of attributes. The difference is that the
representative is selected from the multiset and not the entire object space O.

Again, taking into account that in this model weights are equal to cue validities,
equation (6.4.7) can be rewritten as:

FAWH(o, Ê+c (Expc)) =
∑
a∈A

∑
e∈E+c
∧

e(a)=o(a)

(k+e · P (c|a = o(a)).

The above condition is met by objects o′ ∈ Ê+c (Expc) for which the sum of cue
validities in the multiset Ê+c (Expc) is the greatest. The condition of selecting “from a
set” is typical for medoids, and has a clear practical interpretation here, as it translates
into the fact that potential representatives must be objects that have actually been
observed by the agent and are present in a relevant part of the learning experience.
This translates into an analytical condition k+o′ > 0.

Due to the fact, that only the multiset Ê+c (Expc) (effectively, only the set E
+
c of

unique objects of the given multiset) is searched for the representative element, the
problem of choosing a medoid assuming a naive approach should be less complex task
than choosing a centroid.
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To find objects o′ we can refer directly to the definition 6.12, performing a full
search of E+c , counting appropriate sum for each o ∈ E+c .

Theorem 6.32. Let’s assume that Ê+c (Expc) is the given multiset, m = |A| is the
cardinality of the set of attributes, and n denotes the cardinality of the set of positive
examples for the category c, i.e. n = |E+c |. A full search of E+c for medoids, i.e. objects
that satisfy the condition from the definition 6.12 has the polynomial complexity of
O(m · n2).

Proof. A computational complexity of each calculation of the expression (k+e ·wo(a)) is
O(1). This expression needs to be evaluated for each attribute of (at most) each object
e ∈ E+c , which leads to O(m · n) multiplication and addition operations. The above
calculations result in the value of FAWH(o, Ê+c (Expc)), which has to be evaluated for
each o ∈ E+c . It leads to a final polynomial computational complexity O(m · n2). ■

Despite a polynomial computational complexity of a naive approach, it is worth
showing that it can be further reduced. While it is impossible to directly re-apply
algorithm 6.5 previously used for an evaluation of centroids, it is possible to avoid
repetitions of calculations on the right side of equation (6.4.7). Let us note, that for a
given o(a) the inner sum is the same for all objects o′ ∈ E+c that have the same value of
attribute a, i.e. for which o(a) = o′(a). The above sum is actually SA(v, Ê+c (Expc), a)
introduced in previous chapter:

SA(v, Ê+c (Expc), a) =
∑
e∈E+c
∧

e(a)=v

(k+e · wv) = wv ·
∑
e∈E+c
∧

e(a)=v

k+e .

The values of SA(v, Ê+c (Expc), a) can be memorized for all values v ∈ Va and used
for faster calculation of FAWH(o, Ê+c (Expc)).

This leads to the formulation of a practical three-phase algorithm 6.6. In the first
phase (lines 1-8) it calculates sum of cue validities of particular values within respective
attributes, that is values of SA(v, Ê+c (Expc), a). In the second phase (lines 9-15), these
sums are used to determine the value of the optimization criterion (at the same time,
the maximum value of the criterion is determined – lines 14-15). The third phase (lines
16-19) constructs the target set of solutions.

Remark 6.4. The third stage (lines 16-19) of the algorithm could be incorporated into
the second stage (lines 9-15) but it could cause excessive juggling of a set Candidates
which would need to be purged as many times as the maximum value of the criterion is
replaced in line 15.
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Algorithm 6.6: extractCandidates – evaluation of medoids for a set of we-
ights associated with values of attributes

Input: a multiset Ê+c (Expc), a set of weights wv for all v ∈ Va for all a ∈ A
Output: set of candidates Candidates

1 foreach attribute a in A do
2 Initiate a dictionary La = {⟨v, 0⟩ : v ∈ Va};
3 foreach object o in E+c do
4 foreach attribute a in A do
5 La(o(a))← La(o(a)) + k+o ;

6 foreach attribute a in A do
7 foreach value v in Va do
8 La(v)← La(v) · wv;

9 Initialize the ‘maximal’ value of a criterion as zero: FAWH,max ← 0;
10 foreach object o in E+c do
11 Initialize a criterion for a current object: FAWH(o, Ê+c (Expc)) = 0;
12 foreach attribute a in A do
13 FAWH(o, Ê+c (Expc))← FAWH(o, Ê+c (Expc)) + La(o(a));
14 if FAWH(o, Ê+c (Expc)) > FAWH,max then
15 FAWH,max ← FAWH(o, Ê+c (Expc))

16 Initialize Candidates← ∅;
17 foreach object o in E+c do
18 if FAWH(o, Ê+c (Expc)) == FAWH,max then
19 Add o to a set Candidates ;

Let us proceed with an evaluation of a computational complexity of algorithm 6.6
in the presented form. The first stage of the algorithm is identical to the first stage of
algorithm 6.5, so its complexity is presented without repeating the proof.

Lemma 6.33. A computational complexity of the first stage (lines 1-8) of algorithm 6.6
is approximated from above by O(m · lmax)+O(n ·m)+O(m · lmax) = O(m · (lmax+n)).

Lemma 6.34. Assume m = |A| – a number of attributes, n = |E+c | – a cardinality
of the set of positive examples for the category c. A computational complexity of the
second stage of algorithm 6.6 (lines 9-15) is polynomial O(n ·m).

Proof. Line 9 has a complexity of O(1). The loop in lines 10-15 is run n times. Inside
that loop in line 11 we have variable initialization of complexity O(1), in lines 12-13
there is an inner loop that executes m times (inside this loop, on line 13, a variable
is incremented by the value of another variable, O(1)), and on lines 14-15 a conditio-
nal statement and an optional assignment operation (also O(1)). The computational
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complexity of the entire block (lines 9-15) can therefore be estimated at the level of
O(1 + n · (1 + (m · 1) + 1 · 1)) = O(n ·m). ■

Lemma 6.35. Let n denote the cardinality of the set of unique positive examples for
the category c (that is n = |E+c |). The computational complexity of the third phase of
the algorithm 6.6 (lines 16-19) is linear O(n).

Proof. Line 16 contains only initialization. In lines 17-19, the for loop is executed n
times. Inside loop there is a comparison O(1) and possibly addition of object to the set
of solutions O(1). So the complexity can be estimated at O(1+n · (1+1)) = O(n). ■

Theorem 6.36. Assume m = |A| – a number of attributes, n = |E+c | – a cardinality of
the set of positive examples for the category c, lmax = maxa∈A |Va| – an overestimation
of the cardinality of sets Va for a ∈ A. A computational complexity of Algorithm 6.6 is
polynomial O(m · (lmax + n)).

Proof. A proof follows directly from previous evaluations of computational complexities
of particular parts which are simply sequentially connected in algorithm 6.6: O(m ·
(lmax + n)) +O(n ·m) +O(n) = O(m · (lmax + n)). ■

In practical applications (lmax + n) component should be much lower than n2 –
e.g. in case where all attributes are binary lmax = 2, and 2 + n < n2 for all n > 2.
Therefore computational complexity of algorithm 6.6 should be lower accordingly in
comparison to the naive approach. This reduction of computational complexity from
O(m ·(lmax+n)) to O(m ·n2)) may have an influence on a fluent behavior of the system
for large sets of agent’s learning experience.

6.4.5 Illustrative example – medoids

Input data in this example are identical like in example using centroid candidates
extraction method – they are shown in table 6.14. Therefore, in this chapter only key
differences will be shown.

Initial computations Like in the previous example: Expc = {1(o1,+)c, 1(o5,+)c,
1(o7,+)c, 1(o16,+)c, 1(o6,−)c, 1(o15,−)c, 1(o18,−)c, 1(o19,−)c} where o1 = [0000], o5 =
[0011], o6 = [0012], o7 = [0100], o15 = [1002], o16 = [1010], o18 = [1012], o19 = [1100].
Note, that O = {o1, ..., o24}.
Also:

� E+ = E+c (Expc) = {o1, o5, o7, o16},

� E− = E−c (Expc) = {o6, o15, o18, o19}.
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Probability values that constitute the weights for all respective values v ∈ Va:

a1 a2 a3 a4
P (c|ai = 0) 0.75 0.5 0.5 0.75
P (c|ai = 1) 0.25 0.5 0.5 1.0
P (c|ai = 2) 0.0

Table 6.19: Probabilities for example, Asymmetric Weighted Hamming distance.

Naive extraction of candidates In order to find candidates by naively following
the definition 6.12, one has to perform an exhaustive search over a set E+c , involving
calculation of a sum (6.4.7) for every potential candidate o ∈ E+c . Data produced
during that process are shown in table 6.20.

o ∈ O FAWH(o, Ê+c (Expc))
o1 7
o5 5.75
o7 6
o16 5

Table 6.20: Exhaustive search for medoids, Asymmetric Weighted Hamming distance.

In this example m = 4, n = 4 and lmax = 3. Number of basic (like multiplication,
comparison and addition) operations to perform an exhaustive search over a set E+c ,
depends on values of objects in E+ (only for objects o ∈ E+c that have the same value
of attribute the multiplication and addition is performed). Without going into more
details, it takes 76 basic operations to perform an exhaustive search over a set E+c in
this example. Let us note, that it is much lower number than in case of naive search
for centroids, since in that example the set E+c is much smaller than O.
Maximal FAWH(o, Ê+c (Expc)) is equal to 7. There is one object o

′ ∈ E+c with that
value of FAWH(o, Ê+c (Expc)). It is therefore the only member of a set of candidates for
prototype: Candidates = {o1}.

Optimized extraction of candidates During the first stage of algorithm 6.6 values
of SA(v, Ê+c (Expc), a) are calculated, and stored in dictionary La. The result is shown
in table 6.21. It takes 9 assignment operations to initialize dictionary La and n ·m =
4 · 4 = 16 addition operations to calculate number of occurrences.

a1 a2 a3 a4
La(0) 2.25 1.5 1 2.25
La(1) 0.25 0.5 1 1
La(2) 0

Table 6.21: Dictionary La, Asymmetric Weighted Hamming distance.
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In the second stage of algorithm 6.6 optimization criterion FAWH(o, Ê+c (Expc)) is
calculated for each object o ∈ E+c . The result was already shown in table 6.20. It is
obviously identical to naive extraction, but it can be calculated using lower number of
operations. It takes n·(m−1) = 4·3 = 12 addition operations to calculate optimization
criteria.
From above FAWH,max = 7, it takes 4 comparison operations to find it.
During the third stage of algorithm 6.6 candidates for prototype are chosen. It

takes n = 4 comparation operations to find them. The result is obviously identical to
naive approach described above: Candidates = {o1}. Obtaining this result takes less
basic operations that in case of naive approach – 41 in total, comparing to 76 in naive
approach. Let us note however, that this example is very small, for the sake of simplicity.
Naturally, there will be much bigger difference in favor of optimized approach if n is
bigger, which should be the case in practical applications.

Calculation of prototype and quality of model The set of candidates is smaller
than in case of centroids extraction. Thus, it is possible that the quality of prototype
would be lower. But in example for centroids extraction, the object o1 was also chosen
as a prototype, so the result is identical. For details please refer to chapter 6.4.3.

Grounding of statements Again, the results are identical as in case of centroids.
They are described in chapter 6.4.3.
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Chapter 7

Simulation studies

The models presented above have been implemented in a computer system, which ul-
timately proves their technical feasibility. This chapter mainly presents the results of
simulation of the learning strategy for different models, i.e. the quality and time of lear-
ning the embodied ontology. Also presented are the exemplary statements generated by
the agent, using the described cognitive semantics. Deeper analysis of the grounded for-
mulas and communication interaction would require a more advanced implementation
of the agent, e.g. placing it in a physical environment in a robot’s body.
The data sets used in the simulation studies were taken from the Machine Learning

Repository provided by the University of California, Irvine.

7.1 Database for fitting contact lenses

The data set „Database for fitting contact lenses” was downloaded from
https://archive.ics.uci.edu/ml/datasets/lenses. The data set contains 24 examples (ob-
jects), divided into 3 classes:

� hard – the patient should be fitted with hard contact lenses,

� soft – the patient should be fitted with soft contact lenses,

� none – the patient should not be fitted with contact lenses.

The patients are described by four attributes – one of them is ternary, the others are
binary:

� age of the patient: presbyopic(2), young(1), pre-presbyopic(0),

� spectacle prescription: myope(1), hypermetrope(0),

� astigmatic: no(1), yes(0),

� tear production rate: reduced(1), normal(0).
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7.1.1 Hamming distance

Category Candidates Prototype τ+c τ−c |Core| |Outer| |Boundary|
none [2001] none 1 4 6 2 16
soft [0010],[1010] none 0 3 1 9 14
hard [1100] none 0 2 1 18 5

Table 7.1: Lens dataset, Hamming distance, centroids.

Centroid version The table 7.1 shows for each of the categories the set of candidates
returned by the extractCandidates function and (possibly) the prototype selected for
the model. As one can see, none of the candidates for all three categories has met the
qualitative condition, therefore no prototype has been selected and no category has
been learned. For this reason, the values of the radii and sizes of individual model
areas presented in the table refer to the prototype candidate (in case of soft category
to [1010]). One can notice a relatively small size of the cores and large boundaries,
which suggests the low quality of the obtained models.
Since we are dealing with three ill-defined categories, the agent will not generate

any statements about membership of the objects to the above categories.

Category Candidates Prototype τ+c τ−c |Core| |Outer| |Boundary|
none [2001] none 1 4 6 2 16
soft [0010],[1010] none 0 3 1 9 14
hard [1100] none 0 2 1 18 5

Table 7.2: Lens dataset, Hamming distance, medoids.

Medoid version The results are identical to the case with centroids.

7.1.2 Weighted Hamming distance

Category Candidates Prototype τ+c τ−c |Core| |Outer| |Boundary|
none [2001] [2001] 0.55 0.59 13 6 5
soft [0010],[1010] [0010] 0.02 0.25 4 18 2
hard [1100] [1100] 0.04 0.05 4 20 0

Table 7.3: Lens dataset, Weighted Hamming distance, centroids.

Centroid version The table 7.3 shows for each of the categories the set of candidates
returned by the extractCandidates function and the prototype selected for the model.
As can be seen, prototypes have been found for all three categories because the quality
condition has been met for them. The values of the radii and the size of the individual
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areas of the model presented in the table refer to the prototype. One can notice a
relatively small size of the boundary (for the hard category it is even empty), which
suggests the high quality of the model obtained. The result is therefore much better
than with the unweighted Hamming distance.
The prototype patients in each category have the following characteristics:

� none: age=presbyopic, spectacle=hypermetrope, astigmatic=yes, tear=reduced,

� soft: age= pre-presbyopic, spectacle=hypermetrope, astigmatic=no, tear=normal,

� hard: age=young, spectacle=myope, astigmatic=yes, tear=normal.

It can be seen that the candidate sets are identical to the case of Hamming distances
without weights. Whereas the introduction of weights changed the structure of the
mental space, thanks to which it was possible to better distinguish elements belonging
and not belonging to the category, as well as to select a prototype.
Cognitive structures created in the learning process on the basis of the above data

can be used by the agent to generate statements in accordance with the assumed
cognitive semantics. The examples of valid grounded formulas are presented below:

� for the object x = [1111] the epistemic satisfaction relation holds for formula
Know(x ∈ none), because the corresponding object o is at the distance of 0.04
from prototype, so in the core of model of category none,

� for the same object x = [1111] the epistemic satisfaction relation holds for formula
Know(x /∈ hard), because the corresponding object o is at the distance of 0.38
from prototype, so in the outer region of model of category hard,

� for the object x = [0000] the corresponding object o lies at the distance of 0.58
from the prototype, i.e. within the boundary of model of category none; assu-
ming the coefficient of radius of epistemic neighborhood α = 0.5 we get the
radius of epistemic neighborhood εnone = 0.019; for this size of the epistemic
neighborhood ENnone(o, εnone) of the object o, the relative grounding strength
λnone(ENnone(o, εnone)) = 0.25; hence for λminBel = 0.5 the epistemic satisfaction
relation holds for formulas Bel(x /∈ none) and Pos(x ∈ none),

� for the object x = [0110] the corresponding object o lies at the distance of 0.024
from the prototype, i.e. within the boundary of model of category soft; assuming
the coefficient of radius of epistemic neighborhood α = 0.5 we get the radius of
epistemic neighborhood εsoft = 0.116; for this size of the epistemic neighbor-
hood ENsoft(o, εsoft) of the object o, the relative grounding strength o equals
λsoft(ENsoft(o, εsoft)) = 0.83; hence for λminBel = 0.5 the epistemic satisfaction
relation holds for formulas Bel(x ∈ soft) and Pos(x /∈ soft).
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Category Candidates Prototype τ+c τ−c |Core| |Outer| |Boundary|
none [2001] [2001] 0.55 0.59 13 6 5
soft [0010],[1010] [1010] 0.02 0.25 4 18 2
hard [1100] [1100] 0.04 0.05 4 20 0

Table 7.4: Lens dataset, Weighted Hamming distance, medoids.

Medoid version The results are almost identical to the centroid version. The only
difference is that a different prototype for the category soft has been chosen. This is
accidental outcome, as the candidates are evaluated in a random order. However, it
has not changed the quality of the model at all.

7.1.3 Asymmetric Weighted Hamming distance

Category Candidates Prototype τ+c τ−c |Core| |Outer| |Boundary|
none [2001] [2001] 1.42 2.42 11 6 7
soft [0010],[1010] [1010] 0.25 0.67 4 16 4
hard [1100] [1100] 0.25 0.33 4 20 0

Table 7.5: Lens dataset, Asymmetric Weighted Hamming distance, centroids.

Centroid version The table 7.5 shows for each of the categories the set of candidates
returned by the extractCandidates function and the prototype selected for the model.
As can be seen, prototypes have been found for all three categories because the quality
condition has been met for them. The values of the radii and the size of the individual
areas of the model presented in the table refer to the prototype. One can notice a
relatively small size of the boundary (for the hard category it is even empty), which
suggests the high quality of the model obtained. The result is therefore much better
than with the unweighted Hamming distance.
The candidates sets and prototypes are identical to the ones found with symmetric

Weighted Hamming distance. However, the radii, Core, Outer and Boundary sets are
different.
Cognitive structures created in the learning process on the basis of the above data

can be used by the agent to generate statements in accordance with the assumed
cognitive semantics. The examples of valid grounded formulas are presented below:

� for the object x = [1110] the epistemic satisfaction relation holds for formula
Know(x ∈ soft), because the corresponding object o is at the distance of 0.25
from prototype, so in the core of model of category soft,

� for the same object x = [1110] the epistemic satisfaction relation holds for formula
Know(x /∈ none), because the corresponding object o is at the distance of 3.08
from prototype, so in the outer region of model of category none,
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� for the object x = [0110] the corresponding object o lies at the distance of 0.50
from the prototype, i.e. within the boundary of model of category soft; assu-
ming the coefficient of radius of epistemic neighborhood α = 0.5 we get the
radius of epistemic neighborhood εsoft = 0.21; for this size of the epistemic ne-
ighborhood ENsoft(o, εsoft) of the object o, the relative grounding strength is
λsoft(ENsoft(o, εsoft)) = 0.13; hence for λminBel = 0.5 epistemic satisfaction rela-
tion holds for formulas Bel(x /∈ soft) and Pos(x ∈ soft),

� for the object x = [0111] the corresponding object o lies at the distance of 2.08
from the prototype, i.e. within the boundary of model of category none; assu-
ming the coefficient of radius of epistemic neighborhood α = 0.5 we get the
radius of epistemic neighborhood εnone = 0.5; for this size of the epistemic ne-
ighborhood ENnone(o, εnone) of the object o, the relative grounding strength is
λnone(ENnone(o, εnone)) = 0.67; hence for λminBel = 0.5 the epistemic satisfaction
relation holds for formulas Bel(x ∈ none) and Pos(x /∈ none).

Category Candidates Prototype τ+c τ−c |Core| |Outer| |Boundary|
none [2001] [2001] 1.42 2.42 11 6 7
soft [0010],[1010] [1010] 0.25 0.67 4 16 4
hard [1100] [1100] 0.25 0.33 4 20 0

Table 7.6: Lens dataset, Asymmetric Weighted Hamming distance, medoids.

Medoid version The results are identical to the case with centroids.

7.2 Primary Tumor Domain

The data set „Primary Tumor Domain” was downloaded from
https://archive.ics.uci.edu/ml/datasets/Primary+Tumor. This primary tumor domain
was obtained from the University Medical Centre, Institute of Oncology, Ljubljana,
Yugoslavia. Thanks go to M. Zwitter and M. Soklic for providing the data.

The data set contains 339 examples (objects), divided into 22 classes (categories)
representing patients suffering from respective tumors. As some categories are very few
in number, the top three were selected:

� lung – 84 examples,

� stomach – 39 examples,

� ovary – 29 examples.
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Patients are described by 17 attributes – three of them are ternary, the others are
binary:

� age: >= 60(2), < 30(1), 30− 59(0),

� sex: male(1), female(0),

� histologic-type: anaplastic(2), epidermoid(1), adeno(0),

� degree-of-diffe: poorly(2), well(1), fairly(0),

� bone: yes(1), no(0),

� bone-marrow: yes(1), no(0),

� lung: yes(1), no(0),

� pleura: yes(1), no(0),

� peritoneum: yes(1), no(0),

� liver: yes(1), no(0),

� brain: yes(1), no(0),

� skin: yes(1), no(0),

� neck: yes(1), no(0),

� supraclavicular: yes(1), no(0),

� axillar: yes(1), no(0),

� mediastinum: yes(1), no(0),

� abdominal: yes(1), no(0).

The data set contains examples with unknown values, which are not suitable for
learning phase of the agent. They were removed, leaving 57 examples, which are reali-
zations of 51 individual mental objects.
The size of the universe of mental representations of distinguishable objects O is

33 · 214 = 442368 objects, which is a considerable number. Thus, it is possible to com-
pare calculation time for naive and optimized algorithms of candidates extraction. The
calculation times will be shown in the following chapters. Simulations were conducted
on computer with Intel(R) Core(TM) i5-4310U CPU @ 2.00-2.60 GHz and 8GB RAM.
The algorithms were implemented using C#/.NET framework. Let us note, that calcu-
lation times are not very accurate, since they were measured in multitasking operation
system (MS Windows 10) and not in real time operating system. Also, .NET back-
ground processes like garbage collector can affect the performance. Still, the times are
accurate enough to show differences between implemented algorithms.
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7.2.1 Hamming distance

Category |Candidates| Prototype τ+c τ−c |Core| |Outer| |Boundary|
lung 4 none 2 7 6 4 41
stomach 1 none 1 12 0 0 51
ovary 1 none 0 6 1 16 34

Table 7.7: Tumor dataset, Hamming distance, centroids.

Centroid version The table 7.7 shows for each of the categories the size of the set of
candidates returned by the extractCandidates function and the prototype selected for
the model. As one can see, none of the candidates for all three categories has met the
qualitative condition, therefore no prototype has been selected and the categories were
not learned. For this reason, the values of the radii and sizes of individual model areas
presented in the table refer to the prototype candidate. One can notice a relatively
small size of the cores and large boundaries, which suggests the low quality of the
obtained models.

Since all three categories are ill-defined, the agent does not generate any statements
about membership of the objects to the above categories.

Total time of calculations for extraction of candidates for all three models, using
naive procedure was 21556 ms, and using optimized procedure it was 5 ms.

Category |Candidates| Prototype τ+c τ−c |Core| |Outer| |Boundary|
lung 1 none 1 8 2 2 47
stomach 1 none 1 NULL 1 0 50
ovary 1 none 0 6 1 16 34

Table 7.8: Tumor dataset, Hamming distance, medoids.

Medoid version The results are shown in table 7.8, they are similar to the case with
centroids. Again, none of the candidates for all three categories has met the qualitative
condition, therefore no prototype has been selected and no category has been learned.

Total time of calculations for extraction of candidates for all three models, using
naive procedure was 4 ms, and using optimized procedure it was 4 ms.
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7.2.2 Weighted Hamming distance

Category |Candidates| Prototype τ+c τ−c |Core| |Outer| |Boundary|

lung 8
[01121000
000000110]

0.58 1.13 15 18 18

stomach 4 none NULL 0.34 0 18 33
ovary 4 none 0 0.09 3 40 8

Table 7.9: Tumor dataset, Weighted Hamming distance, centroids.

Centroid version The table 7.9 shows for each of the categories the size of the set
of candidates returned by the extractCandidates function and the prototype selected
for the model. As can be seen, a prototype has been found for one of three categories.
The values of the radii and the size of the individual areas of the model presented in
the table refer to the prototype, or to the candidate if the category is ill-defined. One
can notice smaller size of the boundary of respective models of categories, than with
the unweighted Hamming distance, which suggests the higher quality of the model
obtained.
The prototypical patient for category lung has the following characteristics: age=30-

59, sex=male, histologic-type=epidermoid, degree-of-diffe=poorly, bone=yes, bone -
marrow=no, lung=no, pleura=no, peritoneum=no, liver=no, brain=no, skin=no, neck
=no, supraclavicular=no, axillar=yes, mediastinum=yes, abdominal=no.
Total time of calculations for extraction of candidates for all three models, using

naive procedure was 22978 ms, and using optimized procedure it was 13 ms.
Cognitive structures for lung category, created in the learning process on the basis

of the above data, can be used by the agent to generate statements in accordance
with the assumed cognitive semantics. The examples of valid grounded formulas are
presented below:

� for the object x = [01111000000000000] the epistemic satisfaction relation holds
for formula Know(x ∈ lung), because the corresponding object o is at the di-
stance of 0.39 from the prototype, so in the core of model of category lung,

� for the object x = [11010000100001000] the epistemic satisfaction relation holds
for formula Know(x /∈ lung), because the corresponding object o is at the di-
stance of 1.34 from the prototype, so in the outer region of model of category
lung,

� for the object x = [01021000000100000] the corresponding object o lies at the
distance of 0.71 from the prototype, i.e. within the boundary of model of category
lung; assuming the coefficient of radius of epistemic neighborhood α = 0.5 we get
the radius of epistemic neighborhood εlung = 0.274; for this size of the epistemic
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neighborhood ENlung(o, εlung) of the object o, the relative grounding strength is
λlung(ENlung(o, εlung)) = 0.40; hence for λminBel = 0.5 the epistemic satisfaction
relation holds for formulas Bel(x /∈ lung) and Pos(x ∈ lung),

� for the object x = [11021110011000111] the corresponding object o lies at the
distance of 0.63 from the prototype, i.e. within the boundary of model of category
lung; assuming the coefficient of radius of epistemic neighborhood α = 0.5 we get
the radius of epistemic neighborhood εlung = 0.274; for this size of the epistemic
neighborhood ENlung(o, εlung) of the object o, the relative grounding strength
is λlung(ENlung(o, εlung)) = 0.60; hence for λminBel = 0.5 epistemic satisfaction
relation holds for formulas Bel(x ∈ lung) and Pos(x /∈ lung).

Category |Candidates| Prototype τ+c τ−c |Core| |Outer| |Boundary|
lung 1 none 0.43 1.27 13 9 29
stomach 1 none NULL 0.34 0 18 33
ovary 1 none 0 0.09 3 40 8

Table 7.10: Tumor dataset, Weighted Hamming distance, medoids.

Medoid version The results are identical to the centroid version for stomach and
ovary categories. However, for lung category there was only one candidate, while in
centroids case there were eight candidates. Unfortunately, the only candidate has not
met the acceptance criteria, so it could not be assigned as a prototype. Thus the
category lung is ill-defined.
Since all three categories are ill-defined, the agent does not generate any statements

about membership of the objects to the above categories.
Total time of calculations for extraction of candidates for all three models, using

naive procedure was 10 ms, and using optimized procedure it was 10 ms.

7.2.3 Asymmetric Weighted Hamming distance

Category |Candidates| Prototype τ+c τ−c |Core| |Outer| |Boundary|
lung 1 none 2.30 4.52 11 19 21
stomach 1 none 0.61 3.67 2 3 46
ovary 1 none 0 1.39 1 29 21

Table 7.11: Tumor dataset, Asymmetric Weighted Hamming distance, centroids.

Centroid version The table 7.11 shows for each of the categories the size of the set
of candidates returned by the extractCandidates function and the prototype selected
for the model. As one can see, none of the candidates for all three categories has met
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the qualitative condition, therefore no prototype has been selected and no category has
been learned. For this reason, the values of the radii and sizes of individual model areas
presented in the table refer to the prototype candidate. One can notice a relatively
small size of the cores and large boundaries, which suggests the low quality of the
obtained models. Overall, the quality of the results appears to be better than for
unweighted Hamming distance, but worse than for symmetrical Weighted Hamming
distance (although the size of the core of stomach category is bigger in case of AWH).
Since all three categories are ill-defined, the agent does not generate any statements

about membership of the objects to the above categories.
Total time of calculations for extraction of candidates for all three models, using

naive procedure was 14058 ms, and using optimized procedure it was 27 ms.

Category |Candidates| Prototype τ+c τ−c |Core| |Outer| |Boundary|
lung 1 none 1.47 4.86 5 4 42
stomach 1 none 0 3.32 1 7 43
ovary 1 none 0 1.39 1 29 21

Table 7.12: Tumor dataset, Asymmetric Weighted Hamming distance, medoids.

Medoid version The results are identical to the centroid version for ovary category.
However, for lung and stomach categories the sizes of the boundaries have been bigger
in case of medoids. As one can see, none of the candidates for all three categories has
met the qualitative condition, therefore no prototype has been selected and no category
has been learned.
Since all three categories are ill-defined, the agent does not generate any statements

about membership of the objects to the above categories.
Total time of calculations for extraction of candidates for all three models, using

naive procedure was 24 ms, and using optimized procedure it was 16 ms.

7.3 1984 United States Congressional Voting Re-

cords Database

The data set „1984 United States Congressional Voting Records Database” was down-
loaded from https://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records.
The data set contains 435 examples (objects) representing members of U.S. Con-

gress, divided into two classes (categories) depending on their party affiliation:

� democrat – 267 examples,

� republican – 168 examples.
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This data set includes votes for each of the U.S. House of Representatives Congres-
smen on the 16 key votes identified by the Congressional Quarterly Almanac[10]:

� handicapped-infants: nay(0), yea(1), unknown(2),

� water-project-cost-sharing: nay(0), yea(1), unknown(2),

� adoption-of-the-budget-resolution: nay(0), yea(1), unknown(2),

� physician-fee-freeze: nay(0), yea(1), unknown(2),

� el-salvador-aid: nay(0), yea(1), unknown(2),

� religious-groups-in-schools: nay(0), yea(1), unknown(2),

� anti-satellite-test-ban: nay(0), yea(1), unknown(2),

� aid-to-nicaraguan-contras: nay(0), yea(1), unknown(2),

� mx-missile: nay(0), yea(1), unknown(2),

� immigration: nay(0), yea(1), unknown(2),

� synfuels-corporation-cutback: nay(0), yea(1), unknown(2),

� education-spending: nay(0), yea(1), unknown(2),

� superfund-right-to-sue: nay(0), yea(1), unknown(2),

� crime: nay(0), yea(1), unknown(2),

� duty-free-exports: nay(0), yea(1), unknown(2),

� export-administration-act-south-africa: nay(0), yea(1), unknown(2).

Actually, the CQA lists nine different types of votes:

� voted for, paired for, and announced for – these three simplified to “yea”,

� voted against, paired against, and announced against – these three simplified to
“nay”,

� voted present, voted present to avoid conflict of interest, and did not vote or
otherwise make a position known – these three simplified to an “unknown” di-
sposition.

The size of the universe of mental representations of distinguishable objects O is
316, which is over 43 millions of objects. It is large number, so it was impossible to
perform in reasonable time (less than 24 hours) calculations for naive algorithm in case
of centroids. The calculation times for more efficient algorithms will be shown in the
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following chapters. Simulations were conducted on computer with Intel(R) Core(TM)
i5-4310U CPU @ 2.00-2.60 GHz and 8GB RAM. The algorithms were implemented
using C#/.NET framework. Let us note, that calculation times are not very accurate,
since they were measured in multitasking operation system (MS Windows 10) and not
in real time operating system. Also, .NET background processes like garbage collector
can affect the performance. Still, the times are accurate enough to show differences
between implemented algorithms.

7.3.1 Hamming distance

Category |Candidates| Prototype τ+c τ−c |Core| |Outer| |Boundary|
democrat 1 none 3 16 57 7 278
republican 1 none 2 NULL 35 0 307

Table 7.13: Voting dataset, Hamming distance, centroids.

Centroid version The table 7.13 shows for each of the categories the size of the set
of candidates returned by the extractCandidates function and the prototype selected
for the model. As one can see, none of the candidates for both categories has met the
qualitative condition, therefore no prototype has been selected and no category has
been learned. For this reason, the values of the radii and sizes of individual model areas
presented in the table refer to the prototype candidate. One can notice a relatively small
size of the cores and large boundaries, which suggests the low quality of the obtained
models.

Since both categories are ill-defined, the agent does not generate any statements
about membership of the objects to the above categories.

Total time of calculations for extraction of candidates for both models, using opti-
mized procedure was 16 ms.

Medoid version The results are shown in table 7.14, they are identical to the case
with centroids. Again, none of the candidates for both categories has met the qualitative
condition, therefore no prototype has been selected and no category has been learned.

Total time of calculations for extraction of candidates for both models, using naive
procedure was 47 ms, and using optimized procedure it was 17 ms.

Category |Candidates| Prototype τ+c τ−c |Core| |Outer| |Boundary|
democrat 1 none 3 16 57 7 278
republican 1 none 2 NULL 35 0 307

Table 7.14: Voting dataset, Hamming distance, medoids.
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7.3.2 Weighted Hamming distance

Category |Candidates| Prototype τ+c τ−c |Core| |Outer| |Boundary|

democrat 3
[11100011
10100011]

1.09 3.98 136 41 165

republican 3 none 0.21 NULL 29 0 313

Table 7.15: Voting dataset, Weighted Hamming distance, centroids.

Centroid version The table 7.15 shows for each of the categories the set of candi-
dates returned by the extractCandidates function and the prototype selected for the
model. As can be seen, prototype has been found for one of two categories. The values
of the radii and the size of the individual areas of the model presented in the table
refer to the prototype, or to the candidate if category is ill-defined.

The prototypical congressman for category democrat has the following charac-
teristics: handicapped-infants=yea, water-project-cost-sharing=yea, adoption-of-the-
budget-resolution=yea, physician-fee-freeze=nay, el-salvador-aid=nay, religious-groups-
in-schools=nay, anti-satellite-test-ban=yea, aid-to-nicaraguan-contras=yea, mx-missile
=yea, immigration=nay, synfuels-corporation-cutback=yea, education-spending=nay,
superfund-right-to-sue=nay, crime=nay, duty-free-exports=yea, export-administration-
act-south-africa=yea.

For the democrat category model, a prototype was found, but for the republican
category model, none of the candidates has met the qualitative condition. One can also
see, that the core of the democrat model contains four times more objects than for
republican. This could lead to the conclusion, that the Democrats constitute a more
homogeneous environment than the Republicans, for whom it is impossible to find a
prototype congressman.

It is also interesting to compare the voting of the (proto)typical member of each
party. Since for Republicans it has been impossible to find the prototype satisfying
quality criteria, one of the candidates will be used for comparison:
– democrat prototype [1110001110100011],
– republican candidate [0201110001011101].
Looking at the values of the attributes for both categories representatives, it can

be seen that in almost all cases a typical Republican votes differently than a typical
Democrat. The exception is the last attribute (export-administration-act-south-africa)
for which the values are the same. Certainly, the above conclusions should be verified
by a political science expert, but the resulting models of categories are interesting
starting points for more elaborate analysis, like for example, how close the particular
congressmen are to the prototypical one.

Total time of calculations for extraction of candidates for both models using opti-
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mized procedure was 48 ms.
Cognitive structures created in the learning process on the basis of the above data

can be used by the agent to generate statements in accordance with the assumed
cognitive semantics for category democrat. Examples of valid grounded formulas are
presented below:

� for the object x = [1110001110000022] the epistemic satisfaction relation holds
for formula Know(x ∈ democrat), because the corresponding object o is at the
distance of 0.43 from the prototype, so in the core of model of category democrat,

� for the object x = [0101110000011102] the epistemic satisfaction relation holds
for formula Know(x /∈ democrat), because the corresponding object o is at the
distance of 4.01 from the prototype, so in the outer region of model of category
democrat,

� for the object x = [0101110000002111] the corresponding object o lies at the di-
stance of 3.39 from the prototype, i.e. within the boundary of model of category
democrat; assuming the coefficient of radius of epistemic neighborhood α = 0.5
we get the radius of epistemic neighborhood εdemocrat = 1.448; for this size of the
epistemic neighborhood ENdemocrat(o, εdemocrat) of the object o, the relative groun-
ding strength is λdemocrat(ENdemocrat(o, εdemocrat)) = 0.13; hence for λminBel = 0.5
the epistemic satisfaction relation holds for formulas Bel(x /∈ democrat) and
Pos(x ∈ democrat),

� for the object x = [1110110000121111] the corresponding object o lies at the di-
stance of 2.36 from the prototype, i.e. within the boundary of model of category
democrat; assuming the coefficient of radius of epistemic neighborhood α = 0.5
we get the radius of epistemic neighborhood εdemocrat = 1.448; for this size of the
epistemic neighborhood ENdemocrat(o, εdemocrat) of the object, the relative groun-
ding strength is λdemocrat(ENdemocrat(o, εdemocrat)) = 0.94; hence for λminBel = 0.5
the epistemic satisfaction relation holds for formulas Bel(x ∈ democrat) and
Pos(x /∈ democrat).

Category |Candidates| Prototype τ+c τ−c |Core| |Outer| |Boundary|

democrat 3
[11100011
10100011]

1.09 3.98 136 41 165

republican 3 none 0.21 NULL 29 0 313

Table 7.16: Voting dataset, Weighted Hamming distance, medoids.

Medoid version The results are shown in table 7.16, they are identical to the case
with centroids.
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Total time of calculations for extraction of candidates for both models, using naive
procedure was 79 ms, and using optimized procedure it was 49 ms.

7.3.3 Asymmetric Weighted Hamming distance

Category |Candidates| Prototype τ+c τ−c |Core| |Outer| |Boundary|
democrat 1 none 3.54 12.83 90 29 223
republican 1 none 1.33 NULL 27 0 315

Table 7.17: Voting dataset, Asymmetric Weighted Hamming distance, centroids.

Centroid version The table 7.17 shows for each of the categories the size of the set
of candidates returned by the extractCandidates function and the prototype selected
for the model. As one can see, none of the candidates for both categories has met the
qualitative condition, therefore no prototype has been selected and no category has
been learned. For this reason, the values of the radii and sizes of individual model areas
presented in the table refer to the prototype candidate. One can notice a relatively small
size of the cores and large boundaries, which suggests the low quality of the obtained
models.

Since both categories are ill-defined, the agent does not generate any statements
about membership of the objects to the above categories.

Total time of calculations for extraction of candidates for both models, using opti-
mized procedure was 104 ms.

Medoid version The results are shown in table 7.18, they are identical to the case
with centroids. Again, none of the candidates for both categories has met the qualitative
condition, therefore no prototype has been selected and no category has been learned.

Total time of calculations for extraction of candidates for both models, using naive
procedure was 121 ms, and using optimized procedure it was 61 ms.

Category |Candidates| Prototype τ+c τ−c |Core| |Outer| |Boundary|
democrat 1 none 3.54 12.83 90 29 223
republican 1 none 1.33 NULL 27 0 315

Table 7.18: Voting dataset, Asymmetric Weighted Hamming distance, medoids.

7.4 Conclusions

The simulations confirmed the results of theoretical analyzes of the computational com-
plexity of the algorithms for candidate extraction presented in chapter 6. By far the
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most computationally expensive was the naive centroid search procedure. As anticipa-
ted, the above procedure has proved to be impractical for big data, due to exponential
complexity, resulting in very long time of calculations. The differences between the
other algorithms were not large, but the optimized procedures still ran faster, both for
centroids and medoids extraction.
Limiting the set of potential candidates to medoids allowed for a slightly shorter

computation time for some data sets than for centroids. However, for the ”Primary
Tumor Domain” data set and the Weighted Hamming model, no medoid candidate
has met the qualitative condition and hence a medoid prototype could not be found,
whereas for the centroid case it was possible. Therefore, it seems that it is not worth
limiting the set of potential candidates to medoids, unless it is required by the problem
domain, that is, when it is necessary for the prototype to represent the object actually
experienced by the agent.
When it comes to comparing the quality of models, in this work it is considered

that the smaller the model boundary, the higher its quality. Of course, well-defined
models of category (with designated prototype) are also better than ill-defined models
(without prototype). From that point of view, the case of Hamming distance without
weights is by far the worst among the macrostructures used in implementation models.
No prototype could be found for any of the models (centroid or medoid) for any of the
actual data sets. The size of boundaries for all data sets were also much bigger than
for weighted Hamming distances.
The models using symmetrical Weighted Hamming distance turned out to be of

better quality than the models using Asymmetrical Weighted Hamming distance. The
former usually have had smaller boundary and also they have been able to designate
prototypes for two categories (lung and democrat) for which this has not been possible
for the latter ones. Therefore, less complex (symmetrical) model is better for examined
data sets. However, the quality differences were not very large, so it would probably
be worth exploring both macrostructures with more data sets.
Overall, the well-defined models (with designated prototypes) have been found for

most of the studied categories:

� categories none, soft and hard from “Database for fitting lenses” data set,

� category lung from ”Primary Tumor Domain” data set,

� category democrat from “1984 United States Congressional Voting Records Da-
tabase” data set.

For the following categories, the models were ill-defined (candidates have not met
quality conditions):

� categories stomach and ovary from ”Primary Tumor Domain” data set,
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� category republican from “1984 United States Congressional Voting Records Da-
tabase” data set.

The mere fact that we can identify which models are of poor quality is already
an advantage. Now it is possible to try to find a better model, e.g. by removing any
outliers (possibly containing corrupted data) or using a different macrostructure. It is
also possible, that the model presented in this work simply does not fit the structure
of the category, which is socially sanctioned and/or imposed by physical factors. But it
can also be an interesting direction for analysis by domain experts, that could answer
the questions like “why is it possible to designate (proto)typical Democrat while it
is hard to designate (proto)typical Republican?” or “why is it possible to designate
(proto)typical patient with lung tumor while it is hard to designate (proto)typical
patient with stomach tumor?”.
As it was mentioned, the models of categories can be a basis for further analysis

conducted by domain experts. For example, the issues studied may include:

� the features of the prototype of category, e.g. prototypical patient with lung
cancer,

� the features common to elements in the core of the model, e.g. members of the
party,

� the differences between the prototypes of the (allegedly) opposing categories, e.g.
the Democrats and the Republicans,

� identification of outliers, e.g. atypical cases of tumors.
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Chapter 8

Summary

The aim of this dissertation was development and verification of an artificial agent
system capable of generating statements about the membership of an object to a cate-
gory, the behavior of which in this respect would be consistent with human linguistic
practice.

The realization of the above goal was preceded by an analysis of literature in the
field of cognitive psychology and linguistics, discussing the results of research on the
structure and practical role of categories with a prototype in natural language proces-
sing (e.g. [38, 72, 74]) and the so-called theory of grounding of the modal language
of communication in agent systems, which takes into account the case of a model of
generating statements about the membership of an object to the category without the
prototype (e.g. [31, 33]).

The analysis of the state of knowledge showed the lack of satisfactory studies on
generating modal statements about the object’s membership to the category with the
prototype. Therefore, it was assumed that from the theoretical and practical point
of view, it is desirable to equip the artificial agent with its own embodied ontology,
including models of categories with a prototype, and to develop a computationally
realizable definition of cognitive semantics describing the sense of statements about
the object’s membership to this group of conceptual categories.

The author in the dissertation proposes an original supplement to the existing
theoretical and technical solutions. The main achievements complementing the above
solutions concern the realization of the following major objectives:

(1) development of a general strategy for learning the category’s model with a
prototype and analyzing the properties of this strategy,

(2) development of a technically oriented definition of cognitive semantics for a
class of modal statements about the object’s membership to the category with
a prototype, for the cases of objects with complete and incomplete information

183



CHAPTER 8. SUMMARY

about their state,

(3) demonstration of the compliance of the developed cognitive semantics with
the pragmatics of the use of modal statements by humans about the object’s
membership to the category with a prototype,

(4) development and analysis of the properties of three original implementation
models of the proposed strategy of learning the model of category with a pro-
totype.

In order to achieve the above goals, the author proposed solutions to the related
problems and performed a number of detailed tasks, presented below.

The achievement of the first objective included:

� defining the internal representation of the objects of the external world and how
they are processed in the agent’s mental space (def. 4.1 – 4.3),

� defining a model of category with a prototype, taking into account the division
into the core, the boundary and the outer region of the category (def. 4.4),

� developing a general strategy for learning the model of the category with a pro-
totype (chapter 4.4.1),

� formulation of the condition determining the correctness of the category’s model
(algorithm 4.2, line 26),

� the proof of theorem 4.1 showing that the model obtained as a result of applying
the developed strategy maintains the correct relationship between the core, the
boundary and the outer region of the learned category with a prototype,

� the proof of theorem 4.2 on the computational complexity of the developed stra-
tegy of learning the category with a prototype,

� demonstrating that the proposed model of category with a prototype and the
strategy for its learning meet the six theses of the standard version of the proto-
type semantics developed by Rosch (chapter 4.5).

The achievement of the second objective included:

� defining the syntax of the modal categorization language, including modal state-
ments about the object’s membership to a category, using the modal operators
of knowledge, belief and possibility (def. 5.1 – def. 5.3),

� defining the concept of epistemic neighborhood (def. 5.7 and 5.16),
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� adaptation of the concept of relative grounding strength of modal statements,
used in so-called the theory of grounding of modal communication language in
agent systems, for the purposes of cognitive semantics proposed in the dissertation
(def. 5.8),

� the detailed discussion of the proposed method of applying the cognitive seman-
tics of modal statements about the object’s membership to the category with
a prototype for the case of objects with complete representation of their state
(algorithm 5.1),

� for objects with complete representation of their state, developing a set of so-
called epistemic satisfaction relations of modal formulas representing individual
cases of cognitive semantics of modal statements about membership of the object
to the category with a prototype (def. 5.5, 5.6, 5.9, 5.10),

� the detailed discussion of the proposed method of applying the cognitive seman-
tics of modal statements about the object’s membership to the category with a
prototype for the case of objects with incomplete representation of their state
(algorithm 5.3),

� for objects with incomplete representation of their state, developing a set of so-
called epistemic satisfaction relations of modal formulas representing individual
cases of cognitive semantics of modal statements about membership of the object
to the category with a prototype (def. 5.14, 5.15, 5.17, 5.18).

The achievement of the third objective included:

� the proof of theorems 5.1 – 5.12 on the compliance of the developed cognitive
semantics with the pragmatics of the use of modal statements by humans about
the object’s membership to the category with a prototype,

� discussion of the relationship between the proposed cognitive semantics and the
theory of modal grounding of the language of communication in agent systems,
formulated for the case of categories without a prototype (chapter 5.6).

The achievement of the fourth objective included:

� for the implementation model based on the Hamming distance in the version
using the centroid selection mechanism (chapters 6.2.2 – 6.2.3):
- analysis of exponential computational complexity (theorem 6.1) of naive search
for candidates,
- a proposal of an optimized algorithm (6.1) along with a proof of its polynomial
computational complexity for practical applications (theorem 6.8),
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� for the implementation model based on the Hamming distance in the version
using the medoid selection mechanism (chapters 6.2.4 – 6.2.5):
- analysis of polynomial computational complexity (theorem 6.9) of naive search
for candidates,
- a proposal of an optimized algorithm (6.2) along with a proof of its lower (albeit
polynomial) computational complexity (theorem 6.13),

� for the implementation model based on the Weighted Hamming distance in the
version using the centroid selection mechanism (chapters 6.3.2 – 6.3.3):
- analysis of exponential computational complexity (theorem 6.14) of naive search
for candidates,
- a proposal of an optimized algorithm (6.3) along with a proof of its polynomial
computational complexity for practical applications (theorem 6.21),

� for the implementation model based on the Weighted Hamming distance in the
version using the medoid selection mechanism (chapters 6.3.4 – 6.3.5):
- analysis of polynomial computational complexity (theorem 6.22) of naive search
for candidates,
- a proposal of an optimized algorithm (6.4) along with a proof of its lower (albeit
polynomial) computational complexity (theorem 6.24),

� for the implementation model based on the Asymmetric Weighted Hamming
distance in the version using the centroid selection mechanism (chapters 6.4.2 –
6.4.3):
- analysis of exponential computational complexity (theorem 6.25) of naive search
for candidates,
- a proposal of an optimized algorithm (6.5) along with a proof of its polynomial
computational complexity for practical applications (theorem 6.31),

� for the implementation model based on the Asymmetric Weighted Hamming
distance in the version using the medoid selection mechanism (chapters 6.4.4 –
6.4.5):
- analysis of polynomial computational complexity (theorem 6.32) of naive search
for candidates,
- a proposal of an optimized algorithm (6.6) along with a proof of its lower (albeit
polynomial) computational complexity (theorem 6.36),

� implementation (chapter 7) of the above models and strategies in a computer
system, which ultimately proves their technical feasibility,

� conducting simulation tests (chapter 7) using the above implementation on machi-
ne learning datasets downloaded from the Machine Learning Repository provided
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by the University of California, Irvine:

– “Database for fitting contact lenses”,

– “1984 United States Congressional Voting Records Database”,

– “Primary Tumor Domain”,

� empirical confirmation of the compliance of the theoretically determined com-
putational complexity of the developed mechanisms with the calculation time
needed to process real data sets (e.g. chapters 7.2.1 – 7.2.3),

� presentation of conclusions from the results of the simulations (chapter 7.4),
among others:
- empirical confirmation of theoretical predictions regarding better applicability of
implementation models using as macrostructures distance functions with weights,
- examples of using the learned model of a category as a starting point for domain
analysis, e.g. identifying prototypical representatives of certain categories, such
as a typical Democratic congressman or a person with lung cancer.

The strategy, cognitive semantics and implementation models analyzed in this dis-
sertation can be used as a basis for further research in the areas presented below.

1. Investigation of more implementation models that use different macrostructures
(e.g. similarity measures instead of distance) and mechanisms for determining the
set of candidates for the prototype. An interesting review of similarity measures
together with postulates regarding their properties, similar to those presented in
this dissertation, can be found, for example, in [48].

2. Examination of models based on microstructures other than enumerated attributes,
e.g. attributes with a continuous set of values, trees or graphs. This involves the
development of appropriate macrostructures. Examples of distance, similarity and
dissimilarity measures for graphs can be found in [68, 70, 96].

3. Extending the model of category to use more than one prototype. This would make it
possible to model non-radial categories, e.g. categories based on family resemblance.

4. Developing a strategy for the simultaneous use of several models for the same cate-
gory, which would allow one to find the most useful model. The use of a particular
model could depend on the context in which the category is used. Using the right
context is necessary to obtain statements that are relevant to real situations[76].

5. Modifying the category model by allowing the core to contain a certain number (e.g.
a percentage) of negative examples and/or the outer region to contain a certain
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number of positive examples. Such a model would probably have greater resistance
to noise and faulty attribute values.

6. Extending the embodied ontology with relations between categories, such as syno-
nymy, antonymy, subsumption, etc. Relationship definitions would probably have
to refer to the internal structure of the category model, i.e. the prototype and the
three areas of the model.

7. Implementation of the embodied agent (e.g. as a robot) and its confrontation with
the physical environment and the expectations of a human communication partner.
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