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1. Introduction 

Nonparametric methods for functional data analysis are statistical techniques used to analyse data 
observed as curves or functions, rather than traditional scalar values. These methods do not rely on 
explicit assumptions about the functional form or distribution of the data and are wellsuited for 
handling complex and high-dimensional functional data. Below are some commonly used 
nonparametric methods for functional data analysis: 

1. Functional Data Visualisation: visualisation techniques help in understanding the patterns and 
structures within functional data. Plotting functional data as curves or surfaces provides a visual 
representation of the variability and trends present in the data.  

2. Functional Principal Component Analysis (FPCA): FPCA is an extension of traditional PCA to 
functional data. It aims to identify the dominant modes of variation in the data by decomposing 
the functional data into orthogonal components, known as functional principal components (FPCs). 
FPCA provides dimension reduction and can be used for tasks such as denoising, clustering, and 
visualisation of functional data.  

3. Kernel Smoothing: kernel smoothing methods, such as kernel density estimation and kernel 
regression, can be adapted to functional data. These methods involve smoothing the functional 
data using kernel functions to estimate the underlying density or regression function. Kernel 
smoothing is useful for estimating functional summaries and making predictions for new functional 
observations.  

4. Nonparametric Regression: nonparametric regression techniques, like local linear regression or 
spline-based regression, can be applied to functional data. These methods estimate the 
relationship between the response variable and the functional predictors without assuming 
a specific parametric form. Nonparametric regression is useful for modelling complex relations and 
making predictions for functional outcomes. 

In the case of missing data at random (MAR), and when the predictor takes values in a semi-metric 
space, one can use nonparametric methods to estimate the quantile of a conditional distribution. One 
approach is to use the concept of inverse probability weighting. Missing data often appear in different 
areas, including surveys, clinical trials and longitudinal studies. Responses may be missing, and 
methods for processing missing data often depend on the mechanism that generates the missing 
values (see Efromovich, 2011). 

The difference between missing and non-missing values lies in whether or not a value is present or 
recorded for a particular variable in a dataset. Non-missing values refer to observations or data points 
where a value is available for a given variable. These values are typically recorded, observed, or 
measured directly. Non-missing values contain information that can be used for analysis and inference, 
however missing values refer to observations or data points where a value is absent or unknown for 
a variable. Missing values can occur due to various reasons, such as non-response in surveys, data 
entry errors, equipment malfunction, or simply the absence of data for certain variables in a particular 
case or record.  

Missing values can introduce challenges when analysing data, as they can lead to biased or incomplete 
results if not properly handled. Depending on the mechanism generating the missing values, such as 
Missing Completely at Random (MCAR), Missing at Random (MAR), or Missing Not at Random (MNAR), 
different methods and techniques can be employed to handle missing data. Itis important to 
appropriately identify and address missing values to avoid any potential bias or loss of information in 
data analysis and modeling. Techniques such as data imputation, deletion of cases or variables with 
missing values, or specialised statistical models can be used to handle missing data effectively.  

Nonparametric estimation by kernel methods is a popular approach for estimating the conditional 
models when dealing with missing data that are missing at random (MAR). MAR refers to a situation 
where the probability of missingness depends on the observed data but not on the unobserved data 
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itself. In this context, kernel methods can be used to estimate the conditional distribution of the 
observed data given the available information. Fairly recently, (Ferraty, Sued, and Vieu, 2013) were 
first to propose estimating the mean of a scalar response based on an i.i.d. functional sample in which 
explanatory variables are observed for every subject, while part of the responses are missing at 
random (MAR) for some of them. It generalised the results in (Cheng 1994) to cases where the 
explanatory variables are of functional nature. Other authors were interested in the estimation of 
conditional models when the observations are censored or truncated (see for instance: Hamri et al., 
2022; Liang and de Uña-Alvarez, 2010; Ould-Saïd and Djabrane, 2011; Ould-Saïd and Tatachak, 2011; 
Rabhi et al., 2021, etc.). 

Kernel density estimation is a nonparametric method that estimates the underlying probability density 
function (pdf) based on the observed data. It involves smoothing the data using a kernel function, 
which is a symmetric probability density function centred at each data point. The individual kernel 
functions are then summed up or averaged to obtain the overall density estimate. When dealing with 
missing data that are MAR, the missing values can be considered as additional variables in the 
estimation process. The kernel density estimation can be modified to handle the missing data by 
incorporating appropriate weighting schemes.  

One common approach is the multiple imputation kernel distribution estimation, which involves 
imputing multiple plausible values for the missing data points using techniques such as regression 
imputation or predictive mean matching. Next, the kernel distribution estimation is performed on each 
imputed dataset separately, and the resulting distribution estimates are combined to obtain a final 
estimate that incorporates the uncertainty due to the missing data. Another approach is the weighted 
kernel distribution estimation. In this method, the observed data points are given weights that depend 
on the likelihood of missingness. The weights are used to adjust the contribution of each data point to 
the kernel distribution estimate, taking into account the missingness mechanism. Note that the specific 
implementation and choice of kernel function, bandwidth, and imputation method may depend on the 
characteristics of the data and the research question at hand. Additionally, it is important to consider 
the assumptions made about the missing data mechanism and assess their validity in the given context. 
Generally, nonparametric estimation by kernel methods can be adapted to handle missing data that 
are MAR and provide estimates of the conditional models based on the available information.  

This study extends, to the functional single index model case, the results of (Ling, Liang, and Vieu, 2016; 
Ling, Liu, and Vieu, 2016; Mekki et al., 2022). The rest of the paper is arranged as follows. Section 2 
presents the non-parametric estimator of the functional conditional model when the data are MAR. In 
Section 3, the authors pose useful assumptions for their theoretical study, and then the point-wise 
almost complete convergence, and the asymptotic normality of the kernel estimator for the models 
are established in Section 4. 

2. Model and estimator 

2.1. The functional nonparametric framework 

Consider random pair (𝑋𝑋,𝑌𝑌)  where Y is valued in ℝ and X is valued in some infinite dimensional 
Hilbertian space ℋ with scalar product <·, · >. Consider that, given(𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖)𝑖𝑖=1,…,𝑛𝑛 is the statistical 
sample of pairs which are identically distributed like (𝑋𝑋,𝑌𝑌) , but not necessarily independent. 
Henceforth, Xis called functional random variable f.r.v.  

Let x be fixed in ℋand let 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥) be the conditional cumulative distribution function (cond-cdf) of 
Y given <θ,X>=<θ,x>specifically:  ∀𝑦𝑦 ∈ ℝ , 𝐹𝐹 (θ,y,x) =ℙ (Y ≤ y| <θ,X>=<θ,x>). In saying that, one is 
implicitly assuming the existence of a regular version of conditional distribution Y given <θ,X >=<θ,x >. 
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For the infinite dimensional purpose, the authors used the term functional nonparametric, where 
functional refers to the infinite dimensionality of the data, and nonparametric refers to the infinite 
dimensionality of the model. Such functional nonparametric statistics is also called doubly infinite 
dimensional (see Ferraty, and Vieu, 2003 for more details). The term operational statistics was used 
since the target object to be estimated (cond-cdf 𝐹𝐹(𝜃𝜃, . , 𝑥𝑥)) can be viewed as a nonlinear operator. 

2.2. The estimators 

In the case of complete data, the kernel estimator 𝐹𝐹�𝑛𝑛(𝜃𝜃, . , 𝑥𝑥) of 𝐹𝐹(𝜃𝜃, . , 𝑥𝑥) is presented as follows: 

 𝐹𝐹�(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) =
∑ 𝐾𝐾�ℎ𝑛𝑛−1(|<𝑥𝑥−𝑋𝑋𝑖𝑖,𝜃𝜃>|)�𝐻𝐻�𝑔𝑔𝑛𝑛−1(𝑦𝑦−𝑌𝑌𝑖𝑖)�𝑛𝑛
𝑖𝑖=1

∑ 𝐾𝐾�ℎ𝑛𝑛−1(<𝑥𝑥−𝑋𝑋𝑖𝑖,𝜃𝜃>)�𝑛𝑛
𝑖𝑖=1

, (2.1) 

where 𝐾𝐾 is a kernel function, 𝐻𝐻 a cumulative distribution function and ℎ𝑛𝑛(resp. 𝑔𝑔𝑛𝑛) a sequence of 
positive real numbers. Note that using similar ideas (Roussas, 1969) introduced some related estimates 
but only in a special case when X is real, whilst (Samanta, 1989) produced an earlier asymptotic study. 

Such an estimator is unique as soon as 𝐻𝐻 is an increasing continuous function. This approach has been 
largely  where variable X is of a finite dimension (see e.g. Cai, 2002; Gannoun et al., 2003; Whang and 
Zhao, 1999; Zhou and Liang, 2003), the general definition of the 𝛾𝛾-order quantile is given as: 

𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) = inf{𝑦𝑦 ∈ ℝ,𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥) ≥ 𝛾𝛾}. 

In order to simplify the framework and to focus on the main interest of this paper (the functional 
feature of <θ,X>), it was assumed that 𝐹𝐹(𝜃𝜃, . , 𝑥𝑥)  is strictly increasing and continuous in the 
neighbourhood of 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥). This ensures that conditional quantile 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) is uniquely defined by: 

 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) = 𝐹𝐹−1(𝜃𝜃, 𝛾𝛾, 𝑥𝑥), ∀𝛾𝛾 ∈ (0,1).  (2.2) 

As a by-product of (2.1) and (2.2), it is easy to derive estimator �̃�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) of 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥): 

�̃�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) = 𝐹𝐹�−1(𝜃𝜃, 𝛾𝛾, 𝑥𝑥). 

Meanwhile, in an incomplete case with missing at random for the response variable, observe 
(𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖, 𝛿𝛿𝑖𝑖)1≤𝑖𝑖≤𝑛𝑛  where 𝑋𝑋𝑖𝑖  is observed completely, and 𝛿𝛿𝑖𝑖 = 1 if 𝑌𝑌𝑖𝑖  is observed and 𝛿𝛿𝑖𝑖 = 0 otherwise. 
Thus, one defines the Bernoulli random variable 𝛿𝛿 by  

ℙ(𝛿𝛿 = 1|〈𝑋𝑋,𝜃𝜃〉 = 〈𝑥𝑥, 𝜃𝜃〉,𝑌𝑌 = 𝑦𝑦) = ℙ(𝛿𝛿 = 1|〈𝑋𝑋,𝜃𝜃〉 = 〈𝑥𝑥,𝜃𝜃〉) = 𝑝𝑝(𝑥𝑥, 𝜃𝜃), 

where 𝑝𝑝(𝑥𝑥, 𝜃𝜃) is a functional operator which is conditionally only on 𝑋𝑋. Therefore, the estimator of 
𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥) in the single index model with response MAR is given by: 

𝐹𝐹�(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) =
∑ 𝛿𝛿𝑖𝑖𝐾𝐾�ℎ𝑛𝑛−1(|< 𝑥𝑥 − 𝑋𝑋𝑖𝑖 ,𝜃𝜃 >|)�𝐻𝐻�𝑔𝑔𝑛𝑛−1(𝑦𝑦 − 𝑌𝑌𝑖𝑖)�𝑛𝑛
𝑖𝑖=1

∑ 𝛿𝛿𝑖𝑖𝐾𝐾�ℎ𝑛𝑛−1(< 𝑥𝑥 − 𝑋𝑋𝑖𝑖 ,𝜃𝜃 >)�𝑛𝑛
𝑖𝑖=1

=
𝐹𝐹�𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥)
𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥)

, 

where 𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥): = K(ℎ𝑛𝑛−1|< 𝑥𝑥 − 𝑋𝑋𝑖𝑖 ,𝜃𝜃 >|) , 𝐻𝐻𝑖𝑖(𝑦𝑦) = 𝐻𝐻�𝑔𝑔𝑛𝑛−1(𝑦𝑦 − 𝑌𝑌𝑖𝑖)� , 𝐹𝐹�𝑁𝑁(𝜃𝜃,𝑦𝑦, 𝑥𝑥) = ∑ 𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃,𝑥𝑥)𝐻𝐻𝑖𝑖(𝑦𝑦)𝑛𝑛
𝑖𝑖=1
𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃,𝑥𝑥)�

 

and 𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥) = ∑ 𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃,𝑥𝑥)𝑛𝑛
𝑖𝑖=1
𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃,𝑥𝑥)�

. 

Then a natural estimator of 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) is given by: 

�̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) = 𝐹𝐹�−1(𝜃𝜃, 𝛾𝛾, 𝑥𝑥)  = inf�𝑡𝑡 ∈ ℝ,𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥) ≥ 𝛾𝛾�,
   

 

which satisfies 

𝐹𝐹��𝜃𝜃, �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥� = 𝛾𝛾. 
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2.3. Assumptions on the functional variable 

Let 𝑁𝑁𝑥𝑥  be a fixed neighbourhood of x in ℋ and let Bθ(x, h) be the ball of centre x and radius h, namely 
Bθ(x, h) = {𝜒𝜒 ∈ ℋ: 0 <| < x − 𝜒𝜒,θ>| < h}, dθ(x, Xi) = | < x − Xi,θ>| denote a random variable such that its 
cumulative distribution function is given by 𝜙𝜙𝜃𝜃,𝑥𝑥(𝑢𝑢) = ℙ(𝑑𝑑𝜃𝜃(𝑥𝑥,𝑋𝑋𝑖𝑖) ≤ 𝑢𝑢) = ℙ�𝑋𝑋𝑖𝑖 ∈ 𝐵𝐵𝜃𝜃(𝑥𝑥,𝑢𝑢)�, where 
𝑆𝑆ℝ is a fixed compact of ℝ+. 

Now, consider the following basic assumptions that are necessary in deriving the main result of this 
paper. 

(H1) ℙ�𝑋𝑋 ∈ 𝐵𝐵𝜃𝜃(𝑥𝑥,ℎ𝑛𝑛)� =:𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) > 0;𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) ⟶  0 asℎ𝑛𝑛 →  0. 

2.4. The nonparametric model 

As usual in nonparametric estimation, suppose that cond-cdf  𝐹𝐹(𝜃𝜃, . , 𝑥𝑥)  verifies some smoothness 
constraints. Let 𝛼𝛼1 and 𝛼𝛼2 be two positive numbers; such that: 

(H2) 𝐹𝐹(𝜃𝜃, . , 𝑥𝑥) is differentiable continuous and it has a first derivative uniformly bounded, such that:  

∃𝛼𝛼1,𝛼𝛼2 > 0∀(𝑥𝑥1,𝑥𝑥2) ∈ 𝑁𝑁𝑥𝑥 ×𝑁𝑁𝑥𝑥 ,∀(𝑦𝑦1,𝑦𝑦2) ∈ 𝑆𝑆ℝ × 𝑆𝑆ℝ 

(i) �𝐹𝐹(𝑗𝑗)(𝜃𝜃,𝑦𝑦1, 𝑥𝑥1)− 𝐹𝐹(𝑗𝑗)(𝜃𝜃,𝑦𝑦2, 𝑥𝑥2)� ≤ 𝐶𝐶𝜃𝜃,𝑥𝑥(‖𝑥𝑥1 − 𝑥𝑥2‖𝛼𝛼1 + |𝑦𝑦1 − 𝑦𝑦2|𝛼𝛼2),𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0,1. 
(ii) ∫𝑦𝑦𝑑𝑑𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥) < ∞ for all𝜃𝜃, 𝑥𝑥 ∈ ℋ. 

3. Asymptotic study  

The objective of this paragraph was to adapt these ideas to the framework of a functional 
explanatory variable, and to construct a kernel-type estimator of conditional distribution function 
𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥) adapted to the MAR response samples. The objective was to establish almost complete 
convergence 1 of the kernel estimator 𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥)when considering a model in which the response 
variable is missing. The results presented are accompanied by the data on the rate of convergence. In 
what follows C and C' denote generic strictly positive real constants, ℎ𝑛𝑛 (resp. 𝑔𝑔𝑛𝑛) is a sequence which 
tends to 0with 𝑛𝑛. 

3.1. Pointwise almost complete convergence 

In addition to the assumptions introduced in Section 2.4, additional conditions were necessary. These 
assumptions, needed later, concerning the parameters of the estimator, i.e. 𝐾𝐾,𝐻𝐻, ℎ𝑛𝑛 and 𝑔𝑔𝑛𝑛, which 
are not very restrictive. Indeed, on the one hand, they are rather inherent in the estimation problem 
of 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥), and on the other, they correspond to the assumptions usually made in the context of 
non-functional variables. More precisely, the authors introduced the following conditions which 
guarantee the good behaviour of the estimator 𝐹𝐹� (𝜃𝜃, . , 𝑥𝑥): 

(H3)  Kernel H is a positive bounded function such that: 

(i) ∀(𝑦𝑦1,𝑦𝑦2) ∈ ℝ2, |𝐻𝐻(𝑦𝑦1) −𝐻𝐻(𝑦𝑦2)| ≤ 𝐶𝐶|𝑦𝑦1 − 𝑦𝑦2|, ∫|𝑦𝑦|𝛼𝛼2𝐻𝐻(1)(𝑦𝑦)𝑑𝑑𝑦𝑦 < ∞ and lim
𝑛𝑛→∞

𝑛𝑛𝜍𝜍𝑔𝑔𝑛𝑛 = ∞, for 
some 𝜍𝜍 > 0. 

(ii) The restriction of 𝐻𝐻 to set {𝑢𝑢 ∈ ℝ,𝐻𝐻(𝑢𝑢) ∈ (0,1)} is a strictly increasing function. 
(iii) The support of 𝐻𝐻(1)is compact and 𝐻𝐻(1)exists and is bounded. 

 
1 Recall that sequence (𝑆𝑆𝑛𝑛)𝑛𝑛∈ℕ of random variables is said to converge almost completely to some variable S,𝜖𝜖 > 0, one 

has ∑ ℙ(|𝑆𝑆𝑛𝑛 − 𝑆𝑆| > 𝜖𝜖) < ∞𝑛𝑛 . This mode of convergence implies both almost sure and in probability convergence (see e.g. 
Bosq and Lecoutre, 1987). 
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(H4) 𝐾𝐾 is a positive bounded function with support [0,1] and is differentiable on [0, 1] with derivative 
such that: ∃C1, C2, −∞ < C1 < K’(t) < C2 < 0, for 0 < t < 1. 

(H5) 𝑝𝑝(𝑥𝑥,𝜃𝜃) is continuous in the neighbourhood of 𝑥𝑥, such that 0 < 𝑝𝑝(𝑥𝑥,𝜃𝜃) < 1. 

(H6) There exists function βθ,x(·) such that lim  
𝑛𝑛→∞

𝜙𝜙𝜃𝜃,𝑥𝑥(𝑠𝑠ℎ𝑛𝑛)
𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) = 𝛽𝛽𝜃𝜃,𝑥𝑥(𝑠𝑠), for ∀s ∈ [0,1]. 

(H7) Bandwidth hK  and  hH, small-ball probability φθ,x(hn) satisfying  

(i) 𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙𝜃𝜃,𝑥𝑥
2 (ℎ𝑛𝑛) ⟶  0 and 𝑛𝑛𝑔𝑔𝑛𝑛

3𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) log𝑛𝑛
log2 𝑛𝑛

⟶ ∞, 𝑎𝑎𝑠𝑠𝑛𝑛 → ∞. 

(ii) 𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙𝜃𝜃,𝑥𝑥
3 (ℎ𝑛𝑛) ⟶  0,𝑎𝑎𝑠𝑠𝑛𝑛 → ∞. 

 
Remark 3.1 

(H6) ensures the existence of �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), while (H5) ensures its uniqueness. 

(H1)-(H4) and (H7) are standard  assumptions for the distribution conditional estimation in a single 
functional index model, adopted by (Bouchentouf et al., 2014) for the i.i.d case. 

Theorem 3.1. Suppose that hypotheses (H1)-(H5) are satisfied, if ∃𝛽𝛽 > 0,𝑛𝑛𝛽𝛽𝑔𝑔𝑛𝑛 𝑛𝑛→∞
�⎯⎯�∞, and if  

𝑙𝑙𝑓𝑓𝑔𝑔 𝑛𝑛
𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛) 𝑛𝑛→∞

�⎯⎯� 0, 

then for 𝑓𝑓 = 0,1 one has 

1. 𝑠𝑠𝑢𝑢𝑝𝑝
𝑡𝑡∈𝑆𝑆ℝ

�𝐹𝐹�(𝑗𝑗)(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝐹𝐹(𝑗𝑗)(𝜃𝜃,𝑦𝑦, 𝑥𝑥)� = 𝒪𝒪�ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2� + 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. ��
𝑙𝑙𝑐𝑐𝑔𝑔 𝑛𝑛

𝑛𝑛𝑔𝑔𝑛𝑛
𝑗𝑗+1𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

�. 

2. �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) − 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)
𝑛𝑛→∞
�⎯⎯�0, 𝑎𝑎. 𝑐𝑐𝑓𝑓. 

3. �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) − 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) = 𝒪𝒪�ℎ𝑛𝑛
𝛼𝛼1 + 𝑔𝑔𝑛𝑛

𝛼𝛼2� + 𝒪𝒪𝑎𝑎.𝑐𝑐𝑐𝑐. �
𝑙𝑙𝑐𝑐𝑔𝑔𝑛𝑛

𝑛𝑛𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
�. 

Proof. Similarly to the proof of Proposition 3.1 and Theorem 3.2 in (Kadiri et al., 2023)), it can be 
completed easily. Here the authors omitted its proof. 

4. Asymptotic normality 

The asymptotic normality of the semi-parametric estimators of the conditional quantile for functional 
data in the Single Index Model (SIM) with missing data at random (MAR) is an important property that 
establishes the limiting distribution of the estimators as the sample size increases. Although specific 
results may vary depending on the assumptions and estimation methods used, it allows is to construct 
confidence intervals and hypothesis tests for the estimated quantile; in this section the asymptotic 
normality of estimator 𝐹𝐹�(𝜃𝜃, . , 𝑥𝑥) in the single functional index model is established. 

Theorem 4.1 Under assumptions one has (H1) to (H7)-(ii) for all x ∈ ℋ 

𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝐾𝐾)
𝜎𝜎2(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) �

𝐹𝐹�(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) − 𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)�
𝒟𝒟
→𝒩𝒩(0,1), 

where 𝜎𝜎2(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) = 𝑀𝑀2(𝜃𝜃,𝑥𝑥)
(𝑀𝑀1(𝜃𝜃,𝑥𝑥))2 𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)(𝑝𝑝(𝑥𝑥,𝜃𝜃) − 𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥))  with 𝑀𝑀𝑙𝑙(𝜃𝜃, 𝑥𝑥) = 𝐾𝐾𝑙𝑙(1) − ∫ �𝐾𝐾𝑙𝑙�′(𝑢𝑢)1

0   

𝛽𝛽𝜃𝜃,𝑥𝑥(𝑢𝑢)𝑑𝑑𝑢𝑢, 𝑙𝑙 = 1, 2, 
𝒟𝒟
→means the convergence in distribution.  

Proof. In order to establish the asymptotic normality of 𝐹𝐹�(𝜃𝜃, 𝑡𝑡, 𝑥𝑥),  further notations and definitions 
are needed. First, consider the following decomposition: 
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𝐹𝐹�(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) − 𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) =
𝐹𝐹�𝑁𝑁(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)
𝐹𝐹�D(𝜃𝜃, 𝑥𝑥)

−
𝑀𝑀1(𝜃𝜃, 𝑥𝑥)𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)

𝑀𝑀1(𝜃𝜃, 𝑥𝑥)
=

1
𝐹𝐹�D(𝜃𝜃, 𝑥𝑥)

�𝐹𝐹�𝑁𝑁(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�𝑁𝑁(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)�
                                                 

−
1

𝐹𝐹�D(𝜃𝜃, 𝑥𝑥)
�𝑀𝑀1(𝜃𝜃, 𝑥𝑥)𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�𝑁𝑁(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)� +

𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)
𝐹𝐹�D(𝜃𝜃, 𝑥𝑥)

�𝑀𝑀1(𝜃𝜃, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥)�
 

−
𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)
𝐹𝐹�D(𝜃𝜃, 𝑥𝑥)

�𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥)� =
1

𝐹𝐹�D(𝜃𝜃, 𝑥𝑥)
𝐴𝐴𝑛𝑛(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) + 𝐵𝐵𝑛𝑛(𝜃𝜃, 𝑡𝑡, 𝑥𝑥), 

(4.1) 

where  

𝐴𝐴𝑛𝑛(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) =
1

𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
���𝐻𝐻𝑖𝑖(𝑡𝑡) − 𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)�𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)
𝑛𝑛

𝑖𝑖=1

−𝔼𝔼��𝐻𝐻𝑖𝑖(𝑡𝑡) − 𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)�𝛿𝛿𝑖𝑖𝐾𝐾𝑖𝑖(𝜃𝜃, 𝑥𝑥)�� =
1

𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
�𝑁𝑁𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)
 

 

and 

𝐵𝐵𝑛𝑛(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) = 𝑀𝑀1(𝜃𝜃, 𝑥𝑥)𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)− 𝔼𝔼𝐹𝐹�𝑁𝑁(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) + 𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) �𝑀𝑀1(𝜃𝜃, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥)�. 

It follows that 

𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝐾𝐾)𝑉𝑉𝑎𝑎𝑓𝑓�𝐴𝐴𝑛𝑛(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)� =
𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝐾𝐾)

𝔼𝔼2�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
𝑉𝑉𝑎𝑎𝑓𝑓�𝑁𝑁1(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)� = 𝑉𝑉𝑛𝑛(𝜃𝜃, 𝑡𝑡, 𝑥𝑥).

                
 

Then, the proof of Theorem 4.1 can be deduced from the following lemmas. 

Lemma 4.1. Under the assumptions of Theorem 4.1 

�𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝐾𝐾)𝐴𝐴𝑛𝑛(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)
𝒟𝒟
→𝒩𝒩�0,𝜎𝜎2(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)�. 

Proof. 

𝑉𝑉𝑛𝑛(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) =
𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝐾𝐾)

𝔼𝔼2�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
𝔼𝔼 �𝛿𝛿1𝐾𝐾12(𝜃𝜃, 𝑥𝑥)�𝐻𝐻1(𝑡𝑡) − 𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)�2�

                   =  
𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝐾𝐾)

𝔼𝔼2�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
𝔼𝔼 �𝐾𝐾12(𝜃𝜃, 𝑥𝑥)𝔼𝔼�𝛿𝛿1 �𝐻𝐻1(𝑡𝑡) − 𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)�2� 〈𝜃𝜃,𝑋𝑋1〉�� .

 (4.2) 

Using the definition of conditional variance 

𝔼𝔼�𝛿𝛿1 �𝐻𝐻1(𝑡𝑡) − 𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)�2� 〈𝜃𝜃,𝑋𝑋1〉� = 𝐽𝐽1𝑛𝑛 + 𝐽𝐽2𝑛𝑛, 

where 𝐽𝐽1𝑛𝑛 = 𝑉𝑉𝑎𝑎𝑓𝑓(𝛿𝛿1𝐻𝐻1(𝑡𝑡)|〈𝜃𝜃,𝑋𝑋1〉), 𝐽𝐽2𝑛𝑛 = [𝔼𝔼(𝐻𝐻1(𝑡𝑡)|〈𝜃𝜃,𝑋𝑋1〉) − 𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)]2. 

• Concerning 𝐽𝐽1𝑛𝑛 

𝐽𝐽1𝑛𝑛 = 𝔼𝔼�𝐻𝐻2 �𝑡𝑡−𝑌𝑌1
ℎ𝐻𝐻

�� 〈𝜃𝜃,𝑋𝑋1〉� − �𝔼𝔼�𝛿𝛿1 𝐻𝐻1 �
𝑡𝑡−𝑌𝑌1
ℎ𝐻𝐻

�� 〈𝜃𝜃,𝑋𝑋1〉��
2

= 𝒥𝒥1 + 𝒥𝒥2. 

As for 𝒥𝒥1, by the property of double conditional expectation, one obtains 

𝒥𝒥1 = 𝔼𝔼�𝛿𝛿1𝐻𝐻2 �
𝑡𝑡 − 𝑌𝑌1
ℎ𝐻𝐻

�� 〈𝜃𝜃,𝑋𝑋1〉� = 𝑝𝑝(𝑥𝑥,𝜃𝜃)�𝐻𝐻2 �
𝑡𝑡 − 𝑣𝑣
ℎ𝐻𝐻

�𝑑𝑑𝐹𝐹(𝜃𝜃, 𝑣𝑣,𝑋𝑋1)

= 𝑝𝑝(𝑥𝑥,𝜃𝜃)�𝐻𝐻2(𝑢𝑢)𝑑𝑑𝐹𝐹(𝜃𝜃, 𝑡𝑡 − 𝑢𝑢ℎ𝐻𝐻 ,𝑋𝑋1).
 (4.3) 
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On the other hand, by integrating by part and under assumption (H3)-(i), one has 

�𝐻𝐻2(𝑢𝑢)𝑑𝑑𝐹𝐹(𝜃𝜃, 𝑡𝑡 − 𝑢𝑢ℎ𝐻𝐻 ,𝑋𝑋1) = �2𝐻𝐻(𝑢𝑢)𝐻𝐻′(𝑢𝑢)𝐹𝐹(𝜃𝜃, 𝑡𝑡 − 𝑢𝑢ℎ𝐻𝐻 ,𝑋𝑋1)𝑑𝑑𝑢𝑢

                                        =  �2𝐻𝐻(𝑢𝑢)𝐻𝐻′(𝑢𝑢)�𝐹𝐹(𝜃𝜃, 𝑡𝑡 − 𝑢𝑢ℎ𝐻𝐻 ,𝑋𝑋1) − 𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)�𝑑𝑑𝑢𝑢

     +�2𝐻𝐻(𝑢𝑢)𝐻𝐻′(𝑢𝑢)𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)𝑑𝑑𝑢𝑢.

 

Clearly, 

�2𝐻𝐻(𝑢𝑢)𝐻𝐻′(𝑢𝑢)𝑑𝑑𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) = [𝐻𝐻2(𝑢𝑢)𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)]−∞+∞ = 𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥), (4.4) 

thus 

�𝐻𝐻2(𝑢𝑢)𝑑𝑑𝐹𝐹(𝜃𝜃, 𝑡𝑡 − 𝑢𝑢ℎ𝐻𝐻 ,𝑋𝑋1) = 𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) + 𝒪𝒪�ℎ𝐾𝐾
𝛼𝛼1 + ℎ𝐻𝐻

𝛼𝛼2�. (4.5) 

As for 𝐽𝐽2𝑛𝑛, by (H2)-(H3), (H5), and using Lemma 3.1, one obtains that 𝐽𝐽2𝑛𝑛 → 0 as 𝑛𝑛 → ∞. 

• Concerning 𝒥𝒥2 
𝒥𝒥2′ = 𝔼𝔼(𝛿𝛿1𝐻𝐻1(𝑡𝑡)|〈𝜃𝜃,𝑋𝑋1〉)

                                  = 𝑝𝑝(𝑥𝑥,𝜃𝜃)�𝐻𝐻�
𝑡𝑡 − 𝑣𝑣
ℎ𝐻𝐻

�𝑓𝑓(𝜃𝜃, 𝑡𝑡,𝑋𝑋1)𝑑𝑑𝑣𝑣. 

Moreover, by integration by parts and changing variables 

𝒥𝒥′2 = 𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)�𝐻𝐻′(𝑢𝑢)𝑑𝑑𝑢𝑢 +�𝐻𝐻′(𝑢𝑢)�𝐹𝐹(𝜃𝜃, 𝑡𝑡 − 𝑢𝑢ℎ𝐻𝐻 ,𝑥𝑥) − 𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)�𝑑𝑑𝑢𝑢, 

the last equality is due to the fact that 𝐻𝐻′ is a probability density. Thus 

𝒥𝒥′2 = 𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) + 𝒪𝒪�ℎ𝐾𝐾
𝛼𝛼1 + ℎ𝐻𝐻

𝛼𝛼2�. (4.6) 

Finally, by hypothesis (H3) one obtains 𝒥𝒥2 → 𝐹𝐹2(𝜃𝜃, 𝑡𝑡, 𝑥𝑥). Meanwhile, by (H1)-(H2), (H4) and (H6), it 
follows that: 

𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝐾𝐾)𝔼𝔼𝐾𝐾12(𝜃𝜃, 𝑥𝑥)
𝔼𝔼2�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)� 𝑛𝑛→∞

�⎯⎯�
𝑀𝑀2(𝜃𝜃, 𝑥𝑥)

(𝑀𝑀1(𝜃𝜃, 𝑥𝑥))2 , 

which leads to combining equations (4.2)-(4.6). 

𝑉𝑉𝑛𝑛(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)
𝑛𝑛→∞
�⎯⎯�

𝑀𝑀2(𝜃𝜃, 𝑥𝑥)
(𝑀𝑀1(𝜃𝜃, 𝑥𝑥))2 𝐹𝐹

(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)(𝑝𝑝(𝑥𝑥,𝜃𝜃)− 𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)). 

Lemma 4.2. If the assumptions (H1) to (H7) are satisfied, then 

�𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝐵𝐵𝑛𝑛(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) → 0, in probability. 

Proof.   

One has 

�𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝐵𝐵𝑛𝑛(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) =
�𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥)

�𝔼𝔼𝐹𝐹�𝑁𝑁(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) −𝑀𝑀1(𝜃𝜃, 𝑥𝑥)𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)

                               +𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) �𝑀𝑀1(𝜃𝜃, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥)� .
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Firstly, observe that the results below as 𝑛𝑛 → ∞ 

1
𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝔼𝔼 �𝐾𝐾

𝑙𝑙 �
〈𝜃𝜃, 𝑥𝑥 − 𝑋𝑋𝑖𝑖〉

ℎ𝑛𝑛
�� → 𝑀𝑀𝑙𝑙(𝜃𝜃, 𝑥𝑥), for 𝑙𝑙 = 1,2, (4.7) 

𝔼𝔼𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥) → 𝑀𝑀1(𝜃𝜃, 𝑥𝑥) and 𝔼𝔼𝐹𝐹�𝑁𝑁(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) → 𝑀𝑀1(𝜃𝜃, 𝑥𝑥)𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥), (4.8) 

can be proved in the same way as in (Ezzahrioui and Ould-Saïd, 2008) corresponding to their Lemmas 
5.1 and 5.2, and then their proofs are omitted. 

Secondly, on the one hand, making use of (4.7) and (4.8), as𝑛𝑛 → ∞ 

�𝔼𝔼𝐹𝐹�𝑁𝑁(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) −𝑀𝑀1(𝜃𝜃, 𝑥𝑥)𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) + 𝐹𝐹(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) �𝑀𝑀1(𝜃𝜃, 𝑥𝑥) − 𝔼𝔼𝐹𝐹�𝐷𝐷(𝜃𝜃, 𝑥𝑥)�� → 0. 

On the other hand, 

�𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝐹𝐹�D(𝜃𝜃, 𝑥𝑥)

=
�𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝐹𝐹�′(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)
𝐹𝐹�D(𝜃𝜃, 𝑥𝑥)𝐹𝐹�′(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)

=
�𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝐹𝐹�′(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)

𝐹𝐹�𝑁𝑁′ (𝜃𝜃, 𝑡𝑡, 𝑥𝑥)
. 

Then, using Proposition 3.1, it suffices to show that  �𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝐹𝐹�𝑁𝑁
′ (𝜃𝜃,𝑡𝑡,𝑥𝑥)   tends to zero as 𝑛𝑛goes to infinity. 

Indeed  

𝐹𝐹�𝑁𝑁′ (𝜃𝜃, 𝑡𝑡, 𝑥𝑥) =
1

𝑛𝑛𝑔𝑔𝑛𝑛𝔼𝔼�𝐾𝐾1(𝜃𝜃, 𝑥𝑥)�
�𝛿𝛿𝑖𝑖𝐾𝐾�ℎ𝑛𝑛−1(< 𝑥𝑥 − 𝑋𝑋𝑖𝑖,𝜃𝜃 >)�𝐻𝐻′�𝑔𝑔𝑛𝑛−1(𝑦𝑦 − 𝑌𝑌𝑖𝑖)�
𝑛𝑛

𝑖𝑖=1

. 

Since 𝐾𝐾 and 𝐻𝐻′ are continuous with support on [0,1], then by (H3) and (H4) 

∃𝑚𝑚 = min
[0,1]

𝐾𝐾(𝑡𝑡)𝐻𝐻′(𝑡𝑡) it follows that 

𝐹𝐹�𝑁𝑁′ (𝜃𝜃, 𝑡𝑡, 𝑥𝑥) ≥
𝑚𝑚

𝑔𝑔𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛), 

which gives 

�𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝐹𝐹�𝑁𝑁′ (𝜃𝜃, 𝑡𝑡, 𝑥𝑥)

≤
�𝑛𝑛𝑔𝑔𝑛𝑛2𝜙𝜙𝜃𝜃,𝑥𝑥

3 (ℎ𝑛𝑛)

𝑚𝑚
. 

Finally, using (H7)-(ii), completes the proof of Lemma 4.2. 

4.1. Application: The conditional quantile in functional single-index model 

The main objective of this section was to establish the asymptotic normality of the conditional quantile 
estimator of T given <θ,X>=<θ,x> denoted by 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥).  

Corollary 4.1. If assumptions (H1) to (H7) are satisfied and if 𝛾𝛾 is the unique order of the quantile such 
that 𝛾𝛾 = 𝐹𝐹(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥) = 𝐹𝐹��𝜃𝜃, �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥�: 

�
𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝐾𝐾)

Σ2(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥)
�
1 2⁄

��̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) − 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)�
𝒟𝒟
→𝒩𝒩(0,1), 

where Σ2(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥),𝑥𝑥) = 𝜎𝜎2(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾,𝑥𝑥),𝑥𝑥)
𝑓𝑓2(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾,𝑥𝑥),𝑥𝑥) = 𝑀𝑀2(𝜃𝜃,𝑥𝑥)

(𝑀𝑀1(𝜃𝜃,𝑥𝑥))2
𝛾𝛾[𝑝𝑝(𝜃𝜃,𝑥𝑥)−𝛾𝛾]

𝑓𝑓2(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾,𝑥𝑥),𝑥𝑥). 
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Proof. 

For Corollary 4.1, making use of (4.1), one has 

�𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝐾𝐾) ��̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) − 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)� = �𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝐹𝐹�(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥),𝑥𝑥)
𝐹𝐹� ′�𝜃𝜃, �̂�𝜗𝜃𝜃∗(𝛾𝛾, 𝑥𝑥), 𝑥𝑥�

−�𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝐹𝐹(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥)
𝐹𝐹� ′�𝜃𝜃, �̂�𝜗𝜃𝜃∗(𝛾𝛾, 𝑥𝑥), 𝑥𝑥�

                                                   =
�𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝐴𝐴𝑛𝑛(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)
𝐹𝐹� ′�𝜃𝜃, �̂�𝜗𝜃𝜃∗(𝛾𝛾, 𝑥𝑥),𝑥𝑥�

−
�𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)𝐵𝐵𝑛𝑛(𝜃𝜃, 𝑡𝑡, 𝑥𝑥)
𝐹𝐹� ′�𝜃𝜃, �̂�𝜗𝜃𝜃∗(𝛾𝛾, 𝑥𝑥), 𝑥𝑥�

. (4.9) 

Then, using Theorem 4.1 and Lemma 4.1 provides the result. 

4.2. Confidence bands 

The asymptotic variances 𝜎𝜎2(𝜃𝜃, 𝑡𝑡, 𝑥𝑥) and Σ2(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥)  in Theorem 4.1 and Corollary 4.1 depend 
on some unknown quantities including 𝑀𝑀1, 𝑀𝑀2, 𝜙𝜙(𝑢𝑢),  𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥),  𝑝𝑝(𝜃𝜃, 𝑥𝑥)  and 𝑓𝑓(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥),𝑥𝑥). 
Therefore, 𝑝𝑝(𝜃𝜃, 𝑥𝑥),𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), and 𝑓𝑓(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥),𝑥𝑥) should can be estimated respectively by 𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥), 
�̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) and 𝑓𝑓(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥) and �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥). Moreover, using the decomposition given by assumption 
(H1), one can estimate 𝜙𝜙𝜃𝜃,𝑥𝑥(. ) by 𝜙𝜙�𝜃𝜃,𝑥𝑥(. )  As the unknown functions 𝑀𝑀𝑗𝑗 ∶= 𝑀𝑀𝑗𝑗(𝜃𝜃, 𝑥𝑥) and 
𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)intervening in the expression of the variance, hence it was necessary to estimate quantities 
𝑀𝑀1(𝜃𝜃, 𝑥𝑥), 𝑀𝑀2(𝜃𝜃, 𝑥𝑥) and 𝐹𝐹(𝜃𝜃, 𝑦𝑦, 𝑥𝑥), respectively.  

By assumptions (H1) to (H4) it is known that 𝑀𝑀𝑗𝑗(𝜃𝜃, 𝑥𝑥) can be estimated by 𝑀𝑀�𝑗𝑗(𝜃𝜃, 𝑥𝑥) which is defined as: 

𝑀𝑀�𝑗𝑗(𝜃𝜃, 𝑥𝑥) =
1

𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ)
�𝐾𝐾𝑖𝑖

𝑗𝑗(𝜃𝜃, 𝑥𝑥), 𝑤𝑤ℎ𝑒𝑒𝑓𝑓𝑒𝑒  𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ) =
1
𝑛𝑛

𝑛𝑛

𝑖𝑖=1

�𝟏𝟏{|〈𝑥𝑥−𝑋𝑋𝑖𝑖,𝜃𝜃〉|<ℎ}

𝑛𝑛

𝑖𝑖=1

, 

with 𝟏𝟏{.} being the indicator function. Finally, the estimator of 𝑝𝑝(𝜃𝜃, 𝑥𝑥) is denoted by 

𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥) =
∑ 𝛿𝛿𝑖𝑖𝐾𝐾�ℎ𝑛𝑛−1(< 𝑥𝑥 − 𝑋𝑋𝑖𝑖 ,𝜃𝜃 >)�𝑛𝑛
𝑖𝑖=1

∑ 𝐾𝐾�ℎ𝑛𝑛−1(< 𝑥𝑥 − 𝑋𝑋𝑖𝑖, 𝜃𝜃 >)�𝑛𝑛
𝑖𝑖=1

. 

By applying the kernel estimator of 𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥) given above, the quantity 𝜎𝜎2(𝜃𝜃,𝑦𝑦, 𝑥𝑥) can be estimated by: 

𝜎𝜎�2(𝜃𝜃,𝑦𝑦, 𝑥𝑥) =
𝑀𝑀�2(𝜃𝜃, 𝑥𝑥)

�𝑀𝑀�1(𝜃𝜃, 𝑥𝑥)�2
𝑓𝑓(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�𝐻𝐻2(𝑢𝑢)𝑑𝑑𝑢𝑢 

so one can derive the following corollary: 

Corollary 4.2. Under the assumptions of Theorem 4.1, 𝐾𝐾′and (𝐾𝐾2)′are integrable functions, then as 
𝑛𝑛 → ∞. 

1. 𝑀𝑀�1
�𝑀𝑀�2

� 𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝐹𝐹�(𝜃𝜃,𝑦𝑦,𝑥𝑥)[𝑃𝑃𝑛𝑛(𝜃𝜃,𝑥𝑥)−𝐹𝐹�(𝜃𝜃,𝑦𝑦,𝑥𝑥)] �𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�

     𝒟𝒟      
�⎯⎯⎯�𝒩𝒩(0,1). 

2. 𝑀𝑀�1�̂�𝑓�𝜃𝜃,𝜗𝜗�𝜃𝜃(𝛾𝛾,𝑥𝑥),𝑥𝑥�
�𝑀𝑀�2

� 𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝛾𝛾[𝑃𝑃𝑛𝑛(𝜃𝜃,𝑥𝑥)−𝛾𝛾] ��̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) − 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)�

     𝒟𝒟      
�⎯⎯⎯�𝒩𝒩(0,1). 
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Proof. 

Observe that 

1.  

𝑀𝑀�1
�𝑀𝑀�2

�
𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥)− 𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�
�𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�

=
𝑀𝑀�1�𝑀𝑀2

𝑀𝑀1�𝑀𝑀�2
�
𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)[𝑝𝑝(𝜃𝜃, 𝑥𝑥) − 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)]𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)
𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥) − 𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

×
𝑀𝑀1

�𝑀𝑀2
�

𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)[𝑝𝑝(𝜃𝜃, 𝑥𝑥) − 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)] �𝐹𝐹

�(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)� .

 

Via Theorem 4.1, 

𝑀𝑀1

�𝑀𝑀2
�

𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)[𝑝𝑝(𝜃𝜃, 𝑥𝑥) − 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)] �𝐹𝐹

�(𝜃𝜃,𝑦𝑦, 𝑥𝑥) − 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�
     𝒟𝒟      
�⎯⎯⎯�𝒩𝒩(0,1). 

Next, by (Laib and Louani, 2010), one can prove that 

𝑀𝑀�1
ℙ
→𝑀𝑀1,𝑀𝑀�2

ℙ
→𝑀𝑀2 and  

𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

�𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
ℙ
→1  as 𝑛𝑛 → ∞. 

If in addition, one considers Lemma 4.2 and (4.9), the consistency of 𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥) to 𝑝𝑝(𝜃𝜃, 𝑥𝑥) according to 
(Deheuvels and Einmahl, 2000), then 

𝑀𝑀�1�𝑀𝑀2

𝑀𝑀1�𝑀𝑀�2
�
𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)[𝑝𝑝(𝜃𝜃, 𝑥𝑥)− 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)]𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥)
𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥) − 𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

→ 1 𝑎𝑎. 𝑠𝑠. 

2.  

𝑀𝑀�1𝑓𝑓�𝜃𝜃, �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥),𝑥𝑥�
�𝑀𝑀�2

� 𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝛾𝛾[𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥) − 𝛾𝛾] ��̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) − 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)�

=
𝑀𝑀�1�𝑀𝑀2

𝑀𝑀1�𝑀𝑀�2
�
𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)[𝑝𝑝(𝜃𝜃, 𝑥𝑥) − 𝛾𝛾]
[𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥) − 𝛾𝛾]𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

𝑓𝑓�𝜃𝜃, �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥�
𝑓𝑓(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥)

×
𝑀𝑀1

�𝑀𝑀2
�

𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝛾𝛾[𝑝𝑝(𝜃𝜃, 𝑥𝑥) − 𝛾𝛾] 𝑓𝑓(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥) ��̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) − 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)�

. 

Making use of Corollary 4.1, one obtains 

𝑀𝑀1

�𝑀𝑀2
�

𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
𝛾𝛾[𝑝𝑝(𝜃𝜃, 𝑥𝑥) − 𝛾𝛾] 𝑓𝑓(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥),𝑥𝑥) ��̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) − 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥)�

     𝒟𝒟      
�⎯⎯⎯�𝒩𝒩(0,1). 

Further, by considering Lemma 4.2, (4.9), and the consistency of 𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥) to 𝑝𝑝(𝜃𝜃, 𝑥𝑥), as 𝑛𝑛 → ∞. 

𝑀𝑀�1�𝑀𝑀2

𝑀𝑀1�𝑀𝑀�2
�
𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝐾𝐾)[𝑝𝑝(𝜃𝜃, 𝑥𝑥) − 𝛾𝛾]
[𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥) − 𝛾𝛾]𝑛𝑛𝜙𝜙𝜃𝜃,𝑥𝑥(ℎ𝐾𝐾)

𝑓𝑓�𝜃𝜃, �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥�
𝑓𝑓(𝜃𝜃,𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥)

ℙ
→1. 

Hence, the proof is completed. 
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Remark 4.1. 

Thus, following Corollary 4.2, the asymptotic (1 − 𝜉𝜉)confidence interval of 𝐹𝐹(𝜃𝜃,𝑦𝑦, 𝑥𝑥) and 𝜗𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) 
respectively, which are expressed as follows: 

𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥) ± 𝜂𝜂𝛾𝛾/2
𝑀𝑀�1
�𝑀𝑀�2

�
𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥) − 𝐹𝐹�(𝜃𝜃,𝑦𝑦, 𝑥𝑥)�

𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)
, 

and  

�̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥) ± 𝜂𝜂𝛾𝛾/2
𝑀𝑀�1𝑓𝑓�𝜃𝜃, �̂�𝜗𝜃𝜃(𝛾𝛾, 𝑥𝑥), 𝑥𝑥�

�𝑀𝑀�2
�
𝛾𝛾[𝑃𝑃𝑛𝑛(𝜃𝜃, 𝑥𝑥) − 𝛾𝛾]
𝑛𝑛𝜙𝜙�𝜃𝜃,𝑥𝑥(ℎ𝑛𝑛)

, 

where 𝜂𝜂𝛾𝛾/2 is the upper 𝛾𝛾/2 quantile of the normal distribution 𝒩𝒩(0,1). 

5. Conclusions 

In this study, the authors were mainly interested in the nonparametric estimation of the conditional 
distribution function and/or conditional quantile estimator for a variable explanatory functionally 
conditioned to an actual response variable via a functional single index model, when the variable of 
interest is subject to the presence of randomly missing data, involving both some (semi-parametric) 
single model structure and also some censoring process on the variables. The paper shows that the 
estimator provided good predictions under this model. 

One of the main contributions of this work is the choice of semi-metrics. Indeed, it is well known that, 
in non-parametric functional statistics, the semi-metric of the projection type is very important for 
increasing the concentration property. Both the almost complete convergence (with rates), and the 
resulting estimator, were shown to be asymptotically normally distributed under some regularity 
conditions. 

Naturally, the plug-in rules were used to obtain an estimator of the asymptotic variance term. The 
authors point out that it was possible to prove that the variance estimator is almost completely 
consistent, using analogous ideas. The proofs were based on certain standard assumptions in 
Functional Data Analysis (FDA). The functional index model is a special case of this family of semi- 
-metrics because it is based on the projection on a functional direction which is important for the 
implementation of this method in practice. 

References 

Bosq, D., and Lecoutre, J. P. (1987). Théorie de L'estimation Fonctionnelle. Economica. 
Bouchentouf, A. A., Djebbouri, T., Rabhi, A., and Sabri, K. (2014). Strong Uniform Consistency Rates of Some Characteristics 

of the Conditional Distribution Estimator in the Functional Single Index Model. Appl. Math., 41(4), 301-322. 
Cai, Z. (2002). Regression Quantiles for Time Series. Econometric Theory, (18), 169-192. 
Cheng, P. E. (1994). Nonparametric Estimation of Mean Functional with Data Missing at Random. Journal of the American 

Statistical Association, 89(425), 81-87. 
Deheuvels, P., and Einmahl, J. H. J. (2000).  Functional Limit Laws for the Increments of Kaplan-Meier Product-Limit Processes 

and Applications. The Annals of Probability, (28), 1301-1335. 
Efromovich, S. (2011). Nonparametric Regression with Responses Missing at Random. Journal of Statistical Planning and 

Inference, 141, 3744-3752. 
Ezzahrioui, M., and Ould-Saïd, E. (2008). Asymptotic Results of a Nonparametric Conditional Quantile Estimator for Functional 

Time Series. Comm. Statist. Theory and Methods, 37(16-17), 2735-2759. 



Anis Allal, Nadia Kadiri, Abbes Rabhi 38  
 

Ferraty, F., Sued, F., and Vieu, P. (2013). Mean Estimation with Data Missing at Random for Functional Covariables. Statistics, 
47(4), 688-706. 

Ferraty, F., and Vieu, P. (2003). Functional Nonparametric Statistics: A Double Infinite Dimensional Framework. Recent 
Advances and Trends in Nonparametric Statistics, M. Akritas and D. Politis (Ed.). Elsevier. 

Gannoun, A., Saracco, J., and Yu, K. (2003). Nonparametric Prediction by Conditional Median and Quantiles. J. Stat. Plann. 
and Inf., (117), 207-223. 

Hamri, M. M., Mekki, S. D., Rabhi, A. and Kadiri, N. (2022). Single Functional Index Quantile Regression for Independent 
Functional Data Under Right-Censoring. Econometrics, 26(1), 31-62. https://doi.org/10.15611/eada.2022.1.03 

Kadiri, N., Mekki, S. D., and Rabhi, A. (2023). Single Functional Index Quantile Regression for Functional Data with Missing Data 
at Random. Econometrics. Ekonometria. Advances in Applied Data Analysis, 27(3), 1-19. DOI 10.15611/eada.2023.3.01 

Liang, H., and de Uña-Alvarez, J. (2010). Asymptotic Normality for Estimator of Conditional Mode under Left-Truncated and 
Dependent Observations. Metrika, 72(1), 1-19. 

Ling, N., Liang, L., and Vieu, P. (2015). Nonparametric Regression Estimation for Functional Stationary Ergodic Data with 
Missing at Random. Journal of Statistical Planning and Inference, (162), 75-87. 

Ling, N., Liu, Y., and Vieu, P. (2016). Conditional Mode Estimation for Functional Stationary Ergodic Data with Responses 
Missing at Random. Statistics, 50(5), 991-1013. 

Mekki, S. D., Kadiri, N., and Rabhi, A. (2021). Asymptotic Properties of the Semi-Parametric Estimators of the Conditional 
Density for Functional Data in the Single Index Model with Missing Data at Random. Statistica, 81(4), 399-422. 

Ould-Saïd, E., and Djabrane, Y. (2011). Asymptotic Normality of a Kernel Conditional Quantile Estimator under Strong Mixing 
Hypothesis and Left-Truncation. Communications in Statistics. Theory and Methods, 40(14), 2605-2627. 

Ould-Saïd, E., and Tatachak, A. (2011). A Nonparametric Conditional Mode Estimate under RLT Model and Strong Mixing 
Condition. International Journal of Statistics and Economics, (6), 76-92. 

Rabhi, A., Kadiri, N., and Akkal, F. (2021). On the Central Limit Theorem for Conditional Density Estimator in the Single 
Functional Index Model.Applications and Applied Mathematics: An International Journal (AAM), 16(2), 844-866. 

Wang, H., and Zhao, Y. (1999). A Kernel Estimator for Conditional T-Quantiles for Mixing Samples and Its Strong Uniform 
Convergence (in Chinese). Math. Appl. (Wuhan), (12), 123-127. 

Zhou, Y., and Liang, H. (2003). Asymptotic Properties for L1Norm Kernel Estimator of Conditional Median under Dependence. 
J. Nonparametr. Stat., (15), 205-219. 

Asymptotyczna normalność regresji kwantylowej pojedynczego wskaźnika 
funkcyjnego dla danych funkcjonalnych z losowymi brakującymi danymi 

Streszczenie: W artykule autorzy prowadzą rozważania dotyczące problemu nieparametrycznej 
estymacji funkcji regresji, a mianowicie rozkładu warunkowego i kwantyla warunkowego w modelu 
pojedynczego indeksu funkcjonalnego (SFIM) przy założeniu niezależnych i z identycznym rozkładem 
danych z losowymi brakami danych. Głównym rezultatem przeprowadzonych badań było ustalenie 
asymptotycznych właściwości estymatora, takich jak prawie całkowite współczynniki zbieżności. Co 
więcej, asymptotyczną normalność konstruktów uzyskano dla pewnych łagodnych warunków. Na 
koniec omówiono, jak zastosować uzyskany wynik do skonstruowania przedziałów ufności. 

Słowa kluczowe: asymptotyczna normalność, funkcjonalna analiza danych, funkcjonalny proces poje-
dynczego indeksu, estymator jądra, losowe braki, estymacja nieparametryczna, prawdopodobieństwo 
małej kuli 
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