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dostatecznie wyjaśniony; poza tym spór ten może być pouczającym 
przykładem, na jakie trudności napotyka nieraz nowy pomysł wskutek 
niezrozumienia jego istoty czy też nieuzasadnionego uprzedzenia.

Mam zamiar wykazać niesłuszność zarzutów stawianych przez prze­
ciwników tej metody. Dadzą się one ująć w następujące punkty:

1) metoda ta nie ma naukowego uzasadnienia;
2) daje wyniki przybliżone;
3) jest niedydaktyczna.

Stąd wysuwa się aż tak daleko idące wnioski, że metoda ta powinna być 
z użycia w praktyce, a tym samym z nauczania, usunięta.
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ZESZYTY NAUKOWE POLITECHNIKI WROCŁAWSKIEJ

KRÓTKI RYS ROZWOJU METODY KOLEJNYCH 
ODKSZTAŁCEŃ

ADAM CYBULSKI, mgr inś., profesor Statyki Budowli

Autor omawiając rozwój metody kolejnych przybliżeń stosowanej do oblicza­
nia ustrojów prętowych, opartej na pierwotnym myślowym unieruchomieniu 
wszystkich węzłów i kolejnym ich zwalnianiu, usiłuje zwalczyć zarzuty stawiane 
niejednokrotnie tej metodzie, wykazując ścisłość jej założeń i korzyści z jej sto­
sowania w praktyce, jak również i jej zalety dydaktyczne.

Do napisania niniejszego skłoniły mnie następujące okoliczności:
Od dłuższego czasu toczy się u nas spór na temat stosowania do obli­

czania ustrojów prętowych metody kolejnych przybliżeń, opartej na 
pierwotnym myślowym unieruchomieniu wszystkich węzłów i później­
szym ich kolejnym „zwalnianiu”. Wydaje się, że obecnie spór ten stracił 
już na ostrości. Bardzo wyraźnie wystąpił on natomiast przy opracowy­
waniu przez zespół programowy szczegółowych programów nauczania 
przy czym ostatecznie został rozstrzygnięty na korzyść omawianej me­
tody. Jednocześnie zostało, mam wrażenie, wyjaśnione nieporozumienie, 
będące, moim zdaniem, głównym podłożem sporu. Jeżeli jednak mimo 
to zdecydowałem się na opublikowanie tego opracowania, to czynię to 
dlatego, że sądząc z niektórych wypowiedzi zarówno w dyskusjach jak 
i w prasie technicznej, problem ten w rzeczywistości nie został jeszcze 
dostatecznie wyjaśniony; poza tym spór ten może być pouczającym 
przykładem, na jakie trudności napotyka nieraz nowy pomysł wskutek 
niezrozumienia jego istoty czy też nieuzasadnionego uprzedzenia.

Mam zamiar wykazać niesłuszność zarzutów stawianych przez prze­
ciwników tej metody. Dadzą się one ująć w następujące punkty:

1) metoda ta nie ma naukowego uzasadnienia;
2) daje wyniki przybliżone;
3) jest niedydaktyczna.

Stąd wysuwa się aż tak daleko idące wnioski, że metoda ta powinna być 
z użycia w praktyce, a tym samym z nauczania, usunięta.
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Zarzut pierwszy powstał prawdopodobnie w związku z tym, że przy 
objaśnianiu tej metody używa się z reguły obrazowego przedstawienia 
unieruchomienia węzłów przez specjalny mechanizm w postaci fikcyjnej 

ściany, śrubki zaciskającej itp. Aby wy­
kazać niesłuszność tego zarzutu, jak 
i pozostałych, postaram się istotę tej 
metody wyjaśnić posługując się wyłącz­
nie pojęciami i twierdzeniami z mecha­
niki budowli.

Wyobraźmy sobie pręt AB utwier­
dzony na końcu B idealnie sztywno, 
na końcu A sprężyście (rys. la). Wskutek 
obciążenia pręta AB węzeł A ulegnie 

obrotowi o kąt <pA, a na koniec A pręta AB będzie działał pewien 
moment Mab. Wartość tego momentu można obliczyć jedną z tzw. me­
tod klasycznych, np. ze wzoru na moment podporowy belki sprężyście 
ze względu na obrót utwierdzonej, obliczywszy uprzednio wartość kab 
współczynnika oporu sprężystego 1 utwierdzenia końca A pręta AB przez 
trzy pręty Al, A2 i A3. Postać odkształcona przedstawiona jest na rys. la.

Przy metodzie kolejnych przybliżeń 
postępujemy inaczej. Jako pierwsze 
przybliżenie zakładamy, że węzeł A jest 
unieruchomiony, tzn. w naszym przy­
padku nie może się obrócić. Można to 
osiągnąć, obciążając węzeł A dodatko­
wo momentem o takim zwrocie i takiej 
wartości, by węzeł A na skutek łącz­
nego obciążenia ustroju obciążeniem 
zadanym i momentem dodatkowym 

nie doznał obrotu. Wobec tego założenia, na koniec A pręta będzie 
działał moment odpowiadający momentowi pełnego utwierdzenia. 
Moment ten nazywać będziemy momentem wyjściowym, a jego wartość 
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oznaczymy symbolem W naszym przypadku będzie to moment 
lewoskrętny (rys. Ib). Na węzeł A działa zatem moment o tej samej war­
tości, ale prawoskrętny. Moment ten spowodowałby sprężysty obrót 
węzła A. Aby do tego nie dopuścić, należy obciążyć dodatkowo węzeł A 
momentem lewoskrętnym MA o wartości równej M°ab (rys. Ib, i Ic). 
W konsekwencji pręty Al, A2, A3 nie ulegną odkształceniu, a na końcach 
pręta AB powstaną momenty M°ab i Mba (rys. Ib).

W rzeczywistości obciążenie węzła A momentem nie istnieje. 
Należy zatem w celu otrzymania właściwego rozwiązania przyłożyć do 
węzła A moment o wartości — =
= —M°ab (w naszym przypadku pra­
woskrętny), czyli „odciążyć” węzeł 
A. W konsekwencji węzeł A dozna 
obrotu o kąt <pA, na końcach A 
prętów zbiegających się w tym węźle ? 
powstaną momenty o wartościach- 
ML ML ML a na końcach
przeciwległych momenty o tych sa- Rys. ie
mych zwrotach, ale dwa razy mniej-
sze. A zatem na końcu B pręta AB powstanie moment M(bl = - MV _ p0 

z 2
dodaniu odpowiednich wartości otrzymamy wynik w tym przypadku 
matematycznie ścisły. Ostateczne wartości mom ntów utwierdzenia pręta 
AB (rys. le) wyniosą

1
Mab=^b-M^ Mba=M°ba+-M^. A

Rozumowanie to jest podstawą metody, którą, wydaje mi się, było­
by najsłuszniej nazywać metodą kolejnych odkształceń.

Rys 2a. Rys 2b.

W przypadku, gdy pręt AB na końcu B jest również sprężyście utwier­
dzony (rys. 2a), wynik matematycznie ścisły otrzymalibyśmy za po­
mocą szeregów nieskończonych. Natomiast drogą kolejnych przybliżeń 
będziemy mogli zbliżyć się dowolnie blisko do tego matematycznie ści- 
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slego wyniku. Zależeć to będzie jedynie od ilości tzw. cyklów i dokładności 
działań. Jest to zresztą cechą wszystkich metod iteracyjnych, które już 
dawno uzyskały prawo obywatelstwa.

W przypadku rozpatrywanym będziemy musieli w schemacie wyjścio­
wym obciążyć dodatkowo oba węzły A i B odpowiednio momentami 
M°A = M°alj (lewoskrętny) oraz = (prawoskrętny), jak pokazano 
na rysunku 26.

„Odciążanie” węzłów będziemy przeprowadzać kolejno w założe­
niu, że nie mogą się obracać wszystkie węzły, z'wyjątkiem odciążanego; 
w tym założeniu obliczone są rozdzielniki i przenośniki. Założenie to wy­
maga dalszych dodatkowych obciążeń odpowiednimi momentami skupio­
nymi węzłów, sąsiadujących z węzłem odciążanym. I tak w naszym przy­
padku wskutek „odciążenia” węzła A, węzeł ten obróci się o kąt gĄ- 
i w przekrojach przy węzłowych prętów zbiegających się w węźle A pow­
staną momenty Mai, oraz a 'na przeciwległych końcach 
momenty dwa razy mniejsze. Wynika stąd, że „odciążając” węzeł A, 
aby do obrotu węzła B nie dopuścić, należy przyłożyć do niego moment 

1 niprawoskrętny o wartości— (rys. 2c). W rezultacie węzeł B jest do-

1
datkowo obciążony momentem + dzięki czemu obrotu

nie dozna. Należy go następnie „odciążyć”, przykładając moment o tej 
samej wartości, ale o odwrotnym zwrocie (rys. 2d), co spowoduje obrót

Rys. 2e Rys. 2d

węzła B o kąt <p^ i wywoła na końcach Bprętów zbiegających się w węźle B 
odpowiednie momenty (obliczone według rozdzielników)

i 3< na przeciwległych zaś końcach (utwierdzonych) momenty 
dwa razy mniejsze o tych samych zwrotach. Aby węzeł A w wyniku ob­
ciążenia węzła B momentem — nie uległ obrotowi, należy obciążyć 

go momentem (lewoskrętnym) = - Alfy.
2
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„Odciążamy” powtórnie węzeł A przykładając moment — 
obliczamy obciążając jednocześnie węzeł B momentem M^= |

itd., aż wartości - Al$ bądź - przy n-tym cyklu będą z punktu wi-
2 2

dzenia praktycznej dokładności dostatecznie małe, czyli gdy warunek 
równowagi węzłów ^Mai=0 oraz ^Mbi=Q zostanie spełniony z do­
stateczną dokładnością.

W rozważanych przykładach momenty wyjściowe występowały wsku­
tek obciążenia pręta AB. Nic jednak w naszym rozumowaniu nie zmieni 
się, jeżeli momenty te powstaną wskutek wzajemnego poprzecznego 
przemieszczenia węzłów, co ma miejsce w ramach o węzłach przesuwnych 
lub w wyniku zmian temperatury.

Gdy końce przeciwległe 1,2,3,4... prętów zbiegających się w węzłach 
A bądź B są utwierdzone sprężyście w węzłach 1,2,3,... to kolejne do­
datkowe obciążanie i następnie odciążanie węzłów obejmie również i tamte 
węzły w myśl poprzednio wyłożonej zasady opartej na zupełnie ścisłym 
rozumowaniu.

W przypadku ram o węzłach przesuwnych wykorzystujemy dla obli­
czenia tzw. współczynników poprawkowych warunki równowagi wycię­
tej lub odciętej części ustroju, a zatem opieramy się również na ścisłej 
zasadzie, identycznie jak w tzw. metodzie odkształceń Mohra.

Na analogię między metodą Mohra i Grossa zwrócił już dawno uwagę 
prof. dr S. Błaszkowiak [1] porównując między innymi układ równań 
z układem tablicy iteracyjnej i wykazując w ten sposób naocznie, że me­
toda Grossa jest jednym ze sposobów iteracyjnych rozwiązywania równań 
liniowych.

W tejże pracy znajdujemy przykład wyprowadzenia tą metodą ści­
słego wzoru teoretycznego, na momenty przy węzłowe w ramie jednoko- 
morowej, co wskazuje na ścisłość założeń w tej metodzie.

Toteż jest dla mnie zupełnie niezrozumiałe, dlaczego właśnie ten spo­
sób rozwiązywania równań w zastosowaniu do zagadnień technicznych 
spotkał się z tak wielkim sprzeciwem pewnej grupy naukowców-sta- 
tyków.

Istnieją niewątpliwie zawsze różnice w poglądach co do celowości stoso­
wania takiej czy innej metody rozwiązywania równań. I tak np. prof. Pro­
kofiew [14] zaleca rozwiązywanie równań sprężystości za pomocą algo­
rytmu Gaussa, uważając jednak również za celowe stosowanie przy obli­
czaniu ram skomplikowanych między innymi Metody Grossa, którą 
zresztą niesłusznie zalicza do metod przybliżonych; Nikołajew [11], 
omawiając metodę kolejnych przybliżeń Southwella, o czym będę mówił 
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szerzej później, wyraża się o sposobie Gaussa jako o bardzo uciążliwym. 
U nas mamy gorących zwolenników (i słusznie) metod krakowianowych, 
choć słyszałem też zdanie, że np. w pewnych przypadkach w zastosowaniu 
do zagadnień geodezyjnych sposób Gaussa jest wygodniejszy w użyciu; 
znane są powszechnie i coraz częściej stosowane metody iteracyjne. Oczy­
wiście każdy ze sposobów ma swoje dodatnie i ujemne strony, występu­
jące z większą lub mniejszą wyrazistością, w zależności od przypadku, 
w którym jest stosowany.

Jeśli spór w sprawie stosowalności tzw. metody Grossa przybrał takie 
rozmiary, to chyba dlatego, że przez długi czas nie zauważono związku 
między tzw. sposobem kolejnych przybliżeń Grossa a sposobem iteracji, 
stosowanym już dawno do rozwiązywania równań. Prawdopodobnie sami 
nawet autorzy początkowo nie spostrzegli tego związku.

Niewątpliwie z punktu widzenia matematycznego sposoby kolejnych 
przybliżeń nie dają wyników ścisłych. Z punktu widzenia technicznego na­
tomiast ścisłość wyników zależy jedynie od założeń, jakie przyjęto za 
podstawę do obliczeń, a dokładność tych wyników może być doprowadzona 
do dowolnie obranej granicy. I tak np. pierwotny sposób podany przez 
Grossa w zastosowaniu do obliczania ram, nie uwzględniający przesuwu 
węzłów, dawał wyniki równorzędne z wynikami otrzymanymi za pomocą 
metody odkształceń Mohra jedynie w przypadku ram o węzłach nieprze- 
suwnych. Nieścisłość wyników otrzymanych obydwoma sposobami spo­
wodowana jest jedynie nieuwzględnieniem wpływu odkształceń wywoła­
nych silami osiowymi i tnącymi. Wprowadzeniu do pierwotnego sposobu 
Grossa poprawki, opublikowanej przez Pilkeya, uwzględniającej wpływ 
przesuwu węzłów, zawdzięczamy, że omawiana metoda kolejnych przy­
bliżeń i metoda Mohra są również i w przypadku ram o węzłach prze­
suwnych z punktu widzenia ścisłości równorzędne.

Jako jeden z dowodów, że przez długi czas nie było to oczywiste, może 
posłużyć fakt, że sposób Crossa-Pilkeya podany był w literaturze niemiec­
kiej w zeszycie Bauin(jenieur z 21 stycznia 1938 [3], a w tymże czaso­
piśmie w zeszycie z 5 kwietnia 1941 [6] spotykamy artykuł na analogiczny 
temat, zawierający zestawienie wyników, otrzymanych a) pierwotnym 
sposobem Grossa, b) nazywanym tam sposobem Crossa-Takabeya i c) 
sposobem ścisłym wraz ze skrupulatnym wyliczeniem wielkości błędów 
w procentach obliczonych w stosunku do wartości ścisłych. Należy pod­
kreślić, że takie obliczanie wysokości błędu nie obrazuje wcale jego rzędu, 
gdyby bowiem ścisły wynik dawał wartość równą zeru, to najmniejszy 
błąd w procentach tak obliczonych byłby rzędu nieskończoność. Gdyby 
przytoczony tam przykład obliczono sposobem Cross-Pilkeya, otrzyma­
no by wyniki zgodne z wynikami ścisłymi otrzymanymi bez uwzględ­
nienia odkształceń wywołanych silami osiowymi i tnącymi.
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Potwierdzenie powyższego znajdujemy w II tomie Kursu metaliczeskich 
konstrukcyj, opracowanym przez prof. A. Geniewa i docenta W. Bałdina 
pod redakcją prof. Streleckiego [5], Znajdujemy tam na stronie 433 
w § 5 pod tytułem Metod Hardy Grossa opis sposobu obliczania ram z u- 
względnieniem przesuwów, a na stronie 439 w § 6 pt. Przybliżone sposoby 
Grossa czytamy na wstępie:

„Przy dostatecznej ilości cyklów stopień dokładności metody Grossa 
można doprowadzić do stopnia dokładności metody odkształceń kątowych. 
Przy obliczaniu ram w przypadku obciążenia poziomego główna kompli­
kacja wynika z konieczności rozwiązywania układu równań z wieloma 
niewiadomymi*). Żeby uniknąć układania i rozwiązywania równań z wie­
loma niewiadomymi, można do metody Grossa wprowadzić szereg zało­
żeń upraszczających, które dają rozwiązania przybhżone z dostateczną 
w wielu przypadkach praktycznych dokładnością”.

Do mylnego poglądu, że sposób Crossa-Pilkeya jest przybliżony, 
przyczynić się mógł niemiecki termin Naherunyswerfahren, który można 
tłumaczyć jako metoda przybliżeń lub metoda przybliżona.

Pogląd, że sposób Crossa-Pilkeya, zwany zazwyczaj wprost sposobem 
Grossa, jest przybliżony, trwał bardzo długo. U nas na to nieporozumienie, 
o ile mi wiadomo, pierwszy zwrócił uwagę Błaszkowiak [1] i niezależnie 
od niego były asystent Politechniki Śląskiej mgr inż. J. Niewiadomski.

Obecnie sprawa ta jest już chyba dostatecznie wyjaśniona: tzw. 
metoda Grossa jest po prostu jednym ze sposobów iteracji, dającym się 
zastosować do rozwiązywania równań liniowych. Osobliwość tego spo­
sobu polega na tym, że kolejność przybliżeń znajduje swe odzwierciedlenie 
w.technicznej analizie pracy ustroju prętowego, dobranego odpowiednio 
do układu równań. Jest rzeczą charakterystyczną, że sposób ten powstał 
właśnie na podstawie tej technicznej analizy i w zastosowaniu do obliczeń 
ustrojów prętowych, a dopiero potem zauważono możliwość rozszerzenia 
stosowalności tego rodzaju metody do rozwiązywania równań, związanych 
z zagadnieniami zupełnie odrębnymi, jak zagadnienia drgań, stateczności 
ustrojów, zjawisk elektrycznych, akustycznych itd. Uważam, że właśnie 
dużą zaletą tego sposobu, w szczególności z punktu widzenia dydaktycz­
nego, jest to techniczne podejście.

Pierwszym, któremu zawdzięczamy powyższy pomysł, jest O. Mohr 
(1906), dalej rozwijali ten pomysł S. Hardesty i I. Waddel (1916), 
Calisew (1922), Biernacki (1925), wreszcie rozpracował go i rozpow­
szechnił Cross (1930) i Pilkey (1932). Rozwinięciem omawianej metody 
jest metoda opracowana przez Southwella (1935) i nazwana przez niego

) Sposób jednoetapowy podany przez Błaszkowiaka [1] usuwa tę niedogod- 
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metodą relaksacji, czyli metodą odciążeń [15], Southwell wychodził 
również z założenia całkowitego unieruchamiania węzłów i późniejszego 
kolejnego ich zwalniania, uogólniając stosowalność tej metody na wszel­
kiego rodzaju ustroje prętowe statycznie niewyznaczalne (kratownice 
oraz ramy płaskie i przestrzenne, ruszty itp.) oraz do rozwiązywania za­
gadnień z fizyki matematycznej. Metoda Grossa jest zatem w swej istocie 
szczególnym przypadkiem metody Southwella, choć formalnie metody te 
różnią się. tokiem obliczeń.

Dowodem, że metoda kolejnych przybliżeń, opierająca się na tech­
nicznej interpretacji, budzi w świecie naukowym i wśród inżynierów prak­
tyków duże zainteresowanie, może być znaczna ilość prac i artykułów, 
które zostały już opublikowane i którym metoda zawdzięcza swój 
dalszy rozwój i rozpowszechnienie. U nas pionierską w tej dziedzinie 
jest cytowana już poprzednio praca Błaszkowiaka [1], której nie­
wątpliwie w znacznej mierze zawdzięczamy spopularyzowanie oma­
wianej metody w naszym świecie naukowym i technicznym. W pracy tej 
Błaszkowiak wprowadził szereg chwytów upraszczających obliczenia; 
śmiało można powiedzieć, że jest ona kopalnią nowych pomysłów, będą­
cych podnietą dla innych do prac nad coraz dalszym udoskonaleniem 
tej metody i rozpowszechnieniem jej stosowalności. Wśród pomysłów 
na szczególne podkreślenie zasługuje wykorzystanie symetrii ustroju 
oraz wprowadzenie tzw. jednoetapowej iteracji, dzięki czemu odpada 
przy obliczaniu ram o wielu stopniach swobody przesuwu węzłów ko­
nieczność rozwiązywania układu równań dla wyznaczenia współczynników 
poprawkowych. W pracy tej Błaszkowiak rozszerzył stosowalność tej 
metody na zagadnienia wyboczenia i drgań układów ramowych, ilustrując 
zastosowanie wieloma przykładami.

Obecnie mamy już w literaturze znaczną ilość prac i artykułów poświę­
cony cli tej metodzie. Z nich najbardziej wyczerpująco omawia ten temat 
książka W. Poniża Metoda kolejnych przybliżeń część I [13]; sądzę, 
że interesujący się tą metodą oczekują niecierpliwie ukazania się części II. 
Poza tym opis tej metody znajdujemy w Podręczniku Inżynierii w opra­
cowaniu E. Szczepaniaka [18] oraz w „Czasopiśmie Technicznym” 
w artykule I. Stella Sawickiego [16], Posiadamy już szereg skryptów 
poświęconych tej metodzie, jak R. Mromlińskiego [9], Z. Kączkow- 
skiego [8], Z. Gródeckiego [7], W skrypcie J. Nałeszkiewicza [10] 
znajdujemy opis metody relaksacji, a w książce W. Nowackiego i Dą­
browskiego [12] zalecenie stosowania metody Grossa do obliczania 
silosów z podaniem odnośnego przykładu.

Autorzy wyszczególnionych prac reprezentują różne ośrodki naukowe, 
co wskazuje na szerokie spopularyzowanie tej metody.
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Wśród młodej kadry naukowej metody te cieszą się dużą atrakcyj­
nością i pobudzają ją do poszukiwania nowych dróg dla znalezienia 
dalszych zastosowań i ulepszeń. Tak np. na Politechnice Wrocławskiej 
osiągnęli już pewne cenne rezulataty prof. Z. Gródecki, st. asystent 
E. Gawrych oraz asystent J. Langer. Profesor Gródecki rozwinął spo­
sób dobierania ustroju prętowego, odpowiadającego danemu układowi 
równań, podając jednocześnie chwyty, pozwalające na przyśpieszenie 
iteracji, oraz ujął w pewien schemat obliczenie rusztu z uwzględnieniem 
skręcania. Również mgr inż. Langer opracowuje sposób obliczania rusz­
tów, opartych na podobnych zasadach, ale w innym ujęciu. Mgr inż. Gaw­
rych wypracował schemat, przyśpieszający obliczenie belek ciągłych, 
doprowadzając w pewnych przypadkach do ścisłego ogólnego rozwiązania 
za pomocą szeregu nieskończonego. Należy podkreślić, że niewątpliwie 
zachętą i pomocą w powyższych pracach jest przykład prof. Błaszkowiaka 
i cytowana jego praca.

Znane mi opinie kierowników biur konstrukcyjnych potwierdzają 
celowość stosowania tej metody do obliczeń statycznych.

Nauka radziecka zajmuje się również bardzo żywo metodami kolej­
nych przybliżeń. I tak np. w Inżyniernom Sbornikie tom XIII z 1952 r. 
(Wydawnictwo Akademii ZSRR) znajdujemy pracę B. I. Chudobca [2] 
pt. Energetyczne metody kolejnych przybliżeń w teorii drgań i stateczności 
sprężystych układów prętowych, a więc dotyczącą zagadnień, których roz­
wiązanie znajdujemy u Błaszkowiaka przy zastosowaniu innej metody. 
Cały XXVIII zeszyt Trudy matiematiczeskawo Instituta z 1919 r. (Wydaw­
nictwo Akademii Nauk ZSRR) poświęcony jest zagadnieniom tzw. analizy 
przybliżonej. Znajdujemy tam interesującą z punktu widzenia porusza­
nego tutaj tematu pracę M. I. Nikolajewa pt. O relaksacjonnom meto- 
die Southwella [11].

„Metoda relaksacji, czytamy w artykule, powstała z dążenia w kierunku 
udoskonalenia i usprawnienia obliczeń, dotyczących szerokiego zakresu 
konstrukcji inżynierskich, tzw. ustrojów prętowych”. Autor stwierdza, 
że metoda ta jest szczególnym przypadkiem metody iteracji. Zaznacza 
przy tym, że aczkolwiek iteracja znana była już dawno w matematyce, 
nie znajdowała jednak długi czas zastosowania w obliczeniach inżynier­
skich. W Związku Radzieckim metoda iteracji została zastosowana do 
rozwiązywania ustrojów prętowych przez Biernackiego już w 1925 r.

Przeprowadzając na wstępie krótki przegląd chronologiczny metod 
iteracyjnych stosowanych w zagadnieniach inżynierskich (Biernacki 
1925, Hardy Cross 1930, Southwell 1935) autor reasumuje: „Analiza 
tych metod wskazuje, że są one odmianami schematu wyliczeniowego 
i fizycznej interpretacji procesu iteracyjnego, znanego pod nazwą metody 
Seidla”. Autor podkreśla zaletę metody Southwella, wyrażającą się w fi­
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zycznej interpretacji procesu iteracji, co często pomaga do ustalenia pew­
nych chwytów przyśpieszających iterację, jak np. wybór pierwszych 
przybliżeń, relaksacja grupowa itp., prowadząc szybciej do wyniku niż 
sposób Gaussa. Autor artykułu zaznacza, że przy rozwiązywaniu układu 
równań dniowych można dobrać odpowiedni schemat statyczny z prętów 
sprężystych, co umożliwia techniczną interpretację i daje możność usta­
lenia wyżej wspomnianych chwytów przyśpieszających obliczenie. Autor 
podając wykaz odnośnej literatury w języku angielskim, składającej 
się z 33 pozycji, wypowiada się o tych pracach następująco: „Zaletą 
tych prac, mało oryginalnych co do metody, jest rozpracowana technika 
wyliczeń i to, że rozpatrzono w nich dużą ilość ciekawych i ważnych 
zadań”.

W roku 1954 ukazała się książka P. Szagina [17], podająca metodę 
obliczania ram wielopiętrowych, będąca połączeniem metody kolejnych 
odkształceń i metody sprężystego utwierdzenia. Niestety, jej zastosowa­
nie autor ogranicza do ram symetrycznych.

Timoszenko w pracy Teoria konstrukcji [19] podaje również metodę 
kolejnych przybliżeń, opartą na założeniach Mohra i rozpracowaną przez 
Grossa, zalecając ją jako bardzo pożyteczną przy rozwiązywaniu równań, 
otrzymanych przy zastosowaniu metody odkształceń.

Z punktu widzenia dydaktycznego omawiana metoda posiada duże 
zalety. Zmusza bowiem studenta do wniknięcia w fizyczną stronę zja­
wiska, w istotę pracy konstrukcji. Stwierdziłem w mojej pracy pedago­
gicznej, że prawdopodobnie właśnie dlatego jest ona dla studentów bar­
dzo atrakcyjna. Zespół programowy dla wydziałów budownictwa lądo­
wego wprowadził ją do oficjalnego programu, niestety, moim zdaniem, 
w zbyt szczupłym zakresie. Poza tym program ten przewiduje wyłożenie 
tej metody w III symestrze, kiedy studenci posiadają jeszcze za mało 
technicznego wyczucia pracy konstrukcji, a tym samym są mało przy­
gotowani do przyswojenia sobie tej metody. Dla należytego zrozumienia 
istoty tej metody wskazane jest w toku wykładów ilustrowanie jej zasady 
na modelach, pozwalających na unieruchomianie i zwalnianie węzłów.

Oczywiście, na kursie magisterskim dział obliczania ustrojów pręto­
wych powinien być potraktowany możliwie wszechstronnie, z zastosowa­
niem między innymi do rozwiązywania równań metod krakowianowych. 
Wyszczególnić tu należy pracę Z. Dowgirda i R. Dowgirda Metody 
krakowianowe [4], która dzięki usystematyzowaniu i zmechanizowaniu 
układania równań i ich rozwiązywania daje inżynierowi statykowi cenne 
narzędzie w jego pracy.

Wydaje mi się, że istotę sprawy naświetliłem dostatecznie wyczerpu­
jąco. Pozostałaby otwarta sprawa nazwy tej metody, sprawa natury 
czysto formalnej, którą można by poddać dyskusji. Czy zasługi Grossa 
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w tej dziedzinie są aż tak duże, by ten specjalny sposób iterowania nazwać 
jego imieniem, tym bardziej, że prymat nie należy do niego, lecz do Mohra, 
a dużo szersze ujęcie tego sposobu znajdujemy u Błaszkowiaka. Wydaje 
mi się, że z tych względów byłoby słuszniejsze ten sposób iterowa­
nia nazwać metodą Mohra-Crossa-Błaszkowiaka, albo wychodząc z zało­
żenia, że nazwa metody powinna możliwie odzwierciedlać jej istotę — me­
todą kolejnych odkształceń lub sposobem iteracji technicznej, dla odróż­
nienia od zwykłej iteracji matematycznej.

Nazwa „metoda kolejnych odkształceń” w zastosowaniu do sposobów 
obliczania ustrojów prętowych znajduje swe uzasadnienie w analogii 
do nazwy „metoda odkształceń Mohra”, stosowanej do obliczania ram; 
nazwa taka odzwierciedla sposób postępowania. Traci ona natomiast 
właściwy sens, gdy jest stosowana do rozwiązywania układu równań 
związanych z innymi zagadnieniami. Ponieważ jednak metoda ta daje 
i w tym przypadku możność dobrania odpowiedniego schematu statycznego 
w postaci układu prętów sprężystych (i to jest jedną z jej zalet), wydaje 
mi się, że proponowana nazwa jest uzasadniona.

Stosowanie nazwy „metoda Grossa” tłumaczy się tym, że poznaliśmy ją 
pod tą nazwą i nazwa taka przyjęła się. Zgodnie jednak z wyżej powie­
dzianym wydaje mi się, że nazwę tę należałoby zmienić. Na poparcie 
tego punktu widzenia dodam, że Timoszenko w uprzednio wymienio­
nej pracy [19] metody tej nie nazywa metodą Grossa, podając tylko jego 
nazwisko jako tego, który metodę tę rozwinął.

Wydaje mi się, że analogicznie należałobyby się zastanowić nad sze­
regiem innych stosowanych nazw, jak np. „metoda Rittera” na sposób 
obliczania momentów sił w prętach kratownic. Niewątpliwie w pomyśle 
będącym podstawą tego sposobu jest dużo mniej oryginalności niż w po­
mysłach Biernackiego, Grossa, Southwella czy Błaszkowiaka.

Reasumując, można stwierdzić, że omawiana metoda kolejnych od­
kształceń, oparta na równie ścisłych założeniach co i metoda odkształ­
ceń Mohra, zyskała sobie już mocną pozycję zarówno w świecie naukowym 
jak i technicznym, nie tylko jako narzędzie do obliczania ustrojów prę­
towych, ale również do rozwiązywania różnorodnych zagadnień z dzie­
dziny techniki i fizyki matematycznej. Niewątpliwie nie wszystkie możli­
wości zastosowania zostały już wyczerpane. Tym wszystkim, którzy 
pracują nad rozszerzeniem zakresu stosowalności tej metody, należy 
życzyć jak najowocniejszych osiągnięć.
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КРАТКИЙ ОЧЕРК РАЗВИТИЯ МЕТОДА ПОСЛЕДОВАТЕЛЬНЫХ ПРИ­
БЛИЖЕНИЙ

В статье рассмотрено историческое развитие метода последовательных 
приближений, известного до настоящего времени под наименованием „метода 
Кросса"; рассматриваемый метод расчета сооружении в некоторых кругах спе­
циалистов считается ненаучным и неточным.

На простом примере упруго закрепленного с обеих сторон стержня пока­
зано, что основы этого метода выводятся путем строгого рассуждения из основ­
ных теорем строительной механики, и что точность результатов расчета может 
быть доведена до любой желаемой степени в зависимости исключительно от 
числа приближений.

Исходные положения метода суть те же, что и метода деформаций Мора. 
Факт, что это тождество долгое время оставалось незамеченным, объясняется 
именно тем, что в рамах со смещающимися узлами первоначально не был разра­
ботан способ определения влияния этих смещений.
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Крупным преимуществом метода для дидактических целей является то, что 
процесс итерации легко иллюстрируется физическим анализом деформаций уп­
ругой системы.

Благодаря такой физической интерпретации процесса последовательных 
приближений метод этот нашел применение при решении систем линейных урав­
нений в многочисленных задачах математической физики. Ускорение процесса 
сходимости можно достичь при помощи различных вычислительных приемов.

KURZE ÜBERSICHT ÜBER DIE ENTWICKLUNG DER METHODE DER 
STUFENWEISEN ANNÄHERUNG

Im vorliegendem Aufsatze wird der Entwicklungsweg der Methode der stufen­
weisen Annäherungen hesprochen. Das bis nun unter dem Namen „Cross’sche 
Methode“ bekannte Rechenverfahren wird in manchen Fachkreisen als unwissenschaf­
tliches und ungenaues Verfahren bezeichnet.

Am einfachen Beispiel des beiderseitig eingespannten Stabes wird gezeigt, dass 
der Grundsatz dieser Methode sich auf Erwägungen stützt, die aus Begriffen der Bau­
mechanik bestellen und dass die Genauigkeit der Ergebnisse jedwede Grenze errei­
chen kann, was lediglich von der Anzahl der Annäherungen abhängt.

Die Grundlagen dieser bei der Rahmenberechnung angewandten Methode sind 
dieselben wie die der Verformungsmethode Mohr’s. In der Tatsache, dass diese Iden­
tität längere Zeit nicht erkannt wurde, liegt der Grund, dass diese Methode als ungenaue 
bezeichnet wurde. Diese Ansicht war bei Rahmenwerken mit verschieblichen Kno­
ten begründet, solange man den Einfluss der Verschieblichkeit bei der Berechnung 
nicht zu berücksichtigen verstand.

Als grossen Vorteil für didaktische Zwecke ist die Tatsache zu bezeichnen, dass 
sich die Iteration auf der technischen Analyse der Verformung des elastischen Grund 
Systems begründet.

Dank der physikalischen Auffassung des Iterationsprozesses fand diese,Methode 
Anwendung bei der Auflösung von linearen Gleichungen technischer Probleme und 
Problemen der physikalischen Mathematik; dabei kann die Beschleunigung des Ite­
rationsprozesses durch verschiedene mathematische Kunstgriffe erreicht werden.





ZESZYTY NAUKOWE POLITECHNIKI WROCŁAWSKIEJ

ZASTOSOWANIE RÓWNANIA OPERATOROWEGO OSI 
ODKSZTAŁCONEJ PRĘTA PRYZMATYCZNEGO 

DO SPORZĄDZANIA LINII WPŁYWOWEJ

STEFAN FU LIŃSKI, mgr-inż., st. asystent Katedry Statyki Budowli

W pracy podano wzory na obliczenie linii wpływowych ugięcia, kąta obrotu 
stycznych do osi pręta i momentów zginających dla płaskiego ustroju prętowego 
o węzłach nieprzesuwnych. Do wyprowadzenia wzorów wykorzystano operato­
rowe równanie osi odkształconej pręta pryzmatycznego oraz metodę sprężys­
tego utwierdzenia.

Obliczenie ustrojów prętowych statycznie niewyznaczalnycłi za po­
mocą rachunku operatorowego przedstawione zostało w pracach T. Iwiń­
skiego [1] i S. Drobota [2], W obydwu artykułach zagadnienie spro­
wadzono do rozwiązywania układu równań liniowych, ułożonych na pod­
stawie warunków pracy konstrukcji. Z równań tych należy obliczyć stałe 
potrzebne do dalszego rozwiązywania.

W niniejszej pracy przedstawimy sposób, pozwalający bez rozwiązy­
wania wielu równań liniowych uzyskać wzory na Unie wpływowe ugięcia 
kątów obrotów stycznych do osi pręta oraz momentów zginających dla 

płaskiego ciągłego ustroju pręto­
wego o węzłach nieprzesuwnych.

Każdy pręt ustroju prętowego 
o węzłach nieprzesuwnych może­
my rozpatrywać w ogólnym przy- ' 
padku jako sprężyście (względem 
obrotu) utwierdzony na podpo­
rach (rys. 1).

x — odcięta punktu przyłożenia siły, 
t — odcięta punktu rozpatrywanego przekroju, 
l — rozpiętość belki (przęsła).

Operatorowe równanie osi odkształconej ma postać [2]:

EJ/s* Y-s3y(0)-s2y'(Q)-sy"(Q) - y"'(0)/= e~sc, (1)

Wprowadzamy oznaczenia:

Budownictwo II 2
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gdzie
E — moduł Younga,
I — moment bezwładności przekroju względem osi obojętnej, 
s — operator różniczkowania.

Po uporządkowaniu

EIY=~e-sx+EI±yW + EI~y(G)+EI~y'\O)+~EIy'''(Q) (la) 
8 8 8 8 8

oraz równania kąta obrotu stycznych do osi pręta i momentu zginającego:

Hy' = 4 e~sx+EI 1 y\0) + El4 y"(0) + El4 y'"(0), 
s s s s

M= 4 e~sx+EI — y" (0) + El 4 y'" (0).
8 8 8

Warunki brzegowe w przyjętym układzie osi są następujące:

1) EIyW = 0,
2) EIy"{0) = -Mab,
3) EIy(l) = 0,
4) EIy^=-Mba,

Wartości Mab i Mba momentów podporowych obliczymy poniżej 
metodą sprężystego utwierdzenia. Po uwzględnieniu warunków brzego­
wych w równaniu (la) otrzymamy

11 11
EIY= — C—+ — y'W- — Mab---- TEIy"'^. (2)

S 8 S 8

Wykorzystując pisownię operatorową wracamy do pisowni funkcyj­
nej [1],

(t— a?)3 t2 Z3EIy=±—-^ +tEIy'W-~MabY~ Ely"'^, 
6 2 6

<t-®>2 i2 (3)
W=—+ 'W-tM^Y-EIy'"^),

Z Z

Ely" = Mab+tEIy"'(Q).

Symbol (t—x')n oznacza funkcję, która jest równa zeru dla i równa 
(t—x)n dla t>x.

Na podstawie warunków brzegowych dla t=l jest
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(l_ xy j2
Ely {i) = -™_L + lEIy' (0) - - Mab + - Ely'” (0) = 0, 

b Jo (4)
Ely" (!) = l-x-Mab+ lEIy"' (Z) = - M,ba

stąd
i Mab-^baEIy”'^) =------------F

Z Z

EIy'(0) = — -—— H — (Z— «) + W" ^ab + TT Mba.bZ b 3 b

Po wstawieniu tych stałych do równań (3) otrzymujemy wyrażenia 
na rzędne linii wpływowych:

EIy =
(t—x^ Z (Z—®)3 —

6Z 6Z

Z Z

(Z2-Z2) +

z \ / 1 z
t^ab I W----- W + 771 + tMba H W, p,3 2 bZ / \ b bZ

(t—xy2 (l — xf 1—x z3Z 
ub \ TEly' = -------^-3t2)+Ma_ —z + — I +

6Z 6Z

+ Mtba

21

l t2 
6~ - 2Ż

(5)

6 +

Z(Z— x) I Z \ / Z ,
Ely” = (t — xy-------- -----H Mab I — 1 + — I + Mba I -1.

6 \ b / \ b

Obliczenie momentów podporowych Mab i Mha dla pręta sprężyście 
utwierdzonego na podporach (rys. 2) odbywa się jak następuje:

Jeżeli (pab i (pba oznaczają kąty nachylenia końców pręta względem 
osi x, a k(lb i lcba współczynniki utwerdzenia sprężystego, to

Wab — —
ab

^ab
Wbcr

ba
^ba

2*
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oraz
^ab^ । ^bJ' . ab 
~3BI + ~6EI + ~EI ’

__ ^abl . ^bJ- । 4 ba 
(h‘a~ 6B! + ~3Bf + ~EI '

Przyjmując, że w węzłach A i B zbiega się wiązka prętów sprężystych, 
otrzymujemy zgodnie z oznaczeniami na rysunku 2 wzory na [4]:

A. Współczynniki sprężystego utwierdzenia końców pręta AB w wę- 
złach.

■ , „ k4„
' >=k 3+-

k^^iS.
a 

ia

ku 
K

kib

gdzie Sia=
kin

kba~ / ^ib j , 
, ^b

'=k+1 4+aw 
^ib

jest sztywnością jednostkową pręta i zbiegającego

się w węźle A,
kia jest współczynnikiem sprężystego utwierdzenia pręta i w węźle 

przeciwległym.
B. Momenty przy węzłowe

hbr

(^'ba^ ba ab) 

^abr
(6)^ab — —

{^'ba^ ab ba)

4 +

3 +

^ba — —

gdzie
r=mabmba-l-, 

Sab
«Gb=2 + 6

ab

_O , pmba —2+6 ——;
“'ba

)^ab i V’ba oddziaływaniami wtórnymi na podporach A i B. Dla belki 
AB obciążonej poruszającą się jednostkową siłą skupioną jest

Vab =
x(l— x)(2l— x) 

61 PL =
x(l — x)(l-\-x)

61 (7)
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Wstawiając wyrażenia (7) do (6) otrzymamy 
x(l—x)

l2r

x(l—x)
(8)

l2rj2 [?(2mo6-2) + ;r(ma6+l)].

Dla rozpatrywanego pręta obciążonego siłą do wzorów (5) należy 
wstawić wyrażenia (8). Wówczas jest

(t — x'/ t(l—x)3 t(l—x) , „ x(l— X) ,Ely =^-~------- „ G- C - i l^ba- 1) -
6 61

l t t2--------- 1---- I-i
3 2 er

61

-«(Wa+l)]‘

x(l— x) l t2 
6~~6l

EIy' =

[z(W&-2) + a?(m.a& + l)]

Z---- T. mil---- 02^
[Z(2m6a-1)-

(t-x)2 (l-x)3 , l-x x(l—x)
ę z — o! i61 + 61

x{™ba+ 1)]

• Ir
(9)

----- 1 +3 21
t2 \ x(l—x)

Ir [G^«&-2) + ®(ma6+l)
l t2
6 ~ 2Z/ ’

Ely" = (t — x)- t(l—x) x(l—x)+ l2r [^(ml>a~ 1)~ x(mba^~ 1)] (1 — 7r)-ł~

x(l—x) .H----w;— [Z(mab - 2) + X (m.ab +1)]
L 7

Jeżeli siła nie obciąża przęsła, w którym znajduje się dany przekrój, 
należy zastosować wzory (5) bez członów zawierających zmienną x-, bę­
dzie więc

EIy = + tMab

Ely^+M^

\ I l t2 \- +tMbJ-  
J ba \ 6 61/

l t f .
 1 +tMba — 3 2-----61 ' 1

ll t2 \ II I + Jf6l
’ O £jb ] \

6 6i r

i t2 
6~ ~2l

EIy"=+Mab\-l+v +Mba\~~ .
I

(9a)



22 Stefan Fuliński

Zmiennymi są tu wartości momentów przywęzłowych, obliczonych 
metodą sprężystego utwierdzenia [4], [5].

Wzory (9) i (9a) przedstawiają wartości rzędnych linii wpływowych 
y, y' oraz y" (y,<p oraz M) dla każdego pręta belki ciągłej i ramy o węzłach 
nieprzesuwnych.

Przykład
Sporządzenie linii wpływowej ugięcia, kątów obrotu stycznych do osi 

pręta i momentów zginających w przekroju 15 przęsła 2, 3 (dane liczbowe 
tego przykładu zaczerpnięto z tablic Angera [6]) (rys. 3).

Obliczenie wielkości niezależnych od obciążenia:

2 — o; v2, 3“
= 0,3; & 3=^3 n=^°- =0,0715.

’ ’ 14,0 ’

3 +
k3 3=1.0,0715

1 +

0,3 
0^0715

0,0715

: 0,251;

0,0715 0,0715
ni., ,= 2+6---------= 3,43; m3 .,=2 + 6---------- = 3,71;-’3 0,30 ’ ’ 0;251 ’ ’ 

r= 3,43-3,71—1 = 11,72.

Dalsze obliczenie przeprowadzamy w tablicach stosując wzory (9) 
i (9a). Podano obliczenie Unii wpływowych, gdy siła obciąża przęsło 2,3, 
częściowe obUczenie, gdy siła obciąża przęsło 1, 2. W celu zmniejszenia 
objętości pracy nie podano rzędnych linii wpływowych dla przęseł 3,4 
i 4,5 oraz linii wpływowych momentów przywęzłowych w przęśle 2,3, 
gdy siła znajduje się poza nim.

Podany sposób obliczenia linii wpływowej ugięcia, kątów obrotu stycz­
nej do osi pręta i momentu zginającego może mieć zastosowanie przy 
obhczaniu ram o węzłach nieprzesuwnych oraz belek o różnej rozpiętości 
i różnej sztywności (El) przęseł.

Za pomocą uzyskanych wzorów można obUczyć szukane rzędne przy 
różnych sztywnościach poszczególnych prętów przypuszczalnie nieco 
prędzej niż metodą punktów stałych.

W praktycznym zastosowaniu wzorów ułożonych w tabhcach przy 
obliczaniu Unii wpływowych dla ciągu prętów połączonych sztywno 
w węzłach, niektóre kolumny powtarzają się. Wtedy wystarczy Uczyć np. 
dwie kolumny tabUcy, które po zsumowaniu odpowiednich wierszy dają 
szukane wartości (por. tabUca I (1,2) oraz 11(2,3)).



Rzędne linii wpływowej ugięcia w przekr. „15 
(Siła obciąża przęsło 2,3)

Tablica 1(2,3)
Zastosow

anie rów
nania operatorow

ego osi odkształconej pręta

Z=14,0m; Z=7,0 m 

^23 = 0,30; fc32=0,25 

m23 = 3,43; w32 = 3,71

"3
Pm 
£

X l-x
t {l — x)s

J 

7?
L 2

(I)(II)(3) (III).(2).(5)

+
Cl 
g 

e
(2).(V)

1 S

7 + 

s ■£ 

2. 8 
£ 1

(IV)—(8)

s
+

(2).(vni)

+ 77 
n +

1 3
3 §

£

= +
(VII) + (U) (7

)-(
12

)-(
IX

) Vy
o

■ + b
»1

3. 1

6 61

(W)3

r=ll,72
t

I. — = 0,0834
61

1 2 3 4 5 6 7 8 9 10 11 12 13 14

11 1,40 12,60 29,27 166,83 154,47 0,054 6,60 83,50 7,90 6,20 26,22 2,478 6,532

II. Z2—Z2 = 147 12 2,80 11,20 12,35 117,17 137,31 0,095 13,22 76,88 12,80 12,40 32,42 5,390 14,30

t
III. ---- =0,00305

l-r
13 4,20 9,80 3,66 78,49 120,15 0,125 19,82 70,28 15,39 18,61 38,63 8,451 21,479

IV. Z(2m 32—1) = 90,0 14 5,60 8,40 0,46 49,43 102,98 0,143 26,43 63,67 15,95 24,81 44,83 11,219 26,841

V. m32+1=4,71 15 7,00 7,00 — 28,61 85,82 0,149 33,04 57,06 14,89 31,01 51,03 13,305 29,015

l t V-
VI.----------+ — =1,75

3 2 6Z
16 8,40 5,60 — 14,65 68,65 0,143 39,65 50,45 12,64 37,21 57,23 14,322 27,038

VII. Z(m23 —2) = 20,0 17 9,80 4,20 — 6,17 51,49 0,125 46,26 43,84 9,60 43,41 63,43 13,876 21,840

VIII. m23 +1 =4,43 18 11,20 2,80 — 1,83 34,33 0,095 52,86 37,14 5,66 49,62 69,64 11,578 15,262

l t"
IX.----------- =1,75

6 6Z
19 12,60 1,40 — 0,23 17,16 0,054 59,47 30,63 5,72 55,82 75,82 7,166 7,044



Rzędne linii wpływowej kątów obrotu stycznej w przekr. „15“ 
(Siła obciąża przęsło 2,3)

! VTablica II (2, 3)

Stefan K
uliński

II 
+

X l-x
<t-xy

2
(Z-^)3

6Z

i । .*■

(2)(3)(XI)

1

7 + 
Ol «

CG TT 

po, 1

wg (9) tabl. I

£
£

+ =

7 +

wg (12) tabl.I (7
)-(

10
). 

(X
III

) 'hi'

+g i1 g i +

X. Z2-3Z2 = 49

1 2 3 4 5 6 7 8 9 10 11 12

11 1,40 12,60 15,68 23,80 7,35 0,0077 83,50 0,375 26,22 0,117 -0,512

1
XI.----= 0,00435 

Pr
12 2,80 11,20 8,82 16,72 6,53 0,0136 76,88 0,608 32,42 0,256 -0,946

Z P
XII.------ t ■------- = -0,583

3 2Z •
13 4,20 9,80 3.92 11,20 5,72 0,0179 70,28 0,761 38,63 0,402 -1,201

Z Z2 
XIII.---------- =0.58

6 2Z
14 5,60 8,40 0,98 7,05 4,90 0,0205 63,67 0,762 44,83 0,534 -0,942

15 7,00 7,00 — 4,08 4,08 0.0213 57,06 0,707 51,03 0,633 -0,074

16 8,40 5,60 — 2,09 3,26 0,0205 50,45 0,603 57,23 0,680 + 1,093

17 9,80 4,20 — 0,88 2,45 0,0179 43,84 ' 0,458 63,43 0,658 + 1,370

18 11,20 2,80 — 0,26 1,63 0,0136 37,14 0,288 69,64 0,550 + 1,108

19 12,60 1,40 — 0,033 0,817 0.0077 30,63 0,137 75,82 0,338 + 0,584



Rzędne linii wpływowej momentu w przekr. ,.15“ 
(Siła obciąża przęsło 2, 3)

Tablica III (2, 3)
Zastosow

anie rów
nania operatorow

ego osi odkształconej pręta

Z = 14,0 m;

Z = 7,0 m;
Ł

7

X l-x <7 —
x (Z — x)

wg (9) tabl. I wg(12) tabl.I

VW

r—

I ±
l r-r

wg (7) tąbl. II

t
XIV. 1 - - =0,5

i 2 3 4 6 i 8 g 10 11

n 1,40 12,60 29,27 6,30 0,0077 83,50 0,319 26,20 0,101 0,280

XV. y = 0,5 12 2,80 11,20 12,35 5,60 0,0136 76,88 0,523 32,40 0,220 0,657

13 2.80 9,80 3,66 4,90 0,0176 70,27 0,630 38,60 0,340 1,124

14 5,60 8,40 0,46 4,20 0,0205 63.67 0,652 44,80 0.460 1,688

15 7,00 7,00 — 3,50 0,0213 57,06 0,608 51,01 0,543 2,349

16 8,40 5,60 — 2,80 0,0205 50.45 0,517 57,21 0.586 1,697

17 9.80 4,20 — 2,10 0.0179 43,84 0,393 63,41 0,568 1,139

18 11,20 2,80 — 1,40 ; 0,0136 37,14 0,253 69,62
___

0,474 0,673

19 12,60 1,40 — 0,70 0,0077 30.63 0,118 75,81 0,292 0,290



Rzędne linii wpływowej ugięcia oraz katów obrotu stycznych w przekr. „15 
(Siła obciąża przęsło (1, 2)

Tablica IV (1, 2) to o

Stefan K
uliński

Z =14,0 ni

Z = 7,0
7
Ps

X

(3) ■ (VI) (5) ' (IX) (3) ■ (XII) (5) • XIII)

Vv

(«) P)

1 2 3 4 5 6 1 8 9 10
Z t t-

VI.------------- F — = 1.75
3 2 6Z

1 1 -0,224 -0,393 0,060 + 0,105 -2,02 -0,130 0,0348 0,165

Z Z2
IX.-------- - = 1.75

6 6Z
2 ” 2 -0,434 -0,760 0,117 + 0,205 -4,12 -0,252 0,0680 0,320

3 3 -0,617 -1,082 0,166 + 0,291 — 5,54 — 0,356 0,0965 0,452

4 4 -0,760 -1,330 0,205 + 0,359 -6,79 -0,442 0,119 0,561

Z Z2
XII. — —t — — 0,58

3 27
5 5 -0,848 -1,485 0,229 + 0,402 -7,58 -0,493 0,133 0,626

Z Z2
XIII.----------- = 0,58

6 6Z
6 6 -0,868 -1,523 0,234 + 0,410 -7,80 — 0,505 0,136 0,641

7 7 -0,807 -1,415 0,218 + 0,382 -7,25 -0,470 0,126 0,596

8

9

8 -0,651 -1,140 0,176 + 0,308 -5,82 -0,377 0,102 0,479

9 -0,387 -0,678 0,104 +0,182 -3,47 -0,225 0,060 0,285
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Praca niniejsza jest początkiem próby praktycznego zastosowania 
rachunku operatorów do zagadnień mechaniki budowli. W zagadnieniu 
poruszonym wyżej podany sposób daje przypuszczalnie te same korzyści 
przy stosowaniu, co metoda Grossa lub metoda kinematyczna.

Rys, 3
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ПРИМЕНЕНИЕ ОПЕРАТОР НОТО УРАВНЕНИЯ ИЗОГНУТОЙ ОСИ ПРИ­
ЗМАТИЧЕСКОГО СТЕРЖНЯ ДЛЯ РАСЧЕТА ЛИНИЙ ВЛИЯНИЯ

В статье приводится способ, позволяющий без решения системы линейных 
уравнений определить формулы для линий влияния изогнутой оси, углов пово­
ротов сечений и изгибающих моментов в плоской неразрезной стержневой си­
стеме с несмещающимися углами.

Упомянутые формулы выведены при помощи операторного уравнения изог­
нутой оси призматического стержня (формула (1). Моменты на концах стержня 
вычислены методом упругой заделки.

Переходя затем от операторной к функциональной записи уравнений и вы­
числив две дальнейшие постоянные интегрирования из краевых условий, полу­
чены упомянутые формулы линий влияния.

Статья иллюстрируется примером расчета линий влияния четырехпролетной 
иеразрезиой балки (фиг. 3).

Предлагаемый способ может найти применение при вычислении линий влия­
ния рам с несмещающимися углами и балок разных пролетов и различной жест­
кости в отдельных пролетах.

DIE ANWENDUNG DER DIFFERENZIALGLEICHUNG DER BIEGELINIE 
DES PRISMATISCHEN STABES ZUR ERMITTLUNG VON EINFLUSSLINIEN

In der Arbeit wird eine Methode angegeben, die ohne Auflösung linearer Gleichun­
gen gestattet, die für die Berechnung von Einflusslinien der Durchbiegungen, der 
Drehwinkel der Tangenten zur Biegelinie und der Momentengrössen notwendigen 
Formeln des durschlaufenden Stabes zu ermitteln.

Die Herleitung dieser Formeln gelang durch Verwertung der mit Hilfe der Ope­
ratorenrechnung dargestellten Gleichung der Biegelinie in Form (1). Die Konstan­
ten Ely" (o)= — Mäh und Ely" (l) = — Mba wurden mit der Methode der elastischen 
Einspannung ermittelt.

Am Beispiel des 4-feldigen durchlaufenden Balkens wurde die Anwendung der 
Methode gezeigt. Ebenso gute Dienste leistet die Methode bei Ermittlung der Ein­
flusslinien von Rahmen mit unverschieblichen Ecken und durchlaufender Balken 
mit verschiedenen Spannweiten und Steifheiten der einzelnen Felder.



ZESZYTY NAUKOWE POLITECHNIKI WROCŁAWSKIEJ

W SPRAWIE MODERNIZACJI METODY WYMIAROWANIA 
ŻELBETU W MOSTOWNICTWIE*)

*) Rozwiązanie zagadnienia przedstawionego w niniejszej pracy zostało opubli­
kowane, już po złożeniu przez autora pracy do Redakcji Zeszytów Naukowych Po­
litechniki Wrocławskiej, w Inżynierii i Budownictwie nr 6, 1954 przez prof. dra L. Su­
walskiego z Warszawy. Ze względu jednak na niewątpliwie zupełnie niezależne 
od prof. Suwalskiego rozwiązanie, na nieco odmienny sposób podejścia (przy tych 
samych oczywiście wynikach końcowych) i na kilka cennych danych zawartycli w tej 
pracy, Redakcja uważa za celowe opublikowanie niniejszej pracy w postaci nieco 
skróconej w porównaniu z jej pierwotnym ujęciem.

JAN LANGER, myr inż., asystent Katedry Statyki Budowli

W pracy omówiono zagadnienie zmienności liczby n przy wymiarowaniu żel­
betu w mostownictwie oraz podano nowe ujęcie tablic i wzorów do wymiarowa­
nia, które uwzględniają tę zmienność.

1. WSTĘP

Żelbet w mostownictwie wymiarujemy metodą naprężeń liniowych 
albo krócej tzw. „metodą klasyczną”.

W artykule niniejszym nie zamierza się analizować tego faktu; w każ­
dym razie należy wspomnieć, iż nie bez znaczenia jest to, że w wysokich 
markach betonu, z reguły stosowanych w mostownictwie, zjawisko plas­
tyczności zachodzi w niższym stopniu aniżeli w markach średnich, co 
powoduje zbliżenie wykresu naprężeń przy zginaniu raczej do prostoli­
niowego.

Metoda klasyczna jest metodą, starą i dotychczasowe jej ujęcie nie jest 
wystarczające w dzisiejszej praktyce w mostownictwie.

Modernizacja metody klasycznej powinna obejmować przede wszyst­
kim trzy podstawowe zagadnienia:

1) ustalenie właściwych związków pomiędzy marką betonu a dopusz­
czalnymi naprężeniami;

2) ustalenie właściwych związków pomiędzy marką betonu a oblicze­
niowymi współczynnikami sprężystości betonu;

3) ustalenie właściwych stosunków współczynników sprężystości stali 
i betonu przy współpracy tych materiałów, czyli tzw. liczb n.

Co do zagadnień wymienionych w punktach 1) i 2) należy stwier­
dzić, że zostały one pozytywnie rozwiązane przez naukę radziecką i wpro-
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wadzone do tamtejszych przepisów projektowania mostów [1]. Podano 
tam tabelarycznie dla różnych normowych marek betonu odpowiednie 
naprężenia dopuszczalne, które, co łatwo zauważyć, nie są liniowo zależne 
od marki betonu, jak to ma miejsce np. w polskiej normie PN/B-195 
z r. 1946 i w źródłach starszych.

Wartości współczynnika sprężystości betonu przy gięciu, podane we 
wspomnianych wyżej przepisach radzieckich, wyliczone są ze znanego 
wzoru Grafa w oparciu o markę betonu:

E,
0,63-1000000

360
at. (1)bT v +

Szczegółowe wartości Ebg przytoczone są w tablicy I, w wierszu 3.
Polska norma żelbetowa dla mostownictwa [2], która obecnie znajduje 

się w opracowaniu, zajmuje w poruszonych wyżej kwestiach stanowisko 
analogiczne do przepisów7 radzieckich.

2. O LICZBIE n

Zagadnienie liczby n wymaga szerszego naświetlenia. Źródła starsze, 
łącznie z normą PN/B-195 oraz najnowsza norma żelbetowa dla budow­
nictwa PN/B-03260 podają liczbę n jako stałą, równą 15.

Po porównaniu n=15 z liczbami n obliczonymi teoretycznie dla każ­
dej marki betonu w oparciu o właściwy moduł sprężystości (patrz tablica I, 
wiersz 4) stwierdzamy, że:

1) liczba n=15 znacznie odbiega od teoretycznej średniówki 12,27;
2) dyspersja wartości teoretycznych n wobec n=15 jest zbyt wielka 

(—5,67 oraz +1,80, co stanowi —38 % i +12%).
W wyniku porówmania można się zgodzić na przyjmowanie n=15 

tylko dla marek niskich, co ma miejsce w budownictwie, natomiast w mo- 
stownictwie zwykle nie jest wystarczające. Aby temu zaradzić, przepisy 
radzieckie [1] oraz wspomniana polska norma dla mostownictwa [2] 
rozróżniają dwie grupy marek betonu i przyporządkowują grupie marek 
wysokich (200—350) liczbę n=10 oraz grupie marek niskich (110—170) 
liczbę n=15 (patrz tablica I wiersz 6).

Takie ujęcie zagadnienia należy już uznać za poważną moderni­
zację; otrzymujemy w wyniku zmniejszenie różnic podanych wartości 
liczb n wrobec odpowiednich teoretycznych średniówek oraz obniżenie 
dyspersji wartości granicznych. Rażący jest jedynie znaczny skok wartości 
n przy przejściu z marki 170 do marki 200. Jednakże z opisanym przy­
jęciem związana jest poważna trudność natury praktycznej. Mianowicie 
z chwilą częstego stosowania liczby n=10 nie można by praktycznie 
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wykorzystywać tablic do wymiarowania żelbetu na gięcie, do których 
polski świat techniczny jest bardzo przyzwyczajony, ponieważ tablice 
te opracowane są dla liczby n=15. Opracowanie całego kompletu nowych 
tablic jako uzupełnienia tablic obecnie rozpowszechnionych wydaje się 
wysoce niewłaściwe ze względu na dużą ich ilość (około 20 sztuk), stosunko­
wo wąski zakres (tylko dla konkretnie ustalonych naprężeń w stali) 
oraz trudność masowego rozpowszechnienia.

Zdaniem autora, znacznie właściwsze będzie takie ujęcie samej metody 
wymiarowania, aby praktycznie konieczne tablice nie były bezpośrednio 
zależne od przyjętej wartości liczby n, a nawet od przyjętego naprężenia 
w stali.

Ujęcie takie zostało opracowane przez autora i będzie omówione w dal­
szej części artykułu.

Liczba n dla różnych marek betonu Tablica I

1. Marka betonu Rw 350 300 250 200 170 140 110

2. Ą - (t/cm2) 2100

3. — WS Graf a — (t /e m2) 225 210 200 180 160 145 125

4. n — obi. teoret. 9,33 10,00 10,50 11,67 13,12 14,48 16,80

5. n — wg PN/B-195 i 9 15 (śr. 12,27)

6. n — wg przep. radź. 10 (śr. 10,36) 15 (śr. 14,80)

7. n — prop. przez aut. 9 10 11 12 13 15 17

Tutaj nasuwa się pewna koncepcja, która wprowadziłaby dalszą 
modernizację zagadnienia liczby n. Jeżeli potrafimy tak ująć metodę wy­
miarowania żelbetu, że pomocnicze współczynniki tablicowe nie będą 
bezpośrednio zależne od wartości liczby n, możemy sobie pozwolić nie tylko 
na przyjęcie dwóch różnych liczb n, co do pewnego stopnia jest rozwią­
zaniem połowicznym, ale na przyjmowanie całego wachlarza tych liczb, 
odpowiednio dla każdej kombinacji betonu i stań.

Takie podejście byłoby teoretycznie najbardziej prawidłowe. Oczy­
wiście można by sobie przy tym pozwolić na drobne zaokrąglenia wartości 
teoretycznych do liczb całkowitych. W tablicy I wiersz 7 podane są 
w tym przedmiocie konkretne propozycje autora.
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3. NOWE UJĘCIE METODY WYMIAROWANIA

W dotychczasowym ujęciu tablic do wymiarowania żelbetu współ­
czynniki tablicowe były zależne oddzielnie od trzech pozycji wyjścio­
wych :

1) liczby n,
2) naprężenia w stali — az,
3) naprężenia w betonie — ab.
Rozmiary tablic są proporcjonalne do iloczynu ilości haseł każdej 

pozycji. Oczywiście ze wzrostem haseł i pozycji rozmiary te rosłyby 
bardzo szybko. Chcąc temu zaradzić, należy wprowadzić tylko jeden 
rodzaj pozycji wyjściowej drogą utworzenia nowego pojęcia, mieszczącego 
w sobie te trzy wspomniane rodzaje pozycji wyjściowych łącznie.

To nowe pojęcie w tej pracy nazwiemy „wskaźnikiem mocy przekroju”, 
oznaczymy je literą v i ustalimy wzór:

W tym założeniu rozmiary tablic, o bardzo szerokich możliwościach, 
będą zależeć tylko od ilości haseł wskaźnika, która w odniesieniu do po­
przedniego ujęcia może być co najwyżej równa ilości haseł pozycji ob 
w jednej tablicy.

Jeżeli przekrój jest wykorzystany, naprężenia ab i az osiągają war­
tości dopuszczalne abd i azd, wtedy mamy do czynienia z najwyższym 
dla danych warunków wskaźnikiem mocy przekroju, który nazwiemy 
dopuszczalnym, zatem

'^bd
^d =---------  

^zd
(3)

W miejsce dotychczasowych współczynników typu kx,kz,kh,ku,k0 
(patrz [3]) wprowadzimy współczynniki niezależne oddzielnie od n, az, 
ab i przez analogię nazwiemy je rx, rz, rh, ru, r0.

Wyprowadzenie i zwńązki między tymi współczynnikami podane są 
poniżej:

7. _ _ v1) " .r . — . . a-1nsb-\-oz r-j-J 

V
T,. = ®+l

k, vx
ks = l--^=l-^-=rz, 

O o

w
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3)

4)

5)

rx
(5)r„=l-

11

2 2 2n n 1
ah kx kz ^lAAz OzrxTzV oz r<>

m'F'z
O — 2

z- — rxabn rxv 1 1
■r,„2az 2a.n 2 n n

rxv
' u 2

ku = Ar = ~
i/ 3 1 1// 2v
i kbrrrz ob l7 rxrrv

—1/
/T1/ V 1

r, — 1 / V
1 Ol,

’ r hi
ro °b ‘ 1' rn '

(6)

(7)

(8)

Łatwo zauważyć, że wszystkie współczynniki r są zależne wyłącznie 
od wskaźnika mocy przekroju v.

Zakres tablicy ustalimy np. z warunku, że współczynnik rx=xlh1 
może się praktycznie wahać w granicach 0,1 do 0,6, stąd dostaniemy 
przedział wartości v w granicach 0,10 dO 1,50.

Jeżeli dla wartości v=0,l do 1,0 wprowadzimy interwał 0,01, wów­
czas otrzymamy tablice o znacznej dokładności.

Wartości współczynników obliczone przez autora podane są w tablicy II.
Technika wymiarowania przekrojów za pomocą tablicy II przedsta­

wia się następująco:
I. Prostokąt zginany, pojedynczo zbrojony
1. Poszukiwane Fz

Dane: JT, &zdi n
E,
E,bu

Obliczamy: Fs 

wtedy

bh1
n

■ ru, v albo rz,M
FsO^h

<r6 = — ® < obd n
M 

^zd^
Fn = ruFs albo z = h,rz-. Fz = -

Budownictwo II 3
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Tablica II

Współczynniki do wymiarowania przekroju prostokątnego

V rx Th ’’o V rx Tz ’7<.

0,10 0,091 0,969 4,77 0,0046 0,0044 0,62 0,383 0,873 2,44 0,119 0,104
0,11 0,099 0,967 4,58 0,0054 0,0052 0,63 0,387 0,871 2,44 0,122 0,106
0,12 0,107 0,964 4,41 0,0064 0,0062 0,64 0,391 0,870 2,43 0,125 0,109
0,13 0,115 0,962 4,26 0,0075 0,0072 0,65 0,394 0,869 2,42 0,128 0,111
0,14 0,123 0,959 4,13 0,0986 0,0082 0,66 0,398 0,868 2,41 0,131 0,114
0,15 0,130 0,957 4,01 0,0098 0,0093 0,67 0,401 0,866 2,40 0,134 0,116
0,16 0,138 0,954 3,90 0,0110 0,0105 0,68 0,405 0,865 2,39 0,138 0.119
0,17 0,145 0,952 3,80 0,0123 0,0117 0,69 0,408 0,863 2,38 0,141 0,122
0,18 0,153 0,949 3,71 0,0137 0,0130 0,70 0,412 0,862 2,38 0,144 0,124
0,19 0,160 0,947 3,63 0,0152 0,0144 0,71 0,415 0,861 2,37 0,147 0,127
0,20 0,167 0,945 3,56 0,0167 0,0158 0,72 0,418 0,860 2,36 0,151 0,129
0,21 0,174 0,942 3,50 0,0182 0,0172 0,73 0,422 0,858 2,35 0,154 0,132
0,22 0,180 0,940 3,44 0,0198 0,0187 0,74 0,425 0,857 2,35 0,157 0,134
0,23 0,187 0,938 3,38 0,0215 0,0202 0,75 0,428 0,856 2,34 0,161 0,137
0,24 0,194 0,936 3,33 0,0232 0,0218 0,76 0,432 0,855 2,33 0,164 0,140
0,25 0,200 0,933 3,28 0,0250 0,0234 0,77 0,435 0,854 2,32 0,167 0,143
0,26 0,206 0,931 3,23 0,0268 0,0250 0,78 0,438 0,853 2,31 0,171 0,146
0,27 0,213 0,929 3,18 0,0287 0,0267 0,79 0,441 0,852 2,30 0,174 0,149
0,28 0,219 0,928 3,14 0,0306 0,0284 0,80 0,445 0,851 2,30 0,178 0,152
0,29 0,225 0,925 3,10 0,0326 0,0301 0,81 0,448 0,850 2,29 0,182 0,155
0,30 0,231 0,923 3,06 0,0346 0,0319 0,82 0,451 0,849 2,29 0,185 0,157
0,31 0,237 0,921 3,03 0,0367 0,0337 0,83 0,454 0,848 2,28 0,188 0,160
0,32 0,243 0,919 3,00 0,0388 0,0356 0,84 0,457 0,847 2,27 0,192 0,163
0,33 0,248 0,917 2,97 0,0409 0,0375 0,85 0,460 0,846 2,27 0,195 0,165
0,34 0,254 0,916 2,94 0,0431 0,0395 0,86 0,463 0,845 2,26 0,199 0,168
0,35 0,259 0,914 2,91 0,0454 0,0415 0,87 0,465 0,844 2,26 0,202 0,171
0,36 0,265 0,912 2,88 0,0477 0,0435 0,88 0,468 0,843 2,25 0,206 0,174
0,37 0,270 0,910 2,86 0,0500 0,0455 0,89 0,471 0,843 2,25 0,210 0,177
0,38 0,275 0,909 2,83 0,0524 0,0476 0,90 0,473 0,842 2,24 0,213 0,179
0,39 0,281 0,907 2,80 0,0548 0,0497 0,91 0,476 0,841 2,24 0,217 0,182
0,40 0,286 0,905 2,78 0,0572 0,0518 0,92 0,479 0,840 2,23 0,220 0,185
0,41 0.291 0,903 2,76 0,0597 0,0539 0,93 0,482 0,839 2,22 0,224 0,188
0,42 0,296 0,902 2,74 0,0622 0,0560 0,94 0,485 0,838 2,22 0,228 0,191
0,43 0,301. 0,900 2,72 0,0647 0,0581 0,95 0,487 0,838 2,21 0,231 0,194
0,44 0,306 0,898 2,70 0,0672 0,0603 0,96 0,490 0,837 2,21 0,235 0,197
0,45 0,310 0,897 2,68 0,0697 0,0625 0,97 0,492 0,836 2,20 0,239 0,200
0,46 0,315 0,895 2,66 0,0723 0,0648 0,98 0,495 0,835 2,20 0,243 0,203
0,47 0,320 0,893 2,65 0,0749 0,0671 0,99 0,498 0,834 2,19 0,247 0,206
0,48 0,324 0,892 2,63 0,0776 0,0694 1,00 0,500 0,833 2,19 0,250 0,208
0,49 0,329 0,892 2,62 0,0804 0,0717 1,02 0,505 0,832 2,18 0,258 0,214
0,50 0,333 0,890 2,60 0,0832 0,0740 1,04 0,510 0,830 2,18 0,265 0,220
0,51 0‘338 0,888 2,58 0,0860 0,0764 1,06 0,515 0,828 2,17 0,273 0,226
0,52 0,342 0,886 2,57 0,0889 0,0788 1,08 0,519 0,827 2,16 0,281 0,232
0,53 0,346 0,885 2,56 0,0918 0,0812 1,10 0,523 0,825 2,15 0,288 0,238
0,54 0,351 0,883 2,55 0,0947 0,0837 1,12 0,528 0,824 2,14 0,296 0,244
0,55 0,355 0,882 2,53 0,0977 0,0862 1,14 0,533 0,823 2,14 0,304 0,250
0,56 0,359 0,881 2,52 0,101 0,0887 1,16 0,537 0,822 2,13 0,312 0,256
0,57 0,363 0,879 2,51 0,103 0,0912 1,18 0,541 0,820 2,12 0,319 0,262
0,58 0,367 0,878 2,50 0,106 0,0937 1,20 0,545 0,818 2,11 0,327 0,268
0,59 0,371 0,877 2,48 0,110 0,0962 1,30 0,565 0,812 2,09 0,367 0,298
0,60 0.375 0,876 2,46 0,113 0,0988 1,40 0,583 0,807 2,06 0,408 0,329
0,61 0,379 0,874 2,45 0,116 0,1014 1,50 0,600 0,800 2,04 0,450 0,360



W sprawie modernizacji metody wymiarowania żelbetu w mostownictwie 35

2. Poszukiwane Fz i 
Dane: FI, b, obd, ozd, n. 
Obliczamy:

wtedy

nabd 

Ozd
h) 1 ul-> T

n
F^rJ?

II. Prostokąt zginany podwójnie zbrojony
1. Poszukiwane Fz i F'z
Dane: M, b, a', abd, azd, n.

naMObliczamy vd =------- > r„, ru, r„,

wtedy

F„
bh.

FIO = Fs ozd; m = FI — M„; a ;
n

/ / a \
^zd ~ I I ^d^zd i

' 1 x'

m m
F. = r„Fs Fi

Ozd^A1 — ^’ Z a)

Jeżeli obcięlibyśmy zestawić ważniejsze zalety przedstawionego 
ujęcia, to należałoby podkreślić następujące momenty:

1) przedstawione ujęcie metody klasycznej nadaje się do wykorzysta­
nia wr obecnych warunkach przy stałej liczbie n, w’ -warunkach norm ra­
dzieckich przy dwńch w-artościach liczby n oraz iv -warunkach propono­
wanych przez autora, to znaczy przy zmiennej liczbie n-,

2) Ave wszystkich wymienionych przypadkach operujemy tylko jedną 
tablicą (zamiast odpowiednio dziesięcioma, dwudziestoma albo siedem­
dziesięcioma tablicami), przy najzupełniej dowmlnym doborze warunków;

3) stale korzystanie z jednej tablicy ułatwia i przyśpiesza obli­
czenia, a wydanie jednej tablicy nie skomplikuje jej rozpowszechnienia;

4) przedstawione ujęcie metody jest praktycznie tylko nieznacznie 
różne od ogólnie uznanego, zatem zapoznanie się z nim nie wymaga 
dodatko wy cli studio wr;

5) zakres nowego ujęcia metody obejmuje nie tylko kombinację 
„beton-]-stal” ale i szereg innych kombinacji, np. „beton-|-kabel szklany”, 
„gips-f-trzcina” itp., przy czym Avzory i tablica nie wymagają żadnej 
adaptacji.
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Powyższa uwaga świadczy o uniwersalności omawianego ujęcia, gdyż 
obejmuje ono ogólnie zagadnienie współpracy dwóch materiałów typu 
np. „beton i stal”.

Podobna metodyka modernizacji tablic do wymiarowania żelbetu 
została zastosowana przez P. Butenkę i ogłoszona w Konstrukcjach 
żelbetowych B. Bukowskiego [4].

Jednakże w metodzie Butenki zagadnienie liczby n nie jest poruszone, 
a pozycją wyjściową uproszczonej tablicy jest hasło p=aelab. Liczba n 
została tam przyjęta jako wartość stała, równa 15.

4. SPRAWDZANIE NAPRĘŻEŃ

Przy omawianiu zagadnienia wymiarowania należałoby wspomnieć 
i o zagadnieniu sprawdzania naprężeń.

Stosowane dziś wzory i wieloetapowość operacji są co najmniej nie­
wygodne. Zagadnieniu sprawdzania naprężeń wskazane jest nadać taką 
formę, aby operacja ta, np> w prostokątnej belce żelbetowej, była co naj­
wyżej nieznacznie trudniejsza niż w przypadku takiej że belki jednorodnej.

Wprowadzilibyśmy zatem znane skądinąd pojęcie „wskaźnika wytrzy­
małości przekroju W”, którego postać byłaby następująca:

Wb =
bH2
1T' (9)

Jak widać, mianownik nie jest równy 6 jak przy materiale jednorod­
nym, ale zmiennej liczbie B, zależnej od procentu zbrojenia. I tak np. 
dla przekroju prostokątnego, zbrojonego pojedynczo, otrzymujemy bar­
dzo prosty wzór:

(10)
Obliczamy wtedy

(U)°b= wT
oraz

az = nabs, (12)
gdzie

1s = —. (13)

Podobne związki można wyprowadzić dla innych przypadków, wy­
kracza to jednak poza ramy niniejszego artykułu. Rozwinięcie tego te­
matu nastąpi w jednym z dalszych Zeszytów.
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Konieczne jest wyjaśnienie, że tego rodzaju metodyka sprawdzania 
naprężeń nie jest nowa. Ogłosił ją i podał odpowiednie wykresy W. Pasz­
kowski [5] już w 1926 r., jednakże w założeniu stałej liczby n=15.

5. PRZYKŁADY 

Przykład 1. Przekrój prostokątny żelbetowy. 

Dane: M = 1,50 tm, b = 100 cm, A, = 12 cm,

abd — 70 at, ozd = 1300 at, n = 12.

Poszukiwane: F..

100-12
F. =--- —— = 100 cm'; ro :

150000
12 100-1300-12

- = 0,096 = 0,59;o ’ '

1300
/■= 0,110; =--------0,59 = 64 at < 70 at,

Fz = 0,110 • 100 = 11 cm2.

Przykład 2. Przekrój prostokątny szklano-gipsowy.

Dane: M = 300 kgm, b = 100 cm,

560000
oaa = 40 at, osd = 500 at, E„ 100000

= 5,6.n :

Poszukiwane i F^.

Vd =
>•6•40

500
: 0,45 -» ru = 0,0697; rh = 2,68;

L = 2,68 . j/- 30000 = 7,5 cm; Fz,s} = 0,0697 • 100 ■ 7,5:5,6 = 9,3 cm2
100-40

Przykład 3. Przekrój prostokątny żelbetowy.

Dane: 3/ = 27,5tm; &=40cm; ^ = 80 cm; «' = 8cm;

obd == 50 at; zd ~~ 1400 at; = 17.

Poszukiwane Fz i F'z.

17 • 50
^d 1400

40 • 80
17

= 0,61->r0= 0,1014; ru = 0,116; ^ = 0,379;

= 188 cm2; Mo = 0,1014 ■ 188 • 80 • 1400 = 2145000 kg cm;
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m = 2750000 — 2145000 = 605000 kgcm; a = —- = 0,1;80
, / 0,1 \^ = 1------ i— . 0,61 -1400 = 630 at;
zd \ 0,379 / ’ ’

Ps = 0,116 ■ 188

K' =

605000
1400-80-(1-0,1)

605000
630-80- (1-0,1)

Przykład 4. Przekrój prostokątny żelbetowy 
Dane: 3f = 40 tm; &=36cm; ^ = 100 cm;

^ = 35 cm2; n = 10.
Poszukiwane: naprężenia ab i as

10-35

: 21,8 + 6,0 = 27,8 cm2

13,3 cm2.

r,, = 36 • 100
= 0,0975 -» rh = 2,53; v = 0,55;

L‘= 2,532 = 6,4; s 0,55 •
= 1,82;

36•1002
Wb =----------= 56 200 cm3b 6,4

4 000000ab =------------ = 71at; o„= 10 • 71 • 1,82 = 1290 at.
" 56200 ’
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МОДЕРНИЗАЦИЯ РАСЧЕТА ЖЕЛЕЗОБЕТОНА В СТРОИТЕЛЬСТВЕ МОС­
ТОВ

Расчет железобетонных сечений в строительстве мостов проводится на основе 
закона линейного распределения напряжений. Для этого употребляются табли­
цы коэффициентов, вычисленные для постоянного отношения

Ег
П=~Ёь = 1б’

и для определенных величин допускаемых напряжений.
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Поскольку в настоящее время часто употребляется высокопрочный бетон, 
не является правильным принимать постоянное число и=1б = соп81; желательно 
принимать в каждом отдельном случае соответствующее п, причем модуль Еъ 
можно вычислить по формуле Граафа (1). Предлагаемые числа п приведены в таб­
лице I.

Далее, составлена таблица II коэффициентов, не зависящих от допускаемого 
напряжения стали; в основу составления таблицы положено понятие характе­
ристики сечения: г^м-от,/0^.

Значение новых коэффициентов выясняют формулы (4) —(8), а способ их 
применения показан на примерах.

Обобщенная таким образом таблица II коэффициентов может оказать услуги 
и при проектировании сечений, составленных из различных материалов (напри­
мер, гипс с тростником и пр.),

MODERNISIERUNG- DER BEMESSUNGSMETHODE VON STAHLBETON IM 
BRÜCKENBAU

Stahlbetonquerschnitte werden im Brückenbau mit Hilfe der Methode der linearen 
Spannungen bemessen (klassische Methode). Dabei werden Koeffiziententabellen 
benützt, die auf Grund der festen Zahl n = Es/Ey=15 berechnet wurden. Ausserdem 
entsprechen diese Koeffizienten bestimmten Werten der zulässigen Stahlspannungen.

Da jetzt im Stahlbetonbrückenbau oft hochwertiger Beton Anwendung findet, 
ist die Annahme von n = 15 = const nicht richtig. Angezeigt ist es für jeden beson­
deren Fall die entsprechende Zahl n zu berücksichtigen, wobei Ey nach der Graf'sehen 
Formel (1) berechnet werden kann. Die vorgeschlagenen Zahlen n sind in Tabelle I 
angegeben.

Ebenso, um die Koeffizienten von den zulässigen Stahlspannungen unabhängig 
zu machen, wurden durch Einführung des Begriffes „Querschnittszahl“ v—naylas 
neue Koeffizienten errechnet (Tabelle II).

Die neuen Koeffizienten wurden and Hand der Formeln 4,5,6,7 und 8 aufge­
klärt, deren Anwendung in Zahlenbeispielen (im Abschnitt 5) gezeigt.

Die Universaltabelle kann ausserdem beim Bemessen von anderen nichthomo­
genen Querschnitten, wie z.B. Gips und Schilfrohr, ebenso gute Dienste leisten.





ZESZYTY NAUKOWE POLITECHNIKI WROCŁAWSKIEJ

PRZYCZYNEK DO ZAGADNIENIA ZBIORNIKÓW 
PROSTOKĄTNYCH

A/LUZ 3LLTZEL, kand. nauk techn., sast. prof. Budownidwa Żelbetowego

W pracy rozpatrywano stan naprężeń w ścianach zbiorników prostokątnych 
powstałych wskutek działania sił rozciągających, tj. oddziaływań sąsiednich ścian. 
Zastosowanie wywodów teoretycznych wyjaśniono na konkretnym przykładzie.

W jednej z poprzednich prac [4] omówiłem sposób wyznaczania 
momentów w ścianach zbiornika prostokątnego o różnych sposobach 
podparcia górnej i dolnej krawędzi.

Do wymiarowania są potrzebne jeszcze siły rozciągające na pionowych 
krawędziach każdej ściany; są to oddziaływania sąsiednich ścian na skutek 
parcia cieczy. Można by to zagadnienie potraktować w sposób uprosz­
czony nie szukając skomplikowanych teoretycznych rozwiązań i obli­
czyć ciągnienie jako oddziaływanie sąsiednich ścian, w założeniu wy cię­
tej ramy o wysokości równej jedności, wprowadzając przy tym parcie 
cieczy odpowiadające danej wysokości. Widzimy od razu, że takie po­
dejście nie dawałoby realnych wyników, albowiem ciśnienie cieczy prze­
kazuje się nie tylko na krawędzie pionowe, lecz także na dolną i górną 
krawędź ściany, które przenoszą również część parcia.

Chcąc znaleźć proste wzory do celów praktycznych, trzeba uprzednio 
rozwiązać zagadnienie w sposób ścisły. Umożliwia to z jednej strony 
pogląd na całość zagadnienia, z drugiej zaś pozwala na wyłącze­
nie nieistotnych elementów i uzyskanie dla praktyki bardziej przydat­
nych wzorów.

Opierając się na znanych z teorii płyt zależnościach pomiędzy siłami 
poprzecznymi i ugięciami, możemy napisać:
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Moment skręcający wyrażony jest następującym wzorem:

d2w
Mxv^-(l-p)D——. (2)

dxdy

Przy znanym kształcie powierzchni ugięcia płyty w=j(x,y) i po 
wyznaczeniu zawartych w równaniu ugięcia stałych całkowania, tak wew­
nątrz płyty, jak też na obwodzie, stan naprężeń jest jednoznacznie okreś­
lony. Do wyznaczenia stałych służą zależności zachodzące na obwodzie 
płyty między odkształceniami lub naprężeniami, gwarantujące spełnie­
nie żądanych warunków oparcia. Są to tak zwane warunki brzegowe.

Określonej funkcji w—f {x, y) odpowiadają na każdym elemencie kon­
turu cylindrycznego płyty ds określone wartości momentu gnącego Mn, 
skręcającego Mn i siły poprzecznej qn. Kelwin i Tait wykazali, że dla 
cienkiej płyty poza tymi wielkościami istnieje jeszcze szereg innych 
układów sił, które na obwmdzie płyty dają (w sposób przybliżony) taką 
samą powierzchnię ugięcia, a zatem rówmież doprowadzają do tego sa­
mego stanu naprężeń, jak Mn, Mn i qn.

Dowód tego twierdzenia opiera się na zasadzie Saint-Venanta, według 
której układ sił, znajdujących się wr równowadze i działających na nie- 
wielki obszar ciała sprężystego, wpływra na istniejący stan naprężeń tylko 
w bezpośredniej okolicy tego obszaru. Wywołane zaburzenie maleje szybko 
i zanika wr nieznacznej odległości od miejsca działania sił.

Wyobraźmy sobie wrycinek z płyty (rys. 1). Na nieskończenie małym 
prostokącie ABCD powierzchni obwmdu działa siła poprzeczna qnds, 
moment gnący Mnds oraz moment skręcający Mnds. Przykładamy do 
prostokąta dwra równe, lecz przeciwdziałające momenty skręcające Muds 
i —Mods. Moment —M^ds zastępujemy przez naprężenia t działające 
równolegle do powierzchni płyty, to znaczy tak samo, jak momenty Mnds, 
moment zaś M^ds zastąpimy przez parę sil Pods, działających (w odle­
głości ds) wzdłuż bokówr AB i DC.

Ten układ sil powoduje nieznaczne zaburzenie stanu naprężeń wr pły­
cie, lecz z powodu bardzo małego obszaru, jakim jest prostokąt ABCD, 
wpływ jego zanika w bezpośredniej okolicy obwodu. Jeżeli wr identyczny 
sposób dodamy do sąsiednich prostokątów podobne układy sił, które 
różnią się od poprzedniego o różniczkę, to po zsumowaniu pozostaje wzdłuż 
boku AB tylko jedna siła wielkości dP0, która dodana do siły poprzecznej 
qnds daje nam nową siłę poprzeczną, równą

q^s=qnd8+dP0.
Podstawiając

Mo ds = Po ds
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oraz

otrzymamy
M0 = P0,

dM,
ds

Moment skręcający maleje zatem do wartości

Moment gnący pozostaje bez zmian, 
M'n = Mn .

Takie rozumowanie daje nam moż­
liwości zastąpienia pierwotnego układu 
sił , Mn i qn przez nowy układ 

M'n i ąn, który z wyjątkiem ma­
łego obszaru na krawędzi płyty do-

Rys. i. Momenty skręcające prowadza do tego samego stanu na­
prężeń, co siły Mn, Mn i qn.

Ponieważ wielkość momentu zastępczego Mo została przyjęta dowol­
nie, możemy tak samo przyjmować:

2Uo = .

Nowe siły przyjmują wówczas postać:

tfu ~ In H 5

OS

Ki=^n.

Jak widać, moment skręcający w tym przypadku jest równy zeru 
(wzdłuż krawędzi płyty). Silę poprzeczną ą'., przy której moment skrę­
cający zanika wzdłuż obwodu, nazywamy oddziaływaniem płyty:

Ti +7•n ds
Stosując powyższy wzór dla kierunków x i y oraz wykorzystując 

zależności (1), otrzymamy

— 3® T

Tj Tj~V

dMT„
dy

dM:
dx

=—D

= -D
d3w d3w ’
dx3

1 (’ ‘ ą ą 2
dxdy

d3w d3w "I
dy3

1 (" ą 2 -,
dx dy_

(3)
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Aby nie wprowadzać nowych oznaczeń, będziemy w dalszym ciągu 
pracy zamiast % i qy pisać qx i qy.

Jeżeli przyj mierny liczbę Poissona y równą zeru, to równania qy i qr 
przybiorą postać:

-D

<ły=-D
d3w \ 

ax oy]

d w d w \ 
dx dxdy~]

Jak wiadomo, dla żelbetu ^=0,167, zaś (2—/i)=1,833, co stanowi 
różnicę zaledwie około 9%.

Po wyliczeniu pochodnych od „w”1) i wstawieniu ich do powyższych 
równań otrzymamy dla ściany A:1)

qv= —Da^fl cosfJy [ — (J2 ln+ (J2 An ch/?®+4/?B® sh/?® + 

Kn+ ((Ja thfia ch/?®— 4 eh/?®— 0x sh^®)]
2Da chfia

oraz
qx= — Da /?2 sin (Jy [ — (JAn sh (Jx + Bn sh {Jx — (JBnx sh (Jx+

+ th/iu sh/?®—/? sh/?®+/?2® ch/?®)].

Wyrażenia dla qy i qx ściany B1) będą zawierać Db zamiast Da oraz b 
zamiast a.

Ponieważ nas interesują odziaływania, to znaczy siły poprzeczne 
wzdłuż krawędzi ścian, obliczamy qv dla y = 0 i y=h, zaś qx dla x=+a 
i x=— a.

Wtedy będziemy mieli
dla y = 0

qu= — DajT /? [ — (J2 lny p2An+ ch/(®+ i^Bn^ ch/?®+

Kii
2Da cAfta ({Ja th^u ch/?®— 4 ch/5®— x ch/?®)],

dla y = h
[jak Avyżej)],

(4)

(5)

') Patrz praca [4|.
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dla x— +«

qx= — Da^ f)2 sin^y[ — ffAn ah^a+Bn. ahfia— Bnx ch/S« +

Kn
(6)

2fl"Da eh fi a
( — fi2 a thfła sh/?a— fi fi2 ch/?a)].+

Jako przykład obliczmy przebieg oddziaływań dla zbiornika o sto­

sunku boków — =2 i h—2a. Na podstawie powyższych równań otrzy- 
a 

mujemy dla qy
przy y = 0 i x = 0:
a) n = l

qy =p0h • nI-a • 0,00654-n ■ 0,000448+4 • 0,00409 -

-0,0484 • 0,616 = +0,120 p0A;
2-2,51

b) n=2

qy = -p0 H • 39,36 (0,000285 + 0,001275 - 0,000223 -

-0,0000461) =-0,0507 poh;
c) n=3

qy= 0,0231 pQh.

Wobec tego przy n=l, 2, 3,

qy= (0,120- 0,0507+ O,O231)po7t = 0,0924 poh.

Dla x= + a, qy wynosi

dla n=l qy=— O,3O4po7Ł,
dla n=2 ^=+O,O98po7t,
dla n=3 ^=—O,O45po7Ł,

h=2a b-2a

zatem przy n=1,2,3
^ = (-O,3O4+O,O98-O,O45)po/t =

= — 0,251 p0 h.
Wyliczone w analogiczny sposób wiel-

Rys. 2a. Wykres oddziaływań qx kości dla dowolnej krawędzi są nastę­
pujące:

dla y=h, x=0 i n=l,2,3,

qy= — O,1938po7i
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oraz dla y=h, x=—a i n=l,2,3

^= + 0,447^/^

Oddziaływanie qx wzdłuż pionowych krawędzi obliczamy dla x= 
h

dla y = o . Tutaj ze względu na niesymetryczną postać wykresu (na skutek 

parcia trójkątnego) chodzi również o znalezienie wartości maksymalnej 
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i miejsca jej występowania. Uwzględniamy przy tym również trzy człony 
szeregu. Widać od razu, że dla y = 0 i y=h oddziaływanie qx przybiera 
również wartość zero. Amplitudy poszczególnych fal dla 71=1,2,3 wy­
noszą

n= 1 przy y=
h 
¥ qx= — O,3O3po%

n=2 przy y=
h
Z’

3A 
— ±0,0066po%

n = 3 przy y=
A
Z’

3h
~8~’

r^h ih
q*= % O,OO22po/n

Rysunki 2a i 2b przedstawiają przebieg qx i qv dla poszczególnych n 
oraz sumę n1-\-n2 lub ».1+ns+7?3. Jak można się przekonać, trzeci człon 
szeregu ma nieznaczny wpływ na 'wielkość q.r (zaledwie 0,6%), tak że 
można go pominąć.

Z wykresu wynika, że q.x maksimum występuje przy ?/=O,6O7i i wy­
nosi —O,34Opo7i.

Z powyższych wyników można wyciągnąć następujące wnioski:
1. Przebieg oddziaływań wzdłuż pionowych krawędzi zbiornika ma 

postać zbliżoną do trójkąta lub trapezu. Wartość maksymalna wystę­
puje poniżej połowy wysokości.

Przy górnym i dolnym brzegu oddziaływania są równe zeru.
2. Wykres reakcji podporowych przy górnej i dolnej krawędzi wy­

kazuje, że w środkowej części występują siły rozciągające, w pobliżu 
naroży natomiast siły ściskające. Stąd wniosek, że płyta denna np. roz­
ciągana jest w swej środkowej partii, a ściskana przy narożach. Wynika­
jące stąd odkształcenia w samej płaszczyźnie płyty dennej dążą do zmiany 
kształtu z prostokąta na figurę zbliżoną do elipsy. Można to zjawisko tłu­
maczyć tendencją zbliżania, się zbiornika (na skutek ciśnienia wTewmętrz- 
nego) do postaci ciała obrotowego (w tym przypadku do cylindra), to 
jest do takiego kształtu wr rzucie, przy którym momenty zanikają, a po- 
zostają tylko siły rozciągające. To, co stwierdzono przy płycie dennej, 
ważne jest również dla górnej krawędzi (w przypadku swobodnego pod­
parcia, zgodnie z założeniami).

3. Z powyższego przykładu wynika również, że ściany sąsiednie prze­
noszą każda 33% całkowitego parcia cieczy, dno około 17%, górny brzeg 
zaś 7 %. Rzecz jasna, że ten podział jest funkcją kształtu samej ściany. 
W rozważanym przypadku była to ściana kwadratowa. Przy bardziej 
wydłużonym kształcie, tzn. przy większym h, udział górnej i dolnej kra- 
wrędzi będzie mniejszy i odwTotnie, przy niskiej ścianie oddziaływania 
u dołu i u góry będą wzrastały.
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Wielkości te są również zależne od stosunku boków b/a.
4. Przy wymiarowaniu zbiorników żelbetowych wywody te 'dają 

cenne wskazówki dla prawidłowego rozmieszczenia zbrojenia. Aczkolwiek 
rzeczywisty rozkład naprężeń w elementach (ściany i dno) zbiorników nie 
był dotąd należycie wyjaśniony, pewność konstrukcji była zapewniona 
dzięki przesadzie w dobieraniu grubości ścian oraz przekroju i rozstawu 
wkładek zbrojeniowych. Inaczej przedstawia się kwestia szczelności.

Znajomość rozkładu, wielkości i rodzaju naprężeń jest warunkiem 
nieodzownym dla uniknięcia utworzenia się rys. Nie wystarczy bowiem 
jakimiś metodami przybliżonymi znaleźć np. przeciętną wielkość reakcji 
podporowej wzdłuż krawędzi dolnej, jeżeli będzie ona mniejsza niż rze­
czywista reakcja, występująca w niektórych miejscach. Skutkiem tego 
będzie po pierwsze marnotrawstwo stali, a po drugie nie wystarczające 
uzbrojenie najbardziej narażonych miejsc.

Na podstawie wywodów przytoczonych na stronach 1,2,3 można 
wywnioskować, co następuje:

1. Jeżeli na obwodzie płyty wykres momentów skręcających wyka­
zuje nieciągłość (skoki), wówczas przy zastąpieniu momentów Mn przez 
układ sił, otrzymane oddziaływanie będzie nieskończenie duże. Jeżeli

c dM ,,natomiast całka ---- - ds w okolicy takich miejsc ma wartość skończoną, 
J ds

powstają tam siły skupione.
Jeżeli naroża wykresu pokazanego na rys. 3 są zaokrąglone, wówczas

. . . . , . .przyjmuje na małych odcinkach duże wartości, tak ze
ds

Pz

P2=Ma-S2.

2. W przypadku nieciągłości konturu płyty,
Mi

Mz

Ml

S —

Pi

np. przy ostrych narożach, występują również 
siły skupione.

Jeżeli kąt między dwiema przylegającymi 
krawędziami płyty jest a, a odpowiednie mo­
menty skręcające M1 i M2, to siła skupiona 
wynosi P=M1—M2. Przy a=90° momenty 
będą sobie równe, tak że siła skupiona 
równa się podwójnej wartości momentu skręcającego, występującego 
w danym narożu:

P = 2M.
Z powyższego wynika, że na krawędziach płyty, gdzie moment skrę­

cający jest równy zeru, nie mogą występować siły skupione. Jakkolwiek 

Rys. 3. Przebieg momentów 
skręcających przy nieciągłym 

obwodzie
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moment skręcający jest funkcją pierwszej pochodnej powierzchni ugięcia 
względem x i y, to przy płycie całkowicie utwierdzonej momenty skrę­
cające na obwodzie zanikają, a zatem nie powstają również siły skupione.

W naszym przypadku mamy do czynienia z płytami (ścianami zbior­
nika) sprężyście utwierdzonymi wzdłuż krawędzi pionowych i swobodnie 
podpartych górą i dołem. Tutaj więc występują w narożach siły skupione.

Dla zbiornika o wysokości h=2a i b=2a momenty skręcające:

diwJ/ = — (1 — w) Da------.
oxuy

Przy x=Ą-a i y=Q 
dla « ==1

Mxy = — (1 — /.i) Da

K,

In n
— A± sh^a + Bt sh/?u chda +
h , li

((Da th/łu — n sh — n-a ch^a) nl/D2Da eh fia

Po podstawieniu odpowiednich wartości dla stałych A,B i K otrzy­
mamy

Mxy= -(1-w) • %(- 0,0068+ 0,00901) = -(1-^) • O,OO695Po/i2. 
dla « = 0

Mxy = — O,OO695po^2,
dla ,44 = 0,167

l+y= —0,00578p07i2, 
dla n—2

^=-(1-^)6,28-0,00005,
dla /.4 = 0

J4y = +O,OOO311po/42,
dla /4 = 0,167

l£w=O,OOO26Opo A2.
Sumując człony dla n=l i w=2 otrzymamy

M.ry= — 0,00663p07(2 przy /4=0 
oraz

Mxy= — O,OO552po/42 przy 0,167.

Dla współrzędnych n=+a i y~b moment skręcający węynosi
(dla w=l,2)

Mxu = +O,OO663po A2, 
dla m = 0
Budownictwo II 4
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dla x— —a, y = O
Mxu= +O,OO663pofe2 

oraz dla x = — a, y=h

Przy znanych wartościach momentów skręcających możemy wyzna­
czyć siły skupione w narożach ścian. Będą one równe podwójnej wartości 
momentu Mxy, czyli 
dla x=±a, y = 0

A=2Mxy=+0,01326poh2
oraz dla x = ±a, y=h

M = -O,O1326po/i2.

Momenty zginające wzdłuż przekątni ściany A wyznaczamy według 
wzoru:

1 1
Mn=- (Mn+ MA±- (Mx—MA2 iMxy.

h
Dla x = 0 i y = -2
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Ma=0,0140p„/i2,
My— O,OO88po/i2.

Przy 99=45° (h=2a, b=2a) momenty Mn przybierają postać:
Mn=sm2(Mx+My) sinZyM^, 

M-+ M„
Mn= \ v +0 • 714,= +O,O114po7t2.

Dla .« = — a i y = 0

714= ±O,OO663po7t2.
Z tego wynika, że wszystkie momenty Mn, których oś obrotu jest 

prostopadła do przekątnej, mają wartość ujemną, wówczas gdy momenty 
o osi obrotu równoległej do przekątnej są dodatnie i większe od odpo­
wiednich momentów Mx i My. Wykres momentów i oddziaływań zobra­
zowany jest na rys. 4.
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Katedra Budownictwa Żelbetowego Wpłynęło do Redakcji w maju 1954.

К РАСЧЕТУ ПРЯМОГОЛЬНЫХ РЕЗЕРВУАРОВ

На основании формул, выведенных ранее для упругой поверхности стенок 
резервуара см. йевяуфу Ианко^е РоШескшкг УУгойаугекге] пт 2. ВийотушсО 
гуо I, 1954)-приводятся формулы для определения растягивающих усилий в сте­
нах резервуара. При помощи известной из теории пластинок теоремы Кельвина- 
Тайта, приравниваются нулю крутящие моменты вдоль линий опирания стенок, 
приведенные же силы от кручения прибавляются к поперечным силам вдоль 
опор. В результате этого получаются окончательные формулы для опорных 
реакций.

Применение этих формул показано на примере резервуара с заданным 
отношением сторон. Из графической обработки результатов сделаны выводы, 
имеющие практическое значение при армировании прямоугольных железобе­
тонных резервуаров.

BEITRAG ZUM PROBLEM DES RECHTECKBEHÄLTERS

Auf Grund der in einer früheren Arbeit abgeleiteten (siehe Heft „Zeszyty nau- 
kowe“ Budownietwo I 1954) Formeln für die Biegungsfläche der Behälterwände, 
werden die Ausdrücke für die zur Bemessung der Wände notwendigen Zugkräfte 

4*
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bestimmt. Mit Hilfe des in der Plattentheorie bekannten Satzes von Kelvin und Tait 
werden die Torsionsmomente längs der Auflagerkanten zum Verschwinden gebracht 
und die Ersatzkräfte zu den dort auftretenden Querkräften hinzuaddiert. Auf diese 
Weise wurden die entgiltigen Ausdrücke für die gesuchten Auflagerkräfte erhalten.

Die Anwendung der erhaltenen Formeln wird an einem Behälter von gegebenem 
Seitenverhältnis erläutert. An Hand der graphischen Darstellung der Ergebnisse 
werden Schlussfolgerungen gezogen, die beim Entwerfen von Eisenbetonbehältern 
für die Bewehrung der Wände von Bedeutung sind.



ZESZYTY NAUKOWE POLITECHNIKI WROCŁAWSKIEJ

WYNIKI BADAŃ MODELOWYCH ŁUPINY KONOIDALNEJ

AUGUSTYN BORCZ, mgr inż., adiunkt Katedry Żelbetu

Na podstawie badań wykonanych na. gipsowym modelu pokrycia konoidalnego 
dachu hali przemysłowej w skali 1:20 określono odkształcenia konoidy pod ob­
ciążeniem równomiernie rozłożonym, a następnie określono siły i momenty. Praca 
podajo metodę, wyniki pomiarów i rezultaty przeliczenia wyników z modelu 
na obiekt.

1. WSTĘP

Katedra Budownictwa Żelbetowego przy Politechnice Wrocławskiej 
wykonała dla potrzeb przemysłu projekt żelbetowej konstrukcji halowej, 
w której dach był łupiną konoidałną.

Ze względu na brak poprawnych teoretycznych metod obliczeniowych 
projekt dachu został wykonany w oparciu o badania na modelu, przepro­
wadzone przez wyżej wymienioną katedrę.

W pracach [1], [2], [3] czyniono próby rozwiązania przybliżonego 
stanu naprężeń (bez momentów) w łupinie konoidalnej; co prawda po­
dano poprawną całkę ogólną układu równań równowagi dla stanu bło­
nowego w łupinie konoidalnej, jednak nie znaleziono rozwiązania, które 
spełniałoby sprężyste warunki brzegowe, występujące zawsze w łupinie 
zastosowanej jako przykrycie dachowe.

Próby spełnienia choćby w przybliżeniu warunków brzegowych wzdłuż 
krawędzi pokrywających się z tworzącymi konoidy dały osobliwe roz­
wiązanie, ponieważ powierzchnie rozwiązujące, utkane z charakterystyk 
różniczkowych równań równowagi dla stanu błonowego w konoidzie, nie 
przykrywają całego rozpatrywanego obszaru powłoki [4],

Spełniając warunki brzegowe również na krawędziach połączonych 
z lukiem, da się uniknąć osobliwości w rozwiązaniu; jednak w pracach 
[1], [2], [3] nie poczyniono tego rodzaju prób.

W pracach [2], [3] podane jest rozwiązanie stanu błonowego w kono­
idzie kołowej, którego autorstwo przypisuje się prof. K. Hrubanowi [14]. 
Rozwiązanie to polega na przyjęciu pewnej całki szczególnej dla układu 
równań równowagi stanu błonowego. Całka ta przyjmuje na brzegu pewne 
wartości, które na pierwszy rzut oka mogą wydawać się dosyć realne.
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Rozwiązanie uzyskane w ten sposób nie jest jednoznaczne, a rozwiązań 
równie dobrych lub równie złych można podać nieskończenie wiele.

Z wyżej wymienionych powodów projektowanie łupin konoidalnych 
opiera się przede wszystkim na doświadczeniach [1], [.2], [3], [5], [6], 
[7], wykonanych na modelach lub na doświadczeniach z budowy [8], 
[9], [13],

Dotychczas wykonywano doświadczenia na modelach w skali naturalnej 
albo nieznacznie pomniejszonej. Duży model jest bardzo trudno obciążyć, 
dlatego badacz nie może sobie pozwolić na wielokrotne powtarzanie po­
miarów; tym zapewne należy tłumaczyć fragmentaryczny charakter 
dotychczasowych doświadczeń nad łupiną konoidalną.

Badania opisane w niniejszym artykule były wykonane na małym 
modelu, a pomiarów zrobiono kilka tysięcy. Autor jednak nadal uważa, 
że praca konstrukcji łupiny konoidalnej jest pod względem teoretycznym 
i doświadczalnym zagadnieniem otwartym. Z powyższych powodów ar­
tykuł nie będzie zawierał wniosków końcowych, ani też porównania wy­
ników otrzymanych za pomocą badań modelowych z wynikami jakich­
kolwiek obliczeń teoretycznych.

2. KSZTAŁT GEOMETRYCZNY ŁUBINY DACHU

Powierzchnia środkowa łupiny konoidalnej jest rozpięta nad rzutem 
prostokątnym o bokach 2b i L.

Na rys. 1 zorientowano tak osie układu i. j. k., ażeby prostokąt o bo­
kach 2b i L leżał w płaszczyźnie poziomej (ij). Powierzchnię konoidy 
otrzymuje się przez ruch prostej tworzącej, równoległej do płaszczyzny 
(i.k), ślizgającej się po dwóch kierownicach. Jedną kierownicą jest prosta 
pokrywająca się z osią j, drugą krzywa leżąca w płaszczyźnie równoleg­

łej do płaszczyzny (jk), a oddalonej od początku przyjętego układu o L 
w kierunku dodatnim osi i. Krzywa ta ma tę własność, że jest ciągła wraz 
ze swoimi pochodnymi, symetryczna względem osi k oraz dla y—^b 
przenika płaszczyznę (ij).
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Równanie tej krzywej zapisane wektorowe w przyjętym układzie 
odniesienia przedstawia się następująco:

a = Li + yj + f(y)k. (1)

Zapiszmy równanie powierzchni konoidy ze współrzędnych x i y:

R(x,y)=xi + yj + zk-,

■-, stąd z =---- x.

(2)

(3)
z
X

Po wstawieniu równania (3) do równania (2) otrzymamy wzór na po- 
wierzchnę konoidalną w postaci

R(x,y) = xi + yj+^ Xk.
Jj (4)

Ze względów statycznych wykorzystuje się tylko część tej powierzchni, 
a mianowicie tę część, która jest rozpięta na prostokącie o bokach 2b i a 
(rys. 1).

Projektowany dach o wymiarach 26=18,0 m oraz a=9,25 m jest pod­
party w narożach słupami. Z poszczególnych elementów zestawionych obok 

siebie tworzy się dach pilasty (rys. 2). 
Przyjęty kształt przykrycia pozwala na 
umieszczenie na dachu świetlika, dzięki 
czemu hala ma dużo światła; jest to 
jedna z największych jej zalet. Od czoła 
powłoka jest ograniczona elementem kon­
strukcyjnym, wykształconym od strony 
kierownicy II w luk ze ściągiem. Szcze- 
bliny okienne stanowią podwieszenie ścią­
gu na luku. Z boków7 elementy przykry­
cia są połączone monolitycznie za pomo­
cą żebra, które wykształca się dla usztyw­
nienia brzegów; żebro to nazyw7ać będzie­
my dalej belką prostą.

Połączenie dwóch elementów powłoki w miejscu świetlika może być 
dwojakiego rodzaju:

alternatywa a) — rozpór poziomy przenosi się za pomocą osobnego 
ściągu;

alternatywa b) — nie daje się osobnego ściągu dla przeniesienia par­
cia poziomego. Ściąg umieszcza się w7 odpowiednio pogrubionej krawędzi 
powłoki.

oj
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W ten sposób w każdym następnym elemencie czołowa krawędź 
stanowi luk, tylna zaś krawędź jest połączona bezpośrednio, monolitycz­
nie ze ściągiem i jest rozciągana.

Ostatni element przykrycia opiera się. od tyłu na stosunkowo sztywnej 
belce prostej.

Omawiany projekt opracowano według alternatywy b).

3 .' OPIS MODELU

Wymiary obiektu przyjęto na podstawie już wybudowanych w kraju 
i za granicą konstrukcji konoidalnych. Model jest 20-krotnym pomniej­
szeniem projektowanej konstrukcji (rys. 3); zrobiony jest z gipsu. Powłoka

Rys. 3

ma 3 mm grubości; ze względu na wykonanie modelu uzbrojono ją dru­
tami żelaznymi o średnicy 0,1 mm, rozmieszczonymi w odstępach około 
10 cm.

Wieszaki wykonano z drutu żelaznego pocynkowanego, o średnicy 
2 mm oraz o .27=2000000 kg/cm2. W ściągu i luku jest drut z jakiegoś 
stopu, o średnicy 2,8 mm a współczynniku sprężystości 727=620000 kg/cm2. 
W belce prostej, w osi przekroju znajdują się również (ze względu na wy-’ 
konanie modelu) 1 druciki stalowe o średnicy 0,1 mm.

Wymiary modelu w mm podane są na rys. 4.
Model jest oparty w narożach na łożyskach. Z jednej strony łożyska 

są przegubowo-nieprzesuwne, z drugiej zaś strony przesuwne. Przewidy­
wano badanie pracy modelu pod obciążeniem równomiernie rozłożonym 
na powierzchni powłoki. Tego rodzaju obciążenie zostało zastąpione 
systemem sil skupionych, równomiernie rozłożonych na powierzchni. Dla 
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zaczepienia tych sił nawiercono w powłoce otwory o średnicy 1 mm. W tych 
otworach przyczepiono nici nylonowe, na których z kolei zawieszono 
cały system obciążający (rys. 4) w ten sposób, żeby sprowadzić obciąże­
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a

nie wieloma siłami skupionymi do obciążenia pojedynczą silą. Sprawdzono 
prawidłowość obciążenia za pomocą dynamometru. Wyniki były zupełnie 
zadowalające.

4 . PODOBIEŃSTWO MODELU DO OBIEKTU

A. Obiekt jest z żelbetu; jest to materiał niejednorodny, jednak pow­
szechnie traktuje się go w obliczeniach konstrukcji jako materiał jedno­
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rodny. Przewiduje się beton o wytrzymałości R28=170 kg/cm2. Według 
PN-B-03260 odpowiadają mu następujące współczynniki sprężystości:

dla elementów ściskany cli 2^=260 000 kg/cm2, 
dla elementów zginanych ^=160000 kg/cm2.
Współczynnik Poissona wynosi /« = 0,16-0,18.
Ciężar powłoki wraz z ociepleniem gładzią cementową, papą podwójną 

na lepiku, obciążeniem użytkowym pochodzącym od śniegu i od wiatru 
wynosi Q = 58,5i.

Ściąg jest zaprojektowany w ten sposób, że całkowita siła pozioma 
jest przenoszona za pomocą uzbrojenia.

Łuk uzbrojony jest konstrukcyjnie, szczebliny okienne są wykonane 
z teowników. Powierzchnia przekroju jednej szczebliny wynosi 7, 54 cm2.

B. Model, jak już wspomniano wyżej, jest gipsowy. Ponieważ gips 
wykonano z jednego zarobu, można przyjąć, że materiał jest jednorodny. 
Współczynnik sprężystości wyznaczono wprost z modelu i otrzymano 
JĄ = 78 000 kg/cm2.

Druty w ściągu i w luku uwzględniono przy przeliczeniach w ten spo­
sób, że zakładając przyczepność drutu do gipsu, zamieniono przekrój 
niejednorodny na odpowiadający mu jednorodny przekrój gipsowy 
/ 620000 \

= 8,0
78000
Współczynnik Poissona dla gipsu wynosi y = 0,04-0,06 *).

*) Podaną wartość fi otrzymano z pomiarów wykonanych przez Katedrę Żel­
betu.

Wszystkie wymiary obiektu pomniejszono (u=20) dwudziestokrotnie, 
dlatego wystarczy rozpatrywać tylko jeden wymiar, np. L', będący re­
prezentantem wielkości geometrycznych modelu.

Model obciążono w sposób już przedstawiony w opisie modelu.
Obciążenie zmienne Q'=20kg.
Obiekt i model są określone następującymi wielkościami:

L=nL'.

Obiekt Model
[®]=kgm~2 [_E']=kgm~2
L«]=l [/]=1
[Q]=kg [Q']=kg
[Ł]=m
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Wpływu temperatury oraz skurczu betonu nie będziemy badać, na­
tomiast będą nas interesować w modelu i w obiekcie następujące wiel­
kości:

Dla obiektu Dla modelu
Odkształcenie S = L>^E ,p,L,Q) s'^'(E',y',L',Q') (6)
Napięcie N^0{E,p,L,Q) N'=0'(E',y',L’,Q') (7)
Moment M=H\F,p.,L,Q) M'=H'(E',/,L’ ,Q') (8)
Ugięcie F = E(E,p,L,Q) F' = S'{E',y',L’,Q') (9)
Naprężenie a=Z(E,y,L,Q) a =--Z' (E' ,L' ,Q') (10)

Na podstawie twierdzenia n [10, str. 246] stosowanego w analizie 
wymiarowej, przyjmując wielkości wymiarowe niezależne E, L, można 
równania (6)-(10) napisać w następującej postaci:

Dla obiektu Dla modelu

Odkształcenie e = cp I /t,

Napięcie

Moment

Ugięcia

_Q 
L^E

Q
L^-E,

F=^y,

e 'L^E'

EL i #'=0' ^-%— ]E'L' v L'2E'’
Q \ELS

17
u' ' Q ]E'L'3

Lłl = 11 \ Uj------------ ; I 1 V T'2 77UL'2E' L'

' L^E.
QNaprężenie o = Z E

Ij" Jii

L^E'
'i ' Q

V ’ L'2E'I

L'

E'

(11)

(12)

(13)

(14)

(15)

, , , Q'

N = <5 Q

Q L f' = r ,«,1 , Q

Dla przykładu podamy, w jaki sposób sprowadzono równanie (6) do 
postaci (11).

Twierdzenie można wypowiedzieć w następujący sposób:
Jeżeli w wymiarowo niezmienniczej i jednorodnej funkcji <L{E ,y,L,Q} 

argumenty E,L są wymiarowo niezależne, a argumenty p,Q są od E,L 
wymiarowm zależne, to znaczy wyrażają się one w następujący sposób:

p. = L11’, (16)

Q = n2Ee-L1-, (17)

gdzie n1,n2 są wielkościami bezwymiarowymi (liczbami), a wykładniki 
di,c2Ji^2 liczbami rzeczywistymi, to funkcja L> musi mieć postać

d>(E,/l.,L,Q)=(p^1,r2)EcL1-, (18)
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gdzie jest zwykłą funkcją liczbową argumentów bezwymiaro­
wych (liczbowych) i nie zależy od E,L, a wykładniki e, l (rzeczy­
wiste) nie zależą od n1,n2 ani od E,L.

Z równania (16) otrzymamy

li=1 = kgqm“2C1mZ1. (19)

Porównując stronami wykładniki potęgowe przy jednakowych wymia­
rach otrzymamy

D=0,

?! 2ex = 0, 
stąd

cx=0: Zx=0; // = jzxE° L°
oraz

Podobnie z równania (17)

kg = n2 kg^-m^W2. (20)

Porównując stronami wykładniki potęgowe przy jednakowych wy­
miarach otrzymamy

m = l,

Z2-2e2=0, 
stąd

c2 = l; Z2 = 2,

a z równania (20)
o

Q = ti,E1L2 oraz 7t„ =----- .
2 L2E

Na podstawie równania (18) równanie (6) można przekształcić:

« = (R{E L -jy
\ Jb Jaj]

Porównując stronami wykładniki potęgowe przy jednakowych wy­
miarach otrzymamy

e = 0; l = 0,

a stąd wzór (11):

f = ę1 E°L° = <p I //, Q \
L2E] ‘
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Przekształcenie równań (7)-(10) do postaci (12)-(15) wykonano w ana­
logiczny sposób.

Podobieństwo modelu do obiektu wynika z następującego warunku: 
żądamy, ażeby wielkości statyczne w modelu można było obliczać takimi 
samymi wzorami jak w obiekcie. Warunek ten sprowadza się do wymaga­
nia, ażeby funkcje liczbowe (bezwymiarowe) były jednakowe dla obiektu 
i dla modelu:

= cp' stąd y = /i';

ó = ó' „

Q Q'
L2E L'2^'

Q Q'
L^E L'2E'

Q' = Q'
L^E L"2E' (21)

Q = Q' 
L2E L'2E'

Q _ Q' 
L2E L'2E'

Z warunku podobieństwa modelu do obiektu wynika, że współczyn­
nik Poissona powinien być taki sam dla modelu jak dla materiału obiektu.

y—pi.1 ale ^=0,16-0,18; /(' = 0,04-0,06.

Ten warunek nie jest spełniony.
W dalszych rozważaniach podobieństwa modelu do obiektu pomija się 

w ogóle wpływ współczynnika Poissona na wielkości statyczne w bada­
nym modelu*).

*) Jaki jest wpływ pominięcia współczynnika Poissona na wielkości statyczne 
w powłoce, można wnioskować z uogólnionego prawa Hooka, wyrażonego równaniem 
(44). Wpływ ten można oszacować tylko dla szczególnego przypadku.

Z drugiego warunku podobieństwa modelu do obiektu otrzymujemy

Q Q'_
L2E L'2E'"

260000 , . .
Dla L=2QL ,E= E=3,33E (przy ściekaniu) znajdujemy
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Q'

stąd

oraz przy zginaniu

znajdujemy

-100 L'2-3,33E' L^E’'

Q' = ^ kg

160000
E =----------E = 2,05 E

78 000 ’

Q' = 71,3 kg.

(22)

(23)

Q

Ponieważ obawiano się, że wyliczone obciążenie zniszczy model, 
zdecydowano się obciążyć go ciężarem Q'=20kg.

Jak wykazały wyniki pomiarów, największe naprężenie w modelu 
pod wpływem obciążenia Q'=20kg wynosiły

<ax=7,0 kg/cm3.

Na tej podstawie można twierdzić, że gips pracował w strefie sprę­
żystej oraz że można zastosować do materiału modelu prawo Hooka. 
Przyjmujemy takie samo założenie dla materiału obiektu.

Przyjęto, że odkształcenia obiektu wyrażają się wzorem

L^E
Q oraz modelu z =

L^E-,Q\ (24)

gdzie a jest współczynnikiem proporcjonalności pomiędzy odkształce­
niem a obciążeniem*).

*) Na podstawie (1.1)

Pomijając wpływ współczynnika Poissona

L-El-

Q
’ L-E£ = I

f = <p

Rozwijamy funkcję <p w szereg potęgowy 

/ 
\i7e + a-i L-E

F - -----F a, 
L-E

£ y
L-E] ’

Do obliczenia współczynników ki przyjęto jeden wyraz rozwinięcia, tj:

analogicznie

u,
f =------Q; L-E {

E=dx

aX' 
'U-E'

LE’
6, 

^L^ —
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Przy tych założeniach

« L'2E\
C1 e' JAE Q' ’

dla zginania E=2,05E' oraz dla L=20L'

Q= 58500 kg, Q'=20kg;

58500 L’2E'
------- ----------- •------- = 3,57.

1 400L2 2,05E' 20 ’

Analogicznie dla napięcia

(25)

N QL' 58500 Z'k2 = ~~ = =---------- = 146;
N LQ' 20Z'-20 ’ (26)

dla momentów

dla ugięć

7ą=— =

Al Q 58500 .k3 = =AL = ------- = 2925;
M' Q' 20 ‘ ’

F QL' E' 58500 L'E'

(27)

F’ LEQ‘ 20Z'2,05Z'-20
71,5; (28)

dla naprężeń

Otrzymaliśmy

k,= -.= z 400Z'2-20 " (29)

s = k1 e'; (30)

N=k2N'; (31)
M=k3M'-, (32)

F=kiF'-, (33)

o = k5 a'. (34)

Warto zauważyć, że odkształcenie obiektu e oraz ugięcia F są zależne 
od współczynnika sprężystości, natomiast wielkości statyczne od niego 
nie zależą. Wielkości statyczne w powłoce, obliczone za pomocą wzorów 
(31), (32), (34) nie zmienią się, jeżeli zamiast Zft=2600 00 kg/cm2 odpo­
wiadającemu elementom ściskanym weźmiemy E=160 000 kg/cm2 od­
powiadające elementom zginanym. Natomiast odkształcenia i ugięcia 
otrzymamy wówczas różne.
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Niezależnie od poczynionych uproszczeń model nie odzwierciedla 
wiernie obiektu z następujących powodów:

a) stanowi on tylko jeden segment przykrycia hali. W obiekcie hala 
jest zestawiona z szeregu segmentów połączonych ze sobą monolitycznie;

b) zakłada się, że powłoka niesie pełne obciążenie ciężarem własnym 
i użytkowym. W obiekcie współpracuje z płytą również warstwa ociepla­
jąca;

c) model nie uwzględnia obciążenia ciężarem własnym belek prostych 
oraz łuków ze ściągami.

5. POMIARY NA MODELU
POTRZEBNE DO ZAPROJEKTOWANIA KONSTRUKCJI

Do zaprojektowania konoidalnej konstrukcji dachu potrzebne są nastę­
pujące dane, dotyczące wielkości statycznych spowodowanych obciąże­
niem własnym i użytkowym:

a) siły w ściągach oraz siły w lukach,
b) największe naprężenia ściskające w powłoce oraz miejsce ich wystę­

powania,
c) wielkości naprężeń rozciągających oraz miejsce ich występowania, 
d) wielkości statyczne w belce prostej.
Rozwiązanie powyższego zagadnienia otrzymano za pomocą pomiarów 

na modelu:
1. Dla wyznaczenia sił w ściągach potrzebna jest znajomość własności 

sprężystych gipsu. Ze względu na to, że współczynnik sprężystości gipsu 
zależy od naprężeń, czasu twardnienia, stosunku wodno-gipsowego, a przy 
tym, że inny jest przy ściskaniu, inny przy rozciąganiu, a inny przy zgi­
naniu — bardzo celowe jest znalezienie współczynnika sprężystości wprost 
z modelu.

Obliczymy go z równania:

] ’ (35
z dz

h
gdzie

AI° — moment zewnętrzny w środku rozpiętości powłoki rozpatry­
wanej jako całkowity element konstrukcyjny, statycznie wy- 
znaczalny,

h\z) — wysokość przekrojonych elementów konstrukcyjnych, tj. gru­
bość łupiny, wysokość ścięgów i łuków, 
strzałka luku czołowego i strzałka ściągu (rys. D.

Jeżeli g — jest odkształceniem konstrukcji wzdłuż osi symetrii mo­
delu, czyli odkształceniem zmierzonym w tym samym przekroju, dla 
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którego obliczono moment M°, to przez gj oznaczono jego składową w kie­
runku normalnym do płaszczyzny przekroju (x,z).

W równaniu (35) został pominięty wpływ współczynnika Poissona. 
Wyrażenie

fi
E'fS1h(z) (36)

f2
określa bryłę naprężeń w przekroju przeprowadzonym wzdłuż osi symetrii 
modelu (rys. 5 i 6).

W celu wyznaczenia wartości (36) zmierzono tenzometrem Huggen- 
bergera odkształcenie otrzymane wartości podano na rys. 6.

Ze względu na brak odpowiedniej aparatury do pomiaru odkształceń 
można było zmierzyć odkształcenia tylko na górnej powierzchni powłoki. 
Przyjęcie, że taki pomiar odpowiada powierzchni środkowej powłoki, 
oczywiście tylko w przybliżeniu odzwierciedla bryłę odkształceń. Przy­
bliżenie jest tym większe, im bardziej praca powłoki jest zbliżona do 
stanu błonowego.

Ramię wewnętrzne bryły odkształceń obliczone na podstawie pomia­
rów wynosiło
Budownictwo II
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0,582^-4).

Siła pozioma w ściągach wynosi

0,582 (%-%)’

Na ściąg w łuku czołowym przypada około 40% całkowitej siły po­
ziomej, na ściąg zaś w łuku tylnym około 60% całkowitej siły poziomej.

2. Największe naprężenia ściskające w powłoce w przekroju prze­
chodzącym przez oś symetrii konstrukcji są równe:

Dopuszczalne naprężenia w betonie na ściskanie wynoszą

W modelu W obiekcie
% = -78000 x 35 x 10 6 = -2,7 kg/cm2

Maksymalne naprężenia ściskając 
przy łuku tylnym i wynoszą (rys. 14)

o= —2,7 x 7,31 = —19,5 kg/cm2

e występują w narożu powłoki

W modelu W obiekcie
%ax= “7,0 kg/cm2 KaX= -7,0x7,31 = -51,0 kg/cm2.

aab =------= 60,8 kg/cm2 > c

i nie przekraczają największych naprężeń ściskających w konstrukcji.
3. Największe naprężenia rozciągające występują w ściągu łuku 

tylnego:

Dla modelu Dla obiektu
<m=78000 x 45 x 10-6=3,5 kg/cm2 | omin=3,5x 7,31=25,6 kg/cm2.

Naprężenia rozciągające występują również w powłoce wzdłuż ściągu 
oraz wzdłuż belki prostej.

W projekcie całkowitą silę rozciągającą przeniesiono za pomocą uzbro­
jenia.

4. Zmierzone ugięcia belki prostej wskazują na charakter jej pracy. 
Zmierzono dwie składowe ugięcia:

a) w kierunku poziomym,
b) w kierunku pionowym.
Obciążenie modelu Q'=20kg.
Otrzymano następujące wyniki:
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1) w kierunku poziomym — belka ugina się na zewnątrz modelu 
(rys- 7).

Pomiar ten wykonano czujnikami zegarowymi oraz metodą optyczną 
za pomocą mikroskopu pomiarowego. Otrzymano zadowalającą zgod­
ność;

1234 56789

Rys. 7

32 47 32 0 Ula modelu w u
0 2.3 34 2.3 0 obiektu w mm

2) w kierunku pionowym belka ugina się do góry (rys. 8).
Pomiar wykonano za pomocą czujników zegarowych.
Z pomiaru ugięć można wnioskować o pracy belki prostej, a miano­

wicie :
a) belka prosta nie niesie powłoki, lecz odwrotnie powłoka unosi 

belkę do góry,
b) rozpór poziomy od płyty powłoki jest stosunkowo bardzo mały, 

na co wrskazują ugięcia poziome belki.
Pomiar odkształceń belki prostej za po­

mocą tensometru Huggenbergera wykazał, że 
jest ona rozciągana i pracuje jak ściąg,'a mia-

Rys. 9
Rys. 8

0 13 23 3 0 Ola modelu w u

0 0.9 1.7 0.2 0 obiektu w mm

wicie otrzymano następujący rozkład naprężeń w- środku rozpiętości 
belki prostej (rys. 9):

Na modelu W obiekcie
punkt 1 a' =3,5 kg/cm2 <7=25,6 kg/cm2

5 4,7 „ 34,4 „
3 2,0 „ 14,6 „
6 1,0 „ 7,3 „
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Po uwzględnieniu wpływu zginania belki obliczono, że siła rozciąga- 
1

jąca belkę wynosi 
3

6. POMIAR NAPRĘŻEŃ ORAZ MOMENTÓW

Wielkości statyczne w powłoce

Ciężar własny oraz obciążenie użytkowe są przyczynami powstania 
w powłoce naprężeń. Określimy obecnie, co nazwaliśmy wielkościami 
statycznymi w powłoce. W tym celu wytnijmy w mej element zawarty

pomiędzy przekrojami normalnymi do powierzchni środkowej wzdłuż 
linii a = const i a+da=const oraz /?=const i /?+d/? = const (rys. lOa). 
Boki tego elementu są ds±=Ada-, dsz=Bdfi. Zarówno A=A(a,fi) jak też 
B=B(a,P).

Utwórzmy na powierzchni środkowej zadanej równaniem R(a,0) 
w punkcie (a,/?) układ, określony za pomocą wektorów:
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1 dR
A da

1 dR
b'1J

R„

K
A ’

Rp 
13’ (37)

Bp
A X ~Bn

W kierunku n będziemy odkładać rzędne y, przy czym
li h

gdzie h — grubość powłoki*).
Oznaczmy przez ds*=A*da oraz ds*=B*dfi element długości łuku 

linii, którą wykreśla koniec wektora yn poruszając się po linii a=const 
lub /?=const przy ustalonym y.

Oznaczmy przez a=a(a,p ,y) wektor naprężenia działającego w roz­
patrywanym przekroju. Naprężenia te redukujemy do wektora siły i mo­
mentu działających na bok elementu powierzchni środkowej, tj. na dsx 
lub na ds2. Wektor sił określamy równaniami:

h
+ 2

N^ds1 = J u (a,/?0,y)ds*dy;
7i

~2

N^ds^A J a(a0,^ ,y)ds*dy.
h

Wektory momentów:

M^d.^ = f [a (a, f)0, y) X yn] ds* dy;
ll 

~2

(38)

(39)

M^ds^ = f [o (a0, /?, y) X yn] ds*dy. 
h

~2

Gęstości wektorów sil i momentów rozkładamy na składowe w kierunku 
przyjętego układu odniesienia, określonego wektorami:

A '
n, (rys. lOc, d)

) W równaniu (37) znak x oznacza iloczyn wektorialny.
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R,
n^=-n2^+s2~I + q

oraz
A

M^= - M Rp

Ra1^= M,, — + M2-Y 
A B

(40)

(41)

(42)

(43)

A. Ł>

A
R

B W

Składowe wektorów sił i momentów:
^i, S2, Nlf N2, Qi, Q2, Mlf M2, ^12, -4f2i 

będziemy nazywać wielkościami statycznymi w powłoce.
Na podstawie prawa Hooke’a dla ciała izotropowego można wyprowa­

dzić związki pomiędzy wielkościami statycznymi a odkształceniami, 
które dla ortogonalnej parametryzacji a, fi, przy pewnych uproszcze­
niach mają postać *):

*) Porównaj [4] str. 70, 81 i 28 oraz [11] str. 299 i 300.

Eh
1 = j 2 ( £1 + £-) ,

1 — /B

Eh
— j ;(£2 + v£i), 1 — pw

S = ś\ = S2
Eh

UJ "

2(1+ bY ’

Eh3
(44)

M2 = -

12 (1 - ,+)
Eh3

JI12 = JĄ

12 (1 -

Eh3

(*1  + /^s),

(x2 +

Siły poprzeczne:

Qi-

12 (1 +
T.

5 , dA d dB
ATI (^^12) + 127+ + iW2-—
AB Up dp da daj

1 F d dB ' d dA
AB Loa da df)

(45)

^=- +

1
U? h
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W równaniach tych oznaczają:
1 du 1 dA 

£1 = A' da + ~AB ' ~dj v -j- ^w,

1 dv 1 dB
tlo   •   -I- ' 71 ~ł“ knW ,

2 B 3/3 AB da 2 ’

A d lu\ B d Iv\
B d^\Al A da\Bi

(46)
= —

1 dli dw
A da \A da

1 dli dw

1 dA dw 
AB2'l}|i'd^,

1 dB dw
= —

b d^ \b op

1 / d2w

A2B da da ’

dA dw 1 dB dw'
AB \dad@ A dfi da B da dfi

Przez u, v, w oznaczono składowe przemieszczenia w danym punkcie, 
leżącym na powierzchni środkowej powłoki. Składowa u i r leży w płasz­
czyźnie ściśle stycznej, składowa zaś w jest normalna do powierzchni 
środkowej.

Przez h oznaczono grubość powłoki.
Ay, k2 oznaczają krzywizny powierzchni powłoki w kierunku a i (i.
Wzory (44), (45) i (46) znacznie uproszczą się, jeżeli wprowadzimy taką 

parametryzację a', fi', przy której A'=B' =1-, a więc

dA' _ dA' _ dB' dB' 
~d^ - o,; - TkT = ~d^

Przejście od parametryzacji a, fi do a', /i' otrzymamy z warunku:

da' = Ada', a = fAda;

dfi' = Bdfi; fi' = fBdfi.
(47)

O ile analityczne przekształcenie parametru może stanowić duże trud­
ności rachunkowe, a nawcet czasem nie uda się nam scalkować rówvnań 
(47), o tyle naniesienie parametrów a', fi' na model powłoki nie przed­
stawia większych trudności. Długości luków a', fi' można odkładać i mie­
rzyć bezpośrednio na modelu nie obliczając ich analitycznie.

Pominięcie wpływu współczynnika Poissona na wielkości statyczne 
w powłoce upraszcza jeszcze bardziej równania (44), a nawet wówczas 
parametry a, /? nie muszą być ortogonalne.
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Przy poczynionych założeniach, równania (44), (45) i (46) mają postać: 
Wx = Ehe^ 

N2 = Ehe2 ?
Eh

>8 — 8, — xS o — co .1 2 2

J/,
Eh?

12

Eh2
U

(48)

J/12 = 71/ 2I
Eh?
12 ’

dM12 dM^

1/ = -:

d(i da ’ 

dM12 dM2

gdzie oznaczono

(49)

daQ2

du
W + k^w, da

d2w
= ~ ~da2 ’

dv
+ k 2 w;

d2w 
y"-= - '

du dv
~df>+ Ta'

d2w
___ ___ ___________

dadfi

Naprężenia w powłoce oraz momenty obliczono posługując się równa­
niami (48) i (49).

Metody pomiarowe
Z wzorów (44) oraz (46) wynikają dwie metody pomiarowe:
1) metoda przemieszczeń polegająca na pomiarze składowych prze­

mieszczania U, v, Wj
2) metoda odkształceń, polegająca na bezpośrednim pomiarze odkształ­

ceń ą, s2, co, x2, T-
1. Wykonano najpierw pomiary przemieszczeń spowodowanych od­

kształceniem powłoki pod wpływem obciążenia ()'=10kg za pomocą 
mikroskopu pomiarowego. Wykonano 500 pomiarów w 57 punktach 
na powłoce.
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Poniżej zestawiono rozrzuty otrzymane przy odczytach*).

*) Przez rozrzut pomiaru w danym punkcie powłoki rozumie się różnicę pomiędzy 
największym i najmniejszym odczytem przemieszczenia.

Pomiar poziomych składowych przemieszczenia (czujnik mm)

Rozrzut odczytów
W

0 . 1 2 3 4 5 6 7 8 9-10 11-15 15-29

% od całkowitej 0 1,75 7,0 7,0 12,3 8.8 8,8 8,8 5,25 15,8 19,3 5,20

ilości odczytów 28,05 31,65 40,30

Pomiar składowej pionowej przemieszczenia, (czujnik mm)

Rozrzut odczytów 
w 0 7 10 11 — 15 16-20

55
21-30 31-45 45-50

% od całkowitej 0 5 10 30 10 15 20 10

ilości odczytów 55 45

Jak widać z zestawienia, dokładność pomiarów jest za mała, ażeby 
można było na ich podstawie obliczać wielkości statyczne w powłoce 
[12],

Rys. 11

2. Pomiar wykonano metodą odkształceń (rys. ll).^Wyznaczono ten- 
zometrem Huggenbergera linie równych odkształceń na górnej powierzchni 
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powłoki. Odpowiadające- tym odkształceniom naprężenia obliczono za 
pomocą wzorów (48), a następnie po pomnożeniu przez współczynnik 

z równania (29) zestawiono na rys. 12 jako rozkład naprężeń w obiekcie 
na powierzchni powłoki.

Za pomocą uchyłomierza zmierzono kąty obrotu normalnej do powłoki, 
powstające przy obciążaniu i odciążaniu modelu. Wyniki z pomiaru ką­
tów powierzchni konoidalnej obciążonej równomiernie ciężarem Q'=20 kg 
zestawiono na rys. 13.

Na podstawie zmierzonych kątówT obrotu normalnej do powierzchni 
środkowej pod wpływem obciążenia Q'=20kg można obliczyć momenty 
w powłoce.

Na rysunku 14 pokazany jest element 
powłoki przed odkształceniem. Liniami prze­
rywanymi zaznaczono element po odkształ­
ceniu. Normalna do powłoki przed odkształ­
ceniem tworzy z normalną po odkształceniu 
kąt ep.

Kąt tp rozkładamy na dwie składowe: 
składowa w kierunku a jest y(1) 
składowa w kierunku f> jest (p^.

Kąt <p oraz jego składowe są bardzo małe w porównaniu do wymiarów 
powłoki, dlatego można napisać:

dw 
(P Wg?>( >= — da

ę/2)^ tgę/2)
dw
W’

gdzie w (a,/S) jest składową normalną przemieszczenia powierzchni środ­
kowej pod wpływem obciążenia konstrukcji.

Dla wyznaczenia momentów trzeba znać pochodne kątów cp1 i ?,*)

d2w d [dw\ d
da2 da \ da / da

d2w d /dw\ d (2)

1 1

dpW

*) Porównaj równanie (49).

d2w d / dw \ d / dw \ d
dad^ da \ 90 / 90 1\ da / da

„(2).
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Kąty i <p2} zmierzono w węzłach siatki. Pochodne kątów wyzna­
czono metodą różnic skończonych. (rys. 15*).  W węzłach siatki ozna­
czono kąty obrotu. Jednostka odczytu kąta # = 0,0001454. W polach 
siatki oznaczono długość odpowiednich boków siatki w mm. Na przykład 
dla węzła 3d:

*) Oznaczenia węzłów jak na rys. 13.
**) Obciążenie składające się z systemu sil skupionych wpływa również niekorzyst­

nie na otrzymane wyniki.

d2w d ,n
—T = —=

„(1) 
lid

da2 da 2Aa
0,44-2,5

12,0

d2w d
dp2 dp

(2)
Pic'

2Ap
9,0- 4,2

■ 0,242 cm x#,

cf

e d c
CA

30 06 3.5
t 1
^49- ^52-

8.1 42
O-j

4 a

w
^50~92 ^65

U-s
r*~)'= 0,475 cm-1#,

10,1

d2w d
A1')

— 2,3 + 0,
dpda dp 2Ap 10,1

d2w d m<2>- ■ lid -

(2) (2) 6,6-9,2
dadp da 2Aa 12,0

= —0,178 cm ł#

#= — 0,200 cm ’#.

Z przeprowadzonego obliczenia otrzymujemy różne wielkości na po­
chodne mieszane. Różnice wynikają z następujących powodów:

a) z błędu odczytów7 przy pomiarze kątów7,
b) z metody obliczenia pochodnych mieszanych.

d2w , , ,, , .
Obliczając pochodną znaleźliśmy jej wmrtosc w punkcie po- 

dp da

średnim pomiędzy 3e i 3c. Podobnie obliczając pochodną
d2w 
dadp

znaleźliśmy

jej wartość znów w7 jakimś pośrednim punkcie pomiędzy 2d i 4d. Punkty 
te w pierwszym i drugim przypadku nie pokrywają się, stąd pochodzi 
również różna ich wartość**).  Momenty zginające obliczamy na podstawie 
wzorów7 (48).

Dla E=78 000 kg/cm2, h= 0,3 cm

^=-
Eh3 d~ w 78 000 • 0,33 0,0001454-0,242 =
12 da2 12

= — 0,0255 • 0,242 = —0,0062 kgcm/cm;
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A
Eli3 d2w

” ~ U"

Eh3 d2 w
” 12 dfida

( Eli3 d2w
12 dadfi

= -0,0255-0,178 =

0,0255-0,200 =

: — 0,0255 ■ 0,475 = — 0,0121 kgcm/cm;

■ 0,0045 kgcm/cm;

- 0,0051 kgcm/cm.

Dla obiektu obliczone momenty wnoszą,:

= — W‘25 • 0,0062 = — 18,1 kgcm/cm = — 18,1 kgm/m;

M$ = — 2925 • 0,0121 = — 35,5 kgcm/cm = —35,5 kgm/m;

11^ = — 2925 • 0,0045= — 13,2 kgcm/cm= —13,2 kgm/m;

-2925-0,0051 = -14,9 kgcm/cm= —14,9 kgm/m.

Naprężenia w powłoce od momentu

1 cm JA = — 35,5 kgcm, 

bh2 1,0-6,02
A ~ 6 

6,0 cm3;

ff = +4^ = + 5,95kg/cm3.
6,0

Na podstawie otrzymanych wyników zaprojektowano konstrukcję 
hali. Rysunek 16 przedstawia łupinę podczas budowy.

Rys. 16

Wykresy momentów JĄ i JĄ pokazano na rysunkach 17, 18 oraz 
zestawiono je w tablicach I, II i III.
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Rys. 17

Tablica I

Wartości momentów M1 w kgm/m obliczone dla obiektu 
<2 = 58,5 i

9 8 7 6 5 4 3 2 1 Prze­
krój

45,0 24,0 1,9 -1,9 -3,8 -5,8 -1,9 - 4,2 -8,8 a
228,0 160,0 45,1 -9,3 -15,5 -18,9 -16,7 -8,9 2,5 c
111,8 186,0 118,5 -12,3 -12,3 -13,7 -17,4 -15,9 -15,7 e
123,6 131,5 117,0 48,6 -1,8 -7,4 -9,3 -9,9 -9,8 g
116,5 131,0 87,0 23,9 10,4 -1,2 0,0 8,0 10,0 i
192,5 134,7 42,2 4,9 5,4 3,6 11,9 14,7 4,9 k

Moment dodatni wygina na dół.
Moment ujemny wygina do góry.
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Tablica TI

Wartości momentów w kgm/m obliczone dla obiektu Q = 58,5 t.

Z k j i h (1 / e d c b a
Prze­
krój

0,0 0,0 1,6 52,7 47,0 - 8,1 - 6,5 - 4,0 - 3,5 - 1,8 41,7 94,5 9
-28,8 —18,3 4,1 36,0 63,9 88,5 61,5 36,0 26,9 - 1,5 -68,8 -178,0 7 ,

0,0 0,0 22,3 48,6 58,1 58,9 37,7 15,9 - 7,7 -30,5 -28,4 - 10,3 5
8,31 27,0 43,4 45,3 37,6 33,4 24,2 2,3 -35,4 -39,3 2,5 42,6 3

16,5 11,6 32,4 61,7 38,8 7,0 1,5 2,2 -12,9 -10,6 9,4 17,2 1

Moment dodatni wygina na dół, moment ujemny wygina w górę.



Tablica III
Wartości momentów J/12 i JĄi w kg/m obliczone dla obiektu Q = 58,5 t.

Z k i i h g / e d c Z) a Przekrój

- 15,4 - 24,8 - 18,6 - 50,1 - 74,5 22,4 44,7 29,8 189,1 159,1 6,8 3f12 9

— 5,2 - 1,6 1,6 - 34,0 - 8,9 24,3 14,6 36,3 17,4 61,5 153,8 198,6 9

- 16,3 - 27,8 - 24,8 - 20,7 - 37,3 - 6,8 39,3 50,0 74,3 76,0 64,0 - 1,3 8

- 22,0 — 45,5 — 58,1 — 76,7 - 12,3 32,1 7,7 16,0 79,3 92,0 33,4 18,7 8

- 9,6 - 4,9 - 8,7 25,3 3,1 25,3 30,4 42,3 - 25,1 - 49,7 - 6,3 7

- 6,8 - 0,9 - 11,5 - 11,2 15,5 66,0 75,2 - 8,0 - 11,6 - 30,2 - 41,0 - 21,3 7

- 1,2 - 1,2 8,7 21,3 18,5 1,2 - 3,1 - 6,2 - 15,2 -31,0 - 18,6 - 9,5 -^12 5

3,3 4,0 19,9 20,2 16,3 3,9 - 3,9 3,9 - 7,7 - 32,7 - 27,5 0,0 5

- 5.4 4,1 0,9 17,1 9,1 1,1 ~ 4,3 - 12,4 - 16,1 - 11,8 - 18,8 - 5,3 <12 3

- 13,3 1,6 7,3 14,3 8,4 - 3,9 - 11,6 - 15,2 - 13,3 - 11,9 - 8,5 - 6,4 3

7,2 3,7 - 19,8 - 24,9 - 4,7 - 6,5 - 32,5 - 34,9 - 15,5 - 3,8 - 32.8 3,9 1

3,3 0,8 - 1,6 -9,6 - 15,0 - 14,8 - 18,2 - 20,9 - 4,1 4,9 - 0,8 2,0 3Z2i 1

W
yniki badań m

odelow
ych łupiny konoidalnej
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РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ МОДЕЛИ КОНОИДА

Для нужд промышленного строительства спроектирован железобетонный 
цех с коноидальпым перекрытием. Ввиду отсутствия строгих методов расчета 
коноида проект составлен на основании измерения деформации модели. Модель 
была изготовлена из гипса в масштабе 1:20. Равномерная нагрузка была заме­
нена регулярной системой сосредоточенных сил.

При помощи метода размерности был найден масштаб нагрузки, при кото­
рой результаты измерения деформаций па модели можно было перенести па 
проектируемую конструкцию.

Коэффициент Пуассона для гипса примененного при изготовлении модели 
составлял /«=0,04 — 0,06. Распределение напряжений па поверхности коноида 
установлено при помощи тензометров Гуггенбергера. Изгибающие моменты 
были определены посредством оптического клинометра, а прогибы поддержи­
вающих коноид элементов найдены при помощи мессур. Вычисленные для желе­
зобетонного коноида статические величины представлены па графиках.
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VERSUCHSERGEBNISSE AM MODELL DER KONOIDSCHALE

Für Industriezwecke wurde am Lehrstuhl für Stahlbetonbau der T. H. — Wroc­
law der Entwurf einer Stahlbetonhalle bearbeitet, deren Dachkonstruktion als Kono­
idschale ausgebildet ist. Da bis heute keine einwandfreie Berechnunsmethode derar­
tiger Dachkonstruktionen besteht, wurde die Bemessung auf Grund von Verformungs­
messungen an Modellen durchgeführt. Das Modell wurde im Masstabe 1:20 aus 
Alabastergips hergestellt, wobei die gleichmässig verteilte Belastung (aus Schnee 
und Eigengewicht) durch ein regelmässiges Einzelkräftesystem dargestellt wurde.

Mit Hilfe der Dimensionsanalyse wurde der Maasstab berechnet, der gestattet 
auf Grund der Messergebnisse am Modell die statischen Grössen der wirklichen Kon­
struktion zu berechnen.

Die Poisson’sche Zahl des verwendeten Gipses beträgt ^= 0,04 — 0,06. Der Ver­
lauf der Spannungen au der Oberfläche wurde mittels Huggenbergerscher Tensome­
ter gefunden. Die Monientengrössen wurden mit Hilfe eines optischen Neigungsmessers 
ermittelt, während die Durchbiegungen der die Konoidschale umrahmenden Konstruk­
tionselemente mit Hilfe von Messuhren festgestellt wurden. Die für die Stahlbeton­
konstruktion errechneten statischen Grössen wurden graphisch dargestellt.

Budownictwo TT





ZESZYTY NAUKOWE POLITECHNIKI WROCŁAWSKIEJ

DRGANIA TŁUMIONE TARCZY NA SPRĘŻYSTYM 
PODŁOŻU

IGOR KISIEL, dr inż., profesor Budownictwa Przemysłowego

Praca podaje rozwiązanie zagadnienia drgań tarczy na sprężystym podłożu 
z uwzględnieniem tłumienia i wnioski wypływające z tego rozwiązania dla pro­
jektowania fundamentów pod maszyny.

Zgodnie z dotychczasowymi przepisami projektowania fundamen­
tów pod maszyny [1], [2], obliczenie amplitud drgań wymuszonych 
fundamentów blokowych przeprowadza się bez uwzględnienia tłumie­
nia drgań w podłożu. Wydaje się zatem uzasadnione postawienie na­
stępującego pytania: czy pomijanie tłumienia jest słuszne i czy w przy­
padkach bliskości drgań wzbudzających do którychkolwiek drgań własnych 
układu nie wynikają ze wzorów nie uwzględniających tłumienia prze­
sadnie duże wielkości amplitud?

Odpowiedź na to pytanie przy założeniu płaskiego ustroju (co, jak 
wiadomo, przyjmuje, się przy obliczaniu fundamentów blokowych pod 
maszyny) ma dać niniejsza praca.

Rozważana jest tarcza sztywna, symetryczna, ustawiona na podłożu, 
którego charakterystyki sprężyste są G i T (kg/cm3 lub t/m3). Ciężar 
Ciężar własny tarczy wynosi Qj ponadto na tarczę działa pozioma siła 
wzbudzająca

P=Pb sina0Z

przyłożona w odległości zp od środka ciężkości tarczy, przyjętego rów­
nocześnie za środek nieruchomego układu odniesienia. Środek ciężkości 
pola podstawy tarczy odległy o zs od środka ciężkości tarczy (rys. 1) 
stanowi początek innego układu współrzędnych, którego oś Ao jest rów­
noległa do osi X układu środkowego, zaś oś Z, przechodząca przez oba 
środki ciężkości, jest wspólna dla obu układów.

Oprócz współczynników podłoża C i T dane są opory właściwe śro­
dowiska podłoża, przeciwdziałające prędkościom przemieszczeń tarczy, 
powstających wskutek działania siły wzbudzającej, a oznaczone:

Qt — kgsek/cm3 (lub tsek/m3) — opór właściwy środowiska podłoża 
przeciw prędkościom posuwnym w kierunku poziomym,
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q — w jednostkach jak wyżej — opór właściwy przeciw inędkościom 
liniowym obrotu tarczy dokoła jej środowiska podstawy.

Ponadto w dalszym ciągu oznaczono:
A — pole podstawy tarczy,
Z — moment bezwładności tego pola lub osi przechodzącej przez 

punkt O (rys. 1) i prostopadłej do płaszczyzny rysunku,
J — moment bezwładności ciężaru Q tarczy lub osi przechodzącej 

przez punkt 8 (rys. 1) i prostopadłej do płaszczyzny rysunku.

Rys. 1

Układ jednostek: kg, cm, sek (lub t, m, sek), gdzie przez kg rozumie 
się kilogram-siłę.

Ruch tarczy wskutek działania siły P powoduje przemieszczenie środka 
jej podstawy o wielkość u oraz obrót tarczy dokoła tegoż środka o kąt 
ę>. Siły działające na tarczę wr jej wychylonym położeniu wynoszą:

a) siła bezwładności wskutek przemieszczenia i obrotu, skierowana 
poziomo:

(1)

l>) siła sprężynowania podłoża w kierunku poziomym: 

8X = — TA u, (2)
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c) siła oporu tłumienia posuwnego w kierunku poziomym:

P^-QlA , (3)
dt

cl) siła wzbudzająca:

P = Po sina0i. (4)

Momenty dzalające na tarczę w jej wychylonym położeniu, a wzięte
Arzględem jej środka ciężkości, wynoszą:

e) moment sil bęzwładności:

■V/;
d2 <p 
htT (5)

U
f) moment siły sprężynowania w kierunku poziomym:

.1/....,. + TAzpu, (5)

g) moment siły oporu tłumienia poziomego:

du 
dt '

h) moment siły sprężynowania w kierunku pionowym:

i) moment sil oporu tłumienia pionowego:

(7)

(8)

(9)Q,pl
dtp 
dt ’

j) moment siły wzbudzającej:
Mv=Pzp=Pazv sinaot. (10)

Suma wyrażeń (1) do (4) po przyrównaniu jej do zera jest równaniem 
rzutów sił na oś X, suma zaś wyrażeń (5) do (10) — równaniem momen­
tów względem początku układu (X,Z)-, zgodnie z zasadą d’Alemberta 
i na skutek braku sił pionowych (por. pracę [3]) równania te opisują 
ruch tarczy:

£ 
9

d2u d2cp\
—x ~I- x I H- — Qf A.dt2 s dt2 1 u

du 
dt

P„ sinaoi = 0, (U)

J d2<p 
(J dt2

+ TAzsuA- QiAzs -----qvI + P^z,, sinaot— 0. (12) 
U V------------------(11/
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Przyjmując rozwiązania układu tych równań w postaci:

u=K1 cosa0t + If2 sinaoi, (13-1)

<p=K3 cosa0i+ sina07, (11-1)

otrzymuje się po podstawieniu i przyrównaniu do zera współczynników 
przy cosa0i i sinaoi następujący układ czterech równań liniowych dla 
wyznaczenia stałych całkowania. Kx,..., K*:

l~al--TA\K1-Qta0AK.+ ~ a2z,K3=0, , (15-1)
\9 i 2

Pt^AK^ (-aj -Ta\k2+ a^sK4+Po = O, (15-2) 
\ 9 / 9

TAz^-Ń Qta0AzsK2-\- (— aj —Cl) K3— pa^IK^O, (15-3)
\ 9 I

-eta0AzsK1+TAzsK2+ Pva0IK3+ (- «J Cl]]^ P^z^ 0. (15-4) 
\9 /

Wprowadzając oznaczenia:

U= — a^TAg-[~al~Cl\ af ~ Ta]+ptoa^AI, (16-1)
9 \9 l\9 /

W = — a„ pta0 + Z— aj — Cl\Qta0A+ aj — Ta\q aQI, (17-1)
9 \ 9 / \ 9 I

M=~ WoZsZ I— af-CI
9 \9

^ = QvaoI,

TA-~a2 
9 

(18-1)

(19-1)

(20-1)

(21-1)

Z =
Q

V-

a3zs 
9

Qt “o A 
~q~T~ — aozs

9



Drgania tłumione tarczy na sprężystym podłożu 87

Wyrażenia na można zapisać w następującej postaci:

MW-NU
K'= u2+w2 P°’ (22)

_ NW-MU
(23-1)

K3=ZK1 + 7K2, (24)
p

Ki=ZK2 — VK1 — " . (25-1)
V 2 
— a0 +
9

Jeśli, opierając się na definicji współczynnika logarytmicznego tłumie­
nia dla układu o jednym stopniu swobody, oznaczyć:

At — logarytmiczny współczynnik tłumienia drgań poziomych po- 
suwnych,

A — logarytmiczny współczynnik tłumienia drgań obrotowych wzglę­
dem punktu 0 (rys. 1), to oczywiste są równości:

— &t= QWoA, g
(26)

gdzie oznaczono:

J
— Qva0I, 
9

— — J 
77

71

Wprowadzając zaś dalsze oznaczenia
J
Q

V j2 ’

(27)

(28)

(29)

(30-1)

(30-2)

(30-3)
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2_TAg 
at Q ’ (30-4)

, Gig 
% — , id

(30-5)

wyrażenia na U,...,V można przepisać w następującej postaci:

w

QJ . ,
— [aj “ż G — («5 — ««) (a5 — “A + AJ, 
g

(16-2)

QJ ,— [ay(97.ró.+ (0.5— «ż)Ą;+ (a^— «;)Ą], 
9

(17-2)

J
— [app— (“5— «;)], 
g

(18-2)

j 
g

(19-2)

ap
a^s ’

(20-2)

(21-2)

W przypadku, gdy Ą=Ą=0 (brak tłumienia), zachodzi

W = N=7=0,
skąd

^=^3=0,

k2=-~p0,

= ZK2 —
£ 
9

(23-2)

(25-2)

gdzie K2 odpowiada oznaczeniu u0 przyjętemu w pracy [3], zaś — 
oznaczeniu cpb z tejże pracy. Wówczas wyrażenia na u i cp przybierają 
postać, podaną w pracy [3]:

u=K2 sinaof, (13-3)
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71 = 14 sina0L (14-2)

W braku tłumienia rezonans zachodzi przy U=Q, tj. dla

a2at>‘s— (a2— «2)(«2 — ««) = 0, 
tj. po rozwinięciu

a4— (1 + rs) + a"] a" p a“t a“ = 0. (16-3) *)

*) Wzór ten jest wzorem (33) z pracy [3], jedynie przy zmienionych oznacze­
niach.

Już przy nieznacznym oddaleniu od rezonansu (przy braku tłumie­
nia) U^M; wielkość Z maleje od wartości dodatnich — przy małym 
«0 — poprzez zero i przy a0->oo zdąża do Z=—l, mając dla przeważają­
cej ilości ustrojów' spotykanych w praktyce wartość około lub poniżej 
jedności.

W przypadku uwzględnienia tłumienia — wobec tego, że iloczyn
<1 — wyrażenie U ma właściwie (z dokładnością do znikomo małych 

wartości) tę samą wielkość, co i bez tłumienia; wyrażenie W jest znacznie 
mniejsze od U i ma. ten sam rząd wielkości co i M. Wielkość V jest zwykle 
bardzo małym ułamkiem.

Dlatego też jedynie w przypadku ścisłej zgodności drgań własnych 
z wymuszonymi stosowanie wzorów (22), (23-1), (24), (25-1) daje wy­
niki odmienne od wzorów (23-2) i (25-2) o tyle, że mogłoby to mieć zna­
czenie praktyczne, natomiast już przy bardzo nieznacznym odchyleniu 
drgań wzbudzających od drgań własnych wrzory uwzględniające tłumie­
nie dają praktycznie te same wielkości amplitud, co i wzory wyprowa­
dzone bez uwzględnienia tłumienia. Wniosek ten został potwierdzony 
na licznych przykładach. Poniżej przytacza się jeden z nich:

Dane są: szerokość podstawy tarczy 6=10 m, wysokość tarczy h=2 m, 
grubość tarczy c=3 m. Siła wzbudzająca P=Pa sin«oi działa poziomo 
w kierunku szerokości b tarczy w pionowej płaszczyźnie symetrii i jest 
przyłożona do jej górnej krawędzi. Tarcza ustawiona jest na podłożu 
o współczynnikach C'=6000 t/m3 i T=3000 t/m3 oraz o współczynnikach 
tłumienia &t = &v=0,l (Ą = żlę)= 0,314). Przyjęto P0=101. Tarcza jed­
norodna, jej ciężar Q=132 t (por. rys. 1).

Drgania własne tarczy przy braku tłumienia wyznacza się ze wzoru 
(16-3).

Zgodnie z warunkami zadania: ■?s=+=lm

103 , 102 + 22
A=3-10 = 30 m2; 1=3-- =250 m4; J= 132------—= 1144tm-

’ 12 ’ 12
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1144
132

Q 132

8,667 m"; +=ą 8,667
0,1153;

(J 9,81
13,46 tsek /m;

, J H442/™- — ----=116,62 tmsek";

a«
3000-30 = 6686,5; a" =

g 9,81

6000•250
= 12862,3.

.v 116,62

Równanie drgań własnych:

+ = [6686,5 (1 +0,1153) +12862,3] • a2 + 6686,5 • 12862,3 = 0,

13,48

skąd

f =

aj = 6009,6; a2= 14311,0; «1= 77,52; a2= 119,21.

Przyjmując a0 = a1 (n0 = 740,32 drg/min) otrzymuje się:

a) przy uwzględnieniu tłumienia: «o—+ = —676,9; a„—a2 =—6852,7;

77=13,46 • 116,62 [6009,6 • 6686,5 • 0,1153 -(-676,9) ■ (-6852,7) +
+ 0,1 • 0,1] =+15,70;

+ = 13,46 • 116,62 [6009,6 ■ 0,1 ■ 0,1153-676,9 • 0,1-6852,7 • 0,1] =
= -1073000;

Al =116,62(6009,6 ■ 0,1153 + 6852,7) = +880000;

N= 116,62-0,1=11,662;

676,9
Z = -- . . —- =0,1127;

6009,6 • 1

0,1 : 0,00001664V= 6009,6-1

i ze wzorów (22) do (25-1):

- 1073000■880000 - 11,662•15,70
K,

K„

15,702+10 7 3 0 002

—11,662 • 1073000—.15,70-880000
15,702+10730002

10 =-8,1975 m;

10 =-0,0002268 m;

K, = 0,1127 - 8,1975 + 0,00001664 - 0,0002268 = - 0,924 radiana;U Z Z 1 Z Z Z l
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10
0,1127—0002268— 0,00001664-8,1975----------------------4 ’ ’ ’ 13,46-6009,6

= -0,0000127 rad.
b) Natomiast przy braku tłumienia

K1 = K3 = 0 zaś I£2 = A4=co,

co, jak było do przewidzenia, jest w sprzeczności z poprzednim wynikiem. 
Należy zauważyć, że przy uwzględnieniu tłumienia otrzymuje się duże 
wartości dla K1 i podczas gdy przy nieuwzględnieniu tłumienia otrzy­
muje się nieskończenie wielkie wartości dla K2 i K^, wskazuje to na oczy­
wisty fakt, że przebieg zjawiska przy braku i przy uwzględnieniu tłu­
mienia jest zupełnie odmienny.

Jeśli przyjąć

n0 = 738 drg/min, a więc «0 = 77,27 rad/sek, to:

a) przy uwzględnieniu tłumienia otrzymuje się:

U =-505500000;

W= -1086 000;

M = 886 000;

N = 11,662; Z=0,1199; 7=0,00001675,
zatem

K,= —0,0000373 m; K2 = + 0,01745 m; K3~0;

K4=+0,001968 rad.

b) bez uwzględnienia tłumienia:

K2 = +0,01752 m; K4 = + 0,001976 rad.,

a więc różnice nie mające żadnego praktycznego znaczenia. 
Przyjmując, że tłumienie wzrosło dwukrotnie i wynosi

Ą = ^=0,2, otrzymuje się dla przypadku a0 = a1 = 77,52 rad/sek:

17=62,80; N= 23,324;

W=-2146000; Z=0,1127;

Jf=880000; 7 = 0,00003328;

zatem

Kj = —4,10m; K2= — 0,000229 m; If3= — 0,463 rad;

Z4= - 0,0000124 r.
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a więc dwukrotny wzrost tłumienia powoduje dwukrotne prawie zmniej­
szenie K1 i oraz prawie niezmienione wielkości K2 i K^.

Natomiast dla przypadku «0 = 77,27 rad/sek (n0 —738 drg/min) przy 
takim samym jak poprzednio wzroście tłumienia:

U = - 505500000 23,324

W=-2172 000 Z =0,1199

M= 886 000 7= 0,0000335

Kx =-0,00007 12 m; 1%= 0,01738 m; I%^0; 0,00196 rad.

Tutaj więc w porównaniu do przypadku mniejszego tłumienia za­
chodzi dwukrotny wzrost choć wielkość bezwzględna pozostaje 
nadal znikomo mała i prawie niezmienione wielkości K, i K{.

Z przedstawionego przykładu wynika więc, że wpływ tłumienia (przy­
jęty wszakże dość znaczny) nie jest istotny dla obliczeń do celów prak­
tycznych. Rzeczywiście przy różnicy częstotliwości wynoszącej zaledwie 
0,27% różnica amplitud obliczonych bez uwzględnienia tłumienia i z uw­
zględnieniem znacznego tłumienia (d =0,528) wynosi zaledwie

0,8% wartości mniejszej.

Wynika stąd, że „czułość” układu o dwu stopniach swobody dyna­
micznej na tłumienie jest bez żadnego porównania mniejsza niż układu 
o jednym stopniu swobody. Potwierdza to ostatecznie celowość stosowa­
nia do obliczeń fundamentów blokowych pod maszyny wzorów nic 
uwzględniających tłumienia.
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ЗАТУХАЮЩИЕ КОЛЕБАНИЯ ДИСКА НА УПРУГОМ ОС НОВ А НИИ

В настоящей статье рассмотрены колебания тяжелого диска на пропорцио­
нальном основании, характеризуемом двумя коэффициентами постели С и Т и дву­
мя коэффициентами затухания: д/' — коэффициентом затухания горизонталь­
ного перемещения диска и — коэффициентом затухания вращения. Частные 
решения системы дифференциальных уравнений движения диска (11) и (12)
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приняты в форме (13) и (14), после чего определены постоянные интегрирования 
(22) —(25), а тем самым и амплитуды колебаний.

Ио дискуссии полученных результатов сделан вывод, что в практических 
расчетах (например фундаментов под машины) введение в расчет затухания не 
является целесообразным, так как чувствительность системы на резонанс в рас­
сматриваемом случае значительно ниже, чем чувствительность системы с одной 
степенью свободы. Вывод этот иллюстрирован численным примером.

GEDÄMPFE SCHWINGUNGEN DEE SCHEIBE AUF ELASTISCHER UNTER­
LAGE

Im vorliegendem Beitrag werden die gedämpften Schwingungen der schweren 
Scheibe auf Winklerseher Unterlage mit zwei Bettungsziffern: C und T und zwei 
Dämpfungskoeffizienten: Dämpfungskoeffizient der waagrechten Verschiebung und 
Dämpfungskoeffizient der Drehung betrachtet. Die Lösungen des Differenzialgei- 
chungsystems der Scheibenbewegung (11) und (12) werden in Form von (13) und (14) 
angenommen, woraus die Integrationskonstanten (22) bis (25) und damit die Schwing­
weiten berechnet wurden.

Aus den Schlussfolgerungen ergibt sieh, dass in praktischen Berechnungen (zB. 
bei Maschinenfundamenten) die Berücksichtigung der Dämpfung unzweckmässig 
ist, da die Eesonanzempfilichkeit des betrachteten Systems erheblich kleiner ist 
als die des Systems mit einem Freiheitsgrade. Diese Feststellung wurde durch ein 
Zahlenbeispiel illustriert.





ZESZYTY NAUKOWE POLITEĆHNIKI WROCŁAWSKIEJ

KRONIKA

ZEBRAŃ NAUKOWYCH WYDZIAŁU INŻYNIERII 

POLITECHNIKI WROCŁAWSKIEJ

W roku akademickim 1953/54 odbyło się łącznie 21 zebrań naukowych 
ogółu pracowników naukowych Wydziału. Cztery zebrania poświęcone 
były omawianiu zagadnień ogólnych, pozostałe 17 zebrań — pracom i re­
feratom indywidualnym poszczególnych pracowników naukowych Wy­
działu. Wystąpili z referatami: 3 profesorowie i 8 pomocniczych pracow­
ników nauki. Wygłoszono 11 sprawozdań z prac naukowych własnych 
i 5 referatów z dziedziny postępu technicznego różnych gałęzi wiedzy 
inżynieryjnej.

Tematami poszczególnych zebrań naukowych były:
1) 7. X. 1953 — referat mgra inż. St. Beka, st. asystenta Katedry Bu­

dowy Dróg i Ulic, pt. Najnowsze teorie wytrzymałości nawierzchni drogowych 
i metody obliczenia ich grubości.

Omówiono: metody obliczania nawierzchni podatnych, tj. odkształ­
cających się trwale pod działaniem obciążeń (np. nawierzchnie bitumicz­
ne). Oprócz rozwiązań teoretycznych, opierających się na analizie naprężeń 
i odkształceń w nawierzchni (Pokrowski, Burmister i inni) przytoczono 
wiele metod empirycznych i teoretyczno-doświadczalnych, w szczegól­
ności omówiono metodę Iwanowa. W dalszym ciągu omówiono metody 
obliczania nawierzchni sztywnych (np. z 'betonu cementowego) a szcze­
gólnie metody oparte na teorii sprężystości (O. Szechter, Gersewanow, 
Gorbunow-Posadow) oraz na hipotezie Winklera-Zimmermanna (Wester- 
gaard, Goldbeck, Older, Kelley).

2) do 5). 14. X, 21. X, 11. XI i 18. XI. 1953 — praca mgra inż. J. Łan-, 
gera, asystenta Katedry Statyki Budowli pt. Obliczanie ustrojów prze­
strzennych metodą kolejnych przybliżeń.

W pracy przedstawiono opracowaną przez autora ogólną metodę 
kolejnych przybliżeń do obliczania wszelkich ustrojów o węzłach sztyw­
nych, prętach pryzmatycznych i siatce prostokątnej.

Węzeł sztywny w najogólniejszym przypadku może podlegać obro­
tom i przesuwom. Rozważono obrót węzła w płaszczyźnie prętów, co po­
woduje ich zginanie i ścinanie, dalej obrót węzła w płaszczyźnie prosto-
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padłej do prętów, co powoduje ich skręcanie, wreszcie przesuw węzła 
prostopadły do osi prętów, powodujący ich zginanie i ścinanie, jednakże 
innego rodzaju niż przy obrocie. Do rozważań przyjęto ogólny schemat 
pręta podpartego i utwierdzonego sprężyście.

Dla tak przyjętego schematu określono pojęcia charakteryzujące 
pręty i podpory oraz wyprowadzono ogólne wzory na sztywność (współ­
czynniki oporu sprężystego) prętów przy obrotach i przesuwach węzłów. 
Sztywności te są wzajemnie uzależnione; zależności wyznaczono z warun­
ków ciągłości konstrukcji. Wyprowadzono również wzory na przenośniki 
momentów i sił; komplet tych wzorów dostosowany do przypadków mo­
gących znaleźć zastosowanie w praktyce ujęto w tablice pomocnicze. 
Technika stosowania ogólnej metody kolejnych przybliżeń jest podobna 
do stosowanej powszechnie metody Grossa, jednakże, wobec uwzględnie­
nia różnych typów ruchu węzłów jest w stosunku do metody Grossa bar­
dziej ogólna, ale i bardziej skomplikowana. Pokazana ona została na kilku 
przykładach.

Kontrola równowagi ustroju i węzłów za pomocą obliczonych momen­
tów i sił nie jest wystarczająca. Konieczne jest sprawdzenie ciągłości 
konstrukcji. Wyprowadzono zatem związki między przemieszczeniami 
węzłów a ich obciążeniem. Analiza tych przemieszczeń daje pełny obraz 
ustroju odkształconego i pozwala przeprowadzić również kontrolę wyni- 
ków obliczeń statycznych.

6) 2. XII. 1953. Referat mgra inż. Z. Szaf rana, 1 aspiranta Katedry 
Budownictwa Przemysłowego i mgra inż. St. Dmitruka, st. asystenta 
tejże Katedry pt. W sprawie klasyfikacji gruntów.

Referat zgłoszony na Zjazd Mechaniki Gruntów i Funtamentowania, 
organizowany w r. 1954 przez PAN.

7) 13.1.1954. Praca prof. dra I. Kisiela, kierownika Katedry Bu- 
downictwa Przemysłowego pt.- O pewnym uogólnieniu w mechanice bu­
dowli.

Wychodząc z odpowiednio zdefiniowanych pojęć węzła sztywnego 
wyprowadzono twierdzenie o rozkładzie dowolnego obciążenia węzła 
na poszczególne pręty zbiegające się w tym węźle. Twierdzenie to może 
stano wić uogólnienie matematyczne wszelkich metod obliczenia ustro­
jów prętowych na dowolne obciążenia (zginanie, skręcanie, przesuw 
węzłów itp).

8) 17.11.1954. Referat prof. inż. R. Mromlińskiego, kierownika Ka­
tedry Budownictwa Stalowego pt. Doświadczalne Badanie naprężeń.

Referent zwrócił uwagę na dwojakiego rodzaju podejście do zagad­
nień wytrzymałościowych: abstrakcyjno-matematyczne (dla którego jed­
nak doświadczenie jest podstawą i sprawdzianem) oraz fizyczno-doświad- 
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czalne. W skomplikowanych ustrojach badania doświadczalne górują 
nad podejściem matematycznym. Zaletą ich jest poglądowość, w7adą — 
brak uogólnień.

Omówiono następnie przyrządy do badania stanu naprężeń a) oparte 
na badaniu wydłużeń: mechaniczne, optyczne, elektryczne, pneumatyczne; 
b) zastosowanie promieni Roentgena; c) zasady elastooptyki'; d) analogie: 
błonowe i hydrodynamiczne; e) metody kruchych powłok. Ponadto omó­
wiono badanie naprężeii dynamicznych i własnych.

9) 21. II. 1954. Dwie prace mgra inż. St. Dmitruka, st. asystenta Ka­
tedry Budowmictrwa Przemysłowego i mgra inż. Z. Szafrana, aspiranta 
tejże katedry, pt. Laboratoryjne badanie rozmakania i badania konsystencji 
za pomocą stożka.

Obie prace zgłoszono na Zjazd Mechaniki Gruntów7 (p. poz. 6).
10) 3. III. 1954. Referat prof. inż. R. Mromlińskiego, kierownika 

Katedry Budownictwa Stalowego, pt. Aluminium w budownictwie.
Omówiono: występowanie rud glinu, jego wytwarzanie, stopy Al 

z Cu, Mg, Mn, Si, Zn. Własności stopów7 Al w7 porównaniu ze stalą: wy- 
boczenie giętne, skrętne oraz wyboczenie ścianek kształtowników7 cienko­
ściennych. Kształtowanie i obróbka glinu; łączenie elementów7. Zalety 
konstrukcji aluminiowych w porównaniu ze. stalowymi (ciężar, montaż, 
transport, lżejsze fundamenty, małe koszty utrzymania). Przykłady 
konstrukcji wykonanych ze stopów7 aluminium.

11) 10. III. 1954. Praca inż. A. Skorupy, zast. asyst. Katedry Bu­
downictwa Żelbetowego, stud. kursu magisterskiego pt. Badania płyt 
w przedziale sprężystym.

Przedstawiono sposób badania płyt za pomocą lunety autokohmacyj - 
nej. Obliczenia momentów7 gnących i skręcających przeprowadzono za 
pomocą rachunku różnic skończonych. Na kilku przykładach zilustrcwrano 
tok postępowania. Metoda nadaje się do wyznaczania momentów7 gnących 
i skręcających w7 płytacli o dowolnych warunkach brzegowych.

Praca mgra inż. A. Borcza, st. asyst, tejże katedry, pt. Podobieństwo 
modelu i obiektu.

Przedstawiono zagadnienie podobieństwa modelu do obiektu. Wzory 
na wielkości statyczne wyprowadzono za pomocą metod analizy wymia- 
rowej. Rozpatrzono na ogólnym przykładzie wrarunki. które muszą być 
spełnione dla zapewnienia podobieństwa modelu do obiektu. Rozważono 
wpływ ciężaru własnego konstrukcji, obciążenia użytkowego oraz tempe­
ratury.

12) 17. III. 1954. Praca mgra inż. St. Jasmana, st. asystenta Ka­
tedry Budownictwa Żelbetowego i mgra inż. J. Suwalskiego,' adiunkta 
tejże katedry, pt. Gips jako materiał do wykonywania modeli.
Budownictwo II 7
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Przedstawiono wyniki doświadczeń nad gipsem, używanym do wyko­
nywania modeli, przeprowadzonych w Laboratorium Katedry Budow­
nictwa Żelbetowego w celu wyznaczenia stałych materiałowych E i v. 
Podano wyniki, uzyskane przy próbach gipsu na ściskanie, rozciąganie 
i przyczepność dla różnych stosunków wody do gipsu. Następnie omówiono 
sposoby wykonywania modeli konstrukcji żelbetowych z gipsu, jak płyty, 
elementy belkowe i przestrzenne (łupinowe) rozwijalne i nierozwijalne. 
Zwrócono na uwagę możliwości wykonywania z gipsu modeli, które nie 
mogą być wykonywane z innych materiałów, służących do modelowania 
konstrukcji a produkowanych w postaci gotowych płyt i prętów. Podano 
różne sposoby nanoszenia gipsu (m. in. próby przeprowadzone w Katedrze 
za pomocą sprężonego powietrza oraz przy użyciu specjalnie skonstruo­
wanych przyrządów).

13) 21. III. 1951. Praca prof. inż. A. Mitzla, kier. Katedry Budow­
nictwa Żelbetowego, pt. Przyczynek do zagadnienia zbiorników prostokąt­
nych. Praca publikuje się w niniejszym numerze Zeszytów Naukowych 
Politechniki Wrocławskiej.

14) 7. IV. 1954. Praca mgra inż. A. Borcza, st. asystenta Katedry 
Budownictwa Żelbetowego pt. Wyniki Badań na modelu łupiny konoi­
dalnej. Praca publikuje się w niniejszym numerze Zeszytów Naukowych 
Politechniki Wrocławskiej.

15) 21. IV. 1954. Praca mgra inż. J. Langera, asystenta Katedry 
Statyki Budowli, pt. W sprawie modernizacji metody wymiarowania żel­
betu w mo słownictwie.

Praca publikuje się w niniejszym numerze Zeszytów Naukowych 
Politechniki Wrocławskiej.

16) 5. V. 1954. Referat prof. inż. A. Mitzla, kierownika Katedry Bu­
downictwa Żelbetowego pt. Teoria plastyczności w zastosowaniu do płyt. 
Omówiono podstawowe pojęcia teorii plastyczności i przedstawiono me­
tody wyznaczania momentów plastycznych w płytach o dowolnym kształ­
cie i obciążeniu. Wykorzystanie sposobu zastępczych sil poprzecznych 
pozwala na szybkie w wielu przypadkach wyznaczenie wielkości momen­
tów łamiących. Omówiono zasadnicze zależności kinematyczne odkształ­
conej płyty w strefie plastycznej. Zastosowanie metody pracy wirtualnej 
oraz wykorzystanie sposobu zastępczych sil poprzecznych zilustrowano 
na kilku przykładach liczbowych dotyczących obliczania płyt trójkąt­
nych.

Metoda otwiera duże możliwości dla praktyki projektowania ustrojów 
płytowych i przestrzennych, których rozwiązania nie są dotychczas 
znane ze względu na trudności natury matematycznej w przedziale sprę­
żystym.
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17) 26. V. 1951. Praca prof. dr I. Kisiela, kierownika Katedry Bu­
downictwa Przemysłowego pt. O wymiarowaniu bryły drgającej.

Praca zgłoszona na Zjazd Mechaniki Gruntów7 (p. poz. 6).

W dniu 16 grudnia 1953 odbyło się rozszerzone posiedzenie naukowe 
pracowników-Wydziału Inżynierii Politechniki Wrocławskiej przy udziale 
przedstawicieli innych Wydziałów7 Politechniki i zainteresowanych Ka­
tedr Politechniki Gdańskiej i Krakowskiej, na którym prof. dr M. Z a- 
chara, kierownik Zakładu Technologii Materiałów Budowlanych i Dro­
gowych przy Katedrze Budowy Dróg i Ulic Politechniki Wrocławskiej 
wygłosił referat pt. O potrzebie utworzenia samodzielnych placówek dydak­
tyczno-naukowych w dziedzinie materiałów budowlanych na wydziałach 
inżynierii. W referacie podano krótką historię tej dyscypliny, zdefiniowano 
pojęcie przedmiotu w szerokim jego zakresie, wykazano braki pod wzglę­
dem programowym i szkolenia kadr w7 dziedzinie materiałoznawstwa 
budowlanego na wy działach inżynierii lądow7ej w7 porówmaniu z sytuacją 
na innych wydziałach.

Ożywiona dyskusja, w której zabrało glos 17 osób, wykazała zgodność 
poglądów wszystkich obecnych na omawiany temat. Stwierdzono, iż 
obecny schemat organizacyjny Wydziału nie uwzględnia należycie wraż- 
ności zagadnienia materiałów7 budowlanych, przez co nauczanie na Wy­
dziale nie nadąża za postępem techniki, dyktowranym potrzebami gospo­
darczymi kraju.

Utw7orzenie samodzielnych placów7ek naukowro-dydaktycznych (ka­
tedr) materiałoznawstwa budowlanego wr oparciu o odpowiednio wyposa­
żone laboratoria poprawiłoby znakomicie obecny stan nauki i nauczania 
na tym odcinku.

W dniu 25. XI. .1953 odbyło się zebranie poświęcone sprawcom dy­
daktyki w7 laboratoriach budowlanych, zorganizowane wspólnie przez 
władze związkowe i Dziekanat Wydziału.

W dniu 14. IV. 1954 odbyło się takie samo zebranie poświęcone 
pracy kół naukowych S. T. N. Wydziału; wreszcie w dniu 2. VI. 1954 — 
zebranie zwołane przez dziekana, a poświęcone omówieniu odbytych 
w letnim semestrze hospitacji wrykładów\





R E C E N Z J E

KILKA UWAG O PEWNEJ ROZPRAWIE NAUKOWEJ

IGOR KISIEL doc. dr, profesor Budownictwa Przemysłowego

W roku 1953 ukazała się praca prof. nadzwu dr Edmunda Szczepa­
niaka pt. Nowa metoda rozwiązywania statycznie niewyznaczalnych ustro­
jów prętowych na modelach bez wykonywania przecięć (Rozprawy Inży­
nierskie PAN, nr V). W pracy wyraźnie podkreślono oryginalność me­
tody i wartość wprowadzonych w niej uogólnień.

W ciągu blisko dwóch lat od chywili ukazania się wspomnianej pracy 
nie spotkałem się wr periodykach naukowych z żadnym ustosunkowaniem 
się do tej pracy, na które ona, bez wątpienia, zasługuje. Z tego jedynie 
względu postanowiłem podać w niniejszej recenzji kilka cytatów i uwag, 
mających na celu naświetlić zagadnienie nieco inaczej, niż to uczynił 
autor wymienionej pracy. Wszystkie podkreślenia tekstu w dalszym 
ciągu — moje.

A. Na stronie 3, wiersze 4 do 1 od dołu oraz str. 4, wiersze li2odgóry, 
autor rozprawy mówiąc o poprzedniej swej pracy ), pisze: „...rozwią­
zane zostało wmwczas przez autora nowre zagadnienie, mianowicie, ba­
danie wplywówr niemechanicznyeh na modelach ustrojów prętowych, 
np. wplywm zmiany temperatury elementów konstrukcji, skurczu ma­
teriału, wstępnego sprężenia elementu, zmiany wysokości podpory itp., 
co zostało ujęte we wzór, całkowicie rozwiązujący to zagadnienie”...

1

2) E. Szczepaniak, Ramy wielokrotnie statycznie niciuyznaczalne, Podręcznik 
Inżynierii, t. I, Trzaska, Evert i Michalski, Warszawa 1948.

2) M. Janusz, Teoria badań modelowych, Wrocławskie Towarzystwo Naukowe, 
Wrocław 1952.

W pracy1), do której odnosi się wyżej podany cytat, na str. 798 
wiersze 4 i 5 od dołu, czytamy:

„...wpływ zmiany temperatury i skurczu materiału może być znale­
ziony w następujący sposób”...
a dalej podaje się ten sposób i wzór (60), wr odniesieniu do przypadków 
.zmiany temperatury i skurczu; nie ma w tekście nigdzie mowry o wpły­
wach niemechanicznyeh, które na widownię wmwezas jeszcze nie wystę- 

■ powały.
W pracy prof. nadzw. dra Mariana Janusza2), będącej w istocie 

pracą doktorską, której obrona odbyła się w zimie 1949, a której kore-
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ferentem był prof. Szczepaniak, na str. 13, wiersze 14 do 19 od góry 
czytamy:

„...Również Szczepaniak zajmuje się tylko wpływami temperatury 
i skurczu, nie rozpatrując zagadnienia w całej ogólności. Te braki ma 
uzupełnić niniejsza praca przez podanie ogólnych metod modelowego 
badania wpływów niemechanicznych”.

Opinia prof. Szczepaniaka o pracy doktorskiej M. Janusza wydana 
w roku akad. 1948/49 stwierdzała, że część pracy o wpływach niemecha­
nicznych jest najbardziej wartościowa. Dokładnego sformułowania po 
siedmiu latach nie pamiętam, można jednak znaleźć tę opinię w aktach 
b. Wydziału Inżynieryjno-budowlanego w Gliwicach. W opinii nie było 
wspomniane o tym, że referent, a nie Janusz, zagadnienie to rozwiązał 
w całej ogólności, mianowicie w pracy. (Patrz Szczepaniak op. cit.)

Któż zatem — autor rozprawy inżynierskiej nr V, czy M. Janusz 
rozwiązał zagadnienie wpływów niemechanicznych? Nie ulega wątpli­
wości, że nazwa należy do prof. Janusza. A zestawienie przytoczonych 
wyżej cytatów mówi coś niecoś i o priorytecie.

B. Na str. 4 omawianej rozprawy inżynierskiej, wiersz 20 od dołu 
czytamy:

„...w opracowanej przez autora nowej metodzie rozwiązania”, a na 
str. 10 tejże rozprawy wiersze 1 i 2 od góry:

„...zgodnie z podanym w niniejszej pracy opisem nowej metody 
badań modelowych”...

Czy jednak... nowej ?
W 1947 r. wydana została w Anglii książeczka A. J. S. Pipparda 3), 

z której w dalszym ciągu przytaczam dwa wyjątki — w tłumaczeniu: 
jeden ze str. 17-18 z paragrafu pt. Slope dejlexion Method of Analysis, 
a drugi ze str. 29, z paragrafu pt. Experimental Application oj Slope-defle- 
xion method. Brzmią one jak następuje:

3) A. J. S. Pippard, The experimental study of structures, Edward Arnold et 
Co, London 1947.

1. „Jako podstawa do powyższej analizy służy zależność:

po czym po omówieniu oznaczeń:
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„...Otrzymawszy z pomiarów na modelu wartości kątów obrotu 
i przemieszczeń, możemy na podstawie powyższych w7zorów7 obliczyć 
wartości momentów MAB i My/’...

Tyle mówi wyjątek pierwszy. Wyjątek drugi brzmi:
2. „...Model badanej ramy wycina się z cienkiej blachy mosiężnej, 

tak by był zachowany właściwy stosunek momentów7 bezwładności prze­
krojów. Model układa się poziomo na stole rysunkowym i opiera się na 
kulkach w celu możliwego zmniejszenia tarcia. Obciążenie jest wywoływa­
ne albo przy pomocy ciężarów przerzuconych przez bloczki, albo sprzęgieł 
śrubowych i wag sprężynowych. Do końca każdego pręta przymocowane 
są lekkie wskazówki, długie około 6 cali; ruchy końców tych wskazówek 
są mierzone przy pomocy mikroskopów pomiarowych z mikro okularami. 
Z odczytów mikroskopów można otrzymać wartości kątów obrotu i prze­
mieszczeń, które to wartości są wstawiane do wyrażeń na momenty przy- 
węzłowe, które w ten sposób zostają określone”...

Poza tym, w omawianym paragrafie pracy (Patrz A. J. S. Pippard op. 
cit.) podane są jeszcze trudności, jakie należy pokonać przy przeprowa­
dzeniu pomiaru, a ponadto uw7aga, że technikę tego pomiaru opracował 
prof. J. P. Baker.

Rozprawa inżynierska nr V na str. 10 wiersze 20 i niżej od dołu po­
daj e:

„...W opracowanej przez autora now7ej metodzie rozwiązania 
statycznie niewyznaczalnych ustrojów prętowych na modelach pręty 
modelu nie są przecinane i na jednym modelu może być wykonany ca­
łokształt badań”...

Dalej, po omówieniu podstaw teoretycznych metody, opartych na 
sposobie sprężystego utwierdzenia prętów w węzłach4) autor rozprawy 
inżynierskiej nr V na str. 7 podaje wzory (14) i (15) — te same co i u Pip-, 
parda — (podkreślić należy tutaj błąd drukarski u Pipparda), ze wzorów zaś 
tych wyprowadza wyrażenia na współczynniki sprężystego utwierdzenia.

4) Patrz np. M. Mayer Neue Statik der Tragwerke aus biegesteifen Stdben, Bau- 
welt Yerlag, Berlin 1942 (pierwsze wydanie w 1937).

A więc i tu i tam modelu się nie przecina; i tu i tam wychodzi się 
z tych samych wzorów; i tu i tam mierzy się przemieszczenia kątow7e. 
Gdzie więc różnica?

W rozprawie inżynierskiej nr V proponuje się korzystanie ze współ­
czynników sprężystego utwierdzenia; jednakże praktycznie możliwe 
jest to jedynie przy uwzględnieniu wpływu zginania. Wpływy ścinania 
i siły osiowej prowadzą do wzorów podanych tam jako wzory (9) do (13); 
są one jednak tak skomplikowane, że wątpię, iżby stosowanie ich przy­
niosło więcej, niż kłopoty rachunkowe.
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A dodać należy, że wspomniane wzory (9) do (13) są li tylko wzorami 
na oddziaływania na końcach pręta, a nie wzorami na współczynniki sprę­
żystego utwierdzenia, które dopiero stanowić mają kwintesencję pracy.

Wyposażenie pomiarowe u obu autorów jest różne — gdy chodzi 
o pomiar tylko kątów. Autor rozprawy inżynierskiej nr V stosuje lusterka. 
— por. np. ekstensometr Martensa — zaś Pippard — pomiar przy po­
mocy mikroskopu. Ale gdyby chcieć pomierzyć przemieszczenia — np. 
gdy się chce koazystać ze wzorów (9) do (13) — potrzebny jest i w oma­
wianej metodzie mikroskop pomiarowy — a więc tak samo, jak u Pi- 
pparda.

Są dane do przypuszczeń, że autor rozprawy inżynierskiej nr V znał 
pracę Pipparda w okresie opracowywania swej metody.

6. We wniosku 1 na str. 10 omawianej rozprawy inżynierskiej nr V 
wiersze 4 do 7 od góry, czytamy:

„...Sposób sprężystego utwierdzenia prętów w węzłach, stanowiący 
podstawę teoretyczną nowej metody badań modelowych, daje w rozwią­
zaniach uogólnienie o znaczeniu nie mniejszym, niż linie wpływowe”...

To samo w nieco innej postaci podano także na str. 4, wiersze 13 do 7 
od dołu omawianej rozprawy inżynierskiej.

Jak wiadomo, linie wpływowe dają związek między badaną wielkością 
statyczną a położeniem obciążenia. Współczynnik sprężystego utwier­
dzenia według autora rozprawy nr V ma podobne znaczenie. Tym samym 
nie może on zależeć ani od cech geometrycznych, ani od właściwości 
obciążenia i jego miejsca przyłożone. Tak jest istotnie w belkach ciągłych. 
Czy jednak tak samo jest w ramach o komorach zamkniętych, gdzie ob­
ciążenie można uważać raz za położenie w lewo a raz w prawo od badanego 
przekroju, w zależności od tego, z której strony zacznie się obliczać 
współczynnik sprężystego utwierdzenia li — rozprawa inżynierska nr V 
wątpliwości tej bynajmniej nie wyjaśnia. A skoro nie wyjaśnia, to dla­
czego aż tak wysoko podniesiona została „wartość” uogólnienia, znanego 
pod nazwą „współczynnik sprężystego utwierdzenia”? Nie można prze­
cież sformułowania wniosku 1 traktować jako aksjomatu; a jako wnio­
sek z treści rozprawy bynajmniej on nie wynika.

Należy przeto żałować, że autor rozprawy nie podał nic, co uspra­
wiedliwiałoby twierdzenie zawarte we wniosku 1, skazując tym samym 
pracę swą na zarzut co najmniej braku uzasadnienia.

D. Z wniosku 2 na str. 10, wiersze 12 do 3 od dołu omawianej rozpra­
wy, który brzmi:

„... po ustaleniu współczynników k dla wszystkich prętów i węzłów... 
linia wpływowa dowolnej wielkości statycznej może być... dalej łatwo 
znaleziona na drodze czysto analitycznej”...
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wynika, przy wszelkich zastrzeżeniach co do „łatwości” tego znale­
zienia, że bezpośrednio wyznaczyć linii wpływowej omawianą me­
todą nie można. A stąd —• większa możliwość pomyłek —• wynikających 
choćby z konieczności odejmowania od siebie bliskich wielkości, a zatem 
i mniejsza wartość sposobu, gdy chodzi o wyznaczenie linii wpływowych, 
niż np. sposobu Beggsa.

E. We wniosku 5 omawianej rozprawy (str. 11) mówi autor jej, że: 
„Omawiana tutaj metoda jest precyzyjna i jako taka służyć może 

do sprawdzenia założeń teorii”...
a w poprzedniej swej pracy (patrz E. Szczepaniak op. cit.) autor oma­
wianej rozprawy to samo mówi o metodzie Beggsa.

Otóż — żadna z obu wymienionych w ten sposób przez autora roz­
prawy inżynierskiej nr V metod nie nadaje się do sprawdzania 
założeń teoretycznych, wbrew temu, co się o tym mówi, albowiem, jeśli 
rozważać nie tylko wpływ momentu zginającego ale i siły osiowej, a tym- 
bardziej poprzecznej — podstawowe twierdzenia analizy wymiarowej 
przeczą możliwości sprawdzenia teorii. Nie istnieje bowiem praktyczna 
możliwość wykonania modelu, który by mógł dać jedną skalę dla wszyst­
kich trzech rodzajów sil uogólnionych, wspomnianych wyżej, nie mówiąc 
ponadto o momencie skręcającym.

F. W świetle wymienionych wyżej cytatów i przytoczonych rozwa­
żań wydaj e się, że tytuł rozprawy inżynierskiej nr V nie powinien zawie­
rać słowa „Nowa”, spis literatury zaś należałoby wzbogacić co najmniej 
o dwie pozycje: pracę prof. M. Janusza i pracę A. J. S. Pipparda — 
wymienione już wyżej. Ponadto należałoby co najmniej przeredagować 
wnioski pracy, o ile dokładniejsze rozważania potwierdzą słuszność gło­
szonych w nich postulatów.
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