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Introduction

The major component of any evolutionary algorithm is its evaluation (fitness) 
function, which serves as a major link between the algorithm and the problem 
being solved. The evaluation function is used to distinguish between better and 
worse individuals in the population [Michalewicz99].

In this paper we consider Graph Color Problem as constraint satisfaction 
problem [Eiben98] and we use genetic algorithm to solve it. In most articles 
evaluation of colored graph is given to whole the graph. We propose evaluation 
function based on evaluation of each graph vertex in context of other color vertices 
-  we call it partial fitness function (pff). Values of proposed function can be useful 
information in whole evolution process (e.g. direct or specialize operators, measure 
diversity). Also in this paper, we investigate some complexity aspects of 
computing p ff  values.

2. Graph Coloring Problem (GCP)

The Graph Coloring Problem (GCP) is one of the most studied NP-hard 
problems and can be defined as follows: given undirected graph G = (V ,E ) ,  
where V is a set of | V  |= n vertices and E  (Z V x V  is a set of | E  |= m  edges, and 
integer number of colors k, to find such function 'F : V  l-» 1,2,..,k  which, for 
every edge of graph [w,v]e E, u , v & V  should be satisfy a constraint 
'F(v) ź  'F (u) [EDOM, 696]. In GCP we use k colors to proper color a given 
graph, but when graph can be properly colored with k-1 colors, ^-coloring is non



181

optimal. This way we can consider GCP as optimization problem -  we try to find a 
minimal number of used colors (chromatic number X g ) needed to proper coloring 
of given graph [Paquete02][EDOM].

Despite GCP seems to be theoretical problem, there are many practical 
applications, e.g. in scheduling [Marx03], job shop scheduling [Kubale04], 
timetabling [Myszkowski04], frequency assignment [Malkevitch03], routing 
problem and many others [Kubale02].

The GCP landscape S size equals | S  |= k " , and seems to be very large for 
graphs with 100 or more vertices [Dome98]. GCP problem is considered as an NP- 
hard and we don’t know any effective algorithms, which give a solution in 
polynomial time. Its NP-hard complexity practically means that it is very difficult 
to find in acceptable time for user a legal coloring even for a graph with few 
vertices [Kubale02]. There are many approximation methods applied in GCP: 
approximation algorithms [Kubale02][Culberson92], heuristics (e.g. DSATUR 
[Hamirez04], RLF [VeselOO]), local search algorithms [Chiarandinni02], or 
metaheuristics, such as tabu search [Paquete02], simulated annealing [FotakisOl], 
ant colony algorithms [VeselOO] or genetic algorithms [Juhos02][Myszkowski04].

A graph coloring task for genetic algorithm (GA [Goldberg89a] 
[Michalewicz96]) is defined as: to legal color a given undirected graph 
G = (V , E ) with k (if k  = Xc  ' s an optimal coloring) colors through reduction 
number of conflicts (two of vertices u , v e V  are in conflict if both are assigned in 
the same color and exist an edge [m, v] g E  [Chiarandini04]). So, each individual 
in GA represents a proposition of given graph coloring.

3. A Partial Fitness Function (p ff) and Coloring Representation

We decided to represent colored graph with k color as vector 
/  =< 'F(v0),lF(v1),...,xF(vn) > , where ^(v.)determine color of i vertex. Such
representation is direct, intuitive and commonly used (e.g. [Croitoru02][Dome98]). 
The evaluation function is based on penalty, which depends on number of pairs of 
neighbor vertices colored with the same color (conflict). Such value gives 
information how many conflicts is in already colored graph, however nothing is 
said about its localizations. In literature, number of conflicts corresponds only to 
colored graph; even if considerations are based on a single vertex, it is only a 
boolean value (if there is a conflict). Such evaluations make impossible not only 
the analysis of graph, but also the determination which one vertex is in „better” 
color which one in „worse”.

The proposed partial fitness function (pff) each vertex V, of graph evaluates in 
other vertices context, can be defined as:
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Pf f iVj ) = ^  p{y i , Vj ), where p{v i , v , ) =
j - 0

1 I/ Y ( v,.) =  ^ ( vj. ) a  [v ,.,v ,.]eE  
0  else

If PfflVi) equals 0, it means that vertex V, does not cause any conflicts with 
other vertices with the given color. A total sum of all p ff  vertices values gives a 
fitness of graph coloring.

On Picture 1 there is a graph with 5 vertices, colored with 3 colors and 1 
conflict (between x2 and x4 vertex). Every vertex (except x2 and x4) p ff value 
equals 0. Total evaluation value of given colored graph equals 2.

P ic tu re  1. G ra p h  w ith  1 co n flic t an d  p f f  va lues o f  vertices

Thus, the proposed function p ff  extends a scalar evaluate function to a vec
tor E  =< p f f ( v 0) , p f f ( v l ),...,p f f {yn) > , assigns an evaluation value to every
graph vertex. Such approach has many advantages, i.e. we can evaluate each ver
tex of colored graph. However there are also some disadvantages. A similar 
function is considered by Goldberg in [Godlberg89a,b][Goldberg90] where is 
drawn a conclusion that such function breaks a black box rule [Goldberg89a, 
pp.24-25] of genetic algorithm (do not analyze how solution is build). Also, there 
are many problems, which cannot be defined in this way -  such function form 
limits applications to these tasks, which can be described by partial function 
[Goldberg 89b]. Even if the pff  function limits applications to only GCP instan
ces, in practice there are so many of them, that such limitation does not disqualify 
the approach.

4. Partial Fitness Function -  Complexity Considerations

In GCP fitness function is one of most complexity components in genetic 
algorithm. Thus, we decide to analyze its method of implementation (FF1-FF4 
function) and its relationship with graph coloring representation so as to minimize 
especially its computational complexity.
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4.1. FF1 function (a simple one)
The simplest representation of graph coloring is a vector 

/  = < vF(v0) ,vF(v,),...,xF(vn) > ,  wherevF(v() determine color of i vertex, but
such representation needs evaluation function with a high computational 
complexity. We have to compare each vertex n in colored graph with the others 
and if there is a pair of vertices is in the same color, we must check whether there 
is a conflict. The memory complexity is relatively low and computational 
complexity equals:

0 (n )  = n(n - 1 ) = n2 -  n

The highest cost of function is connected with comparison of each vertex with 
others in each step. This can be minimized by few methods -  we consider it in 
function FF2 and FF3.

4.2. FF2 function (a table of colors)
The graph coloring representation was extended (its schema is presented on 

Picture 2), and every vertex has information about its color, partial fitness function 
value (pff), but also has a pointer to next (and previous) vertex in its color. Thus, 
the representation includes a table of colors, where each color k has information 
about the first vertex in selected color.

colors

color 0 color 1 color K-2 color K-1
null null

vertices
verted vertex 2 * ... vertex N-1 vertex N
color 1 color K-1 cotori color K-1

pff pff pff pff
null | I ____n:___ - r  | null^ | null

P ic tu re  2. A m o d ified  re p re se n ta tio n  o f  co lo red  g raph  in F F 2  func tion

The memory complexity of this representation is bigger than FF1, but 
computational complexity decrease to:

0 (n )  = k ( - ) ( -  - \ )  = n ( - - \ )  = —  - n  
k k k k

The reduction of complexity is connected with the fact, that in evaluation of 
each vertex we consider only the ones in the same color (not all vertices as in 
function FF1).

As it was said, such representation is much more memory demanding, however 
is worth to decrease the computational complexity, especially when we color a 
graph with 1000  or more vertices.



184

4.3. FF3 function (a table of colors + sequential evaluation)

When a FF2 function evaluates the whole graph, each pair of vertices in the 
same color is considered twice. This can be reduced when vertex evaluation will be 
based on sequential vertex inspection -  evaluation of each vertex with its following 
vertices (evaluation with its possible proceedings was done before). The FF3 
function pseudo code is presented on Picture 3. The function fitness returns value 
of evaluation graph coloring and function calculatePff computes a value of pff 
function given vertex V,.

The memory complexity does not change (in relation to FF2), but 
computational complexity decrease on half to:

. 1 ,n 2 .
0 (n )  = —(—— n).

2 k

Functions FF1, FF2 and FF3 are based on checking if in selected color, given 
pair of vertices causes conflict (if there is a edge between them). The FF4 function 
works completely different. To evaluate a given graph we consider its structure, 
especially its edges.

function fitness(graph G) 
begin
for (every vertex Vi of graph G) pff(Vi):=0;

for (every vertex Vi of graph G) calculatePff(Vi);

sum 0 ;

for (each vertex Vi of graph G) sum sum + pff(Vi);

fitness sum; 
end
procedure calculatePff (vertex Vi) 
begin

If Vi <> null then
While Vi.next <> null 

Vj := Vi.next;
If IsConfict(Vi,Vj) then

Increase pff(Vi); 
Increase pff(Vj);

Vi:= Vj;
end

P ic tu re  3. A FF3 p seu d o  co d e. A  g rap h  c o lo rin g s ev a lu a tio n  b a se d  o n  p a rtia l f itn ess  fu n c tio n

4.4. FF4 function (a broken constraints)

Considerations of FF1-FF3 function forms allow us to come to conclusions that 
very often we analyze pairs of vertices that are not connected with other by edge.
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This situation can be reversed and we can consider graph edges as constraints, 
which must be satisfied. Then an evaluation of graph coloring will be connected 
with the check of each edge of given graph whether its vertices are in different 
colors.

Such evaluation method has different complexity and equals to number of 
edges 0(n)=m=\E\ of colored graph. But there is a risk that number of edges (with 
reference to number of vertices) is so large that the method is ineffective. Thus we 
can draw a condition of method FF4 efficiency as:

l M 2
— (------n ) > m
2 k

Given formula is based on comparison of computational complexity of 
functions FF3 and FF4. The FF4 function is more profitable when given formula is 
true otherwise a FF3 function is recommended.

The analysis of 63 benchmark DIMACS (DIMACS GCP instances: 
http://mat.gsia.cmu.edu/COLORING03/) graph give conclusion that in case of 27 
graphs FF4 is more effective than FF3. To show the difference of cost values, see 
Picture 4. There are presented 3 selected graphs: one with the biggest number of 
vertices, one with the biggest number of edges and the last one with the biggest 
density. The graph density is interpreted as a number of vertices in relation to 
number of edges and defined as follows: den(G)=2mJ(n(n-1)) [BorowieckiOl].

G raph C ost o f  FF3 C ost o f  FF4 D ifference (better)
A graph w ith th e  b ig g es t n u m b e r  o f  v e rtices  (4-
fullins_5.col), n=4246, m =77305, k=9, d en = l%

952 889 77 305 - 1 2x (FF4)

A graph w ith th e  b ig g es t n u m b e r  o f  edges
(dsjc 1000.9), n=1000, m =449449, k=224, den=90%

1792 449 449 -2 5 9 x  (FF3)

A graph w ith th e  b ig g es t d en s ity  (dsjcS00.9), 
n=500, m =224 876, k=126, den=180% ,

742 224876 -3 0 3 x  (FF3)

P ic tu re  4. S e lec ted  g rap h s, th e ir  featu res an d  costs o f  FF3 and  F F 4  functions.

Thus an intuition gives us a hint, that there is some relationship between graph 
density and FF4 efficiency. Data presented on seem to confirm it.

We determine a m variable form a density formula and we provide it in FF4 
efficiency formula. We receive the formula:

k___
n - 1

> den(G)

The structure of colored graph cannot be change, so variable n, m and graph 
density den(G) is constant. We have only one variable k (number of used colors), 
which value can be changed. It gives a conclusion: the k value bigger the less is 
usage method FF4 efficiency.

http://mat.gsia.cmu.edu/COLORING03/
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Briefly analysis of benchmark DIMACS graphs gives information, that FF4 is 
profitable for one graph classes (such MIZ: ash,will or CAR: x_insertions_x, 
x_fullins_x). In case of other classes (with small exceptions) it is more profitable to 
apply a FF3 function.

The application of FF4 function (if the FF4 efficiency formula has true value) 
gives a desirable reduction of computational complexity, but this situation occurs 
only in less than half of analyzed graphs. Thus, it is recommended a FF3 and FF4 
coexistence and depends on condition of method FF4 efficiency, we run only one. 
Additionally, FF3 function has a feature (FF4 does not), which allows us to 
evaluate a part of graph (e.g. vertices in selected color). This feature is very useful 
to direct or/and specialize genetic operators.

5. An Applications of Partial Fitness Function

The partial fitness function has disadvantage because we have to store its value 
for each vertex, but we benefit many useful p ff applications to e.g. diversity 
population measure or direct/specialize genetic operators.

5.1. A Measure of Population Diversity

A population diversity in genetic algorithm is a crucial factor its efficiency. A 
fast lost of the diversity in population leads to premature convergence [Galinier99]. 
So it is important to keep population diversity on high level. There are two types of 
diversity measures: genotypic diversity measure (GDM) and phenotypic diversity 
measure (PDM). The first one involves genetic material held in population, the 
second one concerns the fitness of individuals [Herrera98].

The graph coloring is represented as vector 7 = < 'F(v0),'F (v 1),...,vF(vn) >
and simply can measure distance between two colorings IK and IL by Hamming 
distance:

f l . /  'Pt (v(j
1=0

where hQ¥K (v,.), XVL (v,.)) =
0  else

The Dh distance has many disadvantages (e.g. does not take into consideration 
a space symmetry [HamirezOl]), there are also other GDM applied, based on 
[Herrera96]: histograms, dispersion statistical, Euclidean distance, Entropy 
distance or others [HamirezOl][Galinier99].

A construction of GDM is rather a simply task, more problematic is PDM. 
In [Herrera98] it is proposed to control relation between individuals with the 
best and average fitness in population (or average and the worst) to keep 
information about current population diversity. However this measure gives only
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statistical information for given population but with aid of pff values we can extend 
it so as to have more precise measure between two evaluations of graph colorings 
Ek and EL:

i=0

where pffx(Vi) means a pff value of i vertex in K coloring. A DPFF measure gives 
information how two colorings are different on phenotypic level.

The PDM seems to be useless but in [Herrera98] it is said, that principal feature 
of this type of measures is that they allow premature convergence to be predicted 
rather than being detected. This features gives information about low level of 
population diversity and we can run a preventive strategy.

5.2. A Directed Mutation Operator

A mutation operator works on single graph coloring and returns this colo
ring with some changes. The standard mutation operator is based on selection 
of vertex and random change its color. The mutation is applied with a constant 
probability Pm for each vertex. Why Pm probability has the same value for ver
tex with and without conflicts? It is more profitable to distinguish value of 
probability Pm [Myszkowski03a] and increase its value in proportion to number 
of conflicts in given vertex. In this simple way we can direct a mutation PdM 
of vertex e\

Pm  (e) = Pm + FitStr ■ - M M  . p(IM  '  '  m  r * .  m  ’fitness

where FitStr G  <  0 ; 5,0 > is „strength” of direction, fitness is evaluation of all 
vertices in given graph coloring (sum of all R v a lu es  in graph).

5.3. A Highly Specialized Genetic Operators

The pff gives another possibility -  we can build highly specialized genetic 
operators. Such highly specialized operator IBIS (Iteration Build Solution) is 
presented in [Myszkowski03b,04], based on /^values and fuzzy logic.

Also, crossover operators can take to advantage of pff function, because 
„designing crossover requires first identification of some ‘good properties’ of the 
problem which must be transmitted from parents to offspring and the development 
of an appropriate recombination mechanism” [Galinier99, pp.380]. So, the p ff 
values give us such useful information about given graph coloring, about its ‘good’ 
and also about ‘bad’ properties.
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CZĘŚCIOWA FUNKCJA OCENY W ALGORYTMIE EWOLUCYJNYM 
ZASTOSOWANYM W ROZWIĄZYWANIU PROBLEMU 

KOLOROWANIA GRAFU

Streszczenie

Artykuł dotyczy zastosowania algorytmów ewolucyjnych w problemie kolorowania grafu. 
Zaproponowano sposób oceny pokolorowania grafu biorący pod uwagę lokalizacje konfliktu 
(sąsiednie wierzchołki pokolorowane tym samym kolorem). Pokazano możliwości zastosowania 
takiej funkcji oceny przy ukierunkowaniu, wyspecjalizowaniu operatorów genetycznych i pomiarze 
różnorodności fenotypowej w populacji. Także przeanalizowano sposoby implementacji funkcji 
oceny, ze szczególnym uwzględnieniem optymalizacji jej złożoności obliczeniowej.
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