
Ś L Ą S K I  P R Z E G L Ą D  S T A T Y ST Y C Z N Y
S i l e s i a n  S t a t i s t i c a l  R e v i e w
2024, nr 22(28) ISSN 2449-9765 

DOI: 10.15611/sps.2024.22.01 

Jumps in the Freight Rate Process in Container Shipping 

Albert Gardoń 
Wroclaw University of Economics and Business 

email: albert.gardon@ue.wroc.pl 

ORCID: 0000-0001-5068-8876 

©2024 Albert Gardoń 
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International 
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ 

Quote as: Gardoń, A. (2024). Jumps in the Freight Rate Process in Container Shipping. Silesian 
Statistical Review, 22(28), 1-12. 

JEL: C22, C13 

Abstract: As verified in our previous investigations (Gardoń, 2014), a weekly average net freight 
in container shipping may be modelled by means of the jump-diffusive process with 
homogeneous Poissonian jumps. So far, we have generated the relative jump size from the 
empirical distribution which is asymmetrical and does not seem to be one of typical distributions. 
Generally, upward jumps appear more often, whereas relative drops are more concentrated 
around their mean. In this paper, we fit to the jump data a mixture of two distributions, taking 
into account negative and positive jumps separately, obtaining some satisfactory results. 
The jump-diffusive model is mainly used for the evaluation of a derivative net premium, e.g. the 
European Call option for the net freight we mentioned in our previous papers (Gardoń, 2016). 
Without the knowledge of the underlying theoretical distribution of the relative jump size, the 
extremely time-consuming Monte Carlo simulations have to be conducted to this purpose. 
The knowledge of the theoretical jump-size distribution may lead to the analytical formula for the 
option premium, which will make the calculations faster and more exact. 

Keywords: liner shipping, jump-diffusion, relative jump size distribution, freight rate call options 

1. Introduction

Due to a popular measure of the industry concentration, namely the Herfindahl-Hirschman Index, 
equal to 7%, the global container shipping market is unconcentrated (see Alphaliner, 2012), thus, 
strongly competitive. The market share of the top 10 carriers is only about 60% and the 
psychology of many independent competitors affects the industry condition. In such an instance 
random models are a relevant tool for describing its behavior. A straight consequence of this 
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situation is a huge price volatility which is an essential problem for the shippers and the carriers. 
For the sake of simplicity, the shippers may be identified as commodities owners and the carriers 
as vessels owners. For instance, on the main trade route from Southeast Asia to Europe the 
transportation prices have varied in the current millennium from below USD 2000 up to over 
USD 4000. 

The aforementioned route from the Far East to Europe is the most important and the most 
competitive one in the business. As investigated by Gardoń (2014), the net freight process in the 
container shipping industry in the case of this route (but not only) can be modelled by a linear 
jump-diffusion driven by a standard Brownian motion and a homogeneous Poisson process. The 
most essential conditions for a proper application of the model, as a normal distribution of returns 
(called also ticks or relative process changes) except for jump times (see Figure 1), the 
independence of the returns from preceding process values guaranteeing the linearity and the 
exponential distribution of an iid-sequence of inter-jump times consistent with the homogeneity 
of the driving Poisson process, are fulfilled in the instance. 

 

 
Figure 1. Empirical density of the relative average weekly net freight changes in the route from Southeast 
Asia to Europe versus the normal density 

Source: own elaboration. 

The model is defined by the following stochastic differential equation in the integral form: 

 𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑡𝑡0 + �𝑎𝑎𝑋𝑋𝑠𝑠𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡0

+ �𝑏𝑏𝑋𝑋�𝑠𝑠  𝑑𝑑𝑊𝑊𝑠𝑠

𝑡𝑡

𝑡𝑡0
+

+ �𝐶𝐶�̅�𝑠𝑋𝑋�𝑠𝑠  𝑑𝑑𝑁𝑁𝑠𝑠,
𝑡𝑡

𝑡𝑡0
+

    𝑡𝑡 >  𝑡𝑡0, (1) 

where the modelled process X denotes the weekly average net freight (or rate, which is 
a transportation price consisting of basic ocean freight and different surcharges,  e.g. fuel 
surcharge) per transported unit (TEU or FFE – the volume of a 20 or 40 feet long standard 
container) 𝑋𝑋�𝑡𝑡 = Xt− = lims↗t Xs, W is a standard Brownian motion (standardized Wiener process), 
N is a homogeneous Poisson process with intensity λ and both driving processes are said to be 
independent. Coefficients a, b and 𝐶𝐶 (𝐶𝐶�̅�𝑠 means the left-hand side limit at s, as for X) are called 
the drift, the volatility and the relative jump size, respectively. Further, 𝐶𝐶 is a right continuous  
process constant between the jump (stopping) times (Γi) of the driving Poisson process and its  
values on the consecutive interjump intervals are realizations of an independent identically 
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distributed (iid) sequence of random variables (C i), which may be treated as independent copies 
of  a certain pattern random variableC  (corresponding to the jump size), independent from the 
both driving processes W and N as  well (see Mancini, 2009). Additionally, the sequence (τn) of 
stopping times will represent times when the process is observed. 

Generally, it is difficult or even impossible to find a closed analytical formula for the solution of 
the jump-diffusion stochastic differential equation. Therefore, usually numerical methods are 
used for the approximation of the solution (see e.g. Gardoń, 2004, 2006). Fortunately, the explicit 
formula for the solution of the linear equation (1) may be derived using the generalized Itô 
formula for semimartingales (see Protter, 1990): 

     𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑡𝑡0𝑒𝑒
�𝑎𝑎−𝑏𝑏

2

2 �(𝑡𝑡−𝑡𝑡0)+𝑏𝑏�𝑊𝑊𝑡𝑡−𝑊𝑊𝑡𝑡0� � �1 + 𝐶𝐶Γ̅𝑖𝑖�
𝑁𝑁𝑡𝑡

𝑖𝑖=𝑁𝑁𝑡𝑡0+1

 ,    𝑡𝑡 > 𝑡𝑡0 . (2) 

The models for an underlying price process are widely used for option pricing. The knowledge of 
the distributions of all random parts may enable to find an analytical formula for this pricing. If 
they are unknown, the pricing is still possible but in a very time-consuming way based on the 
Monte Carlo simulations. Since the distributions of W and N are known the only issue is to find 
the distribution of C  . This is our motivation. In this article, we investigate the relative jump size 
distribution for the mentioned most crucial route from the Far East to Europe based on the real 
data from one of the leading carriers. Firstly, we present methods for parameter estimates. Then, 
looking at the empirical density histogram of the relative jump size, we choose candidates for its 
theoretical distribution. Further, we conduct necessary statistical goodness-of-fit tests for the 
candidates chosen. Finally, we discuss possible advantages and disadvantages when the 
theoretical distribution found were applied in comparison to the dealing with the empirical one. 

2. Calibration of the Jump-Diffusive Model 

The model used to be especially applied for the pricing of derivatives, e.g. options. The idea  of 
freight options has been strongly considered in the current century (see e.g. Kou, 2002; 
Koekebakker, 2007; Nomikos at al., 2013), but the authors discussed usually exotic Asian options 
givenC  is gamma- or normally distributed. We focus on bilateral simple European Call options 
(see Gardoń, 2016). They are a basic example of derivatives. In our case they give a shipper the 
right for buying an underlying shipping service at the fixed time (expiry date) in the future for 
a fixed price (strike price). For this right a shipper must pay a price called the option premium. 

There are several parameters necessary for the calibration of the model (2), namely the drift a, 
the volatility b, the Poissonian intensity λ and the relative jump sizeC . Firstly, any continuous 
model must be discretized. A trajectory of the freight process X is observed at the stopping times 
(τn) and its relative changes are denoted by (Zn): 

 𝑍𝑍𝑛𝑛 =
𝑋𝑋𝜏𝜏𝑛𝑛 − 𝑋𝑋𝜏𝜏𝑛𝑛−1

𝑋𝑋𝜏𝜏𝑛𝑛−1
=

∆𝑋𝑋𝑛𝑛
𝑋𝑋𝜏𝜏𝑛𝑛−1

= 𝑙𝑙𝑙𝑙
𝑋𝑋𝜏𝜏𝑛𝑛
𝑋𝑋𝜏𝜏𝑛𝑛−1

 ,      𝑙𝑙 = 1, … , 𝐿𝐿 ,    (2) 

where τ0  = t0  and ∆𝑋𝑋𝑛𝑛 = 𝑋𝑋𝜏𝜏𝑛𝑛 − 𝑋𝑋𝜏𝜏𝑛𝑛−1  is the increment of the process X on the interval (𝜏𝜏𝑛𝑛−1, 𝜏𝜏𝑛𝑛]. 
Further, the volatility b is the infinitesimal variance of the continuous part (Znc) of the returns (Zn), 
where 𝑍𝑍𝑛𝑛𝑐𝑐 = 𝑎𝑎∆𝑛𝑛 + 𝑏𝑏∆𝑊𝑊𝑛𝑛 and ∆𝑛𝑛= 𝜏𝜏𝑛𝑛 − 𝜏𝜏𝑛𝑛−1 , that means the remained part after an extraction 
of jumps. Besides, this means that the standardized continuous part of the returns (Zn*) is 
a standard normally distributed iid-sequence: 
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      𝑍𝑍𝑛𝑛∗ =
𝑍𝑍𝑛𝑛 − 𝑎𝑎∆𝑛𝑛 − ∑ 𝐶𝐶Γ̅𝑖𝑖

𝑁𝑁𝜏𝜏𝑛𝑛
𝑖𝑖=𝑁𝑁𝜏𝜏𝑛𝑛−1+1

𝑏𝑏�∆𝑛𝑛
=
𝑍𝑍𝑛𝑛𝑐𝑐 − 𝑎𝑎∆𝑛𝑛
𝑏𝑏�∆𝑛𝑛

 ~ 𝑁𝑁(0,1),       𝑙𝑙 = 1, … , 𝐿𝐿 . (4) 

Thus, the volatility b may be estimated by means of the maximal likelihood method as the 
standard deviation of (𝑍𝑍𝑛𝑛𝑐𝑐 ): 

 𝑏𝑏� = �1
𝐿𝐿
�

(𝑍𝑍𝑛𝑛𝑐𝑐)2

∆𝑛𝑛
− �

1
𝐿𝐿
�

𝑍𝑍𝑛𝑛𝑐𝑐

�∆𝑛𝑛

𝐿𝐿

𝑛𝑛=1

�

2𝐿𝐿

𝑛𝑛=1

, (5) 

Of course, before the estimation of the volatility b the jumps have to be recognized in the data. 
This follows by the so-called threshold method (see Mancini, 2009; Gardoń, 2011) with the 
threshold condition: 

 𝑍𝑍𝑛𝑛2

𝑏𝑏�2
  >  𝑟𝑟(𝛥𝛥𝜏𝜏𝑛𝑛),              𝑟𝑟(𝑡𝑡) = 𝛽𝛽𝑡𝑡1−𝜀𝜀  =  7.3576 t0.9 ,     (6) 

where r is the threshold with ε = 0.1 and β =  7.3576. If for a return the condition in (6) is valid, 
then such a tick is recognized as a jump. It is easy to notice that in the threshold  condition for 
jump identification the knowledge of b is required, but conversely, since b is the  volatility of the 
continuous part of the process X, then for its evaluation the exclusion of jumps  is necessary, as 
well. As shown by Gardoń (2011), the problem may be overcome by means of an iterative 
procedure, where the volatility b and the jump returns are estimated step by step  simultaneously. 

It is worth  mentioning here that a jump return in the data is not exactly a realization of C . Such 
a return (see Equations (2), (3) and (4)) consists not only of the jump driven by a Poisson process 
N, but also includes a continuous freight process change driven by a Wiener process W and the 
drift a: 

 
𝑑𝑑𝑋𝑋𝑡𝑡
𝑋𝑋𝑡𝑡

|𝑑𝑑𝑁𝑁𝑡𝑡=1 = 𝑎𝑎 𝑑𝑑𝑡𝑡 + 𝑏𝑏 𝑑𝑑𝑊𝑊𝑡𝑡 +  𝐶𝐶𝑡𝑡|𝑑𝑑𝑁𝑁𝑡𝑡=1   𝑎𝑎. 𝑑𝑑.      𝑡𝑡 > 𝑡𝑡0.  

In fact, realizations ofC  are represented by the difference 𝑍𝑍𝑛𝑛  − 𝑍𝑍𝑛𝑛𝑐𝑐  on the subintervals where 
jumps occur, i.e. where ∆Nn > 0. This leads to the following, say “continuity correction”, in the 
jump data set: 

 (𝑍𝑍𝑛𝑛 − 𝑍𝑍𝑛𝑛𝑐𝑐)|∆𝑁𝑁𝑛𝑛=1 = 𝑍𝑍𝑛𝑛|∆𝑁𝑁𝑛𝑛=1 − 𝑎𝑎∆𝜏𝜏𝑛𝑛 − 𝑏𝑏∆𝑊𝑊𝑛𝑛   𝑎𝑎. 𝑑𝑑. ,           𝑙𝑙 = 1, … , 𝐿𝐿.    

The “continuity correction” is random due to the Brownian increments ∆Wn and it must be 
generated artificially. 

When the jumps are identified, then the Poissonian intensity λ can be estimated. If the process 
(2) is driven by the homogeneous Poisson process N with the intensity λ, then the interjump 
periods should create an exponentially distributed iid-sequence with the same parameter as the 
Poissonian intensity. Therefore, we chose an intensity which makes the exponential distribution 
fit best to the empirical interjump periods in the sense of the maximal p-value of the Kolmogorov-
-Smirnov goodness-of-fit test. 

For the proper evaluation of the risk the so-called no-arbitrage assumption has to be taken into 
account (see Kou, 2002), which leads to the conclusion that the drift a must not be estimated 
from the data but set to be equal to: 



Albert Gardoń: Jumps in the Freight Rate Process in Container Shipping 5 
ŚLĄSKI 
PRZEGLĄD 
STATYSTYCZNY 

Nr 22(28) 

 
 a = ρ −λ EC , (7) 

where ρ is the LIBOR per time unit for 1 year USD contracts and E is the expectation operator.  
The expectation EC   may be estimated, obviously, as the sample average from the set of relative 
jump values. Although, if the theoretical distribution of the relative jump size C  were known,  
then the expectation could be calculated directly from the relevant formula. 

3. Theoretical Distribution of the Relative Jump Size 

As mentioned in the previous sections, we focus on the most interesting trade route in the container 
shipping, namely from Southeast Asia to Europe, headhaul (more profit-yielding) direction. We have 
for our disposal the data from one of the market leaders. The data set consists of 657 weekly 
average net freight values from the over 12 years long time period, from January 2, 2000 to August 5, 
2012. This produces L = 656 weekly returns of the freight process.  As already mentioned due to 
Gardoń (2014), the jump-diffusive model (2) fits well to the  empirical data in this case. After 5 
iterations of the procedure described by Gardoń (2011), 53 jump occurrences were recognized by 
the threshold condition (6) with the average jump size E𝒞𝒞� = 0.0117 and the volatility 𝑏𝑏� = 0.013. 
The empirical distribution of relative jump sizes is shown in Figure 2. On November 19, 2012 
corresponding to the data set, the risk-free rate was equal to 0.86% p.a. due to the LIBOR for 1 year 
USD contracts, which implies ρ = 0.0165% per time unit. The time unit is a week (7 days), a common 
one in the entire industry. Poissonian intensity per time unit derived from the empirical distribution 
of the interjump periods is equal to �̂�𝜆 = 0.1923. Summing up, the last parameter, namely the drift 
corresponding to the no-arbitrage assumption, is 𝑎𝑎� = −0.0021 in this instance. 

Figure 2. The empirical distribution of the relative jump size for the freight from Southeast Asia to Europe 
head haul direction based on 53 jumps recognized 

Source: own elaboration. 

The relative jump sizes may be generated directly from the empirical distribution, e.g. by means 
of the bootstrap method. However, another approach could be applied. Firstly, a theoretical 
distribution may be recognized, fitted to the empirical data and statistically tested. Then the 
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relative jump sizes can be generated by a pseudo-random number generator from the 
distribution fitted. The former approach seems to be simpler and closer connected to the real 
data, but the latter may be more efficient. As already mentioned, the main aim of modelling the 
freight process is the option pricing. Without the knowledge of the underlying theoretical 
distribution of the relative jump size process C, the only possibility for the evaluation of an option 
net premium  is the Monte Carlo simulation. It consists in multiple (hundreds thousands or even 
millions) calculations of the possible process trajectories which is a time consuming operation. 
On the contrary, if the theoretical distribution were known, a researcher could find a closed 
analytical formula for the net premium and, using it, calculate the net premium directly and 
quickly in one step. This is our motivation for the investigation of this second approach. 

As visible in Figure 2, the empirical distribution of the relative jump size C  is bimodal and 
asymmetrical, so already at the first sight it has been clear that no typical distribution can fit to 
the entire data set. The positive jumps appeared much more often; they are usually close to 0 but 
with large outliers up to 0.2, whereas the negative jumps are less volatile and more symmetrical. 

Besides, there exists no objective limit for positive jumps and the negative ones are bound by the 
number 1. Hence, we split the data set into positive and negative jumps and dealt with them 
separately. Formally, this means that the theoretical distribution fitted must be a mixture of two 
typical distributions. Let us denote by 𝐶𝐶+ = max (𝐶𝐶, 0) a.s.  –  the positive relative jump size 
process,  by 𝐶𝐶− = −min (𝐶𝐶, 0) a.s.  –  the reflected negative relative jump size process (for the 
sake  of  simplicity  negative  jumps  are  reflected  to  the right-hand side of the real line)  and the 
corresponding pattern random variables  by C  + and C  –, respectively. Thus 𝐶𝐶 = 𝐶𝐶+ − 𝐶𝐶−a.s. 
This leads to the mixture of distributions: 

f C  (u) = α f C +(u) + (1 – α) f–C –(u) , α ϵ (0,1) , 

where fC , f C  +  and f C
 – are the densities of C  (general relative jump size), C  + (positive relative 

jump size) and − C   - (negative relative jump size), respectively. Since in the data set there is about 
50% more positive jumps than the negative ones (exactly 32 to 21), there has been no reason to 
reject the parametric hypothesis that α = 0.6 against the alternative α ≠  0.6, with p-value equal 
to 95.5%. Eventually, we obtained the following coefficients of the distributions mixture: 

fC (u) = 0.6 fC  +(u) + 0.4 f–C
 –(u) . 

As already mentioned, there were 53 jump returns in the data set but after the division only 32 
positive and 21 negative jump returns. However, the test statistic from the universal Kolmogorov-
-Smirnov goodness-of-fit test is only asymptotically Kolmogorovian distributed and it requires at 
least 50 observations for the proper evaluation of the p-value. Fortunately, as we mentioned in 
the previous section, a jump return in the data is not exactly a realization of C  and a “continuity 
correction” has to be generated randomly. Obviously, there is no objection to repeat the 
operation many times and that results in multiple replications of every relative jump size 
realization. This solves the problem of insufficient number of jumps for the Kolmogorov-Smirnov 
goodness-of-fit test. If every correction were generated even only 10 times, the data subsets of 
positive and negative relative jump size realizations would enlarge, respectively, to over 300 and 
over 200 observations. But on the other hand, too many observations lead in practice to the 
rejection of any nonparametric hypothesis since the real data never fits perfectly to theoretical 
assumptions. Therefore, every  correction was generated 50 times delivering two subsets of over 
1500 positive and over 1000 negative relative jump size realizations, appropriate for the 
Kolmogorov-Smirnov test. As one can see in Figures 3 and 4, we found four most suitable 
candidates for a theoretical relative jump size distribution, taking into account the shape of the 
empirical density histogram of the relative jump sizes, namely: 
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• the log-normal distribution ∼LogN(µ,σ);
• the gamma distribution ∼Γ(s,r);
• the beta distribution ∼B(a,b);
• the Weibull distribution ∼Weib(s,r).

Figure 3. The empirical distribution of the positive relative jump size after the “continuity correction” 
vs. densities of the most appropriate typical distributions 

Source: own elaboration. 

Figure 4. The empirical distribution of the negative relative jump size after the “continuity correction” 
vs. densities of the most appropriate typical distributions 

Source: own elaboration. 
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For each candidate the distribution parameters were estimated in three different manners: by 
means of the maximal likelihood method (ML), the moment method (Mom) and for the 
comparison by the Kolmogorov-Smirnov test p-value maximization (pMax), separately for the 
positive and the negative jumps. Then in every case the test was conducted for the hypothesis 
that the positive/negative relative jump size has got the relevant distribution. The results, namely 
the p-values calculated, are presented in Table 1. As one can see in the table, the really 
satisfactory fit yields only the log-normal distribution and only for negative relative jump size data 
because only in this instance a typical  parameters estimation method, namely ML, resulted with 
p = 5.6%. 

Table 1. The results of the Kolmogorov-Smirnov consistency test for the positive and negative relative 
jump size data subsets after 50 replications of “continuity correction” for every jump return 

Method 

Distribution 

~LogN(μ, σ) ~Γ(s, r) ~B(a, b) ~Weib(s, r) 

μ σ p-value s r p-value a b p-
value s r p-

value 
Positive jumps 

pMax -2.9 0.41 1.7E-1 5.4 92 7.5E-2 5.2 83 5.1E-2 2.5 0.065 3.9E-3 
ML -2.9 0.49 6.6E-5 4.3 71 8.6E-8 4.0 61 5.4E-9 2.0 0.070 0 
Mom -2.9 0.25 0 3.5 56 5.1E-9 3.2 49 0 3.1 21.00 0 

Negative jumps 
pMax -3.1 0.55 9.8E-2 3.5 68 1.2E-2 3.3 61 8.8E-3 2.0 0.057 3.5E-4 
ML -3.1 0.55 5-6E-2 3.7 71 1.0E-4 3.6 64 3.2E-5 2.1 0.060 5.9E-9 
Mom -3.1 0.24 0 3.7 70 1.3E-4 3.4 62 6.0E-5 2.1 19.00 0 

Source: own elaboration. 

This result might be even improved to the maximal p-value level 9.8%. Additionally, in three next 
cases: log-normal- gamma- and beta-fits for the positive jumps, the theoretical distributions could 
be satisfactorily adjusted to the data with p-values 17%, 7.5% and 5.1%, respectively, but the best 
parameter estimates (maximizing the test p-value) were not met by means of the typical 
estimation methods we applied, either by the moment method or the ML-method, which failed 
the test with p-values much below 0.01% . It is still worth noticing that in the case of gamma- and 
beta-fits for the negative jumps maximal possible p-values were close to the accepted 5% level, 
namely 1.2% and 0.88%, respectively. 

Another interesting observation is that the moment method delivered completely inaccurate 
estimates in every instance, even though there was a possibility for a proper adjustment of the 
distribution. 

Summing up, the best candidate for the theoretical distribution of the relative jump size in the 
freight process connected to the trade route from Southeast Asia to Europe is the mixture of 
2 log-normal distributions, namely ∼LogN(−2.9,0.41) and ∼LogN(−3.1,0.55), where the latter is 
the distribution for the absolute value of the negative jumps (so maybe more precisely it should 
be denoted as “minus LogN”), with weights 0.6 and 0.4, respectively. In Figures 5 and 6, the best 
log-normal-fits are drown together with the empirical distribution histogram for a graphical 
comparison. The reader may be stunned by this graph because despite the accepted level of 
p-value the empirical and the fitted distributions differ virtually one from another. In the further
research, we would like to investigate how much this difference affects the net freight option
premium.
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Figure 5. The log-normal fit for the positive relative jump size using three different methods  
for the parameters evaluation 

Source: own elaboration. 

Figure 6. The log-normal fit for the negative relative jump size using three different methods 
for the parameters evaluation 

Source: own elaboration. 

A mixture of log-normal distributions seems to be worth the first consideration for other freight 
processes. Another reasonable candidate could be also a mixture of gamma distributions. In the 
Kolmogorov-Smirnov consistency test, it yielded p-values close to the accepted level. And as one 
can see in Figures 7 and 8, they differ visually from the empirical distribution in a similar way as 
the log-normal-fit. On the other hand, the beta distribution turned out rather inappropriate for 
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the modeling of the relative jumps size. A completely inaccurate fit was obtained by the Weibull 
distribution. 

 

 
Figure 7. The gamma fit for the positive relative jump size using three different methods  
for the parameters evaluation 

Source: own elaboration. 

 

 
Figure 8. The gamma fit for the negative relative jump size using three different methods  
for the parameters evaluation 

Source: own elaboration. 
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4. Conclusion 

 The knowledge of a theoretical distribution of the relative jump size from the net freight process 
in container shipping could let us derive the close analytical formula for the European Call option 
net premium. This makes the calculations faster without the time-consuming Monte Carlo 
simulations. As it has been investigated, the positive and negative jumps should be considered 
separately and the best candidate for a distribution mentioned is the mixture of log-normal 
distributions with weights 0.6 and 0.4, respectively. Another possibility which could be taken in 
the consideration is a similar mixture of gamma distributions. 

However, several issues have been spotted. The first is a proper parameter estimation. Even the 
efficient ML-method yields results far from the adjustment which the p-value of the Kolmogorov-
-Smirnov test has the greatest value for. This implies that the parameters of the distribution have 
to be estimated in a quite inefficient way by means of the p-value maximalization. The second is 
that even the density of the distribution fitting the best to the data differs graphically significantly 
from the empirical density. The impact of this difference on the difference in evaluation of the 
derivative net premium should be investigated, which could be a topic for a further research. And 
eventually, the advantage of the theoretical distribution may be efficiently used only when the 
analytical formula for a net derivative premium will be found. This is a really hard task and without 
it the fitting may not be that advantageous because in such an instance a derivative net premium 
evaluation follows anyway by means of the Monte Carlo simulations. To sum up, for now, without 
the analytical formula for the net premium, the usage of the empirical distribution seems more 
confident and more appropriate. 
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Skoki w procesie frachtu w kontenerowym transporcie dalekomorskim 

Streszczenie: Jak zostało zweryfikowane we wcześniejszych badaniach (Gardoń, 2014), średnio-
tygodniowy fracht w kontenerowym transporcie dalekomorskim może być modelowany za 
pomocą procesu skokowo-dyfuzyjnego z jednorodnymi poissonowskimi skokami. Dotychczas 
względna wielkość skoku była generowana z rozkładu empirycznego, który jest asymetryczny i nie 
przypomina żadnego z typowych rozkładów. Ogólnie skoki wzrostowe pojawiają się częściej, 
natomiast spadkowe są mocniej skoncentrowane wokół swojej średniej. W tym artykule do 
danych dotyczących skoków dopasowuje się mieszankę dwóch rozkładów, z których jeden opisuje 
oddzielnie skoki wzrostowe, a drugi spadkowe, co daje obiecujące wyniki. Model skokowo- 
-dyfuzyjny jest wykorzystywany głównie do obliczania premii netto derywatyw, takich jak np. 
europejskie opcje kupna na fracht, których dotyczą wcześniejsze artykuły (Gardoń, 2016). Bez 
znajomości teoretycznego rozkładu względnej wielkości skoku podstawowego procesu do 
obliczania premii netto za opcje trzeba wykorzystywać czasochłonne symulacje Monte Carlo. 
Znajomość tego rozkładu może pozwolić na uzyskanie analitycznej, jawnej formuły na premię 
netto, co zwiększyłoby szybkość i dokładność obliczeń. 

Słowa kluczowe: kontenerowy transport dalekomorski, dyfuzja skokowa, rozkład względnej 
wielkości skoku, opcje kupna na fracht 

 
 
 
 

 

 


