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1. WSTgP

Większość rozważań dotyczących oceny jakości odwzorowa­

nia w układach optycznych oparta jest na skalarnej teorii 

dyfrakcji lub optyce geometrycznej. Stosowanie skalarnej teo­

rii dyfrakcji uzasadnione jest tylko wtedy, gdy rozkład ampli- 
• 

tudy w źrenicy wyjściowej układu można opisać skalarną funkcją 

zespoloną, W rzeczywistości zaś, amplituda w dowolnym punkcie 

źrenicy wyjściowej jest zazwyczaj funkcją wektorową o trzech 

składowych; dwóch pi^ostopadłych i jednej równoległej do osi 

optycznej układu, Podejście skalarne obarczone jest więc trze­

ma następującymi ograniczeniami1:

jego dokładność maleje z kątem aporturowym, a w szcze­

gólności nie może być stosowane w układach o dużych 

kątach aport urowych;

/ 2^ nie da je żadnych infoi*macji o wektorowych własnościach 

fali obrazowej, np. o stanie polaryzacji światłu w 

płaszezyźnie obrazowej układu;

^3^ nie może być wprost stosowano do opisu klasy układów 

zawierających elementy zmieniające stan polaryzacji 

światła.

Piei'wsze ograniczenie wynika z faktu, że wraz ze wzros­

tem kąta aperturowego układu wzrasta składowa amplitudy rów­

noległa do osi optycznej układu ^składowa z-owa ) i jej pomi­

janiu staje się coi'az mniej uzasadnione. Uwzględnienie skła­

dowej z-owej amplitudy prowadzi do wniosku, że rozkład natę­

żenia w dyfrakcyjnym obrazie punktu dla układów o dużych 
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kątach aperturowych zależy w sposób istotny od stanu polary­

zacji światła wchodzącego do układu. Ten interesujący efekt 
omówiony został w pracach Hopkinsa p-2^J , Burtina [ 3 J i 

kocko *a ^4 J • 
i

Przyczyny drugiego ograniczenia nie wymagają uzasadnień. 

Problem określenia wektorowych własności amplitudy w dyfrak­

cyjnym obrazie punktu podjęty został po raz pierwszy przez 

^natowskiego £s~6j , a najbardziej wyczerpujące prace zwią­

zane z tym tematem przedstawili Richarda i Wolf [7~9J •

Dotychczas powstało również szereg prac dotyczącycli 

pewnych typów układów odwzorowujących zmieniających stan po­

laryzacji światła. I tak, Kubota i Inoue [loj oraz Kubota i 

Salto jHlJ przeanalizowali własności układu odwzorowującego 

z dwoma elementami polaryzacyjnymi? polaryzatorem i analizato­

rem, np, mikroskop polaryzacyjny. Wyliczyli oni rozkład natę­

żenia w dyfrakcyjnym obrazie punktu oraz optyczną funkcję 

przenoszenia .w zależności od kąta pomiędzy polai*yzatorem i 

analizatorem, Następnie ukazały się prace w których określono 

jak odwzorowywane są w układach tego typu przedmioty o róż­
nych kształtach: przedmioty kołowe jj2j , krawędzie » 

periodyczne siatki prostokątne i trójkątne •

Komissaruk [i?] podał wzory na rozkład natężenia w 

dyfrakcyjnym obrazie pimktu, Jasność Strehla oraz optyczną 

funkcję przenoszenia dla układów z elementami dwójłomnymi. 

Wpływ dwójłomności spowodowanych resztkowymi naprężeniami ter­

micznymi (o symetrii osiowej) na Jakość odwzorowania został 
póśniej szczegółowo przebadany przez Pietraszkiewicza [w-22~].



Chakraborty [23J a także Gupta 24 J i Urbańczyk

analizowali możliwość zastosowania filtrów polaryzacyjnych 

do rozwiązywania zagadnień apodyzacyjnych. Znane są również 

zastosowania układów z elementami zmieniającymi stan polary­

zacji światła w koherentnym przetwarzaniu informacji, np* 

Ghosh [26 ] i Machać o [27J •

We wszystkich wymienionych przypadkach trudności z bez­

pośrednim zastosowaniom skalarnej teorii dyfrakcji ominięte 

zostały w taki sam sposób* Niezależnie obliczano jak trans­

formują się przez układ obie układowo amplitudy prostopadłe 

do osi optycznej (składowa x-owa i y-owa ) , a następnie wyli­

czano rozkład natężenia w płaszczyźnie obrazowej układu* 

Zaniedbywano oczywiście składową amplitudy równoległą do osi 

optycznej układu (składową z-ową) . Podejście takie jest 

jednak bardzo kłopotliwe ponieważ wymaga każdorazowo żmudnych 

przeliczeń, a także uniemożliwia określenie zależności podsta 

wowych miar jakości odwzorowania od stanu polaryzacji światła 

wchodzącego do układu.

Istnieje zatem potrzeba opracowania ogólniejszego opi­

su klasy układów odwzorowujących zawierających elementy zmie­

niające stan polaryzacji światła* W niniejszej pracy przed­

stawiono właśnie propozycję takiego opisu. Jego istotą jest 

połączenie metod używanych w skalarnym podejściu z macierzo­

wym foxłmalizmem Jonesa. £28-31stosowanym do opisu elemen­

tów zmieniających stan polaryzacji światła.

W tym celu w rozdziale drugim pracy zdefiniowano szereg 

pojęć matematycznych oraz podano wraz z dowodami twierdzenia 

umożliwiające stosowanie w dalszej części pijacy zwięzłej 

notacji macierzowej. W rozdziale trzecim przypomniano sposoby 
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opisu stanu polaryzacji światła. Szczególną uwagę zarówno 

tu na wprowadzoną przez Wienera ^32-33J macierz koherencji, 

która okazała się najbardziej przydatna do proponowanego 

macierzowego opisu układów zmieniających stan polaryzacji 

światła, V/ rozdziale czwartym zdefiniowano macierzowe odpo­

wiedniki funkcji używanych w podejściu skalarnym: macierzową 

funkcję źrenicową, macierzową funkcję rozmycia amplitudy, 

macierzową funkcję aberracji, macierzową funkcję transmisji 
♦ 

amplitudy. W następnych trzech rozdziałach podano przejrzys­

te macierzowe wzory na rozkład natężenia w dyfrakcyjnym ob­

razie punktu, jasność Strehla oraz udowodniono uogólniono 

twierdzenie o przesunięciu. W rozdziałach ósmym i dziewiątym 

wyprowadzono'uogólnione przybliżenie Marechala dla jasności 

bti‘ohla oraz rozwiązano problem doboru optymalnej sfery od­

niesienia dla omawianej klasy układów. Wyniki tam przedsta­

wione uzyskano jednak przy ograniczającym założeniu, że 

światło wchodzące do układu da się opisać macierzą koherencji 

o elementach rzeczywistych.

Problemy związane z koherentnym i niekoherentnym od­

wzorowaniem przedmiotów rozciągłych omówione zostały w roz­

dziale dziesiątym. V/ szczególności wyprowadzono tam uogólnio­

ny macierzowy wzói’ na optyczną funkcję przenoszenia układu 

zmieniającego stan polaryzacji światła. W rozdziale jedenas­

tym wyliczono dwupunktowe rozkłady natężenia dla źi^ódeł 

światła charakteryzujących się odpowiednio pełną koherencją 

i jej całkowitym biwakiem. Porównanie opisu macierzowego z 

opisom skalarnym przeprowadzono w rozdziale dwunastym.
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Zagadnienia związane z koherentnym odwzorowaniem przed­

miotów dyfuzyjnych w układach zmieniających stan polaryzacji 

światła są przedmiotem rozważań rozdziału trzynastego, Stosu­

jąc podejście oparte na pojęciu procesu stochastycznego 

określ ono podstawowa wielkości statystyczne charakteryzujące 

rozkład amplitudy i natężeniu w płaszczyźnie obrazowej ukła­

du, W szczególności wyliczono średnią i autokorelację ampli­

tudy obrazowej, a także średnią, autokorelację i wariancję 

rozkładu natężenia w płaszczyźnie obrazowej. Wielkości te cha­

rakteryzują szum związany z efektem plamkowym, który zawsze 

powstaje w koherentnych obrazach przedmiotów dyfuzyjnych.

Zaprezentowany w pracy macierzowy opis własności ukła­

dów odwzorowujących zmieniających stan polaryzacji światła 

wypełnia więc lukę w stosowaniu skalarnego podejścia związa­

ną z trzecim z wymienionych wcześniej ograniczeń.

Ponieważ wszystkie rozważania prowadzone są przy zało­

żeniu, iż można pominąć składową amplitudy równoległą do 

osi optycznej układu, to uzyskane wyniki nie mogą być stoso­

wane dla układów o dużych kątach aperturowych.
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2. ZARYS APARATU MATEMATYCZNEGO

W rozdziale tym zdefiniowano szereg pojęć matematyce

nych oraz podano wi'az z dowodami twierdzenia umożliwiające

konsekwentne stosowanie zwięzłej notacji macioi*zowuj w za

sadniczej części praoy. Dla uzupełnienia przedstawiono także 

kilka powszechnie znanych definicji i, twierdzeń związanych z

ra c I i u nk i e m macie r z owy ia aczerpniętych z pracy [34j

2.1. Pod stawowe de finicj o

Def. 2*1-1. Macierz funkcji

Macierz A(x) któroj elementami są funkcje zmien­

nej rzeczywistej nazywać będziemy macierzą

funkcji

id

gdzie i = 1,n; j » 1tm.

Funkcje A. .(x) mogą być rzeczywiste lub

zespolone

Dof.2.1-2. Ślad macierzy [34 J

Niech A(x) będzie macierzą kwadratową n x n# 

Śladem macierzy A(x) nazywać będziemy sumę jej

elementów diagonalnych

n
tr A(x) = /__

1«1 ii

według wiedzy autora nowe
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Def.2.1-3* Macierz trangponowana [34 J

ATRMacierz A (x) nazywamy macierzą transponowaną 

w stosunku do macierzy A(x) jeżeli zachodzi

Def.2.1-4» Macierz sprzężona hermitowoko [34 J

A
Sprzężeniem hermitowskim macierzy A(x) nazywamy 

At - \macierz A której elementy spoinie ją warunek

(2.1-

Uwzględniając (2.1-3 ) macierz sprzężoną hermitowako można 

przedstawió jako

^a) = f . ( 2.1-

Def.2.1-5* Macierz hermitowska [34j

Macierz spełniająca warunek

A ( x ) » ^(x) ( 2.1-

nazywana jest macierzą hermitowską.

Def.2.1-6. Całka macierzy

Całką macierzy A(x) nazwiemy macierz liczb B

określoną następująco

a - a

Def.2.1-7. Pochodna macierzy

Pochodną macierzy A(x) nazwiemy macierz A^z) 

określoną następująco
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Buf.2.1-8. Splot macierzy •<

Niech A (x) będzie macierzą n x k, a B(x)macie- 

r»zą k x m. Splotem macierzy A (x} z B (x) nazwie 

my macierz D (x) określoną następująco

D (x) A (x)® B Cx) <—> D (x) «

(2.1-y)

elementy

A A
A ( x\) B (x~x') dx* •

Macierz D ( x) ma wymiar n x m. Zgodnie z def.2.1-6 

macierzy D ( x) wyznaczyć można na podstawie wzoru

Zatem element ij macierzy D(x) jest sumą splotów funkcji 

twox*zących i-ty wiersz macierzy A(x) z odpowiednimi funkcja

mi tworzącymi j-tą kolumnę macierzy B (x)

Def.2.1-9* Korelacja wzajemna macierzy

Niech A (x\ będzie macierzą n x k, a B (x) ma­

cierzą m x k. Korelacją wzajemną macierzy A (x) 

z B (x) nazwiemy macierz D (x) określoną następu 

jąco

D (x) » A ( x) @ B ( x)<J==>D (x ) =

a J*A (x*) B (x-x ) dx* . (2.1-12

Macierz $(x) rna wymiar n x m. Zgodnie z def.2.1-4 i def.

2.1- 6 elementy macierzy D/’x) można przedstawić jako
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(2.1-13)

Zatem, element ij macierzy D £xj jest sumą korelacji wzajem­

nych funkcji tworzących i-ty wiersz macierzy A ( x) z funkcjami 

tworzącymi j-ty wiersz macierzy B (_x j

Def.2.1-1O. Transformata Fouriera macierzy

Transformatą Fouriera macierzy

macierz taką, że

A ( x) na zwie my

J2 (f ) - X ~
« Jk ( x ) exp ( -2 K ixf )

Używane będzie również symboliczne oznaczenia

dx , (2.1-15 )

2.2. Podstawowe twierdzenia.'

Tw.2.2-1, O pochodnej iloczynu macierzy

Jeżeli D (x ) « A(x)B£x)to zachodzi
A A. A

d B(x) d A(xJ a a d B f x)
1 "" ..... = B x J + A ( x ) . .... .

dx dx dx
^2.2-1 J

1) o w ó d t
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Tw.2.2-2. O związku między splotem a korelacją

wzajemną macierzy

A(x)®B(x) = A(x)®B^-x)

Tw. 2.2-3. Operacja transponowania macierzy nie zmienia
jej śladu [34 jf

tr A(x) » tr A^(x) ( 2.2-5

Tw.2.2-4. Ślad jest nieczuły na zmianę kolejności

mnożenia macierzy f34 7

tr A(x) B(x) » tr B(x)A(x) . ( 2.2-6
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Dowody ostatnich dwu twierdzeń można znaleźć w standartowych 

podręcznikach algebry, np [34 J.

Tw. 2.2-5. 0 pochodnej śladu macierzy

<3 a _ <3 A(x) .
— tr A(x) = tr —-—— • (2.2-7 )
dx dx

Dowód «

Tw. 2*2-6, 0 całce śladu macierzy

2•2—9

Dowód :

b
tr A(x)

a

( 2*2-10
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Tw. 2.2-7. Uogólnione twierdzenie o podobieństwie

a . .
Jeżeli macierz A(xJ ma transformatę Fouriera 

równą X(f> » to macierz A(axJ ma transformatę 

Fouriera równą f a[ A ( f/a J .

Dowód:

Jeżeli ' r A n
[^X)]i3^=r , (2.2-11

to na podstawie twierdzenia o podobieństwie [35J zachodzi

[A(aX)]i3 laf1 [ A (f/a)]1;) , (2.2-12

z czego wynika, że /

, (2.2-13

Tw. 2.2-8. Uogólnione twierdzenie o przesunięciu '

Jeżeli macierz A(x) ma transformatę Fouriera 

równą Ji(f) , to macierz A(x-a) ma transformatę

Fouriera równą exp( -27Tiaf)J-L f f) •

Dowód 8

( 2.2-14

to na podstawie twierdzenia o przesunięciu F35/ zachodzi

Zatem

exp C -2 JT

A(x-e )^ exp ( -27Tiaf) (f)

( 2.2-15

( 2.2-16
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Tw* 2.2-9* Uogólnione twierdzenie o splocie

Jeżeli macierz A(x) ma fransformatę Fouriera 

J?(f) , a macierz B(x) ma transformatę Fouriera 

równą , to splot macierzy A(x)®B(x) ma 

transformatę równą iloczynowi transformat 

wyjściowych Jb (fj •

Dowód :

Zgodnie z definicją splotu macierzy (def.2.1-8) zachodzi

[A(x)®B(x)]ld J ‘ (2.2-17)

1

Na podstawie twiei'dzenie o splocie £ 35 J łatwo można wyzna 

czyś transformatę Fouriera elementu ij macierzy 

A(x)®B(x)

D<x)JjjJ ^7^^-^^^lil®[B^x^]ljJ 88

1 (2.2-18)

-pi(f)^(f) Jij •

Tak więc wykazano, że

J'{a(x)®b(x)J = ^(03(0 , (2.2-19)

Tw.2.2-10. Uogólnione twierdzenie Rayleigha 

a .
Jeżeli macierz A(xj ma transformatę Fouriera 

równą J?(f) , to zachodzi

J* A(x) A1^) dx - C/2 (fj J^} (f) df e (?..2-20)
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Ilonie waż
o— __

^[a(xJ dx “ J _ ^x)Jii F dx * (<)*‘- 
l~o-

to na podstawie twierdzenia o mocy [3$] otrzymuje się

-J [Af) af-
Zatem O— o-j

k(x) dx «)&(?) df , (2»2

Tw. 2.2-11. Uogólnione twierdzenie o mocy

Jeżeli macierz A(x) ma transformatę Fouriera 

równą ^(f) , a macierz B(x) ma transformatę 

B(fJ , to zachodzi

Oo
J" A(x) B+(x) dx »yj?Cf)JBVf) df , (2.2

Dowód przebiega tak samo jak dla uogólnionego twierdzenia 

Rayleigha, przy czym Ar(xJ zastępuje się przez B’(x) a 

przez •

Tw. 2.2-12. Uogólnione twierdzenie o korelacji wzajemnej(
A

Jeżeli macierz k(x) ma transformatę Fouriera

równą J?(f), a macierz B(x) ma transformatę
A AJjff), to korelacja wzajemna macierzy A(x) i
A z? • A -p
B(x) ma transformatę Fouriera równą
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A(x)0B(x) ~. (2.2-25

< 
Dowód :

Wykorzystując twierdzenie o związku między splotem a kore­

lacją wzajemną macierzy (tw. 2.2-2) oraz uogólnione twier­

dzenie o splocie (tw. 2.2-9) otrzymuje się

j^A(x)®B(x)] « ( A(x)®Bf(-x)J-

/ (2.2-26

Tw. 2.2-13. Uogólnione twierdzenie o pochodnej
A

Jeżeli macierz A(x) ma transformatę Fouriera

jQ(f) , to jej pochodna ma transfor-
dx

matę Fouriera równą 21Tif ( f) .

Dowód :

j35j zachodziNa podstawie twierdzenia o pochodnej

= , 2jtif

Zatem z 
d A(x) _______ z \
---------  " 2fWf .

dx
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Tw. 2.2-14. O pochodnej oplotu macierzy

Pochodna oplotu dwóch macierzy jest oplotem 

jednaj z nich z pochodną drugiej, czyli

d r A a ? d A (x) A Ał d B (x)
—A A(x)®B(x) y - B (x) = A(x)@ ——— •
dx L J dx dx

(2.2-29 )

D o w ó d :

Powyższe związki wyprowadzić można na podstawie uogólnionego 

twierdzenia o pochodnej (tw. 2.2-13) oraz uogólnionego twior- 

dzonia o oplocie (tw. 2.2-9,)

Powyżej przedstawiono definicje i twierdzenia związane 

z macierzami funkcji jednej zmiennej rzeczywistej A. ,(x).
-L. J

Można łatwo wykazać, iż wszystkie omówione zależności speł­

nione są także dla macierzy których elementami są funkcjo 

wielu zmiennych rzeczywistych A^ (xp... xn) • Najczęściej, 

do opisu zagadnień optycznych przydatno są funkcje dwóch 

zmiennych Aij x1’x2^ a zatem w dalszej części pracy wy­

korzystane zostaną dwuwymiarowe odpowiedniki twierdzeń udo­

wodnionych w niniejszym rozdziale.
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3. POLARYZACYJNA WŁASNOŚCI ŚWIATŁA "

Polaryzacyjne własności światła związane są z wektorowym 

charakterem fal elektromagnetycznych. Istnieje kilku sposobów 

opisu stanu polaryzacji światła. Ich przykłady to wektor Jo­

nesa, kula Poinkarego, wektor Stokesa ox4az tzw. macierz ko­

herencji - wprowadzona przez Wienera w latach trzydziestych 

[32-33 J - W drugiej połowie lat pięćdziesiątych ukazało się 

także kilka prac poświęconych macierzy koherencji [36-37 j * 

W niniejszym rozdziało przypomniano definicję oraz podstawowe 

własności macierzy koherencji, jej związek z wektorem Stokesa, 

u także jaj własności spektralne. Będą one wykorzystywano w 

dalszej części pracy.

3.1. Definicja macierzy koherencji dla fali płaskiej

Niech Z(z,tJ) będzie poprzeczną falą płaską o dowolnym 

składzie spektralnym rozchodzącą się w kierunku osi z, rys.

3.1 • Dla fali elektromagnetycznej przyjmuje się zazwyczaj, 
a .

że Z(z,tJ opisuje drgania wektora elektrycznego

Z(z,t) = E(z,t) . (3.1-1)

Macierz koherencji poprzecznej fali płaskiej definiuje się 

następująco £36J

J = <Z(z,t) Z f(z,t)>t /

gdzie Z(z,t) jest wektorem reprezentującym składowe kartez- 

jańakie zaburzenia r
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a oznacza uśrednianie po czasie każdego elementu
A A .

macierzy Z(z,t,) Zt(z9i) według wzoru

Zauważmy, że rozwinięta postać maciei^zy koherencji dla fali 

płaskiej jest następująca

Ź(z,t)

Poprzeczna fala płaska rozchodząca się wzdłuż osi z
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Elementy diagonalne J 1 J macierzy koherencji oą 

zawsze rzeczywiste i równe natężeniu związanemu odpowiednio 

ze składową Z (z,t) i Z (z,t) fali* Całkowite natężenie 
x , y

fali równe jest więc śladowi z macierzy koherencji

(3-1-7)I « tr J ,

Ponieważ elementy niodiagonalne macierzy koherencji są wza-
X’jemnio sprzężone J ,u ~ J „ jest ona macierzą hurmitowską xy y x

Miarą koherencji pomiędzy składowymi kartezjańskimi 

fali Z (z,t ) i Z (z,ty jest tzw, zespolony współczynnik ko- 

herencji/t rozumiany jako [36J

Z nierówności Schwarza wynika,

W przypadku, gdy Z(z,t) jest falą quasimonochroniatyczną 

o średniej częstości p jej składowe kartezjańskie Zx(z,t)

Z (z,t) można przedstawić następująco [3&J 
•V

Zv(z.t) = wv(s,t) axp - 2)715 t ,
-A. .A

Z (z,t) = w (z,t)exp - 2 TT i'Pt ,
^3*1-10

gdzie w porównaniu z częstością V W (z,t ) i W (z,t} są
• ♦ **** *y

wolnozmiennymi zespolonymi funkcjami czasu* V/ krótszej no­

tacji macierzowej otrzymuje się

Z(z,t) » V/(z,t^) exp - 27TiVt , (3.1-11)
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gdzie W(z,t) jest zespoloną amplitudą wektorową o składo­

wych vę(z,t) i W^(z,t)

0X0 i pxCt)

r
W («, t) = a (t) expi (t) - 

*y w * v

(3.1-12

Funkcjo rzeczywiste ax(t) , a (t) , ^(t) , ^^(t) nie za- 
'A . .

leżą od czasu w przypadku gdy Zfz,!^ jest falą ściśle mono­

chromatyczną.

Podstawiając (3*1- 1ljdo wzoru definiującego macierz 

koherencji A. 1-2) otrzymuje się

(3.1-13

a uwzględniając dodatkowo (3.1-12) można otrzymać rozwiniętą 

postać macierzy koherencji dla światła ąuasimonochromatycz--

3.2. Stany polaryzacji fali płaskiej

Stan polaryzacji fali związany jest ściśle ze wspołczyn

ni kiom koherencji • I tak, falę Z(z,t) nazywamy nieśpo 
/ xy t

laryzowaną, gdy spełnione są warunki
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ZŁ 
/ xy

SS oraz J « J xx yyo

Maciora koherencji fali niespolaryzowanej przyjmuje więc 

postać

0.5 0
J « I

0 0.5

tr J oznacza natężenie fali ,

Pi tlę Z (z, Q n a z y wa my w p e 1 ni spolaryzowaną, gdy apełnio

ny jest warunek

« expi d xy xy

co oznacza pełną koherencję pomiędzy składowymi kartezjańs- 

kimi Zx(z,t} i Z (z9t) . Uwzględniając ^3.1-9J oraz (3.1-5J 

można łatwo wyznaczyć rozwiniętą postać macierzy koherencji

dla fali w pełni spolaryzowanej

(3.2-4)

V/ zależności od wartości jaką przyjmuje współczynnik

rozróżnia się liniowy, kotłowy i eliptyczny stan polaryza­

cji. IV przypadku gdy

» m7F dla m » 0, t 1, i 2 (3.2-5

falę nazywamy spolaryzowaną liniowo. Macierz koherencji ta- 

kiej fali można zapisać następująco

A
J —
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Falę nazywamy spolaryzowaną kołowo gdy spełniony jest 

warunek

cTv = -3T dla m = i 1, i 3..., (3.2-7)
2 

oraz dodatkowo
J =3 J (3 • 2—8 )
xx yy \ '

i
Macierz koherencji fali spolaryzowanej kołowo przyjmuje więc

Falę nazywamy spolaryzowaną eliptycznie dla pozostałych war­

tości współczynnika cC • 2^y

Oprócz pełnego niespolaryzowania i pełnego spolaryzowania

fali istnieje również szereg stanów pośrednich określanych 
A . V

jako polaryzacja częściowa* Falę Z(z,tJ nazwiemy spolaryzowa­

ną częściowo gdy współczynnik koherencji A spełnia nierów- 

ność

Macierz koherencji takiej fali można jednoznacznie pi'zodsta- 

wic w postaci sumy dwóch macierzy określonych równaniami 

(3.2-2^! (3*2-4) • Oznacza to, że każdą falę spolaryzowaną 

częściowo można traktować jako jednoznaczną superpozycję 

dwóch niezależnych fal z których jedna jest w pełni spolary­

zowana a druga niespolaryzowana

A A A z
J * J + J . (3*2-11s n * V •
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Wiech I a tr J oznacza natężenie fali spolaryzowanej, a

I » tr Jn - natężenie fali niespolaryzowanej, Parametrem 

charakteryzującym falę częściowo spolaryzowaną jest stopień 

polaryzacji P rozumiany jako

Zgodnie z powyższą definicją stopień polaryzacji P spełnia 

warunek

0 P 1 z (3.2-13

przy c^sym krańcowo wartości przyjmuje dla fali niespolaryzo- 
wanej (P = 0 J oraz dla fali w pełni spolaryzowanej (P « 1). 

Można również wykazać, że spełniona jest zależność I

(3.2-14

gdzie det J oznacza wyznacznik macierzy koherencji J.

3.3* Związek macierzy koherencji z wektorem Stokosa

Oprócz macierzy koherencji istnieją inne sposoby opisu 

stanu polaryzacji* Jednym z nich jest czterowymiarowy wektor

Stokasa 38-39J

(3.3-1)
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Składowe wektora Stokesa dla płaskiej fali Z(z,t) o dowol­

nym okładzie spektralnym oblicza się według wzorów

gdzie He /••• 7 i Im 7 oznacza odpowiednio część rzeczy 

wiolą i ui‘ojoną.

Łatwo można wykazać, że pomiędzy elementami macierzy 

koherencji a składowymi wektora Stokesa istnieją następują­

ce związki ^38-397

3 - J -k J . o xx * yy ’
S^ = J - J 1 xx yy ’
S« = J + J 2 xy yx ’
S3 “ 1 ’

oraz relacje odwi’otne

(3.3-3

(3.3-4
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Dysponując składowymi wektora Stokeea można również wyzna­
czyć stopień polaryzacji fali p38~39j

/o2 q2 q2 7
V“1 + S2 + °3 , .

P «----- -----------—------------ * (3.3-5)
q • > x
0

A A
Macierz koherencji J i wektor Stokesa S są więc równoważnymi 

sposobami opisu stanu polaryzacji.

3.4*. Spektralne własności macierzy kohoi^encji i wektora

Stokuaa

Wektorową falę ni©monochromatyczną Z(z,t} można zawsze

traktować jako superpozycję fal ściśle

M
ZX^ = 

(

Oco

y n y j

J aY(^ expi [&■('’)~ J

monochromatycznych

dV

dl)

(3.4-1)

W przypadku gdy fala Z(z,t ) jest quaaimonochromatyczna

°ó zora tylko w wąskim przedziale 

spektralnym.

Używając notacji macierzowej spektralne równania ^3»4-1 

można zapisać jako

z(tj= J U69jexp[ - 2^1 MtJ dV , (3.4-2)
o

A
gdzie UfVj jest amplitudą zespoloną składowej ściśle mono­

chromatycznej o częstości V
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A

=

a (YWpiC’ (vj
•A* / Jk.

a (V)expiCb (V)
*«y *y

(3.4-3)

Podstawiając (3.4-2) do wzoru definiującego macierz kohe­

rencji (3.1-2) otrzymuje cię

(3.4-4)

Zauważmy, że wyrażenie jest macierzą koherencji 

składowej ściśle monochromatycznej o częstości V

h(v) utyty «

; a (V)a ćvjexpl^6>)
•a. .a, sy

<v7exp -

(3.4-5)

gdzie • Macierz ta będzie dalej nazywana
spektralną macierzą koherencji i oznaczona przez J-p [32-33L

W
Jv = U(V? u+fv) . (3.4-6)

Równanie (3.4-4J można zatem przedstawić w postaci

(3.4-7)

Powyższa zależność pokazuje, że macierz koherencji fali nie- 

monochromutyczne j równa jest sumie macierzy koherencji wszyst­

kich składowych ściśle monochromatycznych tej fali.

Ponieważ elementy macierzy koherencji związane są ze

składowymi wektora Stokesa zależnościami liniowymi (3.3-3J 
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i (3.3-4J * to spektralne równanie ^3»4-7^)spełnione jest 

także dla wektora Stokesa [*39^ , p IJ

oo

A f A / >
S Sv dV , (3.4-8/

o

gdzie Sv jest spektralnym wektorem Stokesa o składowych 
określonych następująco [39j» {/jJ

So9 “ ax^ + ay^ ’

S1p = ax^~ ’

S?„ “
C~y

S~ » 2a (v)a Ó^sin 
5/

^3.4-9^

3*9. Trójwymiarowa macierz koherencji

Dotychczas zakładano, że 3(2,1^ jest poprzeczną-falą 

płaską rozchodzącą się wzdłuż osi z

Zxćz.“? 
A

Z (z,tj) 
•J

W ogólniejszym przypadku mamy do czynienia z falami charaktG' 

ryzującymi się bardziej skomplikowanym kształtem powierzchni 

falowych. Pale te muszą być opisywane wektorem trójwymiaro-

f3.5-i;

wym P
2X 

Z(x,y,z,-tl= Z (x,y,z,t)

2^ C 11)

Jeżeli Z(x,y,z,t / jest zaburzeniem quasimonochi'omatycznym,
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to zachodzi ' .
Z(x,y,z,tJ) = wCx,y,z,t^ exP ~ 27TiVt , (3*3-3,)

a K

gdzie W(x,y,z,tJ jest wolno^zmienną w czasie zespołowi, ampli­

tudą wektorową o składowych

W (x,y,z,t) = a (x,y,0,V expi9» (x,y,z,tj ,

W (x,y,x,t) u a' (x,y,z,t) ezpió* , (3.5-4}
W J . ' J

Wr,(x,y,s,t} = a (x,y,z,t} axpiO’ (x,j,z,t} .

Podstawiając (3*5-2y do wzoru definiującego macierz ko­

herencji 1-2otrzymuje się

Formalnie oznacza to, iż dla wektorowych zaburzeń trójwymia­

rowych można również wprowadzić pojęcie stanu polaryzacji. 

Trójwymiarowa macierz koherencji j(x,y,zJ reprezentuje teraz 

charakter drgań wektora Z(x,y,z,t ) w danym punkcie px’zestrze- 

ni (x,y,z^ . Stan polaryzacji fali o niepłaskich powierzchniach 

falowych może się więc zmieniać od punktu do punktu.

V/ pracy £42J, w oparciu o związki składowych wektora 

Stokesa z elementami macierzy koherencji, wyprowadzono uogól­

niony dziewięciopararnetrowy wektor Stokesa. J&ko równoważnik 

trójwymiarowej macierzy koherencji może on być także stosowa­

ny do opisu punktowych stanów polaryzacji.
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Zauważmy, że dla frontów falowych spełniających w każ­

dym punkcie (x,y,zj) warunek

2
<X|z2(x,v,z,t)| ^^0 (^3.

trójwymiarowa macierz koherencji redukuje się do postaci

O ; O ; O

co oznacza, że przy spełnieniu (3.5-6y z-towa składowa zabu­

rzenia może być pominięta

Zz(x,y,z,t) ~ O . (3.5-b)
I

Zatem, dla frontów falowych spełniających warunek (3*5-6,) 

zamiast trójwymiarowej macierzy koherencji można używać jej

d w uw y m i a r o we go odpowiednika

Analizując w dalszej części pracy własności układów odwzoro­

wujących zmieniających stan polaryzacji światła zakładać bę­

dziemy, że ich kąty aperturowe nie są zbyt duże, tak aby 
można było przyjąć, że warunek (*3.5-6 J jest zawsze spełniony.

Umożliwi to zaniedbanie składowej z-towej zaburzenia i sto- 
i

sowanie dwuwymiarowej macierz?; koherencji do opisu efektów 

polaryzacyjnych.
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4. MACIERZOWE CHARAKTERYSTYKI UKŁADU ODWZOROWUJĄCEGO 

ZMIENIAJĄCEGO STAN .POLARYZACJI ŚWIATŁA y

Klasyczny (nie zmieniający stan polaryzacji światła ) 

odwzorowujący układ optyczny reprezentowany jest zazwyczaj 

przy pomocy przestrzennie stacjonarnej amplitudowej fun­

kcji rozmycia h(x1-x , y^-y^) ^43^ . Przedstawia ona am­

plitudę zespoloną w punkcie (x.,y^) płaszczyzny obrazowe j, po­

chodzącą od punktowego źródła o jednostkowej amplitudzie 

znajdującego się w punkcie (XO>YO) płaszczyzny przedmiotowej. 

Równoważnie używana jest także funkcja źrenicowa 

opisująca rozkład amplitudy zespolonej w źrenicy wyjściowej 

układu, gdy w płaszczyźnie przedmiotowej znajduje się punk­

towe źródło światła o jednostkowej amplitudzie.

Do opisu układów odwzorowujących zmieniających stan 

polaryzacji światła wprowadzone zostaną macierzowe odpowied­

niki amplitudowej funkcji rozmycia oraz funkcji źrenicowej. 

Zdefiniowana zostanie również macierzowa funkcja aberracji 

i macierzowa funkcja transmisji amplitudy.

Powyższe macierzowe charakterystyki układu odwzorowują­

cego zmieniającego stan polaryzacji światła, podobnie juk 

dla układu klasycznego, zdefiniowane zostaną dla światła 

ściśle monochromatycznego o częstości V • Ponieważ definio­

wane funkcje macierzowe nie zmieniają się istotnie w wąskim 

przedziale spektralnym, możliwe będzie ich stosowanie rów-

MM MM MM MW MM Ml M MM MM M4 M. MM M MM MM MM MM

Wyniki przedstawione w rozdziałach 4-10 zostały 
częściowo opublikowane w pracach £44-45j
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nież wtedy, gdy układ odwzorowujący pracuje w świetle 

ęuasimonochromatycznym, rys.4.1 «

Rys.4.1. Przykładowy skład spektralny światła 
ąuasimonochromatycznego.

4.1. Macierzowa funkcja źrenicowa

Przyjmijmy » układ z rysunku 4.2 zmienia stan po- 

laryzacji światła. Niech będzie punktowym źródłem światła 

ściśle monochromatycznego o długości fali /\ ♦ Punkt niech 

będzie geometrycznym obrazem Aq. Układy odniesienia związane 

z płaszczyzną przedmiotową, płaszczyzną źrenicy wyjściowej



oraz płaszczyzną obrazową oznaczymy odpowiednio (xq, yQJ , 

’ a osie zo niech pokrywają się

z osią optyczną układu.

źrenica źrenica
wejściowa wyjściowa

Rys.4.2. Odwzorowujący układ optyczny zmieniający stan 
polaryzacji światła. Wybór układów odniesienia 
i oznaczeń. -

Podobnie jak dla układów nie zmieniających stanu pola­

ryzacji światła powierzchnię odniesienia stanowić będzie 

sfera Gaussa o promieniu R i środku pokrywającym się 

z punktem . Sfera Gaussaprzecina oś optyczną układu

w środku źrenicy wyjściowej C.
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Załóżmy na wstępie, że punkt A emituje światło spola- 
i °

ryzowane liniowo o azymucie polaryzacji pokrywającym się z 

osią x ^wektor elektryczny równoległy^ do osi x • Przyjmij- 

my także, że amplituda A światła wchodzącego do układu, 

mierzona w źrenicy wejściowej, równa jest jedności. Gdy uk­

ład optyczny zmienia stan polaryzacji światła w jogo źrenicy 

wyjściowej pojawią się dwie powierzchnie falowe^? i Sj
XX 7/ X

reprezentujące rozkłady zaburzeii spolaryzowanych liniowo od­

powiednio w kierunku osi x i y . Powierzchnie falowe-27*
XX

mogą być przesunięto względem siebie jeżeli w ukła-

dzie występują dwójłomności jj8j

Załóżmy teraz, że punkt Aq emituje światło o jednostko­

wej amplitudzie A , spolaryzowane liniowo o azymucie polary- 
y

zacji pokrywającym się z kierunkiem osi y ♦ W źrenicy wyjś­

ciowej układu pojawią się dwie analogiczne powierzchnie falo-

Ulach funkcje ’ Hyx Cf'

opisują rozkłady amplitud zespolonych w źrenicy wyjściowej.

układu, związanych odpowiednio z powierzchniami falowymi 5
X.X

yx ’ xy ’ yy Macierzową funkcję źrenicową układu

odwzorowującego zmieniającego stan polaryzacji światła zde­

finiujemy jako

(4.1-1)

Pierwsza kolumna macierzowej

x-owaJ przedstawia odpowiedź

funkcji źrenicowej ("kolumna 

układu, mierzoną w jego źrenicy
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wyjściowej, na punktowy sygnał o liniowym stanie polaryza­

cji zgodnym z kierunkiem osi x i o jednostkowej amplitudzie 

A . Kolumna y-owa reprezentuje analogiczną odpowiedź układu 

na punktowy sygnał o liniowym stanie polaryzacji, zgodnym z 

kierunkiem osi y i o jednostkowej amplitudzie A . w

4.2. Macierzowa funkcja aberracji.

Mech v .y -a- j j

będą aberracjami falowymi powierzchni JS7 , vo
jCa. At X

określonymi względem Gaussowskiej sfery odniesienia 

zgodnie z regułami teorii aberracji £38J .

Macierzową funkcję aberracji dla układów odwzorowują­

cych zmieniających stan polaryzacji światła zdefiniujemy ja-

(4.2-1)

W klasycznych układach odwzorowujących, funkcję aberi'acji 

określa się zazwyczaj dla powierzchni falowej przechodzącej 

przez środek źrenicy wyjściowej układu punkt CJ.

W omawianym przypadku nie wszystkie powierzchnie falowe 57__, 

, 27 . 57 muszą jednocześnie przechodzić przez ten

punkt. Jeżeli przykładowo powierzchnię wybrano w taki 

sposób, aby przechodziła przez środek źrenicy wyjściowej

(rys. 4*2), to pozostało trzy powierzchnio 27 , 27 , 

mogą być względem niego przesunięte, np. wtedy gdy w
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układzie występuje dwójłomność.

4*3. Macierzowa funkcja transmisji amplitudy

Macierzową funkcję transmisji amplitudy można zdefinio

wać następująco

(4.3-1

Jej elementy T .
•a^a. k -A, -A^y -.7

określają transmisję modułu amplitudy pomiędzy źrenicą.wej­

ściową a wyjściową, dla powierzchni'falowych typu ,

(4.3-2

gdzie A i A są amplitudami zespolonymi w źrenicy wejścio- 
a

wej układu.
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Ponieważ wcześniej przyjęto, że Ax » 1 oraz A^ = 1, 

to elementy macierzowej funkcji źrenicowej układu 

można przedstawić jako

TyX^^«Pik^xcf,,79,
0-3-3)

gdzie k » 2K/A •

Zgodnie z definicją ^4*3*2^ elementy macierzowej funkcji

transmisji amplitudy spełniają warunki

o^wfw1 ’ aa v *• ,
o « Tyx < 1 ,
0 < . ■

4.4"* Macierzowa funkcja rozmycia amplitudy 

Niech funkcja h-^G^) opisuje rozkład amplitudy zespo-

lonej w płaszczyźnie obrazowej 2^ = 0 J, amplitudy spolaryzo­

wanej liniowo zgodnie z kierunkiem osi x , gdy punkt A^ 

płaszczyzny przedmiotowej emituje światło o liniowym stanie 

polaryzacji zgodnym z kierunkiem osi x i o jednostkowej 

amplitudzie A^. Niech funkcja h £x«| ,y^ ) reprezentuje odpo­

wiedź układu, spolaryzowaną liniowo zgodnie z kierunkiem osi
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y , na ten sam sygnał Ax» Podobnie, funkcje , y^ j i

h niech opisują rozkłady amplitud w płaszczyźniey y i i
obrazowej 0J, amplitud spolaryzowanych liniowo zgodnie 

z kierunkami osi x i y , gdy punkt Aq płaszczyzny przedmio­

towej emituje światło o. liniowym stanie polaryzacji zgodnym 

z kierunkiem osi y i o jednostkowej amplitudzie A .

Macierz

będzie dalej nazywana macierzową funkcją rozmycia amplitudy.

Rozkład amplitudy typu li w płaszczyźnie obrazowej 

zdeterminowany jest jedynie rozkładem amplitudy typu H w 

płaszczyźnie źrenicy wyjściowej układu. Tak więc, elementy 

macierzowej funkcji źrenicowej i macierzowej funkcji rozmy­

cia amplitudy związane są poprzez całkę dyfrakcji Fresnela 
38J 

- i f r . expik
jK<W---V—/A K U <4

-i Cr . expik (Q - r) . , . ,
;—“^^7 /

(4.4-2}

_ 00



gdzie Q oznacza odległość pomiędzy punktem Cf źrenicy 

wyjściowej układu a punktem i y^ płaszczyzny obrazowej 

£2^33 0 • Używając notacji macierzowej (^def. 2.1-6 otrzymu­

je się

A ' i /"m . expik (q - r) , .
— ------------------------ G.4-3;

Gdy kąt aperturowy układu nie jest zbyt duży wyrażenie 

expik(Q - Rj /Q można przedstawić jako [^38j

expik (Q - R) 1 r "z > n a.7 / \
------------- ,--------- % -----  exp[ -lk(x1 £ + y17J AJ . (4.4-4;

V/ praktyce wygodniej jest używać bezwymiarowych współrzęd­

nych w płaszczyźnie źrenicy wyjściowej i obrazowej. 

Bezwymiarowe współrzędne źrenicy wyjściowej otrzymuje się 

przez unormowanie ich do dowolnej długości a . Wielkością a 

może być np. promień kołowej źrenicy wyjściowej układu.

Wprowadzimy zatem

Bezwymiarowe współrzędne płaszczyzny obrazowej dobiera się 

tak, by w wykładniku wyrażenia £4.4-4J pojawiło się 2 TC , 

co zachodzi gdy przyjmiemy

ax1 
rT

ay1 

RA

£4.4-6^

1
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a współrzędną -z-tową normuje się następująco

V/ bezwymiarowych współrzędnych zależność (4.4-3J przyj­

muje prostszą postać

h exp - 25Tł[ + V^]d £ d-^ ,

<4.4-8^ 

gdzie współczynnik proporcjonalności c określony jest przez 

geometrię układu

Równanie (4*4-3J pokazuje, że macierzowa funkcja rozmy­

ciu amplitudy równa jest, z dokładnością do stałej c , 

transformacie Fouriera macierzowej funkcji źrenicowej (def*

Macierzowa funkcja źrenicowa, macierzowa funkcja rozmy­

cia amplitudy, 'macierzowa funkcja aberracji oraz macierzowa 

funkcja transmisji amplitudy są uogólnieniami na przypadek 

układów zmieniających stan polaryzacji światła funkcji źre­

nicowej, funkcji rozmycia amplitudy, funkcji aberracji oraz 

funkcji transmisji modułu amplitudy, wprowadzonych na gruncie 

skalarnej teorii dyfrakcji do opisu klasycznych układów od- 
, 1 ' ' 

wzorowujących.
A A a a

Funkcje macierzowe f7J

zdefiniowane zostały dla światła ściśle monochromatycznego 

o długości fali , jednakże można przyjąć, iż nie zmieniają 

się one istotnie w wąskim przedziale spektralnym, którym 
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charakteryzuje się światło ąuasimonochromatyczne £rys. 4.1J* 

Będą więc one użyteczne również w przypadku, gdy układ od- < i
wzorowujący pracuje w świetle ąuasimonochromatyoznym.

Przykład- 4 • 1 •

V/ celu zilustrowania pojęć wprowadzonych w niniejszym 

rozdziale wyznaczono elementy macierzowej funkcji źrenicowej 

i macierzowej funkcji rozmycia amplitudy dla bezaberracyjnc- 

go układu z dwustrefowym filtrem polaryzującym liniowo w każ­

dej strefie i umieszczonym w źrenicy wyjściowej układu* Przez 

oi 2 oznaczono kąty pomiędzy kierunkami przepuszczania 

polaryzatorów a osią £ ; p niech oznacza stosunek podziału 

promienia źrenicy wyjściowej, rys.4*3*

Rys.4*3# Dwustrefowy filtr polaryzacyjny w bezwymiarowym 
układzie odniesienia / Przez ozna­
czono kierunki przepuszczania polarytazorów, p 
oznacza stosunek podziału promienia źrenicy wyjś­
ciowej «



- 41

Celowe będzie wprowadzenie biegunowych układów odnie­

sienia w płaszczyźnie źrenicy wyjściowej (f , 0) 1 płasz­

czyźnie obrazowej (r.j , y*".} »

€ = P cos & , P sin & ,
r J ' J (4.4-10

Uj = ^cos Jr1 , v1 = r^in^ .

W biegunowym układzie odniesienia macierzową funkcję źreni­

cową można przedstawić następująco

* p
cos ÓC ; cos ^sinoć^ 

2cos sinoC^ ; sin ot dla

2cos <X 2 » °^2a^n ^2

cos glnd2; sm cZ 2

0 ; 0

.0 ; 0

dla p<y^’1 
(4.4-11

dla y>1

Elementy macierzowej funkcji rozmycia amplitudy można wy­

liczyć posługując się zależnością (4.4-Bj,która w bieguno­

wych układach odniesienia przyjmuje postać

^xx r^cos

& P
^TC 1

4 C l I e: C& - <3 .
O P ,
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Po wprowadzeniu współrzędnej pomocniczej r^® 2^^ powyż­

sza całka daje się łatwo wyliczyć

41

Pl^prg) 2
——-......- p(cos ot.- coSaęj*

r2 

gdzie l/r^ jest funkcją Bessela pierwszego rodzaju i pier-

wszego rzędu. Podobnie można wyznaczyć pozostałe elementy

macierzowej funkcji rozmycia amplitudy

r
21^ (P*^)

hvx r2 =3rc
y ।

o? / 2
— p(sin<X^- in2<x2 )

r2

sin2c<1- einP^)
r2

sin2o( g

+ 2

2

A
W omawianym przypadku macierzowa funkcja źrenicowa 

jak również macierzowa funkcja rozmycia amplitudy
a ATRz \ A • \ ATR • \

są macierzami symetrycznymi^H(?;» H oraz hfr^?" h Cr2^ *
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5. ROZKŁAD NATĘŻENIA W DYFRAKCYJNYM OBRAZIE PUNKTU

Podstawowe wielkości charakteryzujące optyczny układ 

odwzorowujący £np. zdolność rozdzielcza, jasność Strehla, 

optyczna funkcja przenoszenia^ mogą być wyznaczone na pod­

stawie rozkładu natężenia w dyfrakcyjnym obrazie punktu.

Jego znajomość ma więc dużo znaczenie praktyczno. Dla kla­

sycznych układów odwzorowujących rozkład natężenia w dyf­

rakcyjnym obrazie punktu równy jest kwadratowi modułu z 

amplitudowej funkcji rozmycia. Dla układów zmieniających 

stan polai'yzacji światła wyraża się on bardziej skomplikowa­

ną zależnością, 
o

Wykażemy, iż rozkład natężenia w dyfrakcyjnym obrazie punk­

tu dla tego typu układów zależy od elementów macierzowej 

funkcji i'ozmycia amplitudy h(u^,vp, a także od stanu polary­

zacji światła wchodzącego do układu.

IJiech punkt A~ z rysunku 4.2 bodzie źródłem, dowolnie o
spolaryzowanego światła ąuasimonochromatycznego, którego

skład spektralny opisuje wektor U(v) ; porównaj ^3.4-3)

Aby wyznaczyć rozkład natężenia w dyfrakcyjnym obrazie punk­

tu zbadajmy najpierw jak transformuje się przez układ spekt­

ralna macierz koherencji Jp .

Dysponując macierzową funkcją rozmycia amplitudy można' 

łatwo określić rozkład amplitudy zespolonej uY^jUpY^) w 

płaszczyźnie obrazowej, pochodzący od składowej spektralnej
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U(^) światła quasimonochi*omatycznego

U’(V .u^) - Ux(v)+ h^u^) uy(v) ,

W prostszej notacji macierzowej powyższy układ równań przyj­

muje postać
^P.u^) =h(urvp U(v) . (5-3)

Znając rozkład amplitudy U(v,u.pV^j skadowej spektralnej o 

częstości V wyznaczyć można rozkład spektralnej macierz?/ ko-
A, , . 

herencji w płaszczyźnie obrazowej ; porównaj
(3.4-5)

^(upY^ = ,uvvP U^.u.py.,) • Ó5-4?

a po uwzględnieniu £*5~3y otrzymuje się

jJCu^Y^^ Mu^) U 69 Uf69 h1^ jY^ , (5-5)

Zauważmy, że 
A A a
Jv = u(v) uw (5-6 )

jest spektralną macierzą koherencji światła emitowanego 

przez punkt Aq , tak więc równanie (5-5^) przyjmuje postać

A A, . A A , . .
Jj (u^yp = h(u1 ,vpJ/hT(u1 ,vp . (5-rO

Aby wyznaczyć rozkład macierzy koherencji światła f
quasimonochromatycznego w płaszczyźnie obrazowej wykorzysta­
my spektralne równanie 0.4-?J

J VP dV , (5-8)

O



—

Zazwyczaj można przyjąć, że macierzowa funkcja rozmycia am- 
A

plitudy h^u^,v^j bardzo słabo zależy od 9 w wąskim przedzia­

le spektralnym, którym charakteryzuje się światło ąuasimono- 

chromatyczne. Zachodzi zatem

j’(upvp = Jjy ,vp ,

L o 
a po scałkowaniu otrzymuje się

j’(u1,v1)= h(urvp JhUu^yp , (5-10^)

gdzie J jest macierzą koherencji światła emitowanego przez 

punkt Aq.

Natężenie równe jest zawsze śladowi z macierzy koho-' 

rencji, tak więc 1'ozkład natężenia w dyfrakcyjnym obrazie 

punktu wyraża się wzorem

= tr ^,7^ ’ , £b~11,)

czyli
K^.yP = tr[ .y.,) Jh+^^ypj. , (^5-12.)

Unormowany rozkład natężenia w dyfrakcyjnym obrazie punktu 

nazywany bywa natężeniową funkcją rozmycia układu )43 I

A 
gdzie I - trJ jest natężeniem światła wchodzącego do ukła-

I 
du.
Łącząc wzory (5-12^) i 0>-13^) otrzymuje się

K^^yp =tr[h(u1,vp JQh+(u1,v1) J , (5-14J)

a aa
gdzie JQ - J/trJ jest macierzą koherencji ze śladem unor­

mowanym do jedności.
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Przyjmując, że

T° •Jxx * J° 
xy

J s 
0 TO . 

yx ’
J° 

yy

( 5-1 5)

otrzymuje się rozwiniętą postać wzoru na natężeniową funkcję 

rozmycia układu

+ J° Th fud,v.)h* (u. ,v. ) + h (u.,v.)h (u. ,v0/ + 
yxL xxl 1* 17 r P yx^ 1*1 yy l VA

(s-lój
+ J° Vn (u.,vj h (u. ,vO + h (u. ,v.) h (u.,vj + 

xyL xxk 1* 1 xyk 1’ r yxk 1’ V yy^ 1’ ij

W powyższym wzorze występują kwadraty modułów oraz niektóre 

iloczyny wzajemne elementów macierzowej funkcji rozmyćla am­

plitudy, ważone współczynnikami określającymi stan polary­

zacji światła wchodzącego do układu (elementami macierzy ko­

herencji). Dla układów odwzorowujących zmieniających stan 

polaryzacji światła pojawia się zatem możliwość zmiany roz­

kładu natężenia w dyfrakcyjnym obrazie punktu jedynie przez 

zmianę stanu polaryzacji światła emitowanego przez ten punkt.
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Przykład 5*1

V/ oparciu o ogólny wzór (^5-14 J przeprowadzono numerycz­

ne obliczenia rozkładu natężenia w dyfrakcyjnym obrazie 

punktu dla bezaberracyjnego układu z dwustrefowym filtrem pola 

irygacyjnym w źrenicy wyjściowej, rys.4.3. Elementy macierzo­

wej funkcji rozmycia amplitudy dla takiego układu określono 

zostały w przykładzie 4.1. Rozkłady natężenia przedstawione 

na rysunkach 5*1 a-f wykreślono dla filtru o parametrach

~ °°’ 13 9°°’ P ~ Przypomnijmy, że i

oznaczają odpowiednio kierunki przepuszczania polaryzatorów 

w pierścieniu wewnętrznym i zewnętrznym, a p oznacza sto­

sunek podziału promienia źrenicy wyjściowej.

Różnice w rozkładach natężenia z rysunków 5-1 a-f zwią­

zano są jedynie ze stanem polaryzacji światła wchodzącego do 

układu. Na każdym z rysunków przedstawione są trzy krzywe. 

Pierwsza z nich wykreślona została dla światła spolaryzowa­

nego liniowo w stopniu P=1 i o azymucie polaryzacji ^6 rów­

nym odpowiednio: 0°("a), 30°(b), 60°^^, 90°£d^, 120°(e), 
I

150°(f) . Drugą wykreślono dla mieszaniny światła spolaryzo­

wanego liniowo o takich samych azymutach polaryzacji p i 

światła niespolaryzowanego. Mieszanina ta charakteryzuje się 

stopniem polaryzacji P-0.5. Dla porównania na każdym rysunku 

przedstawiono także rozkład natężenia dla światła niespolary­

zowanego P = 0, krzywa trzecia.

Rozkłady natężenia z rysunków 5.2 a-f wykreślono dla 

filtru o parametrach - 0°, = 120°, p 0.6 . Stany

polaryzacji światła wchodzącego do układu pozostały takie 

same juk na odpowiednich wykresach z rys. 5.1 a-f .



Rys.5.1. Rozkład natężenia w dyfrakcyjnym obrazie punktu 
dla filtru polaryzacyjnego o parametrach 0
<X := 90°, p = 0.6 . Jedna z krzywych przedstawia 
rozkład natężenia dla światła spolaryzowanego li-



niowo w stopniu P«1 i o azymucie polaryzacji fi równym odpowied- 
nio 0°^), 30°^), óoYcJ, 90°<dJ, 120°<e), 150°ćf). Drugą wy­

kreślono dla takich samych azymutów polaryzacji /3 lecz dla



AK(u,O)/K(O,O)

światła spolaryzowanego liniowo w stopniu P=0.5* Ha każdym z 
rysunków przedstawiono także rozkład natężenia dla światła 
niespoluryzowanego P =» 0 .



AK(u,0) / K(0,0 )

Rya,5,2. Rozkład natężenia w dyfrakcyjnym obrazie punktu dla 
filtru polaryzacyjnego o parametrach^^ 0° <^120°, 
p~0.6 • Jedna z krzywych przedstawia rozkład nut pie­
nia dla światła spolaryzowanego liniowo w stopniu



}K(u,O)/K(O,O)

A K(u, 0)/K(0,0)

P~1 i'O azymucie polaryzacji 3 równym odpowiednio 0 (a), 
30° (b) , 60° (c), 90° (d) , 120° 60, 130° (£). Drugą wykreśl ono 
dla takich samych azymutów polaryzacji /3 lecz dla światła 
spolaryzowanego liniowo w stopniu P-0.5*



A K(u,0 )/K( 0,0)

Na każdym z rysunków przedstawiono także rozkład 
natężenia dla światła niespolaryzowanego P - o .
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Zwraca uwagę silna zależność rozkładu natężenia w 

dyfrakcyjnym obrazie punktu od stanu polaryzacji światła 

wchodzącego do układu.
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6. JASNOŚĆ STREHLA

Ważnym wskaźnikiem jakości odwzorowania optycznego jest 

jasność Strehla (^liczba Strehla, iloraz Strehla, jasność de­

finicyjna J rozumiana jako stosunek natężenia K^OyOj w ośrod­

ku aberracyjnego obrazu punktu do natężenia K.(o,o) w środku 

idealnego obrazu punktu

k’(o,o)
SR « —- • f 6— 1 )Kg0,0) V

IV niniejszym rozdziale wyprowadzony zostanie wzór na 

jasność Strehla dla klasy układów odwzorowujących zmieniają­

cych stan polaryzacji światła.

Jest dobrze znanym fakt, że natężenie w środku idealnego 
obrazu punktu wyraża się wzorem f3sj

]<’(o,o; =. I|c| 2s? , (6-2)

gdzie I jest natężeniem światła wchodzącego do układu, 

s oznacza powierzchnię źrenicy wyjściowej układu, c jest 
zespolonym współczynnikiem proporcjonalności ^4.4-9^) . Łącząc 

f 5-13^) i jasność Strehla układu zmieniającego stan po­

laryzacji światła można przedstawić następująco

SR = tr Ph(o,o)j ^O.oH , (6-3 j
11 c| □ J

a po wprowadzeniu unormowanej macierzy koherencji ^5-16) 

otrzymuje się

' 3R =----- trp(o,oj jęh+(o,o)J . (6-4J)
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Na podstawie związku pomiędzy macierzową funkcją źreni 

cową a macierzową funkcją rozmycia amplitudy (4.4-8J wyzna-

czyc można elementy macierzy hQO,OJ/c

~ hx^°»0^= ;

= f, ?)

Go 0 J

- hy» (°’°3 “ “
CS 77 s >1 — 0^

Po wprowadzeniu oznaczenia 
«Oo

zależności 6-5) przyjmują postać

— h (0,0) n
*XXV ’ 7 XXG Ł3

— h f 0 > H
cs xy

1
~~ h„„(o,o) = <Th yx< •. / 7x <

0

1 .
~ hy/0,0) = <Hyy >

JS

, 
»

d ( d ; (6-5 j

d^ dy ,

df d^ .

* d ( 6—6 j

>

J

»
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lub w prostszej notacji macierzowej

——♦ (0,0 H ,
C* 3

A
gdzie II oznacza uśrednianie każdego elementu macierzy 

zgodnie ze wzorem ć 6-6 J) .

Podstawiając ^6-8} do (6-4J) otrzymuje się ostateczną

postać wzoru na jasność Strehla układów odwzorowujących zmie­

niających stan polaryzacji światła

0—9

którego rozwinięta wersja jest następująca

Jasność Strehla układów odwzorowujących zmieniających

stan polaryzacji światła określona jest przez średnią z ma- 
A .

cierzowej funkcji źrenicowej <; H oraz przez unormowaną

macierz koherencji J . Wpływ na jasność Strehla mają więc 

zarówno pai^ametry układu jak i stan polaryzacji światła uży­

tego do odwzorowania.
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7. UOGÓLNIONE TWIERDZENIE O PRZESUNIĘCIU

Ważną rolę w rozważaniach dotyczących jakości odwzorowa­

nia dla klasycznych układów optycznych odgrywa tzw. twierdze­

nie o przesunięciu • Mówi ono, że dodanie do funkcji 

aberracji pewnego wyrażenia równoważne jest jedynie ze zmia­

ną sfery odniesienia względem której określana jest funkcja 

aberracji.

W rozdziale tym udowodniona zostanie uogólniona wersja 

twierdzenia o przesunięciu, która będzie mogła być stosowana 

do klasy układów odwzorowujących zmieniających stan polary­

zacji światła.

Niech reprezentuje macierzową funkcję aberracji

układu zmieniającego stan polaryzacji światła. Dodanie do 

macierzy <P (&) wy rażę ni a

A > r 4 ’ z \

gdzie
[Al ■

N - macierz jedynkowa: N .. « 1 dla i,j » 1,2 ; c J

& - współrzędne biegunowe w płaszczyźnie źrenicy 
wyjściowej;

q1 - Stuło rzędu A ;

powoduje jedynie przesunięcie przestrzennego rozkładu natę­

żenia jako całości zgodnie z następującymi równaniami

= W? 4-
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r? sin^’ = r^sinj^ + ~

r^ cos = r^cos “

ĆM

gdzie r^, y^ są bezwymiarowymi biegunowymi współrzędnymi w 

płaszczyźnie obrazowej (4.4-W) , a w. jest bezwymiarową 

współrzędną pokrywającą się z osią ^4.4-7.) .

Równania (,7-2^)-w wymiarowym układzie odniesienia (^rys.

4.2J przyjmują postać 

(7-3J

gdzie R jest promieniem sfery odniesienia, a jest promieniem 

źrenicy wyjściowej układu.

Dowód powyższego twierdzenia przebiega analogicznie jak w 

w przypadku klasycznych' układów odwzorowujących .

W oparciu o zależności ^4.4-2}określić można przestrzen­

ne -rozkłady amplitud typu li, h~ , h , h w pobliżu punk- xx x y y
tu A^, rys. 4*2

gdzie Q oznacza w tym przypadku odległość pomiędzy punktami
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,z3. Przechodząc do biegu-

nowych współrzędnych bezwymiarowych otrzymuje się f38j

4 4JT
eKpifk^^eJ -

0 0 z,

gdzie ~ c exp

ri ,wr

co umożliwi

hxxCr1-w1’

h ( r.,w., xy k 1’1’

r1>wV

. . Celowe będzie wprowadzenie l

zapisanie w prostszy sposób całek typu (7-5J 

4 Air

• dy d O

exp [ ifxy
00

zrr
^p[ifyxC

1’w1’

1 »W1 ’

1 ,wr

o

f

— j w 
a

- 2Jrj>r^co

o o

o o

2

. ydj^dć? ,
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4 ZK

hy.y Ol «W1 > fi ) “ * j °XP [ ’W1 ’ }M’

O o

Przestrzenne rozkłady amplitud związane z macierzową funkcją

aberracji mogą być więc przedstawione jako

c l
J J 
o o

xx

'* ^d^d

^Vwr

2'jT
hxy(r1 ,W1 ’ V* 1) “ c ^Txy(?’ exp ..^zy Cri »wi» V

1
hyxO‘i >W1 ’ f i) = C JjTyxG’’^ oxp Llfyx^r1’W1’

00

Ponieważ zgodnie z (,7-0 zachodzi ■

+ ^y81110 +
+ cos &-V \ ,

to funkcje typu f można przekształcić do postaci

(7-9 J
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gdzie nowe współrzędne r^ , w^?, określone są równaniami 

(7-2J•-Analogiczne związki zachodzą dla pozostałych funkcji

fxy(ri,wv kq4 ’

fyx6‘i >VV1 ’ 1 ’ i’ fyx(rl ’W1’ ’? ’ " kq4 ’

fjy(ri ,wi ’ f 1 ’ J = fyy(ri ’wi ’ -f“ kq4 *

Podstawiając ^7-11^) ,do wzorów ^7-7^) otrzymuje się

hx/r1’W1 ’ fi) = h^1’W1’Tl )'exp - ikq4

= h’xy(rl’,w1’,y1’)0Xp - ikq4 , 
C7-12?

hyx(r1’w1’ A) = hyx(rrw1’ Tl ) exp " lkq4 ’

co oznacza, źq

, C7-1^
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Zatem, przestrzenne rozkłady natężenia w dyfrakcyjnym obra­

zie punktu odpowiadające macierzowym funkcjom aberracji
1 <0-^ gą jedynie przesunięte względem siebie

= J rpj • <7-14}

Podobnie jak w klasycznym przypadku £38j dodanie do 

macierzowej funkcji aberracji wyrażenia II +

*q^ein0+ cos &+ q^ oznacza .przesunięcie środka gaussows­

kiej sfery odniesienia 57 ó rys.4.2 J z początku układu od­

niesienia do punktu o współrzędnych^^ , y^ , z^) 

2 
/R\

- 2j 7 / qi » 
\ a '

/RV / X53 - ( - j ^2 ’ (7-15J

rR\

oraz zmianę promienia sfery odniesienia zgodnie z równaniem

R’ = R - q4 . (7-16;

Uogólniona wersja twierdzenia o przesunięciu znajdzie 

zastosowanie w procedurze wyznaczania optymalnej sfery od­

niesienia, względem której jasność Strehla osiąga wartość 

maksymalną. Wcześniej należy jednak uogólnić przybliżenie 

Marechala dla jasności Strehla na układy odwzorowujące zmie­

niające stan polaryzacji światła.
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8. UOGÓLNIONE PRZYBLIŻENIE MERŚCHALA DLA JASNOŚCI STREHLA

Dla małych aberracji jasność Strehla klasycznego układu 

odwzorowującego (^nie zmieniającego stanu polaryzacji światłaJ 

można wyznaczyć na podstawie przybliżonego wzoru Marechala 
^46^ . Istotą przybliżenia jest wyrażenie jasności Strehla 

poprzez średniokwadratową deformację frontu falowego. Podobne 

przybliżenie jasności Strehla można uzyskać również dla ukła­

dów odwzorowujących zmieniających stan polaryzacji światła. 

Rozważania zostaną jednak ograniczone tylko do przypadku 

światła, którego stan polaryzacji da się opisać rzeczywistą 

macierzą koherencji Zakładamy więc, że do odwzorowania 

użyta została mieszanina światła spolaryzowanego liniowo 
^3.2-6^)i światła niespolaryzowanego (^3*2-2^ •

Dla każdej rzeczywistej macierzy koherencji istnieje 

układ odniesienia w którym przyjmuje ona postać diagonalną

gdzie d4 i do są rzeczywistymi i nieujemnymi wartościami 

własnymi macierzy • V/ dodatku, ślad macierzy nie zmienia 

się po przejściu do nowego układu odniesienia

trJn = trD = 1 (3-2)
Ko v y

Niech H, T, Q będą określone względem układu odniesienia 

diagonalizującego rzeczywistą macierz koherencji



Zakładając małe wartości elementów macierzowej funkcji aber­

racji wyrażenia typu expik $ można

rozwinąć w szereg potęgowy i pominąć wyrazy o potęgach wyż- 
' A

szych niż dwa* Średnią z macierzowej funkcji źrenicowej <C H

da się wtedy przedstawić następująco

lub w prostszej notacji macierzowej

gdzie TR oznacza transponowanie macierzy (def* 2*1-3^). V/ po­

wyższych wzorach pojawiła się operacja mnożenia macierzy tego

samego wymiaru zdefiniowana następująco

=[?]„[ S]13

Zauważmy, że elementem neutralnym takiego mnożenia jest ma- 
A

cierz jedynkowa N wprowadzona w rozdziale 7.
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X?odstawiając (8-40 do ogólnego wzoru na jasność Strehla 

Q 6-9^ , wykonując mnożenie i opuszczając wyrazy zawierające 

potęgi wyższe niż dwa względem macierzowej funkcji aberracji 

^3 otrzymuje się

Ponieważ ślad macierzy jest nieczuły na operację transponowa- 

nia (tw. 2,2-30 zachodzi zatem

a A TR' z
Do * Dq • (8-8 J

a także

(8-100

Po uwzględnieniu powyższych zależności przybliżony wzór 

na jasność Strehla dla układów zmieniających stan polaryzacji 

światła przyjmuje postać
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Piei‘Wuzy wyraz reprezentuje jasność Strehla układu bezabcrra-

cyjnego

(.8-12)

Wyraz drugi opisuje spadek jasności Strehla związany z aberra­

cjami układu. Warto podkreślić, że w przypadku małych aberra­

cji jasność Strehla nie zależy od ich postaci a jedynie od 

średnich z macierzy T ^^5 i T v

Zależność jasności Strehla od stanu polaryzacji światła 

wchodzącego do układu wyraża się poprzez diagonalną macierz 
A 
D . o

Wzór(8-1l) jest więc uogólnieniem przybliżenia Marechala 

dla jasności Strehla na układy odwzorowujące zmieniające stan 

polaryzacji światła. Przypomnijmy, że przybliżenie to może 

być stosowane tylko przy następujących ograniczeniach: 

(1) wszystkie elementy macierzowej funkcji aberracji 

przyjmują niewielkie wartości w porównaniu ze średnią 

długością fali światła ąuasimonochromatycznego uży­

tego do odwzorowania;

( 2j światło wchodzące do układu da się opisać rzeczywistą 

macierzą koherencji .

Wydaja się, że konieczność spełnienia drugiego z wyżej 

wymienionych ograniczeń wymaga szerszego uzasadnienia. Dla 

każdej rzeczywistej macierzy koherencji istnie je układ odnie-
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sienią w którym przyjmuje ona postać diagonalną. Właśnie w 

tym układzie odniesienia ogólny wzór na jasność Strehla 
f6-10} przyjmuje szczególnie prostą postać

w której występują wyłącznie kwadraty modułów średnich z ele­

mentów macierzowej funkcji źrenicowej ważone współczynnikami

d , d . Ta postać wzoru nadaje się najlepiej do przedstawie- 12 . ~
nia w postaci przybliżonej, gdyż podobnie jak w klasycznym

przybliżeniu Maręchala,

wyrażenia typu

wystarczy rozwinąć w szereg potęgowy 
2

. Niestety nie można zdiagonalizo-

wać poprzez zmianę układu odniesienia macierzy koherencji o 

elementach zespolonych. W takim przypadku, dla znalezienia

przybliżonego wzoru na jasność Strehla,należałoby rozwijać w 

szereg potęgowy również wyrażenia typu 

porównaj (6-1o} - co związane jest ze znacznie większym błę­

dem tego rozwinięcia. Dlatego też zdecydowano się na wypro­

wadzenie uogólnionego przybliżenia Marechala przy, założeniu, 

że światło wchodzące do układu da się opisać rzeczywistą ma­

cierzą koherencji Jp .

Udowodnimy teraz, że drugi wyraz w przybliżeniu Marecha­

la » będący odpowiednikiem średniokwadratowej defor­

macji frontu falowego, jest nieujemny.

W tym celu wygodnie jest przedstawić go w postaci rozwiniętej
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(8-u)

Ponieważ funkcje T . T , T , T są nieu^emne f4.3-4 ),wy- 
x.a. x,y y-A- y y x y'

rażenia w nawiasach kwadratowych, z dokładnością do stałej.

równe są średniokwadi*atowym deformacjom frontów falowych

27 ^.lr, ^vv> • Spełniają więc warunek

Ponieważ d^, d^ są także nieujemne, zatem rzeczywiście za­

chodzi

Pakt ten będzie w istotny sposób wykorzystany w rozważaniach 

dotyczących doboru optymalnej sfery odniesienia dla układów 

zmieniających stan polaryzacji światła.
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9. DOBÓR OPTYMALNEJ SFERY' ODNIESIENIA

Obrazem punktu w rzeczywistych układach optycznych jest 

zawsze trójwymiarowy rozkład natężenia o silnym centralnym 

maksimum i znacznie słabszych maksimach bocznych. Przyczyną 

tego rozmycia są zjawiska dyfrakcyjne jak również aberracje 

układu. Z praktycznego punktu widzenia duże znaczenie ma umie­

jętność wskazania tego punktu w przestrzeni obrazowej

(?hąk , yr/4X , 2 w którym natężenie przyjmuje wartość
maksymalną (^chodzi o bezwzględne maksimum rozkładu natężenia^ • 

Gaussowska sfera odniesienia (rys.4.l)o środku w punkcie

nazywana jest zazwyczaj optymalną sferą odniesienia. Prób- 

lem doboru optymalnej sfory odniesienia jest więc w istocie 

równoważny ze znalezieniem współrzędnych Cx/ia)< » ^ha* f 
punktu Szereg zagadnień związanych z doborem optymal­

nej sfery odniesienia dla klasycznych układów odwzorowujących 
poruszono w pracach £46-53^] •

W niniejszym rozdziale przedstawiona zostanie procedura 

doboru optymalnej sfery odniesienia dla układów odwzorowują­

cych zmieniających stan polaryzacji światła .

Macierzowa funkcja aberracji określona jest

względem pewnej sfery odniesienia, która nie zawsze jest opty­

malna. Do znalezienia optymalnej sfery odniesienia wykorzys­

tać można uogólnione twierdzenie o przesunięciu oraz uogólnio­

ne przybliżenie Merechala dla jasności Strehla. Rozważania bę­

dące przedmiotem tego rozdziału, podobnie jak poprzedniego, 

prowadzone więc będą przy założeniu, że do odwzorowania użyta 

została mieszanina światła spolaryzowanego liniowo i światła
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niespolaryzowanego dająca się zawsze opisać rzeczywistą 
A

macierzą koherencji

W celu uproszczenia notacji przyjmijmy następujące

oznaczenia

2
•1 ■ ? ,

■ (■>-')

a3 ~ ? CO£J

°4 1
A )

Macierzową funkcję aberracji względom zmienionej

sfery odniesienia można przedstawić następująco ^7-1y

Dobierzemy takie parametry q^, q^, q^ dla których jas­
ność Strehla w przybliżeniu Marechala (8-1 ij osiągała będzie 

wartość maksymalną. Warunkiem koniecznym istnienia maksimum 

funkcji SR(q1,q?, q?, q, ) jest układ równań

9 SR
~» 0 dla i - 1,4 , (9-3)
d qt

który po uwzględnieniu (8-11^) można przedstawić jako

d / f 4 A ^>KTr7> no< TV2? > J -
- D0<flbSRj^= o (9-4J

dla i » 1,4

Na podstawie twierdzenia o pochodnej śladu macierzy (tw. 

2.2-5 )oraz twierdzenia o pochodnej iloczynu macierzy ( tw.
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co zachodzi ze względu na fakt, że. ślad macierzy jest nieczuły 
na operacje transponowania ^tw. 2.2-4^). Układ równań (9-5) 

można więc zapisać jako

A
Podstawiając za Cp wyrażenie ^9-2 J i uwzględniając, że

i
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9^ a z \
—--------- a dla i = 1,4 .
9 <11

otrzymuje się liniowy układ równań ze względu na parametry 

y । ♦ yp> y» y^

dla i = 1,4 ^9-10^

Ponieważ a^ ~1 zachodzi więc

dla i = 4 
lub dla j = 4,

(9-1

oraz

Oznacza to, iż funkcja SR , a^, ą^, q^ nie zależy od 

parametru q^» W istocie ^9-10jest więc liniowym układem 

równań ze względu na parametry , ą^,

dla i,j = 1,3 »
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( 9-14^)

«Ji =
dla i = 1,3

dla i - 1,3

Powyższy układ równań pokazuje, że jasność Strehla w przybli­

żeniu Marechala jest formą kwadratową ze względu na parametry 

q., qo, qo. Warunek ( 8-16 ) gwarantaje, że jasność Strehla 

o I) o 1 n i a n i u r ó w no ś ć

SR < trf<T > Do< T , (9-15j

co oznacza, że forma kwadratowa SR^"q^, ) jest ograni­

czona z góry. Można wykazać , że każda forma kwadratowa 

ograniczona z góry posiada maksimum, tak więc układ równań 
(9-3^) jest nie tylko warunkiem koniecznym ale również wystar­

czającym dla istnienia maksimum jasności Strehla. Optymalne 

wartości parametrów q^, q^, q^ są zatem następujące

A 
det B. 

q = ---------dla k = 1,3 ,
aet B ^9-1ej

q^ - dowolne

gdzie macierz otrzymuje się przez zastąpienie w macierzy 

B kolumny o numerze, k wektorem C ; det oznacza wyznacznik 

macierzy. Podstawiając optymalne wartości parametrów q^, 

q~ do wyrażenia (9-2Jotrzymuje się macierzową funkcję aber- 

racji określoną względem optymalnej sfery odniesienia,
a na podstawie zależności ^7~1?J można łatwo znaleźć współ­

rzędne środka optymalnej sfery odniesienia '
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Podobnie jak dla układów odwzorowujących nie zmienia­

M ających etanu polaryzacji światła asnośó Strehla nie

zależy od parametru . Jest to zresztą wynik oczekiwany, 

gdyż q^ nie pojawia się we wzorach ^7-2 ) i ^7-3J •

Przedstawiona procedura wyznaczania parametrów q^,

q^ określających optymalną sferę odniesienia dla układów 

odwzorowujących zmieniających stan polaryzacji światła zo­

stała wyprowadzona z wykorzystaniem uogólnionego przybliże­

nia Marochala dla jasności Strehla • Obowiązuje więc

tylko przy spełnieniu ograniczających założeń:

(i) wszystkie elementy macierzowej funkcji abei*racji 

przyjmują niewielkie wartości w porównaniu ze średnią 

długością fali /\ światła quasimonochromatycznego użyte­

go do odwzorowania;

(2j światło użyte do odwzorowania da się opisać macierzą 

koherencji o rzeczywistych elementach.

Przykład 9.1

Wyznaczono optymalne parametry q^, qg, q^ dla układu 

z dwustrefowym filtrem polaryzacyjnym z przykładu 4.1.

Założono, że układ obarczony jest trzeciorzędową aberracją 

sferyczną

, ą) = fj>4 (9-17}

Elementy macierzowej funkcji transmisji amplitudy i macie­

rzowej funkcji aberracji takiego układu są postępujące
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gdzie

dla sinc^ coa^ 0 

dla sinego os <X £ <^ O

dla gin<^^cos X-jO

dla 3in€<i cos O



Ponieważ zmieniają się skokowo

aż o /2 korzystanie z omówionej procedury Wyznaczania 

optymalnych parametrów q^,q^ staje się niecelowe, 

gdyż została ona prowadzona przy założeniu, iż wartości wszyat 
A

kich elementów macierzowej "funkcji aberracji > 0) OQ 

niewielkie. V/ takim przypadku wygodnie jest interpretować 

skokową zmianę aberracji o /! /2, jako zmianę znaku odpowied­

niego elementu macierzowej funkcji transmisji amplitudy, 

wbrew (4*3-2 ) . Otrzymuje się wtedy

Dopuszczenie ujemnych wartości funkcji T_. ŚCb0)i 

sprawia jednak, iż nierówność ^9-15^) nie zawsze musi być 

spełniona. Be da się więc udowodnić, że układ równań ^9-3 
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jest nie tylko warunkiem koniecznym ale również wystarcza­

jącym dla istnienia maksimum jasności Strehla. Po dopuszczę 

niu ujemnych wartości funkcji ^yX^) ^Xy paranie try

q^, q£, q^ znalezione na podstawie rozwiązania ^9-16y mogą 

wyznaczać także punkt przegięcia-lub minimum jasności Streh 
la. Rozwiązanie ^9-1b) wyznacza maksimum jasności Strehla 

wtedy i tylko wtedy gdy minory główne M. macierzy B spełni 
ją warunek [*t>4]

Macierzowa funkcja transmisji amplitudy (9-21 /i macie 

rzowa funkcja aberracji ^9-22j nie zależą od kąta & , co 

oznacza, że macierz B jest diagonalna



R^st9.1 (opis na naotępnej stronie



Rys.9*2* Optymalne wartości parametru q. dla światła opola-
O 

ryzowanego liniowo o azymucie polaryzacji ~ 0 
w funkcji stopnia polaryzacji P. Układ obarczony 
był trzeciorzędną aberracją sferyczną U 9 ,
a parametry filtru były następujące:
<X-1 = 0°, <<2 = 90°, p =. 0.6.

Rys.9.1. Optymalne wartości parametru w funkcji azymutu 
polaryzacji y3 dla światła liniowo spolaryzowanego w stop­
niu P=1 oraz P=0.5. Zaznaczono także wartości parametru q^ 
dla światła niespolaryzowanego P=0. Układ obarczony b^ł 
trzeciorzędową aberracją sferyczną F a parametry 
f iltru były następujące:^ ~ 0, <X ? s 90°, p « 0.6.
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Wyliczono wartości q1 dla filtru'o parametrach <X. 1 - 0°, 

ć< g =90°, p = 0.6; jak na rysunku 5.1. Sprawdzono, że w 

omawianym przykładzie warunek ^9-23J jest zawsze spełniony 

co oznacza, iż wyliczone wartości parametru q^ rzeczywiście 

wyznaczają maksimum jasności Strehla.

Rysunek 9.1 przedstawia optymalne wartości parametru 

w funkcji azymutu polaryzacji dla światła liniowo spola­

ryzowanego w stopniu P ~ 1 oraz P - 0.5 . Zaznaczono także 

wartość parametru q^ dla światła niespolaryzowanego P » 0 . 

Rysunek 9*2. przedstawia parametr q^ dla światła spolaryzo­

wanego liniowo o azymucie polaryzacji » 0° w funkcji stop­

nia polaryzacji P. Zwraca uwagę silna zależność optymalnej 

wartości parametru q^, od stanu polaryzacji światła użytego 

do odwzorowania.
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10. ODWZOROWANIA PRZEDMIOTÓW ROZCIĄGŁYCH

Dotychczasowym przedmiotem rozważań były zagadnienia 

związane z odwzorowaniem przedmiotów punktowych. W niniej­

szym rozdziale zaproponowane zostaną uogólnione metody opi­

su odwzorowania przedmiotów rozciągłych, dające się zastoso­

wać do układów zmieniających stan polaryzacji światła. Meto­

dy te, podobnie jak dla klasycznych układów odwzorowujących, 
/ 

oparte zostały na przekształceniu Fouriera. V/ szczególności 

wykorzystane zostaną uogólnione twierdzenia związane z 

przekształceniem Fouriera macierzy funkcji, tw. 2.2-Y do 

2.2-13. '

V/ najogólniejszym przypadku macierzowa funkcja rozmycia 

amplitudy h(uo,vQ, u^y^J zależy nie tylko od współrzęd­

nych płaszczyzny obrazowej, ale również od położenia ^u0>v0) 

punktowego źródła światła w płaszczyźnie przedmiotowej. Tym 

niemniej, istnieją obszary płaszczyzny przedmiotowej, dla 

których z dobrym przybliżeniem można przyjąć, że macierzowa 

funkcja rozmycia amplitudy zależy wyłącznie od różnicy współ­

rzędnych h (u^-uq, v^-vo>) . Będą ono nazywane izoplanatycz- 

nymi obszarami układu odwzorowującego zmieniającego stan 

polaryzacji światła. Rozwiązania niniejszego rozdziału znaj­

dują zastosowanie tylko do przedmiotów mniejszych niż obszar 

izoplanatyczny układu.

10.1. Odwzorowanie w świetle koherentnym

Pełną koherencją przestrzenną charakteryzuje się jedy­

nie światło ściśle monochromatyczne. Niech zatem wektor 
A
U (u() , v J reprezentuje rozkład amplitudy zespolonej świat-
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ła ściśle monochromatycznego w płaszczyźnie przedmiotowej 

układu

Dla światła ściśle monochromatycznego rozkład amplitudy zespo- 

lonej w płaszczyźnie obrazowej dU (u^, ) pochodzący od

punktu ^u0»v0) w płaszczyźnie przedmiotowej można wyznaczyć 

na podstawie spektralnej zależności ^5-2)

dlP (u^yp = , y^yj Ux/u0,vJ duodvo +

+ h hk-u , v„-v ) U fu ,v ) du dv ,xy k 1 o ’ k 1 o y y k o * o/ o o *
(io. 1-2J

dU = h (n-“U , v.~v ) U ( u ,v ) du dv +
y k 1 ’ r yx M o’ 1 o > xko’oy o o

X 
• . 1

+ h (u.-u , v.-v ) U ś u ,v ) du dv. , 
yy k 1 o’ 1 o-' yk o’ oJ 00’

lub w krótszej notacji macierzowej

du^upyp = hO-j-%, U duodvo G0.1-3J

Całkowity rozkład amplitudy w płaszczyźnie obrazowej pocho­

dzący od wszystkich punktów płaszczyzny przedmiotowej równy

jest więc

(10.1-p
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lub w notacji macierzowoj

Ilu podstawie definicji ("2.1-8_) można stwierdzić, że rozkład 

amplitudy w płaszczyźnie obrazowej układu zmieniającego 

stan polaryzacji światła równy jest splotowi macierzowej

funkcji rozmycia z rozkładem amplitudy w płaszczyźnie przed­

miotowej

/\ A A
uYu-pyp = h u (urvi^ * (10.1-6,)

Czasami wygodnie jest przedstawić macierze U,’ h, U 

w postaci sumy składowych harmonicznych

uY^y.^ .g^ exp £-2 5Ti( 4-y.^Jdf dg ,

U (uo,vd =^^(£,3,) exp£-2 Ki ((loriy^) Jdf dg , 

(lO.1-7,)

h (u,vl =Jj/i^f.g) exp £-2 Ki. (uf+vgjjdf dg , 

gdzie f i g są bezwymiarowymi częstościami przestrzennymi



- 85 -

a f 1 g aą wymiarowymi częstościami przestrzennymi.

Korzystając z odwrotnego przekształcenia Fouriera można 

wyznaczyć macierze ZL ? ZL

(10,1-9)
vo) exp [2 Ki

Łącząc (10,1-óJz uogólnionym twierdzeniem o splocie

tw. 2.2-9otrzymuje się prostą zależność iloczynową okreś­

lającą rozkład„składowych harmonicznych amplitudy w płasz­

czyźnie obrazowej

(10.1-10

lub w postaci rozwiniętej

Z porównania zależności (J0.1-6) i ^4.4-8j wynika, że ma- 

cierz A(f>S^ równa jest, z dokładnością do stałej c ,

macierzowej funkcji źrenicowej układu

z£(f ,g) “ c II (f ,gj (10-1-12

Rozkład składowych harmonicznych amplitudy w płaszczyźnie 

obrazowej równy jest więc iloczynowi macierzowej funkcji 
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źrenicowej układu z rozkładom okładowych harmonicznych w 

płaszczyźnie przedmiotowej. Ponieważ wszystkie elementy ma­

cierzowej funkcji źrenicowej poza obszarem źrenicy wyjścio­

wej są równe zero

<f’S ) = Hxv 3 Hyx (f’S? s Uyy * 0

2 2 (w.1-13
dla f41 4- g^ > 1 , x

to koherentny układ odwzorowujący zmieniający etan polary­

zacji światła, podobnie jak klasyczny, nie przenosi okłado­

wy harmonicznych amplitudy o częstościach większach niż je­

den,

10.2. Odwzorowanie w niekoherentnym światłe 

q ua s i mo no chromaty cznym

Na wstępie zdefiniowane zostanie pojęcie niekohorancji

przestrzennej dla zaburzenia o charakterze wektorowym. W

tym celu wygodnie jest posłużyć się macierzą koherencji wza­

jemnej, wprowadzonej po raz pierwszy w pracach £55-%J • 

Niech funkcja wektorowa 

(10.2-1)

repxłezentuje ąuasimonochromatyczne drgania wektora elek- 

tx\ycznego zachodzące w płaszczyźnie przedmiotowej układu. 

Ponieważ każde zaburzenie niemonochromatyozne można przed* 

stawić w postaci sumy zaburzali ściśle monochromatycznych, 

to zachodzi
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Z (^t,uo»vo) =ju(v ,uo,vq) exp( -2^Ti V t_) d^ , 

o (i 0.2-2^

gdzie U(°P?u »vq) reprezentuje rozkład amplitudy zespolonej 

składowej ściśle monochromatycznej o częstości V
— —

UXP •utfvo >
U <9>U0«V0^“

Uy <°’uO>Vo)
< -(10.2-3J

Macierz koherencji wzajemnej definiuje się następująco

J fu ,v »u\v’) =<(z (t,u .v ) 2 (t,u7 ,v7)\, (i 0.2-4) 
m s O O O O ' O Oy k ’ O o</i; X X

gdzie jest średnią czasową obliczaną według wzoru
z \ t
(^3.1-4 J. Łatwo wykazać, że tuk zdefiniowaną macierz kohe­

rencji wzajemnej obowiązuje również spektralne równanie 
(3.4-7)

J fu ,V I J fu ,V ,u\v’)d9 , (10.2-5)
m^ o’ o’ o’ oy j o* o’ o* oy ’ v z

o

gdzie
(l0.2-ó)

jest spektralną macierzą koherencji 'wzajemnej. 
a z, .

Zaburzenie wektorowe Z C^»n0>v0J nabywać będziemy

niekoherentnym pi*zostrzennio# gdy spełnia ono warunek

J fu ,v pf,/ ) ~ J f u .v jC^fu -u\ • (10.2-7)
m k o* o’ o’ 0/ \ o’ o-7 o o’ o o 7 < J 

gdzie J (un.v„) = <( z (t,u ,v j Z^(t u ,v )\ Jost ma­

cierzą koherencji opisującą stan polaryzacji światła cmito- 
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wanugo przez punkt (%* vo) płaszczyzny przedmiotowej, 

a O oznacza tutaj dwuwymiarową deltę Diraca.

• dv^ , A 0.2-1
^lolo^oooo* k

Ponieważ założono pełną niekóherencję przestrzenną w płasz­
czyźnie przedmiotowej, to po uwzględnieniu 10.2-r/J) i-ozkład 

macierzy koherencji w płaszczyźnie obrazowej można wyrazić 

znacznie prostszym wzorom

Aby określić rozkład natężenia w płaszczyźnie obrazo­

wej wyznaczymy najpierw rozkład spektralnej macierzy kohe­

rencji w tej płaszczyźnie. Rozkład amplitudy zespolonej 

składowej spektralnej o częstości opisuje równanie(i0.1-5

Jj y^ ufv,uo,vo) duo dvo .

-- 0^2
(10.2-8

Hu podstawie definicji gpektralnoj macierzy koherencji (3.4 

zachodzi

<«pvl) -JjJJh (Ul-u0, y^J Jmv(u0.v0,u’,v’) .

• hVur%’ T\DdV]V’IJX • (10,2-9

Po scałkowaniu po spektrum powyższego równania otrzymuje 

się rozkład macierzy kohei'©ncji dla światła ąuasimonocbroma 

tycznego w płaszczyźnie obrazowej
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Natężenie równe jest zawsze śladowi maciez*zy koherencji 
f AI » tr wi§° rozkład natężenia w płasz

czyźnie obrazowej układu dany jest wzorem

I^u^yp = trjjh^-u^ vrv0) J (u0,v0) •

V1-VO) duodvo. z (10.2-12

a na podstawie twierdzenia o całce śladu macierzy (tw.2.2-6 

otrzymuje się

i^upY,) = (uru0« yv0) J <%’<> *
* v1-vo)Jduodvo . (10.2-13

Dalsze rozważania ograniczają się tylko do przypadku, 

w którym macierz koherencji w dowolnym punkcie płaszczyzny 

przedmiotowej można przedstawić w następującej postaci

J (%»%)“ Jo ; (10.2-14

gdzie I (uo»vo) ” reprezentuje rozkład natężenia

w płaszczyźnie przedmiotowej układu. W istocie zakładamy 

więc, że wszystkie punkty płaszczyzny przedmiotowej emitują 

światło jednakowo spolaryzowane, różniące się tylko natężę- 

niem. Stan polaryzacji światła emitowanego przez płaszczyz­

nę pi’zedmiotową opisuje unormowana macierz koherencji JQ.
Po podstawieniu (10.2-14) do (10.2-13J) otrzymuje się
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Zauważmy, że tr£h (u^-u^ v-|~v0) JQh vi”v0)

jest po prostu rozkładem natężenia w dyfrakcyjnym obrazie 
4

punktu emitującego światło o stanie polaryzacji reprezento­
wanym macierzą JQ ^5-14 j

Kfu.-u >v-v\=z tr hCu.-u, v-v).
S 1 O J O > ‘ L v I 0 1 O

A At -
‘ Jo h Cur%’ vrVJ • (10.2-1

lub używając symbolicznej notacji splotu

I^u^yP = I (urv0 ® K . (10.2-18

pu nkty
V/ przypadku, gdy wszystkie płaszczyzny przedmiotowej emitu­

ją światło jednakowo spolaryzowane^rozkład natężenia w płasz 

czyźnie obrazowej układu równy jest splotowi rozkładu natę­

żenia. w płaszczyźnie przedmiotowej z funkcją opisującą roz­

kład natężenia w dyfrakcyjnym obrazie punktu.

Aby wyznaczyć składowe harmoniczne funkcji l/(u^,v^J , 

I C uQ, v(}) , K(u,v) , podobnie jak w przypadku koherentnym, 

można posłużyć się odwrotnym przekształceniem Fouriera

Jj ) exp £2 Tl i ( f^+gypjdu.!^ ,

= JJl (%.vo) exp £2 JTi (fuo+gvo)Jduodvo ,

(j 0.2-1$O-o
f ,g) »k(u,vJ exp £2 Tl i ( fu + gvj ]du dv

Łącząc ^10.2-19j z twierdzeniem o splocie otrzymuje się
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(10.2-20J

Układ odwzorowujący zmieniający stan polaryzacji światła,

podobnie jak klasyczny, działa jak filtr liniowy względem 

składowych harmonicznych rozkładu natężenia. Funkcja Jt(£9g) 

określa przepuszczalność układu optycznego dla składowej 

harmonicznej o częstości ( f,g ) i nazywana jest optyczną 

funkcją przenoszenia układu ( OTFj * Na podstawie uogólnione­

go twierdzenia o korelacji wzajemnej (tw* 2.2-12>oraz 

t w i e r d 21 e ni a o całce śladu macierzy ( t w • 2.2- 6 J z a c ho d z i

o

Uwzględniając 10.1-12J otrzymuje się ostateczną po­

stać wzoru na optyczną funkcję przenoszenia układu odwozo- 

wującego zmieniającego stan polaryzacji światła 

który w postaci rozwiniętej można zapisać jako

I Im */V

+ Jxv U.e) (CE> + H (f,g)©H (f,g?J +

+ S* LXcXf,G^®^ + Hyy C Ce) ® pi
■" ['% ( f’e^ + <CBj©Hsy ( £,Sj] .

("10.2-23)
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Optyczna funkcja przenoszenia układu zmieniającego 

stan polaryzacji światła wyraża się poprzez autokorelacje 

oraz niektóre korelacje wzajemne elementów macierzowej fun­

kcji źrenicowej ze współczynnikami Wagowymi określonymi sta­

nem polaryzacji światła wchodzącego do układu. Istnieje więc 

możliwość zmiany optycznej funkcji przenoszenia jedynie po­

przez zmianę stanu polaryzacji światła wchodzącego do ukła­

du.

Ponieważ wszystkie elementy macierzowej funkcji źreni­

cowej równe‘są zero poza obszarom źrenicy wyjściowej ^10.1-13j 

to niekoherentny układ odwzorowujący zmieniający stan pola­

ryzacji światła, podobnie jak klasyczny, nie przenosi skła­

dowych harmonicznych natężenia o częstościach większych niż 

dwa
= 0 dla f2 + g2> 2 . (10.2-24^

Należy podkreślić, że pojęcie optycznej funkcji przeno- 
• * 

szenia dla układów zmieniających stan polaryzacji światła 

udaje się wprowadzić tylko w przypadku, gdy wszystkie punkty 

płaszczyzny przedmiotowej emitują światło o jednakowym.sta­

nie polaryzacji. W przypadku ogólniejszym, o mniejszym zna­

czeniu praktycznym, wprowadzenie optycznej funkcji przenosze­

nia staje się niemożliwo.

Przykład 10.1

Wyliczono optyczną, funkcję przenoszenia odpowiadającą 

rozkładom natężenia w dyfrakcyjnym obrazie punktu przedsta­

wionym w przykładzie 5.1. I tak^na rysunkach 10.1a-f wykreś­

lono optyczną funkcję przenoszenia w zależności od stanu po-



pc(f. 0)/X(0.0)

RyH.10.1e Optyczna funkcja przenoszenia /OT?/ dla układu z fil­
trem polaryzacyjnym o parametrach c<^ = 0°, ot? - 90 0 

p = 0.5. Jedna z krzywych przedstawia OTF dla światła 
spolaryzowanego liniowo w stopniu P ~ 1 i o azymucie



polaryzacji /3 równym odpowiednio 0° (a) , 30° (b ) , 60° (oj 
90° (d^ , 120° (ej , 150° (fj . Drugą wykreślono dla takich 

samych azymutów polaryzacji /3 dla światła spolaryzowanego



fX(f,O)/X(O,O)

0.2 0.4 0.6 o.8 1.0 1.2 14 1.6 1.8 2.0

liniowo w stopniu P = 0.5. Na każdym z rysunków przedstawiono 
także OTF dla światła niespolaryzowanego P ~ O.



Iiys.10.2, Optyczna funkcja przenoszenia /OTF/ dla układu z 
z filtem polaryzującym o parametrach 0°,

O<2 « 120 , p = 0.6. Jedna z krzywych przedstawia



OTP dla światła spolaryzowanego liniowo w stopniu P = '1 i o 
azymucie polaryzacji /3 równym odpowiednio 0° (aj , 30° (bj , 

60° (c) , 90° (d) , 120° (e) , 150° (f)«Drugg wykreślono dla 
takich samych azymutów polaryzacji /3 lecz dla światła spola



AX(f,0)/X(0<0)

0.2 0.4 0.6 0.8 1.0 1.2 14 1.6 |8 2.0

ryzowanego liniowo w stopniu P = 0.5. Na każdym z rysunków 
przedstawiono takżo OTP dla światła niespolaryzowanego P = 
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laryzacji światła wchodzącego do układu dla filtru o pa­

rametrach - 0°, ckg - 9.0°, p ~ 0.6. Podobnie jak na

rysunkach 5.1 a-f jedna z krzywych przedstawia optyczną 

funkcję przenoszenia dla światła spolaryzowanego liniowo 

w stopniu P » 1 o azymutach polaryzacji /3 równych odpo- 

wiednio: 0° (aj , 30° (bj , 60° (cj , 90° (dj , 120° (e) , 

150° ( f ) . Drugą wykreślono dla -takich samych azymutów 

polaryzacji /3 lecz dla światła spolaryzowanego częściowo 

v/ stopniu P ~ 0.5.

Dla porównania na każdym rysunku przedstawiono tak-że 

optyczną funkcję przenoszenia dla światła niuspolaryzowa- 

nego P « 0.

Krzywe z rysunków 10.2 a-f wyliczone zostały dla takich 

samych stanów polai^y zacj i jak odpowiednie krzywe z rysun­

ków 10.1 a-f, lecz dla filtru o innych parametrach - 0°, 

oćg - 120°t p » 0.6.

Podobnie jak rozkład natężenia w dyfrakcyjnym obrazie 

punktu>również optyczna funkcja przenoszenia mocno zależy 

od stanu polaryzacji światła wchodzącego do układu.
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11. ROZKŁAD NATĘŻENIA W DYFRAKCYJNYM OBRAZIE

DWÓCH PUNKTÓW

Obok rozkładu natężenia w dyfrakcyjnym obrazie punktu, 

jasności. Strehla, optycznoj funkcji przenoszenia inną ważną 

wielkością charakteryzującą układy odwzorowujące jest ich 

zdolność rozdzielcza. Istnieją kilka różnych definicji zdol­

ności i'ozdzielczoj układu, np. zdolność rozdzielcza w sen­

sie Rayleigha, Sparrowa czy Huberta-Hopkinsa. Najczęściej 

podstawą do ich wyznaczenia jest rozkład natężenia w dyfrak­

cyjnym obrazie dwóch punktów. Celem poniższych rozważań 

jest wyznaczenie tego rozkładu dla punktów emitujących świat­

ło o różnych stanach polaryzacji.

Niech w płaszczyźnie przedmiotowej układu odwzorowują­

cego zmieniającego stan polaryzacji znajdują się dwa punkto­

we źródła światła położone symetrycznie względem osi V 
w punktach o współrzędnych (^-b,0 ) , (ł),oj .

11.1. Przypadek koherentny

A A
Niech wektory i U^ oznaczają amplitudy w punktach 

odpowiednio (-b,0 ) i (b,0^. Rozkład amplitudy w płaszczyź­

nie przedmiotowej układu można wtedy przedstawić jako

U (%•%)“ + U2 A(uo+b,vo) , (11.1-1)

gdzie oznacza deltę Diraca.

Dla znalezienia rozkładu amplitudy w płaszczyźnie obra­

zowej układu wystarczy podstawić 01.1-1 ) do ^10.1-5J

U1 * ^1*b’vl) u2 • (1I.I-2J
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Rozkład macierzy koherencji w płaszczyźnie pi^zedmiotowej 

wyraża się wzorem

/\ A A *|*
j (u^yp ~ ,

co v/ połączeniu z 01.1-2 jdaje

a . A , x A £ i * \
J CurvV * hO^b^p Jn h(u1-b,v1) +

A ą A At x
■^(u^-b^p J?2 h (ujhb.yp +

A .A A f X
■ł h^-b.yp p> h^i+b^p +

A . A At .
i h^ kb^p J21 h (^-b^p ,

gdzie
/\ A A f A A A +
J11 = U1U1 ’ J22 = U2U2 

(j 1.1

(^11.1

są macierzami koherencji określającymi stan polaryzacji 
światła emitowanego przez punkty (b.oj i (-b,ok a

A A . A A |
J12 = JmCb’0’ -b’0^ = U1U2

^21 = JmC-b’°’ b’°3= Vl + 

(11.1

są macierzami koherencji wzajemnej. Ponieważ rozkład natę 

żenią równy jest zawsze śladowi macierzy koherencji, to
PA* A 1

= trp-i^-b.y-P Jn h^^-b.ypj +

4- tr

+ ta£h (u1+b,v1)

011.1

rA x x
+ tr h(u-+b,u^) Jn4 h ( u..~b,v
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Ze względu na fakt, że ślad macierzy jest nieczuły na ope-
rację transponowania ^tw.2»2-3 J) oraz

*
J21 = J12

dwa ostatnie wyrazy we wzorze wzajemnie sprzę

żonę ,

12 ss

TR

tr

w tr

J12

TR atr

J21
Ąt

1

£3

Ostateczna postać wzoru określającego rozkład natężenia 

w dyfrakcyjnym obrazie dwóch punktów dla układów zmieniają­

cych stan polaryzacji światła jest więc następująca

lYn^y^ « tr Jn h (u^b.Y

+ ti£ h (u1+b,v1_)

+ 2Re u^b.yp J12 h (u1+b,v1

V/ szczególnym przypadku, gdy U i zachodzi

Jn = J22 = J12 = J21 = J

a wzór oki*eślający rozkład natężenia przyjmuje postać

U1 ’V1
r-A Z\ A-j*

» tri h (u^-bjY^) J h (u

+ 2Ro b, v

+
A

+
A Af .

o

1
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11.2. Przypadek niekoherentny

Aby wyznaczyć rozkład natężenia w dyfrakcyjnym obra­

zie dwóch punktów, w przypadku ich pełnej niekoherencji, 

można posłużyć się ogólną zależnością (JO.2-12 j • Zauważmy, 

że rozkład macierzy koherencji w płaszczyźnie przedmiotowej 

da się p.rzud stawić następująco

d (uo’vo^ ^11 Uo~o,Vo^ 5 ^22 * vo^ > 

gdzie i Jgz są macierzami koherencji światła emitowane-

Podstawiając (l1 o

O0.2-12 ) otrzymuje się

urvi u,,-b, v 11

4- tr h^u^+b,v
At

1

+

W przypadku niekoherentnym rozkład natężenia w dyfrak­

cyjnym obrazie dwóch punktów, a więc i zdolność rozdzielcza 

zależy nie tylko od własności układu odwzorowującego £ma-
A \ \ , , •

cierz hfu^,) } ale również od stanów polax'yzacji światła 

macierze

V/ przypadku koherentnym zależy on dodatkowo od macierzy ko­

herencji wzajemnej

’ J2z) ‘emitowanego przez te punkty
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12. PORÓWNANIE MACIERZOWEGO I SKALARNEGO OPISU DLA 

UKŁADÓW ODWZOROWUJĄCYCH ŃIE ZMIENIAJĄCYCH STANU 

POLARYZACJI ŚWIATŁA

Klasyczne układy odwzorowujące (^nie zmieniające stanu 

polaryzacji światła^ można traktować jako szczególny pi*zy- 

padek klasy układów zmieniających stan polaryzacji światła. 

Macierzowy formalizm wprowadzony w poprzednich rozdziałach 

można zatem stosować także do opisu własności układów kla­

sycznych. Celowe wydajo się więc porównanie macierzowego 

opisu układów klasycznych z ich opisom opartym na skalarnej 

teorii dyfrakcji - opisom skalarnym. 

Porównanie takie przeprowadzono dla ważniejszych wyników 

przedstawionych w rozdziałach 4-11*

Gdy układ odwzorowujący nie zmienia stanu polaryzacji 

światła, to punktowy sygnał emitujący światło liniowo spola­

ryzowane implikuje odpowiedź układu spolaryzowaną w taki 

eam sposób. W źrenicy wyjściowej nie pojawią się więc fronty 

falowe typu oraz i w konsekwencji

- Mf’73 - o • O2-1)
Poza tym^odpowiedź układu nic zależy od azymutu polax*yzacji 

co oznacza, że

Macierzową funkcję źrenicową układu nie zmieniającego stanu 

polaryzacji można więc zapisać jako
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02"3^

gdzie 11 jest funkcją źrenicową używaną w skalarnym

opisie układów odwzorowujących# Analogicznie da się przedsta 

wić macierzowa funkcja rozmycia amplitud?/

oraz maciei^zowa funkcja transmisji amplitudy

gdzie hlu^,^) i TQ , J są odpowiednio funkcjami rozmy­

cia amplitudy oraz transmisji modułu amplitudy (^chodzi o 

transmisję pomiędzy źrenicą wejściową a wyjściową^ używanymi 

w opisie skalarnym*

Przyjmiemy, iż aberracje nie istniejących frontów fa­

lowych 27 , 27„ równe są zero, tak więc macierzowa fun-
xy y x

keja aberracji przyjmuje postać

(12-6)

gdzie jest aberracją falową układu klasycznego.

Dla uproszczenia zapisu wprowadzimy oznaczenie

1 ; O
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Rozkład natężenia w dyfrakcyjnym obrazie punktu dla 

układów zmieniających stan polaryzacji światła wyraża się 

wzorem (5-14?

r A A Aj- -i
“ tr( h(u1,v1) Joh(u1,v1JJ . (12-8

Aby otrzymać rozkład natężenia 

cych etanu polaryzacji światła 
p o d s t a w i ć wy ra ż e n i e ( 1 2- 4 3

dla układów nie zmienia ją- 

za macierz h(*u^,vp należy

r? • 2 A a A -|- *
KCu^yp = trH j E Jq E j.

Af A A A A a A
Ponieważ E «F oraz trJ ~ trEj & tr J E « 1 u o o o
muje się

2
= Ihtu^ypl' ..

(12-9)

to otrzy-

(12-1 oj

Jasność Strehla układów odwzorowujących zmieniających

stan polaxłyzacji światła wyraża się wzorem (^6-9?

(i 2-1ij

Podstawiając wyrażenie (12-3 ) za macierzową funkcję źreni­

cową otrzymuje się wzór na jasność Strehla układów nie zmie­

niających stanu polaryzacji światła

, / . /2 A 
SR » | <H >| tr J

a ponieważ trJQ » 1, to

■ SR » l< H 
l 1

(12-12)

(12-13)

V/zory określające rozkład natężenia w dyfrakcyjnym 

obrazie punktu (l2-10? oraz jasność Strehla układu (12-13? 

są identyczne z odpowiednimi wzo??ami wyprowadzonymi na
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gruncie skalarnej teorii dyfrakcji ^bJ •
Przybliżenie Marechala jasności Strehla dla układów

odwzorowujących zmieniających stan polaryzacji światła ma 

następującą postać ("b-11^

Podstawiając (l2-5^) za macierzową funkcję transmisji ampli­

tudy oraz 0 2-6 J za macierzową funkcję aberracji otrzymuje

się

02-15)

co jout ogólnie znanym przybliżeniom Marechala dla klasycz­

nych układów z transmisją modułu amplitudy T , y) .

V/ przypadku gdy transmisja modułu amplitudy pomiędzy źreni­

cami równa jest jedności otrzymuje się jeszcze bardziej zna­

ną wersję przybliżenia Marechala dla jasności Strehla ^38?

(12-16)

Układ równań określający optymalne wartości parametrów

q3 dla układów zmieniających stan polaryzacji 
światła ma następującą postać (9-13^

A A A
B Q = C , (12-17J

dla i,j = 1,3 .
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dla i = 1,3 . (12-18)

. = q. dla 1 = 1,3 .

Podstawiając do powyższych zależności fl2-5;oraz /l2-6j 

otrzymuje się liniowy układ równań określający optymalne 

wartości parametrów qo dla układów nie zmieniają­

cych stanu polaryzacji światła

• dla i,j = 1,3 ,

[c]i = <T^a.\-<T> -<T^><T0i> (l2-19_)

dla i ~ 1,3 ,

LQ j i 53 qi dla 1 1 «

Jest on identyczny z odpowiednim układem równali wyprowa­

dzonym na gruncie skalarnej teorii dyfrakcji £48 J •

Optyczną funkcję przenoszenia dla układów odwzorowują­

cych zmieniających stan polaryzacji światła można przedsta­

wić jako 0*2-22,)
2 a A A

tr[H(f,g) Jo® H(f,g) J . . (12-20J

Podstawiając za macierzową.funkcję źrenicową wyrażenie

(12-3 ) otrzymuje się

. 2
« / 0/ H(f,gJ 0 H | 

co jest ogólnie znanym wzorem

^,s). (12-21J
L38J na optyczną funkcję
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przenoszenia układów nie zmieniających stanu polaryzacji 

światła.

Podsumowując stwierdzić można, że macierzowy forma* 

lizm wprowadzony do opisu własności układów odwzorowują­

cych zmieniających stan polaryzacji światła jest natural­

nym uogólnieniem skalarnego opisu stosowanego do układów 

nie zmieniających stanu polaryzacji światła.
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13. ODWZOROWANIE PRZEDMIOTÓW DYFUZYJNYCH
*)

W ŚWIETLE KOHERENTNYM '

Koherentne promieniowanie elektromagnetyczne rozproszone 

od przedmiotów dyfuzyjnych charakteryzuje się strukturą ziar­

nistą. Ziarnistość ta nazywana bywa w optyce efektem plamkowym, 

a czasem speklowym. V/ ciągu ostatnich piętnastu lat była ona 

przedmiotem intensywnych badań. Ukazało się w tym czasie oko­

ło trzystu publikacji oraz kilka opracowań monograficznych 

[58-60 ] . W badaniach związanych z efektem plamkowym można ak­

tualnie wyróżnić cztery główne kierunki:

(i) badanie podstawowych statystycznych własności 

struktur plamkowych;

(2^ zastosowanie efektu plamkowego do pomiaru chropo­

watości powierzchni rozpraszających;

(3^ zastosowanie efektu plamkowego do pomiaru deformacji 

i pomieszczeń powierzchni rozpraszających (inter­

ferometria plamkowa^ ;

(4^ zastosowanie efektu plamkowego w astronomii i 

optycznym przetwarzaniu informacji.

Efekt plamkowy towarzyszy nie tylko zjawisku rozprasza­

nia lecz powstaje również przy odwzorowaniu przedmiotów dy­

fuzyjnych w świetle koherentnym. Na tle regularnych zmian

Materiał przedstawiony w tyra rozdziale 
został częściowo opublikowany w |57/ . 
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natężenia związanych z odpowiednimi zmianami transmitancji 

przedmiotu widoczne są wtedy przypadkowe zmiany natężenia 

o wysokich częstościach przestrzennych i silnym kontraście 

wywołane nieregularnym rozkładem fazy na powierzchni przed­

miotu. Jeżeli przedmiotem zainteresowania są regularne zmia­

ny natężenia, to efekt plamkowy może być traktowany jako 

szum zniekształcający informację zawartą w obrazie przedmio­

tu dyfuzyjnego.

Kilku autorów podjęło problem określenia statystycznych

własności szumu plamkowego. V/ pracy 61 / Enloe wyznaczył

podstawowe wielkości statystyczne charakteryzujące rozkład

amplitudy zespolonej i natężenia w koherentnym obrazie jedno­

rodnego dyfuzora (^matówkij . Wyniki te zostały następnie 

uogólnione przez Lowenthala i Arsenaulta [^62] na przypadek
' ■ z 

niejednorodnych y przedmiotów dyfuzyjnych, a vpózniej przez 
Ichioka 63] również na przypadek przedmiotów częściowo ko­

herentnych. Błędy które znalazły się w pracy Lowenthala i 

Arsenaulta sprostowano w 64] .

W niniejszym rozdziale określono statystyczne własnoś­

ci rozkładu amplitudy zespolonej i natężenia w obrazach po­

wstających przy odwzorowaniu w świetle koherentnym niejedno­

rodnych przedmiotów dyfuzyjnych przy zastosowaniu układów 

zmieniających stan polaryzacji światła. W szczególności wy­

znaczono wartość średnią i autokorelację amplitudy zespolonej

Terminu niejednorodny użyto dla podkreślenia, 
iż transmitancja przedmiotu jest funkcją
współrzędnych. 



- 112 -

w płaszczyźnie obrazowej układu. Następnie wyznaczono roz­

kład średniego natężenia w płaszczyźnie obrazowej, a także 

jego autokorelację i wariancję* Na podstawie autokorelacji 

rozkładu natężenia można określić kształt średniej plamki w 

dowolnym punkcie płaszczyzny’ obrazowej. Wariancja rozkładu 

natężenia jest natomiast dobrą miarą "głębokości" przypadko­

wych zmian natężenia związanych z efektem plamkowym.

13.1. Statystyczny model przedmiotu

Hyc.13.1 przedstawia układ odwzorowujący zmieniający 

stan polaryzacji światła. W płaszczyźnie przedmiotowej ukła­

du znajduje się przedmiot dyfuzyjny oświetlony wiązką świat­

ła koherentnego W , Rozważania zostaną ograniczone tylko 

do takich przedmiotów dyfuzyjnych, które mogą być.traktowane 

jako złożenie jednorodnego dyfuzora DP z niejednorodnym 

przedmiotem amplitudowo-fazowym o zespolonej tranamitancji 

ł • 

hiech wektor

d ( u ,v \ Id 6 u ,vj I expi (P ( u ,v )
x o oy l x^ o o « r / xs o o

d (u ,v ) |d fu ,v )| expi LP ( u ,v )
y> o’ o7 I y ' o* o I L / y o’ o

(13.1-1

reprezentuje rozkład składowej x-owej i y-owej amplitudy 

zespolonej w płaszczyźnie dyfuzora

Załóżmy dla celów modelowych, iż dysponujemy zbiorem 

dyfuzorów DF wykonanych tą samą technologią i że istnieje
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Rys.13.1. Układ odwzorowujący zmieniający stan polaryzacji 
światła. Wybór układów odniesienia i oznaczeń.

możliwość wymiany poszczególnych egzemplarzy dyfuzora DP 

w płaszczyźnie przedmiotowej układu. Podejście takie pozwala 

traktować rodzinę funkcji dCuQ»vo) opisujących rozkład 

amplitudy na dyfuzorach jako dwuwymiarowy proces stochastycz-
A \

ny, a rozkład amplitudy ^n(u0’v0J na konkretnym dyfuzorze 

jako pewną realizację tego procesu [tt] • 
\

Dla najbardziej typowych dyfuzorów proces stochastyczny 

d(uo»vo) posiada następujące własności statystyczne: 
%

(i ) obie składowe kartezjańskie amplitudy zespolonej

i (ir ,v ) są stacjonarne i ergodyczne;
Jk U U U U
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ii) zmienne losowe >vj i O> ( u ,v ) charakteryzują
o u / *y u u

gię jednostajnym rozkładom gęstości prawdopodobieństwa

w przedziale £ -TT ,7^*] ;

iii) pary zmiennych losowych |dxCuo*Vo^| * ’

u także 1 Qą statystycznie

niezależne*

Ze względu na własności fiij oraz (iiij wartość średnia 

amplitudy zespolonej d(%»v0) w dowolnym punkcie

równa jest zero

gdzie E /••• 7 oznacza uśrednianie po zbiorze dyfuzorów DE *

Dla pełnej statystycznej charakterystyki procesu 

d (u ,v ) należy znać także jego macierz autokorelacji 

R, 6 u ,v , u ,v ) rozumianą. jako d v o ’ o ’ o ’ o y
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Z założenia, że proces stochastyczny'd ( u ,v) jest 

stacjonarny (i) wynika, że jego macierz autokorelacji jest 

funkcją tylko różnicy współrzędnych R, (u -u^t vo~vo / *

Dalsze rozważania zostaną ograniczone tylko do takich 

klas dyfuzorów DF, dla których średnia szerokość pojedyncze 

go elementu rozpi^asza jącego jest znacznie mniejsza niż sze­

rokość głównego maksimum rozkładu natężenia w dyfrakcyjnym 

obrazie punktu* W takim przypadku możliwe jest traktowanie 

dyfuzora DF jako zbioru statystycznie niezależnych punkto­

wych rozpraszaczy• Uzasadnia to przyjęcie następującego przy 

bliżenia dla macierzy autokorelacji procesu d Cu0>v0^

gdzie <^(u -u*,v oznacza dwuwymiarową deltę Diraca, 

a macierz R dana jest wzorem

Jednakże oprócz staćjonarności fij założono także ergo- 
,, ' A . i .

dycznosc procesu stochastycznego d Cuo,vo'* Oznacza to w 

praktyce, iż średnia z dowolnej wielkości po zbiorze dyfu­

zorów DF staje się równa średniej tej wielkości po powierzch 

ni każdego konkretnego dyfuzora • Zachodzi zatem

a / a , 1 r a .
IUEp(uo,vo)j= li® — J J(%>v0) d%dv0 , /n.u 

3d-^ Sd

gdzie 8^ jest powierzchnią dyfuzora* Macierz R opisuje więc 

średni stan polaryzacji światła emitowanego przez powierzch 

nię dowolnego dyfuzora DF .
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Rozważania ograniczono zostały tylko do takich przed­

miotów dyfuzyjnych, które mogą być traktowane jako złożenie 

jednorodnego dyfuzora z niejednorodnym przedmiotem amplitu- 

dowo-fazowym o transmitancji t (u0>v0) • więc rozkład 

amplitudy zespolonej w płaszczyźnie przedmiotowej układu da­

ny jest wzorem

U (uo,vo) = t (u0,v0) d (u0,v0) , <13.1-?)

Uwzględniając zależność ("13.1-2 J można łatwo zauważyć, 

że

tj., że średnia z amplitudy zespolonej w dowolnym punkcie 

płaszczyzny przedmiotowej równa jest zero.

Macierz autokorelacji amplitudy w płaszczyźnie przedmio­

towej można zapisać jako

a po podstawieniu (i 3* 1-4 } otrzymuje się

Rn fu ,v^,u^,v?) = R t (u ,v ) tV u* jY^^u -u* 9 v -vr) .
U k O ’ O ’ O ’ O 7 O O y > O o' o o’ o o 7

(13.1-10)

A
Pomimo, że rozkład amplitudy zespolonej d (u >voj w 

płaszczyźnie dyfuzora jest staćjonai*nym procesem stochastycz­

nym, to rozkład amplitudy ^(u0»v0) w płaszczyźnie przedmio­
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towej układu nie jest już stacjonarnym procesem stochastycz­

nym. Wynika to z faktu”, iż transmitacja t (%>v0) jest 

funkcją współrzędnych (przedmiot niejednorodny .

Natężenie równe jest zawsze śladowi z macierzy koherencji, 

tak więc rozkład natężenia w płaszczyźnie przedmiotowej ukła­

du wyraża się wzorom

1 (%’vo) a tr[u(uo,vo) U +(%’voH • ('13.1-11J

Dla wyznaczenia rozkładu średniego natężenia w płaszczyźnie 

przedmiotowej E (I ( uo,vq)J posłużyć się można zależnościami 

(l3«1-9) i (13.1-10)

13.2. Statystyczne własności amplitudy zespolonej

w płaszczyźnie obrazowej.

W rozdziale tym wyznaczone zostaną średnia oraz macierz 

autokorelacji amplitudy zespolonej w płaszczyźnie obrazowej 

układu. Ponieważ detekcja amplitudy zespolonej nie jest moż­

liwa powyższe wielkości nie mają większego znaczenia praktycz­

nego. Macierz autokorelacji amplitudy będzie jednak bardzo 

pomocna przy określaniu statystycznych własności rozkładu 

natężenia w płaszczyźnie obrazowej*

Związek pomiędzy rozkładem amplitudy zespolonej w płasz­

czyznach przedmiotowej i obrazowej dla koherentnych układów 
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odwzorowujących zmieniających stan polaryzacji światła okreś­
lony jest równaniem 00.1-5^

Jj h(Ul-u0, vrv0) U(uo,vo} duodvo . (13.2-1) 

lub w notacji symbolicznej

/A A A .
U (^,¥0 * h ,v0 © U ,v0 03.2-2J

Ponieważ U (u ,v } jest dwuwymiarowym procesem stochastycznym, 

to rozkład amplitudy zespolonej w płaszczyźnie obrazowej uk- 

ładu U (u.pvp można również traktować jako dwuwymiarowy pro­

ces stochastyczny#

Uwzględniając 03.1-p można łatwo wykazać, iż średnia 

amplituda w dowolnym punkcie płaszczyzny obrazowej, podobnie 

jak w płaszczyźnie przedmiotowej, równa jest zero

W powyższych przekształceniach wykorzystano przemienność 

operacji uśredniania E /•••j z całkowaniem [65 .

Wyznaczymy także macierz autokorelacji amplitudy w 

płaszczyźnie obrazowej

Po podstawieniu 03*2-1 J do powyższego równania otrzymuje 

się
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Ćx3

- E[wfh Or%’ vrv0) u (%•%) •
“ Uv^h +(«rao’ Vr^ )duodvoduo'dvo'j =

“ JOJh Cw W* 4u<uo-^ u

v^vZ ) du dv du/dv/ w A3.2-5J
‘ v 1 o* 1 oz o o o o Z

p A A j“ 5’\?
Ponieważ E ł U (u0>v0) u C uo,voJjjest macierzą autokorelacji 

amplitudy przedmiotowej (13*1-9^, to zachodziC>«c3a z , ,, cccfA / \ a / > > \nu»(u1,v1,u1,v1> j)Jjh Curuo’vrvo) RuC%.v0,u0,vj •

h v1~vo) duodvoduodvó / (n.2-6)

a uwzgl ędniając (13*1-10 ) otrzymuje się

h C^-%.
r~ O-^

A t/- ? \
R h ( U--11 , v,.-v ) ^wrtdv^S 1 O’ i O ' o o

Po wprowadzeniu nowych zmiennych

4V1 = V1 - < z

/
ZlU- « U. - U. y1 1 1 Z

v1"vo)

wyrażenie ma macierz autokorelacji .amplitudy zespolonej w 

płaszczyźnie obrazowej można zapisać jako

= jj ^-yj2 h (uo,vo) •

h tu0~4 ur vo-avo) duodvo , (l3.2-9
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Wszystkie elementy 

tud* hxx’ hxy* hyx’ hyy

macierzowej funkcji rozmycia ampli- 

równe są praktycznie zero poza pew­

nym skończonym obszarem S. , t j .

_0 ; 0

Oznacza to, iż dla każdego punktu (u^y^ płaszczyzny przed­

miotowej wszystkie elementy macierzy autokorelacji R R • 

R , R zerują się również poza pewnym skończonym obsza- 
y y y

rem S™

/X v , A t
a U^u^y^ lP (u^ 4^ A

^13.2-11

Ponieważ średnia wartość amplitudy zespolonej w dowolnym 
punkcie płaszczyzny przedmiotowej równa jest zero ^13*2-3) , 

to dla dowolnych »vi ) i A vq 3 zachodzi

co v/ połączeniu z G13*2-11y oznacza, iż poza obszarem SR 

spełniona jest następująca zależność ,
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Fakt, iż poza obszarem Sp średnia z iloczynu amplitud równa 

jest iloczynowi średnich świadczy o tym, żo korelacja sta­

tystyczna pomiędzy amplitudami w punktach i

istnieje tylko na obszarze dwa razy mniejszym niż 3^. Obszar 

ten nazywany będzie obszarem korelacji amplitudy w płaszczyź­

nie obrazowej

Sk = ^Ć4«p Avp: <2 A Up 2 A V0 <5 SRj .(13.2-14)

Dla przedmiotów jednorodnych £t - const )

rozkład amplitudy w płaszczyźnie obrazowej (także przedmioto­

wej ) jest stacjonarnym procesem stochastycznym, a jego ma­

cierz autokorelacji jest funkcją tylko różnicy współrzędnych 

A \ 1 ( CA A Atz
Wu1» -jconstj JJ h (%»%) Rh( %- Avp

vq-4 ) duodvo - 03.2-1‘p

Zauważmy, że dla przedmiotów jednorodnych obszar kore­

lacji 3, zależy jedynie od macierzowej funkcji rozmycia
K A A

amplitudy h(u,v)i śi^edniego stanu polaryzacji światłu R 

emitowanego przez dyfuzor* Dla'przedmiotów niejednorodnych 

zależy on dodatkowo od rozkładu transmitancji natężeni owej 

[t (u0>v0)| • Z postaci całki (13«2-9J wynika, że w obydwu 

przypadkach obszar korelacji 8, musi byc mniejszy od obsza- 

ru 3^, lub jemu równy

S. S. _ 03-2“^)
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13.3. Rozkład średniego natężenia w płaszczyźnie 

obrazowej

Natężenie w dowolnym punkcie płaszczyzny obrazowej da­

ne jest wzorem

I^u^) « tr^uYu^^) / (l3.3~l}

a średnie natężenie inwne jest śladowi macierzy autokore­

lacji amplitudy obi'azovzej

Podstawiając do powyższego wyrażenie na macierz autokorelacji 
dano wzorem (i 3.2-7 ^otrzymuje‘się -

Macierz R opisującą średni stan polaryzacji światła emitowa­

nego przez dyfuzor wygodniej jest przedstawić w postaci
A A r A 7 / \
R^RotrLRj 7 (l3.3-4)

gdzie R jest macierzą ze śladem unormowanym do jedności.
Po podstawieniu (13* 3-4) do (13.3-3/ wzór na średnie natęże­

nie w płaszczyźnie obrazowej przyjmuje postać
E { I,ypj - lf|tfuo,v0)|2tr[Rjtr[h(u1-uo, • 

At 1 7 X
• Koh <ur%’

Zauważmy, że wyrażenie Jt ( uQ ,vQ)^ trfp] opisuje rozkład
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średniego natężenia w płaszczyźnie przedmiotowej układu 
(13.1-12)

średnią z rozkładu natężenia w dyfrakcyjnym obrazie punktu 
(z natężeniowej funkcji rozmyciaJ ; porównaj (5*14) i

f FA / \ A A'ł*/ VI /» E[tr[h <ur%’ Joh turu0’ vrvollp

= e[k(uruo, vrvoU . (n.3-7)

Tak więc, rozkład średniego natężenia w płaszczyźnie o biczo­

wej wyraża się splotom średniego natężenia w płaszczyźnie

przedmiotowej ze średnią z natężeniowej funkcji rozmycia

E 4 I ó u ,v )4 E 7 K (u--u , v -v Udu dv >
C k o’ o J t k1 o’ 1 o j o o ’

(13.3-a}

lub w notacji symbolicznej

E eZi e/k u1(vi . (13.3-9)

Przy owdzorowaniu przedmiotów dyfuzyjnych w świetle koherent­

nym średnie natężenie transformuje oię więc tak, jak przez

układ niekoherentny o natężeniowej funkcji rozmycia równej
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13.4. Autokorelacja rozkładu natężenia

• w płaszczyźnie obrazowej.

Wyznaczymy autokoi*olację rozkładu natężenia w płaszczyź­

nie obrazowej rozumianą jako

E j . (l3.4-1

Podstawiając do powyższego wyrażenia (13.3-1 ) otrzymuje się 

> ? ’ r r a /tlił>(u1,v1,u1,v1 J = E / tr^U^i^ ,v1) U^UpY^ •

lub w postaci rozwiniętej

Dla dyfuzorów spełniających założenia statystyczne (i) , 

(iij , (iiij z rozdz.13.1 oraz warunek ^13.I-4J układowo 

u' («pV1 ) i amplitudy zespolonej w dowolnym punk­

cie płaszczyzny obrazowej charakteryzują się kołowym rozkła­
dem Gaussa gęstości prawdopodobieństwa ^59^ * Dla dowolnych 

zespolonych zmiennych losowych X i X o kołowym rozkładzie

Gaussa gęstości prawdopodobieństwa prawdziwe jest następują­

ce twierdzenie / 59/

W związku z powyższym autokorelację1rozkładu natężenia w 

płaszczyźnie obrazowej można zapisać jako
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W notacji macierzowej powyższa zależność sta jo się bamlziej

przejrzysta

Ha a
U'T(u1,v1

a po uwzględnianiu 03.2-4 J otrzymuje się

Na podutawie 03.3-2 J oraz 03.4-l) , a także po zamianie 

zmiennych 03.2-8j zachodzi

E^I^Upyp ^Wvvl" Avp} = E£lYui>v0} * 

e/i^u^- Avp^ + tr[ Ru'(u1,v1, Auv △ v1) •

^13.4-8^
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V/ rozdz.13.2 wykazano, iż dla każdego ,v^ wszystkie elo- 

menty macierzy autokorelacji Ry*(u^,v^, a u^ , /wyzerują 

się poza pewnym skoiiczonym obszarem S^. Oznacza to, iż poza 

obszarom spełniony jest warunek

e{i'G1| ,v1 ) 1'fu^ A U1 .Y^ Avpj =

= E £ 1'6^ .Y^j E , ^13.4-8,

który pokazuje, że statystyczna korelacja pomiędzy natęże­

niami w punktach (u^,^ ) oraz (u^,v^ istnieje tylko na ob­

szarze dla razy mniejszym niż 8$, czyli na obszarze korelacji 

amplitudy obrazowej.

Za kształt średniej plamki (średniego spekla ) w płasz­

czyźnie obrazowej układu można przyjąć zarys obszaru występo­

wania statystycznej korelacji rozkładu natężenia w tej płasz­

czyźnie. Zatem obszar korelacji wyznacza rozmiary średniej 

plamki. Dla przedmiotów jednorodnych rozmiary średniej plam­

ki zależą więc jedynie od macierzowej funkcji rozmycia ampli- 
a .

tudy h i średniego stanu polaryzacji światła R$ omitow

nego przez dyfuzor . Dla przedmiotów niejednorodnych zależą 

one dodatkowo od rozkładu transmisji natężeniowej |t (uo»vo^ 

i mogą się zmieniać od punktu do punktu. Jednak w obydwu 

przypadkach rozmiary średniej płamki nie są większe niż roz­

miną^ obszaru poza którym zerują się wszystkie elementy 

macierzowej funkcji rozmycia amplitudy.
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13.5. Wariancja natężenia w płaszczyźnie obrazowej. 

Statystyczny kontrast struktury plamkowej

Dysponując autokorelacją rozkładu natężenia Rj^u^y

u^ > v*) można łatwo wyznaczyć jego wariancję V.) w

dowolnym punkcie płaszczyzny obrazowej

%-Cupyp = - E^/l^u^ypj . (i3.5-i

Zauważmy, że

E ri'(ui’vi Vi) = tp2 Ry^u^ypU^yp

r Z5*
+ tr I Ry-CupYpU^.yp Ru^(u1 ,v1 ,u1 ,vp J / 

a także na podstawie (13.3-2J

E2^ l'^ .yp^ = tr(_ ru^(u1,V1,u1,v1)

(13.5-2

(13.5-3

Wariancja natężenia będąca miarą jego statystycznego rozrzutu 

dana jest więc wzorem
2 rA A tO- (u^yp ’ t*LV(VV“rV VtttrVurvi'l "

(13.5-4

Innym ważnym parametrem charakteryzującym głębokość <
przypadkowych zmian natężenia jest tzw. kontrast statystyczny 

rozumiany jako stosunek odchylenia standartowego do wartości 

średniej natężenia 59

Z X /7 • (13.5-5
3 R4I (u^y^j

Podstawiając (l3.3-2ji (l3.5-4^do powyższej zależności 

otrzymuje się
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Można wykazać, że kontrast statystyczny w układach odwzorowu­

jących zmieniających stan polaryzacji światła spełnia warunek

(l3.5-?)

Zauważmy w tyra celu, że macierz

RU"^U1 ,v1’u1 ,V1 “ E{U^U1 ,V1 u'Yurvi)J ^13.5-8j

i ' '
jest hermitowaku. Każdą macierz hermitowską można oprowadzić
do postaci diagonalnej poprzez transformację podobieństwa £34j

LR c ut>v1 ) “ A ,V1 ) Ru' ( U1 ,v1 ,u1 ,V1) /l (u1 .V]) )

(l3.5-9)

gdzie A(u1,v1) jest macierzą unitarną. Jeżeli 1^ ( UpV^ ) i 
* * \

1^ ( tipY^ J są wartościami własnymi macierzy Ry*^UpJ 7

to jej diagonalna postać jest następująca 34

Ponieważ Ry'(UpVpUp) jest macierzą hermitowską, to 1^ 

i Ig są rzeczywiste dla dowolnego Cuvv1^ • ^^aćto ponieważ 

oba minory główno MpM^ macierzy Ry'(UpVpUpV^ ) są nieujem- 

no, to jej wartości własne lp lp są także nieujemne £34]
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M2 . Epu; C^.ypl2] -

Pierwsza niex"ówność spełniona jest ze względu nu fakt, iż 

wartość średnia funkcji nieujemnej jest nieujemna; druga wy­

nika z nierówności Sohwarca.

Zauważmy, że macierz unitarna A (u^,v^) sprowadza rów­

nież do postaci diagonalnej wyrażenie Ry*(upV<| ,u^ ,v\j ) *

z C i ’

Transformacja podobieństwa nie zmienia śladu macierzy, zatem 

zachodzi • -

Ru'^U1’V1 »U1’VlU ” tr “ X1 + 12 ’
oraz

11* 3 y^ f * y*i 3 j

<= tidlp (u v ) = .. ^13.5-15)
Kil \ I I ' i c. z

0 
a kontrast statystyczny wyraża się wzorem
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1/11 + 11 / 21^0

--------->V1-7—V • <13’5-16
11 + Ig

Dla dowolnych liczb nieujemnych 1^, 1^ spełniona jest 

nierówność

Tak więc dla kontrastu statystycznego O (u^y^w dowolnym 

punkcie płaszczyzny obrazowej rzeczywiście zachodzi

(13.5-18

Podstawiając do powyższego wzór definiujący kontrast statys­

tyczny (*13.5-5 J stwierdzić można, iż wariancja natężenia w

dowolnym punkcie płaszczyzny obrazowej spełnia warunek

(13.5-19

13.6. Podsumowanie,

W niniejszym rozdziale otrzymano szereg wyników określa­

jących statystyczne własności rozkładu amplitudy i natężenia 

w płaszczyźnie obrazowej koherentnego układu odwzorowującego 

zmieniającego stan polaryzacji światła. Interpretacja tych 

wyników prowadzi do następujących wniosków :

Q Obydwie składowe średniej amplitudy zespolonej w dowol­

nym punkcie płaszczyzny obrazowej równe są zero.
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brednie natężenie transformuje się tak jak przez układ 

niekohex‘entny o natężeniowej funkcji rozmycia równej 
E{KCuru0’ vrVj •

Hozmhwy średniej plamki równe są rozmiarom obszaru 

korelacji S, amplitudy w płaszczyźnie obrazowej* Dla 

przedmiotów jednorodnych zależą one tylko od macierzo-
A

wej funkcji rozmycia amplitudy h (u^,\0i średniego 

stanu polaryzacji światła Rq emitowanego przez dyfuzor. 

Dla przedmiotów niejednorodnych mogą się zmieniać od

punktu do punktu,gdyż zależą także od rozkładu transmi-

tancji t fu , v )!( .
' o o-71

Wariancja natężenia w dowolnym punkcie płaszczyzny

obrazowej nie jest większa niż kwadrat średniego natęże-

nia i nie mniejsza niż połowa kwadratu śi^edniego natęże­

nia*

Kontrast statystyczny struktury plamkowej spełnia nastę­

pujący warunek w dowolnym punkcie płaszczyzny obrazowej

(13.6-1

Należy podkreślić, iż powyższe wnioski słuszne są jedynie 

dla klasy przedmiotów dyfuzyjnych spełniających.statystycz­
ne założenia (i) , (jiiJ , (iii) z rozdz*13*1, a także waru­

nek (13.1-4) •
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14. UWAGI KOŃCOWE

W niniejszej pracy zaproponowano macierzowy opia włas­

ności układów odwzorowujących zmieniających stan polaryzacji 

światła. Jego istotą jest połączenie metod używanych w po­

dejściu skalarnym z macierzowym formalizmom Jonesa wprowadzo­

nym do opisu elementów zmieniających stan polaryzacji świat­

ła .

17 przedstawionym w pracy materiale wyróżniają się 

cztery grupy zagadnień. Pierwsza, to zdefiniowanie macierzo­

wych charakterystyk układu zmieniającego stan polaryzacji 

światła, a będących uogólnieniem odpowiednich funkcji skalar­

nych używanych do opisu układów klasycznych, rozdz.4* Druga, 

to grupa problemów związanych z odwzorowaniem przedmiotów 

punktowych, rozdz.5-9. Trzecią i czwartą grupę stanowią za­

gadnienia związane z odwzorowaniem przedmiotów rozciągłych 

i wielopunktowych, rozdz.10-11, oraz z określeniem podsta­

wowych wielkości statystycznych charakteryzujących rozkład 

amplitudy zespolonej i natężenia w koherentnych obrazach 

przedmiotów dyfuzyjnych, rozdz.13-

Jak wykazano w rozdz.12, uzyskane w pracy rezultaty są 

naturalnym macierzowym uogólnieniem wyników, które otrzymu­

je się na podstawie rozważań skalarnych. Mogą one byś stoso­

wano do oceny jakości odwzorowania w układach optycznych za­

wierających dowolne elementy zmieniające stan polaryzacji 

światła, jak również do oceny własności szumu plamkowego po­

wstającego przy odwzorowaniu koherentnych przedmiotów dyfu­

zyjnych w tego typu układach. Na podkreślenie zasługuje fakt, 

iż dla omawianej klasy układów podstawowe mierniki jakości 
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odwzorowania, np. jasność Strehla, zdolność rozdzielcza, op­

tyczna funkcja przenoszenia etc., założą nie tylko od para­

metrów układu odwzorowującego lecz także od rodzaju światła 

użytego do odwzorowania. Zależność ta reprezentowana jest we 

wszystkich końcowych formułach przy pomocy dwuwymiarowej ma- 

c i e r zy k o hu re nc j i.

V/ rozważaniach niniejszej pracy pomijano składową ampli­

tudy równoległą do osi optycznej układu (składową ż-owąl . 

Przyjęcie takiego założenia uzasadnione jest tylko dla ukła­

dów o niezbyt dużych kątach aperturowych. Umożliwiło ono sto­

sowaniu dwuwymiarowej macierzy koherencji do opisu efektów 

polaryzacyjnych. V/ konsekwencji,uzyskane wyniki nie mogą być 

stosowane do układów o dużych kątach aperturowych. Analogicz­

ne przybliżenie stosowano jest zresztą także w opisie kla­

sycznych układów odwzorowujących. V/ szczególności vj pracy {j [ 

Hopkins wyliczył rozkład natężenia w dyfrakcyjnym obrazie punk 

tu dla układu idealnego z uwzględnieniem składowej amplitudy 

równoległej do osi optycznej układu (składowej z-owej J . Wy­

kazał on, iż pomijanie składowej z-owej w układach o kątach 

aperturowych nie większych niż 30° prowadzi do błędu w rozkła­

dzie natężenia rzędu jednego do dwóch procent. W związku z 
♦ 

tym kąt aperturowy równy 30° można traktować jako granicę' , 

stosowalności opisu skalarnego.\Ponieważ w proponowanym opisie 

macierzowym przyjęto ton sam rodzaj przybliżenia, to wydaje 

się uzasadnione , aby kąt aperturowy równy 30° był również 

traktowany jako granica stosowalności togo opisu. Rozszerzenie 

zaproponowanego macierzowego formalizmu na układy o większych 

kątach aperturowych, a więc uwzględnienie w rozważaniach skła- 

dowej z-owej amplitudy, będzie prawdopodobnie* przedmiotom dal­

szych badań autora.
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