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1, WSTEP

Wigkszoéé rozwazaid dotyczacych oceny jékoéoi odwzorowa-
nia w uktadach optycznych oparta jeet na skalarne] teorii
dyfrakcji lub optyce geometrycznej. Stogowanie skalarnej teo-
il dyfrakeji uwzasadnione Jest tylko wtedy, gdy rozklad aupll-
tudy w Zrenicy wyjdciowej uk¥adu mozna opisaé skalarng fnuk&jg
zespolong. W rzebzywistoéci zas, amplituda w dowolnym punkcies
zrenicy wyjsciowe] Jest zazwycza] funkéjq wektorowsyg o trzoech
gltadowych; dwéch prostopadtych 1 jednej.réwnolegkoj do ool
optycznaj ukiadu, Podejdcie akalarhe obarczone Jest wig¢e trze-
ma nastepujgeymi ograniczeniami's
(1) jego doktadnosé maleje z katem aperturowym, a w szcze-

gélnosci nie moze byé stosowane w ukadach o duzych

kgtach aperturowych;

(2) nie daje zadnych informacji o wektorowych wiasnosdciach
fali obrazowej, np. o stanie polaryzac)i swiata w

plaszczyZnie obrazowe] ukladu;

nie moze byé wprost stosowans do oplsu klasy ukaddw

LN
h }
N~

zawierajagcych elementy zmleniajace stan polaryzacji

Swiatta,

Pierwsze ograniczenie wynika 2 faktu, Ze wraz ze wzrog-
tem kata aperturowego ukladu wzrasta sktadowa amplitudy rdw-
nolegta do osl optyczned ukiadu <5kladowa z-owa‘)i jed pomie
janie staje sie coraz mniej uzasadnione. Uwzglednienie gltae
dowaj z=owed amplitudy prowadzi do wniosku, 2e rozktad nate-

Zonia w dyfrakcyjnym obrazie punktu dla ukiaddw o duzych



o' D -

kgtach aperturowych zalezy w sposdéb istotny od stanu polary-
zacji Sswiata wchodzacego do ukiadu, Ten interesujacy efekt
omdwiony zostat w pracach Hopkinsa [1-2:], Burtina [3{] i
Focke “a [4:].

Przyezyny druglego ograniczenia nie wymagajg uzasadnien.
Problen nkréélenia wektorowych wkaanoégi amplitudy w dyfralk-
cyjnym obrazie punktu podjety zostak po razvpierwszy prees
Ipnatowskiego [5~6] , @ najbardzie] wyczerpujace prace zwig-

zane 2z tym tematem przedatawili Richards 1 VWolf [7~3j .

Dotycheczas powstato rdéwniez szereg prac dotyczgcych
pewaych typdéw ukaddw odwzorowujgeych zmiéniajqcych shtan po-
laryzacji éwiatla; I tak, Kubota i Inoue [50:]oraz Kubota 1
Saito [11] przeanalizowali wtagnogci ukiadu odwzorowujgcego
7z dwomn elementami polaryzacyjnymis: polaryzatorem 1 analizato-
rem, np., mikroskop polaryzacyjnye. Wyliczyli oni rozklad nate-
zZenia w dyfrakcyjnym obrazie punkth oraz 6ptycznq funkeje
przanocszenia ,w zalesnodel od kgta pomiedzy polar&zatorum i
annlizatowum, Nastepnie ukazaty sle prace w ktdrych okraesflono
Jak odwzorowywane sa w ukladacﬁ tego typu przedmioty 0 105
‘nych ksztattachs przedmioty kokowe [ﬁZJ , krawedzie [13] ,
periodyczne siatki prostokatne i trdéjkgtne [54—16] "

Komigsaruk [17] podak wzory na rozkkad natefenia w
dyfralkcyjnym obrazie punktu, Jasnosé Strehla oraz optycmnd
funkcj¢ przenoszenia dla uktaddéw z elementami dwdjtomnymi.
Vipkyw dwdjtomnoscl gpowodowanych resztkowyml napregzenicui ter-
micznymi (o symetrii osiowe] ) na Jakosé odwzorowania zostak

péfnie] ezczegdXowo przebadany przez Pletraszkiewlcza [1$~22].



Chakraborty [23] , a takze Gupta [24} i Urbaiczyk [25]
analizowali mozliwo$¢é zastosowania f£iltrdw polaryzacyjnych
do rozwigzywania zagadniein apodyzacyjnych. Znane sg rdéwniez
zastosowania uk*addéw z elementomi zmieniajacymi stan polary-
zacji Swiatta w koherenﬁnym przetwarzaniu informacji, np.
Ghoah [26] i Machado [27] o

We wszystkich wymienionych przypadkach trudnodci z bez-
poSrednim zastosowaniom skalarnej teorii dyfrakeji ominigte
zootaty w taki sam aposdb, Nlezaleinie obliczano jak trang-
foruulg ele¢ przez ukiad oble skXadowe amplitudy prostopadle
do osi optyczne] (hkladowa x~owa 1 y-owa ), a nastepnle wylle-
czano rozk¥ad natezenia w pkaszczyinie dbrazowej uktadu,
Zuniedbywano oczywiscie gktadowg ambiitudy réwﬁologla do oal
optyczne] ukadu (ékladowa z~owq“). Podejscie takie jeust
jednak bardzo kXopotliwe poniewaz wymaga kazdorazowo Zuudnych
przoliczen, a takze unlemozliwia okreslenie zaleznosci podata=
wowych miar jakoscl odwzorowania od stanu polaryzacji swiatia

wchodzgcego do uktadu.

Tetnieje zatem potrzeba opracowania ogdlniejszego opi-
su klasy uktadéw odwzorownjacych zawierajgcych elementy zmie-
niajgce stan polaryzac]i éwiatla, W niniejszej pracy przed-
stawiono wtasdnie propozyecjé takiego opisu. Jego istota jeat
potgczenie metod uzywanych w skalarnym podejéciu 2 macierzo=
wyin formalizmem Jonesa [28~31]*, st&sowanym do opisu elemen=
téw zmieniajacych stan polaryzacji Swiatia,

W tym celu w rozdziale drugim pracy zdefiniowano szereg
poje¢ matematycznych oraz podano wraz z dowodami twierdzenia
umozliwiajace stogowanie w dalsze] czesci pracy zwic¢uzto]

notacji macierzowgj. W rozdziale trzecim przypomniano sposoby
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opisu stanu polaryzacji sSwiata, Szczegdlng uwage zardéwno

tu na wprowadzong przez Wienera [32-33:]macierz koherencji,
ktéra okazaXa sie najbardziej przydatna do proponowanego
macierzowego opisu ukradéw zmieniajacych stan polaryzacji
Swiatla. W rozdziale czwartym zdefiniowanoAmaoierZOWG odpo=-
wiedniki funkcji uzywanych w podejsciu skalarnyms: macierzowg
funkecje érenicowa, macierzowg funkcje rozmycia'amplitudy,
macierzowg funkcje aberracji, macierzowg funkcje transmisji
amplitudy. W nastepnych trzech rozdziatach podano przejrzys-—
te macierzowe wzory na rozkiad natezenia w dyfrakcyjnym ob=
razie punktu, jasnosé Strehla oraz udowodniono uwogdlnione
twierdzenie o przesunieciun, W rozdziatach dsmym i dziewiatym
wyprowadzono uwogdélnione przyblizenie Maréchala dla jasnodci
Strehla oraz rozwigzano problem doboru optymalnej sfery od-
niesiecnia dla omawianej klasy\ukladéw.'Wyniki tam przedsta=
wione uzyskano Jednak przy ograniczajacym zarozeniu, Ze
éwiatlo'wchodzqce do ukadu da sie opilsaé maclierzg koherencji

o elementach rzeczywistych,

Problemy zwiazane z koherentnym i niekoherentnym od-
wzorowaniem przedmiotdéw rozciggiych oméwione zostaxy w roz-
dziale dziesiagtym. W szczegdlnosci wyprowadzono tam uwogdélnio-
ny macierzowy wzdér na optyczna funkeje przenoszenia ukladu
zmieniajacego stan polaryzacji swiatta, W rozdziale Jedonas-
tym wyliczono dwupunktowe rozklady natezenia dla Zrddek
Swiatta charakteryzujacych sie odpbwiednio pelna'koheronch
i jej catkowitym brakiem. Pordwnanie opisu macierzowego 2

opisom ekalarnym przeprowadzono w rozdziale dwunastym,
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Zagadnienia zWinane 2 koherentnym odwzorowaniemn pruede=
miotdw dyfuzyjnych w ukadach zmieniajacych stan polaryzacji
fwiatla sgq przedmioten rozwazaé rozdiialu trz&nastego. Stoau-
jac podejsdcie oparte ﬁa pojeciu procesu stoch&sfycznego
okredlono podstawowe wielkosci statystyczne charakteryzujigce
Luzklad amplitudy i natezenia w pragzczydnie obrazowsj ullua-
du. W szczegbélnoscl wyliczono Srednig i autokorelacje ampli-
"{udy obrazowe], a takze Srednlg, autokorelacje i wariaucje
rozkYadu natgzenia w praszezyZnie obrazowe]. Wielkodci to cha~
rakbteryzuja szum zwiazany z efektem plamkowym, ktdry zawize

powstaje w koherentnych obrazach przedmiotdw dyfuzyjnych.

Zaprezentowany w pracy maclerzowy opis wkasnosSci ulkla-
déw odwzorowujacych zmieniajgcych stan polaryzacji swiatta
wypeinia Wiec luke w stosowaniu skalarnego podejiclia zwigza-
na 2z trzecim z wymienionych wezesnie] ograniczen.

Ponlewaz wagzysthkie rozwatania prowadzone gy przy zalo-
seniu, 1% mozna pomingé skladowg amplitudy rdwnolegia do
osi optycznej uktadu, to uzyskane wyniki nie mogg byé stoso-

wane dla uktaddw o duzych kabtach aperturowych.
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2, ZARYS APARATU MATEMATYCZNEGO

W rozdziale tym zdefiniowano szereg pojeé matematycu-
nych oraz podano wraz 2 dowodamil twierdzénia%)umoZliwianuc
konsehkwentne stosowanie zwiezte] notacji macierzowej w wa-
gadniczej czgscl pracye. Dla uzupeinienia przedatawiono takze
kilka,powszechnie znanych definicji i twierdzen zwigzanych z

rachunkiem macierzowyn, a zaczerpnietych z pracy [34] R
2.1, Podgstawowe definicje.
Def, 2.1-1, Macierz funkcji

A
Macierz A(.x) ktdérej elementami sg funkcje uwniien-
nej rzeczywistej Aij(x) nazywaé¢ bedziemy macierzg

funke]i
A : .
[A(x)]ij = Aij(x) " (2.1~l>
gdzie 1 = 1,n; J = 1,m.
Funkeje Aij(x) moga byé rzeczywiste lub
zespolone,
Dof.2,1-2, $Slad macierzy [34]

A
Niech A(x ) bedzie macierzg kwadratowa n x n,
N
Sladem macierzy A(x) nazywaé bedziemy sume joj

elementéw diagonalnych -

n . '
tr X(X) = %—‘[A(’x)]ii * (2.1--2)

G mE KH G MR S e MR GE e e W ee e e

by :
)wwdlug wiedzy autora nowe
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Def.2.1-3, Macierz transponowana [34]

AT :
Maciexrz Afn(x) nazywamny macierzg tranaponowang

. A,
w stosunku do macierzy A(x) jezeli zachodzi
AR, o ] F
[A (x)]ij a[A(i) T (2.1*5)
bef,2.1-4, Maclerz sprzezona hermitowsko [34:]

‘ A
Sprzeszenien hermitowskim macierzy A(x) nazywauy

At
macierv A’(x) Irtérej elementy speiniajg warunck
v . - K
/\-f, . A . ‘

Uwzgledniajac (2.1—3)1nacierz gprzezong hermitowsko moiZna

przadstawidé jako

NOH GO (2.1-5)
Dafe2.1=-5, Macierz hermitowska [34]
Macierz speiniajgca warunek
R (x)= Tx) (2.1-6)
nazywana Jest macierza hermitowskg.
Def.2.1-6, Caktka macierzy

A A
Catka macierzy A(x) nazwiemy macierz liczb B

okreslonag nast@pujqco
b

-
B =f :\\(x) dx<:>[‘,1\3li'j = [K(x)}ij ax (2.1~7)
- a

a

Dof.2.1-T., Pochodna macierzy

o . A : A
Pochodng macierzy A(x) nazwiemy macierz A’(x)

okreslong nastepujaco



- 8 -

2’( x )= i Q(x)<:‘=>{;\\'(x)] 13 . E—f-c-—[’a\(x):l ij (2.1-8)

dx

Daef,2.1-8, Splot macierzy.
A | A
Niech A (x)bedzie macierza n x k, a B (x )macie-~
A A
rzg k x me Splotem macierzy A (x) z B (x) nazwie-=

A ,
wy macierz D (x ) okreslona nastepujaco

A A A A
D(x)= A(x)®B(x) <<=> D(x)=

A . » g - - N
= f ACx) B (x-x) dx . (2.1-9 )
- O
A
Macierz D (x) ma wymiar n x m. Zgodnie z def,2.1-6 elomonty

AN
maciorzy D (x) wyznaczyé mozna na podstawie wzoru

, k< :
[ﬁ(x)]ij =§_§a[?§(x'):(il[gCx—x')]lj dx . (2’..1-10)

» '/\ : & .
Zatem element iy nuacierzy D ( x) jest sumg splotdéw funkcji
' N
tworzgcych i-ty wiersz macierzy A (x) 2z odpowiednimi funlkcja-

A
mi tworzgcymi j-tg kolumne macierzy B(x) ‘

k

[/I;(x)]ij = £, [Q(x)] il [f?»\(y):l 15 * (2.1-11)

1=1

Daf.2.1-9, Korelacja wzajemna macierzy

A A
Niech & (x )bedzie macierza n x k, a B (x) ma=
A

cierzg m x k. Korelacjg wzajemng macierzy A4 (x)

A A
z B (x) nazwlemy macierz D (x) okreslong nustepus-
jaco |
A A A A
D (;c) = A(x)@®B (;{)<::>D (x) =

1 ’\“' , , '

= fa(x) Blixix) ax” . (2.1-12)
g3

A ¥
llacierz D (x) ma wymiar n x m. Zgodnle z def.2.1-4 i del.

A .
2.1-6  elementy macilerzy D (x) mosna przedstawié juko
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[_D (x)]ij Z S[A(x ) i1 [B (x~ }.)le .
(2.1-13)

\
Zatem, element 1J wacierzy D‘(y) Jest sumg koxoluoji WA je -
nych funkeji tworzacych i-ty w1or 37 macierzy A ( x) z funkcejami

tworzacyal j=ty wierss maclerzy B (X)

[B\(x)]ij = > [A(,‘c)] L'}’;(le 0 (;2,1.,.144)

1=1

Dote 2. 110, Transformata Fouriera macierzy

A .
'L‘ranafomuta Pouriera macilerzy A ( x) nazwieiy

macilerz ﬁ(f) taka, ze

R FRofeRo-

L
p=>

~.f?(x) exp-( »-ZfTixf) dx (201”:&) |

— >

Uszywana bedzie rdwniez symboliczne oznaczenia A( x)d"ﬁ(i) .
2.2, Podatawowe twierdzonia.

MwWe2e2=14 O pochodnej iloczynu macierzy
A A A
Jezeli D (x)= A(x)B(x)to zachodzi

A
a D(x) d A(x)_

dx b dx

A'
A d B(x)

(é.:m)

Dowodd s

A .
d D(x)
dx ij
d (A
S A{A(x) [13 (x) =
dx k 4 kj
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- Zﬁ%'[x‘;x)]ik [/ﬁ(x)]kj +Z[X(x)]ik E"g?" [%(")} Ky =

)i

Z[(]?T’?QX)] Lk [%(’“)J k3 ‘+Zk: P Cxi,ik [g‘ag‘g‘“‘ﬁu

s

-l'f?»{’}- dﬂr
u[%ﬁﬁJluxﬁi [&() mwf’]ij_ (2.0-2)

Twe2.2-2. 0 zwigzku miedzy splotem a korelacja

wzajemng macierzy
A A A A .
Ax@B() = Ax)OBT(-x) - | (2.2-3 )

Dowdad

[fe@sw]y =2 f[Re), [ [Beees], ax” -
l=o=

“2;_5 [i\\(x')]il -[Tﬁ("“‘x’) ]:1 ax

Zﬁ;&\(x )]il [B (-(x"- x))] 51, dx” =[.2(x)@3+(~x)]ij .

Lo

2.2-4 )

i

Twe 2.2~3. Operacja transponowunla maclerzy nie zmienia

jej $ladu [34]

. ( 2,25 )

tr A(x) = tr ATR(x)

Twe 24 2=4, Slad Jest nieczuxy na zmiang kolejnosci

mnozenia macierzy [34]

Ctr A(x) B(x) = tr Bx)A(x) . ( 2,256 )
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Dowody ostatnich dwu twierdzed mozna znaleZé w standartowych

podr@cznikach algebry, np [34j}.

Tw. 2.2-5. O pochodnej $ladu macierzy

~,
d A d A(x
— tr A(x) = tr  —— (2.2~7)
dx . dx
Dowoad:
d A~ d <ira, dra
— tr K(x) = — ) .[A(x)lii ’Z "‘[A(x)]u =
dx dx % ] 7 ax ’
- O A | ~
j‘—T[d A(x)] d A(x)
= = 'tr [
ii . ¢ ”
- ax A ax  (2.2-8)

Twe 2,2-6., O caZce S$ladu maclerzy

b - b
A A ‘
~§‘tr A(x) dx = trvf A(x) dx ( 2.2-9 )
- 8

a

Dowéd:

b

j 'tr.ﬁ(‘x) dx = VSPZ[E(X)JH dx =Zj2[ﬁ(x)]ii dx =
a i L <

a

a

= Z[f (x) dx]ii - trjz ?x(;%) ax ( 2.2-10)
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Tw, 2.2~T7. Uogdlnione twierdzenie o podobienstwie

A J -
Jezell macierz A(x) ma transformate Fouriera
Id A . A A
réwng A (£) , to mac1era A(ax) ma transformate

Fouriera réwng [a]|” ) A ( f/a) .
Dowéd s

Jezelil

[ ]y — [R (f)]ij y (2.2-11)

to na podstawie twierdzenia o podobienstwie [35] zachodzi

[Aax)] 5 == | [ﬁ (f/a)]ij ,  (2.2-12)

z czego wynika, zZe /

Aax) 3= {al"1ﬁ( £/a) (2.2-13)

Pfwe 2.2-8, Uogdlnione twierdzenle o przesunigciu

A i
Jezeli macierz A(x) ma transformate Fouriera
A A
réwng R(f) , to macierz A(x-a) ma transformate

) P
Fouriera réwna exp( -2friaf) A ( £) .

[ A(x)]ij [ﬂ (i’)] ¥ . (2.2-14)

to na podstawie twierdzenla 0 przesunieciu [35] zachodsi
‘A ‘ _ . A
[A(x—a)]ij_«__. exp ( =297 iaf)[fl( f) ]ij .
(2.2-15)
A | o ' .
A(x~8) o exp ( =27Tiaf ) R (£) o (2.2-16)

Zatem
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- Pwe 2.,2-9. Uogdlnione twierdzenie o splocie

AN

Jezeli macierz A(x) ma fransformate Fouriera
A, A
JQ(f) y 8 macierz B(x) ma transformate Fouricra

AN A A
réwn&:B(ﬁ) , to splot macierzy A(x)®B(x) ua
transformate réwna iloczynowi transformat

A A
wyjsciowych ﬂ(f) B (f)
Dowoad s

Zgoduie z definicja splotu mocierzy (def.2,1-8) zachodzi
A UL ‘
[A(JC)@B(X)L E [A( )J O B(X)]lj . (2.3,..17)

Na podstawie twierdzenia o splocie'[BS] *atwo mozna wyzna =
czy?¢ transformate Pouriera elementu 1ij  macierzy

AC®Bx )

\?{[KCX%(X)]ij ""?{Z[a(x)]n@[g(x)]m} N
1

2,2-18)

*‘2;?{[3@]11} ?{[g(x)] 13{ =Z:Lrﬁ(f )] 11 [ﬁ ('f)]l;s ”

..[ji( i‘)ﬁ(f) :]ij .

Tak wige wykazano, %e

}”{A(x)@amx)} ﬂ(f)JBCf ) (2.2-19)

Tw.2.,2-10, Uogdlnione twierdzenie Rayleigha

AL
Jezeli macierz A(x) ma transformate Fouriera

A
réwng A(f) , to zachodzi

e

j?f(‘x) ts) ax nfﬁ(f) A¥Ce) as ( 2.2-20)

— COizd
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Dowdad

Poniewas

f[/&('X) X"L('X)]ij ax =Zﬂ3 (x)]il [ﬁ(x)];l ax , (2.2-21)
o T |

to na podstawie twierdzenia o mocy [35] otrzymuje sie

2 L)A(v [h60]}y ox = by f[fm)} (A, ar -
L (Gt

j [ﬁ(f‘) ﬁ*‘(’f)]ij ar.
&;T;n - oo
j?\(x) X*(x) ax afﬁCf)ﬁ*(f) af '(2.2-23)

Twe 2.2=11, Uogdlnione twierdzenie o mocy

Jezell macierz Q(x) ma transformate Fouriera
réwnqtfi(f) , & macierz %(x) ma transforaate¢
j§(f) , to zachodzi
[} ' S "
f 2(3{) ﬁ*(x) dx sz/{\(f)_ﬁf(f) ar (2.2—24)
- e |
Dowdd przebiega tak samo jak dla uwogdélnionego twierdzenia
Rayleigha, przy czym A*(x) zastepuio sie przez B*(x) a

Ar) przea BH(s)

Tw, 2,2-12, Uogdlnione twierdzenie o korelacji wzajemnsj

A
Jezeli macierz A(x) ma transformate Fouriera
A A
réwnq L(f), a macierz B(x) ma transformate
33(f), to korelacja wzajemna macierzy A(x) i

B(x) ma transformate Fouriera rdwng JQ(E)jE‘(f)



(2.2-25)

A o) —=A () Bte) .

Dowdad s

Wykorzystujac twierdzenie o zwiazku miedzy Splotem a kore-
lacjg wzajemng macierzy (tw. 2.2—2’)oraz wogdélnione twier-

dzenie o splocie (tw. 2.2~9) otrzymuje aie
?{X(x)@g(x); = ;’{X(x)(@%{-—x)}:
33t{ﬁ(x)}}'{ﬁ*(-x)jnﬁ( £) B(zr).

(2.2-26)

Tw, 2.2-13., Uogdlnione twierdzenie o pochodne}

A\
Jezeli macierz 4(x) ma transformate Fouriera

A A
R(f) , to jej pochodna 4 A(x) ma transfor-
dx

PAY
mate Pouriera réwna 27if R (£) .
Dowdd:

Na podstawie twierdzenia o pochodnej [35] zachodzi

2] | -7 {5 el -
- ggrif}’{[ﬁ(x)]i'jj = 2JTir [Jii(f)]‘ij.

(2.2-27)

Zatem
d A(x)

, A '
= e2mir F(s).
dx - .



- 16 -

Tw, 242=14, O pdchodhej splotﬁ maciefzy
Pochodna splotu dwdch macierzy jest splotem
jednej z nich 2z pochodng drugiej, czyli

2 x)@B(x)} @B(X) A(x)®

dx dx dx

(2.2-29)

Dowadd s
Powyszove zwiazki wyprowadzidé mozna na podstawie wogdlnionego
twierdzenia o pochodne] (tw. 2.2-13) oraz uogdlnionago twier-

dzenia o splocle (tw. 2.2~9)

(‘n. P 30)

ax

{A(x)Qt) ]3(}c)j = 2JTif {ﬂ(f)?)( 1’)f

iw%f)() B(x) {2?[11’ u@\(f)}jg(f)

dx

-
N\
no
e
no
i
W
=
N—r

d ﬁ(x)

ax

e J?(f) { 2ﬂifij\3(f>} (:3.2«-32)

K(X)(D

Powyze ] przedstawiéno definicje i twierdzenia zwigzane
z macloerzaml funkecJi jedne] zmiennej rzeczywiste] Aij(x).
Mozna *ratwo wykazad, iz wazystkie omdwione zaleznodci spod-
nione s8a takze dla macierzy ktdérych elementami sg funkcje ,
wiclu zmienmych rzeczywistych Aij (x1,... xn) . Najczedcie],
do opisu zagadnien optycznych przydatne sa funkcje dwdch
Zmiunnych.Aij (x1,x2) , 8 zatem w dalezej czesSci pracy wy-
Jorzyatane zostana dwuwymiarowe odpowiedniki twierdzen udo-

wodnionych w niniejszym rozdziale.
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3. POLARYZACYJNE WLASNOSCI ZWIATZIA -

Polaryzacyjne wkasnosci Swiatka zwigzane sy z wektorowym
charakterem fal elektromagnetycznych. Isfnieje kilka sposobdw
opieu gstanu polaryzacji swiatla., Ich przyktady to wektor Jo-
neca, kula Poinkarééo, waktor Stokesa orgz tazw, maciexrz ko=
hovoncji - wprowadzéna przez Wienera w latach trzydziestych
[BQMBBJ o W drugioj porowie lat pieddziesiatych ukazato aig
takze kilka prac poswieconych macierny koherencji LEGMBY] .

W niniejszym rozdziale przypomniano definicje oraz podestawowe
wtasnoscl maclerzy koherencji, Jej zwiagzek 2z wektorom Stokesa,
a takze jej wkasnoscl spektralne., Beda one wykorzystywaue w

dalsze]d czescl pracy.

3.1. Dofinicja macierzy koherencji dla fali piaaskie]

A _ ,

liiech Z(z,t) bedzie poprzeczna Fala pkasks o dowolnym
sktadzie spektralnym rozchodzacg sie w kierunku osi 2z, rys.
3.1 « Dla fali elektromagnetyczne]j przyjmuje eil¢ zazwyczal,

N
2o 4 (z,t) opisuje drgania weltora elektrycznego

A \ A ' :
2(z,5) = E(z,t) . | (3.1-1)
Maciersz koherendji poprzeczne] fali ptaskiej definiuje sie

“naatepujaco [36] ‘
5 =<€(z,t) 2 +(z,t)>t ’ (3.1-2)

A , ) -
gdzie Z(z,t) Jest weltorem reprezentujgcym skradowe kartez-

juaiiskie zaburzenia
Zy,(z,t)

7(z,%) = Zy (2,4 K (3:1-3)
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S
a e g Oznacza uérednianie po cvasie kazdego elemecuntbu

maciorzy Z(z t) A*(z t) wedlug wzoru
T
ee e = lim Crm eee 4t " j“']u"!
-

dawiazmy, %e rozwinigta postadé macierzy koheroncji dla fali
ptaskiaej Jest nastepujagca

Jxx ’ ny

A
J = ST ) (3.1~5)
gdzie

-

g =<z (=) 75 (z,t) =2
ny = <'ZXC Zrt) Z;(('Z,’t) >t ( )
e e 3.1-6

Jog = <Zy<z,t) Z:f(z,t)>t S
=< ,(7%) Zy(z,t>>c

Z(z,1)

N‘,

ltyoe3e1s Yoprzeczna fala plaska rozchodzgca gie wzdius osi .
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slementy diagonalne Jxx 1, Jyy macierzy koherencji 64
zawgze rzeczywiste i rdwne nateieniu zwigzanemu odpowiednio
ze aktadowg 2 (z,t) 1 Zy(z,t:) fali. Cakkowite natezenic
fali rdwne jeot wiec $ladowi z macierzy koherencji

I = tr 3 . | (3.1w7)

Poniewasz elementy niediagonalne macierzy koherenc]i sy wua-
jeuniao aprzesone me = Jyx jest ona macierza heruitowalis
(def.2.1-4 )

A A

J = JT | (3.1-8)

liara koherencji pomiedzy sktadowymi kartezjarnskini
ol Hu(z,t) i Zy(m,t) Jogt taw, zespolony wopdlczynnilk ko=

herencji _ rozumiany jako | 36
J %y J

ny
g ol 05, )

Z nierdéwnosci Schwarza wynika, Ze}/txy]<5;1 .

W przypadku, gdy %(z,t)'jest falg quasimonochromatyczng
o sSrodniej czestofei Y Jej skiadowe kartezjariskie Zx(z,t)'
i Zy(z,t) mozna przedstawié nastepujaco [38]

Zx(z,t) = W}{(z,t) exp - 2TTiv ¢ ,

(3.1~jo)

Zy(z,t) = Wy(z,t)exp - 2TTiVt ,

gdzie w pordwnaniu z czestodcia V Wx(z,t) i Wy(z,t) 64
wolnozmiennymi zespolonymi funkecjami czasu. W krdétszej no-

tacji macierzowe] otrzymuje sie

A A ‘ e
Z(2,t) = U(z,t) exp = 27TiV t , (3.1-11)



w O

.

A
gdzie W(z,t) jest zespolong emplituda wektorowag o sktado-
wych'WX(z,t) i W (z,t)

o
WA(ZOt) = 4Q (t) O‘Clﬂ[{ﬂ (t) - TZ]:
(3.1-12)
t' ) et (8) - 2
Jy@ht):zuyCL)exp ? t) = -;—-Z

‘unkcjo rzeczywiste a (t ; U nie e
Funkcjo rzeczywigte a, () y a (t) ?X(t) SDJ() e za
lezg od czasu w pl,vp dku gdy ’( t) jest falg dcidle morno-
chrom dt}}c (8.

Podstawiajac (3.1~11) do wzoru definiujacepgo macierz

kohorone Ji (3.1-2) olrzynuje aie
3 o< le ) Ve,)D, (3.1-13)

a wvzgledniajac dodatkowo (3.1-12) mozna otrzymad rozwinig¢ta

postaé macierzy kohercncji dla $wiata quasimonochronatycaz-

e go r )
<§§(t):>t : <{éx<t) ay(t) expi.d?t):>£
3 - i |y (3ar1a)
<ax(t) ay(t)' oxp - 14t )>t3<a§(t ))t

(f(t) Jeat rovnica faz J(iﬂ pr(t) fp (+) -

3.2, Stany polaryzacji fali pZaskiej

Stan polaryzacji fali zwigzany jest Scisle ze wspdlcayne—

Xy

laryzowana, gdy spelnione sg warunki

nikien koherancji/l( . I tak, fale Z(z,t) nazywamy niaopos=



/Any = 0 oraz Jxx = Jyy % (3.2«1)

Macierz koherencji fali niespolaryzowane] przyjuuje wicc

poatad _
A 0.5 3§ O ‘l
0 s O.SJ _
- - A . .
gdeie I = tr J oznacza natezenie fali |

A -
Pale Z(z,t) nazywamy w peini spolaryzowang, gdy opoinio-
1y jest warunek

/Lny = cxbicf;y » (3»3“3)

co oznacza peina koherencje pomiedzy skiadowymi kartezjais-
kiui % (2,8) 1 Z (2,%) . Uwzgledniajac (3.1-9) oraz (3.1-5)
mozna ratwo wyznaczydé rozwinietag postadé macierzy koharencji

dla fali w peini apolaryzowane]

r— -
Jxx - explcﬁéy VJXX Jyy

J = ; 3,24
exp - id ‘{/J ; J (-0

XX 39 yy

-4

W zaleznosci od wartosci jaka przyjmuje wepdtczynnik c{;y
rozrdznia eie liniowy, kotXowy i eliptyczny stan polaryza-

cji. W przypadku gdy
+ + o
C{;y =m/T dla m=0, =<1, =2 ,,. (é,gﬁg)‘

fule nazywamy spolaryzowana liniowo. Macierz koherencji ta-
\

kiej fali mozna zapisaé nastepujaco

B m
A T 3 (- 1) )/ xx Tyy )
J = ‘ 3.2-6
DV, (

s MVJ

~—
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TFale nazywamy gpolaryzowana koXowo gdy speiniony Jjest

warunek | |
C{;y = Z—T dla m =<1, % 3,,., - (3.2-7)
oraz dodatkowo
Do = yg i | (3.2-8)

/

Macierz koherencjli fall spolaryzowane]j koXowo przyjmdju wiec

pogtad

A 1 :
d.m e . s (3.2-9)
EIERN |

Fale nazywamy spolaryzowana eliptycznie dla pozostatych war-

tosdci wspdiczynnika dty.

Oprdcz peknego niespolaryzowania 1 peinego gpolaryzowania
fali istnieje rdéwniez szereg standw poéfednich okraslanych
jako polaryzacja czedciowa. Fale g(z,t) nazwiemy spolaryzowa-
ng czesSciowo gdy wepdkezynnik koherencji/i,l—xy gpeinia nisrdw-
nosé

o<l <1 | (3.2-10)

Hacierz koherencji talklej fali mozna jednoznacznie przedata-
wié¢ w pogstaci sumy dwdch macierzy okreslonych rdwnaniamil
(3.2»2) i (3.2—4) o Oznacza to, %0 kazdg fale spolaryzowang
czedciowo mozna traktowad jalko jednoznacznag aupérpozycj@
dwdch niezaleznych fal z ktdrych jedna jest w peini spolary-
sowana a druga niespolaryzowana

5. .?G + 3\n , (3.2-11)
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A ; .
5 Do . .
Niech Is = tr J8 oznacza natezenie fali spolaryzowanej, a
A
Iu a tr Jn - natezenie fali niespolaryzowanej. Parametircu
charakteryzujacym fale czesdciowo spolaryzowang jest stopien

polaryzacji P rozumiany Jako

- R - S . (3.21-' 2) '
4 I . N ‘
Is n
Zpodnie o powyzeza definicja stopiedl polaryzacji P spoliia
warinok .
0T P <1 » (3.2»-13)

przy czym krafdcows wartofci przyjmuje dla fali niespolaryzo-
wana j (P = O’)oraz dla fali w peini spolaryzowanoj <P & 1).

liozna rdwnies wykazaé, Ze gpelniona Jest zaleznosdé [36]

: 4 det :Tﬂ -
P ==. 1 = (m)‘z ’ (3.2*14)

A ‘ ' A
gdzie det J oznacza wyznacznik macierzy koherencji J.

3. 3. Zwiazek macierzy koherencjl z wektorem Stokesq

Oprdcz macierzy koherencji istniequinne sposoby opisu
stonu polaryzacji. Jednym z nich jest czterowymiarowy wektor

Stokesa ‘:‘38-' 39]

i
SO

A .
2
=)
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. : ; A
Sktadowe wektora Stokeésa dla pkaskiej fali Z(z,t) 0 dowol=

nym okiadzie spektralnym oblicza sie wediug wzordw

So =<szcz’t‘)12>t +<,Zy(z‘,t)'2>t‘ o

: 0o 2 : 2
5, = <[ 2l >y =<2, )| D>y (3.3-2)
Sy = }21"39{<ZK('»"1,@) z’; :a’t>>1; } ,-

w
i

% , :
3 21m{f<izx(z,t) Zy(z,t):>;;}> K

gdzie Re [...}'jw Tm {...j oznacza odpowiednio czesdé ruscay-
wiolty i urojona.

fotwo mogna wykazad, ze pomiledzy elementami macierzy
koherencji a sktradowymi wektora Stokesa istnieja nastepujae

coe zwigzki [38“39]

S, = T Tyy s
Sy = Ty = Tyy

Sy = Jgy + Jgy (3.3-3)
55 = 1 (g ny) ,

orazyslacje odwrotne

1 .
Jyx = E (Sq * S1) ’
e = 2 (%3 (3.3-4)
ny ? % <82 + i83> : |
Ty ® x 5, = 15,)



Dysponujac skXadowymi wektora

czyé stopied polaryzacji fali

Stokesa mozna rdéwniez wyzna-

[58-39 ]

2 W2
-\/"‘1 + S5 4

e
[w] 3

P =

A
ilacierz koherencji J i wektor

. (3.3-5)

>

o

Stokesa S sa wigce réwnowasnymi

gpogobami opleu gtanu polaryzacji.

3.4. Spektralne wkasnosci macierzy koherencji i wektora

Stokaaa

A

Uektorowa fale niemonochromatyczng Z(z,t) mozna zavwaz

traktowad jako superpozycje fal $cisle monochromatyczuych

[3]

oo

Zx(t)zdf ax(‘z)) Q:“:E)i[;f%(v)~ 2Tl"9’cj dav g

(3.0-1)

zy(-t):bf a, () exoi[p,(0) - 2TVs | av .

A
W przoypadku gdy fala Z(z,t:)jest quasimonochromatyczna

“x(v) i ay(Vqu rézne od zera tylko w wagskim przedziale

gpoeltralnym.

Uzywajge notacji macierzowej spektralne rdwnania (3.4~1)

mosna zaplsaé jako

:/Z\(t)z fG(V)exp}: -~ 2mwivt]ay
o

(3.4-2)

A
pdzie U(V) jest amplituda zesgpolong skkadowej Scifle mono-

chromatycznej o czestodeci v
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ra (V) expi ¢ (V)—
x PLPy

UE) = ¥ (3.4-3)
] ay(v' expiqu(V)J

Podatawiajage (3.4~2’)do wzoru defininjacego macierz kolio-

rencji (3.1«2)(ﬂn%ymuje ale

fu(v) U (v) aw . | (3.4-1)

. AL,
Zauwwazmy, ze wyrazenie U(v)U(V) jest macierzg koherenc)i

skiadowej Scisle monochromatycznej o czestodci v

—

a (V) 5 a (v)a (v)e {picqv)

a(ay(exp = 100) 5 ag ()|

J?V) 50 (y) - §/’ ). ”dC'LeI"é ta bedzie dale] lluAJ\Jullﬂ
gpekbralng maclerzg koherencii i oznaczona przez Jv [J 33};

[o0]

A A AN ’
Jy = UM UV . | (3.4-6)
Réwnanie (3.4*4) mozna zatem przedstawlé w postaci

A oo/\
o J =j Jy av . | (3.4=17)

Powyzaza zaleznosd poha"ujc, ze macierz koherencji fali nie-

monochromnatycznej révna jest sumie macierzy koherencji wazyst-

kich skYadowych Scidle monochromatyoznyeh'tej fali,
Poniewaz elementy macierzy koherencji zwigzane sg ze

slidadowymi wektora Stokesa zaleiZnosciami liniowymi (3.3~3)
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i (3 3—4) to spektralne réwnanie (3 4-7)spelnione jest
takze dla wektora Stokesa [39] [@1]

/\

=/ 5, , | (3.4’»8)

0

gdxie Sy Jeat spektralnym welkborem Stokesa o sktadowych

okroslonych nastgpujacoV[BQJ, [41]

- 2 2
bov = a;(ﬂ)+ ay(i) .
Sq, = ai[ﬁ)~ ag[v)
: 304“9
Sy, = ZGXIY)ayﬁdcosd?Y) , | ( )

S 24 )a_(Moin O(V).
= 20, (Wa Msin (V) .
3.5, Trdjwymiarowa macierz koheraencji

‘ A
Dotychczas zak}adano, %Ze Z(i,t) Jjest poprzeczng falg

piaskyg rozchodzaca gie wzdiuz ogi 2
N Zx(z,t) |

2(2,5)= L (3.5-1)

‘ Zy(z’t)J

W opdlniejszym przypadku mamy do czynienia z falami chukakto»
yzujacymi. sie bGPdAlGJ skomplikowanym ksztattem powierzchni

falowych., PFale te muszq byé oplsywane wektorem trdjwyniaro-

Wil - o
A Zx Cx,y,z,t)‘
Z(x,y,z,t)'z 2y (x,y,z,@) : (3.5-%)
Z, (%,9,2,1)
- -

n _
Jezoli Z(x,y,z,t) Jest zaburzeniem quasimonochromatycziyu,



to Auohodzi ,
Z(x ¥,z t) = W(x,y 2 t) exp - 2TTivVt (3.‘_')‘*3)

A
gdzie W(x,¥,2%, t) joat wolno-zmienng w czasile aespolonx ariplie-

tuda wektorowg o skladowych

i

&"J:(;(?}{,y,z,t) é’lx(X,I},Z,t) expi?ﬂx(x,y,z,t) ’
WJ(“,V,Q,L) ava&<x,y,z,t) expisov(x,y,z,t) ’ (3.ﬁw4)

wz(x,y,z,t) - az(x,y,z,t) expi?ﬂz(x,y,z,t)

Podstawiajac (3.5r2;)do wzoru definiujgcepo maclerz ko=
herencji (3.1-2)01;1‘nynmje gle '
. -1
5 5% > s <27 >.;<z.Z*>b

£ X X 2
A

J(J‘. 1 Y45 )“’ <Zyzx >t <Z Z >1; v; (Zyzg >‘b . (3-5*5)
. % S

Formalnie oznacza to, iZ dla wekbtorowych zaburzed trdjwynla-
rowych mozna ydwnies wprowadzid pojecie stanu polaryzacjii.

A
Trdjuwymliarowa maclerz koherencji J(k,y,z) reprezentuje teraz
charakter degan weklora Q(X,y,z,t) w danym punkcie przcubrze-
ni (x,y,z) « Stan polaryzac]i fell o niepXaskich powisruchniach

falowych moze sie wige zmieniaé od punkbtu do punktu.

YW pracy [42:},,w oparciu o zwiazki sk¥adowych wektora
Stokeasa z elementami maciepzy koherencji, wyprowadzono uogdl-
niony dziewiecloparametrowy wektor Stokesa. J@ko réwnowaznlk
trd juymiarowe] macierzy koherencji moze on byé takze stosowa-

ay do opisu punktowych standéw polaryzacji.
{
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Zauwazmy, ze dla frontéw falowych speiniajgcych w kai-

dym punkcie (x,y,z) warunek

(lZZCX,y,z,t)[2>tQ$O (3.5-6)

ti1d juymiarowa maclerz koherencji redukuje éie do postaci
r

* 2 .y .
<%xzx :>t <?Zxéy :>t i
A- ) [ r* v, ¥ . ..

0 ; 0 i O

P —

"ot

~-e

co oznacza, ze przy speinieniu (3.5-6) z-towa skiadowa zabu-
rszenia moze byé pominieta
1 _) ~ g e
2, (%,9,2,5) % 0 . (3.5-8

I

2atem, dla frontdéw falowych speiniajacych warunek C3.5w6)
zamiast trédjwymiarowe] macierzy koherencji, mozna uzywad Jaj

dwuwyniarowego odpowiednika
[ o * i X 1
'<ﬁx5x:>t ’<fixzy :>f

N |

J(‘x,y,'&) = . x *® ¢ (3-‘)"9)
</,yzx>,t s B2y >y

i -

dnalizujgc w dalsze] czedci pracy wkésnoéci uktaddw odwzoro-
viijacych zmieniajgcych stan polaryzacji swiata zakladad be-
dziemy, ée ich katy aperturowe nie sa zbyt duze, tak aby
wozna bykto przyjacé, Ze warunek (3.5—6,>jest zawsze gpeiniony.
Uniozliwi to zaniedbanie gsktadowe] z-towe] zaburzenia i uto«»
sowanie dwuwymiafowej macierzy koherencji do opisu efelitdw

polaryzacy jnych.
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4, MACIERZOWE CHARAKTERYSTYKI UKLADU ODWZOROWUJ4CLGO
¥
ZMILENIAJACEGO STAN POLARYZACJT SWIATEA

Klasyczny (nie emieniajacy stan polaryzacji éwiutku)
odwzorowujgey uktad optyczny reprezontowany jest zazwycouaj
przy pouocy przestrzennie stecjonarnej amplitudowe fun-~
kcji rozmycia h(x1~x0 R y1~y0) [43] « Przedstawlia ong dme
plitude zespolong w punkcie (x1,y1) ptaszczyzny obrazowej, po=
chodzaca od punktowego ZrddXa o Jednostkowej amplitudzie
zhajdujgcego sle w punkcie (xo,yo) ptasgzczyzny przedmiotowe.
Réwniocwaznie uzywana Jeot takze funkeja Zrenicowa }I(?,’7)
opiosujgca rozktad amplitudy zespolonaj w Zrenicy wyjsciowe]
ulctadu, gdy w ptaszcezydnle przedmiotowej znajduje sie¢ punke

towo Z1rddxo swiatXa o Jjednostkowej amplitudzie.

Do opisu ukiaddw odwzorowujacych zmieniajacych stan
polaryzacji swiatta wprowadzone zosgtana macierzowe odpowied-
niki amplitudowej funkcji rozmycia oraz funkcji Zrenicowe].
ZdeTiniowana zostanie réwniez macierzowa funke ja aberracji
i macierzowa funkeja transmisjl amplitudy.

Powyzsze macierzowe charakbterystyki uktadu odwzorowujg=-
cepo zmieniajacego stan polaryzacji swiatla, podobnie jJuk
dla ukiadu klasycznego, zdefiniowane zostang dla éwiqtlu
‘éciéle monochromatyczhego o czestodci V . Poniewas definio-
wane funkcje macierzowe nie zmieniaja sie istotnie w waskim
przedziale spektralnym, mozliwe bedzie ich astosowanie rdw-

Wyniki przedstawione w rozdziatach 4-10 zostaly
czgsSciowo opublikowane w pracach [ﬂ4~4§]
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niez wtedy, gdy ukiad odwzorowujacy pracuje w swietle

quasimonochromatycznym, rys.d.1 ,

V4=V
Tk = — = il 21«
/77‘\ .
o
| I\
| el
/ ' \\
/ | \
/ l \
/ | \
P | N B
\)1 Vv Vz Vv

Rys.4.1. Przyk¥adowy sk¥ad spektralny fSwiatla
quasimonochromatycznego.

4,1, Macierzowa funkcja Zrenicowa

Przyjmidmy., ze uktad z rysunku 4.2 2zmienia stan po-
laryzacji dwiatta. Niech A, bedzie punktowym érédlem Swiatta
dcisle monochromatycenego o drugosci fali A . Punkt A1 niech
bgdzie geometrycznym obrazem AO. UkXady odniesienié zwigzane

z ptaszczyzng przedmiotows, praszczyzng Zrenicy wyjsciowe]



o G

oraz ptaszczyzng obrazowa oznaczymy odpowiedniq (ko, yo) '
('?’,"7’) ,'(x1,y1) , a osle z_ i =z, niech pokrywajs sig
z osla optyczna ukkadu. |

irenica irenica
wejsciowa wyjSciowa

Rys.4.2. Odwzorowujacy uk¥ad optyczny zmieniajgcy stan
polaryzacji Swiata, Wybdr uktaddéw odniesienia
i oznaczen,'

Podobnie jak dla uk}addw nie zmieniajacych stanu pola=-
ryzacji Awiatta powierzchnie odniesienia stanowié bédzie
sfera Gauasa 2{; o promieniu R i grodku pokrywajqcym gsle
z punktem A1 « Sfera Gaussa‘E; prZeciné,oé optycznd uk}adu'

w Srodku Zrenicy wyjsciowej C.
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Zaxézmy na wsf@pie, ze punkt A emituje $wiatto spola=-
ryzowane 1iniowo o azymuc;e polaryzacji pokrywajgcym sie z
osig x (hekfor elektryczny rdédwnolegry. do osi x‘). Przy jumi j=-
my takze,rZe amplituda AX $wiatta wchodzgcego do uktadu,
mierzona w Zrenicy wejsecilowe], rdéwna jest Jednodci. Gdy uk-

Yad optyczny zmienla stan polaryzacji Swlatta w jego Zrenicy
wyjsSciowej pojawig sie dwie powilerzchnie falowe:z?xx i Eijyx
reprezentujgce rozktady zaburzel spolaryzowanych liniowo od-
powiednio w kierunku osi x 1 y . Powierzchnie falowe;E:xX
i:Z:yx mogg bydé przesunigto wzgl@dem gieble jezeli w ukia-
dzie wystepuja dwéjromnosci [18] .

Zatdzmy teraz, Ze punkt A, emituje swiatto o jednéutko~
wej amplitudzie Ay, gpolaryzowane liniowo o azymucie polary-
zac ji pokrywajacyﬁ si¢ z kierunkiem osi y « W érénicy wyjS-
ciowej ukzadu pojawia sie dwle anaiogiczne powierzchnie falo=-
we Zw iZ}w <nie zaznaczone na rys. 4.2) .

Niech funkeje . (€,7) , B (£"7), ny(?’,‘p’)J HW(?";?’)
opisuja rozktady amplitud zespolonych w Zrenicy wyjsciowe].
uktadu, zwigzanych odpowiednio z powierzchniami. falowymilgjgx y
jijyx ; EE:Ky ,:E:;y « Macierzowg funkqjg’éreniCOWQ uktadu
odwzorowujgcego zmieniajacego stan polaryzacji Swiata zde-
finiujemy jako 2
) [ (5770 5 B, (69 7)
H(e,77) = | , , (4.1-1)
ny(g’r/?,) 3 Hyy({:” 7’)

L

Pierwsza kolumna macierzowe] funkcjl Zrenicowe j (kolumna

x—owa)’przedstawia odpowied? uktadu, mierzong w jego Zrenicy
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wyjsciowej, na punktowy sygna* o liniowym stanie polaryza-
cji zgodnym 2z kierunkiem osi x 1 o jednostkdwej amplitudzie
Ax . Kolumna y-owa reprezentuje analogiczng odpowiedZ ukiadu
na punktowy sygnal_o 1iniowym.stanie polaryzacji, zgodnym 2

kierunkiem osi y 1 o jednostkowe] amplitudzie Ay.

4.2. Macierzowa funkcja aberracji

)k 3 rn? 94 R I I ),
Niech Q.)xx(fﬂ?) ’ @yx(%W ’ Q-Sxy(?’?)o sty (5’7)
| beda aberracjami falowymi powierzchni E;;x ’ Ejyx:’ E:xy ’
Eijyy okreflonymi wzgledem Caussowskiej sfery odniesienia
> ,» zgodnie z regulami teorii aberracji [38] .
Macierzowg funkcje aberracji dla uktaddw odwzorowujg-

cych zmieniajacych stan polaryzacji éwiafla zdefiniujemy Jja=-

ko
i "f. 7 1 ) 1
(57 P (817)

A
D (517705 P 4y (6777 |

W klasycznych uktadach odwzorowujacych, funkcje aberracji -
okresla sie zazwyczaj dla powierzchni falowej przechodzgce]
przez Srodek Zrenicy wyJsclowe] uktadu (punkt C’).

W omawianym przypadku nie wszystkie powlerzchnie falowe ijx’
':ijy’ Eisy, E:;x musza jednoczes$nie ﬁrzechodzié przez ten
punkt, Jezeli przyktadowo powierzchni@-zj;x wybrano w taki
gposdb, aby przechodziXa przez Srodek Zrenicy wyjsclowe]
(rys. 4.2_), to pozostake trazy powierzchniejijxy,EZT

yx °?
EZT vy moga byé wzgledem niego przesuniete, np. wtedy gdy w
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uktadzie wystepuje dwéjlomnoéé.
4,3, Macierzowa funkcja trensmisji amplitudy

Macierzowg funkcje transmisji amplitudy mozna zdefinio=

wa¢ nastepujaco

2 (53705 2y G5 7Y ]
15, 7)) - . (4.3-1)
e (E 7D (8570 |

: 7,9 )’ SEPPS AN SR
Jaj elementy T (F,7), T (£57') , T, (£Y7), TW(;;7)
okreslaja transmisje modutu amplitudy pomiedzy Zrenica wej-

: —
Sciowa a wyjsciowg, dla powlerzchni. falowych typu 214_ "

XX
§:jyx ’E:;y 'E:;y , to Jest

. (5)77)
Txxcgy7j = ’ / o

% |

3 40 [ H'X:(%?7'?79 /
1 (B7) = —— ’

. 7,) =- , I HX.\] (;’,,7 77) / : (4‘3_.2.)

Tyy (€ "»'7’) = : ’

gdzie AX i Ay ggq amplitudami zespolonymi w Zrenicy wejscio-

weJ uktadu.
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::'.1,

y ;
' A
to elementy macierzowej funkcji Zrenicowej uktadu H(?’;"/’)

Poniewas wczesniej przyjeto, ze Ax‘= 1 oraz A

mozZna przedetawié jako |
M (6)7)= 1, (67) expik & (£77)
Ityx(€’;7’) = 0 (577) expik &, (7))
i (6)7) = v (€7 expik &, (€570, (4.3-3)
i,y (657D = 2y (6 7)exoiZ D (£777)
gdzie k ‘:i- 2T/
Zgodnie z definicja C4.3~2) elementy maclerzowej funkéji
transmisji amplitudy speiniajg warunki
o< T (57)<s1
s f, (5701,
0 5 T (Fy7VsT (43-4)

0 (70

0

4.4, Macierzowa funkcja rozmycia amplitudy

Niech funkeja hxx(x1.y1> opisuje rozkiad amplitudy zespo-
lonej w ptaszczyinie obrazowej(ﬁzl= O’), amplitudy spolaryzo=-
wane]j liniowo zgodnie z kierunkiem osi X , gdy punkt AO'
ptaszczyzny przedmiotowe] emituje-éwiatko o liniowym stanie
polaryzacji zgodnym z kierunkiem osi x 1 o jednostkowe]
amplitudzie Ax. Niech funkecja hyx(x1,y1) reprezentuje odpo=

wiedZ uktadu, spolaryzowanq liniowo zgodnie z kierunkiem osgi
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y , na ten sam sygnat A . Podobnie, funkcje hxy(x1, y1) i
hyy(k1,y1) niech opisuja rozk*ady amplitud w ptaszczyénie
obrazowe j (z1= O;), amplitud spolaryzowanych liniowo zpodnie
z kilerunkami osgi x 1 y , gdy punkt Ao ptragzezyzny przedmnio=-
towe j emituje swiatto o. liniowym stanie polaryzacjl zgoduaym

z kierunkiem osli y i o Jednostkowe] amplitudzie Ay.

HMacierz -
. hee (x4 ¥9) 5 By (xq 94) |
h(xgs ¥9) = | | (4.4-1)
» ' .

bedzie dale] nazywana macilerzowg funkcjg rozmycia amplitudy,.

Rozk*ad amplitudy typu hx# w plasgczyénie obrazowe j
zdeterminowany jest Jjedynie rozkladem amplitudy typu Hxx W
plaszczyZnie Zrenicy wyjsciowe] uktadu. Tak wigc, elementy
macierzowej funkcji Zrenicowe]j i macierzowej funkecji rozmy-

cia amplitudy zwiazane sa poprzez caxzke dyfrakeji Fresnela

28] -

' = , 4, 8% 'i.C(Q— R) ’ y
hoy (g y1)=5\-.-—f-{—f He (5,72 = 0 dFd? J

-

— 9 R mmii(Q-—R ] 5
hxy(x1’ 3’1J=5-;Jﬁ'lxy(?/7) 5 )df’d/7 y
| L (4.4-2)
-1 (., ,expik (Q@-R),,
by (%qs ¥4) = ﬁ?f ny(f,?) - dg'dy
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gdzie Q oznacza odlegXosSé pomiedzy punkfem (?:373 Zrenicy
wyjéciowej uktadu a punktem (x1; y{) ptaszczyzny obrazowe]
<2H” 0,). Uzywajgc notacJi macierzowe] (def.2;1—6:)otrzymu~

je sie

~ L % Q- R)
Wy )= - ﬂ?fﬁ(?” 7) e dgdy’  (b43)

Gdy kat aperturowy ukiadu nie jest zbyt duzy wyrazenie

expiiCQ - R) /Q moZna przedstawid jako‘[BQj

expii (Q - R) 1

3 s oxp[ -1k (x, £+ 9,7) /R] (4.4-4)

W praktyce wygodniej jest uZywaé.bozwymiarowych WEpéergd~
nych w pkaszczyénie Zrenicy wyjsSciowej 1 obrazowej,
Bezwymiarowe wspdirzedne Zrenicy wyjsciowej otrzymuje sig
przez unormowanie ich do dowolnej dXugosdci a . WielkoSciag a
moze byé np. promien koowej “Zrenicy wyjsciowej uktadu.

Wprowadzimy zatem

i

¢
.

Bezwymiarowe wepdtrzedne piaszczyzny obrazowej dobiera sile

(4.4-5)

5w, = f,

tak, by w wykXadniku wyraZenia C4.4~4) pojawixo sie 27T ,

co zachodzi gdy przyjmiemny

ax,
A TR
(‘4‘04"“6)
83’1
V., =

1 RA
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a wspdkrzedng z-towg normuje sie nastepujaco

. 4
<1 _":‘._.) | W
"= (R : (4.4-=7)

W bezwymiarowych wspdtrzednych zaleznosé (4.4-3) PLLy j-

muje prostsza postad

o<
A : A P '
h (u1,v1¢) = GHH(?, 7) aXp - 25Tn.[ U1? + V(?]d;, dn
R (4.4-8)
pdzie wapdtczynnik proporcjonalnosSci ¢ okreslony jest przez
peometrie ukkadu

: 2
la

c = = ° (4-.4"9)

AR

Réwnanie (4.4—8) pokazuje, Ze maclerzowa funkcja rozmy-
cia amplitudy rdéwna Jest, z dokXadnosciag do statej ¢ , |
transformacie Fouriera macierzowe] funkeJi Zrenicowe (dcf.
2.1-10) .

Macierzowa funkcja Zrenicowa, macierzowa funkcja rozmy-
cia amplitudy, macierzowa funkcja aberracji oraz macierzowa
funkcja transmisji amplitudy sa vogdlnieniami na przypadek
uktaddéw zmieniajacych stan polaryzac]i Swiatia funkeji Zro-
nicowej, funkcji rozmycia amﬁiitudy, funke ji aberracji oraz
funkcedi transmisji moduxu amplitudy, wprowadzonych na gruncie
skalarnej teorii dyfrakeciji do bpisu klasycznych uk}addw od=
wzorowujqcych.r | v ’

A A A A

Funke je macierzowe H(§,%7) , h (% V;), T(}’;?) , @(}';'7)
zdefiniowane zostaly dla swiatka Scisle monochromatycznepo
o dtrugosci fali 5., jednakze mozna przyjacé, iz nie zmieniaja

gi¢ one istotnie w waskim przedziale spektralnym, ktdrym
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charakteryzuje sie swiatio quasimonochromatyczne (rya. 4,1).
Bedg wiec one uzyteczne rdéwniesz w przypadku, gdy uktad od-

wzorowujgcy pracuje w Swietle quasimonochromatycznym.

Przyktad 4.1,

W celu zilustrOWania pojeé wprowadzonych w niniejsuyn
rozdziale wyznaczono elementy macierzowej funkeji Zrenitowe]
i macierzowe] funkcji rozmycla amplitudy dla bezaberracy jno-
go uktadu z dwustrefowym filtrem polaryzujacym linlowo v kas-
dej strefie i umieszezonym w Zrenicy wyjsclowe]j ukladu., Przez
c(.], 0(2 oznaczono katy pomiegdzy kierunkami przepuszczania
polaryzatordw a osig ﬁf; p nlech cznacza gtosunck podziatu

promienia Zrenicy wyjsciowej, rys.4d.3.

Rys.4.3. Dwustrefowy filtr polaryzacyjny w bezwymiarbwym
ukt*adzie odniesienia (§ s ?).' Przez 0(1 , X 5 Ozna=
czono kierunki przepuszczania polarytazordw, p
oznacza stosunek podziatu promienia Zrenicy wyjs=-
clowej o
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Celowe bedzie Wprowaazenie biegunowych uktaddw odnie-
gienia w ptaszezynie “renicy wyjsciowe] (f‘ 3 @)' i ptragz-
czyZnie obrazowe] (I‘1 ,3/"1) :

£ = §cosl 5 7= f 'nn@’ , (.4.4‘.1'0)

W biegunowym ukladzie odnieeienia macierzowa funkecje Zreni-

cowa mozna przedstawié nastepujaco

(coszc‘x1 : coso(1mino(1
cog o€, sinol,; ginzo(1 dla  ¢<p

A

Fcoszd o 3 €08 odasin 0(2

Y

()= L in? dla p<pSt
(608 £, §ind,; sin“C, . (4.4=11)
[0 - 0
dla ¢>1
L. B 0 3 0

Elementy maclerzowe] funkcji rozmycia amplitudy moZna wy=-
liczydé postugujac sie zaleiznodcla (4.4-8),ktéra w bieguno-

wych ukladach odnlesienia przyjmuje postad
20T 1 '

hxx(r1 ,\Y‘H):Cj‘fcoszo(1 exp[—- 23Ti_§r1cos((5‘- )"’1)]53d5>d@+

o p
2T 1

+ cffcoszda exp[ -2‘J"Ei_€r1cos(@—y’1)]fdf dé | (4..4‘.-12)
op . : :
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Po wprowadzeniu wepékrzedne] pomocnicze ry= 2Wr, powyi-

gza catka daje sie Yatwo wyliczyé

21,(pr,) 21,(xp)

'p(coszoc,l- cos%c2)+ == 08 o 5|9
L P2 g |
(4.4-13)

gdzie 11(r2) jest funkcjd Bessela pierwszego rodzaju i pieir-

h . (x,)=]C

wszego rzedu, Podobnie moZna wyznaczyé pozostate elementy

~macierzowej funkcji rozmycia amplitudy

| Zi (r,)

2l (pry)
h (r )a]TC ] 2 p(sin?'o( - sin20< )+ L sinzoC ol a
yy .2 b 1 2 2
. T2 T2
(4.4-14)
i pr : ’ I (r ) ~
hyx r, =JTC 1( 2) p sin20(1- sin2o(2) + 1( 2 811;20(2 R

P To

h}w(l‘g): hy:{(r2) .
. A
W omawianym przypadku maclerzowa funkcja Zrenicowa H(<)
A
jak rdwniez macierzowa funkecJa rozmycia amplitudy hévz) '

AN A A. A |
gq macierzami symetrycznymi,ﬂlﬂm HTR(fQ oraz h(r2)= hlﬂ(r2> .
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e ROZKI,AD'NATI;‘.ZENIA’W DYFRAKCYJNYM OBRAZIE PUNKTU

Podstawowe wielkoéci charakteryzujace optyczny ukiad
odwzorowujacy Cnp. zdolnos¢ rozdzielcza, jasnosé Strehla,
optycuna funkcja przanoszenia) moga by¢ wyznaczone na pode
gtawie rozktadu natesenia w dyfrakcyjnym obrazie punktu.
Jego znajomosé ma wiegc duZe znaczenie praktyczne. Dla kla-
gyczuych uktaddw odwzorowunjacych rozkiad natezenia w dyf-
rakcyjnym obrazie punkiu péwny jegt kwadratowi moduiu 2
amplitudowej funkeji rozmycia. Dla ukaddw zmieniajqcych~
gtan polaryzacji Swiatta wyraza sie on bardziej skomplilkowa-
ng zaleznoscia.

Viykazemy, iz rozklad natezenia w‘dyfrakcyjnym obrazie punk-
tu dla tego typu uktaddw zalezy od‘elementéw macierzowe J
funkeji rozmycia amplitudy g(u1ﬁ1), a takze od stanu polary~‘
zacji sSwiatta wchodzacego do ulkZadu. |

Hiech punkt Ao gz rysunku 4.2 bedzie Frodiem dowolnio
spolaryzowanego swiatia guas imonochromatvcznego, ktérego

sktad gpektralny opisuje wektor U(v) ; pordwnaj (3 4 3)

Ay Ux(\’> s i}
U(V) = Uy(\)) . (.)"‘1)

Aby wyznaczy¢ rozkad natezenia w dyfrakcyjnym obrazie punk-
tu zbadajmy najpierw jeak transformuge gie przez uktad spekte-
ralna maclerz koherencal Jv .

Dysponujac macierzows funkejg rozmycia amplitudy moina’
ratwo okreslidé rozkYad amplitudy zespolone] 6309,u1,va)

ptaszczyinie obrazowej, pochodzacy od sk*adowej spektralnej



= 4‘4‘ bl
A A
Cf(\{) swiatta quasimonochromatycznego

ULV sug,vy ) = B (ugry) U0 b (ag,v,) U 0)
(5-2)

Ug (Y 5 uy ) = hy Cugovy ) U0) + by (ug,vy) u,(v) .

W prostezej notacjl macierzowe] powyzeszy uk}ad rdéwnan proyj-

maje postad
A A A .
UW,u,w,) = ha,v,) U0) . (5-3)

' A
Znajac rozktad amplitudy‘UYV,u1,v1) skadowe] spektralnej o
czestosdel v wyznaczyé mosna rozkzad spektralnej macierzy ko=

A
- ’ - - ’ rd .
herencji w piaszczyznie obrazowe] Jv(u1,v1) 3 porownaj

(3.4-6)
A A A
G (agavy ) = VO u,v) Uk eg,v) (5-4)

a po uwzglednieniu (5~3) otrzymuje sie
A, A A AL A
3] Cugsvy) = hlugwy) VO U 0w (ay,vy) o (5-5)

Zauwazmy, ze

A A A,

Jy = uly) ute) (5-6)
jest spektralng macierzé koherencjli swiatta emitowanego

przez punkt A, tak wiec rdéwnanie (5-5;)przyjmuje bostaé
A A AN, : o
J; (u1,v1) - h(u1,v1)Jgh‘(u1,v1) ; (5~{)

Aby wyznaczy¢ rozktad macierzy koherencji sSwiatia
quasimonochromatycznaepgo w ptaszczyinie obrazowej wykorzyota-

my spektralne rdédwnanie (3.4—7)
Oo

gﬁh,mﬁavfsj@ﬂ,vﬁ CEV (wﬁ)

0
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Zazwycza] mozna przyjacé, ze macierzowa funkecja rozmycia an-
A :
plitudy h(u1,v1) bardzo skabo zalezy od VY w waskim przedzia-
‘ le spektralnym, ktérym charakteryzuje sie Swiatko quasimono=

chromatyczne., Zachodzi zatenm
A A A Ay o
J’(Ll1,V1)=: h(u1,v1)[ny av l';f‘(u1,v1) " (f)-«{))
(8]
a po gcarkowaniu otrzymuje sie

A A NA "
) ‘ wy =
.I@H,v4)= h(u1,v1> th(u1,v1) ’ (5-10)
A .
gdzie J jest macierza kohervencji sSwiatXa emitowanego pruez

punkt AO.
Natezenie rdéwne jest zawsze $ladowi z macierzy koho-
rencji, tak wigc rozkiad natezenia w dyfrakcyjnym obrazie

punktu wyraza gie wzorem
A
1/ . . .
K'fay,v,) = tr 3'Q,,v,) , (5-11)
czyli ,
C A W AA :
’ +- .
K6h1,v1) = tr[_h(u1,j1> Jh (ﬁ1,v1)]. i (5“12)
Unormowany rozkXad nateifenia w dyfrakcyjnym obrazie punktu

nazywany bywa natezeniowa funkeja rozmycia uktadu [4?]

, L
K'(u,,v,)
= 12 "1 .
K(agsvq) = R (5-13)
A 4
gdzie I = trd Jest natezeniem swiat*a wchodzacego do ukla-

du.

tgczge wzory (5~12> 1 <5~13:)otrzymuje sie
) A A A }
K(ugsvy) = tr[.h(u1,v1) J0h+(u1,v1):] , (5-14)

A AA
gdzie J = J/trd jest macierza koherencji ze $ladem unor=

mowanyim do jednosci.,



- Al -

Przyjmujac, ze

o ', 0
_ Jxx i ny
./I\ = (5~1 5)
0
JO . JO
yx ° vy

-

otrzymuje sie rozwinieta postad wzoru na natezeniowa funkcje

rozumycia ukiadu
. . 2 | 2
K(u1,v1> = Jxxl]hxx(u1*v1” * lhyx(u1’v1)l ;}+

’ * x
o J;x[hxx(u1’v1> hxy<u1’v1) + hyx(u1’v1)hyy(u1'v1>]+
| | | | (5-16)
. * : '
+ Jiy[hﬁx(u1,v1) hxy(u1,v1) + hyxﬁu1,v1> hyy(u1,va]r
2 : 2
= ng[1hxy(u1’v1)ll * !hyy(u1’v1)'J .

W powyZszym wzorze wystepuja kwadraﬁy moduléw oraz niektdére
iloczyny wzajemne elementdw macierzowej funkcji rozmycia am=—
plitudy, wasone wspdtczynnikani okreslajgcymi stan polary-
zacji Swiatka wchodzqcego‘do uktadu (élementami macierzy ko=
herencji)‘. Dla ukiaddw odwzorowujacych zmienlajgcych stan
polaryzacji éwiatla'pojawia gie zatem mozliwosé zmiany rog-
ktadu natezenia w dyfrakcyjnym obrazie punktu jedynie przez

zmiang stanu polaryzacjl swiatXa emitowanego przez ten punkt,



Przyktad 5.1

W oparciu o ogdlny wzdr (5-14) przeprowadzono numurycz¥
ne obliczenia rozkiadu natgzenia w dyfrakcyjnym obrazie
punktu dla bezaberracyjnego ukadu z dwustrefowym filtrum polae
ryzacyjnym W érenicy wyjéciowej, rys.4.3. Elementy macierzo-
we J runkcji rozmycla amplitudy dla takiego ukiadu okreslone
zostaty w przyktadzie 4.1. Rozltady hateéenia przedstawvione
na rysunkach 5.1 a1 wykredlono dla filtru o parametrach
oy = 0%, K, = 90°, p = 0.6. Przypomnijmy, %o ox, 1 K,
oznaczaja odpowiednio kierunki przepuszczania polaryzatordw
w plerscieniu wewnetrznym i zewnetrznym, a p oznacza sto=
gunek podziatu promienia Zrenicy wyjsciowej.

Réznice w rozktadach natezenia z rysunkdéw 5.1 a-f zwig-
zane sg Jedynie ze stanem polaryzaci Swiatia wchodzgcepgo do
uktadu., Na kazdym z rysunkdw przedstawione sg tray krzywe.
Pierwsza z nich wykreflfna zostala dla éwiatla.spolaryZUwa~
nego liniowo w stopniu P=1 i o azymucie polaryzacji /3 LEW-
nym odpowiednio: 0°(a), 30°(v), 60°%c), 90°(d), 120°(e),
1500(f) . Drugg wykreflono dla mieszaniﬂy Swiata spolaryzo-
wanegzo liniowo o takich samych aiymutach polaryzac]ji /5 i
$wiatta niespolaryzowanego. Mieszanina ta charakteryzuje sie
gtopniem polaryzac]ji P=0,5. Dla pordwnania na kazdym rysunku
przedetawiono takze rozklad natezenia dla SwiatXa niespolary-
zowanego P = O; krzywa trzecia.

Rozk*ady nathenia‘z rysunkéw 5.2 a=f wykreslono dla
filtru o parametrach 6(1 = OO, CKZ = 1200, p = 0,6 . Stany

polaryzacji SwiatXa wchodzagcego do ukXadu pozostakty takie

gamne Jak na odpowlednich wykresach z rys. 5.1 a-f .
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Rys.5.1, Rozktad . natezenla w dyfrakeyjnyn obrazie punkiu
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pozktad natezenia dla Swiatta spolaryzowanego Li-
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Swiatta spolaryzowanegzo liniowo w stopniu P=0,5, Na kazdym =z
ryosunkdw przedstawiono taksze rozktad natezenia dla swiatia

niegpolaryzowanego P = 0 .
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Rya.5.2. Rozklad natezenia w dyfrakcyjnym obrazie punktu dla

filtru polaryzacyjnego o parametrach o, = Oo,ongﬁxfﬂ

p=0,6 o Jedna 2z krzywych przedstawia rozkiad nitcie-
nia dla swiatla spolaryzowanego liniowo w stopniu



AK{u,0)/K(0,0)
1.0

08 1
06 1
04

0.2 1

2 3 4L 5§
YK(u,0)/K(0,0)
10
08 |
06

04 -

02 1

=1 1-0 azymucie polaryzac]i A ruwnvm odpowiadnio O (i)
ju“(l), 609 (c), 9)0(d) 1zuo(e), 1509(£) . Drugy wyl 41 610
dla takich uunvch azyuutdéw pole JVchjl /3 lacz dla uﬁlt[‘l
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nate¢senia dla swiatla niespolaryzowanego P = 0 ,



w H4 -

Zwraca uwage silna zaleznodd rozktadu natezenia w
dyfrakcyjnym obrazie punktu od stanu polaryzacji Swiatia

wchodzgcego do uktadu.
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6. JASHOSG STREHLA

Waznym wskadnikiem jakoéci odwzoroWania optycznego jest
jasnosdé Strehla (liczba Strehla, iloraz Strehla, Jasnodidé de-
finicyjuu):rozumiana jako stogunek natezenia K’(0,0) W 0Srode-
ku aberracyjnego obrazu punktu do natezenia K}(0,0) w Srodku

jdealnego obrazu punktu

x'(0,0) )
SR =  Aeee (6-1)
k:(0,0)

W niniejszym rozdziale wyprowadzony zostanie wzdr na -
jasnosé Strehla dla klasy ukiaddw odwzorowujgcych zmieniajge
cych stan polaryzacji swiatka. |

Jest dobrze znanym faklt, Ze natezenie w Srodku idealnego
obrazu punktu wyraza si¢ wzorem [38]

K;(0,0) = 110!282 ' (6~2)

gdzie I'jest natezeniem swiatXa wchodzacego do uktadu,
g oznacza powierzchnle Zrenicy wyjéciowej uktadu, ¢ Joot
zespolonym wapdkczynnikiem proporcjonalnosci (4.4-9) . fLaczac
(5~13) i <6~q> jasnosdé Strehla uk¥adu zmieniajacego staﬁ po=-
luryzucji Swiatie mozna przedstawié nastepujaco

1
SR =

A A A ' -
L tr[h(o,o)J %’(o,o)], (6-3)

a po wprowadzeniu unormowane] macierzy koherencji (5~16)

otrzynuje sie

1 .
SR = T trlﬁ (0,0) 3Qﬁ+(o,o)] . (6-4)
C [S] ,



= Bb ‘w

Na podstawie zwiqzkh poniedzy macierzowg funkcja Zreni-
cowg & maclerzowg funkcja rozmycia amplitudy (4.4-8) WY 211G

A
czyé mozna elementy macierzy h(0,0)/cs

Ll b, (0,0) = i- jﬁiﬂ(%‘ ,7) ag a7

c8
1 " ;
::: hw(o,o) - - ffzzxy(?, 7) dfd”[ s (6»5)

1 1 = |
e00)- 2 e ) sgor
- ad !

Ct

‘" hyy (0,0) = Z jfhﬂw(?j) ¢ a7

cs N

Po viprowadzeniu oznaczenia

Le>a 1 Jets mager (6-6)

zaleZnoscl (6~5) przyjmujg poatad

1
— h (0,0)= <H_>

-

1 |
o P s I (6-7)
1

— hyx(o,o) o <ny>

cs

-

1 |
— hyy(o,o) = (H{fvy> .

c8
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lub w prostsze] notacji macierzowej

1A AT
;—;«-h(o,o}~.~<ﬂ> , (65)

1 A " AL
— ht(0,0) =< ut> ,
*g

A
gdzie<<'H >>oznacza usrednianie kazdego elementu macierzy
A ‘
i (i( ,’7/) zpodnie ze wzoren C6-6) .
Podstawiajac (6~8,)do (6~4)»otrzymuje gie ostateczna
postaé wzoru na Jasnosé Strehla uktaddw odwzorowujgcych zmie-

niajgcych stan polaryzacJi $wiatka

SR = tx-[<'f/;> ?O<ﬁ>+] , (6;.9)

ktorego rozwinieta wersja jest nastepujaca

T SNAVRSE
- # , a6 s
¥ J§3CL<HXX.> 43;{3,> + <ny>< Hyy>J+

S NN}

Jasnosé Strehla ukXaddw odwzorowujacych zmieniajacych
gtan polaryzacji swiestta okredlona jest przez Srednig z ma-
) A
cierzowej funkcji Zrenicowe] <<’}I>> oraz przez unormowang
Fal
macierz kohoerencii JO. WpZzyw na Jasnoéé Strehla maja wiec

zaréwno parametry uktadu jak i stan polaryzacji swiatra uiy-

tego do odwzorowania.
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7. UOGOLNIONE TWILRDZENIE O PRZESUNIECIU

Wazng role w rozwazaniach dotycégcych jakosci odwzorowa-
nia dla klasycznych ukiaddéw optycznych odgryWa tzw, twierdze-
nie o przesunieciu E}Qj . Méwi ono, %e dodanie do funkceji
aberracji pewnego wyrazenla rdéwnowazne Jest jedynie ze zmia-
ng sfery odnlesienia wzgledem ktdrej okreslana Jest funkeja
aberracji.

W rozdziale tym udowodniona zosbanie uogdlniona worsja
twicerdzenia o przesunieciu, ktdra bedzie mogta byé stosowana
do klasy ukladdw odwzorowujgcych zmieniajgecych stan polary-
bzacji éwiat&q:

Niech 45(91&9 reprezentuje macierzowg funkcje aberrvacji
ukiadu zmieniajacego stan polaryzacji sSwiatta., Dodanie do

A
macierzy 35 [SJ; @) wyrazenia

A A P
B '(5:0) = P(6sB) N (918% 90956 +gspeosB rg,) , (1-V)

gdzie
N A .
I - macierz jedynkowas [N]ij =1 dla 1,j = 1,2 ;

J?,C9 - wepdtrzgdne biegunowe w plaszcéyénie Zrenicy
wyjsciowe]; A

q1,q2,q3,q4 - gtate rzedu A.;

powoduje jedynie przesuniecie przeétrzennego rozkzadu nate¢-

zenia jakt caXodci zgodnie z nastepujacymi réwnaniami

w! o= ow, 2q1 '
- —uu-_:nm '
1 7.1 7
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: (7-2)

r) sin X"1’ = r,ein 4y +

’

r, cos X‘-; = r,C08 y“1 +

=5 e

gdzie Ty Y“1 sg bezwymiarowymi biegunowymi wspdirzednymi w

ptaszczyinie obrazowe] (4.4¢10) , 8 Wy jest bezwymiarowa

wspdtrzedng pokrywajacag sie z osia %4 <4.447> .
Réwnania‘<7~2)uw wymiarowym uktadzie odniesienia (ﬁws.

4.2) przyjuuja postad

4 R °
212114‘?(“ Q1 ’
a
R
J
X; =x1+(-a-)q2 , (7—3)
7v RN
oo 2o
=yttt

gdzie R jest promieniem sfery odniesienia, a Jest promieniem
srenicy wyjdciowej ukZadu.
Dowdd powyzszego twierdzenia przebilega analogicznie jak w

w przypadku klasycznych ukXaddw odwzorowujgcych [38] .

W oparciu o zaleznosci (4.4—2:)6kreélié mozna przestrzen-

h h o w poblizu punk-

ne rozktady amplitud typu hxx’ h yx* Byy

m’
tu_A1, rys. 4.2

hxx<x1:3'1’z1)= -ﬁ% jﬁ{xx(%;y,) expik(gq = d?’d?’ )
o (7«4)

pdzie Q oznacza w tym przypadku odlegtosé pomigdzy punktemi
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o wspdéirzednych (?’,"Z’) i <x1 Y4 ’Z’l)' Przecho'dzaacl do biegu—
nowych wspdirzednych bezwymiarowych.otrzymuje sie [33]
hxx(r1’w1’y'1) = c‘ffox (?’@) eXpi[chSxx(f’@) -

00 ' (7__5)
- 272‘_?1'1005(0-—(}/“1) = 'wa,lgz_]f igad

)
R [
gdzie ¢ = C exp [Z?Ti (-—) WJ « Celowe bedzie wprowadzenie
a
funkeji

fxx<r1’w1’()h1’5 ?@) — @xx<9’ 2l
- 27Tfr1cos,(@ -}*1) - J”Tw152 , (7-6)
fx’x (r»liw»" 15§)9)=E@jxx(g)@) -

2T gronn (- ¥7) - Ty 2,

co umozliwi zapisanie w prostszy sposdb catek typu (7~§)
1 a5

Ry <r1’w1’ ﬂ) = c,ochTXX<f ’@) SEp [ifxx<r1’w1’ Y"l’f7 @)]
. fdyd@ ’
(7-7)
. A4 23T

'lixyCr1’W1’ f1) - C'ffTX.Y(S)’@) g [ifxy(r,]',wvm.f.@)j‘

rpapdl
4 20

by (F1oWqe foq) = °'fnyx (56 exp [ifyx(rvwvm’f'@)]'

.fdfd@ .
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1 2T

Uy GO )=¢ jfTw(g ,0) GXP["ify.y(r‘t’wv )/”1;5-‘9,7‘

o O

~fdfd@ .

Przostrazenne rozkiady amplitud zwigzane z maclerzowa funkeja

’
aberracji @ {5?;@) mogs byé wiec przedstawione jako
4 25T

N CRTY Y-“I) e (jm}:x(sj , 0) exp [lif:»’uc (x92%q5 Xﬂf'@ﬂ'

00 . pdgde

( 19 1’Y1 = ¢ JjT (§ ®) P [if;w<r1’w1’ yv“f'@)]‘

coded®
sas 7 (7—8)
1 2T ‘
h’x FiaWqs X“I =G jj yx( @> oxp Lif;‘XCr1,w1, XLW f’@)}
00 fdjd@/

(1’“’1’Y~1 = ¢’ J‘(yy(y 6’9) exp Llf (r1,w1, X"1,j) 0)]

dfd@l

Poniewaz zgodnie z C7~1) zachodzi

.(ﬁ XK (Sj ,Q): @:{X (9 ’0) "'<CI1§2 + qusin@ +
o q3§cos@+ q4) , (7..9)

to funkcje typu fxx mozna przeksztatcid do postaci
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frx (B9 Y15 8 '@)=,T‘ [@;(?’@) - q1§2 - qppoin@ -
- aypc08 8 - q4j-—_27r5 rcos(B ) ~Tw 9 =
: E@}:X(f,@ - 2@ ricos(B-)-) - (7-10)
2

~jtw,|’,§ - ho :f' (11,w1,x’1,_§> @) - l\.q4 -

gdzie nowe wapdkrzedne r1 y W,!, Y‘1 olcreélone GT:) réwnaniwni

(7=, fmaloznczne zwiazlki zachodza i pozostatych funlcji
£y (Eov ¥ 5) G)“f (1‘1’”1’5‘1 0)"1“]4 ’
fy (‘1'“’1 Y0 52 0)='s <1’1’X'19 )'kq4 . ()
Fyy(Fyo 1’Y’1 ,0) = f;y(r;’“’;’ J’L;’f.’@)" kay .
Podstawiajac (7—11) do wzordw (7-7) otrzymuje sie

N CIT SV N w%)exp - tkay

by (oyowgs £4)

i

9 ) ] 1 !
hxy(r1,\v1, \y-;)exp - ikq,

-

hyx(r1’w1’ f1> = h;X(r;,W;, (}%) exXp = i-lch4

N R
hyy Eq09s ¥y = hyy G 1) exo

ﬂ‘qzt ’

cO oznacza, 2e

A - A |
11(1*1;v1, 5/”1:) = exp = ikq, h’(nf-:,w;, X':)_ ’ | (7..13)
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Zatem, przegtrzenne rozkiady nateienia w dyfrakcyJnym obra-
zlie punktu odpowiadajace macilerzowym funkcjom aberracji

A A
?@,(9) i @’(JP:U) gg jedynie przesuniete wzgledem siebie.
A A A .
tl‘[h(1‘1’w1’¥'1)‘7 h‘”(r1,w1,y72J=
A A A, ; 4
= tr[?(r%,w;,gkz) J h’(r;,w’,aﬁ;)J . (7-14.)

»

Podobnie jak w klasycznym przypadku [38] dodanie do
macierzowej funkecji aberracji §§[F7@)wyraZenia ﬁ(§1§2 +
‘9q281n6)+ q35400869+ q4) oznacza .przesuniecie Srodka gaussows-
kiej sfery odniesienia Zo (rys.4.2)z poczgtku uktadu od-

niesienia do punktu o wspditrzednych (xz:, sy Y5 Zz:')

(7-15)

¥

I3

i

I
TN
| =
Necsmmne

£

no

i

Y5z

R>

"'(; q3 ’

oraz zmiang promienia sfery odniesienia zgodnie 2 réwnaniem
R®=R-gq, (7-16)

Uogéiniona wersja twierdzenia o przesunieciu znajdzie
zastosowanie w_procedqrze wyznaczania optymalne]j sfery od-
niesienia, wzgledéem ktorej jasnosé Strehla osiaga wartosd
maksymalng, Wezedniej nalezy jednak uogdlnié przyblizenie
Maréchala’dla jasnodci Strehla na uktady odwzorowujace zmie-

niajace stan polaryzacji swiatXa. .
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8, UOGOLNIONE PRZYBLIZENIE MERECHALA DLA JASNOZCI STREHLA

Dla matych aberracji jasnosé Strehla klasycznego uktadu
odwzorowujqcego(ﬁﬁﬁ zmleniajgcego stanu polaryzacji éwiutiq)
mosna wyznaczyé na podstawie przybliZonego wzoru Marechala
[46] . latotyg przybliﬁénia jes?t wyraZenié jasnosci Strehla
poprzoz Sredniokwadratowa deformacje frontu falowego. Podobne
przyhlizcnié jasnosci Strehla mozna uzyskaé rdéwniez dla ukta-
déw cdwzorowujgcych zmieniajacych stan polaryzacji Swiatia,
Rozwazania zostana jednak ograniczone tylko do przypadku
swiatta, ktorego stan polaryzacji da sie opisaé rzeczywiota
macierza koherencji gﬁ. Zak*ademy wiec, Ze do odwzorowania
uzyta zostata mieszanina dwiatta spolaryzowanego liniowo
(3.2»6.)i Swiatta niespolaryzowanego (3.2—2) .

Dla kazdej rzeczywiste] macierzy koherencji JR igtnieje
uktad odniesienia w ktdrym prazyjmuje ona postaé diagonalng

[36] '
A A 1

JR'——"' Do = - ’ (8"1)
0 s d

gdﬁie d1 i d2 sg rzeczywistymi 1 nieujemnymi wartosciani
A
wiasnymi macierzy JRf’ W dodatku, $lad macierzy nie zmienia

si¢ po przejsciu do nowego ukiadu odniesienia

A A
trJR = trDo = 1 . <8ug)
A A A
Niech H, T, @ bhedg okreslone wzgledem ukadu odniesienia
A

diagonalizujacepo rzeczywiata maciexrz koherencji JR’
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Zakladajgo male wartosci elementdéw macierzowej funkcji aber-

racji @ P P ’ 9—.6

xy’' Tyx vy,
rozwingé w szereg potebowy i pominac wyrazy o pot@gach Wy

wyrazenia typu explk @ mozna

gzych niz dwa, uredniq z macilerzowej funkecji AreﬂLCOW6j<<II:>

da sig¢ wtedy przedstawid nastepujgco

- 1 - 2

< }1‘_)(4{}:{(1'“}4. ik <Txx P m> s k 2< i 65) Xx> -

ny>=<fr >+ Jk<€£“,y xy” "5 k <'lxy‘ny> P

1 (8-3)

‘ L | = 2 2

<H Sy >4 1k < P > - =k <7y cpyx> ,
- i 2

=< ' = 2 >

<H>=yy > + 1<y, By i <oy

lub w prostszeJ notacji macierzowe]

KE>LA S mlBed > L BB >

oraz | | (8-4 )
1

TR TR - A AR
<IM<EE i<t E IR § $

gdzie TR oznacza transponowanie macierzy (def. 2.1-3‘). W po=
wyzszych wzorach pojawita gl¢ operacja mnoZenia macierzy tego

samego wymiaru zdefiniowana nastepujaco

Ve A A -A - A - A
C = AVB ®[C]ij=[A]ij[B]ij . (8-5)
Zauwazmy, ze elementem neutralnym takiego mnozenia jest ma-
A

cierz Jedynkowa N wprowadzona w rozdziale 7.
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Podstawiajac CB-@) do ogdlnego wzoru na jasnosé Strehla
<.6~9> , wykonujac mnozenie i opuszczajac wyrazy zawierajgce
Qgt@gi wyzsze niz dwa wzgledem macilerzowe]j funkcji aberracjl

gii otrzymuje sieg |
: oA A o A A D AU

SR = L1~L< P >/f).<ffﬂﬂj - % d tr[<&'>g <TV@VQ§>I?RJ

1 >~ Y ~

- 3 RP[< ¥ D < [L‘vgpvqj>—,4. ik e [<hv @y} < 0 N ]

e

(8-6)
w Il b ):<’L‘ >D <“\7§Z)>Dh }A+ k tka@ >D <q‘7q5>l‘ J

Poniewas $lad macierzy jest nieczuly na operacje transponowa-

nia (tw. 2.2»3) zachodzl zatem
AN ' ia AR R
t;r[<f’ﬁ >$0<‘ Tvd >‘-,“J - tr[<@ >D\o< v (P>m J )
S A A A mn A N U-—'{
= tl‘kfl‘?‘@>l)o ll"< i >TRJ . ( )

A #
Macierz DO jest macierzg diagonalng, a wiec
A A TR v
D, =D, . (8-8)‘

Podstawiajac (8-8) do CB 7) otrzymﬁje sie
A ’ '
tr[<T>D Tv@>’m tr[<mv@>ﬁo<$>m] , (8-9)
a takzze . |
A A AAA'TQ A A D A AR
t1~[<'1' >0, < TV@V@>J R _ tr[<‘1'v45vq5 >DO<T>].
(8-10)

Po uwzglednieniu powyzszych zaleznodci przyblizony wzdr
na Jasnosé Strehla dla ukXaddw zmieniajacych stan polaryzacji

Swiatta prazyjmuje postad
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s = <8 >0 < 0 72 { e v d >0 < HM] -
B tr[<$‘7$>30< '?vgg >TI{]JZ ) (8-'11)

Pierwoszy wyraz reprezentuje jasnosé Strehla uktadu bezaborraw

cyjnego
@M = @XV B 4;3}){ = gj,\}y = 0 R '<8m12)

Wyraz drugi opisuje spadek jasnosSci Strehla zwiazany z sbexrra-
cjami ukltadu, Warto podkreslié, Ze w przypadku wmatych aberra-
cji jasno$é Strehla nie zalezy od ich postaci a Jedynie od
A A AN A
$rednich z macierzy < T¥ P > i LTvP v§>.
Zaleznosé jasnodci Strehla od stanu polaryzacji swiatza
wchodzacego do uktadu wyraza gie poprzez dlagonalng macierz

A
D .

O v
Wzér(8~11) jest wiec vogdlnieniem przyblizenia Marechala
dla Jasnosci Strehla na uktady odwzorowujgce zmieniajace stan
polaryzacji $Swiatta. Przypomnijmy, ze przyblizenie to moie

by¢ stosowane tylko przy nastepujacych ograniczeniach:
, ‘ A
(1) wezystkie elementy macierzowej funkecji aberracji Q5

przyjouja niewielkie wartosci w pordwnaniu ze srednig
dtugoscig fali A dwiatka quasimonochromatycznego uiy-

tego do odwzorowaniaj

(2) SwiatXo wchodzace do ukiadu da sie opisaé rzeczywista
A
macierza koherenc]i JR .
Wydaje sie, %e konieczno$é speknienia drugiego 2z wyze]
wymicnionych ograniczen wymaga szerszego uzasadnienia. Dla

kazdej rzeczywiste] maclerzy koherencji istnieje uktad odnie-
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gienia w ktérym przyjmuje ona postad diagonalna. Wtasnie w
tym ukiadzie odniesienia ogdlny wzér na jasnosé Strehla

<6*10> przyjmuje szczegélnie prostg postad

Bl = d1[‘<fuxxt>, 2 +J<{nyt>[2]%

0 > (8-13)
‘12[l< ”xy>l +}< Hyy.>/ ?] )

w ktdrej wystepuja wytacznie kwadraty modukdw srednich z ele-
mentdw macierzowe] funkcji drenicowej wazone wspdtczynnikaui
\
d1, dﬁ. Ta postaé wzoru nadaje sie najleplie] do prgedstuwie~
‘nia w postaci przyblizonej, gdyz podobnie Jak w klasycznym
- . ’ ' » Id
przybliZzeniu Marechala, wystarczy rozwinglé w szereg potegowy
, 2
wyrazenia typu l<:Hk,§>{ . Niestety nie mozna zdiagonalizo=-
waé poprzez zmiane ukladu odniesienia macierzy koherencji o
elementach zespolonych., W takim przypadku, dla znalezienia
przyblizonego wzoru na jasnosc¢ Strehla,nalezatoby rozwijac w
K
gzereg potegowy rowniez wyragenia typu<<ﬁ%uc>><<fﬂxy:> -
pordwna] (6~10) - co zwiazane Jjest ze znacznie wigkszym bie-
dem tego rozwiniecla. Dlatego tez zdecydowano sie na wypro-
7 - ’ . . . ’ 0 »

wadzenie uogdlnionego przyblizenia Marechala przy zatozZeniu,
ze SwiatXo wchodzace do ukXadu da sie opisaé rzeczywista ma-

A
cierzg koherenc]i JR .

Udowodniny teraz, Ze drugl wyraz w przyblizeniu Marécha-
la <8~11) , bedacy odpowilednikiem Sredniokwadratowej defor-
macji frontu falowego, jest nieujemny.

W tym celu wygodnie jest przedstawié go w postacl rozwinigte]

uf<Brdrd > D<A wa<hrd> B < BePT] -



s
o<, B> < BT
<, BESn, S D] ()
v, B> L > < B> | '
<y B> <y > - <a B> |

G 3 = Nrarlrm da M v 1 UL o ¢ -~ YY) ’ - A s
Ponicwaz funkcje Lo i‘}cy’ rly:{’ Tyy 5 nieujemneg (4.3 4.>’uy

razenia w nawlasach kwadratowych, z dok}adnodcig do state],

réwne sg Sredniokwadratowym deformacjom frontdéw falowych

DRI e

i vxX Xy . opeiniaja wigc warunek
P8

] —

vy _
| | B
< T]{,X @ )2CX> <TX.}C> - <T:CX é X> =
~ 2 " 2
: <<fox€is x£:> <<5Txm:Q5 ;;;> = g
= e = 0 -
< T}:x> | N 2 ;

Poniewas d1, 62 8 takZe nieujemne, zatem rzeczywiscle za-

(8-15)

”<iTx£t>

chodzi

. A A A , g A N . m
fcirded > B <IN o< Eed 0
| (8-16)

Fakt ten bedzie w istotny sposdb wykorzystany w rozwazaniach
dotyczgcych doboru optymalnej sfery odniesienia dla uktaddw

zmicniajacych stan polaryzacji swiatia,
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9, DOBOR OPTYMALNEJS SFERY'ODNIESIENIA

Obrazem punktu w rzeczywistych uktadach optycznych jest
zawsze Ltrdjwymiarowy roéklad natezenia o silnym centralnym
maksimum i znacznie szabszych maksimach bocznyche. Przyczyna
tego rozmycia sg zjawiska d&fﬁakcyjne jak rdéwnies aberiacje
uktadu. 2 praktycznego punktu wi zenié duze znaczenie wma waie~

jebinosd wakazania tego punktu w przestrzenl obrazows) A .
(% ) (S} & & //’\)\

. , .2 "'GP,'- . ’ » . Al ::{;
CxﬁAx v Ypax s z,qu), w ktdrym natezenie przyjmuje wartosd
maksymalng <chodzi 0 bezwzgledne maksimum rozkiadu natgionia) .
Gauscowska sfera odniesienia <rys.4.1) o $rodku w punkcic

A,‘Mx nazywana Jest zazwycza]j optymalng sferg odniesienia, Prob-
lem doboru optymalnej sfery odniesienia jest wiec w istocie
rownowazny e znalezieniem wapdirzednych (Tanx v Yyax o zﬂﬂx)
punktu Aﬂan‘ Szerep zagadnien zwlazanych 2z doborem optymal-
nej ofery odniesienia dla klagsycznych uktaddw odwzorowujacych

poruszono W pracach [46#53] .

W niniejozym rozdziale przedstawiona zostanie procedura
doboru optymalnej sfery odniesienia dla ukiaddéw odwzorowujs-

cych zmieniajacych stan polaryzacji swiata ,

Maclerzowa funkcja aberracji Qﬁ(%;y)okreélona jest
wzgledem pewne] sfery odniesienia, ktdra nie zawsze jest opty~-
malna. Do znalezienia optymalnej sfery odniesienia wykorzys—'
tad¢ mozna uwogdlnione twierdzenie o przesunieciu oraz wogdlnio-
ne przybliZenie Merechala dla jasnosci Strehla.vRozwaznnln b g
dgce przeduniotem tego rozdziaiu, podobnie jak pdprzednieno,
prowadzone wigc beda przy zatozeniu, Ze do odwzofowaniu uzyta

zogtata mieszanina Swiatka spolaryzowanego liniowo .1 SwiatZa
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niespolaryzowanego dajaca sie zawsze opisaé rzeczywista
A
macierzg koherencji JR’

W celu uproszczenia notacji przyjmijmy nastepujgce
oznaczenia

2
s
a, = goin® ,
3’00869 ,

o
—
i

(9-1)

i

s ]
e

A
’ ty . o .
Macierzowg funkcje aberracji QS(F/?{) wzgledem zmienione]
sfery odniesienia mosna przedstawié nastepujaco (7—1)
A A 4
-9 A — v .
P’ = P +I\I(2_. a.q) . (9-2)
. i
i=1
Dobierzemy takie parametry Q45 Ao q3, q4 dla ktdérych jas-
nosé Strehla w przybliZzeniu Mardchala (8—11) ogigprata bedzie
wartosdé makeymalng. Warunkiem koniecznym istnienia malkaimua

funkeji SR <q1,q2, q3, q4) Jjest uklad‘réwnuﬁ

ad SR
J q;

Al

=0 dla i=1,4 (9-3)

ktdry po uwzglednieniu (8~11> mozna przedstawié jako

i " rA A, A AL
“é“a?{{tr[<iv@:> be B>
-l d> 50 L oy

dla i = 1’4‘ -

Na podstawie twierdzenia o pochodnej $ladu macierzy (tw.

2.2~5/)0raz twierdzenia o pochodnej iloczynu macierzy (tw.
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,2,2“1) otrzymuje sie
A

. aé’ A ’A Y\ R : A A /\ ,A‘ .
tl‘{<rp v 5 a; > DO<PV@ S‘I\J i 'br[.<lvds’>1)o<1, _m“>

-

) . A/\’ /\’ ' .
) D v (P A \
- q,..,-{<f5v ‘)(3{ i)>'1\)o<'r>f”j= 0 dla i = 1,4 ,
93 |
(5-5)
Zauwazmy, %e

A A | A |
" é’vj;?) Ly 99_37 .
(c} - = 2@&7 P , (9»—6)

oraz

t [<7v V(§-»-> Dy << Tvd "‘R] -

~—

a; "

A
, Ayl c')'“’ TR
= ti’k%vé\,> ?)o'<{l\‘ g j’j- > ] ’ (9"‘7)

co zachodzi ze wzgledu na fakt, ze Slad macierzy Jjest nieczuity
na operaeje transponowania th. 2, ?—4) Uk*ad rdwnan (9 ))

mozna wiec zapisadé jako
A Jgé’ A A SR
tl[<‘ﬁ'v-§—a:> DO< T V@& -
- -wl<'rv_@ v ---->D <1 >TRJ

ala 1 = 1,4 . (9-8)

*'@l %

Podstawlajgc za wyrazoenie (9-2/)1 uwzgledniajac, Ze



4" |
gqf A L = (9-9)
9 qy ,

otrzymuje sie liniowy ukXad rdwnan ze wzgledu na parametry

q1’ ng QB’ Q4

4 . ' - -
Z qi{tr{</‘l‘\ai>. 3o<' §Bj>ﬂ-‘fﬂ_ tr <'/T‘aiaj> BO< o PR ] :

je=
A N AR SAENE A~
= 'tr[< ) ai> Do< T >J-— tr <T7§> D, < ’,L‘aj>
dla i = 1,4 (9~10>
Poniewaz a, =] 4 zachodzi wigc
trL<mai> D0< Taj =t <Taiaj > DO< T> = 0

dla i = 4 (9-—11)
lub dla J

i

’

tr <’/I‘\ V_é' ai> 30-<{I\‘ >m§]- tr[<fll.‘\i7$>8;< ﬁz\ai&"f‘]: 0
| ) (9-12)

Oznacza to, iz funkcja SR (q1, dps Qg9 q4) nie zalezy od

dla L = 4

parametru Ay e W istocie (9—1C{)jesf wiec linilowym ukZadem

réwnan ze wzgledu na parametry dqs Qp» 93
AA A

B Q= C | (9-13)

gdzie i %

A A A LA : A A A om
m TR f

[_B,]ij'z trk<:Tai:> DO<< lajt> r‘]-- txu<fTaiaj:>Do<:T'>>%]

dla i,3 = 1,3



= A =

A A Al A A ™R
[(Ji = tr[<T ?9'5 ai> DO<T> A

A A A . '
tr1:< TV_Q?>DO < ‘l‘ai>TRJ
dla i =1,3 (9-14)

A
L({]i = qy dla i1 = 1,3 .

Powyzezy ukkad réwnan pokazuje, ze jasnoéé Strehla w przybli-
zeniu Marechala jest forma kwadratowa ze wzgledu na parametry
dqs doo q3. Warunek:(8—16) gwarantuje, ze jasnosé Strehla

[

ogpetnia nierdwnosd

SR < tr[_<'l‘ >0 < T>m] (9-15)

co oznacza, ze forma kwadratowa SR [q1, Aps q3‘>jeSt ograni-
czona z géry. Mozna wykazad [54] , ze kazda forma kwadratowa
ograniczona z gdéry posiada maksimum, tak wiec ukiad rdwnan
(9—3:)jest nie tylko warunkiem koniecznym ale rdéwnies wystar-
czajacym dla istnienia maksimum jasnosci Strehla. Optymalne

wartosci parametrdw S PP q5 sa zatem nastepujace

A
det Bk
Q) = TR dla k = 1,3 y
det B : (9—16)
q4 - dowolne
A
gdzie macierz Bk otrzymuje sie przez zastapienie w macierzy
A A '

B kolumny o numerze Xk wektoren C ; det oznacza wyznacznik
macierzy., Podstawiajgc optymalne wartosci parametrdw Qqs Ao
qJ do wyrazenla (9 Et)otravmuge gie macierzowag funkcje aber-
racji Qﬁopt okreslona wzgledem optymalnej sfery odniesienia,
a na podstawie zalezZnosci (7~15) moszna *atwo znaleZé wspdk-

rzedne Srodka optymalnej sfery odniesienia (x Z ),
¢ ' Py J y max * Imax 2% wax
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Podobnie jak dla uktaddw odwzorowujacych nie zmienia-
jacych stanu polaryzacji éwintZa [48] jasnogé Strehla nie
zuleﬁy-od parametru Ay Jegt to zresztag wynik oczekiwany,
zdya Ay nie pojawia sie we wzorach (7*2.>i (7_3> .

Przedstawiona procedura wyznaczanla parametrow A5 Ao
dq okreslajacych optymalnag sfere odniesienia dla uktaddw
odwzorowujacych zmieniajacych stan‘polaryzaoji gwiatta zo-
slalta wyprowadzona z wykorzystaniem uogdlnionego przybliZe-
nia lardéchala dla jasnosci Strehla (8-11) . Obowiazuje wigc

tylko przy speinieniu ograniczajacych zatoZens

(1) wazystkie elementy macierzowe] funkcji aberracji
przyjmuja niewielkie wartosci w pordwnaniu ze $rednia
dtugodcia fali A Swiatta quasimonochromatycznego usyte-

go do odwzorowania;

(g) Swiatto uzyte do odwzorowania da sie opisaé macierza
A. .
koherencji JR o rzeczywistych elementach.

Przyktad 9.1

Wyznaczono optymalne parametry qs dps dj dla uk*adu
z dwugtrefowym filtrem polaryzacyjnym z przyktadu 4.1.
Zatozono, %e ukiad 6barczony jest trzeciorze¢deowa aberracja
gferycznag
v(p,6) = Fot (9-17)
llementy macierzowe] funkcji tranemigji amplitudy i macie-

rzowej funkcji aberracji takiego uktadu sa nastepujaco



ST

]

2
cos 0(1
Txic (S” G) =
cosg 0(2
sin 0(1
VY(§,0) j{ 2
gin 0(2

dla 0{53<'p

/ dla p<59 <]

dla O\<59Sp

dla p<5)$1

’l‘,,.y(f)@)=<, s%no(w1 coso(.], dla Oﬁfs‘p
< ’81110(2 coso(2) dla p<'p <1

Tyx ($1 0) = Txy (3,’0)

orad

i'SXX(g ’ 6’)4__: i

dla

]\)s_.\

dla 05 ¢< p

2 @X’y(j’ ’ @)

sina{1coso( 1 =0
sino{,cosc{ 2< 0

sino(1cios 0<1>'O

Poy(§:6) =
F54+ n&j
Pa(s:0)=1
l“j + Iy
éyx[f 9&)
pdzie
0 dla
m, = -
1 -12- dla’
0 dla
ny = '

sine( cos o(1< 0

A dla p<os1

7

(9—-18)

(9-20)
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Ponie%fz Qﬁgy(f’,é?) i égyx(f,CQ) émieniaja gie skokowo

az o 5\/2 korzystanie z omowionej procedury Wyznaczania
optymalnych parametrow SPIEPY q3 gtaje sie niecelowc,

gdyz zostata ona prowadzonﬁ przy zafozeniu, iz WerO;LIWuZVULW
kich elamnentdw macilerzowe] ‘funkcji aberracji QB[}” )au;
niewielkie. W takim przypadku wygodnie jest interpretowad
gskokowa zmlane aberracji o j\/2, jako zmiang¢ znaku odpowied-
niego elementu macierzowe] funkcji transmisji amplitudy,

wbrew (4.}—2) o Otrzymuje si¢ wtedy

(2]
. [ecos“x, dla 0<e<p
1
T}u{ (9) @) :{ 2 :

Cos"o('g dla p<ps1

D .
sin o(,] dla Ost p

i 0) = , -21
yy(f’ ) {sin‘?o(z dla p <f$’1"1 ' (9 )

sino(1coso<1/ dla Oéfs P

i @) = .
xy(fi ) sinoﬁgcoso(2 dla p<j>51 ,

Tyx [?7 CO) = TX,Y s
oraz ' '
P60 55 (o)
P xy(er 6= Pf :
ny(f’@= Ff :
Dopugzezenie ujemnych wartosci funkeji Tvx(f’@)i TM} (f, 69)

gprawia jednak, iz nierdwnosd (9 15) nie 7awuze musi byé

gpedniona, Nie da si¢ wice undowodnid, za ukrad réwnan (9 3)
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jest nie tylko warunkiem koniecznym ale rdéwnies wystarcza-
Jacym dla istnienia maksimum jasnosci Strehla. Po dopuazcno-
niu uwjemnych wartoéci funkeji Tyx(?;6{>i Txy(%y@{)parametry
dqs 9o q3 znalezione na podstawie rozwigzania (9—1@) moga
wyznaczac¢ takze punkt przegigcia. lub minimum jasnogci Stroh-
la., Rozwigzanie (9—16) wyznacza maksimum Jjagnosci Strehla

A
wtedy i tylko wtedy gdy minory gidwne Mi macierzy B gpednia-

ja warunek [54]

-1 s M, >0 dla k = 1,3 '9-23
k

Macierzowa funkcja transmigji amplitudy <9~21)211nncie»

rzowa funkcja aberracji (9—22) nie zaleza od kagta * s CO
A
oznacza, ze macierz B Jjesl diagonalna

[,1\3]12:[-%]13 3[%](31 [3193 ['5]31 '*"[ ];2 =0 ,

[6]11= trE{f@ai <<’Ta1f>>_] - tr%(fTa1\f>D T d i/ ,

[ﬁ.]zz Sk ' 6a§>%o< ?>m,] , | (9“‘24)
[3],, = - se]fa2> B <H>m |
oraz

11

Ic\ : trL vaa >TRJ [/'rngBv L mans! J
[, -8k -0 . R

Poniewaz gﬁ 5194 ﬁ‘ rozﬁiqzanle <§~16) przyjmuje posgtac
R _ A o
tr[<’l‘_s> 'a1> 1'>T1i]- 1 l<ﬁ'94'> D, < {L‘\a1>m‘§j
o tr[<’i‘a1> <Ta1>TRJ - trK Taf > ﬁo< i >T“]

(u~?6>

i1

0

i

il

-

> = 0
0
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Rys.9.2. Opfymalne Wartoéci.parametru a4 dla dwintla apola-
‘ryzowanego liniowo o azymucie poluryzaojﬁ_/3'v(f‘
w funkcji stopnia polaryzacji P. Ukiad obarczony
byt trzeciorzedng aberracja sferyczng Vﬁﬂn FJ?A 4
a parametry filtru byiy nastepujace:

X, = 0°, 9(2 = 90°, p = 0,6.

Rys.9.1. Optymalne wartosci parametru qq W funkeji azymntu
- polaryzacji /3 dla swialbtZza liniowo spolaryzowanego w abop-
niu P=1 oraz P=0.5. Zaznaczono takze wartosci paramelru aq
dla $wiatza niespolaryzowanego P=0, Ukiad obarczony by
trzeciorzedowg aberracjg sferyczng VGQ: F_f4, a parametry
filtru byly nas‘?pujqco:cx1 RN CKR = 90“, p = 0,6,
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Wyliczeno wartosci g dla filtru o parametrach X, = OU{
O{ o =90°, p = 0.6; jak na rysunku 5.1, Sprawdzono, ze w
omawianym przykiadzie warunek (9-23;>jast zawsze spedniony
co oznacza, 1z wyliczone wartosei parametru a4 rzeczywiscie
wyznaczajg maksimum jasnogcl Strehla.

Rysunek 9,1 przedstawia optymalne wartosci parametru a4

w funkcji azymutu polaryzacji /3 dla $Swiatia liniowo spola-
ryzowanego W stopniu P = 1 oraz P = 0,5 . Zaznaczono takze
wartos¢ parametru ay dla swiatia niespolaryzowanego P = O ,
Rysunek 9.2, praedstawia parametr a4 dla swiatia spolaryzo-
wanego liniowo o azymucile polaryzaCJi/B = 0° w funkcji stop=
nia polaryzacji P. Zwraca ﬁwagg silna zaleznosé dptymulnoj
wartosci parametru Qs od stanu polaryzacji $wiatxa uzytego

do odwzorowania.



- 82 -

10, ODWZOROWANIE PRZEDMIOTOW ROZCIAGLYCH

Dotychczasowym przedmiotem'rozwaZaﬁ byty zagadnienia
zwigzane z odwzorowaniem przedmiotéw punktowych, W niniej-
gzym rozdziale zaproponowane zostanag uogélnione metody opi-
su odwzorowania przedmiotow rozciagiych, dajgce si¢ zastogo-
waé¢ do ukiadow zmieniajacych stan polaryzacji swiata, lleto-
dy ta, podobnieljak dla klasycznych uksadow odwzorowujacych,
oparte zostaty na przeksztaXceniu TFouriera., W szczegdlnoscl
wykoruzyotane zostana vopgdlnione twlerdzenia swigzane 2
przekaztaiéeniem Fouriera macierzy funkchi, twe 2.2-( do
2,2-13, - |

W najogdélniejszym przypadku macierzowa funkeja rozmycia
amplitudy ’g(:uo,vo, u1,v1) zalezy nie tylko od wspéirzgd-
nych ptaszczyzny obrazowej, ale rdwnieZ od pokozenia (uo,vo)
punktowego Zrddra dwiat*a w plaszczyénie przedmictowej. Tym
niemniej, lstnieja obszary piaszczyzny przedmiotowej., dla
ktdrych z dobrym przyblizeniem mozna przyjac¢, ze macierzowa
funkcja rozmycia amplitudy zalezy wykacznie od rdianicy wspok-
rzednych 'g (u1~u0, v1—vo) . Bedeg one nazywane izoplénatycz—
nywi obsgzarami ukZadu odwzorowujacego zmieniajgcego stan
polaryzacji swiat}a. Rozwiazania n;niejszego rozdziatu znaj-
dujag zastosowanie tylko do przédmiotéw mniejézych niz obsgzar

izoplanatyczny ukiadu,
10.1. Odwzorowanie w gwietle koherentnym.

Peina koherencja przestrzenng charakteryzuje sie jedy-

nie Swiatio S$cisle monochromatyczne. Niech zatem wektor
A
8] (u“ , Vo-) reprezentuje rozktad amplitudy zespolonej swiat-



w BT

Ya fcisle monochromatycznego w praszczysnie przedmiotowe]
uktadu
P .
U u_,Vv
X ( o’ o>

0 Ca v, ) = : . (10, 1-1)
U_y (uo,vo)

— -

Dla s$wiatta scisle monochromatycznego rozkiad amplitudy zespo-
. s . J

lonej w ptaszczysnie obrazowe] dU (uq, v1) pochodzacy od
punktu (no,vo) w plaszczyinie przedmiotowe] mozna wyznaczyd

na podotawie spektralne] zaleinoscil (5~2)
7 g ‘N _ - )
de (u1,v1) = hxx('u1 U, s vy vo_) Ukv<uo,vo) duodvo 4

I (uq-u, ,\v1—vo‘> Uy (uo,vo) du dv | ,
| ' | (10.1-2)
dU; (u1’VT) - hyX (uT—uo’ V1-vo-) Ux (uo’vo> duodvo *

A

+ hy (u,=u, vq—vo) Uy( u sV, ) dudv.

lub w krétsze]j notacji macierzowe]
A A A
> ‘ s
au’Cuysvy) = h (u-u, v1—vo> U (uo,vo) du_dv, (10.1-3)

Catlkowity rozkkad amplitudy w praszczyénie obrazowej pocho-
dzacy od wszystkich punktdw piaszczyzny przedmiotowe]j rdwny

jest wiec
OO
y '
U, (u1,vd) = _/]’hxx <u1—u0, V=V, ) sz(uo,vo> du dv,
s

o |
+ j]’hxy (u1—uo, V1"VO,) Uy (uo,vo> du dv
o |

(Go.1-4)
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o= f
U&’(u1;v1) = J[[hyx<:u1-uo’ v1-vo) Ux <uo’vo) duodvo +
-~ o

— D

lor =)
+ thyy Curuo? v1—vo>_ Uy (uo,vo> d“odvo’
lub w notacji maciorzoWej-

A Oo/\ A

UQ:“J’V1) ij]'h (g1aﬁ0, v1~v0) U(iuo,vo) dubdvo ° (10.1~5)
s :

la podstawie definicji (2.1—8) mogna stwierdzidé, Ze rozkiad

anplitudy w ptaszczyZnie obrazowej uk*adu zmieniajgcepo

gtan polaryzacji SwiatZa réwny jest splotowl macierzowej

funkcji rozmycia z rozktadem amplitudy w piaszczyinie przed-

miotowej

A A A .
U’(u1,v1) = h (u1,v1>(:) U <u1,v1> . | (10.1~6)

A A A
Czasaml wygodnie jest przedestawié macierze U] h, U

w postaci sumy skXadowych harmonicznych

375“1_’"1) sz/é‘i(f’ﬁ) exp [ -29T1(u € +V1g)de ae

A A ‘ .
U (u,»v,) mff&(f,g) exp[ ~2T 1 (uof+v0g:)de dg
D (10.1-7)

A A : . .
h Cu,v) ufj/’,_(f,g) exp I_-? JT i (uf+vgjjdf dg
o=

gdzie £ 1 g sa bezwymiarowyml czestosciemi przestrzennymi

R A R A |
£ omm——— £, g = g’ , (10,1-43)



(

a f i g sea wymiarowymi czestosSciami przestrzennymi.
Korzystajac z odwrotnego brzaksztalcenia Fouriera mozna
wyznaczy¢ macierze éZ’y’227¢€

) ' §”29 Sy

Ult,e) =ujf[j(u1,v1) exp [ 2T 1 (u1ffv1g)Jdu1dv1,

(10,1-—9)
21 (f,6) fju(uo,v ) (nm[_Q JTi (u t4v g_)Jdu av,

fi(l,Lv) ]]rh(u v/)omp [E’Jtzi uf + vg) /du dv

 faczac (10.1-6)2 wogdlnionym twierdzeniem o splocile
th. 2.2~9) otrzymuje sie prosta zalezno$é iloczynowsg okres-
lajgca rozkktad skXadowych harmonicznych amplitudy w piasz-

czyZnie obrazowej

A
J(ee) =A(t)il(t8) (10.1-10)

lub w postacl rozwiniete]

20 (2,6) |« [ £, (1.6) 1 Ay (2a8)| 2L, (2,5) |
. (10,1-11)

it

w (t.8) -%yx (£:8) 3 Ayy cf,g) Uy (£:8)

7 poréwQQnia zaleznosci (10.1—6/)1 (4.4-3) wynika, Ze ma=-
clera 761?,@) réwna Jest, z dok¥adnoscigq do stakej c¢ ,

macierzowe] funkcli Zrenicowse] ukadu

A A, .
Alte)= cH(f,e) . (10-1-12)
Rozktad sktadowych harmonicznych émplitudy w ptaszczyinie

obrazowej réwny Jest wiec iloczynowi macierzowej funkcji
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frenicowe] uktadu z rozkiadem skXadowych harmonicznych w
ptaszczyZnie przedmiotowej. Poniewaz wszystkie elementy ma-
cierzowe] funkcji #renicowe] poza obezarem Zrenicy wyjicio=-

waj sa réwne zero

to koherentny ukXad odwzorowujacy zmieniajgcy gtan polary-
zacjl dwiatia, podobnie jak klasyczny, nie przenosi skiado-
wy harmonicznych amplitudy o czestosciach wiekszach niz je-

don.

10.2. Odwzorowanie w niekoherentnym Swiatle

quasimonochromatycznymn

Na wgtepie zdefiniowane zostanie pojecie niekoheraencji
przestrzennej dla zaburzenia o charakterze wektorowym, W
tym celu wygodnie jest posluﬁyé‘sie maciexrzg koherencji wza-
jemnej, wprowadzonej po raz plerwszy w pracach [ﬁ5~56;}.

Niech funkcja wektorowa

A : ZX'Ct,uo,v0>
7 Q““o"’o) . | (10.2-1)

J,:Zy (t,uo,vo%J

reprezentuje quasimonochro&atyczne érgania wektora elel-
trycznego zachodzace w plaszczyﬁnié przédmiotOWaj uktadu,
Poniewaz kazde zaburzenie niemonbchromatyozne mosng przede
gtawié w postaci suﬁy zaburzen $cisdle monochromatycznych,

to zachodzi



oo .
QCt,uo,vo) =j§(\),go,vo) exp( -2J04 Y t) av ,
)

(10.2-2)

x :
gdzie[](ﬁ),uo,vu) reprezentuje rozkad amplitudy zespolone}

sk¥adowej Scisle monochromatycznej o czgstosei vV
r -~
WV N

A Ux:( ’&dio>

U (Vyu,,v,) = | . (10.2-3)
Y

Ly (\),uo,vo)

-

Macierz koherenc]i wzajemne] definiuje sie nastepulaco

[55-56 |

J}‘(u v, u 'Y, Y = <<1Z (s u,sV, )z f% u ,v’2>? (}0 2~4)

Ed‘1<a<:...f:> jest drednia czasowg obliczang wedtupg wzoru
(3 o 43> Latwo wylkazaé, Ze tak zdefiniowang macierz kohe=

rancji wzajamnej obowiazuje rdwniez spektralne rdwnanie

3ed~ 7)
J (ugsvysuy ,v)) f (u WV, uo,v " Yav ,' ) (10,2..5)

gdzie
A A A t, — o
(Vs -
va = IJ(V,uo,vo) U w,ub,vo) (jo.z 6)
jest spektralng macierzg koherencji wzajemnoJj.
. A L
Zaburzenie wektbtorowe 2 (t,uo,vo) nazywaé bedziemny

niekoherentnym przegtrzennie, gdy gpeinia ono warunek
A, - A :
Jm (uo,vo,u;,\r;) ol ( uo,vojc,{x(uo-u;, vo-v(:) /J (10‘2"7)
A A
gdzie J (uo,vo)w«<fz (t,uo,vo)12$(f,uo,vo):>t jest ua-

cierzg koherenejl oplsujaca stan polaryzacji swiatXa cnito-
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wanupo przez punkt (uo,vo> piﬂ&zczyzny przedmiotovaj,
a Cf’oznacza tutaj dwuawymiarows delte Diraca.
Aby okreslié rozkiad natezenia w paszczyinie obruvos
vaj wyznacayny najpierw rozklad @paktfalnej macierzy lohow
roncji w ted plaszezyinie. Rozklad amplitudy wespolona]

skiadows) apektralnej o czestodel v opisuje réwnania(j0.1~5_)

> 5
\ A A :
{qug,u1,v1) ij]tl(uT-uO’ v1~v6)lj(v,uo,vo) duo dvo .
- (10.2-8)

la podatawie definic]ji spolttralne]j maciexrzy koherencji (3.4wﬁ)

zachodal
D
A, ((r% X A ;
" : y ¥
3y (111,v1) »LU h (u1—-uo, v1—-vo) va(uo,vo,uo,vo> .
A "--!a_(‘-’ . v . ‘
1, ” ) y 4.9
9 -y o | b -
h' (wg=uyy vo=vy ) dudvoduiave (10.2-9)
Po scatkowaniu po epelbrum powyzszego rdwnania otrzyuuje

gi¢ rozlktad maclewrzy koherencji dla dwiatia quasimonocliona-

tyceznago w ptagszezyinie obrazows)

oo

- | e .y 2 y
J’(u1,v1) fjlg; h(u1~u0, v1-vo) Jm( uo,vo,uo,vo) .
ikl _ IR
o7 ’ ’ 3 5 4oi9 o )
e h <u1-u0,v1~vb')duocvoduodvo . (10.@*10

Ponicwa# zatozZono peing nielkoherencje przestrzenng w plagie
ceyinie przedmiotows], to po uwzglednieniu (10.2~I) rozktad
macierzy lkoherencji w praszczyinie obrazowej mozna wyrvazid

znacznie prostazym wzorem

0@
N A A
(;’.’((11"\[1) ::j'j‘h(lﬁ'“t!o, v1-,~vo) J( HO,VO.) .
“o=
B gt vv,) dudv, | (10.2-11)



Natgzenie rowne Jest zawaze sladowi macierzy kOhGLdanl
T (u1,v1> = tr J(u1,v1> tak wiec rozkkad natgzenia w prasz-

czyznie obrazowej ukZadu dany jest wzorem

D
o ; A
Jj(u1,v1) = tyjj!x(u1-uo, vy=v ) J (uo,vo) .
— <D
-h (111-11 , V=g ) dugdv, -~ (10.2-12)

a na podstawie twierdzenia o caXce $ladu macierzy (twwﬁ.2~6/)

otruymuje sie

o>
A /\‘
Jr<“1,v1) m‘thhP[;h (u1~u y V4=V ) J (uo,vu)

e A

h (u =U. s v -y {Jdu dv . (10.2—13)

Dalsze rozwazania ograniczaja si¢ tylko do przypadku,
w ktérym macierz koherencji w dowolnym punkcie pXaszcazyzny

przadmiotowej mozna przedstawié w nastepujace] poataci
A -, ) A
J(uo,vo) = I (uo,vo) Jo 5 (10.27-14')

gdzie i (uo,vé) =t tr§2uo,vé)_reprezentuje rozktad natgﬁenia
w pragzczyZnie przedmiotowe]j uktadu. W igtocie zakladamy
WiQU,IZG wazystkie punkty praszezyzny przedmiotowe] enituja
Swiatro Jednakowo spolaryzowane, rdézniace sie tylko nateze-
niem, Stan polaryzacii dwiata emitowanego przez ptasy zyz;_
n¢ przedmiotowg opisuje unormowana macierz koherenc]i ? .

Po podstawieninu (10 2~14) do (10 2-13:>otrzymuje gleg

I<u1,v1) ff (u v)tr[_h(u-—u,v v)

' J h F(\11-41 ,v -y )J du dv b o (10.2-—15)



-, G0

A At
Zauwazmy, ze tr[h (u1-—u0, v1-vo> J h Uy =R s Vy=v )’j
jest po prostu rozkladem nateZenia w dyfrakcyjnym obrazie
punktu emitujaoepo Swiato o stanie polaryzacji reprezento-

wanym maclierza J Cb 14,}
Kl(u1—u0,v1-v6‘)n,tr1;h (u1-u0, v1~vo>-
A A 4
° JO hrCu1~uo, v1—vO)J . (10.2-16)

Zatom

(u1,v1) = J:( (u,,v, ) ¢ (uy=u,, vy=v ) du v,
(10 2-17)

lub uzywajgc symbolicznej notacji splotu

i,(u1,v1) = I (uq,v,) ® x (u1?v1) . (10.2-18)

.ll]i\
VW przypadku, gdy WS”Y“LLLL quuAczyzny przadmiotowe]j emitu-

ja fwiatXo Jednakowo spolaryzowane,rozk¥ad natezenia w pragu-
czyZnie obrazowe] ukkadu réwny Jest splotowi rozkiadu nate-
zenia. w ptaszcayinie przedmiotowe] z funkeja opisujacyg roz-
ktad nateszenia w dyfrakcyjnym obrazie punktu.
" . R
Aby wyznaczyc¢ skradowe harmoniczne funkcji I (u1,v1) ’

I(:uo,vo) " K(u,v;), podobnie jak w przypadku koherentnym,

mozna postuzyé sie odwrotnym przeksztatceniem Fouriera
() ’

T f£,6) ;U-I (uy V‘l> exp LL JLl(fu +EV 1)']du1dv,l ;

I(i",g) (J’I(u v) cxpLE’ Tl(i‘u +Ev )1du dv,
(10.2-19)

:KZfAQ njyaK(u,Y)GXp Daﬂfi(fu~+gv)]dudv .

faczagce (10.2—19) z twierdzeniem o aplocie otrzymuje sig

It
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I'(f,.g) wféf,g)%(f,z;) Ty (10.2-20)

Uk*ad odwzorowujacy zmieniajacy stan polaryzacji swiatla,
podobnie jak klasyczny, dziaia jak filtr liniowy wzgledam

. . 1 . ’k 2
skitadowych harmonicznych rozkiadu natezenia. Funkcau.f(kf,g)
okresla przepuszczalnosé ukiadu optycznego dla sktadowe]
hatmoniczned o czgwu0501(7f,g) 1 mazywana jest optyczna
fuiilke jg przenoszenia ukladt&((ﬂ%ﬂ). Na podstawie uogdlnione-
go twierdzenia o korelacji wzajemne] (tw. 2.2~12,>oruu

twicrdzenia o cakce gladu macierzy (tw. 2.2~6,>zachodmi

Hie,e) = }'{1{(!1 v)J T {n«l Cu, v)ah v)’w

| (10.2-21)
= tr[ﬁ{ h Cu,v) :T\g (u V}]}
1;1-[»//2\(&&) 30@,/5@,@):},

Uwzgledniajac (10.1—12,)0trzymuje gle ostateczny po-~
gtadé wzoru na optyczna funkeje przenoszenia uktadu odwozo-

wujacego zmieniajacego stan polaryzacji swiatla

H(the) =] 0{2 tl[}'i('f,g) o H(f,g)J ., (10.2-22)

ktéry w postaci rozwinigte] mozna zapisaé jako

1 A |
,:{J((f,g) = I [I'Ixx (£,2)@H,, Cf,g) oy (f,g)(_.) ufw(f,g)J+

Iy [_H (f,g) @H (£,2) + Hy (f,g)@nw (f,t,)J
J;X [ny Cf’g) @Hy_x (f,g) + Hyy ( f9f§> @ny (f’l','}?J"‘
g [ny(f,g) Oy (£,8) + By (£,6) Oy ( :f,;y;)j

C1().:)“'¢”) )
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Optyczna funkcja przenoszenia -ukiadu zmieniéjacego
gtan polaryzacjl swiatla wyrazavsig poprzez autokorelacje
oraz niektdre korelacje wzajemne elementéw macierzowoj funs-
kcji Zrenicowe] ze wopdtczynnikami wagowymi okregdlonymi sta-
nem polaryzacji SwiatXa wchodzacego do ukkadu, Istnieje wige
mOAlLWOSé zmiany optycznaj funkcgl przenoszenia jedynie po=-
przez zmiane stanu polaryzacji $wiat¥a wchodzacego do ukta-
du. | |

Poniewaz wszystkie elementy macierzowe ] funkcji 5reni~
cowa] réwne sa zero poza obszarem Zrenicy wy J< ciowej (10 1= 13)
to niekoherentny ukXad odwzorowujacy zmieniajacy stan pola=
ryzacji éwiatka, podobnie jak klasyczny, nie przenosi skita-
dowych harmbnicznych natezenia o ézestoéciach.wiekszych niz
dwa

j{(f,g) =0 dla £2 + g®>2 (10.2-24)

Nalezy podkres$lié, ze pojecie optycinej funkec ji przeno-
szeni; dla uklaqéw 2mieniajacych'stan polaryzacji éwiatla |
udaje sie wprowadzild tylko w przypadku, gdy wazystkie punkty
ptaszczyzny przedmidtOWQj emitujag éwiatlb o jednakowym,sta—
nie polaryzacji. W przypadku ogolniejszym, o) mniejszym Z18 -
czeniu praktycznym, wprowadzenie optycznej funke il przenosze-

nia staje sie niemozllwe.
Przykiad 1041

Wyliczono optycznq.funkcje.przenoszenia odpowiédajch
- rozkiadom natezenia w dyfrakcyjnym obrazie punkfu przedsta-
wionym w przykadzie 5.1. I tak, na rysunkach 10,1a~f wykred-

lono optyczng funkecje przenoszenia w zalesnodci od atanu po=
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Rys.10.1. Optyezna funkcja przenoszenia /OTF/ dla ukadu z fil-
: 0
trem polaryzacyjnym o parametrach quz 00, o(? = 90.7,

p = 0.5, Jedna z krazywych przedstawia OTF dla Swiatta
gpolaryzowanego liniowo w stopniu P = 1 1 o azymucie
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polaryzacji B rdéwnym odpowiednio 0° (a) , 30° (b ), 60° (c) ,
90° (d) , 120° (e), 150° (f) . Druga wykreslono dla takich
gamych azymutow polaryzacji/g lecz dla Swiatka spolaryzowanego
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Ligiowos w gtopniu P = 0.5. Na kazdym z rysunkdw przedstawiono
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takich samych azymutdw polaryzacji /3 lecz dla swiat*a spola-
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laryzacji dwiatla wchodzacego do uk*adu dla filtru o pa-
rametrach 0(1 = 0°, 0<2 = 900, p = 0.6, Podobuie jak na
rysunkach 5.1 a=f jedna z krzywych przedstawia optyczug
Lunkcje przenoszenia dla dwiatla gpolaryzowanego liniowo
w gtopniu P = 1'o‘ézymutach polaryzacji /3 réwnych odpo=
wiednios 0° (a) , 30° (v), 60° (c¢), 90° (a), 120° (o),
150° (f) . Druga wykresflono dla takich samych azymutow
polavyzacji /3 lecz dla éﬁiatka gpolaryzowanego czeﬁciuwd
w stopniu P = 0.5, |

Dla pordwnania na kazdym rysunku przedstawlono talie
optycang funkeje przenoszenia dla Swlatla niespolaryzoviie
nepgo P o= O,

Krzywe z rysunkdw 10.2 a=f wyliczone zostaly‘dla takich
sanych standw polaryzacji jak odpowiednie krzywe z rysun-
kéw 10.1 a=f, lecz dla filtru o innych parametrach O<1 = OO,

o, = 120°, p = 0.6.

Podobnie jak rozkkad natezenia w dyfrakcyjnym obrazie

punktu,réwnies optyczna funkcja przenoszenia mocno zalezy

od stanu polaryzacji swiatka wchodzacego do ukkadu,
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11. ROZKEAD NATEZENTA W DYFRAXCYJINYM OBRAZIE
pwécH PUNKPOY

Obok rozkladu natezenia w dyfrakeyjnym obrazie punktu,
jasnosd Strehla, optyczne] funkeji przenoszenia inng waing
wielkosSciag charakteryzujaca uklady odwzorowujgce Jest ich

’

zdolnodé rozdzieleza. Iotnieje kilka rdznych definicji zdol-
nofci rozdzielezej ukkadu, np. zdolnosé rozdzielczu W ogens
gle Rayleigha, Sparrowa czy hwbewua~ﬂopk1nua. Nujc dcia ]
podstawg do lch wyznaczenia jest rozkiad natezenia w dyfrak-
cy jnym obrazie dwéch punktdéw. Celem ponizszych rozwazai
jest wyznaczenie tego rozktadu dla punktéw emitujacych swiat-
Yo o »danych stanach poTaryzacgl.

Niech w plasvcavunie pvzgdmLotowej ukXadu odwzorowuja-
cepgo zmieniaJacego stan polqry'acal znajduja sie dwa punkto-
we alodla swiatXa polozone gymetrycznie wzgledem ogl Vo

w punktach o wspdrzednych (nb,o ), (b,0> .

11.1. Przypadek kohereniny

: . A N .
Wiech wektory U1 i U2 oznaczaja amplitudy w punktach

odpowiednio (—b,O.)i Cb,0.>. RozkXad amplitudy w ptasuzczyid-

nie przedmiotowe] ukiadu mozna wtaedy przedstawié Jako

A ‘ A _ A R

U (uo,vo)a U, J\'( uo-b,vo) + U, C(\'(uo+b,vo) , (11.1-—1)
gdzie Crbznacza delte Diraca,

Dla znalezienia rbzkladu amplitudy w ptaszczyénie obra-

&OWbJ uktadu wystarczy pOd“tJWIC C11 (B 1) do <1O 1= 5)

8

‘ “ ’(l,.ll,V1) ::!."2((11"‘}),‘]1) L" i CL‘ "b V.]) Ua . (11.1__?)
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Rozktad macierzy koherencji w praszczygnie przedmiotowe]

wyraza sig¢ wzorem
A Ao At
J\’(u1,v1) = Uuy,v,) U7 (ug,vy)  (1a1-3)

co w porgezeniu 2 <11.1~2'>dajn

o~ Y A N
J’(u1,v1) 5 h(u1-b,v1) Jyq h Cu1~b,v1) +

-4

N .
Jh<u1lb vy ) Jﬁﬁ ?1 u1+b,v1§ +

(11.1-3)

N v A A
';hQH—b,v1) Jip N

At

¢

(n1+b,v1> +
A . AN
‘hC}Tﬁb,v1) I h (

u1-b,v1) )

gdzie
N

A A
J, U.u

¥ A~
11 = %% &

A
20 = G?_U; (11.1-4)

8 macierzami koherencji okredlajacymi stan polaryzacji

Swiatta emitowanego przez punkty Cb,O) i C—b,o),

A A /\

J,p = d (b,0, =b,0) = U , (11.1-5)
A .

321 -3 (~b,0, v,0) = L2811

gg maclierzami koherencji wzajemnej. Poniewas rozktad natbe-

szaenlia rdéwny Jest zawsze 7lqdowi'maCierzy koherencji, to
7
Cu1,v1) = tl{h(u ~b v1) J11 h Quq—b v1)l
+ tr[f](u1+b,v1) Joo h (u +b v1)J
AN A A
+ 2 h (uy=,v,) 3;, h
AT
h

11.1-6
r(u +b,V )] C J

. A
+ tr[}y(u1+b,u1) J?1 (u1~b v1) ] ,
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-Ze wzgledu na fakt, Ze Slad maclerzy Jjest nieczuiy na ope-
racj¢ transponowania (tw.2.2-3_> oraz
4 A TR | : .
Jo1 = %12 > (11.1-7)
dwa ostatnie wyrazy we wzorze (11.1—6) 88 wzajemnie @prae-
Zone | |

A . A AL
tr[ h(uq=b,vy) J12!1(u1+b,v1)] =

H

N A A} —1TR
tx{h(u1*b,v1) Ty Vf(u1+b,vd)] -

TR ATR . (1. 1"“)

tx{HYu1+b,v1) Jyp <u1~b,v1)] =

i

i

21 ¥
tr ((ug+b,vy) I
Ostatecena postadé wzorn okreslajgcego rozkiad natezenia
w dyfrakeyjnym obrazie dwéch punktdw dla ukXaddw zmienlajg-
cych stan polaryzacji swiatta jest wiec nastepujgca
~ A A-}- - =
,.’ . .
i) (u1,v1) = tr[?\(u1~b,v1) J11 h (u1~p,y1)] +
AR A s - :

+ tr[}n(u1fb,v1) Jpp h (u1+b,v1)J +

A R 9(11.1-9)
+ ?.Re{trlh‘(u,'-b,vﬁ /J\.12 H"('u1+b,v1>_]}o-

A A
W azczegdlnym przypadku, gdy Uy =U»p zachodzi

A A A A A , |
Jyo midop = Jio = don = 0, - (11.1=10)

)

a wzér okredlajacy rozktad natezenia przyjmuje postad
) ‘A A At
1 (u1,v1>lz tr[}y(u1—b,v1) J h (u1~b,v1X] +
A A DM : .
+ tr[h(u1-z-b,v1) T H (u1+7b,v1)f] v (11a1-11)

S LN AN
+ 2Rla [w[ﬂ (n,’»-b,v1) J h (u.li‘b,v,'))} .
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11,2. Przypadek niekoherentny

Aby wyznaczyé rozktad natezenia w dyfrakcyjnym obra=~
zie dwdch punktdw, w przypadku ich peknej niekoherenoji;
mozna postusyé sie ogdlna zaleznoscig (10.2-12) o Zauwazmy,
%6 rozklrad macierzy koherencji w piaszczyinie przedmiotowe]

da sig przedstawié nastepujaco

S oy o Tt} 4 s .
J (uysv,) = J.,0(u=b,v ) + Jpn0(u tb,v ), (11.2-1)

A A
gdzie J11 i Jéz ga macierzami koherencji swiatta emitowane-

g0 przez punkty ( b,Cy)i(—b, O) . Podatawiajgc (11.2~1) do
(10.2—12>(ﬁnﬁymuje gle

A A ’/\ ,
]Z"(U.],V.]') = tx-[:h(u1—b,v1) J,” h"'(u1-b,v1)]+

(11.2-2)

A A + :
+ tr[ h(u1+b,v1> ng ¢f(u1+b,v1)\] .

W przypadku niekoherentnym rozkiad nateZenla w dyfrak-
cyjnym obrazie dwdch punktdw, a wiec i zdolnosd rozdzieleza
zalezy nie tylko od wZasnodcl uktadu odwzorowujacego (ma—
ciurzf;(u1,ﬁ1) ) ale réwnlez od standw polaryzacji éwiétla
emitowanego przez te punkty(jmacibrze 311, 322> .

W przypadlu koherentnym zalezy on dodatkowo od macierzy ko=

A
herencji wzajemnej J12.
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12, POROWNANIE MACIERZOWECO I SKALARNEGO OPISU DLA
UKEADOW ODWZOROWUJACYCH NIE ZMIENIAJACYCH STANU
POLARYZACJT SWIATEA

Klagyczne ukiady odwzorowujace (nie zmieniajace stanu
polaryzacji éwiétla) mozna traktowad jako gzczegolny pray-
padek klasy uktaddw zmieniajgcych stan polaryzacji swiatzta,
Maciarzowy formalizm v.'px'o'::ad:»z('si}:; w poprzednich rozdziatach
mozna zatem stosowald takze do opisu wiasnodci uktaddéw kla-
aycznych. Celowe wydafe sie wiec pordwnanie macierzowepo
opisu uktadéw klasycznych z ich opisem opartym na skalarnej
teoril dyfrakcji - opisem skalarnym,

Pordwnanie takie przeprowadzono dla wazniejszych wynikdw
przedatawionych w rozdziatach 4-11,

Gdy uktad odwzorowujacy nie zmienia stanu polaryzacii
swiatta, to punkbtowy sygnal emitujacy éwiatlo liniowo spola=-
ryzowane implikuje odpowledZ ukZadu spolaryzowang w taki
Bali gpogdb, W Zrenicy wyJéciowe] nie pojawlg sie wig¢e fronty

falowe typu‘Ejky oraz 2:;x i w konsekwencji

Moy (7070 =1y (f,7) =0 . (12-1)

Poza tym,odpoWiedé uk¥adu nie zalezy od azymutu polaryzac]i

cO oznacza, e
Hxx(? ‘,7)_; 1-15,5,[?' ,7) - H[?’ ,7) " (12~2)

Macierzowg funkcje Zrenicows ukiadu nie zmieniajgcego stanu

polaryzacji mozna wiec zapisad jako
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13 0O

ﬁ(g(- ,/7) & H(?" ,7) ’ (1 2‘»3)
0

3 1

gdazie II({“yy) Jest funkecja ‘renicowa usywang w skalarinyn
opioie uktaddw odwzorowujacych. Analogicznie da sig¢ przedsta-

wié¢ macierzowa funkcja rozmycia amplitudy

1 ; O ‘ ‘
YORBELCDAN o 3 1] 7 | (12-4)
3

oraz macierzowa funkcja transmisji amplitudy

A 1 35 0 |
25 ) = ML) o (ms)

pduzie h(u1,v1) i T(?_g?) aa odpowlednio funkejJami rozmy-
cia amplitudy oraz transmisji modulu amplitudy (chodzi 0
transmnioje pomiedzy Zrenica wejsciowa a wyjéciowq) uZywanymi

w oplsie skalarnym.

Przyjmiemy, iz aberracje nie ietniejacych frontdw fa-
lowych Eirxy, Ejﬁx réwne sg zero;'tak wige maclerzowa fune

keja aberracji przyjmuje postad

A ‘ 150 : '
P(5,7) =B .7) : (12-6)
035 1
gduie ﬁ?(}}'7) jest aberracja falowg ukkadu klasycznego.
Dla uproszczenia zaplsu wprowadzimy oznaczanie
13 O

E- X (12-7)

O 3 1
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Rozktad natesenia w dyfrakeyinym obrazie punktu dla
uktaddéw zmieniajacych stan polaryzacji swiatXa wyrasa gie

WZoxemn (5~14)
| “A A A : ‘ ;
}((u1,v1) - tr[ h(u1,v1) Jof\(u1,v1)J . (j2~8)

Aby otrzymaé rozkiad nabtezenia dla uktaddw nie zmieniajg-
S .
cych stanu polaryzacji swiatta za macierz h(u1,v1) nalezy

podastawié wyrazenie ( 12~ f?)

(12-9)

)
A A X A A A A
E =tr J E=1, to otray-

Poniewaz F =f oraz trd = Ly
maje aie

K(uysv,) = Ih(u1,v1)l? o (12-10)

Jasnosdé Strehla ukkaddw odwzorownjgcych zmieniajacych

gtan polaryzacji swiat}a wyraza gie wzorem (6«9)
A A At
SR = t:c-[,< H > I, < H >] . (1241)

Podatawiajac wyraﬁenio'(12~3‘>za macierzowg funkcje Zroni-
cowg otrzymuje aie wzdr na jasno$é Strehla uktaddédw nie zmie-

niajacych stanu polaryzacji dwiatka

, 2 A ’
SR = [<u>| R (12-12)
A :
a poniewaz trJO =1, to ,
, 2
SR = [< H >{ . (12-13)
Wzory okreslajace rozk¥ad natefenia w dyfrakeyjnyum

obrazie punktu (12~10) oraz Jjasnosé Strehla ukiadu (12m13)

8g identyczne 7z odpowiednimi wzorami wyprowadzonymi na
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gruncie skalarnej teorii dyfrakcji [33] .
Przybllzenle Maréchala jasnosci Strehla dla ukXadd
odwzorowujacych zmieniajacych stan polaryzacjii Swiatla ma

nagtepujgca postad (8*11) |
R = I,L)<T >D <T J {tr[~<'j} V@ d_>D < 'l‘ D“I
- af<B v P> B <A vgz%\”‘]/ e

Podstawiajac (12—”) za maclerzowg funkcj@ transmisji ampli-
tudy oraz (10 6) za maclerzowag funlcae aberracji otrzymuje

gie

SR =)<ﬂ3>{2» EP{<D@2>-<D@>2}, (12415)

co oot opdlnio znanym prayblizeniem Marcchala dla klaoyey-—
nych ukiaddw z transmisja modutu amplitudy fr(?'-?)

W przypadku gdy transmisja modulu amplitudy pomiedzy Zreni-
cani réwna jest jednoscli otrzymuje sie Jeszcze bardzie] zna-

ng wersje przyblizenia Marechala dla jasnoscl Strehla [BBJ

R e - <> -<E% S (12-16)

Uktad réwnad okreslajacy optymalne wartosci parametrdw
dqs dps 95 dla ukladdw zmieniajacych stan polaryzacji
Swiatte ma nastepujaca postad (9~13;)

%8::6\ , (12-117)

gdzie

TR7T A 0 7
[BJ T tr<‘1‘ai>D < T, >. tr[<§aia3>6o<‘ o R /

dla i,J = 1,3 ,
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LC ] g = tr[( T V_Q-,S ai> DO < '1\‘>1RJ _ trL{T V@>DO< T"—‘i>lhj

dla i= 1,3 5 (12-18)

[{\!]i”qi dla 1 = 1,3 .

Podstawiajac do powyzszych zalesnosci (12~5) oraz (12~6)

obtizynuje aie liniowy ukkad zdwnaid okreslajacy optymalne

wartoscl parametrdéw Aqs Qps Qo dla ukkaddw nie zmieniajg~
A

cych stanu polaryzacji swiatia

L/ﬁ/’}ij < ma, > <Taj >—-A</_‘l‘aiaj > >

dla i,5 = 1,3 -,

1}

il

LCJi <Téﬁai><'l‘> —<T‘§><Tai> ‘(12-19).

A
[Q]i =q; dlai=1,3 |,
Jeat on identyczny z odpowiednim ukadem réwnaii wyprowa-
dzonym na gruncie skalarne]j teorii dyfrakcji [48] .
Optyczng funkcje przenogzenia dla uktaddw odwzorowuja-

cych zmieniajacych stan polaryzacji swiata mozna przedsta=

wié jako (10.2-22) . | |
| 2 r .
H(ewe) = o] w[Ae) i@ A@e) ],  (1e-e)

Podstawlajge za macierzowg funkcje Zrenicowag wyrazenio

(12~3,)0trzymujé sieg

%(f,g) = | c/zH(f_,g) o) H(f.,g) , ‘(12{21)

co jest ogdlnie znanym wzorem [33] na optyczng funkeje
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przenoszenia uktadéw nie zmieniajacych stanu polaryzacji
éwiatié.

Podsuhowujqc gtwierdzid moZna; e maclerzowy forma=-
lizm wprowadzony do ;pisu wlasnoééi uktaddéw odwzorowuja-
cych zmieniajacych sﬁan polaryzaqji swiatta jest naturale

nym uogdlnieniem skalérnego opisu stosowanego do ukXaddw

nie zmieniajacych stanu polaryzacji éwiatla.’
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13, ODWZOROWANIE PRZEDMIOTOW DYFUZYJINYCH
. ¥
W SWIETLE KOHERENTNYM )

Koherentne promieniowanie elektromagnetyczne rozpfoszone
od przedmiotdéw dyfuzyjnych charakteryzuje gle strukturag ziar-
nistg. Ziarnisto$é ta nazywana bywa w optyce efektem plamkowym,
a czasem speklowym., W ciagu ostatniéh pietnagtu lat byta ona
przedmiotem intensywnych badan., UkazaXo sgie w tym czasie oko-
Yo trzystu publikacji oraz kilka opracowan monograficznych
[§8~60] . W badaniach zwiqzanﬁch 7z efektem plamkowym mozna alk=-

tualnie wyrdznié cztery gidwne kierunkis

(1) badanie podstawowych statystycznych wkasnosci
struktur plamkowych;
(2) zastogowanie efelctu plamkowego do pomiaru chropo=-

watosci powierzchni rozpraszajacych;

(3) zagtosowanie efektu plamkowego do pomiaru deformac]ji
i pomieszczen powierzchni rozpraszajacych (inter-

ferometria plamkowa) :

(4) zagtosowanie efektu plamkowego w astronomii 1

optycznym przetwarzaniu informacji.

Bfekt plamkowy towarzyszy nie tylko zjawisku rozprasza=-
nia lecz powstaje rdwniez przy odwzorowaniu przedmioféw dy-
fuzyjnych w éwietle koherentnym. Na tle regularnych zmian

t) Materiat przedstawiony w tym rozdziale
zoatat czesciowo opublikowany w [5?] .
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nat¢zenia zwigzanych z odpowiednimi zmianami transmitancji
przedmiotu widoczne sag whtedy przypadkowe zmiany nate¢enia

o wysokich czestodciach przestrzennych i silnym kontrascie
wywotane nieregularnym rozki*adem fazy na powierzchni przed-
miotu, Jezeli przedmiotem zainteresowania sg regularne wvmia=—
ny natg¢senia, to efekt plamkowy mozZe byé traktowany jako
gzun znleksztatcajacy informacje zawartg w obrazie przedmnlo=

tu dyfuzyjinego.

Kilku autordéw podjeko problem okreslenia statystyczuych
wtasnosci szumu plamkowego. W pracy L61] Enioe wyznaczy
podatawowe wielkoscl statyﬁﬁyczne charakteryzujgce rozktad
amplitudy zespolone]j i nate¢Zenia w koherentnym obrazie jedno-
rodnego dyfuzora (matéwki) o VWyniki te zostaty naste¢pnie
wogdlnione przez Lowenthala 1 Arsenaulta [62J na przypadek
niejadnorodnych*o przedmiotdw dyfuzyjnych, a}pééniej pIrzez
Tchioka [63] réwnies na przypédok przédmiotéw cze$ciowo ko=
herentnych., Btedy kidre znalaztry sie w pracy Lowenthala 1

Arsenaulta sprostowano w [64] . f

W niniejszym rozdziale okreslono statystyczne wiasnos-
ci rozkiadu amplitudy zespolonej i natezenia w obrazach po-
wotajgcych przy odwzorowaniu w Swietle koherentnym niejedno=-
rodnych przedmiotdw dyfuzyjinych przy zastosowaniu ukkadsw
zmleniajgcych stan polaryzacji Swiatta, W szczegdlnosci wy-

s 7

znaczono warto$é grednia i autokorelacje amplitudy zespolone]

%9 Terminu niejednorodny uzyto dla podkreslenia,
i% tranemitancja przedmiotu jest funkcjg
wapdtrzednych.
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W ptagzczyZnie obrazowej ukXadu. Nastepnie wyznaczono roze-
kXad éredniego natezenia w ptaszczyZnie obrazowe], a takze
jego autokorelacje i wariancje. Na podatawie autokorelacji
rozktadu natezenia mozna okres$lié ksztakt Sredniej plawmki w
dowolnym bunkcie pzaszczyzny obrazowej.‘Wariancja rozktadu
natesenia jest natomiast dobra miara "gXebokosdci" przypadko-

wych zmian natezenia zwiazanych 2z efektem plamkowym,.
13.1. Statystyczny model przedmiotu

Hys.13.1 przedetawia uktad odwzorowujgcy zmieniajacy
stan polaryzacji $wietka, W ptaszeczyZnie przedmiotowe] ukta-
du znajduje sie przedmiot dyfuzyjny oéwietlony wiazka swiat-
ta koherentnego W, RozwéZania zostang ograniczone tylko
do takich przedmiotdw dyfuzyjnych, ktdére moga byé. traktowane
Jako ziozZenie Jjednorodnego dyfuzora DFn z niejednorodnym
przedmiotem amplitudowo-fazowym o zaspolonej transmitancii
t (uo’vo) ¢

Niech wektor

dx<uo,vo> i i‘dx<uo’vo)’ expi ?x(uo,vo)

dy\(uo,vo) Idy (uo,vo), oxpi (p y( uo’vo), |

('1‘3.1-1)

reprezentuje rozktad skradowej x-owej i y-owej amplitudy

A
dn( uo’vo) =

zespolonej w ptaszezyinie dyfuzora DFn.

Zatdzmy dla celdw modeldwych, 1z dyaponujemy zbiorom

dyfuzoréw DI wykonanych tg sama technologig i Ze istnieje
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tHug, Vo) DFy
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Ryse13.1. Uk}ad odwzorowujacy zmieniajJacy stan polaryzacji
\ dwiatxa., Wybdr ukiaddéw odniesienia 1 oznaczeil.

mozliwosé wymiany poszczegélnych'egzemplarzy.dyfuzora DFn‘
w ptaszczyZnie przedmiotowej uktadu. Podejdcie takle pozwala
traktowad rodzine funkeji gi:uo,vo) opisujacych rozkkad
anplitudy nu.dyfuzoruch Jalko dwuwymiarowy procea stochastycz~
ny, a rozktad amplitudy g;.(uo,vo) na konkfetnym dyfuzorze
jako pewng realizacje tego procesu [65] .

Dla najbardzie] typowych dyfuzoféw proces stochastycuzny

A .
d (uo,vo) posiada nastepujace wiasnosci statystycznes

(1) obie gkiadowe kartezjaﬁékie amplitudy 2zespolone]

d, (v, vo) i dx:<uo ,vo) ga staqjgnarne i ergodyczno ;

\
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(ii) znlenne losowe gpx_(uo,vo) i y7y(fuo,vo) charakteryzuja

gig¢ jednostajnym rozktadem gestosci prawdopodobiedstwa

w przedziale [-—'TC ,rﬂ?] }

(iii}pary zmiennych losowych !dx:(uo’vo)) i ﬁax('uo,vo) ,
a takze ‘dy(:uo,vo)} i ?ﬂy (uo,vo) sg statystycznio

niezaleszne.

e wzgledu na wkrasnoscl (ii) oraz (iii) wartosé sradnia
amplitudy zespolone] d(uo,vo) w dowolnym punkcie (uo,v0>
rédwna jest zero

o

{A )} —l.){dx(uo,vo)j F {[dx ( uo,vo)}} D {expi 'Cf y(uo’vo)f
1 S = -
) "“{dy(uo’vo)}w {1- {]dy ( uo,vo)]} K {oxp.i (/) .‘l(ll“'v(,)} :

4(1( U, sV

= | - (13.1-2)

gdzie K {...j oznacza usrednianie po zbiorze dyfuzordw DIF .

) Dla peinej statystycznej charakterystyki procesu
A ‘ )
d (uo,v0> nalezy znaé takze jego macierz autokorelacji
A , ‘
‘ Rd ( uo Vi Yy

’

4
R ) rozumiang, jako

A .. A At ., .
Ry Cugsvgsug ,VO.) =i§[ﬁ (uo,vo) d (1%), v;)} -

' (1'3.1-3/\

~ ' : . : N
» ' X *
m‘{dx(uo,vo) dX(ué,vg)} ; !c{dx(uo,vo) dy( u; ,vO’)}

iﬂ{dy(l%,vo)(%((ug,v;)}; E{dy(uoﬂ%g dy(‘H3VJ3j-

pa
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: A

% zalozenia, #e proces stochastyczny d (uo,vO) jesat
gtacjonarny (i) wynika, ze Jjego macierz autokorelacji jeat
o R e 7 v’)
"unkcja tylko rdznicy wspdirzednyc a (uo uos vQ o/

Dalgze rozwazZania zostana ograniczone tylko do takich
klas dyfuzordw DI, dla ktdrych Srednia szerokosé pojedyicze-
go elementu rozpraszajacego jest znacznie mniejsza nid szo-
rokosé gidwnego maksimum rozkiradu natezenia w dyfrakcyjnym
obrazle punktu., W taldm przypadku mozliwe jJest traktowanie
dyfuzora DJ«‘1 jako zbioru statystycznie nilezaleisnych punkto-
wych rozpraszaczy. Uzasadnia to przyjecie nastepujacego przy-~

. A "
blizenia dla maclerzy autokorelacji procesu d (uo,vo)
= - - y i - 2 = b »
i (uo us, v, vo)._Il (uo us o, vy vo) , (13.1 4)

4 ’ ; . e .
gdzie Cf(u0~uo,vo-v0) oznacza dwuwymiarowag delte¢ Diraca,
A

a macierz R dana jest wzorem

N E{!dx (uo’vo)(Qg ;,? {dxz(uo,vo) dﬁ('uo,voi}
Lu"{dy (uo,vo) d; ('uo,vo)j; m{‘dy ('uo,vo))2}
| -

-—

L(13.1-5)

Jaednakze oprécz stacjonarnoéci_(i) zatozono takize ergo-
dycznos¢ procesu stochastycznego d (uo,vo)_; Oznacza to w
praktyce, iz fdrednia z dowolnej wielkosei po zbiorze dyfu-
zoréw DF staje sle rdwna érednie] tej wielkodci po powierzch-
ni kazdego konkretnego dyfuzora DF . ‘Zachodzi zatem

R = {3 Cugv)) f ) |
R = K J‘(uo,vo.}s Lim e J‘(u 'V, du dv , (13.1~6)"
84> de,
A

gdzie 8, jeat powierzchniag dyfuzora., Macierz R opisuje wiec
gredni stan polaryzacji swiatta emitowanego przez powierzch-

ni¢ dowolnego dyfuzora DFn‘
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Rozwazania ograniczone zostgly tylko do takich przed-
miotdw dyfuzyjnych, ktdére moga byd traktowane jako ztozeunie
jednorodnego dyfuzora z niejednorodnym przedmiotem amplitbu-
dowo=fazowym o transmitancji + (uo,vo) « Tak wiec rozkiad
anplitudy zespolone] w pXasgzczyinie przedmiotowuj ukradu da~

ny Jjest wzorem
A | A ‘
U (uo,vo) = 1t (uo,vo) a (ug,v,) - . | ' <33.1~7)

Uwzgledniajac zaleznosé (13.1~2)|n02na ratwo zauwazsyé,
z@ '
A ‘ A )
I:’:{U (uo‘,vo)} = E{t (uo,vo) d (uo,vo)j =
| A 5 o |
=3 L» <u0’v0> L‘A {d (LIO,VO)§= 0 - (13.1"'63)
tj., ze Srednia z amplitudy zespolone]j w dowolnym punkcie

ptaszczyzny przedmiotowej réwna jest zero.

Maclerz autokorelacji amplitudy w ptaszczyénie przcdmio-

towej mozna zapisacé jako

A A A
Iﬂj(uo,vo,u;,vé> = JB{IJ(uO,VO) IJ’Zu;,vg)}:z
(13.1%9)

# A A 4
= b (uo,vo) t (ué,vo’j E{d (uo,vo) a (u;,vor)j ’
a po podstawieniu (33.1-4) Qtrzymuje éi@v
2 > N N 7R ’ '
Ry (uysVgeugsvy) = Rt u,v, )t (uo,vo)&uo~uo, vo—v;) .

(13.1-10)

, A
Pomimo, #Ze rozktad amplitudy zespolonej d (uo,vo) w
ptaszczyZnie dyfuzora Jest stacjénarnym procesem stochaalycz-

A
nym, to rozkiad amplitudy U'(uo,vo) w ptagzezyvnie przodmio-
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towej uktadu nie Jest Jus stacjonarnym procesem stochastycz-
nym. Wynika to z faltu, iz transmitacja + (uo,vé) jest
fuukejg wspékrzgdnych.(przedmiot niejednorodny’).

Natgzonie rdéwne jest zawsze Sladowl z macierzy'kohuroncji,
tak wige rozkkadAnatQZGnia w plaszczyZnie przedmiotowe] ukla-

du wyraza sig¢ wzorem
- A AL . , ‘
T (uo,vo) a'trLII(uo,vO) U +(uo,vo)] " (13_1_11)

Dla wyznaczenia rozkadu Sredniego nateZenia w ptaszczyinie
przedmiotowe ] E~{I (uo,volfposluZyé gie mosna zalefnosciami

(13.1-9) i (13,1-10)

Lf{li(uo,vo)js E{’tr[:G (uo,vo) G *(uo,vb)]5=
(13.1-12)
- tr[L{U (u 'V, ) U 1(11 v )J~ tr[ U(uo,v )J

m }t Cuo,vo)lz tr R .

13.2., Statystyczne wkasnosci amplitudy zespolone]

w pitaszczydnie obrazowe].

W rozdziale tym wyznaczone zostaha Srednia oraz macierz
autokorelacji amplitudy zespolone]j w ptaszczyinie obrazowe]
uk&adu._Poniewaz detekcja amplitudy zespolonej nie jest mou-
liwa powyzsze wielkosci nie maja wiekszego zngczenla praktycz-—
nego. Macierz autokorelacji amplitudy bedzle jednak bhardzo
pomocna przy okreslaniu statystycznych wtasnosci rozkiadu
nate¢senia w ptaszczyZnie obrazowej.

Zwigzek pomledzy rozkiadem amplitudy zespolonej w ptasz-

czyznach przedmlotowoa 1 obrazowej dla koherentnych uklddéw
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odwzorowujgcych zmieniajacych stan polaryzacji swiatta okres-

lony jest réwnaniem (10.1~5)

<
Ay (A A I
U (u1,v1),u.JJ'h.(u1-uo, v1-vo) U(:uo,VOS du dv (13.3~1)
Bl =g
lub w notacji symboliczne]

A A A
U'(uysvy) = b Cug, v Y@ U (ug,vy) (13.2-2)

A .
Poniewaz U (uo,vo) Jeat dwuwymiarowym procesem stochastycznym,

to rozktad amplitudy zespolone] w ptaszczyZnie obrazowej uk-
A .

; ) 5 A 2

tadu U (u1.v1) mozna rowniez traktowac jako dwuwymiarowy pro-

ces stochastyczny.

Uwzglednilajac (13.1~8> mozna ratwo wykazaé, 13 Srednia
amplituda w dowolnym punkcie paszczyzny obrazowej, podobnle

jak w ptaszczygnie przedmiotowe], rdwna Jest zero

(A, N7 A |
!ﬁ{l](u1,v1{f= E{‘Jll(u1-uo, v1—v0) U‘(uo,vo> duodvoj =
e N
e »)
..0 (1 Je e 3)

O .
A A
= )| h (uy-ug, v1-vo)13{ll(uo,vo)ﬁ du dv = |
5o | |

—

W powyzszych przeksztacenlach wykorzystano przemiennosé

operac]i uéredniania B {...}, z caxkowaniem [65] .

Wyznaczymy takze macierz autokorelacji amplitudy w

ptaszczyinie obrazowe]
Vo) . A A + '
Ry (g5 vq,uq,7, ) = E{U’(u1,v1) v’ (ug,v;)j . (13.2-4>

Po podstawieniu (13.2~1) do powy#szego rdéwnania otrzymuje

gle.
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Q ’(u1,v1,u1, ’) (:LJl(h.(u Uy Vg -y ) U (u 'V, ) -

'(u),v’) h *(u1~u , v1-v _)du dv du “av _}

(qfh (u-u,, v-v)rs{u(u ) U+(u v, )}

ﬁ (u ~u sV —v ) du dv du dv . | (13,2-5)

1
Pao ; as Iy G u,v ) U ?' ’ v’ ) jest ma iér" autokorelacji

onlawaz b (10, o L U.O, o/ J‘Ju c Z8 correlacjl
amplitudy przedmiotowe ] (13.1~9), to zachodzi

J G
HU’(u1,v1, 19 1) S)ka(u =,V vo) RU.(uO,vo,uo,vo) .
t, » s . ;
1 Cu1-u0, v1-vb')duodvoduodvo » (13.2-Q)

a uwzpzledniajgce (13 1~lO,>o»rzymuje gie

R’CHPVP 1,v1_)~ jj t(u,v)[ h(u -0, vy v)

’-oé

/\ /\ . " .
R h (u -u v1~vo) duodvo . (?3.2_7)

Po Wprowadzeniu nowych zmiennych

(13.2-8)

wyraﬁenie ma macierz autokorelacji.amplitudy zegspolone]j w

ptaszczysnie obrazowej mo#n a zapisaé Jjako

v(u1,v1,Au1,Av ) = )S % (u -u_, —vo)} h(uo,vo)

®h (u -auy, v, Avo) duadv, (13.2-9)
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Wezystkie elementy macierzowe] funkeji rozmycia ampli-
; : h h ‘h._ réwne sa praktycznie zero poza paw-
tudy hxx’ xy* Yyx Byy 1 prakty poza |
nym- skodczonym ohszarenm Sh’ t3e

0 0

i Cu v )& Sl fu v (13.2—10)
0O 3 O

we

]

Oznacza to, 1% dla kazdego punktu <u1,v1) praszceczyzny pruzod-
It
xy’

Ryx’ “yy zeruja sie¢ rdwniez poza pewnym skoficzonym obsze-

-z [«
Al »)
AL lﬂ l{

miotows j wsaystkie elementy macierzy autokorelacji Rxx’

v )= 5 0y vy) 0 )
RU,(“‘I’V']’ A u1, A v1 = B9 U (u17v1) U (u1-Au1, V1-AV1}:,

0 3 O :
s ’ _) <::>(Ag’,4\v1)7fsn . (1:3.2«11)

0 3 C
Poniewaz Srednia wartosdé amplitudy zespolonej w dowolnym
purkcie ptaszczyzny przedmiotowe]j rdwna jest zero (13.2u3) "

to dla dowolnych (u1,v1) i (z&u1, A.v1> zachodzi

s 0 )
e (13.2-12

™y A ; Ayt
Lz){U (u1,v1)}ls U (u1—Au‘1, vy~ A v,])}:

H
co w potgczenin z (13.2—11) oznacza, 1% poza obszarem SR

spelniona jest nastepujgca zaleznosé
A, A7T : A, =
15{[] (u1,v1) U (u1-— Aug, T4~ A v,‘)jxx E{U (L}11,v1)}.
At ,
i b - - 5
L{U OH Au.1.,v1 Avﬂ}¢$@uwzﬁvL)% pooe

(13.2-13)
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Pakt, 12 poza obszarem SR S$rednia 2z iloczynu amplitud rdwna
jest iloczynowl g$rednich $wiadczy o tym, Ze korelacja sta-
tystyczna pomiedzy anplitudami w punktach (u1,v1) i (u{,v:)
istnieje tylko na obszarze dwa razy mniejszym niz SR. Obszar
ten nazywany bedzie obszarem korelacji amplitudy w pragzczyé-

nie obrazowe]
5, ;.-_[(Auw av)r (2 Aug, 24 v,) & 5, 5 .(;1'5,2»»14>

Dla przedmiotdw Jjednorodnych (t (uo,vo) = congt )
rozktad amplitudy w ptaszczydnie obrazowe] (takZe przedmioto-
we )just gtacjonarnym procegem gtochastycznym, a Jjego ma=
cierz autokorelacji jest funkeja tylko rdinicy wspdirzedaych

Do

) A :::I‘ 5"{ ? ( -

RUsQAu1, v, conat h (uo,vo) Rh( u,~ Avy,

A

Vom A vy )dudv o (13.2-15)

Zauwazny, ze dla przedmlotdw jednorodnych obszar kore-
lacji sy zaieZy Jjedynie od macierzowe]j funkcji rozmycia .
amplitudy h (u,V')i Sredniego stanu polaryzacji swiatza R
emitowanego przez dyfuzor. Dla-przedmiotdw niejednorodnych
ralezy on godatkOWO od rozkadu transmitancji natezeniows
,t (uo,vh>,. Z postaci caiki (13.2—9‘)wynika, e w obydwu
przypadkach obszar kovelacjil Sk mugi byé mniejszy od obuza-

ru Sh’ Lub jemu rdwny

5, < 8, (13.2-16)
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13.3. Rozktad Sredniego natezenia w pXaszczyénie

obrazowej

latg¢zenie w dowolnym punkcie piaszczyzny obrazowej da-

ne joot wzorem
- L/\T’C ) A)T k )J ’ . )
I (u1,v1) = ty| U u1,v1 U» (u1,v1 > (j3.3~1

a Srednie natezenie xéwne Jes st $ladowi maclexrzy autokoio-

lacji amplitudy obrazowe]
] " A’ , /\’,,, n "
rﬂ{]i(u1,v1)}z tr[JC{LI(u1,v1)(J (u1,v1)§J =
A
= trLRU’<U.1,VT],LI,I,V,I)]' . (l}.j..z)

Podstawlajac do powyZszego wyrazenie na maclerz autokorelacili
danc wzorem (13.2-7‘)otrzymuje sieg

{1 (u1,V) ﬁ t(u ,v)] tr[h(u-v, v-v)

od
A A

R} 1(u -, v1—vo)]duodvo . | (13.3-3)
N
lMacicrz R opisujaca Srednl stan polaryzacji swiatia emitowa-
nago przez dyfuzor wygodniej Jjest przedstawié w postaci
AN A
R=R tr[R] (13.3-4)
A
pdzie R jest macierzg ze Sladem unormowanym do jednoscl.
Po pnddtawienlu (13 3~4) do (13 3-3) wzdér na Srednie nabeze~
nie w ptuszczyznle obrazowe]j przyjmuje postad
T (u1,v)j mt(u ,Vo)' tr[R]tr[_lz(u -, v, v)

A At
* R, h (u 17 %50 v1~v0)Jduodv0 . <1J.B~))

, , : 2 a .
Zauwazmy, %e wyrazenie [u('uo ,von tr[R] opisuje rozktad
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frednlego natesenia w pragzezyinie przedmiotowe]j uktadu

(13.1-12)

1 A
};{f[(‘uo,volﬁa ’t('u ,vo)?2 trR , | (13.3~6)
a Lll'h (u =W v1 v ) H h 1(u ~u0, V -V l]ropr zontujc

Sradnig 2z rozktadu natezenia w dyfrakcyjnym obrazie punkiu

(7 nat¢zeniowej funkeji ros myCJﬁ) 3 pordwnaj ()~14> (]3.1 6)
l ho(u =Yg V4~V ) h T(u ~U_y V=V )]
£ ‘l;r[/;l (ug=u,, vq=v ) { h 1(11 - or v -VO>J=-
= {“‘ ﬁ; (“1““0’ V4=V,) Joh (“1""‘0’ "1""o>““‘
i (o, v1—~vo)§ : | o (13.3-1)

Tak wige, rozkad Sredniego natezenia w ptasuczyinie obruwo-
waj wyraza sig splotem gredniego natezenia w plaszczydnie

przedmictowe] ze Srednia =z natgﬁeniowej funkeji rozmycia

{1 (u1,v ) ,f‘{l (u ,v)ﬁJJ{I{(u “Uoy 'v)sdu dvo 3
(13.3-8)

lub w notacjli symbolicznej

Przy owdzorowaniu przedmiotdw dyfuzyjinych w swietle kohorent»
nym Srednie natezenie transformuae ale w1ec tak, Jak przez

uktad niekoherentny o natezeniowe] funkcji rozmycia rdwne]

{h.(u1~u0, vy-v )j
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13.4. Autokdrelacja rozkitadu natezenia

. w pkaszczyZnie obrazowe].

Wyzuaczymy autokorelacje vrozkkadu natezenia w placzczyi-

nie cbrazowsj rozumiang jako
n._[,(u,] 'V, ,u;,v{) = B {I’(’u1 'y ) 17 u1’,v1’) ﬁ . (13.4-1)
Podstawiajge do powyzszego wyrazenia (13.3«1/>0trzymuj“ ole
“‘I’ (111 'y ,u; ,v;) = B {t1~[§'( Wy s V4 ) /I\I'T( u1 ,V,l _)J.
* e [G'( u{,v{) I/J\' T(u{,v{' )]; . <'l 3.4-—22)

lub w postaci rozwiniete]
. 'd 2 L4
Ry e(Uyavysugsvy) = E{{Ux(u1,v1‘)[ ‘Ux(u;’v;)lz}
Jﬂ{}ll}; (u1,v1)|2fu' ( u;,V;)lz}-z~ i,{ us ( u1.v1>,2 .
. )u (u1,v1)‘ —; {IU ( 1,v1)\2 ‘U&(U;,V;) 2} - (13.4-3)

Dla dyfuzordéw gpednlajacych zalozenia statystycaznc (1)
(ii) " iii) z rozdz.13.1 oraz warunek (13.1~4) sktadowa

U; (u1,v ) 1. U; (u1,v1) amplitudy zespolonej w dowolnym punl-~
cle plasuzczyzny obrazowe] charakteryzuja sie kotowym rovkla-
dem Gaussa gestosci prawdopodobienstwa [59] « Dla dowolnych
‘zegpolonych zmiennych losowyeh X i ¥ o kotowym rozltadzie
Ganssa gestoscl prawdopodobleristwa prawdziwe jest nagtgpuja-

¢o twierdzenie [ 59

1:-:'{])(]213([ 2}3 1{[}([2} { f IJ {ax’ , . (13.4-1)

W zwigzku z powyzszym autokorelacje rozkiadu nateisenia w

ptuszezyénie obrazowej mozna zapisaé jako



e (oo ) = [0S Copord (2] sljog CarD] ¥+
E E{l Uy (ugs¥y )22} {IU Cugovy)] }* T‘“U Cugsv )‘"zj/ '
o {Juz o) 2]+ ooy Copnd] 2 sl oy
e ef o Qo) wTog [P ey Gy w TG v
M CRS RM CA E ECANE
2. (134-5)

W notacji macierzowej powyzsza zalesnos$é staje sile bardzie]

przejrzysta
. S
- ) Nt '
ity -5 v sy vy ) = “’[ E{U (ugyvy) U (“1"’1 )”
Lr[l'{ll(u1,v ) U (u],v )j:‘& tr[_ {}I(u1,v_) u’ (u], 1)} .
: » ”uda rd ' T .
v.H{IJ(u1,V1)1J'(u1,V1)”} _],
a po uwzglednieniu (13.2-4_)otrzymuje gle
’ 'l L n A I 4 ’ » "
RII<U1,V1,U1§V")= tr[_RU;(u1,v s U,V )j tr[_RU'(u1,v1,u1,vj{lr
"
+ -w[n '(u1,v1, 1,v )h (u1,v1,u1,v1)] . <13.4-~'/)

Na podutawie (13.3~2_)oraz (13‘4-1> , a takze po zamianie
zmiennych (13,2-8) zachodzi

H{II%,H)ITﬂf-Auwvr‘&ﬁ>§=E{Iz%fﬁ)f'
Ly -
.E{I (Llj" Au1,v1- AV.])EI G '51‘[ RU’CU»] ’V-l’ Au1! AV.‘) *

A"(u1,v1, Aug, AV )} <43.4~8)
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VW rozdz.13.2 wykazano, ig dla kazdego ugsVy wgzystkie elo-
menty macierzy autokorelacal R (_u1,v1, A u, va1) zarujq
sie poza pewnym skoliczonym obszarem uR. Oznacza to, i% poza

obszarem SR gpeiniony Jjest warunek
{l(upv1)l OA v -'Av05=
“{IYhPVQjE{I(WV Auy, V- Avpﬁ, OBJPB)

ktdiy pokazuje, e statystyczna korelacja pomiedzy nat ¢ie-
niami w punktach (u,,v,) oraz Cu{,v’) igtnieje tylko na ob-
szarze dla razy mnlejszym niz SR’ czyli na obszarze kowvelacji
Sk amplitudy obrazowej.
Za koztalt srednie] plamki Céredniego upekla) W pltagse

zysunia obrazowe] ukiadu mozna przyjaé zarys obszarn wystepos
wania statystyczne] korelacji rozkXadu nate¢zenia w tej piagu-

czyinle, Zatem obszar korelacji uk wyznacza rqzmiury Srodnie ]
plamki. Dla przedmiotéw jednorodnych rozmiary Srednie] plam-
ki Aa]evq wiec jedynie od maclerzowej funkcjn ro ZMJGlu amplie-
tudy h (u v) i dredniego stanu polaryzacji sSwiata P omitovi=-
nepo przez dyfuzor « Dla przedmiotdw niejednorodnych zaleza

) 2
ong dodatkowo od rozkiedu transmisji nateZeniowe] ‘t (uo,v0>IL

i moga sie zmieniaé od punkbtu do punktu., Jednak w obydwu
praypadkach rozmiary sSrednie] plamki nie sg wieksze nlz roz-
miairy obszaru Sh poza ktérym zeruja sie wszystkie elemcnty

macicrzowe]j funkcji rozmycla amplitudy.
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13.5. Wariancja naetezenia w piaszczyZnie obrazowej.

Statystyczny kontrast strukivry plamkowej

Dysponujac antokorelacja rozkitadu nateienia RI(u1,v1,
u{,v{)-moina Yatwo wyznaczydé jego wariancje ngf(u1,v1) W
dowolnym punkcie pZaszczyzny obrazowe]

Zauvazny, %e

-y ) L] A :
I {I (u1,v12§~ RIv(u1,v1,u1,v1) = tr [.RU Cu1,v1,u1,v1)]+

r ‘ Ak )] 5 @
4.137[HU'(u1,v1,u1,v1) RU’(u1,v1,u1,v1 g (j}.)—z)
~a talkio na podstawie (13.3~2)

' al s /o, oy
I {.[ (u1,v1)5 = tr [:RU'(u1,v1,u1,v1)] . | (ﬁ}.5~5)

Wariancja natezenia bedaca miarg jego statystycznego rozrzutu

dana Jest wiec wzorem
9]

o~ (uy,v,) = tr[;g '(ﬁ ‘v Uy, V) g t(u Vg, oV 5] .
T° 171 SUONT 1 T U S 171 "1/
(13.5-4)
Tounym waznym parametrem charakteryzuj%eym gl@bokoﬁé
przypadkowych zmian nathenia Jest tzw., kontrast statyatyceny
rozumiany Jako stosunek odchylenia standartowego do wartosci

éroé@iej nategsenia [59] :
L e et 13.5-5)
s\ 101 }?:{I'(’u1,v1)§ ( |

Podstawiajac (13.3—2) i (13.5-4) do powyzsze] zaleznosci

otrzymuje sie
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A A'f T 1
-\/tr iRU’(‘H s Vs Uys Ve Rype(uy,vy,u "’1)]

A ; *
tr[_RU'(u1,v1,u1,v1)J

CB (u1 ,V;I)a

(13.5-6 )

lMoZzna wykazadé, 2ze kontrast statystyczny w uktradach odwzorowu-

jaeych zmieniajacych stan polaryzacji Swiatla speXnia warunek

1 | |
= =0 (u,v ) <1 (13.5=7)

Zauwazuy w tym celu, Ze macierz
/\ ) - A’ A' -r ’ )
nui(u1,v1,u1,v1) c.m{[l(u1,v1) U (u1,v1)j (WJ.S—B)

Jeot hormitowska. Kazdg macierz hermitowsksa moZna sprowadzid
do postaci diagonalne] poprzez transformacje podobieistwa [34J

A A A A

- -1 :

(13.5-9)
gdzie A (u1,v1) jest macierzg wnitarng. Jezeli 11(|11,v1> - &
. .. 3 N

12(‘u1,vd‘)aq wartosclamivwlasnymi maclerzy RUa(u1,v1,u1,v1> y
to joj diagonalna postaé Jest nagtepujaca [34]

L 3
A i

Ly (ug,v,) = . ~ (13.5-10)
0 ;1
A . ,
Poniewas RU'(u1,v1,u1,v1) jest macierzg hermitowska, to 1,
i 1, 8gq rzeczywiste dla dowolnego Cu1,v1) « Ponadto ponicwas
a : ‘ A
oba minory gidwne M1,M2 macierzy RU'(u1,v1,u1;v1) g4 nieujen-

na, to jej wartosci wtasne 1., 1, sa takze nlaujemne 34
' 1 2 E

N[1 = E{[U};(U.‘ ’ V,])/ ];} 0 " (]}'5-‘]1)
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M, = E{

o ol ol o] -
-IJQ{U};(U1,,V1) U};*(111,‘11)j22 >0 .

Picruoza nierdwnosSé spelniona jest ze wagledu na fakt, iz
wartosé Srednia funkeji nieujemne] jest nleujemna; druga wy-

nilka 2z nierdwnodci Schwarca.

A
Zauwaziny, %e macierz unitarna A (u1,v1) gprowadza 10wW-
nies do postacl diagonalne] wyrazenie RU'(u1,v1,u1,v1) v

Af o x
1H1r(\41,v1,u1,v1)

A Y AL

J"J.u.{(“1"’1> = 4" (uy,vy) RU’_(‘H"’1’“1"’1> : |

A ' N ) N A : A

"RU'OH,V1“H,V1)I¥(u1ﬂH) = A 1<Wwvﬁ)IM’OH’V1NH’V1)4@m
A (u1,v1> RU'(u1,v1,u1,v1) A (u1,v1> =

N\ i A ) .

= Lp (\11 'y ) Ly (u1,v1‘) . (13.5-1;3)

Uwzgledniajac (13.5~1O)0trzymujc‘sig

15 5z 10

A | _
T‘llR ( u.] ,V.] ) = ” ? ) (1 j- [,)"'1 j)
| R |
vTrunsfdrmacja podobierigtwa nie zmienia Sladu macierzy, zateu
zachodzi , ‘ . |
A, : AL : ' -
tyLRU'QH,mPu1nqiL=trIR(LH,V1) n11—b12, Q}.»44)
oraz
WAN ) A»i- »
tx'LRU{(u],v1,u1,v1).RU'(u1,v1,u1,v1>] = |
A ~ " . .
- Y 2 _ I
WA LI ]J}}I{ ( ll.] Iy v1 ) = 11 + 12, . | C1 }u 5""1 l,)')

a kontrast statystycany wyraza sie wzorem



| l? + lg | 21112 ' _
CS(\H,mdz = \[1 = 5 . 03.946)
1, + 1, ,(l1+12>

Dla dowolnych liczb nieujemnych 11, 12 speiniona jest
nierdwnosd

111

. =2 .
e EM— 0 " (13.5-17
//(11 + 1, ) - ;;; - ( 5=117)

1
2
Tak wigec dla kontrastu statystycznego C8 <u1,v1) w dowolnym

punkcie ptaszczyzny obrazowej rzeczywiscie zachodzi

1 e »
/B ¢, (uvy) << 1 . (13.5-18‘)
Podstawiajac do powyzszego wzdy definiujacy kontrast statys-

tyczny (HB.S-S;)atwierdzié mozna, i% wariancja natezenia w

dowolnym punkcie ptaszczyzny obrazowe] speinia warunek

1. _ / o : ) , |

2
13.6. Podsumowanie.

W niniejszym rozdziale otrzymano szereg wynikdéw okredla-
jacych statystyczne wlasnodel rozkiadu amplitudy i natezania
W plaszczyZnie obrazowej koherentnego uktadu odwzorowujacego
zimieniajacego stan'polaryzacji Swiatta. Ihterpretacja tych

wynikdw prowadzi do nastepujacych wnloskdw s

(1) Obydwie sk*adowe €redniej amplitudy zespolone]j w dowole

nym punkcie plaszczyzny obrazowej réwne sa zero.



N\
s
s

]3] -

Srednie natezenie transformuje sie tak jak przez ukrad

‘nickoherentny o natezeniowej funke]i rozmycia rdéwne

hh{ﬁ (u1~u0, v1—vo)j .

Rozmiary Sredniej plamki rdéwne sa rozmiarom obszaru

Luruluoji‘Sk ampiitudy w pXaszeczyZnie obrazowej. Dla

prreduiotdw jednorodnych zaleza one tylko od macierzo-
/\

v funkuji rozmycia amplitudy h (u1,%)i Sredniego

gtanu polaryzacji swiatZa ’ﬁo emitowanego przez dylfuzor.

Dla przedmiotdw niejeﬂnoroﬂnych moga sle zmieniadé od

punktu do punktu,pgdyz zaleza takze od rozktadu transmni-

tancji ‘t (uo;vo){e «

Variancja natedenia w dowolnym punkcie plaszczyzny

obrazowe] nie Jeast wieksza niz kwadrat Sredniego natese-
nia i nie mniejsza niz poXowa kwadratu Sredniego nateze-
nia.

Kontrast statystyczny strukbury plamkowe ] gpednia nagte~

pujacy warunek w dowolnym punkcie pZasgzczyzny obrazowe]

- | | |
V—_é;<cs<u1,v1>.<1 . (13.6-1)

llalezy podkresdlié, iz powyisze wnioski sktuszne sa jedyuie

dla klasy przedmiotdw dyfuzyjinych spelniajqcyohustatystycz—

ne zatozenia (1), (ii) ; (iijw> z rozdz.13.1, a takze waru-

nek (13.1~4) .
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14, UWAGI KOfiCOwWE

W ninieszej pracy zaproponowano macierzowy opis wiage
nosci uktaddw odwzorownjacych zmieniajacych gstan polaryzacji
Swiatta, Jego istota jest pokgczenie metod uzywanych w po-
de jéciu skalarnym z maclerzowym formalizmem Jonesa wprowadzo-
nym do opisu elementdw zmieniajacych stan polaryzacji Swiat-
ta.

W przedstawionym w pracy materiale wyrdizniajg sie
cztery grupy zagadnieﬁ.lPiGTWSza, to zdefiniowanie macierzo-
wych charakterystyk ukiadu zmieniajacego stan polaryzacji
dwiatta, a bedacych uogélnieniem odpowiednich funkcji skalar-
nych uzywanych do opisu ukaddw klasycznych,/rozdz.4. Druga,
to grupa problemdw zwiazanych z odwzorowaniem przedmiotéw
punktowych, rozdz.5=9. Trzecig 1 czwarta grupe stanowliy zao-
gadninnié zwiazane 2 odwzorgwanlem przedmiotdw rozciaglych
i wislopunktowych, rozdz.10-11, oraz z okreéleniem podsta=~
wowych wielkosci atatystycznych charakteryzujqcyéh rozkiad
amplitudy zespolone;] i natgéchia w kohexrentnych obrazach

przedmiotéw dyfuzyjnych, rozdz.13.

Jak wykazano W rozdz.12, uzyskane w pracy rezultaty gsa
naturalnym macierzowym unogdlnieniem wynikdw, ktdre otrzymu-
je sie na podstawie rozwazaen skalarnych., Moga one byé stoso-
wane do oceny JakosSci odwzorowania w uk*adach optycznych za-
wierajgcych dowolne elementy zmieniaﬁqce gtan polaryzacji
gwiatta, jak réwﬁiéz do oceny WIasnoéci szumu plamkowepo po-
walajgcapgo przy odwzorowaniu kohcréntnych przedmiotéw dyifu-
zyjnych w tego typu uktadach. Na podkreslenie zasiuguje fakt,

iz dla omawiane] klasy uktaddw podstawowe mierniki jakosci
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odWAorowania, np. jasnoséé St rehla, zdolnosé rozdzielcza, op=-
tyczna funkeja przenoszenia etc., zaleza nie tylko od para=
motrdw ukladu odwzorowujacego lecz takze od rodzaju sSwiatta
uzytego do odwzorowania. Zaleznodé ta reprezentowana. jeat we
wazystlich kodcowych formukach przy pomocy dwuwynmiarowej mg-
cierzy koherencji.

i rozwazaniach niniejezej pracy pomijano sktradowg ampli-
tudy rdunolegts do osi optyczne]j ukiadu ( ktadowsg z- owa) .
Preyjecie takiego zaXozenia uzasadnione Jest tylko dla wlilae=
déw o niezbyt duiych katach aperturowych. UmozliwiXo ono stou
gowanie dwuawymiarowe]j macierzy koherencji do opisd,efektéw
polaryzucyjnych. W konsekwencji,uzyskane wyniki nie mogg byd
stosowane do ukkaddw o duzych katach aperturowych. Analogicz=-
ne przybliZenie stosowane jest zreszta takie w opisie kla~-
oycznych ukraddw odwzorowujqcych. W szczegdlnodci w pracy Cj]
Hopkins wyliczyl rozktad natgﬁanim w dyfrakcyjnyh obraZiu punl-
tu dla uktadu idealnegb 2z uwzglednieniem sktadowe amplitudy
réwnologle do osl optyeczned uktadu (skkadowej Z—OWej) o Wy~
kazat on, 1%z pomijanie gkiadowe] z-owej w uktadach o katach
aperturowych nie wigkszych niz ZOO_prowadzi do bYredu w rozkta-
dzie nat¢dania rzedu jednego do dwéch procent., W zwigzka z
tym kgt aperturowy rowny 30 mozna by aktowac jako granice’
gtogowalnoscl opisn skalarnego..Ponlewaz w proponowunym opisie
macicrzowym przyjeto ten sam rodza] przybliienia, to wydaje
gi¢ uzasadnione , aby kat_aberturowy rowny 30° byX réwnies
truktowuhy jako granica stosowalnosci tegO'opiau. Rozszerzenie
zaproponowanego macierzowepgo formallzmu na uktrady o wig¢kazych
katach aperturowych, a wiec uwzglgdnienie.w rozwazaniach skta-
dowa] w-~owej amplitudy, bedzie prawdopodobnie przedmioclon dale

pzych badad autora.
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