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1 Wprowadzenie

Najczęściej stosowanym w technice fonicznej przetwornikiem 
elektroakustycznym jest głośnik magnetoelektryczny nazywany także głośnikiem 
dynamicznym. Jego charakterystyczną cechą jest występowanie znacznych 
nieliniowości podczas zasilania go sygnałami o dużym poziomie. Szczególnie w 
zakresie małych częstotliwości (w okolicy rezonansu podstawowego głośnika) 
amplituda wychyleń membrany przetwornika osiąga często wartości bliskie 
wartościom dopuszczalnym wyznaczonyrń przez konstrukcję mechaniczną 
układu drgającego.

Próby wyjaśnienia charakteru i przyczyn powstawania nieliniowości w 
głośnikach dynamicznych nierozerwalnie związane były z próbami utworzenia 
modeli przetwornika, które byłyby w stanie symulować jego nieliniowe 
właściwości. Modele tego typu bazują najczęściej na fizycznej budowie głośnika. 
Tworzone są na podstawie nieliniowych równań różniczkowych opisujących 
pracę przetwornika lub też wyprowadzane są z elektrycznego schematu 
zastępczego z nieliniowymi elementami [11, 19, 20, 21, 22, 23, 24, 33, 37],

Bardziej ogólne są modele traktujące głośnik jak "czarną skrzynkę". 
Bazują one na zbiorze sygnałów pobudzających i odpowiedzi głośnika 
praktycznie nie uwzględniając struktury modelowanego obiektu.
Najczęściej stosowaną, należącą do tej grupy, metodą modelowania jest opis 
układu przy pomocy szeregów Volterry [17, 30, 39]. W modelu tym wartość na 
wyjściu układu wyznaczana jest na podstawie poprzednich wartości na jego 
wejściu. Z powodu wykorzystania w modelu tylko wartości z wejścia układu do 
opisu nawet prostych nieliniowości wymagana jest znajomość wielowymiarowych 
odpowiedzi impulsowych, dla których należy uwzględnić znaczne opóźnienie 
czasowe. W przypadku sygnałów dyskretnych oznacza to konieczność 
uwzględnienia bardzo dużej liczby współczynników (rzędu kilkuset). Operowanie 
tak obszernym zbiorem liczb stwarza poważne problemy obliczeniowe i 
interpretacyjne.

Zaproponowany przez I. J. Leontaritisa i S. A. Billingsa (Uniwersytet 
Sheffield W. Brytania) w 1985 roku model NARMAX (Non-linear 
AutoRegressive Moving Average with eXogenous input) [26, 27] jest 
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wygodniejszy w użyciu, bardziej ogólny i pozwala opisać układ mniejszą liczbą 
parametrów. Do tworzenia tego modelu wykorzystywane są nie tylko wartości z 
wejścia układu, ale także poprzednie wartości z jego wyjścia.

Wykorzystanie w zdyskretyzowanych szeregach Volterry tylko wartości 
pobudzenia nasuwa analogię do występujących w systemach cyfrowych filtrów 
typu FIR (Finite Impulse Response). Filtry te operują jedynie na wartościach 

próbek sygnału wejściowego i do realizacji założonej transmitancji wymagają 
zwykle kilkuset współczynników. Natomiast w przypadku filtrów typu IIR 
(Infinite Impulse Response), podobnie jak w modelu NARMAX, do zrealizowania 
podobnej funkcji przejścia wymagane jest tylko kilkanaście współczynników, 
gdyż oprócz wartości sygnału wejściowego uwzględniana jest także historia 
odpowiedzi układu [1].

W niniejszej pracy wszystkie prezentowane zależności i przekształcenia 
bazują na sygnałach przedstawionych w postaci dyskretnej. Z tego też powodu 
oznaczany przez t czas występujący w opisywanych modelach jest czasem 
dyskretnym.

Przystępując do realizacji pracy postanowiono udowodnić następującą 
tezę: Możliwe jest zastosowanie metody NAJRMAX do modelowania 
zniekształceń nieliniowych głośników dynamicznych.

Z przeglądu literatury wynika, że model NARMAX wykorzystywany jest 
najczęściej do modelowania przebiegu procesów fizycznych, fizykochemicznych 
oraz w systemach sterowania [7, 9, 25]. Jak dotąd pojawiły się tylko dwa 
artykuły, w których autorzy wykorzystali metodę NARMAX w elektroakustyce 
[14, 34], W obu przedstawiono modele, które opisywały wyłącznie drgania 
membrany głośnika w zakresie małych częstotliwości. Z tego powodu modele te 
miały bardzo ograniczone zastosowanie praktyczne.

Podstawowym celem pracy jest w związku z tym zaimplementowanie 
metody NARMAX do modelowania nieliniowości przetworników 
elektroakustycznych, a zwłaszcza głośników dynamicznych.
Budowany model opisuje głośnik dynamiczny nie w wąskim zakresie 
częstotliwości, ale dla całego pasma częstotliwości jego pracy. Jako odpowiedź 
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głośnika zostało przyjęte nie wychylenie membrany, ale ciśnienie akustyczne, 
które on wytwarza. Takie podejście pozwala utworzyć modele, które w 
przyszłości można będzie weryfikować również poprzez testy odsłuchowe.

Praca polega na opracowaniu algorytmu wyznaczania modelu NARMAX 
głośnika dynamicznego na podstawie danych pomiarowych. W procedurze tej 
najważniejszą funkcję pełni proces optymalizacji modelu. Konieczne jest również 
dobranie właściwych parametrów pomiaru oraz modelowania, w taki sposób aby 
uzyskać możliwie najbardziej dokładny model.

Praca została podzielona na 6 rozdziałów:
>- rozdział pierwszy zawiera wprowadzenie oraz nakreślenie celu pracy, 

^rozdział drugi przedstawia stosowane obecnie sposoby modelowania 

zniekształceń nieliniowych głośników dynamicznych,
>-w rozdziale trzecim został przedstawiony model NARMAK oraz jego 

reprezentacja wielomianowa,
^rozdział czwarty opisuje sposób wyznaczania reprezentacji wielomianowej 

modelu NARMAK głośnika dynamicznego oraz procedurę optymalizacji 
modelu,

>*w rozdziale piątym przedstawione zostały wyniki przeprowadzonych 

doświadczeń: dokonano wyboru optymalnego sygnału pomiarowego, 
zbadano wpływ zakłóceń na proces tworzenia modelu, przetestowano 
działanie procedury optymalizacji, dokonano porównania wybranych 
charakterystyk i parametrów głośnika rzeczywistego oraz jego modelu, 

rozdział szósty to podsumowanie pracy oraz wnioski.

Praca zawiera również spis literatury, która została wykorzystana.
Dołączono również dwa załączniki:

A - współczynniki niektórych modeli NARMAX analizowanych w pracy,
B - opis programu komputerowego powstałego w trakcie realizacji pracy, w 

którym zaimplementowano algorytm tworzenia modelu NARMAK.
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2 Modelowanie zniekształceń nieliniowych 
głośników dynamicznych

2.1 Model fizyczny głośnika

W procesie modelowania nieliniowości głośników dynamicznych istotną 
rolę odgrywają modele fizyczne głośnika. Tworzone są one na podstawie wiedzy o 
budowie i zasadach działania tego przetwornika [11, 20, 21, 22, 23, 24, 33, 37], 
Najczęściej punktem wyjścia do tworzenia modelu jest elektryczny schemat 
zastępczy głośnika pracującego w obudowie zamkniętej (rys. 1).

Rys. 1. Nieliniowy schemat zastępczy głośnika dynamicznego w obudowie 
zamkniętej.

Oznaczenia elementów na rysunku 1 są następujące:
> *zze - napięcie sygnału pobudzającego,

> ■ i - prąd płynący w cewce głośnika,

> -x - wychylenie membrany,

> >x - prędkość membrany,

^Rc - rezystancja elektryczna cewki,

'^Le(x) - indukcyjność elektryczna cewki,
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>mr - masa układu drgającego głośnika oraz masa współdrgającego 

środowiska,
>- Ct (x) - podatność zawieszeń głośnika oraz podatność powietrza w odudowie, 

^k(x) - sztywność,

^Rm - rezystancja strat w zawieszeniach oraz rezystancja promieniowani?^ 

F(x)=Bl(x)i - siła Lorentza wywołana prądem płynącym w cewce,

>^Fr(x,i) - siła reluktancyjna spowodowana modulacją strumienia

magnetycznego prądem zmiennym,
~^Gy - żyrator reprezentujący przetwarzanie energii elektrycznej na 

mechaniczną, stała żyracji jest równa Bl(x) i zależy od wychylenia.

Jak widać wartości wielu elementów zależą od wychylenia cewki drgającej x. W 
części elektrycznej największą nieliniowość przedstawia indukcyjność cewki 
Le(x), a w części przetwarzania elektromechanicznego stała Bl(x). W części 
mechanicznej są to przede wszystkim nieliniowe zawieszenia ze sztywnością k(x) 
zależną od wychylenia.

Dla schematu zastępczego przedstawionego na rys. 1 możemy 
sformułować następujące równania [21, 37]:

część elektryczna

Ue=Bei + ^^+Le(x)^+BZ(x)t, (2.1)

część mechaniczna

Bl(x)i = mT^ + Rm^ + k{x)x-^^-. (2.2)

Przedstawiony schemat zastępczy jest uproszczonym schematem głośnika 
w obudowie. Nie uwzględnia on nieszczelności obudowy lub też prądów wirowych 
w obwodzie magnetycznym głośnika. W zastosowaniach praktycznych okazuje 
się, że schemat zastępczy przedstawiony na rysunku 1 charakteryzuje się 
wystarczającą dokładnością. Z tego też powodu mimo swojej niekompletności w 
większości analiz wykorzystywany jest bez dalszych uściśleń.
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Na podstawie równań (2.1) i (2.2) możliwe jest utworzenie nieliniowych równań 
stanu opisujących głośnik [21, 37]:

v = f(y)+g(y)u 
y = A(v) (2.3)

gdzie: v - wektor stanu, 
u - sygnał wejściowy, 
y - odpowiedź głośnika.

Składnikami wektora stanu są: 
>-vi=i (prąd płynący przez cewkę), 

y^V2=x (wychylenie membrany),
dx //(prędkość membrany).

Wektory/Tv/ g(v), h(v) mają następującą postać:

Le(V2)V1 < Le(U2)

fw = 03

mr + 2mr mT
^2).. Rm

A(v) = [ O L>2 O ],
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Jak widać na podstawie struktury wektora h(v) odpowiedzią głośnika jest 

wychylenie membrany. Elementy nieliniowe modelu są najczęściej 
aproksymowane wielomianami drugiego rzędu [21, 37]:

Bl(v2) = Bl0 + 61U2 + b2V%
k(V2) = ko+k1V2+k2vl ^2'5^

Le(y2) = LeO + 11V2 + ^2^2

gdzie: Blo, ko, lo - wartości parametrów w położeniu 
spoczynkowym głośnika,

bi, b2, ki, k2, li, I2 - poszukiwane parametry nieliniowe. 
Rozwiązanie równań (2.3) prowadzi do wyznaczenia poszukiwanych nieliniowych 
zależności pomiędzy napięciem zasilającym głośnik, a wychyleniem membrany.

2.2 Modele wejścia-wyjścia

W przypadku braku informacji o strukturze modelowanego obiektu 
utworzenie modelu fizycznego jest praktycznie niemożliwe. Budowany jest w 
takiej sytuacji model posiłkujący się na obserwacjami pobudzenia i odpowiedzi 
układu. Tego typu podejście jest bardziej uniwersalne i z reguły prowadzi do 
dokładniejszych wyników, ale ma też zdecydowaną wadę - uzyskany model jest 
trudny do interpretacji.

Początkowe próby opracowania nieliniowych modeli wejścia - wyjścia 
polegały na uzupełnianiu znanych modeli liniowych o część nieliniową. 
Strukturę taką mają modele Wienera i Hammersteina [5, 27], 
Model Wienera składa się z dwu niezależnych bloków przedstawionych 
schematycznie na rys. 2.
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<*9 * układ liniowy 
inercyjny

W

układ nieliniowy 
bezinercyjny

y(t)

Rys. 2. Model Wiener’a układu nieliniowego.

Pierwszy blok jest inercyjnym układem liniowym opisanym równaniem:

z(t) = hox(t) + h±x(t - 1) +... + ht-ix(l) (2.6) 

gdzie: t - czas dyskretny,
x(t) - sygnał pobudzający układ, 
z(t) - odpowiedź układu, 
ho, hi, ..., ht-i - współczynniki odpowiedzi impulsowej 

układu.
Drugi układ jest nieliniowy i bezinercyjny opisany pewną funkcją g[.], której 
argumentem są tylko wartości z(t):

y(t)=g[z(t)] (2.7)

Wynika z tego, że model ten opisany jest następującym równaniem:

y(t) - g[hoX(t) + hix(t - 1) + ... + T^-1X(1)] (2.8)

Model Hammersteina ma strukturę odwrotną (rys. 3). Pierwszym blokiem jest 
funkcja nieliniowa niezależna czasowo, następnie po nim znajduje się układ 
liniowy.

Rys. 3. Model Hammersteina układu nieliniowego.
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Odpowiedź modelu Hammersteina jest następująca:

= Aog[x(O] + hrg^t - 1)] + ... + 7^-ig[x(l)] (2.9)

Oba przedstawione modele mają duże ograniczenia wynikające bezpośrednio z 
ich struktury oraz z założenia, że funkcja nieliniowa g[.] jest bezinercyjna.

2.3 Szeregi Volterry

Bardziej rozwiniętą metodą modelowania, pozwalającą na uwzględnienie 
jednocześnie właściwości nieliniowych i inercji układu jest przedstawienie go za 
pomocą szeregu Volterry [17, 39]. Szereg ten zdefiniowany jest w następujący 
sposób:

00

X0 = S Vm[hm,x(t)] (2.10)
777=1

gdzie: Vm[hm,x(t)] - operator Volterry rzędu m:

00 00

Vm[hm,x(t)] = X E (2.11)
Tl=o Tm=0

gdzie: Tm) - funkcja charakteryzująca m-ty rząd
nieliniowości układu.

Jak wynika ze wzorów (2.10) i (2.11) do opisu inercyjnego układu nieliniowego 

wymagana jest znajomość funkcji 71i(ti), 712(ti, ^2), ...,^m(Ti, ...,rm). Funkcje 
te nazywane są jądrami szeregu Volterry lub też wielowymiarowymi 
odpowiedziami impulsowymi. Każda z nich związana jest tylko z jednym rzędem 
nieliniowości:

> *71i(ti) - jest zwykłą odpowiedzią impulsową układu liniowego,

> *712(ti,12) - opisuje nieliniowości drugiego rzędu,

> *7i3(ri, T2, T3) - opisuje nieliniowości rzędu trzeciego, itd....
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Dla układu liniowego zachodzi warunek rni) = 0, dla m = 2, 3, ...
Szereg Volterry przyjmuje wtedy następującą postać:

OO

X0 = S Al(ri) «x(£-Ti) (2.12)
Tl=o

Jak widać jest to klasyczny opis odpowiedzi układu liniowego na pobudzenie 
sygnałem x(t) poprzez jego splot z odpowiedzią impulsową.
Największą zaletą opisu głośnika dynamicznego przy pomocy szeregu Volterry 
jest jednoczesne uwzględnienie jego właściwości nieliniowych oraz inercji. Wadą 
jest natomiast znaczna liczba współczynników tego modelu wynikająca z długiej 
odpowiedzi głośnika.
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3 Metoda NARMAX

3.1 Postać ogólna modelu

W modelach opartych na sekwencjach wejściowych i wyjściowych układu 
(rys. 4) nie jest potrzebna znajomość struktury modelowanego obiektu. Cała 
informacja o jego właściwościach zawarta jest w ciągach pobudzenia i 
odpowiedzi.

modelowany 
układ

Rys. 4. Układ pobudzany ciągiem x(t) i z odpowiedzią y(t).

W przypadku układów liniowych do ich opisu wykorzystywany jest najczęściej 
model utworzony w oparciu o układ liniowych równań różnicowych:

11 y nx ne
y(t) = S byiy^t - 0 + Ś bxix(t -d-i)+^ beie(t - 0 + e(0 (3.1)

i=l i=l i=l

gdzie: t - czas dyskretny,
d - opóźnienie wnoszone przez układ. 
byi, bxi, bei, - współczynniki modelu, 
x(t) - pobudzenie, 
y(t) - odpowiedź układu, 
e(t) - błąd predykcji,
nx - rząd sygnału wejściowego (maksymalne opóźnienie 

próbek sygnału x(t) występujących w modelu),
ny - rząd sygnału wyjściowego (maksymalne opóźnienie 

próbek sygnału y(t) występujących w modelu),
ne - rząd szumu (maksymalne opóźnienie próbek sygnału 

e(t) występujących w modelu).
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Model (3.1) nazywany jest często modelem autoregresyjnym i określany 
skrótem ARMAX (AutoRegressive Moving Average with eXogenous input) [8]. 
W 1985 roku Leontaritis i Billings [26, 27] przedstawili opis rozszerzenia modelu 
(3.1) na przypadek nieliniowy. Udowodnili, że bardzo szeroka klasa układów 
może być opisana ogólnym nieliniowym równaniem różnicowym:

y(t) = MyU -1), ...,y(t -ny\x(t -d\...,xU -d -nx\e(t - 1), ...,e(£-ne)] + e(D (3.2)

gdzie: F [.] - funkcja nieliniowa.
Ze względu na uogólnienie modelu liniowego (3.1) model o strukturze 

(3.2) jest powszechnie określany nazwą Non-linear ARMAX w skrócie NARMAX. 
Warunki istnienia modelu NARMAX dla danego układu są dość łagodne i 
pozwalają na stosowanie tego modelu do opisu szerokiej klasy układów 
nieliniowych [5, 7, 26, 27]:

I - układ musi być realizowalny, a jego przestrzeń stanu musi mieć 
skończony wymiar,

II - w okolicy punktu równowagi można utworzyć model liniowy układu. 
Warunek I spełniony jest przez praktycznie wszystkie układy rzeczywiste i nie 
stanowi ograniczenia dla modelu.
Dużo bardziej istotny jest warunek II, który mówi o konieczności istnienia 
modelu liniowego dla małych amplitud, co nie pozwala na modelowanie na 
przykład układów z histerezą lub tarciem suchym. W przypadku głośników 
dynamicznych warunek II nie jest restrykcyjny, ponieważ przy pracy głośnika z 
małymi sygnałami można z powodzeniem utworzyć dokładne modele liniowe.

Model określony za pomocą wzoru (3.2) jest bardzo ogólny ponieważ 
funkcja F[.] może mieć dowolną postać. Dzięki temu inne modele 
wykorzystywane w opisie układów nieliniowych mogą być traktowane jako 
szczególne przypadki modelu NARMAX [7].

Szereg Volterry (2.10) opisujący układ nieliniowy jest uproszczoną 
postacią modelu NARMAX, w którym odpowiedź układu jest nieliniową funkcją 
pobudzenia - elementów x(i). Funkcja F[.] jest w tym przypadku sumą 
nieliniowych wielomianów (2.11).



18

W podobny sposób można potraktować używany stosunkowo często model 
biliniowy:

ny nx ny nx

y(t) = a0 + E ay(t - i) + E btx(t - i) + Z E c^t - i) • x(t -j) (3.3)
i=l i=l i=l j=l

gdzie: ao, at, bi, a - współczynniki modelu.
Przy pomocy tego modelu opisywane sa zjawiska zachodzące podczas destylacji 
oraz w systemach sterowania procesami termicznymi i nuklearnymi. Jest to 
prosty model NARMAX, w którym nieliniowa funkcja F[.] została zastąpiona 
przez sumę jednomianów 1 i 2 stopnia, przy czym największa potęga w jakiej 
występują wyrazy pobudzenia x(t) i odpowiedzi y(t) jest równa jeden.
Nieco bardziej skomplikowana sytuacja występuje w przypadku modelu 
wymiernego. Przedstawiany jest on zwykle równaniem:

-y(t) (34)

= b(y(t - 1),y(t -r),x(t- 1),x(t - r))

gdzie: r - rząd modelu, 
a(J, b(.) - wielomiany skończonego stopnia

Po przekształceniu do następującej postaci:

widać, że mamy do czynienia z modelem NARMAX, w którym nieliniowa funkcja 
F[.] ma postać ilorazu dwu wielomianów.

3.2 Modele liniowe względem współczynników

Po przyjęciu uproszczenia, że badany układ nie jest źródłem szumu 
można wykorzystać wersję modelu NARMAX, która nie zawiera części szumowej. 
Model taki ma następującą postać ogólną [2, 7, 9]:

y(t) = FLy(t- 1), - ny\x(t - d\ ...,x(t - d - nx)] + e(t) (3.6) 
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Porównując równania (3.1) i (3.7) widać, że opóźnione próbki błędu predykcji e(t) 
nie są argumentami nieliniowej funkcji F[.]. Uproszczenie to prowadzi przede 
wszystkim do znacznego zmniejszenia liczby współczynników modelu oraz 
ułatwia ich wyznaczenie.

Model nie narzuca konkretnej postaci funkcji F[.], zresztą w praktyce 
bardzo rzadko zdarza się aby była ona znana. Podczas tworzenia modelu należy 
więc a priori założyć pewną jej strukturę od czego zależy dalsza procedura 
obliczeniowa oraz liczba parametrów potrzebnych do opisu modelu.

W celu rozwiązywania układów równań liniowych został utworzony 
bardzo rozwinięty aparat matematyczny oraz zostały opracowane efektywne 
algorytmy numeryczne.
Istnieje możliwość wykorzystania tych metod w procesie wyznaczania modelu 
NARMAX pod warunkiem, że model będzie liniowy względem współczynników. 
Warunek ten spełniają modele o następującej strukturze [2]:

m
y(0 = S ...,y(t - ny\x{t- d\ ...,x(t - d - nx^ • 6i + e(^) (3.7)

i=l

gdzie: m - liczba współczynników modelu, 
di - współczynniki modelu, 

- funkcja bazowa, na ogół nieliniowa względem 
zmiennych x(t) i y(t).

Funkcja </>i[.] musi być określona jeszcze przed procesem tworzenia modelu, a jej 
argumentami mogą być tylko opóźnione wartości sygnałów x(t) i y(t). Dzięki 
temu po podstawieniu wartości wektorów x(t) i y(t) uzyskanych z pomiarów 
otrzymujemy układ równań liniowych, gdzie niewiadomymi są współczynniki Oi. 
Zbiór funkcji dJ, które mogą być wykorzystywane w procesie modelowania 
NARMAX jest dość obszerny [2], Najprostszym przykładem funkcji dd są 
jednomiany utworzone z wyrazów x(t) oraz y(t). W tym przypadku model będzie 
miał strukturę wielomianu o wyrazach liniowych i nieliniowych.
W przypadku obiektów, które mają charakter nieliniowych oscylatorów, czyli 
występują w nich przebiegi harmoniczne, może okazać się korzystne 
zastosowanie funkcji trygonometrycznych. Najczęściej są to sin(), cos(.) oraz 



20

tan(). Spotykane są także modele z funkcją odwrotną - atan() oraz funkcjami 
hiperbolicznymi sinh(), coshf.), tanh(.) [2].

3.2.1 Funkcje radialne - RBF

W technice interpolacji wielowymiarowej wykorzystywane są często 
funkcje radialne (Radial Basis Function - RBF) zdefiniowane następująco [8]:

nr
(/>(u) = Ao + Ś II)

i=l
(3.8)

gdzie: u - wektor wejściowy, 
a - wektor centrów funkcji, 
ŹLi - współczynniki, 
f(.) - funkcja bazowa, 

II. II - norma Euklidesowa wektora.
Możliwe jest wykorzystanie funkcji RBF także do tworzenia nieliniowego 

modelu NARMAX. W tym przypadku należy przede wszystkim arbitralnie 
wybrać funkcję bazową f(.) oraz wyznaczyć centra a. Jako funkcje bazowe 
wybierane są najczęściej [8]:

>-funkcja sklejana (spline) płaskiej płyty /*(?) = V2 jog y,

funkcja gaussowska

>-funkcja wielokwadratowa

f(v) = exp(-v2//?2), 

/W =

funkcja wielokwadratowa odwrotna

gdzie: /? - stała rzeczywista.

Centra c; są punktami w przestrzeni n - wymiarowej (gdzie n to liczba 
zmiennych - wejść układu). Wybierane są one najczęściej spośród danych 
wejściowych lub też arbitralnie rozkładane równomiernie w dziedzinie wejścia.
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Innym modelem liniowym względem współczynników jest model 
wykładniczy [2]: 

m
y(fi=Y\ai + Aexp(-y2(^-1))] -y(t-i)-Oi+e(t) (3.9)

i=l

gdzie: a i, (3i, 6 i - współczynniki modelu.
Wyraz -y^t-l) został wybrany arbitralnie możliwe jest zastosowanie w tym 
modelu innych wyrazów o strukturze: -y^t-ki). Wartość ki wybierana jest tak, aby 
uzyskać jak największą dokładność modelu.

Spośród wszystkich modeli liniowych względem współczynników 
najczęściej stosowaną reprezentacją modelu NARMAX jest reprezentacja 
wielomianowa. Wynika to przede wszystkim z faktu, że większość ciągłych 
funkcji, w tym także wszystkie przedstawione wzorami (3.3 - 3.9), można 
aproksymować wielomianami. Wadą reprezentacji wielomianowej jest bardzo 
duża liczba współczynników reprezentacja ta ma jednak wiele zalet. Przede 
wszystkim model ten jest stosunkowo prosty do wyznaczenia i łatwy w 
interpretacji, a po zastosowaniu właściwej optymalizacji uzyskuje się model, 
który przy niewielkiej liczbie współczynników jest w stanie zamodelować nawet 
silnie nieliniowy obiekt.

3.3 Reprezentacja wielomianowa

Reprezentację wielomianową modelu NARMAX można przedstawić w 
następującej postaci [3, 7]:

7i n n

ii=0 ii=0 i2=ii (2
71 71 71

11=0 12=Ó ^3=^2

gdzie: 7i = nx+7iy,

uo(t) = x(t-d), Unx(t) = x(t-d-nj, Unx+i(t) = y(t-l), 
lLnx+2(t) = y(t-2), Unx+ny(t) = y(t~Tly).

0 - poszukiwane współczynniki.



22

Jeśli nie jest znany charakter nieliniowości modelowanego układu, w 
jego reprezentacji wielomianowej należy uwzględnić wszystkie możliwe 
współczynniki wynikające ze struktury modelu. Wymaga to często wyznaczenia 
bardzo dużej liczby parametrów i stanowi poważny problem obliczeniowy. Liczba 
współczynników wielomianu opisującego model uzależniona jest od rzędu 
sygnału wejściowego, wyjściowego oraz od wybranego stopnia wielomianu (rzędu 
nieliniowości - Z). Można ją wyznaczyć na podstawie rekurencyjnego wzoru 
[5, 9, 25]:

Z
(3.11) 

i=l
ni = lm-i(ny + nx + i)Vi, no = 1

Przykładowo dla ny = nx = 15 oraz Z = 3 mamy:
m = (1-31) H = 31,

n2 = (31-32)12 = 496,

n3 = (496 33)13 = 5456,

M = 31 + 496 + 5456 = 5983.

Jak widać nawet przy tak niewielkim rzędzie modelu liczba współczynników 
osiąga znaczną wartość M = 5983.
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3.4 Wyznaczanie wielomianowej postaci modelu NARMAX

Reprezentację wielomianową modelu NARMAX można przedstawić także 
w następującej postaci:

M 
y(t)= X OmPmW + e(t\ (3.12)

m=l

gdzie: M - liczba współczynników wielomianu,
pm(t) -jednomiany stopnia co najwyżej l będące iloczynem 

x(t) oraz y(t) :

pm(t) = y(t-Nyi )-...-y(t-Nyk )■ x(t-d-Nxi )-...- x(t-d-NXj )

l - rząd nieliniowości.
k >0, j > 0,

1 <Nyi<ny ... 1 <Nyk<ny,

0 <Nxi <nx ... 0 <Ny <nx,

k=0 oznacza, że pm(t) nie zawiera wyrazów yC), 
j=0 oznacza, że pm(t) nie zawiera wyrazów x(.).

Na przykład dla ny = nx = 1=2, jednomianów pm(t) jest zgodnie ze wzorem (3.11)
M = 20 i są następujące:
>-jednomiany liniowe:

pi (t) = y(t-l), p2 (t) = y(t-2), p3 (t) = x(t-d), p4 (t) = x(t-d-l),

P5 (t) = x(t-d-2),

jednomiany nieliniowe:

p6 (t) = y2(t-l), p?(t) = ^0,-2), p8(t) = ^(t-d), pa (t) = ^(t-d-1), pw (t) = ^(t-d-2), 
pn (t) = y(t-l)- y(t-2), pi2 (t) =y (t-D- x(t-d), pi3 (t) = y(t-l)- x(t-d-l),

p14 (t) = y(t-l)- x(t-d-2), pis (t) = y(t-2)- x(t-d), pie (t) = y(t-2)- x(t-d-l),
p17 (t) = y(t-2)- x(t-d-2), pis (t) = x(t-d)- x(t-d-l), pi9 (t) = x(t-d)- x(t-d-2),

P20 (t) = x(t-d-l)- x(t-d-2).
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Jeśli dysponuje się uzyskanymi z pomiarów wektorami X i Y o długości N 
próbek to na podstawie (3.12) możemy utworzyć układ równań liniowych i 
przedstawić go w postaci macierzowej [7, 9]:

y(l) 
j(2) =

Pl(l) £2(1) 
pi(2) 792(2)

... /Ml)

... pm(2) •

■
02 +

e(l) 
e(2) (3.13)

_yN) . ... pM^ . ■ Gm - . e(N) .

lub też w innym zapisie:

Y=P0 + e (3.14)

gdzie: X i Y uzyskane z pomiarów wektory pobudzenia i 
odpowiedzi układu o długości N,

P - macierz predykcji o rozmiarze N x M, 

0 - współczynniki modelu, 
e - błąd predykcji.

Przedstawiony układ równań jest układem liniowym ponieważ elementy 
macierzy P są liczbami wyznaczonymi na podstawie danych pomiarowych z 
czynników pm(t) zgodnie ze wzorem (3.12). Macierz P nazywana jest często 
macierzą regresji lub też predykcji [9]. Problem obliczenia modelu sprowadza się 
więc do wyznaczenia wektora 3, poprzez rozwiązanie układu równań (3.14) przy 
założeniu zerowego błędu predykcji e. Jest to rozwiązanie klasycznego, liniowego 
zadania najmniejszych kwadratów czyli znalezienie takiego wektora 0, aby 
poniższa norma uzyskała wartość minimalną:

|| Y-PO || -> min (3.15)
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Rozwiązanie zadania najmniej szych kwadratów można przeprowadzić 
wieloma metodami, które można podzielić na cztery grupy [9, 18, 31]:

algorytmy równań normalnych, w których dokonuje się rozkładu macierzy 

P'P, do grupy tej zalicza się metodę eliminacji Gaussa,

>- rozkład ortogonalny (ortogonalizacja) macierzy P, do której zalicza się 

ortogonalizację Grama - Schmidta, obroty Givensa, transformację 
Householdera,

rozkład macierzy P względem wartości własnych,

metody iteracyjne: Seidla, nadrelaksacji, gradientów sprzężonych.

Ponieważ macierz P jest najczęściej źle uwarunkowana nie jest możliwe 
wykorzystanie najmniej kosztownych algorytmów równań normalnych. 
Najczęściej wykorzystuje się więc rozkład ortogonalny macierzy P [2, 9],
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4 Tworzenie modelu NARMAX

4.1 Algorytmy ortogonalizacji

Znanych jest kilka algorytmów ortogonalizacji metodą najmniejszych 
kwadratów. Najbardziej rozpowszechnione są cztery [9, 18, 31]:

>■ klasyczny algorytm Grama-Schmidta (CGS - Classical Gram - Schmidt), 

zmodyfikowany algorytm Grama-Schmidta (MGS - Modified Gram - 

Schmidt),

>- transformacja Householdera,

>■ obroty Givensa.

Przy wyborze algorytmu numerycznego ortogonalizacji wykorzystywanego do 
tworzenia modelu NAKMAX brane były pod uwagę cztery główne czynniki:

> *czas obliczeń (liczba wykonywanych elementarnych operacji 

matematycznych),
> ► możliwość wbudowania procedur optymalizacji modelu.

> - dokładność (wszystkie obliczenia w komputerach wykonywane są na liczbach 

o skończonej precyzji),
> -wykorzystanie pamięci operacyjnej.

Powyższe czynniki zostały uszeregowane według ich istotności. Ze 
względu na bardzo dużą liczbę współczynników modelu najważniejszy był krótki 
czas obliczeń oraz możliwość prostego wbudowania procedur optymalizacji. 
Dokładność numeryczna algorytmu nie była zbyt istotna z tego powodu, że 
przewidziano wykonywanie wszystkich obliczeń na liczbach zmiennopozycyjnych 
o podwójnej dokładności (typ double). Natomiast ilość zajmowanej pamięci 
operacyjnej w nowoczesnych komputerach nie jest już sprawą krytyczną, 
współczesne systemy operacyjne potrafią obsłużyć struktury danych o 
rozmiarach nawet rzędu setek MB.
Największą ilością operacji matematycznych potrzebnych do ortogonalizacji 
macierzy P charakteryzuje się metoda obrotów Givensa i dlatego też nie była ona 
zupełnie brana pod uwagę. Transformacja Householdera nie pozwala na proste 
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wbudowanie procedury optymalizacji do tego algorytmu z tego powodu także 
została odrzucona.
Algorytmy CGS i MGS są bardzo podobne w działaniu z tym, że algorytm 
zmodyfikowany (MGS) jest mniej wrażliwy na błędy zaokrągleń i w związku z 
tym daje dokładniejsze wyniki. W procedurze budowania modelu NAJRMAX 
zastosowano jednak klasyczny algorytm ortogonalizacji Grama-Schmidta (CGS) 
głównie ze względu na jego dużą przejrzystość (możliwość efektywnego 
poszukiwania ewentualnych błędów) i stosunkowo prosty sposób wbudowania 
procedury optymalizacyjnej wynikający z tego, że algorytm CGS przetwarza 
macierz predykcji kolumnami, a nie wierszami jak algorytm MGS. Dokładność 
algorytmu nie była tak istotnym czynnikiem ponieważ po zastosowaniu 
optymalizacji, z nie zawsze dobrze uwarunkowanej macierzy P tworzona jest 
mniejsza, dobrze uwarunkowana macierz Ps (patrz punkt 4.3), dla której rozkład 
ortogonalny metodą CGS daje wystarczająco dokładne wyniki.

4.2 Realizacja algorytmu CGS

Algorytm ortogonalizacji Grama - Schmidta bazuje na rozkładzie 
macierzy predykcji na dwie inne [2, 9, 18]:

P = WA (4.D

gdzie: P - macierz predykcji o rozmiarze N x M,

W - macierz o rozmiarze N x M kolumnami ortogonalna 

tzn. WW = D,
D - macierz diagonalna, dodatnia,

A - macierz górna trójkątna o rozmiarze M x M,

N - liczba równań utworzonych z wektorów X i Y (3.14),
M - liczba wyznaczanych współczynników modelu, N >M 

(3.12).
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Po dokonaniu ortogonalizacji wyznaczany jest wektor g:

g = D WY (4.2)

lub inaczej:

<Wi,y>
~ <Wi,Wi> , i = 1, M (4.3)

gdzie </> oznacza iloczyn skalamy, na przykład:

N
<Wi,Wj>=wl lVj Wi(t)-Wj(f) (4.4)

^=1

Po przekształceniu równania (3.15) otrzymujemy:

Y=P0 + e= [PA-1][A^]+e = Wg + e (4.5) 

skąd:

A0 = g (4.6)

Następnie wykorzystując to, że macierz A jest trójkątna, metodą podstawiania 
wstecznego wyznaczane są współczynniki 6.

4.3 Optymalizacja modelu

4.3.1 Cele optymalizacji

Ze względu na nieznajomość struktury układu liczba wyznaczonych 
współczynników reprezentacji wielomianowej jest bardzo duża. Praktycznie 
uniemożliwia to właściwą interpretację modelu NARMAX, a jego użyteczność jest 
niewielka. Dodatkowo model taki jest bardzo często niestabilny. Niezwykle 
istotna jest więc jego właściwa optymalizacja. Bez tego procesu reprezentacja 
wielomianowa zawiera zbyt dużą liczbę współczynników (nawet kilkadziesiąt 
tysięcy). Oprócz tego znaczna liczba wyrazów macierzy predykcji P równa MN 
(N>M, najczęściej N >M) stwarza bardzo poważne problemy obliczeniowe.
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Procedura identyfikacji układu powinna, jeśli to możliwe, jednocześnie 
obliczać wartości współczynników modelu oraz wybierać tylko te, które są 
istotne. Tego typu optymalizację można zrealizować na kilka sposobów, przede 
wszystkim poprzez:
>-modyfikację procedury dokonującej ortogonalizacji i wyznaczającej 

współczynniki wielomianu, tak aby jednocześnie dokonywała ona oceny 
każdego wyznaczonego współczynnika [2, 4, 9, 25], 

^wykorzystanie odpowiednio skonfigurowanej sieci neuronowej [30, 38], 

utworzenie modelu liniowego (ARMAX) dla małych sygnałów w celu 

określenia rzędów modelu - nx, ny, a następnie wyznaczenie nieliniowych 
członów wielomianu w modelu NARMAX [14, 16].

4.3.2 Modyfikacja algorytmu CGS

Najczęściej stosowaną metodą umożliwiającą określenie struktury 
modelu jest modyfikacja algorytmu ortogonalizacji macierzy predykcji. 
Opracowana została procedura określająca istotność poszczególnych 
współczynników modelu, po czym została ona wbudowana do algorytmu 
ortogonalizacji Grama-Schmidta.

Działanie procedury polega na wyborze ze wszystkich M kolumn 
macierzy predykcji P podzbioru Ms (MS<M) kolumn. Powstaje w ten sposób 
macierz P9, która reprezentuje znacznie mniejszą liczbę współczynników (rys. 5).

Rys. 5. Wybór najbardziej istotnych kolumn macierzy regresji.
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Wybór kolumn Ps dokonywany jest na podstawie wartości stopy redukcji błędu 
[err] (error reduction ratio) [2, 4, 9, 25], Współczynnik [err], określa stopień 
zmniejszenia się energii błędu predykcji po uwzględnieniu współczynnika & 
reprezentowanego przez kolumnę p;. Z równania (4.5) możemy wyznaczyć sumę 
kwadratów (energię) odpowiedzi układu:

N
(y,y) = S + {e,e) (4.7)

1=1

gdzie: gi - wyrazy wektora g (4.2).
Redukcja błędu [err]i wprowadzana przez uwzględnienie kolumny w; może być 
zdefiniowana jako:

-=(4-8»

Algorytm optymalizacji realizowany w trakcie ortogonalizacji macierzy P 
przedstawiony jest schematycznie na rysunku 6.
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STOP

Rys. 6. Algorytm optymalizacji modelu NARMAX.

> - I - W pierwszym kroku dla wszystkich kolumn macierzy P wyznaczany jest 

[err]i, i = 1 .. M. Następnie wybierana jest kolumna pi( dla której wartość 
[err]i jest największa. Stanowi ona pierwszą kolumnę macierzy P8, Ms = 1.

> ► II - Dla każdej z pozostałych M - Ms kolumn p; po podstawieniu ich na 

koniec macierzy Ps jako kolumnę pms+i wyznaczany jest [err]i.

> - III - Wybierana jest kolumna p., dla której [err]i osiągnął wartość 

największą. Staje się ona nową kolumną macierzy P8, Ms zwiększane jest o 

jeden.
> - IV - Następuje sprawdzenie warunku zakończenia optymalizacji - jeśli nie 

został on spełniony następuje przejście do kroku II i wybór kolejnej 
kolumny, w przeciwnym wypadku przejście do kroku V.

> > V - Został utworzony optymalny model o Ms współczynnikach. Jego macierz

regresji Ps = WSAS jest ortogonalizowana i na podstawie (4.6) wyznaczane 

są współczynniki.
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4.3.3 Kryterium zakończenia procesu wyboru współczynników

Bardzo istotnym problemem jest ustalenie rozmiaru macierzy P8, czyli 
liczby współczynników 61 modelu. Istnieje kilka kryteriów zakończenia procesu 
optymalizacji [2, 28, 34].
Najprostsze z nich opierają się na analizie błędu predykcji e(t) i umożliwiają 
ocenę:
obłędu średniokwadratowego MSE (Mean Squared Error):

N
MSE = 4 S e2(*), (4.9)

k=l

>- odchylenia standardowego błędu predykcji:

I N
Oe = S e2(&), (4.10)

V 7e=l

>-lub też względnego błędu predykcji RPEL (Relatwe Prediction Error Level)\

N
S e2^

RPEL=^------ , (4.11)

S y™W 
k=i

gdzie: ym(t) - odpowiedź modelu na pobudzenie x(t).

Często wykorzystuje się także wyznaczone podczas optymalizacji wartości [err]i 
ponieważ określają one stopień redukcji błędu modelu. Wybór współczynników 
trwa więc tak długo, aż nie zostanie spełnione równanie:

Ms
1 < p, (4.12)

7=1

gdzie: p jest wybieraną arbitralnie wielkością (0<p<l), która 
określa dopuszczalny błąd modelu.

Kryterium (4.12) ma jednak pewną wadę. Przyjęcie zbyt dużej dokładności 
modelu (mała wartość p) może spowodować uwzględnienie bardzo wielu
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współczynników, a w sytuacji granicznej nawet wszystkich dostępnych (Ms = M). 
Wartość p powinna więc być dobierana z dużą starannością. Korzystne jest aby 

była ona większa i bardzo bliska stosunkowi o2!o2 [2] gdzie:

2 _ _Ł 
e “ N

N s 
k=l

e2(k) - wariancja błędu predykcji, (4.13)

N
a2 = 77 X y2(k) - wariancja odpowiedzi modelowanego układu. (4.14) 

£=1

O ile wartość u2 można wyznaczyć na podstawie danych pomiarowych, to 

wariancja błędu - a2 nie jest znana. Problem ten rozwiązuje się iteracyjnie. 
Początkowo zakłada się pewną wartość p, wyznacza model i oblicza przybliżoną 

wartość wariancji błędu predykcji. Na podstawie tak otrzymanej wartości a2 
wyznacza się optymalną wartość p i ponawia proces modelowania. Wykonując 
opisane powyżej czynności kilkakrotnie możliwe jest bardzo dokładne obliczenie 
zalecanej wartości p.

Wszystkie przedstawione powyżej kryteria mają zasadniczą wadę, która 
polega na tym, że związane są one tylko z błędem predykcji modelu. Zupełnie nie 
uwzględniają natomiast jego złożoności. Oba czynniki brane są pod uwagę w tzw. 
kryteriach informacyjnych [2, 9, 28, 29, 34]. Najczęściej stosowane z nich są FPE 
{Finał Prediction ErrorY 

FPE = N+Ms 2
N+Ms Ge ’ (4.15)

oraz AIC {Akaike Information Criterion):

AIC^) = Nlog + Ms(/> (4.16)

Kryteria informacyjne pozwalają uzyskać kompromis pomiędzy dokładnością 

modelu (uwzględnienie a2) oraz jego złożonością (uwzględnienie MA Wybór 
współczynników modelu, czyli tworzenie macierzy P8, przerywane jest po 
osiągnięciu przez te kryteria wartości minimalnej. Pozwala to na całkowitą 
automatyzację procesu optymalizacji. Nie ma potrzeby arbitralnego ustalania 
poziomu dokładności modelu p.
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Przy określaniu struktury modelu NARMAX stosowane jest najczęściej 
kryterium AIC [9, 28, 29], Jak widać we wzorze (4.16) występuje stała która 
określa poziom istotności modelu a. Jeśli będzie mniejsze,
prawdopodobieństwo wyboru zbyt dużej liczby współczynników rośnie. 
Najczęściej a przyjmuje się na poziomie 1 % lub 5 %. Dla poziomu istotności 
a = 5 % wartość = 3.841. Wybierana jest więc najbliższa liczba całkowita 0=4, 
dla której a = 4.56 %. [2, 28], Oczywiście możliwe jest przyjęcie większej 
wartości <f>, co zmniejsza prawdopodobieństwo utworzenia zbyt złożonego modelu, 
ale nie jest to zalecane ponieważ znacznie pogarsza się wtedy jego dokładność.

4.4 Tworzenie modeli wyższych rzędów

Ze względu na długą odpowiedź impulsową głośnika uzyskanie 
zadowalającej dokładności możliwe jest tylko poprzez zastosowanie odpowiednio 
wysokiego rzędu modelu (uwzględnienie próbek sygnałów z dużymi 
opóźnieniami). Pojawia się wtedy problem bardzo dużej liczby współczynników. 
Przykładowo uzyskanie modelu NARMAX rzędu ny = nx = 30 z nieliniowościami 
rzędu 1 = 3 prowadzi do konieczności ortogonalizacji macierzy złożonej z około 
50000 kolumn. Operowanie tak dużą ilością danych jest niezwykle trudne, 
macierz predykcji P zajmowałaby około 20 GB pamięci. Konieczne było więc 
opracowanie metody, która pozwoliłaby ominąć ten problem [35].

W tym celu wykorzystano fakt, że procedura optymalizacji pozwala 
wielokrotnie zmniejszyć liczbę współczynników. Model tworzony jest etapami, 
które przedstawione są na rysunku 7. Najpierw tworzony jest model 
niewielkiego rzędu o Mi (300 - 500) współczynnikach i przeprowadzana jest jego 
optymalizacja. W wyniku tego uzyskuje się model o kilkunastu, kilkudziesięciu 
współczynnikach, który następnie uzupełniany jest o kolejne Mi współczynników 
pochodzących ze zwiększenia rzędu modelu. Po kolejnej optymalizacji ponownie 
otrzymuje się kilkadziesiąt współczynników (niekoniecznie tych samych co w 
pierwszym etapie). Taka procedura powtarzana jest wielokrotnie, aż do chwili 
gdy przeanalizowane zostaną wszystkie współczynniki wynikające z założonego 
rzędu modelu.
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Rys. 7. Etapowe tworzenie modelu NARMAX wysokiego rzędu.

4.5 Kryterium oceny dokładności modelu

W celu porównania różnych modeli konieczne jest przyjęcie pewnego 
kryterium, które pozwoli na szybką i obiektywną ocenę ich dokładności. Możliwe 
jest stosowanie wielu miar określających dokładność modelu. Niektóre z nich 
przedstawione zostały w rozdziale 4.3.3 (4.9-4.11).
W dalszych pracach jako miarę dokładności przyjęto stosunek energii błędu 
predykcji odniesionej do energii odpowiedzi modelowanego układu.

Nf Nf

e = ------- • 100% = -------------100% (4.17)
Ś yW Ś y2(i)

k=\ 1=1

gdzie: y(k) - odpowiedź rzeczywistego głośnika na pobudzenie 
x(t),

ym(k) - odpowiedź modelu na pobudzenie x(t), 
e(k) - błąd predykcji,
Nf - liczba próbek sygnału użyta do testowania modelu.
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Przedstawiona miara dokładności określa względną różnicę pomiędzy 
odpowiedzią układu rzeczywistego, a odpowiedzią jego modelu. Pod tym 
względem jest ona bardzo podobna do miary RPEL (4.11) i dla małych wartości 
błędu predykcji obie miary będą dawały podobne wyniki. Jej zaletą jest to, że w 
przypadku dużej różnicy pomiędzy odpowiedzią modelu, a odpowiedzią układu, 
wartość s szybko rośnie, często przekraczając 100 %.

4.6 Testowanie metody NARMAX na modelach 

matematycznych

4.6.1 Model NARMAX bez optymalizacji

W pierwszym etapie testowania procedury tworzenia modelu NARMAX 
założono nieliniowy, idealny obiekt bez pamięci, którego właściwości 
transmitancyjne opisuje równanie o arbitralnie dobranych współczynnikach z 
nieliniowościami szóstego rzędu:

y(0 =1.0- +1.5- x~(t) -1.2- x30) - (4 18)

0.5 • xĄ^ + 0.01 -x5^ + 0.006 • x6(0

Sygnałem pobudzającym obiekt był generowany numerycznie szum biały o 
rozkładzie jednostajnym i wartości szczytowej ± 1.0.
Na podstawie wartości pobudzenia oraz odpowiedzi obiektu utworzono macierz 
predykcji P modelu NARMAX zakładając następujące parametry modelowania:

>- rząd nieliniowości -1 = 6,

rząd modelu - nx = ny = 0.

Po przeprowadzonej ortogonalizacji metodą CGS wyznaczono wartości 
współczynników modelu NARMAX. Jak się okazało uzyskane wartości 
współczynników były takie same jak założonego obiektu z dokładnością do 10 
cyfr znaczących.
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W następnym kroku założono idealny obiekt liniowy 5 rzędu z pamięcią o 
strukturze klasycznego filtru IIR z 8 współczynnikami także wybranymi 
arbitralnie:

y(t) = jc(O + O.5x(7- 1)- 0.3x(( - 2)- 0.1x(f-4) - 0.lx(/- 5) + 

0.6X?-D-0.5Xr-3) + 0.4X^-4)

Także tutaj po utworzeniu modelu z parametrami ny =4, nx =5, 1 = 1 uzyskano 
założone współczynniki z dokładnością powyżej 10 cyfr znaczących. 
Współczynniki, które nie występowały w przyjętym obiekcie (imały wartość 0) 
zostały przez algorytm wyznaczone na poziomie 10'20.

4.6.2 Testowanie procedury optymalizacji

Po pozytywnie zakończonych próbach tworzenia modelu NARMAX bez 
optymalizacji w podobny sposób zostało przetestowane działanie algorytmu 
optymalizacji modelu.

Przyjęto taki sam jak w punkcie 4.6.1 obiekt idealny liniowy 5 rzędu o 
strukturze filtru IIR (4.19). Model pobudzano generowanym numerycznie 
szumem białym o rozkładzie jednostajnym i wartości szczytowej ±1.0 Następnie 
algorytm wyznaczał współczynniki modelu przy różnej przyjętej jego dokładności 
p (4.12).
Parametry modelowania były następujące:

5^ rząd nieliniowości -1 = 1,

rząd modelu -ny =4, nx =5,

liczba wierszy macierzy P (liczba tworzonych równań) - N = 1024,

>■ liczba próbek sygnału do testowania dokładności modelu - Nf= 1024,

>► kryterium wyboru współczynników - error reduction ratio [err], 

kryterium zakończenia tworzenia modelu - p.

W tabeli 1 przedstawiony jest stopień redukcji błędu [err] jaki zapewnia 
uwzględnienie każdego ze współczynników.
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Tab. 1. Redukcja błędu [err]i wprowadzana do modelu przy uwzględnianiu 
kolejnych współczynników.

L.p.
Wartość 

współczynnika
Jednomian [err]i

1. 0.5 x(t-l) 0.4531

2. 1.0 x(t) 0.3722

3. -0.5 y(t-3) 0.1179

4. -0.3 x(t-2) 0.04353

5. 0.0 x(t-3) 0.00384

6. 0.4 y(t-4) 0.00686

7. -0.1 x(t-4) 0.002287

8. -0.1 x(t-5) 0.000178

9. 0.6 y(t-l) 0.000076

10. 0.0 y(t-2) 0.000001

Z zasady działania procedury optymalizacyjnej wynika, że jeśli zostanie założona 
mniejsza dokładność wyznaczenia modelu, algorytm uwzględni tylko kilka 
pierwszych współczynników z tabeli 1 o najwyższych wartościach [err],. I jest tak 
w rzeczywistości. Zakładając dokładność modelu p na poziomie kolejno 0%, 
0.05%, 0.5%, 1%, 2%, 10% uzyskano modele o coraz mniejszej liczbie 
współczynników. Tabela 2 przedstawia błąd modelu e oraz liczbę 
współczynników, natomiast rys. 8 zmianę wartości współczynników w zależności 
od przyjętej dokładności modelu.

Tab. 2. Liczba współczynników i uzyskany błąd modelowania w zależności
od założonej dokładności p.

p [%] 0 0.05 0.5 1 2 10

s[%] 4E-26 0.0492 0.426 1.25 1.759 6.362

liczba współczynników 10 8 6 5 4 3
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Rys. 8. Zmiana wartości współczynników przy zmniejszaniu dokładności 
modelu.

Jak można zauważyć odrzucenie podczas optymalizacji niektórych 
współczynników powoduje czasami nawet dość znaczną zmianę wartości 
pozostałych.
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5 Badania doświadczalne

5.1 Wybór głośników

Do eksperymentów zostało wybranych kilka typów głośników 
niskotonowych produkowanych przez firmę Tonsil S.A. Zdecydowano się na 
modelownie głośników niskotonowych, ponieważ są one źródłem największych 
zniekształceń nieliniowych w zestawach głośnikowych. Oprócz tego istotne było 
także to, że ich znamionowa moc elektryczna jest znana. Można więc badać 
zależność wielkości zniekształceń od poziomu pobudzenia przetwornika 
wyrażonego w procentach mocy znamionowej.
Obiektami badanymi, które wykorzystano do tworzenia opisywanych modeli 
były:

>■ głośnik GDN 20/40 w obudowie zamkniętej o objętości około 30 dm3, 

głośnik GDN 20/35/1 w obudowie zamkniętej o objętości około 40 dm3, 

głośnik GD 16/10 w obudowie zamkniętej ZgZ 10/8.

5.2 Układ pomiarowy

W celu zbudowania modelu NARMAX głośnika dynamicznego potrzebne 
są dane pomiarowe, czyli wartości pobudzenia - x(t) oraz odpowiedzi głośnika - 
y(t). Sygnałem wejściowym pobudzenia jest sygnał napięcia doprowadzonego do 
końcówek głośnika. Większym problemem jest wybór sygnału wyjściowego - 
odpowiedzi głośnika.
Badanie zniekształceń nieliniowych głośników dla małych częstotliwości 
przeprowadzane jest najczęściej poprzez analizę drgań jego membrany. Ponieważ 
stosowanie do tego celu akcelerometrów wprowadza duże błędy pomiarowe 
konieczne jest wykorzystanie metod bezstykowych. Powszechnie wykorzystuje 
się więc interferometrię laserową [14, 15], która wymaga specjalistycznego 
sprzętu. Oprócz tego poważną wadą tej metody jest pomiar wychylenia 
membrany tylko w jednym, ustalonym punkcie.
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Dużo lepszym rozwiązaniem jest pomiar ciśnienia akustycznego, które wytwarza 
głośnik. Istnieje ku temu kilka istotnych przesłanek:
>-ucho ludzkie percypuje ciśnienie fali akustycznej, wyjście modelu 

utworzonego na podstawie pomiaru ciśnienia odpowiada więc temu, co 
usłyszy słuchacz,

ciśnienie akustyczne w danym punkcie przestrzeni jest zależne od rozkładu 

wychyleń na całej powierzchni membrany oraz od wielu czynników 
dodatkowych, uwzględnionych zostaje więc dużo więcej elementów, które 
mogą wpłynąć na zniekształcenia,

>- pomiar ciśnienia jest prosty: można wykonać go dowolnym mikrofonem 

pomiarowym, nie ma potrzeby stosowania skomplikowanego i drogiego 
sprzętu.

Aby zapewnić powtarzalne warunki oraz zminimalizować wpływ 
czynników zewnętrznych pomiary wykonano w komorze bezpogłosowej Instytutu 
Telekomunikacji i Akustyki Politechniki Wrocławskiej. Na rysunku 9 
przedstawiony jest wykorzystany układ pomiarowy.

Głównym elementem układu jest komputer klasy PC zaopatrzony w 
specjalizowaną kartę przetworników cyfrowo-analogowych i analogowo- 
-cyfrowych DSP16+ firmy Ariel (USA). Karta ta umożliwia akwizycję sygnału w 
dwóch kanałach z rozdzielczością 16 bitów i częstotliwością próbkowania do 
50 kHz. Takimi samymi parametrami charakteryzuje się również przetwornik 
cyfrowo-analogowy. Umieszczony na karcie DSP16+ procesor sygnałowy Texas 
Instruments TMS320C25 pozwala na jednoczesną generację i akwizycję 
sygnałów, a także realizację w czasie rzeczywistym na przykład uśredniania 
sygnału. Wysoka jakość karty umożliwia uzyskanie dynamiki pomiaru 
przekraczającej 90 dB.
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Rys. 9. Układ pomiarowy.

Sygnał z wyjścia karty DSP16+ doprowadzany jest do wzmacniacza mocy 
LV102, który wzmacnia go do odpowiedniego poziomu. Poziom napięcia 
zasilającego głośnik kontrolowany jest przy pomocy woltomierza. Znając 
impedancję znamionową głośnika możliwe jest obliczenie doprowadzonej do 
niego mocy elektrycznej.
Odpowiedź głośnika rejestrowana jest na drodze akustycznej przez mikrofon 
pomiarowy i poddawana procesowi przetwarzania analogowo-cyfrowego. 
Odpowiedź uśredniona jest 100 razy, aby wyeliminować wpływ przypadkowych, 
nieskorelowanych zakłóceń i szumów.
Spróbkowane 16-bitowo wartości pobudzenia i odpowiedzi głośnika zapisywane 
są w plikach i na podstawie tych danych pomiarowych przeprowadzane jest 
modelowanie.

5.3 Rodzaj sygnału pomiarowego

Do modelowania układów liniowych wymagane są sygnały o szerokim i 
wyrównanym widmie. Pozwalają one na pobudzenie układu i określenie jego 
odpowiedzi dla każdej częstotliwości zawartej w paśmie użytecznym. Najczęściej 
wykorzystuje się więc następujące sygnały:
>-Chirp - szybko przestrajany przebieg sinusoidalny, częstotliwość może 

zmieniać się liniowo lub logarytmicznie,
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>^MLS (Maximum Length Seąuence) - przebieg pseudolosowy przyjmujący 

tylko dwie wartości +A i -A (A - amplituda sygnału), 
szum o rozkładzie gaussowskim - biały lub różowy.

Nieco inna sytuacja występuje w przypadku modeli nieliniowych. Nie 
wystarczy, aby sygnał pobudzający miał szerokie pasmo częstotliwości. Ze 
względu na nieliniowości wymagane jest także, aby występowały w nim 
wszystkie wartości z zakresu amplitud jakie występują na wejściu układu 
podczas jego pracy.

Często wykorzystywany w modelowaniu liniowym szum biały o 
rozkładzie gaussowskim najczęściej przyjmuje wartości w okolicy zera. Model 
NARMAK wyznaczony z wykorzystaniem takiego pobudzenia jest więc 
dokładniejszy dla małych wartości pobudzenia, w miarę wzrostu poziomu 
pobudzenia dokładność modelu ulega pogorszeniu. Dokładniejsza analiza 
problemu [6] pozwala na ustalenie, że najbardziej odpowiednim sygnałem 
wykorzystwanym do tworzenia modelu NARMAK jest szerokopasmowy szum 
biały o jednostajnym rozkładzie gęstości prawdopodobieństwa.

Ponieważ pomiary przetworników elektroakustycznych wykonuje się 
często z wykorzystaniem innych sygnałów postanowiono zbadać ich wpływ na 
dokładność modelu.
Dane do modelowania uzyskano pobudzając głośnik GDN 20/40 mocą 
elektryczną 30 W (75 % mocy znamionowej głośnika), aby wyeksponować jego 
nieliniowości.

Do badania wpływu rodzaju pobudzenia na tworzenie modelu NARMAK 
wykorzystano następujące sygnały:

szum biały o rozkładzie jednostajnym w przedziale ±10 V,

>► biały i różowy szum o rozkładzie gaussowskim,

impuls wykładniczy,

^MLS,

>*Chirp przestrajany liniowo.

Na rysunku 10 przedstawiono obliczone rozkłady gęstości prawdopodobieństwa 
dla wszystkich sygnałów wykorzystanych w eksperymencie. Wykresy 
przedstawiają procentowy udział każdej ze 100 klas na jakie został podzielony 
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zakres wartości chwilowych sygnałów. Na rysunku 11 znajdują się moduły 
widma sygnałów użytych w pomiarach.

Rys. 10
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wykorzystanych w eksperymencie: a) szum o rozkładzie 
jednostajnym, b) szum biały gaussowski, c) szum różowy 
gaussowski, d) impuls, e) MLS, f) Chirp.
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Rys. 11
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Rys. 11. Moduły widma sygnałów wykorzystanych w eksperymencie: a) szum 
o rozkładzie jednostajnym, b) szum biały gaussowski, c) szum 
różowy gaussowski, d) impuls, e) MLS, f) Chirp.
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Podczas tworzenia modelu NARMAX przyjęte zostały następujące 
parametry modelowania:
> *rząd nieliniowości -1=3,

> ~rząd modelu - nx = ny = 15,

liczba wierszy macierzy P - N = 450,

> ■ liczba próbek do testowania modelu -Nf = 8192,

>-kryterium wyboru współczynników - stopa redukcji błędu [err] określona 

wzorem (4.8),
kryterium zakończenia tworzenia modelu - AIC(4) (patrz wzór 4.16).

Wyniki modelowania zestawiono w tabeli 3. Przedstawiono tu liczbę 
współczynników oraz dokładność poszczególnych modeli. Utworzenie stabilnego 
modelu przy pobudzeniu sygnałem impulsowym oraz MLS jest trudne. 
Spowodowane jest to bardzo specyficznym charakterem pobudzenia. Jak widać 
na rys. 10 rozkłady amplitud obu tych sygnałów są bardzo niekorzystne.

Tab. 3. Wpływ rodzaju sygnału pobudzającego na uzyskane modele
NABMAX.

Sygnał pobudzający Ms f [%]

szum o rozkładzie jednostajnym 27 18.9

szum biały (gaussowski), 27 28.8

szum różowy (gaussowski), 23 44.2

impuls 38 58.5

MLS 12 5.9 -1023

Chirp 38 54.82

Na rysunku 12 przedstawiono odpowiedź modelu w stosunku do 
rzeczywistej odpowiedzi głośnika dla różnych sygnałów. Punkty na tym wykresie 
tworzone są na podstawie odpowiedzi rzeczywistego głośnika i modelu NARMAX 
na to samo pobudzenie. Dla każdej próbki pobudzenia tworzony jest punkt, 
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którego odcięta jest równa wartości próbki odpowiedzi głośnika, natomiast 
rzędna - wartości odpowiedzi modelu. Przedstawiona na wykresach linia prosta 
nachylona pod kątem 45 ° ilustruje sytuację idealną, gdy odpowiedź modelu jest 
identyczna z odpowiedzią rzeczywistego głośnika.
Wykresy te znakomicie ilustrują różnice między odpowiedziami obiektu 
rzeczywistego i modelu. W przypadku błędu modelu o charakterze losowym 
punkty są rozmieszczone w szerokim pasie wzdłuż linii odpowiadającej sytuacji 
idealnej (rys. 12b)). Jeśli punkty tworzą pas o nachyleniu mniejszym niż ta linia 
oznacza to, że model wprowadza kompresję - jest to widoczne na przykład na 
rys. 12c). Wykresy takie pomagają zinterpretować odpowiedź modelu na różne 
pobudzenia. Widoczna na rys. 12f) duża liczba punktów zgrupowana wzdłuż osi 
rzędnych (dla x = 0) oznacza, że model odpowiadał sygnałem o znacznej 
amplitudzie przy praktycznie zerowym pobudzeniu.

a)

Rys. 12
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b)

odpowiedź głośnika

odpowiedź głośnika

Rys. 12 (ciąg dalszy)
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d)

odpowiedź głośnika

Rys. 12 (ciąg dalszy)
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Rys. 12. Odpowiedź modelu w stosunku do rzeczywistej odpowiedzi głośnika:
a) szum o rozkładzie jednostajnym, b) szum biały gaussowski, c) 
szum różowy gaussowski, d) impuls, e) MLS, f) Chirp.

Przedstawione badania dowodzą, że bardzo istotną sprawą jest właściwy 
wybór sygnału pobudzającego. Do tworzenia modelu NARMAX najlepiej nadają 
się szumy białe. Uzyskany z ich pomocą model jest najbardziej dokładny. Nie 
należy stosować natomiast sygnału MLS ze względu na bardzo niekorzystny 
rozkład amplitudy pobudzenia (rys. 10), co uniemożliwia wyznaczenie stabilnego 
modelu. W utworzonym z wykorzystaniem tego sygnału modelu pojawiły się dwa 
współczynniki przy jednomianach x2(t-2)x(t-3) oraz x?(t-3), które miały wartości 
odpowiednio: 7.4905U78315164416.1010 i -7.4905U7831516992-1010.
Jak można zauważyć na rys. 12 model utworzony z wykorzystaniem szumu 
różowego cechuje się pewną kompresją tzn. odpowiedź modelu zasadniczo ma 
wartości mniejsze niż odpowiedź rzeczywistego głośnika.
Pobudzenie impulsowe nie pozwala natomiast zdefiniować poprawnie modelu dla 
wszystkich poziomów pobudzeń ponieważ tylko kilkanaście próbek przyjmuje 
wartości istotnie odbiegające od zera.
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5.4 Wpływ czynników zewnętrznych

Podczas pomiarów przetworników elektroakustycznych istotnym 
problemem jest wpływ sygnałów zakłócających na uzyskiwane rezultaty. 
Dlatego też zbadano jak zmienia się dokładność uzyskiwanych modeli w 
obecności zakłóceń. Przeanalizowano wpływ różnej rozdzielczości kwantowania 
analogowo-cyfrowego oraz szumu addytywnego [36].

Do eksperymentów wybrany został głośnik niskotonowy GDN 20/40 
umieszczony w obudowie zamkniętej. Do głośnika doprowadzono szum biały o 
rozkładzie jednostajnym i amplitudzie dobranej tak, aby głośnik pracował z 
mocą 20 W (50 % mocy znamionowej).
Uzyskaną z pomiarów odpowiedź głośnika potraktowano jako referencyjną 
(niezniekształconą) - yref(t). Następnie poddano ją modyfikacjom symulującym 
różnorodne błędy pomiarowe w ten sposób tworząc przebiegi yn(t). Modelowanie 
przeprowadzono wykorzystując wektor pobudzenia x(t) oraz zmodyfikowaną 
odpowiedź głośnika yn(t).

W celu określenia stopnia zaburzenia odpowiedzi głośnika yref(t) 
wywołanej modyfikacjami zdefiniowano stosunek sygnału do szumu (S/N)y 
przebiegu yn(t) (5.1). Jego mniejsza wartość oznacza większe zakłócenie 
oryginalnej odpowiedzi głośnika.

(S/N)y = 101Og( ) [dB] (5.1)
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We wszystkich symulacjach przyjęte zostały następujące parametry 
modelowania:
>rząd nieliniowości -1 = 3,

>-rząd modelu - nx = ny = 10,

>- liczba wierszy macierzy P - N = 450,

liczba próbek do testowania modelu - Nf = 8192,

kryterium wyboru współczynników - stopa redukcji błędu [err], 

kryterium zakończenia tworzenia modelu - AIC(4).

5.4.1 Rozdzielczość kwantowania procesu przetwarzania 
analogowo-cyfrowego

W pierwszej kolejności sprawdzono wpływ zmiany rozdzielczości 
kwantowania procesu przetwarzania analogowo-cyfrowego na dokładność 
uzyskanego modelu NARMAX. W tym celu referencyjną odpowiedź yref(t) 
poddano rekwantyzacji zmniejszając rozdzielczość próbek z 16 do 6 - 14 bitów 
(rys. 13).

rekwantyzacja

Rys. 13. Symulacja kwantowania odpowiedzi głośnika z różnymi 
rozdzielczościami.

Wyniki przedstawiające wpływ dokładności procesu przetwarzania analogowo- 
-cyfrowego przedstawia tabela 4. Na rysunku 14 zilustrowano zmiany wartości 
współczynników modelu spowodowane różną rozdzielczością kwantowania.
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(współczynniki zostały podzielone na dwie grupy a) i b) dla 
większej przejrzystości wykresu).
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Tab. 4. Wpływ dokładności procesu przetwarzania analogowo-cyfrowego na 
model NARMAX.

liczba bitów na 
próbkę

Ms (S/N)y [dB] H%]

16 14 - 14.2

14 14 64.5 14.2

12 15 53.1 14.2

11 15 47.2 14.8

10 14 41.2 13.9

9 18 35.1 14.2

8 19 29.1 14.1

7 12 23.1 15.0

6 16 17.2 18.2

Jak widać w tabeli 4 oraz na rysunku 14 zmiana rozdzielczości 
kwantowania nie wpływa znacząco na proces tworzenia modelu NARMAX. W 
zakresie rozdzielczości 10 - 16 bitów na próbkę powstaje niemalże taki sam 
model. Wartości współczynników oraz ich liczba prawie się nie zmienia. Pozwala 
to na stosowanie podczas pomiarów sprzętu o mniejszej rozdzielczości 
przetwarzania A/D np. 12 bitowego.

5.4.2 Zakłócający szum addytywny

Analizę wpływu addytywnego szumu zakłócającego na proces tworzenia 
modelu NARMAX zrealizowano poprzez modyfikację zmierzonej wzorcowo 
odpowiedzi głośnika yref(t). W układzie przedstawionym na rysunku 15 do 
niezniekształconej odpowiedzi yref(t) dodano generowany numerycznie szum biały 
o rozkładzie jednostajnym.
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n(t) szum

j -------/h------ > yn^
głośnik yref(t) <>

Rys. 15. Tworzenie zaszumionej odpowiedzi głośnika.

Wartość szczytową szumu zakłócającego n(t) ustalono w zakresie 0.5 - 100 % 
wartości szczytowej odpowiedzi głośnika yre/(t).

W tabeli 5 przedstawiono wpływ szumu zakłócającego na dokładność tworzonych 
modeli NARMAX. Jak widać, niewielki szum zakłócający (do 2 %) nie wpływa 
niekorzystnie na proces tworzenia modelu, natomiast większe zakłócenia 
powodują tworzenie błędnych modeli.

Tab. 5. Wpływ szumu zakłócającego na model NARMAX głośnika
dynamicznego.

względny poziom szumu 
max(M(Q) . „ _ |-0 . , 

max(yreX0) * 100 L/oJ
Ms (S/N)y [dB] s[%]

0 14 - 14.2

0.5 16 35.3 14.5

1 16 35.1 14.3

2 15 29.2 13.1

5 14 27.1 15.9

10 11 15.1 19.8

20 10 9.1 26.5

50 10 1.14 61.4

100 8 -4.82 88.3
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Na rysunku 16 przedstawiona jest zmiana wartości współczynników modelu 
NARMAX w zależności od poziomu szumu zakłócającego. Gdy wartość szczytowa 
szumu zakłócającego nie przekracza 2 % wartości szczytowej odpowiedzi głośnika 
zmiana współczynników jest niewielka. Dla większych poziomów zakłóceń 
niektóre ze współczynników zanikają, pojawiają się nowe o dość przypadkowych
wartościach.
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Rys. 16. Zmiana wartości współczynników modelu NARMAX w zależności od 
poziomu szumu zakłócającego (współczynniki zostały podzielone 
na dwie grupy a) i b) dla większej przejrzystości wykresu).
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Na rysunku 17 przedstawiono wykres odpowiedzi modelu w stosunku do 
zaszumionej odpowiedzi głośnika yn(t) dla różnych poziomów szumu 
zakłócającego. W miarę wzrostu zakłóceń odpowiedź modelu coraz bardziej 
odbiega od odpowiedzi głośnika i staje się losowa.

b)

odpowiedź głośnika

Rys. 17
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d)

odpowiedź głośnika

Rys. 17 (ciąg dalszy)



61

Rys. 17. Odpowiedź modelu w stosunku do zaszumionej odpowiedzi głośnika 
yn(t) dla różnych poziomów szumu zakłócającego: a) - 1%, b) - 5%, 
c) - 20%, d) - 50%, e) - 100%.

Z przedstawionych symulacji wynika, że wpływ szumu zakłócającego na 
uzyskane modele NARMAX jest wyraźny. Zauważyć można bardzo duże zmiany 
wartości współczynników przy różnych poziomach zakłóceń.

5.5 Model głośnika dynamicznego bez optymalizacji

Po dokonaniu wyboru sygnału pobudzającego oraz zbadaniu wpływu 
zakłóceń na tworzone modele przeprowadzono próby budowania modeli 
NARMAX o różnej strukturze. W celu oceny zastosowanej w późniejszym etapie 
procedury optymalizacyjnej proces modelowania realizowany był początkowo bez 
optymalizacji.

Dane pomiarowe do modelowania uzyskano pobudzając głośnik 
GDN 20/40 szumem białym o rozkładzie jednostajnym. Poziom sygnału dobrano 
w ten sposób aby głośnik pracował z mocą 10 W. Odpowiada to 25 % jego mocy 
znamionowej. Wybór niewielkiego poziomu podyktowany był chęcią uzyskania w 
miarę liniowej pracy przetwornika. Pozwoliło to na uniknięcie zbyt dużej 
komplikacji modelu, co na wstępnym etapie prac było dość istotne.
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Na podstawie wartości wektorów pobudzenia x(t) i odpowiedzi y(t) uzyskanych z 
pomiarów zbudowano 8 modeli NARMAK głośnika dynamicznego [12, 13].
Do eksperymentów założono następujące struktury:

A. model liniowy o strukturze filtru FIR rzędu 50 {1=1, nx = 50, ny = 0),

B. model liniowy o strukturze filtru FIR rzędu 200 {1=1, nx = 200, ny = 0),
C. model liniowy o strukturze filtru IIR rzędu 20 {1=1, nx = 20, ny = 20),

D. model liniowy o strukturze filtru IIR rzędu 40 {1=1, nx = 40, ny = 40),

E. model nieliniowy rzędu 9 zależny tylko od x(t) {1=3, nx = 9, ny = 0),

F. model nieliniowy rzędu 13 zależny tylko od x(t) {1=3, nx = 13, ny = 0),

G. model nieliniowy rzędu 4 zależny od x(t) i y(t) {1=3, nx = 4, ny = 4),

H. model nieliniowy rzędu 7 zależny od x(t) i y(t) {1=3, nx = 7, ny = 7).

Do tworzenia modeli wykorzystano pierwszych 700 próbek sygnałów 
pomiarowych, tzn. liczba wierszy macierzy P była równa N = 700. Weryfikację i 
wyznaczenie błędu £ przeprowadzono z wykorzystaniem Nf = 8192 próbek.

Wyniki modelowania zestawione są w tabeli 6. Brak wartości £ w tabeli 
oznacza, że utworzony model był niestabilny.

Tab. 6. Porównanie dokładności modeli NARMAX o różnej strukturze.

Model Struktura modelu 8 [%]
liczba 

współczynników

A 1=1, nx = 50, ny = 0 2.99 51

B 1=1, nx = 200, ny = 0 1.22 201

C 1=1, nx = 20, ny = 20 507.6 41

D 1=1, nx = 40, ny = 40 - 81

E 1=3, nx = 9, ny = 0 57.8 220

F 1=3, nx = 13, ny = 0 49.5 560

G 1=3, nx = 4, ny = 4 - 165

H 1=3, nx = 7, ny = 7 - 680
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Nieliniowe modele G i H wykorzystujące oprócz wartości wektorów pobudzenia 
x(t) także próbki odpowiedzi y(t) są niestabilne. Podobna sytuacja występuje 
także dla liniowego modelu D o strukturze filtru IIR rzędu 40.
Największą dokładność wykazują modele najwyższych rzędów (A i B), co 
wskazuje na konieczność uwzględniania dużej liczby współczynników podczas 
modelowania głośnika dynamicznego.

Dzięki utworzeniu modeli liniowych o strukturze filtru FIR możliwe było 
porównanie wyznaczonych współczynników ze zmierzoną odpowiedzią 
impulsową modelowanego, rzeczywistego głośnika - h(t). Współczynniki modelu 
B oraz odpowiedź impulsowa głośnika przedstawione są na rysunku 18. Oprócz 
samego początku odpowiedzi (dla czasów do około 1 ms) uzyskano dużą zgodność 
wartości współczynników.
Na rysunku 19 porównano charakterystyki częstotliwościowe modelu i 
rzeczywistego głośnika. Mają one podobny przebieg, jednak charakterystyka 
modelu wykazuje znacznie większe nierównomiemości.

Rys. 18. Odpowiedź impulsowa głośnika (linia przerywana) oraz wyznaczone 
współczynniki modelu B (linia ciągła).
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Rys. 19. Charakterystyka częstotliwościowa głośnika rzeczywistego (linia
przerywana) i modelu B (linia ciągła).

Konieczność stosowania odpowiednio wysokiego rzędu modelu, czyli 
uwzględnienia długiej historii układu prezentuje rysunek nr 20. Przedstawiona 
jest tam odpowiedź modelu w stosunku do odpowiedzi głośnika dla dwu różnych 
przypadków: modelu liniowego rzędu 200 (B) oraz modelu nieliniowego rzędu 13 
(F). Mimo znacznie większej liczby współczynników modelu F jego odpowiedź 
znacznie odbiega od odpowiedzi głośnika.
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a)

Rys. 20. Odpowiedź modelu w stosunku do odpowiedzi rzeczywistego 
głośnika: a) model liniowy rzędu 200 o strukturze filtru FIR, b) 
model nieliniowy rzędu 13 zależny tylko od x(t).

Przeprowadzone próby udowodniły, że konieczne jest stosowanie procedury 
optymalizującej model. Bez niej liczba współczynników jest zbyt duża i nie jest 
możliwe uzyskanie odpowiednio wysokiego rzędu modelu. Drugim nie mniej 
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istotnym problemem jest niestabilność modeli NARMAK tworzonych na 
podstawie próbek pobudzenia x(t) i odpowiedzi układny^.

5.6 Optymalizowany model głośnika dynamicznego

Do procesu modelowania wykorzystano sygnały uzyskane z pomiarów 
przedstawionych w punkcie 5.5. Przyjęto takie same parametry modelowania 
oraz takie same struktury modeli. Jedyną różnicą było zastosowanie opisanej w 
punkcie 4.3 procedury optymalizacyjnej. Uzyskane wyniki przedstawia tabela 7. 
Dla większej czytelności w tabeli tej umieszczono także wyniki dla modeli bez 
optymalizacji z tabeli 6.

Tab. 7. Porównanie dokładności modeli NARMAK o różnej strukturze z 
wyłączoną i włączoną procedurą optymalizacji.

Model Struktura modelu

bez optymalizacji z optymalizacją

s[%]
liczba 

współcz.
e [%]

liczba 
współcz.

A 1=1, nx = 50, ny = 0 2.99 51 2.62 40

B 1=1, nx = 200, ny = 0 1.22 201 1.59 46

C 1=1, nx = 20, ny = 20 507.6 41 3.52 21

D 1=1, nx = 40, ny = 40 - 81 2.47 28

E 1=3, nx = 9, ny = 0 57.8 220 29.27 9

F 1=3, nx = 13, ny = 0 49.5 560 10.69 13

G 1=3, nx = 4, ny = 4 - 165 21.59 10

H 1=3, nx = 7, ny = 7 - 680 7.85 17

W procesie optymalizacji udało się znacznie zmniejszyć liczbę 
współczynników na skutek odrzucenia tych, które nie są istotne. Oprócz poprawy 
dokładności modeli zapewniło to także ich stabilność [12, 13].
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Na rysunku 21 przedstawiono odpowiedź impulsową głośnika oraz 
modelu H. Zbyt krótka odpowiedź modelu spowodowana jest jego niewielkim 
rzędem (nx = 7, ny = 7). Pozytywnym elementem jest fakt bardzo dokładnego 
zamodelowania początkowej części odpowiedzi impulsowej (do 1.5 ms). Niestety 
przyjęcie wyższych rzędów modelu powoduje poważne problemy obliczeniowe 
spowodowane dużym zbiorem współczynników (metoda rozwiązania tego 
problemu przedstawiona została w punkcie 4.4). Na rysunku 22 zaprezentowane 
zostały charakterystyki częstotliwościowe głośnika oraz modelu. Duża zgodność 
charakterystyk występuje dla częstotliwości powyżej 500 Hz ponieważ w tym 
paśmie odpowiedź impulsowa głośnika jest stosunkowo krótka. Dla 
częstotliwości mniejszych charakterystyki zdecydowanie się różnią.

Rys. 21. Odpowiedź impulsowa głośnika (linia przerywana) oraz
optymalizowanego nieliniowego modelu H (linia ciągła).
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Rys. 22. Charakterystyka częstotliwościowa głośnika rzeczywistego (linia 
przerywana) i optymalizowanego nieliniowego modelu H (linia 
ciągła).

Na rysunku 23 przedstawione są przykładowe przebiegi sygnału na wyjściu 
modelu H oraz zmierzona odpowiedź głośnika na to samo pobudzenie. 
Porównanie tych przebiegów czasowych ujawnia skłonność modelu do 
zmniejszania wartości chwilowych sygnału.

Rys. 23. Przykładowe przebiegi sygnałów na wyjściu głośnika (linia 
przerywana) i na wyjściu modelu H (linia ciągła).
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W tabeli 8 umieszczone zostały współczynniki modelu H oraz 
odpowiadająca każdemu z nich stopa redukcji błędu - [err] (zdefiniowana 
wzorem 4.8). Współczynniki ułożone są w kolejności malejącej wartości [err]. 
Oznacza to, że największy wpływ na dokładność modelu mają współczynniki w 
pierwszych wierszach tabeli i dlatego też wybierane są przez procedurę 
optymalizacji na początku. Największą wartość [err] mają współczynniki liniowe 
ponieważ ze względu na mały poziom pobudzenia nieliniowości badanego 
głośnika dynamicznego były niewielkie.

Tab. 8. Redukcja błędu - [err], jaką zapewnia uwzględnienie każdego ze 
współczynników modelu H.

jednomian [err] wartość współczynnika

y(t-D 0.81371 2.2954

y(t-2) 0.15532 -1.9508

y(t-3) 0.016157 0.85256

x(t-l) 0.008291 -0.011176

x(t-3) 0.002087 0.00579

y(t-5) 0.001054 0.28115

x(t-O) 0.000676 -0.00296

x(t-4) 0.000674 0.007299

x(t-5) 0.000375 0.006146

x(t-7) 0.000125 -0.001667

x(t-2) 0.000094 -0.002661

y(t-4) 0.000052 -0.46022

y(t-7) 0.000049 -0.044058

x(t-6) y(t-l) 0.000037 0.0011

x(t-2) y(t-2) y(t-7) 0.000032 0.001393
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x(t-5) x(t-7) y(t-5) 0.00002 -0.000177

y(t-l) y(t-4) y(t-7) 0.000015 0.008793

5.6.1 Kryterium zakończenia optymalizacji

W celu zobrazowania jak uzależniona jest dokładność modelu od liczby 
współczynników zbudowano grupę modeli. Wszystkie modele utworzono na 
podstawie sygnałów uzyskanych przez pobudzenie głośnika GDN 20/35/1 
szumem białym o rozkładzie jednostajnym. Poziom sygnału dobrano w ten 
sposób aby głośnik pracował z mocą 28 W (2/3 mocy znamionowej).
Wszystkie modele w grupie utworzono przy tych samych, następujących 
parametrach:
>-rząd nieliniowości -1 = 3,

>rząd modelu - nx = ny = 16,

>- liczba wierszy macierzy P - N = 700,

liczba próbek do testowania modelu - Nf= 8192,

kryterium wyboru współczynników - stopa redukcji błędu [err], 

kryterium zakończenia tworzenia modelu - p.

Badano wpływ zmiany wartości dopuszczalnego błędu modelu - p (4.12). 
Uzyskano w ten sposób modele o różnej liczbie współczynników. Przeprowadzono 
także modelowanie z kryterium zakończenia wykorzystującym AIC(4), aby 
zaobserwować kiedy proces wyboru współczynników zostanie przerwany. W 
tabeli 9 oraz na rysunku 24 przedstawione są wyniki modelowania. Na rysunku 
zaznaczono także liczbę współczynników, które zostaną wybrane przy 
zastosowaniu kryterium AIC(4).
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Tab. 9. Zależność błędu modelowania od liczby współczynników modelu 
NARMAX głośnika GDN 20/35/1.

pm Liczba współczynników 
Ms

e [%]

2 7 44.56

1 9 24.14

0.7 11 15.22

0.6 13 13.41

0.5 15 14.53

0.45 16 17.26

0.4 18 17.39

0.37 20 14.33

0.35 21 17.63

0.33 24 15.19

0.3 27 13.51

0.28 28 13.19

AIC(4) 29 11.27

0.26 32 12.6

0.25 34 12.77
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Rys. 24. Zależność błędu modelowania od liczby współczynników modelu 
NARMAX głośnika GDN 20/35/1

Dla tych samych parametrów modelowania przeprowadzono także symulacje dla 
głośnika GDN 16/10 (punkt 5.1) pobudzanego sygnałem o mocy 10 W. Wyniki 
przedstawione są w tabeli 10 oraz na rysunku 25.

Tab. 10. Zależność błędu modelowania od liczby współczynników modelu 
NABMAX głośnika GDN 16/10.

p[%]
Liczba współczynników 

Ms
e [%]

5 5 16.8

4 7 15.7

3 10 13.1

2 13 14.3

1.8 15 11.56

1.5 18 11.1

1.3 20 12.37
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1 22 7.4

0.9 24 9.73

0.8 26 6.81

0.6 27 8.18

0.55 28 6.13

0.5 29 6.15

0.45 31 6.82

0.4 34 8.45

AIC(4) 36 9.99

0.33 41 11.22

0.31 45 11.37

0.3 46 11.01

0.28 49 15

Rys. 25. Zależność błędu modelowania od liczby współczynników modelu 
NARMAX głośnika GDN 16/10.
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Uzyskane wyniki pokazują, że tworzone modele NARMAX są mało dokładne nie 
tylko wtedy gdy liczba współczynników jest zbyt mała, ale także wtedy gdy jest 
ona za duża. Powstanie optymalnego modelu uzależnione jest więc od przyjęcia 
właściwego kryterium zakończenia procesu jego tworzenia. W przypadku 
głośnika GDN 20/35/1 kryterium AIC(4) pozwoliło na uzyskanie modelu o 
najmniejszym błędzie. Dla głośnika GDN 16/10 bardziej korzystne byłoby 
wybranie mniejszej liczby współczynników - 28 zamiast 36.

5.7 Modele wysokiego rzędu

Zgodnie z algorytmem przedstawionym w punkcie 4.4 wyznaczone 
zostały modele NARMAX wysokiego rzędu kilku głośników dynamicznych. 
Przyjęte zostały następujące parametry modelowania:
J^rząd nieliniowości -1 = 3,

rząd modelu - nx = ny = 35,

liczba wierszy macierzy P - N = 500,

> ► liczba współczynników wyznaczanych w jednym etapie - Mi = 350,

> > liczba próbek do testowania modelu -Nf = 8192, 

kryterium wyboru współczynników - stopa redukcji błędu [err],

> -kryterium zakończenia tworzenia modelu - AIC(4).

W tabeli 11 przedstawione są ogólne wyniki modelowania, a w 
załączniku A znajdują się wartości współczynników prezentowanych modeli. Na 
szczególną uwagę zasługuje fakt występowania w wyznaczonych modelach dużej 
liczby jednomianów trzeciego stopnia. Oznacza to, że dominujące w głośniku 
dynamicznym są nieliniowości trzeciego rzędu, co pozostaje w zgodzie z fizyczną 
naturą tych nieliniowości. Główne źródła zniekształceń nieliniowych w głośniku, 
czyli nierównomierny rozkład pola magnetycznego w szczelinie oraz nieliniowa 
sztywność zawieszeń zależne od wychylenia generują właśnie zniekształcenia 
trzeciego rzędu.
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Tab. 11. Błąd modeli NARMAX wysokiego rzędu kilku głośników
dynamicznych.

Typ głośnika
Moc elektryczna 
pobudzenia [W]

Liczba 
współczynników

e [%]

GDN 16/10 10 42 8.1

GDN 20/40 20 50 10.7

GDN 20/40 30 53 17.1

GDN 20/40 40 43 13.8

GDN 20/35/1 28 51 15.9

Modele NARMAX dla głośnika GDN 20/40 tworzone były na podstawie 
danych pomiarowych uzyskanych w różnym czasie i w różnych warunkach. 
Różnice dotyczyły przede wszystkim odległości mikrofonu od głośnika oraz 
częstotliwości próbkowania sygnału. Dlatego też przy niewielkiej różnicy w 
poziomie sygnału pobudzającego otrzymano różniące się od siebie modele.

5.7.1 Zachowanie modelu NARMAX głośnika dynamicznego 
przy różnych poziomach sygnału

Ponieważ głośnik dynamiczny jest elementem nieliniowym jego 
charakterystyki uzależnione są od poziomu sygnału pobudzającego. Tworzenie 
modeli liniowych jest więc bardzo utrudnione - są one dokładne tylko dla 
wąskiego zakresu poziomów pobudzenia. Model NARMAX pozwala na 
zamodelowanie nieliniowości układu, powinien więc charakteryzować się taką 
samą dokładnością w całym zakresie stosowanych poziomów sygnału 
pobudzającego.
W celu sprawdzenia powyższego faktu zebrano odpowiedzi głośnika GDN 20/40 
na pobudzenie szumem białym o poziomach dobranych tak, aby pracował on z 
mocami od 1 W do 40 W. Następnie na podstawie przebiegu pobudzenia i 
odpowiedzi przy mocy 40 W utworzono model NARMAX głośnika. Rząd 
nieliniowości modelu ograniczono do Z = 5 natomiast rząd modelu był równy 
nx = ny = 30. W wyniku modelowania i przeanalizowania M = 41663 
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współczynników uzyskano model o Ms = 43 współczynnikach (wartości 
współczynników modelu w załączniku A).
Powstały model NARMAX pobudzano następnie sygnałami o różnych poziomach 
(tymi samymi, które pobudzały modelowany głośnik) i porównywano jego 
odpowiedź z odpowiedzią głośnika. Wyniki eksperymentu przedstawione są w 
tabeli 12.

Tab. 12. Dokładność modelu NARMAX utworzonego na podstawie pobudzenia 
o mocy 40 W w zależności od poziomu sygnału.

Moc elektryczna pobudzenia [W] e [%]

1 15.8

5 15.2

10 14.7

20 14.2

30 13.8

40 13.8

Najmniejszym błędem charakteryzuje się model NARMAK przy pobudzeniu 
40 W, ponieważ dla tego poziomu został wyznaczony. Jednak wraz ze 
zmniejszaniem poziomu sygnału błąd modelu wzrasta nieznacznie osiągając 
wartość 15.8 % dla pobudzenia sygnałem o mocy 1 W. Właściwości tej nie mają 
modele liniowe.
Na rys. 26 przedstawiona jest odpowiedź modelu w stosunku do odpowiedzi 
głośnika dla dwu różnych poziomów pobudzenia: 1 W i 40W.
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Rys. 26. Odpowiedź modelu w stosunku do odpowiedzi głośnika dla różnych 
mocy sygnału pobudzającego: a) 1 W, b) 40 W.

Przy pobudzaniu sygnałem odpowiadającym mocy 1 W model charakteryzuje się 
pewną kompresją. Mimo mniejszego rozrzutu wartości odpowiedzi modelu 
powoduje to, że błąd modelowania jest podobny jak przy mocy 40 W.
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5.8 Porównanie charakterystyk modelu NARMAX z 

charakterystykami głośnika rzeczywistego

Oprócz przyjętego w punkcie 4.5 kryterium oceny dokładności modelu 
porównane zostały także niektóre parametry i charakterystyki stosowane 
powszechnie do opisu właściwości głośników dynamicznych.

5.8.1 Właściwości liniowe

Na rysunku 27 przedstawiono odpowiedź impulsową głośnika GDN16/10 
(pobudzenie mocą 10 W) oraz obliczoną odpowiedź impulsową jego modelu 
(przedstawionego w punkcie 5.7). W początkowym zakresie obie odpowiedzi są 
identyczne. Zasadnicze różnice pojawiają się dla czasów większych niż 1 ms. 
Związane jest to przede wszystkim z małym rzędem modelu, w tym przypadku 
TlX = ny = 30.

Rys. 27. Odpowiedź impulsowa modelu (linia ciągła) oraz rzeczywistego 
głośnika (linia przerywana).

Na rys. 28 przedstawione są charakterystyki częstotliwościowe głośnika 
oraz modelu. Kształt obu charakterystyk jest bardzo podobny, szczególnie w 
zakresie częstotliwości powyżej 1kHz. Charakterystyka modelu jest jednak dużo 
bardziej nieregularna, co związane jest także z niewielkim rzędem modelu.
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Rys. 28. Charakterystyka częstotliwościowa modelu NARMAX (linia ciągła) 
oraz rzeczywistego głośnika (linia przerywana).

5.8.2 Właściwości nieliniowe

Porównując odpowiedzi impulsowe oraz charakterystyki 
częstotliwościowe można ocenić jedynie właściwości liniowe modelu. Aby 
zaobserwować jak utworzony model radzi sobie z nieliniowościami wykorzystano 
parametr stosowany najczęściej do oceny zniekształceń nieliniowych - 
współczynnik zawartości harmonicznych THD. Aby uzyskać potrzebne do jego 
wyznaczenia dane na wejście głośnika podawano przebiegi sinusoidalne o 
różnych częstotliwościach, a następnie przeprowadzano analizę widmową 
odpowiedzi głośnika odczytując poziomy poszczególnych harmonicznych. Te same 
sygnały pobudzające podawano także na wejście modelu i analizowano jego 
odpowiedź.

W eksperymencie wykorzystano dwa głośniki: GDN 20/35/1 pobudzany 
sygnałem o mocy 28 W oraz GDN 20/40 pobudzany mocą 20 W.

Na rys. 29 przedstawione jest przykładowe widmo odpowiedzi głośników 
oraz modeli przy pobudzeniu sygnałem sinusoidalnym o częstotliwości 500 Hz. 
Widma na rysunkach są nieco przesunięte względem siebie na osi częstotliwości 
dla lepszej czytelności.
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Rys. 29. Widmo odpowiedzi głośnika (linia przerywana) i modelu NARMAX 
(linia ciągła) na pobudzenie sygnałem sinusoidalnym o 
częstotliwości 300 Hz: a) głośnik GDN 20/35/1, b) głośnik 
GDN 20/40.

W widmie odpowiedzi modelu głośnika GDN 20/35/1 nie występują 
składowe powyżej trzeciej harmonicznej. Natomiast w przypadku modelu 
głośnika GDN 20/40 dominujące są harmoniczne nieparzyste - przede wszystkim 
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trzecia. Zwraca uwagę również występowanie dużej piątej harmonicznej, mimo 
ograniczenia rzędu nieliniowości do wartości 1-3. Związane jest to z zawartymi 
w nieliniowych jednomianach modelu NARMAX próbkami odpowiedzi y(t). Przy 
modelowaniu szeregiem Volterry sytuacja taka nie byłaby możliwa.

Na podstawie pierwszych kilku harmonicznych (do piątej włącznie), 
zgodnie ze wzorem (5.2), obliczono współczynnik zawartości harmonicznych THD 
(w dB).

5
L thd = 10 log(S 1O1'710) - L i [dB] (5.2)

z=2

Wyniki dla głośnika GDN 20/35/1 zamieszczone są w tabeli 13, natomiast dla 
głośnika GDN 20/40 w tabeli 14.

Tab. 13. Współczynnik zawartości harmonicznych odpowiedzi rzeczywistego 
głośnika (GDN 20/35/1) oraz modelu.

Częstotliwość [Hz] THD głośnik [dB] THD model [dB]

100 -21.9 -39.1

150 -25.9 -48.2

200 -25.5 -33.2

300 -28.9 -35.1

500 -30.7 -35.6

700 -38.5 -44.0

1000 -37.8 -49.3

2000 -33.1 -51.8

4000 -49.5 -73.6
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Tab. 14. Współczynnik zawartości harmonicznych odpowiedzi rzeczywistego
głośnika (GDN 20/40) oraz modelu.

Częstotliwość [Hz] THD głośnik [dB] THD model [dB]

100 -22.7 -14.6

200 -22.2 -21.4

500 -34.8 -24.5

800 -34.2 -21.1

1000 -34.8 -25.6

2000 -40.1 -36.9

4000 -44.9 -41.3

W przypadku głośnika GDN 20/35/1 odpowiedź modelu charakteryzuje 
się mniejszymi zniekształceniami nieliniowymi. Wynika to z zaniżonych 
poziomów drugiej i trzeciej harmonicznej oraz braku w odpowiedzi modelu 
harmonicznych powyżej trzeciej.

Całkowicie odmienna sytuacja ma miejsce w przypadku głośnika 
GDN 20/40. THD jego modelu ma wartości większe niż głośnik rzeczywisty. 
Spowodowane jest to bardzo dużym poziomem trzeciej i piątej harmonicznej 
natomiast harmoniczne parzyste praktycznie nie powstają. Związane jest to z 
brakiem w modelu wyrazów związanych z jednomianami w potędze 2 i dużą 
liczbą jednomianów w potędze 3 (model A.2 w załączniku A).
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Rys. 30. Przebieg czasowy na wyjściu głośnika GDN 20/40 (linia przerywana) 
oraz jego modelu NABMAX (linia ciągła) przy pobudzeniu tonem o 
częstotliwości 500 Hz.

Na rys. 30 przedstawiony został przykładowy przebieg czasowy sygnału na 
wyjściu rzeczywistego głośnika oraz modelu przy pobudzeniu sygnałem 
sinusoidalnym o częstotliwości 500 Hz. Znaczne zniekształcenie przebiegu na 
wyjściu modelu spowodowane są bardzo dużym poziomem trzeciej harmonicznej.

Badając właściwości nieliniowe głośników wyznaczono także 
zniekształcenia intermodulacyjne. W tym celu na głośnik GDN 16/10 podano 
sygnał będący sumą dwu przebiegów sinusoidalnych o częstotliwościach fi = 200 
Hz x fu - 2 kHz i stosunku amplitud odpowiednio 4:1 [32]. Na skutek 
nieliniowości głośnika powstały zniekształcenia harmoniczne oraz 
intermodulacyjne.
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Rys. 31. Moduł widma odpowiedzi głośnika (linia przerywana) oraz modelu 
NARMAX (linia ciągła) na pobudzenie sumą przebiegów 
sinusoidalnych o częstotliwościach 200 Hz i 2 kHz.

Następnie wykonano analizę widmową odpowiedzi głośnika (rys. 31) i 
wyznaczono zniekształcenia intermodulacyjne drugiego i trzeciego rzędu [32] 
wykorzystując wzory odpowiednio (5.3) i (5.4).

rf2=^^^100[%]
(5.3)

U = 20 log^} [dB]

d3=100
''2 (5.4)

U = 20 log(y^ [dB]

gdzie: p(fx) - ciśnienie akustyczne wytwarzane przez głośnik dla 
częstotliwości fx,

d2, d3 - zniekształcenia intermodulacyjne odpowiednio 
drugiego i trzeciego rzędu wyrażone w %,
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Ld2, Lds - zniekształcenia intermodulacyjne odpowiednio 
drugiego i trzeciego rzędu wyrażone w dB.

Operację wyznaczania zniekształceń intermodulacyjnych 
przeprowadzono także dla odpowiedzi modelu NARMAX. W tabeli 15 
przedstawione są obliczone wartości zniekształceń.

Tab. 15. Zniekształcenia intermodulacyjne drugiego i trzeciego rzędu głośnika 
dynamicznego oraz jego modelu.

głośnik rzeczywisty model NARMAX

d2 3.00 % 1.14 %

ds 2.77 % 0.41 %

Ld2 -30.5 dB -38.9 dB

Ld3 -31.2 dB -47.8 dB

Utworzony model NAJRMAX cechuje się mniejszymi zniekształceniami 
intennodulacyjnymi niż głośnik rzeczywisty.
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6 Wnioski

Wynikiem realizacji pracy jest zaimplementowanie metody NARMAX do 
modelowania nieliniowości głośników dynamicznych. Charakterystycznymi 
cechami, które odróżniają opracowany algorytm od innych, przedstawionych w 
nielicznych publikacjach są:
^zbudowanie modelu na podstawie danych pomiarowych, w których jako 

odpowiedź głośnika zostało przyjęte wytwarzane przez niego ciśnienie 
akustyczne,

modelowanie nieliniowości głośnika dynamicznego w całym paśmie 

częstotliwości jego pracy.
Ze względu na stosunkowo długą odpowiedź impulsową głośnika 

dynamicznego konieczne jest stosowanie modeli NARMAX wysokiego rzędu 
(duże wartości rzędu sygnału wejściowego - nx i wyjściowego - nyY W tej sytuacji 
reprezentacja wielomianowa modelu charakteryzuje się dużą liczbą 
współczynników. Stwarza to znaczne problemy obliczeniowe oraz 
interpretacyjne. Dodatkowo utworzone w ten sposób modele NARMAX mogą być 
niestabilne. W tej sytuacji konieczne było wprowadzenie procedury 
optymalizującej modele. Po jej zastosowaniu znacznie zmniejszyła się liczba 
współczynników, a jednocześnie uzyskano stabilność modeli.

Ze względu na konieczność optymalizacji modeli złożonych często z ponad 
50 000 i więcej współczynników opracowano efektywny algorytm optymalizacji 
etapowej. Bez niego utworzenie modeli wysokiego rzędu byłoby niemożliwe.

Przeprowadzono również eksperymenty, w wyniku których wybrano 
optymalny sygnał pobudzający wykorzystywany do tworzenia modelu NARMAX. 
Najlepiej nadają się do tego celu szumy białe, a zwłaszcza szum o jednostajnym 
rozkładzie amplitudy. Uzyskany z ich pomocą model jest najbardziej dokładny. 
Nie należy stosować sygnału MLS oraz impulsu ze względu na bardzo 
niekorzystny rozkład amplitudy.

Zbadano także wpływ czynników zewnętrznych (rozdzielczości 
kwantowania oraz szumu zakłócającego) na proces tworzenia modelu NARMAX. 
Okazało się, że zmiana rozdzielczości kwantowania nie wpływa znacząco na ten 
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proces. W zakresie rozdzielczości 10 - 16 bitów na próbkę powstaje niemalże taki 
sam model. Wartości współczynników oraz ich liczba praktycznie nie zmieniają 
się. Pozwala to na stosowanie podczas pomiarów sprzętu o mniejszej 
rozdzielczości przetwarzania A/D np. 12 bitowego.
Wpływ szumu zakłócającego na dokładność uzyskanych modeli NARMAX 
uzależniony jest wyraźnie od poziomu zakłóceń. Dla stosunku (S/N) poniżej 
30 dB tworzone modele charakteryzują się dużym błędem.

W ostatniej części pracy porównano wybrane charakterystyki i 
parametry głośnika rzeczywistego oraz jego modelu NABMAX. Stwierdzono duże 
podobieństwo charakterystyk liniowych modelu i głośnika.
Odpowiedź modelu charakteryzuje się w przypadku jednego głośnika 
mniejszymi, a w przypadku drugiego większymi zniekształceniami nieliniowymi, 
co wynika przede wszystkim ze struktury uzyskanych modeli (mniejsza lub 
większa liczba jednomianów nieliniowych). Aby uzyskać dokładniejsze modele 
należy zwiększyć rząd modelu (nx i ny) oraz modelować nieliniowości wyższego 
stopnia (zwiększyć Z).

Wynikiem pracy jest także program komputerowy "NARMAX model" 
opisany w dodatku B. W programie tym zaimplementowano przedstawiony 
algorytm tworzenia modelu NARMAX i wykorzystywano go z powodzeniem we 
wszystkich przedstawionych w pracy eksperymentach.

Podsumowując należy stwierdzić, że teza pracy przedstawiona w 
rozdziale 1 została udowodniona. Powstał efektywny algorytm wyznaczania 
modelu NARMAX głośnika dynamicznego.
Została otwarta droga do dalszych eksperymentów. W toku późniejszych prac 
możliwe jest wyznaczenie z modelu NARMAX jąder szeregów Volterry lub też 
wielowymiarowych funkcji przejścia. Praca stanowi też punkt wyjścia do 
tworzenia filtrów cyfrowych służących do redukcji zniekształceń nieliniowych 
głośników.
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Załącznik A: Modele NARMAX głośników 
dynamicznych

Poniżej przedstawione są współczynniki modeli NARMAX kilku głośników 
dynamicznych. Współczynniki te umieszczone są w tabelach w kolejności 
malejącej wartości [err].

Model A. 1
>~typ głośnika GDN 16/10
>- moc elektryczna pobudzenia [W] 10

liczba współczynników 42
>- błąd modelu s [%] 8.1

jednomian wartość współczynnika
y(t-i) 2.2178
y(t-2) -2.3269
x(t-2) 0.022818
x(t-l) 0.045617
x(t-13) -0.01784
y(t-19) 0.31819
x(t-14) 0.017091
y(t-21) 0.34914
x(t-12) -0.01389
x(t-20) 0.0054527
x(t-4) 0.0348
x(t-9) x(t-9) y(t-6) 0.0001942
x(t-3) -0.081928
y(t-3) 1.4678
y(t-4) -0.6871
x(t-0) 0.0088811
y(t-5) 0.28831
x(t-17) -0.0014298
x(t-24) 0.0053377
y(t-23) 0.34037
x(t-10) -0.0048932
y(t-25) 0.0072746
x(t-ll) 0.006586
y(t-18) -0.27912
y(t-16) 0.1717
x(t-22) -0.0074054
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jednomian wartość współczynnika
y(t-15) -0.15213
y(t-14) 0.035658
y(t-6) -0.08178
x(t-5) x(t-9) y(t-3) 0.0003859
x(t-18) x(t-19) y(t-16) -0.0002817
x(t-3) y(t-4) -0.0019597
x(t-7) y(t-10) y(t-25) 0.0017511
x(t-4) x(t-7) x(t-24) 0.0000831
y(t-8) y(t-ll) y(t-19) -0.0075212
x(t-15) x(t-20) y(t-23) -0.0002205
x(t-23) -0.012679
y(t-22) -0.40787
y(t-20) -0.27277
y(t-24) -0.13295
x(t-6) y(t-l) y(t-17) 0.0016727
x(t-12) x(t-22) y(t-15) 0.0003383
x(t-ll) y(t-6) y(t-19) 0.0015481
x(t-5) x(t-8) y(t-15) -0.0003038
x(t-ll) y(t-3) y(t-9) 0.0012984
x(t-3) x(t-13) y(t-22) -0.0002224
x(t-O) x(t-5) y(t-18) -0.0002075
x(t-7) x(t-7) y(t-15) 0.0002366
x(t-l) x(t-ll) y(t-19) -0.0002262
x(t-9) y(t-7) y(t-14) -0.0009634
x(t-5) x(t-25) y(t-24) 0.0002227
x(t-2) x(t-22) y(t-23) -0.0002086
x(t-6) x(t-14) y(t-25) 0.0001682
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Model A. 2
>-typ głośnika
>• moc elektryczna pobudzenia [W]
>- liczba współczynników
>-błąd modelu s [%]

GDN 20/40
20
50
10.7

jednomian wartość współczynnika
y(t-D 1.7033
y(t-2) -1.1293
x(t-3) 0.024748
x(t-2) 0.011741
x(t-5) -0.010523
x(t-14) -0.0061334
x(t-9) -0.0097342
y(t-3) 0.40201
x(t-21) -0.0053022
y(t-9) 0.1273
x(t-7) -0.0062022
y(t-5) -0.059621
x(t-25) 0.0023468
x(t-32) 0.0027151
x(t-28) -0.0025891
x(t-23) -0.0009122
x(t-20) 0.0022673
y(t-6) y(t-9) y(t-15) -0.043925
y(t-15) y(t-15) y(t-30) -0.01732
x(t-l) x(t-2) x(t-2) 0.0000424
x(t-34) y(t-ll) y(t-28) 0.0032726
x(t-9) x(t-32) y(t-35) 0.000299
x(t-12) x(t-20) y(t-16) 0.0002298
x(t-28) y(t-14) y(t-23) 0.0021267
x(t-0) y(t-l) y(t-l) 0.0035627
x(t-6) x(t-15) y(t-17) 0.0003709
x(t-19) x(t-30) y(t-26) -0.0002764
x(t-10) x(t-30) y(t-33) 0.0002088
x(t-ll) -0.0016952
x(t-31) x(t-32) x(t-32) -0.000038
y(t-10) -0.144
y(t-12) 0.065904
x(t-16) x(t-16) x(t-35) -0.0000334
x(t-4) -0.0032813
x(t-l) y(t-3) 0.0018699
x(t-32) x(t-32) x(t-34) -0.0000309
x(t-13) 0.002351



95

jednomian wartość współczynnika
x(t-15) x(t-29) y(t-25) 0.0002944
x(t-24) x(t-32) y(t-2) -0.0004082
x(t-15) x(t-17) y(t-25) -0.0003213
x(t-26) x(t-34) y(t-35) 0.0002546
y(t-15) y(t-15) y(t-15) -0.010049
x(t-13) x(t-14) y(t-34) -0.000238
x(t-21) x(t-26) y(t-l) -0.0002747
x(t-2) y(t-10) y(t-25) 0.0027187
x(t-4) x(t-9) y(t-35) 0.0002348
x(t-3) x(t-16) y(t-31) 0.0002301
x(t-ll) x(t-12) y(t-ll) 0.0002507
x(t-5) x(t-16) y(t-35) -0.0002177
x(t-l) x(t-9) y(t-26) 0.0002085
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Model A.3
>-typ głośnika
>► moc elektryczna pobudzenia [W]
>- liczba współczynników
>-błąd modelu 8 [%]

GDN 20/40
30
53
17.1

jednomian wartość współczynnika
y(t-i) 2.1805
y(t-2) -2.0506
y(t-3) 1.4461
x(t-2) -0.01174
x(t-l) -0.0069738
x(t-3) -0.0028974
y(t-7) 0.60698
x(t-9) -0.0021589
x(t-16) -0.0040751
x(t-17) x(t-29) x(t-29) 0.000025
x(t-24) 0.0019069
y(t-4) -1.2934
x(t-4) x(t-4) x(t-7) -0.0000193
x(t-10) 0.0034247
y(t-5) 1.273
x(t-17) 0.0020776
x(t-0) -0.0017615
y(t-ll) y(t-ll) y(t-29) 0.018165
y(t-14) -0.0010103
x(t-4) x(t-23) x(t-23) 0.0000227
x(t-5) 0.0067361
x(t-4) 0.0088041
y(t-6) -0.9153
x(t-19) x(t-19) x(t-22) 0.0000269
x(t-20) -0.002709
x(t-25) -0.0017772
x(t-19) x(t-19) x(t-29) 0.0000162
y(t-10) y(t-25) y(t-27) 0.030186
x(t-28) 0.0022646
x(t-14) 0.0029075
x(t-7) y(t-2) y(t-2) 0.0018298
x(t-24) x(t-24) x(t-30) -0.0000284
y(t-9) 0.41024
y(t-8) -0.58052
y(t-10) -0.10167
x(t-9) x(t-27) y(t-4) -0.0003506

| x(t-4) x(t-4) x(t-13) 0.0000257
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jednomian wartość współczynnika
x(t-21) y(t-9) y(t-23) -0.002283
x(t-2) x(t-2) y(t-13) -0.0002089
x(t-4) x(t-5) x(t-5) -0.0000296
x(t-15) x(t-19) x(t-22) 0.0000237
x(t-2) x(t-28) y(t-16) 0.0001754
x(t-5) x(t-ll) y(t-l) -0.0002428 ;
x(t-2) x(t-23) y(t-6) -0.0001742
x(t-ll) x(t-24) y(t-9) -0.0002351
x(t-16) x(t-24) x(t-30) -0.0000233
y(t-3) y(t-5) y(t-19) -0.017294
x(t-16) x(t-16) y(t-6) -0.0001852
x(t-18) x(t-24) y(t-13) 0.0001985
x(t-2) x(t-15) y(t-10) -0.0002096
x(t-19) x(t-19) y(t-29) 0.0001176
x(t-3) x(t-4) y(t-23) -0.0001554
x(t-ll) x(t-29) y(t-15)_________________ 0.0001689___________________________
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Model A. 4
>*typ głośnika
>► moc elektryczna pobudzenia [W] 

liczba współczynników
>- błąd modelu e [%]

GDN 20/40
40
43
13.8

jednomian wartość współczynnika
y(t-D 2.3241
y(t-2) -2.3482
y(t-3) 1.2847
y(t-4) -0.20191
x(t-2) 0.018777
x(t-l) 0.015293
x(t-4) -0.01492
x(t-14) 0.0087302
x(t-0) 0.0093611
x(t-7) -0.010337
x(t-30) 0.0070059
x(t-25) -0.0057886
x(t-16) x(t-17) x(t-17) -0.0001457
x(t-19) 0.0002446
x(t-13) -0.0042082
x(t-24) 0.0023366
x(t-29) -0.0028238
x(t-9) x(t-22) y(t-19) -0.0005084
x(t-20) x(t-20) x(t-20) 0.0000346
x(t-21) -0.0032097
x(t-21) x(t-21) y(t-18) 0.000116
x(t-ll) 0.0019484
x(t-16) -0.0055765
x(t-18) -0.0058658
y(t-15) 0.026791
x(t-2) x(t-2) x(t-22) -0.0001385
x(t-26) -0.0031923
y(t-5) -0.10891
x(t-5) -0.004448
x(t-17) -0.0029812
x(t-3) x(t-3) x(t-3) 0.0001445
x(t-9) x(t-27) y(t-4) 0.0004675
x(t-8) x(t-8) y(t-9) 0.0005061
x(t-10) x(t-23) y(t-6) 0.0004509
x(t-4) x(t-21) x(t-26) -0.0001174
x(t-21) x(t-21) y(t-24) 0.0003167
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jednomian wartość współczynnika
x(t-6) x(t-6) y(t-29) -0.0003025
x(t-5) x(t-14) y(t-ll) 0.0003343
x(t-20) x(t-27) y(t-21) -0.0003806
x(t-15) x(t-22) y(t-21) -0.0003493
x(t-16) x(t-21) y(t-27) 0.000294
x(t-13) x(t-18) y(t-30) -0.0002863
x(t-19) x(t-20) y(t-26)________________ _ 0.00033_____________________________
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Model A. 5
>► typ głośnika
>- moc elektryczna pobudzenia [W]
>- liczba współczynników
>- błąd modelu s [%]

GDN 20/35/1
28
51
15.9

jednomian wartość współczynnika
y(t-i) 2.0184
y(t-2) -1.5661
y(t-3) 0.4944
x(t-3) 0.018178
x(t-7) 0.01214
x(t-5) -0.016116
x(t-2) 0.011706
x(t-9) -0.0069418
x(t-17) -0.00688
x(t-15) -0.0049095
x(t-l) x(t-13) x(t-13) 0.0000519
x(t-6) -0.012291
x(t-23) -0.0049008
y(t-34) 0.0286
x(t-35) -0.0031819
x(t-20) 0.0035258
x(t-28) 0.0033106
x(t-8) 0.0038512
x(t-l) x(t-17) x(t-17) 0.0000429
x(t-26) -0.0022365
y(t-10) -0.021729
x(t-23) x(t-23) y(t-17) 0.0002588
x(t-24) y(t-2) y(t-2) -0.0012789
x(t-l) x(t-4) y(t-10) 0.000259
x(t-23) y(t-ll) y(t-22) -0.0022634
x(t-35) y(t-25) -0.0019045
x(t-12) y(t-28) y(t-31) 0.0013109
x(t-9) x(t-25) y(t-18) 0.0002492
x(t-6) x(t-12) x(t-35) -0.0000451
x(t-12) x(t-19) y(t-9) -0.0003162
x(t-4) x(t-26) x(t-33) -0.0000456
x(t-5) x(t-16) x(t-23) 0.0000395
y(t-8) y(t-ll) y(t-33) -0.014321
x(t-30) y(t-18) y(t-19) 0.0014106
x(t-ll) y(t-18) y(t-19) -0.001097
x(t-ll) x(t-18) y(t-35) -0.0001722
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jednomian wartość współczynnika
x(t-4) x(t-13) y(t-29) -0.0002962
x(t-12) x(t-20) y(t-19) 0.0002915
x(t-l) x(t-31) y(t-31) -0.0002711
x(t-l) x(t-18) x(t-18) 0.0000297
x(t-7) x(t-21) y(t-18) 0.0002361
x(t-3) x(t-22) y(t-35) -0.0002011
x(t-0) x(t-9) y(t-33) 0.0002799
x(t-l) x(t-9) y(t-33) 0.0002007
x(t-3) x(t-28) y(t-30) -0.0001844
x(t-18) x(t-27) y(t-29) -0.0002892
x(t-20) x(t-22) y(t-29) 0.0001888
x(t-4) x(t-32) y(t-35) -0.0001699
x(t-6) x(t-9) y(t-35) -0.0002163
x(t-27) x(t-35) y(t-34) -0.0001749
x(t-15) x(t-21) y(t-25) 0.0001526
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Załącznik B: Opis programu NARMAXmodel

Program komputerowy NARMAXmodel przeznaczony jest do 
wyznaczania modeli NARMAX głośników dynamicznych na podstawie 
zarejestrowanych sygnałów: pobudzenia i odpowiedzi głośnika. Program powstał 
w środowisku Borland Delphi 4.0 z wykorzystaniem komponentów National 
Instruments ComponentWorks SDS 2.0.1.

B.l Menu

Główne menu programu zawiera cztery pozycje:

W podmenu Sygnały zawarte są opcje służące do wczytywania 
sygnałów pomiarowych z plików tekstowych oraz dokonywania na nich pewnych 
operacji:

Wczytaj plik; tekstowo 
format płiku tekstowego -

Operacje na sygnale wejściowym

Zakończ program

Opcja Wczytaj plik tekstowy pozwala na wybranie pliku tekstowego z 

zarejestrowanymi sygnałami pomiarowymi.
>- Wybranie opcji Format pliku tekstowego otwiera okienko, w którym usytala 

się format zapisanych danych:

Fornal pliku tekstowego : -r

X Anului
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Sygnały w pliku powinny być zapisane w kolumnach. Należy ustalić w której 
kolumnie jest pobudzenie {sygnał x(t)), a w której odpowiedź głośnika 
{sygnał y(t)). Wartości napięć we wczytywanych plikach tekstowych wyrażone są 
w krokach kwantyzacji. Aby poprawnie zinterpretować poziomy sygnału 
konieczne jest więc wpisanie napięcia, które odpowiada 32768 krokom 
kwantyzacji. Na podstawie tej wartości program przelicza wczytany sygnał na 
napięcie w [V] i na takich właśnie wartościach prowadzone są dalsze obliczenia.
>-Opcja Operacje na sygnale wejściowym otwiera okienko, w którym możemy 

wybrać rodzaj operacji jakie chcemy wykonać na zebranej odpowiedzi 
głośnika przed rozpoczęciem modelowania:

Najważniejszą operacją jest uwzględnienie opóźnienia sygnału w torze, które 
trzeba podać dla poprawnej pracy algorytmu tworzącego model. Opóźnienie to 
realizowane jest przez przesunięcie odpowiedzi głośnika na osi czasu. Dodatkowo 
możliwe jest {Początek na koniec) przeniesienie wyrzucanych w tej sytuacji, 
początkowych próbek sygnału na jego koniec. Operacja ta zalecana jest w 
sytuacji gdy rejestrowana jest odpowiedź na pobudzenie cykliczne.
Opcje dodawania szumu oraz zmniejszania rozdzielczości kwantyzacji 
wykorzystywane były podczas eksperymentów nad wpływem czynników 
zewnętrznych opisanych w punkcie 5.4 pracy.
Opcja Usuń składową stałą pozwala na wyeliminowanie składowej stałej z 
sygnału. Opcja ta jest przydatna w przypadku niedokładnej kalibracji 
przetwornika analogowo-cyfrowego.
>- Ostatnia pozycja menu - Zakończ program kończy działanie programu.
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W podmenu Modelowanie zawarte są wszystkie opcje 
odpowiedzialne za proces modelowania:

Parametry modelowania 
:.... ..... • SlatlL.

■ Filtrowanie : 
Filtrowanie pliku wav; '

>► Pierwsza, najważniejsza opcja to ustalenie Parametrów modelowania. Do 

tego celu służy okienko, które ze względu na wielość opcji zostanie 
szczegółowo omówione w części B.2.

Wybranie opcji Start! rozpoczyna oblicznia.

Opcja Filtrowanie realizuje filtrowanie załadowanego sygnału pobudzenia 

(opcja Wczytaj plik tekstowy) przez aktualny model. Pozwala to na 
wyznaczenie odpowiedzi utworzonego modelu na różnorodne pobudzenia. 
Opcja ta wykorzystywana była szeroko w punktach 5.7.1 i 5.8 pracy.

>-Po wybraniu opcji Filtrowanie pliku WAV możliwe jest przefiltrowanie przez 

aktualny model dowolnego pliku dźwiękowego w formacie WAVE. Opcja ta 
nie była wykorzystywana w pracy, została wprowadzona w celu auralizacji 
modelowanych zniekształceń. Dzięki niej możliwe jest zrealizowanie 
subiektywnych testów odsłuchowych jakości modeli.

Podmenu Wizualizacja pozwala na przedstawienie na wykresie 
przebiegu czasowego sygnału.

Sygnał pobudzający 
Odpowiedz układu 
Błęd modelowania

Można obserwować kolejno: sygnał pobudzający, odpowiedź układu lub też błąd 
modelowania. Opcja ta przydatna jest do szybkiego stwierdzenia czy sygnał z 
pliku tekstowego został wczytany poprawnie oraz do oceny błędu modelowania.
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Podmenu Zapis wyników służy do zapisywania wyników 
modelowania w plikach:

SsMczutai modeL:/—S;.
SBB Zapisz model ""gWisg;

Odpowiedźukiadu.ls 
• Odpowiedźmodeta"

>-Opcje Wczytaj model oraz Zapisz model służą odpowiednio do wczytywania 

do programu oraz do zapisywania na dysk modeli NARMAX będących 
wynikiem przeprowadzonych obliczeń. Dzięki temu możliwe jest późniejsze 
przeprowadzanie analiz i symulacji bez konieczności ponownego tworzenia 
modelu.

Pozostałe trzy opcje pozwalają na zapisanie na dysku w plikach tekstowych 

następujących sygnałów: pobudzenia, odpowiedzi głośnika i odpowiedzi 
modelu. Dzięki temu, że są to zwykłe pliki tekstowe można importować je 
do innych programów (np. MathCad, arkusze kalkulacyjne) w celu 
dokonania dodatkowych przekształceń, obliczeń bądź też wykresów.

B.2 Parametry modelowania

Okienko przeznaczone do ustalenia parametrów tworzenia modelu
NARMAX przedstawione jest poniżej.

Równania do testu modelu

Rząd częścinielińiowei

Liczba równań w paczce

Liczba współczynników modelu -> iS61

Idealny T-- "B ez:optymalizacji

X" Anuli

Dopuszczalna energia brędu [%] |

Stosowanie AlC(4J [i

Stałe modelowania —
R ównania do tworzenia modelu ■RzędmehniowosciXimax 3]| 

Rząd nieliniowości^ (max.3] i 
Całkowity.rząd modelu T

Parametry tworzenia modelu NARMAX
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Poszczególne kontrolki spełniają następujące funkcje (podane są również 
oznaczenia stosowane w pracy):

1. Liczba równań wykorzystywanych do tworzenia modelu - N, jest to 

jednocześnie liczba wierszy macierzy predykcji P.

2. Długość sygnału pobudzenia (w próbkach) - Nf, używana podczas oceny 

dokładności modelu. Liczba ta określa także ile próbek zostanie 
wykorzystanych podczas filtrowania sygnału. Oprócz tego wszystkie 
sygnały zapisywane w opcji Zapis wyników mają właśnie tą długość.

3. Dopuszczalna wartość błędu modelu - p określająca moment zakończenia 

tworzenia modelu.

4. Pole wyboru, które określa czy ma być stosowane kryterium AIC(4) 

zakończenia procesu tworzenia modelu. Proces tworzenia modelu 

NARMAX jest kończony gdy spełnione jest kryterium z punktu 3 lub 4.

5. Liczba współczynników wyznaczanych w jednym etapie - Mi (punkt 4.4 

pracy).

6 Rząd nieliniowości sygnału x(t) - lx może być zmieniany w granicach od 1 

do 3.

7. Rząd nieliniowości sygnału y(t) - ly może być zmieniany w granicach od 0 
do 3, ly = 0 oznacza brak w modelu wyrazów zależnych od y(t), w takich 
warunkach powstaje model NARMAK, który jest szeregiem Volterry.

8. Długość liniowego "ogona" modelu NARMAK. Wartość ta pozwala 

zwiększyć dokładność modelu poprzez dołożenie do niego liniowych 
wyrazów wysokiego rzędu. Opcja ta wykorzystywana była tylko na 
początkowym etapie eksperymentów. Po opracowaniu algorytmu 
tworzenia pełnych modeli NARMAK wysokiego rzędu, nie była 
wykorzystywana.

9. Rząd modelu - nx = ny.

10. Kontrolka pokazująca na podstawie ustawionych parametrów 

modelowania z ilu współczynników składa się model (przed 
optymalizacją). Dzięki niej możliwe jest szybkie zorientowanie się ile 
współczynników modelu jest do rozpatrzenia.
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11. Pole wyboru, które przełącza program w tryb testowania na idealnym 

modelu matematycznym, wykorzystane to zostało w punkcie 4.6 pracy.

12. Wyłączenie procesu optymalizacji. Opcja była wykorzystana w punkcie 5.5.

B.3 Główne okno programu

Poniżej przedstawione jest główne okno programu:

Funkcje elementów głównego okna programu są następujące:

1. Wykres, na którym można zaprezentować przebieg czasowy sygnału - 

podmenu Wizualizacja.

2. Przyciski pozwalające na wydrukowanie wykresu lub też zapisanie go do 

pliku graficznego.

3. Przyciski uruchamiające i zatrzymujące proces modelowania.
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4. Okienko, w którym prezentowane są informacje związane z 

modelowaniem: liczba współczynników, wartości [err]i, wyniki filtrowania.

5. Aktualny poziom błędu modelu (1-X[^d») wyznaczonych 

współczynników).

6, Aktualna liczba wybranych współczynników modelu.

7. Błąd modelu po filtracji przedstawiony w [%] i [dB] (punkt 4.5 pracy).

8. Okienko w którym wyświetlane są wartości współczynników modelu. Przy 

etapowym wyznaczaniu modelu prezentowane są tutaj współczynniki 
wyznaczone po każdym etapie.

9. Grupa przycisków służących do zapisu na dysk analizowanych przebiegów. 

Realizują one te same funkcje co opcje podmenu Zapis wyników.
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S.l Wstęp

Podczas analizy właściwości nieliniowych głośników dynamicznych 
najczęściej wyznaczanymi parametrami są współczynnik zawartości 
harmonicznych (THD) oraz zniekształcenia intermodulacyjne (IMD). Mimo tego, 
że współczynniki te wykorzystywane są szeroko w praktyce, nie niosą jednak one 
wyczerpującej i jednoznacznej informacji o nieliniowościach badanego układu 
[39, 40, 41], 
Charakterystyki głośnika dynamicznego, liniowe i nieliniowe, można opisać 
wykorzystując przedstawiony w punkcie 2.3 szereg Volterry lub też jego 
ortogonalną postać nazywaną szeregiem Wienera. Prace nad zastosowaniem 
tych szeregów do opisu toru elektroakustycznego zapoczątkowali między innymi 
A. Gabor [41] oraz J. Zarzycki [39],

W celu określenia dokładności modelu NARMAX zdecydowano się 
na wyznaczenie szeregu Wienera dla rzeczywistego głośnika oraz dla 
utworzonego modelu NARMAX. Oba szeregi porównano następnie ze sobą 
określając stopień ich podobieństwa.

S.2 Wyznaczanie szeregu Wienera

Do opisu nieliniowego układu inercyjnego podobnie jak szereg 
Volterry (2.10) można wykorzystać szereg Wienera. Szereg ten dla czasu 
dyskretnego opisany jest następującym równaniem [41, 42]: 

00

= S Gn[kH,x(t)] (S.l)
7ł=0

gdzie: G n[k u, x(t)] - operator Wienera rzędu n: 
oo oo

= E ”• S ... -x(t-Tn) +
Tl=0 T„=0 

[ 2 ]/ 00 oo

Ż Z "■ E - T i) • ... • x(t - Tn-2u)
u=iGi=o rn ^=o / 



5

kn(Ti, • • •> f/0 -jądro całkowe Wienera rzędu n, 

kn-Zulnfal, ■ • •, ^n-2u) - jądro całkowe Wienera rzędu n-2u 

utworzone z jądra rzędu n,

Aby całkowicie scharakteryzować układ nieliniowy inercyjny 

konieczna jest znajomość jąder całkowych kn(T\, ..Ich wyznaczenie 
najwygodniej jest przeprowadzić poprzez wyliczenie odpowiednich funkcji 
korelacji wzajemnych [42],

Układ wprowadzający zmienne opóźnienie r? przy pobudzeniu x(t) 
ma odpowiedź x(t-ri) (rys. S.l). Dla tego układu można zdefiniować 
jednowymiarowy operator opóźnienia [42]:

Z9i[x(/)]=X/-Ti) (S.2)

x(t) zmienne 
opóźnienie t1

D^t)]
....

Rys. S.l. Jednowymiarowy układ wprowadzający zmienne opóźnienie

Podobnie definiuje się operator D>[x.(t)] opisujący system przedstawiony na rys.
S.2:

= x(t - T i) ■ x(t - T2) (S.3)

Operator Di[x(t)] nazywa się dwuwymiarowym operatorem opóźnienia.
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Rys. S.2. Dwuwymiarowy układ wprowadzający zmienne opóźnienie

W ten sam sposób defininiowane są operatory opóźnienia wyższych wymiarów:

D„ [x(0] = x(t - t ।) • • • • • x(t - r„ ) (S.4)

Zdefiniowane operatory opóźnienia posłużą do wyznaczenia jąder 

Wienera. Wykorzystując cechę ortogonalności operatorów Gn\ku,x(ty\ dla 
jądra Wienera pierwszego rzędu można wyprowadzić następujące zależności [42]:

j(/) • D][x(/)] = Giki,x(/)] • D} [x(/)] =
oo (S.5)
J A1((T1 )x(/-(7| Wi -x(/-T| ) = )

-co

stąd: ^I(ri)=7^(/)-ni[x(/)] (S.6)

gdzie: A - energia sygnału x(t), 
• - operacja uśredniania.

Jądro Wienera drugiego rzędu wyznaczane jest z następującej zależności:

।, r2) = -/32[x(/)] (S.7)

Dla jądra Wienera rzędu n można napisać:

•,d,) = i Z G„,[^„„x(?)] -D„[x(/)] (S.8)
„,=o
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Podczas wyznaczania jąder k„ we wzorze (S.8) konieczne jest odejmownie tylko 
tych operatorów G,„, które mają taką samą parzystość co n, tzn. takich że m-n 
jest liczbą parzystą.

S.3 Miara podobieństwa jąder Wienera głośnika i modelu

NARMAX

W dalszej części pracy do wyznaczania jąder całkowych Wienera 
został wykorzystany wzór (S.8).

Rys. S.3. Odpowiedź głośnika i modelu NARMAX na pobudzenie sygnałem x(t)

Głośnik rzeczywisty oraz jego model NARMAX pobudzano tym samym szumem 
białym x(t) (rys. S.3). Otrzymano odpowiedzi odpowiednio ye(t) i y,n(t). Na 
podstawie tych sygnałów obliczono następnie jądra całkowe Wienera rzędów od 
1 do 3:

>-dla głośnika: kgi(Ti), kg^T^Tz), kg3(ri,T2,T3),

>*dla modelu NARMAX: kmi(Ti), km2(Ti, km3(ii,T2, t3).

W celu porównania uzyskanych jąder wprowadzono dwie miary 
określające różnice pomiędzy charakterystykami głośnika rzeczywistego i modelu 
NARMAX:
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^współczynnik korelacji jąder Wienera kgn i kmn

'inKmnO 1,"

N N
kł™Xi\, 

0=0 /„=()

• 100% (S.9)

>- względny błąd średniokwadratowy pomiędzy kgn i kmn (miara analogiczna do

miary zdefiniowanej wzorem 4.17):

N N

0=0 z„=0
N N

”■ kgn(i],'"in)
z 1=0 z„=0

• 100% (S.10)

N N

gdzie: N - długość obliczanych jąder Wienera.
Podobieństwo jest tym większe im r jest bliższe 100 %, a błąd e bliski zeru.

S.4 Wyniki obliczeń

Procedurze weryfikacyjnej poddano dwa modele przedstawione w 
punkcie 5.8.2:

>> model głośnika dynamicznego GDN 20/35/1 pracującego z mocą 28 W, 

model głośnika dynamicznego GDN 20/40 pracującego z mocą 20 W.

Dla obu głośników i modeli wyznaczono jądra pierwszego i drugiego rzędu: ki, kz 

oraz niektóre przekroje jąder rzędu trzeciego - ks- Obliczono także współczynnik 

korelacji r oraz błąd średniokwadratowy e dla całego jądra ks (a nie tylko jego 

przekrojów).

Wartości k^Ti), k^Ti^rz), k3(Ti,Tz,T3) wyznaczono w punktach:

Ti, T2, T3 = 0.02-N [ms] (głośnik GDN 20/40) i r;, Tz, Ts = 0.03356-N [nis] (głośnik 

GDN 20/35/1). N zmieniało się w granicach N = 0, 1, 2, ... ,500.
Uzyskane wyniki przedstawione są w tabeli S.l. Natomiast wykresy jąder 
całkowych Wienera na rysunkach:
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^SA - ki(Ti),

>>S.5 - k2(Ti, T2),

>-S.6 - S.10 - przekroje k^Ti, T2, t3).

Ze względu na symetrię jąder całkowych Wienera względem Ti, t2, T3, np. 

k^Ti,^ = k2(T2,Ti), obliczenia przeprowadzono tylko dla części przestrzeni 

wyznaczonej przez Ti, t2, T3. W ten sposób udało się zmniejszyć ilość koniecznych 

obliczeń.

Tabela S.l Wyniki porównania wyznaczonych jąder Wienera głośnika 
rzeczywistego i modelu NARMAX

Jądro
głośnik GDN 20/35/1 głośnik GDN 20/40
r [%] e [%] r [%] e[%]

ki( Ti) 96.98 5.22 97.85 3.55

k2(Ti, T2) 95.56 8.8 97.68 3.73

k3( Ti, T‘2,0) 96.59 6.18 97.1 5.52

k3( Ti, t2,20) 97.81 AA 97.51 4.11

k3( Tl, t2,100) 93.97 10.48 96.8 5.75

k3( Tl, T2, T2+IO) 95.96 7.05 97.6 3.89

k3( Ti, T2, T2+50) 95.79 7.38 97.69 3.71

k3( Tl, T2, T3) 96.51 6.05 97.85 3.45
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[ms]

b)

Rys. S.4. Jądra Wienera pierwszego rzędu ki(Ti) głośnika (linia przerywana) i

modelu NARMAX (linia ciągła): a) głośnik GDN 20/35/1, b) 
głośnik GDN 20/40.
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a)

b)

O 2 4 6 R 10

Rys. S.5. Jądra Wienera drugiego rzędu k2(Ti,Tz) głośnika (z lewej) i modelu

NARMAX (z prawej): a) głośnik GDN 20/35/1, b) głośnik 
GDN 20/40.
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a)

10 15

Rys. S. 6. Jądra Wienera trzeciego rzędu k3(Ti, T2, ?3,) przekrój T3 = 0, dla 

głośnika (z lewej) i modelu NARMAX (z prawej): a) głośnik GDN 
20/35/1, b) głośnik GDN 20/40.
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a)

Rys. S. 7. Jądra Wienera trzeciego rzędu ks(Ti, T2, Ts,) przekrój T3 = 20 dla 

głośnika (z lewej) i modelu NARMAX (z prawej): a) głośnik GDN 
20/35/1, b) głośnik GDN 20/40.
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a)

O 5 10 15 O 5 10 15

b)

Rys. 8.8. Jądra Wienera trzeciego rzędu ks(Ti, T2, T3J przekrój T3 = 100 dla 

głośnika (z lewej) i modelu NARMAX (z prawej): a) głośnik GDN 
20/35/1, b) głośnik GDN 20/40.
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Rys. S. 9. Jądra Wienera trzeciego rzędu k3(vi, T2, ^3,) przekrój T3 = T2+2O dla 

głośnika (z lewej) i modelu NARMAX (z prawej): a) głośnik GDN 
20/35/1, b) głośnik GDN 20/40.
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Rys. S. 10. Jądra Wienera trzeciego rzędu kstTi, T2, ^3,) przekrój T3 = T2+50 dla 

głośnika (z lewej) i modelu NARMAX (z prawej): a) głośnik GDN 
20/35/1, b) głośnik GDN 20/40.
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S.5 Wnioski

Uzyskane wyniki wykazują bardzo dobrą zgodność przebiegów jądei' 
całkowych Wienera głośnika rzeczywistego oraz jego modelu NARMAX.
Dla modelu NARMAX głośnika GDN 20/35/1, którego dokładność na podstawie 
kryterium (4.17) określono na 15.9 %, uzyskano współczynnik korelacji r w 
granicach r = 94 ± 97.8 %, a średniokwadratowy błąd względny e = 4.4 10.6 %. 
Natomiast dla głośnika GDN 20/40 (dokładność na podstawie (4.17) równa 
10.7 %) uzyskano współczynnik korelacji r = 96.8 ~ 97.9 %, a 
średniokwadratowy błąd względny e = 3.5 -s- 5.8 %.

Przy tak dobrej zgodności charakterystyk modelu z 
charakterystykami głośnika rzeczywistego należy wyjaśnić stosunkowo duże 
rozbieżności pomiędzy wyznaczonymi w punkcie 5.8.2 współczynnikanu 
zawartości harmonicznych THD. Przyczyn rozbieżności może być kilka. Po 
pierwsze mierzone zniekształcenia są na poziomie pojedynczych procent, są więc 
porównywalne z błędem względnym wyznaczonych jąder całkowych. Po drugie 
rząd modelu NARMAK został ograniczony do trzech, co może powodować, że 
harmoniczne pochodzące od nieliniowości wyższego stopnia są uwzględniane 
tylko w niewielkim stopniu.
Użyta w pracy, zdefiniowana wzorem (4.17), miara dokładności modelu 
NARMAK jest bardziej restrykcyjna niż miary oparte na wyznaczonych jądrach 
Wienera.
Przeprowadzona procedura weryfikacyjna wykazała poprawność i użyteczność 
modelu NARMAK. Jednocześnie większa różnica w THD i IMD pokazuje, że jeśli 
chodzi o zniekształcenia nieliniowe, parametry te są czulszymi wskaźnikami 
dokładności modelu niż jądra całkowe.
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