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PREFACE.

rpnis memoir “On the Sub-Mechanics of the Universe” was com- 
municated to the Royal Society on February 3, 1902, for publication 

in the Philosophical Transactions; it was read in abstract before the Society 
on February 13. It was under criticism by the referees of the Royal Society 
some five months. I was then informed by the Secretaries that it had 
been accepted for publication in full. At the same time the Secretaries 
asked me if I should be willing, on account of the size and character 
of the memoir, which seemed to demand a separate volume, to consent to 
what appeared to be an opportunity of making a substantial reduction 
in what would .otherwise be’the expense. The Cambridge University Press 
had already published two volumh^pf my §pientific Papers and were willing 
to share in the cost of publishin^this as a separate volume to range 
with the other two, special copies being distributed by the Royal Society 
as in the case of the Philosophical Transactions. To this proposal I 
readily agreed. ' ’

OSBORNE REYNOLDS.

January 23, 1903.



ERRATUM.

p. 5, line 22: for 2 read q.
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SECTION I.

INTRODUCTION.

1. By this research it is shown that there is one, and only one, 
conceivable purely mechanical system capable of accounting for all the 
physical evidence, as we know it, in the Universe.

The system is neither more nor less than an arrangement, of indefinite 
extent, of uniform spherical grains generally in normal piling so close that 
the grains cannot change their neighbours, although continually in relative 
motion with each other; the grains being of changeless shape and size; thus 
constituting, to a first approximation, an elastic medium with six axes of 
elasticity symmetrically placed.

The diameter of a grain, in C.G.s. units, is

5-534 x IO'18 = a.

The mean relative velocities of the grains are

6777 x 10 = a".
The mean path of the grains is

8-612 x lO-^X.
These three quantities completely define the state of the medium in 

spaces where the piling is normal; they also define the mean density of 
the medium as compared with the density of water as

104 = 22U.

The mean pressure in the medium, equal in all directions, is

1-172 x 1014=_p.

The coefficient of the transverse elasticity resulting from the gearing of 
the grains, where the piling is normal, is

9-03 x 10s4 = n.
The rate of propagation of the transverse wave is

3'004 x 1010=t or ^nlp.
R. 1



2 ON THE SUB-MECHANICS OF THE UNIVERSE. [2

The rate of propagation of the normal wave is

7-161 x 10” = 2'387 x t.

The rate of degradation of the transverse waves, i.e. the dissipation 
resulting from the angular redistribution of the energy, or viscosity, is

5-603 x 10-” = tt

or such as would require fifty-six million years to reduce the total energy in 
the wave in the ratio 1/e2, or to one-eighth; thus accounting, by mechanical 
considerations, for the blackness of the sky on a clear dark night; while the 
degradation of the normal wave, i.e. the dissipation resulting from the linear 
redistribution of energy, is such that the initial energy would be reduced 
to one-eighth in the (3’923 x 10“*)th part of a second, or before it had 
traversed 2200 metres ; and thus would account by mechanical considerations 
for the absence of any physical evidence of normal waves, except such 
evidence as might be obtained within some metres of the origin of the 
wave; as in the case of Rontgen rays.

2. In spaces in which there are local inequalities in the medium about 
local centres, owing to the absence or presence of a number of grains, in 
deficiency or excess of the number necessary to render the piling normal, 
such local inequalities are permanent; and are attended with inward or 
outward displacements and strains, as the case may be, extending indefinitely 
throughout the medium, causing dilatation equal everywhere to the strains 
but of opposite sign, i.e. dilatation equal to the volume of the grains, the 
presence or absence of which cause the inequality.

When the arrangement of the grains about the centres is that of a nucleus 
of grains in normal piling on which grains in the strained normal piling rest, 
the nucleus in normal piling cannot gear with the grains outside, in strained 
normal piling; so that there is a singular surface of misfit between the 
nucleus and the grains in strained normal piling.

Such singular surfaces are surfaces of weakness and may be surfaces of 
freedom or surfaces of limited stability with the neighbouring grains.

These singular surfaces, when their limited stability is overcome, are free 
to maintain their motion through the medium, by a process of propagation, 
in any direction; the number of grains entering the surface on the one side 
being exactly the same as the number leaving on the other side; so that 
when the inequalities are the result of the absence of grains they correspond 
to the molecules of matter.

If the singular surface of a negative inequality is propagating through 
a medium which is at rest, the grains forming the nucleus will have no 
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motion, whatever may be the motion of the singular surface: but the strained 
normal piling, which surrounds the singular surface and moves by propa
gation with the singular surface, being of less density than the mean density 
of the medium, represents a displacement of the negative mass of the 
inequality, i.e. of the grains absent. And in whatever direction the singular 
surface is propagated the motion of the medium outside is such as represents 
equal and opposite momentum; as when a bubble is rising in water.

In exactly the same way, for inequalities resulting from an excess of 
grains,, the momentum resulting from the displacement of the medium 
would be positive.

The principal stresses in the medium outside the singular surface of 
a negative inequality are to a first approximation two equal tangential 
pressures equal in all directions;

Pt = lP>
and a normal pressure pr = | p,

the mean of these pressures being everywhere the mean pressure of the 
medium p equal in all directions.

Efforts, proportional to the inverse square of the distance, to cause two 
negative inequalities at finite distances to approach are the result of those 
components of the dilatation (taken to a first approximation only) which 
are caused by the variation of those components of the inward strain which 
cause curvature in the normal piling of the medium. The other components 
of the strain being parallel, distortions which satisfy the condition of 
geometrical similarity do not affect the effort. If the grains were inde
finitely small there would be no effort. Thus the diameter of a grain is 
the parameter of the effort; and multiplying this diameter by the curvature 
of the medium and again by the mean pressure of the medium the product 
measures the intensity of the effort.

The dilatation diminishes as the centres of the negative inequalities 
approach, and work is done by the pressure in the medium, outside the 
singular surfaces, to bring the negative inequalities together.

The efforts to cause the negative inequalities to approach correspond, 
exactly, to gravitation, if matter represents negative mass.

Taking the mean density of the earth as — 5’67, as compared with water 
(-1).

the reciprocal of the density of the medium being 10-4, 
the mean pressure of the medium 1T72 x 1014, 
o- the diameter of the grain 5'534 x 10-18, 
the mean radius of the earth 6'37 09 x 108;

1—2 
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the effort to cause approach between the earth and a unit of matter on the 
surface (— 1) is the product of these quantities multiplied by 4tt/3, or

pa- x 10-4 x |7r x 5'67 x 6'37 09 x 108 = 9'81 x 102.

The inversion is thus complete. Matter is an absence of mass, and the 
effort to bring the negative inequalities together is also an effort on the mass 
to recede. And since the actions are those of positive pressure there is no 
attraction involved; the efforts being the result of the virtual diminution of 
the pressure inwards.

3. If instead of the negative inequalities, as in the last article, the 
inequalities are positive, the efforts would be reversed, tending to separate 
the positive inequalities, and the analysis would be the same, except that the 
curvature would be negative. And it is important to notice that if such 
positive inequalities exist, the fact that they repel each other—i.e. they would 
tend to scatter through space—together with the evidence that the number 
of inequalities either positive or negative occupy an indefinitely small space 
as compared to the total volume of the medium, places any importance such 
positive inequalities might have on a footing of indefinitely less importance 
than that of the negative inequalities which are caused to accumulate by 
gravitation; and thus we have an explanation of the lack of evidence of any 
positive inequalities, even if such exist.

4. Besides the positive and negative inequalities there is another 
inequality which may be easily conceived, and—this is of fundamental im
portance—whatever may be the cause, it is possible to conceive that a 
number of grains may be removed from some position in the otherwise 
uniform medium, to another position. Thus instituting a complex in
equality, as between two inequalities, one positive and the other negative; 
the number of grains in excess in the one being exactly the same as the 
number deficient in the other.

The complex inequalities differ fundamentally from the gravitating 
inequalities, inasmuch as the former involve an absolute displacement of 
mass while the latter have no effect on the mean position of the mass 
in the medium; and in respect of involving absolute displacement of mass 
the complex inequalities correspond with electricity.

Apart from the displacement of mass the complex inequalities differ 
from the gravitating inequalities. In the complex inequalities the para
meter of the dilatation is not the diameter of a grain but one half the 
linear dimension of the volume occupied by the grains displaced, taken 
as spherical.

The effort to revert in the case of the complex inequality is the product 
of the pressure multiplied by the product of the volumes of the positive 
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and negative inequalities and again by the parameter r0. This is ex
pressed when the positive and negative inequalities are at finite distance 
apart by

/ 4tt\3 
r^~R’

R being essentially negative and the dimensions of the effort (— R) are 
mlt 2 which express an effort to the displacement of mass.

The complex inequality which corresponds to the separation of the 
positive and negative inequalities is one displacement, not two. This 
fact admits of no question and might have been recognised long ago had 
it not been for the general assumption that positive electricity repels 
positive electricity, the fact being that the apparent repulsion of the positive 
electricities is the result of their respective efforts to approach their re
spective negative inequalities. By the assumption it became apparently 
possible to express the potential V, and the electricity q as rational quantities, 
when, as it now appears, the potential V and the electricity q are re

spectively — (— e2)* - and (—e2)*, which are both irrational. Their product 
being the rational quantity

e2 
r ’

which, differentiated with respect to the distance, is

and the mechanical explanation of these is.

and for the effort to revert, we have

Then for the electrostatic unit we have, since r = 1, and R = — 1,

and from the known value of p the number of grains displaced through 
unit distance necessary to cause the unit effort is

1-615 x IO45,

and r„ = 6’493 x 10~8, from which we have the ratio of the effort to reinstate 
the normal piling, to the effort of gravitation, from the same number of 
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grains absent in each inequality as are displaced in the complex inequality, 
the distances being the same,

1-2 x 1015,

so that the effort of attraction between two inequalities, the grains absent 
about each of which is the same as the grains displaced in instituting the 
complex inequality, is eighty-one thousand billions less than that of the 
electric effort.

5. Cohesion between the singular surfaces of the negative inequalities 
results from the terms which were not taken into account in the first approxi
mation which correspond to gravitation. These secondary terms involve 
the inverse distance to the sixth power, and therefore have a very short 
range, and so correspond to efforts of cohesion of the singular surfaces as 
well as surface tensions having no effect unless the singular surfaces, or 
molecules, are within a distance very small compared with the diameter 
of the singular surface.

6. Transverse undulations in the medium, corresponding to the waves 
of light, are instituted by the disruptive reversion of the complex in
equalities. The recoil sets up a vibration which is exhausted in initiating 
light.

7. Thus far the sketch of the results has included only those for which 
there exists sufficient evidence to admit of definite quantitative analysis. 
Nevertheless these quantitative results show that the granular medium, 
as already defined, accounts by purely mechanical considerations for the 
evidence, and affords the only purely mechanical explanation possible. If 
then the substructure of the universe is mechanical, all the evidence, not 
already adduced, is such as may be accounted for by an extension of the 
analysis, and this is found to be the case.

The results of the further analysis afford proof:—

Of the existence of coincidence between the periods of vibration of 
the molecules and the periods of the waves;

that dissociation of compound molecules proves the previous state to 
have been one of limited stability;

that the reassociation of compound molecules results from the reversion 
of complex molecules;

of the absorption of the energy of light by inequalities;

that negative inequalities affect the waves passing through ;
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that refraction is caused by the vibration of inequalities having the 
same periods as the waves;

that dispersion results from the greater number of coincidences as 
the waves get shorter ;

that the polarization by reflection is caused only by that component 
of the transverse motion in the medium which is in the plane of 
incidence and results from the passage of the light from a space 
without, or with few, inequalities, through a surface into a space 
in which there are more inequalities;

that the metallic reflection results from the relative smallness of the 
dimensions of the molecules compared with the length of the 
wave and the closeness of their piling when the waves pass from 
a space without inequalities across the surface beyond which the 
inequalities are in closest order ;

that the aberration of light results from the absence of any appreciable 
resistance to the motion of the medium when passing through 
matter.

8. It may be somewhat out of the usual course to describe the results 
of a research before any account has been given of the method by which 
these results have been obtained; but in this case the foregoing sketch 
of the purely mechanical explanation of the physical evidence in the universe 
by the granular medium has seemed the only introduction possible, and 
even so it is not with any idea that this introduction can afford any pre
liminary insight as to the methods by which these results have been 
obtained.

Certain steps, as it now appears, were taken for objects' quite apart 
from any idea that they would be steps towards the mechanical solution 
of the problem of the universe.

The first of these steps was taken with the object of finding a mechanical 
explanation of the sudden change in the rate of flow of the gas in the tube 
of a boiler when the velocity reached a certain limit—perhaps this would 
be better described as a step towards a step*.

* Manchester Lit. and Phil. Soc. 1874—5, p. 7.
+ Royal Soc. Phil. Trans. 1879.
J Royal Soc. Phil. Trans. 1883.

The second step was the discovery of the thermal transpiration of 
gas together with the analytical proof of the dimensional properties of 
matter f.

The third step was the discovery of the criterion of the two manners 
of motion of fluids^.
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And it was only on taking the fourth step, namely, the study of the 
action of sand, which revealed dilatancy as the ruling property of all 
granular media*,  which directed attention to the possibility of a mechanical 
explanation of gravitation. In spite of the apparent possibility, all attempts 
to effect the necessary analysis failed at the time.

* Phil. Mag. 1885.
+ Royal Soc. Phil. Trans. 1895, a.

There was however a fifth step; the effecting of the analysis for viscous 
fluids, and the determination of the criterion-*-,  which led to the recognition 
of the possibility of the analytical separation of the general motion of a 
fluid into mean varying motion, displacing momentum, and relative motion; 
and this suggested the possibility that the medium of space might be 
granular, the grains being in relative motion and at the same time being 
subject to varying mean motion. And this has proved to be the case. 
At the same time it became evident that it was not to be attacked by 
any method short of the general equations of a conservative system starting 
from the very first principles; and it is from such study that this purely 
mechanical account of the physical evidence has been obtained.



SECTION II.

THE GENERAL EQUATIONS OF MOTION OF ANY ENTITY.

9. Axiom I. Any change whatsoever in the quantity of any entity within 
a closed surface can only be effected in one or other of two distinct ways:

(1) it may be effected by the production or destruction of the entity 
within the surface, or

(2) by the passage of the entity across the surface.

To express this general axiom in symbols I put;—Q for the quantity 
required to occupy unit volume, as an indefinitely small element of volume, 
&S, at any point within the surface is occupied. Q is thus the density of the 
entity at the point, and however it may vary from point to point is a single 
valued function of the position of the point:

X (Q8N) = Qdxdydz is put for the quantity within a space N enclosed 

by the surface s at the instant considered,

2 (UQ88) is the quantity enclosed at a previous instant.

X (pQSN) is the quantity which has been produced within s during the 
interval, and

X (CQ8S) is the quantity which has crossed the surface inwards during 
the interval.

Then X (Q88) = X (0Q8S) + X (PQ8S) + X (CQ8S) 
is a complete expression for the Axiom.

Using 8 [ ] to express any change effected in the time 8t this may be 
written

3 [X (Q&S)] = 8 [X GW)] + 3 [X (CQ 88)]..................... (1).
And this equation (1) is the general equation of motion of any entity as 
founded on Axiom (I.).

10. General equation of Continuity.

Axiom II. When the entity considered is some particular form or mode 
of an entity which, like matter, momentum, or energy, can neither be 
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produced or destroyed, any production or destruction of a particular form of 
the entity at a particular place and instant of time involves the destruction 
or production, at the same place and time, of an equal quantity of the same 
entity in some other form or mode.

To express this in symbols let Q refer to the general entity without 
distinction of form or mode and Q2, &c. respectively refer to the several 
particular forms or modes of the entity.

Then since
S[SGQ^)] = O,
5 [2G&&S)] = - 8 [2 (PQ28S + &c.)]........................ (2),

which is a general expression for the law of conservation, and is the general 
equation of continuity in terms of the several distinct actions of exchange 
between the different modes of the entity.

11. Transformation of the Equations of Motion and continuity for a 
steady surface.

Equations (1) and (2) hold however large or small the space S and the 
interval 8t may be and whatever may be the motion of the surface s enclosing 
the space ; for the 8 covers the 2 ( ).

If however the surface s be steady or fixed in space the 8 may be covered 
by the 2 ( ) and the equations written

2 [8 (Q8S)] = 2 [8 (PQ8$)] + 2 [8 (CQ&S» ................(3),
X [8 G&8S)] = - 2 [8 (PQ28S + r)].................................(4).

Since these equations hold for indefinitely small spaces and indefinitely 
small intervals of time in the limit, when da-, dy, dz and dt are severally 
zero:—

2 {Q8S) = Qdxdydz..........................................(5),

and 2 [8 (Q 88)] = ~ (Q) dtdxdydz............................. (6).

In cases where Q is not a continuous function of t the meaning of such 
differential coefficients as that in the right member of equation (6) become 
unintelligible without further definition, and it seems desirable here to point 
out, once for all, in what sense they are used in this paper.

12. Discontinuity.

If Q is any function of xyz and t, which is single valued at every point of 
space at every instant, but which at a particular time t is discontinuous at a 
surface which is expressed by

</> = </>(«, y, z, t) = 0.
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Where </> has positive values on one side of the surface and negative 
values on the other, then putting Q, for the continuously varying value of 
Q where is negative and Q2 for Q where </> is positive, Q is at all times 
expressed by the limiting value of the function

1 + e”* ’ 
when n is infinite*.

For any finite value of n F is a continuous function of the variables, as 
are also the derivatives of F\ and substituting F for Q, the limiting values, 
when n is infinite, of any functions derived from F by any mathematical 
process are taken as the values of the function expressed by the same mathe
matical process performed on QT-

13. Having regard to the foregoing definition of the interpretation to 
be put upon the meaning of the differential coefficients in cases of discon
tinuity, the expressions obtained by equations (5) and (6) for the rates of 
convection into and production in such indefinitely small spaces may be 
treated as continuous functions of the coordinates.

Thus taking u, v, w for the component velocities of the entity, to which 
Q refers, passing a point x, y, z, relative to the surface of the elementary 
space dxdydz at rest or in steady motion, since u, v, w are single valued at 
each point at any instant of time the convection into the space in the 
interval dt is expressed by

dt dxdydz = — dt (wQ) + (vQ) + (wQ)| dxdydz

or at a point the rate of change by convection is ..........(7),
d q_ {d (uQ) d (vQ) d (wQ)l 
dt™- \~d^ + dz |

* Electricity and Magnetism, Maxwell, § 8.
+ Electricity and Magnetism, Maxwell § 8.

dF _ dt dt _n(Ql-Q^ c”* d<p 
dt 1 + ^(iTe^P 1 dt ’

I ^St=Q2-Qf

From which, taking n infinite, when 0 is negative = , when A is positive — =
and when 0=0 * * dt dt

dF_
dt~ (l + e11^)2

which is infinite, but which, integrated, from 0 negative to 0 positive over an interval St, indefi
nitely small, gives 
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whence substituting in equations (1) and (2) for the indefinitely small 
element dxdydz and the indefinitely small interval of time dt, these 
become:—

dt ft = dt (pQ) ~ (uQ) - (vQ) - (wQ)| dxdydz....... (8),

di ^^y^2 = — dt {pQi + &c.)| dxdydz ............... (9),

or at a point the rate of change is

ft^ = dt ~ [dx + iy + dz ........... W

(PQi) = ~ ^ (PQ, + &c.)..................................(11).

Equation (10) expresses the rate of change in the density Q at a point in 
terms of the densities of the actions of production and convection at that 
point. While equation (11) expresses the relation which holds between the 
densities of the several actions of exchange between the different modes 
of Q.

14. Moving Surface.

In the equations (5) to (11) the surfaces of the element of space (3/8 or 
dxdydz} are steady, and in equations (3) and (4) the closed surface over 
which the summation is taken is also steady—the 3 being covered by the X

If, however, the motion of every point of the surface be taken into account 
it is possible to sum the results of equations (7), (8), (9) over the space 
enclosed by a surface in any manner of continuous motion.

Putting u, v, w for the component velocities of the surface at the point 
x> y, z> then the component motions of the entity represented by Q relative 
to the surface at this point are respectively

u — u, v — v, w —w, 

and although u, v, w are only defined at the surface, since the motion of this 
surface is continuous, u, v, w may be taken as continuous function of x, y, z 
throughout the enclosed space. Then the rate of convection across the 
surface is expressed by

4 S cm - -///{a [(«-«)«]+4, [(- 5) ej

+ Kw — ™) QU dxdydz................ (12).
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The instantaneous rate of production within the surface is not altered by 
the continuous motion of the surface. Therefore equation (1) becomes

. “///{s [(“ ~ “1 ® + K’ -S) ® + E K" - «}
and integrating equation (10) over the surface, the rate of change in the space 
instantaneously enclosed as by a fixed surface is

^(dS^^^dS^^-
\ dt / dt

(uQ)+w + i(wQ)}dxdydz
whence substituting in equation (13) for

(14);

s

from equation (14), 

^[2(W] = X

V" +!!!{i (“Q)+i +i(wQ)} dxdydz (15),

or as it may be written

[S(Q^)] = S ' d _ d _ d _ d~
-r. n ~r + v w.dt dx dy dz.

n (du dv 
Ida: dy (16).



SECTION III.

THE GENERAL EQUATIONS OF MOTION, IN A PURELY- 
MECHANICAL-MEDIUM, OF MASS, MOMENTUM AND ENERGY.

15. These equations are obtained by taking Q in equations (1) to (16) to 
refer successively to the density of mass, the density of the component, in 
a particular direction, of the momentum, and the density of the energy.

The forms of the equations so obtained, as well as the circumstances to 
which they are applicable, depend on the definition given, respectively, to the 
three entities.

If this definition is limited, strictly, to that afforded by the laws of motion 
as distinct from any physical or kinematical properties of matter, the equations 
will be the most general possible and applicable to all mechanical systems. 
In which case by introducing separately and step by step farther definition 
of the entities the effect of each such definition on the form of the equations 
and of the expressions for the resulting actions, to be obtained by integration 
of the equations, will be apparent; so that the individual effects of the several 
particular physical properties of matter maybe analysed. While on the other 
hand if the definition is, in the first instance, such as that on which the 
equations of motion for fluids and elastic solids have been founded the 
equations so obtained will be essentially the same. And, although the 
significance of the several expressions in the equations as relating to accu
mulation, convection and production will be more clearly brought out they 
will afford no opportunity of analysing the several effects resulting from 
particular physical definition.

In this investigation the object sought, in the first instance, has been to 
render the equations the most general possible. Only introducing restrictive 
definition where the effect, of such definition, on the form of the expressions 
which enter into the equations and define the limiting circumstances to 
which the equations are applicable, becomes clearly defined.

16. A mechanical-system implies the existence, in the space occupied by 
the system, of an entity which possesses properties which distinguish the 
space so occupied from that which is unoccupied. If this entity includes 
everything that can occupy space, within the space occupied by the system, 
it is the mechanical-medium in which the system exists.
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The sense in which mechanical-medium is here used is not that in which 
the term ‘ medium ’ or ‘ medium of space ’ is generally used in mechanical
philosophy, nor yet that for which “matter” is used. For although that 
which is recognised as matter is the only entity included in the equations of 
motion which has the property of occupying position in space, it is found 
necessary in order to account for experience to attribute to matter properties 
extending through spaces which are not occupied by matter, and to reconcile 
such extension with the absence of any mechanical properties as belonging to 
space itself it has been recognised that there exists in space some other 
entity, besides matter, which has the property of occupying position and is 
recognised in mechanical philsophy as the medium of space or the ether.

To the ether are attributed such mechanical properties, whatsoever these 
may be, as are necessary to account for the observed properties of matter which 
are not defined by implication in the laws of motion, as well as to account 
for all the properties extending outside the space occupied by the matter. 
This amounts to an admission that these physical or extended properties are 
not inherent in the matter nor yet in the ether, or in other words that they 
are not the properties of the entity which occupies position in space, but are 
the consequence of the mechanical actions and of the arrangement of the 
mechanical system of the Universe.

If then everything that occupies position in space is included by definition 
in the mechanical-medium, experience affords no reason for attributing to 
such medium inherent properties other than those required by the laws of 
motion and the law of conservation of energy, and so defined, the medium is 
here designated a Purely-Mechanical-Medium.

17. Ihe properties of a purely-mechanical-medium, necessitated by the 
laws of motion are

(1) The property of occupying definite position in space;
(2) The continuity or continuance in space and time ;
(3) The property of definite capacity for momentum, i.e. definite 

mass;

(4) 1 he property of receiving and communicating momentum in 
accordance with the laws of conservation of momentum and energy.

Since the mass of any particular portion of the medium measures the 
quantity of that portion of the medium and has identically the same position 
in space as that portion of the medium, this mass is identified with the 
particular portion of the medium. The density of the mass at every point 
in space is thus a measure of the density of the medium at every point; and 
the equations of motion and continuance in time and space of the mass are 
the equations of motion and continuance of the medium.
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18. The equations of continuity of mass.

Putting p 8S

for the capacity for momentum or mass in the indefinitely small space &S 
and substituting p for Q in equation (2) the equation for conservation of 
mass becomes

8 [X (pp8S)] = 0 ..........................................(17);

and by equations (1) and (17) the equation of motion of mass becomes

8[2(p&S)] = 3[2(cp&S)]........................................ (18).

Whence for the indefinitely small element of space dxdydz and the inde
finitely small interval of time dt it follows by equations (7) that

dpu dpv dpv 
dx dy dz

which is the general equation for density of mass or medium at a point.

dp 
dt

19. Position of mass.

Taking x, y, z as defining the position of the indefinitely small steady 
space 8s, and putting px, py, pz successively for Q in equation (2), the equa
tions for the conservation of the position of the mass become respectively

X [3 {P(px) 3s}] = 0, 2 [8 {p(py)ds}] = 0, X [8 {^(ps) ds}] = 0 ...(20).

The equations for the rate of change of position of the mass within 
space over which the summation extends, become by equations (1) and 
(20)

8 [X (p«3s)] = 8 [X[c(p®) 8s}], &c., &c.......................... (21).

Since x, y, z are not functions of the time, it follows by equation (19), 
if x, y, z define the position of the centre of gravity of the mass in the 
steady space over which the summation is taken, that

dx 
dt

For in a fixed space,

® an(i S (pxds) = — [[[ x (d?U + Ac.') dxdydz;
X (pds) dt r 7 J J J \ dx J J ’

iw dpv dpw
te dy
Mp dxdydz

dz , &c., &c. (22).
>W^ dxdydz
Z /

^2(pds)} = x(^ds).

Also
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For a space moving with the mass by (15)

+2nż('OT,)+4('>”)+®
whence since x is not a function of t,

3s >...(22a).

S (pubs), &c., &c.

20. Before proceeding to the consideration of momentum and energy 
it will be found convenient to express certain general mathematical relations 
between the various expressions which enter into the equations for quantities 
into which p enters as a linear factor.

When Q is put for pq, where q is a factor which has only one value at 
each instant for each point in mass, but which value for the point in mass 
is a function of the time, then the derivatives of discontinuous functions 
having the meaning ascribed in Art. 12,

(pQ) _ (pp). (pg) 
dt " dt " dt ..................................(23).

And since by equation (17) (pp)_ n 
dt ’ 

d(PQ) = d(pq) 
dt p dt

......................................(24).

(eQ) ( d , . d , . d , . 1nd T = \fz(pU^ + dy(pV^
= — q + &cl - p lu ~ 4- &c.l I

(dx ) r [ dx J ' 
whence subtracting and having regard to equation (19)

dQ _ d(eQ) 
dt dt 

therefore by equation (8)

= p + U^ + &C. 
[dt dx

......................... (26).
d(PQ) 

dt
Again, if Q = pq = pq1q2 and Qi = pqt, Qz—pqt, by equations (26),

d(PQ) 
dt

= p\^ + ud^ + &c, 
r ( at dx= P g. + &c.| + q2

f dx
^-+A+^.
at ax

r.

...(27),

2
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and putting ęi and q2 respectively for q in equations (26) and substituting 
in the right member of the equations (27),

dQ d CQ) _ n (dQ, _ d(cQ2)y ,n(dQ1_ dW\\
dt dt ^\dt dt J ^'\dt dt /

'............. .  •
d GQ) _ d(pQ2) d(pQi)

dt q' dt dt

21. In the equations (25) to (28) p is subject to the condition of 
conservation of mass, equations (17) and (19). If instead of p we take p" 
as an abstraction of the density we obtain a corresponding but more general 
theorem, by putting

dp" (dp"u dp"v dp"w\ d(„p") ,
~dt " “ + dy+ dz J + dt .................... k ° >’

where the last term on the right expresses an arbitrary density : then

d(„Q) _ „ d(pq) d {pP") 
dt ? dt 1 dt ....................................(24 a),

dQ _ dp" „ dq 
dt q dt ? dt ......................(25 a).

d(cQ) „
dt 1

+ fee.') - p" (u + &c?) 
\ dx J ' \ dx /

Equating by (23 a, 24 a, 25 a),

dQ 
dt

dQ>Q) _ d(pp ) ,
dt " dt “

d {PQ} _ d(pp ) ,
dt 1 dt "

dx /

dx )'

(26 a).

And putting q = q.q2 and Q. = p"Q., Q2 = p"Q^ we have

dQ2 
, dt

d(eQ2)\ 
dt /

d(pp") + 9iP"
d2i + ud̂  + &Lc. 
dt dx

dQi 
. dt

d^Q^y 
dt /

d(pp")^_ <
= q^-ir+q.p + w C^' + fee.')

dx / ,...(27 a).

dQ d(eQ) _ d(pp") „ (dq^ _ dq.q, 
dt dt dt \ dt dx

From which it appears
dQ d(cQ) (dQ2 d(cQ2)y , (dQ. dGQQx d{pP")
dt----- dT = Vdt " ~1T) + q"\dt dt ) dt

d^pQ) d(pQ^) d (PQ.) d (Pp )
+ dt q'q2 dt
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22. Momentum.

The definition of momentum afforded or required by the laws of motion 
is, that the momentum in any particular direction is the product of the mass 
multiplied by the rate of displacement, in the particular direction, of the 
mass in which it resides. Since at each instant mass has position and 
capacity for momentum, and the rate of the displacement at the instant 
has magnitude and direction, momentum has position, magnitude, and 
direction.

Taking as before u, v, w to represent the component velocities of the 
mass passing a point at any instant, and p for the density of the mass at 
the same instant, the densities of the respective components of momentum 
are respectively

Mx = pu, My = pv, Mz = pw.

Substituting Mx for Q in equation (1) it becomes

3 [2 (A&S)] = 8 [2 (PMX8S)-] + 2 [(AW &c„ &c........ (29).
By equation (2) substituting PMX for pQlt

8[2(A^] = -8[X(PQ2&S + &c.)]> &c..................(30), 
where — 8 [2 (PQ^S+ &c.)] expresses the rate of destruction of momentum 
in direction x, in all other modes than that represented by MX8S within the 
space of &

23. Conduction of momentum by the mechanical medium.
As 2 (MX8S) represents the sum of all the momentum in direction x 

within the space S, there is difficulty in realising how momentum in direction 
® can be produced or destroyed in any other mode. If, as in this research, 
p^S is defined as including the total capacity for momentum within the in
definitely small space, 3)8, the production or destruction of momentum in 
direction x in any other mode than MX8S, at a point within the space 8(8, 
requires that momentum should have entered the space without having been 
conveyed by the motion of the mass across the surrounding space. The 
difficulty thus presented naturally raises the question as to whether such 
production or destruction is necessarily implied in the laws of motion ?—as to 
whether the entire exchanges of momentum cannot be accounted for as the 
result of convections by the moving mass ?

That it is possible for momentum to be conveyed across a finite space by 
the mass within the space, and at the same time the momentum of the mass 
within the space to be zero, has long been recognised, and follows directly as 
a geometrical consequence of the fact that momentum possesses the property 
of being negative in exactly equal degree with that of being positive; just as 
does electricity; so that a stream of negative momentum in any direction, 

2—2 
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crossing a surface in a negative direction, has exactly the same geometrical 
significance as an equal stream of positive momentum crossing the same 
surface in a positive direction. The result being the convection by both 
streams of positive momentum in the positive direction and negative 
momentum in the negative direction at equal rates, while- the sum of the 
momenta of the masses in the two streams taken together within the space 
is zero.

In such streams of momentum the action at a surface is, though purely 
kinematical, that of exchange of momentum between the spaces on the 
opposite sides of the surface, such exchange proceeding at a definite rate, 
which rate has a definite intensity at each point of the surface, and the 
direction of the momentum exchanged is the direction of the motion of the 
mass at each point. The condition that action and reaction are equal and 
opposite is thus completely satisfied—that is to say, not only is the action 
one of exchange of momentum, but it is also one of exchange of moment of 
momentum about every axis. Hence, where the boundary conditions of the 
medium admit of such opposite streams of momentum in different directions 
through the same space in the same interval of time, exchanges of momentum 
in any direction across any surface may be effected while the aggregate 
momentum is zero.

In this way, in the kinetic theory, the stresses in gases at any instant are 
completely accounted for, as the result of the convection of momentum 
conveyed by the molecules amongst which the motion is distributed uni
formly in all directions. But even in the case of gas such convection does 
not account for the maintenance of the distribution of velocities amongst the 
molecules. This requires that the molecules should exchange momentum, 
and such exchange as appears by equation (13) cannot be accounted for as 
the result of kinetic convection by moving mass, but requires mechanical 
action between the molecules. In the kinetic theory, therefore, it is assumed 
that ‘ forces ’ exist between the molecules, when within certain distances of 
each other, either as the result of varying stresses in the matter, or as exerted 
through intervening space.

From these and like considerations it appears that, to whatever extent 
the transmission of momentum from one portion of space to another may be 
accounted for as the result of convection by moving mass, the communication 
of momentum from one portion of mass to another requires either that it be 
transmitted through space occupied by mass otherwise than as moving mass, 
or that it be destroyed in one place and produced in another.

Unless, therefore, it is assumed that, while mass has continuous existence 
in time and space, momentum can cease to exist in one place and, at the 
same time, come into existence, in the same quantity, at another place, that is
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unless we accept action at a distance, and thereby preclude all further 
definition and explanation, it is necessary that the purely-mechanical- 
medium, in addition to the properties of occupying position, and having 
capacity for momentum, should have the property of transmitting or con
ducting momentum through the space it occupies otherwise than by the 
convection consequent upon the motion of the mass; and, to completely satisfy 
the condition that the direction in which the exchange is effected is the 
direction of the momentum exchanged, it is necessary that the direction of 
conduction should everywhere be the same as, or the opposite to, that of 
the momentum conducted—that the conduction should be by streams, real 
or imaginary streams, of real or imaginary momentum in the same direction 
as that of the momentum, just as in the case of convection, except that in 
the latter case the streams and the momentum are real; so that if I, m, n 
refer to the direction in which h is measured, which is that of such a stream, 
of which p is the intensity, positive or negative, of the rate of exchange 
across a surface normal to h, the intensities of the rates of exchange of 
momentum, in direction A, across the surfaces yz, zx, xy are respectively 
pl, pm, pn, and the intensities of the rates of exchange of the components of 
momentum, in the direction of x, y, z, respectively, are

across yz pl2, plm, pin,

zx pml, pm2, pmn,

xy pnl, pnm, pn2.

This property of conducting momentum (on which all mechanical action 
depends), necessitated by the laws of motion as inherent in a purely- 
mechanical-medium, must be continuous in time and space if the medium 
is continuous in time and space. As possessed by the medium, therefore, 
the property differs from the property of strength or that of resisting stress 
possessed in various degrees by matter in respect to the limits to the 
strength, which limits depend on the physical condition of the matter and 
have no existence in the medium. This difference as regards limits, however, 
does not affect the correspondence, in character, between the property of 
conduction of momentum by the medium and the property of sustaining 
stress in matter.

The magnitude of stress being nothing more nor less than a measure of 
the intensity of the flux of the component of momentum, in the direction 
of the stress across the surface on which the stress acts, if the intensity of 
stress at a point on a surface is defined to be the intensity of the flux of 
momentum conducted, as distinct from that conveyed by the motion of the 
mass across the surface, the notation used for the expression of the stresses 
iu matter becomes applicable for the expression of the components of 
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momentum conducted, as distinct from that conveyed, in a purely-mechanical- 
medium. Thus

Pxx, Pyx, Pzx, Pmjt Pyy, Pzyi pxz, Pyz, Pzz>

the expressions, used by Rankine for the component intensities of the stress, 
in which the exchange of momentum is in the direction indicated by the 
second suffix and is across the surface perpendicular to the direction indicated 
by the first suffix, may be defined to express the intensities of the rates of 
conduction of the components of momentum in which the momentum is in 
the direction indicated by the second suffix and is conducted in the direction 
indicated by the first suffix.

Whence, at any instant, the rates of conduction of the component of 
momentum from the outside into the indefinitely small steady element 
dxdydz are respectively expressed by the left members of the equations 
(30 A),

_ + dxdydz = Fxdxdydz \
{dx dy dz ) J J

— I ™ dxdydz = Fydxdydz -................. (30 A),
• CLOG Clll CLZ J

_ dpyz dxdydz = F dxdydz
(dx dy dz ) ° J '

Fx, Fy, Fz being merely contractions for the expressions in the left member.

24. Since, in order to satisfy the condition that action and reaction are 
equal, accumulation of momentum in the mode in which it is conducted is 
impossible, the expressions for the rate of conduction into the mass in the 
space dxdydz must also express the rates at which momentum in the mode 
in which it is conducted, is produced in the mass in the space outside the 
element and destroyed within the element. Whence it follows that Fx, &c., 
respectively represent the rates at which the densities of the respective 
components of momentum, in other mode than that of Mx, &c., are destroyed 
within the element, and as these are the only rates at which momentum 
within the element is destroyed—Fx, &c. define the values of (pQ2 + &c.') in 
equations (30), and the equations of continuity of the densities of the 
respective components of momentum in a purely-mechanical-medium be
come by equation (11)

= fx, &c„ &c........................................ (31),
CLb

and substituting in equations (29) we have by equation (10)

d-^&c-> &c............................. (32),
Clu dAj

which are the equations of density of momentum in a purely-mechauical- 
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medium expressed in terms of general symbols expressing the separate effects 
of the distinct actions of conduction and convection.

Substituting for Fx equations (30 a) and d(cMx)ldt from (7) we have 
the full detailed expressions for the equations of the densities of the com
ponents of momentum at a point

dMx {d . . d . . d , ) „ „
dT=\dx ^Pxz + P + dy ^Pyx + + Zz(‘Pzx + P11^’ &c’> &c"‘-(33)-

The equations (32) and (33) are the equations of conservation of mo
mentum in a purely-mechanical-medium, at a point, in which the first terms 
in the brackets on the right of (33) express the rates of change by con
duction, and the second the rates of change by convection.

The integrals of the right members of these equations transform into 
surface integrals, and thus they express the condition that the change of 
momentum within any space is solely the result of the passage of 
momentum across the surface of A

25. The conservation of the position of momentum.

It appears from the previous article that the condition of conservation 
of momentum requires that action and reaction should be equal and opposite, 
but this is all; so far p^, p^, &c. may be independent of each other, and 
there is no indication that exchange must take place in the direction of 
the momentum exchanged. This is however expressed by the equations of 
conservation of the position of momentum.

Taking x, y, z and pu, &c. as referring to a fixed point. Then multiplying 
each of the equations (33) by x, y, z, successively, we have

dMx x -rfpxx + puu) + &c.(, &C., &c.
CLOG I

(34),

or transforming, since x, y, z are not functions of t,

~ (apu) -p^-puu (d , . „
- X (Pxx + puu) + &c.

(ypu) - P.x - puv = - \~y (pxx + puu) + &c.| • ............... (35),

d / ,
^fzpiĄ-p^-pUW^ ^z {pxx + puu) + &C.

and corresponding equations, for xpv, &c. and xpw, &c.
The right members of these equations integrated over any space <8 repre

sent surface integrals.
The integrals of pxx, &c. on the left of the equations represent the 

respective rates of the displacement by conduction of the respective com
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ponents of momentum within >S', while those of puu, &c. represent the rates 
of displacement of momentum by connection within S.

Hence what these equations express is that the whole rate of displace
ment of momentum in S, less the internal rate of displacement, is equal to 
the rate of displacement of the momentum across the surface.

This, it appears, follows directly from the condition that action and 
reaction are equal—i.e. the equations of motion—and implies no relation 
between the components of conduction. Such conditions however follow 
from the further condition that the direction of exchange is the direction of 
the momentum exchanged.

26. Conservation of moments of momentum.
Subtracting equation (35) for ypw from that for ypv,

~ ypw) - - pyz)

= - (P*y + uv) ~ y (p^ + uw)} + &c..............(36);

whence in order that the rate of change in the moment of momentum about 
the axis of x may be expressed by a surface integral we have the condition, 
as previously obtained (Art. 23),

pzv = P^’ and similarly, that pxz = p„ and pyx= pxil................(36 a).

27. Boundary Surfaces.
The conditions at the bounding surfaces of spaces continuously occupied 

by the medium may be of two kinds, according to whether the surface 
divides the medium from unoccupied space, or separates two continuous 
portions of the medium which are in contact at the surface.

Taking r, s, t for distances measured from a point in the surface in direc
tions at right angles to each other, that in which r is measured being normal 
to the surface and lr, mr, nr, ls, ms, ns, lt, mt, nt for the direction cosines of 
r, s, t respectively, then since pxy = pyx, &c., &c.,

Pit = PxxK1 + Pyym* 4- pan^ + 2^mr?ir 4- 2pzxnrlr + 2pxylrmr
P«S = Pxxls + Pyym? + pzzns- 4- 2pyzm,n, + 2pzxnsl8 4- 2pxylsms
Pa =PxJ^ 4- PyyWt +pzznt- + 2pyzmtnt + 2pzxntlt + 2pxyltmt
pst =pM +Pyymsmt + Pa^nt + pyz (msnt 4- nsmt)

+Pzx (n8lt + lsnt) 4- Pry (lsmt + mjf) V... (37).
ptr =PmMr + pyymtmr +pzzntnr +pyz (mtnr + ntmr)

+Pzx (ntlr + hnr) + pxy (ltmr + mf.)
Prs pxx^>f + Pyymrms 4~ pzznt.n8 pyz (nirn8 4- nrms)

+Pzx Ark 4- lrns) 4- pXy(lr'ms+ mrls)
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Where the surface separates the medium from unoccupied space the 
stresses prr &c., are all zero at the surface, but where the surface divides two 
portions of the medium in contact, then the intensity of the flux across the 
surface at a point is the intensity of the rate at which such momentum is 
received by the one portion and lost by the other across the surface at the 
point, and by the foregoing notation prr, prs, prt respectively express the 
intensities of the rates of flux across the surface of the components of 
momentum in the direction in which r, s, t are respectively measured. 
These rates are the limiting values at the surface of the respective com
ponents of flux within the medium on either side of the surface in the 
directions in which r, s, t are measured, and are thus the limiting- values, at 
the surface, of the expressions on the right side of the equations (1).

28. Energy.

Although the half of the vis-viva (that is half the rate of the displace
ment of the momentum, or half the product of the momentum multiplied 
by the rate of displacement of the mass) now called kinetic energy, has long 
been recognised as the general measure of the mechanical-effect of mechani
cal-action through space, the recognition of energy as a physical entity has 
resulted from the discovery of the reversibility of actions by which 
mechanical-action produces physical effects, and of the linear relations which 
exist between the physical measures of the physical effects so produced, and 
the kinetic energy which has been expended in producing them.

The discovery of these relations and the reversibility of the actions 
having led to the recognition of the existence in the Universe of physical 
entities which could be changed to and from the mechanical entity kinetic- 
energy, these physical entities, although not otherwise mechanically definable, 
have become recognised as modes of the general physical entity of which 
kinetic-energy is one mode and the only mode which is subject to strict 
mechanical definition; and hence followed the recognition of the law of con
servation of energy.

Taking pxx, &c. to have the significance ascribed to them in Art. 23, the 
intensities of the components of mechanical action—that is the intensities 
of the components of the flux of momentum, by conduction, from the 
negative to the positive side across a surface of which the direction of the 
normal is defined by I, m, n—are respectively expressed by

Pxxi + Pyxn +PzXn> &c., &c.

These are the expressions for the time-measures of the intensities of the 
components of mechanical action, in the directions of the perpendicular axes 
of reference, of the mass on the negative side of the surface, on the mass on 
the positive side of the surface, at a point in the surface.
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Multiplying these time-measures respectively by u, v, w, the component 
velocities of the mass at the point, we obtain

u (Pxxi + pyx>n + p^n), &c., &c., 
which are the corresponding space-measures of the respective components of 
the intensity of mechanical action at the point.

Adding these and multiplying by 8s, the element of a closed surface, the 
integral over the surface is expressed by

I/[(uPxx + vpx„ + wpxz) I + {upyx + vpy!/ + wpvz) m + (up^ + vp^j + wp^) n] 8S, 

which is the space-measure of the mechanical action of the mass outside the 
closed surface on that within.

This (if there are no purely physical exchanges) is by the law of conser
vation of energy equal to the rate of change of energy in all its modes, 
within the surface—that is if there is no change by convection across the 
surface, which will be the case if the surface is everywhere moving with the 
mass.

The changes of energy may be partly in kinetic-energy and partly in 
other physical modes, according to the expression which is obtained by 
transforming the equations of momentum (33) by equation (26); multiplying 
respectively by u, v, w, integrating over the surface and adding, the equation 
becomes, when transformed by equation (15), taking U = u, &c., and assuming 
the actions continuous in space and time,

| JJf [p («2 + v- + w2)j dxdydz

7 du du du' 
+ pyxdy +Pzxd^ 

[ [ [ dv dv dv 
~JJJ ) +Pxydx +Pyyd^ +pxy

dw dw dw
+ Pxzd^+Pyzd^ + PadZl

(upxx + vp^j + wp^) I 

■ + (upyx + VPyy + WPy^ m 

.+ (ppzx + vpZy + wpzz) n

88. . (38).

The right member is here the measure of mechanical action over the 
surface moving with the mass; so that the left member expresses the rate of 
change of energy, resulting from the mechanical action within the surface. 
The first term in the left member is the rate of change in kinetic energy, 
within the surface, and the second term expresses the rate of change of 
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energy in other or physical modes within the surface as resulting from the 
mechanical action on the surface.

29. In a purely-mechanical-medium (including everything that has 
position in space and possessing no physical properties other than are required 
by the laws of motion) the kinetic-energy must include all the energy in the 
space over which the integration extends, hence as applied to such medium 
the second term on the left of equation (38) must be zero, however large or 
small the space over which the integration extends. Whence putting 
HE = p (u2 + v" + w2) and transforming equation (38) by equation (15), the 
equation of energy for a fixed space becomes

3S = ^[(ap^ + vpxy + wp^ + uE) I

+ (upyx + vpyy + wpyz + vE)m + (up^ + vp^ + wpzz + wE)«] dS... (39).

Whence since this holds whatsoever may be the size of the space en
closed, we have for the rate of change of the density of energy at a point, 
by differentiating the left member of equation (39) with respect to the 
limits
dE d . d . i \ i t x^dt^~dx + VPxy + WPxz) ~ dy (uPyx + + WPvz' “ dz ^UPzx + vp^+wp^

d (uE) d (vE) _ d (wE) 
dx dy dz

30. In order to simplify the expressions N may be put for the rate at 
which density of the energy, in whatsoever mode, is produced by the 
mechanical action at any fixed point in space, and Nx, Nv, Nz for the 
densities of the energies which have been produced by the components in 
the directions in which x, y, z are measured respectively, so that

N=NX + Ny + Nz.
TheQ = - {fx + i + Tz ’ &c-

, dN dNx dNy dNz
and jT = + -w-dt dt dt dt

= JJ vp^+wp^) l+(upyx+vpyy+wpyz)m+(upzx+vp^+wp^n} dS

Whence substituting in equation (40) it becomes 

dE dN d , 
di = + ~dt+dtW (43);
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which may be obtained from (1) and (2) together with the condition that E 
is continuous—and is the equation for the density of energy—in terms of 
general symbols expressing the densities of the distinct actions of conduction 
and convection at a point.

31. The condition of a purely-mechanical-medium.

Equations (40) and (43) are the equations of continuity of energy in a 
purely-mechanical-medium in which the relation between the stresses and 
strains is continuously, that the second term in the left member of equation 
(38) is everywhere and continuously zero. Transposing the expression under 
the integral in the second term in the left member of equation (38) by (36a) 
and equating to zero we have

(du dv div (dv dw\ (dw du\f dx + P™ dy + Ptz dz + P^ \dz+d^+Pzxfdx + dz)

(du dv\) +pAdy+dujrQ....... (44)-

Then, for convenience, expressing equation (44) as dR/dt = 0, equation 
(44) defines the action in the medium as being purely kinematical.

From the definition of p^, &c., &c. as components of intensity of a flux 
of momentum it follows geometrically that the value of the expression 
which forms the left member of equation (44) is independent of the direction 
in which the axes are taken. Hence, if i, j, k, are measured in the directions 
of the principal axes either of the rates of distortion or of the stresses at a 
point p and u, v, w are the components of the velocity in these directions, 
respectively, transforming to these axes we have by equation (44); since 
either;—

dv dw
^-+^- = 0, &c„ &c.; or pjk = 0, &c., &c.....................(45),

du . dv dw
.................................<46)-

From these three conditions it appears that no energy is transformed in 
distorting the medium. And we have as the three possible conditions in a 
purely-mechanical-medium

Pa = Pjj = pkk = 0 5 which is the condition of empty space 
, du dv dw . „ „ .,

Pu — Pjj =Pkk i and g T = 0 ; perfect fluid.

(46 a),

du dv dw dw dv du dw dv du
d^d^T^0'’ W dy+dz = ^^ Perfect rigidity.

32. The transformations of the directions of the energy, and angular 
redistribution.
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Kinetic energy has direction at every point, although not a vector, and 
the equations obtained by multiplying equations (33), respectively, by u, v, w 
are, respectively, the equations of energy in the directions of x, y, z.

For an element in a closed surface within the mass

I a/JM’) £+
dxdydz • ••(47),

&c., &c.
In these equations the members on the right represent work, in the 

directions x, y, z, respectively, done on the surface within which the in
tegration extends. And as these efforts are all in the direction of x, y 
or z, respectively, they involve no change from one direction to another.

But the second terms on the left of each of the equations represent 
production of energy in the directions x, y, z respectively, at the expense 
of the energy in the other directions.

It is thus shown by condition (44)—which is that the sum of these 
terms, from the three equations, is zero—that, putting &c., &c. for the 
densities of the rates of angular dispersions at a point, from the directions 
x, y, z respectively, these are

dRx / du , du du\ „ „

It is to be noticed that in a medium such that u, v, w do not represent 
the velocities of points in mass, Rx does not represent angular dispersion 
only, unless equations (44) are satisfied; and if not so satisfied dRx/dt would 
represent the work done against the apparently physical actions in the 
medium, as well as the angular dispersion.

The analytical separation of this action is obtained by transforming the 
general equation, which becomes

dR 1 , , , x / A du dv dw\dt~~ 9 ^Pxx + Pm +Pzz)V dx dy dz J

If (du dv\ (du
+ 2 \Pyx \dy~Tx) + Pzx \dz “ dx)}

1 . /du dv dw\- g (P^+Pyy+P't) ^ + d7j+Tz)

.(„ P^+pVy+Pzz\ du 1 ( (dM.d/o\
+ \Pxx 3 J dx + 2 \dy dx)

rdu dw 
\dz dx,

(47 a).
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From the member on the right of equation (47) it at once appears 
that the two first terms express angular dispersion only, while the second 
two terms express distortional motions only, which, by the conditions (45), 
are zero.

33. The continuity of the position of energy.
Kinetic energy has position; and hence, putting x, y, z for the point 

at which the density of energy is E, by equation (1)
8 [S {^}] = 8 [SUEx) &SJ] + 5 [S [/Ex) 8S}], &c„ &c. .. .(48), 

in which x, y, z are not functions of time. And if x, y, z are put for the 
centre of energy, w, v, w for the component velocities of the surface, as in 
equations (12) to (16), Art. 14, we have at any instant,

= 2{AW}, &c„ &c.............................. (49),
whence, differentiating with respect to time,

g S WJ = - [2 [^}] + [S &c„ &c......... (50).

Then, by equation (15), these equations become
dE dEu dEv dEw\ _ ' 
dt dx dy + dz \

+ 2 L dE . d (E™) , d (Exv) d (Exw)\ ’ 
K dt ~d^T +~d^~ + ~

S k. - x) + + + d^) §4
( \ at dx dy dz / J

+ 2 (EuSS), &c., &c................................................. (51).
Whence, for a fixed surface, since u = v = w = 0,

dx
dt~ 2 (E88) ’ &C’’ &c............................<52)'

For a surface moving everywhere with the mass so that u=u, &c., 
equation (51) becomes

+ &C..&C.

dt = 2 {A8S} ——— ............(53),
or- ^P{W^] = 2{®^(,#)&s| + 2(Eu8S) ............ (54), 

where, as in equation (42), differentiating with respect to the limits

or

(pE) (pXXU +PxyV + pxzW) + &c. + &C. ...| ........(55),

dt
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34. Discontinuity in the medium.
It is to be noticed that the expressions in equations (37) to (55) are 

adapted to the cases in which the medium is continuous, so that for the 
complete expression of the actions where the medium is continuous within 
closed surfaces, only, it is necessary to express the conditions at the bounding 
surfaces by using the expressions in equations (37).

These complete expressions might very properly be introduced at this 
stage. But as the necessity for the definite use of these does not arise 
until a much later stage in this research, and then arises in a comparatively 
simple case which has already been much studied in some of its aspects, 
it is convenient to proceed as if the medium were continuous until this 
stage is reached. See equation (132), Section IX.



SECTION IV.

THE EQUATIONS OF CONTINUITY FOR COMPONENT 
SYSTEMS OF MOTION.

35. Component systems may be distinguished by definition of their com
ponent velocities or their density.

By a component system of motion distinguished by velocity is here 
understood a system of motion, howsoever defined, in which the velocity at 
any point is not necessarily the velocity of the mass at that point either in 
direction or magnitude.

Taking, as before, u, v, w, to express the components of the actual 
velocities of the mass at the point x, y, z and time t, and p for the density 
of the mass, and u", v", w" as expressing the components, with respect to the 
same axes, of the velocity of a component system, there exist at each point 
the residual components

u' = u — u", v' = v — v", w — w — w".................... (56).
The sums of these components w" + u', &c. satisfy the equations (33) 

Section III., and the following equation, for the resultant system, and if one 
of these systems is subject to any definition, actual or conditional, the 
equation for the resultant system becomes the equation for the residual 
system.

It is a very general method in mechanical analysis to separate the motion 
of the mass at each point into two component systems, whenever the condi
tions are such that the independence of these systems is obvious. As, for 
instance, the motion of the mass at each point at any instant is considered 
as consisting of the motion of the centre of gravity of the whole mass at 
the instant together with another component system which is the motion at 
the point relative to the motion of the centre of gravity. But such instances 
have hitherto been considered as depending on special theorems, and do not 
appear to have suggested the study of the method which they involve as a 
general system of analysis apart from the existence of conditions which 
render the component systems completely independent.
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It appears, however, that the manner in which the rates of increase of 
the momentum and kinetic energy of the one component system depend on 
convection by and transformations from the other may be subjected to 
general analytical expression, even when the definition is arbitrary and only 
conditional.

This is accomplished by equating the expressions for the rates of increase 
of u", &c. at a point moving with the mass to arbitrary functions which, 
multiplied by p, express the rates at which density of momentum is trans
formed from the system pu' into the system pu" and represent the only rates 
of production of momentum in that system, so that the equations of motion 
of either of the component systems may then be obtained from equations 
(1) and (2) or (10) and (11) Section II. The equations so obtained will 
differ in form from the equations of the resultant system in five particulars.

(1) The equations for the component system will differ from that of the 
resultant system from the fact that u", v", w" do not represent the whole 
causes of convection, which are u, v, w: so that the rate of increase of Q by 
convection is not

- &'Q) + r W'Q) + 4 (w"Q)\ but - +^Q\ , &c„
(dx' 7 dyx ' dzx ') \ dx dy dz )

.............................
where the pre-suffix c" indicates convections by u" and c indicates the con
vections by u, inwards across the bounding surface of the element.

(2) A difference in the form of the equations also results from the fact 
that pu", pv", pw" are not the only modes in which densities of momentum 
m the directions x, y, z exist at a point in the medium. The rates of increase 
of density in the modes pu", &c. by conduction, into the steady element of 
space dxdydz are not the only increases other than by convection ; since there 
are the further possibilities of exchanges of densities of momentum between 
the modes pu", and pu', &c. existing at the same point in the same mass.

That such abstract exchanges, without mechanical action, must result 
from the definition by which the component systems are distinguished is at 
once seen, for to this definition u", v", w" are subject at each point and each 
instant. And therefore the rates of increase of u", v", w", the defined com
ponents of acceleration of the moving mass, expressed by

du" du" du" du" 0 „-T— -ł- u ----1- V -J----1- W -y- , &c. &c.dt dx dy dz
are subject to arbitrary definition independent of the actual accelerations of 
the mass. And

«" + u, + +_ u, rdgu + = 0
at \ ax ay az / \at) \ax )

R. 3
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F"
Taking —/7 , &c., &c.

as arbitrary expressions for these defined rates of increase and multiplying 
by p we have as the equations of continuity for the components of momentum 
pu", &c., &c. by equation (28) Section III.

= I (epu") + P ~ {pu"\ &c„ &c.......................(58),
lib lib ab

and again by the equations for the resultant system

^pu" + pu") = %-(cpu" + cpu) + Fx, &c., &c.................(59).
(Lb (Lb

Subtracting equation (58) we have for the other system

^- = i-Aepu') + FX-p^APu"), &C„ &C............................(60).

(Lb lib lib

It thus appears that
P^pO. &C„ &c.,

express rates of transformation of density of momentum from the component 
system pu' to the system pu", &c., &c., consequent on the geometrical conditions 
by which u", v”, w” are defined.

The arbitrary rates of increase of density of momentum represented by 
these transformations may be considered as variations either in an arbitrary 
system of stresses or an arbitrary system of convections to be determined by 
the actual definition.

(3) The equations of the component systems differ from that of the 
resultant system on account of the expression for the transformation of 
energy to and from each of the component systems in consequence of the 
definition to which they are subjected. The densities of each of these rates 
of transformation of energy are by equation (28), putting w" for qlt &c. 
respectively, the sums of the products of the densities of the component 
ratios of transformation of momentum to the particular component systems 
{dPpu"ldt, &c.) respectively multiplied by the component velocity (w", &c.) of 
the same system.

Thus expressing the density of energy so transformed at a point as 
pT(E"), &c., respectively, since there is no transformation of mass,

P (#/) = - fu + v' + )
at [at at at )

p W) = + \u" d^p + v''dp>p+w"d (pp^ i
r dt ( dt dt dt})
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From these equations it will be seen, at once, that the sum of the trans
formations to the two component systems is not necessarily zero or that the 
transformation is not wholly between E" and E'.

(4) The equations of energy for the component systems differ in form 
from that of the resultant system in consequence of the fact that the sum of 
the densities of the energies of the component systems, at a point, is not 
equal to the density of energy of the resultant system at that point, 
or that:

Ip (u2 + v- + w2)
= |p [u"2 + v"2 + w'2 + u'2 + v'2 + w'2+2 (u"u' + v"v + w"w')} . (02)

whence p.(EE" — E')~p (u"u + v"v + w"w')

Whence it appears that the transformation of energy is not simply 
between the systems E" and E', but also between each of these and the 
system (u"u' + &c.); so that besides the equations of energy of the component 
systems there is the equation of energy of the residual system to be 
considered.

The density of the rate of transformation to the residual system is by 
definition equal in value and opposite in sign to the sum of the rates of 
transformation to the energies of the component systems

Another expression for the transformation to the residual system is 
obtained by multiplying each of the rates of transformation of component 
of momentum to the component system, by the corresponding component of 
velocity of the other system and adding, as in equations (28).

The density of the rate of production into residual energy may be 
obtained in the same way by equation (28); then by equations (10) we obtain 
expressions for

(5) In the equation of motion for the resultant system of motion in a 
purely-mechanical-medium, d (R)/dt, the density of the rate at which energy 
is produced in other modes than E, is defined as zero; and hence the 
expression for this production disappears from the equation of energy. It 
does not however follow as a geometrical consequence that the expressions 
for d^R'ydt and d(R — R'^dt, obtained from the equations of momentum by 
equation (28), are respectively zero. But it does follow that whatever these3—2 
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values may be, they are pure abstractions resulting from the definition of 
the systems of motion, and are therefore transferences of such energy from 
the one system to the other. Therefore while it is necessary to retain 
these expressions in the equations of energy for the three systems, it is 
convenient to indicate that they express a transference by a pre-suffix T as 
d (TR')/dt.

36. Component systems distinguished by distribution of mass.

Taking, as before, p for the density of the mass at xyzt and p" for 
any defined density of mass at the same point, there exists the residual 
mass

P=P~p"..............................................(63).
The sum p" + p satisfies equations (33) Section III. for the resultant 

system, also equations (58) and (60), Section IV., for the component systems 
distinguished by the distribution of velocity, and if p" is subjected to any 
definition, actual or conditional, the equation for the resultant density defines 
the equation for residual density of mass.

The equations so obtained will differ in form from the equations for the 
resultant mass in one particular.

The fact that the integrals of p" and p do not, either of them, taken by 
themselves, represent the only mass included in the space over which the 
integrals extend, entails a difference in the form of the equations from that 
of the resultant system.

The rate of increase by convection of p" is not necessarily the only rate 
of increase, since there are possibilities of exchanges between the densities 
p and p" at the same point.

That such exchanges must result from the definition is at once seen, for 
dp"Idt is subject to these exchanges at each point at each instant, and there
fore the defined rate of increase of the component density p" at a point 
moving with the mass is subject to arbitrary definition independent of the 
rate of increase of the actual density.

Taking as in equations (24 a) Section III.

dTp" _dpf. dp'u dp"v dp"w
dt dt dx dy dz ............................'

as the arbitrary expression for this defined rate of increase, we have the 
equation of continuity for the component density

df' _d^)^d^
dt dt dt ...................................C64'’
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And by the equation for the resultant system
d(p" + p') _ dc (p" + p') _ \ 

dt dt
dp' dep _ dTp" 
dt dt dt

(65).

Then, since by equation (24), dp (pu)/dt = pdpu[dt, substituting in equation 
(32), the equation at a point for the resultant system is

du du du du dvu
jT + U-r- +V-J- + W -j- dt dx dy dz dt (66).

Then multiplying by p" and adding u — u to the left member 

and the equivalent udpp"Idt to the right member, we have for the equation 
of momentum of the defined density:

dp"u _ dc(p"u) _ „ dpu dTp"' 
dt dt ~P dt U dt 

...........................(6,)'

dt
and in precisely the same manner

dpu dcp'u_ , dp(u) _ dTp' 
dt dt ~P dt U dt 

dp (p'u) 
dt

...........................(68).

y....... (69),

37. Component systems of motion distinguished by density and velocity.
Again substituting u" and u successively for u in equations (67) and (68) 

we have the four equations
dp u _ dc (p 'u ) _ dp(p w ) _ „ dTu _ „ dcp _ j r o"u"i ' 

dt dt dt p dt dt LrH J
dp'u" dc{p'u") _dp{p'u"} _ , dTu" d^p" 

dt dt dt P dt dt

dp"u‘ dfp'u') _dp(p"u) _ „ dTu" dcp" p"Fx — pFx
dt dt dt P dt U dt p'

dpu' dc(p'u) _ dp(p'u') _ _ , dTu" , d^f p'Fx — pFx
dt dt dt P dt dt p" '

together with corresponding equations for v", w", v', w1.
Adding the last three of equations (69) together, it appears that 

d (pu - p"u") dc (pu - fu") _ dp (pu - p'u'f 
~dt dt dt- >-......... 

— p p'u' 
dt J



ON THE SUB-MECHANICS OF THE UNIVERSE. [3838 •

whence putting Mx" for p"u", Mx for pu — p"u", &c., &c., we have 
dMf dcMx" d^' „ dTu" ,,dTp"

dt dt dt ? dt U dt

dMx dcMx _ dpMx _ „ „ dTu" „ dTp"
dt dt dt x ? dt U dt }

............(H).

It is to be noticed, however, that these last equations might be obtained 
by the simple definition of (pu)", so that they do not express all the definition 
which results from the separate definition of p", u". The importance of 
this appears at once on proceeding to derive the corresponding equations 
of energy by multiplying the equations respectively by u" and u, and trans
forming, which process since u", v" have defined values, gives definite 
results, whereas the mere definition of the product (pu)" which leaves the 
definition of either factor incomplete would not admit of such derivation.

38. Distribution of momentum in a component system.

The condition imposed by the laws of motion, as the result of experience 
of physical actions,—that action and reaction are equal and opposite, and 
that the exchanges of momentum take place in the direction of the 
momentum exchanged,—will not of necessity be fulfilled by an arbitrarily 
defined component system. But should this not be so within all sensible 
spaces and times, the effects of one component system on the other will not 
accord with any physical action; so that for purposes of analysis the general 
expression for this condition in a component system is of the first im
portance.

It has already been shown that the first of the conditions requires that 
the integral rate of increase in each component of momentum, in a resultant 
system, shall be a surface integral, however small may be the limits (Section III, 
Art. 24). The same holds for a component system within defined limits; so 
that we must have, within such limits,

////{^ M W')} dxdydzdt

where so far qxx, qyx, &c. are arbitrary.

As in a resultant system it is necessary, in order to satisfy the second 
condition, that the integrals of the rates of increase of the moments of 
momentum should be surface integrals and that this may be the case within 
defined limits, it follows, as in Art. 26, that

I ~ S'vz) dxdydzdt = 0, &c., &c........................ (73), 
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which is the general condition to be satisfied by the component system pu , &c. 
if the analysis is confined to physical properties.

If this condition is satisfied by the system p"u", &c. it follows that since it 
is satisfied in the resultant system the same condition will be satisfied by the 
residual system pu — p"u".

39. The component equations of energy of the component systems as 
distinguished by density and velocity.

Multiplying the first of equations (69) by u" and transforming by 
equations (28 a), Section III., and putting p"Ex' for p" (u'f/2, we have 

d(p"Ef) dAp'Ef) d^p-Ef) „ ,,dTu" u"*dTp" fc ] 
~ ^dt Id dt ~Up dt + 2 dt '

Also multiplying the third of equations (69) by u’ and trans
forming (28 a) we have 
dP"Ex _ dc(p"Ex) = d„(/X) 

dt dt dt
=u« 10 _ „» +dfp.

\ p r dt J dt dt

Then multiplying the first by u and the third by u and 
adding, &c.

dffEx) _ dc(p"Ex) _ dp(p Ef) _ dTp uu 0"u" P | &c.
dt dt dt dt H p

, „ dT Ip") „ / ' "\ drU , P u Ec j= y + p (u - u ) —j— + --------- F &C.dt r dt p
Again, multiplying the second by u", &c.

dp'Ex dcf Ex') dp(pEf) _ „ ,dTu" u"- drp &
~dt dt dt ~U p dt + 2 dt + ’

Multiplying the fourth by u, &c.

dp Ex dc (p Ex) _ dp (p Ex)
dt dt - dt

, . dTu , w'2 dTp , , , „ , „
= u'p +-s--^r +upFx + &ic.r dt 2 dt

(74).

Then multiplying the second by u and the fourth by u" and 
adding, &c.

dp'Ex _ dc Ip E^) _ dp lp'Ex) _ dT {pu u") _ pu F 
dt dt dt dt p '

= + p' dAu -u") + pufF, + &c
dt r dt p
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The first of these equations is the equation of the component system 
p", u".

Then adding together the several corresponding terms of the five 
equations following the first, we have

d(PE-p"E") de(pE-p"E") dv(pE-P"E")
dt dt dt ' ............ (7°'’

for the energy of the system of momentum pu — p"u" 

.......................w

40. Generality of the equations for the component systems.

As the actions which are respectively expressed by the several terms in the 
equations (68) to (72) (remembering + are mechanically

\ at at at J J
distinct, these equations are perfectly general and may be applied to the 
analysis of any resultant system of motion existing in a purely-mechanical- 
medium, into any two component systems which are geometrically distinguish
able.

The motions in the two systems are not necessarily independent but the 
effects of the one on the other are generally expressed in the equations. 
Ihus it may be that neither of the component systems is a conservative 
system, since one system may be subject to displacement of momentum by 
and may receive energy from the other system, although they both exist in 
a purely-mechanical-medium. And it thus appears that there may exist 
a non-conservative system of motion in a purely-mechanical-medium; that 
is to say, it appears that, so far as one abstract system of motion is concerned, 
a purely-mechanical-medium may be possessed of physical properties in 
consequence of the simultaneous existence of another system of motion. 
Thus wheie the only motion apparent to our senses is that of a component 
system, (the other component system being latent,) although this exists 
in a purely-mechanical-medium, the apparent system will not of necessity 
follow the laws of a conservative system, but is expressed by equations 
involving terms expressing the effects of the latent system on the apparent 
system, which apparent effects depend on certain physical properties in the 
medium. Such apparent physical properties however receive mechanical 
explanation when the complete motion of it is known; or, on the other 
hand, the experimental determination of these properties may serve to 
define the latent component motion so as to account, in the equations of the 
recognised system, for the terms expressing its effect; as for instance the 
potential energy.
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41. Further extension of the system of analysis.

So far the complete expression of the equations of motion has been 
confined to the case of two component systems of motion. But by a precisely 
similar method either of the two component systems of motion may by 
further definitions be again abstracted into two or more component systems 
of motion which in virtue of the definition are geometrically distinguishable 
from each other and from the remaining component system.

If instead of taking u", v", w" to express the defined components of the 
motion after the abstraction of the residual motion, we take

u" + u'" + ^c„ v"+v'" + &c., w"+w"'+&c.

and for CQ put + C"Q + + &c., for TM' put PM" + PM"' + &c., and so on
for the other functions, expressions are obtained for the equations of as many 
component systems of motion as are distinguishable by definition.



SECTION V.

THE MEAN AND RELATIVE MOTIONS OF A MEDIUM.

42. Kinematical definition of mean motion and relative motion.

By the mean motion of the medium is here understood an abstract 
component system of motion of which the mass and the components of the 
velocity respectively satisfy certain conditions as to distribution;—

(1) The condition of continuous velocity, that the mean component 
velocities are continuous functions of x, y, z and t, however discontinuous 
the mass may be, Art. 12.

(2) The condition of being mean velocities, that the quadruple 
integrals, with respect to the four variables, of the respective densities of 
the mean-components of the momentum (the components of the mean 
velocity multiplied by the density of the mass at each point) taken over 
spaces and times, the measures of which exceed certain defined limits, shall 
be the same as the corresponding integrals of respective components of the 
density of the resultant momentum.

(3) The condition of momentum in space and time of the components 
of momentum of mean-velocities, that the integrals of the momentum of 
the mean velocities taken over the same limits as in (2) shall be respectively 
the same as in the resultant system.

(4) The condition of relative energy, that the quadruple integrals 
with respect to the four variables, taken over limits, of the products of the 
differences of the respective components of the actual, or resultant, and mean 
velocities, each multiplied by the density of the corresponding components 
of momentum of mean velocities, as defined in (2) shall be zero.

By the relative velocity of the medium is here understood the velocity 
which remains in the medium after the mean-velocity is abstracted from 
the resultant motion when this velocity satisfies certain conditions besides 
those entailed by the abstraction of the mean-velocity.

The conditions entailed by the abstraction of the momentum of mean
velocities are, besides the condition (4)—
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(5) The condition of the momentum of relative-velocity, that the 
mean densities of the components of momentum of relative velocity are zero.

(6) The condition of distribution in space and time of the momentum 
of relative velocity, that, taken over the same limits as the mean velocity, 
the means of the products of the respective components of the momentum 
of the relative velocities multiplied by any one of the measures of the 
variables are all zero.

The further condition that must be satisfied by the velocity left after 
abstracting the mean motion in order that this may be relative-velocity is:

(7) The condition of position of energy of mean and relative velocities, 
that the mean values of the products of relative energies, as defined in (4), 
multiplied by measures of any one of the variables, shall be zero, or that the 
mean position of the energies of the mean-velocity, together with the energy 
of relative-velocity, shall be the mean position in time and space of energy 
of the resultant system.

By the mean density of mass is here understood an abstract system of 
mass which satisfies certain conditions as to distribution.

(8) The condition of continuous density, that the mean density is a 
continuous function of the variables.

(9) The condition of mean density, that the quadruple integrals with 
respect to the four variables of the mean-density taken over spaces and 
times which exceed certain defined limits shall be the same as the corre
sponding integrals of the actual density.

(10) The condition of distribution of mean-density, that mean position 
in time and space of the mean-mass shall be the same as the mean position 
of the resultant mass.

By the relative density of the medium is here understood the density 
(positive or negative) which remains in the medium after'Lthe mean-density 
has been abstracted, when this residual density satisfies certain conditions 
besides those entailed by the abstraction of the mean-density.

The conditions entailed by the abstraction of the relative density are:

(11) The condition of relative density, that the mean of the relative 
density is zero.

(12) The condition of distribution of relative mass, that the product 
of relative density multiplied by the measure of any one of the variables 
has no mean value when taken over the defined limits.

The further conditions which have to be satisfied by the relative density 
of mass are:
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(13) The condition of momentum of relative mass, that the products 
of the components of mean velocity multiplied by the relative density of 
mass have no mean values over the defined limits.

(14) The condition of distribution of momentum of relative mass, 
that the products of the components of mean velocity multiplied by the 
relative density of mass and again by the measure of any one of the variables 
have no mean values over the defined limits.

(15) The condition of energy of relative mass, that the products of 
the squares of the components of mean velocity multiplied by the relative 
density have no mean values when taken over limits.

(16) The condition of position of energy of relative mass, that the 
products of the squares of the components of mean velocity multiplied by the 
relative density and again by the measure of any one of the variables have 
no mean values.

By the mean motion of the medium is here understood the product of 
the mean-velocity multiplied by the mean density, which is also the density 
of the mean momentum. And by the relative motion of the medium is 
understood the density of the resultant momentum less the mean mo
mentum.

In the same way by the density of energy of mean-motion is understood 
the product of the square of mean-velocity multiplied by the mean-density 
of mass; and by the density of energy of relative motion is understood the 
density of energy of resultant motion less the density of energy of mean
motion.

43. The independence of the mean and relative motions.

It will be observed, that according to the foregoing definitions, in any 
resultant system which consists of component systems of mean- and relative
motion, satisfying all the conditions, all the motion which has any part in 
the mean momentum or in the mean-moments of momentum is, by integra
tion, separated from the relative-motion in such a manner that the motion 
of each component system is subject to the laws of motion. Action and 
reaction being equal and opposite and the exchanges of momentum taking 
place in the direction of the momentum exchanged. And that the relative 
motion, separated out by integration, is confined to motions of linear and 
angular dispersion of momentum the effects of which on the mean-motion 
are such as correspond to the effect of observed physical properties of matter.

It also appears that all the conditions must be satisfied in the resultant 
motion in order that such separation may be effected.
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44. Component systems of mean- and relative-motion are not a geo
metrical necessity of resultant motion. A very general process in Mechanical 
Analysis is to consider motion in a mechanical system for a definite interval 
of time as consisting, at each point of space at any instant of time, of com
ponent velocities which are the mean-component velocities of the whole mass 
over the whole time, together with components which are the differences 
between the actual components at the point and instant, and the mean
components. These systems respectively satisfy the conditions as to con
tinuous and mean-velocity (1) and (2). Also the condition of relative-velocity 
(5), and that of relative-energy (4), but they do not satisfy the conditions as 
to distribution of mean-momentum or any of the other conditions; and hence 
are not mean and relative, except for particular classes of motion, in the 
sense in which these terms have been defined.

Such component systems of constant mean-motion in a defined space and 
time are a geometrical necessity in any resultant system. And, although 
I am not aware that it has been previously noticed, it appears that con
sidering the number of geometrical conditions to be satisfied by the momentum 
of mean-velocity and of relative-velocity ((1), (2), (3), and as a consequence 
(5) and (6)), and the opportunities of satisfying them, the latter are sufficient 
for the former; so that every resultant system of motion existing in a defined 
space and time consists of two component systems which satisfy the con
ditions (1), (2), (3), (4), (5) and (6), although they do not, as a geometrical 
necessity, satisfy all the further conditions required for mean and relative 
motion as here defined.

45. Theorem A.
Every resultant system of motion consists of a component system of mean 

motion which satisfies all the conditions of mean-velocity (1, 2, 3), and the 
condition of relative energy (4), but not, of necessity, that of position of relative 
energy together with, another system which satisfies the conditions of 
relative velocity (5) and (6), but not of necessity (7), the condition of distribu 
tion of relative energy.

Taking the mean-velocity at a point x, y, z at the time t within the 
defined limits, to be expressed by

u" = A + (x — x) Ax + (y — y) Av + (z — z) Az + (t — t) At, &c., &c. ...(77), 
where the barred symbols refer to the mean-position of the mass within the 
limits, whether time or space, thus

ffffxpdxdydzdt 
Mpdxdydzdt ’ ...................................

the limits being assumed ; the conditions to be satisfied by the component 
velocity u' are:
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(1), (2), (5); that

u") dxdydzdt = 0,
(3), (6)

(4)

fj’j’j xp (u — u") dydxdzdt = 0, &c., &c., &c. • (79).

u — u") u" dxdydzdt = 0.
/

The last of these conditions will be identically satisfied if the others are 
satisfied. Hence there are only five conditions to be satisfied, while in the 
expression for u" there are five arbitrary constants, which are determined by 
putting 

. ffff(pu) dxdydzdt
(80),

then integrating the four equations of position and obtaining the values of 
Ay, Az, At by elimination from the resulting equations. These values 

must be real since the Ax, &c. enter into the equations in the first degree 
only. The same reasoning applies to the component velocities v" and w"; so 
that the first part of the theorem is proved.

To prove the second part all that is necessary is to observe that the con
dition (7) requires that 

.1^ u") u" dxdydzdt = 0 ........................ (81),

when it is at once seen that this condition is not satisfied as a geometrical 
consequence of the definition of u", since the terms involve products of the 
variables x (y — y) pAy, &c., which do not necessarily vanish on integration : 
so that the second part of the theorem is proved.

46. Theorem B.

In a similar manner it appears that every resultant system of mass 
consists of a component-system of mean-mass which satisfies all the conditions 
(8), (9) of mean density, and the conditions of relative density (11) and position 
of relative density (12), also the condition of momentum of relative mass (13); 
but does not satisfy, of necessity, the condition of distribution of momentum, 
of relative-mass, or of mean-mass (10), (14), nor the conditions of energy of 
relative mass, (15) and (16).

Taking the mean-density of mass at x, y, z and t to be
p" = D+ (x — x) Dx+(y — y) Dy +{z — z) Dz + (t—t) Dt........(82), 

where, as before, the barred symbols refer to the mean position of mass 
between limits of time and space. And putting Ą, xlt ylt &c„ as referring to 
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the mean position in time and space, not of the mass, but of the time and 
space between limits. Since the mean value of p" between limits is not the 
mean value at the centre of gravity or epoch, the conditions to be satisfied 
are: 

(8), (9), (11)

=D+-&>»«+
(10), (12) b..(83),

>0- p") dxdydzdt = 0, &c., &c., &c.

which five conditions determine D, Dx, Dy, Dz and Dt whatever may be 
the distribution of mass, so that putting p' — p—p" the conditions (11) 
and (12),

JJjjp'dxdyd

xp dxdydz = 0, &c., &c., &c.
(84)

2 = 0

are satisfied.
Again, since the constants A and D in the equations (77 and 83) for u" 

and p" are respectively the values of u", p", at the mean position of mass 
respectively, and the constants Ax, &c. and Dx, &c., are the differential 
coefficients of u" and p", respectively, the equations may be written

u" = u" + u, &c., &c.) /e_.r • • •'•.............................p" = p" + p', &C, &cJ

Then multiplying the corresponding members, 
pu = p"u" + p'u" + pu', &c., &c.............................. (86),

whence it appears, since the integrals of the last three terms on the right 
are by definition of necessity zero, that

pudxdydzdt = JjjJpu" dxdydzdt ............... (87),

so that condition (13) is of necessity satisfied, which concludes the proof of 
the first part of the theorem.

To prove the second part. Multiplying the equation respectively by x, 
&c., then, since the integrals of xpu, &c. are zero while those of aPp are not 
of necessity zero, and the expression of xpu, &c. includes the terms 

a^p' , &c„ it appears that the product p"u" does not of necessity satisfy 

the condition of position of mean-momentum for every distribution of mass, 
which proves the second part of the theorem.
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It has thus been proved that in order that a resultant-system of motion 
may satisfy the condition of consisting of a component system of mean
momentum which is a linear function of any one or more of the variables 
together with a component-system of relative-motion which satisfies all the 
conditions (1) to (15), the relative motion and the relative-mass must, what
ever may be the mechanical cause, be subject to certain geometrical 
restrictions relative to the dimensions of the limits over which the mean 
motion is taken. With a view to studying the mechanical circumstances 
which cause such restrictions, where they are shown to exist by the existence 
of systems of mean and relative motion, it becomes important to generalise, 
as far as possible, the geometry of these restrictions.

47. General conditions to be satisfied by relative-velocity and relative
density.

The general condition to be satisfied by relative-velocity is that, in 
addition to the conditions which follow from the definition of mean-velocity, 
the integrals of the products of the density of relative component energy, 
pu"u, multiplied by the measure of any variable, are zero, or

fff jxpu"u'dxdydzdt = 0, &c., &c., &c......................(88).

Hence as u" is a linear function of the variables these conditions will be 
satisfied if pu, multiplied by any variable, and again by the squares of any 
power of this variable, all vanish on integration with respect to all four 
variables, so that the general condition is at once seen to be that pu', &c., the 
components of momentum of relative velocity, integrated between limits 
with respect to any two independent variables independent of the variable 
in which u" varies, must have no mean value; and in the same way for v", 
w", since v", w" are not necessarily functions of the same one variable, in 
order to generally satisfy the conditions pu, pv', pw must vanish when ' 
integrated with respect to any two variables.

Again when the previous condition of relative velocity is satisfied, it 
appears that the general condition of position of mean-momentum,

Jljjxp"u"da>dydzdt = JJ'jjapudxdydzdt , &c., &c.

requires that the products a^p', &c. shall vanish when integrated between 
limits with respect to all four variables. Whence we have for the condition 
of relative mass—that the integrals of p' taken between limits with respect 
to any two independent variables which are independent of the variable in 
which u" varies &c must be zero.

If both the previous conditions are satisfied it appears that the conditions 
(15) and (16) will be satisfied for

pu — p"u" = pu" + pu'...................................(89), 
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and since u" is a linear function of the variables

(pu - p"u")u" = p'u"a+ pu'u".............................(90),

whence the integrals of both the terms on the right vanish by the previous 
conditions.

And further, the conditions

^jjx(pu — p"u") =0, &c„ &c„ &c............................(91)

are satisfied; for by taking u" constant in equation (77), by the definition of 
u" we have one relation between four independent variables, so that there 
are three independent variables with respect to which u" is constant. And 
in exactly the same way there are three independent variables with respect 
to which p" is constant. Therefore w"2 and p" are each functions of one 
independent variable only. Hence in the expressions

xpu’2 + xpuu", &c., &c.,

since v", w" are not functions of the same variable as u", p'x, &c. must vanish 
when integrated with respect to any two variables, or u", v", w", must be 
constant. The factors of p' and pu are each functions of two independent 
variables only, and hence these terms vanish on integration between limits 
with respect to all four variables by the previous conditions of relative density 
and relative velocity.

Whence it appears that the general conditions, besides those which follow 
from the definitions of mean velocity and mean density, that must be 
satisfied by the momentum of relative motion and by relative density, are 
that these must have no mean values when integrated between limits with 
respect to any two independent variables independent of the variable with 
respect to which u" varies, &c. And it is only resultant systems in which 
these conditions are satisfied that strictly consist of dynamical systems of 
mean- and relative-motion.

That these conditions can be strictly satisfied by any system within finite 
limits seems to be impossible; as for this it would require that, in a purely 
mechanical medium, there should be, in the same space and time, two masses 
moving in opposite directions, such that at each point the density of the 
momentum of the one was equal and opposite that of the other. It is how
ever possible to conceive masses with equal and opposite momenta at any 
finite distance from each other, and in such cases the conditions may be con
ceived to be satisfied to any degree of approximation.H. 4
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48. Continuous states of mean- and relative-motion.

The abstract systems of relative velocity and relative density as defined 
in the previous article must, as a geometrical necessity, be of an alternating 
character in respect of some of the variables, such that the respective means 
of the positive and negative masses of relative densities, and the positive 
and negative momentum of relative velocity, taken over the limits as to any 
two variables, balance. And as a consequence the distribution of such 
relative-masses and relative-velocities, whether regularly periodic, as in the 
case of waves of light or sound, or such as the so-called motions of agitation 
among the molecules of a gas, involves a geometrical scale of distribution 
defined by the dimensions of the variables over which the alternations 
balance.

Such scales of relative-density and velocity, clearly, define the inferior 
limits of the spaces and times over which the resultant system can consist 
of systems of mean- and relative-motion. But there is no necessity that the 
defined space and time over which the system of mean-motion extends should 
be confined to the dimensions of such scales. That is to say the defined 
space and time, over which the mean-system may be a linear function of the 
variables, may be in any degree larger than the minimum necessary for the 
satisfaction of the conditions of relative-density and relative-velocity, since 
these conditions will be satisfied for the whole space if they are continuously 
satisfied in every element of dimensions defined by these conditions.

49. Under such circumstances the expressions for the mean-motion 
admit of another interpretation, one which has already been discussed in a 
paper on “ The Theory of Viscous Fluids*.”

In this expression the mean-velocity at any point x, y, z, t is defined as 
the mean taken over an elementary space and time, of dimensions defined by 
the scales of the relative-velocity and density, so placed that the mean 
position of the mass within the element is defined by x, y, z, t.

Then, since by definition the relative-velocity and relative-density, as 
defined by integration over the whole space and time, have no mean value in 
the element, the mean velocity at x, y, z, t (the mean position of mass) 
obtained by integration over the element will be the same as that at the 
same point obtained by integration over the whole space and time, as in the 
first of equations (79); and since, by definition, not only the relative density, 
but also the variations of relative density, with respect to any variable, have 
no mean values in the element, the mean-density at the mean position 
x, y, z, t, obtained by integration over the element as in equations (87) will 
be the same as that obtained (as in the second equation (89)) by integration 
over the whole space and time.

* Royal Soc. Phil. Trans. 1894, pp. 123-—164.
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It thus appears that p", u", in equations (89) to (91) may be taken to 
represent the values of the mean-density and mean-velocity at x, y, z, t, as 
defined by integrations with respect to two variables over an element having 
dimensions defined by the scales of relative-velocity and relative-density, 
so placed that the mean position of the density in space and time is at 
x, y, z> t.

50. The instruments for analysis of mean- and relative-motion.

It further appears that, since in the method of Arts. 43 and 44 u' may be 
taken to represent any entity, quantities consisting of the squares and 
products of u, u", u, F/p may by the theorems of those articles be separated 
into mean- and relative-components which satisfy the conditions Art. 42, (1), 
(2), (3), (4), (5) and (6), respectively, the mean components being linear 
functions of the variables, and the relative components having no mean 
value when integrated with respect to any three independent variables over 
dimensions determined by the scales of relative-velocities and relative
density. And in the case of the quantities p', pu', &c., subject to the further 
definition Art. 48, but only in the case where the relative components will 
have no mean values when integrated with respect to any two independent 
variables over the same scales. But in either case, if Q expresses the density 
of any function, integrating over definite limits about any point x, y, z,t as 
mean position of mass at that point we have

JSHQ dxdydzdt _ Q„ 
dxdydzdt ’ 

and
JM - Q") dxdydzdt = 

dxdydzdt ’
and putting h and k for any two variables, 

fff/^ ~ dxdydzdt = 0, 

////— dxdydzdt = 0.

.......................... (92).

Equations (92) are thus the general instruments of mean and relative 
analysis.

51. Approximate systems of mean- and relative-motion.

The interpretation of the expressions for mean- and relative-motion con
sidered in the last article is adapted to the consideration of systems in which 
the mean motion, taken over spaces and times which are defined by the 
scales of relative-density and relative-velocity, is everywhere approximately 
a linear function of the variables measured from the mean position and mean4—2 
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time. Thus if p" and u" are any continuous functions of the four variables 
x, y, z, t, taking x^?,,^ as referring to a particular point and time, then at 
any other point x, y, z, t,

p” = p^x - x0) + &C. +1 (x - + &c.

«"=u^x - O.+&°- 4 (SO,+&c- 
.........(93),

where the differential coefficients are all finite. Therefore as (x - «0), &c. 
approach zero all terms on the right except the first approximate to zero, and 
the terms of higher order which involve as factors multiples of the variables 
of degrees higher than the first become indefinitely small compared with the 
linear terms. It is therefore possible to conceive periodic or alternating 
functions of which the differential coefficients, continuous or discontinuous, 
are so much greater as to admit alternations to any finite number being 
included between such values of (x — x^, &c., as would leave the terms of 
the second and higher orders indefinitely small as compared with those of 
the first order, and those of the first indefinitely small as compared with the 
constant term. Therefore as long as p" and u" are finite and continuously 
varying functions of the variables it is always possible to conceive systems 
of relative-density and relative-motion which together with their differential 
coefficients satisfy the conditions of having approximately no mean values 
over the limits, and thus to any degree of approximation satisfy the con
ditions necessary to be relative-component systems to the mean system 
p0"u" + &c. within the limits defined by the scale of relative motion.

The method of approximation therefore consists in obtaining 

p", u", p"u", &c., &c., 

and the variations of these, Q", when Q is any function of 

p"u", p", p, p'u,

by integrating over the element taken about x, y, z, t, as the mean position, 
then using these quantities as determined for x, y, z, t, to express by 
expansion

p'u", &c., &c.,

for any other point within the limits of integration as in equation (93) 
so as to obtain the mean values of these terms in the equations by integration 
over the elements, neglecting the integrals of all terms which involve as 
factors functions of the increments of the variables of degrees higher than 
the first: and in this way may be obtained any necessary transformations of 
products of mean inequalities and rates of variation, as

u"dp"u" = dp"u"2 — u"p"du", &c.
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It thus appears that the only motions neglected are those which are 
defined as small by the conditions, being of the second degree of the dimension 
of the scale of relative motion, while those retained may have any values at 
a point, and are, within the limits of approximation, linear functions of the 
variables; so that within the same limits p, pu', &c., &c., satisfy by the 
special definition the conditions of having no mean values over the limits of 
any two variables; and generally Q' has no mean value over three independent 
variables.

As has already been pointed out the maintenance of such a system must 
depend on the distribution and constraints, and the process of analysis 
consists in assuming such a condition to exist at any instant, and then from 
the equations of motion ascertaining what circumstances, as to distribution 
and properties of conduction, the actions of convection and transformation by 
and to the relative-motion on the variations of the mean-motions will be to 
increase or to diminish these variations of the first and second orders.

52. Relation between the scales of mean- and relative-motion.
From the previous article it is clear that the absolute dimensions of the 

scale of mean-motion, as determined by the comparative values of the terms 
of higher orders as compared with those of the lower, do not enter into the 
degree of approximation to which the conditions of relative-mass and 
velocity are satisfied, except as compared with the scale of the relative
motion. But it does appear that the degree of approximation depends on 
the comparative values of these scales. And hence it is only under circum
stances (whatever these may be) which maintain distributions of mass and 
velocity which admit of complete abstraction into two systems widely 
distinct as to relative scales, that systems of mean and relative motion can 
exist.

Thus, as we have previously pointed out, it is not sufficient that the 
relative motion, or one class of motions such as the motion of the molecules of 
a gas in equilibrium, should be subject to superior limits by the scale of 
distribution. It is equally necessary that the scale of variation of mean 
motions, such as the mean motions of a gas, should be subject to superior 
limits (whatever may be the cause) which prevent the scale of these mean
motions approaching that of the molecules. And it is the existence of 
circumstances which secure both these effects, which is indicated by resultant 
systems which satisfy the conditions of mean- and relative-motion as defined.

It has been already proved that the existence of component systems 
which satisfy the conditions of mean position of density and of relative 
energy, as well as those of mean-density and mean-position of momentum 
of mean-velocity, is not a geometrical necessity of the definition of mean
motion as is the existence of component systems which satisfy the latter 
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conditions only. Were it not so there would be no point in the analysis, for 
then the existence of such component systems would reveal no special 
circumstances as to the geometrical distribution of the medium, or the motion 
in the medium, whereas it has now been shown that the existence in such 
systems of mean- and relative-motion, as indicated by the observed mean
motion and the apparent “ physical” properties of the medium or matter, 
depends (if in a purely mechanical medium) upon circumstances which 
constrain the geometrical distribution of the motion of the medium. Thus 
the application of this method of analysis affords a general means of studying 
the conditions of the medium, either intermediate or fundamental, which 
would admit of such relative or latent motion as is necessary to account, 
as a mechanical consequence, for the apparently physical properties of matter 
and the medium of space.



SECTION VI.

THE APPROXIMATE EQUATIONS OF COMPONENT SYSTEMS OF 
MEAN- AND RELATIVE-MOTION.

53. These equations must conform to the general equations of component 
systems as expressed in the equations (61) to (76), Section IV.

Thus if in equations (69), (70), (71), together with equations (74), (75), (76), 
p", u" and p'u are at any time subject to the respective definitions for mean- 
and relative-motions, these suffice, for the instant, to determine the rates of 
transformation (as expressed by arbitrary functions) in terms of the several 
defined rates of convection and production.

Then these rates of transformation, as expressed in the defined symbols, 
having been substituted in the equations, these equations express the 
approximate rates of change of the mean and relative component systems 
at the instant.

These equations express, in terms of the so far defined mean and relative 
quantities, the initial approximate rates of change in the defined quantities 
and thus afford the means of studying whatever further conditions must hold 
in the distribution of the medium in order that these rates of change may 
tend to maintain or increase the degree of approximation to which the 
conditions of mean- and relative-motion are initially subject. This study of 
the further definition, however, must of necessity follow the complete 
expression of the initial equations, to which this section is devoted.

54. Initial conditions.
The initial conditions for approximate component systems of mean- and 

relative-motion, as defined in Arts. 50 and 51, Section V., define all mean 
quantities as continuous functions of the variables, such that within the 
limits over which the means are taken they are constant to a first approxi
mation, whether they are the means of density, means of velocity, or means 
of component momentum; also the means of any products or derivatives of 
products, of velocity, or density, the means of any products of mean and 
relative quantities, while the products of the relative quantities, correspond
ing, multiplied by the density, are such that their means taken over the same 
limits are zero.
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Thus if Q be any term expressing increase of density of mass, momentum, 
or of energy for the resultant system, or for either of the component systems 
at a point, x, y, z, t, at distance 8x, 8y, Sz, 8t,

^^Qdxdydzdt dQ"
ffffdxdydzdt dx ...................... (94),

Q' = Q-Q"
satisfy the conditions (1), (2), (3), (4), (5) and (6), Art. 42, of being respectively 
mean and relative, approximately,—that is to say Q" is, approximately, a 
linear function of the variable, and Q' has approximately no mean value 
when integrated over any three independent variables.

Also if is a derivative of any quantity 
dx

and

/ dQ\ _ d
\dx) dxW }

0 {dQ2y' ^d^'Q^ _ QfdQ, 
dx dx dx

(95).

55. The rate of transformation, at a point, from mean-velocity, per unit 
of mass.

From equation (58) or the first two of equations (69) transforming by
equation (19), 

du" „ du" +udt dx
du" „ du" 
fly + W df+ v"

, du" , du" , du" d .
+ U df+V ^ + W dz=dt^U > &C-’ &C............ (96)'

The first four terms in this are all mean accelerations, while the last 
three terms on the left are such that multiplied by p have no mean values— 
are entirely relative-accelerations—whence by definition it follows that since 
dufdt is a mean-acceleration the right member must contain terms which 
exactly cancel the last three terms on the right, and that these form the only 
relative terms it can contain. These terms which represent the acceleration 
at a point per unit mass, due to convection of mean velocity by relative 
velocity, are the only transformation from mean velocity at a point.

Since after abstracting these terms the right member remains wholly 
mean, we have

= u’ + &c. + ..................................(97).dt dx \ dt J v ’

56. The rate of transformation at a point from relative velocity, per unit 
of mass.

From equations (60), or the last two of equations (69),
= d^Pu.) + Fx-p be., &c......................(98).

at at at
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+^r............................. (99),

In this the term on the left is, by definition, such as has no mean value, 
hence taking a mean by equation (92), Section V.

„ (dpu'y = \d(cpu) 
? \ dt J [ dt

or dividing by p" it appears that the transformation from relative-velocity to 
mean-velocity, at a point, is expressed by

1jf/) + fS ', &c„ &c.;
p ( dt J

that is the mean accelerations due to the mean convections of the relative
velocity by the relative-velocity, plus the mean acceleration due to con
duction.

Substituting from equation (97) the expression dpu"/dt in equations (58) 
and (60), Section IV.

dpu" 
dt

dp (u') 
dt

, du" , du!' 
u ---- h vdx dy

, du!' 1 dc (pu')" 
w iT + ~— ji— dz p dt

. du!' , du!' , du!' 1 dc (pu) 
'~df~Vdf~W dz ~~dt~

+ F4-, &c„ &c.) 
P „

+ , &c-> &c- j
.(100).

57. The rates of transformation of the energy of mean-velocity.
As already pointed out, Art. 35, Section IV. equation (61), the rates of 

transformations of energies per unit of mass, of mean-velocity and relative
velocity, are respectively obtained by multiplying the rates of transformation 
of mean- and relative-velocity, u" and u', &c., &c. respectively; thus

+ &c. + % 
P

+ \ &c„ &c.
( dt J

1 dT(u')-
2 dt

, ,du" , ,du" , , du")UU ----;------------ 1- UWdx dy dz)
&>fgf)+Fv &c> &c 

p ( dt )
dT(u"u) _ \ (dT(u")2 dT(uf) 

dt 2 ( dt dt J ’

1 dT (uf _ 1 , d (uf
2 dt 2 W dx

1 ,d(u,z)3 (u"-u')
2 dt p"

(dc (pu) p 
{dt~ + x.

, , du 0 „+ UU ---- 1- &C., &C.dx

...(101).

58. The expressions for the rates of transformation in equations (100) 
and (101) include all the rates of transformation of component velocities, and 
of the squares and products of the component velocities of the component 
systems of mean- and relative-velocities which enter as arbitrary functions 
into the equations (69) and (74). But as is pointed out in Art. 35, Section IV.
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any one of these quantities, the rate of increase of which is expressed by 
one of the equations, may, by definition, be further abstracted into two 
component systems.

The component systems of the energies of the mean- and relative-velocity 
per unit mass may, therefore, be separately abstracted into mean and relative 
component systems. And the importance of this at once appears, since the 
process of analysis is solely between the mean and relative, and while (u")2 
is mean and (u'V) is relative, (u')2, although positive, is not continuously 
distributed as a continuous function of the variables.

The rate of transformation from the mean rate of increase of energy of 
relative-velocities to relative-energy of relative velocity. Adding the second 
and fifth of the equations (74) as they stand, and substituting the expression 
for the transformation-function from the second of equations (101), we have

1 dp (w')2 _ 1 d^pu^ + u'F^
2 dt 2 dt

f , , du" „ 1 pu {dc(pu) p [ 
- ( pu'u' -J- + &C.1 - Hz (—TH--- + ..................dx ) p [ at )

Then putting
(«7 = ((».')2)" + ((u')2)'.....................................(103),

where((u)2)" is obtained after the same manner as u"putting d (r((w')2)")/dt 
for the total rate of transformation, we have as in equations (9/) and (98), 
substituting ((w')2)" for u" and the three last terms in equations (102) for Fx 
in equations (100), since the last term has no mean values,

i =i (, d^"+&c i + 1 WpJOOII + U,F1
2 dt 2 [ dx } 2p { dt J

_4fpuV^ + &cY..........................(104);
p V dx /

and
i dp ((uyy = _ i d (yuyy _ &c .................^104 A)
2 dt 2 dt

, d^u ~
Then since

dp^} _ dT (yy dT((uyy+u'Fx, 
dt dt dt

i dPw-m = i u, d^y+(uyf) + &c _ u,Fx.
2 dt dx

Th (T dcpa t

+ p" (2 dt V dx /))

.(105).
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The expressions for the production of mean energy of relative motion 
which form the left members of equations (104) are not transformations from 
energy of mean motion only. They include the relative parts of the rates of 
convection and production of energy of relative motion which are being 
transformed to the system of relative energy. These rates of convection and 
production of relative-energy are expressed by the first two terms in the 
equations (104), while the last term expresses the only rates of trans
formation from energy of mean-motion.

Whence the only transformations from energy of the component mean 
motions are

( , ,du , , du , ,du . .— p \uu t—\-vu —7—t-wu -5—1, &c., &c.r ( dx dy dz)

59. The rate of transformation from mean to relative energy. 

From equation (64), at a point, 

dTp" dp" dp"u" dp"v" dp"w" dp"u dp"v dp"w (106),dt dt dx dy dz dx dy dz

where the first four terms on the right are all mean, and the last three may 
be in part mean and in part relative. Hence the relative part of the 
convection of mean-density by the relative-velocity is the transformation 
to the relative density at a point, and this must form the only relative of 
the left member, and

dq>p dcp [dcp \ (dTp \
dt dt dt ) + \ dt ) '

Also from the last of equations (65)
dTp" dp + dp'u" dp'v" dp'w" d (C'p')
dt dt dx dy dz dt

(107).

In the last of the equations (107) the first four terms on the right are 
relative, and therefore the mean rate of transformation is

dTp  (dc‘p ) 
dt dt

Then adding the mean and relative parts; since

(dcfP')r _ (dc (P"y) 
dt dt ’

and (pu + &c.)" = 0,

dq^p de p 
dt dt

(108).

(109).



60 ON THE SUB-MECHANICS OF THE UNIVERSE. [60

60. The transformations for mean and relative momentum.

We have d t(.P ) n dTU if d^ p 
dt P dt U dt ................................. (HO).

Then substituting from the first of equations (101) and (109), and trans
forming,

+ + F\" + &c..............(Ill),
dt dt ( dt J

and we have
dT{pu — p"u") _ dc' (p"u"') 

dt dt
[dc(p"u') 
( dt + Fx -&C................(Ill A).

61. The rates of transformation of mean-energy of the components of 
mean- and relative-velocity.

From equations (74), (100) and (109) we have

1 d [r(p (M )“)] _ Id 1<P (u )'] । f." (dcpu) , p „1
2 —------------- 2 dt +r ~dT~+*x]’

1 d [rp" WH = _ 1 WWJ
2 dt 2 dt

(i[dc-(pUuyy , ,du" s i"+{2L dt—j+mF4 ■ \puu +J ......... (112).

In the second of equations (112) it is the last term only that expresses
transformation from energy of mean motion.

The last terms of equation (112) admit of different expression, by substi
tuting for

dc{puf
dt

its equivalent
mu' dpv'u 
lx dy

(dp" (uuf dp" (fuf dp" (wu)")
or [ dx dy dz \ ’

and we have
w„ _ (d (p (u u fu") + &c 1 ( „ ^,uy, &c 1 „(ng),

dt ( dx j dx J

P dpXx dpyx dpzx
also
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so that by equation (95), Fx" may be expressed by

( dx )

Then we have
+ &c.-p",^ - &c.......................(114);

ax ax

also (u'F^" = {uFx — u"F^)" .................................................... (115).

and this may be expressed as

( ax J ( ax J

(7 du\" o') ( ,, du" o 1+ {\p-dx)

Then substituting in the first of equations (112) we have for the rates 
of transformation to the energy of mean motion

i d[T(p"(U"w _ i d[c(P-(u"?)] (d[U"(P"(uuyy] )
2 dt “2 dt ( dx J

_ \d(,u"p"^ + &) + k'^vy' + p''^] ~ +&c.l ...(116), 
i ax i i ax j

and again substituting in the second of equations (112) we have for the rates 
of transformation to the energy of relative motion

i =_ i
2 dt 2 dt

Id^p^y]
2 dt

+&c i
( dx J

................(117).

The purpose of this transformation is easily seen on adding the equations. 
The two last terms in each equation cancel, showing that they represent 
a transformation between the rate of increase of the mean-energies of 
relative- and mean-velocities; while changing the sign of the right members 
of the resulting equation, which then represent the rate of transformation to 



...(118);
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the energy of residual motion, or of relative energy, these become

1 dT [pu2 — p" (w2)"] _ 1 d [c p" (»-)]"
2 dt 2 dt

id[c-(pW)T , fd[«"(p" (««)")] . ° 
“ 2 dt + 1 di +

+ \d + &c.l - + U", &c„ &c.
[ dx ) dx J j

and these are the exact forms in which the rate of transformation to relative- 
energy, obtained by substituting m2, (u2)", (w2)', uF for u, u", u', F respectively 
in equation (111) for relative momentum, is expressed.

In a purely mechanical medium the last terms in these equations (118) 
represent the mean rate of angular dispersion both of mean and relative 
motion of energy, as explained in Art. 32, Section III., while the integrals of 
the remaining terms are all surface integrals. It is thus seen that the rates 
of exchange between mean-energy and relative-energy are purely conservative 
within the limits of the approximation.

On the other hand, the integral rates of exchange by transformation 
between mean-energy of mean-motion and mean-energy of relative-motion as 
expressed by the integrals of the last terms of equations (116), (117) are not 
surface integrals, nor are these rates confined to angular dispersion; so that 
they express exchanges at each point which are not expressed by a surface 
integral, and thus appear to represent those actions of the relative-motion on 
the mean-motion the study of which is the object of the investigation. But 
this is found on closer examination not to be the case.

62. The expressions for transformations of energy from mean to relative 
motion.

The expressions p"(u'u')"^ + &c., which occur in the last terms of 

equations (116) and (117), are simply transformation terms expressing the 
mean effect of the convections of relative-momentum by relative motion on 
the energy of mean motion, and this is the most general and most important 
transformation.

The other transformations are the results of conduction. These are in
cluded in the expressions

as they occur in equations (116) and (117), but they are not explicitly 
expressed by these. The first of these expressions includes the rate at which 
the energy of the component of mean-motion is being increased by angular
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dispersion from the energy of the other components of mean-motion, as well 
as the rate at which the energy of the component of mean-motion is being 
increased by transformation from the energy of the corresponding com
ponent of relative-motion. The second of these expressions includes both 
the rates at which energy of the component of mean-motion and the energy 
of the component of relative-motion are increasing, by angular dispersion, at 
the expense of the other components in their respective systems,—together 
with the rate at which energy of the component of the resultant system is 
being increased by transformation from energy in some other mode—which 
latter rate does not exist if u, v, w are the motions of points in mass.

and

In the expressions
da n \ 0 o—,—I- &c. , &c., &c., dx /

Pxx
du
K + &c7 ' &c., &c.,

the analysis necessary to separate out the expressions for the separate 
actions in either system is furnished by equations (47 a), Section III., the 
symbols for the mean and the relative motions being substituted for those of 
the resultant system.

Putting p + the first two terms in these equations (47 a)

which express the rates of angular dispersion in the directions of x, y, z 
respectively on the square of the components of the mean and the resultant 
system, become respectively

1 " f2
3 \ dx dy dz /

1 ( „ (du” dv"\ „ (du" dw"^ 
+ g | P yx ( dy dx J P dz dx / J , &c., &c.,

1 ( du dv dw\ 1 ( (du dv\ 
3^\ dx dy dz/ %('JX\dy dx)

, (du dw\n . „

The corresponding expressions for the rate of increase of the resilience
are

1 „ (du' dv" dw"\ o P ("7?— T J----h ”7?—)3 \ dx dy dz J
, / n du

1 ( „ (du" dv"\ „ (du” dw"\) 
+ 2 I75 yx\d^.+ d^J+P zx i\^ + 1^ )\ , &c., &c.,

ri
3^

dv dw 
dy dz.

1
+ 2

’) / \ du) + ^-P^Tx

du dw 
,dz dx, , &c., &c.
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Substituting these for ' du 
Pxxdi as they enterP xx

into equations (116) and (117), these equations become

1 dT\p" (u"Y] = _ 1 d<[p"(u'y] 
2 dt 2 dt

(dC" [p {u'uY] o) {d u"p"xx 
t dT + J ( dx

(1 „/o du" dv" dw"\ 1 [ „ (du" dv"\ „ (du" dw"\]
(3 k dx dy dz / + 2 v\dy dx)+P dz dx /J

1 „
3*

d^ 
. dx dy

dw"\ „ drW” * 7 dx

1 ( „ (du" dv"\ „ (du" dw"\Y
+ 2\P yx \d^ + d^)+p zx\dT + ~d^)\

^-1 + &C. , &c., &c. 
dx)

........................................ (116 a).

1 d [Tp" (uu'}] = _ 1 d [c'p" (uV)"] 1 d [c'p (uu)']" _ \d (u p^" &c
2 dt 2 dt + 2 dt \ dx

du dv dwy 1
. dx dy dz) + 23

(du dv'\" (du dw'\'\ 
Pyx \dy~di) ~Pzx [d^~dxj J

3 \dx + dy + dz ) + ly**

7 f/\
p"(u'uy ^-U&c. + &c. 

CLX ) , &c., &c.............................. (117a).

In these equations the first three terms in the members on the right 
express rates of linear redistribution of the energy of components of motion 
of the respective systems, while the fourth terms express, respectively, rates 
of energy received from the other components of the same system by angular 
dispersion, and the fifth and the last terms express the direct exchanges 
between the two systems, of mean density of energy, by transformation.

This last statement however is only true when, as in the case of the 
resultant system, in a purely mechanical medium, there is no resilience in the 
resultant system, for the fifth term in the last equation expresses rates of 
decrease of the resilience in the resultant system less that of the abstract 
resilience in the mean-system ; so that, if the former is not zero, this term, 
besides the exchange by transformation, expresses the total rate of increase 
of the resilience of the resultant system.

In a granular medium when u, v, w are the component velocities at points 
in mass, and there is no resilience in the resultant system, the sum of the 
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resilience of the mean and relative systems is zero, and the fourth term in 
equation (117) has the identical value, under opposite sign, as the fourth 
term in equation (116), which expresses rate of decrease of abstract resilience 
in the mean system.

The first term in the brackets represents the angular dispersion by 
distortion under mean strains, equal in all directions, and the second re
presents the rates of angular dispersion by rotational motion of the mass.

63. The equations for the rates of change of density of mean- and 
relative-mass.

By equations (64) and (109) we have for mean density

dp" = d^p" 
dt dt (119),

and by equations (65) and (109) we have for the equation of relative mass

dp d^p) d(ep}
dt dt dt ........................................ (119a).

64. The equation for mean momentum.

By equation (58) and the first of equations (100) we have for the equation 
of mean momentum

dp"u" _de-p"u" {d{pxx+ p" (uuf')
^dT - ~dT~ -1 die----------+ &c" &c' .............. (120),

and by equations (60) and the second of equations (100) we have the equation 
of relative momentum

d(pu — p"u") _ dc (pu) d^ (p"u") 
dt dt dt d {epu')" - dx •(121).

65. The equations for the rate of change of the density of mean-energy of 
the components of mean-motion and of the mean-energy of the components of 
relative-velocity.

Substituting for the transformation function in the first of equations (74) 
from equation (116), the equation for mean density of energy of mean motion 
becomes

1 d[p’(u"f] = 1 dk(p"OT)] _ \d{u\p'\uu'y+p^} c I
2 dt 2 dt ( dx J

+ [(p" (uu)" + pxf) +&c.+ &c.l, &c., &c....(122),R. 5
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and the equations for the mean density of energies of relative-velocity 
become

idvwm id^w^m , iiixdoow'_ & j
2 dt + 2 dt + 2 dt ( dx J

+{(^S +&4
(d (u"p") s )+ i J +&c- | dx j
( du" 1- ^"(wV/'+^Z] ^+M • &c-> &c.............. (123). 
I CLX j

66. The equation for density of relative-energy.
Proceeding in the same manner as in equations (74) and substituting the 

rate of transformation to relative-energy equation (118), the equation for 
relative-energy of component velocities becomes

id[pv?-P"m = id[c-p"wyy\ i napoo
2 dt 2 dt 2 dt

i. imw:
+ 2 dt 2 dt 
+ (d[U"p"(u'^ 

( dx )

{d[upXx\ 0 ) f/ du\r 0 1

&c., &c........................................(124).
67. Complete equations.

i d [p” gu'y+ (yy+ (wryy] i d {P" wy + c»y + («/?)}]
2 dt 2 dt

d\u" (p" {u'uy’+pafy] [ &j ' 
dx 'J

d \v" (p" {vuy + pX!/")] „ )
----------------------- ——= —-----------  "T OOU. ,

d [w" (p" (w'u'y + pj')] + &c) 
ds: J .

f du"+ yp'’ (u'u'y + p^^ + ^e.

(125).

. (/ " / ' 1 \" । n\ dll) + j(p (wu) +Pxz)-^~
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Id (vy + 07)"] _ i d [C"(p’\(uy+ {vy+ 07)")]
2 dt 2 dt

, I d Wp (07+07+ 07)')]"
2 dt

[d [(up^y - u"pxx"}t---- Tx----------- + &c- 

\d [(vp^)” - v"pyy] + &c 
( dx

dx

( du"+ \(p" W + Pxx') -j- +&c.
CLOG

............................. (126).

+ j(p"O'l0" + pZx') + &C.

1 d [p (u2 + v2 + w2) — p" {{u2}' + (v2)" + (w2)")]
2 dt

= 1 d O (p (u- + ^2 + W2)) - p" {(u2y + (v2y + (w2)")]
2 dt

, 1 d [c (p (w2 + tP + w2)")]
2 dt

, 1 d [c- (p (u2 4- v2 + w2)') - {<? (p (u2 4- v2 4- w2))]"]
2 dt

5—2
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The equations (119) to (127) are the equations for mean and relative 
component systems of any resultant system in which the conditions are 
satisfied, irrespective of the medium being a purely mechanical medium; that 
is to say, irrespective of whether or not in the resultant system (p, u, v, w, pxx, 
&c.) are related to the actual, mechanical-medium, or represent the densities, 
motions and stresses of a component system of mean-motion of the resultant 
system.

It has already been pointed out (Art. 52) that the absolute scale of the 
variations of the mean motion has no part in determining the degree of 
approximation, but only the relative magnitude as compared with the scale 
of variations of the relative motion. So that any component of mean-motion 
may be a resultant system if the conditions exist which ensure its satisfying 
the conditions of mean and relative motion. There js however this difference 
according to whether the unqualified symbols refer to the purely mechanical 
medium or not. If they do refer to the mechanical medium, then the last 
terms in equation (124) and the last but two in (123) represent angular 
dispersion of energy only, and the last term in equation (127) and the last 
but one in (126) are zero; if not, they represent changes of energy.



SECTION VII.

THE GENERAL CONDITIONS FOR THE CONTINUANCE OF COM
PONENT SYSTEMS OF MEAN- AND RELATIVE-MOTION.

68. The general conditions for the existence of mean-, and relative
motion, as defined in Art. 47, Section V., are that the components of momen
tum of relative-velocity, as well as the relative density, must respectively be 
such that their integrals with respect to any two independent variables, 
taken over limits defined by the scale of relative-motion, have no mean values.

By equation (1), Section II., it follows that for the continuance of such 
states the respective rates of increment of these quantities by all causes, 
convection and production, must satisfy the same conditions. Therefore as 
the necessary and sufficient conditions we have, that

J q dt J o dt J o dt J o dt
where the limit t may have any value, when integrated between the limits, 
as initially defined by the relative scales, with respect to any two indepen
dent variables shall be zero within the limits of approximation.

The satisfaction of these conditions does not follow as a geometrical 
consequence of the initial condition.

The rate of change in the density of relative-momentum is a consequence 
of the space rates of the variation of the convections and conductions 
existing at the instant. And initially the mean- and relative-motions are 
subject to definition, from which, as a geometrical consequence, their varia
tions, in space, are also subject to definition, which although less complete 
has been already fully defined, Art. 45, Section V.

It therefore follows that the general conditions to which the initial rates 
of increase, by convections and conductions, are subjected, are defined. And 
this at once appears on considering the equations of motion for the momen
tum of relative-velocity, which are obtained by substituting in equations (98) 
the expressions for the rates of transformation from equations (100), Section VI.
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d(pu') , (d , , ,. d , , d ,
—7-— dt = — \~r (puu) + -5-(pv u)+^r (pw u)\dt dt [dx r ' dy r dz r )

/ , du" , dv" , dw"\ j
-e(u s+’ *I+'" -sr1

p f d / / t\ d , r f\ d , / 7,

- F^' 8t + F' St, &c„ &c................................ (128).
P

In these equations, according to the method of approximation, all the 
terms in the member on the right are such as have no mean values when 
integrated over any three variables, as a geometrical consequence of the 
definition.

It therefore appears that it does not follow as a geometrical consequence 
that

dt

should satisfy the condition of having no mean values when integrated 
with respect to any two variables, to the same degree of approximation as do 
the initial values of pu', pv', pw'. And this applies to both rates of increment 
by convection and rates of increment by relative accelerations.

If, then, this condition is to be continuously satisfied it must be as the 
result of some redistributing effects of the actions of conduction on the 
convections. For the rates of increase by convection are a geometrical 
consequence of the initial motions which are subject to the definition as to 
scale and relative-motion; while on the other hand, the rates of increase by 
conduction depend on the conducting properties of the medium, as well as 
on the distribution of the medium in space and time.

69. The fourth property of mass, necessitated by the laws of motion, is 
that of exchanging momentum with other mass, Art. 17, Section II., and it 
now appears that this is the fundamental property on which the existence 
of systems of mean- and relative-motion depends.

For if there were no conduction, that is, if mass were completely pene
trable by mass; so that two continuous masses could pass through each 
other without affecting each other’s motion; then the only rates of increase 
would be those by convection, each point of mass preserving its course with 
no interruption, with constant velocity, and there could be no redistribution. 
Hence :—

Certain properties of conduction are necessary for the maintenance of 
systems of approximately mean- and relative-motion.
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70. Notwithstanding the extremely abstract reasoning on which the 
foregoing conclusion is based it is definite. And it appears possible to carry 
this reasoning further and so obtain conclusive evidence as to what the 
general properties of conduction and the general distributions of the medium 
must be for the maintenance of the mean- and relative-systems, when the 
resultant system is purely mechanical.

71. The general laws of conduction of momentum by a purely mechan
ical medium, as defined by the laws of motion, have already been deduced 
(Section III. Art. 24), and the effects of conduction in displacing momentum 
and in angular dispersion of vis viva have been proved (Section III. 
Arts. 31—2), and also the effect of conduction on the resilience, if any. 
However, since there is no resilience in a purely mechanical medium, 
it at once follows that the medium must be perfectly free to change its 
shape without changing its volume, or it must consist of mass or masses, 
whether infinite, finite, or indefinitely small, each of which absolutely 
maintains its shape and volume; that is to say, each of which is a perfect 
conductor of momentum.

Thus the class of media in which the general conducting properties 
satisfy, as a resultant system, the condition of being a purely mechanical 
system is not large; being confined to

(1) The “ perfect fluid ” ;
(2) The perfect solid;
(3) Perfect discontinuous solids ;
(4) Perfect discontinuous solids with perfect fluid within their inter

stices.
This class of media all satisfy the conditions for purely mechanical media 

as resultant systems. But it does not follow, as a geometrical necessity, 
that they all satisfy the conditions of consisting of mean and relative com
ponent systems.

For although any medium which satisfies the conditions of consisting of 
component systems of mean and relative motion must of necessity satisfy 
the conditions as a resultant system, the converse of this is not a necessity.

It therefore remains to obtain from the previous definition the further 
limitations imposed, as a geometrical necessity, by the conditions of consisting 
of component systems of approximately mean- and relative-motion.

72. Evidence as to the properties of conduction for component systems.
(1) From the equations (128) it appears, as already pointed out, that in 

order that
f &c->

J o dt
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may satisfy the condition of having no mean values, when integrated 
between the limits of the scale, in time and space, of relative motion, over 
any two independent variables to any defined degree of approximation, the 
time integrals of the members on the right must satisfy the same condition.

Whence it follows that the condition for the maintenance of the 
inequalities steady requires that the rate of increment, as expressed 
by all terms on the right, in each of the equations (128), shall be such as 
has absolutely no mean value when integrated over limits, with respect 
to any two independent variables.

This condition, although it applies only in a somewhat particular case, 
is such as must be satisfied for the maintenance of mean and relative systems 
to be general, and hence any evidence that may be derived from it must be 
perfectly general.

To apprehend the importance of this evidence we have only to consider, 
what has already been pointed out, that the first four terms in the right 
members in each of the equations (128) require, as a geometrical necessity, 
integration between limits over three independent variables in order that 
they may have no mean values. Whence it follows that in order to 
maintain the inequalities steady the fifth term, which expresses relative rates 
of increment of momentum by conduction, must be such when integrated, 
over limits, with respect to any two variables, as will exactly cancel the 
integrals of the other four terms when they are taken over the same limits 
with respect to the same two variables.

Thus we have for a particular case, which however must occur in all 
general systems consisting of component systems of mean- and relative
motion, an inexorable condition as to the necessary properties of conduction.

It will be readily granted that the satisfaction of this condition involves 
the absolute dependence of the functions Fx, &c., on the condition of the 
medium and its relative-motion.

(2) Evidence as to the necessary properties of the medium is also 
obtained from the condition that the inequalities must be maintained small.

The satisfaction of the condition of equality between the rates of opposite 
actions resulting from transformation, convection, and conduction, does not 
define the magnitudes of the inequalities which may be maintained, but 
only the fact that they remain steady.

It therefore appears that the definition of the relative values of the 
inequalities which are maintained depends on a balance of rates of institu
tion and decrement. And in order that such a balance should institute 
itself and remain steady, it is necessary that the state of the medium shall 
be such that integrals of Fx, &c., taken over limits with respect to any two 
independent variables, shall be such functions of the inequalities that they
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increase with the inequalities and are of opposite sign, whereby the in
equalities are subject to logarithmic rates of decrement.

Then, whatever might be the rates of institution of inequalities resulting 
from all the other actions, the inequalities would increase, increasing the 
rates of decrement by conduction until these balanced the rates of increment, 
that is until the other actions were cancelled by the actions expressed by 
Fx, &c., after which the inequalities would remain steady as long as the rate 
of institution remained steady.

(3) Evidence as to the necessary properties is also obtained from the 
conditions that define the scales of relative motion.

Where mean motion is everywhere uniform this condition requires that 
the scale of relative velocities and relative mass shall approximate to some 
finite scale at which it will remain as long as the mean motion is everywhere 
uniform. This does not follow as a geometrical necessity of the initial 
definition, for if constraining limits were absent from the mass, the actions 
which insure the logarithmic rates of decrement would continue to diminish 
the scale indefinitely ; hence inferior limits of relative-mass and relative
motion define the properties of the medium as regards limiting constraints.

73. This evidence, together with the definitions of mean-velocity and 
mass, suffices to differentiate the four general states of media, which, as 
resultant systems, satisfy the conditions of being purely mechanical, from 
those which also satisfy the conditions of consisting of component systems of 
approximately mean and relative motion.

Since continuous mass cannot pass through continuous mass without 
exchanging momentum, the reciprocal actions between the masses in relative 
motion will be to cause continual diversions of the paths of points in mass.

And by definition of relative motion, if there is no mean motion, the 
mean component momentum in any positive direction is exactly equal to the 
mean of the negative momentum in the same direction. Therefore the 
mean rate of increase of component momentum in the positive direction, by 
the components of the reciprocal relative accelerations, is exactly equal 
to the mean rate of increase by the component reciprocal accelerations 
of the component momentum in the negative direction. The mean motions 
being uniform, the reciprocal accelerations have no effect on energy of 
relative motion in all three independent directions. Whence the effects of 
the component reciprocal accelerations are rates of change in the positive 
and negative component momenta, in one direction, with the positive and 
negative momenta in other directions. Such exchanges of positive and 
negative momenta from one direction to another are possible only when the 
component accelerations of relative motion are, not resultant accelerations, 
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but, are the means of the components of resultant reciprocal accelerations 
with various degrees of divergence from the direction of the previous motion.

And it is thus shown that any angular redistribution of positive and 
negative components of momenta, or, which is the same thing, of the vis 
visa of the component velocities, results solely from the impenetrability of 
the medium.

74. From the foregoing reasoning it might be inferred that the impene
trability of mass together with the definition of relative motion must secure 
logarithmic rates of decrement of all inequalities provided that the medium 
were sufficiently mobile. I hat this is not the case is however at once seen 
from the theory of a “ perfect fluid.”

(a) For in such media every point in mass is in complete normal con
straint by the surrounding medium, with lateral freedom. So that, while no 
point can move without affecting the motion of every other point in some 
degree, there is no lateral action. Thus the continuous finite accelerations 
do not cause finite diversions of the paths of points in mass from the 
previous directions at any point of their courses, but cause finite curvature 
of these paths. And thus the paths of adjacent points are ultimately 
parallel. There being no finite lateral deviation, there is no lateral exchange 
of momentum in the direction of motion at any point.

Whence such lateral exchange of momentum being necessary in order 
that there may be general rates of logarithmic decrement of inequalities, 
it follows that in a perfect fluid there cannot exist logarithmic rates of 
decrement of all inequalities of relative motion.

It thus appears, since, as has already been pointed out, general logar
ithmic rates of decrement of all angular inequalities are necessary7 for the 
maintenance of approximate systems of mean and relative motion, that 
a perfect fluid, although satisfying the condition of a purely mechanical 
medium as a resultant system, cannot satisfy, generally, the condition of 
consisting of component systems of approximately mean and relative motion.

(b) A perfect continuous solid, that is a continuous mass which conducts 
momentum perfectly, whether direct or lateral, can only move as one piece, 
and therefore cannot consist of component systems of mean and relative 
motion.

(c) It thus appears that of the class of media that satisfy the conditions 
of a purely mechanical medium, neither the perfect fluid nor the perfect 
solid satisfies the condition of consisting of component systems of approxi
mately mean and relative motion. And as these are the only two continuous 
media in the class we have the conclusion: that no continuous medium can 
satisfy the condition of consisting of component systems of mean and 
relative motion.
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(d) If then the conditions for mean and relative systems are to be 
satisfied it can only be by discontinuous media.

These all include perfectly conducting parts and are capable of 
separation into two classes according to whether or not these parts are or 
are not in such constraint with each other that each part is in complete 
constraint with the neighbouring parts; lateral as well as normal.

(e) In media in which the perfectly conducting parts are each in 
complete lateral as well as normal constraint with their neighbours, there 
can be no logarithmic rates of decrement. Whence, as in the case of 
a perfect fluid, such discontinuous media cannot generally consist of com
ponent systems of approximately mean and relative motion.

It thus appears that no purely mechanical medium can satisfy the condi
tion of consisting of approximate systems of mean and relative motion unless 
it includes discontinuous perfectly conducting parts, each of which has 
certain degrees of freedom with its neighbours.

(/) If, therefore, it could be shown that, as in the other purely 
mechanical media, these discontinuous media, with degrees of freedom, do 
not admit of logarithmic rates of decrement of the inequalities of relative 
motion, it would follow that component systems of approximately mean and 
relative motion are impossible.

As it is, however, it can be shown that these discontinuous media, with 
or without perfect fluid occupying the interstices, as long as the perfectly 
conducting parts have any degrees of freedom with their neighbours, do 
admit of, and not only admit of, but entail, logarithmic rates of decrement of 
all inequalities of relative-momentum.

This will be fully proved in the following sections. But it is sufficient at 
this stage to show how this comes about.

(</) The actions between perfectly conducting masses are instantaneous 
finite exchanges of momentum in the direction of the common normal to 
the surfaces at contact. The direction of this normal has no necessary 
connection with the direction of the relative motion of the masses before 
contact; therefore the direction of relative motion after contact has no 
necessary connection with the direction before contact. And thus the 
actions will be to render the path of the centre of each mass a rectilinear 
polygon in space, with angles which may be anything from 0 to tt according 
to the freedoms.

Such action entails that mean component, positive or negative, accelera
tion of the relative motion in any direction is not a resultant acceleration, 
but the mean of the component resultant impulses in all directions, thus 
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securing continued angular redistribution in direction and magnitude of the 
relative momentum of each of the perfectly conducting masses; so that any 
mean inequality in the relative motion is subjected to rates of decrement 
proportional to the inequality, and to the mean of the positive or negative 
components of relative velocity, divided by the scale of relative motion—to a 
logarithmic rate of decrement.

(h ) 1 he evidence furnished by the necessity of the maintenance of the 
scales of relative mass and relative motion has not been drawn upon in the 
foregoing reasoning, and therefore may now be brought forward as confirming 
the conclusion already arrived at; that the only media that satisfy the 
conditions of mean and relative component systems are those which involve 
discontinuous perfectly conducting parts, since such media are the only 
media in which limits to the scales of relative mass and relative motion 
are of necessity maintained.

75. Having thus arrived, for reasons shown, at the conclusions that the 
only purely mechanical media which can consist of component systems of 
approximately mean- and relative-motion are those which consist of perfectly 
conducting members which have certain degrees of independent movement, 
and that such media of necessity satisfy the condition of securing logarith
mic rates of decrement of all mean inequalities in the positive or negative 
components of relative-momentum in every direction, the further analysis 
may be confined to this class of media only.

It is still a class of media and not a single medium.
Such media may be distinguished according as the interstices between 

the grains are occupied by perfect fluid or are empty of mass. But this is 
by no means the only distinction. For the perfectly conducting members 
may have any shapes, and hence may include any possible kinematical 
arrangement or trains of mechanism, provided that there is always a certain 
amount of freedom or backlash, as it is called in mechanism; or they may 
consist of parts of any similar shape but of different sizes or of parts the 
same in size and shape, as for instance, spheres of equal size and mass. Nor 
is this all, for the relative extent of the freedom as compared with the size 
of the members may introduce fundamental distinctions in the properties 
of media consisting of similar members.

76. This last source of distinction, arising from the relative extent of 
the freedoms as compared with the dimensions of the grains, being perfectly 
general however the media may otherwise be distinguished, is a subject for 
general treatment, the outlines of which may with advantage be drawn at 
this stage from the evidence, already adduced, as to the conducting properties 
of the media consisting of component systems of approximately mean- and 
relative-motion.
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In this preliminary discussion of the effect of the extent of the freedoms, 
relative to the dimensions of the perfectly conducting members, the latter 
may be considered as being spherical grains of equal size and mass.

In the first place it must be noticed that, so far, in this section, no 
account has been taken of any transformation of mass or of the displacement 
of momentum by conduction, so that the logarithmic rates of decrement 
by accelerations refer only to changes in the direction of the vis viva, leaving 
out of account the fact that there is displacement of momentum by con
duction at each encounter, and, thus, the reasoning, so far, does not touch 
on the possibility of redistribution of inequalities of rates of conduction 
of component momenta.

It has, however, been shown that, owing to the fact that the directions 
of the normals at contact are independent of the directions of relative motion 
before contact, in a granular medium, there must exist rates of redistribution 
of all mean angular inequalities in vis viva of the components of relative 
motion, whatever may be the inequalities in rates of conduction of momentum 
in different directions.

Thus far, then, for anything that has been shown in the previous reason
ing, the actions which determine the rates of displacement of momentum by 
conduction may be independent of any effect of the independence of the 
direction of the normals at contact, and the direction of the relative motion 
of the grains before contact, which, as shown, secures angular dispersion 
of the momentum of relative motion.

77. In the simple case of uniform spherical grains, which may be 
conceived to be smooth, without rotation, whatever may be the relative 
paths of the grains as compared with their diameters, if the state of the 
relative-motion is without angular inequalities, since this state is maintained 
by the continual finite exchanges of momentum lateral to their paths, the 
mean component of the aggregate momentum in an interval of time, deter
mined by the time scale of relative motion, must be the same in all 
directions, as also must be the aggregate component paths traversed in a 
positive direction, and also those traversed in a negative direction.

But it in nowise follows as a necessity of complete angular dispersion of 
components of momentum, within the limits of relative motion, that the mean 
length of the component paths traversed in one direction shall be the same 
as the mean of those in another direction.

The clear apprehension of this fact is of extreme importance, when we 
come to consider the rates of displacement by conduction of momentum ; 
this is easily seen:—

If each grain traverses the same aggregate, positive and negative, com
ponent paths in the same time, but their mean component paths in one 



78 ON THE SUB-MECHANICS OF THE UNIVERSE. [78

direction differ from those in another, since the paths are limited by en
counters, and the displacement, by conduction, of momentum in the direction 
of the component is the mean of the product of the diameter of the grain 
multiplied by the component of the relative momentum; then, if the mean 
component conductions are the same in all directions, the number of the 
conductions in any direction must be inversely proportional to the component 
mean path in that direction. And thus the rate of displacement of momen
tum in any direction must be inversely proportional to the mean component 
path in any direction.

78. Tn order to secure that the rates of displacement of the momentum 
shall be approximately equal in all directions, it is not sufficient that there 
should be logarithmic rates of decrement of the mean inequalities of the 
relative components of momentum, positive or negative, but requires in 
addition that there should be logarithmic rates of decrement of mean 
inequalities in the mean component paths of the grains.

The length of the path of a grain in any direction depends only on the 
positions of the surrounding grains; and if the mean distance between the 
grains is such that the probable length will carry its centre through several 
surfaces set out by the centres of these other grains, then, since all possible 
arrangements of the grains would be probable, all directions of the normal 
at encounter would be equally probable, whatever might be the directions of 
the paths. And hence continual encounters would lead to such distribution 
of the grains that the probable length of the path would be equal in all 
directions; and, so, there would be logarithmic rates of decrement of 
inequalities in the lengths of the mean paths in different directions.

78 A. Evidence of the necessity of such logarithmic rates of decrement 
of inequalities in the arrangement of the mass is furnished by the equations 
of relative-mass; in a manner similar to that furnished by the equations 
of relative-motion as to the necessity of logarithmic decrement of the 
inequalities of vis viva.

This at once appears from the equations of relative-mass (119), which 
may be expressed:

d (p') _ (d (p'u) 1 (d (pu") 1
^dT~~ + &cj " + &c-} ‘

In this equation, according to the limits of approximation, the terms in 
the right member are such as have no mean values when integrated over the 
defined limits with respect to three independent variables.

Therefore it does not follow as a geometrical consequence of the definition 
of relative mass that

dp' 
dt 
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should satisfy the condition of having no mean value, when integrated over 
definite limits with respect to any two independent variables, to the same 
degree of approximation as do the initial values of p ; and this applies both 
to the rates by convection and the rates by transformation.

If then the conditions are to be continuously satisfied, it must be as the 
result of the redistributing actions on the rates of convection by the mean
velocity, which alone institutes inequalities.

78 B. Inequalities in the integrals of relative mass, over defined limits, 
with respect to any two independent variables, correspond to inequalities in 
the products and moments of relative mass. And it thus appears that these 
inequalities have no connection with inequalities in the mean-mass, which is 
a mean over all four variables.

Therefore these inequalities are inequalities in the symmetry or angular 
arrangement of the relative mass.

This significance of the inequalities becomes apparent on multiplying 
both members of the equation of relative mass by the square of any variable, 
as a?, or by the product of two variables, as yz, and taking the mean over 
all four variables; as

+&4 _ +&4....... <128 a).
dt ( dx ) (ax )

Then if x-p' integrated over all four variables satisfies the conditions to 
any degree of approximation, the maintenance of the same degree of approxi
mation requires that

a?

should satisfy the identical conditions to the same degree of approximation.
Hence we have the necessity, in order to maintain the inequalities 

steady, that, whatever may be the rate of institution, resulting from distor- 
tional mean motions, as expressed by the first term in the right member, 
the rate of rearrangement resulting from the transformation expressed by 
the second term must be such as exactly counteracts the rate of institution.

78 C. It thus appears, as in the case of Art. 72, that this condition of 
equality between the rates of institution and rearrangement can be satisfied 
only when the rate of rearrangement, as expressed by the second term, 
depends on, and is proportional to, the inequality instituted.

78 D. From this evidence it appears that the logarithmic rate of decre
ment of inequalities in the mean arrangement of the grains, which has been 
shown (Art. 78a) to follow as the result of diffusion in granular media, is 
a necessity for the maintenance of systems of mean and relative motion.

dp 
dt
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And thus it appears that granular media may satisfy the condition of 
consisting of component-systems which are mean and relative in respect of 
conductions as well as convections.

78 E. It also appears, and perhaps this is of greater analytical import
ance, that the two rates of logarithmic decrement, that of inequalities of 
vis viva, and that of rearrangement of mean inequalities in the symmetry of 
the mean arrangement of the grains, which also secures the redistribution of 
angular inequalities in the rates of component conduction of momentum, are 
in a measure independent and are analytically distinct.

79. The inequalities in the mean symmetrical arrangement of the mass, 
although, being the most remote, they have presented the greatest difficulties 
to recognition and analytical separation, are of primary importance and 
distinguish between classes of granular media. It has been shown that 
logarithmic decrement of these inequalities results from diffusion among the 
grains.

79 A. It does not, however, follow that such logarithmic rates of decre
ment would exist when the grains were in such close order that no grain 
could break through the closed surface, which might be drawn through the 
centres of its immediate neighbours. For then, whatever might be the 
order of arrangement of the grains, notwithstanding the existence of a certain 
extent of freedom, it could undergo no change.

If in this last case the general state of the medium were such that the 
mean freedoms of each grain were equal in all directions, so that there were 
no inequalities in the mean component paths in different directions, the 
relative-motion would be in a state of mean equilibrium without inequalities 
and the rates of displacement, by conduction, would be equal in all directions.

But if, from the last condition, the medium were subjected to a mean 
distortional strain, however small, the mean component paths of the grains 
would no longer be equal in all directions ; and the rates of displacement of 
the momentum, by conduction, would be no longer equal in all directions, 
but would be such as tended to reinstitute the former condition ; that is 
to say, the rearrangement of the grains within the limits of freedom would 
be such as to balance, not the external mean stresses by which the strains 
were brought about, but the stresses necessary to maintain the strain steady. 
And thus the logarithmic decrement would not be to a state in which the 
mean paths were equal in all directions, but to a state in which the in
equalities in the mean paths were such as to maintain the necessary 
inequalities in the rates of displacement, by conduction, to secure equili
brium under the external stresses.

80. It thus appears that, while the effect of relative accelerations to 
redistribute all mean inequalities, in the angular distribution of relative 



85] COMPONENT SYSTEMS OF MEAN- AND RELATIVE-MOTION. 81

vis viva, is independent of any symmetry in the mean arrangement of the 
grains, and, hence, of mean angular inequalities in the mean component 
paths of the grains, and is therefore subject to no limits. Whatever the 
relative freedoms of the grains may be, the angular redistribution of in
equalities in the mean component paths depends solely on the rate of 
redistribution of the mean inequalities in the symmetry of the arrange
ment of the grains and is subject to limits depending on the relative lengths 
of the mean component paths of the grains, taken in all directions, as com
pared with the diameters of the grains.

81. It also appears that the definite limit, at which redistribution of 
the lengths of the mean paths ceases, is that state of relative freedoms 
which does not permit of the passage of the centre of any grain across the 
triangular plane surface set out by the centres of any three grains which are 
neighbours.

This definite limiting condition obviously corresponds to that at which all 
diffusion of the grains amongst each other ceases.

82. It thus appears that there is a fundamental difference in media, 
otherwise similar, according to whether or not the freedoms are within or 
without this limit.

This difference amounts to discontinuity in the media, for within the 
limit there will be no rearrangement of the grains however long a time may 
elapse or whatever the state of strain may be. While outside the limit, 
m however small a degree, any state of mean strain must ultimately be 
relaxed however long the time.

83. The time taken for such relaxation will in some way be a function 
of the degree in which the freedoms are without the limit of no diffusion 
which will range from infinity to zero, so that there are continuous degrada
tions in the properties of the media according to the degree in which the 
freedoms exceed the fundamental limit.

84. The independence of the redistribution of relative vis viva on this 
fundamental limit to redistribution of the arrangement of mass in media 
consisting of perfectly hard spheres, or of masses of any rigid shapes, does 
not appear to have formed a subject of study by those who have developed 
the kinetic theory of gases: so that however complete this development 
may be with respect to limited classes of granular media which have formed 
the subjects of this study, the methods employed can have been applicable 
only to those classes of media in which the extent of the relative freedoms 
has, in a large degree, been outside the fundamental limit of no diffusion.

85. It seems important that the limitation imposed, by the methods of 
analysis hitherto used in the kinetic theory, on the class of media to whichR. 6 
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that theory applies, should be distinctly pointed out here, before proceeding to 
the further analysis of the general theory. Otherwise confusion might arise 
in the mind of any reader acquainted with the conclusions already accepted 
as resulting from the kinetic theory, as to the reason why, after having 
arrived at the general conclusion that the only media which can consist 
of component systems of mean and relative motion belong to the class of 
granular media with some degree of freedom, which is also the class of media 
to which the kinetic theory has been applied, any further analysis should 
not simply follow the lines of the kinetic theory as hitherto developed ?

This question having been anticipated by the answer which is given 
in the previous paragraph, in which it is shown that the general class of 
granular media is subject to fundamental differentiation according as the 
ratio of the mean paths of the grains to the dimensions of the grains is 
within certain limits; and that hitherto the method of the kinetic theory 
has not been such as to take account of these limits, and is thus only 
applicable to media in which the relative paths are large as compared with 
the linear dimensions of the grains*.

* Phil. Mag. 1860, Vol. xix. p. 19, Vol. xx. p. 21.

86. Besides the fundamental limit of no diffusion there is also another 
fundamental limit, which appears as soon as a finite relation between the 
paths and the linear dimensions of the grains is contemplated. This limit is 
that to which the medium approaches as the paths of the grains approach 
zero.

If the granular medium is in a steady condition, then if the relative 
vis viva is finite there will be some extent of freedom. But for any given 
vis viva the mean paths will depend on the rates of conduction or vice versa. 
Thus it is possible that the relative mean paths may be indefinitely small as 
compared with the diameters of the grains, and the rates of conduction 
indefinitely large.

87. It has been shown Art. 74 (a) that a granular medium, in which the 
grains are in such arrangement that each grain is in complete constraint 
by its neighbours, cannot consist of mean and relative systems of motion. 
While from the previous paragraph it appears that granular media in which 
there is finite relative-energy may approach within any approximation of 
the condition of complete constraint with their neighbours.

88. The conclusion, as stated at the end of the last paragraph, has 
a fundamental significance. It clears the way to the recognition of the 
definite geometrical distinction between the effects of redistribution in 
media, otherwise similar, in which the mean paths are respectively within 
and without the fundamental limit of no diffusion.
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When there is no relative motion and each grain is in complete con
straint with its neighbours, if there is no mean motion, it follows, at once, 
that the directions of the normals, at the points of contact, to the surfaces of 
the grains, whatever these directions may be, are undergoing no change— 
are fixed in space.

If then, as shown in the last paragraph, granular media in which there is 
vis viva of relative-motion may approach indefinitely to the condition of 
complete constraint, it follows that in such media, when the mean paths are 
indefinitely small compared with the diameters of the grains, the directions 
of the normals at points of contact approximate indefinitely to certain 
definite directions fixed in space, that is, as long as there is no mean
motion. Thus we have the definite geometrical distinction, that as long as 
the mean paths are within the fundamental limit of no diffusion, and there 
is no mean-motion, the normals to the surfaces at encounters are within 
certain angles of directions fixed in space; while if the mean paths are 
without these limits, in however small a degree, the normals continually 
change their directions so that, if sufficient time is allowed, all directions 
are equally probable.

89. While within the fundamental limit any one grain can only have 
contacts with a strictly limited number of other grains, in the case of

Fig. 1.

uniform spherical grains, in regular symmetrical piling, the number of grains 
any grain can come in contact with is twelve, so that if there is no strain 
in the medium and the mean paths are indefinitely small, as compared with

6—2 
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the diameter, there are twelve fixed normals in which this grain can have 
contact with other grains. The twelve normals radiate from the centre of 
the grain, and when the grains are in the regular formation each normal 
is in the same line with an opposite normal so that there are six fixed axes 
symmetrically situated in which encounters take place. And as the resultant 
accelerations are in the directions of the normals at encounter, these six 
directions of the normals are six axes of conduction of momentum.

These axes pass through the twelve middle points in the edges of a cube 
circumscribing each grain, if there are no mean strains in the medium, and 
are thus symmetrically placed with respect to the three principal axes of 
the cube. This is shown in Fig. 1, p. 83.

If, then, the rates of conduction across surfaces perpendicular to these 
six axes are equal, the momentum conducted being in the direction of the 
axes, the grains will, of necessity, be in mean equilibrium.

This state of equilibrium in no way depends on the mean density of 
the relative vis viva of the grains. Therefore, in the limit, as the mean 
paths of the grains become indefinitely small, as compared with their 
diameters, as regards the direction of the rates of conduction, whatever the 
relative vis viva may be, the state will be the same.

Thus, if there is no relative motion, but the grains are under stress, 
equal in all directions, by rates of conduction resulting from actions at 
the boundaries of the medium, the rates and directions of the resultant 
actions would be the same as if the rates of conduction resulted from the 
exchanges of momentum of relative-motion.

90. This limiting similarity between the states of media, one of which, 
having no system of relative motion, is purely kinematical, and cannot 
satisfy the conditions of consisting of mean and relative systems of motion, 
while the other, essentially, satisfies these conditions, has a fundamental 
significance, although (except by the recognition that in the one case the 
conduction results from mean actions at the boundaries of the medium, 
while in the other the conductions are between the moving grains) this 
significance in no way appears as long as there are no mean strains in the 
media.

If these media are subject to any indefinitely small distortional strains 
the discontinuity between them, as classes of media, appears.

In the case of kinematical media without mean strain, the stresses being 
equal in all directions and finite, no strain will result from indefinitely small 
stresses, nor will any strain result until the mean distortional stresses arrive 
at the same order as the mean stress equal in all directions. Thus if p 
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represents the stress, equal in all directions, andp^ — p is the normal stress 
imposed in the direction in which x is measured, the stress in the direction 
at right angles remaining equal to p (and not affected by the strain), there 
will be no strain until pxx is greater than 2p. Whence it follows that any 
distortional strain is attended by an increase of mean volume occupied 
by the medium equal to the contraction in the direction in which x is 
measured, since there is no work spent in resilience, or in accelerations of 
relative vis viva. Thus the kinematical medium has absolute stability up to 
certain limits*.

* Phil. Mag. Dec. 1885, “On the Dilatancy of Media composed of Rigid Particles in Contact.”

91. On the other hand, the granular medium with relative motion, 
however small may be the mean paths, when subject to no distortional 
strain, and to indefinitely small distortional stresses, yields in proportion 
to the stress so that such stress is equal to the strain multiplied 
by a coefficient which is constant if the terms involving the square and 
higher powers of the strain are neglected; and this medium has the character 
of a perfectly elastic solid for indefinitely small strains. It has therefore no 
finite absolute stability, and no dilatation as long as the squares of the 
strains are indefinitely small. As the strains increase, however, dilatation 
ensues, as expressed by the terms involving the squares and higher powers of 
the strains.

Thus, although for small strains the two media are fundamentally 
different, as the strains become larger the conditions of the two classes of 
media approximate towards similarity, as regards the relation between 
stresses and strains; and thus the door opened to mechanical analysis 
by the recognition and analytical study of the property of dilatancy, as 
belonging to all media consisting of rigid discontinuous members, is not 
closed to the analysis of systems of mean and relative motion. So far from 
this being the case, the recognition of the coexistence of relative motion, by 
easing off the condition of absolute stability, belonging to the purely kine
matical system, supplying as it were kinetic cushions at the corners, has 
removed difficulties which otherwise rendered analysis impossible.

92. The primary conclusion arrived at in this section, that the only 
media which, as purely mechanical resultant systems, can consist of com
ponent systems of mean and relative motion, are those which consist of 
discontinuous perfectly conducting members with some degree of freedom, 
while limiting, as already pointed out, the scope of the subsequent analysis 
necessary for the definite expression of the several rates of action resulting 
from convections in such media, also indicates the methods by which this 
analysis may be accomplished.
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Given the mean actions across the boundaries of any portion of the 
medium, the mean action of the grains enclosed is, at any instant, a mean 
function of the generalised ordinates which define the shapes, positions and 
dimensions of the members, the intervals of freedom, number of grains in 
unit volume, their velocities and their directions of motion.

Thus the method of analysis is to express the several probable mean 
rates of action, resulting from convection and conduction, in terms of the 
mean vis viva of relative velocity, the mean component-paths and mean paths, 
their number, mean-mass, and any other generalised mean ordinates that the 
shapes of the grains may entail. Then these expressions may be substituted 
in the members on the right of the equations, Section VI., since these include 
general expressions for the several actions.

The method thus indicated constitutes a general extension, or completion, 
of the method employed in the kinetic theory of gases.



SECTION VIII.

THE CONDUCTING PROPERTIES OF THE ABSOLUTELY RIGID 
GRANULE, ULTIMATE-ATOM OR PRIMORDIAN.

93. Although the absolutely rigid atom is as old as any conception in 
physical philosophy, the properties attributed to it are outside any experience 
derived from the properties of matter. In this respect, the perfect atom is 
in the same position, though in a different way, as that other physical 
conception—the perfect fluid. Both of these conceptions represent conditions 
to which matter, in one or other of its modes, apparently approximates, 
but to which, the results of all researches show, it can never attain, although 
this experience shows that there is still something beyond.

The analysis of the properties of conducting momentum, which must belong 
to the perfect atom considered as of uniform finite density, is obtained from 
the principle of conduction defined in Art. 72, Section VII.; from which 
it appears that it must conduct in all directions at an infinite rate, or that 
it must be capable of sustaining stress of infinite intensity, tension, com
pression or shearing; while it is shown that the property of conducting 
negative momentum in a positive direction or vice versa requires that the 
momentum and the conduction shall be imaginary.

In the case of matter (rigid bodies) these imaginary stresses and rates 
of conduction are held to imply rates of actual conduction, round the outside 
of the bodies, in the medium of the ether. A conclusion confirmed in the 
case of matter by the existence of limits to the intensities of these stresses. 
Such outside conduction is at variance with the conception of fundamental 
atoms outside of which there is no conducting medium and which atoms 
do not possess the properties of changing their shapes or of separating 
into parts.

It becomes clear therefore that any fundamental atom must be con
sidered as something outside—of another order than—material bodies, the 
properties of which are not to be considered as a consequence of the laws 
of motion and conservation of energy in the medium but as the prime cause 
of these laws.
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94. If, for the sake of simplicity, the medium consist of closed spherical 
surfaces of equal radii <r/2 with the same internal constitution—anything or 
nothing—and the interstices between them are unoccupied; these surfaces 
having the property of maintaining their motions, uniform in direction and 
magnitude, across the intervals, and that of instantly reversing the com
ponents of their relative velocities in the directions to the surfaces at 
contact on encounter without having changed their shapes; such a medium, 
however far it might go to satisfy the kinematical conditions necessary for 
the physical properties of matter, would of necessity entail the laws of 
motion and the conservation of energy; and would thus constitute a purely 
mechanical medium in which the results would be the same whatever might 
be the constitution of the space within the surfaces.

The mean density in such a medium would be measured by the number 
(A") of closed surfaces divided by the space occupied. And the density 
within the surfaces would be the reciprocal of the volume enclosed (tto^/S).

Since each of the grains represents the same mass, this mass becomes the 
standard of mass ; and being common to all the grains, is of no analytical 
importance.

In the same way a, the diameter of the grains, becomes the standard of 
scale in the medium; and being the same for all the grains has no analytical 
importance.

It is, therefore, important and convenient, as adapting the notation to 
any arbitrary system of units, to define the mass of a grain in terms of 
the dimensions of the grains in the arbitrary units.

The most definite and convenient definition appears to be that which 
makes the mean density of the medium, when the grains are piled in their 
closest order, a maximum, that is when each grain has contact with twelve 
neighbours at the same time. In this way the mass of a grain is expressed by

a3

where o- is the diameter of a grain expressed in arbitrary units.

Then if p" expresses the mean density of the medium
„ Na3

p = vl..............................................(129>

And thus p" becomes unity when the grains are in closest order.



SECTION IX.

THE PROBABLE ULTIMATE DISTRIBUTION OF VELOCITIES OF 
THE MEMBERS OF GRANULAR MEDIA AS THE RESULT OF 
ENCOUNTERS, WHEN THERE IS NO MEAN MOTION.

95. Maxwell's Theory.

Since the only action between elastic hard particles, as considered by 
Maxwell, is that of exchanging each other’s relative motion in the direction 
of contact at the instant of contact, and the action of the grains, as defined 
in Section VIII., is identically the same, notwithstanding that it is not 
ascribed to elasticity, Maxwell’s*  proof of the law of probable distribution 
of velocities to which the action between the particles tends, applies equally 
to the grains. This law of Maxwell’s is perfectly general and independent 
of all circumstances as to shape and size of the particles, and the extent of 
their freedoms, as long as there is freedom in all directions, and there is 
no distortional mean motion.

* Phil. Mag. 1860, Part I., pp. 20—23, Props. I, II, III, IV.

According to this law the mean of the energy, taken over limits of space, 
such as define the scale of the relative velocity of the motion in each degree 
of freedom, is the same for each and every degree of freedom, and is 
constant when equilibrium has been established. From this it follows that 
the time-mean of the energy of motion in each degree of freedom is the 
same, and is equal to the space-mean.

In the case of all the grains being similar and equal the mean component 
velocities positive or negative are the same, whether taken with respect to 
time, or to space. And when the grains differ the mean component 
velocities are inversely as the square roots of the masses.

This law of distribution, to which the relative-velocities, in any granular 
medium, tend when the mean motion ceases, being general requires no 
further exposition here.
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In following up the consequences of the law, to which the mean com
ponent vis viva tends, on the mean distribution of the spheres, Maxwell, 
it appears, has tacitly introduced an assumption which, although legitimate 
in cases in which the diameters of the spheres are negligible as compared 
with the mean-paths of the spheres between encounter, has completely 
obscured the fact that the mean arrangement of the grains does not depend 
solely on fulfilment of the law of distribution of the vis viva', but also 
depends on the hindrance which the surrounding grains may offer to the 
enclosed grain in changing its neighbours.

When the grains are small compared with spaces separating them this 
hindrance becomes negligibly small. And, further, whatever effect it might 
have is entirely dependent on the conduction through the grains ; so that 
the neglect of the displacement of momentum by conduction renders any 
account of such mutual constraints which the grains may impose on each 
other futile.

It now appears, however, that taking account of the conditions, we have 
in these a class of actions which, however insignificant they may be when 
the density is small, entirely dominate all other actions when the density 
approaches maximum density. And it thus becomes evident that the 
failure of the kinetic theory, as applied to gases, to apply to the liquid and 
solid states of matter is owing to this tacit assumption that the distribution 
of the mass depends only on the action which secures that the distribution 
of vis viva shall approach that of uniform angular dispersion as the medium 
approaches a state of equilibrium.

It will thus be seen, that accepting Maxwell’s law of probable distri
bution of vis viva, it still remains necessary for the purpose of definite 
analysis, to define the limits of its consequences on the probable arrange
ment of the grains, i.e. of mass.

96. Maxwell’s law of probable distribution of vis viva is independent 
of equality in the lengths of the mean paths.

This is founded on the demonstration (1) that when two elastic spheres, 
having relative-velocities in any particular direction, undergo chance en
counter, all directions of subsequent relative-motion are equally probable, 
and (2) the demonstration that whatever may be the shape of the elastic 
bodies the same law holds, as to the linear velocity, and is further extended 
to their rotational motions. As consideration here is confined to the case 
of smooth spheres it is sufficient to take into account the first case only.

The most general expression of this law for uniform grains is, taking 
x, y, z to represent the component velocities of grains in the directions x, y, z 
respectively, and N for the number of grains in unit space, the numbers
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of grains which have component velocities which, respectively, lie between 
x + bx, y+ by, z + bz, are

AT tf+tfl+tiq
6 °2 ...............................(130).

From this definite expression of the law it will be seen that it is confined 
to direction only and would apply equally to cases where in some directions 
the grains were making short paths and in others long paths, as well 
as to that in which the mean paths are equal in all directions. Q. E. D.

97. The distribution of mean and relative velocities of pairs of grains.
In Proposition V. of the same paper Maxwell extended the law of 

probable distribution of vis viva to the distribution of the relative vis viva 
of all pairs of grains. He does not seem, however, to have further extended 
it to that of the mean motions of the pairs; which is remarkable as it 
appears to follow directly from his method and would have saved him much 
subsequent trouble.

These extensions do not in the least involve the arrangement of the 
grains. It is however convenient to introduce the • demonstration of the 
law of distribution of the mean-velocities here, for the purpose of reference, 
and it is simpler to demonstrate both at the same time.

Taking x, y, z as the components of the mean-velocity of a pair of grains 
and x', y', z' as the relative components of the same pair, and xlt yit zi} 
x2, y2, z2 as the components of the individual motions, we have

x1 = x + x', yi = y +y', z,=z + z, 
x2 — x — x', y2 = y — y', z2 = z — z'.

Then for the numbers of grains for which xx is between x2 and 
y, between yY and y2 4- bylt z2 between and Zi + bzlt and x2 is between x2 and 
x2 -f- bx2, &c., &c.

y. i (v+w, \
n,= ,, e I as a2 S dxdydza(w)1 17

y2 j ,,,., f..........<131>-
, z n e I a’ a a dx dy dza3W3 17 j

The first of these equations expresses the probable number of grains 
having mean-velocities between x and x + bx, &c., &c., for any particular 
value of x', the relative-velocity, &c., &c.

And the second equation in the same way expresses the number of 
grains having relative-velocities between x and x' + bx', &c., &c., for any 
value of x, &c., &c. Whence the probability of the double event is expressed 
by the product

dxdx dydy'dzdz 
a®7r3

...............(132).
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Then if r = a? + y2 + Z1 and r = x'2 + y'2 + z'2, the number of pairs having 
mean-velocities between r and r-I- 8r and relative velocities between r' and 
r + 8r is

v at
Mi«2 = dxdydzdx' dy' dz ................ (133).

These admit of integration either with respect to x, y, z, or x', y', z.

Thus integrating x, y, z from x — — oo to = oo we find
N N rl

(V2a)3 (w)* 17 V ’

for the w’hole number of pairs whose components of relative velocities are 
between x' and x + 8x, y' and y' + 8y', z' and z' 4- 8z'. And integrating for 
r' instead of r we find

at yr %?
---- A—-— e «2 dxdydz .................................(135)
(a/V2)s(77)* * V 7

for the number of pairs whose mean components of velocity are between 
x and x + 8x, &c., &c.

These may be expressed in a more convenient form by substituting 
— rd cos 0d<f> for dx, dy, dz.

And applying this to the three expressions for the number—
of grains having velocities between r and r + 8r,
of pairs having relative-velocities between V2r and V2 (r + 8r\
of pairs having mean velocities between and (r+ 8r)/V2, 

since N is the number of grains in unit volume and N(N — 1) is the 
number of pairs of grains,

A4 (r) 
a3 Vtt

(N — 1) A4 (V2r)2 U/M2
—(V2ayV^ e ^^ = (^-l)«i ............(W

(A-l) AT4(?yV2)- = (A - 1) ............(138).
(a/V2)3V7r 7

Q. E. D.

The first and second of these laws of angular distribution of vis viva are 
the same as those given by Maxwell; and the third, that for the distribution 
of the mean vis viva of pairs of grains, leads to the same results as Maxwell 
arrived at in a different manner. Together they constitute the principal 
means of giving definite quantitative expression to the results of the analysis 
of the actions in a granular medium. And it is important to notice that they 
are derived from the probable independence of the preceding and antecedent 
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directions of the relative velocities of a pair of grains before and after 
encounter under conditions in which the mean density and constitution of 
the medium remain unaltered.

In Proposition VI. Maxwell has shown the rates at which the several 
members of the medium exchange vis viva, using arbitrary constants. And 
in his Proposition VII. he proceeds to the demonstration of the probable 
length of the path of a grain in terms of N, the number of grains in unit 
volume, s the diameter of a grain, and v the velocity. He has first shown 
that if r is the relative velocity of a particle with respect to N particles in 
unit volume, this particle will approach within the distance s of Nirrs2 
particles in a unit of time.

Thus in Propositions VIII. and IX. he determines the number of pairs 
moving according to the laws expressed in equations (137) and (138) which 
will undergo encounters in a unit of time, and in Proposition X. determines 
the mean path of a particle to be

1 =---------- .
W^tts2

In this result there are two things to be noticed.
In the first place the its2 in the denominator represents the area of the 

target exposed to the centre of a spherical grain by another grain in the 
direction of their relative motion; while the V2 is merely the ratio of 
the mean, relative velocity of the pair to the mean velocity of either grain, 
equations (136), (137). It is thus seen that, although the dimensions of the 
grain are, perforce, taken into account as determining the probability of an 
encounter, no account is taken of the third dimension of the grain in 
diminishing the actual distance the centres of the grains would travel 
between encounters. Hence Maxwell’s mean path I can only be an approxi
mation when his s is small with respect to his I.

The second point to be noticed in Maxwell’s deduction of the mean path 
is that he has tacitly assumed I to be the same in all directions. And has 
thus assumed not only that the density is constant, which is assumed in the 
determination of his laws of distribution of vis viva, but also that the arrange
ments of the particles must be such that the mean chance of encounter is 
equal in all directions, a condition which does not enter into the laws of 
distribution of vis viva, and consequently limits the application of this mean 
path to conditions of the medium such, that all directions afford equal chance 
of encounter. A condition which is obviously approximated to as the actual 
density becomes small compared with the maximum density, when each 
particle is in continuous contact with twelve neighbours.

98. In pointing out the limits to the application of Maxwell’s analysis of 
the action in a medium of hard elastic spheres, my chief object has been to 
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direct attention to those extensions and modifications which are necessary 
to render the analysis general, and thus to present a clear idea as to how far 
Maxwell’s method may be applied. At the same time it seemed very desirable 
to show clearly, that in extending the analysis to include conditions of the 
medium to which Maxwell had not applied his method, there is nothing at 
variance with the results he had obtained under the condition to which his 
application of this method extended.

Maxwell s laws of the probable distribution of vis viva, and mass, extended 
to include the mean vis viva of pairs of grains, are, as already pointed out, 
perfectly general.

But it is necessary to obtain expressions in terms of the quantities which 
define the relative motions of the medium for the rates at which the actions 
of conduction through the grains displace momenta and vis viva of relative 
motion, which expressions shall, if possible, be as general as the law of distri
bution of vis viva.

In the media considered by Maxwell the distances between the grains are 
assumed to be large compared with the dimensions of the grains. Whereas 
in the general theory it is fundamental that cases should be considered in 
which the distances between the centres of the grains, which are neighbours, 
approach indefinitely near to the linear dimensions of the grains.

Such consideration involves methods of analysis by which the several 
effects of the action between the grains may be defined whatever may be 
the relation between a the diameters of the grains and X their mean path.

In the first instance the consideration of these rates is confined to states 
of the media in which, whatever may be the density as compared with the 
possible density, the arrangements of the grains, however varying, are such 
that the mean actions in every direction are similar and equal; the medium 
being everywhere in mean equilibrium. And afterwards to proceed to the 
effects of inequalities both angular and linear.



SECTION X.

EXTENSION OF THE KINETIC THEORY TO INCLUDE PROBABLE 
RATES OF CONDUCTION THROUGH THE GRAINS, WHEN THE 
MEDIUM IS IN ULTIMATE CONDITION AND IS UNDER NO 
MEAN STRAIN.

99. The mean rates of convection and conduction of momentum, ex
pressed in equations (120) by p^, pyx, &c., and p" (uu'y, p"W, &c., 
admit of expression as

P+Pxx-p, Pyx, &c.; (v'v'y + p" (u'u)" - ^p" (v'v’y, p" (vu)", &c., 
where p—^ (Pxx +Pyy + Pzz), p (v'v'y = p" (u’u' + vv + ww')" 
and in this case p and ^p" (v'v’y represent the mean action, equal in all 
directions, while p^-p, p” (u'u')'' -%p'(v'v'y Sic., pyx, &c. and p"(v'u)" repre
sent inequalities.

In this first extension of the kinetic theory the object is to express the 
actions indicated by p and p"(v'v'y only, assuming that the inequalities are 
zero, in terms of the quantities which define the condition of the medium.

100. To determine the mean path of a grain.

The mean path of a grain expressed by X is the distance traversed by its 
centre between encounters, which is not the component in the direction of its 
motion, of its distance between the points at which the two actual contacts, 
which limit the path, have occurred, although it approximates to this as X/a 
becomes large.

Maxwell has shown that neglecting cr/X the mean path of a grain and the 
relative path of a pair of grains are expressed by

1 r- 1X = -=----- — and v 2X = —......................... (139)

respectively, while both of these are obtained from

V 2ttXo-“ = .............................................(140), 
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where N expresses the number of grains in unit volume; so that either 
member represents the mean volume maintained free from other grains by 
the kinetic action of each grain.

In this estimate however no account is taken of the striking distance, of 
the centres of the pair of grains, from the plane, normal to their relative 
paths before contact, through the point of contact, so that the centres of both 
grains are assumed to be in this plane at the instant of contact.

When X/a is large we have all positions of the projection, in the direction 
of relative motion of the striking grains, over the disc 7ra2/4, equally probable, 
and then the probable mean relative striking distance in the direction of 
relative motion is

2
3a‘

This is a relative distance and the corresponding actual extension of their 
actual paths is, by equations (136) and (137),

V2
3

101. The assumption that all positions of the projection, in the direction 
of relative motion, of the striking grains are equally probable over the disc 
area rra2/^ is obviously legitimate when X is large compared with cr, and 
hence these estimates of the probable mean striking distance when X/a- is 
large are precisely on the same footing as Maxwell’s estimate of the mean 
path neglecting a/X. But there does not seem to be the same ground for 
this assumption when a/X is large; while, on the other hand, there is 
evidence, as pointed out in Section VII. (Arts. 88 and 89), that, when the 
grains are close, the normals at encounter fall into line (approximately) with 
the direction of a finite number of axes, fixed in space, not more than six.

In this article the arrangement of the grains is assumed to be similar in 
all directions; so that, whatever may be the law of distribution of the pro
jections of encounters on the disc-area, the probability will be equal in all 
directions at equal distances from the centre of the disc.

Therefore taking 0, as before, for the angular distance from the axis of the 
disc at which the normal at encounter meets the hemisphere of unit radius, 
the law of radial distribution on the disc may be expressed by a function of 
cos 0, which function will depend only on the ratio <r/X. Thus as a general 
expression for the probable mean striking distance we have

n
[2

2tta cos 0 (1 + A! cos 0 + &c.) sin 0d sin 0
J 0 /• f / T A 1 \

’ = 3 \X/
2tt (1 + J.! cos 6) sin 0d sin 0

Jo
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in which A, &c. are functions of a/X only; and as the law of radial distri
bution of the striking distance is perfectly general we have in the right 
member a perfectly general expression for the mean relative striking distance 
of a pair of grains in the direction of their relative motion. And dividing this 
by V2 we have for the mean probable actual striking distance of a grain

Thus as a general expression for the mean path of a grain we have

and for the volume maintained by a grain .....................(142).

102. Further definition of f (a/X).
Since the foregoing expression for the volume from which a grain excludes 

other grains applies to all conditions of the medium it must include the case 
in which X is indefinitely small; in which case, if the medium is in uniform 
condition with three perpendicular axes of similar arrangement, the unique 
condition is that in which the volume maintained by each grain approximates 
to o-3/^, as explained in Section IX., each grain being in contact with 12 
neighbours. In this case JV approximates to f^/a3 which is the reciprocal of 
the volume maintained by the grain, which thus approximates to the volume 
of the spherical grain multiplied by 6/V2tt. Substituting this for the right 
member of the second equation (142) we have for the limit when a/X is large

1 6
4 V2tt

(143).

lhen, again, if X/a is large the value to which f{a/X) approximates is unity. 
Whence for an expression satisfying all cases in a uniform medium with three 
axes of similar arrangement it appears that we may take

1 —ae ’ (144).
where a2— 1—6/4\/2w and b2 is arbitrary

It is convenient however to render the expression for this function a little 
more general, since in a granular medium although generally in uniform 
condition, with three axes of similar arrangement, there may exist localities 
where the arrangements vary about local centres; the medium being still in 
equilibrium and X/a being small. Under such conditions the limits of 
variation are defined by the fact that equilibrium requires that each grain 
shall be in approximate contact with at least four grains. And it seems thatR. -
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these may be included by substituting 1 — G/4, where G has the value 
when the medium is in uniform condition, and values ranging to the limit 
18/4V2tt when the medium is in varying condition, as about centres of 
disarrangement, instead of 6/4^2 tt in a2. Then

By definition (Section IX.) p = Nfdifi, and by the second equation (142)

2?rp
............................... (146).

103. In order’ to render the expressions for the mean relative-path of a 
pair of grains and the mean path of a grain, taking account of the three 
dimensions of the grains, general and complete, use has been made, equation 
(139) in Art. 100, of the ratio (1/^2) of the mean path of the grain to the 
mean relative-path of a pair of grains as determined by Maxwell for con
ditions in which the third dimension is negligible.

The legitimacy of this assumption therefore remains to be proved. But 
before proceeding to the proof of this proposition the proofs of two other 
geometrical propositions are desirable, as they depend directly on the law of 
distribution of the component-striking distance over the area of the normal 
disc.

104. The first of these propositions is :

When a pair of grains having any particular relative velocity (^2 7/), all 
directions being equally probable, undergo chance encounter, the probable mean 
product of the displacement of momentum, in the direction of the normal at 
encounter, by conduction, multiplied by the component of fi 7/ in the direction 
of the normal is

To prove this, let be the acute angle between. two diameters drawn 
through the centre of a sphere of unit radius in the directions of the normal 
at contact and that of the relative motion before contact, and let a> be any 
small area on the surface of the sphere taken so that its mean position is at 
the point in which the diameter in the direction of the normal meets the 
surface of the sphere.

Then by the law of probability of the striking distance it follows that, at 
a chance encounter, the probability of the normal meeting the surface in w is 

a> cos y (1 — Aj cos + &c.)7F
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or multiplying this probability by the product of the normal component of 
the relative velocity co^x, and again by a, the normal displacement, 
integrating over the hemisphere for all values of and dividing this 
integral by the integral of the probability of an encounter on w for all values 
of x over the hemisphere, we have for the probable mean product of the 
normal component of relative velocity multiplied by the displacement

O \A./

Q. E. D.

105. The second of the two geometrical propositions is:
The probable mean component conduction of component momentum in any 

fixed direction at a single collision is

2tt | ~ acos XO cos x + &c.) sin yd sin x
7T

To prove this we have to multiply the mean product of normal displace
ment multiplied by the component of the relative velocity by (a3/V2) the 
mass of a grain; thus obtaining the expression for the mean displacement, 
in the direction of the normal at encounter, of momentum at a single 
encounter, as

Then, taking 0 as the angle which the direction of the normal makes with 
any fixed direction, say that in which x is measured, and resolving the normal 
displacement a and the mean normal component of V in the direction of 
multiplying by sin 0dO, integrating over the sphere and dividing by 4tt,

a3 2 /<r\-TH 2tt f(-] / cos2dsinddd /9V2 3 J Jo 2 a3 V2 , f<r\
477 ”3V2 3 a W

Q. E. D.

This expression for the probable mean-component conduction at a single 
encounter is one of the factors of the rate of component conduction by pairs 
of grains having particular relative velocity V2 Vi, the other factor being the 
number of collisions that take place between such pairs in unit space in unit 
time.

This second factor involves the discussion of the ratio of the mean path 
to that of the relative path of a pair of grains.

.(148).

7—2
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106. The number of collisions between pairs of grains, having particular 
relative velocities, in unit of time, in unit space.

Taking N for the number of grains in unit space and substituting V/ for 
r in the equations (136), (137), (138), Section IX., we have for the numbers 
of grains having velocities between Vi and V^ + BVi

*dV1'~n1 .............................(149),a3 vtt

for the number of pairs of grains having relative-velocities between f2 
and fl (F/ + 3 F/)

^2 d r,' = (Jf -1) ....... (150).(V2 a)3 y tt

and for the number of pairs of grains having mean-velocities between Vffl 
and (F' + SF/)/^,

. {N _ „»......... (161).
(Qt/V 2)3 yTT

107. From the equations of distribution of velocities, relative-velocities, 
and mean-velocities amongst the grains and pairs of grains in unit volume, 
it follows that the proportion of the N grains having velocities between F/ 
and Vi + 8F/ is the same as the proportion of the N (N — 1) pairs of grains 
having relative-velocities between y/2 Vf and \/2 ( F/ + 3F/) as well as the 
proportion of N (N — 1) pairs having mean-velocities between Vff2 and 
(F/d-SF/)/^, since for every one of the grains having velocities between 
V/ and F/d- 8F/ there are (2V — 1) pairs of grains having relative-velocities 
between f2 F/ and f2 (V/ + 8 V,') and (TV — 1) pairs having mean-velocities 
between Vff2 and (F/ + 8Vf/f2.

Multiplying the equations (136), (137), (138) respectively by Vf flVf 
and Vf*J2 respectively, and integrating from F/ = 0 to F/= oo ,we have for 
the mean velocity of grains, the mean relative-velocity of pairs of grains, and 
the mean mean-velocity of pairs of grains,

“0 <r/)-W2 = ^...(152).

And as the grains are of equal mass the relative velocity of each grain in a 
pair is half the relative velocity of the pair; so that the mean relative 
velocity of each grain in the pairs is

f2 fir
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108. To find the mean path of the grains, taking for the mean path 
of the pairs.

Each grain has at any instant N — 1 relative paths with the N — 1 other 
grains in unit volume, and N — 1 relative velocities, so that the N grains 
have in all N (N — 1) relative paths and N (N — 1) relative velocities.

A change in the actual velocity of any one grain causes a change in the 
relative velocity of each of the N — 1 pairs of which it is a member. And 
as at an encounter between the members of a pair two grains change their 
actual velocities, there are 2(Ar—1) changes at each collision in the 
N (N — 1) relative velocities of the pairs in unit volume. The mean 
relative path of a pair of grains between changes being by definition ^2X, 
the mean relative path of a grain is X/V2. And considering a particular 
pair of grains, their paths and velocities relative to each other, though 
continually changing, are always parallel and equal, so that the distances 
relative to each other traversed by each of the grains in unit of time have 
a mean value (7i')"/V2, and the mean number of changes of relative path 
and velocity in unit of time is

(n7V2_(F)" 
X/V2 X ’

Whence the number of changes in all the relative paths of all the grains 
is N (N — 1) (V'y'/X; and since there are 2 (A — 1) changes for each collision 
the number of collisions in unit volume in unit time is

A (7')" 
2 X ’

Having thus found the number of collisions between the A grains in 
unit volume in unit of time, since there are two grains engaged in each 
collision the total number of encounters made by all the individual grains 
in a unit of volume in a unit of time is twice the number of collisions : 
that is

A (7')"
X

Therefore the mean number of paths traversed by each grain in unit 
time is

ar 
X ■

Then since (V')" is the mean distance traversed by a grain in unit time, 
dividing by the number of encounters the mean path is

pw .............................................. (154).
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Therefore if V2X is the mean relative path of pairs of grains, X is the 
mean path of a grain. It also appears that the mean number of collisions 
in unit of time in unit volume is

N(V')"_N a 
2 X X ’ Vtt

......................................(155).

And the mean number of grains a grain encounters in unit time is
(FT 2a

X fir.X (156).

109. The mean path of a pair of grains.

This follows directly from the last proposition. For as the number of 
mean paths of pairs of grains is identical with the number of relative paths 
of pairs, and the mean velocities of pairs is one-half their relative velocities, 
the mean paths of the pairs must be one-half the mean relative path of the 
pairs, that is, must be equal to the mean relative path of each grain of 
the pair, or

X
V2‘

110. The number of collisions of pairs of grains having relative velocities 
between f2 F/ and f2 (F/ + dF/).

Since the mean relative distance traversed between changes by a pair of 
grains irrespective of relative velocity is f2 X, the mean time of a pair of 
grains having relative velocity f2 F/ in traversing their mean path (f2 X) 
is X/F/.

Then since the number of pairs of grains in unit volume having relative 
velocities between f2 F/ and f2 (F/ + dF/) is N (N — 1), and each of these 
pairs changes V-fX times in unit time, the total number of changes of these 
pairs in unit of time is

n(N-l)
A

And since there are 2 (A — 1) changes for each collision, we have for the 
numbers of collisions of the n(N — 1) pairs of grains in unit of time, 
equation (148),

nJ/ (g
2X 2 X a3 fir “ 'dV' .....................(157).

The integral of this from F/ = 0 to F/ = oo gives the number of collisions 
of the N grains in unit time.

111. The mean rate of conduction of component momentum in the direc
tion of the momentum conducted. Cases 1 and 2.
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Multiplying the probable mean component conduction from a mean 
collision of a pair with relative velocity V2 V/, equation (136), by the number 
of collisions in a unit of time, equation (157), and integrating V/ between 
the limits V/ = 0 to V/ = oo we have for the mean rate of conduction

V2 a ,^4(7,7 J™1 ,„,^1 3_.

............ (158), 
whence since (K'V')" = 3(U'U )"

Uy = P™’ &c" &c....................(159>
O A \A/

112. The left members of equation (159) express in terms of the 
quantities which define the relative motion of the medium, the mean normal 
stresses, or the mean rates of conduction of momentum, in the direction 
of the momentum conducted. And besides these there are the mean tan
gential stresses, or rates of conduction in directions at right angles to the 
direction of the momentum conducted.

These rates are obtained by substituting in equation (158), for cos3 0, 
&c., &c., cos 0 sin 0 cos <£, &c., which when integrated over the surface of 
a hemisphere are zero, if all directions of relative motion are equally pro
bable, but have values in a medium with linear inequalities when the axes 
of reference are other than the principal axes of the inequalities.

It is therefore necessary to obtain their integral values over the several 
groups of pairs having relative velocities in directions in which the sign 
of the component displacement is the same as that of the component of 
normal velocity, as

W TT

? 3 X \X/ 3tt

f I sin 0d0d<l>
J oJo

which multiplied by the mass and the number of collisions and taking 
the mean is

-&c” + &c- -&c............. (161)-

so that to each of these groups of pairs there is a corresponding group for 
which the normal components of mean-relative motions are of opposite sign, 
the mean taken over the two groups or over the whole unit sphere is zero; 
so that in a medium without linear inequalities

p^’ = 0, &c, &c........................................ (162).
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113. The mean rate of convection of components of momentum in the 
direction x by grains having velocities Vf for which all directions are equally 
probable, is expressed by

f’ V
2np Wi f cos^dsiaddd Tr/.—Is-------£------------------ ...................................(163),

2ttp I sin ddd
J o

which becomes, taking Maxwell’s expression for the mean value of v- from 
0 to oo , (a2.1), when multiplied by the product of the mass into the number 
of grains,

= .................................(164).

And for the mean rate of momentum conveyed in the direction of the 
momentum

p" = p' (JJ'U')", &c., &c.................................(165).

For the lateral convections of momentum the expression is

1
8?

"2 (-2 (V'V'\"
j X -—1—1— cos^sin2 ddd sin cf>d<l>

——---------- -— ----------------------------= — &e., + &c., — &c........ (166),
^p f f sin ddddd) 
o J o J o

where the integration extends, as in the case of lateral conduction, over 
groups of grains of which the directions are such that cos d, sin d, cos </>, &c. 
have the same signs, positive or negative. The groups in which the corre
sponding signs are opposite have integrals with the opposite signs negative 
or positive, so that for the complete integrals

p"(V'W')"=0, &c„ &c. (167).

114. The total rates of displacement of mean-momentum in a uniform 
medium.

Adding the expressions for the rates of conduction and convection in 
the respective members of equations (159) and (165), also (162) and (167), 
we obtain for the whole rates of displacement of the components of 
momentum

pJ'+p'fU'uy^p-ii+l ^f^\\(U'uy, &c. &c.
I O \/ZA YA/)

P^' + pfU'vy = &c. &c.
..(168).
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115. The number of collisions which occur between pairs of grains having 
mean velocities between and (F/ + dF/)/V2.

Since the mean distance traversed between changes of a pair of grains, 
irrespective of mean velocity, is the mean time of a pair of grains 
having mean velocity F//V2 in traversing their mean path is \/V. And 
since the number of pairs of grains in unit volume having mean velocities 
between ¥^^2 and (F/+dF/)/V2 is n(n — 1), and each of these pairs 
changes F/X times in a unit of time, the total number of changes of these 
mean paths is

n(^-l)^.
A,

And since there are 2 (N — 1) changes for each collision the number of 
collisions of the n (n — 1) pairs of grains in unit volume in unit time isn Vf2 ‘ X N F; 4F,2 _(E£ --  ---  - ■— 6 a"2 X a3 Vtt

.dV ......................... (169),

which integrated gives the total number of collisions a/Vw-X.

116. The mean velocities of pairs having relative velocities V2F/ and 
F//V2.

Since the time of existence of a pair between changes, whatever the 
mean and relative velocity, is the time of existence of both the mean and 
relative velocities between changes, and the mean ratio of the mean and 
relative paths between changes is that of 1/V2 to ^2 or 1 to 2, it follows 
that the mean ratio of the mean and relative velocities is 1 to 2. And 
hence the mean velocity of all pairs having relative velocities between F/ 
and V2 (F/ 4- dVf) is between and (F/ + dF/)/V2. Q. E. D.

117. All directions of mean velocity of a pair are equally probable what
ever the direction of the mean velocity.

This follows directly from the expression for the number of pairs having 
particular mean and relative velocities 

-NfN2-^
_2r£

e . di\d (cos 0^ . d^

_2r£
. e «2 . dr2d (cos 02) d<p„

rx being the mean velocity, r2 the relative velocity and 02<f>2 having 
reference to the angular positions of ?r and r2.

For, taking rf)^ and r28r2 constant, and ascribing any particular values 
to 02<p2 and 8028<f>2, the number of pairs, having a mean velocity F, in 
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directions such that, referred to the centre of a sphere of unit radius, they 
meet the spherical surface element cZcos d^d^, is to the total number which 
meet the sphere as d cos is to 4nr. q. e. d.

118. The probable component of mean velocity of a pair having relative 
velocity r2=f2 F in the direction of the normal at encounter.

Since = r2/2 and r2 = V2 Vf r2 = F7V2. 
component value is

~ 2 f 2'

119. The probable mean transmission of 
the direction of the normal.

In all directions the probable

vis viva at an encounter in

When two equal spheres encounter, the displacement of energy by 
conduction of momentum is the product of the displacement a multiplied 
by twice the product of the components of the mean velocity and relative 
velocity of a pair in the direction of the normal. Therefore since the 
probable component of mean velocity in the direction of the normal (last- 
article) is V//2 f2, and the probable component of the relative velocity as 
obtained by dividing out the a in equation (147) is 2 f2 .flgr/X) .F/3, the 
probable displacement of vis viva in the direction of the normal is

± I MS F2=± I MS +™2+w2) 17... (17o>XV O \A,/ XV O \A./

If I, m, n are the directions of the normal referred to fixed axes, the 
component displacements of the vis viva of components parallel to the 
axes are + [Z3 + Im2 + In2] ^f I o \Av , &c., &c.

120. The mean distance through which the actual vis viva of a pair of 
grains having relative velocities between f2V2 and V2(F1/ + 8F1/) is dis
placed at a mean collision.

Since the mean velocities of pairs of grains having relative velocity 
f2 F/ is F7V2 and the actual vis viva of such a pair is

2MM4<W2)2 = 27>>

we have for the displacement of the total vis viva of a pair of grains

And since the displacement of vis viva by convection by a grain having 
velocities between F/ and F/ + 8F/ between encounters is X.F2 and there
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are, in unit time, twice as many mean paths traversed as there are collisions, 
the relative rates of displacement of vis viva by convection and conduction 
are as X to a ./(a/X)/3, and the displacement of vis viva on encounter is 
in cases (1) and (2)

It thus appears that, while, as has already been shown, the range of 
mass or any mean quantity carried by mass is X, and the range of relative 
velocity or momentum is

the range of vis viva is
. 1 a . Za\)+ 3 X1^ tx/J '

121. The probable mean component displacement of vis viva at a mean
collision by conduction.

Multiplying the mean normal conduction of vis viva at a collision of 
a pair of grains having relative velocity \/2 TV by cos 6 . sin 0. d0. 2tt and 
integrating from 0 = 0 to 0 = tt/2 and dividing by 2?r we get

f2 2p a jfa\ d . cos2 0 _ _ pa f(&\
1 Jo > ’ W 2 “ + N W ................(171).

122. The probable mean component displacement of vis viva by convection 
between encounters by a grain having velocities between and V\' + dV\'.

Multiplying the product of the vis viva of the grain V,2 into the probable 
displacement (X) by cos 0 . sin 0 . d0, dividing by 2tt and integrating from 
6 = 0 to 0 = tt/2, the rate of the mean probable convection is

d sin2 0 j
—2~-^

_ £
~N 2 , &c., &c. ............(W

123. The mean component flux of vis viva.

Since there are two mean paths traversed for each collision, adding 
twice the mean component displacement by convection for one path to the 
mean displacement by conduction at an encounter and multiplying by 
MJK72X, the expression for the mean flux by grains having directions such 
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that cos 0 and cos are positive, and for pairs of grains for the mean velocity 
of which cos 0 and cos are positive, is

N 3X?

1 n ( a 
= 8 N" p I1 + 3X (173).

124. The mean component flux of component vis viva.

The flux of the components of vis viva may be separated for direct 

action by substituting cos2 0 . for jn the last equation and

integrating:

_£

d sm2 0 and for lateral action by substituting sin2 0 . cos2 </> —-— ft
y......... (174).

'2 f2 d sin4 0 /I + cos 2</>

_ p n 
~8-^

125. The component of flux of mass in a uniform medium.

Since mass is not subject to conduction, and the probability of a grain 
having velocity V/ is nJN while the probable mean path is X and the 
number of collisions in unit space and time between the grains having 
velocities between F/ and (F/+3F/) is

the component in direction of x of a grain of which the direction is 
defined by sin 0 .d0 .d<f> is X cos 0, and multiplying by the number of mean 
paths traversed by each of such grains in a unit of time we have

VX cos 0n . —1 sin 0 ,d0. d^> 
________ "_____________ — n y 

4tt____4tt ’ 1
d sin2 0 .d0 .d<j>

(175).

Then integrating from 0 = 0 to # = tt/2 and </> = 0 to </> = tf/2 and from 
F/ = 0 to F/ = oo

r“ _N 2a 
o 4 4 fir (176),

p n 
~8’>

2

K/

2



126] EXTENSION OF THE KINETIC THEORY. 109

and taking account of the mass of a grain 
a

is the flux of mass by the grains for which cos 6 is positive, &c., &c.

126. The extension of the kinetic theory has thus been carried as far 
as to include the expression of the rate of flux of momentum, vis viva, 

and mass, by conduction, as well as by convection, in the ultimate state of 
the medium without mean strain. Q. E. D.

It is to be noticed that the analysis effected in this section does not 
complete the extensions which are desirable, and possible, as these include 
the extension for the expression of the rates of conduction as well as con
vection, when the medium is subject to mean uniformly varying conditions 
though still in equilibrium.

These form the subject of Section XII. so that their consideration may 
follow the consideration of the logarithmic rates of redistribution of angular 
inequalities resulting from the varying condition of the medium on which 
they depend.



SECTION XL

REDISTRIBUTION OF ANGULAR INEQUALITIES IN THE 
RELATIVE SYSTEM.

127. When a granular medium, however uniform and symmetrical 
its mean initial condition, passes from a state of equilibrium and mean 
rest into a state in which there are mean rates of strain, there follow, as 
a consequence, rates of establishment of inequalities in the mean distribution 
in the relative system, which are expressed by the rates of transformation 
from mean to relative motion, as in the last term in equations (116) and 
(117) and in (116 A) and (117 a).

The general analysis of the effects of the mean motion on the relative 
motion for granular media comes later in the research* ; and it is sufficient 
here to have pointed out the general source of such inequalities, as in this 
section we are not concerned with the source except in as far as it may be an 
assistance in realizing the general distinction between the two classes of 
inequalities. Thus the inequalities which are called into existence by rates 
of strain partake of the characteristics of the rates of strain.

Local volumetric rates of strain, which cause the density to vary from 
point to point, institute what will here be called linear inequalities, while 
uniform distortional rates of strain institute what will here be called angular 
inequalities.

The inequalities so instituted, owing to the activity of the relative
motion, are subjected to rates of redistribution proportional to their magni
tudes, and it is the determination of these rates in terms of the constants 
which define the condition of the medium that constitutes the purpose of 
this section and the next.

These two rates of redistribution, like the volumetric and distortional 
strains, are analytically distinguishable as belonging to different classes 
of mean actions.

The rates of angular redistribution have the characteristics of production 
at a point. Their integrals are not surface integrals, and they are included 
in the expression for angular redistribution in the fourth term, equation 
(117 A).

* Section XIII.
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The rates of linear redistribution, on the other hand, have the character
istics of a flux. Their integrals are surface integrals, and they are included 
in the expressions for the linear rates of distribution in the second and 
third terms, equation (117 a).

It thus appears that these rates require separate treatment, and as 
the analysis for the linear rate depends, to some extent, on the angular rate, 
the angular rate is taken first as the subject for this section, and the linear 
for the subject of the next, Section XII.

128. Logarithmic rates of angular redistribution by conduction through 
the grains as well as by convection by the grains.

The necessity of logarithmic rates of angular redistribution in the mean 
angular inequalities in the vis viva of relative-motion, and of inequalities 
in the symmetry of the mean arrangement of the grains, for the maintenance 
of approximately mean- and relative-motion has already been proved in 
Section VII.; and the actions on which these rates depend have undergone 
considerable qualitative analysis (to use a chemical expression) in the same 
section. What is necessary, therefore, in this section is the application 
of the definite, or quantitative, analysis for the definition of these rates.

The first step in this direction is the definite consideration, in the 
concrete, of the instantaneous effects of encounters between hard spherical 
grains of equal mass and dimensions.

For this purpose use is here made of the conceptions and the method 
given by Rankine in his paper “ On the Outlines of the Science of Energetics*, ” 
a remarkable paper, which seems to have received but little notice.

* Proc, of the Phil. Soc. Glasgow, Vol. in. No. 1; Rankine’s Scientific Papers, p. 209.

129. In a purely mechanical medium, since any variation of any com
ponent-velocity of a point in mass can only result from some action of 
exchange of density of energy with other points in mass, there are always 
masses engaged in such an exchange. Considering these to include all the 
mass through which the exchange extends (as between some particular 
portion of the medium and all the rest) the sum of the energies of the 
components of motion, in any particular direction—that of x—immediately 
before the exchange is the active accident, or the “ effort,” of the component 
energy to vary itself, by conversion into some other mode, which, in a purely 
mechanical system, considered as a resultant system, can only be energy of 
component motion in some directions y and z at right angles to x.

The energy so converted into directions y and z is called the “ passive 
accident.” And in the same way the sum of the energies in the directions 
y and z, antecedent to the action, is the active accident or the effort of these 
energies to vary the energy in the direction x.
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It is at once apparent that the result of such accident is, taking account 
of the dimensions of the grains, to produce three instantaneous effects, 
while, if the dimensions of the grains are neglected as being small (as has 
been the case in the kinetic theory), only one of these effects is recognised 
as the result of the exchanges of energy on the instant. And although this 
one effect has been taken into account in the kinetic theory its position 
in that theory has not been generally defined, nor has it been made 
the subject of separate expression in the equations.

The first, and hitherto the only, published mention it has received as 
a specific effect occurs in Arts. 20 and 21 of my paper “ On the Theory of 
Viscous Fluids *,” where reference is made to the “ angular redistribution of 
relative-mean motion.”

It was not however till some time afterwards that I was able to distin
guish, geometrically, the circumstances on which the existence of angular 
redistribution of relative motion depend, and obtain separate expressions 
for their effect.

It is included in those terms in equations (47 a), Section III. of this 
research, which are not surface integrals, although not specifically expressed, 
being associated with the resilience-effects in these equations for a resultant 
system; the specific expressions for the separate effects for a resultant 
system are however effected in equations (47 a).

The instantaneous action of which this angular redistribution is the effect 
turns out to be the only instantaneous action on the energy of the relative 
motions of the mass or densities of masses engaged other than the effects 
on resilience; so that, when the masses engaged are two equal hard spheres, 
angular dispersion of the energy of their relative velocities, that is, of their 
velocities relative to their mean position, is the only instantaneous effect 
on this relative energy. This theorem may be easily proved.

130. When two hard spheres encounter, their relative-velocities are in 
the same direction, and their momenta, relative to axes moving with their 
mean-velocity, are equal and opposite. Suppose the axis of x to be the 
direction of relative motion. Then at encounter the grains exchange 
components of momenta in directions of the line of centres, and thus the 
relative component momentum of each sphere in the direction of the line of 
centres is reversed; so that if the line of centres does not coincide in 
direction with the lines of relative motion, the instantaneous effect (1) of 
conduction is exchange of energy of component motion from the direction x 
to those of y and z at right angles to x. This is angular redistribution 
of the energies of component motion, and is the only change of the energies 
of the relative motions, measured from the moving axes. For as the relative

* Royal Soc. Phil. Trans., Vol. 186 (1895) A, pp. 146—7. 
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momenta in direction of the line of centres of the respective grains are 
reversed at the instant there is no change in the position of their energies; 
so that at the instant there is no linear displacement of the energy of the 
relative motions. Q. E. D.

131. The other fundamental effects of the action between the grains— 
those which have been neglected in the kinetic theory—are (2) the dis
placement of momentum which results when two spheres encounter, having 
components of actual momentum (referred to fixed axes), in the direction of 
the line of centres, which differ in magnitude, causing the instant displace
ment of the difference of the component momenta, in the direction of the line 
of centres, through a distance cr, or the sum of the radii of the spheres. And 
(3) the instantaneous exchange of actual component energies in the direction 
of the normal.

This linear redistribution of momenta by conduction and the consequent 
linear displacement of their energy, relative to fixed axes, when there is mean 
motion, are the complement of the angular redistribution of energy, the 
three effects being the total instantaneous effect of the encounter, which 
admit of analytical separation, as long as there is no resilience.

132. The concrete effects of encounters between the grains must be 
considered as belonging to the resultant system in which there is no 
resilience. For when the effects come to be analytically separated by inte
gration into effects on the mean and relative systems respectively, if there 
are rates of strain in the mean system there will be, perforce, abstract 
complementary resilience-effects in both systems.

It therefore appears that, if the mean effects of encounters are to be 
considered as belonging to the relative system, it is necessary to assume that 
the mean-motion is not undergoing strain, or that any rates of strain are 
indefinitely small. Then since the relative motions are the only motions, the 
following theorem requires no further demonstration.

133. If the directions, velocities and positions of the grains, constituting 
a granular medium, be considered, at any instant, as a complex accident, at 
the instant an encounter occurs, between any pair of grains, the three instan
taneous effects, already discussed, will constitute an instantaneous finite 
variation in the complex accident, which variation will continue the same 
finite change, from the condition that would have existed, had the pairs 
passed through each other without effect, no matter what other variations 
might have taken place. Also, the subsequent effects resulting from the 
first encounter will remain unchanged. And thus, the integral effect of an 
encounter, at a time subsequent to the encounter, is its instantaneous effect 
added to all effects which ensue as a consequence of the encounter. In a 
granular medium, since each encounter involves two grains, the number of R. 8
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changes would increase as the sum of the series in geometrical progiession 
with the factor 2; so that in a time ten times as long as the average time 
between two encounters, by the same grains, the number of effects resulting 
from a single encounter would be on the average 8000.

Thus taking account of the three analytically distinct instantaneous 
effects, in a time ten times as long as the average life of a path, the effects 
of an encounter would entail, on the average, 8000 changes in the directions 
of paths of grains, 8000 linear shunts of component momenta through the 
distance a- in different directions, and 8000 shunts of the difference of the 
vis viva of the normal velocities through a in the direction ot the noimals.

Assuming, then, that in these changes, or variations of the complex 
accident, each has its effect in removing a portion of any mean inequality, 
which portion is proportional to the mean inequality, some idea may be 
gathered of the predominance of the effect of these changes in bringing 
about and maintaining the mean condition of the medium to which the 
changes tend.

134. In order to form definite estimates, in terms of the quantities, or 
mean constants, which define the condition of the medium, of the rates of 
decrement of inequalities from the condition to which the variations tend, as 
well as to find expressions for the resulting condition of the medium, it 
seems, in the first place, necessary to define, somewhat precisely, what are 
the immediate after-effects which follow, severally, from the three instan
taneous effects which have been analytically distinguished. For such 
definition the following general theorems may be proved.

Theorem. The only effect which follows the instantaneous effects of an 
encounter, until there occurs another in which one of the grains is engaged, 
is the linear change in position of mass, energy, and momentum, which results 
from the instantaneous change in the direction of vis viva.

The proof of this theorem follows, at once, from the analytical definition 
of the three effects and their continued existence.

For the instantaneous effect of linear displacement of the component 
momenta by conduction through the distance a in the direction of the 
common normal remains unaltered and hence produces no further effect 
till the next encounter.

And exactly in the same way the instantaneous exchange of the energy 
or vis viva of the components of the velocity of the grains, in the direction of 
the normal, remains unchanged until the next encounter. Therefore it follows 
that the instantaneous changes in the direction and velocity (which is obtained 
for each grain by superimposing on its actual velocity, before contact, the 
normal component of the relative velocity of the pair, measured in the direc
tion opposite to the normal component of the velocity of the grain before 
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contact) represent the actual changes in the directions and velocities of the 
respective grains, whence, as these effects are to institute rates of linear 
displacement of mass, momentum and energy by convection, these are the 
only changes, and they are the after-effects of the instantaneous change in 
the direction of vis viva. q. e. d.

135. From the theorem in Art. 134 it follows, as a corollary, that:—
The instantaneous, and after-effects of an encounter (before the next 

encounter of either of the grains) are confined absolutely to normal displace
ments of mass, and of normal components of momentum and energy ; so that 
they have no effect whatsoever on the positions of mass, momentum or energy 
as measured in directions at right angles to the normal.

therefore whatever may be the directions and velocities of pairs of grains 
before encounters, if the normals at encounter are all parallel to one axis, there 
is no lateral redistribution as the result of the encounters, whatsoever may be 
the extent of the normal redistributions.

136. From the principle stated in the corollary, Art. 135, that the redis
tributions resulting from encounters are confined to the directions of the 
normals at encounter, the following theorem may be proved.

Theorem. In a granular medium, in its ultimate state, without angular 
inequalities in the vis viva, &c., &c., the rates of angular redistribution of the 
vis viva will be equal in all directions, and equal to the rate of redistribution 
in the directions of the normals, if the directions of the normals are such that 
all the lines, drawn from a point, parallel to the directions of the normals, 
meet the surface of a sphere, about the point, of unit radius, in points which 
are symmetrically distributed over the surface of the sphere.

For in granular media, without angular inequalities, if X/a is large, all 
directions are equally probable for the normals of encounters, in which the 
changes in normal vis viva are equal; so that the probable rates of redistri
bution of inequalities are equal in all directions.

And in media in which a/X is small, as has been shown (Section VII. 
Art. 89), the directions of the normals will be arranged about n axes sym
metrically placed; n — 4 being the smallest number of mean normals that 
admits of symmetrical arrangement; and n = 12 the largest number, and the 
number in the ordinary piling. These mean normals being parallel to six 
axes, so that the probable arrangement in each group, of the directions of the 
normals, at encounters, in which the changes of normal vis viva are equal, will 
be similar about the axes: and it has to be shown that the rates of distribution 
will be the same in all directions.

This proof follows from the principle of the resolution of stresses or 
component vis viva. 8—2
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If the angles between any line OA drawn through a point 0, and the lines 
drawn through the point 0, in the directions of the normals, are respectively 
0!, &c., then the sum of the products of pi cos2 0,, p2 cos2 02, &c. is the rate of
redistribution in the direction OA, and is the same for all directions if the 
directions of the normals are symmetrical. Q. E. D.

137. The theorem in Art. 136 includes the redistribution of the actual 
vis viva between the grains, as this results from the same exchanges in 
directions of the same normals as determine the directions of vis viva; and, 
further, includes the redistribution of the limited displacement of normal 
momentum by conduction. Q. E. D.

138. When the mean condition is such that there are more normals in 
any one direction than in those at right angles, the rates of redistribution will 
be greater in that direction in which there are most normals. But, as regards 
the vis viva, as long as the distribution of the normals is such that the normal 
redistribution is in no direction zero, there will be rates of redistribution which, 
though not equal in all directions, all tend to bring about an equal distribu
tion of vis viva in all directions, and also tend to bring about the normal 
distribution of the actual vis viva of the grains.

As long as the inequalities in the symmetry of the directions of the 
normals are small, the effect on the rates of redistribution will be very small, 
that is, on the rate of redistribution of vis viva, and on the actual distribution 
of velocities of the grains, whatever may be the state of the medium as regards 
the ratio a/X.

Thus for the component vis viva and actual vis viva there is a continuous 
law of rate of redistribution and only one even when a/X becomes indefinitely 
large, so that the directions of the normals approximate to steady axes which 
only change their position on account of mean strain in the medium.

139. The redistribution of rates of limited conduction of momentum, or 
the limited displacement of normal momentum, is primarily dependent on the 
rates of redistribution of the directions of the normals. And the redistribution 
of the normals is primarily dependent on the redistribution of the positions 
of mass, which again has a primary dependence on diversion of the paths, as 
the after-effect of the instantaneous angular redistribution of vis viva, but this 
dependence on the divergence of the path is essentially limited by the value 
of a/X.

If this is small—that is if the freedoms are great—then, after an encounter, 
it is a matter of chance, like the length of the path of a grain, in what direction 
the normal at the next encounter will be, all angles being equally probable, 
and consequently the redistribution of the normals is determined by this 
probability.
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But when the condition of the medium is such that a/X is large the 
greatest possible distance a grain can travel before the next encounter may 
be much less than a, and this in any direction, in which case the possible 
direction of the normal is limited by a conical surface, which may be of angle 
zero, in the limit.

Then the rate of redistribution of the normals varies with the angle of this 
cone. Thus, as a/X approximates to oo , the directions of the normals approxi
mate to fixed axes according to the arrangement of the grains; in which case 
there is a redistribution of the rates of conduction of momentum or of the 
conduction of energy.

And here it may be noticed, that before the grains become virtually close, 
a limit is reached at which change of neighbours, or diffusion of the grains, 
ceases, and as soon as that limit is reached the mean position of the grain is 
constant, except for mean strains, and then the normals group round mean 
axes which only move with the mean strains of the medium.

Thus the displacements of normal momentum and energy depend on 
the arrangement of the grains apart from the mean freedoms, and the 
redistribution of the conduction depends on the redistribution of inequali
ties in the symmetry of the arrangement of the grains, so that, although 
both the angular redistribution of the vis viva and rearrangement of in
equalities in the symmetry of the mean arrangement of the grains, are 
included in the fourth term of equation (117 a), expressing angular redistri
bution, they have not been analytically separated, in the terms, as depending 
on angular dispersion of vis viva and rearrangement of the inequalities in the 
symmetry of the mean arrangement of the grains.

The analytical separation of the abstract actions on which the two effects 
of angular redistribution respectively depend, effected by the demonstration 
of the foregoing theorems, renders it possible to deal with the two rates 
separately and so to obtain analytical definition of the respective rates in 
terms of the constants which define the state of the medium.

140. The analytical definition of the rates of angular redistribution of 
inequalities in the directions of vis viva of relative motion.

As these actions do not appear to have been the subjects of previous 
consideration it is necessary to demonstrate two preliminary propositions 
before considering the mean effects.

141. The energy of component motion in any direction cannot by its own 
effort increase the energy of component motion in this direction.

This proposition might be taken as self-evident; but it may be definitely 
proved. In the case of spherical grains the proof is simplified, and particularly 
if the relative-motion is such that the only inequalities are in the energies 
of motion in different directions—unequal angular dispersion.
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Taking the axes of reference fixed, I, m, n and I', m', n', and I", m', n" as the 
direction cosines of the normal at the point of contact and of two other direc
tions at right angles, also u2,v2,w2 for the antecedent velocities of the
two grains, and U\, Ft, U2, F2, W2, for the subsequent velocities, it follows 
as a direct result of the.exchange of the components of motion in the direction 
of the normal that at a single encounter,

— uf — u2 = — 2 (to2 + n2) Z2 (u2 — w,)2
+ 2Z2 {to2 (v2 — Dj)2 + n- (w2 — w,)2} 
+ 4Z2toh (^2 — v^ (w2 — Wj) -&c.,&c. ...(177).
+ 2 (2Z — 1) [Im (u2 — (v2 — vj

+ nl (w2 — (w2 — wj}.
Then, since for any two spheres with particular relative motion, u2 — ult 
v2 — v1, w2 — wlt the probability of their normal, at the point of contact, having 
a direction within any small area, sin 6d0d<f>, on a sphere of unit radius, 
having its centre at the centre of one of the spheres, assuming all angles 
of relative motion after encounter equally probable, is: 

sin OdOd^j cos

where x is the angle between two radii, one meeting the surface of the unit 
sphere in the direction of the point of contact, and the other in the direction 
of the relative motion, drawn so that x is an acute angle, so that x is 
always between zero and tt/2.

142. The active and passive accidents.

In considering the action resulting from conduction of momentum of two 
spheres at a single encounter, the problem is greatly simplified by taking the 
direction of one of the axes of reference to be that of the relative motion of 
the spheres; while, as will be seen, it does not lose in generality.

Taking x to be measured in the direction of the relative motion, v2 — Vj, 
w2 — Wj are each zero, and putting

ł («i + w>)2 + (u2 — Wj)2 for uf + uf, &c., &c.
in equation (177) we have

ZĄ2 + Uf — K^ + Uj)2 — i(«2- Wi)2 = — 2(m2 + n2) Z2(w2 — w,)- + 0 + 0
F2 + F22 - + v2y —
IT?+ Wf—^(wl+w2)2 —

0 = - 0 + 0 + 2to2 Z2 (^ - u2)* 
0 = - 0 + 2n2T- (u2 - M1)2 + 0

r-(178),

in which the ciphers represent the values of the terms having factors (v2 - vj 
and (w2 — Wj).

Multiplying these equations by the factor of probable positions of the 
normal and integrating over the sphere of unit radius, since cos x is positive 
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and equal to + cos 0— + 1, the equations become on transposing the last terms 
in the left members

^2 + + + o +
^+^-1(^4-^= 0 -0 + 0 + H^-Wi)2 .........(179)’

i (wi + w2)2 = 0 - 0 + I (u2 - u,)-+ o j

where, since the square of the relative motion, (w2 — uff is double the sum of 
the squares of differences between the actual component motions and the 
mean component motions,

The left members of equations (178) express, respectively, the effects, both 
active and passive, of the accidents on the energies of the components of motion 
in the directions of x, y, z respectively.

The first terms in the right members, which are all negative, or zero, express 
the effects of the active accidents on the energies in these directions respec
tively, while the last two terms, which are positive, or zero, express the effects 
of the passive accidents in these directions, q.e.d.

143. The active accidents are work spent by the efforts produced by 
u2 — u,, v2—vlt w2—w1, respectively, in other directions than those of x, y, z 
respectively. Thus the effort in the direction of the normal caused by u2 — 
is 21 (u2 — uf and the component of the relative velocity u., - u, in the direction 
of the normal is l(u2-uf so that the total result of this effort is - 2Z2(u2 — u,)2, 
work spent by energy in direction of x. Of this 2Z4 (u2 — w,)2 is work returned 
to the energy in direction of a?; so that the portion of the energy in the 
direction x expended in (passive accidents) changing the energy in directions 
of y and z is — 2 (Z2 — 1) Z2(w2 - u,)2, and the passive accidents in the directions 
of y and z are 2llm?(u2 — vff, 2l-n2 (u2 — ufj1 respectively.

144. The angular dispersion of relative motion.
The equations (180) show that considering the chance encounter between 

two grains, whatever their relative-motion before encounter, all directions of 
the subsequent relative-motion are equally probable. So that any angular 
inequality in their relative-motion is virtually extinguished after a single 
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encounter; although if the pair have any mean-motion, whatever it may 
be, the inequality in this remains as before encounter. Q. E. D.

145. The mean angular inequalities.
Before we can pass from dispersion of the component relative-velocities of 

a pair of grains to that of the mean-inequalities of all the grains the demon
strations of several propositions become necessary.

For reasons, which will appear, we have here to consider only such mean 
angular inequalities as are introduced in the relative motion of the medium 
while the mean system is undergoing mean rates of strain.

These inequalities, as Maxwell has shown, for a medium consisting of 
equal hard spheres, are expressed by, taking N for the number of grains 
in unit volume,

la*  yU

* Phil. Trans. Royal Soc., 18G6, p. 64.

^V = a/3y(7r)? dxdydz* ......................... (181),

where a2, /32, y2 are double the mean of squares of the respective component 
velocities.

Since the differences between a2, /32, y2 and the mean (a2 + /32 + y2)/3 are 
always small compared with their mean it becomes more convenient to alter 
the notation and, taking a2 as expressing the mean of a2 + /32 4 y2, to take 
a (1 + a), a(l + 5), a (1 + c) respectively for Maxwell’s a, /3,y; a, b, c are then 
small fractions of unity such that their squares may be neglected and for the 
mean squares we have

a2 (1 + 2a), a2 (1 4- 26), a2 (1 4- 2c), 
and the inequalities are 2aa2, 26a2, 2ca2; 2a, 2b, 2c being the coefficients of 
inequality from the mean of the mean squares of the respective components.

It is to be noticed that in equation (136) the axes of reference are the 
principal axes of the space variations of the mean motions of the medium— 
the principal axes of distortional mean motions—and also of the inequalities.

146. The angular inequalities in the mean relative motions of pairs of 
grains have the same coefficients of inequality as the mean actual motions.

Integrating equation (181) with respect to y and z from — oo to 4- oo

Ne dx .(182).a(l + a^Tr
Then, after Maxwell, taking x, as a particular component of velocity in 

direction of x, the number of grains which have component velocities 
between x^ and xx 4- bx^ is

\ / ^^dx.
a (1 + a) fir
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And again taking x2 = + x' the number of grains between xx + x and
x1 + x' + Sx' is

/ A e-(^(1-2ay
\a(l + a)V7r

Then the number of pairs of grains which satisfy both these conditions is

NN 
a2(l+2a)V7re i d.xfx.

Then, since x^ + — may have any value from — oo to + oo for any value 
of x', integrating for xx between these limits for any particular value of x, the 
number of pairs which have component relative-velocities, in direction x, 
between x! and x! -\-Sx is:

A2
-------------------------------------------------- 6

V2a(l + d)fir

In exactly the same way it is shown that the numbers of component 
relative-velocities between y' and y' + Sy' and between z' and z’ + Sz! are 
respectively

A2 ,
V2a(l 4-d) ’

z/2A.
V2a(l+c)V7r

Multiplying these expressions by a/2, y\ z'2 respectively and integrating 
from — oo to + oo, and dividing by A2, we have for the mean-squares of the 
respective components, in the directions x, y, z

2a2 (1 + 2a), 2a2 (1 + 2d), 2a2 (1 + 2c),
which have precisely the same coefficient of angular inequalities as the 
mean squares of the components of the actual velocities obtained from 
equations (181)

a2(14-2a), a2(l + 26), a2(l + 2c). Q. e. d.

147. The mean squares of the components of relative-motion of all pairs are 
double the mean squares of the components of actual motion.

In the last paragraph of the last article it has been shown that the 
mean squares of the components of relative-motion of all pairs including 
the inequalities are double the mean squares of the components of the 
actual motion, so that no further demonstration is necessary.

148. The rate of angular redistribution of the mean inequalities in the 
actual motion is the same as the rate of redistribution of the angular 
inequalities in the relative motion of all pairs.

This follows at once from the inequality of the coefficients of inequalities 
which has already been proved.
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149. The rate of angular dispersion of the mean inequalities in vis viva.
It has been shown, equations (180), that the angular inequality in the 

squares of the relative velocities of any pair of grains is virtually extinguished 
at a single encounter. From this it follows that the virtual inequality in the 
motion of any grain exists only from the time of the institution of the 
inequality to the time of its next encounter.

This time is expressed by

Fi being the actual velocity of the grain, and Xi the distance traversed before 
encounter.

This distance Xi may be anything from 0 to oo. But it is proved by 
Maxwell to be independent of and to have a probable mean value, 
neglecting cr as compared with X, of

Taking a into account, as will be shown, the probable value of X 
becomes

.............................W)-

The probable path being X, the probable time of any grain with velocity 
Fj is

It thus appears that, although the mean relative distance traversed 
between encounters by pairs of grains having the same relative velocities 
F is independent of F1( the mean time between encounters varies inversely 
as Fi.

In order therefore to obtain the probable mean time of existence of 
inequalities in the angular distribution of the vis viva, it is not sufficient to 

find the probable value of the mean time , for all values of Fn since this 

would only be the probable mean time between encounters during which the 
inequalities in the mean velocity are sustained.

150. The mean time of mean inequalities of vis viva.
The direction of motion of each grain is the direction of its path; so 

that if I, m, n are the direction-cosines of the motion, the probable times of 
the continuance of the components of motion in directions x, y, z are

XZ Xm Xn 
FiZ’ Fjm’ Fjn’
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and since the chance of a collision in a unit of time is Kj/X the probability
of continued existence is

3',
and the probability of continuing for a time

nA

is e~n'.

Whence it follows that, taking account of all the pairs of grains at 
different relative velocities, but moving nearly in the same directions, the 
times for which their continuance is equally probable aren^XZ n2XZ p oom

— jZy ’ ^2 — y i ’ ..................................

so that, multiplying V^l2, &c. respectively by Ą, t2, &c., and adding, the
sum will be equal to

S + R+ &c.)}, = % VXl,

and similarly for the other two components.

And putting V and V2 respectively for the mean values of V and V2, the 
mean time of equal probability for the continued existence of V2 is obtained

— n Xl2Vby dividing the product by V2: -4=—, and for the other components
V2L2

nyXmtV MiX^V
V2m2 ’ V2n2

These mean times, it will be noticed, are independent of the directions 
of the groups, being all expressed by

t _ ?qX K, where probable continuance is e~n> = e *+........(186).

Differentiating this expression with respect to t,

dn^V2 
di XV .............................................. (187).

From equation (181) the mean values of u2, v2, w2 are found to be 

^(l+2a), J (1 + 26), f(l + 2c).
Li Li Li

In these a2 is constant, and a + b + c = 0, and the inequalities are

(1 + 2a) - = 2a &c., &c............................(188).
Li Li
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Then by equation (187) the probability of continued existence is ex
pressed by

2
2aA„ a2 a22a - = — 2a, -

Whence if ti, = 0,

a2 d (2a) a2 fir 
2 dt “ ' 2 2aX , &c., &c. (189),

or d(2a) Zoa7r\ .= — 2a 3 —-), &c., tec. dt \ 4\/ ’ ’ Q.E.F.

151. Translated into the notation adopted in this research for the ex
pression of the velocities of the component system of relative motion, we 
have for the mean inequalities referred to their principal axes,

p" [(«V)" — ^(uu + dV + tow')"], &c., &c................. (190),

and for the rates of dispersion with reference to the same axes we have, 
putting 92/32t in place of dldt to distinguish these as rates of angular 
dispersion,

" i / ' ' . ' ’ , / 3 7t „ T/ , (u'u + v'v' + w'w'f'P ^~A{UU) -i{uu+vv+ww)] = -i-ap (u'u) — ----------- ---------- , 4 a. o

&c., &c., ........(191),
where 2a/V7r is the time-mean of the velocities of a grain, and X is the 
measure of the scale of the system of relative motion. (N.B. These rates 
are independent of cr.)

As already pointed out, Art. 146, the expressions in equations (189) and 
(190) for the inequalities are with reference to their principal axes only; so 
that in order to obtain expressions that shall apply for any axes it is 
necessary to effect the transformation from the principal axes, at a point, to 
fixed axes.

152. Rates of angular dispersion referred to axes which are not necessarily 
principal axes of rates of distortion.

Taking 1^^, l^^, l3m3n3 to be respectively the direction cosines of the 
principal axes with reference to any rectangular system of fixed axes,

a', b', c', f', g', h'

to be the mean values of u2, v-, w2, v'uf w' if v!v' (u, &c., as before, repre
senting the relative velocities referred to the principal axes 1, 2, 3), and let 

b, c, f be their corresponding mean values when referred to the fixed 
axes of x, y, z.
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Then
/' = / = A' = 0

a = a 4- lfb' + l/c 
b = mid! 4- m^b' 4- m3d
c = n^d + nfb'+ n/d > ..........................(192).

f= m^d + m3nj)' 4-
g = nfd 4- nj,2b' 4- nJ,#'
h = Ipny + l2mj)' 4- Itm#'

From these, adding the second, third, and fourth, 
a 4- 5 4- c = a'4- b' 4- o' .(193).

Also since the principal axes do not change their position in consequence of 
the dispersion of the inequalities

^ = Z12^ + ^^4-y^p,&c.,&c. )
Ofy Oft O^t Ooy

d2(f) dAd) ^(b') ^(d) . s Iy J \ 7 4- m2n2 —A—7 4- m3n3 , &c., &c.02t O2t 0^ J
Then substituting from equations (190) for d2d/dj, &c., in (194), and 

remembering that ly' + l2v' + l3w', when referred to the principal axes is the 
same as u' referred to the fixed axes, we have by equation (193), for the 
rates of dispersion, referred to any axes,

p" L(u'u')" — ł (u u' + + w'w')"]O2t

=~2 p" a [(u'u)" — l(u'u 4- dd 4- w'w')"], &c., &c.4 X

p''^-yduy]
Ont = t p" — a (du)", &c. &c. 4r X

y.-(195).

p"^- l(w'u'y\ =lp"^ a (w'u'y, &c„ &c. 
O2t 4 X

153. The analytical definition of the rates of angular redistribution of 
inequalities in rates of conduction through the grains.

As already proved, Arts. 78 c and 79, Section VII., and the theorem Art. 136 
in this section, the angular inequalities in the rates of conduction are the 
result of unsymtnetrical arrangement of the grains. And as, according to 
the definitions of mean- and relative-mass, Art. 47, the mean-mass is inde
pendent of the arrangement, since the number of grains within the scale of 
relative-mass is not affected by the arrangement, the inequalities in the 
rates of conduction are the result of unsymmetrical arrangement of the 
relative-mass.
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It has also been shown, Art. 77, Section VII., that angular inequalities in 
the mean conduction result from angular inequalities in the lengths of the 
mean paths of the grains, and it has been further pointed out that angular 
inequalities in the lengths of the mean paths are the result of the distortion 
rates of mean strain. And the number of paths traversed being inversely 
proportional to their lengths, there are more mean paths traversed in direc
tions in which the relative paths are shortest.

It thus appears that, although the rates of conduction are not of the 
same dimensions as the mean paths or the position of relative-mass, the 
rates of angular redistribution of the angular inequalities are the same.

154. The rate of angular redistribution of mean inequalities in the 
position of the relative-mass in terms of the quantities which define the state 
of the medium.

When, owing to the rates of distortional or rotational strain in the mean
motion of a granular medium, there are instantaneous inequalities in the 
symmetry of the arrangement of the grains, there will be inequalities 
in the lengths of the mean component paths; and, the number of com
ponent paths traversed being inversely proportional to their lengths, there 
will be more relative paths traversed in the directions in which they are 
shortest.

Then, since after each encounter all directions of relative paths are 
equally probable, after each encounter any inequality which may be attri
buted to any pair of grains is virtually extinguished. And, as shown in 
Art. 150, the probability for the continued existence for a time

„ A • = is e-’1' ...................................(196).

From this it follows, as in equation (185),

= = , &c., &c...........................(197),

in which expressions the direction cosines llt mlt nlt &c. are nearly constant 
and nlt the index of probability, is constant.

Therefore taking the products (t, V) + &c.) and dividing the mean product 
by V—the mean velocity—the mean time of existence of the inequality is 
found to be

l = ..............................................(198),

and the mean probability of continued existence is„ -=7e~n' = e a .......................................(199), .
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which when the inequalities are small becomes

-i e A .
If, then, we take a, f, &c., the angular inequalities in the positions of 

relative mass, we have for the relative rates of angular dispersion,
_ A “ a, = -—-f.................... (200).

(t) *JttX ’ 8a (t) '

It will be observed that the logarithmic rate of decrement of inequalities 
in relative mass differs somewhat from that of the vis viva. This is a 
consequence of the difference in the mean time of probable existence of V 
and of V2.

155. The limits to the dispersion of angular inequalities in mean mass.

The numerical coefficient is the only respect in which the rate of angular 
redistribution of mass differs from that of vis viva as long as X/a is large. 
But as the density becomes large, unlike the redistribution of vis viva, the 
redistribution of relative mass depends on two circumstances, the inequalities 
being small in both cases.

Inequalities in vis viva are not subject to any limits imposed by the 
neighbouring grains and consequently all directions of motion are equally 
probable, however close the grains may be, and whatever may be the arrange
ment of the grains.

On the other hand the possibility of angular rearrangement of the grains 
turns on the possibility of a grain passing through the triangular surface set 
out by the centres of three of its neighbouring grains ; and this possibility 
is closed at some density less than that of maximum density. The density 
at which this closure is effected is that at which diffusion ceases and the 
state of permanent distortional elasticity commences. Before this density is 
reached the diffusion becomes slower and slower as the density increases ; 
so that in a granular medium of which the mean condition is uniform, but 
which is steadily contracting, the chance of a grain finding a clear way 
between three of its neighbours diminishes, and each grain dwells longer 
and longer in the same mean position in the medium, until all chance ceases 
and its mean position is definitely defined, notwithstanding that it has still 
a certain range of freedom. For the general consideration of the rate of 
rearrangement of mass it is necessary to take account of the probability of 
a grain returning after encounters to the formation before encounter, and 
this presents great difficulties. But it will be sufficient to point out here 
that owing to the instantaneous action at encounter, no more than two 
grains are ever in contact at the same time, so that there is no chance of 
combination of the grains, and that the mean position of two grains is not 
altered at encounter while the relative motions are reversed.
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In the next section it will appear that the linear dispersion of vis viva of 
grains is very slow as the angular dispersion is very great, so that any chance 
activity of a grain of an exceptional character is immediately dispersed 
amongst its neighbours and brought back to the mean.

When therefore the density is such that X/a is very small and the density 
is nearly the maximum, i.e. when G is nearly there is no rearrange
ment of the grains, and this will hold good as G increases provided that the 
extent of the medium for which the value of G is large is very small.

Thus we have two states of the medium in which the rates of rearrange
ment are defined, and between these a gap in which the definition is 
difficult.

Fortunately this difficulty is confined to a very small portion of the total 
range of density, being that between the density at which diffusion ceases 
and that at which diffusion becomes easy.

This gap covers a region of which the higher limit of p is slightly less 
than 1/V-, when the distribution is uniform, and is equal to 1/3 at irregular 
points and surfaces; X/cr being small in both cases.

For values of p above these limits there is no diffusion and consequently 
no redistribution in the arrangement of mass, while for values of p below 
these limits the change in rate of redistribution is very rapid at first, 
then gradually settling down to the same relative rate as that of redistribu
tion of vis viva.

If then we take as before a = 3, (a)/9j (i), &c. to represent the small 
angular inequalities instituted by the distortion in the mean system during 
the time 9„ (t); the rates of redistribution to which these are subjected will 
approximate to that to which the vis viva is subjected as p approximates 
to zero. Thus the law of redistribution has an asymptote

92 (a) 2
92 (t) firX a ...........................(201).

Then if we take f(G) as expressing a coefficient by which the upper 
limit of p must be multiplied to bring it to unity

rcti = ~ vixaa t1 &c- H
(t) \f7T A, 1 + e (902)

= {1 -f<G}p}’ &c”&c-C/O \^/ \ 'J J" I- '
are expressions which give the rates of redistribution correctly except, 
perhaps, in the immediate region of the higher limit.

156. The rates of probable redistribution of angular inequalities in the 
rates of conduction.
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Any angular inequalities in the rates of conduction result, solely, from 
angular inequalities in the distribution of mass, but the coefficients of the 
rates of redistribution are not the same for rates of redistribution of mass as 
for the redistribution of conduction.

The mean time of continued existence of the path of a grain

is not the mean time for the continued existence of the product of the mean 
path multiplied by the vis viva. If however the mean time for the mean path 
be multiplied by the factor

12 _ 8 '
ys - 3tt

we have ...................................... (204)
P^XF 
yi ya

which is the same coefficient as for the time of continued existence of 
vis viva.

To obtain the expressions for the probable relative rates of angular 
redistribution of angular inequalities in the rates of conduction correspond
ing to the rates of angular redistribution of angular inequalities in the 
distribution of mass, we have to multiply the relative rates of redistribution 
of mass by the factor

Btt

T’

Then substituting the actual inequalities in the angular rates of con
duction

(Pzz P )> Pyx > Pzx > &c.,

for a, f &c., the expressions for the rates of redistribution of these 
inequalities of conduction are

tp™ - p")=- J, ■ - p"\ M
Vo U /X, A -[* C

v2 / n\ q / J- / W) r //^Pyx “ ^7r x 1 + Pyx ’

^Pzx^ ~ 4 X 1 + ’

&c., &cA...(205).

&c., &c.

In these equations (204) for the rates of angular dispersion of the dis
tortional inequality, and the two rotational inequalities in conduction, as well 
as in the corresponding equations for the rates of angular dispersion of the 
corresponding inequalities in the vis viva of relative motion (195), the analysis 

9
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for each inequality has been effected separately in terms of the quantities 
which define the state of the medium.

These six rates of dispersion for each of the components in directions 
x, y, and z added together constitute the rate of increase of the energy of the 
component of relative motion received from the other components of the same 
system. And thus it appears that the expressions for these six rates of 
redistribution are the analytical equivalent, in terms of the quantities which 
define the condition of the medium, of the fourth term in the equation (117 A); 
which may be expressed as

Q. E. F.



SECTION XII.

THE LINEAR DISPERSION OF MASS AND OF THE MOMENTUM 
AND ENERGY OF RELATIVE-MOTION, BY CONVECTION AND 
CONDUCTION.

157. These actions are expressed by the second, third and fifth terms in 
equations (123), or more concisely by the second and third terms in (117 a),

1 c d 1"
2]^ > &c., &c-

It has been shown that the actions of the component mean and relative 
stresses on the space-variations of the relative velocities (p du'ldx + &c.)" are 
confined to the resilience and the angular dispersion of the energy of the 
components of relative-motion at the points where the inequalities of angular 
distribution exist; and therefore do not account for any linear redistribution 
from point to point.

Linear redistribution requires the conveyance or transmission of energy, &c. 
from one space to another, and the integrals of these actions must be surface 
integrals.

These actions of linear redistribution are again such that their effects 
can be studied only by considering the causes which determine the rates 
at which energy, &c., is carried and conducted across a plane from opposite 
sides. The relative-velocities at which the grains arrive at a plane, or which 
come in collision with a grain intersected by the plane, are not determined by 
any action at the plane, but by the antecedent actions.

As far as these actions of redistribution depend on the convections, that is, 
neglecting the dimensions of the molecules, they have been taken into account 
in the kinetic theory of gases.

Clausius was the first to obtain the true explanation* on the supposition 
that the mean distance between the molecules was so great, compared with 
their dimensions, that the latter might be neglected. In this method he takes

* Pogg. Ann. 1860.

9—2 
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account of the principle, that after a collision the mean velocity of the pair is 
the same as before, and of the consequence, that the molecules crossing a 
plane surface, perpendicular to the directions in which the inequality varies, 
from opposite sides, must have mean velocities such that their sum, in the 
direction of the downward slope of the inequality, is equal to V, the mean 
velocity of the encountering molecules, the same as if they arrived at the plane 
from uniform gas in motion with this mean velocity, Pj; the uniform gas being 
discontinuous at the surface in respect of density and velocity, but continuous 
in respect of mean vis viva-, the density and the mean relative-velocity on 
either side of the plane surface being that of the varying gas at a distance 
proportional to the mean path of a molecule.

Maxwell by a law of force (which he had arrived at from his experiments 
on viscosity* as the fifth power of the distance) obtained a numerically 
different, but otherwise, essentially, the same law.

In a communication—“On the dimensional properties of matter in the 
gaseous state f”—I have fully discussed this action, of the linear redistribution 
by the convections; confirming and extending Clausius’ explanation.

In that paper, by making use of the arbitrary constant s for the mean
range, or distance from the plane at which the molecules crossing the plane 
receive their characteristics as those of a uniform gas in motion with the 
mean velocity, V, of the molecules which cross in unit of time, the assumption 
that this distance is proportional to the mean path is avoided, and this is 
important where the mean path (X) is of the same order as the dimensions, a, 
of the molecule or grain.

In these analyses account has not been taken of any effects of conduction: 
so that, neither Clausius’ nor Maxwell’s, nor yet my own previous method is 
directly applicable for the determination of the rates of linear dispersion of 
linear inequalities in a medium in which a and X are of the same order, or 
in which X/a is small.

It thus appears that to render the analysis general these methods must 
be extended by taking account of the expressions (159), (162), (165), for the 
rates of flux by conduction of momentum, as well as of vis viva in terms of X 
and a; so as to obtain expressions for the mean-ranges of mass, momentum, 
and vis viva, as determined by conduction as well as by convection.

158. The analysis, to be general, must take account of all possible 
variations in the arrangement of the grains.

But in the first instance it is obviously expedient to restrict the arrange
ment of the grains, to be considered, to those which have three axes, at right 
angles, of similar arrangement, as in the octahedral formation; in which cases,

* “On the Dynamical Theory of Gases,” Phil. Trans. Royal Soc., p. 49, 1866, 
t Phil. Trans. Royal Soc., 1879, Part rj.
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whatever may be the formation, equilibrium is secured when the internal 
arrangement of the medium is uniform along each of the three axes; and the 
external actions on the medium over planes which are perpendicular to the 
axes are also uniform.

159. Mean-ranges.
Having obtained expressions for the rates of flux of mass, momentum, and 

vis viva, respectively, by conduction as well as by convection, for any group of 
grains in any direction, in a uniform medium, it remains to analyse these 
expressions so as to obtain the component mean-ranges of mass, momentum, 
and vis viva.

It is to be noticed that mass and vis viva are scalar, while momentum or 
velocity is vector; and that this fact gives the mean-ranges of momentum and 
velocity a different significance from those of mass, and vis viva or energy.

The mean-range of convection by grains in the direction of their actual 
motion, whatever they may convey, is X. And the mean-range of conduction, 
at encounters between pairs of grains in the direction of the normal, whatever 
is conducted, is a.

160. The component mean-ranges.
The respective component mean-ranges of conduction and convection are 

obtained by multiplying the components of the rate of flux by convection, in 
the direction of the elementary group, by the component of X in that direction, 
and the component rate of flux by conduction, in the direction of the elemen
tary group, by the component of a in that direction, respectively, integrating 
for the general group and dividing by the integral flux for the same group.

The component mean-range of mass.
As mass is not conductible the mean-range of conduction is zero. The

component mean-range—that of convection—is then obtained from equation

.(206).

(175) as

— §x..

161. The component mean-range of momentum or component velocity.
In equations (158) and (163) if the factors for convection and conduction 

under the signs of integration are multiplied respectively by X cos 6 and 
a cos 0, and integrated with respect to 0 from 0 = 0 to 0 = tt/2, ^> = 0 to 
^ = 7t/2 and divided by the respective integrals of the flux, between the 
same limits, the component ranges of momentum in the direction of the 
momentum, by convection and conduction, respectively, are found to be

fX and ^cr.



134 ON THE SUB-MECHANICS OF THE UNIVERSE. [162

And performing the same operation on equations (160) and (166), the 
component mean-ranges of momentum at right angles to the direction of 
the momentum, by convection and conduction, respectively, are

|X and | a.

162. The mean-range of vis viva.
Multiplying the convections and conductions, under the signs of integra

tion, in the three equations (112), (171), (174) respectively by Xcos# and 
a cos <p and dividing by the respective integral rates of flux, the respective 
mean-ranges are found to be, for convection and conduction,

For actual energy |X and coefficient f.

Direct displacement |X „ % a, „

Lateral „ » A0"’ »
The mean-ranges of momentum and vis viva, inasmuch as they are 

expressed in terms of X and a, are general when X has the value expressed 
in equation (146).

It should be noticed that while the mean-range of the grains in an 
elementary group is X, the mean path from centre to centre, owing to con
duction, the mean-range of the velocities and the squares of the velocities are 
respectively extended to

°f (?)and x+? f (?);
D O \/\>/

that is to say the velocity of the grain is not determined by the mean 
condition at the centre of the grain at which it last undergoes encounter, 
but at a position further back; and this becomes of fundamental importance 
when X/a is small.

163. The mean characteristics of the state of the medium.

The mean quantities which define the state of a (spherical) granular 
medium in uniform condition are

(1)

(2)

(3)

affź, the mass of a grain,

the constants in the expression o Art. 102,

u", v", w", the mean velocities of the medium,

(4) N, the number of grains in unit volume, 

(5) a, where 3x2/V2 = (V^V')".

Of these five mean characteristics (1) and (2) stand in different position 
from the rest, (1) being constant in time and (2) depending on the ultimate 
arrangement of the grains, and the consideration of these may be deferred.
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The mean characteristics (3), (4) and (5) all enter into the definition of 
-the state of a medium in uniform condition.

164. Characteristic velocities, densities and mean-velocities of the grains.
From equation (136) it appears that, referred to axes moving with the 

mean motion of the medium (u", &c.), the number of grains having velocities 
between If and F/ + SK/ in directions which referred to the centre meet the 
surface of a sphere of unit radius in the small element d (cos 0) d (</>), is

n N iV'\2 -(—Y /V\
--d cos 6 dcf> = 3 — ) e ' “ ' (Z(— dd.dA .................(207).

4tf r (tt/ \ a J \ a J v 7
Dividing by N

n 1 /V'\2 -(—Y /V'\
,—videos Odd) = -j (—) e 'a ' d (—-) dd. dd> .................(208).
4ttA 7 (tf)4 \ a / \a J K 7

If then in one state of the medium a has the value ai, and in another state 
has the value ct. = a1(l +da1/a1), the characteristic velocities, for which

iii _
Ni~t2 .............................................. (209),

will be If and F2' = y/(1 + 3a]/a1).
The inequality between the characteristics is:

1 «i ‘
In the same way for the characteristic densities if the numbers of grains 

in the two states are Ni and N2 = Ni ^1 + ^e characteristic numbers of 

the two states are

ill and iii ( 1 + I,
. , , . Vi dJf with the inequality a.

And if u" and u" (1 + du"/u") are mean component velocities in the two 
states the characteristics are

uf and uf = < fl + .............................(210).
\ iii J

165. Characteristic rates of flux when the axes are fixed.
Putting I = cos d, m = sin d cos </>, n = sin d sin </> for the direction cosines 

of the normal at contact of a pair of grains referred to axes moving with the 
mean motion of the medium, in the directions of x, y, z, and remembering 
that the range of convection is X while that of conduction is a, that for 

momentum the rates of the fluxes are 3X,3X and for vis viva a.

and putting 3 (cQ)xx, &c., and 3 (pQ)^ for the respective rates of convection 
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and conduction of an elementary group in direction defined by — d (cos 0) d(j>, 
with respect to fixed axes; for the flux of mass we have by equation (175)

9 (cQJxx = p {u" + —p cos d ( d<f>. &c., &c. .. .(211).

And by the last Art.
9 (eQ2)ra=a + IS («) ^ + S (o + 8 (AT) A) a (cq1)xx> 

\ Cvx cm, aiv /
whence the inequality of flux is

a (cQa)^ — a (cQi)ra — ^8(a)^ + 8(ii")^„ + 8(.A)^0 9(cQi)a»---(212).

Equation (212) is general and Q may represent mass, momentum or 
vis viva.

166. Rates of convection and conduction of momentum by an elementary 
group.

Substituting the mean-rate of flux of momentum by convection, and 
noticing that the component mean-path is increased from X cos 0 to 
X (u" + 7,' cos while the conduction is not altered by the mean
motion—omitting the square of the mean-motion and dividing out the X, 
we have:—

For direct action referred to fixed axes
S(cQi)xx + 3(pQ1)xx = p \(u' + 7/cos 02f (A F^cos2#!^^—cos#)d</>) 

( o A \A/ j IN
&c. &C.
&c. &c. )

...........  (213).
For lateral action

9 CQityz + 9 (PQi\x = p ](u" + V/ cos 0) (yr + 7/ sin 0 cos <£)

+ f (7/ cos 0sin 0 cos ^>1 ^d(— cos 0) d$>......... (214).

167. For the rate of displacement of vis viva by an elementary group 
referred to fixed axes.

Taking, as before, X (u" + 7/ cos 0)/u' for X and omitting, for the sake of 
simplicity, all quantities of the second order, such as u"-/X and Xo-2, we have 
for the direct rate of displacement

a (QiXra: = P \(u" + 7/ COS 0) (u" + V/ COS 0)2

V2<r
3X J kX/ VF (u" cos 0 + v" sin 0 cos </> + w" sin 0 sin <£) cos3d k ...(215).

°" J- (a\ 17 ,« ,/Il ’h d(— cos 0}d<bWUF eos^ [ g
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The first term within the brackets on the right, which is the convection 
term, becomes, omitting the terms of second order,

WVf* cos2 0 + P/3 cos3 0.

One part of the first of these two terms expresses the rate of displace
ment of mean vis viva by u"; while the remainder of this term expresses the 
displacement of the inequality of vis viva (flu" cos2 0) by Vf

The second of the two terms, which changes sign with cos 0, expresses the 
displacement (P/2 cos2 0) by Pj' cos 0.

The second term within the brackets expresses the displacement resulting 
from conduction on the mean normal velocity, and this does not change sign 
with cos 0.

For the lateral action

9 = p ](«" + Kcos 0) sin 0 cos

V 2 a ^,a (cos fl+sjn 0 cos $+w" sin 0 sin <£) cos 0 sin2 a cos2 </>3 \X/
P/2 cos 0 sin2 0 cos2 cos0)d</)

...............(216).

168. The inequalities in the mean rates of flux of mass, momentum and 
vis viva resulting from space variations in the mean characteristics in a medium 
of equal spherical grains.

When the mean state of the medium vanes continuously from point to 
point, so that (X/N) (dN/dx),

X + — !dx, + f^f a| du /dx,

and (X/a) da/adt are of the first order of small quantities, the mean charac
teristics N, a, u", &c., obtained by integrating over a unit of volume, taking 
account of the motion in all directions, are taken as the mean characteristics 
at the centre P of the unit element.

* Then it follows that if PQ represents a distance r of the order X + a, 
having a direction defined by I, m, n, the characteristics at Q will, to the 
first order of small quantities, be, putting I for any one of the characteristics,

T r h d d d\ T 
I^Iv + r{l-^ + mdy + ndZ)11- ..........................(217).

If, then, r is the range of I, whether it is 
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as the case may be, and it be assumed that the group of grains arriving at 
P, from the direction of Q, arrive as from a uniform medium having charac
teristics which are the mean characteristics at Q, the inequalities in the mean 
rates of flux at p would be obtained by substituting

T<i-Ir = r(l^ + m~ + n~>\Ip .................... (218)
\ dx dy az) ' '

for 3 (Z) and integrating Jf S (I) sin d d0 df for the partial groups.

Ihere is however nothing in the definition of the mean characteristics, 
at a point, in a varying medium, as stated above, to warrant the assumption 
that the grains arriving from the direction Q will arrive at P with the mean 
characteristics of the medium at Q.

The mean characteristics are the means of all the groups at Q, whereas 
the grains arriving at P from Q must, unless PQ is at right angles to the 
direction in which the medium varies, differ from the mean at Q taken in all 
directions; and therefore cannot have the mean characteristics at Q. It is 
necessary therefore to obtain further evidence before we can determine what 
are the characteristics of the elementary groups in different directions, which 
evidence is found in the conditions of equilibrium of the varying medium.

169. The conditions between the variations in the mean characteristics, 
a, u", &c., N or p, in order that a medium, in which a and the constants 
in f QQ are constant, may be in steady condition with respect to all the 

characteristics.

The condition of equilibrium of a medium in mean uniform condition 
requires that u", a and N should each be constant for all positions and all 
directions; so that in a medium in which any one of these mean character
istics varies, the rest being constant, the equilibrium would be disturbed. 
But it does not follow that equilibrium would be impossible if two or more 
of the mean characteristics vary.

For the case where a-f\ is small these general conditions have been 
already determined, in the study of the conduction of heat by Clausius*,  
and more generally, in the study of the dimensional properties of matter in 
the gaseous statef. In the latter instance, this was accomplished by the 
recognition that if the mean characteristics, u", a, N, of flux by a mean 
group of molecules arriving at P were the mean characteristics of the 
medium at Q, PQ being the range of the characteristics, the three conditions 

* Pogg. Ann., Jan. 1862; Phil. Mag., June 1862.
t Phil. Tram. Royal Soc., 1897, Part n. pp. 786—803.
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of steady density, steady momentum and steady vis viva, could not be 
satisfied; whereas if the characteristics, a and N, of the flux arriving at P 
from Q were the characteristics at Q, while instead of the characteristics 
u", v", w" at Q arbitrary functions of x, y, z (U, V, IF) are taken for the 
mean velocities of the arriving group, all the conditions could be satisfied; 
and the values of U, V, W be determined in terms of u", v", w", a and N.

This method may be applied for the determination of the conditions 
between the mean characteristics, U, a, 2V and u", when - is large as when A-
small, now that the expressions for the mean rates of flux and mean ranges, 
resulting from conduction, have been determined, as well as those resulting 
from convection, in a uniform medium.

170. The equation for the mean flux.

Substituting U for u”, &c. in the expressions for the characteristic rates 
of flux by an elementary group ( ), remembering that X is the range
of convection and a the range of conduction, that

! dx + m-p- + n V ), dy dz J
i For convection

Sa = X (4“\ dx
da da\

+ mdy + ndzh > •• ....(219),

da = a (ld- V dx
d d\+ m^ + n j- a, dy dz)

For conduction

in the expression for the inequality of the flux, and integrating from 0 — 0 
to 0 = 7T and from </> = 0 to </> = 2tt, the equation for the mean flux is obtained 
to a first approximation.

For the flux of mass.
From equations (176), the equation for the flux of mass in direction of 

x is :—
pa" = p U - | (a + P , &c„ &c...................(220).

Equation (220) has reference to fixed axes, for moving axes the equations 
become

+ ......... (221>'
These equations define the values U, V, IF in terms of the characteristics 

(a", a, p or N), the mean characteristics at the point.

For the rates of flux of momentum to a first approximation.

From the first of equations (213) the rates of direct flux of momentum 
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become, to a first approximation, assuming X to be the same in all directions,

it / ' i zz (n “ o' „ / aP (uu) 4-^ = ji + — y

f „ a2 4 X [ d dal)r 2+3^ a^^u-u^+p^u+u^\\ &c., &c.

For lateral flux.
From the second of (213) the equations become
zzz z /\n . zz \/2 a j. ( x\ ) 2 X ( d r zz. rr+ p„-[l + 3 (K-”]

+ |,[p-7r-«Tl} + /7r-<>g^ ,

For the rates of flux of vis viva to a first approximation.
From equations (215) the equations for the rate of flux of direct vis viva 

become
{p" (u'u' + pxx) u'}" = Hl + ^f A)} (U - u") p"*

IDA. \A// \

_ 4 j a- r 3dp" „da3~l5 ( 3xHx/J _a dx P dx_
For lateral flux.
From equation (216) •••(223).

[p"(wv+^)<T=| (1 + ^f^ęu-u^p^ 
( IDA \A»/ j

15 P + 3X^ WJ L“ dx + p dxJ

The values of U — u", &c., as defined in equations (221), are small 
quantities of the first order. Hence as these quantities, and their space 
variations, enter into the rates of momentum as factors of the small distances 
X and a only, the terms into which they enter are all of the second order 
of small quantities, as compared with p, and may therefore be neglected as 
being within the limits of approximation. Omitting these terms from 
equations (222), the rates of flux of momentum to the first order of small 
quantities are by convection :

p" (u’u'y = p"~ , &c., &c., ~l
p" (uv')" = 0, &c., &c.,

and by conduction, equation (159),

P 2’ &C-’ &C”

P"xy = 0, &C., &C.

................(224).
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The total rates of flux of momentum being
z ( V— r / <r\) ot2>|

P"™ + p' (u u) = |1 + -3 ^f J P 2 ................(225).
p"xy + p" (u'vy = 0, &c., &c. J

Substituting in equations (223) the values of U - u”, &c., as obtained 
from equations (221), the rates of flux of the vis viva of the component 
motions become by transformation:

, , , X a ( dp 21 da2\
(pnuu)

, ,v,___ o- -Ax) ” (^4o- \ dp"
PXX' 15 Vtt {lx / dx },&c.,&c. ...(226).

/ 6a 1 \ „ da2)
+ \ X \/2/ dx}

(pWWr = HP^')"l b e tion (223)
(^y=i(?^y J

And for the rate of flux of the total vis viva
, > ' ' , >\" K fn *dp 21 da2\

■ +pu;v+P„^ 
(+ puww +pawi

&c„ 4o...............(227).
The equations (221) to (227) as they stand are perfectly general.
So far however these equations satisfy the conditions of steady density 

and steady vis viva, only, on the supposition that the conditions of mean-mass 
are satisfied. And these conditions explicitly involve the space variations 
of X; as is at once seen from equations (225).

171. The conditions of equilibrium of mass referred to axes moving with 
the mean motion of the medium.

Differentiating equations (225) with respect to x, y, z, respectively, and 
transforming, the general conditions of the equilibrium of mass may be 
expressed as

dp 
dx=P\

f2Xa2b2e - ] dK x

„ X dx a2 dx , &c., &c. ...(228),

and from equation (146), differentiating and transforming, 
Wk

dp 
~te = P

3X 4- X V2 a2b2e a 1 dX p 0---------------------- —- - -j- , &c., &c.c X ax
(229).
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Adding the equations (228) and (229) the condition of equilibrium is

°Ma2£~x£)’&c->&c...............(230)-
The rates of flux of vis viva when the medium is in equilibrium.

Substituting in the first and second of equations (226), (227) respectively 
from equation (228) the respective rates of direct flux by convection and 
conduction are expressed as:

P"(uWf=-~ '3 + fZaWe °
DA" —■ -^ixLpg^&c, &c.

2 dx

^Pxx^) —

&2A8 4-V2a2&2e °” >•••(231),

+ “ V2) ©} P1 £ ’ &C”
the respective rates of lateral convection and conduction being one-third of 
the corresponding direct rates.

Adding the respective members of the equations (231) the expression for 
the total rate of direct flux of vis viva by convection and conduction is:

Wu'u + pxx) u']" = - 1 |- 2 (4a - ^2 X)a/ + -
3X + tj^af g j

+2ix4^~^2)^0}4^’&c-’&c.....(232)- \ 'v / \ A. / I
lhen, since the rates of flux of lateral vis viva are each one-third of the 

normal rate, the total rate becomes

■ (p'u 'u' + pxx) u " _L^x
. +(p"u'v + Pxy) J = {gx2 + 2 (4a - V2 X) af g)) 3^2^ J 

+(p"u'w'+pxz) w’) 3X + g)

+21x+~ V2)af 0} 4 £ ’&c”&c..... <233)-
The equations from (221) to (233) are perfectly general to a first 

approximation of the inequalities, the axes moving with the mean motion of 
the medium, the medium being in steady condition, and the arrangement 
such that a- and b- are constant.
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172. The coefficients of the component rates of flux of (a3 . a2/2 ^2) the 
mean component vis viva of the grain.

By equation (129 b) Section VIII.

p ^2’

Substituting this in equations (233), dividing by N and putting (C,2 + Df) 
for the product of the first two factors of the member on the right, these 
members take the form: 

as expressing the relative rates of flux of the vis viva of the grains across 
surfaces moving with the mean motion of the medium.

These rates expressed by the space rates of variation of the vis viva 
of the grains multiplied by the coefficient (Of + Df) express the rate of 
flux under the condition of steady motion.

But as long as the scales of the variation of a2 are sufficiently large, 
as compared with the squares of the scale of the relative mass and the 
mean paths, to come within the limits of approximation for the maintenance 
of mean and relative systems, the rates at each point will be approximately 
the same as under the conditions of equilibrium.

Then if the inequalities of mean motion are so small that the inequalities 
instituted in N, X, and a may be neglected as compared with N, X, a, 
i.e. if the scales of mean motion are sufficiently large and the inequalities 
sufficiently small, the coefficients Cf and D.?, which are respectively the 
coefficients for convection and conduction, may be taken as constants within 
the limit of approximation.

173. The rate of dispersion of linear inequalities in the vis viva of the 
grains.

Putting
19^ 1 d
N IXX = y [(p*® + puv!} u' - (pxy + pu'v') V - (pxz + puw') w'].. .(234),

we have — Z — — (C2 + D2) — — ę 2 -’f2 dx-

= — (C2 + D— —Nd^t™ 2)^df

— —Z — — f(72 + D2l— —JTd3txz ( 2 + i) J^dz2

>■

7 hus although not vectors the component rates of redistribution depend 
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severally on the component inequalities, and admit of separate expressions 
which when added together give the expression

..........................

And multiplying by N

174. The expressions for the coefficients Cf and involve the arbitrary 
constant b2, so that the general expression cannot be completely interpreted 
until b2 is defined. But the terms which depend upon b are very small 
except for states of the medium in which X is greater than <r/10 or less than 
lOcr; so that outside these limits the coefficients are independent of b- 
within the limits of approximation.

Then, outside these limits, the expressions for C? and Ą2, as appears from 
equation (233), when a/X is small, are, within the limits of approximation,

And when a/X is large
Z>22= 0

.................................................... (237).

2 __  A X

.....................................................................(238)‘

- ~3V7rXk4?J

And these values become infinite in the limit.

175. Summary and conclusions as to the rates of redistribution by 
relative motion.

The equations (202) express, in terms of the quantities which define 
the relative motion of the medium, the rates of angular rearrangement 
of the relative-mass, by institution of relative motion, corresponding to the 
last term in equations (119) Section VI.

Equations (235) Section XII. express the linear redistribution of in
equalities in vis viva of relative motion by the actions of convection and 
conduction corresponding to the second and third terms of equations (11 / a) 
Section VI.

Equations (195) and (205) express the respective rates of angular redis
tribution of angular inequalities in the vis viva of relative motion, resulting 
from convections and conductions respectively, corresponding to the fourth 
term in equations (117 a).

The second term in the equations (119) Section VI. is the only term 
in the equations of mass which does not become zero when p" is constant in 
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time and space. Therefore equations (202) express the only redistributive 
actions on mass, equation (204), resulting from relative motion. These 
redistributions of relative-mass are essentially positive dispersions of un- 
symmetrical arrangement, at rates which are proportional to the inequalities 
in the arrangement of the mass. But subject to the same limit as the 
permanent diffusion, as X/a becomes small.

Thus the action of relative-motion on the mass is that of positive 
dispersion of all inequalities.

The second, third and fourth terms in equations (117 A) are the only 
terms in the equation which depend on relative motion only; that is, are 
the only terms in these equations that do not necessarily vanish when the 
vis viva of mean motion is constant.

Therefore the equations (195) and (204), Section XL, express the only 
redistributive actions on the vis viva resulting from relative motion.

From these equations it appears that all these actions are essentially 
dispersive of inequalities, at rates proportional to the inequalities multiplied 
by coefficients depending on the characteristics of the medium; the only 
limit being that imposed by the nearness of the grains, which is the same 
limit as that of permanent diffusion as expressed in equation (205).

It thus appears that to a first approximation the action of the relative 
motion on relative mass and relative vis viva is essentially that of positive 
dispersion of inequalities; in which the rates of linear dispersion, and of 
angular dispersion of vis viva, by convection, are subject to no limit, while 
those of angular rearrangement of mass and of angular dispersion of vis viva 
by conduction are subject to a finite limit as the grains become closer.

The generalization of the dispersive actions.
The numerical coefficients of the several rates of redistribution expressed 

in the equations (202), (195), (205) relate to a medium consisting of uniform 
spherical grains. But if, for these numerical coefficients, arbitrary constants 
are substituted, these equations become general, that is to say, they include 
all discontinuous media in which the separate members do not alter their 
shape or size.

Whence the conclusion follows, that discontinuous, purely mechanical 
media satisfy the condition for the maintenance of the state of relative 
motion.

R. 10



SECTION XIII.

THE EXCHANGES BETWEEN THE MEAN- AND 
RELATIVE-SYSTEMS.

176. It has been shown (Sections XI. and XII.) that the effect of the 
relative motion is to disperse all inequalities in the mean vis viva of 
relative motion and in the arrangement of the mean-mass; the rates and the 
limits of these actions having been expressed in terms of the quantities 
which define the relative motion.

It remains therefore (1) to effect such analysis of the terms in the 
equations which express the effect of inequalities, in the mean-system, in 
instituting inequalities in the relative-system, as is necessary to define the 
actions they express, in terms similar to those in which the rates of redistri
bution are expressed; and (2), by combining the effects of the respective 
actions of institution and redistribution, to arrive at expressions for the 
resultant inequalities which may be maintained.

The only terms, which remain to be considered in the members on the right, 
of the equations of component vis viva of mean- and relative-motion (123) 
after transferring the first term on the right, which is the convection term :

&C” &C"

to the left member, are those terms which are concisely expressed as the fifth 
and sixth terms in equations (117 a).

Therefore these terms are the only terms which express exchanges of 
vis viva between the two systems taken as a whole. And since these terms 
do not become surface integrals they express the exchange, at points, of vis 
viva from the mean-system to the relative-system. And further, these terms 
are transformation terms solely; so that they each express, under the 
opposite sign, the exact rates of exchange as the corresponding terms in the 
equations (116 a). Thus the fifth term in equations (117 a) expresses the 
rate at which vis viva is received by the relative-system from the mean
system on account of the diminution of the abstract resilience in that 
system, while the sixth term in (117 a) expresses the rate of exchange of
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kinetic energy necessary in order to satisfy the condition of no energy in the 
residual system, the expressions under opposite signs being identical in the 
two systems.

177. The initiation of inequalities in the state of the medium.
Since the terms in (117 a) express the only actual rates of exchange of 

energy between the two systems, and the effects of the relative-system are 
purely dispersive, it at once appears that in a medium, in a state of general 
equilibrium, inequalities can be initiated only by acceleration of mean
motion, and whatever the state of the medium may be, all initiation of 
inequalities springs from acceleration of mean-motion as the prime cause. 
This being so, any rate of change which may result by transformation from 
inequalities in the mean-motion will be expressed as: 

according to whethei' or not the rate of convection dC" ( )/dt is or is not 
included in the action.

In this way the joint actions of institution and redistribution are ex
pressed as

df ) d3( )
d^ t d„ t

178. As presenting by far the greatest difficulty, and thus entailing the 
most discussion, the rates of institution of angular inequalities in the rates 
of conduction through the grains demand first consideration. These rates, 
it would seem, have not hitherto been the subject of analytical treatment; 
and although the expressions for these rates of institution are clearly dis
tinguishable, now that the conductions are separated from the convections, 
the interpretation of these terms presents difficulties owing, partly, to the 
novelty of the conceptions involved.

It appears that the analysis of these conductions constitutes the kinetic 
theory of the abstract elastic properties in the mean-system of a granular 
medium, that is to say, properties of distortional elasticity.

The terms which express the rates of increase of abstract resilience in 
the mean-system are included in the last term but one in the right members 
of equations (116 a).

In a purely mechanical medium there is no resilience in the resultant 
system, so that these terms in the mean-system have their identical counter
part under the opposite sign in the corresponding equations of the relative
system. But that which has rendered this subject obscure, is that the 
counterpart is under different expressions.

This is owing to the generality of the equations, which are not confined 
to a purely mechanical medium. However, on changing the signs of the 

10—2
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terms in (116 A) we have the interpretation of the corresponding terms in 
(117 a). These terms,

p" (du” dv" dw”\ . „ „. dv!'ę +ur- + (P -p ) -T—_ 3 K dx dy dz J r dx
1 ( „ (du” , dv”\ „ (du' , cZw"\n „ j 

+ 2 F »• u+e) •*'•te'
represent the rate at which kinetic energy in directions x, &c. is being 
abstracted from the relative-motion to supply the abstract mean resilience, 
depending on conduction, to the mean-system of motion. This is obvious, as 
regards the first of the terms within the brackets, for the components in 
directions x, y and z. But as these represent uniform expansion multiplied 
by uniform pressure, both the expansion and pressure being equal in all 
directions, it introduces no angular inequalities in the relative vis viva. It is 
however these terms, or more strictly, the three corresponding terms for the 
directions x, y and z taken together, that, owing to their simplicity, reveal 
the modus operandi by which the conduction through grains, of changeless 
shape or volume, can affect the work done in contracting the space in which 
they exist.

It is not the conductions that are the active agents. But these conduc
tions are a passive necessity of the space occupied by the grains; and thus 
measure the contraction of the freedom of the grains, owing to their volume. 
Whence, it is at once realized that the amount of increase of kinetic energy, 
which would result from a contraction of the entire space occupied, would 
not be the same as it would be if the grains, while conserving their mass, 
ceased to occupy volume. For in the latter case, taking V the velocity of 
the grains and p for the density, and supposing the action were what is 
called “isothermal,” the velocity V remaining constant, the rate of displace
ment of momentum would not be pV-/3, as it would be if the volumes of the 
grains were zero.

Neither would this stress vary with p but with p {1 +^>(p)] where ^(p) 
represents virtual contraction of the space free to the motions of the centres 
of the grains. Thus the variation of the kinetic energy caused by a mean 
volumetric strain in the medium is increased by the proportion of the volume 
occupied by the grains to the exclusion of other grains. It is thus seen that 
it is this excess of work in any mean strain, resulting from the virtual 
space from which the grains shut each other out, that is measured by the 
conductions. These effects have been fully expressed in equations (158) and 
(159), Section X., and are easily realized in the case of volumetric strain. 
But it is quite a different matter to realize how a purely distortional strain, 
which neither affects the volume of the space nor the volume of the grains, 
can produce a virtual alteration of freedom open to the grains or inequalities 
in rates of conduction; and hence the importance of the evidence derived 
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from the consideration of the volumetric strain in the interpretation of the 
results of distortional strains as expressed in the three last terms within the 
brackets. From these it appears at once that the action which determines the 
character of any effect there may be is rate of distortion, which also determines 
the rate of action, while the subject acted upon is the component of conduc
tion induced by the distortional strain. In the first of these distortional 
terms, for instance,

1 / u ,,, du

we see that all actions on the mean rates of conduction, expressed by p", 
equal iu all directions, are expressly excluded. The recognition of this is 
important as it shows the independence of the actions, in so far that if the 
distortional strain does not induce any change in the rate of conduction there 
is no effect. This raises the question: what is it that determines whether 
or not these distortional strains shall have any effect ? And the answer to 
this is furnished from the experience derived from the volumetric strain. 
If the mean distortional strain, by altering the relative positions of the 
grains from what they would have been without the distortional strains, so 
alters the mean extent of freedom in the directions of the principal axes 
of the rates of strain, there will be effects, otherwise not. “ Limiting the 
freedoms ” is only an expression for altering the probable mean paths, and 
as a distortional strain consists essentially of strains in directions at right 
angles, such that one of these strains is of opposite sign and equal to the 
sum of the others, the action of a distortional strain is not to alter the mean 
density, nor if a/X is small the mean paths of the grains, taken in all 
directions, but to institute inequalities, increasing the mean paths in the 
directions in which the strain is positive, and decreasing them in those 
directions in which it is negative.

It becomes plain, therefore, (1) that no matter what the mass or number 
of grains may be, if the volumes are such that the space they occupy is 
negligible compared with the space through which they are dispersed, the 
effect of distortional strains on the conductions must also be negligible.

And (2) that any effect the distortional strains may produce on account 
of the size of the grains depends on the change in the angular arrangement 
of the grains, as measured by the angular inequalities in the mean paths, 
that may be instituted.

And from these two conclusions it appears definitely that the abstract 
exchanges of vis viva, from the mean system to the relative system, in con
sequence of distortional strain in the former, and the space occupied by the 
grains in the latter, depend solely on the angular arrangements, as they are 
here called, of the grains.

This general and definite conclusion brings into view, for the first time, 
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the fundamental place which the conditions to be satisfied by the relative 
mass, as set forth in Section V., as resulting from first principles, occupy in 
the exchanges between the two systems.

It also calls our attention to the fact, pointed out in the preamble to 
Section IX., that the tacit assumption in the kinetic theory of gases, that 
the redistribution of vis viva entailed the redistribution of mass, has limited 
the application of this theory to circumstances in which the conductions are 
negligibly small, and reveals the necessity, for the general theory, of a study 
of the law of redistribution of mass resulting from the dispersion of mass 
as a subsequent effect of encounters, and as being in some respects inde
pendent of, and of equal importance with, Maxwell’s law of redistribution 
of vis viva.

Although in such studies of the kinetic theory as I have seen I have not 
found any reference to the existence of such a law or the necessity of its 
study, in a recent reference to the celebrated paper by Sir George G. Stokes, 
“ On the Equilibrium of Elastic Solids,” I was much relieved to find that, in 
his discussion of Poisson’s theory of elasticity, he expresses the opinion that it 
is important to take into account the possible effects of new relative positions 
which the molecules may take up, in which I recognise a reference to what 
I have called the angular distribution of the grains.

179. The probable rates of institution of inequalities in the mean angular 
distribution of mass.

When the condition of the granular medium is such that the probable 
mean path of a grain is the same in all directions—that is, when the mean 
of the paths of all the grains moving approximately in one direction is the 
same, whatever direction this may be—there are no angular inequalities in 
the arrangement of the grains. And when the means of the paths of grains 
moving approximately in the same directions are different for different 
directions, these differences serve to measure the inequalities in the angular 
arrangement of the grains.

And in exactly the same way the angular inequalities in the number of 
encounters between pairs of grains having relative-mean paths approximately 
in the same direction serve (and are rather more convenient) to measure the 
angular inequalities in the mass.

Such relative angular inequalities are instituted solely by distortional 
motion in the mean system. And the rate of distortion is one of the factors 
of the product which represents the rate of institution of the relative 
inequality; the other factor being the ratio of the average normal conduction 
of momentum at an average encounter of a pair of grains, divided by twice 
the average convection by a grain in the direction of its path.
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By equation (147) the normal conduction at a mean collision is

and by equations (155) and (156), there are two mean paths traversed for 
each collision, and the mean displacement of momentum, by the convection 
of a grain between encounters, is X V.

Therefore the ratio of the corresponding normal conductions and normal 
convections is

.................... <239>-
And the rates of institution of relative angular inequalities in the arrange
ment of the mass are represented by

Sia' f2 a ./cr\ („du" 2 [du" dv" dw"\\ 0 „ * .....

* N.B. The a', b', c\ in this article have no relation to (a, bt c) as used in equations 
(181) &c. for inequalities of vis viva.

Q V f d 2 37--------5 b- + j- + T- > &c- &c.*...(240).o-f 3 X \X/ \ dx 3 \dx dy dz J)

This is, only, when u", v", w" are referred to the principal axes of the 
rates of distortion. And dd/dt, db'/dt, dc /dt, represent the relative rates of 
increase of the mean paths of pairs of grains having relative motion in the 
directions of x, y, and z respectively. The rates of relative increase of pairs 
of grains, having directions of motion other than the directions of the 
principal axes, are obtained from those in the directions of the principal axes 
as in the ellipsoid of strain.

Besides expressing the inequalities in the angular distribution of mass 
and in the mean relative paths, da', &c., express the rates of increase of the 
inequalities in the numbers of encounters between pairs of grains having 
relative velocities in the directions of the principal axes. But they do not, 
without further resolution, properly represent the rates of increase of the 
inequalities in the rates of conduction in the directions of the principal axes ; 
since the directions of encounter, that is, the normals at encounter, may 
depart by anything short of a right angle from the direction of the relative 
motion of a pair.

Before proceeding to consider the relative-inequalities in the rates of 
conduction, however, it seems desirable to call attention to the distinction 
between rates of strain and strains.

It will be noticed, after what has already been said as to the difference 
between the effects of volumetric strains and distortional strains, that in 
what follows, the expressions dd/dt, &c. are used to express the rates of 
increase of relative-inequalities resulting from rates of distortion, while 
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these expressions are equally applicable to the rates of volumetric strain. 
Thus the expressions,

V2 a f(a\ (du dv dw\
3 \X/ dy + dz ) ’

and dx
dv dw\ 
dy^ dz)_

express, respectively, the rate of relative increase of X, the mean path, 
in all directions, and the rate of increase of the inequality in the mean value 
of the mean paths of the pairs of grains having motion in the direction of 
x only. This at first may appear paradoxical; but the explanation becomes 
clear when it is remembered that a rate of strain does not represent a strain, 
however small.

For a finite rate of strain to cause a strain it must exist for a finite time. 
And to convert the expression for a rate of strain into the expression for a 
strain it must be multiplied by the expression for a time; recognising this, 
the difference between the effects of volumetric strains and distortional 
strains is at once seen. In the uniform volumetric strain the effects on the 
path of every pair of grains, whatever the direction of the paths, are the 
same; whereas in the distortional strain, if the strain in direction of one 
of the principal axes is positive, the sum of the strains in the other two axes 
is equal and negative, and thus they neutralise each other except for such 
effects as result from rearrangement of the grains.

Noticing this, it is seen that the rates of strain in the directions of the 
principal axes on the pairs of grains with relative motion only, in one or 
other of these axes, are perfectly independent. And, assuming that there 
are no initial inequalities, these independent rates express the initial rates of 
increase of the initial inequalities in the mean relative paths, with relative
motion in the directions of the principal axes of rates of distortion. And, 
as long as the relative inequalities are very small, this independence will 
be approximately maintained.

Taking 8t as an indefinitely small increment of time and multiplying both 
members of equations (146) by this time we have, putting a' = da'8t/dt, as a 
first approximation to the effects of the rates of institution,

, f2cr.(a\ („du" 2 (du” dv” dw"\\ - . 0a = Vv/ V I2 j— o Hr- + t + UF" 1 &c-> &c- ..-(241),3 \XJ ( dx 3 \dx dy dz /) ' '
or since X is not affected by the distortional strains we may put for the actual 
rates

. /n , ,, ~ [, , fdu" 2 .du' dv” dw”\\ „ ’ „ „X(l+a) = X 1+Y-/ -2------ --  + + &c &c.
3 X \X/ { dx 3 \ dx dy dz J)

............ (242), 
which express the increase in the mean paths of pairs of grains having 
relative velocities in the directions of the principal axes.
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Then since the numbers of encounters between such pairs are inversely as 
the increase of the paths, we have, equating the reciprocals of both members,

= + + ...(243).3 XJ \Xj [ dx 3\dx dy dz J)
From which we have for the rate of relative increase of encounters the 
numbers of pairs with relative motion in the directions x, y, z,

- a' - - ?/((2 - ? f"' + + 81.......
3 X \Xj ( dx 3 \dx dy dz })

Having thus obtained to a first approximation expressions for the effect 
of rates of institution of inequalities in the pairs of grains having relative 
motion in the directions of the principal axes, we may proceed as in Art. 149 
to find, to a like approximation, the effect of these inequalities in the numbers 
of encounters on the normal conductions in the directions of the principal 
axes of distortion.

180. The initiation of angular inequalities in the distribution of the 
probable rates of conduction resulting from angular redistribution of the mass.

Taking x', y', ż as measured in the directions of the principal axes of 
the distortional strains, and — a!, — b’, — c’ respectively for the relative in
equalities in numbers of encounters between pairs of grains having relative 
velocities in the directions of x, y, z' respectively, where a' + b' + c = 0, we 
have for the probable relative inequality in the number of encounters of pairs 
of grains having relative motion in the directions defined by i, m', n referred 
to the principal axes,

— (l'2a! + m2V + n2c), since f' = g' = h'—0.
Then, taking llt m,, n^ as the direction cosines of the principal axis 

measured in direction x’, with respect to any arbitrary system of axes 
measured in directions of x, y, z\ h, m„, n, and being the direction
cosines of the principal axes of y' and z respectively referred to the arbitrary 
system, the inequalities in encounters between pairs in directions x, y, z 
respectively are expressed by

— (If a' + Ifb' + If o'), &c, &c.............................. (245)
respectively. Then using — a^, — b„ — c, to express these inequalities, we may 
also take, in the usual way, f g, h, the probable tangential inequalities,

/ = | f^ + ^'),&c.,&c..............................(246),
J 2 \dz dy)

— (n^^a' + m^nj/ + m^c), &c., &c.
Then to find the inequality in the number of encounters having normals 

in the directions of the axes of x, y, z, respectively, resulting from encounters 
between pairs of grains in all directions, we must express the probable 
number of pairs having relative velocities in a direction defined by I, m, n 
referred to the directions of x, y, z; such an expression is

a^ = l2a + m?b + n2c + 'i.mnf + Inlg + Umh................(247).
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Then the angular distances of the direction of a, from this line to the axes 
of x, y, z respectively are defined by I, in, n respectively ; and the probability 
of the normal at encounter being in the direction of x is lalt in the direction 
of y is mai, and in the direction of z is na^. These are the inequalities in 
the numbers of encounters of which the directions of the normals are in 
the directions x, y, z, respectively, resulting from encounters between pairs 
having relative motion defined by I, m, n. Then integrating — aj, — a,m, 
— a,n over hemispheres having axes in the directions of x, y, z, respectively, 
we obtain, respectively, on dividing by tf the mean inequalities in the proba
bility of encounters having normals in the directions of the axes x, y, z. 
Thus putting I = cos 6, m = sin 0 sin </>, n = sin 0 cos </>,

7T

_ p (d cos4 0 1 [d cos2 0 Id cos4 0\ J
— 2tf 4—j-----a+s- —5—+7---- 7— (6 + c)lJ o ( 4tf 2tt \ 2 4 4 / v

= | + |(6 + c) ............(248).

181. The mean relative inequalities in normal conduction are obtained 
after the manner in which equation (148) is obtained, by resolving the com
ponents of mean normal conduction in the directions of x, y, z respectively, 
and multiplying them by the expressions for a, b, c, &c. equations (247).

Then, since a + b + c = 0, we have for the probable inequalities respec
tively a/4, 6/4, c/4.

Our object however is not to obtain the inequalities in the probable 
number of encounters, but the inequalities in the mean normal conduction in 
the directions of the principal axes.

The mean relative inequality of normal conduction is obtained by the 
same method as in Art. 104. This requires that for the direction of x, 

2<r S(T\must be multiplied by — V2Ziv) and then integrated. Thus
3 \ A/

2 , [cr\ f2(dcosB0 1 [dcos30 d cos5 , T „ p- tf ——a + ^- —-— + —-— (5 4-c)k &c„ &c.3 A. \X/ J q [ UTT ZtT \ 3 O J J
............ (249), 

reduce to

- (0 (|«+ś <l+•>)—IA
- V2U ,/g) (? b + A (c + a)) _ _ | „b.

- e + £ (a + 6)) - - | A „

(250).

These are the inequalities in the probable normal conductions in the 
directions of the axes of x, y, z respectively, and it remains to find the 
inequalities in the probable conductions in the directions of the principal axes.
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The probable inequalities in the conductions resulting from an encounter, 
having the normals in the direction of x, are obtained by substituting the 
expressions for a, b, c in the preceding equations, then resolving the 
normal components of 7] and a, in the members on the right of these 
equations, in the directions of x, y', z respectively, integrating over a 
sphere of unit radius and dividing by 4tt. Thus since a' + b' + c' = 0,

| 27T V2 aV3f g) |p(W + l3W + l3*d)

= - A I a VJ g) j| a + A (6' + 4 [, &c„ &c.......... (251).

1 O O \A// IO IO )

2 V2 aV\a'
9

It will be observed that these expressions are for inequalities of the 
probable component of conduction in the directions of the principal axes, 
taking into account the relative inequalities in probable normal conduction 
in all directions; and that they do not express rates of conduction corre
sponding to the expressions in equations (158) and (159), but if multiplied by 

the mass of a grain, they express inequalities of conduction corre
sponding to the conductions expressed in equation (148).

To obtain the expressions for the inequalities in the rates of the relative 
component conductions in the directions of the principal axes of distortion, 
the expressions for the corresponding component conductions must be multi
plied severally by the number of encounters each grain undergoes in unit 
time, and by the number of grains in unit space, as expressed by the integral 
of equation (157).

Comparing the expressions thus obtained with the rates of conduction, 
equation (158), it is at once seen that the inequalities in the probable rate of 
component conduction in the directions of the principal axes of distortion 
are, remembering that a expresses 3i(a')31i/31t, &c.,

0-32 £ Pf g) (a') {p"^ - p") ^t, &c„ &c....... (252).
O A, \A./ Z

Then although the significance of the a' and a, &c., used to express 
relative inequalities in mean paths have no relation to the a' and a, &c., used 
to express inequalities in the vis viva, in equations (192—194) they are of 
similar significance and admit of similar transformation, whence it follows 
that by a process strictly corresponding to that followed in Art. 152, these 
rates of conduction transformed to any system of rectangular fixed axes x, y, z,

O\t ( J
3j (/) S 4 f 91 (“') 91 91 (C H X / Atny, = \m1nl + m3n3 -• + m3n3 1 6^, tec. dj ( Oj (tf ) /

............(253),
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then dividing by 8t and substituting 

(146)

the values of 9i(q') 
3d ’ &c. from equations

9i (») _ _ V2 a r(a\ fn dm" 2 (du" dv" dw"\\ „ \
9it 3 U/ 1 da; 3 \dx dy + dz ’ °'

I ............(254).

- - V If 0 (r+• I ■3d 3 X \X/ \dz dy / 2

To convert these into rates of institution of inequalities in the probable 
rates of conduction they must be multiplied by the constant coefficient of 
the 3i(a')/9i< in equations (252) which by equations (159) may be expressed 
as: 0’32p"; the coefficients of the right members of equations (254) may 
also be expressed by 2p"/pa2. Therefore

0~32p"2 
a2P2 ( du" 2 /du" dv" 

j dx 3\dx + dy

0~32p"2 
a2?2 dv" dw" 

dz dy

(255)

express the initial rates of increase of probable angular inequalities in 
the rates of conduction, resulting from distortional rates of strain in the 
mean-system, which are expressed in the last term but one of equations 
(117 A).

The rates of increase of conduction resulting from rates of change of 
density.

By equations (239) the relative rates of increase of p" are the products 
of the relative rates of change of density multiplied by the ratio of the rate 
of conduction to the rate of convection; the last factor is

V2 <r .(a\ p" 
3 X ' \xj a2 ’

P 2

Thus for the relative rate of increase of p"

1 9i(p")_ p" /du" dv" dw"\\ 
p" 3d a2 \ dx + dy dz Jp 2

the actual rate of increase being * ................. (256).

9i (p") I'"2
3d a2

p 2
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182. The transformation of vis viva or kinetic stress.
This as expressed in the last term of equations (117 a) and multiplied by 2 

so as to express the rate of increase of vis viva (not energy), is
n u {/ , du , , ..i. du . , z...du I - p2P j(««) + dy+^WU^

If the axes are principal axes of rates of distortion and the medium is in 
uniform condition the last two terms within the brackets are zero. Then 
taking a', b', c' for the relative inequalities, which are initially zero, we have 
for the rates of increasea2 31®' /zz z zV' (o p —= p (uu) 12-=-----  p 2 dj ' ' ’ 1 dx

2 (du" dv" dw"\\
3 \ dx + dy + dz ) \ , &c., &c. ...(257).

Putting l3m3n3 for the direction cosines of the principal
axes referred to any system of rectangular axes and taking a, b, c, f, g, h 
as expressing the inequalities when referred to other fixed axes, by the 
well-known theorem

a = a' + l2b' + 1/ o'
b = m^a + m^b' + m2c
c = n^a' + n^b' + n3d
f— rn^n^a' + m^nf + m3n3c' 
&c. &c.

.........................(258).

where a + b + c = a! + b' + c'

Then + + .............................(259),
Oj c dt dt dt

and substituting for the values of da'ldt, &c., from (257)
a2 ^a _ „ 2idu" 1 (du" dv"
2 ’ P a (dx ^ydx^dy^dz)} &c., &c........ (260),

Then putting a2/2 for

9 ^(dv" + ^,&c., &c. 
dy )

................(261).

(u'u + v'v + w'w')"2

„ 3a2 (du" dv" dw"\ 
p 2 \ dx + dy + dz ) ................ (262),

a, 
Bi t p" (u'u}" a2 _ „ a2 \du" 1 (du" dv" dw"\)

2 P 2 (dx 3 \dx dy dz /) , &c., &c.

81 r zzz ' n zz a2 1 jdv" dw" \ . p
&[p (»»)] —2p

- (263).

ą2 W)
P 2 ‘ 8^

3i ’ „ a2
3

These equations express the initial rates of increase of angular inequalities 
in the rates of convection resulting from distortional rates of strain in the 
mean system, which are expressed in the last terms of equations (117 a).
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183. The institution of linear inequalities in the rates of flux of vis viva 
of relative motion by convection and conduction.

Thus far the analysis for the rates of institution of inequalities in the 
vis viva and rates of conduction has been confined to the effects of uniform 
rates of strain in the mean-motion extending throughout the medium, whether 
distortional, rotational, or volumetric. When however the rates of mean 
volumetric strain are other than uniform, as long as the parameters of such 
motion are large as compared with the parameters which define the spaces 
over which the means of the relative mass and relative-momentum are 
approximately zero, the analysis of the effects resulting from small variations 
in the rates of strain in the mean-motions, in instituting linear dispersive 
inequalities in the mean vis viva, p (a2)"/2, of relative-motion, follows as a 
second approximation on that which has preceded.

In Section V. equation (93), it is shown that provided the relative motion 
and relative mass are subjected to such redistribution as to maintain the 
scales, over which they must be integrated, small compared with the corre
sponding scales of the mean-motion, the conditions for mean- and relative
systems will be approximately satisfied.

The expressions for the rates of institution of linear dispersive inequalities 
by convection and by conduction are given by equations (261) and the last of 
equations (256)

dd\P %)
2 a2 /du" dv" dw"\'
3 P 2 \ dx + dy + dz )

.................... (264).Si _ 2 p"2 /du" dv" dw" \ - 
9jt 3 a2 \dx dy + dz )

2

184. The institution of inequalities in the mean motion.
In the case of a space within which there are no inequalities, in 

either system, the institution of inequalities in the mean system within the 
space must be the result of some mean inequalities in the mean state of the 
medium outside the space—of some action across the boundaries; since in 
an infinite medium, including all the mass, all actions must be between one 
portion of the medium and another.

For the sake of analysis however it is legitimate to consider the mean 
actions on the boundaries of any space, as determined by the scale of mean
motions, as arbitrary. And it is important to notice that such mean actions 
on the mean motion are the only actions that it is legitimate to treat as 
arbitrary ; since, as has been shown in the last article, the institution of 
inequalities in the relative motion results solely from the action of the mean 
motion.
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Arbitrary accelerations may be finite or infinite and by assuming the 
accelerations infinite we are enabled to institute finite inequalities in the 
mean motion in an indefinitely short time, and this without instituting any 
inequalities in the relative motion, as the instantaneous result of the 
institution of the inequalities in the mean motion; whence, it appears, that 
we may, for the purpose of analysis, start with a medium without any 
inequalities in the mean mass, relative mass, or relative motion, but with 
arbitrary inequalities in the mean-motion. With such an initial start we 
have, from equations (120) Section VI.,

0 w" 
p = 0, &c„ &c..................................... (265).

185. The redistribution of inequalities in the mean-motion.
The effect of the instantaneous institution of inequalities in the mean 

motion is an instantaneous finite acceleration to the institution of inequalities 
in the relative motion as expressed in equations (255) to (263) as the result 
of transformation; the action including both the convections and conductions. 
This acceleration of the inequalities, in vis viva of relative motion, including 
conduction, is also an acceleration to the institution of the space-rates of 
variation of these inequalities, and these space-rates of variation of the 
inequalities of relative motion are transformed back as accelerations of the 
mean motion.

Thus, although S1u"/S1t = 0, the institution of du"]dx, say, has instituted 
an acceleration to the institution of inequalities, the space variations of which 
react as accelerations on the mean-motion. That these reactions are dis
persive, of inequalities in the mean motion, follows definitely from the 
sequence of the rates of action already defined.

To prove this we may consider the acceleration of any one of the 
inequalities, instituted by the mean motion, as to its rate of reaction, on 
the inequalities of position of the mean-momentum, by itself—independently 
of other inequalities. Considering the effect of acceleration of the inequality 

p" (u'vf +p"xy
on the acceleration of the rate of increase of mean-momentum, it appears, 
at once, from the equations (120) that the reaction resulting from this 
inequality affects both u" and v". These effects may be considered separately. 
But from equations (255) to (263) it appears that the rate of institution of 
the inequality p" (u'v')" + p"xy depends on the mean inequalities

du" dv". 
dy dx ’

so that if du"jdy is zero there will still be reaction unless dv"[dx is also 
zero.
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From equations (255) to (263) the rate of institution of the inequality is

9i / „, , ,v, , „ x „ a2 0'64 ,,\(du" dv"\8T((p («•) + P„) — (p 2+2^’)U+i?) -<266)'

Then changing the sign and differentiating with respect to y we have for 
the rate of increase of reaction from this inequality,

0-64 fd^u" , 
2/'^ )\dy2 +

W\ 
dydx) ............(267).

Differentiating this last equation with respect to y the acceleration of the 
rate of increase of the inequality in the mean motion is

„ 9^ (du"\ / „
^t2 \dy ) v

a2 0'64 „A d2 /du" dv"\ 
2 2p"a2 ) dy2 \ dy dx) (268).

This equation expresses the partial effect of the inequality p" (uv')'' +p"xy 
on du"[dy. And proceeding in a similar manner we have for the other 
partial effect on dv"ldx

„9?
p 3^

dv"\ ( „a?
.dx ) V 2 +

064
2p"a2

„A d2 /du" dv"\ 
P J dx- \dy + dx ) ............(269).

Then adding, the total effect becomes

„ 9i2 (du" dv"\ / „a2 0'64 „A/d2 d2\ (du" dv"\ /o^n.p 3^\dy + dx)~\p 2 +2p"a2^ JW + d^X dy +

It is at once seen that this equation represents a positive acceleration to 
dispersion of the inequality in the mean motion, du"(dy + dv"(dx, as the 
result of the rate of institution of the inequality p" (uv')" 4- p"xy.

In a similar manner it may be shown that the effects of the five 
distortional inequalities, in the rates of convection and conduction, are 
accelerations to the dispersion of the five remaining inequalities in the 
rates of increase of mean motion. These, together with rates of dispersion 
of the volumetric inequalities, admit of expression in a general form.

186. The inequalities in the component of mean motion.
du" dv"

(du" 1 (du" dv" dw"f\ dy + dx
[dx 3 \dx dy + dz J) ’ 2

dx) 1 (du" dv" dw"\
2 ’ ~^\d^+df+

admit of expression after the manner of expression of component stresses by 
simply substituting I" xx for p"xx, &c., &c., and we may further simplify the 
expressions by putting I" v for f" xx +1”yy + d"„)/3.
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In the same way we may take for {p" (u'u')" + p" xx\. In this way we
have for the three typical expressions of accelerations to rates of increase in 
inequalities of mean motion

p — CZ" — I" 1 — \o"a- + — v"*\ — (I" — T" 1xx 1 v)-\p a + p„a2P xx I v)

n^L(T" u.T" \-( < °'64 ^\it» , T" \
PfyA1 *y+ yx) \P 2p"tfP )\dy"- + drfW xy + ^ '

_ dl ( T" \ _  ( ” ^ \ "A | /th \ । / th \ / th \)P^1^ \p 3+3^P +

.................... (271).

Each of these types, it Avill be observed, expresses acceleration to the 
dispersion of the inequality of the mean motion.

Whence it appears that the instantaneous institution of inequalities in 
mean-motion is also an instantaneous institution of accelerations to the 
dispersion of the inequalities in the mean motion. Q. E. D.

It will be observed that since by definition the mean relative components 
taken over the scale of relative motion are all zero, there can be no change 
in the mean momenta as the result of exchanges between the two systems. 
And hence the action of dispersion can be, only, changes of the position of 
the momentum from one place to another.

187. In the consideration of the equations for momentum the question 
of dissipation of energy of mean-motion to that of relative-motion does not 
arise. But, as an acceleration to dispersion of inequalities of the mean
motion is an acceleration to decrease the component momentum where it is 
greater and increase it where it is less, so that there is no change in the 
integral momentum of mean motion, it follows, as a necessary consequence, 
the acceleration to dispersion of momentum entails an acceleration to dis
sipation of energy of mean-motion to that of relative-motion. The expression 
for these initial accelerations to dissipation of energy may be obtained in 
various ways, one of which is involved in the proof of the following theorem :

The initial rates of institution of inequalities as expressed in equations 
(255) to (263), for convections and conductions, are essentially accelerations to 
mean rates of increase of the vis viva of relative-motion as well as to the 
redistribution of inequalities in the mean system.

The terms which express exchanges of energy by transformation from the 
mean system to the relative system, which are the only exchanges between 
the systems, are the last of the terms in each of the equations (116 a). Then 
putting p"3i (u'w')/di (0, &c-> &c-> as the initial effects of the instantaneousR. 11



and two corresponding expressions for the other components.
By equation (265) &c., &c. as well as all inequalities of relative

motion are initially zero; so that, initially, both members are zero. Then 
performing the operation di/djt on both members and observing that by

and two corresponding equations for the other components.
These three equations taken together express in terms of the differential 

coefficients the rates of institution of inequalities of the relative motion, 
expressions for which in terms of the mean motion are given in equations 
(255) to (263): and substituting these expressions for the differential 
coefficients in each of the three equations, and adding the corresponding 
members, we have for the total initial rate of acceleration of the rate of 
increase of relative energy

1 ((du" 
+ 2 K dy (274).

The member on the right is essentially positive while the left member 
expresses the acceleration of the mean rate of the vis viva. Q. E. D.

188. The first term on the right, equation (274), expresses the accelera
tion of the rate of mean-energy of relative motion resulting from the 
inequalities of the direct space variations of the mean motion, including 
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both volumetric and distortional effects, while the second term expresses 
the acceleration of the rate of mean-energy in consequence of the tangential 
space variations of mean-motion.

These accelerations are all positive, tending to produce a dispersive con
dition of relative-motion.

The tendency, thus proved, of the effect of transformation from energy 
of mean-velocity to energy of relative-velocity, at each point, so to direct 
the signs of inequalities in relative vis viva as to cause dispersion of both 
energy of mean and energy of relative-velocity, and to render the effect 
of transformation, of mean-motion to energy of relative-motion, positive, 
is quite independent of all other actions or effects; and, although not 
hitherto analytically separated in the theory of mechanics, is now seen to 
be one of the most general kinematical principles—the prime principle 
which underlies those effects which have long been recognised from ex
perience and generalised as the law of universal dissipation of energy.

The analytical separation of this principle does not immediately explain 
universal dissipation. It accounts for the initial acceleration to the dispersive 
condition, but it does not, alone, account for irreversibility of the dissipation.

The proof of this at once follows from equations (271), the general 
solution of which is

i" =/(+ V p"*2+Z2) G-y).....................(275), 

which expresses two reciprocal inequalities of mean motion proceeding in 
opposite directions uniformly at velocities

If then u" be everywhere reversed, the direction and the rate of propaga
tion of the reversed inequality remaining the same, will bring the state of 
the relative motion back to the initial condition. And this applies to all 
inequalities, so that if there were no other action than that of transformation 
including its effects on the mean and relative inequalities, these effects would 
be perfectly reversible.

189. The conservation of the dispersive condition depends on the rates of 
redistribution of the relative motion.

By equations (271) and (274) it appears that as long as the inequalities 
of relative-motion are zero while the inequalities in the mean motion are 
finite the signs of the acceleration to the dispersive condition are always 
positive. Therefore if these inequalities remain small as compared with the 
energy of relative motion, while the signs of the inequalities of the mean
motion are not changed, a dispersive condition is secured. From which it

11—2 
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follows that any cause which maintains these inequalities small, compared 
with the relative energy, will render the dispersion irreversible by reversing 
the mean motion, no matter how great the acceleration to the dispersive 
condition arising from the prime tendency to the dispersive condition.

Such actions exist in the angular and the linear dispersions, of the 
angular and linear inequalities of vis viva of relative motion, and rates of 
conduction through the grains, equations (195) and (205), Section XL, and 
(236), Section XII.

From equation (266) it appears that the instantaneous reversal of the 
mean motion has no effect (instantaneous) on the relative motion; so that 
this is not simultaneously reversed. And thus it is not the resultant motion 
that is subject to reversal, but only the abstract mean motion, while the 
abstract relative motion continues as before to redistribute the reversed 
mean motion.

This explanation of irreversibility of the mean motion and the irreversible 
dissipation of energy could not have been obtained until the analytical 
separation of the abstract mean motion from the relative motion had been 
accomplished. And this fact fully explains the obscurity which has hitherto 
surrounded dissipation of energy.

The general reasoning in this article, although sufficient to afford a 
general explanation, is, of necessity, supplemented by the definite analysis 
by which the inequalities in the vis viva of relative motion are determined in 
the next article.

190. The determination, in terms of the quantities which define the con
dition of the medium, of the inequalities maintained in the vis viva of relative 
motion, and in the rates of conduction, by the combined actions of institution by 
transformation, and redistribution by relative relative-motion.

In entering upon this undertaking it is in the first place necessary, in 
order to render the course of procedure intelligible, to point out that as far 
as mechanical analysis has as yet been developed, including the present 
research, it has not included such analysis as is necessary to express the 
means of the instantaneous transmission of accelerations, and thus we are 
unable to deal definitely with continuous initiation from rest of continuous 
inequalities. This inability, which is generally recognised, was discussed 
in a paper read before Section A of the British Association at Southport, 
though not further published. In this paper it was suggested that such 
inability was evidence of some property in the constitution of the medium 
necessary for the instantaneous transmission of acceleration, and showed that 
if the medium consisted of rigid particles as in Maxwell’s Kinetic Theory 
(I860), then since any acceleration at a point would, necessarily, extend 
through the thickness of the grain, it would therefore afford instantaneous 
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lineal transmission of acceleration, and so render the necessary analysis for 
dealing with initiation possible. As we are here dealing with a granular 
medium, this analysis, if fully developed, would remove the disability. But, 
having assurance of this, we may avoid the development of the analysis by 
following the method of Stokes—considering only such inequalities as are 
steady or periodic when referred to moving axes. Under such conditions the 
determination of the inequalities maintained is practicable, and indicates 
the general form of the equations for the general inequalities.

The incompleteness of the analysis for the expression of the linear 
instantaneous transmission of accelerations is not the only reason for con
fining the application of the analysis to steady or periodic inequalities.

Putting aside uniform continuous strains and rotations in the case of 
a granular medium, of which the mean condition is uniform and indefinitely 
continuous, it is the properties of such a medium, of transmitting undulations, 
that first claim our attention. And as such undulations are the only 
motions, in such a medium, that can extend to infinity throughout an infinite 
space, they must be considered as the principal form of mean motion.

However, before proceeding to consider the undulations, it may be well 
to point out the several classes of mean motion which may be recognised at 
this stage of the analysis.

Other than undulations, the only possible mean motions, including mean 
strains, are such as involve some local disarrangement of the medium, 
together with displacement of portions of the medium from their previous 
neighbourhood—as in the vortex ring—which may have a temporary 
existence when <r/X is small; or, of far greater interest, local disarrangement 
of the grains when so close together that diffusion is impossible, except at 
inclosed spaces or surfaces of disarrangement, depending, as already ex
plained, on the value of G being greater than 6/V2.tt. Under which con
dition it is possible that, about the local centres, there may be singular 
surfaces of freedom, which admit of their motion in any direction through 
the medium by propagation, combined with convection, together with strains 
throughout the medium which result from the local disarrangement, without 
any change in the mean arrangement of the grains about the local centres ; 
the grains moving so as to preserve the mean arrangement.

191. Steady continuous uniform strains or undulations extending through
out the medium otherwise in normal condition.

We have :

(1) Equations for the angular inequalities maintained in the vis viva of 
relative motion.
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(2) Equations for the angular inequalities maintained in the rates of 
conduction.

(3) Equations for the component linear inequalities maintained in the 
mean vis viva.

(4) Equations for the linear inequalities maintained in the rates of 
conduction.

(5) Equations for the rates of increase of mean vis viva—a2/2—resulting 
from angular dispersion by convection.

(6) Equations for the rates of increase of mean vis viva resulting from 
angular dispersion by conduction.

(7) Equations for the rates of increase of mean vis viva by linear dis
placement resulting from inequalities in the mean vis viva.

(8) Equations for the rates of increase of mean vis viva by linear dis
placements resulting from inequalities in the mean pressures.

192. Theorem. To a first approadmation the first four of these eight 
equations all have the same general form as long as the space and time 
variations of the mean motion are constant, simple harmonic, or logarithmic 
functions of time and space, in which case the constants of frequency and the 
hyperbolic variations are such as may be neglected as compared with a/X 
and 1/X. And the same for the last four equations.

It is to be noticed that the condition in the theorem as to smallness 
of the constants is necessary when treating the variations of the mean 
motion as arbitrary, since the condition is, as shown in Section V., a necessity 
for the maintenance of the mean and relative systems.

To prove the first part of the theorem :

The equations for any one of the six partial angular inequalities in vis viva 
of relative motion.

Putting

I for the inequality in vis viva of relative motion.

I" „ „ „ „ „ in mean motion.

.A/ for the coefficient by which I" is multiplied to represent the rate of 
institution.

A22 for the coefficient by which I must be multiplied to express re
distribution.
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- , , -, to represent distances in directions x, y, z, which are the 

parameters of the component harmonic inequalities in the mean motion; the 
equation for the maintenance of I becomes:

— + — — — yl 2I" — A 2I

^ + A22I=2A12r
............................ (276).

In this case where I" and I are component inequalities in the mean
motion, and in the vis viva of relative-motion, the coefficients Af, A22, 
are respectively, as in equation (263) Section XIII. and (195) Section 
XL:

^ = -2pf, A.?=-^a.......................(277).

Then if I" is as before, and 1 is taken for the inequality in conduction 
corresponding to the inequality in convection in the same direction, the 
equation will become the equation for the inequality in conduction. If 
Bf, are put for the coefficients of conduction corresponding to A/ 
and A J,

, 0-32p"=
1 ' 4 X a l + e—

p 2

............. (278),

as in equation (205) Section XI.

Also, if I" is taken to express the linear inequality in mean-motion in 
any direction, say that of x, in the rate of volumetric strain in the mean
motion, and I is taken to express the linear inequality in the mean vis viva 
of relative-motion, since d-Ijdar, &c. take the forms — a2!^, —Wyv, -c2Ia, 
where 1/a, 1/5, 1/c are components of some constant parameter, the equation 
will become the equation for the linear inequality maintained in direction x 
in the mean vis viva when k/a is large.

Putting and a2Gf to correspond to A^ and A? in (277),

5 n01 - 3 P 2 ’
a2C2^^, 

\/7T
V d2 V-C2a2I=-C;-^-n(iy 

ax- (279).

And I" being the linear inequality in the same direction in the rate of 
volumetric strain of mean-motion; if I is taken to express the linear 
inequality in the rate of mean-conductivity (/>"), equal in all directions,
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the equation becomes the equation for the inequality in the mean-conduction 
if Di1, a-Di1 correspond to ^Ij2 and A22 in equation (277),

5 p"2
3 a2’

2

a2D22 4 a a G
3 X V71" 4

........................(280),

v d" 
since, as in equation (279), a2I = , „ (Z).(I

Thus as long as the inequalities in the mean-motion can be expressed 
as simple finite harmonic or logarithmic functions of time and displacement, 
the equations for the dispersive inequalities have the common form as in 
equation (276).

The second part of the theorem follows as a consequence of the first 
for, since the equations for the dispersive inequalities have the same form, 
the general solution of this form of equation will apply to all the in
equalities.

Then if such solution can be found for the dispersive inequalities, 
since the rate of increase of the mean vis viva at a point, at any instant, 
is the result of the action of the inequality on the space rate of variation 
of the mean strain which institutes the inequality, the rates of increase 
of the mean vis viva (a2/2) are the products of the inequalities (Z) by the 
corresponding inequalities (Z") in the mean-motion. And these are ex
pressed in a general form.

193. The approximate solution of the general differential equation for 
the inequalities in mean vis viva, of relative-motion and rate of conduction 
resulting from steady or periodic inequalities in the mean-motion.

In all probability the equation (276) does admit of complete solution. 
But the analysis is greatly simplified by recognising that any secondary 
effects, resulting from the existence of inequalities, to vary the mean vis 
viva of relative-motion (a2/2) by transformation from mean-motion, and thus 
to vary the coefficients A,2 and A.?, are proportional to arl". And con
sequently, since by definition a2 is finite, by taking I" sufficiently small the 
secondary effects of I" and a" may be rendered as small as we please, and 
the integral effects indefinitely small as compared with the finite value of a2.

In this way the coefficients Ai1 and A22 may be taken as constant, and 
there is no loss of generality in the solution ; while the expression for the 
rate of increase of a2, as determined by the approximate solution of the equa
tion of transformation, may be subsequently introduced as a small quantity.

Solution to a first approximation, I" small.

Since according to the theorem the space and time variations of Z" are 
constant or periodic, we may transform the equation (276) by putting



193] THE EXCHANGES BETWEEN THE MEAN- AND RELATIVE-SYSTEMS. 169

qxx, &c. for the maximum values of I"^, &c., which are constant. And 
D'^a is the maximum value of u". Hence

I"xx = qxx sin (mt — ax'), 

where q^ is constant in time and space.

We then have for the angular inequalities and linear inequalities re
spectively :

9 v V \
57 (I) 4- A2-I = sin (mt — ax), &c. | 01
3 v f ............. (281).

(I) + dDfl = Cfqxx sin (mt — ax), &c. I
Ot • /

The introduction of the two forms is only a matter of convenience in 
keeping the partial constants distinct.

Then if we put I = and eliminate by differentiation with respect to 
time, J.,2, A22 being constant, it can be shown that for steady or periodic motion

or
.................. (282),

Z =

[ =

and that this is the only solution if Ai2, A.?, &c. are constant. The 
analysis is somewhat long. But if we recognise that all the terms in the 
equation (281) must have the same frequency m, the same result is obtained 
by differentiating both members of (281) and substituting the result from

V V
All — ~ (I) = A ,2qxx {AJ sin (mt — ax) - m cos (mt — ax)} .. .(283),Ou

whence, since 32Z/942= — m?I is of the same form as equation (282), 

1 =
1

Al + m2
A2qxx [A22 sin (mt — ax) — m cos (mt — a®)} ...(284),

which will be the general form on substituting Bi2, B22 for Ci2, a2C^, and 
Di2, a2Dl for A2, Al. Q. E. d.

The equation for the rate of increase of the mean vis viva (a2/2).

Multiplying the expression for I, equation (284), by the corresponding 
expression for I", it at once appears that I consists of two parts, the one 
being continuously positive and the other periodic.

Thus : II" = ; A^qA/ sin (mt — ax)m2 + AI

----- - 4 A,2qm cos (mt — ax) ...................... (285), 
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from which it appears that the dispersive inequality in equation (284) is 
expressed by

^+ ^.4 sin (mt - ax);

the remaining part of I,

~ a * cos (wit - ax),• lib -J— XX o 

representing that part of the inequality the effect of which is purely 
periodic, or non-dispersive. Therefore the equation for the rate of increase 
of the mean vis viva is

II" = A 4. sin - ax).....................(286),lib "t" xX .j

which is a general form for all rates of dispersion of mean vis viva.
Q. E. D.

194. Having, in Art. 193, obtained the general expression for total 
inequalities maintained by relative-motion as the result of institution by 
transformation and redistribution, as well as the general expressions for 
the dispersive and periodic components of the inequalities, it appears that 
the analytical distinction between the corresponding inequalities in vis viva, 
and rates of conduction, may be expressed by substitution for Af and 
A.r, &c., the values of these constants as expressed:—

for angular inequalities in convection, in equation (277),
conduction, „ „ (278),

for linear inequalities in (convection, „ „ (279),
[conduction, „ „ (280).

They are, for angular inequalities in convection:
(Sx/tt . z . , )
1 j — a sin (mt — ax) — m cos (mt — ax) [ ...(287);

for angular inequalities in conduction:

XX

m2 4- rq
4 X 1 +

1 -f(G)p . , 
4 X “ 1 + e- » asm

— m cos (mt — ax) ...(288);
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for inei in a- 2 in convection:

for

A>":

5 a2 
3^2 (a23Xa . , ± x q {—-— sm (mt — ax)

( v71"
...(289);

linear inequalities in a2/2 in conduction :

p 2 
a2 

P 2-
4

Pa'
s^n — — m cos — 0^)1

13 y 7F X 4 J

vx "
m2 +

3

G

The equations for angular inequalities are general for all states of the 
medium. But the expressions for the linear inequalities are those to which 
linear inequalities approximate according as X/cr is less than the limit at 
which diffusion ceases, or is greater than that at which diffusion is general. 
[See Art. 145 and Art. 155, Section XL]

In considering periodic inequalities in a medium of unlimited extent, 
which is, except for the inequalities, uniform and isotropic, it will simplify 
the analysis to recognise, that such inequalities as can be propagated through 
the medium, must have directions of propagation which are normal to con
tinuous surfaces which are either spherical closed surfaces, or of such extent 
that their boundaries are at distances large compared with the periodic 
parameters.

This in the first instance confines our attention to directions of propaga
tion everywhere normal to an infinite plane. We notice that the classes of 
inequalities in the mean motion are reduced to two: those in which the 
mean motion is in the direction of propagation, and those in which the mean 
motion is normal to this direction.

We also notice that these two resultant inequalities are to a first 
approximation independent, although they may have the same direction 
of propagation, and therefore may be dealt with separately.

195. Expressions for the resultant institutions of inequalities of mean 
motion when the motion is in the direction of propagation.

Putting Xi and if as the direction of propagation and motion for institu
tion of angular inequalities we have, since

fdu” dv” dw”\
\ dx dy dz )
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is an invariant, for the inequalities of mean motion for the inequalities 
(u'u, v'v', ww'), Szc.

duf _ 1 /du" dv" dw"\ 
dxi 3 \ dx1 dy! dzx , /

+ 1 du" 1 duf
3 dyi ’ 3 dzt

Then, taking xlt ylt as principal axes, mi, n^ as the direction cosines of 
«i> yi, Ą referred to any rectangular system x, y, z, the components are, 
since

1 du" du" dv," dun" ----- — — i—| - | _
3 dx^ dxi dy^ dz^

du" 1 /du" ^dv" dw" 
dx! 3 \ dx! dy! dz, . — fm. du" 

dx.

&c. &c.

J "
— nf , &c., &c.......... (290 a).

For the linear inequality of mean motion, taking the principal axes the 
same as for the angular inequality, we have

/du" dv" dw"\
\ dx! dy! dz! / ’

where
dvi _ dw, _ 
dyx~ dz! ~

And transforming to the axes x, y, z, we have for the components in directions

Expressions for the resultant institutions of inequalities of mean motion 
when the direction of propagation is perpendicular to the direction of motion.

Il ®o, y»> are measured in the directions of propagation and mean motion 
respectively, the resultant rate of shear strain is expressed by

dx,,

Then taking for the principal axes, llt mlt for the direction
cosines of the principal axes referred to x„, y0, z„, we have, resolving for the 
principal strains,

_ 1 _ 7 dv! dwt .
d^ 1 1 dx0 ’ dx! — dxx~ dx!~
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And since

Wj = n2 = n3 = 0, Z? = l2 = w/2 = m2 = = ± 2,

dux]da\ = — dvt/dxA = + ^dv0/dx„, 

and referring to any rectangular axes x, y, z, the partial inequalities are 

flu" /du" dv" dw"\\ 1 ,dv" du"\
(dx \dx + dy + dz )} 2 \ dx dy )

1 /dw' du'\ 0 0 \- - 4--7 , &c., &c.........(290 b).2 k dx dz) ’ v ’

196. The equations of motion of the mean system in terms of the quantities 
defining the state of the medium.

Having obtained the four general expressions for:

The total angular inequality in convection:—equation (287)

„ „ linear „ „ „ (289)

„ „ angular „ „

„ „ linear „ „

conduction „ (288)

„ „ (290)

Adding the two first together we have the total inequality in vis viva.

And in the same way adding the last two together we have the total 
inequality in conduction.

Then again adding we have the total inequality.

Thus reverting to the forms A^, &c„ for the respective constants,
and introducing the actual expressions for the general expressions I", or the 
harmonic expressions p (u'u), &c., for the inequalities, we have, for angular 
and linear inequalities in vis viva,

p (uu') = a/ r a 2 81z _ i f -- +m- + Af [_ 2 ~ { dx 3 k dx dy dz f

Cr _ T _ I"] \duT df dwf]
L 2 (da: dy dz } &c„ &c....(291),

p (vu) =
A,2 

m2 + A./
, &c., &c. (292),

p (tu'u ) m2 + A^
, &c., &c. (293).2 31l[cZw" du\

2 d£_ 2 ( dx + dz j
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And for angular and linear inequalities in conductions
" _ w _ B^ 91 (du" 1 /du" dv" dw"\}

1 M 2tt Jt m^ + B^X 2 9tl (da? '3\dx + dy^ dz

Dr 
m- + (aD^

dv dw ) „ 0
+ “5—I—?—r > &c., &c. dy dz J

....... (294),
■ (
vx~ w^bĄ

9)lfdv" du"\ 
dt) 2 ( dx + dy J , &c„ &c. ... (295),

" Bi (D 9)1 (dw" du"} o xp Z-- ^Bj P - dt\ 2 w+dz p &c-&c- • • ■(2%)’ 

and two corresponding equations in directions y and z for convections and 
conductions.

N.B. The linear inequalities which form the second member of equations 
(291) and (294), and the corresponding terms of the equations for directions 
y and z, do not include such linear inequalities in the vis viva and con
ductions as are instituted by dispersion of angular inequalities, since these, 
being secondary effects of the mean inequalities which are themselves small, 
are altogether negligible. And thus equations (291) to (296) are the 
equations for the inequalities in vis viva of relative motion to a first 
approximation. Q. E. F.

As to these inequalities it may be well at this stage to point out:
(1) That if m2 and a2, 6’, c2, which express the frequencies in time and 

space are zero, the angular inequalities in the mean motion are severally 
constant, while the linear inequalities are zero.

(2) If the direction of propagation is in the direction of motion, or is 
normal to a shearing motion, all the inequalities in mean motion are zero 
except that one, whether it be

. du du du . „
j—, j-, T- , &c., &c., &c.dx dy dz

But otherwise the inequalities of mean motion as expressed in equation (291) 
are partial.

(3) The coefficients of these partial equations must be such as will, 
within the limits of approximation, resolve into the resultant equations for 
the resultant inequalities.

(4) The coefficients in the partial equations which express component 
angular inequalities satisfy the condition of resolution stated in (3) as a 
matter of form.

(5) The coefficients in the partial equations which express component 
linear inequalities do not obviously, as a matter of form, satisfy the condition 
of resolution to a first approximation unless aPCf/m* is small. But treating 
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this quantity as small, it can be shown that they do satisfy the condition 
even to a second approximation. Thus omitting the square of cfCt/m2 as 
a first approximation, and putting (a2 + b2 + c^G/l^m2, the mean value of 
a4C22, in the second approximation, the terms expressing component linear 
inequalities take the form

Qi _ ») r (i _ £ + * , te, &c....(297).
m2 \ it) \ 4wi2 / '

and these obviously satisfy the conditions of resolution for inequalities in 
both vis viva and conduction :

(a^2 - +^-) {1 - > &c., &c....(298),
m2 \ it) \dx dy dz) { a- J

Ą (a2D2 - + ^ + 11 - + , &c„ &c... .(299),
in \ ' it) \dx dy dz J [ m2 )

which satisfy the conditions of resolution, and the second approximation may 
be neglected.

(6) The proof that these—a2Cr/m2—are small, is not possible as long as 
m2 and a2 are considered as arbitrary, and subject only to the conditions of 
being small as compared with a/X and 1/X, since the proof depends on 
dynamical analysis which is effected in a subsequent article, in which it 
is shown that for any disturbance propagated through the medium these 
constants are extremely small.

(7) Although small the second approximation is finite as long as the 
first approximation to the inequalities is finite. Beyond reminding us of 
this fact there is no object in retaining this second approximation.

197. The equations of motion to a first approximation.
Substituting in the equation of mean-motion (119) from equations (291) 

to (296) for the inequalities in the relative vis viva and rate of conduction,
these take the form: 

du!' = ( A? T , . 
di \m2 + A24 |_ 2

+ &c. &c.

m2 + (aC2)i |_

Br
m2 4- B)

Dr

- it
, 1 d (du!(M ) + 6 dv" du>"\ 

dy dz )

m2+{aDf La2D2 it dx
dv" 
dy

dw"-\
dz (300),’i 1 \du"

with two similar partial equations for the rates of increase of dv"/dt and 
div'/dt, and the conditions

dw 
dy

dv „ _+ T- + &c. = 0. dz
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As explained in (7) in the last article the last factor in the second 
term on the right, which adds the second approximation, may be omitted 
within limits of a first approximation.

Substituting for the coefficients Af A22, &c. their values in terms of 
the quantities which define the state of the medium, as given in equations 
(277) to (280) and (287) to (290), we have, to a first approximation, the 
equations of motion in the mean system in terms of the quantities, referred 
to axes moving with the mean-motion of the medium, the general ex
pressions for which are stated in equations (119). q. e. f.

brom these partial equations (300), we get the partial equations for 
the component vis viva of mean-motion, in terms of the quantities which 
define the state of the medium, by multiplying the partial equations of 
motion by u", v", w" respectively, as in equation (J22), and these added 
together resolve into the several equations of vis viva in terms of the 
quantities the general expression for which is given in equations (125).

198. The equations of the components of energy of the relative system 
in. steady or periodic motion.

It has already been shown, equation (285), that the rate at which the 
component of energy of relative motion is increasing, at a point moving 
with the mean-motion of the medium, is the product of the total partial 
component of the inequality in relative motion multiplied by the inequality 
of mean-motion in the general form :

An 1 + T".
St)1'

Therefore, proceeding as in the last article to take account of all the 
inequalities angular and linear, since the constants are the same, and the 
linear inequalities a, b, c are the parameters of the variations, the equations 
for the partial rates of increase of the energy of relative motion by trans
formation from the mean-motion become

2pdt\2j [n^ + ^L 2 St
B2

m2 + B( 2 2 St
du 
dx

1 (du dv
3\dx dy

dw\"l2 1 (Av duf 1 (dw dw\-’) 
dz)_ + 4 \dx + dy) + 4\dx + dz) |

m2 + (aCy)4 '

, ___ Df F 2D » _ 1 9 1 1 dv" dw”~\2
+ m2 + (aDf L 2 2dt]\_dx + df+ dz ................... (301),

with two corresponding equations for the directions y and z.

2 01
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Then substituting for the coefficients from equations (287) to (290) we 
have, to a first approximation, the partial equations for the vis viva of 
relative motion in terms of the quantities which define the state of the 
medium, terms for which the general expressions are given in equations 
(123).

Then considering the partial equations (298) we have for the resultant 
equation of relative vis viva, the general expression for which is given by 
equation (126),

1 3 /3a2'
2P 0 A 2 .

Ą2
m2 + B* A2-

dy^ 
dy +

dv"\2

1 3"
2 3t 

o. 

dw"\2 
dz J

(ni2

A2
m2 D2 (a2 + b2 + c2) - 3 3"] (du" dv'

2 dt f (dx + dy
du' 
dz (302).

m2 + A 24 '

And putting for the right-hand member its equivalent

| [p" + d2 + w'2)] -1 [p" (u'2 + v'2 + w'2)],

we have the expression which would constitute the first member of 
equation (126).

Therefore we have, in the second member of equation (302), the ex
pression, to a first approximation, for the rate of variation of the energy 
of the relative system in terms of the quantities which define the state 
of the medium.

Thus equations (300), (301) and (302) are, to a first approximation, 
respectively the partial equation of momentum of mean-motion, the partial 
equation of energy of relative motion, and the resultant equation of energy 
of the relative system.

And it may be noticed that the equation of energy of mean-motion 
corresponding to equation (125) Section VI. is at once obtained by multi
plying equations (300) by u", v", w" respectively.

And thus the dynamical theory of a purely mechanical medium is 
established and defined for periodic inequalities to a first approximation.

Q. E. D.

R- 12
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It is to be noticed here that the three equations (300) of momentum 
in the mean system, to a first approximation, when multiplied by the 
respective components of mean motion, become the component equations 
of energy of mean motion, and on being reduced and added together form 
the resultant equation of mean energy.

And since, in a conservative system, such as that under consideration, 
the only exchanges between the two systems are between the energy of 
mean motion and the energy of relative motion, we should have as the sum

2a(H+5l(“"’+’"’+"'",>=0'
if the approximation is complete; and this is the case.

That is to say, the approximate expressions for energy of mean motion 
obtained from equation (128) become, on changing the sign, the equations 
for energy of relative motion.

It thus appears that there is only one equation of energy although 
there may be two systems of partial equations for the energy of the 
components of mean and relative motion.

There are, however, two systems of equations for momentum, one for 
momentum of mean motion, and the other for the mean momentum of 
relative motion, the second of which is expressed by

(u'y = 0, (if)" = 0, (w')" = 0,
while the first is the system expressed by equations (300).

This affords a check on the method of approximation which only 
becomes apparent at this stage.

199. The equations of motion to a second approximation.

In proceeding to a second approximation, it is to be noticed that the 
rates of increase of a or a2, Ay By Cy and Dy the coefficients in the first 
approximation, are the result of the irreversible dissipation from vis viva 
of mean motion in consequence of the inequalities in mean motion, as 
considered in the first approximation, tending to increase the value of a, 
and to institute linear inequalities in the value of a or a2; such secondary 
inequalities are instituted both by angular and linear inequalities in the 
first approximation.

But it is not in taking account of these secondary inequalities that the 
second approximation consists, for, as will appear as we proceed, such 
secondary inequalities are of no account as compared with the first.

The second approximation consists in taking account of the rate of 
irreversible dissipation of energy resulting from each of the several actions, 



200] THE EXCHANGES BETWEEN THE MEAN- AND RELATIVE-SYSTEMS. 179 

as expressed in the first approximation, as cause logarithmic rates of 
diminution in the linear inequalities of mean motion.

In this portion of the analysis, since the general expression for the 
equations to a first approximation has been effected, attention may be 
confined to the two primary undulations, approximately simple harmonic, 
referred to axes in the direction of mean strain; taking the axis of x for 
that of propagation and the axis of y for that of shear, so that the 
inequalities {I") in mean motion are expressed by

du" , dv"
and 7 • dx dx

The equations for the undulations are obtained to a first approximation 
by taking all the rates of variation of the mean motion zero, except those 
which enter into the two expressions respectively in the equations (300), 
(301) and (302).

200. The determination of the mean approximate rates of logarithmic 
decrement.

To do this it is necessary to know two quantities:—

(1) The ratio which the mean of the total undulatory energy bears 
to the mean of the energy of mean motion, including resilience, per 
unit volume.

(2) The rate of irreversible dissipation per unit volume in terms of 
the energy of mean motion to which it is proportional.

Let R be the ratio of the total energy of undulation to the total, 
including resilience, per unit volume;

T the coefficient by which mean energy of mean motion must be 
multiplied to express the rate of dissipation.

Then, the bar indicating the mean,

3 fu"- + v"- + w"2'
I 2

The logarithmic rate of decrement is

Vw"2 + v"* + w"2 = e

........ (303).

The values of T are all to be obtained from equation (302) omitting 
the 9/3i.

The values of R are a little more complex. But as in the first

* No connection with t (tau)—the rate of propagation of light. 12—2 
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approximation the motions are a simple harmonic function of t and x or 
x and y,

R = 2 for normal waves,
R = 2 for transverse waves when there is no diffusion,
R = 1 for transverse waves when diffusion becomes easy.

This last case, whatever other interest it may have, is of great interest 
in affording a check on the correctness of the approximation, since Stokes 
has obtained a complete solution of this case for a gas as well as any viscous 
fluid, and as c/X is small in this case it enables us to compare this approxi
mation, and, as will appear, to show that the results are identical. In 
this case total mean energy is the same as the energy of mean motion.

The only values of R which are not included in the list above are the 
values of R for transverse waves for the region between the state of no 
diffusion and that at which diffusion becomes easy, and in this case the 
value of R varies, very rapidly at first, but at a diminishing rate, from 
2 to 1.

201. The rates of decrement in a normal wave.
Taking x for the direction of propagation and motion, the motion 

harmonic and uf for the maximum value of u"2; the mean value is 
and the mean energy w1"2/4.

The two rates of irreversible dissipation of energy by angular inequalities 
and linear inequalities are obtained by omitting the d/dt in the coefficients of 
both the terms of equation (302) and dividing by p.

For convenience putting A for the sum of the coefficients for the angular 
inequalities, and L for the sum of the coefficients for the linear inequalities, 
resolving in direction x, we have for the respective rates of dissipation

..............
And we have for the mean square of the inequality, mean energy of 

motion, and total energy,

q2[2a2, and fla- respectively.

Thus R = 2 and = ^4 (f A + L) a2,
2a2 2a2 J '

T /I , A , 
.... (3°5)-

And the equation for the normal wave is 

w" = e~ sin (mt-ax') .(306).
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In a similar manner for the transverse wave

The mean values of — (M'ldx^, (v")*, and total energy are, when a/X is 
large, and since there is no linear inequality,

q2yx^, and q2/a2,
T=-Aa\ R = 2, 

and the equation for the transverse wave becomes

v" — e~ 2 * sin (mt — ax)..............................(308).

If cr/X is small, I? is 1 and 

v" = Qvx e~Aa3t sin (mt — ax) .(309).

When a/X is large the equation for undulations in the direction of the 
propagation is

u" = ^e cos (mt — ax)............(310),

and the equation for transverse undulations

= cos(w^ —......................... (311).

In the same way if cr/X is small the equation for the normal un
dulations is

u''=^e p'-^^a+ip<"m'' cos(mt — ax) ................ (312),

and for transverse undulations

)4cos (mt —ax)......................... (313).

From equation (310) the coefficients A, B, L, are 

and for — small

and for c large

We have thus

4 Xa
3 ’ J3 ■ = 0;

_ j_ 5 Xa3a2.
m” 2 V71" ’ (314).

j 5 p- 4 o--a G „
3m2 „ a2 3 X 4

2
obtained the complete equations for indefinitely small

steady continuous undulations, including rates of decrement for normal and
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transverse waves, in terms of the quantities a, X, a which define the condition 
of the medium.

These equations are thus available for obtaining the rates of propagation 
and the rates of decrement for normal as well as transverse undulations for 
any specified values of a, X, a.

Also if the rates of propagation together with the rates of decrement for 
both the normal and transverse waves are known, the values of a, X, a may 
be found from the equations.

At this stage of the analysis, however, we have not before us all the data 
necessary to make a complete determination of the values of a, X, a, so that 
the equations would be the equations of light, as this would require a know
ledge of actual rates of decrement as to which we have no certain knowledge, 
and further, these equations have been obtained by neglecting all secondary 
actions (see note, Art. 196). And thus these equations afford no evidence as 
to the limits of the possible magnitudes of the undulations.

The conditions which limit the possible magnitudes of the undulatory 
strains have been generally discussed in Art. 91, Section VII. From which 
discussion it appears that, when the medium in normal piling has relative 
motion, however small X/a may be, the medium yields in proportion to the 
stress when subject to indefinitely small variations of stress; so that such 
stress is equal to the strain multiplied by a coefficient which is constant if 
the terms involving the square and higher powers of the strain are neglected 
as small compared with the first term; and in this case the medium has the 
properties of an elastic solid within the limits of such strain. It has no 
finite stability and only such dilatation as would correspond to the elastic 
solid as long as the terms involving the square and higher powers of the 
strain are small.

On account of both these the further consideration of the undulations is 
continued in the section next but one to this—after the consideration of 
the possible strains, other than the undulatory strains, which afford further 
evidence.



SECTION XIV.

THE CONSERVATION OF MEAN INEQUALITIES, AND THEIR 
MOTIONS ABOUT LOCAL CENTRES, IN THE MEAN MASS.

202. In the last section we obtained the equations for continuous steady 
undulations, including the rates of decrement, for normal and transverse 
waves in terms of a", X" and a, the only quantity undetermined being the 
superior limit to the amplitude; while from the same section it is evident 
that undulatory strains have characteristics which differentiate them from 
strains other than undulatory, and that they are essentially elastic strains 
maintained only by the inequalities of the mean motion, and independent of 
motion by propagation. It remains to effect such analysis of the strains 
other than undulatory, the possibility of which has been pointed out in 
Art. 190, Section XIII. These are:

(i) Some local disarrangement of the medium together with some dis
placement of portions of the medium from their previous neighbourhood, 
such as vortex rings, which may have a temporary existence if X"/<r is large.

(ii) Local abnormal arrangements of the grains when so close that 
diffusion is impossible except in spaces or at closed surfaces of disarrange
ment, depending, as already explained, on the value of G being greater than 
G/V^tt, under which conditions it is possible that, about the local centres, 
there may be singular surfaces of freedom, which admit of their motion in 
any direction through the medium by propagation, combined with strains 
throughout the medium, which strains result from the local disarrange
ment without change in the mean arrangement of the grains about the 
local centres—the grains moving so as to preserve the similarity of the 
arrangement.

203. The character of these two general classes of strain must depend 
primarily on the state of the medium, where uniform, as indicated by the 
value of afK".

When c/X" is small there is no dilatation, and there is diffusion, hence 
there are no singular surfaces except such temporary surfaces as result from 
vortex motion. Therefore this class of strain may be considered as belonging 
to the undulatory class which does not concern us in this section.
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The second of these classes of local disturbance, in which a/\ is large, so 
that there is no diffusion except about centres of disturbance, includes all 
local disarrangement of the normal piling that can under any circumstances 
be permanent.

(i) Such permanence belongs to all local disarrangements of the grains 
from the normal piling, which result from the absence of any particular 
number of grains at some one or more places in the medium which would 
otherwise be in normal piling. The centres of such local disturbance may be 
called centres of negative disturbance, or centres of negative inequalities in 
the mean density.

(ii) We can also conceive disarrangement resulting from excess of grains 
in the otherwise uniform medium—a definite number of grains over and 
above the number which constitute the uniform piling, and such, whether or 
not capable of independent existence, will be called a positive disturbance.

These positive and negative centres are the principal centres of distur
bance, as well as the simple centres of disturbance.

There are other classes of disturbance which, although more or less com
plex, are to some extent permanent.

(iii) If by any action on the medium in normal piling a number (n) 
grains were displaced from their previous neighbourhood when in normal 
piling, to some other neighbourhood previously in normal piling, the distur
bance would be reciprocal, and, if there were no further displacement, would 
be permanent if there were no further action.

It should be noticed that such displacement might correspond exactly 
with that of a negative disturbance resulting from the absence of (?i) grains, 
and a positive disturbance from introduction of (n) grains in positions corre
sponding to those from and to which the (n) grains were displaced.

It should be noticed however that, assuming the possibility of the 
displacement and that of the simultaneous existence of equal negative 
disturbances, this in no way proves the possibility of the existence of a 
solitary positive disturbance.

(iv) Another class of possible local disarrangement of the normal piling 
in an otherwise uniform medium is that class which does not depend on the 
absence, presence, or linear displacement of grains, but does depend on the 
rotational displacement of the grains about some axis.

If we conceive a finite spherical surface in the medium, and further 
conceive that for 30 on either side of a diametral plane the medium im
mediately external to this surface is, owing to rotational disarrangement, 
resisting positive rotation of the surface, while the medium immediately 
internal to the surface, that which extends from each of the poles to within 
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30° of the diametral plane, is resisting negative rotation, then it will appear, 
since owing to the relative motion the medium is to some degree elastic, 
there will be positive rotational strains extending outwards in the external 
medium within 30° of the equator, and negative rotational strains extending 
outwards over both the surfaces from the poles to within 30° of the diametral 
plane.

These represent a state of polarisation in the strains of the medium, 
inside and outside, and if we had two such polarising surfaces with similar 
poles in contact the strains would superimpose, while if the opposite poles 
were in contact the strains would cancel.

204. With regard to the conservation of similarity in the arrangement 
of the grains within and without singular surfaces, we may prove the follow
ing theorem.

Theorem 1. When the condition of the medium is such that there is no 
diffusion except at a singular surface, where G is greater than as
a result of the absence of n grains, the replacement of which would restore the 
uniformity of the medium to that of unstrained normal piling, there will result 
inward strains extending from an infinite distance to some spherical surface 
within the singular surface; then whatsoever may be the inward strains in 
the normal piling and the disarrangement of the grains, with the surface at 
which the strained normal piling ceased and abnormal piling commenced, the 
number of grains absent would be the same (n) and the strains in normal 
piling would be the same.

To prove this we have only to consider that, owing to the pressure from 
the outside and the mobility of the grains due to the relative motion, a", 
however small, would secure that in the first instance the arrangement 
of the grains was such as to cause the minimum dilatation, and hence 
would secure the maximum normal inward strain and then would be in 
equilibrium. Then since there would be no outside disturbance, if there are 
to be any exchanges of neighbourhood owing to relative motion, these ex
changes must be such as do not entail any increase in the mean dilatation. 
Whence it follows either that all the grains within the singular surface must 
maintain their neighbourhood, in which case the centre of disturbance 
would remain unchanged, following whatever uniform motion the medium 
might have, or the arrangement of the grains immediately inside and 
outside the singular surface must be such that the dilatation caused by any 
influx of grains into the singular surface from one side would be simul
taneously compensated by the contraction caused by the efflux of the same 
number of grains from the opposite side, in which case the centre of dis
turbance, together with its attendant strains extending from infinity to the 
abnormal piling, woidd be free to move in any direction and maintain the 
same minimum dilatation. Q. e. D.
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It is to be noticed that the second alternative requires conditions as to 
the possibility of which nothing has been affirmed in the proof of the theorem, 
while the first is general.

Then again we have as a corollary to the last theorem: If two negative 
centres of disturbance const within any finite distance of each other, the 
numbers of the grains absent in each of the centres would remain the same. 
But it does not follow, as a necessity, that the strains in the normal piling in 
the respective centres should be the same as if the other centre of disturbance 
was absent.

I hen again we have a theorem with respect to a more complex dis
turbance :

Theorem 2. When the disturbance is such as would result from the 
removal of n grains from one place in a uniform medium and their introduc
tion to another place at any finite distance, which is the same thing as two 
equal centres of disturbance at a finite distance, one negative as the result of 
n grains being absent, and one positive as the result of n grains in excess. 
Then whatever may be the resulting strain or motion in and about the 
two centres, the number of grains absent in the negative disturbance must 
always be the same as the number of grains in excess in the positive dis
turbance however this number may be changed by exchanges between the 
centres.

This theorem being self-evident needs no demonstration.

205. The dilatations which result from strains in the normal piling in 
the otherwise uniform continuous granular medium have been subjected to 
somewhat full discussion in Arts. 86 to 92, Section VII. This discussion 
includes the ideal case (a" = 0), in which there is no relative-motion, as well 
as that (a/z finite) in which there is relative relative-motion.

It is with the second of these cases that we are directly concerned, but 
it appears that the only process of effecting the analysis necessary for 
determining the coefficients for the dilatations in the medium with relative 
motion is, in the first instance, to determine the coefficients of dilatation, 
when a" = 0, for small strains in the directions of the axes of distortion. 
Then by examining the effects of relative motion on these to arrive at the 
general coefficients of dilatation for small strains in all directions in the 
medium with relative motion.

206. In Art. 90, Section VII. it appears that in the uniform kinematical 
medium (X = 0) there are six axes symmetrically placed, which are axes of 
no contraction, and bisect the middle points of the edges of the cube of 
reference, and all pass through the centre. Between these axes and at angles 
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of 45° to them, that is in directions parallel to the axes of reference, or the 
edges of the cube, there are three axes of possible symmetrical distortion; 
hence this medium under any mean stress p”, equal in all directions, has 
stability and crystalline properties. If however the stability resulting from 
uniform stress is overcome, say by uniform superimposed stress in the 
direction of one of the axes of reference, the dilatation resulting from the 
initial small strain is positive, and can be shown to be equal to the normal 
contraction, i.e. the result of the normal contraction and lateral extensions 
is to increase the volume by a quantity equal to the small normal strain 
multiplied by the initial volume. Hence the coefficient is unity.

As the strain increases the coefficient diminishes according to a definite 
law (which will be expressed) slowly at first, then more rapidly until maxi
mum dilatation is reached, when the coefficient is zero, and G = 6/tf. The 
medium is then unstable, and under the mean pressure equal in all directions 
would revert to some second state of normal piling.

207. To prove the statements in the 
last article as to the coefficients of the 
dilatations resulting from small strain in 
the direction of one of the axes of dila
tation in a kinematical medium :

Let OA, OB, OC = alt blt clt respectively 
be the principal axes of strain.

Let AB, AC, &c. the generating lines of 
the conical surface be the lines of no con
traction.

Put
0 = OAB, $ = OAC, LB = AB, Lv= AC.

Then ............................................ (315),a = LB cos 0 = Lc cos
b = LB sin 0 = C = Lc sin <f>

da r ■ ada t ■ a m = -lb^0, .....................(316),

V=^.a.b.c = ^.a. LBLC sin 0 sin ............(317),
•3 o

. d= - 1 + cot2 0 + cot2 d>
— da V ......................... (318).

Then, since dV/V is the dilatation and — da/a the strain, the coefficient 
of dilatation is by equation (318)

a dV , ,—=- . Tr = — 1 + cot2 0 + cot- <b — da V ..................................(319).



188 ON THE SUB-MECHANICS OE THE UNIVERSE. [207

Whence it appears, since 0 = $ and cot 0 diminishes as 0 increases, we have 
for the maximum coefficient

cot2 0 + cot2 </> -1 = 1, 
and this is when the axes of no contraction are inclined to the axes of dis
tortion at 45°.

Further, it appears that as 0 increases from 45°, cot2 0 diminishes until 
dilatation is zero, when the condition of the medium is unstable.

This may be demonstrated graphically. In Figs. 3 and 4 AA, BB and CO 
are the three axes of symmetrical distortion, and the full-line circles represent 
the spherical grains in contact. (See also Fig. 1, page 83.)

Fig- 4.

Fig. 3 shows a loss 2 A A' in height. Fig. 4 shows a gain 4 A A’ in plan.
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These losses and gains are taken on the three axes at right angles of 
which the dimensions are AA, BB, CC.

The normal strain is 2AA'/AA.
The volume is AA . BB . CC or (AA)3.
The increase of volume (AA)2. 4AA' — (-A-d.)2. 2AA' = (A A)2.2AA'.

Whence we have the dilatation
dV _(AA)2.2AA'
V “ (AA)3 '

And dividing by the strain — and changing the sign, we have for
the coefficient of dilatation

AA (AA)2.2AA'
2AA'- (AA)3 “ “ ’

207 a. Then as regards the inequalities of pressure pr = 2pt = f p", 
resulting from such symmetrical distortional strains in the principal axes of 
strain, since there is no work done on the grains it follows directly, putting 
p" for the mean pressure, pr for the normal in the direction of the strain, 
and pt for either one of the tangential since these are principal stresses

^+2^ = 3/'.......................................... (320),

and since there is no work done on the grains,
Pr^Pt .............................................. (321),

whence by (320)
Pr = ł/'. Pt = 4 P"..................................... (322).

208. It is to be noticed that contraction strains, such as that discussed 
in the last article, the strain being in the direction of one of the axes of 
distortion, are the only symmetrical strains when a = 0, and it does not follow 
that the coefficient of dilatation for small unsymmetrical strains is unity. 
But it does follow from virtual velocities that if p" is the mean pressure in a 
kinematical medium without limit, that the normal pressure resulting from 
a local disturbance cannot be greater than 2p" and must be greater than zero 
if p" is finite.

From this we have the proof of the important theorem:
That whatever the coefficient of dilatation may be, a disturbance such as 

might be caused by the removal of any number of grains from a space in an 
otherwise uniform medium, without relative motion, would be attended with 
inward radial displacement of the grains from infinity throughout the entire 
medium.

For, as has just been shown, pr must be greater than zero; so that there 
can be no cavity greater than the space from which the grains can exclude 
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other grains, and there can be no dilatation without the displacement of 
grains, so that as the ideal excavations proceeded the grains would follow 
inwards, and as there is no elasticity and the grains are all under pressure, 
each grain as it disappears must cause inward movement from infinity; for 
as the coefficient of dilatation cannot be infinite, the grains being smooth 
spheres without friction (so that any binding or jamming would be impos
sible) every grain would be under pressure. Q. E. D.

Thus the relation between the tangential and normal pressures would 
depend upon nothing but the coefficients of dilatation, and if these were 
constant the normal and tangential pressures would be constant. But such 
constancy would depend on there being angular similarity in the arrange
ment of the grains about every axis through the centre of disturbance, 
which similarity does not exist in the normal piling. It is therefore certain 
that the inward strains, although having six axes of similar arrangement 
symmetrically placed, would be influenced by the crystalline formation of the 
uniform piling; particularly at great distances from the centre of disturb
ance. For when the distances from the centre are large the strains would 
be so small that the crystalline characteristics of the uniform medium would 
have undergone very slight modification, whereas near the centre where the 
displacements are greatly larger the unsymmetrical characteristics would be 
greatly modified.

On these grounds it appears certain that the coefficients of dilatation 
would be greatest at an infinite distance from the centre and would gradually 
diminish; in which case the tangential pressure would fall and the normal 
pressure rise gradually as they neared the centre, satisfying the conditions of 
virtual velocities and the condition for equilibrium, which latter requires 
that at any distance r from the centre pr + 2pt = p". What the mean of 
such coefficients might be is doubtful, but it seems probable that they would 
not differ greatly from the coefficient unity, which is the smallest coefficient 
for symmetrical distortion.

Whatever these coefficients may be it follows from the paragraph last 
but one, that the dilatation resulting from the inward strain must occupy 
the space from which the grains were absent, so that the sum of the normal 
and tangential stresses would be equal to the mean pressure of the medium, 
or pr + 2pt = 3p"

209. From the conditions of geometrical similarity in the case of uniform 
continuous media it appears :

(i) The size of the .uniform grains has no effect on the dilatation or 
mean pressures resulting from continuous uniform distortions. Therefore 
similar and egual continuous finite distortional strains will produce similar 
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and equal dilatations whether the grains are indefinitely small or of any 
finite size.

(ii) The size of the uniform grains in a continuous medium does affect 
the dilatations resulting from strains other than continuous uniform distor
tional strains.

To prove these theorems.

If we consider two finite media of which the parts are exactly similar in 
shape, number, and relative position, but in one of which the scale is A 
and the other B, these media will be geometrically similar except as to scale.

Thus whatever strains in proportion to the constant parameters, A and 
B respectively, these media may undergo, the proportional similarity will 
hold, and this extends to the dilatations, the coefficients of which will be 
equal. Q. E. D.

If however instead of considering these similar actions within spaces 
proportional to the scales A and B, we consider these proportional actions 
within equal spaces, the principle of similarity disappears unless the positions 
and strains are such that there is perfect uniformity throughout the medium. 
This proves the first theorem. Perfect uniformity exists in the case of grains 
in uniform piling subject to equal distortional strains whatever the values of 
A and B, provided the spaces are such that there is no sensible effect from 
the boundaries. Q. E. D.

It is thus proved that for other than equal uniform strain there cannot be 
similarity in the effects in equal spaces in media of which the scales of 
similarity A and B differ.

Thus if the strains in the medium in which the scale is A are subject to 
variation on that scale, while those on the scale B are subject to similar 
strains on that of B, then the effects of these variations taken over equal 
spaces will of necessity differ. Q. E. D.

Then since the dilatations resulting from parallel continuous strains are 
in no way dependent on the size of the grains, even if these are infinitely 
small or have any finite size, the question arises as to what would be the 
difference in the dilatations resulting from finite similar local disturbances 
about negative centres in two media in one of which the grains are infinitely 
small and in the other finite.

In the first place it appears that as far as regards the dilatations resulting 
from uniform parallel distortional strain these would be independent of the 
size a.

And it can be shown that these are the only dilatations if a is indefinitely 
small as compared with the reciprocal of the curvature.
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For since a- is indefinitely small when the scale of disturbance is finite, 
if we conceive all dimensions including a to be exaggerated so that a 
becomes finite, and the distances between the grains exaggerated on the 
same scale, then, since the mean strains before exaggeration vary continuously 
without crossing, so that in the strains the finite paths of two grains which 
were neighbours before the strain would still be neighbours after the finite 
strain although separated by any distance which is less than the finite 
distance a, their two paths would still be parallel lines of infinite length 
and at any finite distance apart.

It is thus shown that if the grains are indefinitely small as compared 
with the dimensions of the disturbance, the only dilatations would be those 
resulting from uniform parallel distortional strains. Q. E. D.

Again in the case of the medium in which the grains are finite it has 
been shown, Art. 207, that when the grains are finite, however small as 
compared with the dimensions of the finite volume from which grains are 
absent, that the effects must differ from those resulting from uniform parallel 
distortion.

And by the last theorem, putting ^irrf/S for the volume the absent 
grains would occupy in normal piling, it appears, since <T/r0 is indefinitely 
small, that the dilatations result solely from uniform parallel distortional 
strains. And hence whatever finite curvature may result from finite strains, 
this curvature does not, as curvature, produce any effect on the dilatation; so 
that there are no curvature effects.

Then since it is shown that when a is finite, however small compared 
with the reciprocal of the curvature in the strained normal piling, the 
dilatation resulting from curvature depends solely on the existence of a 
finite value of the product of a multiplied by the curvature, the dilatation 
will equal a multiplied by the curvature.

Further, it follows that for any given strain, this dilatation resulting 
from curvature will be in excess of the dilatations resulting from uniform 
parallel strains.

210. The analytical separation of the dilatation resulting from uniform 
strain and that resulting from the curvature would be perfectly general if a 
might have any value as compared with the curvature. But, in that case, 
any analytical separation of the dilatation resulting from distortions from 
that resulting from the size of the grains would be different on account of 
the reaction of the dilatation resulting from the size of the grains on that 
resulting from distortion. But we are only concerned with cases in which 
a is such that a multiplied by the curvature is so small that to a first 
approximation any reaction from the dilatation resulting from the curvature 
may be neglected.
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Whence it appears that, to a first approximation the only curvature is 
that instituted by a uniform distortional strain—as if a multiplied by the 
curvature were indefinitely small—the dilatation resulting from small inward 
radial displacements about a centre being of necessity equal to the curvature 
at each point. It follows as a necessity that, taking A as the dilatation 
resulting from the uniform distortional strains, the dilatation resulting 
from curvature owing to the finite size of the grains at the same point is 
expressed by where is the radius of the singular surface, whence
we have for the total dilatation

211. Granular media with relative motion have this fundamental 
difference from media without relative motion, that when in normal piling 
the medium with relative motion is within certain limits perfectly elastic 
without crystalline properties, that without relative motion is perfectly rigid 
and crystalline.

When the media are both under strain this difference is not so apparent, 
as the medium without relative motion is then also without rigidity. But 
the difference is still fundamental, and the fundamentality of the difference 
in no way depends upon the degree of relative motion. For in the one the 
medium satisfies the condition of virtual velocities, while in the other state, 
owing to its elasticity, this condition cannot be absolutely satisfied however 
near the approximation may be.

The crucial difference between the two states is virtually reduced to the 
existence of a state of absolute rigidity in the one, however limited, when 
the piling is normal, and the absence of such rigidity in the other however 
small may be the relative motion.

For as has been shown in Art. 207 the medium without relative motion 
while satisfying the condition of virtual velocities when strained from the 
normal piling, will also satisfy the condition of equilibrium—that the sum 
of the normal and tangential pressures equals three times the mean pressure, 
or that

pr + 2pt = Sp"......................................... (323).

Another medium will also satisfy the conditions that the pressure between 
the grains cannot be negative, and that every grain is in contact with at 
least four grains, whence it follows (since the last three of the four preceding 
conditions are satisfied in the strained medium without relative motion they 
are of necessity satisfied by the strained or unstrained medium with relative 
motion) that if, as has been shown, the condition of virtual velocities can be 
satisfied to any degree of approximation in the medium with relative motion, 
such medium has to any degree of approximation all the properties of the

r. 13 
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medium without relative motion, except those depending on the limited 
stability on which the crystalline properties depend.

It is thus shown that the necessary distinction between the two states is 
that of finite rigidity when there is no relative motion.

In regard to this statement it is perhaps necessary to call attention to 
the fact already demonstrated, that in the case of a medium with relative 
motion, the relative motion as expressed by a in a steady state of strain 
must be constant, since any inequalities in a are subject to redistribution, 
so that the mean energy of every grain remains constant. Therefore the 
energy of the medium after the grain has been removed and the inward 
strain established would be constant, and there would be no change in the 

mean relative kinetic energy of the grains , and it is the state after 

the grains have been removed with which we are alone concerned.

This although, for the purpose of analysis, an ideal action—that of 
removing grains from a medium in otherwise uniform normal piling—such 
action has no existence. This appears from Theorem 1 in this section, from 
which it follows that whatever may be the volume occupied by the absent 
grains when in normal piling such accident is permanent.

It has thus been shown that the inward strains resulting from the 
absence of grains which would occupy the volume 4ttt03/3 in normal piling 
about any centre in the infinite, elastic medium, must cause dilatations 
extending from an infinite distance to the singular surface about the centre 
of disturbance, which dilatations occupy a volume equal to 4ttt()3/3, the 
volume from which the grains are absent; and they are such as satisfy the 
conditions of equilibrium under the same mean pressures normal and tan
gential expressed by

pr + 2pt = 3p"......................................... (324),
p" being the mean pressure equal in all directions.

212. It also follows from Art. 210 that these dilatations, notwithstanding 
the relative motion of the medium, admit of analytical separation into the 
two classes:

(i) Dilatation resulting from uniform distortional strains such as would 
result if a were indefinitely small.

(ii) Dilatation which results from the finite value of a and the curvature 
induced by the uniform distortional strains.

The relations of these dilatations are those expressed in Art. 210 by
a \ _ [the total dilatation per unit 
2rJ ( of volume at the point •(325),
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for the only difference resulting from the relative motion is the absence of 
any limited stability.

213. From the conclusions arrived at in Art. 211 it follows, if p" is 
constant, that the total dilatation resulting from the inward strains does not 
depend in any degree upon the coefficients of dilatation, nor upon the relative 
motion a, as long as cr/X is within the limits of no diffusion, whatever may be 
the value of a.

It does not however follow from this that the distribution of the strains 
is independent of the variations in the coefficients of dilatation, since it has 
been shown (Art. 207) that if there is no relative motion the coefficients of 
dilatation must increase with the distance from the centre of disturbance.

But in the absence of any limited stability as in the case of a being finite, 
since we need consider those cases only in which the coefficients of dilatation 
from small strains are unity, the circumstances may be so chosen that the 
strains follow some regular law.

However, before discussing these circumstances, we may with advantage 
consider what further conclusions as to the relation between the strains and 
dilatations, as well as the relation between the normal and tangential 
pressures, are afforded by the adoption of unity as the general coefficient 
of dilatation in the medium with relative motion.

Since the coefficients are constant and equal to unity, the mean strains 
resulting from the absence of a volume of grains expressed both in magnitude 
and shape by the sphere 47r?-03/3> will be radial and symmetrical. Then by 
the theorem of Art. 212, if a is small compared with ?-0, since the strains 
must be everywhere very small, the relations between the inward strain and 
the dilatation will be such (if at any point we take a* for the principal 
strain in the direction of any radius and /3 and 7 for the principal strains 
tangential to the surface of the sphere, since the strains are inwards /S and 7 
are negative and equal) as are expressed by

P + 7 = - ia, or 444 = “ 1 ........................ (326).
P + 7

Then adding (^ + 7) the negative or contraction strains to a the positive or 
expansion strain, we have the dilatation

-(/3+7) = |

a=- 2 (£ + 7),
Then we have from these equations the general relation that the dilatation 

resulting from tangential contraction — (/3 + 7) is equal to half, and can only 
be half, the normal elongation resulting from the tangential contraction, 
together with the dilatation caused by the contraction strain.

* a, fi, y are here used to express principal strains. 13—2

(327).
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The dilatation expressed by either member of equation (327) is the total 
dilatation resulting from the uniform distortional strains, as well as that 
resulting from the curvature on account of the finite size of the grains. And 
to complete the analysis of the relations between the dilatations and the 
strains it is necessary to effect the analytical separation of these two 
dilatations.

The separation of the dilatations follows at once from equation (324).

By equation (327) we have for the total dilatation per unit of volume at 
a point

- (3 + ?)• -
And from equation (325) the total dilatation is

Therefore A ---------------
1+^-

r

A — = ~ + —
2ri o' 2^

+ 2n

The first and second of equations (328) are respectively for the dilatations 
resulting from uniform strains and from the size of the grains.

These involve the squares of a-/2r1; neglecting this term we have as 
approximations:

For the dilatations resulting from uniform strains

And for the dilatations resulting from the size of the grains

Adding these two last expressions we have 
- + 7).(329),

which expresses the total dilatation per unit of volume at a point in the 
medium.

Then integrating the partial dilatations from co to over the medium, 
since the total integral dilatation is 4tti-03/3 we have for the integral dilatation 
resulting from uniform distortion

I'°- (3 + 7) (1 - 2y) ^dr = (1 ~ 2). ) T r°’................(330)'
•' oc ' 1 ' 1
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And for the dilatation resulting from the size of the grains

f -(3 + 7)2^r = (1 -...................... (331).

The relations between the strains and the resulting dilatations, as expressed 
in equations (326 to 331), are the complete relations to a first approximation 
as long as there is no other disturbance in the normal piling than the 
spherical disturbance which gives rise to the radial inward strains. And they 
have been obtained by taking the coefficients of dilatation as unity.

The relations between the principal stresses are such as satisfy the 
equation of equilibrium

K'+2pt" = 3p"..........................................(332),

and are also such as satisfy the condition of virtual velocities approximately, 
which on the assumption that the coefficients of dilatation are unity, since 
the contraction strains are tangential, requires that

pi' = 2;>,".............................................. (333).

Therefore from (332) and (333) we have

p" = iP" and Pr” = IP"................................. (334).
Equations (332) and (333) express completely, to a first approximation, the 

relations between the constant mean pressure, equal in all directions, and the 
constant mean tangential and normal principal stresses resulting from a 
negative spherical disturbance about an only centre on the supposition that 
the coefficients of dilatation are unity.

214. Having in the last article effected the analysis of the relations 
between the dilatations and strains, as well as between the mean tangential 
and normal principal stresses and the mean pressures, equal in all directions, 
about an only negative centre, on the supposition that the coefficients of 
dilatation are unity, it remains to consider that choice pointed out (Art. 213) 
of the circumstances under which this condition can be realised.

The definition of a negative local disturbance (Theorem (i), Art. 203) in
volves the absence of a certain number of grains, which if present in normal 
piling would render the piling in the medium normal, reverse the strains, 
and so obliterate all trace of disturbance about the centre.

There is nothing in the definition of such local centres that defines the 
mean distance from the local centre at which the grains may be absent, nor 
is there any obligation that the space from which the grains are absent shall 
be continuous, as long as there is some symmetry about the centre.

It is therefore open for us to consider such arrangement of the position 
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about the centre from which the grains are absent as will result in the least 
analytical complexity. ,

It would seem at first sight that the greatest simplicity would be secured 
by assuming that the grains were removed from a spherical space. But in 
that case it at once appears that the inward radial displacement would 
extend to the centre of the sphere. And it also appears (Art. 207) that 
the contraction strains as the centre was approached would be such that 
instability would come in, and the arrangement near the centre would revert 
to some more nearly normal piling, forming a nucleus of grains in normal 
piling without dilatation. In this case the dilatation would commence in the 
grains outside the spherical nucleus, there being a spherical shell of grains in 
abnormal piling constituting a broken joint between the nucleus and the 
medium outside, which, although strained inwards, would still be such that 
the grains had not changed their neighbourhood. Thus it appears that the 
abstraction of grains from a spherical space would not entail that this 
strained normal piling would reach the centre.

The arrangement instituted as a result of this abstraction from a 
spherical space seems most natural and, with a little modification, such 
arrangement presents the least analytical difficulty.

If we adopt the nucleus in an exaggerated form and the spherical shell 
of grains in abnormal piling, no matter how thin, also take rt for the radius of 
the singular surface which is somewhere within the spherical shell of grains 
in abnormal piling, since the volume of grains absent is 4tt7-03/3 which volume 
as a spherical shell of radius would have a thickness approximating to 

we have as an expression for the inward radial displacement of the 
grains in strained normal piling which are adjacent to the singular surface

n3 = nn3 
Sr/

Then since this is the greatest possible radial displacement, and being 
adjacent to the singular surface is independent of dilatation, the contraction 
strain, owing to the displacement, would be the largest contraction strain 
possible. Whence, if this is small, all the contraction strains will be very 
small, and as the dilatations are equal to the contraction strains, though 
of opposite sign, the dilatation would be very small, and by Art. 207 the 
coefficients of dilatation would approximate to unity.

In order to show that the contraction strains at the singular surface 
resulting from radial displacement

w 3 
' 0

3n2
would be very small; let the outer circle (Fig. 4 a) represent a section 

(335).
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through the centre of disturbance before the volume 47rr03/3 is removed, 
and the inner circle represent the section through the centre after the

Fig. 4 a.

volume is removed. Then if the inner circle is taken to represent the 
section of the singular surface through the centre of disturbance, since the 
radial displacement [a = — 2 (/3 + 7)] of the grains at that surface has been 
shown to be (equation 335) the contraction at the singular surface is

Then since is small, according to powers of we get a rapidly 
converging series, the first term of which is

-^=^ + 7......................................... ('W

Then by equation (327) we have as a first approximation to the dilatation 
resulting from the contraction at the singular surface And as this is,
approximately, the greatest possible dilatation, it follows that under the 
conditions as stated above the radial displacement and inward strains are 
such that the coefficients of dilatation would to a first approximation be 
unity.

It is thus shown that the conditions assumed in the present article are 
not only possible but are also the most probable.

215. In order to complete the analysis for an only negative centre it 
remains to obtain the expressions for the contraction strains and dilatations 
at any distance from the singular surface corresponding to those found in 
the last article for the contraction strains and dilatations at the singular 
surface.

This problem differs essentially from that of determining the strains at 
the singular surface; this difference appears at once when we realise, as 
already pointed out, that the radial displacement which the grains at the 
singular surface have undergone is definitely expressed by since
it is subject to no displacement from dilatation, whereas the radial displace
ment which the grains at an arbitrary distance r from the centre have 
undergone depends on the dilatation between r and rt.
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There are however two definite conditions that the radial displacements 
must satisfy to a first approximation.

(1) The condition (Art. 207) that whatever the radial displacement may 
be it must be such that the integral of the dilatations taken from to oo 
shall be equal to the volume from which the grains are absent.

(2) That the radial displacement must be such that at any distance 
greater than the resulting tangential contractions will cause dilatation 
which, integrated over the volume of the spherical shell 4w (r/ — r03)/3, will 
express when divided by rf radial displacements corresponding to those 
assumed.

If instead of taking — or —r^l^r2 we take

3T3

for the radial displacement, we have for the contraction strains, since they are 
negative and only half the total elongation,

From which to a first approximation we have for the contraction strain
1 Tjro3

Then changing the sign, multiplying by tt and integrating from to r 
. , 1 „7 47rr03 4tf r,r03

dr = ~3“ “ y r ...........................(338).

The result arrived at in equation (338) admits of more general proof, 
from which it appears that this result is the only result possible.

Putting X for the radial displacement; since the dilatation is expressed 
by X/r we have to obtain the expression for X satisfying the condition

4w f — r^dr = ...................................... (339),
J 00 r &

whence it appears that

............................................... (340). .

Also dividing the last term in equation (338) by r- we have for the radial 
displacement at a distance r

Sr3 ’ 
which is the same expression for the radial displacement as that assumed. 
So that both conditions are completely satisfied.



216] CONSERVATION OF MEAN INEQUALITIES AND THEIR MOTIONS. 201

216. In this section it is assumed that there is no diffusion. Having in 
the previous articles in this section effected the analysis of the inward strains 
and the consequent dilatations for only negative spherical disturbances 
resulting from the absence of grains, before proceeding to consider the corre
sponding analysis for the other inequalities in the density of mean matter, 
it seems convenient to proceed with the analysis necessary to determine the 
effects such negative disturbances may have on each other when existing 
within finite distances of each other.

Any such action must depend on the interference of the strains outside 
the respective singular surfaces, and any attraction of the centres resulting 
from such interference must be a function of the distance between the 
centres.

From Arts. 209 and 212 we have perfect similarity in the strain 
resulting from uniform distortions, from which it follows that such strains 
from different negative centres superimpose without affecting their respective 
dilatations, and hence can in no way interfere or attract one another.

In the case of the strains resulting from finite values of a owing to the 
curvature resulting from distortions, the strains from different negative centres 
at any finite distance must interfere.

This appears in Arts. 209 and 212, in which it is shown that for other 
than equal uniform strains there cannot be geometrical similarity in the 
effects in equal spaces, in media of which the scales are different.

For, applying this to the case in hand, since the diameter of the grains, 
<Ti say, is common to all the grains, while the number of grains absent as well 
as the radii of the singular surfaces may differ in almost any degree, the 
dissimilarity at once appears.

For the sake of clearness we may consider in the first place two cases in 
both of which the a has the value o-1; and the singular surfaces both of radii rit 

but in one of which the volume of the grains absent is r/, and in the 

other rb\ o

Then by equation (331) we have for the dilatation at a distance r for 
the centre a

and for the centre b
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and neglecting <Ti/2?'j for the present, as small, multiplying by r2dr and 
integrating from r, to r = oo we have for the dilatation, taking co to express it, 

47rro3 aA

47rr63 cr, nJ
From the expressions in the preceding paragraph for the total dilatation 

resulting respectively from the two centres considered as if each were the 
only centre within an infinite distance, it appears in the first place that the 
dilatation resulting from the product a into the curvature is directly propor
tional to the volume occupied in normal piling by the grains absent. And 
in the second place from the form of the expressions obtained, that the total 
dilatation is inversely as the radius of the singular surface.

It is this fact, that whatever may be the volume occupied by the absent 
grains in normal piling, the dilatation will be inversely as the radius of the 
singular surface, which proves the effect of dissimilarity between the constant 
value of a and the different values of r,, namely that for any particular 
volume of grains absent the dilatation resulting from the small centre will be 
greater than that resulting from the large centre in the inverse ratio of the 
radii of the centres.

So far we have only considered the effect of dissimilarity in a/r, on the 
supposition that each centre is the only centre within finite distance.

We may now proceed to prove that negative centres at finite distances 
attract each other.

Taking co to express the total dilatation from to r 
single negative centre, then as has just been shown

4?rr03 a
"i = —s........ ....................3 T.

= oo resulting from a

(342).

Then the number of such singular surfaces which would occupy an 
empty spherical shell of radius rB when arranged in closest order would be 
approximately

N'= 0-75rBs
ry 3 ..........................................(343).

And by equation (341) the total dilatation of each of the N' surfaces outside 
the surface 4?rr02 is

47rr03 
~3 rB .......................................... (344).
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Multiplying a>} and by N' we have for the respective total dilatations

- ......................................(345)
o Tj

and 
.(346).

o 1B

Subtracting these equations as they stand we have

......................... (347).
° V 1 • B/

Then from equation (347) it follows that the dilatation resulting from 
any number of negative similar disturbances (if the singular surfaces are at 
an infinite distance from each other) will be

47fjV £

3 <

while if these surfaces are arranged in closest order the dilatation will be
N, 4nrra3 <r

3 rB‘

Whence since rB is greater than r, it is shown that, no matter how 
accomplished, the dilatation resulting from negative centres diminishes in 
the ratio

n

as the centres of the singular surfaces approach until they are arranged in 
closest order.

This proves the diminution of the dilatation owing to the diminution of 
the variations of strain as the centres approach—or the diminution of the 
dilatation owing to the diminution of the curvature of the normal piling in 
the medium due to dissimilarity. Q. E. D.

From the proof of the foregoing theorem it also appears how it is that 
the dilatations resulting from distortion do not interfere however much they 
superimpose, for since the dilatations resulting from distortion in no way 
depend on the curvature in the medium, as curvature, they depend only on 
the strain, whereas the diminution is in the variations of the strain.

In order to prove the attraction of the negative centres it is necessary to 
consider the effects of the pressures in the medium. These have already 
been discussed in Art. 213, equations (332) to (334), in which it is shown 
that the dilatations resulting from curvature are subject to the mean 
pressure p" and satisfy the condition of virtual velocities. In dealing with 
attraction it might seem necessary first to prove or assume that the singular 
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surfaces are also surfaces of freedom which can be propagated in any 
direction through the. medium, for as the medium is elastic in consequence 
of the finite relative motion, if we can find the variation of the work done 
by the external media on the singular surfaces owing to variation of their 
distances, it becomes possible to separate the active effort from the passive 
resistance.

Multiplying the member on the right of equation (347) by p” we have

3 rB)
as the expression for the difference of the energies in the media when the 
N' singular surfaces of radius rx are at an infinite distance from each other, 
and when the N' singular surfaces of radius are arranged in closest order 
within the surface rB.

This difference in the energy proves the existence of attractions what
ever may be the passive resistance owing to want of mobility of the singular 
surfaces.

These attractions as obtained by neglecting cr2 are the only attractions 
between negative centres of disturbance which are small compared with their 
distances apart, as follows from the fact already proved that the aggregate 
dilatation resulting from distortional strains depends only on the volume of 
the absent grains.

217. The law of the attraction of negative centres appears at once from 
the analysis.

If instead of taking the total dilatation from rB to r = oo, as in equation 
(346), we take the dilatation from rB to r, where r is greater than rB, the 
dilatation from the N' singular surfaces in closest order is

KT, 47rr03
3 \rB r)'

Then if there is another singular surface of radius in which the volume 
of grains absent is 47rr03/3 at the distance r the variations of the strains of 
the outside singular surfaces interfere with those from the centre rB', and 
multiplying the dilatation outside rB less the dilatation outside r by minus 
the volume of the grains absent in the outside centre, we have the expression

k 3 J \rB rj’

and differentiating this expression with respect to r we have

_)V' (47rrA °;
\ 3 Jr-’
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whence multiplying by p", since a/X is large so that the density within the 
singular surfaces is unity, we have for the acceleration

, y^-y d M _ ,,s. (J^y ?.... (348).
\ 3 J dr \rB rj 1 \ 3 / r2 '

This expresses the space rate of valuation in the work, or energy in the 
system, with the distance, that is the effort to bring the centres together 
whatever may be the passive resistance.

It is thus shown that the law of attraction, that is the effort to bring the 
surfaces together, whatever may be the passive resistance, is the product of 
the masses of the grains absent multiplied by a and again by minus the 
reciprocal of the square of the distance.

This law of attraction, which satisfies all the conditions of gravitation, is 
now shown by definite analysis to result from negative local inequalities in 
an otherwise uniform granular medium under a mean pressure equal in all 
directions, as a consequence of the property of dilatancy in such media 
when the grains are so close that there is no diffusion and infinite relative 
motion ; and further it is shown to be the only attraction which satisfies the 
conditions of gravitation in a purely mechanical system.

The mechanical actions on which this attraction depends are completely 
exposed in the foregoing analysis, and offer a complete explanation of the 
cause of gravitation.

In this explanation of the cause of gravitation there are some things 
which are at variance with previous conceptions, besides the fundamental 
facts, (i) that the attraction of the singular surface which corresponds to 
that of gravitation is not the effect of masses present but of masses absent, 
which has already been revealed in the previous analysis, and (ii) that the 
volume enclosed within the singular surfaces, which is the volume from 
which the singular surfaces shut each other out, has no proportional relation 
to the number of grains absent, but, as will at a later stage appear, depends 
on the possibility of some one definite arrangement of the grains absent, out 
of a finite number of possible different arrangements.

218. In the analyses of Newton, Laplace, Poisson, and Green, for defining 
the consequence which would result if distant masses attracted each other 
according to the product of the masses divided by the squares of the distances, 
the attraction is taken as inherent in the masses. This assumption assumed 
that there was something that was not force, but which varied with the 
distance from a solitary mass, and this something after various names is now 
generally called the potential. That any of the philosophers named believed 
in force at a distance is more than doubtful, as Hooke and Newton and 
Faraday repudiated any such idea. Maxwell went a stage further and 
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showed that such attractions might be a result of a certain law of varying 
stresses in a medium—as to this he writes, “It must be carefully borne in 
mind we have made only one step in the theory of the medium. We have 
supposed it to be in a state of stress, but we have not in any way accounted 
for the stress or explained how it could be maintained.”....... “ I have not been 
able to make the next step, namely to account by mechanical considerations 
for the stresses in the dielectric*. ”

* Electricity and Magnetism, Vol. i. Arts. 110 and 111.
+ This 7? has no connection with the li used in Arts. 200 and 201.

Maxwell is here writing of electricity, which is not the same thing as 
gravitation, as will presently appear.

This second step, namely that of accounting by mechanical considerations 
for the stresses in the medium, has now been overcome; as we have the 
mechanical interpretation of the potential as the product of the uniform 
pressure p" multiplied by the integral of the dilatation over the medium 
rB to rj, or

.............................(349).

or, omitting the constants,

This is entirely rational and when multiplied by — 47rr03/3 and differ
entiated gives us the attraction hitherto expressed by jK'b.

And it thus appears that the thing to which the name potential has been 
applied is the product of p" multiplied by the total dilatation between the 
surface of radius rB and the surface of radius r (greater than r^).

It is to be noticed that in so far as we are concerned with the effort of 
attraction and not with acceleration, it is only the volume of the space from 
which the grains are absent, and not the mass within the space, that we 
have to take into account.

And it is for this reason that in the foregoing analysis, in this section, 
p has not been introduced. But since, in states of the medium under 
consideration, in our present notation p is, to a first approximation, equal to 
unity, it would have made no difference if we had taken it into account 
(when we have to consider the displacement of mass owing to the effort, the 
fact that p" is unity is of primary importance), since whatever the effort to 
acceleration, the acceleration is inversely proportional to the density—and 
this will appear at a later stage.

In order to render the expression for attraction intelligible it should here 
be noticed that strains, and consequent dilatations in the medium, which have 
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no dimension, and which are the only actions, are outside the singular 
surfaces; so that we are not dealing with two or more independent masses, 
but with the variations in the displacements in the entire medium, all the 
mechanism, so to speak, being in elastic connection controlled by the pressures, 
as conditioned by the positions of negative inequalities in the mean mass 
represented by

There is no complete freedom of inequalities as long as there are other 
inequalities within a finite distance.

Thus it appears that the singular surfaces are virtually the handles of 
the mechanical train.

219. Having effected the analysis for the attractions and the potential, 
we may now return to the inequalities in mass as mentioned in the schedule, 
Art. 203.

The second inequality in the mean mass in that schedule is that which 
may be conceived to result from an excess of grains, instituting a positive 
centre.

The analysis for the effects of such positive centres is precisely similar 
to that already effected for the negative centre, except that in the case of 
the positive centre the curvature would be reversed, the curvature being 
away from instead of towards the centre.

The effect of this appears to be to cause positive centres to repel instead 
of attract each other. Such repulsions would as in the case of negative 
centres depend on the product a- multiplied by the curvature, which is of 
opposite sign to that for positive centres, and thus the effort of repulsion 
between two positive centres would be expressed by

P V 3 ) 2r’

The coefficient of dilatation is the same—unity. There is thus no 
necessity to repeat the analysis. This concludes the approximate analysis of 
the actions between centres having similar signs.

It may however be remarked that there are reasons why it is probable 
that positive centres should exist, as will appear at a later stage.

220. The first of the class of complex local inequalities ((iii), Art. 203) is 
that which would be instituted if by action on the medium in normal piling 
a number of grains (n) were displaced from their previous neighbourhood 
when in normal piling to some other neighbourhood previously in normal 
piling.

Such complex inequalities are only second in importance to groups of 
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negative inequalities at finite distances, such as have already been discussed. 
In the case of complex inequalities there is no difficulty in conceiving that 
owing to the mean pressure there would be an effort to reverse the displace
ment, as nothing would seem more natural if we have an absence of grains in 
one place and an excess in another, under pressure, than that there should 
be strains from the place of excess to the place in which the grains are absent, 
and vice versa.

It also appears at once as pointed out in Art. 203 that the case is identi
cal with that which would result from the existence at finite distance of equal 
positive and negative centres, having the same number of grains absent and 
present respectively.

This identity indicates the direction of the analysis necessary in order to 
obtain the expressions for the effort to reverse the displacement.

We have already obtained the expressions for the dilatations per unit of 
volume at any point distant r from a negative centre resulting both from 
the distortional strain and from the curvature owing to the finite size of the 
grain 47rr03 ri , 47rr03 a3‘ ? “d — ?
And it has also been shown that there is no diminution in the dilatations in 
the former as the centres approach.

It has also been shown, Art. 217, that multiplying the dilatations at a 
point resulting from a negative centre by p'r^dr and integrating from 7\ 
to r, we have the equation

„ ^irr^ P a , , „ 47rr03 /a a\p dr = p"(-------
3 Jr, \ri r J .................... (351),

the second member of which expresses the potential of attraction between 
the two equal negative centres. This multiplied by a second negative 
inequality and differentiated with respect to the distance between the centres 
expresses the effort of attraction of the centres as

B—.......................................<333).

And again, although not previously noticed, it appears at once from equation 
(351) that, if instead of the limits of integration being from rx to r, they are 
taken from r to r = oo , we have

„47T7-o3 J „47T7V <r
.........................<303).

This integral must have some significance as a potential. And it appears 
on multiplying equation (353) by 47rr03/3, which is an expression for a positive
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inequality equal to the negative inequality, and differentiating with respect 
to the distance between the centres, when the equation becomes:

dr P mi ^.r^dr = -p‘ 47rr03\2 a
.(354).3 )

The second member expresses an attraction between the positive and 
negative centres.

221. The significance of the two integrals.

In Art. 216 from equation (346) it is shown that negative centres 
attract, therefore if there were a choice of two general integrals of the dilata
tion from a negative centre, from one of which in the case of negative centres 
there would result a repulsion, while the other would result in attraction, it 
is certain that the integration which would result in the attraction is the 
only one between negative centres whatever might be the significance of the 
other integration. And this is what actually occurs.

If instead of the limits from to r as in equation (351) the limits are 
taken from r to x as in equation (353), then taking account of a second 
negative singular surface we should have for the complete potential:4?rr03\ a
which differentiated with respect to r is:

„ /'4nrr<?\ a

which expresses a repulsion. Hence this cannot be the integral for the 
attraction of one negative centre for another.

As already remarked this form of integral of the dilatation from a 
negative centre must have a significance, and significance appears when we 
substitute a positive inequality 47rr0’/3 in place of the negative inequality 
— 47rr03/3 in the last expression for the attraction, which becomes

nW’47rr03\ a
Thus we have the expression for the attraction of equal positive and 

negative centres resulting from the finite size of the grains.

222. The intensity of the attractions of equal positive and negative 
inequalities.

In the first place it is to be noticed that the intensity of the attraction 
between equal positive and negative inequalities as in the last expression

r. 14
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(Art. 221) is as <r to rT of the total intensity of attraction between positive 
and negative surfaces. Indeed the expressions last but one and last (Art. 
221) only indicate the significance of the two integral potentials. And 
such intensity as they express in no way depends on the curvature.

This becomes clear if we recognise that in the case of a displacement of 
n grains the strains from the negative centres are negative and extend to 
infinity, while the strains resulting from the positive centres are positive and 
extend to infinity. The components of the negative strains cancel with the 
components of the positive strains with which they are parallel; hence the 
diminution of the dilatation as the displacement diminishes in no way 
depends on the curvature but wholly on the cancelling of the distortional 
strains.

It thus appears that in order to express the effort to restore the normal 
piling in the medium, we have only to substitute the radius of the singular 
surface in the place of a in the last expression (Art. 221).

Thus for the total effort, in the complex inequality resulting from the 
displacement of a volume of grains 47rr0s/3 through a distance r, to restore 
the normal piling we have

a—...................... 4W
Q. E. F.

223. It may be noticed that in obtaining equation (355) no use has 
been made of the potential of attraction. This is because the inequality 
caused by a displacement of a volume of grains under the pressure p", 
which has the dimensions ML3T\ is essentially one displacement, not two 
equal and opposite displacements as in the case of two equal negative 
centres, in which the relative displacements of energy have no effect on the 
mean position of energy in the medium.

This may be shown by subjecting the expressions for the effort of 
attraction between negative centres, and the effort to reverse the displace
ment in the case of complex inequality, respectively, to further analysis.

Taking the effort of attraction of two equal negative centres, as in 
equation (354), to be :

„ cr
~P —

and the effort to reverse the displacement in the complex inequality, as in 
equation (355), to be :

_ n" f47nV3Y
P k 3 J

and then integrating each of these expressions from to oo, we have as
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the energies resulting from the dilatation from outside the singular surfaces 
of radius rlt 

and

-p

Then to obtain the expressions for the potential of attraction for either 
of these respective energies, the factor 1 /r must be separated into two factors 
proportional to two inequalities of the same or opposite sign in accordance 
with the sign of the product of the inequalities. Then multiplying the 
factor which has the positive sign by 1/r we have the potential, while the 
other factor is numerical and represents the attraction of the centres.

In the case of two negative centres, taken as equal for simplicity, as the 
signs of the inequalities are the same we have for the potential: 

and for the attraction :

And in the case of the complex centre, since the product of the centres is 
negative, we have for the potential:

and for the attraction :

Whence it appears that in the complex inequality both the potential and 
the attraction are irrational. Whence it is proved, since the effort is real, 
that the absolute displacement of energy is one displacement and not two.

224. The electrostatic unit of electricity is defined as the quantity of 
positive electricity which will attract an equal quantity of negative 
electricity at unit distance with unit effort. This unit as is shown in 
Art. 223 is irrational. An expression for the unit corresponding to the 
electrostatic unit is obtained from either of the last two expressions in 
Art. 223.

Thus from the first of these, putting rx = r0 and r = 1, we get:

rj = 1. 14—2
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And from this, since all the quantities under the radical are positive, we 
have the condition

\ 2 
>7 = 1 ..................................(356),

\ O J

from which if p" is known r^ may be found.

225. From the analysis in Art. 223 it is easily realised that there is a 
fundamental difference in attractions between two negative centres, and the 
attraction of two equal centres one positive and one negative. It has been 
shown (Art. 217), that the attraction of two negative centres corresponds, in 
every particular, to the attraction of gravitation as derived from experience. 
And it now appears that the alteration from a positive to a negative 
inequality correspond to the statical attraction of the positive for the 
negative electricity. Not only then has the step at which Maxwell was 
arrested—that of accounting by mechanical considerations for the stresses 
in the dielectric—been achieved, and a moot point of historical interest 
settled, but as now appears a definite error as to the actual attractions has 
been revealed.

This error is in the general assumption that electrified bodies repel each 
other. As this may not be at once obvious it will be discussed in the next 
article.

226. To show that positively electrified bodies do not repel.
It has been shown in Art. 225, neglecting the small attractions of two 

positive or two negative centres, that the efforts of attraction between equal 
positive and negative centres, at any distance r, are equal and opposite.

If then in the same line we have two equal complex inequalities arranged 
so that their displacements are opposite, the negative centres being outwards 
as -I-------1-, the effort of attraction of one of these complex inequalities would
not in the least be affected by the other complex centre.

Hence there is no attraction between two positive centres, the only effort 
to separation of the two positive centres being between those of the two 
complex inequalities, the effort in either being the same as if the other was 
not there. Hence the only efforts are those of attraction. Q.E.D.

It should be noticed that these attractions are quite apart from the 
repulsions resulting from two positive centres owing to the curvature and 
finite size of the grains as in gravitation, and further that, other things 
being the same, the ratio of the attractions between positive and negative 
and the repulsions between positive centres is as r^c, and hence the 
repulsion may be neglected as compared with the attraction.

227. In the analysis for the effort of attraction of negative inequalities 
and that to reverse the displacement of a complex inequality the terms in 
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the expressions for the contraction strains which involve powers of r’/r’— 
the ratio of the volume of grains absent divided by the volume enclosed by 
the singular surface—have been neglected (Art. 214, equation (337)) and it 
is this simplification only which renders the law of attraction—as the inverse 
square—the law of attraction of the singular surface at a distance.

But this in no way limits the variation of the stresses over those portions 
of the space in and between the parts of the two singular surfaces which are 
within indefinitely small distance of each other. Such limits can only be de
termined by taking into account the higher terms which have been neglected.

This analysis I have not attempted. But it seems to me very important 
to notice this omission, as it appears that the attractions or repulsions ex
pressed by the higher powers of 1/r, when the surfaces are indefinitely near, 
must be of great intensity, so that owing to sudden variations the work 
done in separating the surfaces must be extremely small.

These characteristics are those of cohesion and surface tension and they 
promise to account by mechanical considerations for the hitherto obscure 
cohesion between the molecules as belonging to the attractions resulting 
from the finite value of the diameter of the molecules divided by the 
curvature resulting from distortion, or, we might say the complement of 
gravitation.

228. The fourth and last class of possible local disarrangements causing 
strain in the normal piling, with some degree of permanence, in the schedule 
(Art. 203), is that which does not depend on the absence, presence, or linear 
displacement of grains, but does depend on local rotational displacement of 
grains about some axis.

Then since there are no resultant rotational stresses or rotational strains 
in the medium, or rotation of the medium, the rotational inequalities must 
be arranged so as to balance.

Any such rotation of a portion of the medium would be attended with 
dilatations. But it does not follow that the dilatations would in all cases be 
so small that the coefficient would be unity.

Then noting that the medium in virtue of relative motion of the grains is 
in some degree elastic, if we conceive that by two opposite couples about 
parallel axes at a finite distance two equal spheres of grains in normal piling 
having their centres on the respective axes, could be caused to turn about 
their axes through opposite but equal angles d and — d, the actions would be 
reciprocal, and supposing the actions to start from the medium in normal 
piling, when the angles were so small that at the surfaces there was no 
change of neighbours, the only effects would be strains attended by dilatation 
about the axes, which on removal of the couples would revert, restoring the 
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unstrained medium. And in this case the coefficient of dilatation would be 
unity.

Then if the angles were increased the strains would be such that over the 
equators of the spheres the grains would change neighbours, diminishing the 
dilatation; so that on the couples being removed the spheres would not 
revert and would not restore the unstrained medium, nor would the angles 0 
and — 3 be zero.

Those portions of the surfaces of the spheres nearer the axes, where the 
strains had not been sufficient to cause a change of neighbouring grains, 
would be subject to stress tending to diminish the angles 0 and — 0, while 
in those portions where the grains had changed their neighbours the stresses 
would be resisting this change, so that the result would be a balance of 
strains and stresses, leaving the system in equilibrium under the relative 
rotational strains and stresses and dilatations extending outwards from the 
surfaces of each till they vanish at an indefinite distance.

The strains and stresses extending from the sphere of which the residual 
angle was 0, since the axes are at a finite distance, could not in any way 
affect strains of shear having the angle — 0. But if the shears were in a 
plane perpendicular to the axes and at a finite distance from each other, the 
strains and stresses being opposite would cancel, and the dilatations would 
diminish in such manner and proportions that there would be efforts to 
approach proportional to the inverse square of the distance. Or, if, other 
things being the same, the spheres were at finite distances on the same axes, 
they would still be under efforts to approach, owing to the cancelling of the 
strains and diminution of the dilatation. And in either case, other things 
being the same, if one of the poles at the axis of either one of the spheres 
were reversed the result would be an effort of repulsion, q.e.f.

Thus efforts of attraction correspond exactly with those of fixed magnets, 
and thus we have been able to account by mechanical considerations 
for the magnetism which has any degree of permanence.

229. Having in the foregoing articles of this section accomplished the 
analysis necessary for the determination of the attraction of negative centres 
of disturbance, the efforts to reverse the displacement in the complex 
inequalities, discussed the probability of cohesion as the result of the terms 
neglected in the analysis for the efforts of the negative centres, and effected 
the analysis for the efforts of attraction resulting from opposite rotational 
strains about parallel axes at a distance; it remains to complete the section 
by effecting the analysis for determining the mobility of the singular surfaces.

230. From Theorems 1 and 2, Art. 204, and more particularly in Art. 214, 
we have defined the effects of local inequalities in the mean mass, when a/X 
is large, on the arrangement of the grains and the distribution of the strains 
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in the medium about both negative and positive centres. Thus it has been 
shown in the case of a negative centre that the inward strains would be such 
that the resulting dilatation would pass the point of stability and reform, 
causing a nucleus of grains in normal piling which might increase until it 
was stopped by meeting the inward strained, and consequently dilated, 
normal piling.

This meeting of the two closed surfaces, the outer surface of the nucleus 
in normal piling with the inner surface of the inwardly strained normal 
piling, affords the first clue to the possibility of a surface of freedom. For, 
since the grains are uniform equal spheres, there can be no fit between the 
grains in normal piling at the one surface and the grains in strained normal 
piling at the other. To use a mechanical expression the grains cannot pitch, 
and consequently there is a spherical shell of grains in abnormal piling which 
constitutes the singular surface a surface of weakness if not a surface of 
freedom. Then by Theorem 1 it follows, whatever may be the arrangement 
of the grains and whatever the exchange, there can be no change in the 
arrangement or number of the grains. Therefore these surfaces of misfit are 
fundamental to all inequalities in the mean mass.

231. Since there is no regular fit in the shell of abnormal piling at the 
singular surface, say of a negative centre, and each of the grains is in a state 
of relative motion, each of the grains is in a state of mean elastic equilibrium 
such that half the grains are on the verge of instability one way and half in 
another. If, as by the existence of another negative centre at finite distance 
there is an effort of attraction, however small, it would, since there is no 
finite stability, in the first instance cause change of neighbours, and if 
sufficiently strong it would entirely break down the stability and cause one 
or both the centres to approach at rates increasing according to the inverse 
square of the distance, since as by Theorem 1 there would be no change in 
the mean arrangement of the grains and the viscosity may be neglected.

232. This brings us face to face with questions as to the mode of dis
placement of the singular surfaces, as well as the manner of motion of the 
inequalities in the mean mass which constitutes the centre, which have not 
as yet been discussed.

In the first place it appears at once, however strange it may seem, that 
in the case of a negative inequality, to secure similarity in the arrangement 
of the infinite medium the mass must move in the opposite direction to the 
inequality, otherwise there would be no displacement. And further the 
opposite displacements of the positive and negative masses must be equal, 
subject to the condition that for every indefinitely small displacement of the 
negative inequality there should be an equal and opposite and exactly similar 
and similarly placed displacement of positive mass.



216 ON THE SUB-MECHANICS OF THE UNIVERSE. [233

233. Then, apart from vortex rings which cannot exist in a medium in 
which a/X is so large that there is no diffusion of the grains, it appears that 
the only way in which the conditions in the last paragraph are realised is 
by propagation. This admits of definite proof.

If we conceive a singular surface about a negative centre to be moving 
upwards through the medium, as it rises the upper surface will be con
tinuously meeting fresh grains. Then if the motion continues one of two 
things must happen. The grains must be shoved out of the way, in which 
case all similarity of the arrangement would be destroyed, or the grains must 
cross into the singular surface. If this were all we should again have the 
similarity upset, as the singular Surface must increase to accommodate grains 
coming in. But if at the same time as the grains enter the singular surface 
from above grains cross out of the singular surface in exactly the same 
numbers and vertically under the grains which enter from above, the motion 
of the singular surface would not disturb the similarity of the arrangement 
beyond such limits as the elasticity of the medium admits.

This manner of progress of a singular surface is that which has several 
times been referred to as propagation. It is strictly propagation. For if 
there is no general uniform mean motion the grains within the singular 
surface are at rest, while if the medium has such mean motion it would not 
affect the motion of the singular surface though it would affect the rate of 
propagation since that would include the propagation through the moving 
medium.

This then is the only mode of displacement of a singular surface—the 
propagation.

N.B. This law of propagation would not prevent strains in the singular 
surfaces such as might be caused by undulations in the medium corresponding 
to those of light.

234. It may seem that displacement by propagation does not of necessity 
entail displacement of mass; nor would it if there could be propagation 
without local inequalities in the mean density of the medium. But in a 
uniform medium, without inequalities, there can be no propagation as there 
is nothing to propagate.

Thus it is that the inequality in density, the integral of which is the 
volume of the grains, the replacement of which would restore the uniformity 
of the medium, obliterating the inequality, constitutes the mass propagated. 
And as this, for a negative centre, is negative, its propagation requires 
the displacement of an equivalent positive mass in the opposite direction 
to that of propagation of the negative inequality.

235. It thus appears that the distribution of the density of the positive 
moving mass is at all points the same as the distribution of the density of
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the negative inequality, and as this on changing the sign is the same as the 
dilatation at all points, the density of the positive moving mass is equal to 
the dilatation.

The dilatation at any point in the medium resulting from a negative 
centre is expressed by :

4
3 r*

in which r is greater than rlt while r^r is small.
It thus appears that, since the density of the medium is unity, the motions 

of the medium of unit density necessary to equal the displacements of the 
positive mass at density 47rr]r03/3r1, which can under no circumstances be 
greater than are almost indefinitely small.

236. Taking Us as the velocity of the singular surface and u" as the 
velocity of the medium at any point outside the singular surface, since there 
is no mean motion of the grains within the singular surface, u' is everywhere 
small compared with Us.

Of course this does not affect the integral displacement of mass integrated 
over the medium from ą to oo. But it does affect the displacement of the 
apparent energy of the motion of the inequality which is taken to be 47rr0’/3. 
For if we integrate a"2 over the medium it is small compared with

TT 2 47rr0S

” 3 •
This apparent paradox, however, is explained on recognising that the grains 
being uniform, since cr/X is very large, the conduction of energy is nearly 
perfect; so that the rate of displacement of momentum does not depend only 
on the convections of the order u'-p but depends also on the conductions

I™"?’
since these actions are the direct result of the propagation of the singular 
surface through the medium, so that there is no change in the strains, 
dilatations, or the mean arrangement within or about the singular surface 
for an infinite distance. It is easy to realise the way in which the strains at 
any fixed point contract and expand as the singular surface moves away from 
or approaches the point.

237. In the foregoing reasoning in this section no account has been 
taken of the possibility or impossibility of any lateral motions of the grains 
which might be necessary to maintain the arrangement. That such lateral 
motions of the individual grains would be necessary is certain; but it 
does not follow as a matter of course that they would be possible without 
creating temporary strains which would in the first instance require a certain 
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acceleration to start them. But once started the action, since it involves 
a certain definite rate of displacement of mass, would proceed at a uniform 
rate, supposing no viscosity, and the medium unstrained by other centres.

That the necessary acceleration to effect the start must depend on the 
particular arrangements inside and outside the singular surfaces, is clear. 
And from this it may be definitely inferred that the number of definite 
primary arrangements in which the stability to be overcome by acceleration 
is within finite limits, is finite.

Whence it follows that the number of singular surfaces having different 
numbers of grains absent, in which the limits of stability are within finite 
limits, is finite ; and these would be the only surfaces of freedom, q.e.d.

It should be noticed that the expression “ primary arrangements ” is here 
used to distinguish those singular surfaces which do not admit of separation 
into two or more singular surfaces of freedom.

It is thus shown that singular surfaces about negative inequalities admit 
of motion in all directions, by a process of propagation, without any mean 
motion of the grains within the singular surfaces, while the motion of the mass 
outside the singular surfaces, when there is no other inequality within finite 
distance, is such as to maintain the similarity in the arrangement about the 
centre entailing the displacement of the mass (47r?-03/3) in the direction 
opposite to that in which the singular surface is displaced by propagation.

238. We have thus effected the analysis for the determination of the 
mobility of solitary negative centres. And it may be taken that the analysis 
for positive centres would follow on the same lines with the exception of the 
sign of the inequalities.

There still remains to consider the possibility of the combination of 
primary singular surfaces, forming singular surfaces with limited stability 
in which the grains absent or present are the sum of the grains, the absence 
or presence of which constitutes the inequalities of the primary singular 
surfaces combined.

It has been shown by neglecting certain terms (equation 337) that 
negative inequalities attract according to the inverse square of the distance 
and in Art. 227 it has been pointed out that the terms neglected are such 
as would indicate cohesion or repulsion between the singular surfaces when 
closest; and in such conditions there would be a connected singular surface 
however many were the primary singular surfaces cohering, so that mobility 
of the whole group would be secured.

In the case of two primary negative inequalities in which the numbers of 
grains absent are different, although neither of these admit of separation into 
two or more separate inequalities, there does not appear any impossibility, 
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except such as results from their limited stability, why they should not 
combine if their velocities are sufficient to break down the limited stability.

In such case it seems that one or other of two results must happen; 
either the breakdown would be temporary, the two centres immediately 
reforming as by the rebound, setting up a disturbance in the medium which 
would be propagated through the medium, or they would reform into a single 
negative centre, in which the volume inside the reformed singular surface 
would be less than that of the sum of the volumes within the two singular 
surfaces of the two primary inequalities, or in some other way manage to 
diminish the dilatation; and in this case also there would be a disturbance 
in the medium.

239. It is certain that when negative inequalities are arranged in their 
closest order, there is cohesion between the adjacent singular surfaces which 
resists the separation of the adjacent singular surfaces but does not cause 
attraction between the singular surfaces when these are at a distance which 
is greater than some small fraction of the radius (r^ of the singular surface 
(Art. 227). It is also certain that, when under the conditions stated, the 
singular surfaces would still attract one another at a distance—as in 
equation (348):

\ 3 / r2

And thus if we consider Ar—the number of such negative centres within a 
distance r3—to be indefinitely large as compared with rlt since they are in 
closest order the centres would be in stable equilibrium under normal and 
tangential pressure, as in the case of gravitation.

240. If the number of grains absent about each of the centres which 
constitute the total negative inequality is the same, and by some shearing 
stress the inequality is subject to a shearing strain, there would result 
dilatation, doing work on the medium outside, which would be maintained 
as long as the shearing stress; but since all the centres are equal, whatever 
arrangements of the grains under the stress take place between the centres, 
there would be no absolute displacement of mass.

And the result would be the same whatever might be the number of 
grains absent in the primary inequality.

241. Thus we may consider what the action would be if we had two 
such total inequalities A and B differing in respect to the number of grains 
absent in their primary inequalities—say that the number of grains absent is 
greatest in A.

If these total inequalities are brought together by their attractions the 
grains in abnormal piling which separate the two total inequalities A and B 
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may be, for simplicity, taken parallel to a plane which is a plane of weakness in 
the medium. If, then, there are shearing strains parallel to this plane such 
as cause grains from the inequality A to pass to the inequality B in the 
abnormal piling in the plane of weakness, so that in this piling the arrange
ment, instead of the two primary inequalities in which the numbers of grains 
absent are A and B, is two equal negative inequalities in each of which the 
number of grains absent is:

A+B A+B
2 ’ 2 ’

and one complex inequality in which the numbers of grains absent in the 
positive and negative centres are :

A — B B — A 
2’2’

in this case it at once appears that besides the attraction correspond
ing to gravitation and cohesion, the effect of the rotational strain would be 
to cause absolute displacements of mass, which, by Art. 225, would cause 
efforts of reinstitution between the strained aggregate inequalities, correspond
ing to electric attractions. But as the attraction would be normal to the 
surface of weakness, while for reinstitution the action must be tangential, 
the rotational strain might be stable, and the attraction might hold when 
the strained aggregate inequalities were forced apart. If the rotational 
strains were sufficient the normal attractions might overcome the normal 
stability of the complex inequalities, and in that case there would be a 
sudden tangential reversion, which, as there is absolute displacement of mass, 
would in the recoil reverse the complex inequality and so on, oscillating until 
the energy was exhausted in setting up undulations in the medium which 
would be propagated through the medium at the velocities of the normal or 
transverse waves as in light.

If we have two aggregate inequalities in one of which the primary 
inequalities are not combined, while in the other the different primary 
inequalities are combined, we should have three total inequalities A, B/2, 0)2 
in the arrangement:

2 ’ 2
and two complex inequalities :

Then if the strains were sufficient the normal attraction might overcome 
the normal stability of the complex inequalities, causing a reversion. In this 
case however it does not follow that the reversion would be complete and so 
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reinstitute A, B/2, C/2; for since the work done by the strains might be 
sufficient to overcome the resistance to combination of B/2 and C/2, the recoil 
from the breakdown would cause a total or partial combination of B/2, C/2, 
instituting B the aggregate inequality and so diminishing the energy available 
for undulations, thus affording an explanation by mechanical considerations of 
the part electricity plays in instituting the combination of molecules into 
compound molecules with limited stability.

It is to be noticed that the effects of rotational strain between the 
aggregate negative inequalities which differ as to the number of grains 
in the primary inequalities, correspond to the effects produced when resin is 
rubbed by silk—or frictional electricity—and thus the so-called separation of 
the two electricities by friction is accounted for by mechanical considerations.

Having shown that negative inequalities may not only attract, but may 
also cohere when in contact, we may return to the consideration of the 
significance of the fact mentioned in Art. 217, that the attractions correspond
ing to gravitation as well as cohesion depend solely on the numbers of grains 
absent, while the volume within the singular surfaces, which determines 
the volume from which one centre excludes other centres, depends on the 
possibility of some arrangement between the grains in abnormal piling and 
those in strained normal piling (Art. 214).

241 A. It is shown in Art. 217 that for any displacement of a negative 
inequality there must be a corresponding displacement of positive mass in 
the same plane and in the opposite direction. From this it follows that 
as two negative centres approach under their mutual attractions the mass in 
the medium recedes, which is an inversion of the preconceived ideas. Such 
action however is not outside experience, since every bubble which ascends 
from the bottom in a glass of soda-water involves the same action. The 
matter in the bubble having the density of the air requires the descent 
of an equal volume of water at a density 800 times greater than that of the 
air. It is the negative inequality in the density of matter which under 
the varying pressure of the water causes the negative or downward displace
ment of the material medium—water—and the positive or upward displace
ment of the negative inequality in the density within the singular surface.

In order to recognise the significance of the parallel drawn in the last para
graph it must be noticed that in this research we have adopted a definition 
of mass, which, although satisfying the laws of motion and the conservation 
of energy, is independent of any other definition of matter. Hence it is open 
to us to suppose that what we call matter may be such, that if expressed in 
the notation so far used in this research, would represent local negative 
inequalities in the mean density of the medium.

Then since, as has already been shown, and will be confirmed in what is 
to follow, the definition of matter as representing negative local inequalities 
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in the mean density of the granular medium completes the inversion and 
removes all paradox, this^ definition of matter is adopted as the only possible 
definition.

We then have for the negative inequality:
47rr03 „

where p"=l.
And for the volume from which one negative inequality excludes other 

similar inequalities, when in closest order, we have by equation (.343):

Then dividing the negative inequality by the volume from which other 
centres are excluded we have as the expression for the mean density of the 
negative inequalities when in closest order:

........................................(357).

Then again dividing p" the density of the uniform medium by fl, the 
mean density of the inequality, we have in the ratio of the two densities a 
number without dimensions as expressed by

£ = (35
n 3 r03..............................................

In equations (357) and (358) II is used to express the mean density of 
the negative centres when in closest order. Thus II is the maximum mean 
density of the negative centres for any particular negative centres.

It does not however follow that fl expresses the maximum mean density 
of negative inequalities for all negative inequalities when in closest order. 
For as pointed out there is no proportional relation between the number of 
grains absent and the volume within the singular surfaces for inequalities 
which differ.

But it does follow, from the fact that the number of centres which have 
surfaces of freedom is finite, that there must be some negative inequality of 
which the mean density is a maximum. And from this it again follows that 
p"/H must have a minimum value.

Then taking II to express the minimum value which, whatever it may be, 
is constant and without dimensions, we may express the densities of all the 
other negative inequalities in terms of fl, making use of any system of units.

then if, as before, the density of the medium is unity, the maximum 
density of negative inequalities is :

fl’
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and if the mean density of an inequality is n times less than the maximum 
inequality it is expressed by:

1 
nd'

And again, if, changing the unit of density, the density of the medium 
becomes nd, the maximum density of negative inequalities is expressed by n.

The proof that the quotient d of the density of the uniform medium 
divided by the maximum mean density of the negative inequalities is a 
numerical constant, independent of units, giving us, as it were, the gauge by 
which we can compare the quantities, as obtained, in this and the previous 
sections, with the evidence derived from actual experience, completes the 
consideration of the possible strains other than the undulatory strains (con
sidered in Section XIII.) resulting from the conservation of inequalities in 
the mean mass, which formed the subject of this section.



SECTION XV.

THE DETERMINATION OF THE RELATIVE QUANTITIES a", X", a, G, 
WHICH DEFINE THE CONDITION OF THE GRANULAR MEDIUM 
BY THE RESULTS OF EXPERIENCE. THE GENERAL INTEGRA
TION OF THE EQUATIONS.

242. In the last paragraph of Section XIII. it was noticed that, up to 
that stage, it was not possible, for want of evidence as to the actual rates of 
degradation of light, to complete the determination of the values of a", a, X". 
And further, that as the equations (310—313) have been obtained by neglect
ing all secondary inequalities, they afford no evidence as to the limits imposed 
by dilatation on the shearing and normal strains. These disabilities have not 
as yet been altogether removed. But we have, in the last section, obtained 
expressions, in terms of p", a", a-, X”, for the attraction of negative centres, 
which correspond to those of gravitation. Also in the last article it is shown 
that what is known as “matter” corresponds with the inequality in the 
medium resulting from absence of grains. Also it is proved that there must 
be a finite maximum mean density for negative inequalities when in close 
order, which corresponds to the mean of the heaviest matter. And further, 
it is shown that the mean density of the uniform granular medium, divided 
by the maximum density of negative inequalities, is a number without 
dimensions—expressed by 12—whence we are enabled to measure the density 
of any inequalities in closest order, in any system of units. We are thus 
in a very different position, as regards evidence, from what we were at the 
end of Section XIII.

243. By the last article of Section XIV., taking 22 as expressing in C.G.s. 
units the density of the matter platinum, which is approximately the densest 
form of matter, we have unity for the density of the matter water in C.G.S. 
units.

Then for the density of the granular medium in C.G.S. units we have
2212,

where the constant number 12 has still to be determined.
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The change of units of density, from that in which the density of the 
medium was taken as unity, to the density as measured in units of matter, 
has thus been effected.

244. From the last article it follows that, measured in c.G.S. units of 
matter, the mean pressure in the medium, equal in all directions, becomes

p = 2^p" ......................................... (359).

Also the mean density of the medium p" or unity becomes
p = 22Qp" ..........................................(360).

And, if in C.G.S. units of matter, p expresses the mean density of any 
negative inequalities in closest order, however complex, such as the mean 
density of the earth—5 67, the corresponding expression, when p" is taken 
as unity, is

p = 22n ..............................................(361).

245. From equation (359) we may now proceed to find an expression for 
the mean pressure in terms of the rate of degradation in the transverse 
undulations when a-jX" is large.

From equation (311) the rate of degradation of transverse waves is 
expressed by

1 dv' 
v" ’ dt

2 XV 2 
~ ;— • a .(362).

Then if tt is the time taken to reduce v^' to vY

where a
„ 3 \Jv 1 

a =o • • T2 a2 tt .(363),

which gives one equation between the three quantities a", X" and tt.

A second equation is obtained from the dynamical condition of undulation
m 
a

n (364),

and nĄk,k being 2 a"2
। •P-T (365).

or

Therefore, reducing,
_ V3 a

T 4 ’ 2tt X"

a" ~ 4 ’ 2ttt ’

K.

.(366),

.(367).

15
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Then, L being the wave-length, if we put 
w2. a = L

T - since -U — — >

2tt 
substituting — for a in equation (367),

X" _ V3 1 
a" 4 ' an2r.................................

Then eliminating a” from equations (367) and (368) to find X'

.(368).

.(369),

the value of the constant coefficient being

, V27^r
51 ” 8asr ’

Then substituting from equation (369) in equation (367)

or

„ 1 3^/ 1)
a =r• 2^ ■ Ioj Xj CL

a" = s2 y

a"2 8* , . 1
T- 2 .............

.(370),

.(371).

The equations (369) and (371) define the values of the constants X" and a" 
which enter into the expression p" in equation (159) in terms of a, r, n2 and 
tt which define the wave-length and rate of propagation for any particular 
rate of degradation.

Thus substituting in the equation (159) which is 
„ V2 a a"2 / a \

and which, under the condition <r/X" large, is, taking the density of the 
medium as unity,

„ a/2 a"2 6
P “ 3 X" 2 4^2 tt

the equation becomes
„ </2 Z ^n2tt s22, . 1 6

Then transforming we have 
„ 1 s^L

P 4tt Sj

.(372),

.(373).

(374).n2
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If the constants Sj and s2 are.taken to correspond with the rate of propa
gation of light and with the wave-length of the ultra-violet light in the C.G.S. 
units

Si = 9-7005 x 10-“

s2= 107 38 x 103,

from which substituting in equations (369) and (371)

X" = 9-7005 x 10-“.
Vn2tt

a" = 10738 x 10s /-2 ..............................(375).
V it i

= 5 7 5 5 x 105 j

And since the wave-length L is 3'933 x 10~5 we have, dividing by s, and 
substituting in the second expression for p",

p" = 1-8574 x 10“ .................................(376),
\ttJ

which becomes in C.G.S. units of matter (by equation 359)

22flp"= 22Q x 1-8574 x 10“ ..................... (377).
\h/

For convenience the expression for a"X" may be here included:

a"X"= 1’0418 x 10-’° . i.................................(378).
it

246. Having effected the translation of units and obtained an expression 
for the mean pressure in the uniform medium in terms of n2/tt, we now 
proceed to the evidence as to the absolute density, or, what is the same 
thing, the value of the number expressed by 41.

The density of the luminiferous ether, thus far, has been an unknown 
quantity. Such views as have been expressed range from a density in
definitely greater than that of the heaviest material—Hooke—to a density 
indefinitely smaller than that of the lightest solid material—Sir Gabriel 
Stokes and Lord Kelvin.

But as pointed out in Art. 242 we have now the two sources of evidence— 
that arising from the known law of gravitation, which includes the existence 
of permanent negative inequalities, or molecules with surfaces of freedom, 
and that resulting from the limits to the intensity of waves of light; besides 
such evidence as may accrue from the determination made by Lord Kelvin as 
to the dimensions of the molecules, and such evidence as has been obtained as 
to the rates of degradation of the transverse and normal waves.

15—2
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The equations (376) and (377) define the pressure in terms of

or 22ft > tt tt
according to whether the density of the uniform medium is taken as unity, or 
is expressed in C.G.s. units of matter.

247. As measured in C.G.S. units, the matter in the earth, assuming 
Baily’s value, 5’67, for the mean density, is

614 x 1027, 
the mean radius is 6’3702 x 108 and the attraction of the earth on a unit of 
matter at the surface is

0 = 981 ............................................. (379).

To compare with this evidence we have the expressions for the correspond
ing quantities as obtained from equations (348) for corresponding conditions 
when translated into the same units.

In the general expression for the attraction of negative centres in closest 
order, equation (348), where p" = 1:

,/4tt V a-p N . r0 J r2,

where N' = ’75 —) and r = rB;

substituting, the expression for the attraction of unit mass becomes, if the 
-tio^ = h^whenp=l,

.rB.

Then, supposing that is a maximum, we have from equation (358)
r03 _ 1
r/ “75ft

............................................ (380).

And as the density of the mean negative inequality is 5’67/22 of the 
maximum inequality, we have for the attraction

irp a 5’67 
rB 22

which becomes, on substituting from equation (380) and reducing,
4 „ 4 „ 5’67
3^ ^=3^ a22ft^

Then transforming so that the density of the medium is 22ft, since rB is 
6’37 x 108, we have for 0

4 5-67
981 = 2^p''a Ę tt . 6’37 x 108 o ^^12 .(381).
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Then substituting the value of 2212/' in equation (377) we have 

3^5'67 x 6-37 x 108 x 1'8574 x 10” x <7 = 981 .(382).

Then, cancelling and reducing the numerical factors, since
a(n.2ltty =Ll^n2tt, 

we have
_ 1105 x 1017l

<70 A — ---------------—----------

whence = 1T26 x 10“
And thus we have obtained the value of

(383).

n2tt, 
which satisfies the condition g — 981.

248. The evidence afforded by the limits of the intensity of light and 
heat does not appear to have hitherto demanded much attention. But it 
now appears that, if we can find a fair estimate of the maximum intensity of 
transverse undulations, it would afford important evidence.

For the rate of displacement of energy by the transverse waves in the 
uniform medium we have, taking U for the rate at which energy must be 
supplied to maintain the waves, and r for the rate of propagation: since the 
velocity of light is independent of the wave-length, the maximum energy of 
mean motion over a unit surface

v"2

is, by equation (308), the mean energy of the undulation; and
, v"2U =t . p" — and F .p'r) .........................(384).

It must be noticed that in these expressions for U and v" no account is 
taken of the secondary effects imposed by the dilatation in the granular 
medium. This was noticed in the last paragraph, Section XIII., as showing 
that there is a limit to the intensity of harmonic institutions.

Put definitely, the condition to be satisfied for harmonic undulations is 
that, taking x and y for the directions of propagation and mean motion 
respectively,

| k ~ is small as compared with p".

Thus if the amplitude of the transverse motions is considerable, the 
action will not be confined to the institution of simple harmonic waves, 
but will include compound harmonic waves, and probably normal waves, 
which would proceed faster than the simple transverse harmonic waves, 
until, by divergence or degradation, their intensity was reduced.
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Evidence from which we may form an estimate of the limit to the 
amplitude at which the waves cease to be sensibly harmonic may, it appears, 
be found. The greatest intensity of transverse waves is obtained from the 
carbons of the electric arc. If then we assume that U, the work expended 
in producing the light, is all spent in radiation of heat and light from the 
carbons, we have only to measure the radiation area of the carbons to obtain 
an outside estimate of the mean value of v”.

Thus if U per sq. cm. is 2'29 x 109 ergs
2-29 x 109 = ^p<2. t (t = 3 x 1010) ..............(385),

whence we have
1'52 v1"2 =-----x 10-1 in C.G.s. units..........................(386),

P
where p is 22flp" and where p" is unity.

249. From this value of v" we may obtain the expressions for y the 
amplitude of the undulations, and for x.

Taking r as an arbitrary amplitude
y = r cos 0 and dyldt = — r sin 0 . d0ldt.

Then since the periodic time is Zir/m, differentiating 0 with respect to 
time d0[dt = m, and

v" = — mr sin 0 and v" is a maximum when 
0 = — tt[2.

v" v"r — —, y = — cos 0, m m

and 0 x — -, a
. ^y-
'' dx ' d0

. V— sin 0 = - m t
....................... (387).— a

Then multiplying this by n or pr2 we have for the shearing stress

22fl| .«.^ = pF,T ................................ (388),
8 dx r v '

and these are in gravitation units.

Then from equation (386) we have, for the maximum value of the 
transverse velocity v", 

„ 390
*^1 — . ..............................................................................................

V22H
and multiplying by 22Q we have for the maximum shearing stress 

p . v". t = 1172 x 1010 x V22Q ..........................(390).
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Taking s (= 10-2) as the coefficient of the limit within which 2211.3«/8 
may approach 22Qp", we have, substituting the expression on the right of 
equation (377) for 22flp",

2211 x 1-8574 x 10u = V22H x 1172 x 1012,
\tt/ 

whence follows:

/w2y 6-31
W equation (390),

1T26 x IO14............................. (384),
7'108 x 1014

«2= ----- 7----- - ,V22H

tt = 1-785 x 1013 x V22H,

o- = 5’534 x 10-20 x V22Q............(372),
„ 6-777 x 103

“ = ............................ <370>’

X” = 8-612 x IO"28 ........................(375),

logs

■ 8000 - log V22Q .......(391),

• 0517 + 14 ................... (392),

• 8517 + 14 - log V2211.. .(393),

• 2517 + 13 + log V22Q ...(394), 

•7430 - 20 + log V221I ...(395), 

•8310 + 3 — log V22Q1 (396) 

•9351-28

250. So far we have obtained the expressions for the limiting values of 
a", X", a and the logarithmic decrements for transverse and normal waves 
in terms of the constant coefficient 11 which enters as a factor into the- 
expressions for the density of the medium and the potential of attraction.

Substituting from the equations (391—393) in equation (375) we have
,/= 6-777 x 103 

“ “ V22D ............................................................... (397),
X"= 8'612 x IO"23.............................................. (398),
a = 5-534 x 10-20 x V2211 ...............................(399).

Then for logarithmic decrement of the transverse undulations, a-]X' large, 
substituting in equation (311) the values as given above for a" and X" we have 
as in equation (362), tt being the time required to reduce v" from v„ to v0/e,

tt = t = V784 X 1013 
Z A CL CL

...............................(400).
N.B. This result checks the calculation, since this value corresponds 

with equation (394) in the first three significant figures, which is the limit 
of the arithmetical approximation attempted.

The value of tt thus found in terms of the coefficient V22H expresses the 
time the transverse waves would travel before their amplitude was reduced 
in the ratio from 1 to 1/e, or their energy in the ratio 1/e2.
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The values of a", X", a cannot be defined except by further evidence. Such 
might be obtained if we could completely solve the dilatation problem and 
so obtain the value of fl. Failing this, however, there remains one source of 
evidence from which we may obtain a close approximation to the value of the 
ratio V22H.

251. The conclusions to be drawn from the absence of evidence of any 
normal waves in the medium of space until very recent times.

From equations (310) and (311) it appears that in a granular medium 
normal as well as tangential waves may exist, the only difference being in 
their rates of propagation and in their rates of degradation.

From this it would seem that, if the medium of space is purely mechanical, 
either such waves did not exist for lack of incitement or the normal waves had 
no effect upon our senses or on the physical properties of matter. The recent 
remarkable discovery of Rontgen that under certain intense electrical actions 
a system of waves which have the properties of normal waves in a uniform 
medium subject neither to refraction nor reflection, can be produced, has 
opened the door to different conclusions. The first suggestion by Rontgen 
was that these were normal waves. And although various special explana
tions have been attempted to avoid the admission of their being normal 
waves, every one of these explanations involves normal action.

It appears, from the definite analysis of the granular medium, that when 
the uniform medium is in the state to propagate transverse waves the degra
dation of which is such that the diminution from loss of energy by degradation 
in some millions of years is in the ratio 1/e2, the rate of degradation of the 
normal wave is such as would occupy something less than the millionth (10-6) 
part of a second to reduce it in the same ratio; so that the normal wave 
would lose nine-tenths of its energy before it had traversed some thousands 
of metres, say x metres, and this affords crucial evidence of the purely 
mechanical granular structure of the medium of space. The coincidence 
is such, that in the absence of any definite proof to the contrary, it should 
carry conviction notwithstanding those things which cannot be defined for 
want of evidence.

252. Without attempting any general discussion of X-rays there are 
several very significant characteristics which afford evidence besides that 
of not being subject to refraction or reflection. In the first place the rays 
in their production are attended with very intense light, that is they are 
attended with transverse waves. In the second place, after the light waves 
have been filtered out, they can again be transformed into visible transverse 
waves by their passage through certain earthy substances. And in the third 
place, in passing through any matter they are subjected to rapid degradation
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which is proportional to the density and thickness of the matter through 
which they pass.

Thus it has been so far impossible to study these rays except by their 
passage through matter, while it is shown that in two ways their passage 
through matter is attended by degradation other than the degradation of 
the normal waves in vacuo.

Any estimate as to what might be the rate of degradation of these waves 
in vacuo is at best very difficult. But the fact that these waves, which are 
subject to divergence as well as the three sources of degradation, have 
sufficient range to permit of experiment through a distance of some metres, 
shows that if they are normal waves their rate of degradation in vacuo would 
be much less than it appears to be in the experiments. It thus appears that 
x, the distance the waves must travel in vacuo to reduce the energy in the 
ratio 1/e2, cannot be less than some thousand odd metres.

253. To find the rate of decrement of the normal wave under the limits 
defined by equations (221) to (224) in terms of the ratio 1/V22H.

From equation (310) we have, neglecting as small the first term in the 
index, and substituting Qlflir for G,

_ 1
2

1 du" _
u" ' dt 6

ił 3 p2 4 a2 a 6 a4 ' 
9 a2 3 X 7T s/2 4irm2 

Pt
....................(401).

The index in the right member of this equation represents the logarithmic 
rate of decrement of the normal wave.

Transforming this index and substituting the values of a, X and a as defined 
in equations (221) to (225) for the transverse wave, and of m and a for the 
normal wave, taking the time frequency m to have the same value as for the 
transverse wave and the linear frequency a to be a!12'387 where a' is the same 
as for the transverse wave [2'387 being VsT+lw/Sn]. Then taking A as 
expressing the numerical constant in the expression for the decrement, we 
find as the values of the several factors and their logarithms,

A = 1'567 x 10-’ log 1952-2

T-J = 1'111 x 10-21 •0457 - 21

a2 = 2'553 x 1010 •4068 + 10

I = 3T02 x IO-2 •4916-2 • ...(402).
o-i = 9'376 x IO"82 x (22H)2 „ •9720 - 82 + log (2211)2

a"3 = 3T13 x 10“ x (22D)-’ „ •4930 + 11 + log (2211)-$

X"-3= 6'387 x IO36 •8053 + 86
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The logarithm of this product being 
•4076 + 3 +1 log (22(1).(403),

log decrement log (log decrement)
- 2-5 5 6 x 103 x V22(2, - [’4076 + 3 +1 log (22(1)]........(404).

Then if tn is the time to reduce w"a in the ratio 1/e2 we have 

tn = 3-923 x lO^/V^, log = -5924 - 4 .(405).
The product of the time tn multiplied by the rate of propagation of the 

normal wave is the linear distance which the normal wave must travel so 
that the energy is reduced in the ratio 1/e2.

The rate of normal propagation is 2'387 x 3 x 1010 as above.

Therefore taking x as the distance the normal wave must travel to 
diminish the energy in the ratio 1/e2 we have

x= 2-801 x 107 x ,2_...............................(406).
V22(l v 7

Q. E. F.

254. Then to find the inferior limit to the value of the ratio ex
pressed by

(1.
From the evidence furnished by Rontgen rays we have in Art. 253 

defined this ratio to be such that the value of x (in C.G.S. units) shall not 
be less than some thousand odd metres. And from the absence of any 
evidence of normal waves other than Rontgen it follows that there must 
be a superior limit; but this depends on the value of (1 and cannot be 
defined without further evidence.

To find the superior limit of (1, putting for simplicity
x = 2-801 x 107“«..................................... (407),

we have by equation (406) from the evidence of Rontgen rays
V22(l = 10? where ę is not less than 2, 

whence we have for the value of (1, 
„ 102®

= 4-546 x 102®-1.................................(408),

and for the density of the uniform medium
22(1 = IO2*..............................................(409).

255. It is pointed out (Art. 254) that the superior limit to the value 
of (1 cannot be obtained except on further evidence; evidence which has 
as yet not been taken into account, and is exactly to the point, is 
available.

This is the evidence as determined by Lord Kelvin (and confirmed by 
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the observation as to the area over which a definite volume of oil would 
destroy the ripple caused by a moderate wind on the surface of water), that 
the diameters of the molecules or singular surfaces are of the order of the 
ratio of the wave-lengths of the ultra-violet light multiplied by some ten 
thousandths, say 4 x 10-10, and this evidence comes in as directly bearing 
on the value of q.

Although there is a degree of uncertainty about the relative value of the 
“atomic-volumes” of the elementary molecules, it appears certain that there 
is no great difference, that is to say, no difference greater than from 1 to 10 
in the relative volume of the molecules, and for our purpose it is sufficient 
to consider that, assuming the relative volumes equal, the greatest difference 
of the grains absent is from 1 to 1/200.

It has been shown (Art. 230) that the probable arrangement of the grains 
in a negative local inequality, which has a surface of freedom, is that of 
a nucleus in normal piling, that is to say, a permanent nucleus on which 
the inward strained normal piling reaches, forming a broken joint in 
abnormal piling, whence it appears, in order that the singular surface may 
be a surface of freedom, the maximum inward strain, that is, the inward 
strain at the singular surface, must be greater than a the diameter of a grain, 
and probably some five times cr.

In this way we have a limit to the diameter of the singular surface,
. 4 x IO"10,

and by the last paragraph, taking 10 to be the inferior limit to the maximum 
inward strain, we can find a value for q which is quite independent of any 
evidence already adduced.

Taking 2211 = 10!? for the density of the medium,
ri = 2 x 10-10 for the radius of the singular surface, 

= volume of grains absent.
By equation (380)

, 1’33 ,
r»3 = i™ ..........................................(410).

Then since by equation (396) 
a3 = (5-534)3 x 10-“+3s, 

and also r1la = n1/2............................. (411),

(t2) =”’S’ and .......... (412),

...................................................(413).
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Equation (413) expresses the number of diameters of a grain which would 
measure the inward strain at the singular surface of the maximum inequality 
as of platinum or 22.

Then reducing
07 $ 
~ = 1-602 x 10<9-3«> .................................(414).

OWj2 ' 7

For the minimum inequality, nl remains the same, and is divided by 
200, and we have from equation (414),

y x 10-2
— = 8-013 x 106~3? ........................ (415).

Then if we take the number of the diameters of a grain which measure 
the inward strain at the singular surface of the minimum inequality to be 

8'013,

? = 2 .................................................. (416).

We have thus found the superior limit of the square root of the density 
of the uniform medium to be

V22D = 100.

256. Comparing the inferior limit of V22M in Art. 254, obtained from 
the evidence of Rontgen rays, with the superior limit in Art. 255 obtained 
from the evidence as to the size of the molecules, we see they are identical.

Too much weight must not be attached to this identity since the 
estimates on which they are based are somewhat wide approximations, so 
that they must be considered as relating rather to the order of the quantities 
than the actual numbers. Yet considering that the evidence of the size 
of the molecule, and that of the Rontgen rays, are perfectly independent, 
the result, which, taken as a wide approximation, would be almost infinitely 
improbable as a mere coincidence, when substituted in the equations (390) 
and (396), and (402) and (409) enables us to obtain, in c.G.s. units, the values 
of all the arbitrary constants which define the condition of the purely 
mechanical medium, and they are such as correspond with the experience— 
as to the rates of propagation and as to their rates of decrement—of both 
transverse and normal waves; they also correspond with experience as to 
the existence of molecules and gravitation, the limit of the intensity of the 
energy of light and radiant heat, besides the absence of normal waves, and 
the evidence of Rontgen rays.

The numerical values of these constants are for convenience given in the 
following table.
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It is thus shown by definite analysis that an infinite, purely mechanical, 
medium consisting of uniform spherical grains, in relative motion, the grains 
being in normal piling, except for local inequalities in the mean density, and 
so close that there is no diffusion, affords a complete account by purely 
mechanical considerations of potential energy, the propagation of transverse 
waves of light and the apparent absence of any rate of degradation, the 
lack of evidence of normal waves, the gravitation of matter and electricity, 
as the result of the dilatation which follows from the strains caused by local 
inequalities in the density of the medium.

It is also shown, by definite analysis, that this is the only explanation 
possible by purely mechanical considerations.

257. Having arrived at the conclusion stated in Art. 256 we might 
make this the end of this research, having every confidence that the evidence 
which has not already been adduced would confirm that which has been 
adduced. It is not, however, the sole purpose in undertaking this research 
merely to show that there is a mechanical explanation of such parts of the 
universe as shall render the mechanical structure of the remainder in
definitely probable, but also to obtain as much light as may accrue from the 
purely mechanical analysis. The analysis is therefore continued so far as it 
relates to effects in the medium, that is to say, it does not include electro
dynamics or electro-magnetics, since the institution of complex centres, that 
is, the magnetic conditions, is not a primary effect, for it results in separating 
the molecules, after combination, the reunion of which results in electric 
currents.

258. The blackness of the sky on a clear dark night would be explained 
if the light waves were subject to viscosity however small, or nearly so. 
It has been so far a moot question whether there is such viscosity. But 
it now appears from the rate of decrement of the transverse waves, Art. 256 
(5’603 x 10~16), that the time taken to reduce the energy of the wave in 
the ratio 1/e2, or 1/8, would be more than fifty-six million years. This rate 
of decrement, although affording an ample account by mechanical considera
tions of the absence of uniform brilliance in the sky, such as would result 
in an infinite space from an infinite number of stars, however sparsely 
scattered, if there were no rate of decrement as the result of viscosity, is 
such as has baffled all attempts to obtain any evidence of decrement by 
observation.

259. The dissipation of the inequalities in the mean energy of the 
medium resulting from the rates of decrement of transverse and normal 
waves which, as shown in Art. 256, affords a complete mechanical explanation 
of the blackness of the sky, differs fundamentally from that dissipation which 
results in the increase of energy of the molecules, or singular surfaces. This 
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is at once apparent since the degradation of the energy of the normal and 
transverse waves can only be a dissipation from the energy of the molecules, 
or mean motion, to increase the irreversible energy of the mean relative 
motion of the medium.

It thus appears that the dissipation of the mean motions of matter, such 
as the motions of the sun and planets, or vortices in fluids, until all motion 
ceases, does not complete the dissipation of energy, for this would go on 
until the only energy was irreversible relative motion of the grains, which is 
expressed by a"2.

260. The electrostatic unit, or more correctly the unit corresponding to 
the electrostatic unit, is defined (Art. 224) by the condition

. /4tt\2 
P (-3 ) r°7= 1......................................... (417).

This definition is on the supposition that the density of the medium 
is taken as unity.

Thus if the density is taken as 22H, we have as the condition

r/=l..................................... (418).

Then reducing the member on the left by the table (Art. 256) it is found 
that the complex inequality in which the number of grains is displaced is 

1-615 x 10«,
and in which the displacement is unity; the effort to institute the normal 
piling is unity and thus corresponds to the electrostatic unit.

Comparing the effort to revert to the effort of attraction between two 
negative centres, each having the number of grains as above, since the radius 
of the shell which would contain the grains is

r0= 6-493 x 10~3 ..................................... (419),
the ratio of the effort to reinstitute the normal piling, to the effort of 
attraction between gravitating mass, is approximately

1'2 x 1016.

Thus the effort of attraction between the two gravitating masses, the 
grains absent in each of which are the same as the grains which constitute 
the electrostatic unit, is eighty-one thousand billion times less than unity.

261. The conclusion arrived at in Art. 256, as to the density of the 
medium, does not exhaust the conclusions to be drawn from the size of 
the molecules. Coupled with the evidence afforded by the effects in dis
sociating certain compound molecules, possessed by the transverse waves 
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of shorter length and greater frequency, it appears that there must exist 
certain coincidences of periods between the possible internal vibration periods 
of compound molecules and the periods of the shorter waves.

262. From the evidence, Art. 261, it follows that the compound mole
cules which are dissociated by the waves of light must have been in a state 
of limited stability: so that

(1) by the breakdown the total potential energy is reduced,

(2) a sudden disturbance in the medium is produced causing waves, 
which are of undefined length, in the medium.

263. Comparing the evidences as to the effects of waves of greater 
frequency in dissociating certain compound molecules, adduced in Arts. 
253, 254, with the conclusions arrived at in Arts. 238—241 as to the 
effects of collisions between compound singular surfaces, rotational strains, 
and the institution of complex inequalities corresponding to electrostatic 
induction, it appears that the latter account for the former by mechanical 
considerations as will appear in the following articles.

264. Accepting the statement in Art. 263, we find ourselves face to face 
with the question, What is the source of light ?

From the mechanical analysis it follows, Art. 238, that undulations in 
the medium can arise from nothing else than the relative motion of the 
singular surfaces. The collisions of these surfaces would set up disturbances 
which would be propagated through the medium with the velocity of light, 
and which would correspond to the waves of heat. But from Arts. 238—241 
it appears that there is another effect thau that of simple collision, by which 
undulations may be instituted.

In Art. 241 it appears that when two aggregate inequalities, separated by 
a surface of weakness, in which the numbers of grains absent in the primary 
inequalities differ, are subjected to rotational strain, parallel to the surface 
of weakness, the strain will cause the total aggregate inequalities to reform, 
instituting two fresh aggregate inequalities with limited stability, which, as 
the strain is gradually reduced, do not gradually revert but, owing to the 
limited stability, are maintained until the strain has been relaxed sufficiently 
to overcome the limited stability and then break down under the nearly 
full effort of the complex inequality; which, by Art. 260, is more than two 
hundred billion times greater than what would be the effort of attraction 
of the two equal negative inequalities at the same distance.

Such a transverse reversion as that considered would not result merely 
in reinstituting the normal piling. But, as it involves the absolute displace
ment of mass, the recoil by reversing the strain would institute a complex 
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inequality of the opposite sign; and this would be repeated, in a gradually 
diminishing degree, until all the energy was spent in setting up undulations 
which would be transverse.

We have thus two, more or less distinct, sources of undulations; and 
from the evidence it appears that, whatever undulations result from the 
collisions of singular surfaces, the undulations corresponding to those of 
polarised light are those caused by the reversion of the complex inequalities.

265. Since, from Art. 264, it appears that the institution of light 
depends on the existence, in the medium, of compound molecules with 
limited stability, and it also appears that these compound molecules dis
sociate in the production of light, it follows that either the source of 
light must be continually diminishing or that there must exist some action 
which results in thus reassociating the primary inequalities, and as the 
first alternative is contrary to experience we must accept the second as 
a fact.

The reassociation of the primary molecules which, when associated, form 
compound molecules with limited stability, receives its explanation from 
the mechanical analysis on the same lines as that of their dissociation.

Thus if we have two aggregate inequalities in one of which the primary 
inequalities are not combined the differing primary inequalities are combined. 
These may be analysed by putting

a + a' for the combined total aggregate inequality, and
b + U for the total aggregate inequality uncombined, then

a + a' + b + b' a + a' + b + b'
2 ’ 2 ’

a + a' — (b + V) b + V — (a + a')
2 ’ 2

These if added together constitute the total aggregate inequalities; they 
express two equal total negative aggregates together with one complex 
aggregate inequality.

Thus putting a + a = A the total aggregate inequality in which the 
primary inequalities are combined, we have

A + b + b
2

A—(b + b')
2

A + b + b'
2

b + b' —A
~~2 •

Then if the strains were sufficient the normal attraction might overcome 
the normal stability, i.e. the stability in the direction of the normal, of theR. 16 
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complex inequality, causing a reversion. In this case, however, it does not 
follow that the reversion would be complete and so reinstitute A, b and b', 
for since the work done by the strains might be sufficient to overcome the 
resistance to combination of b and b', the recoil from the breakdown would 
cause a total or partial combination of b and b’, thus instituting B, the total 
aggregate inequality, and so diminish the energy available for the institution 
of undulations.

We have thus an explanation by mechanical considerations of the part 
played by electricity in instituting the combinations of molecules which 
differ into compound molecules with limited stability.

266. The absorption of the waves of light, let us say by lamp-black, 
presents a problem, the explanation of which, by the assumption that the 
molecules are capable of internal vibrations in various periods, is altogether 
sufficient. Thus, supposing the molecules in the lamp-black are so various 
that there are molecules the internal vibrations of which coincide with 
all periods of the incident wave, they would be set in periodic motion 
and absorb the energy of the waves; but this is not all. For supposing 
the absorption of the light continuous, the energy in the molecules would 
continually increase, and this is not in accordance with experience. There 
must therefore be some means by which the energy absorbed by the 
molecules may escape. This cannot be by radiation, since in that case 
it would only escape as light, which it does not. It is mechanically 
impossible that it should escape by radiation in the form of the long 
dark waves. And the only other mode of escape for the energy is by 
transmission—by convection and conduction through the molecules to the 
surface of the lamp-black. Nor does this altogether solve the problem—for in 
such an experiment as we are considering, it may be possible that the lamp- 
black is in vacuo; in which, having reached the surface, it would be arrested. 
And the absorption continuing the energy of the molecules would con
tinually increase indefinitely. Since any such indefinite increase of the 
absorbed energy is outside experience it follows that within the limits of 
experience such perfect vacuum as contains no free molecules is impossible.

The evidence which follows from the theoretical explanation of Sir William 
Crookes’ radiometer* at once illustrates the fact mentioned above, for when 
the light is turned on the receiver which contains the vanes, the latter 
almost instantly acquire a steady speed which shows that the lamp-blacked 
surfaces as well as the opposite surfaces, which are white, have acquired 
a steady difference of temperature, so that there is no further increase of 
temperature from the absorption of the light; the energy received from the 
light wave by the black surfaces of the vanes, taking the form of energy

* “ Certain dimensional properties of matter in the gaseous state.” Phil. Trans. P. S., 1879, 
p. 823.
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of vibration of the molecules, is transmitted to the surface beyond which 
the vibrating molecules do not pass, but, as the molecules at the surface 
are vibrating, the energy of this vibration is communicated by contact to 
any free molecules whose paths bring them in contact with the molecules 
at the surfaces of the vanes, causing reaction and conveying the energy to 
the inner surface of the receiver.

Thus if there were no free molecules there would be no motion imparted 
to the vanes, and as the stage of exhaustion at which the vanes do not 
revolve in unlimited light has not yet been attained, it follows that on the 
assumption that the waves of light are capable of communicating energy 
to the molecules in the mode of internal vibration, the production of an 
unlimited intensity of energy by the absorption of light is outside 
experience.

267. The assumption on which the absorption of light is based, Art. 266, 
has not as yet been subjected to the further analysis necessary for a 
mechanical explanation of the actions involved.

It therefore remains to show that, in spaces where negative inequalities 
exist, the state of the granular medium is so far affected by these in
equalities that it no longer transmits waves which pass through the medium 
at the same velocity as when there are no inequalities, undisturbed, other
wise than by divergence.

To show this :
We have (Art. 230) the fundamental misfit between the nucleus in the 

singular surface with the grains in strained normal piling, instituting in the 
medium a shell of grains in abnormal piling which constitutes a shell about 
each singular surface which offers little or no resistance to strains tangential 
to the singular surface.

We have also (Art. 255) the diameter of the singular surface some ten 
thousand times less than the wave-length. Thus we have a free singular 
surface through which the medium is free to move by propagation, the 
diameter of which is 10000 times less than the transverse wave, but which 
is still subject to the undulatory motion of the medium corresponding to the 
light waves.

Consider next what must happen from the existence of a single negative 
inequality in a space through which transverse waves are passing:—

In the first place, since the surface of the inequality is a surface of 
freedom there would be a certain small area of the surface about an axis 
through the centre of the inequality which presents a nearly plane surface 
perpendicular to the direction of propagation, and this small surface, owing 
to the freedom of the inequality, offers no resistance to the transverse wave.16—2
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This area of freedom would relieve the stress in the medium in the plane 
normal to the direction of propagation, and so cause an increase of the 
undulatory motion at the small surface, the recoil from which would reverse 
the direction of propagation over the small area, thus instituting a partial 
reflection. (N.B. The amount of this reflection would admit of quantitative 
determination, but the analysis is long and it does not appear to be 
necessary.)

The reflection considered does not constitute the entire reflection which 
would result, for there would be similar reflections at the opposite surface of 
the inequality, and besides the reflections on the small surfaces nearly plane, 
there would be reflections resulting from the relaxation of the components 
of the transverse stress all over the surface of the inequality, causing re
flections in all directions except in planes normal to the direction of 
propagation. So that there would be a general but varying scattering of the 
transverse wave in all directions greater than tt/2 from the direction of 
propagation, varying from a maximum at tt to nothing at tt/2.

The proportion of undulations within a distance r, of the axis in the 
direction of propagation scattered by the passage of a wave by a single 
inequality is extremely small, for, although the small surfaces of freedom do 
relax, to some extent, the stresses consequent on the undulations in the 
medium, a singular surface is so small as compared with the wave-length, 
that they follow the motions of undulation, and are subject to nearly the 
same stresses as if there were no inequalities.

Then if we consider a space, through which the waves are passing, to 
be occupied with negative inequalities in somewhat close order it does 
not appear that the rate of propagation would be greatly altered owing to 
relaxation of the elasticity of the medium.

But the rates of propagation do not, as it seems, depend solely on the 
elasticity; for the singular surfaces, owing to their cohesion, introduce 
another system of possible vibrations—the internal vibrations of the negative 
inequalities.

That the vibrations possible in the inequalities may be instituted as 
the result of undulatory stresses requires only a coincidence in the periods 
of the waves and the vibrations of the inequalities. Then since the evidence 
of the existence of a considerable number of periods of vibration in all 
inequalities is according to evidence, and it has been shown that however 
small the effects of the undulations solitary grains do cause a certain dis
turbance in the negative inequalities, it follows that the passage of a wave 
through a space in which the inequalities are somewhat close will result, 
if continued for a sufficient time, in imparting periodic motions to the 
inequalities having periods coinciding with the wave periods.
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Then supposing the regular undulation to cease, the vibrations of the 
inequalities would institute waves of the same period until their energy was 
exhausted. Whence it follows that in the case in which waves are passing 
steadily into and through a space occupied by inequalities in somewhat close 
order, they will maintain the vibration of the molecules and at the same 
time pass through the medium, and then the energy of the waves and the 
vibration of the inequalities together would be greater than that of the 
inequalities alone in the ratio

energy of wave motion + energy of inequalities 
energy of wave

Then supposing a steady state to have been reached, if either of these 
actions were diminished it would receive assistance from the other; and 
from this it follows directly that, while the energy in a wave-length before 
entering the space containing the inequalities is the only energy of the 
undulation, the energy in a wave-length in the space would be the energy 
of the undulation before passing plus the energy of the inequalities.

Then again if the mean rate of the motion of the energy of both 
undulation and inequality were that of the undulation, there would be more 
energy passing out of the space than that entering, and the state could 
not be maintained steady. But if, on the other hand, after entering the 
space with inequalities, the rate of passage of the total energy was that 
given by

energy of wave
energy of wave + energy of inequalities ’

the state would be steady, and the rate of propagation diminished in the 
same ratio.

It has thus been shown that in the granular medium waves corresponding 
to light waves are capable of communicating energy to the negative 
inequalities corresponding to molecules, which was the object in this some
what long article.

268. Refraction of waves in the granular medium, when passing from 
one space to another which differs as to the closeness of the arrangement, 
follows directly from the paragraph last but one, Art. 267, in which it is 
shown that the waves pass from a space in which there are no inequalities 
into a space in which the inequalities are in some close order; the ratio 
of the rate in the space without inequalities to the rate in the space with 
inequalities is as

energy of propagation + energy of inequalities 
energy of propagation

and this is the expression which corresponds with the index of re
fraction.
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It also appears that in the main the cause of refraction is coincidence 
in the wave period with the period of vibration in the inequalities. The 
relaxation of the elasticity of the medium by the freedom of the centres 
must cause diminution in the velocity of propagation, but it would seem to be 
indefinitely small.

269. The effect which, in a granular medium, corresponds to the dis
persion of the rays in the spectroscope, at once receives its mechanical 
explanation from the explanation (Art. 268) of the effects which correspond 
to refraction together with the evidence (Art. 261) that as the waves become 
shorter their effects in dissociating the compound molecules increase. The 
mechanical explanation is that there are more coincidences in period in 
the case of short waves than in the longer. And this refraction increases as 
the length of the wave decreases, or, the shorter the waves the higher the 
index of refraction.

270. The reflection of the wave of light which results when the light 
passing from a space in which there are no inequalities into a space in which 
the inequalities are in somewhat close order, depends, when the direction of 
propagation is not perpendicular to the reflecting surface, on the direction 
of the transverse motion in the wave front. Thus, supposing the direction 
of propagation is parallel to the paper and across the page, if the motion 
in the wave front is parallel to the paper and the reflecting surface is 
a plane perpendicular to the paper and inclined to the direction of propaga
tion, there may be, at the same time, motion in the wave front perpendicular 
to the paper, which motion is independent of the normal to the paper as 
illustrated in the figure below :

AB direction of propagation,
CD trace of plane of reflection perpendicular to the paper, 
GH direction of motion parallel to plane of reflection turned at 90°, 
EF direction of motion perpendicular to propagation.

The general motion of the medium thus indicated may be realised by 
imagining a sheet of paper to be moving with a point revolving steadily with 
a radius equal to half the amplitude of the wave, without turning the paper 
in its plane, which must be perpendicular to the paper. The two motions 
EF and GH may be considered as analytically distinct.
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The vertical harmonic motions, in the medium EF in planes parallel to 
the paper, in varying phases, without any motion in the direction of propa
gation, which constitute the undulations, must as the undulations arrive 
at the inclined reflecting surface of the space enclosing the inequalities, 
undergo partial reflection in the direction KL on account of the relaxation 
at the surface caused by the inequalities. This relaxation is proportional, 
other things being the same, to the number of singular surfaces in unit 
volume.

The angle of incidence on the surface of the space enclosing the in
equalities at which the reflection is a maximum is of necessity such that 
the reflected and refracted rays are at right angles in the plane of incidence, 
and in this case the motions in the medium which are reflected are parallel 
to the plane of incidence and thus correspond to light polarised in the plane 
of incidence.

Then again, the portion of the waves in which the motion of the medium 
is perpendicular to the plane of incidence, although subject to the same 
refraction as that in which the motion of the medium is parallel to the 
plane of incidence, undergoes no reflection at the surface CD.

The waves in the granular medium are a consequence of the motions 
in the medium which are transverse to the direction of propagation; these 
may be anything perpendicular to the direction of propagation. But they 
admit of being resolved in any two directions at right angles to each other 
and perpendicular to the direction of propagation, and when so resolved 
are analytically independent, that is to say, if the components of the trans
verse motions of the medium in one direction ceased to exist the motions of 
the other component would not be affected.

Thus if transverse motions in the medium were confined to one direction, 
and that in a plane parallel to the plane of the paper, the shearing stresses 
would be all parallel to the paper in planes at right angles to the direction 
of propagation : hence these stresses would propagate transverse motions 
parallel to the paper but would not propagate motions normal to the paper; 
and on the other hand transverse motions in the medium normal to the 
paper would cause transverse shearing stresses normal to the paper which 
would propagate motions normal to the paper but would not propagate 
motions parallel to the paper.

It therefore follows that the transverse waves in which the motion is 
parallel to the paper can, in a granular medium, be instituted only by 
rotational stress in which the rotation is parallel to the paper. And such 
transverse waves will propagate parallel to the paper in the direction to 
which these planes are normal. And further, on arriving at a surface the 
normal to which is parallel to the paper, beyond which surface there are 
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inequalities, the wave will be reflected according to the laws of reflection, 
such reflection being strictly parallel to the paper.

On the other hand, it follows that the transverse waves in which the 
motion is normal to the paper can, in a granular medium, be instituted only 
by rotational stress in which the rotation is normal to the paper; such waves 
propagate parallel to the paper in the direction to which their planes are 
normal, and are not subject to reflection at an inclined surface perpendicular 
to the paper, as shown in Fig. 5, since the motion in these transverse waves 
is entirely normal to the paper, as is shown by the line GH, turned 
through 90° in Fig. 6. Thus it is seen that the only reflection resulting 
from both components of the motion in the medium when the waves pass 
from a space without inequalities into a space with inequalities is the 
reflection resulting from the inclination of the surface parallel to the plane 
of incidence, as shown in Fig. 5.

It may appear from what precedes that there is a difference besides that 
of the motion of one of the rays being parallel and the other normal to 
the paper, since so far no mention has been made of any reflection of the 
ray in which the motion is perpendicular to the paper. This apparent 
difference disappears, however, since if the reflecting surface in the plane 
of incidence were removed and replaced by a surface normal to the paper 
inclined at a corresponding angle to the direction of propagation, then 
the reflection would be from the waves perpendicular to the plane of 
incidence, and there would be no reflection from the plane of incidence.

It is thus shown that in the granular medium when the transverse stresses 
in the medium are equal in all directions normal to the direction of propa
gation, when waves proceed from a space in which there are no inequalities 
into a space in which there are inequalities, if the separating surface is 
inclined to the direction of propagation there will be reflection in the plane 
of incidence of that component of the wave which is in the plane of incidence, 
in a degree depending on the closeness of the inequalities and the angle of 
incidence, while the other component of the wave-motion will not be subject 
to any reflection resulting from the inclination. And as this applies whatever 
the direction of propagation may be, it affords a definite proof that the 
motion in the medium which is reflected is in the plane of incidence.

This result in the granular medium corresponds in every particular with 
the experiences of polarisation except that heretofore it seems to have been 
a moot question whether or not the motion in the ether which is polarised by 
reflection was parallel or perpendicular to the plane of the medium*.

* “In the theories of Fresnel and Cauchy the vibrations are assumed to be perpendicular to the 
plane of polarisation—in those of MacCullagh and Neumann to be parallel to it. Stokes arrived 
at the conclusion that they are parallel, while by a similar experiment Holtzman arrived at the 
opposite conclusion.” Lloyd, Wave Theory of Light, 1857.
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Thus not only does the analysis of the granular medium account by purely 
mechanical considerations for the phenomena of polarisation, but also removes 
all doubt, if the explanation is mechanical, as to the fundamental necessity 
that the motion in the medium that can be reflected must be in a plane 
parallel to the plane of incidence.

The foregoing proof that that component of the motion of the medium 
which is reflected is that parallel to the plane of incidence has been based on 
the relaxation of the mean coefficient of rotational elasticity owing to the 
presence of negative inequalities, as discussed in Art. 267. This was all 
that was required, as the relaxation in translucent matter is comparatively 
very small. When, however, we come to metallic reflection, which in the 
case of mercury at perpendicular incidence is 0’666 as against 0’0018 for 
water, it appears that the relaxation is altogether of another order than in 
translucent substances.

In the mechanical medium such difference is accounted for by the 
extremely small size of the singular surfaces, the radii of which are about 
2 x 10 10 or 2 x 10-’’ of the length of the shorter waves. These singular 
surfaces as long as their arrangement is in open order will cause relaxation 
which is small but which increases somewhat proportionally to the number of 
such surfaces in unit space, each surface being, as it were, independent, so that 
the abnormal pilings which embrace every grain will only meet at a few 
points. But as the inequalities approach the closest order the rate of 
decrease of the relaxation increases very rapidly until the normal piling 
of the singular surface becomes nearly continuous. The surface of the space 
enclosing the inequalities then becomes a singular surface of the aggregation 
of inequalities outside of which the piling is abnormal.

To realise the evenness of such a boundary surface embracing the whole 
or any part of the aggregate inequalities it is only necessary to remember 
that the radii of the singular surfaces are less than one ten-thousandth of the 
wave-length, whence the roughness which would be less than 1 x IO-9 cm. and 
thus would be smoother than any artificial polish which can be imparted to 
metal, and hence could only compare with the surface of mercury.

It is thus shown that the granular medium not only affords an explana
tion of the polarisation of light but also affords an explanation of metallic 
reflection. And these explanations being accomplished it appears that the 
mechanical explanation of the rest of the phenomena of light must of 
necessity follow.

271. The aberration of light admits of an explanation so simple and the 
coincidence of the value of the velocity of light thence deduced with that 
derived from the observations of the eclipses of Jupiter’s satellites is so re
markable as to leave no doubt in the mind as to the truth of the explanation.
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But when the aberration is subjected to closer examination the explana
tion is found to rest on the heretofore unexplained absence of any resistance 
to the motion of the ether through matter; for notwithstanding the efforts 
made to rest the explanation on another basis this has not been completely 
accomplished.

The difficulties in conceiving the free motion of the ether through matter 
do not present themselves in the analysis of the properties of the granular 
medium as now accomplished. This follows from the analysis which has been 
effected in this and the previous section.

It is shown:—
(1) That the motions of the singular surfaces are independent of the 

mean-motion of the grains in the medium (Art. 233).
(2) That the institution of undulations depends on the varying strains 

resulting from relative motion of the singular surfaces (Art. 264).
(3) That the energy of the wave is absorbed by the singular surfaces, 

and that the energy thus absorbed is conducted and conveyed through the 
aggregate singular surfaces (Art. 266).

Whence it follows that the singular surfaces which correspond to matter 
are free to move in any direction through the medium without resistance, and 
vice versa the medium is free to move in any direction through the singular 
surfaces without resistance. And that the waves corresponding to those of 
light are instituted and absorbed by the singular surfaces only. So that after 
institution at the place where the singular surfaces are, the motion of the 
waves depends solely on the mean motion of the medium, and the rate of 
propagation is equal in all directions until they again come to singular 
surfaces. Thus all paradox is removed and the explanation of aberration 
is established on the basis of the absence of any appreciable resistance to 
the medium in passing through matter.

Thus besides the explanations by definite analysis of:
the potential energy,
the propagation of transverse waves of light,
the apparent absence of any rate of degradation of light,
the lack of evidence of normal waves, 
the gravitation of matter, 
electricity,

which explanations render the purely mechanical substructure of the universe 
indefinitely probable, we have by further analysis obtained:—
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The explanation of the blackness of the sky on a clear night. (Art. 258.)
The definite proof of the fundamental dissipation of the energy of the 

waves of light and the relative energy of the molecules to increase the mean 
irreversible relative motion of the grains; which dissipation is independent 
of that which tends to the equalisation of the mean energy of the molecules. 
(Art. 259.)

The number of grains, the displacement of which through a unit distance 
represents the electrostatic unit. (Art. 260.)

The proof of the coincidences between the periods of vibration of the 
molecules and the periods of the waves. (Art. 261.)

Proof that dissociation of compound molecules proves the previous state 
to have been one of limited stability. (Art. 262.)

Proof that light is produced by the reversion of complex inequalities. 
(Arts. 263—264.)

Proof that the reassociation of compound molecules results from the 
reversion of complex inequalities. (Art. 265.)

Proof of the absorption of the energy of light by inequalities. (Art. 266.)
Proof that negative inequalities affect the waves passing through. 

(Art. 267.)
Proof that refraction is caused by the vibrations of the inequalities having 

the same periods as the waves. (Art. 268.)
Proof that dispersion results from the greater number of coincidences as 

the waves get shorter. (Art. 269.)
Proof that the polarisation of light by reflection is caused only by that 

component of the transverse motion in the medium which is in the plane of 
incidence, and results from the passage of the light from a space without 
inequalities through a surface into a space in which there are inequalities. 
(Art. 270.)

Proof that metallic reflection results from the relative smallness of the 
dimensions of the molecules compared with the wave-length, and the close
ness of their piling, when the waves pass from a space without inequalities 
across the surface beyond which the inequalities are in closest order. 
(Art. 270.)

Proof that the aberration of light results from the absence of any 
appreciable resistance to the motion of the medium when passing through 
matter. (Art. 271.)
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