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PRICE OF ZERO-COUPON BONDS IN LIFE INSURANCE

1. Introduction

In traditional actuarial literature a constant rate of interest i to actuarial calcula-
tions is used. Due to it the discounting factor v is also constant because v = (1 + 0.
In a new actuarial literature a financial stochastic discounting factor is applied, that
is a price of zero-coupon bonds. In many actuarial definitions there is used the
expected value of different random or stochastic variables dependent on the dis-
counting factor. When the discounting factor is stochastic it’s the expected value
must be used. This expected value is just price of zero-coupon bond. In the article
it is applied just this way.

There is described in the paper two discrete stochastic models of interest rate
used by Biihlmann. Some examples of price of zero-coupon bonds are given, and
applied to calculation of premiums and reserves and insurer’s losses (gains).

2. Price of zero-coupon bond

Zero-coupon bonds are securities paying to their holders one unit at a date m in
the future [10; 11]. The holder of these bonds does not receive interest. The profit
is equal to difference between nominal price and selling price. Therefore zero-
coupon bonds are also called discount bonds.

Let v, (or v(0,t)) denotes the stochastic discounting factor from time O to ¢ > 0.

This stochastic process is adapted to the history (calgebra) %. This o-algebra has
increasing sequence that is
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The price of zero-coupon riskless bond at time ¢ (¢ > 0) with a maturity m (m > 0)
is denoted by P(t,m). It is obvious that P(t,f) = 1. The price of zero-coupon bond is
given by the following equation [2; 5]:

P(t,m)= E[v(t,m]ffrl], 1

where v(t,m) means the discounting factor m back to r.

If the interest rate is defined as a continuous process then the discounting factor
is as follows:

v(t,m) = exp[— J‘r_\_dsJ ,

!

where r, denotes the instantaneous short rate at time ¢ > 0.

Denote the discounting factor from time j — | to j by symbol Yj . Then the struc-

ture is discrete and the v, is given by the following form:
{
v =[1Y,
J=l

and v, =1.
The value of zero-coupon bond at time k < m is as follows:

P(t’m) = E(YHI Teeet lec% ) ¢
The recursion form is the following:
P(t—1,m)= E(Yr . P(t,m]:}f,_, ) .

Obviously P(0,m) is nominal price of zero-coupon bond. It must have

_ P(O,m)
P(t,m)= P0.1)

It can be seen from the fact that the payment of P(0,¢)- P(t,m) and of P(0,m) at
time O both give one unit at time m.



131

3. Models of the discrete discounting factor

The modelling of the discounting factor consists in the construction of a probability
distribution of Y,. Two models of the discounting factor are described. Both of them

are from Bithlmann. Next the price of zero-coupon bond at time ¢ 2> 0 is derived.

3.1. Uncertainty of interest rates — model I

The first model of discounting factor has the following form [4; 8]:
Y,=€-(1-2)+8-2 =¢+(6-¢€) Z, )

where 0<e<d <1 and Z, are stochastic weights. The Y, are weighted averages
of € and 6. In the article only the binary model is considered. To derive the prob-
ability distribution of ¥, a pure Bayes construction is used. This construction is the

following:
1) foralle=1,2, ..., ntheZ, are identically independent random variables with

binomial distribution with parameters 1 and p, i.e. Z, ~ B(1, p),
2) p has a beta distribution with parameters « and f, i.e.

fa,ﬂ(p)=%1)""(l -pf o< p<l.

Under the above assumptions the price of zero-coupon bond at time 0 is de-
rived. The price has the following form [4]:

m m—l]
P 0m)=EY, -Y,-...Y,|F)= E[€+c5' €)p ] Z( J (6- e)f"‘ﬁﬂ,()

where o/l =a’-(a+l)-...-(a+ j—1)=(a'+ J— l)!/(a'—l)!.
The price of zero-coupon bond at time ¢ > 0 is as follows:
Pa.ﬂ (t’m) = E(Yl+l ) YI+2 B ",Ig ) (0 m= t) 4)
o =0_+2,, 0=,
B=pB.+1-2), B=5.
We can see that the point (e,,3,) is stochastic. It is also noticeable that all pos-

terior distributions of p are again beta distributions. In this case the form of price of
zero-coupon bond is explicit for all .
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3.2. Ehrenfest model — model I1

The second model is called the Ehrenfest model. In two urns there are 2s balls.
We pick one ball at random and shift it to the other urn. In first urn is y balls. The
homogeneous Markov transition probabilities is as follows [7]:

y

p_\'..v+l =1 T

2s
Y

p_\'._\'—l - ‘2_‘

If the step of the movement is 1/M then the Markov transition probabilities are
calculated by the use of the following form:

P =05+a(b-y), (5)
,v.,v_ﬁ
1
=h+—,
ynmx 2a
I
=h——.
ymm 2a

This model is called generalized Ehrenfest model.
Using that model leads to the following recursion formula [4]:

Py(t,m)= E(Ym B (e + 1”"»/1 = }’)

which becomes by homogeneity

P,(0,m—1)=E(Y,- B, (0.m~1~1)¥, = y).

From (5) we have

Py(O,m)=(y+$j- P

!
s
"M

(0,m)-(05+a(b- y))+(y—$)- P ,(0m)-(05-a(b-y)).(6)

M

This model is analogous to the term structures obtained in the continuous case
from the Cox-Ingersoll-Ross model [10; 12].

4. Stochastic payment streams in insurances
4.1. Valuation of payment streams at time ¢

In life insurance there are defined different streams of cash payments. One of
them could be a loss or a gain of insurer. Let us define stochastic net cash payments:
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X, =benefits in (- 1, 1] — premiums in¢, 1=1, 2, ...
and
Xo = — premiums in 0.

These payments are defined at the end of interval (¢ —1, ¢]. If the insurer’s costs are
added to net payments, the gross cash payments will be defined.

Assume that the time horizon is finite, i.e. t =0, 1, ..., n. Even if the insurance
policy is whole life, the insurer limits the time horizon, e.g. to 100 or 125 years.
Then n could be equal to e.g. 100.

Now we can define the cash payment vector

X=(X,X,...X,)

and the stochastic discounting vector

v= (Vg Vs, ).

'

The valuation of payment at time ¢ is the expected discounted present value of cash
payment stream. When ¢ = O the valuation is the following:

0(x)= E{iv, x] (7

=0
Of course the calculation has sense if the equivalence principle is kept. Then
Q(X)=0. This equation allows calculating the premium.
The valuation at time ¢ > 0 is denoted as Q(X |€7, ) At time zero this valuation
is a random variable, but at time ¢ > 0 Q(X lc?,) is observable. The Q(X |§*’,) is de-
fined as follows [4]:

Q(X|$)=1E[ivk -Xklfr',j- ®)

t k=0

The Q(X [5‘,) could be described in another way:

Q(Xlgr)zE(iv_k'XkF’rl] Z%.Xk+E(iv—k'Xk|$] C)

=0 Vi [ k=141 Vi

or

n

Q(X|3,)=Z;Y-xk+5( ZY,+,-...-Yk-Xk|$J, (10)

k=0 Yk+l Teentdy k=r+]
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where

i

y = Y. .

! ]
Jj=1

The first component of the above sums means the accumulated payments and the

second one is the prospective reserve. The components are denoted by A(X |3,)

and R(X |§f,) adequately.
4.2. Decomposition of annual losses of insurer

The function Q(X |ff,) could be treated as accumulated loss (or gain) of insurer
with interest. Consider the annual loss of insurer L (X ) in interval (¢ — 1, f] that is

discounted to time ¢ — 1. This loss has the following form [3]:

L(x)=v,-0(x|%)-o(x|%_,).

One can notice that
ka—l 'Lk(X): v, 'Q(X|3u): E[Z"j ) Xj|3;r]'
k=1 j=0

The right-hand side is a martingale for any filtration.
The way of decomposition of annual losses is made in Biihlmann’s paper. Here
it is not quoted. Technical loss is defined by using the following form:

(LT),=Y,(X,+R(X|3,))—Y,R+(Xg,), (11)

where

R(X]f]‘,):viE[ ka -xk|5f,] (12)

! k=1+1

and

R*(x

G,)=%E(ivk ~Xklg,J- (13)

! k=t

This o-algebra G, expresses the fact that at time ¢ the X-variables are only known
up to and including ¢ —1 whereas all v-variables are known up to and including .
The following filtration sequence is established:
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r?()Cg1C3]C gcggc...

and

F =0(Xgs X s X,V Vi nV, ),
G, =0(Xg. X s s X,V Vs sV, ).

Financial loss has the following form [4]:
(LF), =Y, -R*(x|G,)- R(x|F_,). (14)

Total loss is a sum of technical and financial losses, that is

L =(LT) +(LF). (15)

5. Applications of price of zero-coupon bonds in insurance
5.1. Term life insurance and assumptions

Assume the following interpretation of variables X and v. Let v be the financial
variables and X the insurance variables. The vector (X, v) is a pair of two vectors.
In our consideration it is assumed that X and v are independent variables. The mor-
tality tables for X are used. They are Polish Life Tables 2000 from Ostasiewicz [9].

The calculations are made for n-years life insurance. Premiums P are due pay-
able. Benefit in the amount of one unit is payable at the end of year of the insured’s
death, if this occurs during the first n years, otherwise the benefit would not pay.
Insured is x years old at the moment of buying the insurance policy. The insurer’s
loss at the end of ¢-th year is as follows [3]:

Xy=-P,

X =

{— P if insured is alive at time ¢,
t

1 if insured is dead at time ¢.

n

0 if insured is alive at time n,
1 if insured is dead at time n.

It is assumed that

x!" = E(x,|%,). (16)

If m>t then X" =X, .
Suppose that insured is a 28-years-old woman. Policy is bought for 5 years.
Probability that a person at age x will be alive at least ¢ years is denoted by , p, .
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For t = 1 there is set | p, = p,. From Polish Life Tables for women the probabili-
ties are as follows:

Pag = 0.99960, Grg =1— pyg =0.00040,
D29 =0.99958, (e = 1= pyy =0.00042,
Py =0.99954, o =1 — p3, =0.00046, a7
P3; =0.99951, ¢y =1 - py, =0.00049,
Py =0.99947, Gy =1 - py, =0.00053.

The calculations are made in following parts for two models for modeling of price
of zero-coupon bond.

5.2. Model I applications

First price of zero-coupon bonds is calculated by using model I. The following
parameters are used:
€=0.9, =1, o=3, pB=1.

Model of Y, has the following form:
Y,=09+0.1-Z,,

where Z, ~ B(l, p) , p ~ Beta(c, ,B) Therefore Y, takes values 0.9 or 1.

In Table 1 values of zero-coupon bond at time ¢ = O are presented with different
maturity of m (m =1, 2, ..., 20). Formula (3) for =3 and £ =1 was used.

Table 1. Price of zero-coupon bond P, 0, m) — model |

m Po40, m) m P, L0, m) m P L0, m) m P, 40, m)
1 0.97500 6 0.86404 11 0.77262 16 0.69651
2 0.95100 7 0.84435 12 0.75628 17 0.68283
3 0.92795 8 0.82539 13 0.74053 18 0.66961
4 0.90580 9 0.80714 14 0.72534 19 0.65683
5 0.88451 10 0.78956 15 0.71067 20 0.64448

Graph 1 shows the values of price of zero-coupon bond P40, m) form=1,2,...,20
(from Table 1).

If we use relationship (4) we get price of zero-coupon bond P,4t, m). On Fig. 2
there are presented 20 such trajectories for m = 20.

Received values are applied in the following insurance calculations. First we calcu-
late premium. In general case we have
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Z’E[iv,.x,] 3 £, 5(0.0) E(X,|5,). (18)

=0 =0

Second equality results from independence of variables X, and v, [1; 6].
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Fig. 1. Price of zero-coupon bond P, /0, 1) — model I
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Fig. 2. 20 trajectories of price of zero-coupon bond P(t, 20)
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From equivalence principle Q(X) is equally zero. Hence

5
> P, 40.0)- X =0.

=0

The values of Po40,r) are taken from Table 1. X ,(O) is calculated by using (16).
We get the following equation

_P+Pa.ﬂ(0'1)'(q28_P'p28)+ Pa./i(o-z)'(flzo_P'qu)'st+
+Pa‘ﬂ(0-3)(‘ho_P'Pao)'st'le) +Pa.ﬂ(0-4)'(‘!31 —P'Pu)'st'on 2z
+ Pa.ﬂ(O-S)"hz P2 P2 Py Py =0.

Hence

P =0.00045.

Now we calculate both of prospective reserves at time ¢, i.e. R(X |§",) (without
payment ¢ — 1) and R+(X|g,) (with the payment at time ¢ — 1). These reserves are

calculated by the use of formulas (12) and (13). Remember also that
Pa.ﬂ(tvm)= E(Yl+l 'Y1+2 Y”'Ir?’)z Pa,.ﬂ, (O’m_t)

where ¢, and [, are given by condition (4). The results are presented in Table 2.

Table 2. Prospective reserves — model 1

R(x|5) 0.00045 R*(x|g))  0.00047

R(x|%) 000049 | R*(x|G,)  0.00053

Rx|%)  oooos6 | R*(x|gy)  0.00057

R(X|%)  ooo0se | R*(x|gs)  0.00057

Rx|%)  ooo0s2 | R*(x|lgs) 000053

Table 3. Insurance losses — model 1
Technical loss Financial loss Total loss

(LD, 000042 (L), 0.00002 L ~0.00040
(LD, 2000042 (LF), 0.00004 L, —0.00038
(LD 0.00046 | (LF), 0.00001 L, 20.00045
(LDq 000049 | (L), 0.00001 L, —0.00048
(LD)s —0.00053 | (LF); 0.00001 Ls 0.00052
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Table 3 includes results of technical, financial and total losses. They are calcu-
lated by using formulas (11), (14) and (15) adequately. These results are got under
the assumption that ¥, =Y, =Y, =Y, =Y, =1.

The minus means a gain of insurer. Notice that average gain is equally 0.00045.
It is exactly the same as premium. The financial loss is very small in this case and
it does not balance the technical gain. All results are received under the assumption
that the woman is still alive.

5.3. Model II applications

For the second model the following parameters are used:
ymin :09’ ymax =1’ M =207 a =10, b=095.

The parameters are selected in such a way that the discounting factor takes the
values from the interval [0.9; 1]. The values are changing by 0.01.

The calculations of price of zero-coupon bond P,(0, m) are made by the use of
formula (6). In Table 4 there are presented P.(0, m) for different maturity of m =
1,2,...,10and all y.

Table 4. Price of zero-coupon bond P (0, i) — model 1]

\2

0.9 091 | 092 | 093 | 094 | 095 | 0.96 | 0.97 | 0.98 | 0.99 1
P (0, 0) 1.000 | 1.000 | 1.000 [ 1.000 | 1.000 | 1.000 | 1.000 ] 1.000 | 1.000 { 1.000 | 1.000
PO, 1) 0910 | 0918 | 0.926 | 0.934 [ 0.942 | 0.950 | 0.958 | 0.966 | 0.974 | 0.982 | 0.990

P 0, 2) 0.835 | 0.849 [ 0.862 | 0.875 | 0.889 | 0.903 | 0.916 | 0.930 | 0.944 | 0.958 | 0.972
P (0, 3) 0.772 | 0.789 | 0.806 | 0.823 | 0.840 | 0.858 | 0.875 | 0.893 | 0.911 | 0.930 | 0.948
PO, 4) 0.718 | 0.737 | 0.756 | 0.775 | 0.795 | 0.815 | 0.835 [ 0.856 | 0.877 | 0.899 | 0.921

P (0, 5) 0.670 | 0.690 [ 0.711 [ 0.732 | 0.753 | 0.775 | 0.797 | 0.819 | 0.842 | 0.866 | 0.890

P 0, 6) 0.628 | 0.649 [ 0.670 | 0.692 | 0.714 | 0.736 | 0.759 | 0.783 | 0.807 | 0.832 | 0.857

P(0,7) 0.590 | 0.611 | 0.633 [ 0.655 | 0.677 | 0.700 | 0.724 | 0.748 | 0.772 | 0.798 | 0.824
P,(0, 8) 0.556 | 0.577 | 0.598 [ 0.620 | 0.642 | 0.665 | 0.689 | 0.713 | 0.738 | 0.764 | 0.790

P.(0, 9) 0.525 | 0.545 | 0.566 | 0.588 | 0.610 | 0.633 | 0.656 | 0.680 | 0.705 | 0.730 | 0.756

P(0,10) |0.496 | 0.516 | 0.537 | 0.558 | 0.599 | 0.602 [ 0.625 | 0.648 | 0.672 [ 0.697 | 0.723

Notice that if y is larger than the price of zero-coupon bond is bigger. For ex-
ample P,(0, 10) is higher by 0.227 than P, (0, 10).

In Fig. 3 the received values of P,(0, m) are shown. Notice that the function of
price could be concave as well as convex. The function of price of zero-coupon
bond for first model is only concave.
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P(0.1)

09}

08}

07}

06}

05}
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Fig. 3. Price of zero-coupon bond P (0, ) — model II

We used this model to calculate only the premium. The received premium was
the same as before. In the equation (18) P,40.r) was replaced with P,(0, ). The
premium is calculated for all y. The results are in Table 5.

Table 5. Term life insurance’s premium for different y — model 11

y P y P y P
0.90 0.000442 0.94 0.000453 0.98 0.000463
091 0.000445 0.95 0.000455 0.99 0.000465
0.92 0.000448 0.96 0.000458 1.00 0.000468
0.93 0.000450 0.97 0.000460

The values of premiums are similar. That is also for model 1. However, pre-
mium for most y is higher. Exactly value of premium for first model is 0.0004472.
So it is smaller for all smaller y than 0.92.

6. Summary

In the article two models of price of zero-coupon bond are described. Price of
zero-coupon bond is applied as the financial discounting factor in life insurance.
The calculations show that the price for both models is different. Therefore the
term life insurance’s premiums are different but similar. Premium in the first model
is smaller than the premium in the second model almost for all y. The structure of
models of price of zero-coupon bond is different. The function of price could be
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concave as well as convex for second model. That is like the structure obtained in
the continuous case from the Cox-Ingersoll-Ross model. The price in the first
model is only concave.

References

[11 Aase K.K., Persson S.-A., “New Econ for Life Actuaries”, Astin Bulletin 2003, 33, (2), 117-122.

[2] Alvarez L.H.R., “Zero-coupon Bonds and Aftine Term Structures: Reconsidering the One Fac-
tor Model”, Insurance: Mathematics and Economics 1998, 23, 85-90.

[3]1 Bowers N.L., Gerber H.U., Hickman J.C., Jones D.A., Nesbit C.J., Actuarial Mathematics, The
Society of Actuaries, Itasca, Ill., 1996.

[4] Bithlmann H., Life Insurance with Stochastic Interest Rates, [in:] Financial Risk in Insurance,
ed. G. Ottaviani, Springer-Verlag, Berlin 1995.

[5]1 Carriére J.F., “No-arbitrage Pricing for Life Insurance and Annuities”, Economics Letters 1999,
64, 339-342.

[6] Carriere J.F., “Long-term Yield Rates for Actuarial Valuations”, North American Actuarial
Journal 1991, 3, (3), 13-24.

[7] Fisz M., Rachunek prawdopodobierstwa i statystyka matematyczna, PWN, Warszawa 1967.

[8] Ol3arovi L., “Life Insurance with Stochastic Interest Rates”, Acta oeconomica, No. 16, Matej
Bel University, Banska Bystrica 2003.

[91 Ostasiewicz S., Sktadki w wybranych typach ubezpieczen zyciowych, AE, Wroctaw 2003.

10] Musiela M., Rutkowski M., Martingale Methods in Financial Modelling, Springer-Verlag, Ber-
lin 1998.

111  Weron A., Weron R., InZynieria finansowa, WNT, Warszawa 1999,

12]  Yao Y., “Term Structure Models: A Perspective from the Long Rate”, North American Actuar-
ial Journal 1991, 3, (3), 122-138.

CENA OBLIGACJI ZEROKUPONOWYCH
W UBEZPIECZENIACH ZYCIOWYCH

Streszczenie

W artykule zastosowano finansowy stochastyczny czynnik dyskontujacy do obliczen aktuarial-
nych. W wielu aktuarialnych definicjach do obliczen stosowana jest wartosé oczekiwana réznych
losowych lub stochastycznych zmiennych, ktére zaleza od czynnika dyskontujacego. Jezeli dodatko-
wo czynnik dyskontujacy jest stochastyczny, to do obliczen musi by¢ uzyta jego wartosé oczekiwana.
Okazuje sie, ze ta wartosé oczekiwana jest wlasnie ceng obligacji zerokuponowe;j.

Przedstawione zostaly 2 dyskretne modele stochastycznej stopy procentowej, zastosowane przez
Biihlmanna, ktére zostalty wykorzystane do wyznaczenia ceny obligacji zerokuponowych. Nast¢pnie
cena obligacji zerokuponowych zostata zastosowana do obliczen skladek, rezerw oraz straty (zysku)
ubezpieczyciela.

Slowa kluczowe: proces stochastyczny, stopa procentowa, czynnik dyskontujacy, obligacja zeroku-
ponowa, ubezpieczenie zyciowe.
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