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PRICE OF ZERO-COUPON BONDS IN LIFE INSURANCE

1. Introduction

In traditional actuarial literature a constant rate of interest i to actuarial calcula­
tions is used. Due to it the discounting factor v is also constant because v = (1 + t)"1. 
In a new actuarial literature a financial stochastic discounting factor is applied, that 
is a price of zero-coupon bonds. In many actuarial definitions there is used the 
expected value of different random or stochastic variables dependent on the dis­
counting factor. When the discounting factor is stochastic it’s the expected value 
must be used. This expected value is just price of zero-coupon bond. In the article 
it is applied just this way.

There is described in the paper two discrete stochastic models of interest rate 
used by Biihlmann. Some examples of price of zero-coupon bonds are given, and 
applied to calculation of premiums and reserves and insurer’s losses (gains).

2. Price of zero-coupon bond

Zero-coupon bonds are securities paying to their holders one unit at a date m in 
the future [10; 11], The holder of these bonds does not receive interest. The profit 
is equal to difference between nominal price and selling price. Therefore zero- 
coupon bonds are also called discount bonds.

Let vr (or v(0, t) ) denotes the stochastic discounting factor from time 0 to t > 0. 
This stochastic process is adapted to the history ((7-algebra) J,. This cr-algebra has 
increasing sequence that is

J0cz <z ... a  J,- i c ^ c . . . c 5 , .
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The price of zero-coupon riskless bond at time t ( t ^O )  with a maturity m (m ^  0) 
is denoted by P(t,m). It is obvious that P(t,t) = 1. The price of zero-coupon bond is 
given by the following equation [2; 5]:

P(t,m)= (1)

where v(t,m) means the discounting factor m back to t.
If the interest rate is defined as a continuous process then the discounting factor 

is as follows:
f

v(/,m) = exp
V

where r( denotes the instantaneous short rate at time t ^  0.

Denote the discounting factor from time j  -  1 to j  by symbol Y ■. Then the struc­

ture is discrete and the v, is given by the following form:

v. = n > o
7=1

and v0 = 1.
The value of zero-coupon bond at time k < in is as follows:

P{t,m)=E(Yl+i:..-Ym 13). 

The recursion form is the following:

Obviously P(0,m) is nominal price of zero-coupon bond. It must have

P(t,m) P(0,m) 
P(0,r) ’

It can be seen from the fact that the payment of P(0,t)- P(t,m) and of P(0,m) at 
time 0 both give one unit at time m.
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3. Models of the discrete discounting factor

The modelling of the discounting factor consists in the construction of a probability 
distribution of Y\ . Two models of the discounting factor are described. Both of them

are from Biihlmann. Next the price of zero-coupon bond at time t > 0 is derived.

3.1. Uncertainty of interest rates -  model I

The first model of discounting factor has the following form [4; 8]:

Y, = e - ( l-Z ,)  + ć ;Z , =e + ( S - e ) - Z t , (2)

where 0 < e < 8  ^  1 and Z, are stochastic weights. The Yt are weighted averages 
of E and S. In the article only the binary model is considered. To derive the prob­
ability distribution of Yt a pure Bayes construction is used. This construction is the 
following:

1) for all t = 1, 2, .... n theZ, are identically independent random variables with 
binomial distribution with parameters 1 andp, i.e. Z, -  B(\,p),

2) p has a beta distribution with parameters a  and 0,  i.e.

fa, pip)
r  ja  + fi) a-1

T{a)-r{p)P
( l - p Y ~ \  0 Ś P Ś  1.

Under the above assumptions the price of zero-coupon bond at time 0 is de­
rived. The price has the following form [4]:

E+{S-E)Py \ = X  t W - i S - e T  (3)
. _ A  . t j \a+D\ '/=<) vl

where = a- (a+l) - . . . - (a+ j - l )  = (a+ j - \ ) \ / ( a - l ) \ .
The price of zero-coupon bond at time t > 0 is as follows:

PatP{t,m)=E(Y,+ rYl+2- . . ,Y lp l )=PaiPi{Q,m-t),  

a, = a,_, + Z ,, aa = a ,  
/ ? ,= A -i+ (l-Z ,) . fo = 0 .

(4)

We can see that the point (oc,,0,) is stochastic. It is also noticeable that all pos­
terior distributions of p  are again beta distributions. In this case the form of price of 
zero-coupon bond is explicit for all t.
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3.2. Ehrenfest model -  model II

The second model is called the Ehrenfest model. In two urns there are 2s balls. 
We pick one ball at random and shift it to the other urn. In first urn is y balls. The 
homogeneous Markov transition probabilities is as follows [7]:

Pv.v+l 1
2s

n - XPv.x-1 ~ '2 s

If the step of the movement is ± l /M  then the Markov transition probabilities are 
calculated by the use of the following form:

P  + 'V, V ± -----' ' M
= 0,5 ± a ( b -  y), (5)

m̂ax = h + V  ’ 2a

= b - -
2 a

This model is called generalized Ehrenfest model.
Using that model leads to the following recursion formula [4]:

Py{t,m)=E(Yl+i • PYiti (/ + l,m))y, = y)

which becomes by homogeneity

Py (0,m - t ) =  E(Y, • PYi (0,m - 1 -  l)|T0 = y ).

From (5) we have

P ( 0 , m ) =  y + —  P  , ( 0 , m ) - ( 0 , 5 + a ( b - y ) ) +  , ( 0 , m ) - ( 0 , 5 - a ( b - y ) ) . ( 6 )
M M

This model is analogous to the term structures obtained in the continuous case 
from the Cox-Ingersoll-Ross model [10; 12].

4. Stochastic payment streams in insurances

4.1. Valuation of payment streams at time t

In life insurance there are defined different streams of cash payments. One of 
them could be a loss or a gain of insurer. Let us define stochastic net cash payments:
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and

X, = benefits in (r — 1, r] — premiums in t, t = 1, 2,...

X() = -  premiums in 0.

These payments are defined at the end of interval (t -1, t]. If the insurer’s costs are 
added to net payments, the gross cash payments will be defined.

Assume that the time horizon is finite, i.e. t = 0, 1, ..., n. Even if the insurance 
policy is whole life, the insurer limits the time horizon, e.g. to 100 or 125 years. 
Then n could be equal to e.g. 100.
Now we can define the cash payment vector

x = {x0,xlt...,x„)
and the stochastic discounting vector

v = (v0,v1,...,v„).

The valuation of payment at time t is the expected discounted present value of cash 
payment stream. When t = 0 the valuation is the following:

Q{X)=E
v/=o

(7)

Of course the calculation has sense if the equivalence principle is kept. Then 
Q(X ) = 0. This equation allows calculating the premium.

The valuation at time t > 0 is denoted as q[ x \3Fi '). At time zero this valuation 

is a random variable, but at time t > 0 q (x ) is observable. The (2(x|^() is de­
fined as follows [4]:

Q ( x \ ^ )  = - E ( ^ v r X k\ ^  
vi U=o

The q (x \3' ) could be described in another way:

= -̂**13

(8)

V*=0 Vr J  *=<) \k=l+l Vl

or

g ( *ly . ) = Ź v .* . „ - * > + 4  Ż > " ,.,•••••»;
V*=/+i*=o'i*+r - - r .

(9)

(10)
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where

'’■ = Y I ¥j
j =i

The first component of the above sums means the accumulated payments and the 
second one is the prospective reserve. The components are denoted by a (x |<?, )

and /?(x |^,) adequately.

4.2. Decomposition of annual losses of insurer

The function q (x |<?j) could be treated as accumulated loss (or gain) of insurer 
with interest. Consider the annual loss of insurer L,(X) in interval {t -  1, t] that is 
discounted to time t -  1. This loss has the following form [3]:

L,{x) = Yr Q(x\3F,)-Q(x%_i).
One can notice that

^ v k_l-Lk{x) = vi
k =1

■q (x \?„)=e

U = °

\

The right-hand side is a martingale for any filtration.
The way of decomposition of annual losses is made in Buhlmann’s paper. Here 

it is not quoted. Technical loss is defined by using the following form:

(LT)t =yt(x, +̂ (x\^))-ylR+(xlgl), ( i i )

where

( 12)
u=/+l

and

R + I e
( "

\ k = r

(13)

This t^algebra Q, expresses the fact that at time t the X-variables are only known 
up to and including t -1 whereas all v-variables are known up to and including t. 
The following filtration sequence is established:
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Jo c Q\ c  J ,  c (y2c J 2 c ...
and

J, = cr(X0, X ,,..., X ,; v„, v,,..., v,),

(7/ = A';_|;v0,vl,...,v,).

Financial loss has the following form [4]:

(LF)f = y f -/?+( x |^ ) - / f ( x |J f_1). (14)

Total loss is a sum of technical and financial losses, that is

Lt ={LT),+ (LF),. (15)

5. Applications of price of zero-coupon bonds in insurance

5.1. Term life insurance and assumptions

Assume the following interpretation of variables X and v. Let v be the financial 
variables and X the insurance variables. The vector (X, v) is a pair of two vectors. 
In our consideration it is assumed that X and v are independent variables. The mor­
tality tables for X are used. They are Polish Life Tables 2000 from Ostasiewicz [9].

The calculations are made for n-years life insurance. Premiums P are due pay­
able. Benefit in the amount of one unit is payable at the end of year of the insured’s 
death, if this occurs during the first n years, otherwise the benefit would not pay. 
Insured is x years old at the moment of buying the insurance policy. The insurer’s 
loss at the end of r-th year is as follows [3]:

X„ = ~P>

f - P  if insured is alive at timer,
[ 1 if insured is dead at time r.

[0 if insured is alive at time n,
X n — %

[1 if insured is dead at time n.
It is assumed that

X,W = £ ( X , |J J .  (16)

If m^t  then x\'"] =  X,.
Suppose that insured is a 28-years-old woman. Policy is bought for 5 years. 

Probability that a person at age x will be alive at least t years is denoted by , p x .
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For ł = 1 there is set Xpx = px. From Polish Life Tables for women the probabili­
ties are as follows:

p28 = 0.99960, 
p29 =0.99958, 
p30 =0.99954, 
p3l =0.99951,

c/28 = 1 -  p2S = 0.00040, 

<729 = 1 -  p2i) = 0.00042, 
<730 = 1 -  Pm = 0.00046, 
c/31 = 1 -  p3| = 0.00049,

(17)

Pn = 0-99947, <7,2 = 1 -  p i2 = 0.00053.

The calculations are made in following parts for two models for modeling of price 
of zero-coupon bond.

5.2. Model I applications

First price of zero-coupon bonds is calculated by using model I. The following 
parameters are used:

£ = 0.9, 8  = 1, a  = 3, (3 = 1.
Model of Y r has the following form:

Y, = 0.9 + 0.1 -Z ,,

where Z, ~ B(l ,p),  p ~ Beta{a,0).  Therefore Y t takes values 0.9 or 1.
In Table 1 values of zero-coupon bond at time / = 0 are presented with different 
maturity of m (m = 1, 2, ..., 20). Formula (3) for or = 3 and /? = 1 was used.

T ab le  1. P rice  o f  ze ro -co u p o n  bon d  P , ^ 0, m )  -  m odel I

m P«/s(0, m ) m P a L t k 0 - " 0 i n P , i . d 0 ,  m ) m P „ d 0, m )

i 0 .9 7 5 0 0 6 0 .8 6 4 0 4 11 0 .7 7 2 6 2 16 0.69651

2 0 .9 5 1 0 0 7 0 .84435 12 0 .7 5 6 2 8 17 0 .68283

3 0 .9 2 7 9 5 8 0 .8 2 5 3 9 13 0 .74053 18 0.66961

4 0 .9 0 5 8 0 9 0 .8 0 7 1 4 14 0 .7 2 5 3 4 19 0 .65683

5 0.88451 10 0 .7 8 9 5 6 15 0 .7 1 0 6 7 20 0 .6 4 4 4 8

Graph 1 shows the values of price of zero-coupon bond Pa^i0, m) for m = 1 ,2 ,..., 20 
(from Table 1).

If we use relationship (4) we get price of zero-coupon bond m). On Fig. 2 
there are presented 20 such trajectories for m = 20.

Received values are applied in the following insurance calculations. First we calcu­
late premium. In general case we have
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(7) (»
Q{ X) =E  £ v , - X ,

V'=0

Second equality results from independence of variables X,  and v, [1; 6].

( 18)

Fig. 1. Price of zero-coupon bond P„//0, t) -  model I

Fig. 2. 20 trajectories of price of zero-coupon bond P(t, 20)
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From equivalence principle Q( X ) is equally zero. Hence

X,(o,= ° .
/=()

The values of are taken from Table 1. x j 0̂  is calculated by using (16).
We get the following equation

— ^  + 28 ~ P '  P l i )  +  l) -  P ' P29)' P l i  +
+ ~ P ' Pio) • P u  ' Pw  + Pa,p (0-4) • (<731 P ' Ps\) '  P j i ' P29 ' Pm "*■

+ Pa.pi®-^)'<h2 ' P2i ' P29 ‘ Pm 'Pm = 0-

Hence

P = 0.00045.

Now we calculate both of prospective reserves at time t, i.e. r (x |<?”,) (without 

payment t -  1) and R +{X\Q^) (with the payment at time t -  1). These reserves are 
calculated by the use of formulas (12) and (13). Remember also that

P ^ (t ,m ) = £(y,+,-y,+2, . . - K „ , |^ ) = ^ .A(O ,m -0

where a , and /?, are given by condition (4). The results are presented in Table 2.

Table 2. Prospective reserves -  model I

*(* |3>) 0.00045 * +(* |£ i) 0.00047

0.00049 R+{x\g2) 0.00053

r {x \?2) 0.00056 0.00057

0.00056 tf+(* l£4 ) 0.00057

0.00052 * +(* l£5) 0.00053

Table 3. Insurance losses -  model I

Technical loss Financial loss Total loss
CLT)i -0.00042 (LF)[ 0.00002 L\ -0.00040
(LT), -0.00042 (LFh 0.00004 Ln -0.00038
0-7), -0.00046 (LF)i 0.00001 ^3 -0.00045
(LT), -0.00049 (LF)a 0.00001 La -0.00048
lLT), -0.00053 CLFh 0.00001 L , -0.00052
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Table 3 includes results of technical, financial and total losses. They are calcu­
lated by using formulas (11), (14) and (15) adequately. These results are got under 
the assumption that F, =  Y2 =  K, = Y4 -  Y5 = 1.

The minus means a gain of insurer. Notice that average gain is equally 0.00045. 
It is exactly the same as premium. The financial loss is very small in this case and 
it does not balance the technical gain. All results are received under the assumption 
that the woman is still alive.

5.3. Model II applications

For the second model the following parameters are used:

>\™„=0.9, ymax=l,  M = 20, a = 10, b = 0.95.

The parameters are selected in such a way that the discounting factor takes the 
values from the interval [0.9; 1]. The values are changing by 0.01.

The calculations of price of zero-coupon bond Pv(0, m) are made by the use of 
formula (6). In Table 4 there are presented Pv(0, in) for different maturity of m =
1,2, ...,10 and all y.

Table 4. Price of zero-coupon bond Pv(0, m )  -  model II

y

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
PA0 , 0 ) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Pv(  0 , 1) 0.910 0.918 0.926 0.934 0.942 0.950 0.958 0.966 0.974 0.982 0.990

PA0 , 2 ) 0.835 0.849 0.862 0.875 0.889 0.903 0.916 0.930 0.944 0.958 0.972

PA0 , 3 ) 0.772 0.789 0.806 0.823 0.840 0.858 0.875 0.893 0.911 0.930 0.948

PA0 , 4 ) 0.718 0.737 0.756 0.775 0.795 0.815 0.835 0.856 0.877 0.899 0.921

PA0 , 5 ) 0.670 0.690 0.711 0.732 0.753 0.775 0.797 0.819 0.842 0.866 0.890

P , ( 0 , 6 ) 0.628 0.649 0.670 0.692 0.714 0.736 0.759 0.783 0.807 0.832 0.857

/ \ . ( 0 , 7 ) 0.590 0.611 0.633 0.655 0.677 0.700 0.724 0.748 0.772 0.798 0.824

PA0 . 8 ) 0.556 0.577 0.598 0.620 0.642 0.665 0.689 0.713 0.738 0.764 0.790

A ( 0 , 9 ) 0.525 0.545 0.566 0.588 0.610 0.633 0.656 0.680 0.705 0.730 0.756

PJ0, 10) 0.496 0.516 0.537 0.558 0.599 0.602 0.625 0.648 0.672 0.697 0.723

Notice that if y is larger than the price of zero-coupon bond is bigger. For ex­
ample /MO, 10) is higher by 0.227 than /V<j(0, 10).

In Fig. 3 the received values of Pv(0, m) are shown. Notice that the function of 
price could be concave as well as convex. The function of price of zero-coupon 
bond for first model is only concave.
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Fig. 3. Price of zero-coupon bond Pv(0, t) -  model II

We used this model to calculate only the premium. The received premium was 
the same as before. In the equation (18) Pâ 0,f) was replaced with Py(0, t). The 
premium is calculated for all y. The results are in Table 5.

Table 5. Term life insurance’s premium for different y -  model II

y P V P y P

0.90 0.000442 0.94 0.000453 0.98 0.000463
0.91 0.000445 0.95 0.000455 0.99 0.000465
0.92 0.000448 0.96 0.000458 1.00 0.000468
0.93 0.000450 0.97 0.000460

The values of premiums are similar. That is also for model I. However, pre­
mium for most y  is higher. Exactly value of premium for first model is 0.0004472. 
So it is smaller for all smaller y than 0.92.

6. Summary

In the article two models of price of zero-coupon bond are described. Price of 
zero-coupon bond is applied as the financial discounting factor in life insurance. 
The calculations show that the price for both models is different. Therefore the 
term life insurance’s premiums are different but similar. Premium in the first model 
is smaller than the premium in the second model almost for all y. The structure of 
models of price of zero-coupon bond is different. The function of price could be
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concave as well as convex for second model. That is like the structure obtained in 
the continuous case from the Cox-Ingersoll-Ross model. The price in the first 
model is only concave.
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CENA OBLIGACJI ZEROKUPONOWYCH 
W UBEZPIECZENIACH ŻYCIOWYCH

Streszczenie

W artykule zastosowano finansowy stochastyczny czynnik dyskontujący do obliczeń aktuarial- 
nych. W wielu aktuarialnych definicjach do obliczeń stosowana jest wartość oczekiwana różnych 
losowych lub stochastycznych zmiennych, które zależą od czynnika dyskontującego. Jeżeli dodatko­
wo czynnik dyskontujący jest stochastyczny, to do obliczeń musi być użyta jego wartość oczekiwana. 
Okazuje się, że ta wartość oczekiwana jest właśnie ceną obligacji zerokuponowej.

Przedstawione zostały 2 dyskretne modele stochastycznej stopy procentowej, zastosowane przez 
Biihlmanna, które zostały wykorzystane do wyznaczenia ceny obligacji zerokuponowych. Następnie 
cena obligacji zerokuponowych została zastosowana do obliczeń składek, rezerw oraz straty (zysku) 
ubezpieczyciela.

Słowa kluczowe: proces stochastyczny, stopa procentowa, czynnik dyskontujący, obligacja zeroku- 
ponowa, ubezpieczenie życiowe.
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