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Abstract: This article demonstrates the application of multiwavelet analysis and multiwavelet packet analysis in qualitatively
assessing the chaotic nature of a system’s response. Ranges of model parameters that induce chaotic behavior
are identified, and the system’s response under these conditions is then analyzed using multiwavelet analysis and
multiwavelet packet analysis. By employing a one-degree-of-freedom nonlinear system as an illustrative example, the
transition from a non-chaotic to a chaotic state is shown to affect both the magnitude and the temporal distribution
of wavelet coefficients across multiple levels of the response analysis. The cumulative energy of the signal’s multiwavelet
approximation is calculated to distinguish between chaotic and non-chaotic signals. The results obtained through multi-
wavelet analysis in identifying the system’s critical states are compared with those derived from traditional wavelet
analysis and other established methods for assessing chaos. The presented approach is an alternative to other methods of
qualitative identification of chaotic states, and also to provide a generalization to the method in analyzing complex

systems.
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1. Introduction

Since chaotic phenomena are common in the behavior of
nonlinear systems, there is a need to identify the ranges of
parameters in the system’s mathematical model in which
they occur. Chaos is present in many problems in physics,
mechanics, chemistry, biology, and other fields of science
[1-8]. Permann and Hamilton [9] applied wavelet analysis
to nonlinear dynamics problems and detected low-ampli-
tude harmonic components in motions regarded as
chaotic. Glabisz [10] used wavelet analysis to identify
chaotic states in a single-degree-of-freedom system under
a nonconservative load and determined parameter ranges
in which the system enters critical states. Staszewski and
Worden [11] analyzed the statistical measures of the coef-
ficients in the Ueda system. Jibing et al. [12] identified
various types of motions in nonlinear systems, using a
wavelet harmonic transform and Poincaré maps. Billings
and Coca [13] presented a method of identifying chaotic
systems by means of a noisy signal wavelet transform.
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Using wavelet analysis, Nakao et al. [14] presented space—
time relations with reference to the resolution scale adopted
for the vibrations of the Ginzburg-Landan oscillator oper-
ating in the chaotic motion range. Constantine and Reinhall
[15] used wavelet methods of denoising chaotic signals to
estimate the fractal dimension of a noiseless system. Mas-
troddi and Bettoli [16] used a continuous wavelet transform
to analyze a nonlinear system signal in the region of a bifur-
cation point. Shi et al. [17] presented an advanced synchroex-
tracting transform based on the wavelet transform, which
enables precise analysis of nonlinear and non-stationary sig-
nals. Varanis et al. [18] published a broad review of methods
for analyzing chaotic signals using time-frequency tools,
including discrete wavelet analysis.

This article presents a qualitative assessment of the
phenomenon of chaos, based on the use of the multiwa-
velet transform and the packet multiwavelet transform in
the analysis of the response of vibratory systems. The
use of packet multiwavelet transforms for this purpose
has not been applied so far. Section 2 presents a short
introduction to chaotic vibrations. Section 3 describes
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the theoretical foundations of multiwavelet analysis and
multipacket analysis. In Section 4, equations are formu-
lated, which are then used in Section 5 to carry out several
illustrative numerical analyses. Conclusions are drawn in
Section 6.

2. Introduction to chaotic
vibration problems

Chaos frequently occurs in many nonlinear dynamical
systems. Chaotic states are defined as deterministic, non-
linear system behaviors in which, after a short evolution,
information about the system’s initial states is lost.
Dynamical systems are highly sensitive to changes in their
initial conditions. Their motion trajectories, which initially
differ only infinitesimally, diverge exponentially over
time, resulting in significant differences after a short
period.

The qualitative methods for identifying chaos include
phase portrait analysis, Poincaré cross-section analysis,
bifurcation diagrams, and Fourier spectral analysis. A
characteristic feature of phase portraits in chaotic systems
is that the trajectory fills the phase space, passing through
nearly all of its points. The Poincaré cross-sections of
chaotic systems take the form of so-called strange attrac-
tors — sets of points in the phase space approached by
motion trajectories with different initial conditions.
These attractors exhibit self-similarity, adopting a fractal
structure and maintaining the same appearance for dif-
ferent initial conditions. Bifurcation diagrams, which
depict the value of an analyzed quantity as a function of
a selected parameter, are characterized in chaotic systems
by multiple splittings of the graph of the examined quan-
tity at fixed parameter values. Fourier analysis of chaotic
vibrations is distinguished by the emergence of contin-
uous power—frequency dependencies, which indicate the
presence of a continuous frequency spectrum in chaotic
vibration regions.

The quantitative method for identifying chaotic states
is the analysis of Lyapunov exponents, which determine
the average rate of exponential divergence of initially
close trajectories. A positive value of the largest
Lyapunov exponent signifies the system’s sensitivity to
initial conditions, indicating chaotic behavior. All the
aforementioned methods, which determine whether a
system is in a chaotic or nonchaotic state, are presented
below alongside the approach utilizing multiwavelet and
multipacket analysis for the qualitative assessment of the
nature of the analyzed vibrations.

3. Basic theory of multiwavelet
and multiwavelet packet
analysis

In the multiwavelet analysis, the set k2/ of scaling func-
tions (pj'l‘(x) define the space V}‘ and the set k2/ of wavelet
functions wj’;(x) define the space W}‘ [19-22]. Basis func-
tions ¢;(x) and l/);;(x) are obtained by dilation (2//%) and
translation (I) of each from k functions, which generate
the set of fundamental multiscaling functions ¢"(x) =
{0°(0), @'(x), .., ¥ 1(x)} from the space V& and
fundamental multiwavelet functions Y*(x) = {Y°(x),
PUX), ..., YEIX)} from the space WY satisfying the fol-
lowing relations [23, 24]:

gu(x) = 2P 2x = ), x € [271, 271+ Dny], W)

zp].';(x) =2PYn2ix - 1), x e [271, 2791+ Dng], 2)

where ng is the compact support length of fundamental
multiscaling functions, n; is the compact support length
of fundamental multiwavelet functions,n =0, ..., k-1,
1=0, .., (2 - Dngy, j denotes the level of approximation,
and parameter k determines the number of fundamental
multiwavelet function sets as well as the number of funda-
mental multiscaling function sets. Number k does not
depend on the assumed level j.

The set of multiwavelet functions ¥"(x) = {y°(x),
YUX), ..., YF1(x)} is generated on the basis of multiwa-
velet scaling functions ¢™(x) = {p°(x), @'(x), ..., P*1(x)}
[19-23]. The equations that define the functions y"(x) and
@"(x) are named the two-scale refinement equations and
take the following forms:

k-1
Y0 = V2 Y (g 091(20) + gWpi(2x - 1)
j=0

3
+o glol(2x - 1),
oo .
9"00) = V2 Y (92 + hyjpi(ex - 1)
j=0 4)
+o ypix - 1)),
where n=0, .., k-1 and under study in this article

multiplicity r is equal, r = 1.

Multiwavelet functions y"(x) and scaling functions
¢"(x) defined by relations (3) and (4) are presented as
linear combinations of the same functions, but their dif-
ferences determine, respectively, low- and high-pass filter
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coefficients {h,ES-), h,{lj), grf‘}),
multiwavelet analysis are k x k matrices.
The function space W}‘ created by multiwavelets

lp;;(x) is an orthogonal complementation of the function

8.7}, which in the case of

space VJ’-‘ to the space of the upper level of approximation

V},, and can be defined as

k _ yk k - yk k k — yk k
VE = VEe WK=VE e Wi e Wr=VE, e W,

] k k ©)
®..0 Wi & W}

According to expression (5), any square integrable
function from the j level of approximation, when the mul-
tiscaling functions are taken from the m level of approx-
imation, can be expressed in multiwavelet bases in the
following formula [23, 24]

) 2m-1k-1 2"—1j—1 k-1
fI00= Y Yerl 0+ Y Y YA, 6)
=0 n=0 1=0 v=0n=0

where the coefficients of approximation are given as follows:

27m([+1) 27M(+1)
= | fieoenodx, di= [ pleowreodx O
m m

Multiwavelet approximation coefficients j ¢, ; and d}}
form the basis for the calculational analyses presented in
this article. The decomposition of the multiwavelet trans-
form is shown in Figure 1.

In the frame of multiwavelet packet analysis and in con-
trast to multiwavelet analysis, subspaces of multiwavelet
functions W}‘ are decomposed on subsequent stages of
decomposition [10, 25]. The functions that create the sub-
spaces of decomposition W]" are packet functions defined as

wy(x) = zl/zf%kai(zfx - k), ®

2$ Ciol
—p -
Vi 2$ C2.01
’ Cs.o0.
24
e

Wi, (X) = ﬂ/zgckwi(w‘x - k). ©

Functions w §o and w [, are the initial points of recursive
expressions (8), (9) and enable successive functions w {fj(x) to
be determined. Coefficients of matrices H = {h,fg), h,fj)} and
Gy = {grff’j), g,f,l]?} are treated as low- and high-pass filters,
respectively, and are used in classical multiwavelet analysis.
The set of n = k - 1 multiscaling functions from space V¥
creates the fundamental multiscaling packet functions wg,

and the set of n multiwavelet functions from space W{ cre-
ates the fundamental multiwavelet packet functions wy,

9", 9"00) = {9’00, '), .., PFTOOL
ProO, PO = {H°00, PO, . PETOL

When using formulas (3) and (4), expressions (8) and
(9) take the form

Woio (10)

wig D

k
wii(x) = 2123 3 (R wl(2Ix) + hyw'(2)x - 1)),
n=0 j

(12)

k
Wi 00 = 223 3 (g2 wl'@x) + gL w(@x - 1), (13)
n=0 j

The packet multiwavelet approximation coefficients
are calculated similarly to expression (7), as the respective
scalar products of the analyzed function fr{; (x) and the
functions described by relations (12) and (13).

In the presented article, the set of multiscaling func-

tions @"(x) is defined using Legendre polynomials
B(x) = 2,.1,“ an(;i; l)n, which are scaled up to the range of

x € [0, 1] according to the expression

0"(x) = Van+1B(2x - 1), x €0, 1]’ no ok
0. x¢ (0,1 (14)
-1
- Cij-1.1 Ciit
C2j-1.1 2$ &’
CS.J—I,I‘ A’
- . d1~.i- .1
. o dz\]fl.l
. dsj
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é ds.ia

Figure 1. Decomposition of the multiwavelet transform for three branches of basic wavelet functions.

Source: Author’s contribution.
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Filter coefficients, which are necessary to determine
the fundamental multiwavelets and fundamental multi-
scaling functions, are calculated from the formula

1 1

2
hrs’ol) = \/—J-(D"(X)(DJ(ZX)dX (0) = ﬁjw”(x)wf(ZX)dx, (15)
0

(1) = (- 1)n+]h(0) g(l) = (- 1)n+]+kg(0) 16)

The exact description of the obtained Legendre multi-
wavelet functions is given in previous studies [19, 20, 25].

Selected multiscaling functions and multiwavelet func-
tions of Legendre multiwavelet and multiwavelet packets
are shown in Figure 2.

4. Analyzed equations

Two systems are considered in this article. One of them is
the well-known Duffing oscillator motion described by

equation (17), where the elasticity force characteristic con-
stitutes the linear function:

dy(t)

2
L10) te - ay(t) + By(t)® = F cos(wt).

de?

a7

Equation (17) can be used to describe the vibration of a
cantilever beam placed between two magnets and being
kinematically excited [7, 26, 27]. In equation (17), the para-
meters F and w are, respectively, the amplitude and fre-
quency of the exciting force, the parameter ¢ describes
damping, and a and § are responsible for the elasticity
force characteristic.

The other analyzed system [28] is shown in Figure 3. It
consists of two identical massless bars connected via a
hinge with mass m placed in the hinge. The hinge is sup-
ported by an elastic spring with nonlinear characteristic S.
The system is loaded with a dynamic axial force P(t) [28].

Taking into account the relations in Figure 3 and
assuming angle a as an independent variable, one
can write the system’s kinetic energy and its potential
energy and the generalized force as: T = 0.5 mL%a'(t),
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Figure 2. Basic multiscaling functions of Legendre multiwavelet order k = 3 (a) and basic multiwavelet functions of Legendre multi-
wavelet order k = 3 (b), and second term multiwavelet packet functions of Legendre multiwavelet order k = 3 for j = 3, from

final decomposition stage (c).

Source: Author’s contribution.
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S = kx + kx>,

: L 1 L T x = Lsina(t),
m —L— P(t)
_ O _— =
. E .y I z = 2L(1 — cosa(t)),
7. Tt - e
Kx+ki x3 y = L(1 = cosa(t)),

Figure 3. Schematic of the analyzed system.

V=105 kI?sin®a(t) + 0.25 kL*sin*a(t), and Q = P(t)2L
sin a(t). When the Lagrange equation of the second
kind is used, the system vibration equation assumes the
form:

mL2a’(t) + kL* sin a(t) cos a(t) + kL* sin®a(t) cos a(t)
= P(t)2L sin a(t).

(18)

Equations (17) and (18) form the basis for the numer-
ical analysis, and the results of which are presented in the
next section.

5. Numerical analysis

This section presents an approach for detecting chaotic states
using multiwavelet analysis and packet multiwavelet ana-
lysis. This approach constitutes an alternative to the qualita-
tive chaos identification methods described in Section 2. The
conclusions emerging from a multiwavelet analysis and a

P(t) = Psin(wt)

Source: Author’s contribution.

packet multiwavelet analysis in the identification of the
chaotic and nonchaotic states of dynamical systems are ver-
ified by spectral analysis, Poincaré methods, bifurcation dia-
grams, phase portraits, and an analysis of the highest Lya-
punov exponent of the investigated systems.

The range of variation of excitation amplitude F, in
which chaotic vibrations are generated, is corroborated
by the bifurcation diagram, constructed on the basis of
the numerical integration of equation (17), together with
the graph of the variation of the highest Lyapunov expo-
nent as a function of excitation amplitude F (Figure 4). The
variation of the highest Lyapunov exponent versus excita-
tion amplitude F was determined by comparing the system
response whose initial conditions differ by 107 When
integrating equation (17), zero initial conditions
y(0) =0, y'(0) =0 0 were imposed, and the exemplary
parameters w = 0.7,¢ = 0.1, a = 0.2, B = 0.53 were assumed.

An analysis of the bifurcation diagram (Figure 4)
shows that if F from the interval 5.505 < F < 8.98 is
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L - ..\ e s,
il 1 . . . . 1 . . 1 . 1 . . . ° %
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F — amplitude of exciting force
Figure 4. Bifurcation diagram (blue) and function of variation of max. Lyapunov exponent (red) for the Duffing oscillator described by

equation (17) (w = 0.7,¢ = 0.1, a = 0.2, § = 0.53).

Source: Author’s contribution.
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Figure 5. Convergence of the highest Lyapunov exponent over time at F = 6.5 (a) and F = 16 (b) for the Duffing oscillator described by

equation (17).

assumed, a system nonchaotic state can be obtained,
whereas if F is taken from, e.g, the interval
15.35 < F < 17.0, a chaotic state is obtained. In the further
considerations, the assumed excitation amplitude values:
F=65 and F = 16 characterize, respectively, the non-
chaotic and chaotic motion of the analyzed system.

To confirm that the assumed amplitude values are
responsible for the chaotic and nonchaotic system state
in Figure 5, a function of the variation of the Lyapunov
exponent over time, representing the average rate of
divergence of the solutions, was plotted. The average value
was calculated over many initial values distributed along
the motion trajectory. A chaotic state of the system occurs
when the Lyapunov exponent is positive. A positive Lya-
punov exponent means that trajectories that are initially
close quickly diverge, leading to the unpredictability of the
system.

The results for qualitatively identifying the chaos phe-
nomenon or its absence (phase trajectory, Poincaré cross
sections, Fourier spectral analysis) for the Duffing oscil-
lator described by equation (17) are depicted in Figures 6
and 7. The Poincaré cross sections in Figures 6 and 7 were
plotted assuming the time distance between two

b)
y'(@®

—0.802277 ¢

-0.802277
~0.802278.f.
-0.802279 F
-0.80227
-0.802279 £

Source: Author’s contribution.

consecutive points to be equal to 27/w. The nature of the
results in Figures 6 and 7 also confirms that the assumed
amplitude values in equation (17) are responsible for the
chaotic and nonchaotic system state.

In addition, using packet wavelet analysis, phase tra-
jectory, Poincaré cross section, and Fourier spectral ana-
lysis for the Duffing oscillator described by equation (17)
are obtained (Figures 8 and 9). The results presented in
Figures 8 and 9 are consistent with the results in Figures 6
and 7. The input data subjected to the wavelet packet
transform were a sequence of N = 1,024 numbers changing
during the signal duration y(t) (for F = 6.5 and F = 16) with
a constant sampling frequency of At = 0.01. The discretized
signal was subjected to packet wavelet transform using
Walsh packet functions that use Haar filters. The effect
of the high-pass Haar filter is the process of differentially
computing the scaled derivative of the analyzed signal.
Appropriate weight multipliers that scale the decomposed
signal and depending on the level of decomposition and
the selected package were calculated based on the for-
mulas given in the work [29]. This made it possible to
obtain the correct discrete values of the function and its
derivatives. Hence, phase portraits and Poincaré sections

1.309931.309931.30993 f m | 0 >

(0 (SUA ‘ L

2‘5 freq.[Hz]

Figure 6. Phase trajectory (a) Poincaré cross sections, (b) power spectra (Fourier analysis), (c) for nonchaotic signal (F = 6.5) described by
equation (17) with parameters (w = 0.7, ¢ = 0.1, a = 0.2, § = 0.53).

Source: Author’s contribution.



Kamila Jarczewska

==\

s
/ \\\\sf’ £
N SN
(20K
r[f‘\‘\\\\

i

O
)

“0. 05 1. 15 2. 25 freq.[Hz]

Figure 7. Phase trajectory (a) Poincaré cross section, (b) power spectra (Fourier analysis), (c) for chaotic signal (F = 16) described by
equation (17) with parameters (w = 0.7, ¢ = 0.1, a = 0.2, § = 0.53).

of the discrete signals could be constructed using Walsh-
wavelet packet analysis. Signals from various frequency
levels obtained as a result of the packet wavelet trans-
form of the input signal y(t) were subjected to Fourier
analysis. This made it possible to select a signal represen-
tation in which it is easier to detect more subtle changes
in the distribution of the signal power spectrum, indi-
cating more critical changes in the dynamics of the
system (Figures 8c and 9c). Presented in this way, the
packet-based Walsh wavelet analysis seems to be a par-
ticularly valuable tool, among others for qualitative

a) b)

yma. 1

y'((1.1)

Source: Author’s contribution.

identification of critical states, because it can be used
for any discrete measurement data and can be a valuable
source of information about the current state of mea-
sured real objects (designation: y(t)(n,k), where: “n” —
nth decomposition level of the packet wavelet analysis
and “” — jth packet number from the nth decomposition
level).

A multiwavelet analysis is based on a system response
in the form of a discrete set of displacements y(t) with
number N = 2° = 512 of equidistant readings y; from the
first 200 s of the response duration of the system described

¢)

171y 1)

-0.827726
-0.827727
-0.827727 |

y()(1,0) _0.827728|
-0.827728
~0.827729 |

-0.827730

| 1.2848082848028480284802848028489

y®(1,0) 10

0 A [H2)
0 0.4096 0.8192 12288 16384

Figure 8. Phase trajectory (a), Poincaré cross sections (b), and power spectra (Fourier analysis) (c) obtained from wavelet packet
transform of nonchaotic signal (F = 6.5) described by equation (17).

Source: Author’s contribution.
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0 [Hz)
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Figure 9. Phase trajectory (a), Poincaré cross section (b), and power spectra (Fourier analysis) (c) obtained from wavelet packet
transform of chaotic signal (F = 16) described by equation (17).

Source: Author’s contribution.
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il i~
ot b |

Figure 10. Selected resolution levels j of multiwavelet analysis coefficients of the Duffing oscillator described by equation (17) for
nonchaotic signal F = 6.5 (left part of figure) and chaotic signal F = 16 (right part of figure).

by equation (17). Legendre wavelets of order 3 (L_k3) were
used in the analysis of the signal. Since the multiwavelet
functions from space V; are determined over interval

€ [0,1] while the signal was determined over any
interval t € [ty, t], the analyzed signal was rescaled by
multiplying it by parameter 7 = (t — t)/(tx — tp) in order
to avoid problems with boundary conditions. As a result,
the considered problem comes down to a problem deter-
mined over interval t € [0, 1].

a) ]71(31

200

ﬂ.()S

0.0

0

coefficients

—0.05F

00
time [s]

Source: Author’s contribution.

Figure 10a and b depicts the time distribution of the
wavelet expansion coefficients of the response of system
(17) in, respectively, nonchaotic state (F = 6.5) and chaotic
state (F = 16) at the particular signal perception levels. The
presented resolution levels j correspond to the analyzed
system’s frequencies in a range of 0.712-1.282Hz. The
higher the level j, the higher the vibration frequency.

As one can see, there are differences in the distribution
of multiwavelet analysis coefficients between the chaotic

b) J7TK3
12.5 50. IOO 15 200
0.15F
0.10F
v
s 00sfF
2 oo \ H mH ‘u Hne
ER ‘ ‘ \ \ T
< —0.05F E|
—0.10F |
—0.15F ) ) E
12.5 50. IOO 150. 200

time [s]

Figure 11. Multiwavelet expansion coefficients obtained at resolution j = 7 of nonchaotic signal F = 6.5 (a) and chaotic signal F = 16 (b) for
the Duffing system described by equation (17) (w = 0.7, ¢ = 0.1, a = 0.2, 8 = 0.53).
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Source: Author’s contribution.
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Figure 12. Multiwavelet expansion coefficients obtained at resolution level j = 7 of nonchaotic signal F = 2.5 (a) and chaotic signal F =

1.329 (b) for the Duffing oscillator described by equation (17) (w =3.3,¢ = 0.8, a =12,

=100).
Source: Author’s contribution.
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Figure 13. Nonchaotic signal energy (F = 6.5, F = 2.5 — dashed line) and chaotic signal energy (F = 16, F = 1.329 — solid line) versus the
number of multiwavelet expansion coefficients for the Duffing oscillator: (w = 0.7,¢ = 0.1,a = 0.2, f = 0.53) (a) and (w =3.3,¢ =

0.8, a =12, § =100) (b).
Source: Author’s contribution.
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Figure 14. Selected resolution levels j of multiwavelet packet analysis coefficients for nonchaotic signal F = 6.5 of the Duffing oscillator
described by equation (17) using packets of Legender’s multiwavelets k3_2.

Source: Author’s contribution.
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Figure 15. Selected resolution levels j of multiwavelet packet analysis coefficients for chaotic signal F = 16 of the Duffing oscillator
described by equation (17) using packets of Legender’s multiwavelets k3_2.
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Figure 16. Selected resolution levels j = {4, 5, 6, 7} of wavelet analysis coefficients for nonchaotic signal F = 6.5 (a) and chaotic signal F =
16 (b) of Duffing oscillator described by equation (17) (w = 0.7, ¢ = 0.1, a = 0.2, § = 0.53).
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Figure 17. Expansion coefficients of wavelet analysis (a) and (b) and packet wavelet analysis (c) and (d), obtained for nonchaotic signal F
= 6.5 (a), (c) and chaotic signal F = 16 (b), (d) of Duffing oscillator described by equation (17) (w = 0.7,¢ = 0.1, a = 0.2, f = 0.53).

signal and the nonchaotic signal, especially at the lower
resolution levels, whereby the two states can be easily
distinguished from each other. In the chaotic motion
range, the coefficients are less ordered than for nonchaotic
motions, which is corroborated by Figures 11 and 12.
Figure 11 applies to the Duffing oscillator at the equation
parameters (w = 3.3,¢ = 0.8, a = 12, § = 100).

When plotting a diagram of the energy of the analyzed
signals, calculated as the sum square of the wavelet expan-
sion coefficients as a function of the number of the coeffi-
cients (ordered from the lowest to the highest absolute

Source: Author’s contribution.

value) taken into account, one can notice that a larger
number of expansion coefficients than in the case of non-
chaotic states is needed for a chaotic state at a given
energy level (Figure 13).

Significant differences between the nonchaotic signal
and the chaotic signal observed in the multiwavelet ana-
lysis are even more apparent in a packet multiwavelet
analysis. Figures 14 and 15 show selected levels of the
wavelet decomposition of, respectively, a nonchaotic
signal (F = 6.5) and a chaotic signal (F = 16). The resolution
levels j correspond to signal frequencies from a range of
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Figure 18. Bifurcation diagram (a) and variation function of max. Lyapunov exponent (b) for the system described by equation
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Figure 20. Selected resolution levels j of multiwavelet signal analysis coefficients in pre-critical state P = 25 N (a) and in post-critical state

P =30N (b) for the system described by equation (18) (L 05 m, m=1Kkg k= m, ki = 10003 N, w=10 rad/s).

Source: Author’s contribution.
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Figure 21. Multiwavelet expansion coefficients obtained at resoluti

P =30N (b) for the system described by equation (18) (L =05 m m=1Kkg k=

0.176 to 0.318 Hz. The differences between the chaotic state
and the nonchaotic state are similar to the case of the
multiwavelet analysis, which confirms the effectiveness
of multiwavelet packet analysis in the qualitative identifi-
cation of the chaos phenomenon.

A classical wavelet analysis and packet wavelet analysis
of a chaotic signal and a nonchaotic signal carried out using a
Daubechies filter of order 12 and taking into account periodic
boundary conditions lead to the same conclusions in the
qualitative identification of the chaos phenomenon as does
a multiwavelet analysis. The expansion coefficients of the
nonchaotic signal in the base of wavelet or packet wavelet
functions are more regular, and the number of nonzero
expansion coefficients is, as a rule, higher than at chaotic
states, particularly at high frequency levels of the investi-
gated signals (Figures 16 and 17).

If the system shown in Figure 3, described by equation
(18), is analyzed for the exemplary parameters L = 0.5 m,

m=1Kkg, k= %, ki = 1‘03103N, w =10 rad/s, it can be
demonstrated that stability is lost at a force

P, > 2849 N. The value of the force at which stability
loss occurs also depends on the frequency with which

\ ‘ ‘ ‘ ‘
25 37.
time [s]
on level j = 6 in pre-critical state P = 25 N (a) and in post-critical state

100 N 1,000 N
ki

m = m3

12.5 5 50

, w=10 rad/s).

Source: Author’s contribution.

force P changes, i.e., on w. For example, for w = 15 rad/s,
the stability of the system is lost at ; = 53.5 N. The critical
load refers to the state in which the motion of the system
becomes unbounded. One indicator of stability loss is a
sudden jump in the value of the Lyapunov coefficient at
the point where the critical force occurs. This phenomenon
is shown for different values of w in Figures 18 and 19. The
bifurcation diagrams (Figures 18a and 19a) indicate that for
the assumed parameters of equation (18), the system
responses in both cases (w =10 rad/s, w = 15 rad/s) are
within the area of chaotic solutions.

The distribution of the expansion coefficients of the signal
multiwavelet analysis for the case when the system is in the pre-
critical phase and the post-critical phase (Figure 20) was checked
for the second system described by equation (18). Due to the fact
that in the two states the analyzed system is sensitive to a
change in the initial conditions, and so shows the signs of the
chaos phenomenon, the distribution of the multiwavelet coeffi-
cients in chaotic states is irregular and unpredictable, similarly
to the previous problem. One can notice that a larger number of
nonzero wavelet expansion coefficients occur when the system
is unstable (Figures 21 and 22).

a) P =140 j=6,k3 1 b) P =55 j=6,k3 1
12.5 25 37.5 50 12.5 25 37.5 50
‘ ‘ ‘ ‘ 0.4 ‘ ‘ ‘ ‘*
0.2 4
i | e |
Y (NRNORRON R TE T ool | o, S L
2 ] ‘ ‘ 7] ‘ 2 oo L Ll -+ \ a \ |
el 3 T |
[ —0.2f ]
—0.4 ! ) ) ‘* ) ) ) )
12.5 25 37.5 50 12.5 25 37.5 50
time [s] time [s]
Figure 22. Multiwavelet expansion coefficients obtained at resolution level j = 6 in pre-critical state P = 40 N (a) and in post-critical state
P =55N (b) for the system described by equation (18) (L =05 m m=1Kkg, k= %, ki = 1’0:1%, w=15 rad/s).

Source: Author’s contribution.
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6. Conclusions

This article demonstrates the effectiveness of multiwavelet
analysis and packet multiwavelet analysis in the qualita-
tive evaluation of chaotic behavior in the responses of
nonlinear oscillatory systems. Multiwavelet analysis
enables an accurate decomposition of the signal into com-
ponents of different frequencies, allowing one to capture
subtle changes in the signal structure that make it easier to
indicate a chaotic state. Employing packet multiwavelet
analysis further decomposes the signal into smaller sub-
spaces, thereby increasing the sensitivity for detecting
such changes. The system response, subjected to multiwa-
velet and packet multiwavelet analysis, is evaluated by
comparing the distribution of multiwavelet coefficients
of the signal expansions in nonchaotic and chaotic states.
In addition, the cumulative energy of the multiwavelet
approximation is calculated, which serves to distinguish
between these two states. The results obtained via multi-
wavelet methods are verified using traditional qualitative
approaches, such as Fourier analysis, Poincaré sections,
bifurcation diagrams, as well as a quantitative method
like Lyapunov exponent analysis. Furthermore, in the qua-
litative identification of critical states, Walsh wavelet
packet analysis was applied as an innovative tool particu-
larly useful for detecting critical states having at its dis-
posal only a set of discrete measurement data.

The numerical analyses conducted have led to the fol-
lowing detailed conclusions:

* Chaotic states observed through multiwavelet analysis
are characterized by a relatively small number of coeffi-
cients with comparable absolute values, resulting in an
uneven distribution of these coefficients compared to
nonchaotic states.

* The cumulative energy of the chaotic and nonchaotic
signals can aid in differentiating between these two
types of signals, since in the chaotic state a larger set
of approximation coefficients must be considered to
maintain a specified level of signal energy.

* The time required for multiwavelet analysis to distin-
guish between chaotic and nonchaotic indications is sig-
nificantly shorter than that needed by other qualitative
methods used for assessing chaotic states.

It should be emphasized that the analytical answers
obtained using qualitative methods in the assessment of
chaotic states are not always clear, unlike quantitative
methods. Therefore, they should be confirmed by several
methods. Hence, the methods presented in the article
based on multiwavelet and packet multiwavelet analysis
constitute an additional qualitative tool for identifying
chaotic states of the analyzed systems and make a

significant contribution to the development of fast quali-
tative methods for assessing critical states in nonlinear
systems.
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