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Abstract: This article demonstrates the application of multiwavelet analysis and multiwavelet packet analysis in qualitatively 
assessing the chaotic nature of a system’s response. Ranges of model parameters that induce chaotic behavior 
are identified, and the system’s response under these conditions is then analyzed using multiwavelet analysis and 
multiwavelet packet analysis. By employing a one-degree-of-freedom nonlinear system as an illustrative example, the 
transition from a non-chaotic to a chaotic state is shown to affect both the magnitude and the temporal distribution 
of wavelet coefficients across multiple levels of the response analysis. The cumulative energy of the signal’s multiwavelet 
approximation is calculated to distinguish between chaotic and non-chaotic signals. The results obtained through multi-
wavelet analysis in identifying the system’s critical states are compared with those derived from traditional wavelet 
analysis and other established methods for assessing chaos. The presented approach is an alternative to other methods of 
qualitative identification of chaotic states, and also to provide a generalization to the method in analyzing complex 
systems. 
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1. Introduction 

Since chaotic phenomena are common in the behavior of 
nonlinear systems, there is a need to identify the ranges of 
parameters in the system’s mathematical model in which 
they occur. Chaos is present in many problems in physics, 
mechanics, chemistry, biology, and other fields of science 
[1–8]. Permann and Hamilton [9] applied wavelet analysis 
to nonlinear dynamics problems and detected low-ampli-
tude harmonic components in motions regarded as 
chaotic. Glabisz [10] used wavelet analysis to identify 
chaotic states in a single-degree-of-freedom system under 
a nonconservative load and determined parameter ranges 
in which the system enters critical states. Staszewski and 
Worden [11] analyzed the statistical measures of the coef-
ficients in the Ueda system. Jibing et al. [12] identified 
various types of motions in nonlinear systems, using a 
wavelet harmonic transform and Poincaré maps. Billings 
and Coca [13] presented a method of identifying chaotic 
systems by means of a noisy signal wavelet transform. 
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Using wavelet analysis, Nakao et al. [14] presented space– 
time relations with reference to the resolution scale adopted 
for the vibrations of the Ginzburg–Landan oscillator oper-
ating in the chaotic motion range. Constantine and Reinhall 
[15] used wavelet methods of denoising chaotic signals to 
estimate the fractal dimension of a noiseless system. Mas-
troddi and Bettoli [16] used a continuous wavelet transform 
to analyze a nonlinear system signal in the region of a bifur-
cation point. Shi et al. [17] presented an advanced synchroex-
tracting transform based on the wavelet transform, which 
enables precise analysis of nonlinear and non-stationary sig-
nals. Varanis et al. [18] published a broad review of methods 
for analyzing chaotic signals using time-frequency tools, 
including discrete wavelet analysis. 

This article presents a qualitative assessment of the 
phenomenon of chaos, based on the use of the multiwa-
velet transform and the packet multiwavelet transform in 
the analysis of the response of vibratory systems. The 
use of packet multiwavelet transforms for this purpose 
has not been applied so far. Section 2 presents a short 
introduction to chaotic vibrations. Section 3 describes 
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the theoretical foundations of multiwavelet analysis and 
multipacket analysis. In Section 4, equations are formu-
lated, which are then used in Section 5 to carry out several 
illustrative numerical analyses. Conclusions are drawn in 
Section 6. 

2. Introduction to chaotic 
vibration problems 

Chaos frequently occurs in many nonlinear dynamical 
systems. Chaotic states are defined as deterministic, non-
linear system behaviors in which, after a short evolution, 
information about the system’s initial states is lost. 
Dynamical systems are highly sensitive to changes in their 
initial conditions. Their motion trajectories, which initially 
differ only infinitesimally, diverge exponentially over 
time, resulting in significant differences after a short 
period. 

The qualitative methods for identifying chaos include 
phase portrait analysis, Poincaré cross-section analysis, 
bifurcation diagrams, and Fourier spectral analysis. A 
characteristic feature of phase portraits in chaotic systems 
is that the trajectory fills the phase space, passing through 
nearly all of its points. The Poincaré cross-sections of 
chaotic systems take the form of so-called strange attrac-
tors – sets of points in the phase space approached by 
motion trajectories with different initial conditions. 
These attractors exhibit self-similarity, adopting a fractal 
structure and maintaining the same appearance for dif-
ferent initial conditions. Bifurcation diagrams, which 
depict the value of an analyzed quantity as a function of 
a selected parameter, are characterized in chaotic systems 
by multiple splittings of the graph of the examined quan-
tity at fixed parameter values. Fourier analysis of chaotic 
vibrations is distinguished by the emergence of contin-
uous power–frequency dependencies, which indicate the 
presence of a continuous frequency spectrum in chaotic 
vibration regions. 

The quantitative method for identifying chaotic states 
is the analysis of Lyapunov exponents, which determine 
the average rate of exponential divergence of initially 
close trajectories. A positive value of the largest 
Lyapunov exponent signifies the system’s sensitivity to 
initial conditions, indicating chaotic behavior. All the 
aforementioned methods, which determine whether a 
system is in a chaotic or nonchaotic state, are presented 
below alongside the approach utilizing multiwavelet and 
multipacket analysis for the qualitative assessment of the 
nature of the analyzed vibrations. 

3. Basic theory of multiwavelet
and multiwavelet packet
analysis 

In the multiwavelet analysis, the set k2 j of scaling func-
ntions φ ( )x define the space Vk and the set k2 j of wavelet jjl 

nfunctions ψ x( ) define the space Wk [19–22]. Basis func-j 

n n 
2 j /2 

jl 

tions φ ( )x and ψ x( ) are obtained by dilation ( ) and
jl jl 

translation ( )l of each from k functions, which generate 
nthe set of fundamental multiscaling functions φ ( )x = 

0 1 k−1 k{φ x( ), φ x( ), …, φ ( )x } from the space V and0 

n 0fundamental multiwavelet functions ψ x( ) = {ψ x( ), 
1 k−1 k

ψ x( ), …,  ψ ( )x } from the space W satisfying the fol-0 

lowing relations [23, 24]: 

n j /2 n j −j −jφ x ns (1)
jl
( ) = 2  φ (2 x − l), x ∈ [2 l, 2 (l + 1) ] , 

n j /2 n j −j −j 

jl
( ) = 2  ψ (2 x − l), x ∈ [2 l, 2 (l + 1) ]  ψ x  nf , (2) 

where ns is the compact support length of fundamental 
multiscaling functions, nf is the compact support length 
of fundamental multiwavelet functions, n = 0,  …,  k − 1 , 
l = 0,  …, (2 j − 1)ns f, , j denotes the level of approximation, 
and parameter k determines the number of fundamental 
multiwavelet function sets as well as the number of funda-
mental multiscaling function sets. Number k does not 
depend on the assumed level j. 

n 0The set of multiwavelet functions ψ x( ) = {ψ x( ), 
1 k−1ψ x( ), …,  ψ ( )x } is generated on the basis of multiwa-

n 0 1 k−1  velet scaling functions φ ( )x = {φ x( ), φ x( ), …, φ ( )x } 
n[19–23]. The equations that define the functions ψ x( ) and 

nφ ( )x are named the two-scale refinement equations and 
take the following forms: 

k−1 

n ( )0 j ( )1 jψ x( ) = 2 ∑ (g φ (2x) + g φ (2x − 1))
n j, n j, 

j=0 (3) 
( )r j+⋯ g φ (2x − r)),
n j, 

k−1 

( )0 ( )1n j jφ x( ) = 2 ∑ (h φ (2x) + h φ (2x − 1))n j, n j, 

j=0 (4) 
( )r 

+⋯ h φ j(2x − r)),n j, 

where n = 0,  …,  k − 1  and under study in this article 
multiplicity r is equal, r = 1. 

nMultiwavelet functions ψ x( ) and scaling functions 
nφ ( )x defined by relations (3) and (4) are presented as 

linear combinations of the same functions, but their dif-
ferences determine, respectively, low- and high-pass filter 
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( )0 ( )1 ( )0 ( )1coefficients {h h g g }, which in the case of, , ,n j, n j, n j, n j, 

multiwavelet analysis are k k matrices.× 

The function space W
k created by multiwaveletsj 

n
ψ x( ) is an orthogonal complementation of the function 
jl 

kspace V to the space of the upper level of approximation j 

k
V and can be defined asj+1 

k k k k k k k k
V V= =⊕ ⊕ W ⊕ W = V ⊕ WW Vj+1 j j j−1 j−1 j − j mj m  − 

(5)
k k 

⊕ ⊕  ⊕W W… .j−1 j 

According to expression (5), any square integrable 
function from the j level of approximation, when the mul-
tiscaling functions are taken from the m level of approx-
imation, can be expressed in multiwavelet bases in the 
following formula [23, 24] 

m v2 −1k−1 2 −1  j−1 k−1 

j n n n n
= +  ∑ ∑ ∑  ( )f x( )  ∑ ∑ c φ ( )x  d ψ x , (6)

m m l, m l  v l,, v l, 

l n=0 =0 l v=0=0 n=0 

where the coefficients of approximation are given as follows: 

−m −m2 +1( )  2 +1( )l l 

n j n n j n
f x( )  ( )  , = f x( )  ( )dc = dφ  x x d  ψ x x. (7)m l, ∫ ∫m m l. v l, m v l. 

2 l 2 l−m −m 

n nMultiwavelet approximation coefficients j c and dm,l v,l 

form the basis for the calculational analyses presented in 
this article. The decomposition of the multiwavelet trans-
form is shown in Figure 1. 

In the frame of multiwavelet packet analysis and in con-
trast to multiwavelet analysis, subspaces of multiwavelet 

kfunctions W are decomposed on subsequent stages of j 

decomposition [10, 25]. The  functions that create the  sub-
kspaces of decomposition W are packet functions defined as j 

n 1/2 jw x( ) = 2  
j

∑H w (2 x k  (8)k i  , 

k 

2 ,i j  − ) 

H 
c1,0,l

2 

c2,0,lyi Y 2 

c3,0,l

2 
G 

n 1/2 jw x( ) = 2  
j

∑G w (2 x − k).2 +1,i j  k i  (9) 
k 

n nFunctions w and w are the initial points of recursive 0,0 1,0 

nexpressions (8), (9) and enable successive functions w x( ) toi j, 

( )0 ( )1be determined. Coefficients of matrices Hk {h h } and= ,n j, n j, 

( )0 ( )1 
k = ,{ g }G g  are treated as low- and high-pass filters,

n j, n j, 

respectively, and are used in classical multiwavelet analysis. 
kThe set of n k V= − 1 multiscaling functions from space 0 

ncreates the fundamental multiscaling packet functions w0,0, 
kand the set of n multiwavelet functions from space W cre-0 

nates the fundamental multiwavelet packet functions w1,0 

n n n  0 1  k−1  w  φ x φ x  x φ ( )  = ,( )  ( ) = {φ ( ), x ,  …,  φ ( )x }, (10)0,0 

n n n  0 1  k−1  ( )  ( ) = {ψ x ψ( ), x ,  …,  ψ ( )}.w  ψ x ψ x  ( )  (11)= ,  x1,0 

When using formulas (3) and (4), expressions (8) and 
(9) take the form 

k 

n 1/2 0 n j 1 n jw x( ) = 2  
j

∑∑(h w (2 x) + h w (2 x − 1)), (12)
2 ,i j  n j i  ,, n j i  

n=0 j 

k 

n 1/2 0 n j 1 n jw x2 +1,  ( ) = 2  
j

∑∑(g w (2 x) + g w (2 x − 1)). (13)i j  n j, i n j, i 

n=0 j 

The packet multiwavelet approximation coefficients 
are calculated similarly to expression (7), as the respective 

jscalar products of the analyzed function f x( ) and the 
m 

functions described by relations (12) and (13). 
In the presented article, the set of multiscaling func-

ntions φ ( )x is defined using Legendre polynomials 
21 ∂ − 1( )x

P ( )x = 
n n  

, which are scaled up to the range of n n nn ∂x2 !  

x 0, 1∈ [ ] according to the expression 

n P x l2 − ]2 + 1  ( ), x ∈ [0,  1  
n ⎧ n

φ x( ) = , = 0,  …,  
⎨ 0, ∉ ( )  

n k
(14)x 0, 1⎩ 

− 1.  

c1,j,l 

c1,1,l 
. . . c1,j-1,l 

c2,j,lc2,j-1,l. . .c2,1,l H 2
2 c3,j,lc3,j-1,l. . .c3,1,l 
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Figure 1. Decomposition of the multiwavelet transform for three branches of basic wavelet functions. 
Source: Author’s contribution. 
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Filter coefficients, which are necessary to determine 
the fundamental multiwavelets and fundamental multi-
scaling functions, are calculated from the formula 

1 1 

2 2 

( )0
= 2  n j ( )0 n j (15) 

, ( )  (2 d) x , g = 2∫ ( )  (  )hn j  ∫φ x φ x  ψ x φ x2 dx ,
n j, 

0 0 

( )1 n j+ ( )0 ( )1 n j k  ( )0+ +hn j  = −( )1 hn j, , g = −( )1 g . (16), n j, n j, 

The exact description of the obtained Legendre multi-
wavelet functions is given in previous studies [19, 20, 25]. 

Selected multiscaling functions and multiwavelet func-
tions of Legendre multiwavelet and multiwavelet packets 
are shown in Figure 2. 

4. Analyzed equations 

Two systems are considered in this article. One of them is 
the well-known Duffing oscillator motion described by 

equation (17), where the elasticity force characteristic con-
stitutes the linear function: 

2dy t( )  dy t( )  
3+ c − αy t( ) + βy t( )  = F cos(ωt). (17)

2dt dt 

Equation (17) can be used to describe the vibration of a 
cantilever beam placed between two magnets and being 
kinematically excited [7, 26, 27]. In equation (17), the para-
meters F and ω are, respectively, the amplitude and fre-
quency of the exciting force, the parameter c describes 
damping, and α and β are responsible for the elasticity 
force characteristic. 

The other analyzed system [28] is shown in Figure 3. It 
consists of two identical massless bars connected via a 
hinge with mass m placed in the hinge. The hinge is sup-
ported by an elastic spring with nonlinear characteristic S . 
The system is loaded with a dynamic axial force P(t) [28]. 

Taking into account the relations in Figure 3 and 
assuming angle α as an independent variable, one 
can write the system’s kinetic energy and its potential 
energy and the generalized force as: = 0 5 m 2 ′( ),T . L α  t  

a) b) 

c) 

16 

Figure 2. Basic multiscaling functions of Legendre multiwavelet order k = 3 (a) and basic multiwavelet functions of Legendre multi-
wavelet order k = 3 (b), and second term multiwavelet packet functions of Legendre multiwavelet order k = 3 for j = 3, from 
final decomposition stage (c). 

Source: Author’s contribution. 
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L L 

m 

x 

k x + k1 x^3 

Figure 3. Schematic of the analyzed system. 

2 2  4 4V k0.5 L sin α t( ) + 0.25 kL sin α t( ), and ( )= Q P t= 2L 

sin α t( ). When the Lagrange equation of the second 
kind is used, the system vibration equation assumes the 
form: 

2 2  4 3m ( )  kL sin  ( ) cos  α t  + k L  sin  ( )L α″ +t  α t  ( )  1 α t  cos  α t( )
(18) 

P t( ) L sin  α t( ).= 2  

Equations (17) and (18) form the basis for the numer-
ical analysis, and the results of which are presented in the 
next section. 

5. Numerical analysis 

This section presents an approach for detecting chaotic states 
using multiwavelet analysis and packet multiwavelet ana-
lysis. This approach constitutes an alternative to the qualita-
tive chaos identification methods described in Section 2. The  
conclusions emerging from a multiwavelet analysis and a 

= + , 

= ( ),
z P(t) 

= 2  (1 − ( )), 

= (1 − ( )), 

( ) = P  (ω ) 

Source: Author’s contribution. 

packet multiwavelet analysis in the identification of the 
chaotic and nonchaotic states of dynamical systems are ver-
ified by spectral analysis, Poincaré methods, bifurcation dia-
grams, phase portraits, and an analysis of the highest Lya-
punov exponent of the investigated systems. 

The range of variation of excitation amplitude F, in  
which chaotic vibrations are generated, is corroborated 
by the bifurcation diagram, constructed on the basis of 
the numerical integration of equation (17), together with 
the graph of the variation of the highest Lyapunov expo-
nent as a function of excitation amplitude F (Figure 4). The 
variation of the highest Lyapunov exponent versus excita-
tion amplitude F was determined by comparing the system 
response whose initial conditions differ by 10−4. When 
integrating equation (17), zero initial conditions 
y( )0 = 0,  y′( )0 = 0 0 were imposed, and the exemplary 
parameters ω = 0.7, c = 0.1, α = 0.2, β = 0.53 were assumed. 

An analysis of the bifurcation diagram (Figure 4) 
shows that if F from the interval 5.505 ≤ F ≤ 8.98 is 

Figure 4. Bifurcation diagram (blue) and function of variation of max. Lyapunov exponent (red) for the Duffing oscillator described by 
equation (17) (ω = 0.7, c = 0.1, α = 0.2, β = 0.53). 

Source: Author’s contribution. 
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a) b) 

Figure 5. Convergence of the highest Lyapunov exponent over time at F = 6.5 (a) and F = 16 (b) for the Duffing oscillator described by 
equation (17). 

assumed, a system nonchaotic state can be obtained, 
whereas if F is taken from, e.g., the interval 
15.35 ≤ F ≤ 17.0, a chaotic state is obtained. In the further 
considerations, the assumed excitation amplitude values: 
F = 6.5  and F = 16 characterize, respectively, the non-
chaotic and chaotic motion of the analyzed system. 

To confirm that the assumed amplitude values are 
responsible for the chaotic and nonchaotic system state 
in Figure 5, a function of the variation of the Lyapunov 
exponent over time, representing the average rate of 
divergence of the solutions, was plotted. The average value 
was calculated over many initial values distributed along 
the motion trajectory. A chaotic state of the system occurs 
when the Lyapunov exponent is positive. A positive Lya-
punov exponent means that trajectories that are initially 
close quickly diverge, leading to the unpredictability of the 
system. 

The results for qualitatively identifying the chaos phe-
nomenon or its absence (phase trajectory, Poincaré cross 
sections, Fourier spectral analysis) for the Duffing oscil-
lator described by equation (17) are depicted in Figures 6 
and 7. The Poincaré cross sections in Figures 6 and 7 were 
plotted assuming the time distance between two 

a) b) 

Source: Author’s contribution. 

consecutive points to be equal to 2 /π ω. The nature of the 
results in Figures 6 and 7 also confirms that the assumed 
amplitude values in equation (17) are responsible for the 
chaotic and nonchaotic system state. 

In addition, using packet wavelet analysis, phase tra-
jectory, Poincaré cross section, and Fourier spectral ana-
lysis for the Duffing oscillator described by equation (17) 
are obtained (Figures 8 and 9). The results presented in 
Figures 8 and 9 are consistent with the results in Figures 6 
and 7. The input data subjected to the wavelet packet 
transform were a sequence of N = 1,024 numbers changing 
during the signal duration y(t) (for F = 6.5 and F = 16) with 
a constant sampling frequency of Δt = 0.01. The discretized 
signal was subjected to packet wavelet transform using 
Walsh packet functions that use Haar filters. The effect 
of the high-pass Haar filter is the process of differentially 
computing the scaled derivative of the analyzed signal. 
Appropriate weight multipliers that scale the decomposed 
signal and depending on the level of decomposition and 
the selected package were calculated based on the for-
mulas given in the work [29]. This made it possible to 
obtain the correct discrete values of the function and its 
derivatives. Hence, phase portraits and Poincaré sections 

c) 

Figure 6. Phase trajectory (a) Poincaré cross sections, (b) power spectra (Fourier analysis), (c) for nonchaotic signal (F = 6.5) described by 
equation (17) with parameters (ω = 0.7, c = 0.1, α = 0.2, β = 0.53). 

Source: Author’s contribution. 
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a) b) c) 

Figure 7. Phase trajectory (a) Poincaré cross section, (b) power spectra (Fourier analysis), (c) for chaotic signal (F = 16) described by 
equation (17) with parameters (ω = 0.7, c = 0.1, α = 0.2, β 

of the discrete signals could be constructed using Walsh-
wavelet packet analysis. Signals from various frequency 
levels obtained as a result of the packet wavelet trans-
form of the input signal y(t) were subjected  to  Fourier  
analysis. This made it possible to select a signal represen-
tation in which it is easier to detect more subtle changes 
in the distribution of the signal power spectrum, indi-
cating more critical changes in the dynamics of the 
system (Figures 8c and 9c). Presented in this way, the 
packet-based Walsh wavelet analysis seems to be a par-
ticularly valuable tool, among others for qualitative 

= 0.53). 
Source: Author’s contribution. 

identification of critical states, because it can be used 
for any discrete measurement data and can be a valuable 
source of information about the current state of mea-
sured real objects (designation: y(t)(n,k), where: “n” –  
nth decomposition level of the packet wavelet analysis 
and “j” – jth packet number from the nth decomposition 
level). 

A multiwavelet analysis is based on a system response 
in the form of a discrete set of displacements y(t) with 

9number N = 2  = 512 of equidistant readings y from the 
i 

first 200 s of the response duration of the system described 

Figure 8. Phase trajectory (a), Poincaré cross sections (b), and power spectra (Fourier analysis) (c) obtained from wavelet packet 
transform of nonchaotic signal (F = 6.5) described by equation (17). 

Source: Author’s contribution. 

Figure 9. Phase trajectory (a), Poincaré cross section (b), and power spectra (Fourier analysis) (c) obtained from wavelet packet 
transform of chaotic signal (F = 16) described by equation (17). 

Source: Author’s contribution. 
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L_k3_1 L_k3_2 L_k3_3 L_k3_1 L_k3_2 L_k3_3 

j=9 j=9 

j=8
j=8 

j=7
j=7 

j=6
j=6 

Figure 10. Selected resolution levels j of multiwavelet analysis coefficients of the Duffing oscillator described by equation (17) for 
nonchaotic signal F = 6.5 (left part of figure) and chaotic signal F = 16 (right part of figure). 

by equation (17). Legendre wavelets of order 3 (L_k3) were 
used in the analysis of the signal. Since the multiwavelet 
functions from space V0 are determined over interval 
t ∈ [0, 1] while the signal was determined over any 
interval t ∈ [t0, tk], the analyzed signal was rescaled by 
multiplying it by parameter τ = (t − t0) (/ tk − t0) in order 
to avoid problems with boundary conditions. As a result, 
the considered problem comes down to a problem deter-
mined over interval t ∈ [0, 1]. 

a) j=7 , k3_1 

Source: Author’s contribution. 

Figure 10a and b depicts the time distribution of the 
wavelet expansion coefficients of the response of system 
(17) in, respectively, nonchaotic state (F = 6.5) and chaotic 
state (F = 16) at the particular signal perception levels. The 
presented resolution levels j correspond to the analyzed 
system’s frequencies in a range of 0.712–1.282 Hz. The 
higher the level j, the higher the vibration frequency. 

As one can see, there are differences in the distribution 
of multiwavelet analysis coefficients between the chaotic 

b) j=7, k3_1 

Figure 11. Multiwavelet expansion coefficients obtained at resolution j = 7 of nonchaotic signal F = 6.5 (a) and chaotic signal F = 16 (b) for 
the Duffing system described by equation (17) (ω = 0.7, c = 0.1, α = 0.2, β = 0.53). 

Source: Author’s contribution. 

a) j=7 , k3_2 b) j=7 , k3_2 

20 

Figure 12. Multiwavelet expansion coefficients obtained at resolution level j = 7 of nonchaotic signal F = 2.5  (a) and chaotic signal F = 
1.329 (b) for the Duffing oscillator described by equation (17) (ω = 3.3, c = 0.8, α = 12, β = 100). 

Source: Author’s contribution. 
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Figure 13. Nonchaotic signal energy (F = 6.5, F = 2.5 – dashed line) and chaotic signal energy (F = 16, F = 1.329 – solid line) versus the 
number of multiwavelet expansion coefficients for the Duffing oscillator: (ω = 0.7, c = 0.1, α = 0.2, β = 0.53) (a) and (ω = 3.3, c = 
0.8, α = 12, β = 100) (b). 

Source: Author’s contribution. 

j=6 

j=5 

j=4 

Figure 14. Selected resolution levels j of multiwavelet packet analysis coefficients for nonchaotic signal F = 6.5 of the Duffing oscillator 
described by equation (17) using packets of Legender’s multiwavelets k3_2. 

Source: Author’s contribution. 

j=6 

j=5 

j=4 

Figure 15. Selected resolution levels j of multiwavelet packet analysis coefficients for chaotic signal F = 16 of the Duffing oscillator 
described by equation (17) using packets of Legender’s multiwavelets k3_2. 

Source: Author’s contribution. 
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Figure 16. Selected resolution levels j = {4, 5, 6, 7} of wavelet analysis coefficients for nonchaotic signal F = 6.5 (a) and chaotic signal F = 
16 (b) of Duffing oscillator described by equation (17) (ω = 0.7, c = 0.1, α = 0.2, β = 0.53). 

Source: Author’s contribution. 

Figure 17. Expansion coefficients of wavelet analysis (a) and (b) and packet wavelet analysis (c) and (d), obtained for nonchaotic signal F 
= 6.5 (a), (c) and chaotic signal F = 16 (b), (d) of Duffing oscillator described by equation (17) (ω = 0.7, c = 0.1, α = 0.2, β = 0.53). 

signal and the nonchaotic signal, especially at the lower 
resolution levels, whereby the two states can be easily 
distinguished from each other. In the chaotic motion 
range, the coefficients are less ordered than for nonchaotic 
motions, which is corroborated by Figures 11 and 12. 
Figure 11 applies to the Duffing oscillator at the equation 
parameters (ω = 3.3, c = 0.8, α = 12, β = 100). 

When plotting a diagram of the energy of the analyzed 
signals, calculated as the sum square of the wavelet expan-
sion coefficients as a function of the number of the coeffi-
cients (ordered from the lowest to the highest absolute 

Source: Author’s contribution. 

value) taken into account, one can notice that a larger 
number of expansion coefficients than in the case of non-
chaotic states is needed for a chaotic state at a given 
energy level (Figure 13). 

Significant differences between the nonchaotic signal 
and the chaotic signal observed in the multiwavelet ana-
lysis are even more apparent in a packet multiwavelet 
analysis. Figures 14 and 15 show selected levels of the 
wavelet decomposition of, respectively, a nonchaotic 
signal (F = 6.5) and a chaotic signal (F = 16). The resolution 
levels j correspond to signal frequencies from a range of 
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a) b) 

= 10  / ≥ 28,49  

Figure 18. Bifurcation diagram (a) and variation function of max. Lyapunov exponent (b) for the system described by equation 
100 N 1,000 N(18) ⎛L mm,  = 1  kg,  k = , k ω =  10  rad/s⎞= 0.5  1 = 3

, . 
m m⎝ ⎠ 

Source: Author’s contribution. 

a) b) 

= 15  / ≥ 53,5 

Figure 19. Bifurcation diagram (a)and variation function of max. Lyapunov exponent (b) for the system described by equation 
100 N 1,000 N(18) ⎛L mm,  = 1  kg,  k = , k ω ⎞= 0.5  =  ,  = 15  rad/s  . 
m 1 3m⎝ ⎠ 

Source: Author’s contribution. 

= 10  b) P= 30 N  a) P=25N / = 10  / 

L_k3_1 L_k3_2 L_k3_3 L_k3_1 L_k3_2 L_k3_3 

j=9 j=9 

j=8
j=8 

j=7 
j=7 

j=6 

j=6 

j=5 
j=5 

Figure 20. Selected resolution levels j of multiwavelet signal analysis coefficients in pre-critical state P = 25 N (a) and in post-critical state 
100 N 1,000 N 

= 0.5  = 1  k = 1 = =P = 30 N (b) for the system described by equation (18) ⎛L mm,  kg,  ,  k ω
3 

,  10  rad/s⎞. 
m m⎝ ⎠ 

Source: Author’s contribution. 
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a) = 25  j=6 , k3_1 = 30  j=6 , k3_1 

Figure 21. Multiwavelet expansion coefficients obtained at resolution level j = 6 in pre-critical state P = 25 N (a) and in post-critical state 
100 N 1,000 NP = 30 N (b) for the system described by equation (18) ⎛L = 0.5  m,  m = 1  kg,  k = , k1 = 3

, ω =  10  rad/s⎞. 
m m⎝ ⎠ 

0.176 to 0.318 Hz. The differences between the chaotic state 
and the nonchaotic state are similar to the case of the 
multiwavelet analysis, which confirms the effectiveness 
of multiwavelet packet analysis in the qualitative identifi-
cation of the chaos phenomenon. 

A classical wavelet analysis and packet wavelet analysis 
of a chaotic signal and a nonchaotic signal carried out using a 
Daubechies filter of order 12 and taking into account periodic 
boundary conditions lead to the same conclusions in the 
qualitative identification of the chaos phenomenon as does 
a multiwavelet analysis. The expansion coefficients of the 
nonchaotic signal in the base of wavelet or packet wavelet 
functions are more regular, and the number of nonzero 
expansion coefficients is, as a rule, higher than at chaotic 
states, particularly at high frequency levels of the investi-
gated signals (Figures 16 and 17). 

If the system shown in Figure 3, described by equation 
(18), is analyzed for the exemplary parameters L = 0.5  m,  

100 N 1,000 N 

m = 1  kg,  k = , k1 = 3 , ω =  10  rad/s, it can be 
m m 

demonstrated that stability is lost at a force 
Pcr ≥ 28.49  N. The value of the force at which stability 
loss occurs also depends on the frequency with which 

a) = 40  j=6 ,k3_1 

Source: Author’s contribution. 

force P changes, i.e., on ω. For example, for ω = 15  rad/s, 
the stability of the system is lost at Pcr ≥ 53.5  N. The critical 
load refers to the state in which the motion of the system 
becomes unbounded. One indicator of stability loss is a 
sudden jump in the value of the Lyapunov coefficient at 
the point  where the  critical  force occurs.  This  phenomenon  
is shown for different values of ω in Figures 18 and 19. The 
bifurcation diagrams (Figures 18a and 19a) indicate that for 
the assumed parameters of equation (18), the system 
responses in both cases (ω = 10  rad/s, ω = 15  rad/s) are  
within the area of chaotic solutions. 

The distribution of the expansion coefficients of the signal 
multiwavelet analysis for the case when the system is in the pre-
critical phase and the post-critical phase (Figure 20)was  checked  
for the second system described by equation (18). Due to the fact 
that in the two states the analyzed system is sensitive to a 
change in the initial conditions, and so shows the signs of the 
chaos phenomenon, the distribution of the multiwavelet coeffi-
cients in chaotic states is irregular and unpredictable, similarly 
to the previous problem. One can notice that a larger number of 
nonzero wavelet expansion coefficients occur when the system 
is unstable (Figures 21 and 22). 

b) = 55  j=6 , k3_1 
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Figure 22. Multiwavelet expansion coefficients obtained at resolution level j = 6 in pre-critical state P = 40 N (a) and in post-critical state 
100 N 1,000 NP = 55 N (b) for the system described by equation (18) ⎛L = 0.5  m,  m = 1  kg,  k = , k = , ω =  15  rad/s⎞. 
m 1 3m⎝ ⎠ 

Source: Author’s contribution. 
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6. Conclusions 

This article demonstrates the effectiveness of multiwavelet 
analysis and packet multiwavelet analysis in the qualita-
tive evaluation of chaotic behavior in the responses of 
nonlinear oscillatory systems. Multiwavelet analysis 
enables an accurate decomposition of the signal into com-
ponents of different frequencies, allowing one to capture 
subtle changes in the signal structure that make it easier to 
indicate a chaotic state. Employing packet multiwavelet 
analysis further decomposes the signal into smaller sub-
spaces, thereby increasing the sensitivity for detecting 
such changes. The system response, subjected to multiwa-
velet and packet multiwavelet analysis, is evaluated by 
comparing the distribution of multiwavelet coefficients 
of the signal expansions in nonchaotic and chaotic states. 
In addition, the cumulative energy of the multiwavelet 
approximation is calculated, which serves to distinguish 
between these two states. The results obtained via multi-
wavelet methods are verified using traditional qualitative 
approaches, such as Fourier analysis, Poincaré sections, 
bifurcation diagrams, as well as a quantitative method 
like Lyapunov exponent analysis. Furthermore, in the qua-
litative identification of critical states, Walsh wavelet 
packet analysis was applied as an innovative tool particu-
larly useful for detecting critical states having at its dis-
posal only a set of discrete measurement data. 

The numerical analyses conducted have led to the fol-
lowing detailed conclusions: 
� Chaotic states observed through multiwavelet analysis 
are characterized by a relatively small number of coeffi-
cients with comparable absolute values, resulting in an 
uneven distribution of these coefficients compared to 
nonchaotic states. 

� The cumulative energy of the chaotic and nonchaotic 
signals can aid in differentiating between these two 
types of signals, since in the chaotic state a larger set 
of approximation coefficients must be considered to 
maintain a specified level of signal energy. 

� The time required for multiwavelet analysis to distin-
guish between chaotic and nonchaotic indications is sig-
nificantly shorter than that needed by other qualitative 
methods used for assessing chaotic states. 
It should be emphasized that the analytical answers 

obtained using qualitative methods in the assessment of 
chaotic states are not always clear, unlike quantitative 
methods. Therefore, they should be confirmed by several 
methods. Hence, the methods presented in the article 
based on multiwavelet and packet multiwavelet analysis 
constitute an additional qualitative tool for identifying 
chaotic states of the analyzed systems and make a 

significant contribution to the development of fast quali-
tative methods for assessing critical states in nonlinear 
systems. 
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