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Abstract: From a practical point of view, the most 
important feature of a parametric periodic system is the 
instability phenomenon. Unlike in systems with constant 
coefficients, in which only points of instability exist, 
in parametric systems, whole areas of instability occur. 
This study presents a method of automatic stabilisation 
of unstable multi-degree-of-freedom linear continuous-
in-time parametric systems. In this method, a parametric 
excitation can only be a continuous function of time. This 
paper concerns the sensitivity analysis of multipliers 
– complex eigenvalues of the monodromy matrix. The 
method is an alternative approach to that proposed in 
all other previous works on this subject. A procedure 
based on sensitivity analysis and directional derivative 
was used. The method’s innovation is achieving the 
non-homogeneous parametric sensitivity equation by 
evaluating analytically the derivative of the homogeneous 
parametric equation of motion with respect to the design 
parameter. Then, by solving this sensitivity equation, 
evaluating the first derivative of the monodromy matrix, 
and finally, the first derivatives of multipliers. Ultimately, 
this method is based on a sensitivity analysis of the 
absolute values of multipliers. Furthermore, the sensitivity 
analysis method was improved and generalised to allow to 
correctly determine the eigenderivatives also with respect 
to those system parameters, on which the parametric 
excitation period depends. In particular, it becomes 
possible to use the parametric excitation period as a design 
parameter, which was not possible in the works of other 
authors. Examples of this method’s implementation are 
also presented. This work continues the topics developed 
by the author in his earlier works. 

Keywords: first-order sensitivity; parametric; 
stabilisation; continuous; m.d.o.f.

1  Introduction
The sensitivity analysis of parametric periodic systems can 
be an interesting theoretical problem in itself. However, 
the most important feature of parametric periodic 
systems is the instability phenomenon, which can be 
observed for particular values of the system parameters. 
Resonance vibrations in unstable parametric systems are 
very dangerous. Thus, stabilisation of unstable systems is 
usually the most important practical problem. 

A full review and presentation of the existing state 
of knowledge in the field of parametric vibrations, with 
particular emphasis on stability and sensitivity analysis, 
will be presented in the author’s next paper, entitled 
‘Application of second-order sensitivity analysis to 
stabilisation of unstable continuous multi-degree-of-
freedom parametric periodic systems’, submitted for 
publication in Studia Geotechnica et Mechanica together 
with the current work. Over a hundred papers are 
discussed there. However, only a few of these, which deal 
with the sensitivity of periodic parametric systems, are of 
importance from the point of view of the implementation 
of the goal assumed in this work.

For instance, Gu et al. [1, 2] calculate derivatives 
of eigenexponents, while Seyranian et al. [3] employs 
the sensitivity analysis of multipliers. In paper [2], the 
method of determination of first-order derivatives of 
characteristic exponents is presented. This paper contains 
an improvement of the method presented in [1]. This 
improvement allows to determine correctly the derivatives 
of characteristic exponents with respect to those system 
parameters on which the parametric excitation period 
depends or of which the period is itself a design parameter.

In this article, the first-order sensitivity analyses 
with respect to those parametric system parameters that 
can influence the stability/instability of the system were 
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performed. Finally, it remains possible to determine 
those parameters of the system whose influence on the 
stabilisation procedure of such systems could be the 
greatest. This work continues the topics developed by the 
author in his earlier works, among others, in [4-8].

In the current paper, the original method of first-order 
sensitivity analysis of parametric periodic systems was 
formulated. There are two ways of performing stability 
analysis of parametric periodic systems. Both of them 
are connected with Floquet theory [9]. The first way is 
to use Lyapunov characteristic exponents, the second is 
to use multipliers, which are the complex eigenvalues 
of the monodromy matrix. The method applied in this 
paper is based on a sensitivity analysis of the absolute 
values of multipliers. From the mathematical point of 
view, sensitivity analysis of multipliers is the calculation 
of eigenderivatives with the use of derivatives of the 
monodromy matrix. Eigenderivatives are extremely 
useful for determining the sensitivities of the dynamic 
response to the system parameters variations. The 
method’s innovation is the idea to achieve the sensitivity 
equation by analytically calculating the derivative of 
the homogeneous parametric equation of motion with 
respect to the design parameter. Then, by solving the non-
homogeneous parametric sensitivity equation obtained in 
this way, to evaluate the first derivative of the monodromy 
matrix and finally the first derivatives of multipliers.

Examples of this method’s implementation are also 
presented in this paper.

2  Linear parametric periodic 
system and its stability
A linear non-homogeneous periodic parametric system of 
an n linear second-order differential equation of motion 
can be written as a first-order system

( ) ( ) ( ) ( )t t t t= +x A x f

1 1( )
( ) ( ) ( ) ( )

t
t t t t− −

 
=  − − 
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 
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where a 2n×2n system matrix A(t) is periodic with period 
T and 2n-dimensional vectors x(t) and f(t) are a vector of 
state and an external excitation, respectively. B(t), C(t), 
and K(t) are square n×n real matrices of inertia, damping, 
and stiffness, respectively, and F(t) is an n-dimensional 
excitation column vector.

Based on the Floquet theory [9], the solution of the 
homogeneous equation corresponding to Eq. (1)1 has the 
form

( ) ( ) (0)t t=x X x
  

(0) =X I
  

0

( ) ( ) ( )
t

t dτ τ τ= + ∫X I A X (2)

where X(t) is a standard fundamental solution matrix 
or a state transition matrix normalised at zero. A steady 
2n×2n monodromy matrix D is defined as the value of the 
fundamental matrix X(t) at the time point t = T, i.e., D = 
X(T).

Solving the right- and left-side eigenproblem of the 
monodromy matrix, i.e.,

( )ρ− =D I r 0        T T( )ρ− =l D I 0  
{ } 1 2 2diag( , ,..., )nρ ρ ρ=ρ       (3)                             (3)

one can find the 2n right- and the left-side modal vectors 
r and lT and the 2n multipliers, i.e., eigenvalues of the 
monodromy matrix D. Since the monodromy matrix D is 
real, non-singular, and asymmetrical, multipliers (Eq. (3)) 
are generally complex numbers. 

The stability of the trivial solution of a homogeneous 
Eq. (1) depends on the absolute values of multipliers 
(Eq. (3)). From the point of view of practical application, 
a simplified system’s stability/instability criterion is 
sufficient. If the absolute value of:

	– each multiplier is less than 1, the system is 
asymptotically stable in the Lyapunov sense,

	– at least one multiplier is greater than 1, the system is 
unstable in the Lyapunov sense.

The first and the second formula in Eq. (3) for all multipliers 
can be written in the form
               

 

{ }=DR R ρ   { }T T=L D ρ L    (4) (4)

where R (det 0)≠R  is the right-side modal matrix, 
whose columns are right-side eigenvectors kr of Eq. (3) 
corresponding to the eigenvalue ρk (to simplify writing, the 
index k is omitted henceforth). The left-side modal matrix 
L (det 0)≠L  whose columns are left-side eigenvectors kl  
of Eq. (3) corresponding to the eigenvalue ρk has to satisfy 
the condition

T =L R I  i.e. T 1−=L R (5)

After the operation of left-side multiplication of the first 
formula in Eq. (4) by TL  or of right-side multiplication of 
the second formula in Eq. (4) by R, and considering Eq. 
(5), Eq. (4) can be written in a more convenient form 
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 {ρ} = LTD R (6)

3  First-order sensitivity analysis

3.1  First derivative of multipliers with 
respect to design parameter

To simplify the analysis, similarly as in the papers [1–8], 
only the case when the eigenvalues of the monodromy 
matrix are non-repeated is considered. However, in this 
paper, it is assumed that the multipliers can be repeated 
provided that Jordan’s form of monodromy matrix is 
diagonal.

By calculating the derivative () p p′ = ∂ ∂ of both 
sides, for example, of the first formula in Eq. (4) with 
respect to design parameter p, and taking into account the 
equality from Eq. (3), the formula for the first derivative of 
multipliers is received in the form

{ } { }T T T
p p p p′ ′ ′ ′= + −ñ L D R L D R L R ñ (7)

where the symbol { }p′ñ  denotes the diagonal matrix of the 
first derivatives of the monodromy matrix’s multipliers 
with respect to the design parameter p.

3.2  Simplifying the formula calculation of 
the first derivative of multipliers 

From Eq. (7), it follows that to calculate the derivatives of 
multipliers, in addition to solving the eigenproblem Eq. (3), 
the derivative of the monodromy matrix p p′ = ∂ ∂D D and 
the derivative of the right-sided eigenmatrix p p′ = ∂ ∂R R
must be calculated with respect to the design parameter p. 
In the general case, it is not possible to present analytical 
formulas for the calculation of both multipliers and the R 
and D matrices. Consequently, the formula Eq. (7), simple 
from the point of view of analytical operations, becomes 
practically useless from the numerical point of view. This 
formula should be treated as a matrix equation in which 
there are two additional unknowns p′D and p′R , for which 
we must search for numerical algorithms that allow us to 
achieve the goal described by Eq. (7). 

It is therefore possible and necessary to further 
simplify Eq. (7) for the first derivative of multipliers. 

For simplicity, one can transform Eq. (7), writing it as

{ } { }p p p p′ ′ ′ ′− = − +D R R ρ D R R ρ (8)

and for the k-th multiplier, as

( ) ( )p p pρ ρ′ ′ ′− = − −D I r D I r (9)

Multiplying Eq. (9) from the left side by the left-side 
eigenvector, one can obtain

( ) ( )T T
p p pρ ρ′ ′ ′− = − −l D I r l D I r (10)

By virtue of Eq. (3), the expression and the right side of 
Eq. (10) has the value 0. So, one can write this equation 
in the form

( )T 0p pρ′ ′− =l D I r  or T T 0p pρ′ ′− =l D r l r (11)

where by virtue of the assumption Eq. (5)1, i.e., T 1=l r , 
one obtains 

T
p pρ′ ′= l D r  or { } T( )p pdiag′ ′=ñ L D R (12)

instead of formula Eq. (7). Thus, the formula for calculating 
the derivative of multipliers becomes much more simple. 
Formula Eq. (12) for calculating the derivative of the 
multipliers of the monodromy matrix D, shows that there 
is no need to know two matrices p′R  and p′D , but only one 
matrix p′D .

3.3  First derivative of a monodromy matrix 
with respect to design parameter 

The first derivative of a homogeneous equation 
corresponding to Eq. (1) with respect to parameter p is the 
non-homogeneous sensitivity equation where

( ) ( ) ( )pt t t′=f A x
 

p p
∂′ =
∂
AA (13)

It could be proven [5,9] that the solution of this non-
homogeneous sensitivity equation with zero initial 
conditions is the first derivative of the fundamental 
solution matrix with respect to the design parameter p. 
Ultimately, the first derivative of the fundamental and  the 
monodromy matrix can be written as

1

0

( ) ( ) ( ) ( ) ( )
t

p pt t dτ τ τ τ−′ ′= ∫X X X A X

1

0

 ( ) ( ) ( )
T

p p dτ τ τ τ−′ ′= ∫D D X A X
(14)

This formula can be calculated analytically or numerically, 
and the result may be used to calculate derivatives of 
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multipliers in accordance with the formula Eq. (12). The 
same result was obtained in [3].

3.4  The case when the period of parametric 
excitation depends on the design parameter 

The algorithm discussed in the previous paragraph does 
not include a case in which the period T of the parametric 
excitation depends on design parameters. This is a 
special case. This problem was examined theoretically 
in the study by Gu et al. [2]. The method presented there 
is, unfortunately, very complicated, and the algorithm is 
completely useless from the point of view of the method 
proposed in this work. However, the results obtained 
in work [2] are valuable due to the possibility of their 
comparison with the results obtained in this paper.

The starting point to obtain the more general formula 
of a special case in which the period T of the parametric 
excitation depends on design parameters is a formula that 
formally describes the monodromy matrix [9]

0

( ) ( )
T

t t dt= + ∫D I A X (15)

In the calculation of the derivative of the monodromy 
matrix, Eq. (15) with respect to the parameter p, it is 
assumed that not only matrices ( , )t p=A A  and ( , )t p=X X ,  
but also the period ( )T T p=  is a function of the design 
parameter p. As a consequence of this assumption, the 
integration limit in the definite integral Eq. (15) becomes 
functionally dependent on the parameter p.

When calculating the derivative of the monodromy 
matrix, in this case, one must use the formula for the 
derivative of the integral with respect to the parameter [10]

( ) ( )

( ) ( )

( , )( , ) ( ( ), ) ( ( ), )
p p

p p

d f t p d df t p dt dt f p p f p p
dp p dp dp

β β

α α

β αβ α
  ∂

= + −   ∂ 
∫ ∫ (16)

In accordance with Eq. (16), one can calculate the 
derivative of the matrix D described by Eq. (15)
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Marking

( )

0

[ ( , ) ( , ) ( , ) ( , )]
T p

p p pt p t p t p t p dt′ ′ ′= +∫D A X A X (18) 

and

( )p pT T′ ′=D A D (19)

where p
dTT
dp

′ = , ( , )
p

t p
p

∂′ =
∂

AA , ( , )
p

t p
p

∂′ =
∂

XX , 

and comparing Eq. (18) and Eq. (14), one can state that 
Eq. (18) is visibly different from Eq. (27), however, both of 
them have to be equivalent. Equation (18) is the result of 
differentiation with respect to design parameter p of the 
matrix D described by Eq. (15), while Eq. (14) is a solution 
of the sensitivity equation achieved by differentiation of 
Eq. (1) with respect to the same design parameter p.

However, since there is an unknown matrix ( , )p t p′X  
in the formula Eq. (18), this formula is practically useless. 
Such a method (with the use of formula Eq. (18)) of 
computing the derivative of a monodromy matrix can only 
be used if the analytical form of the fundamental matrix 
of solutions X(t) is known. Then, the first derivative of 
this matrix can be calculated analytically. Thus, in the 
general case, the matrix p′D  has to be designated using 
the relationship Eq. (14) instead of Eq. (18). 

Finally, a more general formula than Eq. (14) for the 
first derivative of the monodromy matrix can be written as

p p p′ ′ ′= +D D D (20)

It can be concluded that the formula Eq. (20) differs 
from the earlier formula Eq. (14) by the presence of  the 
component p′D , which assumes values different from zero 
only when the period of parametric excitation is a function 
of the design parameter, or is itself a design parameter. In 
other cases, Eq. (14) remains valid. 

4   Parametric periodic systems’ 
stabilisation method 
Based on the concept of directional derivative [10], a 
procedure similar to that described in [3] was used. A 
gradient vector has been designated for the fastest decrease 
of the absolute value of complex multipliers. This gradient 
is used to calculate the change in design parameters to 
make the system stable. The resulting formulas can be 
interpreted as an expansion of the function describing 
the multiplier module in Taylor series, including the first 
two expansion members, Eq. (31). On the other hand, it 
could be the first two members of the formula in work [3], 
where the problem was solved using the small parameter 
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method. The algorithm was tested on the same examples 
that were previously analysed in works [4-8]. In particular, 
the effectiveness of the method was compared when, in 
addition to other system parameters, the parametric 
excitation period was also a design parameter. This is the 
fundamental difference between the algorithm presented 
in this work and that described in the work [3]. 

The possibility of a one-step exit from the area of 
instability was also tested.

4.1   Gradient of the absolute value of the 
multiplier

Directional derivative [5] of the multiplier 
1( , , ) ( )np pρ ρ= p  as a vector function of design 

parameters 1[ , , ]np p=p  , at the starting point 
specified in the parameter space with vector coordinates 

1[ , , ]o o
o np p=p  , in the direction of any vector 

1[ , , ]ne e=e   can be defined as follows:

 
T

0 1

( ) ( )
( ) lim ( )

n
o o

o o k kΔ k

ρ ρ
ρ e

ε

ε
ρ

ε→
=

+ −′ ′ ′= = = ∑e
p e p

p e ρ p   (21) (21)

where ε  is a small numeric parameter, ε = ∆e p  is a vector 
of the increments of parameters’ values 1[ , , ]np p=p  ,  
a vector p ( ) grad ( )o oñ′ =ñ p pp ( )o′ñ p  is called a scalar function 
gradient ( )ρ p  at point op  and indicates the direction and 
rate of greatest growth of this function. Thus, the vector 
−p ( )p′−ñ  indicates, in the parameter space, the direction 
of the fastest decrease of the multiplier value. Vector 
coordinates 

1
( ) [ , , ]

no p pρ ρ′ ′ ′=ρ p    are partial derivatives of 
the functions ( )ρ p  at point op . To simplify the index ‘o’ in 
Eq. (21) was omitted (it will also be skipped in the future). 
The formula T ( )o′e ρ p   means the scalar product of vectors 
p ( )o′ñ p  and e . Vector T

1[ , , ]ne e=e   is any vector. It is also 
accepted in the literature that this vector is normalised, 
i.e., that in the parameters space it fulfils the condition 

2 2 2
1 2 1ne e e= + + + =e 	 (22)

Due to the specificity of the problem, the vibration 
stabilisation algorithm will need not so much multiplier 
gradients as gradients of their absolute values, because 
their absolute values provide the stability or instability of 
the parametric system. A partial derivative of the absolute 
value of the multiplier iρ α β= +  is defined

2

2

1 Re Im
k kr i

k k k k

g g
p p p p
ρ α β α β ρ ρα β

ρ ρα β

∂  ∂ + ∂ ∂ ′ ′= = + = + 
∂ ∂ ∂ ∂+  

2

2
(23)

where 1, ,k n=  . Consequently, the gradient of the 
absolute value of the multiplier can be written down in 
the form of

Re Im
r ugrad ρ ρ ρ

ρ ρ
= = +g g g   (24)

where vector rg  is the gradient of the real part, and the 
vector ug  is the gradient of the imaginary part of the 
multiplier. According to the geometric interpretation of 
the scalar product of two vectors, a directional derivative 
is a projection of a gradient vector on the direction of the 
vector e . According to this interpretation, the value of the 
directional derivative is the greatest when its direction is 
the same as the direction of the gradient vector. As the 
possibility of reducing the value of the multiplier module 
is sought as soon as possible, = −e g, which, after 
normalizing in accordance with Eq. (22) finally gives

= − = −∆
ge g
g (25)

Therefore, the change in the value of design parameters, 
leading to the fastest reduction in the absolute value of the 
multiplier, is determined by 

ε ε∆ = = − ∆p e g (26)

4.2   Change of multiplier value – stabilisa-
tion procedure

One can calculate the change in the value of a 
multiplier using the formula

T T
I r uiρ∆ = ∆ + ∆g p g p (27)

Using Eq. (26), one can present Eq. (27) in the form

( )T T
I I r I u r ui iρ ρ ρ ε∆ = ∆ + ∆ = − ∆ + ∆g g g g (28)

The change in the absolute value of the multiplier can be 
calculated based on Eq. (28)

( ) ( )2 2
I I r I u I gρ ρ ρ ε∆ = ∆ + ∆ = ∆ (29)

where the designation was adopted

( ) ( )T 2 T 2
I r ug∆ = ∆ + ∆g g g g (30)
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One can obtain an approximate multiplier value after the 
procedure for reducing the value of its module by adding 
the components described in the formula Eq. (28), i.e.

o I r uiρ ρ ρ ρ ρ= + ∆ = + (31)

and the value of the module is then expressed as 

2 2
r uρ ρ ρ= + (32)

where r or I rρ ρ ρ= + ∆  and u ou I uρ ρ ρ= + ∆  is obtained 
based on formula Eq. (28).

Equation (31) may, on the one hand, be interpreted as 
a formula corresponding to the expansion of the function 
describing the multiplier into the Taylor series, in which 
the first two members of the expansion were taken into 
account. On the other hand, it can be interpreted as a 
formula corresponding to the small parameter method, as 
performed in the work [3], in which the first two members 
of the expansion would be taken into account.

5   Examples

5.1  Example 1: method validation

The method presented in this paper was verified using the 
same example that was analysed in [2]. This example, for 
the parametric system, is unique. There is an analytical 
solution for all mathematical operations associated with 
the computational algorithm presented in this work. 
This is a great advantage of this example. It is possible 
to objectively verify the correctness of the theory and to 
determine the efficiency of the method. In addition, one 
can directly compare the results with those obtained in 
works [2, 3].

5.1.1  Stability and sensitivity analysis 

A linear parametric system described by Eq. (1) is conside-
red, in which the system matrix

  ( ) cos 2 ( )sin 2
( )

sin 2 ( )cos 2

a i a b at ab ib a b at
t a a bi at a i a b at

b b

+ + − + + 
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  

A (33)

is periodic with a constant period T aπ= , while a and 
b are system parameters. Consequently, the period T  
is a function of the design parameter ( )T T a= . The 

fundamental matrix of the solutions of this system, 
monodromy matrix, modal matrices, and first-order 
sensitivity analysis results have the form
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Further testing of the algorithm presented in this paper 
is carried out first in the case of sensitivity analysis with 
respect to the parameter b. This parameter does not 
affect the period of the parametric excitation. The results 
obtained in accordance with Eq. (14) should therefore 
be correct. The algorithm described in this formula was 
programmed in the Mathematica computer system. This 
allowed conducting analytical calculations using the 
symbolic procedures. The results achieved were consistent 
with those obtained in work [3]. 

The next calculations were carried out with the use of 
the same procedure (in accordance with the formula Eq. (14)) 
by studying the sensitivity with respect to the parameter a, 
on which the period of the parametric excitation depends. 
The following form of solution was obtained
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D (39)

This is a wrong result! The matrix a′D  is not even a 
diagonal one. One should get the result described by 
Eq. (37). Such an error would have to occur in the case of 
using the method presented in the paper [3], because the 
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algorithm presented in this paper is not valid when the 
sensitivity is calculated with respect to the parameter, on 
which the period of the parametric excitation depends.

Ultimately, the calculations were repeated using a 
generalised algorithm described by the formula Eq. (20). 
The obtained results are identical to those achieved by 
analytical calculation of the derivatives, i.e. Eqs. (37) and 
(38). 

5.1.2  Analysis of the system stability 

This example illustrates that two complex multipliers 
are joined by  Eq. (35). Thus, their modules are the same, 
and a system stabilisation procedure can be carried out 
for any of them. It was therefore assumed that the system 
multiplier is
       

( )
1,2 (cos sin )a ib T aT ibT aTe e e e bT i bTρ ± ±= = = ± (40)

The absolute value of the multiplier is therefore described 
by the formula

1,2
aTeρ = (41)

which functionally determines the relationship of its value 
to design parameters. Whether the parametric system is 
stable or unstable is determined, in accordance with Eq. 
(41), by the value of the power exponent of the number e .

If the product aT  is: 
	– greater than zero ( 0)aT > , the system will be unstable,
	– smaller than zero ( 0)aT < , the system will be stable.

Since the parametric excitation period in this example 
is T aπ= , product of 0aT π= >  and the system is 
unstable!

Changing the parameter b value has no effect on the 
stability of the solution, because the value of the multiplier 
module does not depend on the parameter b.

To compare the results obtained by the method of 
testing the values of multiplier modules with the results 
obtained by the study of Lyapunov exponents (as was 
done in the frequently cited paper [2]), one must convert 
one into the other.

The relationship between the multiplier ρ  and 
characteristic exponents λ  as complex numbers is 
described by the formula 

1 1Ln [ln (arg 2 )],       0, 1, 2,...i n n
T T

λ ρ ρ ρ π= = + + = ± ± (42)
1 1Ln [ln (arg 2 )],       0, 1, 2,...i n n
T T

λ ρ ρ ρ π= = + + = ± ±

Lyapunov characteristic exponents (abbreviated as 
Lyapunov exponent) are the real part of the characteristic 
exponent Eq. (42), i.e.

2 21 1Re ln ln[(Re ) (Im ) ]
2T T

λ ρ ρ ρ= = + (43)

By inserting the result of Eq. (41) into Eq. (43), the value 
of Lyapunov exponent is obtained, which is Re 0aλ = > .  
This means that the system is unstable — the same 
conclusion as the one reached through multipliers 
analysis.

A comparison of results with those obtained in the 
work [2] also requires the analytical calculation of the first 
derivatives of Lyapunov exponents

2

1 1 1lnT
p T pT

ρλ ρ
ρ

∂ ∂′ = − +
∂ ∂

(44)

Substituting the results obtained in Eq. (35) into formula 
(44) and taking into account that 2T a aπ∂ ∂ = −  and 

0T b∂ ∂ =  finally
     

2 2

1 1 1( ) ( ) 1a
ba ib T i T

T aT a
πλ ρ

ρ
 ′ = − − ± + = 
 

 (45)

1 1 ( )b iT i
T

λ ρ
ρ

′ = ± = ± (46)

These results are consistent with those received in work 
[2]. At the same time, it is a confirmation that the method 
of testing the sensitivity of a parametric system can be 
implemented in two ways. The method of calculating the 
derivatives of the characteristic exponents of a parametric 
system gives the same results as the method of calculating 
the derivatives of multipliers.

5.1.3   Stabilisation procedure

First, calculations were made according to the algorithm 
presented in the work [3]. It was assumed that there are 
only two design parameters in the system, i.e. [ , ]a b=p
. The gradient determined according to Eq.  (24) is then 
a vector with two coordinates. Since the period of the 
parametric excitation T aπ=  is functionally dependent 
on the parameter a , one obtains 
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T
T[ 0 ] 0

4
aT eT e

ππ = =   
g (47)

Finally, the vector ∆g  in Eq. (25) has a form

T[ 1 0 ]∆ =g (48)

This result means that the change of the parameter a 
can stabilise the system. This is, of course, an incorrect 
result, which can easily be demonstrated. Under Eq. (41) 
and under the validity of the assumption that T aπ= , the 
absolute value of multipliers can be written as 1,2 1eπρ = > .  
Therefore, the system is unstable, and the value of 
the multiplier module is not dependent on any design 
parameter. Consequently, all derived multiplier modules 
due to design variables are zero, and the gradient has to 
be a zero vector. It is therefore not possible to stabilise the 
system. This is contrary to the result of Eq. (48), which 
completes the evidence. 

Once again, the cause of the error is that the algorithm 
presented in the work [3] does not take into account 
the case when the period of parametric excitation is a 
function of the parameter a, due to which the sensitivity of 
the system is being studied. In the analysed example, it is 
assumed that ( )T T a aπ= = . The same calculations made 
according to the generalised algorithm presented in the 
work confirm the theoretical prediction that the gradient 
is a zero vector.

In the next calculations, it was then assumed that 
the vector of design variables, in addition to the earlier 
one, contains one more parameter, d  ( [ , , ]a b d=p ). It is 
assumed that the period of parametric excitation depends 
additionally on its value, according to the formula 

( , )T a d d a= , and that the initial value of the parameter 
d π= .

It is worth noting that performing the calculations 
in this variant is not possible according to the algorithm 
presented in the work [3]. The following detailed results 
were obtained (Eqs. (24) and (25)):

T[0 0 ]de=g 	
T[ 0 0 1 ]∆ =g (49)

To reach the stability area in one step, the vector ∆p  must, 
by virtue of Eq. (26), fulfill the condition

T[ 0 0 ]d∆ = −p (50)

The final vector of design parameters takes the form of

T
1 [ 0]o a b= + ∆ =p p p (51)

With Eq. (51), it appears that in this case, the limit of 
the stable area will be reached only if the period of 

( , ) 0 0T T a d a= = = . Mathematically, this is the correct 
result, but from the point of view of physical interpretation, 
this means the period of parametric excitation disappears. 
Stabilisation of the system is therefore possible but 
requires complete elimination of parametric excitation. 
This means the de facto transition to a system with 
constant coefficients. 

5.2  Example 2: stabilisation of an unstable 
parametric system by a dynamic absorber 

The problem of optimal tuning of the dynamic eliminator 
in a single-degree-of-freedom system with constant 
coefficients was formulated and solved in [11]. It was shown 
that if harmonic excitation is the only factor that excites 
the constant parameter system, the additional mass (and 
thus the added second degree-of-freedom) attached to the 
primary mass can effectively act as a dynamic eliminator 
of resonant vibrations of the primary mass. 

Following this phenomenon, an attempt was made to 
stabilise the unstable parametrically excited system using 
an additional active (classical) dynamic absorber. ‘Active’ 
denotes an absorber whose parameters can be changed 
during the stabilisation process.

It was initially assumed that the design parameters 
of the system were the characteristics of the absorber 
only, i.e. the stiffness and damping of the absorber. It was 
considered that in the case of engineering structures, it is 
much more difficult to change the features of the system 
than the parameters of the vibration absorber. The adverse 
effects of parametric resonant vibrations often manifest 
themselves only after the construction of the structure. 
Therefore, adding an absorber is a more viable option 
than changing an existing structure.

In the case of the active parametric dynamic 
absorber, it was assumed that the frequency of parametric 
excitation of the system and the frequency of the absorber 
characteristics are the same. This time, ‘active’ denotes an 
absorber whose parameters can be changed during the 
stabilisation and/or operation process.

The effect of the length of the parametric excitation 
period change, which is then both a parameter of the 
system and the parametric absorber, was additionally 
studied.
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This example aims to seek an answer to the question: 
Is a dynamic absorber able to effectively stabilise an 
unstable parametric system? 

The tool used to achieve the goal is the method 
presented in this paper. First, the sensitivity of 
the eigenproblem of the monodromy matrix of the 
parametric system is analysed, and the derivatives of the 
modulus of the largest multiplier ‘‘responsible’ for the 
instability of the system are determined. Then, using the 
presented gradient method, the absorber parameters are 
automatically modified to reduce the absolute value of 
the largest multiplier in the fastest way. If the modulus 
values of all the multipliers thus become less than one, 
the system will leave the region of instability and become 
stable.

If it is not possible to stabilise the system with the use 
of a dynamic vibration absorber, the task can be extended 
to study the influence of the system parameters as well.

The effectiveness of two types of dynamic vibration 
absorbers is analysed: classic and parametric ones.

Symbolic and numerical calculations are performed 
using a computer system, Mathematica, Wolfram [12].

5.2.1   Model of the system-absorber

By virtue of the theory presented in the paper, a body with 
a concentrated mass M(t) (primary mass of the parametric 
system) with a dynamic vibration absorber (mass m) 
attached to it, is analysed. Thus, a two-mass damped 
parametric system with two dynamic degrees of freedom, 
q1 and q2, is created. The system is shown in Fig. 1.

The additional, upper mass m in Fig. 1 is the mass 
of the dynamic vibration absorber connected in parallel 
by an elastic spring k(t) and damping bond c(t) with the 
primary mass M(t) (lower mass) of the parametric system, 
attached to the foundation by an elastic spring K(t) and 
damping bond C(t). The system is parametrically excited—
elastic spring stiffness K(t) and damping characteristic C(t) 
periodically change in time with a parametric excitation 
frequency no. It is also assumed that, in a general case, the 
stiffness k(t) and damping characteristics c(t), connecting 
the mass of the vibration eliminator m with the primary 
mass M(t), can harmonically vary in time with the 
frequency of parametric excitation.

The matrix equation of motion of a parametric 
homogenous system shown in Fig. 1 can be generally 
written in the form 

( ) ( ) ( )t t t+ + =B q C q K q 0  (52)

where B(t), C(t) and K(t) are inertia, damping and stiffness 
matrices and T

1 2[ ]q q=q  is a general coordinates 
vector, Fig.1.

In this example, without losing the generality of Eq. 
(52), it was assumed that the system characteristics of 
elements in Fig. 1 are described by the following values 
[4]:

Primary parametric system (lower mass M)
the basic mass 				     M = 3 × 104 kg
the constant part of the stiffness 
of the elastic bond 	  Ko = 4 × 108 N/m
the characteristic of the damping 
bond		  C = 4.4 × 104 Ns/m
Parametric excitation frequency	  v0-233 rad/s
Eliminator (upper mass m)
the eliminator mass (1/20 of the mass M)      m = 1.5 × 103 kg
the spring stiffens		   k = 1.77 × 107 N/m
the characteristic of the damping bond    co = 4.4 × 104 N/m

5.2.2  The classic vibration absorber

The matrix coefficients of the equation of motion Eq. (52) 
can be then described by the following formulas and 
matrix coefficients:

m 

M(t) 

k(t) 

K(t) 

q1 

q2 

c(t) 

C(t) 

Figure 1: Two-mass dynamic model: parametrically excited primary 
system M with attached absorber m.
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 
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( )  o o

o o
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t

c c C
− 

=  − + 
C (54)
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( )  +   cos ( )

0 o
o 1

k k
t t

k k K K
ν

−   
=    − +   

K (55)

where 
    

1( ) cos (  ) , ( 0.5 )o 1 o o oK t   K   K t K K Kν= + > = (56)

In order to use the theory presented in paper, the equation 
of motion Eq. (52) is reduced to a system of the first-order 
homogenous differential equations corresponding to Eq. 
(1)1.

According to the theory presented in paper, the system 
matrix A(t) in Eq. (1)2 has than the form

1

0 0 1 0
0 0 0 1

( )

( cos )

o o

o o o o

c ck kt
m m m m

K K t k c C ck
M M M M

ν

 
 
 
 = − − 
 

+ + + 
− −  

A
	
(57)

On the basis of stability analysis, it was found that the 
initial system is unstable. This is evident from the values 
of the multipliers on the major diagonal of the Jordanian 
form of the monodromy matrix. The first multiplier is 
modularly larger than one

1.1938 0 0 0
0 0.66404 0.22579 0 0
0 0 0.66404 0.25579 0
0 0 0 0.69295

i
i

− 
 − + =
 − −
 

− 

J (58)

To stabilise the system, the method of first-order sensitivity 
analysis presented in this paper was performed. The 
design parameter vector is assumed to be in form

[ ] T
ok c=p (59)

The values of the design parameter vector in start point 
are the values

7
o 1.77 10 44000

T
 = ⋅ p (60)

The following normalised gradient vector Eq. (25) were 
obtained at the beginning 

[ ]0.0091117 0.99996 T
∆ = −g (61)

and the end of the stabilisation process

[ ]0.019800 0.99980 T
∆ = −g (62)

As one can see, the change in the stiffness of the 
eliminator has a much smaller (practically insignificant) 
effect on the stabilisation of the system, despite the fact 
that the absolute value of the element of the gradient 
vector corresponding to the stiffness increased during the 
stabilisation process. The system was able to stabilise at 
the level of

71.77 10 22213
T

 = ⋅ p (63)

The stiffness value has hardly changed, while the 
eliminator damping has decreased almost twice compared 
to the initial value. Such a tuned eliminator guarantees the 
stability of the entire system, as evidenced by the values of 
the multipliers

0.9917 0.02384 0 0 0
0 0.9917 0.02384 0 0
0 0 0.7598 0.2601 0
0 0 0 0.7598 0.2601

i
i

i
i

− + 
 − − =
 − +
 

− − 

J

	
(64)

The largest modulus of the multiplier has the value 0.992, 
which is less than 1. This indicates the stability of the 
system.

5.2.3   The parametric vibration absorber

The same unstable parametric system, which was 
stabilised by a classical vibration absorber, was subjected 
to the stabilisation procedure described in this work, but 
this time, the characteristic of the damping bond of the 
vibration absorber was modified. It was assumed that

1( ) cos ( ) , ( 0.5 )o 1 o o oc t   c   c t c c cν= + > = (65)

Because the characteristic of the bond periodically 
changes in time with a frequency that equals the 
parametric excitation frequency, the absorber has become 
a parametric vibration absorber. Damping matrix in 
equation of motion Eq. (52) can be written as 

 
( )  +   cos ( )o o 1 1

o
o o 1 1

c c c c
t t

c c C c c
ν

− −   
=    − + −  

C (66)
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System matrix A(t) Eq. (57) must be modified, and now 
has the form 

1 1

1 1 1

0 0 1 0
0 0 0 1

cos cos( )

( cos
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o o
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o

o o

o

o oo
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c c

c c

t c tk kt
m m m

K K t k c t c t Ck
M M M M

ν ν

ν ν ν

 
 
 
 + += − − 
 

+ + + + + 
− −  

A (67)

The initial values of the multipliers have hardly changed, 
compared to the previously described relation, Eq. (58).

1.1912 0 0 0
0 0.66352 0.24280 0 0
0 0 0.66351 0.24280 0
0 0 0 0.70447

i
i

− 
 − + =
 − −
 

− 

J (68)

Similar to the coordinates values of a normalised gradient 
vector, Eq. (61)

[ ]0.0090000 0.99996 T
∆ = −g (69)

However, it was not possible to stabilise the system. As 
in the case described above, the coordinate values of 
the normalised gradient did not change much in the 
stabilisation process. However, the gradient before the 
normalisation had practically zero values, which indicates 
that the local extreme had been reached. The largest 
modulus has the value 1.00246 and is greater than one, 
which means that the system is still unstable. The limit of 
the area of stability was practically reached, but it was not 
exceeded, and, as mentioned earlier, the system remained 
unstable.

The automatic stabilisation test was repeated 
assuming a decrease in the value of the parametric part 
of the eliminator damping bond characteristic, i.e. it is 
assumed that 1  0.3 oc c=  instead of 1  0.5 oc c= . This time, 
the stabilisation process was successful and, as in the case 
of the classic vibration eliminator, a stable system was 
obtained, in which the maximum value of the multiplier 
modulus was 0.99737. The vector of design parameters 
also did not differ much from that obtained for a classic 
vibration eliminator, i.e.

71.77002 10 23358
T

 = ⋅ p (70)

At the end, one more variant of calculations was carried 
out. It was assumed that all the parameters of the 
vibration absorber and the parametric system are design 
parameters, i.e. that the vector of the design parameters 
consisted of seven coordinates

   
[ ] T

1 1o ok K K c C c T=p (71)

whose values are

7 8 8 T1.77 10 4 10 2 10 44000 44000 22000 0.026995o  = ⋅ ⋅ ⋅ p

(72)7 8 8 T1.77 10 4 10 2 10 44000 44000 22000 0.026995o  = ⋅ ⋅ ⋅ p

The last parameter is the parametric excitation period of 
the system 2 0.0269665 soT π ν= = . To perform this variant 
of calculations, it was necessary to use generalised 
formulas for calculating the derivatives of the monodromy 
matrix Eq. (19).

The design parameters vector after stabilizing the 
system is shown below:

7 8 8 T1.77 10 4 10 2 10 44000 44000 22000 0.024144 = ⋅ ⋅ ⋅ p
(73)7 8 8 T1.77 10 4 10 2 10 44000 44000 22000 0.024144 = ⋅ ⋅ ⋅ p

Values of the vector p  differ from the values of the vector 
op  practically only at the last position—corresponding to 

the parameter, which is the parametric excitation period. 
Compared to the initial value, the parametric excitation 
period decreased by only about 10%. Thus, in this case, a 
small change in a sole parameter guarantees the stability 
of the system. The stabilisation process was carried out 
instantly, which is important if the stabilisation procedure 
is to be carried out in practice, in which case it must take 
place in real time.

A normalised gradient vector contains virtually only 
one non-zero element

11 11 11 8 9 9 T3.451 10 2.451 10 1.312 10 2.877 10 1.725 10 7.448 10 1.000− − − − − − ∆ = − ⋅ ⋅ ⋅ − ⋅ − ⋅ ⋅ g
 

(74)
11 11 11 8 9 9 T3.451 10 2.451 10 1.312 10 2.877 10 1.725 10 7.448 10 1.000− − − − − − ∆ = − ⋅ ⋅ ⋅ − ⋅ − ⋅ ⋅ g

This confirms the earlier conclusion that the only 
important parameter on which the rate of stabilisation 
practically depends is the parametric excitation period. 
The influence of other parameters is smaller by at least 
eight orders.

The Jordan form of the monodromy matrix after 
stabilisation of the system supports the conclusion of its 
stability. This is because one gets

0.0017160 0 0 0
0 0.65648 0.49881 0 0
0 0 0.65648 0.49881 0
0 0 0 0.70099

i
i

− 
 − + =
 − −
 

− 

J  (75)
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The largest absolute value of the multiplier is 0.99172 and 
is less than 1, which indicates the stability of the system, 
while the absolute value of the largest multiplier could be 
reduced even further.

6   Conclusions
The aim of the study was to propose an original method 
for stabilizing an unstable multi-degree-of-freedom 
parametric system. The method’s innovation is the idea 
to achieve the non-homogeneous parametric sensitivity 
equation by evaluating analytically the derivative of the 
homogeneous parametric differential equation of motion 
with respect to the design parameter. Then, by solving the 
sensitivity equation obtained in this way, to evaluate the 
first derivative of the monodromy matrix and finally the first 
derivatives of multipliers. Ultimately, this method is based 
on the sensitivity analysis of absolute values of multipliers. 
As a result, numerical rather than analytical procedures 
can be used, which is a significant improvement in the 
case of parametric systems, in which analytical solutions 
practically do not exist. This procedure is based on the 
concept of first-order sensitivity analysis, which allows to 
determine those design parameters that have the greatest 
influence on the response of the parametric system. Next, 
using the gradient method, the values of selected design 
parameters are changed in such a way as to stabilise the 
parametric system as quickly as possible.

The method was modified in such a way that, in 
particular, it becomes possible to use the parametric 
excitation period also as a design parameter. The method 
presented in work [3] does not provide such a possibility, 
and in the case of dependence of the parametric excitation 
period on the design parameter, an error is generated.

Two basic assumptions were made in the paper: 
	– the parametric systems are limited to the case of a 

linear parametric system in which the variability in 
time of its parameters is described by a continuous 
periodic function of time,

	– the first-order sensitivity analysis is applied only.

Two examples were analysed in the paper. This first 
example – method validation (the same example that was 
analysed in [2]), is absolutely unique for the parametric 
systems, since an analytical solution for all mathematical 
operations associated with the presented algorithm exists. 
This is a great advantage of this example. It is possible 
to objectively verify the correctness of the theory and to 
determine the efficiency of the method. In addition, one 

can directly compare the results with those obtained at 
works [2,3]. The comparison was realised in parallel in 
three ways: 

	– analytical calculations performed by a human, 
	– analytical calculations performed using symbolic 

procedures of the Mathematica system, 
	– calculations performed using numerical procedures 

of the Mathematica system.

The consistency of the results obtained by these three 
approaches irrefutably proves the correctness of the 
method described in the paper.

The goal of the second example – stabilisation of an 
unstable parametric system by a dynamic absorber – was 
different. It is an attempt to show the possibility of the 
practical application of the proposed method.

In this example, the effectiveness of two types of 
absorbers was analysed: classical and parametric ones. 

It was found that both classical and parametric 
vibration eliminators could be an effective tool in 
achieving this goal. The research shows the following 
additional detailed conclusions:

	– a classic eliminator can be more effective than a 
parametric one in the process of stabilizing parametric 
vibrations,

	– in the stabilisation process of a parametric system, the 
parametric excitation period is the parameter whose 
change has the greatest influence on the speed and 
efficiency of the stabilisation process; unfortunately, 
the period of parametric variability of the vibration 
absorber characteristic is not only a parameter of the 
absorber but also a parameter of the system. 

The authors’ next paper, submitted for publication 
together with the current one, consists of an extension 
of the method presented in this paper with second-order 
sensitivity analysis algorithms. Further works on the 
sensitivity analysis of discontinuous multi-degree-of-
freedom parametric periodic systems are now in the final 
phase of preparations.
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