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Abstract: From a practical point of view, the most
important feature of a parametric periodic system is the
instability phenomenon. Unlike in systems with constant
coefficients, in which only points of instability exist,
in parametric systems, whole areas of instability occur.
This study presents a method of automatic stabilisation
of unstable multi-degree-of-freedom linear continuous-
in-time parametric systems. In this method, a parametric
excitation can only be a continuous function of time. This
paper concerns the sensitivity analysis of multipliers
— complex eigenvalues of the monodromy matrix. The
method is an alternative approach to that proposed in
all other previous works on this subject. A procedure
based on sensitivity analysis and directional derivative
was used. The method’s innovation is achieving the
non-homogeneous parametric sensitivity equation by
evaluating analytically the derivative of the homogeneous
parametric equation of motion with respect to the design
parameter. Then, by solving this sensitivity equation,
evaluating the first derivative of the monodromy matrix,
and finally, the first derivatives of multipliers. Ultimately,
this method is based on a sensitivity analysis of the
absolute values of multipliers. Furthermore, the sensitivity
analysis method was improved and generalised to allow to
correctly determine the eigenderivatives also with respect
to those system parameters, on which the parametric
excitation period depends. In particular, it becomes
possible to use the parametric excitation period as a design
parameter, which was not possible in the works of other
authors. Examples of this method’s implementation are
also presented. This work continues the topics developed
by the author in his earlier works.
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1 Introduction

The sensitivity analysis of parametric periodic systems can
be an interesting theoretical problem in itself. However,
the most important feature of parametric periodic
systems is the instability phenomenon, which can be
observed for particular values of the system parameters.
Resonance vibrations in unstable parametric systems are
very dangerous. Thus, stabilisation of unstable systems is
usually the most important practical problem.

A full review and presentation of the existing state
of knowledge in the field of parametric vibrations, with
particular emphasis on stability and sensitivity analysis,
will be presented in the author’s next paper, entitled
‘Application of second-order sensitivity analysis to
stabilisation of unstable continuous multi-degree-of-
freedom parametric periodic systems’, submitted for
publication in Studia Geotechnica et Mechanica together
with the current work. Over a hundred papers are
discussed there. However, only a few of these, which deal
with the sensitivity of periodic parametric systems, are of
importance from the point of view of the implementation
of the goal assumed in this work.

For instance, Gu et al. [1, 2] calculate derivatives
of eigenexponents, while Seyranian et al. [3] employs
the sensitivity analysis of multipliers. In paper [2], the
method of determination of first-order derivatives of
characteristic exponents is presented. This paper contains
an improvement of the method presented in [1]. This
improvement allows to determine correctly the derivatives
of characteristic exponents with respect to those system
parameters on which the parametric excitation period
depends or of which the period is itself a design parameter.

In this article, the first-order sensitivity analyses
with respect to those parametric system parameters that
can influence the stability/instability of the system were
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performed. Finally, it remains possible to determine
those parameters of the system whose influence on the
stabilisation procedure of such systems could be the
greatest. This work continues the topics developed by the
author in his earlier works, among others, in [4-8].

In the current paper, the original method of first-order
sensitivity analysis of parametric periodic systems was
formulated. There are two ways of performing stability
analysis of parametric periodic systems. Both of them
are connected with Floquet theory [9]. The first way is
to use Lyapunov characteristic exponents, the second is
to use multipliers, which are the complex eigenvalues
of the monodromy matrix. The method applied in this
paper is based on a sensitivity analysis of the absolute
values of multipliers. From the mathematical point of
view, sensitivity analysis of multipliers is the calculation
of eigenderivatives with the use of derivatives of the
monodromy matrix. Eigenderivatives are extremely
useful for determining the sensitivities of the dynamic
response to the system parameters variations. The
method’s innovation is the idea to achieve the sensitivity
equation by analytically calculating the derivative of
the homogeneous parametric equation of motion with
respect to the design parameter. Then, by solving the non-
homogeneous parametric sensitivity equation obtained in
this way, to evaluate the first derivative of the monodromy
matrix and finally the first derivatives of multipliers.

Examples of this method’s implementation are also
presented in this paper.

2 Linear parametric periodic
system and its stability

A linear non-homogeneous periodic parametric system of
an n linear second-order differential equation of motion
can be written as a first-order system

() = A(0) x(0) +£(¢)

NG ! to=| * | @
0= -B'()K(t) -B'()C(t) (t)_{BIF(t)}

where a 2nx2n system matrix A(f) is periodic with period
T and 2n-dimensional vectors x(t) and f(t) are a vector of
state and an external excitation, respectively. B(t), C(t),
and K(f) are square nxn real matrices of inertia, damping,
and stiffness, respectively, and F(f) is an n-dimensional
excitation column vector.
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Based on the Floquet theory [9], the solution of the
homogeneous equation corresponding to Eq. (1), has the
form

x(¢) = X(1) x(0)  X(0)=1 X(t):I+jA(r)X(r)dr )

where X(t) is a standard fundamental solution matrix
or a state transition matrix normalised at zero. A steady
2nx2n monodromy matrix D is defined as the value of the
fundamental matrix X(¢) at the time point t = T, i.e., D =
X(7).

Solving the right- and left-side eigenproblem of the
monodromy matrix, i.e.,

D-pDhr=0 1'(D-pD)=0"

{p} =diag(p,. Py 2,) €)

one can find the 2n right- and the left-side modal vectors
r and 1" and the 2n multipliers, i.e., eigenvalues of the
monodromy matrix D. Since the monodromy matrix D is
real, non-singular, and asymmetrical, multipliers (Eq. (3))
are generally complex numbers.
The stability of the trivial solution of a homogeneous
Eq. (1) depends on the absolute values of multipliers
(Eg. (3)). From the point of view of practical application,
a simplified system’s stability/instability criterion is
sufficient. If the absolute value of:
— each multiplier is less than 1, the system is
asymptotically stable in the Lyapunov sense,
— at least one multiplier is greater than 1, the system is
unstable in the Lyapunov sense.

The first and the second formula in Eq. (3) for all multipliers
can be written in the form

DR =R{p} L'D={p}L' (4)
where R (detR=#0) is the right-side mOIQal matrix,
whose columns are right-side eigenvectors * of Eq. (3)
corresponding to the eigenvalue p, (to simplify writing, the
index k is omitted henceforth). The left-side modal matrix
L (detL # 0) whose columns are left-side eigenvectors I,
of Eq. (3) corresponding to the eigenvalue p, has to satisfy
the condition

L'R=1ie L'=R" (5)

After the operation of left-side multiplication of the first
formula in Eq. (4) by L' or of right-side multiplication of
the second formula in Eq. (4) by R, and considering Eq.
(5), Eq. (4) can be written in a more convenient form
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{p}=L'DR (6)

3 First-order sensitivity analysis

3.1 First derivative of multipliers with
respect to design parameter

To simplify the analysis, similarly as in the papers [1-8],
only the case when the eigenvalues of the monodromy
matrix are non-repeated is considered. However, in this
paper, it is assumed that the multipliers can be repeated
provided that Jordan’s form of monodromy matrix is
diagonal.

By calculating the derivative (), = 0/0p of both
sides, for example, of the first formula in Eq. (4) with
respect to design parameter p, and taking into account the
equality from Eq. (3), the formula for the first derivative of
multipliers is received in the form

(i} =L'D/R+L'DR/ -L'R’, {ii} )

where the symbol {ﬁ’p} denotes the diagonal matrix of the
first derivatives of the monodromy matrix’s multipliers
with respect to the design parameter p.

3.2 Simplifying the formula calculation of
the first derivative of multipliers

From Eq. (7), it follows that to calculate the derivatives of
multipliers, in addition to solving the eigenproblem Eq. (3),
the derivative of the monodromy matrix D!, = D/6p and
the derivative of the right-sided eigenmatrix R; =0R/dp
must be calculated with respect to the design parameter p.
In the general case, it is not possible to present analytical
formulas for the calculation of both multipliers and the R
and D matrices. Consequently, the formula Eq. (7), simple
from the point of view of analytical operations, becomes
practically useless from the numerical point of view. This
formula should be treated as a matrix equation in which
there are two additional unknowns D; and R; , for which
we must search for numerical algorithms that allow us to
achieve the goal described by Eq. (7).

It is therefore possible and necessary to further
simplify Eq. (7) for the first derivative of multipliers.

For simplicity, one can transform Eq. (7), writing it as

D)R-R{p,}=-DR/ +R/ {p} 8)
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and for the k-th multiplier, as
(D, - pX)r=—(D-pI)r, 9)

Multiplying Eq. (9) from the left side by the left-side
eigenvector, one can obtain
1" (D}, — p))r=—1"(D—pI)r; (10)
By virtue of Eq. (3), the expression and the right side of
Eg. (10) has the value 0. So, one can write this equation
in the form
I'(D, - pI)r=0 or I'Djr—p,I'r=0 (1)
where by virtue of the assumption Eq. (5),, i.e., I'r=1,
one obtains
p, =1"Dr or {ii,} = diag(L'D/, R) (12)
instead of formula Eq. (7). Thus, the formula for calculating
the derivative of multipliers becomes much more simple.
Formula Eq. (12) for calculating the derivative of the
multipliers of the monodromy matrix D, shows that there

is no need to know two matrices R;j and D;, but only one
matrix D’p.

3.3 First derivative of a monodromy matrix
with respect to design parameter

The first derivative of a homogeneous equation
corresponding to Eq. (1) with respect to parameter p is the
non-homogeneous sensitivity equation where

£ =A 0O x(0) A=A
p ap

(13)
It could be proven [5,9] that the solution of this non-
homogeneous sensitivity equation with zero initial
conditions is the first derivative of the fundamental
solution matrix with respect to the design parameter p.
Ultimately, the first derivative of the fundamental and the
monodromy matrix can be written as

X' (1) = X(t)j. X (0)A!(7) X(7) d7

T (14)
D =D j X(D)A!(7) X(7) dT

This formula can be calculated analytically or numerically,
and the result may be used to calculate derivatives of
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multipliers in accordance with the formula Eq. (12). The
same result was obtained in [3].

3.4 The case when the period of parametric
excitation depends on the design parameter

The algorithm discussed in the previous paragraph does
not include a case in which the period T of the parametric
excitation depends on design parameters. This is a
special case. This problem was examined theoretically
in the study by Gu et al. [2]. The method presented there
is, unfortunately, very complicated, and the algorithm is
completely useless from the point of view of the method
proposed in this work. However, the results obtained
in work [2] are valuable due to the possibility of their
comparison with the results obtained in this paper.

The starting point to obtain the more general formula
of a special case in which the period T of the parametric
excitation depends on design parameters is a formula that
formally describes the monodromy matrix [9]

T

D=1+ [A@)X()dt (15)

0
In the calculation of the derivative of the monodromy
matrix, Eq. (15) with respect to the parameter p, it is
assumed that not only matrices A = A(z, p) and X = X(z, p),
but also the period T =T(p) is a function of the design
parameter p. As a consequence of this assumption, the
integration limit in the definite integral Eq. (15) becomes
functionally dependent on the parameter p.

When calculating the derivative of the monodromy
matrix, in this case, one must use the formula for the
derivative of the integral with respect to the parameter [10]

Bp)
( | r@p dt} =
dp

a(p)

J f( p)dz+ TP, p)—ﬂ—f(a(m p) (16)

a(p)

In accordance with Eq. (16), one can calculate the
derivative of the matrix D described by Eq. (15)

dT

B, = 122" 2 (A py X0t ) i+ AT, ) X(T00, ) UL =
D, dp 4 op ’ ’ ’ dp

T(p) (17)
= _[ [A;(t,p) X(t,p)+A(t, p) X; (¢, p)ldt + A(T) D Tp’

0

Marking

T(p)

= [ [A}(.p) X p) + At p) X, (2. p))dt (18)
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and

D' =A(T)D Tp’ 19)

dT

CENY _OA(t,p) X = oX(t, p) p)
dp’

where 7' =
’ op op

and comparing Eq. (18) and Eq. (14), one can state that
Eq. (18) is visibly different from Eq. (27), however, both of
them have to be equivalent. Equation (18) is the result of
differentiation with respect to design parameter p of the
matrix D described by Eq. (15), while Eq. (14) is a solution
of the sensitivity equation achieved by differentiation of
Eqg. (1) with respect to the same design parameter p.

However, since there is an unknown matrix X’p t,p)
in the formula Eq. (18), this formula is practically useless.
Such a method (with the use of formula Eq. (18)) of
computing the derivative of a monodromy matrix can only
be used if the analytical form of the fundamental matrix
of solutions X(¢) is known. Then, the first derivative of
this matrix can be calculated analytically. Thus, in the
general case, the matrix D; has to be designated using
the relationship Eq. (14) instead of Eq. (18).

Finally, a more general formula than Eq. (14) for the
first derivative of the monodromy matrix can be written as
D) =D +D

P

(20)

It can be concluded that the formula Eq. (20) differs
from the earlier formula Eq. (14) by the presence of the
component ]_)’p , which assumes values different from zero
only when the period of parametric excitation is a function
of the design parameter, or is itself a design parameter. In
other cases, Eq. (14) remains valid.

4 Parametric periodic systems’
stabilisation method

Based on the concept of directional derivative [10], a
procedure similar to that described in [3] was used. A
gradient vector has been designated for the fastest decrease
of the absolute value of complex multipliers. This gradient
is used to calculate the change in design parameters to
make the system stable. The resulting formulas can be
interpreted as an expansion of the function describing
the multiplier module in Taylor series, including the first
two expansion members, Eq. (31). On the other hand, it
could be the first two members of the formula in work [3],
where the problem was solved using the small parameter



§ sciendo

method. The algorithm was tested on the same examples
that were previously analysed in works [4-8]. In particular,
the effectiveness of the method was compared when, in
addition to other system parameters, the parametric
excitation period was also a design parameter. This is the
fundamental difference between the algorithm presented
in this work and that described in the work [3].

The possibility of a one-step exit from the area of
instability was also tested.

4.1 Gradient of the absolute value of the
multiplier

Directional  derivative [5] of the  multiplier
p(p,.--»p,)=p([P) as a vector function of design
parameters Pp=[p,,....p,], at the starting point
specified in the parameter space with vector coordinates
p,=[p/,...,p)], in the direction of any vector
e=Je,...,e, ] can be defined as follows:

2(p.) = lim r@, +£¢)—pP,)

Ae—0 P

=e'p'(p,) =D pie, 1)
k=1

where ¢ isasmallnumeric parameter, ¢e = Ap isavector
of the increments of parameters’ values p=[p,,...,p,],
a vector p'(p,)=gradp'(p,) is called a scalar function
gradient p(p) at point p and indicates the direction and
rate of greatest growth of this function. Thus, the vector
-p'(p) indicates, in the parameter space, the direction
of the fastest decrease of the multiplier value. Vector
coordinates p'(p,) =[p,, ,---,p,, ] are partial derivatives of
the functions p(p) at point p,. To simplify the index ‘" in
Eq. (21) was omitted (it will also be skipped in the future).
The formula eTp’(pO) means the scalar product of vectors
p'(p,) and e. Vector e"=Je,,...,e,] is any vector. It is also
accepted in the literature that this vector is normalised,
i.e., that in the parameters space it fulfils the condition

2 2 2
||e||=\/e1 +e, +---te, =1

Due to the specificity of the problem, the vibration
stabilisation algorithm will need not so much multiplier
gradients as gradients of their absolute values, because
their absolute values provide the stability or instability of
the parametric system. A partial derivative of the absolute
value of the multiplier p=a +if is defined

olp|_oya’+p 1 [aaa

p, o N

(22)

—+ %J:Repg; +lm—pg,' (23)
op, Py ‘p‘ ' ‘p‘ '
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where k=1,...,n. Consequently, the gradient of the
absolute value of the multiplier can be written down in
the form of

Rep Imp

g=grad|p|= o] g,+Wg,, (24)

where vector g, is the gradient of the real part, and the
vector g is the gradient of the imaginary part of the
multiplier. According to the geometric interpretation of
the scalar product of two vectors, a directional derivative
is a projection of a gradient vector on the direction of the
vector e . According to this interpretation, the value of the
directional derivative is the greatest when its direction is
the same as the direction of the gradient vector. As the
possibility of reducing the value of the multiplier module
is sought as soon as possible, e = —g, which, after
normalizing in accordance with Eq. (22) finally gives

e= _ & _ -Ag
H
Therefore, the change in the value of design parameters,
leading to the fastest reduction in the absolute value of the
multiplier, is determined by

(25)

Ap=ce=—cAg (26)

4.2 Change of multiplier value - stabilisa-
tion procedure

One can calculate the change in the value of a
multiplier using the formula

Ap=g Ap+ig,Ap @7)
Using Eq. (26), one can present Eq. (27) in the form
Ap=Ap +iAp, =—c(glAg+igAg)  (28)

The change in the absolute value of the multiplier can be
calculated based on Eq. (28)

Alp|=(ap) +(ap,) =eA,lg] @9
where the designation was adopted
8, g|= (g Ag) *+ (gl Ag)? (30)
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One can obtain an approximate multiplier value after the
procedure for reducing the value of its module by adding
the components described in the formula Eq. (28), i.e.

pP=p,*Ap=p +ip, 31)
and the value of the module is then expressed as
p=~p+p, (32)

where p, =p, +A,;p, and p, =p, +A,p, is obtained
based on formula Eq. (28).

Equation (31) may, on the one hand, be interpreted as
a formula corresponding to the expansion of the function
describing the multiplier into the Taylor series, in which
the first two members of the expansion were taken into
account. On the other hand, it can be interpreted as a
formula corresponding to the small parameter method, as
performed in the work [3], in which the first two members
of the expansion would be taken into account.

5 Examples

5.1 Example 1: method validation

The method presented in this paper was verified using the
same example that was analysed in [2]. This example, for
the parametric system, is unique. There is an analytical
solution for all mathematical operations associated with
the computational algorithm presented in this work.
This is a great advantage of this example. It is possible
to objectively verify the correctness of the theory and to
determine the efficiency of the method. In addition, one
can directly compare the results with those obtained in
works [2, 3].

5.1.1 Stability and sensitivity analysis

A linear parametric system described by Eq. (1) is conside-
red, in which the system matrix

a+i(a+b)cos2at

A)=|a .a+b .
—+szm2at

b

—ab+ib(a+b)sin2at

. (33)
a—i(a+b)cos2at

is periodic with a constant period T = 7r/ a, while a and
b are system parameters. Consequently, the period T
is a function of the design parameter T =T7(a). The
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fundamental matrix of the solutions of this system,
monodromy matrix, modal matrices, and first-order
sensitivity analysis results have the form

cosat-e” —bsinat-e™ (a+ib)t 0
X()=| 1 | . o | Y
b sinat-e”  cosat-e™ 0 e
P 0 e(a+ih)T 0
D=X(T,a,b) = |: 0 p2:| = { 0 Sl )T =
(a+ib)Z (35)
e a 0
- (a—ib)~ - {D}
0 a
R=L=1 (36)
2T, 0
' 0 1 P
D; _ pla i (37)
0 p2a : b
0 i—T-p,
a
. |p, O —iT- 0
Db _ 1b i _ pl ' (38)
0 p 0 iT-p,

Further testing of the algorithm presented in this paper
is carried out first in the case of sensitivity analysis with
respect to the parameter b. This parameter does not
affect the period of the parametric excitation. The results
obtained in accordance with Eq. (14) should therefore
be correct. The algorithm described in this formula was
programmed in the Mathematica computer system. This
allowed conducting analytical calculations using the
symbolic procedures. The results achieved were consistent
with those obtained in work [3].

The next calculations were carried out with the use of
the same procedure (in accordance with the formula Eq. (14))
by studying the sensitivity with respect to the parameter a,
on which the period of the parametric excitation depends.
The following form of solution was obtained

T (1+£)7r b (l—ié)ﬂ
(1+i)—e “ ——rme °
' a a
D, 1 (+i2)7 =iz (39)
—7e ¢ (1-i)—e
ab a

This is a wrong result! The matrix D/ is not even a
diagonal one. One should get the result described by
Eq. (37). Such an error would have to occur in the case of
using the method presented in the paper [3], because the
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algorithm presented in this paper is not valid when the
sensitivity is calculated with respect to the parameter, on
which the period of the parametric excitation depends.

Ultimately, the calculations were repeated using a
generalised algorithm described by the formula Eq. (20).
The obtained results are identical to those achieved by
analytical calculation of the derivatives, i.e. Egs. (37) and
(38).

5.1.2 Analysis of the system stability

This example illustrates that two complex multipliers
are joined by Eq. (35). Thus, their modules are the same,
and a system stabilisation procedure can be carried out
for any of them. It was therefore assumed that the system
multiplier is

P, = = = e (cosbT +isinbT)  (40)
The absolute value of the multiplier is therefore described
by the formula

al

| P2 | =e (41)
which functionally determines the relationship of its value
to design parameters. Whether the parametric system is
stable or unstable is determined, in accordance with Eq.
(41), by the value of the power exponent of the number e.
If the product aT is:

- greater than zero (aT > 0), the system will be unstable,
- smaller than zero (4T < 0), the system will be stable.

Since the parametric excitation period in this example
is T=r/a, product of aT =7 >0 and the system is
unstable!

Changing the parameter b value has no effect on the
stability of the solution, because the value of the multiplier
module does not depend on the parameter b.

To compare the results obtained by the method of
testing the values of multiplier modules with the results
obtained by the study of Lyapunov exponents (as was
done in the frequently cited paper [2]), one must convert
one into the other.

The relationship between the multiplier p and
characteristic exponents A4 as complex numbers is
described by the formula

1 1 .
A :?an:F[ln|p|+l(argp+2n7r)], (42)

n=0,+1,+2,..
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Lyapunov characteristic exponents (abbreviated as
Lyapunov exponent) are the real part of the characteristic
exponent Eq. (42), i.e.

Mﬂ=%Mﬂ=%ﬂﬂMpﬁHMpﬂ (43)

By inserting the result of Eq. (41) into Eq. (43), the value
of Lyapunov exponent is obtained, which is ReA =a > 0.
This means that the system is unstable — the same
conclusion as the one reached through multipliers
analysis.

A comparison of results with those obtained in the
work [2] also requires the analytical calculation of the first
derivatives of Lyapunov exponents

_La_Tln +
T* op P

11 0dp

Tp op

A= (44)

Substituting the results obtained in Eq. (35) into formula
(44) and taking into account that 6T/ oa = —72'/ a* and
oT/ob =0 finally

gf:___("%)mimuwjnlfﬁéTp)=l (45)
a T p a

l;:lmLCﬁTp)zii (46)
Tp

These results are consistent with those received in work
[2]. At the same time, it is a confirmation that the method
of testing the sensitivity of a parametric system can be
implemented in two ways. The method of calculating the
derivatives of the characteristic exponents of a parametric
system gives the same results as the method of calculating
the derivatives of multipliers.

5.1.3 Stabilisation procedure

First, calculations were made according to the algorithm
presented in the work [3]. It was assumed that there are
only two design parameters in the system, i.e. p =[a,b]
. The gradient determined according to Eq. (24) is then
a vector with two coordinates. Since the period of the
parametric excitation T = z/a is functionally dependent
on the parameter g, one obtains
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T
g=[Te" O]T{”j o} (47)

Finally, the vector Ag in Eq. (25) has a form
Ag=[1 07 (48)

This result means that the change of the parameter a
can stabilise the system. This is, of course, an incorrect
result, which can easily be demonstrated. Under Eq. (41)
and under the validity of the assumption that 7 = z/a, the
absolute value of multipliers canbewrittenas| p,, | = e” > 1.
Therefore, the system is unstable, and the value of
the multiplier module is not dependent on any design
parameter. Consequently, all derived multiplier modules
due to design variables are zero, and the gradient has to
be a zero vector. It is therefore not possible to stabilise the
system. This is contrary to the result of Eq. (48), which
completes the evidence.

Once again, the cause of the error is that the algorithm
presented in the work [3] does not take into account
the case when the period of parametric excitation is a
function of the parameter a, due to which the sensitivity of
the system is being studied. In the analysed example, it is
assumed that 7 =T(a) = z/a. The same calculations made
according to the generalised algorithm presented in the
work confirm the theoretical prediction that the gradient
is a zero vector.

In the next calculations, it was then assumed that
the vector of design variables, in addition to the earlier
one, contains one more parameter, d (p =[a,b,d]). Itis
assumed that the period of parametric excitation depends
additionally on its value, according to the formula
T(a,d)=d/a, and that the initial value of the parameter
d=r.

It is worth noting that performing the calculations
in this variant is not possible according to the algorithm
presented in the work [3]. The following detailed results
were obtained (Egs. (24) and (25)):
g=[0 0 €1 Ag=[0 0 1 17 (49
To reach the stability area in one step, the vector Ap must,
by virtue of Eq. (26), fulfill the condition

-d 1" (50)

The final vector of design parameters takes the form of
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p=p,+Ap=[a b 0T (1)
With Eq. (51), it appears that in this case, the limit of
the stable area will be reached only if the period of
T =T(a,d)=0/a=0. Mathematically, this is the correct
result, but from the point of view of physical interpretation,
this means the period of parametric excitation disappears.
Stabilisation of the system is therefore possible but
requires complete elimination of parametric excitation.
This means the de facto transition to a system with
constant coefficients.

5.2 Example 2: stabilisation of an unstable
parametric system by a dynamic absorber

The problem of optimal tuning of the dynamic eliminator
in a single-degree-of-freedom system with constant
coefficients was formulated and solved in [11]. It was shown
that if harmonic excitation is the only factor that excites
the constant parameter system, the additional mass (and
thus the added second degree-of-freedom) attached to the
primary mass can effectively act as a dynamic eliminator
of resonant vibrations of the primary mass.

Following this phenomenon, an attempt was made to
stabilise the unstable parametrically excited system using
an additional active (classical) dynamic absorber. ‘Active’
denotes an absorber whose parameters can be changed
during the stabilisation process.

It was initially assumed that the design parameters
of the system were the characteristics of the absorber
only, i.e. the stiffness and damping of the absorber. It was
considered that in the case of engineering structures, it is
much more difficult to change the features of the system
than the parameters of the vibration absorber. The adverse
effects of parametric resonant vibrations often manifest
themselves only after the construction of the structure.
Therefore, adding an absorber is a more viable option
than changing an existing structure.

In the case of the active parametric dynamic
absorber, it was assumed that the frequency of parametric
excitation of the system and the frequency of the absorber
characteristics are the same. This time, ‘active’ denotes an
absorber whose parameters can be changed during the
stabilisation and/or operation process.

The effect of the length of the parametric excitation
period change, which is then both a parameter of the
system and the parametric absorber, was additionally
studied.
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This example aims to seek an answer to the question:
Is a dynamic absorber able to effectively stabilise an
unstable parametric system?

The tool used to achieve the goal is the method
presented in this paper. First, the sensitivity of
the eigenproblem of the monodromy matrix of the
parametric system is analysed, and the derivatives of the
modulus of the largest multiplier “responsible’ for the
instability of the system are determined. Then, using the
presented gradient method, the absorber parameters are
automatically modified to reduce the absolute value of
the largest multiplier in the fastest way. If the modulus
values of all the multipliers thus become less than one,
the system will leave the region of instability and become
stable.

If it is not possible to stabilise the system with the use
of a dynamic vibration absorber, the task can be extended
to study the influence of the system parameters as well.

The effectiveness of two types of dynamic vibration
absorbers is analysed: classic and parametric ones.

Symbolic and numerical calculations are performed
using a computer system, Mathematica, Wolfram [12].

5.2.1 Model of the system-absorber

By virtue of the theory presented in the paper, a body with
a concentrated mass M(t) (primary mass of the parametric
system) with a dynamic vibration absorber (mass m)
attached to it, is analysed. Thus, a two-mass damped
parametric system with two dynamic degrees of freedom,
q,and g,, is created. The system is shown in Fig. 1.

The additional, upper mass m in Fig. 1 is the mass
of the dynamic vibration absorber connected in parallel
by an elastic spring k(t) and damping bond c(t) with the
primary mass M(t) (lower mass) of the parametric system,
attached to the foundation by an elastic spring K(t) and
damping bond C(t). The system is parametrically excited—
elastic spring stiffness K(t) and damping characteristic C(t)
periodically change in time with a parametric excitation
frequency n . It is also assumed that, in a general case, the
stiffness k(t) and damping characteristics c(t), connecting
the mass of the vibration eliminator m with the primary
mass M(t), can harmonically vary in time with the
frequency of parametric excitation.

The matrix equation of motion of a parametric
homogenous system shown in Fig. 1 can be generally
written in the form

B()q+C(H)q+K()q=0 (52)
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q1| < [k@®)

c(1)

q:

C(d)

Figure 1: Two-mass dynamic model: parametrically excited primary
system M with attached absorber m.

where B(t), C(t) and K(¢) are inertia, damping and stiffness
matrices and q=[g¢, ¢,]" is a general coordinates
vector, Fig.1.

In this example, without losing the generality of Eq.
(52), it was assumed that the system characteristics of
elements in Fig. 1 are described by the following values
[4]:

Primary parametric system (lower mass M)
the basic mass M=3x10“kg
the constant part of the stiffness

of the elastic bond K =4x10°N/m
the characteristic of the damping

bond C=4.4x10"Ns/m
Parametric excitation frequency v,233 rad/s
Eliminator (upper mass m)

the eliminator mass (1/20 of the mass M) m=1.5x10°kg

the spring stiffens k=1.77 x 10’ N/m
the characteristic of the damping bond ¢ = 4.4 x10“N/m

5.2.2 The classic vibration absorber
The matrix coefficients of the equation of motion Eq. (52)

can be then described by the following formulas and
matrix coefficients:
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(53)

(54)

k —k 0 0
K(t):{—k k+Kj+{O K,} cos(v,t) (55)

where

K=K, +K,cos(v,t), (K,>K, =05K,) (56)
In order to use the theory presented in paper, the equation
of motion Eq. (52) is reduced to a system of the first-order
homogenous differential equations corresponding to Eq.
W,

According to the theory presented in paper, the system
matrix A(t) in Eq. (1), has than the form

0 0 1 0
0 0 0 1
A =|_K L3 _% % |(57)
m m m m
k (K,+K, cosv,t)+k c, C+ec,
M M M M

On the basis of stability analysis, it was found that the
initial system is unstable. This is evident from the values
of the multipliers on the major diagonal of the Jordanian
form of the monodromy matrix. The first multiplier is
modularly larger than one

—1.1938 0 0 0
0 —0.66404 +0.22579 i 0 0
J= N ! , (58)
0 0 —0.66404—0.25579 i 0
0 0 0 —0.69295

To stabilise the system, the method of first-order sensitivity
analysis presented in this paper was performed. The
design parameter vector is assumed to be in form

(59)

The values of the design parameter vector in start point
are the values
p,=[177-10 44000 ] (60)
The following normalised gradient vector Eq. (25) were
obtained at the beginning
Ag =[-0.0091117

0.99996]" (61)
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and the end of the stabilisation process

Ag=[-0.019800  0.99980]" (62)
As one can see, the change in the stiffness of the
eliminator has a much smaller (practically insignificant)
effect on the stabilisation of the system, despite the fact
that the absolute value of the element of the gradient
vector corresponding to the stiffness increased during the
stabilisation process. The system was able to stabilise at
the level of

p=[177.10  22213] (63)
The stiffness value has hardly changed, while the
eliminator damping has decreased almost twice compared
to the initial value. Such a tuned eliminator guarantees the
stability of the entire system, as evidenced by the values of
the multipliers

—0.9917+0.02384 i 0 0 0
0 -0.9917-0.02384 i 0 0
)= ' _ (64)
0 0 -0.7598+0.2601 0
0 0 0 -0.7598-0.2601

The largest modulus of the multiplier has the value 0.992,
which is less than 1. This indicates the stability of the
system.

5.2.3 The parametric vibration absorber

The same unstable parametric system, which was
stabilised by a classical vibration absorber, was subjected
to the stabilisation procedure described in this work, but
this time, the characteristic of the damping bond of the
vibration absorber was modified. It was assumed that

c(t)=c, +c,cos(v,t), (¢, >¢, =0.5¢,) (65)
Because the characteristic of the bond periodically
changes in time with a frequency that equals the
parametric excitation frequency, the absorber has become
a parametric vibration absorber. Damping matrix in
equation of motion Eq. (52) can be written as

co _C(z cl _cl
C) = + cos(v,t) (66)
-, c,+C -, ¢
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System matrix A(t) Eq. (57) must be modified, and now
has the form

0 0 1 0
0 0 0 1
A(t) = Kk k ¢ e cosvt ¢, +c cosv, (67)
m m m
k (K, +K cosv,t)+k c,+c cosv t (¢, +c cosv t)+C
M M M - M

The initial values of the multipliers have hardly changed,
compared to the previously described relation, Eq. (58).

~1.1912 0 0 0
0 —0.66352+0.24280i 0 0

J= * ! (68)
0 0 ~0.66351-024280i 0
0 0 0 ~0.70447

Similar to the coordinates values of a normalised gradient
vector, Eq. (61)
(69)

Ag=[-0.0090000  0.99996]"

However, it was not possible to stabilise the system. As
in the case described above, the coordinate values of
the normalised gradient did not change much in the
stabilisation process. However, the gradient before the
normalisation had practically zero values, which indicates
that the local extreme had been reached. The largest
modulus has the value 1.00246 and is greater than one,
which means that the system is still unstable. The limit of
the area of stability was practically reached, but it was not
exceeded, and, as mentioned earlier, the system remained
unstable.

The automatic stabilisation test was repeated
assuming a decrease in the value of the parametric part
of the eliminator damping bond characteristic, i.e. it is
assumed that ¢, =0.3¢, instead of ¢, =0.5¢, . This time,
the stabilisation process was successful and, as in the case
of the classic vibration eliminator, a stable system was
obtained, in which the maximum value of the multiplier
modulus was 0.99737. The vector of design parameters
also did not differ much from that obtained for a classic
vibration eliminator, i.e.

p= [ 1.77002-10’ 23358]T (70)
At the end, one more variant of calculations was carried
out. It was assumed that all the parameters of the
vibration absorber and the parametric system are design
parameters, i.e. that the vector of the design parameters
consisted of seven coordinates
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p= [ k K, K, c, C ¢ T]T (71)
whose values are
p,=[177-10"  4.10°  2:10°
. @
44000 44000 22000 0‘026995J

The last parameter is the parametric excitation period of
the system T =2z/v, =0.0269665 s . To perform this variant
of calculations, it was necessary to use generalised
formulas for calculating the derivatives of the monodromy
matrix Eq. (19).

The design parameters vector after stabilizing the
system is shown below:
2-10°%

p=[177:10"  4.10°

73
44000 (73)

44000 22000 0.024144] T

Values of the vector p differ from the values of the vector
p, practically only at the last position—corresponding to
the parameter, which is the parametric excitation period.
Compared to the initial value, the parametric excitation
period decreased by only about 10%. Thus, in this case, a
small change in a sole parameter guarantees the stability
of the system. The stabilisation process was carried out
instantly, which is important if the stabilisation procedure
is to be carried out in practice, in which case it must take
place in real time.

A normalised gradient vector contains virtually only
one non-zero element

Ag=[-3451-10"" 245110 1312107 (4
~2877-10% -1725-10° 7.448:10° 1.000)"

This confirms the earlier conclusion that the only
important parameter on which the rate of stabilisation
practically depends is the parametric excitation period.
The influence of other parameters is smaller by at least
eight orders.

The Jordan form of the monodromy matrix after
stabilisation of the system supports the conclusion of its
stability. This is because one gets

~0.0017160 0 0 0
0 ~0.65648 +0.49881 i 0 0

J= . (75)
0 0 ~0.65648—0.49881i 0
0 0 0 ~0.70099
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The largest absolute value of the multiplier is 0.99172 and
is less than 1, which indicates the stability of the system,
while the absolute value of the largest multiplier could be
reduced even further.

6 Conclusions

The aim of the study was to propose an original method
for stabilizing an unstable multi-degree-of-freedom
parametric system. The method’s innovation is the idea
to achieve the non-homogeneous parametric sensitivity
equation by evaluating analytically the derivative of the
homogeneous parametric differential equation of motion
with respect to the design parameter. Then, by solving the
sensitivity equation obtained in this way, to evaluate the
firstderivative of the monodromy matrix and finally the first
derivatives of multipliers. Ultimately, this method is based
on the sensitivity analysis of absolute values of multipliers.
As a result, numerical rather than analytical procedures
can be used, which is a significant improvement in the
case of parametric systems, in which analytical solutions
practically do not exist. This procedure is based on the
concept of first-order sensitivity analysis, which allows to
determine those design parameters that have the greatest
influence on the response of the parametric system. Next,
using the gradient method, the values of selected design
parameters are changed in such a way as to stabilise the
parametric system as quickly as possible.

The method was modified in such a way that, in
particular, it becomes possible to use the parametric
excitation period also as a design parameter. The method
presented in work [3] does not provide such a possibility,
and in the case of dependence of the parametric excitation
period on the design parameter, an error is generated.

Two basic assumptions were made in the paper:

- the parametric systems are limited to the case of a
linear parametric system in which the variability in
time of its parameters is described by a continuous
periodic function of time,

— the first-order sensitivity analysis is applied only.

Two examples were analysed in the paper. This first
example — method validation (the same example that was
analysed in [2]), is absolutely unique for the parametric
systems, since an analytical solution for all mathematical
operations associated with the presented algorithm exists.
This is a great advantage of this example. It is possible
to objectively verify the correctness of the theory and to
determine the efficiency of the method. In addition, one
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can directly compare the results with those obtained at

works [2,3]. The comparison was realised in parallel in

three ways:

— analytical calculations performed by a human,

— analytical calculations performed using symbolic
procedures of the Mathematica system,

— calculations performed using numerical procedures
of the Mathematica system.

The consistency of the results obtained by these three
approaches irrefutably proves the correctness of the
method described in the paper.

The goal of the second example — stabilisation of an
unstable parametric system by a dynamic absorber — was
different. It is an attempt to show the possibility of the
practical application of the proposed method.

In this example, the effectiveness of two types of
absorbers was analysed: classical and parametric ones.

It was found that both classical and parametric
vibration eliminators could be an effective tool in
achieving this goal. The research shows the following
additional detailed conclusions:

— a classic eliminator can be more effective than a
parametric one in the process of stabilizing parametric
vibrations,

— inthe stabilisation process of a parametric system, the
parametric excitation period is the parameter whose
change has the greatest influence on the speed and
efficiency of the stabilisation process; unfortunately,
the period of parametric variability of the vibration
absorber characteristic is not only a parameter of the
absorber but also a parameter of the system.

The authors’ next paper, submitted for publication
together with the current one, consists of an extension
of the method presented in this paper with second-order
sensitivity analysis algorithms. Further works on the
sensitivity analysis of discontinuous multi-degree-of-
freedom parametric periodic systems are now in the final
phase of preparations.
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