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Abstract: The work presents a method of automatic
stabilisation of unstable multi-degree-of-freedom linear
parametric systems. The publication is a continuation and
extension of the subject matter described in Wéjcicki’s
earlier work ‘Application of first-order sensitivity analysis
to stabilization of unstable continuous MDOF parametric
periodicsystems’ (Studia Geotechnica et Mechanica). While
in that paper first-order sensitivity analysis was used, in
this paper it was extended to the second-order sensitivity
analysis. The algorithm of the presented method of
stabilisation of an unstable continuous in time parametric
system has become significantly more complicated, but
the new formulas allow for better (nonlinear) prediction of
extrapolated changes in the values of design parameters,
which should accelerate the system stabilisation
procedure. The obtained formulas were verified and
validated using the same examples that were used in the
study cited earlier. The method’s innovation is the idea
to achieve the non-homogeneous parametric sensitivity
equation by evaluating analytically the first and second
derivatives of the parametric homogeneous equation of
motion with respect to design parameter. Then, by solving
the obtained sensitivity equation, the first and second
derivatives of monodromy matrix and finally the first and
second derivatives of multipliers are evaluated. Ultimately,
this method is based on sensitivity analysis of absolute
values of multipliers. Furthermore, the sensitivity analysis
method was improved and generalised to allow to correctly
determine the eigenderivatives also with respect to those
system parameters on which the parametric excitation
period depends. In particular, it becomes possible to use
the parametric excitation period as a design parameter.
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1 Introduction

Parametric vibrations are oscillatory movements that
occur in mechanical systems or structures because of
time-dependent (usually periodic) variation of parameters
such as inertia or stiffness. From a mathematical point of
view, parametric systems are described by differential
equations with time-varying coefficients. Time is,
therefore, a parameter on which these coefficients
depend. Therefore, equations and vibrations are called
parametric. The dependence on time is explicit, which
means that an external source of energy exists. An external
source of energy means it is possible to accumulate that
energy, which, in turn, means that unstable forms of
vibrations may occur with amplitudes increasing over
time. This phenomenon is called parametric resonance.
Resonance regions appear at certain values of the ratio
of the parameters — which determine the magnitude
and manner of parametric excitation — to the frequency
of this excitation. These vibrations occur in a direction
different than the direction of action of the parametric
load exciting the vibrations (usually perpendicularly
to it). Increasing the damping in the parametric system
decreases the instability regions. Parametric resonance
is the result of the instability of differential equations
describing these vibrations. The mathematical basis is
the theory of Lyapunov, discussed, for example, in the
works of Demidowicz [1], Skalmierski and Tylikowski [2],
La Sall and Lefschetz [3], Leipholz [4], Yakubovitch and
Starzhinski [5] and others.

In this sense, a nonlinear dynamic system is always
a parametric system. It can be said that the dependence
of stiffness (or inertia) on time is a natural result of their
dependence on deformations that change over time.
However, the dependence on time is not explicit, and
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therefore, these vibrations are generally not classified as
parametric.

Linear parametric systems exhibit some characteristics
of nonlinear systems and are therefore classified between
linear systems with constant coefficients and nonlinear
systems. The similarity to nonlinear systems is seen when
the phenomenon of subharmonic resonance occurs in a
linear parametric system. This effect does not occur in
linear systems with constant coefficients.

The problem of parametric vibrations has been
particularly intensively developed since the 1950s, when
several works were published, for example Bolotin [6],
Pipes [7], Evan-Ivanowski [8], Hsu [9, 10, 11], Hsu and
Cheng [12], Benedetti [13], McWhannell [14], Paidoussis
and Sundararajan [15], Ibrahim and Barr [16], and among
Polish authors, Kamifski and Osifski [17], Osinski [18]
and others.

In the early 1990s, Tondl [19, 20] published his works,
in which he showed that not only external excitation, but
also parametric or self-excitation of a basic system can be
the source of autoparametric excitation for an additional
system. An exhaustive review of physical models in which
the phenomenon of autoparametric resonances occurs
was made by Tondl and Nabergoj in [21]. The book [22]
by Tondl, Ruijgrok, Verhulst and Nabergoj, describing
examples of systems in which autoparametric resonances
appeatr, is also of interest.

The 1990s also witnessed the publication of the first
papers presenting methods that allowed not only detecting
the dangers resulting from the possibility of parametric
resonance, but also actively reducing the effects of such
resonance. Works by Tylikowski [23], Yang and Tsao
[24] and Osinski [25, 26] can be mentioned here. Such a
direction of research, in turn, forced the development of
theories in the field of parametric vibration sensitivity
analysis.

From a mathematical point of view, sensitivity
analysis is carried out by calculating the derivatives of
solutions of differential equations describing vibrations
in terms of parameters, which are quantities appearing in
the description of the equation, but not an independent
variable themselves. If the first derivatives are used, one
speaks of first-order sensitivity; if the second derivatives
are also used, it is second-order sensitivity, and so on.
The literature on this subject is abundant, but two works
are fundamental in this regard: a monograph that Frank
[27] published in 1978 and a monograph that Haug, Choi,
and Komkov [28] published in 1986. Other chronologically
presented examples of literature in this field are: Rudisill
and Bhatia [29], Watari and Iwamoto [30], Ray, Pister and
Polak [31], Arora and Haug [32], Haug and Roysselet [33],
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Haug and Ehle [34], Van Belle [35], Dems and Mréz [36,
37], Hsien and Arora [38, 39], Adelman and Haftka [40],
Wicher [41], Wicher and Natecz [42], Natecz and Wicher
[43], Chen and Ku [44], Godoy [45], Mr6z and Piekarski
[46] and Park, Kapania and Kim [47]. The author’s works
in this field are: Wojcicki and Chrobok [48], Wojcicki
and Grosel [49, 50], Wojcicki [51, 52, 53, 54] and ruta and
wojcicki [55].

In parametric systems, there are basically no solutions
in the analytical form. For this reason, studying sensitivity
is complicated, and often, the sensitivity analysis of
parametric systems itself is the subject of research work.
The problem of the sensitivity of parametric systems has
been intensively developed since the turn of the century,
as evidenced by the works of Lu and Murthy [56], Gu and
Chen and Wang [57], Seyranian, Solem and Pedersen [58],
Woéjcicki [52, 54], and in stochastic terms, for example,
the work of Hien and Kleiber [59], Sniady, Sieniawska and
Zukowski [60] and Mazur-Sniady and Sniady [61].

In the general case, in addition to parametric
excitation, the system may be affected by a non-parametric
excitation (constant or so-called forcing) with a direction
similar to the direction of vibration. Resonant vibration
amplification phenomena may then arise, which are
caused not by the instability of the equations, but by
the coupling of vibrations caused by these two types of
excitation. The first (fundamental) subharmonic region
of instability is usually the most important. The resulting
forced vibrations can also induce resonant vibrations of
further areas of instability. This issue was dealt with in the
works of Hsu and Cheng [12], Kaminiski and Osifiski [17, 62,
18] and Klasztorny and Wojcicki [63].

Since the turn of the century, papers have also been
published related to the analysis of nonlinear parametric
systems. Although parametric nonlinear systems have
already been analysed, for example, in the work of Bolotin
[6], in view of the constant progress of computational
techniques, the number of papers on this subject has
clearly increased. Works by authors such as Shmidt and
Tondl [64], Osifnski [65], Szabelski and Warminski [66],
Shiau and Wu [67], Esmailzadeh and Nakhaie-Jazar [68,
69], Sinha and Butcher [70], Deolasi and Datta [71], Yu
and Huseyin [72], Zhang and Peil [73] and Kaminski [74]
should be noted here.

In the case of vibration instability of a parametric
system, it is generally necessary to change the parameters
(if possible) to get out of the region of solution instability.
To achieve this goal, it is extremely useful to analyse
the sensitivity of the eigenproblem of the monodromy
matrix. Relatively new works on the sensitivity of the
eigenproblem are Lee, Kim and Jung [75, 76], Scarpa and
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Curti [77], Lallemand, Level, Duveau and Mahieux [78]
and Murthy, Lin and O’Hara [79].

Another way to remove the effects of vibration
instability in dynamic systems is to use vibration
eliminators. The dynamic vibration eliminator invented by
Frahm in 1909 is generally a mass component. However,
there are also other solutions, for example, active damping
with the use of layers of piezoelectric foils (Tylikowski [23],
Osinski [26]), in which the so-called intelligent materials
are used (Dosch and Inman [80], Weiss and Carlson [81]).
A liquid flowing from one part of the structure to another
is also used, so that the resultant of the forces of gravity
(or inertia) of the liquid counteracts the vibrations (Den
Hartog [82], Gao, Kwok and Samali [83]). The so-called
active methods of resonance avoidance are also used
(Holnicki-Szulc [84], Mikhlin and Zhupiew [85], Glabisz
[86, 87]).

The mass of a classic dynamic vibration eliminator
is usually about 5%-20% of the mass of the structure
whose vibration it is supposed to reduce. Such a mass
is connected to the structure by means of an elastic or
elastic-damping bond.

The problem of optimal tuning of the eliminator in a
system with one dynamic degree of freedom and constant
coefficients was formulated and solved by Den Hartog
in [82] (see also Harris [88]). The two control parameters
used in the tuning process are the stiffness and damping
of the eliminator (at its assumed mass). In the paper
[82], one can also find an analysis of the problem of
vibration reduction by additional mass connected to
the basic system by means of only an elastic constraint
(without damping). Den Hartog showed analytically that
if harmonic excitation is the only factor that excites the
basic system, then such a dynamic vibration eliminator
can effectively reduce the amplitudes of resonant
vibrations near the natural frequencies of the system.
In other cases, the vibration eliminator must also have
damping properties.

Dynamic vibration eliminators and absorbers are
increasingly used in construction and civil engineering.
Examples of such technical utilisation of these are
shown in Klasztorny [89] and Pakos [90]. They present,
respectively, methods of designing absorbers and
controlling the tension of cables to reduce the vibrations
of a cable-stayed bridge.

The use of absorbers to dampen vibrations of tall
buildings under wind load is presented, for example, in
the work of Xu [91] and Majcher [92, 93]. An analysis of
the possibility of active control of the characteristics of the
dynamic vibration eliminator in the machine support to
reduce the impact of the vibrating ground is presented, for
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example, by Yamaguchi, Yashime and Hirayama in their
work [94].

This paper presents the method of automatic
stabilisation of linear unstable continuous in time
parametric periodic systems. The procedure is based on
the concept of sensitivity analysis first presented in paper
[54] and then in [95, 96, 97, 98, 99]. In paper [95], the first-
order sensitivity analysis was used. The method presented
in this paper is a direct continuation and improvement
of the method presented in that paper. In this paper, in
addition to the first-order sensitivity analysis, second-
order sensitivity analysis was performed. The method is
an alternative approach to that proposed in [56] and [57]
and is similar to that presented in paper [58]. Second-order
sensitivity analysis is a better tool; however, unfortunately,
the algorithm becomes much more complicated. Using this
method allows to better determine those parameters of
the system whose influence on the stabilisation procedure
of such systems could be the greatest.

The method is also improved in that it allows to
determine correctly the second derivatives of characteristic
exponents with respect to those system parameters, on
which the parametric excitation period depends or is itself
a design parameter.

In addition, as in paper [95], this method is based on
sensitivity analysis of absolute values of multipliers. From
a mathematical point of view, the sensitivity analysis of
multipliers is the calculation of their eigenderivatives
with the use of derivatives of the monodromy matrix. The
second-order sensitivity analysis of multipliers differs
in that the second derivatives of monodromy matrix and
multipliers, among others, are also used.

Eigenderivatives are extremely useful for determining
the sensitivities of dynamic response to the system
parameters’ variations. The innovation of the method
is the idea to achieve the non-homogeneous parametric
sensitivity equation by analytically evaluating the
derivative of the parametric homogeneous equation of
motion with respect to design parameter. The next step
of method realisation is solving the sensitivity equation
obtained in this way, to evaluate the first and second
derivatives of monodromy matrix and, finally, the first and
second derivatives of multipliers. Ultimately, this method
is based on the sensitivity analysis of absolute values of
multipliers. Then, finally, the stabilisation procedure
can be performed. Based on the concept of directional
derivative [100], a procedure similar to that described in
work [9] was used. A gradient vector has been designated
for the fastest decrease of the absolute value of complex
multipliers. This gradient is used to calculate the change
in design parameters to make system vibrations stable.
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The method was tested on the same examples that were
presented in the paper [95] and similar to those used in
paper [54]. Generally, this work continues the topics
developed by the author, among others, in the mentioned
works [95-99], and is an attempt to summarise the author’s
research and achievements in the field of parametric
vibration stability analysis.

Since the work is a continuation of the work [95],
naturally, there are some repetitions. These repetitions are
useful, as they allow the reader to analyse the presented
method comfortably. This paper will, therefore, present
only those elements of the work [95] and the theory
presented in it, which are necessary in the process of
achieving the goal intended in this work without referring
to the content of the quoted works.

2 First-order sensitivity analysis

The theory of linear parametric systems is also discussed
in the earlier paper [95], of which this paper is a
continuation. A more complete description can be found
in the papers [1, 99].

A linear non-homogeneous periodic parametric
system of an n linear second-order differential equation of
motion can by written as a first-order non-homogeneous
periodic coefficient system

x(1)=A() x(t)+1(?)

A= [ ey

0 I } { : }
-1 -1 f(t): -1
-B " (1))K() -B(¢)C(¢) B F(r)

where a 2n x 2n system matrix A(t) is periodic with period
T and 2n dimensional vectors x(t) and f(t) are a vector of
state variables and an external excitation, respectively,
B(t), C(t), K(t) are square n x n real matrices of inertia,
damping, and stiffness periodic with a period T and F(¢) is
an n dimensional excitation column vector.

From the point of view of the second-order sensitivity
analysis carried out in this paper, the formula contained
in the paper [95] will be useful later

{p,} =L'D,R+L'DR, - LR {p} )

whereR (detR #0) and L' (detL' #0) are right-side and
left-side modal matrices, respectively, and multipliers {f}
are eigenvalues of the monodromy matrix D.

For a single multiplier, Eq. (2) can be written in the
form
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(D, - o)1) r=—(D=pI)r, 3)

from which, as proved in the paper [95], follows the
simpler equation for eigenderivatives of multipliers

p,=1"Dr or {p)}=diag(L'D, R) (4)

One can see that to calculate the derivative of the
multipliers of the monodromy matrix D, there is no need
to know (as in Eq. (2)) the derivative of the right-hand
modal matrix R with respect to the design parameter p,
thatis, R =dR/dp, but the derivative of the monodromy
matrix only, that is, D', = aD/dp .

It was also proved in [95] that the first derivative of
monodromy matrix with respect to parameter p can be
found in accordance with the formula

D, =D X_I(T)A;(T) X(r) dr (5)

Sy —

This formula can be calculated analytically, when
the analytical form of monodromy matrix D exists, or
numerically in any other case, and the result may be used
to calculate derivatives of multipliers in accordance with
Eq. (4).

In the case when the period of parametric excitation
T depends on design parameter p, the first derivative of
monodromy matrix can be written as [95]

D, =D} +D, (6)

where

T(p)

D, = [ [A,(t.p) X(.p)+ AL p) X, (L p)ldt (7)
and

D =A(T)DT, 8)

The following markings were adopted in Eqs (6-8):

p_dT AW | X(.p)
"odp ! op op

The matrix X' (¢,p) in Eg. (7) is a derivative of the
fundamental matrix of solutions with respect to the design
parameter p. This matrix can be found [95] in accordance
with the formula

’
1Xp:

X (t, p) = X(t, p)[ X' (z, p)A ) (7, p) X(z, p) dr 9)
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and can be obtained analytically (when the analytical
form of monodromy matrix X(f) exists) or numerically
by solving a non-homogeneous sensitivity equation with
zero initial conditions.

3 Second-order sensitivity analysis

3.1 Second derivative of multipliers with
respect to design parameter

Calculating a derivative of both sides of Eq. (3) with respect
to parameter p; and left-hand multiplication by the left-
hand eigenvector 1" and right-hand multiplication by the
right-hand eigenvector r of monodromy matrix leads to
equation

Ty n T Ty L./ rqT 1
1 an,r_pp,p,-l r+l Dnrp, — Pyl =

= —lTD'pjr,',i +p), I'r, -1' (D= pI)r,,

(10)

Under the validity of an assumption 1" is a left-side
eigenvector of monodromy matrix D, the last component
of Eq. (10) is equal to zero. Moreover, based on the
assumption that the scalar product of eigenvectors is
normalised

I'r=1 (11)
and, in addition, that the scalar product of the vectors
satisfies the orthogonality condition

lTrl',‘ =0 (12)

it is possible from Eq. (10) to obtain the formula for
calculating the second derivative of the multiplier in a
simpler form:

Py, = lTD;ip/r+lTD;,' r, +lTD;] r, 13)
From Eq. (13), it follows that to calculate the second
derivative of the multiplier, in addition to the derivatives
of the monodromy matrices D;’ and D;/ , one must know
the second derivative of the monodromy matrix D;’ ’
and the derivatives of the right sided eigenvectors of the
monodromy matrix r and r . The derivatives of the
monodromy matrices D and D' can be calculated from
Eq. (5) or Egs (6-8) when the parametrlc excitation period
depends on the design variable or is a design variable.
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In the following sections, it will be shown how to
determine the unknown matrix D;p and the unknown
vectors r, and r) .

3.2 Second derivatives of a monodromy
matrix with respect to design parameters

The second derivatives of the monodromy matrix can
be determined by calculating the derivative of the
monodromy matrix defined by Eq. (6), taking into account
Egs (7) and (8), that is,

N dD’ 8y
LS ; S d’D =D’ D”

(14)
dp j dp i dp j e

pipj

The first component on the right side of Eq. (14) can be
calculated using Eq. (7),

’ T(p;)
D, =— = | - 3 AR 6 P) X6 p)+ AP X, 6N+
" dp,
L (15)
+[A! (T)D+A(T) Dp’ ]Tp =D, +[A, (T)D+A(T) D, 1T,

J

where X;, (¢, p,) is derived from the expression described
by Eq. (9).

The second component on the right side of Eq. (14),
that is, the matrix D , is determined by counting the
derivative of the second component on the right side of Eq.
(6) described by Eq. (8)

n" d ’
B, = LA(T@).p)) D(T2).p,) T, ()] =
/ ) (16)
=A, (T)DT, +A(T)D, T, + A(T)D T,

Considering that the matrix D‘pi in Eq. (14) is defined by
Eqgs (6-8), the matrix D'l') » is obtained lastly in the form

irj

D) =A, (T)DT, +A(T)D, T, +
+AX(T)DT, T, +A(T)D T,

(17)
Ultimately, the second derivative of the monodromy
matrix can be written as a sum of two matrices

=D" +D (18)

pip; Pip; pip;
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The matrix l_);',‘ », calculated based on Egs (16) and (17) is

13”‘ =[A, (1)D+A(T)D), 1T, + 1)
+[A, (T)D+A(T)D), T, + A*(T)DT, T,+A(T)DT;

pip;
and contains a complement that extends the ability
to use an algorithm to calculate the second derivative
of a monodromy matrix for cases where the period of
parametric excitation is a design parameter or depends on
the design parameter with respect to which the sensitivity
is analysed.

The matrix D;- . in Eq. (18) is defined by

—[ZA! (1p,) Xt p))+ Al p)) X, (1 p ]t =
; 0P, (20)

= [[A7, O X@t.p)+ A, ()X, ()+ A} ()X, ()+A@) X, (O)]dt

o

and denotes the second mixed derivative of the monodromy
matrix in cases when the period of a parametric excitation
is not a design parameter or does not depend on the
design parameter.

To determine practically useful formulas for the
calculation of the matrix D;, b the second derivative
of the monodromy matrix D;‘ p, €an be derived from the
relation

N_Djx (A (t)xa)j X (DA (0)X(r)drdt +
+D j X' (A, (z)X(t)j X (DA, (DX(2)drdt+ (21)

+ D]’ X! (DA}, (OX(t)dt

Changing the order of integration and the designation of
variables in the second integral Eq. (21) a new formula is
obtained:

D;,p, = DJ X0 A’pj (Z)X(t)j. X! (T)A:", (O)X(r)drdt +
+ Dﬁ.xq (T)A'p/ (0)X(r)dr X' AL (OX() dt+  (22)

+ Dj X! (OA], (HX(n)dt

If matrix factor X' (r)A;]_ (r)X(r) is commutative with
matrix factor X‘l(r)A’p’ (r)X(7) , it becomes possible to
substitute the sum of first two double integrals over the
triangle in Eq. (22) by one double integral over a rectangle.
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Finally, this double integral can be substituted by a
product of two integrals. Eq. (21) then takes the form

D’ =D

Pip;

XA (OX(1)dr- j X(0) A, ()X(z)dt+
(23)

oy

+Dj X' (A" (H)X(t)dt

Pip;
The calculation of the second derivatives of the
monodromy matrix can be done with the equation

T
D!, =D, DD, +D[X (DA, (OX(t)dt  (24)
0

Unfortunately, in the general case, the factors that occur
under the integral are not commutative and need to use
Eg. (20).

Ultimately, in Egs (6) and (24) for the first and second
derivatives of multlphers instead of matrices D’ and
D" o, matrices D and D” ought to be substltuted
which differ from the matrlces D’ and D;,-p, by the
matrix components D;’ and D;‘p, described by Egs (8)
and (19), respectively.

3.3 Derivatives of right-side eigenvectors
with respect to design parameters

Firstly, referring again to Eq. (3), one needs to determine
the unknown vectors r, and r, , which must additionally
satisfy the condition of orthogonahty Eg. (11). Eq. (3) shows
that because of Egs (4), (6), (7) and (8), the only unknown
is the vector r,fi . To determine it from Eq. (3), one needs
to invert the matrix(D— pI). Unfortunately, pis the
eigenvalue of the monodromy matrix D and the matrix
(D pl)is singular, so it cannot be inversed. This does
not mean, however, that there is no solution for Eq. (3).

Based on the Kronecker—Capelli theorem [101], it
is known that if the rank of the principal matrix of a
heterogeneous algebraic system of equations is equal
to the rank of the augmented (extended) matrix, then
the solution of the system of algebraic equations always
exists. If at the same time, this rank is smaller than the
number of unknowns — the system is indeterminate — so
there are arbitrarily (infinitely) many solutions for such a
system of equations.

It is assumed that Eq. (3) is an indeterminate system
of equations with respect to the unknown r,fl . This
assumption is strongly motivated by the following facts:
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- Firstly, from Eq. (3), one can determine the vector r

from the formula

r=—(D, - p/ 1) (D-pI)r, (25)
and, of course, the condition r # 0 must be fulfilled,
since vector r is a non-zero solution of Eq. (3)
(assumedtobe detR = 0 ). This means that the inverse
matrix (D'p[ - p;l_l) ! exists, and it follows that £, is
not the eigenvalue of the matrix D;, . From Eq. (25),
one can further conclude that the vector rI; # 0 isnot
an eigenvector of the matrix (D - pI) . Otherwise, the
r vector would have to be a zero vector, which is not
true. The vector l‘,',,, cannot, therefore, not exist. The
vector r would then not exist either. Conclusion: The
system of Eq. (3) is not inconsistent.

— Secondly, the vector r being the eigenvector of the
matrix D is, by definition, known with the precision
of a constant multiplier. So, there are infinitely
many eigenvectors. Therefore, there should also be
an infinite number of derivatives of these vectors.
In general, the system of Eq. (3) should be an
indeterminate system of equations with respect to the
unknown r,',l .

To solve the indeterminate system of Eq. (3), with respect
to the unknown rl’,[ , and to simultaneously normalise this
vector so that it satisfies the condition in Eq. (11), one can
add to the system Eq. (3) one more equation written in
the form of the scalar product Eq. (12). This can be done
when the system of Eq. (3) is indeterminate and there is
one more unknown than the number of independent
equations. One unknown can certainly be chosen freely.
Formally, the linearly dependent equation of the system
of Eq. (3) is replaced by Eq. (12). The matrix rank of the
system increases by one, becoming equal to the number
of unknowns. The principal matrix thus ceases to be
singular. The system of equations obtained in this way can
already be formally solved.

However, this method of proceeding has the
disadvantage that it is necessary to replace the ‘proper’
equation of the initial system of Eq. (3) with a new
equation, that is, the one that is ‘responsible’ for the
singularity of (D— pI) matrix. According to the theory
of linear algebra (e.g. [101]), determining which equation
is linearly dependent is done by examining the rank of
the minors of the matrix (D — pI). This is a troublesome
procedure and to avoid it, it is more convenient to modify
it a bit.
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Multiplying Eq. (3) on both sides by the conjugate
vector T, in the complex sense, with the left-sided
eigenvector 1T of the matrix of the monodromy D, the
following matrix equation is obtained:

Qr, =0, (26)
where matrix Q is defined by the formula
Q=11 @7)

The matrix Eq. (27) has the property that its determinant det
Q = 0and the vector r,',l is its eigenvector corresponding
to zero eigenvalues. To be more precise, the order of the
matrix rank Q = 1. In accordance to Eq. (27) all rows of the
matrix € must be proportional to the vector 1T . A matrix
Q is a Hermitian matrix, that is, one that satisfies the
condition Q' = Q, and there are real elements on its main
diagonal.
Subtracting Eq. (26) from Eq. (3) (subtracting the zero
vector according to Eq. (26) ), one finally obtains
(D-p1-Q)r; =—(D, - p,1)r (28)
All equations are modified, including the one that
corresponds to the row of the matrix (D - pI)
‘responsible’ for its singularity. The matrix (D — pI—-Q)
on the left side of Eq. (28), denoted by
C=(D-pI-Q) (29)
is, therefore, non-singular (det C # 0 ) and can be formally
inversed. Therefore, from Eq. (28), one can unambiguously
determine the vector T,

r,=-C' (D, —p,1)r (30)

which, at the same time, satisfies the condition in Eq. (12).
Similarly, the vector r,’,j_ can be calculated. Ultimately, it
becomes possible to reject two terms in Eq. (10) and obtain
an equation in the form Eq. (13).

In the theory presented in this section, it is assumed
that there are no multiple multipliers. In the case of
multiple multipliers, the analysis of the problem becomes
much more complicated mathematically and it is rather a
case for a separate work.
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4 Parametric periodic systems’
stabilisation method

A full description of the elements of the theory consistent
in both works can be found in the paper [95]. Based on the
concept of directional derivative [100], a gradient vector
has been designated for the fastest decrease of the absolute
value of the complex multiplier whose absolute value is
the greatest. This gradient is used to calculate the change
in design parameters to make system vibrations stable.
The resulting formulas can be interpreted as an expansion
of the function describing the multiplier module in Taylor
series, including the first three expansion members.

As has been mentioned, a gradient vector has been
designated for the fastest decrease of the absolute value
of complex multipliers. However, it could be the first
three members of the formula of study [58], where the
problem was solved using the small parameter method.
The algorithm was tested on the same examples that
were previously analysed in work [95]. In particular,
the effectiveness of the method was compared when,
in addition to other system parameters, the parametric
excitation period was also a design parameter. This is the
fundamental difference between the algorithm presented
in this work and that described in the work [58]. The
possibility of a one-step exit from the area of instability
was also tested.

4.1 Gradient of absolute value of multiplier [95]

Due to the specificity of the problem, the stabilisation
algorithm will not need so much multiplier gradients as
gradients of their absolute values because their absolute
values provide the stability or instability of the parametric
system. With accordance to the theory presented in [95],
the gradient of the absolute value of the multiplier as a
vector function of design parameters p =[p,,..., p,] can
be written down in the form

Rep

||

where vector g is the gradient of the real part and vector
g, is the gradient of the imaginary part of the multiplier.

According to the geometric interpretation of the
scalar product of two vectors, a directional derivative is
a projection of a gradient vector on the direction of the
vector e. Vector eTz[el,...,en] is any vector. It is also

g=grad|p(p)|=77T g, +I|mT'|D g, (31)
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accepted in the literature that this vector is normalised,
that is, in the parameters state, it fulfils the condition

||e||:1[e12+e§+~~-+ef =1

According to thisinterpretation, the value of the directional
derivative is the largest when its direction is the same as
the direction of the gradient vector. As the possibility of
reducing the value of the multiplier module is sought as
soon as possible, e = —g, which, after normalising in
accordance with Eq. (32) finally gives

g
e=—r7=-Ag 33
|g| (33)

(32)

Therefore, the change in the value of design parameters,

leading to the fastest reduction in the absolute value of the

multiplier, is determined by
Ap=ce=—-cAg (34)

where ¢ is a small numeric parameter.

4.2 Change in multiplier value -
stabilisation procedure

One can calculate the change in the value of a multiplier
using the formula

A p=gAp+ig,Ap (35)
Using Eq. (34), Eq. (35) can be presented in the form
Ap=Ap, +iAp, =—c(glAg+ig Ag)  (36)

The change in the absolute value of the multiplier can be
calculated based on Eq. (36)

A1|p|:\/(A[pr)2+(A1pu)2 :5A1|g| (37)
where the designation
8| |=(g!ag)+ (gl Ag)? (38)

was adopted.
With the second derivative, one can calculate the
second-order change of the multiplier value

1 .
A,p= E(ApT F,Ap +iAp'F, Ap) (39)
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Using once again Eq. (34), Eq. (39) can be presented in the
form

1
App=Dyp,+iA,p, =& 2_(AgTFr Ag+iAg,F, Ag) (40)

and the second-order change of the multiplier module

All|p|=\/(Allpr)2+(AHpu)2 =€2An|g| (41)

where it is marked

Aylgl= %\/(AgT F Ag)*+(Ag F,Ag)  (42)

In Egs (39) and (42), symbols F. and F, mean,
respectively, the real and imaginary part of the matrix
of the second partial derivatives of the multiplier due
to all design variables. One can obtain an approximate
multiplier value after the procedure for reducing the value
of its module by adding the components described in Eqs
(36) and (41), that is,

pP=p,tAp+Ap=p, +ip, (43)
and the value of the module is then expressed as
p=Np +p; (44)

where p, = p,, +A,p, +Ayp, and p, = p,, +A;p, +Ayp,
are obtained based on Egs (40) and (36). Eq. (43) may,
on the one hand, be interpreted as an expansion of the
function describing the multiplier into a Taylor series,
taking into account the first three members of the
expansion, and on the other hand, the first three members
of the formula obtained in the work [58], where the task
was solved using the small parameter method.

5 Examples

The method presented in this paper was verified using the
same example that was analysed in [95]. The first example
is used to check the correctness of the formulated method,
in particular, the derived complex formulas and algorithms
for implementation of the parametric system stabilisation
process. This example, for the parametric system, is
unique. Thereis an analytical solution for all mathematical
operations associated with the computational algorithm
presented in this work. This is a great advantage of this
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example. It is possible to objectively verify the correctness
of the theory and to determine the efficiency of the
method. In addition, one can directly compare the results
with those obtained in works [95] and [58]. Obtaining the
results of the second-order sensitivity analysis consistent
with those obtained in the paper [95] in the field of first-
order sensitivity analysis will confirm the correctness of
the new, more complex formulas and algorithms.

In the case of implementing a second-order
sensitivity analysis algorithm, reaching a solution can be
realised with a smaller number of iterative steps (longer
iteration step length). This is possible as the algorithm
uses nonlinear extrapolation with three components of
the expansion of the function describing the multiplier
in Taylor series (see Eq. (43)), and not, as in the case of
the first-order analysis, a linear extrapolation with two
components. However, more complex algorithms must be
implemented at each step of the iteration of the second-
order sensitivity analysis algorithm.

Ultimately, the implementation time of both
algorithms, based on the first-order sensitivity analysis
used in the work [95] and the second-order sensitivity
analysis used in this work, is an individual matter and
one or the other of them may be more advantageous
depending on the task.

Both methods, using the first-order and second-order
sensitivity analyses, were improved and generalised
and allow to correctly determine the eigenderivatives of
multipliers also with respect to those system parameters,
on which the parametric excitation period depends. Thus,
in particular, it becomes possible to use the parametric
excitation period as a design parameter.

The goal of the second example, parametric resonant
vibrations eliminator (absorber), was different. It is an
attempt to show the possibility of practical application
of the proposed method for tuning an absorber in an
unstable parametric system.

5.1 Example 1 - method validation

In the stabilisation process, new formulas related to the

analysis of second-order sensitivity, that is, described by

Egs (35-44), have been used. The comparison was realised

parallel in three ways:

— analytical calculations performed by humans,

— analytical calculations performed using symbolic
procedures of the Mathematica system and

— calculations performed using numerical procedures
of the Mathematica system.
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The consistency of the results obtained by these
three approaches irrefutably proves the correctness of the
method described in this paper.

5.1.1 Analysis of the system sensitivity

A linear parametric system described by Eq. (1) is
considered, in which the system matrix has an analytical
form

a+i(a+b)cos2at —ab+ib(a+b)sin2at

A = (45)
® §§+if%5ésh12at a—i(a+b)cos2at

Matrix A(f) is periodic with a constant period T = 7/a,
while a and b are system parameters. Consequently, the
period T is a function of the design parameter 7 =T(a)
. The fundamental matrix of the solutions of this system,
monodromy matrix, modal matrices and first-order
sensitivity analysis results have the form

cosat-e™ —bsinat-e™

X(t) = 1 3 iat
—sinat-e
b

_e(tz+ib)l 0

cosat-e ™ 0

0 p 0 e

p 0 olarit)l 0 7€(a+m)% 0
D:X(T,a,b):|: :|:{ (afth)T:|: . :{P} (47)

R=L-=1I (48)
A VP :
D, =" =] (49)
O pZa b
0 i—T-p,
a
r O —.T. 0
D L (50)
0 p, 0 iT-p,

Further testing of the algorithm presented in this paper
is carried out first in the case of sensitivity analysis with
respect to the parameter b. This parameter does not
affect the period of the parametric excitation. Therefore,
the results obtained in accordance with Eq. (7) should
be correct. The algorithm described in this formula was
programmed in the Mathematica computer system. This
allowed conducting analytical calculations using the
symbolic procedures. The results achieved were consistent
with those obtained in work [97].
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The calculations were repeated using a generalised
algorithm described by Eq. (7). The obtained results are
identical to those achieved by analytical calculation of the
derivatives, that is, Eqs (49) and (50).

The subsequent calculations were carried out using
the procedure of second-order sensitivity analysis (in
accordance with Eq. (18):

T .
} pes (mb—ia)p, 0

o |= (51)
0 Py 0

T .
pea (zb+ia)p,

The same results are obtained analytically and by solving
the eigenproblem for the matrix D’,, which is evident
from the form of the matrix D, in Eq. (51).

5.1.2 Analysis of the system stability

In work [95], an analysis of the stability of a homogeneous
system corresponding to Eq. (1) with a system matrix A(f)
described by Eq. (45) was carried out. Since the parametric
excitation period in this example is T = 7/a , the greatest
absolute value of the multiplier is, therefore, described by
the equation [95]

| Pia | =¢" =¢" = constant > | (52)
This means the system is unstable and it will remain

unstable regardless of the change in the value of the
parameters a or b.

5.1.3 Stabilisation procedure

Since the system is unstable and will remain unstable
regardless of the change in the value of the parameters
a or b, the stabilisation procedure does not make sense
in this case. In this situation, another possibility of
stabilising the system was considered. It was assumed
that the vector of the design parameter contains not two,
but three parameters, and that the period of parametric
excitation depends additionally on its value d, according
to the formula T(a,d) =d/a ,and also that the initial value
of the parameter d =7 .

Because this example was intended to test all three
variants and the associated algorithms, that is, manual
calculations performed by humans, symbolic calculations
using symbolic operations of the Mathematica system
[102] and numerical calculations of the Mathematica
system [102], such calculations were performed.
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In the starting point of the stabilisation procedure,
the vector of the design parameter has the form
p,=[la b 71 (53)
Second-order sensitivity analysis procedures presented
by Egs (32-39) were used. The final vector of design
parameters takes the form
p=[a b 0T (54)
Such a result was obtained in all three methods described
above, in particular, by performing strict analytical
calculations. The result Eq. (54) is also identical to the
one obtained in the first-order sensitivity analysis and
means that in this case, the limit of the stable area will
be reached only if the period of T =T(a,d)=0/a=0.
Mathematically, this is the correct result, but from the
point of view of physical interpretation, this means the
period of parametric excitation disappears. Stabilisation
of the system is, therefore, possible, but requires complete
elimination of parametric vibrations. This means a de
facto transition to a system with constant coefficients.

5.2 Example 2 - stabilisation of an unstable
parametric system by a dynamic absorber

As in the previous paper [95], where first-order sensitivity
analysis was used, in this paper, calculations related to the
implementation of the second-order sensitivity analysis
algorithms for stabilisation of the parametric unstable
system were also performed. An example from the study
[95] was used. The process of stabilising the unstable
parametric system with the use of two types of vibration
eliminators (absorbers), a classical and a parametrical
one, was carried out. In addition, the effectiveness of these
two kinds of dynamic vibration absorbers is analysed:
classic and parametric ones. However, the stabilisation
procedure itself excluded the use of vibration absorber
other than active ones. ‘Active’ is here understood as an
eliminator whose parameters can be changed during its
stabilisation and/or operation.

The aim of this example is not to seek an answer to
the question: Is a dynamic vibration eliminator able to
effectively stabilise an unstable parametric system? It was
shown in paper [95] that the answer to this question is yes.
Now, the answer is sought to the question: Is it better to
use first-order or second-order sensitivity analysis?
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Figure 1: Two-mass dynamic model: parametrically excited primary
system M with attached eliminator m.

5.2.1 Model of the system-absorber [95]

By virtue of the theory presented in the paper, a primary
parametric system with mass M(f) with a dynamic
vibration eliminator (absorber mass m) attached to it is
analysed. Thus, a damped two-dynamic-degrees-of-

freedom g, and g, parametric system is created. The
system is shown in Fig. 1.

The additional upper mass m in Fig. 1 is the mass of
the dynamic vibration eliminator connected in parallel
by an elastic spring k(t) and a damping bond c(t) with the
primary mass M (lower mass) of the parametric system,
attached to the foundation by an elastic spring K(t)
and a damping bond C(t). The system is parametrically
excited, that is, elastic spring stiffness K(t) and damping
characteristic C(f) periodically change in time with a
parametric excitation frequency n_. It is also assumed
that, in a general case, the stiffness k(t) and damping
characteristics c(t) in the bonds connecting the mass of
the vibration eliminator m with the primary mass M(t)
can harmonically vary in time with the frequency of
parametric excitation.

The matrix equation of the motion of a parametric
homogenous system shown in Fig. 1 can be generally
written in the form

B(1)q+C(1)q+K()q=0 (55)
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where B(t), C(t) and K(¢) are inertia, damping and stiffness
matrices and q=[g¢, ¢,]" is a general coordinates
vector (Fig. 1).

In this example, without losing the generality of Eq.
(55), it was assumed that the system characteristics of
elements in Fig. 1 are described by the following values
(papers [95] and [54]):

Primary parametric system (lower mass M)

the basic mass - M =3-10* kg,
the constant part of the stiffness

of the elastic bond - K,=4-10° N/m,
the characteristic of the damping

bond - C=4.4-10" Ns/m
and

parametric excitation frequency - v, =233 rad/s .

Eliminator (upper mass m)
the eliminator mass

(1/20 of the mass M) -m=15-10° kg,
the spring stiffens - k=1.77-10" N/m
and

the characteristic of the damping

bond - ¢, =44-10* Ns/m.

Symbolic and numerical calculations are performed using
the computer system ‘Mathematica’ [102].
5.2.2 The classic vibration absorber

The matrix coefficients of the equation of motion, Eq.

(55), can be then described by the following formulas and
matrix coefficients:

(56)

(57)

wo [ k] o0
O ke | o k| 0D 69

where

K@t)=K,+K,cos(v,t), (K,>K =0.5K)) (59)
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To use the theory presented in this paper, the equation of
motion, Eq. (55), is reduced to a system of the first-order
homogenous differential equations corresponding to the
first equation in Eq. (1).

According to the theory presented in the paper, the
system matrix A(t) in the second equation in Eq. (1) then
has a form

0 0 1 0
0 0 0 1
Al =|_k L3 G % |(60)
m m m m
k (K, +K, cosv,t)+k c C+ec,
M M M M

Based on stability analysis, it was found that the initial
system is unstable. This is evident from the values of the
multipliers on the major diagonal of the Jordanian form of
the monodromy matrix. The first multiplier is modularly
larger than one.

~1.1938 0 0 0
0 -0.66404+0.22579 i 0 0
J= . (61)
0 0 ~0.66404-0.25579i 0
0 0 0 ~0.69295

To stabilise the system, the method of second-order
sensitivity analysis presented in this paper was used. The
design parameter vector is assumed to be in the form

p=[k ] 62)
The values of the design parameter vector in start point
are the values

p,=[177:10" 44000 ] (63)
The system was able to stabilise at the level of
p=[1.77-10 22213]T (64)

The stiffness value hardly changed, while the eliminator
damping decreased almost twice compared to the initial
value. Such a tuned eliminator guarantees the stability
of the entire system, as evidenced by the values of the
multipliers

-0.9917+0.02384 i 0 0 0
0 -0.9917-0.02384 i 0 0

Jo 917 3841 4 (65)
0 0 —0.7598+0.2601 i 0

0 0 0 —0.7598-0.2601
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The largest modulus of the multiplier has the value 0.992,
which is less than one. This indicates the stability of the
system. The obtained results are consistent with those
obtained in paper [95].

5.2.3 The parametric vibration absorber

As in work [95], the same unstable parametric system,
which was stabilised by a classical vibration eliminator,
was subjected to the stabilisation procedure described in
this work, but this time, the characteristic of the damping
bond of the vibration absorber was modified.
It was assumed that

c(t)y=c, +c,cos(v,1), (c,>c,=0.5¢,) (66)
Because the characteristics of the bond change periodically
in time with the parametric excitation frequency, the
absorber has become a parametric vibration eliminator.
Damping matrix in equation of motion, that is, Eq. (55),
can be written as

C(z):{ @ 7% }+ {_cf _c’} cos(v, 1) (67)

-, c,+C c, c,

System matrix A(t) Eq. (57) must be modified, and now
has the form

0 0 1 0
0 0 0 1
A = _k k _ €, +¢ cosV, I ¢, +c, cosv,t (68)
m m m m
k (K,+K, cosv,t)+k c,+c cosv,t (¢, +c, cosv,t)+C
M M M - M

The initial values of the multipliers have hardly changed
compared to the previously described relation, that is, Eq.
(61).

~1.1912 0 0 0
0 —0.66352+0.24280 i 0 0

J= ) (69)
0 0 ~0.66351-0.24280 i 0
0 0 0 -0.70447

The largest modulus has the value 1.00246 and is greater
than 1, which means that the system is still unstable. The
limit of the area of stability was practically reached, but it
was not exceeded and, as mentioned earlier, the system
remained unstable.

As in work [95], the automatic stabilisation test was
repeated assuming adecrease in the value of the parametric
part of the eliminator damping bond characteristic, that
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is, it is assumed that ¢, =0.3¢, instead of ¢ =0.5¢, .
This time, the stabilisation process was successful and,
as in the case of the classic vibration eliminator, a stable
system was obtained, in which the maximum value of
the multiplier modulus was 0.99737. The vector of design
parameters also did not differ much from that obtained for
a classic vibration eliminator, that is,

p= [ 1.77002-10’ 23358]T (70)
Once again, as in work [95], one more variant of
calculations was carried out. It was assumed that all the
parameters of the vibration eliminator and the parametric
system are design parameters, that is, that the vector of
the design parameters consisted of seven coordinates

p:[k KD Kl c, C (el T]T (71)
whose values are
=[ 177107  4-10°  2-10° 44000
.=l n (72)
44000 22000 0026995}

The last parameter is the parametric excitation period
of the system 7 =27z/v, =0.0269665s. To perform
this variant of calculations, again as in work [95], it was
necessary to use generalised formulas for calculating the
derivatives of the monodromy matrix, that is, Eq. (18).

The design parameters vector after stabilising the
system is shown below:

4.10°  2.10°
22000 0024144]T

p=[1.77-10
44000

44000
(73)

The Jordan form of the monodromy matrix after
stabilisation of the system supports the conclusion of its
stability. This is because we get

—-0.0017160 0 0 0
0 —0.65648 +0.49881 i 0
1= 0 0 —0.65648 —0.49881 i 0 (74)
0 0 0 -0.70099

The largest absolute value of the multiplier is 0.99172 and
less than 1, which indicates the stability of the system,
while the absolute value of the largest multiplier could be
reduced even further.
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Values of the vector p differ from the values of
the vector p, practically only at the last position —
corresponding to the parameter, which is the parametric
excitation period. Compared to the initial value, the
parametric excitation period decreased by only about 10%.
Thus, in this case, a small change in this parameter value
(parametric excitation frequency) guarantees the stability
of the system. The stabilisation process was carried out
instantly, which is important if the stabilisation procedure
is to be carried out in practice, in which case it must take
place in real time.

It must, however, be noted that this is not a parameter
of the eliminator only, but, at the same time, a parameter
of the system. Changing the parameter of the system may
prove difficult or even impossible in practice. It can also
involve high costs of modifying the system.

As expected, the calculations performed in accordance
with the formulas of the second-order sensitivity analysis
gave results fully consistent with those obtained in the
paper [95], where the first-order sensitivity analysis was
used.

6 Conclusions

The paper is a continuation of the paper [95], where an
application of the first-order sensitivity analysis method
to stabilisation of unstable multi-degree-of-freedom
parametric periodic system was presented. This paper
presents an application of the second-order sensitivity
analysis to stabilisation of unstable continuous in time
parametric periodic system. The method allows to calculate
derivatives of multipliers of the monodromy matrix. It is,
therefore, an alternative approach to that proposed in
[56] and [57] and is similar to that which was presented
in paper [58]. The equation of sensitivity with respect to
the design parameter is found first. The solutions of this
equation allow to find eigenderivatives of multipliers.
The method has been tested on the example giving the
correct results consistent with the ones obtained in work
[95] for the first-order sensitivity analysis. In addition, the
calculations performed in accordance with the formulas
of the second-order sensitivity analysis gave results fully
consistent with those obtained in the paper [95], where the
first-order sensitivity analysis was used. The method gives
correct results also when the parametric period depends
on the design parameter or is itself the design parameter
for which the sensitivity is analysed. For this reason, the
method is much more general than the ones presented in
papers [56] and [58].
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The aim of this work was not to seek an answer to the
question: Is it possible to stabilise an unstable parametric
system using the sensitivity analysis method? It was shown
in paper [95] that the answer to this question is yes. Now,
the answer is sought to the question: Is it better to use first-
order or second-order sensitivity analysis?

In assessing the two variants of the methodology, it
was predicted that the final results of calculations using
first-order sensitivity, presented in paper [95], and second-
order sensitivity analysis, presented in this paper, should
be identical. It was also predicted that the only difference
may bein the speed of obtaining results, which is especially
important when the system stabilisation process hasto take
place in real time. Unfortunately, the time to obtain results
is influenced by two opposing tendencies: in the first-
order sensitivity analysis, the algorithms are simpler than
in the second-order analysis; but due to worse prediction
(linear extrapolation), a higher number of iterative steps
is required, and vice versa, in the second-order sensitivity
analysis, algorithms are more complicated, but thanks to
nonlinear extrapolation Eq. (40), the length of iterative
steps can be greater and there can be fewer iteration steps.
Which way will be better depends on the specific case,
the quality of the computer processing equipment, etc.
Thus, it is impossible to determine a priori which method
is better. The results of this paper make it possible to test
both methods in any given case and choose the one that
fits best in a given application.

As in work [95], the method was modified in such
a way that in particular, it becomes possible to use the
parametric excitation period also as a design parameter.

Two examples were analysed in the paper. This first
example — method validation (the same example that
was analysed in [95, 57]) — is absolutely unique for the
parametric systems, since analytical solutions exist for all
mathematical operations associated with the presented
algorithm. This is a great advantage of this example. It is
possible to objectively verify the correctness of the theory
and to determine the efficiency of the method. In addition,
one can directly compare the results with those obtained
in work [58].

The comparison was realised simultaneously in three
ways:

— analytical calculations performed by humans,

— analytical calculations performed using symbolic
procedures of the Mathematica system and

— calculations performed using numerical procedures
of the Mathematica system.
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The consistency of the results obtained by these three
ways irrefutably proves the correctness of the method
described in the paper.

The goal of the second example, parametric resonant
vibrations eliminator (absorber), was different. It is an
attempt to show the possibility of practical application
of two approaches for tuning a vibrations eliminator
(absorber) in an unstable parametric system to stabilise:
the first-order sensitivity analysis presented in paper [95]
and the second-order sensitivity analysis presented in this
paper.

The method presented in the paper consists in
reversing the typical order of calculation. Instead of
searching forasolution toadifferential equation describing
parametric vibrations and then calculating its derivatives,
the calculations are performed in reverse order. First, the
derivative of the equation of motion is calculated to obtain
the sensitivity equation and then this sensitivity equation
is solved. The theoretically demonstrated correctness of
such an approach is also confirmed by the fact that the
results obtained in these two ways are consistent in the
examples presented in the paper. The most important
benefit of using this approach is the abandonment of the
need to use the approximate small parameter method,
which has been de facto used in other works, for example,
[56], [57] and [58]. In the proposed approach, the iteration
step can, therefore, be significantly longer and vibration
stabilisation can be achieved faster. To summarise, the
most important benefit of the method presented in this
paper and the previous one is the ability to stabilise an
unstable system in one-step iteration.

These papers present the author’s achievements
on the subject, which has been the author’s area of
expertise. This is not the end of the publication cycle on
this subject, as the author plans to publish further papers
in this field. They will concern the sensitivity analysis of
discontinuous parametric periodic systems. These works
will be submitted for publication soon.
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