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Abstract: The work presents a method of automatic 
stabilisation of unstable multi-degree-of-freedom linear 
parametric systems. The publication is a continuation and 
extension of the subject matter described in Wójcicki’s 
earlier work ‘Application of first-order sensitivity analysis 
to stabilization of unstable continuous MDOF parametric 
periodic systems’ (Studia Geotechnica et Mechanica). While 
in that paper first-order sensitivity analysis was used, in 
this paper it was extended to the second-order sensitivity 
analysis. The algorithm of the presented method of 
stabilisation of an unstable continuous in time parametric 
system has become significantly more complicated, but 
the new formulas allow for better (nonlinear) prediction of 
extrapolated changes in the values of design parameters, 
which should accelerate the system stabilisation 
procedure. The obtained formulas were verified and 
validated using the same examples that were used in the 
study cited earlier. The method’s innovation is the idea 
to achieve the non-homogeneous parametric sensitivity 
equation by evaluating analytically the first and second 
derivatives of the parametric homogeneous equation of 
motion with respect to design parameter. Then, by solving 
the obtained sensitivity equation, the first and second 
derivatives of monodromy matrix and finally the first and 
second derivatives of multipliers are evaluated. Ultimately, 
this method is based on sensitivity analysis of absolute 
values of multipliers. Furthermore, the sensitivity analysis 
method was improved and generalised to allow to correctly 
determine the eigenderivatives also with respect to those 
system parameters on which the parametric excitation 
period depends. In particular, it becomes possible to use 
the parametric excitation period as a design parameter. 

Keywords: second-order sensitivity; parametric; 
stabilisation; continuous; m.d.o.f.

1  Introduction
Parametric vibrations are oscillatory movements that 
occur in mechanical systems or structures because of 
time-dependent (usually periodic) variation of parameters 
such as inertia or stiffness. From a mathematical point of 
view, parametric systems are described by differential 
equations with time-varying coefficients. Time is, 
therefore, a parameter on which these coefficients 
depend. Therefore, equations and vibrations are called 
parametric. The dependence on time is explicit, which 
means that an external source of energy exists. An external 
source of energy means it is possible to accumulate that 
energy, which, in turn, means that unstable forms of 
vibrations may occur with amplitudes increasing over 
time. This phenomenon is called parametric resonance. 
Resonance regions appear at certain values of the ratio 
of the parameters –  which determine the magnitude 
and manner of parametric excitation –  to the frequency 
of this excitation. These vibrations occur in a direction 
different than the direction of action of the parametric 
load exciting the vibrations (usually perpendicularly 
to it). Increasing the damping in the parametric system 
decreases the instability regions. Parametric resonance 
is the result of the instability of differential equations 
describing these vibrations. The mathematical basis is 
the theory of Lyapunov, discussed, for example, in the 
works of Demidowicz [1], Skalmierski and Tylikowski [2], 
La Sall and Lefschetz [3], Leipholz [4], Yakubovitch and 
Starzhinski [5] and others.

In this sense, a nonlinear dynamic system is always 
a parametric system. It can be said that the dependence 
of stiffness (or inertia) on time is a natural result of their 
dependence on deformations that change over time. 
However, the dependence on time is not explicit, and 
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therefore, these vibrations are generally not classified as 
parametric.

Linear parametric systems exhibit some characteristics 
of nonlinear systems and are therefore classified between 
linear systems with constant coefficients and nonlinear 
systems. The similarity to nonlinear systems is seen when 
the phenomenon of subharmonic resonance occurs in a 
linear parametric system. This effect does not occur in 
linear systems with constant coefficients.

The problem of parametric vibrations has been 
particularly intensively developed since the 1950s, when 
several works were published, for example Bolotin [6], 
Pipes [7], Evan-Ivanowski [8], Hsu [9, 10, 11], Hsu and 
Cheng [12], Benedetti [13], McWhannell [14], Paidoussis 
and Sundararajan [15], Ibrahim and Barr [16], and among 
Polish authors, Kamiński and Osiński [17], Osiński [18] 
and others.

In the early 1990s, Tondl [19, 20] published his works, 
in which he showed that not only external excitation, but 
also parametric or self-excitation of a basic system can be 
the source of autoparametric excitation for an additional 
system. An exhaustive review of physical models in which 
the phenomenon of autoparametric resonances occurs 
was made by Tondl and Nabergoj in [21]. The book [22] 
by Tondl, Ruijgrok, Verhulst and Nabergoj, describing 
examples of systems in which autoparametric resonances 
appear, is also of interest.

The 1990s also witnessed the publication of the first 
papers presenting methods that allowed not only detecting 
the dangers resulting from the possibility of parametric 
resonance, but also actively reducing the effects of such 
resonance. Works by Tylikowski [23], Yang and Tsao 
[24] and Osiński [25, 26] can be mentioned here. Such a 
direction of research, in turn, forced the development of 
theories in the field of parametric vibration sensitivity 
analysis.

From a mathematical point of view, sensitivity 
analysis is carried out by calculating the derivatives of 
solutions of differential equations describing vibrations 
in terms of parameters, which are quantities appearing in 
the description of the equation, but not an independent 
variable themselves. If the first derivatives are used, one 
speaks of first-order sensitivity; if the second derivatives 
are also used, it is second-order sensitivity, and so on. 
The literature on this subject is abundant, but two works 
are fundamental in this regard: a monograph that Frank 
[27] published in 1978 and a monograph that Haug, Choi, 
and Komkov [28] published in 1986. Other chronologically 
presented examples of literature in this field are: Rudisill 
and Bhatia [29], Watari and Iwamoto [30], Ray, Pister and 
Polak [31], Arora and Haug [32], Haug and Roysselet [33], 

Haug and Ehle [34], Van Belle [35], Dems and Mróz [36, 
37], Hsien and Arora [38, 39], Adelman and Haftka [40], 
Wicher [41], Wicher and Nałęcz [42], Nałęcz and Wicher 
[43], Chen and Ku [44], Godoy [45], Mróz and Piekarski 
[46] and Park, Kapania and Kim [47]. The author’s works 
in this field are: Wójcicki and Chrobok [48], Wójcicki 
and Grosel [49, 50], Wójcicki [51, 52, 53, 54] and ruta and 
wójcicki [55].

In parametric systems, there are basically no solutions 
in the analytical form. For this reason, studying sensitivity 
is complicated, and often, the sensitivity analysis of 
parametric systems itself is the subject of research work. 
The problem of the sensitivity of parametric systems has 
been intensively developed since the turn of the century, 
as evidenced by the works of Lu and Murthy [56], Gu and 
Chen and Wang [57], Seyranian, Solem and Pedersen [58], 
Wójcicki [52, 54], and in stochastic terms, for example, 
the work of Hien and Kleiber [59], Śniady, Sieniawska and 
Żukowski [60] and Mazur-Śniady and Śniady [61].

In the general case, in addition to parametric 
excitation, the system may be affected by a non-parametric 
excitation (constant or so-called forcing) with a direction 
similar to the direction of vibration. Resonant vibration 
amplification phenomena may then arise, which are 
caused not by the instability of the equations, but by 
the coupling of vibrations caused by these two types of 
excitation. The first (fundamental) subharmonic region 
of instability is usually the most important. The resulting 
forced vibrations can also induce resonant vibrations of 
further areas of instability. This issue was dealt with in the 
works of Hsu and Cheng [12], Kamiński and Osiński [17, 62, 
18] and Klasztorny and Wójcicki [63].

Since the turn of the century, papers have also been 
published related to the analysis of nonlinear parametric 
systems. Although parametric nonlinear systems have 
already been analysed, for example, in the work of Bolotin 
[6], in view of the constant progress of computational 
techniques, the number of papers on this subject has 
clearly increased. Works by authors such as Shmidt and 
Tondl [64], Osiński [65], Szabelski and Warmiński [66], 
Shiau and Wu [67], Esmailzadeh and Nakhaie-Jazar [68, 
69], Sinha and Butcher [70], Deolasi and Datta [71], Yu 
and Huseyin [72], Zhang and Peil [73] and Kamiński [74] 
should be noted here.

In the case of vibration instability of a parametric 
system, it is generally necessary to change the parameters 
(if possible) to get out of the region of solution instability. 
To achieve this goal, it is extremely useful to analyse 
the sensitivity of the eigenproblem of the monodromy 
matrix. Relatively new works on the sensitivity of the 
eigenproblem are Lee, Kim and Jung [75, 76], Scarpa and 
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Curti [77], Lallemand, Level, Duveau and Mahieux [78] 
and Murthy, Lin and O’Hara [79].

Another way to remove the effects of vibration 
instability in dynamic systems is to use vibration 
eliminators. The dynamic vibration eliminator invented by 
Frahm in 1909 is generally a mass component. However, 
there are also other solutions, for example, active damping 
with the use of layers of piezoelectric foils (Tylikowski [23], 
Osiński [26]), in which the so-called intelligent materials 
are used (Dosch and Inman [80], Weiss and Carlson [81]). 
A liquid flowing from one part of the structure to another 
is also used, so that the resultant of the forces of gravity 
(or inertia) of the liquid counteracts the vibrations (Den 
Hartog [82], Gao, Kwok and Samali [83]). The so-called 
active methods of resonance avoidance are also used 
(Holnicki-Szulc [84], Mikhlin and Zhupiew [85], Glabisz 
[86, 87]).

The mass of a classic dynamic vibration eliminator 
is usually about 5%–20% of the mass of the structure 
whose vibration it is supposed to reduce. Such a mass 
is connected to the structure by means of an elastic or 
elastic-damping bond.

The problem of optimal tuning of the eliminator in a 
system with one dynamic degree of freedom and constant 
coefficients was formulated and solved by Den Hartog 
in [82] (see also Harris [88]). The two control parameters 
used in the tuning process are the stiffness and damping 
of the eliminator (at its assumed mass). In the paper 
[82], one can also find an analysis of the problem of 
vibration reduction by additional mass connected to 
the basic system by means of only an elastic constraint 
(without damping). Den Hartog showed analytically that 
if harmonic excitation is the only factor that excites the 
basic system, then such a dynamic vibration eliminator 
can effectively reduce the amplitudes of resonant 
vibrations near the natural frequencies of the system. 
In other cases, the vibration eliminator must also have 
damping properties.

Dynamic vibration eliminators and absorbers are 
increasingly used in construction and civil engineering. 
Examples of such technical utilisation of these are 
shown in Klasztorny [89] and Pakos [90]. They present, 
respectively, methods of designing absorbers and 
controlling the tension of cables to reduce the vibrations 
of a cable-stayed bridge.

The use of absorbers to dampen vibrations of tall 
buildings under wind load is presented, for example, in 
the work of Xu [91] and Majcher [92, 93]. An analysis of 
the possibility of active control of the characteristics of the 
dynamic vibration eliminator in the machine support to 
reduce the impact of the vibrating ground is presented, for 

example, by Yamaguchi, Yashime and Hirayama in their 
work [94].

This paper presents the method of automatic 
stabilisation of linear unstable continuous in time 
parametric periodic systems. The procedure is based on 
the concept of sensitivity analysis first presented in paper 
[54] and then in [95, 96, 97, 98, 99]. In paper [95], the first-
order sensitivity analysis was used. The method presented 
in this paper is a direct continuation and improvement 
of the method presented in that paper. In this paper, in 
addition to the first-order sensitivity analysis, second-
order sensitivity analysis was performed. The method is 
an alternative approach to that proposed in [56] and [57] 
and is similar to that presented in paper [58]. Second-order 
sensitivity analysis is a better tool; however, unfortunately, 
the algorithm becomes much more complicated. Using this 
method allows to better determine those parameters of 
the system whose influence on the stabilisation procedure 
of such systems could be the greatest. 

The method is also improved in that it allows to 
determine correctly the second derivatives of characteristic 
exponents with respect to those system parameters, on 
which the parametric excitation period depends or is itself 
a design parameter.

In addition, as in paper [95], this method is based on 
sensitivity analysis of absolute values of multipliers. From 
a mathematical point of view, the sensitivity analysis of 
multipliers is the calculation of their eigenderivatives 
with the use of derivatives of the monodromy matrix. The 
second-order sensitivity analysis of multipliers differs 
in that the second derivatives of monodromy matrix and 
multipliers, among others, are also used.

Eigenderivatives are extremely useful for determining 
the sensitivities of dynamic response to the system 
parameters’ variations. The innovation of the method 
is the idea to achieve the non-homogeneous parametric 
sensitivity equation by analytically evaluating the 
derivative of the parametric homogeneous equation of 
motion with respect to design parameter. The next step 
of method realisation is solving the sensitivity equation 
obtained in this way, to evaluate the first and second 
derivatives of monodromy matrix and, finally, the first and 
second derivatives of multipliers. Ultimately, this method 
is based on the sensitivity analysis of absolute values of 
multipliers. Then, finally, the stabilisation procedure 
can be performed. Based on the concept of directional 
derivative [100], a procedure similar to that described in 
work [9] was used. A gradient vector has been designated 
for the fastest decrease of the absolute value of complex 
multipliers. This gradient is used to calculate the change 
in design parameters to make system vibrations stable. 



78    Zbigniew Wójcicki 

The method was tested on the same examples that were 
presented in the paper [95] and similar to those used in 
paper [54]. Generally, this work continues the topics 
developed by the author, among others, in the mentioned 
works [95-99], and is an attempt to summarise the author’s 
research and achievements in the field of parametric 
vibration stability analysis. 

Since the work is a continuation of the work [95], 
naturally, there are some repetitions. These repetitions are 
useful, as they allow the reader to analyse the presented 
method comfortably. This paper will, therefore, present 
only those elements of the work [95] and the theory 
presented in it, which are necessary in the process of 
achieving the goal intended in this work without referring 
to the content of the quoted works. 

2  First-order sensitivity analysis 
The theory of linear parametric systems is also discussed 
in the earlier paper [95], of which this paper is a 
continuation. A more complete description can be found 
in the papers [1, 99].

A linear non-homogeneous periodic parametric 
system of an n linear second-order differential equation of 
motion can by written as a first-order non-homogeneous 
periodic coefficient system 

( ) ( ) ( ) ( )t t t t= +x A x f  
    

1 1( )
( ) ( ) ( ) ( )

t
t t t t− −

 
=  − − 

0 I
A

B K B C

  
1( )

( )
t

t−

 
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 

0
f

B F
(1)

where a 2n × 2n system matrix A(t) is periodic with period 
T and 2n dimensional vectors x(t) and f(t) are a vector of 
state variables and an external excitation, respectively, 
B(t), C(t), K(t) are square n × n real matrices of inertia, 
damping, and stiffness periodic with a period T and F(t) is 
an n dimensional excitation column vector.

From the point of view of the second-order sensitivity 
analysis carried out in this paper, the formula contained 
in the paper [95] will be useful later

{ } { }T T T
p p p p′ ′ ′ ′= + −ρ L D R L D R L R ρ    (2) 

 

(2)

where R (det 0)≠R  and TL  T(det 0)≠L  are right-side and 
left-side modal matrices, respectively, and multipliers { }ñ  
are eigenvalues of the monodromy matrix D. 

For a single multiplier, Eq. (2) can be written in the 
form 

( ) ( )p p pρ ρ′ ′ ′− = − −D I r D I r (3)

from which, as proved in the paper [95], follows the 
simpler equation for eigenderivatives of multipliers

T
p pρ′ ′= l D r  or  T

p pρ′ ′= l D r  or  { } T( )p pdiag′ ′=ρ L D R   (4) 

 

(4)

One can see that to calculate the derivative of the 
multipliers of the monodromy matrix D, there is no need 
to know (as in Eq. (2)) the derivative of the right-hand 
modal matrix R with respect to the design parameter p, 
that is, p p′ = ∂ ∂R R , but the derivative of the monodromy 
matrix only, that is, p p′ = ∂ ∂D D .

It was also proved in [95] that the first derivative of 
monodromy matrix with respect to parameter p can be 
found in accordance with the formula

1

0

 ( ) ( ) ( )
T

p p dτ τ τ τ−′ ′= ∫D D X A X (5)

This formula can be calculated analytically, when 
the analytical form of monodromy matrix D exists, or 
numerically in any other case, and the result may be used 
to calculate derivatives of multipliers in accordance with 
Eq. (4). 

In the case when the period of parametric excitation 
T depends on design parameter p, the first derivative of 
monodromy matrix can be written as [95]

p p p′ ′ ′= +D D D (6)

where
( )

0

[ ( , ) ( , ) ( , ) ( , )]
T p

p p pt p t p t p t p dt′ ′ ′= +∫D A X A X (7)

and

( )p pT T′ ′=D A D (8)

The following markings were adopted in Eqs (6–8):

p
dTT
dp

′ = , 
( , )

p
t p
p

∂′ =
∂

AA , ( , )
p

t p
p

∂′ =
∂

XX .

The matrix ( , )p t p′X  in Eq. (7) is a derivative of the 
fundamental matrix of solutions with respect to the design 
parameter p. This matrix can be found [95] in accordance 
with the formula
 

1

0

( , ) ( , ) ( , ) ( , ) ( , )
t

p pt p t p p p p dτ τ τ τ−′ ′= ∫X X X A X (9)
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and can be obtained analytically (when the analytical 
form of monodromy matrix X(t) exists) or numerically 
by solving a non-homogeneous sensitivity equation with 
zero initial conditions.

3  Second-order sensitivity analysis 

3.1   Second derivative of multipliers with 
respect to design parameter

Calculating a derivative of both sides of Eq. (3) with respect 
to parameter jp  and left-hand multiplication by the left-
hand eigenvector Tl  and right-hand multiplication by the 
right-hand eigenvector r  of monodromy matrix leads to 
equation

( )T T T T T T T
i j i j i j i j j i j i i jp p p p p p p p p p p p p pρ ρ ρ ρ′′ ′′ ′ ′ ′ ′ ′ ′ ′ ′ ′′− + − = − + − −l D r l r l D r l r l D r l r l D I r

(10)
( )T T T T T T T

i j i j i j i j j i j i i jp p p p p p p p p p p p p pρ ρ ρ ρ′′ ′′ ′ ′ ′ ′ ′ ′ ′ ′ ′′− + − = − + − −l D r l r l D r l r l D r l r l D I r

Under the validity of an assumption Tl  is a left-side 
eigenvector of monodromy matrix D, the last component 
of Eq. (10) is equal to zero. Moreover, based on the 
assumption that the scalar product of eigenvectors is 
normalised

T 1=l r (11)

and, in addition, that the scalar product of the vectors 
satisfies the orthogonality condition 

T 0
ip′ =l r (12)

it is possible from Eq. (10) to obtain the formula for 
calculating the second derivative of the multiplier in a 
simpler form:

T T T
i j i j i j j ip p p p p p p pρ′′ ′′ ′ ′ ′ ′= + +l D r l D r l D r (13)

From Eq. (13), it follows that to calculate the second 
derivative of the multiplier, in addition to the derivatives 
of the monodromy matrices 

ip′D  and 
jp′D , one must know 

the second derivative of the monodromy matrix 
i jp p′′D  

and the derivatives of the right-sided eigenvectors of the 
monodromy matrix 

ip′r  and 
jp′r . The derivatives of the 

monodromy matrices 
ip′D  and 

jp′D  can be calculated from 
Eq. (5) or Eqs (6–8) when the parametric excitation period 
depends on the design variable or is a design variable. 

In the following sections, it will be shown how to 
determine the unknown matrix 

i jp p′′D  and the unknown 
vectors 

ip′r  and 
jp′r .

3.2  Second derivatives of a monodromy 
matrix with respect to design parameters

The second derivatives of the monodromy matrix can 
be determined by calculating the derivative of the 
monodromy matrix defined by Eq. (6), taking into account 
Eqs (7) and (8), that is,

2
i

i j i j i j

p
p p p p p p

j i j

d d
dp dp dp

′
′′ ′′ ′′= = = +

D DD D D
   

 (14)

The first component on the right side of Eq. (14) can be 
calculated using Eq. (7), 
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j j

p p p p p p p
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∂
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∫
D

D A X A X

A D A D D A D A D



where ( , )
ip jt p′X  is derived from the expression described 

by Eq. (9).
The second component on the right side of Eq. (14), 

that is, the matrix 
i jp p′′D


, is determined by counting the 

derivative of the second component on the right side of Eq. 
(6) described by Eq. (8)

   ( ) ( )( ), ( ), ( )

        = ( ) ( ) ( )

i j i

j i j i i j

p p j j j j p j
j

p p p p p p

d T p p T p p T p
dp

T T T T T T

 ′′ ′= = 

′ ′ ′ ′ ′′+ +

D A D

A D A D A D




(16)

Considering that the matrix D̃‘
pi in Eq. (14) is defined by 

Eqs (6–8), the matrix 
i jp p′′D


 is obtained lastly in the form

 2( ) ( ) ( ) ( )
i j j i j i j i i jp p p p p p p p p pT T T T T T T T T′′ ′ ′ ′ ′ ′ ′ ′′= + + +D A D A D A D A D



(17)
2( ) ( ) ( ) ( )

i j j i j i j i i jp p p p p p p p p pT T T T T T T T T′′ ′ ′ ′ ′ ′ ′ ′′= + + +D A D A D A D A D


Ultimately, the second derivative of the monodromy 
matrix can be written as a sum of two matrices

i j i j i jp p p p p p′′ ′′ ′′= +D D D (18)
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The matrix 
i jp p′′D calculated based on Eqs (16) and (17) is

2[ ( ) ( ) ] [ ( ) ( ) ] ( ) ( )
i j i i j j j i j i i jp p p p p p p p p p p pT T T T T T T T T T T′′ ′ ′ ′ ′ ′ ′ ′ ′ ′′= + + + + +D A D A D A D A D A D A D

(19)
2[ ( ) ( ) ] [ ( ) ( ) ] ( ) ( )

i j i i j j j i j i i jp p p p p p p p p p p pT T T T T T T T T T T′′ ′ ′ ′ ′ ′ ′ ′ ′ ′′= + + + + +D A D A D A D A D A D A D

and contains a complement that extends the ability 
to use an algorithm to calculate the second derivative 
of a monodromy matrix for cases where the period of 
parametric excitation is a design parameter or depends on 
the design parameter with respect to which the sensitivity 
is analysed. 

The matrix 
ji ppD ′′  in Eq. (18) is defined by 

0

0

[ ( , ) ( , ) ( , ) ( , )]
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and denotes the second mixed derivative of the monodromy 
matrix in cases when the period of a parametric excitation 
is not a design parameter or does not depend on the 
design parameter.

To determine practically useful formulas for the 
calculation of the matrix 

i jp p′′D , the second derivative 
of the monodromy matrix 

i jp p′′D  can be derived from the 
relation

1 1
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1 1
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∫ ∫
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D X A X X A X

D X A X

(21)

Changing the order of integration and the designation of 
variables in the second integral Eq. (21) a new formula is 
obtained:
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1 1
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1

0
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
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d t t t dt

t t t dt

τ τ τ τ

τ τ τ τ

− −

− −

−
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′ ′+ +

′′+

∫ ∫

∫ ∫

∫

D D X A X X A X

D X A X X A X

D X A X

(22)

If matrix factor 1( ) ( ) ( )
jpτ τ τ− ′X A X  is commutative with 

matrix factor 1( ) ( ) ( )
ipτ τ τ− ′X A X , it becomes possible to 

substitute the sum of first two double integrals over the 
triangle in Eq. (22) by one double integral over a rectangle. 

Finally, this double integral can be substituted by a 
product of two integrals. Eq. (21) then takes the form 

     
1 1

0 0

1

0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

i j i j

i j

T T

p p p p

T

p p

t t t dt dt

t t t dt

τ τ τ− −

−

′′ ′ ′= ⋅ ⋅ +

′′+

∫ ∫

∫

D D X A X X A X

D X A X
(23)

The calculation of the second derivatives of the 
monodromy matrix can be done with the equation

1 1

0

( ) ( ) ( )
i j j i i j

T

p p p p p pt t t dt− −′′ ′ ′ ′′= + ∫D D D D D X A X (24)

Unfortunately, in the general case, the factors that occur 
under the integral are not commutative and need to use 
Eq. (20). 

Ultimately, in Eqs (6) and (24) for the first and second 
derivatives of multipliers, instead of matrices p′D  and 

i jp p′′D , matrices p′D  and 
i jp p′′D  ought to be substituted, 

which differ from the matrices p′D  and 
i jp p′′D  by the 

matrix components p′D  and 
i jp p′′D , described by Eqs (8) 

and (19), respectively. 

3.3  Derivatives of right-side eigenvectors 
with respect to design parameters

Firstly, referring again to Eq. (3), one needs to determine 
the unknown vectors  

ip′r and 
jp′r , which must additionally 

satisfy the condition of orthogonality Eq. (11). Eq. (3) shows 
that because of Eqs (4), (6), (7) and (8), the only unknown 
is the vector 

ip′r . To determine it from Eq. (3), one needs 
to invert the matrix ( )ρ−D I . Unfortunately, ρ is the 
eigenvalue of the monodromy matrix D and the matrix 
( )ρ−D I is singular, so it cannot be inversed. This does 
not mean, however, that there is no solution for Eq. (3). 

Based on the Kronecker–Capelli theorem [101], it 
is known that if the rank of the principal matrix of a 
heterogeneous algebraic system of equations is equal 
to the rank of the augmented (extended) matrix, then 
the solution of the system of algebraic equations always 
exists. If at the same time, this rank is smaller than the 
number of unknowns – the system is indeterminate – so 
there are arbitrarily (infinitely) many solutions for such a 
system of equations.

It is assumed that Eq. (3) is an indeterminate system 
of equations with respect to the unknown 

ip′r . This 
assumption is strongly motivated by the following facts:
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	– Firstly, from Eq. (3), one can determine the vector r 
from the formula

( ) ( )1
i i ip p pρ ρ−′ ′ ′= − − −r D I D I r (25)

and, of course, the condition ≠r 0  must be fulfilled, 
since vector r  is a non-zero solution of Eq. (3) 
(assumed to be det 0≠R ). This means that the inverse 
matrix ( ) 1

i ip pρ
−′ ′−D I exists, and it follows that ipρ′  is 

not the eigenvalue of the matrix 
ip′D . From Eq. (25), 

one can further conclude that the vector 
ip′ ≠r 0  is not 

an eigenvector of the matrix ( )ρ−D I . Otherwise, the 
r vector would have to be a zero vector, which is not 
true. The vector

ip′r  cannot, therefore, not exist. The 
vector r would then not exist either. Conclusion: The 
system of Eq. (3) is not inconsistent. 

	– Secondly, the vector r being the eigenvector of the 
matrix D is, by definition, known with the precision 
of a constant multiplier. So, there are infinitely 
many eigenvectors. Therefore, there should also be 
an infinite number of derivatives of these vectors. 
In general, the system of Eq. (3) should be an 
indeterminate system of equations with respect to the 
unknown 

ip′r .

To solve the indeterminate system of Eq. (3), with respect 
to the unknown 

ip′r , and to simultaneously normalise this 
vector so that it satisfies the condition in Eq. (11), one can 
add to the system Eq. (3) one more equation written in 
the form of the scalar product Eq. (12). This can be done 
when the system of Eq. (3) is indeterminate and there is 
one more unknown than the number of independent 
equations. One unknown can certainly be chosen freely. 
Formally, the linearly dependent equation of the system 
of Eq. (3) is replaced by Eq. (12). The matrix rank of the 
system increases by one, becoming equal to the number 
of unknowns. The principal matrix thus ceases to be 
singular. The system of equations obtained in this way can 
already be formally solved.

However, this method of proceeding has the 
disadvantage that it is necessary to replace the ‘proper’ 
equation of the initial system of Eq. (3) with a new 
equation, that is, the one that is ‘responsible’ for the 
singularity of ( )ρ−D I  matrix. According to the theory 
of linear algebra (e.g. [101]), determining which equation 
is linearly dependent is done by examining the rank of 
the minors of the matrix ( )ρ−D I . This is a troublesome 
procedure and to avoid it, it is more convenient to modify 
it a bit.

Multiplying Eq. (3) on both sides by the conjugate 
vector l , in the complex sense, with the left-sided 
eigenvector Tl of the matrix of the monodromy D, the 
following matrix equation is obtained:

ip′ =Ω r 0 ,     (26) 

 

(26)

where matrix 
ip′ =Ω r 0 ,     (26) 

 

 is defined by the formula

ip′ =Ω r 0 ,     (26) 

 

T=Ù l l (27)

The matrix Eq. (27) has the property that its determinant det  

ip′ =Ω r 0 ,     (26) 

 

 = 0and the vector 
ip′r  is its eigenvector corresponding 

to zero eigenvalues. To be more precise,  the order of the 
matrix rank 

ip′ =Ω r 0 ,     (26) 

 

 = 1.  In accordance to Eq. (27) all rows of the 
matrix 

ip′ =Ω r 0 ,     (26) 

 

 must be proportional to the vector Tl . A matrix 

ip′ =Ω r 0 ,     (26) 

 

 is a Hermitian matrix, that is, one that satisfies the 
condition 

ip′ =Ω r 0 ,     (26) 

 

T = T =Ω Ω  , and there are real elements on its main 
diagonal.

Subtracting Eq. (26) from Eq. (3) (subtracting the zero 
vector according to Eq. (26) ), one finally obtains

( ) ( )i i ip p pρ ρ′ ′ ′− − = − −D I Ω r D I r    (28) 

 

(28)

All equations are modified, including the one that 
corresponds to the row of the matrix ( )ρ−D I  
‘responsible’ for its singularity. The matrix ( )ρ= − −C D I Ω      (29)  
on the left side of Eq. (28), denoted by

( )ρ= − −C D I Ω      (29) (29)

is, therefore, non-singular ( det 0≠C ) and can be formally 
inversed. Therefore, from Eq. (28), one can unambiguously 
determine the vector ip′r

( )1
i i ip p pρ

−′ ′ ′= − −r C D I r (30)

which, at the same time, satisfies the condition in Eq. (12). 
Similarly, the vector 

jp′r  can be calculated. Ultimately, it 
becomes possible to reject two terms in Eq. (10) and obtain 
an equation in the form Eq. (13).

In the theory presented in this section, it is assumed 
that there are no multiple multipliers. In the case of 
multiple multipliers, the analysis of the problem becomes 
much more complicated mathematically and it is rather a 
case for a separate work.
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4  Parametric periodic systems’ 
stabilisation method
A full description of the elements of the theory consistent 
in both works can be found in the paper [95]. Based on the 
concept of directional derivative [100], a gradient vector 
has been designated for the fastest decrease of the absolute 
value of the complex multiplier whose absolute value is 
the greatest. This gradient is used to calculate the change 
in design parameters to make system vibrations stable. 
The resulting formulas can be interpreted as an expansion 
of the function describing the multiplier module in Taylor 
series, including the first three expansion members.

As has been mentioned, a gradient vector has been 
designated for the fastest decrease of the absolute value 
of complex multipliers. However, it could be the first 
three members of the formula of study [58], where the 
problem was solved using the small parameter method. 
The algorithm was tested on the same examples that 
were previously analysed in work [95]. In particular, 
the effectiveness of the method was compared when, 
in addition to other system parameters, the parametric 
excitation period was also a design parameter. This is the 
fundamental difference between the algorithm presented 
in this work and that described in the work [58]. The 
possibility of a one-step exit from the area of instability 
was also tested.

4.1  Gradient of absolute value of multiplier [95]

Due to the specificity of the problem, the stabilisation 
algorithm will not need so much multiplier gradients as 
gradients of their absolute values because their absolute 
values provide the stability or instability of the parametric 
system. With accordance to the theory presented in [95], 
the gradient of the absolute value of the multiplier as a 
vector function of design parameters 1[ , , ]np p=p   can 
be written down in the form 

Re Im( ) r ugrad ρ ρ ρ
ρ ρ

= = +g p g g    (31) 

 

(31)

where vector rg  is the gradient of the real part and vector 
ug  is the gradient of the imaginary part of the multiplier. 

According to the geometric interpretation of the 
scalar product of two vectors, a directional derivative is 
a projection of a gradient vector on the direction of the 
vector  e . Vector T

1[ , , ]ne e=e   is any vector. It is also 

accepted in the literature that this vector is normalised, 
that is, in the parameters state, it fulfils the condition 

2 2 2
1 2 1ne e e= + + + =e  (32)

According to this interpretation, the value of the directional 
derivative is the largest when its direction is the same as 
the direction of the gradient vector. As the possibility of 
reducing the value of the multiplier module is sought as 
soon as possible, = −e g , which, after normalising in 
accordance with Eq. (32) finally gives

= − = −∆
ge g
g (33)

Therefore, the change in the value of design parameters, 
leading to the fastest reduction in the absolute value of the 
multiplier, is determined by

ε ε∆ = = − ∆p e g (34)

where ε  is a small numeric parameter.

4.2  Change in multiplier value – 
stabilisation procedure

One can calculate the change in the value of a multiplier 
using the formula

T T
I r uiρ∆ = ∆ + ∆g p g p (35)

Using Eq. (34), Eq. (35) can be presented in the form 

( )T T
I I r I u r ui iρ ρ ρ ε∆ = ∆ + ∆ = − ∆ + ∆g g g g (36)

The change in the absolute value of the multiplier can be 
calculated based on Eq. (36) 

( ) ( )2 2
I I r I u I gρ ρ ρ ε∆ = ∆ + ∆ = ∆ (37)

where the designation

( ) ( )T 2 T 2
I r ug∆ = ∆ + ∆g g g g (38)

was adopted.
With the second derivative, one can calculate the 

second-order change of the multiplier value

( )T T1
2II r uiρ∆ = ∆ ∆ + ∆ ∆p F p p F p (39)



Application of second-order sensitivity analysis to stabilisation of unstable continuous multi-degree ...    83

Using once again Eq. (34), Eq. (39) can be presented in the 
form

  
( )2 T T1

2II II r II u r u ui iρ ρ ρ ε∆ = ∆ + ∆ = ∆ ∆ + ∆ ∆g F g g F g (40)

and the second-order change of the multiplier module

( ) ( )2 2 2
II II r II u II gρ ρ ρ ε∆ = ∆ + ∆ = ∆ (41)

where it is marked

( ) ( )T 2 T 21
2II r u ug∆ = ∆ ∆ + ∆ ∆g F g g F g  (42)

In Eqs (39) and (42), symbols rF  and uF  mean, 
respectively, the real and imaginary part of the matrix 
of the second partial derivatives of the multiplier due 
to all design variables. One can obtain an approximate 
multiplier value after the procedure for reducing the value 
of its module by adding the components described in Eqs 
(36) and (41), that is,

o I II r uiρ ρ ρ ρ ρ ρ= + ∆ + ∆ = + (43)

and the value of the module is then expressed as 

2 2
r uρ ρ ρ= + (44)

where r or I r II rρ ρ ρ ρ= + ∆ + ∆  and u ou I u II uρ ρ ρ ρ= + ∆ + ∆  
are obtained based on Eqs (40) and (36). Eq. (43) may, 
on the one hand, be interpreted as an expansion of the 
function describing the multiplier into a Taylor series, 
taking into account the first three members of the 
expansion, and on the other hand, the first three members 
of the formula obtained in the work [58], where the task 
was solved using the small parameter method.

5  Examples 
The method presented in this paper was verified using the 
same example that was analysed in [95]. The first example 
is used to check the correctness of the formulated method, 
in particular, the derived complex formulas and algorithms 
for implementation of the parametric system stabilisation 
process. This example, for the parametric system, is 
unique. There is an analytical solution for all mathematical 
operations associated with the computational algorithm 
presented in this work. This is a great advantage of this 

example. It is possible to objectively verify the correctness 
of the theory and to determine the efficiency of the 
method. In addition, one can directly compare the results 
with those obtained in works [95] and [58]. Obtaining the 
results of the second-order sensitivity analysis consistent 
with those obtained in the paper [95] in the field of first-
order sensitivity analysis will confirm the correctness of 
the new, more complex formulas and algorithms.

In the case of implementing a second-order 
sensitivity analysis algorithm, reaching a solution can be 
realised with a smaller number of iterative steps (longer 
iteration step length). This is possible as the algorithm 
uses nonlinear extrapolation with three components of 
the expansion of the function describing the multiplier 
in Taylor series (see Eq. (43)), and not, as in the case of 
the first-order analysis, a linear extrapolation with two 
components. However, more complex algorithms must be 
implemented at each step of the iteration of the second-
order sensitivity analysis algorithm. 

Ultimately, the implementation time of both 
algorithms, based on the first-order sensitivity analysis 
used in the work [95] and the second-order sensitivity 
analysis used in this work, is an individual matter and 
one or the other of them may be more advantageous 
depending on the task.

Both methods, using the first-order and second-order 
sensitivity analyses, were improved and generalised 
and allow to correctly determine the eigenderivatives of 
multipliers also with respect to those system parameters, 
on which the parametric excitation period depends. Thus, 
in particular, it becomes possible to use the parametric 
excitation period as a design parameter.

The goal of the second example, parametric resonant 
vibrations eliminator (absorber), was different. It is an 
attempt to show the possibility of practical application 
of the proposed method for tuning an absorber in an 
unstable parametric system.

5.1  Example 1 – method validation 

In the stabilisation process, new formulas related to the 
analysis of second-order sensitivity, that is, described by 
Eqs (35–44), have been used. The comparison was realised 
parallel in three ways: 

	– analytical calculations performed by humans, 
	– analytical calculations performed using symbolic 

procedures of the Mathematica system and 
	– calculations performed using numerical procedures 

of the Mathematica system.
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The consistency of the results obtained by these 
three approaches irrefutably proves the correctness of the 
method described in this paper.

5.1.1  Analysis of the system sensitivity 

A linear parametric system described by Eq. (1) is 
considered, in which the system matrix has an analytical 
form

  ( ) cos 2 ( )sin 2
( )

sin 2 ( )cos 2

a i a b at ab ib a b at
t a a bi at a i a b at

b b

+ + − + + 
 = + + − +
  

A (45)

Matrix A(t) is periodic with a constant period T aπ= , 
while a and b are system parameters. Consequently, the 
period T  is a function of the design parameter ( )T T a=
. The fundamental matrix of the solutions of this system, 
monodromy matrix, modal matrices and first-order 
sensitivity analysis results have the form

( )

( )

cos sin 0
( ) 1 0sin cos

iat iat
a ib t

a ib tiat iat

at e b at e e
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eat e at e
b
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X (46)
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′  − ⋅ 
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D (50)

Further testing of the algorithm presented in this paper 
is carried out first in the case of sensitivity analysis with 
respect to the parameter b. This parameter does not 
affect the period of the parametric excitation. Therefore, 
the results obtained in accordance with Eq.  (7) should 
be correct. The algorithm described in this formula was 
programmed in the Mathematica computer system. This 
allowed conducting analytical calculations using the 
symbolic procedures. The results achieved were consistent 
with those obtained in work [97]. 

The calculations were repeated using a generalised 
algorithm described by Eq.  (7). The obtained results are 
identical to those achieved by analytical calculation of the 
derivatives, that is, Eqs (49) and (50).

The subsequent calculations were carried out using 
the procedure of second-order sensitivity analysis (in 
accordance with Eq. (18): 

  12
1

21
22

( ) 00
0 0 ( )

ab
ab

ab

T b ia
a

T b ia
a

π ρρ
ρ

π ρ

 − ′′ 
′′ = =   ′′    +  

D (51)

The same results are obtained analytically and by solving 
the eigenproblem for the matrix ab′′D , which is evident 
from the form of the matrix ab′′D  in Eq. (51).

5.1.2  Analysis of the system stability 

In work [95], an analysis of the stability of a homogeneous 
system corresponding to Eq. (1) with a system matrix A(t) 
described by Eq. (45) was carried out. Since the parametric 
excitation period in this example is T aπ= , the greatest 
absolute value of the multiplier is, therefore, described by 
the equation [95]

1,2 constant 1aTe eπρ = = = > (52)

This means the system is unstable and it will remain 
unstable regardless of the change in the value of the 
parameters a or b.

5.1.3  Stabilisation procedure

Since the system is unstable and will remain unstable 
regardless of the change in the value of the parameters 
a or b, the stabilisation procedure does not make sense 
in this case. In this situation, another possibility of 
stabilising the system was considered. It was assumed 
that the vector of the design parameter contains not two, 
but three parameters, and that the period of parametric 
excitation depends additionally on its value d, according 
to the formula ( , )T a d d a=  , and also that the initial value 
of the parameter d π= . 

Because this example was intended to test all three 
variants and the associated algorithms, that is, manual 
calculations performed by humans, symbolic calculations 
using symbolic operations of the Mathematica system 
[102] and numerical calculations of the Mathematica 
system [102], such calculations were performed. 
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In the starting point of the stabilisation procedure, 
the vector of the design parameter has the form

T T[ ] [ ]o a b d a b π= =p (53)

Second-order sensitivity analysis procedures presented 
by Eqs (32–39) were used. The final vector of design 
parameters takes the form 

T
1 [ 0]a b=p (54)

Such a result was obtained in all three methods described 
above, in particular, by performing strict analytical 
calculations. The result Eq. (54) is also identical to the 
one obtained in the first-order sensitivity analysis and 
means that in this case, the limit of the stable area will 
be reached only if the period of ( , ) 0 0T T a d a= = = .  
Mathematically, this is the correct result, but from the 
point of view of physical interpretation, this means the 
period of parametric excitation disappears. Stabilisation 
of the system is, therefore, possible, but requires complete 
elimination of parametric vibrations. This means a de 
facto transition to a system with constant coefficients. 

5.2  Example 2 – stabilisation of an unstable 
parametric system by a dynamic absorber

As in the previous paper [95], where first-order sensitivity 
analysis was used, in this paper, calculations related to the 
implementation of the second-order sensitivity analysis 
algorithms for stabilisation of the parametric unstable 
system were also performed. An example from the study 
[95] was used. The process of stabilising the unstable 
parametric system with the use of two types of vibration 
eliminators (absorbers), a classical and a parametrical 
one, was carried out. In addition, the effectiveness of these 
two kinds of dynamic vibration absorbers is analysed: 
classic and parametric ones. However, the stabilisation 
procedure itself excluded the use of vibration absorber 
other than active ones. ‘Active’ is here understood as an 
eliminator whose parameters can be changed during its 
stabilisation and/or operation. 

The aim of this example is not to seek an answer to 
the question: Is a dynamic vibration eliminator able to 
effectively stabilise an unstable parametric system? It was 
shown in paper [95] that the answer to this question is yes. 
Now, the answer is sought to the question: Is it better to 
use first-order or second-order sensitivity analysis?

5.2.1  Model of the system-absorber [95]

By virtue of the theory presented in the paper, a primary 
parametric system with mass M(t) with a dynamic 
vibration eliminator (absorber mass m) attached to it is 
analysed. Thus, a damped two-dynamic-degrees-of-

freedom q1 and q2 parametric system is created. The 
system is shown in Fig. 1.

The additional upper mass m in Fig. 1 is the mass of 
the dynamic vibration eliminator connected in parallel 
by an elastic spring k(t) and a damping bond c(t) with the 
primary mass M (lower mass) of the parametric system, 
attached to the foundation by an elastic spring K(t) 
and a damping bond C(t). The system is parametrically 
excited, that is, elastic spring stiffness K(t) and damping 
characteristic C(t) periodically change in time with a 
parametric excitation frequency no. It is also assumed 
that, in a general case, the stiffness k(t) and damping 
characteristics c(t) in the bonds connecting the mass of 
the vibration eliminator m with the primary mass M(t) 
can harmonically vary in time with the frequency of 
parametric excitation.

The matrix equation of the motion of a parametric 
homogenous system shown in Fig. 1 can be generally 
written in the form 

( ) ( ) ( )t t t+ + =B q C q K q 0  (55)

m 

M(t) 

k(t) 

K(t) 

q1 

q2 

c(t) 

C(t) 

Figure 1: Two-mass dynamic model: parametrically excited primary 
system M with attached eliminator m.
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where B(t), C(t) and K(t) are inertia, damping and stiffness 
matrices and T

1 2[ ]q q=q  is a general coordinates 
vector (Fig. 1). 

In this example, without losing the generality of Eq. 
(55), it was assumed that the system characteristics of 
elements in Fig. 1 are described by the following values 
(papers [95] and [54]):

Primary parametric system (lower mass M)
the basic mass 			   – 43 10  kgM = ⋅ , 
the constant part of the stiffness 
of the elastic bond 		  – 84 10  N/moK = ⋅ , 
the characteristic of the damping 
bond				    – 44.4 10 Ns/mC = ⋅
and 
parametric excitation frequency	 – 233 rad/soν = .

Eliminator (upper mass m)
the eliminator mass 
(1/20 of the mass M)		  – 31.5 10 kgm = ⋅ ,
the spring stiffens		  – 71.77 10 N/mk = ⋅
and
the characteristic of the damping 
bond 				    – 44.4 10 Ns/moc = ⋅ . 

Symbolic and numerical calculations are performed using 
the computer system ‘Mathematica’ [102].

5.2.2   The classic vibration absorber 

The matrix coefficients of the equation of motion, Eq. 
(55), can be then described by the following formulas and 
matrix coefficients: 

0
( )    

0
m

t
M

 
=  
 

B (56)

( )  o o

o o

c c
t

c c C
− 

=  − + 
C (57)

         0 0
( )  +   cos ( )

0 o
o 1

k k
t t

k k K K
ν

−   
=    − +   

K (58)

where 
    

1( ) cos (  ) , ( 0.5 )o 1 o o oK t   K   K t K K Kν= + > = (59)

To use the theory presented in this paper, the equation of 
motion, Eq. (55), is reduced to a system of the first-order 
homogenous differential equations corresponding to the 
first equation in Eq. (1). 

According to the theory presented in the paper, the 
system matrix A(t) in the second equation in Eq. (1) then 
has a form

1

0 0 1 0
0 0 0 1

( )

( cos )

o o

o o o o

c ck kt
m m m m

K K t k c C ck
M M M M

ν

 
 
 
 = − − 
 

+ + + 
− −  

A (60)

Based on stability analysis, it was found that the initial 
system is unstable. This is evident from the values of the 
multipliers on the major diagonal of the Jordanian form of 
the monodromy matrix. The first multiplier is modularly 
larger than one.

1.1938 0 0 0
0 0.66404 0.22579 0 0
0 0 0.66404 0.25579 0
0 0 0 0.69295

i
i

− 
 − + =
 − −
 

− 

J (61)

To stabilise the system, the method of second-order 
sensitivity analysis presented in this paper was used. The 
design parameter vector is assumed to be in the form

[ ] T
ok c=p (62)

The values of the design parameter vector in start point 
are the values

7
o 1.77 10 44000

T
 = ⋅ p (63)

The system was able to stabilise at the level of

71.77 10 22213
T

 = ⋅ p (64)

The stiffness value hardly changed, while the eliminator 
damping decreased almost twice compared to the initial 
value. Such a tuned eliminator guarantees the stability 
of the entire system, as evidenced by the values of the 
multipliers

0.9917 0.02384 0 0 0
0 0.9917 0.02384 0 0
0 0 0.7598 0.2601 0
0 0 0 0.7598 0.2601

i
i

i
i

− + 
 − − =
 − +
 

− − 

J (65)
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The largest modulus of the multiplier has the value 0.992, 
which is less than one. This indicates the stability of the 
system. The obtained results are consistent with those 
obtained in paper [95].

5.2.3  The parametric vibration absorber

As in work [95], the same unstable parametric system, 
which was stabilised by a classical vibration eliminator, 
was subjected to the stabilisation procedure described in 
this work, but this time, the characteristic of the damping 
bond of the vibration absorber was modified. 
It was assumed that

1( ) cos ( ) , ( 0.5 )o 1 o o oc t   c   c t c c cν= + > = (66)

Because the characteristics of the bond change periodically 
in time with the parametric excitation frequency, the 
absorber has become a parametric vibration eliminator. 
Damping matrix in equation of motion, that is, Eq. (55), 
can be written as 

  
( )  +   cos ( )o o 1 1

o
o o 1 1

c c c c
t t

c c C c c
ν

− −   
=    − + −  

C (67)

System matrix A(t) Eq. (57) must be modified, and now 
has the form 

1 1

1 1 1

0 0 1 0
0 0 0 1

cos cos( )

( cos

    

   ) cos ( cos ) 

o o

o

o

o o

o

o oo

c
m

c c

c c

t c tk kt
m m m

K K t k c t c t Ck
M M M M

ν ν

ν ν ν

 
 
 
 + += − − 
 

+ + + + + 
− −  

A (68)

The initial values of the multipliers have hardly changed 
compared to the previously described relation, that is, Eq. 
(61). 

 1.1912 0 0 0
0 0.66352 0.24280 0 0
0 0 0.66351 0.24280 0
0 0 0 0.70447

i
i

− 
 − + =
 − −
 

− 

J (69)

The largest modulus has the value 1.00246 and is greater 
than 1, which means that the system is still unstable. The 
limit of the area of stability was practically reached, but it 
was not exceeded and, as mentioned earlier, the system 
remained unstable. 

As in work [95], the automatic stabilisation test was 
repeated assuming a decrease in the value of the parametric 
part of the eliminator damping bond characteristic, that 

is, it is assumed that 1  0.3 oc c=  instead of 1  0.5 oc c= . 
This time, the stabilisation process was successful and, 
as in the case of the classic vibration eliminator, a stable 
system was obtained, in which the maximum value of 
the multiplier modulus was 0.99737. The vector of design 
parameters also did not differ much from that obtained for 
a classic vibration eliminator, that is,

71.77002 10 23358
T

 = ⋅ p (70)

Once again, as in work [95], one more variant of 
calculations was carried out. It was assumed that all the 
parameters of the vibration eliminator and the parametric 
system are design parameters, that is, that the vector of 
the design parameters consisted of seven coordinates

   
[ ] T

1 1o ok K K c C c T=p (71)

whose values are
7 8 8 T1.77 10 4 10 2 10 44000 44000 22000 0.026995o  = ⋅ ⋅ ⋅ p (72)7 8 8 T1.77 10 4 10 2 10 44000 44000 22000 0.026995o  = ⋅ ⋅ ⋅ p

The last parameter is the parametric excitation period 
of the system 2 0.0269665 soT π ν= = . To perform 
this variant of calculations, again as in work [95], it was 
necessary to use generalised formulas for calculating the 
derivatives of the monodromy matrix, that is, Eq. (18).

The design parameters vector after stabilising the 
system is shown below:

7 8 8 T1.77 10 4 10 2 10 44000 44000 22000 0.024144 = ⋅ ⋅ ⋅ p
(73)7 8 8 T1.77 10 4 10 2 10 44000 44000 22000 0.024144 = ⋅ ⋅ ⋅ p

The Jordan form of the monodromy matrix after 
stabilisation of the system supports the conclusion of its 
stability. This is because we get

0.0017160 0 0 0
0 0.65648 0.49881 0 0
0 0 0.65648 0.49881 0
0 0 0 0.70099

i
i

− 
 − + =
 − −
 

− 

J 	(74)

The largest absolute value of the multiplier is 0.99172 and 
less than 1, which indicates the stability of the system, 
while the absolute value of the largest multiplier could be 
reduced even further. 
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Values of the vector p  differ from the values of 
the vector op  practically only at the last position – 
corresponding to the parameter, which is the parametric 
excitation period. Compared to the initial value, the 
parametric excitation period decreased by only about 10%. 
Thus, in this case, a small change in this parameter value 
(parametric excitation frequency) guarantees the stability 
of the system. The stabilisation process was carried out 
instantly, which is important if the stabilisation procedure 
is to be carried out in practice, in which case it must take 
place in real time. 

It must, however, be noted that this is not a parameter 
of the eliminator only, but, at the same time, a parameter 
of the system. Changing the parameter of the system may 
prove difficult or even impossible in practice. It can also 
involve high costs of modifying the system. 

As expected, the calculations performed in accordance 
with the formulas of the second-order sensitivity analysis 
gave results fully consistent with those obtained in the 
paper [95], where the first-order sensitivity analysis was 
used.

6  Conclusions 
The paper is a continuation of the paper [95], where an 
application of the first-order sensitivity analysis method 
to stabilisation of unstable multi-degree-of-freedom 
parametric periodic system was presented. This paper 
presents an application of the second-order sensitivity 
analysis to stabilisation of unstable continuous in time 
parametric periodic system. The method allows to calculate 
derivatives of multipliers of the monodromy matrix. It is, 
therefore, an alternative approach to that proposed in 
[56] and [57] and is similar to that which was presented 
in paper [58]. The equation of sensitivity with respect to 
the design parameter is found first. The solutions of this 
equation allow to find eigenderivatives of multipliers. 
The method has been tested on the example giving the 
correct results consistent with the ones obtained in work 
[95] for the first-order sensitivity analysis. In addition, the 
calculations performed in accordance with the formulas 
of the second-order sensitivity analysis gave results fully 
consistent with those obtained in the paper [95], where the 
first-order sensitivity analysis was used. The method gives 
correct results also when the parametric period depends 
on the design parameter or is itself the design parameter 
for which the sensitivity is analysed. For this reason, the 
method is much more general than the ones presented in 
papers [56] and [58].

The aim of this work was not to seek an answer to the 
question: Is it possible to stabilise an unstable parametric 
system using the sensitivity analysis method? It was shown 
in paper [95] that the answer to this question is yes. Now, 
the answer is sought to the question: Is it better to use first-
order or second-order sensitivity analysis? 

In assessing the two variants of the methodology, it 
was predicted that the final results of calculations using 
first-order sensitivity, presented in paper [95], and second-
order sensitivity analysis, presented in this paper, should 
be identical. It was also predicted that the only difference 
may be in the speed of obtaining results, which is especially 
important when the system stabilisation process has to take 
place in real time. Unfortunately, the time to obtain results 
is influenced by two opposing tendencies: in the first-
order sensitivity analysis, the algorithms are simpler than 
in the second-order analysis; but due to worse prediction 
(linear extrapolation), a higher number of iterative steps 
is required, and vice versa, in the second-order sensitivity 
analysis, algorithms are more complicated, but thanks to 
nonlinear extrapolation Eq.  (40), the length of iterative 
steps can be greater and there can be fewer iteration steps. 
Which way will be better depends on the specific case, 
the quality of the computer processing equipment, etc. 
Thus, it is impossible to determine a priori which method 
is better. The results of this paper make it possible to test 
both methods in any given case and choose the one that 
fits best in a given application.

As in work [95], the method was modified in such 
a way that in particular, it becomes possible to use the 
parametric excitation period also as a design parameter.

Two examples were analysed in the paper. This first 
example – method validation (the same example that 
was analysed in [95, 57]) – is absolutely unique for the 
parametric systems, since analytical solutions exist for all 
mathematical operations associated with the presented 
algorithm. This is a great advantage of this example. It is 
possible to objectively verify the correctness of the theory 
and to determine the efficiency of the method. In addition, 
one can directly compare the results with those obtained 
in work [58]. 

The comparison was realised simultaneously in three 
ways: 

	– analytical calculations performed by humans, 
	– analytical calculations performed using symbolic 

procedures of the Mathematica system and 
	– calculations performed using numerical procedures 

of the Mathematica system.
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The consistency of the results obtained by these three 
ways irrefutably proves the correctness of the method 
described in the paper.

The goal of the second example, parametric resonant 
vibrations eliminator (absorber), was different. It is an 
attempt to show the possibility of practical application 
of two approaches for tuning a vibrations eliminator 
(absorber) in an unstable parametric system to stabilise: 
the first-order sensitivity analysis presented in paper [95] 
and the second-order sensitivity analysis presented in this 
paper. 

The method presented in the paper consists in 
reversing the typical order of calculation. Instead of 
searching for a solution to a differential equation describing 
parametric vibrations and then calculating its derivatives, 
the calculations are performed in reverse order. First, the 
derivative of the equation of motion is calculated to obtain 
the sensitivity equation and then this sensitivity equation 
is solved. The theoretically demonstrated correctness of 
such an approach is also confirmed by the fact that the 
results obtained in these two ways are consistent in the 
examples presented in the paper. The most important 
benefit of using this approach is the abandonment of the 
need to use the approximate small parameter method, 
which has been de facto used in other works, for example, 
[56], [57] and [58]. In the proposed approach, the iteration 
step can, therefore, be significantly longer and vibration 
stabilisation can be achieved faster. To summarise, the 
most important benefit of the method presented in this 
paper and the previous one is the ability to stabilise an 
unstable system in one-step iteration. 

These papers present the author’s achievements 
on the subject, which has been the author’s area of 
expertise. This is not the end of the publication cycle on 
this subject, as the author plans to publish further papers 
in this field. They will concern the sensitivity analysis of 
discontinuous parametric periodic systems. These works 
will be submitted for publication soon.
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