
WYDANO W ROKU 40-LECIA
POLITECHNIKI WROCŁAWSKIEJ

ZBIGNIEW HUZAR

WSTĘP
DO PROGRAMOWANIA

WSPÓŁBIEŻNEGO

POLITECHNIKA
WROCŁAWSKA

WROCŁAW 1985

W SPRZEDAŻY:
jjłi_iŁ1n 1 n.wsa.1 1., rc., cuwruiurium leuni

automatów, Wrocław 1969
JELENIEWSKI T., SIELICKI A., Projektowanie urzą­

dzeń cyfrowych, Wrocław 1977
KABACIK T., Ćwiczenia laboratoryjne z urządzeń tele­

komunikacyjnych, cz. I, Urządzenia teletransmisyjne,
Wrocław 1979

KARKOWSKI Z., WOŻNIAK M., Zasady konstrukcji
elektronicznej aparatury pomiarowej, Wrocław 1976

KAZIMIERCZAK J., Elementy syntezy formalnej syste­
mów operacyjnych, Wrocław 1979

KAZIMIERCZAK W., Sieci teletechniczne, Wrocław 1975
KOMOROWSKI W., PAWĘSKA R., Zbiór zadań z teorii

automatów. Teoria komputerów, Wrocław 1979
KULISZEWSKI T., Teletransmisyjne systemy impulsowe,

Wrocław 1975
Laboratorium automatyki. Praca zbiorowa pod red.

B. CHOROWSKIEGO, wyd. II popr., Wrocław 1975
Laboratorium elementów elektronicznych przyrządów po­

miarowych. Praca zbiorowa pod red. H. KARKOW­
SKIEJ, Wrocław 1976

MIŁKOWSKA M., Telefonia automatyczna, Wrocław 1972
Projektowanie urządzeń cyfrowych wspomagane kompu­

terem. Ćwiczenia laboratoryjne, cz. I. Symulacja sieci
logicznych. Praca zbiorowa pod red. A. SIELICKIEGO,
Wrocław 1977

RENOWSKI J., Laboratorium z akustyki psychofizjolo­
gicznej, Wrocław 1972

RENOWSKI J., Akustyka psychofizjologiczna. Ćwiczenia
laboratoryjne, wyd. II popr., Wrocław 1974

SIELICKI A., JELENIEWSKI T., Podstawy metodologii
projektowania, Wrocław 1978

SZELOCH R. F., Podstawy niezawodności elementów elek­
tronicznych, Wrocław 1976

TALARCZYK E., Podstawy techniki ultradźwięków, Wro­
cław 1979

Zbiór zadań i problemów z teorii sterowania. Praca zbio­
rowa pod red. Z. BUBNICKIEGO, Wrocław 1979

40,—

46,—

11,—

13,—

12,—

35,—

7 ,—

24,—

12,—

20,—

14,—
20,—

13,—

18,—

28,—

26,—
28,—

16,—

16,—

17,—

28,—

14,—

51,—

16,—

Politechnika Wrocławska

Zbigniew Huzar

Wstęp
do programowania

współbieżnego

Wrocław 1985

Skrypt do przedmiotu
Programowanie współbieżne
na Wydziale Elektroniki
i na Wydziale Informatyki i Zarządzania

Opiniodawca
Andrzej BABORSKI

Opracowanie redakcyjne i korekta
Ewa BIELECKA-JONKO

n o o -■

© Copyright by Wydawnictwo Politechniki Wrocławskiej, Wrocław 1985

WYDAWNICTWO POLITECHNIKI WROCŁAWSKIEJ
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław

Nakład 375 +50 egz. Ark. wyd. 9,5. Ark. druk. 97/s. Papier offset, kl. V, 70 g, BI.
Oddano do dru ku w styczniu 1985 r. Druk ukończono w lutym 1985 r.
Zakład Graficzny Politechniki Wrocławskiej. Zam. nr 109/85 - Z-7 - Cena zł 95,-

PRZEDMOWA

Programowanie jako dziedzina nauki liczy około 30 lat, w ciągu któ­
rych weszło na drogę szybkiego, wręcz gwałtownego rozwoju. Rozwój ten
jest powodowany z jednej strony - szybkim rozwojem technologii przemy­
słu komputerowego, z drugiej - wzrostem potrzeb, czy też oczekiwań użyt­
kowników. Jednym z ważnych przejawów rozwoju programowania są narodziny
pojęcia programowania równoległego (współbieżnego), stanowiącego uogól­
nienie klasycznego programowania sekwencyjnego. Pojawienie się nowych
języków programowania równoległego dało użytkownikom komputerów nowe
uniwersalne narzędzie umożliwiające rozwiązywanie szerszej klasy prob­
lemów.

Mówiąc ogólnie o programowaniu należałoby przedstawió narzędzie -
język programowania oraz sposób posługiwania się tym narzędziem - meto­
dologię programowania. W skrypcie podano wprowadzenie do zagadnień pro­
gramowania równoległego i główny nacisk położono na narzędzie - dokona­
no przeglądu najważniejszych kierunków w tym zakresie - natomiast za­
miast metodologii użytkowania przedstawiono ilustracyjne przykłady za­
stosowań. Wydaje się, że taki wybór zagadnień jest uzasadniony, gdyż
stosowana praktycznie metodologia programowania (rozumiana jako zespół
metod specyfikacji problemów, metod konstrukcji i analizy programów)
ciągle pozostaje bardziej dziedziną sztuki niż nauki. Należy jednak za­
znaczyć, że problemy te stają się przedmiotem intensywnych badań.

Sposób prezentacji materiału jest nieformalny, dotyczy to zarówno
syntaktyki jak i semantyki języków. Zostało to podyktowane chęcią przed­
stawienia w ograniczonej objętości, bez formalnego balastu, możliwie
szerokiego spektrum zagadnień języków programowania. Z tego też względu
skrypt nie jest poświęcony żadnemu z przedstawionych języków.

Skrypt jest przeznaczony dla studentów lat wyższych informatyki.
Może być także fragmentami przydatny dla osób, które dopiero zamierzają
sięgnąć po nowy rodzaj narzędzia programistycznego i pragną uzyskać in­
formacje wstępne. Wystarczającym warunkiem swobodnego czytania skryptu
jest znajomość programowania sekwencyjnego oraz - przynajmniej ogólna -
znajomość języka Pascal. Szczególnie użyteczny będzie skrypt dla osób,
które zetknęły się z problematyką projektowania systemów operacyjnych.

4

Rozdziały 1. i 2. skryptu stanowią część wprowadzającą, pozostałe
natomiast są ich rozwinięciem i mogą być studiowane niezależnie; zale­
ca się jednak, aby czytanie rozdziałów 4. (opis języka Modula), 6.
(opis języka Ada) i 7. (opis języka CHILL) było poprzedzone zapoznaniem
się z rozdziałem 3. (opis języka Concurrent Pascal).

P.S. W okresie ponad trzech lat, który upłynął od chwili złożenia
maszynopisu skryptu w Wydawnictwie a przekazaniem go do druku ukazała
się w 1982 r., nakładem WNT, książka W. Iszkowskiego i M. Manieckiego
"Programowanie współbieżne", której zakres tematyczny częściowo pokrywa
się z zakresem niniejszego skryptu. Polecając gorąco uwadze Czytelników
tę książkę, należy zwrócić uwagę na różnice pomiędzy obu pozycjami. Za­
sadniczą wspólną częścią są rozdziały opisujące języki Concurrent Pas­
cal i Modula, zakres pozostałych rozdziałów natomiast, bądź sposób uję­
cia tematyki są zdecydowanie różne. Przykładowo, niemal połowa książki
jest poświęcona dokładnemu omówieniu mechanizmów synchronizacji proce­
sów w środowisku zwartym, co w skropcie jest ujęte znacznie zwięźlej.
Natomiast w skrypcie dokładniej omówiono mechanizmy komunikacji proce­
sów w środowisku rozproszonym, opisano języki Ada i Chill oraz omówiono
zagadnienia programowania sterowanego przepływem danych.

1. WPROWADZENIE

1.1. Pojęcia podstawowe

Tradycyjne, von neumannowskie systemy komputerowe wykonywały jedną
operację w danym momencie czasu. Tymczasem już od dawna dostrzegano moż­
liwości innej organizacji pracy maszyn liczących tak, aby dzięki jedno­
czesnemu wykonywaniu wielu operacji uzyskać przyspieszenie obliczeń.
Już w 1842 r. Charles Babbage - znany pionier na polu konstrukcji ma­
szyn liczących - pisał, że "... gdy zachodzi potrzeba wykonania długiej
serii identycznych obliczeń, takich jak przy tworzeniu tablic numerycz­
nych, maszynę można skonstruować tak, by produkowała jednocześnie kilka
wyników w tym samym czasie, co znacznie skróci cały proces obliczeń".

W powojennej historii rozwoju Informatyki już pod koniec lat czter­
dziestych powstał pierwszy system dwuprocesorowy, w latach pięćdziesią­
tych zaś projekty specjalizowanych procesorów wielooperacyjnych (np. do
rozwiązywania cząstkowych równań różniczkowych). Zasadniczych źródeł
nowej organizacji komputerów należy jednak dopatrywać się w pracach z
początku lat sześćdziesiątych, kiedy powstały wieloprogramowe systemy
komputerowe.

Wśród obecnych systemów komputerowych umożliwiających jednoczesne
wykonywanie wielu czynności można wyróżnić trzy powszechnie spotykane
typy. Będziemy je nazywać systemami równoległymi lub współbieżnymi.
Pierwszy stanowią systemy wieloprogramowe i wielodostępne z podziałem
czasu, które dzięki jednoczesnemu wykonywaniu wielu zadań efektywnie
wykorzystują swe zasoby obliczeniowe. Drugim są systemy działające w
czasie rzeczywistym, np. systemy rezerwacji biletów lotniczych, systemy
bankowo-rozliczeniowe, systemy sterowania procesami technologicznymi.
Wreszcie typ trzeci to dużej wydajności komputery wieloprocesorowe (np.
procesory wektorowe, macierzowe).

Pierwszymi programistami, którzy zetknęli się ze zjawiskiem równo-
czesności wielu operacji (musieli je opanować i wykorzystać), byli pro­
gramiści systemowi - ci, którzy tworzyli oprogramowanie podstawowe
(systemy operacyjne) komputerów. Z ich potrzeb wynika konieczność po­
siadania abstrakcyjnego (niezależnego od konkretnego komputera) narzę­
dzia programowania, łatwo i bardzo wcześnie przekonali się oni o tym,
że programując w języku maszynowym narażają się na niezwykle uciążliwy
i wrażliwy na błędy proces projektowania. Problemy rozdziału zasobów,
szeregowanie zadań, zabezpieczenie równolegle wykonywanych zadań przed

6

interferencją okazały się bardzo trudne do opanowania bez pomocy języka
wysokiego poziomu (maszynowo niezależnego).

Koniec lat sześćdziesiątych można uważać za okres narodzin pier­
wszych koncepcji abstrakcyjnego spojrzenia na systemy współbieżne. Naj­
ważniejszym pojęciem, które się wtedy wykluło jest pojęcie procesu.
Przez proces rozumie się sekwencję akcji, która towarzyszy wykonywaniu
programu sekwencyjnego; akcje są traktowane abstrakcyjnie, tzn. nieza­
leżnie od fizycznych cech procesora oraz od realnego czasu wymaganego
na ich wykonanie. Szczegółowe definicje procesu używane w literaturze
są bardzo różnorodne. W tym miejscu poprzestaniemy na tym ogólnym okre­
śleniu, natomiast w dalszej części skryptu będzie ono odpowiednio pre­
cyzowane.

Pojęcie procesu będzie w skrypcie używane w podwójnej roli: w roli
procesu abstrakcyjnego - tak jak określono to powyżej - oraz w roli pro­
cesu jako jednostki strukturalizacji programów współbieżnych. Kontekst,
w którym pojęcie to wystąpi, będzie jednoznacznie wyznaczać jego sens.

Jako przykład roli procesów można rozważyć system wieloprogramowy
realizujący pewną liczbę zadań różnych, niezależnych użytkowników. Każ­
de zadanie użytkowe (program sekwencyjny) można utożsamić z pewnym pro­
cesem, podobnie można jako procesy traktować systemowe procedury obsłu­
gi autonomicznie działających urządzeń wejścia/wyjścia. W czasie dzia­
łania systemu procesor i pamięć operacyjna mają być na przemian udostęp­
niane różnym procesom w taki sposób, że wszystkie procesy "posuwają
się naprzód", mimo że żaden z nich nie ma wyłącznego dostępu do wszyst­
kich wymaganych zasobów.

Tradycyjne języki programowania, takie jak Fortran, Algol 60, Pas­
cal, służą do opisu pojedynczych procesów. Dwa procesy opisane przez dwa
programy w takich językach są niezależne i nie mogą współdziałać ze so­
bą. Natomiast procesy w systemach współbieżnych mogą oddziaływać na sie­
bie. Oddziaływania procesów wynikają głównie z dwóch powodów. Powód
pierwszy - to potrzeba wymiany informacji pomiędzy procesami - komuni­
kacja międzyprocesowa. Powód drugi - to potrzeba zachowania określonej
kolejności zdarzeń w procesach - synchronizacja procesów.

Konieczność synchronizacji wynika z różnych przyczyn, z których
dwie są szczególnie powszechne. Pierwsza - wynika z nałożenia na proce­
sy pewnej relacji poprzedzania, określającej kolejność realizacji pro­
cesów. Przykładowo, jeżeli dwa procesy prowadzą komunikację pomiędzy so­
bą w taki sposób, że jeden proces - producent dostarcza pewne .dane po­
przez wspólny bufor drugiemu procesowi - konsumentowi, to producent nie
może produkować (prowadzić obliczeń) więcej danych dopóty, dopóki kon­
sument nie zwolni bufora z wcześniej wyprodukowanych danych. Druga - wy­
nika z potrzeby systematycznego korzystania ze wspólnych zasobów proce­

7

sów. Przykładowo przydział zasobów może odbywać się na zasadzie wzajem­
nego wykluczenia, zgodnie z którą proces uzyskuje wyłączny dostęp do
zasobu pod warunkiem, że zasób ten zostanie zwolniony przez inne proce­
sy. Według bardziej złożonych zasad dopuszcza się jednoczesne wykorzy­
stanie zasobu przez większą liczbę procesów, przy czym przydziału doko­
nuje się na podstawie priorytetów.

Tradycyjne języki programowania nie mają możliwości wyrażania tego
rodzaju oddziaływań między procesami. Aby wyrazić takie oddziaływania,
programy napisane w języku tradycyjnym musiałyby odwoływać się do pro­
cedur systemu operacyjnego nadzorującego wykonywanie tych programów.

Poza brakiem możliwości wyrażania interakcji międzyprocesowej, tra­
dycyjne ■języki nie mają także możliwości wyrażenia obliczeń niedetermi-
nistycznych. Chodzi tu o niedeterminizm wynikający z uzależnienia wyni­
ków programu od czasu pojawiania się w systemie pewnych zdarzeń, w
szczególności od czasu realizacji poszczególnych fragmentów programu.
Przykładowo, jeżeli w systemie rezerwacji biletów lotniczych dwóch
klientów z dwóch niezależnych terminali zażąda rezerwacji ostatniego
biletu na ten sam lot, to tylko jednemu z nich zostanie przyznana rezer­
wacja, przy czym nie jest zdeterminowane, któremu z nich.

1.2. Kierunki rozwoju

Aktualny stan rozwoju języków programowania współbieżnego charakte­
ryzują trzy zasadnicze kierunki bazujące na różnych metodach obliczeń
równoległych:

- procesy równoległe w zwartym środowisku,
- procesy równoległe w rozproszonym środowisku,
- obliczenia synchronizowane przepływem danych.
Dwa pierwsze podejścia (imperatywne) można traktować jako rozwinię­

cie i uogólnienie koncepcji von Neumanna. Podejście trzecie (funkcjonal­
ne) należy natomiast uważać za podejście alternatywne.

Pierwszy model procesów równoległych w zwartym środowisku jest his­
torycznie najstarszy. Jest on modelem klasycznego systemu wieloprogra-
mowego. Zakłada się, że wykonywane procesy mają dostęp do wspólnych za­
sobów - do wspólnej pamięci. Oznacza to, że komunikacja pomiędzy proce­
sami odbywa się wyłącznie za pośrednictwem wspólnych buforów. Pierwszą
konstrukcją językową służącą do wyrażania takiego sposobu prowadzenia
obliczeń były tzw. semafory Dijkstry, powstałe w 1965 r. i zastosowane
po raz pierwszy w projekcie systemu operacyjnego T.H.E. w 1968 r. [19,
20]. Drugim przykładem konstrukcji są tzw. monitory Hoare'a z 1972 r. ,
które najefektywniejsze zastosowanie znalazły w języku Concurrent Pas­
cal zaprojektowanym przez Brinch Hansena w 1975 r. [7,8,9,33,34]. Języ­

8

kami programowania, które należą do tego kierunku oprócz Concurrent Pas­
cala są przykładowo: Algol [68,] CCNPascal [52] , ILiad [60] , Module [671 ,
Pascal Plus [64] , Loglan [59] , Edison

Drugi model procesów równoległych w rozproszonym środowisku łączy
się przede wszystkim z systemami wieloprocesorowymi. Jednym ze sposobów
organizacji pracy takich systemów może być przydział oddzielnego proce­
sora dla pojedynczego procesu. Każdy procesor ma własną pamięć, która
jest dostępna wyłącznie wykonywanemu na nim procesowi. Procesory są po­
łączone pomiędzy sobą pewnymi kanałami komunikacyjnymi, przez które mo­
gą przekazywać sobie informację - przesyłać wiadomości - i jest to je­
dyna forma komunikacji. Najważniejsze koncepcje językowe, jakie stworzo­
no w tym zakresie, wiążą się z pracami Brlnch Hansena [6,11] , Hoare'a
[35], Kahna [41,42], Hewitta [29]. Przykładami języków należących do
tej grupy mogą być: PLlts [24], FORTRAN 77 [66], IVTRAN, LRITRAN, ASC-
PORTRAN, CFD, STARAŃ, TRANQUIL [45] i wreszcie najnowszy, najbardziej
okazały przedstawiciel tej grupy - język Ada [40].

Oprócz języków, które bazują w całości na jednym z wymienionych mo­
deli, istnieją także języki przyjmujące mieszany model środowiska obli­
czeniowego (model mający cechy środowiska zwartego i rozproszonego).
Najbardziej znaczącym przedstawicielem tej grupy jest język Chill [71] .

Trzeci model obliczeń jest całkowicie odmienny od dwóch poprzednich.
Języki programowania poprzednich grup można traktować jako pewne rozsze­
rzenie języków sekwencyjnych poprzez dołączenie do nich mechanizmów ob­
liczeń równoległych. Oznacza to, że program składa się z pewnych frag­
mentów - procesów, które w uproszczeniu można traktować jako pewne pro­
gramy sekwencyjne. Model obliczeń synchronizowanych przepływem danych
(data flow computations) traktuje program jako nieuporządkowany zbiór
instrukcji (tzn. tekst programu nie wyznacza kolejności realizacji in­
strukcji) i zakłada, że wykonanie danej instrukcji następuje w dowolnym
momencie, gdy są gotowe (są wyliczone) argumenty tej instrukcji. Ozna­
cza to, że nie są wprowadzone tutaj- pojęcia procesu (abstrakcyjnie każ­
dą instrukcję można uważać za proces, który powstaje w chwili rozpoczę­
cia jej obliczania i ginie po zakończeniu obliczania'). Taka zasada obli­
czeń pozwala potencjalnie na najwyższy stopień równoległości obliczeń.
Za głównego inicjatora prac nad tymi obliczeniami uważa się Dennisa i
jego współpracowników z MIT (Massachusetts Institute of Technology'),
których prace, m.in. [13,16,17,18], zapoczątkowały nowy kierunek badań.
Dotychczasowe prace mają głównie charakter teoretyczny. Towarzyszą im
rozważania nad nową architekturą systemów komputerowych, gdyż obecne

P. BRINCH HANSEN, Edison - a multiprocesor language, Softw.Pract.
Exp. , vol. 11, 325-328, 1981.

9

architektury nie pozwalają na efektywną implementację języków obliczeń
synchronizowanych przepływem danych.

Poza omawianymi obliczeniami sterowanymi przepływem danych, które -
jak się wydaje - są obecnie najważniejsze spośród koncepcji obliczeń
funkcyjnych, były podejmowane próby prezentacji i rozwijania innych nie
von neumannowskich modeli obliczeń. Przykładem mogą tu być koncepcje ma­
szyn rekurencyjnych Głuszkowa, maszyn sterowanych rekurencyjnymi struk-
turami danych i inne .

Oprócz omówionych kierunków rozwoju języków programowania współbież­
nego należy jeszcze wyróżnić główne kierunki zastosowań. Można tu wymie­
nić trzy częściowo pokrywające się obszary, określane umownie jako pro­
gramowanie:

- równoległe,
- współbieżne,
- rozproszone.

Jakkolwiek wprowadzone tutaj pojęcia nie są na ogół wyraźnie precyzowa­
ne, to jednak wyróżnia je pewien kontekst, w którym są używane. Kolej­
ność, w jakiej pojęcia te wymieniono, odpowiada coraz szerszemu stop­
niowi ich ogólności.

Programowanie równoległe (parallel programming') jest skojarzone z
obliczeniami, które charakteryzują się tym, że wynik obliczeń zależy
wyłącznie od danych początkowych (brak niedeterminizmu w zagadnieniu).
Dobrym przykładem mogą być obliczenia numeryczne, np. szukanie pier­
wiastków wielomianu, rozwiązywanie układu równań algebraicznych, znaj­
dowanie ekstremów funkcji itp. Oznacza to, że "natura" problemów jest
taka, iż można je rozwiązywać zarówno metodami programowania sekwencyj­
nego, jak i równoległego.

Programowanie współbieżne (concurrent programming) kojarzy się z ob­
liczeniami, których wyniki są dodatkowo uwarunkowane zdarzeniami zewnę­
trznymi, jakie mogą zachodzić podczas obliczeń. Klasycznym przykładem
są obliczenia wykonywane przez systemy operacyjne systemów wielodostęp­
nych.

Programowanie rozproszone (distributed programming) ma wszystkie
atrybuty programowania współbieżnego wraz z dodatkowym założeniem, że
komunikacja pomiędzy oddzielnymi, przestrzennie oddalonymi procesorami
jest prowadzona za pośrednictwem środków łączności wprowadzających wie­
le dodatkowych ograniczeń. Ograniczenia te, z których najistotniejsze
są "znaczne" opóźnienie i "znaczna" zawodność w przekazywaniu informa­
cji, komplikują komunikację pomiędzy procesami, prowadząc do pojęcia

* 'K.V. KOTCV, On basie parallel language, Information Processing 80,
3.Ii. lavińgton (ed.), Korth Holland lublishing Company, 229-240, 1980.

10

tzw. protokołów komunikacji międzyprocesowej. Protokoły są zasadami pro­
wadzenia komunikacji mającymi eliminować, lub co najmniej ograniczać,
skutki zawodnego działania pośredniczących środków łączności. Dobry
przykład obliczeń rozproszonych stanowią obliczenia rozproszonego sys­
temu operacyjnego sieci komputerowej. (Rozproszony system operacyjny
jest realizowany przez zbiór współdziałających systemów operacyjnych
poszczególnych komputerów wchodzących w skład sieci.)

1.3. Źródła równoległości

Źródeł równoległości obliczeń należy poszukiwać w systemach kompu­
terowych oraz w obliczanych problemach.

Wieloprocesory i sieci komputerowe
Rozwój systemów komputerowych charakteryzują dwie tendencje: coraz

większy stopień miniaturyzacji sprzętu liczącego oraz coraz większy sto­
pień terytorialnego rozproszenia połączonego wspólnymi środkami komuni­
kacji. Pierwsza z tych tendencji uwidacznia się w konstrukcji wielopro-
cesorów wytwarzanych w technologii układów wielkoscalonych. Druga ten­
dencja wyraża się w tworzeniu sieci komputerowych. Pomiędzy tymi ten­
dencjami skrajnymi istnieje większa gama rozwiązań systemów wieloproce­
sorowych [23], Komórkowa konstrukcja wieloprocesorów (procesory macie­
rzowe) w szczególny sposób uprzywilejowuje działania na macierzach,
umożliwiając znaczne przyspieszenie np. operacji algebraicznych na ma­
cierzach [45,66], Dużą liczbę takich operacji spotyka się przy rozwią­
zywaniu układów równań różniczkowych, stąd zastosowanie specjalizowa­
nych procesorów macierzowych (np. ILLIAC IV, CDC STAR) w obliczeniach
energii atomowej, symulacji sytuacji meteorologicznej opartej na danych
pobieranych z sieci stacji obserwacyjnych itp. Ogólnie wieloprocesory
stwarzają jednak wiele ograniczeń, które - jak dotychczas - powodują,
że związane z nimi języki programowania są przeznaczone przede wszyst­
kim do obliczeń numerycznych. Takie języki, jak np. IYTRAN, I.RLTRAN,
ASCFORTRAN są zbudowane na bazie FORTRANU z dodatkowym repertuarem dzia­
łań na macierzach oraz mechanizmami wskazywania działań równoległych.
Na przykład fragment programu w języku IVTRAN:

DO 1 FOR ALI (I,J,K)/[1...31 x [1...7] x [1...10]
IP(A(I,J,K)-.LT.O.O)A(I,J,K) = -A(I,J,K)

1 A(I,J,K) = SQRT(A(I,J,K))

oznacza, aby jednocześnie dla wszystkich elementów tablicy A(I,J,K) o
rozmiarach 3x7x10 obliczyć kwadratowe pierwiastki z modułów jej elemen­
tów. Etykieta 1 po słowie DO' wskazuje koniec "czoła" cyklu.

11
Sieci komputerowe stwarzają także możliwości równoległego przetwa­

rzania programów. Nie narzucają one takich ograniczeń jak wieloproceso-
ry, dając możliwości równoległego obliczania zagadnień dowolnych typów.
Obecnie jednak trudno wskazać implementację języka programowania równo­
ległego poziomu algorytmicznego w sieci komputerowej o architekturze
otwartej*} Przykładami takich języków w specjalizowanych sieciach kom­
puterowych są języki PLITS [24] oraz ILIAD [60] .

*)j.A. BARCHAŃSKI, Sieci komputerowe, WNT (w przygotowaniu').

Równoległość w programach sekwencyjnych

Dokładna analiza programów sekwencyjnych, napisanych w takich języ­
kach jak Pascal, Algol, Fortran, pozwala stwierdzić, że ich wykonanie
nie musi zawsze przebiegać dokładnie sekwencyjnie. Istnieje wiele algo­
rytmów rozpoznawania równoległości w programach sekwencyjnych i zamiany
programów sekwencyjnych na równoległe [46,47,55,63].

Najbardziej elementarnymi konstrukcjami języka programowania sek­
wencyjnego, w których tkwią źródła równoległości, są wyrażenia stanowią­
ce element instrukcji podstawienia, instrukcji warunkowych itd. Wyraże­
nia takie w obliczeniach sekwencyjnych są obliczane za pomocą odpowied­
niego ciągu operacji. W wielu wypadkach obliczenie to można przyspie­
szyć przez jednoczesne obliczenie kilku operacji. Przykładowo wyrażenie

e=-(A+G+B« C)/(D * (E + II + F) + H

ma drzewo rozbioru postaci:

Oznacza to, że mając do dyspozycji równolegle pracujące procesory, mo­
żemy obliczenie wyrażenia rozpocząć od jednoczesnego obliczenia wartoś­
ci wyrażeń:

12-

e1 = A + G, = B » C. e^ = E + I

Dalej, w zależności od tego, które z tych wyrażeń zostaną obliczone
wcześniej można wykonywać dalsze obliczenia, np.

e. = e. + eo lub ec = D s eq itd. 4 12 j u
Dopuszczalna kolejność wykonywania działań wynika w oczywisty sposób ze
struktury grafu rozbioru.

Druga możliwość zrównoleglenia działań w programie sekwencyjnym wy­
nika z istnienia instrukcji niezależnych. Dwie instrukcje I-j oraz Ig
są niezależne, jeżeli dla dowolnych danych początkowych ciągi I1;I2
oraz Ig{ produkują te same wyniki końcowe. Jeżeli na przykład dane
są dwie kolejne instrukcje

x := W^a.b) ;
y := W2(b,c);

w których x,y,a,b,c są rozłącznymi zmiennymi, W1 oraz W2 ~ wyrażeniami,
to takie instrukcje są niezależne i mogą być wykonywane równolegle.

Kolejną możliwość stanowi zrównoleglenie działań iteracyjnych. Roz­
patrzmy instrukcję

for i := 1 to n do A [i]:=W(i),

w której W(i) jest wyrażeniem zależnym od indeksu i, a niezależnym
od elementów A[j] dla j/i. Jest oczywiste, że w tej sytuacji instruk­
cje podstawienia A[i]:=W(i) dla i=1,2,...,n można wykonać równole­
gle.

Algorytmy równoległe

Świadomość możliwości równoległego wykonania programu powinna towa­
rzyszyć programiście w chwili przystąpienia do rozwiązywania problemu.
Daje to możność odpowiedniego ułożenia algorytmu rozwiązania. Na przy­
kład znany sekwencyjny algorytm obliczania wartości wielomianu opiera
się na schemacie Hornera, tzn. wartość wielomianu

p(x) = anx4 + ... + a^ + aQ

oblicza się wg schematu:

Pn = an
Pi = Pi+1*x + ai dla i = n-1,..., 1 ,0

gdzie p(x) = p . Czas obliczeń jest oczywiście proporcjonalny do n.
Równoległy algorytm Estrina [511 oblicza wielomian wg schematu:

p(x) = q(x) X31/2 + 1 + r(x),

gdzie

13

x/2 + ... + an/2 + v
sr(X) = an/2xn/2 + ... + a0,

a następne wielomiany q(x), r(x) oblicza się przez podobny binarny po­
dział. Zatem algorytm startuje od jednoczesnego obliczenia

a^x + q2, a^x + a2, ...,

a następnie oblicza

(a^x + a2)x + (a^ + aQ) , ...

Jeżeli dostępna jest nieograniczona liczba procesorów, to czas obliczeń
jest proporcjonalny do 2 log n.

Algorytm Dorna [51] stosuje schemat Homera k-tego rzędu, który ob­
licza najpierw równolegle

, k, k 2kqo(x) = aQ + akx + a2kx + ...
/ k kq1(x) = a1 + ak+1x + ...

k kqk-/x) = ak-1 + a2k-1x =

a następnie
p(x) = qQ(xk) + x-q1(xk) + ... + xk-1•qk_1(xk).

Dla k procesorów czas obliczeń szacuje się jako proporcjonalny do
2n/k + 21ogk.

Innym przykładem algorytmu równoległego jest wyznaczenie komponentów
spójności grafu [32] . Niech V = { 0,1 ,... ,n-l} będzie zbiorem wierzchoł­
ków grafu nieskierowanego G = (V,E), gdzie EC V x V jest zbiorem
krawędzi. Przedstawmy graf w postaci macierzy boolowskiej A o wymiarach
wn, gdzie A(i,j) = true wtedy i tylko wtedy, gdy (i,j)e: E. Komponen­
tą spójności grafu G jest największy podgraf Gc taki, że pomiędzy dowol­
nymi wierzchołkami Gc istnieje łączący je ciąg krawędzi. Każdy wierzcho­
łek należy dokładnie do jednej komponenty spójności. Niech m-wymiarowy
wektor D służy do wyznaczenia komponent: jeżeli Gc = (VO,EC) jest kom­
ponentą spójności, to dla i g: Vc D(i) jest równe najmniejszemu elemen­
towi z V . Algorytm ma postać następującą:

1. Dla wyszytkich i wykonuj D(i):=i. Powtarzać następnie kroki od 2 do
6, przez co najwyżej log n iteracji.

2. Dla wszystkich i wykonuj

C(i) =
min | D(j) |A(i,j) = trueAD(j) D(i)J

D(i) gdy podany wyżej zbiór jest pusty.

U

3. Dla wszystkich i wykonuj
min-! C(j) | D(j) = 1 A C(j) = i)

C(i) = J
D(i) gdy podany wyżej zbiór jest pusty.

4. Dla wszystkich i wykonuj D(i):=C(i).

5» Przez co najwyżej log n iteracji dla wszystkich i wykonuj
C(i):=C(C(i)).

6. Dla wszystkich i wykonuj
D(i):=min(C(i),D(C(i))).

Działanie algorytmu jest następujące. Podczas pierwszej iteracji są
badane wierzchołki przyległe do każdego wierzchołka (kroki 2,3) oraz
zbiory wierzchołków, które połączone są ze sobą. W rezultacie każdy ta­
ki zbiór wierzchołków jest zanurzony w pewnym nadzbiorpe zdefiniowanym
przez D następująco: D(i) jest równe wierzchołkowi o najmniejszym nume­
rze, do którego przylega wierzchołek i. 7/ kolejnych iteracjach są bada­
ne krawędzie łączące dwa sąsiednie nadzbiory (kroki 2,3), a następnie
nadzbiory te są łączone ze sobą w krokach 4-6. Obliczenia kontynuuje
się aż do chwili, gdy wszystkie nadzbiory zostaną połączone, a dalsze
iteracje nie wnoszą żadnych zmian. Okazuje się, że liczba iteracji nie
przekracza log n.

Wybrane algorytmy są tylko ilustracją równoległego podejścia na eta­
pie rozwiązania problemu. Możliwości, jakie kryją się w tego rodzaju po­
dejściu, pozwalają oczekiwać, że przed klasycznymi, już rozwiązanymi,
zagadnieniami, w szczególności przed metodami numerycznymi, stoi po­
wtórna droga do przebycia.

ĆWICZENIA

1 . Przytoczone opowiadanie [37] stanowi pouczający przykład ilustru­
jący zagadnienie synchronizacji dostępu do wspólnych zasobów.

Wysoko w Andach przebiegają dwie okólne linie kolejowe, z których
jedna należy do Boliwii, a druga do Peru. Linie te mają wspólny odcinek
toru prowadzący przez przełęcz górską leżącą na granicy obu państw.
Przejazd przez ten odcinek odbywa się zawsze tylko w jednym, na stałe
przyjętym, kierunku. Problem polega na tym, że maszyniści wjeżdżający
na ten odcinek są ślepi i głusi. Aby uniknąć kolizji uzgodniono nastę­
pujące reguły wjazdu na wspólny tor. Przed wjazdem umieszczono beczkę.
Maszynista zanim wjedzie na wspólny tor zatrzymuje pociąg, podchodzi do
beczki i sprawdza jej zawartość. Jeżeli beczka jest pusta, to wyszukuje
kamień 1 wrzuca do go beczki, wskazując tym, że zajmuje tor, wsiada do
pociągu i przejeżdża wspólny odcinek. Po przejeździe odcinka ponownie
wraca do beczki i wyrzuca z niej kamień, wskazując zwolnienie wspólnego
toru. Jeżeli przed wjazdem maszynista znajdzie w beczce kamień, to robi
przerwę na krótką sjestę, po czym ponownie, często kilkakrotnie, spraw­

15

dza czy wreszcie beczka jest pusta. Pewien spostrzegawczy kolejarz bo­
liwijski stwierdził, że wywrotowy peruwiański rozkład jazdy spowoduje
stałą blokadę boliwijskich pociągów. (Dlaczego?) Na to boliwijski ma­
szynista stwierdził, że nigdy to się nie zdarzy. (Dlaczego?) Nieszczę­
śliwie pewnego dnia pociągi na przejeździć zderzyły się.(Dlaczego?)• Po
katastrofie spostrzegawczy kolejarz zaproponował nowe rozwiązanie. Bo­
liwijski maszynista powinien czekać przy beczce dopóty, dopóki beczka
będzie pusta, a po przejaździe wspólnego odcinka powinien wrócić do
beczki i wrzucić do niej kamień. Natomiast maszynista peruwiański powi­
nien czekać przy beczce, aż w beczce będzie kamień, a po przejeździe to­
ru powinien beczkę opróżnić. Kolejarz był przekonany o bezkolizyjności
swego rozwiązania. Jednak peruwiańczycy okazali się bardzo nieszczęśli­
wi z powodu nowej umowy. (Dlaczego?) W związku z tym spostrzegawczy
kolejarz zaproponował kolejne rozwiązanie. Przed wjazdem umieszczono
dwie beczki, każdą dla jednego maszynisty. Gdy maszynista osiąga prze­
jazd podchodzi do swej beczki, wrzuca do niej kamień, a następnie spraw­
dza drugą beczkę. Jeżeli jest pusta, to wsiada do pociągu, przejeżdża
wspólny tor, wraca do swej beczki i opróżnia ją. Jeżeli w beczce jest
kamień, to wraca do swej beczki, wyrzuca z niej kamień i robi krótką
przerwę na sjestę, po której ponawia poprzednie czynności, zaczynając
od wrzucenia kamienia do swej beczki. Metoda działała przez wiele mie­
sięcy, aż pewnego dnia późną jesienią pociągi zostały zablokowane na
przeciąg wielu sjest. (Dlaczego?)

2. Podaj zasady szacowania minimalnej liczby procesorów niezbędnych
do możliwie szybkiego obliczenia danych wyrażeń liczbowych:

a) przy założeniu jednakowych czasów wykonywania różnych operacji,
b) przy założeniu dowolnych (znanych) czasów wykonywania operacji.
3. Przedstaw optymalny czasowo harmonogram obliczeń wyrażenia

(a + b)/(a - b) k (c/e - cjfd) s (asa + c*d)/((a+b)»(a-b))
przy założeniu, że czas wykonywania operacji +,- wynosi T, 5f wynosi 3T,
/ wynosi 4T.

4. Przedstaw potencjalne równoległości w ciągu instrukcji
for i:=1 to m do

for j:=1 to n do
begin

A[j] := X [i] + X [j] ;
B [i,j] := X [i] s i ;
C [k,j] := A [k] ;
D [i,k,j] := Y [i] » k s (i-j)

and;

5. Zaproponuj równoległy algorytm obliczenia zera funkcji z wyko­
rzystaniem metody Newtona.

6. Zaproponuj algorytm równoległego sortowania liczb
a) przy dowolnej liczbie procesorów
b) przy ograniczonej liczbie procesorów.

7. Zaproponuj algorytm równoległy wyszukiwania najkrótszej ścieżki
w grafie skierowanym z łukami obciążonymi liczbami nieujemnymi.

8. Dana jest sieć procesorów połączonych w dwuwymiarową strukturę
macierzową. Zaproponuj zasady komunikacji między sąsiednimi procesora­
mi. Uwzględnij te zasady do obliczenia iloczynu macierzy liczbowych.

2. PORÓWNANIE PODSTAWOWYCH KONCEPCJI

2.1. Zasady porównania

Ocena i porównanie (pragmatyka) koncepcji programowych nie jest za­
gadnieniem łatwym [22] . Należy bowiem braó pod awagę wiele porównywa­
nych aspektów. Najbardziej istotnymi aspektami są: siła ekspresji języka,
jego czytelność i łatwość implementacji.

Siła ekspresji języka programowania współbieżnego wyraża rodzaje
równoległości, jakie dopuszcza język, sposoby komunikacji i synchroni­
zacji, rodzaje niedeterminizmu.Prawidłowo zaprojektowany język powinien
zawierać dostatecznie bogaty zestaw tych mechanizmów, tak by programis­
ta mógł opisywać w nim wszystkie przewidywane akcje, bez odwoływania
się do procedur systemu operacyjnego.

Czytelność programów napisanych w danym języku określa stopień trud­
ności analizy progrąmu (określenie tego, co program wykonuje) na podsta­
wie analizy tekstu programu (a r.ie analizy wykonania programu). Zasadni­
czym wymogiem czytelności programu jest jego strukturalizacja (modulary-
zacja), tzn. taka dekompozycja programu na dostatecznie małe fragmenty,
które można analizować oddzielnie, niezależnie od pozostałej części
programu. Dekompozycja jest krytyczną własnością w projektowaniu progra­
mów współbieżnych,, gdyż pomiędzy komponentami programu zachodzą subtel­
ne oddziaływania i mogą one doprowadzić do blokad, hazardów lub innych
form nieprawidłowych zachowań. Czytelność programów jest ważna zarówno
przy wszelkich modyfikacjach lub rozbudowie programu, jak również pod­
czas jego konstrukcji: język dysponujący konstrukcjami wysokiego pozio­
mu kojarzącymi mechanizmy komunikacji i synchronizacji nie tylko przy­
spiesza analizę i syntezę programów, lecz także czyni programy bardziej
odpornymi na błędy.

Względy implementacyjne odnoszą się do procesu tworzenia kompilato­
ra języka oraz do efektywności pracy tego kompilatora (efektywność
przekładu i efektywność działania kodu wynikowego). Na ogół względy te
pozostają w sprzeczności z poprzednio wymienionymi aspektami: wzrost
siły ekspresji lub podniesienie czytelności pociąga dodatkowe kłopoty
implementacyjne.

Porównanie przedstawionych dalej koncepcji programowych będzie pole­
gać na ocenie omówionych aspektów.

17

2.2. Przykładowe systemy

Prezentacji i porównania podstawowych koncepcji programowych dokona­
no w sposób poglądowy na podstawie następujących dwóch przykładów.

P. 1. System rezerwacji biletów lotniczych składa się ze wspólnej ba­
zy danych, do której w trybie interakcyjnym ma dostęp pewna liczba zdal­
nych użytkowników. System wymaga współbieżnego działania w celu zapew­
nienia podziału dostępu do wspólnych danych, obsługi napływających zgło­
szeń klientów, sensownej przepustowości.

Przyjmijmy, że wspólna baza danych zawiera informacje o pewnej licz­
bie lotów. W uproszczeniu, niech każdy lot dysponuje 100 miejscami dla
pasażerów. Aby zarezerwować m miejsc w locie numer 1, użytkownik wysy­
ła wiadomość (polecenie)

('rezerwuj 1, m).

Jeżeli dany lot dysponuje wymaganą liczbą miejsc, to dokonuje się
rezerwacji i informuje zwrotnie użytkownika, w razie braku odpowiedniej
liczby miejsc, rezerwacja nie jest realizowana, a użytkownik otrzymuje
odpowiedź negatywną. Użytkownik może także sprawdzić iloma wolnymi
miejscami dysponuje dany lot; w tym celu wysyła on wiadomość

('informuj , 1),

a w odpowiedzi system przesyła mu aktualną liczbę wolnych miejsc.

P.2. System buforowania składa się z pewnej liczby urządzeń wejścio­
wych, z których czytane są pojedyncze porcje danych do wspólnego bufora,
w których dane te są umieszczane oraz z pewnej liczby urządzeń wyjścio­
wych, które pobierają ze wspólnego bufora pojedyncze porcje danych i
wyprowadzają na zewnątrz. Urządzenia wejściowe (czytniki) oraz urządze­
nia wyjściowe (pisaki) pracują współbieżnie i ąą tylko uzależnione od
dostępu do wspólnego bufora (czytniki - od możliwości zapisu w buforze,
pisaki - od możliwości odczytu z bufora). Bufor ma ograniczoną pojem­
ność i dopuszcza się, że w określonym czasie może być dostępny tylko
dla jednego czytnika lub pisaka. Aby zapewnić efektywną pracę systemu
zakłada się, że operacje zapisu/odczytu do/z bufora są znacznie krótsze
od operacji wejścia/wyjścia wykonywanych przez czytniki/pisaki.

Opisane przykłady stanowią tylko przykłady ilustracyjne. Dokonano w
nich uproszczeń, pominięto detale. Przykładowo pominięto kwestię dzia­
łania systemów w warunkach awaryjnych, kwestię zakończenia ich działania.
Trudno zatem sformułować niepodważalne wartości o właściwościach języka

18

programowania na podstawie tak uproszczonych przykładów. Należy także
pamiętać o trudnościach, jakie wyniknęłyby z dołączenia urealniających
szczegółów.

W bieżącym rozdziale zastosowano pascalopodobną, samowyjaśniającą
się notację programową.

2.3. Procesy w środowisku zwartym

Najwcześniejsze podejścia do programowania równoległego przyjmowały
podejście naturalnie nasuwające się z obserwacji działania systemów wie-
loprogramowych. Systemy takie składały się z jednego lub kilku proceso­
rów mających dostęp do wspólnej pamięci. Komunikacja procesów realizowa­
nych w systemie odbywała się za pośrednictwem wspólnej pamięci stanowią­
cej wspólne, zwarte środowisko dla tych procesów. Komunikacja wyrażała
się przez realizację instrukcji przypisania operujących na zmiennych
globalnych reprezentujących obszary wspólnej pamięci.

Współpraca współbieżnych procesów wymaga mechanizmów synchronizacji
dostępu do wspólnej pamięci. (Na poziomie architektury sprzętu liczące,-
go jest to realizowane przez wykorzystanie mechanizmu przerwań.) Powsta­
ło wiele różnych mechanizmów synchronizacji [12,45]:

- różne odmiany semaforów (Dijkstra 1968, Vontilborgh i van Lamswe-
erde 1972, Agerwala 1977),

- warunkowe regiony krytyczne (Hoare 1972),
- wyrażenia ścieżkowe (Campbell, Habermann 1974),
- monitory (Hoare 1974, Brinch Hansen 1973),
- wyrażenia warunkowe (Kessels 1977),

i inne.
Spośród wielu proponowanych mechanizmów dalej omówiono tylko dwa:

semafory Dijkstry oraz monitory Hoare’a (koncepcja) i Brich Hansena (no­
tacja językowal. Odegrały one chyba najistotniejszą rolę w procesie for­
mowania mechanizmów synchronizacji.' Należą one do dwóch różnych katego­
rii: semafor stanowi specjalny typ zmiennej, na której można wykonywać
tylko określone operacje, monitor natomiast stanowi zdefiniowany przez
programistę zbiór procedur, poprzez które proces może działać na wspól­
nych danych.

2.3.1. Synchronizacja procesów za pomocą semaforów

Semafor S jest zmienną typu całkowitego (integer), której, w moment
cie inicjalizacji, przypisuje się pewną wartość początkową. Ze zmienną
S jest związana kolejka, w której przechowuje się nazwy procesów. Na se­
natorze można wykonać tylko dwie operacje: wait (S) oraz signal (S).
(Dijkstra nazywa je odpowiednio ? oraz V.) Jeżeli proces P wykonuje

19

operację wait (S), następuje zmniejszenie wartości S o wartość 1; jeże­
li nowa wartość będzie ujemna, to nazwa procesu P będzie zapisana w ko­
lejce stowarzyszonej z S i wykonanie procesu F zostanie zawieszone; je­
żeli nowa wartość S nie jest ujemna, to proces P wykonuje się dalej.
Jeżeli proces P wykonuje operacje signal (S), to następuje dodanie je­
dynki do S, po czym proces P kontynuuje swe obliczenia. Jeżeli nowa
wartość S okaże się dodatnia, to nazwę jednego z zawieszonych procesów
usuwa się z kolejki i wznawia wykonywanie tego procesu. Wybór jednego z
zawieszonych procesów jest niederministyczny.

Semafory dostarczają więc środków do zawieszenia wykonywania pro­
cesów, aż do momentu spełnienia pewnych warunków. Jeżeli proces wykonu­
je operacje na semaforze w połączeniu z dostępem do zmiennych global­
nych, można osiągnąć prawidłową synchronizację dostępu. Przykładowo,
semafor z początkową wartością 1 można zastosować do zachowania wzajem­
nie wykluczającego się dostępu do wspólnych zmiennych (można zorganizo­
wać sekcję krytyczną).

P. 1. Przykład procesu w systemie rezerwacji biletów lotniczych, któ­
ry usiłuje dokonać rezerwacji miałby więc postać:

process klient_i-ty;

wait (mutex);
if liczba_dostępnych_miejsc [nr_lotu] >n
then
begin
liczba—dostępnych_miejsc[nr_lotu]:=
liczba_dostępnych_miejsc nr_lotu - n;

powodzenie := true
end
else powodzenie := false;
signal (mutex)

end process

gdzie mutex jest zadeklarowany i zainicjowany wspólnie dla wszystkich
procesów klientów przez:

semaphore mutex;
mutex := 1;

Jeżeli kilku klientów pragnie uzyskać dostęp do bazy danych bez narusze­
nia jej, zawartości, to oczywiście dostęp taki mogą uzyskać jednocześnie,
bez potrzeby dodatkowej synchronizacji. Proces, który ma zamiar dowie­

20

dzieć się o liczbie wolnych miejsc, może wykonać po prostu instrukcję!

n : = liczba_wolnych_miejsc[nr_lotu].

Oczywiście w realnych systemach rezerwacji klient może zapytywać o więk­
szą liczbę informacji, dlatego zwykle istnieje potrzeba synchronizacji
nawet w razie dostępu nie modyfikującego wspólnych danych po to, by in­
formacje nie okazywały się nieaktualne już w chwili przekazania ich do
klienta.

P,2. W przykładzie systemu buforowania synchronizacja dostępu do
wspólnego bufora jest bardziej złożona i wymaga użycia dwóch semaforów.

coneurrentprogram system_buforowania;
yąr wspólny_bufor: T;
seinąphore pusty, pełny;
pusty := 1; pełny := 0;

process czytnik_i-ty; (i = 1,2,...m)
var lokalny_bufor : T;
S®£1“
while true do
begin read (urządzwej_i-te, lokalny_bufor)

wait (pusty);
wspólny_bufor := lokalny-bufor
Bignal (pełny)

end
endprocess;
process pisak k-ty; (k = 1,2,...,n)
var lokalny_bufor : T;
while true do
begin wait (pełny);

lokalny—bufor := wspólny_bufor;
signal (pusty)
write (urządzwyj_k-te. lokalny_bufor);

end
endprocess;

endprogram

Semafor "pusty" gwarantuje, że tylko jeden z procesów czytników otrzyma
dostęp do wspólnego bufora, podczas gdy semafor "pełny" gwarantuje to
samo dla procesów pisaków.

Konstrukcja semafora jest wystarczająca do rozwiązywania szerokiej
klasy problemów synchronizacji, chociaż czasem stwarza to duże kłopoty.
Nie uwzględnia natomiast semafor '-óch elementów:

21

- czasu, w którym zachodzi dane zdarzenie: przykładowo nie można
wodować zawieszenia się procesu na określony odcinek czasuj
- możliwości wpływu jednego procesu na zakończenia działania innego

>cesu. Oba te elementy pominięto świadomie, gdyż proces abstrakcyjny
nija bezwzględny (substancjalny) czas zachodzenia zdarzeń, a jedynym
aściwym oddziaływaniem pomiędzy procesami jest przekazywanie danych
zez wspólną pamięć.

Pojęcie semafora nie jest jednak wystarczające do rozwiązania zagad-
.eń synchronizacji, przy braku wspólnego, globalnego środowiska. Nie
jst możliwy jawny opis oddziaływań pomiędzy procesem komunikującym się
rzez wspólne łącze.

Koncepcja semafora stanowiła w swoim czasie milowy krok w kierunku
lepszego zrozumienia problemów synchronizacji. Jednakże narzędzie to ma
znaczne niedogodności. Pierwsza wynika stąd, że jest to narzędzie bar­
dzo elementarne: programiście pozostawia się rozwiązanie sposobu właści­
wego użycia semaforów. Uzyskanie takiego rozwiązania jest kłopotliwe i
bardzo podatne na błędy, a same rozwiązania - zwłaszcza przy złożonych
zagadnieniach - są sztywne, trudno modyfikowalne. Druga wada wynika z
zupełnego braku modularności. Informacje o tym, w jaki sposób są wyko­
rzystywane wspólne dane, są rozproszone po całym programie. Przykładowo
trudno zlokalizować źródła niedeterminizmu w programie.

Brak modularności w połączeniu z elementarnością powoduje bardzo
trudną analizę (mała czytelność) programów z semaforami. Natomiast im­
plementacja semaforów nie nastręcza żadnych kłopotów. Historycznym przy­
kładem systemu operacyjnego wykorzystującego semafory jest system T.H.E.
Dijkstry z 1968 r.

2.3.2. Synchronizacja procosów za pomocą monitorów

Monitory wprowadzono przede wszystkim po to, aby uzyskać bardziej
strukturalną postać programów współbieżnych. W odróżnieniu od semaforów,
pełna informacja o wspólnych zasobach różnych procesów i o sposobie ich
wykorzystania jest zawarta w jednym wspólnym fragmencie programu, zwa­
nym monitorem. Deklaracja monitora zawiera definicję wspólnych danych
oraz definicję procedur, które mogą na nich działać. Procedury te, na­
zywane procedurami wejściowymi monitora, są dostępne procesom, tzn. pro­
cesy mogą wywoływać jedną z tych procedur w celu wykonania pewnych ope­
racji na wspólnych danych. Na wspólnych danych, wchodzących w skład mo­
nitora, nie można wykonywać dowolnych operacji, a tylko te, które są
zdefiniowane przez procedury wejściowe. Monitor jest wyłącznie obiekt,

usługowym, nie może on dokonywać samodzielnie wywołania własnych
dur wejściowych.

22

Monitor działa w taki sposób, że wykonywanie jego procedur wejścio­
wych wzajemnie się wyklucza. Jeżeli w pewnej chwili nastąpi jednoczesne
wywołanie procedur wejściowych przez kilka różnych procesów, to wykona
się tylko jedna z tych procedur, dla jednego z tych procesów, podczas
gdy pozostałe zostaną zawieszone (wstrzymane), aż do czasu, gdy zakoń­
czy się wykonywanie rozpoczętej procedury (zwolnienie monitora przez
proces, który poprzednio uzyskał dostęp do monitora). Wybór kolejnego z
zawieszonych procesów do wykonania w monitorze procedury wejściowej
jest niedeterministyczny.

Proces, który wywoła procedurę wejściową monitora całkowicie podda-
je się sterowaniu przez monitor. Proces może poddawać się sterowaniu mo­
nitora dwoma sposobami. Pierwszy - prostszy - polega na tym, że od mo­
mentu wywołania procedury wejściowej monitora proces ewentualnie oczeku­
je przez pewien czas na zwolnienie monitora przez inne procesy, następ­
nie jest wykonana żądana procedura wejściowa, a po jej zakończeniu ste­
rowanie zostaje zwrócone procesowi, który może wykonywać swe dalsze in­
strukcje. Drugi - bardziej złożony - wykorzystuje tzw. zmienne kolejko­
we (gueue) z operacjami opóźnij (delay) oraz wznów (continue). Zmienne
kolejkowe służą do jawnego (programowego) zapamiętywania nazw procesów
zawieszanych. Gdy proces P wykona operację opóźnienie na zmiennej kolej­
kowej q - delay (q), wówczas nastąpi zawieszenie tego procesu, a jego
nazwa P zostanie zapamiętana w zmiennej q. Proces P pozostanie zawieszo­
ny dopóty, dopóki nie wznowi go inny proces. W momencie zawieszenia pro­
cesu monitor jest gotowy do obsługi innych procesów. Gdy proces wykona
operację continue (q), wówczas — o ile q nie jest puste — następuje
wznowienie procesu, którego nazwa jest aktualnie przechowywana w q.

p.1. Przykład systemu rezerwacji biletów ilustruje prostszy sposób
sterowania procesami w monitorze. Monitor zarządzający wspólną bazą da­
nych ma postać:

monitor baza_danych
var liczba_dostępnych_miejsc : array [l..n]

of integer,
i : integer;

procedurę entry rezerwuj (lot, liczba : integer,
var powodzenie : boolean);

begin
if liczba_dostępnych_miejsc [lot] ^liczba
then begin

liczba_dostępnych_miejsc [lot] : =
liczba_dostępnych_miejsc [lot] - liczba;

powodzenie := true

23

end
else powodzenie := false
end;

procedurę entry informuj (lot : integer,
var liczba : integer);

begin
liczba := liczba_dostępnych_miejsc [lot]

end;
begin {inicjalizacja monitora}

for i := 1 to n do
liczba_dostępnych_miejsc [i] := 100

end monitor; U

Instrukcja inicjalizacji monitora służy do nadania wartości począt­
kowych zmiennym wspólnym ochranianym przez monitor. Instrukcja powinna
być wykonana jednorazowo przed przyjęciem wywołań procedur wejściowych
monitora. Wywołania procedur wejściowych w procesach klientów będą mia­
ły postać

baza„danych . rezerwuj (L,n,p)
lub

baza—danych . informuj (L,n)

gdzie L,n,p są aktualnymi parametrami wywoływanych procedur.

P.2. Przykład systemu buforowania jest bardziej złożony. Pokazuje
>n sposób wykorzystania zmiennych kolejkowych do pewnej strategii szere­
gowania procesów wywołujących monitor (szeregowanie zgodne z kolejnoś­
cią zgłoszeń). Wewnątrz monitora są zdefiniowane także jego funkcje we­
wnętrzne, których nie mogą wywoływać procesy, a które mogą być wykorzy­
stane przez procedury wejściowe monitora

monitor wspólny_bufor;
var bufor : blok;

zajęty : boolean;
kolpis : array [O..n-l] of gueue;
kolczyt : array [o..m-l] of gueue;
pkolpis, kkolpis, pkolczyt, kkolczyt,
dkolpis, dkolczyt: integer;

function wejście (do : boolean) : integer,
begin

if do then
begin

wejście := kkolpis;
kkolpis := (kkolpis + 1) mod n;

24

dkolpis ; = (dkolpis + 1
end
else
begin

wejście : = kkolczyt;
kkolczyt := (kkolczyt + 1) mod m;
dkolczyt : = (dkolczyt + 1

end
end;
function wyjście (to : boolean) : integer;
begin

if to then
begin

wyjście := pkolpis;
pkolpis := (pkolpis + 1) mod n;
dkolpis := dkolpis - 1

end
else
begin

wyjście : = pkolczyt;
pkolczyt := (pkolczyt + 1) mod m;
dkolczyt : = dkolczyt - 1

end
' end;

function pusta (to : boolean) : boolean;
begin

if to then pusta := (dkolpis = 0)
else pusta :+ (dkolczyt = 0)

ęnd;
procedurę entry czytaj (var danewy : blok);
begin

if not zajęty then
delay (kolczyt [wejście(false)]) ;

danewy : = bufor;
zajęty := false;
if not pusta (true) then ,

continue (kolpis [wy jście(true)])
end;

procedurę entry pis z (danewe : blok),
begin

if zajęty then
dclay (kolpis [wejście(true)]);

25

bufor := danewe;
zajęty := truej
if not pusta (false) then

continue (kolczyt [wyjście(false)])
end;

begin {lnicjalizacja monitora)
zajęty := false;
pkolpis := 0; kkolpis : = 0$ dkolpis := 0;
pkolczyt := 0; kkolczyt := O; dkolczyt : = 0

end monitor

Procesy czytników będą wywoływać procedurę wejściową

wspólny_bufor . pisz (we),

zaś procesy pisaków -

wspólny_bufor . czytaj (wy),

gdzie we, wy są odpowiednimi parametrami aktualnymi procedur ustalonymi
przez te procesy.

Siła ekspresji monitorów jest taka sama jak semaforów w tym sensie,
że każdy program, który zawiera semafory może byó zastąpiony przez pro­
gram zawierający monitory oraz odwrotnie.

Konstrukcja monitora jest bardziej modularna niż semafora, dlatego
też programy są bardziej czytelne. Sposób dostępu do wspólnych zasobów
jest zdefiniowany w jednym tekstowo zwartym module. Czyni to program
łatwiejszy do modyfikacji. Przykładowo, gdyby bufor w P.2. składał się
z większej liczby bloków, przekonstruowania wymagałby tylko monitor.

Przedstawiona wersja monitora zakłada rozłączne działanie jego pro­
cedur wejściowych. Ogólnie tak byó nie musij zwłaszcza wówczas, gdy po­
szczególne procedury działają na rozłącznych fragmentach wspólnych da­
nych, można założyć równoczesność ich działania (38) .

Podobnie jak przy semaforach, implementacja monitorów nie nastręcza
większych kłopotów. System operacyjny SOLO Brinch Hansena z 1975 r., na­
pisany w języku Concurrent Pascal, stanowi przykład systemu całkowicie
opartego na monitorach.

2.4. Procesy w środowisku rozproszonym

Wraz z rozwojem systemów komputerowych, a zwłaszcza pojawieniem się
systemów wieloprocesorowych [23] , torowało sobie drogę programowanie
oparte na założeniu środowiska rozproszonego. Wprawdzie pojęcia komuni­
kujących się rozproszonych procesów używał Brinch Hansen już w 1970 r.
[61, to jednak zasadniczy rozwój takiego programowania nastąpił w poło­

26

wie lat siedemdziesiątych. Należy wymienić tu prace Kahna [41,42] , Hoa~
re’a [35], Brinch Hansena [11] 9 Hewitta [28] i inne, np. [39,48]. Wie-
loprocesory i sieci komputerowe stanowią naturalną bazę odniesienia dla
tego podejścia.

Dla ilustracji wprowadzimy język programowania, w którym zdefiniu­
jemy pojęcie wiadomości (tj. porcji danych przesyłanych pomiędzy proce­
sami) oraz operacji wysyłania i odbioru wiadomości. Przez wiadomość bę­
dzie rozumiana trójka

w = (nadawca, odbiorca, treść),

gdzie nadawca jest nazwą procesu wysyłającego wiadomość, odbiorca - na­
zwą procesu odbierającego, treść zaś stanowi przekazywaną informację
użytkową. Dla ustalenia uwagi wiadomości będą traktowane jak rekordy (w
sensie Pascala) o podanych wyżej nazwach pól, a więc np. wartość, nadaw­
ca określa nazwę procesu wysyłającego wiadomość w.

Wysyłanie wiadomości w (przez proces P do procesu Q) polega na
wykonaniu procedury

send (w)
gdzie

w. nadawca = P,
w. odbiorca = Q.

Zakłada się, że proces P wysyłający wiadmość w musi ustalić wartość
pól odbiorca i treść, natomiast wartość pola nadawca jest ustawiana au­
tomatycznie przez procedurę send.

Każdy proces ma jedną kolejkę, w której gromadzi nadchodzące do nie­
go wiadomości. Pobieranie wiadomości z tej kolejki odbywa się przez wy­
wołanie funkcji receiye, która powoduje podstawienia pod swą nazwę pier­
wszej wiadomości z kolejki wejściowej i usunięcie tej wiadomości z ko­
lejki. Jeżeli kolejka jest pusta, wykonanie receiye zostaje opóźnione
aż do momentu napływu nowej wiadomości.

Omawiane poprzednio przykładowe problemy znajdują tu następujące
rozwiązanie:

P. 1. W przykładzie systemu rezerwacji biletów, w modelu ze środowis­
kiem zwartym, zakładano, że procesy klientów mają dostęp do wspólnych
danych. Obecnie zakładamy, że tylko jeden proces o nazwie "transakcja”
ma taki dostęp, natomiast procesy klientów mają tylko dostęp pośredni
poprzez wymianę odpowiednich wiadomości z procesem transakcja.

W systemie są zdefiniowane dwa typy wiadomości: wiadomość od klien­
tów do procesu "transakcje" oraz wiadomości przesyłane w kierunku prze­
ciwnym:

27

message od_kllenta =
record

nadawca: nazwa_klienta;
odbiorca: transakcja;
treść: record

typ : (rezerwuj, informuj)
lot , liczba : integer

end
end

message do_klienta =
record

nadawca: transakcja;
odbiorca: nazwa—klienta,
treść: record

typ : (rezerwuj, informuj)
powodzenie: boolean;
liczba : integer

end
end

Definicja procesu transakcja ma postać następującą:

proces transakcja;
var dostępne_miejsca : array [l..n] of integer;

żądanie: message od—klienta;
odpowiedź: message do_klienta;
i,n: integer

begin
for i := 1 to n do dostępne miejsce [i] := 100,
while true do
begin

żądanie := receive;
case żądanie.typ of
rezerwuj:
begin
j:=żądanie.treść.lot,
i:=żądanie.treść.liczba;
if dostępne—miejsce [j] >i then
begin

odpowiedz.treść.powodzenie:=true;
dostępne_miejsce [j] := -

dostępne-miejsce [j] - i;
end

28

else odpowiedź.treść.powodzenie:=false;
odpowiedź.treść, typ:=rezerwuj
end

informuj:
begin

odpowiedź.treść.liczba:=
dostępne_miejsce [żądanie.treść.lotj 5

odpowiedź.treść.typ:=informuj
end

end;
aend (odpowiedź)

end
endprocess

Treść procesów klientów jest tutaj mniej istotna: ważne jest tylko
to, że klienci są generatorami wiadomości do procesu "transakcje" oraz
odbiorcami odpowiedzi tego procesu.

P, 2. W systemie buforowania wyróżnia się trzy rodzaje procesów: n
procesów pisaków, m procesów czytników oraz jeden proces sterujący
wspólnym buforem. Procesy czytników (pisaków) komunikują się z procesem
wspólnego bufora w celu przekazania (odbioru) ustalonych bloków infor­
macji. Procesy czytników po odczytaniu z urządzeń zewnętrznych bloku in­
formacji przekazują je do procesu wspólnego bufora, który z kolei prze­
syła je do jednego z procesów pisaków. Każdy z procesów pisaków, który
zakończy wyprowadzenie bloku informacji wysyła do procesu wspólnego bu­
fora wiadomość o gotowości do przyjęcia nowego bloku danych, dzięki cze­
mu proces wspólnego bufora zna aktualną zajętość pisaków.

W odróżnieniu od poprzedniego przykładu mamy tu bardziej złożoną wy­
mianę informacji pomiędzy procesami. Dlatego wewnątrz procesu wspólnego
bufora definiuje się nowy typ danych seguence, służący do formowania w
kolejkę napływających wiadomości. Na typie tym można dokonywać operacji
wpisu do kolejki inseg, odczytu z kolejki deseg oraz badania zajętości
kolejki za pomocą funkcji boolowskiej empty (funkcja przyjmuje wartość
true, gdy kolejka jest pusta).

concurrentprogram syst em_buforowania:
message informacja użytkowa =

record
nadawca: nazwa_procesu_czytnika_lub_wspólnego_bufora;
odbiorca: nazwa_procesu_pisaka_lub_wspólnego„bufora;
treść : blok

end;

29

message informacja-sterująca =
record

nadawca: nazwa_procesu_pisaka;
odbiorca : wspólny—bufor;
treść :<pusta>
{pole treść nie zawiera żadnej informacji
- dlaczego?}

end;
process wspólny—bufor;
var koldanych: seguence of message

informacj a_użytkowa;
kolgotowości: seguence of message

informacja_sterująca,
wewiad, wywiad : message informacja—użytkowa;
gotwiad : message informacja_sterująca

begin
while true do
begin

wewiad : = receive;
if wewiad.nadawcaenazwa_procesu_czytnika
then
begin

if empty (kolgotowości) then
enseg (wewiad.koldanych)

else
begin

gotwiad := deseg (kolgotowość),
wywiad.treść := wewiad.treść;
wywiad.odbiorca := gotwiad.nadawca
send (wywiad)

end
end
else
begin

if empty (koldanych) then
enseg (wewiad,kolgotowości)

else
begin

wywiad:=deseq (koldanych);
wywiad.odbiorca := wewiad.nadawca
send (wywiad)

30

end
end

endprocess;
procese czytnik-i-ty;
var wiad : message informacja—użytkowa;

b : blok;
begin

wiad.odbiorca := wspólny—bufor;
while true do
begin

read (urządzwe—i-te, b);
wiad.treść : = b;
send (wiad)

end
endprocess;

procees pisak_k-ty;
yar wiadster : message informacja-sterująca;

dane : message informacja—użytkowa;
begin

wiadster.odbiorca ;= wspólny-_;bufor;
while true do
begin

send (wiadster);
dane := receiyę;
write (urządzwy_k-te, dane.treść)

end
endprocess

endprogram.

Należy zwrócić uwagę, że wprowadzenie typu kolejkowego seguence,
umożliwiającego tworzenie kolejek o nieograniczonej długości, nie ogra­
nicza także liczby buforowanych bloków. Takie założenie może być w wie­
lu wypadkach nierealne; bardziej szczegółowy przegląd innych sposobów
komunikacji procesów przedstawiono w rozdziale 5.

Ogólne wnioski wypływające z analizy przygotowanych przykładów po­
zwalają stwierdzić następujące fakty. Siła ekspresji omawianego podej­
ścia jest większa od modelu obliczeń w środowisku zwartym. Oznacza to
możliwość transformacji każdego iopisu w konwencjii środowiska zwarte­
go na opis w konwencji środowiska rozproszonego; nie zawsze natomiast
jest możliwa transformacja odwrotna. Stopień strukturalizacji podejścia
rozproszonego jest także większy niż w poprzednim: wynika to stąd, że

31

jawnie deklaruje się sposób komunikacji pomiędzy procesami. Jeżeli cho­
dzi o względy implementacyjne, to nie można jednoznacznie określić, któ­
re z omawianych podejść jest wygodniejsze. Należy stwierdzić, że oba po­
dejścia są wzajemnie się uzupełniające: tam, gdzie istotnie środowisko,
w którym następuje implementacja, ma charakter zwarty, dogodniejsze
jest podejście pierwsze, w przypadku środowiska rozproszonego natomiast
podejście drugie.

2.g. Obliczenia równoległe synchronizowane przepływem danych

Omówione poprzednio podejścia programowania współbieżnego były opar­
te na koncepcji procesów sekwencyjnych komunikujących się przez wspólną
pamięć lub przez przesyłanie wiadomości. Stąd wyrosłe języki programo­
wania przypominają tradycyjne języki programowania sekwencyjnego z do­
datkowym wyposażeniem w mechanizmy komunikacji i synchronizacji. Obli­
czenia równoległe synchronizowane przepływem danych stanowią zupełnie
nowe podejście. Program jest tutaj traktowany jako pewien zbiór instruk­
cji, w którym tekstowa kolejność zapisu instrukcji nie wyznacza kolej­
ności ich wykonywania. Zasada określająca kolejność wykonywania instruk­
cji - zasada sterowania - jest następująca: daną instrukcję można obli­
czać wówczas, gdy będą już obliczone argumenty tej instrukcji. Stąd wy­
nika nazwa podejścia - obliczenia synchronizowane przepływem danych
(synchronizowane gotowością argumentów; data flow computations), podczas
gdy podejścia poprzednie można by określić jako obliczenia synchronizo­
wane przepływem sterowania (control flow computations) [12,16,611.

Realizacja jednoznacznych obliczeń zgodnie z zasadą przepływu da­
nych wymaga spełnienia dwóch warunków. Warunek pierwszy to brak efektów
ubocznych wykonania instrukcji. Oznacza to, że jedynym efektem wykona.-
nia instrukcji musi być przypisanie pewnej wartości identyfikatorowi tej
instrukcji, a nie mogą nastąpić zmiany przyporządkowania wartości innym
identyfikatorom. Warunek drugi wymaga, aby przyporządkowanie wartości
danemu identyfikatorowi mogło nastąpić tylko jednokrotnie.

Ze względu na fakt, że efekty uboczne, a zwłaszcza wielokrotne przy­
pisywanie wartości zmiennej (identyfikatorowi instrukcji podstawienia),
stanowią kamień węgielny klasycznego programowania, należy zdać sobie
sprawę, że ich usunięcie z języka wymaga wprowadzenia w zamian mechaniz­
mów. Są nimi: rekursja procedur oraz listy pośredniczące - krótko lis­
ty (streams). Rekursja eliminuje potrzebę iteracji - konstrukcji, która
w zasadniczy sposób bazuje na efektach ubocznych (zmiana wartości wskaź­
nika) oraz na wielokrotnym wykorzystaniu instrukcji przypisania. Listy
pośredniczące służą do grupowania w jeden wspólny obiekt ciągów danych
elementarnych. Pozwalają one definiować jednostki programowe (analogom

32

procedur), które wykonują operacje na ciągach danych. Tego typu jednos­
tki, które mogą przetwarzać listy pośredniczące i/lub wytwarzać listy
pośredniczące, będą nazywane modułami (modules). Na listach pośredniczą­
cych można wykonywać następujące operacje. Jeżeli lista a jest ciągiem:

s = x1,x2,...,xn,
to:

first (s) = xi,
rest (x) = x2,Xj,... ,xn,
cons (y,s) = x1,...,xn y.

Dla podkreślenia istotnej różnicy pomiędzy znaczeniem instrukcji
przypisania (podstawienia) w stosunku do języków tradycyjnych wprowadza
się oznaczenie:

let Cidentyfikator >=« <wyrażenie>

zamiast
<identyfikator > : = <wyrażenie>.

Ponadto jest potrzebny mechanizm przetwarzania tablic bez efektów ubocz­
nych. Dlatego definiuje się funkcję modify (A,i,v), której wynikiem
działania jest nowa tablica A', różniąca się od tablicy A tylko tym, że
na pozycji i-tej występuje wartość v.

P,1, Przykład systemu rezervłacji biletów, wbrew pierwszemu wrażeniu
powodowanemu podobieństwami syntaktycznymi, ma zupełnie odmienną seman­
tykę od języka Pascal. Początkowo skupimy uwagę na konstrukcji jednego
modułu "transakcje", którego wejściami są: lista zleceń klientów

strumień_żądań : stream of żądanie

tablica lotów

miejsca dostępne : array [i..n] of integer,

wyjście zaś stanowi lista

strumień-odpowiedzi : stream of odpowiedź,

gdzie
type żądanie =

record
typ : (rezerwuj, informuj);
klient, lot, liczba : integer
end

oraz
type odpowiedź =

record

33

powodzenia : boolean;
klient, wolne : integer;
end

Moduł "transakcja" ma postać:

module transakcja (strumień-żądań:
stream of żądanie} miejsca—dostępne:
array [1..n] of integer);

returns strumień—odpowiedzi:
stream of odpowiedź;

yar wejście : żądanie;
wyjście : odpowiedź;
i,j : integer;
pozostałe-miejsca : array [1..n] of integer;

begin
let wejście = first (strumień—żądań);
case wejście.typ of
rezerwuj:

begin
let i = wejście.lot;
let j = wejście.liczba;
if miejsca—dostępne [i]>j then
begin

let wyjście.powodzenie = true;
let pozostałe-miejsca =

modify (miejsca—dostępne, i,
miejsca-dostępne [i] - j)

and
else
begin

let wyjście.powodzenie = false:
let pozostałe-miejsca =

miejsca_dostępne
end

end;
informuj:

begin
let i = wejście.lot;
let pozostałe-miejsca = miejsca_dostępne

end
let wyjście.klient = wejście.klient;
let strumień odpowiedzi =

34

eona (wyjście, transakcja (rest
(strumień żądań), pozostałe-miejsca))

endmodule.

Moduł "transakcja" otrzymuje dane wejściowe w postaci jednego stru­
mienia żądań, którego elementy mogą pochodzić z różnych miejsc (końcó­
wek). Na razie nie omówiono sposobów tworzenia takiej listy. Przedsta­
wiony język służył do wyrażania tylko zdeterminowanych obliczeń, pod­
czas gdy system rezerwacji zachowuje się w sposób niezdeterminowany.
Dla wyrażenia niedeterminizmu wprowadza się operację scalania list po­
średniczących merge. Działając na listach s1, s2 operacja merge (s1,s2)
tworzy nową listę pośredniczącą, złożoną ze wszystkich elementów obu
list, w taki sposób, że zostaje zachowana względna kolejność elementów
z al oraz s2, natomiast sposób przemieszczania się elementów z s1 wzglę­
dem elementów z s2 jest niezdeterminowany. Operacja merge jest wystar­
czająca do przedstawienia szerokiej klasy obliczeń niedeterministycznych.
Przykładowo przy założeniu, że system rezerwacji ma trzy końcówki (trzy
moduły), które produkują listy: lista-żąd-1, lista_tąd_2, lista_żąd_3,
moduł, który obsługuje te listy, będzie miał postać:

module system (lista_żad_1, lista_żąd_2,
lista_żąd_3: stream of żądanie;
miejsca_dostępne: array [l..n] of integer)

returns lista_odp_1, lista_odp_2, lista_odp_3:
stream of odpowiedź;

var p1,p2,p3: stream of żądanie;
begin

let pi = tag (lista_żąd_1,1);
let p2 = tag (lista_żąd_2,2)
lej; p3 = tag (lieta_żąd_3,3);
let lista_żądań = merge (p1, merge (p2,p3));
let lista odpowiedzi =

transakcja (lista_żądań, miejsca_dostępne);
let lista_odp_1, lista_odp_2, lista—odp~3 =

sort (strumień—odpowiedzi)
endmodule.

W module "system" elementy wejściowych list pośredniczących są ety­
kietowane przez operację tag. tzn. każdemu elementowi takiej listy są
przyporządkowane odpowiednio liczby 1,2,3. Etykiety stanowią rozróżnie­
nie elementów pochodzących z różnych źródeł, dzięki czemu po otrzymaniu
xisty "strumień—odpowiedzi" z modułu "transakcja" można wydzielić przez
operację sort, w wypadku omawianego podejścia, podlisty kierowane do od­
powiednich końcówek.

35

P.2. Przykład systemu buforowania nie wnosi nowych elementów, dla­
tego pozostawia się go jako ćwiczenie dla Czytelnika.

Języki programowania sterowania przepływem danych znajdują się ak­
tualnie w początkowej fazie rozwoju. Wydają się one bardzo obiecujące
dla obliczeń równoległych ze względu na dużą siłę ekspresji oraz wysoki
stopień modularności programowania. W pewnym sensie można je uznać za
krok w kierunku języka klasycznej matematyki: chodzi tu o to, że język
matematyki nie operuje pojęciem zmiennej rozumianej jako komórka pamię­
ci, której zawartość można modyfikować, natomiast rekursja (indukcja)
jest dobrze znanym mechanizmem. Podział programu na moduły, które mogą
oddziaływać na siebie w jawnie zdefiniowany sposób, jawne wskazanie źró­
deł niedeterminizmu (operator merge) czynią program czytelnym, pomimo
swej "inności" w stosunku do powszechnie stosowanych podejść.

Implementacja języków synchronizowanych przepływem danych jest ra­
czej na prymitywnym etapie. Wynika to przede wszystkim z wymagań całko­
wicie odmiennej architektury sprzętu liczącego. Poszukiwania odpowied­
niej architektury oraz badania tych języków są ciągłym przedmiotem stu­
diów [2,16,17,18,43,45,61].

2.6. Podsumowanie

W rozdziale przedstawiono trzy podstawowe koncepcje do programowa­
nia równoległego, w istotny sposób różniące się swymi podstawami. Pier­
wsza oparta na modelu zwartego środowiska traktuje program jako zbiór
procesów działających pod wspólnym "dachem" i komunikujących się przez
oddziaływanie na wspólne otoczenie. Druga ze środowiskiem rozproszonym
traktuje program jako zbiór procesów, z których każdy działa pod włas­
nym "dachem", komunikujących się przez przesyłanie wiadomości. W trze­
ciej koncepcji z przepływem danych program jest widziany jako sieć ope­
ratorów, z których każdy produkuje nową wartość po otrzymaniu kompletu
wartości wejściowych argumentów. Sieć ta może rekurencyjnie rozwijać się
i zwijać w zależności od wywoływania i zakończenia działania procedur -
modułów.

Omówione koncepcje różnią się stopniem równoległości, jaki można
osiągnąć, czytelnością i problemami implementacyjnymi.

Żaden program złożony z komunikujących się procesów sekwencyjnych
nie realizuje pełnego, możliwego do osiągnięcia poziomu równoległości.
W programach z semaforami liczba procesów równoległych zależy w istocie
od pomysłowości programisty; w programach z monitorami należy dokonać
kompromisu pomiędzy całkowitą ochroną zasobów (a przez to wyłączenie
jednoczesnego dostępu do zasobów) a dopuszczaniem procesów do bezpośred­

36

niego dostępu. W procesach komunikujących się zasoby są bezpośrednio do­
stępne tylko jednemu procesowi; dlatego, jeżeli zasoby są podzielone
pomiędzy różne procesy, równoległość jest ograniczona. W językach syn­
chronizowanych przepływem danych można wyrazić wszelkie formy równoleg­
łości dopuszczalne przez algorytmy.

Ocena czytelności programów jest zagadnieniem subiektywnym, jednak­
że takie własności, jak modularność,ograniczenie źródeł niedeterminizmu,
konstrukcje językowe wysokiego poziomu są lepiej uchwytne. Kolejność
omawianych podejść odpowiada wzrastającemu stopniowi modularności. Se­
mafory, jako narzędzie bardziej elementarne, nie wprowadzały bezpośred­
nio żadnej modularności, pozwalając procesom na interakcję łatwo wymyka­
jącą się kontroli programisty. Wyższy stopień prezentują programy z pro­
cesami komunikującymi się. Najwyższy stopień osiągają programy synchro­
nizowane przepływem danych, w których dzięki całkowitej eliminacji efek­
tów ubocznych działanie każdego modułu definiuje się jako przetworzenie
pośredniczących list wejściowych na wyjściowe; podejście to jako jedyne
wprowadza też zasadę jawnego zaznaczania źródeł niedeterminizmu.

Ze względu na problemy implementacyjne, kolejność prezentacji po­
dejść odpowiada rosnącej skali problemów. Stwierdzenie to obrazuje fakt,
że semafory i monitory (oraz inne tej klasy konstrukcje) znalazły imple­
mentację w różnych językach programowania, w mniejszym stopniu dotyczy
to procesów komunikujących się, podczas gdy implementacja języków syn­
chronizowanych przepływem danych znajduje się w fazie rozwiązań koncep­
cyjnych.

ĆWICZENIA

1. Zadanie o czytelnikach i pisarzach (Courtois, Heymens, Parnas).
Pewna liczba procesów pisarzy prowadzi zapis informacji do bufora, z
którego informacja jest odczytywana przez procesy czytelników. Do bufo­
ru może mieć w danej chwili dostęp dowolna liczba czytelników, ale tyl­
ko jeden pisarz. Ponadto pisarze mają priorytet przed czytelnikami.
Przenalizuj poprawność przedstawionego niżej rozwiązania z wykorzysta­
niem semaforów.

integer lczyt, Ipis,
semaphore ml,m2,m3,p,c;
lczyt:=O; lpis:=O;
m1:=1; m2:=1; m3:=1; p: = 1; c:=1;

process czytelnik; process pisarz;
begin begin
wait (c); wait (m2);

37

wait (m1); lpis:=lpie+1;
Iczyt:=lczyt+1; if Ipis = 1 then
if Iczyt = 1 then wait (c);

wait (p); signal(m2);
signal(c); wait (p);
signal(m3): czytaj z bufora;
czytaj z bufora; signal(p);
wait(m2) wait(m2);
lczyt:=lczyt-1; Ipis:=lpie-1;
if Iczyt = 0 then if Ipis = 0 then
signal(p); signal(c);
signal(m1); signal(m2);
end end

2. Rozwieź zadanie o czytelnikach i pisarzach (6^. 1) z wykorzysta­
niem monitorów.

3. Rozwiąż zadanie o czytelnikach i pisarzach z wykorzystaniem pro­
cesów komunikujących się przez przesyłanie wiadomości kanałami komuni­
kacyjnymi.

4. Przeanalizuj działanie podanego niżej monitora, stanowiącego od­
powiednik monitora "wspólny bufor", przedstawionego w p. 2.3.

monitor bufor_we_wy;
var bufor : blok;
używany : boolean;
wolny, zajęty : gueue;
procedurę entry wpis (do : blok);
begin

if używany then delay (wolny);
bufor := do;
używany := true;
continue (zajęty)

end;
procedurę entry odczyt (var z : blok);
begin

if not używany then delay (zajęty);
z := bufor;
używany := false;
continue (wolny);

end;
begin używany := false end.

Wykaż, że procesy wywołujące procedury wejściowe tego monitora mogą być
zawieszane bez możliwości odwieszenia.

38

5. Zadanie o filozofach (Dijkstra). Dookoła okrągłego stołu siedzi
pięciu filozofów. Na stole znajduje się pięć widelców, każdy pomiędzy
dwoma sąsiadującymi filozofami. Filozofowie znajdują się na przemian w
jednej z faz: "myślenie”, które sprowadza się tutaj do bezczynnego ocze­
kiwania oraz "jedzenie", które polega tu na uchwyceniu widelca z lewej
i z prawej strony do jedzenia spaghetti znajdującego się na talerzu.
Oczywiście nie zawsze potrzebne widelce są wolne i w takiej sytuacji
filozof musi czekaó na ich zwolnienie.

Zaproponuj zasady wspólnego korzystania z widelców przez filozofów
w taki sposób, aby żaden z nich nie musiał oczekiwać na jedzenie nie­
skończenie długo. Przedstaw to rozwiązanie w postaci programu z użyciem
semaforów,

6. Rozwiąż zadanie o filozofach (ów. 5) z wykorzystaniem monitorów.

7. Warunkowe regiony krytyczne (Brinch Hansen) stanowią jedną z pro­
pozycji mechanizmu synchronizacji dostępu do wspólnych zasobów. Kon­
strukcja

region v do S end
związuje ze zmienną (obiektem) v anonimowy semafor, wykluczający do­
stęp do regionu krytycznego S, który stanowi jedyne miejsce dostępu do
v. Warunek await B wewnątrz regionu zawiesza czasowo wołający program aż
do momentu,' gdy B stanie się prawdziwe. Dopóki B jest fałszywe proces
zostaje zawieszony, a region krytyczny staje się otwarty dla innych pro­
cesów. Proces zostaje wznowiony, gdy B stanie się prawdziwe, a region
zostaje ponownie zamknięty dla innych procesów. Przeanalizuj wady i za­
lety tego rozwiązania z punktu widzenia czytelności programów i imple­
mentacji.

8. Rozwiąż zadania o czytelnikach 1 pisarzach (ów. 1) oraz o filo­
zofach (ów. 5) z wykorzystaniem warunkowych regionów krytycznych.

9. Wyrażenia ścieżkowe (Campbell, Habermann) stanowią mechanizm syn­
chronizacji, którego istota polega na określeniu dopuszczalnych klas od­
działywań (historii wykonań) współdziałających procesów. Wyrażenie
ścieżkowe ma postaó

path S end
gdzie S może oznaczać różne dopuszczalne kolejności wykonania:

S ::= SI; S2
oznacza, że S1 musi poprzedzać wykonanie S2 oraz odwrotnie;

S ::= S1,S2
oznacza, że może być wykonana albo S1 albo S2;

S ::= (Si}
oznacza, że po zainicjowaniu S1 może być zainicjowana dowolna liczba
egzemplarzy SI; dalsze obliczenia można kontynuować dopiero po zakoń­
czeniu wszystkich tych egzemplarzy

S ::= (a-b)n
oznacza, że w dowolnym momencie wykonywania programu sekwencja "a" musi
być wykonana co najmniej tak często, jak sekwencja "b" oraz nie więcej
niż n razy częściej. Zaproponuj systematyczną metodę zamiany wyrażeń
ścieżkowych na odpowiednie działania na semaforach.

10. Rozwiąż zadania o czytelnikach i pisarzach (ćw. 1) oraz o filo­
zofach (ów. 5), wykorzystując wyrażenia ścieżkowe.

3. J^ZYK PROGRAMOWANIA CONCURRENT PASCAL

3.1. Wprowadzenie

Język Concurrent Pascal należy do klasy języków bazujących na zało­
żeniu wspólnego środowiska dla równolegle pracujących procesów. Prace
nad językiem prowadził P. Brinch Hansen na Uniwersytecie Kalifornijskim
w latach 1972-75. (Pierwsze koncepcje języka były już dyskutowane w je­
go książce "Podstawy systemów operacyjnych" [3].) Pierwszy kompilator
języka na minikomputer PDP 11/45 opracował Hartman w 1975 r. [27]. Con­
current Pascal jest pierwszym w swej klasie językiem wysokiego poziomu
i, obok Moduli, aktualnie najbardziej rozpowszechnionym. Do upowszech­
nienia przyczynił się m.in. fakt, że kompilator języke został napisany
w języku maszyny wirtualnej, co umożliwia stosunkowo proste przeniesie­
nie oprogramowania na inne komputery. (Wymaga to napisania programu ba­
zowego - jądra - o objętości rzędu 3-4 K słów, modelującego działanie
maszyny wirtualnej.)

Nazwa języka oddaje częściowo jego charakter. Concurrent Pascal
jest oparty na uproszczonej wersji języka Pascal, wyposażonej w dodat­
kowe konstrukcje umożliwiające definiowanie procesów i sposobów ich
współpracy. Podstawowe konstrukcje, które dołączono, to proces, monitor
i klasa. Konstrukcje procesu i monitora są podobne do analogicznych kon­
strukcji omówionych w rozdz. 2, konstrukcja klasy stanowi natomiast
uproszczoną wersję klasy z języka Simula i stanowi mechanizm modulary-
zacji programów.

Ogólnie program w Concurrent Pascalu przedstawia się w postaci hie­
rarchicznie uporządkowanego zbioru komponentów. Komponentami (zmiennymi
systemowymi) są właśnie procesy, monitory oraz klasy. Ważną cechą języ­
ka, wpływającą na podniesienie poziomu strukturalizacji programów, jest
wprowadzenie pojęcia typów systemowych (typy procesowe, monitorowe i
klasowe). Daje to możliwość definiowania wielu egzemplarzy zmiennych
systemowych (procesów, monitorów, klas) tego samego typu. Przewidziany
jest także mechanizm parametryzacji komponentów w obrębie jednego typu;
jest on realizowany przez tzw. instrukcje inicjalizacji, które dokonują
m.in. ustalenia wartości parametrów każdego komponentu programu, a w wy­
niku tego zostaje ustalone uporządkowanie pomiędzy komponentami. Poję­
cie porządku pomiędzy komponentami odnosi się do zasad komunikowania
się (zasad dostępu) komponentów.

40

3.2. Symbole podstawowe

Elementami alfabetu języka są znaki należące do kodu ASCII (Ameri­
can Standard Codę of Information Interchange), symbole specjalne, iden­
tyfikatory, komentarze i słowa kluczowe. A zatem są to:

a) znaki graficzne (te, które mają reprezentację graficzną) kodu
ASCII:

- litery A B C ... Z
- cyfry 0 1 2 ... 9
- znaki specjalne

& ’()»+,-. / :{<=>?Ó)
b) znaki sterujące kodu ASCII; znaki te nie mają reprezentacji gra­

ficznej, a w programie są przedstawiane w postaci liczby z zakresu
0..127, będącej kodem, umieszczonej pomiędzy znakami (: oraz :), np.
(.: 10 :) jest reprezentacją znaku sterującego zmianą wiersza,

c) symbole specjalne, kombinacje par znaków z kodu ASCII:
< > oznaczający /
<= oznaczający <
>= oznaczający >
(. oznaczający [
.) oznaczający]

oznaczający symbol podstawienia
oznaczający separator wskaźników.

d) identyfikatory, stanowiące - jak zwykle - ciąg liter lub cyfr za-
czynający się literą;

e) separatory: spacja (: 32 :), nowa linia (: 10 :), komentarz - do-
wolny ciąg znaków nie zawierający n zamknięty w cudzysłowy;

f) słowa kluczowe:
array begiĘ case class const
cycle div do downto else
end entry for function if
in init mod monitor not
of or procedurę process program
record repeat set then to
type univ until var while
with

3.3. Struktury danych

Pascalowe typy danych oraz związane z nimi operatory występujące w
Concurrent Pascalu są następujące:

41

- typ wyliczeniowy z operacjami (funkcje standardowe) poprzednika
(przed) oraz następnika (suce);

- typ całkowity (integer) z operacjami : + , - , a , div, mod oraz
funkcjami standardowymi wartość bezwzględna (abs), zamiana liczby kodu
na znak (chr), zamiana liczby całkowitej na rzeczywistą (conv);

- typ rzeczywisty (real) z operacjami: + , s, / oraz funkcjami
standardowymi: wartość bezwzględna (abs), zaokrąglenie liczby rzeczywis­
tej do liczby całkowitej przez odrzucenie części ułamkowej (trunc);

- typ logiczny (boolean) z operacjami: &, or. not;
- typ znakowy (char) z operacją zamiany znaku na liczbę całkowitą -

- kod znaku (ord);
(Do wszystkich wymienionych wyżej typów prostych odnoszą się, w zna­

ny sposób, operatory relacji = ,<>,< = , > = ,<,> oraz operator podsta­
wienia := . Pojęcie typu okrojonego jest takie same, jak w Pascalu.)

- typ tablicowy (array) i typ rekordowy (record) z operatorami*. —
(Uwaga: typ rekordowy nie zawiera wariantów);

- typ zbiorowy (set) z operacjami: &(przekrój), or (suma), in
(przynależność do zbioru) oraz = ,<>, >=, <=,<,>, := •

Concurrent Pascal nie zawiera pascalowych typów pliku i typów wskaź­
nikowych.

Niepascalowe typy danych: procesy (process), monitory (monitor),
klasy (class) i inne dodatkowe typy są zdefiniowane w dalszej części
rozdziału - punkty 3.5-3.7.

Deklaracja typów (typę), stałych (const) oraz zmiennych (var) w od­
niesieniu do omówionych typów pascalowych jest taka sama, jak w Pascalu.

3.4. Instrukcje

Zbiór instrukcji zawiera następujące instrukcje, znane z języka Pas­
cal :

- przypisanie (podstawienie),
- pusta,
- złożona (begin J-j jJ^:.. • ; Jn end) ;
- warunkowa (if);
- wyboru (case);
- iteracji (for, while oraz repeat),
- wiążąca (with)•

Dodatkowo wprowadzono instrukcję nieskończonej iteracji
cycle J end

równoważnej pascalowej konstrukcji
whilę true do J.

42

Oddzielnego omówienia wymaga instrukcja procedury. Pojęcie procedu­
ry jest używane w szerszym kontekście niż w Pascalu. Ogólnie procedury
występują w dwóch kontekstach: jako jednostki etrukturalizacji wewnętrz­
nej programów (tak jak w Pascalu) oraz jako atrybuty komponent (tzn.
procesów, monitorów i klas) programu równoległego. W tym pierwszym sen­
sie procedury dzieli się na:

- procedury właściwe (procedurę)„
- funkcje (functionj~,
- programy sekwencyjne (program).

Wprowadzenie programów sekwencyjnych jako pewnego rodzaju procedury ma
głębsze uzasadnienie. Jednym z głównych zastosowań Concurrent Pascala
jest programowanie systemów operacyjnych. Działanie systemu operacyjne­
go polega m.in. na zarządzaniu sekwencyjnymi programami użytkowników.
Dlatego potrzeba takich mechanizmów, które pozwalałyby na pobieranie
tych programów z pamięci pomocniczej do pamięci operacyjnej (i odwrot­
nie) i ich wykonywanie. Z tymi zadaniami wiąże się koncepcja programu
sekwencyjnego, jako szczególnego rodzaju procedury, wywołanie takich
procedur odpowiada rozpoczęciu obliczeń takiego programu pod nadzorem
komponentu (tu może to byó tylko proces), który go wywołał.

Podział procedur w drugim sensie, jako atrybuty komponentów progra­
mu, wydziela następujące rodzaje procedur:

- procedury wejściowe procesów,
- procedury wyjściowe monitorów,
- procedury wejściowe klas,
- instrukcje inicjalizacji procesów, monitorów i klas.

Sens i sposób użycia tej grupy procedur opisano w punktach 3.5-3.7.
Komunikacja pomiędzy procedurami a wywołującymi je komponentami od­

bywa. się:
- w przypadku procedur wejściowych oraz inicjalizacji wyłącznie po­

przez parametry,
- w przypadkach pozostałych dodatkowo jeszcze za pomocą zmiennych

nielokalnych w treści procedury.
Komunikacja poprzez parametry odbywa się poprzez zmienne (odpowied­

ni parametr w definicji procedury jest poprzedzony słowem var) lub
przez wartość - tak jak w Pascalu. Specyficzną cechą tej komunikacji
jest możliwość wykorzystania tzw. typu uniwersalnego (univ). Jego wpro­
wadzenie wiąże się z tą samą potrzebą, dla której wprowadzono programy
sekwencyjne jako szczególny rodzaj procedury. Wywołanie procedury P(x),
której nagłówek został zadeklarowany w postaci:

P(v: unjy T)
lub

P(var v : univ T)

43

pociąga za sobą następujący skutek. Jeżeli parametr aktualny x jest war­
tością lub zmienną typu Tl, to uważa się, że typy T oraz T1 są zgodne
(i wywołanie jest prawidłowe), jeżeli kody obu typów są reprezentowane
przez tę samą liczbę komórek pamięci. Typ T może być dowolnym typem
passywnym (nie może być procesem, monitorem lub klasą). Opisany mecha­
nizm stwarza np. możliwość przesyłania różnych obszarów pamięci pomoc­
niczej do pamięci operacyjnej i reprezentowania ich za pomocą jednego
typu: w szczególności różne programy sekwencyjne sprowadzone do pamięci
operacyjnej można zaprezentować za pomocą jednego typu.

W stosunku do Pascala wszystkie procedury obowiązuje ograniczenie:
procedury nie mogą wywoływać się rekursywnie oraz definicje procedur
nie mogą być w sobie zagnieżdżane. Ograniczenie to nie dotyczy progra­
mów sekwencyjnych (program) napisanych w Pascalu, a wykonywanych pod
nadzorem procesów napisanych w Concurrent Pascalu.

3.5. Procesy

Proces - oprócz monitora i klasy - etanowi jeden z obiektów systemo­
wych. Zasadniczo definicja typu procesowego (bardziej rozbudowaną defi­
nicję procesu zdefiniowano przy końcu bieżącego punktu) przypomina de­
finicję programu w Pascalu i ma postać

type cidentyfikator typu procesowego > =
process (<wykaz parametrów formalnych>);

Cblok>

Podobnie wygląda deklaracja zmiennych typu procesowego (zmiennych sys­
temowych):

varCidentyfikator zmiennej> :
Cidentyfikator typu procesowego^

Przez Cblok>rozumie się, dokładnie tak jak w Pascalu, strukturę posta­
ci:

Cdeklaracja obiektów lokalnych>;
Cinstrukcja złożona >

gdziecdeklaracja obiektów lokalnych>jest ciągiem:

Cdeklaracja stałych>j
Cdeklaracja typów>;
Cdeklaracja zmiennych>;
Cdeklaracja procedur i funkcji^

Proces jako typ systemowy definiuje abstrakcyjną strukturę danych
złożoną z:

44

- lokalnej (prywatnej) struktury danych, którą stanowią zadeklaro­
wane stałe typy, zmienne, funkcje i procedury? obiekty te nie są dostę­
pne dla komponentów (zmiennych systemowych) zdefiniowanych na zewnątrz
danego procesu;

- pewnego programu sekwencyjnego (<instrukcja złożona>) działające­
go na tej strukturze.

Ponadto przez<wykaz parametrów formalnych>definiuje on zasady
dostępu (zasady komunikacji) do pozostałych zmiennych systemowych
(bezpośrednio do pewnych monitorów lub klas, a pośrednio do innych pro­
cesów) .

Dostęp procesu do pewnych monitorów lub klas oznacza, że proces mo­
że wywoływać procedury wejściowe tych monitorów lub klas (p. 3.6 i 3.7).
Przykładowo, jeżeli

type P = process (m : M)
<blok>,

gdzie M jest pewnym typem monitorowym, to oznacza, że procesy typu P mo­
gą wewnątrz<bloku>wywoływać procedury wejściowe pewnego monitora typu
M.

Deklaracja procesu jako zmiennej (systemowej) stanowi tylko rezer­
wację obszaru pamięci wymaganego dla zapamiętania jego struktury danych
i ciągu jego instrukcji. Natomiast ostatecznym uformowaniem procesu -
ustaleniem konkretnych wartości dla jego parametrów formalnych i wystar­
towaniem obliczeń zajmuje się instrukcja inicjalizacji postaci:

init <identyfikator zmiennej procesowej>
(<wykaz parametrów aktualnych>).

Przykładowo, jeżeli mamy zmienną procesową p, krótko proces, zadeklaro­
waną przez

var p : P,

to instrukcja inicjalizacji

init p (a)

spowoduje wystartowanie obliczeń procesu p, podczas których proces p mo­
że odwoływać się do monitora a typu M.

Instrukcję inicjalizacji można porównać do wywołania procedury. Po­
dobieństwo to jest pełne w zakresie przekazywania informacji przez para­
metry. Parametry mogą być komunikowane:

- przez wartość w odniesieniu do parametrów typu passywnego,
- przez nazwę w odniesieniu do parametrów typu systemowego (tak jak

w ostatnim przykładzie).

45

Brak natomiast tego podobieństwa do wywołania procedury, w zakresie
przekazywania sterowania. Wywołanie procedury powoduje przekazanie jej
sterowania, a zakończenie obliczeń zwrot sterowania do miejsca, w któ­
rym nastąpiło jej wywołanie. lnicjalizacja procesu rozpoczyna oblicze­
nia, trwające niezależnie (równolegle) od tych obliczeń, w których na­
stąpiła lnicjalizacja procesu.

Gdy proces spełnia rolę nadzorującą w stosunku do pewnych programów
sekwencyjnych (program), może zawierać on procedury lub funkcje wejścio­
we, które mogą byó wywołane przez te programy. Składnia typu procesu
może więc mieó bardziej rozbudowaną postać:

type <identyfikator typu procesowego >=
process (<wykaz parametrów formalnych>);

<deklaracje obiektów lokalnych>;
<deklaracje procedur wejściowych>;
<instrukcja złożona>,

gdzie <deklaracja procedur wejściowych >jest taka, jak w wypadku proce­
dur wejściowych monitora (p. 3.6).

■ 3.6. Monitory

Monitor stanowi obiekt systemowy. Definicja typu monitorowego ma po­
stać:

type < identyfikator typu monitorowego> =
monitor (<wykaz parametrów formalnych>) ;

<deklaracje obiektów lokalnych>;
<deklaracja procedury wejściowej>;

<deklaracja procedury wejściowej>;
<instrukcja inicjalizująca>.

Znaczenie poszczególnych elementów podanej definicji jest następujące:
<deklaracja obiektów lokalnych>jest rozumiana tak, jak w poprzednim
p. 3.5; <deklaracja procedury wejściowej >ma postać:

procedurę entry < identyfikator >
(< wykaz parametrów formalnych>);

<blok>,

czyli od zwykłej procedury różni się syntaktycznie tylko dołączeniem
słowa entry po słowie procedura lub function.

Monitor, jako typ systemowy, definiuje abstrakcyjną strukturę da­
nych złożoną z:

46

- lokalnej struktury danych, które są bezpośrednio dostępne wyłącz­
nie procedurom wejściowym i instrukcji inicjalizującej monitora, a po­
średnio - dzięki dopuszczeniu wywoływania procedur wejściowych przez in­
ne komponenty programu - równolegle pracującym procesom}

- dowolnej liczby procedur wejściowych,, które wywołane tylko przez
inr.e komponenty działają na wspólnej, lokalnej strukturze danychj

- instrukcji inicjalizującej (instrukcja złożona) służącej do ustala­
nia początkowych wartości lokalnej struktury danych podczas inicjallza-
cji monitora.

Ponadto, poprzez<wykaz parametrów formalnych>, definiuje on zasady
dostępu do innych zmiennych systemowych, rozumiane tak samo, jak sfor­
mułowano to w punkcie 3.5.

Definicja zmiennej typu monitorowego ma postaó:

var <identyfikator zmiennej monitorowej>:
<identyfikator typu monitorowego>

i znaczenie podobne przy deklaracji procesu: jest rezerwacją odpowied­
niego obszaru pamięci.

Ostateczne uformowanie monitora polega na wykonaniu instrukcji ini-
cjalizacji:

init <identyfikator zmiennej monitorowej>
(<wykaz parametrów aktualnych>) ,

która powoduje zastąpienie parametrów formalnych przez aktualne (jak
dla procesu) oraz wykonanie złożonej instrukcji inicjalizującej (bez­
imienna procedura) ustalającej początkowe wartości lokalnej struktury
danych. Dopiero po wykonaniu inicjalizacji monitor staje się dostępny
innym komponentom.

Monitor jest komponentem biernym (usługowym, tzn. samodzielnie nie
inicjuje żadnych obliczeń, a jedynie wykonuje obsługę kierowanych do
niego żądań (wywołań procedur wejściowych). Wywoływania procedur wejś­
ciowych mają postać:

<identyfikator mcnitora>.<identyfikator procedury
wejściowej>(< wykaz parametrów aktualnych>)

Monitor stanowi mechanizm synchronizacji dostępu procesów (ogólnie
różnych komponentów programu) do wspólnych danych - struktury lokalnej
monitora. Swe funkcje synchronizujące monitor realizuje przez dwa me­
chanizmy (opisane wstępnie w p. 2.3.2).

Pierwszy - nazywany mechanizmem szeregowania krótkoterminowego -
jest wbudowany w definicję monitora. Rozstrzyga on o sposobie szeregowa­
nia napływających wywołań procedur wejściowych. Jeżeli monitor jest wol­
ny (nie wykonuje żadnej procedury wejściowej), to pierwsze zgłoszenie,

47

które napłynie do monitora zajmuje go na okres i-ealizacji wybranej pro­
cedury wejściowej. Jeżeli w czasie, gdy monitor jest wolny napłynie
kilka zgłoszeń, to tylko jedno z nich zoataje wybrane do realizacji, a
pozostałe oczekują na ponowne zwolnienie monitora. Zwolniony monitor
wybiera jedno (wybór niedeterministyczny) z oczekujących zgłoszeń i kie­
ruje je do wykonania. Zgłoszenia, które napływają do monitora w czasie
jego zajętości są włączane do zbioru zgłoszeń oczekujących na realiza­
cję. Ogólnie, mechanizm ten realizuje zasadę, że w określonym czasie
tylko jeden proces ma dostęp do danych chronionych przez monitor.

Drugi - nazywany mechanizmem szeregowania średnioterminowego - mo­
że byó programowany przez wykorzystanie zmiennych typu kolejkowego
(queue). Ogólny sens tego mechanizmu polega na tym, że procesy w trak­
cie wykonywania wywołanych przez nie procedur wejściowych monitora mo­
gą byó zawieszane (zawieszanie jest rejestrowane przez zapamiętanie na­
zwy takiego procesu w zmiennej kolejkowej). Zawieszenie może trwaó
przez pewien odcinek czasu aż do momentu, gdy inny proces, wywołując
monitor,dokona odwieszenia procesu. Sens zawieszenia się procesu polega
na tym, że dany proces nie może kontynuować obliczeń ponieważ nie jest
spełniony oczekiwany przez niego warunek, który może być spełniony tyl­
ko w wyniku działania innych procesów.■Interpretacja takich warunków
zależy oczywiście od konkretnego zastosowania.

Typ kolejkowy (queue) jest typem standardowym, a zmienne tego typu
mogą być deklarowane wyłącznie wewnątrz monitora. Na zmiennych kolejko­
wych dopuszcza się trzy operacje zdefiniowane przez procedury standar­
dowe: empty, delay, continue. Jeżeli x jest zmienną typu queue, to

- empty (x) jest funkcją boolowską, która przyjmuje wartość true,
gdy zmienna z jest pusta (nie przechowuje identyfikatora żadnego pro­
cesu) ;

- delay (x) jest procedurą, której wywołanie (w czasie wykonywania
pewnej procedury wejściowej monitora) powoduje: (a) wpisanie do x iden­
tyfikatora procesu mającego aktualnie dostęp do monitora, (b) zawiesze­
nie tego procesu, (c) zwolnienie monitora do obsługi dalszych zgłoszeń;

- continue (x) jest procedurą, której wykonanie powoduje, że (a)
proces, który miał aktualnie dostęp do monitora zwalnia monitor (zosta-
je w tym momencie zakończone wykonywanie wywołanej przez niego procedu­
ry wejściowej), (b) jeżeli kolejka x nie jest pusta, to proces pamię­
tany w x zostaje odwieszony i uzyskuje dostęp do monitora (zostaje
wznowiona od miejsca ostatniego zawieszenia tego procesu w procedurze
wejściowej); jeżeli kolejka x jest pusta, to monitor staje się wolny
dla innych zgłoszeń.

48

3.7, Klasy

Klasa - ostatni obiekt systemowy - syntaktycznie różni się bardzo
nieznacznie od monitora. Definicja typu klasowego przedstawia się nastę­
pująco:

type <identyfikator typu klasowego > =
class (<wykaz parametrów formalny ch>) ;

<deklaracja obiektów lokalnych>j
<deklaracja procedury wejściowej>;

<deklaracja procedury wejściowej>;
<instrukcja lnic jalizująca>,

a zatem różni się zastąpieniem słowa monitor słowem class. Jeszcze jed­
ną różnicą syntaktyczną jest możliwość deklaracji obiektów lokalnych,
tzw. zmiennych wejściowych. Są one deklarowane, po zwykłych zmiennych,
w postaci:

yar entry cidentyfikator zmiennej>:<typ>,

czyli od deklaracji zwykłych zmiennych różnią się dołączeniem słowa
entry.

Klasa, jako typ systemowy, definiuje abstrakcyjną strukturę danych
złożoną z:

- lokalnej struktury danych, które - podobnie jak w monitorze - są
bezpośrednio dostępne tylko swoim procedurom wejściowym i swej instruk­
cji inicjalizującej, a pośrednio przez możliwość wywoływania procedur
wejściowych na zewnątrz klasy;

- dowolnej liczby procedur wejściowych, które mogą być na zewnątrz
wywoływane tylko przez jeden komponent,

- instrukcji inicjalizującej (instrukcja złożona), służącej do usta­
lania początkowych wartości lokalnej struktury danych.

Ponadto przez< wykaz parametrów formalnych>definiuje się zasady do­
stępu do innych zmiennych systemowych, rozumiane to jest tak, jak dla
poprzednio omówionych komponentów.

Definicja zmiennej typu klasowego, jej inicjalizacja oraz postać
wywołań procedur wejściowych wyglądają dokładnie tak, jak w przypadku
monitora.

Zasadniczą różnicą dzielącą klasę od monitora jest to, że klasa nie
stanowi mechanizmu synchronizacji dostępu procesów do wspólnych danych.
Wynika to stąd, że klasa jest przeznaczona do ochrony danych dostępnych
tylko jednemu komponentowi (temu komponentowi, wewnątrz którego jest
zdefiniowana). Klasa stanowi tutaj uogólnienie zwykłej procedury.

49

Zmienne wejściowe (var entry), które można definiować wewnątrz kla­
sy, można wywoływać (podobnie jak procedury wejściowe) na zewnątrz kla­
sy, w postaci:

cidentyfikator klasy>’<identyfikator zmiennej wejściowej>

Wywołanie takie może wyłącznie służyć odczytaniu wartości tej zmiennej,
a nie może zmienić jej wartości. Pojęcie zmiennych wejściowych - cho­
ciaż może być zastąpione odpowiednią procedurą wejściową, która tylko
odczytuje wartość wskazanej zmiennej - wprowadzono ze względu na częs­
to spotykaną w zastosowaniach potrzebę odczytania zmiennych bez naru­
szania ich wartości.

3.8. Struktura programu

Program, z punktu widzenia syntaktyki, jest blokiem zakończonym
kropką (<blok>.). Blok ten będzie nazywany blokiem początkowym i należy
traktować go jako wyróżniony, bezimienny proces, wewnątrz którego są
zdefiniowane podstawowe komponenty programu i jest dokonana ich inicja-
lizacja. Wykonanie tego bloku nie wymaga inicjalizacji. Podstawowymi
komponentami, które muszą być zdefiniowane w bloku początkowym są wszys­
tkie procesy i wszystkie monitory programu.

Oznacza to, że wewnątrz zmiennych procesowych i monitorowych nie
mogą być zdefiniowane inne zmienne procesowe lub monitorowe. Zmienne
klasowe mogą natomiast być definiowane wewnątrz każdego komponentu} w
szczególności oznacza to, że mogą one być zagnieżdżane.

Blok początkowy programu definiuje więc zbiór podstawowych kompo­
nentów, a ponadto definiuje pewne ich uporządkowanie hierarchiczne.
Uporządkowanie odnosi się do zasad dostępu (zasad komunikacji) kompo­
nentów. Źródłem wszelkiej aktywności są równolegle pracujące procesy
stanowiące umownie najniższy poziom hierarchii. Ogólnie uporządkowanie
to można przedstawić w postaci skierowanego grafu bez pętli (ścieżek
zamkniętych'): wierzchołki wejściowe tego grafu (te, do których nie pro­
wadzą inne łuki) to procesy, a pozostałe wierzchołki to - w uproszcze­
niu - monitory; łuki wychodzące z danego komponentu wskazują inne kom­
ponenty, do których dany komponent ma dostęp.

Bardziej szczegółowo strukturę programu wyjaśniają podane niżej
reguły. Używa się w nich pojęcia atrybutów komponentu programu. Przez
atrybuty składowej rozumie się jej parametry oraz zdefiniowane w jej
wnętrzu stałe, typy, zmienne, procedury i funkcje.

1. Program zawierający procesy współbieżne ma najbardziej zewnętrz­
ny blok (blok początkowy) spełniający rolę bezimiennego procesu począt­
kowego i inicjalizującego pozostałe zadeklarowane w nim komponenty.

50

2. Komponent programu i jego parametry aktualne muszą być atrybuta­
mi innego komponentu.

3. Komponent może być inicjalizowany tylko jeden raz i musi to być
dokonane wewnątrz tego komponentu, w którym dany komponent jest zade­
klarowany.

4. Gdy komponent zakończy swe działanie, zadeklarowane w nim zmien­
ne nadal istnieją.

5. Wszystkie składowe dostępne danej składowej muszą być jej atry­
butami.

6. Dostęp do zmiennych lokalnych monitora lub klasy, po ich zaini­
cjalizowaniu, może odbywać się wyłącznie przez ich procedury wejściowe.
Procedury te są dostępne w komponencie, w którym są zadeklarowane.

7. Dostęp do zmiennych lokalnych procesu dla programów sekwencyj­
nych, wykonywanych pod ich nadzorem, może odbywać się wyłącznie za po­
średnictwem procedur wejściowych monitora.

8. Procedury (zwykłe) mają dostęp do własnych atrybutów oraz do
atrybutów składowej, wewnątrz której są definiowane.

9. Komponenty mogą używać stałych i typów zdefiniowanych na ze­
wnątrz, w innych komponentach, w których są zanurzone.

3.9. Wybrane własności implementacji języka
na minikomputerach PDP11

Concurrent Pascal - jak wspomniano - nie dopuszcza rekursji proce­
dur, natomiast rekursja jest dopuszczalna w programach sekwencyjnych
napisanych w Pascalu, a wykonywanych pod kontrolą procesów współbież­
nych. Znajduje to odbicie w deklaracji procesów, w której można wskazać
dodatkowy obszar pamięci wymagany do wykonania programów sekwencyjnych.
Pisząc nagłówek

process (<wykaz parametrów>) +<liczba całkowita>;

definiujemy proces, z którym będzie związany obszar pamięci, o pojemno­
ści <liczba całkowita >bajtów, przeznaczony na pamiętanie dwóch stosów:
jeden (heap) dla zmiennych dynamicznych generowanych procedurą new, dru­
gi (stack) dla zmiennych tymczasowych wywoływanych procedur.

W dalszej części przedstawiono procedury standardowe i bardziej
szczegółowo omówiono komunikację z urządzeniami zewnętrznymi.

Funkcja standardowa

attribute (x)

definiuje wartość atrybutu x wołającego procesu. Atrybut x może
przyjmować wartości typu

type attrindex = (caller, heaptop, progline,
progresult, runtime).

attribute (caller) daje w wyniku liczbę całkowitą identyfikującą wo­
łający proces, Procesem są nadawane liczby 0,1,2,... odpowiadające ko­
lejności ich inicjalizacji.

attribute (heaptop) daje liczbę całkowitą określającą adres szczytu
stosu służącego do przechowywania zmiennych dynamicznych.

attribute (progline) wywołana po zakończeniu programu sekwencyjnego
podaje numer linii tekstu kodu, na której zatrzymał się program.

attribute (result), wywołana w tej sytuacji jak wyżej, daje w wyni­
ku wartość typu

type resulttype = (terminated, overflow, pointererror,
rangeerror, varianterror, heaplimit, stacklimit).

Pierwszy z tych elementów tego typu oznacza poprawne zakończenie progra­
mu, a pozostałe - zakończenie błędne, z podaniem przyczyny błędów.

attribute (runtime) określa czas w sekundach, który został przezna­
czony przez procesor na wykonanie danego procesu od momentu jego inicja­
lizacji.

Procedura wait opóźnia wołający proces do momentu wygenerowania ko­
lejnego jednosekundowego sygnału przez zegar systemu.

Funkcja realtime definiuje czas w sekundach, który upłynął od momen­
tu inicjalizacji systemu.

Procedura wejścia/wyjścia ma postać io(x,y,z),gdzie parametr z wska­
zuje urządzenia peryferyjne, y - rodzaj operacji wejścia/wyjścia, zaś
x - zmienną, która w tej operacji uczestniczy. Parametry x,y,z są wza­
jemnie od siebie uwarunkowane, zależnie od rodzaju urządzenia wejścia/
/wyjścia. Parametr z musi być typu

type żądanie = (typedevice, diskdevice, tapedevice,
printdevice, carddevice),

a parametr y - typu

type io param =
record

operation : iooperation;
status : ioresult;
arg : ioarg

end,
gdzie

type iooperation = (input,output, move, control);
type ioresult « (complete, intervention, transmission,

failure, endfile, endmedium, startmedium).

52

Znaczenie elementów ostatniego typu jest następującej
complete - poprawne zakończenie operacji?
intervention - błędne zakończenie operacji? błąd może być usunięty

przez obsługę operatorską (np, brak papieru w drukarce);
transmission - błąd transferu informacji (np. błąd parzystości),

operacja może być powtórzona;
failure - trwała awaria urządzenia peryferyjnego;
endfile - osiągnięto znacznik końca pliku (na taśmie lub na dysku);
endmedium - osiągnięto znacznik końca taśmy magnetycznej;
Btartmedium - osiągnięto znacznik początku taśmy magnetycznej.
Wywołanie procedury io w procesie powoduje zawieszenie wykonania

procesu aż do momentu zakończenia pozytywnego lub negatywnego wskazanej
operacji. Szczegóły wykonania tej procedury dla poszczególnych urządzeń
peryferyjnych - wartości i znaczenie parametrów procedury - przedstawia­
ją się następująco.

Terminal (typ e devi c e)

x jest typu znakowego (char),
input wprowadza pojedynczy znak do pamięci, podstawia pod x, a jego

echo wyświetla na ekranie terminala (znak BELL nie może być wprowa­
dzony) ,

output wyprowadza pojedynczy znak (zawartość x) na ekran terminala,
control opóźnia proces wywołujący procedurę io aż do momentu naciśnię­

cia klawisza BELL przez operatora.
status może przyjąć tylko wartość complete.
arg nie jest wykorzystywany.

Pysk (diskdevice)

x jest typu stronicowego
type blacktype = univ array (.1..512.) of char

arg jest nazywany indeksem strony i przyjmuje wartości 0..4799.
input (output) wprowadza (wyprowadza) stronę o podanym indeksie do (z)

pamięci operacyjnej z (do) pamięci dyskowej.
control rozpoczyna wykonanie programu zapamiętanego na dysku z począt-

\kiem na stronie wskazanej przez indeks.
status przyjmuje wartości complete, intervention, transmission, failure.

Taśma magnetyczna (tapedevice)

x jest typu stronicowego jak wyżej.
input (output) wprowadza (wyprowadza) kolejną stronę (na kolejną stronę)

z (do) pamięci taśmowej (pamięci operacyjnej) do (z) operacyjnej
(taśmowej)•

53

move przesuwa taśmę w sposób uzależniony od wartości arg następująco:
writeeof - wprowadza na taśmę znacznik końca pliku
rewind - przewija taśmę do początku,
upspace - przesuwa taśmę do przodu o jedną stronę,
backspace - przesuwa taśmę do tyłu o jedną stronę,
status - przyjmuje wszystkie wartości typu ioresult.

Drukarka (printdevice)

x jest typu liniowego
type linetype = array (.1..132.) of char

cutput wyprowadza linię (132 lub mniej znaków zakończonych znakami po­
wrotu karetki, zmiany wiersza lub zmiany strony) na drukarkę,

status przyjmuje wartości complete lub intervention.

Czytnik kart (carddevice)
x jest typu kartowego

type card = array (.1..80.) of char
output wyprowadza zawartość jednej karty 80 kolumnowej do pamięci,
status przyjmuje wartość complete interyention, transmission, failure.

3.10. Program przykładowy

Rozpatrzmy proste zadanie kopiowania zawartości kart na drukarkę
wierszową połączone z odpowiednią redakcją (formatowaniem) wydruku.

Najprostsze rozwiązanie zadania, jakie się nasuwa, może być progra­
mem sekwencyjnym działającym według schematu:

cycle wprowadź kartę;
wyprowadź linię

end

Ma ono tę niedogodność, że proces kopiowania jest bardzo wolny ze wzglę­
du na naprzemienną pracę obu urządzeń peryferyjnych. Efektywniej wyko­
rzystujące pracę urządzeń jest takie rozwiązanie, w którym oddzielne,
równolegle pracujące procesy obsługują niezależnie oba urządzenia. Dla­
tego sensowne jest przyjęcie następującej struktury programu (rys. 3.1).

Rys. 3.1. Wstępna struktura programu

54

Proces P1 obsługuje czytnik kart, a zawartość przeczytanej karty
przekazuje do monitora buforującego Proces Pg pobiera dane od moni­
tora M-j, odpowiednio je redaguje i przekazuje do monitora buforującego
Mg. Proces Pj dane przygotowane w monitorze Mg wyprowadza na drukarkę
wierszową.

Dalsza strukturalizacja programu będzie wynikać z przyjętych zasad
redagowania tekstu. Przyjmijmy, że ciąg kart 80-kolumnowych na wejściu
składa się z plików poprzedzielanych kartą sterującą, której zawartoś­
cią jest znak # , po którym następują same spacje. Tekst wyprowadzany
na drukarkę jest dzielony na strony zawierające 60 wierszy 132 znako­
wych. Wymaga się, aby:

- zawartość pojedynczej karty (innej od karty sterującej) była dru­
kowana w jednym wierszu z 24 znakami odstępu z lewej strony jako margi­
nesem,

- na jednej stronie wydruku nie mogą znajdować się wiersze należące
do różnych plików; pliki powinny być przedzielone stroną pustą.

Wynika stąd propozycja strukturalizacji programu przez wprowadzenie
klas wykonujących etapowo pewne funkcje redakcyjne (rys. 3.2).

Rys. 3.2. Pełna struktura programu

Zadaniem klasy C1 jest redakcja pliku wyjściowego, w szczególności
dołączenie pustych stron przedzielających pliki. Klasa C2 redaguje stro­
ny, uzupełniając w szczególności niepełne strony pustymi liniami. Klasa
Cj redaguje poszczególne wiersze, tworząc lewy i prawy margines dla wy­
druku.

Przy tak przyjętej strukturze programu można zdefiniować poszczegól­
ne jego komponenty. Najpierw zdefiniujemy występujące tu typy systemowe,
a po tym przedstawimy cały program.

55

Procesy
Proces P^ - jako typ - jest zdefiniowany następująco

type proces czytania =
process (bufor monitor buforujący);
var param: ioparam;

tekst, błąd : linia;
nrznaku: integer;

begin
for nrznaku := 1 to 80 do

błąd (.nrznaku.) := 1 ;
param, operation := input;

with param do
cycle

repeat io (tekst, param, carddevice)
until status < >intervention;
if status < > complete then

test := błąd
bufor, przyjmij (tekst)

end
end:
----- \

Występujący tu typ ioparam jest .rozumiany tak, jak w p. 3.9, natomiast
linia to typ zdefiniowany przez:

type linia = array (.1..132.) of char

Proces ma jeden parametr formalny bufor. Zgodnie z zasadami podanymi w.
p. 3.8 oznacza to, że będzie on miał dostęp do pewnego komponentu (moni­
tora) typu "monitor buforujący". Dostęp ten jest faktycznie wykorzysta­
ny w treści procesu, gdzie występuje instrukcja

bufor.przyjmij (tekst)

stanowiąca wywołanie procedury wejściowej monitora.
Proces P^ - jako typ - jest "antysymetryczny" w stosunku do P1 i

przedstawia się następująco:

type proces pisania =
process (bufor: monitor buforujący),
var param: ioparam

tekst: linia;
begin

param.operation:=output ;
cycle

bufor.oddaj(tekst) ;
repeat(tekst,param,prlntdevice)

56

until param.status=complete;
end

end

Proces J?2 - jako typ - ma postać:

type proces kopiowania =
process (buforwe,buforwy:monitor-buforujący);
yar kons,ument:redakcja pliku; "klasa" tekst:linia;
begin

init konsument (buforwy);
cycle

buforwe. oddaj(tekst)
konsument.pisz(tekst)

end
end

Proces ma dwa parametry formalne buforwe, buforwy, z których pierwszy
jest jawnie użyty w tekście procesu, natomiast drugi - użyty jako para­
metr konsumenta (klasy zdefiniowanej dalej) - służy do przekazania praw
dostępu nowo kreowanemu komponentowi.

Monitory
Oba monitory , M2 programu są wspólnego typu

type monitor-buforujący =-.
monitor

var zawartość: linia;
pełny: boolean;
odbiorca, nadawca : ąueue;

procedura entry oddaj (var tekst: linia);
begin

if not pełny then delay (odbiorca);
tekst := zawartość;
pełny := false;
continue (nadawca); /

end:
procedurę entry przyjmij (tekst: linia);
begin

if pełny then delay (nadawca);,
zawartość := tekst;
pełny := true;
continue (odbiorca);

end:
"instrukcja inicjalizująca":
begin

57

pełny : = false
end;

Monitory przechowują tylko jedną porcję danych (linię); procedury wejś­
ciowe służą do wpisu (przyjmij) i odczytu (oddaj) kolejnych linii po­
między parą komunikujących się procesów.

Klasy
Jak już wspomniano, definiuje się trzy klasy. Są one wzajemnie w

sobie zagnieżdżane \

type redaktor_pliku =
class (bufor: monitor—buforujący);
yar konsument: redaktor—strony; "klasa"

koniecpliku: boolean;
function dalej (tekst: linia): boolean;
var nrznaku: integer;
begin

if tekst (.1.)< >'#' then dalej := true
else begin

nrznaku : = 80;
while tekst (.nrznaku.) = „ do

nrznaku := nrznaku-1;
dalej:=(nrznaku< >1)

end
end;

procedurę entry pisz (tekst: linia);
begin

if koniecpliku then
begin

konsument.przeskocz;
koniecpliku := false

end;
if dalej (tekst) then konsument.pisz(tekst)
else begin

konsument.przeskocz;
koniecpliku:=true

end
end:
"instrukcja inicjalizująca"
begin init konsument(bufor);

koniecpliku := true
end

58

Zmienna konsument jest egzemplarzem typu redaktor strony:

typo redaktor-strony =
class (bufor: monitor_buforający)$ o
yar konsument: redaktor„wiersza; "klasa"

nrlinii: integer;
procedurę nowa_strona;
var tekst: linia;
begin ,

tekst(.1.):= ff; "znak zmiany strony"
konsument.pisz(tekst);
tekst(.1.):=nl; "znak zmiany wiersza"
nrlinii : = 1

end;
procedurę entry przeskocz;
begin nowastrona end;
procedurę entry pisz (tekst: linia);
begin

•konsument.pisz(tekst);
if nrlinii = 60 then nowastrona
else nrlinii : = nrlinii+1

end;
"instrukcja inicjalizująca"
begin init konsument (bufor)

nowa_strona
end;

Wewnątrz zdefiniowanej klasy pozoetaje jeszcze nieokreślona, ostat
nia już, klasa redaktor linii;

type redaktor_linii =
class (bufor: monitor_buforujący),
var obraz:linia;

nrznaku: integer;
procedurę entry pisz (tekst:linia);
begin

for nr znaku : = 27 to 106 do
obraz(.nrznaku.):=tekst(.nrznaku~26.)

bufor.przyjmij(obraz)
end
"instrukcja inicjalizująca"
iegin

for nrznaku:=1 to 26 do

59

obraz(.nrznaku.):=
obraz(.107.) : = nl "znak nowej linii”

end?

Program
Po opisie typów wszystkich komponentów można napisać pełny tekst pro­

gramuj wykropkowano w nim te fragmenty, które zostały uprzednio zdefi­
niowane.

"xxxxx Kompletny program xxxxx"
type iodevice = (typedevice, diskdevice,

tapedevice, printdevice, carddevlce) $
type iooperation = (input, output, move ,

control);
type ioresult = (complete, intervention, transmission,

failure, endfile, endmedium, startmedium);
type ioparam = record

operation : iooperation;
status : ioresult;
arg : integer

end:
type linia = array (.1.132.) of char;
const nl = '(:10:) ff = '(: 12 :)
"nl - nowa linia, ff - nowa strona"
type monitor—buforujący =

monitor end;
type redaktor linii =

class (bufor: monitor_buforujący);

end;
type redaktor—strony =

class (bufor: monitor_buforujący);

end;
type redaktor_pliku =

class (bufor: monitor-buforujący);

end;
type process_czytania =

procees (bufor: monitor_buforujący);

end;
type process_kopiowania =

60

process (buforwe, buforwy: monitor„buforujacy);
o O o ® 9

ęałs

type proces_pisania =
proceas (bufor: monitor_buforujący) ;

end;
var buforwe, buforwy: wspólny_bufor;

czytnik: proces„czytania;
kopista: proces_kopiowania;
pisak: proces_pisania;

"treść bloku początkowego programu" .
begin

init buforwe, buforwy,
czytnik (buforwe),
kopista (buforwe, buforwy),
pisak (buforwy)

end.

Treścią bloku początkowego programu jest inicjalizacja monitorów i
procesów programu. Instrukcja- init obejmuje wszystkie występujące po
niej nazwy komponentów^ inicjalizacja odbywa się w kolejności występo­
wania nazw. Należy zwrócić uwagę, że inicjalizacja odbywa się w takiej
kolejności, iż w momencie inicjalizacji danego komponentu zainicjalizo­
wane są już komponenty będące jego parametrami aktualnymi.

3.11. Uwagi końcowe

■Język Concurrent Pascal definiuje program jako hierarchicznie upo­
rządkowaną strukturę swych komponentów. Struktura ta jest statyczna,
dzięki czemu już na etapie kompilacji można wykryć wszelkie niezgodnoś­
ci z przyjętymi prawami dostępu. Przy zachowaniu praw dostępu i hierar­
chicznej strukturze unika się możliwości powstania trwałych blokad pod­
czas realizacji programu. Cechy te są jednocześnie przyczyną pewnych
kłopotów.

Pierwszy z nich może objawiać się w małej efektywności współpracy
procesów. Chodzi tu o sytuację, gdy dwa procesy komunikują się poprzez
strukturę wzajemnie się wywołujących monitorów; wtedy wywołanie jednego
monitora może blokować dostęp do innych monitorów. Istnieje wiele pro­
pozycji poprawienia tej sytuacji, np. [38] .

Drugi kłopot to niemożność dynamicznej generacji komponentów, co
jest utrudnieniem w wielu zastosowaniach. Stąd propozycja pewnych roz­
szerzeń języka, np. język Pascal - Plus [64].

61

Przyjęte prawa dostępu wprowadzają pewne utrudnienia w analizie
własności programów; pewnym rozwiązaniem tych trudności jest koncepcja
warstwy, jako dodatkowej konstrukcji językowej [62] .

Niektórzy autorzy wyrażają pogląd o braku praktycznej potrzeby two­
rzenia wielu egzemplarzy typów systemowych [15] itd«

Przytoczone uwagi wskazują na duże zainteresowanie językiem i różne
próby jego zastosowań. Na szczególne podkreślenie zasługuje napisanie
i uruchomienie kilku systemów operacyjnych [10] , Niezależnie od swych
słabości, Concurrent Pascal stanowi znaczący (w tej chwili już histo­
ryczny) krok w rozwoju programowania współbieżnego.

ĆWICZENIA

1. Zaprojektować w języku Concurrent Pascal szkielet małego systemu
operacyjnego przeznaczonego do wykonywania wsadu programów napisanych w
Pascalu. Założyć, że programy sekwencyjne w Pascalu mogą korzystać z
procedur standardowych (p. 3.9) wyłącznie za pośrednictwem projektowane­
go systemu operacyjnego.

2. Przykładowy program, przedstawiony w p. 3.10, rozszerzyć w taki
sposób', aby o wszelkich awariach czytnika kart lub drukarki wierszowej
informować operatora za pośrednictwem terminala.

3. Załóżmy, że procesor ma spełniać rolę węzła podsieci teletrans­
misyjnej. Oznacza tb, że do procesora jest podłączona pewna liczba li-
nii wejściowych i linii wyjściowych. Liniami napływają z ustaloną szyb­
kością ciągi znaków. Znaki te są buforowane pojedynczo w tzw. adapte­
rach liniowych. Pewne podciągi tych znaków, wyróżnione pewnym znakiem
początkowym i końcowym, tworzą pakiety. Pakiety są w pewien sposób prze­
twarzane, a następnie kierowane w linie wyjściowe. Zaproponuj instruk­
cję wejścia/wyjścia komunikacji z adapterem liniowym. Zakładając, że
znane są procedury przetwarzania pakietów w języku Concurrent Pascal,
zaprojektuj strukturę systemu operacyjnego węzła. Szczególną uwagę na­
leży zwrócić na konieczność utrzymania reżimów czasowych, aby nie wy­
stąpiło "gubienie" odbieranych lub wysyłanych znaków.

4. Załóżmy, że dysponujemy pamięcią dyskową składającą się z 24 cy­
lindrów na każdej z dwóch powierzchni po 12 stron (512 znaków). Obo­
wiązuje przy tym następujący algorytm zamiany argumentu (nr-strony) w
procedurze wejścia/wyjścia, na adres fizyczny:

powierzchnia : = nr_strony div 12 mod 2;
cylinder := nr_strony div 24;
sektor := nr_strony mod 12;

Zaprojektować w języku Concurrent Pascal system organizujący wirtualną
pamięć plików na dysku.

5. Napisać w języku Concurrent Pascal program symulujący działanie
czytelników i pisarzy (ów. 1, rozdz. 2).

6. Napisać w języku Concurrent Pascal program symulujący działanie
filozofów (ćw. 5, rozdz. 2).

62

7. Rozważmy zagadnienie przydziału m jednorodnych zasobów zwrot­
nych pomiędzy procesy współbieżne. Algorytm bankiera, który rozwiązuje
to zagadnienie w taki sposób, aby uniknąć zastojów, działa następująco.
Zakłada się, że dla każdego procesu jest znana maksymalna liczba jednos­
tek zasobów, którą można jednocześnie wykorzystać. Przydział procesowi
maksymalnej liczby zasobów powoduje, po upływie skończonego odcinka cza­
su, zwrot wszystkich zasobów. Przedział części maksymalnej liczby zaso­
bów danemu procesowi może nastąpić tylko wówczas, gdy pozostała pula
wolnych zasobów jest wystarczająca do zaspokojenia w pełni żądań przy­
najmniej jednego procesu. Napisać w języku Concurrent Pascal fragment
programu przydzielający procesom zasoby zgodnie z podanym wyżej algoryt­
mem. (Zwrócić uwagę na fakt, aby w chwili zwolnienia zasobów przez pe­
wien proces zostały odwieszone wszystkie oczekujące procesy, których żą­
dania mogą być zaspokojone.)

8. Pewien monitor w Concurrent Pascalu ma zawierać trzy procedury
wejściowe EP1.EP2, EP3. Treścią tych procedur jest wywołanie pewnych lokal­
nych procedur monitora - odpowiednio PI, P2, P3. Wywołanie i wykonanie
procedur może jednak nastąpić pod warunkiem, że są spełnione pewne wa­
runki logiczne zdefiniowane przez lokalne funkcje boolowskie - odpowied­
nio B1, B2, B3. Napisać szkielet takiego monitora, który zachowując opi­
sane zasady, umożliwia współpracę grupie n procesów wywołujących jego
procedury wejściowe. Szeregowanie zawieszonych procesów powinno odbywać
się wg zasady "proces najrzadziej przetwarzany w monitorze ma pierwszeń­
stwo".

4. JEŻYK PROGRAMOWANIA MODULA

4.1. Wprowadzenie

Język Modula (Modular Language), podobnie jak Concurrent Pascal, na­
leży do klasy języków bazujących na założeniu wspólnego środowiska dla
równolegle wykonywanych procesów. Język opracował N. Wirth z Uniwersyte­
tu Technicznego w Zurychu (ETH - Erdgendssische Technische Hochschule)
w latach 1974-76. Pierwszy kompilator tego języka (napisany niemal w ca­
łości w Pascalu i uruchomiony na ODO 6100) w eksperymentalnej wersji na
minikomputer PDP11/45 ukończono w 1976 r. [67, 68, 691. Jest on także
oparty na języku Pascal i - zdaniem autora - okazał się, w zestawieniu
z Pascalem, językiem znacznie prostszym w implementacji.

Zasadniczym przeznaczeniem języka Modula jest programowanie stero­
wania procesami technologicznymi. W zakresie sterowania takimi procesa­
mi stawiane są dwa wymagania: potrzeba mechanizmów obliczeń równoleg­
łych oraz mechanizmów zarządzania urządzeniami peryferyjnymi. Zasadni­
czą przeszkodą we wprowadzeniu takich mechanizmów, zwłaszcza w zakresie
zarządzania urządzeniami peryferyjnymi, jest duża zależność od cech ar­
chitektury, a nawet konfiguracji systemów komputerowych. Praktycznym
rozwiązaniem jest zaakceptowanie takiej sytuacji i wprowadzenie do języ­
ka konstrukcji, które przesłonią obiekty zależne maszynowo, tzn. ograni­
czą ich znaczenie lub obecność do specyficznego, zwykle małego fragmen­
tu programu (device module).

Podstawowymi konstrukcjami języka są: procesy (process), moduły (mo-
dule), moduły pośredniczące (interface module) oraz moduły peryferyjne
(deyice module). Po porównaniu tych konstrukcji z odpowiednimi konstruk­
cjami Concurrent Pascala można stwierdzić, że pojęcia procesów są po­
dobne, odpowiednikiem modułu jest klasa, odpowiednikiem modułu pośred­
niczącego zaś - monitor, natomiast moduł peryferyjny nie ma swego odpo­
wiednika. Istotną różnicą w stosunku do Concurrent Pascala jest to, że
Modula nie wprowadza pojęcia typów systemowych; w związku z tym moduły
są definiowane jako pojedyncze egzemplarze.

Ze względu na pewne podobieństwa do języka Concurrent Pascal przed­
stawiony dalej opis języka Modula jest bardzo zwarty; interpretację wie­
lu szczegółów można wywnioskować z przedstawionych przykładów.

64

4.2. Mechanizmy sekwencyjne

Elementami alfabetu języka są znaki należące do kodu ASCII, identy­
fikatory liczby, łańcuchy (ciągi znaków zamknięte pomiędzy dwoma apo­
strofami) oraz operatory i ograniczniki:

div until const
- iii mod while var

t or do *ZPe
/ i and 122E array
s • not when record

< > • if exit procedurę
< i begin process

< = • elseif and modula
< i—। else with interface

> 3 case yalue device
(* of xor use

: = *) repeat define

Symbole (* oraz x) są :nawiasami dla komentarzy.
Struktury danych w Moduli są podzbiorem struktur Pascala. Typami

prostymi Moduli są: typ całkowity (integer), logiczny (Boolean), znako­
wy (char), wyliczeniowy oraz bitowy (bits). Ten ostatni jest standardo­
wą tablicą boolowską

array 0: w of Boolean,

gdzie w stanowi parametr implementacyjny, dla PDP11 w = 15. (Uwaga:
nieco inna notacja granic indeksu tablicy.)

Na zmiennych bitowych można wykonywać operacje logiczne end, or,
xor, not. Wymienione operacje są wykonywane na wszystkich odpowiadają­
cych sobie elementach operandów. Typ bitowy zastępuje typ zbiorowy z
Pascala.

Typami złożonymi są tylko tablice (array) oraz rekordy (record) bez
wariantów. _

Deklaracje stałych, typów, zmiennych są również takie jak w Pascalu.
Instrukcje zawierają bogaty zestaw struktur sterowania, różniący

się nieco od struktur sterowania w Pascalu. Jedna z tych różnic dotyczy
syntaktyki: przyjęto bowiem zasadę, że każda instrukcja nie tylko zaczy­
na się, ale również kończy symbolem nawiasu - nawiasem kończącym jest
słowo end. Instrukcja alternatywy (if) może więc mieć postać:

if B then S
{ ’ then S’ }

[else S"] end.

65

gdzie B, B są wyrażeniami logicznymi, S, S , S" dowolnymi ciągami in­
strukcji. Stosowane tutaj i dalej oznaczenia pomocnicze { } oraz [j ma­
ją sens następujący:

[e) oznacza zbiór napisów złożony z napisu pustego oraz napisów E,
EE, EEE,...

[E] oznacza zbiór złożony z napisu pustego oraz napisu E.
Instrukcja wyboru (case), iteracyjna (repeat) oraz wiążące (with)

mają w Pascalu nawias kończący end i dlatego taką samą postać mają w
Moduli. Instrukcja iteracyjna (while) ma dodatkowy nawias kończący

while B do S end. •

Modula ma jeszcze jedną instrukcję iteracyjną (loop) w postaci:

loop S [when B [do Sexit
S" } end

Stąd ogólną postacią tej instrukcji jest:

S

loop S1 when B1 do XI exit
S2 when B2 do X2 exit

Sn when Sn do Xn exit

end

Wykonanie instrukcji pętli przebiega następująco: Najpierw wykonuje się
ciąg instrukcji S1, a następnie oblicza się warunek logiczny B1. Jeżeli
jest on prawdziwy, oblicza się ciąg instrukcji X1, po czym obliczenia
pętli kończą się; jeżeli jest on fałszywy, oblicza się ciąg S2 itd. Po
wykonaniu ciągu S wykonanie pętli powtarza się od ponownego wykonania
SI. Instrukcja pętli (loop) jest bardzo ogólna, jej przypadkami szcze­
gólnymi są poprzednio omówione instrukcje iteracyjna.

Konstrukcja procedury w Moduli jest w stosunku do procedur w Con­
current Pascalu, a nawet w Pascalu, bardziej rozbudowana. Deklaracja
procedury - podobnie jak w Pascalu - składa się z nagłówka z identyfi­
katorem i listy parametrów formalnych oraz z bloku, stanowiącego treść
procedury. Również, jak w Pascalu, wyróżnia się procedury właściwe oraz
funkcyjne, przy czym rozróżnienie pomiędzy nimi polega tylko na tym, że
nagłówek procedury funkcyjnej jest zakończony typem wyniku procedury.
Przykładowo deklaracja procedury funkcyjnej obliczającej największy
wspólny podzielnik ma postać:

procedurę nwp (x,y:integer):integer;
var a,b: integer; (s zakłada się x,y > 0 s)

begin a: =x; b: =y;

66

while a < > b do
if a<b ihen b:=b-a elgą asa-b
end

end
nwp:=a

end nwp

W treści procedury funkcyjnej musi wystąpić instrukcja podstawienia war­
tości pod nazwą tej procedury. Każda procedura musi kończyć się słowem
end., po którym jest powtórzony jej identyfikator.

Komunikacja procedury przez parametry odbywa się dwoma znanymi spo­
sobami: wołanie przez zmienną (parametry formalne specyfikowane przez
var) oraz przez wartość (parametry formalne niespecyfikowane lub specy­
fikowane przez consi).

W bloku stanowiącym treść procedury mogą być deklarowane obiekty
lokalne stałe, typy, zmienne, procedury i moduły (p. dalej). Procedury
mogą więc być zagnieżdżane, a także mogą wywoływać się rekursywnie.

Procedura ma dostęp do swych obiektów lokalnych oraz parametrów,
może także istnieć dostęp do obiektów nielokalnych (nie tylko do zmien­
nych, jak w Pascalu). Takie obiekty nielokalne muszą być także wyspecy­
fikowane w nagłówku procedury w postaci listy obiektów importowanych
(use list). Lista ta stanowi element mechanizmu definiowania układu od­
niesienia l62] omówionego dalej przy konstrukcji modułu.

Standardowe procedury składają się z procedur właściwych:

inc (x,n) równoważnej
dec (z,n) "
ine(x) "
dec(x)
halt "

x:=x+n
x:=x-n
x:=x+1
x:=x-1
zakończenie programu

i procedur funkcyjnych

off(b1,b2) równoważnej b1 end b2 =[], gdzie b1s b2 są typu
bitowego, [] ciąg bitów złożony z samych zer,

off(b) równoważnej b = []
among(i,b) " b[i]; b - wyrażenie bitowe
low(a) " dolnej wartości indeksu tablicy a
high(a) " górnej wartości indeksu tablicy a
adr(v) " adresowi zmiennej v
size(v) " rozmiarowi zmiennej v
integer(x) ” liczbie porządkowej x w zbiorze wartoś­

ci typu, do którego należy x.
char(x) " znakowi o liczbie porządkowej x.

67

Moduł jest najbardziej ogólną konstrukcją w Moduli stanowiącą uogól­
nienie pojęcia procedury i bloku. Moduł stanowi kolekcję stałych, typów,
zmiennych i procedur. Są one atrybutami modułu i rozpoczynają swe ist­
nienie w chwili wywołania procedury względem której moduł jest lokalny.
(Jak wspomniano przy opisie procedur, jej obiektami lokalnymi mogą byó
m. in. moduły.) Ponieważ cały program jest także modułem, atrybuty modu­
łu - programu rozpoczynają swe istnienie w chwili startu programu.

Istotną cechą modułu, stanowiącego "ogrodzenie" dookoła pewnej gru­
py obiektów, jest precyzyjne zdefiniowanie zasad dostępu do tych obiek­
tów oraz zasad dostępu wewnątrz modułu do obiektów nie będących jego
atrybutami - obiektów zdefiniowanych na zewnątrz modułów. W swoim na­
główku moduł ma dwie listy identyfikatorów. Pierwsza lista obiektów eks­
portowanych (specyfikowana słowem define) wymienia te wszystkie obiek­
ty modułu, które są dostępne na zewnątrz. Druga lista obiektów importo­
wanych (specyfikowana słowem use) wymienia te obiekty zadeklarowane na
zewnątrz modułu, które są dostępne w jego wnętrzu. W ten sposób wyraź­
nie oddziela się te obiekty, które abstrakcyjnie reprezentują działanie
modułu, od tych, które stanowią implementację takiego działania. Moduł
przesłania swe wnętrze, które jest nieistotne dla pozostałej części pro­
gramu lub to, które musi byó chronione przed niepożądanym dostępem. Mo­
duły mogą byó zagnieżdżane. Rozpatrzmy przykład

module M1;
define b,c;
use a;
deklaracja d

module M2;
define c,e;
use d; .
deklaracja c,e,f
c,d,e,f są dostępne w tym miejscu

end M2;
procedurę b;

deklaracja f
a,b,c,d,e,f są dostępne w tym miejscu

end b;
a,b,c,d,e są dostępne w tym miejscu

end M1

Obiekt a jest zdefiniowany na zewnątrz modułu M1, zaś b,c są obiekta­
mi zdefiniowanymi wewnątrz. Podobną rolę odgrywają d oraz c,e dla modu­
łu M2. Wewnątrz procedury b są dostępne jej atrybuty, tzn. obiekty b,f
oraz wszystkie atrybuty dostępne wewnątrz modułu M1, tzn. obiekty a,c,

68

d,e. Dostęp ten wynika z normalnych reguł dostępu, takich jakie obowią­
zują w Pascalu. Gdyby w procedurze występowała lista obiektów importo­
wanych (use) , wtedy - poza atrybutami lokalnymi. - byłyby dostępne w jej
wnętrzu tylko obiekty z tej listy.

Jeżeli obiektem eksportowanym jest typ, to na zewnątrz modułu znany
jest tylko identyfikator tego typu, nieznane natomiast pozostają jego
szczegóły strukturalne. A więc zmienne takiego typu mogą być modyfiko­
wane tylko przez procedury tego samego modułu. Jeżeli obiektem ekspor­
towanym jest zmienna, to jej wartość na zewnątrz modułu może być tylko
odczytywana.

4.3. Mechanizmy równoległe

Procesy (process), moduły pośredniczące (interface module) oraz me­
chanizmy synchronizacji są zasadniczymi konstrukcjami równoległymi w
języku Modula.

Procesy syntaktycznie podobne są do procedur, lecz ich wywołanie w
programie - inaczej niż w przypadkach procedur - rozpoczyna obliczenia
przebiegające równolegle z progi-amem, który zainicjował proces. W chwi­
li, gdy sterowanie osiąga koniec procesu, proces ten znika (podobnie
jak procedura). Deklaracja procesu ma postać:

process cidentyfikator>(< lista parametrów formalnych>);
<blok>

Proces może być deklarowany jako lokalny obiekt procedury, deklaracje
procesów nie mogą być zagnieżdżane. Komunikacja procesu z programem po­
przez parametry odbywa się tak samo, jak w przypadku procedury.

Proces jest kreowany przez instrukcję inicjalizacji, o takiej samej
postaci jak wywołanie procedury. Procesy mogą być kreowane tylko w pro­
gramie głównym, tzn. nie mogą być kreowane wewnątrz procesów ani we­
wnątrz procedur. Wielokrotne powtórzenie instrukcji inicjalizacji powo­
duje utworzenie wielu egzemplarzy tego samego procesu.

Procesy komunikują się ze sobą przez wspólne zmienne, co wymaga me­
chanizmu wyłącznego dostępu do sekcji krytycznej. Rolę tę spełnia spec­
jalny rodzaj modułu, zwany modułem pośredniczącym (interface module),
stanowiący odpowiednik monitora w Concurrent Pascalu.

Moduł pośredniczący udostępnia procesom dostęp do swych zmiennych
lokalnych jedynie za pośrednictwem swych procedur, które znajdują się
na liście obiektów eksportowanych. Podobnie jak monitory w Concurrent
Pascalu, moduły pośredniczące spełniają funkcje synchronizujące poprzez
dwa mechanizny: szeregowania krótkoterminowego i średnioterminowego.
Pierwszy z tych mechanizmów jest taki sam jak w Concurrent Pascalu,

69

drugi natomiast jest nieco inny i opiera się na tzw. sygnałach synchro­
nizujących (odpowiednikach zmiennych kolejkowych).

Sygnały są deklarowane wewnątrz modułu pośredniczącego jako zmienne
typu signal. Sygnały mogą być wysyłane przez procesy oraz procesy mogą
oczekiwać na odbiór sygnału. Na sygnałach można wykonywać następujące
operacje - procedury standardowe: wait, send, awaited.

Wywołanie procedury wait (s,r) opóźnia proces aż do momentu otrzyma­
nia sygnału s. Procesowi jest nadana ranga opóźnienia r - dodatnia
liczba-całkowita, wait(s) jest skrótem wait(s,1).

Wywołanie procedury send(s) przesyła sygnał s do tego procesu,
który oczekuje na s i ma najwyższą rangę opóźnienia. Jeżeli kilka pro­
cesów o tej samej randze oczekuje na s, to otrzymuje go ten proces,
który był najdłużej opóźniany. Jeżeli żaden proces nie oczekuje s, to
send(s) nie ma żadnego efektu.

Boolowska procedura funkcyjna awaited(s) przyjmuje wartość true wów­
czas, gdy co najmniej jeden proces oczekuje na s, w wypadku przeciwnym
przyjmuje wartość false.

Gdy proces wywoła procedurę wait wewnątrz modułu pośredniczącego
(dokładniej wewnątrz procedury eksportowej tego modułu), zostaje wów­
czas zawieszony, a moduł pośredniczący staje się wolny dla innych proce-
sów. Jeżeli proces wywoła procedurę send wewnątrz modułu pośredniczące­
go i jeżeli sygnał zostanie przesłany do procesu, który na niego oczeku­
je, to proces odbierający sygnał zostaje odwieszony i otrzymuje dostęp
do modułu, proces zaś nadający sygnał zostaje zawieszony do czasu zakoń­
czenia procedury modułu dla odwieszonego procesu. Procedury wait i send
stanowią analogony procedur delay i continue w Concurrent Pascalu.

Jeżeli zmienna sygnałowa jest eksportowana na zewnątrz modułu po­
średniczącego, to operacja send nie może być wykonywana poza tym modu­
łem.

Poniżej przedstawiono prosty przykład modułu pośredniczącego ze
zmienną sygnałową. Moduł symuluje prosty semafor binarny:

interface module rezerwacja zasobu;
define semafor, P,V, init.;
type semafor = record

zajęty: Boolean
zwolnij: signal
end;

procedurę P (var S : semafor);
begin if s. zajęty then wait (s.zwolnij) end;

s. wolny := true
end P;

70

procedurę V (yar s: semafor);
begin s. zajęty := false;

send (s.zwolnij)
end V;
procedurę init (yar s: semafor);
begin s. zajęty : = false;
end init;

end rezerwacja zasobu

4.4. Własności implementacji na minikomputerach PDP11

Charakterystyczną cechą implementacji języka na PDP11 jest sposób
organizacji komunikacji z urządzeniami zewnętrznymi. Wyróżnia się spec­
jalny rodzaj procesów - procesy sterowniki (driyer processes) - które
sterują pracą urządzeń zewnętrznych. W odróżnieniu od zwykłych procesów,
które nie mogą byó deklarowane wewnątrz modułów pośredniczących, proce­
sy sterowniki są deklarowane w specjalnym rodzaju modułów pośredniczą­
cych zwanych modułami sterownikami (driyer module). Właśnie ze względu
na swe wyróżnione miejsce deklaracji procesy sterowniki deklarowane są
tak jak zwykłe procesy (process). Wyłącznie procesy sterowniki mogą wy­
woływań procedurę wejścia/wyjścia - doio. Na okres wykonywania tej pro­
cedury proces traci wyłączny dostęp do zmiennych lokalnych modułu ste­
rownika (podobnie jak w wypadku wykonywania wait oraz send). Procedura
doio etanowi fragment procesu sterownika i zwykle jest poprzedzona in­
strukcją inicjalizującą urządzenia peryferyjne przez odpowiednie usta­
wienie zawartości rejestru sterującego urządzenie.

PDP11 ma system priorytetowy i zgodnie z nim przerwania od urządzeń
mogą być odpowiednio maskowane i buforowane. Nagłówek modułu sterownika
definiuje poziom priorytetowy urządzenia; może on wynosić 4,5 lub 6.
(PDP11 jest systemem jednoprocesorowym. Wieloprogramowość uzyskuje się
przez podział czasu procesora. Podział wykorzystuje system przerwań i
luki w czasie procesora powodowane autonomicznym wykonywaniem się ope­
racji wejścia/wyjścia.) Jeżeli proces sterownika wysyła sygnał do pro­
cesu o niższym priorytecie, to jest on kontynuowany nadal aż do napot­
kania procedury wait lub doio. Stanowi to odstępstwo od poprzednio omó­
wionej zasady wykonywania operacji na sygnałach. Normalne procesy mają
priorytet 0.

Wszystkie procesy sterowniki są związane z tzw. wektorem przerwań.
Wektor przerwań służy do zapamiętania stanu przerwanego i zawieszonego
procesu. Adres tego wektora dla danego procesu jest zapisany w kwadra­
towych nawiasach w nagłówku procesu.

71

Procesy sterowniki muszą spełniać następujące ograniczenia:
- nie mogą wysyłać sygnałów do innych procesów sterowników?
- nie mogą wywoływać nielokalnych procedur?
- mogą być aktywowane tylko w jednym egzemplarzu;
- w wywoływaniu procedury wait nie potrzeba definiować rangi opóź­

nienia.
Moduły sterowniki służą przedstawianiu w możliwie czytelnej formie

niezbędnych szczegółów architektury systemu PDP11. W szczególności mo­
duły te wprowadzają deklarację rzeczywistych rejestrów urządzeń. Są one
wyróżnione w ten sposób, że jest im przypisywany identyfikator jedno­
cześnie z ich adresem fizycznym pisanym obok identyfikatora w kwadrato­
wych nawiasach.

Przykładowo, podany niżej moduł sterownik definiuje dwie procedury
czytajznak, piszznak, które wprowadzają/wyprowadzają pojedynczy znak
z/na dalekopis.

device module dalekopis [4] ; (w 4 - poziom priorytetu s?)
define czytajznak, piszznak;
const n = 64; (w rozmiar bufora w)
var SKL C17756OB] :bits; (k rejestr statusu klawiatury, ,

17756OB adres ósemkowy tego rejestru st)
BKL [177562B]:bits; (« bufor klawiatury at)
SDRI [177564B1 sbits; (» status drukarki «)
BDR [177566B] : bits; (w bufor drukarki w)
do_1, do_2, z1 , z2; integer;
niepełny_1, niepełny_2, niepusty_1, niepusty—2:
:signal;
buf1, buf2: array 1sn of char;

procedurę czytajznak (var znak: char);
begin

if n1=0 then wait (niepustyl) end;
znak:=buf1[z1] ; z1:=(z1 mod n) +1;
dec(n1); send(niepełny 1)

end czytajznak;
procedurę piszznak (znak: char);
begin

if n2=n then wait (niepełny2) end;
buf2 [do2]:= znak;
do2:=(do2 mod n) + 1
inc(n2); send (niepusty2)

and piszznak;
process stęrowanieklawiatury[60B];

72

(a 60B ósemkowy adres wektora przerwania s)
begin

loop
if n1=n then wait (niepełny 1) end;
SK1L6] : = true; doio; SKL[6] :=false;
buf1 [doU :=BKL;
do1:=(do1 mod n)+1;
inc(n1)j send (niepustyl)

end;
end sterowanieklawiatury;
procesa sterowanie—drukiem [64B];
begin

loop
if n2=0 then wait(niepusty2) end;
BDR:=buf2 [z2]; z2:=(z2 mod n)+1;
SDR[6]:= true; SDR[6]:= false;
dec(n2); send(niepełny2)

end
end sterowaniedrukiem

begin
do1:=1; do2:=1; z1 = 1; z2:=1;
n1:=0; n2:
sterowanieklawiatury; (w kreowanie procesu »)
sterowaniedrukiem; (k kreowanie procesu w)

end dalekopis;

Kolejny moduł sterownik definiuje zmienną czas, której wartość
jest automatycznie zwiększana o 1, co każde 20 ms, przez zegar systemu.
Sygnał tiktak jest wysyłany co 20 ms, a procedura pauza(n) powoduje
opóźnienie wywołującego ją procesu o n s 20 ms.

device module czasrzeczywisty [6];
(» 6 - poziom priorytetu *)
define czas, tiktak, pauza;
var czas; integer;

tiktak: signal;
SZF [177546B] : bits;
(« status zegara fizycznego »)

procedura pauza (n:integer);
var opóźnienie: integer:
begin opóźnienie := n;

while opóźnienie > 0 do
wait (tiktak); dec (opóźnienie)

73

end
end pauza;

process zegar [100B] ;
begin SZF[6] := true

loop dolo; inc (czas)5
while a waited (tiktak) do

send (tiktak)
end

end
end zegar;

begin czas := 0; zegar
end czasrzeczywisty:

4.5. Program przykładowy

Rozpatrzmy sytuację podobną do tej, która stanowiła podstawę do two­
rzenia przykładowego programu w języku Concurrent Pascal (p. 3.10). Za­
gadnienie polega na sterowaniu strumieniem danych z czytnika kart na
drukarkę.

Rys. 4.1. Struktura wstępna programu

Nasuwającą się strukturę programu pokazano na rys. 4.1, gdzie MP1,
MP2 są modułami pośredniczącymi, P1, P3 - procesami sterownikami, P2 -
zwykłym procesem. Dalsze uszczegółowienia wynikają z następujących ogra­
niczeń dotyczących pracy urządzeń peryferyjnych.

1. Drukarka używa 7-bitowego kodu ASCII innego od kodu czytnika
kart; wynika stąd potrzeba konwersji kodu.

2. Czytnik jednorazowo czyta całą kartę.
3. Ze względu na dużą szybkość transmisji na drukarce sygnały syn­

chronizujące są przesyłane po bloku znaków (po całej linii), zamiast po
każdym pojedynczym znaku.

4. Status czytnika kart musi być badany przed i po każdej transmi­
sji. Jeżeli czytnik nie jest gotowy, ponowne badania jego stanu muszą

74

być periodycznie powtarzanej gdyż czytnik nie wysyła samodzielnie syg­
nałów o swej gotowości.

module strumieńdanych; (a program k)
const lf=12C; ff=14C; cr=15C;
(h lf,ff,cr odpowiadają znakom sterującym zmiany
linii, zmiany strony i powrotu karetki; 12C,14C,15C
są ósemkowymi liczbami porządkowymi tych znaków »)
yar crsignzsignal;
device module upływczasu [6] ;

define tiktakzsignal;
yar szf [177546BJ zbite;

(s status zegara fizycznego »)
process sterownikzegara [100B] ;
begin szf[6]:= true;

loop doio; send(tiktak) end
end sterownikzegara;

device module czytnikkart[6];
define czytaj;
use crsign;
const n=256; (» rozmiar bufora wejściowego h)
var dox,zx,lp,Iz z integer;

niepełny, niepusty: signal;
buf: array 1 :n of integer;

procedurę czytaj (var x : integer);
begin dec(Iz);

if lz<0 then wait (niepusty) end;
x:=buf zx ; zxz=(z x mod n)+1;
inc(lp); if Ip>= 0 then send (niepełny) end
end czytaj;

process sterownikczytnika[230B] ;
const m=81; (« rozmiar bloku w)
yar sck [1771 60B] zbits; (k status czytnika kart »)

bek [177164B1 :integer, (w bufor czytnika kart m)
procedurę wstaw.(x:integer);
begin buf dox :=x; zx:=(zx mod n)+1;

inc(Iz)
end wstaw;
begin

1oop dec(lp,m);
if lp< 0 then wait (niepełny) end;
while not off (sek,[8,9j) do wait(crsign) end;

75

(s procedura off testuje pozycje 8,9 rejestru
sck, jeżeli te obie pozycje nie są jedynkami, to
procedura przyjmuje wartość true a)
sck:= 0,6 ; (» start pracy czytnika s)
loop dolo;

when not off (sck,[14,15]) exit
wstaw (bek)

endj
wstaw (-1); sck[6]:= false;
(h znak końca linii «)
if lz>= 0 then send (niepusty) end

end
end sterownikczytnika;

device module drukarka [4] ;
define pisz, piszkonlinii, testkolejności;
use if;
const n = 512; (h rozmiar bufora wyjściowego h)

dc3=23C; dc4=24C;
(m znaki sterujące drukarki *)
opóźnienie = 250; (« 10 sec w)

var dox,zx,lp,lz,dal: integer;
niepełny, niepusty, dozór: signal;
buf: array 1 : n of char;
sdr[177514B] : bits; (» status drukarki j?)
bdr [177515B] : integer; (h bufor drukarki »)

procedurę pisz (znak:char);
begin dec(lp);

if ln<0 then wait (niepełny) end;
buf [dox] : = znak; dox := (dox mod n) + 1

end pisz;
procedurę piszkonlinii;
begin inc(lz); send(niepusty)
end piszkonlinii;
procedura testkolejności;
begin

if lz> = 0 then wait (dozór)
else dec (del);

if del = 0 then
bdr:=dc4; wait (dozór)

end
end ,

76

end testkolejności;
procesg sterownik drukarki [200B];
var znak:char;
begin bdr:=dc3;

loop dec(lz);
if 1z < 0 then

send (dozór); wait (niepusty)
bdr:=dc3; del:=opóźnienie

end;
repeat znak:=buf [zx],zx:=(zx mod n)+1;

inc(lz);bdr:=znak;
if not sdr [7] then

sdr KI: = true; doio; sdr[6]:=false
end

unt il znak:=if;
if lp>= 0 then send (niepełny) end

end
end sterownikdrukarki;
process strumień;
use czytaj, pisz, piszkonlinii;
const eoi=37B;

zły znak =
var x:integer; znak := char;

t :array 0:63 of char;
(a tablica translacji znaków a)
z:array 0:7 of integer;

procedurę zamień;
(a liczbę x na znak a)
var s,c : integer;
begin s:=x div 32; c:=x mod 32;

s :=z [s] ;
if s <0 then znak:=złyznak else

if x>+ 16 then c:=9 end;
znak:=t [16»x+c]

end
end zamień;
begin

z [0] :=0; z[1]:=3; z[2]:=2; z[3]: = 1;
z[4]:=1; z[5l:=-1; z[6l:=-1; z [7] : =-1 ;
tLO]; = "'; t[H:='l'; t(2] t[3]:='3';

t [601 :='('; t [61] t [62] : = t[631:=' '

77

loop czytaj (x);
if x = eci then

repeat czytaj(x) until x 0;
pisz (ff);

else while x = 0 do
zamień; pisz (znak); czytaj (z)

end;
pisz (If); piszkonlinii

end
end

end strumień;
process zegar;
use tiktak; crsign;
begin

loop wait (tiktak); send (crsign)
end

end zegar
process kontrolakolejności;
begin

loop testkolejności; wait (tiktak)
end

end kontrolakolejności;
begin

strumień, zegar, kontrolakolejności
end strumieńdanych.

4.6. Ocena języka

Język Modula był wykorzystany do tworzenia oprogramowania systemo­
wego [3, 36, 68] , stąd też wynikają oceny jakości języka. Pozytywne ce­
chy języka uwidaczniają się w trzech Zakresach.

Podstawowe mechanizmy strukturalizacji programów, tzn. procesy oraz
moduły okazały się łatwe i dogodne w użyciu. Doświadczenia praktyczne
wskazują na proste przejście od specyfikacji funkcji systemu do jego
struktury programowej oraz na możliwośó projektowania programu metodą
kolejnych uszczegółowień (metodą zstępującą [62]).

Bardzo atrakcyjna okazuje się koncepcja modułów sterowników urzą­
dzeń (device modula). Moduł ten, jako specjalny rodzaj modułu pośredni­
czącego, zapewnia całkowitą obsługę działającego urządzenia wejścia/wyj-
ścia oraz dostarcza dogodny interfejs programowy z pozostałą częścią
programu.

78

Ostatnią zaletą języka jest efektywność jego implementacji. Transla­
tor języka napisany w Pascalu ma jądro napisane w języku pewnej maszyny
wirtualnej o wielkości około 200 słów. Także czas pracy tego jądra przy
realizacji przekazywania informacji pomiędzy procesami jest krótki. 0
rozmiarze wymaganej pamięci i czasie pracy programu decydują zatem fun­
kcje, jakie ma on realizować.

Niezależnie od zalet, Modula ma także pewne słabości. Pierwsza wy­
nika stąd, że język jest przeznaczony do realizacji małych, statycznych
systemów, które całkowicie rezydują w pamięci operacyjnej. Ograniczenie
to uniemożliwia zaprogramowanie pełnej klasy aktualnie spotykanych sys­
temów operacyjnych.

Skojarzoną wadą jest brak pojęcia typu systemowego, co zmusza do
oddzielnych deklaracji nawet identycznych modułów sterowników urządzeń.

Wreszcie ostatnia wynika z trudności, jakie pojawiają się przy we­
ryfikacji programów w Moduli [31. Wydaje się, że Modula - podobnie jak
Concurrent Pascal - odegrał już swą rolę, stwarzając podwaliny pod dal­
szy przyspieszony rozwój języków programowania współbieżnego. Niezależ­
nie od tego, języki pozostaną w dalszym użyciu dla programowania pros­
tych, specjalizowanych systemów operacyjnych. Wydaje się to uzasadnione
popularnością minikomputerów PDP11, dla których zbudowano translatory
języków.

ĆWICZENIA

1. Dwa procesory są połączone poprzez adaptery liniowe dupleksową
linią komunikacyjną. Zaprojektować interfejs programowy pomiędzy pro­
gramem a adapterami liniowymi. Zaprojektować protokół wymiany informa­
cji pomiędzy dwoma procesorami (uwzględnić możliwość powstania przekła­
mań na linii komunikacyjnej). Zaprogramować w języku Modula procesy ko­
munikujące się przez linię komunikacyjną zgodnie z zaprojektowanymi za­
sadami współpracy z adapterami linii i protokołem wymiany informacji.

2. Problem telegramów (Henderson, Snowdon {50]). Zadaniem programu
jest przetwarzanie strumienia telegramów. Strumień ten stanowi ciąg li­
ter, cyfr i odstępów, generowany poprzez adapter liniowy i jest zamie­
niany na porcje o określonej z góry długości w pewnym obszarze buforo­
wym. Słowa w telegramie są oddzielane ciągami odstępów (spacji), a każ­
dy telegram kończy się ciągiem ZZZZ. Strumień telegramów koń­
czy telegram pusty. Każdy telegram musi być przetworzony w ^mo­
delu obliczania liczby słów podlegających taryfie oraz liczby słów,
których długość przekracza 12 x k znaków (k=1,2,...). Wynikiem działa­
nia programu ma być lista telegramów wraz z wymienionymi poprzednio^in­
formacjami służącymi do obliczenia opłaty za telegram. Zaprogramować
opisany problem w języku Modula, wykorzystać możliwe "równoległości"
problemu.

3. Na bazie przykładu systemu rezerwacji biletów (przykład P1 w
p.2.2) opracować pełną (użytkową) jego wersję, a następnie zaprogramo­
wać go w języku Modula.

79

4. Przykład opisany i zaprogramowany w p. 4.5 rozbudować w taki
sposób, aby operator za pośrednictwem terminala mógł sterować pracą
czytnika kart i drukarki (startowanie i zatrzymywanie tych urządzeń
oraz ustawianie tych urządzeń na pracę krokową, tzn. czytanie jednej
karty i wydruk pojedynczej linii).

5. Napisać w języku Modula program symulujący działanie czytelników
i pisarzy (ćw. 1, rozdz. 2).

6. Napisać w języku Modula program symulujący działanie filozofów
(ćw. 5, rozdz. 2).

7. Napisać w języku Modula program przydzielania jednorodnych za­
sobów procesom, zgodnie z algorytmem bankiera (ćw. 7, rozdz. 3).

8. Napisać w języku Modula szkielet modułu pośredniczącego organi­
zującego współpracę procesów wg zasad opisanych w zad. 8, rozdz. 3.

9. Przeanalizować możliwość wzajemnego zastępowania mechanizmów
szeregowania krótko- i średnioterminowego w językach Modula i Concurrent
Pascal.

5. PROCESY W ŚRODOWISKU ROZPROSZONYM

5.1. Wprowadzenie

Procesy w środowisku rozproszonym stanowią stosunkowo nowy kierunek
w programowaniu. Proponowane podejścia w ramach kierunku wyrastają m.in.
z prac Hoare a [35] , Brinch Hansena [12] , Kahna [41,42] , Liskov [48] ,
Hewitta [29,30]. Część spośród tych prac, zwłaszcza [35,12], stworzyły
podstawy do projektu języka Ada [40] (rozdział 6), który - można tego
oczekiwać - odegra w zakresie programowania współbieżnego rolę podobną
do Pascala w zakresie programowania sekwencyjnego.

Potrzeba rozwoju tego kierunku wynikła z dwóch zasadniczych przy­
czyn (rozdz. 1):

- rozwoju systemów wieloprocesorowych (skala mikro),
- rozwoju sieci komputerowych (skala makro).

Przyczyny te wskazują jednocześnie na wzrastające znaczenie komunikacji
pomiędzy procesami. Przyjmowane zasady komunikacji stanowią znaczący
wyróżnik propozycji różnych podejść. Zasady te można sklasyfikować,
przedstawiając możliwe sposoby zachowania się procesu-nadawcy i procesu
-odbiorcy. Dla wygody założymy, że procesy są połączone abstrakcyjnym
kanałem, po którym mogą sobie przesyłać wiadomości.

Proces-nadawca może komunikować się z procesem-partnerem, zgodnie z
następującymi, kolejno coraz bardziej złożonymi, wariantami:

N1 . Proces-nadawca kompletuje wiadomości, a następnie' bezwarunkowo
wysyła je w odpowiedni kanał, po czym kontynuuje swe obliczenia.

N2 . Proces-nadawca po skompletowaniu wiadomości oczekuje aż proces
-odbiorca będzie w stanie wiadomości przyjąć.

N3 . Proces-nadawca oczekuje na odbiór wiadomości przez proces-od-
biorcę, po czym oczekuje nadal, aż na podstawie przesłanej wiadomości
proces-odbiorca skompletuje i prześle w odpowiedzi wiadomość zwrotną.

Zachowanie się procesu-odbiorcy zasadniczo charakteryzuje sposób bu­
forowania napływających do niego wiadomości. Można tu wyróżnić:

B1. Brak bufora wiadomości; wiadomość może być odebrana tylko wów­
czas, gdy jest oczekiwana.

B2. Istnieje bufor, ograniczony lub nieograniczony, pozwalający na
przyjęcie w dowolnym momencie skończonej lub nieskończonej liczby wia­
domości.

81

Wspólnie proces-nadawcę i proces-odbiorcę charakteryzuje sposób
oczekiwania na zsynchronizowanie się partnera. Możliwe są tu dwie reak­
cje:

01. Nieograniczone oczekiwanie na partnera.
02. Oczekiwanie ograniczone z góry określonym odcinkiem czasu

(okres przeterminowania - time-out), po którym, w razie braku zsynchro­
nizowania, proces-nadawca przerywa oczekiwanie i powraca do kontynuacji
swych obliczeń.

Kwestią związaną z komunikacją procesów jest sposób identyfikacji
procesu-nadawcy przez proces-odbiorcę. Oczywiście proces-nadawca musi
znać miejsce, do którego wiadomość chce przesłać, czyli identyfikator
procesu-odbiorcy. Możliwe są tu sytuacje:

11. Proces-nadawca jest dla procesu-odbiorcy procesem bezimiennym:
proces-odbiorca na podstawie analizy wiadomości (analizy zapisanej w da­
nym języku programowania) nie potrafi określić źródła jej powstania.
(Pomija się tu możliwość takiej definicji wiadomości, w której procesy
będą zobowiązane podawać swe identyfikatory.)

12. Proces-odbiorca zawsze zna identyfikator procesu-nadawcy.
Pomijając wady i zalety różnych sposobów komunikacji, ze względu na

potrzeby konkretnych aplikacji i możliwość implementacji, scharakteryzu­
jemy sposoby komuhikacji w omawianych dalej podejściach. Zasady komuni­
kacji pomiędzy sekwencyjnymi procesami komunikującymi się Hoare 'a cha­
rakteryzuje następujący zestaw omawianych cech:

(N2,B1,01,12),

komunikację w procesach rozproszonych Erinch Hansena:

(N3,B2,01,11),

komunikację w sieci procesów Kahna:

(N1,B2,01,11),

komunikację pomiędzy zadaniami (procesami) w języku programowania Ada:

(N3,B1,01 lub 02,11).

5.2. Komunikujące się procesy sekwencyjne Hoare a

Pojęcie komunikujących się procesów sekwencyjnych oraz język progra­
mowania służący do ich opisu pochodzą od Hoare a [35]. Program składa
się z rodziny procesów sekwencyjnych, które mogą współpracować ze sobą
wyłącznie poprzez bezpośrednie przesyłanie wiadomości pomiędzy parami
procesów (brak wspólnie dostępnej pamięci). Przesyłanie wiadomości odby­
wa się przez wykonanie instrukcji wyjścia w procesie nadawczym oraz in­
strukcji wejścia w procesie odbiorczym.

82

Przedstawiony krótki opis tego podejścia prezentuje jedynie zasad­
nicze jego idee. Notacja jest inna od oryginalnej, bardziej zbliżona
do notacji pascalowskiej. Pojęcia typów zmiennych, deklaracji itd. nie
będą tu rozważane.

Strukturę programów wyznacza instrukcja równoległego wykonania, po­
staci :

parbegin < id^ : iSjkid^.. .| | <idn>:Sn p arend,

gdzie <id1>, <id2>, ..., <idn> są identyfikatorami procesów w równoleg­
łych, zaś S^, S2,..., Sn są ciągami instrukcji odpowiadającymi treści
poszczególnych procesów. Procesy mogą być rodziną parametryzowaną indek­
sem, co znajduje odbicie w postaci

parbegin < id>(i:1..n):: ciąg instrukcji
z parametrem i>

parend

Przykłady instrukcji równoległego wykonania

parbegin
zachód:: ROZKŁADANIE II
x:: KOMPRESJA ||
wschód:: SKłADANIE

parend

parbegin
pomieszczenie:: POKOJ II
widelec (i:0..4):: WIDELEC II
filozof (i:0..4):: FILOZOF

parend

Instrukcje równoległego wykonania mogą być zagnieżdżane. Przejście
do realizacji nowej instrukcji wykonania równoległego można uważaó za
kreację nowych procesów, a jej zakończenie - za unicestwienie tych pro­
cesów. W tym sensie program stanowi dynamiczną rodzinę tych procesów.

Napisy złożone dużymi literami stanowią pewne, dalej zdefiniowane
ciągi instrukcji.

Instrukcje wejścia i wyjścia są zdefiniowane przez napisy:

<identyfikator procesu > ? < zmienna >
<identyfikator procesu >:<wyrażenie >

Komunikacja, jaką wyznaczają te instrukcje, odbywa się zgodnie z nastę­
pującym schematem: Jeżeli w procesie PI jest wykonywana instrukcja wej­
ścia P2?v, to, aby została ona zrealizowana, w procesie P2 musi zostaó
•syFonana skojarzona instrukcja wyjścia Pile. Wykonanie pary instrukcji

83

wymaga więc synchronizacji czasowej ich realizacji. Gdy jedna z nich
zostanie rozpoczęta wcześniej niż druga, następuje ją opóźnianie aż do
momentu nastąpienia ich synchronizacji. Wynikiem wykonania pary tych
instrukcji jest podstawienie wartości wyrażenia e uformowanego w pro­
cesie P2 pod zmienną v zadeklarowaną w procesie PI.

Instrukcje służące do wyrażania treści procesów są interesujące
przede wszystkim z powodu znacznego stopnia niedeterminizmu, jaki do­
puszczają. Instrukcjami tymi są instrukcja alternatywy i iteracji, sta­
nowiące nieco rozbudowane wersje języka programowania Dijkstry. W wer­
sji oryginalnej mają one postać:

B2 — S20 ... □ Bn— Sn fi
doB,-S1 0 B2— S20 ...□ b‘;— Sn od

gdzie B1,B2,...Bn są wyrażeniami logicznymi, nazywane dozorami, S-|,S2,
..., Sn ciągami instrukcji. W wersji rozbudowanej zamiast dozoru B^ mo­
że wystąpić para B^;Cit gdzie jest instrukcją wejścia.

Sens instrukcji alternatywy jest następujący: Realizacja instrukcji
rozpoczyna się od obliczenia wartości warunków logicznych Blt...,B . Je­
żeli żaden z nich nie jest prawdziwy, następuje zerwanie (zatrzymanie)
obliczeń. Jeżeli pewne warunki są prawdziwe, to rozpoczyna się próba
realizacji tych instrukcji wejścia Cit dla których odpowiadające warun­
ki B^ są prawdziwe. Zrealizowana zostanie tylko jedna spośród tych in­
strukcji wejścia, ta, dla której nastąpi najwcześniejsza synchronizacja
ze skojarzoną instrukcją wyjścia. Jeżeli jest to instrukcja C^, to po
jej zakończeniu realizuje się ciąg S-, po czym kończy się realizacja ca­
łej instrukcji alternatywy.

Realizacja instrukcji iteracji przebiega podobnie: rozpoczyna się
więc od obliczeń wartości warunków logicznych. Gdy żaden z tych warun­
ków nie jest prawdziwy, następuje zakończenie instrukcji (a nie zerwa­
nie, jak przy poprzedniej instrukcji). Gdy pewne warunki są prawdziwe,
rozpoczyna się próba wykonania odpowiednich instrukcji wyjścia, a po
realizacji jednej z nich wybór odpowiedniego ciągu - tak jak w in­
strukcji alternatywy - po czym przedstawiony cykl obliczeń powtarza się,
powracając do ponownego obliczania nowych wartości warunków logicznych.

Gdy żadnej z instrukcji wyjścia nie można wykonać z tego powodu, że
odpowiednie procesy partnerskie zakończyły swe działanie, następuje
także zakończenie instrukcji. (Jest to tzw. reguła rozproszonego stopu.)
Jak okazuje się przy bliższych badaniach, ma ona uciążliwe konsekwencje
w dowodzeniu włashości programów i dlatego jest w różny sposób modyfiko-

3f'i wana .

Np. G.A. LEVIN, D. GRIES, A proof techniąue for communicating
seąuential processes, Acta Informatica, vol. 15, 231-302, 1981.

84

Przykłady podane niżej pokazują, zastosowanie omówionych instrukcji
do konstrukcji treści procesów wymienionych w poprzednich przykładach.
Pierwszy z nich reprezentuje program złożony z trzech procesów, których
zadaniem jest kopiowanie ciągu znaków odczytanych z czytnika kart na
drukarkę z zamianą dwóch kolejnych znaków ws na znak ♦ .

ROZKŁADANIE =
var karta: array (1..80) of char;

i: integer;
do czytnikkart? karta-—i: = 1;

do i^ 80—xl karta(i); i:=i+1 od;
Xl ri'

od;

KOMPRESJA =
var c : char;
do zachód?c ——

if c / wschódl c U
c = zachód? c;
if c / s —wschódl a \ wschód! cQ

C = 'a'-—wschódl
fi

fi
od;

SKŁADANIE =
var linia: array (1..125) of char;

i:integer; c:char;
i: = 1 ;
do x?clinia(i):=c;

if i < 124 — i:=i+1 0
i = 125—drukarka1 linia;i = 1

fi
od; . /
if 1=1— exit 0

i>1 —»- do i < 125 — linia(i) := ' ;
i:=i+1

od:
drukarka1 linia

fi;

Komunikacja procesów z urządzeniami wejścia/wyjścia - jak widać z przy­
kładu - odbywa się na takich samych zasadach, jak komunikacja pomiędzy
procesami.

85

Instrukcja exit umieszczona wewnątrz instrukcji alternatywy oznacza
tutaj jej zakończenie i przejście do wykonywania dalszych instrukcji.

Drugi przykład odnosi się do zadania Dijkstry o filozofach jedzą­
cych spaghetti.

Pięciu filozofów spędza czas jedząc i myśląc. Dzielą oni wspólny
pokój z okrągłym stołem otoczonym pięcioma krzesłami, z których każde
należy do jednego z filozofów. Na środku stołu znajduje się misa spag­
hetti, a na jego obrzeżu pięó widelców - każdy pomiędzy dwoma krzesła­
mi. Filozof, który poczuje głód wchodzi do pokoju, siada na swym krze­
śle i ujmuje widelec leżący po jego lewej stronie. Ponieważ jedzenie
spaghetti wymaga jednak dwóch widelców musi on także wziąó drugi widelec,
leżący po jego prawej stronie. Po zjedzeniu filozof odkłada widelce i
wychodzi z pokoju. Gdy jednak potrzebne widelce są zajęte przez sąsia­
dów filozofa musi on czekać na ich zwolnienie. Rozwiązanie tego proble­
mu jest następujące:

FILOZOF =
do true-—

MYŚLENIE;
pokójl wejście ();
widelec(i)1zajmij();
widełec((i+1)mod 5)lzajmij();
JEDZENIE;
widelec(i)Izwolnij();
widelec((i+1)mod 5)lzwolnij();
pokój 1 wyjście()

od;

Parametr i jest tutaj indeksem rodziny procesów FILOZOF. Występujące
tu wyrażenia: wejście(),zajmij(),zwolnij() są wyrażeniami pustymi.
Oznacza to, że realizacja instrukcji np.

pokój I wejście()

nie przekazuje żadnej informacji (w postaci jawnie określonych danych)
od jednego z procesów rodziny FILOZOF do procesu pokój. Sens tej in­
strukcji polega na tym, że spełnia ona rolę synchronizatora sterowania
pary procesów. Zatem wejście(), zajmij(), zwolnij() spełniają tutaj
taką rolę, jaką odgrywają sygnały w języku Modula (rozdz. 4).

WIDELEC =
do filozof(i)? zajmij()-—

filozof(i)'? zwolnij() 0
filozof((i-1)mod 5)? zajmij()-—

filozof((i-1)mod 5)? zwolnij()
od;

86

POKÓJ =
var liczbafil:integerj
liczbafil:=0;
do (i:0..4) filozof(i)? wejście()—

liczbafil:=liczbafil+1 [|
(i:0..4)filozof(i)? wyjście()-*

liczbafil:=liczbafil-1
od:

Zapis (i:0..4)filozof(i)?wejście()——... jest skrótem od zapisu:

filozof()? wejścief)——... []
filozof(1)? wejście()——... []

filozof(4)? wejście()——... .

Powyższe rozwiązanie dopuszcza sytuację, w której jednocześnie pię­
ciu filozofów uchwyci lewy widelec. Prowadzi to do nieograniczonego cze­
kania filozofów na prawy widelec. Sytuacji takiej można uniknąć kosztem
dodatkowej komplikacji rozwiązania.

S
Rys. 5.1. Struktura przepływu danych pomiędzy procesami

Ostatni przykład odnosi się do równoległego mnożenia macierzy. Dana
jest macierz kwadratowa A o wymiarach 3x3. Trzy strumienie wejściowe
reprezentują kolumny macierzy B. Trzy strumienie wyjściowe reprezentują
kolumny produktu macierzy B x A. Jeśli pominie się początkowe opóźnie­
nie, wyniki mają byó generowane z tą samą czybkością, z jaką są podawa­
ne dane wejściowe. W konsekwencji jest wymagany wysoki stopień współ-
bieżności. Rozwiązanie przyjmuje postać pokazaną na rys. 5.1.

Każdy wierzchołek centralny odbiera z zachodu (w) składową wektora
B oraz sumy częściowe z północy (N). Wyprowadza natomiast składową wek­

87

tora wschód (E) oraz obliczoną sumę częściową na południe (S). Dane wej­
ściowe są dostarczane przez wierzchołki zachodnie, wierzchołki północne
reprezentują stałe zerowe, wierzchołki wschodnie są spływem danych wej­
ściowych. Rozwiązanie ma postaó:

parbegin
M(i+1..3,0) ::ZACHÓD [|
M(O,j:1. .3) : :PÓŁNOC II
M(i:1.. ,3,4) : :WSGHÓdII
M(i:1..3,j=1.■4):sCENTRUM

parend

gdzie
PÓŁNOC =

do true — M(1. j):0 od;
WSCHÓD =

var x:real;
do i. 3) ?x —— exit od;

CENTRUM =
var x,s :real;

A:array(i:1..3,j:1..3) of real;
do M(i,j-1)?x —

M(j,j+1):x;
M(i-1,j)?s;
M(i+1,j)lA(i,j)xx+s

od;

ZACHÓD oraz POŁUDNIE są niedefiniowanymi tutaj rodzinami procesów użyt­
kowników.

5.3. Procesy rozproszone Brinch Hansena

Podejście Brinch Hansena [11] wprowadzające pojęcie procesów roz­
proszonych jest zbliżone do przedstawionego w poprzednim punkcie podej­
ścia Hoare a. Zasadnicze różnice dotyczą sposobu komunikowania się pro­
cesów. Wprowadzony język stanowi modyfikację języka Concurrent Pascal;
zasadniczym elementem jest tu eliminacja pojęcia monitora jako jednos­
tki programowej związanej z koncepcją procesów działających we wspólnym
środowisku.

Podstawowym komponentem programu jest proces o następującej budowie:

process <identyfikatory
<zmienna lokalna>;
<procedury ogólnodostępne>;

88

<instrukcja inicjalizująca>
end;

Program składa się ze stałej liczby procesów. Procedury ogólnodostępne
są procedurami, które mogą byó wywoływane zarówno przez proces, w któ­
rym są zdefiniowane, jak również przez inne procesy - wywołania zewnę­
trzne. Proces wykonuje dwa rodzaje działań: obliczenia instrukcji ini­
cjalizującej oraz obliczania procedur ogólnodostępnych dla wywołań ze-_
wnętrznych. Czynności te są wykonywane na przemian: proces rozpoczyna
obliczenia od realizacji instrukcji inicjalizującej; czynność ta jest
kontynuowana aż do zakończenia procesu lub napotkania na warunek, który
może zostać spełniony na skutek działalności innych procesów; dalsze
działanie proces kontynuuje na skutek wywołań swych procedur ogólno­
dostępnych przez inne procesy, następnie albo oczekuje na dalsze akcje
zewnętrzne, albo powraca do obliczenia instrukcji inicjalizującej; po
zakończeniu instrukcji inicjalizującej proces istnieje nadal i obsługu­
je wywołania zewnętrzne. Przeplot wykonywanych operacji nie jest zatem
dokonywany poprzez podział czasu, lecz jest programowany przez proces.

Procedury ogólnodostępne definiują swe parametry wejściowe (in)
oraz wyjściowe (out), zmienne lokalne i działający na nich ciąg .instruk-
cji:

procedurę < identyfikator >(in < param we>, out <param wy>);
<zmienne lokalne>;
<ciąg instrukcji>
end;

Wywołanie procedury ogólnodostępnej R zdefiniowanej w procesie Q nastę­
puje w wyniku wykroczenia instrukcji

cali Q.R (<wyrażenia>,<zmienne>)

Przed wykonaniem procedury R wartości<wyrażeń> zostają podstawiane pod
<param we>, a po jej zakończeniu odpowiednie wartości<param wy> zosta­
ją podstawione pod<zmienne>.

Podobnie jak w wypadku komunikujących się procesów sekwencyjnych,
możliwa jest definicja indeksowanej rodziny procesów. Dla uproszczenia
przyjmujemy, że ma ona taką samą postać, jak w p. 5.2.

Pozostałe elementy obsługi wywołania procedury (wybór jednego spo­
śród wielu żądań obsługi, opóźnianie innych żądań) są takie same, jak
przy wołaniu procedur wejściowych monitora w Concurrent Pascalu (rozdz.

3). '
Niedeterminizm jest wprowadzony do języka przez dwie instrukcje do­

zorowane: alternatywy i iteracji - takie same, jak u Hoare a w poprzed­

89

nim punkcie 5.2 (wersja oryginalna Dijkstry) - oraz dwie instrukcje do­
zorowanego regionu:

when B1—^S1 □ ... 0 En~-Sn end;
cycle B^——■ S1 0 ... H En—- end;

gdzie B1,...,Bn oraz S1t...,S oznaczają - jak poprzednio - warunki lo­
giczne i ciągi instrukcji.

Wykonanie instrukcji when polega na oczekiwaniu do momentu aż jeden
z warunków B1t...,B przyjmle wartość true, a następnie na wykonaniu od­
powiadającego mu ciągu instrukcji. Instrukcja cycle stanowi nieograni­
czone powtarzanie w pętli instrukcji when.

Zastosowanie omówionych konstrukcji przedstawiają podane niżej przy­
kłady. Pierwszym przykładem jest proces modelujący działanie semafora
całkowitoliczbowego, inicjalizowanego z wartością zero; z operacjami
czekaj i kontynuuj:

process semafor;
var szinteger;
procedurę czekaj;

when s>0—^s:=s-1 end;
end czekaj;
procedurę kontynuuj;

s:=s+1
end kontynuuj;
s :=0

end semafor;

Instrukcja inicjalizacji przypisuje wartość zero do zmiennej s, po czym
zostaje zakończona. Proces jednak istnieje i jest gotowy do obsługi wy­
wołań zewnętrznych

cali semafor, czekaj
cali semafor, kontynuuj.

Drugi przykład jest uproszczoną wersją rozwiązania problemu o jedzą­
cych filozofach. Przedstawiamy je poniżej bez komentarza.

process filozof(i:0..4);
do true MYŚLENIE;

cali stół.zajmij(i);
JEDZENIE;

cali stół.zwolnij(i)
od;
end filozof;

90

process stół;
var zajęte: set of 0. .4;
procedurę zajmij(in i:integer);

when([i, (i+1)mod 51 and zajęte)=C J ——
zajęte:=zajęte+[i,(i+1)mod 5]

end
end zajmij;

procedurę zwolnij(in i:integer);
zajęte:= zajęte-[i,(i+1)mod 51;

end zwolnij;
Zajęte:=L]

end stół;

Ostatni, trzeci przykład „wprowadza rodzinę procesów sortujących m
liczb. Dane są wprowadzane przez proces sortuj(l), który zapamiętuje
najmniejszą liczbę, a pozostałe przekazuje do procesu sortuj(2). Proces
sortuj(2) znów zapamiętuje najmniejszą spośród przekazanych mu liczb, a
pozostałe przekazuje do procesu sortuj(3) itd. Gdy zostanie zakończone
wprowadzanie m liczb, zostaną one ułożone we wzrastającej kolejności
w pamięci kolejnych procesów, po czym mogą być przesłane z powrotem na
miejsce, z którego wyszły, tj. z procesu użytkownika zdefiniowanego na­
stępująco:

process użytkownik;
var A: array (l..m) of integer;

i : integer;
for i:=1 to m do

cali sortuj(1)•przekaż(A(i)) ;
for i: = 1 to m do

cali sortuj(1).odbierz(A(i))
end użytkownik;

Rodzina procesów sortuj zawiera n procesów, przy czym zakłada się, że
n > m. W definicji procesu występuje struktura danych typu ciąg (seguen­
ce) , z operacjami (procedurami) standardowymi pobrania ostatniego ele­
mentu tego ciągu (get), dopisania do końca ciągu (put) oraz z funkcją
standardową określającą aktualną długość ciągu (length).

process sortuj(i:1..n);
var stos: seguence 2 of integer;

p,t :integer;
procedurę przekaż (in c:integer);

when stos.length 2 stos.put(c) end;
end przekaż;

91

procedurę- odbierz (out v:integer);
when stos.length=1 —— stos.get(v) end;

end odbierz;
stoe:=[];
p:=0;
cycle stos.length=2

if stos [1] < stos [2] t :=stos [2] ;
stos:= stos [1] □

stosUJ > stos (2] r : = stos [1] ;
stos := stos [2]

fi:
cali sortuj(i+1).przekaż(t);
p:=p : 1 D
(stos.length=O) and (p>0)-—
cali sortuj(i+1).odbierz(t)
p:=p-1

end
end sortuj;

Proces sortuj jest w równowadze, gdy zapamiętuje tylko jedną liczbę. W
wypadku braku tak zrozumianej równowagi proces podejmuje jedną z akcji:

- jeżeli proces pamięta dwie liczby, mniejszą z nich zachowuje, a
większą przekazuje do procesu sąsiedniego,

- jeżeli proces nie pamięta żadnej liczby, zwraca się o pewną licz­
bę do procesu sąsiedniego.

5.4. Sieci procesów Kahna

Omawiane niżej podejście Kahna E41 ,42j charakteryzują, w stosunku
do podejść poprzednich, inne zasady komunikacji pomiędzy procesami oraz
dynamiczna struktura procesów (szerokie możliwości kreacji i likwidacji
procesów). Język programowania definiowany przez Kahna bazuje na poję­
ciu procesu - rozumianego jak poprzednio - oraz na pojęciu kanałów ko­
munikacyjnych, przez które procesy mogą wymieniać wiadomości. Kanały
przenoszą informacje tylko w jednym kierunku od procesu-nadawcy do pro-
cesu-odbiorcy; mają one bufory nieograniczonej długości, w których są
magazynowane napływające wiadomości (kolejka FIFO). Procesy wraz z łą­
czącymi je kanałami tworzą tzw. sieć procesów.

Deklaracja procesów ma postać:

process <identyfikator>(<lista parametrów>) ;
<ciało procesu>;

endprocess

92

<Lista parametrów >składa się ze zwykłych parametrów, służących do usta­
lania wartości początkowych lokalnych zmiennych procesu podczas jego
inicjalizacji oraz tzw. portów. Te ostatnie służą do zdefiniowania ka­
nałów łączących dany proces z innymi procesami. Na przykład napis

process pośrednik (x:integer;
QIs in integer; Q0 out integer);

definiuje nagłówek procesu pośrednik, który ma jeden zwykły parametr
formalny x typu integer, komunikowany przez wartośó oraz dwa parame­
try portowe; QI oznaczający identyfikator pewnego kanału komunikacyjne­
go (kanału wchodzącego do procesu pośrednik), po którym można przesyłaó
informacje typu integer; Q0 oznaczający początek pewnego kanału komuni­
kacyjnego (kanału wychodzącego od procesu pośrednik), po którym można
przesyłać Informacje także typu integer.

<Ciało procesu >definiuje zmienne lokalne oraz ciąg instrukcji, któ­
ry zawiera zwykłe Instrukcje działań na zmiennych lokalnych oraz in­
strukcje wejścia/wyjśeia (komunikacji z innymi procesami) i instrukcje
rekonfiguracji sieci procesów.

Komunikację procesy prowadzą przez instrukcje wejścia/wyjścia sta­
nowiące odwołanie się do łączących je kanałów komunikacyjnych. Instruk­
cja odbioru (wejścia) z portu wejściowego A ma postać funkcji stan­
dardowej get(A). Funkcja ta przyjmuje wartość pierwszego elementu w bu­
forze kanału. Jeśli bufor jest pusty, to wykonanie get(A) opóźnia się
tak długo, aż jakiś proces umieści w nim jakąś wartość. Po wykonaniu
funkcji get pobrany element zostaje z bufora usunięty. Instrukcja nada­
wania (wyjścia) do wyjściowego portu B jest procedurą standardową o
postaci put (< wyrażenie>,B). Procedura put obliczoną wartość<wyrażenia>
umieszcza w kanale o porcie B. Procedury get, put są jedynymi operacja­
mi, jakie można wykonywać z udziałem kanałów komunikacyjnych.

Dopuszcza się sytuację, gdy liczba procesów-odbiorców dzieli ten
sam kanał wejściowy. W tym wypadku wszystkie procesy-odbiorniki otrzymu­
ją na swym wejściu takie same ciągi danych.

Zwraca uwagę brak możliwości testowania stanu zajętości kanału. Nie­
uwzględnienie tej możliwości jest świadomie podjętą decyzją uzasadnioną
tym, że upraszcza to znacznie semantykę języka, gdyż wyklucza się czaso­
wo zależne zachowanie się kanałów. Warto zauważyć, że gdyby w procesach
istniała możliwość badania zajętości kanału, wówczas rezultat obliczeń
programu mógłby być różny w zależności od strategii przydziału czasu
procesora. Strategii tych może być wiele: od sytuacji, gdy istnieje po­
jedynczy procesor z podziałem czasu do sytuacji, gdy każdy proces dys­
ponuje własnym procesorem. Poruszone tu kwestie pozostają jednak poza
zakresem rozważań skryptu.

93

Sieć procesów można uważać za pewien graf skierowany, którego wierz­
chołki reprezentują procesy, a łuki - kanały komunikacyjne. Podczas ob­
liczeń programu graf ten można zmieniać metodą kolejnych uszczegółowień.
Oznacza to, że wierzchołki grafu mogą być zastępowane przez nowe grafy.
Jedyny warunek, jaki musi być przy tym zachowany, wymaga, aby łuki wej­
ściowe i wyjściowe nowo powstałego grafu kojarzyły się z łukami wejścio­
wymi i wyjściowymi zastępowanego wierzchołka. Instrukcja rekonfiguracji
ma postać:

doco<treść >closeco

(doco od doconcurrently), gdzie treść składa się z dwóch części:
- deklaracji kanałów komunikacyjnych (channels) w nowo tworzonym

grafie;
- listy wywołań (inicjalizacji) procesów; parametry portowe w tych

wywołaniach muszą być związane albo z nowo zdefiniowanymi kanałami, al­
bo z kanałami procesu, w którym jest wykonana dana instrukcja rekonfi­
guracji; zainicjowane procesy rozpoczynają swe obliczenia równolegle do
procesu, który je uaktywnił.

Przykład prostej sieci procesów z dynamicznym tworzeniem ich struk­
tury jest podany poniżej:

(s deklaracja procesów »)
process producent (out QO:integer);

yar n:integer;
n:=0;
cycle n:=n+1;put(n,QO) end;

endprocess;
process pośrednik (a:integer;

Q0: in integer; Q0: out integer);
cycle put(a + get(QI),QO) end;

endprocess;
■ t

process konsument (QI: In integer);
var i:integer;
for i:=1 to 20 do print (get(QI));

endprocess;
process start;

doco channels Q1,Q2,Q3:integer
producent (Q1);
pośrednik (1,Q1,Q2)
pośrednik (-1,Q2,Q3);
konsument (Q3)

closeco
endprocess;

94

(m treść programu »)
begin

doco start closeco
end

Początkowa struktura sieci, złożona tylko z jednego procesu start, prze­
radza się w sieć złożoną z czterech procesów (rys. 5-2).

(pośrednik

T03
konsument

Rys. 5.2. Zmiana konfiguracji sieci procesów

Wynikiem działania programu będzie ciąg liczb 1,2,...,20 wydrukowa­
ny przez proces konsument.

Ciekawszy jest przykład programu obliczającego liczby pierwsze (si­
to Eratosthenesa). Dla każdej znalezionej liczby pierwszej jest kreowa­
ny proces nowy filtr przez proces sito. Zadaniem procesu filtr jest wy­
szukanie wszystkich wielokrotności znalezionej liczby pierwszej.

(r deklaracja procesów a)
process generator (QO:out integer);

var n: integer;
n: = 1 ;
cycle n:=n+1; put(n,Q0) end

endprocess;
process filtr (pierwsza: integer,

QI: in integer; Q0: out integer);
var n:integer;
cycle n:= get(QI);

if (n mod pierwsza) 4 0 then
put(n,Q0)

end
endprocess:
process sito (QI: in integer; Q0: out integer);

yar pierwsza: integer;

95

pierwsza := get(QI);
put (pierwsza, Q0);
doco channels Q: integer;

filtr (pierwsza QI,Q);
sito (Q,QO)

closeco;
endprocess;
process wyjście (QI: i.n integer);

cycle print (get (QI)) end;
endprocess;
(3? treść programu »)
begin

doco channels Q1,Q2: integer;
generator (Q1);
sito (Q1,Q2);
wyjście (Q2)

closeco
end.

Przedstawione konstrukcje są wystarczające do programowania dowol­
nych algorytmów równoległych, czasowo niezależnych. Wprowadzoną notację
możemy nieco ulepszyć, uzyskując przy tym większą przejrzystość i ele­
gancję programów. Większość procesów ma jedno wyjście, w tym wypadku
można procesy traktować jako funkcje i używać je do konstrukcji wyrażeń.
W wywołaniach procesów w instrukcji rekonfiguracji wyrażenia takie mogą
być dostarczane tam, gdzie oczekuje się kanałów wyjściowych. Przykłado­
wo poprzedni program można zastąpić formą:

process generator() QO: integer
endprocess;
process filtr (pierwsza: integer;

QI: in integer) Q0: integer;

endprocess;
process sito (QI: in integer) Q0: integer;

endprocess;
process wyjście (QI: in integer);

endprocess;
begin

doco wyjście (sito(generator()))
closedo

end.

96

Nowa, funkcjonalna notacja jest wygodna także z tego powodu, że wiele
kanałów może być tworzonych w sposób bezpośrednio niewidoczny. Notacja
wymaga jednak zmiany instrukcji rekonfiguracji.

Pierwsza zmiana polega na możliwości przekazywania strumieni infor­
macji z jednego kanału wejściowego na drugi kanał wyjściowy - wyjaśnia
to przykład rekonfiguracji w procesie sito:

doco sito(filtr(pierweza,QI)) => Q0
closeco

Innym przykładem odnoszącym się do tej sytuacji jest proces

process qcons(a:integer, QI: in integer) Q0: integer;
put(a:QO);
doco QI =>Q0 closeco

endprocess,

który wysyła liczbę a w kanał wyjściowy, potem spina kanał wejściowy
z wyjściowym, a następnie znika.

Drugą zmianą w instrukcji rekonfiguracji wyjaśnia kolejny przykład.
Jest on związany z problemem generacji pierwszych n liczb postaci
2a3^5C (a,b,c > 0) we wzrastającej kolejności bez powtórzeń lub braków:

(m deklaracja procesów w)
process łączenie (QI1,QI2: in integer) Q0: integer;

var i1,i2: integer;
i1: = get (QI1); i2:=get(QI2);
loop i1< i2 then put(i1,Q0); i1:=get(QI1)
elseif ii >12 then put(i2,Q0); i2:=get(QI2);
else put(i1,Q0); 11:=get(QI1) ; i2:=get(QI2);
endloop;

endprocess;
process qcons (a:integer,QI: in integer)QO: integer;
.......... treść jak wyżej
endprocess;
process wyjście (QI: in integer)
.......... treść jak w poprzednim programie
endprocess
(» treść programu w)
begin

doco wyjście(x) where channels x is
qcons(s,łącznie(mnóż(2,x),łączenie(mnóżC 3,x),

mnóż(5,x))))
closedo

end.

97

Rys. 5.3. Struktura sieci procesów (I)

Ostatnia instrukcja rekonfiguracji wyznacza następującą strukturę sieci
procesów (rys. 5.3). Struktura ta jednocześnie tłumaczy zastosowany al­
gorytm obliczeń.

Rys. 5.4. Struktura sieci procesów (II)

Inną bardziej efektywną, ze względu na eliminację redundancji gene­
rowanych liczb, jest struktura pokazana na rys. 5.4, która wynika z na­
stępujących instrukcji rekonfiguracji

begin
doco wyjście(x) where

channels x,y,z are
qcons (1,łączenie(mnóż(e,x(,y)),
ącons (3,łączenie(mnóż(3,y),z)),
qcons (5,mnóż(5,z)

closeco
end.

98

ĆWICZENIA

1. Rozwiązanie problemu jedzących filozofów przedstawione w p. 5.2
zmodyfikować w taki sposób, aby żadnemu z filozofów nie groziła możli­
wość wygłodzenia z powodu sytuacji nieskończonego oczekiwania na widel­
ce.

2. Algorytm sortowania liczb przedstawiony w p. 5-3 przetransformo-
waó na program w języku Hoare'a.

3. Froblem czytelników i pisarzy (ćw. 1, rozdz. 2) rozwiązać w kon­
wencji rozproszonych procesów Brinch Hansena.

4. Zaprogramować w języku Brinch Hansena proces realizujący opóź­
nianie innych procesów o zadany odcinek czasu. Założyć, że dana jest
procedura realizująca opóźnienie jednostkowe.

5. Zanalizować przykład programu generacji liczb pierwszych z p.5.4.
Narysować strukturę sieci procesów i określić kolejne postaci jego re-
konf iguracji.

6. Zaprogramować w języku Kahna algorytm sortowania liczb (np. z
p. 5.3).

7. Zaprojektować sieć procesów Kahna realizujących mnożenie macie­
rzy zgodnie z algorytmem z p. 5.2.

6. MECHANIZMY RÓWNOLEGŁOŚCI W JĘZYKU PROGRAMOWANIA ADA

6.1. Wprowadzenie

Język programowania Ada ma bardzo ciekawą historię. Pomysł zdefinio­
wania i wprowadzenia do powszechnej praktyki języka wysokiego poziomu
przeznaczonego zarówno do oprogramowania użytkowego, jak i systemowego
powstał w latach 1973-74. Głównym inicjatorem i koordynatorem prac była
międzynarodowa grupa robocza, powołana i finansowana przez amerykańskie
ministerstwo obrony. Prace nad nowym językiem były prowadzone w formie
konkursu, do którego początkowo przystąpiło ponad sto zespołów z Europy
i USA. Prace przebiegały etapowo: na podstawie początkowo sformułowa­
nych wymagań i postulatów powstawały pierwsze szkice projektów. Były
one poddawane weryfikacji i selekcji, a na ich podstawie formułowano
kolejne, bardziej precyzyjne wymagania. Powstał w ten sposób ciąg ofic­
jalnych dokumentów z wymaganiami, określonych oryginalnymi nazwami:
Strawman,..., Woodman,..., Ironman,..., Steelman. Ostatecznie w 1979 r.
przez ostatnie sito konkursu przeszedł język Ada (nazwany tak przez
twórców na cześć Augusty Ady Byron, 1815-1852, uznanej przez historyków
informatyki za pierwszą programistkę; programowała ona maszyny Babba-
ge a). Język ten, godząc wiele sprzecznych wymagań [70] , np. wysoki po­
ziom abstrakcji z łatwością implementacji i efektywnością kodu wyniko­
wego, stanowi obiekt dalszych udoskonaleń, a także krytyk [58] . Obecnie
istnieje już kilka implementacji języka Ada.

W bieżącym rozdziale omawia się tylko mechanizmy programowania rów­
noległego w języku Ada. Sposób ich prezentacji jest zupełnie niesforma-
lizowany. Ze względu na przejrzystą notację przypominającą w dużym za­
kresie notację pascalowską,podane opisy i przykłady nie powinny powodo­
wać trudności zrozumienia, mimo braku pełnego opisu języka.

6.2. Struktura programów

Podstawową jednostką strukturalną w języku Ada jest zadanie (task).
Jest to jednostka syntaktyczna służąca definicji procesu. Inaczej niż w
omówionych poprzednio językach programowania, zadania w języku Ada mogą
być zagnieżdżane. Zadanie składa się z dwóch części: specyfikacji po­
średnictwa (Interfejsu) zadania z jego otoczeniem oraz z opisu działa­
nia zadania (ciało zadania).

100

Specyfikacja pośrednictwa zadania zawiera nagłówek identyfikujący
zadanie' oraz definicję obiektów (atrybutów) zadania dostępnych w jego
otoczeniu. Są to m.in. stałe, typy, zastrzeżenia (esception) i porty
(entry). Przykładem specyfikacji jest:

task bufor is
rozmiarpakietu: const integer: 256; >
type pakiet is array (1..rozmiarpakietu) of char;
entry czytaj (v: odt pakiet);
entry pisz (e: in pakiet)

end bufor;

Wymienione: stała, typ oraz porty (w terminologii Concurrent Pasca­
la odpowiedniki procedur wejściowych) czytaj, pisz stanowią atrybuty
dostępne na zewnątrz zadania bufor. Interesujące jest wyróżnienie wej­
ściowych (in) i wyjściowych (out) parametrów procedur.

Ciało zadania składa się z deklaracji obiektów lokalnych (struktury
danych) oraz z ciągu instrukcji implementujących porty z części specyfi-
kującej

task body bufor is
rozmiarbuf: const integer : = 10;
buf: array (1..rozmiarbuf) of pakiet;
do,z: integer rangę 1..rozmiar-buf := 1;
licznik: integer rangę 1..rozmiar_buf := 0;

begin
... ciąg instrukcji opisujących porty czytaj,
pisz będzie opisany dalej ...

end bufor;

Aby rozpocząć obliczenia zadania, należy użyć instrukcji inicjalizu­
jącej (initiate). Przykładowo instrukcja

initiate bufor, producent, konsument,

wykonana w pewnym zadaniu, nazywanym inicjalizatorem, powoduje rozpoczę­
cie obliczeń zadań bufor, producent oraz konsument. Ich obliczenia będą
wykonywane równolegle z zadaniem - inicjalizatorem. Każde zadanie (poza
głównym, programem) musi być inicjalizowane. Zadaniem nadrzędnym w sto­
sunku do danego zadania nazywa się zadanie, które zawiera jego deklara­
cję. Należy podkreślić, że zadanie nadrzędne może być inne od inicjali-
zatora, jakkolwiek oba muszą mieć dostęp do zainicjalizowanego zadania.
Rozpatrzmy przykład

task body T1 is
task T2 is

101

end T2;
task body T8 is

end T2;
task T3 is

end T3;
task body T3 is

initiate T2;

end T2;
begin

initiate T3;

end T1;

Zadanie Tl jest nadrzędne względem T2, ale T2 jest inicjalizowane przez
T3, a nie przez T1.

Normalne zakończenie zadania polega na osiągnięciu przez sterowanie
end na końcu ciała zadania. Jeżeli zadanie, które ma się zakończyć, jest
nadrzędne w stosunku do pewnych innych zadań, to jest ono opóźniane aż
do momentu zakończenia wszystkich jego zadań podrzędnych. Zadanie może
także kończyć się w wyniku realizacji instrukcji zerwania (abort). Przy­
kładowo, instrukcja

abort T1,T2;

powoduje bezwarunkowe zakończenie zadań T1,T2 oraz wszystkich ich zadań
podrzędnych. Inne zadania, które usiłują skomunikować się z zadaniami
zakończonymi, zostaną przed tym powstrzymane przez powstanie zastrzeżenia
standardowego "błąd zadania". (Zastrzeżenia, sposób ich deklaracji, po­
wstawania i reagowania na nie stanowią element systemu zarządzania błę­
dami, który jest wbudowany w definicję języka. System ten nie jest tu­
taj omawiany.)

Każdemu z zadań można przypisać stopień pilności - priorytet służą­
cy algorytmom przydziału czasu procesora do wyboru odpowiedniej strate­
gii obsługi zadania. Priorytet raz przypisany zadaniu można zmieniać
dynamicznie przez wywołanie procedury modyfikacji priorytetu (set prio-
rity).

W razie potrzeby utworzenia wielu podobnych zadań możliwe jest in­
deksowanie zadań - tworzenie rodziny zadań (task families). Przykład®®

102

może być użycie wielu kopii zadań obsługi urządzeń wejścia/wyjścia.
Fragment programu

task sterownikdalekopisu (1..100) is
type linia is array (1..32) of char;
entry piszlinię (tekst: in linia);
entry czytajlinię (tekst: out linia);

end sterownikdalekopisu;
task body sterownikdalekopisu is

end sterownikdalekopisu;

deklaruje 100 kopii zadań, z których każde jest identyfikowane przez
odpowiedni wskaźnik, np. instrukcja

initiate sterownikdalekopisu(3);

spowoduje aktywację trzeciej kopii zadania.
W języku istnieje możliwość wyboru, na etapie kompilacji programu,

sposobu przydziału pamięci procesom. Polecenia

pragma creation (static)
lub

pragma creation (dynamie)

umieszczone w opisie zadania dla translatora powodują wybór statycznego
lub dynamicznego przydziału pamięci. Możliwość dynamicznego przydziału
pamięci jest szczególnie ważna wtedy, gdy program składa się z dużej
liczby zadań, przy czym tylko część z nich jest jednocześnie zainicja­
lizowana.

Poza omówionymi sposobami statycznej deklaracji zadania lub rodziny
zadań istnieje możliwość dynamicznego tworzenia nowych egzemplarzy pod­
czas wykonywania programu. Zadanie, które może być dynamicznie powiela­
ne, jest wyróżnione przez dodanie słowa generic do części specyfikują-
cej zadania, np.

generic task bufor is
rozmiarpakietu: const integer: 256;

entry pisz (a: in palmet)
end bufor;

Jeżeli w programie zachodzi konieczność dynamicznego utworzenia egzemp­
larza zadania bufor, można to uczynić przez użycie konstrukcji:

task nowybufor is new bufor

a odwołania do utworzonego zadania mogą mieć postać

103

nowybufor.pisz (daneprod);
nowybufor.czytaj(danekons);

6.3. Komunikacja pomiędzy zadaniami
i

Komunikacja pomiędzy zadaniami w języku Ada stanowi mieszaną formę
komunikacji pomiędzy sekwencyjnymi procesami komunikującymi się (SPK)
Hoare a oraz procesami rozproszonymi (PR) Brinch Hansena omówionymi w
rozdziale 5. W SPK komunikacja zachodzi przez skojarzenie instrukcji
wejścia i instrukcji wyjścia, w których procesy wskazują wzajemnie na
siebie. W PR komunikacja zachodzi w rezultacie wywołania w jednym pro­
cesie procedury wejściowej drugiego procesu. Komunikacja w języku Ada
swą postacią przypomina komunikację w PR, tzn. jedno zadanie wywołuje
port (procedurę wejściową) drugiego zadania z listą parametrów aktual­
nych zapewniających dwukierunkowy przepływ danych. Natomiast - jak zo­
baczymy - sposób, w jaki wywołane zadanie tworzy odpowiedź jest bliższy
SPK niż PR.

Bezpośrednią różnicą jest to, że komunikacja w SPK jest symetryczna
w tym sensie, że oba komunikujące się procesy muszą wzajemnie się wywo­
ływać, podczas gdy w Adzie oraz w PR komunikacja jest asymetryczna w
tym sensie, że wywołane zadanie nie musi wywoływać, ani też nawet nie
zna, zadania które je wywołuje.

Komunikacja pomiędzy zadaniami w Adzie odbywa się dzięki wykorzysta­
niu instrukcji wołania portów (w zadaniu wołającym) oraz instrukcji ak­
ceptacji (w zadaniu wołanym). Przykładowo, odwołując się do przykładów
z poprzedniego punktu, wywołaniami portów mogą być

bufor, pisz (daneproducenta),
bufor.czytaj (danekonsumenta).

Wywoływane porty muszą być oczywiście zadeklarowane w zadaniu bufor. Na
podstawie tej deklaracji sprawdza się poprawność parametrów aktualnych.

Instrukcja akceptacji (accept) spełnia rolę podobną do treści pro­
cedury. Dokładniej, służy on,a do wskazania instrukcji, które mają być
wykonane w wyniku wywołania konkretnego portu. Przykładowo instrukcje
akceptujące wywoływanych wyżej portów mają postać:

accept pisz (e: in pakiet) do
buf (dox) := e;

end pisz;
accept czytaj (v: out pakiet) do

v := buf(zx)
end:

104

W instrukcji akceptacji jest powtórzony nagłówek portu występujący w
części specyfikującej zadania w celu przypomnienia zakresu jego parame­
trów. Zmienne dox, zx są liczbami całkowitymi wskazującymi odpowiednio
koniec i początek bufora, i są zadeklarowane w ciele zadania (kompletny
przykład jest pokazany dalej). Należy podkreślić, że zmienne te nie mo­
gą być zmieniane wewnątrz instrukcji akceptacji. Ponieważ instrukcje
akceptacji są wykonywane w rozłącznych, odcinkach czasu, jest wskazane,
aby instrukcje te były możliwie krótkie i nie zawierały takich działań,
które mogłyby być wykonane poza ich wnętrzem.

Synchronizacja pomiędzy komunikującymi się zadaniami opiera się na
protokole "rendez vous" Hoare ’a (p. 5.2). Zgodnie z tym protokołem na­
leży rozważyć dwie możliwe realizacje umówionego spotkania (rendez vous)
zależne od tego, czy zadanie wywołujące port innego zadania dokona tego
przed, ozy po tym momencie, w którym rozpocznie się realizacja odpowied­
niej instrukcji akceptacji. W obu wypadkach zadanie, które pierwsze
osiągnie umówiony punkt spotkania jest opóźniane aż do chwili, gdy punkt
ten osiągnie także drugie zadanie. Gdy to nastąpi, wówczas parametry
wejściowe (in) zostaną przekazane do portu. Następnie, po wykonaniu in­
strukcji akceptacji, parametry wyjściowe (out) zostaną przekazane z po­
wrotem do wołającego zadania. Od tego momentu oba zadania wykonują się
dalej niezależnie od siebie. Z każdą procedurą wejściową jest związana
kolejka, w której przechowuje się wszystkie wołania kierowane do danego
portu. Wołania z kolejki są obsługiwane w kolejności zgłoszeń.'

6.4. Niedeterminizm

Sekwencyjne struktury sterowania w Adzie są klasycznymi strukturami
deterministycznymi, takimi jak if...then, case itd. Zasadniczym źródłem
niedeterminizmu jest instrukcja selekcji (select) umożliwiająca niedeter-
ministyczne oczekiwanie na komunikację z innymi zadaniami. Syntaktyka
instrukcji przypomina nieco postać instrukcji wyboru

select
when B1 => A1 ;
or when B2=>A2;

or when Bn=>An;
else S

end select;

gdzie B1,...,Bn są wyrażeniami boolowskimi, zaś A1,...,An, S ciągami
instrukcji. Wyrażenie boolowskie, które występuje w warunku when może
zawierać tylko te zmienne, które są dostępne dla zadania wykonującego

105

daną instrukcję selekcji. Alternatywne ciągi instrukcji A1,...,An są
ciągami, w których pierwszą instrukcją musi być instrukcja akceptacji
(accept - p. 5.3) albo instrukcja opóźniająca (delay - p. dalej). Ciąg
instrukcji S jest dowolny. W szczególności, gdy warunki B1,...,Bn są
takie, że zawsze co najmniej jeden z nich jest prawdziwy, ciąg ten może
być opuszczony. Podobnie, gdy warunek Bi jest tożsamościowo prawdziwy,
wtedy możemy go także pominąć, pisząc

.......... or Ai;

Wykonanie instrukcji selekcji jest opisane przez podane niżej regu­
ły. Dla zwartości będziemy mówić, że alternatywa Ai jest otwarta, jeże­
li skojarzony z nią warunek Bi jest prawdziwy.

1. Oblicza się wszystkie warunki B1,...,Bn i określa zbiór alterna­
tyw otwartych.

2. Otwarta alternatywa rozpoczynająca się instrukcją akceptacji mo­
że być wykonana, jeżeli zachodzi skojarzenie z odpowiadającym jej wywo­
łaniem procedury wejściowej w innym procesie.

3. Otwarta alternatywa rozpoczynająca się instrukcją opóźnienia mo­
że być wykonana, jeżeli przed upływem odcinka czasu wskazanego przez tę
instrukcję nie została wykonana żadna inna alternatywa.

4. Jeżeli żadna z otwartych alternatyw nie może być wykonana natych­
miast i istnieje warunek else, to zostaje wykonany ciąg instrukcji S.
Jeżeli warunek else nie istnieje, to zadanie oczekuje aż jedna z otwar­
tych alternatyw będzie mogła być wykonana dzięki spełnieniu warunków
opisanych regułą 2 lub 3.

5. Jeżeli zbiór alternatyw otwartych jest pusty i istnieje warunek
else, to wykonywany jest ciąg instrukcji S. Jeżeli warunek else nie wy­
stępuje, to pojawia się zastrzeżenie "błąd selekcji".

Ciało poprzednio rozważanego zadania bufor można obecnie przedsta­
wić w pełnej postaci:

task body bufor is
rozmiarbuf: const integer : = 10;
buf: array (1..rozmiarbuf) of pakiet;
doz,zx: integer rangę 1..rozmiarbuf := 1;
licznik: integer rangę 0..rozmiarbuf := 0;

begin
I°2£

select
when licznik < rozmiarbuf^

accept pisz(e: in pakiet) do
buf(dox) := e

end pisz;

106

doz := doz mod rozmiarbuf + 1;
licznik := licznik:1;

or when licznik > 0=>
accept czytaj (v: out pakiet) do

v:=buf(zz);
end czytaj;
zz:=zz mod rozmiarbuf-1;
licznik i= licznik-1;

end select
end loop

end bufor;

Zadanie bufor zarządza cykliczną tablicą ze zmiennymi doz, zz wska­
zującymi końcową i początkową pozycję tablicy. Warunek licznik< rozmiar-
buf stanowi pierwszy warunek instrukcji selekcji i zapobiega przed
przepełnieniem tablicy buf przez operację pisz. Drugi warunek licznik >0
chroni tablicę buf przed dostępem w sytuacji, gdy nie zawiera on żad­
nych danych. Jeżeli< 0<licznik <rozmiarbuf i jednocześnie pojawią się
wywołania portów pisz oraz czytaj, to wybór jednej z alternatyw instruk­
cji selekcji jest niezdeterminowany.

Wspomniana poprzednio instrukcja opóźniająca ma postaó

delay (<wyrażenie liczbowe>)

i powoduje opóźnienie wykonywania zadania o odcinek czasu określany war­
tością swego argumentu. Wyrażenie liczbowe określa całkowitą liczbę jed­
nostek czasu przyjętych w danej implementacji języka. Instrukcję delay
można wbudować do instrukcji selekcji. Rozważając ostatnio przedstawio­
ny przykład, zastosowaną w nim instrukcję selekcji możemy rozbudować do
postaci

select
when licznik<rozmiarbuf =>

or when licznik >0=>

or when delay 10.Osminuta;
initiate testsystemu;

end select;

W tej postaci instrukcja powodowałaby, że w razie braku Wywołania jednej
z procedur pisz lub czytaj przez okres 10 minut nastąpiłaby inicjaliza-
cja zadania diagnostycznego o nazwie testsystemu.

107

6.5. Przykładowe programy

Klasyczny przykład Dijkstry o filozofach siedzących za okrągłym sto­
łem i jedzących spaghetti ma następujące rozwiązanie:

task filozof (1..5) is
end filozof;
task stół is

entry zajmij (1: in 1..5);
entry zwolnij (j: in 1..5);

end stół;
task body filozof is
begin

loop

stół.zajmij(filozof 'indeks);
.......... jedzenie
stół.zwolnij(filozof indeks);

end loop
end filozof;
task body stół is

jedzący: set of 1..5 :»[1;
begin

loop
for i in 1..5 loop

select
when Ci+1,1-1] Hjedzący=>

accept zajmlj(i: in 1..5) do
jedzący :=jedzący+ [1] ;
end zajmij;

or
accept zwolnij(i: in 1..5) do
jedzący:=jedzący-[1];
end zwolnij;

else
nuli

end select
end loop

end loop
end stół;

108

Uwagi:
1. Program jest niepełny, gdyż zawiera tylko deklarację zadań, bez

ich inicjalizacji.
2. Pominięto wyjaśnienie mechanizmu parametryzacji poszczególnych

egzemplarzy rodziny zadań. Tu chodzi o sposób określenia wartości para­
metru filozof'indeks w treści zadania filozof. Należy przyjąć, że para­
metr ten jest ustalony w momencie inicjalizacji konkretnego egzemplarza
zadania i przyjmuje wartość równą indeksowi zadania w rodzinie filozof.

3. Instrukcja

for i in 1..5 loop

end loop;

odpowiada pascalowskiej instrukcji
for i:=1 to 5 do;

4. Słowo nuli oznacza instrukcję pustą.
5. W rozwiązaniu zadania stół przyjęto aktywne oczekiwanie na zgło­

szenia od zadań filozof. Oznacza to, że zadanie stół wykonuje bez przer­
wy obliczenia (najbardziej zewnętrzna pętla loop), w których testuje,
czy istnieją wywołania jego portów (wykonywanie instrukcja selekcji se-
lect dla kolejnych wartości i-1,...,5 w pętli for).

Kolejny przykład stanowi implementację w języku Ada tablicy sortują­
cej Brinch-Hansena.

task sortuj (1..n) is
entry weź (c: in integer);
entry daj (c: out integer);

end sortuj;
task body sortuj is

x, z, n: integer;
begin

1002
accept weź (c: in integer) do

x:=c
end weź;
n:=1;
ł°°2

select
accept weź (o: in integer) do

z:=c
end weź;
if x< = z then

sortuj (sortujindeks+1).weź(z);

109

elae
sortuj(sortuj'indeks+1)•weź(x);
x:=z

end if;
n:=n+1;

or
accept daj(c: out integer) do

c:=x;
end daj;
n:=n-1;
if n >0 then

sortuj(sortuj 'indeks+1).daj(x);
else

exit
end if

end select;
end loop;

end loop;
end sortuj;

Uwagi:
1, 2- jak w poprzednim przykładzie.
3. Instrukcja exit jest wyjściem z zewnętrznej pętli loop; wykona­

nie instrukcji kończy obliczenia pętli.
Ostatni przykład to znane sito Eratosthenesa wyznaczające liczby

pierwsze:
task sito (1..100) is

entry test (n: in integer);
end sito;
task body sito is

p,mp,m: integer;
begin

accept test (n: in integer) do
p:=n;

end test;
drukuj(p);
mp: =p;
loop

accept test (n: in integer) do
m:=n;

end test;

110

while mp< m loop
mp:=mp+p

end loop;
if mp > m then

sito (sito'indeks+1).test(m)
end if;

end loop;
end sito;

Uwagi:
1,2 - jak w poprzednich przykładach.

ĆWICZENIA

1. Ułożyć program w języku Ada mnożący macierze zgodnie z algoryt­
mem z p. 5-2.

2. Ułożyć program rozwiązujący problem przetwarzania telegramów
(ćw. 2, rozdz. 4).

3. Zaproponować system buforowania komunikatów w węźle podsieci
teletransmisyjnej (ćw. 3, rozdz. 3). Ułożyó program symulujący działa­
nie węzła zgodnie z przyjętym systemem buforowania.

4. Ułożyć program symulujący współdziałanie węzłów podsieci tele­
transmisyjnej. Wykorzystać model węzła z ćw. 3.

5. Ułożyć program rozwiązujący problem czytelników i pisarzy (ćw.1,
rozdz. 2).

6. Zaprogramować w języku Ada rozwiązanie problemu z ćw. 1, rozdz.4.

7. Napisać w języku Ada szkielet programu, w którym procesy ubiega­
jące się o dostęp do jednorodnych zasobów są zarządzane zgodnie z algo­
rytmem bankiera (zad. 7, rozdz. 3).

8. Przeanalizować możliwość zastąpienią mechanizmów komunikacji w
językach procesów komunikujących się Hoare’a i procesów rozproszonych
Brinch Hąnsena odpowiednimi konstrukcjami w języku Ada.

9. Przeanalizować możliwość zastąpienia mechanizmu dynamicznego
tworzenia i modyfikacji sieci procesora Kahna odpowiednimi konstrukcja­
mi w języku Ada.

7. MECHANIZMY RÓWNOLEGŁOŚCI W JgZYKU PROGRAMOWANIA CHILL

7.1. Wprowadzenie

Język programowania Chill, podobnie jak język Ada, powstał w wyniku
szeroko zakrojonej międzynarodowej współpracy. Patronat nad tymi praca­
mi sprawował Międzynarodowy Doradczy Komitet Telefonii i Telegrafii
(franc. Comite Consultatif International Telegraphigue et Telephonique
- CCITT) - organ Międzynarodowego Związku Telekomunikacyjnego (franc.
Union International des Telecomunications - UIT). Nazwa CHILL jeśt akro­
nimem od CCITT High. Level Language. Początkowym zamierzeniem projektu
nowego języka programowania było stworzenie narzędzia przeznaczonego do
programowania elektronicznych centrali telefonicznych. W trakcie prac
okazało się jednak, że definiowany język jest na tyle ogólny, że może
być z powodzeniem wykorzystywany do innych aplikacji telekomunikacyj­
nych (np. programowanie węzłów podsieci transmisji danych w sieciach
komputerowych, symulacja dyskretna), a także do obliczeń uniwersalnych.

Prace nad językiem były prowadzone w latach 1974-1980, z udziałem
prawie 30 organizacji z ponad 20 krajów, i ostatecznym ich wynikiem by­
ło opracowanie dokumentu standaryzacyjnego [71] stanowiącego opis języ­
ka. CHILL osiągnął więc status międzynarodowego standardu i będzie,
zwłaszcza w telekomunikacji, niewątpliwym konkurentem języka Ada, który
dopiero ubiega się o uzyskanie statusu standardu w ramach Międzynarodo­
wej Organizacji Normalizującej (ang. International Standard Organiza-
tion - ISO). Oba języki mają porównywalny "stopień złożoności". Ze
względu na to, że język Chill bazuje na modelu mieszanego środowiska ma
on w stosunku do Ady bardziej rozbudowane mechanizmy obliczeń równoleg­
łych.

Omawiane w bieżącym rozdziale elementy języka Chill są przedstawia­
ne w sposób nieformalny. Świadomie zmodyfikowano pisownię, wprowadzając
podkreślanie słów kluczowych, zrezygnowano z wyjaśniania niektórych po­
jęć - takich jak np. location, modę - zastępując je najbardziej blisko­
znacznymi odpowiednikami z języka Pascal czy Concurrent Pascal, dokona­
no pewnych uproszczeń, nieistotnych z punktu widzenia mechanizmów równo­
ległości.

W całym rozdziale przyjęto konwencję, że wszystkie elementy opcjo­
nalne (tzn. takie, które mogą, ale nie muszą wystąpić) w definicjach
jednostek syntaktycznych są ujmowane w nawiasy kwadratowe [,] , a więc
np. zapis A [BiC oznacza dwa ciągi AC oraz ABC.

112

7.2. Struktura programów

Jednostkami strukturalizacji programów są bloki, procedury, procesy,
moduły i regiony. Bloki i procedury są - w przybliżeniu - odpowiednika­
mi bloków i procedur w Pascalu, odpowiednikiem procesu są zadania w
Adzie. Moduły pełnią rolę pewnej przegrody, dzięki której można rozsze­
rzać dostępności obiektów lokalnych modułu, lub też definiować znacze­
nie obiektów nielokalnych, wykorzystywanych w module. W tym zakresie mo­
duły spełniają rolę podobną do modułów w języku Modula. Regiony nato­
miast - to odpowiedniki monitorów w Concurrent Pascalu. W dalszej częś­
ci nie definiuje się w pełni wymienionych tu jednostek strukturalizacji;
ich znaczenie ukazuje się przez komentarze do przedstawionych dalej
przykładów.

Procesy - jako jednostka strukturalizacji najbardziej istotna z roz­
ważanego punktu widzenia - są definiowane dwuetapowo. Etap pierwszy od­
powiada definicji typu procesu, etap drugi - kreacji konkretnego egzem­
plarza procesu. Definicja typu procesu ma postać:

NP : process (PF);
DL;
SL

end

gdzie NP - nazwą procesu, PF - lista parametrów formalnych, DL - ciąg
deklaracji lokalnych obiektów procesu oraz SL - ciąg instrukcji. Parame­
try formalne PF są wykorzystywane przy kreacji i inicjalizacji procesu;
tu dla uproszczenia przyjmiemy, że komunikacja tych parametrów, przy
kreacji procesu, odbywa się przez podstawienie wartości parametrów ak­
tualnych pod odpowiednie parametry formalne. Obiektami, które mogą być
deklarowane w ciągu DL są m.in.: typy, procedury, procesy (procesy mogą
być zagnieżdżane) oraz sygnały.

Kreacja i inicjalizacja egzemplarza procesu ma postać:

start NP (PA).

Dopuszcza się kreację dowolnej liczby egzemplarzy procesu danego typu.
Dynamicznie wykreowane procesy są odróżnialne od siebie przez to, że
każdemu z nich jest przypisany niejawnie pewien identyfikator (adres ob­
szaru pamięci przydzielony procesowi). Identyfikator taki można zapamię­
tywać w zmiennych o specjalnie wydzielonym typie adresowym (instance mo­
dę). Jeżeli np. A jest zmienną takiego typu, to instrukcja postaci:

A:=etart NP(PA)

poza utworzeniem i inicjalizacją procesu typu NP spowoduje podstawienie

113

pod zmienną A adresu tego procesu. Proces może także poznać swój iden­
tyfikator podczas obliczeń, używając stałej this, dostarczającej adre­
su tego procesu, w którym jest użyta.

Uruchomiony proces rozpoczyna ciąg obliczeń, który przebiega równo­
legle z obliczeniami innych procesów. Proces kończy się,gdy osiągnie
koniec ciągu SL. Jeżeli podczas obliczeń procesu napotka on na instruk­
cję zatrzymania stop, następuje wstrzymanie dalszych obliczeń i proces
zakończy się, gdy skończą się wszystkie inne procesy wykreowane przez
ten proces.

Równolegle pracujące procesy mogą komunikować się ze sobą za pośred­
nictwem wspólnego środowiska bądź pewnych mechanizmów komunikacji w śro­
dowisku rozproszonym. W pierwszym przypadku komunikacja odbywa się z wy­
korzystaniem tzw. regionów, w drugim zaś komunikacja może odbywać się
dwoma sposobami: z wykorzystaniem buforów i sygnałów.

7.3. Komunikacja we wspólnym środowisku

Komunikacja we wspólnym środowisku wymaga istnienia mechanizmów za­
pewniających wykluczający dostęp procesów do wspólnych danych. Jednost­
kami strukturalnymi mającymi taki mechanizm są tzw. regiony. Regiony są
kolekcją wspólnych zmiennych, do których można uzyskiwać dostęp wyłącz­
nie poprzez wywoływanie procedur krytycznych (odpowiednik procedur wej­
ściowych monitora) regionu. Jeżeli region jest wolny - tzn. nie jest za­
jęty wykonywaniem swych procedur krytycznych - to przyjmuje wywołania
od procesów; spośród jednocześnie napływających wywołań region wybiera
dowolne i wykonuje je, podczas gdy pozostałe procesy są zawieszane. Po
wykonaniu wywołanej procedury krytycznej region wybiera dowolny spośród
oczekujących procesów i wykonuje wskazaną przez niego procedurę krytycz­
ną. Opisany mechanizm krótkoterminowego szeregowania procesów jest za­
tem taki sam, jak w monitorach Concurrent Pascala.

Dodatkowo regiony mają mechanizm umożliwiający szeregowanie śred­
nioterminowe. Mechanizm opiera się na pojęciu zmiennej zdarzeniowej
oraz na operacjach, jakie można na niej wykonywać. Deklaracja zmiennej
E typu zdarzeniowego ma postać

dcl E ęyent [(d)] , \

gdzie d jest dodatnim wyrażeniem całkowitoliczbowym oznaczającym dłu­
gość zmiennej zdarzeniowej E; brak opcji d oznacza przypisanie zmien­
nej długości równej jeden. Zmienna E służy do zapamiętywania identyfi­
katorów zawieszanych procesów; długość zmiennej oznacza maksymalną licz­
bę' procesów, które mogą być przez nie zapamiętane. Jedynymi operacjami,
jakie można wykonywać na zmiennych zdarzeniowych, są operacje continue,

114

delay oraz delay case. Pierwsza z nich służy odwieszaniu procesów, a
dwie pozostałe zawieszaniu procesów. Dokładne ich znaczenie jest nastę­
pujące:

Operacja kontynuacji, continue E, powoduje reaktywowanie procesu o
najwyższym priorytecie spośród zawieszonych procesów, pamiętanych w E.
Identyfikator reaktywowanego procesu jest usuwany z E. Jeżeli więcej
niż jeden proces ma najwyższy priorytet, to wybór jednego z nich jestnie-
deterministyczny. Jeżeli zmienna E jest pusta - nie pamięta żadnych za­
wieszonych procesów - to operacja jest równoważna instrukcji pustej.

Operacja zawieszenia

delay E [priority p],

gdzie p jest nieujemnym wyrażeniem całkowitoliczbowym, powoduje zawie­
szenie procesu, który spowodował jej wykonanie i zapamiętanie jego iden­
tyfikatora oraz priorytetu p w zmiennej zdarzeniowej E. Brak prioryte­
tu p w operacji powoduje przyporządkowanie procesowi domyślnej wartoś­
ci priorytetu równej zeru. Zawieszony proces może byó reaktywowany do­
piero po wykonaniu operacji continue E. Jeżeli w momencie wykonania ope­
racji delay liczba zapamiętanych zawieszonych procesów jest równa dłu­
gości zmiennej zdarzeniowej, to nastąpi błąd wykonania programu.

Operacja zawieszenia alternatywnego ma postać:

delay case [set A][priority p]
(LE^: SL1

(LEn): SŁn
esac

gdzie A jest zmienną typu adresowego, p ma znaczenie takie;jak przy po­
przedniej operacji, LE^,..., LEn są listami zmiennych zdarzeniowych,
zaś SL-|......... SLn są ciągami instrukcji. Wykonanie tej operacji powoduje
zawieszenie procesu, przy czym jego identyfikator oraz priorytet zosta-
ją zapamiętane we wszystkich zmiennych zdarzeniowych występujących w
listach LE^..., LEn. Zawieszony proces będzie odwieszony, jeżeli zo­
stanie wykonana taka operacja continue, na jednej spośród wymienionych
zmiennych zdarzeniowych, która wybierze ten proces do reaktywowania.
Reaktywowany proces wykona ten spośród ciągów instrukcji SLi,..., SLn,
który odpowiada liście LE zawierającej tę zmienną zdarzeniową, na której
wykonano operację kontynuacji. W' razie gdy zmienna, na której wykonano
operację znajduje się na kilku listach, wówczas wybór odpowiedniego ciągu
instrukcji jest niedeterministyczny. Po odwieszeniu procesu jego iden­
tyfikator zostaje usunięty ze wszystkich wymienionych zmiennych zdarze­
niowych. Jeżeli w momencie zawieszenia procesu zostaje przekroczona dłu­

115

gość którejkolwiek ze zmiennych zdarzeniowych, następuje błąd wykonania
programu. Opcja set A służy do tego, aby odwieszony proces mógł zapa­
miętać w zmiennej A identyfikator tego procesu, który spowodował jego
odwieszenie.

Poniżej przedstawiony przykład ilustruje zastosowanie konstrukcji
regionu oraz zmiennych zdarzeniowych do zorganizowania wykluczającego
dostępu do wspólnej puli jednorodnych zasobów.

1 przydział_zasobów : region
2 grant przydziel,zwolnij;
3 newmode zbiór—zasobów=int(0:9);
4 dcl przydzielony array (zbiór zasobów) bool

(: (zbiór zasobów): false:);
5 dcl zwolnienie zasobu event;
6 przydziel : proc()(int);
7 do for ever;
8 do for i in zbiór_zasobów;
9 if not przydzielony (i) then przydzielony (i):=true;

10 return (i);
11 fi;
12 od;
13 delay zwolnienie_zasobu
14 od;
15 end przydziel;
16 zwolnij : proc (i int);
17 przydzielony (i) :=false;
18 continue zwolnienie_zasobu;
19 end zwolnij;
20 end przydział_zasobów

Przykład wprowadza jednocześnie nie omawiane dotychczas elementy ję­
zyka, które wymagają dodatkowych wyjaśnień. Wiersz 2 służy do ustalenia
reguł dostępu: słowo grant (odpowiednik słowa define w języku Modula)
oznacza, że obiekty lokalne przydziel oraz zwolnij udostępnia się na ze­
wnątrz regionu (w bloku bezpośrednio otaczającym region). W wierszu 3
wprowadza się definicję nowego typu (newmode), którego zbiorem wartości
są liczby całkowite (int) z przedziału [0,9] . Wiersze 4, 5 są deklara­
cją (dcl) zmiennych; Wiersz 4 deklaruje zmienną typu tablicowego (array),
której elementy są typu boolowskiego (bool), oraz inicjalizuje tę zmien­
ną, przypisując wartości false wszystkim jej elementom.

Wiersze 6-15 oraz 16-19 są definicjami procedur (proc) krytycznych
regionu. Parametry procedur są rozdzielone na dwie grupy: parametry wej­
ściowe - pierwsza para nawiasów, parametry wyjściowe - druga para. Pro­

116

cedura przydziel ma pusty zbiórlparametrów wejściowych i jeden parametr
wyjściowy, a procedura zwolnij - jeden parametr wejściowy i brak parame­
trów wyjściowych.

Z instrukcji występujących w treści procedur komentarza wymagają
tylko trzy: instrukcja do for ever ... od jest nieskończoną pętlą; in­
strukcja return (i) oznacza zakończenie procedury (wyjście z pętli)
oraz podstawienie wartości i pod parametr wyjściowy; instrukcja do
for i in zbiór_zasobów jest instrukcją pętli, przy czym ciekawostką
jest to, że i stanowi tutaj tylko parametr oraz to, że kolejność
przyjmowania przez i wartości z przedziału [0,9] jest niezdetermino-
wana. _

7.4. Komunikacja z wykorzystaniem sygnałów

Sygnały są obiektami, które mają służyć synchronizacji równolegle
działających procesów podczas wzajemnego przekazywania informacji. Syg­
nały muszą być deklarowane w pewnym bloku na tym samym poziomie, co wy­
korzystujące je procesy (sygnały są zatem w procesach obiektami nielo­
kalnymi). Postać deklaracji sygnału S jest następująca:

signal S [=(T1..........Tn)] [to P] ,

gdzie T1,...,TJ1 są identyfikatorami typów, P - identyfikatorem procesu.
Opcja (Tq,...,Tn) służy do zdefiniowania zbioru wartości, które mo­

gą być przesyłane wraz z sygnałem. Opcja to P oznacza, że jedynym od­
biorcą sygnału jest proces o nazwie P.

Na sygnałach można wykonywać dwie operacje: operację przesyłania
sygnału (send) oraz operację odbioru sygnału (receiye case).

Operacja przesłania sygnału S ma postać

send S [(W^ ,... ,Wn)j [to Wp] [priority p] ,

gdzie Wlt...,W są wartościami, odpowiednio typu T;,...,Tn; WP jest wy­
rażeniem, którego wartością jest identyfikator pewnego procesu; p - nie-
ujemnym wyrażeniem całkowitym oznaczającym priorytet.

Brak opcji Wi,...,Wn oznacza, że z sygnałem nie przesyła się wartoś­
ci, brak opcji to WP oznacza, że sygnał jest kierowany do wszystkich
procesów, brak zaś opcji priority p oznacza, że sygnałowi przypisuje
się domyślnie wartość priorytetu równą zeru. Operacja send wykonana w
pewnym procesie przesyła sygnał wraz z dołączoną listą wartości i prio­
rytetem do pewnego wskazanego lub do wszystkich procesów, i powoduje
ewentualne reaktywowanie procesu, który został zawieszony i oczekuje na
ten sygnał.

117

Operacja odbioru sygnałów ma postać:

receiye case [set A]
(S -j £ in LN: S Li

^Sn [12 LM):SLn
[else SL0]

esac,

gdzie A jest zmienną typu adresowego; S1,...,Sn są nazwami różnych syg­
nałów; LN-j,...,LN są listami identyfikatorów parametrów; SL0,...,SLn
są ciągami instrukcji.

Lista identyfikatorów parametrów LN^ występuje wówczas, gdy sygnał
jest przesyłany wraz z listą pewnych wartości; parametry z tej listy

służą wtedy do zapamiętywania przesłanej listy wartości. Znaczenie ope­
racji jest następujące: jeżeli w momencie rozpoczęcia realizacji opera­
cji oczekuje na odbiór jeden spośród sygnałów S^,...,S , to zostaje wy­
brany ten, który ma najwyższy priorytet, (gdy jest kilka takich sygna­
łów,wtedy wybór jednego z nich jest niedeterministyczny),pod odpowiada­
jącą mu listę parametrów zostają podstawione przesyłane z sygnałem war­
tości, a następnie wykonuje się odpowiadający wybranemu sygnałowi ciąg
instrukcji. Jeżeli w momencie rozpoczęcia realizacji nie ma oczekujące­
go sygnału oraz nie ma opcji else, to proces wykonujący operację zawie­
sza się, aż do momentu nadejścia jednego z oczekiwanych sygnałów; gdy
natomiast opcja else występuje, wtedy wykonuje się odpowiadający jej
ciąg instrukcji SL0. Sygnał może byó odebrany przez proces tylko wów­
czas, gdy:

a) jeżeli podczas operacji send występuje opcja to WP, to wartość
WP wskazuje ten proces,

b) jeżeli w deklaracji sygnału występuje opcja to F, to P jest naz­
wą tego procesu.

Zmienna adresowa A służy do zapamiętania nazwy tego procesu, od któ­
rego odebrano sygnał; jeśli zmienna ta występuje, to podstawienie pod
nią odpowiedniej wartości dokonuje się przed obliczeniem ciągów SL^.

Zastosowania mechanizmu, sygnałów pokazuje następujący fragment pro­
gramu: Przedstawiony moduł zarządca składa się m.in. z pewnej puli pro­
cesów (oblicz), z których usług będą korzystać inne procesy, zewnętrzne
w stosunku do modułu (zarządca). Wewnątrz modułu są używane sygnały
(inicjuj) i (zakończ), wymieniane pomiędzy procesem (alokator) a proce­
sami (oblicz). Pomiędzy modułem a jego otoczeniem są wymieniane sygnały
(przydziel), (zwolnij), (wykonaj), (przeciążony), (gotowy), (odczytaj);

118

C
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

zarządca : modliła
seize przydziel, zwolnij.wykonaj,przeciążony,gotowy,odczytaj
signal inicjuj=(inetance), zakończ;
alokator:proceBa();
newmodę liczba=int (1:100);
dcl liczniki array (liczba)

struct(nr inatance,
status set(wolny.zajgty));

do for in liczniki;
k:=(:atart oblicz(),wolny:);

od;
do for ever;
begin

dcl użytkownik instance
oczekiwane—sygnały:
receiye case set użytkownik;

(przydziel):do for k in liczhiki;
do with k;
if status=wolny
then status:=zajęty;
send inicjuj(użytkownik) to oblicz;
exit oczekiwane-sygnały;
fi;

od;
od;
send przeciążony to użytkownik;

(zwolnij in nr-oblicz):
send zakończ to nr_oblicz;
znaj dź_oblicz:
do for k in liczniki;

do with k;
if nr_oblicz=nr then

status:=wolny;
ezit znajdź_oblicz;

fi;
od;

od znajdź_oblicz;
esac oczekiwane-sygnały;

end;
od; I

end alokator;

119

42 oblicz : process');
43 do for ever;
44 begin
45 dcl użytkownik instance,
46 licz int;=0;
47 receiye case
48 (inicjuj in odbiorca):
49 send gotowy to odbiorca;
50 użytkownik:=odbiorca;
51 esac;
52 robocza—pętla:
53 do for ever
54 receiye case
55 (wykonaj):licz:=licz+1;
56 (zakończ):send odczytaj (licz) to użytkownik;
57 exit robocza_pętla;
58 esac;
59 od robocza_pętla;
60 end;
61 od;
62 end oblicz;
63 start alokator;
64 end zarządca;

W przykładzie występują nowe, nie wyjaśnione dotychczas konstrukcje
językowe. Wiersz 2 wprowadza listę obiektów, wykorzystywanych w module
zarządca, a które są zdefiniowane na zewnątrz tego modułu. Łatwo wywnio­
skować z treści modułu, że definicja tych obiektów jest postaci:

signal przydziel,zwolnij=(instance),
wykonaj,przeciążony.gotowy,
odczytaj =(int);

Występujące tutaj, a także w wierszach 3, 7, 14, 45, słowo instance
oznacza typ adresowy, służący do identyfikacji procesów. Wiersze 6, 7,
8 są deklaracją zmiennej tablicowej liczniki, której elementy są struk­
turami - w terminologii języka Pascal rekordami - o dwóch polach nr
oraz status. Wiersze 9, 10, 11 są odmianą instrukcji iteracji; kolejne
iteracje dotyczą elementów tablicy liczniki. Instrukcje exit występują­
ce w wierszach 22, 34, 57 są instrukcjami skoku odpowiednio do wierszy
39, 38, 60 będących pierwszymi wierszami bezpośrednio za końcem bloków,
które są wymienione jako argumenty instrukcji. Instrukcje do with wystę­
pujące w wierszach 18, 31 są odpowiednikami instrukcji wiążącej w Pas­
calu.

120

7.5. Komunikacja z wykorzystaniem buforów

Bufory stanowią kolejny obiekt służący komunikacji i synchronizacji
procesów. Bufory, podobnie jak sygnały, muszą byó deklarowane na tym
samym poziomie, na którym deklarowane korzystające z nich procesy. Bu­
fory są deklarowane jako zmienne typu buforowego. Definicja typu bufo­
rowego ma postać:

bufferfCd)] T,

gdzie d jest wyrażeniem całkowitym, nieujemnym, zwanym długością bufo­
ra, zaś T jest typem danych, które mogą być przechowywane w tym buforze.
Brak opcji d oznacza, że długość bufora wynosi zero. Na zmiennych ty­
pu buforowego, np. zmiennej zadeklarowanej w postaci

dcl B buffer (d) T

można wykonywać operacje: przesłania do bufora (send), odbioru z bufora
(receiye) i odbioru alternatywnego (receiye case).

Operacja przesłania wartości wyrażenia w, typu T do bufora B ma
postać

send B (w) fpriority pj. ,

Operacja działa w sposób następujący: Jeżeli aktualna liczba wiadomości
przechowywana w buforze B jest mniejsza od długości bufora, to wartość
wyrażenia w oraz priorytet p zostają zapamiętane w buforze, zaś pro­
ces, który wykonał tę operację kontynuuje swe dalsze obliczenia. Jeżeli
natomiast aktualna liczba wiadomości przechowywana w B jest równa jego
długości, wtedy proces wykonujący operację zostaje zawieszony. Zawiesze­
nie trwa dopóty, dopóki nie pojawi się wolne miejsce w buforze, bądź
nastąpi odbiór wartości w przez jeden z oczekujących na nią procesów.
Brak opcji priority powoduje przyporządkowanie wiadomości priorytetu ze­
rowego.

Operacja odbioru z bufora B ma postać

receiye B

Operację można traktować jako procedurę funkcyjną, która działa następu­
jąco: Spośród wiadomości zawartych w buforze B oraz tych wiadomości,
które pewne zawieszone procesy starają się przekazać do bufora B (proce­
sy wykonujące operację send), wybiera się wartość odpowiadającą wiado­
mości o najwyższym priorytecie. Jeżeli bufor B nie zawiera żadnych wia­
domości i nie ma odpowiednich zawieszonych procesów, to proces wykonu­
jący operację receive zawiesza się, .aż do momentu przesłania do B pew­
nej wiadomości.

121

Operacja odbioru alternatywnego ma postać:

rećeiye case [set Aj]
(B1 in Nq) : SL1

(Bn in Nn) : SLn
[else SLj

esac,

gdzie B^,...,B są nazwami buforów; - nazwami parametrów; SLq,
SL1f...,SLn są ciągami instrukcji, zaś A jest zmienną adresową.

Operacja polega na odbiorze pojedynczej wiadomości z jednego z bufo­
rów B1,...,B , lub od jednego z zawieszonych procesów oczekujących na
przesłanie wiadomości do tych buforów, zapamiętaniu tej wiadomości po­
przez podstawienie pod jeden z parametrów N^,...,Nn, a następnie na wy­
konaniu jednego z ciągów instrukcji SL^,...,SŁn odpowiadającego wybra­
nemu buforowi. Dokładniej, wykonanie operacji przebiega następująco: w
niezdeterminowanej kolejności są przeglądane bufory B1t...,Bn. Jeżeli
przeglądany bufor, powiedzmy B^, ma zapamiętaną pewną wiadomość lub ist­
nieją pewne'zawieszone procesy przesyłające wiadomość do tego bufora,
to spośród tych wiadomości zostaje wybrana wiadomość o najwyższym prio­
rytecie, a związana z nią wartość zostaje podstawiona pod parametr N^,
a następnie wykonany ciąg instrukcji SL^. Jeżeli w wyniku przeglądu oka-
że się, że z żadnym buforem nie są skojarzone wiadomości do odbioru, to
dalsze wykonanie operacji zależy od opcji else. Jeżeli opcja ta istnie­
je, to jest wykonywany ciąg instrukcji SLQ, a jeśli jest jej brak, tu
proces wykonujący operację zostaje wstrzymany, aż do momentu, gdy do
jednego z buforów B^,...,B zostanie skierowana pewna wiadomość. Opcja
set A, tak jak w przypadkach poprzednich, służy do zapamiętania identy­
fikatora tego procesu, z którego odebrano wiadomość.

Kolejny przykład ilustruje zastosowanie omawianego mechanizmu proce­
sów i jednocześnie wprowadza dalsze szczegóły języka Chill. Przykład
jest modyfikacją programu z poprzedniego punktu, polegającą na zastąpie­
niu komunikacji za pomocą sygnałów komunikacją za pomocą buforów.

1 otoczenie_użytkowników module
2 grant bufory_użytkownika,wiadomości_alokatora,
3 bufory_alokatora,wiadomości_oblicz,
4 bufory_oblicz;
5 newmode
6 wiądomości_użytkownika=
7 struct (type set (przeciążony,gotowy,odczytaj,
8 identyfikator-alokatora),
9 case typ of

122

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
t35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

(przeciążony):
(gotowy): oblicz ref bufory—oblicz,
(odczytaj): licz int,
(identyfikator_alokatora):
alokator ref bufory—alokatora

esac),
bufory_użytkownika=buffer(1) wiadomości—użytkownika,
wiadomości—alokatora=

struct (typ set (przydziel,zwolnij,ident oblicz) ,
case' typ of
(przydziel): użytkownik ref bufory_użytkownika
(zwolnij,ident_oblicz):

oblicz ref bufory_oblicz
esac),

bufory_alokatora=buffer(1) wiadomości-alokatora,
wiadomości_oblicz=

struct (typ set (inicjuj,wykonaj.zakończ),
case typ of
(inicjuj): użytkownik ref bufory—użytkownika,
(wykonaj,zakończ):

esac),
bufory_oblicz=buffer(1) wiadomości—oblicz,

dcl bufor_użytkownika bufory—użytkowników,
buf—alokatora ref bufory_alokatora,
buf—oblicz ref bufory_oblicz;

start alokator (——bufor_użytkownika';
buf—alokatora:=(receiye bufor_użytkownika). alokator;

end otoczenie—użytkownika;
zarządca:module;
seize bufory_użytkownika, wiadomości-alokatora,

bufory_alokatora, wiadomości—obiicz,
buf ory_oblicz;

alokator:process (buf ref bufory—użytkownika);
dcl bufor—alokatora bufory_alokatora;
newmode nr_oblicz=int(1:10) ;
dcl liczniki array (nr_oblicz)

struct (nr ref bufory—obi icz,
status set (wolny,zajęty)),

wiadomość wiadomości—a]okatora;
send buf—([identyfikator_alokatora.

-—bufor—alokatora]i;

123

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
9 r

do for K in liczniki;
start oblicz (-—bufor—alokatora);
K:=[(receive bufor-alokatora).ident—oblicz,wolny];

od;
do for ever

begin
dcl użytkownika ref bufory—użytkownika;
wiadomość :=?receive bufor alokatora;
zarządzanie—wiadomościami:
case wiadomość.typ of

(przydziel):
użytkownik:=wiadomość.użytkownik;
do for K in liczniki;

do with K;
if status = wolny then
status : = zajęty
send nr-—([inicjuj,użytkownik]);
exit zarządzanie—wiadomościami

fi;
od;

od;
send użytkownik-—([przeciążony]);

(zwolnij) :
send wiadomości.nr ([zakończ]);
znajdź_oblicz:
do for K in liczniki;

do with K;
if wiadomość.oblicz=nr
then status:=wolny
exit znajdź-oblicz

fi
od

od znajdź-oblicz;
esac zarządzanie_wiadomościami
end;

od;
end alokator;
oblicz : process (buf ref bufory—alokatora);

dcl bufor—oblicz bufory—obiicz;
send buf-—([ident—obliczbufor_oblicz]);
do for ever

124

92 begin
93 dcl użytkownik ref bufory-użytkownika;
94 licz int := 0,
95 wiadomość wiadomości_oblicz;
96 wiadomość := receiyę bufor—oblicz;
97 case wiadomość.typ of
98 (inicjuj): użytkownik : = wiadomość.użytkownik;
99 send użytkownik-*-([gotowy,-^bufor—obliczj) ;

100 elee (k sytuacja błędna »)
101 esac;
102 pętla—robocza:
103 do for ever
104 wiadomość := receiyę bufor_oblicz;
105 case wiadomość.typ of
106 (wykonaj): licz := licz + 1;
107 (zakończ):
108 send użytkownik-•-(L odczyta j ,liczj) ;
109 exit pętla_robocza;
110 else (k sytuacja błędna s?)
11 1 esac;
112 od pętla—robocza;
1 13 end;
114 od
115 end oblicz;
116 end zarządca;

Nowe konstrukcje językowe, które pojawiły się w przykładzie to:
struktury (rekordy) z wariantami - wiersze 7-14, 18-23, 26-30; specjal­
ny typ referencyjny (wskaźnikowy). Oznaczenie elementów struktur jest
podobne do odpowiednich oznaczeń w Pascalu. Podstawianie wartości pod
zmienną typu struktury z wariantami ma postać taką, jak przedstawiono w
wierszach np. 49, 53, gdzie pierwszy element wewnątrz nawiasu kwadrato­
wego oznacza wybór wariantu, a drugi wartość przyporządkowaną temu wa­
riantowi. Typ referencyjny ref został w przykładzie użyty do identyfi­
kacji buforów poprzez ich adresy. Znaczenie tego typu jest podobne do
roli typu wskaźnikowego w Pascalu, np. wiersz 14

alokator ref bufory_alokatora

oznacza, że na polu alokator (struktury typu wiadomości użytkownika)
będą występować adresy obiektów typu bufory alokatora. Jeżeli mamy
zmienną typu niereferencyjnego np. bufor_alokatora (wiersz 43), to no­
tacja

125

—bufor_alokat ora

oznacza adres tej zmiennej (wiersz 52). Jeżeli natomiast mamy zmienną
typu referencyjnego, np. parametr buf (wiersz 42), to notacja

buf—
oznacza zmienną określoną przez ten adres.

ĆWICZENIA

1, Napisać trzy wersje programu w języku
nie czytelników i pisarzy (ćw. 1, rozdz. 2)
nio mechanizmy komunikacji poprzez regiony,

Chill rozwiązujące zagadnie-
i wykorzystujące odpowied-
sygnały i bufory.

2. Wybierając dowolny mechanizm komunikacji napisać w języku Chill
program rozdziału zasobów, zgodnie z algorytmem bankiera (cw. 7, rozdz.
3), pomiędzy równolegle działające procesy.

3. Opracować model współpracy abonenta z centralą telefoniczną pod­
czas nawiązywania połączenia. Napisać program w języku Chill, który bę­
dzie symulować tę współpracę. (Założyć, że centrala telefoniczna ma pe­
wien proces zegara, który służy do wyznaczania bieżącego czasu.)

4. Wykorzystując model działania węzła podsieci teletransmisji da­
nych (ćw. 3, rozdz. 3) oraz model współdziałania węzłów (ów. 4» rozdz.
6) napisać -odpowiednie programy symulujące w języku Chill.

5. Zaprogramować równoległy algorytm sortowania liczb i przedstawić
jego realizację w języku Chill.

6. Dokładnie przeanalizować mechanizny sygnałów i buforów w języku
Chill. Czy mechanizmy te są wzajemnie zastępowalne?

7. Porównać mechanizmy komunikacji poprzez środowisko rozproszone
w językach Ada i Chill. Czy mechanizmy te są wzajemnie zastępowalne?

8. OBLICZENIA SYNCHRONIZOWANE PRZEPŁYWEM DANYCH

8.1. Wprowadzenie

Rozwojowi technologii, która doprowadziła do miniaturyzacji i pota­
nienia sprzętu komputerowego towarzyszy powstanie koncepcji nowych, od­
miennych od tradycyjnych, von neumannowskich spojrzeń na programowanie.
W zakresie programowania sekwencyjnego jest to coraz silniejszy rozwój
programowania funkcyjnego (nieproceduralnego) - przykładem języka pro­
gramowania opartego na tej koncepcji jest Prolog. W zakresie programo­
wania równoległego jest to koncepcja obliczeń synchronizowanych przepły­
wem danych - przykładem języka powstającego na bazie tej koncepcji jest
VAL (Value Oriented Language) opracowywany w MIT pod kierunkiem Dennisa.
W języku tym znajduje także odbicie koncepcja programowania funkcyjne­
go.

Programowanie sterowane przepływem danych formułuje program jako
zbiór operacji (rozumianych tu intuicyjnie, na przykład jako działania
arytmetyczne, logiczne itp.), który służy do realizacji zadania. Podkre
ślenia wymagają tu dwa aspekty:

- na operacje nie nakłada się z góry jawnego porządku ich wykonywa­
nia,

- dany zestaw wartości początkowych programu może nie wymagać wyko­
nania wszystkich operacji programu.

Konwencja wyznaczania kolejności operacji oraz podzbioru wykorzys­
tanych operacji wynika z potrzeby dostarczenia odpowiednich danych dla
uzyskania wymaganych wyników. Opiera się ona na zasadzie, że daną ope­
rację można wykonać wówczas, gdy są gotowe (dostarczone lub obliczone)
argumenty tej operacji. Obliczenia rozpoczynają się w chwili, gdy jest
ustalony pewien zestaw danych początkowych; zestaw ten pozwala na uru­
chomienie realizacji tych operacji, które działają wyłącznie na danych
początkowych. Uruchomione operacje są wykonywane niezależnie od siebie:
po zakończeniu każdej z nich mogą powstać warunki do uruchomienia na­
stępnych operacji. Obliczenia rozpoczynają się i są kontynuowane do mo­
mentu, gdy nie istnieją operacje w trakcie wykonywania i nie ma innych
operacji, dla których istnieją warunki ich uruchomienia.

W rozdziale przedstawiono uproszczoną wersję języka VAL [18] oraz
omówiono krótko problemy architektury komputera dla efektywnej implemen­
tacji tego języka. To ostatnie zagadnienie - chociaż nie należy zasad-

127

niczo do zakresu skryptu - poruszono z uwagi na jego odmienność w sto­
sunku do problemów architektury komputerów implementujących opisywane
poprzednio podejścia.

8,2. Koncepcja języka programowania

Przedstawiony język SVAL (Simple VAL) jest uproszczoną wersją języ­
ka VAL, opracowanego w MIT w 1979 r. i stanowiącego kontynuację prac
prowadzonych w tym ośrodku od wczesnych lat siedemdziesiątych [16,17,
18], Od języków tradycyjnych różni się on brakiem jawnego wyróżniania
równoległości - równoległość obliczeń wynika z rozpływu danych w trak­
cie obliczeń. Język jest funkcyjnie zorientowany (value-oriented), co
oznacza tutaj, że każda jednostka syntaktyczna definiuje pewną funkcję
odwzorowującą zbiór wartości wejściowych w zbiór wartości wyjściowych.
Przetworzeniu wielkości wejściowych w wyjściowe nie towarzyszą żadne
efekty uboczne.

Język nie używa pojęcia komórki pamięci, a zatem i zmiennej (w sen­
sie takim, jak w tradycyjnych językach programowania). Używa się nato­
miast pojęcia nazwy dla identyfikacji wartości definiowanych przez wyra­
żenia i funkcje - tak samo, jak jest to czynione w klasycznej matema­
tyce. Funkcyjnie zorientowana semantyka języka umożliwia pisanie pro­
gramów w postaci naturalnie wyrażającej "wrodzone" równoległości algo­
rytmów.

Abstrakcyjnymi strukturami danych języka są typy: integer, real,
boolean, charecter string (łańcuch znaków), structure (struktura) oraz
procedurę. Operacje.jakie można wykonywać na typach integer, real, boo-
lean, character string są ogólnie znane i nie wymagają komentarza. Ope­
racje wykonywane na strukturze będą zdefiniowane dalej (p. 8.3). Jedyną
operacją, jaką można wykonać na procedurze, jest jej wywołanie.

Składnia języka jest na tyle prosta, że można przedstawić ją formal­
nie niemal w całości. Dla zwartości opisu przyjęto konwencję:

{< E >}+ oznacza E | E , {e} +
{<E>} oznacza (e} + |puste

<program>::= program {< def procedury>)<wyrażenie> end
<def procedury> ::=<nazwa>= grocedure (<lista param we>)

yields (clista param wy>) ;
{<def procedury>};
<wyrażenie >

end <nazwa >
<lista param we> ::= {<deklaracja typu>}
<deklaracja typu> : : = <nazwa>:<typ>

128

< lista param wy> :: = {<typ>}
< wyrażenie>::= <proste wyrażenie>||<wyrażenie>} + |

<wyrażenie blokowe>]<wyrażenie warunkowe>|
<wywołanie procedury>

<wyrażenie blokowe> : : =
let{<deklaracja typu>};{<definicja nazwy>} ;
in <wyrażenie > end

<definicje nazwy> : :={<nazwa>}=<wyrażenie>
<wyrażenie warunkowe> :: =

if < wyrażenie > then <wyrażenie>
else<wyrażenie > end

< wywołanie procedury > : :»=<nazwa>(<wyrażenie>)
<wyrażenie proste> : :=<stała>|<nazwa>|

<prosty operator><wyrażenie> |
< wy r aż enie>< prosty operator><wyrażenie>
< typ prosty> ::= integer | real | boolean |

character string | structure
<typ> : := <typ prosty>| stream of <typ prosty>

Podstawową jednostką syntaktyczną jest definicja procedury, na przy­
kład:

p = procedurę (a1 :T1,... .a^T^
yields R1,...
<def procedury>,

<def procedury>
<wyrażenie >

end P

Procedura P ma m parametrów wejściowych a1,...,am o typach, odpo­
wiednio, T1t...,Tm. Nazwy a^j^^a^j muszą być różne od siebie i mogą
występować w wyrażeniu stanowiącym treść procedury. Obliczenia procedu­
ry dostarczają uporządkowany n-elementowy zbiór wartości o typach

stanowiący wynik wyliczenia wartości wyrażenia.
* Pojęcie wyrażenia jest ogólniejsze od rozumienia tradycyjnego i mo­

że oznaczać wektor (uporządkowany zbiór elementów), a nie tylko skalar.
Wymiar w(E) wyrażenia E jest definiowany rekurencyjnie:

W (<wyrażenie proste>) = 1
W (<wyrażenie1>,... ,<wyrażenie k>) =

w (<wyrażenie1>) +...+(wyrażenie k)
w (< wyrażenie blokowe>) =

w (let <definicja> in< wyrażenie> end) =
w (<;wyrażenie>)

129

w (< wyrażenie warunkowe>) =
w (if<wyrażenie > then< wyr 1>else<wyr 2 >end =
w (<wyr 1>) = w (<wyr 2>)

w (< wywołanie procedury>) =
w (< nazwa>(< wyrażenie>) =

<liczba elementów na <liście param wy>
procedury <nazwa>

W<def procedury >wymiar<wyrażenia>w treści procedury musi być
równy wymiarowi< listy param wy>.

Często jest wygodne wprowadzanie nazwy dla wyrażeń, które występują
w kilku miejscach pewnego większego wyrażenia. Służy temu wyrażenie blo­
kowe

let | < deklaracja typu>};
<lista nazw 1>=<wyr 1>,

< lista nazw k>=<wyr k>;
in < wyrażenie > end

Pozwala ono na lokalne użycie nazw, które mogą występować w<wyr 1>...
...<wyr k>, <wyrażeniu>, oraz na wprowadzeniu dodatkowych nazw dla

<wyr 1 >,. ..,<wyr k > stanowiących fragmenty<wyrażenia >, Wymaga się aby
liczba elementów na liście nazw 1 była równa wymiarowi< wyr i>. Wszys­
tkie wprowadzane nazwy muszą być różne. Wyrażenia blokowe mogą być za­
gnieżdżanej konflikt nazw rozstrzygają zwykłe reguły zakresu odnoszące
się do struktury blokowej [22] .

Wyrażenie warunkowe

if < wyrażenie > then < wyr 1 > else < wyr 2 > end

ma < wyrażenie> boolowskie wymiaru 1, zaś<wyr 1> oraz<wyr 2>muszą
mieć ten sam rozmiar, a odpowiadające sobie składowe tych wyrażeń muszą
być tego samego typu.

Wywołanie procedury ma postać P (<wyr>), gdzie < wyr > ma wymiar rów­
ny liczbie elementów na cliście param we>, a odpowiednie składowe<wyr>
muszą być typu deklarowanego w definicji procedury. Komunikacja parame­
trów pomiędzy program a procedurę odbywa się przez przekazywanie wartoś­
ci. Wynikiem wykonania procedury jest wyrażenie o wymiarze i typach
składowych określonych przez<listę param wy>.

Prosty przykład programu obliczającego silnię:

program
silnia = procedurę (n : integer)
yields integer;

130

produkt = procedurę (n1:integer.n2:integer)
yields integer;

if n2< n1 then n1
else let mzinteger:

m : = (n1 + n2)/2;
in produkt (n1,m) h

produkt (m+1,n2)
end

end '
end produkt;
if n < 0 then error
else produkt (l,n) end

end silnia
end

8.3 . Dynamiczne struktury danych

Język SVA1 dysponuje dwoma rodzajami dynamicznych struktur danych:
struktury (structure) oraz listy pośredniczące (stream). Pierwszy z
tych rodzajów ma zastosowanie uniwersalne - służy do tworzenia przetwa­
rzanych obiektów. Drugi rodzaj jest przeznaczony do organizacji przesy­
łania informacji pomiędzy modułami (procedurami) programu (por. 2.5).
Dynamizm struktur oznacza możliwość ich modyfikacji w trakcie prowadze­
nia obliczeń.

Strukturę (structure), zgodnie z .klasyfikacją Turskiego [22] , można
określić jako strukturę półregularną. Jest to więc konstrukcja bardzo
ogólna, jej szczególnymi przypadkami są na przykład tablica i rekordy.
Najprostszą strukturą jest struktura pusta (nil). Ogólnie struktura
jest wektorem n-elementowym

(s1 : v1’ s2 : v2’””sn : Vn)

gdzie s1 ,s2,.... ,sn są nazwami (selektorami) składowych struktury, zaś
v1,v2,...,vn - wartościami tych składowych. Wymaga się, aby selektory
składowych struktury były różne. Wartościami składowych struktury mogą
być wartości typów prostych wymienionych w punkcie 8.2, lecz także war­
tościami składowych mogą być inne struktury. Poniżej podano operacje,
jakie można wykonywać na strukturach. Symbole występujące jako argumen­
ty tych operacji oznaczają: d jest strukturą, s jest selektorem, zaś c
pewną wartością.

create() tworzy strukturę pustą nil.
append(d,s,c) tworzy nową strukturę d’, która od struktury d róż­

ni się tylko tym, że składowa s nowej struktury ma wartość c, nieza­
leżnie od tego, czy struktura d taką składową posiada.

131

deletef d,s) tworzy nową strukturę d, która nie zawiera składowej s,
a pozostałe składowe ma identyczne ze składowymi struktury d.

selectf d,s) jeżeli struktura d zawiera składową s, to wynikiem
operacji jest wartość tego komponentu; w przeciwnym razie wynik operacji
jest nieokreślony.

nil-structure(d) jest predykatem przyjmującym wartość prawda, gdy d
jest strukturą pustą; w przeciwnym razie predykat przyjmuje wartość
fałsz.

Poniżej podano przykład procedury, która działając na dowolnej
strukturze binarnej zamienia rolę selektorów 1 oraz p.

odwróć = procedurę (x : structure)
yields structure

if nil-structure(x) then s
else let lewa, prawa : structure;

lewa = odwróć (select(x,p));
prawa -^odwróć (select(x,l));

in append (append
(create() ,l,lewa),p,prawa)

end
end

end odwróć

Specjalnym rodzajem struktur, przeznaczonym do komunikacji pomiędzy
modułami programu są listy pośredniczące (stream). Stanowią one analo-
gon kanałów buforowanych w komunikacji pomiędzy współpracującymi proce­
sami (rozdz. 6). Deklaracja

stream of T

gdzie T jest dowolnym typem, różnym od typu potokowego, definiuje ciąg
złożony z obiektów typu T, na którym można wykonywać następujące opera-
cje: <
(s,s oznaczają listy, c wartość typu T) :
() daje listę pustą, o zerowej długości.

ęons(c,s) tworzy listę s , którego pierwszym elementem jest c, a pozo­
stałe elementy są elementami listy s.

first(s) daje wartość z pierwszego elementu listy; gdy s jest pusta,
operacja jest niezdefiniowana.

rest(s) daje w wyniku listę s', która powstaje z s przez opuszczenie
pierwszego elementu.

empty(s) jest predykatem prawdziwym, gdy lista s jest pusta i fałszy­
wym w przypadku przeciwnym.

Operacje spełniają spodziewane tożsamości:

132

if emptyfs) then s =
.else s = cons (first(s), rest(s)) end

Osobny przykład wykorzystania list pośredniczącyh przedstawia pro­
cedura generacji liczb pierwszych. Procedura oparta na prezentowanym w
rozdziale 6. algorytmie sita Eratosthenesa generuje liczby pierwsze
mniejsze od zadanej liczby n. Procedura generuj tworzy ciąg kolejnych
liczb całkowitych, poczynając od liczby 2. Wytworzona przez nią lista
jest przetwarzana przez procedurę sito, która eliminuje liczby nie bę­
dące pierwszymi. Działa ona w taki sposób, że pobiera pierwszy element
ze swego wejścia i usuwa wszystkie jego wielokrotności oraz wywołuje
rekurencyjnie procedurę sito do pozostałych elementów z pośredniczącej
listy wejściowej:

liczby pierwsze =• procedurę (n : integer)
yields stream of integer;

generuj = procedurę (l,n : integer)
yields stream of integer;
if 1< n then
else cons (l,generuj(l+1,n) end;
end generuj;
sito = procedurę (s : stream of integer)
yields stream of Integer;
if empty (s) then
else let x : integer;

s2,s3: stream of integer;
x,s2 = first(s) , rest(s);
s3 = skreśl (x,s2);

in cons (x,sito(s31) end
end
end sito;
skreśl = procedurę (x : integer, s : stream of integer)
yields stream of integer;
if empty(s) then
else let y : integer;

s2,s3 : stream of integer;
y,s2 = first(s), rest(s);
s3 = skreśl(x,s2) ;

in if deyide (x,y) then s3
else cons (y,s3) end

end
end
end skreśl;

133

sito(generuj(2 ,n)) ;
end liczbypierwsze;

Występujący w procedurze skreśl predykat devide(x,y) przyjmuje wartość
prawda, gdy y jest podzielne przez x.

8.4 * Schematy przepływu danych

Tradycyjnym sposobem wyrażania semantyki programów sekwencyjnych są
schematy blokowe. Przedstawiają one operacje z ich argumentami oraz
określają przepływ sterowania (kolejność realizacji operacji). Odpowied­
nikiem schematów blokowych w programowaniu synchronizowanym przepływem
danych są grafy (schematy) przepływu danych.

Rys. 8.1. Graficzna reprezentacja bloków

Przez schemat przepływu danych (data flow schema) będziemy rozumieć
graf skierowany złożony z wierzchołków zwanych blokami oraz łączących
je łuków. Wyróżnia się pięć typów układów - rys. 8.1.:

(a) replikacyjny,
(b) funkcyjny
(c) przełączający,
(d) scalający,
(e) pochłaniający.

Schemat przepływu danych jest typu (m,n) jeżeli ma m bloków replika-
cyjnych nie posiadających łuków wejściowych oraz m bloków replikacyj-
nych nie posiadających łuków wyjściowych. Bloki te będą nazywane odpo­
wiednio blokami wejściowymi i wyjściowymi schematu. Schemat uważa się
za poprawny wówczas, gdy wszystkie pozostałe bloki mają wymagane łuki i
wszystkie te łuki mają połączone oba końce z różnymi blokami.

Definicja semantyki operacyjnej schematów przepływu danych wymaga
dodatkowych określeń. Konfiguracją schematu nazywa się graf schematu
wraz z ocechowaniem pewnych łuków grafu. Ocechowany łuk będzie zaznaczo­
ny graficznie przez czarną kropkę (znacznik). Znacznik na łuku symboli—

134

zuje fakt przekazywania informacji pomiędzy blokami. Rozpływ znaczników
reprezentuje przekazywanie informacji pomiędzy współdziałającymi bloka­
mi .u

Rys. 8.2. Przykłady reguł wzbudzania bloków

Obliczenia reprezentowane przez (m,n) schemat przepływu danych wyra­
żają się w postaci ciągu konfiguracji tego schematu: od konfiguracji po­
czątkowej, poprzez pośrednie, aż do konfiguracji końcowej. Przejście od
jednej konfiguracji do drugiej wynika z zasady zmiany znakowań dla po­
szczególnych typów bloków (rys. 8.2). Do opisu tych zasad używa się ję­
zyka stanowiącego modyfikację terminologii sieci Petriego: mówimy więc,
że blok jest przygotowany, może się wzbudzió i generować nowe znakowa-
nie.

Koniecznym warunkiem przygotowania bloków jest to, aby ich łuki wyj­
ściowe nie były oznakowane. Blok jest przygotowany - z wyjątkiem bloku
scalającego - gdy, dodatkowo, jest oznakowany każdy jego łuk wejściowy.
Przygotowany blok aplikacji wzbudza się, pochłania znakowanie łuku wej­
ściowego i powiela je na swych łukach wyjściowych (rys. 8.2a). Podobnie
działa blok funkcyjny (8.2b). Wzbudzony blok przełączający generuje
znacznik tylko na jednym ze swych wyjść, zależnie od wartości u zwią­
zanego z nim warunku logicznego (rys. 8.2c). Blok pochłaniający po wzbu­
dzeniu generuje na wyjściu wyróżnioną wartość, zwaną sygnałem, wymaganą
do implementacji schematów aplikacji opisanych dalej. Blok scalający
działa nieco inaczej od poprzednich bloków. Jeżeli oznakowane jest jed­
no jego przejście, to wartość znakująca jest bez zmiany przenoszona na
wyjście. Natomiast jeżeli oznakowane są oba wejścia, to obie wartości
znakujące są przenoszone na wyjście w niezdeterminowanej kolejności.

Tworzenie schematów przepływu przez dowolne łączenie bloków łatwo
może prowadzić do powstania sytuacji z blokadami (zastojami) lub niede-
terministycznego działania. Dlatego wprowadza się pojęcie klasy tzw.

135

Rys. 8.3. Przykład
schematu warunkowego

prawidłowych schematów przepływu da­
nych. Schemat (m,n) jest prawidłowy,
gdy graf schematu jest acykliczny i
składa się z bloków replikacyjnych,
funkcyjnych lub pochłaniających oraz
z tzw. podschematów warunkowych. Po­
jęcie schematu warunkowego wiąże się
z wyrażeniem warunkowym; jego sens
wyjaśnia przykład schematu z rys.8.3,
który oblicza wartość wyrażenia:

if a >b then a + b else b - 3 end

Pokazane tam wyjście dodatkowe trig
służy wskazaniu, iż obliczenia zosta­
ły zakończone.

Klasa schematów prawidłowych jest
zbyt uboga, aby można za jej pomocą
wyrazić takie elementy, jak procedurę,
jej wywołanie oraz rekursję. Dlatego
wprowadza się dodatkowy typ bloku zwa­

Rys. 8.4. Blok aplikacji

nego blokiem aplikacji (apply) - rys. 8.4. Pierwszym wejściem do bloku
aplikacji jest znacznik związany z (m,n) prawidłowym schematem przepły­
wu danych. Blok jest przygotowany wówczas, gdy istnieją znaczniki na
wszystkich jego wejściach. Efektem wzbudzenia bloku jest zastąpieni i

136

przez wyspecyfikowany (m,n) schemat. Schemat ten może ponownie zawierać
blok aplikacji, umożliwiając tym samym wyrażenie rekursji.

Rys. 8.5. Schemat przepływu danych procedury odwróć

Przykład użycia bloku aplikacji pokazano na rys.8.5, na którym przed­
stawiono schemat przepływu danych procedury odwróć, zdefiniowane w p.8.3.
Występujący tam sygnał trig spełnia rolę synchronizatora schematu: jego
obecność na wyjściu jest warunkiem rozpoczęcia obliczeń, zaś jego obec­
ność na wyjściu oznacza zakończenie obliczeń. Sygnał odw jest symbolem
wywołania procedury odwróć.

8.5. Problemy implementacji schematów przepływu danych

Efektywna implementacja schematów przepływu danych wymaga nowych,
niekonwencjonalnych architektur komputerowych. Przykład koncepcji odpo­

137

wiedniej architektury podaje L1 8] . Strukturę komputera przedstawiono na
rys. 8.6, na którym wyróżniono sześć podzespołów:

- jednostki funkcjonalne,
- manipulator struktur,
- blok sterowania,
- sieć decyzyjną,
- sieó dystrybucyjną,
- pamięć pakietową.

Rys. 8.6. Procesor przepływu danych

Blok sterowania pobiera instrukcje i operandy z pamięci pakietowej,
a następnie formuje je w pakiety operacyjne. Każdy taki pakiet przecho­
dzi przez sieć decyzyjną, która transmituje go do odpowiedniej jednost­
ki funkcjonalnej - w przypadku operacji skalarnych, bądź do jednostki
manipulacji strukturami - w przypadku działań na strukturach. Wykonanie
instrukcji przez jednostki funkcjonalne generuje pakiety wyników, które
poprzez sieć dystrybucyjną są przesyłane do bloku sterowania. W bloku
sterowania następuje ich połączenie z innymi operandami dla aktywacji
dalszych instrukcji.

138

Pamięć.pakietowa zawiera zbiór tzw. struktur elementarnych, które
są strukturami jednopoziomowymi o składowych przyjmujących wartości
skalarne i identyfikowanych przez unikalne nazwy. Zbiór struktur elemen­
tarnych tworzy graf cykliczny, w którym każdy łuk jest reprezentowany
przez ^unikalny identyfikator składowej struktury elementarnej stanowią­
cej wierzchołek wyjściowy łuku. Pamięó pakietowa chroni także przed
niepowołanym dostępem do struktur elementarnych oraz zarządza pamięcią
fizyczną.

Struktury danych w pamięci pakietowej spełniają potrójną rolę w
schematach przepływu danych. (1) jako operandy operacji manipulacji na

Q struktura proceduralna

instrukcja °P 1 k

,kod operacji I

przeznaczenie 1
inst
l

integr

łuk
l

licznik

integer integer

b rekord aktywacji

tekst

dostarczone

integer
dowolne
typy

Rys. 8.7. Struktura proceduralna i ąktywacyjna

139

strukturach, (2) jako procedury, których komponentami są instrukcje pro­
cedury, (3) jako rekordy aktywacji, gromadzące wartości operandów dla
instrukcji oczekujących na przygotowanie warunków ich realizacji.

Schematy przepływu danych są reprezentowane w procesorze przez tzw.
struktury proceduralne (rys. 8.7a). Struktura proceduralna odpowiada
schematowi z n blokami ponumerowanymi od 1 do n. Każda składowa nazywa­
na instrukcją, zawiera kod bloku i zbiór jego łuków wejściowych. Każdy
-łuk wejściowy określa:

- instrukcje, dla której przeznaczony jest wynik,
- łuk wejściowy instrukcji przeznaczenia,
- liczbę operandów wymaganych przez instrukcję przeznaczenia.
Ponieważ w danym momencie może jednocześnie byó aktywnych wiele eg­

zemplarzy tego samego schematu przepływu danych, każdy taki egzemplarz
jest zaprezentowany przez tzw. rekord aktywacji. Każdy blok jest iden­
tyfikowany przez parę (A,I), gdzie A jest numerem kolejnego rekordu ak­
tywacji, zaś I liczbą przypisaną blokowi w strukturze proceduralnej.
Wartość v na k-tym łuku wejściowym bloku (A,I) odpowiada pakietowi
wyników, który przenosi informacje (A,I,k,v,licznik), gdzie licznik
jest liczbą operandów wymaganą do przygotowania bloku.

Przygotowanie bloku jest wykrywane przez sprawdzenie licznika z
liczbą dostarczonych operandów, zarejestrowanych w i-tej składowej re­
kordu aktywacji. Po przygotowaniu (A,I) bloku, instrukcja bloku zostaje
pobrana z I-tej składowej struktury proceduralnej.

Rekord aktywacji (rys. 8.7b) ma składowe 1,...,n, dla rekordów ope­
randów oraz składową tekst, która jest strukturą proceduralną do uaktyw­
nienia. (W opisywanej implementacji składowa ta jest dzielona dla wszys­
tkich aktywacji tego samego schematu.) Rekord operandów musi mieć tyle
podkomponentów, ile zawiera łuków wejściowych, a także podkomponent wska­
zujący liczbę dostarczonych pakietów wynikowych. Ponieważ rekordy akty­
wacji zapamiętują wartości przybyłych pakietów wynikowych, operacje na
rekordach aktywacji modyfikują jego komponenty. Są to operacje:

“ create-activation (P) -
tworzy nowy rekord aktywacji mający P jako komponent tekst, i nie po­
siadający innych komponentów.

- insert (A,I,k,v) -
dodaje wartośó v jako k-ty operand I-tej instrukcji w rekordzie aktywa­
cji A. Dodatkowo zwiększa o 1 składową "dostarczona" tego rekordu.

- remove (A,I) -
usuwa składową I z rekordu A; jest wykonywana przez blok sterowania,
gdy jest generowany pakiet operacyjny dla bloku (A,I).

- free (A) -
usuwa całkowicie rekord aktywacji A.

140

Rys. 8.3. Implementacja bloku aplikacji

141

Dla każdego przybyłego pakietu wynikowego (A,I,k,licznik,v) blok
sterowania wykonuje operację insert (A,I,k,v) i testuje nową wartość
składowej "dostarczone" oraz "licznik". Jeżeli wielkości są równe, in­
strukcja jest pobierana z pamięci i wykorzystana, wraz z rekordem ope-
randów, do konstrukcji pakietu operacyjnego kierowanego do sieci decy­
zyjnej. I-ta komponenta rekordu aktywacji A jest teraz zwalniana.

Implementację bloku aplikacji pokazano na rys. 8.9; używana na nim
notacja (rys. 8.8) oznacza insert(A.i.1,v). Nowe bloki extr-uld, const-
ret oraz distribute będą objaśnione dalej. Implementacja zakłada numera­
cję bloków w każdym rekursywnym schemacie zgodnie z zasadami:

- bloki wejściowe są numerowane 1,...,m;
- bloki replikacji, które otrzymują n wartości wynikowych ze sche­

matu aplikacji są numerowane J+1,...,J+n, gdzie J jest pewną ustaloną
liczbą;

- blok replikacji oznaczony przez o otrzymuje pakiet (A,J,n) zawie­
rający informację wymaganą do konstrukcji pakietu wynikowego po wykona­
niu procedury;

- pozostałe bloki mogą być numerowane dowolnie.
Schemat z rys. 8.9 działa następująco: Blok create-act tworzy nowy

rekord aktywacji a', zawierający F'w komponencie tekst, i przekazuje go

Rys. 8.10. Implementacja operacji cone

142

do bloków Insert związanych z wejściami Vv,*,>vm' te tworzą pa­
kiety w postaci nowej kopii F . W tym samym czasie bloki extr~uld oraz
const-ref tworzą wartość zwrotną (A,J,n) i przesyłają ją do bloku repli­
kacji 0 schematu F. Gdy zostaną wyprodukowane wielkości y yn, blo­
ki distribute oraz insert generują pakiet wynikowy (A,J+1,1,1 ,yp , któ­
ry dostarcza wyprodukowane wielkości do wołającego schematu. Blok free

Rys. 8.11. Schemat przepływu danych procedury gito

143

zwalnia rekord aktywacji, a jego kopia zostaje zwrócona do puli wolnych
kopii zarządzanych przez pamięć pakietową.

Implementacja list pośredniczących polega na przedstawieniu ich w
postaci pewnych struktur. Lista pośrednicząca jest strukturą, w której
składowa f reprezentuje pierwszy element listy, zaś składowa r - po­
zostałe elementy. Pusta lista jest reprezentowana przez strukturę nil.
Operacje na liście s zamienia się na odpowiednie operacje na struktu­
rach: first(s) oraz rest(s) są więc zastąpione przez select (s,f) oraz
select (s, r).

Zapewnienie możliwości dopisywania nowych elementów do list i jed­
noczesną konsumpcję list przez moduły programowe, wymaga takiego roz­
szerzenia koncepcji struktur danych, aby struktura taka była dostępna
jeszcze przed całkowitym jej utworzeniem. Wykorzystuje się w tym celu
koncepcję tzw. ramek (holes). Idea tej koncepcji jest urzeczywistniona
w implementacji operacji cons opisanej na rys. 8.10.

Create-hole oraz write-hole są specjalnymi operatorami zdefiniowany­
mi następująco. Blok create-hole pobiera z pamięci pakietowej odpowied­
ni wolny pakiet. Pakiet ten nazywa się Tamką; może ona być niezapełnio-
na lub zapełniona. W stanie niezapełnionym wszystkie operacje na ram­
kach są kolejkowane, z wyjątkiem operacji write-hole. Po wykonaniu ope­
racji write-hole(H,v) ramka H zmienia swój stan z niezapełnionego na
zapełniony i zapamiętuje wartość v. Dotychczas kolejkowane operacje na
tej ramce oraz dalsze operacje są już wykonywane bez dalszych opóź­
nień. Kolejne wykonanie operacji write-hole na । ramce H jest nielegalne.

Dla ilustracji równoległości dostarczonej przez taką implementację
list rozpatrzmy procedurę sito (rys. 8.11). Zauważmy, że wyjście z pier­
wszej aktywacji procedury sito będzie strukturą danych zawierającą pier­
wszy element wynikowej listy pośredniczącej oraz ramkę oczekującą na
wypełnienie przez strukturę danych wytworzoną przez rekursywną aktywa­
cję sita.

ĆWICZENIA

1. Przedstawić schemat przepływu danych procedury silnia z p. 8.2.

2. Napisać program w języku SVAL sortowania ciągu liczbowego. Przed­
stawić schemat przepływu danych tego programu.

3. Przedstawić schemat blokowy przepływu danych i napisać w języku
SVAL program obliczenia wartości wielomianu.

4. Przedstawić schemat blokowy przepływu danych i napisać w języku
SVAL program generacji uporządkowanego,ciągu liczb postaci, 2a3^5C
(a,b,c>0) bez powtórzeń i bez pominięć (por. p.5-4).

5. Zmodyfikować treść procedury odwróć z p. 8.3 w taki sposób, ®Bogr
mogła działać na dowolnej, a nie tylko binarnej, strukturze.

DODATEK:
MECHANIZMY OBLICZEŃ ASYNCHRONICZNYCH W JĘZYKU PL/I

D. 1. Wstęp

Język programowania PL/I powstał w koncernie IBM w pierwszej poło­
wie lat sześćdziesiątych. Zamierzeniem firmy było wprowadzenie języka o
wysokim poziomie, który w możliwie szerokim zakresie spełniałby funkcje
języka uniwersalnego do tworzenia programowania użytkowego komputerów
serii IBM 360. Prace projektowe były prowadzone niemal równolegle z bu­
dową systemu IBM 360. Uczestniczyło w nim wielu specjalistów z innych
firm, zapoczątkowały one też prace teoretyczne nad zagadnieniem formal­
nego opisu języków programowania (metoda wiedeńska).

Oceny języka, po wielu latach jego użytkowania, raczej jednoznacz­
nie skłaniają się ku opinii, że PL/I nie spełnił całkowicie oczekiwań,
jakie w nim pokładano. Określa się go mianem języka-omnibusu, który sta­
nowi wprawdzie bogatą, ale i nie całkowicie uporządkowaną kolekcję me­
chanizmów zaczerpniętych od swoich poprzedników - takich jak Fortran,
Algol 60 i Cobol. Historia rozwoju języków programowania wskazuje na to,
że tego rodzaju zamierzenie - przy ówczesnym stanie teorii - było z gó­
ry skazane na niepowodzenie. (Podobne opinie formułuje się zresztą i
obecnie, np. w związku z projektem języka Ada.)

Język PL/I jest jednak dość rozpowszechniony w Polsce i krajach
RWPG, dzięki rozwijaniu komputerów serii Riad opartych na serii IBM 360.
Dlatego mechanizmy języka, które umożliwiają tworzenie programów współ­
bieżnych zasługują na omówienie.

Mechanizmy obliczeń współbieżnych w PL/I bazują na modelu obliczeń
w środowisku zwartym. Zasadniczymi przesłankami, które zadecydowały o
ich wprowadzeniu było:

a) stworzenie możliwości pełnego wykorzystania autonomicznie pracu­
jących bloków komputera, takich jak kanały wejścia/wyjścia i równoległe
procesory,

b) stworzenie mechanizmów synchronizacji wykonywania programów
współbieżnych.

Bliższe porównanie PL/I z asemblerem, komputerów IBM 360 pozwala
stwierdzić, że mechanizmy synchronizacji w obu tych językach są niemal
identyczne. Oznacza to, że są to mechanizmy elementarne, niestruktura-
lizowane.

145

Ponieważ dodatek spełnia tylko funkcje informacyjne o wybranych me­
chanizmach PL/I, mające ułatwić podjęcie decyzji o wykorzystaniu języka
do obliczeń współbieżnych i zarysować związane z tym problemy, dlatego
zmieniono notację języka (np. wprowadzenie podkreśleń słów kluczowych),
a także pominięto te problemy, których wyjaśnienie wymagałoby dokład­
niejszego omówienia konstrukcji sekwencyjnych (np. pominięto zasady do­
stępu do wspólnych plików).

Ogólny przegląd konstrukcji języka PL/I przedstawia artykuł J. Bo­
rowca, Wprowadzenie do języka PL/I, w książce: Problemy przetwarzania
informacji t.1, WNT 1970. Pełny opis języka jest zawarty w książce:
Opis języka FL/I, WNT 1975 oraz w dokumentacji: PL/I - opis języka, cz.
I, cz. II, Centrum Mera-Elwro 1978.

D.2, Zadania i zdarzenia

Statyczna struktura programu w PL/I nie wprowadza jawnie pojęcia
procesu jako jednostki strukturalnej. Program ma strukturę blokową, za­
wierającą definicje obiektów lokalnych i ciągi instrukcji. Procesy, w
terminologii PL/I zadania - task, są obiektami dynamicznymi powstający­
mi podczas wykonywania ciągu instrukcji bloku. Kreacja procesów odbywa
się przez wykonanie odpowiednich instrukcji. Nowo utworzone procesy wy­
konują się współbieżnie z ciągiem instrukcji, który je powołał do życia.
Procesy te w trakcie swej realizacji mogą kreować dalsze procesy. Cały
program jest więc procesem, którego realizacja rozpoczyna się automaty­
cznie po odpowiedniej akcji systemu operacyjnego nadzorującego wykona­
nie programu, a dalsze procesy potomne są tworzone dynamicznie.

Kreacja procesu polega, ogólnie mówiąc, na wykonaniu szczególnej po­
staci instrukcji procedury. Wywołaną procedurą może być procedura zde­
finiowana w danym procesie (zadaniu) lub też mogą być pewne procedury
standardowe (procedura współpracy z operatorem - DISPLAY, procedury gru­
powego przesyłania danych - READ, WRITE, DELETE ...). Jedna z form ta­
kiego wywołania procedury ma postać:

cali P(LP) task(Z),

gdzie P jest nazwą procedury, LP - listą jej parametrów aktualnych, zaś
Z jest identyfikatorem stanowiącym nazwę nowo utworzonego procesu (za­
dania) .

Jeżeli w pewnym zdaniu X jest zadeklarowana procedura Piw trakcie
jego realizacji zostanie wykonana podana wyżej instrukcja procedury, to
nastąpi wykreowanie nowego zadania o nazwie Z, którego treścią będzie
treść procedury F zmodyfikowana odpowiednim zastąpieniem listy parame­
trów formalnych przez parametry aktualne. Zadania Z oraz X będą wykony­

146

wane współbieżnie i niezależnie w tym sensie, że nie mogą bezpośrednio
wpływać na swe zakończenie.

Nadanie nazwy nowo wykreowanemu zadaniu służy jedynie do tego, aby
można w innym zadaniu sprawdzać lub zmieniać priorytet tego zadania.
Priorytet etanowi atrybut każdego zadania, które służy systemowi opera­
cyjnemu nadzorującemu wykonanie programu, do podejmowania decyzji o
pierwszeństwie zadań przy ubieganiu się o przydział pewnych zasobów
(czas procesora, urządzenia wejścia/wyjścia). Zadanie Z, które zostało
wykreowane w pewnym zadaniu X, zgodnie z przedstawionym wyżej schematem,
uzyskuje taki sam priorytet jak zadanie X. W momencie kreacji zadaniu
można przypisać dowolny priorytet; uzyskuje się to przez wywołanie po­
staci

cali P(LP) task (Z) priority (W)
lub

cali P(LP) priority (W),

gdzie W jest wyrażeniem całkowitoliczbowym.
Utworzone zadanie uzyskuje priorytet, którego wartość jest równa

sumie wyrażenia W i priorytetu zadania, w którym nastąpiło jedno z tych
wywołań. Pierwsze z wywołań, nadając nazwę zadaniu, umożliwia też dyna­
miczną zmianę priorytetu, drugie z wywołań ustala stałą wartość priory­
tetu bezimiennego zadania.

Współdziałanie zadań (procesów) jest programowane za pomocą mecha­
nizmów synchronizacji opartych na koncepcji zdarzeń. Zdarzenia są tu
rozumiane jako fakt osiągnięcia przez sterowanie określonych przez pro­
gramistę miejsc w procesie. Do rejestracji tego, czy dane zdarzenie za­
szło, czy nie zaszło, służą odpowiednie zmienne, zwane zmiennymi zdarze­
niowymi. Zmienne zdarzeniowe mają strukturę rekordu

record
completion : boolean;
status : integer

end,

Wartość true na polu completion oznacza, że zdarzenie zaszło, wartość
false - że nie zaszło. Wartość pola status ma bardziej bogatą interpre­
tację, tu ograniczymy się do stwierdzenia, że wartość.0 oznacza normal­
ny stan procesu, a każda inna wartość jest kodem pewnego stanu nienor­
malnego (awaryjnego).

Zmienne zdarzeniowe wprowadza się do programu w postaci jawnej de­
klaracji lub generuje się je w chwili kreacji zadania. Jąwna deklaracja
zmiennej zdarzeniowej A ma postać

declare A event;

147

natomiast dynamiczna generacja może mieć jedną z postaci:

cali P(LP) task (Z) priority (W) event (A)
cali P(LP) task (Z) event (A)
cali P(LP) priority (W) ęyent (A)
cali P(LP) eyent (A).

Zmienna zdarzeniowa deklarowana jawnie jest dostępna do zapisu i odczy­
tu, tak jak każda inna zmienna. Zmienna zdarzeniowa generowana dynamicz­
nie ma ściśle określoną interpretację i jest dostępna tylko do odczytu,
natomiast zapis wartości zmiennej jest dokonywany automatycznie w epo­
sów następujący: w chwili kreacji zadania i zmiennej otrzymuje ona war­
tość false pola completion oraz 0 pola status, podczas wykonywania za­
dania zmienia się tylko pole status (o ile następuje sytuacja awaryjna),
a w momencie zakończenia zadania wartość pola status zmienia się na
true. Zasadniczym przeznaczeniem zmiennych zdarzeniowych jest synchro­
nizacja procesów, którą uzyskuje się dzięki wykorzystaniau instrukcji
wait postaci

wait (LZ)(W),

gdzie LZ jest listą, zmiennych zdarzeniowych, zaś W, występujące opcjo­
nalnie, jest dodatnim wyrażeniem całkowitoliczbowym.

Znaczenie instrukcji jest następujące: wykonanie zadania opóźnia
się aż do momentu, gdy zostanie zarejestrowane zajście n zdarzeń
przez zmienne zdarzeniowe z listy LZ; n oznacza tu wartość wyrażenia W,
brak W powoduje przyporządkowanie domyślne n=1.

Istotnym ograniczeniem przy posługiwaniu się instrukcją wait jest
to, że na zajście określonego zdarzenia w danym momencie może oczekiwać
co najwyżej jeden proces; oczekiwanie na pewne zdarzenie przez dwa pro­
cesy powoduje błąd wykonania. Dodatkowym ograniczeniem przy niektórych
kompilatorach języka (kompilator F) jest to, że na zdarzenia wejścia/
/wyjęcia może oczekiwać tylko jeden proces, który zainicjował te opera-
cje. , ■

Opóźnienie procesów realizuje jeszcze jedna instrukcja postaci

delay (W)

gdzie W jest nieujemnym wyrażeniem całkowitoliczbowym. Skutkiem działa­
nia tej instrukcji jest zawieszenie zadania na n milisekund, gdzie n
jest wartością wyrażenia W, po czym zadanie, o ile ma dostatecznie wy­
soki priorytet pozwalający mu na przydział zajmowanych poprzednio urzą­
dzeń zewnętrznych, jest kontynuowane.

148

D. 3. Dostęp do wspólnych zmiennych

Programy w języku PL/I mają strukturę blokową. Struktura blokowa
wprowadza znane zasady zasięgu i dostępności zmiennych [22] . Równoległe
zadania, które powstały przez odpowiednie wywołania procedur zadeklaro­
wanych w tym samym bloku mają prawo dostępu do tych wszystkich zmien­
nych, które są dostępne w tym bloku. A zatem zadania mogą mieć dostęp
do wspólnych zmiennych. Poprzednio omówione mechanizmy synchronizacji
nie zabezpieczają bezpośrednio przed skutkiem niekontrolowanego dostępu
do wspólnych zmiennych. Można natomiast mechanizmy te wykorzystać tak,
aby osiągnąć wykluczający dostęp do wspólnych zmiennych.

Ze względu na to, że zmienne w języku PL/I mogą mieć przypisywane
tzw. atrybuty klasy pamięci, poza normalnymi regułami dostępu wynikają­
cymi ze struktury blokowej, obowiązują jeszcze reguły dodatkowe. Ich
omówienie wymaga krótkiego wyjaśnienia pojęcia atrybutu klasy pamięci.

Każdej zmiennej przyporządkowuje się (jawnie bądź nie) jeden z atry­
butów :

static, automatic, controlled, based.

Wszystkim zmiennym statycznym (z atrybutem static) jest przydziela­
na pamięć w chwili rozpoczęcia programu, a zwalniana w momencie jego za­
kończenia, niezależnie od stopnia zagnieżdżenia bloków, w których są
deklarowane.

Przydział (zwalnianie) pamięci zmiennych automatycznych (z atrybu­
tem automatic) odbywa się w momencie aktywacji (deaktywacji) bloku, w
których są zadeklarowane.

Zmiennym kontrolowanym (z atrybutem controlled) przydziela się (zwal­
nia) pamięć programowo poprzez instrukcję allocate (free). Przydział i
zwalnianie odbywa się tu metodą stosu: wykonanie allocate tworzy kolej­
ną generację zmiennej umieszczoną w nowej pozycji na szczycie stosu,
zaś wykonanie free usuwa generację zmiennej umieszczoną na szczycie sto­
su.

Zmiennym wskazywanym (z atrybutem based) pamięć przydziela się i
zwalnia programowo instrukcjami allocate i free, przy czym nie używa
się tu mechanizmu stosu, a do każdej generacji zmiennej można odwoływać
się za pomocą wskaźnika (zmienne te stanowią odpowiednik zmiennych typu
wskaźnikowego w języku Pascal).

Zwalnianie pamięci zmiennych kontrolowanych i wskazywanych, którym
przydzielono pamięć w pewnym zadaniu, o ile nie wystąpiło przez wykona­
nie operacji free, dokonuje się automatycznie w chwili zakończenia tego
zadania.

Wspomniane reguły dodatkowo sprowadzają się do ogólnego stwierdze­
nia, aby podczas wykonywania zadań odwołania odnosiły się tylko do ist­

149

niejących zmiennych. W szczególności oznacza to. że:
- do zmiennych statycznych można odwoływać się w dowolnym zadaniu,
- do zmiennych automatycznych można odwoływać się w każdym zadaniu,

wygenerowanym w bloku, w którym zmienne są zadeklarowane,
- do zmiennych kontrolowanych można odwoływać się w tych zadaniach,

w których są one znane. Jednakże nie wszystkie przydzielenia pamięci
zmiennym tego rodzaju są znane we wszystkich zadaniach. Zadaniu znane
są tylko te przydzielenia, które miały miejsce przed momentem jego ini­
cjalizacji. Zadanie odpowiedzialne za zwolnienie pamięci zmiennych musi
brać pod uwagę to, że przedwczesne zwolnienie pamięci może być przyczy­
ną błędu spowodowanego próbą uzyskania dostępu do tych zmiennych przez
inne zadanie,

- do zmiennych wskazywanych odnoszą się zasady podobne jak do zmien­
nych kontrolowanych.

, D-4. Przykłady

Przedstawiono dwa przykłady, stanowiące szkielety programów ilus­
trujących działanie regionu krytycznego oraz warunkowego regionu kry­
tycznego.

pierwszym przykładzie założymy, że dwa zadania PR1, PR2 będą ko­
rzystać ze wspólnych zmiennych zadeklarowanych w zadaniu PRO.

PRO: procedurę;

dcl P1,S1,V1,P2,S2,V2 eyent;
PI.completion:= false;

V2.completion:=false;
PI.status:=0;

ustalenie
początkowych
wartości
wszystkich
zmiennych
zdarzeniowych

V2.status:=0;
PR1: procedurę;

* PI.completion:=true;
wait CSU;
S1.completion:=false;

(> sekcja krytyczna x)

VI.completion:=true;

end FR1;

wejście
do sekcji

wyj ście

150

wejście
do sekcji

wyjście

PR2: procedurę

P2.completion:=true;
wait (S2);
S2.completion:=false;

(» sekcja krytyczna s)

V2.completion:=true;

end FR2;
cali FR1 priority (1);
cali PR2 priority (1);
do white true;

wait (P1,P2)(1);
it P1.completion then

S1 .completion:=true;
P1.completion:=false;

else
S2 .completion:=true;
P2.completion:=false

end;
wait)V1,V2)(1);
it V1.completion then

V1 .completion:=false
else V2.completion:=false

end;
end PRO;

Wywołanie procedury PRO w pewnym miejscu programu, postaci
cali PRO priority (1)

utworzy zadanie, którego realizacja spowoduje kreację dalszych dwóch za­
dań współdziałających ze sobą poprzez sekcję krytyczną.

Drugi przykład jest rozbudowaną wersją pierwszego przykładu. Zakła­
da się bowiem dodatkowo, że procesy mogą zawieszać się wewnątrz sekcji
krytycznej, o ile nie są spełnione oczekiwane warunki logpczne. Zawie­
szony proces zwalnia sekcję krytyczną po czym oczekuje, aż do chwili,
gdy oczekiwany warunek stanie się prawdziwy. Wtedy zajmuje sekcję i kon­
tynuuje się od miejsca zawieszenia. Zakłada się, że pierwszy proces,
oparty na schemacie działania procedury PW1, czeka na warunek B1, zaś
drugi proces, oparty na schemacie PW2, czeka na B2.

151

PWO: procedura;

dcl PI,S1,V1,PB1,SB1,
P2,S2,V2,PB2,SB2 ęyent

dcl zawieszony_1, zawieszony_2 boolean;
P1,completion:=false;

SB2.completion:=false;
P1.status:=O;

SB2.status:=0;
PW1:proeedure;

’P1.completion:=true;
wait (51);
S1,completion:=false;

Ustalenie
początkowych
wartości
wszystkich
zmiennych
zdarzeniowych

wejście
do sekcji
krytycznej

PB1.completion:=true;
wait (SB1);
SB1.completion:=false

end;
V1.completion:=true; |

end PW1;
PW2:procedure

P2.completion:=true;
wait (S2);
S2.completion:=false;

zawieszenie
w sekcji
krytycznej

wyjście

wejście
do sekcji
krytycznej

of not B2 then
PB2.completion:=true,
wait (SB2)
SB2.completion:=false

end ;

V2.completion:=true;

zawieszenie
w sekcji
kryty cznej

end PW2;

cali PW1 priority (1);
cali PW2 priority (1) ;
zawieszony_1:=false;
zawieszony-2:=f alse;
do while not (zawieszony-1 and zawieszony_2)

wait PI.completion then
P1.completion:=false;
SI completion:=true;
wait (VB1,V1)(1);
if VB1.completion then

zawieszony_1:=true;
VB1.completion:=false;

else
VI.completion:=false;
if zawieszony_2 then

if B2 then zawieszony 2:=false
SB2.completion:=true

end
end;

end;
else
P2.completion:=false;
S2.completion:=true
wait' (VB2,V2)(1);
if VB2.completion then

zawieszony 2;=true;
VB2.completion:=false;

else
V2.completion:= false;
if zawieszony_1 then

if B1 then zawieszony_1:=false;
SB1.completion:=true

end;
end;

end;
end;

end;
end PWO;

Wywołanie procedury

cali PWO event (blokada)
uruchomi kolejno procesy oparte na działaniu procedur PWO, PW1, PW2. Za'

153

kończenie działania procesu PWO, sygnalizowane zmienną zdarzeniową blo­
kadą, będzie oznaczać, że procesy PW1, PW2 są zawieszone w jednoczesnym
oczekiwaniu na warunki B1, B2.

ĆWICZENIA

1. Przeanalizować przykłady z p. D.4 i zmodyfikować je w taki spo­
sób, aby wyeliminować stałe uprzywilejowanie jednego z procesów.

2. Zmodyfikować podane przykłady w taki sposób, aby wyeliminować
procesy PRO, PWO pośredniczące odpowiednio we współdziałaniu procesów
PR1, PR2 oraz PW1, PW2.

3. Napisać w języku PL/I program symulujący działania czytelników i
pisarzy (ćwicz.1, rozdz. 2).

4. Napisać w języku PL/I program symulujący działanie filozofów
(ćwicz. 5, rozdz. 2).

5. Napisać w języku PL/I program generacji liczb pierwszych metodą
sita Eratośthenesa.

6. Napisać w języku PL/I program przydzielania zasobów zgodnie z
algorytmem bankiera (ćwidz. 7, rozdz. 3)•

literatura

[1] AGERWALA T., Some extended semaphore promitives, Acta Informatica,
▼ol.8,201-220, 1977

[2] ALLAN S.J., OLDEHoEft, A flow analysis procedurę for the transla-
tion of high level languages.Technical Raport No. 79-2, Dept. of
Comp.Sc., Iowa State Univ., Ames 1979.

[3] ANDREWS G.R., The design of meseage switching system: an applica-
tion and evaluation of Modula, IEEE Trans., on Softw. Eng., vol.
SE-5, 138-147, 1979. .

[4] BAYER R., GRAHAM R.M., SEEGMULLER (ed-s), Operating systemsj Lect.
Notes in Comp. Sc. vol. 60, Springer-Verlag 1978.

[5] BIAŁASIEWICZ J., ADEREK A., MALISZEWSKI K. , Oprogramowanie podsta­
wowe komputerowych systemów sterowania, WNT 1979.

[61 BRINCH HANSEN P., The nucleus of a multiprogramming system, Comm.
of ACM, vol. 13, 238-241, 1970.

[7] BRINCH HANSEN P., StructureTmultiprogramming, Comm. of ACM, vol.
15, 574-578, 1972-

[8] BRINCH HANSEN P., Podstawy systemów operacyjnych, WNT 1979 (tłum,
z oryginału and. 1973).

[9] Brinch Hansen P., The programming language "Concurrent Pascal",
IEEE Trans, on Softw. Eng., vol. SE1-2, 199-207, 1975.

[10] BRINCH HANSEN P. , The architecture of concurrent programs, Frenti-
ce-Hall, 1977.

[11] BRINCH HAŃŚEN P. , Distributed processes a concurrent programming
concept, Comm. of ACM, vol. 21, 934-991, 1978.

[12] BRYANT R.E., DENNIS J.B. , Concurrent programming, MIT/LCS/TM-115,
Cambridge 1978.

[13] BROCK J D., MONTZ L.B., Translation and optimizat-ion of data flow
programs, MIT/LCS/TM 181, Cambridge J_979.

[14] CAMPBELL R.H. , HABERMANN A.N. , The specification of process syn-
chronization by path expressions, Lect. Notes in Comp., vol. 16,
89-102, Springer-Verlag, 1974.

[15] COLEMAN D. , GALLIMORE R.M. , HUGHES J.W. , FOWELL M.S., An assesse-
ment of Concurrent Pascal, Softw. Pract. and Exp. , vol. 9, 827-837,
1979.

[16] DĆŃNIS J.B. , First version of data flow procedurę language, Lect.
Notes in Comp.Sc., vol. 19, 362-376, Springer-Verlag, 1974.

[17] DENNIS J.B. , MISUMAS D.F., A preliminary architecture Tor a basie
data-flow processor, Proceed. of the Second Annual Symp. on Comp.
Architecture, 126-132, IEEE, 1975.

[18] DENNIS J.B. , WENG K. , An abstract implementation for concurrent
computations with streams, MIT/LCS/TM 180, Cambridge, 1979.

[19] DIJKSTRA E.W. , The structura of the THE multiprogramming system,
Comm. of ACM, vol. 11, 341-346, 1968.

[20] DIJKSTRA E.W. , Co-operating seąuential processes, w: Programming
Languages, ed. GENUYS F. , Academic Press, N.Y., 1968.

[21] DIJKSTRA E.W. , Hierarchical ordering of seęuential processes, Acta
Informatica, vol. 1, 115-138, 1971.

[22] DUBIELEWICZ I., HUZAR Z., Język i programowanie, Skrypt, politech­
nika Wrocławska, 1981 .

[23] ENSLOW P.H.Jr., (ed.) , Systemy cyfrowe wieloprocesorowe, WNT 1978
(tłum, z ang. 1974).

[24] FELDMAN J.A. , High level programming for distributed computing,
Comm. of ACM, vol. 22, 353-368, 1979.

155

[23 GREIF I., Semantics of communicating parallel processes, MIT/MAC/TR
-154, Cambridge 1975.

[26] GRIES D. (ed.), Programming methodology. A collection of articles
by members of IFIP WG2.3, Springer-Verlag 1978.

[27] HARTMANN A.C. ,A Concurrent Pascal compiler for mini-computers,
Springer-Verlag 1977.

[28] HEWITT C. , BAKER H., Laws for communicating parallel processee,
Information Processing 77, IFIP, 987-992, North Holland Publ. Comp.,
1977.

[29] HEWITT C., ATKINSON R.R., Specification and proof techniąues for
serializers, IEEE Trans, on Softw. Eng., vol. SE-5, 10-23, 1979.

[30] HEWITT C. , ATTARDI G., LIEBERMANN, Specifying and proving proper-
ties of guardians for distributed systems, Lect. Notes in Comp.Sc.,
vol. 70, 316-336, Springer-Yerlag 1979.

[31] HIRSCHBERG D.S. , Fast parallel sorting algoritms, Comm. of ACM,
vol. 21, 657-661, 1978.

[32] HIRSCHBERG D.S. , cffiŃI5RA A.K., SARWATE D.V., Computing connected
components on parallel computers, Comm. of ACM, vol. 22, 461-464,
1 979.

[33] HOARE C.A.R., Towards theory of parallel programming, w: Operat-
ing systems techniques, ed. HOARE C.A.R., Academic Press, 1972.

[34] HOARE C.A.R., Monitora: an operating systems structuring, Comm. of
ACM, vol. 17, 549-557, 1974.

[35] HOARE C.A.R., Communicating sequential processes, Comm. of ACM,
vol. 21, 666-677, 1978.

[36] HOLDEN J. , WAND I.C., An assessement of Modula, Softw. Praot. and
Exp., vol. 10, 593-621, 1980.

[37] HOLT R.G., GRAHAM G.S., UTOWSKA E.D., SCOTT M.A., Structured con­
current programming with operating systems applications, Addison-
Wesley Publ. Comp., 1978.

[38] HUZAR Z. , Uogólnione monitory w języku programowania "Concurrent
Pascal", Podstawy Sterowania, t. 10, 43-56, 1980.

[39] HUZAR Z. , Semantyka programów z operacjami wejścia-wyjścia, Podsta­
wy Sterowania, t. 11, 33-50, 1981.

[40] ICHBIAH J.D. , HELIARD J.C., ROUbINE 0., BARNES J.G.P. , KRIEG-BRUEK-
NER B., WICHMANN B.A., Preliminary Ada reference manuał (Part A),
Rationale for design of the Ada programming language (Fart B) ,
SIGPLAN Notices, vol. 14(6), 1979.

[41] KAHN G., Semantics of simple language for parallel programming, In­
formation Processing 74, IFIP, 471-475, North Holland Publ.Comp.,
1974.

[42] KAIIN G., MAC-QUEEN D. , Coroutines and networks of parallel pro­
cesses, Information Processing 77, IFIP, 993-998, North Holland
Publ. Comp., 1977.

[43] KAHN G. (ed.), Semantics of concurrent computat ions, Lect. Notes
in Comp. Sc., vol. 70, 1979.

[44] KELI.ER R.M. , Sentinels: a concept for multiprocess coordination,
Dept. of Comp. Sc., Univ. of Utah, UUCS-78-104, 1978.

[45] K0T0V V.E. , 0 parallelnych jazykach, Kibernetika, No.3, 1-12, No.4,
1-10, 1980.

[46] KUCK J.b., MURAOKA Y. , CHEN S.-C., On the number of operations si-
multaneusly executable in Fortran-like programs and their result-
ing speedup, IEEE Trans, on Comp., vol. C-21 , 1293-1310, 1972.

[47] KWIATKOWSKI J. Metoda konwersji programu szeregowego na równoległy.
Rozprawa doktorska, Inst. Cyber. Techn. , Politechnika Wrocławska,
Rap. PRE 108, 1980.

[43] I,ISKOV B. , Primitives for distributed computing, MIT/LSC/TM, Cam­
bridge 1 979.

[49] MC-GRAW J. R. , ANDREWS G.R. , Access control in parallel programs,
IEEE Softw. Eng., vol. SE-5, 1-8, 1979.Trans.cn

[50] MC-KEAG R.M. , MILLIGAN P. , An experiment in parallel program desi; ..
Softw. Pract. and Exp., vol. 10, 637-696, 1930.

Trans.cn

156

[51] MUNRO J., PATERSON M., Optimal algorithms for parallel polynomial
evaluation, Journal of Comp. and Syst. Sc., vol. 7, 189-198, 1973.

[52] NARAYANA'K.T., PRASAD V. R. , JOSEPH M., Some aspects of concurrenf
programming in OCNPascal, Softw. Pract. and Exp., vol. 9, 749-770,
1979.

[53] NOWICKI Z.M., Organizacja macierzowych jednostek przetwarzania po­
tokowego realizujących operacje matematyczne, Inst.Podst.Inf., PAN,
PWN 1980.

[54] PYLE I. C. , Input/output in high level programming languages, Softw.
Pract. and Exp., vol. 9, 907-914, 1979.

[551 RĄMAMOORTHY C.V. , PARK J.H., LI H.F., Compilation techniąues for
recognition of parallel processable task in arithmetic expressions,
IEEE Trans, on Comp., vol. C-22, 986-998, 1973.

[56] REED D.P., KANODIA R.K., Synchronization wITh eventcounts and se-
ąuencers, Comm. of ACM, vol. 22, 115-123, 1979.

[57] ROBERT R., VERJUS J.-P., Towards autonomons aescription of synchro-
nization modules, Information Processing 77, IFIP, 981-986, North
Holland Publ. Comp., 1977.

[58] ROBERTS E.S., CLARKE K¥7, EVANS A., MORGAN C.R., Task management
in Ada: a critical evaluation for real-time multiprocessors, Aiken
Comp. Lab., Harvard Univ., TR-07-80, Cambridge 1980.

[591 SALWICKI A. i inni, Uniwersalny język programowania Loglan 77,
Inst. Inf., Uniw. Warszawski, Opracowanie wewnętrzne 1977.

[60] SCHULTZ H.A., On the design of a language for programming real-time
concurrent processes. IEEE Trans, on Softw. Eng., vol. SE-5, 248-
-255, 1979.

[61] SHARP J.A., Data oriented program design, Dept. of Comp. Sc.,Univ.
College of Swansea, Internal report, 1980.

[62] TURSKI W.M. , Metodologia programowania, WNT 1978.
[63] WANG P.-S., LIN M.T., Parallel Processing of high level language

programs, Proceed. of the 1979 Intern. Conf. on Parallel Processing,
17-25, IEEE, 1 979.

[64] WELSH J. , BUSTA.RD D.W. , Pascal-Plus: another language for modular
multiprogramming, Softw. Pract. and Exp., vol. 9, 947-957, 1979-

[65] WELSH J., LISTER A., A comparative study of task communication in
Ada, Softw. Pract. and Exp., vol. 11, 257-290, 1981.

[66] WETHERELL C., Design considerations for array processig languages,
Softw. Pract. and Exp. , vol. 10, 265-271, 1980.

[67] WIRTH N., Modula: a language for modular multiprogramming, Softw.
Pract. and Exp., vol. 7, 3-35, 1977.

[68] WIRTH N., The use of Modula, Softw. Pract. and Exp., vol. 7, 37-65,
1977.

[691 WIRTH N., Design and implementation of Modula, Softw. Pract. and
Exp. , vol. 7, 67-84, 1977.

[70] WAND I.C., Systems implementation languages and Ironman, Softw.
Pract. and Exp. , vol. 9, 853-878, 1979.

[71] .Z 200 Re c omen dat i on. CCITT High Level Language (Chill) , CCITT, Ge-
neva 1981.

SFIS RZECZY

PRZEDMOWA .. 3

1. WPROWADZENIE ... 5
1.1. Pojęcia podstawowe ... 5
1.2. Kierunki rozwoju .. 7
1.3. Źródła równoległości .. 10
ĆWICZENIA ... 14

2. PORÓWNANIE PODSTAWOWYCH KONCEPCJI ... 16
2.1. Zasady porównania .. 16
2.2. Przykładowe systemy ... 17
2.3. Procesy w środowisku zwartym ... 18

2.3.1. Semafory .. 18
2.3.2. Monitory ... 21

2.4. Procesy w środowisku rozproszonym ... 25
2.5. Obliczenia równoległe synchronizowane przepływem danych .. 31
2.6. Podsumowanie ... 33
ĆWICZENIA ... 36

3. JĘZYK PROGRAMOWANIA CONCURRENT PASCAL .. 39
3.1. Uwagi wstępne ... 39
3.2. Symbole podstawowe 40
3.3. Struktury danych .. 40
3.4. Instrukcje .. 41
3.5. Procesy ... 43
3.6. Monitory ... 45
3.7. Klasy .. 48
3.8. Struktura programu .. 49
3.9. Wybrane własności implementacji języka na minikomputerach

PDP11 .. 50
3.10. Program przykładowy ... 53
3.11. Uwagi końcowe ... 60
ĆWICZENIA ... 61

4. JĘZYK PROGRAMOWANIA MODULA ... 63
4.1. Wprowadzenie ... 63
4.2. Mechanizmy sekwencyjne .. 64

158

4.3. Mechanizmy równoległe .. 68
4.4. Własności implementacji na minikomputerach PDP11 70
4.5. Program przykładowy .. 73
4.6. Ocena języka.. 77
ĆWICZENIA ... 78

5. PROCESY W ŚRODOWISKU ROZPROSZONYM .. 80
5.1. Wprowadzenie.. 80
5.2. Komunikujące się procesy sekwencyjne Hoare a 81
5.3. Procesy rozproszone Brinch Hansena ... 87
5.4. Sieci procesów Kahna ... 91
ĆWICZENIA ... 98

6. MECHANIZMY RÓWNOLEGŁOŚCI W JĘZYKU PROGRAMOWANIA ADA 99
6.1. Wprowadzenie .. 99
6.2. Struktura programów .. 99
6.3. Komunikacja pomiędzy zadaniami ... 103
6.4. Niedeterminizm.. 104
6.5. Przykładowe programy ... 107
ĆWICZENIA ... 110

7. MECHANIZMY RÓWNOLEGŁOŚCI W JĘZYKU PROGRAMOWANIA CHILL 111
7.1. Wprowadzenie.. 111
7.2. Struktura programów ... 112
7.3. Komunikacja we wspólnym środowisku .. 113
7.4. Komunikacja z wykorzystaniem sygnałów ... 116
7.5. Komunikacja z wykorzystaniem buforów............... 120
ĆWICZENIA ... 125

8. OBLICZENIA SYNCHRONIZOWANE PRZEPŁYWEM DANYCH ... 126
8.1. Wprowadzenie ... 126
8.2. Koncepcja języka programowania ... 128
8.3. Dynamiczne struktury danych ... >30
8.4. Schematy przepływu danych ... 133
8.5. Problemy implementacji schematów przepływu danych 136
ĆWICZENIA... 143

DODATEK. MECHANIZMY OBLICZEŃ ASYNCHRONICZNYCH W JĘZYKU PL/I 144
D. 1. Wstęp 144
D. 2. Zadania i zdarzenia ... 145
D.3. Dostęp do wspólnych zmiennych... 148
D.4. Przykłady ... 149
ĆWICZENIA ... 153

LITERATURA ... 154

Cena zł 95,—

Skrypty Politechniki Wrocławskiej
są do nabycia w:

P.P. „Dom Książki”
Księgarni Wr 49

Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
oraz

Wojewódzkiej Księgarni Technicznej
ul. Świdnicka 8, 50-067 Wrocław

Raport dostępności

		Nazwa pliku:

		Huzar_wstep_do_programowania_wspolbieznego.pdf

		Autor raportu:

		

		Organizacja:

		

[Wprowadź informacje osobiste oraz dotyczące organizacji w oknie dialogowym Preferencje > Tożsamość.]

Podsumowanie

Sprawdzanie napotkało na problemy, które mogą uniemożliwić pełne wyświetlanie dokumentu.

		Wymaga sprawdzenia ręcznego: 2

		Zatwierdzono ręcznie: 0

		Odrzucono ręcznie: 0

		Pominięto: 1

		Zatwierdzono: 28

		Niepowodzenie: 1

Raport szczegółowy

		Dokument

		Nazwa reguły		Status		Opis

		Flaga przyzwolenia dostępności		Zatwierdzono		Należy ustawić flagę przyzwolenia dostępności

		PDF zawierający wyłącznie obrazy		Zatwierdzono		Dokument nie jest plikiem PDF zawierającym wyłącznie obrazy

		Oznakowany PDF		Zatwierdzono		Dokument jest oznakowanym plikiem PDF

		Logiczna kolejność odczytu		Wymaga sprawdzenia ręcznego		Struktura dokumentu zapewnia logiczną kolejność odczytu

		Język główny		Zatwierdzono		Język tekstu jest określony

		Tytuł		Zatwierdzono		Tytuł dokumentu jest wyświetlany na pasku tytułowym

		Zakładki		Niepowodzenie		W dużych dokumentach znajdują się zakładki

		Kontrast kolorów		Wymaga sprawdzenia ręcznego		Dokument ma odpowiedni kontrast kolorów

		Zawartość strony

		Nazwa reguły		Status		Opis

		Oznakowana zawartość		Zatwierdzono		Cała zawartość stron jest oznakowana

		Oznakowane adnotacje		Zatwierdzono		Wszystkie adnotacje są oznakowane

		Kolejność tabulatorów		Zatwierdzono		Kolejność tabulatorów jest zgodna z kolejnością struktury

		Kodowanie znaków		Zatwierdzono		Dostarczone jest niezawodne kodowanie znaku

		Oznakowane multimedia		Zatwierdzono		Wszystkie obiekty multimedialne są oznakowane

		Miganie ekranu		Zatwierdzono		Strona nie spowoduje migania ekranu

		Skrypty		Zatwierdzono		Brak niedostępnych skryptów

		Odpowiedzi czasowe		Zatwierdzono		Strona nie wymaga odpowiedzi czasowych

		Łącza nawigacyjne		Zatwierdzono		Łącza nawigacji nie powtarzają się

		Formularze

		Nazwa reguły		Status		Opis

		Oznakowane pola formularza		Zatwierdzono		Wszystkie pola formularza są oznakowane

		Opisy pól		Zatwierdzono		Wszystkie pola formularza mają opis

		Tekst zastępczy

		Nazwa reguły		Status		Opis

		Tekst zastępczy ilustracji		Zatwierdzono		Ilustracje wymagają tekstu zastępczego

		Zagnieżdżony tekst zastępczy		Zatwierdzono		Tekst zastępczy, który nigdy nie będzie odczytany

		Powiązane z zawartością		Zatwierdzono		Tekst zastępczy musi być powiązany z zawartością

		Ukrywa adnotacje		Zatwierdzono		Tekst zastępczy nie powinien ukrywać adnotacji

		Tekst zastępczy pozostałych elementów		Zatwierdzono		Pozostałe elementy, dla których wymagany jest tekst zastępczy

		Tabele

		Nazwa reguły		Status		Opis

		Wiersze		Zatwierdzono		TR musi być elementem potomnym Table, THead, TBody lub TFoot

		TH i TD		Zatwierdzono		TH i TD muszą być elementami potomnymi TR

		Nagłówki		Zatwierdzono		Tabele powinny mieć nagłówki

		Regularność		Zatwierdzono		Tabele muszą zawierać taką samą liczbę kolumn w każdym wierszu oraz wierszy w każdej kolumnie

		Podsumowanie		Pominięto		Tabele muszą mieć podsumowanie

		Listy

		Nazwa reguły		Status		Opis

		Elementy listy		Zatwierdzono		LI musi być elementem potomnym L

		Lbl i LBody		Zatwierdzono		Lbl i LBody muszą być elementami potomnymi LI

		Nagłówki

		Nazwa reguły		Status		Opis

		Właściwe zagnieżdżenie		Zatwierdzono		Właściwe zagnieżdżenie

Powrót w górę

