“POLITECHKNIKA |
‘wroctawskA | § | p

W SPRZEDAZY:

BIBLIOTEKA GLOWNA
POLITECHNIKI WROCLAWSKIE] 33

1 A8
1.4
.

PY s S e

JLELILNILWINKL 1., FPAWIEDAKAA In.,, LOOUOTALOTLUTIL LEUTLL
automatéw, Wroclaw 1969

JELENIEWSKI T., SIELICKI A., Projektowanie urzg-
dzen, cyfrowych, Wroctaw 1977

KABACIK T., Cwiczenia laboratoryjne z urzqdzen tele-
komunikacyjnych, cz. I, Urzqdzenia teletransmisyjne,
Wroctaw 1979

KARKOWSKI Z., WOZNIAK M., Zasady konstrukcji
elektronicznej aparatury pomiarowej, Wroctaw 1976

KAZIMIERCZAK J., Elementy syntezy formalnej syste-
méw operacyjnych, Wroctaw 1979

KAZIMIERCZAK W., Sieci teletechniczne, Wroctaw 1975

KOMOROWSKI W., PAWESKA R., Zbiér zada# z teorii
automatébw. Teoria komputeréw, Wroctaw 1979

KULISZEWSKI T., Teletransmisyjne systemy impulsowe,
Wroctaw 1975

Laboratorium automatyki. Praca zbiorowa pod red.
B. CHOROWSKIEGO, wyd. II popr., Wrocltaw 1975

Laboratorium elementbw elektronicznych przyrzqdéw po-
miarowych. Praca zbiorowa pod red. HL KARKOW-
SKIEJ, Wroclaw 1976

MILKOWSKA M., Telefonia automatyczna, Wroctaw 1972

Projektowanie urzqdzen cyfrowych wspomagane kompu-
terem. Cwiczenia laboratoryjne, cz. 1. Symulacja sieci
logicznych. Praca zbiorowa pod red. A. SIELICKIEGO,
Wroctaw 1977

RENOWSKI J., Laboratorium z akustyki psychofizjolo-
gicznej, Wroctaw 1972

RENOWSKI J., Akustyka psychofizjologiczna. Cwiczenia
laboratoryjne, wyd. II popr., Wroctaw 1974

SIELICKI A., JELENIEWSKI T., Podstawy metodologii
projektowania, Wroctaw 1978

SZELOCH R. F., Podstawy niezawodnosci elementéw elek-
tronicznych, Wroctaw 1976

TALARCZYK E., Podstawy techniki ultrad¢wiekéw, Wro-
claw 1979

Zbiér zadari i problemdéw z teorii sterowania. Praca zbio-
rowa pod red. Z. BUBNICKIEGO, Wroclaw 1979

40,—
46,—
=

13—

12,—
20,—

14,—
20,—

13,—

18,—

28,—

26,—
28—

16—
16,—
i
28—
14—
51—

16,—

~ Politechnika Wroctawska

P

Zbigniew Huzar

Wstep
do programowania
wspotbieznego

Wroctaw 1985

Skrypt do przedmiotu

Programowanie wspétbiezne

na Wydziale Elektroniki

i na Wydziale Informatyki i Zarzgdzania

Opiniodawca
Andrzej BABORSKI

Opracowanie redakcyjne i korekta
Ewa BIELECKA-JONKO

RO R UL
Jinioteke GIOAnE »
By gl roctibel e

2H29521 | 4
© Copyright by Wydawnictwo Politechniki Wroctawskiej, Wroctaw 1985

WYDAWNICTWO POLITECHNIKI WROCEAW SKIEJ
Wybrzeze Wyspianskiego 27, 50-370 Wroctaw

Naktad 375 +50 egz. Ark. wyd. 9,5. Ark. druk. 97/8. Papier offset. kl. V, 70 g, B1.
Oddano do druku w styczniu 1985 r. Druk ukornczono w lutym 1985 r.
Zaktad Graficzny Politechniki Wroctawskiej. Zam. nr 109/85 — Z-7 — Cena zt 95,—

PRZEDMOWA

Programowanie jako dziedzina nauki liczy ckozo 30 lat, w ciggu kté-
rych weszXo na droge sgzybkiego, wrecz gwattownego rozwoju. Rozwdj ten
jest powodowany z jednej strony - szybkim rozwojem technologii przemy-
stu komputerowego, z drugiej - wzrostem potrzeb, czy tez oczekiwan uzyt-
kownikéw. Jednym z waznych przejawdw rozwoju programowania sg narodziny
pojecia programowania réwnolegtego (wspSibieznego), stanowiacego uogdl-
nienie klasycznego programowania sekwencyjnego. Pojawienie sie nowych
jezykéw programowania réwnolegiego dato uzytkownikom komputerdw nowe
uniwersalne narzedzie umozliwiajgce rozwigzywanie szerszej klasy prob-
lemdéw.

Méwige ogdlnie o programowaniu nalezaXoby przedstawié narzedzie -
jezyk programowania oraz sposéb posiugiwania sie tym narzedziem - meto-
dologie programowania. W skrypcie podano wprowadzenie do zagadnier pro-
gramowania rdéwnolegzego i gZdwny nacisk polozono na narzedzie - dokona-
no przegladu najwazniejszych kierunkéw w tym zakresie - natomiast za-
miast metodologii uzytkowania przedstawiono ilustracyjne przykzady za-
gtosowan. Wydaje sie, ze taki wybSr zagadnien jest uzasadniony, gdyz
stosowana praktycznie metodologia programowania (rozumiana jako zespéZ
metod specyfikacji probleméw, metod konstrukcji i analizy programéw)
ciggle pozostaje bardziej dziedzing sztuki niz nauki. Nalezy jednak za-
znaczyé, ze problemy te staja sie przedmiotem intensywnych badan.

Sposdéb prezentacji materiaXu jest nieformalny, dotyczy to zaréwno
syntaktyki jak i semantyki jezykdéw. Zostato to podyktowane checia przed
stawienia w ograniczonej objetosci, bez formalnego balastu, mozliwie
szerokiego spektrum zagadnien jezykéw programowania. Z tego tez wzgledu
skrypt nie jest poswiecony Zzadnemu z przedstawionych jezykdw.

Skrypt jest przeznaczony dla studentdéw lat wyzszych informatyki.
Moze byé takze fragmentami przydatny dla osdéb, ktére dopiero zamierzaja
siegnadé po nowy rodzaj narzedzia programistycznego i pragng uzyskaé in-
formacje wstepne. Wystarczajacym warunkiem swobodnego czytania skryptu
jest znajomosé programowania sekwencyjnego oraz - przynajmniej ogblna -
‘znajomo$é jezyka Fascal. Szczegdlnie uzyteczny bedzie skrypt dla oséb,
ktére zetknely sie z problematyka projektowania systemdéw operacyjnych.

Rozdziaty 1. i 2. skryptu stanowia cze$é wprowadzaiacag, pozostake
natomiast sg ich rozwinieciem i mogg bydé studiowane niezaleznie; zale-
ca sig jednak, aby czytanie rozdziaidw 4. (opis jezyka Modula), 6.
(opis jezyka Ada) i 7. (opis Jjezyka CHILL) bylo poprzedzone zapoznaniem
sie z rozdzialem 3. (opis jezyka Concurrent Pascal).

P,S. W okresie ponad trzech lat, ktdry upZyngt od chwili zZoZenia
maszynopisu skryptu w Wydawnictwie e przekazaniem go do druku ukazaZa
sie w 1982 r., naktadem WNT, ksigzka W. Iszkowskiego i M. Manieckiego
"Programowanie wspdibiezne", ktdrej zakres tematyczny czesciowo pokrywa
sig¢ z zakresem niniejszego skryptu. Polecajgc goraco uwadze Czytelnikdw
te ksigzke, nalezy zwrécié uwage na rdéznice pomiedzy obu pozycjami. Za-
sadniczg wspdélng czescia sg rozdzialty opisujace jezyki Concurrent Pas-'
cal i Modula, zakres pozostatych rozdziaXdéw natomiast, bgdZ sposdéb uje-
cia tematyki sg zdecydowanie rdézne: Przyk*adowo, niemal poXowa ksiagzki
jest poswiecona dokadnemu oméwieniu mechanizméw synchronizacji proce-
séw w Srodowisku zwartym, co w skrypcie jest ujete znacznie zwigZlej.
Natomiast w skrypcie dok*adnie]j omOwiono mechanizmy komunikacji proce-
s8éw w Srodowisku rozproszonym, opisano Jezyki Ada i Chill oraz omdwiono
zagadnienia programowania sterowanego przepiywem danych.

1. WPROWADZENIE

1.1, Pojecia podstawowe

TradycyJjne, von neumannowskie systemy komputerowe wykonywaly Jjedng
operacje w danym momencie czasu. Tymczasem juz od dawna dostrzegano moz-
liwosci innej organizacji pracy maszyn liczacych tak, aby dzieki jedno-
czesnemu wykonywaniu wielu operacji uzyskac przyspieszenie obliczen.
Juz w 1842 r. Charles Babbage - 2znany pionier na polu konstrukcji ma-
szyn liczgeych - pisax, Ze "... gdy zachodzi potrzeba wykonania dugiej
serii identycznych obliczeri, takich jak przy tworzeniu tablic numerycz-
nych, maszyne mozna skonstruowad tak, by produkowala jednocze$nie kilka
wynikéw w tym samym czasie, co znacznie skrdci caty proces obliczen".

W powojennej historii rozwoju informatyki jus pod koniec lat czter-
dziestych powstaX pierwszy system dwuprocesorowy, w latach pieddziesig-
tych zas$ projekty specjalizowanych procesoréw wielooperacyjnych (np. do
rozwigzywania czastkowych réwnan rdézniczkowych). Zasadniczych Zréde
nowej organizacji komputeréw nalezy jednak dopatrywaé sie w pracach z
poczatku lat szescdziesigtych, kiedy powstaly wieloprogramowe systemy
komputerowe.

Wéréd obecnych systemdéw komputerowyech umozliwiajgcych jednoczesne
wykonywanie wielu czynnosci mozna wyréznié trzy powszechnie spotykane
typy. Bedziemy je nazywaé systemami rdéwnolegiymi lub wspé2bieznymi.

Fierwszy stanowig systemy wieloprogramowe i wielodostgpne z podziazem
czasu, ktére dzieki jednoczesnemu wykonywaniu wielu zadah efektywnie
wykorzystujg swe zasoby obliczeniowe. Drugim sg systemy dziaajgce w
czasie rzeczywistym, np. systemy rezerwacji biletéw lotniczych, systemy
bankowo-rozliczeniowe, systemy sterowania procesami technologicznymi.
Wireszcie typ trzeci to duzej wydajnosci komputery wieloprocesorowe (np.
procesory wektorowe, macierzowe).

Pierwszymi programistami, ktdrzy zetkneli sie ze zjawiskiem rdwno-
czesnosci wielu operacji (musieli je opanowadé i wykorzystaéd), byli pro-
gramisci gystemowi - ci, ktdrzy tworzyli oprogramowanie podstawowe
(systemy operacyjne) komputeréw. Z ich potrzeb wynika konieczno$é po-
siadania abstrakcyjnego (niezaleznego od konkretnego komputera) narze-
dzia programowania. fatwo i bardzo wczeénie przekonali sie oni o tym,
ze programujgc w jezyku maszynowym narazajg si¢ na niezwykle ucigzliwy
i wrazliwy na bxedy proces projektowania. Froblemy rozdzia*u zasobéw,

szeregowanie zadan, zabezpieczenie rownolegle wykonywanych zadan przed

6

interferencjga okazazy sie bardzo trudne do opanowania bez pomocy jezyka
wysokiego poziomu (maszynowo niezaleznego).

Koniec lat szesédziesigtych mozna uwazac za okres narodzin pier-
wszych koncepcji abstrakcyjnego spojrzenia na systemy wspdéibiezne., Naj-
wazniejszym pojeciem, ktdre sie wtedy wykluXo jest pojecie procesu.
Przez proces rozumie sie sekwencje akcji, ktora towarzyszy wykonywaniu
programu sekwencyjnego; akcje sg traktowane abstrakcyjnie, tzn. nieza-
leznie od fizycznych cech procesora oraz od realnego czasu wymaganego
na ich wykonanie. SzczegdZowe definicje procesu uzywane w literaturze
s8g bardzo résznorodne. W tym miejscu poprzestaniemy na tym ogdélnym okre-
Sleniu, natomiast w dalszej czesci skryptu bedzie ono odpowiednio pre-
cyzowane. :

Pojecie procesu bedzie w skrypcie uzywane w podwdjnej roli: w roli
procesu abstrakcyjnego - tak jak okreslono to powyzej - oraz w roli pro-

. cesu jako jednostki strukturalizacji programdéw wspoibieznych. Kontekst,
w ktérym pojecie to wystgpi, bedzie jednoznacznie wyznaczaé jego sens.

Jako przykiad roli procesdéw mozna rozwazyé system wieloprogramowy
realizujgcy pewng liczbe zadan rdznych, niezaleznych uzytkownikdw. Kaz-
de zadanie uzytkowe (program sekwencyjny) mozna utozsamié z pewnym pro-
cesem, podobnie mozna jako procesy traktowaé systemowe procedury obsku-
gl autonomicznie dziaY*ajacych urzadzen wejscia/wyjscia. W czasie dzia-
Yania systemu procesor i pamieé operacyjna majg by¢ na przemian udostep-
niane réznym procesom w taki sposdb, ze wszystkie procesy "posuwaja
sie naprzéd", mimo ¢e zaden z nich nie ma wy%acznego dostepu do wszyst-
kich wymaganych zasobdw.

Tradycyjne jezyki programowania, takie jak Fortran, Algol 60, Pas-
cal, sfuzg do opisu pojedynczych proceséw. Dwa procesy opisane przez dwa
programy w takich jezykach sg niezalezne i nie mogg wspéxdziaXaé ze so-
ba. Natomiast procesy w systemach wspéZbieznych moga oddziaXywadé na sie-
bie. Oddziazywania procesdéw wynikajg gzdwnie z dwéch powoddw. Powdd
plerwszy - to potrzeba wymiany informacji pomiedzy procesami - ggmung:

kacja miedzyprocesowa. Powdd drugi - to potrzeba zachowania okreslonej

kolejnosci zdarzen w procesach - synchronizacja procesdw.

Koniecznosé synchronizacji wynika z rdznych przyczyn, z ktdrych
dwie s3g szczegdlnie powszechne. Fierwsza - wynika z nalozenia na proce-
sy pewnej relacji poprzedzania, okreslajgcej kolejnosé realizacji pro-
cesdw. Przyktadowo, jezeli dwa procesy prowadza komunikacje pomicdzy so-
ba w taki sposéb, ze jeden proces - producent dostarcza pewne dane po-
przez wspSlny bufor drugiemu procesowi - konsumentowi, to producent nie
moze produkowaé (prowadzié obliczerl) wiecej danych dopdty, dopdki kon-
sument nie zwolni bufora z weczesniej wyprodukowanych danych. Druga - wy-

nika z potrzeby systematycznego korzystania ze wspdlnych zasondwn proce-

7

séw. Przyk}adowo przydziat zasobdw moze odbywaé sie na zasadzie wzajem-
nego wykluczenia, zgodnie z ktdérg proces uzyskuje wytaczny dostep do
zasobu pod warunkiem, 2Ze zasdéb ten zostanie zwolniony przez inne proce-
8y. Wedtug bardzie] zozonych zasad dopuszcza sie¢ jednoczesne wykorzy-
stanie zasobu przez wiekszg liczbe proceséw, przy czym przydziaXu doko-
nuje sie na podstawie priorytetdw.

Tradycyjne jezyki programowania nie majg mozliwosci wyrazania tego
rodzaju oddziaywan miedzy procesami. Aby wyrazié takie oddzialywania,
programy napisane w Jezyku tfadycyjnym musiatyby odwoXywaé sie do pro-
cedur systemu operacyjnego nadzorujgcego wykonywanie tych programdw.

Poza brakiem mozliwoSci wyrazania interakcji miedzyprocesowej, tra-
dycyjne-jezyki nie majg takze mozliwosci wyraZehia obliczeri niedetermi-
nistycznych. Chodzi tu o niedeterminizm wynikajacy z uzaleznienia wyni-
kéw programu od czasu pojawiania sie w systemie pewnych zdarzed, w
szczegdlnosci od czasu realizacji poszczegdlnych fragmentdédw programu.
Przyk¥adowo, jezeli w systemie rezerwacji biletdw lotniczych dwéch
klientéw z dwdch niezaleznych terminali zazgda rezerwacji ostatniego
biletu na ten sam lot, to tylko jednemu z nich zostanie przyznana rezer-
wacja, przy czym nie jest zdeterminowane, ktéremu z nich.

1.2, Kierunki rozwoju

Aktualny stan rozwoju jezykdw programowania wspSibieznege charakte-
ryzujg trzy zasadnicze kierunki bazujgce na réznych metodach obliczen
réwnolegtych:

- procesy rdéwnolege w zwartym Srodowisku,

- procesy roéwnolegie w rozproszonym sSrodowisku,

- obliczenia synchronizowane przepiywem danych.

Dwa pierwsze podejscia (imperatywne) mozna traktowaé jako rozwinie-
cie i uogdlnienie koncepcji von Neumanna. Podejscie trzecie (funkcjonal-
ne) nalezy natomiast uwazaé za podejscie alternatywne.

Pierwszy model proceséw réwnolegych w zwartym Srodowisku jest his-

torycznie najstarszy. Jest on modelem klasycznego systemu wieloprogra-
mowego. Zakada sie, Zze wykonywane procesy majg dostep do wspSlnych za-
sobdéw - do wspdlnej pamigci. Oznacza to, ze komunikacja pomiedzy proce-
sami odbywa sig wyzgcznie za posrednictwem wspélnych bufordéw. Pierwszg
konstrukcjg jezykowg stuzgcg do wyrazania takiego sposobu prowadzenia
obliczen byty tzw. semafory Dijkstry, powstaze w 1965 r. i zastosowane
po raz pierwszy w projekcie systemu operacyjnego T.H.E. w 1968 r. [19,
20) . Drugim przykadem konstrukcji sa tzw. monitory Hoare a z 1972 r.,
ktére najefektywniejsze zastosowanie znalazty w jezyku Concurrent Pas-
cal zaprojektowanym przez Brinch Hansena w 1975 r. [7,8,9,33,34]. Jezy-

e

8

kami programowenia, ktére naleizg do tezo kierunku oprdcz Concurrent Pas-
cala s8g przyktadowo: Algol [68,] CCNPascal [52], ILiad [60] , Modula [67],
Pascal Plus [64), Loglan [59) , Edison

Drugi model procesdéw réwnoleglych w rozprosgonym sSrodowisku Zgczy
sig¢ przede wszystkim 2z systemami wieloprocesorowymi, Jednym ze sposobéw

organizacji pracy takich systeméw moze bydé przydziat oddzielnego proce-
sora dla pojedynczego procesu. Kazdy procesor ma wiasng pamigé, ktdra
Jest dostepna wytacznie wykonywanemu na nim procesowi. Irocesory sSg po-
Ygezone pomiedzy sobg pewnymi kanatami komunikacyjnymi, przez ktdére mo-
ga przekazywadé sobie informacje - przesyiaé wiadomos$ci - i1 jest to je-
dyna forma komunikacji. Najwazniejsze koncepcje jezykowe, jakie stworzo-
no w tym zakresie, wigsa sie z pracami Brinch Hansena [6,11] , Hoare a
[35], Kahna [41,42], Hewitta [29] . Przykadami jezykdéw nalezgcych do
te] grupy moga byé: PLits [24], FORTRAR 77 [66], IVTRAN, LRILTRAN, ASC-
FORTRAN, CFD, STARAN, TRANQUIL [45] i wreszcie najnowszy, najbardzie]
okazalty przedstawiciel tej grupy - Jjezyk Ada [40].

Oprécz jezykdéw, ktdére bazujg w cazosci na Jednym z wymienionych mo-
deli, istnieja takze jezykl przyjmujace mieszany model sSrodowiska obli-
czeniowego (model majgcy cechy Srodowiska zwartego 1 rozproszonego).
Najbardziej znaczacym przedstawicielem tej grupy jest Jjezyk Chill [71].

Trzeci model obliczer jest calkowicie odmienny od dwéch poprzednich.
Jezykl programowania poprzednich grup mozna traktowaé jako pewne rozsze-
rzenie jezykéw sekwencyjnych poprzez doXaczenie do nich mechanizméw ob-
liczeri réwnolegtych. Oznacza to, 2e program skada sie z pewnych frag-
mentéw - proceséw, ktére w uproszczeniu mozna traktowaé jako pewne pro-
gramy sekwencyjne. Model obliczern synchronizowanych przepzywer danych

(data flow computations) traktuje program jako nieuporzgdkowany zbidr
instrukcji (tzn. tekst programu nie wyznacza kolejnofci realizacji in-
strukeji) i zakiada, ze wykonanie danej instrukeji nastegpuje w dowolnym
momencie, gdy sa gotowe (sa wyliczone) argumenty tej instrukcji. Ozna-
cza to, %2e nie sg wprowadzone tutaj pojecia procesu (abstrakcyjnie kaz-
dg instrukcje mozna uwazaé za proces, ktdry powstaje w chwili rozpocze-
cia jej obliczania i ginie po zakorczeniu obliczenia). Taka zasada obli-
czeri pozwala potencjalnie na najwyzszy stopiefl rdéwnolegodci obliczeni.
Za gidéwnego inicjatora prac nad tymi obliczeniami uwaza si¢ Dennisa i
jego wspdipracownikéw z HIT (Massachusetts Institute of Technology),
ktérych prace, m.in. [13,16,17,18], zapoczgtkowaly nowy kierunek badar.
Dotychczasowe prace maja gidwnie charakter teoretyczny. Towarzysza im
rozwazania nad nowg architekturg systeméw komputerowych, gdyz obecne

*) p, BRINCH HANSEN, Edison - a multiprocesor language, Softw.Fract.
Exp., vol. 11, 325-328, 1981.

%

architektury nie pozwalajg na efektywng implementacje jezykdw obliczern
synchronizowanych przepiywem danych.

Poza omewianymi obliczeniami sterowanymi przepiywem denych, ktére -
jak sie wydaje - sg obecnie najwazniejsze sposrdd koncepcji obliczen
funkcyjnych, byiy podejmowane prdéby prezentacji i rozwijania innych nie
von neumannowskich modeli obliczen. Frzykzadem mogg tu byé koncepcje ma
szyn rekurencyjnych G#uszkowa, maszyn sterowanych rekurencyjnymi struk-
turami danych i inne®.

Opréez oméwionych kierunkdw rozwoju jezykdw programowania wspéibiez-
nego nalezy jeszcze wyrdznié gidwne kierunki zastosowan. Kozna tu wymie-
nié trzy czesciowo pokrywajace sie obszary, okreslane umownie jako pro-
gramowanie:

- réwnolegie,

- wspdzbiezne,

- rozproszone.

Jakkolwiek wprowadzone tutaj pojecia nie sg na ogé wyraZnie precyzowa-
ne, to jednak wyrdznia je pewien kontekst, w ktdrym sg uzywane. Kolej-
noéé, w jakiej pojecia te wymieniono, odpowiada coraz szerszemu stop-
niowi ich ogdlnosci.

Programowanie rdéwnolegle (parallel programming) jest skojarzone 2z

obliczeniami, ktdére charakteryzuja sie tym, ze wynik obliczen zalezy
wyZacznie od danych poczatkowych (brak niedeterminizmu w zagadnieniu).
Dobrym przykladem moga byé obliczenia numeryczne, np. szukanie pier-
wiastkdw wielomianu, rozwiazywanie uk*adu rdéwnan algebraicznych, znaj-
dowanie ekstremdw funkeji itp. Oznacza to, ze "natura" problemdw jest
taka, iZz mozna je rozwigzywac zardwno metodami programowznia sekwencyj-
nego, jak i rdéwnolegego.

Programowanie wspdébiezne { concurrent programming) kojarzy sie z ob-

liczeniami, ktdérych wyniki sg dodatkowo uwarunkowane zdarzeniami zewng-
trznymi, jakie moga zachodzidé podczas obliczeri. Klasycznym przyk}adem
sg obliczenia wykonywane przez gystemy operacyjne systemdéw wielodostep~
nych.

Programowanie rozproszone (distributed programming) ma wszystkie

1

atrybuty programowania wspdibieZnego wraz z dodatkowym zatozeniem, Ze
komunikacja ponigdzy oddzielnymi, przestrzennie oddalonymi procesorami

iest prowadzona za posSrednictwem £rodkdéw Xgcznosci wprowadzajacych wie-—
J p I 1 Jac)

le dodatkowych ograniczeri. Ograniczenia te, z ktdérych najistotniejsze

sg "znaczne! opdinienie i “znaczna' zawodnos$é w przekazywaniu informa-

cji, komplikuja konmunikacjs pomigdzy procesami, prowadzac do pojecia

> parallel language, Information Processing 80,
1 Golland tublishing Company, 229-240, 1980.

3
Ao V. KOTCV S Onsbas
lavingten (ed.), &

Deiia

10

tzw, protokoXéw komunikacji miedzyprocesowej. Protokoty sa zasadami pro-
wadzenia komunikacji majgcymi eliminowaé, lub co najmniej ograniczaéd,
skutki zawodnego dziatania posredniczgcych srodkéw gcznosci. Dobry
przyktad obliczen rozproszonych stanowig obliczenia rozproszonego sys-
temu operacyjnego sieci komputerowej. (Rozproszony system operacyjny
jest realizowany przez zbidr wspdidziaajgcych systemdéw operacyjnych
poszczegdlnych komputerdw wchodzacych w skZad sieci.)

1.3. Zrédza réwnolegkodci

7réder réwnolegodci obliczed nalezy poszukiwaé w systemach kompu-
terowych oraz w obliczanych problemach.

Wieloprocesory i sieci komputerowe

Rozwdj systeméw komputerowych charakteryzuja dwie tendencje: coraz
wiekszy stopien miniaturyzacji sprzetu liczacego oraz coraz wigkszy sto-
pien terytorialnego rozproszenia poxgczonego wspdlnymi Srodkami komuni-
kacji. Pierwsza z tych tendencji uwidacznia sig¢ w konstrukcji wielopro-
cesordéw wytwarzanych w technologii uk%*addw wielkoscalonych. Druga ten-
dencja wyraza sie w tworzeniu sieci komputerowych. Pomiedzy tymi ten-
dencjami skrajnymi istnieje wieksza gama rozwigzar systemdéw wieloproce-
sorowych [23] . Komérkowa konstrukcja wieloprocesordéw {procesory macie-
rzowe) w szczegdlny sposdéb uprzywilejowuje dziakania na macierzach,
vmozliwiajgc znaczne przyspieszenie np. operac]i algebraicznych na ma-
cierzach [45,66]. Dusg liczbe takich operacji spotyka sie przy rozwia-
gywaniu ukXadéw réwnan rdézniczkowych, stad zastosowanie specjalizowa-
nych procesordéw macierzowych (np. ILLIAC IV, CDC STAR) w obliczeniach
energii atomowej, symulacji sytuacji meteorologicznej opartej na danych
pobieranych z sieci stacji obserwacyjnych itp. Ogélnie wieloprocesory
stwarzajg jednak wiele ograniczern, ktdre - jak dotychczas - powodujg,
ze zwigzane z nimi jezyki programowania sa przeznaczone przede wszyst-
kim do obliczer numerycznych. Takie jezyki, jak np. IVTRAN, IRLTRAN,
ASCFORTRAN sz zbudowane na bazie FORTRANu z dodatkowym repertuarem dzia-
Zafi na macierzach oraz mechanizmami wskazywania dziaZan réwholeg}ych.

Na przykzad fragment programu w jezyku IVTRAT:

B9 9 BOR Al (%) /7 Mool 55 Hooo®l = [1o00 700
IP(A(I,J,K)LT.0.0)A(I,J,K) = —-A(I,J,K)
1 A(I,J,K) = SQRT(A(I,J,K))

oznacza, aby jednoczesnie dla wszystkich elementdw tablicy A(I,J,E) o
rozmiarach 3x7x10 obliczyé kwadratowe pierwiastki z modu2déw jej elemen-—
+8w. Etykieta 1 po stowie DO wskazuje koniec "czoXa' cyklu.

11

Sieci komputerowe stwarzajg takze mozliwoscl rdéwnolegZego przetwa-
rzania programéw. Nie narzucaja one takich ograniczer jak wieloproceso-
ry, dajac mozliwosSci rdéwnolegiego obliczania zagadnieri dowolnych typdw.
Obecnie jednak trudno wskazad implementacje jezyka programowania réwno-
legiego poziomu algorytmicznego w sieci komputerowej o architekturze
otwartej*? Przyktadami takich jezykdéw w specjalizowanych sieciach kom-
puterowych sa jezyki PLITS [24] oraz ILIAD [60].

RéwnolegZosé w_programach sekwencyjnych

Dokladna analiza programéw sekwencyjnych, napisanych w takich jezy-
kach jak Pascal, Algol, Fortran, pozwala stwierdzié, 2e ich wykonanie
nie musi zawsze przebiegal dokZadnie sekwencyjnie. Istnieje wiele algo-
rytméw rozpoznawania réwnolegtos$ci w programach sekwencyjnych i zamiany
programéw sekwencyjnych na réwnolegte [46,47,55,631.

Najbardziej elementarnymi konstrukcjami jezyka programowania sek-
wency jnego, w ktdérych tkwig Zrddza rdwnolegios$ci, sg wyrazenia stanowia-
ce element instrukcji podstawienia, instrukcji warunkowych itd. Wyraze-
nia takie w obliczeniach sekwencyjnych sg obliczane za pomoca odpowied-
niego ciggu operacji. W wielu wypadkach obliczenie to mo2Zna przyspie-
szyé przez jednoczesne obliczenie kilku operacji. Przykiadowo wyrazenie

e=-(A+G¢+B=x0C/(Dx(E+ I +PF) +H

ma drzewo rozbioru postaci:

v
/5
A A |

T
TN T

Oznacza to, Zze majgc do dyspozycji rdwnolegle pracujace procesory, mo-
zemy obliczenie wyrazenia rozpoczzé od jednoczesnego obliczenia wartoé-
ci wyrazen:

*)J A. ?ARCHA‘DYI Sieci komputerowe, WNT (w przynotowanlu\

12

e, = A+ G, e, = B # (0], =B + I

3
Dalej, w zalezno$ci od tego, ktére z tych wyrazen zostang obliczone
wezesniej mozna wykonywacé dalsze obliczenia, np.

€, = €9 + &, lub eci= D = e, itd.
Dopuszczalna kolejnosé wykonywania dziaXah wynika w oczywisty sposdb ze
- struktury grafu rozbioru.

Druga mozliwosdé zrdwnoleglenia dziaZan w programie sekwencyjnym wy-—
nika z istnienia instrukcji niezaleznych. Dwie instrukcje I oraz 12
sa niezalezne, jezeli dla dowolnych danych poczgtkowych ciggi 11;12
oraz 12; I, produkuja te sane wyniki kofcowe. Jezeli na przykiad dane
sg dwie kolejne instrukcje

X := W1(a,b);
y := Wy(b,c);

w ktérych =x,y,a,b,c sg roziacznymi zmiennymi, W, oraz W, - wyrazeniami,
to takie instrukcje sa niezalezne i mogg byé wykonywane rdéwnolegle.

Kolejng mozliwoéé stanowi zrdownoleglenie dziaan iteracyjnych. Roz-
patrzmy instrukcje

for i := 1 to n do A[i]:=W(i),

w ktdrej W(i) jest wyrazeniem zaleznym od indeksu i, a niezaleznym
od elementdw A[j] dla j#i. Jest oczywiste, ze w tej sytuacji instruk-
cje podstawienia A[i]:=W(i) dla i=1,2,...,n mozna wykonaé rdéwnole-
gle.

Algorytmy rownolegte

Swiadomo$é mozliwosci réwnoleglego wykonania programu powinna towa-
rzyszy¢ programiscie w chwili przystgpienia do rozwigzywania problemu.
Daje to moznosS¢é odpowiedniego uozenia algorytmu rozwigzania. Na przy-
k*ad znany sekwencyjny algorytm obliczania wartosci wielomianu opiera
sie na schemacie Hornera, tzn. wartos¢é wielomianu

4

p(x) = a x" + co. + ayX + @
oblicza sig wg schematu:
Pn = 8y
Py = Py,q X + ay dla il = el goooallin©

gdzie p(x) = p,- Czas obliczen jest oczywiscie proporcjonalny do n.
Réwnoleg}y algorytm Estrina [51] oblicza wielomian wg schematu:

x/2 + 1

p(x) = a(x) x + r(x),

gdzie

13

L[}
()
)

+ s00 + &

a(x) -

_r(x)

n/2 + 1°
ap /0% + s0e + @

1}

09
a nastepne wielomiany q(x), r(x) oblicza sig¢ przez podobny binarny po-
dzisx. Zatem algorytm startuje od jednoczesnego obliczenia
a,X + Gy, 33X + 8oy eee,
a nastepnie oblicza
2
(a3x + a5)x" + (a1x +85)s ee-
Jezeli dostepna jest nieograniczona liczba procesordw, to czas obliczen
jest proporcjonalny do 2 log n.
Algorytm Dorna [51] stosuje schemat Hornera k-tego rzedu, ktéry ob-
licza najpierw rdéwnolegle

k k 2k
qo(x) a, + 8 X + a5 X 4 ...

(0]
q1(xk)

k
81 + 8 X+ e

© 0006006060960 000°000006060060°e00000 080

k k
qk_1(x) = B q * 8o 41X = eee,
a nastepnie

p(x) = qo(xk) + X°q1(xk) G eTeretct xk'1-qk_1(xk).

Dla k procesordéw czas obliczen szacuje sig jako proporcjonalny do
2n/k + 2logk. ‘

Innym przykZadem algorytmu rdéwnolegego jest wyznaczenie komponentéw
spéjnosci grafu [32] . Niech V = {O,1,...,n—1} bedzie zbiorem wierzchoi-
kéw grafu nieskierowanego G = (V,E), gdzie BEC V x V Jjest zbiorem
krawedzi. Przedstawmy graf w postaci macierzy boolowskiej A o wymiarach
nxn, gdzie A(i,j) = true wtedy i tylko wtedy, gdy (i,j) € E. Komponen-
ta spdjnosci grafu G jest najwiekszy podgraf G, taki, ze pomigdzy dowol-
nymi wierzchozkami Gc istnieje Zaczgcy je ciag krawedzi. Kazdy wierzcho-
ek nalezy dok%adnie do jednej komponenty spdjnosci. Niech m-wymiarowy
wektor D stuzy do wyznaczenia komponent: jezeli Gc = (VC,EC) jest kom-
ponenta spdéjnosci, to dla i€ Ve D(i) jest rdéwne najmniejszemu elemen-
towi z Vc‘ Algorytm ma postaé nastepujaca:

1. Dla wyszytkich i wykonuj D(i):=i. Powtarzad nastepnie kroki od 2 do
6, przez co najwyzej log n iteracji.

2, Dla wszystkich i wykonuj
min {D(3)[4(1,3) = trae AD(§) # D(1)}
D(i) gdy podany wyzej zbidr jest pusty.

CENN=

14
3. Dla wszystkich i wykonuj

n{o(ID(3) = 1 Ac(3) = 1)

c(i) =
D(i) gdy podany wyzej zbidr jest pusty.

4, Dla wszystkich i wykonuj D(i):=C(i).

5. Przez co najwyzej] log n iteracji dla wszystkich i wykonuj

c(1):=c(c(1)).

6. Dla wszystkich i wykonuj
D(1i) :=min(C(1),D(C(i))).

Dziazanie algorytmu jest nastgpujace. Podczas pierwszej iteracji sa
badane wierzchoxki przylegie do kazdego wierzchotka (kroki 2,3) oraz
zbiory wiericholkéw, ktdre polgczone sg ze sobg. W rezultacie kazdy ta-
ki zbidr wierzchoikdéw jest zanurzony w pewnym nadzbiorge zdefiniowanym
przez D nastepujqco:‘D(i) jest réwne wierzchorkowi o najmniejszym nume-
rze, do ktdrego przylega wierzchorek i. W kolejnych iteracjach sa bada-
ne krawedzie gczgce dwa sgsiednie nadzbiory (kroki 2,3), a nastepnie
nadzbiory te sg %3czone ze sobg w krokach 4-6. Obliczenia kontynuuje
sie a% do chwili, gdy wszystkie nadzbiory zostang poxaczone, a dalsze
iteracje nie wnoszg zadnych zmian. Okazuje sig, Zze liczba iteracji nie
przekracza log n.

Wybrane algorytmy sg tylko ilustracjg réwnolegzego podejsScia na eta-
pie rozwigzania problemu. MozliwosSci, jakie kryjg sie w tego rodzaju po-
dejsciu, pozwalajg oczekiwadé, ze przed klasycznymi, juz rozwigzanymi,
zagadnieniami, w szczegdlnosSci przed metodami numerycznymi, stoi po-
wtérna droga do przebycia.

CWICZENIA

1. Przytoczone opowiadanie [37] stanowi pouczajjacy prazyk*ad ilustru-
jacy zagadnienie synchronizacji dostepu do wspdlnych zasobdw.

Wysoko w Andach przebiegajg dwie okélne linie kolejowe, z ktdrych
jedna nalezy do Boliwii, a druga do Peru. Linie te maja wspdlny odcinek
toru prowadzacy przez przetecz gbrskag lezgcg na granicy obu panstw.
Przejazd przez ten odcinek odbywa sie zawsze tylko w jednym, na staze
przyjetym, kierunku. Problem polega na tym, ze maszynisci wjezdzajacy
na ten odcinek sg Slepi i gZusi. Aby unikngé kolizji uzgodniono naste-
pujace reguty wgazdu na wsp6lny tor. Przed wjazdem umieszczono beczke.
Maszynista zanim wjedzie na wspdlny tor zatrzymuje pocigg, podchodzi do
beczki i sprawdza jeJj zawartosé. Jezeli beczka jest pusta, to wyszukuje
kamierr i wrzuca do go beczki, wskazujgc tym, ze zajmuje tor, wsiada do
pociggu i przejezdza wspdlny odcinek. Fo przejeZdzie odcinka ponownie
wraca do beczki i wyrzuca z niej kamieri, wskazujgc zwolnienie wspdlnego
toru., Jezeli przed wjazdem maszynista znajdzie w beczce kamieri, to robi
przerwe na krotka sjeste, po czym ponownie, czesto kilkakrotnie, spraw-

15

dza czy wreszcie beczka jest pusta. Pewien spostrzegawczy kolejarz bo-
liwijski stwierdzi%, Ze wywrotowy peruwiariski rozkZad jazdy spowoduje
statg blokade boliwijskich pociggéw. (Diaczego?) Na to boliwijski ma-
szynista stwierdzit, ze nigdy to si¢ nie zdarzy. (Dlaczego?) Nieszcze-
éliwie pewnego dnia pociggi na przejeZdzie zderzyty sig.(Dlaczego?). Po
katastrofie spostrzegawczy kolejarz zaproponowaz nowe rozwigzanie. Bo-
liwijski maszynista powinien czekaé przy beczce dopdty, dopdki beczka
bgedzie pusta, a po przejezdzie wepdlnego odcinka powinien wrécidé de
beczki i wrzucidé do nie] kamieni. Natomiast maszynista peruwiafski powi-
nien czekaé przy beczce, az w beczce bgdzie kamiedi, a po przejeZdzie to-
ru powinien beczke oprdéznid. Kolejarz byx przekonany o bezkolizyjnosci
swego rozwigzania. Jednak peruwianczycy okazali sie bardzo nieszczed$li-
wi 2z powodu nowej umowy. (Dlaczego?) W zwigzku z tym spostrzegawczy
kolejarz zaproponowaz kolejne rozwigzanie. Przed wjazdem umieszczono
dwie beczki, kazdg dla jednego maszynisty. Gdy maszynista osigga prze-
jazd podchodzi do swej beczki, wrzuca do niej kamier, a nastepnie spraw-
dza drugg beczke. Jezeli jest pusta, to wsiada do pociggu, przejezdza
wspblny tor, wraca do swej beczki i oprdznia ja. Jezeli w beczce jest
kamien, to wraca do swej beczki, wyrzuca z niej kamied i robi krdétks
przerwe na sjeste, po ktdérej ponawia poprzednie czynnosci, zaczynajac
od wrzucenia kamienia do swej beczki. Metoda dzlazala przez wiele mie-
siecy, az pewnego dnia pdZng jeeienig pociggi zostaly zablokowane na
przecigg wielu sjest. (Dlaczego?)

2. Podaj zasady szacowania minimalnej liczby procesordw niezbednych
do mozliwie szybkiego obliczenia danych wyrazerd liczbowych:

a) przy zatozeniu jednakowych czaséw wykonywania rdznych operacji,

b) przy zalozeniu dowolnych (znanych) czasdéw wykonywania operacji.

3. Frzedstaw optymalny czasowo harmonogram obliczer wyraZzenia
(a + b)/(a = b) % (c/e - cxd) = (azxa + c=xd)/((a+b)=x(a-b))

przy zalozeniu, ze czas wykonywania operacji +,- wynosi T, % wynosi 3T,
/ wynosi 4T.

4. FPrzedstaw potencjalne rdéwnolegiosci w ciggu instrukcji
for i:=1 to m do
for j:=1 to n do

begin
AlGl := x[a] + (3]
B[i,j] := x[i] = 1 ;
cx,3] == alkl;

D[i,k,j] := ¥[i] = k % {i-j)
and;

5. Zaproponuj réwnolegly algorytm obliczenia zera funkeji z wyko-
rzystaniem metody Newtona.

6. Zaproponuj algorytm rdwnolegiego sortowania liczb
a) przy dowolnej liczbie procesordw
b) przy ograniczonej liczbie procesordéw.

7. Zaproponuj algorytm rdéwnolegy wyszukiwania najkrdtszej Sciezki
w grafie skierowanym z Zukami obcigzonymi ‘liczbami nieujemmnymi.

8. Dana jest sieé procesoréw potaczonych w dwuwymiarowg strukture
macierzowg. Zaproponuj zasady komunikacji miedzy sgsiednimi procesora-
mi. Uwzgledni] te zasady do obliczenia iloczynu macierzy liczbowych.

2. POROWNANIE PODSTAWOWYCH KONCEPCJI

2.1, Zasady pordwnania

Ocena i pordéwnaenie (pragmatyka) koncepcji programowych nie jest za-
gadnieniem Zatwym [22] . Nalezy bowiem braé pod awage wiele pordwnywa -
nych aspektéw. Najbardziej istotnymi aspektami s3: sia ekspresji jezyka,
jego czytelnodé i 2atwosé implemeéntacji.

Si%a ekspresji jezyka programowania wspdZbieznego wyraza rodzaje
réwnolegtosci, jakie dopuszcza jezyk, sposoby komunikacji i synchroni-
zacji, rodzaje niedeterminizmu.Prawidzowo zaprojektowany jezyk powinien
zawieraé dostatecznie bogaty zestaw tych mechanizmdéw, tak by programis-
ta mégt opisywaé w nim wszystkie przewidywane akcje, bez odwoiywania
sig¢ do procedur systemu operacyjnego.

Czytelno$é programéw napisanych w danym jezyku okresla stopien trud-
noéci analizy programu (okreslenie tego, co program wykonuje) na podsta-
wie analizy tekstu programu (a rie analizy wykonania programu). Zasadni-
czym wymogiem czytelnodci programu jest jego strukturalizacja (modulary-
zacja), tzn. taka dekompozycja programu na dostatecznie mate fragmenty,
ktére mozna analizowaé oddzielnie, niezaleznie od pozostatej czesci
programu. Dekompozycja jest krytyczna wiasnoscig w projektowaniu progre-
méw wepSibieznych, gdyz pomiedzy komponentami programu zachodzg subtel-
ne oddziakXywania i mogg one doprowadzié do blokad, hazardéw lub innych
form nieprawid¥owych zachowar. Czytelnos$é programéw jest wazna zaréwno
przy wszelkich modyfikacjach lub rozbudowie programu, jak réwniez pod-
czas jego konstrukcji: jezyk dysponujgcy konstrukcjami wysokiego pozio-
mu kojarzgcymi mechanizmy komunikacji i synchronizacji nie tylko przy-
spiesza analize 1 synteze programdéw, lecz takze czyni programy bardziej
odpornymi na bedy. :

Wzgledy implementacyjne odnoszg sie do procesu tworzenia kompilato-
ra jezyka oraz do efektywnosci pracy tego kompilatora (efektywnoZé
przek¥adu i efektywno$é dziaZania kodu wynikowego). Na ogdk wzgledy te
pozostaja w sprzecznosci z poprzednio wymienionymiAéspektami: wzrost
g8ity ekspresji lub podniesienie czytelnofci pocigga dodatkowe kiopoty
implementacyjne. :

Pordwnanie przedstawionych dalej koncepcji programowych bedzie pole-
gaé na ocenie oméwionych aspektoéw.

17

2.2, Przykradowe systemy

Prezentacji i pordwnania podstawowych koncepcji programowych dokona-
no w sposdb poglgdowy na podstawie nastgpujacych dwéch przykiaddéw.

P.1. System rezerwacji biletdéw lotniczych skiada sie ze wspélnej ba-
zy danych, do ktdérej w trybie interakcyjnym ma dostep pewna liczba zdal-
‘nych uzytkownikow. System wymaga wspiZbieznego dziatania w celu zapew-
nienia podzia*u dostepu do wspdlnych danych, obsitugi napXywajgqcych zgZo-
szerl klientéw, sensowne] przepustowosci.

Przyjmijmy, ze wspdlna baza danych zawiera informacje o pewnej licz-
bie lotdw. W uproszczeniu, niech kazdy lot dysponuje 100 miejscami dla
pasazerdw. Aby zarezerwowaé m miejsc w locie numer 1, uzytkownik wy 8y-

¥a wiadomo$é (polecenie)
' (‘rezerwuj ', 1, m).

Jezeli dany lot dysponuje wymagang liczbg miejsc, to dokonuje sie
rezerwacji i informuje zwrotnie uzytkownika, w razie braku odpowiedniej
liezby miejsc, rezerﬁacja nie jest realizowana, a uzytkownik otrzymuje
odpowiedZ negatywng. Uzytkownik moze takze sprawdzié iloma wolnymi
miejscami dysponuje dany lot; w tym celu wysyZa on wiadomo$é

(“informuj ~, 1),

a w odpowiedzi system przesyza mu aktualng liczbe wolnych miejsc.

P.2. System buforowania skiada sig z pewne] liczby urzgdzen wejscio-
wych, z ktérych czytane sg pojedyncze porcje danych do wspSlnego bufora,
w ktéryéh dane te sg umieszczane oraz z pewnej liczby urzgdzen wyjScio-
wych, ktdére pobierajg ze wspdlnego bufora pojedyngze porcje danych i
wyprowadzajg na zewnatrz. Urzadzenia wejsSciowe (czytniki) oraz urzgdze-

nia wyjéciowe (pisaki) pracujg wspéibieznie i sg tylko uzaleznione od
dostepu do wspdlnegzo bufora (czytniki - od mozliwoéci zapisu w buforze,
pisaki - od mozliwos$ci odezytu z bufora). Bufor ma ograniczong pojem-
nos¢ i dopuszcza sig, ze w okreslonym czasie moze byé dostepny tylko
dla jednezo czytnika lub pisaka. Aby zapewnié efektywng prace sjstemu
zaktada sieg, Ze operacje zapisu/odczytu do/z bufora sg znacznie krdtsze
od operacji wejscia/wyjscia wykonywanych przez czytniki/pisaki,

Opiesane przykitady stanowia tylko przykzady ilustfacyjne. Dokonano w
nich uproszczeni, pominieto detale. Przyktadowo pominieto kwestie dzia-
Yania systemdw w warunkach awaryjnych, kwestie zakonczenia ich dzia%ania,
Trudno zatem sformuiowad niepodwazaslne wartosci o wiasciwosciach jezyka

18

programowania na podstawie tak uproszczonych przyktaddéw. Nalesy takze
pamigtaé o trudnosciach, jakie wyniknelyby z doZaczenia urealniajacych
szczegbiiw. «

W biezscym rozdziale zastosowano pascalopodobnz, samowyjasniajaca
gie notacje programowsg.

2.3. Procesy w_ sSrodowisku zwartym

Najwczeéniejsze podejscia do programowania réwnolegego przyjmowalty -
podejscie naturalnie nasuwajgce sig z obserwacji dzialenia systemdw wie-
loprogramowych. Systemy takie skiadazy sie 2z jednego lub kilku proceso-
réw majgcych dostep do wspdinej pamieci. Komunikacja procesdw realizowe
nych w systemie odbywala sie za posdrednictwem wspdlnej pamieci stanowig-
cej wspdlne, zwarte Srodowisko dla tych proceséw. Komunikacja wyrazata
sle przez realizacje instrukcji przypisania operujgcych na zmiennych
globalnych reprezentujacych obszary wspélne]j pamieci.

Wspdipraca wepdtbiegnych proceséw wymaga mechanizméw synchronizacji
dostepu do wepblnej pamieci. (Na poziomie architektury sprzetu liczgce-
go jest to realizowane przez wykorzystanle mechanizmu przerwarn.) Powsta-
To wiele réznych mechanizméw synchronizacji [12,45]:

- rézne odmianj gsemafordéw (Dijkstra 1968, Vontilborgh i van Lamswe-
erde 1972, Agerwala 1977),

- warunkowe regiony krytyczne (Hoare 1972),

- wyrazenia Sciezkowe (Campbell, Habermann 1974),

- monitory (Hoare 1974, Brinch Hansen 1973),

- wyrazenia warunkowe (Kessels 1977),

i inne. :

Sposrdéd wielu proponowanych mechanizméw dalej oméwiono tylko dwa:
semafory Dijkstry oraz monitory Hodre’a (koncepcja) i Brich Hansena (no-
tacja jezykowa). Odegraly one chyba najistotniejszg role w procesie for-
mowania mechanizméw synchronizacji. Nalezg one do dwéch rdznych katego-
sslalg ﬁemafqr’etanowi specjalny typ zmiennej, na ktdrej mozna wykonywad
tylkéﬂokreélone operacje, monitor natomiast stanowi zdefiniowany przez
programiste zbidér procedur, poprzez ktére proces moze dzia*ad na wspdl-
nych danych. ‘

2.3.1. Synchronizacja procesdéw za pomoca semafordw

Semafor S jest zmienng typu caikowitego (integer), ktdrej, w momen~-
cie inicjalizacji, przypisuje sig¢ pewna wartosé poczatkows. Ze zmienng
S jest zwigzana kolejka, w ktdre]j przechowuje sie nazwy procesdw., Na sge-
naforze mozna wykonaé tylko dwie operacje: wait (S) oraz signal (8).
(Dijkstra nazywa je odpowiednio I 2»az V.) Jezeli proces P wykonuje

19

operacje wait (S), nastepuje zmniejszenie wartodci S o wartodé 1; jeze-
1i nowa wartos¢ bedzie ujemna, to nazwa procesu P bgdzie zapisana w ko-
> lejce étowarzyszonej z S 1 wykonanie procesu F zostanie zawieszone; je-
z2eli nowa wartosé S nie jest ujemna, to proces P wykonuje sie dalej.
Jezeli proces P wykonuje operacje signal (S), to nastepuje dodanie je-
dynki do S, po czym proces P kontynuuje swe obliczenia. Jezeli nowa
wartosé S okaze sie dodatnia, to nazwe jednego z zawieszonych préceséw
usuwa sig 2z kolejki i wznawia wykonywanie tego procesu. Wybdr jednego z
zawieszonych proceséw jest niederministyczny.

Semafory dostarczaja wiec Srodkéw do zawieszenia wykonywania pro-
cesbw, az do momentu speinienia pewnych warunkdw. Jezeli proces wykonu-
Je operacje na semaforze w pozgczeniu z dostegpem do zmiennych global-
nych, mozna osiggngé prawidowg synchronizacje dostepu. Przykradowo,
semafor z poczatkowg wartoscig 1 mozna zastosowaé do zachowania wzajem-
nie wykluczajqdego sig¢ dostepu do wspdlnych zmiennych (mozZna zorganizo-
wadé sekcje krytycznag).

P.1. Przykad procesu w systemie rezerwacji biletéw lotniczych, kté-
ry usiluje dokonaé rezerwacji miarby wiec postad:

process klient_i-ty;
wait (mutex);
if liczba_dostepnych_miejsc[nr_lotu] =n
then
begin
1iczba_dostepnych_miejsc[nr_lotu]:=
liczba_dostepnych _miejsc nr_lotu - n;
powodzenie := true
end
else powodzenie := false;
signal (mutex)
end process
gdzie mutex jest zadeklarowany i zainicjowany wspdlnie dla wezystkich
proceséw klientéw przez: -
semaphore mutex;
mutex := 1;
Jezeli kilku klientdéw pragnie uzyskaé dostep do bazy danych bez narusze-

nia jej zawartosci, to oczywiscie dostep taki moga uzyskaé jednoczednie,
bez potrzeby dodatkowej synchronizacji. Proces, ktéry ma zamiar dowie-

20

dzieé sig o liczbie wolnych miejsc, moze wykonaé po prostu instrukcje:
n := liczba_wolnych._miejse[nr.,_lotu]a

Oczywiscie w realnych systemach rezerwacji klient moze zapytyweé o wiek-
8zg liczbg informacji, dlatego zwykle istnieje potrzeba synchronizacji
nawet w razie déstepu nie modyfikujgcego wspdlnych danych po to, by in-
formacje nie okazywaly sig¢ nieaktualne juz w chwili przekazania ich do
klienta.

P.2. W przyk}adzie systemu buforowsnia synchronizacja dostepu do
wapblnego bufora jest bardziej ztozona i wymaga uzycia dwdch semafordw.

concurrentprogram system_buforowaniaj;

var wspélny_bufor: Tj -
semaphore pusty, peiny;
pusty := 1; peiny := O;
process czytmnik_ i-ty; (L = V5Zh000m)
var lokalny_bufor : T;
begin
while true gé
egin read (urzgdzwej.i-te, lokalny_bufor)
wait (pusty);
wepdlny_bufor := lokalny_bufor
signal (peiny)

:

:

end
endprocess; -
process pisak k-ty; (1% 8 32aonc i)
var lokalny.bufor : T; ‘
while true do
begin wait (peiny);
lokalny_.bufor := wspdlny_bufor;
signal (pusty)
write (urzgdzwyj_k-te, lokalny.bufor);
end
endprocess;
endprogram
Semafor "pusty" gwarantuje, Ze tylko jeden z procesdw czytnikdéw otrzyma
dostep do wspdlnego bufora, podeczas gdy semafor "peiny" gwarantuje to
samo dla procesdéw pisakdw.
Konstrukcja semafora jest wyshtarczajaca do rozwiazywania szerokie]
klasy probleméw synchronizacji, chociaz czasem stwarza to duze kiopoty.

Nie uwzglednia natomiast semafcor 1vdch elementdw:

21

- czasu, w ktérym zachodzi dane zdarzenie: przykladowo nie mozna
wodowaé—zawieszenia sie procesu na okredlony odcinek czasu;

- mozliwo$ci wpywu jednego procesu na zakoficzenia dzialania innego
scesu, Oba te elementy pominigto $wiadomie, gdyz proces abstrakcyjny
nija bezwzgledny (substancjalny) czas zachodzenia zdarzeri, a jedynym
adciwym oddziatywaniem pomiedzy procesami jest przekazywanie danych
zez wspdlng pamied.

Fojecie semafora nie jest jednak wystarczajgce do rozwiggania zagad-
.eni synchronizacji, przy braku wspdlnego, globalnego S$rodowiska. Nie

:st mozliwy jawny opis oddzialywan pomiedzy procesem komunikujgcym sie
rzez wspélne Iacze.

Koncepcja semafora stanowita w swoim czasie milowy krok w kierunku’
lepszego zrozumienia problemdéw synchronizacji. Jednakze narzedzie to ma
znaczne niedogodnosci. Pierwsza wynika stgd, Ze jest to narzedzie bar-
dzo elementarne: programiscie pozostawia sie rozwigzanie sposobu wZasdci-
wego uzycia semafordéw. Uzyskanie takiego rozwigzania jest klopotliwe i
bardzo podatne na bzedy, a same rozwigzania - zwZasgzcza przy ziozonych
zagadnieniach - sg sztywne, trudno modyfikowalne. Druga wada wynika z
zupeinego braku modularno$ci. Informacje o tym, w jaki sposdéb sa wyko-
rzystywane wspdlne dane, sa rozproszone po calym programie. PrzykXadowo
trudno zlokalizowaé #réda niedeterminizmu w programie.

Brak modularnosci w poigczeniu z elementarnos$cia powoduje bardzo
trudng analize (maZa czytelno$é) programéw z semaforami. Natomiast im-
plementacja semaforéw-nie nastrecza zadnych kXopotdéw. Historycznym przy-
kXadem systemu operacyjnego wykorzystujacego semafory jest system T.H.E.
Dijkstry z 1968 r.

2.3.2. Synchronizacja procesdw za pomoca monitordw

_ Monitory wprowadzono przede wszystkim po to, aby uzyskaé bardziej
gtrukturalng postad programdéw wspéitbieznych. W odrdznieniu od semafordw,
peina informacja o wspdlnych zasobach réznych proceséw i o sposobie ich
wykorzystania jest zawarta w jednym wspdlnym fragmencie programu, zwa-
nym monitorem. Deklaracja monitora zawiera definicje wspélnych danych
oraz definicje procedur, ktére moga na nich dziatad. Procedury te, na-
zywane procedurami wejsSciowymi monitora, s3 dostepne procesom, tzn. pro-
cescy moga wywoiywaé jedng z tych procedur w celu wykonania pewnych ope~
racji na wepdlnych danych. Na wspélnych danych, wchodzacych w skiad mo-
nitora, nie mozna wykonywaé dowolnych operacji, a tylko te, ktdre sg
zdefiniowane przez procedury w§jsSciowe, Monitor jest wy%acznie obiekt
ustugowym, nie moze on dokonywaé samodzielnie wywoxania wkasnych oo
dur wejsciowych.

22

Monitor dziaXa w taki sposdb, ze wykonywanle jego procedur we3é01o—

wych wzajemnlie sig wyklucza. Jezeli w pewnej chwili nastapl jednoczesne
7wyﬁo&aﬁigwbrocedur wejsciowych przez kilka rdéznych procesdw, to wykona
sie tylko.jedna z tych procedur, dla jednego z tych procesdéw, podczas
gdy ﬁsibstale zostang zawieszone (wstrzymane), az do czasu, gdy zakori-
czy>sie wykonywanie rozpoczetej procedury (zwolnienie monitora przez
proces, ktéry poprzednio uzyskar dostep do monitora). Wybdr kolejnego z
zawieszonych proceséw do wykonania w monitorze procedury wejécio&ej

jest niedeterministyczny.

' Proces, ktéry wywoxa procedure wejSciowg monitora catkowicie podda-
je sie sterowaniu przez monitor. Proces moze poddawaé sie sterowaniu mo-
nitora dwoma sposobami. Pierwszy - prostszy - polega na tym, Ze od mo-
mentu wfwolania procedury wej$ciowej monitora proces eweﬁfualnie oczeku-
Je przez pewien czas na zwolnienie monitora przez inne procesy, nastep-
nie jest wykonana zgdana procedura wejsciowa, a po jej zakodczeniu ste-
rowanie zostaje zwrdcone procesowi, ktéry moze wykonywaé swe dalsze in-
strukcje. Drugi - bardziej zZozony - wykorzystuje tzw. zmienne kolejko-
we (queue) z operacjami opdéZnij (delay) oraz wznéw (continue). Zmienne
kolejkowe s*uzg do jawnego (programowego) zapamigtywania nazw procesdw
zawieszanych. Gdy proces P wykona operacje opéZnienie na zmiennej kolej-
kowej q - delay (q), wéwczas nastgpi zawieszenie tego procesu, a jego
nazwa P zostanie zapamietana w zmiennej q. Proces P pozostanie zawieszo-
ny dopbty, dopSki nie wznowi go inny proces. W momencie zawieszenia pro-

cesu monitor jest gotowy do obstugl innych proceséw. Gdy prpcas wykona
operacje continue (q), woéwczas - o ile g nie jest puste - nastgpuje
wznowienie procesu, ktérego nazwa jest aktualnie przechowywana W Q.

P.1. Przykzad systemu rezerwacji biletdéw ilustruje prostszy sposdb
sterowania procesami w monitorze. Monitor zarzgdzajacy wspdlng bazg da-
nych ma postadé:

monitor baza_danych
' var liczba_dostepnych_miejsc : array [1..n]
of integer, :
i : integer;
procedure entry rezerwuj (lot, liczba : integer,
var powodzenie : boolean) ;

begin
if liczba_dostepnych-miejsc [lot] = liczba

then begin
liczba_dostepnych-miejsc [lot] o=
liczba_dostepnych_miejsc [lot] - liczba;
powodzenie := true

23

end
else powodzenie := false
end;.
procedure entry informuj (lot : integer,
var liczba : integer);

begin

liczba := liczba_dostepnych_miejsc [lot]
end; :
begin {inicjalizacja monitora}

for i := 1 to n do

- liczba_dostepnych_miejsc [i] := 100

end monitor;

Instrukcja inicjalizacji monitora suzy do nadania wartosci poczat-
kowych zmiennym wspélnym ochranianym przez monitor. Instrukcja powinna
byé wykonana jednorazowo przed przyjeciem wywoXan procedur wejSciowych
monitora. WywoZania procedur wejSciowych w procesach klientéw bedg mia-
Iy postad

baza._danych . rezerwuj (L,n,p)
lub
baza_danych . informuj (L,n)

gdzie L,n,p sg aktualnymi parametrami wywoiywanych procedur.

P.2. Przykiad systemu buforowania jest bardziej zlozony. Pokazuje
m sposéb wykorzystania zmiennych kolejkowych do pewnej strategii szere-
zowania procesdéw wywoXujgcych monitor (szeregowanie zgodne z kdlejnoé—
cig zgloszen). Wewngtrz monitora sg zdefiniowane takze jego funkcje we-
wnetrzne, ktérych nie moga wywolywaé procesy, a ktdére moga byé wykorzy-
stane przez procedury wejsSciowe monitora

monitor wspdlny_bufor;
var bufor : blok;
zajety : boolean; .
kolpis : array [O..n—1] of gqueues;
kolezyt : array [O..m—1] of queue;
pkolpis, kkolpis, pkolczyt, kkoleczyt,
dkolpis, dkolczyt: integer;
function wejscie (do : boolean) : integer,
begin
if do then
begin
wejscie

L]

kkolpis;

1)

kkolpis (kkolpis + 1) mod n;

24

dkolpis := (dkolpis + 1
end
else

egin
wejsScie := kkolczyt;
kkolczyt := (kkolezyt + 1) mod m;
dkolczyt := (dkoleczyt + 1
end :

i

end;
function wyjscie (to : boolean) : integer;

begin

to then
in
wyJjscie := pKolpis;
pkolpis := (pkolpis -+ 1) mod n;
dkolpis := dkolpis - 1
end

1=

else
begin
wyjécie := pkolczyt;
pkolezyt := (pkolczyt + 1) mod m;
dkolczyt := dkoleczyt - 1
end

()

=]

joh)
o

function pusta (to : boolean) : boolean;
begin
if to then pusta := (dkolpis = 0)
else pusta :+ (dkolezyt = 0)

end;
procedure entry czytaj (var danewy : blok);
begin

if not zajety then .
delay (kolczyt [wejscie(false)]);

danewy := bufer;

zajety := false;

if not pusta (true) then .
continue (kolpis [wyjscie(true)])

end;

procedure entry pisz (denewe : blok),

begin
if zajety

pis [wejdcie(true)]);
L

Anl g

25

bufor := danewe;

zajety := true;

if not pusta (false) then

continue (kolczyt [wyjscie(false)])

end;
begin {inicjalizacja monitora

zajety := false;

pkolpis := O; kkolpis := O; dkolpis := O;

pkolezyt := 0; kkolczyt := O0; dkoleczyt := O
end monitor

Procesy czytnikéw bedgq wywoiywaé procedure wejéciowé
wepSlny_bufor . pisz (we),
za$ procesy pisakéw -
wepSlny_bufor . czytaj (wy),

gdzie we, wy sg odpowiednimi parametrami aktualnymi procedur ustalonymi
przez te procesy.

Si%*a ekspresji monitoréw jest taka ssma jak semaforéw w tym sensie,
%e kazdy program, ktéry zawiera semafory moze byé zastapiony przez pro-
gram zawlerajgcy monitory oraz odwrotnie.

Konstrukcja monitora jest bardziej modularna niz semafora, dlatego
tez programy sg bardziej czytelne. Sposdb dostgpu do wspdélnych zasobbw
jest zdefiniowany w jednym tekstowo zwartym module. Czyni to program
tatwiejszy do modyfikacji. Przyk*adowo, gdyby bufor w P.2. skiadal sieg
z wiekszej liczby blokéw, przekonstruowania wymagaiby tylko monitor.

Przedstawiona wersja monitora zakada rozigczne dziatanie Jjego prd-
cedur wejséciowych. Ogdélnie tak byé nie musi; zwlaszcza wéwczas, gdy po-
szczegélne procedury dziatajg na rozigcznych fragmentach wspdlnych da-
nych, mozna zalozyé rdwnoczesnosé ich dziaxania [38].

Podobnie jak przy semaforach, implementacja monitordéw nie nastrecza
wiekszych klopotéw. System operacyjny SOLO Brinch Hansena z 1975 r., na
pisany w jezyku Concurrent Pascal, stanowi przykiad systemu catkowicie
opartego na monitorach.

2.4. Procesy w Srodowisku rozproszonym

Wraz z rozwojem systeméw komputerowych, a zwlaszcza pojawieniem sie
systeméw wieloprocesorowych [23] , torowaZo sobie droge programowanie
oparte na zaXozeniu $rodowiska rozproszonego. Wprawdzie pojecia komuni-
kujacych sie rozproszonych proceséw uzywai Brinch Hansen juz w 1970 r.
[6), to jednak zasadniczy rozwdj takiego programowania nastgpiz w poo-

26

wie lat siedemdziesigtych. Nalezy wymienié tu prace Kahna [41,42] , Hoa-
re’a [35], Brinch Hansena [11] , Hewitta [28] i inne, np. [39,48]. Wie-
loprocesory i sieci komputerowe stanowlg naturalng baze odniesienia dla
tego podejscia. y

Dla ilustracji wprowadzimy jezyk programowania, w ktérym zdefiniu-
jemy pojecie wiadomosci (tj. porcji danych przesyianych pomiedzy proce-
sami) oraz operacji mysyzania i odbioru wiadomos$ci. Przez wiadomo$é be-
dzie rozumiana trdjka

w = (nadawca, odbiorca, tresé),

gdzie nadawca jest nazwg procesu wysylejacege wiadomosé, odbiorca ~ na-
zwg procesu odbierajacego, tresé zasd stanowi przekazywang informacje
usytkowa. Dla ustalenia uwagi wiadomosci bedg traktowane jak rekordy (w
sensie Pascala) o podanych wyZej nazwach pdél, a wiec np. wartoéé. nadaw-
ca okredla nazwg procesu wysylajacego wiadomosé w.

Wysylanie wiadomo$ci w (przez proces P do procesu Q) polega na
wykonaniu procedury

send (w)

gdzie
w. nadawca = P,
w. odbiorca = Q.

ZakZada sig, %e proces P wysyZajgcy wiadmo$é w musi ustalié wartosé
pdl odbiorca i tresdé, natomiast wartosé pola nadawca jest ustawiana au-
tomatycznie przez procedure send.

Kazdy proces ma jedng kolejke, w ktdrej gromadzi nadchodzgce do nie-
go wiadomo$ci. Pobieranie wiadomosgci z tej kolejki odbywa sie przez wy-
wotanie funkcji receive, ktdéra powoduje podstawienia pod swg nazwe pier
wszej wiadomo$ci z kolejki wejsSciowej i usuniecie tej wiadomosSeci z ko-
lejki., Jezeli kolejka jest pusta, wykonanie receive zostaje opdznione
a% do momentu naptywu nowej wiadomosei. :

Omawiane poprzednio przykZzadowe problemy znajdujga tu nastepujgce
rozwigzanie:

P.1. W przykiadzie systemu rezerwacji biletéw, w modelu ze srodowis-
kiem zwartym, zakadano, Ze procesy klientéw majg dostep do wspdélnych
danych. Obecnie zakladamy, ze tylko jeden proces o nazwie "transakcja"
ma taki dostep, natomiast procesy klientdw maja tylko dostep posredni
poprzez wymiang odpowiednich wiadomosci z procesem transakcja.

W systemie sg zdefiniowane dwa typy wiadomosci: wiadomo$é od klien-
téw do procesu "transakcje!" oraz wiadomoSci przesytane w kierunku prze-

ciwnym:

message od-klienta =
record
nadawca: nazwa_klientaj
odbiorca: transakcja;
treéé: record
typ : (rezerwuj, informuj)
lot , liczba : integer
end
end
message do-klienta =
record
nadawca: transakcja;
odbiorca: nazwa-klienta,
tre$é: record
typ : (rezerwuj, informuj)
powodzenie: boolean;
liczba : integer
end
end

Definicja procesu transakcja ma postaé nastepujaca:

proces transakcja; A
var dostepne_miejsca : array [1..n] of integer;
2gdanie: message od-klienta; ’
odpowiedZ: message do_klientaj;
i,n: integer

©iF 5L 8= t

o

while true do

zadanie := receive;

cage zgdanie.typ of

rezerwuj:

begin

j:=2adanie.trescé.lot,

i:=%23danie.tredé.liczba;

if dostepne.miejsce [j] =i then

begin .
odpowiedz.tresc¢.powodzenie:=true;
dostepne_miejsce [j] :=

dostepne-miejsce [j] - i;
end

n do dostepne miejsce [i] := 100,

27

28

else odpowieds.tresé.powodzenie:=Ffalse;
odpowiedZ. tresé. typ:=rezerwuj
end
informuj: .
begin
odpowiedZ.tresé.liczba:=
dostepne.miejsce [zadanie.tresé.lot] s
odpowiedZ. tresé. typ:=informuj

end

end;

send (odpowiedz)
e

endprocess

Tredé proceséw klientéw jest tutaj mniej istotna: wazne jest tylko
to, %e klienci sg generatorami wiadomosci do procesu "transakcje" oraz
odbiorcami odpowiedzi tego procesu.

P.2, W systemie buforowania wyrdsnia sieg trzy rodzaje procesbw: n
procesdéw pisakéw, m proceséw czytnikéw oraz jeden proces sterujacy
weplOlnym buforem. Procesy czytnikdéw (pisakdéw) komunikujg sie z procesem
wsp8lnego bufora w celu przekazania (odbioru) ustalonych blokdéw infor-
macji. Procesy czytnikéw po odeczytaniu z urzadzen zewnetrznych bloku in-
formacji przekazuja je do procesu wspdlnego bufora, ktéry z kolei prze-
syta je do jednego z proceséw pisakéw. Kazdy z proceséw pisakéw, ktdry
zakoriczy wyprowadzenie bloku informacji wysyia do procesu wspdlnego bu-
fora wiadomosé o gotowosci do przyjecia nowego bloku danych, dzieki cze-
mu proces wspdlnego bufora zna aktualng zajetosé pisakdw.

W odréznieniu od poprzedniego przykzadu mamy tu bardziej zZozona wy-
miane informacji pomiedzy procesami. Dlatego wewngtrz procesu wspélnego
bufors definiuje si¢ nowy typ danych sequence, szuzacy do formowania w
kolejke naptywajacych wiadomosci. Na typie tym mozna dokonywaé operacji
wpisu do kolejki inseq, odczytu z kolejki deseg oraz badania zajetosci
kolejki za pomoca funkcji boolowskiej empty (funkcja przyjmuje wartosé
true, gdy kolejka jest pusta).

concurrentprogram system_buforowania;
message informacja uzytkowa =
record c
nadawca: nazwa-procesu_czytnika_lub_wspélnego_bufora;
odbiorca: nazwa_procesu_pisaka_lub_wspdlnego_bufora;
tresé : blok
end;

message inforﬁacja_sterujqca =
record
nadawca: nazwa_procesu_pisakas
odbiorca : wsp6lny—_bufor;
tresé ~pusta>
{pole tres$é nie zawiera sadnej informacji
- dlaczego?}
end; -
process wspélny-_bufor;
var koldanych: seguence of message
informacja_uzytkowa;
kolgotowosci: gequence of message-
informacja_sterujgca,
wewiad, wywiad : message informacja-uzytkowa;
gotwiad : message informacja._sterujgca
begin
while true do
begin
wewiad := receive;
if wewiad.nadawca€ nazwa_procesu_czytnika
then
begin
if empty (kolgotowosci) then
enseq (wewiad.koldanych)

:

:

lw

else
begin
gotwiad := deseq (kolgotowos¢),
wywiad.treéé := wewiad.tresd;
wywiad.odbiorca := gotwiad.nadawca
send (wywiad)
end
end
else
in
if empty (koldanych) then

enseq. (wewiad, kolgotowosci)

:

else

begin
wywiad:=deseq (koldanych);
wywiad.odbiorca := wewiad.nadawca

send (wywiad)

30

end
end
endprocess;
process czytnik-i-ty;
var wiad : message informacja_uzytkowa;
b : blok;
begin
wiad.odbioreca := wspélny_bufor;
while true do
begin
read (urzgdzwe-i-te, b);
wiad.tre$é := b;
send (wiad)
end

endprocess;
process pisak-k-ty;
var wiadster : message informacja-sterujaca;
dane : message informacja—uzytkowa;
begin
wiadster.odbiorca := wspdélny.-bufor;
while true do
begin
send (wiadster);
dane := receive;
write (urzadzwy_k-te, dane.tresé)
end

endprocess
endprogram.

Nalezy zwrdcié uwage, Ze wprowadzenie typu kolejkowego sequence,
umozliwiajgcego tworzenie kolejek o nieograniczonej dzugosci, nie ogra-
nicza takze liczby buforowanych blokdéw. Takie zalozenie moze byé w wie-
lu wypadkach nierealne; bardziej szczegdlowy przeglad innych sposobdw
komunikacji procesdéw przedstawiono w rozdziale 5.

Ogélne wnioski wypywajgce z analizy przygotowanych przykadéw po-
zwalajg stwierdzié nastepujgce fakty. Sita ekspresji omawianego podej-
$cia jest wigksza od modelu obliczeri w Srodowisku zwartym. Oznacza to
mozliwosé transformacji kazdego topisu w konwencjii Srodowiska zwarte-
go na opis w konwencji Srodowiska rozproszonego; nie zawsze natomiast
Jest mozliwa transformacja odwrotna. Stopien strukturalizacji podejdcia
rozproszonego jest takze wiekszy niz w poprzednim: wynika to stad, ze

31

Jawnie deklaruje sig sposdéb komunikacji pomiedzy procesami. Jezeli cho-
‘dzi o wzgledy implementacyjne, to nie mozna jednoznacznie okredlié, kté-
re z omawianych podej$é jest wygodniejsze. Nalezy stwierdzié, ze oba po-
dejscia sg wzajemnie sie uzupeiniajgce: tam, gdzie istotnie $rodowisko,
w ktérym nastepuje implementacja, ma charakter zwarty, dogodniejsze
jest podejécie pierwsze, w przypadku srodowiska rozproszonego natomiast
podejscie drugie.

2.5. Obliczenia rdéwnolegte synchronizowane przeptywem danych

Oméwione poprzednio podejécia programowania wspdXbiesnego byty opar-
te na koncepcji procesdéw sekwencyjnych komunikujgcych sie przez wspdlng .
pamigé lub przez przesyzanie wiadomosei. Stgd wyrosie jezyki programo-
wania przypominajg tradycyjne jezyki programowania sekwencyjnego 2z do-
datkowym wyposazeniem w mechanizmy komunikacji i synchronizacji. Obli-
czenia rdéwnolegie synchronizowane przepiywem danych stanowia zupeZnie
nowe podejscie. Frogram jest tutaj traktowany jako pewien zbidr instruk-
cji, w ktérym tekstowa kolejnosé zapisu instrukecji nie wyznacza kolej-
nosci ich wykonywania. Zasada okreslajgca kolejnosé wykonywania instruk-
cjl - zasada sterowania ~ jest nastepujaca: dang instrukcje mozna obli-
czaé wéwczas, gdy beda juz obliczone argumenty tej instrukcji. Stad wy-
nika nazwa podejscia - obliczenia synchronizowane przeptywem danych
(synchronizowane gotowoscia argumentdéw; data flow computations), podczas
gdy podejsScia poprzednie mozna by okres$lié jako obliczenia synchronizo-
wane przeptywem sterowania (control flow computatioms) [12,16,61] .

Realizacja jednoznacznych obliczer zgodnie z zasadg przepiywu da-
nych wymaga spelnienia dwéch warunkdéw. Warunek pierwszy to brak efektdw
ubocznych wykonania instrukcji. Oznacza to, Ze jedynym efektem wykona-
nia instrukcji musi byé przypisanie pewnej wartosci identyfikatorowi tej

'instrukcji, a nie mogg nastgpié zmiany przyporzgdkowania wartosci innym
identyfikatorom. Warunek drugi wymaga, aby przyporzadkowanie wartosci
danemu identyfikatorowi mogZo nastgpié tylko jednokrotnie.

Ze wzgledu na fakt, ze efekty uboczne, a zwiaszcza wielokrotne przy-
pisywanie wartosci zmiennej (identyfikatorowi instrukcji podstawienia),
stanowia kamieri wegielny klasycznego programowania, nalezy zdaé sobie
sprawe, ze ich usunigcie z jezyka wymaga wprowadzenia w zamian mechaniz-
méw. Sg nimi: rekursja procedur oraz listy posSredniczace - krdétko 1lis-
ty (streams). Rekursja eliminuje potrzebe iteracji - konstrukcji, ktdra
w zasadniczy sposdéb bazuje na efektach ubocznych (zmiana wartodci wskaz-
nika) oraz na wielokrotnym wykorzysteniu instrukcji przypisania. Listy
posredniczace s*uzg do grupowania w jeden wspdlny obiekt ciggdw danych
elementarnych. Pogwalajg one definiowad jednostki programowe (analoge

32

procedur), ktére wykonujg. operacje na ciagach danych. Tego typu jednos-
tki, ktére moga przetwarzaé listy posredniczgce i/lub wytwarzaé listy

podredniczace, beda nazywane modutami (modules). Na listach posredniczg-
cych mozna wykonywadé nastepujgce operacje. Jezeli lista a jest ciagiem:

B = XyyXpgeeesXp,
to:
first (s) = x,,
rest (x) = XpsXgpeee sy,
cons (¥,8) = Xqpeee,X, Yo
Dla podkreélenia istotnej réznicy pomiedzy znaczeniem instrukcji
przypisania (podstawienia) w stosunku do jezykéw tradycyjnych wprowadza

sie oznaczenie:
let <identyfikator>=<wyrazZenie>

zamiast
<identyfikator> :=<wyrazenie>

Ponadto jest potrzebny mechanizm przetwarzania tablic bez efektdéw ubocz-
nych. Dlatego definiuje sig funkcje modify (A,i,v), ktdrej wynikiem
dzia%Xania jest nowa tablica A", réznigca sie od tablicy A tylko tym, ze
na pozycji i-tej wystepuje wartosé v.

B. 1. Przykiad systemu rezerwacji biletdéw, wbrew pierwszemu wrazeniu
powodowanemu podobieristwami syntaktycznymi, ma zupeinie odmienng seman-
tyke od jezyka Pascal. Poczatkowo skupimy uwage na konstrukcji jednego
modutu "transakcje", ktdrego wejSciami sa: lista zleced klientdw

strumien_%adaid : stream of 2adanie
tablica lotéw

miejsca dostepne : array [1..n] of integer,
wyjscie zas stanowi lista

strumied_odpowiedzi : stream of odpowied?,

gdzie
type zadanie =
zrecord
typ : (rezerwuj, informuj);
klient, lot, liczba : integer
end
oraz
type odpowiedZ =
zecord

powodzenia : booleanj;
klient, wolne : integer;
end

ModuX "transakcja" ma postad:

module transakcja (strumieﬂ.éadaﬁ:
‘stream of zadanie; miejsca_dostegpne:
array [1..n] gz_integer);
returns strumieri_odpowiedzi:
gtream of odpowiedZ;
var wejscie : 2adanie;
wyjscie : odpowiedZ;
i,J : integer;
pozostate_miejsca : array [1..n] of integer;

:

et wejscie = first (strumied_zadan);
case wejscie.typ of
rezerwuj:

e

begin
let i = wejsScie.lot;
let j = wejScie.liczba;
if miejsca—dostepne [i] =j then
begin
let wyjsScie.powodzenie = true;
let pozostate_miejsca =

|

modify (miejsca_dostepne, i,
miejsca~dostepne [1] - J)

)
=]
o%

I

o
=
0]
()

o’

(0]
}ﬁ.

=

let wyjscie.powodzenie = false:
et pozostate_miejsca =
miejsca_dostepne
end
end;
informuj:
begin
let i = wejscie.lot; :
let pozostate_miejsca = miejsca_dostepne

end
let wyjécie.klient = wejscie.klient;
let strumieri odpowiedzi =

33

34

cons (wyjScie, transakcja (rest
(strumier zadari), pozostale-miejsca))
endmodule,

Moduz "transakcja" otrzymuje dane wejSciowe w postaci jednego stru-
mienia 2adad, ktdrego elementy moga pochodzié z réinych miejsc (koncd-
wek). Ne razie nie oméwiono sposobdéw tworzenia takiej listy. Przedsta-
wiony jezyk situzyl do wyrazania tylko zdeterminowanych obliczerd, pod-
czas gdy system rezerwacji zachowuje sie w sposéb niezdeterminowany.
Dis wyrazenia niedeterminizmu wprowadza sie operacje scalania list po-
$redniczacych merge. Dzialajgc na listach s1, 82 operacja merge (81,82)
tworzy nowg liste posredniczacag, ztozona ze wszystkich elementdéw obu
liet, w taki sposdb, Ze zostaje zachowana wzgledna kolejnoéé elementdw
z 81 orez 82, natomiast sposéb przemieszczania sie elementdéw z s1 wzgle-
dem elementéw z s2 jest niezdeterminowany. Operacja merge jest wystar-
czajaca do przedstawienia szerokiej klasy obliczer niedeterministycznych.
Przyktadowo przy zalozeniu, 2Ze system rezerwacji ma trzy koncdédwki (trazy
moduzy), ktére produkujg listy: lista-zad-1, lista_%gd_2, lista_%ad-3,
modu*, ktdéry obszuguje te listy, bedzie miat postad:

module system (lista_zad_1, lista_zad_2,
lista_zad_3: stream of zadanie;
miejsca_dostepne: ar;;i [1..n] of integer)

returnsvlista_odp_1, lista_odp_2, lista_odp_3:
stream of odpowiedZ;

var pl,p2,p3: stream of 2zgdanie;

begin
let p1 = tag (lista-zgd.1,1);
let p2 = tag (lista_z8d.2,2)
let p3 = tag (lista-2g3d-3,3); .
let lista_zgdad = merge (p1, merge (p2,p3)); =
let lista odpowiedzi =

transakcja (lista_zadar, miejsca_dostepne);
let 1lista_odp-1, lista_odp-2, lista—odp-3 =
sort (strumieri_odpowiedzi)
endmodule. :

W module "system" elementy wejsciowych list posredniczgecych sg ety-
kietowane przez oberacjg tag. tzn. kazdemu elementowi takiej listy sa
przyporzadkowane odpowiednio liczby 1,2,3. Etykiety stanowia rozrdznie-
nie elementéw pochodzgcych z réznych Zrddet, dzieki czemu po otrzymaniu
sisty "strumien_odpowiedzi! 2z modulu "transakcja' mozna wydzielié przez
operacje sort, w wypadku omawianezo nodejs$cia, podlisty kierowane do od-
rowiednich korncdwek.

35

P.2. Przyktad systemu buforowania nie wnosi nowych elementéw, dla-
tego pozostawia sie go jako éwiczenie dla Czytelnika.

: Jezyki programowania sterowania przepiywem danych znajdujg sie ak-
tualnie w poczatkowej fazie rozwoju. Wydaja sie one bardzo obiecujgce
dla obliczeri réwnolegiych ze wzgledu na duzag sile ekspresji oraz wysoki
stopierd modularnosci programowania. W pewnym sensie moZna je uznaé za
krok w kierunku jezyka klasyczne]j matematyki: chodzi tu o to, zZe jezyk
matematyki nie operuje pojeciem zmiennej rozumianej jako komérka pamig-
ci, ktérej zawartosé mozna modyfikowaé, natomiast rekursja (indukcja)
jest dobrze znanym mechanizmem. PodziaZ programu na moduly, ktére mogsg
oddziatywaé na siebie w jawnie zdefiniowany sposdb, jawne wskazanie Zrd-
det niedeterminizmu (operator merge) czynia program czytelnym, pomimo
swej "innodci" w stosunku do powszechnie stosowanych podejsé.

Implementacja jezykdéw synchronizowanych przepiywem danych jest ra-
czej na prymitywnym etapie. Wynika to przede wszystkim z wymagar catko-
wicie odmiennej architektury sprzetu liczacego. Poszukiwania odpowied-
niej architektury oraz badania tych jezykéw sg ciggiym przedmiotem stu-
didw [2,16,17,18,43,45,61] .

 2.6. Podsumowanie

W rozdziale przedstawiono trzy podstawowe koncepcje do programowa-
nia réwnolegrego, w istotny sposdb réznigce sie swymi podstawami. Pier-
weza oparta na modelu zwartego Srodowiska traktuje program jako zbidr
procesdw dziaajacych pod wspélnjm "dachem" i komunikujgcych sig przez
oddziatywanie na wspélne otoczenie. Druga ze Srodowiskiem rozproszonym
traktuje program jako zbidr procesdéw, z ktdérych kazdy dziaa pod wias-
nym "dachem", komunikujacych sie przez przesytanie wiadomosci. W trze-
ciej koncepcji z przepiywem danych program jest widziany jako sieé ope-
ratordw, z ktérych kazdy produkuje nowg wartosé po otrzymaniu kompletu
wartosci wejéciowych argumentdw. Sieé ta moze rekurencyjnie rozwijaé sie
i zwijad w zalezno$ci od wywotywania i zakorfczenia dzialsnia procedur -
modudw.

Oméwione koncepcje réznia sig¢ stopniem rdéwnolegosci, jaki mozna
osiagngé, czytelnoscig i problemami implementacyjnymi.

Zaden program zozony z komunikujacych sie proceséw sekwencyjnych
nie realizuje peinego, mozliwego do osiggniecia poziomu rdéwnolegZosci.
W programach z semaforami liczba proceséw réwnolegiych zalezy w istocie
od pomystowosci programisty; w programach z monitorami nalezy dokonad
kompromisu pomiedzy cazkowlitg ochrong zasobdéw (a przez to wyZaczenie
jednoczesnego dostepu do zasobdéw) a dopuszczaniem proceséw do bezposred-

36

niego dostepu. W procesach komunikujgcych sie gasoby 83 bezposrednio do-
stepne tylko jednemu procesowi; dlatego, jezeli zasoby‘sa podzielone
pomiedzy rézne procesy, réwnolegiosé jest ograniczona. W jezykach syn-
chronizowanych przeptywem danych mozna wyrazié wszelkie formy réwnoleg-
Z20$ci dopuszczalne przez algorytmy.

Ocena czytelnosci programéw jest zagadnieniem subiektywnym, jednak-
e takie wiasnosci, jak modularnosé, ograniczenie Zrédet niedeterminizmu,
konstrukcje jezykowe wysokiego poziomu B3 lepiej uchwytne. Kolejnosé
omawianych podej$é odpowiada wzrastajgcemu stopniowi modularnodci. Se-
mafory, jako narzedzie bardziej elementarne, nie wprowadzaly bezpodred-
nio zadnej modularnosci, pozwalajgc procesom na imterakcje Zatwo wymyka-
Jaca sig¢ kontroli programisty. Wyzszy stopien prezentuja programy z pro-
cesami komunikujgcymi sie. Najwyzszy stopied osiageja programy synchro-
nizowane przepiywem danych, w ktérych dzieki catrkowitej elimiﬁécji efek-
t6w ubocznych dzialanie kazdego moduzu definiuje sie jako przetworzenie
posredniczacych 1list wejéciowych na wyjsciowe; podejscie to jako jedyne
wprowadza tez zasade jawnego zaznaczania Zrdédet niedeterminizmu.

%e wzgledu na problemy implementacyjne, kolejno$é prezentacji po-
dejéé odpowiada rosngcej skali problemdw. Stwierdzenie to obrazuje fakt,
ze semafory i monitory (oraz inne tej klasy konstrukcje) znalazty imple-
mentacje w résnych jezykach programowesnia, w mmiejszym stopniu dotyczy
to procesdéw komunikujgcych sie, podczas gdy implementacja jezykdw syn-
chronizowanych przeptywem danych znajduje sie w fazie rozwigzar koncep-
cyjnych.

CWICZENIA

1. Zadanie o czytelnikach i pisarzach (Courtois, Heymens, Parnas).
Pewna liczba proceséw pisarzy prowadzi zapis informacji do bufora, z
ktérego informacja jest odczytywana przez procesy czytelnikéw. Do bufo-
ru moze mieé w danej chwili dostep dowolna liczba czytelnikéw, ale tyl-
ko Jjeden pisarz. Ponadto pisarze majg priorytet przed czytelnikami.
Przenalizuj poprawnosé przedstawionego nizej rozwigzania z wykorzysta-
niem semafordw.

integer lczyt, lpis,

gsemaphore m1,m2,m3,p,C;
lezyt:=0; lpis:=0;

ml:=1; m2:=1; m3:=1; p:=1; c:=1;

process czytelnik; process pisarz;
begin begin

wait (c); wait (m2);

wait (m1);
lczyt:=lczyt+1;
if lezyt = 1 then
wait (p);
signal(e);

gignal(m3);
czytaj z bufora;

wait(m2)
lezyt:=lczyt-1;
if lezyt = O then
signal(p) ;

signal(ml);
end

37

lpis:=1lpis+1;

if 1pis = 1 then
wait (e);

signal(m2) ;

wait (p);

czytaj z bufora;

signal(p);

wait(m2);

lpis:=1pis=1;

if 1pis = O then

signal(c);

signal(m2) ;
end

2. RozwigZ zadanie o czytelnikach i pisarzach (éw. 1) 2z wykorzysta-

niem monitordw.

3. RozwiaZ zadanie o czytelnikach i pisarzach z wykorzystaniem pro-
ceséw komunikujgcych sie przez przesyzanie wiadomo$ci kanatami komuni-

kacy jnymi.

f

4. Przeanalizuj ézialanie podanego nizej monitora, stanowigcego od-
powiednik monitora "wspdlny bufor", przedstawionego w p. 2.3.

monitor bufor_we_wy;

var bufor : blok;

uzywany : booleanj;

wolny, zajety : queue;
procedure entry wpis (do :
begin

blok);

if uzywany then delay (wolny);

bufor := do;
uzywany := true;
continue (zajety)

end;
procedure entry odczyt (var z
begin

i

=l

:= bufor;
uzywany := falsej
continue (wolny);
end;
begin uzywany := false end.

blok) ;

f not uzywany then delay (zajety);

Wyka%, Ze procesy wywolujace procedury wejSciowe tego monitora mogg byé

zawieszane bez mozliwosSci odwieszenia.

38

5. Zadanie o filozofach (Dijkstra). Dookoia okragego stoZu siedzi
pigciu filozoféw. Na stole znajduje sie pieé widelcgw, kazdy pomiegdzy
dwoma sgsiadujgcymi filozofemi., Filozofowie znajduja sie na przemian w
Jjednej z faz: "myslenie", ktdre sprowadza sie tutaj do bezczynnego ocze-
kiwania oraz "jedzenie", ktdre polega tu na uchwyceniu widelca z lewej
i z prawe]j strony do jedzenia spaghetti znajdujgcego sie na talerzu.
Oczywiscie nie zewsze potrzebne widelce sg wolne i w takiej sytuascji
filozof musi czekaé na ich zwolnienie.

Zaproponuj zasady wspSlnego korzystania z widelcdéw przez filozofédw
w taki sposéb, aby zaden 2z nich nie musiaZ oczekiwad na jedzenie nie-
skoﬁ§zegie dtugo. Przedstaw to rozwigzanie w postacl programu z uzyciem
semafordow, :

6. Rozwigz zadanie o filozofach (éw. 5) z wykorzystaniem monitordw.

7. Warunkowe regiony krytyczne (Brinch Hansen) stanowis jedna z pro-
pozycji mechanizmu synchronizacji dostepu do wspdlnych zasobdw., Kon-
strukcja)

region v do S end

zwigzuje ze zmienng (obiektem) v anonimowy semafor, wykluczajgcy do-
step do regionu krytycznego S, ktéry stanowi jedyne miejsce dostepu do
v. Warunek await B wewngtrz regionu gawlesza czasowo woZajacy program a%
do momentu, gdy B stanie sie prawdziwe. Dopdki B jest faiszywe proces
zostaje zawieszony, a region krytyczny staje sig¢ otwarty dla innych pro-
cesbw. Proces zostaje wznowiony, gdy B stanie sie prawdziwe, a region
zostaje ponownie zamkniety dla innych procesdéw. Przeanalizuj wady i za-
lety tego rozwigzania z punktu widzenia czytelnos$ei programow i imple-

" mentacji.

8. RozwigZ zadania o czytelnikach 1 pisarzach (éw. 1) oraz o filo-
zofach (éw. 5) z wykorzystaniem warunkowych regionéw krytycznych.

9, Wyrazenia $ciezkowe (Campbell, Habermann) stanowia mechanizm syn-
chronizacji, ktdrego istota polega na okrefleniu dopuszczalnych klas od-
dziarywan (historii wykonan) wspd2dziatajgcych procesdéw. WyrazZenie
dciezkowe ma postad

path 5 end
gdzie S moze oznaczaé rézne dopuszczalne kolejnosci wykonania:
 gs= By 02
oznacza, %€ S1 musi poprzedzaé wykonanie S2 oraz odwrotnie;
S ::= 81,52
oznacza, %e moze byé wykonana albo S1 albo S2;
S ::= {51}

oznacza, ze po zainicjowaniu S1 moze byé zainicjowana dowolna 1iczbg
egzemplarzy S1; dalsze obliczenia mozna kontynuowaé dopiero po zakon-
czeniu wszystkich tych egzemplarzy ’ 5

S s:= (a—b)n
oznacza, ze w dowolnym momencie wykonywania programu sekwencja "a' muqi
byé wykonana co najmniej tak czesto, jak sekwencja "b" oraz nie wieceg
niz n razy czesciej. Zaproponuj systematyczng metode zamiany wyrazen
Sciezkowych na odpowiednie dzia*ania na semaforach.

-

10. Rozwigz zadania o czytelnikach i pisarzach (éwe 1) oraz o filo-
zofach (éw. 5), wykorzystujgc wyrazenia Sciezkowe.

3. JEZYK PROGRAMOWANIA CONCURRENT PASCAL

3.1. Wprowadzenie

Jezyk Concurrent Pascal nalezy do klasy jezykdéw bazujacych na zazo-
zeniu wspélnego Srodowiska dla réwnolegle pracujacych proceséw. Prace
nad jezykiem prowadziz P. Brinch Hansen na Uniwersytecie Kalifornijskim
w latach 1972-75. (Pierwsze koncepcje jezyka byxy juz dyskutowane w je-
go ksigzce "Podstawy systemdéw operacyjnych" [8].) Pierwszy kompilator
jezyka na minikomputer PDP 11/45 opracowat Hartman w 1975 r. [27]. Con-
current Pascal jest plerwszym w swej klasie jezykiem wysokiego poziomu
i, obok Moduli, aktualnie najbardziej rozpowszechnionym. Do upowszech-
nienia przyczyni sie m.in. fakt, Zze kompilator jezyke zostaX napisany
w Jjezyku maszyny wirtualnej, co umozliwia stosunkowo proste przeniesie-
nie oprogramowania na inne komputery. (Wymaga to napisania programu ba-
zowego - jadra - o objetosci rzedu 3-4 K s2éw, modelujgcego dziaZanie
magzyny wirtualnej.)

Nazwa jezyka oddaje czesSciowo jego charakter. Concurrent Pascal
Jjest oparty na uproszczonej wersji jezyka Pascal, wyposazonej w dodat-
kowe konstrukcje umozliwiajace definiowanie proceséw i sposobdw ich
wspéipracy. Podstawowe konstrukcje, ktére doxaczono, to proces, monitor
i klasa. Konstrukcje procesu i monitora sg podobne do analogicznych kon-
strukcji oméwionych w rozdz. 2, konstrukcja klasy stanowi natomiast
uproszczong wersje klasy z jezyka Simula i stanowi mechanizm modulary-
zacji programéw.

Ogdblnie program w Concurrent Pascalu przedstawia sie w postaci hie-
rarchicznie uporzgdkowanego zbioru komponentdéw. Komponentami (zmiennymi
systemowymi) sz wZasnie procesy, monitory oraz klasy. Wazng cechg jezy-
ke, wptywajaca na podniesienie poziomu strukturalizacji programéw, jest
wprowadzenie pojecia typéw systemowych (typy procesbwe, monitorowe i
klasowe). Daje to mozliwosé definiowania wielu egzemplarzy zmiennych
systemowych (proceséw, monitordw, klas) tego samego typu. Przewidziany
jest takze mechanizm parametryzacji komponentéw w obrebie jednego typu;
jest on realizowany przez tzw. instrukcje inicjalizacji, ktdére dokonujs
m.in. ustelenia wartosci parametrdw kazdego komponentu programu, a w wy-
niku tego zostaje ustalone uporzgdkowanie pomiedzy komponentami. Poje-
cie porzadku pomiedzy komponentami odnosi si¢ do zasad komunikowania
si¢ (zasad dostepu) komponcutow.

40

3.2, Symbole podstawowe

Elementami alfabetu jezyka sg znaki nalesgce do kodu ASCII (Ameri-
can Standard Code of Information Interchange), symbole specjalne, iden-
tyfikatory, komentarze i siowa kluczowe. A zatem 88 to:

a) znaki graficzne (te, ktére maja reprezentacje graficzng) kodu
ASCII:

- litery A BC ..o Z

-cyfry 012 ,c. 9

- znakl specjalne

Ln# 3% & ()m+,-./:; <=>1?d

b) znaki sterujgce kodu ASCII; znaki te nie majg reprezentacji gra-
ficznej, a w prog%amie 8g przedstawiane w postaci liczby z zakresu
0..127, bedacej kodem, umieszczonej pomiedzy znakemi (: oraz :), np.

(: 10 :) jest reprezentacja znaku sterujacego zmiang wiersza,
¢) symbole specjalne, kombinacje par znakéw z kodu ASCII:
< > oznaczajacy #
<= oznaczajacy <
== oznaczajgcy =
(. oznaczajacy [
o)) oznaczajacy J
3= oznaczajacy symbol podstawienia
o oznaczajacy separator wskaZnikéw,
d) identyfikatory, stanowigce - jak zwykle - cigg liter lub cyfr za-
czynajacy sie litersg;

e) separatory: spacja (: 32 :), nowa linia (: 10 :), komentarz - do-
wolny cigg znakéw nie zawierajgcy " zamkniety w cudzysiowy;

f) sXowa kluczowe: A

array begin case class const
cycle div do downto else
end entry for function if

in init mod monitor not

of or procedure process program
record repeat set then to

type univ until var while
with

3.3. Struktury danych

Pascalowe typy danych oraz zwigzane z nimi operatory wystepujgce w
Concurrent Pascalu sg nastepujgce:

41

-~ typ wyliczeniowy z operacjami (funkcje standardowe) poprzednika
(przed) oraz nastepnika (suce);

- typ caikowity (integer) 2z operacjami : + , = , = , div, mod oraz
funkcjami standardowymi wartosé bezwzgledna (abs), zamiana liczby kodu
na znak (chr), zamiana liczby catkowitej na rzeczywista (conv);

- typ rzeczywisty (real) z operacjami: +, -, %, / oraz funkcjami
standardowymi: wartosé bezwzgledna (abs), zaokraglenie liczby rzeczywis-
tej do liczby calkowitej przez odrzuecenie czesci uZamkowej (trunc)

- typ logiczny (boolean) z operacjami: & , or, not;

- typ znakowy (char) z operacja zamiany znaku na liczbe cazkowitag -
- kod znaku (ord);

(Do wszystkich wymienionych wyzej typéw prostych odnoszg sig, w zna-
ny sposdb, operatory relacji =,<>,<=, >=,<,> oraz operator podsta-
wienia := . Pojecie typu okrdjonego jest takie same, jak w Pascalu.)

- typ tablicowy (array) i typ rekordowy (record) z operatoramit::#i
(Uwaga: typ rekordowy nie zawiera wariantéw);

- typ zbiorowy (get) z operacjami: & (przekréj), or (suma), in
(przynaleznos$é do zbioru) oraz =,<>, >=, <=,<,>, =

Concurrent Pascal nie zawiera pascalowych typdéw pliku i typéw wskas-—
nikowych.

Niepascalowe typy danych: procesy (process), monitory (monitor),
klasy (class) i inne dodatkowe typy sa zdefiniowane w dalszej czesdci
rozdziatu - punkty 3.5-3.7.

" Deklaracja typéw (type), stakych (const) oraz zmiennych (var) w od-
niesieniu do oméwionych typéw pascalowych jest taka sama, jak w Pascalu.

3.4, Instrukcje

Zbidr instrukcji zawiera nastepujace instrukcje, znane z jezyka Pas-
cal:

- przypisanie (podstawienie),

- pusta,

- zXozona (begin Jy;J5:...5d

A end) ;

- warunkowa (if);
- wyboru (case);
- iteracji (for, while oraz repeat),
- wigzgca (with).
Dodatkowo wprowadzono instrukcje nieskoriczonej iteracji
cycle J end :
réwnowaznej pascalowej konstrukcji

while true do J.

42

Oddzielnego oméwienia wymaga instrukcja procedury. Pojecie procedu-
ry jest uzywane w szerszym konteksScie ni% w Pascalu. Ogdlnie procedury
wystepujg w dwdch kontekstach: jako jednostki strukturalizacji wewnetrz-
nej programéw (tak jak w Pascalu) oraz jako atrybuty komponent (tzn.
proceséw, monitoréw i klas) programu rdéwnolegiego. W tym pierwszym sen-
sie procedury dzieli sie na:

- procedury wiasciwe (procedure),

- funkcje (function),

- programy sekwencyjne (program).

Wprowadzenie programéw sekwencyjnych jako pewnego rodzaju procedury ma
giebsze uzasadnienie. Jednym z gidéwnych zastosoward Concurrent Pascala
jest programowanie systemdw operacyjnych{ DziaZanie systemu operacyjne-
go polega m.in. na zarzgdzaniu sekwencyjnymi programami uzytkownikdw.
Dlatego potrzeba takich mechanizméw, ktdre pozwalalyby na pobieranie
tych programéw z pamieci pomocniczej do pamieci operacyjnej (i odwrot-
nie) i ich wykonywanie. Z tymi zadaniami wigZe sig koncepcja programu
sekwencyjnego, jako szczegblnego rodzaju procedury, wywozanie takich
procedur odpowiada rozpoczgciu obliczerd takiego programu pod nadzorem
komponentu (tu moze to byé tylko proces), ktéry go wywolal.

PodziaX procedur w drugim sensie, jako atrybuty komponentdéw progra-
mu, wydziela nastepujgce rodzaje procedur:

- procedury wejsciowe procesdw,

- procedury wyjsSciowe monitordw,

- procedury wejsciowe klas,

- instrukcje inicjalizacji preceséw, monitordw i klas.

Sens i sposdéb uzycia tej grupy procedur opisano w punktach 3.5-3.7.

Komunikacja pomiedzy procedurami a wywoZujgcymi je komponentami od-
bywa sie:

- w przypadku procedur wejdciowych oraz inicjalizacji wyZacznie po-
przez parametry,

- w przypadkach pozostatych dodatkowo jeszcze za pomocg zmiennych
nielokalnych w tresci procedury.

Komunikacja poprzez parametry odbywa sie poprzez zmienne (odpowied-
ni paremetr w definicji procedury jest poprzedzony sZowem var) lub
przez wartosé - tak jak w Pascalu. Specyficzng cecha tej komunikacji
jest mozliwodé wykorzystania tzw. typu uniwersalnego (univ). Jego wpro-
wadzenie wiaze sie z tg samg potrzebg, dla ktdérej wprowadzono programy
sekwencyjne jako szczegdlny rodzaj procedury. WywoZanie procedury P(x),
ktdrej nagibéwek zostat zadeklarowany w postaci:

P(v: univ T)
1ub
P(var v : univ T)

43

pocigga za sobg nastepujacy skutek. Jezeli parametr aktualny x jest war
tofcig lub zmienng typu T1, to uwaza sie, Ze typy T oraz T1 sg zgodne
{i wywoZanie jest.prawidlowe), jezeli kody obu typbéw sg reprezentowane
przez te samg liczbe komdrek pamieci. Typ T moze byé dowolnym typem
passywnym (nie moge byé procesem, monitorem lub klasg). Opisany mecha-
nizm stwarza np. mozliwoéé przesytania réznych obszardéw pamieci pomoc-
niczej do pamigei operacyjnej i reprezentowania ich za pomocg jednego
typu: w szczegbélnosci rdézne programy sekwencyjne sprowadzone do pamigel
operacyjnej mozna zaprezentowaé za pomocg jednego typu.

W stosunku do Pascala wszystkie procedury obowigzuje ograniczenie:
procedury nie mogg wywoiywaé sie rekursywnie oraz definicje procedur
nie mogg byé w sobie zagniezdzane. Ogreniczenie to nie dotyeczy progra-
méw sekwencyjnych (program) napisanych w Pascalu, a wykonywanych pod
nadzorem proceséw napisanych w Concurrent Pascalu.

3.5. Procesy

Proces - oprécz monitora i klasy - stanowi jeden z obiektéw systemo-
wych. Zasadniczo definicja typu procesowego (bardziej rozbudowang defi-
nicje procesu zdefiniowano przy korcu biezgcego punktu) przypomina de-
finicje programu w Pascalu i ma postad

type <identyfikator typu procesowego ==
process (<wykaz parametréw formalnych>) ;
<blok>

Podobnie wyglada deklaracja zmiennych typu procesowego (zmiennych sys-
temowych) :

var <identyfikator zmiennej> :
<identyfikator typu procesowego=

Przez <blok—>rozumie sig, dokladnie tak jak w Pascalu, strukture posta-
ciss

<deklaracja obiektdéw lokalnych>;

<instrukcja zlozona >

gdzie <deklaracja obiektdéw lokalnych>jest ciggiem:

<deklaracja stazych>;
<deklaracja typdw=>;

<deklaracja zmiennych>;
<deklaracja procedur i funkcji=

Proces jako typ systemowy definiuje abstrakeyjng strukture danych
ztozong z:

44

- lokalnej (prywatnej) struktury danych, ktérg stanowia zadeklaro-
wane stale typy, zmienne, funkecje i procedury; obiekty te nie sa doste-
pne dla komponentéw (zmiennych systemowych) zdefiniowanych na zewagqtrz
danego procesu;

- pewnego programu sekwencyjnego (<Sinstrukcja zXozona>) dzialajgce-
go na tej strukturze. 5

Ponadto przez<wykaz parametréw formalnych >definiuje on zasady
dostepu (zasady komunikacji) do pozostalych zmiennych systemowych
(bezposdrednio do pewnych monitoréw lub klas, a podrednio do innych pro-
cesdw) .

Dostep procesu do pewnych monitordw lub klas oznacza, %e proces mo-
%ze wywoxywaé procedury wejsciowe tych monitoréw lub klas (p. 3.6 i 3.7).
Przykzadowo, Jezeli

iype P = process (m : M)
<blok>,
gdzie M jest pewnym typem monitorowym, to oznacza, %e procesy typu P mo-
ga wewnatrz < bloku >wywoiywaé procedury wejsciowe pewnego monitora typu
M,

Deklaracja procesu jako zmiennej (systemowej) stanowi tylko rezer-
wacje obszaru pamigcli wymaganego dla zapamietania jego struktury danych
i ciggu jego instrukcji. Natomiast ostatecznym uformowaniem procesu -
ustaleniem konkrethych wartodci dla jego parametrdw formalnych i wystanr
towaniem obliczeri zajmuje sie instrukcja inicjalizacji postaci:

init <identyfikater zmiennej procesowej>
(<wykaz parametréw aktualnych>).

Przykladowo, jezeli mamy zmienng procesowa p, krdtko proces, zadeklaro-
wang przez

var p : P,
to instrukecja inicjalizacji
init p (a)

spowoduje wystartowanie obliczen procesu p, podczas ktdrych proces p mo-
2e odwolywalé sig do monitora a typu M.

Instrukcje inicjalizaecji mozna pordwnaé do wywolania procedury. Po-
dobiefistwo to jest peinme w zakresie przekazywania informacji przez pars-
metry. Parametry mogg byé komunikowane:

- przez wartosé w odniesieniu do parametréw typu passywnego,

-~ przez nazwg w odniesieniu do parametrdéw typu systemowego (tak jak
w ostatnim przykiadzie).

45

Brak natomiast tego podobieristwa do wyworania procedury, w zakresie
przekazywania sterowania., Wywolanie procedury powoduje przekazanie jej
sterowania, a zakonczenie obliczed zwrot sterowania do miejsca, w ktd-
rym nastgpizo jej wywolanie. Inicjalizacja procesu rozpoczyna oblicze-
nia, trwajace niezaleznie (réwnolegle) od tych obliczed, w ktdérych na-
stgpi%a inicjalizacja procesu.

Gdy proces speinia role nadzorujgcg w stosunku do pewnych programéw
sekwencyjnych (program), moze zawieraé on procedury lub funkcje wejscio-
we, ktére mogg byé wywoane przez te programy. Skadnia typu procesu
moze wiec mieé bardziej rozbudowang postad:

type <identyfikator typu procecowego >=
process (Kwykaz parametréw formalnych>);
<deklaracje obiektéw lokalnych>;
<deklaracje procedur wejsciowych>;
<instrukecja zZozona>,

gdzie <deklaracja procedur wejsSciowych > jest taka, jak w wypadku proce-
dur wejsciowych monitora (p. 3.6).

- 3.6. Monitory

Monitor stanowi obiekt systemowy. Definicja typu monitorowego me po-
stad:

type <identyfikator typu monitorowego= =
monitor (Kwykaz parametrdéw formalnych>);
<deklaracje obiektéw lokalnych>;
<deklaracja procedury wejSciowej>;
<deklaracja procedury wejSciowej>;
< instrukcja inicjalizujqca>z

Znaczenie poszczegdlnych elementw podanej definicji jest nastepujace:
<deklaracja obiektéw lokalnych > jest rozumiana tak, jak w poprzednim
pP. 3.5; <deklaracja procedury wejSciowej >ma postaé:

procedure entry < identyfikator >
(<wykaz parametréw formalnych>);
<blok>,

czyli od zwykZej procedury rdzni sig syntaktycznie tylko dozgczeniem
stowa entry po siowie procedura lub function.

Monitor, jako typ systemowy, definiuje abstrakcyjng strukture da- -
nych zXozong z:

46

~ lokalnej struktury danych, ktére sag bezposdrednio dostepne wyiacz-
nie procedurom wejSciowym i instrukeji inicjalizujacej monitora, a po-~
grednio -~ dzigki dopuszczeniu wywoiywania procedur wejsciowych przez in-
ne komponenty programu - réwnolegle pracujacym procesom;

-~ dowolnej liczby procedur wejsSciowych, ktére wywoZane tylko przez
inr.e komponenty dzia%ajg na wspdélnej, lokalnej strukturze danych;

- instrukcji inicjalizujacej (instrukcja zozona) stuzacej do ustala-
nia poczatkowych wartosei lokalnej struktury danych podczas inicjaliza-
¢ji monitora,

Ponadto, poprzez<wykaz parametréw formalnych>, definiuje on zasady
dostepu do innych zmiennych systemowych, rozumiane tak samo, jak sfor-
muZowano to w punkcie 3.5. '

Definicja zmiemmej typu monitorowego ma postad:

var <identyfikator zmiennej monitorowej=>:
<identyfikator typu monitorowego>

i znaczenie podobne przy deklaracji procesu: Jest rezerwacjg odpowied-
niego obszaru pamigci.

Ostateczne uformowanie monitora polega na wykonaniu instrukeji ini-
cjalizacji:

init éidentyfikator zmiennej monitorowej>
(< wykaz parametréw aktualnych>),

ktéra powoduje zastgpienie parametrdéw formalnych przez aktualne (jak
dla procesu) oraz wykonanie zZozonej instrukeji inicjalizujacej (bez-
imienna procedura) ustalajgcej poczatkowe wartosci lokalnej struktury
danych. Dopiero po wykonaniu inicjalizacji monitor staje sie dostepny
innym komponentom,

Monitor jest komponentem biernym (usiugowym, tzn. samodzielnie nie
inicjuje zadnych obliczeri, a jedynie wykonuje obszuge kierowanych do
niego 2gdari (wywolanh procedur wejéciowych). WywoXywania procedur wejs-
ciowych majg postad:

<identyfikator mcnitora>;<ident§fikator procedury
wejdciowej> (K wykaz parametrdw aktualnych>)

Monitor stanowi mechanizm synchronizacji dostepu proceséw (ogdlnie
réznych komponentéw programu) do wspdlnych danych - struktury lokalne]
monitora. Swe funkcje synchronizujgce monitor realizuje przez dwa me-
chanizmy (opisane wstepnie w p. 2.3.2).

Pierwszy - nazywany mechanizmem szeregowania krdtkoterminowego =
jest wbudowany w definicje monitora. Rozstrzyga on o sposobie szeregowe-
nia naplywajgcych wywozarn procedur wejSciowych. Jezeli monitor jest wol-
ny (nie wykonuje zadnej procedury wejsciowej), to pierwsze zgloszenie,

47

ktdre napynie do monitora zajmuje go na okres realizacji wybranej pro-
cedury wejsciowej. Jezeli w czasie, gdy monitor jest wolny napzynie
kilka zgoszefi, to tylko jedno z nich zostaje wybrane do realizacji, a
pozosfale oczekujg na ponowne zwolnienie monitora. Zwolniony monitor
wybiera jedno (wybér niedeterministyczny) z oczekujacych zgioszerd i kie-
ruje je do wykonania. ZgXoszenia, kt6ére naptywajg do monitora w czasie
jego zajetosci sa wZgczane do zbioru zgloszen oczekujgcych na realiza-
cje. Ogdblnie, mechanizm ten realizuje zasade, %e w okreslonym czasie
tylko jeden proces ma dostep do danych chronionych przez monitor.

Drugi - nazywany mechanizmem szeregowania sSrednioterminowego - mo-
%@ byé programowany przez wykorzystanie zmiennych typu kolejkowego
(queue). Ogbélny sens tego mechanizmu polega na tym, Ze procesy w trak-
cie wykonywania wywozanych przez nie procedur wejsciowych monitora mo-
ga byé zawieszane (zawieszanie jest rejestrowane przez zapamigtanie na-
zwy takiego procesu w zmiemnej kolejkowej). Zawieszenie moze trwaéd '
przez pewien odcinek czasu az do momentu, gdy inny proces, wywoXujac
monitor,dokona odwieszenia procesu. Sens zawiesgenia sig procesu pclega
na tym, %Ze dany proces nie mo%e kontynuowaé obliczer poniewaZ nie jest
speiniony oczekiwany przez niego warunek, ktdry moze byé speilniony tyl-
ko w wyniku dziatania innych proceséw.-Intérpretacja takich warunkdéw
zalezy oczywiscie od konkretnego zastosowania.

Typ kolejkowy (queue) jest typem standardowym, a zmienne tego typu
mogg byé deklarowane wylgcznie wewngtrz monitora. Na zmiennych kolejko-
wych dopuszcza sig trzy operacje zdefiniowane przez procedury standar-
dowe: empty, delay, continue. Jezeli x jest zmienng typu queue, to

- empty (x) jest funkcja boolowskg, ktdra przyjmuje wartosé true,
gdy zmienna x jest pusta (nie przechowuje identyfikatora Zadnego pro-
cesu) ; 4

- delay (x) jest .procedurg, ktdrej wywoZanie (w czasie wykonywania
pewnej procedury wejSciowej monitora) powoduje: (a) wpisanie do x iden-=
tyfikatora procesu majgcego aktualnie dostep do monitora, (b) zawiesze-
nie tego procesu, (c¢) zwolnienie monitora do obstugi dalszych zgZoszeri;

- continue (x) jest procedursy, ktérej wykonanie powoduje, ze (a)
proces, ktdéry mia aktualnie dostep do monitora zwalnia monitor (zosta-
je w tym momencie zakoriczone wykonywanie wywoZanej przez niego procedu-
ry wejsciowej), (b) jezeli kolejka x nie jest pusta, to proces pamie-
tany w x zostaje odwieszony i uzyskuje dostep do monitora (zostaje
wznowiona od miejsca ostatniego zawieszenia tego procesu w procedurze
wejSciowe]); jezeli kolejka x Jjest pusta, to monitor staje sie wolny
dla innych zgtoszen.

48

3.7. Klasy

Klasa - ostatnl obiekt systemowy - syntaktycznie rdézni sie bardzo
nieznacznie od monitora. Definicja typu klasowego przedstawia sie naste-
pujaco:

type <identyfikator typh klasowego = =
class (<wykaz parametrdéw formalnych>);
<deklaracja obiektéw lokalnyech>;
<deklaracja procedury wejsciowej>;
<deklaracja procedury wejsSciowej>;
<instrukcja inicjalizujgca>,

a zatem rézni sie zastgpieniem stowa monitor siowem class. Jeszcze jed-
ng réznica syntaktyczng jest mozliwos$é deklaracji obiektéw lokalnych,
tzw. zmiennych wejsciowych. Sg one deklarowane, po zwykiych zmiennych,
w postaci:

var entry <identyfikator zmiennej>:<typ>,

czyli od deklaracji zwykiych zmiennych réznig sie dozgczeniem siowa
entry. 3

Klasa, jako typ systemowy, definiuje abstrakcyjng strukturevdanych
ztozong z:

- lokalnej struktury danych, ktdére - podobnie jak w monitorze -~ sg
bezposrednio dostgpne tylko swoim procedurom we;Sciowym 1 swe]j instruk-
c¢ji inicjalizujacej, a posrednio przez mozliwof¢ wywolywania procedur
wejsciowych na zewnatrz klasy;

- dowolnej liczby procedur wejsciowych, ktdére moga byé na zewngtrz
wywotywane tylko przez jeden komponent,

- instrukcji inicjalizujacej (instrukcja zXozona), siuzgce]j do usta
lania poczatkowych wartosci lokalnej struktury danych.

Ponadto przez< wykaz parametréw formalnych>definiuje sig zasady do-
stepu do innych zmiennych systemowych, rozumiane to jest tak, Jjak dla
poprzednio oméwionych komponentéw. :

Definicja zmiennej typu klasowego, jej inicjalizacja oraz postad
wywozan procedur wejsciowych wygladaja dokxadnie tak, jak w przypadku
monitora.

Zasadniczg rdéznicg dzielgc3y klase od monitora jest to, ze klasa nie
stanowi mechanizmu synchronizacji dostepu proceséw do wspdélnych danych.
Wynika to stad, ze klasa jest przeznaczona do ochrony danych dostepnych
tylko jednemu komponentowi (temu komponentowi, wewngtrz ktérego jest
zdefiniowana). Klasa stanowi tutaj uogdélnienie zwykiej procedury.

49

Zmienne wejSciowe (var emtry), ktdre moszna definiowaé wewngtrz kla-
8y, mozna wywoiywaé (podobnie jak procedury wejéciowe) na zewngtrz kla-
sy, w postaci: :

<identyfikator klasy>-<identyfikator zmiennej wejdciowej>

WywoZanie takie moZze wyZagcznie s2uzyé odczytaniu wartosci tej zmiennej,
a nie moze zmienié jej wartosci. Pojecie zmiennych wejsciowych - cho-
ciaz moze byé zastapione odpowiednig procedura wejsdciowa, ktéra tylko
odezytuje warto$é wekazanej zmiennej - wprowadzono ze wzgledu na czes-
to spotykang w zastosowaniach potrzebe odczytania zmiennych bez naru-
szania ich wartosci.

3.8, Struktura programu

Program, z punktu widzenia syntaktyki, jest blokiem zakoriczonym
kropkg (<blok>.). Blok ten bedzie nazywany blokiem poczgtkowym i nalezy
traktowaé go jako wyrdzniony, bezimienny proces, wewnatrz ktdérego sg
zdefiniowane podstawowe komponenty programu i jest dokonana ich inicja-
lizacja. Wykonanie tego bloku nie wymaga inicjalizacji. Podstawowymi
komponentami, ktére muszg byé zdefiniowane w bloku poczatkowym sg wszys
tkie procesy i wszystkie monitory programu.

Oznacza to, Ze wewnatrz zmiennych procesowych i monitorowych nie
mogga byé zdefiniowane inne zmienne procesowe lub monitorowe. Zmienne
klasowe mogg natomiast byé definiowane wewngatrz kazdego komponentu; w
szczegdlnosci oznacza to, Ze moga one byé zagniezdzane.

Blok poczatkowy programu definiuje wieec zbidér podstawowych kompo-

i nentéw,(a ponadto definiuje pewne ich uporzgdkowanie hierarchiczne.
Uporzadkowanie odnosi sig do zasad dostgpu (zasad komunikacji) kompo-
nentéw. Zrédiem wszelkiej aktywnoSci sa réwnolegle pracujace procesy
stanowigce umownie najnizszy poziom hierarchii. Ogdlnie uporzgdkowanie
to mozna przedstawié w postaci skierowanego grafu bez petli ($ciezek
zamknietych): wierzchotki wejsciowe tego grafu (te, do ktdérych nie pro-
wadza inne *uki) to procesy, a pozostale wierzchoiki to - w uproszcze- .
niu - monitory; 2uki wychodzgce z danego komponentu wskazujg inne kom-
ponenty, do ktérych dany komponent ma dostep.

Bardziej szczegdtowo strukture programu wyjasniajg podane nizej
reguty. Uzywa sie w nich pojecia atrybutéw komponentu programu. Przez
atrybuty sktadowej rozumie sie jej parametry oraz zdefiniowane w jej
wnetrzu state, typy, zmienne, procedury i funkcje.

1. Program zawierajgcy procesy wspSibiezne ma najbardziej zewngtrz-
ny blok (blok poczatkowy) speiniajgcy role bezimiennego procesu poczat-
kowego i inicjalizujacego pozostate zadeklarowane w nim komponenty.

50

2, Komponent programu i jego parametry sktualne muszg byé atrybuta-
mi innego komponentu. '

3. Komponent moZe byé inicjalizowany tylko jeden raz i musi to byé
dokonane wewngtrz tego komponentu, w ktérym dany komponent jest zade-
klarowany.

4, Gdy komponent zakohiczy swe dziaZanie, zadeklarowene w nim zmien-
ne nadal istniejg. :

5. Wszystkie skladowe dostepne danej skZadowej muszg byé jej atry-
butami.

6. Dostgp do zmiennych lokalnych monitora lub klasy, po ich zaini-
cjalizowaniu, moze odbywaé sie wyigcznie przez ich procedury wejsciowe.
Procedury te s3 dostepne w komponencie, w ktdérym sg zadeklarowane.

7. Dostgp do zmiennych lokalnych procesu dla programéw sekwencyj=-
nych, wykonywanych pod ich nadzorem, moze odbywaé sie wyXgcznie za po-
Srednictwem procedur wejsciowych monitora.

8. Procedury (zwykle) maja dostep do wiasnych atrybutéw oraz do
atrybutdw skradowej, wewngtrz ktdérej sa definiowans.

9. Komponenty moga uzywaé statych i typéw zdefiniowanych na ze-
wnatrz, w innych komponentach, w ktdérych sg zanurzone.

3.9. Wybrane wiasnosSci implementacji jezyka
na minikomputerach PDP11

Concurrent Pascal - jak wspomniano - nie dopuszcza rekursji proce-
dur, natomiast rekursja jest dopuszczalna w programach sekwencyjnych
napisanych w Pascalu, a wykonywanych pod. kontrola proceséw wspSibies-
nych. Znajduje to odbicie w deklaracji pro¢E§6w, w ktérej mozna wskazad
dodatkowy obszar pamigci wymagany do wykonania programéw sekwencyjnych.
Piszgc nagtdéwek

process (cwykaz parametrdéw>) + <liczba catkowita>;

definiujemy proces, z ktérym bedzie zwigzany obszar pamieci, o pojemno-
Sci <liczba catkowita >bajtdéw, przeznaczony na pamietanie dwéch stosdw:
jeden (heap) dla zmiennych dynamicznych generowanych procedura new, dru-
gi (stack) dla zmiennych tymczasowych wywoXywanych procedur.

W dalszej czescl przedstawiono procedury standardowe i bardziej
szczegbiowo oméwiono komunikacje z urzadzeniami zewnetrznymi.

Funkcja standardowa

attribute (x)

definiuje wartosé atrybutu =x woXajgcego procesu. Atrybut x moze
przyjmowaé wartosci typu

51

type attrindex = (caller, heaptop, progline,
progresult, runtime).

attribute (caller) daje w wyniku liczbe caikowita identyfikujaca wo-
tajgcy proces. Procesem sg nadawane liczby 0,1,2,... odpowiadajgce ko-
lejnosei ich inicjalizacji.

- attribute (heaptop) daje liczbe catkowita okreslajacg adres szczytu

stosu stuzgcego do przechowywania zmiennych dynamicznych.

attribute (progline) wywoZana po zakonfczeniu programu sekwencyjnego
podaje numer linii tekstu kodu, na ktérej zatrzymaz sie program.

attribute (result), wywoXana w tej sytuacji jak wyzej, daje w wyni-
ku wartosé typu :

type resulttype = (terminated, overflow, pointererror,
rangeerror, varianterror, heaplimit, stacklimit).

Pierwszy z tych elementdw tego typu oznacza poprawne zakoliczenie progra-
mu, a pozostale - zakoriczenie bZedne, z podaniem przyczyny bzeddéw.

attribute (runtime) okresdla czas w sekundach, ktdéry zostak przezna-
czony przez procesor na wykonanie danego procesu od momentu jego inicja-
lizacji.

Procedura wait opdZnia woZajgcy proces do momentu wygenerowania ko-
lejnego Jednosekundowego sygnaiu przez zegar systemu.

Funkcja realtime definiuje czas w sekundach, ktéry upiyng od momen-
tu inicjalizacji systemu. ;

Procedura wejdcia/wyjscia ma postad io(x,y,z),gdzie parametr z wska-
zuje urzgdzenia peryferyjne, y - rodzaj operacji wejscia/wyjscia, za$s
X - zmiennq,’ktéra w tej operacji uczestniczy. Parametry x,y,z sg wza-
jemnie od siebie uwarunkowane, zaleznie od rodzaju urzgdzenia wejscia/
/wyjscia. Parametr 2z musi byé typu

type zgdanie = (typedevice, diskdevice, tapedevice,
printdevice, carddevice),

a parametr y - typu

type io param
record
operation : jiooperation;
status : ioresult;
~arg : loarg
end,
gdzie
type iocoperation = (input,output, move, control);
type ioresult = (complete, intervention, transmission,
failure, endfile, endmedium, startmedium).

52

Znaczenie elementdw ostatniego typu jest nastepujgce:

complete - poprawne zakoriczenie operacji;

intervention - biedne zakoiiczenie operacji; bZzad moze byé usuniety
przez obstuge operatorsksg (np. brak papieru w drukarce);

transmission - bgd transferu informecji (mp. bZad parzystoseci),
operacja moze byé powtdSrzonaj;

failure - trwaia awaria urzgdzenia peryferyjnegog; :

endfile - osiggnieto znacznik kofice pliku (na tadmie lub na dysku);

endmedium - osiggnieto znacznik korica tasmy magnetycznejs

startmedium - osiagnieto znacznik poczatku tasmy magnetycznej.

Wywozanie procedury io w procesie powoduje zawleszenie wykonania
procesu az do momentu zakoniczenia pozytywnego lub negatywnego wskazane]
operacji. Szczegdry wykonania tej procedury dla poszczegblnych urzgdzen
peryferyjnych - wartoSel i znaczenie parametrdéw procedury - przedstawia-
Jja sie nastepujgco.

v

Terminal {typedevice)

x jest typu znakowego (char).

input wprowadza pojedynczy znak do pamieci, podstawia pod x, a jego
echo wyséwietla na ekranie terminala (znak BELL nie moze byé Wprowa-
dzony) ,

output wyprowadza pojedynczy znak (zawartosé x) na ekran terminala.

control opéinia proces wywoiujgcy procedurg 1o a% do momentu nacidnie-
cia klawisza BELL przez operatora.

status moze przyjaé tylko wartosé complete.

arg nie jest wykorzystywany.

Dysk (diskdevice)

x Jest typu stronicowego
type blacktype = univ array (.1..512.) of char

arg jest nazywany indeksem strony i przyjmuje wartosci 0..4799.

input (output) wprowadza'(wyprowadza) gtrong o podanym indeksie do (z)
pamigci operacyjnej =z (do) pamigci dyskowej.

control rozpoczyna wykonanie programu zapamietanego na dysku z poczat-
kiem na stronie wskazane] przez indeks.

status przyjmuje wartodeci complete, intervention, transmission, failure.

Tadma magnetyczna (tapedevice)

x Jest typu stronicowego Jak wyzej.

input (output) wprowadza (wyprowadza) kolejng strone (na kolejng strong)
z (do) pamigei tasmowej (pamigci operacyjnej) do (z) operacyjnej
(tasmowej).

53

move przesuwa tasme w sposdéb uzalezniony od wartodci arg nastepujaco:
writeeof - wprowadza na tasme znacznik koneca pliku
rewind - przewija tasme do poeczgtiku,
upspace - przesuwa tasSme do przodu o jedna stroneg,
backspace - przesuwa tasme do tyiu o jedns strone,
status - przyjmuje wszystkie wartosci typu ioresult.

Drukarka (printdevice)

x Jjest typu liniowego
type linetype = array (.1..132.) of char

cutpuf ﬁyprowadza linie (132 1lub mmies;znakéw zakoficzonych znakami po-
wrotu karetki, zmiany wiersza lub zmiany strony) na drukarke,

status przyjmuje wartosci complete lub intervention.

Czytnik kart (carddevice)
x Jjest typu kartowego

type card = array (.1..80.) of char
output wyprowadza zawartos$é jednej karty 80 kdluﬁnowej do pamiegci,
status przyjmuje wartos¢ complete intervention, transmission, failure.

3.10., Program przykXadowy

Rozpatrzmy proste zadanie kopiowania zawartosSci kart na drukarke
wierszowsa po%aczone z odpowiednig redakcjg (formatowaniem) wydruku.

Najprostsze rozwigzanie zadania, jakie si¢ nasuwa, moze byé progra-
mem sekwencyjnym dziazajgcym wediug schematu:

cycle wprowadz karte;
wyprowadZ linie
end

Ma ono te niedogodnosé, ze proces kopiowania jest bardzo wolny ze wzgle-
du na naprzemienng prace obu urzgdzen peryferyjnych. Efektywniej wyko-
rzystujace prace urzadzen jest takie rozwigzanie, w ktdrym oddzielne,
réwnolegle pracujace procesy obstugujg niezaleznie oba urzgdzenia. Dla-
tego sensowne jest przyjecie nastepujgcej struktury programu (rys. 3.1).

monitory
buforujace

proces proces i proces
czytania kopiowania pisania

Rys. 3.1. Wstepna struktura programu

54

Proces P, obsiuguje czytnik kart, a zawartosé przeczytanej karty
przekazuje do monitora buforujgcego M,. Proces P2 pobiera dane od moni-
tora M;, odpowiednio je redaguje i przekazuje do monitora buforujgcego
Mz. Proces P3 dane przygotowane w monitorze M, wyprowadza na drukarke
wierszowg. :

Dalsza strukturalizacja programu bedzie wynikaé z przyjetych zasad
redagowania tekstu. Prazyjmijmy, Ze ciag kart 80-kolumnowych na wejsciu
sk¥ada sie¢ z plikdéw poprzedzielanych kartg sterujaca, ktdrej zawartos-
cig jest znak #£ , po ktérym nastepujg same spacje. Tekst wyprowadzany
na drukarke jest dzielony na strony zawierajgce 60 wierszy 132 znako-
wych. Wymaga sig, aby:

- zawartos$é pojedynczej karty (innej od karty sherujacej) byZa dru-
kowana w jednym wierszu z 24 znakami odstepu z lewej strony Jjako margi-
nesem, :

- na Jjednej stironie wydruku nie moga znajdowaé sie wiersze nalezace
do réznych plikéw; pliki powinny byé przedzielone strong pusts.

Wynika stad propozycja strukturalizacji programu przez wprowadzenie
klas wykonujgcych etapowo pewne funkcje redakcyjne (rys. 3.2).

()
©)

©)
OO,

Rys. 3.2. Peina struktura programu

Zadaniem klasy C; jest redakcja pliku wyjéciowego, w szczegdlnosci
dotgczenie pustych stron przedzielajacych pliki. Klasa C, redaguje stro-
ny, uzupeiniajac w szczegélnosci niepeine strony pustymi liniami. Klasa
C3 redaguje poszczegdblne wiersze, tworzgc lewy i prawy margines dla wy-
druku.

Przy tak przyjetej strukturze programu mozna zdefiniowaé poszczegdl-
ne jego komponenty. Najpierw zdefiniujemy wystepujace tu typy systemowe,
a po tym przedstawimy caly program.

55

Procesy
Proces P1 - Jeko typ - jest zdefiniowany nastepujaco

type proces czytania =
process (bufor monitor buforujacy);
var param: ioparam;
tekst, bxgd : linia;
nrznaku: integer;

begin
for nrznaku := 1 o 80 do

btad (.nrznaku.) := 1 ;
param. operation := input;

with param do

cyele
repeat io (tekst, param, carddevice)
until status < >intervention;
if status < > complete then

test := bxad

bufor. przyjmij (tekst)

end

end:

Wystepujgecy tu typ loparam jest rozumiany tak, jak w p. 3.9, natomiast
linia to typ zdefiniowany przez:

type linia = array (.1..132.) of char

Proces ma jeden parametr formalny bufor. Zgodnie z zasadami podanymi w
pP. 3.8 oznacza to, Ze bedzie on mia} dostegp do pewnego komponentu (moni-—
tora) typu "monitor buforujgcy". Dostep ten jest faktycznie wykorzysta-
ny w tresci procesu, gdzie wystepuje instrukcja

bufor.przyjmij (tekst)

stanowigca wywozanie procedury wejsciowej monitora.
Proces P3 - Jako typ - jest "antysymetryczny" w stosunku do Pq i
przedstawia sie nastepujgco:

1ype proces pisania =
process (bufor: monitor buforujaey),
var param: ioparam
tekst: linia;
begin
param,operation:=output;
cycle
bufor.oddaj(tekst) ;
repeat(tekst,param,printdevice)

56

until param.status=complete;
end
end

Proces P, - jako typ - ma postaé:

type proces kopiowania =
process (buforwe,buforwy :monitor-buforujacy);
var konsument:redakeja pliku; "klasa” tekst:linia;
begin
init konsument (buforwy) ;
cycle
buforwe.oddaj(tekst)
konsument.pisz(tekst)
end

f

end

Proces ma dwa parametry formalne buforwe, buforwy, z ktdrych pierwszy
jest jawnie uzyty w tekscie procesu, natomiast drugi - uzyty jako para-
metr konsumenta (klasy zdefiniowanej dalej) - sZuzy do przekazania praw
dostegpu nowo kreowanemu komponentowi.

Monitory
Oba monitory M1, 32 programu s8g wspSlnego typu

type monitor-buforujgey =-
monitor
ver zawartosé: linia;
peiny: boolean;
odbiorca, nadawca : queue;
procedura entry oddaj (var tekst: linia);
begin
if not peiny then delay (odbiorca);
tekst := zawartosé;
peiny := false;
continue (nadaweca) ; /
end: .
procedure entry przyjmij (tekst: linia);
begin :
if peiny then delay (nadawca);.
zawartosé := tekst;

peiny := true;
continue (odbiorca); -
end:

"instrukcja inicjalizujgca™:
begin

57

peiny := false
end;
Monitory przechowuja tylko jedng porcje danych (1linig); procedury wejs-
ciowe sZuza do wpisu (przyjmij) i odeczytu (oddaj) kolejnych 1inii po-
miedzy parg komunikujgcych sig procesdw.

Klasy
Jak juz wspomniano, definiuje sie trzy klasy. Sg one wzajemnie w
sobie zagniezdzane .

type redaktor_pliku =
class (bufor: monitor_buforujgcy);
var konsument: redaktor_strony; "klasa"
koniecpliku: booleanj
function dalej (tekst: linia): boolean;
var nrznaku: integer;
in

2|
(1]

Il—*

£ tekst (.1.)< >"#" then dalej := true
se begin
nrznaku := 80;
while tekst (.nrznaku.) = .~ do
nrznaku := nrznaku-=1;
dalej:=(nrznaku< >1)
end

els

end;
procedure entry pisz (tekst: linia);

begin.
if koniecpliku then

begin
konsument.przeskocz;
koniecpliku := false
end;
if dalej (tekst) then konsument.pisz(tekst)
else begin

konsument.przeskocz;

koniecpliku:=true
ond /
end:
"ingtrukcja inicjalizujgca"
begin init konsument(bufor);
koniecpliku := true
end

58

Zmienna konsument jest egzemplarzem typu redaktor strony:

type redaktor_strony =
class (bufor: monitor_buforujgcy);
yar konsument: redaktor.wiersza; "klasa"
nrlinii: integer:

procedure nowa_stronas;

var tekst: liniaj

begin
tekst(.1.):= £f; "znak zmiany strony®
konsument.pisz(tekst)
tekst(.1.):=nl; "znak zmiany wiersza"
nrlinii := 1

&nd; :

procedure entry przeskocz;

begin nowastrona end;

procedure entfy pisz (tekst: linia);

begin
‘konsument.pisz(tekst) ;

if nrlinii = 60 then nowastrona
else nrlinii := nrlinii+l
end;
"instrukcja inicjalizujgca"
begin init konsument (bufor)
nowa_strona
end;

Wewngtrz zdefiniowanej klasy pozostaje jeszcze nieokreslona, ostat-
nia juz, klasa redaktor linii:

type redaktor_linii =
class (bufor: monitor.buforujacy),
var obraz:linia;
nrznsku: integer;
procedure entry pisz (tekst:linia);
begin
for nr znaku := 27 to 106 do
obraz(.nrznaku.) :=tekst(.nrznaku-26,)
bufor.przyjmij(obraz)
end

"ingtrukcja inicjalizujgca"

begin
for nrznaku:=1 to 26 do

59

’

obraz(.nrznaku.)= ~— 3
obraz(.107.) := nl "znak nowej linii®
end; '

Program =
Po opisie typdéw wszystkich komponentéw mozna napisaé peiny tekst pro-

gramu; wykropkoweno w nim te fragmenty, ktdre zostaZy uprzednio zdefi-
niowane.

"xxxxX Kompletny program xxxxx"

iodevice = (typedevice, diskdevice,

tapedevice, printdevice, carddevice);
iooperation = (input, output, move ,

control);

ioresult = (complete, intervention, transmission,
failure, endfile, endmedium, startmedium);
ioparam = record

operation : iooperationj
status : ioresult;
arg : integer
end:
type linia = array (.1.132.) of char;
const nl = (:10:) 75 £f = “(:12:) ;
"nl - nowa linia, ff - nowa strona”
type monitor-buforujacy =
monitor end;
type redaktor linii =
class (bufor: monitor_buforujacy);
end; :
type redaktor—strony =
class (bufor: monitor_buforujacy);
end;
type redaktor_pliku =
class (bufor: monitor-buforujacy);
end;
type process_czytania =
process (bufor: monitor_buforujacy);
end;
type process_kopiowania =

60

process (buforwe, buforwy: monitor_buforujacy);
end;
type proces_pisania =
process (bufor: monitor_buforujacy);
end;
var buforwe, buforwy: wspdlny_bufor;
czytnik: proces_czytanis;
kopista: proces_kopiowania; ‘ ©
pisek: proces_pisania;
"tredé bloku poczatkowego programu" .
begin
init buforwe, buforwy,
czytnik (buforwe),
kopista (buforwe, buforwy),
pisak (buforwy)
end.

Tredcig bloku poczatkowego programu jest inicjalizacja monitordw i
proceséw programu. Instrukcja init obejmuje wszystkie wystgpujace po
niej nazwy komponentéw; inicjalizacja odbywa sie w kole jnosci wystepo-
wenia nazw. Nalezy zwrécié uwage, ze inicjalizacja odbywe sie w takiej
kolejnosci, iz w momencie inicjalizacji danego komponentu zainicjalizo-
wane 8g juz komponenty bedace jego parametrami aktualnymi.

2.11, Uwagi koficowe

Jezyk Concurrent Pascal definiuje program jako hierarchicznie upo-
rzadkowang strukture swych komponentéw. Struktura ta jest statyczna,
dzigki czemu Juz na etapie kompilacjl mozna wykryé wszelkie niezgodnos-
¢i 2z przyjetymi prawami dostepu. Przy zachowaniu praw dostepu i hierar-
chicznej strukturze unika sie mozliwoSci bowstania trwatych blokad}pod-/
czas realizacji programu. Cechy te sa jednoczesnie przyczyng pewnych
kZopot6w.

: Pierwézy z nich moze objawiaé sie w malej efektywnosci wspdipracy
procesdéw. Chodzi tu o sytuacje, gdy dwa procesy komunikujg sig poprzez
strukture wzajemnie sig wywozujacych monitordw; wtedy wywoXanie jednego
monitora moze blokowaé dostep do innych monitordw. Istnieje wiele pro-
pozycji poprawienia tej sytuacji, np. (38].

Drugi kZopot to niemoznosé dynamicznej generacji komponentdw, co
jest utrudnieniem w wielu zastosowaniach. Stad propozycja pewnych roz-
sgerzen jezyka, np. jezyk Pascal - Plus [64].

61

Przyjete prawa dostepu wprowadzaja pewne utrudnienia w analizie
wiasnoSci programéw; pewnym rozwigzaniem tych trudnosci jest koncepc]
warstwy, jako dodatkowe] konstrukcji jezykowej [62] . '

" Niektdrzy autorzy wyrazaja poglad o braku praktycznej potrzeby two-
rzenia wielu egzemplarzy typéw'systemowych [15] itd.

Przytoczone uwagi wskazuja na duze zainteresowanie jezykiem i réZne
prdéby jego zastosowah. Na szczegdlne podkreslenie zasuguje napisanie
i uruchomienie kilku systeméw operacyjnych [10]. Niezaleznie od swych
stabosci, Concurrent Pascal stanowi znaczgcy (w tej chwili juz histo-
ryczny) krok w rozwoju programowania wspdibieznego.

CWICZENIA

1. Zaprojektowaé w jezyku Concurrent Pascal szkielet matego systemu
operacy jnego przeznaczonego do wykonywania wsadu programéw napisanych w
Pascalu. Zarozyé, ze programy sekwencyjne w Pascalu mogg korzystaé z
procedur standardowych (p. 3.9) wylacznie za posrednictwem projektowane-
go systemu operacyjnego.

2. Przyktadowy program, przedstawiony w p. 3.10, rozszerzyé w taki
sposdb, aby o wszelkich awariach czytnika kart lub drukarki wierszowej
informowaé operatora za posrednictwem terminala.

3. Zatézmy, Ze procesor ma speiniaé role wezta podsieci teletrans-
misyjnej. Oznacza to, Ze do procesora jest podigczona pewna liczba li-
nii wejsciowych i 1linii wyjs$ciowych. Liniami naplywajg z ustalong szyb=-
kos$cig ciggi znakdéw. Znaki te sg buforowane pojedynczo w tzw. adapte-
rach liniowych. Pewne podciagi tych znakdéw, wyrdznione pewnym znakiem
poczatkowym i koficowym, tworzg pakiety. Pakiety s3a w pewien sposdéb prze-
twarzane, a nastepnie kierowane w linie wyjsciowe. Zaproponuj instruk-
cje wejscia/wyjsScia komunikacji z adapterem liniowym. Zakladajgc, Ze
znane sa procedury przetwarzania pakietéw w jezyku Concurrent Pascal,
zaprojektuj strukture systemu operacyjnego wezia. Szczegblng uwage na-
lezy zwrdcié na koniecznos$é utrzymania rezimow czasowych, aby nie wy-
stgpito "gublenie" odbieranych lub wysyZanych znakow.

4, Zatrdzmy, ze dysponujemy pamiecig dyskowg skladajgcg sig z 24 cy-
lindréw na kazdej 2z dwdéch powierzchni po 12 stron (512 znakéw). Obo-
wigzuje przy tym nastepujacy algorytm zamiany argumentu (nr-strony) w
procedurze wejscia/wyjscia, na adres fizyczny:

powierzchnia := nr—strony div 12 mod 2;
cylinder := nr_strony div 24;
gektor := nr_strony mod 12;
Zaprojektowad w jezyku Concurrent Pascal system organizujgcy wirtualng
pamigé plikéw na dysku.
5. Napisaé w jezyku Concurrent Pascal program symulujgcy dziaZenie
czytelnikdéw i pisarzy (éw. 1, rozdz. 2). '

6. Napisaé w jezyku Concurrent Pascal program symulujgcy dziatanie
filozoféw (dw. 5, rozdz. 2).

62

7. Rozwazmy zagadnienie przydziaiu m jednorodnych zasobdw zwrot-
nych pomigdzy procesy wspSibiezne. Algorytm bankiera, ktdry rozwiazuje
to zagadnienie w taki sposéb, aby unikngé zastojéw, dziaXa nastepujaco.
ZakZada sig, 2e dla kazdego procesu jest znana maksymalna liczba jednos-
tek zasobow, ktdrg mozna Jednoczesnie wykorzystad. Przydziak procesowi
maksymalnej liczby zasobdéw powoduje, po upiywie skoficzonego odeinka cza-
su, zwrot wezystkich zasobdw. Przydziai czesci maksymalnej liczby zaso-
béw danemu procesowi moze nastgpié tylko wéwczas, gdy pozostata pula
wolnych zasobdéw jest wystarczajgca do zaspokojenia w peini zgdaid prazy-
najmniej jednego procesu. Napisaé w jezyku Concurrent Pascal fragment
programu przydzielajgcy procesom zasoby zgodnie z podanym wyzej algoryt-
mem. (Zwrécié uwage na fakt, aby w chwili zwolnienia zasobdéw przez pe-
wien proces zostary odwieszone wszystkie oczekujace procesy, ktdérych za-
dania mogg byé zaspokojone.)

8. Pewien monitor w Concurrent Pascalu ma zawieraé trzy procedury
wejéciowe EP1,EP2, EP3. TreScigq tych procedur jest wywotanie pewnych lokal-
nych procedur monitora - odpowiednio P1, P2, P3. Wywozanie i wykonanie
procedur moze jednak nastgpié pod warunkiem, %e sa speinione pewne wa-
runki logiczne zdefiniowane przez lokalne funkcje boolowskie - odpowied-
nio B1, B2, B3. Napisaé szkielet takiego monitora, ktdéry zachowujac opi-
sane zasady, umozliwia wspéiprace grupie n procesdéw wywozujgcych jego
procedury wejsciowe. Szeregowanie zawieszonych procesdéw powinno odbywaé
sig wg zasady "proces najrzadzie]j przetwarzany w monitorze ma pierwszern-
stwo".

4. JEZYK PROGRAMOWANIA MODULA

4.1, Wprowadzenie

Jezyk Modula (Modular Language), podobnie jak Concurrent Pascal, na-
lezy do klasy jezykdéw bazujgcych na zaZozeniu wspélnego Srodowiska dla
réwnolegle wykonywanych proceséw. Jezyk opracowat N. Wirth z Uniwersyte-
tu Technicznego w Zurychu (ETH - Erdgen8ssische Technische Hochschule)
w latach 1974-76. Pierwszy kompilator tego jezykae (napisany niemal w ca-
Yosci w Pascalu i uruchomiony na CDC 6100) w eksperymentalnej wersji na
minikomputer PDP11/45 ukoriczono w 1976 r. [67, 68, 69]. Jest on takze
oparty na jezyku Pascal 1 - zdaniem autora - okazax sig, w zestawleniu
z Pascalem, jezykiem znacznie prostszym w implementacii.

Zasadniczym przeznaczeniem jezyka Modula jest programowanie stero-
wanla procesami technolbgicznymi. W zakresie sterowania takimi procesa-
mi stawiane sg dwa wymagania: potrzeba mechanizmdéw obliczehd rdéwnoleg-
2ych oraz mechanizméw zarzgdzania urzadzeniami peryferyjnymi. Zasadni-
czg przeszkoda we wprowadzeniu takich mechanizmdéw, zwaszcza w_zakresie
zarzgdzania urzgdzeniami peryferyjnymi, jest duza zaleznosé od cech ar-
chitektury, a nawet konfiguracji systeméw komputerowych. Praktycznym
rozwigzaniem jest zaakceptowanie takiej sytuacji i wprowadzenie do jezy-
ka konstrukcji, ktdre przesioniag obiekty zalezne maszynowo, tzn. ograni-
czg ich znaczenie 1ub'obecnoéé do specyficznego, zwykle mazego fragmen-
tu programu (device module).

Podstawowymi konstrukcjami jezyka sa: procesy (process), moduiy (mo-
dule), moduty pofdredniczgce (interface module) oraz moduky peryferyjne

(device module). Po pordwnaniu tych konstrukcji z odpowiednimi konstruk
cjami Concurrent Pascala mozna stwierdzié, Ze pojecia procesdéw sg po-
dobne, odpowiednikiem moduzu jest klasa, odpowiednikiem moduzu posSred-
niczgcego zas - monitor, natomiast modut peryferyjny nie ma swego odpo=-
wiednika. Istotng rdznicg w stosunku do Concurrent Pascala jest to, Ze
Modula nie wprowadza pojecia typdw systemowych; w zwigzku z tym moduy
gg definiowane jako pojedyncze egzemplarze.

Ze wzgledu na pewne podobienistwa do jezyka Concurrent Pascal przed-
stawiony dalej opis jezyka Modula jest bardzo zwarty; interpretacje wie-
lu szczegdzdéw mozna wywnioskowaé z przedstawionych przykraddéw.

64

4.2, Mechanizmy sekwency ne

Elementami alfabetu jezyka sa znaki nalezgce do kodu ASCII, identy-
fikatory liczby, Zarcuchy (ciggi znakéw zamkniete pomiedzy dwoma apo-
strofami) oraz operatory i ograniczniki:

+ i div until const
-) mod while var
= [or do type
//] and 2 loop array
= . not when record
<> ’ HE exit procedure
< ; the begin process
<= : elseif and modula
— else with interface
>= case value device
(= of xor use
1= X) repeat define

Symbole (= oraz =) 83 nawiasami dla komentarzy.

Struktury danych w Moduli sg podzbiorem struktur Pascala. Typami
prostymi Moduli sg: typ catkowity (integer), logiczny (Boolean), znako-
wy (char), wyliczeniowy oraz bitowy (bits). Ten ostatni jest standardo-
wg tablicg boolowskg

array O: w of Boolean,

gdzie w stanowi parametr implementacyjny, dla PDP11 w = 15, (Uwaga:
nieco inna notacja granic indeksu tablicy.)

Na zmiennych bitowych mozna wykonywaé operacje logiczne end, or,
xor, not. Wymienione operacje sg wykonywane na wezystkich odpowiadajg-
cych sobie elementach operanddéw. Typ bitowy zastepuje typ zbiorowy z
Pascala.

Typami z}ozonymi sg tylko tablice (array) oraz rekordy (record) bez
wariantdw. P,

Deklaracje staXych, typdw, zmiennych sg réwniez takie jak w Pascalu.
Instrukcje zawierajg bogaty zestaw struktur sterowania, rézniacy
sie nieco od struktur sterowania w Pascalu. Jedna z tych réznic dotyczy
syntaktyki: przyjeto bowiem zasadeg, e kazda instrukcja nie tylko zaczy-
na sie, ale rdéwniez kodczy symbolem nawiasu - nawiasem koriczacym jest
stowo end. Instrukcja alternatywy (if) moze wigc mieé postad:

if B then S
{elsif B then s”}
[else S"] end,

65

gdzie B, B sa wyrazeniami logicznymi, S, S', S" dowolnymi ciggami in-
strukcji. Stosowane tutaj i dalej oznaczenia pomocnicze { } oraz [| ma-
ja sens nastepujgcy:

{E} oznacza zbidr napisdéw zioZony z napisu pustego oraz napiséw E,
EE, EEE,...

[E] oznacza zbidr zZozony z napisu pustego oraz napisu E.

Instrukcja wyboru (case), iteracyjna (repeat) oraz wigzace (with)
maja w Pascalu nawias kodczacy end i dlatego takg samg postaé maja w
Moduli. Instrukcja iteracyjna (while) ma dodatkowy nawias korficzacy

while B do S end. t
Modula ma jeszcze jedna instrukcje iteracyjng (loop) w postaci:

loop S |when B [do S°] exit
s"} end

Stad ogblng postacig tej instrukcji jest:
loop S1 when B1 do X1 exit

52 when B2 do X2 exit
Sn when Sn do
S

(o}

In exit

end

Wykonanie instrukcji petli przebiega nastepujgco: Najpierw wykonuje sie
cigg instrukcji S1, a nastepnie oblicza sig warunek logiczny Bl. Jezeli
jest on prawdziwy, oblicza sig cigg instrukcji X1, po czym obliczenia
petli koriczg sie; Jjezeli jest on faXszywy, oblicza sig¢ cigg S2 itd. Po
wykonaniu ciggu S wykonanie pgtli powtarza sie od ponownego wykonania
S1. Instrukcja petli (lgop) jest bardzo ogdlna, jej przypadkami szcze-
gélnymi sg poprzednio omg;ione instrukcje iteracyjne.

Konstrukcja procedury w Moduli jest w stosunku do procedur w Con-
current Pascalu, a nawet w Pascalu, bardziej rozbudowana. Deklaracja
procedury - podobnie jak w Pascalu - sktada si¢ z nagiéwka z identyfi-
katorem i1 listy parametréw formalnych oraz z bloku, stanowigcego tresé
procedury. Réwniez, jak w Pascalu, wyrdznia sie¢ procedury wiasSciwe oraz
funkcyjne, przy czym rozrdéznienie pomiedzy nimi polega tylko na tym, ze
nagidéwek procedury funkeyjnej jest zakonczony typem wyniku procedury.
Przyktadowo déklaracja procedury funkcyjnej obliczajgcej najwiekszy
wspdlny podzielnik ma postad:

procedure nwp (x,y:integer):integer;
var a,b: integer; (% zaklada sig¢ x,y > O =)
begin a:=x; b:=y;

66

while a < > b do
if a<bh then b:=b-a else a:a-b
end

ol

nwp =
end nwp

W tresci procedury funkcyjnej musi wystapié instrukecja podstawienia war
tosci pod nazwa tej procedury. Kazda procedura musi koticzyé sie stowenm
end, po ktérym jest powtdrzony jej identyfikator.

- Komunikacja procedury przez parametry odbywa sie dwoma znanymi spo-
sobami: wolanie przez zmienng (parametry formalne specyfikowane przez
yar) oraz przeé wartoS¢é (parametry formalne niespecyfikowane lub specy-
fikowane prgez const).

W bloku stanowigcym tre$é procedury mogg byé deklarowane obiekty
lokalne state, typy, zmienne, procedury i moduiy (p. dalej). Procedury
moga wigec byé zagniezdzane, a takie moga wywoxywad sie rekursywnie.

Procedure ma dostep do swych obiekidw lokalnych oraz parametrdw,
moze takze istnieé dostep do obiekitéw nielokalnych (nie tylko do zmien-
nych, jak w Pascalu). Takie obiekty nielokalne musza byé takze wyspecy-
fikowane w nagZdwku procedury w postaci listy obiektdéw importowanych
(use 1ist). Lista ta stenowi element mechanizmu definiowania ukZadu od-
niesienia [62] omdwionego dalej przy konstrukcji moduZu.

Standardowe procedury skadajg sie z procedur wiasciwych:

inc (x,n) =rdéwnowaZnej X't =X+n
dec (z,n) " i :=X-n
ine(x) i X:=X+1
dec(x) 1y Xt=X~1
halt @ zakoliczenie programu

i procedur funkcyjnych

off(b1,b2) réwnowaznej bl end b2 =[], gdzie b1, b2 s typu
bitowego, [| cigg bitdéw zXozony z samych zer,

of£(b) réwnowaznej b =[|

among(i,b) n blil 3 b - wyrazenie bitowe

low(a) @ dolnej wartosci indeksu tablicy a
high(a) 1 gérnej wartosci indeksu tablicy a
adr(v) v adresowi zmiennej v

size(wv) Ly rozmiarowi zmiennej v

integer(x) i liczbie porzadkowej x w zbiorze wartos-

ci typu, do ktdrego nalezy x,
char(x) W " znakowi o liczbie porzgdkowej =X.

67

Moduz jest najbardziej ogdlng komstrukeja w Modulil stanowigca uogdl-
nienie pojecia procedury i bloku., Modut stanowi kolekcje statych, typdw,
zmiennych i procedur., Sg one atrybutami moduiu i rozpoczynajg swe ist-
nienie w chwili wywoZania procedury wzgledem ktérej modux jest lokalny.
(Jak wspomniano przy opisie procedur, jej obiektami lokalnymi mogg bydé
m.in., modury.) Poniewaz caly program jest takze moduzem, atrybuty modu-
Tu - programu rozpoczynajg swe istnienie w chwili startu programu.

Istotng cechg modu%u, stanowigcego "ogrodzenie" dookoza pewnej gru-
py obiektdéw, jest precyzyjne zdefiniowanie zasad dostepu do tych obiek-
téw oraz zasad dostepu wewngtrz moduzu do obiektdéw nie bedacych jego
atrybutami - obiektdéw zdefiniowanych na zewngtrz moduzéw. W swoim na-
g26wku modul ma dwie listy identyfikatordw. Pierwsza liste obiektdw eks-
portowanych (specyfikowana sZowem define) wymienia te wszystkie obiek-
ty modu?u, ktére sg dostepne na zewngtrz. Druga lista obiektéw importo-
wanych (specyfikowana sXowem use) wymienia te obiekty zadeklarowane na
zewngtrz moduzu, ktére sg dostepne w jego wnetrzu. W ten sposdéb wyraz-
nie oddziela sie te obiekty, ktére abstrakcyjnie reprezentujg dzialanie
moduzu, od tych, ktére stanowig implementacje takiego dziaZlania, Moduz
przestania swe wnetrze, ktére jest nieistotne dla pozostazej czegsci pro-
gramu lub to, ktére musi byé chronione przed niepozgdanym dostgpem. Mo-
duty mogg byé zagniezdzane. Rozpatrzmy przykiad

module M13;.
define b,c;
use a;
deklaracja d
module M2;
define c,e;
use d;
deklaracja c,e,f
c,d,e,f 83 dostepne w tym miejscu
end M2;
grocedhre 198
deklaracja f
a,b,c,d,e,f sq dostepne w tym miejscu
end b; ‘
a,b,c,d,e sg dostepne w tym miejscu
end M1 . >

Obiekt a jest zdefiniowany na zewnatrz moduzu M1, za$ b,c sg obiekta-
mi zdefiniowanymi wewnatrz. Podobng role odgrywaja d oraz c,e dla modu-
Yu M2, Wewnatrz procedury b sg dostepne jej atrybuty, tzn. obiekty b,f
oraz wszystkie atrybuty dostepne wewngtrz modutu M1, tzn. obiekty a,c,

68

d,e. Dostep ten wynika 2z normalnych regux dostepu, takich jakie obowig-
zujg w Pascalu. Gdyby w procedurze wystepowazs lista obiektdéw importo-
wanych (use), wtedy - poza atrybatami lokalnymi - by2yby dostepne w jeJ
wnetrzu tylko obiekty z tej listy. '

Jezeli obiektem eksportowanym jest typ, to na zewngtrz modutu znany
jest tylko identyfikator tego typu, nieznane natomiast pozostajg jego
szczegdly strukturalne. A wiec zmienne takiego typu mogg byé modyfiko-
wane tylko przez procedury tego samego moduu. Jezeli obiektem ekspor-
towanym jest zmienna, to jej wartosé na zewngtrz moduu moze by¢ tylko
odeczytywana. ’

4.3, NMechanizmy rdwnolegie

Procesy (grocess), moduty posredniczgce (interface module) oraz me-
chanizmy synchronizacji sa zasadniczymi komstrukcjami rdéwnolegdymi w
Jezyku HModula.

Procesy syntaktycznie podobne sg do procedur, lecz ich wywoianie w
programie - inaczej niz w przypadkach procedur - rozpoczyna obliczenia
przebiegajace rdéwnolegle z programem, ktéry zainicjowa proces. W chwi-
1i, gdy sterowanie osiaga koniec procesu, proces ten znika (podobnie
Jak procedura). Deklaracja procesu ma postad:

process <identyfikator>(<liste parametrdw formalnych>);
< blok>

Proces moze byé deklarowany jako lokalny obiekt procedury, deklaracje
proceséw nie mogg by¢ zagniezdzane. Komunikaeja procesu z programem po-
przez parametry odbywa sig tak samo, jak w przypadku procedury.

Proces jest kreowany przez instrukcje inicjalizacji, o takiej samej
postaci jak wywolanie procedury. Procesy moga byé kreowane tylko w pro-
gramie g¥éwnym, tzn. nie moga byé kreowane wewnatrz procesdw ani we-
wnatrz procedur. Wielokrotne powtdrzenie instrukeji inicjalizacji powo-
duje utworzenie wielu egzemplarzy tego samego procesu.

Procesy komunikujg sie ze sobg przez wspblne zmienne, co wymaga me-
chanizmu wyzgcznego dostepu do sekecji krytycznej. Role te¢ speinia spec-—
Jalny rodzaj moduXu, zwany moduxem posredniczgcym (interfaggnmggu}e),
stanowigcy odpowiednik monitora w Concurrent Pascalajﬁ—_*‘ -

Modu? poéredniczgcy ndostepnia procesom dostep do swych zmiennych
lokalnych jedynie za posrednictwem swych procedur, ktdre znajduja sie
na lidcie obiektdéw eksportowanych. Podobnie jak monitory w Concurrent
Pascalu, modﬁ&y posredniczace speiniaja funkcje synchronizujace poprzez
dwa mechanizny: szeregowania krdtkoterminowego i Srednioterminowego.
Pierwszy z tych mechanizméw jest taki sam jak w Concurrent Pascalu,

69

drugl natomiast jest nieco inny i oplera sie na tzw. sygnaach synchro-
nizujacych (odpowiednikach zmiennych kolejkowych).

Syegnaty sg deklarowane wewngtrz modutu posredniczgcego jako zmienne
typu signal. Sygnaly moga byé wysylane przez procesy oraz procesy moga
oczekiwad na odbidér sygnaXu. Na sygnazach mozna wykonywacé nastepujace
operacje - procedury standardowe: wait, send, awaited.

Wywolanie procedury weit (s,r) opdéZnia proces a2z do momentu otrzyma-
nia sygna*u s. Procesowi jest nadana ranga opéfnienia r - dodatnia
liczba-catkowita, wait(s) jest skrdtem wait(s,1).

Wywozanie procedury send(s) przesyla sygnatx g do tego procesu,
ktéry oczekuje na s i ma najwyzsza range opdinienia. Jezeli kilka pro-
cesbw o tej samej randze oczekuje na s, to otrzymuje go ten proces,
ktdry by najdtuzej opdZniany. Jezeli zaden proces nie oczekuje s, to0
send(s) nie ma zadnego efektu.

Boolowska procedura funkcyjna awaited(s) przyjmuje wartoSé true wiéw-
czas, gdy ¢o najmmiej jeden proces oczekuje na s, w wypadku przeciwnym
przyjmuje wartosé false.

Gdy proces wywoa procedure wait wewngtrz moduiu posredniczacego
(dokZadniej wewnatrz procedury eksportowej tego moduu), zostaje wéw-
czas zawieszony, a modu%z posredniczacy stéje sie wolny dla innych proce-
~5w. Jezeli proces wywoa procedure send wewnatrz moduu posredniczgce-
go 1 jezeli sygnat zostanie przestany do procesu, ktéry na niego oczeku-
je, to proces odbierajgcy sygnat zostaje odwieszony i otrzymuje dostep
do moduzu, proces zas nadajgcy sygnal zostaje zawieszony do czasu zakon-
czenia procedury moduXu dla odwieszonego procesu. Procedury wait i send
stanowia analogony procedur delay i continue w Concurrent Pascalu.

Jezeli zmienna sygnalowa jest eksportowana na zewngtrz moduzu po-
$redniczacego, to operacja send nie moze byé wykonywana poza tym modu-
Xem. :

Ponize]j przedstawiono prosty przykiad moduiu pbéredniczacego ze
zmienng sygnatowa. ModuX symuluje prosty semafor binarny:

interface module rezerwacja zasobuj;

define semafor, P,V, init.;
type semafor = record
zajety: Boolean
zwolnij: signal
end;
procedure P (var S : semafor);
begin if s. zajety then wait (s.zwolnij) end;
s. wolny := true
end P;

70

procedure V (var s: semafor);
begin 8. zajety := false;
send (s.zwolnij)
end V;
procedure init (var s: semafor);
begin s. zajety := false;
end init;
end rezerwacja zasobu

4.4. Wxasnosci implementacji na minikomputerach PDP11

Charakterystyczng cechg implementacji jezyka na PDP11 jest sposdb
organizacji komunikacji z urzgdzeniami zewngtrznymi. Wyrdznia sig spec-
jalny rodzaj proceséw - procesy sterowniki (driver processes) - kidre
sterujg pracg urzgdzen zewnetrznych. W odréznieniu od zwykiych procesdw,
ktdére nie moga byé deklarowane wewngtrz moduzdw posSredniczgcych, proce-
8y sterowniki sg deklarowane w specjalnym rodzaju moduiéw posredniczg-
cych zwanych moduami sterownikami (driver mogglg). Wxasnie ze wzgledu
na swe wyrdéznione miejsce deklaracji procesy sterowniki deklarowane sg
tak jak zwykie procesy (process). WyZacznie procesy sterowniki moga Wy-—
wotywaé procedure wejscia/wyjscia - doio. Na okres wykonywania tej pro-
cedury proces traci wyigczny dostep do zmiennych lokalnych moduzu ste-
rownika (podobnie jak w wypadku wykonywania wait oraz send). Procedura
doio stanowi fragment procesu sterownika i zwykle jest poprzedzona in-
strukcjg inicjalizujaca urzadzenia peryferyjne przez odpowiednie usta-
wienie zawartodci rejestru sterujacego urzgdzenie.

° PDP11 ma system priorytetowy i zgodnie 2z nim przerwania od urzgdzen
moga byé odpowiednio maskowane i buforowane. Nagizdwek moduzu sterownika
definiuje poziom priorytetowy urzgdzenia; moze on wynosié 4,5 lub 6.
(PDP11 jest systemem jednoprocesorowym. Wieloprogramowo$é uzyskuje sie
przez podzial czasu procesora. PodziaZ wykorzystuje system przerwan i
luki w czasie procesora powodowane autonomicznym wykonywaniem sig ope-
racji wejscia/wyjscia.) Jezeli proces sterownika wysy%a sygnaz do pro-
cesu o nizszym priorytecie, to jest on kontynuowany nadal aZ do napot-
kania procedury wait lub doio. Stanowi to odstepstwo od poprzednio omd

1

wionej zasady wykonywania operacji na sygnatach. Normalne procesy maja
priorytet O.

Wszystkie procesy sterowniki sg zwigzane z tzw. wektorem przerwan.
Wektor przerwar stuzy do zapamigtania stanu przerwanego 1 zawieszonego
procesu. Adres tego wektora dla danego procesu jest zapisany w kwadra-
towych nawiasach w nagzdwku procesu.

(e

N

Procesy sterowniki muszg speiniaé nastepujace ograniczenia:

- nie mogg wysyzaé sygnaiéw do innych proceséw sterownikdw;

- nie mogg wywotywaé nielokalnych procedur;

- mogg by¢ aktywowane tylko w jednym egzemplarzu;

- w wywolywaniu procedury wait nie potrzeba definiowaé rangi opég-
nienia. :

Moduty sterowniki siuzg przedstawianiu w mozliwie czytelnej formie
niezbednych szczegbédéw architektury systemu PDP11. W szczegdlnosci mo-
duzy te wprowadzajg deklaracje rzeczywistych rejestrdéw urzadzer. Sa one
wyrdéznione w ten sposéb, Ze jest im przypisywany identyfikator jedno-
czesnie z ich adresem fizycznym pisanym obok identyfikatora w kwadrato-
wych nawiasach.

Przyktadowo, podany nizej moduz sterownik definiuje dwie procedury

czytajznak, piszznak, ktdére wprowadzaja/wyprowadzajs pojedynczy znak
z/na dalekopis.

device module dalekopis [4]; (% 4 - poziom priorytetu =)
define czytajznak, piszznak;
const n = 64; (= rozmiar bufora =)
var SKL [177560B] :bits; (% rejestr statusu klawiatury, \
177560B adres dSsemkowy tego rejestru =)
BKL [177562B] :bits;(* bufor klawiastury)
SDRI [177564B] :bits; (= status drukarki =)
BDR [177566B] : bits; (= bufor drukarki =)
do_1, do_.2, z1, 2z2; integer;
niepeiny_1, niepeiny_2, niepusty_1, niepusty-2:
:8ignal;
bufl, buf2: array 1:n of char;
procedure czytajznak (var znak: char);
begin ’
if n1=0 then wait (niepustyl) end;
znak:=buf1[z1] ; z1:=(z1 mod n) +1;
dec(n1); send(niepeinyl)
end czytajznak;
procedure piszznak (znak: char);
begin
if n2=n then wait (niepeiny2) end;
buf2 [do2] := znak;
do2:=(do2 mod n) + 1
inc(n2); send (niepusty?2)
and piszznak;
process sterowanieklawiatury [60B] ;

72

(= 60B Ssemkowy adres wektora przerwania =)
begin
loop
if ni=n then wait (niepeinyl) end;
SKL[6] := true; doio; SKL[6] :=false;
buf1 [dol] :=BKL;
dol:=(do1 mod n)+1;
inc(n1); send (niepustyi)
end;
end sterowanieklawiatury;
process sterowanie~drukiem [64B] ;

begin
Loop
if n2=0 then wait(niepusty2) end;
BDR:=buf2 [z2]; z2:=(2z2 mod n)+1;
SDR([6]:= true; SDR[6]:= false;
dec(n2) ; send(niepeiny?2)
end
~ end sterowanledrukiem
begin
dol:=1; do2:=1; z1=1; 22:=1;
n1:=0; n2:=@
sterowanieklawiatury; (# kreowanie procesu)
sterowaniedrukiem; (# kreowanie procesu =)
end dalekopis;

Kolejny moduk sterownik definiuje zmierng czas, ktdrej wartosé
jest automatycznie zwigkszana o 1, co kazds 20 ms, przez zegar systemu.
Sygnat tiktak jest wysytany co 20 ms, a procedura pauza(n) powoduje
opbZnienie wywotujacezo ja procesu o n = 20 ms.

device module czasrzeczywisty[6] ;
(% 6 - poziom priorytetu =)
define czas, tiktak, pauza;
_ var czas; integer;
tiktak: signal;
SZF [177546B] : bits;
(% status zegara fizycznego =)
procedurs pauza (n:integer);
var opéénienie: integer:
begin opéZnienie := n;
while cpéZnienie > O do
wait (tiktak); dec (opdZnienie)

73

end
énd pauzaj
process zegar [100B] ;
begin SZF[6] := true
loop doio; inc (czas);
while a waited (tiktak) do
send (tiktak)
end
end
end zegar;
begin czas := 0; zegar
end czasrzeczywisty:

4.5, Program przykadowy

Rozpatrzmy sytuacje podobng do tej, ktdéra stanowila podstawe do two-
rzenia przyktadowego programu w Jezyku Concurrent Pascal (p. 3.10). Za-
gadnienie polega na sterowaniu strumieniem danych z. czytnika kart na
drukarke.

bufor bufor
wejsSciowy wyjSciowy

proces proces proces
sterownik gtdwny sterownik

Rys. 4.1. Struktura wstepna programu

Nasuwajgcg sie strukture programu pokazano na rys. 4.1, gdzie MP1,
MP2 sg modu%?ami posredniczacymi, P1, P3 - procesami sterownikami, P2 -
zwyk¥ym procesem. Dalsze uszczegdlowienia wynikajg z nastepujacych ogra-
niczeh dotyczgcych pracy urzgdzer peryferyjnych.

1. Drukarka uzywa T7-bitowego kodu ASCII innego od kodu czytnika
kart; wynika stgd potrzeba konwersji kodu.

2. Czytnik jednorazowo czyta catg karte.

3. Ze wzgledu na duzg szybkos$é transmisji na drukarce sygnaty syn=-
chronizujace sg przesyane po bloku znakéw (po caxej linii), zamiast po
kazdym pojedynczym znaku.

4, Status czytnika kart mugi byé badany przed i po kazdej transmi-
s8ji. Jezeli czytnik nie jest gotowy, ponowne badania jego stanu muszg

74

byé periodycznie powtarzane,.gdyz czytnik nie wysyza samodzielnie
natdéw o swej gotowosci.

module strumieridanych; (% program =)
const 1f=12C; £f=14C; cr=15C;
(s 1f£,£f,cr odpowiadajg znakom sterujgcym zmiany
1inii, zmiany strony i powrotu karetki; 12C,14C,15C
ga 6semkowymi liczbami porzadkowymi tych znakéw =)
var crsign:signal;
device module upiywczasu [6] ;
define tiktak:signal;
var szf [177546B] :bits;
(! status zegara fizycznego =)
process sterownikzegara [100B] ;
begin szf [6]:= true;
loop doio; send(tiktak) end
end sterownikzegara;
device module czytnikkart[6] ;
define czytaj;

uge crsign;
const n=256; (% rozmiar bufora wejsciowego =)

yar dox,zxX,lp,lz: integer;
niepeiny, niepusty: signal;
buf: array 1:n of integer;
procedure czytaj (var x : integer);
begin dec(1z);
if 12 <0 then wait (niepusty) end;
x:=buf zx ; zx:=(z x mod n)+1;
ine(1lp); if lp>= O then send (niepeiny) end
end czytaj;
process sterownikczytnika [230B] ;
const m=81; (= rozmiar bloku)
var sck [177160B] :bits; (& status czytnika kart x)
bek [177164B] :integer, (% bufor czytnika kart =)
procedure wstaw (x:integer);
begin buf dox :=x; zx:=(2x mod n)+1;
inc(1z)
end wataw;
besin
loop dec{1p,m);
if 1p< O then wait {nispeiny) end;
while not off (sek,(2,33) do wait(crsign) end;

8yg-

(= procedura off‘testuje pozycje 8,9 rejestru
sck, jezeli te obie pozycje nie sg jédynkami, to
procedura przyjmuje wartosé true =)
sck:= 0,6 ; (= start pracy czytnika =)
loop doio;
when not off (sck, [14,15]) exit
wstaw (bck)
end;
wstaw (-1); sckl6]:= false;
(# znak korca linii %)
if 1z >= O then send (niepusty) end
end
end sterownikczytnika;

device module drukarka [4];

define pisz, piszkonlinii, testkolejnosci;
usge if;
const n = 512; (& rozmiar bufora wyjsSciowego =)
d03=23C; dc4=24C;
(# znaki sterujace drukarki =)
opbZnienie = 250; (= 10 sec =)
var dox,zX,lp,lz,dal: integer;
niepeiny, niepusty, dozdér: signal;
buf: array 1 : n of char;
gdr [177514B] : bits; (= status drukarki =)
bdr [177515B] : integer; (= bufor drukarki =)
procedure pisz (znak:char);
begin dec(1lp);
'if In<O0 then wait (niepeiny) end;
buf [dox] := znak; dox := (dox mod n)+1
end pisz;
procedure piszkonliniij;
begin inc(1z); send(niepusty)
end piszkonlinii;
procedure testkolejnosci;
begin
if 1z >= O then wait (dozér)
elge dec (del);
if del = O then
bdr:=de4; wait (dozdr)

76

end testkolejnoscij;
process sterownik drukarki[200§];
var znak:char;
begin bdr:=dc3;
loop dec(1lz);
Af 12<0 then
gsend (dozdr); wait (niepusty)
bdr:=dec3; del:=opbZnienie
end;
repeat znak:=buf [zx] ,2zx:=(2x mod n)+1;
inc(1z) jbdr:=znak;
if not sdr[7] then

sdr [6] := true; doio; sdr[6]:=false

end
until znak:=if;
if 1p>= 0 then send (niepeiny) end
end
end sterownikdrukarki;
process strumier;
use czytaj, pisz, piszkonliniij;
const eoi=37B;
z¥yznak = ? ;
var x:integer; znak := char;
t:array 0:63 of char;
(% tablica translacji znakdéw =)
z:array 0:7 of integer;
procedure zamier;
(= liczbe x na znak =)
var s,c : integer;
begin s:=x div 32; c:=x mod 32;
s::z[s];'
if 8<O0 then znak:=z}yznak else
if x>+ 16 then c:=9 end;
znak:=t [16%x+c]
end
end zamien;
begin -
z[0) :=0; z[1] :=3; z[2] :=2; 2[3] :=1;
2[4] :=1; 2[5) :==1; 2[6] :==1; z[7]:==1;
tl0):="""5 t011:="1"; tl2):="2"; t[3]1:="3";

© 0000090085005 0000¢60006c©09 5605920000050 06006096 0800
. .

t[60]:="("; t[61 :="-"; £[62] :="""; t[63]:="

’

7

loop czytaj (x);
if x = eci then
repeat czytaj(x) until x 0;
pisz (£f);

else while x = 0 do
zamier; pisz (gnak); czytaj (x)
end;
pisz (1f); piszkonlinii
end
end

end strumieri;

process zegar;
uge tiktak; crsign;

begin
loop wait (tiktak); send (crsign)
end
end zegar
process kontrolakolejnosei ;
begin
loop testkolejnodeci; wait (tiktak)
end
end kontrolakolejnosci;
begin
strumieri, zegar, kontrolakolejnosci
end strumiendanych.

4.6. Ocena jezyka

Jezyk Modula byz wykorzystany do tworzenia oprogramowania systemo-
wego [3, 36, 68], stad tez wynikajs oceny ‘jakosSci Jezyka. Pozytywne ce-
chy jezyka uwidaczniajg sie w trzech zakresach.

Podstawowe mechanizmy strukturalizacji programéw, tzn. procesy oraz
moduzy okazaty sie Zatwe i dogodne w uzyciu. Doswiadczenia praktyczne
wskazujg na proste przejscie od specyfikacji funkecji systemu do Jego
struktury programowe]j oraz na mozliwo$é projektowania programu metods
kolejnych uszczegdlowien (metoda zstepujaca [62]).

Bardzo atrakcyjna okazuje sie koncepcja moduxéw sterownikdéw urzg-
dzen (device modula). Modu ten, jako specjalny rodzaj moduzu posredni-
czacego, zapewnia catkowitg obszuge dziarajgcego urzadzenia wejscia/wyj-
4cia oraz dostarcza dogodny interfejs programowy z pozostalg czegscig
programue.

78

Ostatnig zaletg jezyka jest efektywnos$é jego impleméntacji. Transle-
tor jezyka népisany w Pascalu ma jgdro napisane w jezyku pewnej maszyny
wirtualnej o wielkos$ci okozo 200 siéw. Takze czas pracy tego jJadra przy
realizacji przekazywania informacji pomiegdzy procesami jest krdtki. O
rozmiarze wymaganej pamieci i czasie pracy programu decyduja zatem fun-
kcje, jakie ma on realizowad.

Niezaleznie od zalet, Modula ma takze pewne skabosSci. Pierwsza wy-
nika stgd, 2ze jezyk jest przeznaczony do realizacji maXych, statycznych
systeméw, ktdre catkowicie rezyduja w pamigci operacyjnej. Ograniczenie
to uniemozliwia zaprogramowanie peinej klasy aktualnie spotykanych sys-
temdw operacyjnych.

Skojarzong wadg jest brak pojecia typu systemowego, co zmusza do
oddzielnych deklaracji nawet identycznych moduXéw sterownikdéw urzadzen.

Wreszcle ostatnia wynika z trudnoseci, jakie pojawiaja sie przy we-
ryfikacji programéw w Moduli [3]. Wydaje sie, 2e Modula -~ podobnie jak
Concurrent Pascal - odegrax juz swg role, stwarzajac podwaliny pod dal-
82y przyspieszony rozwdj Jezykéw programowania wspébieznego. Niezalez-
nie od tego, jezyki pozostang w dalszym uzyciu dla programowania pros-
tych, specjalizowanych systeméw operacyjnych. Wydaje siglto uzasadnione
popularno$cig minikomputerdw PDP11, dla ktdrych zbudowano translatory
jezykéw.

CWICZENIA

1. Dwa procesory sa poxaczone poprzez adaptery liniowe dupleksowg
linig komunikacyjng. Zaprojektowaé interfejs programowy pomigdzy pro-
gramem a adapterami liniowymi. Zaprojektowaé protokdé* wymiany informa-
cji pomiedzy dwoma procesorami (uwzglednié mozliwo$é powstania przekka-
maA na 1linii komunikacyjnej). Zaprogramowaé w jezyku Modula procesy ko-
munikujgce sie przez linie komunikacyjng zgodnie z zaprojektowanymi za-
sadami wspdipracy z adapterami 1linii i protokotem wymiany informacji.

2. Problem telegraméw (Henderson, Snowdon {50)). Zadaniem programu
jest przetwarzanie strumienia telegraméw. Strumien ten stanowi cigg 1li-
ter, ocyfr i odstepdéw, generowany poprzez adapter liniowy i jest zamie-
niany na porcje o okreslonej z gdry diugosci w pewnym obszarze buforo-
wym. Stowa w telegramie sa oddzielane ciagami odstepéw (spacji), a kaz-
dy telegram koriczy sie ciagiem 22Z7Z. Strumieri telegramdéw kori-
czy telegram pusty. Kazdy telegram musi byé przetworzony w mo-
delu obliczania 1liczby s2dw podlegajacych taryfie oraz liczby sidw,
ktérych dXugos$é przekracza 12 x k znakéw (k=1,2,...). Wynikiem dzia%a-
nia programu ma byé lista telegraméw wraz z wymienionymi poprzednio in-
formacjami stuzgcymi do obliczénia opzaty za telegram. %aprogramgwaé
opisany problem w jezyku Modula, wykorzystadé mozliwe "rdéwnolegZosSci'"
problemu.

3. Na bazie przykiadu systemu rezerwacji biletéw (przykiad P1 w
p.2.2) opracowaé peZng (uzytkows) jego wersje, a nastepnie zaprogramo-
waé go w jezyku Lodula.

79

4. Przykzad opisany i zapro%ramowany W p. 4.5 rozbudowaé w taki
sposdb, aby operator za posrednictwem terminala mégx sterowal pracg
czytnika kart i drukarki (startowanie i zatrzymywanie tych urzgdzen
oraz ustawianie tych urzadzer na prace krokowg, tzn. czytanie jednej
karty i wydruk pojedynczej linii).

5. Napisaé w jezyku lodula program symulujgcy dzia%anie czytelnikdw
i pisarzy (éw. 1, rozdz. 2).

6. Napisgaé w jezyku Modula program symulujgcy dziaZanie filozofdw
(éw. 5, rozdz. 2).

7. Napisaé w jezyku Modula program przydzielania jednorodnych za-
sobéw procesom, zgodnie z algorytmem bankiera (éw. 7, rozdz. 3).

8. Napisaé w jezyku Modula szkielet moduzu posredniczacego organi-
zujacego wspéiprace proceséw wg zasad opisanych w zad. 8, rozdz. 3.

9. Przeanalizowaé mozliwo$é wzajemnego zastepowania mechanizméw
szeregowania krdétko- i Srednioterminowego w jezykach Modula i Concurrent
Pascal.

5., PROCESY W SRODOWISKU ROZPROSZONYM

5.1, Wprowadzenie

Procesy w Srodowisku rozproszonym stanowig stosunkowo nowy kierunek
w programowaniu. Proponowane podejscia w ramach kierunku %yrastaja m, in.
z prac Hoare a [35], Brinch Hansena [12] , Kahna [41,42), Liskov [48],
Hewitta [29,30] . Czes$é sposréd tych prac, zwkaszcza [35,12], stworzyty
podstawy do projektu jezyka Ada [40] (rozdziax 6), ktdry - mozna tego
oczekiwaé - odegra w zakresie programowania wspSibieznego role podobng
do Pascala w zakresie programowania sekwencyjnego.

Fotrzeba rozwoju tego kierunku wynikZa 2z dwéch zasadniczych przy-
czyn (rozdz. 1):

- rozwoju systeméw wieloprocesorowych (skala mikro),

- rozwoju sieci komputerowych (skala makro).

Przyozyny te wskazujg jednoczesnie na wzrastajace znaczenie komunikacji
pomiedzy procesami. Przyjmowane zasady komunikacji stanowig znaczgcy
wyréznik propozycjl rdznych podejsd. Zasady te mozna sklasyfikowad,
przedstawiajgc mozliwe sposoby zachowania sie procesu-nadawcy i procésu\
-odbiorcy. Dla wygody zaXozymy, Ze procesy 82 polgczone abstrakcyjnym
kanaxem, po ktérym mogs sobie przesyraé wiadomoSci.

Proces-nadawca moze komunikowadé sie¢ z procesem-partnerem, zgodnie 2z
nastepujacymi, kolejno coraz bardziej zZozonymi, wariantami:

N1. Froces-nadawca kompletuje wiadomosci, a nastepnie bezwarunkowo
wysyza je w odpowiedni kana%, po czym kontynuuje swe obliczenia.

N2. Proces-nadawca po skompletowaniu wiadomosSci oczekuje az proces
-odbiorca bedzie w stanie wiadomogci przyjaé.

N3. Proces-nadawca oczekuje na odbidr wiadomos$ci przez proces-od-
biorce, po czym oczekuje nadal, az na podstawie przestanej wiadomosci
proces-odbiorca skompletuje i przesle w odpowiedzi wiadomos$é zwrotnag.

Zachowanie sie procesu-odbiorey zasadniczo charakteryzuje sposdb bu-
forowania napXywajacych do niego wiadomo$ci. Mozna tu wyrdznid:

B1. Brak bufora wiadomosSci; wiadomosSé moze byé odebrana tylko wdw-—
czas, gdy jest oczekiwana.

B2. Istnieje bufor. ograniczony lub nieograniczony, pozwalajgcy na
przyjecie w dowolnym momencie skorniczonej lub nieskoriczonej liczby wia-
domosei. 3

81
<
Wspblnie proces-nadawce i proces-odbiorce charakteryzuje sposéb

oczekiwania na zsynchronizowanie sie partnera. Mozliwe sg tu dwie reak-
cje: '

01. Nieograniczone oczekiwanie na partnera.

02. Oczekiwanie ograniczone z géry okreslonym odcinkiem czasu
(okres przeterminowania - time-out), po ktérym, w razie braku zsynchro-
nizowania, proces-nadawca przerywa oczekiwanie 1 powraca do kontynuacji
swych obliczeri.

Kwestia zwigzang z komunikacjg proceséw jest sposéb identyfikacji
procesu-nadawcy przez proces-odbiorce. Oczywiscie proces-nadawca musi
znaé miejsce, do ktdrego wiadomo$é chce przesiaé, czyli identyfikator
procesu-odbiorcy. Mozliwe sg tu sytuacje:

I1. Proces-nadawca Jest dla procesu-odbiorcy procesem bezimiennym:
proces-odbiorca na podstawie analizy wiadomosfci (analizy zapisanej w da-
nym jezyku programowania) nie pctrafi okreslié Zrédia jej powstania.
(Pomija sie tu mozliwoséé takiej definicji wiadomosSci, w ktdrej procesy
bedg zobowigzane podawaé\swe identyfikatory.)

I2. Proces-odbiorca zawsze zna identyfikator procesu-nadawcy.

Pomijajgc wady i zalety rdznych sposobéw komunikacji, ze wzgledu na
potrzeby konkretnych asplikacji i mozliwo$é implementacji, scharakteryzu-
jemy sposoby komuhikacji w omawianych dalej podejsciach. Zasady komuni-
kacji pomigdzy sekwencyjnymi procesami komunikujgcymi sie Hoare ‘a cha-
rakteryzuje nastepujacy zestaw omawianych cech:

‘ (N2,B1,01,12),
komunikacje w procesach rozproszonych Brinch Hansena:
(N3,BZ,O1,I13.
komunikacje w sieci procesdéw Kahna:
(N1,B2,01,1I1),
komunikacje pomigdzy zadaniami (procesami) w jezyku programowania Ada:

(N3,B1,01 lub 02,I1).

5.2. Komunikujace sie procesy sekwencyjne Hoare a

Pojecie komunikujacych sie proceséw sekwehcyjnych oraz jezyk progra-
mowania s*uzacy do ich opisu pochodza od Hoare a [35]. Program skada
sie z rodziny proceséw sekwencyjnych, ktére moga wspdipracowaé ze sobg
wytgcznie poprzez bezposrednie przesyZanie wiadomo$ci pomiedzy parami
proceséw (brak wspSlnie dostepnej pamigci). Przesytanie wiadomosci odby-
wa sig¢ przez wykonanie instrukcji wyjécia w procesie nadawczym oraz in-
strukecji wejscia w procesie odbiorczym.

82

Przedstawiony krétki opis tego podej$cia prezentuje jedynie zasad-
nicze jego idee. Notacja- jest inna od oryginalnej, bardziej zblizona
do notacji pascalowskiej. Pojecia typéw zmiennych, deklaracji itd. nie
beda tu rozwazane.

Strukture programéw wyznacza instrukcja réwnolegtego wykonania, po-
staci:

2arbegin<:id1>::S1P<id2>..4|<idn>:sn parend,
gdzie <id1>, <GS, ooog <idn> 83 identyfikatoramj procesdéw w rdéwnoleg-
zych, za$s 5S40 Sppecay S, 8a clagami instrukcji odpowladajgcymi tresci
poszczegdlnych proceséw. Procesy moga byé rodzing parametryzowans indek-
sem, co znajduje odbicie w postaci

parbegin <id>(i:1..n):: cigg instrukcji
z parametrem i>

parend
PrzykYady instrukcji rdwnolegego wykonania

parbegin
zachdd:: ROZKLADANIE ||

X:: KOMPRESJA ||
wschdd:: SKIADANIE

parend

parbegin
pomieszczenie:: POKOJ [|

widelec (i:0..4):: WIDELEC ||
filozof (1:0..4):: FILOZOF

parend

Instrukcje réwnolegtego wykonania mogg by¢é zagniezdzane. Przejscie
do realizacji nowej instrukqji wy konania rdéwnolegXego mozna uwazaé za
kreacje nowych proceséw, a jej zakoficzenie - za unicestwienie tych pro-
ceséw. W tym sensie program stanowi dynamiczna rodzine tych procesdw.

Napisy zlozone duzymi literami stanowig pewne, dalej zdefiniowane
ciggi instrukcji.

Instrukcje wejécia i wyjscia sa zdefiniowane przez napisy:

< identyfikator procesu > ? <zmienna >
<identyfikator procesu >: <wyrazenie >

Komunikacja, jakg wyznaczajg te instrukcje, odbywa sie zgodnie z naste-
pujgecym schematem: Jezeli w procesie P1 jest wykonywana instrukcja wej-
£cia P2?v, to, aby zostaia ona zreal izowana, w procesie P2 musi zostad
=v¥nnana skojarzona instrukcja wyiscia Pile., Wykonanie pary instrukeji

83

wymaga wiec synchronizacji czasowe]j ich realizacji. Gdy Jjedna z nich
zostanie rozpoczeta wczesniej niZ druga, nastepuje jq opbZnianie a%z do
momentu nastgpienia ich synchronizacji. Wynikiem wykonania pary tych
instrukcji jest podstawienie warto$ci wyrazenia e uformowanego w pro-
cesie P2 pod zmienng v zadeklarowang w procesie Pil.

Instrukcje sXuzgce do wyrazania tresci procesdéw sa interesujace S
przede wszystkim z powodu znacznego stopnia niedeterminizmu, jaki do-
puszczajg. Instrukcjami tymi sg instrukcja alternatywy i iteracji, sta-
nowigce nieco rozbudowane wersje jezyka programowania Dijkstry. W wer-
sji oryginalnej maja one postad:

AE S Ga Il B8l coo Il B 8y
do By—=5;0 By~—5,0 ...l By=5,

I8 1=

gdzie B1,B2,...Bn 83 wyrazeniami logicznymi, nazywane dozorami, 51450,
coey Sn ciggami instrukcji. W wersji rozbudowanej zamiast dozoru Bi mo-
%e wystapié para By3Cy, gdzie C; Jest instrukcjg wejscia.

Sens instrukcji alternatywy jest nastepujgcy: Realizacja instrukcji
rozpoczyna sig od obliczenia warto$ci warunkéw logicznych BiseseyB e Je
%2eli zaden z nich nie jest prawdziwy, nastepuje zerwanie (zatrzymanie)
obliczen. Jezeli pewne warunki sg prawdziwe, to rozpoczyna sig prdba
realizacji tych instrukcji wejscia C;y, dla ktérych odpowiadajgce warun-
ki B, sg prawdziwe. Zrealizowana zostanie tylko jedna sposréd tych in-
strukecji wejscia, ta, dla ktérej nastgpi najwczedniejsza synchronizacja
ze skojarzona instrukcjg wyjscia. Jezeli jest to instrukcja Ci’ to po
jej zakonfczeniu realizuje sie ciagg S;s PO czym koficzy sie realizacja ce-
2ej instrukcji alternatywy.

Realizacja instrukcji iteracji przebiega podobnie: rozpoczyna sie
wiec od obliczen wartosei warunkdéw logicznych. Gdy 2zaden z tych warun-
kéw nie jest prawdziwy, nastepuje zakonczenie instrukcji (a nie zerwa-
nie, jak przy poprzedniej instrukecji). Gdy pewne warunki sa prawdziwe,
rozpoczyna sig proéba wykonania odpowiednich instrukcji wyjscia, a po
realizacji jednej z nich wybdr odpowiedniego ciagu Si - tak jak w in-
strukcji alternatywy - po czym przedstawiony cykl obliczen powtarza sig,
powracajgc do ponownego obliczania nowych wartosci warunkdéw logicznych.

Gdy 2adnej z instrukcji wyjsScia nie mozna wykonaé z tego powodu, ze
odpowiednie procesy partnerskie zakonczyty swe dziatanie, nastepuje
takze zakoriczenie instrukcji. (Jest to tzw. reguza rozproszonego stopu.)
Jak okazuje sig¢ przy blizszych badaniach, ma ona ucigzliwe konsekwencje
w dowodzeniu wiasho$ci programéw i dlatego jest w rézny sposdéb modyfiko-

*
wana .

%) Np. G.A. LEVIN, D. GRIES, A proof technique for communicating
sequential processes, Acta Informatica, vol. 15, 281-302, 1981.

84

Prayk?ady podane nizej pokazuja zastosowanie oméwionych instrukecji
do konstrukcji tresci procesdw wymienionych w poprzednich przykzadach.
Pierwszy z nich reprezen{';uje program zXozony z trzech proceséw, ktérych-
zadaniem jest kopiowanie ciggu znakéw odeczytanych z czytnika kart na
drukarke z zamiang dwdch kolejnych znakéw %= na znak |.

ROZKTADANIE =
var kerta: array (1..80) of char;
i:integer;

do czytnikkart? karta-——i:=1;
40 i< 80+=xI1 karta(i); i:=1+1 od;

o o

xl ™
0d;
KOMPRESJA =

var c : char;
do zachéd?c —
if ¢ # ‘® ——wschédl c[]
¢ = % ——2zachéd? c;
if ¢ # = —wschédl ‘®m’; wschédt c[]
c = = ——wschddl :
£i
£i
0d;
SKZADANIE =
var linia: array (1..125) of char;
i:integer; c:char;
i:=1;
do x?c—1inia(i):=c;
if 1 < 124—~—1:=141 [
i = 125—drukarkallinia;i=1

I 12
R
(]
]
:

it []
i>1——do i < 125—=1inia(i):=" 7;
i:=i+1
od:
drukarkal linia

£i;

Komunikacja proceséw z urzgdzeniami wej$cia/wyjécia - jak widaé z przy-
k¥adu - odbywa sie na takich samych zasadach, jak komunikacja pomiedzy
procesami,

85

Instrukcja exit umieszczona wewngtrz instrukcji alternatywy oznacza
tutaj jej zakordczenie i przejscie do wykonywania dalszych instrukcji.

Drugi przyk*ad odnosi sig¢ do zadania Dijkstry o filozofach jedzg-
cych spaghetti.

Pigciu filozofdéw spedza czas jedzac i mys$lac. Dzielg oni wspdlny
pokdj z okrggiym stozem otoczonym piecioma krzestami, z ktérych kazde
nalezy do jednego z filozoféw. Na $rodku stoxu znajduje sie misa spag-
hetti, a na jego obrzezu pieé widelcéw - kazdy pomiedzy dwoma krzesta-
mi, Filozof, ktéry poczuje gxdéd wchodzi do pokoju, siada na swym krze-
dle i ujmuje widelec lezgcy po jego lewej stronie. Poniewaz jedzenie
spaghetti wymaga jednak dwdch widelcéw musi on takze wzigé drugi widelec,
lezgcy po Jego prawej stronie. Po zjedzeniu filozof odkZzada widelce i
wychodzi z pokoju. Gdy jednak potrzebne widelce sg zajete przez sgsia-
déw filozofa musi on czekadé na ich zwolnienie. Rozwigzanie tego proble-
mu jest nastepujgce:

FILOZOF =

do true— 4
MYSLENIE;
pokéjl wejscie ();
widelec(i)lzajmij();
widelec((i+1)mod 5)lzajmij();
JEDZENIE; ;
widelec(i)!zwolnij();
widelec((i+1)mod 5)1zwolnij();
pokdjlwyjsécie()

od;

Parametr i Jjest tutaj indeksem rodziny procesdéw FILOZOF. Wystepujace
tu wyrazenia: wejscie(),zajmij(),zwolnij() s3 wyrazeniami pustymi.
Oznacza to, %Ze realizacja instrukcji np.

pokéjl wejsdcie()

nie przekazuje zadnej informacji (w postaci jawnie okreslonych danych)
od jednego z proceséw rodziny FILOZOF do procesu pokdj. Sens tej in-
strukcji polega na tym, 2e speinia ona rolg synchronizatora sterowania
pary proceséw. Zatem wejscie(), zajmij(), zwolnij() spexniaja tutaj
takg role, jaksg odgrywaja sygnaly w jezyku Modula (rozdz. 4).

WIDELEC =
do filozof(i)? zajmij()—
filozof(i)? zwolnij()[I
filozof((i-1)mod 5)? zajmij()—
filozof((i-1)mod 5)? zwolnij()
od;

86

POKOJ =

var liczbafil:integer;

liczbafil:=0;

do (i1:0..4) filozof(1i)? wejscie()—
liczbafil:=liczbafil+1 []

(1:0..4)filozof(i)? wyjscie()—

liczbafil:=liczbafil-1

od:

Zepis (1:0..4)filozof(1i)?wejdcie()——... jest skrétem od zapisu:

filozof()? wejécie(J)—... []
filozof(1)? wejscie()——... [|

0000000000000 0000000600000000

filozof(4)? wejscie()—

Powyzeze rozwigzanie dopuszcza sytuacje, w ktdrej jednoczednie pig-
ciu filozoféw uchwyci lewy widelec. Prowadzi to do nieograniczonego cze-

kania filozoféw na prawy widelec. Sytuacji takiej mozna unikngé kosztem
dodatkowej komplikacji rozwigzania.

(0,1) (0,2) (0,3)
0))
1 Y 1

(1,0) =% (1,1) (=% (1,2) =% (1.3) [—x (1.4_)

1
AfX Az} Aga%

(20)[—y=(2.1) =y~ (2.2) [—y ~ (23)}—y~{(2,4)

AgiXsAgy — - — —————
(30)|=2~(3.1) —2z~{(3.2) =z (33) |[—2~{(34)
Aq1X+A21y+A312Z —— ———— N
(4.1) (6,2) (43) W——E
S

Rys. 5.1. Struktura przepzywu danych pomiedzy procesami

Ostatni przykiad odnosi sig do rdéwnoleglego mnozenia macierzy. Dana
jest macierz kwadratowa A o wymiarach 3 x 3. Trzy strumienie wejéciowe
reprezentujg kolumny macierzy B. Trzy strumienie wyjsciowe reprezentujag
kolumny produktu macierzy B x A. Je$li pominie sie poczatkowe opdZnie-
nie, wyniki majag byé generowane z tg samg czybkoscia, z jaka sg podawa-
ne dane wejsSciowe. W konsekwencji jest wymagany wysoki stopied wspdi-
bieznosci. Rozwigzanie przyjmuje postad pokazang na rys. 5.1.

Kazdy wierzchozek centralny odbiera z zachodu (w) skadowg wektora
B oraz sumy czegsciowe z péinocy (N). Wyprowadza natomiast skadowa wek-

87

tora wschéd (E) oraz obliczong sume cze$ciowa na poXudnie (S). Dane wej-
Sciowe sg dostarczane przez wierzcholki zachodnie, wierzchozki péinocne
reprezentujg state zerowe, wierzchozki wschodnie sg3 spiywem danych wej-
Sciowych. Rozwigzanie ma postaé: '

parbegin
M(i+1..3,0)::ZACHOD [|
M(0,3:1..3)::PCENOC |
M(i:1..,3,4)::WSCHOD]|
M(i:1..3,3=1..4)::CENTRUM

parend

gdzie
POLNOC =
do true —M(1.J):0 od;
WSCHOD =
var x:real;
do M(i,3)?x——exit od;
CENTRUM =
var X,s:real;
A:array(i:1..3,3:1..3) of real;
do M{i,3j-1)?x —
M(j,j+1) :x;
M(i-1,J)?s;
M(i+1,3)1A(L,) %x+s

od;

ZACHOD oraz POLUDNIE ea niedefiniowanymi tutaj rodzinami proceséw uzyt-
kownikdw.

5.3. Procesy rozproszone Brinch Hansena

PodejsScie Brinch Hansena [11] wprowadzajace pojecie proceséw roz-
proszonych jest zbliZone do przedstawionego w poprzednim punkcie podej-
$cia Hoare a. Zasadnicze rdznice dotyczg sposobu komunikowania sie pro-
ces6w. Wprowadzony jezyk stanowi modyfikacje jezyka Concurrent Pascal;
zagsadniczym elementem Jjest tu eliminacja pojecia monitora jako jednos-

tki programowej zwigzanej z koncepcja procesdéw dziaXajacych we wspdélnym
$rodowisku.

Podstawowym komponentem programu jest proces o nastepujacej budowie:

process <identyfikator>;

<zmienna lokalna>;
< procedury ogdlnodostepne>;

<instrukcja inicjalizujaca>
end;

Program sktada sie ze staXej liczby procesdéw. Procedury ogdlnodostepne
88 procedurami, ktdre mogg byé wywolywane zardwno przez proces, w ktd-
rym sg zdefiniowane, jak réwnie? przez inne procesy - wywolania zewng-
trzne. Proces wykonuje dwa rodzaje dziazanhi: obliczenia instrukcji ini-
cjalizujgecej oraz obliczania procedur ogdlnodostepnych dla wywoZan ze=-_
wngtrznych. Czynnosci te sa wykonywane na przemian: proces rozpoczyna
obliczenia od realizacji instrukcji inicjalizujgcej; czynnodé ta jest
kontynuowana a2 do zakoriczenia procesu lub napotkania na warunek, ktdry
mo%e zostadé speiniony na skutek dziazalno$ci innych procesdw; dalsze
dziaXanie proces kontynuuje na skutek wywoZa’ swych procedur ogdélno-
dostepnych przez inne procesy, nastgpnie albo oczekuje na dalsze akcje
zewngtrzne, albo powraca do obliczenia instrukcji inicjalizujgcej; po
zakoriczeniu instrukcji inicjalizujgce] proces istnieje nadal i obsiugu-
Jje wywozania zewngtrzne. Przeplot wykonywanych operacji nie jest zatem
dokonywany poprzez podziaxz czasu, lecz jest programowany przez proces.

Procedury ogdélnodostepne definiujg swe parametry wejSciowe (in)
oraz wyjsciowe (223), zmienne lokalne i dzisXajgcy na nich cigg instruk-
cji:

procedure <identyfikator> (_i_g <param we>,out <param wy>) ;
<zmienne lokalne>;

<cigg instrukcji>

end;

Wywolanie procedury ogdlnodostgpnej R zdefiniowanej w procesie Q naste-
puje w wyniku wykroczenia instrukcji

call Q.R (<wyrazenia>,<zmienne>)

Przed wykonaniem procedury R wartosci <wyrazen> zostajag podstawiane pod
<param we>, a po jej zakoriczeniu odpowiednie wartosci <param wy> zosta-
ja podstawione pod < zmienne>.

Podobnie jak w wypadku komunikujgcych sie procesdéw sekwencyjnych,
mozliwa jest definicja indeksowanej rodziny prbceséw. Dla uproszczenia
przyjmujemy, ze ma ona taks sama postad, jak w p. 5.2.

PozostaZe elementy obstugi wywolania procedury (wybdr jednegec espo-
$réd wielu zada’ obstugi, op6Znianie innych zadan) sg takie same, jak
przy wotaniu procedur wejsSciowych monitora w Concurrent Pascalu {rozaz.
3. \

Niedeterminizm jest wprowadzony do jezyka przez dwie instrukcje do-
zorowane: alternatywy 1 iteracji - takie same, jak u Hoare ‘a w poprzed-

89

nim punkcie 5.2 (wersja oryginalna Dijkstry) - oraz dwie instrukcje do-
zorowanego regionu:

when B1——S1[] oo []En—--sn end;

cycle B1——S1D 600 []En—-— Sn end;
gdzie B1,...,Bn oraz S1,...,Sn oznaczajg = Jak poprzednio - warunki lo-
giczne i1 ciggi instrukcji. :

Wykonanie instrukcji when polega na oczekiwaniu do moméntu az jeden
2z warunkéw Bysee.,B, prayjmie wartosé true, a nastepnie na wykonaniu od-
powiadajacego mu ciggu instrukcji. Instrukcja cycle stanowi nieograni-
czone powtarzanie w petli instrukeji when.

Zastosowanie omdwionych konstrukcji przedstawiajgq podane nizej przy-
ktady. Pierwszym przykiadem Jest'procee modelujgcy dzialanie semafora

catkowitoliczbowego, inicjalizowanego z wartoscig zero; z operacjami
czekaj i kontynuuj:

process semafor;
var s:integer;
procedure czekaj;
when 8 >0-—=s:=8-1 end;
end czekaj;
procedure kontynuuj;
8:=5+1
end kontynuuj;
g:=0
end semafor;

Instrukcja inicjalizacji przypisuje wartosé zero do zmiennej s, po czym
zostaje zakoriczona. Proces jednak istnieje i jest gotowy do obstugi wy-
wozan zewnetrznych

call semafor, czekaj
call semafor, kontynuuj.

Drugi przykiad jest uproszczong wersjg rozwigzania problemu o jedza
cych filozofach. Przedstawiamy je ponizej bez komentarza.

process filozof(1:0..4);
do true —— MYSLENIE;
call sté%.zajmij(i);
JEDZENIE;
call s8tdéz.zwolnij(i)

end filozof;

90

process stdi;

var zajete: set of 0..4;
procedure zajmij(in i:integer);
when([1,(i+1)mod 5] and zajete)=[] — /
zajete:=zajete+[1i,(i+1)mod 5]
end
end zajmij;

procedure zwolnij(in i:integer);
zajete:= zajete-[i,(i+1)mod 5];
end zwolnij;
zajete:=[]
end std¥;

Ostatni, trzeci przyk*ad wprowadza rodzine proceséw sortujgcych m
liczb. Dane sa wprowadzane przez proces sortuj(1), ktdry zapamietuje
najmniejszg liczbe, a pozostate przekazuje do procesu sortujl2). Proces
sortuj(2) znéw zapamigtuje najmniejszg sposrdd przekazanych mu liczb, a
pozostaie przekazuje do procesu sortuj(3) itd. Gdy zostanie zakoriczone
wprowadzanie m liczb, zostang one uozone we wzrastajgcej kolejnoseci
w pamigci kolejnych proceséw, po czym moga byé przestane z powrotem na
miejsce, z ktdrego wyszty, tj. 2z procesu uzytkownika zdefiniowanego na-
stepujaco:

2

process uzytkownik; >
var A: array (1..m) of integer;
i : integer;
for i:=1 tom do
call sortuj(1).przekaz(A(i));
for i:=1 to m do
call sortuj(1).odbierz(A(i))
end uzytkownik;

Rodzina procesdéw sortuj zawiera n procesdéw, przy czym zaklada sie, ze
n >m. W definicji procesu wystepuje struktura danych typu ciag (sequen-
ce), z operacjami (procedurami) standardowymi pobrania ostatniego ele-
mentu tego ciggu (get), dopisania do korica ciggu (put) oraz z funkcja
standardowg okreslajacg aktualng dxugosdé ciagu (length).

process sortuj(i:1..n);
var stos: sequence 2 of integer;
p,t:integer;
procedure przekaz (in c:integer);
when stos.length 2 stos.put(c) end;
end przekaz;

91

procedure' odbierz (out v:integer);
when stos.length=1-— stos.get(v) end;
end odbierz;
stos:=[]3;
p:=0;
cycle stos.length=2 =
if stos[1] < stos[2] — t:=stos[2] ;
stos:= stos [1][]
stos[1] > stos[2] = r:= stos[i] ;
stos := stos[2]

H

24

call sortuj(i+1).przekaz(t);
:=p:1D

os.length=0) and (p>0)—
1 sortuj(i+1).odbierz(t)
-1

0o —~'T

st
al

o
o)

end
end sortuj;

Proces sortuj jest w réwnowadze, gdy zapamigtuje tylko jedng liczbe. W
wypadku braku tak zrozumianej rdéwnowagi proces podejmuje jedng z akcji:
- Jjezeli proces pamigta dwie liczby, mniejszg 2z nich zachowuje, a
wiekszg przekazuje do procesu sgsiedniego,
- Jezeli proces nie pamieta zadnej liczby, zwraca sig¢ o pewng licz-
be do procesu sgsiedniego.

5.4. Sieci proceséw Kahna

Omawiane nizej podejscie Kahna [41,42] charakteryzuja, w stosunku
do podejs$é poprzednich, inne zasady komunikacji pomigdzy procesami oraz
dynamiczna struktura procesdéw (szerokie mozliwosSci kreacji i likwidacji
procesdw). Jezyk programowania definiowany przez Kahna bazuje na poje-
ciu procesu - rozumianego jak poprzednio - oraz na pojeciu kanaxdéw ko-
munikacyjnych, przez ktdre procesy mogg wymieniad wiadomosci. Kanaly
przenosza informacje tylko w jednym kierunku od procesu-nadawcy do pro-
cesu-odbiorcy; majg one bufory nieograniczonej dxugosci, w ktérych sa
magazynowane napiywajace wiadomosci (kolejka FIFO). Procesy wraz z %a-
czgcymi je kanatami tworzg tzw. siel procesdw.

Deklaracja proceséw ma postad:

Erocess«<identyfikator>&:lista parametréw>) ;
<ciato procesu>;

endprocess

g2

<Lista parametrdw > sklada sie ze zwyklych parametrdw, stuzacych do usta
lania wartosSci poczgtkowych lokalnych zmiennych procesu podczas jego
inicjalizacji oraz tzw. portéw. Te ostatnie s*uzg do zdefiniowania ka-
natdéw zgczgcych dany proces z innymi procesami. Na przyk*ad napis

process posrednik (x:integer;
= QI: in integer; QO out integer);

definiuje nagZdéwek procesu podrednik, ktéry ma jeden zwykly parametr
formalny x typu integer, komunikowany przez wartosé oraz dwa parame-
try portowe; QI oznaczajgcy identyfikator pewnego kanazu komunikacyjne-
go (kanatu wchodzacego do procesu posrednik), po ktérym mozna przesytaé
informacje typu integer; QO oznaczajgcy poczgtek pewnego kanazu komuni-
kacyjnego (kanaXu wychodzgcego od procesu posérednik), po ktérym mozna
przesyzaé informacje takze typu integer.

<Ciazo procesu >definiuje zmienne lokalne oraz cigg instrukcji, kté-
ry zawiera zwykle instrukcje dziaZad na zmiennych lokalnych oraz in-
strukcje wejscia/wyjsela (komunikacji z innymi procesami) i instrukcje
rekonfiguracji sieci procesdw.

Komunikacje procesy prowadzg przez instrukcje wejécia/wyjscia sta-
nowigce odwolanie sig do 23czacych je kanaxréw komunikacyjnych. Instruk-
cja odbioru (wejdcia) z portu wejéciowego A ma postaé funkcji stan-
dardowej get(A). Funkcja ta przyjmuje wartosé pierwszego elementu w bu-
forze kanatu. Jesli bufor jest pusty, to wykonanie get(A) opéZnia sie
tak dzugo, az jakis proces umiesci w nim jakgs wartosé. Po wykonaniu
funkcji get pobrany element zostaje z bufora usuniety. Instrukcja nada-
wania (wyjécia) do wyjéciowego portu B jest procedurg standerdowa o
postaci put (<Kwyrazenie>,B). Procedura put obliczong wartos$é <wyrazenia>
umieszcza w kanale o porcie B. Procedury get, put sg jedynymi operacja-
mi, jakie mozna wykonywaé z udziaXem kanaxdéw komunikacyjnych.

Dopuszcza sie sytuacje, gdy liczba proceséw-odbioreéw dzieli ten
sam kanar wejsSciowy. W tym wypadku wszystkie procesy—odbiorniki otrzymu-
ja na swym wejdciu takie same ciggi danych.

Zwraca uwage brak mozliwosci testowania stanu zajetoSci kanau. Nie-
uwzglednienie tej mozliwo$ci jest Swiadomie podjeta decyzja uzasadniong
tym, Ze upraszcza to znacznie semantyke jezyka, gdyz wyklucza sie czaso-
wo zalezne zachowanie sie kanaxdéw. Warto zauwazyé, ze gdyby w procesach
istniata mozliwoéé badania zajetodci kanaiu, wéwczas rezultat obliczer
programu mégiby byé rdéizny w zaleznosci od strategii przydziau czasu
procesora. Strategii tych moze byé wiele: od sytuacji, gdy istnieje po=-
Jjedynczy procesor z podziazem czasu do sytuacji, gdy kazdy proces dys-
ponuje wiasnym procesorem. Foruszone tu kwestie pozostaja jednak poza
zakresem rozwazan skryptu.

CE)

Sieé proceséw mozna uwazaé za pewien graf skierowany, ktdrego wierz
chotki reprezentujg procesy, a zuki - kanaly komunikacyjne. Podczas ob-
liczer programu graf ten mozna zmieniaé metodg kolejnych uszczegbtowiert
Oznacza to, Ze wierzchozki grafu mogg byé zastgpowane przez nowe grafy.
Jedyny warunek, jakil musi byé przy tym zachowany, wymaga, aby Zuki wej-
Sciowe i wyjsciowe nowo powstalego grafu kojarzyly sie z Zukami wejsdcio-
wymi i wyjSciowymi zastepowanego wierzchoika. Instrukcja rekonfiguracji
ma postad: ‘

doco < tresé >closeco

“(doco od doconcurrently), gdzie tre$é skada sie z dwdch czesci:

- deklaracji kanadw komunikacyjnych (channels) w nowo tworzonym
grafies;

- listy wywozanr (inicjalizacji) procesdw; parametry portowe w tych
wywozaniach muszg byé zwigzane albo 2z nowo zdefiniowanymi kanatami, al-
bo z kanatami procesu, w ktérym jest wykonana dana instrukcja rekonfi-

guracji; zainicjowane procesy rozpoczynajg swe obliczenia rdéwnolegle do
procesu, ktéry je uaktywnik. -

Przykzad prostej sieci proceséw z dynamicznym tworzeniem ich struk-
tury jest podany ponizej:

(= deklaracja proceséw =)
process producent (out QO:integer);
yar n:integer;
n:=0;
cycle n:=n+1;put(n,Q0) end;
endprocess;
process posrednik (a:integer;
Q0: in integer; QO: out integer);
cycle put(a + get(QI),Q0) end;
endprocess; ,
process konsument (QI: in integer);
var i:integer;
for i:=1 to 20 do print (get(QI));

endprocess;

process start;
doco channels Q1,Q2,Q3:integer

producent (Q1);

posrednik (1,Q1,Q2)

posdrednik (=1,Q2,Q03);

konsument (Q3)
closeco

endprocess;

94

(% tre$é programu =)

begin
doco start closeco
end

Poczgtkowa struktura sieci, zZo%ona tylko z jednego procesu start, prze-
radza sie w sieé zloZong z czterech proceséw (rys. 5.2).

<jbroducent

1 Q1

posrednik

> a2

posrednik

fas3
‘ konsument 4;)

Rys. 5.2. Zmiana konfiguracji sieci procesdw

~

Wynikiem dzia*ania programu bedzie cigg liczb 1,2,...,20 wydrukowa-
ny przez proces konsument.

Ciekawszy jest przyk¥ad programu obliczajacego liczby pierwsze (si-
to Eratosthenesa). Dla kazdej znalezionej liczby pierwsze] Jest kreowa-
ny proces nowy filtr przez proces sito. Zadaniem procesu filtr jest wy-
szukanie wszystkich wielokrotnos$ci znalezionej liczby pierwszej.

(% deklaracja proceséw =)
process generator (Q0:out integer);
var n: integer;
n:=1;
cycle n:=n+1; put(n,Q0) end
endprocess;
process filtr (pierwsza: integer,
QI: in integer; Q0: out integer);
var n:integer;
cycle n:= get(QI);
if (n mod pierwsza) # O then
put(n,Q0)
end
endprocess:
process sito (QI: in integer; QO: out integer);
var pierwsza: integer; '

95

pierwsza := get(QI);
put (pilerwsza, QO);
doco channels Q: integer;
Piltr (pierwsza QI,Q);
sito (Q,Q0)
closeco;
endprocess;
process wyjscie (QI: in integer);
cycle print (get (QI)) end;
endprocess; :
(% tresé programu =)
begin
doco channels Q1,Q2: integer;
generator (Q1);
sito (Q1,Q2);
wyjscie (Q2)
closeco
end.

Przedstawione konstrukcje sg wystarczajgce do programowania dowol-
nych algorytmdéw rdéwnolegtych, czasowo niezaleznych. Wprowadzong notacje
mozemy nieco ulepszyd, uzyskujac przy tym wigkszg przejrzystosé i ele-
gancje programéw. Wiekszo$é proceséw ma jedno wyjscie, w tym wypadku
mozna procesy traktowaé jako funkcje i uzywaé je do konmstrukcji wyrazef.
W wywotaniach procesdéw w instrukcji rekonfiguracji wyrazenia takie mogg
byé dostarczane tam, gdzie oczekuje sie kanaXéw wyjsciowych. Przykxado-
wo poprzedni program mozna zastgpié forma:

process generator() QO: integer
endprocess;
process filtr (pierwsza: integer;

QI: in integer) QO: integer;
endprocess;
process sito (QI: in integer) GO: integer;
endprocess;
process wyjsScie (QI: in integer);
endprocess;

begin
doco wyjscie (sito(generator()))

closedo
end.

96

Nowa, funkcjonalna notacja jest wygodna takze z tego powodu, Ze wiele
kanaXéw moze byé tworzonych w sposéb bezposrednio niewidoczny. Notacja
wymaga jednak zmiany instrukcji rekonfiguracji.

Pierwsza zmiana polega na mozliwofci przekazywania strumieni infor-
macji z jednego kana*u wejsSciowego na drugi kanaZ wyjsciowy - wyjasnia
to przykiad rekonfiguracji w procesie sito:

doco sito(filtr(pierwsza,QI)) = QO
closeco

Innym przykXadem odnoszgcym sie do tej sytuacji jest proces

process qcons(a:integer, QI: in integer) QO0: integer;
put(a:Q0);
doco QI =QO0 closeco

endprocess,

ktéry wysya liczbe a w kana% wyjSciowy, potem spina kanal wejSciowy
z wyjsSciowym, a nastepnie znika. :

Drugg zmiang w instrukcji rekonfiguracji wyjasdnia kolejny przykzad.
Jest on zwigzany z problemem generacji pierwszych n 1liczb postaci
233b5° (a,b,c > 0) we wzrastajgce]j kolejnofci bez powtdérzed lub brakéw:

(= deklaracja procesdéw =)

process xgczenie (QI1,QI2: in integer) QO: integer;
var i1,i2: integer;
i1:= get (QI1); i2:=get(QI2);
loop i1<i2 then put(i1,Q0); i1:=get(QI1)
elseif i1>12 then put(i2,Q0); i2:=get(QI2);
else put(i1,Q0); il:=get(QI1); i2:=get(QI2);
endloop;

endprocess;
process qecons (a:integer,QI: in integer)Q0: integer;

eeses tresé jak wyzej .e...

endprocess;

process wyjécie (QI: in integer)

eesees tresé jak w poprzednim programie

endprocess
(% tresé programu #)

begin
doco wyjécie(x) where channels x is
qecons(s,%acznie(mndz(2,x),*aczenie(mndz(3,x),
méz(5,%))))

closedo
end.

97

1qczeni{> (wyjscie 2
\\\‘& X
tac zen@_{qcons (1)

=)

RysS. 5.3. Struktura sieci procesdéw (I)

Ostatnia instrukcja rekonfiguracji wyznacza nastepujaca strukture sieci
proceséw (rys. 5.3). Struktura ta jednoczesnie tZumaczy zastosowany al-
gorytm obliczen.

tgczenie

taczenie

q const (3)
mndéz (5) q const (5)

Rys. 5.4. Struktura sieci proceséw (II)

Inng bardziej efektywna, ze wzgledu na eliminacje redundancji gene-
rowanych liczb, jest struktura pokazana na rys. 5.4, ktéra wynika z na-
stepujacych instrukeji rekonfiguracji

begin
doco wyjscie(x) where

channels X,y,z are
gcons (1,%*aczenie(mndz(e,x(,y)),
gcone (3,%*aczenie(mndéz(3,y),z)),
_qcons (5,méz(5,2)
closeco
end.

98

CWICZENIA

1. Rozwigzanie problemu jedzgcych filozoféw przedstawione w p. 5.2
zmodyfikowad w taki sposdéb, aby zadnemu z filozofdéw nie grozita mozli-
wosé wygodzenia z powodu sytuacji nieskorczonego oczekiwania na widel-
ce.

2, Algorytm sortowania liczb przedstawiony w p. 5.3 przetransformo-
waé na program w jezyku Hoare a.

3. Problem czyteinikéw i pisarzy (éw. 1, rozdz. 2) rozwigzaé w kon-
wencji rozproszonych proceséw Brinch Hansena.

4. Zaprogramowaé w jezyku Brinch Hansena proces realizujacy opéz-
nianie innych proceséw o zadany odcinek czasu. Zatozyé, ze dana jest
procedura realizujaca opdZnienie jednostkowe.

5. Zanalizowaé przykad programu generacji liczb pierwszych z p.5.4.
Narysowaé strukture sieci proceséw i okre$lié kolejne postaci jego re-
konfiguracji.

6. Zaprogramowal w jezyku Kahna algorytm sortowania liczb (np. 2z
P Siei3))e s

7. Zaprojektowad sieé proceséw Kahna real izujacych mnozenie macie-
rzy zgodnie z algorytmem z p. 5.2.

6. MECHANIZMY ROWNOLEGEOSCI W JEZYKU PROGRAMOWANIA ADA

6.1. Wprowadzenie

Jezyk programowania Ada ma bardzo ciekaws historie. Pomys® zdefinio-
wania i wprowadzenia do powszechne]j praktyki jezyka wysokiego poziomu
przeznaczonego zardéwno do oprogramowania uzytkowego, jak i systemowego
powstaz w latach 1973-74. Gidwnym inicjatorem i koordynatorem prac byia
migdzynarodowa grupa robocza, powozana i finansowana przez amerykariskie
ministerstwo obrony. Prace nad nowym jezykiem byty prowadzone w formie
konkursu, do ktdérego poczgtkowo przystapito ponad sto zespozéw z Europy
i USA. Prace przebiegaly etapowo: na podstawie poczgtkowo sformuzowa-
nych wymagar i postulatéw powstawaly pierwsze szkice projektéw. Byzy
one poddawane weryfikacji i selekcji, a na ich podstawie formulowano
kolejne, bardziej precyzyjne wymagania. Powstal w ten sposdéb cigg ofic-
jalnych dokumentdw z wymaganiami, okres$lonych oryginalnymi nazwami:
Strawman,..., Woodman,..., Ironman,..., Steelman. Ostatecznie w 1979 r.
przez ostatnie sito konkursu przeszedt jezyk Ada (nazwany tak przez
twércéw na czesé Augusty Ady Byron, 1815-1852, uznanej przez historykdw
informatyki za pierwszg programistke; programowaza ona maszyny Babba-
ge ‘a). Jezyk ten, godzac wiele sprzecznych wymagan [70] , np. wysoki po-
ziom abstrakecji z YatwosScig implementacji i efektywnoscig kodu wyniko-
wego, stanowi obiekt dalszych udoskonaleri, a takze krytyk [58] . Obecnie
igtnieje juz kilka implementacji jezyka Ada.

W biezgcym rozdziale omawia sie tylko mechanizmy programowania réw-
nolegtego w jezyku Ada. Sposéb ich prezentacji jest zupeinie niesforma-
lizowany. Ze wzgledu na przejrzystg notacje przypominajgcg w duzym za-
kresie notacje pascalowskg,podane opisy i przykzady nie powinny powodo-
waé trudnosci zrozumienia, mimo braku peinego opisu jezyka.

6.2. Struktura programdéw

Podstawowa jednostkg strukturalng w jezyku Ada jest zadanie (tggg).
Jest to jednostka syntaktyczna stuzgca definicji procesu. Inaczej niz w
oméwionych poprzednio jezykach programowania, zadania w jezyku Ada mogsg
byé zagniezdzane. Zadanie skZada sie z dwdch czeSci: specyfikacji po-
drednictwa (interfejsu) zadania z jego otoczeniem oraz z opisu dziaZa-
nia zadania (cia%o zadania).

100

Specyfikacja posrednictwa zadania zawiera nag?déwek identyfikujacy
zadanie oraz definicje obiektéw (atrybutdéw) zadania dostepnych w jego
otoczeniu. Sg to m.in. state, typy, zastrzezenia (exception) i porty
(entry). Przyktadem specyfikacji jest:.

task bufor is-

_ rozmiarpakietu: const integer: 256; 7
type pakiet is array (1..rozmiarpakietu) of char;
entry czytaj (v: out pakiet);
entry pisz (e: in pakiet)

end bufor;

Wymienione: staza, typ oraz porty (w terminologii Concurrent Pasca-
la odpowiedniki procedur wejsciowych) czytaj, pisz stanowig atrybuty
dostepne na zewnatrz zadania bufor. Interesujgce jest wyrdznienie wej-
$ciowych (in) i wyjsciowych (out) parametrdéw procedur.

Ciazo zadania skada sig z deklaracji obiektdw lokalnych (struktury
danych) oraz z ciggu instrukeji implementujgcych porty z czesci specyfi-
kujacej '

task body bufor is
rozmiarbuf: const integer := 10;
buf: array (1..rozmiarbuf) of pakiet;
do,2z: integer range 1..rozmiar-buf :=
licznik: integer rangeA1..rozmiar_buf s
begin '
eso cigg instrukcji opisujacych porty czytaj,
pisz bedzie opisany dalej ...
end bufor;

—_
e
o
s

Aby rozpoczaé obliczenia zadania, nalezy uzy¢ instrukcji inicjalizu-
jacej (initiate). Frzykiadowo instrukcja

initiate bufor, producent, konsument,

wykonana w pewnym zadaniu, nazywanym inicjalizatorem, powodujevrozpocze—
cie obliczen zadarn bufor, producent oraz konsument. Ich obliczenia bedg
wykonywane rdwnolegle z zadaniem - inicjalizatorem. Kazde zadanie (poza
gXéwnym, programem) musi byé inicjalizowane. Zadaniem nadrzednym w sto-
sunku do danego zadania nazywa sie zadanie, ktére zawiera jego deklara-
cje. Nalezy podkreslié, ze zadanie nadrzedne moze byé inne od inicjali-
zatora, jakkolwiek oba muszg mieé dostep do zainicjalizowanego zadania.
Rozpatrzmy przykzad
task body T1 is
task 12 i W

101

end T2; /
task body T8 is

end T2;

task T3 is

end T3;
task body T3 is

- initiate T2;

end T2;
begin

000000000

initiate T3;

end T1;

Zadanie T1 jest nadrzgdne wzgledem T2, ale T2 jest inicjalizowane przez
T3, a nie przez TI1. ‘

Normalne zakoniczenie zadania polega na osiagnigciu przez sterowanie
end na koficu ciata zadania. Jezeli zadanie, ktére ma sie zakoriczyé, jest
nadrzedne w stosunku do pewnych innych zadarh, to jest ono op6Zniane a3z
do momentu zakoriczenia wszystkich jego zadar podrzednych. Zadanie mo%e
takze konczyé sie w wyniku realizacji instrukcji zerwania (abort). Przy-
kzadowo, instrukcja

abort T1,T2;

powoduje bezwarunkowe zakonczenie zadan T1,T2 oraz wszystkich ich zadan
podrzednych. Inne zadania, ktére usizujg skomunikowaé sie z zadaniami
zakonczonymi, zostang przed tym powstrzymane przez powstanie zastrzezenia
standardowego "btad zadania'. (Zastrzezenia, sposéb ich deklaracji, po-
wetawania i reagowania na nie stanowia element systemu zarzadzania txe-
dami, ktdéry jest wbudowany w definicje jezyka. System ten nie jest tu-
taj omawiany.)

Kazdemu z zadan mozna przypisadé stopien pilnosci - priorytet sZuza-
cy algorytmom przydziaiu czasu procesora do wyboru odpowiedniej strate-
gii obstugi zadania. Priorytet raz przypisany zadaniu mozna zmieniad
dynamicznie przez wywoZanie procedury modyfikacji priorytetu (ggi prio-
rity). ‘

W razie potrzeby utworzenia wielu podobnych zada® mozliwe jest im—
deksowanie zadari - tworzenie rodziny zadan (task families). Przykladem

102

moze byé uzycie wielu kopii zadart obszugi urzgdzen wejsdcia/wyjsécia.
Fragment programu) ;

task sterownikdalekopisu (1..100) is
type linia is array (1..32) of char;
entry piszlinig (tekst: in linia);
entry czytajlinig (tekst: out linia);

end sterownikdalekopisu;

task body sterownikdalekopisu is

s00000vs 0

end sterownikdalekopisu;

deklaruje 100 kopii zadan, z ktérych kazde jest identyfikowane przez
odpowiedni wskaZnik, np. instrukecja

initiate sterownikdalekopisu(3);

spowoduje aktywacje trzeciej kopii zadania.
W jezyku istnieje mozliwosé wyboru, na etapie kompilacji programu,
sposgobu przydziazu pamigci procesom. Polecenia

pragma creation (static)
lub)
pragma creation (dynamic)

umieszczone w opisie zadania dla translatora powoduja wybdér statycznego
lub dynamicznego przydziaXu pamigci. Mozliwosé dynamicznego przydziaZu
pamigci jest szczegblnie wazna wtedy, gdy program skiada sie z duzej
liczby zadar, przy czym tylko czesSé z nich jest jednoczesnie zainicja-
lizowana.

Poza oméwionymi sposobami statycznej deklaracji zadania lub rodziny
zadall istnieje mozliwo$é dynamicznego tworzenia nowych egzemplarzy pod-
czas wykonywania programu. Zadanie, ktére moze byé dynamicznie powiela-
ne, jest wyrdznione przez dodanie slowa generic do czgéci specyfikuja-
cej zadania, np.

generic task bufor is
rozmiarpakietu: const integer: 256;

entry pisz (a: in palmet)
end bufor;

Jezeli w programie zachodzi koniecznosé dynamicznego utworzenia egzemp-
larza zadania bufor, mozna to uczynié przez uzycie konstrukcji:

task nowybufor is new bufor

a odwolenia do utworzonego zadania mogg mieé postaéd

103

nowybufor.pisz (daneprod);
nowybufor.czytaj(danekons) ;

6.3, Komunikacja pomiedzy zadaniami

Komunikacja pomigdzy zadaniami w jezyku Ada stanowi mieszang forme
komunikacji pomiedzy sekwencyjnymi procesami komunikujacymi sie (SPK)
Hoare a oraz procesami rozproszonymi (PR) Brinch Hansena oméwionymi w
rozdziale 5. W SPK komunikacja zachodzi przez skojarzenie instrukcji
wejdcia i1 instrukecji wyjscia, w ktdrych procesy wskazujg wzajemnie na
siebie. W PR komunikacja zachodzi w rezultacie wywozania w jednym pro-
cesie procedury wejsciowe] drugiego procesu. Komunikacja w jezyku Ada
swg postacig przypomina komunikacje w PR, tzn. jedno zadanie wywoZuje
port (procedure wejsciowa) drugiego zadania z lista parametrdw aktual-
nych zapewniajacych dwukierunkowy przepiyw danych. Natomiast - jak zo-
baczymy - sposéb, w jaki wywozane zadanie tworzy odpowiedZ jest blizszy
SPK niz PR.

Bezposrednig rdéznicg jest to, Ze komunikacja w SPK jest symetryczna
w tym sensie, Ze oba komunikujgce sie procesy muszg wzajemnie sie wywo-
¥ywaé, podczas gdy w Adzie oraz w PR komunikacja jest asymetryczna w
tym sensie, Ze wywozane zadanie nie musi wywoxywal, ani tez nawet nie
zna, zadania ktdre je wywozuje.

Komunikacja pomiedzy zadaniami w Adzie odbywa sie dzieki wykorzysta-
niu instrukecji wozania portéw (w zadaniu wozajgcym) oraz instrukecji ak-
ceptacji (w zadaniu wolanym). Frzykadowo, odwoXujac sig do przyktaddéw
z poprzedniego punktu, wywozaniami portéw mogg byé

bufor, pisz (daneproducenta),
bufor.czytaj (danekonsumenta).

Wywozywane porty muszg byé oczywiscie zadeklarowane w zadaniu bufor. Na
podstawie tej deklaracji sprawdza sig¢ poprawnosé parametrdw aktualnych.

Instrukcja akceptacji (accept) speinia role podobng do tresci pro-
cedury. Dok*adniej, s%uzy ona do wskazania instrukeji, ktdre maja byé
wykonane w wyniku wywolania konkretmego portu. Przykiadowo instrukcje
akceptujace wyworywanych wyzej portéw majg postad:

accept pisz (e: in pakiet) do
buf (dox) := e;
end pisz;
accept czytaj (v: out pakiet) do
v := buf(zx)
end:

104

W instrukcji akceptacji jest powtdrzony nagidwek portu wystepujgcy w
czesci specyfikujgcej zadania w celu przypomnienia zakresu jego parame-
tréw. Zmienne dox, zx sa liczbami catkowitymi wskazujgeymi odpowiednio
konieec i poczatek bufora, i sg zadeklarowane w ciele zadania (kompletny
przykiad jest pokazany dalej). Nalezy podkreslié, ze zmienne te nie mo-
ga byé zmieniane wewnatrz instrukcji akceptacji. Poniewaz ingtrukcje
akceptacji sg wykonywane w rozigcznych odcinkach czasu, jest wskazane,
aby instrukcje te byxy mozliwie krétkie i nie zawieraly takich dziaZar,
ktére mogiyby byé wykonane poza ich wnetrzem.

Synchronizacja pomigdzy komunikujgcymi sie zadaniami opiera sige na
protokole '"rendez vous" Hoare ‘a (p. 5.2). Zgodnie z tym protokoXem na-
lezy rozwazyé dwie mozliwe realizacje umdwionego spotkania (rendez vous)
zalezne od tego, czy zadanie wywozujace port innego zadania dokona tego
przed, czy po tym momencie, w ktérym rozpocznie sig¢ realizacja odpowied-
niej instrukcji akceptacji. W obu wypadkach zadanie, ktdére pierwsze
osiggnie uméwiony punkt spotkania jest opdZniane az do chwili, gdy punkt
ten osiggnie takZe drugie zadanie. Gdy to nastapi, wéwczas parametry
wejéciowe (in) zostang przekazane do portu. Nastepnie, po wykonaniu in-
strukcji akceptacji, parametry wyjsSciowe (out) zostang przekazane z po-
wrotem do wotajgcego zadania. 04 tego momentu oba zadania wykonujg sie
dalej niezaleznie od siebie. Z kazda procedura wejsciowa jest zwigzana
kolejka, w ktérej przechowuje sie wszystkie wolania kierowane do danego
portu. Wotania z kolejki sg obstugiwane w kolejnosci zgZoszen.’

6.4, Niedeterminizm

Sekwencyjne struktury sterowania w Adzie sa klasycznymi strukturami
deterministycznymi, takimi jak if...then, case itd. Zasadniczym Zrdédiem
niedeterminizmu jest instrukcja selekcji (gelect) umozliwiajgca niedeter-
ministyczne oczekiwanie na komunikacje z innymi zadaniami. Syntaktyka
instrukcji przypomina nieco postaé instrukcji wyboru

gelect
when B1=>A1;
or when B2 —>A2;
or when Bn—>An;
else S

end select;

gdzie Bl,...,Bn sg wyrazeniami boolowskimi, za$ Al,...,An, S ciggami
instrukcji. Wyrazenie boolowskie, ktdre wystepuje w warunku when moze
zawieraé tylko te zmienne, ktdére sg dostepne dla zadania wykonujgcego

105

dang instrukcje selekcji. Alternatywne ciggi instrukéji AlyeeosAn 83
ciggami, w ktérych pierwszg instrukcja musi byé instrukcja akceptacji
(accept - p. 5.3) albo instrukcja opéZniajgca (delay - p. dalej). Ciag
instrukcji S jest dowolny. W szczegdlnodei, gdy warunki Bl,...,Bn sg
takie, Ze zawsze co najmniej jedem z nich jest prawdziwy, cigg ten moze
byé opuszczony. Podobnie, gdy warunek Bi jest tozsamoSciowo prawdziwy,
wtedy mozemy go takze pomingé, piszgc

csses O Alj cece.

Wykonanie instrukcji selekcji jest opisane przez podane nizej regu-
1y. Dla zwartoéci bedziemy méwié, ze alternatywa Ai jest otwarta, jeze-
1i skojarzony z nig warunek Bi jest prawdziwy.

1. Oblicza sie wszystkie warunki Bl,...,Bn i okresla zbidér alterna-
tyw otwartych. »

2. Otwarta alternatywa rozpoczynajgca sie instrukcjg akceptacji mo-
%e byé wykonana, jezeli zachodzi skojarzenie z odpowiadajgcym jej wywo-
Yaniem procedury wejsciowej w innym procesie.

3. Otwarta alternatywa rozpoczynajaca sie instrukcja opdZnienia mo-
2e byé wykonana, jezell przed upiywem odcinka czasu wskazanego przez tg
instrukcje nie zostala wykonana zadna inna alternatywa.

4., Jezeli zadna z otwartych alternatyw nie moZe byé wykonana natych-
miast 1 istnieje warunek ‘else, to zostaje wykonany cigg instrukecji S.
Jezeli warunek else nie istnieje, to zadanie oczekuje az jedna z otwar-
tych alternatyw bedzie mogta byé wykonana dzigki speinieniu warunkdw
opisanych reguig 2 lub 3.

5. Jezeli zbidr alternatyw otwartych jest pusty i istnieje warunek
else, to wykonywany jest cigg instrukcji S. Jezeli warunek else nie wy-
stepuje, to pojawia sig¢ zastrzezenie "bzad gelekeji. '

Cia%o poprzednio rozwazanego zadania bufor mozna obecnie przedsta-
wié w peinej postaci: :

task body bufor is
rozmiarbuf: const integer := 10;
buf: array (1..rozmiarbuf) of pakiet;
dox,zx: integer range 1..rozmiarbuf := 1;
licznik: integer range O..rozmiarbuf := O;
begin
loop

select

:

when licznik < rozmiarbuf =>
accept pisz(e: in pakiet) do
buf(dox) := e
end pisz;

106

dox := dox mod rozmiarbuf + 1;
licznik := licznik:1;

or when licznik > 0=
accept czytaj (v: out pakiet) do

vi=buf(zx);
end czytaj;
2zX:=2X mod rozmiarbuf-1;
licznik i= licznik-1;
end select

end loop
end bufor;

Zadanie bufor zarzgdza cykliczna tablicg ze zmiennymi dox, zx wska-
zujacymi koricowg i poczgtkowg pozycje tablicy. Warunek licznik< rozmiar
buf stanowi pierwszy warunek instrukcji selekeji i zapobiega przed
przepeinieniem tablicy buf przez operacje pisz. Drugi warunek licznik >0
chroni tablicg buf przed dostepem w sytuacji, gdy nie zawiera on zad-
nych danych. Jezeli<O0<1licznik <rozmiarbuf i jednoczesnie pojawiag sie
wywotania portéw pisz oraz czytaj, to wybdr jednej z alternatyw instruk-
cji selekcji jest niezdeterminowany.

Wspomniana poprzednio instrukcja opézZniajaca ma postaé

delay (<wyrazenie liczbowe>)

i powoduje opéZnienie wykonywania zadania o odcinek czasu okreslany war
toscig swego argumentu. WyraZenie liczbowe okredla carkowita liczbe jed
nostek czasu przyjetych w danej implementacji jezyka. Instrukcje delay
mozna wbudowaé do instrukcji selekcji. Rozwazajgc ostatnio przedétawio-
ny przykiad, zastosowang w nim instrukcje selekcji mozemy rozbudowaé do
postaci

select
when licznik < rozmiarbuf=—
or when licznik >0=>
or when delay 10.0zminuta;
initiate testsystemu;
end select;

W tej postaci instrukcja powodowazaby, Ze w razie braku wywoxania jednej
z procedur pisz lub czytaj przez okres 10 minut nastgpitaby inicjaliza-
cja zadania diagnostycznego o nazwie testsystemu.

107

6.5. Przyktadowe programy

Klasyczny przykiad Dijkstry o filozofach siedzacych za okrggiym sto-
Yem i jedzacych spaghetti ma nastegpujgce rozwigzanie:

task filozof (1..5) is
end filozof;
task stéx is
entry zajmij (i: in 1..5);
entry zwolnij (j: in 1..5);
end std%;
task body filozof is

begin
loop

gt6%.zajmij(filozof “indeks) ;
eosee Jjedzenie cseee
st6%. zwolnij(filozof indeks);

end loop
end filozof;
task body st6% is
jedzacy: set of 1..5 :=[1;

begin
loop
for i in 1..5 loop
select

when[i+1,i-1] #jedzacy=>
accept zajmij(i: in 1..5) do
jedzacy:=jedzacy+ [1] ;
end zajmij;

or
accept zwolnij(i: in 1..5) do
jedzgcy:=jedzgcy-[1] ;
end zwolnij;

eloe
null

end select

end loop

end loop
end std7;

108

Uwagi:

1. Program jest niepeiny, gdyZ zawiera tylko deklaracje zadah, bez
ich inicjalizacji.

2. Pominieto wyjesnienie mechanizmu parametryzacji poszczegdlnych
egzemplarzy rodziny zadar. Tu chodzi o sposdb okreslenia warto$ci para-
metru filozof’indeks w tresci zadania filozof. Nalezy przyjaé, 2e para-
metr ten jest ustalony w momencie inicjalizacji konkretnego egzemplarza
zadania i przyjmuje wartos$é réwng indeksowi zadania w rodzinie filozof.

3. Instrukcja

for 1 in 1..5 loop

60vo0eco0000ce

end loop;
odpowiada pascalowskiej instrukeji
for i:=1 t0 5 do eess.}

4. SZowo null oznacza instrukcje pustg.

5. W rozwigzaniu zadania st62 przyjeto aktywne oczekiwanie na zgZo-
szenia od zadan filozof. Oznacza to, Ze zadanie sté* wykonuje bez przer-
wy obliczenia (majbardziej zewnetrzna petla loop), w ktérych testuje,
czy istnieja wywoXania jego portéw (wykonywanie instrukcja selekcji 8e-
lect dla kolejnych wartosci i=1,...,5 w petli for).

Kolejny przykiad stanowi implementacje w jezyku Ada tablicy sortuja-
cej Brinch-Hansena.

task sortuj (1..n) is
entry weZ (c: in integer);
entry daj (c: out integer);
end sortuj; :
%ask body sortuj is
X, 2, n: integer;
begin
Loop
accept weZ (c: in integer) do
X:=C
end wez;
n=ils
loop
select
accept weZz (c: in integer) do
Z:=C
end wei;
if x<= z then
sortuj (sortujindeks+1).wez(z);

109

else
sortuj(sortuj indeks+1).wes(x) ;
Xei=2

end if; =
n:=n+1l;
or
accept daj(c: out integer) do
ci=X3
end daj;
s=n-13
if 1 >0 then
sortuj(sortuj indeks+1).daj(x);

L]

else
exit

Uwagi:
1, 2 - jak w poprzednim przyktadzie.
3. Instrukcja exit jest wyjsciem z zewnetrznej petli loop; wykona-
nie instrukcji konczy obliczenia petli.
Ostatni przykiad to znane sito Eratosthenesa wyznaczajgce liczby
pierwsze:
task sito (1..100) is
entry test (n: in integer);
end sito; ’
task body sito is
p,mp,m: integer;

begin
accept test (n: in integer) do
p:=n;

end test;
drukuj(p) ;

mp:=p;
loop
accept test (n: in integer) do
m:=ng

end test;

110

while mp<m loop
‘mp s =Mp+p
end loop;
if mp>m then
-_sito (sito “indeks+1).test(m)
end if;

end loop;
end sito;

Uwagi:
1,2 - jak w poprzednich przykzadach.

GCWICZENIA

1. Uxozyé program w jezyku Ada mnozgcy macierze zgodnie z algoryt-
mem 2z p. 5.2.

2. U¥ozyé program rozwigzujgcy problem przetwarzania telegraméw
(éw. 2, rozdz. 4).

3. Zaproponowaé¢ system buforowania komunikatéw w wezle podsieci
teletransmisyjnej (éw. 3, rozdz. 3). UZozyé program symulujgcy dziaza-
nie wezta zgodnie z przyjetym systemem buforowania.

4. Uozyé program symulujgcy wspStdziatanie weztéw podsieci tele-
transmisy jnej. Wykorzystaé model wezta z dw. 3.
- 5 U%oﬂyé program rozwigzujacy problem czytelnikéw i pisarzy (éw.1,
rozdz. 2).

6. Zaprogramowaé w jezyku Ada rozwigzanie problemu z déw. 1, rosdz.4.

T. Napisaé w jezyku Ada szkielet programu, w ktérym procesy ubiega-
Jace sig o dostgp do jednorodnych zasobéw sg zarzgdzane zgodnie z algo-
rytmem bankiera ?zad. T, rozdz. 3).

8. Przeanalizowaé mozliwos$é zastapienig mechanizméw komunikacji w
Jezykach procesdéw komunikujgcych sie Hoare’a i proceséw rozproszonych
Brinch Hansena odpowiednimi konstrukcjami w jezyku Ada.

9. Przeanalizowaé mozliwoS$é zastapienia mechanizmu dynamicznego
tworzenia i modyfikacji sieci procesora Kahna odpowiednimi konstrukcja-
mi w jezyku Ada.

7. MECHANIZMY ROWNOLEGLOSCI W JEZYKU PROGRAMOWANIA CHILL

7.1, Wprowadzenie

Jezyk programowania Chill, podobnie jak jezyk Ada, powstal w wyniku
szeroko zakrojonej miedzynarodowej wspéipracy. Patronat nad tymi praca-
mi sprawowa} Miedzynarodowy Doradczy Komitet Telefonii i Telegrafii
(franc. Comite Consultatif International Télégraphique et Telephonigue
- CCITT) - organ Miedzynarodbwego Zwigzku Telekomunikacyjnego (franc.
Union International des Telecomunications - UIT). Nazwa CHILL jest akro-
nimem od CCITT High Level Language. Poczgtkowym zamierzeniem projektu
nowego jezyka programowania byXo stworzenie narzedzia przeznaczonego do
programowania elektronicznych centrali telefonicznych. W trakcie prac
okazato sie jednak, ze definiowany jezyk jest na tyle ogdlny, Ze moze
byé z powodzeniem wykorzystywany do innych aplikacji telekomunikacyj-
nych (np. programowanie wezdéw podsieci transmisji danych w sieciach
komputerowych, symulacja dyskretna), a takze do obliczenn uniwersalnych.

Prace nad jezykiem byzy prowadzone w latach 1974-1980, z udziaXem
prawie 30 organizacji z ponad 20 krajéw, i ostatecznym ich wynikiem by-
20 opracowanie dokumentu standaryzacyjnego [71] stanowigcego opis jezy-
ka. CHILL osiggng* wiec status miedzynarodowego standardu i:bedzie,
zwtaszcza w telekomunikacji, niewgtpliwym konkurentem jezyka Ada, ktdry
dopiero ubiega sie o uzyskanie statusu standardu w ramach Miedzynarodo-
wej Organizacji Normalizujgcej (ang. International Standard Organiza=-
tion - ISO). Oba jezyki majg pordwnywalny "stopien zZozonosci. Ze
wzgledu na to, Ze jezyk Chill bazuje na modelu mieszanego Srodowiska ma
on w stosunku do Ady bardziej rozbudowane mechanizmy obliczen rdéwnoleg-
2ych.

Omawiane w biezacym rozdziale elementy jezyka Chill sa przedstawia-
ne w sposéb nieformalny. Swiadomie zmodyfikowano pisownie, wprowadzajac
podkreslanie siéw kluczowych, zrezygnowano z wyjasniania niektdérych po-
jeé - takich jak np. location, mode - zastgpujac je najbardziej blisko-
znacznymi odpowiednikami z jezyka Pascal czy Concurrent Pascal, dokona-
no pewnych uproszczen, nieistotnych z punktu widzenia mechanizméw rdwno-
legtosci.

W catym rozdziale przyjeto konwencje, ze wszystkie elementy opcjo-
nalne (tzn. takie, ktdre mogg, ale nie muszg wystapid) w definicjach
Jjednostek syntaktycznych sg ujmowane w nawiasy kwadratowe [,] , a wiec
np. zapis AI[BlIC oznacza dwa ciggi AC oraz ABC.

112

7.2. Struktura programdéw

Jednostkami strukturalizacji programéw sg bloki, procedury, procesy,
moduzy i regiony. Bloki i procedury sg - w przyblizeniu - odpowiednika-
mi blokéw i procedur w Pascalu, odpowiednikiem procesu sg zadania w
Adzie. Moduly peinig role pewnej przegrody, dzieki ktdérej mozna rozsze-
rzaé dostepnosci obiektdéw lokalnych moduzu, lub tez definiowad znacze-
nie obiektéw nielokalnych, wykorzystywanych w module. W tym zakresie mo-
duly speiniaja rolg podobng do moduzéw w jezyku Modula. Regiony nato-
miast - to odpowiedniki monitoréw w Concurrent Pascalu. W dalszej czes-
ci nie definiuje sig¢ w peini wymienionych tu jednostek strukturalizacji;
ich znaczenie ukazdje sie przez komentarze do przedstawionych dale]j
przykzaddw.

Procesy - jako jednostka strukturalizacji najbardziej istotna z roz-
wazanego punktu widzenia - sg definiowane dwuetapowo. Etap pierwszy od-
powiada definicji typu procesu, etap drugi - kreacji konkretnego egzem-
plarza prbcesu. Definicja typu procesu ma postad: '

NP : process (PF);
DL;
SL
end

gdzie NP - nazwa procesu, PF - lista parametréw\formalnych, DL - cigg
deklaracji lokalnych obiektéw procesu oraz SL - cigg instrukcji. Parame-
try formalne PF sg wykorzystywane przy kreacji i inicjalizacji procesu;
tu dla uproszczenia przyjmiemy, Ze komunikacja tych parametrdéw, przy
kreacji procesu, odbywa sie przez podstawienie warto$ci parametrdéw ak-
tualnych pod odpowiednie parametry formalne. Obiektami, ktdére mogg byd
deklarowane w ciggu DL sg m.in.: typy, procedury, procesy (procesy moga
byé zagniezdzane) oraz sygnazy.

Kreacja 1 inicjalizacja egzemplarza procesu ma postaé:

start NP (PA).

Dopuszcza sig kreacje dowolnej liczby egzemplarzy procesu danego typu.
Dynamicznie wykreowane procesy sg odréznialne od siebie przez to, ze
kazdemu z nich jest przypisany niejawnie pewien identyfikator (adres ob-
szaru pamieci przydzielony procesowi). Identyfikator taki mozna zapamie-
tywaé w zmiennych o specjalnie wydzielonym typie adresowym (instance mo-
de). Jezeli np. A jest zmienng takiego typu, to instrukcja postaci:

A:=gtart NP(PA)

poza utworzeniem i inicjalizacjg procesu typu NP spowoduje podstawienie

113

pod zmienng A adresu tego procesu. Proces moze takze poznaé swéj. iden-
tyfikator podczas obliczed, uzywajgc statej this, dostarczajgcej adre-
su tego procesu, w ktdrym jest uzyta.

Uruchomiony proces rozpoczyna cigg obliczer, ktdéry przebiega réwno-
' legle z obliczeniami. innych procesdéw. Proces koficzy sig,gdy osiagnie
koniec ciggu SL. Jezeli podczas obliczern procesu napotka on na instruk-
cje zatrzymania stop, nastepuje wstrzymanie dalszych obliczeld i proces
zakonczy sie, gdy skonczg si¢ wszystkie inne procesy wykreowane przez
ten proces.

Réwnolegle pracujgce procesy mogg komunikowaé sie¢ ze sobg za posred-
nictwem wspélnego érodowiska bgd¢ pewnych mechanizméw komunikacji w sro-
dowisku rozproszbnym. W pierwszym przypadku komunikacja odbywa sie z wy-
korzystaniem tzw. regiondéw, w drugim zas komunikacja moze odbywaé sieg
dwoma sposobami: z wykorzystaniem bufordéw i sygnazéw.

7.3, Komunikacja we wspélnym Srodowisku

Komunikacja we wspélnym Srodowisku wymaga istnienia mechanizméw za-
pewniajacych wykluczajacy dostep proceséw do wspélnych danych. Jednost-
kami strukfuralnymi majacymi taki mechanizm sg tzw. regiony. Regiony sg
kolekcja wspdlnych zmiennych, do ktérych mozna uzyskiwaé dostep wyzacz-
nie poprzez wywotywanie procedur krytycznych (odpowiednik procedur wej-
Sciowych monitora) regionu. Jezeli region jest wolny - tzn. nie jest za-
Jjety wykonywaniem swych procedur krytycznych - to przyjmuje wywoXania
od procesdéw; sposrdd jednoczesnie naptywajacych wywoXan region wybiera
dowolne i wykonuje je, podczas gdy pozostale procesy sg zawieszane. Po
wykonaniu wyworanej procedury krytycznej region wybiera dowolny sposréd
oczekujacych procesdw i wykonuje wskazang przez niego procedure krytycz
na. Opisany mechanizm krétkoterminowego szeregowania procesdéw jest za-
tem taki sam, jak w monitorach Concurrent Pascala.

Dodatkowo regiony majg mechanizm umozliwiajgcy szeregowanie Sred-
nioterminowe. Mechanizm opiera sie na pojeciu zmiennej zdarzeniowe]
oraz na operacjach, jakie mozna na niej wykonywaé. Deklaracja zmiennej
E typu zdarzeniowego ma postaé

dcl E event [(d)], by

gdzie d jest dodatnim wyrazeniem catkowitoliczbowym oznaczajacym dzu-
go$é zmiennej zdarzeniowej E; brak opcji d oznacza przypisanie zmien
nej diugosci rdéwnej jeden. Zmienna E stuzy do zapamigtywania identyfi-

katordw zawieszanych procesdéw; diugos$é zmienne]j oznacza maksymalng licz-
be procesdw, ktdre mogg byé przez nie zapamigtane. Jedynymi operacjami,
jakie mozna wykonywaé na zmiennych zdarzeniowych, sg operacje continue,

114

delay oraz delay case. Pierwsza z nich suzy odwieszaniu proceséw, a
dwie pozostate zawieszaniu proceséw. Dokzadne ich znaczenie jest naste-
pujgce:

Operacja kontynuacji, continue E, powoduje reaktywowanie procesu o
najwyzszym priorytecie sposréd zawieszonych proceséw, pamietanych w E.
Identyfikator reaktywowanego procesu jest usuwany z E. Jezeli wigcej
niz jeden proces ma najwyzszy priorytet, to wybdr jednego z nich jest nie-
deterministyczny. Jezeli zmienna E jest pdsta - nie pamieta Zadnych za-
wieszonych proceséw - to operacja jest réwnowazna instrukcji pustej.

Operacja zawieszenia

delay E [priority p],

gdzie p Jjest nieujemnym wyrazZeniem catkowitoliczbowym, powoduje zawie-
szenie procesu, ktory spowodowal jej wykonanie i zapamigtanie jego iden-
tyfikatora oraz priorytetu p w zmiennej zdarzeniowej E. Brak prioryte-
tu p w operacji powoduje przyporzadkowanie procesowi domy$lnej wartos-
ci priorytetu réwnej zeru. Zawieszony proces moze byé reaktywowany do-
piero po wykonaniu operaéji continue E. Jezeli w momencie wykonania ope-
racji delay liczba zapamigtanych zawieszonych proceséw jest rdwna du-
gosci zmiennej zdarzeniowej, to nastgpi bzgd wykonania programu.
Operacja zawieszenia alternatywnego ma postaéd:

delay case [set Al [priority p]

(LE;): SL4
(LEn): SL,
esac

gdzie A jest zmienng typu adresowego, p ma znaczenie takie)jak przy po-
przedniej operacji, LEq,..., LEn 88 listami zmiennych zdarzeniowych,
288 SLq,e.0, SLn sgq ciggami instrukcji. Wykonanie tej operacji powoduje
zawieszenie procesu, przy czym jego identyfikator oraz priorytet zosta-
Ja zapamigtane we wszystkich zmiennych zdarzeniowych wystepujgcych w
listach LE1,..., LEn. Zawieszony proces bedzie odwieszony, ngeli Z0-
stanie wykonana taka operacja continue, na jednej sposrdd wymienionych
zmiennych zdarzeniowych, ktéra wybierze ten proces do reaktywowania.
Reaktywowany proces wykona ten spos$rdd ciagéw instrukcji SLj,..., SL,
ktdry odpowiada lisScie LE zawierajacej te zmienng zdarzeniows, na ktdrej
wykonano operacje kontynuacji. W razie gdy zmienna, na ktdrej wykonano
operacje znajduje sie na kilku listach, wdéwczas wybdér odpowiedniego cizgu
instrukcji jest niedeterministyczny. ©Po odwieszeniu procesu jego idenw
tyfikator zostaje usuniety ze wszystkich wymienionych zmiennych zdarze-
'niowych. Jezeli w momencie zawieszenia procesu zostaje przekroczona dzu-

115

gosé ktérejkolwiek ze zmiennych zdarzeniowych, nastepuje btad wykonania
programu. Opcja set A sZuzy do tego, aby odwieszony proces mdgk zapa-
migtaé w zmiennej A identyfikator tego procesu, ktéry spowodowax jego
odwieszenie.

Ponizej przedstawiony przykzad ilustruje zastosowanie konstrukcji
regionu oraz zmiennych zdarzeniowych do zorganizowania wykluczajgcego
dostepu do wspblnej puli jednorodnych zasobdw.

1 ‘przydziaX_zasobdw : region

2 grant przydziel,zwolnij;

3 newmode zbidr_zasobdw=int(0:9);

4 dcl przydzielony array (zbidr zasobdéw) bool:=

(: (zbidr zasobdéw): false:);

5 del zwolnienie zasobu event;

6 przydziel : proc()(int);

7 do for ever;

8 ; do for i in zbidr_zasobdw; .
9 if not przydzielony (i) then przydzielony (i):=true;
10 return (i);

11 £i;

12 od;

13 delay zwolnienie_zasobu

14 od;

15 end przydziel;

16 zwolnij : proc (i int);

17 przydzielony (i) :=false;

18 continue zwolnienie_zasobu;

19 end zwolnij;
20 end przydzia*._zasobdw

Przyktad wprowadza jednoczes$nie nie omawiane dotychczas elementy je-
zyka, ktére wymagajg dodatkowych wyjasnieri. Wiersz 2 szuzy do ustalenia
regut dostepu: stowo grant (odpowiednik stowa define w jezyku Modula)
oznacza, %e obiekty lokalne przydziel oraz zwolnij udostepnia sie na ze-
wnatrz regionu (w bloku bezposrednio otaczajacym region). W wierszu 3
wprowadza sie definicje nowego typu (newmode), ktérego zbiorem wartosci
sg liczby catkowite (int) z przedziatu [0,9]. Wiersze 4, 5 sa deklara-
cja (decl) zmiennych: Wiersz 4 deklaruje zmienng typu tablicowego (array),
ktérej elementy sa typu boolowskiego (bool), oraz inicjalizuje te zmien-
na, przypisujgc wartosci false wszystkim jej elementom.

Wiersze 6-15 oraz 16-19 sg definicjami procedur (proc) krytycznych
regionu. Parametry procedur sg rozdzielone na dwie grupy: parametry wej-
$ciowe - pierwsza para nawiaséw, parametry wyjSciowe - druga para. Pro-

116

cedura przydziel ma pusty zbidr/ parametrdéw wejsciowych i jeden parametr
wyjsSciowy, a procedura zwolnij - jeden parametr wejSciowy i brak parame
tréw wyjéciowych.

Z instrukcji wystepujacych w tresci procedur komentarza wymagaja
tylko trzy: instrukcja do for ever ... od jest nieskoniczong petla; in-
strukcja return (i) oznacza zakoriczenie procedury (wyjdcie z petli)
oraz podstawienie wartosSci i pod parametr wyjSciowy; instrukcja do
for i in 2zbidér_zasobdéw jest instrukecja petli, przy czym ciekawostka
Jjest to, 2e 1 stanowi tutaj tylko parametr oraz to, Ze kolejnosé
przy jmowania przez i wartosci z przedziatu [0,9] jest niezdetermino-
wana.

7.4, Komunikacja 2z wykorzystaniem sygnazdw

Sygnaly sa obiektami, ktdre majg szuzyé synchronizacji rdéwnolegle
dziaZajgcych proceséw podczas wzajemnego przekazywania informacji. Syg-
naty muszg byé deklarowane w pewnym bloku na tym samym poziomie, co wy-
korzystujace je procesy (sygnaty sg zatem w procesach obiektami nielo-
kalnymi). Postad deklaracji sygnaiu S Jest nastepujgca:

signal S [=(Tq,...,T)] [to P],

gdzie T1,...,Tn s8g identyfikatorami typdéw, P - identyfikatorem procesu.

Opcja (T1""’Tn) szuzy do zdefiniowania zbioru wartosci, ktdére mo-
g3 byé przesytane wraz z sygnazem. Opcja to P oznacza, ze jedynym od-
biorca sygnaiu jest proces o nazwie P. '

Na sygnatach mozna wykonywaé dwie operacje: operacje przesykania
sygnatu (send) oraz operacje odbioru sygnatu (receive case).

Operacja przestania sygnatu S ma postaé

send 5 [(W,,...,W,)] [to WP][priority p],
gdzie W1,...,Wn 83 wartodciami, odpowiednio typu T1,...,Tﬁ; WP jest wy-
razeniem, ktdrego wartoscia jest identyfikator pewnego procesu; p - nie-
ujemnym wyrazeniem catkowitym oznaczajgcym priorytet.

Brak opcji Wq,...,%W oznacza, 2e z sygnatem nie przesya sig wartos

ci, brak opcji to WP ozﬁacza, ze sygnaz jest kierowany do wszystkich
proceséw, brak za$ opcji priority p oznacza, ze sygnatowi przypisuje
sig¢ domyslnie wartosé priorytetu rdwna zeru. Operacja send wykonana w
pewnym procesie przesyta sygnal wraz z dotaczong listag wartodci i prio-
rytetem do pewnego wskazanego lub do wszystkich procesdéw, i powoduje
ewentualne reaktywowanie procesu, ktdéry zostat zawieszony i oczekuje na
ten sygnaz.

17

Operacja odbioru sygnaléw ma postad:

receive case [set Al
(5, [in LN4]):SL4
(5, [in IK,]):SL,
[else SL]

esac,
gdzie A jest zmienng typu adresowego; S1""’Sn sg nazwami réznych syg-
natdéw; LNl,...,LNn sg listami identyfikatordw parametrdw; SLO,...,SLn

88 ciggami instrukcji.

Lista identyfikatordéw parametrdw LNy wystepuje wéwczas, gdy sygnaz
Si jest przesytany wraz z lista pewnych wartosci; parametry z tej listy
stuzg wtedy do zapamigtywania przesianej listy wartos$ci. Znaczenie ope-
racji jest nastepujace: jezeli w momencie rozpoczecia realizacji opera-
cji oczekuje na odbidér jeden sposrdéd sygnazdw S1se..sS,, to zostaje wy-
brany ten, ktdry ma najwyzszy priorytet, (gdy jest kilka takich sygna-
16w, wtedy wybdr jednego z nich jest niedeterministyczny),pod odpowiada-
Jacg mu liste parametréw zostajg podstawione przesyZane z sygnatem war-
tosci, a nastepnie wykonuje sie¢ odpowiadajgcy wybranemu sygnazowi ciag
instrukcji. Jezeli w momencie rozpoczegcia realizacji nie ma oczekujgce-
g0 sygnaZu oraz nie ma opcji else, to proces wykonujgcy operacje zawie-
sza sie, az do momentu nadejdcia jednego z oczekiwanych sygnaiéw; gdy
natomiast opcja else wystepuje, wtedy wykonuje sie odpowiadajacy jej
cigg instrukcji SI . Sygnal moze byé odebrany przez proces tylko wdéw-
czas, gdy:

a) jezeli podczas operacji send wystepuje opcja to WP, to wartosd
WP wskazuje ten proces,

b) jezeli w deklaracji sygnazu wystepuje opcja to P, to P jest naz-
wg tego procesu.

Zmienna adresowa A sXuzy do zapamietania nazwy tego procesu, od kté
rego odebrano sygnaz; jesli zmienna ta wystepuje, to podstawienie pod
nig odpowiedniej wartosci dokonuje sig przed obliczeniem ciggdéw SLj.

Zastosowania mechanizmu. sygnaiéw pokazuje nastepujacy fragment pro-
gramu: Przedstawiony modu zarzadca skzada sie¢ m.in. z pewnej puli pro-
ceséw (oblicz), z ktérych uszug bedg korzystaé inne procesy, zewnetrzne
w stosunku do modu%u (zarzadca). Wewngtrz modufu sz uzywane sygnaly
(inicjuj) i (zakoficz), wymieniane pomigdzy procesem (alokator) a proce-
sami (oblicz). Fomiedzy modutem a jego otoczeniem sa wymieniane sygnély
(przydziel), (zwolnij), (wykonaj), (przeciazony), (gotowy), (odczytaj);

(7]

118

(oo IES [0 AN 2 [RNE S GV RN O e

11

12
13
14
15
16
07
18
19
20
21

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

zarzgdca : .module

geize przydziel, zwolnij,wykonaj,przecigzony,gotowy,odczytaj;
signal inicjuj=(instance), zakoricz;

alokator:process();

newnode liczba=int (1:100);

del liczniki array (liczba)

struct(nr instance,

status set(wolny,zajety));

do for in liecznikij;
k:=(:start oblicz(),wolny:);

I8 12
2
(o]

r ever;

i

F
(3
=

de

—

uzytkownik instance

oczekiwane—sygnaty:

receive case set uzytkownik;
peltldogis) waisls B

(przydziel):

(zwolnij in

do for k in liczniki;

do with k;

if status=wolny

then status:=zajety;

send inicjuj(uzytkownik) to oblicz;
exit oczekiwane_sygnay;

od;
send przecigzony to uzytkownik;
nr-oblicz) :
send zakoricz to nr—oblicz;
znajdz_oblicz:
do for k in licznikij;
do with kj
if nr_oblicz=nr then
status:=wolny;
exit znajdZz_oblicz;
£i;
od;
od znajdZ_oblicz;

esac oczekiwane_sygnazy;

alokator;

119

42 oblicz : process{);

43 do for ever;

44 begin

45 decl uzytkownik instance,

46 licz int:=0;

a7 receive case

48 (inicjuj in odbiorca):

49 8end gotowy to odbioreca;

50 uzytkownik:=odbiorca;

51 esac;

52 robocza-petla:

53 do for ever

54 receive case

55 (wykonaj) :licz:=licz+1;

56 (zakorcz) :send odeczytaj (licz) to uzytkownik;
57 exit robocza_petla;
58 esac;

59 : od robocza_petla;

60 end;

61 0d;

62 end oblicz; ’
63 start alokator;

64 end zarzadca;

W przykiadzie wystepuja nowe, nie wyjasnione dotychczas konstrukcje
jezykowe. Wiersz 2 wprowadza liste obiektdéw, wykorzystywanych w module
zarzgdca, a ktdére sg zdefiniowane na zewngtrz tego moduru. fatwo wywnio-
skowaéd z tresci modutu, ze definicja tych obiektéw jest postaci:

signal przydziel,zwolnij=(instance),
wykonaj,przecigzony,gotowy,
odczytaj =(int);

Wystepujace tutaj, a takze w wierszach 3, 7, 14, 45, szowo instance
oznacza typ adresowy, szuzgcy do identyfikacji procesdw. Wiersze 6, 7,
8 sa deklaracjg zmienne] tablicowe] liczniki, ktdérej elementy sag struk-
turami - w terminologii jezyka Pascal rekordami - o dwéch polach nr
oraz status. Wiersze 9, 10, 11 sg odmiang instrukecji iteracji; kolejne
iteracje dotycza elementdéw tablicy liczniki. Instrukcje exit wystepuja-
ce w wierszach 22, 34, 57 sg instrukcjami skoku odpowiednio do wiersazy
39, 38, 60 bedgcych pierwszymi wierszami bezpo$rednio za koricem blokdw,
ktére sg wymienione jako argumenty instrukcji. Instrukcje do with wyste
pujace w wierszach 18, 31 sa odpowiednikami instrukcji wigzgcej w Pas—
calu.

120

7.5. Komunikacja z wykorzystaniem bufordw

Bufory stanowig kolejny obiekt siuzgecy komunikacji i synchronizacji
proceséw. Bufory, podobnie jak sygnaty, musza byé deklarowane na tym
samym poziomie, na ktdérym deklarowane korzystajgce z nich procesy. Bu-
fory sg deklarowane jako zmienne typu buforowego. Definicja typu bufo-
rowego ma postaé:

buffer[(d)l T,

gdzie d Jest wyrazeniem cazkowitym, nieujemnym, zwanym d*ugosScig bufo-
ra, za$ T jest typem danych, ktére mogg byé przechowywane w tym buforze.
Brak opcji d oznacza, %ze dxugo$é bufora wynosi zero. Na zmiemnych ty-
pu buforowego, np. zmiennej zadeklarowanej w postaci

del B buffer (d) T

mozna wykonywaé operacje: przesiania do bufora (send), odbioru z bufora
(receive) i odbioru alternatywnego (receive case).

Operacja przestania wartos$ci wyrazenia w, typu T do bufora B ma
postaé

gsend B (w)[priority pl. .

Operacja dziata w sposSéb nastepujacy: Jezeli aktualna liczba wiadomosci
przechowywana w buforze B jest mniejsza od dzugosci bufora, to wartosé
wyrazenia w oraz priorytet p zostaja zapamietane w buforze, zas pro-
ces, ktéry wykonax te operacje kontynuuje swe dalsze obliczenia. Jezelil
natomiast aktualna liczba wiadomo$ci przechowywana w B jest rdéwna jego
dzugosci, wtedy proces wykonujgcy operacje zostaje zawieszony. Zawiesze-
nie trwa dopdty, dopdki nie pojawi sie wolne miejsce w buforze, badz
nastgpi odbidér wartosci w przez je@en z oczekujgcych na nig procesdw.
Brak opcji priority powoduje przyporzgdkowanie wiadomo$ci priorytetu ze-
TOWego.

Operacja odbioru z bufora B ma postaé

receive B

Operacje mozna traktowaé jako procedurg funkcyjng, ktéra dziaa nastepu
jaco: Sposréd wiadomosgci zawartych w buforze B oraz tych wiadomosci,
ktére pewne zawieszone procesy staraja sig przekazaé do bufora B (proce-
8y wykonujace operacje send), wybiera sig wartosé odpowiadajaca wiado-
mo$ci o najwyzszym priorytecie. Jezeli bufor B nie zawiera zadnych wia-
domos$ci i nie ma odpowiednich zawieszonych proceséw, to proces wykonu-
jacy operacje receive zawiesza sig, .az do momentu przesiania do B pew-
nej wiadomosci.

121

Operacja odbioru alternatywnego ma postad:

receive case [set A;]
<B1 i_l_l N1) S SL1
(B, in N.) : SL,
[else SL]

esac,

gdzie B1""’Bn
SLyse-.,SL, sa ciggami instrukecji, za$ A jest zmienng adresowg.
Operacja polega na odbiorze pojedynczej wiadomosSci z jednego z bufo-

33 nazwami bufordw; Nyyeeo,N - nazwami parametrdw; SL,

6w B1,...,Bn, lub od jednego z zawieszonych proceséw oczekujgcych na
przestanie wiadomosSci do tych bufordéw, zapamigtaniu tej wiadomosSci po-
przez podstawienie pod jeden z parametrow Nijeou, Ny @ nastepnie na wy-
konaniu jednego z ciggdw instrukcji SL1,...,SLn odpowiadajgcego wybra-
nemu buforowi. Dokzadniej, wykonanie operacji przebiega nastepujgco: w

o Jezeli
przegladany bufor, powiedzmy B;, ma zapamigtang pewna wiadomo$é lub ist-

niezdeterminowanej kolejnosci sg przegladane bufory Bj,...,B

niejg pewne “zawieszone procesy przesyiajace wiadomo$é do tego bufora,

to sposréd tych wiadomosci zostaje wybrana wiadomosé o najwyzszym prio-
rytecie, a zwigzana z nig warto$é zostaje podstawiona pod parametr Ny
a nastepnie wykonany cigg instrukecji SLi. Jezeli w wyniku przegladu oka-
%e sie, Zze z zadnym buforem nie sg skojarzone wiadomosci do odbioru, to
dalsze wykonanie operacji zalezy od opcji else. Jezeli opcja ta istnie-
Je, to jest wykonywany cigg instrukcji SL,, a jesli jest jej brak, tu
proces wykonujacy operacje zostaje wstrzymany, az do momentu, gdy do

jednego z bufordw Biy...,B zostanie skierowana pewna wiadomo$é. Opcja

set A, tak jak w przypadkagh poprzednich, sfuzy do zapamietania identy-
fikatora tego procesu, z ktdrego odebrano wiadomosé.

Kolejny przykiad ilustruje zastosowanie omawianego mechanizmu proce-
géw i jednoczeénie wprowadza dalsze szczeglly jezyka Chill. Przykiad
jest modyfikacja programu z poprzedhiego punktu, polegajaca na zastgpie-
niu komunikacji za pomoca sygnaxdéw komunikacjg za pomoca bufordw.

otoczenie_uzytkownikow module
grant bufory_uzytkownika,wiadomoéci-alokatora,
bufory-alokatora,wiadomosci—oblicz,
bufory_oblicz;
newmode
wigdomosci_uzytkownika=
struct (type set (przecigzony,gotowy,odczytaj,
identyfikator-alokatora),
case typ of

O O N o0 U B W=

122

10
11
12

13

14
15
16
17
18
19
20
2%
22
23
24
25
26
27
28
29
30
i

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50

(przeciazony):
(gotowy): oblicz ref bufory_oblicz,
(odezytaj): licz int,
(identyfikator_alokatora): -
alokator ref bufory.alokatora
esac),

bufory_usytkownika=buffer(1) wiadomosci-_uzytkownika,

wiadomosci_alokatora=

struct (typ set (przydziel,zwolnij,ident oblicz) ,

case typ of

(przydziel): uzytkownik ref bufory_uzytkownika,

(zwolnij,ident._oblicz):
oblicz ref bufory_oblicz
esac), '
bufory_alokatora=buffer(1) wiadomos$ci_alokatora,
wiadomosci_oblicz= '
struct (typ set (inicjuj,wykonaj,zakornicz),
case typ of
(inicjuj): uzytkownik ref bufory—uzytkownika,
(wykonaj,zakoicz) :
esac),
bufory_oblicz=buffer(1) wiadomogci_oblicz,
dcl bufor_uzytkownika bufory—_uzytkownikdw,
buf_alokatora ref bufory_alokatora,
buf_oblicz ref bufory_oblicz;
start alokator (——ﬁhfor-uiytkownikaW;
buf_alokatora:=(receive bufor_uzytkownika). alokator;

end otoczenie_uzytkownika;
zarzgdca: module;
geize bufory—_uzytkownika, wiadomosci—alokatora,

bufory_alokatora, wiadomos$ci_oblicz,
bufory_oblicz;

alokator:process (buf ref bufory_uzytkownika);

dcl bufor—_alokatora bufory—alokatora;

newmode nr_oblicz=int(1:10);

dcl liczniki array (nr_oblicz)
struct (nr ref bufory-ebliez,

status set (woln¥,zajety)),
wiadomoéé wiadomosci-al okatoras;

send buf-—([identyfikator_alokatora,

——bufor—alokatoral) ;

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
771
72
73
74
75
76
77

78

1)
80
81
82
83
84
85
86
87
. 88
89
90

123

&

for K in liczniki;
start oblicz (——bufor_alokatora);

K:=[(receive bufor-—alokatora).ident—oblicz,wolny] ;

od;
do for ever
begin

dcl uzytkownika ref bufory-—uzytkownika;
wiadomo$é:=receive bufor alokatora;
zarzgdzanie—wiadomosSciami :
case wiadomosé.typ of
(przydziel) :
uzytkownik:=wiadomos$é.uzytkownik;
do for K in liczniki;
do with K;
if status = wolny then
status := zajety
send nr—([inicjuj,uzytkownik]);
exit zarzgdzanie—wiadomo$ciami
£i;
24;
od;
send uzytkownik——([przeciazonyl);
(zwolnij) :
send wiadomosci.nr ([zakoricz]);
znajdZ_oblicz:
do for K in liczniki;
do with K;
if wiadomo$é.oblicz=nr
then status:=wolny
exit znajdZ_oblicz
ol
od
od znajdZ_oblicz;
esac zarzadzanie_wiadomo$ciami
end;
od;
ggé alokator;
oblicz : process (buf ref bufory—alokatora) ;
decl bufor-oblicz bufory-oblicz;
send buf-—([ident_oblicz,—~bufor_oblicz]) ;

do for ever

124 v .

92 begin
93 del uzytkownik ref bufory-uzytkownika;
94 licz int := O,
95 wiadomo$é wiadomo$ci_obliczs
96 wiadomo$é := receive bufor—oblicz;
97 case wiadomosé.typ of
98 (inicjuj): uzytkownik := wiadomo$é.uzytkownik;
99 send uzytkownik-=([gotowy,——bufor—oblicz]);
100 else (= sytuacja bZedna =)
101 esac;
102 petla—_robocza:
103 - do for ever
104 wiadomo$é := receive bufor_oblicz;
105 gggg wiadomos$é.typ of
106 (wykonaj): licz := licz + 1;
107 (zakoricz) :
108 send uzytkownik*—([odczytaa,1icz]),
109 exit petla_robocza;
490 else (% sytuacja biedna =)
111 esac;
112 od petla_roboczaj;
113 end;
114 od

115 end _oblicz;
116 end zarzadca;

Nowe konstrukcje jezykowe, ktdére pojawity sige w przykzadzie to:
struktury (rekordy) z wariantami - wiersze 7-14, 18-23, 26-30; specjal-
ny typ referencyjny (wskaZnikowy). Oznaczenie elementdw struktur jest
podobne do odpowiednich oznaczeh w Pascalu. Podstawianie wartodci pod
zmienng typu struktury z wariantami ma postaé taka, jak przedstawiono W
wierszach np. 49, 53, gdzie pierwszy element wewnatrz nawiasu kwadrato-
wego bznacza wybdr wariantu, a drugi wartosé przyporzadkowana temu wa-
riantowi. Typ referencyjny ref zostat w przykiadzie uzyty do identyfi-
kacji buforéw poprzez ich adresy. Znaczenie tego typu jest podobne do
roli typu wskaZnikowego w Fascalu, np. wiersz 14

alokator ref bufory_alokatora

oznacza, %e na polu alokator (struktury typu wiadomosdci uzytkownika)
bedg wystepowad adresy obiektdéw typu bufory alokatora. Jezeli mamy
zmienng typu niereferencyjnego np. bufor_alokatora (wiersz 43), to no-
tacja

—-—bufor_alokatora

oznacza adres tej zmiennej (wiersz 52). jeieli natomiast mamy zmienng
typu referencyjnego,np. parametr buf (wiersz 42), to notacja

buf—=— '
oznacza zmienng okreslong przez ten adres.

’

CWICZENIA

1, Napisaé trzy wersje programu w jezyku Chill rozwigzujgce zagadnie-
nie czytelnikéw i pisarzy (éw. 1, rozdz. 2) i wykorzystujace odpowied-
nio mechanizmy komunikacji poprzez regiony, sygnazy i bufory.

2. Wybierajac dowolny mechanizm komunikacji napisaé¢ w jezyku Chill
program rozdzia*u zasobdw, zgodnie z algorytmem bankiera (éw. 7, rozdz.
3), pomiedzy rdwnolegle dziatajgce procesy.

‘3. Opracowadé model wspéipracy abonenta z centralg telefoniczng pod-
czas nawigzywania pozaczenia. Napisadé program w jezyku Chill, ktdry be-
dzie symulowaé te wspdiprace. (Zatozyé, ze centrala telefoniczna ma pe-
wien proces zegara, ktdry szuzy do wyznaczania biezacego czasu.)

4. Wykorzystujac model dziarania we¢zla podsieci teletransmisji da-
nqch (éw. 3, rozdz. 3) oraz model wspdidziatania weztdéw (éw. 4, rozdz.
6) napisaé .odpowiednie programy symulujgce w jezyku Chill.

5. Zaprogramowaé rdéwnolegty algorytm sortowania liczb i przedstawid
jego realizacje w jezyku Chill.

6. Dokladnie przeanalizowaé mechanizny sygnazdéw i bufordéw w jezyku
Chill. Czy mechanizmy te sg wzajemnie zastepowalne?

7. Poréwnaé mechanizmy komunikacji poprzez Srodowisko rozproszone
w jezykach Ada i Chill. Czy mechanizmy te sa wzajemnie zastepowalne?

8. OBLICZENIA SYNCHRONIZOWANE PRZEPEYWEM DANYCH

8.1. Wprowadzenie

Rozwojowi technologii, ktora doprowadzita do miniaturyzacji i pota-
nienia sprzetu komputerowego toﬁarzyszy powstanie koncepcji nowych, od-
miennych od tradycyjnych, von neumannowskich spojrzen na programowanie.
W zakresie programowania sekwencyjnego jest to coraz silniejsz& rozwdj
programowania funkcyjnego (nieproceduralnego) - przykadem jezyka pro-
‘gramowania opartego na tej koncepcji jest Prolog. W zakresie programo-
wania réwnolegtego jest to koncepcja obliczen synchronizowanych przepy-
wem danych - przykiadem jezyka powstajgcego na bazie tej koncepcji jest
VAL (Value Oriented Language) opracowywany w MIT pod kierunkiem Dennisa
W jezyku tym zrajduje takze odbicie koncepcja programowania funkcyjne-
£0.

Programowanie sterowane przepizywem danych formuzuje program jako
zbidr operacji (rozumianych tu intuicyjnie, na przykiad jako dziaXania
arytmetyczne, logiczne itp.), ktdéry sxuzy do realizacji zadania. Podkre
$lenia wymagaja tu dwa aspekty:

- na operacje nie nakada sie z gdry Jawnego porzgdku ich wykonywa-
nia,

- dany zestaw wartosci poczgtkowych programu moze nie wymagaé wyko-
nania wszystkich operacji programu.

Konwencja wyznaczania kolejnosci operacji oraz podzbioru wykorzys-
tanych operacji wynika z potrzeby dostarczenia odpowiednich danych dla
uzyskania wymaganych wynikéw. Opiera siec ona na zasadzie, ze dang ope-
racje mozna wykonaé wéwczas, gdy sa gotowe (dostarczone lub obliczone)
argumenty tej operacji. Obliczenia rozpoczynajg sie w chwili, gdy jest
ustalony pewien zestaw danych poczatkowych; zestaw ten pozwala na uru-
chOmiénie realizacji tych operacji, ktére dziatajg wyZacznie na danych
poczatkowych. Uruchomione operacje sa wykonywane niezaleznie od siebie:
po zakoriczeniu kazdej z nich moga powstaé warunki do uruchomienia na-
stepnych operacji. Obliczenia rozpoczynajg sig i sg kontynuowane do mo-
mentu, gdy nie istniejg operacje w trakcie wykonywania i nie ma innych
operacji, dla ktérych istniejg warunki ich uruchomienia.

W rozdziale przedstawiono uproszczong wersje jezyka VAL [18] oraz
oméwiono krdétko problemy architektury komputera dla efektywnej implemen-
tacji tego jezyka. To ostatnie zagadnienie - chociaz nie nalezy zasad-

127

niczo do zakresu skryptu - poruszono z uwagi na jego odmiennosé w sto-
sunku do probleméw architektury komputeréw implementujacych opisywane
poprzednio podejsScia.

8.2. Koncepcja jezyka programowania

Przedstawiony jezyk SVAL (Simple VAL) jest uproszczong wersja jezy
ka VAL, opracowanego w MIT w 1979 r. i stanowiacego konfynuacje prac
prowadzonych w tym osrodku od wczesnych lat siedemdziesigtych [16,17,
18] . 0d jezykéw tradycyjnych rézni sie on brakiem jawnego wyrdzniania
réwnolegtosci - réwnolegiosS¢é obliczen wynika z rozpiywu danych w trak-
cie obliczen. Jezyk jest tunkcyjnie zorientowany (value-oriented), co
oznacza tutaj, ze kazda jednostka syntaktyczna definiuje pewng funkcje
odwzorowujgcag zbidr wartosci wejsciowych w zbidr wartosci wyjsciowych.
Przetworzeniu wielkosci wejsciowych w wyjsciowe nie towarzyszg zadne
etekty uboczne.

Jezyk nie uzywa pojecia komdérki pamieci, a zatem i zmiennej (w sen-
sie takim, jak w\tradycyjnych jezykach programowania). Uzywa sie nato-
miast pojecia nazwy dla identyfikacji wartosci definiowanych przez wyra-
2enia i funkcje - tak samo, jak jest to czynione w klasycznej matema-
tyce. Funkcyjnie zorientowana semantyka jezyka umozliwia pisanie pro-
graméw w postaci naturalnie wyrazajacej "wrodzone" réwnolegtos$ci algo-
rytméw.

Abstrakecyjnymi strukturami danych jezyka sa typy: integer, real,
boolean, charecter string (Zaricuch znakéw), structure (struktura) oraz

lean, character string sg ogdlnie znane i nie wymagajg komentarza. Ope-

racje wykonywane na strukturze beda zdefiniowane dalej (p. 8.3). Jedyna
operacja, jaka mozna wykonaé na procedurze, jest jej wywoxanie.

Skxadnia jezyka jest na tyle prosta, Ze mozna przedstawié¢ jg formal-
nie niemal w calos$ci. Dla zwartos$ci opisu przyjeto konwencje:

L<E>ﬁ+ oznacza E |E , {E}+
{<E>} oznacza {E}+ |puste

<program>::= E;ggggm{<<def procedury>}<wyra2enie>>ggg
<det procedury> ::=<nazwa>= procedure (<lista param we>)

‘ yields (<lista param wy>);
{<def procedury>};

<wyrazenie >
end <nazwa >

<lista param we=> ::= {<deklaracja typu>}
<deklaracja typu> ::= <nazwa>:<typ>

128

<lista param wy> ::={<typ>}
<wyrazenie> ::= <proste wyraZenie>[%:wyraﬁenie>}+\
< wyrazenie blokowe:ﬂ<wyraienie warunkowe>
<wywozanie procedury>
<wyrazenie blokowe> ::=
;gg{<deklaracja typu>}d<idefinicja nazwy>};
in <wyrazenie > end
<definicje nazwy> ::=f<nazwa>}=<wyraienie>
<wyrazenie warunkowe=> ::=
1f <wyrazenie> then <wyrazenie>
else <wyrazenie > end
<wywoXanie procedury > ::=<nazwa>(<wyrazenie>)
<wyrazenie proste> : :=<staa>|<nazwa>|
<prosty operator:><wyra2enie>|
<wyrazenie><prosty operator><wyrazenie>
<typ prosty> ::= integer | real | boolean |
character string | structure
<typ> ::= <typ prosty>ﬂ stream of <typ prosty>

Podstawowg jednostkg syntaktyczng jest definicja procedury, na przy-
ktad: :
p = procedure (a1:T1,...,am:Tm)
yields Rq,...,R 3
<def procedury=>,
<def procedury>
<wyrazenie >
end P

Procedura P ma m parametrdw wejSciowych 81seces8p O typach, odpo-
wiednio, Ty,...,T . Nazwy a;,...,8, muszg byé rézne od siebie i mogg
wystepowaé w wyrazeniu stanowigcym tresé procedury. Obliczenia procedu-
ry dostarczajg uporzgdkowany n-elementowy zbidr wartosci o typach
RygecesRpy stanowigcy wynik wyliczenia wartos$ci wyrazenia.

* Pojecie wyrazenia jest ogdlniejsze od rozumienia tradycyjnego i mo-
%e oznaczaé wektor (uporzgdkowany zbidr elementdw), a nie tylko skalar.
Wymiar w(E) wyrazenia E jest definiowany rekurencyjnie:

W (<wyrazenie proste>) = 1
W (<wyrazeniel>,...,<wyrazenie k>) =
w (<wyrazeniel>) + ... + (wyrazenie k\)
w (<wyrazenie blokowe>) =
w (let <definicja>in<wyrazenie> end) =
w (Swyrazenie>)

129

w (Kwyrazenie warunkowe>) =
w (if<wyrazenie >then< wyr 1>else<wyr 2 >end =
w (<wyr 1>) = w (<wyr 2>
w (<wywoXanie procedury>) =
w (<nazwa>(< wyrazenie>) =
<liczba elementéw na <lidcie param wy >
procedury <nazwa>

W <def procedury >wymiar <wyrazenia>w tresci procedury musi byé
réwny wymiarowi< listy param wy>.

Czegsto jest wygodne wprowadzanie nazwy dla wyrazef, ktdére wystepuja
w kilku miejscach pewnego wigkszego wyrazenia. Stuzy temu wyrazenie blo-
kowe

let {< deklaracja typu >};
<lista nazw 1> =<wyr 1>,
<lista nazw k> =<wyr k=>;
in <wyrazenie>end

Pozwala ono na lokalne uZzycie nazw, ktére mogg wystepowad w<wyr 1>...
.. <wyr k>, <wyrazeniu>, oraz na wprowadzeniu dodatkowych nazw dla
<wyr 1>,...,<wyr k>gtanowigcych fragmenty <wyrazenia>, Wymaga sig aby
liczba elementéw na liécie nazw 1 byZa rdéwna wymiarov:i< wyr i>., Wszys-
tkie wprowadzane nazwy muszg byé rézne. Wyrazenia blokowe mogg byé za-
gniezdzane; konflikt nazw rozstrzygaja zwykle reguty zakresu odnoszgce
sie do struktury blokowej [22] .

Wyrazenie warunkowe

if < wyrazenie > then <wyr 1> else<wyr 2> end

ma < wyrazenie> boolowskie wymiaru 1, zas<wyr 1> oraz <wyr 2> muszg
mieé ten sam rozmiar, a odpowiadajgce sobie skZadowe tych wyrazer musza
byé tego samego typu.

Wywoanie procedury ma postaé P Kwyr>), gdzie<wyr>ma wymiar réw-
ny liczbie elementdéw na <liscie param we>, a odpowiednie sktadowe < wyr>
muszg byé typu deklarowanego w definicji procedury. Komunikacja parame-
tréw pomiedzy program a procedurg odbywa sie przez przekazywanie wartos-
ci. Wynikiem wykonania procedury jest wyrazenie o wymiarze i typach
skzadowych okreslonych przez <liste param wy->.

Prosty przykzad programu obliczajgcego silnieg:

program
silnia = procedure (n : integer)

yields integer;

130

produkt = procedure (nil:integer,n2:integer)
yields integer;
if n2< nl1 then n1
else let m:integer:
m := (n1 + n2)/2;
in produkt (nil,m) =
produkt (m+1,n2)
end
sr_l__d /
end produkt;
if n<O0 then error
else produkt (1,n) end
end silnia
end

8.3. Dynamiczne struktury danych

Jezyk SVAL dysponuje dwoma rodzajami dynamicznych struktur danych:
struktury (structure) oraz listy podredniczace (stream). Pierwszy z
tych rodzajéw ma zastosowanie'uniwersalne - siuzy do tworzenia przetwa-
rzanych obiektéw. Drugi rodzaj jest przeznaczony do organizacji przesy-
Yania informacji pomigdzy modutami (procedurami) programu (por. 2.5).
Dynamizm struktur oznacza mozliwo$é ich modyfikacji w trakcie prowadze-
nia obliczen.

Strukture (structure), zgodnie z klasyfikacja Turskiego [22] , mozna
okreslié¢ jako strukture péiregularng. Jest to wiec konstrukcja bardzo
ogblna, jej szczegblnymi przypadkami sg na przyktad tablica i rekordy.
Najprostsza struktura jest struktura pusta (nil). Ogdlnie struktura
Jest wektorem n-elementowym

(s.I T Vi, Byt Vpseee,8) vn)

gdzie 8,,85,...,8, 83 nazwami (selektorami) skadowych struktury, zaf
VisVosees,Vy = wartosciami tych skXadowych. Wymaga sie, aby selektory
skYadowych struktury byzy rézne. WartosSciami skladowych struktury mogg
byé wartosSci typdw prostych wymienionych w punkcie 8.2, lecz takze war-
tosciami skZadowych mogé byé inne struktury. Ponizej podano operacje,
jakie mozna wykonywaé na strukturach. Symbole wystepujace jako argumen—
ty tych operacji oznaczajg: d jest strukturg, s jest selektorem, zas ¢
pewng wartoscig.

create() tworzy strukture pusta nil.

append(d,s,c) tworzy nowa strukture d', ktéra od struktury d rés-
ni sie tylko tym, 2ze skXadowa s nowej struktury ma wartosé ¢, nieza-
leznie od tego, czy struktura d t:=!- akkadowa posiada.

131

delete(d,s) tworzy nowg strukture d, ktéra nie zawiera skzadowej 8,
a pozostale.skiadowe ma identyczne ze skXadowymi struktury d.

select(d,s) jezeli struktura d zawiera skladowa 8, to wynikiem
operacji jest warto$é tego komponentu; w przeciwnym razie wynik operacji
Jjest nieokreslony.

ggl—struéture(d) jest predykatem przyjmujgcym wartosé prawda, gdy d
Jest strukturg pustgq; w przeciwnym razie predykat przyjmuje wartosé
faisz.

Ponizej podano przykiad procedury, ktéra dziarajgc na dowolnej
strukturze binarnej zamienia role selektoréw 1 oraz p.

odwrdéé = procedure (x : structure)
yields structure
if nil-structure(x) then x

else let lewa, prawa : structure;
lewa = odwrdé-(select(x,p));
prawa =_odwrdé (select(x,1));
in append (append
(create(),1,lewa),p,prawa)
en

end
end odwrdéé

Specjalnym rodzajem struktur, przeznaczonym do komunikacji pomiedzy
modutami programu sg listy posredniczgce (stream). Stanowig one analo-
gon kanaldéw buforowanych w komunikécji pomiedzy wspdipracujacymi proce-
sami (rozdz. €). Deklaracja .

stream of T

gdzie T jest dowolnym typem, rdéznym od typu potokowego, definiuje cigg

zXozony z obiektdéw typu T, na ktérym mozna wykonywaé nastepujace opera-

cle: (8

(8,8 oznaczajs listy, ¢ wartos$é typu T):

() daje liste pustg, o zerowej diugosci.

cons(c,s) tworzy liste s, ktérego pierwszym elementem jest c, a pozo-
state elementy sg elementami listy‘s.

first(s) daje wartosé =z pierwszego elementu listy; gdy s jest pusta,
operacja jest niezdefiniowana.

gggz(s) daje w wyniku liste s', ktéra powstaje z 8 przez opuszczenie
pierwszego elementu.

empty(s) jest predykatem prawdziwym, gdy lista s jest pusta i faxsazy-
wym w przypadku przeciwnym.

Operacje spelniajg spodziewane tozsamosci:

132

if empty(s) then s =
.else s = cons (first(s), resit(s)) end

Osobny przykad wykorzystania list posdredniczgecyh przedstawia pro-
cedura generdcji liczb pierwszych. Procedura oparta na prezentowanym w
rozdziale 6. algorytmie sita Eratosthenesa generuje liczby pierwsze
mniejsze od zadanej liczby n. Procedura generuj tworzy cigg kolejnych
liezb catkowitych, poczynajac od liczby 2. Wytworzona przez nig lista
jest przetwarzana przez procedure sito, ktéra eliminuje liczby nie be-
dgce pilerwszymi. Dziata ona w taki sposéb, Ze pobiera pierwszy element
ze swego wejscia 1 usuwa wszystkie jego wielokrotno$ci oraz wywozuje
rekurencyjnie procedurg sito do pozostalych elementéw z podredniczgce]
listy wejsSciowe]:

liczby pierwsze = procedure (n : integer)
yields stream of integer;
generuj = procedure (1,n : integer)
Jields stream of integer;
if 1<n then
else cons (1,generuj(1l+1,n) end;

end generuj;
sito = procedure (s : stream of integer)

yields stream of integer;
if empty (s) then
else let x : integer;
82,83: stream of integer;
x,82 = first(s), rest(s);
83 = skresl (x,s2);
in coms (x,sito(s3)) end

end

end sito;

skresl = procedure (x : integer, s : stream of integer)
yields stream of integer;

if empty(s) then

else let y : integer;
82,83 : stream of integer;

y,82 = first(s), rest(s);
83 = skresl(x,s2);

in if devide (x,y) then s3
else cons (y,s3) end

end
end skredl;

133

sito(generuj(2,n));
end liczbypierwsze;

Wystepujacy w procedurze skresl predykat devide(x,y) przyjmuje wartosé
prawda, gdy y Jest podzielne przez X.

8.4, Schematy przepiywu danych

Tradycyjnym sposobem wyraania semantyki programéw sekwencyjnych sg
schematy blokowe. Przedstawiajg one operacje z ich argumentami oraz
okreslaja przeptyw sterowania (kolejnosé realizacji operacji). Odpowied-
nikiem schematdéw blokowych w programowaniu synchronizowanym przepiywem
danych sg grafy (schematy) przepiywu danych.

dane

sterowanie

; TN/

Rys. 8.1. Graficzna reprezentacja blokéw

Przez schemat przepXywu danych (data flow schema) bedziemy rozumieé
graf skierowany zXozony 2z wierzchotkéw zwanych blokami oraz %gczgcych
je ukéw, Wyrdznia sie pieé typdéw uktadéw - rys. 8.1.:

(a) replikacyjny,

(b) funkeyjny

(c) przexaczajacy,

(d) scalajacy,

(e) pochraniajacy.

Schemat przepXywu danych jest typu (m,n) jeZeli ma m blokéw replika-
cyjnych nie posiadajacych ukéw wejSciowych oraz m blokéw replikacyj-
nych nie posiadajgcych Zukéw wyjsciowych. Bloki te bedg nazywane odpo-
wiednio blokami wejSciowymi i wyJjSciowymi schematu. Schemat uwaza sig
za poprawny wéwczas, gdy wszystkie pozostate bloki majg wymagane Zuki i
wezystkie te uki majg pozgczone oba kofice z rdznymi blokami.

Definicja semantyki operacyjnej schematdw przeblywu danych wymaga
dodatkowych okresleri. Konfiguracjg schematu nazywa sie graf schematu
wraz z ocechowaniem pewnych ukéw grafu. Ocechowany 2uk bedzie zaznaczo-
ny graficznie przez czarna kropke (znacznik). Znacznik na uku syabelf-

134

zuje fakt przekazywania informacji pomiedzy blokami. Rozpiyw znacznikdéw
reprezentuje przekazywanie infarmacji pomiedzy wspdidziatajacymi bloka-
mi,

Rys. 8.2. PrzykXady regut wzbudzania blokdéw

Obliczenia reprezentowane przez (m,h) schemat przepiywu danych wyra-
2ajg sie w postaci ciggu konfiguracji tego schematu: od konfiguracji po-
czatkowej, poprzez posSrednie, az do konfiguracji koncowej. Przejscie od
Jednej konfiguracji do drugiej wynika z zasady zmiany znakowar dla po-
szczegblnych typéw blokéw (rys. 8.2). Do opisu tych zasad uzywa sie je-
zyka stanowigcego modyfikacje terminologil sieci Petriego: méwimy wiec,
%Ze blok jest przygotowany, moze sie wzbudzié i generowaé nowe znakowa-
nie.

Koniecznym warunkiem przygotowania blokdéw jest to, aby ich Zuki wyj-
Sciowe nie byty oznakowane. Blok jest przygotowany - z wyjatkiem.bloku
gcalajacego - gdy, dodatkowo, jest oznakowany kazdy jego Zuk wejsciowy.
Przygotowany blok aplikacji wzbudza sie, pochtania znakowanie *uku wej-
$ciowego i powiela je na swych tukach wyj$ciowych (rys. 8.2a). Podobnie
dziaXa blok funkcyjny (8.2b). Wzbudzony blok przekaczajacy generuje
znacznik tylko na jednym ze swych wyjsé, zaleznie od wartosci u zwig-
zanego 2z nim warunku logicznego (rys. 8.2c). Blok pochZaniajacy po wzbu-
dzeniu generuje na wyjsciu wyrdzniong warto$é, zwana sygnatem, wymagana
do implementacji schematdéw aplikacji opisanych dalej. Blok scalajjgcy
dzia%a nieco inaczej od poprzednich blokéw. Jezeli oznakowane jest jed-
no jego przejscie, to warto$é znakujgca jest bez zmiany przenoszona na
wyjscie. Natomiast jezeli oznakowane sg oba wejscia, to obie wartosci
znakujgce sg przenoszbne‘na wyjsScie w niezdeterminowanej kolejnosci.

Tworzenie schematéw przeptywu przez dowolne aczenie blokéw Zatwo
moze prowadzié do powstania sytuacji z blokadami (zastojami) lub niede-
terministycznego dziatania. Dlatego wprowadza sige pojecie klasy tzw.

135

prawidowych schematéw przepiywu da-
nych. Schemat (m,n) jest prawidZowy,
gdy graf schematu jest acykliczny 1
skzada sig 2z blokdéw replikacyjnych,
funkcy jnych lub pochtaniajgcych oraz
z tzw. podschematdéw warunkowych. Po-

o Nog

e

Jjecie schematu warunkowego wigze sig
z wyrazZeniem warunkowym; jego sens
wyjasnia przykiad schematu z rys.8.3,
ktéry oblicza wartoéé wyrazenia:

if a>b then a + b else b - 3 end

Pokazane tam wyjééie dodatkowe trig
stuzy wskazaniu, iz obliczenia zosta-
1y zakonczone. i

Klasa schematéw prawidlowych jest
zbyt uboga, aby mozna za jej pomocg

uwaga wynik wyrazié takie elementy, jak procedure,
Rys. 8.3. Przykad Jej wywoZanie oraz rekursje. Dlatego
schematu warunkowego -wprowadza sie¢ dodatkowy typ bloku zwa-

Tt

Rys. 8.4, Blok aplikacji

nego blokiem aplikacji (agplx) - rys. 8.4. Pierwszym wejsciem do bloku
aplikacji jest znacznik zwigzany z (m,n) prawidXowym schematem przepy-
wu danych, Blok jest przygotowany wdwczas, gdy istnieja znaczniki na
wszystkich jego wejsSciach. Efektem wzbudzenia bloku jest zastgpien: s

&

136

przez wyspecyfikowany (m,n) schemat. Schemat ten moze ponownie zawieraé
blok aplikacji, umozliwiajgc tym samym wyrazenie rekursji.

trig odwréé

structure

select

»-{ Create a

trig wynik

Rys. 8.5. Schemat przeptywu danych procedury odwréé

Przykad uzycia bloku aplikacji pokazano na rys.8.5, na ktérym przed
stawiono schemat przeptywu danych procedury odwréé, zdefiniowane w p.8.3.
Wystepujacy tam sygna trig speinia role synchronizatora schematu: Jjego
obecno$é na wyjsciu jest warunkiem rozpoczecia obliczen, zad jego obec-
nodé na wyjsciu oznacza zakonczenie obliczen. Sygnat odw jest symbolem
wywoania procedury odwréé.

8.5. Problemy impleméntacji schematdw przepXywu danych

Efektywna implementacja schematéw przepiywu danych wymaga nowych,
niekonwencjonalnych architektur komputerowych. Przykzad koncepcji odpo-

137

wiedniej architektury podaje [18]. Strukture komputera przedstawiono na
rys. 8.6, na ktérym wyrézniono sze$é podzespodbw:

jednostki funkcjonalne,
manipulator struktur,

blok sterowania,
sieé decyzyjng,
sieé dystrybucyjna,
pamigé pakietows.

operacje

wywoXanie
procedury

Sieé

A

Manipulator
struk tur

na strukturach

struktury
pamied

pakietowa
procedury

dystrybu-
cyjna

odpowiedzi
aktywacji

pakiety
wynikowe

Blok
sterowania

dane
strukturalny
pakiet
operacyjny

instrukcja

sieé

decyzyjna

A

Pamied
pakietowa
rekordy
aktywacji

Jednostki
funkcjonalne

rozkazy
aktywacji

skalarny
pakiet
operacyjny

Rys. 8.6, Procesor przepiywu danych

Blok sterowania pobiera instrukcje i operandy z pamieci pakietowej,

a nastepnie formuje je w pakiety operacyjne. Kazdy taki pakiet przecho-

dzi przez sied decyzyjna, ktéra transmituje go do odpowiedniej jednost-

ki funkcjonalnej - w przypadku operacji skalarnych, badZz do jednostki

manipulacji strukturami - w przypadku dzia%an na strukturach. Wykonanie

instrukcji przez jednostki funkcjonalne generuje pakiety wynikéw, ktdre
poprzez sieé dystrybucyjng sg przesyZane do bloku sterowania. W bloku

sterowania nastepuje ich poZaczenie z innymi operandami dla aktywacji
dalszych instrukcji.

138

Pamigé pakietowa zawiera zbidr tzw. struktur elementarnych, ktdre
83 strukturami jednopoziomowymi o skZadowych przyjmujacych wartosci
skalarne i identyfikowanych przez unikalne nazwy. Zbidr struktur elemen-
tarnych tworzy graf cykliczny, w ktdrym kazdy 2uk jest reprezentowany
przez unikalny identyfikator sktadowej struktury elementarnej stanowig-
ce] wierzchotek wyjsciowy Zuku. Pamieé pakietowa chroni takze przed
niepowozanym dostepem do struktur elementarnych oraz zarzgdza pamigcig
fizyczng.

Struktury denych w pamigci pakietowej spezniajg potrdjng role w
schematach przeptywu danych. (1) jako operandy operacji manipulacji na

a struktura proceduralna
1 i n
instrukcja op 1 k P

kod operacji

przeznaczenie[I]
Ginsit Tuk licznik

b

integr integer integer

b rekord aktywacji

1 i n tekst

I | I

il Jj g. dostarczone

Vool
S integer
dowolne

typy

Rys. 8.7. Struktura proceduralna i gktywacyjna

139

strukturach, (2) jako procedury, ktérych komponentami sg instrukcje pro-
cedury, (3) jako rekordy aktywacji, gromadzace wartosci operandéw dla
instrukcji oczekujgcych na przygotowanie warunkdéw ich realizacji.

Schematy przeptywu danych sg reprezentowane w procesorze przez tzw.
struktury proceduralne (rys. 8.7a). Struktura proceduralna odpowiada
“ gschematowl z n blokami ponumerowanymi od 1 do n. Kazda skiadowa nazywa-
na instrukcjg, zawiera kod bloku i zbidr jego Zukdéw wejsSciowych. Kazdy
2uk wejsciowy okresla:

- instrukeje, dla ktérej przeznaczony jest wynik,

- uk wejsciowy instrukcji przeznaczenia,

- liczbe operanddw wymaganych przez instrukcje przeznaczenia.

PoniewaZ w danym momencie moze jednoczesnie byé aktywnych wiele eg-
zemplarzy tego samego schematu przepiywu danych, kazdy takl egzemplarz
Jjest zaprezentowany przez tzw. rekord aktywacji. Kazdy blok jest iden-
tyfikowany przez pare (A,I), gdzie A jest numerem kaolejnego rekordu ak-
tywacji, za$ I liczbg przypisang blokowi w strukturze proceduralnej.
Warto$é v na k-tym uku wejéciowym bloku (A,I) odpowiada pakietowi
wynikéw, ktéry przenosi informacje (A,I,k,v,licznik), gdzie licznik
jest liczba operanddéw wymagang do przygotowania bloku.

Przygotowanie bloku jest wykrywane przez sprawdzenie licznika z
liczbg dostarczonych operandéw, zarejestrowanych w i-tej skzadowej re-
kordu aktywacji. Po przygotowaniu (A,I) bloku, instrukcja bloku zostaje
pobrana z I-tej skzadowe]j struktury proceduralnej.

Rekord aktywacji (rys. 8.7b) ma sktadowe 1,...,n, dla rekordéw ope-
randéw oraz skiadowg tekst, ktéra jest strukturg proceduralng do uaktyw-
nienia. (W opisywanej implementacji skradowa ta jest dzielona dla wszys-
tkich aktywacji tego samego schematu.) Rekord operandéw musi mieé tyle
podkomponentéw, ile zawiera Yukéw wejSciowych, a takze podkomponent wska-—
zujgecy liczbe dostarczonych pakietéw wynikowych. Poniewaz rekordy akty-
wacji zapamigtujg wartodci przybyiych pakietéw wynikowych, operacje na
rekordach aktywacji modyfikujg jego komponenty. 53 to operacje:

- create-activation (P) -

tworzy nowy rekord aktywacji majgcy P jako komponent tekst, i nie po-
siadajgcy innych komponentoéw.

- insert (A,I,k,v) -
dodaje wartosé v jako k-ty operand I-tej instrukcji w rekordzie aktywa-
cji A, Dodatkowo zwigksza,o 1 skzadowg "dostarczona'" tego rekordu.

- remove (A,I) -
usuwa gkzadowg I z rekordu A; jest wykonywana przez blok sterowania,
gdy jest generowany pakiet operacyjny dla bloku (A,I).

= fen (A =
usuwa cazkowicie rekord aktywacji A.

140

v v
i
oraz
A
Rys. 8.8. Notacja pomocnicza
a P m V4 Vm
F
F =)
1 +n y1 #yn
b EM F' V1 Vm
extr= create—
uld ac

J+1 J+n
Y4 Yn
(o] 1 ?m
distribute
J+h
J+1

Rys. 8.%. Implemerntacja bloku aplikacji

141

Dla kazdego przybyzego pakietu wynikowego (A,I,k,licznik,v) blok
sterowania wykonuje operacje insert (A,T,k,v) i testuje nowa wartosé
skXadowe] "dostarczone'" oraz "licznik". Jezeli wielkosSci sg rdéwne, in-
strukcja jest pobierana z pamieci i wykorzystana, wraz z rekordem ope-
randéw, do konstrukcji pakietu operacyjnego kierowanego do sieci decy-
zyjnej. I-ta komponenta rekordu aktywacji A jest teraz zwalniana.

Implementacje bloku aplikacji pokazano na rys. 8.9; uzywana na nim
notacja (rys. 8.8) oznécza insert (A,i,1,v). Nowe bloki extr-uld, const-
ret oraz distribute beds objadnione dalej. Implementacja zaklada numers-
cje blokéw w kazdym rekursywnym schemacie zgodnie z zasadami:

- bloki wejSciowe sg numerowane 1,...,m; ‘

- bloki replikacji, ktére otrzymuja n wartoSci wynikowych ze sche-
matu aplikacji sa numerowane J+1,...,J+n, gdzie J jest pewng ustalong
liczbg;

- blok replikacji oznaczony przez o otrzymuje pakiet (4,J,n) zawie-
rajacy informacje wymagang do konstrukcji pakiétu wynikowego po wykona-

niu procedury ; :
- pozostate bloki moga by¢ numerowane dowolnie.
Schemat z rys. 8.9 dziala nastepujgco: Blok create-act tworzy nowy
rekord aktywacji A’, zawlerajagcy Fw komponencie tekst, i przekazuje go

s’ = const (v,s) s
Akl 1
Sitiseamuo, =
Create
create), Tole
\ \ Y)
& T -
write
»- append Sillc
stream of T
sig

3 r___l____
SI

i e

| o

Rys. 8.10. Implementacja operacji cons

142

do blokéw insert zwigzanych z wejsciami Vqsee-,V . Bloki te tworzag pa-
kiety w postaci nowej kopii P'. W tym samym czasie bloki extr-uld oraz
const-ref tworzg wartosé zwrotng (A,J,n) i przesylaja ja do bloku repli-
kacji O schematu F. Gdy zostang wyprodukowane wielkosci YqseeesYps blo-
ki distribute oraz insert generujg pakiet wynikowy (A,J+1,1,1,yi),,kt6;
ry dostarcza wyprodukowane wielkosSci do worajacego schematu. Blok free

trig s

empty

cons

trig wynik

Rys. 8.11. Schemat przepiywu danych procedury sgito

143

zwalnia rekord aktywacji, a jego kopia zostaje zwrdécona do puli wolnych
kopii zarzgdzanych przez pamigé pakietowsg.

Implementacja list posredniczgecych polega na przedstawieniu ich w
postaci pewnych struktur. Lista posSredniczgca jest strukturg, w ktdrej
sktadowa f reprezentuje pierwszy element listy, za$ sktadowa r - po-
zostate elementy. Pusta lista jest reprezentowana przez strukture nil.
Operacje na lisScie s zamienia sie na odpowiednie operacje na struktu-
rach: first(s) oraz rest(s) sa wiec zastapione przez select (s,f) oraz
select (s,r).-

Zapewnienie mozliwoSci dopisywania nowych elementéw do list i jed-
noczesng konsumpcje list przez moduly programowe, wymaga takiego roz-"
szerzenia koncepcji struktur danych, aby struktura taka byza dostepna
Jjeszcze przed catkowitym jej utworzeniem. Wykorzystuje sie w tym celu
koncepcje tzw. ramek (holes). Idea tej koncepcji jest urzeczywistniona
w implementacji operacji cons opisanej na rys. 8.10.

Create-hole oraz write-hole sg specjalnymi operatorami zdefiniowany-
mi nastgpujgco. Blok create-hole pobiera z pamigci pakietowej odpowied-
ni wolny pakiet. Pakiet ten nazywa sig¢ ramkg; moZze ona byé niezapeinio-
na lub zapeiniona. W stanie niezapeinionym wszystkie operacje na ram-
kach sg kolejkowane, z wyjgtkiem operacji write-hole. Po wykonaniu ope-
racji write—gglg(ﬂ,v) ramka H zmienia swéj stan z niezapeimnionego na
zapeIniony i zapamietuje warto$é v. Dotychczas kolejkowane operacje na
tej ramce oraz dalsze operacje sa juz wykonywane bez dalszych opdZ-
nied. Kolejne wykonanie operacji write-hole na « ramce H jest nielegalne.

Dla ilustracji réwnolegosci dostarczonej przez taka implementacje
list rozpatrzmy procedure sito (rys. 8.11). Zauwazmy, Ze wyjscie z pier
wsze]j aktywacji procedury sito bedzie strukturg danych zawierajgcg pier
wezy element wynikowej listy poSredniczgcej oraz ramke oczekujgcg na
wypeinienie przez strukture danych wytworzong przez rekursywng aktywa-
cje sita.

CWICZENIA

1. Przedstawié schemat przepZywu danych procedury silnia z p. 8.2.

2. Napisaé program w jezyku SVAL sortowania ciggu liczbowego. Przed
stawié schemat przepiywu danych tego programu.

3. Przedstawié schemat blokowy przepiywu danych i napisaé w jezyku
SVAL program obliczenia wartosci wielomianu.

4. Przedstawié¢ schemat blokowy przepiywu danych i napisaé w_jezyku
SVAL program generacji uporzgdkowanego ciggu liczb postaci, 2a23°5C
(a,b,c >0) bez powtdrzehn i bez pominieé (por. p.5.4).

5. Zmodyfikowaé tresé procedury odwréé z p. 8.3 w taki sposdéb, sy
moga dziazaé¢ na dowolnej, a nie tylko binarnej, strukturze. ‘

DODATEK :
MECHANIZMY OBLICZEN ASYNCHRONICZNYCH W JEZYKU PL/I

D.1. Wstep

Jezyk programowania PL/I powstat w koncernie IBM w pierwszej poZo-
wie lat szesScédziesigtych. Zamierzeniem firmy byZo wprowadzenie jezyka o
wysokim poziomie, ktdry w mozliwie szerokim zakresie speiniatby funkcje
Jezyka uniwersalnego do tworzenia programowania uzytkowego komputerdw
gserii IBM 360. Prace projektowe byly prowadzone niemal rdéwnolegle z bu-
dowg systemu IBM 360. UczestniczyZo w nim wielu specjalistéw z innych
firm, zapoczatkowaly one tez prace teoretyczne nad zagadnieniem formal-
nego opisu jezykéw programowania (metoda wiederiska).

Oceny jezyka, po wielu latach jego uzytkowania, raczej jednoznacz-
nie skaniajg sie ku opinii, ze PL/I nie speini% catkowicie oczekiwaf,
jakie w nim pokiadano. Okresla sie go mianem jezyka-omnibusu, ktdry stae-
nowi wprawdzie bogatg, ale i nie catkowicie uporzadkowang kolekcje me-
chanizméw zaczerpnietych od swoich poprzednikéw - takich jak Fortran,
Algol 60 i Cobol, Historia rozwoju jezykdéw programowania wskazuje na to,
%e tego rodzaju zamierzenie - przy Owczesnym stanie teorii - byZo z gd-
ry skazane na niepowodzenie. (Podobne opinie formutuje sie zresztg i
obecnie np. w zwigzku z projektem jezyka Ada.)

Jezyk PL/I jest jednak dos$é rozpowszechniony w Polsce i krajach
RWPG, dzieki rozwijaniu komputerdw serii Riad opartych na serii IBM 360.
Dlatego mechanizmy jezyka, ktdre umozliwiajg tworzenie programéw wsp6Z-
bieznych zaszuguja na oméwienie.

Mechanizmy obliczeri wspdibieznych w PL/I bazuja na modelu obliczen
w drodowisku zwartym. Zasadniczymi przestankami, ktére zadecydowaty o
ich wprowadzeniu byzZo:

a) stworzenie mozliwosSci peinego wykorzystania autonomicznie pracu-
Jacych blokéw komputera takich jak kanaly wejscia/wyjscia i rdéwnolegie
procesory,

b) stworzenie mechanizméw synchronizacji wykonywania programdw
wspdzbieznych.

Blizsze pordwnanie PL/I z asemblerem, komputerdw IBM 360 pozwala
stwierdzié, ze mechanizmy synchronizacji w obu tych jezykach sg niemal
identyczne. Oznacza to, 2e sg to mechanizmy elementarne, niestruktura-
lizowane.

145

Poniewaz dodatek speiznia tylko funkcje informacyjne o wybranych me-
chanizmach PL/I, majgce uatwic¢ podjecie decyzji o wykorzystaniu jezyka
do obliczerl wspé%bieznych i 2arysowaé zwigzane z tym problemy, dlatego
zmieniono notacje jezyka (np. wprowadzenie podkresler sidéw kluczowych),
a takze pominieto te problemy, ktérych wyjasnienie wymagaXcby dokXad-
niejszego oméwienia konstrukcji sekwencyjnych (np. pominieto zasady do-
stepu do wspdlnych plikdw).

Ogdlny przeglad konstrukcji jezyka PL/I przedstawia artyku* J. Bo-
rowca, Wprowadzenie do jezyka PL/I, w ksigzce: Problemy przetwarzania
informacji t.1, WNT 1970. Peiny opis jezyka jest zawarty w ksigzce:
Opis jezyka PL/I, WNT 1975 oraz w dokumentacji: PL/I - opis jezyka, cz.
I, cz. II, Centrum Mera-Elwro 1978.

D.2. Zadania i zdarzenia

Statyczna struktura programu w PL/I nie wprowadza jawnie pojecia
procesu jako jednostki strukturalnej. Program ma strukture blokowg, za-
wierajgca definicje obiektdw lokalnych i ciggi instrukecji. Pfocesy, w
terminologii PL/I zadania - task, s3 obiektami dynamicznymi powstajgcy-
mi podczas wykonywania ciggu instrukcji bloku. Kreacja proceséw odbywa
8i¢ przez wykonanie odpowiednich instrukcji. Nowo utworzone procesy wy-
konuja sie wspditbieznie z ciggiem instrukcji, ktéry je powota% do 2zycia.
Procesy te w trakcie swej realizacji moga kreowaé dalsze procesy. Caly
program jest wiec procesem, ktdrego realizacja rozpoczyna sie automaty-
cznie po odpowiedniej akecji systemu operacyjnego nadzorujgcego wykona-
nie programu, a dalsze procesy potomne sg tworzone dynamicznie.

Kreacja procesu polega, ogdélnie méwigec, na wykonaniu szczegdlnej po-
staci instrukcji procedury. WywoZang procedurg moze byé procedura zde-
finiowana w danym procesie (zadaniu) lub tez mogg byé pewne procedury
standardowe (procedura wspdipracy z operatorem - DISFLAY, procedury gru-
powego przesyzania danych - READ, WRITE, DELETE ...). Jedna z form ta-
kiego wywoania procedury ma postaé:

call P(LP) task(Z),

gdzie P jest nazwag procedury, LP - listg jej parametrdw aktualnych, zas
7 jest identyfikatorem stanowigcym nazwe nowo utworzonego procesu (za-
dania).

Jezeli w pewnym zdaniu X jest zadeklarowana procedura P i w trakcie
jego realizacji zostanie wykonana podana wyzej instrukcja procedury, to
nastgpi wykreowanie nowego zadania 0 nazwie 7, ktérego trescig bedzie
tredé procedury F zmodyfikowana odpowiednim zastgpieniem listy parame-
tréw formalnych przez parametry aktualne. Zadania Z oraz X beda wykony-

146

wane wsp6ibieznie i niezaleznie w tym sensie, %e nie moga bezposrednio
wpiywadé na swe zakonczenie.

Nadanie nazwy nowo wykreowanemu zadaniu szuzy jedynie do tego, aby
mozna W innym zadaniu sprawdzaé lub zmieniaé priorytet tego zadania.
Priorytet stanowi atrybut kazdego zadania, ktdére szuzy systemowi opera-
cyjnemu nadzorujgcemu wykonanie programu, do podejmowania decyzji o
pierwszenstwie zadad przy ubieganiu sie o przydziat pewnych zasobdw
(czas procesora, urzadzenia wejscia/wyjscia). Zadanie Z, ktdére zostao
wykreowane w pewnym zadaniu X, zgodnie z przedstawionym wyze]j schematem,
uzyskuje taki sam priorytet jak zadanie X. W momencie kreacji zadaniu
mo#na przypisaé dowolny priorytet; uzyskuje sig to przez wywoanie po-
staci

call P(LP) task (Z) priority (W)

lub
call P(LP) priority (W),

gdzie W jest wyrazeniem catkowitoliczbowym.

Utworzone zadanie uzyskuje priorytet, ktérego wartosé jest rdéwna
sumie wyrazenia W i priorytetu zadania, w ktérym nastgpi?o jedno z tych
wywozan. Pierwsze z wywolar, nadajgc nazwe zadaniu, umozliwia tez dyna-
miczng zmiang priorytetu, drugie z wywoZan ustala statg wartos$é priory-
tetu bezimiennego zadania.

Wepdé2dziatanie zadan (procesdw) jest programowane za pomocs mecha-
nizméw synchronizacji opartych na koncepcji zdarzer. Zdarzenia sag tu
rozumiane jako fakt osiggnigcia przez sterowanie okreslonych przez pro-
gramiste miejsc w procesie. Do rejestracji tego, czy dane zdarzenie za-
szXo, czy nie zaszXo, s*uzg odpowiednie zmienne, zwane zmiennymi zdarze-
niowymi. Zmienne zdarzeniowe maja strukture rekordu

record
completion : boolean;
status : integer

Mv

Warto$é true na polu completion oznacza, ze zdarzenie zasz}o, wartoscé
false - ze nie zaszZo. Wartos$é pola status ma bardziej bogatg interpre-
tacje, tu ograniczymy sig do stwierdzenia, ze wartosé O oznacza normal-
ny stan procesu, a kazda inna wartos$é¢ jest kodem pewnego stanu nienor-
malnego (awaryjnego).

Zmienne zdarzeniowe wprowadza sie do programu w postaci jawne] de-
klaracji lub generuje sie je w chwili kreacji zadania. Jawna deklaracja
zmiennej zdarzeniowej A ma postad

declare A event,

147
natomiast dynamiczna generacja moze mieé jedng z postaci:
call P(LP) task (Z) priority (W) event (A)
call P(LP) task (Z) event (A)
all P(LP) priority (W) event (A)
all P(LP) event (A).

Q
)

Q

Zmienna zdarzeniowa deklarowana jawnie jest dostepna do zapisu i odeczy-
tu, tak jak kazda inna zmienna. Zmienna zdarzeniowa generowana dynamicz-
nie ma Scisle okreslong interpretacje i jest dostepna tylko do odeczytu,
natomiast zapis wartosci zmiennej jest dokonywany automatycznie w spo-
8éw nastegpujacy: w chwili kreacji zadania i zmiennej otrzymuje ona war-
tosé false pola completion oraz O pola status, podczas wykonywania za-
dania zmienia sig tylko pole status (o ile nastepuje sytuacja awaryjna),
a w momencie zakorficzenia zadania wartos$é pola status zmienia sie na
true. Zasadniczym przeznaczeniem zmiennych zdarzeniowych jest synchro-
nizacja procesdéw, ktdérg uzyskuje sig dziegki wykorzystaniau instrukcji
wait postaci

wait (LZ)(W),

gdzie 1Z jest 1listg, zmiennych zdarzeniowych, zas W, wystepujace opcjo-
nalnie, jest dodatnim wyrazeniem cazkowitoliczbowym.

Znaczenie instrukcji jest nastepujace: wykonanie zadania opéZnia
sie az do moméntu, gdy zostanie zarejestrowane zajscie n zdarzed
przez zmienne zdarzeniowe z listy LZ; n oznacza tu warto$é wyrasenia W,
brak W powoduje przyporzgdkowanie domyslne n=1.

Istotnym ograniczeniem przy postugiwaniu sie instrukcjg wait jest
to, ze na zajscie okreslonego zdarzenia w danym momencie moze oczekiwad
co najwyzej Jjeden proces; oczekiwanie na pewne zdarzenie przez dwa pro-
cesy powoduje btgd wykonania. Dodatkowym ograniczeniem przy niektdrych
kompilatorach jezyka (kompilator F) jest to, ze na zdarzenia wejsScia/
/wyjdcia moze oczekiwaé tylko jeden proces, ktdry zainicjowal te opera-
cje. »

OpbZnienie procesdw fealizuje jeszcze jedna instrukecja postaci

delay (W)

gdzie W jest nieujemnym wyrazeniem catkowitoliczbowym. Skutkiem dziata-
nia tej instrukcji Jest zawieszenie zadania na n milisekund, gdzie n
jest wartoscig wyrazenia W, po czym zadanie, o ile ma dostatecznie wy-
soki priorytet pozwalajacy mu na przydziaxz zajmowanych poprzednio urzg-
dzenh zewhgtrznych, jest kontynuowane.

148

D.3. Dostep do wspdlnych zmiennych

Programy w jezyku PL/I majg strukture blokowg. Struktura blokowa
wprowadza znane zasady zasiegu i dostepnosdci zmiennych [22] . Réwnolegte
zadania, ktdre powstaly przez odpowiednie wywoania procedur zadeklaro-
wanych w tym samym bloku majs prawo dostepu do tych wszystkich zmien=-
nych, ktére sg dostepne w tym bloku. A zatem zadania mogg mieé dostep
do wspdélnych zmiennych. Poprzednio oméwione mechanizmy synchronizacji
‘nie zabezpieczajg bezposSrednio przed skutkiem niekontrolowanego dostepu
do wspdlnych zmiennych. MoZna natomiast mechanizmy te wykorzystadé tak,
aby osiggngé wykluczajacy dostep do wspdlnych zmiennych.

Ze wzgledu na to, 2e zmienne w jezyku PL/I mogg mieé przypisywane
tzw. atrybuty klasy pamigci, poza normalnymi regutami dostepu wynikajg-
cymi ze struktury blokowej, obowigzujg jeszcze reguty dodatkowe. Ich
oméwienie wymaga krdtkiego wyjasnienia pojecia atrybutu klasy pamieci.

Kazdej zmiennej przyporzadkowuje sie (jawnie bad# nie) jeden z atry-
butdw:

static, automatic, controlled, based.

Wezystkim zmiennym statycznym (z atrybutem static) jest przydziela-
na pamigé w chwili rozpoczecia programu, a zwalniara w momencie jego za-
koficzenia, niezaleznie od stopnia zagniezdzenia blokdw, w ktdérych sa
deklarowane. '

Przydzia* (zwalnianie) pamigci zmiennych automatycznych (z atrybu-
tem automatic) odbywa sie w momencie aktywacji (deaktywacji) bloku, w
ktdrych sg zadeklarowane.

Zmiennym kontrolowanym (2z atrybutem controlled) przydziela sie (zwal-
nia) pamigeé programowo poprzez instrukcje allocate (free). Przydziat i
zwalnienie odbywa sie tu metodg stosu: wykonanie allocate tworzy kolej-
ng generacje zmiennej umieszczong w nowej pozycji na szczycie stosu,
za$ wykonanie free usuwa generacjg zmiennej umieezczong na szczycie sto-
su.

Zmiennym wskazywanym (z atrybutem based) pamigé przydziela sie i
zwalnia programowo instrukcjami allocate i free, przy czym nie uzywa

sie tu mechanizmu stosu, a do kazdej generacji zmiennej mozna odwolywac
sie za pomocg wskaZnika (zmienne te stanowig odpowiednik zmiennych typu
wskaznikowegzo w jezyku FPascal).

Zwalnianie pamieci zmiennych kontrolowanych i wskazywanych, ktdrym
przydzielono pamieé w pewnym zadaniu, o ile nie wystapilo przez wykona-
nie operacji free, dokonuje sie automatycznie w chwili zakorniczenia tego
zadania.

Wspomniane reguly dodatkowo sprowadzajg sie do ogdlneczo stwierdze-
nia, aby podczas wykonywania zadan odwoXania odnosity sie tylko do ist-

—
N
\O

niejacych zmiennych. W szczegdlnosci oznacza to, Ze:

- do zmiennych statycznych mozna odwoiywaé sie w dowolnym zadaniu,

- do zmiennych automatycznych mozna odworywaé sie w kazdym zadaniu,
wygenerowanym w bloku, w ktérym zmienne sg zadeklarowane, s

- do zmiennych kontrolowanych mozna odwozywaé sie w tych zadaniach,
w ktdrych sg one znane. JednakZe nie wszystkie przydzielenia pamigci
zmiennym iego rodzaju sa znane we wszystkich zadaniach. Zadaniu znane
83 tylko te przydzielenia, ktdére mialy miejsce przed momentem jeszo ini-
cjalizacji. Zadanie odpowiedzialne za zwolnienie pamigci zmiennych musi
braé pod uwage to, Ze przedwczesne zwolnienie pamieci moze byé przyczy-
ng btedu spowodowaneso prébag uzyskania dostepu do tych zmiennych przez
inne zadanie,

- do zmiennych wskazywanych odnoszg sie zasady podobne jak do zmien-
nych kontrolowanych.

. D.4. Przykxady

Przedstawiono dwa przykady, stanowiagce szkielety programéw ilus-
trujacych dziaanie regionu krytycznego oraz warunkowego regionu kry-
tycznego.

W pierwszym przyktadzie zatozymy, Zze dwa zadania PR1, PR2 bedg ko-
rzystad ze wspdlnych zmiennych zadeklarowanych w zadaniu PRO. H

PRO: procedure;
del P1,S1,V1,P2,52,V2 event;
Pl.completion:= false;

501600 006000 000000000 ustalenie
8o) poczgtkowych
V2.completion:=false; { et kan
Pl.status:=0; wszystkich
(zmiennych
00 0000000000000 060 0C zdarzeniowych

V2.status:=0;
PR1: procedure;

seee

P1.completion:=true; e
wait (S51); ’ wejscie
do sekcji

Sl.completion:=false;

.
.

(5 sekcja krytyeczna x)

Vi.completion:=true; } wyjscie

end P21

150
PRZ: procedure

P2.completion:=true;
wait (S2); wejécie

do sekeji
S2.completion:=Ffalse;
(% sekcja krytyczna =)
V2.completion:=true; } wyjécie

end PR2;
call FR1 priority (1);
call PR2 priority (1);
do white true;
wait (P1,P2)(1);
it Pl.completion then
S1.completion:=true;

Pl.completion:=false;
else

S2.completion:=true;
P2.completion:=false
end;
wait)V1,vV2)(1);
it Vi.completion then
Vi.completion:=false
else V2.completion:=false
end;
end PRO;

Wywozanie procedury PRO w pewnym miejscu programu, postaci
call PRO priority (1)

utworzy zadanie, ktdérego realizacja spowoduje kreacje dalszych dwdéch za-
dari wspétdziatajgcych ze sobg poprzez sekcje krytyczng.

Drugi przykiad jest rozbudowang wersjg pierwszego przykiadu. Zakza-
da sie bowiem dodatkowo, Ze procesy moga zawieszaé sig wewngtrz sekcji
krytycznej, o ile nie sg speinione oczekiwane warunki logiczne. Zawie-
szony proces zwalnia sekcje krytyczng po czym oczekuje, az do chwili,
gdy oczekiwany warunek stanie sie prawdziwy. Wtedy zajmuje sekcje i kon-
tynuuje sie od miejsca zawieszenia. Zakada sie, Ze pierwszy proces,
oparty na schemacie dzia%*ania procedury PW1, czeka na warunek B1, zas
drugi proces, oparty na schemacie PW2, czeka na B2,

f

PWO: procedura;

6000000000008 00 00

del P1,S1,V1,PB1,SB1,
P2,82,V2,PB2,SB2 event

dcl zawieszony_1, zawieszony_2 boolean;

Pl.completion:=false;
SB2.completion:=false;
Pl.status:=0;

e 00 e0coo000cese0s 000 e

SB2.status:=0;
PW1:procedure;

‘Pl.completion:=true;
wait (S1);

Sl.completion:=false;

"it not B1 then
PBl1.completion:=true;
wait (SB1);
SB1.completion:=false

end;

Vi.completion:=true; }

.
.

end PW1;
PW2:procedure

.P2.completion:=true;
wait (S2);

S2.completion:=false;

of not B2 then
PB2.completion:=true,
wait (SB2)
SB2.completion:=false
end;

V2.completion:=true;

end PW2;

Ustalenie
poczgtkowych
wartosci
wszystkich
zmiennych
zdarzeniowych

wejscie
do sekcji
krytycznej

zawieszenie
w sekeji
krytyczne]

wyjscie

wejscie
do sekcji
krytycznej

zawieszenie
w sekcji
krytycznej

1)c

call PW1 priority (1);
call PW2 priority (1);
zawieszony—_1:=false;
zawieszony-2:=false;
do while not (zawieszony_1 and zawieszony_2)
wait Pl.completion then
Pl.completion:=false;
S1 completion:=true;
wait (VB1,V1)(1);
if VBi.completion then
zawieszony_1:=true;
VB1.completion:=false;
else

V1.completion:=false;
if zawieszony-2 then
if B2 then zawieszony 2:=false
SB2.completion:=true

else
P2.completion:=false;
S52.completion:=true
wait (VB2,V2)(1);
if VB2.completion then

zawieszony 2:=true;
VB2.completion:=false;
else ’
V2.completion:=false;
if zawieszony-1 then
if B1 then zawieszony_1:=falce;
SB1.completion:=true

end;
end;
2&19
end;
end;
end PWO;

Wywotanie procedury

call FWO event (blokada)

uruchomi kolejno procesy oparte na dziaaniu procedur FWO, BPW1, FW2.

Za-

153

koficzenie dziatania procesu FWO, sygnalizowane znienna zdarzeniowg blo-
kadg, bedzie oznaczaé, ze procesy PW1, PW2 s3 zawieszone w jednoczesnym
oczekiwaniu na warunki B1, B2.

CWICZENIA

1. Przeanalizowaé przyktady z p. D.4 i zmodyfikowaé Je w taki spo-
g8éb, aby wyeliminowaé state uprzywilejowanie jednego z procesdéw.)

2. Zmodyfikowaé podane przykiady w taki sposdb, aby wyeliminowad
procesy PRO, PWO posSredniczgce odpowiednio we wspéidziazaniu procesdw
PR1, PR2 oraz PW1, PW2.

3. Napisaé w jezyku PL/I program symulujacy dzialania czytelnikdw i
pisarzy (éwicz.1, rozdz. 2).

4., Napisaé w jezyku PL/I program symulujgcy dziaanie filozofdéw
(éwicz. 5, rozdz. 2).

5. Napisadé w jezyku PL/I program generacji liczb pierwszych metodsg
sita Eratosthenesa.

6. Napisaé w jezyku PL/I prograem przydzielania zasobdw zgodnie 2z
algorytmem bankiera (éwidz. 7, rozdz. 3).

@1]
[2]

L3

[4
[5]
L6l
[7
)
[9
ha
b4
02
03l
[4

[15]

fel
n7

hg
)
20
21
[22)
[23]
24

LITERATURA

AGERWAIA T., Some extended semaphore promitives, Acta Informatica,
vol.8,201-220, 1977

ALLAN S.J., OLDEHOEFT, A fiow analysis procedure for the transla-
tion of high level languages.Technical Raport No. 79-2, Dept. of
Comp.Sc., lowa State Univ., Ames 1979.

ANDREWS G.R., The design of message switching system: an aprlica-
tion and evaluation of Modula, IEEE Trans., on Softw. Eng., vol.
SE-5, 138-147, 1979.

BAYER R., GRAHAW R.M., SEEGMULLER (ed-s), Operating systems{ Lect.
Notes in Comp. Sc. vol. 60, Springer-Verlag 1978.

BIARASIEWICZ J., ADEREK A., MALISZEWSKI K., Oprogramowanie podsta-
wowe komputerowych systeméw sterowania, WNT 1979.

BRINCH HANSEN P., The nucleus of a multiprogramming system, Comm.
of ACM, vol. 13, 238-241, 1970.

BRINCH HANSEN P., Structured multiprogramming, Comm. of ACM, vol.
15, 574-578, 1972.

BRINCH HANSEN P., Podstawy systeméw operacyjnych, WNT 1979 (tZum.
z oryginaXu and. 1973).

Brinch Hansen P., The programming language "Concurrent Pascal",
IEEE Trans. on Softw. Eng., vol. SE1-2, 199-207, 1975.

BRINCH HANSEN P., The architecture of concurrent programs, Frenti-
ce-Hall, 1977. :

BRINCH HANSEN P., Distributed processes a concurrent programming
concept, Comm. of ACM, vol. 21, 934-991, 1978.

BRYANT R.E., DENNIS J.B., Concurrent programming, MIT/LCS/TM-115,
Cambridge 1978.

BROCK J,D., MONTZ L.B., Translation and optimization of data flow
programs, MIT/LCS/TM 181, Cambridge 1979.

CAMPBELL R.H., HABERMANN A.N., The specification of process syn-
chronization by path expressions, Lect. Notes in Comp., vol. 16,
89-102, Springer-Verlag, 1974.

COLEMAN D., GALLIMORE R.M., HUGHES J.W., FPOWELL M.S., An assesse-
ment of Concurrent Pascal, Softw. Pract. and Exp., vol. 9, 827-837,
1979.

DENNIS J,B., First version of data flow procedure language, Lect.
Notes in Comp.Sc., vol. 19, 362-376, Springer-Verlag, 1974.

DENKNIS J.B., MISUMAS D.P., A preliminary architecture Tor a basic
data-flow processor, Proceed. of the Second Annual Symp. on Comp.
Architecture, 126-132, IEEE, 1975.

DENNIS J.B., WENG K., An abstTact implementation for concurrent
computations with streams, MIT/LCS/TM 180, Cambridge, 1979.
DIJKSTRA E.W., The structura of the THE multiprogramming system,
Comm. of ACM, vol. 11, 341-346, 1968.

DIJKSTRA E.W., Co-operating sequential processes, w: FProgrammin;
Languages, ed. GENUYS F., Academic Fress, N.Y., 1968.

DIJKSTRA E.W., Hierarchical ordering of sequential processes, Acta
Informatica, vol. 1, 115-138, 1S71.
DUBIELEWICZ I., HUZAR Z., Jezyk 1 programowanie, Skrypt, Politech-
nika WrocZawska, 1%8 . 2
ENSLOW P.H.Jr., (ed.), Systemy cyfrowe wieloprocesorowe, WNT 1978
(tZum. z ang. 1974).

FELDMAN J.A., High level programming for distributed computing,
Comm. of ACM, vol. 22, 353-36(2, 1979.

[25)
(26l
[27]
[28]

29
[30]

(31
B2

[33]
B4
35
6l
371

[41

[42]

43
[44]
[45]
[46)

[47)

48l
49
(50

155

GREIF I., Semantics of communicating parallel processes, MIT/MAC/TR
-154, Cambridge 1975.

GRIES D. (ed.), Programming methodology. A collection of articles
by members of IFIP WG2.3, Springer-Verlag 1978.

HARTMANN A.C..A Concurrent Pascal compiler for mini-computers,

Springer-Verlag 1977.

HEWITT C., BAKER H., Laws for communicating parallel processes,
Information Processing 77, IFIP, 987-992, North Holland Publ. Comp.,
1977,

HEWITT C., ATKINSON R.R., Specification and proof techniques for
serializers, IEEE Trans. on Softw. Eng., vol. SE-5, 10-23, 1979.
HEWITT C,, ATTARDI G., LIEBERMANN, Specifying and proving proper-
ties of guardians for distributed systems, Lect. Notes in Comp.Sc.,
vol. 70, 316-336, Springer-Verlag 1979.

HIRSCHBERG D.S., Fast parallel sorting algoritms, Comm. of ACM,
vol. 21, 657-661, 1978.

HIRSCHBERG D.S., CHANDRA A.K., SARWATE D.V., Computing connected
components on parallel computers, Comm. of ACM, vol. 22, 461-464,
1979.

HOARE C.A.R., Towards theory of parallel programming, w: Operat-
ing systems techniques, ed. HOARE C.A.R., Academic Press, 1972.
HOARE C.A.R., Monitors: an operating systems structuring, Comm. of
ACM, vol. 17, 549-55T7, 1974.

HOARE C.A.R., Communicating sequential processes, Comm. of ACM,
vol. 21, 666-677, 1978.

HOLDEN J., WAND I.C.,, An assessement of Modula, Softw. Pract. and
Exp., vol. 10, 593-621, 1980.

HOLT R.G., GRAHAM G.S., TAZOWSKA E.D., SCOTT M.A., Structured con-
current programming with operating systems applications, Addison-
Wesley Publ., Comp., 1978.

HUZAR Z., Uogdélnione monitory w jezyku programowania "Concurrent
Pascal", Podstawy Sterowania, t. 10, 43-56, 1980.

HUZAR Z., Semantyka programéw z operacjami wejscia-wyjscia, Podsta
wy Sterowenia, t. 11, 33-50, 1981.

ICHBIAH J.D., HELIARD J.C., ROUEINE O., BARNES J.G.P., KRIEG-BRUEK-
NER B,, WICHMANN B.A., Preliminary Ada reference manual (Part A),
Rationale for design of the Ada programming language (Part B),
SIGPLAN Notices, vol. 14(6), 1979.

KAHN G., Semantics of simple language for parallel programming, In-
formation Processing 74, IFIP, 471-475, North Holland Publ.Comp.,
1974.

RATN G., MAC-QUEEN D., Coroutines and networks of parallel pro-
cesses, Information Processing 77, IFIP, 993-998, North Holland
eteils Geimge ;. 19710

KAHN G. (ed.), Semantics of concurrent computations, Lect. Notes
in Comp. Sc., vol. 70, 1979.

KELLER R.M., Sentinels: a concept for multiprocess coordination,
Dept. of Comp. Sc., Univ. of Utah, UUCS-78-104, 1978.

KOTOV V.E., O parallelnych jazykach, Kibernetika, No.3, 1-12, No.4,
1-10, 1980.

KUCK J.D., MURAOKA Y., CHEN S.-C., On the number of operations si-
mul taneusly executable in Fortran-like programs and their result-
ing speedup, IEEE Trans. on Comp., vol. C-21, 1293-1310, 1972.
KWIATKOWSKI J. Metoda konwersji programu szeregowego na rownolegiy.
Rozprawa doktorska, Inst. Cyber. Techn., Politechnika Wroctawska,
Rap. PRE 108, 1980.

LISKOV B., Primitives for distributed computing, MIT/LSC/TM, Cam-
bridge 1979.

MC-GRAW J.R., ANDREWS G.R., Access control in parallel programs,
TEEE Trans.on Softw. Eng., vol. SE-5, 1-8, 1979.

MC-KEAG R.M., MILIIGAN P., An experiment in parallel program desiz .,
Softw. Pract. and Exp., vol. 10, 637-696, 1980.

Trans.cn

156

[51
[52]

[53

[54]
[55]

(561
[57]

(58]

[59
[60]

61
€3
64]
651
3
67
8l
69
[70]
(71

MUNRO J., PATERSON M., Optimal algorithms for parallel polynomial
evaluation, Journal of Comp. and Syst. Sc., vol. 7, 189-198, 1973.
NARAYANA K.T., PRASAD V.R., JOSEPH M., Some aspects of concurrent
programming in CCNPascal, Softw. Pract. and Exp., vol. 9, T49-770,
1279, A
NOWICKI Z.M., Organizacje macierzowych jednostek przetwarzania po-
tokowego realizujgcych operacje matematyczne, Inst.Podst.Inf., PAN,
PWN 1980.

PYLE I.C., Input/output in high level programming languages, Softw.
Pract. and Exp., vol. 9, 907-914, 1979.

RAMAMOORTHY C.V., PARK J.H., LI H.,F.,, Compilation techniques for
recognition of parallel processable task in arithmetic expressions,
IEEE Trans. on Comp., vol, C-22, 986-998, 1973.

REED D,P., KANODIA R.K., Synchronization wiTh eventcounts and se-
quencers, Comm. of ACM, vol. 22, 115-123, 1979.

ROBERT R., VERJUS J.-P., Towards autonomons description of synchro-
nization modules, Information Processing 77, IFIP, 981-986, North
Holland Publ. Comp., 1977.

ROBERTS E.S., CLARKE E.M., EVANS A., MORGAN C.R., Task management
in Ada: a critical evaluation for real-time multiprocessors, Aiken
Comp., Lab., Harvard Univ., TR-07-80, Cambridge 1980.

SALWICKI A. i inni, Uniwersalny jezyk programowania Loglan 77,
Inst. Inf,, Uniw., Warszawski, Opracowanie wewnetrzne 1977.

SCHULTZ H.A., On the design of a language for programming real-time
concurrent processes. IEEE Trans. on Softw. Eng., vol. SE-5, 248-
-255, 1979.

SHARP J.A,, Data oriented program design, Dept. of Comp. Sc.,Univ.
College of Swansea, Internal report, 1980.

TURSKI W.M., Metodologia programowania, WNT 1978.

WANG P.-S., LIN M.T., Parallel processing o igh level language
programs, Proceed. of the 1979 Intern. Conf. on Parallel Processing,
17-25, IEEE, 1979.

WELSH J., BUSTARD D.W., Pascal-Plus: another language for modular
multiprogramming, Softw. Pract. and Exp., vol. 9, 947-957, 1973.
WELSH J., LISTER A., A comparative study of task communication in
Ada, Softw. Pract. and Exp., vol. 11,.257-290, 1981.

WETHERELL C., Design considerations for array processig languages,
Softw. Pract. and Exp., vol. 10, 265-271, 1980.

WIRTH N., Modula: a language for modular multiprogramming, Softw.
Pract. and Exp., vol. 7, 3-35, 1977.

WIRTH N., The use of Modula, Softw. Pract. and Exp., vol. 7, 37-65,
1977.

WIRTH N., Design and implementation of Modula, Softw. Pract. and
fExp., vol. 7, 67-84, 1977.

WAND I.C., Systems implementation languages and Ironman, Softw.
Fract. and Exp., vol. 9, 853-878, 1979.

Z 200 Recomendation. CCITT High Level Language (Chill), CCITT, Ge-
neva 1981.

e

SPIS RZECZY

RO NS 56660606 006006 600065050600 06030000 9060000600000 0800500000

1.

2.

LSO FNYATAUDY 660000000 00000 0000000000500 000000000000000 000000000
lollo BEFEELE PEEEHENINIE 600600000000 03006000000000000000000000000
ToBo BGIEEITNGL S0erAIEHIE 6000000000 0000000000060060000600000000000000
1090 Zdiin o6meleERodeil 6000000000600000006060090000600006008000
AR AN BN 08 Ho A I00.08 D6 GO B oA B B HH L GO DB 0SB SRR SO e T s

POROWNANIE PODSTAWOWYCH KONCEPCJIL s v v oo evoceoncnconcoocasanenss
Do ilo. ZEEEGH) JOCROLEEREY 600000000000 0000 6000000 00030000006 0000000
BaPn IBFANREGIENIE EHEBEIE] 5000000060060 0000050 00006000 0008060000000
2.3, Procesy w Srodowisku zwartym ecececcccococsccacooosonanoas

2.3.7. Semafory eeeecececooncosoecoscacece oo aosoossosessosns

ZoJotEo WEIELIEERT 6000 00600000000 000000060 I000000 0000006000
2.4. Procesy w $rodowisku TOZPTOSZONYM «essescccoccosscssasscss
2.5. Obliczenia rdéwnolegie synchronizowane przepr*ywem danych ..
2o®o - PEEEINENERELE 5000 60000000 0000060 0000000000 0000000006060 000000
CWICZENIA N elele oo letotelate ialsloarelele otsrele, ol otaole e ote e e sl s torelel o oo otot sYoTeiole s st st

JEZYK PROGRAMOWANIA CONCURRENT PASCAL .cccceccoccesccconcosccsss
oo Wl SEUEHYE 000000060000000000000000000000000000000000000
3e2s Symbole POASTAWOWE ¢ ielee siv s sialele s siels eoie slsssle slo sialeee sleslsisssie
B Fo SulEsEny e 0000000 000000006000000000000000000 000000
Solls WBEHEHIEIIE 6000000000006000000000000000 00000000000 5100800000
P00 BROEEER] 000006000006000000000600000000 6600000600000 00030006000
Voo NHEBERE] 00000000060 660000600006006000 0000 0005003500C00B00
Sollc HEIEER) 600000000000 060606000600600038 0603000 000000060600000000000
3.8. Struktura programucceoccecesccccscosccssscssososocsse
3.9, Wybrane wtasnosci implementacji jezyka na minikomputerach

PP 6000000000006 000000000600000000000006000000000000000600

3.10. Program przykadOWY o .. ceee oo eessiesssionsossssossosossesses
oo Ul SEEERIE 00000000000 0600000000000000000000000300000000
CWEICZENTA wisrs orolo e steheieloesstorabels sialalsisrs imto ot aterore O SO DO O O

JEZYK PROGRAMOWANIA MODULA ..¢.cccvcecccccsacccncoccsansosocosonse
4.1, WpPTrowadZenie seeeeesececeoccsosssecesosososososossssacsoss
4,2. Mechanizmy SeKWENCYJNE «¢sceeceocccccsocsoscosscocsossssosse

LS IS B UV)

14

16
16
17
18
18
21
25
31
35
36

39
39

40

40
41
43
45
48
49

50
53
60
61

63
63
64

158

G S MEPETl Ay SETIGELEERLD 00606 0000000000600 000000000600 000 00
4,4, WZasno$ci implementacji na minikomputerach PDP11 .e...0..

4.5. Program przykZadoWy . e.seesesessocesesesssssssossosiossssas
Lsldis — OOEE, SO 0000600000660 000/60000608300000000 0606600080000

(6 B oA I e e B s i D OIS OO D D R o

5. PROCESY W SRODOWISKU ROZPROSZONYM e ccoeeocecccccsassanscocsses
Hela WPrOWAAZENIE «eoesicoesosononseosscscosenssosiossossossssoess
5.2, Komunikujgce sie procesy sekwencyjne EESE 8 000000000000

5.3. Procesy rozproszone Brinch Hansena

Dolle SHpE PREEEEED NG 6600600000000 00000000000000000900000

s

CWICZENIA scoccceccoooosooscssssacnacsssssssssassoscsocsassssse

6. MECHANIZMY ROWNOLEGEOSCI W JEZYKU PROGRAMOWANIA ADA soevvevvecss
6o1e WDBOWAAZENTE! oleie o e oo ais s ololsisielels slelsla eials els]o olslsle el sislele/ e olslalolelale

560 SHEUIRBIEEY TOErREzhNer) 6.0000000000000a0000000060006000006000060

6.3. Komunikacja pomiedzy zadaniamicceccessvcccccccconan

6.4. Niedeterminizm «..cecceceescescccscsscscscoscooooncccsssnns

6.5. PrzykXadowe Programy ececeesoscesscas

GWICZENIA ...

© 0000000000000 00000000000

0000600000000 000000000

©e 00900000000 s000s0008080

7. MECHANIZMY ROWNOLEGLOSCI W JEZYKU PROGRAMOWANIA CHILL ecocecess

Tele Wprowadzenie ..cceeescecscocccssscssssososcssssosssscsscos

7.2. Strukiura DrOZTAMOW o e sieisie s s sisielele s e slelsislsisicla s e/olo ele/ols sloie e s
7.3. Komunikacja we wspSlnym Srodowiskl ..cceeesccsssccsccccns

7.4. Komunikacja z wykorzystaniem s8ygnaXéw ccecececececcecscacscscs

7.5. Komunikacja z wykorzystaniem buforéw .eececececccocccoaas
RGN 660 60060000066 00 6006 600BBEOTO0B000000606006600090000

8., OBLICZENIA SYNCHRONIZOWANE FPRZEPLYWEM DANYCH .cccceecocccsscass
8.1. Wprowadzenie ceceececcocosscocscasoscaoocsososscnossosnsse

8.2, Koncepcja jezyka programowania c..ccecccesscccccccccccccse

8.3. Dynamiczne struktury danych c.cececccececccoccscsssocccanse

8.4, Schematy przepZywu danych ceecececcccccssssccsccasccocsoe
8.5. Problemy implementacji schematdéw przeptywu danych
ERABEY 6000000000506 500 0000P06600060000600060600000809000GCE0

DODATEK. MECHANIZMY OBLICZEK ASYNCHRONICZNYCH W JEZYRKU PL/I

Tl AT O B s BB GO0 D106 0D 000 BIOIOB O B0 OO0, 0In Y 0, OO0 IO 0 O

D.2. Zadania i zdarzenia

©0 0000060000000 00a006000 00

D.3. Dostep do wspSlnych zmiennych ..ccccecececcosccsccscncsses
D.4. Przykzady .

O G A o e e e e S e e S s ot e aes

LITERATURA ...

. o

00006000 0000000806000 00c000s o

68
70
s
i
78

80
80
81
87
91
98

99
99
99
103
104
107
110

111
111
112
113
116
120
125

126
126
128
130
133
136
143

144
144
145
148
149
153

154

Skrypty Politechniki Wroclawskiej

sa do nabycia w:

P.P. ,,Dom Ksigzki”

" Ksiegarni Wr 49

Wybrzeze Wyspianskiego 27, 50-370 Wroclaw
: oraz
Wojewodzkiej Ksiegarni Technicznej
ul. Swidnicka 8, 50-067 Wroclaw

D422
24203739

Cena zl 95,—

Raport dostępności

		Nazwa pliku:

		Huzar_wstep_do_programowania_wspolbieznego.pdf

		Autor raportu:

		

		Organizacja:

		

[Wprowadź informacje osobiste oraz dotyczące organizacji w oknie dialogowym Preferencje > Tożsamość.]

Podsumowanie

Sprawdzanie napotkało na problemy, które mogą uniemożliwić pełne wyświetlanie dokumentu.

		Wymaga sprawdzenia ręcznego: 2

		Zatwierdzono ręcznie: 0

		Odrzucono ręcznie: 0

		Pominięto: 1

		Zatwierdzono: 28

		Niepowodzenie: 1

Raport szczegółowy

		Dokument

		Nazwa reguły		Status		Opis

		Flaga przyzwolenia dostępności		Zatwierdzono		Należy ustawić flagę przyzwolenia dostępności

		PDF zawierający wyłącznie obrazy		Zatwierdzono		Dokument nie jest plikiem PDF zawierającym wyłącznie obrazy

		Oznakowany PDF		Zatwierdzono		Dokument jest oznakowanym plikiem PDF

		Logiczna kolejność odczytu		Wymaga sprawdzenia ręcznego		Struktura dokumentu zapewnia logiczną kolejność odczytu

		Język główny		Zatwierdzono		Język tekstu jest określony

		Tytuł		Zatwierdzono		Tytuł dokumentu jest wyświetlany na pasku tytułowym

		Zakładki		Niepowodzenie		W dużych dokumentach znajdują się zakładki

		Kontrast kolorów		Wymaga sprawdzenia ręcznego		Dokument ma odpowiedni kontrast kolorów

		Zawartość strony

		Nazwa reguły		Status		Opis

		Oznakowana zawartość		Zatwierdzono		Cała zawartość stron jest oznakowana

		Oznakowane adnotacje		Zatwierdzono		Wszystkie adnotacje są oznakowane

		Kolejność tabulatorów		Zatwierdzono		Kolejność tabulatorów jest zgodna z kolejnością struktury

		Kodowanie znaków		Zatwierdzono		Dostarczone jest niezawodne kodowanie znaku

		Oznakowane multimedia		Zatwierdzono		Wszystkie obiekty multimedialne są oznakowane

		Miganie ekranu		Zatwierdzono		Strona nie spowoduje migania ekranu

		Skrypty		Zatwierdzono		Brak niedostępnych skryptów

		Odpowiedzi czasowe		Zatwierdzono		Strona nie wymaga odpowiedzi czasowych

		Łącza nawigacyjne		Zatwierdzono		Łącza nawigacji nie powtarzają się

		Formularze

		Nazwa reguły		Status		Opis

		Oznakowane pola formularza		Zatwierdzono		Wszystkie pola formularza są oznakowane

		Opisy pól		Zatwierdzono		Wszystkie pola formularza mają opis

		Tekst zastępczy

		Nazwa reguły		Status		Opis

		Tekst zastępczy ilustracji		Zatwierdzono		Ilustracje wymagają tekstu zastępczego

		Zagnieżdżony tekst zastępczy		Zatwierdzono		Tekst zastępczy, który nigdy nie będzie odczytany

		Powiązane z zawartością		Zatwierdzono		Tekst zastępczy musi być powiązany z zawartością

		Ukrywa adnotacje		Zatwierdzono		Tekst zastępczy nie powinien ukrywać adnotacji

		Tekst zastępczy pozostałych elementów		Zatwierdzono		Pozostałe elementy, dla których wymagany jest tekst zastępczy

		Tabele

		Nazwa reguły		Status		Opis

		Wiersze		Zatwierdzono		TR musi być elementem potomnym Table, THead, TBody lub TFoot

		TH i TD		Zatwierdzono		TH i TD muszą być elementami potomnymi TR

		Nagłówki		Zatwierdzono		Tabele powinny mieć nagłówki

		Regularność		Zatwierdzono		Tabele muszą zawierać taką samą liczbę kolumn w każdym wierszu oraz wierszy w każdej kolumnie

		Podsumowanie		Pominięto		Tabele muszą mieć podsumowanie

		Listy

		Nazwa reguły		Status		Opis

		Elementy listy		Zatwierdzono		LI musi być elementem potomnym L

		Lbl i LBody		Zatwierdzono		Lbl i LBody muszą być elementami potomnymi LI

		Nagłówki

		Nazwa reguły		Status		Opis

		Właściwe zagnieżdżenie		Zatwierdzono		Właściwe zagnieżdżenie

Powrót w górę

