
Zbigniew Huzar

3y»T->aAP

-,3y«T->a -.3yT->p

ELEMENTY
LOGIKI
DLA
INFORMATYKI

ZBIGNIEW HUZAR

ELEMENTY LOGIKI DLA INFORMATYKÓW

OFICYNA WYDAWNICZA POLITECHNIKI WROCŁAWSKIEJ
WROCŁAW 2002

Recenzent
Leszek PACHOLSKI

Opracowanie redakcyjne i korekta
Maria IZBICKA

Projekt okładki
Zofia i Dariusz GODLEWSCY

Biblioteka Główna i OINT
Politechniki Wrocławskiej

001769794

Główna *

310392

© Copyright by Zbigniew Huzar, Wrocław 2002

OFICYNA WYDAWNICZA POLITECHNIKI WROCŁAWSKIEJ
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław

ISBN 83-7085-625-X

Drukarnia Oficyny Wydawniczej Politechniki Wrocławskiej. Zam. nr 512/2002.

su

Spis treści

Przedmowa... 7
1. Elementarne pojęcia logiczne.. 11

1.1. Czym jest logika?.. 11
1.2. Język logiki formalnej.. 13
1.3. Wnioskowanie.. 17
1.4. Indukcja matematyczna.. 22
1.5. Logika w informatyce.. 24
Ćwiczenia.. 26

2. Elementarne pojęcia mnogościowe... 29
2.1. Zbiór i element zbioru.. 29
2.2. Definiowanie zbiorów.. 31
2.3. Podzbiory, równość zbiorów, zbiory potęgowe.. 37
2.4. Operacje na zbiorach... 39
Ćwiczenia... 42

3. Relacje i funkcje.. 45
3.1. Produkty kartezjańskie... 45
3.2. Relacje... 47
3.3. Operacje na relacjach... 50
3.4. Podstawowe rodzaje relacji binarnych... 52
3.5. Funkcje.. 56
3.6. Operacje na funkcjach.. 61
3.7. Funkcje a relacje... 63
Ćwiczenia... 65

4. Uogólnienia i uzupełnienia.. 68
4.1. Wiclozbiory... 68
4.2. Zbiory rozmyte... 69
4.3. Zbiory przybliżone.. 72
4.4. Zbiory przeliczalne i nieprzeliczalne.. 74
4.5. Zbiory obliczalne i rekurencyjnie przeliczalne... 76
4.6. Funkcje obliczalne.. 81
4.7. Aksjomatyczne ujęcie teorii mnogości.. 85
4.8. Definicje zbiorów liczbowych.. 87
Ćwiczenia... 89

5. Języki formalne i gramatyki... 91
5.1. Ciągi i słowa... 91
5.2. Operacje na słowach.. 93
5.3. Języki formalne... 95
5.4. Gramatyki bezkontekstowe.. 97
5.5. Klasyfikacja gramatyk... 101
5.6. Grafy... 102
5.7. Drzewa rozbioru i diagramy składniowe.. 105
Ćwiczenia... 107

4

6. Algebry abstrakcyjne.. 109
6.1. Algebry jednorodzajowe.. 109
6.2. Algebry wielorodzajowe.. 113
6.3. Termy... 115
6.4. Algebry Boole’a.. 121
6.5. Homomorfizm algebr... 122
6.6. Algebra ilorazowa termów... 125
Ćwiczenia... 126

7. Rachunek zdań... 128
7.1. Składnia... 128
7.2. Semantyka.. 131
7.3. Dowodzenie metodą zerojedynkową... 134
7.4. Wybrane tautologie... 135
7.5. Dowodzenie transformacyjne.. 136
7.6. Postaci kanoniczne formuł... 138
7.7. Funkcjonalna pełność... 141
7.8. Rekursja i indukcja strukturalna.. 144
Ćwiczenia... 147

8. Rachunek kwantyfikatorów... 150
8.1. Składnia... 150
8.2. Indukcja strukturalna... 152
8.3. Zmienne wolne i związane... 154
8.4. Podstawianie termów... 157
8.5. Semantyka.. 159
8.6. Spełnialność formuł.. 162
8.7. Wybrane prawa rachunku kwantyfikatorów.. 165
8.8. Przedrostkowa postać normalna.. 166
8.9. Przykład języka rachunku kwantyfikatorów.. 168
8.10. Rachunek kwantyfikatorów z równością... 171
8.11. Teorie elementarne.. 172
8.12. Teorie nieelementarne.. 175
Ćwiczenia... 176

9. Rachunek sekwentów Gentzena... 179
9.1. Wstęp... 179
9.2. Lemat o podstawieniu.. 181
9.3. Przykłady wprowadzające.. 184
9.4. Język sekwentów - składnia i semantyka.. 190
9.5. System dowodzenia.. 192
9.6. Semantyczna poprawność.. 196
9.7. Semantyczna zupełność... 200
Ćwiczenia... 204

10. Zasada rezolucji... 205
10.1. Wstęp... 205
10.2. Zasada rezolucji dla rachunku zdań.. 206
10.3. Skolemowska postać normalna... 210
10.4. Unifikacja termów.. 214
10.5. Zasada rezolucji dla rachunku kwantyfikatorów... 218
10.6. Klauzule Homa w programowaniu logicznym.. 221
Ćwiczenia... 225

11. Zagadnienia uzupełniające... 227

5

11.1. Wstęp.. 227
11.2. Systemy dowodzenia Hilberta... 228
11.3. System dedukcji naturalnej Gentzena... 234
11.4. Własności metalogiczne rachunku kwantyfikatorów.. 239
Ćwiczenia.. 241

12. Inne logiki... 242
12.1. Wstęp.. 242
12.2. Logiki wielowartościowe... 243
12.3. Logiki modalne... 245
12.4. Logiki temporalne... 248
12.5. Logiki intuicjonistyczne... 252
12.6. O logikach niemonotonicznych... 255
Ćwiczenia.. 256

Literatura.. 259
Indeks.. 261

Przedmowa

Informatyka jest dyscypliną młodą, liczącą około pięćdziesiąt lat. Sam termin infor­
matyka pojawił się w języku polskim na początku lat siedemdziesiątych, a termin
komputer zadomowił się na dobre dopiero w końcu lat siedemdziesiątych. Rozwój in­
formatyki był i pozostaje stymulowany dwoma czynnikami. Pierwszym jest rozwój
technologii, głównie elektronicznej. Dzięki postępowi w tej dziedzinie stało się moż­
liwe technicznie zrealizowanie najpierw urządzeń liczących, których koncepcje były
rozważane znacznie wcześniej, a później zbudowanie uniwersalnych urządzeń liczą­
cych - współczesnych komputerów. Drugim czynnikiem jest potencjalnie ogromne
pole zastosowań informatyki. Oba te wzajemnie sprzężone czynniki doprowadziły do
sytuacji, gdy komputer staje się powszechnym narzędziem pracy niemal w każdej
dziedzinie.

Miarą tempa rozwoju obecnie dominującej technologii półprzewodnikowej jest fakt,
że wydajność sprzętu komputerowego mierzona częstotliwością zegara sterującego
pracą komputera, i podobnie rozmiar pamięci operacyjnej komputera, podwaja się co
półtora roku. Przewiduje się, że taka tendencja może utrzymać się do 2015-2020 roku.
Wyznacznikiem rozpowszechnienia zastosowań informatyki jest obecnie nie tylko
Internet - globalna sieć komputerowa stanowiąca federację setek tysięcy sieci kom­
puterowych - ale również rozpoczynający się proces integracji Internetu, telefonii
komórkowej oraz telewizji cyfrowej.

Informatyka dostarcza specyficznych narzędzi i metod, które można wykorzystywać
do rozwiązywania problemów w różnych dziedzinach. Do zrozumienia tej specyfiki
i możliwości zastosowań informatyki potrzeba trwałych i niezawodnych podstaw.
Tak jak w przypadku innych nauk ścisłych, podstawy informatyki są oparte na ma­
tematyce, a dokładniej na wybranych jej działach, odpowiednio przystosowanych do
potrzeb informatyki. Podstawy informatyki są wprawdzie ciągle kształtowane, ale
pewne ich elementy można obecnie uznać za ustabilizowane. W historii matematyki
był okres na przełomie XIX i XX wieku, gdy uświadomiono sobie konieczność
ustalenia podstaw matematyki, bez których nie byłby możliwy spójny rozwój róż­
nych działów: algebry, analizy matematycznej, rachunku prawdopodobieństwa, to­
pologii itp. Podstawy matematyki, które uformowały się w pierwszej połowie ubie­
głego wieku, objęły dwa niezależne wcześniej działy - teorię mnogości i logikę.

8

Podobnie ma się z podstawami informatyki, za które również można uważać teorię
mnogości i logikę, z położeniem akcentu, silniejszego niż w podstawach matematy­
ki, na logikę. Wynika to także z tego, że informatykę traktuje się niekiedy jako dys­
cyplinę wyrosłą z podstaw matematyki.

Szczególna rola matematyki w podstawach informatyki nie jest jednak uzasadniona
wyłącznie względami historycznymi. Zasadniczy powód wynika z roli, jaką pełni in­
formatyka w zastosowaniach. Rozwiązywanie problemów, przed którymi staje infor­
matyk, wymaga od niego - po pierwsze - zrozumienia danej dziedziny zastosowań
i zrozumienia na czym dany problem polega, po wtóre - informatyk musi znać i ro­
zumieć narzędzia i metody, którymi może dysponować, wreszcie - po trzecie - musi
zaproponować jak, za pomocą posiadanych środków, dany problem rozwiązać. Opis
problemu na tle specyficznej dziedziny jest początkowo wyrażany w języku natural­
nym. Precyzyjny jego opis wymaga wyrażenia go w języku sformalizowanym, czyli
języku o ściśle określonej składni i semantyce. Potrzeba taka wynika stąd, że rozwią­
zanie problemu przedstawione ostatecznie komputerowi do policzenia musi być wyra­
żone w języku programowania, czyli również pewnym sformalizowanym języku.
Komputer, w odróżnieniu od człowieka, nie potrafi bowiem podjąć żadnych innych
akcji niż te, które są wyrażone w pewnym języku sformalizowanym.

Konieczność formalizacji informatyki wynika więc z dwóch powodów. Po pierwsze
- ze specyfiki komputera i tego, co potrafi, a to, co potrafi, można sprowadzić do
umiejętności przetwarzania symboli. Po drugie - wynika z potrzeby zrozumienia
abstrakcji, czyli procesu budowy formalnego opisu problemu na podstawie opisu
wyrażonego w języku naturalnym. Formalny opis problemu jest pewnym modelem
rzeczywistego problemu występującego w realnej dziedzinie. Model jest opisem
uproszczonym, to znaczy koncentruje się tylko na wybranych aspektach rzeczywi­
stego problemu. Na jakich aspektach i jak szczegółowo ma skupiać się model zależy
oczywiście od celu jego budowy. Sposób budowy modelu, ocena zgodności modelu
z opisywaną rzeczywistością, związek pomiędzy modelem opisu a modelem rozwią­
zania są typowymi zagadnieniami, wokół których wyrastają teorie i działy matema­
tyki. Klasycznym przykładem są analiza matematyczna i teoria równań różniczko­
wych, które rozwinęły się na skutek zapotrzebowania dziewiętnastowiecznej
techniki i fizyki.

Na początku XX wieku z formalizacją matematyki wiązano zbyt dalekie nadzieje.
Program formalizacji matematyki, związany głównie z nazwiskiem Dawida Hilber-
ta, załamał się w latach trzydziestych, po odkryciach Kurta Godła, który wskazał na
swoistą ograniczoność metod formalnych. Gdyby się okazało, że program Hilberta
jest realizowany, wówczas można byłoby przypuszczać, że wszystko to, co potrafi
człowiek, mógłby również zrealizować komputer. Tak jednak nie jest, dlatego intu­
icja i kreatywność dają człowiekowi niekwestionowaną przewagę nad komputerem.
Oznacza to, że informatyk w swojej pracy powinien traktować metody formalne ja­
ko uzupełnienie i wsparcie własnej pomysłowości i twórczości.

9

W informatyce metody formalne stanowią fundament podstawowych pojęć, takich jak
pojęcie algorytmu, obliczalności czy złożoności obliczeniowej.

Logika dostarcza języka do przedstawiania i badania własności modeli informatycz­
nych, w tym systemów komputerowych i języków programowania, w szczególności
środków do definiowania składni i semantyki języków programowania. W języku lo­
giki można specyfikować wymagania stawiane projektowanym systemom oprogra­
mowania. Ponadto język logiki może bezpośrednio być używany jako język progra­
mowania. Ogromną rolę odgrywa logika w zastosowaniach informatyki, na przykład
w tworzeniu i funkcjonowaniu baz wiedzy i systemów ekspertowych.

Szczególną rolę odgrywa logika w procesie wytwarzania oprogramowania. Wytwa­
rzanie oprogramowania jest obecnie w coraz szerszym zakresie wspomagane przez
komputer. Budowa narzędzi wspomagających staje się możliwa dzięki opracowaniu
odpowiednio sformalizowanych metod wytwarzania oprogramowania. Poszerzanie
zakresu wspomagania jest pochodną poszerzenia formalizacji metod specyfikacji,
konstruowania i weryfikacji programów.

Niniejszy podręcznik obejmuje w zasadzie tylko logikę klasyczną. W języku polskim
jest wiele bardzo dobrych podręczników logiki, pisanych głównie dla matematyków -
na przykład: [Adamowicz, Zbierski 1991], [Grzegorczyk 1975], [Hunter 1982], [Ra-
siowa 1998], [Słupecki, Hałkowska, Piróg-Rzepecka 1978], Natomiast, poza nielicz­
nymi - na przykład: [Mostowski, Pawlak 1970], [Szałas 1992] - praktycznie nie ma
takich podręczników dla informatyków. Zwraca uwagę fakt, że w ostatnim okresie
powstają różne podręczniki logiki dla informatyków w języku angielskim - na przy­
kład: [Fitting 1990], [Kelly 1997], [Nissanke 1999], [Socher-Ambrosius, Johann
1996]. Jedną z istotnych różnic między tymi dwoma kategoriami podręczników jest
sposób przedstawiania systemów dowodzenia. Dla matematyków zwykle jako pod­
stawowy wybiera się system dowodzenia Hilberta, który dobrze oddaje praktykę do­
wodową „klasycznego” matematyka, natomiast w informatyce większą rolę odgrywają
systemy dowodowe, które - inaczej niż system Hilberta - pozwalają na automatyzo­
wanie procesu dowodzenia. Dlatego w podręczniku omawia się, jako podstawowe
systemy dowodzenia, system sekwentów Gentzena i system oparty na regule rezolucji.

Pierwszy rozdział podręcznika jest ogólnym wprowadzeniem, wyjaśniającym czym
jest logika. Pozostały materiał można podzielić na trzy części. Pierwsza część, obej­
mująca rozdziały od 2. do 6., jest krótką prezentacją elementów teorii mnogości, al­
gebr abstrakcyjnych i języków formalnych. W drugiej części, obejmującej rozdziały
od 7. do 10., omówiono rachunek zdań i kwantyfikatorów - ich składnię, semantykę
oraz związane z nimi systemy dowodzenia oparte na sekwentach Gentzena i zasadzie
rezolucji. W trzeciej części, obejmującej rozdziały 11. i 12., o charakterze informacyj­
nym, omówiono krótko inne systemy dowodzenia. Jest ona przeglądem innych, nie-
klasycznych logik.

10

Prezentacja materiału jest sformalizowana tylko częściowo i odnosi się w zasadzie do
definiowania pojęć oraz do sformułowania i udowodnienia wybranych twierdzeń.
Zwrócono uwagę przede wszystkim na twierdzenia o poprawności i zupełności syste­
mu dowodzenia opartego na rachunku sekwentów Gentzena, dla pozostałych przed­
stawianych systemów dowodzenia ograniczono się tylko do sformułowania odpo­
wiednich twierdzeń.

Do każdego rozdziału są dołączone ćwiczenia. Zebrane tu zadania pochodzą z różnych
źródeł: część stanowi opracowania autora lub współpracowników, część jest zaczerp­
nięta z podręczników przedstawionych w spisie literatury: [Fitting 1990], [Gabbay
1998], [Gerstig 1993], [Kelly 1997], [Marek, Onyszkiewicz 1975], [Nissanke 1999].

W celu czytelnego wyodrębnienia przykładów, wprowadzono w tekście linie rozdzie­
lające na początku i końcu odpowiednich akapitów.

Podręcznik jest przeznaczony w zasadzie dla studentów I roku informatyki na studiach
politechnicznych. Zakres materiału jest jednak nieco szerszy i dlatego mogą skorzy­
stać z niego, jako z lektury uzupełniającej, także studenci lat starszych.

Pragnę podziękować moim Kolegom z Wydziałowego Zakładu Informatyki Politech­
niki Wrocławskiej za pomoc w powstaniu tego podręcznika. Szczególnie gorąco dzię­
kuję profesorowi Iwanowi Tabakowowi oraz doktorowi Zdzisławowi Spławskiemu za
uważną lekturę rękopisu, wskazanie usterek, cenne wskazówki oraz propozycje ulep­
szenia tekstu.

Oddzielne podziękowanie kieruję do profesora Leszka Pacholskiego, który jako re­
cenzent, poza wskazaniem usterek, przedstawił wiele sugestii i wskazówek dotyczą­
cych sposobu prezentacji materiału oraz udostępnił zadania przygotowywane dla stu­
dentów informatyki Uniwersytetu Wrocławskiego.

Niezależnie od wszelkich uwag i sugestii, podręcznik, jak każdy obszerniejszy tekst,
może zawierać przeoczenia bądź nieścisłości. Czytelników, którzy spostrzegą takie
usterki, autor prosi o przekazanie odpowiedniej informacji pocztą elektroniczną na
adres: z.huzar@ci.pwr.wroc.pl.

Zbigniew Huzar

Wrocław, grudzień 2001

mailto:z.huzar@ci.pwr.wroc.pl

1. Elementarne pojęcia logiczne

1.1. Czym jest logika?

Słowo logika' bywa używane przez filozofów, matematyków i w mowie potocznej
w licznych znaczeniach i kontekstach. Długotrwała tradycja terminologiczna określa
logikę jako analizę języka pod kątem jego wykorzystania do:

• definiowania,
• klasyfikowania,
• wnioskowania.

Celem takiej analizy jest podanie reguł posługiwania się językiem, aby był on skuteczny.

Logika pojmowana jako narzędzie poprawnego myślenia, czyli wnioskowania lub ro­
zumowania, była już przedmiotem zainteresowania starożytnych2 [Kotarbiński 1985],
[Murawski 1995]. Drugie jej narodziny przypadają na wiek XIX. Traktowana jako
pomocniczy dział matematyki, wyodrębniła się na początku XX wieku w samodzielną
dyscyplinę matematyki. Obecnie zakres pojęcia logiki jest szeroki i obejmuje trzy od­
rębne dziedziny [Bocheński 1992]:

1 Słowo logika pojawia się po raz pierwszy w tytule dzieła Demokryta (460-371 r.p.n.e.).
2 Problematyka logiczna była rozważana przez Sokratesa (469-399 r.p.n.e.) i Platona (427-347 r.p.n.e.),
ale za pierwszego twórcę systemu logiki uważa się Arystotelesa (384-322 r.p.n.e.).

• logikę formalną,
• metodologię,
• filozofię logiki.

Przedmiotem zainteresowania logiki formalnej są wypowiedzi w danym języku, a dokładniej
to, czy są one prawdziwe czy fałszywe. Daną wypowiedź można oceniać albo jako prawdzi­
wą albo jako fałszywą gdyż żadna wypowiedź nie może być jednocześnie prawdziwa i fał­
szywa. Prawda i fałsz, jako własności wypowiedzi, są zatem podstawowymi pojęciami logiki.
Pojęcie prawdy, chociaż używane powszechnie, nie jest łatwe do określenia. Klasycz­
ne rozumienie prawdy opiera się na związku pomiędzy wypowiedzią a rzeczywisto­

12

ścią, do której dana wypowiedź się odnosi. Ten sens oddają słowa wypowiedziane bli­
sko dwa tysiące lat temu [Turski 1988]:

O każdym bowiem zdaniu rozstrzyga się, że jest prawdziwe, albo że jest fałszywe ze
względu na jego odniesienie do rzeczy, o której zostało orzeczone. Jeżeli bowiem
okazuje się ono zgodne z rzeczą, o której zostało orzeczone, wydaje się prawdziwe,
jeżeli niezgodne -fałszywe.

Zadaniem logiki formalnej jest ustalanie prawdziwości wypowiedzi. Pierwszym zada­
niem jest ustalanie prawdziwości wypowiedzi złożonych na podstawie prawdziwości
wypowiedzi, które stanowią ich składowe. Szczególnym rodzajem są takie wypowie­
dzi złożone, które są zawsze prawdziwe, niezależnie od prawdziwości swoich wypo­
wiedzi składowych. Wypowiedzi takie nazywa się prawami logicznymi. Głównym
zadaniem logiki jest jednak wnioskowanie, czyli badanie tego, co na podstawie dane­
go zestawu prawdziwych wypowiedzi - przesłanek - można sądzić o prawdziwości
innych wypowiedzi. Chodzi tu o wnioskowanie niezawodne, to znaczy takie, które na
podstawie prawdziwych przesłanek gwarantuje zawsze wyprowadzenie prawdziwych
wniosków. Przedmiotem logiki są różnego rodzaju schematy niezawodnego wniosko­
wania, ich formułowanie, porządkowanie i uzasadnianie.

Metodologia zajmuje się stosowaniem logiki do różnych dziedzin [Bocheński 1992],
[Wójcicki 1982]. W praktyce okazuje się, że te same prawa logiczne mogą być stoso­
wane w różny sposób. Inną rzeczą są schematy wnioskowania, a inną przeprowadza­
nie wnioskowania na podstawie tych schematów. Na przykład, znany podział wnio­
skowania na metody dedukcyjne i indukcyjne nie polega na użyciu różnych praw
logiki, lecz na różnym użyciu tych samych praw. Celem metodologii - nie wnikając
w szczegóły - są ogólne sposoby zdobywania i formułowania wiedzy prawdziwej albo
przynajmniej dobrze uzasadnionej.

Filozofia logiki obejmuje analizę podstawowych pojęć logiki [Bocheński 1992], Pró­
buje odpowiadać, na przykład, na pytania: Co to jest prawda? Co to jest prawo lo­
giczne? Skąd wiadomo, że jest ono prawdziwe?

Zakres książki obejmuje tylko logikę formalną, nazywaną inaczej logiką matema­
tyczną lub logiką symboliczną. Logika formalna wprowadza język symbolicznego
zapisu wypowiedzi i określa jak można takim symbolicznym zapisom przypisywać
pewne znaczenie, czyli, w jaki sposób można określać ich semantykę. Zakres wypo­
wiedzi, które można zapisywać w języku logiki formalnej, nie obejmuje oczywiście
wszystkich wypowiedzi, które można sformułować w języku naturalnym. Język lo­
giki formalnej jest natomiast całkowicie wystarczający do przedstawiania i analizy
wypowiedzi dowolnych działów matematyki. Nic w tym dziwnego, gdyż narodziny
współczesnej logiki wiążą się właśnie z potrzebą precyzyjnego sformułowania
i analizy zagadnień z zakresu podstaw matematyki, które pojawiły się pod koniec
XIX i na początku XX wieku. Dlatego logikę formalną określa się niekiedy jako
metamatematykę, czyli jako naukę dostarczającą języka do opisu wszystkich pozo­
stałych działów matematyki.

13

Celem logiki formalnej jest ujęcie procesu rozumowania, albo wnioskowania, w postaci
przekształcania napisów reprezentujących wypowiedzi. Chodzi o to, aby na podstawie pew­
nych napisów, reprezentujących wypowiedzi uznane za prawdziwe, uzyskiwać prawdziwe
wnioski - nowe napisy, reprezentujące nowe, prawdziwe wypowiedzi. Inaczej: chodzi o to,
aby przekształcania napisów reprezentowały niezawodne schematy wnioskowania.
Przekształcanie napisów opiera logika formalna na systemie dedukcyjnym, czyli na
ustalonym zbiorze reguł mechanicznego przekształcania tekstów. Pewne napisy przyj­
muje się za poprawne z założenia. Traktuje się je jako aksjomaty systemu dedukcyjnego.
Inne napisy przyjmuje się za poprawne tylko wtedy, gdy daje się je wyprowadzić z ak­
sjomatów przez stosowanie ustalonych reguł systemu dedukcyjnego. Reguła jest algo­
rytmicznym sposobem przekształcania jednych napisów w inne napisy. Napisy wyprowa­
dzone w wyniku stosowania przyjętych reguł powinny być poprawne nie tylko w sensie
zgodności z przyjętymi regułami przekształcania, ale również powinny być poprawne
w sensie semantycznym, to znaczy powinny być wypowiedziami prawdziwymi.
Logik formalnych jest wiele [Marciszewski 1987], [Marciszewski 1988]. Różnią się
one klasą obiektów, do których odnoszą się wypowiedzi, rodzajami wypowiedzi (np.
wypowiedzi oznajmujące, przypuszczające, pytające, nakazujące) oraz stosowanymi
systemami dedukcyjnymi - systemami wnioskowania. Szczególną rolę - zarówno ze
względu na historię, a także zastosowania - pełni logika klasyczna. Logika klasyczna
jest jądrem wszystkich innych logik formalnych, w tym również różnych specjali­
stycznych logik stosowanych w informatyce.

1.2. Język logiki formalnej

Jak wspomniano, przedmiotem logiki formalnej są wypowiedzi w danym języku,
a dokładniej to, czy są prawdziwe czy fałszywe.
Nie wszystkie wypowiedzi mogą być jednak oceniane jako prawdziwe albo fałszywe.
Nie sposób tak ocenić wypowiedzi rozkazującej czy pytającej, można tak oceniać, co
najwyżej, wypowiedzi oznajmujące, ale nawet co do nich mogą powstawać wątpliwo­
ści. Na przykład, czy wypowiedź:

W 2100 roku bardzo popularnąformą wypoczynku będą wakacje na Marsie.

jest prawdziwa czy fałszywa? Trudno to osądzić, przynajmniej w obecnej dobie. Natomiast
z powodu braku wiedzy histoiycznej nie można stwierdzić, czy prawdziwa jest wypowiedź:

Król Bolesław Chrobry urodził się w poniedziałek.

Wypowiedzi, którym można przypisać prawdziwość albo fałszywość będą nazywane
zdaniami logicznymi. Zdania logiczne mogą być proste, na przykład:

- £
4 °

14

Książka leży na stole.
W programie koncertu jest symfonia Mahlera.

Warto zwrócić uwagę, że tego rodzaju zdania są formułowane w pewnym kontekście
sytuacyjnym i tylko w tym kontekście można rozstrzygać, czy są prawdziwe czy fał­
szywe. W języku naturalnym spotyka się też wypowiedzi, których prawdziwość, na­
wet po ustaleniu kontekstu, może być trudna do określenia. Rozpatrzmy zdania:

On jest dosyć wysokim mężczyzną.
Samochód jechał dosyć wolno.

Powodem trudności w pierwszym zdaniu jest rozumienie zwrotu dosyć wysoki. Czy jest
dosyć wysoki mężczyzna, który ma 180 cm wzrostu, czy dopiero taki, który ma 185 cm?
Podobnie w drugim zdaniu problem stwarza rozumienie zwrotu jechać dosyć wolno.

Ze zdań prostych można budować zdania złożone, na przykład:

Pójdę do kina lub pójdę do teatru.
Jeżeli wykonawcą koncertu będąfilharmonicy berlińscy, to zwalą się tłumy.
W1939 roku Hitler napad! na Czechosłowację i-w roku następnym - na Polskę.

Zdania złożone powstają przez połączenie zdań prostych za pomocą spójników lo­
gicznych. Spójnikami logicznymi (zdaniowymi) są na przykład słowa i zwroty: nie,
lub, i (oraz), jeżeli..., to wtedy i tylko wtedy, gdy
W języku naturalnym zwroty te mają ustalone znaczenie. Poniżej przedstawia się prostą
formalizację uściślającą ich znaczenie. Formalizacja spójników logicznym polega na:

• nadaniu im pewnej symbolicznej notacji,
• przypisaniu im znaczenia w terminach tabel prawdziwościowych.

Zdania będą oznaczane symbolami p, q, r,... Spójniki logiczne będą oznaczane następująco:

• Spójnik nie - nazywany negacją - jest oznaczany symbolem. Negację zdania p
zapisujemy: p.

• Spójnik i (oraz) - nazywany koniunkcją - jest oznaczany symbolem a. Ko-
niunkcję zdań p, q zapisujemy: p a q.

• Spójnik lub - nazywany dysjunkcją lub alternatywą - jest oznaczany symbolem
v. Dysjunkcję (alternatywę) zdań p, q zapisujemy: p v q.

• Spójnik jeżeli..., to ... - nazywany implikacją - jest oznaczany symbolem =>.
Implikację zdań p, q zapisujemy: p=s q.

• Spójnik wtedy i tylko wtedy, gdy - nazywany równoważnością - jest oznaczany
symbolem <=>. Równoważność zdań p, q zapisujemy: p <=> q.

Zapisując zdania złożone w postaci symbolicznej będzie się używać nawiasów, grupując
w odpowiedni sposób zdania składowe. Nawiasy będą opuszczane, gdy przyjmie się na­
stępującą kolejność wiązania spójników (od najsilniejszego do najsłabszego):

—i, a, v, =>, <=>.

15

Zamiast, na przykład:

a q) v (r a 5)) => t

można pisać:

—p a q v r a s t

Ponadto, zakłada się, że spójniki a, v występujące obok siebie łączą w lewo, a spójni­
ki =>, <=> występujące obok siebie łączą w prawo. Na przykład:

p a q a r znaczy (p a 9) a r,
p=> q=s r znaczy p => (q => r).

Prawdziwość zdania złożonego zależy tylko od prawdziwości jego zdań składowych i od
tego, jakim spójnikiem są one połączone. Taką własność nazywa się ekstensjonałnością.

Rolę spójników logicznych daje się prosto wyrazić za pomocą tablic prawdziwościo­
wych - tablica 1.1. Tablica prawdziwościowa jest tabelarycznym zestawieniem
wszystkich wartościowań zdań składowych oraz odpowiadających im wartościowa­
niom zdania złożonego połączonego danym spójnikiem logicznym. W celu zmniej­
szenia rozmiarów tablicy zamiast prawda lub fałsz pisze się symbole P oraz F. Tablica
uściśla znaczenie, które wiąże się ze spójnikami logicznymi w języku naturalnym.

Własność ekstensjonalności, czyli abstrahowanie od wewnętrznych treści zdań skła­
dowych przy ocenie prawdziwości zdań złożonych, może powodować kolizję z po­
tocznym rozumieniem prawdziwości zdań. Typowym przykładem są zdania połączone
spójnikiem implikacji. Zdanie

Jeżeli księżyc ma kształt sześcianu, to dzisiaj mamy dzień rektorski.

uznalibyśmy za bezsensowne. Formalnie jest to zdanie poprawnie zbudowane, a po­
nadto jest to zdanie prawdziwe. Chociaż zdanie dzisiaj mamy dzień rektorski nie musi
być zdaniem prawdziwym, ale fałszywość zdania księżyc ma kształt sześcianu pociąga
prawdziwość całej wypowiedzi. Pojęcie sensowności, do którego często odwołujemy
się w języku naturalnym, nie ma bezpośredniego odpowiednika w języku logiki kla­
sycznej. Wynika to z tego, że język logiki klasycznej jest znacznie uboższy od języka
naturalnego, jest tylko pewnym jego przybliżeniem.

Zdania logiczne są wypowiedziami, którym - w danym kontekście wypowiedzi - jed­
noznacznie przypisuje się prawdziwość lub fałsz. Znane są też inne rodzaje wypowie­

16

dzi, którym prawdziwość lub fałsz można przypisać dopiero po dodatkowych uściśle­
niach dotyczących elementów wypowiedzi. Na przykład o prawdziwości zdania:

Mężczyzna jest wyższy od kobiety.

można jednoznacznie wypowiedzieć się dopiero wtedy, gdy wiadomo, o którego męż­
czyznę i o którą kobietę chodzi. Mężczyzna i kobieta stanowią tu argumenty wypo­
wiedzi. Wskazując na konkretnego mężczyznę i na konkretną kobietę, można stwier­
dzać o prawdziwości lub fałszu tego zdania.

Zdania tego rodzaju nazywa się funkcjami zdaniowymi albo formami zdaniowymi.
Można je traktować jako pewien sposób wyrażania własności elementów pewnego
zbioru. Zdania takie będą zapisywane P(a), gdzie a jest argumentem wypowiedzi.

Funkcji zdaniowych często używa się w powiązaniu z charakterystycznymi zwrotami,
na przykład:

Możliwe, że zachodzi P(a).
Dla każdego elementu a ze zbioru A zachodzi P(a).

Pierwszy ze zwrotów to rodzaj zwrotu modalnego. Taki zwrot występuje, na przykład,
w zdaniach:

Możliwe, że Piotr wypożyczył już potrzebną mu książkę.
Możliwe, że prezes spóźni się na spotkanie.
Możliwe, że w 2100 roku bardzo populamąjbrmą wypoczynku będą wakacje na Marsie.

Drugi ze zwrotów to rodzaj zwrotu kwantyfikacyjnego. Przykłady wypowiedzi z tym
zwrotem:

Każdy student otrzymuje indeks.
Każdy dorosły ponosi pełną odpowiedzialność za swoje czyny.

Dalej zajmiemy się głównie zwrotami kwantyfikacyjnymi. Będą rozważane tylko dwa
zwroty:

Dla każdego elementu a zachodzi P(a).
Istnieje element a, dla którego zachodzi P(a).

Pierwszy zwrot jest nazywany kwantyfikacją ogólną, a drugi - kwantyfikacją szcze­
gółową albo egzystencjalną. Istniejąjeszcze inne rodzaje zwrotów kwantyfikacyjnych,
które nie będą rozważane, na przykład:

Dla większości elementów a ze zbioru A zachodzi P(a).
Dla nieskończenie wielu elementów a ze zbioru A zachodzi Pia).

Jeżeli symbolem P(a) oznaczyć funkcję zdaniową, której dla ustalonego elementu a ze
zbioru A można w jednoznaczny sposób przyporządkować prawdę albo fałsz, to wy­
powiedź z kwantyfikatorem ogólnym dla P(a) zapisuje się symbolicznie w postaci:

17

^Ja^A • P(a),

a wypowiedź z kwantyfikatorem szczegółowym w postaci:

3aeA • P(a).

Uwaga

Oprócz wprowadzonej, używa się również innych notacji na wypowiedzi z kwan-
tyfikatorami, na przykład:

Va&A.P(a) VaeA:P(a) WazA^a) A P(a)
aeA

BazA.Pęa) ziaeA:P(d) (3azA)P(a) y P(a)
aeA

1.3. Wnioskowanie

Logika formalna zajmuje się schematami wnioskowania, które pozwalają na to, aby na
podstawie prawdziwości jednych wypowiedzi - przesłanek - wnioskować o prawdzi­
wości innych wypowiedzi - wniosków. Historycznie najstarsze schematy wnioskowa­
nia, nazywane sylogizmami, pochodzą od Arystotelesa.

Przykładem wnioskowania opartego na jednym z sylogizmów jest następujące rozu­
mowanie:

Wszyscy bogowie greccy są zazdrośni.
Zeus jest greckim bogiem.
Zatem: Zeus jest zazdrosny.

Dwa pierwsze zdania są tu przesłankami, a ostatnie - wnioskiem (konkluzją).

Ogólnie, schemat wnioskowania można przedstawić w postaci „ułamka”, w którego „liczni­
ku” będą zapisywane przesłanki, a w „mianowniku” będą zapisywane wnioski. Rozpatrzmy
kilka schematów wnioskowań, które można odnieść do wielu codziennych sytuacji.

Znanym schematem jest modus ponendo ponens mający postać:

P=^Q
P
q

gdzie p oraz q oznaczają dowolne wypowiedzi.

Na podstawie takiego schematu wnioskuje się na przykład:

18

Jeżeli dzisiaj jest niedziela, to jutro jest poniedziałek
Dzisiaj jest niedziela.

Jutro jest poniedziałek.

Schemat ten jest niezawodny, co oznacza, że jeżeli przesłanki są prawdziwe, to także
prawdziwy jest wyprowadzony na ich podstawie wniosek.

Inny przykład również niezawodnego schematu wnioskowania to modus ponendo
tollens:

Albo p, albo q

P

Zwrot albo ..., albo ... nie był wcześniej omówiony. Zgodnie z potocznym rozumie­
niem zdanie złożone postaci albo p, albo q jest prawdziwe tylko wtedy, gdy jest praw­
dziwe dokładnie jedno ze zdań składowych p, q.

Przykład wnioskowania:

Albo pójdę do kina, albo pójdę do teatru.
Pójdę do kina.

Nie pójdę do teatru.

Jeszcze inny przykład niezawodnego schematu wnioskowania to modus tollendoponens:
pvq

~^P
q

W oparciu o ten schemat wnioskuje się w przykładzie:

Pójdę do kina lub pójdę do teatru.
Nie pójdę do kina.

Pójdę do teatru.
Często korzysta się ze schematów wnioskowania nazywanych sylogizmem warunko­
wym. Przykładem jest schemat:

p^ą

q^
P^r

Schematy wnioskowania, którymi zajmuje się logika formalna, są w pewien sposób
ograniczone. Nie biorą pod uwagę treści, lecz tylko prawdziwość zdań. Dlatego me­
chaniczne stosowanie przedstawionych schematów wnioskowania, jeżeli nie wnika się
w treść zdań, może prowadzić do absurdalnych wniosków. Jako przykład posłuży na­
stępujące rozumowanie: Niech będą dane dwie wypowiedzi:

19

Jeżeli Cezar pozostanie w domu, to Cezar nie zostanie zabity przez spiskowców.

oraz

Jeżeli Cezar nie zostanie zabity przez spiskowców, to Cezar wygłosi przemówienie
w Senacie.

Wprowadźmy oznaczenia. Niech:

p oznacza: Cezar pozostanie w domu.
q oznacza: Cezar nie zostanie zabity przez spiskowców.
r oznacza: Cezar wygłosi przemówienie w Senacie.

Przy tych oznaczeniach, wnioskowanie oparte na schemacie sylogizmu warunkowego
przebiega następująco. Na podstawie przesłanek p => q oraz q => r otrzymuje się
wniosek p=> r, czyli:

Jeżeli Cezar pozostanie w domu, to Cezar wygłosi przemówienie w Senacie.

Wniosek ten jest całkowicie sprzeczny ze zdrowym rozsądkiem. Wynika to z tego, że
w zastosowanym schemacie wnioskowania uwzględnia się tylko prawdziwość prze­
słanek, a nie uwzględnia treściowego powiązania przesłanek i konkluzji: pozostawanie
w domu w pewnym okresie wyklucza przebywanie w Senacie w tym samym okresie
i, tym samym, wygłoszenie tam przemówienia.
Fakt, że zdanie jest wynikiem zastosowania pewnego schematu wnioskowania do in­
nych zdań-przesłanek nazywa się konsekwencją dowodową {składniową). W rozpa­
trywanym przykładzie wyraża się to zapisem:

{p=^ q,q=^ r}\-p=> r

Ogólnie, jeżeli {p\, ..., pn} jest pewnym zbiorem zdań-przesłanek, zaś q jest zdaniem,
które wyprowadzono z tego zbioru na podstawie jedno- lub wielokrotnego stosowania
pewnych schematów wnioskowania, to zapisuje się to w postaci:

[pi, ...,p„}hq

Symbol n nazywa się symbolem konsekwencji składniowej. Powyższy zapis czyta się:
<7 jest konsekwencją składniową zbioru zdań {p{, ...,p„}.

Rozpatrzmy teraz rozumowanie, który nie opiera się na przedstawionych schematach
wnioskowania. Niech dany będzie przykład:

Jeżeli znany pianista da recital, to przyjdą tłumy, gdy ceny biletów nie będą zbyt
wygórowane.
Jeżeli znany pianista da recital, to ceny biletów nie będą zbyt wygórowane.
Zatem: Jeżeli znany pianista da recital, to przyjdą tłumy.

W pierwszym z powyższych zdań występuje zwrot gdy. Zgodnie z potocznym rozu­
mieniem, zdanie złożone postaci p gdy q jest równoważne zdaniu jeżeli q, to p.

20

Czy jeżeli przesłanki są prawdziwe, to czy prawdziwa jest również konkluzja? Wpro­
wadźmy oznaczenia. Niech:

p oznacza: Znany pianista da recital.
q oznacza: Przyjdą tłumy.
r oznacza: Ceny biletów będą zbyt wygórowane.

Przy tych oznaczeniach, nasze wnioskowanie ma postać:

P => => q)
p => —tr
Zatem: p=> q

Można przytoczyć dwa sposoby uzasadnienia poprawności wnioskowania. Pierwszy
sposób można zilustrować tablicą prawdziwościową-tablica 1.2. Podobnie jak w po­
przedniej tablicy, zamiast prawda i fałsz pisze się P i F.

Tablica 1.2

P 9 r —ir ->r=*q p=>-ir P=^r =s q)) p^g
1 F F F p F p P p
2 F F P F P p P p
3 F P F P P p P p
4 F P P F P p P p
5 P F F P F p F F
6 P F P F P F P F
7 P P F P P P P P
8 P P P F P F P P

Sposób uzasadniania jest tu następujący: skoro wnioskowanie ma być niezawodne,
to konkluzja ma być prawdziwa zawsze wtedy, gdy prawdziwe są przesłanki. Wy­
starczy rozpatrzyć wszystkie wartościowania zdań prostych p, q, r, przy których
prawdziwe są zdania złożone stanowiące przesłanki, i sprawdzić, czy przy tych
wartościowaniach prawdziwe jest również zdanie stanowiące konkluzję. Przypadki
takich wartościowań reprezentują wiersze 1, 2, 3, 4 i 7 w tablicy 1.2. Analiza tych
przypadków potwierdza poprawność wyprowadzonego wniosku.

Tablica 1.3

P r —ir ^r=sq P=^r => q)) p=>^r p^>q 9)
(p=*(.->r => q))

A-<p=sq)
1 F F F p F P p p F F
2 F F P F P P p p F F
3 F P F P P P p p F F
4 F P P F P P p p F F
5 P F F P F F p F P F
6 P F P F P P F F P F
7 P P F P P P P P F F
8 P P P F P P F P F F

21

Drugi sposób opiera się na następującym rozumowaniu nie wprost: Jeżeli założyć, że
nasz wniosek jest poprawny, to czy jest możliwe, aby jednocześnie były prawdziwe
przesłanki i negacja konkluzji? Inaczej, czy zdanie:

(P ^ (—'^ ^ ?)) A (p => —ir) a-< p => q)

może być prawdziwe dla dowolnych wartościowań zdań prostych p, q, rl Okazuje się,
co pokazuje tablica 1.3, że przy wszystkich wartościowaniach zdanie to jest fałszywe.
Nie może być tak, że jednocześnie są prawdziwe przesłanki i negacja konkluzji. Za­
tem nie jest możliwe, aby zdania stanowiące przesłanki mogły być niezgodne ze zda­
niem stanowiącym konkluzję.

Oba sposoby nie polegały na tekstowym przekształcaniu przesłanek, ale opierały się
na analizie znaczenia zdań, dokładniej na analizie ich prawdziwości. Oba sposoby
potwierdziły, że konkluzja jest logiczną (semantyczną) konsekwencją zbioru przesła­
nek. Fakt ten, w odniesieniu do przykładu, zapisuje się w postaci:

{p => (r>r ^q\p^ k p => q

Ogólnie, jeżeli {pi, pn} jest pewnym zbiorem zdań-przesłanek, zaś q jest jego lo­
giczną konsekwencją, wtedy zapisuje się to w postaci:

{pi, -,p„} t=q

Symbol |= nazywa się symbolem konsekwencji semantycznej. Powyższy zapis czyta
się: <7 jest konsekwencją semantyczną zbioru zdań {pb ...,p„}.

Mając pojęcia konsekwencji składniowej i konsekwencji semantycznej, można spre­
cyzować niezawodność schematów wnioskowania. Schemat wnioskowania jest nie­
zawodny (albo poprawny), gdy dla dowolnego zbioru zdań {pi, ...,pn] oraz zdania q,
jeżeli

{Pi, ..,P„M

to

{pi, ...,p„) t=q

Inaczej: schemat wnioskowania jest niezawodny, gdy dla dowolnego zbioru przesła­
nek konsekwencja składniowa pociąga konsekwencję semantyczną.

Schemat wnioskowania, który nie jest niezawodny, jest praktycznie bezużyteczny.
Wszystkie przedstawiane wcześniej schematy są schematami niezawodnymi (po­
prawnymi), natomiast zawodnym schematem wnioskowania jest przykładowo sche­
mat postaci:

p=*q
Q

22

Aby to stwierdzić, wystarczy rozpatrzeć wartościowanie, w którym obie wypowiedzi
p oraz q są fałszywe. Przy takim wartościowaniu przesłanka schematu p => q jest
prawdziwa, ale wniosek q jest fałszywy.

1.4. Indukcja matematyczna

Zasada indukcji matematycznej jest jednym z bardziej użytecznych schematów wnio­
skowania. Bezpośrednio odnosi się ona do badania własności wyrażanych w termi­
nach liczb naturalnych, czyli do własności postaci P(n), gdzie neNat. Zasady indukcji
opiera się na prostej obserwacji, że cały zbiór liczb naturalnych można uporządkować
zaczynając od 0, a następnie można przechodzić do kolejnych liczb przez dodawanie
1. Z obserwacji tej wynika, że udowodnienie, iż pewna własność P(n) zachodzi dla
każdej liczby naturalnej n wymaga pokazania, że zachodzi ona dla n = 0, oraz że za­
chodzi P(n+1), gdy zachodzi P(n). Zatem, czy zachodzi P(0) wymaga bezpośredniego
zbadania, natomiast P(l) zachodzi, ponieważ zachodzi P(0), podobnie P(2) zachodzi,
ponieważ zachodzi P(1) itd.

Definicja 1.1 (Zasada indukcji matematycznej)

Niech P(n) będzie pewną własnością która odnosi się do liczby naturalnej n. Aby
pokazać, że własność P(n) zachodzi dla każdej liczby naturalnej neNat, wystarczy
pokazać, że:

krok początkowy: P zachodzi dla n = 0, czyli zachodzi P(0),
krok indukcyjny: jeżeli zachodzi P(n), to również zachodzi P(n+1).

Dowodzenie zgodnie z zasadą indukcji składa się z dwóch kroków. Krok początkowy
wymaga zbadania zachodzenia własności P dla n = 0. Drugi krok wymaga udowod­
nienia implikacji: jeżeli P(n), to P(n+1). Założenie P(n) w tej implikacji nazywa się
hipotezą indukcyjną.

Przykład 1.1I---------------- -- -- - ---_ _ ,
Niech P(n) oznacza własność, że 2" > n . Własność ta nie zachodzi dla wszystkich
liczb naturalnych, ale zachodzi dla n > 5.
Łatwo sprawdzić, że zachodzi P(5), gdyż 25 > 52.
Jeżeli zachodzi P(n) oraz n > 5, to zachodzi również P(n+1).
Istotnie, jeżeli 2"> n2, to, że 2"+l > (n+1)2 wynika z następującego wnioskowania:

2"+1 =2x2"
> 2n2 - na mocy hipotezy indukcyjnej, że 2" > n2

23

> n' + 5n - na mocy założenia, że n > 5
= n2 + 2n + 3n
> n2 + 2n + 1 - własność trywialna: 3n > 1 dla n > 1
।= (n + l)2 j

Czasem własności, o których się sądzi, że dadzą się łatwo udowodnić metodą induk­
cji, mogą okazać się niemożliwe do bezpośredniego wykorzystania zasady indukcji.
Ilustruje to przykład.

Przykład 1.2n -■- ----------- - ; i
Należy pokazać, że suma n początkowych liczb nieparzystych jest kwadratem
pewnej liczby naturalnej, to znaczy, że dla każdej liczby naturalnej n istnieje taka
liczba naturalna k, że

(=0

Dla n = O własność P(0) zachodzi trywialnie dla k = 1. Załóżmy teraz, że istnieje
k>] takie, że zachodzi powyższy wzór. Wówczas

n
£(2i + l)=^(2z + l)+(2n + l)=/:2 + 2n + l
1=0 /=0

Niestety, nie ma gwarancji, że wyrażenie I'2+2n+l jest kwadratem pewnej liczby
naturalnej i tym samym nie można dowodu kontynuować. Może to sugerować, że
indukcja jest zbyt słabym schematem dla dowodzenia tego typu własności. Tak
jednak nie jest. Należy zauważyć, że gdyby w rozważanym wyrażeniu przyjąć, że k
= n, wówczas zachodziłaby równość:

k2 +2n + 1 = n +2n + 1 = (n + l)2

Obserwacja ta sugeruje rozważenie mocniejszej własności, mianowicie:

i=0

। Jej udowodnienie metodą indukcji jest już proste i pozostawia się je Czytelnikowi. ।

Udowodnienie pewnych własności wymaga silniejszej formy indukcji. Mianowicie,
w indukcyjnym kroku, aby udowodnić P(n+1) wymaga się założenia, że nie tylko za­
chodzi P(n), ale również, że zachodząP(l) P(n-1).

Definicja 1.2 (Zasada indukcji matematycznej - silna forma)

Niech P(ri) będzie pewną własnością, która odnosi się do liczby naturalnej n. Aby pokazać,
że własność P{n) zachodzi dla każdej liczby naturalnej n^Nat, wystarczy pokazać, że:

24

krok początkowy: p zachodzi dla n = 0, czyli zachodzi P(0), oraz
krok indukcyjny: zachodzi P(n+1), gdy zachodzi Pik) dla każdego k = 0,n.

Przykład 1.3r ~. i
Należy pokazać, że każda liczba naturalna n > 2 jest iloczynem liczb pierwszych.
Oczywiście własność ta zachodzi dla n = 2. Dalej, załóżmy, że własność ta zacho­
dzi dla pewnego n > 2. Na tej podstawie należy pokazać, że zachodzi ona również
dla n+1. Jeżeli n+1 jest liczbą pierwszą, to własność jest oczywiście prawdziwa.
W przeciwnym razie, gdy n+1 nie jest liczbą pierwszą, oznacza to, że n+1 może
być wyrażone jako iloczyn km dwóch liczb, gdzie 2 < k < n oraz 2 < m < n. Na mo­
cy hipotezy indukcyjnej, liczby k oraz m są iloczynami liczb pierwszych. Zatem

। n+1 wyraża się również jako iloczyn liczb pierwszych. j

W przykładzie nie wykorzystuje się bezpośrednio hipotezy indukcyjnej dla n, ale dla
pewnej liczby k mniejszej od n+1. Ogólnie może zachodzić potrzeba wykorzystania
wielu takich liczb.

1.5. Logika w informatyce

Logika klasyczna znajduje w informatyce szerokie zastosowanie. W pierwszej kolej­
ności dostarcza ona języka do przedstawiania i badania własności modeli informa­
tycznych, w tym systemów komputerowych i języków programowania. Szczególną
rolę odegrała logika w formowaniu pojęcia algorytmu i obliczalności [Arbib 1968],
[Davis, Hersh 1994], [Mostowski, Pawlak 1970], [Penrose 1996].

Oprócz logiki klasycznej są wykorzystywane logiki specjalne przeznaczone, na przy­
kład, do specyfikacji oprogramowania, a także jako języki programowania.

Ważną rolę w informatyce odgrywają różnego rodzaju logiki nieklasyczne, między
innymi w systemach eksperckich (doradczych). Zadaniem takich systemów jest
wspomaganie człowieka przy podejmowaniu decyzji, na przykład postawienie przez
lekarza diagnozy o stanie zdrowia pacjenta na podstawie wyników badań. Proces
podejmowania decyzji opiera się w takich przypadkach na informacji niepewnej lub
niepełnej, a wnioski z przeprowadzonego wnioskowania nie muszą być niezawodne.

Oto wybrane działy informatyki, w których logika znajduje bezpośrednie zastoso­
wanie:

• Specyfikacja i weryfikacja programów - np. [Bicaregui, Fitzgerald, Lindsay
1994], [Dembiński, Matuszyński 1981], [Shepard 1995].

25

Formuły logiczne służą do wyrażenia tego, co program ma obliczać, czyli do wy­
rażania specyfikacji programu. Stwierdzenie czy dany program oblicza to, co
powinien, czyli czy spełnia zadaną specyfikację, polega na odpowiednim mani­
pulowaniu na tekście formuł specyfikacji i na tekście programu. Inaczej: stwier­
dzanie poprawności programu względem danej specyfikacji polega na przepro­
wadzeniu dowodu w odpowiedniej logice programów.

• Przetwarzanie rozproszone, współbieżność i sterowanie - np. [Apt, Olderog
1991],

Odpowiednie formy logiki zostały opracowane w celu wyrażania i wnioskowania
o zjawiskach, które występują w przestrzeni i mają trwanie w czasie. Są one wy­
korzystywane, na przykład, do wnioskowania o współpracy pomiędzy mobilnymi
równoległymi procesami.

• Zarządzanie bazami wiedzy - np. [Bole, Borodziewicz, Wójcik 1991], [Tyugu
1989],

Zadaniem odpowiednich logik jest umożliwienie udzielenia odpowiedzi na pyta­
nia kierowane do bazy wiedzy. Udzielanie odpowiedzi na pytania sprowadza się
do zbadania czy jest ono konsekwencją semantyczną nagromadzonej wiedzy.

• Projektowanie układów logicznych - np. [Harrison 1973].

Projektowanie układów elektronicznych komputerów, na przykład układów sca­
lonych, spowodowało powstanie specjalistycznych logik, między innymi logik
wielowartościowych i progowych.

• Systemy ekspertowe, planowanie i sztuczna inteligencja - np. [Bole, Borodzie­
wicz, Wójcik 1991], [Banerji 1990], [Bubnicki 1990], [Huzar, Kurzyński, Sas
1994],

Dział ten wykształcił nową grupę logik, których istotą jest prowadzenie wnio­
skowania w warunkach informacji niepełnej lub niepewnej.

• Przetwarzanie języka naturalnego (lingwistyka informatyczna) - np. [Carnap
1990], [Marciszewski 1987].

W celu automatycznej analizy tekstu, czy też automatycznego przekładu z jedne­
go języka na inny, powstały różne logiki służące głównie wyrażaniu znaczenia
tekstu.

• Programowanie logiczne-np. [Kowalski 1989], [Wójcicki 1991],

Język logiki może być traktowany bezpośrednio jako język programowania. To,
co w podejściu klasycznym jest logiczną specyfikacją programu - przy zachowa­
niu pewnych ograniczeń - może być interpretowane jako wykonywalny program.

26

Ćwiczenia

1. Które z wypowiedzi są zdaniami lub funkcjami zdaniowymi:

a) Księżyc jest zrobiony z żółtego sera.
b) On faktycznie jest wysokim mężczyzną.
c) Słońce krąży dookoła Ziemi.
d) W ciągu wieków składniki te uformowały rafy.
e) Niech żyje przyjaźń między narodami!
f) Dwa jest łiczbą parzystą.
g) Która drużyna zdobędzie mistrzostwo kraju w piłce nożnej?
h) Oczekuje się, że w przyszłym roku obroty na giełdzie znacznie wzrosną.
i)?-4 = 0.
j) Długi honorowe nałeży spłacać w ciągu 24 godzin.
k) Mężczyzna jest wyższy od kobiety.
1) Należy raczej zapobiegać niż leczyć.
m) Kalifornię co roku nawiedza trzęsienie ziemi o sile 7 stopni w skali Richtera.
n) Król Jagiełło był raczej wysokim mężczyzną.

2. Jaką wartość logiczną mają zdania:

a) 8 jest liczbą nieparzystą lub 6 jest liczbąparzystą.
b) 8 jest liczbą nieparzystą oraz 6jest liczbąparzystą.
c) Jeżeli 8jest liczbą nieparzystą, to 6jest liczbąparzystą.
d) Jeżeli 8 jest liczbą nieparzystą oraz 6 jest liczbąparzystą to 6 jest większe od 8.

3. Które ze zdań jest negacją danego zdania:

a) Wynikiem obliczeń jest 2 albo 3.
(i) Wynikiem nie jest ani 2, ani 3.
(ii) Wynikiem nie jest 2 lub nie jest 3.
(iii) Wynikiem nie jest 2 i nie jest 3.

b) Ogórek jest zieloną rośliną nasienną.
(i) Ogórek nie jest zielony, ale jest rośliną nasienną.
(ii) Ogórek nie jest zielony lub nie jest rośliną nasienną.
(iii) Ogórek nie jest zielony i nie jest rośliną nasienną.

4. Wskaż poprzednik i następnik implikacji w zdaniach:

a) Pomyślny wzrost roślin jest uwarunkowany prawidłowym nawadnianiem.
b) W przypadku modyfikacji programu pojawią się w nim błędy.
c) Błędy w programie pojawią się tyłko w przypadku jego modyfikacji.
d) Oszczędność energii jest związana z dobrą izolacją ścian i szczelnością okien.

27

5. W podanych zdaniach złożonych rozpoznaj zdania proste i łączące je spójniki:

a) Edmund Hillary i Tenzing Norgay są pierwszymi zdobywcami Mont Everestu.
b) Indochiny leżą w strefie tropikalnej i mają gorące lata, ale zimy w części pół­

nocnej są chłodne.
c) Niezależnie od tego, jak wysoko skaczesz, księżyca nie osiągniesz, chyba że pole­

cisz tam rakietą.

6. Rozpatrz następujące wnioskowanie oparte o sylogizm warunkowy:

Jeżeli dzisiaj jest wtorek, to jutro jest środa.
Jeżeli dzisiaj jest środa, to jutro jest czwartek.
Zatem: Jeżeli dzisiaj jest wtorek, to jutro jest czwartek.

Wyjaśnić przyczyny paradoksalnego wniosku.

7. Oto fragment raportu policji sporządzonego przez młodego aspiranta:

Świadek nie był zastraszony lub też, jeśli Henry popełnił samobójstwo, to testa­
ment odnaleziono. Jeśli świadek był zastraszony, to Henry nie popełnił samo­
bójstwa. Jeśli testament odnaleziono, to Henry popełnił samobójstwo. Jeśli
Henry nie popełnił samobójstwa, to testament odnaleziono.

Co komendant policji może wywnioskować z powyższego raportu (poza oczywi­
stym faktem, że należy zwolnić aspiranta)? Odpowiedz na pytania:

Czy świadek był zastraszony?
Czy Henry popełnił samobójstwo?
Czy testament odnaleziono?

8. Pośród członków pewnego klubu lingwistycznego każdy uczy się francuskiego,
niemieckiego lub hiszpańskiego. Wiadomo, że 20 uczy się francuskiego, 12 francu­
skiego i hiszpańskiego, 16 niemieckiego, 16 hiszpańskiego, 4 francuskiego i nie­
mieckiego, 7 niemieckiego i hiszpańskiego, 3 wszystkich trzech języków. Ilu
członków liczy klub? Ilu z nich uczy się dokładnie dwóch języków?

9. Oto przykłady wnioskowań przez indukcję:

a) Pokażę, że wszystkie liczby naturalne są parzyste. Oczywiście 0 jest liczbą pa­
rzystą. Niech n będzie dowolną liczbą naturalną i załóżmy, że dla wszystkich k
< n, £ jest parzyste. Niech ni i n2 będzie dowolnym rozbiciem liczby n na sumę
liczb mniejszych (tzn. n = ni + nj). Ponieważ ni oraz n2 są mniejsze od n, ni i n2
są parzyste a więc n jest parzyste jako suma dwóch liczb parzystych.

b) Pokażę, że wszystkie dodatnie liczby naturalne są nieparzyste. Oczywiście 1 jest
liczbą nieparzystą. Niech n będzie dowolną liczbą naturalną i załóżmy, że dla
wszystkich k < n, Z; jest nieparzyste. Niech 1, ni i n2 będzie dowolnym rozbi­
ciem liczby n na sumę trzech liczb mniejszych (tzn. n = ni + n2 + 1). Ponieważ

28

«i oraz ni są mniejsze od n, rą i n? są nieparzyste, a więc n jest parzyste jako
suma dwóch liczb nieparzystych i liczby 1.

c) Pokażę, że wszystkie proste na płaszczyźnie są równoległe. Rozważmy jednoelemen-
towy zbiór prostych na płaszczyźnie. Oczywiście wszystkie proste należące do tego
zbioru są do siebie równoległe. Załóżmy, że w każdym n-elementowym zbiorze pro­
stych wszystkie proste są do siebie równoległe. Rozważmy teraz n + 1 elemen­
towy zbiór prostych. Ustalmy w nim jedną prostą p. Na mocy założenia induk­
cyjnego wszystkie pozostałe n prostych są do siebie równoległe. Ustalmy teraz
inną prostą q. Na mocy założenia indukcyjnego wszystkie pozostałe n prostych
są również do siebie równoległe. Ponieważ relacja równoległości prostych jest
przechodnia, wszystkie n + 1 proste są równoległe. Na mocy zasady indukcji
matematycznej każdy zbiór prostych na płaszczyźnie zawiera wyłącznie proste
równoległe. Dotyczy to zbioru wszystkich prostych na płaszczyźnie.

Które z tych rozumowań jest poprawne? Wskaż błędy popełnione w błędnym ro­
zumowaniu.

10. Rozważyć uogólnienie problemu przedstawionego w przykładzie 1. Dla jakich
liczb naturalnych n, k zachodzi nierówność: 2" > n ?

11. Przeanalizuj prawdziwość zdania: To, co mówię w tej chwili, jest kłamstwem.

12. Oto rozmowa czterech krasnoludków A, B, C oraz D, z których każdy zawsze
mówi prawdę albo zawsze kłamie.

A mówi do B: Jesteś kłamcą.
C mówi do A: Ty sam jesteś kłamcą.
D mówi do C:Oni obaj są kłamcami. I ty także jesteś kłamcą.

Który z nich mówi prawdę?

2. Elementarne pojęcia mnogościowe

2.1. Zbiór i element zbioru

Podstawą wszelkiej komunikacji pomiędzy ludźmi, a także pomiędzy ludźmi i kom­
puterami, jest język, który używa wspólnie ustalonych symboli i jednoznacznie
skojarzonych z nimi pojęć. Symbole służą do reprezentacji pojęć. Mogą one mieć
różną postać - mogą to być dźwięki, obrazy, znaki graficzne. Każdy symbol powi­
nien reprezentować pojęcie, które jest jednakowo rozumiane przez obiekty uczestni­
czące w komunikacji. Wprowadzenie języka wymaga zdefiniowania odpowiedniego
zestawu symboli oraz zdefiniowania przypisywanego im znaczenia. Z wprowadza­
niem nowego języka wiąże się pewien problem: definicje elementów języka wyma­
gają opisu, wyrażanego w pewnym innym języku. Oznacza to, że przed wprowadze­
niem pewnego języka należy dysponować innym językiem służącym do opisu
nowego języka. W celu odróżnienia tych języków, język definiowany nazywa się
językiem przedmiotowym, krótko językiem, a język służący do opisu języka przed­
miotowego nazywa się metajęzykiem.

Elementy języka formalnego (symbolicznego) zawierają pojęcia odnoszące się do
dwóch obszarów - obszaru teorii mnogości i logiki. Elementy tego języka wyjaśnia
się w języku naturalnym. Język naturalny odgrywa tu rolę metajęzyka. Oczywiście,
z języka naturalnego wykorzystuje się tylko te pojęcia, co do których nie ma wątpli­
wości interpretacyjnych. Sytuacja jest podobna do tej, z którą spotyka się studiując na
przykład encyklopedię. Encyklopedia służy wyjaśnianiu pewnych pojęć-haseł i czyni
to za pomocą innych pojęć-haseł, o których zakłada się, że powinny być powszechnie
znane i jednoznacznie zrozumiałe. Czasem wprawdzie jest tak, że w wyjaśnianiu pew­
nych haseł występują inne hasła, ale w odniesieniu do encyklopedii jako całości
przyjmuje się, że istnieje pewien zestaw pojęć pierwotnych, których encyklopedia
używa, ale ich nie wyjaśnia i które uważa się za powszechnie zrozumiałe. Postępowa­
nie takie nie jest całkowicie ścisłe i czasem może być źródłem niejednoznaczności lub
nawet sprzeczności, ale praktycznie - w większości przypadków - pozwala na wpro­
wadzanie i wyjaśnianie potrzebnych pojęć.

30

Obszar teorii mnogości i logiki silnie przenikają się ze sobą. Formułując pojęcia
należące do obszaru teorii mnogości korzysta się z pojęć logicznych, ale też i od­
wrotnie - formułowanie własności logiczne wymaga odwołania się do pojęć mnogo­
ściowych. Dlatego można spotkać się z dwoma podejściami do opisu logiki klasycz­
nej. Pierwsze podejście polega na przyjęciu pewnych elementów teorii mnogości
i wyprowadzaniu na ich podstawie pojęć logicznych. Drugie podejście, odwrotnie,
polega na przyjęciu podstawowych pojęć logicznych i na wyprowadzaniu na ich
podstawie pojęć mnogościowych. W książce przyjęto pierwsze podejście - przed
pełnym opisem pojęć logicznych wyjaśnia się elementarne pojęcia z zakresu teorii
mnogości.

Do podstawowych pojęć mnogościowych zalicza się:

• pojęcie zbioru,
• pojęcie elementu zbioru,
• pojęcie należenia bądź nie należenia elementu do zbioru.

Pojęcie zbioru - intuicyjnie zrozumiałe - okazało się bardzo trudne do precyzyjnego
zdefiniowania. Poprzestaniemy tu na intuicyjnym albo naiwnym rozumieniu zbioru, tak
jak czynił to w XIX wieku Cantor3 - twórca teorii mnogości, który zbiór określał jako:

3 Georg Cantor (1845-1918).

ujęcie w całość określonych, dobrze wyróżnionych obiektów, zwanych elementami zbioru.

W określeniu tym nie wskazuje się, czym mogą być elementy zbioru. Podane określe­
nie zbioru nie jest precyzyjne, gdyż przy próbie odpowiedzi na pewne pytania mogą
pojawić się sprzeczności. Próby uściślenia pojęcia zbioru prowadziły do powstania
sformalizowanej teorii mnogości.

Należy podkreślić, że w podanym określeniu kładzie się akcent na rozróżnialność
elementów zbioru. Nie określa się natomiast jak osiągać tę rozróżnialność, czy, na
przykład, przez jednoznaczną identyfikację elementów, czy przez określenie unikal­
nych ich własności. Oznacza to jednak, że mając dwa elementy potrafi się stwierdzić
czy są one identyczne czy różne.

Jeżeli symbolem A oznacza się pewien zbiór oraz symbolem a oznacza się pewien
element, to zapis aeA czyta się: a jest elementem zbioru A, natomiast zapis a£A czyta
się: a nie jest elementem zbioru A.

Jeżeli aeA oraz be A, to zapisuje się to skrótowo: a, be A.

Na ogół zbiory będziemy oznaczać napisami zaczynającymi się dużymi literami lub
pojedynczymi literami greckimi, a elementy zbiorów odpowiednimi małymi literami
z ewentualnymi indeksami.

31

Pewne zbiory przyjmuje się jako znane. Będą to zbiory: liczb naturalnych Nat, liczb cał­
kowitych Całkowite, liczb wymiernych - Wymierne, liczb rzeczywistych - Rzeczywiste.

Szczególnym zbiorem jest zbiór pusty - zbiór, który nie ma żadnego elementu. Będzie
on oznaczany symbolem 0. Zbiór zawierający tylko jeden element nazywa się sin-
gletonem.

W celu wyeliminowania pewnej klasy paradoksów (patrz dalej - paradoks Russella),
które mogą powstać przy definiowaniu zbiorów, zakłada się, że żaden zbiór nie może
być swoim elementem, to znaczy dla dowolnego zbioru A zachodzi: AgA.

2.2. Definiowanie zbiorów

Zbiory można definiować w różny sposób. Przedstawia się trzy sposoby definiowania
zbiorów:

• enumeracyjny,
• rekursywny,
• ekstensjonalny.

Najprostszym sposobem definiowania zbioru jest jawne wskazanie wszystkich jego
elementów. Sposób ten nazywa się enumeracją, lub wyliczeniem elementów zbioru.
Schemat takiej definicji ma postać:

A = def {#1, <22, •••, an}

Zapis ten czytamy: A jest nazwą zbioru, którego elementami są ai, 02, an. Symbol
=def czytamy: równy z definicji.

Przedstawiony wyżej schemat definicji zbioru zawiera dwa elementy:

• wprowadza symbol A jako nazwę zbioru,
• określa znaczenie (inaczej interpretację}, które przypisujemy temu symbolowi;

jest nim zestaw elementów a\, ai, ..., an, które należą do zbioru A. Elementy te,
oddzielone przecinkami, tworzą skończony ciąg. Występujące tu trzy kropki są
tylko zaznaczeniem, że liczba tych elementów może być dowolna, ale skończo­
na. Definicja konkretnego zbioru musi oczywiście wymienić jawnie wszystkie
jego elementy.

W związku z rozróżnieniem pojęcia symbolu oraz pojęcia znaczenia symbolu należy
zwrócić uwagę na nazwę zbioru. Możliwe są dwa spojrzenia na nazwę.

32

W pierwszym spojrzeniu nazwę traktuje się tylko jako symbol - nazwa nie wyraża
żadnego znaczenia, jest tylko znakiem lub ciągiem znaków z ustalonego repertuaru
znaków. Taką rolę ma symbol A występujący po lewej stronie w podanej wyżej de­
finicji.

W drugim spojrzeniu nazwę traktuje się jako zbiór, którego elementy są wymienione
w nawiasach. Na przykład, aby odpowiedzieć na pytanie czy a&A, należy widzieć
A jako zestaw konkretnych elementów.

Często dalej używanym zbiorem będzie zbiór wartości logicznych:

Logiczne =def {prawda, fałsz}

Rozpatrzmy dalsze przykłady enumeracyjnej definicji zbiorów:

Kreski =def {|, -}
Strzałki =def {<", }
DniTygodnia =def [poniedziałek, wtorek, środa, czwartek,piątek, sobota, niedziela}
LiteryMałe =def {<2, b,..., z}
LiteryDuże =def [A, B, ..., Z}

Elementami pierwszego i drugiego zbioru są symbole graficzne, elementami pozosta­
łych zbiorów są litery lub napisy. W definicjach dwóch ostatnich zbiorów występują
takie same kropki, ale z uwagi na kontekst, w którym występują, potrafimy nadać im
odpowiednie różne znaczenia.

Bezpośrednio z definicji zbiorów wynika, że, na przykład:

| G Kreski
e Strzałki

Używane pojęcie zbioru nie narzuca ograniczeń na to, czym mogą być jego elementy.
W szczególności elementami zbioru mogą być inne zbiory. Rozpatrzmy przykłady
zbiorów:

{«}
{{«}}
{{a,b}, {«}}
{{{«}}, {«},«}

Są to zbiory anonimowe, to znaczy nie mające nazw. Pierwszy zbiór składa się tylko
z jednego elementu a. Drugi zbiór składa się również z jednego elementu, ale ele­
mentem tym jest zbiór jednoelementowy {a}. Trzeci zbiór ma dwa elementy, którymi
są zbiory {a, b} oraz {a}. Ostatni zbiór ma trzy elementy, z których każdy ma różną
strukturę - pierwszy jest zbiorem postaci {{a}}, drugi jest zbiorem postaci {a}, a trze­
ci jest pojedynczym elementem a.

33

Enumeracyjne definiowanie zbioru nie jest możliwe, gdy zbiór zawiera nieskończenie
wiele elementów. W tym przypadku można stosować podejście rekursywne. Rekur-
sywna definicja zbioru składa się z dwóch części:

• części bazowej, w której jawnie wskazuje się na pewne obiekty jako elementy
definiowanego zbioru,

• części rekursywnej, w której wskazuje się na nowe obiekty jako elementy defi­
niowanego zbioru, przez odpowiednie odwołanie się do tych obiektów, o któ­
rych już wiadomo, że należą do definiowanego zbioru.

Szczególnie ważnym i potrzebnym zbiorem nieskończonym jest zbiór liczb natural­
nych Nat. Można zdefiniować go rekursywnie następująco:

• 06 Nat
• jeżeli neNat, to n+ieNat.

Elementy zbioru w części rekursywnej definicji są wyrażane przez napisy n oraz n+1. Na­
pisy te reprezentują pewne liczby, przy czym to, jakie są to liczby zależy od tego, jaką
liczbę przypisze się symbolowi n. Stosując część rekursywnąpo raz pierwszy symbolowi
n przypisuje się 0 i na tej podstawie wniosku się, że 1 jest również elementem zbioru Nat.
Stosując część rekursywnąpo raz drugi symbolowi n przypisze się liczbę 1 itd.

W podanej definicji zakłada się, że wiadomo jest, czym jest liczba i co oznacza doda­
nie jedynki do liczby. Bez rozumienia tych pojęć nie można zrozumieć, czym jest
zbiór Nat. Pojęcia te należą do metajęzyka, który używamy do zdefiniowania zbioru
liczb naturalnych. Inna, formalna definicja liczb naturalnych, która nie odwołuje się
do pojęcia liczby i dodawania, jest podana dalej.

Uwaga

Podana definicja zbioru liczb naturalnych przyjmuje, że liczba 0 jest najmniejszą
liczbą naturalną. Spotyka się również definicje, które przyjmują, że najmniejszą
liczbą naturalną jest 1. Konwencja ta wynika z historii powstawania liczb natural­
nych, kiedy do odkrycia zera za liczby naturalne uważano tylko 1, 2, 3 itd.

Podobnie można zdefiniować zbiór dodatnich liczb parzystych:

• 2eParzysteDodatnie
• jeżeli/ze ParzysteDodatnie,to n+2e Parzyste Dodatnie.

Ponownie należy zwrócić uwagę, że w części rekursywnej definicji zbioru użyto kon­
strukcji n+2, która należy do metajęzyka służącego do definiowania zbioru, i o której
zakładamy, że jest dla Czytelnika jednoznacznie zrozumiała.

Inny przykład rekursywnej definicji pewnego zbioru liczb PewneLiczby jest następujący:

• 5, 7e PewneLiczby
• jeżeli n, me PewneLiczby, to n+me PewneLiczby

34

Część bazowa określa, że elementami zbioru PewneLiczby są liczby 5 i 7. Analizując
część rekursywną, łatwo przekonać się, że elementami tego zbioru będą także liczby
10, 12, 14, 15, 17,20 itd.

Rekursywną definicja zbioru LinieŁamane, którego elementami są symbole graficzne
- linie łamane, złożone z elementów zbioru Kreski - ma następującą postać:

• \,~ eLinieŁamane
• jeżeli a, beLinieŁamane, to linia powstająca z połączenia a oraz b w taki spo­

sób, że jeden z końców a był połączony z jednym końcem b tak, aby poza miej­
scem połączenia a oraz b nie miały innych punktów wspólnych, należy również
do zbioru LinieŁamane.

Łatwo się przekonać, że elementami zbioru LinieŁamane będą, m.in., następujące linie:

Rys. 2.1. Elementy zbioru LinieŁamane

Linie o numerach 1 i 2 powstają przez różne powiązania elementów zbioru Kreski,
linia 3 jest wynikiem połączenia linii 1 i 2, linia 4 - linii 1 i 3, a linia 5 - linii 3 i 4.

Rekursywną definicja zbioru ma charakter konstruktywny, to znaczy określa jak moż­
na skonstruować nowe elementy zbioru z innych elementów, o których już wiemy, że
są elementami definiowanego zbioru. Inaczej można powiedzieć, że definicja rekur-
sywna wyznacza pewien algorytm konstrukcji elementów zbioru. Algorytm jest w tym
momencie rozumiany nieformalnie jako ciąg pewnych kroków obliczeniowych pro­
wadzących do rozwiązania danego problemu. Z tego względu rekursywny sposób de­
finiowania zbiorów jest bardzo często wykorzystywany w informatyce. Rekursywne
podejście pozwala wprawdzie na definiowanie zbiorów nieskończonych, ale nie do­
wolnych zbiorów, lecz tylko zbiorów przeliczalnych, tzn. takich, których wszystkie
elementy można zestawić w jeden ciąg (pojęcie przeliczalności zbioru jest zdefinio­
wane w dalszej części książki). Oczywiście, w skończonej liczbie kroków można wy­
znaczyć tylko skończoną liczbę elementów zbioru.

Najogólniejszy sposób definiowania zbiorów opiera się podejściu ekstensjonalnym.
Podejście to polega na definiowaniu zbioru przez określenie własności jego elemen­
tów. Schemat definicji zbioru ma postać:

A =def {a | P(a)}

Zapis ten czytamy: do zbioru o nazwie A należą wszystkie te i tylko te elementy a, któ­
re posiadają własność P(a), czyli takie elementy, dla których wypowiedź Pip) jest

35

prawdziwa. P(d) jest funkcją zdaniową, dlatego też ten sposób definiowania zbiorów
nazywa się też definiowaniem przez funkcję zdaniową. Formalna postać funkcji zda­
niowych będzie precyzyjnie określona w dalszej części książki.

Rozpatrzmy poprzedni przykład zbioru dodatnich liczb parzystych:

ParzysteDodatnie =def {* | (x jest liczbą naturalną) a (x > 0) a (x jest podzielne
przez 2)}

Własność:

(x jest liczbą naturalną) a (x > 0) a (x jest podzielne przez 2)

ma postać wypowiedzi złożonej. Poszczególne jej człony należy do metajęzyka - języka
arytmetyki. Aby rozumieć sens całej wypowiedzi należy rozumieć jej części składowe:

x jest liczbą naturalną, czyli xeNat
x > 0
x jest liczbą naturalną podzielną przez 2

oraz łączące je spójnik logiczny a. Pierwsza z wypowiedzi wymaga rozumienia przy­
należności elementu do zbioru, a pozostałe wymagają elementarnej wiedzy z zakresu
arytmetyki. Znaczenie spójnika a zostało wyjaśnione w poprzednim rozdziale.

Czasem, gdy definiujemy nowy zbiór A, wygodne jest odniesienie do innego, wcze­
śniej ustalonego zbioru B. Piszemy wtedy:

A =w{xeB | P(x)},

co jest skrótem od:

{% |xgB a P(x)}.

Możemy więc napisać:

ParzysteDodatnie =def | (x>0) a (x jest podzielne przez 2)}

Uwaga

Czasem definiując zbiór zamiast symbolu =def używa się również innych oznaczeń,

na przykład , =, a nawet =. Ostatnim symbolem należy posługiwać się ostroż­
nie, gdyż jego znaczeniem podstawowym jest stwierdzanie równości (identyczno­
ści) elementów należących do pewnego zbioru.

Podejście ekstensjonalne do definiowania zbiorów jest wygodne i uniwersalne, ale nie­
ostrożny sposób formułowania własności może prowadzić do absurdu. Znany przykład
takiego absurdu jest nazywany paradoksem Russella4, który wykorzystał w skrajnej po­

4 Bertrand Russell (1872-1970).

36

staci rozumowanie, stosowane w początkowym okresie rozwoju teorii mnogości. Mia­
nowicie, niech Z będzie zbiorem zdefiniowanym następująco:

Z=def{X\XgX}

to znaczy Z jest zbiorem - rodziną zbiorów - którego elementami są wszystkie zbiory
X, które mają tę własność, że nie są swoimi elementami. Odpowiedzmy teraz na pyta­
nie: czy Ze Z? Jeżeli Z jest swoim elementem, czyli Ze Z, to oznacza, że ma taką samą
własność jak wszystkie elementy zbioru Z, czyli Ze Z. Jeżeli natomiast Z nie jest
swoim elementem, czyli Ze Z, to z definicji należy do rodziny zbiorów Z, czyli Ze Z.
W obu przypadkach zachodzi sprzeczność.

Paradoks ten uzasadnia dlaczego na początku rozdziału wprowadzono ograniczenie,
że dla dowolnego zbioru A zachodzi: Ag A.

Warto zwrócić uwagę, że przypuszczenie, iż zbiór może być swoim elementem wcale
nie jest absurdalne. Rozważmy bowiem zbiór Z, którego elementami są zbiory nie­
skończone, to znaczy zbiory o nieskończenie wielu elementach. Z pewnością istnieje
nieskończenie wiele zbiorów nieskończonych, a zatem zbiór Z jest nieskończony,
czyli jest swoim elementem!

Przykład 2.1.।n
Rozpatrzmy przykłady zbiorów używanych w językach programowania. W zasa­
dzie wszystkie takie zbiory są zbiorami skończonymi. Wyróżnia się, m.in., prede­
finiowane zbiory wartości związane z typami danych.

Zbiór wartości logicznych

Boolean =def {false, true}

Zbiór całkowitoliczbowy

Integer =def {-7V,-0,—, N],

gdzie N jest liczbą naturalną określoną przez daną implementację języka.

Zbiór liczb rzeczywistych

Real =def {-2V*8,...,O, ...,^*8}

gdzie ?/jest liczbą naturalną, zaś Sjest liczbą wymierną określoną przez daną im­
plementację języka; jest to tzw. staloprzecinkowa reprezentacja liczb (w reprezen­
tacji zmiennoprzecinkowej kolejne liczby są oddalone od siebie o zmienną różnicę).
Warto podkreślić, że wbrew temu co sugeruje nazwa zbiór ten zawiera skończoną
ilość liczb wymiernych.

Zbiór napisów

String {i | 5 jest skończonym ciągiem znaków ustalonego repertuaru znaków}

37

Przykładem takiego repertuaru znaków są na przykład znaki kodu ASCII. W praktycznej
implementacji typu napisowego długość takich ciągów jest ograniczona konkretną liczbą.

Zbiór wyliczeniowy definiowany przez programistę, na przykład:

DniTygodnia =def {pon, wt, sr, czw, pt, sob, nd]

gdzie pon, wt,..., nd są pewnymi ustalonymi napisami.

Specyficznym dla wielu języków, nie tylko języków programowania, jest zbiór
identyfikatorów. Zbiór ten będzie dalej często wykorzystywany i oznaczymy go
symbolem Ident. Może on być definiowany, na przykład, tak:

Ident =def {5 | 5 jest niepustym ciągiem składającym się z liter lub cyfr, którego
pierwszym elementem jest litera}

Należy zwrócić uwagę, że w treści własność definiujących zbiory występują pojęcia,
o których zakłada się, że są pojęciami zrozumiałymi - są to pojęcia metajęzyka, w któ­
rym opisujemy dane własności. Na przykład, w definicji zbiorów String oraz Ident ta­
kim pojęciem jest ciąg, a definicji zbioru DniTygodnia takim pojęciem jest napis. ।

2.3. Podzbiory, równość zbiorów, zbiory potęgowe

Mówimy, że A jest podzbiorem zbioru B, co oznaczamy A ę B, wtedy i tylko wtedy,
gdy dla dowolnego elementu a: jeżeli aeA, to także a&B. Symbol Q nazywa się sym­
bolem zawierania lub symbolem inkluzji. Podaną definicję zawierania zbiorów można
również wyrazić formalnie:

AęBtt (Va • aeA => aeB)

Z definicją wiąże się następujący komentarz. Jest to definicja w postaci normalnej.
Składa się ona z dwóch części przedzielonych symbolem równoważności <=>, który
czytamy: wtedy i tylko wtedy. Część po lewej stronie symbolu równoważności jest wy­
rażeniem zawierającym pojęcie definiowane - definiendum, a część po prawej stronie
zawiera pojęcie definiujące - defmiens. Poprawność definicji wymaga, aby po prawej
stronie nie występowało pojęcie definiowane, gdyż byłby to przypadek „błędnego ko­
ła”. Oczywiście, aby rozumieć sens definicji pojęcia występujące w części definiującej
muszą być znane. Podana wyżej definicja spełnia przedstawione wymogi, gdyż w wy­
rażeniu definiującym po prawej stronie nie występuje pojęcie podzbioru, a pojęcia
należenia elementu do zbioru, spójnika implikacji i kwantyfikatora ogólnego były
wyjaśnione wcześniej. Definicja normalna pozwala przełożyć każdy zwrot językowy

38

zawierający wyrażenie definiowane na zwrot nie zawierający tego wyrażenia. Więk­
szość definicji podawanych w książce ma postać definicji normalnej.

Łatwo zauważyć, że zachodzą własności:

0 ę A
A ę A
(A ę B a B q C) => (A ę C)

Używa się też symbolu inkluzji właściwej c. Zapis A Q B czytamy: zbiór A zawiera
się właściwie w zbiorze B. Oznacza to, że A zawiera się w B, czyli AczB, oraz zbiór
B zawiera przynajmniej jeden element, który nie należy do zbioru A. Formalnie:

A c B <=> (A ę B) a (3 a • a^A a ueB)

Uwaga

Czasem zamiast c używa się równoważnego symbolu C.

Dwa zbiory A i B są identyczne albo równe, co oznacza się:
A-B

wtedy i tylko wtedy, gdy mają dokładnie te same elementy, czyli gdy AqB oraz BqA.
Formalnie:

A=!l^(AęB) a(BcA)

Symbol = jest tu symbolem równości lub identyczności zbiorów.

W zbiorze nie odróżnia się kolejności ani powtórzeń elementów. Na przykład, zbiory:

A =def {1, 2, 3}
B —def {1, 3, 2}
C=def {1,2, 3, 2}

są identyczne, czyli A = B = C.

Jeżeli A jest zbiorem, to przez 2A oznacza się zbiór, którego elementami są wszystkie
podzbiory zbioru A. Zbiór 2A jest nazywany zbiorem potęgowym zbioru A. Zbiór potę­
gowy jest więc rodziną zbiorów.

Uwaga

Zbiór potęgowy zbioru A oznacza się również przez IP(A).

Przykład 2.2.
I T I

Dla zbioru A =def {a, b, c} jego zbiór potęgowym 2 'jest równy zbiorowi:

i {0, {a}, {b}, {c}, {a,b}, [a,c}, {b,c}, {a,b,c}} ,

39

Postać oznaczenia zbioru potęgowego 2A wynika z następującej własności. Jeżeli
A jest zbiorem skończonym, to przez card^A) oznaczmy liczbę jego elementów. Łatwo
pokazać, że dla dowolnego skończonego zbioru A zachodzi:

cąrd{2A) = 2 cardW

Należy zwrócić uwagę na to, że symbol równości = użyty powyżej odnosi się do rów­
ności liczb całkowitych, podczas gdy ten sam symbol użyty wcześniej odnosił się do
równości zbiorów. Symbol równości w różnych kontekstach może być używany do
porównywania obiektów należących do różnych kategorii.

Uwaga

Na określenie liczności elementów skończonego zbioru A używa się również in­
nych oznaczeń, na przykład: #(A), |A|.

W przypadku zbiorów nieskończońych nie można mówić o liczbie ich elementów.
Można natomiast porównywać dwa zbiory pod względem równoliczności. Pojęcie
równoliczności zbiorów jest zdefiniowane dalej, po wprowadzeniu pojęcia funkcji.

2.4. Operacje na zbiorach

Mając dane pewne zbiory można z nich budować nowe zbiory. Na zbiorach wykonuje
się operacje (działania), których efektem są nowe zbiory. Podstawowymi operacjami
są: suma, przekrój, różnica i różnica symetryczna dwóch zbiorów. Działania te są zde­
finiowane przez podanie własności zbiorów wynikowych.

Suma zbiorów

A u B =def {a | aeA v a^B}

Przekrój zbiorów

AnB—def {a | ciG A a a& B}

Różnica zbiorów

A \ B =def {a | a&A a a^B}

Uwaga

Innym oznaczeniem różnicy zbiorów jest A - B.

40

Przykład 2.3

Rozpatrzmy zbiory

A =def {{«, b), c}
B =def {C,
C=def (K {«}},«}

D =def {a, {a}}

Łatwo sprawdzić, że

A B = {[a, b], c, d} AnB={c) A\B={[a,b}}
। CuD= {{a, {a}}, {a},a} CnD={a) C\D = {{a, {a}}} ।

W przypadku, gdy interesujące nas zbiory są podzbiorami pewnego wyróżnionego
zbioru, nazywanego zbiorem-uniwersum, używa się operacji dopełnienia zbioru. Jeżeli
U jest uniwersum oraz A jest pewnym jego podzbiorem, to przez A ’ oznaczamy opera­
cję dopełnienia zbioru A, którą definiujemy jako:

A' =MU\A

Dwa zbiory A, B nazywa się zbiorami rozłącznymi, jeżeli ich przekrój jest pusty, czyli gdy

AnS = 0

Często stosowanym sposobem ilustracji operacji mnogościowych są wykresy Venna.
Zakłada się w nich, że uniwersum jest zbiór punktów na płaszczyźnie, a rozważanymi
zbiorami są dowolne obszary na płaszczyźnie. Przykład takiego wykresu przedstawia
rysunek poniżej. Dwa przecinające się owale reprezentują zbiory A oraz B. Poszcze­
gólne podobszary oznaczają odpowiednio podzbiory A\B, An B oraz B\A.

Rys. 2.2. Związki pomiędzy zbiorami

Wprowadzone operacje posiadają różne własności. Łatwo sprawdzić, że zachodzą na­
stępujące własności, nazywane też prawami mnogościowymi:

5 John Venn (1834-1923).

41

1. prawa przemienności

Au B = Bu A
A o B = B n A

2. prawa łączności

(Au B)u C = Au (Bu Q
(A n B) n C = A n(B n O

3. prawa rozdzielności

(A u B) n C = (A n C) u (B n C)
(A n B)u C = (A u C) n(B u Q

4. prawa de Morgana

(AryBY=A'uB'
(Au B)' = A' nB'

5. prawa dla zbioru pustego

An0 = 0
Au0=A
A\0=A
0\A = 0
0' = U

6. prawa dla zbioru uniwersum

An U = A
AuU=U
A\U = 0
U' = 0

Operacje sumy i przekroju zdefiniowane dla dwóch zbiorów uogólnia się na dowolne
rodziny zbiorów. Niech Z będzie dowolnym zbiorem, nazywanym zbiorem indeksów
oraz niech {Aj | iel} będzie indeksowaną rodziną zbiorów, wtedy:

|Ja, =def {a | 3 ieZ* aeAi}
iel

“def {a | VieZ • aeA,}

iel

są uogólnioną sumą i uogólnionym przekrojem zbiorów. Uogólnioną sumę i przekrój
rodziny zbiorów {A, | że Z} będziemy też zapisywać w postaci:

42

niAi^}
Przykład 2.4

Niech Ą =def {1,2,i} będzie rodziną zbiorów, gdzie iG ParzysteDodatnie. Łatwo
sprawdzić, że:

ha ={i,2}
że ParzysteDodatnie

JJ Ai = Nat
i że ParzysteDodatnie

Ćwiczenia

1. Podać elementy następujących zbiorów:

a) {a}
b) {{«}}
0 {{a,£},{«}}
d) {{{a}}, {a},«}
e) [xeNat | x < 7}
f) {xe Wymierne | x2 = 2}
g) {xe Wymierne | (x + 1)2 < 0}

2. Niech A, B, C, D będą parami rozłącznymi, niepustymi zbiorami. Jakie warunki
powinny spełniać te zbiory, aby zachodziły następujące równości:

a) {B, C} = {B, C, D}
b) {{A, B}, C} = {{A}, C}
c) {{AB}, {£>)} = {{A}}
d){{A,0},B} = {{0}}

3. Wykazać, że równość zbiorów {{A}, {A, B}} = {{C}, {C, £>}} zachodzi wtedy
i tylko wtedy, gdy A = C oraz B = D.

4. Obliczyć A n B, A u B, A\B, B\A dla następujących zbiorów A i B:

a) A = {{a, b}, c} B={c,d}
b)A = {{a, {a}},a} B={a,{a}}

43

5. Sprawdzić i uzasadnić, które spośród niżej podanych równości zachodzą bądź nie
zachodzą dla dowolnych zbiorów A, B, C, D;

a)(AuB)\C = (A\Qu(B\Q
b) (A\B) n (CW) = (A n C)\(B u D)
c) (AuB) o B = B
d) (A B) u (A\B) = A
e)(A\B) = A\(A n B)
()(A\B)uB=A

6. Niech U będzie pewnym ustalonym zbiorem, zwanym uniwersum. Jeżeli A ę U, to
A' =def ŁM nazywa się dopełnieniem zbioru A. Pokazać, że dla podzbiorów z uni­
wersum U zachodzą prawa de Morgana:

a) (AuB)' = A'nB'
b) (A B)'= A'u B'

7. Ile elementów ma najmniejsza, niepusta rodzina zbiorów A z pewnego uniwersum
U taka, że:

a) jeżeli AeA i BeA, to Au BeA,
b) jeżeli AeA i Be A, to A n Be A.

8. Niech card<A) oznacza liczbę elementów zbioru skończonego A. Pokazać, że dla
skończonych zbiorów A oraz B zachodzi:

a) card(2^ = 2cardW
b) cardłA^jB) = card^A) + card{B) - card^AoB)

9. Dla dowolnych zbiorów skończonych A, B i C znaleźć wzory określające:

a) cardiAuBuC)
b) card^^
c) card(A\B)

10. Dowieść, że zachodzi, że dla dowolnej rodziny zbiorów Ai, Ai, An, dla neNat,
zachodzi równość:

AiuA2u ... u A„ =
(A1\A2) u (A2\A3) u ... o (A„.,\ A„) u (A„\ A0 o (A, n A2n ... n A„)

11. Niech Ai, A2,..., A,„ dla n > 0, będą podzbiorami zbioru U. Przez Ą oznaczmy zbiór A„

a przez A? oznaczmy dopełnienie tego zbioru, czyli A'. Każdy iloczyn postaci:

Ai1 n...nA'"

gdzie ij e {0, 1} dla j = 1,..., n nazywa się składową.

44

a) Pokazać, że różnych składowych jest co najwyżej 2".
b) Pokazać, że różne składowe są rozłączne.
c) Znaleźć sumę wszystkich składowych.
d) Udowodnić, że zbiór A, jest równy sumie tych składowych, w których wystę­
puje czynnik postaci A- .

12. Dowieść, że dla rodzin zbiorów {A, | iel}, {B, | iel] oraz {Cy | iel,jej} zachodzą
związki:

a)
iel iel iel

b) (J(ĄnB,.)ęUĄn|jB;
iel iel iel

c) QĄop|B,.ęU(Ąuą.)
iel iel iel

d> un^=nu^-
iel jej iel jej

3. Relacje i funkcje

3.1. Produkty kartezjańskie

Przy grupowaniu pewnych elementów w zbiory kolejność ich wyliczenia nie jest
istotna. W sytuacji, gdy kolejność jest istotna, elementy się grupuje, używając pojęcia
par uporządkowanych i krotek. Jeżeli aeA oraz beB są dwoma elementami, nieko­
niecznie różnymi, to zapis:

<a, b>

oznacza parę uporządkowaną, której komponentami są a oraz b. Uporządkowanie
oznacza, że para <a, b> nie jest tym samym, co para <b, a>. Dwie pary:

<a, b> oraz <c, d>

są identyczne, co pisze się <a, b> = <c, d>, wtedy i tylko wtedy, gdy

a = c oraz b-d.

Występujący powyżej symbol = ma dwa znaczenia. Gdy pisze się <a, b> = <c, d>,
oznacza to identyczność dwóch par. Natomiast gdy pisze się a = b, oznacza to iden­
tyczność dwóch elementów. W obu przypadkach porównuje się ze sobą obiekty róż­
nych kategorii.

Uwagi

Para <a, b> będzie też zapisywana w postaci (a, b).

Symbol identyczności, najczęściej reprezentowany symbolem = lub, rzadziej, sym­
bolem zasługuje na wyróżnienie z uwagi na częste użycie w różnych kontek­
stach. Konteksty te należy odróżniać, a w konkretnym kontekście właściwie rozu­
mieć znaczenie identyczności. Ogólnie, symbol, który może mieć różne znaczenia,
nazywa się symbolem przeciążonym.

Symbol identyczności, niezależnie od tego, jakie kategorie obiektów porównuje,
ma pewne stałe własności. Są to własności zwrotności, symetrii i przechodniości.
Niech a, b, c będą obiektami tego samego zbioru. Własność zwrotności oznacza, że

46

dany obiekt jest identyczny ze sobą samym, czyli a = a. Własność symetrii ozna­
cza, że jeżeli a jest identyczne z b, to b jest identyczne z a, czyli jeżeli a = b, to
także b = a. Własność przechodniości oznacza, że jeżeli a jest identyczne z b oraz
b jest identyczne z c, to a jest identyczne z c, czyli jeżeli a = b oraz b = c, to a = c.
Symbolicznie własności te można przedstawić w postaci:

VćzeA • a = a
V a, beA • (a = h) => (b = a)
V a, b, ceA • (a = b) a (b = c) => (a = c)

Parę uporządkowaną <a, b> można też wyrazić jako zbiór postaci {a, {a, b}}.
Wówczas równość zbiorów {a, {a, ó}} oraz {c, (c, d}} odpowiada równości odpo­
wiadających im par <a, b> oraz <c, d>. W szczególności widać, że dwie pary <a, b>
oraz <b, a> są różne, gdyż odpowiadające im zbiory {a, {a, b}} oraz {b, (a, b}} nie
są identyczne. Posługiwanie się parą uporządkowaną <a, b> zamiast zbiorem {a, {a,
b}} jest wygodniejsze i dlatego dalej będzie używana tylko taka notacja.

Przykład 3.1
r-- —|

Para uporządkowana postaci <x, y>, gdzie x, ye Liczby Rzeczywiste, może być in­
terpretowana jako punkt na płaszczyźnie, o współrzędnych x, y.

Pary mają też interpretacje w programowaniu. Pary

<nazwisko, Bach >
<nazwisko, Kant>,

gdzie nazwiskomIdent oraz Bach.KanteNazwiska, są przykładami danych prostych
(wartościami pojedynczych pól rekordów). Podobnie, innymi przykładami danych
prostych są pary:

<urodziny, XVII >
<u rodziny, XVIII >

gdzie urodziny^ Ident oraz XVII, XVI Ile Liczby Rzymskie.

Pary postaci:

«nazwisko, Bach >, <urodziny, XVII»
«nazwisko, Kant>, <urodziny, XVIII»

i reprezentują dane złożone (wartości rekordów złożonych z dwóch pól). i

Ogólnie, dla dowolnej liczby naturalnej n definiuje się tzw. n-krotki. Jeżeli a\,..., an są
elementami, niekoniecznie różnymi, to

<ĆZ1, Cl,^

jest n-krotką, zaś ax,..., an są jej komponentami. Wyróżnia się więc: 0-krotkę o, 1-krotkę
<a>, 2-krotkę lub parę <a, b>, 3-krotkę lub trójkę <a, b, c>, itd.

47

Dwie krotki:

<0i,an> oraz <b\,bm>

są identyczne wtedy i tylko wtedy, gdy n = m oraz o, = b, dla każdego i = 1,..., n.

Tak więc krotki:

<1, 1, 1>
«1, 1>, 1>
<1,<1, 1»

są różne. Pierwsza z nich jest trójką, a pozostałe są parami, w których jedna ze skła­
dowych jest również parą.

Produkt (iloczyn) kartezjański zbiorów A, Sjest zbiorem par:

A x B =def {<a, b> | aeA /\beB}.

Zauważmy, że jeżeli zbiory A i B są niepuste oraz A *B, to Ax B * B xA.

Ogólnie - n-krotny produkt kartezjański zbiorów Ah An dla n > 1 jest zbiorem:

Ai X ... X An =def {<O|, ..., an> | A: dla i = 1, ...,n}

Zamiast pisać A x ... X A, gdzie A powtarza się n razy, dla n^Nat, pisze się A".
Z definicji:

A0 =def {<>}
A* —def A.

Uogólnionym produktem kartezjańskim na zbiorze A nazywa się zbiór

^jAn =A°uA' u A2 u A3 u ...
neNat

3.2. Relacje

Relacja binarna R określona na zbiorach A oraz B jest podzbiorem produktu karte-
zjańskiego AxB, czyli R qAxB.

Jeżeli A = B, to mówi się o relacji binarnej na A.

Jeżeli para <a, b> jest elementem relacji binarnej R, to pisze się <a, b>&R. Czasem
używa się równoważnego zapisu aRb.

Jeżeli R\, R^ c AxB, to równość relacji Ri = R^ jest równością zbiorów par reprezen­
towanych przez R\ oraz R2.

48

Ponownie warto zwrócić uwagę na nową rolę symbolu równości =. Tym razem sym­
bol ten oznacza równość relacji, podczas gdy wcześniej oznaczał równość elementów
w obrębie zbioru, równość zbiorów oraz równość krotek.

Zbiór wszystkich relacji binarnych określonych na produkcie kartezjańskim AxB bę­
dzie oznaczany przez 2AxB, tzn.

2AxB=de({R\RęAxB}

Przy wprowadzonych oznaczeniach zapisy:

RqAxB oraz Re2AxB

są równoważne.

Uwaga

Na określenie zbioru relacji na produkcie kartezjańskim A x B używa się również
innych oznaczeń, na przykład: A <-> B lub ^{AxB\

Zapis postaci:

R ę AxB

nazywa się sygnaturą relacji. Symbol R jest nazwą relacji, zaś wyrażenie A x B, gdzie
A oraz B są nazwami zbiorów, jest typem relacji.

Jeżeli R jest relacją binarną na AxB, to jej dziedziną]zst zbiór:

dom(R) =def {aeA\3 b&B • <a, b>eR}

a jej przeciwdziedziną]&st zbiór:

ran(R) =def {beB | 3 aeA • <a, b> eR}

Relacja binarna R ę AxB ma swoją relację odwrotną R~l ę BxA zdefiniowaną nastę­
pująco:

R~1 —def {<b, a> | <a, b>eR}

Łatwo zauważyć, że (TT1)-1 = R.

Wprowadzone pojęcia można zilustrować graficznie. Rozpatrzmy przykład relacji bi­
narnej zdefiniowanej na zbiorach A =def (a, b, c, d} oraz B =def {1, 2, 3, 4, 5} przed­
stawiony na rys. 3.1.

Łuki prowadzące od elementów zbioru A do elementów zbioru B reprezentują poje­
dyncze pary - elementy relacji R. Z rysunku wynika, że

R = {<«, 1>, <b, 3>, <c, 1>, <c, 2>, <d, 5>}

49

Ponadto, dom(R) = A oraz ran(R) = {1, 2, 3, 5} c B. Przedstawienie na rysunku,
zgodnie z tą samą konwencją, relacji odwrotnej R ' polegałoby na odwróceniu kierun­
ku strzałek.

W przypadku, gdy ma się do czynienia z relacjami binarnymi określonymi na jednym
zbiorze, czyli relacjami o sygnaturze R ę A , bardzo przejrzystym sposobem repre­
zentacji graficznej są grafy. Formalnie grafy są definiowane dalej, tutaj ograniczamy
się do przykładu. Niech A =def {1, 2, 3, 4, 5} oraz

R =def {<1, 1>, <3, 2>, <2, 3>, <2,4>, <5, 2>}

Graf reprezentujący relację R jest pokazany na rysunku 3.2.

Rys. 3.2. Graficzna ilustracja relacji R

Wierzchołki grafu reprezentują elementy zbioru A, a łuki grafu reprezentują elementy
relacji w taki sposób, że para <a, b>eR jest reprezentowana przez łuk wychodzący
z wierzchołka a i prowadzący do wierzchołka b.

Relacje mają różne zastosowanie w informatyce. Tablice w bazach danych są typo­
wym przykładem relacji.

Przykład 3.2r- - ।
Dane są dwie tablice w pewnej bazie danych:

50

Tablica 3.1.
Nazwisko Wiek urodzin

Bach XVII
Frege XVIII

Leibnitz XVII
Tarski XX

Tablica 3.2.
Nazwisko Zawód

Bach Muzyk
Frege Logik

Leibnitz Filozof
Tarski Matematyk

Każda z tablic reprezentuje pewną relację. Pierwsza jest relacją typu Nazwiska x
Liczby Rzymskie, druga zaś jest typu Nazwiska x Zawody. Relacje te można przed­
stawić w postaci mnogościowej przez wyliczenie odpowiednich par:

{<Bach, XVII>, <Frege, XV1II>, <Leibnitz, XVII>, <Tarski, XX>}

{<Bach, Muzyk>, <Frege, Logik >, <Leibnitz, Filozof >, <Tarski, Matematyk>] i

Pojęcie relacji binarnej uogólnia się na relację n-krotną R jako dowolny podzbiór
n-krotnego, produktu kartezjańskiego:

R ęAiX ... xA„ dla neNar\{0, 1}

3.3. Operacje na relacjach

Relacje są zbiorami, można zatem na nich wykonywać wszystkie wcześniej zdefinio­
wane operacje mnogościowe. Na przykład, jeżeli R, Q c AxB, to zbiory R\jQ, Ri^Q,
R\Q są również relacjami na produkcie kartezjańskim AxB.

Wprowadza się też specyficzne operacje mnogościowe. Operacje takie występują, na
przykład, w systemach zarządzania bazami danych.

Przykład 3.3i ; i
Rozpatruje się operację złączenia dwóch relacji R ę A x B oraz Q ę A x C. Opera­
cja ta, oznaczana tu przez R © Q, jest zdefiniowana następująco:

Jeśli dom(R) = dom(Q), to R © Q qAx B x Cjest relacją:

R © Q =def {<<2, b, c> | <a, b>zR a <a, c>eQ}

Jeżeli za R oraz Q weźmie się relacje zdefiniowane przez tablicę 3.1 i tablicę 3.2
w poprzednim przykładzie, to widać, że dom(R) = dom(Q), a wynikową relację
R © Q przedstawia tablica 3.3:

51

Tablica 3.3

Nazwisko Wiek urodzin Zawód
Bach XVII Muzyk
Frege XVIII Logik
Leibnitz XVII Filozof
Tarski XX Matematyk

Nową operacją jest złożenie (superpozycja) dwóch relacji RqAxB oraz Q Q BxC. Jest
to nowa relacja, zapisywana w postaci R°Q, zdefiniowana następująco:

R°Q =def {<<2, c> I 3 beB • <a, b>&R a <b, c>&Q]

Graficzną ilustracją złożenia dwóch relacji R ę AxB oraz Q ę BxC, gdzie

A =def [a, b, c,d},B =def {1, 2, 3, 4, 5}, C =def {/, II, III, IV]

jest rysunek 3.3.

Rys. 3.3. Graficzna ilustracja złożenia relacji

Górna część rysunku przedstawia relacje R oraz Q, a dolna część - złożenie R°Q.

Łatwo sprawdzić, że złożenie relacji jest operacją łączną, to znaczy:

(R°Q) ° S = R° (Q ° S)

ale nie jest operacją przemienną, to znaczy:

R°Q ź Q ° R

Dla dowolnej liczby naturalnej n, n-krotnym złożeniem relacji binarej R c A2 jest rela­
cja Rn zdefiniowana indukcyjnie w sposób następujący:

A° —def {«Ł a> | aeA}

52

JT+1 =def R" oR dla neNat

Jeżeli R ę AxB, to obrazem zbioru A[QA wyznaczonym przez relację R jest zbiór:

R(Aj) =def {beB | 3 aeAi • <a, b^eR]

Łatwo pokazać, że dla Ab A2 ę A zachodzą własności:

R(AluA2) = R(Al) uR(A2)
R^t^cR^) n%)

R(dom(RY) = ran(R)

Jeżeli R ę AxB, to przeciwobrazem zbioru B\<^B wyznaczonym przez relację R jest
zbiór R\B\).

3.4. Podstawowe rodzaje relacji binarnych

Relacje binarne na A, czyli relacje R ę A2, mogą charakteryzować się różnymi wła­
snościami. Wśród podstawowych własności wyróżnia się m.in. własności zwrotności,
przeciwzwrotności, symetrii, przeciwsymetrii, antysymetrii, przechodniości i spójno­
ści. Własności te są definiowane następująco:

zwrotność dla dowolnego aeA zachodzi: <a, a>eR

- symbolicznie: \/aeA • <a, a>eR

przeciwzwrotność dla dowolnego aeA zachodzi: <a, a>£R

- symbolicznie: ślaeA • <a, a>£R

symetria dla dowolnych a, beA zachodzi:

jeżeli <a, b>eR, to również <b, a>eR

- symbolicznie: \/a, beA • <a, b>eR <b, a>eR

przeciwsymetria dla dowolnych a, beA zachodzi:

jeżeli <a, b>&R, to <b,a>iR

- symbolicznie: \/a, be A • <a, b>eR => <b, a>£R

antysymetria dla dowolnych a, be A zachodzi:

jeżeli <a, b>eR oraz <b, a>eR, to a = b

- symbolicznie: ś/a, be A* <a, b>eR a <b, a>eR => a = b

53

przechodniość dla dowolnych a, b, ceA zachodzi:

jeżeli <a, b>eR oraz <b, c>eR, to <a, oeR

- symbolicznie: Va, b, ceA • <a, b>eR a <b, c>eR => <a, c>eR

spójność dla dowolnych a, be A zachodzi:

jeżeli a b to <a, b>eR lub <b, a>eR

- symbolicznie: \la, be A • a b <a, b>eRv <b, a>eR

Na podstawie przedstawionych własności można definiować inne, bardziej złożone
własności. Bardzo ważna jest własność równoważności. Relacja równoważności jest
dowolną relacją binarną, która jest zwrotna, symetryczna i przechodnia.

Relacja równoważności R określona na zbiorze A wyznacza podział zbioru na tzw.
klasy abstrakcji. Mianowicie, dla dowolnego elementu a zbioru A definiuje się zbiór:

{beA | <a, b>eR}

Zbiór taki oznacza się przez [a] i nazywa się klasą abstrakcji generowaną przez ele­
ment a względem relacji R. Można pokazać, że zbiór klas abstrakcji ma następujące
własności:

1. =
aeA

2. <a, b>eR wtedy i tylko wtedy, gdy [a] = [h],
3. jeżeli [a] [Z?], to [a] n [b] = 0.

Z własności tych wynika, że jeżeli zbiorze A jest zdefiniowana relacja równoważności,
to relacja ta wyznacza podział zbioru A na rozłączne podzbiory (klasy abstrakcji).
Zbiór, którego elementami są wszystkie klasy abstrakcji, nazywa się zbiorem ilorazo­
wym zbioru A względem relacji R i oznacza się AIR, czyli:

AIR =def {[a] | aeA}

Przykład 3.4r~ ; i
Niech A =def {1, 2, 3, 4, 5} oraz relacja R ę A jest zdefiniowana następująco:

R =def {<1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 5>, <3, 2>, <2, 3>, <2, 5>, <5, 2>,
<3, 5>, <5,3>)

Łatwo sprawdzić, że relacja jest zwrotna, symetryczna i przechodnia, czyli jest re­
lacją równoważności. Klasy równoważności wyznaczone przez poszczególne ele­
menty zbioru A są następujące:

[1]={1}
[2] = [3] = [5] = {2,3, 5}
[4] = {4}

54

Zbiór ilorazowy AIR wyznaczony przez relację R ma postać:

। A/7? = {{1}, {2, 3, 5}, {4}}।

Poza relacją równoważności ważną grupę stanowią relacje porządku. Wyróżnia się:

• relację ąuasi-porządkującą, gdy jest zwrotna i przechodnia,

• relację częściowo porządkującą w ścisłym sensie, gdy jest antysymetryczna
i przechodnia,

• relację częściowo porządkującą, gdy jest zwrotna, antysymetryczna i prze­
chodnia,

• relację liniowego porządku w ścisłym sensie, gdy jest antysymetryczna, prze­
chodnia i spójna,

• relację liniowego porządku (czasem też krótko: relacją porządku), gdy jest
zwrotna, antysymetryczna, przechodnia i spójna, czyli, gdy jest relacją częścio­
wego porządku i relacją spójną.

Zbiór, na którym jest określona pewna relacja porządku częściowego, nazywa się
zbiorem częściowo uporządkowanym, a zbiór, na którym określono relacją porządku
liniowego - zbiorem liniowo (albo całkowicie) uporządkowanym.

Przykład 3.5
I " I

Rozważmy rodzinę wszystkich podzbiorów dowolnego zbioru U, czyli zbiór potę­
gowy 2U. Zbiór potęgowy 2y jest zbiorem częściowo uporządkowanym przez rela­
cję R ę 2ux 2U, która jest określona następująco:

R = (<A, B>e2ux2u\AqB}

Relacja R jest relacją częściowego porządku. Istotnie, R jest relacją zwrotną, gdyż
dla dowolnego Ae2u zachodzi <4, A>eR, dlatego, że A ę A. R jest relacją antysy-
metryczną, gdyż, jeżeli <A, B>eR oraz <B, A>eR, co oznacza, że AęJŚ oraz BqA,
to A=B. 7? jest też relacją przechodnią, gdyż z faktu, że <A, B>eR oraz <B, C>eR,
co oznacza, że A ę B oraz B ę C, wynika, że <A, C>eR, co oznacza, że A c C.
Relacja R nie jest natomiast relacją liniowego porządku, gdyż nie jest spójna.।

Przykład 3.6
r : ~ i

Relacją liniowego porządku jest relacja < określona na różnych zbiorach liczbo­
wych, na przykład Nat, Całkowite, Wymierne lub Rzeczywiste. Używając tej relacji
posługuje się notacją a < b, zamiast <a, b>& <. Oczywiście, zachodzą własności:

d ae Rzeczywiste • a< b
da, be Rzeczywiste • a< b a a < b => a - b
da, b, ce Rzeczywiste • a<b/\b<c=$a<c

55

V a, be Rzeczywiste • a b=> a<b v a< b

Nie jest natomiast relacją liniowego porządku relacja <, gdyż nie spełnia wymogu
। zwrotności, to znaczy nie jest prawdą, że a < a dla dowolnego a e Rzeczywiste. ।

Zestaw relacji częściowego porządku R}, R„ zdefiniowanych odpowiednio na zbio­
rach Ah ..., A„ można wykorzystać do zdefiniowania nowej relacji częściowego po­
rządku R zdefiniowanej na produkcie kartezjańskim Ai x ... x An. Przykładem jest lek-
sykograficzne złożenie relacji Rt, Rn określone jako relacja R zdefiniowana na
A! x ... x A„ w sposób następujący:

< ai,..., an> R < b\,..., b„>

wtedy i tylko wtedy, gdy istnieje ie (1, ..., n} takie, że dla każdego j < i zachodzi a, =
bj oraz a, R, bp

Niech R będzie dowolną relacją binarną na A. Zwrotnym domknięciem relacji R jest
relacja zdefiniowana jako:

RuR*

gdzie F? —def {<rą ti> | ae A} nazywa się relacje^ identycznosciowp lub tożsamościowej na A.

Symetrycznym domknięciem relacji 7? jest relacja zdefiniowana jako:

R u [<b, a> | <a, b> G R}

Przechodnim domknięciem relacji R jest relacja oznaczana symbolem R+, zdefiniowa­
na jako:

7?+=def U^"

ne WwAfO)

Zwrotne, przechodnie (tranzytywne) domknięcie relacji R na zbiorze A jest to relacja,
oznaczana symbolem R , zdefiniowana następująco:

^‘=def LR

neNat

Podane wyżej definicje domknięcia relacji oznaczają, że po domknięciu relacja ma
odpowiednio własność zwrotności, symetrii i przechodniości. Domknięcie relacji
uogólnia się ze względu na dowolną własność w sposób następujący. Niech P będzie
pewną własnością oraz R pewną relacją binarną. Mówimy, że relacja RP jest domknię­
ciem relacji R względem własności P wtedy i tylko wtedy, gdy:

1. relacja RP ma własność P,
2. R Q Rp,
3. nie istnieje inna relacja Q, która posiada własność P taka, że 2 ę RP.

56

3.5. Funkcje

Niech A oraz B będą dwoma dowolnymi zbiorami. Funkcją albo odwzorowaniem
z A w B nazywa się taką relację binarną/Q AxB, że dla każdego elementu aeA ist­
nieje co najwyżej jeden element b& B taki, że <a, b>ef
Inne, równoważne sformułowanie tej samej własności:

dla każdego elementu aG A, jeżeli <a, b>ef oraz <a, c>ef, to b = c.

W symbolicznym zapisie własność ta przyjmuje postać:

VaeA • <a, b>Ef a <a, c>ef=> b = c.

W podanej definicji funkcji/zawiera się możliwość, że dla danego atA nie istnieje
taki element b^B, że <a, b>ef. Oznacza to, że dla a&A funkcja/jest nieokreślona.
Fakt, że para <a, b>Ef jest elementem funkcji / będzie również zapisywany
w postaci:

A«) = b.

Element a nazywa się argumentem funkcji f, zaś b nazywa się wartością funkcji
/dla argumentu a.

Napis

f-A^B

nazywa się sygnaturą funkcji; symbol/jest nazwą funkcji, zaś wyrażenie A —> B,
gdzie A oraz B są nazwami zbiorów, jest typem funkcji.

Ogólnie, funkcja może mieć n argumentów (n&Nat). Sygnatura takiej funkcji ma
postać:

/: AiX... xA„->B

W skrajnym przypadku, gdy funkcja ma zero argumentów - nazywa się ją funkcją ze-
ro-argumentową lub stałą, a jej sygnaturę zapisujemy:

f-^B

Dla funkcji o sygnaturze/: Ai x ... x An —> B, fakt, że <a{, ..., an, b>&f, zapisuje się
również w postaci:

Aai,..., a„) = b.

Zapis wartości funkcji w postaci:

Rai, ..„a^

57

jest zapisem w tak zwanej konwencji prefiksowej lub przedrostkowej. Inną konwencją,
która nie będzie używana, jest notacja przyrostkowa (postfiksowa), nazywana też od­
wrotną notacją polską, na cześć polskiego logika Łukasiewicza6, który ją wprowadził.
W tej notacji zapisowi wartości funkcji dla argumentów a\,..., an, odpowiada zapis:

b Jan Łukasiewicz (1878-1956).

(ai,..., a„)f

Notacja ta jest stosowana przy algorytmicznym obliczaniu wartości wyrażeń stano­
wiących złożenie wielu funkcji.

W przypadku funkcji dwuargumentowych obok podanych notacji powszechnie stosuje
się notację wrostkową (infiksową). Wartość funkcji ffią, a2), dla argumentów <215 a2,
zapisuje się w postaci:

Deklarację użycia notacji infiksowej można zaznaczyć w sygnaturze, pisząc:

f: A[XA2^ B

Podkreślenia po obu stronach symbolu fi wskazują na miejsca umieszczania jej argu­
mentów.

Niech/: A —> B. Tak jak poprzednio, przez dom(fi) i rantfi) oznacza się odpowiednio
dziedzinę iprzeciwdziedzinę funkcji/.

Jeżeli domlfi) = A, to/nazywa się funkcją całkowicie określoną, albo - krótko - cał­
kowitą. Zbiór wszystkich funkcji całkowicie określonych z A do B oznacza się A —» B.
Zbiór A nazywa się zbiorem źródłowym, zaś B - zbiorem docelowym funkcji. Zbiór
wszystkich funkcji całkowitych z A w B oznacza się też przez B\

W przypadku, gdy dom(f) c A, funkcją/nazywa się częściowo określoną, albo - krót­
ko - częściową. Funkcja częściowa/jest nieokreślona dla elementów nie należących
do jej dziedziny, czyli do zbioru A\dom(f). Elementowi azA\dom(j) nie odpowiada
żaden element ze zbioru B. Fakt ten zapisuje się niekiedy pisząc fia) = 1, gdzie sym­
bol ± oznacza niezdefiniowane.

Wykorzystując symbol ±, zbiór wszystkich funkcji z A do B oznacza się (B u ±)A.

Jeżeli ran(f) = B, to funkcję/nazywa się surjekcją albo funkcją „na”.

Jeżeli dla dwóch różnych argumentów a{, a2 funkcja/przyjmuje różne wartości fiaj),
f(a2), to nazywa się ją funkcją różnowartościową albo iniekcją.

Funkcję fi która jest całkowicie określona, jest surjekcją oraz iniekcją nazywa się
funkcją wzajemnie jednoznaczną albo bijekcją.

58

Bijekcję, która jest funkcją o tej samej dziedzinie i przeciwdziedzinie, czyli o sygnatu­
rze f: A —» A nazywa się permutacją.

Funkcję f nazywa się funkcją skończoną, gdy dziedzina funkcji dom(f) jest zbiorem
skończonym.

Jeżeli relacja odwrotna/' dla funkcji/: A —> B jest funkcją, to nazywa się 'y ̂funkcją
odwrotną funkcji/.

Przykład 3.7I I
Niech A =def {1, 2, 3, 4, 5} oraz B =def {1, 2, 3, 4}.

Relacja R ę A x B zdefiniowana jako zbiór par:

{<1,1>, <2, 3>, <1, 4>, <3, 3>, <4, 4>, <2, 4>, <5, !>}

nie jest funkcją.

Funkcja/: A —> B zdefiniowana jako zbiór par:

{<1, 1>, <3, 5>, <4, 3>, <5, 1>}

jest funkcją częściową, gdyż domtf) = {1, 3, 4, 5} c A.

Funkcja g : A B zdefiniowana jako zbiór par:

{<1, 1>, <2, 3>, <3, 4>, <4, 3>, <5, 2>}

jest funkcją „na”, gdyż ran(f) = B.

Funkcja h : A —> A zdefiniowana jako zbiór par:

{<1, 1>, <2, 3>, <3, 4>, <4, 3>, <5, 1>}

nie ma funkcji odwrotnej.

Szczególną formą enumeracyjnej definicji funkcji jest tabela lub krotka. Na przy­
kład wyżej zdefiniowaną funkcję/można przedstawić w postaci tabeli:

1 2 3 4 5

1 * 5 3 1

lub krotki:

h = <1,*, 5, 3, 1>,

gdzie symbol * oznacza, że dla danego argumentu funkcja jest niezdefiniowana.

Przedstawienie funkcji w postaci krotki wymaga dodatkowo, aby dziedzina funkcji
była zbiorem liniowo uporządkowanym. Tak jest oczywiście w przypadku dziedzi­
ny funkcji/ gdzie porządek w zbiorze A jest wyznaczony przez relację <. i

59

Funkcje mogą być określane na dowolnych zbiorach. Elementami takich zbiorów mo­
gą być złożone twory, na przykład inne funkcje. W takich przypadkach funkcje nazy­
wa sięfunkcjonałami.

Przykład 3.8
I ~~1

Rozpatrzmy zbiór FUN, którego elementami są jednoargumentowe funkcje okre­
ślone na zbiorze liczb rzeczywistych i o wartościach w zbiorze liczb rzeczywistych
Rzeczywiste. Z definicji jest to zbiór, którego elementami są funkcje typu:

Rzeczywiste —> Rzeczywiste

Rozpatrzmy operator różniczkowania funkcji Diff. Jest to funkcja o sygnaturze:

Diff: FUN-^ FUN

albo, w postaci rozwiniętej, o sygnaturze:

Diff: (Rzeczywiste —> Rzeczywiste) —> (Rzeczywiste —> Rzeczywiste)

Operator Diffffst funkcją częściową, gdyż istnieją funkcje, które nie mają pochod­
nej w żadnym punkcie. Istnieją też funkcje całkowicie określone, które mają
punkty nieciągłości (są nieróżniczkowalne w tych punktach). Dla takich funkcji

।operator różniczkowania wyznacza funkcje częściowo określone.।

W rozważanych wyżej przykładach funkcje były definiowane enumeracyjnie. Często
spotykanym sposobem jest definiowanie funkcji przez wyrażenia funkcyjne. Definicja
ma postać równości, na przykład:

f(x,y, z)=x*y + 10*z

Jest to równość, po lewej stronie której występuje symbol funkcji z listą zmiennych
(argumentów), a po prawej stronie występuje wyrażenie funkcyjne (term).
W przykładowym wyrażeniu funkcje +, * są znanymi dwuargumentowymi funkcjami
arytmetycznymi, 10 jest funkcją zeroargumentową, czyli stałą, zaś x, y są zmiennymi.
Wyrażenie funkcyjne jest więc złożeniem pewnych funkcji. Ogólnie, jest ono defi­
niowane następująco:

• stała i zmienna są wyrażeniami funkcyjnymi,
• jeżeli h jest n-argumentową funkcją, oraz ..., g„ są wyrażeniami funkcyjnymi,

to h(g[,..., gn) jest wyrażeniem funkcyjnym.

Symbol funkcji występujący po lewej stronie nie może wystąpić po prawej stronie
równości. Jedynymi zmiennymi, które mogą występować po prawej stronie równości
są tylko te, które występują po lewej stronie.

Funkcje są pewnymi zbiorami i mogą być definiowane rekursywnie oraz przez okre­
ślenie własności. Definicję rekursywną, czyli algorytmiczną, funkcji nazywa się też

60

definicją intensjonalną, zaś definicję przez określenie własności - definicją ekstensjo-
nalną.

Przykład 3.9
I-- 1

Funkcja Silnia jest typu Nat —> Nat. Jej definicja rekursywna ma postać:

Silnia(0) = 1
SUma^n) = n* Silnia(n-{) dla n > 0

Definicja składa się z dwóch równości. Po lewej stronie równości występuje sym­
bol definiowanej funkcji wraz z odpowiednimi wartościami argumentu, a po pra­
wej stronie występują wyrażenia funkcyjne. Wyrażenie funkcyjne w pierwszej
równości jest stałą (funkcją zeroargumentową), a w drugiej - jest złożeniem funk­
cji trzech funkcji: odejmowania mnożenia * oraz definiowanej funkcji Silnia.
Pierwsza równość definiuje wartość funkcji dla argumentu o wartości 0, druga -
definiuje wartość funkcji dla pozostałych wartości argumentu. Zastosowanie dru­
giej równości do obliczenia wartości funkcji dla argumentu n wymaga uprzedniego
obliczenia wartości funkcji dla argumentu n-1.

W podobny sposób jest zdefiniowana rekursywnie funkcja AJ : Nat —> Nat;

M(l) = 2
M(2) = 2
M(n) = 2 * M(n-Y) + M(n-2) dla n > 2

Znaczenie bardziej złożony jest sposób definicji funkcji Ackermana A: Nat x Nat
Nat

A(0, y)=l
A(l,0) = 2
A(x, 0) = x + 2
A(x + 1, y + 1) = A(A(x, y + 1), y)

dla dowolnego yeNat

dlax > 1
dla dowolnego x, y&Nat

Przykład 3.10
[- ।

Niech, jak poprzednio, FUN oznacza zbiór, którego elementami są jednoargumen-
towe funkcje określone na zbiorze liczb rzeczywistych i o wartościach w zbiorze
liczb rzeczywistych, czyli funkcje typu Rzeczywiste —> Rzeczywiste. Dla dowolnej
funkcji/: Rzeczywiste —> Rzeczywiste rozważa się równanie postaci/(x) = 0. Rów­
nanie to może nie mieć pierwiastków rzeczywistych, może też mieć ich nieskoń­
czenie wiele. Przez Pierwiastki(f) oznacza się wartość funkcji, która dla danej
funkcji/wyznacza podzbiór liczb rzeczywistych P, które są pierwiastkami równa-
nia/(x) = 0. Funkcja Pierwiastki jest typu FUN —> 2Rzeczyms,e. Funkcję tę można zde­
finiować ekstensjonalnie w sposób następujący:

Pierwiastki = {</ P>& FUN x 2Rzeczywis,e | xe P fU) = 0}

61

Wprawdzie funkcja Pierwiastki jest zdefiniowana jednoznacznie, jednak z definicji
tej nie wynika jak dla konkretnej funkcji/określić zbiór jej pierwiastków. Wiado­
mo, że znajdywanie pierwiastków rzeczywistych równania//) = 0 jest zadaniem

। rozwiązywalnym efektywnie tylko dla pewnych klas funkcji.

Przykład 3.11

Rozważmy funkcję WartośćWielomianu, która oblicza wartość dowolnego wielo­
mianu dla zadanego argumentu. Jest to funkcja o sygnaturze:

WartośćWielomianu : Wielomiany x Rzeczywiste —> Rzeczywiste

Wielomian zi-tego stopnia:

a„ * xn + ... + ai * x + ay

gdzie n^Nat, jest jednoznacznie określony przez zestaw swoich n+1 współczynni­
ków a,..... . ai, aoeRzeczywiste. Zatem zbiór Wielomiany może być zdefiniowany
jako:

Wielomiany =def [J Rzeczywiste"
ne Nat

Stąd, dla dowolnego <a,...... a,, au>e Wielomiany oraz x& Rzeczywiste:

WartośćWielomianu(<an, ..., ai, ao>, x) = an * xn + ... + a\ * x + ao

Obliczenie tak zdefiniowanej wartości funkcji WartośćWielomianu sprowadza się,
। w oczywisty sposób, do prostego algorytmu obliczeń. j

3.6. Operacje na funkcjach

Na funkcjach można wykonywać różne operacje definiując w ten sposób nowe funk­
cje. Funkcje są relacjami, w szczególności można wykonywać na nich operacje mno­
gościowe, ale należy zauważyć, że wynikiem takich operacji nie zawsze jest funkcja.
Na przykład, jeżeli dane są dwie funkcje/ g: A B, to ich mnogościowa suma/ u g
może nie być funkcją, natomiast przekrój funkcji f P g oraz ich różnica
f\g są zawsze funkcjami.

Operacja superpozycji albo składania sekwencyjnego funkcji jest zdefiniowana tak
samo jak dla relacji. Jeżeli dane są dwie funkcje:

f: A —» B oraz g : B —> C

62

to złożeniem sekwencyjnym albo superpozycją funkcji f z funkcją g, oznaczanym
przez f°g, jest funkcja typu A —> C określona następująco:

(f°g\a) =<iefg(jW)

pod warunkiem, że fa) oraz gf(af) są określone.

Inne operacje specyficzne dla funkcji to operacje:

• warunkowego wyboru,
• modyfikacji funkcji przez podstawienie,
• obcięcia.

Niech będą dane dwie funkcje/, g : A —> B oraz trzecia funkcja h : A —> Logiczne,
gdzie Logiczne =def {prawda, fałsz}. Warunkowym wyborem funkcji / g, h, oznacza­
nym:

h ~+f, g

nazywa się funkcję typu A —> B, która jest określona następująco:

[/(a) gdy h(a) = prawda
(h—>f, g)(a) = <

g(a) gdy h(a) = fałsz

Przykład 3.12r--------------------------------- ।
Niech

f= {<1,2>, <2, 3>, <3, 4>}
= {<1, 3>, <2, 3>, <5, 5>}

h = {<1, prawda>, <2,fałsz>, <3, prawda >, <4,fałsz >, <5, prawda >}

wówczas

। h ~^f g - {{<1, 2>, <2, 3>, <3, 4>, <5, 5>} ।

Niech/: A —* B będzie funkcjąoraz niech atA, b&B. Modyfikacjąfunkcji f przez pod­
stawienie wartości b dla argumentu o wartości a, jest funkcja typu A —> B, oznaczana
symbolicznie/a := b], zdefiniowana w sposób następujący:

f[a £](x) =def (x = a) -> b,fx)

W definicji tej wykorzystano poprzednio wprowadzony operator warunkowego wybo­
ru funkcji. Wyrażenie x = a przedstawia funkcję, która przyjmuje wartość logiczną
prawda wtedy i tylko wtedy, gdy argument* przyjmuje wartość a.

Przykład 3.13r ” . i
Niech

/= {<1, 2>, <2, 3>, <3, 4>}

63

g = {<2, 3>, <5, 5>}

wówczas

/[I ;= 5] = {<1, 5>, <2, 3>, <3, 4>)
। g[l :=5] = {<1,5>, <2, 3>, <5, 5>)

Niech C c A. Obcięciem funkcji f: A -» B do podzbioru C zbioru źródłowego A bę­
dzie nazywać się funkcję/|c : C —> B określoną następująco:

dla dowolnego ae C : /|c(a) =def/l«)-

Łatwo sprawdzić, że równoważną definicją obcięcia funkcji jest:

f\c =Mfo(CxB)

Niech/: A—> B oraz niech Ai ę A, Bi ę B. Obrazem zbioru At dla funkcji/nazywa
się zbiór:

fW)=def{bcB\3aeAi'f(a) = b}

Przeciwobrazem zbioru Bi dla funkcji/nazywa się zbiór:

f~l(Bi)=def{azA\ BbeBi*f^ = b}

Przykład 3.14r~ i
Jeżeli

/= {<1, 2>, <2, 3>, <3, 4>, <4, 5>}

to

/|11.21 = {<1,2>, <2, 3>}
/({1, 2}) = {2, 3}

। /~‘({3,4}) = {2, 3}j

3.7. Funkcje a relacje

Pomiędzy relacjami a funkcjami zachodzą pewne związki. Każda funkcja jest,
z definicji, relacją. Odwrotnie tak nie jest, ale każdej relacji R c A x B można przypo­
rządkować przynajmniej jedną taką funkcję/?: A —> B, że dla każdego a&dom(Ry.

f^a) =def b

gdzie beB jest takim elementem, że <a, b>eR, czyli że

64

fu G R oraz domlff = dom(R).

Funkcję/^ nazywa się funkcją zgodną z relacją/?.

Przykład 3.15I -|
Niech

R = {<1, 2>, <1, 3>, <2, 5>, <2, 3>, <3, 4>, <4, 5>}

wówczas

{<1, 2>, <2, 3>, <3,4>, <4, 5>}
{<1, 3>, <2, 3>, <3, 4>, <4, 5>}

।są funkcjami zgodnymi z R. ।

Związek zgodności zachodzi pomiędzy programem a jego specyfikacją. Specyfikację
programu wyraża się jako pewną relację Spec, program zaś jest pewną funkcją Próg.
Program spełnia specyfikację, gdy pomiędzy specyfikacją Spec i programem Próg za­
chodzi związek zgodności, czyli dorniProg) = dom(Spec) oraz Próg G Spec.

Przykład 3.16[- ——————]
Przypuśćmy, że potrzebna jest funkcja obliczająca pierwiastek kwadratowy z licz­
by rzeczywistej x, z dokładnością 1. Niech y będzie wartością tej funkcji dla dane­
go x. Związek między x oraz y jest określony zależnością:

y2 < x < (y+1)2

Formuła ta definiuje relację:

Specsqrl =def {<x. y>E Rzeczywiste1| y2 < x < (y + l)2}

która jest specyfikacją programu.

Implementacją dla tej relacji jest dowolna funkcja:
Implsqri: Rzeczywiste —* Rzeczywiste

która spełnia warunki:

dom{lmpfqrj = dom{Specsqf) oraz Impl^n G Specsqrt.

Czytelnikowi proponuje się samodzielne przedstawienie graficznej ilustracji relacji
। Specsqr, oraz funkcji Implsqrl na płaszczyźnie współrzędnych x, y. ।

Dowolną relację można przedstawić za pomocą jej funkcji charakterystycznej. Jeżeli
dana jest relacja R G A^ ... xA„, to jej funkcją charakterystyczną jest funkcja:

fK : Ai x ... x A„ —> Logiczne

zdefiniowana następująco:

65

fR(ai,an) = prawda wtedy i tylko wtedy, gdy <cti,an>zR.

Funkcja charakterystyczna dla danej relacji R jest wyznaczona jednoznacznie. Od­
wrotnie, dana funkcja charakterystyczna wyznacza jednoznacznie pewną relację.

Ćwiczenia

1. Ile relacji binarnych można zdefiniować na produkcie kartezjańskim A x B, jeżeli
A oraz B są zbiorami skończonymi o licznościach card^A) = n oraz card(B) = m.

2. Uzupełnij i udowodnij wzory:

a) (A n B) x C = (A x Q n (B x Q
b) (A o B) x C = ?
c) (A u B) x (C u D) = 2

3. Niech card^A) = n oraz card(B) = m. Jaka jest liczba funkcji całkowitych oraz czę­
ściowych typu A —> B?

4. Niech U będzie pewnym zbiorem uniwersum oraz niech będzie relacją zawiera­
nia pomiędzy podzbiorami zbioru U. Które z własności: symetrię, zwrotność, prze­
chodniość ma relacja Cy.

5. Niech X =def {a, b, c, d] oraz R ę X 2. Zbadać które spośród własności: symetrii,
przeciwsymetrii, zwrotności, przeciwzwrotności, przechodniości, spójności i rów­
noważności mają następujące relacje binarne:

a) R = {<a, a>, <b, b>, <a, b>]
b) B = {<a, a>, <b, b>, <c, c>, <d, d>, <a, b>, <b, a>}

6. Sprawdzić czy prawdziwe są następujące stwierdzenia dotyczące relacji binarnych
na X:

a) Suma dwóch relacji symetrycznych jest symetryczna.
b) Część wspólna (przekrój) dwu relacji przechodnich jest przechodnia.
c) Jeżeli R jest relacją przechodnią oraz R ę S ę X2, to S jest relacją przechodnią.

7. Niech [a] =def {Z?eA | <a, b>&R} będzie klasą abstrakcji generowaną przez binarną
relację równoważności R na zbiorze A. Dowieść, że:

a) (JH = A
aćA

b) <a, b>eR wtedy i tylko wtedy, gdy [a] = [B]

66

c) jeżeli [a] * [Z?], to [a] n [Z>]= 0

8. Niech ID będzie zbiorem identyfikatorów. Czy zdefiniowane poniżej relacje binar­
ne R\, R2 G ID2 są relacjami równoważności? Jeżeli tak, to jakie są wyznaczone
przez nie zbiory ilorazowe?

a) Ri =def id2> | pierwsza litera identyfikatora idi jest taka sama jak pierwsza
litera identyfikatora id2]

b) R2 =def {<idi, id2> | identyfikator id} czytany wspak jest taki sam identyfikator
id2}

9. Niech BAZA =def Nazwisko x Wiek x Zarobek, gdzie Nazwisko jest zbiorem identy­
fikatorów, Wiek i Zarobek są pewnymi podzbiorami nieujemnych liczb całkowi­
tych. Czy relacje binarne R\, R2 G 5AZA2 są relacjami równoważności? Jeżeli tak,
to jakie są wyznaczone przez nie zbiory ilorazowe?

a) R\ =def {«^i, wi, zi>, <n2, w2, z2» | Wi = w2 a zi = Z2}
b) R2 =def {««i. Wh zi>, <n2, w2, Z2» | wi = w2 a |zi - z2| < 1000}

10. Ile jest różnych relacji równoważności na zbiorze zi-elementowym?

11. Niech R, S G X2 będą relacjami równoważności. Czy relacjami równoważności są
również:

a) R u S
b)7?nó
c)R\S

12. Niech R G X 2 będzie relacją równoważności oraz x, y&X będą dwoma ustalonymi
elementami zbioru X. Czy relacją równoważności jest relacja:

S =def (R u {<x, y>, <y, x>})+

13. Jeśli R\ G X 2, to R2 ę X2 takie, że Ri G R2 nazywamy rozszerzeniem relacji Rh
Czy każdą relację R G X2 można rozszerzyć do relacji:

a) symetrycznej,
b) przeciwsymetrycznej,
c) zwrotnej,
d) przeciwzwrotnej,
ejprzechodniej,
f) spójnej.

14. Wykazać, że relacja R jest przechodnia wtedy i tylko wtedy, gdy spełniony jest
warunek:

R2ęR

67

15. Niech S, T będą relacjami binarnymi na X2. Wskaż, które własności są praw­
dziwe:

a) dom(S u T) = dom(S) u dom(T)
b) dom(S u T) ę dom^S) u dom(T)
c) dom^S n T) ę dom(S) n dom(T)

16. Pokazać, że złożenie funkcji różnowartościowych jest funkcją różnowartościową.

17. Niech/: X —> Y oraz A, B ęX. Uzupełnij i udowodnij wzory:

a)
b) f(AnB) 1 f{A)^f{B}

c) 2 A

18. Funkcja/jest zgodna z relacją i wtedy i tylko wtedy, gdy/c R. Niech X =def {a, b,
c, d} oraz relacja R będzie zdefiniowana następująco:

R =def {<£, b>, <a, d>, <c, O, <b, b>, <b, d>, <c, c>, <d, b>, <c, d>, <d, c>,
<d, a>, <d, d>}.

Zdefiniować wszystkie funkcje/zgodne z relacją/? takie, że:

a) dom(f) = dom(R)
b) ran(f) = ran(R)

Które spośród tych funkcji mają funkcje odwrotne?

4. Uogólnienia i uzupełnienia

4.1. Wielozbiory

Uogólnieniem pojęcia zbioru jest pojęcie wielozbioru. Zbiór jest określony jako ko­
lekcja dobrze wyróżnionych obiektów - elementów zbioru. Czasem nie ma potrzeby
jednoznacznego rozróżniania pomiędzy elementami zbioru. Tak jest wtedy, gdy ele­
mentami zbioru jest wiele kopii tego samego rodzaju obiektów. Na przykład, jeżeli
rozważa się zbiór, którego elementami są różne owoce - jabłka, gruszki, śliwki, to
może nas interesować tylko liczba poszczególnych rodzajów owoców, bez rozróżnia­
nia konkretnych owoców.

Definicja 4.1

Jeżeli A jest dowolnym zbiorem, to wielozbiorem (albo multizbiorem) W nad zbio­
rem A jest para:

W=def<A,/>

gdzie/jest funkcją liczności wielozbioru. Funkcja f jest dowolną całkowicie okre­
śloną na A, o wartościach w zbiorze liczb naturalnych, czyli jest funkcją o sygnatu­
rze/: zł —> Nat oraz dziedzinie dom(f) = A.

Jeżeli a&A, to fa) jest liczbą elementów a w danym wielozbiorze W. Wielozbiór
W jest pusty, gdy j[a) = 0 dla każdego a&A.

Niech będą dane dwa wielozbiory nad zbiorem A:

IV i = <A,/> oraz JV2 = <A, g>

Wj jest podwielozbiorem W2, co oznacza się Wj cl/, jeżel i fa) < g(a\ dla każdego atA.

Wielozbiory W oraz W2 są identyczne, co pisze się Wj = W2, wtedy i tylko wtedy, gdy
Wj ę IV2 oraz W2 ę Wj.

Na wielozbiorach definiuje się operacje mnogościowe sumy, przekroju i różnicy.
Suma wielozbiorów jest zdefiniowana następująco:

IV, u W2 = <A, h>

69

gdzie /i jest funkcją liczności spełniającą warunek:

h(a) =fia') + s(«)dla dowolnego aeA

Przekrój wielozbiorów jest zdefiniowany następująco:

W2=<A,h>

gdzie /i jest funkcją liczności spełniającą warunek:

h(a) = min(f(a), g(a))dla dowolnego aeA

Różnica wielozbiorów jest zdefiniowana następująco:

Wi\W2=<A,h>

gdzie h jest funkcją liczności spełniającą warunek:

h(a) = max(f(a) - g(a), 0)dla dowolnego aeA

Funkcje min oraz max są funkcjami, które wyliczają odpowiednio większą oraz mniej­
szą liczbę spośród dwóch liczb, które sąjej argumentami.

Przykład 4.1r~ i
Niech IV। = <A,J\> oraz W2 = <A,f2>, gdzie A = {a, b, c, d, e} oraz funkcje liczno­
ści są zdefiniowane następująco:

/ = {<a, 4>, <b, 3>, <c, 2>, <d, 1>, <e, 0>}
f2 = {<«, 0>, <b, 1>, <c, 2>, <d, 3>, <e, 4>}

Wówczas

Wj o W2 = <A, {<a, 4>, <b, 4>, <c, 4>, <d, 4>, <e, 4>}>
Wj n W2 = <A, {<a, 0>, <b, 1>, <c, 2>, <d, 1>, <e, 0>}>

। Wi\W2 = <A, {<a, 4>, <b, 2>, <c, 0>, <d, 0>, <e, 0>}>j

Uwaga

Często, gdy rozważa się rodzinę wielozbiorów W, = <4,/ >, dla iel, nad ustalo­
nym zbiorem A, przyjmuje się uproszczoną notację - wielozbiór Wj utożsamia się
z funkcją liczności/. Wtedy zamiast pisać, na przykład, Wj u W2 pisze się/ u/2-

4.2. Zbiory rozmyte

Zbiory rozmyte są uogólnieniem zbiorów, którym można posługiwać się w sytuacjach
określonych nieprecyzyjnie lub niejednoznacznie. Takie sytuacje występują, na przy­

70

kład, gdy mówi się wysoki mężczyzna, duże miasto lub drogi samochód. Gdy mówi się
o kimś, że jest wysokim mężczyzną wyraża się przekonanie o stopniu przynależności
danego mężczyzny do zbioru wysokich mężczyzn.

Definicja 4.2

Jeżeli A jest dowolnym zbiorem, to zbiorem rozmytym Z nad zbiorem A jest para:

2=^<A, p>

gdzie p jest funkcją przynależności do zbioru rozmytego. Funkcja p jest dowolną
funkcją całkowicie określoną na A, o wartościach w zbiorze liczb rzeczywistych
z przedziału [0, 1], czyli funkcją o sygnaturze p : A —> [0, 1] oraz dom(f) = A.

Jeżeli aeA, to p(a) określa stopień przynależności elementu a do danego zbioru roz­
mytego. Dla aeA wartość funkcji p(a) = 0 oznacza brak przynależności, p(a) = 1
oznacza pełną przynależność, zaś 0 < p(a) < 1 oznacza częściową przynależność ele­
mentu a do zbioru rozmytego.

Zbiór rozmyty Z jest pusty, gdy p(a) = 0 dla każdego aeA.

Przykład 4.2

Przyjmując, że wysocy mężczyźni to ci, którzy mają co najmniej 170 cm wzro­
stu, rozmyty zbiór wysokich mężczyzn Wysocy Mężczyźni można zdefiniować
następująco:

Wysocy Mężczyźni = <Wzrost, PwZrosi>

gdzie

Wzrost = {xe Rzeczywiste | x > 100}

0 dla x<170
ZW^=A*(*-170) dla 170<x<185

।1 dla x>185।

Niech będą dane dwa zbiory rozmyte Z = <A, pi> dla i = 1, 2. Zi jest podzbiorem 7^, co
oznacza się Zi ę Z2, jeżeli pja) < p-fa), dla każdego a^A.

Zbiory rozmyte Zi oraz Z2 są identyczne, co pisze się Zi = Z2, wtedy i tylko wtedy, gdy
Wi ę W2 oraz W2 ę Wl

Operacje mnogościowe na zbiorach rozmytych są definiowane następująco:
Suma zbiorów rozmytych:

Zi u Z2 = <A, p>

gdzie p jest funkcją przynależności spełniającą warunek:

71

X«) = max(Hi(d), ^(a)) dla dowolnego a&A

Przekrój zbiorów rozmytych:

Zi n Z2 = <A, fi>

gdzie /z jest funkcją przynależności spełniającą warunek:

^(a) = min^n^d), ^(a)) dla dowolnego a^A

Różnica zbiorów rozmytych:

Zi \ Z2 = <A, /u>

gdzie /z jest funkcją przynależności spełniającą warunek:

ą(a) = mor^^a) - /x2(zz), 0) dla dowolnego a^A

Przykład 4.3[; ; ; n
Zbiory rozmyte można przedstawić graficznie za pomocą odpowiadających im
wykresów funkcji przynależności. Na pierwszym z rysunków (rys. 4.1) przedsta­
wiono wykresy funkcji przynależności dwóch zbiorów rozmytych nad zbiorem
liczb rzeczywistych - linia ciągła (zbiór pierwszy) i przerywana (zbiór drugi), a na
następnych - wykresy funkcji przynależności ich sumy i przekroju.

Funkcje przynależności dwóch zbiorów rozmytych
- linia ciągła i linia przerywana

Funkcja przynależności sumy dwóch zbiorów
rozmytych

Funkcja przynależności przekroju dwóch zbiorów
rozmytych

Rys. 4.1. Graficzna ilustracja operacji na zbiorach rozmytych

72

Uwaga

Badania nad zbiorami rozmytymi zainicjował swoimi pracami Lofti Zadeh w po­
łowie lat sześćdziesiątych. Podane wyżej definicje zawierania i równości zbiorów
rozmytych oraz operacje mnogościowe są tymi, które spotyka się najczęściej.
W literaturze istnieje rozmaitość innych definicji tych pojęć [Kacprzyk 86],
[Rutkowska, Piliński, Rutkowski 1997].

Z porównania podanych określeń zbiorów rozmytych z podanymi wcześniej określe­
niami dla wielozbiorów wynika, że z obliczeniowego punktu widzenia różnice są mało
istotne. Istotne są natomiast różnice interpretacyjne, gdyż funkcja liczności dla danego
elementu aeA określa liczbę kopii samego elementu w wielozbiorze, podczas gdy funk­
cja przynależności określa stopień przynależności tego elementu do zbioru rozmytego.

4.3. Zbiory przybliżone

Pojęcie zbiorów przybliżonych wywodzi się z zagadnienia klasyfikacji.

Niech U będzie dowolnym zbiorem uniwersum oraz niech R cU2 będzie pewną rela­
cją równoważności określoną na U. Relacja równoważności wyznacza podział zbioru
U na klasy abstrakcji. Dwie klasy abstrakcji są albo identyczne, albo rozłączne, a su­
ma mnogościowa wszystkich klas abstrakcji jest równa zbiorowi U. Zbiór wszystkich
klas abstrakcji, oznaczany U/R, jest nazywany zbiorem ilorazowym zbioru U.

Niech będzie dany pewien podzbiór X ę U. Podzbiór X jest oczywiście określony
przez swoje elementy, ale można go też scharakteryzować tylko poprzez elementy
zbioru ilorazowego U/R. Charakteryzacja polega na wprowadzeniu dwóch podzbiorów
stanowiących dolne i górne przybliżenie zbioru X.

Dolnym przybliżeniem zbioru X względem relacji R, oznaczanym RX, jest zbiór zdefi­
niowany następująco:

RX = |J{yGl//R|yęX}

Górnym przybliżeniem zbioru X względem relacji R, oznaczanym RX, jest zbiór zde­
finiowany następująco:

RX = \J{Y e U/ R\Y X A 0]

Z definicji wynika, że RX ę X ę RX.

73

Definicja 4.3

Zbiór X nazywa się zbiorem przybliżonym względem relacji R, gdy RX RX.
W przeciwnym razie, gdy RX =RX, zbiór X nazywa się zbiorem dokładnym
względem R.

Ilustracją wprowadzonych pojęć jest rysunek 4.2.

Zbiorem U jest prostokątny obszar na płaszczyźnie X-Y podzielony na mniejsze pro­
stokąty - kratki są jednoznacznie identyfikowane przez numery wierszy i kolumn.
Kratki te są elementami pewnego zbioru ilorazowego dzielącego zbiór U. Zbiór X jest
zaznaczony pogrubioną linią. Jego dolnym przybliżeniem RX jest obszar zaznaczony
trzema mocniej zacieniowanymi kratkami, a górnym jego przybliżeniem RX jest ob­
szar zaznaczony wszystkimi zacieniowanymi kratkami.

RX = {<b, 2>, <b, 3>, <b, 4>}
RX = {<a, 1>, <a, 2>, <a, 3>, <a, 4>, <a, 5>,

<b, 1>, <b, 2>, <b, 3>, <b, 4> <b, 5>,
<c, 1>, <c, 2>, <c, 3>, <c, 4> <c, 5>}

W praktycznych zastosowaniach liczności elementów zbiorów oraz RX dają podstawę
do liczbowej oceny dokładności przybliżenia zbioru X. Jeżeli zbiory RX oraz RX są skoń­
czone, to tak zwana miara dokładności przybliżenia zbioru Ajest określana jako liczba

OCr(X) = card(RX) / card (RX)

Oczywiście 0 < aR(X) < 1.

Uwaga

Zbiory przybliżone zostały wprowadzone przez Zdzisława Pawlaka w połowie lat
osiemdziesiątych. Znalazły one szerokie zastosowanie w informatyce, między in­
nymi w analizie danych, przybliżonej klasyfikacji i przetwarzaniu obrazów [Paw­
lak 1991],

74

4.4. Zbiory przeliczalne i nieprzeliczalne

Pojęcie funkcji pozwala na porównywanie liczności zbiorów.

Definicja 4.4

Dwa zbiory A i B są równoliczne wtedy i tylko wtedy, gdy istnieje wzajemnie jed­
noznaczna funkcja:

f:A^B

O zbiorach równolicznych mówi się też, że są zbiorami o tej samej mocy.

Jeżeli zbiory A i B są skończone, to są równoliczne, gdy mają tę samą liczbę elemen­
tów, czyli gdy card(A) - card^B).

Dla zbiorów nieskończonych zachodzi charakterystyczna własność polegająca na
tym, że cały zbiór jest równoliczny z pewnym swoim podzbiorem właściwym. Ta
własność jest podstawą formalnej definicji zbiorów nieskończonych. Mianowicie,
zbiór jest nieskończony wtedy i tylko wtedy, gdy ma podzbiór właściwy, który jest
z nim równoliczny.
Przykład 4.4
I---------- ----------------------------- 1

Zbiór liczb parzystych Parzyste jest równoliczny ze zbiorem liczb naturalnych Nat.
Wystarczy zauważyć, że funkcja /: Nat —> Parzyste, która wzajemnie jednoznacz­
nie odwzorowuje zbiór Nat w zbiór Parzyste, jest zdefiniowana wzorem:

fn) = 2*n

gdzie neNat, zaś 2*ne Parzyste.

Równoliczne są zbiory Parzyste i Nieparzyste.

। Zbiór liczb naturalnych jest równoliczny ze zbiorem liczb wymiernych. ।

Każdy zbiór skończony lub równoliczny ze zbiorem liczb naturalnych nazywa się
zbiorem przeliczalnym. Zbiór nieskończony, który nie jest równoliczny ze zbiorem
liczb naturalnych nazywa się zbiorem nieprzeliczalnym.

Twierdzenie 4.1

Zbiór potęgowy zbioru liczb naturalnych nie jest równoliczny ze zbiorem liczb
naturalnych, czyli jest zbiorem nieprzeliczalnym. Oznacza to, że nie istnieje wza­
jemnie jednoznaczna funkcja f: Nat —» 2^“'.

Dowód

Dowód pochodzi od Cantora i jest oparty na tzw. metodzie przekątniowej. Jeżeli
zbiór potęgowy byłby równoliczny zbiorowi liczb naturalnych, to wszystkie pod­
zbiory zbioru liczb naturalnych dałoby się ustawić w ciągi Zj, Z2, Z3, Każdy

75

z tych zbiorów zawiera pewne liczby naturalne. Można to przedstawić w postaci
tabeli, której przykładowa postać jest podana poniżej. Zbiór Zt w tej tabeli nie za­
wiera liczb 0, 1, 2, 3 itd.; zbiór Z2 zawiera 0, 1, nie zawiera 2, 3 itd.

0 1 2 3
Zt nie nie nie nie
Z2 tak tak nie nie
z} nie tak nie nie
z4 tak tak nie tak
Z,

Definiuje się teraz nowy zbiór Z', w taki sposób, aby był on różny od każdego ze
zbiorów Z|, Z2, Postępuje się w sposób następujący. Poruszając się wzdłuż
przekątnej tabeli od górnego lewego pola definiuje się przynależność kolejnej licz­
by do zbioru Z', zastępując każde „nie” przez „tak” oraz każde „tak” przez „nie”.
W rozpatrywanym przykładzie otrzymuje się mianowicie:

0 1 2 3
z. tak nie nie nie
z2 tak nie nie nie
Zy nie tak tak nie
z, tak tak nie nie
Zy

Zbiór Z', zdefiniowany przez tak określoną przekątną, zawiera 0, nie zawiera 1,
zawiera 2 itd. Jest on oczywiście różny od każdego ze zbiorów Z{, Z2, Zatem
Z'jest zbiorem, który nie daje się zestawić w ciąg wszystkich podzbiorów zbioru
liczb naturalnych.

Podany przykład jest jednostkowy, ale jest oczywiste, że analogiczne rozumowa­
nie można przeprowadzić dla dowolnego domniemanego uporządkowania
wszystkich podzbiorów w jeden ciąg, to znaczy dla pewnej wzajemnie jedno­
znacznej funkcji/: Nat —> 2N‘". Ponieważ rodzina podzbiorów 2N“' jest nieskoń­
czona i nie jest równoliczna ze zbiorem liczb naturalnych, jest więc zbiorem nie­
przeliczalnym.

Twierdzenie pokazuje, że istniejące najmniej dwa rodzaje nieskończoności. Pierw­
szy reprezentuje nieskończoność liczb naturalnych i nazywa się nieskończonością
przeliczalną. Pozostałe rodzaje nieskończoności nazywa się nieskończonościami
nieprzeliczalnymi. Drugi rozpatrywany tu rodzaj nieskończoności reprezentujący
wszystkie podzbiory liczb naturalnych reprezentuje rodzaj nieprzeliczalności zwany
continuum.

76

Konstrukcję przekątniową Cantora można wykorzystać do udowodnienia innego
twierdzenia:

Twierdzenie 4.2

Przeliczalna suma mnogościowa zbiorów przeliczalnych jest zbiorem przeliczalnym.

Dowód

Niech Z|, Z2, ... będzie ciągiem zbiorów przeliczalnych. Niech Z, =def {Z/i, Zn, ... }
dla i = 1,2, Elementy tych zbiorów można ustawić w tabelę:

Wszystkie te elementy, nie pomijając żadnego, można ustawić w jeden wspólny
ciąg w sposób, który określają strzałki. Ciąg ten zawiera wszystkie elementy
wszystkich ciągów Zh Z2, ... i jest oczywiście równoliczny ze zbiorem liczb natu­
ralnych, co dowodzi tezy twierdzenia.

Pojęcie równoliczności zbiorów jest bardzo ważne. Jest ono, między innymi, punktem
wyjścia do współczesnej definicji liczby. Równoliczność oznacza pewną relację na rodzi­
nie wszystkich zbiorów. Jest to relacja równoważności, która generuje klasy abstrakcji -
rodziny zbiorów o tej samej liczności. Klasy te nazywa się liczbami kardynalnymi. Na
przykład, klasą abstrakcji jest rodzina zbiorów czteroelementowym, a odpowiadającą jej
liczbą kardynalną jest 4. Liczby naturalne można zatem interpretować jako klasy abstrak­
cji określone przez relację równoliczności na dowolnych zbiorach skończonych. Inny spo­
sób interpretacji liczb naturalnych przedstawiono w następnym punkcie. Liczbą kardynal­
ną zbioru wszystkich liczb naturalnych jest Ko (alef zero), a liczbą kardynalną rodziny
wszystkich podzbiorów zbioru liczb naturalnych jest <c (continuum).

4.5. Zbiory obliczalne i rekurencyjnie przeliczalne

Z wykonywaniem obliczeń za pomocą komputerów wiąże się pojęcie algorytmu. Ob­
liczeniami na komputerach rządzą ścisłe reguły, niekiedy mówi się nawet o regułach

77

mechanicznych, mając na myśli to, że obliczenie można widzieć jako skończonej dłu­
gości ciąg czynności, z których każda jest jednoznacznie zdefiniowana i - dodatkowo
- realizowalna za pomocą ściśle zdefiniowanych środków. Dla rozwiązania niektórych
problemów, na przykład zadania obliczenia największego wspólnego podzielnika
dwóch liczb, można wyobrazić sobie istnienie pewnego algorytmu. Natomiast trudno
wyobrazić sobie istnienie algorytmu do przepowiadania wyniku rzutu monetą.

Określone tak intuicyjnie pojęcie algorytmu jest nieformalne, co utrudnia lub nawet
uniemożliwia jego wykorzystanie w ścisłych rozważaniach. Próby ścisłego zdefiniowa­
nia pojęcia algorytmu7 podjęto w pierwszej połowie ubiegłego stulecia. Ich efektem
było powstanie kilku - jak później się okazało - równoważnych definicji algorytmu.

7 Termin algorytm pochodzi od nazwiska arabskiego matematyka Abu Ja’far Muhammad ibn Musa Al-
Kwarizmi (około 780-850).
8 Andriej A. Marków (ur. 1903), syn innego matematyka Andrieja A. Markowa (1856-1922).
9 Alan M.Turing (1921-1954).
10 Emil Post (1897-1954).

Niektóre z tych podejść wiązały się z ograniczeniem czynności wykonywanych
w ramach algorytmu do manipulacji na symbolach. Oznacza to, że wykonywanie
czynności polega na tworzeniu pewnych ciągów symboli (napisów) na podstawie in­
nych ciągów symboli (napisów). Przykładem są tu algorytmy normalne Markowa8.

Inne podejścia były oparte na wprowadzeniu pewnych „maszyn”, które byłyby zdolne
do samodzielnego wykonywania przetwarzania napisów. Przykładem znanych modeli
algorytmu są maszyny opracowane przez Turinga9 oraz Posta10. Oba te modele, opra­
cowane niezależnie od siebie, są podobne i wiąże się nimi hipoteza nazywa hipotezą
Turinga-Posta lub, częściej, hipotezą Turinga. Z tego względu dalej zostanie przed­
stawiona tylko maszyna Turinga i związana z nią, sformułowana w 1936 roku, hipote­
za stwierdza [Arbib 68]:

Nieformalne, intuicyjne pojęcie algorytmu na ciągach symboli jest tożsame ze ści­
słym pojęciem procedury, którą może wykonać maszyna Turinga.

Dla hipotezy tego rodzaju nie można nigdy podać formalnego dowodu, ponieważ taki
dowód wymaga zdefiniowania pojęć, które zawiera. Można ją tylko obalić przez
podanie przykładu intuicyjnie rozwiązywalnego problemu, dla którego nie daje się
skonstruować odpowiedniej maszyny Turinga. Jak dotąd, ilekroć było intuicyjnie
oczywiste, że algorytm istnieje, tylekroć okazywało się możliwe skonstruowanie ma­
szyny Turinga wykonującej ściśle ten algorytm i nie ma przesłanek, które wskazywa­
łyby na możliwość zmiany tego stanu rzeczy.

Rozwiązanie pewnego problemu przez wyszukanie odpowiedniego algorytmu spro­
wadza się zatem do zbudowania odpowiedniej maszyny Turinga. Maszyna Turinga
jest tylko konstrukcją teoretyczną i nie służy do rozwiązywania zagadnień praktycz­
nych. W celach praktycznych wystarczy przyjąć, że maszynę Turinga można utożsa-

78

miąć z dowolnym komputerem, który dysponuje nieograniczenie pojemną pamięcią.
Dokładny jej opis przedstawia się następująco.

Maszyna Turinga (rys. 4.3) jest określona jako urządzenie, składające się z nieskoń­
czenie długiej taśmy podzielonej na kratki, zwanej pamięcią maszyny, oraz urządzenia
sterującego, zwanego sterowaniem maszyny. W każdej kratce taśmy może być zapisa­
ny jeden z symboli ustalonego, skończonego zbioru symboli A, nazywanego alfabetem
maszyny. Zakłada się, że alfabet zawiera symbol „pusty”: nic. Urządzenie sterujące -
krócej sterowanie - może znajdować się w jednym ze stanów skończonego zbioru
S. Wyróżnia się pewien podzbiór stanów F Q S nazywanych stanami końcowymi.
W każdym stanie urządzenie sterujące może „obserwować” (przez głowicę czytająco-
piszącą) jedną kratkę taśmy T. Gdyby kratki taśmy T można było ponumerować licz­
bami naturalnymi, to symbol a^A znajdujący się w obserwowanej kratce o numerze
i&Nat można by nazwać symbolem obserwowanym.

Sterowanie
Si

Rys. 4.3. Maszyna Turinga

Parę <5, at>, gdzie se5 jest aktualnym stanem, zaś a^A jest aktualnie obserwowanym
symbolem, nazywa się konfiguracją maszyny. Maszyna rozpoczyna pracę w konfigu­
racji początkowej, to jest takiej, w której aktualnym stanem jest wyróżniony stan po­
czątkowy, a głowica czytająco-pisząca znajduje się przy wskazanym polu danej taśmy
T. W danej konfiguracji <5, a,> takiej, że s^F, maszyna „czyta” obserwowany symbol
a, po czym:

• zmienia swój stan s na nowy stan ./gS,
• zmienia obserwowany symbol a na a'eA, w szczególności może to być ten sam

symbol a lub symbol pusty,
• przesuwa swoją głowicę czytająco-piszącą o jedną kratkę w lewo albo w prawo,

albo pozostawia ją w miejscu.

W ten sposób maszyna przechodzi do nowej konfiguracji i powtarza swoje działa­
nie według opisanego schematu, aż do momentu, gdy osiągnie konfigurację końco­
wą, to jest taką, w której stan aktualny jest dowolnym stanem końcowym. Po osią­
gnięciu konfiguracji końcowej maszyna zatrzymuje się i nie wykonuje dalszych
czynności.

Formalnie maszynę Turinga MT definiuje się jako siódemkę:

MT=<S,A, 3, A, p, 50, F>

79

gdzie:

S - zbiór stanów,
A - alfabet,
8 : 5 x A —> S - funkcja przejść pomiędzy stanami,
A : S x A —> A - funkcja wyjść,
p : S —» {-1,0, 1} - funkcja przesunięcia głowicy,
s0 - stan początkowy,
F ęS - podzbiór stanów końcowych.

Obliczenie maszyny Turinga MT dla danej taśmy /'jest rozumiane jako ciąg konfigu­
racji:

<s(},a. ><s.,ai >...<s ,a- >...
U /() 1 '| " 'n

gdzie:

^■+i = S(sk,ait),

=‘k+P^i,aik).

dla k eNat. Pierwsza z funkcji określa nowy stan, druga - nową zawartość przeczytanej
komórki, a trzecia - wskazuje na numer kolejnej komórki, do której przesuwa się głowica.

Ciąg ten zawsze rozpoczyna się w konfiguracji początkowej i może być skończony
lub nieskończony. Jeżeli jest on ciągiem skończonym, to ostatnia konfiguracja jest
konfiguracją końcową. Obliczenie maszyny rozpoczyna się i kończy pewnym ciągiem
symboli zapisanych na taśmie. Symbole na taśmie przed rozpoczęciem obliczeń inter­
pretuje się jako dane algorytmu, a symbole po wykonaniu obliczeń maszyny interpre­
tuje się jako wynik obliczeń algorytmu (rys. 4.4).

Przykład 4.5
r~--- ~i

Alfabet maszyny Turinga A = (0, 1, nic}. Zadaniem maszyny Turinga jest stwier­
dzenie, czy liczba symboli 1 zapisana na taśmie, poczynając od wskazanego niepu-
stego pola, aż do pierwszego pola po prawej stronie, które zawiera symbol nic, jest
parzysta czy nieparzysta. Wynik obliczeń maszyny ma być zapisany na taśmie,
w polu sąsiadującym po prawej stronie z pierwszym polem zawierającym znale­
ziony symbol nic (pole puste).

Maszynę Turinga można w zwarty sposób przedstawić za pomocą diagramu
przejść pomiędzy stanami (rys. 4.5). Diagram ten jest grafem, którego wierzchoł­
kami są stany maszyny. Luki reprezentujące przejścia pomiędzy stanami są ety­
kietowane napisami postaci a/b, c. Pierwszy element a jest symbolem alfabetu ma­
szyny, symbol * oznacza, że może to być dowolny element. Drugi element b jest
symbolem, który maszyna wypisuje na taśmie, symbol _ oznacza, że napis w danej

80

kratce nie ulega zmianie. Trzeci element c może przyjąć wartości -1, 0, +1, co
oznacza przesunięcie głowicy maszyny odpowiednio w lewo, brak przesunięcia lub
przesunięcie w prawo. Ukośnik rozdziela symbol wejściowy od symboli, które re­
prezentują reakcję maszyny w danej konfiguracji. Łącznie etykieta alb, c na przej­
ściu ze stanu i do stanu j oznacza, że: jeżeli w stanie i maszyna przeczyta
w obserwowanej kratce symbol a, to zapisuje w tej kratce symbol b i przesuwa się
do następnej kratki o c, po czym przechodzi do stanu j.

Wynik
początkowe !

Pole i
końcowe I

Ogranicznik • •
poszukiwań •

Rys. 4.4. Przykładowa zawartość taśmy

Rys. 4.5. Diagram przejść pomiędzy stanami

Przedstawiony na rysunku 4.5 diagram wymaga uzupełnienia o wskazanie stanu
। początkowego - stan 0 - oraz stanów końcowych - stany 4, 5.j

Maszyna Posta, a także inne maszyny, na przykład Rabina i Scotta, maszyny wielota­
śmowe, są równoważne maszynie Turinga w tym sensie, że jeżeli dany problem daje
się rozwiązać przez zbudowanie jakiejkolwiek z tych maszyn, to daje się również
rozwiązać za pomocą pozostałych maszyn.

Przyjmując maszynę Turinga za pojęcie algorytmu, można sformułować następujące
ważne pojęcia. Niech dany będzie pewien zbiór przeliczalny A.

81

Zbiór A jest rekurencyjny, jeżeli istnieje algorytm rozstrzygania, czy coś jest, czy nie
jest jego elementem.

Zbiór A jest rekurencyjnie przeliczalny, jeżeli istnieje algorytm, który wylicza jego
wszystkie jego elementy jeden po drugim.

Z definicji bezpośrednio wynika, że jeżeli zbiór liczb naturalnych jest rekurencyjny, to
jest rekurencyjnie przeliczalny, ale nie odwrotnie, gdyż okazuje się, że zachodzi
twierdzenie.

Twierdzenie 4.3

Istnieje rekurencyjnie przeliczalny zbiór liczb naturalnych, który nie jest rekuren­
cyjny.

Dowód

Dowód można znaleźć na przykład w [Arbib 68],

Pojęcie rekurencyjności odnosi się także do funkcji:

Funkcja jest rekurencyjna, jeżeli istnieje algorytm obliczania jej wartości.

Zbiory, którymi operuje się w programowaniu są zbiorami co najwyżej przeliczalny­
mi. Efektywne operowanie tymi zbiorami oznacza, że powinny to być przynajmniej
zbiory rekurencyjnie przeliczalne, a wykonywane na nich operacje powinny być funk­
cjami rekurencyjny mi.

4.6. Funkcje obliczalne

Pojęcie funkcji obliczalnych wiąże się z funkcjami określonymi na zbiorze liczb natu­
ralnych i o wartościach w zbiorze liczb naturalnych. Intuicyjnie, funkcje obliczalne to
takie funkcje, których wartości dla dowolnych argumentów można obliczyć na kom­
puterze w skończonej liczbie kroków. Formalnie, funkcja jest obliczalna, gdy istnieje
algorytm jej obliczenia, inaczej - istnieje dla niej odpowiednia maszyna Turinga.

Definicja klasy funkcji obliczalnych opiera się na zbiorze pewnych funkcji elementar­
nych i zbiorze operacji, które pozwalają na konstruowanie z funkcji elementarnych
nowych funkcji.

Zbiór funkcji elementarnych zawiera:

• funkcję następnika zdefiniowaną wzorem Succ(x) = x + 1,
• funkcję tożsamościową Z(x) = x,

82

• funkcję rzutowania pi{xi, xn~) = x,, dla i = 1, ..., n,
• funkcję zeroargumentową- stałą 0.

Zbiór operacji na funkcjach składa się z trzech operacji. Pierwszą jest - omówiona
wcześniej - operacja składania funkcji, dwie pozostałe operacje - nazywane operacją
rekursji prostej i operacją minimum efektywnego - wymagają zdefiniowania.

Operacja rekursji prostej polega na tym, że mając dwie funkcje:

/: Natn~l —» Nat oraz g : Nat"+l —» Nat dla neNat\{0}

nową funkcję:

h : Natn —> Nat

definiuje się za pomocą dwóch następujących równości:

hM,..., xn_i, 0) =fM,..., x„_i)
hM,..., x„_i, SuccM) = gM, x„, h(xi,xn))

Termin rekursja prosta, wprowadzony przez Hilberta11 i Bemaysa12 w 1934 roku, nie
jest szczęśliwy, gdyż schemat generacji wartości funkcji bardziej wiąże się z iteracją
z jaką mamy do czynienia w językach programowania, niż z rekursją. Rekursja prosta
wyraża pewien indukcyjny sposób definiowania wartości.

" David Hilbert (1862-1943).
12 Paul I. Bernays (1888-1977).

Funkcje, które daje się zdefiniować za pomocą operacji rekursji prostej nazywa się
funkcjami pierwotnie rekurencyjnymi.

Przykład 4.6r
Funkcję dodawania liczb naturalnych, reprezentowaną symbolem + w notacji
przedrostkowej, definiuje się za pomocą operacji rekursji prostej w sposób nastę­
pujący:

+(x, 0) = IM
+(SuccM, - Succ(piM y, +(*, y)))

W tym przypadku rolę definiowanej funkcji h pełni +, funkcja/jest funkcją tożsa­
mościową/, a funkcja g jest złożeniem funkcji następnika Suce z funkcją rzutowa­
nia p3. Tę samą definicję, w sposób równoważny, można zapisać prościej:

+(x, 0) = x
+(Succ(y\ *) - Succ(+M y))

Używając notacji wrostkowej dla funkcji dwuargumentowych definicja przyjmie
jeszcze bardziej czytelną postać:

83

x + O = x
Succ(y) + x = Succ(x + y)

Korzystając z funkcji dodawania, podobnie można zdefiniować funkcję mnożenia:

x * 0 = 0
। Succ(y) * x = (x* y) + x j

Przykład 4.7
' Odejmowanie w zbiorze liczb naturalnych jest funkcją zdefiniowaną częściowo. De­

finiowana poniżej funkcja dif, określona dla wszystkich liczb naturalnych jest tylko
pewnym odpowiednikiem odejmowania w zbiorze liczb całkowitych. Jej definicja
wymaga wprowadzenia funkcji pomocniczej Pred, nazywanej funkcją poprzednika.
Rekursywną definicja jednoargumentowej funkcji poprzednika ma postać:

Pred^} = 0
Pred^SuccW) = x

Odejmowanie w dziedzinie liczb całkowitych nieujemnych, oznaczone dif
w celu odróżnienia od symbolu odejmowania w zbiorze liczb całkowitych, jest
zdefiniowane metodąrekursji prostej:

dif{x, 0) = 0
। dij{x, Succ(yf) = Pred(dif(x, y)) ।

Metodą rekursji prostej można definiować różne funkcje, między innymi funkcje
określone wariantowo.

Przykład 4.8
' Niech dana będzie funkcja: '

z x (2x dla x<3
/i(x) =

v 2x-2 dla x>3

Jej definicja wymaga uprzedniego zdefiniowania funkcji pomocniczych: jednoargu­
mentowej funkcji znaku sg definiowanej rekursją prostą (przypadek zdegenerowany):

^(0) = 0
sgęsucc&y) = i

oraz funkcji porównań definiowanych przez wyrażenia funkcyjne:

gt(x, y) = sg(dif[x, y))
ge(x, y) = gt(Succ(xf y)

Stąd definicja funkcji li przybierze postać wyrażenia fukcyjnego:

। ((2*x) * ge(3, x)) + (dif(f2*x), 2) * gt(x, 3f) i

84

Niestety, za pomocą operacji rekursji prostej nie można definiować dowolnych funk­
cji. Przykładem funkcji, która nie daje się zdefiniować w ten sposób jest przedstawia­
na już poprzednio, w rozdziale 3, funkcja Ackermanna13:

13 Wilhelm Ackermann (1896-1962).
14 Stephan Kleene (1909-1994).

y + 1 gdy x = 0
Ack(x, y} Ac^(x-l,l) gdyy = 0

Ack(x -1, Ack(x, y -1))

W 1936 roku Kleene14 uzupełnił listę schematów kompozycji funkcji o operację mi­
nimum efektywnego, albo inaczej, operację ^u-rekursji.

Niech dana będzie funkcja:

f; Natn+' -4 Nat

taka, że dla każdych xh..., xntNat istnieje y^Nat takie, itf{x\,xn, y) = 0.

Operacja minimum efektywnego dla funkcji/: Nat"+i —» Nat polega na zdefiniowaniu
nowej funkcji:

h : Natn —» Nat,

która spełnia warunek:

f(xi,...,xn, h(x\, ...,x„)) = 0

oraz dodatkowo - aby zapewnić jednoznaczność definicji funkcji h - warunek:

h(xi,..., x„) jest równe najmniejszej wartości y^Nat takiej, że/(xi, ..., xn, y) = 0.

Ostatni warunek zapisuje się też w postaci:

h^, ..., x„) = pytfai,..., xn, y) = 0]

Symbol py oznacza najmniejszą wartość y, dla której, dla danych wartościach x\, ...,
xn, jest spełniony warunek/(*i,..., xn, y) = 0.
Operacja minimum efektywnego wyznacza więc funkcję, która przyjmuje wartość
h(xi,xn) = y wtedy i tylko wtedy, gdy:

• f{x\, ...,xn, y) = 0
• dla dowolnego y' < y f{x\,..., xn, y’) 0.

Jeżeli dla danego zestawu wartości ..., xn funkcja/nie spełnia podanych warunków,
to funkcja h dla tych wartości nie jest zdefiniowana.

85

Przykład 4.9
. "I

Operacja minimum efektywnego zostanie wykorzystana do definicji funkcji:

ht(x, y) = (pz)[isg(eq(y *z, x)) =0]

Funkcja h\ definiuje najmniejszą wartość z taką, że y * z = x. W przypadku, gdy
x nie jest wielokrotnością y, funkcja ta nie jest określona.

h2(x, y) = (pz)[y * gt(x, y * 5ucc(z)) = 0]

Funkcja h2 wyznacza część całkowitą z dzielenia x przez y.

h3(x, y) = (/xz)[dij[x, z) = 0]

।Funkcja h2 równa się x dla dowolnych x, y; jest więc równoważna funkcji projekcji pi. ।

Funkcje, które można zdefiniować za pomocą operacji składania, rekursji pierwotnej
i minimum efektywnego nazywa się funkcjami ogólnie rekurencyjnymi.

4.7. Aksjomatyczne ujęcie teorii mnogości

W początkowym okresie swego rozwoju teoria mnogości była budowana w oparciu
o intuicyjne pojęcie zbioru. Droga ta okazała się zawodna, gdyż intuicja nie dawała
jednoznacznych odpowiedzi na pewne subtelne pytania. W konsekwencji pojawiły się
sprzeczności, jak na przykład omówiona wcześniej antynomia Russella. W celu ich
eliminacji zbudowano różne aksjomatyczne teorie zbiorów. Poniżej przedstawiamy
zestawy aksjomatów opracowane przez Zermelo15. Zestaw ten jest wystarczający do
praktyki matematycznej, zwłaszcza do definiowania liczb naturalnych, całkowitych,
wymiernych i rzeczywistych ze zwykłymi działaniami arytmetycznymi. Bardziej roz­
powszechniona jest nieco silniejsza teoria, zwana teorią Zermelo-Fraenkla16. Aksjo­
maty Zermelo są tu przedstawiane za pomocą języka naturalnego.

15 Ernst Zermelo (1871-1953).
16 Abraham Fraenkel (1891-1965).

1. Aksjomat ekstensjonalności

Dwa zbiory są równe wtedy i tylko wtedy, gdy mają te same elementy.

2. Aksjomat wyróżniania

Dla dowolnego zbioru Z i dowolnego jednoargumentowego predykatu (funkcji
zdaniowej) P istnieje zbiór T zawierający dokładnie te elementy zbioru Z, które
spełniają warunek P(x).

86

Jeżeli żaden element Z nie spełnia predykatu P, na przykład gdy P(x) jest wa­
runkiem postaci x£Z, to T jest zbiorem pustym 0. Aksjomat wyróżniania za­
pewnia więc istnienie zbioru pustego 0.

3. Aksjomat par nieuporządkowanych

Jeżeli Zi, Z2 są zbiorami, to para nieuporządkowana {Zj, Z2} jest zbiorem.

4. Aksjomat sumy zbiorów

Niech Zbędzie niepustą rodziną zbiorów, tj. zbiorem, którego elementy są zbio­
rami. Dla każdej takiej rodziny istnieje zbiór S, którego elementami są dokładnie
te obiekty, które są elementami zbiorów należących do Z.

5. Aksjomat nieskończoności

Istnieje zbiór Z, który zawiera zbiór pusty i jest taki, że jeżeli x należy do Z, to
suma x oraz {*} także jest w Z.

Rozróżnienie między elementem x a zbiorem jednoelementowym {%} ma zasad­
nicze znaczenie. Aksjomat gwarantuje istnienie zbiorów nieskończonych.

6. Aksjomat zastępowania

Niech dla każdego x istnieje dokładnie jedno y takie, że spełniony jest dwuar-
gumentowy predykat (funkcja zdaniowa) P(x,y). Wtedy dla każdego zbioru
Z istnieje zbiór Z', do którego należą wszystkie i tylko te elementy y, które przy
pewnym x ze zbioru Z spełniają predykat P.

7. Aksjomat zbioru potęgowego

Dla każdego zbioru Z istnieje rodzina zbiorów, której elementami są wszystkie
podzbiory zbioru Z. Rodzinę tę nazywa się zbiorem potęgowym i oznacza 2Z.

8. Aksjomat wyboru

Dla dowolnej rodziny niepustych i rozłącznych zbiorów istnieje zbiór, który
z każdym ze zbiorów tej rodziny ma jeden i tylko jeden wspólny element.

Aksjomat wyboru jest z jednej strony intuicyjnie oczywisty, ale z drugiej strony
budzi różne kontrowersje. Ich zasadniczym powodem jest to, że w przypadku nie­
przeliczalnej rodziny zbiorów nie wiadomo, w jaki sposób tworzyć nowy zbiór,
który miałby dokładnie jeden element wspólny z każdym zbiorem tej rodziny.
Z całą pewnością proces tworzenia takiego zbioru nie mógłby być postępowaniem
efektywnym, to znaczy opartym na realizacji pewnego algorytmu.

9. Aksjomat regularności (ufundowania)

W każdym niepustym zbiorze Z istnieje taki element X, że żaden element zbioru
X nie jest elementem zbioru Z.

87

Konsekwencją aksjomatu jest to, że nie istnieją zbiory X, Y, Z o takich własno­
ściach jak na przykład, że XeX, że zachodzi Xe Y oraz YeX, że zachodzi Xe Y,
YeZ, ZeX itd. Aksjomat ten ogranicza dziedzinę złożoną ze zbiorów przez wy­
eliminowanie z niej obiektów o własnościach w rodzaju wyżej wymienionych.

4.8. Definicje zbiorów liczbowych

Na gruncie aksjomatycznego ujęcia teorii mnogości można formalnie zdefiniować
liczby naturalne. Ponieważ jedynymi obiektami, których istnienie gwarantuje teoria
mnogości są zbiory, więc liczby naturalne także definiuje się jako szczególne rodzaje
zbiorów.

Dla dowolnego zbioru Zjego następnikiem nazwa się zbiór:

SuCC(Z) =defZU {Z}

Zachodzi więc Z c Succ^Z) oraz Ze Succ(Z).

Punktem wyjścia w konstrukcji zbioru liczb naturalnych jest przyjęcie istnienia zbioru
pustego. Zbiór liczb naturalnych definiuje się jako najmniejszy zbiór Nat definiowany
rekursywnie w sposób następujący:

1. Z>eNat
2. jeżeli Z&Nat, to Succ(Z)ę:Nat

Elementy zbioru Nat nazywa się liczbami naturalnymi i są nimi:

0, {0}, {0, {0}}, {0, {0, {0}}} itd.

Wprowadza się powszechnie znane oznaczenia:

0 =def 0,

1 = def {0} = {0}

2 =def {0, {0}} = {0, 1}

n =def {0, 1,..., n-1}

które są znacznie wygodniejsze w użyciu.

Przy wprowadzonych oznaczeniach operację tworzenia nowego zbioru Suce można
traktować jako funkcję dodawania jedynki do danej liczby naturalnej. Jest to funkcja
całkowicie określona, o sygnaturze Suce : Nat —» Nat. Nazywa się ^operacją następ­
nika i można pisać:

88

Succ(O) = 1
Smcc(Shcc(O)) = Succ(l) = 2
Succ(Succ(Succ(O))) = S»cc(S«cc(l)) = Succ(2) = 3

Operacja następnika pozwala na zdefiniowanie innych operacji (działań). Na przykład
dodawanie oraz mnożenie są funkcjami o sygnaturze:

+ : Nat x Nat —» Nat
: Nat x Nat —> Nat

Dodawanie można zdefiniować rekursywnie:

m + 0 = mdlą dowolnego me Nat
m + Succ^n) = Succ^m + n) dla dowolnych m, neNat

Dysponując dodawaniem również rekursywnie można określić mnożenie’.

m * 0 = 0 dla dowolnego me Nat
Succ(m) * n = m* n + n dla dowolnych m, neNat

Mając liczby naturalne można zdefiniować inne rodzaje liczb: liczby całkowite, wy­
mierne, rzeczywiste i zespolone.

Definicję liczb całkowitych poprzedza się pewnym wyjaśnieniem intuicyjnym. Każdej
liczbie całkowitej przypisuje się parę liczb naturalnych <m, n> takich, że różnica m -
n jest równa tej liczbie całkowitej. Na przykład, liczbie całkowitej -2 może być przy­
porządkowana para <4, 6>, liczbie 0 - para <10, 10>, a liczbie 3 - para <4, 1>. Dwie
pary <ni\, n\> oraz <m2, n2>, które spełniają warunek:

mi - ni = m, - m

reprezentują tę samą liczbę całkowitą. Ponieważ różnica dwóch liczb naturalnych nie
zawsze jest liczbą naturalną, więc zamiast takiego warunku można sformułować inny
warunek równoważny, w którym nie odwołuje się do różnicy. Jest to warunek postaci:

mi + n2- m2 + Mi

Przyjmuje się teraz następującą definicję relacji binarnej R ę Nat2 x Nat2 określonej
na parach liczb naturalnych w sposób następujący:

R =def {«mi, «2>, <mi, «2» | ^i + n2- m2 + n\}

Łatwo sprawdzić, że R jest relacją równoważności na Nat2. Zbiór liczb całkowitych
jest określony jako zbiór ilorazowy Nat2IR, czyli

Całkowite = Nat2/R

Konstrukcja liczb wymiernych opiera się na założeniu, że każdej liczbie wymiernej
można przyporządkować parę <1, m>, gdzie leCałkowite oraz m&Nat\{Q]. Dalsza
część konstrukcji jest podobna do konstrukcji zbioru liczb całkowitych. Mianowicie,
definiuje się relację Q c (Całkowite X Nat)2 w sposób następujący:

89

Q =def {«/i, W2>, </i, m2» \lt * m2 = l2* mi}

Q jest relacją równoważności na Całkowite^Nat. Zbiór liczb wymiernych jest określo­
ny jako zbiór ilorazowy (Calkowite^Nat)! Q, czyli:

Wymierne = (Całkowite^Nat)IQ

Definicja zbioru liczb rzeczywistych jest bardziej złożona i dlatego jest tu pominięta.

Ćwiczenia

1. Niech X, Y, Z będą wielozbiorami. Pokazać, że jeżeli X Q Y oraz Tę Z, to X Q Z.

2. Niech X, Y, Z będą zbiorami rozmytymi. Pokazać, że jeżeli X c T oraz Y Q Z, to
XęZ.

3. Pokazać równoliczność zbioru liczb naturalnych i zbioru liczb pierwszych.

4. Pokazać równoliczność zbiorów:

a) odcinek otwarty (0, 1) c Rzeczywiste,
b) odcinek półotwarty [0, 1) c Rzeczywiste,
c) okręg na płaszczyźnie o środku (0, 0) i promieniu 1.

5. Ile jest rosnących ciągów liczb wymiernych zbieżnych do 1?

6. Ile jest relacji równoważności na zbiorze liczb naturalnych takich, że wszystkie ich
klasy abstrakcji są skończone?

7. Udowodnić, że każdy zbiór rozłącznych odcinków na prostej jest przeliczalny. Po­
kazać, że istnieje nieprzeliczalny zbiór rozłącznych odcinków na płaszczyźnie.

8. Udowodnić, że jeżeli A nie jest zbiorem przeliczalnym i B jest zbiorem przeliczal­
nym, to A/B nie jest zbiorem przeliczalnym.

9. Maszynę Turinga przedstawioną w przykładzie 5 rozbudować w taki sposób, aby
stwierdzała parzystą bądź nieparzystą liczbę symboli 1 pomiędzy pierwszą kratką
po lewej i pierwszą kratką po prawej stronie początkowego położenia głowicy, któ­
re zawierają symbol nic.

10. Zdefiniować maszynę Turinga, która jako daną wejściową przyjmuje liczbę natu­
ralną w zapisie binarnym i produkuje jako wynik tę samą liczbę zwiększoną o je­
den, również w zapisie binarnym.

90

11. Zdefiniować maszynę Turinga, która jako dane wejściowe przyjmuje n-elementowy
ciąg znaków, neNat\{0}, oraz liczbę ke {1, n} i produkuje jako wynik k-ty
element wejściowego ciągu.

12. Korzystając z operacji rekursji prostej zdefiniować funkcję:

a) potęgowania,
b) minimum i maksimum dwóch liczb,
c) dzielenia całkowitego i reszty z dzielenia całkowitego.

13. Zdefiniować jako funkcję ogólnie rekurencyjną funkcję:

a) najmniejszej wspólnej wielokrotności dwóch liczb naturalnych,
b) największego wspólnego podzielnika dwóch liczb.

14. Zakładając, że znane są operacje dodawania i mnożenia na liczbach naturalnych,
definiować rekursywnie operacje dodawania i mnożenia na liczbach całkowitych.

5. Języki formalne i gramatyki

5.1. Ciągi i słowa

Zbiory są nieuporządkowaną kolekcją pewnych elementów. Często potrzebne jest
wprowadzenie uporządkowania wśród rozważanej kolekcji obiektów. Jednym ze spo­
sobów uporządkowania jest zdefiniowanie ciągu.

Niech A będzie dowolnym zbiorem. Niepustym ciągiem o długości nGMzA{0} nad
zbiorem A będzie nazywać się dowolną całkowicie określoną funkcję o sygnaturze:

s : {1,..., n} —> A

Ciąg o długości zero jest ciągiem pustym i będzie oznaczany symbolem E.

Przez Fm-seg^A) będzie oznaczany zbiór wszystkich ciągów skończonych długości
n^Nat nad zbiorem A. Z definicji:

Fm-seąokA) =def { e}
Fin-seqn(A) =def {s | s : {1,..., n} —> A a dom(s) = {1, ..., n]} dla neNat\{0}

Stąd, zbiorem wszystkich ciągów skończonych będzie:

Fin-seq(A) =def Fin-seqn(A)
neNat

Zbiór wszystkich ciągów nieskończonych nad A jest zdefiniowany jako:

Inf-seq(A) =def {5 | s : NaA{0) —> A a dom(s) = NaA{0}}

Zbiorem wszystkich ciągów nad A jest zatem zbiór:

Seę(A) =def Fin-seq(A') u Inf-seq{A)

Niech 5 będzie niepustym ciągiem nad A. Wartość funkcji 5 dla argumentu i, czyli s(i),
oznacza i-ty element ciągu. Skończony ciąg 5 o długości neNat\{0} nad zbiorem
A jest zbiorem par:

92

{<1, 5(1)>,<n, 5(n)>}

a nieskończony ciąg jest zbiorem par:

{<1, 5(1)>, <«, s(n)>,... }

Zwykle używa się uproszczonego zapisu ciągu odpowiednio w postaci:

5(1) 5(2)... s(n) lub s(1) 5(2)... s(n)...

albo

G] 02 ... On lub O\O2...On...

gdzie a, = s(i) dla i = 1,..., n,... dla ieNat\{0}.

Ciągi zapisywane w uproszczonej postaci będą oznaczane literami greckimi a, 0, yitd.
Będzie się pisać na przykład a=def a^... an.

Równość ciągów oznacza równość reprezentujących je funkcji. Zapis a = 0 oznacza,
że ciąg ćzjest identyczny z ciągiem 0.

Przykład 5.1

Ciągami nad A = {0, 1, 2, 4, 5} będą napisy:

0
001
12345

Ciągami nad Nat będą napisy:

11
1 1
11 1 0 54

Należy zwrócić uwagę na to, że pierwszy i drugi ciąg są ciągami różnymi. Pierw­
szy składa się z jednego, a drugi - z dwóch elementu. Aby unikać wątpliwości przy
identyfikacji elementów ciągu, można stosować elementy rozdzielające - separato-

। ry, na przykład, odstępy - jak wyżej, czy przecinki, apostrofy itp.

Uproszczony zapis ciągów pozwala na stwierdzenie, że zbiór ciągów długości ne
Nat\{0} nad zbiorem A można utożsamiać ze zbiorem wszystkich n-krotek nad zbio­
rem A, czyli z n-krotnym produktem kartezjańskim A" nad zbiorem A. Oznacza to, że
istnieje wzajemnie jednoznaczne odwzorowanie pomiędzy zbiorem ciągów o długości
n a produktem kartezjańskim A". Zatem

zbiorowi Fin-seg^A) odpowiada zbiór A° =def {<>}
zbiorowi Fin-seqn(A') odpowiada zbiór A" dla nGAto\{0}
zbiorowi Fin-seg^A) odpowiada zbiór ^Ja"

ne Nat

93

Ciągi zapisywane w uproszczonej postaci nazywa się słowami, a zbiór A nazywa się
alfabetem. W dalszej części rozdziału będą używane właśnie te terminy.

Stąd, zbiór A*jest zbiorem wszystkich skończonych słów nad alfabetem A. Zbiór wszystkich
niepustych skończonych słów nad alfabetem A będzie oznaczany przez A+. Zatem

A + =def A \{ e}

5.2. Operacje na słowach

Niech dany będzie dowolny, co najwyżej przeliczalny, alfabet A oraz niech A* będzie
zbiorem wszystkich skończonych słów nad A. Na słowach można definiować różne
operacje. Podstawową jest operacja konkatenacji słów.
Niech a, fi e A* będą dowolnymi słowami nad alfabetem A.

Konkatenacja słów a, fi, co zapisuje się a* fi, jest słowem, które powstaje przez dopi­
sanie na koniec słowa a słowa fi. Jeżeli

a-a\... an oraz fi=bi...bm
to

a* fi =a[... a„ A bi... bm = a\... an b{... bm
Niech a, fi, y^A*. Konkatenacja słów ma następujące oczywiste własności:

E A E= E

e* a= a* e= a
(ot* fi)* y= a* (fi* Y)

Słowo fi&A+ jest podsłowem słowa ae A+, gdy istnieją słowa y, 3 e A* takie, że:

a= y * fi * 8

Jeżeli yA 3^ £, to fi jest podsłowem właściwym słowa a, jeżeli y = E, to fi jest podsło­
wem początkowym słowa ot, a jeżeli 8= E, to fi jest podsłowem końcowym słowa a.

Innymi używanymi operacjami nad słowami są operacje czoła head i ogona taił. Niech

a= a\... an

wtedy

head(ct) = a i oraz tail(a) = az...an

oznaczają odpowiednio pierwszy element słowa a oraz nowe słowo, które powstaje
z a przez usunięcie jego pierwszego elementu. Oczywiście, dla dowolnego niepustego
słowa zachodzi własność:

94

a = head(a) A tail(a)

Przykład 5.2
i------------------------- ----------------------n

Niech A = {a, b,c}, wówczas słowami nad A są, na przykład:

a aab cabca

Konkatenacją dwóch ostatnich słów jest słowo:

aab^cabca = aabcabca

Operacje czoła i ogona dla dwóch pierwszych słów wyznaczają słowa:

head(a) = a tail(a) =• E
head(aab) = a tail(aab) = ab

I__ I
Dla uproszczenia notacji, gdy nie będzie to wprowadzać niejednoznaczności, zamiast
a A fi A y będzie się pisać a fi y

Dalej definiuje się jeszcze dwie operacje na słowach. Najpierw wprowadza się pojęcie
produkcji. Para słów fi, y&A zapisywana w postaci:

P"=Y

będzie nazywana produkcją lub reguląprzepisywania.

Wyrażenie postaci fi ::= y można traktować tak samo jak uporządkowaną parę <fi,
y>. Symbol ::=, czytany jest zastępowany przez, pełni rolę separatora oddzielającego
dwa elementy. Słowo fi po lewej stronie produkcji jest nazywane poprzednikiem,
a słowo ypo prawej stronie produkcji jest nazywane następnikiem produkcji.
Niech a&A* oraz niech fi ::= y będzie pewną produkcją.

Słowo Sjest wyprowadzeniem ze słowa a na podstawie produkcji fi ::= y, co zapisuje
się w postaci:

a—P-=y y $

gdy spełnione są warunki:

a = cą fi a2
3= atya2

Przykład 5.3
I I

Niech A = {a, b, c}. Ze słowa aabcaa stosując produkcję aa::= cba można wypro­
wadzić słowa:

cbabcaa oraz aabccba

95

czyli

। aabcaa—221^2—> cbabcaa oraz aabcaa—aa::=cba > aabccba ।

Jak pokazuje przykład, operacja wyprowadzenia nowego słowa 8 ze słowa a na
podstawie produkcji P ::= ynie musi być jednoznaczna. Liczba możliwych wypro­
wadzeń zależy od liczby wystąpień podsłowa P w słowie a. W szczególnym przy­
padku, gdy poprzednik reguły nie jest podsłowem w a, nie można wyprowadzić no­
wego słowa.

Niech a ::= P będzie produkcją, w której poprzednik jest tylko pojedynczym sym­
bolem a^A (słowem długości jeden), a następnik - jak poprzednio - jest dowolnym
słowem PeA* nad alfabetem A. Produkcja takiej postaci będzie nazywana podsta­
wieniem.

Niech azA oraz niech a ::=p będzie pewnym podstawieniem.

Słowo ypowstaje ze słowa a przez podstawienie a ::=P, co zapisuje się w postaci:

a [a ::=p]

gdy każde wystąpienie symbolu a w słowie ajest zastąpione słowem p.

Przykład 5.4f--------------------- -____________ 1
Niech A = {a, b, c}. W wyniku operacji określonej przez podstawienie a ::= cba
słowo abcab zostanie przekształcone w słowo:

cbabccbab

czyli

abcab[a ::= cba] = cbabccbab

Podobnie

abbacc[a ::= cbc] = cbcbbcbccc
abbacc[b ::= cbc] = acbccbcacc

। abbacc[c ::= cbc] = abbacbccbc i

5.3. Języki formalne

Językiem formalnym L nad alfabetem A nazywa się dowolny podzbiór zbioru A , czyli
L^A*.

96

Język formalny jest tylko pewnym przybliżeniem języka naturalnego lub sztucznego,
gdyż wyraża on tylko składniowy aspekt języka. W myśl wprowadzonej definicji alfa­
betem dla języka naturalnego jest zbiór słów w danym języku, a odpowiadający mu
język formalny może być zbiorem wszystkich zdań w tym języku. W przypadku języ­
ka programowania alfabetem jest zbiór symboli leksykalnych, a odpowiadający mu
język formalny definiuje zbiór wszystkich poprawnie tekstowo zbudowanych progra­
mów. Język formalny nie określa znaczenia i tym samym nie gwarantuje sensowności
zdania czy programu, wyraża wyłącznie poprawność tekstową (składniową) zdania
czy programu.

Przykład 5.5i. I
Niech A = {a, b, c}, wówczas językami formalnymi nad A są, na przykład, skoń­
czone zbiory słów:

{a}, [aab, c}, {a, b, c, ab, cba]

Jeżeli wprowadzi się oznaczenie pomocnicze postaci ak, dla k&Nat\{0}, które jest
skrótem zapisu słowa aa... a złożonego z k elementów a, to można zdefiniować
również pewne nieskończone języki formalne nad A. Na przykład:

{seA | s = ak * b1* cm a k < l < m}
। {a, b, c, ab, cba] u {seA |5 = aiAM+1} ।

Ponieważ języki formalne są zbiorami, więc można na nich wykonywać dowolne
operacje mnogościowe. Ponadto można na nich zdefiniować operację konkatenacji,
która jest uogólnieniem konkatenacji zdefiniowanej na słowach. Konkatenacja języ­
ków L\ ę A , Li G B , oznaczana L\ A Lz, jest zdefiniowana następująco:

Li A Li —def {ab | aeA a b^B }

Korzystając z konkatenacji języków, wprowadza się operację potęgowania języków
określoną dla dowolnego języka i liczby naturalnej n w sposób następujący:

L0 = def {£}

r+1 = defr al

oraz operację domknięcia języka określonąjako:

L =def [J B'

n^Nat

Warto zwrócić uwagę, że alfabet przeliczalny A nie ma większej siły ekspresji niż
dowolny alfabet skończony B. Oznacza to, że dla dowolnego języka formalnego LA
(Z A istnieje taki język LB^ B , że istnieje wzajemnie jednoznaczne odwzorowanie
pomiędzy obu językami/: LA LB.

97

Istotnie, niech będzie dany przeliczalny alfabet A o symbolach a\, aj, aj, ... oraz alfa­
bet B zawierający tylko dwa symbole, na przykład 0, 1. Istnieje wzajemne odwzoro­
wanie elementów alfabetu A w pewien podzbiór ciągów zerojedynkowych nad alfa­
betem B. Na przykład ciągi binarne 1, 11, 111, ... itd. mogą być kodami indeksów
kolejnych symboli ai, aj, aj, Dowolne słowo nad alfabetem A można przestawiać
jako konkatenację odpowiednich ciągów kodujących nad alfabetem B. Na przykład,
słowo aj aj a2 w alfabecie A będzie jednoznacznie reprezentowane przez słowo
111011011 w alfabecie B - symbol 0 pełni tu rolę separatora między kodami kolej­
nych symboli alfabetu A. Oznacza to, że dla dowolnego języka formalnego LA nad
A istnieje funkcja, która wzajemnie jednoznacznie odwzorowuje ten język w pewien
język Lb nad B. Ciągi binarne mogą pełnić tę samą rolę, którą pełnią symbole alfabetu
A, co wyjaśnia powszechność stosowania kodowania binarnego.

5.4. Gramatyki bezkontekstowe

Nietrywialne języki formalne składają się z nieskończenie wielu słów. Nie można ich
definiować enumeracyjnie, czyli przez jawne wyliczenie słów. Nieskończone języki
formalne definiuje się rekursywnie, przy czym wykorzystuje się specyficzny mecha­
nizm oparty na pojęciu gramatyki języka formalnego.

Gramatyka bezkontekstowa G jest czwórką:

G —def N, P, S>

gdzie:

T - skończony zbiór, nazywamy alfabetem symboli terminalnych,
N- skończony zbiór, nazywany alfabetem symboli nieterminalnych,
P - skończony zbiór produkcji,
S - wyróżniony symbol nieterminalny, nazywany symbolem początkowym.

Zakłada się, że zbiory symboli terminalnych i nieterminalnych są rozłączne, to jest

NnT=0.

O pojedynczej produkcji peP zakłada się, że jest postaci:

v ::= a

gdzie jej poprzednik v może być dowolnym symbolem nieterminalnym, czyli veN,
a jej następnik a może być dowolnym niepustym słowem nad sumą mnogościową
zbiorów symboli terminalnych i nieterminalnych, czyli ae(Tu N)+.

98

Gramatyka G generuje pewien język formalny L(G) ę T*. Nieformalnie jest to zbiór
wszystkich słów nad alfabetem T, które można wyprowadzić z symbolu początkowe­
go gramatyki S, za pomocą przekształceń, określonych przez zbiór P produkcji gra­
matyki.

Niech dane będą dwa słowa a, P& (To N)+.

Słowo fi jest w gramatyce G bezpośrednio wyprowadzane ze słowa a, gdy istnieje ta­
ka produkcja pe P, że

Fakt bezpośredniego wyprowadzenia słowa p ze słowa a w gramatyce G zapisuje się:
a~G^

lub

a------ >/3

gdy z kontekstu wynika, o jaką gramatykę chodzi.

Słowo P jest w gramatyce G wyprowadzone ze słowa a, gdy istnieje skończony ciąg
słów Pi, p2,P„e(Tu N)+ taki, że

a = P\ P„ = P

oraz

Pi—^PM dla {1, 2,..., n-1}

Fakt, że słowo P jest wyprowadzane ze słowa a, zapisuje się w postaci:

a——>P

Językiem formalnym L(G) generowanym przez gramatykę G jest zbiór:

L(G) =def {aeF | }

Słowo aeL(G) nazywa się też słowem wywodliwym w gramatyce G. Zatem, język L(G)
generowany przez gramatykę G jest zbiorem wszystkich słów wywodliwych w G.

Poniżej rozpatrujemy przykłady gramatyk i wyprowadzenia słów, przy czym zapis
produkcji jest oparty na powszechnie stosowanej tzw. notacji BNF (Backus'1 Normal
Form lub Backus-Naur Form). Notacja ta wprowadza bardziej zwarty zapis produkcji,
które mają tę samą lewą stronę. Zestaw produkcji, na przykład:

17 John Backus (ur. 1924).

99

v ::= a1

V ..— am

zapisuje się w postaci:
V ::= cą |... |

gdzie, jak poprzednio, ve?Voraz a,, ..., «,„£(?u AQ+. Symbol | czyta się lub.

Przykład 5.6
i. .. “■. i

Zbiór identyfikatorów tworzy pewien język formalny. Zbiór ten poprzednio był de­
finiowany następująco:

Ident =def {5 | s jest niepustym ciągiem składającym się z liter lub cyfr, którego
pierwszym elementem jest litera}

Gramatyka GID generująca zbiór identyfikatorów Ident jest zdefiniowana następu­
jąco:

Gid =def <Tid, Nid, Pid, Sid>

gdzie:

Tid =def {a, b, ..., z} u {0, 1,...,9}
NID =def {identyfikator, znak, litera, cyfra}
Pid =def {identyfikator ::= litera | identyfikator znak

znak ::= litera\ cyfra
litera ::= a | b | ... | z
cyfra ::= 0 | 1 |... | 9 }

Sm = identyfikator

Poszczególne produkcje w zbiorze są pisane w oddzielnych wierszach, bez od­
dzielania przecinkiem.

Rozpatruje się dwa przykłady wyprowadzenia konkretnych identyfikatorów.
Pierwsze wyprowadzenie:

identyfikator> litera
i-. litera: :=a .litera------------- > a

z symbolu początkowego identyfikator wyprowadza jednoelementowe słowo a.
Drugie z tego samego symbolu początkowego wyprowadza słowo 68:

identyfikator y identyfikator znak

identyfikator znak —> identyfikator cyfra

identyfikator cyfra—iden,yfikaor- =l,,era > litera cyfra

100

literacyfra—^b cyfra
b cyfra cyfra::=* >bS

Zatem pokazano dwa wyprowadzenia:

identyfikator * >a
identyfikator——>Ó8

। Oznacza to, że ae L(GID) oraz bSe L(G/D). j

Przykład 5.7
[__ 1

Przykład pokazuje zbiór napisów reprezentujących liczby wymierne w zapisie
dziesiętnym. Gramatyka GDec jest zdefiniowana następująco:

GdEC =def <TdEC, NdEC, PDEC, $DEC>

gdzie:

TdEC =def {0, 1,...,9} {.}
Ndec =def {liczba, liczba_calkowita, kropka, cyfra}
Pdec =def {liczba ::= liczbacałkowita |

liczbacałkowita kropka liczbacałkowita
liczbacałkowita ::= cyfra | liczba całkowita cyfra
kropka ::= .
cyfra ::= 0 | 1 |... 19}

SDec = liczba

Łatwo sprawdzić, że na przykład słowa 10.9 oraz 213 są wyprowadzalne
i w gramatyce GDEc, natomiast słowo 01 nie jest wyprowadzalne w Gdec- i

Stosowane języki formalne, poza trywialnymi przypadkami, są zbiorami nieskoń­
czonymi i dlatego nie ma algorytmów generujących wszystkie słowa języka. Prak­
tycznie rozwiązuje się dwa zadania.

Pierwsze jest zadaniem analizy - polega na zbadaniu, czy dane słowo jest elemen­
tem danego języka L(Gf Z tym zadaniem spotyka się podczas kompilacji programu.
Celem pracy kompilatora jest w pierwszej kolejności stwierdzenie, czy program jest
poprawny składniowo.

Drugie jest zadaniem generacji - polega na wygenerowaniu pewnego podzbioru
słów języka, na przykład wszystkich słów o ustalonej długości.

101

5.5. Klasyfikacja gramatyk

Rozpatrzona gramatyka bezkontekstowa jest szczególnym przypadkiem szerszej klasy
gramatyk, zwanych gramatykami struktur frazowych. Gramatyka struktur frazowych
jest taką samą czwórką jak gramatyka bezkontekstowa, czyli:

G = <T, N, P, S>

a różnica dotyczy tylko ogólniejszej postaci produkcji. Niech V = T o N. Produkcja
albo reguła przepisywania peP jest tu dowolną parą słów ae V* oraz V zapisy­
waną, jak poprzednio, w postaci a ::= fi. Generowanie języka formalnego przez gra­
matykę struktur frazowych jest definiowane, podobnie jak poprzednio, dla gramatyki
bezkontekstowej.

Zgodnie z klasyfikacją wprowadzoną przez N. Chomsky’ego wyróżnia się cztery typy
gramatyk struktur frazowych różniące się postacią dopuszczalnych produkcji.

Gramatyki klasy 0, zwane gramatykami bez ograniczeń, mają następującą postać pro­
dukcji:

a::=fi dla ae)3e V*

Gramatyki klasy 1, zwane gramatykami kontekstowymi, wymagają, by produkcje były
postaci:

v a2 ::= «i fi «2 dla ai, a^e V*, fie V*

Gramatyki klasy 2, zwane gramatykami bezkontekstowymi, wymagają, by produkcje
były postaci:

v::=fi dla veN, fie V*

Gramatyki klasy 3, zwane gramatykami regularnymi, wymagają, by produkcje były
postaci (gramatyki prawostronnie regularne):

v;:=fiu dla veN, ueNu {e}, fieV*

albo postaci (gramatyki lewostronnie regularne):

v::=ufi d\aveN, ueN<u {e}, fieV*

Łatwo się przekonać, że każda produkcja gramatyki i jest jednocześnie produkcją
gramatyki j, dla 0 <j < i < 3. Zatem każdy język formalny wygenerowany przez pew­
ną gramatykę klasy i jest również generowany przez pewną gramatykę klasy j. Ozna­
czając symbolami Lo, L\, L^, L3 zbiory języków formalnych generowanych przez gra­
matyki poszczególnych klas, można stwierdzić, że zachodzą inkluzje właściwe:

L3 c L2 c Li c Lo

102

co oznacza, że wśród języków generowanych przez gramatyki klasy i istnieje co naj­
mniej jeden język, który nie jest generowany przez gramatyki klasy j, dla 0 < i < j.

Gramatyki klas 1, 2 i 3 są gramatykami nieskracającymi, co oznacza, że długość no­
wego słowa nie jest mniejsza od długości starego słowa, do którego zastosowano pro­
dukcję gramatyki.

Nieskracalność gramatyki umożliwia efektywne badanie, czy dane słowo jest wy-
wodliwe w gramatyce. Oznacza to, że można zbudować algorytm, który dla dowolne­
go słowa, po skończonej liczbie kroków, rozstrzyga, czy to słowo jest wyprowadzalne
w danej gramatyce.

Schemat takiego algorytmu jest oczywisty. Niech a będzie badanym słowem. Naj­
pierw generuje się zbiór Z] wszystkich słów bezpośrednio wyprowadzalnych z sym­
bolu początkowego gramatyki, których długość nie przekracza długości badanego
słowa a. Następnie generuje się zbiór Z2 wszystkich słów, które są bezpośrednio wy­
prowadzalne ze słów zbioru Zi, których długość nie przekracza długości badanego
słowa a. Dalej generuje się zbiór słów Z3, który jest bezpośrednio wyprowadzalny ze
zbioru Z2, itd. Każdy z wygenerowanych zbiorów jest oczywiście skończony. Postę­
powanie takie prowadzi się do momentu, gdy w zbiorze generowanych słów napotka
się na słowo a albo, gdy długość wszystkich słów należących do ostatniego zbioru
będzie przekraczać długość słowa a. Pierwszym przypadek oznacza, że et należy do
języka generowanego przez daną gramatykę, a drugi, że et nie należy do tego języka.

5.6. Grafy

Liczne zastosowania w informatyce mają grafy. Rozpatruje się tu tylko klasę grafów
skierowanych. Mają one dwie równoważne definicje. W zależności od potrzeb wyko­
rzystuje się jedną z nich.

Pierwsza definicja określa graf G skierowany jako parę:

G = <V, A>

gdzie:

VnA = 0
V - jest zbiorem wierzchołków grafu,
A - jest zbiorem łuków grafu, określonym jako relacja binarna na zbiorze wierz­

chołków A ę VxV.

103

Interpretacja relacji A jest następująca: para <vb v2>eA reprezentuje luk grafu prowa­
dzący od wierzchołka do wierzchołka v2.

Druga definicja określa graf skierowany jako parę:

G = <V,S>

gdzie:

V - jest zbiorem wierzchołków grafu,
5 - jest funkcją, zwany funkcją następników, określoną na zbiorze wierzchołków,

której wartościami są podzbiory wierzchołków S: V —> 2V.

Interpretacja funkcji S jest następująca: 5(v) = {vb ..., n} reprezentuje zbiór wierz-
chołków-następników wierzchołka v, to znaczy wierzchołków, do których prowadzą
luki wychodzące z wierzchołka v. Funkcja odwrotna P(v) określa zbiór wierzchoł-
ków-poprzedników wierzchołka v, to znaczy wierzchołków, od których prowadzą łuki
do wierzchołka v. Znając dla danego grafu funkcję 5 łatwo wyznaczyć funkcję P.

Łatwo również zauważyć, że graf zdefiniowany według jednej z tych definicji daje się
wyrazić w równoważny sposób według drugiej definicji.

Podgrafem grafu G = <V, A> nazywa się dowolny graf G' = <V, A’> taki, że V'ę V
oraz A' ęAn(V'x V').

Graf nazywa się nieskończonym, gdy nieskończony jest zbiór jego wierzchołków.

Ścieżką w grafie G = <V, A> nazywa się niepusty ciąg łuków:

<Vb V2> <V2, v3> ... <v„_b v„> ...

gdzie <vit vi+i>E:A dla i = 1,..., n,... . Ścieżka przechodzi przez wierzchołki:

vb v2, ...,v„ ...

gdzie vI jest początkowym wierzchołkiem ścieżki, a jeżeli ścieżka jest skończona, to
v„ jest jej wierzchołkiem końcowym. Ścieżkę skończoną, która ma taki sam wierz­
chołek początkowy i końcowy, nazywa się cyklem. Cykl złożony z jednego elementu
nazywa się pętlą.

Wyróżnia się wiele rodzajów grafów. Między innymi, określa się, że graf G = <V, A>
jest zwrotny, gdy:

Vve V • <v, v>G A (przy każdym wierzchołku jest pętla)

przeciwzwrotny, gdy:

VvgV«<v, v>gA (graf nie ma pętli)

symetryczny, gdy:

X7vb v2g V • <vb v2>eA => <v2, V|>gA

104

przeciw symetryczny, gdy:

Vvb vie V • <vb v2>eA => <V2, v(>gA

antysymetryczny, gdy:

Vvi, V2& V • <Vb V2>GA A <V2, V|>GA => V\ = V2

przechodni, gdy:

Vvb V2, V3G V • <Vb V2>EA /\ <V2, V3>GA => <Vt, V3>GA

Szczególnym, dalej wykorzystywanym grafem, jest graf nazywany drzewem. Jest to
graf, który:

• nie ma cykli,

• ma dokładnie jeden wierzchołek v0, zwany korzeniem drzewa, który nie ma po­
przedników, to znaczy nie istnieje wierzchołek vg V taki, że <v, v0>G A,

• wszystkie pozostałe wierzchołki mają dokładnie jeden poprzednik, to znaczy dla
dowolnego wierzchołka v/v0 zachodzi card{v'ę V | <v', v>eA) = 1; wierzchoł­
ki, które nie mają następników nazywa się liśćmi, a zbiór wszystkich liści drze­
wa nazywa się koroną drzewa.

Lemat 5.1 (Lemat Koniga)

Jeżeli graf G jest drzewem nieskończonym, w którym każdy wierzchołek ma skoń­
czoną liczbę wierzchołków-następników, to w grafie takim istnieje ścieżka o nie­
skończonej długości.

Dowód

Niech vo będzie korzeniem grafu G. Zgodnie z założeniem v0 ma skończoną liczbę
wierzchołków następników. Wśród nich istnieje przynajmniej jeden wierzchołek,
niech będzie to vb który jest korzeniem nieskończonego poddrzewa G[drzewa G,
gdyż - w przypadku przeciwnym - gdyby wszystkie wierzchołki-następniki v0 były
korzeniami poddrzew skończonych, to graf G byłby skończony. Powtarzając po­
dobne rozumowanie do następników wierzchołka vi znajduje się wśród jego na­
stępników wierzchołek V2, który jest korzeniem nieskończonego podrzewa G2
drzewa Gi, itd. Zatem jest oczywiste, że ciąg wierzchołków v0, vb V2, ••• wyznacza
nieskończoną ścieżkę.

105

5.7. Drzewa rozbioru i diagramy składniowe

Dysponując pojęciem grafu można zdefiniować drzewo wywodu - graf ilustrujący
wyprowadzenia słowa w gramatyce bezkontekstowej.

Drzewem wywodu dla gramatyki G =def <T, N, P, S> jest graf-drzewo, którego wierz­
chołki są etykietowane symbolami ze zbioru T u N w taki sposób, że:

• korzeń drzewa jest etykietowany symbolem początkowym S,

• każdy liść drzewa jest etykietowany symbolem terminalnym ze zbioru T,

• jeżeli węzeł v ma etykietę e i węzły v2, vn są jego następnikami o etykie­
tach et, e2,..., e,„ to e ::= C[e2... en musi być produkcją gramatyki.

Przykład 5.8

Dla przedstawionej wcześniej gramatyki GDEc =def <TDec, Ndec, Pdec, Sdec> drze­
wo wywodu dla słowa 10.9 ma postać jak na rys. 5.1.

Rys. 5.1. Drzewo wywodu słowa 10.9

Jeżeli dla pewnego słowa istnieją dwa różne drzewa wywodu, to gramatykę nazywa
się składniowo wieloznaczną. Gramatyka GDEC jest składniowo jednoznaczna, nato­
miast nie jest nią poniżej zdefiniowana gramatyka Gw-

106

Przykład 5.9I I
Niech

Gw =def <Tw, NW, PW, SW>

gdzie:

Tw = {wyrażenie, składnik, czynnik}

Nw = {a, b, c, +,-, *,/, (,)}

Pw = {wyrażenie ::= składnik | składnik + wyrażenie | składnik - wyrażenie

składnik ::= czynnik | czynnik * czynnik | czynnik / czynnik

czynnik ::= a | b | c | {wyrażenie} }

5 w = wyrażenie

W celu przekonania się o niejednoznaczności gramatyki Gw wystarczy rozpatrzyć
। możliwe wywody, na przykład, słowa a + b - c. j

Grafy są także wykorzystywane do prezentacji produkcji gramatyki w postaci diagramów
składniowych. Wierzchołki tego grafu są etykietowane symbolami ze zbioru T u N. Każ­
dej produkcji odpowiada pojedynczy graf z etykietowanymi wierzchołkami, który ma
dokładnie jeden wierzchołek nie posiadający poprzedników, zwany początkowym,
i dokładnie jeden wierzchołek nie posiadający następników, zwany końcowym.
Wierzchołki te nie są etykietowane. Każdej ścieżce, która w grafie prowadzi od wierz­
chołka początkowego do wierzchołka końcowego, odpowiada pewien ciąg etykiet
wierzchołków ze zbioru T u N. Ciąg etykiet stanowi ciąg symboli, które można wy­
generować na podstawie danej produkcji.

Przykład 5.10I----- ---- -- _ _ .
Produkcjom wyżej zdefiniowanej gramatyki Gw odpowiadają następujące diagra­
my składniowe pokazane na rys. 5.2.

Pierwszy z diagramów, opisujący produkcję wyrażenie, jest grafem zawierającym
cykl. Powodem pojawienia się cyklu jest to, że symbol wyrażenie występuje za­
równo po lewej, jak i po prawej stronie produkcji, przy czym po prawej stronie wy­
stępuje na końcu ciągu symboli.

Występowanie takiego samego symbolu po lewej i po prawej stronie produkcji,
a tym samym istnienie cyklu na diagramie składniowym, można interpretować
jako rekursywną definicję zbioru słów wyprowadzanych na podstawie danej pro­
dukcji.

107

Ćwiczenia

1. Niech A =def {+, =}. Które z poniższych zdań są prawdziwe?

a) Można utworzyć co najwyżej skończoną liczbę języków formalnych nad alfa­
betem A.

b) Można utworzyć dokładnie 4 słowa nad alfabetem A.
c) Zbiór { ++, +++, =, += } jest pewnym językiem formalnym nad A.
d) Nad alfabetem A można utworzyć dokładnie 24 języków formalnych.
e) Zbiór wszystkich słów nad alfabetem A definiuje pewien nowy alfabet A'.

2. Niech A =def {0, 1}, B =def {0, 1, 2, n} oraz C - Nat. Które pary spośród zbiorów
A*, B*, C* są zbiorami równolicznymi?

3. Czy zbiór liczb naturalnych Nat jest równoliczny ze zbiorem Nat - zbiorem
wszystkich skończonych ciągów nad Nat?

4. Czy zbiór wszystkich języków formalnych nad przeliczalnym alfabetem A jest
przeliczalny?

108

5. Dana jest gramatyka G =def <T, N, P, S>, gdzie:

f = def{A,B, C}
N =det {a, b, c}
P =def {a ::= A | aA | bC

b ::= BcC
c ::= abC | ABc | AbC }

S = a

Czy słowa AAAA, ABCA należą do języka generowanego przez G? Podać zbiór
wszystkich słów długości 1, 2 i 3 należących do języka generowanego przez G.
Scharakteryzować zbiór wszystkich słów generowanych przez gramatykę G. Czy
można zdefiniować „prostszą” gramatykę, która generuje taki sam język formalny
jak gramatyka G?

6. Dla znanego języka programowania, na przykład, Pascal, C, C++, zdefiniować
gramatykę określającą wybrany podzbiór wyrażeń arytmetycznych z tego języka.

7. Produkcje gramatyki zdefiniowanej w zadaniu 6 przedstawić w postaci diagramów
składniowych.

8. Niech będzie dany pewien graf G = <V, A>, gdzie A ę V2. Jaką interpretację można
przypisać złożeniu relacji A? Co oznaczają A2, ..., A”? W jaki sposób można zba­
dać, czy graf posiada pętle oraz cykle, to jest drogi o długości większej od 1, które
rozpoczynają się i kończą się w tym samym wierzchołku?

9. Pokazać w jaki sposób na podstawie definicji grafu w postaci G = <V, A> zbudo­
wać jego definicję o postaci G = <V, S>, gdzie S : V —> 2vjest funkcją wyznacza­
jącą dla dowolnego wierzchołka vg V zbiór wierzchołków następników 5(v), to
znaczy wierzchołków, do których prowadzą łuki z wierzchołka v.

10. Pokazać w jaki sposób na podstawie definicji grafu w postaci G = <V, S > wyzna­
czyć funkcję F(v) określającą zbiór wierzchołków-poprzedników wierzchołka v.

6. Algebry abstrakcyjne

6.1. Algebry jednorodzajowe

Jednorodzajową algebrą abstrakcyjną, albo krótko - algebrą, nazywa się parę:

ALG =def<A, {ci, cm] u {fi, ...,fn}> dla mENat, nENat\{Q}

w której:

A jest dowolnym zbiorem, zwanym nośnikiem algebry,
Ci ^stałymi algebry, to znaczy CtEA, dla i = 1, ..., m,
fi są operacjami albo działaniami algebry, to znaczy ^-argumentowymi funkcjami

o sygnaturze:
fj:Ak-^A

gdzie kENat\{0),j = 1,n.

Stałą algebry c, można także rozumieć jako funkcję zeroargumentową, to znaczy jako
funkcję o sygnaturze:

Ci: —> A.

Uwaga

Algebry będą też definiowane jako pary:

ALG —def {^-Ił •••)

lub

ALG =def <A, F >

gdzie drugim elementem pary jest zbiór stanowiący sumę mnogościową zbioru
stałych i operacji. Wynika to z faktu, że stałe można traktować jako funkcje ze-
ro-argumentowe.

110

Przykład 6.1i----- — ~ . 7 i
Przykładem prostej algebry jest zbiór liczb naturalnych Nat z operacją dodawania:

ALG^at “def <Nat, {0, 1} u {_+_}>

gdzie

0, 1 : —> Nat

są operacjami zeroargumentowymi, zaś

+ : Nat2 —» Nat

। jest dodawaniem. ।

Należy przypomnieć, że podkreślenia obok symbolu funkcji wskazują położenie ar­
gumentów.

Przykład 6.2i ■— : i
Bardziej złożona jest algebra określona na zbiorze liczb całkowitych Całkowite,
z operacjami dodawania, odejmowania i mnożenia:

ALGcalkowite =def <Całkowite, {0, 1} u { }>

gdzie 0 oraz 1 są stałymi, czyli mają sygnatury:

0, 1 : —> Całkowite

zaś +, -, * są symbolami operacji dwuargumentowych o sygnaturach:

+, * : Całkowite2 —> Całkowite

Należy zauważyć, że odejmowanie może być również traktowane jako zmiana
znaku liczby. W tym przypadku symbol byłby symbolem przeciążonym, a odpo­
wiadająca mu sygnatura miałaby postać:

: Całkowite —> Całkowite

Natomiast algebra z tak dołączoną operacją miałaby postać:

I ALGcalkowite =def < Całkowite, {0, 1} u {-_, _+, * }> j

W dalszych przykładach dla symboli funkcyjnych dwuargumentowych będzie stoso­
wana notacja wrostkowa, a podkreślenia w napisach określających sygnaturę będą
pomijane.

Przykład 6.3I— “I
Algebra słów nad pewnym alfabetem A jest zdefiniowana:

ALG a* =def<A*. {£} u {A} >

111

gdzie:

A* jest nośnikiem algebry,

£ : —> A* jest słowem pustym, czyli stałą algebry,

। A : A* x A* —> A* jest konkatenacją, czyli dwuargumentowym działaniem. j

Przykład 6.4

W programowaniu przez typ danych rozumie się pewien zbiór wartości i zestaw
związanych z nim operacji. Powszechnie używany typ logiczny jest określony
przez zbiór:

Boolean =def {false, true}

oraz przez zestaw operacji o następujących sygnaturach:

not: Boolean —» Boolean
and, or : Boolean2 —> Boolean

gdzie not, and oraz or są operacjami negacji, koniunkcji i dysjunkcji. Definicję
tych funkcji przedstawia tabela:

a b not(a) a and b a or b
false false true false false
false true true false true
true false false false true
true true false true true

Zdefiniowane funkcje warto porównać z definicją spójników logicznych określo­
nych w podrozdziale 1.2. Różnica między tymi definicjami sprowadza się do
różnicy symboli.

Zatem algebra, która jest modelem typu logicznego ma postać:

ALGBoolean =aef <Boolean, {not, and, or }>

। Zbiór stałych jest tutaj pusty. ।

Przykład 6.5iyn
W językach programowania odpowiednikiem wcześniej przedstawianej algebry,
określonej na zbiorze liczb całkowitych Całkowite, jest algebra określona na
zbiorze Integer z odpowiednikami operacji dodawania, odejmowania i mnożenia:

ALGlnleger =<&< Integer, {0, 1} o {©, ©, ®}>

gdzie

Integer =def {-N, N} jest tylko skończonym podzbiorem zbioru Całkowite,
zakłada się przy tym, że N eNat\{0, 1},

112

a®b =def •

a e b =def ■

a®b=def ■

O oraz 1 są stałymi o sygnaturach:

0, 1 : —> Integer

zaś G, 0, ® są odpowiednio symbolami dodawania, odejmowania i mnożenia
o sygnaturach:

2
0, 0, ®: Integer —> Integer

Istotna różnica między algebrą ALGinleger a ALGcaikowUe wypływa z definicji operacji
w algebrze ALGinleger. Mianowicie, ze względu na ograniczoność zbioru Integer ope­
racje dodawania, odejmowania i mnożenia nie są funkcjami całkowicie określonymi.
Aby odróżnić je od operacji określonych w zbiorze liczb Całkowite są one zapisywa­
ne inaczej. Definicje operacji algebry ALGinleger przedstawiają się następująco:

a + b gdy | a + b| < N
nieokreślona w przypadku przeciwnym

a + b gdy | <2 — b\ <N
nieokreślona w przypadku przeciwnym

a + b gdy | a * b\ < N
nieokreślona w przypadku przeciwnym

Symbole występujące po prawej stronie definicji, czyli funkcje dodawania,
odejmowania, mnożenia i wartości bezwzględnej są określone na zbiorze liczb
całkowitych należą do języka arytmetyki. Bez znajomości tych funkcji nie można

। zrozumieć definicji nowych operacji. j

Częściowa określoność operacji algebry ALGimeger ma interpretację praktyczną. Brak
określoności operacji oznacza możliwość powstania nadmiaru podczas wykonywania
programu. Powstanie nadmiaru podczas obliczenia programu prowadzi do wygenero­
wania wyjątku lub do zerwania obliczeń z sygnalizacją błędu.

Algebry, które mają operacje określone częściowo, mogą być uciążliwe w zastosowa­
niach. Dlatego, zwłaszcza w programowaniu, dokonuje się pewnej modyfikacji takich
algebr tak, aby uzyskać całkowitą określoność ich operacji. Sposób tej modyfikacji
wyjaśnia przykład algebry ALGinleger-

Definiowaną w przykładzie algebrę ALGintegenj{nadmiar} można traktować jako algebraicz­
ny model całkowitoliczbowego typu danych występującego w językach programowania.

Przykład 6.6
I , ।

Niech dana będzie algebra:

ALGi,Hege^{nadnuar} =def <Integer {nadmiar}, {0, 1} o {©, G, ® }>

113

Nośnikiem algebry jest zbiór Integer z dołączonym elementem nadmiar. Opera­
cjami algebry są operacje dodawania, odejmowania i mnożenia - oznaczane jak
poprzednio - symbolami: ©, ©, Operacje te mają inne sygnatury:

©,©,©: (Integer {nadmiar})2 —> Integer u {nadmiar}

Wszystkie operacje arytmetyczne mają wspólną własność:

Jeżeli wartością któregokolwiek argumentu operacji jest nadmiar, to wynikiem
operacji jest również nadmiar, na przykład nadmiar ©1 = nadmiar.

W pozostałych przypadkach, gdy oba argumenty operacji są różne od nadmiar, de­
finicje operacji są następujące:

a + b gdy | a + b\ < N

aGb =def

nadmiar w przypadku przeciwnym

a + b gdy| a-b\ <N
nadmiar w przypadku przeciwnym

a + b gdy|zz*£>| <N
a®b=dc(■

nadmiar w przypadku przeciwnym

Uwaga

Symbol nadmiar w powyższym przykładzie jest odpowiednikiem symbolu ±
wprowadzonego w podrozdziale 3.5 na oznaczenie nieokreśloności funkcji. Sym­
bol nadmiar również odnosi się do sytuacji, gdy funkcja jest nieokreślona, a po­
nadto wskazuje na przyczynę nieokreśloności.

6.2. Algebry wielorodzajowe

Uogólnieniem algebr jednorodzajowych są algebry wielorodzajowe [Ehrig, Mahr
1985]. Uogólnienie polega na zastąpieniu pojedynczego nośnika skończoną rodziną
nośników. Algebra wielorodzajowa jest zdefiniowana jako układ:

ALG =def <{Ai,..., AJ, {ci,..., cm] u {/i, ...,/„}> dla me Nat oraz k, neNat\{D}

gdzie:

Ai,..., Ak są dowolnymi zbiorami, nazywanymi nośnikami algebry,
Ci jest stałą algebry, to znaczy c,e A. , dla i = 1,..., mj.e {1,..., k},

fj jest operacją algebry, dla j = 1, ..., n, to znaczy jest /^-argumentową funkcją.

114

kjGNat\{0}, o sygnaturze:
fi:Aix...xAi —tA,
J J Jl Jkj Jk0

gdzie

ji,..., j. G{1,.są indeksami nośników, które są argumentami operacji, Jkj
jt jest indeksem nośnika, który jest wynikiem operacji.

Uwaga

Algebra wielorodzajowa będzie też oznaczana krócej:

ALG =def <A, F>

gdzie A jest zbiorem nośników, zaś F jest zbiorem operacji, w tym operacji zero-
argumentowych, czyli stałych.

Przykład 6.7I-- ---------- ----------- ,
Rozpatruje się dwurodzajową algebrę określoną na liczbach całkowitych, która
oprócz operacji arytmetycznych: dodawania, odejmowania, mnożenia, dzielenia
całkowitoliczbowego, obejmuje również operacje porównywania liczb: równy,
nie mniejszy. Argumentami zarówno działań arytmetycznych, jak i operatorów
porównania są liczby, wynikami działań są także liczby, zaś wynikami porównań
są wartości logiczne. Tym samym, wprowadzenie operacji porównań wprowadza
niejawnie dodatkowy nośnik zawierający wartości logiczne. Może nim być na
przykład zbiór:

Boolean =def {false, true}

Algebrę można przedstawić jako algebrę dwurodzajową:

ALGCałkowite —def
<{Całkowite, Boolean}, {0,1} o

gdzie:

0, 1 są stałymi liczbowymi, zerem i jedynką,
-: Całkowite -» Całkowite jest jednoargumentową operacją zmiany znaku
liczby,
+, / : Całkowite2 —> Całkowite są dwuargumentowymi operacjami doda­
wania, odejmowania, mnożenia i dzielenia,
=, > : Całkowite2 —> Boołean są dwuargumentowymi operacjami porównań

। równy i nie mniejszy. j

Algebry wielorodzajowe mogą być modelem złożonych typów danych.

Algebra ALGcaiknwne może być potraktowana jako pewna charakterystyka całkowito­
liczbowego typu danych spotykanego w językach programowania. Charakterystyka ta

115

nie uwzględnia ograniczoności zbioru wartości typu. Pełną charakterystyką typu jest
algebra przedstawiona w przykładzie.

Przykład 6.8
[. I

Typ całkowito!iczbowy na zbiorze:

Integer =def {-M 0, ..., N}

ma określone operacje arytmetyczne: zmiany znaku dodawania ®, odejmowa­
nia Q, mnożenia ®, dzielenia całkowitoliczbowego 0, oraz ma operacje porów­
nywania liczb: równy =, nie mniejszy >, których wartościami są elementy zbioru:

Boolean =def {false, true}

Pełny model typu całkowitoliczbowego można przedstawić jako algebrę dwuro-
dzajową:

ALGinteger\j(nadmiar] def

<{Inte gei\J {nadmiar}, Boolean], {0,1} o {-, ®, Q, 0, -, >}>

Stałe i operacje algebry mają sygnatury:

0, 1 : —> Integer
- : Integer —> Integer
®, Q, 0 : {Integer u {nadmiar})2 —» Integer u {nadmiar}
0 : {Integer u {nadmiar})2 —> Integer o {nadmiar}
=, > : Integer2 —> Boolean

Poza operacją dzielenia, pozostałe operacje definiuje się podobnie jak w przykła­
dzie 6.6. Definicja operacji dzielenia przedstawia się następująco:

alb gdy
a 0 b =def- nadmiar gdy

nadmiar gdy

a G Integer, b G Integer \ {0} oraz\alb\ < N
ae Integer, be Integer) {0} oraz \a/b\ > N
b - 0 lub a = nadmiar lub b = nadmiar

Operacje porównań są obcięciem funkcji porównań = oraz >, określonych na
zbiorze liczb całkowitych Całkowite, do zbioru Integer.

6.3. Termy

Z każdą algebrąjest związany pewien zbiór napisów, które powstają ze złożenia sym­
boli stałych, zmiennych i działań algebry. Zbiór ten nazywa się zbiorem termów. Po­

116

niżej przedstawia się definicję termów, najpierw dla algebr jednorodzajowych,
a następnie dla wielorodzajowych [Ehrig, Mahr 1985]. Niech

ALG =def <A, {ci,cm] u {/, ...,/,}>

będzie pewną algebrą jednorodzajową, oraz niech V będzie zbiorem zmiennych, to
znaczy symboli, którym można przyporządkowywać pewne wartości z dziedziny A.

Symbolem TermALG(V) oznacza się zbiór termów algebry ALG nad zbiorem zmien­
nych V. Zbiór ten jest zdefiniowany rekursywnie w sposób następujący:

• V ę TermALC(V) oraz {cą, ..., cm] ę TermALG(V), to znaczy, że zmienne i stałe są
termami,

• jeżeli ..., tk&TennALG(V), czyli napisy Ą, ..., tk są termami oraz fjjest działaniem
^-argumentowym, to ffit\, t,^TermALG(y), czyli napis postaci/(ti, ..., r„) jest
termem.

Uwaga

Jeżeli ti, t2E TermALG(V) oraz / jest działaniem dwuargumentowym zapisywanym
w konwencji wrostkowej, to za term będzie przyjmowany napis (t\ fj h) 6
TermALG(V).

Termy są słowami nad pewnym alfabetem wyznaczonym przez daną algebrę.
W skład takiego alfabetu wchodzą symbole stałych, zmiennych, działań oraz nawia­
sów i przecinka. Jak wynika z definicji, termy są napisami złożonymi w tym sensie, że
term może składać się z części składowych, które również są termami. Termy, które są
częściami składowymi innych termów nazywa się podtermami. Dokładniej: term L
jest podtermem termu t2, gdy ?i jest podsłowem słowa t2.

Zbiór termów nad pustym zbiorem zmiennych, czyli TermALG(0'), nazywa się zbiorem
termów stałych.

Termy są napisami, które wyrażają pewne znaczenie - reprezentują one wartości ze
zbioru A. Inaczej: są one tekstową reprezentacją pewnych wartości, należących do no­
śnika A. Termy stałe TermALG(0} wyrażają bezpośrednio pewne wartości. Termy,
w których występują zmienne TermALG(V), również reprezentują pewne wartości, ale
wartości te zależą od wartościowania zmiennych, czyli od wartości, jakie są przypo­
rządkowane zmiennym V. Wartościowanie zmiennych jest wyrażane przez funkcję v
o sygnaturze:

v : VA

Wartość funkcji v(v) dla zmiennej v wyznacza pewien element ze zbioru A, który
zmienna ta reprezentuje.

W dalszym ciągu będzie się pisać Term(0) i Term(V), gdy z kontekstu wiadomo,
o jaką algebrę chodzi.

117

Przykład 6.9
! !

Do zbioru termów stałych Term(0) generowanych przez algebrę:

ALGNal =de{<Nat, {0, 1} u { + }>

gdzie + jest, jak poprzednio, dodawaniem w zbiorze liczb naturalnych, zapisy­
wanym w notacji wrostkowej, należą, na przykład, napisy:

0, 1, (0 + 0), (0 + 1), (1 + 0), (1 + 1), (0 + (0 + 0)), (0 + (0 + 1))

Przy zapisie w notacji przedrostkowej, te same napisy przyj mą postać:

0, 1, +(0, 0), +(0, 1), +(1, 0), +(1, 1), +(0, +(0,0)), +(0, +(0, 1))

Niektóre termy, na przykład 1, (0 + 1), (1+0), ((0+0)+1), reprezentują tę samą
wartość - liczbę naturalną 1. Zbiór termów reprezentujących tę samą wartość jest
oczywiście nieskończony.

Niech V = {a, b, c}. Do zbioru termów Term(V) generowanych przez algebrę
ALGNat będą należeć, na przykład:

a, b, c, (a + 0), (0 + b\ (a + c), (c + b), (a + (b + 0)), (1 + (b + 1))

Jeżeli założyć funkcję wartościowania:

v = {<a, 1>, <b, 0>, <c, 1>}

to wyżej wymienione termy będą kolejno reprezentować wartości:

L 1,0, 1, 1,0, 2, 1,0,2 ,

Zbiór termów dla algebry wielorodzajowej:

ALG=tef <{Ai, ...,Ax}, {cb ..., c,„} u {f[t d]a meNat oraz k,neNat\{Q}

jest bardziej złożony. Wynika to z podziału termów na rodzaje. Rodzaj termu wska­
zuje na jedną z dziedzin At,..., Ak algebry ALG, której wartości term reprezentuje.

Niech Vi będzie zbiorem zmiennych rodzaju A,. Zbiorem wszystkich zmiennych jest
V = Vj o ... u Vk. Zmienna ve V, jest rodzaju A, (i = 1, ..., k), co będzie zapisywane
v: Aj. Zmiennej ve V, można przyporządkowywać wartości tylko ze zbioru A,.

Stałe także mają swój rodzaj. Dla ce {cb ..., cm} zapis c : A, oznacza, że stała c jest
rodzaju A„ czyli jest elementem zbioru A, (i = 1, ..., k).

Dalej, zamiast pisać rodzaj A, będzie się pisać krótko rodzaj i.

Zbiór termów rodzaju i (z = 1, ..., k) dla algebry wielorodzajowej ALG nad zbiorem
zmiennych V, oznaczany Term^y), jest zdefiniowany rekursywnie w sposób nastę­
pujący:

• jeżeli Cj: A„ to Cj&TermjY)

118

Vi ę TermjY)
• jeżeli napisy Ą, tk są termami rodzajów ą, ik, oraz fj : Aj x...xAjt —> Ą

jest działaniem k-argumentowym, to napis postaci fj[ti, ..., tn) jest termem ro­
dzaju i, czylifj(t^ t^eTerm^Y).

Zbiór wszystkich termów dla algebry wielorodzajowej ALG nad zbiorem zmiennych
V, oznaczany Term(V), jest określony jako mnogościowa suma:

k
Tdrmfy) = [J Termi (V).

1=1

Uwaga

W programowaniu, przyporządkowanie rodzajów stałym, zmiennym oraz wyraże­
niom nazywa się typowaniem lub typizacją. Typizacja przejawia się w sposobie
deklarowania stałych i zmiennych, w rozróżnianiu, na przykład, wyrażeń arytme­
tycznych i logicznych, w sprawdzaniu poprawnego użycia zmiennych w wyraże­
niach itd.

Przykład 6.10
ł--------------------------------- --- -- --------..........]

W zdefiniowanej wcześniej algebrze

ALG/ntegenj {nadmiar} —def

< (Integer [nadmiar}, Boolean}, {0, 1} o {-, ffi, ©, 0, 0, =, >}>

wyróżnia się dwa rodzaje termów: Integer u [nadmiar] oraz Boolean. Zakłada
się, że:

Integer = {-10, -1, 0, ..., 10}.

Ponadto, niech Ylntegerulnadmiar] — def {^, b] OraZ VBoolean “ def 0-

Termami rodzaju Integer [nadmiar] są, na przykład:

0, 1, a, b, (a © b), [a © (a 0 b)).

Termy te reprezentują pewne wartości ze zbioru Integer u [nadmiar], przy czym
zależą one od wartościowania v zbioru zmiennych. Niech v = [<a, 3>, <b, 4>}.

Wówczas term 0 reprezentuje wartość 0, term a reprezentuje wartość 3, term
b reprezentuje wartość 4, a term (a^b] reprezentuje wartość 7. Natomiast warto­
ścią termu (a© (a®by) jest nadmiar, gdyż wartością jego podtermu (a0b) jest
nadmiar, ponieważ a*b > 10.
Termami rodzaju Boolean są na przykład:

((a © b) - (1 0 a)), [(-a 0 b)>(b 0 a]]

. Wartościami obu termów, przy wartościowaniu v, jest false. ,

119

Wartości termów przy danym wartościowaniu v w algebrze

ALG^t <Mi, -,Ak}, {ej,cm} u {/, ...,/„}> dla meNat oraz k, neNat\{0}

można zdefiniować ogólnie.

Przez WAR„(t) oznacza się wartość termu t wartościowaniu v. WAT?,, jest funkcją
o sygnaturze:

WARV : Term{ V) -> A

gdzie:
k

Term(y) =
1=1

k
A = Ją.

1=1

Funkcję obliczania wartości termów WARV można zdefiniować rekursywnie w sposób
następujący:

• jeżeli term jest postaci v, gdzie v jest zmienną, czyli vG V, to WARr(v) = v(v),

• jeżeli term jest postaci c, gdzie c jest stałą, czyli cg {..., cm}, to WAR^c) = c,

• jeżeli term jest postaci/(Zi, Zj, gdzie/jest ^-argumentowym działaniem, czyli
/g {/i, ...,/„), Zi,tk są termami, czyli Zi,tkeTermęV), to

WAR^h,..., Z*)) = AWARAti),WAR^Y

Niech TermALG(0) będzie zbiorem termów stałych pewnej algebry ALG. Wartość ter­
mu stałego Z nie zależy od wartościowania v. Zatem, dla dowolnych dwóch warto­
ściowań v oraz ^'zachodzi:

WARv(t) = WAR^t)

Niech WAR(t) oznacza wartość termu stałego z. Definiuje się relację binarną ~ na zbio­
rze termów stałych:

jeżeli Zi, z2 G TermALC(0Y to z, = z2 wtedy i tylko wtedy, gdy WAR(ti) = WAR^tY-

Relacja = jest oczywiście relacją równoważności i wyznacza podział zbioru termów
stałych na klasy abstrakcji. Do jednej klasy abstrakcji należą wszystkie termy tego
samego rodzaju, które reprezentują tę samą wartość. Oznacza to, że relację = byłoby
można określić jako rodzinę relacji binarnych zdefiniowanych na podzbiorze termów
stałych ustalonego rodzaju, czyli = =aef {“i, —, ~k}, gdzie =, dla i = 1, ..., k jest zdefi­
niowane:

jeżeli Zi, z2 G Term^Y to Zi = z2 wtedy i tylko wtedy, gdy WAR^ti) = WAR^tL).

120

Przykład 6.11
R “... 1

Dla algebry ALG inleger ^nadmiar} zdefiniowanej w wcześniejszym przykładzie, rela­
cja R wyznacza podział termów stałych rodzaju Integer u {nadmiar} na klasy
abstrakcji, z których każda reprezentuje termy przyjmujące wartości -10, -1,
0, 10 oraz nadmiar. Każda z klas zawiera nieskończenie wiele termów. Przy­
kładowo, do jednej klasy termów o wartości 0 należą, między innymi:

i ((oeo)®i) ((doi) e i) e 0)
Do klasy termów o wartości nadmiar należą, między innymi:

। (i® nadmiar) ((0 © nadmiar) ©1) (((1 0 0) © 0) © 0) j

Niech TermALG(V) będzie zbiorem termów algebry ALG na zbiorem zmiennych V. Na
zbiorze tym można również zdefiniować relację równoważności, która jest uogólnie­
niem relacji równoważności ~ zdefiniowanej na zbiorze termów stałych. Będzie ona
oznaczona tym samym symbolem ~ i będzie zdefiniowana jako rodzina relacji:

~ =def {~l, =*},

gdzie =, dla i = 1,..., A: jest zdefiniowane:

jeżeli ti, t2 eTerm[V), to wtedy i tylko wtedy, gdy WARv(ti)=WARv(t2) dla
każdego wartościowania v.

Jeżeli dwa termy należą do jednej klasy abstrakcji wyznaczonej przez relację =, to dla
dowolnie wybranego wartościowania reprezentują one tę samą wartość.

Przykład 6.12
I !

Dla poprzednio rozważanej algebry:

ALG całkowite =def <{Całkowite, Boolean], {0, 1} u

i zbioru termów nad zbiorem zmiennych Vcaikowite =det {«, b} oraz VBooiean =def 0,
relacja ~v wyznacza podział termów rodzaju Integei\j{nadmiar} na klasy abs­
trakcji, z których każda reprezentuje termy przyjmujące te wartości dla dowolnie
ustalonego wartościowania. Przykładowo, do tej samej klasy termów należą mię­
dzy innymi:

1 «a-a)+ 1) (((1/1 - b) - 0) +b)

Do innej klasy należą, między innymi, termy:

, a^a-b) + b) ^an)-b) + b) .

121

6.4. Algebry Boole’a

Wśród algebr, które w informatyce mają szerokie zastosowania, szczególną rolę od­
grywają algebry Boole’a. Stanowią one pewną klasą algebr zdefiniowaną przez okre­
ślenie pewnych własności wyrażanych w postaci równości. Taki sposób definiowania
algebr nazywa się definiowaniem równościowym.
Algebrą Boole ’a określa się każdą algebrę o strukturze:

BOOL=M <A, {0, 1} u {-, +, *}>
gdzie:

A jest dowolnym zbiorem, nośnikiem algebry,
0, 1 są stałymi, nazywanymi zerem i jednością boolowską,
- jest działaniem jednoargumentowym, nazywanym dopełnieniem boolowskim,
+, * są działaniami dwuargumentowymi, nazywanymi umownie dodawaniem

i mnożeniem boolowskim (nie należy tych działań utożsamiać z działaniami
arytmetycznymi ani mnogościowymi),

która ponadto, dla dowolnych a, b, c eA, spełnia następujące własności:

1. (a + b) - (b + aj
2. ((a + b) + c) = (a + (b + c))
3. ((a + b) * c) = ((a * ć) + (b * c))
4. (a + 0) = a
5. (a + (-a)) = 1

(a * b) = (b * a)
((a * b) * c) = (a* (b * c))
(ja *b) + c) = (ja + cj* (b + c))
(a * 1) = a
(a * (-a)) = 0

Własności te wyrażają:

przemienność dodawania i mnożenia,
2. łączność dodawania i mnożenia,
3. rozdzielność mnożenia względem dodawania oraz dodawania względem mnożenia,
4. neutralność zera względem dodawania oraz jedynki względem mnożenia,
5. neutralność elementu odwrotnego względem dodawania oraz względem mnożenia.

Własności są wyrażane poprzez równości. Równość jest napisem postaci t\ = t2, gdzie
składowe t\ i r2 są termami ze zbioru TermBOoijV) nad dowolnym zbiorem zmiennych
V. Równość ti = t2 jest spełniona, gdy dla dowolnego wartościowania v oba termy re­
prezentują tę samą wartość, czyli WARjtj = WARjtfi.

Od algebry Boole’a wymaga się, aby były spełnione wszystkie wyżej wymienione równości.

Przykład 6.13

Łatwo sprawdzić, że wcześniej zdefiniowana algebra:

ALGBooiean =def <Boolean, {not, and, or}>
L posiada wszystkie wymagane własności, a zatem jest algebrą Boole’a. ।

122

Przykład 6.14
I ,,......... 1

Niech U będzie dowolnym zbiorem, zaś 2 rodziną wszystkich jego podzbiorów.
Podobnie można sprawdzić, że algebrą Boole’a jest struktura:

BOOLu =def <2U, {0, U} u {\, o,n)>

w której 2W jest nośnikiem algebry, 0 oraz U są zerem i jednością, a działania
mnogościowe \, o, n są odpowiednio dopełnieniem, sumą i iloczynem algebry.

Ogólniej, zamiast pełnej rodziny podzbiorów 2U wystarczy przyjąć dowolną jej
podrodzinę, zamkniętą ze względu na działania dopełnienia, sumy i iloczynu.
Przykładowo, zamknięta jest rodzina złożona ze zbioru pustego i zbioru pełnego,
czyli {0, U}, to znaczy wynikiem każdej z operacji wykonanej na elementach tej

। rodziny jest element należący do tej rodziny. ,

6.5. Homomorfizm algebr

Definiowanie algebry abstrakcyjnej wygodnie jest rozpoczynać od opisania jej struk­
tury. Najprostsząjej charakterystykąjest sygnatura.

Sygnaturą algebry nazywa się parę:

Sig =def <S, OP>

gdzie S jest niepustym zbiorem identyfikatorów (nazw) nośników (rodzajów), OP jest
zbiorem deklaracji operacji. Deklaracja operacji będzie zapisywana w postaci:

Op : 51 ••• sn —> 5

gdzie op jest identyfikatorem (nazwą) operacji, 5i 52 ... 5,Jest listą, której elementy 5h
52, ... sneS są identyfikatorami rodzajów argumentów, zaś 56 S jest identyfikatorem
(nazwą) rodzaju wartości operacji. Deklaracja operacji o nazwie op wskazuje na na­
zwy zbiorów jej argumentów i nazwę zbioru jej wartości. Jeżeli op jest operacją zero-
argumentową, czyli stałą, to jej deklaracja ma postać:

op : —> 5

Zakłada się, że każda deklaracja operacji ma różną nazwę operacji. Dlatego dalej za­
miast pisać (op : 5, 52... sn —> 5)6 OP będzie się pisać krótko ope OP.

123

Uwaga
Zapis postaci:

Op : 51 52 ... 5„ —> 5

nie jest tym samym co zapis:

Op : 5] X 52 x ... x s„ —> 5

Przykład 6.15

Przykłady dwóch sygnatur Sig, =def <5„ OP,> dla i = 1, 2, gdzie:

5i=def{A} OP, =def {e : —> A, d : A A —> A}
$2 =def {A, B} O Pi =def {£ : —A, d : A A —> A, r : A A —> B}

Sygnatura jest tylko pewną charakteryzacją algebry, a nie określeniem algebry. Może
być wiele algebr mających tę samą sygnaturę.

Algebrą nad sygnaturą Sig, krótko Sig-algebrą, nazywa się parę:

ALG = def <A, P>
gdzie

A =def {Aj | 5EÓ} jest rodziną zbiorów zwanych nośnikami lub dziedzinami algebry,
F =def {fop | op^OP} jest rodziną funkcji zwanych operacjami algebry, przy czym

każdej deklaracji operacji opeOP:
Op : 5[52 ... 5„ —> 5

odpowiada funkcja:

: A x...x A -> AJ °P 51 sn 5

Dwie algebry o tej samej sygnaturze nazywa się algebrami podobnymi.

Przykład 6.16

Przykładami dwóch algebr podobnych o sygnaturze Sig, są:

ALG, —def <Nat, {1, + }>
gdzie nośnikiem algebry ALG, jest zbiór liczb naturalnych Nat, stała 1 jest liczbą
naturalnąjeden, zaś operacja + jest dodawaniem w zbiorze liczb naturalnych.

ALG. =def <Nat, {1, *}>

Nośnikiem algebry ALG2 jest zbiór liczb naturalnych Nat, stała 1 jest liczbą natu­
ralnąjeden, zaś operacja * jest mnożeniem w zbiorze liczb naturalnych.
Przykładami dwóch podobnych algebr dwurodzajowych o sygnaturze Sig2 są:

ALGi =def <{Nat, Logiczne}, {1, +, =} >

Nośnikami algebry ALG2 są zbiór liczb naturalnych Nat oraz zbiór wartości lo­
gicznych Logiczne =def {prawda, fałsz}, 1 oraz + są, jak poprzednio, stałą jeden

124

i dodawaniem w zbiorze liczb naturalnych, natomiast operacja = jest równością
w zbiorze liczb naturalnych.

ALGfiX) =def <{2x, Logiczne}, {0, u, =}>

Algebra ALG4(X) jest algebrą parametryzowaną zbiorem X. Jej nośnikami są: ro­
dzina podzbiorów pewnego zbioru X oraz zbiór Logiczne, a operacjami są: stała
0, która jest zbiorem pustym, operacja u, która jest sumą mnogościową, oraz =,

। która jest równością zbiorów. ।

Niech będą dane dwie algebry: ALG\ = def <A, F> oraz ALGi = def <B, G> o sygnaturze
Sig = <5, OP>. Oznacza to, że

A =def {As | se S} oraz B =def {Bs | se S} są nośnikami algebr, a
J^def {fop | opEOP] oraz G =def {goP | opEOP} są rodzinami operacji tych algebr.

Homorfizmem z algebry ALG\ w algebrę ALG2 nazywa się taką rodzinę funkcji H

H=M(hs: As^Bs\seS]

że dla każdej funkcji fop :Asx.. ,x A —»As, dla opE OP, zachodzi warunek:

hs (fop^...............)) = gup («i). • • •. \ K))

dla dowolnych aj E As , j = 1,..., n. Fakt, że H jest homorfizmem zapisuje się:

H : ALGx -> ALG2

Przykład 6.17
I -- --- --- ------------ !

Dane są dwie algebry jednorodzajowe:

ALGx=<Nat, {!,+}>
ALG2 = <Natn, {1, ® }>

gdzie Natn = {0, 1,..., n-1}, a © oznacza dodawanie modulo n.

Homomorfizmem jest funkcja h : Nat —> Natn zdefiniowana wzorem:

। h(m) = reszta z dzielenia m przez n, dla mE Nat. ।

Jeżeli każda z funkcji hs homomorfizmu H = {hs : As —» Bs | seS} jest funkcją wza­
jemnie jednoznaczną, to H nazywa się izomorfizmem.

125

6.6. Algebra ilorazowa termów

Dana algebra wielorodzajowa ALG = <A, F> o sygnaturze Sig = <S, OP>,

gdzie:

A ={ A, | se 5} jest rodziną nośników algebry ALG,
F ={fOp | ope OP} jest zbiorem operacji algebry ALG,

generuje zbiór termów nad ustalonym zbiorem zmiennych V:

Term(V) =
5€5

Zbiór ten może być podstawą do utworzenia nowej algebry wielorodzajowej, zwanej al­
gebrą termów, [Ehrig, Mahr 1985], [Rasiowa 1998], która jest podobna do algebry ALG.

Algebrę termów

ALGperm —def < A, F >

dla algebry ALG definiuje się następująco:

A = {Terms(V) |seS} jest rodziną nośników algebry termów,
F = {fop | opEOP} jest zbiorem operacji algebry termów, przy czym operacja fop

ma sygnaturę:
fop ; FerniSi (V)X...xTerm^ (V) —> Terms (V)

gdy deklaracja operacji ma postać: op : $2, —, sn —> s, i jest zdefiniowana następująco:

jeżeli tj e Term^ dlaj = 1,..., n, tofop(th..., t„) =Mfop(th ..., tn).

Każdemu nośnikowi As i każdej operacji fop w algebrze ALG odpowiadają nośnik Ter-
ms(V) i operacja fop w algebrze termów ALGTerm.

Niech = będzie wcześniej określoną rodziną relacji binarnych ~s na zbiorze termów
rodzaju seS.

Relacje te są relacjami równoważności i mają następującą własność:

Jeżeli ts , r' są termami rodzaju Sj oraz ts ~s t's dla j = 1,..., n, to

fopt^>•••>) ~s fop >•••>)

dla opE OP.

Rodzinę relacji równoważności o tej własności nazywa się kongruencją.

Kongruencja jest podstawą do zdefiniowania algebry, nazywanej ilorazową algebrą

126

fermów ALG^ dla algebry ALG. Dodatkowo, algebry te są homomorficzne, to znaczy
istnieje homomorfizm H : ALG-^ ALG^.

Definicja algebry ALGL jest następująca:

ALG= =dcf < A, F >

gdzie:

A = {Terms(V)l~s | seS} jest rodziną zbiorów ilorazowych termów rodzajów SE.S,
F = { fop | opeOP} jest zbiorem operacji ilorazowej algebry termów, przy czym

operacja fop ma sygnaturę:
7„p -.Term^Y)/^ x...xTermJV)/^Terms(V)/«s

gdy deklaracja operacji ma postać: op : $i $2 sn —> s, i jest zdefiniowana następująco:

jeżeli [zje TermSj / ~Sj dlay = 1,..., n, to ..., [Z,,]) =def [fOp(ti,.... Z,,)].

Należy przypomnieć, że [zj jest oznaczeniem klasy abstrakcji generowanej przez
term tj.

Ćwiczenia

1. Niech będzie dana algebra ALGNal =def <Nat, {0, 1}, {+, *}>. Przedstawić gra­
matykę generującą poprawne wyrażenia (termy) zbudowane ze zmiennych repre­
zentujących liczby oraz z operacji podanej algebry.

2. Niech będzie dana algebra ALGi,„ =def <Int, {+, -, *}>, gdzie hit =def {-100, ..., 0, 1,
..., 100}. Przedstawić definicję działań algebry pozwalającą na określenie ich wyni­
ku dla dowolnych argumentów.

3. Zdefiniować algebrę definiującą typ znakowy (string) w języku Pascal.

4. Przedstawić wielorodzajową algebrę, która będzie wyrażać znaczenie typu wylicze­
niowego zdefiniowanego w języku Pascal w sposób następujący:

type DniTygodnia = (pon, wt, śr, czw,piąt, sob, niedź).

5. Zdefiniować gramatykę, która będzie generować zbiór termów rodzaju DniTygo­
dnia określonych przez algebrę zdefiniowaną w zadaniu 3.

6. Dla algebry z zadania 3 zdefiniować algebrę termów i ilorazową algebrę termów.

7. Niech A =def {1, 2, 3, 5, 6, 10, 15, 30}>. Pokazać, że algebra ALG zdefiniowana

127

następująco:

ALG = <A, {1,30} o {-, +, *}>
gdzie dla a, be A
-a oznacza liczbę stanowiącą wynik dzielenia 30 przez a,
a + b oznacza najmniejszą wspólną wielokrotność liczb a oraz b,
a * b oznacza największy wspólny podzielnik liczb a oraz b,

jest algebrąBoole’a.

8. Pokazać, że istnieje homomorfizm między dowolną algebrą a generowaną przez nią
ilorazową algebrą termów.

7. Rachunek zdań

7.1. Składnia

Rachunek zdań jest podstawową częścią logiki klasycznej. Elementy rachunku były
nieformalnie wprowadzone i używane w poprzednich rozdziałach. W tym rozdziale
przedstawia się składnię i semantykę rachunku zdań.

Język rachunku zdań, tak jak każdy język formalny, definiuje się przez podanie alfa­
betu - zbioru symboli podstawowych, oraz przez podanie zasad tworzenia z nich napi­
sów - słów nad alfabetem. Symbole alfabetu nazywa się jednostkami leksykalnymi.
Takie wyróżnienie wynika stąd, że jednostki leksykalne mogą być słowami nad innym
alfabetem.

Alfabet języka rachunku zdań składa się z następujących czterech kategorii jednostek
leksykalnych:

• symboli stałych logicznych reprezentowanych przez napisy true oraz false;

• przeliczalnej liczby symboli zmiennych zdaniowych, reprezentowanych przez
dowolnie ustalone identyfikatory, dalej najczęściej będą używane pojedyncze
małe litery p, q, r,... ;

• symboli spójników logicznych:

negacji
koniunkcji
dysjunkcji (lub alternatywy)
implikacji
równoważności

• dwóch symboli pomocniczych:

lewy nawias (
prawy nawias)

129

Alfabet rachunku zdań jest zbiorem nieskończonym, ale co najwyżej przeliczalnym,
gdyż dopuszcza się używanie dowolnej liczby identyfikatorów dla reprezentacji
zmiennych zdaniowych. Oczywiście, w praktycznych zastosowaniach dysponuje się
zawsze skończoną liczbą zmiennych zdaniowych. Ich postać - ustalana dowolnie - nie
ma wpływu na znaczenie języka.

Z alfabetu tworzy się pewne napisy - formuły, które - z definicji - są napisami poprawnie
zbudowanymi. Dalej pojedyncze formuły będą oznaczane małymi literami greckimi.

Zbiór formuł rachunku zdań FORM, nad określonym wyżej alfabetem, jest definiowa­
ny rekursywnie w następujący sposób:

• symbole zmiennych zdaniowych oraz symbole stałych logicznych są formułami,
nazywa się je formułami elementarnymi albo atomowymi;

• jeżeli a oraz fi są formułami, to formułami, nazywanymi formułami złożonymi,
są napisy:

^a, (a^ fi), (a/\ fi), (av fi), fi).

Zbiór formuł FORM jest językiem formalnym rachunku zdań. Formuły rachunku zdań
nazywa się też zdaniami.

Jeżeli et jest formułą, to każde podsłowo słowa et, które jest formułą, nazywa się pod-
formułą a.

Przykład 7.1
I I

Jeżeli dana jest formuła (a a fi), to jej podformułami są et oraz fi, a także wszystkie
podformuły et oraz fi. Dla formuły:

(-<P v q) a -,r),

gdzie p, q, r są zmiennymi zdaniowymi, jej podformułami są formuły:

I -fp v q), (p v q), p, q, -tr, r. j

Uwaga

W celu zredukowania liczby nawiasów w formułach dalej się przyjmuje (jak
w rozdziale 1), że spójniki logiczne mają ustaloną kolejność wiązania spójników
(od najsilniejszego do najsłabszego):

—i, A, v, =>, <=>.

Pozwala to pisać, na przykład:

—ta a fi zamiast (-i a a fi),
—ia a fi v y zamiast ((—। a a fi) v y),

gdzie et oraz fi są dowolnymi formułami.

130

W przypadku, gdy takie same spójniki występują obok siebie zakłada się dodatko­
wo, że spójniki a, v występujące obok siebie łączą w lewo, a spójniki =>, <=> wy­
stępujące obok siebie łączą w prawo. Na przykład:

p q a r znaczy (p a q) a r,
p=$ q=> r znaczy p => (q => r).

Przedstawiony język formalny rachunku zdań abstrahuje od postaci zmiennych zda­
niowych. Język ten można ukonkretnić definiując odpowiednią gramatykę bezkon-
tekstową.

Przyjmuje się konwencję powszechnie stosowaną w językach programowania, że
identyfikatorem jest niepusty skończony ciąg znaków, którego pierwszym elementem
jest dowolna litera alfabetu łacińskiego, a elementami pozostałymi są litery lub cyfry
arabskie.

Gramatykę generującą język formalny rachunku zdań (RZ) można zdefiniować nastę­
pująco:

Grz “def <Trz, Nrz, PRZ, Srz>,

gdzie:

Trz=m {true, false} u {a, b,..., z} u {0, 1,..., 9} u {->, a, v, =>, <=>} u {(,)}

Nrz =def [formula, fornnda-elementarna, stała-logiczna, zmienna-zdaniowa, iden­
tyfikator, litera, cyfra spójnik-logiczny]

SRZ=^t formula

zaś zbiór produkcji PRZ, zapisany w konwencji BNF, ma postać:

Prz =def [formuła ::=formula-elementarna \—formula\
(formuła binarny-spójnik formuła)
binarny-spójnik-logiczny ::= a | v | | <=>
formuła-ełementarna ::= stała-logiczna | zmienna-zdaniowa
stała-logiczna ::= true | false
zmienna-zdaniowa ::= identyfikator
identyfikator ::= litera | identyfikator cyfra | identyfikator litera
litera ::= a | b |... | z
cyfra ::= 0 | 1 |... | 9 }

Język formalny L(Grz) generowany przez podaną gramatykę Grz jest konkretyzacją
zdefiniowanego rekursywnie zbioru formuł FORM.

W celu skrócenia zapisów całe formuły będą oznaczane pojedynczymi symbolami
i dlatego będzie przydatne pojęcie równości tekstowej formuł. Fakt, że dwie formuły
a, fi są identyczne tekstowo będzie zapisywany w postaci a= fi.

131

7.2. Semantyka

Język formalny rachunku zdań w postaci przedstawionej wyżej jest językiem bez in­
terpretacji. Interpretacja języka polega na ustaleniu znaczenia elementów języka - je­
go jednostek leksykalnych oraz formuł. W celu przedstawienia interpretacji jest ko­
nieczne posiadanie pewnego zestawu pojęć i sposobu ich reprezentacji w jakimś
zrozumiałym języku, to znaczy potrzebne jest posiadanie metajęzyka - języka służą­
cego do opisu innego języka. Używanym tu metajęzykiem będzie język teorii mnogo­
ści, który był przedstawiany w poprzednich rozdziałach.

Określenie interpretacji języka polega na ustaleniu dziedzin interpretacji, to jest zbio­
rów obiektów, które będą wyrażać znaczenie elementów języka, oraz na ustaleniu spo­
sobu przyporządkowania elementom języka obiektów z dziedziny interpretacji.

Dziedziną interpretacji rachunku zdań jest zbiór wartości logicznych:

Logiczne =def {prawda, fałsz}

Dalej zamiast pisać prawda, fałsz będą używane skróty P, F.
Przyporządkowanie znaczenia elementom języka obiektów nad dziedziną interpretacji
dokonuje się w dwóch etapach: najpierw określa się znaczenie symboli stałych i spój­
ników logicznych, a następnie określa się znaczenie formuł.

W pierwszym etapie wprowadza się funkcję interpretacji bazowej I, krótko - inter­
pretację, która określa znaczenie symboli stałych i spójników logicznych.

Interpretacją (znaczeniem) symboli true oraz false są wartości logiczne odpowiednio
prawda oraz fałsz. Formalnie wyraża to funkcja interpretacji I w sposób następujący:

/(true) =def P
Z(false) =def F

Symbolom spójników logicznym: -i, a, v, =>, <=>, interpretacja I przyporządkowuje
funkcje o następujących sygnaturach:

/(-n) : Logiczne —» Logiczne
_ /(a)_ , _ /(v)_, _ /(=>)_ , _ : Logiczne" —> Logiczne

Funkcje te są określone szczegółowo przez tabelę 7.1.

Tablica 7.1

a b /(-)(«) a /(a) b a I(y) b al^)b a Z(«) b
p P F P P P P
F P P F P P F
F F P F F P P
P F F F P F F

132

Tabela określa tak zwaną standardową albo główną interpretację spójników logicz­
nych. W dalszym ciągu symbolom spójników logicznych będzie przyporządkowy­
wana wyłącznie standardowa interpretacja. Dlatego w zapisie symboli stałych
i spójników logicznych symbol interpretacji I będzie pomijany. W zależności od
kontekstu, symbole spójników będą traktowane wyłącznie jako symbole, bądź jako
wyżej zdefiniowane funkcje. Tak właśnie było w podrozdziale 1.2, w którym po raz
pierwszy zdefiniowano znaczenie spójników logicznych; symbole spójników logicz­
nych były tam traktowane jako funkcje.

Dziedzina interpretacji wraz z funkcją interpretacji stałych i spójników logicznych
wyznaczają algebrę jednorodzajową postaci:

<Logiczne, {/(true), Z(false)}, {/(-,), /(a), /(v), /(=>),/(<=>)}>.

Drugim etapem definiowania interpretacji języka rachunku zdań jest określenie zna­
czenia (semantyki) dowolnych formuł.

Dokonuje się tego rekursywnie - podobnie jak dla termów (podrozdział 6.3) - rozpo­
czynając od formuł elementarnych. Stałe, które są formułami elementarnymi, mają już
ustaloną interpretację. Formułami elementarnymi są też zmienne zdaniowe. Pojedyn­
cza zmienna reprezentuje prostą, niepodzielną wypowiedź, której można dowolnie
przypisać wartość logiczną prawda albo fałsz. Interpretacja (znaczenie) symbolu
zmiennej zdaniowej polega więc na przypisaniu temu symbolowi wartości P (prawda)
albo F (fałsz). Niech ZmienneZdaniowe oznacza zbiór zmiennych zdaniowych. Przy­
pisanie wartości zmiennej będzie wyrażać funkcja wartościowania zmiennych:

v : ZmienneZdaniowe —> Logiczne,

która zmiennej zdaniowej p& ZmienneZdaniowe przyporządkowuje pewną wartość
logiczną v(p) 6 Logiczne.

Mając ustaloną funkcję interpretacji bazowej I oraz funkcję wartościowania v można
jednoznacznie zdefiniować nową funkcję, która każdej formule a^FORM przypo­
rządkowuje wartość logiczną prawda albo fałsz. Ta nowa funkcja

INT„ : FORM Logiczne

jest zdefiniowana rekursywnie w sposób następujący:

• Jeżeli formuła cc jest formułą w postaci stałej logicznej, to:

/AT/true) =def Z(true) = P,
WT/false) = def /(false) = F.

• Jeżeli formuła a ma postać zmiennej zdaniowej p, to:

INTfa) =def v(p).

• Jeżeli formuła jest formułą złożoną, to:

133

INTv(a° /3) = def INTja) IU) INTj/3),

gdzie o jest dowolnym binarnym spójnikiem logicznym, czyli {a, v, =>, <=>}, zaś
/(«) jest jego interpretacją.

Interpretacja stałych logicznych nie zależy od wartościowania v, a interpretacja
zmiennych zdaniowych nie zależy od interpretacji bazowej I.

Uwaga

Do opisu semantyki formalnego języka rachunku zdań został użyty pewien metaję­
zyk. Warunkiem decydującym o wyborze danego metajęzyka jest jego zrozumia­
łość i dostateczna siła ekspresji, pozwalająca na wyrażenie odpowiednich faktów.
W naszym przypadku metajęzykiem jest język elementarnej teorii zbiorów, który
został wprowadzony w poprzednich rozdziałach. Natomiast do opisu języka ele­
mentarnej teorii mnogości był użyty język naturalny, który pełnił rolę metajęzyka
względem języka teorii mnogości. Idea definiowania znaczenia języka za pomocą
innego języka - metajęzyka pochodzi od Tarskiego18.

18 Alfred Tarski (1901-1983).

Formuła a spełnia interpretację INT przy wartościowaniu v, co będzie zapisywane
w postaci:

INTV1= a

wtedy i tylko wtedy, gdy INTjot) = P. Symbol i= jest nazywany symbolem spełniania.

Formuła a spełnia interpretację INT, co będzie zapisywane w postaci:

INTt=a

wtedy i tylko wtedy, gdy a spełnia interpretację INT przy dowolnym wartościowaniu v.
Ponieważ jest rozważana tylko interpretacja standardowa, symbol INT będzie pomijany:

a

Formułę taką nazywa się tautologią rachunku zdań.

Dwie formuły a oraz (3 srą równoważne semantycznie, jeżeli przy tej samej interpreta­
cji i przy tym samym wartościowaniu są jednocześnie spełnione albo niespełnione.
Fakt równoważności semantycznej formuł zapisuje się w postaci:

a = j).

Uwaga

Symbol równoważności semantycznej = należy odróżnić od symbolu równoważno­
ści tekstowej s. Dla dwóch dowolnych formuł ot, (3 jeżeli a = [3, to oczywiście
również a = [3, natomiast wynikanie odwrotne nie zachodzi.

134

Pomiędzy spójnikiem równoważności <=> a równoważnością semantyczną = zachodzi
związek wyrażający się przez własność:

Formuła postaci a <=> P jest tautologią, wtedy i tylko wtedy, gdy a - p.

7.3. Dowodzenie metodą zerojedynkową

Bezpośrednio z definicji interpretacji wynika, że sprawdzenie czy dana formuła jest
tautologią może polegać na wyliczeniu prawdziwości formuły dla wszystkich możli­
wych wartościowań zmiennych zdaniowych występujących w tej formule. Liczba takich
wartościowań wynosi 2", gdzie n jest liczbą zmiennych zdaniowych. Postępowanie takie
określa się mianem metody zerojedynkowej. Jej istotę wyjaśnia przykład.

Przykład 7.2
I--------------------- ------ ------ ----~ ”-- ----- I

W celu pokazania, że formuła

P => (<7 => P)

jest tautologią rachunku zdań wystarczy zbudować tablicę prawdziwościową,
w której są zestawione wszystkie możliwe wartościowania zmiennych i obliczone
dla nich wartości formuły i ewentualnie jej podformuł.

p <7 ą^p P => 0 => P)
F F p p
F P F p
P F P p
P P P p

Ponieważ formuła jest spełniona przy dowolnym wartościowaniu występujących
। w niej zmiennych, więc jest tautologią. ।

Metoda zerojedynkowa oblicza wartości formuły dla wszystkich możliwych warto­
ściowań jej zmiennych. Ponieważ liczba takich wartościowań jest skończona, zatem
po skończonej liczbie kroków otrzymuje się niezawodną odpowiedź na pytanie, czy
formuła jest tautologią. Metoda zerojedynkowa daje więc zawsze podstawę do
stwierdzenia, czy dana formuła rachunku zdań jest czy nie jest tautologią. Problem
badania czy formuła jest tautologią jest rozstrzygalny. Ogólnie, pojęcie rozstrzygal-
ności danego problemu - pytania, na które odpowiedzią jest tak albo nie - oznacza,
że istnieje procedura (algorytm), która w skończonej liczbie kroków daje jedną
z tych odpowiedzi.

135

Metoda zerojedynkowa jest mało efektywna. Można ją usprawnić zauważając, że ob­
liczenie wartości fałsz dla pewnego wartościowania przesądza, iż formuła nie może
być tautologią. Obliczenia wartości formuły można zakończyć w momencie pierwsze­
go napotkania takiego wartościowania.

Dla rachunku zdań istnieją jeszcze inne, efektywniejsze sposoby rozstrzygania czy
formuła jest tautologią.

7.4. Wybrane tautologie

Tautologie są schematami formuł, które są zawsze prawdziwe, niezależnie od wyraża­
nych treści. Są one prawdziwe z uwagi na swoją strukturę. Poniżej przedstawiono czę­
ściej spotykane tautologie. Są one wykorzystywane w dowodach matematycznych
i dlatego nazywa się je prawami logicznymi albo prawami rachunku zdań. Niektóre
z nich mają też tradycyjne nazwy. Jeżeli a oraz P są dowolnymi formułami, to tauto­
logiami są formuły:

Prawo implikacji

-i«v p

Prawa kontrapozycji

i= -iOf=> P ^-^p^ a

i= a=> -^P <=> P^ -na

Prawa de Morgana

t= -> la a fi) <=> -na v -nfi
i= -i (a v fi) <=> -na a -nfi

Prawa zaprzeczenia implikacji

(=—)(«=> fi) a/\-ifi

Prawa zaprzeczenia równoważności

la & fi) & ^la=$ fi) v -nip => a)

Prawa podwójnego zaprzeczenia

i= -!-!«<=> a

136

Prawo wyłączonego środka

t=av -!«<=> true
Prawo sprzeczności

k a a -<a <=> false
Prawa idempotentności

i= a/\ a
Eavaoa

Prawa przemienności

t= a/\ P a a
t= a v p <=> /3 v a

Prawa łączności

t=aA(/JAy)<=>(aAj3)Ay
kav(/3vy)<=>(av/3)vy

Prawa rozdzielności

s= « a v « a a v a a y
av (/5 a y) w (av jj) a (« v y)

Prawa uproszczeń

i= a a true <=> a
i= a v true <=> true
i= a a false <=> false
i=a v false <=> a
t= a a (av p) <=> a
i= a v (a a p) <=> a

Fakt, że przedstawione prawa są tautologiami łatwo sprawdzić metodą zerojedynko­
wą. Na podstawie tych praw oraz twierdzenia o zastępowaniu można badać czy tau­
tologiami są inne formuły.

7.5. Dowodzenie transformacyjne

Niech a będzie formułą, w której występuje zmienna zdaniowa p oraz niech P będzie
pewną inną formułą. Przez:

137

::=/?]

oznacza się formułę, która powstaje z formuły a przez tekstowe zastąpienie każdego
wystąpienia zmiennej p w formule a przez formułę p.

Przykład 7.3
I -------------- -- ----- ----------------- --- -------- -- -1

Jeżeli

a= (p q) p r oraz P = rv s,

to

L a[p ::= p] s ((r v s) <=> q) * (r v s) => r ।

Bezpośrednio z definicji tautologii i tekstowego zastępowania wystąpienia zmiennej
wynika następujące użyteczne twierdzenie o zastępowaniu.

Twierdzenie 7.1

Jeżeli formuła <=> a2 jest tautologią, P pewną formułą oraz p - zmienną zdanio­
wą, to formuła

P[p::= a,] « p [p ::= a2]

jest także tautologią.

Na podstawie twierdzenia o zastępowaniu formułuje się następujące reguły równo­
ważnego semantycznie przekształcania formuł.

Reguła zastąpienia:

Jeżeli a jest formułą a P jest jej podformułą, to zastąpienie podformuły P dowolną
inną równoważną semantycznie formułą nie zmienia wartości logicznej formuły a.

Przykład 7.4
I I

Niech dana będzie formuła:

a=(p q) ^p=> r.

Jej podformułą:

P=pdq

jest równoważna semantycznie formule:

(p^q)^(q=^P)

Zatem formuła ajest równoważna semantycznie formule:

(p=>q)A(q^p)Ap=>r

138

czyli

(p^>q)Ap=^r=(p=^q)/\(q=^p')/\p^>r

Reguła przechodniości:

Jeżeli formuły a <=> P oraz P <=> y są tautologiami, to tautologią jest również for­
muła y.

Reguły zastąpienia i przechodniości pozwalają na pewne tekstowe transformacje for­
muł, które można wykorzystać do badania równoważności lub badania czy formuła
jest tautologią.

Przykład 7.5

Dana jest formuła:

^q a (p => q) => -p

Aby pokazać, że jest ona tautologią należy pokazać, że jest równoważna formule
true. Prowadzi do tego następujący ciąg transformacji:

~^q a (p => q) => ^p
(-p q)^^p

<=> (-p a. -p) v ^q a q)=*-p
< => (-p a -p) v faise => —p

—iq/\—>p =>—>p
« “ił? v P) => ~^P
< => v pP v ^P
&(pvp)v-p
&qv(pvp>)
< => g v true
< => true

- prawo implikacji
- prawo rozdzielności
- prawo sprzeczności
- prawo uproszczenia
- prawo de Morgana
- prawo implikacji
- prawo podwójnej negacji
- prawo łączności
- prawo uproszczenia
- prawo uproszczenia

Każdy krok transformacji jest przeprowadzony w oparciu o regułę zastąpienia wykorzy­
stującą wskazane prawo logiczne. Na mocy reguły przechodniości stwierdza się, że —p a
(p => q) => -p <=> true, co oznacza, że formuła —p a (p => q) —p jest tautologią.

Formuła, którą dowiedziono, jest prawem logicznym, nazywanym modus tollens.

7.6. Postaci kanoniczne formuł

W wielu zastosowaniach jest wygodne, aby formuły miały pewną standardową (kano­
niczną) postać. Pozwala to, między innymi, na ułatwienie badania równoważności

139

formuł. Wyróżnia się dwa rodzaje postaci kanonicznych - koniunkcyjną postać nor­
malną i dysjunkcyjną postać normalną.

Literałem nazywa się zmienną zdaniową lub jej negację. Jeżeli p, q, ... są zmiennymi
zdaniowymi, to p, q, ... są literałami pozytywnymi, a —p, —>q, ... są literałami negatyw­
nymi. Pojedynczy literał będzie oznaczany symbolem A.

Klauzulą albo dysjunkcją elementarną będzie nazywana formuła postaci:

Ai v A2 v ... v A„

gdzie Au A2, ..., A„ są literałami (n > 1). Pojedyncza klauzula będzie oznaczana sym­
bolem K.

Formuła a jest w koniunkcyjnej postaci normalnej (CNF - conjunctive normal form)
wtedy i tylko wtedy, gdy jest koniunkcją klauzul, to znaczy, gdy jest postaci:

Ki a k2 a ... A K„

gdzie Kit dla i =1,..., n, są klauzulami.

Przykład 7.6
I . (

Jeżeli dane są trzy zmienne zdaniowe p, q, r, to wyznaczają one 8 różnych seman­
tycznie klauzul. Są to:

p v ę v r p v q v —ir p v -yq v r p v —\q v —tr
—pv qv r -pv qv —ir -pv —iqv r —p v —p v -nr

Z tekstowego punktu widzenia klauzul zawierających trzy zmienne jest więcej.
Każda z innych klauzul jest równoważna semantycznie jednej z wyżej wymienio­
nych. Na przykład, klauzule qv pv -ir oraz p v —v q są równoważne klauzuli:

(p v q v -nr. j

Koniunkcją elementarną będzie nazywana formuła postaci:

Aj A A2 A ... A An

gdzie A,, A2, ..., A„ są literałami (n > 1). Pojedyncza koniunkcją elementarna będzie
oznaczana symbolem <5.

Formuła er jest w dysjunkcyjnej postaci normalnej (DNF - disjunctive normal form)
wtedy i tylko wtedy, gdy jest dysjunkcją koniunkcji elementarnych, to znaczy, gdy
jest postaci:

5i v & v ... v 5„

gdzie 5„ dla i =1,..., n, są koniunkcjami elementarnymi.

140

Przykład 7.7

Jeżeli dane są trzy zmienne zdaniowe p, q, r, to wyznaczają one 8 różnych ko-
niunkcji elementarnych. Są to:

p a q a r p a q A—<r p a —>q Ar p a —iq a —ir
I ~^p Aq Ar —p a q a—>r —p a -p Ar —pA—pA—ir

Dla każdej formuły a istnieje równoważna jej semantycznie formuła w koniunkcyjnej
postaci normalnej oraz w dysjunkcyjnej postaci normalnej - formuły te będą oznacza­
ne odpowiednio przez CNF(a) oraz DNF(a).

Uzasadnieniem tych twierdzeń jest przedstawiony poniżej algorytm, który dla dowol­
nej formuły a wyznacza nową formułę w koniunkcyjnej postaci normalnej, oznaczaną
CNF(a), która jest równoważna semantycznie formule a, czyli a= CNF(a).

Algorytm sprowadzania formuł do koniunkcyjnej postaci normalnej

Dane'. Dowolna formuła ae FORM

Wynik: Formuła CNF(a)e FORM taka, że a = CNF (a)

Procedura: Procedura postępowania polega na etapowym, tekstowym przekształ­
caniu formuły a. Formuła pośrednia jest oznaczana przez /3, początkowo przyjmie
postać formuły a.

1. Eliminacja z formuły f spójników logicznych różnych od koniunkcji, dys-
junkcji i negacji:

• każdą podformułę formuły j3, postaci <=> f2, zastępuje się tekstowo for­
mułą postaci (jf => a (/% =>

• każdą podformułę postaci => zastępuje się tekstowo formułą postaci

2. Dopóki (3 nie jest w postaci koniunkcyjnej normalnej, dopóty powtarza się
zastępowanie podformuł formuły f zgodnie z regułami podanym w tabeli:

Lp. Podformuła
zastępowana

Formula
zastępująca

1 Pi
2 -•(^1 v ft) ^Pl A ^P2
3 ~A Pi) -fi V-f2
4 Pl V (fi2 A ft) (Pl V Pi) A (Pl V P3)

3. Formułę otrzymaną po zakończeniu poprzedniego kroku, definiuje się jako
CNF {aj.

141

Algorytm dokonuje na formułach przekształceń semantycznie równoważnych, a po­
nadto rozpatruje wszystkie niezbędne przypadki, co gwarantuje jego poprawność.

Algorytm sprowadzania formuły do normalnej postaci dysjunkcyjnej jest prostą mo­
dyfikacją podanego wyżej algorytmu. Polega to na następującej zamianie ostatniego
wiersza w tabeli zastępowania formuł:

Lp. Formula zastępowana Formula zastępująca
4a A A(ft V ft) (Pi A ft) V (^| A ft)

Należy zwrócić uwagę, że w przypadkach stosowania ostatniej z reguł zastępowania
(przypadek 4 lub 4a), algorytm powoduje tekstowe wydłużenie przekształcanej for­
muły. W niektórych przypadkach, algorytm może prowadzić do wzrostu długości
formuły.

7.7. Funkcjonalna pełność

Wprowadzony język rachunku zdań używa zbioru spójników złożonego z negacji,
koniunkcji, dysjunkcji, implikacji i równoważności. W poprzednim punkcie pokaza­
no algorytm sprowadzania formuły do postaci kanonicznej, w której występują tylko
spójniki negacji, koniunkcji i dysjunkcji. Oznacza to, że dla dowolnej formuły ra­
chunku zdań istnieje równoważna semantycznie formuła zawierająca tylko te trzy
spójniki.

Stwierdzenie to można wyrazić w sposób ogólniejszy mówiąc, że za pomocą tych
spójników można wyrazić dowolną n-argumentową, n > 0, funkcję prawdziwościową,
to jest funkcję typu: Logiczne" —> Logiczne.

Dany zbiór spójników logicznych jest funkcjonalnie pełny, jeżeli za ich pomocą da się
wyrazić wszystkie możliwe funkcje prawdziwościowe, to znaczy, że dowolną funkcję
prawdziwościową da się przedstawić jako formułę, w której występują spójniki lo­
giczne należące do tego zbioru.

Twierdzenie 7.2

Zbiór spójników złożony z negacji, koniunkcji i dysjunkcji jest funkcjonalnie pełny.

Dowód

Szkic dowodu przedstawia się następująco:

Zakłada się, że p,j jest dowolną n-argumentową funkcją prawdziwościową.
Niech INTv(f(pi, ..., p„)) oznacza interpretację funkcji/dla wartościowania v. Inter­

142

pretacją funkcji f dla wartościowania v jest jedna z wartości P lub F. Pojedyncze
wartościowanie v przypisuje każdej ze zmiennych p\,..., pn jedną z wartości P lub F.

Jeżeli INTr(f(pi,..., p,,)) = P, to koniunkcję elementarną:

Aj a Ai A ... A A„

określa się w następujący sposób:

Ai = ph gdy v(p>i) = P oraz A, = -iph gdy v(p,) = F.

Łatwo zauważyć, że koniunkcja ta jest prawdziwa dla wartościowania v i fałszywa
dla każdego innego wartościowania.

Niech Vi, ..., vK, gdzie K spełnia ograniczenie 0 < K < 2", będzie zbiorem tych
wszystkich wartościowań, dla których funkcja /przyjmuje wartość P. Dla danego
wartościowania Vj, dla j = 1, ..., K, przez 8j oznacza się wyżej określoną koniunkcję
elementarną. Łatwo sprawdzić, że formuła

a = Si v 82 v ... v 8k

jest semantycznie równoważna funkcji / to znaczy dla dowolnego wartościowania
v, INT/flpt, ..., p,,)) = INTAa). Ponieważ w formule występują tylko spójniki nega­
cji, koniunkcji i dysjunkcji stąd wynika teza.

Funkcjonalnie pełny zbiór spójników jest minimalny, jeżeli każdy jego właściwy pod­
zbiór nie jest zbiorem funkcjonalnie pełnym.

Zbiór spójników {-1, a, v} nie jest zbiorem minimalnym. Oznacza to, że po usunię­
ciu z niego pewnych spójników pozostanie on nadal zbiorem funkcjonalnie pełnym.
Łatwo się przekonać, że zbiorami minimalnymi są zbiory spójników v} oraz
{-1, a}. Z praw de Morgana wynika, że na przykład koniunkcję można wyrazić za
pomocą dysjunkcji. Zatem zbiór {—1, a} jest funkcjonalnie pełny. Natomiast za po­
mocą tylko samej negacji albo tylko samej koniunkcji nie można wyrazić dowolnej
formuły.

Innym przykładem minimalnego zbioru funkcjonalnie pełnego jest zestaw {=>, false}.
Występuje w nim jeden spójnik i jedna stała.

Dwa interesujące przykłady minimalnych, funkcjonalnie pełnych zbiorów spójników
są oparte na spójnikach NAND lub NOR, które są zdefiniowane następująco:

NAND^p, q) = def -n(p A q)
NOR(p,q)=M-^p v q)

Łatwo pokazać, że za ich pomocą można zdefiniować wcześniej wprowadzone spójni­
ki. Na przykład:

-^p = NAND(p, p)

143

->p = NOR(p, p)

Spójniki są interesujące między innymi dlatego, że w oparciu o każdy z nich można
budować układy przełączające - fragmenty urządzeń komputerowych.

Przykład 7.8

Kombinacyjne cyfrowe układy przełączające stosowane w konstrukcji urządzeń
komputerowych charakteryzują się pewną liczbą wejść, na które podaje się dwa
sygnały zero albo jeden, oraz przynajmniej jednym wyjściem, na którym również
pojawia się taki sygnał. Wartość sygnału wyjściowego jest funkcją sygnałów wej­
ściowych. Sygnały o wartościach zero i jeden mogą kodować wartości logiczne
fałsz i prawda. Stąd wyjście układu można scharakteryzować przez funkcję praw­
dziwościową, której argumentami są wejścia układu. Układ realizuje się za pomocą
układów elementarnych. Przykładem zestawu elementarnych bramek logicznych,
za pomocą których można zrealizować dowolny układ przełączający, są bramki
nazywane NOT, AND, OR pokazane na rysunku 7.1, które są realizatorami spójni­
ków -i, a, v.

Bramka NOT Bramka AND Bramka OR

Rys. 7.1. Schematy bramek logicznych NOT, AND i OR

Każdą z bramek można zbudować za pomocą bramek NAND lub NOR, które są
realizatorami spójników NAND oraz NOR (rys. 7.2).

Bramka NAND Bramka NOR

Rys. 7.2. Schematy bramek NAND i NOR

Używając na przykład bramki NAND, otrzymujemy konstrukcje pokazane na
rys. 7.3.

144

7.8. Rekursja i indukcja strukturalna

Rekursja jest ważnym i często wykorzystywanym sposobem definiowania zbiorów
(podrozdział 2.2), relacji i funkcji (podrozdział 4.6). Podane niżej twierdzenie dotyczy
rekursywnego definiowania funkcji określonych na zbiorze formuł rachunku zdań.
Twierdzenie to gwarantuje jednoznaczność rekursywnie definiowanych funkcji.

Twierdzenie 7.3 (Zasada rekursji strukturalnej)

Niech pewna funkcja/będzie określona na zbiorze formuł FORM w sposób nastę­
pujący:

krok początkowy, na formułach elementarnych wartości funkcji są określone bez­
pośrednio,
kroki indukcyjne: na formułach złożonych wartości funkcji są określone pośrednio:

• wartość funkcji/na formule -i«jest określona w terminach wartości funk-
cji/na a,

• wartość funkcji / na formule (ao fi) jest określona w terminach wartości
funkcji/na formułach a i /, gdzie ° oznacza dowolny binarny spójnik lo­
giczny.

Funkcja/jest zdefiniowana jednoznacznie (istnieje dokładnie jedna tak zdefinio­
wana funkcja).

Dowód twierdzenia pomijamy.

145

Przykład 7.9
i...................... 7 ... ~... .. i

Stosując zasadę rekursji strukturalnej, na zbiorze formuł FORM definiuje się na­
stępującą funkcję d:

• jeżeli czjest formuła elementarną, to d(a) = 0
• d^a) = d(a) + 1
• df^a^ j8)) = d(a) + d(P) + 1 dla dowolnego spójnika binarnego °e

{ A,V,=>,<=>}.

Funkcja d(a) określa stopień formuły ot. Stopień formuły, jak łatwo zauważyć,
। oznacza liczbę spójników logicznych w formule. ।

Przykład 7.10
i 1

Stosując zasadę rekursji strukturalnej definiuje się na zbiorze formuł FORM nastę­
pujące funkcje Z(a) oraz p(a) oznaczające odpowiednio liczbę lewych i prawych
nawiasów w formule a. Definicja funkcji /(a):

• jeżeli ajest formułą elementarną, to l(a) = 0
• l(-*a) = l(a)
• = l(a) +l(^) + 1 dla dowolnego spójnika binarnego { a, v, =>,<=>}.

। Podobnie wygląda definicja funkcji p(a). ।

Rekursja strukturalna została tu przedstawiona tylko dla rachunku zdań. Ogólnie, re-
kursję strukturalną można stosować do dowolnych zbiorów definiowanych w sposób
rekursywny, w szczególności do języków formalnych definiowanych za pomocą gra­
matyki bezkontekstowej.

Przykład 7.11
1 ... 1

Dana jest gramatyka G =def <T, N, P, S>, gdzie:

T=def {0, 1, @,#, +, *, (,)} u {a, b, ...,z}
N =def {wyr, op_unarny, op_binarny, zmienna}
P =def {wyr ::= 0 | 1| zmienna | (wyr op_binarny wyr) | op_unarny wyr

zmienna ::= a | b | ... | z
op_binarny ::= + | *
op_unarny ::= @ | #}

S =def wyr

Funkcja Iw : L{G) X {a, b, ..., z} —> Nat, która oblicza liczbę wystąpień wskazanej
zmiennej w słowie języka generowanego przez gramatykę G, jest zdefiniowana na­
stępująco:

146

a) dla wyrażeń elementarnych:

/w(0, x) = lw(l, x) = O

lw(y,x)=
dla y = x
dla y * x

• jeżeli a jest formułą elementarną, to aeS,
• jeżeli aeP, to -laeP
• jeżeli a, fieP, to (a° fi) sS, gdzie ° jest dowolnym binarnym spójnikiem lo­

gicznym.

Ponieważ zbiór formuł FORM jest najmniejszym zbiorem spełniającym wyżej wy­
mienione warunki, zatem zbiór formuł FORM ę S, z czego wynika, że każda formuła
ma własność P.

dlaxG (a, b,..., z}

dlax, ye {a, b,z)1
O

b) dla wyrażeń złożonych:

lw((a o fi),x) = lw(a, x) + lw(fi, x) dla a, fi e L(G), »e {+, *}
lw(^a, x) = lw(a, x) dla aeL(G), {@, #}

Indukcja matematyczna omówiona w rozdziale 1. dotyczyła sposobu dowodzenia wła­
sności, które zachodzą dla wszystkich liczb naturalnych. Zbiór liczb naturalnych jest
liniowo uporządkowanym zbiorem przeliczalnym. Liniowy porządek wyznacza rela­
cja większości pomiędzy liczbami naturalnymi. Często interesują nas własności, które
zachodzą dla innych zbiorów przeliczalnych, ale nie uporządkowanych liniowo. Przy­
kładem takiego zbioru jest zbiór wszystkich formuł rachunku zdań. Dowodzenie wła­
sności postaci P(a), gdzie a^FORM, opiera się na indukcji strukturalnej, która jest
uogólnieniem indukcji matematycznej.

Definicja 7.1. (Zasada indukcji strukturalnej dla rachunku zdań)

Niech P będzie pewną własnością dotyczącą formuł. Własność P(ot) ma każda
formuła a rachunku zdań pod warunkiem, że:

krok początkowy, własność tę ma każda formuła elementarna,
kroki indukcyjne'.

• jeżeli własność tę ma formuła a, to także mają formuła -itt,

• jeżeli własność tę mają formuły a oraz fi, to także ma ją formuła (a° fi),
gdzie »oznacza dowolny binarny spójnik logiczny.

Uzasadnieniem dla podanej definicji jest następujące rozważanie. Niech S będzie zbio­
rem tych formuł rachunku zdań, które mają własność P. Krok początkowy i kroki in­
dukcyjne stwierdzają, że formuły należące do 5 spełniają warunki:

147

Przykład 7.12
I........... 1

Rozpatruje się własność P: w dowolnej formule rachunku zdań liczba nawiasów
otwierających jest równa liczbie nawiasów zamykających. Przez lewy(a) oraz
prawy (a) oznacza się liczby nawiasów otwierających i zamykających w formule
a. Własność P(a) może być zapisana lewy(a) = prawy(a).

• Formuły elementarne nie zawierają nawiasów, zatem mają własność P.

• Zakłada się, że własność P mają dowolne formuły a, P Oznacza to, że le-
wy((x) = prawy (a) oraz lewy(p) = prawy(p). Rozpatruje się dowolną formułę
złożoną: (a° fi), gdzie » jest dowolnym binarnym spójnikiem logicznym.
Własności P zachodzą więc również dla

lewyPa»p)) = lewy(a) + lewy(p) + 1 =
prawy {a) + prawy^P + 1 =

t prawy((a°pp _ j

Zasada indukcji strukturalnej została tu zdefiniowana tylko dla rachunku zdań. Jest
ona również stosowana w rachunku kwantyfikatorów (patrz następny rozdział).

Ćwiczenia

1. Wskazać ciągi znaków, które są słowami języka rachunku zdań:

a) «p v q))
b)pv q
c)q\fp<^ (y(q, p))

2. Daną formułę rachunku zdań przedstawić w pełnej postaci z nawiasami, a następnie
określić zbiór wszystkich jej podformuł:

a) a a c vd w e=> -i/v g=$ h
b) a /\(b /\c v d) <=> e => (-i/vg) => h

3. Podać algorytm, który dowolną formułę rachunku zdań zapisaną w postaci wrost-
kowej transformuje na formułę zapisaną w postaci przedrostkowej.

4. Funktorem zdaniowym n-argumentowym nazywamy dowolną funkcję/o sygnaturze:

/: {prawda,fałsz}" —* {prawda,fałsz}.

Jaka jest liczba takich funktorów n-argumentowych? Zdefiniować wszystkie funk-
tory jedno- i dwuargumentowe.

148

5. Stosując metodę zerojedynkową wykazać, że następujące formuły są tautologiami:

a) p => => p)

c) (p v q) « (-p a —iq)

6. Opierając się na systemie dowodzenia opartym tylko na regułach podstawienia
i przechodniości, pokazać, że następujące formuły są tautologiami:

a) -na a (a => b) => -na
b) a a (a => b) b <=> true

7. Sprawdź (w dowolny sposób), czy są tautologiami następujące formuły:

a) p v (q a r) <=> (p a q) v (p a r)
b)pA(qvf)#(pAq)v(pAr)
c) a <=> /3
d) a v —y?
e) —ićz =>

8. Które zbiory spójników logicznych są zbiorami funkcjonalnie pełnymi:

a) {->, a}
b)H,v}
C) {-n, =>}
d) {false, =>}
e)H,«}
f) {true, =>)
g) {<=>, false}

9. Dane są dwa dwuargumentowe funktory logiczne NAND oraz NOR zdefiniowane
następująco:

NAND(a, b) = -n(a a b) oraz NOR(a, b) = -n(a v b).

Pokazać w jaki sposób, za pomocą tych funktorów, można wyrazić spójniki lo­
giczne negacji, koniunkcji i alternatywy. Narysować sieci logiczne realizujące
funkcje prawdziwościowe fi,f2 zdefiniowane przedstawioną poniżej tabelą, w któ­
rej symbolami 0 oraz 1 oznaczono odpowiednio fałsz oraz prawdę.

a b f\(a,b) fi(a,b)
0 0 1 1
0 1 0 0
1 0 1 1
1 1 0 1

10. Która ze zdefiniowanych niżej relacji jest relacją równoważności na zbiorze for­
muł rachunku zdań:

149

a) afi wtedy i tylko wtedy, gdy formuła ad 0 jest spełniona,
b) a ~2 /3 wtedy i tylko wtedy, gdy formuła ad fi jest sprzeczna,
c) a ~3 fi wtedy i tylko wtedy, gdy formuła a d fi jest spełniona dokładnie dla

połowy wartościowań zmiennych.

11. Niech y będzie dowolnie ustaloną formułą rachunku zdań. Wykazać, że relacja
zdefiniowana następująco:

a~ fi wtedy i tylko wtedy, gdy formuła yd (ad fi) jest tautologią,
jest relacją równoważności na zbiorze formuł rachunku zdań:

12. Dana jest gramatyka G =def <T, N. P, S>, gdzie:

r=def{0, 1, @,#, +, *,(,)}
N =def {wyr, op_unarny, opjbinarny}
P =def {wyr ::= 0 | 1| (wyr op_binarny wyr) | op_unamy wyr
op_binamy ::= +1 *
op_unamy ::= @ | #}
5 =def wyr

a) Czy gramatyka jest jednoznaczna?
b) Podać przykład wyprowadzenia dowolnego słowa generowanego przez grama­

tykę G o długości większej od 2.
c) Stosując zasadę rekursji strukturalnej zdefiniować funkcję left(a), która dla do­

wolnego napisu aeL(G) określa liczbę lewostronnych nawiasów występujących
w napisie a.

d) Stosując zasadę indukcji strukturalnej pokazać, że dla dowolnego napisu
a&L(G) zachodzi następująca własność:

left(a) = liczba operatorów binarnych występujących w napisie a.

13. Dla gramatyki G z przykładu 11, zdefiniować funkcję, która oblicza liczbę:

a) wystąpień zmiennych w słowie języka generowanego przez gramatykę G,
b) liczbę różnych zmiennych występujących w słowie języka generowanego przez

gramatykę G.

14. Następujące formuły sprowadzić do koniunkcyjnej postaci normalnej (CNF):

a) ((a d b) v c) d (b a c)
b) —i(a a b)d (bv —>c)
c) (a d b) v (b d a)

8. Rachunek kwantyfikatorów

8.1. Składnia

Rachunek kwantyfikatorów jest uogólnieniem rachunku zdań. Język formalny rachun­
ku kwantyfikatorów jest zdefiniowany jako zbiór napisów dwóch kategorii - termów
i formuł - nad alfabetem, na który składają się następujące kategorie jednostek leksy­
kalnych:

• przeliczalny zbiór V symboli zmiennych indywiduowych, reprezentowanych
przez identyfikatory; dalej najczęściej będą używane symbole: x, y, ...

• przeliczalny zbiór F„ symboli funkcyjnych zi-argumentowych dla n^Nat, repre­
zentowanych przez identyfikatory; dalej najczęściej będą używane symbole: c -
dla symboli funkcyjnych zeroargumentowych, czyli dla stałych indywiduowych,
oraz f g, ... - dla pozostałych symboli funkcyjnych, zbiór wszystkich symboli
funkcyjnych będzie oznaczany F = ,

ne Nat

• przeliczalny zbiór P„ symboli predykatów n-argumentowych dla n^Nat, repre­
zentowanych przez identyfikatory; predykaty zeroargumentowe są nazywane
stałymi logicznymi; dalej najczęściej będą używane symbole p, q, ..., zbiór
wszystkich symboli predykatów będzie oznaczany P - ,

ne Nat

• symbole spójników logicznych:

implikacji =:
koniunkcji a

dysjunkcji (lub alternatywy') v
negacji —>
równoważności <=

• symbole kwantyfikatorów:

kwantyfikatora ogólnego V
kwantyfikatora szczegółowego 3

151

• symbole pomocnicze:

nawias otwierający (
nawias zamykający)
przecinek ,
kropka •

Zakłada się, że zbiory symboli funkcyjnych F i symboli predykatów P są rozłączne.
Para:

Sig —def <F, P>

będzie nazywana sygnaturą języka rachunku kwantyfikatorów. Rachunek kwantyfi-
katorów określa nie jeden konkretny język, ale rodzinę języków. Każdy język jest
jednoznacznie wyznaczony przez sygnaturę. Składni i semantyka rachunku kwanty­
fikatorów jest definiowana przy założeniu dowolnej, ale ustalonej sygnatury. Dobór
odpowiedniej sygnatury wynika z zamierzonego zastosowania języka.

Reguły składni definiują dwa zbiory napisów - termy i formuły - nad alfabetem ra­
chunku kwantyfikatorów.

Zbiór termów nad sygnaturą Sig i zbiorem zmiennych V, oznaczany TERM^F, V), jest
definiowany rekursywnie w sposób następujący:

• zmienne indywiduowe i stałe indywiduowe są termami, czyli

V<jFoęTERM{F, V),

• jeżeli rh ..., tk (k = 1,2, ...) są termami, zaś f jest symbolem funkcyjnym
^-argumentowym, to/^Zi,..., tk) jest termem.

Term, który nie zawiera zmiennych indywiduowych nazywa się termem stałym.

Zbiór formuł nad sygnaturą Sig i zbiorem zmiennych indywiduowych V, oznaczany
FORM(F, P, V), jest definiowany rekursywnie w sposób następujący:

1. symbole predykatów zeroargumentowych (stałe logiczne) są formułami;

2. jeżeli ti, ..., tk (k = 1, 2, ..., E) są termami oraz p jest symbolem ^-argumentowego
predykatu, to formuląjest napis p(fi,..., tk);

3. jeżeli a, P są formułami, to formułami są także napisy:

-ia(a=> p) (a/^P) (av p) (a<=$P)

4. jeżeli ajest formułą oraz x jest zmienną indywiduową, to formułami są także:

(Hr • a) oraz (Vx • a)

Formuły spełniające podane wyżej warunki (1) i (2) nazywa się formułami atomowy­
mi, formuły spełniające pozostałe warunki - formułami złożonymi.

152

Zbiór formuł FORM(F P, V) jest językiem formalnym rachunku kwantyfikatorów
o sygnaturze <F, P> nad zbiorem zmiennych V.

Uwaga

W celu zredukowania liczby nawiasów konwencję przyjętą dla rachunku zdań
rozszerza się o ustalenie priorytetów dla kwantyfikatorów. Przyjmuje się, że
kwantyfikatory mają priorytet niższy od spójników logicznych. Oznacza to, że
formuła zapisana w postaci beznawiasowej:

3x • a a [3 v y

gdzie a, (3, Ysą dowolnymi jej podformułami, w postaci z nawiasami przedstawia
się następująco:

• ((a a/3) v y)

Kwantyfikatory występujące obok siebie łączą w prawo, to jest formuła:

Eh • 3y • a

oznacza:

3x • (3y • a)

Formuła a występująca po kwantyfikatorze w formule Bx.a lub Vx.a nazywa się za­
sięgiem kwantyfikatora. Symbol x występujący bezpośrednio za symbolem kwantyfi­
katorów nazywa się wskaźnikiem związania. Symbol wskaźnika określa rolę zmiennej
x występującej w formule a stanowiącej zasięg kwantyfikatora.

W zdefiniowanym języku kwantyfikatory wiążą jedynie zmienne indywiduowe, dlate­
go język ten nazywa się językiem kwantyfikatorów pierwszego rzędu. W logice rozpa­
truje się także inne języki, które dopuszczają wiązanie przez kwantyfikatory innych
obiektów, na przykład rachunek kwantyfikatorów drugiego rzędu dodatkowo pozwala
na wiązanie przez kwantyfikatory symboli predykatów. Dalsze rozważania ograni­
czają się wyłącznie do rachunku kwantyfikatorów pierwszego rzędu.

8.2. Indukcja strukturalna

Indukcja strukturalna jest podstawową techniką dowodzenia własności termów i for­
muł. Zasada indukcji strukturalnej przedstawiona dla rachunku zdań rozszerza się na
termy i formuły rachunku kwantyfikatorów.

153

Definicja (Zasada indukcji strukturalnej dla termów)

Niech P(t) będzie pewną własnością zachodzącą dla termu t&TERM(F, V). Aby
pokazać, że własność P zachodzi dla każdego termu rachunku kwantyfikatorów
wystarczy pokazać, że:

krok początkowy, własność P zachodzi dla każdej zmiennej xg V, czyli P(x),
krok indukcyjny.

jeżeli własność ta zachodzi dla termów t\, ..., tn, czyli P(t\), ..., P(t„), oraz
feF,„ to własność ta zachodzi dla termu/(ti,..., tn), czyli Plfiti,...» tn)).

Definicja (Zasada indukcji strukturalnej dla formuł)

Niech P(a) będzie pewną własnością zachodzącą dla formuły aeFORM(F, P, V).
Aby pokazać, że własność P zachodzi dla każdej formuły rachunku kwantyfikato­
rów wystarczy pokazać, że:

krok początkowy, własność ta zachodzi dla każdej formuły atomowej,
kroki indukcyjne'.

• jeżeli własność P zachodzi dla formuły o, to także zachodzi dla formuły -iO,
• jeżeli własność P mają a oraz fi, to także mają formuła (a° fi), gdzie {a,

v, =>, <=>} oznacza dowolny binarny spójnik logiczny,
• jeżeli własność P zachodzi dla formuły a, zaś x jest zmienną indywiduową, to

P także zachodzi dla formuły Vx • a oraz dla 3x» a.

Wykorzystując indukcję strukturalną można pokazać, że termy i formuły dekompo-
nują się jednoznacznie na komponenty składowe.

Lemat 8.1

Niech t oraz 5 będą termami. Jeżeli t = s w dla pewnego słowa nad alfabetem ra­
chunku kwantyfikatorów, to w jest słowem pustym. Inaczej: żaden term nie jest
właściwym prefiksem (niepustym początkowym fragmentem) innego termu.

Dowód

Zgodnie z zasadą indukcji strukturalnej rozpatruje się kolejno przypadki. Jeżeli
t jest zmienną indywiduową, to t nie ma prefiksu właściwego. Zakłada się teraz,
bez utraty ogólności, że t jest postaci f(ti, ..., tn) oraz że t = s w dla pewnego sło­
wa w. Wówczas 5 musi być postaci f(sltsn) w. Dla każdego i = 1, ..., n termy t,
oraz Sj są elementami składowymi termu t. Zatem - na mocy założenia indukcyj­
nego - ani ti ani s, nie są swoimi prefiksami, z czego wynika, że t, = Sj. To pocią­
ga, że w s ą z czego ostatecznie wynika identyczność t = s.

154

Lemat 8.2

Niech a oraz fi będą dowolnymi formułami. Formuła a nie jest właściwym pre­
fiksem formuły fi.

Dowód

Dowód przebiega tak jak dla poprzedniego lematu i pozostawia się go jako ćwi­
czenie.

Na podstawie lematów można dowieść twierdzenie o jednoznaczności dekompozycji
termów i formuł.

Twierdzenie 8.1 (Twierdzenie o rozbiorze)

1. Każdy term jest albo zmienną, albo stałą, albo termem złożonym postaci/(ti,
..., tn), gdzie /jest jednoznacznie określonym symbolem funkcyjnym, zaś h,
..., t„ sąjednoznacznie określonymi termami.

2. Każda formuła ma dokładnie jedną z postaci:

a)p(t{, ..„tn)
b) —ićz
ć)(a°(5) dla «G {a,v, =>, <=>}
d) Qx • a dla Qe {V, 3}

Twierdzenie umożliwia jednoznaczne rekursywne definiowanie funkcji na zbiorach
termów i formuł.

Przykład 8.1
I - - ।

Funkcja | t | określająca długość termu t, rozumiana jako liczba jednostek leksy­
kalnych wchodzących w skład termu, jest definiowana następująco:

a) | X | =def 1

b) ..., r„) | =def | ?i | + ■•• + | | + n + 2 J

8.3. Zmienne wolne i związane

Zmienna indywiduowa x może występować tekstowo w wielu miejscach termu lub
formuły. Każde takie pojawienie się zmiennej - poza miejscem bezpośrednio za
kwantyfikatorem i przed kropką, gdzie określa się wskaźnik wiązania - nazywa się
wystąpieniem zmiennej.

155

Wystąpienie zmiennej w danej formule może być wolne albo związane.

Wystąpienie zmiennej w danej formule nazywa się wystąpieniem wolnym, jeżeli wy­
stąpienie to nie znajduje się w zasięgu żadnego kwantyfikatora, natomiast w przypad­
ku przeciwnym - nazywa się wystąpieniem związanym. Ta sama zmienna może
w danej formule mieć jednocześnie wystąpienia wolne i związane.

Przykład 8.2
I ~ '...... I

Dana jest formuła:

P(x, y) => Hx • q(x, y)

gdzie p, q są pewnymi dwuargumentowymi predykatami. Zmienna x ma dwa wy­
stąpienia. Pierwsze wystąpienie - jako argument predykatu p - jest wystąpieniem
wolnym, drugie - jako argument predykatu q - jest wystąpieniem związanym,

j Zmienna y ma też dwa wystąpienia - oba wolne. j

Niech V będzie zbiorem zmiennych indywiduowych. Definiuje się funkcje, które dla
dowolnej formuły wyznaczają podzbiory zmiennych mające wystąpienia wolne
i związane. Najpierw definiuje się pomocniczą funkcję:

Var : TERM(F, V)-> 2V

która dla dowolnego termu wyznacza zbiór zmiennych występujących w tym termie.
Funkcja jest zdefiniowana rekursywnie:

1. Var(c) =def 0 dla ceF0
2. Var(x) =def {*} dlaxG V
3. Var(j(ti,..., t„)) =def Var(ti) u ... u Var{tn) dla feFn (n = 1, 2,...)

Term t, który nie zawiera zmiennych indywiduowych, czyli dla którego Var(f) = 0
jest termem stałym.

Funkcja wyznaczająca zmienne mające wolne wystąpienia w formule jest funkcją typu:

FV: FORM(F, P,V) 2V

i jest zdefiniowana rekursywnie następująco:

1. FYłp^,..., tk)) =def FV^ u ... o FV(tk)
2. FV^a) =def FV(a)
3. FV(a»p) =def FVW o FV(p)

gdzie »oznacza dowolny binarny spójnik logiczny, czyli «€ {a, v, =>, <=>}

4. FV(2x«a)=defFV(a)\U}
gdzie Q oznacza dowolny kwantyfikator, czyli Qe {V, B}

Funkcja wyznaczająca zmienne mające związane wystąpienia w formule jest funkcją typu:

BV: FORM^F, P,V) 2V

156

i jest zdefiniowana rekursywnie następująco:

=def 0
2. BV(^a) =de(BV(a)
3. BV(a° p) =def BV(a) o BV(p)

gdzie o oznacza dowolny spójnik logiczny, czyli °e {a, v, =>, <=>}

4. BV(Qx» a)=defBV(a)u {x]

gdzie Q oznacza dowolny kwantyfikator, czyli Qe {V, 3}

Przykład 8.3
I..... .. ' ... ™.. ~... I

Dla formuły apostaci:

P(x, y) => Vx *Vz • (q(x) * p(x, z))

zbiór zmiennych mających wystąpienia wolne jest następujący:

FV(a) = FV(p(x, y) u FV(Vx *Vz • (q(x) a p(x, z)))

= {x, y) u FV(q(x) a p(x, z))\{x, z}

= {x,y} U0

= {^y}

zaś zbiór zmiennych mających wystąpienia związane jest następujący:

BV(a) = BV(p(x, y) o BV(Yx • Vz • (q(x) a p(x, z)))

= 0 u {x, z} u BV{q{x) a p(x, z))

। = {^z} ।

Formuła, która zawiera wolne wystąpienia zmiennych nazywa się formułą otwartą.
Zamknięciem formuły otwartej nazywa się formułę otrzymaną przez poprzedzenie da­
nej formuły otwartej kwantyfikatorami ogólnymi wiążącymi wszystkie jej zmienne
wolne. Formuła zamknięta jest zdaniem, czyli ma jednoznacznie określoną wartość
logiczną prawda albo fałsz.

Przykład 8.4I ,
Formułami otwartymi są:

Vx • p(x, y)
Vx«Vy«(^(x)=>p(y, z))

Formułami zamkniętymi (zdaniami) są:

Yx • q(x)
, Vx«Vy*(^(x) Ap(x,y)) .

157

8.4. Podstawianie termów

Podstawieniem tekstowym termu za zmienne, albo krótko - podstawieniem, nazywa się
funkcję:

a:V-y TERM(F, V)

taką, że zbiór:

{xe V| dx} *x}

jest skończony. Zbiór ten będzie nazywany dziedziną podstawienia i oznaczany przez
dom(d).

Funkcja er jest podstawieniem tożsamościowym jeże\i domyty) = 0. Podstawienie takie
będzie oznaczane symbolem E. Podstawienie nazywa się podstawieniem podstawowym
albo stałym, jeżeli przeciwdziedzina ran(d) funkcji podstawienia zawiera tylko termy
stałe.

Jeżeli domyty) = {xh ..., %„} oraz cr(x,j = t, dla i = 1, 2, ..., n, to funkcję er zapisuje się
w postaci:

cr=def Ui "=n, -,xn ::=r„]

Zapis x, ::= t, czyta się: x,jest zastępowane przez t,. Element x, ::= r, nazywa się przypi­
saniem albo wiązaniem. Stąd podstawienie określa się też jako skończony zbiór przy­
pisań albo wiązań.

Podstawienie <T można rozszerzyć na zbiór formuł. Najpierw rozszerza się je na zbiór
termów, to znaczy do odwzorowania

d : TERM(F, V) -» TERM(F, V)

przyjmując:

d(x) =def oU) dla xg V
d^t,,..., t„)) ^dCti),..., d(t„))

W kolejnym kroku rekursywnie rozszerza się odwzorowanie d na odwzorowanie d'\
FORM(F, P,V) FORM(F, P, V) w następujący sposób:

1. d\ tlt..., r„)) =Mp(d(h),..., d(td)
2. d^a) =da-^d'(d)
3. d'((a- 0)) =def (d\a)«

gdzie - oznacza dowolny spójnik logiczny, czyli -e {a, v, =>, <=>}

4. d'(Q x • a) =def Q x • er,"(a)

158

gdzie Q oznacza dowolny kwantyfikator, czyli 2e{V, 3}, zaś o" jest obcięciem
funkcji o" do zbioru zmiennych wolnych w formule Qx • a. czyli er/' = o"^q.v . ay
Oznacza to, że w formule Q x • a mogą nastąpić przypisania tylko za wolne wy­
stąpienia zmiennych.

Dalej, w celu uproszczenia oznaczeń, wszystkie symbole podstawienia będą pisane
bez 'oraz ". Ponadto, ze względu na wygodę, zastosowanie podstawienia os do termu
r będzie zapisywane w postaci rcr oraz - podobnie - zastosowanie do formuły a w po­
staci ary. Formulę eter będzie nazywać się ukonkretnieniem formuły a przez podsta­
wienie a

Przykład 8.5
l .. 1

Niech a=def k ::= Ą, y oraz a = Vz • (pfx, y, z) => q{x, z)). Wówczas

L aa sQ^z*(p(x,y, z)=>q(x, z)))[x::=t{,y ::=t2]=Vz» (p(t^ z) => z)), j

Niech er oraz t będą dwoma podstawieniami. Złożenie podstawień er oraz rjest defi­
niowane tak samo jak składanie funkcji. Jest zatem podstawieniem oznaczanym przez
a°r-albo krótko ctt- i zdefiniowanym następująco:

(er t)(x) =def ifcrf^)) dla xe V.

Jeżeli podstawienie crjest takie, że istnieje dla niego podstawienie odwrotne cr-1 takie, że

aa' = a'a= E

to crjest nazywane przemianowaniem zmiennych. Term t\ nazywa się wariantem ter­
mu r2, jeżeli istnieje takie przemianowanie cr, że t\ = c^^)-

Podstawienie cr nazywa się podstawieniem idempotentnym, jeśli a(a(xy)=o(x') dla do­
wolnego xe V.

Term t jest wolny w formule a ze względu na zmienną x, gdy zachodzi jeden z wa­
runków:

1. crjest formułą atomową,
2. a = oraz term t jest wolny w /3ze względu nax,
3. a = 0 ^2, gdzie °e {a, v, =>, <=>}oraz term t jest wolny w (f oraz w /32 ze

względu na x,
4. a = Qx •
5. a=Qy» fi,x*y, Q& {V, 3},yg Vadt\ oraz term t jest wolny w /3ze względu nax.

Inaczej: term t jest wolny w formule erze względu na x w przypadku, gdy podstawie­
nie t za x w formule cc nie powoduje, że któraś ze zmiennych występujących
w termie t stanie się zmienną związaną.

159

Przykład 8.6
r ~ “ i

Dana jest formuła:

p(x, y) => • Vz • (q(x) * p(y, z))

Term/(x) jest wolny w tej formule ze względu na x, ale nie jest wolny ze wzglę­
du na y, gdyż po zastąpieniu y przez term /(x) zostałaby otrzymana formuła po­
staci:

y) => Vx • Vz • (qW p(f(x), z))

w której podkreślone wystąpienie zmiennej x stałoby się wystąpieniem związa­
nym. Natomiast term g(y, w) jest wolny w formule zarówno ze względu na x, jak

। i na y. j

W dalszym ciągu dokonując podstawienia ct w formule a będzie zawsze wymagane,
by dla dowolnej zmiennej xedom(a) odpowiadający jej term o{x) był wolny wazę
względu na x.

8.5. Semantyka

Rachunek kwantyfikatorów, stanowiąc uogólnienie rachunku zdań, przejmuje znacze­
nie przypisywane spójnikom logicznym zgodne ze standardową interpretacją.

Sposób opisu semantyki rachunku kwantyfikatorów jest podobny do opisu semantyki
rachunku zdań. Opis rozpoczyna się ustaleniem dziedzin semantycznych, w których
będzie wyrażane znaczenie elementów języka - termów i formuł, a następnie określa
się interpretację symboli funkcyjnych i predykatywnych. Oba te elementy - dziedziny
semantyczne i interpretacja symboli funkcyjnych i predykatywnych - stanowią model
interpretacji. Po ustaleniu modelu interpretacji definiuje się znaczenie najpierw ter­
mów, a następnie formuł.

Dziedziną interpretacji dla formuł - tak jak w rachunku zdań - jest zbiór wartości
logicznych Logiczne. Natomiast dziedzina interpretacji termów może składać się
z wielu różnych zbiorów wartości Db ..., Dm (ni > 0) - mówi się, że dziedzina jest
wielorodzajowa. W dalszych rozważaniach, poza niektórymi przykładami, dziedziny
szczegółowe nie będą rozróżniane. W celu uproszczenia prezentacji zakłada się, że
istnieje jedna wspólna dziedzina D stanowiącą mnogościową sumę dziedzin szczegó­
łowych. Dziedzina ta jest rozłączna ze zbiorem wartości logicznych.

160

Uwaga

Rozróżnienia dziedzin interpretacji dokonuje się w rachunku kwantyfikatorów
z typami.

Nowymi elementami, które wymagają dodatkowej interpretacji są symbole funkcyjne
oraz predykatywne. Symbolom funkcyjnym będą odpowiadały pewne funkcje, sym­
bolom predykatywnym - pewne relacje w ustalonej dziedzinie interpretacji. Ponieważ
dowolną relację można w równoważny sposób przedstawić za pomocą jej funkcji cha­
rakterystycznej, dlatego symbolom predykatywnym będą również przyporządkowy­
wane funkcje, ale o wartościach w zbiorze Logiczne.

Uwaga

Przypomina się, że dla relacji R ę D\X...xDn (n > 1) je] funkcja charakterystyczna:

fR : Di x...x D„ —> Logiczne

jest zdefiniowana następująco:

fR(di,..., dn) = P wtedy i tylko wtedy, gdy <di,..., dn>eR.

Wprowadza się funkcję interpretacji symboli funkcyjnych i predykatywnych I,
określoną na zbiorze symboli F o P taką, że:

• jeżeli f&Fn, dla n^Nat, to Kf) : Dn —> D jest n-argumentową funkcją, w szcze­
gólnym przypadku, gdy/jest stałą, czyli/eFo, KfjeD,

• jeżeli pePn, dla n&Nat, to lip] : D" —> Logiczne jest n-argumentową funkcją
o wartościach logicznych.

Ponieważ została wprowadzona jedna wspólna dziedzina interpretacji D, więc funkcje
definiowane przez I są najczęściej funkcjami częściowymi.

Para:

M = <D,I>

gdzie D jest niepustą dziedziną interpretacji, a Z jest interpretacją symboli funkcyjnych
i predykatywnych, będzie nazywana modelem dla formalnego języka rachunku kwan­
tyfikatorów o sygnaturze Sig = <F, P>.

Następny etap definiowania semantyki rachunku kwantyfikatorów polega na nadaniu
interpretacji dowolnym termom. Pomocniczym pojęciem - podobnie jak w rachunku
zdań - jest funkcja wartościowania zmiennych indywiduowych.

Wartościowaniem zmiennych jest funkcja v o następującej sygnaturze:

v : V^D

Niech M = <D, I> będzie modelem języka o sygnaturze Sig = (F, P). Każdemu ter­
mowi t, przy ustalonym wartościowaniu v, przyporządkuje się pewną wartość

161

z dziedziny interpretacji D. Wartość tę wyznacza funkcja interpretacji termów przy
wartościowaniu v:

INTV: TERM(F, V)D

zdefiniowana rekursywnie względem struktury składniowej zbioru termów w sposób
następujący:

• jeżeli term jest zmienną indywiduowąxe V, to

INTv(x)=dt{v(x)
• jeżeli term jest postaci/ł/i, —, tn), gdzie f^Fn, oraz ti,t„eTERM(F, V), to

INTv(j{t\,.... r,,))INTrM)

Należy zauważyć, że interpretacja zmiennych indywiduowych nie zależy od warto­
ściowania v. Wartość termów stałych, przy ustalonej interpretacji /, nie zależy od
wartościowania v.

Niech v będzie wartościowaniem, x - zmienną indywiduową oraz niech a^D. Warto­
ściowanie v[x := a] definiuje się jako:

:= a](y)= gdy y=x
w przypadku przeciwnym

Wartościowanie v [x := a] jest więc modyfikacją wartościowania v polegającą na przy­
pisaniu wartości a ustalonej zmiennej x i pozostawieniu niezmienionych wartości
przypisanych do pozostałych zmiennym.

Uwaga

Należy odróżniać dwa podobne oznaczenia: [x := a] oraz [x ::=?]. Pierwsze okre­
śla modyfikację definicji pewnej funkcji; powyżej odnosi się do modyfikacji
funkcji wartościowania v. Drugie określa tekstową modyfikacją pewnego napisu,
na przykład termu lub formuły.

Jeżeli Wf^jest interpretacją przy pewnym wartościowaniu v, to niech INT„[x-a\ będzie
interpretacją przy wartościowaniu v[x := a].
Rozszerza się teraz funkcję INT„ na zbiór formuł jako funkcję:

INT„: FORM(F, P,V)-yD.

W celu uniknięcia zbyt wielu oznaczeń funkcja 1NTV będzie oznaczać interpretację
zarówno termów, jak i formuł. Interpretację formuł w modelu M przy wartościowaniu
v, definiuje się rekursywnie względem struktury składniowej zbioru formuł:

a) INT^h ,..., r„)) =def KpWNTM,INTftn))
b) lNTv(—ia) =def—iINTfa)
c) INTfa* 0) =def INTfa) a INTf0)
d) INTfa v p) =def INTfa) v INTf0)

162

e) INTja => p) =def INTfa) => INTfp)
f) INTfa « p) =def 1NTM « INTfp)

P
F

g) =def

h) lNTv(Bx»a) =def

gdy dla dowolnego de D zachodzi INTv[x:=d] = P
w przypadku przeciwnym

P
F

gdy dla pewnego de D zachodzi lNT^x:=d] = P
w przypadku przeciwnym

Uwaga

Symbole P oraz F są skrótami wartości logicznych prawda, fałsz. Spójniki lo­
giczne występujące po prawej stronie w powyższej definicji są rozumiane zgod­
nie z ich standardową interpretacją przyjętą dla rachunku zdań. Język rachunku
zadań jest tutaj fragmentem metajęzyka służącego do definiowania języka ra­
chunku kwantyfikatorów. Elementami metajęzyka są również pojęcia dla dowol­
nego i dla pewnego, użyte w punktach g) oraz h). Należą one do języka teorii
mnogości.

8.6. Spełnialność formuł

Formuła a jest spełniona w modelu M dla wartościowania v, gdy INTja) = P. Fakt
ten będzie zapisywany również w postaci:

INTr i= a

Formuła ajest spełniona w modelu M, co oznacza się:

M t= a

gdy jest spełniona w tym modelu dla dowolnego wartościowania. Jeżeli formuła ornie
jest spełnialna w modelu M, będzie to zapisywane w postaci:

M1= a
Formuła a jest spełnialna, gdy istnieje model, w którym jest spełniona.
Formuła jest tautologią, co oznacza się:

gdy jest spełnialna w dowolnym modelu. Tautologia jest zatem schematem wypowie­
dzi zawsze prawdziwej, niezależnie od interpretacji przyjętej dla symboli funkcyjnych
i predykatywnych. Oczywiście, tautologia zakłada standardową interpretację spójni­
ków logicznych.

163

Wprowadzone pojęcia spełnialności uogólnia się na zbiory formuł.

Zbiór formuł O jest spełniony w modelu M dla wartościowania v, gdy wszystkie for­
muły zbioru O są spełnione w tym modelu M przy wartościowaniu v.

Zbiór formuł jest spełniony w modelu M, gdy każda formuła tego zbioru jest speł­
niona w tym modelu.

Zbiór formuł O jest spełniałny, gdy istnieje model, w którym zbiór ten jest spełniony.

Niech O będzie zbiorem formuł oraz a- pojedynczą formułą. Pisze się:

i= a

co czyta się: formula a wynika semantycznie ze zbioru formuł d>, albo inaczej: formuła
a jest semantyczną konsekwencją zbioru formuł <b, co oznacza, że każdy model,
w którym spełnione są formuły zbioru jest również modelem, w którym spełniona
jest formuła a.

Pisze się:

(3^ a zamiast {/3} t= a

oraz:

t= a zamiast 01= a

Pusty zbiór formuł po lewej stronie symbolu t= jest oczywiście prawdziwy w każdym
modelu. Zatem zapis t= a oznacza, że a jest tautologią.

Uwaga

Należy zwrócić uwagę na dwie role symbolu i=. Po jego prawej stronie występuje
zawsze formuła, na przykład a, natomiast po lewej - może wystąpić model M
lub interpretacja INT„ albo zbiór formuł d>. W pierwszym przypadku symbol t=
oznacza, że formuła a jest spełnialna w modelu M lub w interpretacji INT„,
w drugim - że jest semantyczną konsekwencją zbioru formuł O.

Mówi się, że dwie formuły a, (3 są semantycznie równoważne, co pisze się:

a= (3

wtedy i tylko wtedy, gdy:

f oraz [3 t= a.

Lemat 8.3

Niech 0 będzie zbiorem formuł oraz a - pojedynczą formułą. Wówczas:

i= a

164

wtedy i tylko wtedy, gdy zbiór u {-ićz) jest niespełnialny.

Dowód

Jeżeli zachodzi O t= a, to oznacza, że każdy model, w którym spełniony jest
zbiór formuł jest również modelem, w którym spełniona jest formuła a. Za­
chodzi to wtedy i tylko wtedy, gdy nie istnieje model, w którym spełnione są
formuły d>, a w którym nie jest spełniona formuła a. Ale to z kolei oznacza, że nie
istnieje model, w którym są spełnione formuły zbioru u{—>«}, czyli gdy zbiór
ten nie jest spełnialny. Zatem O t= a zachodzi wtedy i tylko wtedy, gdy zbiór for­
muł O u {-ićz} jest niespełnialny.

Twierdzenie 8.2 (Twierdzenie o dedukcji)

Niech =def {ct\, a,,} będzie niepustym zbiorem formuł oraz P - pojedynczą
formułą. Wówczas

O i= p

wtedy i tylko wtedy, gdy

i= a, a ... a a„ => P

Dowód

t= /3 zachodzi wtedy i tylko wtedy, gdy w każdym modelu, w którym spełnione
są formuły ah an spełniona jest również formuła p. To dzieje się dokładnie
wtedy, gdy w każdym modelu, w którym jest spełniona formuła C6 a ... a an
spełniona jest również formuła P, co z kolei zachodzi wtedy i tylko wtedy, gdy

t= a, a ... a a„ => p.

Twierdzenie o dedukcji ma ważne znaczenie w sytuacjach, gdy tezy badanych twierdzeń
mają schemat postaci t= p. Bezpośrednie sprawdzenie czy formula P jest semantyczną
konsekwencją zbioru formuł 0 nie jest możliwe, gdyż ogólnie oznacza to przebadanie nie­
skończonej liczby modeli. Twierdzenie o dedukcji umożliwia zastąpienie takiego sprawdza­
nia zbadaniem czy formuła postaci a\ a ... a P jest tautologią. Badanie czy formuła jest
tautologią można przeprowadzić konstruując odpowiedni dowód w oparciu o pewien system
dowodowy. W konstrukcji dowodu - co będzie pokazane w następnych rozdziałach - wyko­
rzystuje się wyłącznie przekształcenia tekstowe badanej formuły.

Użyteczną konsekwencją twierdzenia o dedukcji jest równoważność stwierdzeń:

0 o {er) P wtedy i tylko wtedy, gdy i= a => p.

Fakt ten wskazuje na pewne podobieństwo symboli 1= oraz =>, nie oznacza jednak, że
symbole te mają takie samo znaczenie. Należy zwrócić uwagę na to, że symbol konse­
kwencji k należy do metajęzyka, a symbol implikacji => do formalnego języka ra­

165

chunku kwantyfikatorów. Podobna uwaga odnosi się do symboli spójnika równoważ­
ności « oraz symbolu równoważności semantycznej =.

8.7. Wybrane prawa rachunku kwantyfikatorów

Korzystając bezpośrednio z definicji interpretacji formuł rachunku kwantyfikatorów
można sprawdzić, że zachodzą podane poniżej równości semantyczne nazywane też
prawami rachunku kwantyfikatorów. Niektóre z nich mają też tradycyjne nazwy.

Jeżeli a oraz fi są dowolnymi formułami, to tautologiami są formuły:

t= (Vx • a) => a
i= a => (Ba • a)

Pierwsze prawo wyraża to, że jeżeli dowolna formuła jest spełniona dla wszystkich warto­
ściowań, to jest również spełniona dla dowolnie wybranego wartościowania. Natomiast
drugi wyraża to, że jeżeli dowolna formuła jest spełniona dla pewnego wartościowania, to
znaczy, że istnieje wartościowanie, przy którym formuła ta jest spełniona.

Prawa de Morgana

i= (-iVa • a) <=> (Ba • —icc)
i= (-n3x • «)<=> (Va • ->a)

Prawa de Morgana wskazują na związki semantyczne pomiędzy kwantyfikatorem
ogólnym i szczegółowym. Oznaczają one, że w rachunku kwantyfikatorów, bez utraty
siły ekspresji języka, można ograniczyć się do posługiwania się tylko jednym kwanty­
fikatorem. Jest to analogia do rachunku zdań, w którym, bez utraty ogólności, zbiór
wykorzystywanych spójników logicznych można ograniczyć do funkcjonalnie pełnego
zbioru spójników logicznych.

Prawa rozdzielności kwantyfikatorów

i= (Va • a) a (Va • fi) <=> (Va • a a fi)
ł= (Va • a) v (Va • fi) => (Va • a v fi)
t= (Bx • a) v (Ba • fi) <=> (Eh • a v fi)
1= (Ba • a a fi) => (Ba • a) a (Ba • fi)

Prawa przemianowania kwantyfikatorów

Jeżeli ygFV(a)\{a} orazyjest zmienną wolną w a ze względu na a, to

1= (Va •«)<=> (Vy • o[a ::= y])
(3 a • a) <=> (B y • a[x ::= y])

166

Prawo to pozwala na przemianowanie nazwy zmiennej wiązanej przez kwantyfikator.
Zmienną taką można zastąpić dowolną inną zmienną, która nie jest wolna w formule
będącej w zasięgu kwantyfikatora. Na przykład formuła:

(Vx • p(x, y) => g(x)) v (Vy • px, y) * y))

jest równoważna formule:

(Vz • p(z, y) => g(z)) v (Vw • r(x, w) a -p(x, w))

Prawa przestawiania kwantyfikatorów

1= (Vx • Vy • a) <=> (Vy • Vx • a)
i= (3x • By • a) « (By • 3x • a)
t= (Bx • Vy • a) => (Vy • 3x • a)

Prawa włączania i wyłączania dla kwantyfikatorów

Jeżeli x&FV(p), to

t= PQx* a)°p)tt(f)x* a ° p)
t= dla og { a, v, =>), oraz Q& {V, 3}

Prawa rozkładu kwantyfikatorów

i= (Vx • a => P) => ((Vx • a) => (Vx • PP
i= (Vx • a => P) => ((Bx • a) => (Bx • PP
i= (Vx • a a P) <=> ((Vx • a) a (Vx • P))
t= (3x • a a p) => ((Bx • ct) a (Bx • PP
t= (Vx • a v Vx • p)=> (Vx • a v p)
i= (3x • a v p) <=> ((3x • a) v (3x • PP
1= (Vx • a <=> p) => Pfx • a) <=> (Vx • PP
t= (9'x • a <=> P) => ((3x •«)<=> (3x • PP

8.8. Przedrostkowa postać normalna

Niech a będzie formułą rachunku kwantyfikatorów.

Definicja 8.1

Formuła a znajduje się w postaci przedrostkowej normalnej lub w postaci PNF
(ang. prenex normal form) wtedy i tylko wtedy, gdy jest ona w postaci:

21X1* QiX2 • ... Qnx„ • P

gdzie <2i, 2:, , Qn {V, 3}, zaś formuła P nie zawiera kwantyfikatorów.

167

Część Q\ %i» Qi Xi • ... Q„ x„ • nazywa się przedrostkiem formuły a, zaś P nazy­
wa się matrycą formuły a.

Dla dowolnej formuły rachunku kwantyfikatorów istnieje równoważnie semantyczna
formuła, która jest w przedrostkowej postaci normalnej. Jeżeli a będzie pewną for­
mułą, to przez PNF(a) będzie oznaczać się formułę, która jest w przedrostkowej po­
staci normalnej, i która jest semantycznie równoważna a.

Poniżej jest przedstawiany algorytm sprowadzania dowolnej formuły do przedrostko­
wej postaci normalnej. Algorytm ten dokonuje jeszcze dodatkowego przekształcenia
polegającego na eliminacji z matrycy formuły spójników równoważności i implikacji,
a pozostawieniu tylko negacji, dysjunkcji i koniunkcji.

Algorytm sprowadzania do przedrostkowej postaci normalnej
Dane-. formuła a
Wynik: formuła PNF(a)
Procedura: Procedura postępowania polega na etapowym, tekstowym przekształ­

caniu formuły a. Formula pośrednia jest oznaczana przez p.

1. Początkowo przyjmuje się, że formuła P jest tekstowo identyczna a.
2. Eliminuje się z formuły P spójnik równoważności zastępując tekstowo pod-

formuły postaci y<=> 5formulami postaci (y=> 8) a (5=> y).
3. Eliminuje się z formuły P spójnik implikacji zastępując tekstowo podformuły

postaci y=> 8 formułami postaci ->yv 8.
4. Wprowadza się znak negacji bezpośrednio przed symbole predykatów zastę­

pując (dopóki można) podformuły zgodnie z poniższą tabelą:

L.p. Pod formula zastępowana Formula zastępująca
1 8
2 ~<8 v y) ^8a^y
3 ->(8 a y) -k5v -.y
4 ->Vx *8
5 -3x»8 • ^8

5. Dopóki formuła P nie jest w przedrostkowej postaci normalnej, przekształca
się ją zgodnie z poniższą tabelą:

L.p. Podformula
zastępowana

Formula
zastępująca

Warunek
zastąpienia

1 (Q x*8)vy Qx»(8v y) xłFV(Y)
2 (Q x*8) a y Qx*(8 a y) FV(y)
3 (Vx»S)A(Vx»y) Wx*(8 a y)
4 (3x«5)v(3jr»y) 3.r»(5 v y)
5 (2i x«ójvQ2 y«y) 2i-v*Q2 v(8v y) x£ FV(y), y£FV(8)
6 (2i x»8)AQ2yY) Qix*Q2y*(8A y) xeFV(Y),yłFV(8)

gdzie 2,2h22G{V,3}.

6. Formułę PNF(a) definiuje się jako formułę p.

168

Uwaga

Jeżeli warunki zastąpienia bezpośrednio nie są spełnione, to można je spełnić
przez przemianowanie zmiennych wiązanych przez kwantyfikator. Podstawą
przemianowania jest równoważność semantyczna: jeżeli x£FV(a)\{x] oraz y jest
zmienną wolną w a ze względu na x, to

Qx • a = Qy • a[x ::= y] dla Qe {V, 3}

Przykład 8.7.r... . i
Rozpatruje się sprowadzenie do przedrostkowej postaci normalnej formuły:

(3x • a) => (3y • fi)

Na podstawie kroku 3 algorytmu, eliminując implikację otrzymuje się:

-i(3x • a) v (3y • fi)

Na podstawie kroku 4 algorytmu, przypadek 4, otrzymuje się:

(V x • —>cz) v (3 y • fi)

Na podstawie kroku 5 algorytmu, przypadek 5, otrzymuje się:

Xfx • 3y • (-i a v fi)

। przy czym zakłada się, że xg FV(fi) oraz yg FV(a). ।

8.9. Przykład języka rachunku kwantyfikatorów

Omawia się przykład prostego języka kwantyfikatorów, który występuje w wielu
językach programowania. Język ma służyć do przedstawiania prostych wyrażeń
arytmetycznych, o wartościach ze skończonego podzbioru liczb całkowitych, i pre­
dykatów na określonych na tych wyrażeniach. Jego interpretacja jest również zgod­
na z interpretacją przyjmowaną w językach programowania.

Alfabet języka składa się:

1. ze zbioru zmiennych indywiduowych, reprezentowanych przez identyfikatory,
2. zbioru symboli funkcyjnych zawierającego

• dwie stałe: ZERO, ONE
• jedną operację jednoargumentową: alt
• cztery operacje dwuargumentowe: _add_, _sub_, _div_

169

3. dwóch dwuargumentowych predykatów: _eq_, _less_
4. symboli spójników logicznych: _and_, _or_, not_
5. trzech symboli pomocniczych: (),

Sygnaturą języka jest więc:

Sig = <{ ZERO, ONE, __add_, _sub_, _mult_, _div_}, {_eq_, less_}>

Zbiór termów wyznaczony zgodnie z sygnaturą Sig zawiera:

1. zmienne indywiduowe oraz stałe,

2. napisy postaci:

alt ti (ft add t2) (ó sub r2)(h mult t2) (ó div

gdzie ti, t2 są termami.

Zbiór formuł jest określony następująco:

1. jeżeli t\,t2 są termami, to formułami są:

(Ą eq tj) (ti less t2)

2. jeżeli a, /3 są formułami, to formułami są także:

(a and p) (a or p) nota
Zbiór formuł jest uboższy od pełnego języka kwantyfikatorów, gdyż nie zawiera
kwantyfikatorów.

Dziedziną interpretacji termów niech będzie zbiór:

D =ief Integer {error}

gdzie

Integer =def {-N,..., 0.......N} N&Nat\{0}

Zbiór Integer reprezentuje typowy skończony zbiór wartości reprezentowany przez
odpowiednik typu całkowitego w językach programowania. Natomiast element error
ma reprezentować tak zwany błąd abstrakcyjny powstający przy obliczaniu wartości
termów. Odzwierciedla to typową sytuację, która powstaje na przykład podczas obli­
czeń arytmetycznych w programie, gdy obliczona wartość wykracza poza zakres
wartości dopuszczalnych. Będzie używane też oznaczenie na zbiór:

Integererror =def Integer u {error}

Interpretacja I ustala przyporządkowania:

1. symbolom funkcyjnym funkcje typu:

IIZERO): —> Integer
RONĘ): —> Integer

170

I(alt) : Integererror -> lntegerem,r
Itydd), Ityuty, Ityndt), Ityity : Integererror2 —» Integererror

2. symbolom predykatów funkcje typu:

I(eq) : Integer2 Logiczne
I(less) : Integer'^ Logiczne

Stale są zdefiniowane jako:

UZERO) =def0
KONE) =def 1

Jeżeli wartością któregokolwiek argumentu pozostałych operacji jest error, to wyni­
kiem operacji jest również error. W podawanych niżej definicjach zakłada się, że ar­
gumenty a oraz b są elementami zbioru Integer.

-a
error

I(alt) a =def
a G Integer

w przeciwnym przypadku

a + b a + be Integer

error w przeciwnym przypadku

a-b a-be Integer

error w przeciwnym przypadku

(a I(add) ty =dcr ■

(a Ityuty ty “def ।

(a Ityiult) ty =def
a*b a*be Integer

error w przeciwnym przypadku

ty Ityity ty =def
a/b
error

a /be Integer
w przeciwnym przypadku

ty Ityq) ty =def a = b
ty I(lesś) ty =def a < b

Po prawej stronie powyższych definicji występują symbole znanych operacji arytme­
tycznych i operacji porównań w dziedzinie liczb całkowitych. Symbole te, podobnie
jak symbole a, b, należą do metajęzyka opisującego semantykę wprowadzonego języ­
ka formalnego.

Zdefiniowany język rachunku kwantyfikatorów nie wprowadza symboli kwantyfikato­
rów. Formuły tego języka to odpowiednik napisów, które w językach programowania
określa się jako wyrażenia logiczne albo wyrażenia boolowskie. Oczywiście, wyraże­
nia logiczne w praktycznie stosowanych języka programowania są na ogół bogatsze,
gdyż operują szerszym zbiorem termów oraz symboli predykatów.

Obliczenie wartość termu:

ty mult (ONE add y))

171

przy wartościowaniu:

v = {<x, 4>, <y, 5>}

przebiega następująco. Zgodnie z definicją funkcji interpretacji termów INT^t), przy
założeniu, że wartość N w zbiorze Integer wynosi 10, otrzymuje się:

INTr((x mult (ONE add y))) =
INT„(x) I(mult) INTr((ONE add y)) =
v(x) * (INTV(ONE) I(add) INTv(y)) =
4 * (I(ONE) + v(y)) =
4*(l+5) = 4*6 = error

Zgodnie z definicją funkcji interpretacji formuł INTv(a), wartość formuły:

(x less (ONE add y))

przy wartościowaniu v oblicza się następująco:

INTV((x less (ONE add y))) =
INT„(x) I(less) INTV((ONE add y)) =
v(x) < (INTV(ONE) I(add) INTv(y)) =
4 < (I(ONE) + v(y)) =
4 < (1 + 5) = 4<6 = P

8.10. Rachunek kwantyfikatorów z równością

Język rachunku predykatów może być wykorzystywany w różnych konkretnych ce­
lach. W takich przypadkach wprowadzanym symbolom funkcji i predykatów nadaje
się specyficzną interpretację, na przykład tak jak przedstawiono to w poprzednim
punkcie. Ważnym przykładem często spotykanego symbolu predykatu jest predykat
równości lub identyczności. Język rachunku predykatów zawierający ten predykat na­
zywa się rachunkiem predykatów z równością lub identycznością. Dwuargumentowy
predykat identyczności, reprezentowany poniżej przez symbol ma wyrażać równość
wartości termów. Dla wprowadzanego predykatu równości celowo przyjęto symbol =,
aby odróżniać go od symbolu = występującego w metajęzyku definiującym semantykę
języka zawierającego symbol =.

Semantyka predykatu = jest zdefiniowana następująco:

INTv(t, = t2) = P wtedy i tylko wtedy, gdy lNTv(ti) = INT,(t2)

172

Z podanej definicji interpretacji identyczności wynika, że ma ona własności zwrotno-
ści, symetryczności i przechodniości, to znaczy dla dowolnych termów t\, t2, £
TERM(F, V) tautologiami są formuły:

ti ~ h => ti = A

tl = t2 A ?2 ~ h =7 h ~ i3

- zwrotność
- symetria
- przechodniość

Ponadto identyczność posiada własność ekstensjonalności wyrażoną przez tautologie:

t\ = t2 => (r[x ::= r,] <=> z[x ::= Z?]) - ekstensjonalność względem termów
z, = r2 =* («[x "= M <=> a[x ::= ZąJ) - ekstensjonalność względem formuł

gdzie z jest dowolnym termem, zaś a jest dowolną formułą.

Własności zwrotności, symetryczności i przechodniości określa się mianem specy­
ficznych aksjomatów teorii opisującej identyczność. Przez pojęcie teorii rozumie się
język formalny wraz z systemem dowodzenia, czyli tekstowego wyprowadzania no­
wych formuł na podstawie formuł-aksjomatów.

8.11. Teorie elementarne

Ustalenie konkretnego języka rachunku kwantyfikatorów wiąże się zwykle z zamia­
rem opisu pewnego fragmentu interesującej rzeczywistości (realnej lub abstrakcyjnej).
Język ma z jednej strony opisywać te zjawiska czy własności, które są przedmiotem
zainteresowania, a z drugiej strony powinien umożliwiać wyprowadzanie pewnych
wniosków.

Konkretność języka oznacza ustalenie jego sygnatury, czyli składni, oraz ustalenie
jego modelu interpretacji, czyli semantyki. Wybrany fragment rzeczywistości ma
zwykle specyficzne własności, które można wyrazić w postaci pewnych formuł
w ustalonym języku. Formuły takie nazywa się aksjomatami i są to formuły spełnio­
ne w ustalonej interpretacji języka.

Wnioski, jakich wyprowadzenia się oczekuje, mają być formułami stanowiącymi lo­
giczne konsekwencje przyjętych aksjomatów. Pojęcie zbioru konsekwencji jest defi­
niowane następująco.

Jeżeli jest zbiorem formuł, to jego zbiorem konsekwencji semantycznych (logicz­
nych) jest zbiór formuł:

Con(O) =def {ae FORM(F, P, V) | d> a}

173

Zbiór konsekwencji jest zatem zbiorem formuł spełnionych w interpretacji, w której
spełnione są aksjomaty.

Zbiór konsekwencji logicznych ma następujące własności:

• O ę Con(O)
• Jeżeli 4>i ę C>2, to Con(Oi) ę Con(<b2).
• Con(Con(O)) = Con(^)

Uwaga

Druga z własności wyraża monotoniczność konsekwencji logicznej. Jest to waż­
na własność, której nie posiadają niektóre logiki nieklasyczne, mające zastoso­
wanie, między innymi, w budowie systemów ekspertowych. Oznacza to, że
w przypadku dołączenia do zbioru aksjomatów dodatkowego aksjomatu może
okazać się, że nie wszystkie wcześniej wyprowadzone konsekwencje pozostaną
konsekwencjami rozszerzonego zbioru aksjomatów.

W szczególności, zbiór wszystkich tautologii to ConifiS), co oznacza, że zbiór tautolo­
gii jest podzbiorem Conlfib) dla dowolnego <b.

Do efektywnego wyprowadzania nowych formuł na podstawie formuł-aksjomatów
służy pewien system dowodowy. Istotą tego systemu jest to, że wyprowadzanie no­
wych formuł dokonuje się w oparciu tekstowe przetwarzanie formuł, bez analizy se­
mantycznej. Na system dowodowy składają się dwa elementy - pewien zbiór formuł,
nazywanych aksjomatami, oraz zbiór reguł wnioskowania. Systemy dowodowe będą
omawiane w następnych rozdziałach.

Definicja pewnej teorii polega na wprowadzeniu jej aksjomatów specyficznych. Przy­
kładem takiej teorii jest teoria relacji mniejszości.

Przykład 8.8
I ' ‘ “'......I

Teoria jest oparta na dwóch predykatach: równości i mniejszości, reprezentowa­
nych przez symbole =loraz =. Symbole te przyjęto tylko na użytek rozważanego
przykładu, aby podkreślić ich ogólność i nie kojarzyć wyłącznie z konkretną
dziedziną, na przykład z równością i mniejszością w dziedzinie liczb. Teoria jest
w pełni zdefiniowana przez podane niżej grupy specyficznych aksjomatów.

Pierwsza grupa aksjomatów jest powtórzeniem wyżej sformułowanych własności
i oznacza, że równości jest relacją równoważności, czyli dla dowolnych zmien­
nych indywiduowych x, y, z zachodzi:

V%» x = x
\fx»ś/y»x~y=>y~x
^x*\/y»ś/z*x~y/\y~z^x~y

174

Druga grupa określa, że relacja równości nie zmienia innych predykatów,
w tym przypadku zachowuje relację mniejszości:

Vx • Vy • Vz • x = y a x -< z => y -< z
Vx • Vy • Vz • x = y a z -< x => z ■< y

Aksjomaty następnej grupy oznaczają, że relacji mniejszości jest relacją ścisłego
porządku, to znaczy jest antysymetryczna, przechodnia i spójna:

Vx • Vy • x -< y => —i(y *)
Vx • Vy • x y a y z => x z
Vx • Vy • Vz • x ~ y v x -< y v y -< x

Ponadto jest porządkiem gęstym, to znaczy, że między dwoma elementami x, y
takimi, że x -< y istnieje jeszcze trzeci element z taki, że x x z oraz z y:

Vx • Vy • x y => 3z • x z a z y

Nie istnieje dla tej relacji element najmniejszy, ani największy:

—i3x • Vy • x = y v x <y
। -i3x • Vy • x = y v y -< x ,

Rozpatruje się jeszcze inny przykład teorii wprowadzającej specyficzne aksjomaty.
Jest to teoria Peano19 opisująca liczby naturalne.

19 Giuseppe Peano (1958-1932).

Przykład 8.9i 7. i
Teoria liczb naturalnych Peano jest rozszerzeniem teorii następnika. Teoria na­
stępnika jest oparta na symbolu jednej stałej 0, jednego symbolu funkcyjnego
jednoargumentowego suce, oraz symbolu poprzednio zdefiniowanego predykatu
równości ~. Lista aksjomatów teorii, poza aksjomatami definiującymi równość,
jest następująca:

Vx • 3y • y = x
Vx • —i(0 = succ(x))
Vx • Vy • succ(x) = succfy) =} x~y
(cz[x ::= 0] a X7x • a => a[x ::= smcc(x)]) => Vx • a

Ostatnia formuła nie jest aksjomatem, lecz schematem aksjomatu, gdyż wystę­
pująca w niej formula (Zmoże być dowolną formuła rachunku kwantyfikatorów.
Jest to - omówiony już wcześniej - schemat indukcji.

Teorią liczb naturalnych Peano jest system arytmetyki naturalnej wprowadzający
dodatkowy zestaw aksjomatów charakteryzujący działania dodawania i mnożenia
reprezentowanych symbolami + oraz *.

175

Vx • x + O = x
Vx • Vy • x + succ(y) = succ{x + y)
Vx • x . O = O
Vx • Vy • x* succ(y) = x »y + x

W teorii z dodatkowymi aksjomatami specyficznymi nabiera właściwego sensu poję­
cie konsekwencji semantycznej. Jeżeli a jest pewną formulą, zaś <t> jest zbiorem ak­
sjomatów, to można pytać czy 1= a. Formula a może być konsekwencją aksjomatów
teorii, ale nie musi być tautologią. W takim przypadku oznacza to, że a nie jest speł­
niona we wszystkich modelach rachunku kwantyfikatorów, ale tylko w tych mode­
lach, które akceptują szczególną interpretację pewnych symboli predykatów lub funk­
cji wyrażoną przez aksjomaty. Na przykład, w teorii relacji mniejszości konsekwencją
semantyczną zbioru jej aksjomatów jest formuła:

Vx • 3 y • y l= x

8.12. Teorie nieelementarne

Przedstawione wyżej przykłady są przykładami teorii elementarnych. Za elementarną
uważa się teorię, która powstaje przez dołączenie do języka rachunku kwantyfikato­
rów specyficznych aksjomatów charakteryzujących specyficzne symbole funkcji
i predykatów, ale która nie zawiera pojęcia przynależności elementu do zbioru, oraz
w której nie można mówić o dowolnych zbiorach rozważanych elementów. Przykła­
dem teorii nieelementarnej jest arytmetyka liczb naturalnych.

Przykład 8.10
I I

Teoria ta wprowadza - tak samo jak elementarna arytmetyka Peano - symbole stałej 0,
funkcji następnika suce, oraz symbol predykatu równości =. Ponadto wprowadza sym­
bol zbioru liczb naturalnych Nat, symbol jednoargumentowego predykatu IsSet(z), któ­
ry stwierdza czy z jest zbiorem, oraz symbol dwuargumentowego predykatu przyna­
leżności elementu do zbioru xGz. Aksjomatami tej teorii są wszystkie aksjomaty teorii
zbiorów zdefiniowane w podrozdziale 4.7, oraz formuły:

Oe Nat
Vx • xe Nat => succ(x)e Nat
Vx • xe Nat => —>(0 = succ(x))
Vx • 3y • succ(x) ~ succ^y) => x~y
IsSet(Nat)
Vz •(IsSet(z) aOgza uez succ^ez) => Vx • x&Nat => x&z)

176

Warto zwrócić uwagę, że wartościami zmiennej indywiduowej z, która występuje
। w ostatnim aksjomacie, mogą być dowolne zbiory. ।

Uwaga

W dalszym ciągu predykat równości zamiast symbolem =, będzie oznaczany po­
wszechnie używanym symbolem =.

W praktyce często wykorzystuje się rozszerzony język kwantyfikatorów, w którym
zbiory występują jawnie w powiązaniu z kwantyfikatorami. Oprócz dotychczas oma­
wianych kwantyfikatorów zwykłych, używa się kwantyfikatorów o ograniczonym za­
kresie. Kwantyfikatory te mają postać:

Vxg X* a oraz 3x6 X • a

gdzie X jest pewnym ustalonym zbiorem, a czjest dowolną formułą.

Przykład 8.11
I --------------------------- ------- ------------- ----------------------------1

Kwantyfikatory o ograniczonym zakresie są wygodne w wyrażaniu wielu wła­
sności związanych z konkretną dziedziną interpretacji:

Dla każdej liczby naturalnej n istnieje liczba rzeczywista x taka, że x2 = n:

1. Dana jest sygnatura Sig = <F, P> języka rachunku kwantyfikatorów, w której

F =def {/o} u {/1, gi} u {fz, gz, hi} jest zbiorem symboli funkcyjnych,

Vn&Nat • 3xg Rzeczywiste • x2 = n

Dla każdej liczby całkowitej a istnieje liczba wymiernax taka, że <2 <x < a+1:

\/neCalkowite •3xeWymierne • a <x < a+1 ।

Rozszerzona notacja jest przydatna do opisu sytuacji związanych z pewnym konkretnym ob­
szarem zainteresowania. Wyraża się to przez wprowadzone zbiory - dziedziny interpretacji, a
także przez interpretację symboli funkcyjnych i predykatywnych występujących w formułach
z kwantyfikatorami o ograniczonym zasięgu. Tak właśnie jest w przedstawionym powyżej
przykładzie, gdzie wyrażenia x2, a + 1, a < x mają znaną interpretację arytmetyczną.

Należy pamiętać, że z rozszerzoną notacją wiąże się zawężenie semantyki. Mianowi­
cie, wprowadzenie konkretnych zbiorów narzuca dziedzinę interpretacji. Oznacza to,
że formuły spełnione przy założeniu konkretnych zbiorów nie muszą być spełnione
w innych dziedzinach interpretacji.

Ćwiczenia

177

P =def {/?o} <7 {pi, qf u {pi, qi} jest zbiorem symboli predykatów,

zaś dolny indeks wskazuje liczbę argumentów. Podać gramatykę definiującą zbiór
termów i gramatykę definiującą zbiór formuł języka o podanej sygnaturze.

2. Niech/, g, h będą symbolami funkcyjnymi, p,q- symbolami predykatów. Wskazać
wolne i związane wystąpienia zmiennych indywiduowych w formułach:

a) Vx»Vy p(j{x, y), z) a Vx • q(x, z, h(x, y))
b) (Vx» 3 yq{x, z) v p(ń(x, y)) => p(f(x, y), z)
c) Vx*. pWx\ z) => (3z*(3y* q(f(h(x), z) *Vz»p(z, y) <=> q(x, y))

3. Zdefiniować funkcję, która dla dowolnej formuły a rachunku kwantyfikatorów
określa zbiór wszystkich zmiennych indywiduowych, które w formule a mają:

a) parzystą liczbę wystąpień wolnych,
b) jednocześnie wystąpienia wolne i wystąpienia związane,
c) dokładnie taką samą liczbę wystąpień wolnych jak liczbę wystąpień związanych.

4. Niech {=, <, < } będzie zbiorem symboli predykatów, oraz {+, »/} - zbiorem sym­
boli funkcyjnych określonych na liczbach naturalnych. Dla symboli tych przyjmu­
jemy standardową interpretacją arytmetyczną. Korzystając z tego zestawu symboli
oraz z symboli stałych liczbowych zapisać formuły reprezentujące następujące wy­
powiedzi:

a) x jest liczbą parzystą,
b) x jest sumą kwadratów dwu liczb naturalnych,
c) x jest liczbą pierwszą,
d) x nie jest liczbą pierwszą,
e) x jest najmniejszą wspólną wielokrotnością liczb y i z,
f) x przy dzieleniu przez 4 daje resztę 1 lub 2,
g) każda liczba przy dzieleniu przez inną liczbę daje resztę 0 lub 1,
h) każda liczba parzysta większa od 3 jest sumą dwu liczb pierwszych,
i) każde trzy liczby mają największy wspólny dzielnik,
j) nie istnieje największa liczba naturalna.

5. Podać formalną definicję sformułowania: istnieje dokładnie jedno x takie, że speł­
niona jest formuła a.

6. Które z poniższych stwierdzeń są prawdziwe? Jeżeli INTfav fi) = prawda, to:

a) INTfa) = prawda lub INTffi) = prawda,
b) INTfa) = prawda oraz INTffi) = prawda,
c) dla każdego v' różniącego się od v wartościowaniem zmiennej x, zachodzi

INTfa) = prawda oraz INTfa) = prawda.

Które z poniższych stwierdzeń są prawdziwe? Jeżeli INTfa /\fi)~ fałsz, to:

178

a) INTfa) = fałsz oraz INT^) = fałsz,
b) istnieje takie v' różniące się od v wartościowaniem pewnej zmiennej x, że

INTfa) = prawda lub INT/jĄ = prawda,
c) dla każdego v' różniącego się od v wartościowaniem zmiennej x zachodzi

INTfa) = fałsz oraz INTfa) = prawda.

8. Dana jest formuła Hx • p(x, y). Interpretacja symbolu predykatu p jest wyrażona
przez system relacyjny SR =df <ASR, Rsr>, gdzie ASR jest zbiorem, zwanym nośni­
kiem, a Rsr jest zi-argumentową relacją. Interpretacja przypisuje symbolowi p rela­
cję Rsr-

Uwaga. Interpretacja n-argumentowego symbolu predykatu q jako pewnej n-eleme-
ntowej relacji Rq c An na zbiorze A jest równoważna interpretacji tego symbolu ja­
ko funkcji n-argumentowej fq : An —> {prawda, fałsz}. Dlaczego?

Które z poniższych stwierdzeń są prawdziwe. Jeżeli nośnik systemu relacyjnego
ASR =def {a, b} i relacja Rsr =def {<«. a>, <b, b>, <a, b>}, to dla wartościowania
v takiego, że:

a) v(x) = a i v(y) = b formuła jest spełniona,
b) v(x) = a i v(y) = a formuła nie jest spełniona,
c) v(x) = b i v(y) = b formuła jest spełniona,
d) v(x) = b i v(y) = a formuła nie jest spełniona.

9. Dla każdej z poniższych formuł podaj interpretację, w której formuła jest spełniona
dla każdego wartościowania:

a) Vx»3yp(x,y)
b) 3x • Vy • p(x, y, z)
c) 3x • (q(x, y) q(x, yV)

10. Następujące formuły sprowadzić do przedrostkowej postaci normalnej (PNF):

a) Vx • ((x > 2) a (3y • (x < y)))
b)(x<y) a 3x • X/y • (x>y)
c) Vx» (3y • (y > 2) a (y < x)).

9. Rachunek sekwentów Gentzena

9.1. Wstęp

W poprzednim rozdziale zostało wprowadzone pojęcie semantycznej konsekwencji.
Bezpośrednie sprawdzenie - na podstawie definicji - czy dana formuła rachunku
kwantyfikatorów jest, czy nie jest semantyczną konsekwencją pewnego zbioru formuł
rachunku kwantyfikatorów, nie jest możliwe, gdyż wymagałoby to sprawdzenia nie­
skończonej liczby modeli danego zbioru formuł. Praktyczne badanie, czy formuła jest
konsekwencją semantyczną pewnego zbioru formuł, opiera się na pojęciu konsekwen­
cji składniowej. Pojęcie konsekwencji składniowej jest pewnym odpowiednikiem po­
jęcia konsekwencji semantycznej. Pojęcie konsekwencji składniowej będzie przed­
stawione w ramach rachunku sekwentów Gentzena. Rachunek ten - opracowany przez
Gentzena19 w latach trzydziestych XX wieku - wyznacza jeden z efektywniejszych
systemów automatycznego dowodzenia twierdzeń.

19 Gerhard Gcntzen (1909-1945).

Istota podejścia opartego na pojęciu konsekwencji składniowej polega na zdefiniowa­
niu pewnego systemu generowania napisów. System taki, nazywany systemem dowo­
dowym, zawiera dwa elementy - zbiór aksjomatów T i zbiór reguł wyprowadzania
(albo inaczej: reguł wnioskowania lub inferencji). Aksjomatami są pewne napisy, zaś
reguły określają w jaki sposób na podstawie pewnych napisów otrzymać nowe napisy,
na przykład jak z pewnego zbioru formuł otrzymać nowe formuły.

W celu dowiedzenia, że - w danym systemie dowodowym - formuła CL jest konsekwencją
semantyczną zbioru formuł 0 postępuje się następująco. Stosując reguły wyprowadzania,
wyprowadza się nowe formuły ze zbioru oraz zbioru aksjomatów T i powtarza się tę
czynność tak długo, aż zostanie wyprowadzona formuła cl. Tak skonstruowany dowód na­
zywa się dowodem wprost i służy do pokazania, że wynikanie logiczne l= a zachodzi
w dowolnym modelu.

180

Możliwy jest również dowód nie wprost faktu, że <t> k a. Dowód taki polega na do­
prowadzeniu do sprzeczności na podstawie założenia, że zbiór formuł O u {—>01} jest
spełnialny, to znaczy na podstawie założenia, że formuła a nie jest spełniona dla
pewnego modelu zbioru formuł O. Stwierdzenie sprzeczności oznacza, że zbiór u
{—,01}, wbrew założeniu, jest spełnialny, a to - na podstawie twierdzenia o dedukcji
z poprzedniego rozdziału - daje podstawę do ostatecznego orzeczenia, że O k ot.

Jeżeli dany jest pewien system dowodzenia S, to fakt, że formuła Ol została wyprowa­
dzona w tym systemie, na podstawie zbioru formuł O będzie oznaczany:

0 h s a
Istnieje wiele systemów dowodzenia opartego na pojęciu konsekwencji składniowej.
Niektóre spośród nich są związane z dowodzeniem wprost, inne z dowodzeniem nie-
wprost. System dowodzenia Gentzena może być rozważany zarówno jako system do
dowodzenia wprost, jak i do dowodzenia nie wprost. Zwykle dowody tworzone
w systemie Gentzena są oparte na idei budowy dowodu nie wprost, ale zbudowany
dowód jest odczytywany jako dowód wprost. Przedstawiany tu system dowodzenia
Gentzena opiera się na idei konstrukcji dowodów nie wprost.

Od każdego systemu dowodzenia wymaga się w pierwszej kolejności, aby nie prowadził
on do fałszywych wniosków. Własność taką określa się mianem semantycznej poprawno­
ści (albo niesprzeczności) systemu dowodzenia. Oznacza to - przy dowodzeniu wprost -
że jeżeli na podstawie zbioru formuł wygeneruje się formułę ot, to zachodzi O t= ot,
a przy dowodzeniu nie wprost - że jeżeli na podstawie założenia o spełnialności zbioru
formuł u {—>ot} uzyska się sprzeczność, to również <t> t= a Własność semantycznej po­
prawności systemu dowodzenia 5 można sformułować w postaci:

Jeżeli O 1=5 a, to O n a.

Drugą oczekiwaną własnością systemu dowodzenia - odwrotną w stosunku do wła­
sności semantycznej poprawności - jest zupełność semantyczna. Własność ta oznacza
- przy dowodzeniu wprost - że jeżeli zachodzi t= cc, to zawsze w systemie istnieje
wyprowadzenie formuły erze zbioru formuł O. Przy dowodzeniu nie wprost własność
ta oznacza, że jeżeli zachodzi t= a, to z założenia o spełnialności zbioru formuł u
{—\a} zawsze uzyska się sprzeczność. Własność semantycznej zupełności systemu
dowodzenia 5 można sformułować w postaci:

Jeżeli O H a, to O i= 5 a.

Z nazwiskiem Gentzena wiążą się dwa systemy dowodzenia: jeden jest nazywany syste­
mem dedukcji naturalnej, drugi - rachunkiem sekwentów. Rozdział przedstawia tylko ra­
chunek sekwentów. Rachunek ten odzwierciedla w znacznym stopniu sposób postępowa­
nia stosowany w praktyce matematycznej. Jak wspomniano, konstrukcja dowodów opiera
się na idei dowodzenia nie wprost, a ponadto opiera się na obserwacji, że konstruując do­
wód pewnego twierdzenia próbuje się zdekomponować go na zestaw prostszych dowodów

181

(poddowodów lub dowodów podporządkowanych). W przypadku rachunku kwantyfi­
katorów konstrukcja poddowodów wynika ze składni formuł.

9.2. Lemat o podstawieniu

Poniżej przedstawiany lemat o podstawieniu, który będzie wykorzystywany w następ­
nych punktach. Wskazuje on na rolę, jaką odgrywają wartościowania w interpretacji
termów i formuł.

Lemat 9.1

Niech t będzie termem nad sygnaturą Sig oraz niech M = <D, I> będzie modelem
interpretacji, a vh v2 niech będą dwoma wartościowaniami. Jeżeli zachodzi rów­
ność wartościowań V|(x) = v2W dla wszystkich zmiennych xg Var(t), to

INTv^ = lNTVi{tY

Dowód

Dowód prowadzi się metodą indukcji strukturalnej względem termów. Jeżeli term
t jest postaci x, to INT^ vi(x) = v2W - INT^ (x). Jeżeli term t jest postaci f{t\,
..., tn}, to na mocy założenia indukcyjnego

INT (r) = INT (r) dla i = 1, ..., n.

Stąd

I(F)(/N7;i(r,),...,ZN7;|(tn))

= !(/) (INTM..,lNTV2ętJ)

= INT^fit,,..^)

Lemat o podstawieniu wskazuje na związek jaki zachodzi pomiędzy zmianą warto­
ściowania zmiennych indywidowych przez podstawienie za wskazaną zmienną warto­
ści termu a tekstowym zastąpieniem tej zmiennej termem w innym termie lub w for­
mule.

Lemat 9.2 {Lemat o podstawieniu)

Niech M = <D, I> będzie modelem, v - pewnym wartościowaniem, t - termem,
oraz niech v' = v[x := INT„(f)]. Wówczas dla dowolnego termu t' oraz dla dowolnej
formuły a zachodzą następujące własności:

182

1. INTAt') = INTA'[x ::= d)
2. INTAa) = INT„(ct[x ::= d) pod warunkiem, że xeFV(d).

Dowód

Dowód prowadzi się metodą indukcji strukturalnej najpierw względem składni
termów, a następnie formuł.

1. Niech term t' = y, gdzie zmienna y jest różna od zmiennej x. Wówczas:

INTAy) = v'(y) = v(y) = v(y[x ::= d) = INTr(y[x ::= d)

Dla t' = x, zachodzi:

INTAx) = v'M = INTA) = lNTv(x[x::= d)

Dla t' tn), na mocy założenia indukcyjnego, zachodzi:

INTAt,) = !NTAi[x ::= d) dla i = 1,..., n,

Stąd:

INT^h,t„)) = INTAtn))
= I^INTA^ ::= d),.... INTAn[x— d))
= INTV (fith ..., /„)[%::= d)

2. Niech formuła a będzie postaci Vy • P oraz niech term t będzie wolny w a ze
względu na x. Należy rozpatrzeć dwa przypadki x * y oraz x = y.

W pierwszym przypadku, gdy x * y, dla każdego deD zachodzi:

INTfWyP)= lNTAy,= d^

Należy zauważyć, że:

v'[y := d] = v[x := lNTM]\y := d] = v[y := rdk := WTA)]

Na mocy poprzedniego lematu zachodzi

INTA) = INTrly:= At)

ponieważ yg Var{t). Dalej niech a = INTA)- Stąd i z założenia indukcyjnego
wynika:

INTV[y ■-:= fl] (j8) = INTviy :=AP[x ::= d)
= INT^y • I3[Xt])
= INTA^y • I3)[x t]

W drugim przypadku, gdy x-y, dla każdego d&D zachodzi:

INTA^y>P)= intv-1x..= M

183

Ponieważ

v[x := lNTy(t)][x := d] = v[x := d]

oraz

Vy.^ = (Vy.^)[x::= /])

dla każdego deD zachodzi:

INTA*yP) = intv[x..=M

= INT^y®

= INTv^y/3)[x ::=/])

Pozostałe przypadki, gdy formuła a ma inne postaci, pozostawia się do
udowodnienia Czytelnikowi.

Przykład 9.1
i ; ; i

Niech sygnatura Sig składa się z jednej stałej 0, dwóch jednoargumentowych ope­
racji nast, pop oraz jednego symbolu predykatu dwuargumentowego Dziedzi­
ną interpretacji D niech będzie zbiór liczb całkowitych Całkowite. Interpretacja I
stałej 0 przyporządkowuje liczbę zero, operacjom nast i pop przyporządkowuje
dodawanie i odejmowanie jedynki, to znaczy:

/(nasr)(n) =def n + 1,
I(pop)(ń) =defM- 1,

a predykatowi przyporządkowuje równość liczb.

Niech dana będzie formuła:

popłpop^ = 0

oraz term:

nast(nast(Qy)

Dla dowolnego wartościowania v i wartościowania v' = v[x :=INTv(.nast(,nast(O')))]
zachodzi:

1NTV’ (pop(pop(xy) = 0) = INT„(pop(pop(xy) = 0[x ::= nast(nast(0))Y)

= lNTv{pop(pop{nast{nast{Cy))) = 0) = P
Ostatnia równość zachodzi ponieważ:

, INT^nastinastifi))') = 2 oraz INTv(^op(pop(,nast(jiast(fi')y)) = 0. .

184

Wniosek 9.1

Niech a będzie formułą oraz niech term t będzie wolny ze względu na x w a. Na
podstawie lematu i definicji semantyki kwantyfikatorów zachodzi:

1. Vx • a k ot[x ::= /]

2. cz[x ::= r] i= 3x • a

Punkt 1 wniosku, z faktu spełnialności formuły Vx • a, pozwala na wyprowadzanie
wniosku o spełnialności dowolnej formuły postaci a[x ::= t] dla dowolnego termu
t. Inaczej, aby pokazać, że formuła X/x*a nie jest spełnialna, wystarczy pokazać, że
formuła a[x ::= z] nie jest spełnialna dla pewnego t.

Punkt 2 wniosku, z faktu spełnialności formuły a[x Z], pozwala na wyprowadzanie
wniosku o spełnialności formuły 3x • a. Inaczej, aby pokazać, że formuła • a nie jest
spełnialna, należy pokazać, że formuła ::= Z] nie jest spełnialna dla dowolnego Z.

9.3. Przykłady wprowadzające

Przed formalnym przedstawieniem rachunku sekwentów Gentzena, przykłady wpro­
wadzające pozwolą na poznanie głównych idei, na których opiera się rachunek.

Przykład 9.2

Rozpatruje się następującą formułę rachunku zdań:

((a => b) a (c => d) a (a a c)) => (b a d) (1)

Formuła ta - jak można sprawdzić, na przykład metodą zerojedynkową - jest tau­
tologią. Istota dowodu nie wprost polega na przyjęciu założenia, że formuła (1) nie
jest tautologią, czyli wartość formuły jest fałszem dla pewnego wartościowania
zbioru zmiennych zdaniowych {a, b, c, d}. Okaże się, że poszukiwanie takiego
wartościowania doprowadzi do sprzeczności. W tym celu zadanie rozbija się na
dwa, prostsze, podzadania. Zgodnie z twierdzeniem o rozbiorze przedstawionym
w poprzednim rozdziale, każdą formułę można jednoznacznie zdekomponować na
podformuły składowe. Spójnik łączący te podformuły jest nazywany spójnikiem
głównym. Głównym spójnikiem formuły (1) jest ostatni po prawej symbol impli­
kacji. Całą formułę (1) można przedstawić w postaci:

a=$ 0 (2)

185

gdzie

a = (a => b) a (c => d) a (a a c) (3)
P = b^d (4)

Aby pokazać, że formuła (2) jest fałszywa dla pewnego wartościowania, wystarczy
pokazać, że dla tego wartościowania podformuła tzjest prawdziwa, zaś podformuła
P jest fałszywa - stwierdzenie to wynika ze standardowej interpretacji spójnika
implikacji. Zatem formuła (1) została rozbita na dwie podformuły (3) oraz (4),
z zadaniem pokazania prawdziwości podformuły (3) i fałszywości podformuły (4),
dla pewnego wartościowania zmiennych logicznych.

Ogólnie, daną formułę można rozbijać na dwa zbiory jej podformul z zadaniem
pokazania, że dla pewnego wartościowania podformuły z jednego zbioru są
prawdziwe, a podformuły z drugiego zbioru są fałszywe. Przyjmuje się oznacze­
nie: jeżeli

{ai,..., a,,}

jest zbiorem formuł, którE mają być prawdziwe dla pewnego wartościowania, a

jest zbiorem formuł, które mają być fałszywe dla tego samego wartościowania, to
takie żądanie będzie zapisywane w postaci:

ah a,, -> Pt,..., pm

a napis taki będzie nazywany sekwentem.

Sekwent jest więc parą dwóch zbiorów. Poszczególne zbiory formuł są zapisywane
w postaci list, zaś symbol —> jest separatorem oddzielającym dwie listy.
W tym zapisie sekwent jest traktowany jako umowna forma zapisu pary zbiorów.

Zatem, w rozpatrywanym przykładzie początkowe założenie można zapisać w po­
staci sekwentu:

—> ((<2 => b) a (c => d) a (o a c)) => (b * d) (5)

zaś to, co należy pokazać, jako konsekwencję tego założenie, można zapisać
w postaci sekwentu:

(a => b) a (c => d) a (a a c) —> b a d (6)

Należy zwrócić uwagę na to, że przejściu od zadania (5) do zadania (6) towarzyszy
eliminacja jednego spójnika logicznego.

Aby pokazać, że prawdziwa jest lewa stronę sekwentu (6), należy pokazać, że
prawdziwe są wszystkie jej składowe połączone symbolem koniunkcji, czyli:

a => b, c => d, a a. c b d (7)

186

W ten sam sposób, kierując się znaczeniem koniunkcji, zadanie sprowadza się do
pokazania:

a => b, c => d, a, c —> b a d (8)
Po prawej stronie sekwentu (8) jest również spójnik koniunkcji, lecz należy poka­
zać, że formuła po tej stronie jest fałszywa. A więc wystarczy pokazać tylko jeden
z przypadków, że fałszywe jest b albo że fałszywe jest d. Zatem rozwiązanie zada­
nia (8) sprowadza się rozwiązania jednego z dwóch podzadań:

a => b, c => d, a, c —> b (9a)
a => b, c => d, a, c —> d (9b)

Rozpatruje się zadanie (9a). Można je sprowadzić do zadania prostszego, eliminu­
jąc pierwszy z lewej spójnik implikacji. Aby pokazać, że dla pewnego wartościo­
wania prawdziwa jest implikacja a => b, wystarczy pokazać jeden z dwóch przy­
padków, że fałszywe jest a albo że prawdziwe jest b. Zatem zadanie (9a) rozbija
się na dwa podzadania:

c => d, a, c —> b, a (lOa)
b, c => d, a, c —» b (1 Ob)

Zadanie (lOa) prowadzi do sprzeczności. Wynika to z tego, że od zmiennej zda­
niowej a wymaga się jednocześnie, by dla tego samego wartościowania była praw­
dziwa (wystąpienie a lewej stronie) i fałszywa (wystąpienie a po prawej stronie).
Podobnie, do sprzeczności prowadzi zadanie (lOb). Ponieważ zadania (lOa)
i (lOb) były dekompozycją zadania (9a), oznacza to, że również zadanie (9a) pro­
wadzi do sprzeczności.
W analogiczny sposób przeprowadzone rozumowanie w stosunku do zadania (9b)
prowadzi także do sprzeczności. A zatem każda próba znalezienia odpowiedniego
wartościowania, które potwierdzałoby, że formuła (1) nie jest tautologią prowadzi
do sprzeczności, co daje ostateczny wniosek, że (1) jest tautologią.
Przeprowadzone wnioskowanie można zapisać w postaci graficznej. Rysunek 9.1
przedstawia graf-drzewo. Wierzchołkami drzewa sąsekwenty, czyli napisy postaci
r —> A, gdzie r, A są zbiorami formuł zapisywanymi w postaci list. Łuki drzewa są
reprezentowane przez poziome linie - przyjmuje się, że są one skierowane z góry
w dół. Przejście między dwoma sąsiadującymi wierzchołkami drzewa odpowiada
eliminacji jednego spójnika logicznego.

—> ((a => b) a (c => d) a (a a c)) => (b a d)
(a => b) a (c => d) a (a a c) —» b a d

a=> b,c=$ d ,a,c —> b a=>b,c=>d,a,c—>d
b,c=>d,a,c—>b c=>d,a,c—)b,a a=$b,d,a,c—>d a^>b,a,c—>d,c

b,d,a,c—>b b,a,c—>b,c d,a,c—>b,a a,c-łb,a,c

Rys. 9.1. Drzewo dowodowe dla formuły (1)

187

Korzeniem drzewa jest sekwent postaci:

—> a

gdzie ajest dowodzoną formułą. W przykładzie

a = ((a => b) a (c => d) a (a a c)) => (b a d)

Liśćmi drzewa sąsekwenty postaci:

r,/3^A,j3

gdzie - jak poprzednio - T, A są ciągami formuł, zaś fi jest pewną formuła, która
występuje po obu stronach sekwentu.

Drzewo, którego liśćmi są wyłącznie sekwenty o tej postaci jest drzewem dowo-
। dowym tautologii. ।

Przykład 9.3

Rozpatruje się teraz przykład konstrukcji drzewa dowodu dla formuły:

{{a => b) a (c => d) a a) => (b a c) (11)

która nie jest tautologią. Postępując jak poprzednio, można wnioskowanie zapisać
w postaci drzewa - rys. 9.2.

Rys. 9.2. Drzewo dowodowe dla formuły (11)

=> b) a (c => d} a a) => (b a c)

(a => b) a(c => d) a a —> b a c
a=> b,c=> d,a ^rb /\c

a => b,c =>d,a^>b a=^b,c=^d,a—^c
c ==> d,a,c —> b,a

(D
c=> d,a,c^>b

d,a,c~>b a,c^>b,c
(2) (3)

W drzewie dowodu liście (1) oraz (3) sąsekwentami, które po prawej i lewej stro­
nie mają tę samą formułę - tu zmienną zdaniową. Sekwenty te oznaczają sprzecz­
ność.

Natomiast liść (2) jest sekwentem postaci:

d,a,c-^b (12)

Nie ma on takiej własności jak sekwenty (1) oraz (3), ponadto nie zawiera spójni­
ków logicznych. Wyznacza on takie wartościowanie zmiennych (zmiennym a, c, d
przyporządkowuje wartość prawdy, a zmiennej b - wartość fałszu), przy którym
wartość dowodzonej formuły (11) jest fałszem.

188

Oznacza to, że zostało znalezione takie wartościowanie zmiennych, dla których
formuła (11) jest fałszywa, a zatem nie jest ona tautologią. Znalezienie takiego
wartościowania kończy dowód i nie wymaga rozwijania pozostałych gałęzi drze-

। wa, na przykład gałęzi (4). ।

Oba przykłady można traktować jako systematyczne poszukiwanie kontrprzykładu
w celu pokazania, że wyjściowa formuła nie jest tautologią. W pierwszym przykładzie
każda możliwa próba znalezienia kontrprzykładu prowadziła do sprzeczności, co dało
podstawę do ostatecznego stwierdzenia, że formuła (1) jest tautologią. W drugim
przykładzie kontrprzykład taki znaleziono, co dało podstawę do ostatecznego stwier­
dzenia, że formuła (11) nie jest tautologią.

Przykład 9.4
I 1

Rozpatruje się teraz formułę rachunku kwantyfikatorów:

\/x»p(x)=^Byp(y') (13)

gdzie p jest symbolem pewnego jednoargumentowego predykatu. Formuła ta jest
oczywiście tautologią. Dokonuje się transformacji formuły polegającej na zastą­
pieniu kwantyfikatora szczegółowego kwantyfikatorem ogólnym. Z praw de Mor­
gana wynika, że zachodzi równoważność semantyczna:

3y • a- ->Vy • —ićZ

Formułę (13) można przedstawić w postaci:

Vx • p{x) => -My • ^p(y) (14)

Jak w przykładach poprzednich, zakłada się że formuła nie jest tautologią, co
oznacza, że istnieje pewna interpretacja predykatu I, w której formuła (14) -
przy pewnym wartościowaniu zmiennych indywiduowych - jest fałszywa. Zgod­
nie z poprzednim rozumowaniem, poszukiwanie to sprowadza się do znalezienia
takiej interpretacji I i takiego wartościowania, dla których formuła Vx • p(x) jest
prawdziwa, a formuła -Wy • —jest fałszywa, czyli Vy • —ia formuła jest
prawdziwa. Jeżeli interpretacja Z jest taka, że formuła X/x • p(x) jest w niej speł-
nialna, to na podstawie własności pokazanej w poprzednim punkcie:

Vx • a a[x ::= z]

można stwierdzić, że I spełnia również formułę p(z), gdyż z jest zmienną wolną w p{x\
Podobnie, stosując analogiczne rozumowanie w stosunku do formuły Vy« —i(Z,
można stwierdzić, że I spełnia formułę ^p(z), czyli że I nie spełnia formuły p(z).
Zatem od p(z) oczekuje się, że w interpretacji I jest jednocześnie prawdziwe
i fałszywe, co kończy dowód.

Graficzna reprezentacja tego dowodu jest pokazana na rysunku 9.3.

189

- > Vx » p(x) => -Wy • -p(y)

Mx» p(x)^>-My-p(y)

Vx» pW^y-pty) ̂
p(x)[x ::= z],^p(x)[x ::= z] ->

p(z) -> p(z)

। Rys. 9.3. Drzewo dowodowe dla formuły (13)

Przykład 9.5
r~ . . „ n

Rozpatruje się formułę rachunku kwantyfikatorów:

3y • p(y) => Vx • (15)

gdzie p jest symbolem pewnego jednoargumentowego predykatu. Formuła ta nie
jest tautologią. Jak poprzednio, zastępuje się kwantyfikator szczegółowy kwantyfi-
katorem ogólnym otrzymując formułę:

-Wy • ->p(y) => Vx • p(x) (16)

Zgodnie z poprzednim rozumowaniem, poszukuje się takiej interpretacji I i takiego
wartościowania, dla których formuły Vx • p{x) oraz My • —p(y) są fałszywe. Jeżeli
w interpretacji I formuła Mx • p(x) nie jest spełnialna, to formuła p^) nie jest
spełnialna. Podobnie, z tego, że formuła My • —p(y) nie jest spełnialna, wynika, że
formuła ~^p(y) nie jest spełnialna, czyli formuła p(y) jest spełnialna. Oczekuje się
zatem, że dla pewnej interpretacji I i dla pewnego wartościowania zmiennych x, y
formuła p(x) jest fałszywa, a formuła p(y) jest prawdziwa. Oczywiście taka inter­
pretacja istnieje, na przykład wystarczy przyjąć, że dziedziną interpretacji jest
zbiór liczb całkowitych, a interpretacja predykatu p jest następująca:

I(pXx) =def X > 0.

Wówczas dla wartościowania v =def {<x, -1>, <y, 1>} INT^fp^ = F oraz
INTv(p(y)) = P. Zatem formuła (16) nie jest tautologią.

Graficzna reprezentacja tego dowodu jest pokazana na rysunku 9.4.

- » —My • —ip(y) ^>Mx» pM

-My • -p(y) ->Mx» p(x)
-+Mx»p(x),My^p(y)
- > p(x), My • -p(y)

-> p(x),^p(y)

p(y) -> p(x)

Rys. 9.4. Drzewo dowodowe dla formuły (15)
I_ ______ ______ ______________________________ _______ ____ _ _____ ___ i

190

9.4. Język sekwentów - składnia i semantyka

Niech FORM(F, P, V) będzie zbiorem formuł rachunku kwantyfikatorów nad alfabe­
tem o sygnaturze Sig = (F, P). Język rachunku kwantyfikatorów rozszerza się o do­
datkową kategorię napisów nazywanych sekwentami.

Sekwentem nad alfabetem o sygnaturze Sig jest dowolny napis postaci:

(1)

gdzie oraz Tsą dowolnymi skończonymi, być może pustymi, zbiorami formuł, tzn.
C>, Tc FORM(F, P, V). O jest nazywany poprzednikiem, zaś F jest nazywany następ­
nikiem sekwentu.

Zbiór wszystkich napisów postaci (1) będzie nazywany zbiorem sekwentów nad alfa­
betem o sygnaturze Sig, i będzie oznaczany symbolem SEKW(F, P, V).

Przyjmie się notację: jeżeli dane są zbiory formuł:

=def {«>,—, Q«} dla neNat
r =def {A, AJ dla rn&Nat

to sekwent (1) będzie zapisywany w postaci:

a{,..., a,,-> fii......fim

Nawiasy będą więc opuszczane, a elementy zbiorów O oraz r będą przedstawiane
w postaci list. Elementy obu zbiorów można na liście przedstawiać w dowolnej kolej­
ności, a dwukrotne wystąpienie tego samego elementu na liście można pomijać.

Jeżeli d>, T są zbiorami formuł, a czjest pojedynczą formułą, to zbiór formuł:

o {cz} o r

będzie zapisywany w postaci listy:

d>, cz, r

Szczególne przypadki sekwentów zachodzą wtedy, gdy zbiory O oraz F są puste:

-> fi\,..., fim gdy O jest pusty,
CZ], ..., a,, —> gdy F jest pusty,
—» gdy O oraz F są puste.

Pierwszy sekwent ma pusty poprzednik, drugi - pusty następnik, a ostatni zapis ozna­
cza sekwent pusty.

Semantykę sekwentów dla modelu M = <D, I> definiuje funkcja:

191

INT,: SEKW(F, P, V) -» Logiczne

określana jako rozszerzenie funkcji interpretacji formuł:

INT,: FORM(F, P,V)-> Logiczne

nad tym modelem. W celu zdefiniowania tej funkcji wprowadza się najpierw ozna­
czenia pomocnicze: jeżeli

0= {a,,a,,}
to

aC* =def Cti A ... A Ct„

V<I> =def«l V ... V

Symbole aC> oraz v<I> są więc uogólnionymi spójnikami iloczynu i sumy logicznej,
obejmującymi wszystkie formuły zbioru <I>. Jeżeli <t> jest zbiorem pustym, to z defi­
nicji:

aO =deftrue

vC> =def false

gdzie true oraz false są stałymi logicznymi, interpretowanymi standardowo jako
wartości P (prawda) i F (fałsz).

Funkcja interpretacji sekwentu —» T przy wartościowaniu v zmiennych indywidu-
owych jest określona następująco:

INT,($> —» T) = P wtedy i tylko wtedy, gdy INT,(Mb => vf) = P

gdzie symbol implikacji => ma standardową interpretację.

Sekwent —> T jest spełniony w modelu M, gdy funkcja interpretacji 1NT,(& —> T)
przyjmuje wartość prawdy dla dowolnego wartościowania v.

Sekwent —> f jest spełnialny uniwersalnie, gdy jest spełnialny w dowolnym modelu.

Z podanych określeń wynika, że sekwent:

$->r
jest semantycznie równoważny formule:

=> vr

Symbol —> można więc traktować jako pewnego rodzaju spójnik logiczny, będący
uogólnieniem spójnika implikacji =>.

Przykład 9.6
I--- -- -------------------- -------------------- ------------------------- ------ i

Sekwent:

(a^ p)-+(-^^>^a)

192

jest równoważny semantycznie formule:

L (a=> p)=>

9.5. System dowodzenia

System dowodzenia G w rachunku sekwentów Gentzena składa się z jednego aksjo­
matu oraz z reguł eliminacji spójników logicznych i kwantyfikatorów. Każdy ze spój­
ników i kwantyfikatorów może wystąpić po lewej i prawej stronie sekwentu. Dlatego
liczba reguł jest równa dwukrotnej liczbie używanych spójników. Każda
z reguł jest oznaczana literą l albo p - która oznacza lewą albo prawą stronę sekwen­
tu, po której występuje eliminowany spójnik - oraz symbolem spójnika. Na przykład
(/V) będzie oznaczać regułę eliminacji kwantyfikatora ogólnego stojącego po lewej
stronie sekwentu. Przedstawiany poniżej zestaw reguł dotyczy tylko spójników nega­
cji, koniunkcji i dysjunkcji, ponieważ stanowią one zbiór funkcjonalnie pełny, oraz
tylko kwantyfikatora ogólnego, ponieważ za jego pomocą można również wyrazić
kwantyfikator szczegółowy.

Aksjomat

Aksjomatem - a dokładniej schematem aksjomatu - jest dowolny sekwent:

<b-^r

dla którego n r 0, czyli gdy istnieje co najmniej jedna taka formuła, która
występuje po lewej i po prawej stronie sekwentu.

Uwagi

Schemat aksjomatu jest tylko jeden, natomiast generuje on nieskończenie wiele
aksjomatów, czyli konkretnych sekwentów. Podobna uwaga odnosi się do reguł
wnioskowania. Należy zauważyć, że szczególnymi postaciami aksjomatu są se-
kwenty:

false —>
—> true

Reguły

Dla negacji:

-,a,O—>r

3>^cz,r

193

o-»-ia,r
$,cz—>r

Dla koniunkcji:

(Za) aAjB,ó->r

(pa) $-»aA/3,r
<p-»r,a

Dla alternatywy:

(M
(?v)

<b,a-+r ^,/3->r
O-»av p,r

Dla kwantyfikatora ogólnego:

Vx*a,<i> —>r(/V)
a[x::=r],Vx»a,<P —»r

gdzie t jest dowolnym termem, który w formule a jest wolny ze względu nax

(p\/) a pod warunkiem, że xg

Reguły eliminacji kwantyfikatora mają specyficzne własności.

Po pierwsze - reguła eliminacji kwantyfikatora ogólnego (1 V) w istocie nie eliminuje
kwantyfikatora, lecz dodatkowo wprowadza nową formułę. Formuła Vx»a występują­
ca w przesłance zostaje zastąpiona formułami a[x::= t] oraz Vx*cz we wniosku reguły.
Ponieważ zachodzi implikacja:

Vx • a=> cz[x ::= r]

formułę a[x "= ?] można uważać za szczególny przypadek formuły Vx • a.

Po drugie - nasuwa się pytanie, jak wyznaczyć term t. Każdorazowe wykorzystanie
reguły (Z V) powinno być związane z wprowadzaniem nowego termu, gdyż nie ma
sensu tworzenie tych samych kopii formuły a[x ::= t] przy ustalonym t. Zbiór termów
jest oczywiście nieskończony - zakłada się, że jest to zbiór {t0, t{, tn, ...}. Dlatego
przy tworzeniu drzewa dowodu jest potrzebny pewien pomocniczy mechanizm, który
przy kolejnym £-tym użyciu reguły (Z V) związanym z eliminacją kwantyfikatora przy
formule Vx • a będzie wyznaczać term tk-

194

Z uwagi na to, że reguła (Z V) nie eliminuje kwantyfikatora zaleca się, aby tę regułę
stosować w ostatniej kolejności po wyczerpaniu możliwości stosowania pozostałych
reguł. Zalecenie takie może wyrażać zmodyfikowana postać reguły (Z V):

M ■
cą* ::= rj,O —> F,-iVx*a

Formuła • a znalazła się po prawej stronie sekwentu ze znakiem negacji, co - przy
tekstowym porządku eliminacji spójników - oznacza, że ponowne zastosowanie re­
guły eliminacji kwantyfikatora w odniesieniu do tej formuły zostanie odłożone na ko­
niec, to znaczy po wyczerpaniu możliwości stosowania innych reguł eliminacji.

Dowodzenie, że formuła a jest tautologią, polega na budowie drzewa dowodu, które­
go wierzchołki są etykietowane sekwentami. Korzeniem drzewa, od którego rozpo­
czyna się budowę drzewa, jest sekwentem postaci:

—» a

Następne kroki dowodu polegają na rozwijaniu drzewa przez wyznaczanie kolejnych
wierzchołków-następników. Jeżeli wcześniej został wyznaczony pewien wierzchołek
etykietowany pewnym sekwentem 5, to jego następnikami będą wierzchołki etykieto­
wane sekwentami ..., St wtedy i tylko wtedy, gdy została zastosowana reguła po­
zwalająca sekwent 5 rozłożyć na sekwenty Sj, ..., S*. Sekwent 5 oddziela się od jego
następników kreską poziomą.

Budowę drzewa prowadzi się tak długo, aż osiągnie się przynajmniej jeden liść, który
nie daje się dalej rozwijać i nie jest etykietowany aksjomatem - co oznacza, że bada­
na formuła nie jest tautologią, albo, gdy wszystkie liście drzewa są etykietowane, ak­
sjomatami - co oznacza, że badana formuła jest tautologią.

Przedstawiony system dowodzenia bezpośrednio nie wyznacza algorytmu budowy
drzewa dowodu. Jest to spowodowane tym, że system zawiera dwa źródła niedetermi-
nizmu. Pierwszym źródłem jest braku ustalenia kolejności stosowania reguł tego sys­
temu, a drugim źródłem - brak określenia postaci termów podstawianych za zmienne
w wyniku stosowania reguł eliminacji kwantyfikatorów. Dokonanie ustaleń w tym
zakresie pozwala już na zalgorytmizowanie postępowania dowodowego i ma wpływ
na efektywność procesu dowodowego.

W niżej przedstawionym algorytmie wnioskowania przyjęto, że:

• kolejność stosowania reguł jest wyznaczona przez porządek tekstowy sekwentu
- jako pierwszą wybiera się regułę, która odnosi się do pierwszego od lewej
strony tekstu dającego wyeliminować się spójnika. Ponadto zamiast reguły
(Z V) stosuje się regułę (/ V)', co oznacza, że ponowne stosowanie reguły elimi­
nacji kwantyfikatora ogólnego po lewej stronie sekwentu odbywa się po wy­
czerpaniu możliwości eliminacji innych spójników;

195

• zbiór wykorzystywanych termów jest uporządkowany w dowolny, ale ustalony
ciąg r0, rb Oczywiście, intuicja podpowiada, aby termy uporządkować
w kolejności od najprostszych po coraz bardziej złożone. Miarą złożoności mo­
że być, na przykład, długość termu mierzona liczbą występujących w nich sym­
boli języka.

Algorytm zakłada ponadto, że dowodzone formuły zawierają tylko wybrane spójniki
logiczne (negację i koniunkcję) oraz kwantyfikator ogólny. Założenie to nie narusza
ogólności, gdyż każda formuła daje się sprowadzić do równoważnej semantycznie
formuły zawierającej wyłącznie te spójniki i jeden rodzaj kwantyfikatora. Algorytm
jest przedstawiony w konwencji pseudoprogramowej. Jedyną konstrukcją, która może
wymagać wyjaśnienia, jest użyta instrukcja pętli postaci:

while warunek do ciąg instrukcji od
Konstrukcja ta oznacza następujący ciąg czynności: obliczenie wartości logicznej wa­
runku, a następnie - jeżeli warunek jest prawdziwy - wykonanie ciągu instrukcji, po
czym ponownie oblicza się warunek i gdy jest prawdziwy powtarza się obliczenie
ciągu instrukcji', jeżeli po obliczaniu warunku okaże się, że jest on fałszywy, pętla się
kończy.

Algorytm badania tautologii

Dane', formuła a

Wynik: odpowiedź tak, jeżeli formuła a jest tautologią rachunku kwantyfikatorów,
oraz nie w przypadku przeciwnym.

Procedura:

1. W formule a wyeliminuj spójniki logiczne: v, =>, <=> oraz kwantyfikator
szczegółowy 3, zastępując je tekstowo zgodnie z poniższymi regułami:

Formuła zastępowana Formuła zastępująca
av fi —1(—ićZ A —1^3)
a=> fi -ia v fi
a<^ fi (a=> fi) a(/3=> a)
3x* a -iVx

2. Niech P będzie przekształconą formuła a. W formule P ponumeruj wystę­
pujące w niej kwantyfikatory, powiedzmy od 1 do k. Wprowadź zmienne
pomocnicze it, ..., i^ i nadaj im wartości początkowe 0. Zmienna ij odnosi się
do kwantyfikatora o numerze j, a wartość tej zmiennej będzie oznaczać licz­
bę zastosowań reguły (/ V)' do y-tego kwantyfikatora.

3. Niech D będzie początkowym drzewem dowodu o jednym wierzchołku, ety­
kietowanym sekwentem —»p.

196

4. while

do liści drzewa D nie będących aksjomatami daje się zastosować re­
guły eliminacji spójników logicznych

do
modyfikuj D stosując do jego liści regułę eliminacji usuwającą pierw­
szy tekstowo (licząc od lewej do prawej strony) dający się wyelimi­
nować spójnik logiczny;

w przypadku zastosowania reguły (/ V)' w celu eliminacji kwantyfikatora
o numerze j bierz pod uwagę term o numerze ij zbioru wszystkich ter­
mów {r0, ti,..., t,„ ... }, a następnie zwiększ wartość zmiennej z) o jeden.

od
5. Jeżeli wszystkie liście drzewa są aksjomatami, odpowiedz tak, w przypadku

przeciwnym odpowiedz nie.

Krok 1 algorytmu ma znaczenie przygotowawcze - sprowadza daną formułę a do
standardowej postaci fi, która jest równoważna semantycznie formule a. Kroki 2 i 3
ustalają warunki początkowe dla zasadniczej części algorytmu, którą jest krok 4.
W tym kroku iteracyjnie powtarza się eliminację spójników logicznych i kwantyfi­
katora ogólnego. W iteracji tej może nastąpić zapętlenie tylko wtedy, gdy nieskończe­
nie wiele razy stosuje się regułę (/ V)'.

Algorytm ma następujące własności:

• Algorytm daje odpowiedź tak wtedy i tylko wtedy, gdy formuła dana na wejściu
jest tautologią.

• Gdy formuła dana na wejściu nie jest tautologią, algorytm daje odpowiedź nie
lub się zapętla.

Pierwsza własność oznacza poprawność i zupełność semantyczną przedstawionej
metody dowodzenia. Druga własność oznacza częściową rozstrzygałność metody.

9.6. Semantyczna poprawność

Semantyczna poprawność systemu dowodzenia G dla rachunku sekwentów Gentzena
oznacza, że zachodzi implikacja: jeżeli to$i= a. Poprawności systemu G zo­
stanie wykazana przez udowodnienie kilku lematów.

197

Lemat 9.3

Aksjomat rachunku sekwentów jest spełnialny uniwersalnie.

Dowód

Każdy aksjomat jest sekwentem postaci 0, a—> P, a. Zakłada się, że sekwent ten
nie jest spełnialny uniwersalnie. Niech M będzie modelem, dla którego sekwent
nie jest spełniony. Oznacza to, że jednocześnie M i= a oraz, że M & a, co z kolei
oznacza, że M nie jest modelem.

Lemat 9.4

Niech ygFV(a)\{.x} oraz niech y będzie zmienną wolną w formule a ze względu
na x. Wówczas:

i=a wtedy i tylko wtedy, gdy INTv\y~d\ l=a[x ::=y]

Dowód - ćwiczenie.

Lemat 9.5

Dla każdej reguły dowodzenia jej wniosek jest sekwentem spełnialnym uniwersal­
nie wtedy i tylko wtedy, gdy uniwersalnie spełnialny jest każdy sekwent stanowią­
cy jej przesłankę.

Dowód

Dowód prowadzi się metodą nie wprost. Dla każdej reguły pokaże się, że pewna
interpretacja INTV nie spełnia jej wniosku wtedy i tylko wtedy, gdy dla pewnej in­
terpretacji INTV' nie są spełnione jej przesłanki. Teza twierdzenia wynika bezpo­
średnio z tego stwierdzenia.

Rozważania przeprowadza się tylko dla reguł (Z a), (p a), (Z V), (p V). Dowód dla
pozostałych reguł prowadzi się podobnie.

Dla reguły (Z a) zachodzi:

1NTV * O, a, 13 -> T

wtedy i tylko wtedy, gdy

INTV t= a a a P —» vP

wtedy i tylko wtedy, gdy

INTV « a jl -> vP

Zatem w interpretacji INTV przesłanki są fałszywe wtedy i tylko wtedy, gdy fał­
szywy jest wniosek reguły (Z a).

Dla reguły (p a) zachodzi:

198

INT, he O -> r, a a fi

wtedy i tylko wtedy, gdy

INT, i=aO oraz INT, £ r oraz INT, &a a fi

wtedy i tylko wtedy, gdy

INT, 1=0 oraz INT, oraz (JNT, * a lub INT, # fi)

wtedy i tylko wtedy, gdy

INT, £ O -> T, a lub INT, fi

Zatem w interpretacji INT, przesłanki są fałszywe wtedy i tylko wtedy, gdy fał­
szywy jest wniosek reguły (p a).

Dla reguły (/ zachodzi:

Jeżeli założyć, że dla INT, nie jest spełniona przesłanka reguły, czyli

INT, bt O, Vx • a -> r

to oznacza, że

INT, i=aO aVx • a oraz INT, £ r

Ponieważ INT, i=Vx • a, więc - na mocy wniosku z punktu 9.2 - zachodzi INT,
t=ajx::= r], pod warunkiem, że t jest termem wolnym w a ze względu na x. Z tego
wynika, że dla INT, nie jest spełniony sekwent stanowiący wniosek, czyli

INT, htO, a[x::= r], Vx • a —> T

Odwrotnie, jeżeli założyć, że dla INT, nie jest spełniony wniosek reguły, to wynika
z tego, że INT, i=a<I> a a[x ::= r] a Vx • a oraz INT, ^r. Z tego, z kolei wynika, że
INT, t=A$ a Vx • a oraz INT, t=v T, co oznacza, że dla INT, nie jest spełniona
przesłanka reguły.

Dla reguły (p V) zachodzi:

Jeżeli założyć, że dla INT, nie jest spełniona przesłanka reguły, czyli

INT, * O -> r, Vx • a

to oznacza, że

INT, i=aO orazINT, £ v T orazINT, &Y x* a

Z ostatniego faktu wynika, że istnieje deD takie, że INT,^-^ &a. Niech INT', 1=
INT,[y-d], gdzie ygFV(C>) o FV(T) o FV(a) jest zmienną różną od x i wolną w a
ze względu na x. Na mocy poprzedniego lematu 9.5. INT', & a[x::= y]. Ponadto
INT', kA$ oraz INT', tfvr, ponieważ y^FY^) u FY(T). Dlatego INT', —>
T, Yx • a, a[x::= y], Oznacza to, że jeżeli przesłanka reguły jest niespełnialna

199

przez pewną interpretację, to wniosek reguły jest też niespełnialny przez pewną
interpretację.

Odwrotnie, jeżeli założy się, że dla INT„ nie jest spełniony wniosek reguły, to
INTV i=a0 oraz INTV £ v T, 1NT„ # a[x::= y], Z lematu o podstawieniu wynika,
że INT„[X--d\ 1/ a, gdzie d = INT^y). Tak więc dla INTV nie jest spełniona formuła

• a, co oznacza, że również nie jest spełniona przesłanka reguły.

Twierdzenie 9.1

Każdy sekwent, który ma dowód w systemie Gentzena, jest sekwentem uniwersal­
nie prawdziwym.

Dowód

Dowód wynika z wyżej udowodnionych lematów przez zastosowanie indukcji na
strukturze drzewa dowodowego. Punktem wyjścia jest fakt, że sekwenty-liście jako
aksjomaty są uniwersalnie prawdziwe, a każde przejście od sekwentów-wniosków
do sekwentu-przesłanki w drzewie dowodu gwarantuje zachowanie uniwersalnej
prawdziwości przesłanki.

Wniosek 9.2

Dla każdej interpretacji INTV, jeżeli interpretacja ta nie spełnia sekwentu etykietu­
jącego n-ty wierzchołek drzewa dowodu, to nie spełniona ona również żadnego se­
kwentu etykietującego wierzchołek leżący na ścieżce prowadzącej od korzenia do
wierzchołka n.

Lemat 9.5, oprócz tego, że pozwala dowieść poprawności semantycznej systemu dowo­
dzenia, wskazuje na jeszcze jedną jego własność. Pokazuje mianowicie, że reguły pro­
wadzą od prawdziwych wniosków do prawdziwych założeń, to znaczy jeżeli reguła po­
zwala z sekwentu 5 otrzymać dwa sekwenty Sj, S2 - jak na przykład w regule dla
koniunkcji - to prawdziwość St oraz S2 implikuje prawdziwość sekwentu S. Oznacza to
odwracalność wprowadzonych reguł. Reguły otrzymane na podstawie takiego odwróce­
nia są regułami wprowadzania spójników logicznych. Każdej regule eliminacji spójnika
logicznego odpowiada więc reguła wprowadzania tego spójnika. Na przykład, regułom
eliminacji spójnika koniunkcji będą odpowiadać reguły wprowadzania spójnika ko­
niunkcji odpowiednio po lewej (/+ a) i po prawej stronie sekwentu (p+ a):

«Aj3,<D^r

o>^r,a o->r,/3

$->r,aA0

Zestaw reguł wprowadzania spójników logicznych i kwantyfikatora ogólnego pozwala na
konstrukcję takich samych drzew dowodu jak dla systemu z regułami eliminacji, z tą róż­
nicą, że konstrukcja drzewa odbywa się w odwrotnej kolejności - od liści do korzenia.

200

9.7. Semantyczna zupełność

Semantyczna zupełność systemu dowodzenia G dla rachunku sekwentów Gentzena
oznacza, że zachodzi implikacja: jeżeli O a, to O Zupełność systemu G zosta­
nie wykazana przez udowodnienie kilku lematów.

Lemat 9.6

Jeżeli formuła a jest tautologią oraz drzewo dowodowe uzyskane w wyniku sto­
sowania podanego algorytmu jest skończone, to wszystkie jego liście są etykieto­
wane aksjomatami.

Dowód

Dowód prowadzi się metodą nie wprost. Zakłada się, że D jest pewnym drzewem
skończonym zbudowanym dla formuły a takim, że pewien liść jest etykietowany
sekwentem postaci O —> T, gdzie O n P = 0. Jeżeli da się pokazać, że istnieje
pewna interpretacja INTV, dla której sekwent ten nie jest spełniony, to na podstawie
wniosku 2 wynika, że również nie jest spełniony sekwent stanowiący korzeń drze­
wa dowodu. Zatem - wbrew założeniu lematu - oznacza to, że formuła a nie jest
tautologią.

Poszukiwaną interpretację skonstruuje się w sposób następujący: Jako dziedzinę
D interpretacji przyjmuje się zbiór wszystkich termów TERM(F, P). Interpretacja
I symboli funkcyjnych i symboli predykatów jest następująca:

• wynikiem zastosowana funkcji f&Fn, dla neNat, do termów tu ..., tn jest term
f(t\, t„),

• dla dowolnych termów t\, ..., tn oraz dowolnego predykatu pePn, dla n&Nat,
definiuje się p(t\, tn) = prawda wtedy i tylko wtedy, gdy formuła p(t\, ...,
t„)e^>, czyli gdy występuje ona po lewej stronie sekwentu —> T.

Rozpatruje się takie wartościowanie v, które dowolnej zmiennej indywiduowej
x przypisuje term x, czyli v(x) =def x. Z definicji I oraz v wynika, że:

INTV & aC* => vT

bowiem wszystkie formuły w sekwencie O —» T są nierozkładalne, a na mocy
definicji wszystkie formuły z O są prawdziwe, zaś wszystkie formuły z P są fał­
szywe.

Lemat 9.7

Jeżeli drzewo dowodowe uzyskane w wyniku stosowania podanego algorytmu dla
formuły czjest nieskończone, to formuła rznie jest tautologią.

201

Dowód

Jeżeli drzewo jest nieskończone, to - na podstawie lematu Kóniga - oznacza to ist­
nienie nieskończenie długiej ścieżki zaczynającej się od korzenia. Niech <I>, —> T, bę­
dą sekwentami etykietującymi i-te wierzchołki na nieskończonej ścieżce. Dalej
niech O = oraz r = 1^^ •

Wprowadza się teraz następującą interpretację: Dziedziną interpretacji - podobnie
jak w poprzednim lemacie - jest zbiór wszystkich termów. Również interpretacja
symboli funkcyjnych jest taka sama jak poprzednim lemacie, zaś interpretacja
symboli predykatów jest następująca:

dla dowolnych termów ..., t„ oraz dowolnego predykatu p&Pn, i definicji
p(t\, ..., t„) = prawda wtedy i tylko wtedy, gdy formułap(t\, tn)E<i>, czyli gdy
występuje ona po lewej stronie jednego z sekwentów O, —» T,.

Niech v będzie wartościowaniem takim, że v(x) =def x. Z pokazanego dalej lematu
9.8 wynika, że dla dowolnej formuły a:

jeżeli creO, to INT„ a
jeżeli aE F, to INTV k -ia

Stwierdzenie tego faktu kończy dowód lematu, gdyż oznacza, że formuła a nie jest
tautologią, bowiem korzeń drzewa dowodu jest etykietowany sekwentem -^a,
czyli formuła aeR

Lemat 9.8

Niech O = U,eNal<!>,■ oraz F = U(eM«Ę > gdzie Oj —* D są sekwentami etykietują­
cymi i-te wierzchołki na nieskończonej ścieżce w drzewie dowodu. Dla dowolnej
formuły a:

jeżeli (ZG<b, to INTV k a
jeżeli aE F, to INT„ t= -,a

Dowód

Zdefiniuje się najpierw relację -< określona na zbiorze wszystkich formuł w sposób
następujący:

1. elementami minimalnymi relacji są formuły elementarne postaci p(ti, ..., tn),
gdzie pEPn, jest symbolem n-argumentowego predykatu, a ?i, ..., t„ są do­
wolnymi termami. Oznacza to, że dla formuły postaci p(t\, ..., tn) nie istnieje
formuła a taka, że a^p(ti,..., t„).

2. -<a

3. a -< {a a /3) oraz fi {a a /3)

202

4. dla dowolnego termu t zachodzi a[x := t] -< Vx • a

Niech -<+ będzie przechodnim domknięciem relacji < Jeśli a jest dowolną formu­
łą, to nie istnieje nieskończony ciąg formuł c^, a2,... spełniający warunek:

... -<+ a2 -C a\ -C a

Wynika to z obserwacji, że po lewej stronie relacji znajduje się zawsze formuła
składniowo prostsza od formuły po prawej stronie relacji. Dla danej formuły liczba
formuł składniowo od niej prostszych jest oczywiście skończona.

Dowód lematu będzie prowadzony indukcyjnie względem relacji A+.

W kroku bazowym pokazuje się, że teza lematu zachodzi dla elementów mini­
malnych względem relacji -<+. Zakłada się, że pp\, ..., t„)e Ouf. Zatem istnieje
k^Nat takie, że p{t\, ..., r„)e O* u T* oraz k jest pierwszym takim wierzchołkiem
na rozpatrywanej ścieżce. Oczywiście nH = 0, gdyż w przeciwnym razie
wierzchołek byłby aksjomatem i ścieżka kończyłaby się w tym wierzchołku
wbrew założeniu ojej nieskończoności. Zatem albo p{t\, ..., t^^k albo p(t\, ...,
tn)^

Niech p(ti, ..., Ponieważ do formuł postaci p(t\, ..., /„) nie da się już zasto­
sować żadnej z reguł rozkładu, więc p(ti, ..., dla m > k, a tym samym p(ti,
..., r„)£ r, dla dowolnego i^Nat. Zatemp(t\,..., tJeO oraz/?(ti,..., t„)gr. Na mocy
definicji interpretacji 1NT„ zachodzi więc INT„ i= p(t\, ..., t„).

Analogicznie dla drugiego przypadku, gdy p(t\, ..., tn^^k, można pokazać, że
INTV^ -p(th ..., tn\

W kroku indukcyjnym dowodu rozpatruje się kolejne przypadki postaci formuły a.

1. Niech a będzie postaci ->/?. Na mocy reguł eliminacji spójnika negacji zachodzi:

jeżeli -i/3e<b, to /fer oraz
jeżeli -ijSeT, to /JeO.

Wystarczy teraz skorzystać z założenia indukcyjnego. Na przykład, gdy
to /ter. Ponieważ /3 -<+ —>P, zatem korzystając z założenia indukcyjnego z /JgT
wynika, że INTV1= —1/3.

2. Niech a będzie postaci /3 a y. Z postaci reguł eliminacji koniunkcji wynika, że
formuły P oraz / występują razem w <!> albo jedna z nich występuje w r. Oczy­
wiście P -<+ (P a y) oraz y-f (j3 a y). Z założenia indukcyjnego wynika, że

INTV1= P oraz INTV t= y

albo

INTV t= ^p lub INTV -,y

203

Zatem

INTV t= (/3 a y) gdy (/3 a y)e O

albo

INTV t= -</3 a y) gdy (jB a y)e r.

3. Niech a będzie postaci Vx • fi. Dla przypadku zastosowania reguły eliminacji
kwantyfikatora (/ V) zakłada się nie wprost, że nie zachodzi INTV i= Vx • fi.
Oznacza to, że dla pewnego elementu z dziedziny interpretacji, czyli dla pew­
nego termu t, formuła fi nie jest spełniona, to znaczy, że INTV t= —>fi [x ::= r].

Ponieważ fi[x := t] -<+ Vx • fi, więc oznacza to, że fi[x ::= z] musi wystąpić po
lewej stronie sekwentu po skończonej liczbie zastosowań reguły (/ V), czyli fi
[x::= r]ed>. Z założenia indukcyjnego wynika, że INTV *= fi [x ::= t], co oznacza
sprzeczność z wyprowadzonym wnioskiem, że INT„ i= -ifi [x ::= r].

Przypadek zastosowania drugiej reguły eliminacji kwantyfikatora (p V) rozważa
się podobnie.

Twierdzenie 9.2

System dowodzenia Gentzena jest semantycznie zupełny.

Dowód

Niech formuła a będzie tautologią. Wystarczy pokazać, że drzewo dowodowe dla
tej formuły jest skończone. Z lematu 9.6 wynika bowiem, że wszystkie jego liście
są etykietowane aksjomatami, co wskazuje na to, że a jest tautologią. Drzewo do­
wodowe dla a musi być jednak skończone, gdyż w przeciwnym przypadku - zgod­
nie z lematem 9.7 - formula a nie byłaby tautologią.

Z przedstawionych rozważań wypływa dodatkowy wniosek:

Wniosek 9.3

System dowodzenia Gentzena jest częściowo rozstrzygalny.

Oznacza to, że istnieje procedura (na przykład algorytm przedstawiony w p. 9.5),
która w skończonej liczbie kroków stwierdza, że badana formuła a jest tautologią
albo stwierdza, że formuła nie jest tautologią, albo - w przypadku, gdy a nie jest
tautologią- nie udziela żadnej odpowiedzi w skończonej liczbie kroków.

204

Ćwiczenia

1. Stosując metodę sekwentów Gentzena wykazać, że następujące formuły nie są
tautologiami rachunku kwantyfikatorów:

a) (3x • p(*)) => PW
b) (Vx • pM) => (Vx • -np(x))

2. Czy formuły z zadania 1. są spełnialne?

3. Stosując metodę sekwentów Gentzena wykazać, że następujące formuły są tautolo­
giami rachunku kwantyfikatorów:

a) (3x • p(x) v (3x • p^)) v (Hx • g(x))
b) (Vx • p(x) q(x)) => ((Vx • p(x)) <=> (Vx • <?(x)))
c) (Vx • p(x) <=> ę(x)) => ((3x • p^) « (3x • ę(x)))

4. Stosując metodę sekwentów Gentzena sprawdzić, które spośród następujących
formuł są tautologiami rachunku kwantyfikatorów:

a) (—>Vx • Vy • r(x, y)) <=> (Bx • 3y • —ir(x, y))
b) (—>3x • 3y • r(x, y)) <=> (Vx • Vy • -ir(x, y))

5. Podać dolne i górne oszacowanie liczby wierzchołków drzewa dowodu formuły
rachunku zdań metodą sekwentów Gentzena, przy założeniu, że liczba wystąpień
spójników logicznych w formule wynosi n&Nat.

6. Przedstawić algorytm, który dla danej formuły wyznacza pierwszy (od lewej) tek­
stowo spójnik, który może być wyeliminowany przy dowodzeniu metodą sekwen­
tów Gentzena.

10. Zasada rezolucji

10.1. Wstęp

Omówiony w rozdziale 9 system dowodzenia - oparty na rachunku sekwentów Gent-
zena - daje podstawę do tworzenia algorytmów automatycznego dowodzenia formuł
rachunku kwanty fi katorów, ale jest związany z pewnymi niedogodnościami, które
prowadzą do dużej złożoności obliczeniowej, a tym samym czasochłonności obliczeń.
Poszukiwanie innych, bardziej efektywnych metod dowodzenia doprowadziło, w 1965
roku, do sformułowania przez J. A. Robinsona systemu dowodzenia opartego na tzw.
regule rezolucji. Dokładniej, zasada rezolucji stanowi system dowodzenia spełnialno-
ści zbioru formuł. Istotną właściwością dowodzenia opartego na regule rezolucji jest
konieczność sprowadzenia dowodzonej formuły do postaci znormalizowanej. Miano­
wicie, formuły muszą być w skolemowskiej postaci normalnej, a ich matryce - w ko-
niunkcyjnej postaci normalnej.

Uwagi

Podejście zaproponowane przez Robinsona okazało się bardzo skuteczne i dało
podwaliny pod wiele zastosowań, wśród których na pierwszym miejscu należy
wymienić programowanie w logice. Programowanie w logice, zwłaszcza w języku
Prolog, umożliwiło, m.in., efektywną implementacje systemów doradczych (eks­
pertowych), sterowanie robotami, automatyczne tłumaczenie tekstów.

Metoda Robinsona bazuje na wcześniejszych pracach, wśród których należy wy­
mienić prace Herbranda21 z 1930 roku oraz pracę Davida i Putnamana z początku
lat sześćdziesiątych.

21 Jaques Herbrand (1908-1931).

Stosowanie zasady rezolucji wiąże się z badaniem, czy dana formuła crjest logiczną
(semantyczną) konsekwencją zbioru formuł czyli czy O t= a. Zgodnie z lematem
z podrozdziału 8.6, 0 i= a wtedy i tylko wtedy, gdy zbiór u {-iCt} jest niespełnial-

206

ny. Jeżeli <f> t= {ab a,,}, to niespełnialność zbioru formuł u {->a} oznacza, że
formuła

ai a ... a o;, a —>a

jest tożsamościowe fałszywa. Zatem niespełnialność zbioru O u {->a} oznacza, że
jedyną jego konsekwencją semantyczną jest formuła tożsamościowe fałszywa, czyli
O u {-’«} i= false.
Stosowanie zasady rezolucji polega na reprezentacji zbioru formuł O u {-■«} za po­
mocą zbioru klauzul, a następnie na próbie wyprowadzenia z tego zbioru klauzuli pu­
stej, reprezentującej false. Jeżeli taka próba kończy się powodzeniem, to znaczy wy­
prowadzeniem klauzuli pustej, oznacza to, że O t= a. W przypadku przeciwnym, po
wyczerpaniu wszystkich możliwości, oznacza to, że O £ a.

10.2. Zasada rezolucji dla rachunku zdań

Zakłada się, że badane formuły rachunku zdań są w koniunkcyjnej postaci normalnej,
co oznacza, że są w postaci koniunkcji klauzul:

a Ki a ... a K„ dla neNat\{0}

Klauzula jest dysjunkcją literałów:

A, v A2 v ... v A„, dlameMat

W przypadku szczególnym, gdy m = 0, klauzula będzie nazywana klauzulą pustą
i oznaczana symbolem □. Klauzula pusta oznacza formulę tożsamościowo fałszywą.

W przypadku rachunku zdań literałami są zmienne zdaniowe lub ich negacje. Dwa
literały są komplementarne, gdy jeden jest negacją drugiego.

W przypadku znormalizowanej reprezentacji formuły można mówić, że formuła jest
określona przez pewien zbiór klauzul, zaś klauzula jest określona przez pewien zbiór
literałów. Uwaga ta wyjaśnia wprowadzaną poniżej konwencję oznaczeń.

Fakt, że pewien literał A jest elementem klauzuli Kbędzie zapisywany w postaci Ae K.
Ponadto, jeżeli z klauzuli K zostanie usunięty należący do niej literał A, to otrzymana
nowa, być może pusta, klauzula będzie oznaczana k\A.

Definicja 10.1

Niech będą dane dwie klauzule Ki, Ki oraz dwa literały komplementarne Ab A2 ta­
kie że A[G Kb A2g Ki. Klauzula postaci:

207

KlUi U K-^z

będzie nazywana rezolwentą klauzul Ki oraz Kz i oznaczana symbolicznie przez
rez{K\, Kz}. Literały Ai, A2 nazywa się literałami czynnymi. O dwóch klauzulach,
które posiadają rezolwentę będzie mówić się, że są klauzulami, które dają się
uzgodnić. Oznaczenie rez(K\, k2} ma sens tylko pod warunkiem, że klauzule Ki, k2
dają się uzgodnić.

Badanie czy dana formuła jest tautologią polega na badaniu zbioru reprezentujących
ją klauzul. Mianowicie, formuła a jest spełnialna wtedy i tylko wtedy, gdy jest speł-
nialny zbiór reprezentujących ją klauzul K|, Kz, ..., Kn. Zbiór klauzul nie jest spełnialny
wtedy i tylko wtedy, gdy jego semantyczną konsekwencją jest klauzula pusta.

Dowodzenie polega na generowaniu na podstawie zbioru klauzul Ki, Kz,..., Kn nowych
klauzul tak długo, aż zostanie utworzona klauzula pusta bądź, po wyczerpaniu
wszystkich możliwości, klauzula pusta nie zostanie wygenerowana. Wygenerowanie
klauzuli pustej będzie oznaczać, że zbiór badany zbiór klauzul jest niespełnialny,
a przypadek przeciwny będzie oznaczać spełnialność badanego zbioru klauzul.

Generacja nowej klauzuli opiera się na zastosowaniu reguły rezolucji w postaci:

Definicja 10.2

Schemat reguły rezolucji ma postać:

-------—------------ A] G K,, A, G K2 oraz A,, A2 są komplementarne
K{ \ Aj u k2 \ A2

Przesłankami reguły rezolucji są klauzule, a wnioskiem - rezolwentą tych klauzul.

Reguła rezolucji jest ogólną regułą wnioskowania, której szczególne postaci odzwier­
ciedlają niektóre inne znane reguły wnioskowania.

Przykład 10.1r---------------------- ------------------------------------- ----- ,

Niech będą dane dwie klauzule: p oraz -^p v q. Spełniają one wymagania oczeki­
wane od przesłanek w regule rezolucji, literałami czynnymi sąp oraz —p, a ich re­
zolwentą jest klauzula q, czyli:

g

Warto zauważyć, że klauzula —p v q jest semantycznie formule p => q, co pozwala
zapisać powyższą regułę w postaci:

p,p=^g
g

I znanej jako reguła odrywania (modus ponens}. ।

208

Przykład 10.2
r ~- - ------- -- ------------- ------------------------- -------- - ---- i

Dla klauzul -p v q oraz -qvr reguła rezolucji ma postać:

— p v q,—>q v r
r

co odpowiada regule wnioskowania łańcuchowego:

— p v q,^q v r

I_____ _ ''_______________________ _ __ __________________________ 1
Przykład 10.3
।--------- ------- ------------------ ~..... i

Prosta, ale szczególnie ważna jest reguła rezolucji w postaci:

-y,p
□

Oznacza ona, że klauzula pusta wyraża sprzeczności przesłanek. ,

Należy zwrócić uwagę, że rezolwenta dwóch klauzul nie zawsze jest wyznaczona jed­
noznacznie, gdyż klauzule mogą posiadać więcej niż jedną parę literałów komple­
mentarnych. Ponadto w powstałej rezolwencie mogą powtarzać się pewne literały.
Powtarzające się literały można usunąć bez naruszenia semantyki klauzuli. Proces
eliminacji powtarzających się literałów określa się jako faktoryzację.

Przykład 10.4
I --------------------------- ------- --- -- -- I

Dla klauzul:

~^p v ~^q v -r v -ii oraz p v —>q v r v —>5 v y—u

rezolwentami są:

-^v-irv->s v ^q v r v ->s v —(literałami aktywnymi są —p i p)

oraz

- ip v ~yq v -ij v p v -~p v -ni v —it v-n« (literałami aktywnymi są-nr i r)

Po faktoryzacji rezolwenty przyjmują odpowiednio postać:

— yq v -nr v -ni v r v —v-^u

oraz

। —p V —p V -ii v p V -it V~yU

Reguła rezolucji jest semantycznie poprawna, co precyzuje twierdzenie.

209

Twierdzenie 10.1

Rezolwenta rez(K\, Ki) jest semantyczną konsekwencją klauzul Ki, k2, czyli

Ki, K2 t= rez(Kx, Ki).

Dowód

Niech klauzule Ki, k2 mają postać:

Ki s A v Ai v ... v A„
k2 s -iA v A'i v ... v A'm

gdzie A, —>A są literałami komplementarnymi. Niech klauzule te będą spełnione
w pewnej interpretacji I. Oznacza to, że spełniony jest również jeden z literałów A,
—iA. Niech będzie to ->A. Wobec tego nie jest spełniony literał A, ale skoro spełnio­
na jest klauzula K1; to musi być spełniona formuła Ai v ... v A„. Formuła ta jest
składnikiem rezolwenty rez^.K^, a zatem rezolwenta jest również spełniona
w interpretacji I. Rozumowanie przebiega podobnie, gdy założyć, że spełniony jest
literał A.

Na podstawie reguły rezolucji można sformułować algorytm badania spełnialności
formuły rachunku zdań.

Algorytm badania spełnialności zbioru klauzul
Dane'. formuła a rachunku zdań.
Wynik: odpowiedź tak, gdy formuła jest spełnialna, nie - w przypadku przeciwnym.
Procedura:

1. Dla formuły a wyznaczyć CNF(a) - algorytm z p. 7.6.

2. Wyznaczyć zbiór klauzul S reprezentujących CNFia).

3. Powtarzać następujące czynności:

while

□ gó i istnieją klauzule Kh K2eS dające rezolwentę nie należącą do S

do

(a) znajdź klauzule Kj, K2, które dają się uzgodnić i wylicz ich rezolwentę
rez(Ki, k2),

(b) zastąp S przez S’, gdzie 5’ = 5 u rez(Ki, k2)

od

4. Jeżeli S zawiera klauzulę pustą odpowiedz nie, w przypadku przeciwnym -
odpowiedz tak.

210

Przykład 10.5
i----------------------- --- ------------------------------------ ------ i

Niech będzie dany następujący zbiór klauzul:

5 =def {« v -ib v -ic, d, b, c v -ia v -ib, c v -id, -ia v -id v ^b}

Dla przejrzystości rozważań poszczególne klauzule zostaną zapisane w ponume­
rowanych wierszach. W następnych wierszach są zapisane klauzule uzyskane ze
zbioru S w wyniku stosowania reguły rezolucji. Po prawej stronie klauzuli są
podane numery klauzul, które były przesłankami do jej uzyskania:

(1) a v —>b v —ic
(^d
&)b
(4) c v -ićz v -ib
(5) c v -id
(6) -ia v -id v —<b

(7) av-ic (1,3)
(8)c (2, 5)
(9) —>a v -ib (2, 6)
(10) c v -ia (3,4)
(11) -ia v -id (3, 6)
(12) -.a (2, 11)
(13) -ic (7, 12)
(14) □ (8, 13)

Ostatnia wygenerowana klauzula jest klauzulą pustą, co dowodzi, że badany zbiór
klauzul S nie jest spełnialny.

10.3. Skolemowska postać normalna

Badając spełnialność formuł rachunku kwantyfikatorów w oparciu o zasadę rezolucji za­
kłada się, że formuły są w postaci kanonicznej, zwanej skolemowską postacią normalną.

Niech aeFORM(F, P, V) będzie formułą rachunku kwantyfikatorów nad sygnaturą
<F, P> i zbiorem zmiennych indywiduowych V.

211

Definicja 10.3

Formuła znajduje się w postaci Skolema, gdy jest w przedrostkowej postaci nor­
malnej, a jej przedrostek nie zawiera kwantyfikatorów egzystencjalnych.

Przez Skol(a) będzie oznaczany skolemowski odpowiednik formuły a. Proces wyzna­
czania odpowiednika skolemowskiego dla danej formuły nazywa się skoletnizacją.

W odróżnieniu od przypadku, gdy dla dowolnej formuły a istniała równoważna se­
mantycznie postać przedrostkowa PNF(a), między formułą a a odpowiadającą jej
postacią skolemowską Skol(d) równoważność taka może nie zachodzić. Zachodzi na­
tomiast słabszy rodzaj równoważności oparty na związku spełnialności. Oznacza to,
że formuła et jest spełnialna wtedy i tylko wtedy, gdy spełnialna jest formuła Skol(a).
Formuła a jest spełnialna, gdy istnieje model, w którym jest spełniona.

Istotę skolemizacji wyjaśnia przykład.

Przykład 10.6
I I

Dana jest formuła postaci:

Vx • Vy • ((x -< y) => 3z • (x -< z) a (z -< y)) (1)

lub po sprowadzeniu do przedrostkowej postaci normalnej:

Vx • Vy • 3z • (—i(x -< y) v (x x z) a (z y)) (2)

Jest to aksjomat elementarnej teorii relacji mniejszości zdefiniowanej w rozdziale
8. Modelem dla tej teorii jest, na przykład, zbiór liczb wymiernych Wymierne jako
dziedzina interpretacji oraz relacja mniejszości < w zbiorze liczb wymiernych jako
interpretacja symbolu predykatu < W modelu tym aksjomat mówi, że dla dwóch
dowolnych liczb wymiernych x, y istnieje pewna pośrednia liczba wymierna z, któ­
ra jest zawarta w przedziale między liczbą x a liczbą y. Liczbę pośrednią można
zawsze wskazywać bezpośrednio, biorąc, na przykład, średnią arytmetyczną liczb
x, y, czyli określając, że wartościowanie zmiennej z jest funkcją wartościowania
zmiennych x oraz y zdefiniowaną wzorem z =def U + y)/2. Dla średniej arytmetycz­
nej prawdziwa jest bowiem formuła:

Vx • Vy • (-i(x y) v (x (x + y)/2) a (x + y)/2 -< y) (3)

Formuła ta jest w postaci skolemowskiej i różni się od poprzedniej formuły bra­
kiem kwantyfikatora szczegółowego, który został zastąpiony dwuargumentową
funkcją obliczającą średnią arytmetyczną. Ostatnią formułę można zapisać w ogól­
niej postaci:

Vx • Vy • (^(xy) v y) a/(x, y)y) (4)

gdzie/jest pewnym symbolem funkcyjnym, który nie występował w teorii relacji
mniejszości.

212

Tekstowy związek między formułą (4) oraz formułą (2) można scharakteryzować
następująco: formuła (4) powstała z formuły (2) przez eliminację kwantyfikatora
szczegółowego oraz przez tekstowe zastąpienie każdego wystąpienia zmiennej
z, wiązanej wyeliminowanym kwantyfikatorem, przez term/(x, y), gdzie x oraz y są
zmiennymi wiązanymi przez kwantyfikatory ogólne poprzedzające wyeliminowa­
ny kwantyfikator szczegółowy, a f jest nowym dwuargumentowym symbolem
funkcyjnym.

Na przykładzie widać, że aksjomat (2) teorii relacji mniejszości można byłoby za­
stąpić aksjomatem postaci (4). Nowa aksjomatyka jest spełniona w każdym mo-

। delu, w którym jest spełniona dawna aksjomatyka. ।

Algorytm skolemizacji:
Dane: formuła (znad sygnaturą<F, P>.
Wynik: formuła Skol(d) w postaci skolemowskiej równoważna w sensie spełnial­

ności formule a.
Procedura: Procedura postępowania polega na etapowym, tekstowym przekształcaniu

formuły a. Formuła pośrednia jest oznaczana przez (3.

1. Niech a będzie formułą w przedrostkowej postaci normalnej (otrzymaną, na
przykład, w wyniku stosowania algorytmu przedstawionego w p. 8.7).

2. while

w przedrostku formuły P istnieje kwantyfikator egzystencjalny

do

(a) Jeżeli formuła ma postać: 3x • y, to zastępuje się ją formułą po­
staci y[x ::= c], gdzie c jest nowym symbolem stałej, to znaczy, że c
nie należy do zbioru symboli stałych sygnatury (F, P), czyli dF0.

(b) Jeżeli formuła fi ma postać: Vxi • ... • Vxm • By • y, dla m > 0, wtedy
zastępuje się ją formułą postaci: Vxt •...• \/xm • y[y ::=f(xi, ..., xm)],
gdzie/jest nowym m-argumentowym symbolem funkcyjnym, to zna­
czy, że f nie należy do zbioru m-argumentowych symboli funkcyj­
nych sygnatury <F, P>, czyli /g Fm.

od

3. Otrzymaną formułę /3 definiuje się jako Skol(a).

Przykład 10.7
I 1

Dla formuły postaci:

Bu • Vw • 3x • Vy • 3z • (p(u, x) => q(w, y,

213

jej skolemowskim odpowiednikiem jest formuła:

Vw • Vy • (p(c,/(w)) => q(w, y, h(g(w, y))))

। gdzie c,f, g są nowymi symbolami funkcyjnymi. ।

Twierdzenie 10.2

Formuła crjest spełnialna wtedy i tylko wtedy, gdy spełnialna jest formuła Skol(d)
otrzymana w wyniku podanego wyżej algorytmu.

Dowód

Jeżeli formuła a = Vxi • ... • \/xm • 3y • / jest spełnialna, to oznacza, że jest speł­
niona w pewnym modelu M = <D, I> nad sygnaturą Sig, czyli

INTv(X/xi • ... • Vxm • 3y • y) = prawda

dla dowolnego wartościowania v. Z tego wynika, że również

INT^y • y) - prawda

dla v' = v[xi := dt, ..., xm := dm], gdzie dh dm&D są dowolnymi wartościami
z dziedziny interpretacji. Oznacza to, że istnieje taka wartość d&D, że

lNTAy-=dW = prawda

Niech Sig będzie rozszerzeniem sygnatury Sig o w-argumentowy symbol funkcyj­
ny fy oraz niech T będzie takim rozszerzeniem interpretacji I, że T(fy) = fd jest
funkcją, która - z definicji - dla d\,dmeD przyjmuje wartość deD, czyli

f\d., ...,dm) = d.

Wówczas:

v'[y := INTv'(fy(xi,xm)')] = / [y :=fd(INTv\xi'), ..., INT^M
= v'[y -=f\dx,dm)]
= v' [y := d\

Formuła y nie zawiera symbolu fy, dlatego

INT^ ;= d](y) = prawda

Z lematu o podstawieniu wynika, że

INTv-(y) = INTy(Y[y ..., xm)].

Ponieważ d}, ..., dm były wybrane dowolnie, zatem

INTv(Xfxi • ... • Vxm« y[y ::=fy(xx,.... xm)]) = prawda

dla dowolnego v.

214

Wynikanie odwrotne - spełnialność formuły a ze spełnialności formuły Skol(d) jest
oczywiste.

Przedstawienie formuły a w postaci skolemowskiej:

Vxt • ... • Vx„ • (Ki a ... A Km)

gdzie Kj, ..., Kn są klauzulami, pozwala na reprezentację formuły w postaci zbioru
jej klauzul. Reprezentacja ta jest jednoznaczna przy założeniu, że wszystkie
zmienne występujące w klauzulach są związane kwantyfikatorami ogólnymi. Zało­
żenie to zawsze można przyjąć, gdy bada się spełnialność formuły. Wynika to
z faktu, że jeśli, na przykład, jest spełnialna formuła Vy*Vx» p(x, y), to również
spełnialna jest formuła Vx» p(x, y).

10.4. Unifikacja termów

Stosowanie zasady rezolucji w rachunku kwantyfikatorów wymaga dodatkowego
procesu polegającego na sprowadzeniu literałów do pewnej ujednoliconej postaci.
Proces ten nazywa się unifikacją termów. Zbiór klauzul {p{x\ —p(y)} jest oczywi­
ście zbiorem niespełnialnym, ale literały p(xf —pły) nie są komplementarne. Ogól­
nie, literałami w rachunku kwantyfikatorów są formuły elementarne lub ich nega­
cje, na przykład p(t\, ..., t,„), -p(ti, tm), gdzie p jest symbolem predykatywnym,
a t\, ..., tm są termami. Sprowadzanie takich literałów do ujednoliconej postaci -
o ile jest możliwe - polega na zastosowaniu do nich jednakowych podstawień tek­
stowych (podrozdział 8.4).

Rozważane będą tylko takie podstawienia er =def [xi ::= ti, ..., xn ::= t„], które spełniają
warunek:

Var(tj n {xt, ..., x„} = 0 dla i = 1, ..., n,

to znaczy, że w termach ti,t„ nie występują zmienne Xi,..., x„.

Podstawienie er nazywa się unifikatorem dla formuł a\,..., gdy

o^cr = ... = a„ er.

Oczywiście formuły muszą być oparte na tym samym symbolu predykatywnym, mogą
różnić się co najwyżej postacią termów, które są ich argumentami. Formuły otiCT, ...,
a„ <7 nazywa się formułami ukonkretnionymi przez podstawienie cr.

215

Przykład 10.8
i...._ „ ,.. i

Unifikatorem dla formuł p(x) oraz p(y) jest [x ::= z, y "= z], gdyż

/>(*)[* ::= z, y ::= z] = p(y)[x ::= z, y ::= z] = p(z)

ale unifikatorami są również, na przykład,

[x ::= w, y ::= w], gdzie w jest zmienną,
[x ::= 5, y ::= 5], gdzie 5 jest stałą,
[x ::= g(z, w), y ::= g(z, w)], gdzie g jest symbolem funkcyjnym.

Dla formuł p(x), p(6) jest tylko jeden unifikator [x ::= 6], a dla formuł p(5), p(6)
j nie ma unifikatora. ।

Formułę et ukonkretnioną przez podstawienie er można ukonkretniać ponownie innym
podstawieniem T. Dwukrotne ukonkretnienie formuły, najpierw podstawieniem cr,
a następnie podstawieniem r, jest równoważne jednokrotnemu ukonkretnieniu pod­
stawieniem cr t, które jest złożeniem podstawień cr oraz T. Oznacza to, że

(eter) Tb ct(crT).

Przykład 10.9
r.. -.. :' i

Formułę p(x, y) można kolejno ukonkretnić podstawieniem [x ::=/(z)], co da for­
mułę p(fiz), y), a następnie podstawieniem [y ::= g(u, w)], co da p(j[z~), g(u, w)).

Złożeniem podstawień [x ::=fiz)] oraz [y ::= g(u, w)] jest podstawienie:

[x::=/(z),y ::=g(w, w)].

। Zastosowanie tego podstawienia do formuły p(x, y) daje równieżplfiz), g(u, w)). ।

Jeżeli dla podstawienia a istnieje podstawienie odwrotne cr"1 takie, że cr cr "1 =
<7"1cr = e, gdzie Ejest podstawieniem tożsamościowym, to cr jest nazywane przemia­
nowaniem zmiennych.

Przykład 10.10
I

Postawienie [x ::= z, y ::= w] jest przemianowaniem zmiennych, gdyż

, [x ::= z, y ::= w] [z::=x, w ::= y] = [x ::= x, y ::=y] ।

Definicja 10.4

Podstawienie <7, jest bardziej ogólne niż podstawienie 02, jeżeli dla pewnego nie-
pustego podstawienia r, różnego od przemianowania, zachodzi as = c^ t.

216

Definicja 10.5

Podstawienie <y nazywa się najbardziej ogólnym unifikatorem formuł ai, ..., c^,
gdy jest unifikatorem i jest bardziej ogólne od każdego innego unifikatora tych
formuł.

Z definicji wynika, że najbardziej ogólny unifikator jest określony z dokładnością do
nazw zmiennych. Najbardziej ogólny unifikator formuł cą, an będzie oznaczany
przez NOU(at,..., an).

Przykład 10.11
I . . . -- --------------- 1

Najbardziej ogólnymi unifikatorami dla następujących par formuł są:

NOU(p(10, 20),p(20, 10)) nie istnieje
M9t/(p(10, 20), p(10, 20)) = E
NOU(p(fO, x), p(y, 20)) = [%::= 20, y ::= 10]
NOU(p{\Q, x),p(10, y)) = [x ::=y] (a także [y ::=%])
NOU(p(x, x\ p(10, y)) = [x ::= 10, y ::= 10]
^Ot7(p(/(10), 20), p(x, 20)) = [x ::=/(10)]

। NOU(p(f(]Q), 20),p(10,20)) nie istnieje ।

Najbardziej ogólny unifikator można wyznaczyć w sposób algorytmiczny. Istnieje
algorytm, który dla dowolnego zbioru formuł ..., an w skończonej liczbie kroków
orzeka czy zbiór ten jest unifikowalny, a w przypadku, gdy zbiór ten jest unifikowalny
wyznacza NOUla^, ..., oę,). Algorytm polega na tekstowym porównywaniu formuł,
wykrywaniu i usuwaniu niezgodności przez określanie odpowiednich podstawień, aż
do uzyskania pełnej zgodności bądź do wyczerpania możliwości podstawień.

Definicja 10.6.

Niech t i q będą tematami. Parą niezgodną nazywa się takie podtermy t' i q' ter-
mów t i q, że:

• pierwsze symbole t' i q są różne

• do chwili wystąpienia podtermów t' i q (licząc od lewej do prawej strony)
termy t i q są identyczne.

Zbiorem niezgodności dla formuł pdh, •••, tn) i P^ą\, • ••, dó jest zbiór złożony
z pary parametrów niezgodnych dla termów t,, qt dla najmniejszego ie {1, ..., n}.
Zbiorem niezgodności dla zbioru formuł opartych na tym samym symbolu pre-
dyatywnym jest zbiór niezgodności dla dowolnej pary formuł z tego zbioru.

Przykład 10.12
I - - ---------- 1

Dla podanych niżej par formuł zbiory niezgodności są następujące:

217

Zbiór formuł Zbiór niezgodności
{p(x),p(y)}

20), 9(10, 20))
(r(x,fix, y). z), dy, z, g(x, y)))
{r(x, f{x, y), z), r(x, z, g(x, y))}

(x,yl
U(x), 10)

{x,y)

Algorytm wyznaczania najbardziej ogólnego unifikatora
Dane: Zbiór formuł {cą,a„], n > 1.
Wynik: NOU^a\, ..., aj), gdy najbardziej ogólny unifikator istnieje, oraz odpo­

wiedź brak unifikatora w przypadku przeciwnym.

Procedura: Algorytm polega na cyklicznym wyliczaniu unifikatora w kolejnych
iteracjach numerowanych przez zmienną/:.

1. Wartości początkowe zmiennych algorytmu: k - 0, O0 = {a{,..., o^}, cr0 = £•

2. Jeżeli card{Ot) = 1, to algorytm się kończy i NOUfibo) = ak, w przypadku
przeciwnym wylicz zbiór niezgodności Nk dla Ot i przejdź do następnego
kroku.

3. Jeżeli w zbiorze niezgodności Nk występuje zmienna xk oraz term tk takie, że
xk nie występuje w tk, to przejdź do następnego kroku, w przypadku prze­
ciwnym zbiór <E>o nie jest unifikowany i algorytm się kończy.

4. Oblicz nowe podstawienie cą+1 = ak [ją. ::= 4], dokonaj unifikacji zbioru
formuł <&k unifikatorem [ją ::= /*], to znaczy Ot+i = [ją ::= ą], zwiększ
k o jeden i przejdź do kroku 2.

Przykład 10.13
I I

Niech

O = (pWx,fig(y))),p(z,fiz),fiu))}.

Obliczenia algorytmu unifikacji:

Ob = 8, Oq = O, Nq = {10, z], x0 "= z, to = 10
er, =oó [z ::= 10] = 8[z ::= 10] = [z ::= 10]
$1 = $0 [z ::= 10] = {p(j0, x,fig(y))), p(z,fiz),f(u))} [z ::= 10] =

= {p(10,x,/(g(y))),p(10,/(10),/(«))]
M = {*,./(10)},Xi ::=x, 0=/(10)
Oj =a{ [x ::=/(10)] = [z ::= 10] [x ::=/(10)] = [z ::= 10, x ::=/(10)]
$2= Oi [x ::=/(10)] = {p(10,x,/(g(y))),p(10,/(10),/(u))} [x ::=/(10)] =

= {p(10,/(10),/(g(y))),p(10,/(10), fiu))}
^2 = {^0), u)},x2::=u, t2 = g(y)
ai=a2 [u ::= g(y)] = [z ::= 10, x ::=/(10), u ::= g(y)]

218

<D3 = $2 [u ::=^)] ={p(10,/(10),/(g(y))),p(10,/(10),/(M))) [w ::=g(y)] =
= {p(10,/(10),/(g(y))),p(10,^ =
= {p(io, AiO),A^(y)))}

। Zbiór 03jest singletonem, zatem NOU^) = 03 = [z ::= 10, x : :=/(10), u ::= g(y)]. ।

Przykład 10,14
! I

Niech

^={^(10), g(x))), q(y,y)}.

Obliczenia algorytmu:

Ob = £, $0 = No = {/(10), x), x0 ::= y, t0 =/(10)
CTi=Ob[y::=/(10)] = [y::=/(10)]

= 0O [x ::=/(10)] = {^(10), gW), q(x,x» [x ::=/(10)] =
= {^(AlO), g(x))), 9(/-(10),/(10))}

N, = {g(x),/(10)}

। W zbiorze niezgodności M nie ma zmiennej, zatem zbiór 0 nie jest unifikowalny. ।

Twierdzenie 10.3

Przedstawiony algorytm zawsze kończy się po skończonej liczbie iteracji. Jeżeli
zatrzyma się w kroku 2, to ostatnio obliczone podstawienie o* jest najbardziej
ogólnym unifikatorem zbioru formuł 0. Jeżeli zatrzyma się w kroku 3, to zbiór
formuł 0 nie posiada najbardziej ogólnego unifikatora.

Dowód

Dowód zawarty jest, na przykład, w książce [Szałas 1991].

10.5. Zasada rezolucji dla rachunku kwantyfikatorów

Zasada rezolucji dla rachunku kwantyfikatorów zakłada, że formuły są w postaci
skolemowskiej. Pozwala to na stwierdzenie, że - tak jak w przypadku rachunku zdań
- formuła jest reprezentowana przez zbiór klauzul.

Literały p^tt, ..., tn) oraz —ip(t'i, ..., t'„) dają się uzgodnić, gdy istnieje najbardziej
ogólny unifikator NOU{p(ti, ..., tn),p(t'i, ..., t'n)} = a Możliwość uzgodnienia litera­
łów oznacza, że formuły

p(h......tja oraz ..., /'Jer

219

są literałami komplementarnymi, er będzie nazywane najbardziej ogólnym unifikato-
rem skojarzonym z literałami p(ti,..., t„) oraz -ip(t'i,..., t'„).

Definicja 10.7

Schemat reguły rezolucji ma postać:

(k, \ A, u k2 \ A2)cr

gdzie A^Ki, A2£K2 są dającymi się uzgodnić literałami, a crjest najbardziej ogól­
nym, skojarzonym z nimi, unifikatorem. Klauzulę (k\\A| u ks^) er nazywa się re-
zolwentą klauzul Kj, k2 i oznacza symbolicznie rez^, K2).

Dalej przyjmuje się, że rozpatrywane klauzule są sfaktoryzowane. W przypadku ra­
chunku zdań oznacza to, że nie ma w nich powtarzających się literałów. W przypadku
rachunku kwantyfikatorów sytuacja jest bardziej złożona. Na przykład - jak łatwo
zauważyć - zbiór klauzul {p(x) v p(u), -p(y) v —ip(v)} jest niespełnialny, ale nie
można tego wykazać za pomocą reguły rezolucji. Dlatego wprowadza się pojęcie
faktora klauzuli.

Definicja 10.8

Jeżeli ojest najbardziej ogólnym unifikatorem pewnego podzbioru literałów klau­
zuli K, to klauzulę k' uzyskaną z kprzez zastosowanie do niej er i usunięcie powta­
rzających się literałów nazywa się faktorem klauzuli K. Klauzula jest sfaktoryzo-
wana,]QŚ\\ dowolny podzbiór jej literałów nie posiada wspólnego unifikatora.

Przykład 10.15r---------------------------------- ।
Faktorem klauzuli p(z, y) v p(x, g(xj) jest p(x, g(x)), gdyż

NOU(p(z, y), p(x, g(x)j) = [z ::= x, y ::= g(x)].

Zbiór klauzul {p(x) v p(u), ->p(y) v -ip(v)}, po faktoryzacji, przekształca się
t w zbiór {p(x),-,p(y)}. j

Algorytm badania spełnialności zbioru klauzul
Dane', formuła a rachunku kwantyfikatorów.
Wynik: odpowiedź tak, gdy formuła jest spełnialna, nie - w przypadku przeciwnym.
Procedura:

1. Dla formuły et wyznaczyć Skol(a) - algorytm z p. 10.3.

2. Wyznaczyć zbiór klauzul 5 reprezentujących Skol(a) i dokonać ich faktoryzacji.

3. Powtarzać następujące czynności:

220

while

□gS i istnieją klauzule Ki, k2gS dające rezolwentę nie należącą do S

do

(a) znajdź klauzule Kb k2, które dają się uzgodnić, znajdź dla nich najbar­
dziej ogólny unifikator cri wylicz ich rezolwentę rez(K\, K2),

(b) zastąp S przez S', gdzie S' = S u rez(K{, k2)

od
4. Jeżeli 5 zawiera klauzulę pustą odpowiedz nie, w przypadku przeciwnym -

odpowiedz tak.
Przykład 10.16
I 1

Niech będzie dany zbiór 5 klauzul:

{p(x, g(x)), -,p(u, v) v <7(10), -,p(w, g(10)) v q(w)}

Obliczenia algorytmu są przedstawione w podobnej konwencji jak dla rachunku
zdań - poszczególne klauzule są zapisane w ponumerowanych wierszach.
W następnych wierszach są zapisane klauzule uzyskane ze zbioru 5 w wyniku sto­
sowania reguły rezolucji. Po prawej stronie klauzuli są podane numery klauzul,
które były przesłankami do jej uzyskania oraz zastosowane unifikatory:

(l)pU g(x))
(2)^p(M, v)v9(10)
(3)->p(w, g(10)) v->ę(w)
(4)^(M,v)v^(10,g(10)) (2), (3)
(5) ^(10,g(10)) (4)
(6) □ (1),(5)

[w::= 10]
faktoryzacja
[x ::= 10]

Wyprowadzenie klauzuli pustej oznacza, że 5 jest niespełnialnym zbiorem klauzulą

Reguła rezolucji wyznacza specyficzny system dowodzenia R. Specyfika polega na
tym, że system R nie posiada aksjomatów i ma tylko jedną regułę wnioskowania -
regułę rezolucji. System R jest systemem semantycznie poprawnym i zupełnym. Do­
kładnie precyzują to następujące twierdzenia.

Twierdzenie 10.4

Jeżeli istnieje wywód rezolucyjny klauzuli kk zbioru klauzul {k\,..., Kn}, to klau­
zula Kjest semantyczną konsekwencją zbioru {k, ..., Kn], symbolicznie:

Jeśli {Kb ..., Kn} }-rk, to {Kj, ..., k„] t= K.

Dowód

Prosty dowód twierdzenia sprowadza się do pokazania, że pojedynczy krok wnio­
skowania rezolucyjnego - wyliczenie rezolwenty dla klauzul-przesłanek - wyzna­

221

cza klauzulę, która jest konsekwencją semantyczną klauzul-przesłanek (twierdze­
nie 10.1).

Twierdzenie 10.5

Jeżeli zbiór klauzul {Kj, ..., k„} jest niespełnialny, to istnieje wywód rezolucyjny
klauzuli pustej ze zbioru {Kj,..., k,,}, symbolicznie:

Jeśli {Ki,..., k,,} ł=false, to {Ki,..., k„) □.

Dowód

Dowód twierdzenia, tu pominięty, jest zawarty, na przykład, w książce [Szałas
1991],

Należy wskazać na ograniczoność użytego tu pojęcia zupełności semantycznej
w stosunku do pojęcia używanego w podrozdziale 9.7. Reguła rezolucji nie pozwala
bowiem na wyprowadzenie wszystkich klauzul, które są semantyczną konsekwencją
danego zbioru klauzul, pozwala natomiast na stwierdzanie niespełnialności dowol­
nego zbioru klauzul. Ograniczoność używanego pojęcia zupełności jest rekompen­
sowana większą efektywnością obliczeniową algorytmu badania spełnialności zbio­
ru klauzul w stosunku do algorytmu badania tautologii opartego na rachunku
sekwentów Gentzena.

10.6. Klauzule Horna w programowaniu logicznym

Zasada rezolucji ma szczególne zastosowanie w przypadku, gdy formuły są przedsta­
wione w postaci zbioru klauzul Horna.

Definicja 10.9

Klauzulę nazywa się klauzulą Horna, gdy zawiera co najwyżej jeden literał pozy­
tywny.

W dalszej części rozdziału pozytywne literały będą oznaczane symbolami: Ah A2, ...,
a literały negatywne będąjawnie poprzedzane symbolem negacji: -1A1, -1A2, Zatem
klauzula Horna ma postać:

A v -iA| v ... v -iA„

gdzie A jest literałem opcjonalnym oraz n^Nat.

Klauzule Horna są podstawą programowania w logice. Program logiczny jest zbiorem
klauzul Horna {Kj, ..., Kn} posiadających literał pozytywny. Obliczenie programu po­

222

lega na udzielaniu odpowiedzi na pytanie, czy dana formuła w postaci koniunkcji lite­
rałów Ai a ... a A„ jest konsekwencją semantyczną klauzul stanowiących treść pro­
gramu, czyli, czy {Ki,..., k„} t= Ai a ... a A„.

Udzielenie odpowiedzi na zadane pytanie sprowadza się do zbadania spełnialności
zbioru formuł {Kt,..., K„} u {-i(A, a ... a A„)}, czyli zbioru klauzul:

{Ki,..., K„} u {-.A, v ... v-,An}.

W programowaniu w logice dla klauzul Horna używa się specyficznej notacji. Wyni­
ka ona z następujących równoważności semantycznych:

A v -nA| v ... v -iA„ = A v —1(Ai a ... a A„) = (A[a ... a A„) => A

Ostatnią implikację zapisuje się w postaci odwróconej implikacji:

A <= Ai, ..., A„

z zastąpieniem przecinkami symboli koniunkcji. Szczególne postaci klauzuli Horna,
zapisywane w przedstawionej konwencji, mają w programowaniu logicznym specy­
ficzne nazwy:

A <= Ah ..., A„ - pełna postać klauzuli jest nazywana regułą,
A <= - klauzula bez literałów negatywnych jest nazywana faktem,
<= Ai, ... , An - klauzula bez literału pozytywnego - zanegowane pytanie,
□ - klauzula pusta - sprzeczność.

Klauzule-fakty i klauzule-reguły, jako klauzule zawierające literały pozytywne, sta­
nowią treść programu logicznego. Zbiór tych klauzul określa się jako wiedzę, którą
dysponuje program. Na podstawie posiadanej wiedzy program może udzielać odpo­
wiedzi na kierowane do niego pytania.

W nowej konwencji zapisu reguła rezolucji dla rachunku kwantyfikatorów przyjmuje
postać:

<=A,A„...,At A <=Ai',...,A, gdzieg = N0U(az) dlak l>0<
s A er,..., A^' ćt , Aj o*,..., A* er

Wyznaczenie rezolwenty klauzul:

<= A, A[, ..., An
A' <= A'i, ..., A'„

sprowadza się do znalezienia najbardziej ogólnego unifikatora er dla literałów A oraz
A', a następnie do tekstowego zastąpienia literału A w pierwszej z klauzul, przez pra­
wą stronę drugiej z klauzul, ukonkretnioną podstawieniem er, i ukonkretnienie pozo­
stałych jej literałów, również podstawieniem cr.

223

Wprowadzone pojęcia i oznaczenia pozwalają na przedstawienie prostych programów
logicznych.

Przykład 10.17
I ’ I

Treść prostego programu złożonego tylko z faktów przedstawia się następująco:

(1) kocha^EWA, JAN) <=
(2) kocha^EWA, JACEK) <=
(3) kocha(JAN, KASIA) <=

Każdy z faktów składa się z dwuargumentowego predykatu kocha. Argumentami
faktów są stałe reprezentowane napisami JAN, EWA, JACEK, KASIA.

Faktom tym można przypisywać pewną interpretację, na przykład, kocha(A,B)
można rozumieć, że pewien obiekt (osoba), reprezentowana przez stałą A, „kocha”
inny obiekt (osobę), reprezentowaną przez stała B. Należy zwrócić uwagę, że
zwrot ,A kocha B” należy do dziedziny interpretacji.

W przypadku pytania:

Czy prawdąjest, że kocha^JAN, KASIA)!

program, na podstawie posiadanej wiedzy, odpowie oczywiście tak.

Odpowiedź wynika ze stwierdzenia niespelnialności zbioru złożonego z klauzul
stanowiących treść programu i klauzuli:

(4) <= kocha(JAN, KASIA)

stanowiącej negację pytania. Na postawie reguły rezolucji, z klauzul (3) i (4) wy­
nika bowiem rezolwenta pusta:

<= kochaUAN, KASIA) kocha(JAN, KASIA) <=

□

Natomiast na pytanie:

Czy prawdąjest, że kocha^KASIA, JAN)!

ten sam program da oczywiście odpowiedź negatywną. Wynika to z tego, że ze
zbioru zawierającego klauzule (1), (2), (3) oraz klauzulę (5) postaci:

(5) <= kocha^JAN, KASIA)

nie daje się wyprowadzić żadnej nowej klauzuli, a zbiór ten nie zawiera klauzuli
L pustej. !

Należy zwrócić uwagę na sens negatywnej odpowiedzi udzielanej przez program.
Mechanizm odpowiedzi opiera się na tak zwanym założeniu o zamkniętości świata.
Oznacza to, że program przyjmuje za fałszywe wszystko to, co nie da się udowodnić

224

na gruncie posiadanej przez niego wiedzy. Odpowiedź negatywną należy ściśle rozu­
mieć następująco: na gruncie posiadanej wiedzy nie daje się stwierdzić, że zdanie sta­
nowiące pytanie jest logiczną konsekwencją wiedzy posiadanej przez program.

Przykład 10.18
I --------------- ------ ---------------- ------ ’----------- ------------------------ --------- I

Niech program złożony z faktów i jednej reguły przedstawia się następująco:

(1) kocha(EWA, JAN) <=
(2) kocha(EWA, JACEK) <=
(3) kochajAN, KASIA) <=
(4) kocha(x, y) <= kochały, x)

W odpowiedzi na pytanie:

Czy prawdąjest, że kochałKASlA, JAN)1?

program dołączy do swojej treści klauzulę stanowiącą negację pytania:

(5) <= kocha(KASIA, JAN)

i może podjąć obliczenie:

(6) <= kocha{JAN, KASIA) z (4), (5), dla cr= [x ::= KASIA, y ::= JAN]
(7) □ z (3), (6)

co daje podstawę do odpowiedzi tak.

Pytania, już w postaci zanegowanej, mogą mieć postać ogólniejszą, na przykład:

(5a) <= kocha(KASIA, z)
(5b) <= kochasz, JAN)

Odpowiedź na takie pytania nie sprowadza się tylko do stwierdzenia tak albo nie.
Polega ona na wskazaniu tych wszystkich obiektów, reprezentowanych przez
zmienną z, dla których pytanie będzie prawdziwe.

W celu udzielenia odpowiedzi na pierwsze z tych pytań obliczenia programu mogą
być następujące:

(6a) <= kochasz, KASIA) z (4), (5a), dla [x ::= KASIA, y : := z]
(7a) □ z (3), (6a),dla[z::=JAN]

Obliczenie kończy się wygenerowaniem klauzuli pustej, przy ustalonym warto­
ściowaniu zmiennej z. Informacja zawarta w ostatnim unifikatorze jest podstawą
do odpowiedzi, wartość przypisywana zmiennej z wskazuje na poszukiwany
obiekt. Odpowiedzią na pytanie będzie więc zbiór jednoelementowy {JAN}.

Odpowiedzi na pytanie (5b) można udzielić na podstawie dwóch różnych obliczeń:

(6b) □ z(l), (5a), dla [z ::= £WA]

225

oraz

(6bz) <= kocha(JAN, z)
(7b) □

z (4), (5b), dla [x ::= z]
z (3), (5a), dla [z:.= KASIA]

Obliczenia prowadzą do wskazania dwóch różnych obiektów, stąd odpowiedzią na
pytanie jest zbiór dwuelementowy {EWA, KASIA}. j

Ćwiczenia

1. Następujące formuły sprowadzić do postaci skolemowskiej:

a) By • (y < 1)
b) Vx • By • (x < y)
c) Vx • Vy • Bz • ((x < y) => (x < z) a (z < y))

2. Pokazać przykład formuły, dla której odpowiednik w postaci skolemowskiej nie
jest jej równoważny semantycznie.

3. Sprawdzić, które z podanych niżej zbiorów klauzul są zbiorami spełnialnymi:

a) (a v-! b, a v c, b a —ic}
b) {-\a -i b, bv -ic, b, a}
c) [a v b, a, -ib, -ia v c}

4. Stosując metodę rezolucji zbadać spełnialność niżej podanych formuł:

a)(pvę) <=>(-npA->g)
b) p v (q v r) <=> (p v q) v r
c) (a => b) a (—^b => —id) => a

5. Wyznaczyć najbardziej ogólny unifikator dla formuł:

a)p(y, 1)
b) q(x, y)
c) p{x, y)

P(x, 2)
q(y,x)

y)
d)p(x,/(x)) p(yM)
e) r(/z(x, y)),/(z)) rWgW. ylflfM))

gdzie p, q, r są symbolami predykatów,/, g, h - symbolami funkcji, x, y, z - sym­
bolami zmiennych indywiduowych.

6. Dany jest zbiór klauzul:

226

(1) samochód^) <= pojazd(x), ma_4_koła(x)
(2) jeździ(x) <= samochód(x)
(3) pojazd{x) <= polonez^)
(4) ma_4 _koła(x) <= połonez(x)
(5) <= polonez(WCL_2222)

Metodą rezolucji znajdź odpowiedź na pytanie czy jeździ(WCL_2222).

7. Zagadnienia przedstawione w niżej podanej postaci sprowadzić do programu lo­
gicznego. Sprawdzić, czy przedstawione wnioski są poprawne.

a) Wszyscy ludzie są śmiertelni.
Sokrates jest człowiekiem.
Zatem: Sokrates jest śmiertelny.

b) Wszyscy wykładowcy są zdecydowani.
Każdy kto jest zdecydowany i inteligentny świadczy dobre usługi.
Klara jest inteligentnym wykładowcą.
Zatem: Klara świetnie wykłada.

11. ZAGADNIENIA UZUPEŁNIAJĄCE

11.1. Wstęp

Każdy sformalizowany system dedukcyjny (system dowodzenia) jest określony jako
para <A, R>, gdzie A jest zbiorem aksjomatów, R - zbiorem reguł dedukcyjnych (re­
guł wnioskowania). Wyróżnia się dwa rodzaje systemów dedukcyjnych logiki: syste­
my aksjomatyczne i systemy dedukcji naturalnej. Zasadniczą cechą systemów deduk­
cji naturalnej jest to, że posiadają dwa rodzaje reguł wnioskowania: reguły
wprowadzania i reguły eliminacji spójników logicznych. Rodowód systemów aksjo-
matycznych sięga końca XIX wieku, natomiast systemy dedukcji naturalnej powstały
w latach trzydziestych XX wieku, a ich inicjatorami byli Gentzen i Jaśkowski22.

22 Stanisław Jaśkowski (1906-1965).
23 David Hilbert (1862-1943).
24 Kurt Godeł (1906-1978).

Do systemów aksjomatycznych zalicza się, między innymi, systemy Hilberta23, syste­
my tablic analitycznych, zaś najpowszechniej stosowany system dedukcji naturalnej
pochodzi od Gentzena. Rozdział przedstawia w zarysie tylko system Hilberta i system
dedukcji naturalnej Gentzena.

Systemy dowodzenia Hilberta uznaje się za tradycyjne. Mają one zarówno znaczenie
historyczne, jak i szerokie zastosowanie w praktyce matematycznej. Na początku XX
wieku Hilbert zainicjował w zakresie podstaw matematyki kierunek określany jako
formalizm. Formalizm skupiał się na poszukiwaniu systemu, przy zastosowaniu które­
go dałoby się, w skończonym postępowaniu, udowodnić dowolne twierdzenia mate­
matyki. Prace Godła24, w latach trzydziestych XX wieku, zakończyły te poszukiwania
pokazując, że budowa takiego systemu nie jest możliwa, ale systemy dowodzenia Hil­
berta pozostały użyteczne do dzisiaj.

System Hilberta był w zasadzie pierwszym formalnym systemem aksjomatyzacji. Jest
to system uniwersalny, gdyż znajduje zastosowanie nie tylko w logice klasycznej, ale
także w logikach nieklasycznych. W odróżnieniu od poprzednio omawianych syste­

228

mów dowodzenia, które opierały się na dowodzeniu nie wprost, dowodzenie w syste­
mach Hilberta polega na konstrukcji dowodów wprost.

Gentzen opracował dwie różne metody dedukcji, każdą w dwóch wariantach - jeden
dla logiki klasycznej i drugi dla logiki intuicjonistycznej. Jedna z tych metod to omó­
wiony wcześniej rachunek sekwentów, a druga to metoda dedukcji naturalnej. Poniżej
omawia się system dedukcji naturalnej tylko dla logiki klasycznej.

System dedukcji naturalnej dla rachunku zdań przypomina system dowodzenia dla
rachunku zdań oparty na rachunku sekwencji. System dedukcji naturalnej ma te same
reguły eliminacji spójników logicznych. Ponadto system posiada reguły wprowadza­
nia spójników logicznych. Specyficzną właściwością systemu jest to, że w regułach
mogą występować wyróżnione zdania, które traktuje się jako założenia (hipotezy ro­
bocze). Założenia takie są przydatne do wyprowadzania pewnych wniosków, po czym
- po wyprowadzeniu takich wniosków - z założeń tych można zrezygnować. Oznacza
to, że wyprowadzone wnioski są słuszne niezależnie od poczynionych początkowo
założeń. Ten sposób postępowania jest często stosowany w praktyce dowodowej
i stąd bierze się termin dedukcji naturalnej.

11.2. Systemy dowodzenia Hilberta

Przedstawiany poniżej system Hilberta odnosi się tylko do klasycznego rachunku
zdań i rachunku kwantyfikatorów.

System dowodzenia Hilberta H składa się z dwóch elementów: zbioru aksjomatów
oraz zbioru reguł inferencji (lub wnioskowania'), czyli zasad tekstowej transformacji
jednych formuł w inne. Reguły na podstawie pewnych formuł wyprowadzają nowe
formuły. Mówi się, że na podstawie reguł pewne formuły wynikają z innych.

Definicja 11.1

Dowodem w systemie H nazywa się skończony ciąg formuł a^, ..., an taki, że
każda z formuł jest albo aksjomatem, albo wynika z poprzednich formuł w wy­
niku zastosowania jednej z reguł wnioskowania. Formułę an nazywa się twier­
dzeniem w systemie H.

Definicja 11.2

Derywacją ze zbioru formuł O w systemie H nazywa się skończony ciąg formuł ah
otn taki, że każda z formuł jest albo aksjomatem, albo jest jedną z formuł zbioru

O, albo wynika z poprzednich formuł w wyniku zastosowania jednej z reguł wnio­

229

skowania. Formułę an nazywa się konsekwencją składniową ze zbioru O w syste­
mie H.

Fakt, że formuła a jest konsekwencją składniową ze zbioru formuł O w systemie H,
zapisuje się w postaci:

O a.

Zamiast 0 a pisze się a, co oznacza, że ot jest twierdzeniem. Symbol h jest na­
zywany symbolem konsekwencji składniowej.

Dla klasycznego rachunku zdań, opartego na funkcjonalnie zupełnym zbiorze spój­
ników logicznych zawierającym negację -i, implikację => i stałe logiczne false
i true, przykładowy system Hilberta składa się z następujących schematów aksjo­
matów:

Schematy aksjomatów

1. a => (/3 => a) - prawo symplifikacji,
2. (a=> {fi => y)) => ((«=> fi) => (a=> y)) - prawo Fregego,
3. false => a
4. a => true
5. -r-ta=> a
6. a => (-ia => fi)
7. (a a fi) => a
8. (a a fi) => fi

9. (a=>Y)=>fifi^Y)^(a\'fi^>Y))

Schemat aksjomatu oznacza faktycznie nieskończony zbiór formuł, które różnią się od
formuły występującej w schemacie aksjomatu tym, że każde wystąpienie symbolu a,
fi Y może być zastąpione dowolną formułą. Symbole a, fi Y są więc symbolami po­
mocniczymi reprezentującymi dowolne formuły.

Jedyną regułą wnioskowania jest reguła odrywania {modus ponens):

a,a => [i
P

Sens reguły jest następujący: jeżeli w trakcie pewnej derywacji wyprowadzono for­
muły a oraz a => fi, to niezależnie od interpretacji jaką przypisuje się formułom
a oraz fi, dopuszczalnym wnioskiem jest fi.

Czasem system Hilberta przedstawia się inaczej. Zamiast schematów aksjomatów
wprowadza się aksjomaty i dodatkową regułę podstawienia {zastąpienia). Reguła
podstawienia pozwala na zastąpienie zmiennych zdaniowych występujących w for­
mule przez inne formuły. Formalnie, reguła podstawienia ma postać:

230

a
a[a p]

gdzie a, P są dowolnymi formułami, zaś a jest zmienną zdaniową. Zapis ct[a ::= P]
oznacza formułę, która powstaje z formuły a przez tekstowe zastąpienie każdego wy­
stąpienia zmiennej a przez formułę p.

Przykład 11.1[-------------------------- ----- --- ,
Formuła a => <2 jest twierdzeniem. Dowodem dla tej formuły jest ciąg formuł:

(l)(a => {(a => a) => a)) => ((a =>(«=> a)) => (a => a))
- aksjomat 2 z [a ::= a, y "= a, P ::= a=> a]

(2)(a => ((a => a) => a) - aksjomat 1 z [a ::= a, P ::= a=> <2]
(3) (a => (a => a)) => (a => a) - reguła odrywania zastosowana do (1), (2)
(4)o => (a => a) - aksjomat Iz [a ::= a, P ::= a]

, (5) a => a - reguła odrywania zastosowana do (3), (4)

Przykład wskazuje na uciążliwość w prowadzeniu dowodów dla bardziej złożonych
formuł. Ponadto, nie nasuwa ten przykład wskazówek dotyczących taktyki prowadze­
nia dowodów. W stosunku do wcześniej przedstawionych systemów dowodzenia,
system Hilberta jest trudniej algorytmizowalny.

Chociaż system Hilberta jest uciążliwy w stosowaniu do logiki klasycznej, to często
jest on stosowany w logikach nieklasycznych, gdy zawodzą inne systemy. Dlatego
poniżej przedstawia się zarys algorytmu postępowania przy dowodzeniu formuł z za­
stosowaniem systemu Hilberta H =4^ <4, R>, złożonego ze zbioru aksjomatów A =def
{Ai, ..., A,,} i zbioru reguł R =def {Ri,..., /?„,}.

Algorytm automatycznego wnioskowania w systemie dowodzenia Hilberta H
Dane\ Formuła a.
Wynik'. Odpowiedź tak, gdy a jest twierdzeniem w systemie Hilberta, oraz nie

w przypadku przeciwnym.
Procedura'.

1. Niech Ćb będzie zmienną reprezentującą zbiór formuł, a początkowa zawar­
tość zbioru O = A.

2. while ag <b oraz —>ag d?

do
stosuj reguły ze zbioru R przyjmując za ich przesłanki formuły ze zbioru
d> i rozszerzaj zbiór d> o nowo otrzymane wnioski

od
3. Jeżeli as O, to odpowiedz tak, jeżeli —iaed> - odpowiedz nie.

231

Poniżej przedstawia się twierdzenie o dedukcji. Twierdzenie to, udowodnione nieza­
leżnie przez Tarskiego i Herbranda, ma znaczenie praktyczne, gdyż jego dowód poka­
zuje jak derywację {cr} P można, w sposób konstruktywny, przekształcić w dowód
twierdzenia a => p. Ponieważ na ogół jest łatwiej znaleźć derywację niż dowód,
twierdzenie pozwala na oszczędność wysiłku.

Twierdzenie 11.1 (Twierdzenie o dedukcji)

W dowolnym systemie H zawierającym przynajmniej schematy aksjomatów 1, 2
oraz regułę odrywania jako jedyną regułę wnioskowania, derywacja:

O u {a} p

zachodzi wtedy i tylko wtedy, gdy zachodzi derywacja:

^hH(a^> P).

Dowód

Jeżeli zachodzi C> (a=> P), to oczywiście zachodzi u {a} hu p.

Wynikanie w przeciwnym kierunku jest trudniejsze do pokazania. Niech

O u {a} hfl P

czyli istnieje pewien ciąg formuł

Y\,Yn (Di)

który jest derywacją/J ze zbioru u {a}. Formuła y, dla i = 1, ..., n, jest elemen­
tem zbioru u {a} lub wynika z formuł poprzedzających w wyniku zastosowania
reguły odrywania, dodatkowo Yn = P- Ciąg (D\) można przekształcić w ciąg stano­
wiący derywację a=> P ze zbioru O. Najpierw każdą formułę z (Dj) poprzedza się
prefiksem «=>, tworząc ciąg:

a=^Yi,-,a^Yn (D2)

Ciąg ten kończy się formułą a=$ P, gdyż Yn = P- Ciąg (£>2) nie jest jeszcze prawi­
dłową derywacją. Przekształca się go dołączając dodatkowe formuły zgodnie
z następującymi zasadami.

Jeżeli Yi jest aksjomatem lub elementem zbioru <I>, to przed a => y umieszcza się
dwie dodatkowe formuły:

Y, Y=>(a=^ Y)

Jeżeli Yi jest formułą a, to przed a => a umieszcza się ciąg formuł stanowiących
dowód dla formuły a (patrz przykład 1).

Jeżeli Yi w ciągu (Di) pojawia się jako wniosek z zastosowania reguły odrywania,
to oznacza, że istnieją takie Yj, Yk, dla j, k < i, przy czym Yk = YjYi- W ciągu (D2)

232

elementom tym odpowiadają formuły: a => Yj oraz a => yk (czyli a=> (Yj => YiP-
Przed formułę a=> Yj wstawia się formułę:

(a => (y, => Y?) => (a Yi)
która jest aksjomatem, oraz formułę:

(a=*yp=>(a=>Yi)
która wynika z zastosowania reguły odrywania do formuł ją poprzedzających. Te­
raz również formuła a=> Yi wynika z zastosowania reguły odrywania do formuł ją
poprzedzających. Łatwo sprawdzić, że tak zmodyfikowany ciąg (D2) stanowi de-
rywację formuły a=$ Pze zbioru O.

Przykład 11.2
I ”............ "...... I

Formuła (a => (/3 => y)) => (^3 (a => y) jest twierdzeniem. Można to pokazać
korzystając z twierdzenia o dedukcji. Najpierw należy zauważyć, że:

(a=*(P=>Y), P, a} ^hy

co wynika z następującej derywacji:

(1) a^(p^y)
(2) a
(3) £=> y
(4) P
(5) y

- element zbioru {a => (P => y), P, a]
- element zbioru {a=> (P => y), P, a]
- reguła odrywania zastosowana do (1), (2)
- element zbioru {«=> (P => y), P, a}
- reguła odrywania zastosowana do (3), (4)

Z twierdzenia o dedukcji wynika, że:

{a=>(p^Y), P} hHa=>y

oraz ponownie:

[a^ (P^y)} hHp=^(a=> y)

i ostatecznie:

। \-H (a => (p => y)) =Up=> (a => y) ,

Systemów dowodzenia Hilberta dla rachunku zdań jest wiele. Przedstawiony niżej
system różni się od systemu przedstawionego poprzednio tylko zbiorem aksjomatów.
Wynika to z tego, że aksjomaty zawierają tylko negację i implikację. Przypomina się,
że rachunek zdań wykorzystujący tylko te spójniki jest funkcjonalnie zupełny. Pozo­
stałe spójniki mogą być definiowane za pomocą spójników podstawowych. W defini­
cjach tych wykorzystuje się wcześniej wprowadzone pojęcie równoważności seman­
tycznej.

233

Aksjomaty

1. (a=> (P => a)) prawo symplifikacji,
2. (a=> (P => y)) => ((«=> P)=> yP prawo Fregego,
3. (-=> (a => PP prawo Dunsa Scotusa,
4. ((—ićz =>«)=> a) prawo Claviusa.

W razie potrzeby użycia dodatkowych spójników lub stałych logicznych, wprowadza
się ich definicje jako złożenie implikacji i negacji. Na przykład:

Definicje

1. aA^=def-i(a=>-ij3)
2. a v P = def (-.a => P)
3. (tt«y3)=def(a=>/3) aO=>«)
4. true =def a => a
5. false =def-,(«=> a)

Definicje pozwalają na tekstowe zastąpienie w dowolnej formule dowolnej jej pod-
formuły, równoważnej tekstowo z jedną ze stron definicji, przez drugą ze stron tej
samej definicji.

System Hilberta dla rachunku kwantyfikatorów ma wszystkie aksjomaty i reguły sys­
temu dla rachunku zdań oraz dodatkowo jeden schemat aksjomatu i jedną regułę:

Schemat aksjomatu

10. (Vx • a) => ::= r]

Reguła uogólniania

—— pOCj warunkiem, że xg FY^a)

Szczególna postać tej reguły jest następująca:

P
Vx»P

Przykład 11.3
I I

Rozpatruje się zarys dowodu dla formuły:

(Vx*(p(x) A^(x)))=>(Vx*p(x)) (1)

Przyjmując, że t = x, na podstawie schematu aksjomatu 10, zachodzi implikacja:

W* • (p(x) a q(xP) => (p(x) a q(xp (2)

Łatwo sprawdzić, że tautologiąjest formuła:

(p(x) a q(xp => p(x) (3)

234

Z implikacji (2) i implikacji (3), na podstawie wnioskowania łańcuchowego, wyni­
ka formuła:

(Vx • (p(x) a ę(x))) => p(x) (4)

Stąd i z reguły uogólniania wynika, że:

j (Vx • (pW ę(x))) => (Vx • p^)) j

Dla systemu Hilberta dla rachunku kwantyfikatorów zachodzi twierdzenie o dedukcji,
tak jak dla systemu Hilberta dla rachunku zdań.

System Hilberta H dla rachunku kwantyfikatorów jest semantycznie niesprzeczny
i semantycznie zupełny, tzn. dla dowolnego zbioru formuł O zachodzi twierdzenie:

Twierdzenie 11.2

a wtedy i tylko wtedy, gdy O t= a.

11.3. System dedukcji naturalnej Gentzena

Rozpatruje się rachunek zdań oparty na zbiorze spójników logicznych zawierającym
stałe true, false, negację -i, koniunkcję a i implikację =>.

Zestaw reguł wprowadzania (oznaczanych symbolem Z) oraz eliminacji (oznaczanych
symbolem E) jest następujący:

false
(true Z) ----- (false E)-------

true a
[a] [-na]

HO — HO — HO^
—m a false

(aE)^ (aE)^
a/\ p a p

[a]

(=>0 !
P

a=$ P

235

Reguły związane ze stałymi logicznymi są specyficzne. Reguła wprowadzania stałej
true (true Z) nie ma przesłanek, nie ma też reguły eliminacji tej stałej. Reguła elimi­
nacji false (false E) pozwala na wyprowadzenie z przesłanki false dowolnego wnio­
sku, nie ma natomiast reguły wprowadzania dla false.

Dla koniunkcji reguły wprowadzania (a /) oraz eliminacji (a /) są oczywiste: jeżeli
przesłankami są formuły a oraz P, to można wnioskować, że a a /3, oraz odwrotnie:
z przesłanki a a /3 można wnioskować, że a (lub, że /3).

Reguła eliminacji implikacji (=> E) jest poznaną wcześniej regułą odrywania.

Pozostałe reguły wymagają dodatkowych wyjaśnień.

Pierwszą z nich jest reguła wprowadzenia negacji (-1 F). Pozwala ona na wprowadze­
nie symbolu negacji przed dowolną formułę a na podstawie przesłanki, którą jest
wnioskowanie, że z założenia o prawdziwości a wynika false. Jest ona odzwiercie­
dleniem dowodzenia nie wprost przez sprowadzenie do sprzeczności. Przesłanka re­
guły mająca postać:

false

oznacza pewne wnioskowanie (oznaczone symbolicznie pionowym zestawem trzech
kropek :), które na podstawie założenia a prowadzi do wniosku false, czyli do
sprzeczności. Jeżeli na podstawie przyjętego założenia, że spełnione jest a otrzymuje
się sprzeczność - formułę false, to wnioskiem jest, że spełnione jest —M. Wniosek ten
jest przy tym niezależny od początkowo przyjętego założenia. Oznacza to, że od mo­
mentu przyjęcia wniosku —>a, założenie a staje się już nieprzydatne do dalszych
wnioskowań i można je usunąć, co symbolicznie oznacza się przez zamknięcie zało­
żenia w kwadratowe nawiasy [a].

Podobny komentarz odnosi się do reguły (-1 E): jeżeli przyjęte założenie -naprowadzi
do sprzeczności, to wnioskiem, jaki należy wyprowadzić, jest a.

Druga z reguł eliminacji negacji (-1 E) jest oczywista: jeżeli przesłankami wniosko­
wania są dowolna formuła i jej negacja, to wnioskiem jest stała false oznaczająca
sprzeczność.

W przesłance reguły wprowadzania implikacji (=> F) założeniem jest formuła a Jeżeli
pokaże się, że z tego założenia daje się wyprowadzić formułę (5, to oznacza, że nieza­
leżnie od tego założenia, zachodzi implikacja a=> p.

Poniżej przedstawia się przykłady zastosowania metody dedukcji naturalnej w dowo­
dzeniu prostych formuł. Podobnie jak w przypadku metody sekwentów, dowód (albo
ogólniej derywacja) ma strukturę drzewa: wierzchołki drzewa są etykietowane for­

236

mułami, a łuki - przejścia pomiędzy wierzchołkami - odpowiadają zastosowaniu od­
powiednich reguł.

Przykład 11.4

Poniższej przedstawia się drzewa dowodu dla trzech prostych formuł. Pierwsza
formuła ma postać: a a fi=> fi a a.

fi__________ a
fi Att

a/\fi=> fi Aa

W dowodzie tym korzysta się dwukrotnie tylko z jednego, tego samego założenia,
że a a fi. Założenia są numerowane. Po prawej stronie każdego przejścia podaje
się symbol wykorzystywanej reguły. Dodatkowo, w tych przypadkach, gdy wyko­
rzystanie reguły wiąże się z wykorzystaniem i usunięciem wprowadzonego założe-

। nia, podaje się numer tego założenia. ,

Przykład 11.5
i ■ . . ■.... ■■... -. q

Kolejny dowód dotyczy formuły a => -1-<a. Tym razem wykorzystuje się dwa za­
łożenia: a oraz —>a.

[«h ha],
------TT---------

a => -1->aL____________ ___._ ____________________________ _ I
Przykład 11.6
I .. I

Ostatni przykład, najbardziej złożony, dotyczy formuły: —i(a « -itz). W dowodzie
przyjmuje się, że równoważności przedstawia się jako koniunkcje implikacji, tzn.
formuła att fi jest skróconą formą zapisu (a => fi) a {fi => a). Stąd biorą się wy­
prowadzenia:

a <=> fi a <=> fi
a=> fi fi =} a

Ze względu na wymiary wywodu pominięto komentarze dotyczące stosowanych
reguł pozostawiając tylko numerację założeń i wskazania tych miejsc, w których
założenia zostały wykorzystane.

237

[a <=> -ia]3

W. a^-.a ^E) [a],
_____ ->a________________

false

[g <=> —.ce]3 [a]2
iO________________

false_______
5a

<a « -ia)

Przedstawione przykłady pozwalają na łatwiejsze zrozumienie kolejnych pojęć. Pierw­
szym z nich jest pojęcie derywacji. Derywacja jest drzewem, którego wierzchołki są
etykietowane formułami. Dalej, takie drzewa będzie oznaczane symbolem D.

Definicja 11.3

Zbiorem derywacji nazywa się zbiór DER, który jest zdefiniowany rekursywnie
w sposób następujący:

(1) Drzewo złożone z jednego wierzchołka etykietowanego formułą a jest derywacją.

D D'
D D' a B

(2) Jeżeli G DER, G DER, to -—<- G DER
a p a a p

D D
(3) Jeżeli D G DER, to DER oraz DER

a a p a p

[«]
a D

(4) Jeżeli De DER, to e DER

0
D D'

D D' oi oc —> B(5) Jeżeli G DER, g DER1V, to p g DER
a a=> fi p

D
(6) Jeżeli

false

D

eDER, to f-^-eDER
a

238

-ia
D

(7) Jeżeli D E DER, to eDER
false

false

Formuła, która jest korzeniem drzewa derywacji nazywa się wnioskiem. Liśćmi drze­
wa są założenia. Założenia mogą być zamknięte (skreślone) albo otwarte.

Definicja 11.4

Relacja $ hg a pomiędzy zbiorem formuł oraz formułą a, zdefiniowana nastę­
pująco: istnieje pewna derywacja, w której d> stanowi zbiór nie skreślonych zało­
żeń, zaś a jest wnioskiem, jest nazywana relacją derywacji.

System dedukcji naturalnej dla rachunku kwantyfikatorów jest rozszerzeniem zbioru reguł
dla rachunku zdań o dodatkowe reguły wprowadzania i eliminacji kwantyfikatora ogólnego:

(V/)
a

\!x»a
(VQ

Vx«a
a[xr]

W regule (V /) wymaga się, aby zmienna x nie występowała jako zmienna wolna
w żadnym z założeń, od których zależy formuła a, natomiast w regule (V E) wymaga
się, aby term t był wolny w formule a ze względu na zmienną x. Wymagania te są
istotne, gdyż - jak pokazują poniższe przykłady - ich niespełnienie prowadzi do fał­
szywych wniosków, czyli narusza semantyczną poprawność systemu.

Przykład 11.7
i------------------- ;------------- ;--------------- • i

Rozpatruje się następujące drzewo dowodu:

[x = 0]1
Vx«(x = 0)

(x = 0) => Vx • (x = 0)
Vx • ((x = 0) => Vx • (x = 0))

(0 = 0)=> Vx«(x = 0)

(VZ)
(=>/.)
(V/)
(V£)

Powodem absurdalnego wniosku jest niepoprawne zastosowanie reguły (V Z).

Przykład 11.8
[■“

Niepoprawne zastosowanie reguły (V £) prowadzi do następującego wywodu:

[Vx*-,Vy»(x = y)]1

-My •(x=y) [xy]

Vx • ->Vy • (x = y) => —A/y • (y = y)

(VE)
(=> Z)

239

Kolejny przykład jest ilustracją poprawnego stosowania reguł wprowadzania i elimi­
nacji kwantyfikatora ogólnego.

Przykład 11.9r----------------------- H
W dowodzie dwukrotnie wykorzystuje się regułę eliminacji i wprowadzania
kwantyfikatora ogólnego. Podczas eliminacji podstawienia tożsamościowe za
zmienne x, y zachowują odpowiednie wymogi. Podobnie podczas wprowadzania
kwantyfikatorów są zachowane odpowiednie wymogi, gdyż zmienne x, y nie mają
wolnych wystąpień w wykorzystywanym założeniu.

[Vx*Vy p(x, y)],

^•P(x, y)[x..= x]
P(x, y)[y"= y]

\/x»p(x,y)
Vy»Vx» p(x, y)

• Vy • p(x, y) => Vy • • p(x, y)

(V£)
(VE)
(V/)

(V/)

Pojęcie zbioru derywacji i relacji derywacji zdefiniowane dla rachunku zdań w oczy­
wisty sposób uogólnia się dla rachunku kwantyfikatorów. Podobnie jak dla systemu
Hilberta, dla dowolnego zbioru formuł <5 i formuły a zachodzi twierdzenie o seman­
tycznej niesprzeczności i semantycznej zupełności:

Twierdzenie 11.3

O hg a wtedy i tylko wtedy, gdy $ k cz.

11.4. Własności metalogiczne rachunku kwantyfikatorów

Logika klasyczna oparta na rachunku kwantyfikatorów jest scharakteryzowana przez język
o dobrze zdefiniowanej składni i semantyce oraz przez system dowodzenia.

Systemy dowodzenia różnią się od siebie doborem aksjomatów i reguł i wynikającym
z tego sposobem konstrukcji dowodów twierdzeń. Mają natomiast pewne wspólne
własności. Przedstawione systemy dowodzenia są semantycznie niesprzeczne i se­
mantycznie zupełne. Dodatkowo, co jest uznawane za szczególną własność logiki kla­
sycznej, nie istnieją algorytmy dowodzenia oparte na tych systemach, które gwaran­
towałyby, że w skończonej liczbie kroków można rozstrzygać, czy dowolna formuła
jest, czy nie jest tautologią. Rachunek logiki klasycznej, dokładniej rachunek kwanty­
fikatorów jest nierozstrzygalny, a ściślej, jest częściowo nierozstrzygalny. Oznacza to,

240

że dla dowolnej formuły, jeżeli formuła jest tautologią, to istnieje algorytm, który
w skończonej liczbie kroków zawsze to potwierdzi, natomiast w przypadku przeciw­
nym, gdy formuła nie jest tautologią, taki algorytm nie istnieje. Rozstrzygalne mogą
być natomiast pewne fragmenty rachunku logicznego, na przykład rozstrzygalne są
rachunek zdań, jednoargumentowy rachunek kwantyfikatorów.

Język logiki pozwala na budowanie teorii elementarnych (rozdział 8), służących do
opisu wybranego fragmentu interesującego świata. Język teorii elementarnej charakte­
ryzuje się przyjęciem specyficznej sygnatury języka formalnego, to jest symboli funk­
cyjnych i symboli predykatów, oraz specyficznej interpretacji (bądź klasy interpreta­
cji) tych symboli. Specyfika interpretacji wyraża się przez ustalenie zbioru formuł
spełnialnych w tej interpretacji. Wyróżnione formuły nazywa się aksjomatami specy­
ficznymi teorii. Formuły teorii służą do opisu specyficznych własności obiektów na­
leżących do wybranego fragmentu świata. System dowodzenia pozwala natomiast na
dowodzenie tego, czy pewne formuły wyrażają, czy nie wyrażają, własności zacho­
dzących w wybranym fragmencie świata.

Okazuje się, co pokazał Godeł, że dostatecznie bogate teorie mają specyficzne wła­
sności, które wskazują na ograniczenia metody aksjomatycznej. Chodzi o teorie, które
pozwalają zbudować arytmetykę liczb naturalnych, a więc o prawie wszystkie nietry-
wialne teorie mające praktyczne zastosowania.

Ograniczenie nazywane niezupelnością teorii - pierwsze twierdzenie Godła - pole­
ga na tym, że istnieją w takiej teorii zdania spełnione, które nie są twierdzeniami
teorii. Inaczej: dla teorii tej klasy nie istnieje semantycznie zupełny system dowo­
dzenia.

Drugie ograniczenie odnosi się do niesprzeczności teorii. Niesprzeczność oznacza, że
teoria nie zawiera takiej formuły a,ic a oraz -ia są twierdzeniami teorii. Z drugiego
twierdzenia Godła wynika, że dla teorii zawierających arytmetykę liczb naturalnych
nie można podać takiego dowodu niesprzeczności, który korzystałby wyłącznie ze
środków tej teorii. Inaczej: na gruncie danej teorii nie można podać dowodu jej nie­
sprzeczności.

Twierdzenia Godła mają znaczenie historyczne i filozoficzne. Znaczenie historyczne
polega na tym, że został obalony program Hilberta sformułowany na początku XX
wieku, którego myślą przewodnią było zbudowanie teorii sformalizowanej, obejmują­
cej całą matematykę, i udowodnienie jej za pomocą prostych środków logicznych.
Cała matematyka zawiera oczywiście arytmetykę liczb naturalnych, a zatem nie można
udowodnić jej zupełności i niesprzeczności. Znaczenie filozoficzne bierze się stąd, że
twierdzenia Godła wskazują na ograniczoność podejścia aksjomatycznego. Pesymi­
styczna interpretacja tego faktu sprowadza się do stwierdzenia, że istnieją „nieprzekra­
czalne granice rozumu ludzkiego”, podczas gdy interpretacja optymistyczna wskazuje
właśnie na przewagę rozumowania umysłu ludzkiego nad wnioskowaniem prowadzo­
nym w ramach systemów sformalizowanych. Interpretacja twierdzeń Godła na gruncie

241

informatyki wskazuje na ograniczoność tego, co można policzyć za pomocą komputera,
gdyż wszystko to, co może wykonać komputer da się wyrazić w pewnej teorii elemen­
tarnej. Wynika też z tego pogląd, że komputery nie będą w stanie całkowicie zastąpić
człowieka w podejmowanych przez niego rozumowaniach i decyzjach.

Ćwiczenia

1. Korzystając z systemu dowodzenia Hilberta dowieść, że następujące formuły są
twierdzeniami:

a) a v -.a
b) (a=> -ict) => -na
c) Vx *Vy • p(x, y) <=> Vy »Vx • p(x, y)
d) (3x • p(x) v g(x)) <=> (3x • pM) v (3x • q(x))

2. Wykorzystując system dedukcji naturalnej Gentzena pokazać, że tautologiami są formuły:

a) (a=> p) => (fi =>y)=> (-ny=^ -na))
b) (-!«=> a) => a
c) a v -na
d) (a=> y) => ((P Y) => (a^ P y))
e) (Vx • p(x) <=> q(x)) => ((Vx • p(x)) <=> (Vx • q(x)))
f) (Vx • p(x) <=> q(x)) => ((Hr • p(x)) « (3x • q(x)))
g) 3x »Vy • p(x, y) => Vy • 3x • p(x, y)

3. Uzupełnić system dedukcji naturalnej przez wyprowadzenie reguł eliminacji i wpro­
wadzania spójników:

a) dysjunkcji,
b) równoważności,
c) NOR,
d) NAND.

12. Inne logiki

12.1. Wstęp

Logika klasyczna omawiana w poprzednich rozdziałach jest jądrem wszelkich lo­
gik. Jej rozwój w XX wieku wynikał głównie z potrzeby rozwiązywania problemów
z zakresu podstaw matematyki. Ogólniej można stwierdzić, że motywacje tworzenia
nowych logik były podyktowane - po pierwsze - chęcią ogarnięcia możliwie szero­
kiej klasy wypowiedzi spotykanych nie tylko w języku matematyki, ale i w języku
naturalnym, i - po drugie - identyfikacją i ujęciem w formalne ramy sposobów
wnioskowania stosowanych przez ludzi. Wraz z poszerzaniem się zastosowań in­
formatyki powstały nowe inspiracje dla rozwoju logiki. Wynikają one, na przykład,
z zastosowań systemów ekspertowych lub rozwoju lingwistyki matematycznej
i związanej z nią konstrukcją systemów automatycznego tłumaczenia języków na­
turalnych.

W tym rozdziale przedstawia się podstawowe informacje tylko o niektórych logikach
nieklasycznych - logikach wielowartościowych i modalnych [Bole, Borodziewicz,
Wójcik 1991], [Gabbay 1998], Logiki modalne stanowią bardzo szeroką grupę logik.
Za ich szczególne przypadki można uważać, omawiane w dalszej części rozdziału,
logiki temporalne [Gabbay 1998], [Klimek 1999], a także, do pewnego stopnia, logiki
intuicjonistyczne [Gabbay 1998].

Krótko też wspomina się o logikach niemonotonicznych [Gabbay 1998]. Omawia się
tylko przesłanki stanowiące inspirację ich powstawania. Logiki te, obecnie intensyw­
nie rozwijane, mają bezpośredni związek z zastosowaniami - z bazami wiedzy i sys­
temami ekspertowymi. Charakterystycznym wyróżnikiem dla tych logik jest to, że
proponują one pewne sposoby wnioskowania w sytuacji posiadania niepełnej lub nie­
pewnej informacji.

Przeglądem nie są objęte wszystkie gałęzie logiki. Nie omawia się, na przykład, logik
relewantnych, które próbują osłabić ograniczenie logiki klasycznej polegające na tym,
że ocena prawdziwości zdań złożonych zależy tylko od prawdziwości ich części skła­
dowych (własność ekstensjonalności - por. rozdział 1), a pomija zupełnie treści wyra­

243

żane przez te składowe, a właśnie uwzględnienie związków treściowych jest szcze­
gólnie ważne w systemach ekspertowych.

Szeroką, choć nie wyczerpującą prezentację różnych logik zawierają pozycje ency­
klopedyczne [Marciszewski 1987], [Marciszewski 1988].

Z podziałem nauk na ścisłe i empiryczne wiąże się podział metod wnioskowania na
dedukcyjne i indukcyjne. Podstawą nauk empirycznych są obserwacje interesują­
cych zjawisk i procesów. Obserwacje te często dostarczają informacji cząstkowych,
zwykle obarczonych błędami pomiarów. Dlatego wnioskowania oparte na takich
danych prowadzą do niepewnych lub niepełnych wniosków. Dodatkowo, nie zaw­
sze z góry wiadomo, jak takie wnioskowanie prowadzić. Przykładowo, prowadząc
po raz pierwszy pewien eksperyment nie zawsze wiadomo, jakich można się spo­
dziewać następstw. W metodologii nauk empirycznych rozważa się specyficzne ro­
dzaje logik, między innymi tak zwane logiki indukcji [Mortimer 1982], Ogólne za­
mierzenie logik indukcji wiąże się ze sposobem uzyskiwania na podstawie danych
eksperymentalnych możliwie najlepszej teorii, która tłumaczyłaby związki pomię­
dzy obserwowanymi faktami, a także - jeszcze lepiej - pozwalałaby na przewidy­
wanie dotychczas nie obserwowanych faktów. Oczywiście taki ogólny mechanizm
nie istnieje. Możliwe jest natomiast porównywanie różnych konkretnych mechani­
zmów i ocenianie stopnia ich wiarogodności. Logiki indukcji nie należy utożsamiać
z używanym wcześniej pojęciem indukcji matematycznej czy strukturalnej.

12.2. Logiki wielowartościowe

Logiki wielowartościowe mają początek w latach dwudziestych XX wieku, kiedy Łu­
kasiewicz25 jako pierwszy przedstawił propozycję logiki trójwartościowej. Prace nad
logikami wielowartościowymi podejmowali między innymi Post, Sobociński, Słupec­
ki. Łukasiewicz opisał całą rodzinę skończenie wielowartościowych logik Ln dla n =
3, 4, ..., oraz jedną nieskończenie wartościową logikę LM. Zbiorem wartości logicz­
nych logiki Ln jest zbiór:

25 Jan Łukasiewicz (1878-1956).

An =def {0, l/(n—1)......(n-2)/(n-l), 1} dla n = 3, 4, ...

Poniżej przedstawia się tylko rachunek zdań w logice Ly W tej logice interpretacja
znanych spójników logiki klasycznej: =>, a, v, —। jest wyrażona tabelą 12.1:

244

Tabela 12.1

b
a

a => b a a b a v b a <=> b —a
0 '/z 1 0 '/z 1 0 16 1 0 16 1

0 1 1 1 0 0 0 0 16 1 1 16 0 1
!6 '/z 1 1 0 !6 16 16 16 1 '/z 1 16 16

1 0 '/z 1 0 16 1 1 1 1 0 16 1 0

Opracowanie logiki L3 wiązało się z nadawaniem wartości logicznej zdaniom odno­
szącym się do przyszłości. Zdania o przyszłości mogą wyrażać fakty, które zajdą lub
nie zajdą, na przykład:

W 2100 roku ludzie będą mieszkać na Marsie.

Zdanie takie wypowiadane w obecnej chwili nie jest ani prawdziwe, ani fałszywe,
nadaje się mu więc wartość '/z, co wyraża naszą niewiedzę o przyszłości. Wartość !6
może być także interpretowana inaczej jako: niezdefiniowane, nieokreślone albo jako
brak danych.

Pierwsza aksjomatyka Łukasiewicza była oparta na spójnikach implikacji i negacji.
Inne znane spójniki - koniunkcji, dysjunkcji i równoważności - były definiowane
przez implikację i negację, tak samo jak w logice klasycznej.

Zestaw spójników logicznych złożony z implikacji, negacji uzupełniony stałą logiczną
‘/z jest systemem funkcjonalnie pełnym, tzn. za ich pomocą można wyrazić dowolne
inne spójniki logiczne w L3.

Aksjomatyka rachunku zdań trójelementowej logiki Łukasiewicza (opracowana przez
Łukasiewicza, Tarskiego i Wajsberga) składa się z następujących aksjomatów.

a) q => (p => q)
b) (p => q) => ((9 => r) => (p => r))
c) (jp -p) =$ p) => p
d) (f-p => ~p) => (p => <?))
e) ((p => q) => q) => ((7 p) => p)
f) ((p => q) => p)) => (9 =* P)

oraz z dwóch reguł:

Reguły odrywania-, z formuł cz oraz p wnioskujemy P, czyli:

a,a => P
P

Reguły podstawiania-, z formuły a, w której występuje zmienna zdaniowa a, wnio­
skujemy to, co otrzymamy w rezultacie podstawienia dowolnej formuły P za każde
wystąpienie zmiennej a, czyli:

245

a
a[afi]

Przedstawiony zestaw aksjomatów nie jest minimalny, gdyż ostatni aksjomat jest za­
leżny od aksjomatów poprzednich. System ten jest semantycznie niesprzeczny i se­
mantycznie zupełny.

Poza omówionymi, do logik wielowartościowych można zaliczyć m.in. również logiki
prawdopodobieństwa i logiki rozmyte.

12.3. Logiki modalne

Niech będą dane trzy zdania:

Książka leży na stole.
Książka leży na podłodze.
Książka nieruchomo (bez podparcia) utrzymuje się w powietrzu.

(1)
(2)
(3)

Jeśli założyć, że wypowiedzi te odnoszą się do sytuacji w jakimś pomieszczeniu na
Ziemi, to zdania (1) oraz (2) mogą być prawdziwe lub fałszywe, natomiast zdanie (3)
będzie zawsze fałszywe. Nie jest bowiem możliwe w żadnym pomieszczeniu ziem­
skim, aby książka zajmowała trwale nieruchome położenie. Rozróżnienie między sy­
tuacjami związanymi ze zdaniami (1) i (2) a zdaniem (3) stanie się bardziej wyraźne,
gdy rozpatruje się pewne ich modyfikacje:

Możliwe, że książka leży na stole. (4)
Możliwe, że książka leży na podłodze. (5)
Możliwe, że książka nieruchomo (bez podparcia) utrzymuje się w powietrzu. (6)

Zdania (4) i (5) są oczywiście prawdziwe, a zdanie (6) jest fałszywe. Przytoczone
oceny prawdziwości zdań odnoszą się do zjawisk w bezpośrednio otaczającym nas
świecie. Te same zdania odniesione do zjawisk zachodzących na przykład w świecie
obserwowanym przez kosmonautów w pojeździe kosmicznym będą miały inne oceny,
zwłaszcza zdanie (6) stanie się prawdziwe. Warto też zwrócić uwagę na to, że nawet
osoba przebywająca na powierzchni Ziemi byłaby gotowa uznać prawdziwość zdania
(6), gdyby tylko wiedziała, że loty kosmiczne są osiągalne.

Zdania są przykładami tak zwanych wypowiedzi modalnych - występujący w nich
zwrot: możliwe jest, że tzjest przykładem operatora modalnego. Symbolicznie jest on
zapisywany O a. Wypowiedź dualna: konieczne jest, że a, jest symbolicznie zapisy­

246

wany net. Takie zwroty spotyka się często w wypowiedziach formułowanych w języ­
ku naturalnym. Pomiędzy obu zwrotami zachodzi związek semantyczny:

□ a= -iO -ia

Symbole □ oraz O są traktowane jako jednoargumentowe operatory logiczne.

Uwaga

Logiki modalne korzeniami sięgają czasów Arystotelesa. Nowożytne badania
podjął na początku XX wieku C. I. Lewis, który pojęcie możliwości wykorzystał
w celu rozróżnienia między implikacją materialną a implikacją ścisłą. Implikacja
materialna, zdefiniowana w klasycznym rachunku zdań, ma ułomność (patrz roz­
dział 1), która na podstawie fałszywej przesłanki pozwala na wyprowadzenie do­
wolnego wniosku. Wady tej nie ma implikacja ścisła (symbol zdefiniowana
przez Lewisa jako:

p *q =def~iO (p ^q)

czyli, że q wynika ściśle z p wtedy i tylko wtedy, gdy nie jest możliwe, by jedno­
cześnie prawdziwe było p i fałszywe q. Definicja ta odróżnia implikację ścisłą od
materialnej, której definicją jest:

P^ q =def->(P a ^q).

Implikacja ścisła usuwa niektóre paradoksy implikacji materialnej, ale nadal pozo­
stawia prawdziwe formuły, które do takich paradoksów się zalicza, na przykład:

p^(p^q) (p ^p)*q (pv-p)*q

Z punktu widzenia składni, logiki modalne są rozszerzeniem języka formalnego lo­
giki klasycznej. W definiowaniu semantyki logik modalnych przyjmuje się po­
wszechnie podejście S. Kripkego, oparte na pojęciu zbioru możliwych stanów (lub
światów). Podejście to przedstawia się poniżej, na przykładzie zdaniowej logiki
modalnej.

Alfabet modalnego języka rachunku zdań składa się z następujących jednostek leksy­
kalnych'.

• symboli stałych logicznych reprezentowanych przez napisy true oraz false;
• przeliczalnej liczby symboli zmiennych zdaniowych,
• symboli spójników logicznych klasycznego rachunku zdań: —i, a, v, =>, <=>,
• symboli spójników logicznych modalnych: □,<>,
• symboli nawiasów: (,).

Zbiór formuł modalnego rachunku zdań FORM jest definiowany rekursywnie:

• symbole zmiennych zdaniowych oraz symbole stałych logicznych są formułami
elementarnymi; zbiór zmiennych zdaniowych będzie oznaczony symbolem V;

247

• jeżeli czoraz j3 są formułami, to formułami złożonymi są napisy:

~>a, fi), (a a fi), (av fi), (a<=> fi), oa, Oa.

Semantyka języka jest określana w strukturze Kripkego.

Definicja 12.1

Modelem Kripkego nazywa się trójkę K = <S, p, v>, gdzie 5 jest dowolnym zbio­
rem nazywanym zbiorem stanów (lub światów), pęS2 jest relacją binarną nazy­
waną relacją osiągalności stanów (światów), v : V x 5 —> Logiczne jest funkcją
wartościującą zmienne zdaniowe w każdym ze stanów.

Jeżeli <s, s'>ep, to stan s' nazywa się stanem osiągalnym ze stanu s.

Dziedziną interpretacji formuł jest, tak samo jak w klasycznym rachunku zdań, zbiór
wartości Logiczne. Semantyka modalnego rachunku zdań zachowuje interpretację kla­
sycznych spójników logicznych. Funkcja wartościowania v jest uogólnieniem odpo­
wiedniej funkcji wartościującej v, która była wprowadzona przy definiowaniu semantyki
klasycznego rachunku zdań. Różnica polega na tym, że w modalnym rachunku zdań
wartościowanie zmiennej zdaniowej zależy dodatkowo od stanu. W różnych stanach
wartościowania tej samej zmiennej mogą być różne, podczas gdy w klasycznym ra­
chunku zdań wartościowanie zmiennej jest tylko jedno - inaczej: w klasycznym ra­
chunku zdań ma się do czynienia tylko z jednym stanem.

Niech aeFORM dowolną formulą oraz seS będzie dowolnym stanem. Interpretacja
formuły a przy wartościowaniu v w stanie s, zapisywana INTv,fa), jest definiowana
rekursywnie względem struktury składniowej:

a)INTVJ(p) =def v(p, s), dla zmiennej zdaniowej p
b) Z^/true) —def P
c) Z^/false) =def F
d) INTJ^a) =def ^INTv,fa)
e) lNTvfa°fi) =dcf INTViS(a) °INTvs(fi), dla spójnika binarnego °e {a, v, =>, <=>}
f) INTvfna) —def P wtedy i tylko wtedy, gdy dla dowolnego stanu s' osiągalnego ze

stanu 5 zachodzi INT^ja) = P
g) INT^Pa) =def P wtedy i tylko wtedy, gdy istnieje stan s' osiągalny ze stanu s,

dla którego zachodzi INTvj (a) = P
Wyżej przedstawiona semantyka, w zależności od konkretnych zastosowań, może być
jeszcze zawężana przez narzucenie dodatkowych postulatów. Mogą one mieć postać
formuł-aksjomatów, które powinny być spełniane w języku. W zależności od zestawu
takich aksjomatów wyróżnia się różne rodzaje logik modalnych. Przykładami takich
formuł są:

□(a => fi) => (aa => ofi)
□ a=> Pa

248

oa=> a
□a=>
Oct=> uOa
Ooa=> nOa
oOa=> Ona

Omawiane wyżej modalności określa się mianem modalności aletycznych. Modalno-
ści mogą mieć także inne interpretacje. W zależności od przyjętej interpretacji, mo­
dalności czyta się w różny sposób i ma się do czynienia z różnymi rodzajami logik
modalnych.

Przykładowo, pojęciem centralnym logiki deontycznej jest pojęcie obowiązku, for­
muły □ « oraz Oa odczytuje się jako: jest obowiązkowe to, że a oraz jest dozwolone
to, że a.

Logika epistemiczna odnosi się do aktów lub stanów poznawczych, operuje pojęciami
takimi jak widzieć, wierzyć, uznawać. Stąd formuły oa oraz Oa odczytuje się jako:
jest wiarygodne to, że a oraz jest niewiarygodne to, że a.

W logice temporalnej przedmiotem zainteresowania są wypowiedzi, które uwzględ­
niają związki czasowe - formuły aa oraz Oa czyta się jako: zawsze zachodzi a oraz
czasem zachodzi a.

Obszerniejsze omówienie logik modalnych i ich związków z logiką klasyczną przed­
stawia książka [Szałas 1992],

12.4. Logiki temporalne

Przedmiotem logik temporalnych są wypowiedzi, które uwzględniają czas. Tłem, na
którym rozpatruje się wypowiedzi, jest struktura czasowa. Zbiór stanów 5 w modelu
Kripkego K = <S, p, v> jest tu interpretowany jako zbiór chwil czasowych - oznacza­
ny T, a relacja osiągalności pjest interpretowana jako uporządkowanie chwil w sensie
chwila wcześniejsza-późniejsza - oznaczana <.

Strukturą czasową nazywa się parę SC = <T, O, gdzie T2 jest relacją porządku.

W zależności od ustaleń dotyczących struktury czasowej otrzymuje się różne rodzaje
logik temporalnych.

Jeżeli < jest relacją porządku częściowego (to znaczy jest zwrotna, antysymetryczna
i przechodnia), to mamy do czynienia ze strukturą czasu rozgałęzionego, a jeśli jest

249

relacją porządku liniowego (to znaczy jest zwrotna, antysymetryczna, przechodnia
i spójna), to mamy do czynienia ze strukturą czasu liniowego.

Strukturę czasową nazywa się ciągłą, gdy:

VfiG T* X7f2€ T* 2/36 T* (ti^ ?2 ti tj a ti ti)

dyskretną prawostronnie, gdy:

Vt\& t2& T»{{t{<t2 A t2)=^
(2^3^ T•(/j^^ A t\ 7^ t^)^—i2/.|G T*(t]^?4 A ^4=^/3 A tj^ Z4))

dyskretną lewostronnie, gdy:

Vne T*Vz2g T*(tiM2 a t\ * h)=>
(2Z3G T*(ty^t2 A t^^ ^2) A —i2?4G T^t. ^2 A ty ^4 A t^ L))

Przykładem zbioru, na którym można zbudować strukturę ciągłą jest zbiór liczb wy­
miernych, a dyskretną- zbiór liczb naturalnych.

W dalszych rozważaniach zakłada się dyskretną (lewo- i prawostronnie) strukturę
czasu liniowego. Dla ustalenia uwagi przyjmuje się, że zbiór chwil jest zbiorem
liczb naturalnych, a relacja osiągalności jest relacją < w zbiorze liczb naturalnych,
n < m oznacza: chwila n nie jest późniejsza od chwili w. Zatem struktura czasowa
jest parą<7Var, < >.

Zostanie przedstawiony rachunek zdań liniowej logiki temporalnej PLTL (ang. Pro-
positional Linear Temporal Logic). Logika jest logiką czasu przyszłego, co oznacza,
że formuły wyrażają pewne własności, które odnoszą się do przyszłości, poczynając
od ustalonej chwili odniesienia. Została ona opracowana przez Mannę i Pnueliego na
początku lat osiemdziesiątych, [Manna, Pnueli 1992], [Manna, Pnueli 1995], z prze­
znaczeniem do specyfikacji i weryfikacji własności programów.

Składnia logiki PLTL różni się od składni modalnego rachunku zdań przedstawionego
w poprzednim podrozdziale tylko tym, że wprowadza dwa dodatkowe spójniki mo-
dalne: jednoargumentowy operator next i dwuargumentowy until. Spójniki te służą
wygodniejszemu wyrażaniu pewnych własności, które można również wyrazić za po­
mocą pozostałych spójników.

Zbiór formuł FORM logiki PLTL jest definiowany rekursywnie:

• symbole zmiennych zdaniowych oraz stałych logicznych są formułami,
• jeżeli a oraz fi są formułami, to formułami są również:

—m, (a=> fi), (a a fi), (av fi), fi), na, Oa, next a, {a until fi).

Interpretacja formuły temporalnej jest definiowana - tak samo jak w przypadku mo­
dalnego rachunku zdań - względem struktury czasowej <Nat, < > i wartościowania v.
Modelem dla formuł temporalnych jest więc trójka <Nat, < , v>.

250

Niech a^FORM będzie dowolną formulą oraz neNat będzie dowolną chwilą. Inter­
pretacja formuły a przy wartościowaniu v w chwili n, zapisywana INTy^a), jest defi­
niowana rekursywnie względem struktury składniowej:

a) INTV'„(p) =def v(p, n), dla zmiennej zdaniowej p
b) ZWT^true) —def P
c) INTV,„(false) =def F
d) INTy^a) =def ^INTM
e) INTy^P) =MlNTy,n(a) ^INTy^P), gdzie »£ {a, v, =>, «}
f) INTv^o a) =defP

g)7NT,.,„(Oa)=defP

h) INTv,n(nexta) =<& P

wtedy i tylko wtedy, gdy dla dowolnej chwili m takiej, że
n < m zachodzi INTy^a} = P
wtedy i tylko wtedy, gdy istnieje chwila m taka, że n < m,
dla której zachodzi INTv,m{a) = P
wtedy i tylko wtedy, gdy dla chwili n + 1 zachodzi
INTy^d} = P

i) INTv,n(a until (3) =defP wtedy i tylko wtedy, gdy istnieje chwila j > 0 taka, że
zachodzi INTy/P) = P oraz dla każdej chwili i < j zacho­
dzi INTy/a) = P.

Formuła a, której interpretacja INTy^a) = P dla dowolnego wartościowania v i do­
wolnej chwili n jest tautologią logiki PLTL. Formułę taką nazywa się też prawem
logiki.

Warto zwrócić uwagę na spójnik until. Za jego pomocą można byłoby wyrazić spój­
niki □ oraz O. Mianowicie:

□a=def true until a
Oa-d^ a until false

Formuły logiki PLTL pozwalają na zwarte wyrażenie złożonych własności. Na przy­
kład:

oOa formuła czytana: zawsze możliwe a, wyraża własność, że kiedykolwiek
w przyszłości formula a stanie się fałszywa, to jest pewne, że kiedyś
w dalszej przyszłości stanie się znowu prawdziwa.

Ona formuła czytana: kiedyś koniecznie a, wyraża własność, że w przyszłości
istnieje taka chwila, od której formuła a będzie prawdziwa.

Oto przykłady niektórych kategorii praw:

Prawa dualizmu

<=> ->□«
next —<a <=> —i nexta

251

Prawa introspektywności

oa=> a
a => Oa
(a until fi) => (av fi)
fi => (a until fi)

Prawa idempotencji

□□a <=> na
OOa <=> Oa

Prawa rozdzielności

□(a a fi) <=> (aa) a (□/?)
0(a v fi) « (Oa) v (O fi)

Prawa przemienności

(□ next a) <=> (next ner)
(O next a) <=> (next O a)
next (a until fi) <=> (next a) until (next fi)

Prawa dołączania

(na a O fi) => O(cr a fi)
(na a next fi) => next (a a fi)
(□a a (fi until y)) => (a a fi) until (a a y)

Dla logik temporalnych były opracowane różne systemy aksjomatyzacji. Jeden
z pierwszych przykładów aksjomatyzacji logiki PLTL pochodzi z [Gab 98] i składa
się z następujących aksjomatów.

a) □(«=> fi) => (□«=> o fi)
b) next —ia <=> -i nexta
c) next (a =$ fi) =$ (next a => next fi)
d) oa => (next a a next aa)
e) □(« => next a) => (next a=> oa)
f) (a until fi) => O fi
g) (a until fi) <=> (next fi v (nexta /\ next (a until fi)))

oraz regal odrywania, podstawiania i generalizacji:

Reguła generalizacji'. z formuły a wnioskuje się, że na, czyli:

a
□a

System ten jest semantycznie niesprzeczny i semantycznie zupełny.

252

12.5. Logiki intuicjonistyczne

Składnia logiki intuicjonistycznej jest taka sama jak logiki klasycznej. Różnica wy­
nika ze sposobu podejścia do oceny prawdziwości zdań. W logice intuicjonistycznej
podejście to opiera się na specyficznej interpretacji spójników logicznych i kwanty­
fikatorów podanej przez Heytinga26 - jednego z twórców tej logiki, który przedsta­
wił pierwszy system aksjomatyczny dla intuicjonistycznego rachunku zdań. Jej
podstawą jest intuicja, że stwierdzić prawdziwość zdania to tyle co posiadać dowód
dla tego zdania.

Logika intuicjonistyczna jest jedną z logik konstruktywnych. Ilustracją różnic w sto­
sunku do logiki klasycznej jest dowód twierdzenia:

Istnieją dwie liczby niewymierne a i b takie, że a jest wymierne.

Dowód twierdzenia jest niekonstruktywny: albo (V2) ̂jest wymierne i wtedy a = b =

, albo (Vy)^jest niewymierne i wtedy a = (V2)^ , b = V2 . Z dowodu wynika,

że liczby istnieją, ale oczywiście nie wiadomo, jakie są to liczby.

W interpretacji Heytinga prawdziwość formuł w logice intuicjonistycznej jest rozu­
miana w sposób następujący:

• Prawdziwość formuły a a b oznacza fakt posiadania dowodu da dla formuły a
oraz dowodu db dla formuły b. Dowód formuły a a b jest zatem parą <da, db>.

• Dowód formuły a v b to konstrukcja, która wybiera jedną z dwóch formuł i daje
dowód wybranej formuły.

• Dowód formuły a => b to konstrukcja, która każdemu dowodowi da formuły
a przyporządkowuje dowód db(da) formuły b.

• Dowód formuły —>a to dowód dla formuły a => false, czyli konstrukcja tworząca
dowód sprzeczności z każdego dowodu mającego być dowodem formuły a.

• Dowód formuły Hr p(x) to konstrukcja, która polega na wskazaniu pewnego
obiektu n (z danej dziedziny rozważań) i podaniu dowodu dla formuły p(n).

*

• Dowód formuły Vx* p(x) to konstrukcja, która dla każdego obiektu n (z danej
dziedziny rozważań) podaje dowód dla formuły p(n).

Aksjomatyzacja Heytinga dla intuicjonistycznego rachunku zdań składa się z nastę­
pujących aksjomatów.

26 A. Heyting (1898-1980).

253

(1) a => (a a a)
(2) (a a b) => (b a. a)
(3) (a a b) => ((a a c) => (/? a c))
(4) ((a => b) a (b => c)) => (a => c)
&b => (a => b)
(6) (a a (a =>£>))=> £
(7) a => (a v b)
(8) (a v b) => (b v a)
(9) ((a => c) a (6=> c)) => ((av b) => c))
(10) ^a=>(a=>b)
(11) {{a => b) /\ (a =$ —ib)) => —ia

Jedyną regułą jest reguła odrywania.

Wszystkie prawa intuicjonistycznego rachunku zdań są również prawami logiki kla­
sycznej, ale nie odwrotnie: są tautologie logiki klasycznej, które nie są prawami logiki
intuicjonistycznej. Przykładami takich formuł są:

-^a v a
—i—\a => a

Dołączenie jednej z nich do zestawu wyżej podanych aksjomatów dałoby rachunek
równoważny logice klasycznej. W interpretacji intuicjonistycznej przyjęcie, na przy­
kład, formuły -ia v a jako aksjomatu oznaczałoby, że dla dowolnej formuły posiada
się dowód jej prawdziwości lub dowód jej fałszywości.

Pokrewne podejście przedstawił A. Kolmogorow27, który zaproponował, aby zdania
w logice intuicjonistycznej traktować jako problemy lub zadania. Z zadaniem kojarzy
się sposób jego rozwiązania. W logice klasycznej wypowiedzi, która jest zdaniem,
przypisuje się wartość prawdy albo fałszu, natomiast w logice intuicjonistycznej za­
daniu przypisuje się rozwiązanie albo bezsensowność, czyli brak możliwości rozwią­
zania. Inaczej: oceną logiczną zadania jest jego konstruktywne rozwiązanie albo bez­
sensowność zadania. Niech będą dane następujące przykłady zadań [Turski 1988]:

27 Andriej Nikolajewicz Kolmogorow (1903-1987).

1. Znaleźć cztery liczby całkowite x, y, z, n takie, że: xn + yn = z" dla n > 2.
2. Udowodnić fałszywość wielkiego twierdzenia Fermata.
3. Przeprowadzić okrąg przez trzy zadane punkty p, q, r, nie posługując się innymi

narzędziami niż cyrklem i linijką.
4. Zakładając, że znany jest jeden pierwiastek równania: ax2 + bx + c = 0 znaleźć

drugi pierwiastek tego równania.
5. Zakładając, że liczba njest wymierna, n- m/n, znaleźć podobne wyrażenia dla

liczby e.

254

Rozwiązanie zadania 1 oznacza rozwiązanie zadania 2, natomiast odwrotnie tak być
nie musi, gdyż możliwe byłoby rozwiązanie zadania 2 przez sprowadzenie do
sprzeczności, bez podawania kontrprzykładu. Zadania 3 i 4 są oczywiście rozwiązy­
walne, natomiast zadanie 5 jest bezsensowne, gdyż założenie o wymierności liczby
njest niemożliwe do spełnienia.

Jednym ze sposobów wyrażania semantyki formuł logiki intuicjonistycznej jest mo­
del Kripkego, wprowadzony już wcześniej przy omawianiu logik modalnych. Mo­
del ten wygodnie opisać w terminach procesu nabywania wiedzy w kolejnych
chwilach (etapach).

Jak poprzednio, model Kripkego jest trójką K = <S, v>, gdzie 5 jest dowolnym
zbiorem chwil (etapów), < jest relacją porządku częściowego nad S, v : V x 5 —> Lo­
giczne jest funkcją wartościującą zmienne zdaniowe w każdej z chwil. Dodatkowo
wymaga się, aby funkcja wartościująca spełniała następujący warunek:

jeżeli 5 < t, to v(a, s) => v(a, f), dla dowolnego aE V.

Warunek ten oznacza, że jeżeli w pewnej chwili (etapie) wartościowanie zmien­
nej ae V stanie się prawdziwe, to pozostanie ono prawdziwe we wszystkich następ­
nych chwilach teS (etapach) procesu nabywania wiedzy. Ponieważ porządek < jest
częściowy, a więc nie musi być porządkiem liniowym, istnieją różne drogi nabywania
wiedzy.

Niech aeFORM będzie dowolną formułą intuicjonistycznego rachunku zdań oraz
seS będzie dowolną chwilą. Interpretacja formuły a przy wartościowaniu v w chwili
5, zapisywana INTVJ(a), jest definiowana rekursywnie względem struktury skła­
dniowej:

a) INTM=mP
b) lNTv,s(av p)=defP
c) INTv,s(a *P)=de(P
d) INTv.s(a=> P)=defP

e)

wtt v(a, s) = P, dla ae V,
wtt INT^a} = P lub INTM = P,
wtt INT^a) = P omzINTM = P,
wtt dla dowolnej chwili t takiej, że s 4 t, zachodzi
INTv/a) = P oraz INTM = P,
wtt dla dowolnej chwili t takiej, że s t, nie zachodzi
INTM = P,

Użyty tu symbol wtt jest skrótem zwrotu wtedy i tylko wtedy, gdy.

Formuła a jest tautologią wtedy i tylko wtedy, gdy INTvs^a) = P dla dowolnego war­
tościowania v i dowolnej chwili s.

Łatwo sprawdzić, że jeśli S = {0, 1}, v(a, 0) = F oraz v(a, 1) = P, to formuła —^a v a
nie jest tautologią, gdyż nie zachodzi INTv,o(—v a) = P, co z kolei wynika z tego, że
nie zachodzi INTy^a) = P ani INT^—ia) = P.

255

12.6. O logikach niemonotonicznych

Rozpatrywane dotychczas logiki mają wspólną własność określaną mianem monoto-
niczności. Oznacza to, że jeżeli a jest konsekwencją składniową pewnego zbioru for­
muł O, symbolicznie O i- a, to a jest również konsekwencją składniową dowolnego
rozszerzenia zbioru <b, symbolicznie o r H a, gdzie r jest dowolnym zbiorem for­
muł, czyli:

jeżeli O n a, to O u r n a.

Własność monotoniczności jest zachowana w tych wszystkich praktycznych sytu­
acjach, gdy wnioskowanie na podstawie pewnego zbioru przesłanek opiera się na za­
łożeniu, że dysponuje się pełną wiedząc fragmencie opisywanego świata - założenie
o zamkniętości świata (rozdział 10). Założenie takie nie zawsze jest prawdziwe, gdyż
mamy często do czynienia z informacją niepełną lub niepewną.

Na przykład, rozpatrzmy dwie bazy danych: rozkład odjazdów pociągów z danej stacji
oraz książkę telefoniczną. Jeżeli na rozkładzie pociągów odjeżdżających nie znaj-
dziemy miejscowości, do której chcemy jechać, to znaczy, że nie ma do niej bezpo­
średniego pociągu. Jeżeli w książce telefonicznej nie znajdziemy nazwiska znajome­
go, to nie znaczy, że nie posiada on telefonu, gdyż książka może być nieaktualna lub
telefon może być zastrzeżony. W przypadku rozkładu jazdy pociągów założenie o za­
mkniętości świata jest uzasadnione, natomiast nie jest tak w przypadku książki telefo­
nicznej.

We wnioskowaniach stosowanych na co dzień stosuje się reguły wnioskowania oparte
na posiadanej wiedzy oraz niewiedzy. Przykładami reguł, które na takich podstawach
wyprowadzają różne przeciwstawne rodzaje wniosków są:

Jeżeli nie ma dowodu winy podejrzanego, to należy uznać, że jest on niewinny.

Jeżeli nadlatuje samolot i nie można wykluczyć, że jest to samolot wroga (nie ma
dowodu, że jest to „swój” samolot), to należy uznać, że jest to samolot wroga
(i zestrzelić).

Wnioski wyprowadzane na podstawie tych reguł mogą okazać się sprzeczne z dodat­
kowo ujawnionymi faktami - nowymi informacjami o podejrzanym, wynikami oglę­
dzin strąconego samolotu.

Przedstawione reguły wnioskowania określa się jako reguły domniemań. Mają one
często postać:

a, UNLESS (fi)

r

256

gdzie UNLESS(fi) oznacza: nie jest możliwe wyprowadzenie fi Logika stosująca re­
guły o takiej postaci narusza własność monotoniczności. Na przykład, na podstawie
reguły:

UNLESS (a)
H

można stwierdzić, że 0h fi ale {a} ^fi

Przegląd różnych podejść do wnioskowania w sytuacji niepełnej informacji i zwią­
zanych z nimi problemów można znaleźć na przykład w [Bole, Borodziewicz, Wój­
cik 1991].

W sytuacji posiadania wiedzy niepewnej powstaje problem niejednoznaczności wnio­
skowania. Na przykład, jaki wniosek wyprowadzić przy założeniu posiadania nastę­
pującej wiedzy:

• Kwakierzy są na ogól pacyfistami.
• Republikanie na ogól nie są pacyfistami.
• Nixon jest kwakierem i republikaninem.

Równie uzasadniony jest każdy z dwóch nasuwających się wniosków, ale nie są moż­
liwe jednocześnie dwa wnioski.

Z podobną niejednoznacznością ma do czynienia lekarz, gdy na podstawie badań pa­
cjenta okazuje się, że może być on chory na jedną z kilku chorób.

Wnioskowanie w takich przypadkach opiera się na analizie scenariuszy postępowania,
któremu towarzyszy dokonanie wyborów - podejmowanie decyzji. Praktycznie chodzi o
ocenę skutków (koszt) podejmowanych decyzji. Stosuje się różne podejścia do takich
ocen oparte, na przykład, na miarach probabilistycznych lub miarach rozmytych. W lo­
gikach probabilistycznych miarą logicznej wartości zdania jest prawdopodobieństwo
jego prawdziwości, a w logikach rozmytych miarami są rozmyte wartości prawdy.

Przegląd różnych podejść do wnioskowania w sytuacji niepewnej informacji
i związanych z nimi problemów można znaleźć na przykład w [Bole, Borodziewicz,
Wójcik 1991],

Ćwiczenia

1. Która z podanych definicji jest poprawną definicją implikacji w logice Ly

fip^ą =def min(1, 1 + p-q)

257

typ^ q =defmax(l -p, 1 - q)
c)p=> q =defmm(l, 1 -p + q)

2. Czy formuły p=> q oraz —p v q są równoważne w logice

3. Które z podanych formuł są tautologiami temporalnej logiki zdań:

a) q => (p => q)
^p/\q=>q
c) □ (p a ę => ?)
d) □(<?=>(□ (p =» q))

4. Pokazać, że dla formuły oq temporalnej logiki zdań nie istnieje równoważna jej
formuła składająca się wyłącznie ze spójników a,v oraz -i.

5. Które z podanych formuł są tautologiami intuicjonistycznego rachunku zdań:

a) —,pv p
b) -rnp => p
c)p^ ^p
d) (p => q) v (q => p)
e) p a -,q v q)
f) v pY

LITERATURA

[1] ADAMOWICZ Z., ZBIERSKI P„ 1991, Logika matematyczna, PWN.
[2] APT K., OLDEROG E.-R., 1991, Verification of Sequential and Concurrent Programs, Springer

Verlag.
[3] ARBIB M.A., 1968, Mózg, maszyna, matematyka, PWN.
[4] BANERJI P.B. (ed.), 1990, Fonnal Techniques in Artificial Intelligence. A Sourcebook, North-

Holland.
[5] BICARREGUI J.C., FITZGERALD J.S., LINDSAY P.A., MOORE R„ RITCHIE B„ 1994, Proof

in VDM: A Practitioners Guide, Springer Verlag.
[6] BOCHEŃSKI J.M., 1992, Współczesne metody myślenia, Wydawnictwo „W drodze”.
[7] BOCHEŃSKI J.M., 1993, Logika i filozofia. Wybór pism, PWN.
[8] BOLC L., BORODZIEWICZ W., WÓJCIK M., 1991, Podstawy przetwarzania informacji niepew­

nej i niepełnej, PWN.
[9] BORZYSZKOWSKI A.M., SOKOŁOWSKI S„ 1995, Matematyczne podstawy informatyki, EFP,

Poznań.
[10] BUBNICKI Z., 1990, Wstęp do systemów ekspertowych, PWN.
[11] CARNAP R., 1990, Logiczna składnia języka, PWN.
[12] DAVIS P.J., HERSH R„ 1994, Świat matematyki, PWN.
[13] DEMBIŃSKI P., MAKUSZYŃSKI J., 1981, Matematyczne metody definiowania języków progra­

mowania, WNT.
[14] EHRIG H., MAHR B., 1985, Fundamentals ofAlgebraic Specifications, Springer-Verlag.
[15] FITTING M., 1990, First-order logie and automated theorem proving, Springer-Verlag.
[16] GABBAY D., 1998, Elementary Logics: A procedural perspective, Prentice Hall.
[17] HUNTER G„ 1982, Metalogika, PWN.
[18] HARRISON M.A., 1973, Wstęp do teorii sieci przełączających i automatów, PWN.
[19] HUZAR Z., KURZYŃSKI M., SAS J., 1994, Rule-Based Paltem Recognition with Learning, Ofi­

cyna Wydawnicza Politechniki Wrocławskiej.
[20] GERSTIG J.L., 1993, Mathematical Structuresfor Computer Science, Computer Science Press.
[21] GRZEGORCZYK A., 1975, Zarys logiki matematycznej, PWN.
[22] GRZEGORCZYK A., 1983, Zarys arytmetyki teoretycznej, PWN.
[23] KACPRZYK J., 1986, Zbiory rozmyte w analizie systemowej, PWN.
[24] KELLY J., 1997, The Essence of Logic, Prentice Hall.
[25] KLIMEK R., 1999, Wprowadzenie do logiki temporalnej, Wydawnictwa AGH.
[26] KOWALSKI R., 1989, Logika w rozwiązywaniu zadań, WNT.
[27] KOTARBIŃSKI T„ 1985, Wykłady z dziejów logiki, PWN.
[27] MANNA Z., PNUELI A., 1992, Temporal Verification of Reactive Systems: Specification, Sprin-

ger-Verlag.
[28] MANNA Z., PNUELI A., 1995, Temporal Verification of Reactive Systems: Verification, Springer-

Verlag.
[29] MARCISZEWSKI W. (red.), 1987, Logika formalna. Zarys encyklopedyczny z zastosowaniem do

informatyki i lingwistyki, PWN.
[30] MARCISZEWSKI W. (red.), 1988, Mała encyklopedia logiki, Ossolineum.
[31] MAREK W., ONYSZKIEWICZ J., 1975, Elementy logiki i teorii mnogości w zadaniach, PWN.
[32] MORTIMER H„ 1982, Logika indukcji, PWN.

260

[33] MOSTOWSKI A.W., PAWLAK Z., 1970, Logika dla inżynierów, PWN.
[34] MURAWSKI R., 1995, Filozofia matematyki. Zarys dziejów. PWN.
[35] NISSANKE N„ 1999, Introductory Logic and Sets Theory for Computer Scientists, Addison-

Wesley Longam.
[36] PAWLAK Z., 1991, Rough Sets, Theoretical Aspects of Reasoning about Data, Kluwer Acadcmic

Publishers.
[37] PENROSE R., 1996, Nowy umysł cesarza - o komputerach, umyśle i prawach fizyki, PWN.
[38] POGORZELSKI W., 1981, Klasyczny rachunek kwantyfikatorów. Zarys teorii. PWN.
[39] RASIOWA H., 1998, Wstęp do matematyki współczesnej, PWN.
[40] RUTKOWSKA D„ P1LIŃSKI M„ RUTKOWSI L„ 1997, Sieci neuronowe, algorytmy genetyczne i

systemy rozmyte, PWN.
[41] SHEPARD D., An Introduction to Formal Specification with Z and VDM, McGraw-Hill, 1995.
[42] SŁUPECKI L, HALKOWSKA K„ PIRÓG-RZEPECKA K„ 1978, Logika i teoria mnogości, PWN.
[43] SOCHER-AMBROSIUS R„ JOHANN P„ 1996, Deduction Systems, Springer-Verlag.
[44] SZAŁAS A., 1992, Zarys dedukcyjnych metod automatycznego wnioskowania, Akademicka Oficy­

na Wydawnicza RM.
[45] TURSKI W.M., 1988, Logiki nieklasyczne (dla informatyka pracującego), Materiały V Jesiennej

Szkoły PTI, 103-132, Polskie Towarzystwo Informatyczne.
[46] WÓJCICKI R., 1982, Wykłady z metodologii nauk, PWN.
[47] TYUGU E.C., 1989, Programowanie z bazą wiedzy, WNT.
[48] WÓJCIK M., 1991, Zasada rezolucji. Metoda automatycznego wnioskowania. PWN.

INDEKS

Aksjomaty 11, 85, 86,87, 172, 173, 174, 175,
176, 179, 192, 193, 194, 196, 197, 199, 200,
202, 204, 211, 212, 220, 227, 228, 229, 230,
231, 232, 233, 240, 244, 245, 247, 251,252
- specyficzne 173
alfabet 78, 79, 93, 95, 96, 97, 98, 107, 110,
116, 128, 129, 150, 151, 153, 168, 246
algebra 110, 116, 117, 119, 120, 121, 122,
123, 124, 125, 126, 127, 132
-Boole’a 121, 122, 127
-nad sygnaturą 123, 190
-termów 125, 126, 127
algebry definiowanie wartościowe 121
-homomorfizm 124,125
- nośnik 110
- operacje albo działania 110
-podobne 123
-stałe 110
-sygnatura 122
- wielorodzajowe 111,118,125
algorytm 24, 34, 61, 75, 76, 77, 78, 79, 81,
100, 102, 134, 140, 141, 167, 168, 194, 195,
196, 197, 200, 201, 204, 205, 209, 212, 213,
216, 217, 218, 219, 220, 221, 230, 240
alternatywa 14, 128, 148, 150
antysymetria 52, 174, 248, 249

Bijekcja 57, 58

Ciąg 31, 34, 36, 37, 91. 92, 93, 97, 98, 99,
103, 104, 106, 130, 132, 138, 147, 187, 195,
202, 221,230, 231,232
continuum 75

Definicja w postaci normalnej 37
derywacja 228, 229, 231, 232, 236, 237, 238,
239
- formuł 228
domknięcia języka 96

dowód 164, 180, 198, 199, 228, 231, 236, 252,
253
- nie wprost 180
-wprost 179,180
drzewo 104, 105, 186, 187, 188, 196, 200,
201,235,237, 238
-dowodu 187, 189, 190, 194, 196, 199, 200,
201,204, 236, 238
- wywodu 105
dysjunkcja 14, 111, 128, 139, 141, 142, 150,
167, 192, 206, 241,244
-elementarna 139
dysjunkcyjna postać normalna 139, 140
dziedzina 48, 57, 58, 116, 117, 123, 157, 159,
170, 173, 252
-interpretacji 131, 132, 159, 160, 161, 169,
176, 183, 189, 200, 201, 203, 211, 213, 223,
247

Ekstensjonalność 15, 31, 34, 60, 172, 242

Faktor klauzuli 219
filozofia logiki 11,12
fałsz 11, 15, 16, 19,32,62, 124, 131, 132, 135,
143, 147, 148, 156, 162, 177, 178, 184, 188,
191,253
formuła postaci kanoniczne 138, 140, 141,210
-interpretacji 133,161
— przy wartościowaniu 133
-otwarta 156
- równoważna semantycznie 133
- spełnialna 162, 163, 173, 207, 209, 212, 213,
214,219, 222, 225,240
- spełniona w modelu 162,163
-zamknięta 156
formuły atomowe 129, 151, 153, 158
-elementarne 129, 130, 132, 144, 145, 146,
147, 202,214,246
- rachunku zdań 129, 134, 141, 144, 146, 147,
148, 149, 184, 206, 209, 246, 254

262

- semantycznie równoważne 141,163
-ukonkretnienie 158
-ukonkretnione 214,215
-złożone 129, 144, 147, 151, 230, 247
-zdaniowe 16,26 130
funkcja 39, 56, 91, 92, 97, 103, 108, 109, 110,
111, 112, 113, 115, 116, 117, 119, 123, 124,
125, 154, 155, 157, 158, 160, 161, 170, 171,
175, 177, 178, 191,211
- „na" 57
- całkowicie określona 57, 112
- częściowo określona 57
- interpretacji bazowej 131,132
-obcięcia 63
-obliczalna 81
-odwrotna 58, 103
- ogólnie rekurencyjna 85
- pierwotnie rekurencyjna 82
- rekurencyjna 81
- różnowartościowa 57
- stała 56
- wartościowa zmiennych 132, 160, 211, 247,
254
- wzajemnie jednoznaczna 57,125
- zero-argementowa 56, 109
- zdaniowa 15, 16, 25, 34
funkcji argument 56
- definicja ekstensjonalna 60
— intensjonalna 60
- nazwa 56
- składnia sekwencyjnego 61
- sygnatura 56
- wartość 56

Graf antysymetryczny 104
- przechodni 104
- przeciwsymetryczny 104
- przeciwzwrotny 103
- symetryczny 103
- zwrotny 103
- skierowany 102
gramatyka bez ograniczeń 101
-bezkontekstowa 97, 101, 105, 130, 145
- klasy 0 11, 101
- - 1 101, 102

- -3 101, 102
-regularna 101
- składniowo wieloznaczna 106
- struktur frazowych 101
- bezkontekstowa 97
-języka formalnego 97, 130

Hipoteza Turinga 77
- Turinga-Posta 77

Implikacja 14, 15, 22, 27, 37, 128, 135, 138,
141, 150, 164, 167, 168, 184, 185, 186, 191,
193, 196, 200, 222, 229, 232, 233, 234, 235,
236, 244, 246
- materialna 244, 246
- ścisła 244, 246
- matematyczna 21
inferencja 179, 228
iniekcja 57
inkluzja 37, 101
interpretacja formuł 161, 165, 181, 191, 247,
250, 254
- symboli funkcyjnych 159, 160, 162, 176, 201
— predykatywnych 160, 178, 188,201,211
-termów 159, 161, 169, 171, 181

Jednostki leksykalne 128, 131, 150, 154, 246
język formalny 29, 91, 95, 96, 97, 98, 99, 100,
107, 108, 128, 129, 130, 131, 145, 150, 152,
172, 240, 246
— generowany przez gramatykę 98, 101, 102,
108, 145, 149
- kwantyfikatorów pierwszego rzędu 152
- przedmiotowy 29

Klasa abstrakcji 53
klauzula 139, 206, 207, 208, 209, 210, 214,
219, 220, 221, 222, 223, 224, 225
-Horna 221,222
- pusta 206, 207, 208, 209, 210, 220, 221, 222,
223, 224
kongruencja 126
koniunkcja 14, 111, 139, 140, 141, 142, 148,
150, 167, 186, 192, 193, 195, 199, 206, 222,
234, 235, 236, 244
-elementarna 139, 140, 142

263

koniunkcyjna postać normalna 128, 139, 140,
149,205, 206
konkatenacjajęzyka 96
- słów 93, 94, 96
konsekwencja dowodowa (składniowa) 19, 21
- logiczna (semantyczna) 21,24, 173, 179, 180,
206, 207,220, 221,222
- składniowa 19, 21, 179, 229, 255
konwencja prefiksowa 57
- przedrostkowa 57
krotki 45
- n- 46
kwantyfikacja egzystencjonalna 16, 211, 212
- ogólna 16, 212, 214
- szczegółowa 16, 211, 212
kwantyfikatory o ograniczonym zakresie 176

Lemat Kóniga 104,201
- o podstawieniu 181,199
liczby kardynalne 75
literał 139, 206, 207, 208, 209, 214, 219, 222
- negatywny 139, 221, 222
- pozytywny 139, 221, 222
- komplementarny 206, 208, 209, 219
logika 4, 8, 11, 12, 24, 25, 240, 242, 243, 244,
245, 248, 249, 250, 252, 253, 254, 256
-formalna 11, 12, 13, 16, 18
-klasyczna 9, 12, 13, 24, 128, 228, 230, 239,
242, 243, 245, 248, 252, 253
-matematyczna 11,12
- symboliczna 11,12
logiki deontyczne 248
- epistemiczne 248
- intuicjonistyczne 228. 242, 252, 253
- modalne 242, 245, 246, 248, 253
- nieklasyczne 24, 173, 227, 230, 242
- niemonotoniczne 25, 242, 255
- temporalne 242,248,249,251
- wielowartościowe 25, 242, 243, 245

Maszyna Turinga 77, 78
matematyka 4, 8, 9, 12, 77, 227, 240, 242
metajęzyk 29, 33, 35, 37, 131, 133, 162, 164
metoda zerojedynkowa 134, 135, 136, 148,
184

metodologia 11,243
model języka rachunku kwantyfikatorów 160,
175
- Kripkego 247, 248, 254
multizbiór 68

Nałożenie 30
negacja 14, 111, 128, 138, 139, 140, 141, 142,
150, 167, 192, 194, 195, 202, 206, 214, 223,
224, 229, 233, 234, 235, 244
notacja BNF 98
- odwrotna polska 57
- wrostkowa (infiksowa) 57,82, 110, 117

Odwzorowanie 56, 92, 96, 97, 157
operacja minimum efektywnego 82, 84, 85
- rekursji prostej 82, 84, 90
operacje modyfikacji przez podstawienie 62
- obcięcia 62
- warunkowego wyboru 62
operacji deklaracja 122, 123, 125, 126

Paradoks Russella 31,35
pary uporządkowane 45, 94
permutacja 58
podformuła 129, 134, 137, 140, 147, 152, 167,
184, 185,233
podgraf 103
podsłowo 93,94,95, 116, 129
podstawianie termów 157
podtermy 116,118,216
poprawność semantyczna 180, 196, 199, 208,
220
postać normalna Skolimowska 205, 210
potęgowanie języka 96
podzbiór 37, 38, 40, 42, 43, 70, 72, 74, 75, 76,
78, 79, 86, 95, 97, 100, 103, 108, 142, 155,
168, 173,219
prawa de Morgana 41,42, 135, 138, 142, 165,
188
- idempotentności 136, 251
- logiczne 135, 138, 250, 253
-łączności 40, 136, 138
- podwójnego zaprzeczenia 135,138
- przemianowania kwantyfikatorów 165
- przemienności 40, 136,251

264

- przestawiania kwantyfikatorów 166
- rachunku kwantyfikatorów 165
— zdań 135
-rozdzielczości 40,136, 138,251
— kwantyfikatorów 165
- rozkładu kwantyfikatorów 166
-uproszczeń 136, 138
- zaprzeczenia implikacji 135
— równoważności 135
prawda 15, 16, 20, 32, 124, 131, 132, 143, 147,
148, 156, 162, 177, 178, 191, 200, 201, 213, 253,
256
prawo kontrapozycji 135
-implikacji 135, 138
-sprzeczności 136
- wyłączonego środka 136,138
predykat identyczności 171
-równości 171,173,175,176
produkcja 94, 95, 97, 98, 99, 101, 102, 105,
106, 108, 130
produkt kartezjański 47, 92
— uogólniony 47
przechodność 45, 52, 138, 148, 172, 174
przeciwdziedzina 48, 157
przeciwsymetria 52, 104
przeciwzwrotność 52, 103
przedrostkowa postać normalna 147, 166, 167,
168, 178,211,212
przekształcenia 13,98, 141,212,219
przesłanki 17, 19, 20, 21, 22, 77, 193, 197,
198, 199, 207, 208, 210, 220, 221, 230, 235,
242, 246, 255

Rachunek kwantyfikatorów 11, 147, 150, 151,
152, 153, 159, 160, 162, 165, 166, 167, 168,
170, 172, 174, 175, 176, 177, 179, 181, 188,
189, 190, 195,204, 205,210,214
— drugiego rzędu 152
— nierozstrzygalny 239
- predykatów z identycznością 171
— z równością 171
-sekwentów Gentzena 179, 184, 192, 196,
200, 204, 205,221
-zdań 128, 129, 130, 131, 132, 133, 134, 135,
141, 144, 145, 146, 147, 149, 152, 159, 162,
165, 188, 206, 209, 218, 219, 220, 228, 229,
232, 234, 238, 239, 240, 243, 244, 246, 247,

249, 252, 253, 254, 257
reguła odrywania 207, 229, 230, 231, 232, 235,
244, 251,253
- podstawiania (zastąpienia) 229, 244
- przechodności 138
-przepisywania 94, 101
-rezolucji 205, 207, 208, 208, 209, 210, 219,
220, 221,222, 223
- rezolucji schemat 219
- uogólniania 233, 234
-zastąpienia 137
reguły 13, 128, 229, 230, 232, 233, 235, 236,
238, 241
- domniemań 255
-eliminacji 192, 193, 194, 196, 199, 200, 202,
203
-wnioskowania 173, 179, 192, 207, 220, 227,
228,229, 231,255
-wyprowadzenia 179
relacja binarna 47, 88, 102, 247
- częściowo porządkująca 54
- identycznościowa 55
- leksykograficzne złożenie 55
- liniowego porządku 54
- nazwa 48
- odwrotna 48
- porządku 54, 248, 249, 254
- quasi-porządkująca 54
- sygnatura 48
- tożsamościowa 55
- typ 48
relacji domknięcie R względem własności P 55
- funkcja charakterystyczna 64
- przechodnie domknięcie 55
- zwrotne domknięcie 55
— przechodnie (tranzytywne) domknięcie
55
rezolwenta 207, 208, 209, 219, 220, 222, 223
rozstrzygalność problemu 134
równość 8, 35, 38, 39, 42, 43, 59, 72, 82, 92,
102, 121, 122, 124, 171, 173, 174, 175, 176,
183, 188
równoważność 14, 37, 53, 88, 89, 103, 119,
120, 125, 126, 133, 134, 135, 137, 138, 141,
148. 149, 150, 160, 163, 164, 165, 167, 188,
191, 192, 195, 196, 211, 212, 215, 222, 225,
233,236, 241,244

265

- relacja 53, 76
Schemat aksjomatów 174, 192, 229, 231,233
- modus ponendo ponens 17
- modus tollendo ponens 17
-wnioskowania 13, 17, 18
sekwent 8, 9, 179, 180, 184, 185, 186, 187,
190, 191, 192, 194, 196, 197, 198, 199, 200,
201,204, 205,228, 235
- spełnialny uniwersalnie 191, 197, 199
— w modelu 191
semantyczna poprawność systemu dowodzenia
180, 196, 199, 238
- zupełność systemu dowodzenia 200
semantycznie niesprzeczne 234, 239,245, 251
-zupełne 196, 200, 203, 234, 239, 240, 245,
251
semantyka 7, 11, 131, 132, 133, 151, 159, 171,
172, 176, 184, 190, 208, 239, 246, 247, 254
singleton 31,218
skolemizacja 211,212
słowa 92, 93, 94, 95, 96, 97, 98, 100, 102, 105,
106, 107, 116, 149, 128, 129, 153
spójniki logiczne interpretacja główna 111, 132
------ standardowa 132
spójność 52
stałe logiczne 128, 132, 151, 191, 229, 233,
235, 244, 246, 249
struktura czasowa 248, 249
superpozycja 51,61
surjekcja 57
sygnatura języka rachunku kwantyfikatorów 151,
176
sylogizm 17
- warunkowy 19, 27
symbol niezdefiniowany 57
- początkowy 97, 98, 99, 102, 105
-przeciążony 45, 110
symbole funkcyjne 110, 150, 151, 154, 159,
160, 162, 168, 169, 174, 175, 176, 177, 200,
201, 211, 212, 213, 215, 216, 225, 240
-kwantyfikatorów 150,152,170
- nieterminalne 97
-predykatów 150, 151, 152, 160, 167, 170,
171, 175, 176, 177, 178, 183, 188, 189, 200,
201,211,214, 225, 240
-spójników logicznych 128, 131, 132, 150,
169, 246

- terminalne 97, 105
- zmiennych indywidualnych 150,225
--zdaniowych 128, 129, 132, 246, 249
symetria 45, 52
system dedukcji naturalnej 227, 228, 238, 241
------ Gentzena 180, 196, 199, 205, 227, 234,
241
- dedukcyjny 13, 179, 227
- dowodzenia Hilberta 9, 228, 227
— sekwentów Gentzena 192
systemy Hilberta 227, 228, 229, 230, 232, 233,
234, 239, 241

Ścieżka w grafie 103, 106

Tautologia 133, 134, 135, 136, 137, 138, 148,
149, 162, 163, 164, 165, 172, 173, 184, 186,
187, 188, 189, 194, 195, 196, 200, 201, 203,
204, 207, 221, 233, 239, 240, 241, 250, 253
teoria Zermelo-Fraenkla 85
teorie elementarne 172,175,240
- nieelementarne 175
- niesprzeczność 240
- niezupelność 240
term wolny w formule 158
termów unifikacja 214
termy 116, 117, 118, 119, 120, 121, 125, 126,
127, 132, 144, 150, 151, 153, 154, 155, 157,
158, 159, 161, 169, 170, 171, 172, 181, 182,
184, 193, 194, 195, 196, 198, 200, 201, 202,
203,214,216,217, 238
-stałe 116, 117, 119, 120
- wartość 119
twierdzenie o dedukcji 164, 180, 231, 232,
234

Unifikator 214, 218, 219, 220, 224, 225
- najbardziej ogólny 216, 220

Wartościowanie zmiennych 116, 118, 132,
134, 160, 178, 181, 184, 185, 187, 188, 189,
191,247,254
wielozbiór 68, 69, 72, 89
własność ekstensjonalności 172, 242
wnioski 17, 172, 180, 184, 193, 199, 200, 226,
228, 230, 235, 238, 243, 246, 255, 256

skaźnik związania 152,154

Biblioteka £
,v- Główna

wykres Venna 40
wypowiedzi 10, 12, 34, 35, 132, 162, 177, 242,
245, 246, 253
wyrażenie funkcyjne (term) 59, 83
- wolne 155
-zmiennej 154
-związane 155

Założenie o zmienności świata 223, 255
zasada indukcji matematycznej 22, 23, 28
— strukturalnej 146,147,152,153
- rekursji strukturalnej 144
------ dla formuł 153
------ dla termów 153
zasięg kwantyfikatora 152, 155, 166
zawieranie 37, 38, 72
zbiór 29, 30, 31, 32, 33, 35, 36, 37, 38, 40, 43,
91, 92, 93, 96, 97, 98, 99, 100, 102, 103, 107,
108,-- 109, 111, 113, 114, 116, 123, 125, 127,
156, 157, 163, 164, 165, 169, 173, 177, 150,
152, 179, 180, 190, 192, 193, 195, 200, 201,
205, 206, 207, 209, 210, 216, 217, 218, 219,
220, 221, 223, 224, 225, 227, 228, 229, 230,
232, 234, 237, 238, 239, 243, 246, 247, 249
zbiór anonimowy 32
- ciągów nieskończonych 91
— skończonych 91
- definicja rekursywna 33
- definiowanie przez funkcję zdaniową 35
- docelowy 57
- ekstcnsjonalne definiowanie 34
-elementu 30,232
- formuł nad sygnaturą 151
— semantyczna konsekwencja 163
- identyczności 38
- ilorazowy 53, 88, 89
- liczb całkowitych 88, 183, 189
--naturalnych 33, 74, 81, 87, 110, 124, 146,
249
— wymiernych 89,211,249
- nieprzeliczalny 74
- obraz 52
- potęgowy 38, 74
- przeciwobraz 52
- przekrój 39
- przeliczalny 74, 80

- przybliżony 72
- - względem relacji R 73
- pusty 31, 86
- rekurencyjnie przeliczalny 81
- rekurencyjny 81
- rozłączny 40
- rozmyty 70
- równoliczności 39, 74
- równości 38
- różnica 39
- spójników logicznych funkcjonalnie pełny 141,
142,229, 234
— minimalny 142
- suma 39
- termów nad sygnaturą 151
- źródłowy 57
zdania 20, 129, 156, 224, 228, 240, 244, 245,
246, 252, 253, 256
- logiczne 13, 15
-proste 13,27
-złożone 14, 15, 18, 19.20,27
złożenie 51, 82, 108, 116, 158, 215, 233
zupełność semantyczna 180, 196, 200, 203,
221,240, 234
zwrot kwantyfikacyjny 16
- modalny 16
zwrotność 45,52,65, 172

BIBLIOTEKA GŁÓWNA

W książce tej przedstawiono podstawowe działy logiki klasycznej w spo­
sób odpowiadający potrzebom początkujących informatyków. Nawiązano do
zagadnień informatyki, między innymi przez przedstawienie języka logiki tak,
jak opisuje się języki programowania - z wyraźnym wyróżnieniem składni
i semantyki. Położono nacisk na prezentację tych systemów dowodzenia, które
pozwalają na algorytmizowanie procesu dowodzenia twierdzeń. Zawartość
książki, poza wstępem (rozdział 1), można podzielić na trzy części. Część
pierwsza (rozdziały 2-6) jest wprowadzeniem do elementarnych pojęć z za­
kresu teorii mnogości. W części drugiej (rozdziały 7-10) przedstawiono skład­
nię i semantykę języka klasycznego rachunku zdań i rachunku kwantyfikato-
rów, oraz rachunek sekwentów Gentzena i regułę rezolucji, jako podstawowe
systemy dowodzenia twierdzeń. Część trzecia (rozdziały 10,11) zawiera prze­
gląd innych systemów dowodzenia i wprowadzenie do logik nieklasycznych
wykorzystywanych w zastosowaniach informatyki.

Książka jest przeznaczona głównie dla studentów pierwszych lat informa­
tyki uczelni technicznych. Mogą z niej również korzystać studenci lat star­
szych innych kierunków, zainteresowani opanowaniem logicznych podstaw
mających zastosowanie w informatyce.

Wydawnictwa Politechniki Wrocławskiej
są do nabycia w następujących księgarniach:

„Politechnika”
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław

bud. A-1 PWr., tel. (0-71) 320-25-34;
„Tech”

plac Grunwaldzki 13, 50-377 Wrocław
bud. D-1 PWr., tel. (0-71) 320-32-52
Prowadzimy sprzedaż wysyłkową

ISBN 83-7085-625-X

Raport dostępności

		Nazwa pliku:

		Huzar_elementy_logiki_dla_informatykow.pdf

		Autor raportu:

		

		Organizacja:

		

[Wprowadź informacje osobiste oraz dotyczące organizacji w oknie dialogowym Preferencje > Tożsamość.]

Podsumowanie

Sprawdzanie napotkało na problemy, które mogą uniemożliwić pełne wyświetlanie dokumentu.

		Wymaga sprawdzenia ręcznego: 2

		Zatwierdzono ręcznie: 0

		Odrzucono ręcznie: 0

		Pominięto: 1

		Zatwierdzono: 28

		Niepowodzenie: 1

Raport szczegółowy

		Dokument

		Nazwa reguły		Status		Opis

		Flaga przyzwolenia dostępności		Zatwierdzono		Należy ustawić flagę przyzwolenia dostępności

		PDF zawierający wyłącznie obrazy		Zatwierdzono		Dokument nie jest plikiem PDF zawierającym wyłącznie obrazy

		Oznakowany PDF		Zatwierdzono		Dokument jest oznakowanym plikiem PDF

		Logiczna kolejność odczytu		Wymaga sprawdzenia ręcznego		Struktura dokumentu zapewnia logiczną kolejność odczytu

		Język główny		Zatwierdzono		Język tekstu jest określony

		Tytuł		Zatwierdzono		Tytuł dokumentu jest wyświetlany na pasku tytułowym

		Zakładki		Niepowodzenie		W dużych dokumentach znajdują się zakładki

		Kontrast kolorów		Wymaga sprawdzenia ręcznego		Dokument ma odpowiedni kontrast kolorów

		Zawartość strony

		Nazwa reguły		Status		Opis

		Oznakowana zawartość		Zatwierdzono		Cała zawartość stron jest oznakowana

		Oznakowane adnotacje		Zatwierdzono		Wszystkie adnotacje są oznakowane

		Kolejność tabulatorów		Zatwierdzono		Kolejność tabulatorów jest zgodna z kolejnością struktury

		Kodowanie znaków		Zatwierdzono		Dostarczone jest niezawodne kodowanie znaku

		Oznakowane multimedia		Zatwierdzono		Wszystkie obiekty multimedialne są oznakowane

		Miganie ekranu		Zatwierdzono		Strona nie spowoduje migania ekranu

		Skrypty		Zatwierdzono		Brak niedostępnych skryptów

		Odpowiedzi czasowe		Zatwierdzono		Strona nie wymaga odpowiedzi czasowych

		Łącza nawigacyjne		Zatwierdzono		Łącza nawigacji nie powtarzają się

		Formularze

		Nazwa reguły		Status		Opis

		Oznakowane pola formularza		Zatwierdzono		Wszystkie pola formularza są oznakowane

		Opisy pól		Zatwierdzono		Wszystkie pola formularza mają opis

		Tekst zastępczy

		Nazwa reguły		Status		Opis

		Tekst zastępczy ilustracji		Zatwierdzono		Ilustracje wymagają tekstu zastępczego

		Zagnieżdżony tekst zastępczy		Zatwierdzono		Tekst zastępczy, który nigdy nie będzie odczytany

		Powiązane z zawartością		Zatwierdzono		Tekst zastępczy musi być powiązany z zawartością

		Ukrywa adnotacje		Zatwierdzono		Tekst zastępczy nie powinien ukrywać adnotacji

		Tekst zastępczy pozostałych elementów		Zatwierdzono		Pozostałe elementy, dla których wymagany jest tekst zastępczy

		Tabele

		Nazwa reguły		Status		Opis

		Wiersze		Zatwierdzono		TR musi być elementem potomnym Table, THead, TBody lub TFoot

		TH i TD		Zatwierdzono		TH i TD muszą być elementami potomnymi TR

		Nagłówki		Zatwierdzono		Tabele powinny mieć nagłówki

		Regularność		Zatwierdzono		Tabele muszą zawierać taką samą liczbę kolumn w każdym wierszu oraz wierszy w każdej kolumnie

		Podsumowanie		Pominięto		Tabele muszą mieć podsumowanie

		Listy

		Nazwa reguły		Status		Opis

		Elementy listy		Zatwierdzono		LI musi być elementem potomnym L

		Lbl i LBody		Zatwierdzono		Lbl i LBody muszą być elementami potomnymi LI

		Nagłówki

		Nazwa reguły		Status		Opis

		Właściwe zagnieżdżenie		Zatwierdzono		Właściwe zagnieżdżenie

Powrót w górę

