Zbigniew Huzar

ELEMENTY
LOGIKI

DLA .
INFORMATYKOW

ZBIGNIEW HUZAR

ELEMENTY LOGIKI DLA INFORMATYKOW

[P

OFICYNA WYDAWNICZA POLITECHNIKI WROCEAWSKIEJ
WROCLAW 2002

Recenzent
Leszek PACHOLSKI

Opracowanie redakcyjne i korekta
Maria IZBICKA

PI‘Oj ekt oktadki Biblioteka Glowna i OINT
ZofiaiDariuszGODLEWSCY Politechniki Wroctawskiej

001769794

310392”/40

© Copyright by Zbigniew Huzar, Wroctaw 2002

OFICYNA WYDAWNICZA POLITECHNIKI WROCLAWSKIEJ
Wybrzeze Wyspianskiego 27, 50-370 Wroctaw

ISBN 83-7085-625-X

Drukarnia Oficyny Wydawniczej Politechniki Wroctawskiej. Zam. nr 512/2002.

Spis tresci

P2 O W e e aesesoranensseartansazeazan snsran

L. Elementarne:pojecia 10GICZNE ...cviminssosscacmsiissiismsmisasssisssisesssisivsmsemssmsiueismmssisnsinoiessssnisnssmsnevisvins
L.1. Czym jest TOZIKAY...c..cucorivsnsiinsisisissssvnisssiossssissssistissossssnsssassssssssissassssisssassisssassssnsusnsssssisnsss
1.2. Jezyk 10giki fOrmalne;.......c.ccevevecreruecininiiiiiiiicciitcccte et
1.3, WIOSKOWANIE ..ottt
1.4. Indukcja matematyCZNQ.ccsssiesisnesissimsssssimssssiisssssissssnsnsosonsdonsseissassessissssiessvisnssssssussooneioss
1.5. Logika w informatyce.........
CWICZENIA .oooeeoveeeee e

2. Elementarne pojgcia mnogosciowe...
2.1, ZDIOr 1 €lementiZbiONN::svussmesscosssinssnssnsonsnsa6ssaetossssi S5 sisssooasessssessesssssinss sasuasuevasninsdsus s insinhanis
2:2. Definiowanic ZhIOTOW ... i uussussssssissmssisssesssssbsisssessssssonsosiosionssssnsassnsssassusonsnmsnasnanassanssnce
2.3. Podzbiory, rownosé zbioréw, zbiory potggowe ...
2.4. Operacje na zbiorach
CWICZENIA covooveeveeieriaens

3. Relacje i fUnKCE ..eeuveeeeeeeciciiiiiciriciccieice e
3.1. Produkty kartezjanskie
3.2. Relacje:. . .s.ccovamimrons
3.3./0peracje na TelaciaChi ... ccsssisassssssssnissrssnosssonensseresssnsssssssensorsasnsassnsrssasnasssesasassassssesasninnan
3.4. Podstawowe rodzaje relacji binarnych..........ccoocviiiiinnininii e
3.5. FUNKCIE .ot
3.6. Operacje na funkcjach....
3.7. Funkgcje a relacje.............
CWICZRIIA . corevmesrercnssconsusersssomsossensssossasssassssanssass ot honas 53 SRR 5434655583850 B 8 S350 s i

4, UogdInieniali NZUPEINIENIA vocessisuisisissssemsssissisinsisssisssussisssssssssissssasasisnsiossasssnsnansssseevasusssssasussss
4.1. Wielozbiory
4.2, ZDIOTY TOZIMYLEeeevevvriieiiniicnisisitn sttt st s st s s be s s e sttt b et
4.3. Zbiory przyblizone
4.4. Zbiory przeliczalne i nieprzeliczalngccoeveeeveieieinienenennns
4.5. Zbiory obliczalne i rekurencyjnie przeliczalne
4.6. Funkcje obliczalneccccovvvvuiiiinicinieininieiinnns
4.7. Aksjomatyczne ujgcie teorii MNOZOSCHcovvveriiririiirieririiiee e
4.8. Definicje Zbior6w HCZDOWYCH «...civivessisisisussssmsissssesrsnsansosrorenssssnssssssssnesssrsnssasasnssasseresasssansnss
CWICZENIA .o e

5. Jgzyki formalne i gramatyki
5.1. Ciagi i stowa
5.2. Operacje Na SFOWACKHvviiiicicicccc s
5.3. TEZYKi TOTMAINE........cconmmevnssesssesonsmonsassisnsis sesissssisispesssssnsainseissnssashonsnssdsnsns s5sm st tandodsnanssnsusrsss
5:4. Gramatyki bezkonteKStOWE: . i susssnssusnsscimsimsssississsinssrsnssausssssnssasassnssssssssamassssasssssussesnsons
5.5, Klasyfikacja SramatyK .o isssmmessssssstasmsisicssesionsonssnsnnsasassasssnssnssosaesassssseoverasrasasonssasorsasons
DI0L GEALY :.cuvonvsessessvsnssssminassnasnsasarmassssassscasasssnsnenssnssasas ssnsssnssusassssansastasnosasssonsesssadonssnessssssasd s sosas
5.7. Drzewa rozbioru i diagramy skladniowe..........ccccccevvieiinniiiiiniiciinicncccec
CWICZENIA «.veoeeeeeee e aee e s bbbt sae bbb s

11
1
13
17
22
24
26
29
29
31
37
39
42
45
45
47
50
52
56
61
63
65
68
68
69
72
74
76
81
85
87
89
91
91
93
95
97

101

102

105

107

4

6. Algebry abstrakcyjne...........

6.1. Algebry JedNOTOAZAJOWEcoveueueeeeeeirieieeieiete ettt b ettt aenan
6.2. Algebry WielorOAZAJOWE «:.c.usviosisssusiacssansivssmismssssonisssnssisomessssssssssissasssssssisesavsosisnssiasssmsnsins

6.4. Algebry Boole’a.....
6.5. Homomorfizm algebr..

6:6. Algebra iloTazoOWaIEITNOW: .z ovm:mrmsinssvasssvassossmsn 56w ssiv85 55557055 5 444 SHovRIEIRS PRI AN AT s oo mnsason

Cwiczeniaccoceevveeenveennns

7.1. Skladnia........ccceueueee.
7.2. Semantyka...................

7.3. Dowodzenie metoda zerojedynkowa....

7.4. Wybrane tautologie.....

7.5 Dowodzenie transformMaCyiNe. .. v sauiesiisnssionssmivensnosisssmsssismsniasssssssstonssissibsssassnsossesinsmmnsres
1:6: Postaci KanoniCzne FOrMUL . ..o i issis svsssiimssssiim s itan sibsssshasss sssssmmevas

7.7. Funkcjonalna petnos¢..

7.8. Rekursja i indukcja StruKturalna.........oo.eeeverieiinieiecceeceee ettt

Cwiczeniaco...oevvveenne.
8. Rachunek kwantyfikatoréw
8.1. Skladnia......cccooeueneneee
8.2. Indukcja strukturalna ..

8.3, Zmienne WOINE i/ ZWIAZANE . ..civusosconsesnsssovivsssisnssnisissssssssssionssssssnssssinsstsshisnisssssassnsonsssnissisoros

8.4. Podstawianie termow ..
8.5. Semantyka.........ccc.e..
8.6. Spetnialnos¢ formut ...

8.7. Wybrane prawa rachunku kwantyfikatoréw ...
8.8. Przedrostkowa posta¢ normalna...........ccc.ce.e.

8.9. Przyklad jezyka rachunku kwantyfiKatorowcccoevieinenicinenncceeeesece e
8.10. Rachunek kwantyfiKatoréW Z FOWNOSCIG ..cveeueereruererseireereeneninreseessesseessessessesssessessessenses

8.11. Teorie elementarne....

8.12. TeOorie NICEIEMENTAINE.c.eeiieeieeeeeeteereeeteeereeeraeeeteeseessesssesseesseesssessseesseesseesssennseessnenseen

CWICZENIA . oivssisuinssvessiesses

9. Rachunek sekwentéw Gentzena..

9.5. System dowodzenia

9.6. Semantyczna poprawnos¢
9.7. Semantyczna zupelnosé.......

Cwiczeniaoeeeeeveeeereenenen,
10. Zasada rezolucji.................

10.1. WSEEP oo
10.2. Zasada rezolucji dla rachunku zdan
10.3. Skolemowska posta¢ normalna..........
10.4. Unifikacja terméw
10.5. Zasada rezolucji dla rachunku kwantyfikatoréw

10.6. Klauzule Horna w programowaniu logicznym...........

CWicZenia ...cusmamsessssosss

109
109
113
115
121
122
125
126
128
128
131
134
135
136
138
141
144
147
150
150
152
154
157
159
162
165
166
168
171
172
175
176
179
179
181
184
190
192
196
200
204
205
205
206
210
214
218
221
225
227

L1 L WSEEP ettt sttt ettt e n et s sttt nesnean

11.2. Systemy dowodzenia Hilberta..............

11.3. System dedukcji naturalngj GENtZENAcceeverreuiereererieieieresiecee et e e e eseae e saesaens
11.4. Wiasnosci metalogiczne rachunku KwantyfiKatorowececeevevevereereeninieresnseescsesieeneenes
OWICZOIIA ¢ eciescitsssmesminntsnsusesasnssinsensssssnsinss sosssasasnsssssnsassonsassssesenssnssssonsnsasasonssssanmestsess snanatsnspensosss

12. Inne logiki....
12.1. Wstep... sssssiss
12.2. Logiki wielowarto$Ciowe........coeveeereerervencrennrnenns
12.3. Logiki modalne
12.4. Logiki temporalne

12.5. Logiki intuicjonistyczne.........c.ccccevuruenvne.

12.6. O logikach niemonotonicznych

CWICZENIA v sissisiincissioisiinsiosesiasansisnsasnnissnss

Literatura

Indeks

227
228
234
239
241
242
242
243
245
248
252
255
256
259
261

Przedmowa

Informatyka jest dyscypling mloda, liczaca okoto pigédziesiat lat. Sam termin infor-
matyka pojawit si¢ w jezyku polskim na poczatku lat siedemdziesiatych, a termin
komputer zadomowit si¢ na dobre dopiero w koncu lat siedemdziesiatych. Rozwoj in-
formatyki byl i pozostaje stymulowany dwoma czynnikami. Pierwszym jest rozwoj
technologii, gtéwnie elektronicznej. Dzigki postgpowi w tej dziedzinie stato si¢ moz-
liwe technicznie zrealizowanie najpierw urzadzen liczacych, ktérych koncepcje byty
rozwazane znacznie wczesniej, a pdzniej zbudowanie uniwersalnych urzadzen licza-
cych — wspolczesnych komputeréw. Drugim czynnikiem jest potencjalnie ogromne
pole zastosowan informatyki. Oba te wzajemnie sprzgzone czynniki doprowadzity do
sytuacji, gdy komputer staje si¢ powszechnym narzg¢dziem pracy niemal w kazdej
dziedzinie.

Miarg tempa rozwoju obecnie dominujacej technologii polprzewodnikowej jest fakt,
ze wydajnos¢ sprzgtu komputerowego mierzona czgstotliwodcia zegara sterujacego
praca komputera, i podobnie rozmiar pamigci operacyjnej komputera, podwaja si¢ co
pottora roku. Przewiduje sig, ze taka tendencja moze utrzymac si¢ do 2015-2020 roku.
Wyznacznikiem rozpowszechnienia zastosowan informatyki jest obecnie nie tylko
Internet — globalna sie¢ komputerowa stanowiaca federacj¢ setek tysigcy sieci kom-
puterowych — ale réwniez rozpoczynajacy si¢ proces integracji Internetu, telefonii
komoérkowej oraz telewizji cyfrowe;.

Informatyka dostarcza specyficznych narzedzi i metod, ktére mozna wykorzystywaé
do rozwigzywania problemoéw w réznych dziedzinach. Do zrozumienia tej specyfiki
i mozliwosci zastosowan informatyki potrzeba trwatych i niezawodnych podstaw.
Tak jak w przypadku innych nauk $cistych, podstawy informatyki sa oparte na ma-
tematyce, a dokladniej na wybranych jej dziatach, odpowiednio przystosowanych do
potrzeb informatyki. Podstawy informatyki sa wprawdzie ciagle ksztaltowane, ale
pewne ich elementy mozna obecnie uzna¢ za ustabilizowane. W historii matematyki
byl okres na przetomie XIX i XX wieku, gdy uswiadomiono sobie koniecznos¢
ustalenia podstaw matematyki, bez ktérych nie bytby mozliwy spojny rozwdj roz-
nych dziatléw: algebry, analizy matematycznej, rachunku prawdopodobienstwa, to-
pologii itp. Podstawy matematyki, ktore uformowaty si¢ w pierwszej potowie ubie-
glego wieku, objely dwa niezalezne wczesniej dzialy — teorie mnogosci i logike.

8

Podobnie ma si¢ z podstawami informatyki, za ktére rowniez mozna uwazaé teorig
mnogosci i logike, z polozeniem akcentu, silniejszego niz w podstawach matematy-
ki, na logike. Wynika to takze z tego, ze informatyke traktuje si¢ niekiedy jako dys-
cypling wyrosta z podstaw matematyki.

Szczegdlna rola matematyki w podstawach informatyki nie jest jednak uzasadniona
wylacznie wzgledami historycznymi. Zasadniczy powdd wynika z roli, jaka petni in-
formatyka w zastosowaniach. Rozwiazywanie probleméw, przed ktérymi staje infor-
matyk, wymaga od niego — po pierwsze — zrozumienia danej dziedziny zastosowan
i zrozumienia na czym dany problem polega, po wtdre — informatyk musi zna¢ i ro-
zumie¢ narzedzia i metody, ktorymi moze dysponowac, wreszcie — po trzecie — musi
zaproponowac¢ jak, za pomocg posiadanych srodkéw, dany problem rozwiaza¢. Opis
problemu na tle specyficznej dziedziny jest poczatkowo wyrazany w jezyku natural-
nym. Precyzyjny jego opis wymaga wyrazenia go w jezyku sformalizowanym, czyli
jezyku o Scisle okreslonej sktadni i semantyce. Potrzeba taka wynika stad, ze rozwia-
zanie problemu przedstawione ostatecznie komputerowi do policzenia musi by¢ wyra-
zone w jezyku programowania, czyli réwniez pewnym sformalizowanym jezyku.
Komputer, w odroznieniu od cztowieka, nie potrafi bowiem podja¢ zadnych innych
akcji niz te, ktére sa wyrazone w pewnym jezyku sformalizowanym.

Koniecznos¢ formalizacji informatyki wynika wigc z dwoch powodéw. Po pierwsze
— ze specyfiki komputera i tego, co potrafi, a to, co potrafi, mozna sprowadzi¢ do
umiejetnosci przetwarzania symboli. Po drugie — wynika z potrzeby zrozumienia
abstrakcji, czyli procesu budowy formalnego opisu problemu na podstawie opisu
wyrazonego w jezyku naturalnym. Formalny opis problemu jest pewnym modelem
rzeczywistego problemu wystepujacego w realnej dziedzinie. Model jest opisem
uproszczonym, to znaczy koncentruje si¢ tylko na wybranych aspektach rzeczywi-
stego problemu. Na jakich aspektach i jak szczegétowo ma skupia¢ si¢ model zalezy
oczywiscie od celu jego budowy. Sposéb budowy modelu, ocena zgodnosci modelu
z opisywang rzeczywistoscia, zwigzek pomigdzy modelem opisu a modelem rozwia-
zania sa typowymi zagadnieniami, wokot ktorych wyrastaja teorie i dzialy matema-
tyki. Klasycznym przykladem sa analiza matematyczna i teoria rownan rézniczko-
wych, ktore rozwingly si¢ na skutek zapotrzebowania dziewigtnastowiecznej
techniki i fizyki.

Na poczatku XX wieku z formalizacja matematyki wiazano zbyt dalekie nadzieje.
Program formalizacji matematyki, zwigzany gtéwnie z nazwiskiem Dawida Hilber-
ta, zalamat si¢ w latach trzydziestych, po odkryciach Kurta Godla, ktéry wskazal na
swoistg ograniczonos¢ metod formalnych. Gdyby si¢ okazato, ze program Hilberta
jest realizowany, wowczas mozna byloby przypuszczaé, ze wszystko to, co potrafi
cztowiek, mogtby rowniez zrealizowaé komputer. Tak jednak nie jest, dlatego intu-
icja 1 kreatywno$¢ daja czlowiekowi niekwestionowang przewagg nad komputerem.
Oznacza to, ze informatyk w swojej pracy powinien traktowa¢ metody formalne ja-
ko uzupetnienie i wsparcie wlasnej pomystowosci i twdrczosci.

9

W informatyce metody formalne stanowia fundament podstawowych poje¢, takich jak
pojecie algorytmu, obliczalnosci czy ztozonosci obliczeniowe;j.

Logika dostarcza jezyka do przedstawiania i badania wiasnosci modeli informatycz-
nych, w tym systemoéw komputerowych i jezykdw programowania, w szczegdlnosci
srodkow do definiowania sktadni i semantyki jezykdéw programowania. W jezyku lo-
giki mozna specyfikowaé wymagania stawiane projektowanym systemom oprogra-
mowania. Ponadto jezyk logiki moze bezposrednio by¢ uzywany jako jezyk progra-
mowania. Ogromng role odgrywa logika w zastosowaniach informatyki, na przyktad
w tworzeniu i funkcjonowaniu baz wiedzy i systeméw ekspertowych.

Szczegdlng rolg odgrywa logika w procesie wytwarzania oprogramowania. Wytwa-
rzanie oprogramowania jest obecnie w coraz szerszym zakresie wspomagane przez
komputer. Budowa narzgdzi wspomagajacych staje si¢ mozliwa dzigki opracowaniu
odpowiednio sformalizowanych metod wytwarzania oprogramowania. Poszerzanie
zakresu wspomagania jest pochodna poszerzenia formalizacji metod specyfikacji,
konstruowania i weryfikacji programéw.

Niniejszy podrgcznik obejmuje w zasadzie tylko logike klasyczna. W jezyku polskim
jest wiele bardzo dobrych podrgcznikow logiki, pisanych glownie dla matematykow —
na przyklad: [Adamowicz, Zbierski 1991], [Grzegorczyk 1975], [Hunter 1982], [Ra-
siowa 1998], [Stupecki, Hatkowska, Pir6g-Rzepecka 1978]. Natomiast, poza nielicz-
nymi — na przyktad: [Mostowski, Pawlak 1970], [Szatas 1992] — praktycznie nie ma
takich podrgcznikow dla informatykow. Zwraca uwage fakt, ze w cstatnim okresie
powstaja rozne podreczniki logiki dla informatykow w jezyku angielskim — na przy-
kiad: [Fitting 1990], [Kelly 1997], [Nissanke 1999], [Socher-Ambrosius, Johann
1996]. Jedng z istotnych réznic migdzy tymi dwoma kategoriami podrecznikdow jest
sposob przedstawiania systeméw dowodzenia. Dla matematykéw zwykle jako pod-
stawowy wybiera si¢ system dowodzenia Hilberta, ktéry dobrze oddaje praktyke do-
wodowg ,.klasycznego” matematyka, natomiast w informatyce wigksza rolg odgrywaja
systemy dowodowe, ktére — inaczej niz system Hilberta — pozwalajg na automatyzo-
wanie procesu dowodzenia. Dlatego w podrgczniku omawia sig¢, jako podstawowe
systemy dowodzenia, system sekwentéw Gentzena i system oparty na regule rezolucji.

Pierwszy rozdzial podrgcznika jest ogdélnym wprowadzeniem, wyjasniajacym czym
jest logika. Pozostaly material mozna podzieli¢ na trzy czg¢sci. Pierwsza czgs¢, obej-
mujaca rozdzialy od 2. do 6., jest krotka prezentacja elementdw teorii mnogosci, al-
gebr abstrakcyjnych i jezykow formalnych. W drugiej czgsci, obejmujacej rozdziaty
od 7. do 10., oméwiono rachunek zdan i kwantyfikatorow — ich sktadnig, semantyke
oraz zwigzane z nimi systemy dowodzenia oparte na sekwentach Gentzena i zasadzie
rezolucji. W trzeciej czgsci, obejmujacej rozdziaty 11. 1 12., o charakterze informacyj-
nym, omowiono krdtko inne systemy dowodzenia. Jest ona przegladem innych, nie-
klasycznych logik.

10

Prezentacja materiatu jest sformalizowana tylko czgsciowo i odnosi si¢ w zasadzie do
definiowania poj¢¢ oraz do sformulowania i udowodnienia wybranych twierdzen.
Zwrdcono uwage przede wszystkim na twierdzenia o poprawnosci i zupetnosci syste-
mu dowodzenia opartego na rachunku sekwentéw Gentzena, dla pozostatych przed-
stawianych systeméw dowodzenia ograniczono si¢ tylko do sformulowania odpo-
wiednich twierdzen.

Do kazdego rozdziatu sa dofaczone ¢wiczenia. Zebrane tu zadania pochodzg z réznych
zrédet: czg$¢ stanowi opracowania autora lub wspoétpracownikdw, czg$¢ jest zaczerp-
nigta z podrecznikéw przedstawionych w spisie literatury: [Fitting 1990], [Gabbay
1998], [Gerstig 1993], [Kelly 1997], [Marek, Onyszkiewicz 1975], [Nissanke 1999].

W celu czytelnego wyodrgbnienia przyktadow, wprowadzono w tekscie linie rozdzie-
lajace na poczatku i koncu odpowiednich akapitow.

Podrecznik jest przeznaczony w zasadzie dla studentdw I roku informatyki na studiach
politechnicznych. Zakres materiatu jest jednak nieco szerszy i dlatego moga skorzy-
sta¢ z niego, jako z lektury uzupetniajacej, takze studenci lat starszych.

Pragng¢ podzigkowa¢ moim Kolegom z Wydzialowego Zaktadu Informatyki Politech-
niki Wroctawskiej za pomoc w powstaniu tego podrecznika. Szczegodlnie goraco dzie-
kuje profesorowi Iwanowi Tabakowowi oraz doktorowi Zdzistawowi Sptawskiemu za
uwazng lekturg rekopisu, wskazanie usterek, cenne wskazowki oraz propozycje ulep-
szenia tekstu.

Oddzielne podzigkowanie kieruj¢ do profesora Leszka Pacholskiego, ktéry jako re-
cenzent, poza wskazaniem usterek, przedstawit wiele sugestii i wskazowek dotycza-
cych sposobu prezentacji materiatu oraz udostepnit zadania przygotowywane dla stu-
dentow informatyki Uniwersytetu Wroctawskiego.

Niezaleznie od wszelkich uwag i sugestii, podrecznik, jak kazdy obszerniejszy tekst,
moze zawieraé przeoczenia badz niescistosci. Czytelnikow, ktdrzy spostrzega takie
usterki, autor prosi o przekazanie odpowiedniej informacji pocztg elektroniczng na
adres: z.huzar@ci.pwr.wroc.pl.

Zbigniew Huzar

Wroctaw, grudzien 2001

mailto:z.huzar@ci.pwr.wroc.pl

1. Elementarne pojg¢cia logiczne

1.1. Czym jest logika?

Stowo logika' bywa uzywane przez filozoféw, matematykéw i w mowie potocznej
w licznych znaczeniach i kontekstach. Diugotrwata tradycja terminologiczna okresla
logike jako analizg¢ jezyka pod katem jego wykorzystania do:

e definiowania,
e klasyfikowania,
e wnioskowania.

Celem takiej analizy jest podanie regut postugiwania si¢ jezykiem, aby byt on skuteczny.

Logika pojmowana jako narzedzie poprawnego myslenia, czyli wnioskowania lub ro-
zumowania, byla juz przedmiotem zainteresowania starozytnych® [Kotarbinski 1985],
[Murawski 1995]. Drugie jej narodziny przypadaja na wiek XIX. Traktowana jako
pomocniczy dzial matematyki, wyodrebnita si¢ na poczatku XX wieku w samodzielng
dyscypling matematyki. Obecnie zakres pojgcia logiki jest szeroki i obejmuje trzy od-
rebne dziedziny [Bochenski 1992]:

e logike formalna,
e metodologie,
e filozofig logiki.

Przedmiotem zainteresowania logiki formalnej sa wypowiedzi w danym jezyku, a dokladniej
to, czy sa one prawdziwe czy falszywe. Dang wypowiedZ mozna ocenia¢ albo jako prawdzi-
wa, albo jako falszywa, gdyz zadna wypowiedz nie moze by¢ jednoczesnie prawdziwa i fal-
szywa. Prawda i falsz, jako wiasnosci wypowiedzi, sa zatem podstawowymi pojeciami logiki.

Pojecie prawdy, chociaz uzywane powszechnie, nie jest fatwe do okreslenia. Klasycz-
ne rozumienie prawdy opiera si¢ na zwiazku pomigdzy wypowiedzia a rzeczywisto-

! Stowo logika pojawia si¢ po raz pierwszy w tytule dziela Demokryta (460-371 r.p.n.e.).
2 Problematyka logiczna byla rozwazana przez Sokratesa (469-399 r.p.n.e.) i Platona (427-347 r.p.n.e.),
ale za pierwszego tworcg systemu logiki uwaza si¢ Arystotelesa (384-322 r.p.n.c.).

12

$cia, do ktérej dana wypowiedz si¢ odnosi. Ten sens oddaja stowa wypowiedziane bli-
sko dwa tysiace lat temu [Turski 1988]:

O kazdym bowiem zdaniu rozstrzyga sie, ze jest prawdziwe, albo ze jest falszywe ze
wzgledu na jego odniesienie do rzeczy, o ktdrej zostalo orzeczone. Jezeli bowiem
okazuje si¢ ono zgodne z rzeczq, o ktorej zostalo orzeczone, wydaje si¢ prawdziwe,
Jjezeli niezgodne — falszywe.
Zadaniem logiki formalnej jest ustalanie prawdziwosci wypowiedzi. Pierwszym zada-
niem jest ustalanie prawdziwosci wypowiedzi zlozonych na podstawie prawdziwosci
wypowiedzi, ktére stanowig ich sktadowe. Szczegdlnym rodzajem sa takie wypowie-
dzi ztozone, ktére sa zawsze prawdziwe, niezaleznie od prawdziwosci swoich wypo-
wiedzi sktadowych. Wypowiedzi takie nazywa si¢ prawami logicznymi. Gléwnym
zadaniem logiki jest jednak wnioskowanie, czyli badanie tego, co na podstawie dane-
go zestawu prawdziwych wypowiedzi — przestanek — mozna sadzi¢ o prawdziwosci
innych wypowiedzi. Chodzi tu o wnioskowanie niezawodne, to znaczy takie, ktére na
podstawie prawdziwych przestanek gwarantuje zawsze wyprowadzenie prawdziwych
wnioskow. Przedmiotem logiki sa réznego rodzaju schematy niezawodnego wniosko-
wania, ich formulowanie, porzadkowanie i uzasadnianie.

Metodologia zajmuje si¢ stosowaniem logiki do roznych dziedzin [Bochenski 1992],
[Wojcicki 1982]. W praktyce okazuje sig, ze te same prawa logiczne moga by¢ stoso-
wane w rozny sposob. Inng rzecza sa schematy wnioskowania, a inng przeprowadza-
nie wnioskowania na podstawie tych schematéw. Na przykiad, znany podzial wnio-
skowania na metody dedukcyjne i indukcyjne nie polega na uzyciu réznych praw
logiki, lecz na réznym uzyciu tych samych praw. Celem metodologii — nie wnikajac
w szczegbly — sa ogdlne sposoby zdobywania i formutowania wiedzy prawdziwej albo
przynajmniej dobrze uzasadnione;.

Filozofia logiki obejmuje analiz¢ podstawowych poje¢ logiki [Bochenski 1992]. Pré-
buje odpowiada¢, na przyktad, na pytania: Co to jest prawda? Co to jest prawo lo-
giczne? Skqd wiadomo, ze jest ono prawdziwe?

Zakres ksiazki obejmuje tylko logike formalng, nazywana inaczej logikq matema-
tycznq lub logikq symboliczng. Logika formalna wprowadza jezyk symbolicznego
zapisu wypowiedzi i okre$la jak mozna takim symbolicznym zapisom przypisywaé
pewne znaczenie, czyli, w jaki sposob mozna okresla¢ ich semantyke. Zakres wypo-
wiedzi, ktére mozna zapisywaé w jezyku logiki formalnej, nie obejmuje oczywiscie
wszystkich wypowiedzi, ktére mozna sformutowaé w jezyku naturalnym. Jezyk lo-
giki formalnej jest natomiast catkowicie wystarczajacy do przedstawiania i analizy
wypowiedzi dowolnych dziatéw matematyki. Nic w tym dziwnego, gdyz narodziny
wspotczesnej logiki wigza si¢ wilasnie z potrzeba precyzyjnego sformulowania
i analizy zagadnief z zakresu podstaw matematyki, ktére pojawily si¢ pod koniec
XIX i na poczatku XX wieku. Dlatego logike formalng okresla sie niekiedy jako
metamatematyke, czyli jako nauke dostarczajaca jezyka do opisu wszystkich pozo-
stalych dzialow matematyki.

13

Celem logiki formalnej jest ujecie procesu rozumowania, albo wnioskowania, w postaci
przeksztalcania napiséw reprezentujacych wypowiedzi. Chodzi o to, aby na podstawie pew-
nych napiséw, reprezentujacych wypowiedzi uznane za prawdziwe, uzyskiwaé prawdziwe
whnioski — nowe napisy, reprezentujace nowe, prawdziwe wypowiedzi. Inaczej: chodzi o to,
aby przeksztalcania napisdw reprezentowaly niezawodne schematy wnioskowania.

Przeksztalcanie napisow opiera logika formalna na systemie dedukcyjnym, czyli na
ustalonym zbiorze regut mechanicznego przeksztalcania tekstow. Pewne napisy przyj-
muje si¢ za poprawne z zatozenia. Traktuje si¢ je jako aksjomaty systemu dedukcyjnego.
Inne napisy przyjmuje si¢ za poprawne tylko wtedy, gdy daje si¢ je wyprowadzi¢ z ak-
sjomatéw przez stosowanie ustalonych regul systemu dedukcyjnego. Regula jest algo-
rytmicznym sposobem przeksztatcania jednych napisow w inne napisy. Napisy wyprowa-
dzone w wyniku stosowania przyjetych regut powinny by¢ poprawne nie tylko w sensie
zgodnosci z przyjetymi regulami przeksztalcania, ale rowniez powinny by¢ poprawne
W sensie semantycznym, to znaczy powinny byé wypowiedziami prawdziwymi.

Logik formalnych jest wiele [Marciszewski 1987], [Marciszewski 1988]. Roznig si¢
one klasa obiektow, do ktérych odnosza si¢ wypowiedzi, rodzajami wypowiedzi (np.
wypowiedzi oznajmujace, przypuszczajace, pytajace, nakazujace) oraz stosowanymi
systemami dedukcyjnymi — systemami wnioskowania. Szczegdlng rolg — zaréwno ze
wzgledu na historig, a takze zastosowania — petni logika klasyczna. Logika klasyczna
jest jadrem wszystkich innych logik formalnych, w tym réwniez roéznych specjali-
stycznych logik stosowanych w informatyce.

1.2. Jezyk logiki formalnej

Jak wspomniano, przedmiotem logiki formalnej sa wypowiedzi w danym jezyku,
a doktadniej to, czy sa prawdziwe czy falszywe.

Nie wszystkie wypowiedzi mogg by¢ jednak oceniane jako prawdziwe albo falszywe.
Nie sposob tak oceni¢ wypowiedzi rozkazujacej czy pytajacej, mozna tak oceniac, co
najwyzej, wypowiedzi oznajmujace, ale nawet co do nich moga powstawac¢ watpliwo-
$ci. Na przyktad, czy wypowiedz:

W 2100 roku bardzo popularng formq wypoczynku bedq wakacje na Marsie.

jest prawdziwa czy falszywa? Trudno to osadzi¢, przynajmniej w obecnej dobie. Natomiast
z powodu braku wiedzy historycznej nie mozna stwierdzi¢, czy prawdziwa jest wypowiedz:

Krdl Bolestaw Chrobry urodzil si¢ w poniedzialek.

Wypowiedzi, ktérym mozna przypisa¢ prawdziwos¢ albo falszywos¢ beda nazywane
zdaniami logicznymi. Zdania logiczne moga by¢ proste, na przykiad:

190IM
oyejo(1q

g}"_‘?

14

Ksiqzka lezy na stole.

W programie koncertu jest symfonia Mahlera.
Warto zwrdci¢ uwagg, ze tego rodzaju zdania sa formutowane w pewnym kontekscie
sytuacyjnym i tylko w tym kontekscie mozna rozstrzygaé, czy sa prawdziwe czy fal-
szywe. W jezyku naturalnym spotyka si¢ tez wypowiedzi, ktérych prawdziwos$¢, na-
wet po ustaleniu kontekstu, moze by¢ trudna do okre$lenia. Rozpatrzmy zdania:

On jest dosy¢ wysokim mezczyzng.

Samochadd jechal dosy¢ wolno.
Powodem trudnosci w pierwszym zdaniu jest rozumienie zwrotu dosy¢ wysoki. Czy jest

dosy¢ wysoki mezczyzna, ktory ma 180 cm wzrostu, czy dopiero taki, ktéry ma 185 cm?
Podobnie w drugim zdaniu problem stwarza rozumienie zwrotu jecha¢ dosy¢ wolno.

Ze zdan prostych mozna budowac¢ zdania ztozone, na przyktfad:

Pdéjde do kina lub pdjde do teatru.
Jezeli wykonawcq koncertu bedq filharmonicy berlinscy, to zwalq sie tfumy.
W 1939 roku Hitler napadl na Czechoslowacje i —w roku nastepnym — na Polske.

Zdania ztozone powstaja przez pofaczenie zdan prostych za pomoca spdjnikéw lo-
gicznych. Spdéjnikami logicznymi (zdaniowymi) sa na przykltad slowa i zwroty: nie,
lub, i (oraz), jezeli ..., to ..., ... wtedy i tylko wtedy, gdy
W jezyku naturalnym zwroty te maja ustalone znaczenie. Ponizej przedstawia si¢ prosta
formalizacj¢ uscislajaca ich znaczenie. Formalizacja spdjnikéw logicznym polega na:

¢ nadaniu im pewnej symbolicznej notacji,

e przypisaniu im znaczenia w terminach tabel prawdziwosciowych.
Zdania beda oznaczane symbolami p, g, r, ... Spojniki logiczne bgda oznaczane nastgpujaco:

e Spéjnik nie — nazywany negacjq — jest oznaczany symbolem. Negacj¢ zdania p
zapisujemy: p.

Spéjnik i (oraz) — nazywany koniunkcjq — jest oznaczany symbolem A. Ko-
niunkcje zdan p, g zapisujemy: p A q.

Spéjnik lub — nazywany dysjunkcjq lub alternatywq — jest oznaczany symbolem
v. Dysjunkcje (alternatywe) zdan p, g zapisujemy: p v q.

Spéjnik jezeli ..., to ... — nazywany implikacjq — jest oznaczany symbolem =.
Implikacj¢ zdan p, g zapisujemy: p = q.

Spdjnik wtedy i tylko wtedy, gdy — nazywany rownowaznoSciq — jest oznaczany
symbolem <. Réwnowaznos¢ zdan p, g zapisujemy: p < q.

Zapisujac zdania ztozone w postaci symbolicznej bedzie si¢ uzywaé nawiasow, grupujac

w odpowiedni sposob zdania skladowe. Nawiasy beda opuszczane, gdy przyjmie si¢ na-

stepujaca kolejnos¢ wiazania spojnikow (od najsilniejszego do najstabszego):

—, A, V, =, &,

15

Zamiast, na przykfad:
(A Vv (rans) =t

mozna pisac:
“PAGVIrAS=t

Ponadto, zaktada sig, ze spdjniki A, v wystepujace obok siebie taczg w lewo, a spdjni-
ki =, & wystepujace obok siebie tacza w prawo. Na przykiad:

PAQAT Znaczy pAg)Ar,
p=>q=r znaczy p=(g=r).

Prawdziwos¢ zdania ztozonego zalezy tylko od prawdziwosci jego zdan sktadowych i od
tego, jakim spojnikiem sa one potaczone. Taka wlasno$¢ nazywa sig ekstensjonalnosciq.

Tablica 1.1
P |p P q | prg P q | pvq P q | p=9 P 19 |pP=9
P | F F | F F F | F F F | F P F | F P
F | P P | F F P | F P P | F F P |F F
F | P F F | P P F | P P F |P F
P | P P P|P P P|P P P |P P

Rol¢ spdjnikow logicznych daje si¢ prosto wyrazi¢ za pomoca tablic prawdziwoscio-
wych — tablica 1.1. Tablica prawdziwosciowa jest tabelarycznym zestawieniem
wszystkich wartosciowan zdan sktadowych oraz odpowiadajacych im wartosciowa-
niom zdania zlozonego potaczonego danym spdjnikiem logicznym. W celu zmniej-
szenia rozmiaréw tablicy zamiast prawda lub falsz pisze si¢ symbole P oraz F. Tablica
uscisla znaczenie, ktére wigze si¢ ze spojnikami logicznymi w jezyku naturalnym.

Wiasnos$¢ ekstensjonalnosci, czyli abstrahowanie od wewnetrznych tresci zdan skfa-
dowych przy ocenie prawdziwosci zdan zlozonych, moze powodowaé kolizj¢ z po-
tocznym rozumieniem prawdziwosci zdan. Typowym przyktadem sa zdania potaczone
spéjnikiem implikacji. Zdanie

Jezeli ksiezyc ma ksztalt szeScianu, to dzisiaj mamy dzien rektorski.

uznaliby$Smy za bezsensowne. Formalnie jest to zdanie poprawnie zbudowane, a po-
nadto jest to zdanie prawdziwe. Chociaz zdanie dzisiaj mamy dzien rektorski nie musi
by¢ zdaniem prawdziwym, ale falszywos¢ zdania ksiezyc ma ksztalt szescianu pociaga
prawdziwos$¢ calej wypowiedzi. Pojecie sensownosci, do ktorego czegsto odwotujemy
si¢ W jezyku naturalnym, nie ma bezposredniego odpowiednika w jezyku logiki kla-
sycznej. Wynika to z tego, ze jezyk logiki klasycznej jest znacznie ubozszy od jezyka
naturalnego, jest tylko pewnym jego przyblizeniem.

Zdania logiczne sq wypowiedziami, ktorym — w danym kontekscie wypowiedzi — jed-
noznacznie przypisuje si¢ prawdziwos¢ lub falsz. Znane sq tez inne rodzaje wypowie-

16

dzi, ktérym prawdziwo$¢ lub fatsz mozna przypisa¢ dopiero po dodatkowych uscisle-
niach dotyczacych elementéw wypowiedzi. Na przyktad o prawdziwosci zdania:

Mezczyzna jest wyzszy od kobiety.

mozna jednoznacznie wypowiedzie¢ si¢ dopiero wtedy, gdy wiadomo, o ktérego mez-
czyzng i o ktora kobiet¢ chodzi. Mgzczyzna i kobieta stanowia tu argumenty wypo-
wiedzi. Wskazujac na konkretnego mezczyzng i na konkretng kobiete, mozna stwier-
dza¢ o prawdziwosci lub fatszu tego zdania.

Zdania tego rodzaju nazywa si¢ funkcjami zdaniowymi albo formami zdaniowymi.
Mozna je traktowaé jako pewien sposdb wyrazania wilasnosci elementéw pewnego
zbioru. Zdania takie beda zapisywane P(a), gdzie a jest argumentem wypowiedzi.

Funkcji zdaniowych czgsto uzywa si¢ w powigzaniu z charakterystycznymi zwrotami,
na przyklad:

Mozliwe, ze zachodzi P(a).
Dla kazdego elementu a ze zbioru A zachodzi P(a).

Pierwszy ze zwrotdw to rodzaj zwrotu modalnego. Taki zwrot wystepuje, na przyktad,
w zdaniach:

Mozliwe, ze Piotr wypozyczyl juz potrzebng mu ksiqzke.
Mo:zliwe, ze prezes spozni si¢ na spotkanie.
Mozliwe, ze w 2100 roku bardzo popularng formaq wypoczynku bedq wakacje na Marsie.

Drugi ze zwrotow to rodzaj zwrotu kwantyfikacyjnego. Przyktady wypowiedzi z tym
zwrotem:

Kazdy student otrzymuje indeks.
Kazdy dorosly ponosi pelnq odpowiedzialnos¢ za swoje czyny.

Dalej zajmiemy si¢ gléwnie zwrotami kwantyfikacyjnymi. Beda rozwazane tylko dwa
Zwroty:

Dla kazdego elementu a zachodzi P(a).
Istnieje element a, dla ktérego zachodzi P(a).

Pierwszy zwrot jest nazywany kwantyfikacjq ogolng, a drugi — kwantyfikacjq szcze-
golowq albo egzystencjalng. Istnieja jeszcze inne rodzaje zwrotdw kwantyfikacyjnych,
ktére nie beda rozwazane, na przyktad:

Dla wiekszosci elementéw a ze zbioru A zachodzi P(a).

Dla nieskoriczenie wielu elementow a ze zbioru A zachodzi P(a).

Jezeli symbolem P(a) oznaczy¢ funkcje zdaniowa, ktorej dla ustalonego elementu a ze
zbioru A mozna w jednoznaczny sposéb przyporzadkowaé prawde albo fatsz, to wy-
powiedz z kwantyfikatorem ogélnym dla P(a) zapisuje si¢ symbolicznie w postaci:

VYaeA o P(a),

a wypowiedz z kwantyfikatorem szczegdétowym w postaci:
Jac A o P(a).

Uwaga

Oproécz wprowadzonej, uzywa si¢ rowniez innych notacji na wypowiedzi z kwan-
tyfikatorami, na przyktad:

VYacA.P(a) VaeA:P(a) (VYacA)P(a) A P@)
acA

JacA.P(a) 3acA:P(a) (3acA)P(a) v P@)

acA

1.3. Wnioskowanie

Logika formalna zajmuje si¢ schematami wnioskowania, ktére pozwalaja na to, aby na
podstawie prawdziwosci jednych wypowiedzi — przestanek — wnioskowaé o prawdzi-
wosci innych wypowiedzi — wnioskéw. Historycznie najstarsze schematy wnioskowa-
nia, nazywane sylogizmami, pochodza od Arystotelesa.

Przyktadem wnioskowania opartego na jednym z sylogizméw jest nastepujace rozu-
mowanie:

Wszyscy bogowie greccy sq zazdrosni.
Zeus jest greckim bogiem.
Zatem: Zeus jest zazdrosny.

Dwa pierwsze zdania sa tu przestankami, a ostatnie — wnioskiem (konkluzja).

Ogdlnie, schemat wnioskowania mozna przedstawi¢ w postaci ,,utamka”, w ktorego ,,liczni-
ku” beda zapisywane przestanki, a w ,,mianowniku” beda zapisywane wnioski. Rozpatrzmy
kilka schematow wnioskowan, ktére mozna odnies¢ do wielu codziennych sytuacji.

Znanym schematem jest modus ponendo ponens majacy postac:

p=4q
-
q

gdzie p oraz q oznaczaja dowolne wypowiedzi.

Na podstawie takiego schematu wnioskuje si¢ na przyktad:

18

Jezeli dzisiaj jest niedziela, to jutro jest poniedzialek
Dzisiaj jest niedziela.

Jutro jest poniedzialek.

Schemat ten jest niezawodny, co oznacza, ze jezeli przestanki sa prawdziwe, to takze
prawdziwy jest wyprowadzony na ich podstawie wniosek.

Inny przyktad réwniez niezawodnego schematu wnioskowania to modus ponendo
tollens:

Albo p,albo q
p
—q

Zwrot albo ..., albo ... nie byt wczesniej omdéwiony. Zgodnie z potocznym rozumie-
niem zdanie ztozone postaci albo p, albo q jest prawdziwe tylko wtedy, gdy jest praw-
dziwe doktadnie jedno ze zdan sktadowych p, g.

Przyktad wnioskowania:

Albo pdjde do kina, albo pdjde do teatru.
Pdéjde do kina.

Nie pdjde do teatru.
Jeszcze inny przyklad niezawodnego schematu wnioskowania to modus tollendo ponens:
pvq
4
q
W oparciu o ten schemat wnioskuje si¢ w przykladzie:

Pdéjde do kina lub pojde do teatru.
Nie pdjde do kina.

Pdéjde do teatru.

Czgsto korzysta si¢ ze schematéw wnioskowania nazywanych sylogizmem warunko-
wym. Przyktadem jest schemat:

P=4q
g=r
p=r

Schematy wnioskowania, ktorymi zajmuje si¢ logika formalna, sa w pewien sposéb
ograniczone. Nie biora pod uwagg tresci, lecz tylko prawdziwos¢ zdan. Dlatego me-
chaniczne stosowanie przedstawionych schematéw wnioskowania, jezeli nie wnika sig
w tres¢ zdan, moze prowadzi¢ do absurdalnych wnioskow. Jako przyktad postuzy na-
stgpujace rozumowanie: Niech bedg dane dwie wypowiedzi:

19

Jezeli Cezar pozostanie w domu, to Cezar nie zostanie zabity przez spiskowcow.
oraz

Jezeli Cezar nie zostanie zabity przez spiskowcow, to Cezar wyglosi przemdéwienie
w Senacie.

WprowadZmy oznaczenia. Niech:

p oznacza: Cezar pozostanie w domu.
g oznacza: Cezar nie zostanie zabity przez spiskowcow.
roznacza: Cezar wyglosi przemowienie w Senacie.

Przy tych oznaczeniach, wnioskowanie oparte na schemacie sylogizmu warunkowego
przebiega nastgpujaco. Na podstawie przestanek p = g oraz g = r otrzymuje si¢
wniosek p = r, czyli:

Jezeli Cezar pozostanie w domu, to Cezar wyglosi przemowienie w Senacie.

Whiosek ten jest catkowicie sprzeczny ze zdrowym rozsadkiem. Wynika to z tego, ze
w zastosowanym schemacie wnioskowania uwzglednia si¢ tylko prawdziwos¢ prze-
stanek, a nie uwzglednia tresciowego powiazania przestanek i konkluzji: pozostawanie
w domu w pewnym okresie wyklucza przebywanie w Senacie w tym samym okresie
i, tym samym, wygloszenie tam przemdwienia.

Fakt, ze zdanie jest wynikiem zastosowania pewnego schematu wnioskowania do in-
nych zdan-przestanek nazywa si¢ konsekwencjq dowodowq (skladniowq). W rozpa-
trywanym przykladzie wyraza si¢ to zapisem:

(p=>qq=>rl-p=>r

Ogolnie, jezeli {py, ..., pa} jest pewnym zbiorem zdan-przestanek, zas g jest zdaniem,
ktére wyprowadzono z tego zbioru na podstawie jedno- lub wielokrotnego stosowania
pewnych schematéw wnioskowania, to zapisuje si¢ to w postaci:

{Pl, ooy pn}'— q

Symbol + nazywa si¢ symbolem konsekwencji skladniowej. Powyzszy zapis czyta sig:
q jest konsekwencja sktadniowa zbioru zdan {py, ..., p.}.

Rozpatrzmy teraz rozumowanie, ktory nie opiera si¢ na przedstawionych schematach
wnioskowania. Niech dany bedzie przyktad:

Jezeli znany pianista da recital, to przyjdq tumy, gdy ceny biletow nie bedq zbyt
wygdrowane.

Jezeli znany pianista da recital, to ceny biletow nie bedq zbyt wygdrowane.

Zatem: Jezeli znany pianista da recital, to przyjdq tumy.

W pierwszym z powyzszych zdan wystepuje zwrot gdy. Zgodnie z potocznym rozu-
mieniem, zdanie ztoZone postaci p gdy g jest rownowazne zdaniu jezeli g, to p.

20

Czy jezeli przestanki sa prawdziwe, to czy prawdziwa jest rowniez konkluzja? Wpro-
wadzmy oznaczenia. Niech:

p oznacza: Znany pianista da recital.
q oznacza: Przyjdq ttumy.
roznacza: Ceny biletow bedq zbyt wygorowane.

Przy tych oznaczeniach, nasze wnioskowanie ma postac:

p=(r=g9q)

p=-r

Zatem: p=gq
Mozna przytoczy¢ dwa sposoby uzasadnienia poprawno$ci wnioskowania. Pierwszy
sposob mozna zilustrowa¢ tablica prawdziwosciowa — tablica 1.2. Podobnie jak w po-
przedniej tablicy, zamiast prawda i falsz pisze si¢ P i F.

Tablica 1.2

p=-r p=(=r = q))

d
S}

—

Q
B~

{
0

[o <N ENE o W L, BNy (US| O FOy
= e e | e e e
= e e
= | | e e e |~
| | | | | | |
-c-u-c'n-u-:-umﬂ
= = e | e e |
= e e |
== | | | e e |

Sposob uzasadniania jest tu nastgpujacy: skoro wnioskowanie ma by¢ niezawodne,
to konkluzja ma by¢ prawdziwa zawsze wtedy, gdy prawdziwe sg przestanki. Wy-
starczy rozpatrzy¢ wszystkie warto$ciowania zdan prostych p, g, r, przy ktérych
prawdziwe s3 zdania ztozone stanowiace przestanki, i sprawdzi¢, czy przy tych
wartosciowaniach prawdziwe jest rowniez zdanie stanowiace konkluzj¢. Przypadki
takich wartosciowan reprezentujg wiersze 1, 2, 3, 4 i 7 w tablicy 1.2. Analiza tych
przypadkéw potwierdza poprawnos¢ wyprowadzonego wniosku.

Tablica 1.3
(p=(=r=yq))

4 q r|=r| ar=q | p=2(-r=4q) | p=-r | p=q | =(p=q) A(p=-r)

A=p=4q)
1| F|F|F P F P P P F F
2| F|F | P F P P P P F F
3/]F|P]|F P P P P P F F
4| F|P|P F P P P P F F
S{P|F|F P F F P F P F
6| P |F | P F P P F F P F
71P|P|F P P P P P F F
8| P | P P F P P F P F F

21

Drugi sposob opiera si¢ na nastgpujacym rozumowaniu nie wprost: Jezeli zalozy¢, ze
nasz wniosek jest poprawny, to czy jest mozliwe, aby jednoczesnie byty prawdziwe
przestanki i negacja konkluzji? Inaczej, czy zdanie:

P=2Er=9)A(p=-rA-(p=q)

moze by¢ prawdziwe dla dowolnych wartosciowan zdan prostych p, g, r? Okazuje sig,
co pokazuje tablica 1.3, ze przy wszystkich wartosciowaniach zdanie to jest falszywe.
Nie moze by¢ tak, ze jednoczesnie sa prawdziwe przestanki i negacja konkluzji. Za-
tem nie jest mozliwe, aby zdania stanowiace przestanki mogly by¢ niezgodne ze zda-
niem stanowiacym konkluzjg.

Oba sposoby nie polegaly na tekstowym przeksztalcaniu przestanek, ale opieraty si¢
na analizie znaczenia zdan, dokladniej na analizie ich prawdziwosci. Oba sposoby
potwierdzily, ze konkluzja jest logiczng (semantycznqg) konsekwencjq zbioru przesta-
nek. Fakt ten, w odniesieniu do przykladu, zapisuje si¢ w postaci:

(p=>(Cr=q,p=-rl=Ep=yq
Ogodlnie, jezeli {p), ..., p.} jest pewnym zbiorem zdan-przestanek, zas g jest jego lo-
giczng konsekwencja, wtedy zapisuje si¢ to w postaci:

(ph seey p?l} '= q

Symbol = nazywa si¢ symbolem konsekwencji semantycznej. Powyzszy zapis czyta
si¢: g jest konsekwencja semantyczng zbioru zdan {py, ..., p.}.

Majac pojecia konsekwencji sktadniowej i konsekwencji semantycznej, mozna spre-
cyzowaé niezawodnos$é schematéw wnioskowania. Schemat wnioskowania jest nie-
zawodny (albo poprawny), gdy dla dowolnego zbioru zdan {p,, ..., p.} oraz zdania g,
jezeli

{P1s s Dalt-14

to

{Ph ooy pn} E= q

Inaczej: schemat wnioskowania jest niezawodny, gdy dla dowolnego zbioru przesta-
nek konsekwencja skladniowa pociaga konsekwencj¢ semantyczna.

Schemat wnioskowania, ktory nie jest niezawodny, jest praktycznie bezuzyteczny.
Wszystkie przedstawiane wczesniej schematy sa schematami niezawodnymi (po-
prawnymi), natomiast zawodnym schematem wnioskowania jest przyktadowo sche-
mat postaci:

P=4q
q

22

Aby to stwierdzi¢, wystarczy rozpatrze¢ wartosciowanie, w ktérym obie wypowiedzi
p oraz q sa falszywe. Przy takim wartosciowaniu przestanka schematu p = ¢ jest
prawdziwa, ale wniosek q jest fatszywy.

1.4. Indukcja matematyczna

Zasada indukcji matematycznej jest jednym z bardziej uzytecznych schematéw wnio-
skowania. Bezposrednio odnosi si¢ ona do badania wlasnosci wyrazanych w termi-
nach liczb naturalnych, czyli do wtasnosci postaci P(n), gdzie ne Nat. Zasady indukcji
opiera si¢ na prostej obserwacji, ze caty zbior liczb naturalnych mozna uporzadkowaé
zaczynajac od 0, a nastepnie mozna przechodzi¢ do kolejnych liczb przez dodawanie
1. Z obserwacji tej wynika, ze udowodnienie, iz pewna wilasno$¢ P(n) zachodzi dla
kazdej liczby naturalnej n wymaga pokazania, ze zachodzi ona dla n = 0, oraz ze za-
chodzi P(n+1), gdy zachodzi P(n). Zatem, czy zachodzi P(0) wymaga bezposredniego
zbadania, natomiast P(1) zachodzi, poniewaz zachodzi P(0), podobnie P(2) zachodzi,
poniewaz zachodzi P(1) itd.

Definicja 1.1 (Zasada indukcji matematycznej)

Niech P(n) bedzie pewng wiasnoscia, ktora odnosi si¢ do liczby naturalnej n. Aby
pokazac, ze wlasnos¢ P(n) zachodzi dla kazdej liczby naturalnej ne Nat, wystarczy
pokaza¢, ze:

krok poczqtkowy: P zachodzi dla n =0, czyli zachodzi P(0),
krok indukcyjny: jezeli zachodzi P(n), to rowniez zachodzi P(n+1).

Dowodzenie zgodnie z zasada indukcji skfada si¢ z dwoch krokéw. Krok poczatkowy
wymaga zbadania zachodzenia wiasnosci P dla n = 0. Drugi krok wymaga udowod-
nienia implikacji: jezeli P(n), to P(nt+1). Zalozenie P(n) w tej implikacji nazywa si¢
hipotezq indukcyjnq.

Przyklad 1.1

Niech P(n) oznacza wlasnosé, ze 2" > n®. Whasno$¢ ta nie zachodzi dla wszystkich
liczb naturalnych, ale zachodzi dla n = 5.

Latwo sprawdzi¢, ze zachodzi P(5), gdyz 2° > 5°.

Jezeli zachodzi P(n) oraz n > 5, to zachodzi rowniez P(n+1).

Istotnie, jezeli 2"> n’, to, ze 2"*' > (n+1)* wynika z nastgpujacego wnioskowania:

2n+l =2 2n
>2n’ - na mocy hipotezy indukcyjnej, ze 2" > n’

l

23

=n"+n
>n’+5n — na mocy zalozenia, zen 2 5
2
=n"+2n+3n
>n’+2n+1 — wlasno$¢ trywialna: 3n> 1dlan21
2
=(n+1)

|

Czasem wiasnosci, o ktérych sie sadzi, ze dadza si¢ tatwo udowodni¢ metoda induk-
cji, moga okaza¢ si¢ niemozliwe do bezposredniego wykorzystania zasady indukcji.
Ilustruje to przyktad.

Przyklad 1.2

L

Nalezy pokazaé, ze suma n poczatkowych liczb nieparzystych jest kwadratem
pewnej liczby naturalnej, to znaczy, ze dla kazdej liczby naturalnej n istnieje taka
liczba naturalna k, ze

n—1

3 @i+1)=k"

i=0
Dla n = 0 wlasnos¢ P(0) zachodzi trywialnie dla k = 1. Zalézmy teraz, ze istnieje
k>1 takie, ze zachodzi powyzszy wzor. Wowczas

n n-1

Y @i+1)=Y 2i+1)+@2n+1)=k>+2n+1

i=0 i=0

Niestety, nie ma gwarancji, ze wyrazenie K*+2n+1 jest kwadratem pewnej liczby
naturalnej i tym samym nie mozna dowodu kontynuowaé. Moze to sugerowac, ze
indukcja jest zbyt stabym schematem dla dowodzenia tego typu wiasnosci. Tak
jednak nie jest. Nalezy zauwazy¢, ze gdyby w rozwazanym wyrazeniu przyjac, ze k
= n, woéwczas zachodzitaby rdwnos¢:

K+2n+1=n*+2n+1=(n+1)
Obserwacja ta sugeruje rozwazenie mocniejszej wlasnosci, mianowicie:

n-1

Y @i+1)=n’

i=0

Jej udowodnienie metodg indukcji jest juz proste i pozostawia si¢ je Czytelnikowi. |

Udowodnienie pewnych wilasnosci wymaga silniejszej formy indukcji. Mianowicie,
w indukcyjnym kroku, aby udowodni¢ P(nt+1) wymaga si¢ zalozenia, ze nie tylko za-
chodzi P(n), ale rowniez, ze zachodzg P(1), ..., P(n—1).

Definicja 1.2 (Zasada indukcji matematycznej — silna forma)

Niech P(n) bedzie pewna wihasnoscia, ktéra odnosi si¢ do liczby naturalnej n. Aby pokazag,
ze wlasno$¢ P(n) zachodzi dla kazdej liczby naturalnej ne Nat, wystarczy pokazac, ze:

24

krok poczqtkowy: p zachodzi dla n = 0, czyli zachodzi P(0), oraz
krok indukcyjny: zachodzi P(n+1), gdy zachodzi P(k) dla kazdego k=0, ..., n.

Przyklad 1.3

Nalezy pokaza¢, ze kazda liczba naturalna n > 2 jest iloczynem liczb pierwszych.

Oczywiscie wlasnos¢ ta zachodzi dla n = 2. Dalej, zatézmy, ze wlasnos¢ ta zacho-
dzi dla pewnego n 2 2. Na tej podstawie nalezy pokazaé, ze zachodzi ona rowniez
dla nt+1. Jezeli ntl1 jest liczba pierwsza, to wlasnosé¢ jest oczywiscie prawdziwa.
W przeciwnym razie, gdy n+1 nie jest liczba pierwsza, oznacza to, ze n+1 moze
by¢ wyrazone jako iloczyn km dwéch liczb, gdzie 2 < k < n oraz 2 < m < n. Na mo-
cy hipotezy indukcyjnej, liczby k oraz m sg iloczynami liczb pierwszych. Zatem
| ntlwyraza si¢ rowniez jako iloczyn liczb pierwszych. |

W przykladzie nie wykorzystuje si¢ bezposrednio hipotezy indukcyjnej dla n, ale dla
pewnej liczby k mniejszej od n+1. Ogdlnie moze zachodzi¢ potrzeba wykorzystania
wielu takich liczb.

1.5. Logika w informatyce

Logika klasyczna znajduje w informatyce szerokie zastosowanie. W pierwszej kolej-
nosci dostarcza ona jezyka do przedstawiania i badania wilasnosci modeli informa-
tycznych, w tym systemoéw komputerowych i jezykéw programowania. Szczegdlng
role odegrata logika w formowaniu pojecia algorytmu i obliczalnosci [Arbib 1968],
[Davis, Hersh 1994], [Mostowski, Pawlak 1970], [Penrose 1996].

Oprocz logiki klasycznej sa wykorzystywane logiki specjalne przeznaczone, na przy-
kfad, do specyfikacji oprogramowania, a takze jako jezyki programowania.

Wazng rol¢ w informatyce odgrywaja réznego rodzaju logiki nieklasyczne, migdzy
innymi w systemach eksperckich (doradczych). Zadaniem takich systeméw jest
wspomaganie czlowieka przy podejmowaniu decyzji, na przyktad postawienie przez
lekarza diagnozy o stanie zdrowia pacjenta na podstawie wynikéw badan. Proces
podejmowania decyzji opiera si¢ w takich przypadkach na informacji niepewnej lub
niepetnej, a wnioski z przeprowadzonego wnioskowania nie musza byé niezawodne.

Oto wybrane dziaty informatyki, w ktdrych logika znajduje bezposrednie zastoso-
wanie:

e Specyfikacja i weryfikacja programéw — np. [Bicaregui, Fitzgerald, Lindsay
1994], [Dembinski, Matuszynski 1981], [Shepard 1995].

25

Formuly logiczne stuza do wyrazenia tego, co program ma oblicza¢, czyli do wy-
razania specyfikacji programu. Stwierdzenie czy dany program oblicza to, co
powinien, czyli czy spetnia zadang specyfikacjg, polega na odpowiednim mani-
pulowaniu na tekscie formut specyfikacji i na tekscie programu. Inaczej: stwier-
dzanie poprawnosci programu wzgledem danej specyfikacji polega na przepro-
wadzeniu dowodu w odpowiedniej logice programéw.

e Przetwarzanie rozproszone, wspotbieznos¢ i sterowanie — np. [Apt, Olderog
1991].

Odpowiednie formy logiki zostaly opracowane w celu wyrazania i wnioskowania
o zjawiskach, ktére wystgpuja w przestrzeni i majg trwanie w czasie. Sq one wy-
korzystywane, na przyktad, do wnioskowania o wspdtpracy pomiedzy mobilnymi
rownoleglymi procesami.

e Zarzadzanie bazami wiedzy — np. [Bolc, Borodziewicz, Wojcik 1991], [Tyugu
1989].

Zadaniem odpowiednich logik jest umozliwienie udzielenia odpowiedzi na pyta-
nia kierowane do bazy wiedzy. Udzielanie odpowiedzi na pytania sprowadza si¢
do zbadania czy jest ono konsekwencja semantyczna nagromadzonej wiedzy.

e Projektowanie ukladdéw logicznych — np. [Harrison 1973].

Projektowanie uktadow elektronicznych komputeréw, na przyktad uktadow sca-
lonych, spowodowalo powstanie specjalistycznych logik, migdzy innymi logik
wielowarto$ciowych i progowych.

e Systemy ekspertowe, planowanie i sztuczna inteligencja — np. [Bolc, Borodzie-
wicz, W¢jcik 1991], [Banerji 1990], [Bubnicki 1990], [Huzar, Kurzynski, Sas
1994].

Dziat ten wyksztalcit nowa grupe logik, ktérych istota jest prowadzenie wnio-
skowania w warunkach informacji niepetnej lub niepewne;j.

e Przetwarzanie jezyka naturalnego (lingwistyka informatyczna) — np. [Carnap
1990], [Marciszewski 1987].

W celu automatycznej analizy tekstu, czy tez automatycznego przektadu z jedne-
go jezyka na inny, powstaly rézne logiki stuzace gldwnie wyrazaniu znaczenia
tekstu.

¢ Programowanie logiczne — np. [Kowalski 1989], [Wéjcicki 1991].

Jezyk logiki moze by¢ traktowany bezposrednio jako jezyk programowania. To,
co w podejsciu klasycznym jest logiczna specyfikacja programu — przy zachowa-
niu pewnych ograniczen — moze by¢ interpretowane jako wykonywalny program.

26

Cwiczenia

1. Ktére z wypowiedzi sg zdaniami lub funkcjami zdaniowymi:

a) Ksiezyc jest zrobiony z zoltego sera.

b) On faktycznie jest wysokim mezczyzng.

c) Stonce krqzy dookola Ziemi.

d) W ciqgu wiekow skladniki te uformowaly rafy.

e) Niech zyje przyjazn miedzy narodami!

f) Dwa jest liczbq parzystq.

g) Ktora druzyna zdobedzie mistrzostwo kraju w pilce noznej?

h) Oczekuje sie, ze w przyszlym roku obroty na gieldzie znacznie wzrosnq.
i)x'-4=0.

j) Dlugi honorowe nalezy splaca¢ w ciqgu 24 godzin.

k) Mezczyzna jest wyzszy od kobiety.

1) Nalezy raczej zapobiegaé niz leczyc.

m) Kalifornig co roku nawiedza trzesienie ziemi o sile 7 stopni w skali Richtera.
n) Krdl Jagiello byl raczej wysokim mezczyznq.

2. Jaka wartos$¢ logiczna maja zdania:

a) 8 jest liczbq nieparzystq lub 6 jest liczbq parzystq.

b) 8 jest liczbq nieparzystq oraz 6 jest liczbq parzystq.

c) Jezeli 8 jest liczbq nieparzystq, to 6 jest liczbq parzystq.

d) Jezeli 8 jest liczbq nieparzystq oraz 6 jest liczbq parzystq, to 6 jest wieksze od 8.

3. Ktére ze zdan jest negacja danego zdania:

a) Wynikiem obliczen jest 2 albo 3.
(1) Wpynikiem nie jest ani 2, ani 3.
(i) Wynikiem nie jest 2 lub nie jest 3.
(iii) Wynikiem nie jest 2 i nie jest 3.

b) Ogdérek jest zielonq rosling nasiennq.
(1) Ogorek nie jest zielony, ale jest rosling nasiennq.
(ii) Ogorek nie jest zielony lub nie jest rosling nasienng.
(iii) Ogorek nie jest zielony i nie jest rosling nasienngq.
4. Wskaz poprzednik i nastgpnik implikacji w zdaniach:
a) Pomysiny wzrost roslin jest uwarunkowany prawidlowym nawadnianiem.
b) W przypadku modyfikacji programu pojawiq si¢ w nim bledy.

c) Bledy w programie pojawiq sie tylko w przypadku jego modyfikacji.
d) Oszczednosé energii jest zwiqzana z dobrq izolacjq Scian i szczelnosciq okien.

27

5. W podanych zdaniach ztozonych rozpoznaj zdania proste i faczace je spojniki:

a) Edmund Hillary i Tenzing Norgay sq pierwszymi zdobywcami Mont Everestu.

b) Indochiny lezq w strefie tropikalnej i majq gorqce lata, ale zimy w czesci pol-
nocnej sq chlodne.

¢) Niezaleznie od tego, jak wysoko skaczesz, ksiezyca nie osiqgniesz, chyba ze pole-
cisz tam rakietq.

6. Rozpatrz nastgpujace wnioskowanie oparte o sylogizm warunkowy:

Jezeli dzisiaj jest wtorek, to jutro jest Sroda.
Jezeli dzisiaj jest Sroda, to jutro jest czwartek.
Zatem: Jezeli dzisiaj jest wtorek, to jutro jest czwartek.

Wyjasni¢ przyczyny paradoksalnego wniosku.
7. Oto fragment raportu policji sporzadzonego przez mtodego aspiranta:

Swiadek nie byl zastraszony lub tez, jesli Henry popetnit samobdjstwo, to testa-
ment odnaleziono. Jesli Swiadek byl zastraszony, to Henry nie popetnil samo-
bojstwa. Jesli testament odnaleziono, to Henry popelnil samobdjstwo. Jesli
Henry nie popelnit samobdjstwa, to testament odnaleziono.

Co komendant policji moze wywnioskowac z powyzszego raportu (poza oczywi-
stym faktem, ze nalezy zwolni¢ aspiranta)? Odpowiedz na pytania:

Czy Swiadek byl zastraszony?
Czy Henry popeltnit samobdjstwo?
Czy testament odnaleziono?

8. Posréd cztonkéw pewnego klubu lingwistycznego kazdy uczy sig¢ francuskiego,
niemieckiego lub hiszpanskiego. Wiadomo, ze 20 uczy si¢ francuskiego, 12 francu-
skiego i hiszpanskiego, 16 niemieckiego, 16 hiszpanskiego, 4 francuskiego i nie-
mieckiego, 7 niemieckiego i hiszpanskiego, 3 wszystkich trzech jezykow. Ilu
cztonkow liczy klub? Ilu z nich uczy si¢ doktadnie dwdch jezykow?

9. Oto przyktady wnioskowan przez indukcjg:

a) Pokazg, ze wszystkie liczby naturalne sa parzyste. Oczywiscie 0 jest liczbg pa-
rzysta. Niech n bgdzie dowolng liczbg naturalng i zatézmy, ze dla wszystkich k
< n, k jest parzyste. Niech n, i n, bedzie dowolnym rozbiciem liczby n na sume
liczb mniejszych (tzn. n = n; + n,). Poniewaz n, oraz n, sq mniejsze od n, n; i np
sq parzyste a wigc n jest parzyste jako suma dwdch liczb parzystych.

b) Pokazg, ze wszystkie dodatnie liczby naturalne sg nieparzyste. Oczywiscie 1 jest
liczba nieparzysta. Niech n bedzie dowolng liczba naturalng i zatézmy, ze dla
wszystkich k < n, k jest nieparzyste. Niech 1, n, i n, bedzie dowolnym rozbi-
ciem liczby n na sume trzech liczb mniejszych (tzn. n = n; + n, + 1). Poniewaz

28

n, oraz np s mniejsze od n, ny i n, sa nieparzyste, a wigc n jest parzyste jako
suma dwdch liczb nieparzystych i liczby 1.

c) Pokazg, ze wszystkie proste na plaszczyznie sa rownolegle. Rozwazmy jednoelemen-
towy zbidr prostych na plaszczyznie. Oczywiscie wszystkie proste nalezace do tego
zbioru sa do siebie réwnolegle. Zalézmy, ze w kazdym n-elementowym zbiorze pro-
stych wszystkie proste sa do siebie rownolegte. Rozwazmy teraz n + 1 elemen-
towy zbior prostych. Ustalmy w nim jedng prosta p. Na mocy zatozenia induk-
cyjnego wszystkie pozostate n prostych sg do siebie rownolegte. Ustalmy teraz
inng prosta ¢. Na mocy zalozenia indukcyjnego wszystkie pozostale n prostych
sa rowniez do siebie rownolegle. Poniewaz relacja réwnoleglosci prostych jest
przechodnia, wszystkie n + 1 proste sa réwnolegte. Na mocy zasady indukc;ji
matematycznej kazdy zbidr prostych na plaszczyznie zawiera wylacznie proste
rownolegle. Dotyczy to zbioru wszystkich prostych na plaszczyznie.

Ktore z tych rozumowan jest poprawne? Wskaz btedy popetnione w blednym ro-
zumowaniu.

10. Rozwazy¢ uogoélnienie problemu przedstawionego w przyktadzie 1. Dla jakich
liczb naturalnych n, k zachodzi nierdwno$é: 2" > n* ?

11. Przeanalizuj prawdziwo$¢ zdania: To, co mowie w tej chwili, jest ktamstwem.

12. Oto rozmowa czterech krasnoludkéw A, B, C oraz D, z ktorych kazdy zawsze
mowi prawdg albo zawsze klamie.

A méwi do B: Jestes klamcq.
C méwi do A: Ty sam jestesS klamcq.
D méwi do C:Oni obaj sq kfamcami. I ty takze jeste$ klamcq.

Ktory z nich méwi prawde?

2. Elementarne pojecia mnogosciowe

2.1. Zbior i element zbioru

Podstawa wszelkiej komunikacji pomiedzy ludzmi, a takze pomiedzy ludZmi i kom-
puterami, jest jezyk, ktéry uzywa wspdlnie ustalonych symboli i jednoznacznie
skojarzonych z nimi poje¢é. Symbole stuza do reprezentacji pojgé. Moga one miec
rozng posta¢ — mogg to by¢ dzwigki, obrazy, znaki graficzne. Kazdy symbol powi-
nien reprezentowac pojecie, ktore jest jednakowo rozumiane przez obiekty uczestni-
czace w komunikacji. Wprowadzenie jezyka wymaga zdefiniowania odpowiedniego
zestawu symboli oraz zdefiniowania przypisywanego im znaczenia. Z wprowadza-
niem nowego jezyka wiaze si¢ pewien problem: definicje elementéw jezyka wyma-
gajg opisu, wyrazanego w pewnym innym jezyku. Oznacza to, ze przed wprowadze-
niem pewnego jezyka nalezy dysponowaé innym jezykiem stuzacym do opisu
nowego jezyka. W celu odrdznienia tych jezykow, jezyk definiowany nazywa sig
Jjezykiem przedmiotowym, krotko jezykiem, a jezyk stuzacy do opisu jezyka przed-
miotowego nazywa si¢ metajezykiem.

Elementy jezyka formalnego (symbolicznego) zawieraja pojecia odnoszace si¢ do
dwdch obszaréw — obszaru teorii mnogoscei i logiki. Elementy tego jezyka wyjasnia
sie w jezyku naturalnym. Jezyk naturalny odgrywa tu role metajezyka. Oczywiscie,
z jezyka naturalnego wykorzystuje si¢ tylko te pojecia, co do ktorych nie ma watpli-
wosci interpretacyjnych. Sytuacja jest podobna do tej, z ktéra spotyka si¢ studiujac na
przyktad encyklopedig¢. Encyklopedia stuzy wyjasnianiu pewnych pojecé-haset i czyni
to za pomoca innych pojeé-hasel, o ktorych zaklada sig, ze powinny by¢ powszechnie
znane i jednoznacznie zrozumiale. Czasem wprawdzie jest tak, ze w wyjasnianiu pew-
nych haset wystepuja inne hasta, ale w odniesieniu do encyklopedii jako catosci
przyjmuje si¢, ze istnieje pewien zestaw poje¢ pierwotnych, ktoérych encyklopedia
uzywa, ale ich nie wyjasnia i ktore uwaza si¢ za powszechnie zrozumiale. Postgpowa-
nie takie nie jest catkowicie $ciste i czasem moze by¢ zrodfem niejednoznacznosci lub
nawet sprzecznosci, ale praktycznie — w wigkszosci przypadkow — pozwala na wpro-
wadzanie i wyjasnianie potrzebnych pojg¢.

30

Obszar teorii mnogosci i logiki silnie przenikaja si¢ ze soba. Formutujac pojecia
nalezace do obszaru teorii mnogosci korzysta si¢ z poje¢ logicznych, ale tez i od-
wrotnie — formutowanie wlasnosci logiczne wymaga odwotania si¢ do pojg¢ mnogo-
sciowych. Dlatego mozna spotka¢ si¢ z dwoma podejsciami do opisu logiki klasycz-
nej. Pierwsze podejscie polega na przyjeciu pewnych elementow teorii mnogosci
1 wyprowadzaniu na ich podstawie pojg¢ logicznych. Drugie podejscie, odwrotnie,
polega na przyjeciu podstawowych poje¢ logicznych i na wyprowadzaniu na ich
podstawie poje¢ mnogosciowych. W ksiazce przyjeto pierwsze podejscie — przed
pelnym opisem poje¢ logicznych wyjasnia si¢ elementarne pojgcia z zakresu teorii
mnogosci.

Do podstawowych poje¢ mnogosciowych zalicza sig:

e pojecie zbioru,
e pojecie elementu zbioru,
e pojecie nalezenia badz nie nalezenia elementu do zbioru.

Pojgcie zbioru — intuicyjnie zrozumiate — okazalo si¢ bardzo trudne do precyzyjnego
zdefiniowania. Poprzestaniemy tu na intuicyjnym albo naiwnym rozumieniu zbioru, tak
jak czynit to w XIX wieku Cantor’ — tworca teorii mnogosci, ktory zbior okreslat jako:

ujecie w calos¢ okreslonych, dobrze wyrdznionych obiektow, zwanych elementami zbioru.

W okresleniu tym nie wskazuje sie, czym moga by¢ elementy zbioru. Podane okresle-
nie zbioru nie jest precyzyjne, gdyz przy probie odpowiedzi na pewne pytania moga
pojawié si¢ sprzecznosci. Proby uscislenia pojgcia zbioru prowadzity do powstania
sformalizowanej teorii mnogosci.

Nalezy podkresli¢, ze w podanym okresleniu kladzie si¢ akcent na rozréznialnosé¢
elementow zbioru. Nie okresla si¢ natomiast jak osiaga¢ t¢ rozréznialnosé, czy, na
przyktad, przez jednoznaczna identyfikacje¢ elementdw, czy przez okreslenie unikal-
nych ich wiasnosci. Oznacza to jednak, ze majac dwa elementy potrafi si¢ stwierdzi¢
czy sa one identyczne czy rozne.

Jezeli symbolem A oznacza si¢ pewien zbior oraz symbolem a oznacza si¢ pewien
element, to zapis a€ A czyta sig: a jest elementem zbioru A, natomiast zapis a¢ A czyta
si¢: a nie jest elementem zbioru A.

Jezeli ae A oraz be A, to zapisuje sig to skrétowo: a, beA.

Na og6t zbiory bedziemy oznaczaé napisami zaczynajacymi si¢ duzymi literami lub
pojedynczymi literami greckimi, a elementy zbioréw odpowiednimi matymi literami
z ewentualnymi indeksami.

= Georg Cantor (1845-1918).

31

Pewne zbiory przyjmuje si¢ jako znane. Beda to zbiory: liczb naturalnych Nat, liczb cal-
kowitych Calkowite, liczb wymiernych — Wymierne, liczb rzeczywistych — Rzeczywiste.

Szczegblnym zbiorem jest zbidr pusty — zbior, ktory nie ma zadnego elementu. Bedzie
on oznaczany symbolem . Zbidr zawierajacy tylko jeden element nazywa si¢ sin-
gletonem.

W celu wyeliminowania pewnej klasy paradoksow (patrz dalej — paradoks Russella),
ktére moga powstac przy definiowaniu zbiorow, zaklada sie, ze zaden zbi6r nie moze
by¢ swoim elementem, to znaczy dla dowolnego zbioru A zachodzi: Az A.

2.2. Definiowanie zbiorow

Zbiory mozna definiowa¢ w rézny sposob. Przedstawia si¢ trzy sposoby definiowania
zbioréw:

e enumeracyjny,
e rekursywny,
e ckstensjonalny.

Najprostszym sposobem definiowania zbioru jest jawne wskazanie wszystkich jego
elementdw. Sposob ten nazywa si¢ enumeracjq, lub wyliczeniem elementéw zbioru.
Schemat takiej definicji ma postac:

A =4 {ay, ay, ..., a,}

Zapis ten czytamy: A jest nazwq zbioru, ktorego elementami sq ay, aa, ..., a,. Symbol
=4f CZytamy: rowny z definicji.

Przedstawiony wyzej schemat definicji zbioru zawiera dwa elementy:

e wprowadza symbol A jako nazwe zbioru,

e okresla znaczenie (inaczej interpretacje), ktére przypisujemy temu symbolowi;
jest nim zestaw elementéw ay, a, ..., a,, ktore naleza do zbioru A. Elementy te,
oddzielone przecinkami, tworza skonczony cigg. Wystepujace tu trzy kropki sg
tylko zaznaczeniem, ze liczba tych elementéw moze by¢ dowolna, ale skonczo-
na. Definicja konkretnego zbioru musi oczywiscie wymieni¢ jawnie wszystkie
jego elementy.

W zwigzku z rozréznieniem pojgcia symbolu oraz pojecia znaczenia symbolu nalezy
zwrdcei¢ uwage na nazwe zbioru. Mozliwe sa dwa spojrzenia na nazwe.

32

W pierwszym spojrzeniu nazwg traktuje si¢ tylko jako symbol — nazwa nie wyraza
zadnego znaczenia, jest tylko znakiem lub ciagiem znakéw z ustalonego repertuaru
znakow. Taka rolg ma symbol A wystgpujacy po lewej stronie w podanej wyzej de-
finicji.

W drugim spojrzeniu nazwg traktuje si¢ jako zbior, ktorego elementy sq wymienione
w nawiasach. Na przyktad, aby odpowiedzie¢ na pytanie czy a€A, nalezy widzie¢
A jako zestaw konkretnych elementéw.

Czgsto dalej uzywanym zbiorem be¢dzie zbiér wartosci logicznych:
Logiczne =4t { prawda, fatsz)
Rozpatrzmy dalsze przyktady enumeracyjnej definicji zbioréw:

Kreski =gt {|, =}

Strzalki =4.; { €, >, AN, ‘4}

DniTygodnia =4 { poniedzialek, wtorek, sroda, czwartek, piqtek, sobota, niedziela)
LiteryMale =4 {a, b, ..., 7}

LiteryDuze =4 (A, B, ..., Z}

Elementami pierwszego i drugiego zbioru sg symbole graficzne, elementami pozosta-
tych zbioréw sa litery lub napisy. W definicjach dwdch ostatnich zbioréw wystepuja
takie same kropki, ale z uwagi na kontekst, w ktérym wystepuja, potrafimy nadaé im
odpowiednie rézne znaczenia.

Bezposrednio z definicji zbiorow wynika, ze, na przyktad:

| € Kreski
> A e Strzalki

Uzywane pojgcie zbioru nie narzuca ograniczen na to, czym moga by¢ jego elementy.
W szczegdlnosci elementami zbioru mogg by¢ inne zbiory. Rozpatrzmy przyktady
zbiorow:

Sa to zbiory anonimowe, to znaczy nie majace nazw. Pierwszy zbior skfada si¢ tylko
z jednego elementu a. Drugi zbiér sktada si¢ rowniez z jednego elementu, ale ele-
mentem tym jest zbidr jednoelementowy {a}. Trzeci zbiér ma dwa elementy, ktérymi
sq zbiory {a, b} oraz {a}. Ostatni zbiér ma trzy elementy, z ktorych kazdy ma rézng
strukturg — pierwszy jest zbiorem postaci {{a}}, drugi jest zbiorem postaci {a}, a trze-
ci jest pojedynczym elementem a.

33

Enumeracyjne definiowanie zbioru nie jest mozliwe, gdy zbior zawiera nieskonczenie
wiele elementow. W tym przypadku mozna stosowa¢ podejscie rekursywne. Rekur-
sywna definicja zbioru sktada si¢ z dwoch czesci:

e czesci bazowej, w ktorej jawnie wskazuje si¢ na pewne obiekty jako elementy
definiowanego zbioru,

e czesci rekursywnej, w ktorej wskazuje si¢ na nowe obiekty jako elementy defi-
niowanego zbioru, przez odpowiednie odwotanie si¢ do tych obiektow, o ktd-
rych juz wiadomo, ze naleza do definiowanego zbioru.

Szczegdlnie waznym i potrzebnym zbiorem nieskonczonym jest zbidr liczb natural-
nych Nat. Mozna zdefiniowaé go rekursywnie nastgpujaco:

e OeNat
e jezeli ne Nat, to n+1€ Nat.

Elementy zbioru w czgsci rekursywnej definicji sa wyrazane przez napisy n oraz n+1. Na-
pisy te reprezentujg pewne liczby, przy czym to, jakie sg to liczby zalezy od tego, jaka
liczbg przypisze si¢ symbolowi n. Stosujac czgs¢ rekursywna po raz pierwszy symbolowi
n przypisuje si¢ 0 i na tej podstawie wniosku sig, ze 1 jest rowniez elementem zbioru Nat.
Stosujac czgs¢ rekursywna po raz drugi symbolowi n przypisze sig liczbe 1 itd.

W podanej definicji zaktada si¢, ze wiadomo jest, czym jest liczba i co oznacza doda-
nie jedynki do liczby. Bez rozumienia tych pojg¢ nie mozna zrozumie¢, czym jest
zbiér Nat. Pojecia te nalezg do metajezyka, ktory uzywamy do zdefiniowania zbioru
liczb naturalnych. Inna, formalna definicja liczb naturalnych, ktéra nie odwotuje si¢
do pojecia liczby i dodawania, jest podana dale;.

Uwaga

Podana definicja zbioru liczb naturalnych przyjmuje, ze liczba 0 jest najmniejsza
liczba naturalng. Spotyka si¢ rowniez definicje, ktére przyjmuja, ze najmniejsza
liczbg naturalna jest 1. Konwencja ta wynika z historii powstawania liczb natural-
nych, kiedy do odkrycia zera za liczby naturalne uwazano tylko 1, 2, 3 itd.

Podobnie mozna zdefiniowaé zbidr dodatnich liczb parzystych:

e 2¢e ParzysteDodatnie
e jezeli ne ParzysteDodatnie, to n+2€ ParzysteDodatnie.

Ponownie nalezy zwrdci¢ uwage, ze w czgsci rekursywnej definicji zbioru uzyto kon-
strukcji n+2, ktora nalezy do metajezyka stuzacego do definiowania zbioru, i o ktorej
zakladamy, ze jest dla Czytelnika jednoznacznie zrozumiala.

Inny przyklad rekursywnej definicji pewnego zbioru liczb PewneLiczby jest nastgpujacy:

e 5, 7€ PewneLiczby
e jezeli n, me PewneLiczby, to n+me PewnelLiczby

34

Czgs¢ bazowa okresla, Zze elementami zbioru PewneLiczby sa liczby 5 i 7. Analizujac
czes¢ rekursywna, tatwo przekonacd sig, ze elementami tego zbioru beda takze liczby
10, 12, 14, 15, 17, 20 itd.

Rekursywna definicja zbioru LinieLamane, ktérego elementami sa symbole graficzne
— linie tamane, ztozone z elementdéw zbioru Kreski — ma nastgpujaca postac:

e |, — €LinieLamane

e jezeli a, be LinieLamane, to linia powstajaca z polaczenia a oraz b w taki spo-
sob, ze jeden z koncow a byt potaczony z jednym koncem b tak, aby poza miej-
scem potlaczenia a oraz b nie mialy innych punktow wspdlnych, nalezy réwniez
do zbioru LinieLamane.

Latwo si¢ przekona¢, ze elementami zbioru LinieLamane bgda, m.in., nast¢pujace linie:

I [

1 2 3 4 5

Rys. 2.1. Elementy zbioru LinieLamane

Linie o numerach 1 i 2 powstaja przez rozne powiazania elementéw zbioru Kreski,
linia 3 jest wynikiem potaczenia linii 112, linia4 —linii 113, a linia 5 — linii 3 i 4.

Rekursywna definicja zbioru ma charakter konstruktywny, to znaczy okresla jak moz-
na skonstruowaé nowe elementy zbioru z innych elementéw, o ktorych juz wiemy, ze
sq elementami definiowanego zbioru. Inaczej mozna powiedzie¢, ze definicja rekur-
sywna wyznacza pewien algorytm konstrukcji elementéw zbioru. Algorytm jest w tym
momencie rozumiany nieformalnie jako ciag pewnych krokéw obliczeniowych pro-
wadzacych do rozwigzania danego problemu. Z tego wzgledu rekursywny sposéb de-
finiowania zbiordéw jest bardzo czgsto wykorzystywany w informatyce. Rekursywne
podejscie pozwala wprawdzie na definiowanie zbioréw nieskonczonych, ale nie do-
wolnych zbioréw, lecz tylko zbioréw przeliczalnych, tzn. takich, ktérych wszystkie
elementy mozna zestawi¢ w jeden ciag (pojecie przeliczalnosci zbioru jest zdefinio-
wane w dalszej czesci ksigzki). Oczywiscie, w skonczonej liczbie krokéw mozna wy-
znaczy¢ tylko skonczong liczbg elementéw zbioru.

Najogodlniejszy sposob definiowania zbioréw opiera si¢ podejsciu ekstensjonalnym.
Podejscie to polega na definiowaniu zbioru przez okreslenie wlasnosci jego elemen-
tow. Schemat definicji zbioru ma postac:

A =urfa|Pla)}

Zapis ten czytamy: do zbioru o nazwie A nalezq wszystkie te i tylko te elementy a, kto-
re posiadajq wlasnos¢ P(a), czyli takie elementy, dla ktérych wypowiedz P(a) jest

35

prawdziwa. P(a) jest funkcja zdaniowa, dlatego tez ten sposob definiowania zbioréw
nazywa si¢ tez definiowaniem przez funkcje zdaniowq. Formalna posta¢ funkcji zda-
niowych bedzie precyzyjnie okreslona w dalszej czgsci ksigzki.

. Rozpatrzmy poprzedni przyktad zbioru dodatnich liczb parzystych:

ParzysteDodatnie =g {x | (x jest liczbq naturalng) A (x > 0) A (x jest podzielne
przez 2)}

Wiasnos¢:
(x jest liczbq naturalng) A (x > 0) A (x jest podzielne przez 2)

ma posta¢ wypowiedzi ztozonej. Poszczegolne jej czlony nalezy do metajezyka — jezyka
arytmetyki. Aby rozumie¢ sens calej wypowiedzi nalezy rozumiec jej czgsci sktadowe:

x jest liczbq naturalng, czyli xe Nat
x>0
x jest liczbq naturalnq podzielnq przez 2

oraz laczace je spojnik logiczny A. Pierwsza z wypowiedzi wymaga rozumienia przy-
naleznosci elementu do zbioru, a pozostate wymagaja elementarnej wiedzy z zakresu
arytmetyki. Znaczenie spdjnika A zostato wyjasnione w poprzednim rozdziale.

Czasem, gdy definiujemy nowy zbiér A, wygodne jest odniesienie do innego, wcze-
$niej ustalonego zbioru B. Piszemy wtedy:

A =4s {x€B| P(x)},
co jest skrétem od:
{x|xeB A P(x)}.
Mozemy wigc napisac:
ParzysteDodatnie =4.¢ {x€ Nat | (x>0) A (x jest podzielne przez 2)}
Uwaga
Czasem definiujac zbidr zamiast symbolu =4 uzywa si¢ rowniez innych oznaczen,

def A . o ,
na przykiad 2, 2 a nawet =. Ostatnim symbolem nalezy postugiwa¢ si¢ ostroz-
nie, gdyz jego znaczeniem podstawowym jest stwierdzanie rownosci (identyczno-
sci) elementdéw nalezacych do pewnego zbioru.

Podejscie ekstensjonalne do definiowania zbiorow jest wygodne i uniwersalne, ale nie-
ostrozny sposob formutowania wlasnosci moze prowadzi¢ do absurdu. Znany przyktad
takiego absurdu jest nazywany paradoksem Russella®, ktory wykorzystat w skrajnej po-

* Bertrand Russell (1872-1970).

36

staci rozumowanie, stosowane w poczatkowym okresie rozwoju teorii mnogosci. Mia-
nowicie, niech Z bedzie zbiorem zdefiniowanym nastgpujaco:

Z =get {X I XQX}

to znaczy Z jest zbiorem — rodzing zbioréw — ktérego elementami sa wszystkie zbiory
X, ktore majg t¢ wlasnos¢, ze nie sa swoimi elementami. Odpowiedzmy teraz na pyta-
nie: czy Ze Z? Jezeli Z jest swoim elementem, czyli Z€ Z, to oznacza, ze ma takaq sama
wilasnos¢ jak wszystkie elementy zbioru Z, czyli ZgZ. Jezeli natomiast Z nie jest
swoim elementem, czyli Z¢ Z, to z definicji nalezy do rodziny zbioréw Z, czyli ZeZ.
W obu przypadkach zachodzi sprzecznos$¢.

Paradoks ten uzasadnia dlaczego na poczatku rozdzialu wprowadzono ograniczenie,
ze dla dowolnego zbioru A zachodzi: Ag A.

Warto zwréci¢ uwagg, ze przypuszczenie, iz zbiér moze by¢ swoim elementem wcale
nie jest absurdalne. Rozwazmy bowiem zbidr Z, ktérego elementami sa zbiory nie-
skoficzone, to znaczy zbiory o nieskoficzenie wielu elementach. Z pewnoscia istnieje
nieskonficzenie wiele zbioréw nieskoficzonych, a zatem zbidr Z jest nieskonczony,
czyli jest swoim elementem!
Przyklad 2.1.

Rozpatrzmy przyktady zbioréw uzywanych w jezykach programowania. W zasa-
dzie wszystkie takie zbiory sa zbiorami skonczonymi. Wyro6znia si¢, m.in., prede-
finiowane zbiory warto$ci zwigzane z typami danych.

Zbidr wartosci logicznych
Boolean =g {false, true}
Zbior catkowitoliczbowy
Integer =41 {-N,...0,..., N},
gdzie N jest liczba naturalng okreslong przez dang implementacj¢ jezyka.
Zbidr liczb rzeczywistych
Real =45 {-N*5,..., 0, ..., N¥3}

gdzie N jest liczba naturalna, zas d jest liczba wymierng okreslona przez dang im-
plementacig jezyka; jest to tzw. staloprzecinkowa reprezentacja liczb (w reprezen-
tacji zmiennoprzecinkowej kolejne liczby sg oddalone od siebie 0 zmienng réznice).
Warto podkresli¢, ze wbrew temu co sugeruje nazwa zbidr ten zawiera skoficzong
ilos¢ liczb wymiernych.

Zbior napiséw

String =qer {5 | s jest skoriczonym ciqgiem znakéw ustalonego repertuaru znakow)

37
Przykladem takiego repertuaru znakéw sg na przyktad znaki kodu ASCII. W praktycznej
implementacji typu napisowego dlugosc takich ciagdw jest ograniczona konkretna liczba.
Zbior wyliczeniowy definiowany przez programiste, na przyklad:
DniTygodnia =4 {pon, wt, sr, czw, pt, sob, nd}
gdzie pon, wt,..., nd sa pewnymi ustalonymi napisami.

Specyficznym dla wielu jezykdw, nie tylko jezykdéw programowania, jest zbidr
identyfikatorow. Zbior ten bedzie dalej czgsto wykorzystywany i oznaczymy go
symbolem Ident. Moze on by¢ definiowany, na przyktad, tak:

Ident =4 {s | s jest niepustym ciqgiem skladajqcym sie z liter lub cyfr, ktérego
pierwszym elementem jest litera)

Nalezy zwréci¢ uwage, ze w tresci wlasno$¢ definiujacych zbiory wystepuja pojecia,
o ktérych zakfada sig, ze sa pojgciami zrozumiatymi — sg to pojecia metajezyka, w ktd-
rym opisujemy dane wlasnosci. Na przyklad, w definicji zbioréw String oraz Ident ta-
l kim pojeciem jest ciag, a definicji zbioru DniTygodnia takim pojeciem jest napis. |

2.3. Podzbiory, rownos¢ zbiorow, zbiory potegowe

Moéwimy, ze A jest podzbiorem zbioru B, co oznaczamy A C B, wtedy i tylko wtedy,
gdy dla dowolnego elementu a: jezeli a€ A, to takze ae B. Symbol C nazywa si¢ sym-
bolem zawierania lub symbolem inkluzji. Podang definicj¢ zawierania zbiorow mozna
rowniez wyrazi¢ formalnie:

ACB & (VaeacA = aeB)

Z definicja wiaze si¢ nastgpujacy komentarz. Jest to definicja w postaci normalne;.
Sktada si¢ ona z dwdch czgscei przedzielonych symbolem réwnowaznosci <, ktéry
czytamy: wtedy i tylko wtedy. Czgs¢ po lewej stronie symbolu réwnowaznosci jest wy-
razeniem zawierajacym pojecie definiowane — definiendum, a czg$é po prawej stronie
zawiera pojecie definiujace — definiens. Poprawnos¢ definicji wymaga, aby po prawe;j
stronie nie wystgpowalo pojecie definiowane, gdyz bylby to przypadek ,,blgdnego ko-
fa”. Oczywiscie, aby rozumie¢ sens definicji pojecia wystepujace w czgsci definiujacej
musza by¢ znane. Podana wyzej definicja spetnia przedstawione wymogi, gdyz w wy-
razeniu definiujacym po prawej stronie nie wystepuje pojecie podzbioru, a pojgcia
nalezenia elementu do zbioru, spojnika implikacji i kwantyfikatora ogdlnego byly
wyjasnione wczesniej. Definicja normalna pozwala przetozy¢ kazdy zwrot jezykowy

38

zawierajacy wyrazenie definiowane na zwrot nie zawierajacy tego wyrazenia. Wigk-
szo$¢ definicji podawanych w ksiazce ma postaé¢ definicji normalne;j.

Latwo zauwazy¢, ze zachodza wlasnosci:
DcCA

ACA
ACBABCO=ACcO

Uzywa sig¢ tez symbolu inkluzji wlasciwej C. Zapis A C B czytamy: zbidr A zawiera
sie¢ wlasciwie w zbiorze B. Oznacza to, ze A zawiera si¢ w B, czyli ACB, oraz zbidr
B zawiera przynajmniej jeden element, ktory nie nalezy do zbioru A. Formalnie:

AcCcBe(AcCB)A(TaeagA AaeB)
Uwaga
Czasem zamiast C uzywa si¢ rOwnowaznego symbolu &.
Dwa zbiory A i B sa identyczne albo rowne, co oznacza sig:
A=B
wtedy i tylko wtedy, gdy maja doktadnie te same elementy, czyli gdy ACB oraz BCA.
Formalnie:
A=BS (ACB)A(BCA)
Symbol = jest tu symbolem réwnosci lub identycznosci zbioréw.
W zbiorze nie odrdznia si¢ kolejnosci ani powtorzen elementéw. Na przyklad, zbiory:

A =4 {l,2,3}
Bzdcf{l’ 392}
C=def {1, 2, 3, 2}

sq identyczne, czyliA =B = C.

Jezeli A jest zbiorem, to przez 2" oznacza sig zbior, ktérego elementami sa wszystkie
podzbiory zbioru A. Zbiér 2* jest nazywany zbiorem potegowym zbioru A. Zbiér pote-
gowy jest wigc rodzing zbiordw.

Uwaga
Zbidr potegowy zbioru A oznacza si¢ rowniez przez [P(A).

Przyklad 2.2.

Dla zbioru A = {a, b, c} jego zbiér potegowym 2*-jest réwny zbiorowi:
L1214, {8, {c} (8 bl a.), 10 e} (2 Brel)

39

Postaé oznaczenia zbioru potegowego 2" wynika z nastepujacej wiasnosci. Jezeli
A jest zbiorem skonczonym, to przez card(A) oznaczmy liczbg jego elementéw. Latwo
pokazac¢, ze dla dowolnego skoficzonego zbioru A zachodzi:

cqrd(ZA) =9 card(A)

Nalezy zwréci¢ uwagg na to, ze symbol rownosci = uzyty powyzej odnosi si¢ do row-
nosci liczb catkowitych, podczas gdy ten sam symbol uzyty wczesniej odnosit si¢ do
roéwnosci zbioréw. Symbol réwnosci w réznych kontekstach moze by¢ uzywany do
poréwnywania obiektow nalezacych do réznych kategorii.

Uwaga

Na okreslenie licznosci elementéw skoficzonego zbioru A uzywa si¢ réwniez in-
nych oznaczen, na przyklad: #(A), |A|.

W przypadku zbiorow nieskonczonych nie mozna moéwié o liczbie ich elementow.
Mozna natomiast poréwnywaé¢ dwa zbiory pod wzglegdem réwnolicznosci. Pojecie
rownolicznosci zbioréw jest zdefiniowane dalej, po wprowadzeniu pojecia funkceji.

2.4. Operacje na zbiorach

Majac dane pewne zbiory mozna z nich budowaé nowe zbiory. Na zbiorach wykonuje
si¢ operacje (dzialania), ktorych efektem sg nowe zbiory. Podstawowymi operacjami
sq: suma, przekrdj, réznica i roznica symetryczna dwdch zbiordw. Dzialania te sa zde-
finiowane przez podanie wlasnosci zbioréw wynikowych.

Suma zbioréw

AU B =4 {a|aeA v aeB)
Przekr6j zbioréw

AN B=ys{a|acA A ae B}
Roéznica zbiorow

A\B =4 {a|acA A ag B}
Uwaga

Innym oznaczeniem réznicy zbiorow jest A — B.

40

Przyklad 2.3
Rozpatrzmy zbiory
A =dcf { {a$ b}, C}
B =dcf {Cy d}
C':dcf {{a, {a} }v a}
D =g {a, {a}}

Latwo sprawdzic¢, ze

AUB=({a,b},c,d) AnB={(c) A\B={{a, b))
L cvP=(afdllatal CoD={a] C\D=(atall] |

W przypadku, gdy interesujace nas zbiory sa podzbiorami pewnego wyrdznionego
zbioru, nazywanego zbiorem-uniwersum, uzywa si¢ operacji dopetnienia zbioru. Jezeli
U jest uniwersum oraz A jest pewnym jego podzbiorem, to przez A’ oznaczamy opera-
cje¢ dopetnienia zbioru A, ktora definiujemy jako:

A’ =4t U\A
Dwa zbiory A, B nazywa si¢ zbiorami rozlqcznymi, jezeli ich przekrdj jest pusty, czyli gdy
ANB=0Q

Czgsto stosowanym sposobem ilustracji operacji mnogosciowych sa wykresy Vennad’.
Zaklada si¢ w nich, ze uniwersum jest zbidr punktow na plaszczyznie, a rozwazanymi
zbiorami sa dowolne obszary na plaszczyznie. Przyktad takiego wykresu przedstawia
rysunek ponizej. Dwa przecinajace si¢ owale reprezentuja zbiory A oraz B. Poszcze-
golne podobszary oznaczaja odpowiednio podzbiory A\B, A N B oraz B\A.

(o]

Rys. 2.2. Zwiazki pomigdzy zbiorami

Wprowadzone operacje posiadaja rozne wiasnosci. Latwo sprawdzi¢, ze zachodza na-
stgpujace wlasnosci, nazywane tez prawami mnogosciowymi:

5 John Venn (1834-1923).

1. prawa przemiennosci

AUB=BUA
ANB=BNA

2. prawa tacznosci
AUB)UC=AUBUO
ANB)NC=ANn(BNO

3. prawa rozdzielnosci
AUBINC=ANOUBNO
ANB)UC=AUVONBUO

4. prawa de Morgana
(ANnB)'=A"UPB
(AUBY=A"NnH

5. prawa dla zbioru pustego
AN =0
AvPD=A
A\D=A

G\A=0
@'=U
6. prawa dla zbioru uniwersum
ANnU=A
AvU=U

A\U=0
U=

JA =wr{a|Ticl e acA)
i€l
(A =ar{a| Viel o acA,)

i€l

U{AiIiEI}

41

Operacje sumy i przekroju zdefiniowane dla dwéch zbioréw uogoélnia si¢ na dowolne
rodziny zbioréw. Niech I bgdzie dowolnym zbiorem, nazywanym zbiorem indekséw
oraz niech {A; | ieI} bedzie indeksowana rodzing zbioréw, wtedy:

sq uogolnionq sumq i uogdlnionym przekrojem zbioréw. Uogblniong sume i przekroj
rodziny zbioréw {A; | i€ I} bedziemy tez zapisywaé w postaci:

42

A lie 1}

Przyklad 2.4

|
Niech A;j=g {1, 2, ..., i} bedzie rodzing zbiorow, gdzie i€ ParzysteDodatnie. Latwo
sprawdzié, ze:

N4 =112}

i€ ParzysteDodatnie

UA‘. = Nat

i€ ParzysteDodatnie l

Cwiczenia

1. Poda¢ elementy nastgpujacych zbiorow:

a) {a}

b) {{a}}

¢) {{a, b}, {a}}

d) {{{a}}, {a}, a}

e) {xeNat | x* <7}

f) {xe Wymierne |x2 =2}

g) {xe Wymierne | (x + 1) 2<0)

2. Niech A, B, C, D beda parami rozlacznymi, niepustymi zbiorami. Jakie warunki
powinny spetnia¢ te zbiory, aby zachodzily nastgpujace réwnosci:
a) {B,C}={B,C, D}

b) {{A, B}, C} = {{A}, C}
o {{A, B}, {D}} = {{A}}
d) {{A, @}, B} = ({D}}

3. Wykazaé, ze rownos¢ zbioréw {{A}, {4, B}} = {{C}, {C, D}} zachodzi wtedy
i tylko wtedy, gdy A = Coraz B=D.

4. Obliczyé AN B, A U B, A\B, B\A dla nastgpujacych zbioréw A i B:

a)A = {{a, b}, c} B ={c,d}
b) A= {{a, {a}}, a} B ={a, {a}}

43

5. Sprawdzié i uzasadni¢, ktére sposrdd nizej podanych réwnosci zachodza badz nie
zachodza dla dowolnych zbioréw A, B, C, D:
a) (AUB)\C = (A\C) U (B\O)
b) (AAB) N\ (C\D) =(An CO)\(BU D)
¢)(AUB)NB=B
d)(ANnB)U(AB)=A
e) (A\B) = A\(A N B)
f)(AAB)UB=A

6. Niech U bedzie pewnym ustalonym zbiorem, zwanym uniwersum. Jezeli A C U, to
A’ =4 U\NA nazywa si¢ dopelnieniem zbioru A. Pokaza¢, ze dla podzbioréw z uni-
wersum U zachodza prawa de Morgana:
aQ)(AUBY=A'"NnPB
b)(ANB)Y=A"UB

7. lle elementéw ma najmniejsza, niepusta rodzina zbioréw A z pewnego uniwersum
U taka, ze:

a) jezeli A€A i BEA,to AU BEA,
b) jezeli AcA i BEA,to AN BeA.

8. Niech card(A) oznacza liczbg¢ elementéw zbioru skonczonego A. Pokaza¢, ze dla
skoniczonych zbioréw A oraz B zachodzi:

a) card(2*) = 27®
b) card(AuB) = card(A) + card(B) — card(ANB)

9. Dla dowolnych zbioréw skonczonych A, B i C znalez¢ wzory okreslajace:

a) card(AuBUC)
b) card(2*“?)
¢) card(A\B)

10. Dowies¢, ze zachodzi, ze dla dowolnej rodziny zbioréw A,, A,, ..., A,, dla ne Nat,
zachodzi réwnos¢:

AlVUA, U ..UA, =
AM) U (A UL UMANA)UVANADUAINAN..NAY)

11. Niech Ay, A, ..., A,, dlan > 0, beda podzbiorami zbioru U. Przez A} oznaczmy zbiér A,,

a przez A, oznaczmy dopehnienie tego zbioru, czyli A! . Kazdy iloczyn postaci:
Al NN A"

gdzie i; € {0, 1} dlaj = 1, ..., n nazywa si¢ skladowa.

44

a) Pokaza¢, ze réznych skladowych jest co najwyzej 2".

b) Pokazaé, ze rdzne sktadowe sg rozlaczne.

¢) Znalez¢ sume wszystkich sktadowych.

d) Udowodnié, ze zbidr A; jest rowny sumie tych skladowych, w ktérych wyste-

puje czynnik postaci A, .

12. Dowies¢, ze dla rodzin zbiordéw {A; | i€l}, { B; | i€ I} oraz {C;;| i€, je J} zachodza
zwiazki:

a) (Ja vl B =J4 us)
el i€l el

b) [JanB)cl Jan B
el €l el

o A8 cl @ uB)
el el el

o UNe, eNUe,-

il jeJ el jeJ

3. Relacje i funkcje

3.1. Produkty kartezjanskie

Przy grupowaniu pewnych elementéw w zbiory kolejnos¢ ich wyliczenia nie jest
istotna. W sytuacji, gdy kolejnos¢ jest istotna, elementy si¢ grupuje, uzywajac pojgcia
par uporzqdkowanych i krotek. Jezeli a€ A oraz be B sa dwoma elementami, nieko-
niecznie ré6znymi, to zapis:

<a, b>

oznacza par¢ uporzadkowana, ktorej komponentami sa a oraz b. Uporzadkowanie
oznacza, ze para <a, b> nie jest tym samym, co para <b, a>. Dwie pary:

<a,b> oraz <c, d>
sq identyczne, co pisze si¢ <a, b> = <c, d>, wtedy i tylko wtedy, gdy
a=c oraz b=d.
Wystepujacy powyzej symbol = ma dwa znaczenia. Gdy pisze si¢ <a, b> = <c, d>,
oznacza to identycznos¢ dwdch par. Natomiast gdy pisze si¢ a = b, oznacza to iden-
tycznos$¢ dwoch elementéw. W obu przypadkach porownuje si¢ ze soba obiekty roz-
nych kategorii.
Uwagi
Para <a, b> bedzie tez zapisywana w postaci (a, b).
Symbol identycznosci, najczgsciej reprezentowany symbolem = lub, rzadziej, sym-
bolem =, zastuguje na wyr6znienie z uwagi na czgste uzycie w réoznych kontek-
stach. Konteksty te nalezy odrdézniaé¢, a w konkretnym kontekscie wlasciwie rozu-

mie¢ znaczenie identycznosci. Ogolnie, symbol, ktory moze mie¢ rozne znaczenia,
nazywa si¢ symbolem przeciqzonym.

Symbol identycznosci, niezaleznie od tego, jakie kategorie obiektéw poréwnuje,
ma pewne stale wlasnosci. Sa to wlasnosci zwrotnosci, symetrii i przechodniosci.
Niech a, b, ¢ bgdg obiektami tego samego zbioru. Wiasnos$é zwrotnosci oznacza, ze

46

dany obiekt jest identyczny ze soba samym, czyli a = a. Wiasno$¢ symetrii ozna-
cza, ze jezeli a jest identyczne z b, to b jest identyczne z a, czyli jezeli a = b, to
takze b = a. Wlasnos¢ przechodnio$ci oznacza, ze jezeli a jest identyczne z b oraz
b jest identyczne z c, to a jest identyczne z c, czyli jezelia=borazb=c,toa=c.
Symbolicznie wiasnosci te mozna przedstawié¢ w postaci:

YacAea=a
VYa beAe(a=b)= (b=a)
Va b,cecAe(a=b)an(b=c)=(a=c)

Pare uporzadkowana <a, b> mozna tez wyrazi¢ jako zbior postaci {a, {a, b}}.
Woéwczas rowno$¢ zbiorow {a, {a, b}} oraz {c, {c, d}} odpowiada réwnosci odpo-
wiadajacych im par <a, b> oraz <c, d>. W szczegdlnosci widaé, ze dwie pary <a, b>
oraz <b, a> sa rézne, gdyz odpowiadajace im zbiory {a, {a, b}} oraz (b, {a, b}} nie
sq identyczne. Postugiwanie si¢ para uporzadkowana <a, b> zamiast zbiorem {a, {a,
b}} jest wygodniejsze i dlatego dalej bgdzie uzywana tylko taka notacja.

Przyklad 3.1

[I
Para uporzadkowana postaci <x, y>, gdzie x, y€ LiczbyRzeczywiste, moze by¢ in-

terpretowana jako punkt na ptaszczyznie, o wspotrzednych x, y.

Pary maja tez interpretacje w programowaniu. Pary

<nazwisko, Bach >
<nazwisko, Kant>,

gdzie nazwisko€ Ident oraz Bach,Kante Nazwiska, sa przyktadami danych prostych
(wartosciami pojedynczych pdl rekordéw). Podobnie, innymi przyktadami danych
prostych sa pary:

<urodziny, XVII >
<urodziny, XVIII >

gdzie urodzinye Ident oraz XVII, XVIIIe LiczbyRzymskie.
Pary postaci:

<<nazwisko, Bach >, <urodziny, XVII >>
<<nazwisko, Kant>, <urodziny, XVIII >>

Lreprezentujq dane ztozone (wartosci rekordéw ztozonych z dwéch pol). |

Ogdlnie, dla dowolnej liczby naturalnej n definiuje si¢ tzw. n-krotki. Jezeli ay, ..., a, sa
elementami, niekoniecznie ré6znymi, to

<dly ...y Ap>

jest n-krotkq, za$ a,, ..., a, sa jej komponentami. Wyrdznia si¢ wiec: 0-krotke <>, 1-krotke
<a>, 2-krotke lub par¢ <a, b>, 3-krotke lub trojke <a, b, c>, itd.

47

Dwie krotki:

<ay, ...,a,> oraz <b, ..., b,>
sa identyczne wtedy i tylko wtedy, gdy n = m oraz a;= b; dla kazdego i =1, ..., n.
Tak wigc krotki:

<1, 1, 1>
<1, 1>, 1>
<1,<1, I>>

s rozne. Pierwsza z nich jest trojka, a pozostale s parami, w ktorych jedna ze skla-
dowych jest réwniez parg.

Produkt (iloczyn) kartezjanski zbioréw A, B jest zbiorem par:
A X B =g {<a, b>| a€A A be B}.
Zauwazmy, ze jezeli zbiory A i B sa niepuste oraz A #B,t0 A X B # B X A.
Ogdlnie — n-krotny produkt kartezjanski zbiorow A, ..., A, dlan > 1 jest zbiorem:
Al X . XA, =4 {<ay, ..., a,> | ai€A;dlai=1, .., n})

Zamiast pisa¢ A X ... X A, gdzie A powtarza si¢ n razy, dla ne Nat, pisze si¢ A".
Z definicji:

Ao =def {<>}
Al =defA~

Uogdlnionym produktem kartezjanskim na zbiorze A nazywa sig zbior

UA" =AuAtuAiuAiy ..

ne Nat

3.2. Relacje

Relacja binarna R okreslona na zbiorach A oraz B jest podzbiorem produktu karte-
zjanskiego AXB, czyli R € AXB.

Jezeli A = B, to méwi sig o relacji binarnej na A.

Jezeli para <a, b> jest elementem relacji binarnej R, to pisze si¢ <a, b>€R. Czasem
uzywa si¢ rownowaznego zapisu aRb.

Jezeli Ry, R, C AXB, to rownos¢ relacji R, = R, jest rownoscig zbiordw par reprezen-
towanych przez R, oraz R».

48

Ponownie warto zwréci¢ uwage na nowa rolg symbolu rownosci =. Tym razem sym-
bol ten oznacza réwnosé relacji, podczas gdy wczesniej oznaczat rownosé elementow
w obrebie zbioru, rownosé zbiorow oraz rownosé krotek.

Zbior wszystkich relacji binarnych okreslonych na produkcie kartezjaiiskim AXB bg-
dzie oznaczany przez 2**%, tzn.

2% =4t (R| R < AXB)
Przy wprowadzonych oznaczeniach zapisy:
RCAXB oraz Re2™®

sq rownowazne.
Uwaga

Na okreslenie zbioru relacji na produkcie kartezjaiskim A X B uzywa si¢ rowniez
innych oznaczen, na przykfad: A & B lub P(AXB).

Zapis postaci:
R C AxXB

nazywa si¢ sygnaturq relacji. Symbol R jest nazwq relacji, zas wyrazenie A X B, gdzie
A oraz B sa nazwami zbiorow, jest rypem relacji.

Jezeli R jest relacjq binarng na AXB, to jej dziedzing jest zbior:
dom(R) =4f {a€A | 3 bEB o <a, b>€ R}

a jej przeciwdziedzing jest zbior:
ran(R) =4 {b€B |3 a€A @ <a, b> eR}

Relacja binarna R € AXB ma swoja relacje odwrotng R™' < BxA zdefiniowana naste-
pujaco:

R =4 (<b, a> | <a, b>€R)
Latwo zauwazyé, ze (R™) ™" = R.

Wprowadzone pojgcia mozna zilustrowaé graficznie. Rozpatrzmy przyktad relacji bi-
narnej zdefiniowanej na zbiorach A =4 {a, b, ¢, d} oraz B =4 {1, 2, 3, 4, 5} przed-
stawiony na rys. 3.1.

Luki prowadzace od elementéw zbioru A do elementéw zbioru B reprezentuja poje-
dyncze pary — elementy relacji R. Z rysunku wynika, ze

R = {<a, 1>, <b, 3>, <c, 1>, <c, 2>, <d, 5>}

49

Rys. 3.1. Graficzna ilustracja relacji

Ponadto, dom(R) = A oraz ran(R) = {1, 2, 3, 5} C B. Przedstawienie na rysunku,
zgodnie z ta sama konwencja, relacji odwrotnej R™" polegatoby na odwréceniu kierun-
ku strzatek.

W przypadku, gdy ma si¢ do czynienia z relacjami binarnymi okreslonymi na jednym
zbiorze, czyli relacjami o sygnaturze R C A%, bardzo przejrzystym sposobem repre-
zentacji graficznej sa grafy. Formalnie grafy sa definiowane dalej, tutaj ograniczamy
si¢ do przyktadu. Niech A =4 {1, 2, 3, 4, 5} oraz

R =4r {<1, 1>, <3, 2>, <2, 3>, <2, 4>, <5, 2>}

Graf reprezentujacy relacje¢ R jest pokazany na rysunku 3.2.

o}

Rys. 3.2. Graficzna ilustracja relacji R

Wierzchotki grafu reprezentuja elementy zbioru A, a tuki grafu reprezentuja elementy
relacji w taki sposob, ze para <a, b>€R jest reprezentowana przez tuk wychodzacy
z wierzchotka a i prowadzacy do wierzchotka b.

Relacje maja rézne zastosowanie w informatyce. Tablice w bazach danych sa typo-
wym przyktadem relacji.

Przyklad 3.2
l

Dane sa dwie tablice w pewnej bazie danych:

50

Tablica 3.1. Tablica 3.2.
Nazwisko Wiek urodzin Nazwisko Zawdd
Bach Xvil Bach Muzyk
Frege Xvil Frege Logik
Leibnitz Xvi Leibnitz Filozof
Tarski XX Tarski Matemaiyk

Kazda z tablic reprezentuje pewna relacje. Pierwsza jest relacja typu Nazwiska X
Liczby Rzymskie, druga zas jest typu Nazwiska X Zawody. Relacje te mozna przed-
stawi¢ w postaci mnogosciowej przez wyliczenie odpowiednich par:

{<Bach, XVII>, <Frege, XVIII>, <Leibnitz, XVII>, <Tarski, XX>}
L {<Bach, Muzyk>, <Frege, Logik >, <Leibnitz, Filozof >, <Tarski, Matematyk>} |

Pojecie relacji binarnej uogélnia si¢ na relacje n-krotng R jako dowolny podzbi6r
n-krotnego, produktu kartezjanskiego:

Rc A x..xA, dlaneNat\{0, 1}

3.3. Operacje na relacjach

Relacje sg zbiorami, mozna zatem na nich wykonywaé wszystkie wczesniej zdefinio-
wane operacje mnogosciowe. Na przyklad, jezeli R, Q € AXB, to zbiory RUQ, RNQ,
R\Q sa rowniez relacjami na produkcie kartezjanskim AXB.

Wprowadza sig¢ tez specyficzne operacje mnogosciowe. Operacje takie wystepuja, na
przykiad, w systemach zarzadzania bazami danych.

Przyklad 3.3

[1
Rozpatruje si¢ operacje zlqczenia dwéch relacji RC A X B oraz Q € A X C. Opera-

cja ta, oznaczana tu przez R @ Q, jest zdefiniowana nastgpujaco:

Jesli dom(R) = dom(Q),to R® Q C A x B x C jest relacja:
R ® Q =4 {<a, b, c> | <a, b>ER A <a, c>€ Q}

Jezeli za R oraz Q wezmie sig¢ relacje zdefiniowane przez tablicg 3.1 i tablicg 3.2
w poprzednim przykladzie, to wida¢, ze dom(R) = dom(Q), a wynikowa relacj¢
R ® Q przedstawia tablica 3.3:

51

Tablica 3.3
Nazwisko | Wiek urodzin | Zawéd
Bach Xvi Muzyk
Frege Xvii Logik
Leibnitz Xxvi Filozof
Tarski XX Matematyk

I |

Nowa operacja jest zlozenie (superpozycja) dwoéch relacji R C AXB oraz Q C BXC. Jest
to nowa relacja, zapisywana w postaci RoQ, zdefiniowana nastgpujaco:

RoQ =4t {<a, ¢> | 3 beB ¢ <a, b>ER A <b, c>€ Q}

Graficzng ilustracja ztozenia dwéch relacji R € AXB oraz Q < BxC, gdzie
A=ar{a, b,c,d}, B=gs{1,2,3,4,5}, C=as {1, 11, 1ll, IV}

jest rysunek 3.3.

Rys. 3.3. Graficzna ilustracja zlozenia relacji

Gorna czgs¢ rysunku przedstawia relacje R oraz Q, a dolna cz¢s$¢ — ztozenie RoQ.
Latwo sprawdzi¢, ze ztozenie relacji jest operacja faczna, to znaczy:

(RoQ) o S=Ro (Q o)
ale nie jest operacja przemienna, to znaczy:

RoQ#Qo°R

Dla dowolnej liczby naturalnej n, n-krotnym zlozeniem relacji binarej R C A jest rela-
cja R" zdefiniowana indukcyjnie w sposob nastgpujacy:

R’ =4 {<a, a> | aeA)

52

R™' =4t R" oR dla ne Nat

Jezeli R C AXB, to obrazem zbioru A| C A wyznaczonym przez relacj¢ R jest zbidr:
R(A)) =4 {b€B |3 acA, ® <a, b>€R}

Latwo pokazaé, ze dla A}, A, C A zachodza wlasnosci:

R(A1U Ay) =R(A1) U R(A,)
R(A1N A2) CR(A) N R(A2)
R(dom(R)) = ran(R)

Jezeli R C AXB, to przeciwobrazem zbioru By C B wyznaczonym przez relacje¢ R jest
zbiér R™\(By).

3.4. Podstawowe rodzaje relacji binarnych

Relacje binarne na A, czyli relacje R C A®, moga charakteryzowa¢ si¢ réznymi wia-
snosciami. Wsrdd podstawowych wiasno$ci wyrdznia si¢ m.in. wlasnosci zwrotnosci,
przeciwzwrotnosci, symetrii, przeciwsymetrii, antysymetrii, przechodniosci i spdjno-
sci. Wiasnosci te sa definiowane nastgpujaco:

zwrotnosé dla dowolnego a€ A zachodzi: <a, a>€R
— symbolicznie: Va€A o <a, a>€R
przeciwzwrotnosé dla dowolnego a€ A zachodzi: <a, a>& R
— symbolicznie: VacA e <a,a>¢R
symetria dla dowolnych a, be A zachodzi:
jezeli <a, b>€ R, to rowniez <b, a>€R
— symbolicznie: Va, beA e <a, b>eR = <b, a>€R
przeciwsymetria dla dowolnych a, be A zachodzi:
jezeli <a, b>€R, to <b, a>&R
— symbolicznie: Ya, becA o <a, b>ER = <b, a>¢R
antysymetria dla dowolnych a, be A zachodzi:
jezeli <a, b>€ R oraz <b, a>€R,toa=b

— symbolicznie: Va,beAeo<a, b>eRA<b,a>eR=a=b

53

przechodnios¢ dla dowolnych a, b, ce A zachodzi:
jezeli <a, b>€ R oraz <b, c>€R, to <a, c>ER
— symbolicznie: Va, b, ceA ® <a, b>€R A <b, c>ER = <a, c>ER
spojnosé dla dowolnych a, be A zachodzi:
jezelia # b to <a, b>€R lub <b, a>eR
— symbolicznie: VYa,beA ®a# b= <a, b>€R v <b, a>€R

Na podstawie przedstawionych wlasnosci mozna definiowaé inne, bardziej ztozone
wiasnosci. Bardzo wazna jest wlasnos¢ réwnowaznosci. Relacja rownowaznosci jest
dowolng relacjq binarna, ktéra jest zwrotna, symetryczna i przechodnia.

Relacja réwnowaznosci R okreslona na zbiorze A wyznacza podzial zbioru na tzw.
klasy abstrakcji. Mianowicie, dla dowolnego elementu a zbioru A definiuje si¢ zbior:

{beA | <a, b>ER}

Zbior taki oznacza si¢ przez [a] i nazywa si¢ klasq abstrakcji generowanq przez ele-
ment a wzgledem relacji R. Mozna pokazaé, ze zbior klas abstrakcji ma nastgpujace
wlasnosci:

1. U[a]=A,
aEA

2. <a, b>e R wtedy i tylko wtedy, gdy [a] = [b],
3. jezeli [a] # [b], to [a] N [b] = D.

Z wilasnosci tych wynika, ze jezeli zbiorze A jest zdefiniowana relacja rGwnowaznosci,
to relacja ta wyznacza podzial zbioru A na roziaczne podzbiory (klasy abstrakcji).
Zbior, ktorego elementami sa wszystkie klasy abstrakcji, nazywa si¢ zbiorem ilorazo-
wym zbioru A wzgledem relacji R i oznacza si¢ A/R, czyli:

AR =41 {[a] | a€ A)

Przyklad 3.4

[l
Niech A =4 {1, 2, 3,4, 5} oraz relacja R C Azjest zdefiniowana nastgpujaco:

R =ur {<1, 1>, <2, 2>, <3, 3>, <4, 4>, <5, 5>, <3, 2>, <2, 3>, <2, 5>, <5, 2>,
<3, 5>,<5,3>)

Latwo sprawdzi¢, ze relacja jest zwrotna, symetryczna i przechodnia, czyli jest re-
lacja rownowaznosci. Klasy rownowaznosci wyznaczone przez poszczegolne ele-
menty zbioru A sa nastgpujace:

[11= {1}
[21=[31=[5]={2,3,5}
[4] = {4}

54

L

Zbidr ilorazowy A/R wyznaczony przez relacj¢ R ma postac:

A/R = {{1}, {2, 3,5}, {4})} _

Poza relacja rownowaznosci wazna grupg stanowig relacje porzqdku. Wyréznia sig:

e relacj¢ quasi-porzqdkujqcq, gdy jest zwrotna i przechodnia,

e relacje czesciowo porzadkujqcq w Scistym sensie, gdy jest antysymetryczna
i przechodnia,

e relacje czesciowo porzqdkujqcq, gdy jest zwrotna, antysymetryczna i prze-
chodnia,

e relacje liniowego porzqdku w Scistym sensie, gdy jest antysymetryczna, prze-
chodnia i spjna,

e relacje liniowego porzqdku (czasem tez krotko: relacjq porzqdku), gdy jest
zwrotna, antysymetryczna, przechodnia i spojna, czyli, gdy jest relacja czgscio-
wego porzadku i relacja spojna.

Zbior, na ktorym jest okreslona pewna relacja porzadku czgsciowego, nazywa si¢
zbiorem czesciowo uporzqdkowanym, a zbior, na ktérym okreslono relacja porzadku
liniowego — zbiorem liniowo (albo catkowicie) uporzqdkowanym.

Przyklad 3.5

!
Rozwazmy rodzing wszystkich podzbioréw dowolnego zbioru U, czyli zbidr potg-

gowy 2Y. Zbiér potegowy 2Y jest zbiorem czgsciowo uporzadkowanym przez rela-
cje R < 2Yx 2Y, ktora jest okreslona nastepujaco:

R={<A, B>e2Yx2Y|A c B)

Relacja R jest relacja czgsciowego porzadku. Istotnie, R jest relacja zwrotna, gdyz
dla dowolnego A 2" zachodzi <A, A>€R, dlatego, ze A C A. R jest relacja antysy-
metryczna, gdyz, jezeli <A, B> R oraz <B, A>eR, co oznacza, ze ACB oraz BCA,
to A=B. R jest tez relacja przechodnia, gdyz z faktu, ze <A, B>eR oraz <B, C>€R,
co oznacza, ze A C B oraz B C C, wynika, ze <A, C>€R, co oznacza, ze A C C.
Relacja R nie jest natomiast relacja liniowego porzadku, gdyz nie jest spojna. |

Przyklad 3.6

Relacja liniowego porzadku jest relacja < okreslona na réznych zbiorach liczbo-
wych, na przyktad Nat, Catkowite, Wymierne lub Rzeczywiste. Uzywajac tej relacji
postuguje sie notacja a < b, zamiast <a, b>€ <. Oczywiscie, zachodza wlasnosci:

Vae Rzeczywiste e a< b
Va, be Rzeczywiste ea<bAra<b=a=b
Va, b, ce Rzeczywisteea<bAab<c=a<c

55

Va, be Rzeczywiste e a2 b=>a<bva<b

Nie jest natomiast relacja liniowego porzadku relacja <, gdyz nie spetnia wymogu
| zwrotnosci, to znaczy nie jest prawda, ze a < a dla dowolnego a € Rzeczywiste. |

Zestaw relacji czgsciowego porzadku Ry, ..., R, zdefiniowanych odpowiednio na zbio-
rach Ay, ..., A, mozna wykorzysta¢ do zdefiniowania nowej relacji czesciowego po-
rzadku R zdefiniowanej na produkcie kartezjanskim A, X ... X A,. Przykladem jest lek-
sykograficzne zlozenie relacji Ry, ..., R, okreslone jako relacja R zdefiniowana na
A; X ... x A, w sposob nastepujacy:

<ap..,a>R<by, .., b>
wtedy i tylko wtedy, gdy istnieje i€ {1, ..., n} takie, ze dla kazdego j < i zachodzi a; =
bjoraz a; R; b;.

Niech R bedzie dowolng relacja binarng na A. Zwrotnym domknieciem relacji R jest
relacja zdefiniowana jako:

RUR’
gdzie R’ =4 {<a, a> | ae A} nazywa sig relacjq identycznosciowq lub tozsamosciowq na A.
Symetrycznym domknieciem relacji R jest relacja zdefiniowana jako:

R U {<b, a>|<a, b> € R}

Przechodnim domknigciem relacji R jest relacja oznaczana symbolem R*, zdefiniowa-
na jako:

R’ =def U R"

ne Nat\{0)

Zwrotne, przechodnie (tranzytywne) domkniecie relacji R na zbiorze A jest to relacja,
oznaczana symbolem R’, zdefiniowana nastepujaco:

R* =def U R"

ne Nat

Podane wyzej definicje domknigcia relacji oznaczaja, ze po domknigciu relacja ma
odpowiednio wilasnos¢ zwrotnosci, symetrii i przechodniosci. Domknigcie relacji
uogolnia si¢ ze wzgledu na dowolng wlasno$¢ w sposdb nastgpujacy. Niech P bedzie
pewna wilasnoscia oraz R pewna relacja binarng. Mowimy, ze relacja Rp jest domknie-
ciem relacji R wzgledem wlasnosci P wtedy i tylko wtedy, gdy:

1. relacja Rp ma wilasnosé P,
2.R C Rp,
3. nie istnieje inna relacja Q, ktora posiada wlasnos¢ P taka, ze Q C Rp.

56

3.5. Funkcje

Niech A oraz B bgda dwoma dowolnymi zbiorami. Funkcjq albo odwzorowaniem
z A w B nazywa si¢ taka relacje¢ binarng f C AXB, ze dla kazdego elementu a€A ist-
nieje co najwyzej jeden element be B taki, ze <a, b>€f.
Inne, rownowazne sformutowanie tej samej wlasnosci:

dla kazdego elementu a€ A, jezeli <a, b>€foraz <a, c>€f,to b =c.
W symbolicznym zapisie wlasnos¢ ta przyjmuje postac:
VacA e<a,b>efA<a,c>ef=b=c.

W podanej definicji funkcji f zawiera si¢ mozliwos¢, ze dla danego a€ A nie istnieje
taki element be B, ze <a, b>€f. Oznacza to, ze dla ac A funkcja f jest nieokreslona.
Fakt, ze para <a, b>€f jest elementem funkcji f bgdzie réwniez zapisywany
w postaci:

fla) = b.

Element a nazywa si¢ argumentem funkcji f, zas b nazywa si¢ wartosciq funkcji
fdla argumentu a.

Napis
f:A—>B

nazywa si¢ sygnaturq funkcji; symbol f jest nazwq funkcji, zas wyrazenie A — B,
gdzie A oraz B sa nazwami zbioréw, jest typem funkcji.

Ogolnie, funkcja moze mie¢ n argumentéw (ne€ Nat). Sygnatura takiej funkcji ma
postaé:

fiAX..XxA,— B

W skrajnym przypadku, gdy funkcja ma zero argumentow — nazywa sig¢ ja funkcja ze-
ro-argumentowq lub stalq, a jej sygnaturg zapisujemy:

f:—B

Dla funkcji o sygnaturze f: A; X ... X A, — B, fakt, ze <ay, ..., a,, b>€Ef, zapisuje si¢
réwniez w postaci:

fai, ...,a,) =b.
Zapis wartosci funkcji w postaci:

Aay, ..., ay)

57

jest zapisem w tak zwanej konwencji prefiksowej lub przedrostkowej. Inng konwencja,
ktéra nie bedzie uzywana, jest notacja przyrostkowa (postfiksowa), nazywana tez od-
wrotnq notacjq polskq, na czesé polskiego logika Lukasiewicza®, ktory ja wprowadzit.
W tej notacji zapisowi wartosci funkcji dla argumentow ay, ..., a,, odpowiada zapis:

(ax, o a,,)f

Notacja ta jest stosowana przy algorytmicznym obliczaniu wartosci wyrazen stano-
wiacych zlozenie wielu funkcji.

W przypadku funkcji dwuargumentowych obok podanych notacji powszechnie stosuje
si¢ notacjg¢ wrostkowq (infiksowq). Wartos¢ funkcji fla;, az), dla argumentéw a,, a,,
zapisuje si¢ W postaci:

alfaz
Deklaracj¢ uzycia notacji infiksowej mozna zaznaczy¢ w sygnaturze, piszac:
__f_ :AXA,—> B

Podkreslenia po obu stronach symbolu f wskazuja na miejsca umieszczania jej argu-
mentéw.

Niech f: A — B. Tak jak poprzednio, przez dom(f) i ran(f) oznacza si¢ odpowiednio
dziedzine 1 przeciwdziedzing funkcji f.

Jezeli dom(f) = A, to f nazywa si¢ funkcja calkowicie okreslonq, albo — krétko — caf-
kowitq. Zbior wszystkich funkcji catkowicie okreslonych z A do B oznacza si¢ A — B.
Zbiér A nazywa si¢ zbiorem Zrodlowym, za$ B — zbiorem docelowym funkcji. Zbior
wszystkich funkcji catkowitych z A w B oznacza si¢ tez przez B*.

W przypadku, gdy dom(f) C A, funkcja f nazywa si¢ czesciowo okreslong, albo — krét-
ko — czesciowq. Funkcja czgsciowa f jest nieokreslona dla elementdw nie nalezacych
do jej dziedziny, czyli do zbioru A\dom(f). Elementowi a€A\dom(f) nie odpowiada
zaden element ze zbioru B. Fakt ten zapisuje si¢ niekiedy piszac fla) = 1, gdzie sym-
bol L oznacza niezdefiniowane.

Wykorzystujac symbol L, zbiér wszystkich funkcji z A do B oznacza sig (B U L)".
Jezeli ran(f) = B, to funkcj¢ f nazywa si¢ surjekcjq albo funkcja ,,na”.

Jezeli dla dwoch réznych argumentdw ay, a, funkcja f przyjmuje rézne wartosci fla,),
flay), to nazywa si¢ ja funkcja roznowartosciowq albo iniekcjq.

Funkcje f, ktora jest calkowicie okreslona, jest surjekcja oraz iniekcja nazywa sig¢
funkcja wzajemnie jednoznacznq albo bijekcjq.

® Jan Lukasiewicz (1878-1956).

58

Bijekcje, ktora jest funkcja o tej samej dziedzinie i przeciwdziedzinie, czyli o sygnatu-
rze f: A — A nazywa si¢ permutacjq.

Funkcje f nazywa si¢ funkcja skoriczonq, gdy dziedzina funkcji dom(f) jest zbiorem
skonczonym.

Jezeli relacja odwrotna f' dla funkcji f: A — B jest funkcja, to nazywa si¢ ja funkcjq
odwrotng funkc;ji f.

Przyklad 3.7

l 1
Niech A =4 {1, 2, 3,4, 5} oraz B =4 {1, 2, 3, 4}.

Relacja R C A x B zdefiniowana jako zbidr par:
(<1, 1>,<2,3>,<1,4>,<3, 3>, <4, 4>, <2, 4>, <5, 1>}
nie jest funkcja.
Funkcja f: A — B zdefiniowana jako zbidr par:
{<1, 1>, <3, 5>, <4, 3>, <5, 1>}
jest funkcja czgsciowa, gdyz dom(f) = {1, 3,4, 5} C A.
Funkcja g : A — B zdefiniowana jako zbidr par:
{<1, 1>, <2, 3>, <3, 4>, <4, 3>, <5, 2>}
jest funkcja ,,na”, gdyz ran(f) = B.
Funkcja i : A — A zdefiniowana jako zbidr par:
{<1, 1>,<2, 3>, <3, 4>, <4, 3>, <5, 1>}
nie ma funkcji odwrotne;.

Szczegblng forma enumeracyjnej definicji funkcji jest tabela lub krotka. Na przy-
ktad wyzej zdefiniowana funkcje f mozna przedstawi¢ w postaci tabeli:

f::

lub krotki:
B=xl,* 53, 1>,
gdzie symbol * oznacza, ze dla danego argumentu funkcja jest niezdefiniowana.

Przedstawienie funkcji w postaci krotki wymaga dodatkowo, aby dziedzina funkcji
byta zbiorem liniowo uporzadkowanym. Tak jest oczywiscie w przypadku dziedzi-
| ny funkcjif, gdzie porzadek w zbiorze A jest wyznaczony przez relacj¢ <. |

59

Funkcje moga by¢ okreslane na dowolnych zbiorach. Elementami takich zbioréw mo-
ga by¢ zlozone twory, na przykfad inne funkcje. W takich przypadkach funkcje nazy-
wa sie funkcjonatami.

Przyklad 3.8
I

Rozpatrzmy zbiér FUN, ktorego elementami sa jednoargumentowe funkcje okre-
slone na zbiorze liczb rzeczywistych i o wartosciach w zbiorze liczb rzeczywistych
Rzeczywiste. Z definicji jest to zbior, ktérego elementami sa funkcje typu:

Rzeczywiste — Rzeczywiste

Rozpatrzmy operator rézniczkowania funkcji Diff. Jest to funkcja o sygnaturze:
Diff : FUN — FUN

albo, w postaci rozwinigtej, o sygnaturze:
Diff : (Rzeczywiste — Rzeczywiste) — (Rzeczywiste — Rzeczywiste)

Operator Diff jest funkcja czgsciowa, gdyz istnieja funkcje, ktdre nie maja pochod-
nej w zadnym punkcie. Istnieja tez funkcje calkowicie okreslone, ktére maja
punkty nieciaglosci (sa nierdzniczkowalne w tych punktach). Dla takich funkcji
| operator rézniczkowania wyznacza funkcje czgsciowo okreslone. |

W rozwazanych wyzej przykladach funkcje byty definiowane enumeracyjnie. Czgsto
spotykanym sposobem jest definiowanie funkcji przez wyrazenia funkcyjne. Definicja
ma posta¢ rownosci, na przyklad:

fx,y,2)=x*y+ 10%z

Jest to réwnos¢, po lewej stronie ktorej wystgpuje symbol funkcji z lista zmiennych
(argumentow), a po prawej stronie wystepuje wyrazenie funkcyjne (term).
W przyktadowym wyrazeniu funkcje +, * sa znanymi dwuargumentowymi funkcjami
arytmetycznymi, 10 jest funkcja zeroargumentowa, czyli stala, zas x, y sq zmiennymi.
Wyrazenie funkcyjne jest wigc zlozeniem pewnych funkcji. Ogoélnie, jest ono defi-
niowane nastepujaco:

e stala i zmienna sa wyrazeniami funkcyjnymi,
e jezeli h jest n-argumentowa funkcja, oraz gy, ..., g, sa wyrazeniami funkcyjnymi,
to h(gi, ..., 8») jest wyrazeniem funkcyjnym.

Symbol funkcji wystepujacy po lewej stronie nie moze wystapi¢ po prawej stronie
rownosci. Jedynymi zmiennymi, ktére moga wystgpowac po prawej stronie réwnosci
sq tylko te, ktére wystgpuja po lewej stronie.

Funkcje sg pewnymi zbiorami i moga by¢ definiowane rekursywnie oraz przez okre-
Slenie wlasnosci. Definicj¢ rekursywna, czyli algorytmiczna, funkcji nazywa sig tez

60

definicja intensjonalnq, za$ definicj¢ przez okreslenie wlasnosci — definicja ekstensjo-
nalngq.

Przyklad 3.9

Funkcja Silnia jest typu Nat — Nat. Jej definicja rekursywna ma postac:

Silnia(0) =1
Silnia(n) = n * Silnia(n—1) dlan>0

Definicja skiada si¢ z dwdch réwnosci. Po lewej stronie rownosci wystgpuje sym-
bol definiowanej funkcji wraz z odpowiednimi warto$ciami argumentu, a po pra-
wej stronie wystepuja wyrazenia funkcyjne. Wyrazenie funkcyjne w pierwszej
rownosci jest stala (funkcjg zeroargumentowa), a w drugiej — jest ztozeniem funk-
cji trzech funkcji: odejmowania —, mnozenia * oraz definiowanej funkcji Silnia.
Pierwsza rowno$¢ definiuje wartos¢ funkcji dla argumentu o wartosci 0, druga —
definiuje wartos¢ funkcji dla pozostatych wartosci argumentu. Zastosowanie dru-
giej réwnosci do obliczenia warto$ci funkeji dla argumentu n wymaga uprzedniego
obliczenia wartosci funkcji dla argumentu n—1.

W podobny sposdéb jest zdefiniowana rekursywnie funkcja M : Nat — Nat:

M(1)=2
M2)=2
M(n) =2 * M(n-1) + M(n-2) dlan>2

Znaczenie bardziej ztozony jest sposob definicji funkcji Ackermana A: Nat x Nat
— Nat

A0, y)=1 dla dowolnego ye Nat
A(1,0)=2
Alx,0)=x+2 dlax>1

| Ax+1,y+1)=AA(x, y+1),y) dladowolnego x, ye Nat |

Przyklad 3.10

|
Niech, jak poprzednio, FUN oznacza zbiér, ktorego elementami sa jednoargumen-

towe funkcje okreslone na zbiorze liczb rzeczywistych i o wartosciach w zbiorze
liczb rzeczywistych, czyli funkcje typu Rzeczywiste — Rzeczywiste. Dla dowolnej
funkcji f : Rzeczywiste — Rzeczywiste rozwaza si¢ rOwnanie postaci f{x) = 0. Row-
nanie to moze nie mie¢ pierwiastkow rzeczywistych, moze tez mie¢ ich nieskon-
czenie wiele. Przez Pierwiastki(f) oznacza si¢ warto$¢ funkcji, ktéra dla danej
funkcji f wyznacza podzbidr liczb rzeczywistych P, ktore sa pierwiastkami réwna-
nia f(x) = 0. Funkcja Pierwiastki jest typu FUN — 25" Funkcjg t¢ mozna zde-
finiowac ekstensjonalnie w sposéb nastgpujacy:

Pierwiastki = {<f, P> FUN x 25" | xe P & flx) = 0}

61

Wprawdzie funkcja Pierwiastki jest zdefiniowana jednoznacznie, jednak z definicji
tej nie wynika jak dla konkretnej funkcji f okresli¢ zbior jej pierwiastkow. Wiado-
mo, ze znajdywanie pierwiastkéw rzeczywistych réwnania f{x) = 0 jest zadaniem
| rozwigzywalnym efektywnie tylko dla pewnych klas funkcji. |

Przyklad 3.11
I |

Rozwazmy funkcj¢ Wartos¢Wielomianu, ktéra oblicza wartos¢ dowolnego wielo-
mianu dla zadanego argumentu. Jest to funkcja o sygnaturze:

Wartos¢Wielomianu : Wielomiany X Rzeczywiste — Rzeczywiste
Wielomian n-tego stopnia:
ap* X"+ .+ a*x+a

gdzie ne Nat, jest jednoznacznie okreslony przez zestaw swoich n+1 wspétczynni-
kéw a,, ..., a\, ap€ Rzeczywiste. Zatem zbiér Wielomiany moze by¢ zdefiniowany
jako:

Wielomiany =gt URzeczywisre“

ne Nat
Stad, dla dowolnego <a,, ..., a\, ap>€ Wielomiany oraz x€ Rzeczywiste:
Wartos¢Wielomianu(<ay,, ..., ay, ap>, x)=a, *x" + ...+ a, *x + ao

Obliczenie tak zdefiniowanej wartosci funkcji WartoséWielomianu sprowadza sig,
[W oczywisty sposdb, do prostego algorytmu obliczen. N

3.6. Operacje na funkcjach

Na funkcjach mozna wykonywac rézne operacje definiujac w ten sposéb nowe funk-
cje. Funkcje sa relacjami, w szczegdlnosci mozna wykonywa¢ na nich operacje mno-
gosciowe, ale nalezy zauwazy¢, ze wynikiem takich operacji nie zawsze jest funkcja.
Na przyktad, jezeli dane sa dwie funkcje f, g: A — B, to ich mnogo$ciowa suma f U g
moze nie by¢ funkcja, natomiast przekrdj funkcji f M g oraz ich roznica
f\g sa zawsze funkcjami.

Operacja superpozycji albo skiadania sekwencyjnego funkcji jest zdefiniowana tak
samo jak dla relacji. Jezeli dane sq dwie funkcje:

fiA—>Borazg: B—> C

62

to ztozeniem sekwencyjnym albo superpozycja funkcji f z funkcja g, oznaczanym

przez f -g, jest funkcja typu A — C okreslona nastgpujaco:
(f - 8)(a@) =qer g(fla))

pod warunkiem, Ze f{a) oraz g(f(a)) sa okreslone.

Inne operacje specyficzne dla funkcji to operacje:

® warunkowego wyboru,
o modyfikacji funkcji przez podstawienie,
e obciecia.

Niech beda dane dwie funkcje f, g : A — B oraz trzecia funkcja h : A — Logiczne,
gdzie Logiczne =4 {prawda, falsz}. Warunkowym wyborem funkciji f, g, h, oznacza-

nym:
h—>fg

nazywa si¢ funkcj¢ typu A — B, ktora jest okreslona nastgpujaco:

f(a) gdy h(a)= prawda

(h—f, 8)(a)={g(a) gdy h(a)= falsz

Przyklad 3.12

Niech

f=1{<1,2>,<2,3>,<3,4>}
g =1{<l,3>,<2,3>, <5, 5>}
h = {<1, prawda>, <2, falsz>, <3, prawda >, <4, falsz >, <5, prawda >}

wowczas

| h—f,g=1{{<l,2><2, 3> <3, 4>, <5, 5>}

|

Niech f: A — B bedzie funkcja oraz niech a€ A, be B. Modyfikacjq funkcji f przez pod-
stawienie wartosci b dla argumentu o wartosci a, jest funkcja typu A — B, oznaczana

symbolicznie f[a := b], zdefiniowana w sposdb nastepujacy:

fla:=b](x) =us (x =a) = b, fix)

W definicji tej wykorzystano poprzednio wprowadzony operator warunkowego wybo-
ru funkcji. Wyrazenie x = a przedstawia funkcjg, ktora przyjmuje warto$¢ logiczna

prawda wtedy i tylko wtedy, gdy argument x przyjmuje wartos$¢ a.
Przyklad 3.13
Niech
f=1{<1,2>,<2,3>, <3, 4>}

63

={<2, 3>, <5, 5>}
wowczas

fl1:=5]={<]1, 5>, <2, 3>,<3,4>}
1 gll :=5]={<l, 5>, <2, 3>,<5, 5>}

]
Niech C C A. Obcigciem funkcji f: A — B do podzbioru C zbioru zrédlowego A be-
dzie nazywac si¢ funkcjg f|c : C — B okres$lona nastepujaco:

dla dowolnego ae C: f|c(a) =uwtfla).
Latwo sprawdzi¢, ze réwnowazng definicja obciecia funkcji jest:
fle=wsf N (CXB)
Niech f: A— B oraz niech A; C A, B, C B. Obrazem zbioru A, dla funkcji f nazywa
sie zbior:
flA)) =4er {bEB |3 ac A, » fla) = b}
Przeciwobrazem zbioru B, dla funkcji f nazywa sig zbior:
f(B)) =t {a€A | 3 beB, ® fla) = b}
Przyklad 3.14

Jezeli
f=1{<l1, 2>,<2,3>,<3, 4>, <4, 5>}
to

f|[|'7_) = {<1, 2>, <2, 3>}
(1,20 ={2,3)
L fd3,4p=1(2,3) |

3.7. Funkcje a relacje

Pomigdzy relacjami a funkcjami zachodza pewne zwiazki. Kazda funkcja jest,
z definicji, relacja. Odwrotnie tak nie jest, ale kazdej relacji R € A x B mozna przypo-
rzadkowac¢ przynajmniej jedna takq funkcje fz : A — B, ze dla kazdego a€ dom(R):

fr(@) =gt b

gdzie be B jest takim elementem, ze <a, b>€R, czyli ze

64

fr € R oraz dom(fg) = dom(R).
Funkcj¢ fz nazywa si¢ funkcja zgodnq z relacja R.
Przyklad 3.15

Niech
R={<l,2>,<1,3><2,5> <2,3>,<3, 4>, <4, 5>}
wowczas

{<1, 2>, <2, 3>, <3, 4>, <4, 5>}
{<1, 3>, <2, 3>,<3, 4>, <4, 5>}

| sa funkcjami zgodnymi z R. '

Zwigzek zgodnos$ci zachodzi pomigdzy programem a jego specyfikacja. Specyfikacje
programu wyraza si¢ jako pewna relacje¢ Spec, program zas jest pewnga funkcja Prog.
Program spetnia specyfikacje, gdy pomigdzy specyfikacja Spec i programem Prog za-
chodzi zwiazek zgodnosci, czyli dom(Prog) = dom(Spec) oraz Prog C Spec.

Przyklad 3.16
r

Przypus¢my, ze potrzebna jest funkcja obliczajaca pierwiastek kwadratowy z licz-
by rzeczywistej x, z doktadnoscia 1. Niech y bedzie wartoscia tej funkcji dla dane-
go x. Zwiazek migdzy x oraz y jest okreslony zaleznoscia:

V< x < (y+1)

Formuta ta definiuje relacje:
Specsqn =aet {<x, y>€ Rzeczywiste2 | y2 <x<(y+ 1)2}
ktora jest specyfikacjq programu.

Implementacjq dla tej relacji jest dowolna funkcja:
Impl,,, : Rzeczywiste — Rzeczywiste

ktora spetnia warunki:
dom(Implsg,) = dom(Spec,q,) oraz Impl,g,, C Specgn.

Czytelnikowi proponuje si¢ samodzielne przedstawienie graficznej ilustracji relacji
L Specs,, oraz funkcji Impl,,,, na ptaszczyznie wspoétrzednych x, y. |

Dowolng relacj¢ mozna przedstawi¢ za pomoca jej funkcji charakterystycznej. Jezeli
dana jest relacja R C A\X ... XA,, to jej funkcjq charakterystyczng jest funkcja:

fri A1 X ... XA, — Logiczne

zdefiniowana nastgpujgco:

65

fr(ay, ..., a,) = prawda wtedy i tylko wtedy, gdy <ay, ..., a,>€R.

Funkcja charakterystyczna dla danej relacji R jest wyznaczona jednoznacznie. Od-
wrotnie, dana funkcja charakterystyczna wyznacza jednoznacznie pewna relacje.

Cwiczenia

1. Ile relacji binarnych mozna zdefiniowa¢ na produkcie kartezjanskim A x B, jezeli
A oraz B sa zbiorami skonczonymi o licznosciach card(A) = n oraz card(B) = m.

2. Uzupetnij i udowodnij wzory:
A)(ANB)XC=(A XCONBxO0)
b)(AuB)xC="?
c)(AUB)X(CuD)=?

3. Niech card(A) = n oraz card(B) = m. Jaka jest liczba funkcji calkowitych oraz cze-
Sciowych typu A — B?

4. Niech U bedzie pewnym zbiorem uniwersum oraz Cy niech bedzie relacja zawiera-
nia pomigdzy podzbiorami zbioru U. Ktére z wlasnosci: symetrig, zwrotnos¢, prze-
chodnios¢ ma relacja Cy.

5. Niech X =4 {a, b, ¢, d} oraz R C X 2. Zbada¢ ktore sposrdd wlasnosci: symetrii,
przeciwsymetrii, zwrotnosci, przeciwzwrotnosci, przechodniosci, spdjnosci i row-
nowaznosci maja nastgpujace relacje binarne:

a) R = {<a, a>, <b, b>, <a, b>}
b) R = {<a, a>, <b, b>, <c, c>, <d, d>, <a, b>, <b, a>}

6. Sprawdzi¢ czy prawdziwe sa nastgpujace stwierdzenia dotyczace relacji binarnych
na X:

a) Suma dwdch relacji symetrycznych jest symetryczna.
b) Czgs¢ wspdlna (przekroj) dwu relacji przechodnich jest przechodnia.
c) Jezeli R jest relacja przechodnia oraz R € S € X°, to S jest relacja przechodnia.

7. Niech [a] =4 {bEA | <a, b>E R} bedzie klasg abstrakcji generowang przez binarna
relacj¢ rownowaznosci R na zbiorze A. Dowiesé, ze:

a) | Jla]=4

b) <a, b>e R wtedy i tylko wtedy, gdy [a] = [b]

66

10
11

12.

13.

14.

c) jezeli [a] # [b], to [a] N [b]= D

. Niech ID bedzie zbiorem identyfikatoréw. Czy zdefiniowane ponizej relacje binar-

ne Ry, R, c ID? sq relacjami rownowaznosci? Jezeli tak, to jakie sa wyznaczone
przez nie zbiory ilorazowe?

a) Ry = {<id,, idy> | pierwsza litera identyfikatora id, jest taka sama jak pierwsza
litera identyfikatora id,}

b) Ry =g {<idy, idy> | identyfikator id, czytany wspak jest taki sam identyfikator
id,}

. Niech BAZA =4.f Nazwisko X Wiek x Zarobek, gdzie Nazwisko jest zbiorem identy-

fikatorow, Wiek i Zarobek sa pewnymi podzbiorami nieujemnych liczb catkowi-
tych. Czy relacje binarne R, R, C BAZA® sa relacjami réownowaznosci? Jezeli tak,
to jakie sq wyznaczone przez nie zbiory ilorazowe?

a) Ry =ger {<<ny, wi, 21>, <na, wy, 22>> | WI=W2 A2 =22}
b) Ry =aer {<<ny, wi, 21>, <na, wa, 22>> | wi = wa A 21 — 29| < 1000}

. lle jest roznych relacji rbwnowaznosci na zbiorze n-elementowym?

. Niech R, S C X* beda relacjami réwnowaznosci. Czy relacjami rownowaznosci sa
réwniez:
a)RuUS
b)RNS
C)R\S

Niech R C X * bedzie relacja rownowaznosci oraz x, ye X beda dwoma ustalonymi
elementami zbioru X. Czy relacja réwnowaznosci jest relacja:

S =aef (R U {<x, y>, <y, x>})*

Jesli Ry € X 2, to R, < X? takie, ze R, C R, nazywamy rozszerzeniem relacji R).
Czy kazda relacje R < X * mozna rozszerzy¢ do relacji:

a) symetrycznej,

b) przeciwsymetrycznej,

c) zwrotnej,

d) przeciwzwrotnej,

e)przechodniej,

f) spéjne;.

Wykaza¢, ze relacja R jest przechodnia wtedy i tylko wtedy, gdy spetniony jest
warunek:

RZQR

15.

16.
17.

18.

67
Niech S, T beda relacjami binarnymi na X2. Wskaz, ktére wlasnosci sa praw-
dziwe:

a) dom(S U T) = dom(S) U dom(T)
b) dom(S w T) € dom(S) LU dom(T)
¢) dom(S N T) < dom(S) N dom(T)

Pokaza¢, ze zlozenie funkcji réznowartosciowych jest funkcja réznowartosciowa.
Niech f: X — Yoraz A, B C X. Uzupetnij i udowodnij wzory:

a) f(AuB)= f(A)u (B)

b) f(AnB) ? F(A)n£(B)

o) f(f(4) 24

Funkcja f jest zgodna z relacja i wtedy i tylko wtedy, gdy f C R. Niech X =g {a, b,
¢, d} oraz relacja R bedzie zdefiniowana nastepujaco:

R =4t {<a, b>, <a, d>, <c, ¢>, <b, b>, <b, d>, <c, c¢>, <d, b>, <c, d>, <d, c>,
<d, a>, <d, d>}.

Zdefiniowa¢ wszystkie funkcje f zgodne z relacja R takie, ze:

a) dom(f) = dom(R)
b) ran(f) = ran(R)

Ktore sposrod tych funkcji maja funkcje odwrotne?

4. Uogolnienia i uzupelnienia

4.1. Wielozbiory

Uogdlnieniem pojecia zbioru jest pojecie wielozbioru. Zbior jest okreslony jako ko-
lekcja dobrze wyréznionych obiektéw — elementdéw zbioru. Czasem nie ma potrzeby
jednoznacznego rozrézniania pomigedzy elementami zbioru. Tak jest wtedy, gdy ele-
mentami zbioru jest wiele kopii tego samego rodzaju obiektéw. Na przyklad, jezeli
rozwaza si¢ zbior, ktorego elementami sg ré6zne owoce — jabtka, gruszki, sliwki, to
moze nas interesowaé tylko liczba poszczegdlnych rodzajéw owocow, bez rozréznia-
nia konkretnych owocéw.

Definicja 4.1

Jezeli A jest dowolnym zbiorem, to wielozbiorem (albo multizbiorem) W nad zbio-
rem A jest para:

W=gr <A, f>

gdzie f jest funkcjq licznosci wielozbioru. Funkcja f jest dowolna catkowicie okre-
$long na A, o wartosciach w zbiorze liczb naturalnych, czyli jest funkcja o sygnatu-
rze f: A — Nat oraz dziedzinie dom(f) = A.

Jezeli agA, to fla) jest liczba elementéw a w danym wielozbiorze W. Wielozbior
W jest pusty, gdy fla) = 0 dla kazdego acA.
Niech bedg dane dwa wielozbiory nad zbiorem A:

Wi =<A, f>oraz W, = <A, g>
W, jest podwielozbiorem Wa, co oznacza sig¢ W, W, jezeli fla) < g(a), dla kazdego ac A.
Wielozbiory W, oraz W, sa identyczne, co pisze si¢ W, = W,, wtedy i tylko wtedy, gdy
W, Wroraz W, C W,.

Na wielozbiorach definiuje si¢ operacje mnogosciowe sumy, przekroju i réznicy.
Suma wielozbiorow jest zdefiniowana nastgpujaco:

Wiu W, =<A, h>

69

gdzie h jest funkcja licznosci spetniajaca warunek:
h(a) = fla) + g(a)dla dowolnego ac A

Przekrdj wielozbioréw jest zdefiniowany nastgpujaco:
Win Wo=<A, h>

gdzie h jest funkcja licznosci spetniajaca warunek:
h(a) = min(f(a), g(a))dla dowolnego ac A

Roéznica wielozbiorow jest zdefiniowana nastgpujaco:
Wi\W,= <A, h>

gdzie h jest funkcja licznosci spelniajaca warunek:
h(a) = max(f(a) - g(a), 0)dla dowolnego ac A

Funkcje min oraz max sa funkcjami, ktore wyliczaja odpowiednio wigksza oraz mniej-
szg liczbg sposrod dwoch liczb, ktére sa jej argumentami.

Przyklad 4.1

|
Niech W, = <A, fi> oraz W, = <A, f>>, gdzie A = {a, b, c, d, e} oraz funkcje liczno-
$ci sg zdefiniowane nastepujaco:

fi={<a, 4>, <b, 3>, <c, 2>, <d, 1>, <e, 0>}
= {<a, 0>, <b, 1>, <c, 2>, <d, 3>, <e, 4>}

Woéwczas

WU W, =<A, {<a, 4>, <b, 4>, <c, 4>, <d, 4>, <e, 4>}>
Win Wy =<A, {<a, 0>, <b, 1>, <c, 2>, <d, 1>, <e, 0>}>
| W\W, = <A, {<a, 4>, <b, 2>, <c, 0>, <d, 0>, <e, 0>}> |

Uwaga

Czesto, gdy rozwaza si¢ rodzing wielozbioréw W; = <A, f; >, dla i€ I, nad ustalo-
nym zbiorem A, przyjmuje si¢ uproszczong notacj¢ — wielozbiér W; utozsamia sig
z funkcja licznosci f;. Wtedy zamiast pisac, na przyklad, W, U W, pisze sig fi U f>.

4.2. Zbiory rozmyte

Zbiory rozmyte sg uogdlnieniem zbiorow, ktorym mozna postugiwaé si¢ w sytuacjach
okreslonych nieprecyzyjnie lub niejednoznacznie. Takie sytuacje wyst¢puja, na przy-

70

ktad, gdy mowi si¢ wysoki mezczyzna, duze miasto lub drogi samochdd. Gdy mowi sig
o kims, ze jest wysokim mezczyzng wyraza si¢ przekonanie o stopniu przynaleznosci
danego mezczyzny do zbioru wysokich mezczyzn.
Definicja 4.2

Jezeli A jest dowolnym zbiorem, to zbiorem rozmytym Z nad zbiorem A jest para:

Z =def <A9 !‘l>

gdzie u jest funkcjq przynaleznosci do zbioru rozmytego. Funkcja u jest dowolng
funkcja catkowicie okreslong na A, o wartosciach w zbiorze liczb rzeczywistych
z przedziatu [0, 1], czyli funkcja o sygnaturze i : A — [0, 1] oraz dom(f) = A.

Jezeli a€ A, to w(a) okresla stopien przynaleznosci elementu a do danego zbioru roz-
mytego. Dla ae A wartos¢ funkcji u(a) = 0 oznacza brak przynaleznosci, u(a) = 1
oznacza pelna przynaleznos¢, za$ 0 < u(a) < 1 oznacza czg$ciowa przynaleznos¢ ele-
mentu a do zbioru rozmytego.

Zbior rozmyty Z jest pusty, gdy u(a) = 0 dla kazdego ac A.

Przyklad 4.2
I

Przyjmujac, ze wysocy mezczyzni to ci, ktorzy maja co najmniej 170 cm wzro-
stu, rozmyty zbior wysokich mezczyzn Wysocy Mezczyzni mozna zdefiniowac
nastepujaco:

Wysocy Mezczyzni = <Wzrost, [hzros™>
gdzie

Wzrost = {x€ Rzeczywiste | x 2 100}

0 dla x<170
Hypsoii(¥) =175 (x=170) dla 170<x<185
1 dla x>185

Niech beda dane dwa zbiory rozmyte Z; = <A, u> dla i = 1, 2. Z, jest podzbiorem Z,, co
oznacza si¢ Z, C Z,, jezeli ui(a) < Wx(a), dla kazdego acA.

Zbiory rozmyte Z, oraz Z, sa identyczne, co pisze si¢ Z; = Z,, wtedy i tylko wtedy, gdy
W, c W,oraz W, C W,.

Operacje mnogosciowe na zbiorach rozmytych sg definiowane nastgpujaco:
Suma zbioréw rozmytych:

Z\V Z,=<A, u>

gdzie u jest funkcja przynaleznosci spetniajaca warunek:

71

wa) = max(ui(a), u2(a)) dla dowolnego ac A

Przekrdj zbioréw rozmytych:

ZlﬂZQ=<A,,U.>

gdzie u jest funkcja przynaleznosci spetniajaca warunek:

u(a) = min(uy(a), Ux(a)) dla dowolnego ac A

Roéznica zbioréw rozmytych:

Z\Zr=<A, u>

gdzie u jest funkcja przynaleznosci spetniajaca warunek:

u(a) = max(u,(a) — ux(a), 0) dla dowolnego ac A

Przyklad 4.3

[

Zbiory rozmyte mozna przedstawi¢ graficznie za pomoca odpowiadajacych im
wykresow funkcji przynaleznosci. Na pierwszym z rysunkéw (rys. 4.1) przedsta-
wiono wykresy funkcji przynaleznosci dwoch zbioréw rozmytych nad zbiorem
liczb rzeczywistych — linia ciagta (zbior pierwszy) i przerywana (zbior drugi), a na
nastgpnych — wykresy funkcji przynaleznosci ich sumy i przekroju.

-
-

——————

Funkcje przynaleznosci dwéch zbioréw rozmytych
— linia ciagla i linia przerywana

Funkcja przynaleznosci sumy dwoch zbiorow
rozmytych

Funkcja przynaleznosci przekroju dwéch zbioréw
rozmytych

Rys. 4.1. Graficzna ilustracja operacji na zbiorach rozmytych

72

Uwaga

Badania nad zbiorami rozmytymi zainicjowal swoimi pracami Lofti Zadeh w po-
fowie lat szesédziesiatych. Podane wyzej definicje zawierania i rdwnosci zbioréw
rozmytych oraz operacje mnogosciowe sa tymi, ktore spotyka si¢ najczgscie;j.
W literaturze istnieje rozmaitos¢ innych definicji tych pojeé¢ [Kacprzyk 86],
[Rutkowska, Pilinski, Rutkowski 1997].

Z poréwnania podanych okreslen zbiorow rozmytych z podanymi wczesniej okresle-
niami dla wielozbiorow wynika, ze z obliczeniowego punktu widzenia réznice sa mato
istotne. Istotne sa natomiast réznice interpretacyjne, gdyz funkcja licznosci dla danego
elementu a€ A okresla liczbg kopii samego elementu w wielozbiorze, podczas gdy funk-
cja przynaleznosci okresla stopien przynaleznosci tego elementu do zbioru rozmytego.

4.3. Zbiory przyblizone

Pojecie zbiorow przyblizonych wywodzi si¢ z zagadnienia klasyfikacji.

Niech U bedzie dowolnym zbiorem uniwersum oraz niech R € U * bedzie pewna rela-
cja rownowaznosci okreslong na U. Relacja rdwnowaznosci wyznacza podziat zbioru
U na klasy abstrakcji. Dwie klasy abstrakcji sa albo identyczne, albo rozlaczne, a su-
ma mnogosciowa wszystkich klas abstrakcji jest rowna zbiorowi U. Zbiér wszystkich
klas abstrakcji, oznaczany U/R, jest nazywany zbiorem ilorazowym zbioru U.

Niech begdzie dany pewien podzbiér X < U. Podzbiér X jest oczywiscie okreslony
przez swoje elementy, ale mozna go tez scharakteryzowac tylko poprzez elementy
zbioru ilorazowego U/R. Charakteryzacja polega na wprowadzeniu dwéch podzbioréw
stanowiacych dolne i gérne przyblizenie zbioru X.

Dolnym przyblizeniem zbioru X wzgledem relacji R, oznaczanym RX, jest zbidr zdefi-
niowany nastepujaco:

RX=|J{reU/R|Y c X}

Gornym przyblizeniem zbioru X wzgledem relacji R, oznaczanym RX, jest zbidr zde-
finiowany nastepujaco:

Rx =\ J{reU/R|Y n X = @)
Z definicji wynika, ze RX C X C RX.

73

Definicja 4.3

Zbior X nazywa si¢ zbiorem przyblizonym wzgledem relacji R, gdy RX # RX.
W przeciwnym razie, gdy RX =RX, zbiér X nazywa si¢ zbiorem dokladnym
wzgledem R.

Ilustracja wprowadzonych pojgc jest rysunek 4.2.

1 2 3 4 5 6 7

Rys. 4.2. Graficzna ilustracja zbioru przyblizonego

Zbiorem U jest prostokatny obszar na plaszczyznie X-Y podzielony na mniejsze pro-
stokaty — kratki sg jednoznacznie identyfikowane przez numery wierszy i kolumn.
Kratki te s3 elementami pewnego zbioru ilorazowego dzielacego zbior U. Zbidr X jest
zaznaczony pogrubiong linia. Jego dolnym przyblizeniem RX jest obszar zaznaczony
trzema mocniej zacieniowanymi kratkami, a gérnym jego przyblizeniem RX jest ob-
szar zaznaczony wszystkimi zacieniowanymi kratkami.

RX = {<b, 2>, <b, 3>, <b, 4>}

RX = {<a, 1>, <a, 2>, <a, 3>, <a, 4>, <a, 5>,
<b, 1>, <b, 2>, <b, 3>, <b, 4> <b, 5>,
<c, 1>, <c, 2>, <c, 3>, <c, 4> <c, 5>}

W praktycznych zastosowaniach licznoéci elementow zbiordw RX oraz RX daja podstawe
do liczbowej oceny dokfadnosci przyblizenia zbioru X. Jezeli zbiory RX oraz RX sa skon-
czone, to tak zwana miara doktadnosci przyblizenia zbioru X jest okreslana jako liczba

or(X) = card(RX) / card(EX)
Oczywiscie 0 < or(X) < 1.
Uwaga

Zbiory przyblizone zostaty wprowadzone przez Zdzistawa Pawlaka w potowie lat
osiemdziesiatych. Znalazty one szerokie zastosowanie w informatyce, mi¢dzy in-
nymi w analizie danych, przyblizonej klasyfikacji i przetwarzaniu obrazow [Paw-
lak 1991].

74

4.4. Zbiory przeliczalne i nieprzeliczalne

Pojecie funkcji pozwala na pordéwnywanie licznosci zbiorow.
Definicja 4.4

Dwa zbiory A i B sa rownoliczne wtedy i tylko wtedy, gdy istnieje wzajemnie jed-
noznaczna funkcja:
f:A—>B

O zbiorach réwnolicznych mowi sig tez, ze sg zbiorami o tej samej mocy.
Jezeli zbiory A i B sg skonczone, to sg rownoliczne, gdy maja t¢ sama liczbg elemen-
tow, czyli gdy card(A) = card(B).
Dla zbioréw nieskonczonych zachodzi charakterystyczna wlasnos¢ polegajaca na
tym, ze caly zbidr jest rdwnoliczny z pewnym swoim podzbiorem wiasciwym. Ta
wilasnos¢ jest podstawa formalnej definicji zbioréw nieskonczonych. Mianowicie,
zbidr jest nieskornczony wtedy i tylko wtedy, gdy ma podzbior wlasciwy, ktory jest
z nim réwnoliczny.
Przyklad 4.4
| ~

Zbior liczb parzystych Parzyste jest rownoliczny ze zbiorem liczb naturalnych Nat.
Wystarczy zauwazy¢, ze funkcja f: Nat — Parzyste, ktéra wzajemnie jednoznacz-
nie odwzorowuje zbiér Nat w zbidr Parzyste, jest zdefiniowana wzorem:

fin) =2%n
gdzie ne Nat, zas 2*ne Parzyste.
Rownoliczne sg zbiory Parzyste i Nieparzyste.

| Zbior liczb naturalnych jest rownoliczny ze zbiorem liczb wymiernych. |

Kazdy zbiér skonczony lub réwnoliczny ze zbiorem liczb naturalnych nazywa si¢
zbiorem przeliczalnym. Zbior nieskonczony, ktéry nie jest rownoliczny ze zbiorem
liczb naturalnych nazywa si¢ zbiorem nieprzeliczalnym.

Twierdzenie 4.1
Zbidr potegowy zbioru liczb naturalnych nie jest rdwnoliczny ze zbiorem liczb
naturalnych, czyli jest zbiorem nieprzeliczalnym. Oznacza to, ze nie istnieje wza-
jemnie jednoznaczna funkcja f : Nar — 2.

Dowod
Dowdd pochodzi od Cantora i jest oparty na tzw. metodzie przekqtniowej. Jezeli

zbidr potegowy bylby réwnoliczny zbiorowi liczb naturalnych, to wszystkie pod-
zbiory zbioru liczb naturalnych daloby si¢ ustawi¢ w ciagi Z,, Z», Zs, Kazdy

75

z tych zbioréw zawiera pewne liczby naturalne. Mozna to przedstawi¢ w postaci
tabeli, ktorej przykladowa posta¢ jest podana ponizej. Zbior Z; w tej tabeli nie za-
wiera liczb 0, 1, 2, 3 itd.; zbidr Z; zawiera 0, 1, nie zawiera 2, 3 itd.

0 | 2 3
Z, nie [nie |nie |nie

Z, tak ftak [nie |nie

Z; nie |tak |nie [|nie
Z, tak |tak |nie [tak
2

Definiuje si¢ teraz nowy zbidr Z', w taki sposdb, aby byt on rézny od kazdego ze
zbioréw Z,, Z,, Postepuje si¢ w sposob nastgpujacy. Poruszajac si¢ wzdluz
przekatnej tabeli od gérnego lewego pola definiuje si¢ przynaleznos¢ kolejnej licz-
by do zbioru Z', zastgpujac kazde ,,nie” przez ,tak” oraz kazde ,tak” przez ,,nie”.
W rozpatrywanym przykladzie otrzymuje si¢ mianowicie:

0 1 2 3
Z, tak [Inie |nie |nie

Z5 tak Inie |nie |nie

3 nie |tak Jtak [|nie

Z4 tak |tak |nie [nie
Zs

Zbiér Z', zdefiniowany przez tak okreslong przekatna, zawiera 0, nie zawiera 1,
zawiera 2 itd. Jest on oczywiscie rozny od kazdego ze zbiordw Z,, Z,, Zatem
7' jest zbiorem, ktéry nie daje si¢ zestawi¢ w ciag wszystkich podzbioréw zbioru
liczb naturalnych.

Podany przyklad jest jednostkowy, ale jest oczywiste, ze analogiczne rozumowa-
nie mozna przeprowadzi¢ dla dowolnego domniemanego uporzadkowania
wszystkich podzbiorow w jeden ciag, to znaczy dla pewnej wzajemnie jedno-
znacznej funkcji f: Nat — 2. Poniewaz rodzina podzbioréw 2™ jest nieskon-
czona i nie jest réwnoliczna ze zbiorem liczb naturalnych, jest wigc zbiorem nie-
przeliczalnym.

Twierdzenie pokazuje, ze istnieja co najmniej dwa rodzaje nieskonczonosci. Pierw-
szy reprezentuje nieskonczonos$¢ liczb naturalnych i nazywa si¢ nieskonczonoscia
przeliczalng. Pozostale rodzaje nieskonczonosci nazywa si¢ nieskonczonosciami
nieprzeliczalnymi. Drugi rozpatrywany tu rodzaj nieskonczonosci reprezentujacy
wszystkie podzbiory liczb naturalnych reprezentuje rodzaj nieprzeliczalnosci zwany
continuum.

76

Konstrukcje przekatniowg Cantora mozna wykorzysta¢ do udowodnienia innego
twierdzenia:

Twierdzenie 4.2
Przeliczalna suma mnogosciowa zbiordw przeliczalnych jest zbiorem przeliczalnym.
Dowadd

Niech Z,, Z,, ... bedzie ciggiem zbioréw przeliczalnych. Niech Z; =4 {zi1, zi2y - }
dlai=1,2,.... Elementy tych zbior6w mozna ustawi¢ w tabelg:

1 2 3 4

Z, 211 —_?12 /%!3_,?14 /

A
Z, 221 %(Z_%/ 2,21%
y 7
Z 231 /2;//@4% 234
Zy 241 é*{ﬂ 243 244
W
Zs

Wszystkie te elementy, nie pomijajac zadnego, mozna ustawi¢ w jeden wspdlny
ciagg w sposob, ktdéry okreslajg strzalki. Cigg ten zawiera wszystkie elementy
wszystkich ciagow Z,, Z,, ... i jest oczywiscie rdwnoliczny ze zbiorem liczb natu-
ralnych, co dowodzi tezy twierdzenia.

Pojecie rownolicznosci zbioréw jest bardzo wazne. Jest ono, migdzy innymi, punktem
wyjscia do wspdlezesnej definicji liczby. Rdwnolicznosé oznacza pewna relacje na rodzi-
nie wszystkich zbioréw. Jest to relacja rownowaznosci, ktéra generuje klasy abstrakcji —
rodziny zbioréw o tej samej licznosci. Klasy te nazywa si¢ liczbami kardynalnymi. Na
przyktad, klasg abstrakcji jest rodzina zbioréw czteroelementowym, a odpowiadajacg jej
liczba kardynalng jest 4. Liczby naturalne mozna zatem interpretowa¢ jako klasy abstrak-
cji okreslone przez relacjg rownolicznosci na dowolnych zbiorach skonczonych. Inny spo-
sob interpretacji liczb naturalnych przedstawiono w nastgpnym punkcie. Liczba kardynal-
ng zbioru wszystkich liczb naturalnych jest Ry (alef zero), a liczba kardynalng rodziny
wszystkich podzbioréw zbioru liczb naturalnych jest < (continuum).

4.5. Zbiory obliczalne i rekurencyjnie przeliczalne

Z wykonywaniem obliczen za pomoca komputeréw wiaze si¢ pojecie algorytmu. Ob-
liczeniami na komputerach rzadza Sciste reguty, niekiedy mowi si¢ nawet o regutach

77

mechanicznych, majac na mysli to, ze obliczenie mozna widzie¢ jako skonczonej diu-
gosci cigg czynnosci, z ktdrych kazda jest jednoznacznie zdefiniowana i — dodatkowo
— realizowalna za pomocg $cisle zdefiniowanych srodkdw. Dla rozwigzania niektorych
problemdw, na przyklad zadania obliczenia najwigkszego wspdlnego podzielnika
dwoch liczb, mozna wyobrazi¢ sobie istnienie pewnego algorytmu. Natomiast trudno
wyobrazi¢ sobie istnienie algorytmu do przepowiadania wyniku rzutu moneta.

Okreslone tak intuicyjnie pojgcie algorytmu jest nieformalne, co utrudnia lub nawet
uniemozliwia jego wykorzystanie w Scistych rozwazaniach. Proby $cistego zdefiniowa-
nia pojecia algorytmu’ podjeto w pierwszej potowie ubieglego stulecia. Ich efektem
bylo powstanie kilku — jak pdzniej si¢ okazalo — rownowaznych definicji algorytmu.

Niektore z tych podejs¢ wigzaly si¢ z ograniczeniem czynnosci wykonywanych
w ramach algorytmu do manipulacji na symbolach. Oznacza to, ze wykonywanie
czynnosci polega na tworzeniu pewnych ciagdw symboli (napisow) na podstawie in-
nych ciagéw symboli (napiséw). Przykladem sa tu algorytmy normalne Markowa®.

Inne podejscia byly oparte na wprowadzeniu pewnych ,,maszyn”, ktore bytyby zdolne
do samodzielnego wykonywania przetwarzania napisow. Przykltadem znanych modeli
algorytmu sa maszyny opracowane przez Turinga’ oraz Posta'’. Oba te modele, opra-
cowane niezaleznie od siebie, s3 podobne i wiaze si¢ nimi hipoteza nazywa hipotezq
Turinga—Posta lub, czgsciej, hipotezq Turinga. Z tego wzgledu dalej zostanie przed-
stawiona tylko maszyna Turinga i zwigzana z nia, sformulowana w 1936 roku, hipote-
za stwierdza [Arbib 68]:

Nieformalne, intuicyjne pojecie algorytmu na ciqgach symboli jest tozsame ze Sci-
stym pojeciem procedury, ktérq moze wykona¢ maszyna Turinga.

Dla hipotezy tego rodzaju nie mozna nigdy poda¢ formalnego dowodu, poniewaz taki
dowod wymaga zdefiniowania pojg¢, ktére zawiera. Mozna ja tylko obali¢ przez
podanie przykladu intuicyjnie rozwiazywalnego problemu, dla ktérego nie daje sig¢
skonstruowa¢ odpowiedniej maszyny Turinga. Jak dotad, ilekro¢ byfo intuicyjnie
oczywiste, ze algorytm istnieje, tylekro¢ okazywato si¢ mozliwe skonstruowanie ma-
szyny Turinga wykonujacej sci$le ten algorytm i nie ma przesfanek, ktore wskazywa-
tyby na mozliwos¢ zmiany tego stanu rzeczy.

Rozwiazanie pewnego problemu przez wyszukanie odpowiedniego algorytmu spro-
wadza si¢ zatem do zbudowania odpowiedniej maszyny Turinga. Maszyna Turinga
jest tylko konstrukcja teoretyczna i nie stuzy do rozwiazywania zagadnien praktycz-
nych. W celach praktycznych wystarczy przyja¢, ze maszyng¢ Turinga mozna utozsa-

7 Termin algorytm pochodzi od nazwiska arabskiego matematyka Abu Ja’far Muhammad ibn Musa Al-
Kwarizmi (okolo 780-850).

8 Andriej A. Markow (ur. 1903), syn innego matematyka Andrieja A. Markowa (1856-1922).

? Alan M. Turing (1921-1954).

' Emil Post (1897-1954).

78

mia¢ z dowolnym komputerem, ktory dysponuje nieograniczenie pojemna pamigcia.
Doktadny jej opis przedstawia si¢ nastgpujaco.

Maszyna Turinga (rys. 4.3) jest okreslona jako urzadzenie, sktadajace si¢ z nieskon-
czenie dtugiej tasmy podzielonej na kratki, zwanej pamig¢ciq maszyny, oraz urzadzenia
sterujacego, zwanego sterowaniem maszyny. W kazdej kratce tasmy moze by¢ zapisa-
ny jeden z symboli ustalonego, skonczonego zbioru symboli A, nazywanego alfabetem
maszyny. Zaklada sig, ze alfabet zawiera symbol ,,pusty”: nic. Urzadzenie sterujace —
krocej sterowanie — moze znajdowaé si¢ w jednym ze standw skonczonego zbioru
S. Wyrodznia si¢ pewien podzbidr stanow F C S nazywanych stanami koncowynii.
W kazdym stanie urzadzenie sterujace moze ,,obserwowac” (przez glowicg czytajaco-
piszaca) jedng kratk¢ tasmy 7. Gdyby kratki tasmy 7 mozna byto ponumerowac licz-
bami naturalnymi, to symbol @,€A znajdujacy si¢ w obserwowanej kratce o numerze
i€ Nat mozna by nazwaé symbolem obserwowanym.

Sterowanie

S
2
)
S
S

Rys. 4.3. Maszyna Turinga

Pare <s, a>, gdzie s€ § jest aktualnym stanem, zas a,€ A jest aktualnie obserwowanym
symbolem, nazywa si¢ konfiguracjq maszyny. Maszyna rozpoczyna pracg W konfigu-
racji poczqtkowej, to jest takiej, w ktorej aktualnym stanem jest wyrdzniony stan po-
czqtkowy, a glowica czytajaco-piszaca znajduje si¢ przy wskazanym polu danej ta$my
T. W danej konfiguracji <s, a> takiej, ze s¢ F, maszyna ,,czyta” obserwowany symbol
a, po czym:

e zmienia swdj stan s na nowy stan s’€ S,

e zmienia obserwowany symbol a na a’€ A, w szczegdlnosci moze to by¢ ten sam
symbol a lub symbol pusty,

e przesuwa swojg glowicg czytajaco-piszaca o jedna kratkg w lewo albo w prawo,
albo pozostawia ja w miejscu.

W ten spos6b maszyna przechodzi do nowej konfiguracji i powtarza swoje dziata-
nie wedtug opisanego schematu, az do momentu, gdy osiagnie konfiguracje konco-
wq, to jest taka, w ktorej stan aktualny jest dowolnym stanem koficowym. Po osia-
gnieciu konfiguracji koncowej maszyna zatrzymuje si¢ i nie wykonuje dalszych
czynnosci.

Formalnie maszyng¢ Turinga MT definiuje si¢ jako siodemke:

MT=<S, A, &, A, p, so, F>

79

gdzie:

S — zbior standw,

A — alfabet,

0:85xA — S - funkcja przejs¢ pomigdzy stanami,
A: S XA — A-funkcja wyjsé,

p:S— {~1,0, 1} — funkcja przesunigcia glowicy,
5o — stan poczatkowy,

F C S - podzbior standow koncowych.

Obliczenie maszyny Turinga MT dla danej taSmy 7 jest rozumiane jako ciag konfigu-
racji:

<S8y, >< 8,4, >...<8,,a, >...

nd =,

gdzie:

Skt za(sk’ai,‘)’
a; =A(s;,a,),

e =1 T p(si,a;).

dla k € Nat. Pierwsza z funkcji okresla nowy stan, druga — nowa zawarto$¢ przeczytanej
komorki, a trzecia — wskazuje na numer kolejnej komorki, do ktorej przesuwa si¢ glowica.

Ciag ten zawsze rozpoczyna si¢ w konfiguracji poczatkowej i moze by¢ skonczony
lub nieskonczony. Jezeli jest on ciggiem skonczonym, to ostatnia konfiguracja jest
konfiguracja koncowa. Obliczenie maszyny rozpoczyna sig i koficzy pewnym ciagiem
symboli zapisanych na tasmie. Symbole na tasmie przed rozpoczg¢ciem obliczen inter-
pretuje si¢ jako dane algorytmu, a symbole po wykonaniu obliczefi maszyny interpre-
tuje si¢ jako wynik obliczen algorytmu (rys. 4.4).

Przyklad 4.5

[

l
Alfabet maszyny Turinga A = {0, 1, nic}. Zadaniem maszyny Turinga jest stwier-

dzenie, czy liczba symboli 1 zapisana na tasmie, poczynajac od wskazanego niepu-
stego pola, az do pierwszego pola po prawej stronie, ktore zawiera symbol nic, jest
parzysta czy nieparzysta. Wynik obliczen maszyny ma by¢ zapisany na tasmie,
w polu sasiadujgcym po prawej stronie z pierwszym polem zawierajacym znale-
ziony symbol nic (pole puste).

Maszyn¢ Turinga mozna w zwarty sposdb przedstawi¢ za pomoca diagramu
przejs¢ pomigdzy stanami (rys. 4.5). Diagram ten jest grafem, ktérego wierzchol-
kami saq stany maszyny. Luki reprezentujace przejscia pomigdzy stanami sa ety-
kietowane napisami postaci a/b, ¢. Pierwszy element a jest symbolem alfabetu ma-
szyny, symbol * oznacza, ze moze to by¢ dowolny element. Drugi element b jest
symbolem, ktéry maszyna wypisuje na taSmie, symbol _ oznacza, ze napis w danej

80

kratce nie ulega zmianie. Trzeci element ¢ moze przyja¢ wartosci —1, 0, +1, co
oznacza przesunigcie glowicy maszyny odpowiednio w lewo, brak przesunigcia lub
przesunigcie w prawo. Ukosnik rozdziela symbol wejsciowy od symboli, ktére re-
prezentuja reakcj¢ maszyny w danej konfiguracji. Lacznie etykieta a/b, ¢ na przej-
sciu ze stanu i do stanu j oznacza, ze: jezeli w stanie i maszyna przeczyta
w obserwowanej kratce symbol a, to zapisuje w tej kratce symbol b i przesuwa si¢
do nastgpnej kratki o ¢, po czym przechodzi do stanu j.

Lol]ifoli]{ofl1]o]o 0
7 A4 R
! / i A
Py vy i i rmmimimmemeees
i Pole i - ! Pole i - ; frmeee i Wynik i
i poczatkowe i koficowe | i T
.................. j _ Xofcowe .
R —— ! ,‘
i Ogranicznik t =~
! poszukiwan |

Rys. 4.4. Przykladowa zawartos¢é tasmy

nic/ _,+1 \/2\ */0,0 >®
NS

1/, +1

0/ _,+l1

0/_,+1

" nic/ _, +1 \/3\ */1,0 >®
N

Rys. 4.5. Diagram przej$¢ pomig¢dzy stanami

Przedstawiony na rysunku 4.5 diagram wymaga uzupetnienia o wskazanie stanu
| poczatkowego — stan 0 — oraz stanow koncowych — stany 4, 5. |

Maszyna Posta, a takze inne maszyny, na przyktad Rabina i Scotta, maszyny wielota-
smowe, sa rownowazne maszynie Turinga w tym sensie, ze jezeli dany problem daje
si¢ rozwiaza¢ przez zbudowanie jakiejkolwiek z tych maszyn, to daje si¢ rowniez
rozwiaza¢ za pomoca pozostatych maszyn.

Przyjmujac maszyng¢ Turinga za pojgcie algorytmu, mozna sformutowac nastepujace
wazne pojecia. Niech dany bedzie pewien zbior przeliczalny A.

81

Zbidr A jest rekurencyjny, jezeli istnieje algorytm rozstrzygania, czy co$ jest, czy nie
jest jego elementem.

Zbior A jest rekurencyjnie przeliczalny, jezeli istnieje algorytm, ktéry wylicza jego
wszystkie jego elementy jeden po drugim.

Z definicji bezposrednio wynika, ze jezeli zbidr liczb naturalnych jest rekurencyjny, to

jest rekurencyjnie przeliczalny, ale nie odwrotnie, gdyz okazuje si¢, ze zachodzi
twierdzenie.

Twierdzenie 4.3
Istnieje rekurencyjnie przeliczalny zbidr liczb naturalnych, ktéry nie jest rekuren-
cyjny.

Dowod
Dowod mozna znalezé na przyktad w [Arbib 68].

Pojecie rekurencyjnosci odnosi sig¢ takze do funkcji:

Funkcja jest rekurencyjna, jezeli istnieje algorytm obliczania jej wartosci.

Zbiory, ktérymi operuje si¢ w programowaniu sg zbiorami co najwyzej przeliczalny-
mi. Efektywne operowanie tymi zbiorami oznacza, ze powinny to by¢ przynajmniej
zbiory rekurencyjnie przeliczalne, a wykonywane na nich operacje powinny by¢ funk-
cjami rekurencyjnymi.

4.6. Funkcje obliczalne

Pojecie funkcji obliczalnych wiaze si¢ z funkcjami okreslonymi na zbiorze liczb natu-
ralnych i o wartosciach w zbiorze liczb naturalnych. Intuicyjnie, funkcje obliczalne to
takie funkcje, ktorych wartosci dla dowolnych argumentéw mozna obliczy¢ na kom-
puterze w skonczonej liczbie krokéw. Formalnie, funkcja jest obliczalna, gdy istnieje
algorytm jej obliczenia, inaczej — istnieje dla niej odpowiednia maszyna Turinga.

Definicja klasy funkcji obliczalnych opiera si¢ na zbiorze pewnych funkcji elementar-
nych i zbiorze operacji, ktére pozwalaja na konstruowanie z funkcji elementarnych
nowych funkcji.

Zbior funkcji elementarnych zawiera:

e funkcj¢ nastgpnika zdefiniowana wzorem Succ(x) = x + 1,
e funkcje tozsamosciowa I(x) = x,

82

o funkcje rzutowania pi(xi, ..., x,) = x, dlai=1, ..., n,
¢ funkcj¢ zeroargumentowa — stalg 0.

Zbior operacji na funkcjach sktada si¢ z trzech operacji. Pierwsza jest — oméwiona
wczesniej — operacja sktadania funkcji, dwie pozostate operacje — nazywane operacja
rekursjt prostej i operacja minimum efektywnego — wymagaja zdefiniowania.

Operacja rekursji prostej polega na tym, ze majac dwie funkcje:

f: Nat"" — Nat oraz g : Na™' — Nat dla ne Nai\{0)

nowa funkcje:

h: Nat" — Nat

definiuje si¢ za pomoca dwoch nastgpujacych rownosci:

h(x1, ...y Xoo1, 0) = X1, ooy Xao1)
(X1, ooy X1, SUCC(X,)) = (X1, wvey Xy R(X1, -eey X))

Termin rekursja prosta, wprowadzony przez Hilberta'' i Bernaysa'> w 1934 roku, nie
jest szcze$liwy, gdyz schemat generacji wartosci funkcji bardziej wiaze sig z iteracjq
z jaka mamy do czynienia w jezykach programowania, niz z rekursja. Rekursja prosta
wyraza pewien indukcyjny sposéb definiowania wartosci.

Funkcje, ktore daje si¢ zdefiniowaé za pomoca operacji rekursji prostej nazywa si¢
funkcjami pierwotnie rekurencyjnymi.

Przyklad 4.6

[

|
Funkcje dodawania liczb naturalnych, reprezentowana symbolem + w notacji

przedrostkowej, definiuje si¢ za pomoca operacji rekursji prostej w sposob naste-
pujacy:

+(x, 0) = I(x)

+(Succ(y), x) = Succ(ps(x, y, +(x, ¥)))
W tym przypadku role definiowanej funkcji & pelni +, funkcja f jest funkcja tozsa-
mosciowq I, a funkcja g jest ztozeniem funkcji nastgpnika Succ z funkcja rzutowa-
nia p;. Te¢ samg definicjg, w sposob rownowazny, mozna zapisa¢ prosciej:

+(x, 0)=x

+(Succ(y), x) = Succ(+(x, y))

Uzywajac notacji wrostkowej dla funkcji dwuargumentowych definicja przyjmie
jeszcze bardziej czytelng postac:

' David Hilbert (1862-1943).
12 Paul I. Bernays (1888-1977).

83
x+0=x
Succ(y) + x = Succ(x +y)
Korzystajac z funkcji dodawania, podobnie mozna zdefiniowa¢ funkcjg mnozenia:

x*0=0
| Succ(y) *x=(x*y)+x g

Przyklad 4.7
[

Odejmowanie w zbiorze liczb naturalnych jest funkcja zdefiniowana czgsciowo. De?
finiowana ponizej funkcja dif, okreslona dla wszystkich liczb naturalnych jest tylko
pewnym odpowiednikiem odejmowania w zbiorze liczb catkowitych. Jej definicja
wymaga wprowadzenia funkcji pomocniczej Pred, nazywanej funkcja poprzednika.
Rekursywna definicja jednoargumentowej funkcji poprzednika ma postac:

Pred(0) =0

Pred(Succ(x)) =x

Odejmowanie w dziedzinie liczb catkowitych nieujemnych, oznaczone dif
w celu odrdéznienia od symbolu odejmowania ,,—” w zbiorze liczb catkowitych, jest
zdefiniowane metoda rekursji prostej:
difix,0)=0
1 dif(x, Succ(y)) = Pred(dif(x, y)) §

Metoda rekursji prostej mozna definiowa¢ rézne funkcje, migdzy innymi funkcje
okreslone wariantowo.

Przyklad 4.8

Niech dana bedzie funkcja:

2 dl <3
h(x)= X a x
2x—=2 dla x>3

Jej definicja wymaga uprzedniego zdefiniowania funkcji pomocniczych: jednoargu-
mentowej funkcji znaku sg definiowanej rekursja prosta (przypadek zdegenerowany):

58(0)=0
sg(Succ(x)) =1

oraz funkcji porownan definiowanych przez wyrazenia funkcyjne:

gt(x, y) = sg(difix, y))
ge(x, y) = gt(Succ(x), y)

Stad definicja funkcji h przybierze posta¢ wyrazenia fukcyjnego:
| (@%) * ge(3, x)) + (difl(2*x), 2) * gt(x, 3))

84

Niestety, za pomoca operacji rekursji prostej nie mozna definiowa¢ dowolnych funk-
cji. Przyktadem funkcji, ktora nie daje si¢ zdefiniowaé w ten sposéb jest przedstawia-
na juz poprzednio, w rozdziale 3, funkcja Ackermanna':

y+1 gdyx=0
Ack(x, yR Ack(x-11) gdy y=0
Ack(x -1, Ack(x, y 1))
W 1936 roku Kleene'* uzupetnit liste schematéw kompozycji funkcji o operacje mi-
nimum efektywnego, albo inaczej, operacje u-rekursji.

Niech dana bgdzie funkcja:
f: Nat™' = Nat

taka, ze dla kazdych x, ..., x,€ Nat istnieje ye Nat takie, ze f{xy, ..., X, ¥) = 0.

n+1

Operacja minimum efektywnego dla funkcji f: Nat
nowej funkcji:

— Nat polega na zdefiniowaniu

h: Nat" — Nat,
ktora spetnia warunek:
SX1y eey Xy B(X1, ooy X2)) =0
oraz dodatkowo — aby zapewni¢ jednoznacznosé¢ definicji funkcji A — warunek:
h(x, ..., x,) jest rbwne najmniejszej wartosci ye Nat takiej, ze fixy, ..., X, ¥) = 0.
Ostatni warunek zapisuje si¢ tez w postaci:

h(xy, ..., xp) = wy[flxi, ..., Xn, ¥) = 0]

Symbol uy oznacza najmniejsza wartos¢ y, dla ktdrej, dla danych wartosciach x, ...,
X, jest spetniony warunek f(xy, ..., x,, y) = 0. '

Operacja minimum efektywnego wyznacza wigc funkcje, ktoéra przyjmuje wartos$é
h(x, ..., x,) =y wtedy i tylko wtedy, gdy:

b ﬂxls ceey Xy)’) = O
e dla dowolnego y'<y fixi, ..., X, ¥') # 0.

Jezeli dla danego zestawu wartosci xy, ..., x, funkcja f nie spetnia podanych warunkoéw,
to funkcja h dla tych wartosci nie jest zdefiniowana.

13 Wilhelm Ackermann (1896-1962).
1 Stephan Kleene (1909-1994).

85

Przyklad 4.9

i
Operacja minimum efektywnego zostanie wykorzystana do definicji funkcji:

hi(x, y) = (u2)[isg(eq(y *z, x)) =0]

Funkcja h, definiuje najmniejsza warto$¢ z taka, ze y * z = x. W przypadku, gdy
x nie jest wielokrotnoscia y, funkcja ta nie jest okreslona.

ho(x, y) = (u2)[y * gi(x, y * Succ(z)) = 0]
Funkcja h, wyznacza czgs$¢ catkowita z dzielenia x przez y.
hi(x, y) = (U2)[diflx, z) = 0]

| Funkcja h3rowna sig¢ x dla dowolnych x, y; jest wigc rOwnowazna funkcji projekcji p;. |

Funkcje, ktore mozna zdefiniowa¢ za pomocg operacji skladania, rekursji pierwotnej
i minimum efektywnego nazywa si¢ funkcjami ogdlnie rekurencyjnymi.

4.7. Aksjomatyczne ujecie teorii mnogosci

W poczatkowym okresie swego rozwoju teoria mnogosci byla budowana w oparciu
o intuicyjne pojecie zbioru. Droga ta okazata si¢ zawodna, gdyz intuicja nie dawata
jednoznacznych odpowiedzi na pewne subtelne pytania. W konsekwencji pojawily sie
sprzecznosci, jak na przyklad omdéwiona wczesniej antynomia Russella. W celu ich
eliminacji zbudowano rézne aksjomatyczne teorie zbioréw. Ponizej przedstawiamy
zestawy aksjomatéw opracowane przez Zermelo'>. Zestaw ten jest wystarczajacy do
praktyki matematycznej, zwlaszcza do definiowania liczb naturalnych, catkowitych,
wymiernych i rzeczywistych ze zwyklymi dzialaniami arytmetycznymi. Bardziej roz-
powszechniona jest nieco silniejsza teoria, zwana teoria Zermelo—Fraenkla'®. Aksjo-
maty Zermelo sa tu przedstawiane za pomocg jezyka naturalnego.

1. Aksjomat ekstensjonalnosci
Dwa zbiory sa rowne wtedy i tylko wtedy, gdy maja te same elementy.
2. Aksjomat wyrozniania
Dla dowolnego zbioru Z i dowolnego jednoargumentowego predykatu (funkcji

zdaniowej) P istnieje zbiér T zawierajacy dokfadnie te elementy zbioru Z, ktére
spetniaja warunek P(x).

15 Ernst Zermelo (1871-1953).
16 Abraham Fraenkel (1891-1965).

86

»

Jezeli zaden element Z nie spelnia predykatu P, na przyklad gdy P(x) jest wa-
runkiem postaci x¢Z, to T jest zbiorem pustym &. Aksjomat wyrézniania za-
pewnia wigc istnienie zbioru pustego .

3. Aksjomat par nieuporzqdkowanych

Jezeli Z,, Z, sa zbiorami, to para nieuporzadkowana {Z,, Z,} jest zbiorem.

4. Aksjomat sumy zbiorow

Niech Z bedzie niepustg rodzing zbiorow, tj. zbiorem, ktorego elementy sa zbio-
rami. Dla kazdej takiej rodziny istnieje zbior S, ktérego elementami sa doktadnie
te obiekty, ktore sa elementami zbioréw nalezacych do Z.

5. Aksjomat nieskonczonosci

Istnieje zbidr Z, ktory zawiera zbior pusty i jest taki, ze jezeli x nalezy do Z, to
suma x oraz {x} takze jest w Z.

Rozréznienie migdzy elementem x a zbiorem jednoelementowym {x} ma zasad-
nicze znaczenie. Aksjomat gwarantuje istnienie zbioréw nieskonczonych.

6. Aksjomat zastgpowania

Niech dla kazdego x istnieje doktadnie jedno y takie, ze spetniony jest dwuar-
gumentowy predykat (funkcja zdaniowa) P(x,y). Wtedy dla kazdego zbioru
Z istnieje zbiér Z', do ktorego naleza wszystkie i tylko te elementy y, ktére przy
pewnym x ze zbioru Z spetniaja predykat P.

7. Aksjomat zbioru potegowego

Dla kazdego zbioru Z istnieje rodzina zbiorow, ktorej elementami sa wszystkie
podzbiory zbioru Z. Rodzing t¢ nazywa sig zbiorem potggowym i oznacza 2.

8. Aksjomat wyboru

Dla dowolnej rodziny niepustych i roztacznych zbioréw istnieje zbiér, ktéry
z kazdym ze zbioréw tej rodziny ma jeden i tylko jeden wspdlny element.

Aksjomat wyboru jest z jednej strony intuicyjnie oczywisty, ale z drugiej strony
budzi rozne kontrowersje. Ich zasadniczym powodem jest to, ze w przypadku nie-
przeliczalnej rodziny zbioréw nie wiadomo, w jaki sposob tworzy¢ nowy zbidr,
ktéry miatby dokladnie jeden element wspdlny z kazdym zbiorem tej rodziny.
Z cala pewnoscia proces tworzenia takiego zbioru nie mogiby by¢ postgpowaniem
efektywnym, to znaczy opartym na realizacji pewnego algorytmu.

9. Aksjomat regularnosci (ufundowania)

W kazdym niepustym zbiorze Z istnieje taki element X, ze zaden element zbioru
X nie jest elementem zbioru Z.

87

Konsekwencja aksjomatu jest to, ze nie istniejg zbiory X, Y, Z o takich wiasno-
$ciach jak na przyklad, ze Xe X, ze zachodzi Xe Y oraz Ye X, ze zachodzi XeY,
YeZ, Ze X itd. Aksjomat ten ogranicza dziedzing ztozona ze zbioréw przez wy-
eliminowanie z niej obiektow o wlasnosciach w rodzaju wyzej wymienionych.

4.8. Definicje zbioréw liczbowych

Na gruncie aksjomatycznego ujgcia teorii mnogo$ci mozna formalnie zdefiniowad
liczby naturalne. Poniewaz jedynymi obiektami, ktorych istnienie gwarantuje teoria
mnogosci sa zbiory, wigc liczby naturalne takze definiuje si¢ jako szczegdlne rodzaje
zbioréw.

Dla dowolnego zbioru Z jego nastgpnikiem nazwa si¢ zbior:
Succ(Z) =41 Z U {Z}
Zachodzi wiec Z C Succ(Z) oraz Ze Succ(Z).

Punktem wyjscia w konstrukcji zbioru liczb naturalnych jest przyjecie istnienia zbioru
pustego. Zbidr liczb naturalnych definiuje si¢ jako najmniejszy zbidr Nat definiowany
rekursywnie w sposdb nastepujacy:

1. D€ Nat
2. jezeli Ze Nat, to Succ(Z)e Nat

Elementy zbioru Nat nazywa si¢ liczbami naturalnymi i s nimi:
3, {2}, {9, (D}}, (D, {9, (D} }} itd.
Wprowadza si¢ powszechnie znane oznaczenia:

0 =gt G,
1 =4 (D} = {0}
2=4r {9, {D}} =10, 1}

ktoére sa znacznie wygodniejsze w uzyciu.

Przy wprowadzonych oznaczeniach operacj¢ tworzenia nowego zbioru Succ mozna
traktowa¢ jako funkcje¢ dodawania jedynki do danej liczby naturalnej. Jest to funkcja
catkowicie okreslona, o sygnaturze Succ : Nat — Nat. Nazywa si¢ ja operacjq nastep-
nika i mozna pisac:

88

Succ(0)=1
Succ(Succ(0)) = Succ(1) =2
Succ(Succ(Succ(0))) = Succ(Succ(l)) = Succ(2) =3

Operacja nastepnika pozwala na zdefiniowanie innych operacji (dziatan). Na przyktad
dodawanie oraz mnozenie sa funkcjami o sygnaturze:

+: Nat X Nat = Nat
*: Nat X Nat — Nat

Dodawanie mozna zdefiniowa¢ rekursywnie:

m + 0 = mdla dowolnego me Nat
m + Succ(n) = Succ(m + n) dla dowolnych m, ne Nat

Dysponujac dodawaniem rowniez rekursywnie mozna okresli¢ mnozenie:

m * 0 =0 dla dowolnego me Nat
Succ(m) * n=m* n + n dla dowolnych m, ne Nat

Majac liczby naturalne mozna zdefiniowad inne rodzaje liczb: liczby catkowite, wy-
mierne, rzeczywiste i zespolone.

Definicje liczb catkowitych poprzedza si¢ pewnym wyjasnieniem intuicyjnym. Kazdej
liczbie catkowitej przypisuje si¢ parg liczb naturalnych <m, n> takich, ze réznica m —
n jest rowna tej liczbie catkowitej. Na przyktad, liczbie catkowitej —2 moze by¢ przy-
porzadkowana para <4, 6>, liczbie 0 — para <10, 10>, a liczbie 3 — para <4, 1>. Dwie
pary <my, n|> oraz <my, ny>, ktére spetniaja warunek:

m —n;=np—ny

reprezentuja t¢ sama liczbe catkowita. Poniewaz réznica dwdch liczb naturalnych nie
zawsze jest liczba naturalna, wigc zamiast takiego warunku mozna sformutowac inny
warunek rownowazny, w ktérym nie odwotuje si¢ do réznicy. Jest to warunek postaci:

mp+ Ny =nms +n

Przyjmuje sig¢ teraz nastgpujaca definicjg relacji binarnej R C Nar® x Nat® okreslonej
na parach liczb naturalnych w sposob nastgpujacy:

R =gt {<<n’l|, ny>, <mi, NR>> | m+ny=nn+ fl[}

Latwo sprawdzi¢, ze R jest relacja réwnowaznosci na Nar®. Zbidr liczb catkowitych
jest okreslony jako zbiér ilorazowy Nar’/R, czyli

Catkowite = Nat*/R

Konstrukcja liczb wymiernych opiera si¢ na zatozeniu, ze kazdej liczbie wymiernej
mozna przyporzadkowaé parg <I, m>, gdzie le Catkowite oraz me Na\{0}. Dalsza
czg$¢ konstrukeji jest podobna do konstrukeji zbioru liczb catkowitych. Mianowicie,
definiuje si¢ relacje Q < (Calkowite x Nat)* w sposob nastgpujacy:

89

Q =def {<<ll, my>, <11, my>> | ll *my = 12 * m.}

@ jest relacja rdwnowaznosci na CatkowitexNat. Zbior liczb wymiernych jest okreslo-
ny jako zbidr ilorazowy (CalkowitexNat)/Q, czyli:

Wymierne = (CalkowitexNat)/Q

Definicja zbioru liczb rzeczywistych jest bardziej zlozona i dlatego jest tu pominigta.

Cwiczenia

. Niech X, Y, Z beda wielozbiorami. Pokaza¢, ze jezeli X C YorazYC Z,to X C Z.

. Niech X, Y, Z beda zbiorami rozmytymi. Pokazaé, ze jezeli X € Y oraz Y C Z, to
XcZ

3. Pokazaé réwnolicznosé zbioru liczb naturalnych i zbioru liczb pierwszych.

. Pokazac réwnolicznos¢ zbiorow:

a) odcinek otwarty (0, 1) C Rzeczywiste,
b) odcinek pototwarty [0, 1) C Rzeczywiste,
c) okreg na plaszczyznie o srodku (0, 0) i promieniu 1.

. Ile jest rosnacych ciagow liczb wymiernych zbieznych do 1?

. Ile jest relacji rbwnowaznosci na zbiorze liczb naturalnych takich, ze wszystkie ich
klasy abstrakcji sa skoniczone?

. Udowodnié¢, ze kazdy zbior roztacznych odcinkéw na prostej jest przeliczalny. Po-
kazac, ze istnieje nieprzeliczalny zbidr roztacznych odcinkéw na plaszezyznie.

. Udowodni¢, ze jezeli A nie jest zbiorem przeliczalnym i B jest zbiorem przeliczal-
nym, to A/B nie jest zbiorem przeliczalnym.

. Maszyn¢ Turinga przedstawiong w przykladzie 5 rozbudowac w taki sposob, aby
stwierdzata parzysta badZ nieparzysta liczb¢ symboli 1 pomigdzy pierwsza kratka
po lewej i pierwsza kratka po prawej stronie poczatkowego potozenia glowicy, kt6-
re zawieraja symbol nic.

10. Zdefiniowa¢ maszyng¢ Turinga, ktéra jako dang wejsciowg przyjmuje liczbg natu-
ralng w zapisie binarnym i produkuje jako wynik t¢ samg liczbe zwigkszona o je-
den, réwniez w zapisie binarnym.

90

11. Zdefiniowa¢ maszyne Turinga, ktora jako dane wejsciowe przyjmuje n-elementowy

12.

13.

14.

ciag znakdéw, ne Nat\{0}, oraz liczb¢ ke {1, ..., n} i produkuje jako wynik k-ty
element wejsciowego ciagu.

Korzystajac z operacji rekursji prostej zdefiniowa¢ funkcje:

a) potggowania,
b) minimum i maksimum dwéch liczb,
c) dzielenia catkowitego i reszty z dzielenia catkowitego.

Zdefiniowac¢ jako funkcje¢ ogdlnie rekurencyjna funkcje:

a) najmniejszej wspdlnej wielokrotnosci dwdch liczb naturalnych,
b) najwigkszego wspolnego podzielnika dwoch liczb.

Zakladajac, ze znane sg operacje dodawania i mnozenia na liczbach naturalnych,
definiowa¢ rekursywnie operacje dodawania i mnozenia na liczbach catkowitych.

5. Jezyki formalne i gramatyki

5.1. Ciagi i stowa

Zbiory sa nieuporzadkowang kolekcja pewnych elementow. Czgsto potrzebne jest
wprowadzenie uporzadkowania wsrod rozwazanej kolekcji obiektow. Jednym ze spo-
sob6w uporzadkowania jest zdefiniowanie ciagu.

Niech A bedzie dowolnym zbiorem. Niepustym ciqgiem o dtugosci ne Nat\{O} nad
zbiorem A bedzie nazywacé si¢ dowolng catkowicie okreslona funkcjg o sygnaturze:

s:{l,..,n} oA
Ciag o dtugosci zero jest ciagiem pustym i bgdzie oznaczany symbolem &.

Przez Fin-seq,(A) bedzie oznaczany zbior wszystkich ciagéw skonczonych dlugosci
ne Nat nad zbiorem A. Z definicji:

Fin-seqo(A) =qes { €}
Fin-seq,(A) =aet {s | s : {1, .., n} > A ndom(s) = {1, .., n}} dlaneNa\{0}

Stad, zbiorem wszystkich ciagow skonczonych bedzie:

Fin-seq(A) =g U Fin-seq,(A)

ne Nat
Zbior wszystkich ciaggow nieskonczonych nad A jest zdefiniowany jako:
Inf-seq(A) =ger {5 | s : Na\{0} = A A dom(s) = Nai\{0} }
Zbiorem wszystkich ciagéw nad A jest zatem zbidr:

Seq(A) =4 Fin-seq(A) U Inf-seq(A)

Niech s bedzie niepustym ciagiem nad A. Wartos$¢ funkcji s dla argumentu i, czyli s(i),
oznacza i-ty element ciggu. Skonczony ciag s o dlugosci ne Nar\{O} nad zbiorem
A jest zbiorem par:

92

{<1, s(1)>, ..., <n, s(n)>}
a nieskonczony ciag jest zbiorem par:
{<1, s(1)>, ..., <n, s(n)>, ... }
Zwykle uzywa sig uproszczonego zapisu ciaggu odpowiednio w postaci:
(1) s2) ... s(n) lub s(1) s(2) ... s(n) ...
albo
a\a;... a lub aiaz...a,..
gdzie a;=s(i)dlai=1, ..., n, ... dla ie Nar\{0}.

Ciagi zapisywane w uproszczonej postaci beda oznaczane literami greckimi o, 3, yitd.
Bedzie si¢ pisa¢ na przyklad o =g a az ... an.

Rownosé ciagdw oznacza rownos¢ reprezentujacych je funkcji. Zapis @ = 8 oznacza,
ze ciag «a jest identyczny z ciggiem f3.

Przyklad 5.1
l
Ciagaminad A = {0, 1, 2, 4, 5} beda napisy:
0
001
12345

Ciagami nad Nat bgda napisy:

11
11
111054

Nalezy zwroci¢ uwagg na to, ze pierwszy i drugi ciag sa ciagami réznymi. Pierw-

szy sklada si¢ z jednego, a drugi — z dwoch elementu. Aby unika¢ watpliwosci przy

identyfikacji elementéw ciagu, mozna stosowac elementy rozdzielajace — separato-
| Ty,na przykiad, odstepy — jak wyzej, czy przecinki, apostrofy itp.

Uproszczony zapis ciaggéw pozwala na stwierdzenie, ze zbidr ciagdw diugosci ne
Na\{0} nad zbiorem A mozna utozsamia¢ ze zbiorem wszystkich n-krotek nad zbio-
rem A, czyli z n-krotnym produktem kartezjanskim A" nad zbiorem A, Oznacza to, ze
istnieje wzajemnie jednoznaczne odwzorowanie pomigdzy zbiorem ciagdw o dtugosci
n a produktem kartezjanskim A". Zatem

zbiorowi Fin-seqo(A) odpowiada zbidr A’ =aef {<>)
zbiorowi Fin-seq,(A) odpowiada zbiér A" dla ne Nar\{0}
zbiorowi Fin-seq(A) odpowiada zbidr UA”

ne Nat

93

Ciagi zapisywane w uproszczonej postaci nazywa si¢ slowami, a zbiér A nazywa si¢
alfabetem. W dalszej cze$ci rozdzialu beda uzywane wihasnie te terminy.

Stad, zbidr A’jest zbiorem wszystkich skoficzonych stéw nad alfabetem A. Zbiér wszystkich
niepustych skoiczonych stéw nad alfabetem A bedzie oznaczany przez A*. Zatem

A" =4r A"\ €)

5.2. Operacje na stlowach

Niech dany bedzie dowolny, co najwyzej przeliczalny, alfabet A oraz niech A’ bedzie
zbiorem wszystkich skonczonych stéw nad A. Na stowach mozna definiowaé rézne
operacje. Podstawowa jest operacja konkatenacji stow.

Niech @, B €A’ bedq dowolnymi stowami nad alfabetem A.
Konkatenacja stow a, B, co zapisuje si¢ a*f, jest stowem, ktore powstaje przez dopi-
sanie na koniec stowa «a stowa f. Jezeli

a=a..a, oraz B=by ... by
to

a® B =ay...a; by ... by = @y ... @ B by
Niech a, B, yeA". Konkatenacja stéw ma nastepujace oczywiste wiasnosci:
ENg=¢€
eha=are=a
(@B ry=ar(B" Y
Stowo Be A" jest podslowem slowa ae A*, gdy istnieja stowa y, § €A takie, ze:
a=y4LBArS
Jezeli y A & # €, to B jest podstowem wiasciwym stowa , jezeli y = €, to 3 jest podslo-
wem poczqtkowym stowa ¢, a jezeli § = €, to B jest podsiowem korcowym stowa cx.
Innymi uzywanymi operacjami nad stowami sg operacje czota head i ogona tail. Niech
oa=a..a,
wtedy
head(@) = a, oraz tail(Q)=a;...a,
oznaczaja odpowiednio pierwszy element slowa « oraz nowe stowo, ktére powstaje

z o przez usunigcie jego pierwszego elementu. Oczywiscie, dla dowolnego niepustego
stowa zachodzi wlasnos¢:

94

a = head(a) " tail(c)
Przyklad 5.2

Niech A = {aq, b, ¢}, wowczas stowami nad A sg, na przyktad:
a aab cabca
Konkatenacja dwoch ostatnich stow jest stowo:
aab”cabca = aabcabca
Operacje czota i ogona dla dwdch pierwszych stéw wyznaczaja stowa:

head(a) = a tail(a) =€
head(aab) = a tail(aab) = ab
I |

Dla uproszczenia notacji, gdy nie bedzie to wprowadza¢ niejednoznacznosci, zamiast
a” By bedzie sig pisa¢ a 7.

Dalej definiuje si¢ jeszcze dwie operacje na stowach. Najpierw wprowadza si¢ pojecie
produkcji. Para stéw 8, y € A" zapisywana w postaci:

Bu=y
bedzie nazywana produkcjq lub regulq przepisywania.
Wyrazenie postaci 3 ::= ¥ mozna traktowaé tak samo jak uporzadkowang parg <f3,
y>. Symbol ::=, czytany jest zastepowany przez, petni rolg separatora oddzielajacego

dwa elementy. Stowo B po lewej stronie produkcji jest nazywane poprzednikiem,
a stowo y po prawej stronie produkcji jest nazywane nastepnikiem produkcji.

Niech ae A" oraz niech 3 ::= y bedzie pewna produkcja.

Stowo & jest wyprowadzeniem ze stowa « na podstawie produkcji 8 ::= ¥, co zapisuje
si¢ W postaci:

oL 55

gdy spetnione sg warunki:
a= 0oy ﬂ (05}
S=o 7o

Przyklad 5.3

Niech A = {a, b, c¢}. Ze stowa aabcaa stosujac produkcj¢ aa::= cba mozna wypro-
wadzi¢ sfowa:

cbabcaa oraz aabccba

95

czyli

ss=ch ::=chi
| aabcaa—*4=2 cbabcaa oraz aabcaa—*=% 3 aabccba

.

Jak pokazuje przykiad, operacja wyprowadzenia nowego stowa & ze stowa a na
podstawie produkcji B ::= ¥ nie musi by¢ jednoznaczna. Liczba mozliwych wypro-
wadzen zalezy od liczby wystapiefi podstowa 3 w stowie a. W szczegélnym przy-
padku, gdy poprzednik reguly nie jest podstowem w ¢, nie mozna wyprowadzi¢ no-
wego stowa.

Niech a ::= P bedzie produkcja, w ktérej poprzednik jest tylko pojedynczym sym-
bolem a€ A (stowem dlugosci jeden), a nastgpnik — jak poprzednio — jest dowolnym
stowem BeA” nad alfabetem A. Produkcja takiej postaci bedzie nazywana podsta-
wieniem.

Niech ae A” oraz niech a ::ﬁﬁ bedzie pewnym podstawieniem.

Stowo y powstaje ze sfowa o przez podstawienie a ::=f, co zapisuje si¢ W postaci:
ala::=pf]

gdy kazde wystapienie symbolu a w stowie « jest zastapione stowem f.

Przyklad 5.4

Niech A = {a, b, ¢}. W wyniku operacji okreslonej przez podstawienie a ::= cba
stowo abcab zostanie przeksztalcone w stowo:

cbabccbab
czyli

abcabla ::= cba] = cbabccbab
Podobnie

abbaccla ::= cbc] = cbcbbebece
abbacc[b ::= cbc] = acbccbeacc
abbacc(c ::= cbc] = abbacbccbe

5.3. Jezyki formalne

Jezykiem formalnym L nad alfabetem A nazywa sie dowolny podzbi6r zbioru A*, czyli
LC A"

96

Jezyk formalny jest tylko pewnym przyblizeniem je¢zyka naturalnego lub sztucznego,
gdyz wyraza on tylko skfadniowy aspekt jezyka. W mysl wprowadzonej definicji alfa-
betem dla jezyka naturalnego jest zbiér stéw w danym jezyku, a odpowiadajacy mu
jezyk formalny moze by¢ zbiorem wszystkich zdan w tym jezyku. W przypadku jezy-
ka programowania alfabetem jest zbior symboli leksykalnych, a odpowiadajacy mu
jezyk formalny definiuje zbior wszystkich poprawnie tekstowo zbudowanych progra-
mow. Jezyk formalny nie okresla znaczenia i tym samym nie gwarantuje sensownosci
zdania czy programu, wyraza wylacznie poprawnos¢ tekstowa (sktadniowa) zdania
czy programu.

Przyklad 5.5

Niech A = {a, b, ¢}, wowczas jezykami formalnymi nad A sa, na przyktad, skon-
czone zbiory stow:

{a}, {aab, c}, {a, b, c, ab, cha}

Jezeli wprowadzi sie oznaczenie pomocnicze postaci ', dla ke Nar\{0}, ktére jest
skrotem zapisu stowa aa... a ztozonego z k elementéw a, to mozna zdefiniowaé
réwniez pewne nieskonczone jezyki formalne nad A. Na przyktad:

{seA"|s=d""b'r " Ak<l<m)
[{a, b, ¢, ab, cha} U {s€A” | s =d" b} |

Poniewaz jezyki formalne sg zbiorami, wigc mozna na nich wykonywa¢ dowolne
operacje mnogosciowe. Ponadto mozna na nich zdefiniowa¢ operacj¢ konkatenacji,
ktora jest uogdlnieniem konkatenacji zdefiniowanej na stowach. Konkatenacja jezy-
kéw Lic A", L,C B, oznaczana L, A L,, jest zdefiniowana nastepujaco:

Ly Ly =gt {ab | ac A"A be B}
Korzystajac z konkatenacji jezykoéw, wprowadza si¢ operacje¢ potegowania jezykow
okreslong dla dowolnego jezyka i liczby naturalnej n w sposdb nastgpujacy:

LO = def {E}

Ln+[= et Ln A L
oraz operacj¢ domkniecia j¢zyka okreslong jako:

L =4 U L

ne Nat

Warto zwrdcié uwage, ze alfabet przeliczalny A nie ma wigkszej sity ekspresji niz
dowolny alfabet skonczony B. Oznacza to, ze dla dowolnego jezyka formalnego L,
c A’ istnieje taki jezyk Lz C B’, ze istnieje wzajemnie jednoznaczne odwzorowanie
pomigdzy obu jezykamif: Ly — Lg.

97

[stotnie, niech bedzie dany przeliczalny alfabet A o symbolach ay, a,, as, ... oraz alfa-
bet B zawierajacy tylko dwa symbole, na przyktad 0, 1. Istnieje wzajemne odwzoro-
wanie elementéw alfabetu A w pewien podzbidr ciagéw zerojedynkowych nad alfa-
betem B. Na przyktad ciagi binarne 1, 11, 111, ... itd. moga by¢ kodami indekséw
kolejnych symboli ay, as, as, Dowolne stowo nad alfabetem A mozna przestawiaé
jako konkatenacj¢ odpowiednich ciagéw kodujacych nad alfabetem B. Na przyktad,
sfowo a; a, a, w alfabecie A bedzie jednoznacznie reprezentowane przez stowo
111011011 w alfabecie B — symbol 0 petni tu rolg separatora migdzy kodami kolej-
nych symboli alfabetu A. Oznacza to, ze dla dowolnego jezyka formalnego L, nad
A istnieje funkcja, ktéra wzajemnie jednoznacznie odwzorowuje ten jezyk w pewien
jezyk Lg nad B. Ciagi binarne moga pelni¢ t¢ sama rolg, ktdra petnia symbole alfabetu
A, co wyjasnia powszechnos¢ stosowania kodowania binarnego.

5.4. Gramatyki bezkontekstowe

Nietrywialne jezyki formalne sktadajg si¢ z nieskonczenie wielu stdw. Nie mozna ich
definiowa¢ enumeracyjnie, czyli przez jawne wyliczenie stow. Nieskonczone jezyki
formalne definiuje si¢ rekursywnie, przy czym wykorzystuje si¢ specyficzny mecha-
nizm oparty na pojeciu gramatyki jezyka formalnego.

Gramatyka bezkontekstowa G jest czworka:
G=def<Tv Nv P’ S>
gdzie:

T — skonczony zbidr, nazywamy alfabetem symboli terminalnych,

N — skonczony zbidr, nazywany alfabetem symboli nieterminalnych,

P — skonczony zbidr produkcji,

S — wyrézniony symbol nieterminalny, nazywany symbolem poczqtkowym.

Zaklada sig, ze zbiory symboli terminalnych i nieterminalnych sa rozlaczne, to jest
NNT=0.

O pojedynczej produkcji pe P zaklada sig, ze jest postaci:
pr=o

gdzie jej poprzednik v moze by¢é dowolnym symbolem nieterminalnym, czyli veN,
a jej nastgpnik o moze by¢ dowolnym niepustym stowem nad suma mnogosciowa
zbioréw symboli terminalnych i nieterminalnych, czyli ae (T U N)*.

98

Gramatyka G generuje pewien jezyk formalny L(G) c T". Nieformalnie jest to zbi6r
wszystkich stéw nad alfabetem 7, ktére mozna wyprowadzi¢ z symbolu poczatkowe-
go gramatyki S, za pomoca przeksztalcen, okreslonych przez zbiér P produkcji gra-
matyki.

Niech dane bedg dwa stowa a, fe (T U N)".

Stowo f jest w gramatyce G bezposrednio wyprowadzane ze stowa a, gdy istnieje ta-
ka produkcja pe P, ze

a—>f

Fakt bezposredniego wyprowadzenia stowa f ze stowa o w gramatyce G zapisuje si¢:
a——p

lub

a——f

gdy z kontekstu wynika, o jaka gramatyke¢ chodzi.

Stowo f jest w gramatyce G wyprowadzone ze stowa ¢, gdy istnieje skoficzony ciag
stéw By, Bo, ..., B.€ (T L N) taki, ze

a=p B.=B

oraz
Bi—= 0,y dlaiell,?2,..,n-1}

Fakt, ze stowo 3 jest wyprowadzane ze stowa @, zapisuje si¢ w postaci:
a——p

Jezykiem formalnym L(G) generowanym przez gramatyke G jest zbidr:
L(G) =4t {0.€T* | S——>a)

Stowo ae L(G) nazywa si¢ tez stowem wywodliwym w gramatyce G. Zatem, jezyk L(G)
generowany przez gramatyke G jest zbiorem wszystkich stow wywodliwych w G.

Ponizej rozpatrujemy przyktady gramatyk i wyprowadzenia stow, przy czym zapis
produkcji jest oparty na powszechnie stosowanej tzw. notacji BNF (Backus'" Normal
Form lub Backus-Naur Form). Notacja ta wprowadza bardziej zwarty zapis produkcji,
ktore maja t¢ samg lewa strong. Zestaw produkcji, na przyktad:

17 John Backus (ur. 1924).

99

zapisuje si¢ w postaci:

v o=@ | o | 0

gdzie, jak poprzednio, veé N oraz a, ..., &, € (T'U N)*. Symbol | czyta si¢ lub.

Przyklad 5.6

Zbior identyfikatorow tworzy pewien jezyk formalny. Zbidr ten poprzednio byt de-
finiowany nastepujaco:

Ident =4 {s | s jest niepustym ciqgiem skladajqcym sie z liter lub cyfr, ktorego
pierwszym elementem jest litera}

Gramatyka G;p generujaca zbior identyfikatorow Ident jest zdefiniowana nastgpu-
jaco:
Gip =aet <Tip, Nip, Pip, Sip>
gdzie:
Tip =as {a, b, ..., z} U {0, 1,....9}
Nip =qs {identyfikator, znak, litera, cyfra}
Pip =qer {identyfikator ::= litera | identyfikator znak
znak ::= litera| cyfra
litera:=a|b]|..|z
cyfraz=0]1]...19}
Sip = identyfikator

Poszczegblne produkcje w zbiorze sa pisane w oddzielnych wierszach, bez od-
dzielania przecinkiem.

Rozpatruje si¢ dwa przyklady wyprowadzenia konkretnych identyfikatoréw.
Pierwsze wyprowadzenie:

identyfikator::=litera

identyfikator ylitera

litera::=a

litera—————a

z symbolu poczatkowego identyfikator wyprowadza jednoelementowe stowo a.
Drugie z tego samego symbolu poczatkowego wyprowadza stowo b8:

identyfikator::=identyfikator znak

identyfikator > identyfikator znak

znak::=cyfra

identyfikator znak ——=2"- identyfikator cyfra

identyfikator::=litera

identyfikator cyfra slitera cyfra

100

litera cyfra—""=> 5 p cyfra
Y, Y,

b cyfra—L== 58
Zatem pokazano dwa wyprowadzenia:

identyfikator—>a
identyﬁkator;>b8

| Oznacza to, ze ae L(G)p) oraz b8€ L(Gp). |

Przyklad 5.7

Przyktad pokazuje zbidr napisow reprezentujacych liczby wymierne w zapisie
dziesietnym. Gramatyka Gpgc jest zdefiniowana nastgpujaco:

Gpec =aet <Tpec, Npec, Ppec, Spec>
gdzie:

Tpec =aer {0, 1,...,9} U {.}

Npec =t {liczba, liczba_calkowita, kropka, cyfra}

Ppec =aet {liczba ::= liczba_catkowita |
liczba_catkowita kropka liczba_catkowita
liczba_calkowita ::= cyfra | liczba_calkowita cyfra
kropka ::=.
cyfra:=0|1]...]|9}

SDEC = liczba

Latwo sprawdzié¢, ze na przyktad stowa 10.9 oraz 213 sa wyprowadzalne

| W gramatyce Gpec, natomiast stowo 01 nie jest wyprowadzalne w Gpgc. |

Stosowane jezyki formalne, poza trywialnymi przypadkami, sg zbiorami nieskon-
czonymi i dlatego nie ma algorytméw generujacych wszystkie stowa jezyka. Prak-
tycznie rozwigzuje si¢ dwa zadania.

Pierwsze jest zadaniem analizy — polega na zbadaniu, czy dane slowo jest elemen-
tem danego jezyka L(G). Z tym zadaniem spotyka si¢ podczas kompilacji programu.
Celem pracy kompilatora jest w pierwszej kolejnosci stwierdzenie, czy program jest
poprawny sktadniowo.

Drugie jest zadaniem generacji — polega na wygenerowaniu pewnego podzbioru
stow jezyka, na przyktad wszystkich stéw o ustalonej dtugosci.

101

5.5. Klasyfikacja gramatyk

Rozpatrzona gramatyka bezkontekstowa jest szczegélnym przypadkiem szerszej klasy
gramatyk, zwanych gramatykami struktur frazowych. Gramatyka struktur frazowych
jest taka sama czworka jak gramatyka bezkontekstowa, czyli:

G=<T,N,P,S>
a réznica dotyczy tylko ogdlniejszej postaci produkcji. Niech V = T U N. Produkcja
albo regula przepisywania pe P jest tu dowolna para stéw ae V' oraz fe V' zapisy-
wana, jak poprzednio, w postaci « ::= . Generowanie jezyka formalnego przez gra-

matyke struktur frazowych jest definiowane, podobnie jak poprzednio, dla gramatyki
bezkontekstowe;.

Zgodnie z klasyfikacja wprowadzona przez N. Chomsky’ego wyrdznia si¢ cztery typy
gramatyk struktur frazowych rézniace si¢ postacia dopuszczalnych produkcji.

Gramatyki klasy 0, zwane gramatykami bez ograniczen, maja nastgpujacg postaé pro-
dukcji:
a:i=p dla ae V*, BeV*

Gramatyki klasy 1, zwane gramatykami kontekstowymi, wymagaja, by produkcje byly
postaci:

ava=a B dla oy, e V', veN, Be V*

Gramatyki klasy 2, zwane gramatykami bezkontekstowymi, wymagaja, by produkcje
byly postaci:
vi=f dlaveN, BeV*

Gramatyki klasy 3, zwane gramatykami regularnymi, wymagaja, by produkcje byly
postaci (gramatyki prawostronnie regularne):

vii=Bu dlaveN,ueNu (g}, BeV*
albo postaci (gramatyki lewostronnie regularne):
vi=uf dlaveN,ueN v (g}, BeV*

Latwo si¢ przekonaé, ze kazda produkcja gramatyki i jest jednoczesnie produkcja
gramatyki j, dla 0 <j <i < 3. Zatem kazdy jezyk formalny wygenerowany przez pew-
na gramatyke klasy i jest rOwniez generowany przez pewna gramatyke klasy j. Ozna-
czajac symbolami Ly, L;, L,, L3 zbiory jezykéw formalnych generowanych przez gra-
matyki poszczegdlnych klas, mozna stwierdzi¢, ze zachodza inkluzje wlasciwe:

L3 CLgCL] CL()

102

co oznacza, ze wsrod jezykow generowanych przez gramatyki klasy i istnieje co naj-
mniej jeden jezyk, ktory nie jest generowany przez gramatyki klasy j, dla0 <i <j.

Gramatyki klas 1, 2 i 3 sa gramatykami nieskracajqcymi, co oznacza, ze dtugos¢ no-
wego stowa nie jest mniejsza od dlugosci starego stowa, do ktoérego zastosowano pro-
dukcje gramatyki.

Nieskracalnos¢ gramatyki umozliwia efektywne badanie, czy dane stowo jest wy-
wodliwe w gramatyce. Oznacza to, Zze mozna zbudowa¢ algorytm, ktéry dla dowolne-
go stowa, po skonczonej liczbie krokow, rozstrzyga, czy to stowo jest wyprowadzalne
w danej gramatyce.

Schemat takiego algorytmu jest oczywisty. Niech « begdzie badanym stowem. Naj-
pierw generuje si¢ zbior Z; wszystkich stéw bezposrednio wyprowadzalnych z sym-
bolu poczatkowego gramatyki, ktorych dlugos¢ nie przekracza dlugosci badanego
stowa a. Nastepnie generuje si¢ zbidr Z, wszystkich stow, ktore sa bezposrednio wy-
prowadzalne ze stéw zbioru Z, ktorych dlugosé nie przekracza dlugosci badanego
stowa a. Dalej generuje si¢ zbior stow Zs, ktory jest bezposrednio wyprowadzalny ze
zbioru Z,, itd. Kazdy z wygenerowanych zbioréw jest oczywiscie skoficzony. Poste-
powanie takie prowadzi si¢ do momentu, gdy w zbiorze generowanych stéw napotka
si¢ na stowo « albo, gdy dlugos¢ wszystkich stéw nalezacych do ostatniego zbioru
bedzie przekracza¢ dtugos¢ stowa a. Pierwszym przypadek oznacza, ze « nalezy do
jezyka generowanego przez dang gramatyke, a drugi, ze o nie nalezy do tego jezyka.

5.6. Grafy

Liczne zastosowania w informatyce maja grafy. Rozpatruje si¢ tu tylko klas¢ grafow
skierowanych. Maja one dwie rownowazne definicje. W zaleznosci od potrzeb wyko-
rzystuje si¢ jedna z nich.

Pierwsza definicja okresla graf G skierowany jako pare:

G=<V,A>
gdzie:
VNA=J

V — jest zbiorem wierzchotkow grafu,
A - jest zbiorem {ukow grafu, okreslonym jako relacja binarna na zbiorze wierz-
chotkéw A ¢ VxV.

103
Interpretacja relacji A jest nastgpujaca: para <v;, v,>€A reprezentuje tuk grafu prowa-
dzacy od wierzchotka v, do wierzcholka v,.
Druga definicja okresla graf skierowany jako parg:
G=<V,S§>
gdzie:

V — jest zbiorem wierzcholkow grafu,
S — jest funkcja, zwana funkcjq nastepnikow, okreslona na zbiorze wierzchotkow,
ktérej wartociami sq podzbiory wierzcholkéw S: V — 2",

Interpretacja funkcji S jest nastgpujaca: S(v) = {vy, ..., vx} reprezentuje zbior wierz-
chotkéw-nastgpnikéw wierzcholtka v, to znaczy wierzchotkéw, do ktorych prowadza
tuki wychodzace z wierzcholka v. Funkcja odwrotna P(v) okre$la zbior wierzchot-
kéw-poprzednikéw wierzchotka v, to znaczy wierzchotkéw, od ktoérych prowadza tuki
do wierzchotka v. Znajac dla danego grafu funkcje¢ S tatwo wyznaczy¢ funkcje P.

Latwo rowniez zauwazy¢, ze graf zdefiniowany wedlug jednej z tych definicji daje sig
wyrazi¢ w rbwnowazny sposéb wedtug drugiej definicji.

Podgrafem grafu G = <V, A> nazywa si¢ dowolny graf G’ = <V’, A”> taki, ze V'c V
orazA"C AN (VX V).

Graf nazywa si¢ nieskoriczonym, gdy nieskonczony jest zbior jego wierzchotkow.
Sciezkq w grafie G = <V, A> nazywa si¢ niepusty ciag tukow:

<V, V22> <V, V3> ... <Vj_1, V> ...
gdzie <v;, vi>€A dlai=1, .., n, Sciezka przechodzi przez wierzchotki:

Vi, V2, eesVn oee

gdzie v, jest poczatkowym wierzcholkiem $ciezki, a jezeli $ciezka jest skonczona, to
v, jest jej wierzchotkiem koncowym. Sciezke skonczona, ktéra ma taki sam wierz-
chotek poczatkowy i koncowy, nazywa si¢ cyklem. Cykl ztozony z jednego elementu
nazywa si¢ petlq.

Wyrdznia si¢ wiele rodzajow graféw. Migdzy innymi, okresla sig, ze graf G = <V, A>
jest zwrotny, gdy:

VveVe <y v>eA (przy kazdym wierzchotku jest petla)
przeciwzwrotny, gdy:

VveVe <y, v>gA (graf nie ma petli)
symetryczny, gdy:

Yvi, meV e <y, v>EA = <1y, V>EA

104

przeciwsymetryczny, gdy:

Vv, meV e <y, vidEA = <1y, ViDEA
antysymetryczny, gdy:

Yy, meVe<y, vidEAA<W, VI>EA=D V=W,
przechodni, gdy:

Y1, Vo, iEV @ <y, 1>EA A <Vy, V3>EA = <y, V3>EA

Szczegdlnym, dalej wykorzystywanym grafem, jest graf nazywany drzewem. Jest to
graf, ktéry:

e nie ma cykli,

e ma dokladnie jeden wierzchotek vy, zwany korzeniem drzewa, ktéry nie ma po-
przednikow, to znaczy nie istnieje wierzchotek ve V taki, ze <v, vp>€ A,

e wszystkie pozostate wierzchotki maja dokfadnie jeden poprzednik, to znaczy dla
dowolnego wierzchotka v # vy zachodzi card{v'eV | <V, v>eA} = 1; wierzchol-
ki, ktére nie maja nastgpnikdw nazywa si¢ lis¢mi, a zbidr wszystkich lisci drze-
wa nazywa si¢ koronq drzewa.

Lemat 5.1 (Lemat Koniga)

Jezeli graf G jest drzewem nieskonczonym, w ktérym kazdy wierzcholek ma skon-
czong liczbe wierzchotkdéw-nastepnikdw, to w grafie takim istnieje Sciezka o nie-
skonczonej dlugosci.

Dowod

Niech vy bedzie korzeniem grafu G. Zgodnie z zalozeniem vy ma skorficzong liczbe
wierzchotkdw nastgpnikéw. Wsrdd nich istnieje przynajmniej jeden wierzchotek,
niech bedzie to vy, ktdry jest korzeniem nieskonczonego poddrzewa G, drzewa G,
gdyz — w przypadku przeciwnym — gdyby wszystkie wierzchotki-nastepniki vy byty
korzeniami poddrzew skonczonych, to graf G byiby skonczony. Powtarzajac po-
dobne rozumowanie do nastgpnikéw wierzchotka v, znajduje si¢ wsrdd jego na-
stepnikow wierzcholek v,, ktéry jest korzeniem nieskonczonego podrzewa G,
drzewa G\, itd. Zatem jest oczywiste, ze ciag wierzchotkéw vy, v, va, ... Wyznacza
nieskonczong Sciezke.

105

5.7. Drzewa rozbioru i diagramy skladniowe

Dysponujac pojgciem grafu mozna zdefiniowaé drzewo wywodu — graf ilustrujacy
wyprowadzenia sfowa w gramatyce bezkontekstowe;j.

Drzewem wywodu dla gramatyki G =g <7, N, P, S> jest graf—drzewo, ktérego wierz-
chotki sa etykietowane symbolami ze zbioru 7 U N w taki sposob, ze:

e korzen drzewa jest etykietowany symbolem poczatkowym S,
e kazdy lis¢ drzewa jest etykietowany symbolem terminalnym ze zbioru T,

o jezeli wezel v ma etykietg e i wezly vy, v, ..., v, sa jego nastepnikami o etykie-
tach e, ey, ..., e,, to e ::= ¢, e, ... e, musi by¢ produkcja gramatyki.
Przyklad 5.8

Dla przedstawionej wczesniej gramatyki Gpec =qef <Tpec, Npec, Ppec, Spec> drze-
wo wywodu dla stowa 10.9 ma posta¢ jak narys. 5.1.

liczba

/ iczba_c%ropka liczba_catkowita

liczba_calkowita cyfra . cyfra
\% \L \L
cyfra 0 9
\%
1

Rys. 5.1. Drzewo wywodu stowa 10.9

R S |

Jezeli dla pewnego stowa istnieja dwa rézne drzewa wywodu, to gramatyke nazywa
si¢ skladniowo wieloznacznq. Gramatyka Gpgc jest sktadniowo jednoznaczna, nato-
miast nie jest nig ponizej zdefiniowana gramatyka Gy.

106

Przyklad 5.9

Niech
Gw =gt <Tw, Nw, Pw, Sw>
gdzie:
Tw = {wyrazenie, skladnik, czynnik}
Nw={a,b,c,+,-*,1/,(,)}
Pw = {wyrazenie ::= skladnik | skladnik + wyrazenie | skladnik — wyrazenie
skladnik ::= czynnik | czynnik * czynnik | czynnik [czynnik
czynnik ::=a | b| ¢ | (wyrazenie) }
Sw = wyrazenie

W celu przekonania si¢ o niejednoznacznosci gramatyki Gy wystarczy rozpatrzy¢
I mozliwe wywody, na przyklad, stowaa + b —c. |

Grafy sa takze wykorzystywane do prezentacji produkcji gramatyki w postaci diagraméw
sktadniowych. Wierzcholki tego grafu sa etykietowane symbolami ze zbioru T U N. Kaz-
dej produkcji odpowiada pojedynczy graf z etykietowanymi wierzchotkami, ktéry ma
doktadnie jeden wierzchotek nie posiadajacy poprzednikéw, zwany poczatkowym,
i doktadnie jeden wierzcholek nie posiadajacy nastgpnikéw, zwany koncowym.
Wierzcholki te nie sa etykietowane. Kazdej Sciezce, ktéra w grafie prowadzi od wierz-
chotka poczatkowego do wierzchotka koncowego, odpowiada pewien ciag etykiet
wierzchotkdéw ze zbioru T U N. Ciag etykiet stanowi ciag symboli, ktére mozna wy-
generowac na podstawie danej produkc;ji.

Przyklad 5.10
e -

Produkcjom wyzej zdefiniowanej gramatyki Gy odpowiadaja nastgpujace diagra-I
my skladniowe pokazane na rys. 5.2.

Pierwszy z diagramow, opisujacy produkcje wyrazenie, jest grafem zawierajacym
cykl. Powodem pojawienia si¢ cyklu jest to, ze symbol wyrazenie wystgpuje za-
réwno po lewej, jak i po prawe;j stronie produkcji, przy czym po prawej stronie wy-
stepuje na koncu ciggu symboli.

Wystepowanie takiego samego symbolu po lewej i po prawej stronie produkcji,
a tym samym istnienie cyklu na diagramie skladniowym, mozna interpretowac
jako rekursywna definicj¢ zbioru stéw wyprowadzanych na podstawie danej pro-
dukcji.

107

N| | S
2| sKadnik | >
wyrazenie é é

skladnik ° 0

czynnik

O OO

(O prasenie }>()—

Rys. 5.2. Diagramy skiadniowe gramatyki Gy

Cwiczenia

1. Niech A =4 {+, =}. Ktore z ponizszych zdan sa prawdziwe?

a) Mozna utworzyé co najwyzej skonczong liczbg jezykéw formalnych nad alfa-
betem A.

b) Mozna utworzy¢ doktadnie 4 stowa nad alfabetem A.

¢) Zbidr { ++, +++, =, +=} jest pewnym jezykiem formalnym nad A.

d) Nad alfabetem A mozna utworzy¢ doktadnie 2* jezykoéw formalnych.

e) Zbior wszystkich stéw nad alfabetem A definiuje pewien nowy alfabet A”.

2. Niech A =4 {0, 1}, B =4 {0, 1, 2, ..., n} oraz C = Nat. Ktére pary sposréd zbioréw
A" B, C sa zbiorami rownolicznymi?

3. Czy zbidr liczb naturalnych Nat jest réwnoliczny ze zbiorem Nat" - zbiorem
wszystkich skonczonych ciagéw nad Nat?

4. Czy zbior wszystkich jezykéw formalnych nad przeliczalnym alfabetem A jest
przeliczalny?

108

5. Dana jest gramatyka G =4 <T, N, P, S >, gdzie:

T = s (A’ B, C}
N =gt {a, b, c}
P=gs{a:=A|aA|bC
1=BcC
¢ :=abC|ABc | AbC }
S=a

Czy stowa AAAA, ABCA naleza do jezyka generowanego przez G? Poda¢ zbidr
wszystkich stéw dlugosci 1, 2 i 3 nalezacych do jezyka generowanego przez G.
Scharakteryzowaé zbidr wszystkich stow generowanych przez gramatyke G. Czy
mozna zdefiniowac ,,prostsza” gramatyke, ktora generuje taki sam jezyk formalny
jak gramatyka G?

6. Dla znanego je¢zyka programowania, na przykiad, Pascal, C, C++, zdefiniowaé
gramatyke okreslajaca wybrany podzbior wyrazen arytmetycznych z tego jezyka.

7. Produkcje gramatyki zdefiniowanej w zadaniu 6 przedstawié w postaci diagramow
sktadniowych.

8. Niech bedzie dany pewien graf G = <V, A>, gdzie A C V2. Jaka interpretacje mozna
przypisaé zlozeniu relacji A? Co oznaczajg A% ..., A"? W jaki sposb mozna zba-
da¢, czy graf posiada petle oraz cykle, to jest drogi o dlugosci wigkszej od 1, ktére
rozpoczynaja si¢ i koncza si¢ w tym samym wierzchotku?

9. Pokaza¢ w jaki sposdb na podstawie definicji grafu w postaci G = <V, A> zbudo-
waé jego definicje o postaci G = <V, §>, gdzie S : V — 2" jest funkcja wyznacza-
jaca dla dowolnego wierzchotka ve V zbidr wierzchotkdw nastepnikow S(v), to
znaczy wierzchotkéw, do ktérych prowadza tuki z wierzchotka v.

10. Pokaza¢ w jaki sposéb na podstawie definicji grafu w postaci G = <V, § > wyzna-
czy¢ funkcjg¢ P(v) okreslajaca zbior wierzchotkdw-poprzednikédw wierzchotka v.

6. Algebry abstrakcyjne

6.1. Algebry jednorodzajowe

Jednorodzajowg algebrg abstrakcyjna, albo krotko — algebra, nazywa sig pare:
ALG =4 <A, {1y ooy Cn} U {fi, .., fu}> dla me Nat, ne Na\{0}
w ktorej:

A jest dowolnym zbiorem, zwanym nosnikiem algebry,
ci sa stalymi algebry, to znaczy c.€A,dlai=1, ..., m,
fi sa operacjami albo dzialaniami algebry, to znaczy k-argumentowymi funkcjami
0 sygnaturze:
fiAf—>A
gdzie ke Nan\{0},j =1, ..., n.

Stalq algebry ¢; mozna takze rozumie¢ jako funkcjg¢ zeroargumentowa, to znaczy jako
funkcje o sygnaturze:

ci:—A.
Uwaga
Algebry beda tez definiowane jako pary:
ALG =4et <A, {C1y ooy Cos f1y cos [u}>
lub
ALG =41 <A, F>

gdzie drugim elementem pary jest zbior stanowigcy sume¢ mnogosciowa zbioru
stalych i operacji. Wynika to z faktu, ze stale mozna traktowac jako funkcje ze-
ro-argumentowe.

110

Przyklad 6.1

Przyktadem prostej algebry jest zbior liczb naturalnych Nar z operacja dodawania:
ALGng =ges <Nat, {0, 1} U {_+_}>

gdzie
0,1: - Nat

sa operacjami zeroargumentowymi, zas

+_: Nat* = Nat

| jest dodawaniem. |

Nalezy przypomnie¢, ze podkreslenia obok symbolu funkcji wskazuja potozenie ar-
gumentow.

Przyklad 6.2

Bardziej ztozona jest algebra okreslona na zbiorze liczb catkowitych Catkowite,
z operacjami dodawania, odejmowania i mnozenia:

gdzie 0 oraz 1 sa statymi, czyli maja sygnatury:
0, 1: — Calkowite
zas +, —, * sa symbolami operacji dwuargumentowych o sygnaturach:

+_, — ¥ Catkowite® — Calkowite

o e

Nalezy zauwazy¢, ze odejmowanie moze by¢ rowniez traktowane jako zmiana
znaku liczby. W tym przypadku symbol bytby symbolem przeciagzonym, a odpo-
wiadajaca mu sygnatura miataby postac:

—_: Catkowite — Catkowite
Natomiast algebra z tak dotaczona operacja miataby postac:

| ALG calkowite =aet < Catkowite, {0, 1} U {—_, _+_, —, _*_}> |

W dalszych przykfadach dla symboli funkcyjnych dwuargumentowych bedzie stoso-
wana notacja wrostkowa, a podkreslenia w napisach okreslajacych sygnatur¢ beda
pomijane.

Przyklad 6.3
Algebra stéw nad pewnym alfabetem A jest zdefiniowana:

ALGAt =def<A‘, {E}) {A} >

111

gdzie:
A’ jest nosnikiem algebry,
£:— A" jest stowem pustym, czyli stala algebry,
| ":ATXA A jest konkatenacj, czyli dwuargumentowym dzilaniem.
Przyklad 6.4 7

W programowaniu przez typ danych rozumie si¢ pewien zbidr wartosci i zestaw
zwigzanych z nim operacji. Powszechnie uzywany typ logiczny jest okreslony
przez zbior:

Boolean =g {false, true)
oraz przez zestaw operacji o nastgpujacych sygnaturach:

not : Boolean — Boolean
and, or : Boolean® — Boolean

gdzie not, and oraz or sa operacjami negacji, koniunkcji i dysjunkcji. Definicje
tych funkcji przedstawia tabela:

a b not(a) |aandb | aorb
false false true false false
false true true false true

true false false false true
true true false true true

Zdefiniowane funkcje warto poréwnacé z definicja spojnikéw logicznych okreslo-
nych w podrozdziale 1.2. Réznica migdzy tymi definicjami sprowadza si¢ do
réznicy symboli.

Zatem algebra, ktora jest modelem typu logicznego ma postac:
ALGootean =def <Boolean, {not, and, or }>

[Zbidr statych jest tutaj pusty. |

Przyklad 6.5

W jezykach programowania odpowiednikiem wcze$niej przedstawianej algebry,
okreslonej na zbiorze liczb catkowitych Calkowite, jest algebra okreslona na
zbiorze Integer z odpowiednikami operacji dodawania, odejmowania i mnozenia:

ALG peger =ger < Integer, {0, 1} U {®, ©, @ }>
gdzie

Integer =4t {-N, ..., N} jest tylko skoficzonym podzbiorem zbioru Catkowite,
zaktada sig¢ przy tym, ze N € Nai\{0, 1},

112

0 oraz 1 sa staltymi o sygnaturach:
0,1: — Integer

zas @, 6, ® sa odpowiednio symbolami dodawania, odejmowania i mnozenia
o sygnaturach:

®, 8, ®: Integer’ — Integer

Istotna réznica migdzy algebra ALG neger @ ALGatkowie Wyptywa z definicji operacji
w algebrze ALG .. Mianowicie, ze wzgledu na ograniczonos¢ zbioru Integer ope-
racje dodawania, odejmowania i mnozenia nie sa funkcjami catkowicie okreslonymi.
Aby odrézni¢ je od operacji okreslonych w zbiorze liczb Catkowite sa one zapisywa-
ne inaczej. Definicje operacji algebry ALG yecer przedstawiaja si¢ nastgpujaco:

a+b gdy|la+b| <N

a®b=y4 § . . .
nieokreslona w przypadku przeciwnym
a+b gdy|la-b| <N

a©b =4y . g, vl | :
nieokreslona w przypadku przeciwnym

+b gdy|la*b| <N

a®b =y a. g,yl | .

nieokreslona w przypadku przeciwnym

Symbole wystepujace po prawej stronie definicji, czyli funkcje dodawania,
odejmowania, mnozenia i wartosci bezwzglednej sa okreslone na zbiorze liczb
catkowitych naleza do jezyka arytmetyki. Bez znajomosci tych funkcji nie mozna
| zrozumie¢ definicji nowych operacji. |

Czg¢sciowa okreslonos¢ operacji algebry ALG g ma interpretacj¢ praktyczng. Brak
okreslonosci operacji oznacza mozliwo$¢ powstania nadmiaru podczas wykonywania
programu. Powstanie nadmiaru podczas obliczenia programu prowadzi do wygenero-
wania wyjatku lub do zerwania obliczen z sygnalizacja bledu.

Algebry, ktére majg operacje okreslone czgsciowo, moga by¢ uciazliwe w zastosowa-
niach. Dlatego, zwlaszcza w programowaniu, dokonuje si¢ pewnej modyfikacji takich
algebr tak, aby uzyskaé catkowita okreslonos$¢ ich operacji. Sposdb tej modyfikacji
wyjasnia przyktad algebry ALG pseger-

Definiowana w przyktadzie algebre¢ ALG egers{nadmiary mozna traktowac jako algebraicz-
ny model catkowitoliczbowego typu danych wystepujacego w jezykach programowania.

Przyklad 6.6
Niech dana bgdzie algebra:

ALGlnlegenJ(nadmiar} =def <1nf€g€l’ U{nadmiar}, {0) 1} ({@, o, ®}>

113

Nosnikiem algebry jest zbidr Integer z dofaczonym elementem nadmiar. Opera-
cjami algebry sa operacje dodawania, odejmowania i mnozenia — oznaczane jak
poprzednio — symbolami: @, ©, ®. Operacje te maja inne sygnatury:

®, ©, ® : (Integer U {nadmiar})* — Integer U {nadmiar)
Wszystkie operacje arytmetyczne maja wspolng wlasnosé:

Jezeli wartoscia ktoregokolwiek argumentu operacji jest nadmiar, to wynikiem
operacji jest rowniez nadmiar, na przyktad nadmiar ®1 = nadmiar.

W pozostatych przypadkach, gdy oba argumenty operacji sa rézne od nadmiar, de-
finicje operacji sa nastgpujace:

a+b gdy|la+b| <N

a®b =y . .
nadmiar w przypadku przeciwnym
a+b gdy|la-b| <N

4ob =, ‘gyl I .
nadmiar w przypadku przeciwnym

a+b gdy|a*b| <N

a®b =def . .
nadmiar w przypadku przeciwnym

Uwaga

Symbol nadmiar w powyzszym przykladzie jest odpowiednikiem symbolu L
wprowadzonego w podrozdziale 3.5 na oznaczenie nieokreslonosci funkcji. Sym-
bol nadmiar réwniez odnosi si¢ do sytuacji, gdy funkcja jest nieokreslona, a po-
nadto wskazuje na przyczyng¢ nieokreslonosci.

6.2. Algebry wielorodzajowe

Uogdlnieniem algebr jednorodzajowych sa algebry wielorodzajowe [Ehrig, Mahr
1985]. Uogolnienie polega na zastapieniu pojedynczego nosnika skonczona rodzing
nosnikow. Algebra wielorodzajowa jest zdefiniowana jako uktad:

ALG =4t <{Aj, ..., At}, {1y ooy Cm} U {fA, oo fu}> dla me Nat oraz k, ne Nat\{0}
gdzie:

Ay, ..., Ax sa dowolnymi zbiorami, nazywanymi nosnikami algebry,
c; jest stalq algebry, to znaczy c;€ Aj‘_ ,dlai=1,..,m,je(l, .., k},

fi jest operacjq algebry, dla j = 1, ..., n, to znaczy jest k-argumentowa funkcja,

114

ki€ Nat \{0}, o sygnaturze:
fj :AjI x...xAjk_ —>Ajk0

gdzie

Jis w55 jk/ €{1, ..., k} sg indeksami no$nikdw, ktére sa argumentami operacji,

j, jest indeksem nosnika, ktéry jest wynikiem operacji.

Uwaga

Przyklad 6.7

l

Algebra wielorodzajowa bedzie tez oznaczana krocej:
ALG =4 <A, F>

gdzie A jest zbiorem nosnikéw, zas F jest zbiorem operacji, w tym operacji zero-
argumentowych, czyli statych.

Rozpatruje si¢ dwurodzajowa algebre okreslong na liczbach catkowitych, ktc')ral
oprocz operacji arytmetycznych: dodawania, odejmowania, mnozenia, dzielenia
catkowitoliczbowego, obejmuje rowniez operacje pordwnywania liczb: réwny,
nie mniejszy. Argumentami zaréwno dziatan arytmetycznych, jak i operatoréw
porédwnania sg liczby, wynikami dzialan sg takze liczby, za$ wynikami poréwnan
sa wartosci logiczne. Tym samym, wprowadzenie operacji pordéwnan wprowadza
niejawnie dodatkowy nosnik zawierajacy wartosci logiczne. Moze nim by¢ na
przyktad zbior:

Boolean =4 {false, true}
Algebr¢ mozna przedstawié jako algebr¢ dwurodzajowa:

ALG(,’aIlmwile =def
<{Calkowite, Boolean}, {0,1} U {-, +, =, *,/, =, 2}>

gdzie:

0, 1 sq stalymi liczbowymi, zerem i jedynkq,

—: Calkowite — Calkowite jest jednoargumentowa operacja zmiany znaku
liczby,

+, =, *, [: Calkowite® — Calkowite sa dwuargumentowymi operacjami doda-
wania, odejmowania, mnozenia i dzielenia,

=, > : Calkowite® — Boolean sa dwuargumentowymi operacjami poréwnar
réwny i nie mniejszy. |

Algebry wielorodzajowe moga by¢ modelem ztozonych typéw danych.

Algebra ALGcanowie moze byé potraktowana jako pewna charakterystyka catkowito-
liczbowego typu danych spotykanego w jezykach programowania. Charakterystyka ta

115

nie uwzglednia ograniczonosci zbioru wartosci typu. Peina charakterystyka typu jest
algebra przedstawiona w przykladzie.

Przyklad 6.8

Typ catkowitoliczbowy na zbiorze:

Integer =4¢ {-N, ..., 0, ..., N}

ma okreslone operacje arytmetyczne: zmiany znaku —, dodawania @, odejmowa-
nia ©, mnozenia ®, dzielenia catkowitoliczbowego @, oraz ma operacje poréw-
nywania liczb: réwny =, nie mniejszy 2, ktérych warto$ciami sa elementy zbioru:

Boolean =4 {false, true}

Petny model typu ca}kowitoliczbowegol mozna przedstawic jako algebr¢ dwuro-
dzajowa:

ALGlmegeIU[nadmiarl =def
<{Integeru{nadmiar}, Boolean}, {0,1} U {-, &, 6, ®, @, =, 2}>
State i operacje algebry maja sygnatury:

0, 1 :—> Integer

— : Integer — Integer

®, 6, @ : (Integer U{nadmiar})* - Integer U {nadmiar}
@ : (Integer U {nadmiar})* — Integer U {nadmiar}
=27 Integer2 — Boolean

Poza operacja dzielenia, pozostale operacje definiuje si¢ podobnie jak w przykta-
dzie 6.6. Definicja operacji dzielenia przedstawia si¢ nastgpujaco:
alb gdy aec Integer, be Integer\{0} orazla/b|< N
a @ b =gsinadmiar gdy a€ Integer, b€ Integer\{0} oraz|a/b|> N
nadmiar gdy b =0 Iub a=nadmiarlubb = nadmiar

Operacje poréwnan sa obcigciem funkcji poréwnan = oraz 2, okreslonych na
zbiorze liczb catkowitych Catkowite, do zbioru Integer. l

6.3. Termy

Z kazda algebra jest zwigzany pewien zbior napisow, ktdre powstaja ze ztozenia sym-
boli stalych, zmiennych i dziatan algebry. Zbidr ten nazywa si¢ zbiorem terméw. Po-

116
nizej przedstawia si¢ definicj¢ terméw, najpierw dla algebr jednorodzajowych,
a nastgpnie dla wielorodzajowych [Ehrig, Mahr 1985]. Niech

ALG =def <A, {Cl’ se0y Cm} & {.fl’ "'af;l}>

bedzie pewnga algebra jednorodzajowa, oraz niech V bedzie zbiorem zmiennych, to
znaczy symboli, ktérym mozna przyporzadkowywac pewne wartosci z dziedziny A.

Symbolem Termyu;6(V) oznacza si¢ zbidr terméw algebry ALG nad zbiorem zmien-
nych V. Zbiér ten jest zdefiniowany rekursywnie w sposob nastgpujacy:

o V C Termy (V) oraz {cy, ..., cm} © Termu(V), to znaczy, ze zmienne i stale sg
termami,

o jezelity, ..., k€ Termy,(V), czyli napisy ty, ..., tx sa termami oraz f; jest dziataniem
k-argumentowym, to fi(ty, ..., t,)€ Terma.(V), czyli napis postaci f{(ti, ..., t,) jest
termem.

Uwaga

Jezeli t,, t,€ Terma,g(V) oraz f; jest dziataniem dwuargumentowym zapisywanym
w konwencji wrostkowej, to za term bgdzie przyjmowany napis (¢, f; 1) €
TermA,_(;(V).

Termy sa stowami nad pewnym alfabetem wyznaczonym przez dang algebrg.
W skiad takiego alfabetu wchodza symbole statych, zmiennych, dzialan oraz nawia-
sow i przecinka. Jak wynika z definicji, termy sg napisami ztozonymi w tym sensie, ze
term moze sktadac si¢ z czesci sktadowych, ktére rowniez sg termami. Termy, ktore sa
czgsciami skladowymi innych terméw nazywa si¢ podtermami. Doktladniej: term ¢,
jest podtermem termu t,, gdy t, jest podstowem stowa #,.

Zbidr terméw nad pustym zbiorem zmiennych, czyli Terma.c(&J), nazywa si¢ zbiorem
termow statych.

Termy sa napisami, ktére wyrazaja pewne znaczenie — reprezentujg one wartosci ze
zbioru A. Inaczej: sg one tekstowa reprezentacja pewnych wartosci, nalezacych do no-
$nika A. Termy stale Terma,(<J) wyrazaja bezposrednio pewne wartosci. Termy,
w ktorych wystepuja zmienne Termy (V), rOwniez reprezentujg pewne wartosci, ale
wartosci te zaleza od wartosciowania zmiennych, czyli od wartosci, jakie sa przypo-
rzadkowane zmiennym V. Wartosciowanie zmiennych jest wyrazane przez funkcje v
0 sygnaturze:

v: VoA

Wartos¢ funkcji v(v) dla zmiennej v wyznacza pewien element ze zbioru A, ktory
zmienna ta reprezentuje.

W dalszym ciagu bedzie si¢ pisa¢ Term(J) i Term(V), gdy z kontekstu wiadomo,
o jaka algebre chodzi.

117

Przyklad 6.9
e —— e —
Do zbioru termdw statych Term(J) generowanych przez algebre:

ALGra =gt <Nat, {0, 1} U {+)>

gdzie + jest, jak poprzednio, dodawaniem w zbiorze liczb naturalnych, zapisy-
wanym w notacji wrostkowej, naleza, na przyktad, napisy:

0,1,(0+0), 0+ 1),(1+0), (1 +1),(0+(0+0)), 0+ 0+ 1))
Przy zapisie w notacji przedrostkowej, te same napisy przyjma postaé:
0, 1, +(0, 0), +(0, 1), +(1, 0), +(1, 1), +(0, +(0,0)), +(0, +(0, 1))

Niektoére termy, na przyktad 1, (0 + 1), (1+0), ((0+0)+1), reprezentuja te sama
warto$¢ — liczbg¢ naturalng 1. Zbior termow reprezentujacych te sama wartos¢ jest
oczywiscie nieskonczony.

Niech V = {a, b, c}. Do zbioru terméw Term(V) generowanych przez algebre
ALGy,, bgda nalezeé, na przyktad:

a,b,c,(@+0),0+Db),(a+c),(c+b),(a+(b+0)),(1+(+1))
Jezeli zalozy¢ funkcje wartoSciowania:
v = {<a, 1>, <b, 0>, <c, 1>}
to wyzej wymienione termy beda kolejno reprezentowaé wartosci:
| 1,0,1,1,0,2,1,0,2
Zbiér termOw dla algebry wielorodzajowej:

ALG =gs <{Ay, ..., A}, {C1y ooy €} U {fi, . [u}> dla me Nat oraz k, ne Nai\{0})

jest bardziej ztozony. Wynika to z podzialu terméw na rodzaje. Rodzaj termu wska-
zuje na jedng z dziedzin Ay, ..., A algebry ALG, ktdrej wartosci term reprezentuje.

Niech V; bedzie zbiorem zmiennych rodzaju A;. Zbiorem wszystkich zmiennych jest
V=V, U ..U Vi Zmienna veV; jest rodzaju A; (i = 1, ..., k), co bedzie zapisywane
v: A;. Zmiennej ve V; mozna przyporzadkowywac wartosci tylko ze zbioru A;.

State takze maja swoj rodzaj. Dla ce {cy, ..., ¢} zapis ¢ : A; oznacza, ze stala ¢ jest
rodzaju A;, czyli jest elementem zbioru A; (i = 1, ..., k).

Dalej, zamiast pisa¢ rodzaj A; bedzie si¢ pisaé krotko rodzaj i.

Zbiér terméw rodzaju i (i = 1, ..., k) dla algebry wielorodzajowej ALG nad zbiorem
zmiennych V, oznaczany Term,(V), jest zdefiniowany rekursywnie w sposéb naste-

pujacy:
e jezelicj: A, to c;e Term(V)

118

Vi c Termy(V)

e jezelinapisy ty, ..., tx sq termami rodzajow iy, ..., iy, oraz f; : A; X..XA; — A,
jest dzialaniem k-argumentowym, to napis postaci f{t, ..., t,) jest termem ro-
dzaju i, czyli fi(ty, ..., t,)€ Term(V).

Zbiér wszystkich terméw dla algebry wielorodzajowej ALG nad zbiorem zmiennych
V, oznaczany Term(V), jest okreslony jako mnogosciowa suma:

k
Term(V) = U Term,(V).
i=l

Uwaga

W programowaniu, przyporzadkowanie rodzajow statym, zmiennym oraz wyraze-
niom nazywa si¢ typowaniem lub ftypizacjq. Typizacja przejawia si¢ w sposobie
deklarowania statych i zmiennych, w rozréznianiu, na przyktad, wyrazen arytme-
tycznych i logicznych, w sprawdzaniu poprawnego uzycia zmiennych w wyraze-
niach itd.

Przyklad 6.10

W zdefiniowanej wczesniej algebrze

ALG[,.,egclu (nadmiar) =def
< {Integer U {nadmiar}, Boolean}, {0, 1} U {-, &, 6, ®, @, =, 2}>

wyrdznia sie¢ dwa rodzaje termow: Integer U {nadmiar} oraz Boolean. Zaktada
sig, ze:
Integer = {-10, ..., -1, 0, ..., 10}.
Ponadto, niech Viuegensinadmiar) =der {@, b} 01az Vpogiean =det D.
Termami rodzaju Integer U {nadmiar} sa, na przyktad:
0,1,a,b,(a® b),(a® (a® b)).

Termy te reprezentuja pewne wartosci ze zbioru Integer U {nadmiar}, przy czym
zaleza one od wartosciowania v zbioru zmiennych. Niech v = {<a, 3>, <b, 4>}.

Wowcezas term 0 reprezentuje wartos¢ 0, term a reprezentuje warto$¢ 3, term
b reprezentuje wartos¢ 4, a term (a®b) reprezentuje wartos¢ 7. Natomiast warto-
$cig termu (a® (a®b)) jest nadmiar, gdyz wartoscia jego podtermu (a®b) jest
nadmiar, poniewaz a*b > 10.

Termami rodzaju Boolean sa na przyklad:
(a® b)=(1®a), (a©b)2(ba)

Wartosciami obu termow, przy wartosciowaniu v, jest false.

119

Wartosci terméw przy danym wartosciowaniu v w algebrze
ALG =45 <{Ay, ..., A}, {1, s Cu} U {fi, .., [u}> dlame Nat oraz k, ne Na\{0}
mozna zdefiniowa¢ ogdlnie.

Przez WAR,(f) oznacza si¢ wartos¢ termu ¢ wartosciowaniu v. WAR, jest funkcja
o0 sygnaturze:

WAR, : Term(V) — A
gdzie:

k
Term(V) = U Term, (V) ,
i=l

Funkcj¢ obliczania wartosci terméw WAR, mozna zdefiniowaé rekursywnie w sposob
nastgpujacy:
o jezeli term jest postaci v, gdzie v jest zmienna, czyli ve V, to WAR,(v) = v(v),
e jezeli term jest postaci ¢, gdzie c jest stala, czyli ce {cy, ..., cu}, to WAR,(c) =c,
e jezeli term jest postaci f(1,, ..., 1), gdzie f jest k-argumentowym dzialaniem, czyli
felfi, ... fu}s 1, ..y 1 s@ termami, czyli 1y, ..., t € Term(V), to
WAR,(f(t1, ..., t)) = AWAR,(1)), ..., WAR,(t\)).
Niech Termu () bedzie zbiorem termow statych pewnej algebry ALG. Wartos¢ ter-

mu stalego 7 nie zalezy od wartosciowania v. Zatem, dla dowolnych dwéch warto-
$ciowan v oraz v’ zachodzi:

WAR,(7) = WAR(f)

Niech WAR(t) oznacza wartos¢ termu stalego z. Definiuje si¢ relacje binarng = na zbio-
rze termow statych:

jezeli ty, he Terma (D), to 1, = t, wtedy i tylko wtedy, gdy WAR(t,) = WAR(t).

Relacja = jest oczywiscie relacjg rdwnowaznosci i wyznacza podzial zbioru terméw
stalych na klasy abstrakcji. Do jednej klasy abstrakcji naleza wszystkie termy tego
samego rodzaju, ktore reprezentujg t¢ samg wartos¢. Oznacza to, ze relacj¢ = bytoby
mozna okresli¢ jako rodzing relacji binarnych zdefiniowanych na podzbiorze terméw
statych ustalonego rodzaju, czyli = =g {=i, ..., =}, gdzie = dla i = 1, ..., k jest zdefi-
niowane:

jezeli t, e Term(J), to t; = t, wtedy i tylko wtedy, gdy WAR(t)) = WAR(t,).

120

Przyklad 6.11

e :
Dla algebry ALG ueger u(naamiar) Zdefiniowanej w wczesniejszym przyktladzie, rela-
cja R wyznacza podzial termow statych rodzaju Integer U {nadmiar} na klasy
abstrakceji, z ktorych kazda reprezentuje termy przyjmujace wartosci —10, ..., —1,
0, ..., 10 oraz nadmiar. Kazda z klas zawiera nieskonczenie wiele terméw. Przy-
ktadowo, do jednej klasy termow o wartosci 0 naleza, migdzy innymi:

1 (0e0)®l) (lehe1)e0)
Do klasy termdw o wartosci nadmiar naleza, migdzy innymi:

l (1® nadmiar) ((0 © nadmiar) ®1) (12020 ©0) ,) N

Niech Termy. (V) bedzie zbiorem terméw algebry ALG na zbiorem zmiennych V. Na
zbiorze tym mozna réwniez zdefiniowac relacj¢ rownowaznosci, ktéra jest uogolnie-
niem relacji rownowaznosci = zdefiniowanej na zbiorze termow statych. Bedzie ona
oznaczona tym samym symbolem = i bedzie zdefiniowana jako rodzina relacji:

def{:"’l, seey zk})
gdzie =;dlai =1, ..., k jest zdefiniowane:

jezeli t, t eTerm(V), to t, = t, wtedy i tylko wtedy, gdy WAR,(t;))=WAR,(t,) dla
kazdego warto$ciowania v.

Jezeli dwa termy naleza do jednej klasy abstrakcji wyznaczonej przez relacj¢ =, to dla
dowolnie wybranego wartosciowania reprezentujg one t¢ sama wartosc.

Przyklad 6.12

Dla poprzednio rozwazanej algebry:

ALG(.'u/lmw:lc =def <{CalkOWite, BOOlean}v {0’ l } ¥ {—’ +a) *s /) =, Z}>

i zbioru terméw nad zbiorem zmiennych Veuowice =det {@, b} 0raz Vpoorean =aet D,
relacja =y wyznacza podzial terméw rodzaju Integeru{nadmiar} na klasy abs-
trakcji, z ktorych kazda reprezentuje termy przyjmujace te wartosci dla dowolnie
ustalonego wartosciowania. Przyktadowo, do tej samej klasy termow naleza mie-
dzy innymi:

1 ((a-a)+1) ((1/1=b)-0)+b)
Do innej klasy naleza, migdzy innymi, termy:

a(@a-b)y+b) ((@a*)-b)+b)

121

6.4. Algebry Boole’a

Wsréd algebr, ktére w informatyce maja szerokie zastosowania, szczegolng role od-
grywaja algebry Boole’a. Stanowia one pewng klasa algebr zdefiniowang przez okre-
slenie pewnych wlasnosci wyrazanych w postaci rownosci. Taki sposéb definiowania
algebr nazywa si¢ definiowaniem réwnosciowym.

Algebrq Boole’a okresla si¢ kazda algebrg o strukturze:

BOOL =4 <A, {0, 1} U {— +, *}>
gdzie:

A jest dowolnym zbiorem, nosnikiem algebry,

0,1 sa statymi, nazywanymi zerem i jednosciq boolowskq,

— jest dziataniem jednoargumentowym, nazywanym dopelnieniem boolowskim,

+, * sa dzialaniami dwuargumentowymi, nazywanymi umownie dodawaniem
1 mnozeniem boolowskim (nie nalezy tych dzialan utozsamia¢ z dziataniami
arytmetycznymi ani mnogosciowymi),

ktéra ponadto, dla dowolnych a, b, ¢ €A, spetnia nastgpujace wlasnosci:

l.(a+b)=(b+a) (a*b)=(b*a)
2.((a+b)+c)=(a+ (b +0)) ((@*b)*c)=(a*(b*c))
3.((a+b)*c)=((a*c)+ (b *c)) ((@*b)+c)={a+c)*(b+c))
4. (a+0)=a (a*1)=a

5.(a+(-a)) =1 (a*(-a))=0

Witasnosci te wyrazaja:

1. przemiennos¢ dodawania i mnozenia,

2. lqcznosé dodawania i mnozenia,

3. rozdzielnos¢ mnozenia wzgledem dodawania oraz dodawania wzglgdem mnozenia,

4. neutralnos¢ zera wzgledem dodawania oraz jedynki wzgledem mnozenia,

5. neutralnos¢ elementu odwrotnego wzglgdem dodawania oraz wzglgdem mnozenia.
Whasnosci sa wyrazane poprzez réwnosci. ROwnos¢ jest napisem postaci #, = t,, gdzie
skfadowe ¢, i 1, sq termami ze zbioru Termgoo,(V) nad dowolnym zbiorem zmiennych
V. Rownos¢ 1, = t, jest spetniona, gdy dla dowolnego wartosciowania v oba termy re-
prezentuja t¢ samg wartosc¢, czyli WAR, (1)) = WAR,(t,).

Od algebry Boole’a wymaga sig, aby byly spetnione wszystkie wyzej wymienione réwnosci.
Przyklad 6.13
Latwo sprawdzic, ze wczesniej zdefiniowana algebra:
ALGgosiean =des <Boolean, {not, and, or}>

122

Przyklad 6.14

Niech U bedzie dowolnym zbiorem, zas 2¥ rodzina wszystkich jego podzbioréw.
Podobnie mozna sprawdzi¢, ze algebra Boole’a jest struktura:

BOOLy =4s <2Y, (@, U} U {\, U, N}>
w ktérej 27 jest nosnikiem algebry, @ oraz U sa zerem i jednoscia, a dzialania
mnogosciowe \, U, N sa odpowiednio dopetnieniem, suma i iloczynem algebry.

Ogolniej, zamiast petnej rodziny podzbioréw 2Y wystarczy przyja¢ dowolna jej
podrodzing, zamknigta ze wzgledu na dzialania dopelnienia, sumy i iloczynu.
Przykladowo, zamknigta jest rodzina ztozona ze zbioru pustego i zbioru petnego,
czyli {Q, U}, to znaczy wynikiem kazdej z operacji wykonanej na elementach tej
| rodziny jest element nalezacy do tej rodziny. :

6.5. Homomorfizm algebr

Definiowanie algebry abstrakcyjnej wygodnie jest rozpoczyna¢ od opisania jej struk-
tury. Najprostszg jej charakterystyka jest sygnatura.

Sygnaturq algebry nazywa sig parg:
Slg = def <S, oP>

gdzie S jest niepustym zbiorem identyfikatoréw (nazw) nosnikéw (rodzajow), OP jest
zbiorem deklaracji operacji. Deklaracja operacji bgdzie zapisywana w postaci:

Op:5182...5, S

gdzie op jest identyfikatorem (nazwa) operacji, s; sz ... s, jest lista, ktorej elementy s,
52, ... $,€S sa identyfikatorami rodzajow argumentow, zas s€S§ jest identyfikatorem
(nazwa) rodzaju wartosci operacji. Deklaracja operacji o nazwie op wskazuje na na-
zwy zbiordw jej argumentdw i nazwe zbioru jej wartosci. Jezeli op jest operacja zero-
argumentowa, czyli stala, to jej deklaracja ma postac:

op:—s

Zaktada sig, ze kazda deklaracja operacji ma r6zng nazwe operacji. Dlatego dalej za-
miast pisac (op : s, sz ... s, = s)€ OP bedzie sig pisa¢ krotko ope OP.

123

Uwaga
Zapis postaci:
Op:51852...5, S
nie jest tym samym co zapis:
Op:SIX 52X .. X85S
Przyklad 6.15
Przyktady dwoch sygnatur Sig; =g <S;, OP>dla i =1, 2, gdzie:

S1 =ager {A} OP | =¢s{e: > A, d:AA— A}
S2 =qer {A, B} OP;:def{e:—-)A,d:AA—)A,r:AA—)B} |

Sygnatura jest tylko pewng charakteryzacjq algebry, a nie okresleniem algebry. Moze
by¢ wiele algebr majacych t¢ sama sygnature.

Algebrq nad sygnaturg Sig, krétko Sig-algebrq, nazywa sig parg:
ALG = def <A, F>
gdzie
A =4 {A; | s€ S} jest rodzing zbiorow zwanych nosnikami lub dziedzinami algebry,
F =gt {fop | op€ OP} jest rodzing funkcji zwanych operacjami algebry, przy czym
kazdej deklaracji operacji ope OP:
Op:S1S2..S5h—>S
odpowiada funkcja:
Jop 7 Ay Xl XA, A,

Dwie algebry o tej samej sygnaturze nazywa si¢ algebrami podobnymi.
Przyklad 6.16
Przyktadami dwoch algebr podobnych o sygnaturze Sig, sa:
ALG| =gef <Nat, {1, +}>

gdzie nosnikiem algebry ALG, jest zbidr liczb naturalnych Nat, stala 1 jest liczba
naturalng jeden, za$ operacja + jest dodawaniem w zbiorze liczb naturalnych.

ALG; =¢4.t <Nat, {1, *}>

Nosnikiem algebry ALG, jest zbidr liczb naturalnych Nat, stata 1 jest liczba natu-
ralng jeden, zas operacja * jest mnozeniem w zbiorze liczb naturalnych.

Przyktadami dwoch podobnych algebr dwurodzajowych o sygnaturze Sig, sa:
ALGs =q.s <{Nat, Logiczne}, {1, +, =} >

Nosnikami algebry ALGj; sa zbidr liczb naturalnych Nat oraz zbidr wartosci lo-
gicznych Logiczne =q4e¢ {prawda, falsz}, 1 oraz + sa, jak poprzednio, stalq jeden

124

i dodawaniem w zbiorze liczb naturalnych, natomiast operacja = jest rownos$cia
w zbiorze liczb naturalnych.

ALGy(X) =qer <{2", Logiczne}, {D, U, =}>

Algebra ALG4(X) jest algebra parametryzowang zbiorem X. Jej no$nikami sa: ro-
dzina podzbioréw pewnego zbioru X oraz zbiér Logiczne, a operacjami sg: stala
@&, ktéra jest zbiorem pustym, operacja \, ktdra jest suma mnogosciowa, oraz =,
ktdra jest rownoscig zbiorow. N

I

Niech beda dane dwie algebry: ALG| = 4ef <A, F> oraz ALG; = 4f <B, G> 0 sygnaturze
Sig = <S, OP>. Oznacza to, ze

A =4 {A; | S€S) oraz B =4 { B | s€ S} sa nosnikami algebr, a
F =4t {fop | op€ OP} oraz G =ur {8, | op€ OP} s rodzinami operacji tych algebr.

Homorfizmem z algebry ALG, w algebr¢ ALG, nazywa si¢ taka rodzing funkcji H
H =4 {h;: A;— B|s €S}

ze dla kazdej funkeji f,,: A; X...XA; — A, dla ope OP, zachodzi warunek:

h, (fop (a1, ..0,)) =8, (hy, (a)), ...,k (a,))

dla dowolnych a; € As, ,J =1, ..., n. Fakt, ze H jest homorfizmem zapisuje sig:

H:ALG,— ALG,

Przyklad 6.17
Dane sa dwie algebry jednorodzajowe:

ALG\=<Nat, {1, +}>
ALG, = <Nat,, {1, ®}>

gdzie Nat, = {0, 1, ..., n—1}, a @ oznacza dodawanie modulo n.
Homomorfizmem jest funkcja & : Nat — Nat, zdefiniowana wzorem:
l h(m) = reszta z dzielenia m przez n, dla me Nat. |

Jezeli kazda z funkcji A, homomorfizmu H = {h, : A; — B, | s€ S} jest funkcja wza-
jemnie jednoznaczna, to H nazywa si¢ izomorfizmem.

125

6.6. Algebra ilorazowa termow

Dana algebra wielorodzajowa ALG = <A, F> o sygnaturze Sig =<S§, OP>,
gdzie:

A ={A,| s€ S} jest rodzing no$nikow algebry ALG,
F ={f,, | ope OP} jest zbiorem operacji algebry ALG,

generuje zbior terméw nad ustalonym zbiorem zmiennych V:

Term(V) = UTerms W)
se§

Zbior ten moze by¢ podstawa do utworzenia nowej algebry wielorodzajowej, zwanej al-
gebrq termow, [Ehrig, Mahr 1985], [Rasiowa 1998], ktdra jest podobna do algebry ALG.

Algebrg terméw
ALGTerm =def < Aa F >
dla algebry ALG definiuje si¢ nastgpujaco:

A = {Termy(V) | s€ S} jest rodzing no$nikow algebry terméw,
F = {f,, | ope OP} jest zbiorem operacji algebry termdw, przy czym operacja f,,
ma sygnatureg:
fop :Term, (V)X...XTerm, (V)—Term (V)
gdy deklaracja operacji ma postaé: op : sy sa, ..., S, = S, 1 jest zdefiniowana nastgpujaco:
jeieli tj (S Termsl_ dlaj =1,..,n, tOfop(f], vy In) =deff:,p(t], o l,,).
Kazdemu nosnikowi A; i kazdej operacji f,, w algebrze ALG odpowiadaja no$nik Ter-
my(V) i operacja f,, w algebrze terméw ALGrepm.

Niech = bgdzie wczesniej okreslong rodzing relacji binarnych =; na zbiorze terméw
rodzaju se .

Relacje te sa relacjami rownowaznosci i majg nastepujacg wlasnos¢:

Jezeli ’sj’t;, sa termami rodzaju s; oraz 1, = t;J dlaj=1,..,n,to

K

Foposanste Yoy Fo s ienst)
dla ope OP.

Rodzing relacji rownowaznosci o tej wlasnosci nazywa si¢ kongruencjq.

Kongruencja jest podstawa do zdefiniowania algebry, nazywanej ilorazowq algebrq

126
terméw ALG. dla algebry ALG. Dodatkowo, algebry te sa homomorficzne, to znaczy
istnieje homomorfizm H : ALG — ALG..
Definicja algebry ALG. jest nastgpujaca:
ALG.=ys< A, F >
gdzie:

{Termy(V) /=, | s€ S} jest rodzing zbiordéw ilorazowych terméw rodzajow s€ S,

{ jT(,,, | ope OP} jest zbiorem operacji ilorazowej algebry terméw, przy czym
operacja ﬁ,, ma sygnature:

70,, :Termxl WY/ = x...xTermx” W)/ =, =3 Term (V)/ =,

A=
F =

gdy deklaracja operacji ma postac: op : sy 52 ... 5, = 5, i jest zdefiniowana nastgpujaco:

jezeli [1;1€ Term, /=, dlaj=1,..,n,to0 For(lt1], ooy [821) =aet Uopt1, oons 1)),

Nalezy przypomnieé, ze [t;] jest oznaczeniem klasy abstrakcji generowanej przez
term ;.

Cwiczenia

1. Niech bedzie dana algebra ALGyu =aer <Nat, {0, 1}, {+, —, *}>. Przedstawi¢ gra-
matyke generujaca poprawne wyrazenia (termy) zbudowane ze zmiennych repre-
zentujacych liczby oraz z operacji podanej algebry.

2. Niech bedzie dana algebra ALGy,, =ger <Int, {+, —, *}>, gdzie Int =4 {-100, ..., 0, 1,
..., 100}. Przedstawi¢ definicj¢ dzialan algebry pozwalajaca na okreslenie ich wyni-
ku dla dowolnych argumentéw.

3. Zdefiniowa¢ algebre definiujaca typ znakowy (string) w jezyku Pascal.

4. Przedstawi¢ wielorodzajowa algebre, ktéra bedzie wyraza¢ znaczenie typu wylicze-
niowego zdefiniowanego w jezyku Pascal w sposdb nastgpujacy:

type DniTygodnia = (pon, wt, $r, czw, piqt, sob, niedz).

5. Zdefiniowa¢ gramatyke, ktora bedzie generowaé zbidr terméw rodzaju DniTygo-
dnia okre$lonych przez algebre¢ zdefiniowana w zadaniu 3.

6. Dla algebry z zadania 3 zdefiniowac algebr¢ termdw i ilorazowa algebrg termow.

7. Niech A =4 {1, 2, 3, 5, 6, 10, 15, 30}>. Pokaza¢, ze algebra ALG zdefiniowana

127

nastepujaco:

ALG=<A, (1,30} U {-, +, *}>
gdzie dla a, beA
—a oznacza liczbe stanowiqcq wynik dzielenia 30 przez a,
a + b oznacza najmniejszq wspolnq wielokromosé liczb a oraz b,
a * b oznacza najwiekszy wspolny podzielnik liczb a oraz b,

jest algebra Boole’a.

8. Pokaza¢, ze istnieje homomorfizm migedzy dowolng algebra a generowang przez nia
ilorazowg algebrg terméw.

7. Rachunek zdan

7.1. Skladnia

Rachunek zdan jest podstawowa czgscig logiki klasycznej. Elementy rachunku byty
nieformalnie wprowadzone i uzywane w poprzednich rozdziatach. W tym rozdziale
przedstawia si¢ sktadni¢ i semantyke rachunku zdan.

Jezyk rachunku zdan, tak jak kazdy jezyk formalny, definiuje si¢ przez podanie alfa-
betu — zbioru symboli podstawowych, oraz przez podanie zasad tworzenia z nich napi-
sow — stow nad alfabetem. Symbole alfabetu nazywa si¢ jednostkami leksykalnymi.
Takie wyr6znienie wynika stad, ze jednostki leksykalne moga by¢ stowami nad innym
alfabetem.

Alfabet jezyka rachunku zdan sktada si¢ z nastgpujacych czterech kategorii jednostek
leksykalnych:

e symboli stalych logicznych reprezentowanych przez napisy true oraz false;

e przeliczalnej liczby symboli zmiennych zdaniowych, reprezentowanych przez
dowolnie ustalone identyfikatory, dalej najczgsciej bgda uzywane pojedyncze
male litery p, q, r, ... ;

e symboli spdjnikow logicznych:

negacji

koniunkcji

dysjunkcji (lub alternatywy)
implikacji

rownowaznosci

gy<>

e dwdch symboli pomocniczych:

~

lewy nawias
prawy nawias

~—

129

Alfabet rachunku zdan jest zbiorem nieskonczonym, ale co najwyzej przeliczalnym,
gdyz dopuszcza si¢ uzywanie dowolnej liczby identyfikatoréw dla reprezentacji
zmiennych zdaniowych. Oczywiscie, w praktycznych zastosowaniach dysponuje sig¢
zawsze skonczona liczba zmiennych zdaniowych. Ich posta¢ — ustalana dowolnie — nie
ma wplywu na znaczenie jgzyka.

Z alfabetu tworzy si¢ pewne napisy — formuty, ktére — z definicji — sa napisami poprawnie
zbudowanymi. Dalej pojedyncze formuly beda oznaczane matymi literami greckimi.

Zbiér formul rachunku zdan FORM, nad okreslonym wyzej alfabetem, jest definiowa-
ny rekursywnie w nastgpujacy sposob:

e symbole zmiennych zdaniowych oraz symbole statych logicznych sa formutami,
nazywa si¢ je formutami elementarnymi albo atomowymi;
e jezeli o oraz B sa formutami, to formutami, nazywanymi formutami zlozonymi,

s napisy:
—a, (=), (aA P), (av p),(ae P).

Zbior formut FORM jest jezykiem formalnym rachunku zdan. Formuty rachunku zdan
nazywa si¢ tez zdaniami.

Jezeli o jest formutla, to kazde podstowo stowa ¢, ktore jest formula, nazywa si¢ pod-
Jormulq a.
Przyklad 7.1
Jezeli dana jest formuta (¢ A B), to jej podformutami sa « oraz B, a takze wszystkie
podformuty a oraz f. Dla formuty:

(=@ v g) A=),
gdzie p, g, r s zmiennymi zdaniowymi, jej podformutami sa formuty:
. —ve, @ve, pog o |
Uwaga

W celu zredukowania liczby nawiaséw w formulach dalej si¢ przyjmuje (jak
w rozdziale 1), ze spdjniki logiczne maja ustalona kolejno$¢ wiazania spdjnikow
(od najsilniejszego do najstabszego):

2, A, V, =, .
Pozwala to pisac¢, na przyktad:

—aAf zamiast (= anap),
—~aAfBvy zamiast (maapB)yvy,

gdzie a oraz 3 sa dowolnymi formutami.

130

W przypadku, gdy takie same spdjniki wystgpuja obok siebie zaktada si¢ dodatko-
wo, ze spojniki A, v wystepujace obok siebie tacza w lewo, a spojniki =, & wy-
stgpujace obok siebie facza w prawo. Na przyktad:

PAGAT znaczy PAg) AT,
p=q=r znaczy p=(g=r).

Przedstawiony jezyk formalny rachunku zdan abstrahuje od postaci zmiennych zda-
niowych. Jezyk ten mozna ukonkretni¢ definiujac odpowiednig gramatyke bezkon-
tekstowa.

Przyjmuje si¢ konwencj¢ powszechnie stosowana w jezykach programowania, ze
identyfikatorem jest niepusty skonczony ciag znakdw, ktérego pierwszym elementem
jest dowolna litera alfabetu tacinskiego, a elementami pozostatymi sa litery lub cyfry
arabskie.

Gramatyke generujacq jezyk formalny rachunku zdan (RZ) mozna zdefiniowaé nastg-
pujaco:

Grz =daet <Trz, Nkz, Prz, Skz>»
gdzie:

Trz =aer {true, false} U {a, b, ..., z} U {0, 1,...,9} U {—, A, v,=,) U {()]

Ngz =as {formula, formula-elementarna, stala-logiczna, zmienna-zdaniowa, iden-
tyfikator, litera, cyfra spdjnik-logiczny}

Srz =aef formula
zas$ zbidr produkceji Pgz, zapisany w konwencji BNF, ma posta¢:

Prz =4t {formula ::= formula-elementarna |—~formula|

(formula binarny-spéjnik formula)
binarny-spdjnik-logiczny == A |v|= | &
Sformula-elementarna ::= stala-logiczna | zmienna-zdaniowa
stala-logiczna ::= true | false
zmienna-zdaniowa ::= identyfikator
identyfikator ::= litera | identyfikator cyfra | identyfikator litera
litera :=a|b|...|z
cyfra==0]1]...]19}

Jezyk formalny L(Grz) generowany przez podang gramatyke Ggz jest konkretyzacja

zdefiniowanego rekursywnie zbioru formut FORM.

W celu skrécenia zapisow cate formuty beda oznaczane pojedynczymi symbolami
i dlatego bedzie przydatne pojgcie rownosci tekstowej formut. Fakt, ze dwie formuty
o, B sa identyczne tekstowo bedzie zapisywany w postaci o= .

131

7.2. Semantyka

Jezyk formalny rachunku zdan w postaci przedstawionej wyzej jest jezykiem bez in-
terpretacji. Interpretacja jezyka polega na ustaleniu znaczenia elementéw jezyka — je-
go jednostek leksykalnych oraz formut. W celu przedstawienia interpretacji jest ko-
nieczne posiadanie pewnego zestawu poje¢ i sposobu ich reprezentacji w jakims
zrozumiatym jezyku, to znaczy potrzebne jest posiadanie metajezyka — jezyka stuza-
cego do opisu innego jezyka. Uzywanym tu metajezykiem bedzie jezyk teorii mnogo-
$ci, ktory byt przedstawiany w poprzednich rozdziatach.

Okreslenie interpretacji jezyka polega na ustaleniu dziedzin interpretacji, to jest zbio-
réw obiektow, ktore beda wyrazaé znaczenie elementow jezyka, oraz na ustaleniu spo-
sobu przyporzadkowania elementom jgzyka obiektow z dziedziny interpretacji.

Dziedzing interpretacji rachunku zdan jest zbidr wartosci logicznych:
Logiczne =4t { prawda, falsz}
Dalej zamiast pisaé prawda, falsz beda uzywane skroty P, F.

Przyporzadkowanie znaczenia elementom j¢zyka obiektéw nad dziedzing interpretacji
dokonuje si¢ w dwdch etapach: najpierw okresla si¢ znaczenie symboli statych i spéj-
nikéw logicznych, a nast¢pnie okresla si¢ znaczenie formut.

W pierwszym etapie wprowadza si¢ funkcje interpretacji bazowej I, krétko — inter-
pretacje, ktora okresla znaczenie symboli statych i spéjnikow logicznych.

Interpretacja (znaczeniem) symboli true oraz false s wartosci logiczne odpowiednio
prawda oraz falsz. Formalnie wyraza to funkcja interpretacji I w sposéb nastgpujacy:

I(true) =def P
I(false) =4t F

Symbolom spéjnikéw logicznym: —, A, v, =, <, interpretacja I przyporzadkowuje
funkcje o nastgpujacych sygnaturach:

I(=) : Logiczne — Logiczne
I(A), _IV)_, _I(=)_, _I(&)_: Logiczne® — Logiczne

Funkcje te sa okreslone szczegotowo przez tabelg 7.1.

Tablica 7.1
a b I(=)(a) al(A)b al(v)b al(=)b al()b
P P F P P P P
F P P F P P F
F F P F F P P
P F F F P F F

132

Tabela okresla tak zwang standardowq albo gléwngq interpretacje spojnikoéw logicz-
nych. W dalszym ciagu symbolom spoéjnikow logicznych bedzie przyporzadkowy-
wana wylacznie standardowa interpretacja. Dlatego w zapisie symboli statych
i spéjnikéw logicznych symbol interpretacji I bgdzie pomijany. W zaleznosci od
kontekstu, symbole spojnikow beda traktowane wylacznie jako symbole, badz jako
wyzej zdefiniowane funkcje. Tak wiasnie bylo w podrozdziale 1.2, w ktérym po raz
pierwszy zdefiniowano znaczenie sp6jnikéw logicznych; symbole spéjnikéw logicz-
nych byly tam traktowane jako funkcje.

Dziedzina interpretacji wraz z funkcja interpretacji statych i spdjnikéw logicznych
wyznaczaja algebre jednorodzajowa postaci:
<Logiczne, {I(true), I(false)}, {1(=), I(A), I(Vv), I(=), I(&)}>.

Drugim etapem definiowania interpretacji jezyka rachunku zdan jest okreslenie zna-
czenia (semantyki) dowolnych formut.

Dokonuje sie tego rekursywnie — podobnie jak dla terméw (podrozdziat 6.3) — rozpo-
czynajac od formut elementarnych. State, ktore sa formutami elementarnymi, maja juz
ustalong interpretacje. Formutami elementarnymi sa tez zmienne zdaniowe. Pojedyn-
cza zmienna reprezentuje prosta, niepodzielng wypowiedz, ktérej mozna dowolnie
przypisaé wartos¢ logiczna prawda albo falsz. Interpretacja (znaczenie) symbolu
zmiennej zdaniowej polega wigc na przypisaniu temu symbolowi wartosci P (prawda)
albo F (falsz). Niech ZmienneZdaniowe oznacza zbiér zmiennych zdaniowych. Przy-
pisanie wartosci zmiennej bedzie wyraza¢ funkcja wartosciowania zmiennych:

v : ZmienneZdaniowe — Logiczne,

ktéra zmiennej zdaniowej peZmienneZdaniowe przyporzadkowuje pewng wartos¢
logiczna v (p) € Logiczne.

Majac ustalong funkcje interpretacji bazowej I oraz funkcj¢ wartosciowania v mozna
jednoznacznie zdefiniowa¢ nowa funkcje, ktora kazdej formule ae FORM przypo-
rzadkowuje wartos¢ logiczng prawda albo falsz. Ta nowa funkcja

INT, : FORM — Logiczne
jest zdefiniowana rekursywnie w sposob nastgpujacy:
o Jezeli formuta o jest formuta w postaci stalej logicznej, to:

INT,(true) =g I(true) = P,
INT,(false) = 4¢ I(false) = F.

e Jezeli formula @ ma postaé¢ zmiennej zdaniowej p, to:
INT () = gef V(P)-

o Jezeli formuta jest formuta ztozona, to:

133

INT,(—Q) = ger I(=)(INT (@),
INT,(at - B) =t INT,(0) I(-) INT,(B),

gdzie - jest dowolnym binarnym spéjnikiem logicznym, czyli «€ {A, v, =, &}, zas
I(-) jest jego interpretacja.

Interpretacja stalych logicznych nie zalezy od wartosciowania v, a interpretacja
zmiennych zdaniowych nie zalezy od interpretacji bazowej I.

Uwaga

Do opisu semantyki formalnego jgzyka rachunku zdan zostat uzyty pewien metaje-
zyk. Warunkiem decydujacym o wyborze danego metajezyka jest jego zrozumia-
tos¢ i dostateczna sita ekspresji, pozwalajaca na wyrazenie odpowiednich faktow.
W naszym przypadku metajezykiem jest jezyk elementarnej teorii zbiorow, ktory
zostal wprowadzony w poprzednich rozdziatach. Natomiast do opisu jezyka ele-
mentarnej teorii mnogosci byt uzyty jezyk naturalny, ktory petnit role metajezyka
wzgledem jezyka teorii mnogosci. Idea definiowania znaczenia jezyka za pomoca
innego jezyka — metajezyka pochodzi od Tarskiego'.

Formula « spelnia interpretacje INT przy wartosciowaniu v, co bedzie zapisywane
W postaci:

INT, E

wtedy i tylko wtedy, gdy INT,(c) = P. Symbol & jest nazywany symbolem spetniania.

Formuta a spelnia interpretacje INT, co bedzie zapisywane w postaci:
INTE

wtedy i tylko wtedy, gdy o spetnia interpretacj¢ INT przy dowolnym warto$ciowaniu v.
Poniewaz jest rozwazana tylko interpretacja standardowa, symbol INT bedzie pomijany:

EQ
Formule taka nazywa si¢ tautologiq rachunku zdan.

Dwie formuly « oraz f sa rownowazne semantycznie, jezeli przy tej samej interpreta-
cji i przy tym samym wartosciowaniu sg jednoczesnie spetnione albo niespetnione.
Fakt rownowaznos$ci semantycznej formut zapisuje si¢ w postaci:

a=p.
Uwaga

Symbol réwnowaznosci semantycznej = nalezy odrézni¢ od symbolu réwnowazno-
sci tekstowej =. Dla dwdch dowolnych formut ¢, B jezeli o = B, to oczywiscie
réwniez o = 3, natomiast wynikanie odwrotne nie zachodzi.

'8 Alfred Tarski (1901-1983).

134

Pomigdzy spdjnikiem réwnowaznosci < a rbwnowaznoscia semantyczng = zachodzi
zwiazek wyrazajacy si¢ przez wlasnos¢:

Formuta postaci & < [jest tautologia, wtedy i tylko wtedy, gdy a = B.

7.3. Dowodzenie metoda zerojedynkowg

Bezposrednio z definicji interpretacji wynika, ze sprawdzenie czy dana formuta jest
tautologia moze polega¢ na wyliczeniu prawdziwosci formuty dla wszystkich mozli-
wych warto$ciowan zmiennych zdaniowych wystepujacych w tej formule. Liczba takich
warto$ciowan wynosi 2", gdzie n jest liczba zmiennych zdaniowych. Postgpowanie takie
okresla si¢ mianem metody zerojedynkowej. Jej istot¢ wyjasnia przyktad.

Przyklad 7.2

W celu pokazania, ze formuta
p=(@= p)

jest tautologia rachunku zdan wystarczy zbudowaé tablicg prawdziwosciowa,
w ktorej sa zestawione wszystkie mozliwe warto$ciowania zmiennych i obliczone
dla nich wartosci formuly i ewentualnie jej podformut.

P q q=p p=@=p)
F F P P
F P F P
P F P P
P P P P

Poniewaz formuta jest spelniona przy dowolnym wartosciowaniu wystepujacych
| W niej zmiennych, wigc jest tautologia. |

Metoda zerojedynkowa oblicza wartosci formutly dla wszystkich mozliwych warto-
$ciowan jej zmiennych. Poniewaz liczba takich wartosciowan jest skonczona, zatem
po skonczonej liczbie krokdw otrzymuje si¢ niezawodna odpowiedz na pytanie, czy
formufa jest tautologia. Metoda zerojedynkowa daje wigc zawsze podstawe do
stwierdzenia, czy dana formuta rachunku zdan jest czy nie jest tautologia. Problem
badania czy formufa jest tautologig jest rozstrzygalny. Ogolnie, pojecie rozstrzygal-
nosci danego problemu — pytania, na ktore odpowiedzig jest tak albo nie — oznacza,
ze istnieje procedura (algorytm), ktéra w skonczonej liczbie krokéw daje jedna
z tych odpowiedzi.

135

Metoda zerojedynkowa jest malo efektywna. Mozna ja usprawni¢ zauwazajac, ze ob-
liczenie wartosci falsz dla pewnego wartosciowania przesadza, iz formuta nie moze
by¢ tautologia. Obliczenia wartosci formuty mozna zakonczy¢ w momencie pierwsze-
go napotkania takiego warto$ciowania.

Dla rachunku zdan istniejg jeszcze inne, efektywniejsze sposoby rozstrzygania czy
formuta jest tautologia.

7.4. Wybrane tautologie

Tautologie sa schematami formul, ktére sa zawsze prawdziwe, niezaleznie od wyraza-
nych tresci. Sa one prawdziwe z uwagi na swoja struktur¢. Ponizej przedstawiono czg-
$ciej spotykane tautologie. Sa one wykorzystywane w dowodach matematycznych
i dlatego nazywa si¢ je prawami logicznymi albo prawami rachunku zdan. Niektdre
z nich majga tez tradycyjne nazwy. Jezeli o oraz 3 sa dowolnymi formutami, to tauto-
logiami sa formuty:

Prawo implikacji
Fa= e -avf
Prawa kontrapozycji
Eoa=Poe - =a
Fa=-fo p=-a
Prawa de Morgana

pﬂ(a/\ﬁ)@—\av—wﬁ
z=—1(av,3)<:ﬂa/\—|ﬁ

Prawa zaprzeczenia implikacji
Ea(a=>pB) e an-f

Prawa zaprzeczenia réwnowaznosci
Fa(aepfoeo-(a=pva(f=)

Prawa podwdjnego zaprzeczenia

E—Oa&e O

136

Prawo wylqczonego srodka
EavVv o e true
Prawo sprzecznosci
E oA -0 & false
Prawa idempotentnosci

FaAnOQ&S A
FOv o a

Prawa przemiennosci
Fanfefra
Favfepva

Prawa lqcznosci
FEaABap e (@af)ry
Fav(Bvye(avB vy

Prawa rozdzielnosci
FEarn(BvyeoanBvany
Fav(Bape(@vphalavy

Prawa uproszczen

EQAtrue & o
E Vv true < true
E a A false < false
Ea v false © «
Faan(avpB e a
Fav(aaf) e a

Fakt, ze przedstawione prawa sa tautologiami fatwo sprawdzi¢ metoda zerojedynko-
wa. Na podstawie tych praw oraz twierdzenia o zastgpowaniu mozna badaé czy tau-
tologiami sg inne formuty.

7.5. Dowodzenie transformacyjne

Niech « bedzie formuta, w ktérej wystepuje zmienna zdaniowa p oraz niech 3 bgdzie
pewna inng formula. Przez:

137

op ::=]
oznacza si¢ formulg, ktéra powstaje z formuly o przez tekstowe zastapienie kazdego
wystapienia zmiennej p w formule « przez formule S.

Przyklad 7.3
Jezeli

a=(peqAp=roraz B=rvs,
to

L dpu=fl=(vyegaltrvs) =r Sy

Bezposrednio z definicji tautologii i tekstowego zastgpowania wystapienia zmiennej
wynika nastgpujace uzyteczne twierdzenie o zastgpowaniu.

Twierdzenie 7.1

Jezeli formuta o & o jest tautologia, B pewna formulg oraz p — zmienna zdanio-
wa, to formuta

Blp:=ale Blp:=an]
jest takze tautologia.

Na podstawie twierdzenia o zastgpowaniu formutuje si¢ nastgpujace reguly réwno-
waznego semantycznie przeksztatcania formut.

Regula zastgpienia:

Jezeli « jest formula a B jest jej podformula, to zastapienie podformuty 8 dowolng
inng rownowazng semantycznie formuta nie zmienia wartosci logicznej formuty a.

Przyklad 7.4

Niech dana begdzie formuta:

as(peS g Ap=r.

Jej podformuta:
B=pegq

jest rbwnowazna semantycznie formule:
P=9r(g=p)

Zatem formutla o jest rOwnowazna semantycznie formule:

P=29Ar@=>p)Ap=>r

138

czyli

pearp=mr=e=9a@=pAp=r

Regula przechodniosci:

Jezeli formuly a < fB oraz f < y sa tautologiami, to tautologia jest rowniez for-
mula o & 7.

Reguly zastapienia i przechodnio$ci pozwalaja na pewne tekstowe transformacje for-
mul, ktére mozna wykorzysta¢ do badania réwnowaznosci lub badania czy formuta
jest tautologia.

Przyklad 7.5

Dana jest formuta:
~qA(Pp=q)=-p

Aby pokazaé, ze jest ona tautologia nalezy pokazaé, ze jest rownowazna formule
true. Prowadzi do tego nastepujacy ciag transformacji:

gqAp=q9)=-p

S gA(=pVvg=-p — prawo implikacji

S (gA—Pp)V(gA q)=—p — prawo rozdzielnosci

< (g A —p) v false = —p — prawo sprzecznosci

S gA—p=-p — prawo uproszczenia

S =(gvp)=-—p — prawo de Morgana

S —(=(gvp)v—p — prawo implikac;ji

< (@vp)v—p — prawo podwdjnej negacji
Sqv(pv-p) — prawo facznosci

& gV true — prawo uproszczenia

< true — prawo uproszczenia

Kazdy krok transformacji jest przeprowadzony w oparciu o regulg zastapienia wykorzy-
stujacg wskazane prawo logiczne. Na mocy reguty przechodnio$ci stwierdza si¢, ze —q A
(p = q) = —p © true, co oznacza, ze formula —g A (p = gq) = —p jest tautologia.
Formuta, ktéra dowiedziono, jest prawem logicznym, nazywanym modus tollens.

7.6. Postaci kanoniczne formul

W wielu zastosowaniach jest wygodne, aby formuly miaty pewna standardowa (kano-
niczna) postaé. Pozwala to, migdzy innymi, na ulatwienie badania rownowaznosci

139
formut. Wyrodznia si¢ dwa rodzaje postaci kanonicznych — koniunkcyjna posta¢ nor-
malng i dysjunkcyjna posta¢ normalna.

Literalem nazywa si¢ zmienng zdaniowa lub jej negacje¢. Jezeli p, g, ... sa zmiennymi
zdaniowymi, to p, q, ... sq literatami pozytywnymi, a —p, —q, ... sa literalami negatyw-
nymi. Pojedynczy literat bedzie oznaczany symbolem A.

Klauzulq albo dysjunkcjq elementarng bgdzie nazywana formuta postaci:

A,l v/lgv ...VA,,,

gdzie Ay, A, ..., A, sa literalami (n > 1). Pojedyncza klauzula bgdzie oznaczana sym-
bolem k.

Formuta « jest w koniunkcyjnej postaci normalnej (CNF — conjunctive normal form)
wtedy i tylko wtedy, gdy jest koniunkcja klauzul, to znaczy, gdy jest postaci:

KINKA ... AK,
gdzie k;, dla i =1, ..., n, sa klauzulami.

Przyklad 7.6
! B

: -1
Jezeli dane sg trzy zmienne zdaniowe p, g, r, to wyznaczaja one 8 roznych seman-

tycznie klauzul. Sa to:

pvqvr pvqv-=r pv—qvr pv=—qV—r
—-pvqgvr —pVvqv-—r —pVvV-—=gVvr —pv-gqgvVv-r

Z tekstowego punktu widzenia klauzul zawierajacych trzy zmienne jest wigce;j.
Kazda z innych klauzul jest rOwnowazna semantycznie jednej z wyzej wymienio-
nych. Na przyklad, klauzule g v p v —roraz p v —r v g sa rdwnowazne klauzuli:

| pvqv—r.
Koniunkcjq elementarng bgdzie nazywana formutla postaci:
MAAA .. .AA,

gdzie Ay, Ay, ..., A, sa literalami (n > 1). Pojedyncza koniunkcja elementarna bgdzie
oznaczana symbolem &.

Formuta « jest w dysjunkcyjnej postaci normalnej (DNF — disjunctive normal form)
wtedy i tylko wtedy, gdy jest dysjunkcja koniunkcji elementarnych, to znaczy, gdy
jest postaci:

5]V62V...\/5,,

gdzie §;, dla i =1, ..., n, sa koniunkcjami elementarnymi.

140

Przyklad 7.7

Jezeli dane sa trzy zmienne zdaniowe p, g, r, to wyznaczaja one 8 réznych ko-
niunkcji elementarnych. Sa to:

PAGAT PAGA-—r PAGAT PA—gGAN—r
[PAGAT PAGA - PATGAT P AG AT

Dla kazdej formuly « istnieje rownowazna jej semantycznie formuta w koniunkcyjnej
postaci normalnej oraz w dysjunkcyjnej postaci normalnej — formuly te beda oznacza-
ne odpowiednio przez CNF(¢) oraz DNF(Q).

Uzasadnieniem tych twierdzen jest przedstawiony ponizej algorytm, ktory dla dowol-
nej formuly a wyznacza nowa formut¢ w koniunkcyjnej postaci normalnej, oznaczang
CNF (), ktora jest rownowazna semantycznie formule ¢, czyli @ = CNF(Q).

Algorytm sprowadzania formul do koniunkcyjnej postaci normalnej
Dane: Dowolna formuta e FORM
Wynik: Formula CNF(a)e FORM taka, ze o= CNF()

Procedura: Procedura postgpowania polega na etapowym, tekstowym przeksztat-
caniu formuly o. Formuta posrednia jest oznaczana przez f3, poczatkowo przyjmie
posta¢ formuly c.

1. Eliminacja z formuly f spdjnikéw logicznych réznych od koniunkcji, dys-
junkcji i negacji:
e kazda podformute formuly f3, postaci fi < fs, zastepuje si¢ tekstowo for-

mulg postaci (81 = B) A (B2 = B)),
e kazda podformutle postaci i = f, zastepuje si¢ tekstowo formula postaci

ﬁﬁl Vv ﬁz

2. Dopdki B nie jest w postaci koniunkcyjnej normalnej, dopSty powtarza sie
zastgpowanie podformut formuty B zgodnie z regutami podanym w tabeli:

Lp. Podformuta Formula
zastgpowana zastgpujaca
1 ——p Bi
2 =(Biv B =B A=
3 =(Bi A By) =B v =B
4 Biv(BanaBs) | (BivB)ABiv B

3. Formulg f3, otrzymang po zakoinczeniu poprzedniego kroku, definiuje sie jako
CNF(Q).

141

Algorytm dokonuje na formutach przeksztalcen semantycznie réwnowaznych, a po-
nadto rozpatruje wszystkie niezbgdne przypadki, co gwarantuje jego poprawnoscé.

Algorytm sprowadzania formuly do normalnej postaci dysjunkcyjnej jest prosta mo-
dyfikacja podanego wyzej algorytmu. Polega to na nastgpujacej zamianie ostatniego
wiersza w tabeli zastgpowania formut:

Lp. Formuta zast¢gpowana Formula zastgpujaca

4a BiA(Byv Bs) (Bi A B) v (B A B3)

Nalezy zwré6ci¢ uwage, ze w przypadkach stosowania ostatniej z regul zastgpowania
(przypadek 4 lub 4a), algorytm powoduje tekstowe wydluzenie przeksztalcanej for-
muly. W niektérych przypadkach, algorytm moze prowadzi¢ do wzrostu dlugosci
formuty.

rr

7.7. Funkcjonalna pelnos¢

Wprowadzony jezyk rachunku zdan uzywa zbioru spdjnikéow ztozonego z negacji,
koniunkcji, dysjunkcji, implikacji i rownowaznosci. W poprzednim punkcie pokaza-
no algorytm sprowadzania formutly do postaci kanonicznej, w ktorej wystepuja tylko
spojniki negacji, koniunkcji i dysjunkcji. Oznacza to, ze dla dowolnej formuly ra-
chunku zdan istnieje rownowazna semantycznie formula zawierajaca tylko te trzy
spéjniki.

Stwierdzenie to mozna wyrazi¢ w sposob ogélniejszy mdéwiac, ze za pomoca tych
spdjnikdw mozna wyrazi¢ dowolng n-argumentowa, n > 0, funkcj¢ prawdziwosciowa,
to jest funkcje typu: Logiczne" — Logiczne.

Dany zbiér spdjnikéw logicznych jest funkcjonalnie pelny, jezeli za ich pomoca da si¢
wyrazi¢ wszystkie mozliwe funkcje prawdziwosciowe, to znaczy, ze dowolng funkcje
prawdziwosciowa da si¢ przedstawi¢ jako formule, w ktérej wystepuja spdjniki lo-
giczne nalezace do tego zbioru.

Twierdzenie 7.2

Zbidr spojnikow ztozony z negacji, koniunkceji i dysjunkeji jest funkcjonalnie pelny.
Dowédd

Szkic dowodu przedstawia si¢ nastgpujaco:

Zaktada sig, ze fipi,..., p.) jest dowolng n-argumentowa funkcja prawdziwosciowa.
Niech INT,(f(pu, ..., ps)) 0znacza interpretacj¢ funkcji f dla wartosciowania v. Inter-

142

pretacja funkcji f dla wartosciowania v jest jedna z wartosci P lub F. Pojedyncze
warto$ciowanie v przypisuje kazdej ze zmiennych py, ..., p, jedng z wartosci P lub F.

Jezeli INT,(f(pi, ..., p»)) = P, to koniunkcje¢ elementarna:
MALA .. AA

okresla si¢ w nastepujacy sposob:
A= pi, gdy v(p)) =P oraz A; = —p;, gdy v(p;) = F.

Latwo zauwazy¢, ze koniunkcja ta jest prawdziwa dla wartosciowania v i falszywa
dla kazdego innego wartosciowania.

Niech vy, ..., vk, gdzie K spehnia ograniczenie 0 < K < 2", bedzie zbiorem tych
wszystkich wartosciowan, dla ktérych funkcja f przyjmuje wartosé P. Dla danego
wartosciowania v;, dlaj = 1, ..., K, przez §; oznacza si¢ wyzej okreslona koniunkcjg
elementarng. Latwo sprawdzié, ze formuta

a=6vehv..vok

jest semantycznie rownowazna funkcji f, to znaczy dla dowolnego wartosciowania
v, INT,(f(pi, ..., pn)) = INT,(@). Poniewaz w formule wystepuja tylko spdjniki nega-
cji, koniunkcji i dysjunkcji stad wynika teza.

Funkcjonalnie petny zbidr spdjnikow jest minimalny, jezeli kazdy jego wiasciwy pod-
zbidr nie jest zbiorem funkcjonalnie petnym.

Zbiér spdjnikdw {—, A, v} nie jest zbiorem minimalnym. Oznacza to, ze po usunig-
ciu z niego pewnych spdjnikdw pozostanie on nadal zbiorem funkcjonalnie petnym.
Latwo si¢ przekona¢, ze zbiorami minimalnymi sa zbiory spdjnikéw {—, v} oraz
{—, A}. Z praw de Morgana wynika, ze na przyktad koniunkcj¢ mozna wyrazi¢ za
pomoca dysjunkcji. Zatem zbidr {—, A} jest funkcjonalnie petny. Natomiast za po-
mocg tylko samej negacji albo tylko samej koniunkcji nie mozna wyrazi¢ dowolnej
formuty.

Innym przyktadem minimalnego zbioru funkcjonalnie petnego jest zestaw {=, false}.
Wystepuje w nim jeden spdjnik i jedna stata.

Dwa interesujace przyktady minimalnych, funkcjonalnie petnych zbioréw spdjnikow
sq oparte na spojnikach NAND lub NOR, ktére sa zdefiniowane nastgpujaco:

NAND(p, q) =4t —(p A q)
NOR(p, q) =t —(p vV q)

Latwo pokazac, ze za ich pomoca mozna zdefiniowa¢ wczesniej wprowadzone spdjni-
ki. Na przykfad:

—p = NAND(p, p)

143

—p = NOR(p, p)

Spojniki sa interesujace migdzy innymi dlatego, ze w oparciu o kazdy z nich mozna
budowa¢ uktfady przetaczajace — fragmenty urzadzen komputerowych.

Przyklad 7.8

Kombinacyjne cyfrowe uklady przelaczajace stosowane w konstrukcji urzadzen

komputerowych charakteryzuja si¢ pewna liczba wejs¢, na ktore podaje si¢ dwa
sygnaty zero albo jeden, oraz przynajmniej jednym wyjsciem, na ktéorym réwniez
pojawia si¢ taki sygnal. Wartos¢ sygnatu wyjsciowego jest funkcja sygnatéw wej-
sciowych. Sygnaly o wartosciach zero i jeden moga kodowaé wartosci logiczne
falsz i prawda. Stad wyjscie uktadu mozna scharakteryzowac przez funkcje praw-
dziwosciowa, ktdrej argumentami sa wejscia ukfadu. Uklad realizuje si¢ za pomoca
uktadéw elementarnych. Przykladem zestawu elementarnych bramek logicznych,
za pomocg ktorych mozna zrealizowa¢ dowolny uklad przetaczajacy, sa bramki
nazywane NOT, AND, OR pokazane na rysunku 7.1, ktére sg realizatorami spojni-

k6w —, A, V.
a
a —a >_a/\c avce

Bramka NOT Bramka AND Bramka OR

I

S
S

Rys. 7.1. Schematy bramek logicznych NOT, AND i OR

Kazdg z bramek mozna zbudowaé za pomocg bramek NAND lub NOR, ktore sa
realizatorami spéjnikéw NAND oraz NOR (rys. 7.2).

a a
DO*—-.M AC) 307 —(avc)

b b

Bramka NAND Bramka NOR

Rys. 7.2. Schematy bramek NAND i NOR

Uzywajac na przyktad bramki NAND, otrzymujemy konstrukcje pokazane na
rys. 7.3.

144

a a —(aAb
]Of—»a Do_i:}ia/\b
a b

Q

if

S
J
S '

>

7.8. Rekursja i indukcja strukturalna

Rekursja jest waznym i czgsto wykorzystywanym sposobem definiowania zbioréw
(podrozdziat 2.2), relacji i funkcji (podrozdziat 4.6). Podane nizej twierdzenie dotyczy
rekursywnego definiowania funkcji okreslonych na zbiorze formut rachunku zdan.
Twierdzenie to gwarantuje jednoznaczno$¢ rekursywnie definiowanych funkcji.

Twierdzenie 7.3 (Zasada rekursji strukturalnej)

Niech pewna funkcja f bedzie okreslona na zbiorze formut FORM w sposéb naste-
pujacy:
krok poczqtkowy: na formutach elementarnych wartosci funkcji sa okreslone bez-

posrednio,
kroki indukcyjne: na formutach zlozonych wartosci funkcji sa okreslone posrednio:

e wartos¢ funkcji f na formule — jest okreslona w terminach wartosci funk-
cji fna q,

o wartos¢ funkcji f na formule (cr-) jest okreslona w terminach wartosci
funkcji f na formutach « i B, gdzie - oznacza dowolny binarny spéjnik lo-
giczny.

Funkcja f jest zdefiniowana jednoznacznie (istnieje doktadnie jedna tak zdefinio-
wana funkcja).

Dowdd twierdzenia pomijamy.

145

Przyklad 7.9
e B . e
Stosujac zasadg rekursji strukturalnej, na zbiorze formul FORM definiuje si¢ na-

stgpujaca funkcje d-

e jezeli ajest formuta elementarna, to d(c) = 0

e d—a)=d(a)+1

e d((a- B)) = d() + d(B) + 1 dla dowolnego spéjnika binarnego -€
AV, =2, :

Funkcja d() okresla stopienn formuly a. Stopien formuly, jak tatwo zauwazy¢,
| Oznacza liczbg spojnikdw logicznych w formule. |

Przyklad 7.10
Stosujac zasadg rekursji strukturalnej definiuje si¢ na zbiorze formut FORM naste-
pujace funkcje /(@) oraz p(¢) oznaczajace odpowiednio liczbg lewych i prawych

nawiaséw w formule o. Definicja funkcji I(c):

e jezeli o jest formulg elementarna, to /() =0
o [(—o) =)
e [(a-P))=I(a) +I(B) + 1 dla dowolnego spSjnika binarnego «€ {A, v, =, & }.

Rekursja strukturalna zostata tu przedstawiona tylko dla rachunku zdan. Ogdlnie, re-
kursj¢ strukturalng mozna stosowa¢ do dowolnych zbioréw definiowanych w sposéb
rekursywny, w szczegdlnosci do jezykow formalnych definiowanych za pomoca gra-
matyki bezkontekstowe;j.

Przyklad 7.11
—

Dana jest gramatyka G =q.¢ <7, N, P, §>, gdzie:

T=4{0, 1, @#+ * (,)}U{ab,..z}

N =4r {wyr, op_unarny, op_binarny, zmienna}

P =4 {wyr ::= 0| 1| zmienna | (wyr op_binarny wyr) | op_unarny wyr
zmienna :=al|b|...|z
op_binarny ::= + | *
op_unarny ::= @ | #}

S =ges Wyr

Funkcja iw : L(G) X {a, b, ..., z} — Nat, ktdra oblicza liczb¢ wystapien wskazanej
zmiennej w stowie jezyka generowanego przez gramatyke G, jest zdefiniowana na-
stepujaco:

146

a) dla wyrazen elementarnych:

w0, x)=Iw(l,x)=0 dlaxe{a,b, ..., z}
1 dlay=x
w(y, x) = dlax,ye{a,b, ...,z
w(yx) {0 dlay#x ? }
b) dla wyrazen ztozonych:

Iw((a- B), x) = Iw(a, x) + Iw(B, x) dla a, B € L(G), -€ {+, *}

| Iw(<q, x) = Iw(a, x) dla xe L(G), <€ { @, #} |

Indukcja matematyczna omowiona w rozdziale 1. dotyczyta sposobu dowodzenia wia-
snosci, ktore zachodza dla wszystkich liczb naturalnych. Zbidr liczb naturalnych jest
liniowo uporzadkowanym zbiorem przeliczalnym. Liniowy porzadek wyznacza rela-
cja wigkszosci pomigdzy liczbami naturalnymi. Czgsto interesuja nas wlasnosci, ktére
zachodzg dla innych zbioréw przeliczalnych, ale nie uporzadkowanych liniowo. Przy-
ktadem takiego zbioru jest zbior wszystkich formut rachunku zdan. Dowodzenie wia-
snosci postaci P(), gdzie ae FORM, opiera si¢ na indukcji strukturalnej, ktora jest
uogdlnieniem indukcji matematycznej.

Definicja 7.1. (Zasada indukcji strukturalnej dla rachunku zdan)

Niech P bedzie pewna wilasnoscig dotyczacg formul. Wiasno$¢ P(c) ma kazda
formuta o rachunku zdan pod warunkiem, ze:

krok poczqtkowy: wlasnos¢ t¢ ma kazda formuta elementarna,
kroki indukcyjne:

e jezeli wlasnosé t¢ ma formuta ¢, to takze ma ja formuta —¢,

e jezeli wlasno$¢ te maja formuly o oraz f3, to takze ma ja formuta (- f),
gdzie - oznacza dowolny binarny spéjnik logiczny.

Uzasadnieniem dla podanej definicji jest nastgpujace rozwazanie. Niech S begdzie zbio-
rem tych formut rachunku zdan, ktére maja wiasnos¢ P. Krok poczatkowy i kroki in-
dukcyjne stwierdzaja, ze formuly nalezace do S spetniaja warunki:

e jezeli ajest formula elementarna, to € S,
e jezeli ae P, to maeP
e jezeli o, BeP, to (a- fB) €8, gdzie - jest dowolnym binarnym spéjnikiem lo-
gicznym.
Poniewaz zbiér formul FORM jest najmniejszym zbiorem speiniajacym wyzej wy-
mienione warunki, zatem zbiér formut FORM C S, z czego wynika, ze kazda formuta
ma wlasnos¢ P.

147

Przyklad 7.12
Rozpatruje si¢ wiasnos¢ P: w dowolnej formule rachunku zdan liczba nawiaséw
otwierajacych jest rowna liczbie nawiasow zamykajacych. Przez lewy(q) oraz
prawy(Q) oznacza si¢ liczby nawiasdw otwierajacych i zamykajacych w formule
a. Wlasnos¢ P(@) moze by¢ zapisana lewy(q) = prawy(c).

e Formuly elementarne nie zawieraja nawiasow, zatem maja wlasnos¢ P.

e Zaklada sig, ze wlasnosé¢ P maja dowolne formuly ¢, fB. Oznacza to, ze le-
wy(@) = prawy(Q) oraz lewy(f) = prawy(f). Rozpatruje si¢ dowolna formute
ztozong: (a- B), gdzie - jest dowolnym binarnym spdjnikiem logicznym.
Wilasnosci P zachodza wiec rowniez dla (a - B):

lewy((cx-B)) = lewy(@) + lewy(B) + 1 =
prawy(Q) + prawy(B) + 1 =
. pew@dH

Zasada indukcji strukturalnej zostafa tu zdefiniowana tylko dla rachunku zdan. Jest
ona rowniez stosowana w rachunku kwantyfikatorow (patrz nastgpny rozdziat).

Cwiczenia

1. Wskazaé ciagi znakow, ktore sa stowami jg¢zyka rachunku zdan:

a)((pvq)
b)pvg
c)gvpe(vig,p))

2. Dang formute rachunku zdan przedstawi¢ w pelnej postaci z nawiasami, a nastgpnie
okresli¢ zbior wszystkich jej podformut:

A)arbacvdee=afvg=h
b)arn(barcvd)ese=(—fvg)=h

3. Poda¢ algorytm, ktéry dowolna formute rachunku zdan zapisang w postaci wrost-
kowej transformuje na formulg zapisang w postaci przedrostkowe;.

4. Funktorem zdaniowym n-argumentowym nazywamy dowolna funkcj¢ f o sygnaturze:
f: {prawda, falsz}" — {prawda, falsz}.

Jaka jest liczba takich funktoréw n-argumentowych? Zdefiniowa¢ wszystkie funk-
tory jedno- i dwuargumentowe.

148

5. Stosujac metod¢ zerojedynkowa wykazac, ze nastgpujace formuly sa tautologiami:

a)p=(q=>p)
b) (prq) & (—p Vv —g)
A@vag) & (=pAr—g)
6. Opierajac si¢ na systemie dowodzenia opartym tylko na regufach podstawienia
i przechodnio$ci, pokazaé, ze nastgpujace formuly sg tautologiami:

a)—an(a=b)= —a
b)a A (a= b) = b < true

7. Sprawdz (w dowolny sposdb), czy sa tautologiami nastgpujace formuty:

aApviganepPagvparn
bprgvnepPagvipnar)
asp

d)aV—\B

e)o=pf

8. Ktére zbiory spdjnikow logicznych sg zbiorami funkcjonalnie petnymi:

a) {—1,/\}

b) {ﬁ,V}

c) {_":}
d) {false, =}
e) (-, <}

f) {true, =}
g) {&, false}

9. Dane sa dwa dwuargumentowe funktory logiczne NAND oraz NOR zdefiniowane
nastgpujaco:

NAND(a, b) = —=(a A b) oraz NOR(a, b) =—(a Vv b).

Pokaza¢ w jaki sposob, za pomoca tych funktoréw, mozna wyrazi¢ spdjniki lo-
giczne negacji, koniunkcji i alternatywy. Narysowaé sieci logiczne realizujace
funkcje prawdziwosciowe fi, f> zdefiniowane przedstawiona ponizej tabelg, w kt6-
rej symbolami 0 oraz 1 oznaczono odpowiednio falsz oraz prawdg.

a b fi(a,b) faa.b)
0 0 1 1
0 1 0 0
1 0 1 1
1 1 0 1

10. Ktéra ze zdefiniowanych nizej relacji jest relacja rownowaznosci na zbiorze for-
muf rachunku zdan:

149

a) o ~; f wtedy i tylko wtedy, gdy formuta @ < B jest spetniona,

b) a ~> B wtedy i tylko wtedy, gdy formuta ot < [jest sprzeczna,

c) a ~3 B wtedy i tylko wtedy, gdy formula o & [jest spelniona doktadnie dla
polowy wartosciowan zmiennych.

11. Niech y bedzie dowolnie ustalong formuia rachunku zdan. Wykazaé, ze relacja
zdefiniowana nastgpujaco:

o ~ B wtedy i tylko wtedy, gdy formutay = (a < f) jest tautologia,
jest relacja rownowaznosci na zbiorze formut rachunku zdan:

12. Dana jest gramatyka G =4 <T, N, P, $>, gdzie:

T=4r{0,1, @ #,+,*(,)}

N =qes {wyr, op_unarny, op_binarny}

P =ges {wyr ::= 0| 1| (wyr op_binarny wyr) | op_unarny wyr
op_binarny ::=+ | *

op_unarny ::= @ | #}

S =get Wyr

a) Czy gramatyka jest jednoznaczna?

b) Poda¢ przykiad wyprowadzenia dowolnego stowa generowanego przez grama-
tyke G o dlugosci wigkszej od 2.

c) Stosujac zasadg rekursji strukturalnej zdefiniowaé funkcje left(), ktéra dla do-
wolnego napisu o L(G) okresla liczbg lewostronnych nawiasow wystepujacych
W napisie a.

d) Stosujac zasad¢ indukcji strukturalnej pokazaé, ze dla dowolnego napisu
ae€ L(G) zachodzi nastgpujaca wlasnosc:

left(c) = liczba operatoréw binarnych wystepujacych w napisie a.
13. Dla gramatyki G z przyktadu 11, zdefiniowac¢ funkcje, ktora oblicza liczbe:

a) wystapien zmiennych w stowie jgzyka generowanego przez gramatyke G,
b) liczbg réznych zmiennych wystepujacych w stowie jezyka generowanego przez
gramatyke G.

14. Nast¢pujace formuty sprowadzi¢ do koniunkcyjnej postaci normalnej (CNF):

a)((a=b)ve)e (bao)
b)—x(a/\b)zb(bv—.c)
c)a@a=b)v(b=a)

8. Rachunek kwantyfikatorow

8.1.

Skladnia

Rachunek kwantyfikatoréw jest uogdlnieniem rachunku zdan. Jg¢zyk formalny rachun-
ku kwantyfikatoréw jest zdefiniowany jako zbiér napiséw dwdch kategorii — terméw
i formut — nad alfabetem, na ktdry sktadajq si¢ nastgpujace kategorie jednostek leksy-
kalnych:

przeliczalny zbiér V symboli zmiennych indywiduowych, reprezentowanych
przez identyfikatory; dalej najczgsciej beda uzywane symbole: x, y, ...
przeliczalny zbidér F, symboli funkcyjnych n-argumentowych dla ne Nat, repre-
zentowanych przez identyfikatory; dalej najczgsciej beda uzywane symbole: ¢ —
dla symboli funkcyjnych zeroargumentowych, czyli dla statych indywiduowych,
oraz f, g, ... — dla pozostatych symboli funkcyjnych, zbioér wszystkich symboli
funkcyjnych bedzie oznaczany F = LJF,1 ,

ne Nat
przeliczalny zbiér P, symboli predykatow n-argumentowych dla ne Nat, repre-
zentowanych przez identyfikatory; predykaty zeroargumentowe sa nazywane
statymi logicznymi; dalej najczgsciej beda uzywane symbole p, g, ..., zbidr
wszystkich symboli predykatow begdzie oznaczany P = UP,, -

ne Nat

symbole spdjnikéw logicznych:

implikacji
koniunkcji
dysjunkcji (lub alternatywy)
negacji
rownowaznosci
symbole kwantyfikatoréw:

gd<>1

kwantyfikatora ogélnego
kwantyfikatora szczegolowego

W <

151

e symbole pomocnicze:

nawias otwierajqcy (
nawias zamykajqcy)
przecinek ,
kropka o

Zaklada sie, ze zbiory symboli funkcyjnych F i symboli predykatéw P sa roziaczne.
Para:

Sig =gt <F, P>

bedzie nazywana sygnaturq jezyka rachunku kwantyfikatoréw. Rachunek kwantyfi-
katoréw okre$la nie jeden konkretny jezyk, ale rodzing jezykéw. Kazdy jezyk jest
jednoznacznie wyznaczony przez sygnaturg. Sktadni i semantyka rachunku kwanty-
fikatorow jest definiowana przy zalozeniu dowolnej, ale ustalonej sygnatury. Dobor
odpowiedniej sygnatury wynika z zamierzonego zastosowania jezyka.

Reguly skladni definiuja dwa zbiory napiséw — termy i formuly — nad alfabetem ra-
chunku kwantyfikatoréw.

Zbior terméw nad sygnatura Sig i zbiorem zmiennych V, oznaczany TERM(F, V), jest
definiowany rekursywnie w sposob nastgpujacy:

e zmienne indywiduowe i stale indywiduowe sa termami, czyli
VU Fo CTERM(F, V),

e jezeli 1y, ..., tp (k =1, 2, ...) sg termami, zas f jest symbolem funkcyjnym
k-argumentowym, to f{zy, ..., #;) jest termem.

Term, ktéry nie zawiera zmiennych indywiduowych nazywa si¢ termem statym.

Zbiér formul nad sygnaturg Sig i zbiorem zmiennych indywiduowych V, oznaczany
FORM(F, P, V), jest definiowany rekursywnie w sposdb nastgpujacy:

1. symbole predykatéw zeroargumentowych (stale logiczne) sa formutami;

2. jezelity, ..., t (k =1, 2, ..., k) sa termami oraz p jest symbolem k-argumentowego
predykatu, to formutlq jest napis p(ti, ..., t);

3. jezeli o, B sa formutami, to formulami sg takze napisy:
—a(a= P) (anB) (avP) (e B

4. jezeli o jest formulg oraz x jest zmienng indywiduowa, to formutami sa takze:
(3xe) oraz (Vxeq)

Formuly spetniajace podane wyzej warunki (1) i (2) nazywa si¢ formutami atomowy-
mi, formuly spetniajace pozostate warunki — formutami zfozonymi.

152

Zbiér formut FORM(F, P, V) jest jezykiem formalnym rachunku kwantyfikatoréw
o sygnaturze <F, P> nad zbiorem zmiennych V.

Uwaga

W celu zredukowania liczby nawiaséw konwencj¢ przyjeta dla rachunku zdan
rozszerza si¢ o ustalenie priorytetow dla kwantyfikatorow. Przyjmuje sig¢, ze
kwantyfikatory maja priorytet nizszy od spojnikéw logicznych. Oznacza to, ze
formuta zapisana w postaci beznawiasowe;j:

Ixeanfvy
gdzie a, B, ¥ sa dowolnymi jej podformutami, w postaci z nawiasami przedstawia
si¢ nastgpujaco:

Ixe((anP)vy

Kwantyfikatory wystgpujace obok siebie tacza w prawo, to jest formuta:

Jxedye
oznacza:
Jxe(@ye)

Formuta a wystgpujaca po kwantyfikatorze w formule 3x.ca lub Vx.« nazywa sie za-
siegiem kwantyfikatora. Symbol x wystgpujacy bezposrednio za symbolem kwantyfi-
katoréw nazywa si¢ wskaznikiem zwiqzania. Symbol wskaznika okresla rolg zmiennej
x wystepujacej w formule o stanowigcej zasigg kwantyfikatora.

W zdefiniowanym jezyku kwantyfikatory wiaza jedynie zmienne indywiduowe, dlate-
go jezyk ten nazywa si¢ jezykiem kwantyfikatorow pierwszego rzedu. W logice rozpa-
truje si¢ takze inne jezyki, ktére dopuszczaja wiazanie przez kwantyfikatory innych
obiektéw, na przyktad rachunek kwantyfikatoréw drugiego rzedu dodatkowo pozwala
na wigzanie przez kwantyfikatory symboli predykatow. Dalsze rozwazania ograni-
czaja si¢ wylacznie do rachunku kwantyfikatorow pierwszego rzedu.

8.2. Indukcja strukturalna

Indukcja strukturalna jest podstawowg technika dowodzenia wiasnosci terméw i for-
mut. Zasada indukcji strukturalnej przedstawiona dla rachunku zdan rozszerza si¢ na
termy i formuly rachunku kwantyfikatorow.

153

Definicja (Zasada indukcji strukturalnej dla terméw)

Niech P(t) bedzie pewna wlasnoscia zachodzaca dla termu te TERM(F, V). Aby
pokaza¢, ze wlasno$¢ P zachodzi dla kazdego termu rachunku kwantyfikatoréw
wystarczy pokazac, ze:

krok poczqtkowy: wlasnosé P zachodzi dla kazdej zmiennej xe V, czyli P(x),
krok indukcyjny:

jezeli wlasno$¢ ta zachodzi dla terméw ¢, ..., t,, czyli P(t,), ..., P(t,), oraz
feF,, to wlasnos¢ ta zachodzi dla termu f{(,, ..., t,), czyli P(f(t), ..., t.)).

Definicja (Zasada indukcji strukturalnej dla formuf)

Niech P() bedzie pewna wlasnoscia zachodzaca dla formuly a.e FORM(F, P, V).
Aby pokazaé, ze wlasno$¢ P zachodzi dla kazdej formuty rachunku kwantyfikato-
réw wystarczy pokazac, ze:

krok poczqtkowy: whasnos¢ ta zachodzi dla kazdej formuly atomowej,
kroki indukcyjne:

e jezeli wlasnos¢ P zachodzi dla formuly o to takze zachodzi dla formuty —¢,

e jezeli wlasnos¢ P maja « oraz f3, to takze ma ja formuta (a -), gdzie -€ {A,
v, =, <&} oznacza dowolny binarny spdjnik logiczny,

e jezeli wlasno$¢ P zachodzi dla formuly ¢, za$ x jest zmienng indywiduowa, to
P takze zachodzi dla formuly Vx e ccoraz dla 3x e c.

Wykorzystujac indukcje¢ strukturalng mozna pokazaé, ze termy i formuly dekompo-
nuja si¢ jednoznacznie na komponenty skfadowe.

Lemat 8.1

Niech ¢ oraz s beda termami. Jezeli t = s w dla pewnego stowa nad alfabetem ra-
chunku kwantyfikatoréw, to w jest stowem pustym. Inaczej: zaden term nie jest
wlasciwym prefiksem (niepustym poczatkowym fragmentem) innego termu.

Dowod

Zgodnie z zasada indukcji strukturalnej rozpatruje si¢ kolejno przypadki. Jezeli
t jest zmienng indywiduowa, to 7 nie ma prefiksu wiasciwego. Zaktada si¢ teraz,
bez utraty ogodlnosci, ze ¢ jest postaci f(1, ..., t,) oraz ze t = s w dla pewnego sto-
wa w. Wéwczas s musi by¢ postaci f(sy, ..., s,) w. Dla kazdego i = 1, ..., n termy ¢;
oraz s; sa elementami sktadowymi termu ¢. Zatem — na mocy zatozenia indukcyj-
nego — ani #; ani s; nie sa swoimi prefiksami, z czego wynika, ze #; = 5;. To pocia-
ga, ze w = §, z czego ostatecznie wynika identycznosé ¢ = s.

154

Lemat 8.2

Niech « oraz 8 beda dowolnymi formutami. Formula & nie jest wlasciwym pre-
fiksem formuty B.

Dowod

Dowdd przebiega tak jak dla poprzedniego lematu i pozostawia si¢ go jako ¢wi-
czenie.

Na podstawie lematéw mozna dowies¢ twierdzenie o jednoznacznosci dekompozycji
terméw i formut.

Twierdzenie 8.1 (Twierdzenie o rozbiorze)

1. Kazdy term jest albo zmienng, albo stala, albo termem zlozonym postaci f(z;,
.., 1,), gdzie f jest jednoznacznie okreslonym symbolem funkcyjnym, za$ t,,
.., 1, s3 jednoznacznie okreslonymi termami.

2. Kazda formufa ma dokfadnie jedna z postaci:

a) p(ty, ..., tn)

b) (04

¢) (a-P) dla-€{A,v, =, =)
d) Qxe adla Qe {V, 3}

Twierdzenie umozliwia jednoznaczne rekursywne definiowanie funkcji na zbiorach
terméw i formul.
Przyklad 8.1

Funkcja | 7 | okreslajaca dlugos$¢ termu 7, rozumiana jako liczba jednostek leksy-

kalnych wchodzacych w skiad termu, jest definiowana nastgpujaco:

a) |x|=defl

8.3. Zmienne wolne i zwigzane

Zmienna indywiduowa x moze wystgpowac tekstowo w wielu miejscach termu lub
formuty. Kazde takie pojawienie si¢ zmiennej — poza miejscem bezposrednio za
kwantyfikatorem i przed kropka, gdzie okresla si¢ wskaznik wigzania — nazywa si¢
wystqpieniem zmiennej.

155

Wystapienie zmiennej w danej formule moze by¢ wolne albo zwigzane.

Wystapienie zmiennej w danej formule nazywa si¢ wystapieniem wolnym, jezeli wy-
stapienie to nie znajduje si¢ w zasiggu zadnego kwantyfikatora, natomiast w przypad-
ku przeciwnym — nazywa si¢ wystapieniem zwiqzanym. Ta sama zmienna moze
w danej formule mie¢ jednoczesnie wystapienia wolne i zwigzane.

Przyklad 8.2
Dana jest formuta:

p(x,y) = dx e gq(x, y)

gdzie p, q sa pewnymi dwuargumentowymi predykatami. Zmienna x ma dwa wy-

stapienia. Pierwsze wystapienie — jako argument predykatu p — jest wystapieniem

wolnym, drugie — jako argument predykatu g — jest wystapieniem zwigzanym.
l Zmienna y ma tez dwa wystapienia — oba wolne. |
Niech V bedzie zbiorem zmiennych indywiduowych. Definiuje si¢ funkcje, ktore dla
dowolnej formuly wyznaczaja podzbiory zmiennych majace wystapienia wolne
i zwigzane. Najpierw definiuje si¢ pomocnicza funkcjg:

Var : TERM(F, V) — 2"

ktéra dla dowolnego termu wyznacza zbiér zmiennych wystgpujacych w tym termie.
Funkcja jest zdefiniowana rekursywnie:

1. Var(c) =q4s D dla ce Fy
2. Var(x) =4 {x} dlaxeV
3. Var(fit, ..., 1)) =aet Var(t)) U ... Var(t,)dlafeF,(n=1,2, ...)

Term ¢, ktéry nie zawiera zmiennych indywiduowych, czyli dla ktérego Var(r) = &
jest termem stalym.

Funkcja wyznaczajaca zmienne majace wolne wystapienia w formule jest funkcja typu:
FV:FORM(F,P,V) —?2"
i jest zdefiniowana rekursywnie nastgpujaco:

1. FV(p(ty, ..., &) =aet FV(t) U ... U FV(t)
2. FV(—Q) =4t FV(0)
3. FV(a s B) =4t FV(@) U FV(B)
gdzie - oznacza dowolny binarny spéjnik logiczny, czyli € {A, v, =, &}

4. FV(Q x ® @) =qes FV() \ {x}
gdzie Q oznacza dowolny kwantyfikator, czyli Qe {V, 3}

Funkcja wyznaczajaca zmienne majace zwiazane wystapienia w formule jest funkcja typu:

BV : FORM(F, P, V) — 2"

156

i jest zdefiniowana rekursywnie nastepujaco:

1. BV(P(I], ey 1) =des D
2. BV(—@Q) =4es BV(@)
3. BV(ct+ B) =aet BV(@) U BV(B)

gdzie - oznacza dowolny spdjnik logiczny, czyli -€ {A, v, =, &}
4. BV(Q x ®) =¢s BV() U {x} _
gdzie Q oznacza dowolny kwantyfikator, czyli Qe {V, 3}
Przyklad 8.3

Dla formuty « postaci:
p(x,y) = Vx oVz ¢ (q(x) A p(x, 2))
zbiér zmiennych majacych wystapienia wolne jest nastgpujacy:
FV(a) =FV(p(x,y)u FV(Vx eVz e (q(x) A p(x, 2)))
= {x, y} U FV(q(x) A p(x, 2)\{x, z}
={x,y)uvQd
= {x, y}
za$ zbiér zmiennych majacych wystapienia zwigzane jest nastgpujacy:
BV(a) =BV(p(x,y)u BV(Vx e Yz e (q(x) A p(x, 2)))
= U {x, z} U BV(q(x) A p(x, 2))

I 1

]

Formuta, ktéra zawiera wolne wystapienia zmiennych nazywa si¢ formula otwartq.
Zamknieciem formuly otwartej nazywa si¢ formule otrzymana przez poprzedzenie da-
nej formuty otwartej kwantyfikatorami ogdlnymi wigzacymi wszystkie jej zmienne
wolne. Formuta zamknigta jest zdaniem, czyli ma jednoznacznie okreslong wartos¢

logiczna prawda albo falsz.

Przyklad 8.4

Formulami otwartymi sa:

Vx e p(x,y)
Vx oVy e (q(x) = p(y, 2))

Formutami zamknigtymi (zdaniami) sa:

Vx e g(x)
L Vx eVy e (q(x) A P(X,_w)’))

157

8.4. Podstawianie termow

Podstawieniem tekstowym termu za zmienne, albo krétko — podstawieniem, nazywa si¢
funkcje:

o:V—> TERM(F, V)
taka, ze zbior:

{(xe V| o(x) # x}
jest skonczony. Zbidr ten bedzie nazywany dziedzing podstawienia i oznaczany przez
dom(0).

Funkcja o jest podstawieniem tozsamosciowym jezeli dom(o) = &. Podstawienie takie
bedzie oznaczane symbolem €. Podstawienie nazywa si¢ podstawieniem podstawowym
albo stalym, jezeli przeciwdziedzina ran(o) funkcji podstawienia zawiera tylko termy
stale.

Jezeli dom(o) = {x, ..., x,} oraz o(x;)) =t;dlai =1, 2, ..., n, to funkcj¢ o zapisuje si¢
W postaci:

O =ger [X1 =11, ooy X 1= 1]
Zapis x; ::=t; czyta sig: x; jest zastepowane przez t;. Element x; ::= t; nazywa si¢ przypi-

saniem albo wiqzaniem. Stad podstawienie okresla si¢ tez jako skonczony zbior przy-
pisan albo wigzan.

Podstawienie 0 mozna rozszerzy¢ na zbiér formut. Najpierw rozszerza sig je na zbior
terméw, to znaczy do odwzorowania

0 : TERM(F, V) — TERM(F, V)
przyjmujac:

0'(x) =g 0(x) dlaxe V

o'(ft, ..., 1)) =as NI (1), ..., O (tn))

W kolejnym kroku rekursywnie rozszerza si¢ odwzorowanie o’ na odwzorowanie o”:
FORM(F, P, V) — FORM(F, P, V) w nastgpujacy sposob:

1. O’/(Lis iy I,,)) =defp(0/(t[), sy OI(I‘))

2. O”(—MX) =def —10'”(a)

3. 0"((a= B)) =aer (0”(0) - 0" (B))

gdzie - oznacza dowolny spdjnik logiczny, czyli <€ {A, v, =, &}

4.0"(Qx® Q) =4¢sQxe 0,"(0)

158

gdzie Q oznacza dowolny kwantyfikator, czyli Qe {V, 3}, za$ 0,” jest obcigciem
funkcji 0” do zbioru zmiennych wolnych w formule Qx e ¢, czyli 61" = 0“|rvgc e o
Oznacza to, ze w formule Q x ® a moga nastapic przypisania tylko za wolne wy-
stapienia zmiennych.

Dalej, w celu uproszczenia oznaczen, wszystkie symbole podstawienia bgda pisane
bez “oraz ”. Ponadto, ze wzgledu na wygodg, zastosowanie podstawienia o do termu
t bedzie zapisywane w postaci to oraz — podobnie — zastosowanie do formuty o w po-
staci ao. Formule ao bedzie nazywac si¢ ukonkretnieniem formuly « przez podsta-
wienie O.

Przyklad 8.5

| IR R e

Niech O =g [x := 11,y i=t:] oraz = Vz ® (p(x, y, 2) = q(x, z)). Wéwczas

L 0=z 0y, 9= qx D)=ty i= 6] =Yz (P, 2,) = (0, D).

Niech o oraz 7 beda dwoma podstawieniami. Ztozenie podstawien o oraz 7 jest defi-
niowane tak samo jak sktadanie funkcji. Jest zatem podstawieniem oznaczanym przez
o -7 — albo krétko o 7— i zdefiniowanym nastgpujaco:

(0 7)(x) =4r 7(0(x)) dla xe V.
Jezeli podstawienie o jest takie, ze istnieje dla niego podstawienie odwrotne o' takie, ze
oo'=c'o=¢

to o jest nazywane przemianowaniem zmiennych. Term ¢, nazywa si¢ wariantem ter-
mu f,, jezeli istnieje takie przemianowanie 0, ze t; = 0(t,).

Podstawienie o nazywa si¢ podstawieniem idempotentnym, jesli o(o(x))=0(x) dla do-
wolnego xe V.

Term t jest wolny w formule o ze wzgledu na zmienng x, gdy zachodzi jeden z wa-
runkéw:

1. ajest formutg atomowa,

2. ov=—f oraz term 7 jest wolny w f3 ze wzgledu na x,

3. a= B ° B, gdzie °e{A, v, =, < }oraz term ¢ jest wolny w 3, oraz w 3, ze
wzgledu na x,

4. a=Qxe f3

5.a=Qye B, x#y, Qe {V, 3}, y& Var(r), oraz term ¢ jest wolny w 3 ze wzgledu na x.

Inaczej: term ¢ jest wolny w formule o ze wzgledu na x w przypadku, gdy podstawie-
nie t za x w formule « nie powoduje, ze ktéras ze zmiennych wystgpujacych
w termie ¢ stanie sie¢ zmienna zwigzana.

159

Przyklad 8.6
Dana jest formuta:

px,y) = Vx e Vze (g(x) Ap(y, 2)

Term f(x) jest wolny w tej formule ze wzgledu na x, ale nie jest wolny ze wzglg-
du na y, gdyz po zastapieniu y przez term f(x) zostalaby otrzymana formuta po-
staci:

p(f(y), y) = Vx @ Vz o (q(x) A p(f(x), 2))

w ktorej podkreslone wystapienie zmiennej x staloby si¢ wystapieniem zwigza-
nym. Natomiast term g(y, w) jest wolny w formule zaréwno ze wzgledu na x, jak

W dalszym ciagu dokonujac podstawienia o w formule ¢ bgdzie zawsze wymagane,
by dla dowolnej zmiennej xe dom(o) odpowiadajacy jej term o(x) byl wolny w o ze
wzgledu na x.

8.5. Semantyka

Rachunek kwantyfikatorow, stanowigc uogodlnienie rachunku zdan, przejmuje znacze-
nie przypisywane spdjnikom logicznym zgodne ze standardowa interpretacja.

Sposéb opisu semantyki rachunku kwantyfikatoréw jest podobny do opisu semantyki
rachunku zdan. Opis rozpoczyna si¢ ustaleniem dziedzin semantycznych, w ktérych
bedzie wyrazane znaczenie elementow jezyka — terméw i formut, a nastgpnie okresla
si¢ interpretacje¢ symboli funkcyjnych i predykatywnych. Oba te elementy — dziedziny
semantyczne i interpretacja symboli funkcyjnych i predykatywnych — stanowia model
interpretacji. Po ustaleniu modelu interpretacji definiuje si¢ znaczenie najpierw ter-
mow, a nastgpnie formut.

Dziedzing interpretacji dla formut — tak jak w rachunku zdan — jest zbior wartosci
logicznych Logiczne. Natomiast dziedzina interpretacji terméw moze sktada¢ sig
z wielu réznych zbioréw wartosci Dy, ..., D,, (m > 0) — mowi sieg, ze dziedzina jest
wielorodzajowa. W dalszych rozwazaniach, poza niektorymi przykiadami, dziedziny
szczegdtowe nie beda rozrézniane. W celu uproszczenia prezentacji zaklada sig, ze
istnieje jedna wspdlna dziedzina D stanowiagca mnogosciowa sume dziedzin szczegé-
towych. Dziedzina ta jest roztaczna ze zbiorem wartosci logicznych.

160

Uwaga

Rozréznienia dziedzin interpretacji dokonuje si¢ w rachunku kwantyfikatoréw
Z typami.

Nowymi elementami, ktére wymagajq dodatkowe;j interpretacji sa symbole funkcyjne
oraz predykatywne. Symbolom funkcyjnym bgda odpowiadaty pewne funkcje, sym-
bolom predykatywnym — pewne relacje w ustalonej dziedzinie interpretacji. Poniewaz
dowolna relacje mozna w réwnowazny sposéb przedstawié za pomoca jej funkcji cha-
rakterystycznej, dlatego symbolom predykatywnym beda rowniez przyporzadkowy-
wane funkcje, ale o wartosciach w zbiorze Logiczne.
Uwaga
Przypomina sig, ze dla relacji R € D\X...xD, (n > 1) jej funkcja charakterystyczna:
fr : Dy X..xX D, — Logiczne
jest zdefiniowana nastgpujaco:
Sfr(d,, ..., d,) = P wtedy i tylko wtedy, gdy <d|, ..., d,>€R.
Wprowadza si¢ funkcje interpretacji symboli funkcyjnych i predykatywnych I,
okreslong na zbiorze symboli F U P taka, ze:

e jezeli fe F,, dla ne Nat, to I(f) : D" — D jest n-argumentowg funkcja, w szcze-
g6lnym przypadku, gdy f jest stata, czyli fe Fy, I(f)e D,

e jezeli peP,, dla neNat, to I(p) : D" — Logiczne jest n-argumentowa funkcja
o wartos$ciach logicznych.

Poniewaz zostata wprowadzona jedna wspdlna dziedzina interpretacji D, wiec funkcje
definiowane przez I sa najczgsciej funkcjami czgsciowymi.

Para:
M=<D, I>

gdzie D jest niepusta dziedzing interpretacji, a I jest interpretacja symboli funkcyjnych
i predykatywnych, bedzie nazywana modelem dla formalnego jezyka rachunku kwan-
tyfikatoréw o sygnaturze Sig = <F, P>.

Nastepny etap definiowania semantyki rachunku kwantyfikatorow polega na nadaniu
interpretacji dowolnym termom. Pomocniczym pojeciem — podobnie jak w rachunku
zdan — jest funkcja wartosciowania zmiennych indywiduowych.

WartoSciowaniem zmiennych jest funkcja v o nastgpujacej sygnaturze:
v:V—->D

Niech M = <D, I> bgdzie modelem jezyka o sygnaturze Sig = (F, P). Kazdemu ter-
mowi f, przy ustalonym wartosciowaniu v, przyporzadkuje si¢ pewng wartosé

161

z dziedziny interpretacji D. Warto$¢ t¢ wyznacza funkcja interpretacji terméw przy
wartosciowaniu v:

INT, : TERM(F, V) —> D

zdefiniowana rekursywnie wzgledem struktury skfadniowej zbioru terméw w sposéb
nastgpujacy:
e jezeli term jest zmienng indywiduowa x€ V, to

INT,(x) =gt v(x)
e jezeli term jest postaci f{t,, ..., t,), gdzie fe F,, oraz t,, ..., t, ETERM(F, V), to

INT,(f(t), ..., ts)) =aes IUNT, (1)), ..., INT,(1,))

Nalezy zauwazy¢, ze interpretacja zmiennych indywiduowych nie zalezy od warto-
sciowania v. Wartos¢ termow statych, przy ustalonej interpretacji I, nie zalezy od
warto$ciowania v.

Niech v bedzie wartosciowaniem, x — zmienng indywiduowa oraz niech ae D. Warto-
$ciowanie v[x := a] definiuje si¢ jako:

Vx = a](y)= a gdy y=x
v(y) w przypadku przeciwnym

Wartosciowanie v [x := a] jest wigc modyfikacja wartosciowania v polegajaca na przy-
pisaniu wartosci a ustalonej zmiennej x i pozostawieniu niezmienionych wartosci
przypisanych do pozostatych zmiennym.

Uwaga

Nalezy odréznia¢ dwa podobne oznaczenia: [x := a] oraz [x ::= t]. Pierwsze okre-
$la modyfikacje definicji pewnej funkcji; powyzej odnosi si¢ do modyfikacji
funkcji wartosciowania v. Drugie okresla tekstowa modyfikacja pewnego napisu,
na przyktad termu lub formuty.

Jezeli INT, jest interpretacja przy pewnym wartosciowaniu v, to niech INT,, - . bedzie
interpretacjg przy wartosciowaniu v[x := a].
Rozszerza sig teraz funkcj¢ INT, na zbiér formut jako funkcje:

INT, : FORM(F, P, V) = D.

W celu uniknigcia zbyt wielu oznaczen funkcja INT, begdzie oznaczaé interpretacje
zaréwno termow, jak i formul. Interpretacje formut w modelu M przy wartosciowaniu
v, definiuje si¢ rekursywnie wzgledem struktury skfadniowej zbioru formut:

a) INT,(p(t1 , ..., 1)) =aet I(P)UNT,(11), ..., INT,(1,)))
b) INT(—) =gt ~INT,()

¢) INT,(a A B) =4er INT,(0)) A INT,(B)

d) INT(a v B) =t INT,(@) Vv INT,()

162

e) INT,(0t= f3) =aer INT,(@) = INT,(f3)
f) INT,(a < B) =4t INT,(Q) & INT,(B)

P gdydladowolnegod € D zachodzi INT,,._;; = P

g) INT, (Vxe) =4 '
F w przypadku przeciwnym

P gdydla pewnegod € D zachodzi INT,,._, =P
h) INT, (3x e o) = .)
F w przypadku przeciwnym

Uwaga

Symbole P oraz F sg skrotami wartosci logicznych prawda, falsz. Spéjniki lo-
giczne wystepujace po prawej stronie w powyzszej definicji sa rozumiane zgod-
nie z ich standardowg interpretacja przyjeta dla rachunku zdan. Jezyk rachunku
zadan jest tutaj fragmentem metajgzyka stuzacego do definiowania je¢zyka ra-
chunku kwantyfikatoréw. Elementami metaje¢zyka sa rowniez pojecia dla dowol-
nego i dla pewnego, uzyte w punktach g) oraz h). Naleza one do jezyka teorii
mnogosci.

8.6. Spelnialnos¢ formut

Formula « jest spelniona w modelu M dla wartosciowania v, gdy INT,(a) = P. Fakt
ten bedzie zapisywany rowniez w postaci:

INT, =
Formuta o jest spelniona w modelu M, co oznacza sig:
MEeao

gdy jest spetniona w tym modelu dla dowolnego wartosciowania. Jezeli formuta o nie
jest spetnialna w modelu M, bgdzie to zapisywane w postaci:

Mea
Formuta « jest spelnialna, gdy istnieje model, w ktérym jest spetniona.
Formuta jest tautologiq, co oznacza sig:

EO
gdy jest spetnialna w dowolnym modelu. Tautologia jest zatem schematem wypowie-
dzi zawsze prawdziwej, niezaleznie od interpretacji przyjetej dla symboli funkcyjnych
i predykatywnych. Oczywiscie, tautologia zaklada standardowgq interpretacj¢ spojni-
kéw logicznych.

163

Wprowadzone pojgcia spetnialnosci uogdlnia si¢ na zbiory formut.

Zbiér formut @ jest spelniony w modelu M dla wartosciowania v, gdy wszystkie for-
muty zbioru @ sa spetnione w tym modelu M przy warto$ciowaniu v.

Zbior formut @ jest spefniony w modelu M, gdy kazda formuta tego zbioru jest spel-
niona w tym modelu.

Zbior formut @ jest spefnialny, gdy istnieje model, w ktérym zbidr ten jest spetniony.
Niech ® bedzie zbiorem formut oraz & — pojedyncza formula. Pisze sig:
d=a

co czyta sie: formula o wynika semantycznie ze zbioru formul @, albo inaczej: formuta
a jest semantycznq konsekwencjq zbioru formul ®, co oznacza, ze kazdy model,
w ktorym spetnione sg formuty zbioru @ jest rowniez modelem, w ktéorym spetniona
jest formuta .

Pisze sig:

BEa zamiast (Bl E«
oraz:

Ea zamiast e

Pusty zbiér formut po lewej stronie symbolu k& jest oczywiscie prawdziwy w kazdym
modelu. Zatem zapis = o oznacza, ze « jest tautologia.

Uwaga

Nalezy zwr6ci¢ uwage na dwie role symbolu k. Po jego prawej stronie wystgpuje
zawsze formula, na przyktad «, natomiast po lewej — moze wystapi¢ model M
lub interpretacja INT, albo zbiér formut @. W pierwszym przypadku symbol &
oznacza, ze formula « jest spelnialna w modelu M lub w interpretacji INT,,
w drugim — Ze jest semantyczna konsekwencja zbioru formut ®.

Moéwi sig, ze dwie formuly a, B sg semantycznie rownowazne, co pisze sig:
a=p

wtedy i tylko wtedy, gdy:
ok Poraz f = a.

Lemat 8.3
Niech ® bedzie zbiorem formut oraz o — pojedyncza formuta. Woweczas:

e

164

wtedy i tylko wtedy, gdy zbiér @ U {—a} jest niespetnialny.
Dowod

Jezeli zachodzi @ £ «, to oznacza, ze kazdy model, w ktérym spetniony jest
zbidr formut @ jest rowniez modelem, w ktérym spetniona jest formula a. Za-
chodzi to wtedy i tylko wtedy, gdy nie istnieje model, w ktorym spetnione sa
formuty @, a w ktérym nie jest spetniona formuta a. Ale to z kolei oznacza, ze nie
istnieje model, w ktérym sa spetnione formuty zbioru ® U{-«}, czyli gdy zbidr
ten nie jest spetnialny. Zatem @ £ o zachodzi wtedy i tylko wtedy, gdy zbiér for-
mut @ U {—a]} jest niespetnialny.

Twierdzenie 8.2 (Twierdzenie o dedukcji)

Niech @ =4 {1, ..., @,} bedzie niepustym zbiorem formut oraz 8 — pojedyncza
formuta. Wowczas

dE=p
wtedy i tylko wtedy, gdy
EAGA..A0,=P
Dowaod

® = B zachodzi wtedy i tylko wtedy, gdy w kazdym modelu, w ktérym spetnione
sa formuly a, ..., o, spetniona jest rowniez formuta B. To dzieje sie¢ dokladnie
wtedy, gdy w kazdym modelu, w ktorym jest spetniona formuta o A ... A @,
spetniona jest rowniez formuta f3, co z kolei zachodzi wtedy i tylko wtedy, gdy

EOiA...A 0= P

Twierdzenie o dedukcji ma wazne znaczenie w sytuacjach, gdy tezy badanych twierdzen
majg schemat postaci @ = 8. Bezposrednie sprawdzenie czy formula f jest semantyczna
konsekwencja zbioru formut @ nie jest mozliwe, gdyz ogélnie oznacza to przebadanie nie-
skonczonej liczby modeli. Twierdzenie o dedukcji umozliwia zastapienie takiego sprawdza-
nia zbadaniem czy formuta postaci oy A ... A 0, = [3 jest tautologia. Badanie czy formuta jest
tautologia mozna przeprowadzi¢ konstruujac odpowiedni dowdd w oparciu o pewien system
dowodowy. W konstrukeji dowodu — co begdzie pokazane w nastgpnych rozdziatach — wyko-
rzystuje si¢ wylacznie przeksztalcenia tekstowe badanej formuty.

Uzyteczna konsekwencja twierdzenia o dedukc;ji jest rtOwnowaznos¢ stwierdzen:
du{alep wtedy i tylko wtedy, gdy P Fa= p.

Fakt ten wskazuje na pewne podobiefistwo symboli = oraz =, nie oznacza jednak, ze
symbole te majq takie samo znaczenie. Nalezy zwr6ci¢ uwagg na to, ze symbol konse-
kwencji & nalezy do metajezyka, a symbol implikacji = do formalnego jezyka ra-

165

chunku kwantyfikatoréw. Podobna uwaga odnosi si¢ do symboli spdjnika rownowaz-
nosci & oraz symbolu rownowaznosci semantycznej =.

8.7. Wybrane prawa rachunku kwantyfikatorow

Korzystajac bezposrednio z definicji interpretacji formut rachunku kwantyfikatorow
mozna sprawdzi¢, ze zachodza podane ponizej rownosci semantyczne nazywane tez
prawami rachunku kwantyfikatoréw. Niektore z nich maja tez tradycyjne nazwy.

Jezeli o oraz 3 sa dowolnymi formutami, to tautologiami sa formuty:

E (Vxea)= «
E a=(3xe)

Pierwsze prawo wyraza to, ze jezeli dowolna formuta jest spetniona dla wszystkich warto-
$ciowan, to jest rowniez spetniona dla dowolnie wybranego wartosciowania. Natomiast
drugi wyraza to, ze jezeli dowolna formula jest spetniona dla pewnego wartosciowania, to
znaczy, ze istnieje wartosciowanie, przy ktorym formula ta jest spelniona.

Prawa de Morgana

E (wVxea) o (Ixe—a)
E (—E!x- Q) & (Vx e Q)

Prawa de Morgana wskazuja na zwiazki semantyczne pomigdzy kwantyfikatorem
ogolnym i szczegétowym. Oznaczaja one, ze w rachunku kwantyfikatoréw, bez utraty
sity ekspresji jezyka, mozna ograniczy¢ si¢ do postugiwania si¢ tylko jednym kwanty-
fikatorem. Jest to analogia do rachunku zdan, w ktérym, bez utraty ogdlnosci, zbidr
wykorzystywanych spdjnikdw logicznych mozna ograniczy¢ do funkcjonalnie petnego
zbioru spéjnikéw logicznych.

Prawa rozdzielnosci kwantyfikatorow
E (Vxea)a(Vxef) (VxeanP)
(Vxe)v (Vxeff)= (Vxe v f)

(xea)v(@xef) e @xeav P
Exeanf)=Gxea)A(Fxe f)

™

Prawa przemianowania kwantyfikatoréw
Jezeli yg FV(o)\{x} oraz y jest zmienng wolng w ¢ ze wzgledu na x, to

E (Vxea) & (Vyea[x:=y])
E @xea)e3yeax:=y])

166

Prawo to pozwala na przemianowanie nazwy zmiennej wiazanej przez kwantyfikator.
Zmienng taka mozna zastapi¢ dowolng inna zmienng, ktora nie jest wolna w formule
bedacej w zasiggu kwantyfikatora. Na przyktad formuta:

(Vx o p(x,y) = q(x)) v (Vy ® r(x, y) A —p(x, ¥))
jest rébwnowazna formule:

(Vz o p(z,y) = q(2)) v (Yw @ r(x, w) A —p(x, w))
Prawa przestawiania kwantyfikatorow

E (VxeVye) (VyeVxe)

E (Gxedyea)e= (dyedxe)
E (GxeVyex)= (Vyedxe)

Prawa wlqczania i wylqczania dla kwantyfikatorow

Jezeli xg FV(P), to
F (Qxeo)-fe(@xea-fP)

£ dla-€{A,v,=}, oraz Qe {V, 3}
Prawa rozkladu kwantyfikatoréw

E (Vxea=f)= (Vxe)= (Vxef))
Fxea=p)=(3xe)= (3xe pP))
(Vxeanf)e (Vxea) A (Vxe f))
Bxeanf)=(3xe ax)A (@xe P))
(VxeavVxef)= (Vxeavf)
Gxeavp) e (@Exea)v@ref)
(Vxeao B)= (Vxea) o (Vxe)
Fxeae f)=(Exe)= 3xepP))

L I | Y | N | I | N

8.8. Przedrostkowa posta¢ normalna

Niech «a bedzie formutg rachunku kwantyfikatorow.
Definicja 8.1

Formula « znajduje si¢ w postaci przedrostkowej normalnej lub w postaci PNF
(ang. prenex normal form) wtedy i tylko wtedy, gdy jest ona w postaci:

Ql X® Q2 X2 @ ... Qn X ® B

gdzie Qy, Qs, ..., 0, € {V, 3}, za$ formula f3 nie zawiera kwantyfikatoréw.

167

Cze$¢ Q) x1® Q2 x5 @ ... Q, x, ® nazywa sie przedrostkiem formuly «, zas B nazy-
wa si¢ matrycq formuly a.

Dla dowolnej formuly rachunku kwantyfikatoréw istnieje rownowaznie semantyczna
formuta, ktora jest w przedrostkowej postaci normalnej. Jezeli o bedzie pewna for-
mula, to przez PNF(c) bgdzie oznacza¢ si¢ formule, ktora jest w przedrostkowej po-
staci normalnej, i ktdra jest semantycznie rownowazna .

Ponizej jest przedstawiany algorytm sprowadzania dowolnej formuty do przedrostko-
wej postaci normalnej. Algorytm ten dokonuje jeszcze dodatkowego przeksztalcenia
polegajacego na eliminacji z matrycy formuty spojnikéw rownowaznosci i implikacji,
a pozostawieniu tylko negacji, dysjunkcji i koniunkcji.
Algorytin sprowadzania do przedrostkowej postaci normalnej

Dane: formufa o

Wynik: formuta PNF()

Procedura: Procedura postgpowania polega na etapowym, tekstowym przeksztal-

caniu formuly a. Formula posrednia jest oznaczana przez f3.

1. Poczatkowo przyjmuje sig, ze formuta f3 jest tekstowo identyczna o
2. Eliminuje si¢ z formuty f spdjnik réwnowaznosci zastgpujac tekstowo pod-
formuty postaci y < & formutami postaci (y=>) A (6= 7).
3. Eliminuje si¢ z formuly spdjnik implikacji zastgpujac tekstowo podformuty
postaci y=> 6 formutami postaci =y v 6.
4. Wprowadza si¢ znak negacji bezposrednio przed symbole predykatow zaste-
pujac (dopdki mozna) podformuly zgodnie z ponizsza tabela:

L.p. | Podformula zastgpowana Formula zast¢gpujaca
1 —(=0) 5
2 —ﬂ(b‘ \4 Z) —J A =y
3 —(6AY) -dv -y
4 —Vx o8 3x e =6
5 —Jxe§ Vx e =0

5. Dopdki formuta f nie jest w przedrostkowej postaci normalnej, przeksztatca
si¢ ja zgodnie z ponizszg tabela:

L.p. Podformula Formula Warunek
zastgpowana zastgpujaca zastapienia
1 (Q xo8)vy Qxe(dvy) xg FV(y)
2 (Qxed) Ay Qxes(6AY) xg FV(})
3 (Vxed)A(Vxey) Vxe(dAY)
4 (Fxed)v(Ixey) Ixe(SVv Yy
5 (Q; x0)vQ, yey) Q1 x0Q,ye(5Vv) X& FV(y), yg FV(J)
6 (0, x03)AQ; yey) Q,x0Q,y8(5A Y) Xg FV(y), y& FV(9)

gdzie Q, 0), Q> €{V,3}.
6. Formul¢ PNF(c) definiuje si¢ jako formute B.

168

Uwaga

Jezeli warunki zastapienia bezposrednio nie sa speilnione, to mozna je spetnic
przez przemianowanie zmiennych wigzanych przez kwantyfikator. Podstawa
przemianowania jest rownowazno$¢ semantyczna: jezeli xg FV(a)\{x} oraz y jest
zmienng wolng w ze wzgledu na x, to

Oxeqa=Qye afx:=y] dlaQe({V, 3}

Przyklad 8.7.

Rozpatruje si¢ sprowadzenie do przedrostkowej postaci normalnej formuty:

@xea)y=@3yep)

Na podstawie kroku 3 algorytmu, eliminujac implikacj¢ otrzymuje sig:
—~(@xea)v(3Iyep)

Na podstawie kroku 4 algorytmu, przypadek 4, otrzymuje sig:
(Vxeaayv(@yep)

Na podstawie kroku 5 algorytmu, przypadek 5, otrzymuje sig:
Vxe3dye(mavpf)

. przy czym zaklada sig, ze x¢ FV(f3) oraz yg FV(c).

8.9. Przyklad jezyka rachunku kwantyfikatoréow

Omawia si¢ przyklad prostego jezyka kwantyfikatoréw, ktéry wystepuje w wielu
Jezykach programowania. Jezyk ma stuzy¢ do przedstawiania prostych wyrazen
arytmetycznych, o wartosciach ze skoniczonego podzbioru liczb catkowitych, i pre-
dykatoéw na okreslonych na tych wyrazeniach. Jego interpretacja jest rowniez zgod-
na z interpretacja przyjmowana w jezykach programowania.

Alfabet jezyka sktada sig:

1. ze zbiéru zmiennych indywiduowych, reprezentowanych przez identyfikatory,
2. zbioru symboli funkcyjnych zawierajacego

o dwie stale: ZERO, ONE

¢ jedna operacj¢ jednoargumentowa: alt

e cztery operacje dwuargumentowe: _add_, _sub_, _mult

—

div

169

3. dwéch dwuargumentowych predykatéw: _eq_, _less_
4. symboli sp6jnikéw logicznych: _and_, _or_, not_
5. trzech symboli pomocniczych: (),

Sygnatura jezyka jest wigc:
Sig = <{ ZERO, ONE, _add_, _sub_, _mult_, _div_}, {_eq_, less_}>
Zbidr termow wyznaczony zgodnie z sygnatura Sig zawiera:
1. zmienne indywiduowe oraz stale,
2. napisy postaci:
altty, (tyaddt) (t; sub ;) (ty mult ;) (¢, div 1)
gdzie t,, t; sa termami.
Zbidr formut jest okreslony nastgpujaco:
1. jezeli t,, t, sa termami, to formutami sa:
(treqty) (tlesst)
2. jezeli a, B sa formutami, to formutami sa takze:
(cxand B) (aor B) not a

Zbior formut jest ubozszy od petlnego jezyka kwantyfikatorow, gdyz nie zawiera
kwantyfikatoréw.

Dziedzing interpretacji termdw niech bedzie zbior:
D =,s Integer L {error}

gdzie
Integer =4 {—N, ..., 0, ..., N} NeNar\{0}

Zbidr Integer reprezentuje typowy skonczony zbidr wartosci reprezentowany przez
odpowiednik typu catkowitego w jezykach programowania. Natomiast element error
ma reprezentowac tak zwany blqd abstrakcyjny powstajacy przy obliczaniu warto$ci
terméw. Odzwierciedla to typowa sytuacje, ktora powstaje na przyktad podczas obli-
czen arytmetycznych w programie, gdy obliczona warto$¢ wykracza poza zakres
wartodci dopuszczalnych. Bedzie uzywane tez oznaczenie na zbior:

Integer sor =aet Integer U {error}
Interpretacja I ustala przyporzadkowania:
1. symbolom funkcyjnym funkcje typu:

I(ZERO) : — Integer
I(ONE) : — Integer

170

I(alt) : Integer .o — Integer o
I(add), I(sub), I(mult), I(div) : Integere,,‘,,,2 — Integer o

2. symbolom predykatéw funkcje typu:

I(eq) : Integer® — Logiczne
I(less) : 1nreger2—+ Logiczne

Stale s zdefiniowane jako:

I(ZERO) =4 0
I(ONE) =4 1

Jezeli wartoscig ktoregokolwiek argumentu pozostatych operacji jest error, to wyni-
kiem operacji jest rowniez error. W podawanych nizej definicjach zaklada sig, ze ar-
gumenty a oraz b sg elementami zbioru Integer.

- a€ Inte
Ialt) a =o { a nteger

error w przeciwnym przypadku

a+b a+be Integer
(a I(add) b) =4 .
error w przeciwnym przypadku

a-b a-be Integer
(a I(sub) b) =4r

error w przeciwnym przypadku

*b *be Int
(a I(mult) b) =g {a a nteger

error w przeciwnym przypadku
a/b a/be Integer

(a I(div) b) =gt { . 5
error w przeciwnym przypadku

(al(eq) b)=qra=10b
(aI(less) b) =gt a< b

Po prawej stronie powyzszych definicji wystepuja symbole znanych operacji arytme-
tycznych i operacji poréwnan w dziedzinie liczb catkowitych. Symbole te, podobnie
Jak symbole a, b, naleza do metaj¢zyka opisujacego semantyke wprowadzonego jezy-
ka formalnego.

Zdefiniowany jezyk rachunku kwantyfikatorow nie wprowadza symboli kwantyfikato-
row. Formuty tego jezyka to odpowiednik napisoéw, ktore w jezykach programowania
okresla si¢ jako wyrazenia logiczne albo wyrazenia boolowskie. Oczywiscie, wyraze-
nia logiczne w praktycznie stosowanych jezyka programowania sg na ogot bogatsze,
gdyz operuja szerszym zbiorem terméw oraz symboli predykatow.

Obliczenie warto$é termu:

(x mult (ONE add y))

171

przy wartosciowaniu:
v = {<x, 4>, <y, 5>}

przebiega nastgpujaco. Zgodnie z definicja funkcji interpretacji terméw INT,(¢), przy
zalozeniu, ze warto$¢ N w zbiorze Integer wynosi 10, otrzymuje si¢:

INT,((x mult (ONE add y))) =
INT,(x) I(mult) INT,((ONE add y)) =
v(x) * (INT,(ONE) I(add) INT,(y)) =
4 * (I(ONE) + v(y)) =
4*(1+5)=4*6=error

Zgodnie z definicja funkcji interpretacji formut INT, (), warto$¢ formuty:
(x less (ONE add y))
przy wartosciowaniu v oblicza si¢ nastepujaco:

INT,((x less (ONE add y))) =
INT,(x) I(less) INT,((ONE add y)) =
v(x) < (INT,(ONE) I(add) INT,(y)) =
4 < (I(ONE) + v(y)) =
4<(1+5)=4<6=P

8.10. Rachunek kwantyfikator6w z réwnoscia

Jezyk rachunku predykatéw moze by¢ wykorzystywany w réznych konkretnych ce-
lach. W takich przypadkach wprowadzanym symbolom funkcji i predykatéw nadaje
si¢ specyficzng interpretacjg, na przyklad tak jak przedstawiono to w poprzednim
punkcie. Waznym przykladem czgsto spotykanego symbolu predykatu jest predykat
rownosci lub identycznosci. Jezyk rachunku predykatow zawierajacy ten predykat na-
zywa si¢ rachunkiem predykatow z réwnosciq lub identycznosciq. Dwuargumentowy
predykat identycznosci, reprezentowany ponizej przez symbol =, ma wyraza¢ réwnos$¢
wartodci termow. Dla wprowadzanego predykatu rownosci celowo przyjeto symbol =,
aby odrdznia¢ go od symbolu = wystepujacego w metajezyku definiujacym semantyke
Jezyka zawierajacego symbol =.

Semantyka predykatu = jest zdefiniowana nastgpujaco:

INT,(t; = t;) = P wtedy i tylko wtedy, gdy INT,(t;) = INT,(t;)

172

Z podanej definicji interpretacji identycznosci wynika, ze ma ona wlasnosci zwrotno-
$ci, symetrycznosci i przechodniosci, to znaczy dla dowolnych terméw ¢, 1, t; €
TERM(F, V) tautologiami sg formutly:

Hh=n — zwrotnos¢
h=h=h=t — symetria
h=bhAb=hL3=>lL=Hh — przechodnios¢

Ponadto identyczno$¢ posiada wlasnos¢ ekstensjonalnosci wyrazona przez tautologie:

h=h=x:=n]tx=1)]) — ekstensjonalno$¢ wzgledem terméw
h=th=(dx:=t1]e ofx::=1]) - ekstensjonalnos¢ wzgledem formut

gdzie ¢ jest dowolnym termem, za$ « jest dowolna formula.

Wiasnosci zwrotnosci, symetrycznosci i przechodniosci okresla si¢ mianem specy-
ficznych aksjomatéw teorii opisujacej identycznosé. Przez pojgcie teorii rozumie si¢
Jjezyk formalny wraz z systemem dowodzenia, czyli tekstowego wyprowadzania no-
wych formut na podstawie formut-aksjomatow.

8.11. Teorie elementarne

Ustalenie konkretnego jezyka rachunku kwantyfikatorow wiaze si¢ zwykle z zamia-
rem opisu pewnego fragmentu interesujacej rzeczywistosci (realnej lub abstrakcyjnej).
Jezyk ma z jednej strony opisywac te zjawiska czy wilasnosci, ktére sa przedmiotem
zainteresowania, a z drugiej strony powinien umozliwia¢ wyprowadzanie pewnych
wnioskow.

Konkretnos¢ jezyka oznacza ustalenie jego sygnatury, czyli skladni, oraz ustalenie
jego modelu interpretacji, czyli semantyki. Wybrany fragment rzeczywistosci ma
zwykle specyficzne wiasnosei, ktéore mozna wyrazi¢ w postaci pewnych formut
w ustalonym jezyku. Formuly takie nazywa si¢ aksjomatami i sa to formuly spetnio-
ne w ustalonej interpretacji jezyka.

Whioski, jakich wyprowadzenia si¢ oczekuje, majg by¢ formutami stanowiacymi lo-
giczne konsekwencje przyjetych aksjomatéw. Pojecie zbioru konsekwencji jest defi-
niowane nastgpujaco.

Jezeli @ jest zbiorem formul, to jego zbiorem konsekwencji semantycznych (logicz-
nych) jest zbior formut:

Con(®) =4 { @€ FORM(F, P, V) | ® & a}

173

Zbidr konsekwencji jest zatem zbiorem formut spetnionych w interpretacji, w ktorej
spetnione sa aksjomaty.

Zbidr konsekwencji logicznych ma nastepujace wlasnosci:

o & c Con(d)
e Jezeli @, C O, to Con(P,) < Con(D,).
o Con(Con(®)) = Con(®P)

Uwaga

Druga z wlasnosci wyraza monotoniczno$¢ konsekwencji logicznej. Jest to waz-
na wlasnos¢, ktérej nie posiadaja niektore logiki nieklasyczne, majace zastoso-
wanie, migdzy innymi, w budowie systemow ekspertowych. Oznacza to, ze
w przypadku dotaczenia do zbioru aksjomatow dodatkowego aksjomatu moze
okaza¢ sig, ze nie wszystkie wczesniej wyprowadzone konsekwencje pozostana
konsekwencjami rozszerzonego zbioru aksjomatéw.

W szczegdlnosci, zbidr wszystkich tautologii to Con(), co oznacza, ze zbior tautolo-
gii jest podzbiorem Con(®) dla dowolnego .

Do efektywnego wyprowadzania nowych formut na podstawie formut-aksjomatow
stuzy pewien system dowodowy. Istota tego systemu jest to, ze wyprowadzanie no-
wych formut dokonuje si¢ w oparciu tekstowe przetwarzanie formul, bez analizy se-
mantycznej. Na system dowodowy skladaja si¢ dwa elementy — pewien zbior formut,
nazywanych aksjomatami, oraz zbidr regul wnioskowania. Systemy dowodowe beda
omawiane w nastgpnych rozdzialach.

Definicja pewnej teorii polega na wprowadzeniu jej aksjomatéw specyficznych. Przy-
kiadem takiej teorii jest teoria relacji mniejszosci.

Przyklad 8.8

I ' ' ']
Teoria jest oparta na dwéch predykatach: rownosci i mniejszosci, reprezentowa-

nych przez symbole =loraz =. Symbole te przyje¢to tylko na uzytek rozwazanego
przyktadu, aby podkresli¢ ich ogoélnos¢ i nie kojarzy¢ wylacznie z konkretng
dziedzing, na przyklad z rownoscia i mniejszoscia w dziedzinie liczb. Teoria jest
w petni zdefiniowana przez podane nizej grupy specyficznych aksjomatéw.

Pierwsza grupa aksjomatow jest powtdérzeniem wyzej sformutowanych wiasnosci
i oznacza, ze rownosci jest relacjg rownowaznosci, czyli dla dowolnych zmien-
nych indywiduowych x, y, z zachodzi:

Vxex=x

VxeVyex=y=>y=x
VxeVyeVzex=yAy=z=x=y

174

!

Druga grupa okresla, ze relacja rownosci nie zmienia innych predykatow,
w tym przypadku zachowuje relacj¢ mniejszosci:
VxeVyeVzex=yAx<z=y=<7
VxeVyeVzex=yAz<x=2z<y
Aksjomaty nastgpnej grupy oznaczaja, ze relacji mniejszosci jest relacja scistego
porzadku, to znaczy jest antysymetryczna, przechodnia i spdjna:
VxeVyex<y= —(y=<x)
VxeVyex<yAy<z=>x<7z
VxeVyeVzex=yvy<yvy<x
Ponadto jest porzadkiem gestym, to znaczy, ze migdzy dwoma elementami x, y
takimi, ze x < y istnieje jeszcze trzeci element z taki, ze x < z oraz z < y:
VxeVyex<y=3dzex<zAz=<Yy
Nie istnieje dla tej relacji element najmniejszy, ani najwigkszy:
—JxeVyex=yvux<y

—JdxeVyex=yvy<x |

Rozpatruje si¢ jeszcze inny przyklad teorii wprowadzajacej specyficzne aksjomaty.
Jest to teoria Peano'” opisujaca liczby naturalne.

Przyklad 8.9

l

1
Teoria liczb naturalnych Peano jest rozszerzeniem teorii nast¢pnika. Teoria na-

stepnika jest oparta na symbolu jednej stalej 0, jednego symbolu funkcyjnego
jednoargumentowego succ, oraz symbolu poprzednio zdefiniowanego predykatu
rownosci =. Lista aksjomatow teorii, poza aksjomatami definiujacymi rownos¢,
jest nastgpujaca:

Vxedyey=yx

Vx o =(0 = succ(x))

VxeVyesuce(x)=succ(y) =>x=y
(dx:=0]AVxe a= dx ::=succ(x)]) = Vx o

Ostatnia formuta nie jest aksjomatem, lecz schematem aksjomatu, gdyz wyste-
pujaca w niej formuta & moze by¢ dowolng formuta rachunku kwantyfikatorow.
Jest to —omdwiony juz wezesniej — schemat indukcji.

Teoriq liczb naturalnych Peano jest system arytmetyki naturalnej wprowadzajacy
dodatkowy zestaw aksjomatdéw charakteryzujacy dziatania dodawania i mnozenia
reprezentowanych symbolami + oraz «.

" Giuseppe Peano (1958-1932).

175

Vxex+0=x
VxeVYyex+succ(y) =succ(x+y)
VYyex:«0=0

| VxeVyexisucc(y) =x»y+x |

W teorii z dodatkowymi aksjomatami specyficznymi nabiera wlasciwego sensu poje-
cie konsekwencji semantycznej. Jezeli « jest pewna formula, zas @ jest zbiorem ak-
sjomatow, to mozna pyta¢ czy @ £ a. Formula a moze by¢ konsekwencjg aksjomatow
teorii, ale nie musi by¢ tautologia. W takim przypadku oznacza to, ze « nie jest spel-
niona we wszystkich modelach rachunku kwantyfikatorow, ale tylko w tych mode-
lach, ktore akceptujq szczegdlng interpretacj¢ pewnych symboli predykatéw lub funk-
cji wyrazong przez aksjomaty. Na przyklad, w teorii relacji mniejszosci konsekwencja
semantyczng zbioru jej aksjomatdw jest formula:

Vxedyeykyx

8.12. Teorie nieelementarne

Przedstawione wyzej przyklady sa przyktadami teorii elementarnych. Za elementarng
uwaza si¢ teorig, ktora powstaje przez dolaczenie do jezyka rachunku kwantyfikato-
row specyficznych aksjomatéw charakteryzujacych specyficzne symbole funkcji
i predykatéw, ale ktora nie zawiera pojecia przynaleznosci elementu do zbioru, oraz
w ktérej nie mozna méwi¢ o dowolnych zbiorach rozwazanych elementéw. Przykla-
dem teorii nieelementarne;j jest arytmetyka liczb naturalnych.

Przyklad 8.10

l o |
Teoria ta wprowadza — tak samo jak elementarna arytmetyka Peano — symbole stalej 0,

funkcji nastepnika succ, oraz symbol predykatu rownoscei =. Ponadto wprowadza sym-
bol zbioru liczb naturalnych Nat, symbol jednoargumentowego predykatu /sSer(z), ktd-
ry stwierdza czy z jest zbiorem, oraz symbol dwuargumentowego predykatu przyna-
leznosci elementu do zbioru xe z. Aksjomatami tej teorii sa wszystkie aksjomaty teorii
zbioréw zdefiniowane w podrozdziale 4.7, oraz formuly:

0e Nat

Vx e xe Nat = succ(x)e Nat

Vx o xe Nat = —(0 = succ(x))

Vx e 3y e succ(x) = succ(y) = x=y

IsSet(Nat)

Vz o(IsSet(z) A O€z A Yu ® ue 7 = succ(u)ez) = Vx e xé Nat = x€7)

176

Warto zwrdci¢ uwage, ze wartosciami zmiennej indywiduowej z, ktéra wystgpuje
| W ostatnim aksjomacie, moga by¢ dowolne zbiory. |

Uwaga

W dalszym ciagu predykat réwnosci zamiast symbolem =, bedzie oznaczany po-
wszechnie uzywanym symbolem =.

W praktyce czesto wykorzystuje si¢ rozszerzony jezyk kwantyfikatorow, w ktérym
zbiory wystepuja jawnie w powiazaniu z kwantyfikatorami. Oprdécz dotychczas oma-
wianych kwantyfikatoréw zwyktych, uzywa si¢ kwantyfikatorow o ograniczonym za-
kresie. Kwantyfikatory te maja postac:

VxeXeq oraz IxeXe

gdzie X jest pewnym ustalonym zbiorem, a ¢ jest dowolng formuta.

Przyklad 8.11

Kwantyfikatory o ograniczonym zakresie sa wygodne w wyrazaniu wielu wia-

snosci zwigzanych z konkretna dziedzing interpretacji:

Dla kazdej liczby naturalnej n istnieje liczba rzeczywista x taka, ze X=n:
Vne Nat ® 3xe Rzeczywiste o xX’=n

Dla kazdej liczby catkowitej a istnieje liczba wymierna x taka, ze a < x < a+1:

L Vne Calkowite ® 3xe Wymierne ® a < x < a+1 |

Rozszerzona notacja jest przydatna do opisu sytuacji zwigzanych z pewnym konkretnym ob-
szarem zainteresowania. Wyraza si¢ to przez wprowadzone zbiory — dziedziny interpretacji, a
takze przez interpretacje symboli funkcyjnych i predykatywnych wystgpujacych w formutach
z kwantyfikatorami o ograniczonym zasi¢gu. Tak wiasnie jest w przedstawionym powyzej
przykladzie, gdzie wyrazenia x°, a + 1, a < x maja znana interpretacje arytmetyczna.

Nalezy pamigtaé, Zze z rozszerzong notacja wiaze si¢ zawezenie semantyki. Mianowi-
cie, wprowadzenie konkretnych zbioréw narzuca dziedzing interpretacji. Oznacza to,
ze formuty spetnione przy zalozeniu konkretnych zbioréw nie musza by¢ spetnione
w innych dziedzinach interpretacji.

Cwiczenia

1. Dana jest sygnatura Sig = <F, P> jezyka rachunku kwantyfikatorow, w ktorej
F =45 {fo} U {fi, &1} U {f2, g2, h2} jest zbiorem symboli funkcyjnych,

177

P =4t {po} U {p1, q1} U {p2, g2} jest zbiorem symboli predykatow,

zas dolny indeks wskazuje liczbg argumentéw. Poda¢ gramatyke definiujaca zbior
termoéw i gramatyke definiujaca zbidr formut jezyka o podanej sygnaturze.

2. Niech f, g, h beda symbolami funkcyjnymi, p, ¢ — symbolami predykatow. Wskazaé
wolne i zwigzane wystapienia zmiennych indywiduowych w formutach:

a) VxeVye p(fix, y), 2) A Vx @ g(x, z, h(x, y))
b) (Vxe I yeq(x, z) v p(h(x, y)) = p(fix,), 2)
c) Vxe. p(h(x), z) = (Fze(Tye q(f(h(x),) AVzep(z, y) < q(x, y))

3. Zdefiniowa¢ funkcjg, ktoéra dla dowolnej formuly « rachunku kwantyfikatoréw
okresla zbior wszystkich zmiennych indywiduowych, ktére w formule a maja:

a) parzystg liczbe wystapien wolnych,
b) jednoczesnie wystapienia wolne i wystapienia zwiazane,
c¢) dokladnie taka sama liczbg wystapien wolnych jak liczbg wystapien zwigzanych.

4. Niech {=, <, <} bedzie zbiorem symboli predykatow, oraz {+, « /} — zbiorem sym-
boli funkcyjnych okreslonych na liczbach naturalnych. Dla symboli tych przyjmu-
jemy standardowq interpretacja arytmetyczng. Korzystajac z tego zestawu symboli
oraz z symboli statych liczbowych zapisa¢ formutly reprezentujace nastgpujace wy-
powiedzi:

a) x jest liczba parzysta,

b) x jest suma kwadratow dwu liczb naturalnych,

c) x jest liczbg pierwsza,

d) x nie jest liczba pierwsza,

e) x jest najmniejsza wspolng wielokrotnoscia liczb y i z,

f) x przy dzieleniu przez 4 daje resztg 1 lub 2,

g) kazda liczba przy dzieleniu przez inng liczb¢ daje reszte 0 lub 1,

h) kazda liczba parzysta wigksza od 3 jest suma dwu liczb pierwszych,
i) kazde trzy liczby maja najwigkszy wspolny dzielnik,

j) nie istnieje najwigksza liczba naturalna.

5. Poda¢ formalng definicj¢ sformutowania: istnieje dokladnie jedno x takie, ze spel-
niona jest formula o.

6. Ktore z ponizszych stwierdzen sa prawdziwe? Jezeli INT,(a v) = prawda, to:

a) INT,(@) = prawda lub INT,(B) = prawda,

b) INT,(&) = prawda oraz INT,(B) = prawda,

c) dla kazdego v’ rdzniacego si¢ od v wartoSciowaniem zmiennej x, zachodzi
INT,/(@) = prawda oraz INT,(&) = prawda.

7. Ktére z ponizszych stwierdzen sa prawdziwe? Jezeli INT,(a A B) = falsz, to:

178

a) INT,(0) = falsz oraz INT,(B) = falsz,

b) istnieje takie v’ rézniace si¢ od v warto§ciowaniem pewnej zmiennej X, ze
INT, (@) = prawda lub INT,(&) = prawda,

c) dla kazdego v’ rézniacego si¢ od v wartosciowaniem zmiennej x zachodzi
INT, (@) = falsz oraz INT,(Q) = prawda.

8. Dana jest formula 3x e p(x, y). Interpretacja symbolu predykatu p jest wyrazona
przez system relacyjny SR =g <Asg, Rsg>, gdzie Agg jest zbiorem, zwanym no$ni-
kiem, a Ry jest n-argumentowq relacja. Interpretacja przypisuje symbolowi p rela-
CJQ RSR-

Uwaga. Interpretacja n-argumentowego symbolu predykatu g jako pewnej n-eleme-
ntowej relacji R, € A" na zbiorze A jest rownowazna interpretacji tego symbolu ja-
ko funkcji n-argumentowe;j f, : A" — {prawda, falsz}. Dlaczego?

Ktore z ponizszych stwierdzef sa prawdziwe. Jezeli nosnik systemu relacyjnego
Ask =t {a, b} i relacja Rsg =qer {<a, a>, <b, b>, <a, b>}, to dla wartosciowania
v takiego, ze:

a) v(x)=aiv(y) =b formula jest spetniona,

b) v(x) =aiv(y) = a formula nie jest spetniona,

c) v(x) =biv(y)=b formula jest spelniona,

d) v(x)=biv(y) = aformula nie jest spetniona.

9. Dla kazdej z ponizszych formut podaj interpretacjg, w ktérej formuta jest spetniona
dla kazdego wartosciowania:

a) Vxe3dyep(x,y)
b) dx e Vyep(x,y,2)
¢) 3x e (g(x, y) = qx, y))
10. Nastepujace formuty sprowadzi¢ do przedrostkowej postaci normalnej (PNF):
a)Vxe ((x>2) A3y e (x<y))
b)(x<y)AdxeVye(x>y)
c)Vxe 3y e (y>2) A(y<x)).

9. Rachunek sekwentow Gentzena

9.1. Wstep

W poprzednim rozdziale zostalo wprowadzone pojgcie semantycznej konsekwencji.
Bezposrednie sprawdzenie — na podstawie definicji — czy dana formuta rachunku
kwantyfikatorow jest, czy nie jest semantyczna konsekwencja pewnego zbioru formut
rachunku kwantyfikatorow, nie jest mozliwe, gdyz wymagaloby to sprawdzenia nie-
skonczonej liczby modeli danego zbioru formut. Praktyczne badanie, czy formuta jest
konsekwencja semantyczng pewnego zbioru formul, opiera si¢ na pojeciu konsekwen-
cji skladniowej. Pojecie konsekwencji sktadniowej jest pewnym odpowiednikiem po-
jecia konsekwencji semantycznej. Pojecie konsekwencji sktadniowej bedzie przed-
stawione w ramach rachunku sekwentéw Gentzena. Rachunek ten — opracowany przez
Gentzena'’ w latach trzydziestych XX wieku — wyznacza jeden z efektywniejszych
systemdw automatycznego dowodzenia twierdzen.

[stota podejscia opartego na pojeciu konsekwencji sktadniowej polega na zdefiniowa-
niu pewnego systemu generowania napiséw. System taki, nazywany systemem dowo-
dowym, zawiera dwa elementy — zbiér aksjomatow ¥ i zbiér regul wyprowadzania
(albo inaczej: regul wnioskowania lub inferencji). Aksjomatami sa pewne napisy, zas
reguly okreslaja w jaki sposdb na podstawie pewnych napisow otrzymac nowe napisy,
na przykfad jak z pewnego zbioru formut otrzyma¢ nowe formuty.

W celu dowiedzenia, ze — w danym systemie dowodowym — formuta « jest konsekwencja
semantyczna zbioru formut @ postepuje si¢ nastepujaco. Stosujac reguly wyprowadzania,
wyprowadza si¢ nowe formuly ze zbioru @ oraz zbioru aksjomatéw W i powtarza si¢ t¢
czynno$¢ tak dhugo, az zostanie wyprowadzona formuta a. Tak skonstruowany dowdéd na-
zywa si¢ dowodem wprost i stuzy do pokazania, ze wynikanie logiczne ® = o zachodzi
w dowolnym modelu.

19 Gerhard Gentzen (1909-1945).

180

Mozliwy jest rdwniez dowdd nie wprost faktu, ze ® = a. Dowdd taki polega na do-
prowadzeniu do sprzecznos$ci na podstawie zatozenia, ze zbiér formut ® U {—a} jest
spetnialny, to znaczy na podstawie zalozenia, ze formufa « nie jest spetniona dla
pewnego modelu zbioru formut ®. Stwierdzenie sprzecznosci oznacza, ze zbiér ® U
{—a}, wbrew zalozeniu, jest spetnialny, a to — na podstawie twierdzenia o dedukcji
z poprzedniego rozdziatu — daje podstawe do ostatecznego orzeczenia, ze @ = «.

Jezeli dany jest pewien system dowodzenia S, to fakt, ze formuta o zostata wyprowa-
dzona w tym systemie, na podstawie zbioru formut ® bgdzie oznaczany:

CI>+—5a

Istnieje wiele systemow dowodzenia opartego na pojgciu konsekwencji sktadniowe;.
Niektore sposrod nich sg zwigzane z dowodzeniem wprost, inne z dowodzeniem nie-
wprost. System dowodzenia Gentzena moze by¢ rozwazany zaréwno jako system do
dowodzenia wprost, jak i do dowodzenia nie wprost. Zwykle dowody tworzone
w systemie Gentzena sa oparte na idei budowy dowodu nie wprost, ale zbudowany
dowdd jest odczytywany jako dowdd wprost. Przedstawiany tu system dowodzenia
Gentzena opiera si¢ na idei konstrukcji dowoddw nie wprost.

Od kazdego systemu dowodzenia wymaga si¢ w pierwszej kolejnosci, aby nie prowadzit
on do falszywych wnioskéw. Wiasnos¢ takg okresla sie mianem semantycznej poprawno-
Sci (albo niesprzecznosci) systemu dowodzenia. Oznacza to — przy dowodzeniu wprost —
ze jezeli na podstawie zbioru formut @ wygeneruje si¢ formule ¢, to zachodzi @ = ¢,
a przy dowodzeniu nie wprost — ze jezeli na podstawie zalozenia o spetnialnosci zbioru
formut ® U {—a} uzyska sig¢ sprzecznose, to rowniez @ = o. Wlasno$¢ semantycznej po-
prawnosci systemu dowodzenia S mozna sformutowa¢ w postaci:

Jezeli @ =5 a, to D + .

Druga oczekiwana wilasnoscig systemu dowodzenia — odwrotng w stosunku do wia-
snosci semantycznej poprawnosci — jest zupelnosé semantyczna. Whasnos¢ ta oznacza
— przy dowodzeniu wprost — ze jezeli zachodzi @ = ¢, to zawsze w systemie istnieje
wyprowadzenie formuly o ze zbioru formut @. Przy dowodzeniu nie wprost wiasnosé
ta oznacza, ze jezeli zachodzi @ = @, to z zalozenia o spetnialnosci zbioru formut ® U
{—oa} zawsze uzyska sig¢ sprzeczno$¢. Wlasnos¢ semantycznej zupetnosci systemu
dowodzenia § mozna sformutowaé w postaci:

Jezeli -, to P =5 .

Z nazwiskiem Gentzena wiaza si¢ dwa systemy dowodzenia: jeden jest nazywany syste-
mem dedukcji naturalnej, drugi — rachunkiem sekwentdéw. Rozdzial przedstawia tylko ra-
chunek sekwentow. Rachunek ten odzwierciedla w znacznym stopniu sposdb postgpowa-
nia stosowany w praktyce matematycznej. Jak wspomniano, konstrukcja dowodéw opiera
si¢ na idei dowodzenia nie wprost, a ponadto opiera si¢ na obserwacji, ze konstruujac do-
wod pewnego twierdzenia probuje si¢ zdekomponowac go na zestaw prostszych dowodow

181

(poddowodéw lub dowodéw podporzadkowanych). W przypadku rachunku kwantyfi-
katoréw konstrukcja poddowodéw wynika ze sktadni formut.

9.2. Lemat o podstawieniu

Ponizej przedstawiany lemat o podstawieniu, ktory bedzie wykorzystywany w nastep-
nych punktach. Wskazuje on na rolg, jaka odgrywaja wartosciowania w interpretacji
terméw 1 formut.

Lemat 9.1

Niech ¢ bedzie termem nad sygnaturg Sig oraz niech M = <D, I> bgdzie modelem
interpretacji, a v, v, niech beda dwoma wartosciowaniami. Jezeli zachodzi réw-
nos¢ wartosciowan v(x) = vo(x) dla wszystkich zmiennych xe Var(z), to

INT, (1) = INT, (1).

Dowod

Dowod prowadzi si¢ metoda indukeji strukturalnej wzgledem terméw. Jezeli term
t jest postaci x, to INTVI (x)z vi(x) = vy(x) = INTV2 (x) . Jezeli term ¢ jest postaci f{(#,

., In), to na mocy zatozenia indukcyjnego

INT, ()= INT, (t)dlai=1, .., n.

Stad
INT, (f(t,,...st,))= I(F)(INT, (1)),.... INT, (1,))

= I(f) (NT,, (1), ..., INT, (1,))
= INTV2 (f@,..t,))

Lemat o podstawieniu wskazuje na zwiazek jaki zachodzi pomiedzy zmiang warto-
sciowania zmiennych indywidowych przez podstawienie za wskazana zmienng warto-
sci termu a tekstowym zastapieniem tej zmiennej termem w innym termie lub w for-
mule.

Lemat 9.2 (Lemat o podstawieniu)

Niech M = <D, I> begdzie modelem, v — pewnym wartosciowaniem, 7 — termem,
oraz niech v = v[x := INT,(r)]. W6wczas dla dowolnego termu ¢* oraz dla dowolne;j
formuly o zachodza nastgpujace wiasnosci:

182

1. INT,-(t) = INT,(f[x ::=1])

2. INT, (@) = INT,(fx ::= t]) pod warunkiem, ze xe FV(Q).
Dowéd

Dowdd prowadzi si¢ metoda indukcji strukturalnej najpierw wzglgdem sktadni
termow, a nastgpnie formutl.

1. Niech term ¢’ = y, gdzie zmienna y jest r6zna od zmiennej x. Woéwczas:
INT,(y) =v'(y) =v(y) = v(ylx ::=1]) = INT,(y[x ::=1])
Dla ¢’ = x, zachodzi:

INT,(x) = v'(x) = INT,(t) = INT,(x[x::=1])

Dlat =f(1, ..., t,), na mocy zalozenia indukcyjnego, zachodzi:
INT,(t;) = INT,(ti{x ==1t])dlai= 1, ..., n,
Stad:

INT,(f(t), ..., t.)) = I)(INT (1)), ..., INT,(t,))
=I(N(INT,(t;[x ::=1]), ..., INT,(t,[x::=1]))
= INT, (f(z), ..., to)[x::=1])

2. Niech formuta « bedzie postaci Vy e 3 oraz niech term f bedzie wolny w o ze
wzgledu na x. Nalezy rozpatrze¢ dwa przypadki x # y oraz x = y.

W pierwszym przypadku, gdy x # y, dla kazdego de D zachodzi:
INT,(Yy e)= INTyy=a(P)

Nalezy zauwazy¢, ze:
V[y:=d] =v[x:= INT,()]ly :=d] = v[y ;= d][x := INT,(1)]

Na mocy poprzedniego lematu zachodzi
INT,(t) = INT,y .= (1)

poniewaz y& Var(t). Dalej niech a = INT,(1). Stad i z zalozenia indukcyjnego
wynika:

INT,jy = d)ix = a) B

INTvl_v = (II(B[x o= t])
INT,(Vy o Bx ::=1])
INT, (Vy o B)[x ::=1]

I

W drugim przypadku, gdy x =y, dla kazdego de D zachodzi:
INT,(Vy e)= INTyix:=a/(B)

183

Poniewaz
v[x := INT,(t)][x :=d]=v[x :=d]
oraz

VyeB=(VyePlx:=1])
dla kazdego de D zachodzi:
INT/(Vy e B)= INT,.:.-a/(B)
INT, (Vy e f3)
INT, (Vy e B)[x ::=1])

Pozostate przypadki, gdy formula o ma inne postaci, pozostawia si¢ do
udowodnienia Czytelnikowi.

Przyklad 9.1

l L
Niech sygnatura Sig sktada si¢ z jednej statej 0, dwdch jednoargumentowych ope-
racji nast, pop oraz jednego symbolu predykatu dwuargumentowego _=_. Dziedzi-

ng interpretacji D niech bedzie zbior liczb catkowitych Calkowite. Interpretacja I
stalej 0 przyporzadkowuje liczbg zero, operacjom nast i pop przyporzadkowuje
dodawanie i odejmowanie jedynki, to znaczy:

I(nast)(n) =gesn + 1,
I(pop)(n) =gern - 1,

a predykatowi _=_przyporzadkowuje rownos¢ liczb.
Niech dana bedzie formutla:

pop(pop(x)) =0
oraz term:

nast(nast(0))

Dla dowolnego wartosciowania v i wartosciowania v’ = v[x :=INT,(nast(nast(0)))]
zachodzi:

INT, (pop(pop(x)) = 0) = INT,(pop(pop(x)) = O[x ::= nast(nast(0))])
= INT,(pop(pop(nast(nast(0)))) =0) =P
Ostatnia rowno$¢ zachodzi poniewaz:

INT,(nast(nast(0))) = 2 oraz INT,(pop(pop(nast(nast(0)))) = 0.

184

Whniosek 9.1

Niech o bedzie formulg oraz niech term ¢ bedzie wolny ze wzgledu na x w a. Na
podstawie lematu i definicji semantyki kwantyfikatoréw zachodzi:

l.Vxe aE afx ::=1]
2.0x=tledxe

Punkt 1 wniosku, z faktu spetnialnosci formuly Vx e ¢, pozwala na wyprowadzanie
wniosku o spetnialnosci dowolnej formuly postaci ofx ::= t] dla dowolnego termu
t. Inaczej, aby pokazaé, ze formuta Vxeq nie jest spetnialna, wystarczy pokazac, ze
formuta ofx ::= ¢] nie jest spetnialna dla pewnego t.

Punkt 2 wniosku, z faktu spetnialnosci formuly ofx ::= f], pozwala na wyprowadzanie
wniosku o spetnialnosci formuty 3x e c. Inaczej, aby pokaza¢, ze formuta 3x e « nie jest
spetnialna, nalezy pokazac, ze formutfa ofx ::= t] nie jest spetnialna dla dowolnego ¢.

9.3. Przyklady wprowadzajace

Przed formalnym przedstawieniem rachunku sekwentéw Gentzena, przyktady wpro-
wadzajace pozwolg na poznanie gtdwnych idei, na ktérych opiera si¢ rachunek.

Przyklad 9.2
f o ’ ' |
Rozpatruje si¢ nastgpujaca formutg rachunku zdan:

(a=b)a(c=d)Ar(anc)=(bAd) (D)

Formula ta — jak mozna sprawdzié¢, na przyktad metoda zerojedynkowa — jest tau-
tologia. Istota dowodu nie wprost polega na przyjeciu zatozenia, ze formuta (1) nie
jest tautologia, czyli wartosé formuly jest falszem dla pewnego wartosciowania
zbioru zmiennych zdaniowych {a, b, ¢, d}. Okaze si¢, ze poszukiwanie takiego
wartosciowania doprowadzi do sprzecznosci. W tym celu zadanie rozbija si¢ na
dwa, prostsze, podzadania. Zgodnie z twierdzeniem o rozbiorze przedstawionym
w poprzednim rozdziale, kazda formuf¢ mozna jednoznacznie zdekomponowac na
podformuty skladowe. Spdjnik taczacy te podformuty jest nazywany spdjnikiem
gtownym. Gtéwnym spojnikiem formuly (1) jest ostatni po prawej symbol impli-
kacji. Cata formute (1) mozna przedstawi¢ w postaci:

a= B @)

185

gdzie
a=(a=>b)Aa(c=d)A(anc) 3)
B=bnad)

Aby pokazaé, ze formula (2) jest falszywa dla pewnego wartosciowania, wystarczy
pokaza¢, ze dla tego wartosciowania podformuta « jest prawdziwa, zas podformuta
B jest falszywa — stwierdzenie to wynika ze standardowej interpretacji spojnika
implikacji. Zatem formuta (1) zostala rozbita na dwie podformuly (3) oraz (4),
z zadaniem pokazania prawdziwosci podformuty (3) i falszywosci podformuty (4),
dla pewnego wartosciowania zmiennych logicznych.

Ogolnie, dang formule mozna rozbija¢ na dwa zbiory jej podformut z zadaniem
pokazania, ze dla pewnego warto$ciowania podformuly z jednego zbioru sg
prawdziwe, a podformuty z drugiego zbioru sa fatszywe. Przyjmuje si¢ oznacze-
nie: jezeli

{O(l, p—_— a,,}
jest zbiorem formul, ktérE maja by¢ prawdziwe dla pewnego wartosciowania, a

{ﬁlv seey ﬂm}

jest zbiorem formut, ktére maja by¢ fatszywe dla tego samego wartosciowania, to
takie zadanie bgdzie zapisywane w postaci:

Aty vy O = By oy B
a napis taki bedzie nazywany sekwentem.

Sekwent jest wigc parg dwdch zbioréw. Poszczegolne zbiory formut sa zapisywane
w postaci list, za§ symbol — jest separatorem oddzielajacym dwie listy.
W tym zapisie sekwent jest traktowany jako umowna forma zapisu pary zbioréw.

Zatem, w rozpatrywanym przykladzie poczatkowe zalozenie mozna zapisaé w po-
staci sekwentu:

>S((@a=barc=adArlanc)= (b Aad (5)

za$ to, co nalezy pokaza¢, jako konsekwencj¢ tego zalozenie, mozna zapisad
w postaci sekwentu:

(a@a=b)Aa(c=>dAr(anc)—>bnad (6)

Nalezy zwréci¢ uwage na to, ze przejsciu od zadania (5) do zadania (6) towarzyszy
eliminacja jednego spdjnika logicznego.

Aby pokaza¢, ze prawdziwa jest lewa stron¢ sekwentu (6), nalezy pokazaé, ze
prawdziwe sa wszystkie jej sktadowe polaczone symbolem koniunkcji, czyli:

a=b,c=>d,anc—>bnad @)

186

W ten sam sposdb, kierujac sie znaczeniem koniunkcji, zadanie sprowadza si¢ do
pokazania:

a=>b,c=>d,a,c—>bnd (8)

Po prawej stronie sekwentu (8) jest rowniez spdjnik koniunkcji, lecz nalezy poka-
zaé, ze formuta po tej stronie jest falszywa. A wigc wystarczy pokaza¢ tylko jeden
z przypadkow, ze falszywe jest b albo ze falszywe jest d. Zatem rozwiazanie zada-
nia (8) sprowadza si¢ rozwigzania jednego z dwoch podzadan:

a=>b,c=>d,a,c—b (9a)
a=b,c=>d ac—od (9b)

Rozpatruje si¢ zadanie (9a). Mozna je sprowadzi¢ do zadania prostszego, eliminu-
jac pierwszy z lewej spdjnik implikacji. Aby pokazaé, ze dla pewnego wartoscio-
wania prawdziwa jest implikacja a = b, wystarczy pokaza¢ jeden z dwoch przy-
padkow, ze falszywe jest a albo ze prawdziwe jest b. Zatem zadanie (9a) rozbija
si¢ na dwa podzadania:

c=d,a,c—>b,a (10a)
b,c=>d,a,c—>b (10b)

Zadanie (10a) prowadzi do sprzecznosci. Wynika to z tego, ze od zmiennej zda-
niowej a wymaga si¢ jednoczesnie, by dla tego samego wartosciowania byta praw-
dziwa (wystapienie a lewej stronie) i falszywa (wystapienie a po prawej stronie).
Podobnie, do sprzecznosci prowadzi zadanie (10b). Poniewaz zadania (10a)
i (10b) byly dekompozycja zadania (9a), oznacza to, ze rowniez zadanie (9a) pro-
wadzi do sprzecznosci.

W analogiczny sposéb przeprowadzone rozumowanie w stosunku do zadania (9b)
prowadzi takze do sprzecznosci. A zatem kazda préba znalezienia odpowiedniego
wartosciowania, ktore potwierdzatoby, ze formuta (1) nie jest tautologia prowadzi
do sprzecznosci, co daje ostateczny wniosek, ze (1) jest tautologia.

Przeprowadzone wnioskowanie mozna zapisa¢ w postaci graficznej. Rysunek 9.1
przedstawia graf-drzewo. Wierzchotkami drzewa sa sekwenty, czyli napisy postaci
[— A, gdzie T, A sg zbiorami formut zapisywanymi w postaci list. Luki drzewa sa
reprezentowane przez poziome linie — przyjmuje sie, ze sa one skierowane z gory
w dot. Przejscie miedzy dwoma sasiadujacymi wierzchotkami drzewa odpowiada
eliminacji jednego spéjnika logicznego.

> ((@a=b)a(c=>d)Ar(anc)=(bad)
(a=b)Al(c=>d)A(anc)—>bad
a=b,c=d,a,c—b a=b,c=d,a,c—d
b,c=>d,a,c—>b c=d,a,c—b,a a=b,d,a,c—>d a=b,ac—dc

b,d,a,c—>b b,a,c—>b,c d,a,c—>b,a a,c—b,a,c

Rys. 9.1. Drzewo dowodowe dla formuty (1)

187

Korzeniem drzewa jest sekwent postaci:
—a

gdzie o jest dowodzong formula. W przyktadzie
a=((a=b)a(c=>dAr(anc)= b Ad

Lis¢mi drzewa sa sekwenty postaci:
ILB—oAPB

gdzie — jak poprzednio — I, A sa ciagami formul, za$ f jest pewna formuta, ktora
wystepuje po obu stronach sekwentu.

Drzewo, ktorego lis¢mi sa wylacznie sekwenty o tej postaci jest drzewem dowo-
| dowym tautologii. |

Przyklad 9.3
Rozpatruje si¢ teraz przyktad konstrukcji drzewa dowodu dla formuty:
((@a=>b)a(c=>d)ra)=(bAc) (11)

ktora nie jest tautologia. Postgpujac jak poprzednio, mozna wnioskowanie zapisaé
w postaci drzewa —rys. 9.2.

= ((a=b)A(c=>d)ra)= (bAac)
(a=b)a(c=>d)ra—>bAac

a=b,c=>d,a—>bnac

a=b,c=d,a—b a=>bc=>d,a—>c
c=d,a,c > b,a c=>d,a,c—>b .
@)) d,ac—>b a,c—ob,c (4)
(2) 3)

Rys. 9.2. Drzewo dowodowe dla formuty (11)

W drzewie dowodu liscie (1) oraz (3) sa sekwentami, ktére po prawej i lewej stro-
nie maja t¢ sama formulg — tu zmienng zdaniowa. Sekwenty te oznaczaja sprzecz-
nos¢.
Natomiast lis¢ (2) jest sekwentem postaci:

d,a,c—>b (12)

Nie ma on takiej wlasnosci jak sekwenty (1) oraz (3), ponadto nie zawiera spdjni-
kéw logicznych. Wyznacza on takie wartosciowanie zmiennych (zmiennym a, ¢, d
przyporzadkowuje warto$¢ prawdy, a zmiennej b — warto$¢ fatszu), przy ktorym
wartos¢ dowodzonej formuty (11) jest fatszem.

188

Oznacza to, ze zostalo znalezione takie wartosciowanie zmiennych, dla ktérych
formuta (11) jest falszywa, a zatem nie jest ona tautologia. Znalezienie takiego
wartosciowania konczy dowod i nie wymaga rozwijania pozostatych galezi drze-
| Wa,na przykiad gatezi (4). |

Oba przyktady mozna traktowaé jako systematyczne poszukiwanie kontrprzyktadu
w celu pokazania, ze wyjsciowa formuta nie jest tautologia. W pierwszym przykiadzie
kazda mozliwa préba znalezienia kontrprzyktadu prowadzita do sprzecznosci, co dato
podstawe do ostatecznego stwierdzenia, ze formutfa (1) jest tautologia. W drugim
przykladzie kontrprzykifad taki znaleziono, co dalo podstawg do ostatecznego stwier-
dzenia, ze formuta (11) nie jest tautologia.
Przyklad 9.4
e
Rozpatruje si¢ teraz formut¢ rachunku kwantyfikatoréw:

Vx ¢ p(x) = Ty * p(y) (13)

gdzie p jest symbolem pewnego jednoargumentowego predykatu. Formula ta jest
oczywiscie tautologia. Dokonuje si¢ transformacji formuly polegajacej na zasta-
pieniu kwantyfikatora szczegélowego kwantyfikatorem ogdlnym. Z praw de Mor-
gana wynika, ze zachodzi rownowaznos$¢ semantyczna:

e

3_)1 e = —|Vy L (04
Formute (13) mozna przedstawi¢ w postaci:
Vx e p(x) = =Vye—p(y) (14)

Jak w przyktadach poprzednich, zaktada si¢ ze formuta nie jest tautologia, co
oznacza, ze istnieje pewna interpretacja predykatu I, w ktérej formuta (14) —
przy pewnym wartosciowaniu zmiennych indywiduowych — jest falszywa. Zgod-
nie z poprzednim rozumowaniem, poszukiwanie to sprowadza si¢ do znalezienia
takiej interpretacji I i takiego wartosciowania, dla ktérych formuta Vx e p(x) jest
prawdziwa, a formuta —Vy e —«a jest falszywa, czyli Vy e —a formuta jest
prawdziwa. Jezeli interpretacja I jest taka, ze formufa Vx e p(x) jest w niej spel-
nialna, to na podstawie wlasnosci pokazanej w poprzednim punkcie:

Vxe ak afx::=7]

mozna stwierdzi¢, ze I spetnia rowniez formulg p(z), gdyz z jest zmienna wolng w p(x).
Podobnie, stosujac analogiczne rozumowanie w stosunku do formuly Vye —q,
mozna stwierdzi¢, ze I spetnia formule —p(z), czyli ze I nie spetnia formuty p(z).
Zatem od p(z) oczekuje si¢, ze w interpretacji I jest jednoczesnie prawdziwe
i falszywe, co konczy dowdd.

Graficzna reprezentacja tego dowodu jest pokazana na rysunku 9.3.

189

—Vxe p(x)= =Vye—p(y)

Vx e p(x) > Vye—p(y)

Vxe p(x),Vye—p(y) =
p(O)[x:=z],—pX)[x:=z] >
p(2) = p(2)
Rys. 9.3. Drzewo dowodowe dla formuty (13)

Przyklad 9.5

Rozpatruje si¢ formutg rachunku kwantyfikatorow:
Jy e p(y) = Vx e p(x) (15)

gdzie p jest symbolem pewnego jednoargumentowego predykatu. Formula ta nie
Jest tautologia. Jak poprzednio, zastgpuje si¢ kwantyfikator szczegétowy kwantyfi-
katorem ogdlnym otrzymujac formutle:

=Yy e —=p(y) = Vx e p(x) (16)

Zgodnie z poprzednim rozumowaniem, poszukuje si¢ takiej interpretacji I i takiego
wartosciowania, dla ktorych formuly Vx e p(x) oraz Vy e —p(y) sa falszywe. Jezeli
w interpretacji I formuta Vx e p(x) nie jest spetnialna, to formuta p(x) nie jest
spetnialna. Podobnie, z tego, ze formuta Yy e —p(y) nie jest spelnialna, wynika, ze
formuta —p(y) nie jest spetnialna, czyli formula p(y) jest spetnialna. Oczekuje si¢
zatem, ze dla pewnej interpretacji I i dla pewnego warto$ciowania zmiennych x, y
formuta p(x) jest falszywa, a formuta p(y) jest prawdziwa. Oczywiscie taka inter-
pretacja istnieje, na przyktad wystarczy przyjaé, ze dziedzing interpretacji jest
zbior liczb catkowitych, a interpretacja predykatu p jest nastgpujaca:

I(p)(x) =ges x > 0.

Woéwcezas dla wartosciowania v =g {<x, 1>, <y, 1>} INT,(p(x)) = F oraz
INT,(p(y)) = P. Zatem formuta (16) nie jest tautologia.

Graficzna reprezentacja tego dowodu jest pokazana na rysunku 9.4.

— Vye—p(y) = Vxe p(x)

—Vye—p(y) > Vxe p(x)

— Vxe p(x),Vye—p(y)
= p(x), Vye—p(y)
— p(x),—p(y)
p(y) = p(x)

Rys. 9.4. Drzewo dowodowe dla formuly (15))

190

9.4. Jezyk sekwentow — skladnia i semantyka

Niech FORM(F, P, V) bedzie zbiorem formut rachunku kwantyfikatoréw nad alfabe-
tem o sygnaturze Sig = (F, P). Jezyk rachunku kwantyfikatoréw rozszerza si¢ o do-
datkowa kategori¢ napisow nazywanych sekwentami.

Sekwentem nad alfabetem o sygnaturze Sig jest dowolny napis postaci:
®-T (1)

gdzie @ oraz I'sa dowolnymi skonczonymi, by¢ moze pustymi, zbiorami formut, tzn.
@, 'c FORM(F, P, V). @ jest nazywany poprzednikiem, za$ I" jest nazywany nastep-
nikiem sekwentu.

Zbiér wszystkich napiséw postaci (1) bedzie nazywany zbiorem sekwentéw nad alfa-
betem o sygnaturze Sig, i bedzie oznaczany symbolem SEKW(F, P, V).

Przyjmie si¢ notacjg: jezeli dane sg zbiory formut:

O =4r {, ..., O} dla ne Nat
T =ger {B1y s B} dla me Nat

to sekwent (1) bedzie zapisywany w postaci:
ala eoey an _—> Blv soey ﬁm

Nawiasy bedgq wiec opuszczane, a elementy zbiorow @ oraz I bgda przedstawiane
w postaci list. Elementy obu zbiordw mozna na liscie przedstawia¢ w dowolnej kolej-
nosci, a dwukrotne wystapienie tego samego elementu na liscie mozna pomija¢.

Jezeli @, I sg zbiorami formul, a & jest pojedyncza formuta, to zbiér formut:
du{atul

bedzie zapisywany w postaci listy:
D,

Szczegdlne przypadki sekwentdw zachodza wtedy, gdy zbiory ® oraz I" sa puste:

- B, ..., Bn gdy D jest pusty,
a, ..., a4, — gdy I jest pusty,
- gdy @ oraz I" sg puste.

Pierwszy sekwent ma pusty poprzednik, drugi — pusty nastgpnik, a ostatni zapis ozna-
cza sekwent pusty.

Semantyke sekwentéw dla modelu M = <D, I> definiuje funkcja:

191

INT, : SEKW(F, P, V) — Logiczne
okreslana jako rozszerzenie funkcji interpretacji formut:
INT, : FORM(F, P, V) — Logiczne

nad tym modelem. W celu zdefiniowania tej funkcji wprowadza si¢ najpierw ozna-
czenia pomocnicze: jezeli

d={a, .., o}
to

AD =g 4 A ... A O,
vO =401V ...V O

Symbole AP oraz v® sa wigc uogdlnionymi spdjnikami iloczynu i sumy logicznej,
obejmujacymi wszystkie formuty zbioru ®. Jezeli ® jest zbiorem pustym, to z defi-
nicji:

AD =4 strue

v =4 false

gdzie true oraz false s3 stalymi logicznymi, interpretowanymi standardowo jako
wartosci P (prawda) i F (falsz).

Funkcja interpretacji sekwentu @ — I" przy wartosciowaniu v zmiennych indywidu-
owych jest okreslona nastgpujaco:

INT,(® — I') = P wtedy i tylko wtedy, gdy INT,(AD® = VvI) =P
gdzie symbol implikacji = ma standardowg interpretacje.

Sekwent @ — I jest spelniony w modelu M, gdy funkcja interpretacji INT,(® — I)
przyjmuje warto$¢ prawdy dla dowolnego wartosciowania v.

Sekwent @ — T" jest spelnialny uniwersalnie, gdy jest spelnialny w dowolnym modelu.
Z podanych okreslen wynika, ze sekwent:

o->T
jest semantycznie rOwnowazny formule:

AD = VI
Symbol — mozna wigc traktowac jako pewnego rodzaju spdjnik logiczny, bedacy
uogodlnieniem spéjnika implikacji =.
Przyklad 9.6

Sekwent:

(= p)— (= -0

192

jest rownowazny semantycznie formule:

L (@=ph=2E=-0

9.5. System dowodzenia

System dowodzenia G w rachunku sekwentéw Gentzena sklada si¢ z jednego aksjo-
matu oraz z regul eliminacji spojnikow logicznych i kwantyfikatoréw. Kazdy ze spoj-
nikow i kwantyfikatorow moze wystapi¢ po lewej i prawej stronie sekwentu. Dlatego
liczba regul jest rowna dwukrotnej liczbie uzywanych spdjnikéw. Kazda
z regut jest oznaczana literg [albo p — ktora oznacza lewa albo prawa strong sekwen-
tu, po ktorej wystepuje eliminowany spojnik — oraz symbolem spdjnika. Na przyktad
(IV) bedzie oznaczaé regule eliminacji kwantyfikatora ogélnego stojacego po lewej
stronie sekwentu. Przedstawiany ponizej zestaw regut dotyczy tylko spdjnikéw nega-
cji, koniunkeji i dysjunkcji, poniewaz stanowia one zbior funkcjonalnie petny, oraz
tylko kwantyfikatora og6lnego, poniewaz za jego pomoca mozna réwniez wyrazic
kwantyfikator szczegdtowy.

Aksjomat
Aksjomatem — a doktadniej schematem aksjomatu — jest dowolny sekwent:

d->T

dla ktérego ©@ N ' # &, czyli gdy istnieje co najmniej jedna taka formutla, ktéra
wystepuje po lewej i po prawej stronie sekwentu.

Uwagi

Schemat aksjomatu jest tylko jeden, natomiast generuje on nieskoficzenie wiele
aksjomatéw, czyli konkretnych sekwentéw. Podobna uwaga odnosi si¢ do regut
wnioskowania. Nalezy zauwazy¢, ze szczegdlnymi postaciami aksjomatu sg se-
kwenty:

false —
— true

Reguly
Dla negacji:

() —‘a,CD—>F
A -,

193

(p __1) CD—)—la,F
d.a—-T

Dla koniunkcji:

anf,®—->T
! —_—r 2 __ -
(A) o, B, —a,l
d->anp,l
(p) doTo OB

Dla alternatywy:

(l \/) aVB,(D—) r
d,a-T O,-T
d—>avp,l'

() 22 EvBL

d-a,pB,l
Dla kwantyfikatora ogdlnego:

(l V) VxOO(,CD—)F
a[x:=t],Vxea,® >T"

gdzie t jest dowolnym termem, ktéry w formule « jest wolny ze wzgledu na x

O oI Ve

pod warunkiem, ze xg FV(®)uU FV (')
¢o-Ta

(pv)

Reguly eliminacji kwantyfikatora maja specyficzne wlasnosci.

Po pierwsze — reguta eliminacji kwantyfikatora ogdlnego (1 V) w istocie nie eliminuje
kwantyfikatora, lecz dodatkowo wprowadza nowa formutg. Formuta Vxea wystepuja-
ca w przestance zostaje zastapiona formulami ofx::=] oraz Vxea we wniosku reguty.
Poniewaz zachodzi implikacja:

Vxea= ofx ::=1]
formute ofx ::=] mozna uwazac za szczegdlny przypadek formuty Vx e q.

Po drugie — nasuwa si¢ pytanie, jak wyznaczy¢ term r. Kazdorazowe wykorzystanie
reguly (I V) powinno by¢ zwigzane z wprowadzaniem nowego termu, gdyz nie ma
sensu tworzenie tych samych kopii formuly afx ::= 7] przy ustalonym 7. Zbiér terméw
Jjest oczywiscie nieskonczony — zaklada sig, ze jest to zbidr {1, 1,, ..., t,, ...}. Dlatego
przy tworzeniu drzewa dowodu jest potrzebny pewien pomocniczy mechanizm, ktory
przy kolejnym k-tym uzyciu reguly (I V) zwigzanym z eliminacja kwantyfikatora przy
formule Vx e o bedzie wyznaczac term f;.

194

Z uwagi na to, ze regula (I V) nie eliminuje kwantyfikatora zaleca sig, aby t¢ regule
stosowaé w ostatniej kolejnosci po wyczerpaniu mozliwosci stosowania pozostatych
regul. Zalecenie takie moze wyraza¢ zmodyfikowana posta¢ reguty (I V):

(IV)I Vxea,® > T
a[x::= t],CI)—->F,—1Vx0a

Formuta Vx e znalazla si¢ po prawej stronie sekwentu ze znakiem negacji, co — przy
tekstowym porzadku eliminacji spojnikdw — oznacza, ze ponowne zastosowanie re-
guly eliminacji kwantyfikatora w odniesieniu do tej formuty zostanie odlozone na ko-
niec, to znaczy po wyczerpaniu mozliwosci stosowania innych regut eliminacji.

Dowodzenie, ze formula o jest tautologia, polega na budowie drzewa dowodu, ktére-
go wierzcholki sa etykietowane sekwentami. Korzeniem drzewa, od ktérego rozpo-
czyna si¢ budowe drzewa, jest sekwentem postaci:

4

Nastepne kroki dowodu polegaja na rozwijaniu drzewa przez wyznaczanie kolejnych
wierzchotkow-nastgpnikow. Jezeli wczesniej zostal wyznaczony pewien wierzchotek
etykietowany pewnym sekwentem S, to jego nastgpnikami beda wierzcholki etykieto-
wane sekwentami S|, ..., S; wtedy i tylko wtedy, gdy zostata zastosowana reguta po-
zwalajaca sekwent S roztozy¢ na sekwenty S, ..., Si. Sekwent S oddziela si¢ od jego
nastgpnikdw kreska pozioma.

Budowe drzewa prowadzi si¢ tak dtugo, az osiagnie si¢ przynajmniej jeden lis¢, ktory
nie daje si¢ dalej rozwijaé i nie jest etykietowany aksjomatem — co oznacza, ze bada-
na formutla nie jest tautologia, albo, gdy wszystkie liscie drzewa sa etykietowane, ak-
sjomatami — co oznacza, ze badana formutla jest tautologia.

Przedstawiony system dowodzenia bezposrednio nie wyznacza algorytmu budowy
drzewa dowodu. Jest to spowodowane tym, ze system zawiera dwa zrddia niedetermi-
nizmu. Pierwszym zrodiem jest braku ustalenia kolejnosci stosowania regut tego sys-
temu, a drugim zrédtem — brak okre$lenia postaci terméw podstawianych za zmienne
w wyniku stosowania regul eliminacji kwantyfikatorow. Dokonanie ustalen w tym
zakresie pozwala juz na zalgorytmizowanie postgpowania dowodowego i ma wplyw
na efektywnos$¢ procesu dowodowego.

W nizej przedstawionym algorytmie wnioskowania przyjeto, ze:

e kolejnos¢ stosowania regul jest wyznaczona przez porzadek tekstowy sekwentu
— jako pierwsza wybiera si¢ regufe, ktora odnosi si¢ do pierwszego od lewej
strony tekstu dajacego wyeliminowaé si¢ spojnika. Ponadto zamiast reguly
(1 V) stosuje si¢ regute (I V), co oznacza, ze ponowne stosowanie reguly elimi-
nacji kwantyfikatora ogélnego po lewej stronie sekwentu odbywa si¢ po wy-
czerpaniu mozliwosci eliminacji innych spdjnikow;

195

e zbiér wykorzystywanych termow jest uporzadkowany w dowolny, ale ustalony
ciag 1, t;, Oczywiscie, intuicja podpowiada, aby termy uporzadkowac
w kolejnosci od najprostszych po coraz bardziej ztozone. Miarg ztozonosci mo-
ze byé, na przyktad, dlugosé termu mierzona liczba wystgpujacych w nich sym-
boli jezyka.

Algorytm zaklada ponadto, ze dowodzone formuly zawieraja tylko wybrane spdjniki
logiczne (negacj¢ i koniunkcjg) oraz kwantyfikator ogélny. Zatozenie to nie narusza
og6lnosei, gdyz kazda formula daje si¢ sprowadzi¢ do réwnowaznej semantycznie
formuly zawierajacej wylacznie te spdjniki i jeden rodzaj kwantyfikatora. Algorytm
jest przedstawiony w konwencji pseudoprogramowej. Jedyna konstrukcja, ktéra moze
wymagac¢ wyjasnienia, jest uzyta instrukcja petli postaci:

while warunek do ciqg instrukcji od

Konstrukcja ta oznacza nastgpujacy ciag czynnosci: obliczenie wartosci logicznej wa-
runku, a nastepnie — jezeli warunek jest prawdziwy — wykonanie ciqgu instrukcji, po
czym ponownie oblicza si¢ warunek i gdy jest prawdziwy powtarza si¢ obliczenie
ciqgu instrukcji; jezeli po obliczaniu warunku okaze sig, ze jest on fatszywy, petla si¢
konczy.

Algorytm badania tautologii
Dane: formuta

Wynik: odpowiedz tak, jezeli formula « jest tautologia rachunku kwantyfikatorow,
oraz nie w przypadku przeciwnym.

Procedura:

1. W formule o wyeliminuj spdjniki logiczne: v, =, < oraz kwantyfikator
szczegotowy 3, zastgpujac je tekstowo zgodnie z ponizszymi regutami:

Formuta zastgpowana Formuta zast¢gpujaca
av (=0 A =f)
o= ﬂ A% ﬂ
asf (=P AB=
dx e —Vx e—x

2. Niech 8 bedzie przeksztalcong formuta o. W formule B ponumeruj wystg-
pujace w niej kwantyfikatory, powiedzmy od 1 do k. Wprowadz zmienne
pomocnicze iy, ..., iy i nadaj im wartosci poczatkowe 0. Zmienna i; odnosi sig
do kwantyfikatora o numerze j, a warto$¢ tej zmiennej bgdzie oznaczac licz-
be zastosowan reguty (I V)" do j-tego kwantyfikatora.

3. Niech D begdzie poczatkowym drzewem dowodu o jednym wierzchotku, ety-
kietowanym sekwentem — f.

196

4. while

do lisci drzewa D nie bedacych aksjomatami daje si¢ zastosowac re-
guly eliminacji spojnikow logicznych

do

modyfikuj D stosujac do jego lisci regule eliminacji usuwajaca pierw-
szy tekstowo (liczac od lewej do prawej strony) dajacy si¢ wyelimi-
nowac spdjnik logiczny;

w przypadku zastosowania reguly (! V)" w celu eliminacji kwantyfikatora
o numerze j bierz pod uwagg term o numerze i; ze zbioru wszystkich ter-
moéw {1, t, ..., tu, ... }, @ nastepnie zwigksz warto$¢ zmiennej i; o jeden.

od

5. Jezeli wszystkie liscie drzewa sa aksjomatami, odpowiedz rak, w przypadku
przeciwnym odpowiedz nie.

Krok 1 algorytmu ma znaczenie przygotowawcze — sprowadza dang formul¢ a do
standardowej postaci f3, ktora jest rOwnowazna semantycznie formule . Kroki 2 i 3
ustalaja warunki poczatkowe dla zasadniczej czgsci algorytmu, ktdra jest krok 4.
W tym kroku iteracyjnie powtarza si¢ eliminacje spdjnikow logicznych i kwantyfi-
katora ogélnego. W iteracji tej moze nastapi¢ zapetlenie tylko wtedy, gdy nieskoncze-
nie wiele razy stosuje si¢ regule (I V)'.
Algorytm ma nastepujace wiasnosci:

e Algorytm daje odpowiedz rak wtedy i tylko wtedy, gdy formuta dana na wejsciu

jest tautologia.

e Gdy formufa dana na wejsciu nie jest tautologia, algorytm daje odpowiedz nie
lub si¢ zapetla.

Pierwsza wlasnos$¢ oznacza poprawnosé i zupetno$¢ semantyczng przedstawionej
metody dowodzenia. Druga wlasnos$¢ oznacza czg¢sciowg rozstrzygalnosé metody.

9.6. Semantyczna poprawnos$¢

Semantyczna poprawnos¢ systemu dowodzenia G dla rachunku sekwentéw Gentzena
oznacza, ze zachodzi implikacja: jezeli ® 5 ¢, to @ = a. Poprawnosci systemu G zo-
stanie wykazana przez udowodnienie kilku lematéw.

197

Lemat 9.3
Aksjomat rachunku sekwentéw jest spetnialny uniwersalnie.
Dowadd

Kazdy aksjomat jest sekwentem postaci @, a — T, . Zaklada sig, ze sekwent ten
nie jest spetnialny uniwersalnie. Niech M bedzie modelem, dla ktérego sekwent
nie jest spelniony. Oznacza to, ze jednoczesnie M £ « oraz, ze M # @, co z kolei
oznacza, ze M nie jest modelem.

Lemat 9.4

Niech yg FV(a)\{x} oraz niech y be¢dzie zmienng wolng w formule a ze wzgledu
na x. Wéwczas:

INT,, - o = wtedy 1 tylko wtedy, gdy INT,, .- 4 ECx 1= y]
Dowéd — ¢wiczenie.
Lemat 9.5

Dla kazdej reguty dowodzenia jej wniosek jest sekwentem spetnialnym uniwersal-
nie wtedy i tylko wtedy, gdy uniwersalnie spelnialny jest kazdy sekwent stanowia-
cy jej przestanke.

Dowod

Dowod prowadzi si¢ metoda nie wprost. Dla kazdej reguly pokaze sig, ze pewna
interpretacja INT, nie spetnia jej wniosku wtedy i tylko wtedy, gdy dla pewnej in-
terpretacji INT, nie sa spelnione jej przestanki. Teza twierdzenia wynika bezpo-
$rednio z tego stwierdzenia.

Rozwazania przeprowadza si¢ tylko dla regut (I A), (p A), (I V), (p V). Dowdéd dla
pozostatych regul prowadzi si¢ podobnie.

Dla regutly (I A) zachodzi:
INT, g ©, a, B> T

wtedy i tylko wtedy, gdy
INT, =E® A 0AfB— VD

wtedy i tylko wtedy, gdy
INT, # ®, an - vD

Zatem w interpretacji INT, przeslanki sg falszywe wtedy i tylko wtedy, gdy fal-
szywy jest wniosek reguty (I A).

Dla regutly (p A) zachodzi:

198

INT,#® 5T, anf
wtedy i tylko wtedy, gdy

INT, eA® oraz INT, # I" oraz INT, #a A
wtedy i tylko wtedy, gdy

INT, =® oraz INT, #vI oraz (INT, # o lub INT, # f3)
wtedy i tylko wtedy, gdy

INT, *® > T, lubINT,#r ® > T, 8

Zatem w interpretacji INT, przestanki sa falszywe wtedy i tylko wtedy, gdy fat-
szywy jest wniosek reguly (p A).

Dla regutly (I V) zachodzi:

Jezeli zalozy¢, ze dla INT, nie jest spetniona przestanka reguty, czyli
INT, i O, Vxoeax— T

to oznacza, ze
INT, EA® AVx e qoraz INT, # I’

Poniewaz INT, EVx e a, wigc — na mocy wniosku z punktu 9.2 — zachodzi INT,
Eafx::= t], pod warunkiem, Ze ¢ jest termem wolnym w « ze wzgledu na x. Z tego
wynika, ze dla INT, nie jest spetniony sekwent stanowiagcy wniosek, czyli

INT, #®, ofx::=t], Vxe x> I

Odwrotnie, jezeli zatozy¢, ze dla INT, nie jest spetniony wniosek reguty, to wynika
z tego, ze INT, EA® A ofx ::=1] A Vx e q oraz INT, #I". Z tego, z kolei wynika, ze
INT, =En® A Vx o o oraz INT, Ev I, co oznacza, ze dla INT, nie jest spetniona
przestanka regutly.

Dla reguty (p V) zachodzi:

Jezeli zatozy¢, ze dla INT, nie jest speiniona przestanka reguty, czyli
INT, gk ® 5T ,Vxe

to oznacza, ze
INT, EA® oraz INT, # v I oraz INT, vV x e &

Z ostatniego faktu wynika, ze istnieje de D takie, ze INT,, - 4 #a. Niech INT’, &
INT,y.- a1, gdzie yg FV(®) U FV(I') U FV(«) jest zmienng r6zng od x i wolng w o
ze wzgledu na x. Na mocy poprzedniego lematu 9.5. INT’, # ofx::= y]. Ponadto
INT’, eA® oraz INT’, wvT, poniewaz yg FV(®) U FV(T'). Dlatego INT’, # ® —
I, Vx o a, ofx::= y]. Oznacza to, ze jezeli przestanka reguly jest niespetnialna

199

przez pewng interpretacje, to wniosek reguly jest tez niespetnialny przez pewna
interpretacje.

Odwrotnie, jezeli zalozy si¢, ze dla INT, nie jest spelniony wniosek reguly, to
INT, en® oraz INT, # v I', INT, ¥ ofx::=y]. Z lematu o podstawieniu wynika,
ze INT,.- 4 ¥ @, gdzie d = INT,(y). Tak wigc dla INT, nie jest spetniona formuta
Vx e @, co oznacza, ze rowniez nie jest spetniona przestanka reguty.

Twierdzenie 9.1

Kazdy sekwent, ktéry ma dowdd w systemie Gentzena, jest sekwentem uniwersal-
nie prawdziwym.

Dowod

Dowdd wynika z wyzej udowodnionych lematdw przez zastosowanie indukcji na
strukturze drzewa dowodowego. Punktem wyjscia jest fakt, ze sekwenty-liscie jako
aksjomaty sa uniwersalnie prawdziwe, a kazde przejscie od sekwentéw-wnioskow
do sekwentu-przestanki w drzewie dowodu gwarantuje zachowanie uniwersalnej
prawdziwosci przestanki.

Whniosek 9.2

Dla kazdej interpretacji INT,, jezeli interpretacja ta nie spetnia sekwentu etykietu-
jacego n-ty wierzchotek drzewa dowodu, to nie spetniona ona rowniez zadnego se-
kwentu etykietujacego wierzchotek lezacy na $ciezce prowadzacej od korzenia do
wierzchotka n.

Lemat 9.5, oprocz tego, ze pozwala dowies¢ poprawnosci semantycznej systemu dowo-
dzenia, wskazuje na jeszcze jedng jego wlasnos¢. Pokazuje mianowicie, ze reguly pro-
wadza od prawdziwych wnioskow do prawdziwych zalozen, to znaczy jezeli regula po-
zwala z sekwentu S otrzyma¢ dwa sekwenty Sj, S, — jak na przyktad w regule dla
koniunkcji — to prawdziwos$¢ S; oraz S, implikuje prawdziwos¢ sekwentu S. Oznacza to
odwracalno$¢ wprowadzonych regut. Reguly otrzymane na podstawie takiego odwrdce-
nia sg regutami wprowadzania spdjnikow logicznych. Kazdej regule eliminacji spdjnika
logicznego odpowiada wigc reguta wprowadzania tego spdjnika. Na przyklad, regutom
eliminacji spdjnika koniunkcji beda odpowiadaé¢ reguly wprowadzania spdjnika ko-
niunkcji odpowiednio po lewej (" A) i po prawej stronie sekwentu (p* A):

(l"/\) afB,®—T
anfB,®—->T
i Od>Ta T,
(p A) O-Tanp

Zestaw regul wprowadzania spdjnikow logicznych i kwantyfikatora ogolnego pozwala na
konstrukcje takich samych drzew dowodu jak dla systemu z regutami eliminacji, z ta réz-
nicg, ze konstrukcja drzewa odbywa si¢ w odwrotnej kolejnosci — od lisci do korzenia.

200

9.7. Semantyczna zupelnos¢

Semantyczna zupetnos¢ systemu dowodzenia G dla rachunku sekwentéw Gentzena
oznacza, ze zachodzi implikacja: jezeli @ £ ¢, to ® s a. Zupetnos¢ systemu G zosta-
nie wykazana przez udowodnienie kilku lematow.

Lemat 9.6

Jezeli formuta « jest tautologia oraz drzewo dowodowe uzyskane w wyniku sto-
sowania podanego algorytmu jest skonczone, to wszystkie jego liscie sg etykieto-
wane aksjomatami.

Dowod

Dowdd prowadzi si¢ metoda nie wprost. Zaktada si¢, ze D jest pewnym drzewem
skonczonym zbudowanym dla formuly o takim, ze pewien lis¢ jest etykietowany
sekwentem postaci @ — I', gdzie ® N I' = J. Jezeli da si¢ pokazad, ze istnieje
pewna interpretacja INT,, dla ktérej sekwent ten nie jest spetniony, to na podstawie
wniosku 2 wynika, ze rowniez nie jest spelniony sekwent stanowiacy korzen drze-
wa dowodu. Zatem — wbrew zalozeniu lematu — oznacza to, ze formuta « nie jest
tautologia.

Poszukiwang interpretacj¢ skonstruuje si¢ w sposob nastepujacy: Jako dziedzing
- D interpretacji przyjmuje si¢ zbior wszystkich terméw TERM(F, P). Interpretacja
I symboli funkcyjnych i symboli predykatow jest nastgpujaca:

e wynikiem zastosowana funkcji fe F,,, dla ne Nat, do terméw ¢y, ..., , jest term
ﬂtly seey [Il)v
e dla dowolnych terméw ¢, ..., t, oraz dowolnego predykatu pe P,, dla ne Nat,

definiuje si¢ p(ty, ..., t,) = prawda wtedy i tylko wtedy, gdy formula p(z,, ...,
1,)€ D, czyli gdy wystepuje ona po lewej stronie sekwentu ® — I.

Rozpatruje si¢ takie wartosciowanie v, ktére dowolnej zmiennej indywiduowe;j
x przypisuje term x, czyli v(x) =4 X. Z definicji I oraz v wynika, ze:
INT, # A® = vIT

bowiem wszystkie formuly w sekwencie ® — I' sg nierozkladalne, a na mocy
definicji wszystkie formuty z ® sg prawdziwe, za$ wszystkie formuty z I" sa fat-
SZywe.

Lemat 9.7

Jezeli drzewo dowodowe uzyskane w wyniku stosowania podanego algorytmu dla
formuly « jest nieskonczone, to formuta « nie jest tautologia.

201

Dowad

Jezeli drzewo jest nieskonczone, to — na podstawie lematu Koniga — oznacza to ist-
nienie nieskonczenie dtugiej Sciezki zaczynajacej si¢ od korzenia. Niech ®@; — T bg-
da sekwentami etykietujacymi i-te wierzchotki na nieskonczonej $ciezce. Dalej
niech ® = Uiy @; 0oraz I' =Uie e I -

i€ Nat

Wprowadza si¢ teraz nastgpujaca interpretacj¢: Dziedzing interpretacji — podobnie
jak w poprzednim lemacie — jest zbiér wszystkich termow. Rowniez interpretacja
symboli funkcyjnych jest taka sama jak poprzednim lemacie, za$ interpretacja
symboli predykatow jest nastgpujaca:

dla dowolnych terméw 1, ..., t, oraz dowolnego predykatu pe P,, z definicji
p(ti, ..., t,) = prawda wtedy i tylko wtedy, gdy formuta p(z, ..., t,)e ®, czyli gdy
wystgpuje ona po lewej stronie jednego z sekwentéw @; — I';.

Niech v bgdzie wartosciowaniem takim, ze v(x) =4 x. Z pokazanego dalej lematu
9.8 wynika, ze dla dowolnej formuly o

jezeli e @, to INT, = «
jezeli aeT, to INT, E -~

Stwierdzenie tego faktu konczy dowdd lematu, gdyz oznacza, ze formuta « nie jest
tautologia, bowiem korzen drzewa dowodu jest etykietowany sekwentem —a,
czyli formuta aeT".

Lemat 9.8

Niech @ = Uicne P, oraz I' =Uiene I 5 gdzie @; — T sq sekwentami etykietuja-
cymi i-te wierzchotki na nieskonczonej sciezce w drzewie dowodu. Dla dowolnej
formutly a:

jezeli ae ®, to INT, £ «
jezeli el to INT, £ -«
Dowéod
Zdefiniuje si¢ najpierw relacj¢ < okreslona na zbiorze wszystkich formut w sposéb
nastgpujacy:

1. elementami minimalnymi relacji sa formuly elementarne postaci p(ti, ..., t,),
gdzie pe P,, jest symbolem n-argumentowego predykatu, a 7y, ..., t, sg do-
wolnymi termami. Oznacza to, ze dla formuly postaci p(t,, ..., t,) nie istnieje
formuta ataka, ze a < p(t, ..., t,).

2. 0< 0

3.a=<(an B)oraz B< (an P)

202

4. dla dowolnego termu 7 zachodzi ofx :=t] < Vx e

Niech <" bedzie przechodnim domknigciem relacji <. Jesli « jest dowolng formu-
1a, to nie istnieje nieskonczony ciag formut ay, o, ... spetniajacy warunek:

<<t ay< a

Wynika to z obserwacji, ze po lewej stronie relacji znajduje si¢ zawsze formuta
sktadniowo prostsza od formuly po prawej stronie relacji. Dla danej formuty liczba
formut sktadniowo od niej prostszych jest oczywiscie skonczona.

Dowdéd lematu bedzie prowadzony indukcyjnie wzgledem relacji <.

W kroku bazowym pokazuje sig, ze teza lematu zachodzi dla elementéw mini-
malnych wzgledem relacji <*. Zaklada sig, ze p(ty, ..., t,)€ @ U I'. Zatem istnieje
ke Nat takie, ze p(t, ..., t,)€ ®, U [; oraz k jest pierwszym takim wierzchotkiem
na rozpatrywanej sciezce. Oczywiscie ®, NI', = &, gdyz w przeciwnym razie
wierzchotek bylby aksjomatem i $ciezka konczylaby si¢ w tym wierzchotku
wbrew zalozeniu o jej nieskonczonosci. Zatem albo p(1, ..., t,)€ @y albo p(1y, ...,
1,)E I'..

Niech p(ti, ..., t,)€ ;. Poniewaz do formut postaci p(ty, ..., #,) nie da si¢ juz zasto-
sowaé zadnej z regut rozktadu, wige p(1y, ..., t,)e D,, dla m 2 k, a tym samym p(zy,
..., t.)& T'; dla dowolnego i€ Nat. Zatem p(t,, ..., t,)€ P orazp(t,, ..., t,)€I". Na mocy
definicji interpretacji INT, zachodzi wigc INT, E p(ty, ..., t,).

Analogicznie dla drugiego przypadku, gdy p(t, ..., t,)€l’x, mozna pokaza¢, ze
INT = —p(t), ..., tn).

W kroku indukcyjnym dowodu rozpatruje si¢ kolejne przypadki postaci formuty ct.
1. Niech o bedzie postaci —f8. Na mocy regut eliminacji spdjnika negacji zachodzi:

jezeli ~fe @, to PeT oraz
jezeli —feT, to Be D.

Wystarczy teraz skorzystaé z zatozenia indukcyjnego. Na przyktad, gdy —fe @,
to feT. Poniewaz 3 <" —f3, zatem korzystajac z zalozenia indukcyjnego z fe T’
wynika, ze INT, = —f.

2. Niech o bedzie postaci B A v. Z postaci regut eliminacji koniunkcji wynika, ze
formuty B oraz y wystepuja razem w @ albo jedna z nich wystepuje w I'. Oczy-
wiscie B <" (B A y) oraz y<" (B A }). Z zatozenia indukcyjnego wynika, ze

INT, = B oraz INT, £ y
albo
INT, = —|B lub INT, & =y

203

Zatem

INT, = (BAY) gdy (BAped
albo

INT, e =(BAry) gdy (BAyer.

3. Niech o bedzie postaci Vx o fB. Dla przypadku zastosowania reguty eliminacji
kwantyfikatora (I V) zaktada si¢ nie wprost, ze nie zachodzi INT, = Vx e .
Oznacza to, ze dla pewnego elementu z dziedziny interpretacji, czyli dla pew-
nego termu ¢, formuta f nie jest spetniona, to znaczy, ze INT, = —f[x ::=1].

Poniewaz f[x := t] <" Vx o B, wigc oznacza to, ze [[x ::= f] musi wystapi¢ po
lewej stronie sekwentu po skoficzonej liczbie zastosowan reguty (I V), czyli B
[x::= f]le®. Z zalozenia indukcyjnego wynika, ze INT, & 3 [x ::=], co oznacza
sprzeczno$¢ z wyprowadzonym wnioskiem, ze INT, £ —f [x ::=1].

Przypadek zastosowania drugiej reguty eliminacji kwantyfikatora (p V) rozwaza
si¢ podobnie.

Twierdzenie 9.2

System dowodzenia Gentzena jest semantycznie zupetny.

Dowod

Niech formuta o bedzie tautologia. Wystarczy pokaza¢, ze drzewo dowodowe dla
tej formuly jest skonczone. Z lematu 9.6 wynika bowiem, ze wszystkie jego liscie
sq etykietowane aksjomatami, co wskazuje na to, ze o jest tautologia. Drzewo do-
wodowe dla o musi by¢ jednak skonczone, gdyz w przeciwnym przypadku — zgod-
nie z lematem 9.7 — formula « nie bytaby tautologia.

Z przedstawionych rozwazan wyplywa dodatkowy wniosek:
Whiosek 9.3
System dowodzenia Gentzena jest czgsciowo rozstrzygalny.

Oznacza to, Ze istnieje procedura (na przykfad algorytm przedstawiony w p. 9.5),
ktéra w skonczonej liczbie krokdéw stwierdza, ze badana formula « jest tautologia
albo stwierdza, ze formuta nie jest tautologia, albo — w przypadku, gdy « nie jest
tautologia — nie udziela zadnej odpowiedzi w skonczonej liczbie krokéw.

204

Cwiczenia

1. Stosujac metode sekwentéw Gentzena wykazaé, ze nastgpujace formuly nie sa
tautologiami rachunku kwantyfikatoréw:

a) (dx ¢ p(x)) = p(x)
b) (Vx e p(x)) = (Vx ® —p(x))

2. Czy formuly z zadania 1. sa spetnialne?

3. Stosujac metode sekwentéw Gentzena wykazaé, ze nastgpujace formuty sq tautolo-
giami rachunku kwantyfikatoréw:

a) (Gxepx) v qx) e 3xepx) v (3xeqg(x)
b) (Vxep(x) & g(x) = ((Vx ¢ p(x)) & (Vx @ g(x)))
c) (Vxep(x) @ gx) = (3x * p(x)) & (Ix @ g(x)))

4. Stosujgc metode sekwentéw Gentzena sprawdzi¢, ktére sposréd nastgpujacych
formut sg tautologiami rachunku kwantyfikatorow:

a) (RVxeVyer(x,y) < (Axedye—r(x,y))
b) (—dxedyer(x,y)) < (Vxe Vye—r(x,y))

5. Poda¢ dolne i gérne oszacowanie liczby wierzchotkéw drzewa dowodu formuty
rachunku zdan metoda sekwentéw Gentzena, przy zalozeniu, ze liczba wystapien
spojnikéw logicznych w formule wynosi ne Nat.

6. Przedstawi¢ algorytm, ktory dla danej formuly wyznacza pierwszy (od lewej) tek-
stowo spojnik, ktory moze by¢ wyeliminowany przy dowodzeniu metoda sekwen-
téw Gentzena.

10. Zasada rezolucji

10.1. Wstep

Omoéwiony w rozdziale 9 system dowodzenia — oparty na rachunku sekwentéw Gent-
zena — daje podstawe do tworzenia algorytmow automatycznego dowodzenia formut
rachunku kwantyfikatoréw, ale jest zwiazany z pewnymi niedogodnosciami, ktore
prowadza do duzej ztozonosci obliczeniowej, a tym samym czasochtonnos$ci obliczen.
Poszukiwanie innych, bardziej efektywnych metod dowodzenia doprowadzilo, w 1965
roku, do sformufowania przez J. A. Robinsona systemu dowodzenia opartego na tzw.
regule rezolucji. Doktadniej, zasada rezolucji stanowi system dowodzenia spetnialno-
sci zbioru formul. Istotng wiasciwoscia dowodzenia opartego na regule rezolucji jest
koniecznos$¢ sprowadzenia dowodzonej formuly do postaci znormalizowanej. Miano-
wicie, formuty musza by¢ w skolemowskiej postaci normalnej, a ich matryce — w ko-
niunkcyjnej postaci normalne;j.

Uwagi

Podejscie zaproponowane przez Robinsona okazalo si¢ bardzo skuteczne i dato
podwaliny pod wiele zastosowar, wsrod ktorych na pierwszym miejscu nalezy
wymieni¢ programowanie w logice. Programowanie w logice, zwlaszcza w jezyku
Prolog, umozliwito, m.in., efektywna implementacje systeméw doradczych (eks-
pertowych), sterowanie robotami, automatyczne ttumaczenie tekstow.

Metoda Robinsona bazuje na wezesniejszych pracach, wsrdd ktorych nalezy wy-
mieni¢ prace Herbranda® z 1930 roku oraz pracg Davida i Putnamana z poczatku
lat szes¢dziesiatych.

Stosowanie zasady rezolucji wiaze si¢ z badaniem, czy dana formufa « jest logiczna
(semantyczng) konsekwencja zbioru formut @, czyli czy ® £ o. Zgodnie z lematem
z podrozdziatu 8.6, @ = a wtedy i tylko wtedy, gdy zbiér ® U {—a} jest niespelnial-

2! Jaques Herbrand (1908-1931).

206

ny. Jezeli ® £ {q, ..., @,}, to niespetnialnosé zbioru formut ® U {—o} oznacza, ze
formuta

QU A .. AOGA O

jest tozsamosciowo fatszywa. Zatem niespeinialnos¢ zbioru ® U {—«} oznacza, ze
jedyna jego konsekwencja semantyczng jest formula tozsamosciowo fatszywa, czyli
O U {—«a} E false.

Stosowanie zasady rezolucji polega na reprezentacji zbioru formut ® U {—a} za po-
mocg zbioru klauzul, a nastgpnie na probie wyprowadzenia z tego zbioru klauzuli pu-
stej, reprezentujacej false. Jezeli taka proba konczy si¢ powodzeniem, to znaczy wy-
prowadzeniem klauzuli pustej, oznacza to, ze ® = o W przypadku przeciwnym, po
wyczerpaniu wszystkich mozliwosci, oznacza to, ze @ ¥ a.

10.2. Zasada rezolucji dla rachunku zdan

Zaklada sig¢, ze badane formuty rachunku zdan sa w koniunkcyjnej postaci normalne;j,
co oznacza, ze sa w postaci koniunkcji klauzul:

KIANKIA . AK, dla ne Nat\{0}
Klauzula jest dysjunkcja literatdw:
AMVAv..VA, dameNat

W przypadku szczegélnym, gdy m = 0, klauzula bedzie nazywana klauzula pustq
i oznaczana symbolem [J. Klauzula pusta oznacza formulg tozsamosciowo fatszywa.

W przypadku rachunku zdan literatami sa zmienne zdaniowe lub ich negacje. Dwa
literaty sa komplementarne, gdy jeden jest negacja drugiego.

W przypadku znormalizowanej reprezentacji formuly mozna méwié, ze formuta jest
okreslona przez pewien zbiér klauzul, zas klauzula jest okreslona przez pewien zbior
literalow. Uwaga ta wyjasnia wprowadzana ponizej konwencjg¢ oznaczen.

Fakt, ze pewien literat A jest elementem klauzuli k bgdzie zapisywany w postaci A€ k.
Ponadto, jezeli z klauzuli K zostanie usunigty nalezacy do niej literat A, to otrzymana
nowa, by¢ moze pusta, klauzula bgdzie oznaczana K\A.

Definicja 10.1

Niech beda dane dwie klauzule x, K, oraz dwa literaly komplementarne A,, A, ta-
kie ze A € k1, ;€ K». Klauzula postaci:

207

KW U e\,

bedzie nazywana rezolwentq klauzul k; oraz k; i oznaczana symbolicznie przez
rez(K,, K»). Literaly A,, A, nazywa si¢ literalami czynnymi. O dwéch klauzulach,
ktore posiadaja rezolwentg begdzie mowic sig, ze sa klauzulami, ktére daja sig
uzgodnié. Oznaczenie rez(Ki, K2) ma sens tylko pod warunkiem, ze klauzule ki, 1
daja si¢ uzgodnic.
Badanie czy dana formula jest tautologia polega na badaniu zbioru reprezentujacych
ja klauzul. Mianowicie, formula o jest spetnialna wtedy i tylko wtedy, gdy jest spel-

nialny zbidr reprezentujacych ja klauzul ki, K, ..., K,. Zbiér klauzul nie jest spetnialny
wtedy i tylko wtedy, gdy jego semantyczna konsekwencja jest klauzula pusta.

Dowodzenie polega na generowaniu na podstawie zbioru klauzul ki, K, ..., K, nowych
klauzul tak dilugo, az zostanie utworzona klauzula pusta badz, po wyczerpaniu
wszystkich mozliwosci, klauzula pusta nie zostanie wygenerowana. Wygenerowanie
klauzuli pustej bedzie oznaczaé, ze zbidr badany zbidér klauzul jest niespetnialny,
a przypadek przeciwny bgdzie oznaczac spetnialnos¢ badanego zbioru klauzul.

Generacja nowej klauzuli opiera si¢ na zastosowaniu reguty rezolucji w postaci:
Definicja 10.2
Schemat reguty rezolucji ma posta¢:

K1, K>
K \A UK, \ A4,

A € K, A, € K, Oraz A, 4, sa komplementarne

Przestankami reguly rezolucji sa klauzule, a wnioskiem — rezolwenta tych klauzul.

Regula rezolucji jest ogdlng regula wnioskowania, ktérej szczegoélne postaci odzwier-

ciedlaja niektdre inne znane reguly wnioskowania.

Przyklad 10.1
Niech beda dane dwie klauzule: p oraz —p v g. Spelniaja one wymagania oczeki-
wane od przestanek w regule rezolucji, literatami czynnymi sa p oraz —p, a ich re-
zolwentg jest klauzula g, czyli:

p,mpPvV4q
q

Warto zauwazy¢, ze klauzula —p v ¢ jest semantycznie formule p = g, co pozwala
zapisa¢ powyzsza regul¢ w postaci:

p,P=q
q

| znanej jako regula odrywania (modus ponens).

208

Przyklad 10.2
| Dla klauzul —p Vv g oraz —q Vv r regula rezolucji ma posta¢:
—pVq,—qvr
r
co odpowiada regule wnioskowania tancuchowego:
Vg, qVr
Przyklad 10.3
Prosta, ale szczegdlnie wazna jest regula rezolucji w postaci:

-, P

O

Oznacza ona, ze klauzula pusta wyraza sprzecznosci przestanek. |

-

Nalezy zwr6ci¢ uwage, ze rezolwenta dwoéch klauzul nie zawsze jest wyznaczona jed-
noznacznie, gdyz klauzule moga posiada¢ wigcej niz jedna parg literaldéw komple-
mentarnych. Ponadto w powstalej rezolwencie moga powtarza¢ si¢ pewne literaty.
Powtarzajace si¢ literaly mozna usunaé bez naruszenia semantyki klauzuli. Proces
eliminacji powtarzajacych sig literatow okresla si¢ jako faktoryzacje.

Przyklad 10.4
Dla klauzul:
—pV-ogVoarv-as o oraz pyv gV iryv sy -t vau
rezolwentami sg:
—qVv-arv-as v-agvrv=sv—=tv—u o (literalami aktywnymisa —p i p)
oraz
—pVogVas vpV gy asv—tv—u o (literalami aktywnymi sa —ri r)
Po faktoryzacji rezolwenty przyjmuja odpowiednio postac:
—g NV —rv=as VIV -=tv-au
oraz
| TPy TaVIS VRtV

Reguta rezolucji jest semantycznie poprawna, co precyzuje twierdzenie.

209

Twierdzenie 10.1
Rezolwenta rez(ki, k) jest semantyczng konsekwencja klauzul ki, K3, czyli
Ki, Kz E rez(Ki, K2).
Dowod
Niech klauzule x;, k; maja postac:

KK=EAVA Vv..VA,
KE—-AvAiv..vAl,

gdzie A, =4 sa literalami komplementarnymi. Niech klauzule te beda spetnione
w pewnej interpretacji I. Oznacza to, ze spetniony jest rowniez jeden z literatow A,
—A. Niech bedzie to —A. Wobec tego nie jest spetniony literat A, ale skoro spetnio-
na jest klauzula ki, to musi by¢ spetniona formuta A, v ... v A,. Formula ta jest
skfadnikiem rezolwenty rez(ki,k»), a zatem rezolwenta jest rowniez spetniona
w interpretacji I. Rozumowanie przebiega podobnie, gdy zalozy¢, ze spetniony jest
literat A.

Na podstawie reguly rezolucji mozna sformutowa¢ algorytm badania spetnialnosci
formuty rachunku zdan.

Algorytm badania spetnialnosci zbioru klauzul
Dane: formuta arachunku zdan.
Wynik: odpowiedz tak, gdy formuta jest spetnialna, nie — w przypadku przeciwnym.
Procedura:

1. Dla formuly a wyznaczy¢ CNF(c) — algorytm z p. 7.6.
2. Wyznaczy¢ zbior klauzul S reprezentujacych CNF(Q).
3. Powtarza¢ nastgpujace czynnosci:
while
Ole S i istnieja klauzule x;, K,€ S dajace rezolwente nie nalezaca do S
do

(a) znajdz klauzule K, K, ktore daja si¢ uzgodni¢ i wylicz ich rezolwentg

(b) zastap S przez S’, gdzie S” =S U rez(ki, K2)
od

4. Jezeli S zawiera klauzulg pusta odpowiedz nie, w przypadku przeciwnym —
odpowiedz tak.

210

Przyklad 10.5

Niech bedzie dany nastgpujacy zbior klauzul:
S=def{av—xbv—1c,d,b,cv—:avﬁb,cv—nd,ﬂav—xdvﬂb}

Dla przejrzystosci rozwazan poszczegoélne klauzule zostang zapisane w ponume-
rowanych wierszach. W nastgpnych wierszach sa zapisane klauzule uzyskane ze
zbioru § w wyniku stosowania reguly rezolucji. Po prawej stronie klauzuli sa
podane numery klauzul, ktére byly przestankami do jej uzyskania:

(Dav-=bv-—c

2)d

3)b

@) cv-—av-b

B)cv—d

(6) —av —-dv —b
(Mav-—c (1, 3)
(8)c (2,5)
(9) —av —b (2, 6)
(10) c v —a 3,4
(11)—.av—1d (3, 6)
(12) —a 2,11)
(13) —=c (7, 12)
(14) 0O (8, 13)

Ostatnia wygenerowana klauzula jest klauzula pusta, co dowodzi, ze badany zbioér
l klauzul S nie jest spetnialny.

10.3. Skolemowska posta¢ normalna

Badajac spetnialnos¢ formut rachunku kwantyfikatoréw w oparciu o zasadg rezolucji za-
kiada sie, ze formuty sa w postaci kanonicznej, zwanej skolemowska postacig normalna.

Niech ae FORM(F, P, V) bedzie formufa rachunku kwantyfikatoréw nad sygnaturg
<F, P> i zbiorem zmiennych indywiduowych V.

211

Definicja 10.3

Formula znajduje si¢ w postaci Skolema, gdy jest w przedrostkowej postaci nor-
malnej, a jej przedrostek nie zawiera kwantyfikatoréw egzystencjalnych.

Przez Skol(c) bedzie oznaczany skolemowski odpowiednik formuly a. Proces wyzna-
czania odpowiednika skolemowskiego dla danej formuly nazywa si¢ skolemizacjq.

W odrdznieniu od przypadku, gdy dla dowolnej formuty « istniata réwnowazna se-
mantycznie postaé¢ przedrostkowa PNF(c), migdzy formula o a odpowiadajaca jej
postacia skolemowska Skol(c) rownowaznos¢ taka moze nie zachodzi¢. Zachodzi na-
tomiast stabszy rodzaj rbwnowaznosci oparty na zwiazku spefnialnosci. Oznacza to,
ze formula « jest spetnialna wtedy i tylko wtedy, gdy spetnialna jest formuta Skol(c).
Formuta o jest spetnialna, gdy istnieje model, w ktoérym jest spetniona.

Istote skolemizacji wyjasnia przykfad.

Przyklad 10.6
Dana jest formuta postaci: !
VxeVye((x<y)=3Jze(x<2)A(z<Y)) (1
lub po sprowadzeniu do przedrostkowej postaci normalne;j:
VxeVyeJze (n(x<y)v(x=<2)A(z=<Y)) (2)

Jest to aksjomat elementarnej teorii relacji mniejszosci zdefiniowanej w rozdziale
8. Modelem dla tej teorii jest, na przyktad, zbior liczb wymiernych Wymierne jako
dziedzina interpretacji oraz relacja mniejszosci < w zbiorze liczb wymiernych jako
interpretacja symbolu predykatu <. W modelu tym aksjomat mowi, ze dla dwdch
dowolnych liczb wymiernych x, y istnieje pewna posrednia liczba wymierna z, kto-
ra jest zawarta w przedziale migdzy liczba x a liczba y. Liczbg posrednia mozna
zawsze wskazywaé bezposrednio, biorac, na przyktad, srednia arytmetyczna liczb
x, y, czyli okre$lajac, ze wartosciowanie zmiennej z jest funkcja warto$ciowania
zmiennych x oraz y zdefiniowang wzorem z =4 (x + y)/2. Dla $redniej arytmetycz-
nej prawdziwa jest bowiem formuta:

VxeVye(m(x<y)vV(x<x+y)/2)Ax+y)2=<Yy) 3)

Formuta ta jest w postaci skolemowskiej i rozni si¢ od poprzedniej formuty bra-
kiem kwantyfikatora szczegbtowego, ktory zostal zastapiony dwuargumentowa
funkcja obliczajacq Srednia arytmetyczng. Ostatnig formulg¢ mozna zapisa¢ w ogol-
niej postaci:

Vxe Vye (=(x<y) Vv (x=<flx,y) Afix,y)<y) 4)

gdzie f jest pewnym symbolem funkcyjnym, ktory nie wystgpowatl w teorii relacji
mniejszosci.

212

Tekstowy zwiazek miedzy formulg (4) oraz formuta (2) mozna scharakteryzowac
nastepujaco: formufa (4) powstata z formuly (2) przez eliminacj¢ kwantyfikatora
szczegblowego oraz przez tekstowe zastapienie kazdego wystapienia zmiennej
z, wigzanej wyeliminowanym kwantyfikatorem, przez term f(x, y), gdzie x oraz y sa
zmiennymi wigzanymi przez kwantyfikatory ogélne poprzedzajace wyeliminowa-
ny kwantyfikator szczegétowy, a f jest nowym dwuargumentowym symbolem
funkcyjnym.

Na przykladzie widaé, ze aksjomat (2) teorii relacji mniejszosci mozna byltoby za-
stapi¢ aksjomatem postaci (4). Nowa aksjomatyka jest spetniona w kazdym mo-
| delu, w ktérym jest spetniona dawna aksjomatyka. |

Algorytm skolemizacji:
Dane: formuta o nad sygnaturg <F, P>.
Wynik: formuta Skol(a) w postaci skolemowskiej rOwnowazna w sensie spefnial-
nosci formule a.
Procedura: Procedura postgpowania polega na etapowym, tekstowym przeksztatcaniu
formuty a. Formuta posrednia jest oznaczana przez .

1. Niech « bedzie formuta w przedrostkowej postaci normalnej (otrzymana, na
przyktad, w wyniku stosowania algorytmu przedstawionego w p. 8.7).

2. while
w przedrostku formuty f istnieje kwantyfikator egzystencjalny
do

(a) Jezeli formuta B ma postaé: 3x e ¥, to zastepuje sie ja formula po-
staci Y{x ::= c], gdzie c jest nowym symbolem stalej, to znaczy, ze ¢
nie nalezy do zbioru symboli statych sygnatury (F, P), czyli cg Fj.

(b) Jezeli formuta B ma postaé: Vx, e ... ® Vx,, @ Jy e ¥, dla m > 0, wtedy
zastgpuje si¢ ja formulg postaci: Vx, e...e Vx,, ® fy ::= fixy, ..., xu)],
gdzie f jest nowym m-argumentowym symbolem funkcyjnym, to zna-
czy, ze f nie nalezy do zbioru m-argumentowych symboli funkcyj-
nych sygnatury <F, P>, czyli f¢ F,,.

od
3. Otrzymana formute B definiuje si¢ jako Skol().

Dla formuty postaci:
Ju e Vw e x e VyeIze (pu,x) = q(w,y, h(z)))

213

jej skolemowskim odpowiednikiem jest formuta:

Vw e Wy e (p(c, iw)) = q(w, y, h(g(w, y))))
l gdzie c, f, g sa nowymi symbolami funkcyjnymi.

]
Twierdzenie 10.2

Formula « jest spetnialna wtedy i tylko wtedy, gdy spetnialna jest formuta Skol()
otrzymana w wyniku podanego wyzej algorytmu.

Dowod

Jezeli formuta o= Vx, e ... ® Vx, ® 3y e yjest spetnialna, to oznacza, ze jest spet-
niona w pewnym modelu M = <D, I> nad sygnaturg Sig, czyli

INT,(Vx, e ...® Yx, 3y ey =prawda
dla dowolnego warto$ciowania v. Z tego wynika, ze réwniez
INT(3y e y) = prawda

dla v’ = v[x, :=d,, ..., xn := d,), gdzie d,, ..., d,€D sa dowolnymi warto$ciami
z dziedziny interpretacji. Oznacza to, ze istnieje taka wartos¢ de D, ze

INTv'ly = (ll(y) = prawda

Niech Sig” bedzie rozszerzeniem sygnatury Sig o m-argumentowy symbol funkcyj-
ny f, oraz niech I’ bedzie takim rozszerzeniem interpretacji I, ze I'(f,) = f“ jest
funkcja, ktora — z definicji — dla d,, ..., d,,€ D przyjmuje wartos¢ de D, czyli

fid,, ..., d,) =d.
Woéwczas:

V [y = INTy(fy (%1, oo Xa))] = V' [y = fUNT /X)), .. INT (X))
= v [y :=fYd, ..., dw)]
= V, [y = d]

Formuta y nie zawiera symbolu f,, dlatego
INT vy = qy(y) = prawda

Z lematu o podstawieniu wynika, ze
INT, (y) = INT,(y [y ::=f)(x1, ..., Xm)].

Poniewaz d,, ..., d,, byly wybrane dowolnie, zatem
INT,(Vx,® ... e Vx, e fy ::=f(x, ..., xn)]) = prawda

dla dowolnego v.

214

Wynikanie odwrotne — spetnialnos¢ formuly « ze spetnialnosci formuty Skol() jest
oczywiste.

Przedstawienie formuly o w postaci skolemowskie;j:
Vxie..oVx,o(KiA...AKp)

gdzie ki, ..., K, sa klauzulami, pozwala na reprezentacj¢ formuty w postaci zbioru
jej klauzul. Reprezentacja ta jest jednoznaczna przy zalozeniu, ze wszystkie
zmienne wystgpujace w klauzulach sg zwiazane kwantyfikatorami og6Inymi. Zato-
zenie to zawsze mozna przyjaé, gdy bada si¢ spetnialnos¢ formuty. Wynika to
z faktu, ze jesli, na przyklad, jest spetnialna formulta VyeVxe p(x, y), to rowniez
spetnialna jest formuta Vxe p(x, y).

10.4. Unifikacja termow

Stosowanie zasady rezolucji w rachunku kwantyfikatoréw wymaga dodatkowego
procesu polegajacego na sprowadzeniu literaldéw do pewnej ujednoliconej postaci.
Proces ten nazywa si¢ unifikacjq terméw. Zbior klauzul {p(x), —p(y)} jest oczywi-
$cie zbiorem niespetnialnym, ale literaty p(x), —p(y) nie sa komplementarne. Ogol-
nie, literalami w rachunku kwantyfikatoréw sa formuty elementarne lub ich nega-
cje, na przyktad p(ty, ..., tn), =p(ti, ..., tn), gdzie p jest symbolem predykatywnym,
at, .., t, sa termami. Sprowadzanie takich literatow do ujednoliconej postaci —
o ile jest mozliwe — polega na zastosowaniu do nich jednakowych podstawien tek-
stowych (podrozdziat 8.4).

Rozwazane beda tylko takie podstawienia o =gef [X) ::= 1y, ..., X, 1= 1,,], ktOre spetniaja
warunek:

Var(t) N {x), ..., x,} =Ddlai=1, ..., n,
to znaczy, ze w termach 7y, ..., t, nie wystepuja zmienne xy, ..., X,.
Podstawienie o nazywa si¢ unifikatorem dla formut ay, ..., a,, gdy
0 =...=0,0.

Oczywiscie formuty musza by¢ oparte na tym samym symbolu predykatywnym, moga
réznié si¢ co najwyzej postacia terméw, ktore sa ich argumentami. Formulty ¢y0; ...,
o, 0 nazywa si¢ formutami ukonkretnionymi przez podstawienie 0.

215

Przyklad 10.8

Unifikatorem dla formut p(x) oraz p(y) jest [x ::=z, y ::= z], gdyz
p@Ix =z, y=2]= pWx =2,y =21 =p(2)

ale unifikatorami sa rowniez, na przyktad,
[x ::=w, y ::= w], gdzie w jest zmienna,

[x =5,y :=5], gdzie 5 jest stala,
[x ::= g(z, w), y ::=g(z, w)], gdzie g jest symbolem funkcyjnym.
Dla formut p(x), p(6) jest tylko jeden unifikator [x ::= 6], a dla formut p(5), p(6)
[nie ma unifikatora. |

Formulg o ukonkretniong przez podstawienie 0 mozna ukonkretnia¢ ponownie innym
podstawieniem 7. Dwukrotne ukonkretnienie formuly, najpierw podstawieniem o,
a nastgpnie podstawieniem 7, jest rownowazne jednokrotnemu ukonkretnieniu pod-
stawieniem o 7, ktdre jest ztozeniem podstawien o oraz 7. Oznacza to, ze

(axo)t=a(o 7).
Przyklad 10.9
! Formutg p(x, y) mozna kolejno ukonkretni¢ podstawieniem [x ::= f{z)], co da for-l
mule p(f(z), y), a nastgpnie podstawieniem [y ::= g(u, w)], co da p(f(z), g(u, w)).
Zlozeniem podstawien [x ::= f(z)] oraz [y ::= g(u, w)] jest podstawienie:
[x::=f2),y ::= g(u, w)].
| Zasivmnie ep podstawionis do formly e) e iEwMIEL PG el).

Jezeli dla podstawienia o istnieje podstawienie odwrotne o ' takie, ze 0 0 ' =

0'0 = ¢, gdzie € jest podstawieniem tozsamosciowym, to o jest nazywane przemia-
nowaniem zmiennych.

Przyklad 10.10

Postawienie [x ::= z, y ::= w] jest przemianowaniem zmiennych, gdyz

L Emnys=wllzi=xnwisyl=xi=xy =yl E—

Definicja 10.4

Podstawienie 0, jest bardziej ogdlne niz podstawienie 0, jezeli dla pewnego nie-
pustego podstawienia 7, roznego od przemianowania, zachodzi 0> = 0, 7.

216

Definicja 10.5

Podstawienie o nazywa si¢ najbardziej ogdlnym unifikatorem formut «, ..., o,
gdy jest unifikatorem i jest bardziej ogdlne od kazdego innego unifikatora tych
formut.

Z definicji wynika, ze najbardziej ogdlny unifikator jest okreslony z doktadnoscia do
nazw zmiennych. Najbardziej ogdlny unifikator formut a, ..., ¢, bgdzie oznaczany
przez NOU(«y, ..., &).

Przyklad 10.11

Najbardziej og6lnymi unifikatorami dla nastgpujacych par formut sa:

NOU(p(10, 20), p(20, 10)) nie istnieje

NOU(p(10, 20), p(10, 20)) = ¢

NOU(p(10, x), p(y, 20)) = [x ::=20, y ::= 10]
NOU(p(10, x), p(10, y)) = [x ::=y] (atakze [y ::=x])
NOU(p(x, x), p(10, y)) = [x == 10, y ::=10]
NOU(p(f(10), 20), p(x, 20)) = [x ::= (10)]
NOU(p(f(10), 20), p(10, 20)) nie istnieje

[|

Najbardziej ogélny unifikator mozna wyznaczy¢ w sposob algorytmiczny. Istnieje
algorytm, ktéry dla dowolnego zbioru formut a, ..., &, w skonczonej liczbie krokdéw
orzeka czy zbidr ten jest unifikowalny, a w przypadku, gdy zbidr ten jest unifikowalny
wyznacza NOU(qy, ..., ¢,). Algorytm polega na tekstowym poréwnywaniu formut,
wykrywaniu i usuwaniu niezgodnosci przez okreslanie odpowiednich podstawien, az
do uzyskania petnej zgodnosci badz do wyczerpania mozliwosci podstawien.

Definicja 10.6.

Niech 7 i g beda tematami. Parq niezgodnq nazywa si¢ takie podtermy ¢ i ¢’ ter-
méw tiq, ze:

e pierwsze symbole 7" i " sg r6zne

e do chwili wystapienia podterméw ¢’ i g” (liczac od lewej do prawej strony)
termy ¢ i g sa identyczne.
Zbiorem niezgodnosci dla formut p(#y, ..., t,) i p(q, ..., q;) jest zbior ztozony
z pary parametréw niezgodnych dla terméw ¢, ¢; dla najmniejszego i€ {1, ..., n}.
Zbiorem niezgodnosci dla zbioru formut opartych na tym samym symbolu pre-
dyatywnym jest zbior niezgodnosci dla dowolnej pary formut z tego zbioru.

Przyklad 10.12

Dla podanych nizej par formut zbiory niezgodnosci sa nastgpujace:

217

Zbidr formut Zbior niezgodnosci
{p), ()} {x,y}
{q(fx), 20), ¢(10, 20)} {fx), 10}
{rx, fix, y), 2), (3, 2, 8(x,) } {x, ¥}

{r(x, fx,), 2), rx, 2, g(x, ¥))} fix, v}, 2}
Algorytm wyznaczania najbardziej ogélnego unifikatora
Dane: Zbior formut {a, ..., &}, n> 1.
Wynik: NOU(«, ..., ¢,), gdy najbardziej ogélny unifikator istnieje, oraz odpo-
wiedz brak unifikatora w przypadku przeciwnym.

Procedura: Algorytm polega na cyklicznym wyliczaniu unifikatora w kolejnych
iteracjach numerowanych przez zmienng k.

1. Wartosci poczatkowe zmiennych algorytmu: k=0, @y = {, ..., 0}, Go = €.

2. Jezeli card(®y) = 1, to algorytm si¢ konczy i NOU(D,) = oy, w przypadku
przeciwnym wylicz zbiér niezgodnosci N, dla @, i przejdz do nastgpnego
kroku.

3. Jezeli w zbiorze niezgodnosci N, wystgpuje zmienna x; oraz term #, takie, ze
Xx nie wystepuje w t, to przejdz do nastepnego kroku, w przypadku prze-
ciwnym zbiér @ nie jest unifikowany i algorytm si¢ konczy.

4. Oblicz nowe podstawienie O = Ok [x¢ ::= #;], dokonaj unifikacji zbioru
formut @, unifikatorem [x; ::= #], to znaczy @ = Oy [x; ::= 1], zwieksz
k o jeden i przejdz do kroku 2.

Przyklad 10.13

Niech

@ = {p(10, x, LeO)), P(z, f(2), fw))}.

Obliczenia algorytmu unifikacji:

oy=¢€ Dy= (D, Ny = {10, Z}, Xo:=21=10

01=0y[z::=10]=€[z::=10] = [z ::=10]

D, =D [z ::=10] = {p(10, x, AgOY)), p(z, f(2), (w))} [z ::= 10] =
= {p(10, x, flg()), (10, f(10), f(u))}

N, = {x, f(10)}, x| ::=x, t, =f(10)

0y =0, [x :=f(10)] = [z ::=10] [x ::=f(10)] = [z ::= 10, x ::= f{10)]

©,= P [x :=f(10)] = {p(10, x, fg())), p(10, (10), f(w)} [x ::= f(10)] =
= {p(10, f(10), AgM))), p(10, f(10), f(u))}

N> = {g(y), w)}, X2 ::=u, 1, = g(y)

03 =0, [u:=g(y)] =[z::= 10, x ::=f(10), u ::= g(y)]

218

Q3= D, [u := g(y)] ={p(10, (10), Ag())), p(10, A10), AAu))} [u ::= g(¥)] =
= {p(10, f(10), fig())), p(10, f(10), g(¥))} =
= {p(10, f(10), g}

| Zbidr Psjest singletonem, zatem NOU(®P) = 03 = [z ::= 10, x ::= f{10), u ::= g(y)].

Przyklad 10,14
l

Niech
@ = {q(f(10), g(x))), (v, Y}

Obliczenia algorytmu:

0o =€ Dy=D, Ny = {f(10), x}, xo ::=y, 1o = f(10)

01 =0y [y ::=f(10)] = [y ::= f(10)]

@, = P [x :=f(10)] = {q(f(10), g(x))), q(x, X)} [x ::=f(10)] =
= {q(f(10), g(x))), q(f(10), f(10))}

Ny = {g(x), f(10)}

! W zbiorze niezgodnosci N, nie ma zmiennej, zatem zbidr P nie jest unifikowalny.

s i pllisabessuiions. ids l

Twierdzenie 10.3

Przedstawiony algorytm zawsze konczy si¢ po skonczonej liczbie iteracji. Jezeli
zatrzyma si¢ w kroku 2, to ostatnio obliczone podstawienie 0y jest najbardziej
ogdlnym unifikatorem zbioru formut ®. Jezeli zatrzyma si¢ w kroku 3, to zbior
formut @ nie posiada najbardziej ogélnego unifikatora.

Dowéd
Dowdd zawarty jest, na przyktad, w ksiazce [Szatas 1991].

10.5. Zasada rezolucji dla rachunku kwantyfikatorow

Zasada rezolucji dla rachunku kwantyfikatoréw zaktada, ze formuly sa w postaci
skolemowskiej. Pozwala to na stwierdzenie, ze — tak jak w przypadku rachunku zdan
— formuta jest reprezentowana przez zbiér klauzul.

Literaly p(t,, ..., t,) oraz —p(?'y, ..., ;) daja si¢ uzgodni¢, gdy istnieje najbardziej
og6lny unifikator NOU{p(t, ..., tn), p(t'1, ..., ')} = 0. Mozliwos$¢ uzgodnienia litera-
16w oznacza, ze formuty

p(ty, .y)0 0raz —p(t'y, ..., t')0

219
sq literalami komplementarnymi. o bedzie nazywane najbardziej ogdlnym unifikato-
rem skojarzonym z literatami p(t,, ..., t,) oraz —p(t'y, ..., £',).

Definicja 10.7
Schemat reguly rezolucji ma postac:

K, K,
(K, \AQ UK, \ A, Jo

gdzie A€ k;, L,€ K; sa dajacymi si¢ uzgodnic literalami, a o jest najbardziej ogdl-
nym, skojarzonym z nimi, unifikatorem. Klauzulg (5\4; U Ko\4,) 0 nazywa sig re-
zolwentg klauzul ki, K, i oznacza symbolicznie rez(ki, Kz).

Dalej przyjmuje si¢, ze rozpatrywane klauzule sa sfaktoryzowane. W przypadku ra-
chunku zdan oznacza to, ze nie ma w nich powtarzajacych sig¢ literaldow. W przypadku
rachunku kwantyfikatorow sytuacja jest bardziej ztozona. Na przyktad — jak tatwo
zauwazy¢ — zbior klauzul {p(x) v p(u), =p(y) v —p(v)} jest niespetnialny, ale nie
mozna tego wykaza¢ za pomoca reguly rezolucji. Dlatego wprowadza si¢ pojgcie
faktora klauzuli.

Definicja 10.8

Jezeli o jest najbardziej ogdlnym unifikatorem pewnego podzbioru literatow klau-
zuli K, to klauzulg¢ K’ uzyskang z k przez zastosowanie do niej o i usunigcie powta-
rzajacych si¢ literatow nazywa sig faktorem klauzuli k. Klauzula jest sfaktoryzo-
wana, jesli dowolny podzbior jej literatéw nie posiada wspdlnego unifikatora.

Przyklad 10.15
-

Faktorem klauzuli p(z, y) v p(x, g(x)) jest p(x, g(x)), gdyz
NOU(p(z, y), p(x, g(x))) = [z == x, y 1= g(0)].

Zbiér klauzul {p(x) v p(u), —p(y) v —p(v)}, po faktoryzacji, przeksztatca sig¢
[W zbidr {p(x), =p(y)}. |

Algorytm badania spetnialnosci zbioru klauzul
Dane: formufa a rachunku kwantyfikatoréw.
Wynik: odpowiedz tak, gdy formutla jest spetnialna, nie — w przypadku przeciwnym.
Procedura:

1. Dla formuly a wyznaczy¢ Skol(¢) — algorytm z p. 10.3.
2. Wyznaczy¢ zbior klauzul S reprezentujacych Skol() i dokonaé ich faktoryzacji.

3. Powtarza¢ nastgpujace czynnosci:

220

while
Oe S i istnieja klauzule k;, K€ S dajace rezolwente nie nalezaca do S
do
(a) znajdz klauzule k;, K;, ktore dajq si¢ uzgodni¢, znajdz dla nich najbar-
dziej ogdlny unifikator o'i wylicz ich rezolwentg rez(x, k),
(b) zastap S przez §', gdzie ' = S U rez(xi, k)
od

4. Jezeli S zawiera klauzulg pusta odpowiedz nie, w przypadku przeciwnym —
odpowiedz tak.

Przyklad 10.16

J Niech bedzie dany zbior S klauzul:

{p(x, 8(x)), =p(u, v) v ¢(10), =p(w, g(10)) v = g(w)}
Obliczenia algorytmu sa przedstawione w podobnej konwencji jak dla rachunku
zdan — poszczegdlne klauzule sa zapisane w ponumerowanych wierszach.
W nastgpnych wierszach sa zapisane klauzule uzyskane ze zbioru S w wyniku sto-
sowania reguly rezolucji. Po prawej stronie klauzuli s3 podane numery klauzul,
ktore byly przestankami do jej uzyskania oraz zastosowane unifikatory:

(D) p(x, g(x))

(2) =p(u, v) v q(10)

(3) =p(w, g(10)) v — g(w)

(4) =p(u, v) v =p(10, g(10)) (2), (3) [w::=10]
(5) —p(10, g(10)) 4 faktoryzacja
(6) O (1), (5) [x ::=10]

1 Wyprowadzenie klauzuli pustej oznacza, ze § jest niespetnialnym zbiorem klauzulJ

Reguta rezolucji wyznacza specyficzny system dowodzenia R. Specyfika polega na
tym, ze system R nie posiada aksjomatow i ma tylko jedna regul¢ wnioskowania —
regule rezolucji. System R jest systemem semantycznie poprawnym i zupetnym. Do-
kiadnie precyzuja to nastgpujace twierdzenia.

Twierdzenie 10.4
Jezeli istnieje wywdd rezolucyjny klauzuli x ze zbioru klauzul { ki, ..., ,}, to klau-
zula x jest semantycznq konsekwencja zbioru {ki, ..., K,}, symbolicznie:

Jesli {xi, ..., K,} FrK, to {Ki, ..., K,} E K.
Dowod

Prosty dowod twierdzenia sprowadza si¢ do pokazania, ze pojedynczy krok wnio-
skowania rezolucyjnego — wyliczenie rezolwenty dla klauzul-przestanek — wyzna-

221

cza klauzulg, ktora jest konsekwencja semantyczng klauzul-przestanek (twierdze-
nie 10.1).

Twierdzenie 10.5
Jezeli zbior klauzul {k, ..., k,} jest niespetnialny, to istnieje wywod rezolucyjny
klauzuli pustej ze zbioru {x, ..., K,}, symbolicznie:

Jedli {K, ..., k,} = false, to { K, ..., k,} & OJ.
Dowod

Dowdd twierdzenia, tu pominigty, jest zawarty, na przyktad, w ksigzce [Szalas
1991].

Nalezy wskaza¢ na ograniczono$¢ uzytego tu pojgcia zupetnosci semantycznej
w stosunku do pojgcia uzywanego w podrozdziale 9.7. Reguta rezolucji nie pozwala
bowiem na wyprowadzenie wszystkich klauzul, ktére s3 semantyczna konsekwencja
danego zbioru klauzul, pozwala natomiast na stwierdzanie niespetnialnosci dowol-
nego zbioru klauzul. Ograniczonos¢ uzywanego pojecia zupetnosci jest rekompen-
sowana wigkszg efektywnoscia obliczeniowg algorytmu badania spetnialnosci zbio-
ru klauzul w stosunku do algorytmu badania tautologii opartego na rachunku
sekwentéw Gentzena.

10.6. Klauzule Horna w programowaniu logicznym

Zasada rezolucji ma szczegodlne zastosowanie w przypadku, gdy formuly sa przedsta-
wione w postaci zbioru klauzul Horna.

Definicja 10.9

Klauzulg¢ nazywa si¢ klauzulq Horna, gdy zawiera co najwyzej jeden literal pozy-
tywny.

W dalszej czgsci rozdziatu pozytywne literaly bedq oznaczane symbolami: Ay, A, ...,
a literaly negatywne beda jawnie poprzedzane symbolem negacji: —A,, =4, Zatem
klauzula Horna ma postac:

A,Vﬂl| Ve \/'ﬂl,,
gdzie A jest literalem opcjonalnym oraz ne Nat.

Klauzule Horna sa podstawa programowania w logice. Program logiczny jest zbiorem
klauzul Horna {x, ..., k,} posiadajacych literal pozytywny. Obliczenie programu po-

222

lega na udzielaniu odpowiedzi na pytanie, czy dana formufa w postaci koniunkgji lite-
raltdow A; A ... A A, jest konsekwencja semantyczng klauzul stanowiacych tresé pro-
gramu, czyli, czy {Ki, ..., K} FALA .. A A,

Udzielenie odpowiedzi na zadane pytanie sprowadza si¢ do zbadania spetnialnosci
zbioru formut {ki, ..., K,} U {—(4; A ... A A,)}, czyli zbioru klauzul:

{Kl, - K,,}) {—111 N yaw V—12.,,}.

W programowaniu w logice dla klauzul Horna uzywa si¢ specyficznej notacji. Wyni-
ka ona z nastepujacych rownowaznos$ci semantycznych:

AVaAiv.. . Vvad,=Avadi A Aad)=AAa. Ad)=A
Ostatnia implikacje zapisuje si¢ w postaci odwrdconej implikacji:
A=A, A

z zastapieniem przecinkami symboli koniunkcji. Szczegélne postaci klauzuli Horna,
zapisywane w przedstawionej konwencji, maja w programowaniu logicznym specy-
ficzne nazwy:

A& Ay, ..., A, —pelna postaé klauzuli jest nazywana regulq,

A= — klauzula bez literatéw negatywnych jest nazywana faktem,
& Ay, ..., A, —klauzula bez literatu pozytywnego — zanegowane pytanie,
O — klauzula pusta — sprzecznosc.

Klauzule-fakty i klauzule-reguty, jako klauzule zawierajace literaly pozytywne, sta-
nowia tres¢ programu logicznego. Zbior tych klauzul okresla si¢ jako wiedzg, ktéra
dysponuje program. Na podstawie posiadanej wiedzy program moze udziela¢ odpo-
wiedzi na kierowane do niego pytania.

W nowej konwencji zapisu reguta rezolucji dla rachunku kwantyfikatoréw przyjmuje
postac:

G 5 WO T | P L |
<= A0, ... A4;0,A0, ... ,O

gdzie 0 = NOU(A,A") dlak, 120,

Wyznaczenie rezolwenty klauzul:

<:/1, /11, co sy A,n
ANy, LA,

sprowadza si¢ do znalezienia najbardziej ogdlnego unifikatora o dla literatléw A oraz
A’, a nastepnie do tekstowego zastapienia literalu A w pierwszej z klauzul, przez pra-
wa strone drugiej z klauzul, ukonkretniona podstawieniem o, i ukonkretnienie pozo-
statych jej literatdw, rowniez podstawieniem o .

223
Wprowadzone pojgcia i oznaczenia pozwalaja na przedstawienie prostych programéow
logicznych.
Przyklad 10.17

e -

!
Tres¢ prostego programu ztozonego tylko z faktow przedstawia si¢ nastgpujaco:

(1) kocha(EWA, JAN) <
(2) kocha(EWA, JACEK) <
(3) kocha(JAN, KASIA) <

Kazdy z faktéw sklada si¢ z dwuargumentowego predykatu kocha. Argumentami
faktow sa stale reprezentowane napisami JAN, EWA, JACEK, KASIA.

Faktom tym mozna przypisywaé¢ pewng interpretacj¢, na przyklad, kocha(A,B)
mozna rozumieé, ze pewien obiekt (osoba), reprezentowana przez stata A, ,,kocha”
inny obiekt (osobg), reprezentowana przez stala B. Nalezy zwrdci¢ uwageg, ze
zwrot ,,A kocha B” nalezy do dziedziny interpretacji.

W przypadku pytania:
Czy prawda jest, ze kocha(JAN, KASIA)?
program, na podstawie posiadanej wiedzy, odpowie oczywiscie tak.

Odpowiedz wynika ze stwierdzenia niespetnialnosci zbioru zlozonego z klauzul
stanowigcych tres¢ programu i klauzuli:

(4) & kocha(JAN, KASIA)

stanowiacej negacj¢ pytania. Na postawie reguly rezolucji, z klauzul (3) i (4) wy-
nika bowiem rezolwenta pusta:

< kocha(JAN, KASIA) kocha(JAN, KASIA) <
O

Natomiast na pytanie:
Czy prawda jest, ze kocha(KASIA, JAN)?

ten sam program da oczywiscie odpowiedZ negatywna. Wynika to z tego, ze ze
zbioru zawierajacego klauzule (1), (2), (3) oraz klauzulg (5) postaci:

(5) <= kocha(JAN, KASIA)
nie daje si¢ wyprowadzi¢ zadnej nowej klauzuli, a zbidr ten nie zawiera klauzuli
| pustej- I

Nalezy zwréci¢ uwagg na sens negatywnej odpowiedzi udzielanej przez program.
Mechanizm odpowiedzi opiera si¢ na tak zwanym zalozeniu o zamknietosci swiata.
Oznacza to, ze program przyjmuje za falszywe wszystko to, co nie da si¢ udowodnié

224

na gruncie posiadanej przez niego wiedzy. Odpowiedz negatywna nalezy scisle rozu-
mieé nastepujaco: na gruncie posiadanej wiedzy nie daje si¢ stwierdzi¢, ze zdanie sta-
nowigce pytanie jest logiczng konsekwencja wiedzy posiadanej przez program.
Przyklad 10.18

Niech program ztozony z faktéw i jednej reguty przedstawia si¢ nastepujaco:

(1) kocha(EWA, JAN) <

(2) kocha(EWA, JACEK) <
(3) kocha(JAN, KASIA) <
(4) kocha(x, y) < kocha(y, x)

W odpowiedzi na pytanie:
Czy prawda jest, ze kocha(KASIA, JAN)?

program dotaczy do swojej tresci klauzulg stanowiaca negacj¢ pytania:
(5) & kocha(KASIA, JAN)

i moze podja¢ obliczenie:
(6) < kocha(JAN, KASIA) z(4),(5),dla o= [x::=KASIA, y ::= JAN]
(ma z(3), (6)

co daje podstawe do odpowiedzi tak.

Pytania, juz w postaci zanegowanej, moga mie¢ posta¢ ogdlniejsza, na przyktad:
(5a) &< kocha(KASIA, 7)
(5b) < kocha(z, JAN)

Odpowiedz na takie pytania nie sprowadza si¢ tylko do stwierdzenia rak albo nie.
Polega ona na wskazaniu tych wszystkich obiektéw, reprezentowanych przez
zmienng z, dla ktérych pytanie bedzie prawdziwe.

W celu udzielenia odpowiedzi na pierwsze z tych pytan obliczenia programu moga
by¢ nastgpujace:

(6a) < kocha(z, KASIA) z (4), (5a),dla [x ::= KASIA, y ::=27]

(7a) O z (3), (6a), dla [z ::= JAN]
Obliczenie konczy si¢ wygenerowaniem klauzuli pustej, przy ustalonym warto-
$ciowaniu zmiennej z. Informacja zawarta w ostatnim unifikatorze jest podstawa

do odpowiedzi, warto$¢ przypisywana zmiennej z wskazuje na poszukiwany
obiekt. Odpowiedzia na pytanie bgdzie wigc zbior jednoelementowy {JAN}.

Odpowiedzi na pytanie (5b) mozna udzieli¢ na podstawie dwoch réznych obliczen:

(6b) O z (1), (5a), dla [z ::= EWA]

225

oraz
(6b") & kocha(JAN, z) z(4), (5b),dla [x :==2]
(7b) O z (3), (5a), dla [z ::= KASIA]

Obliczenia prowadza do wskazania dwoch réznych obiektow, stad odpowiedzia na
| pytanie jest zbior dwuelementowy { EWA, KASIA}. |

Cwiczenia

1. Nastepujace formuly sprowadzi¢ do postaci skolemowskiej:

a)Jye(y<1)
b) Vxe3ye (x<y)
c)VxeVyedze((x<y)= (x<2)A(z<Yy))

2. Pokaza¢ przyktad formuly, dla ktorej odpowiednik w postaci skolemowskiej nie
jest jej rownowazny semantycznie.

3. Sprawdzi¢, ktére z podanych nizej zbioréw klauzul sa zbiorami spetnialnymi:

a){av-b,ave, ba—c)
b) {—|a—1b,bv—.c, b,a}
c){avb,a,—=b,—-av c}

4. Stosujac metodg rezolucji zbada¢ spetnialnos¢ nizej podanych formut:

a)(pvyg) & (paAg)
b)pvgvrnepEvgvr
c)a@a=b)A(=b=—-a)=a

5. Wyznaczy¢ najbardziej ogélny unifikator dla formut:

a)p(y, 1) p(x, 2)
b) q(x, y) q(y, x)
c) p(x, y) q(z, y)

d) p(x, fix)) p», f»)
e) r(h(x, y)), z)) r(h(g(x), y), fif(x)))

gdzie p, q, r sa symbolami predykatow, f, g, h — symbolami funkcji, x, y, z — sym-
bolami zmiennych indywiduowych.

6. Dany jest zbidr klauzul:

226

(1) samochéd(x) < pojazd(x), ma_4_kola(x)
(2) jezdzi(x) < samochdd(x)

(3) pojazd(x) < polonez(x)

(4) ma_4_kola(x) <= polonez(x)

(5) < polonez(WCL_2222)

Metoda rezolucji znajdz odpowiedz na pytanie czy jeZdzi(WCL_2222).

7. Zagadnienia przedstawione w nizej podanej postaci sprowadzi¢ do programu lo-
gicznego. Sprawdzi¢, czy przedstawione wnioski s3 poprawne.

a) Wszyscy ludzie sq Smiertelni.
Sokrates jest czlowiekiem.
Zatem: Sokrates jest Smiertelny.

b) Wszyscy wyktadowcy sq zdecydowani.
Kazdy kto jest zdecydowany i inteligentny $wiadczy dobre ustugi.
Klara jest inteligentnym wykladowcq.
Zatem: Klara Swietnie wyklada.

11. ZAGADNIENIA UZUPELNIAJACE

11.1. Wstep

Kazdy sformalizowany system dedukcyjny (system dowodzenia) jest okreslony jako
para <A, R>, gdzie A jest zbiorem aksjomatéw, R — zbiorem regut dedukcyjnych (re-
gul wnioskowania). Wyro6znia si¢ dwa rodzaje systeméw dedukcyjnych logiki: syste-
my aksjomatyczne i systemy dedukcji naturalnej. Zasadnicza cecha systemow deduk-
¢ji naturalnej jest to, ze posiadaja dwa rodzaje regul wnioskowania: reguty
wprowadzania i reguly eliminacji sp6jnikow logicznych. Rodowdd systemow aksjo-
matycznych sigga konca XIX wieku, natomiast systemy dedukcji naturalnej powstaty
w latach trzydziestych XX wieku, a ich inicjatorami byli Gentzen i Jaskowski®.

Do systemdw aksjomatycznych zalicza si¢, migdzy innymi, systemy Hilberta®, syste-
my tablic analitycznych, zas najpowszechniej stosowany system dedukcji naturalnej
pochodzi od Gentzena. Rozdziat przedstawia w zarysie tylko system Hilberta i system
dedukc;ji naturalnej Gentzena.

Systemy dowodzenia Hilberta uznaje si¢ za tradycyjne. Maja one zaréwno znaczenie
historyczne, jak i szerokie zastosowanie w praktyce matematycznej. Na poczatku XX
wieku Hilbert zainicjowat w zakresie podstaw matematyki kierunek okreslany jako
formalizm. Formalizm skupiat si¢ na poszukiwaniu systemu, przy zastosowaniu ktore-
go datoby si¢, w skonczonym postgpowaniu, udowodni¢ dowolne twierdzenia mate-
matyki. Prace Godla®, w latach trzydziestych XX wieku, zakonczyly te poszukiwania
pokazujac, ze budowa takiego systemu nie jest mozliwa, ale systemy dowodzenia Hil-
berta pozostaly uzyteczne do dzisiaj.

System Hilberta byt w zasadzie pierwszym formalnym systemem aksjomatyzacji. Jest
to system uniwersalny, gdyz znajduje zastosowanie nie tylko w logice klasycznej, ale
takze w logikach nieklasycznych. W odréznieniu od poprzednio omawianych syste-

22 Stanistaw Jaskowski (1906—1965).
2 David Hilbert (1862-1943).
24 Rurt Godel (1906-1978).

228

méw dowodzenia, ktére opieraly si¢ na dowodzeniu nie wprost, dowodzenie w syste-
mach Hilberta polega na konstrukcji dowodéw wprost.

Gentzen opracowat dwie rézne metody dedukcji, kazda w dwéch wariantach — jeden
dla logiki klasycznej i drugi dla logiki intuicjonistycznej. Jedna z tych metod to omo-
wiony wczesniej rachunek sekwentow, a druga to metoda dedukcji naturalnej. Ponizej
omawia si¢ system dedukcji naturalnej tylko dla logiki klasyczne;.

System dedukcji naturalnej dla rachunku zdan przypomina system dowodzenia dla
rachunku zdan oparty na rachunku sekwencji. System dedukcji naturalnej ma te same
reguly eliminacji spdjnikow logicznych. Ponadto system posiada reguly wprowadza-
nia spdjnikdw logicznych. Specyficzng wiasciwoscia systemu jest to, ze w regulach
moga wystepowaé wyrdznione zdania, ktore traktuje si¢ jako zatozenia (hipotezy ro-
bocze). Zatozenia takie sq przydatne do wyprowadzania pewnych wnioskéw, po czym
— po wyprowadzeniu takich wnioskéw — z zatozen tych mozna zrezygnowa¢. Oznacza
to, ze wyprowadzone wnioski sg stuszne niezaleznie od poczynionych poczatkowo
zatozen. Ten sposdb postgpowania jest czgsto stosowany w praktyce dowodowe;j
i stad bierze si¢ termin dedukcji naturalne;j.

11.2. Systemy dowodzenia Hilberta

Przedstawiany ponizej system Hilberta odnosi si¢ tylko do klasycznego rachunku
zdan i rachunku kwantyfikatorow.

System dowodzenia Hilberta H sklada si¢ z dwoch elementow: zbioru aksjomatéw
oraz zbioru regul inferencji (lub wnioskowania), czyli zasad tekstowej transformacji
jednych formut w inne. Reguly na podstawie pewnych formut wyprowadzaja nowe
formuty. Mowi sig, ze na podstawie regul pewne formuty wynikaja z innych.

Definicja 11.1

Dowodem w systemie H nazywa si¢ skonczony ciag formul o, ..., o, taki, ze
kazda z formut jest albo aksjomatem, albo wynika z poprzednich formut w wy-
niku zastosowania jednej z regut wnioskowania. Formute &, nazywa si¢ twier-
dzeniem w systemie H.

Definicja 11.2

Derywacjq ze zbioru formul ® w systemie H nazywa si¢ skonczony ciag formut ¢,
..., O, taki, ze kazda z formut jest albo aksjomatem, albo jest jedna z formut zbioru
®, albo wynika z poprzednich formul w wyniku zastosowania jednej z regut wnio-

229

skowania. Formul¢ ¢, nazywa si¢ konsekwencjq skladniowq ze zbioru @ w syste-
mie H.

Fakt, ze formula o jest konsekwencja sktadniowa ze zbioru formut @ w systemie H,
zapisuje si¢ W postaci:

LN

Zamiast @ -y a pisze si¢ Fy O, co 0znacza, ze « jest twierdzeniem. Symbol + jest na-
zywany symbolem konsekwencji skladniowej.

Dla klasycznego rachunku zdan, opartego na funkcjonalnie zupelnym zbiorze spdj-
nikéw logicznych zawierajacym negacj¢ —, implikacje = i stale logiczne false
1 true, przyktadowy system Hilberta sklada si¢ z nastgpujacych schematow aksjo-
matow:

Schematy aksjomatow

a= (= o) — prawo symplifikacji,
(a=B=7)=(a=pP)=(a=1y) - prawo Fregego,
false = «

o = true

= O

a= (—ma=)

(anpf)=«a

(arP)=p

(a=n=>(B=>n=(@vp=>7)

Schemat aksjomatu oznacza faktycznie nieskonczony zbior formul, ktére réznia si¢ od
formuly wystgpujacej w schemacie aksjomatu tym, ze kazde wystgpienie symbolu ¢,
B, y moze by¢ zastapione dowolna formuta. Symbole &, B, ¥ sa wigc symbolami po-
mocniczymi reprezentujacymi dowolne formuty.

00 =1 O\ LA o W Y 4S

2

Jedyna regula wnioskowania jest regula odrywania (modus ponens):

a,a=f
B

Sens reguly jest nastgpujacy: jezeli w trakcie pewnej derywacji wyprowadzono for-
muly a oraz o = f, to niezaleznie od interpretacji jaka przypisuje si¢ formutom
a oraz f3, dopuszczalnym wnioskiem jest £.

Czasem system Hilberta przedstawia si¢ inaczej. Zamiast schematow aksjomatoéw
wprowadza si¢ aksjomaty i dodatkowa regule podstawienia (zastqpienia). Regula
podstawienia pozwala na zastapienie zmiennych zdaniowych wystepujacych w for-
mule przez inne formuty. Formalnie, reguta podstawienia ma posta¢:

230

ala ::=]

gdzie @, B sa dowolnymi formutami, za$ a jest zmienng zdaniowa. Zapis ofa ::= f3]
oznacza formute, ktora powstaje z formuly o przez tekstowe zastapienie kazdego wy-
stapienia zmiennej a przez formulg S.

Przyklad 11.1

Formuta a = a jest twierdzeniem. Dowodem dla tej formutly jest ciag formut:

MND@a@a=(a=a)=a)= (a= (a=a))= (a= a))
—aksjomat2 z [a::=a,y:=a, fi=a= a]

2Q)(a= (a=a)=a) —aksjomat 1 z [a::=a, B ::=a= a]
B)a= (a=a)) = (a=a) -regula odrywania zastosowana do (1), (2)
@a= (a=a) —aksjomat 1z [@:=a, B ::=da]

, B)a=a - reguta odrywania zastosowana do (3), (4) |

L

Przyklad wskazuje na ucigzliwos¢ w prowadzeniu dowodéw dla bardziej ztozonych
formut. Ponadto, nie nasuwa ten przyktad wskazéwek dotyczacych taktyki prowadze-
nia dowodéw. W stosunku do wczesniej przedstawionych systeméw dowodzenia,
system Hilberta jest trudniej algorytmizowalny.

Chociaz system Hilberta jest uciazliwy w stosowaniu do logiki klasycznej, to czgsto
jest on stosowany w logikach nieklasycznych, gdy zawodza inne systemy. Dlatego
ponizej przedstawia si¢ zarys algorytmu postgpowania przy dowodzeniu formut z za-
stosowaniem systemu Hilberta H =4.f <A, R>, ztozonego ze zbioru aksjomatow A =g¢
{Ay, ..., A,} i zbioru regut R =g {R), ..., Ry}.

Algorytm automatycznego wnioskowania w systemie dowodzenia Hilberta H
Dane: Formula a.
Wynik: Odpowiedz tak, gdy o jest twierdzeniem w systemie Hilberta, oraz nie
w przypadku przeciwnym.
Procedura:

1. Niech @ bedzie zmienng reprezentujaca zbior formut, a poczatkowa zawar-
tos¢ zbioru @ = A.

2. while ag ® oraz —og P
do

stosuj reguly ze zbioru R przyjmujac za ich przestanki formuty ze zbioru
® i rozszerzaj zbiér @ o nowo otrzymane wnioski

od

3. Jezeli ae @, to odpowiedz tak, jezeli mae @ — odpowiedz nie.

231

Ponizej przedstawia si¢ twierdzenie o dedukcji. Twierdzenie to, udowodnione nieza-
leznie przez Tarskiego i Herbranda, ma znaczenie praktyczne, gdyz jego dowdd poka-
zuje jak derywacj¢ {a} +y B mozna, w sposob konstruktywny, przeksztatci¢ w dowod
twierdzenia a = f. Poniewaz na ogdt jest tatwiej znalezé derywacje niz dowdd,
twierdzenie pozwala na oszczgdnos¢ wysitku.

Twierdzenie 11.1 (Twierdzenie o dedukcji)

W dowolnym systemie H zawierajacym przynajmniej schematy aksjomatow 1, 2
oraz regul¢ odrywania jako jedyna regul¢ wnioskowania, derywacja:

QU {a)ryp
zachodzi wtedy i tylko wtedy, gdy zachodzi derywacja:
Dy (a= P).
Dowaod
Jezeli zachodzi @ +, (=), to oczywiscie zachodzi ® U {a} +y B.
Wynikanie w przeciwnym kierunku jest trudniejsze do pokazania. Niech
DU fa)ryp
czyli istnieje pewien cigg formut
Vis oos o (Dv)

ktory jest derywacja B ze zbioru @ U {a}. Formula y;, dlai = 1, ..., n, jest elemen-
tem zbioru @ U {a} lub wynika z formut poprzedzajacych w wyniku zastosowania
reguly odrywania, dodatkowo ¥, = B. Ciag (D,) mozna przeksztalci¢ w ciag stano-
wigcy derywacje o= f ze zbioru ®. Najpierw kazda formute z (D,) poprzedza si¢
prefiksem o =, tworzac ciag:

A=y, .., 0= Y, (D2)

Ciag ten konczy si¢ formula a = f, gdyz 7, = B. Ciag (D-) nie jest jeszcze prawi-
dlowa derywacja. Przeksztalca si¢ go dotaczajac dodatkowe formuly zgodnie
z nast¢pujacymi zasadami.

Jezeli ¥, jest aksjomatem lub elementem zbioru @, to przed & = ¥ umieszcza si¢
dwie dodatkowe formuty:

Yo ti= (=)

Jezeli ¥ jest formula ¢, to przed @ = o umieszcza sie cigg formut stanowiacych
dowod dla formuly o= «a (patrz przykiad 1).

Jezeli y; w ciagu (D)) pojawia si¢ jako wniosek z zastosowania reguly odrywania,
to oznacza, ze istniejq takie ¥;, ¥, dla j, k < i, przy czym y = ¥, = ¥.. W ciagu (D»)

232
elementom tym odpowiadaja formuly: o= ¥ oraz o = ¥ (czyli @ = (¥, = ¥)).
Przed formul¢ ot = ¥ wstawia si¢ formute:
@=y=r)=@=Y)
ktora jest aksjomatem, oraz formute:
(@=p=(@=7)

ktéra wynika z zastosowania reguty odrywania do formut ja poprzedzajacych. Te-
raz rébwniez formula @ = ¥; wynika z zastosowania reguly odrywania do formut ja
poprzedzajacych. Latwo sprawdzi¢, ze tak zmodyfikowany ciag (D,) stanowi de-
rywacje formuly @ = f ze zbioru .

Przyklad 11.2

Formuta (a = (B = 7)) = (B = (a = ¥) jest twierdzeniem. Mozna to pokazaé¢

korzystajac z twierdzenia o dedukcji. Najpierw nalezy zauwazy¢, ze:
{a=B=1.6a ruy
co wynika z nast¢pujacej derywacji:

(1) a= (B=17%) -element zbioru {x= (B=p), B, &}

2) « —element zbioru {ax= (B=¥), B, a}
B)B=y — regufa odrywania zastosowana do (1), (2)
4B — element zbioru {ax= (B=p), B, a}
Sy — reguta odrywania zastosowana do (3), (4)

Z twierdzenia o dedukcji wynika, ze:
{la=B=9.Blrua=y

oraz ponownie:

{a=>B=2lruB=2(a=y)

1 ostatecznie:

L. re=C=nsE=ae=y |

Systeméw dowodzenia Hilberta dla rachunku zdan jest wiele. Przedstawiony nizej
system rézni si¢ od systemu przedstawionego poprzednio tylko zbiorem aksjomatow.
Wynika to z tego, ze aksjomaty zawieraja tylko negacje i implikacj¢. Przypomina sig,
ze rachunek zdan wykorzystujacy tylko te spojniki jest funkcjonalnie zupetny. Pozo-
state spojniki moga by¢ definiowane za pomoca spdjnikéw podstawowych. W defini-
cjach tych wykorzystuje si¢ wczesniej wprowadzone pojecie rownowaznosci seman-
tycznej.

233

Aksjomaty
l.(a= (= a)) prawo symplifikacji,
2.(a=B=7)=(a= = (a=) prawo Fregego,
3. (—a= (a=p)) prawo Dunsa Scotusa,
4. (o=)= q) prawo Claviusa.

W razie potrzeby uzycia dodatkowych spdjnikéw lub statych logicznych, wprowadza
si¢ ich definicje jako ztozenie implikacji i negacji. Na przyktad:
Definicje

l.ana ,B =4t (X = —uﬂ)

2. avﬁ:def(—ua: B)

3. (e P =w(@=P A=)

4. true =g 0=

5. false =4 (= @)

Definicje pozwalaja na tekstowe zastapienie w dowolnej formule dowolnej jej pod-
formuty, rownowaznej tekstowo z jedna ze stron definicji, przez druga ze stron tej
samej definicji.

System Hilberta dla rachunku kwantyfikatoréw ma wszystkie aksjomaty i reguly sys-
temu dla rachunku zdan oraz dodatkowo jeden schemat aksjomatu i jedna regute:

Schemat aksjomatu
10. (Vxe) = afx ::=1]
Reguta uogdlniania

a=p

pod warunkiem, ze xg FV(q)
a=Vxef

Szczegblna postac tej reguly jest nastgpujaca:
B
Vxef
Przyklad 11.3

Rozpatruje si¢ zarys dowodu dla formuty:

(Vx o (p(x) A q(x))) = (Vx ® p(x)) (1)
Przyjmujac, Ze f = x, na podstawie schematu aksjomatu 10, zachodzi implikacja:
(Vx o (p(x) A q(x))) = (P(x) A g(x)) (2)

Latwo sprawdzi¢, ze tautologia jest formuta:

(P(x) A q(x)) = p(x) 3)

234

Z implikacji (2) i implikacji (3), na podstawie wnioskowania tancuchowego, wyni-
ka formuta:

(Vx o (p(x) A g(x))) = p(x) C))
Stad i z reguly uogdlniania wynika, ze:
| (xeWag@) = (Vxepe)d]

Dla systemu Hilberta dla rachunku kwantyfikatoréw zachodzi twierdzenie o dedukcji,
tak jak dla systemu Hilberta dla rachunku zdan.

System Hilberta H dla rachunku kwantyfikatoréw jest semantycznie niesprzeczny
i semantycznie zupeltny, tzn. dla dowolnego zbioru formut @ zachodzi twierdzenie:

Twierdzenie 11.2

@ 4 o wtedy i tylko wtedy, gdy @ E o

11.3. System dedukcji naturalnej Gentzena

Rozpatruje si¢ rachunek zdan oparty na zbiorze spdjnikéw logicznych zawierajacym
stale true, false, negacj¢ —, koniunkcj¢ A i implikacje =.

Zestaw regul wprowadzania (oznaczanych symbolem [) oraz eliminacji (oznaczanych
symbolem E) jest nastgpujacy:

a=pf

(truel) —— (false E) e
true
[or] [-o]
(=1 false (= E) false (= a, 0
- a false
a, anp anp
(A[)—a/\ﬁ (ANE) . (AE)—/),
[a]
(=D (= H2a2p
B B

235

Reguly zwiazane ze stalymi logicznymi sa specyficzne. Reguta wprowadzania statej
true (true /) nie ma przestanek, nie ma tez reguly eliminacji tej statej. Regula elimi-
nacji false (false E) pozwala na wyprowadzenie z przestanki false dowolnego wnio-
sku, nie ma natomiast reguty wprowadzania dla false.

Dla koniunkcji reguty wprowadzania (A I) oraz eliminacji (A I) sg oczywiste: jezeli
przestankami sa formuly « oraz f3, to mozna wnioskowa¢, ze o A B, oraz odwrotnie:
z przestanki o A f mozna wnioskowac, ze o (lub, ze f3).

Reguta eliminacji implikacji (= E) jest poznang wczesniej regula odrywania.
Pozostate reguty wymagajq dodatkowych wyjasnien.

Pierwsza z nich jest regula wprowadzenia negacji (— I). Pozwala ona na wprowadze-
nie symbolu negacji przed dowolna formul¢ o na podstawie przestanki, ktora jest
wnioskowanie, ze z zalozenia o prawdziwosci a wynika false. Jest ona odzwiercie-
dleniem dowodzenia nie wprost przez sprowadzenie do sprzecznosci. Przestanka re-
guly majaca postac:

[q]

false

oznacza pewne wnioskowanie (oznaczone symbolicznie pionowym zestawem trzech
kropek :), ktére na podstawie zalozenia o« prowadzi do wniosku false, czyli do
sprzecznosci. Jezeli na podstawie przyjetego zatozenia, ze spetnione jest o otrzymuje
si¢ sprzecznos¢ — formutlg false, to wnioskiem jest, ze spetnione jest ~a. Wniosek ten
jest przy tym niezalezny od poczatkowo przyjetego zatozenia. Oznacza to, ze od mo-
mentu przyjecia wniosku —¢, zalozenie « staje si¢ juz nieprzydatne do dalszych
wnioskowan i mozna je usunaé, co symbolicznie oznacza si¢ przez zamknigcie zato-
zenia w kwadratowe nawiasy [a].

Podobny komentarz odnosi si¢ do reguty (— E): jezeli przyjgte zalozenie -« prowadzi
do sprzecznosci, to wnioskiem, jaki nalezy wyprowadzic, jest a.

Druga z regut eliminacji negacji (= E) jest oczywista: jezeli przestankami wniosko-
wania sa dowolna formuta i jej negacja, to wnioskiem jest stala false oznaczajaca
sprzecznos¢.

W przestance reguty wprowadzania implikacji (= I) zalozeniem jest formuta o Jezeli
pokaze sig, ze z tego zalozenia daje si¢ wyprowadzi¢ formule S, to oznacza, ze nieza-
leznie od tego zalozenia, zachodzi implikacja = f.

Ponizej przedstawia si¢ przyklady zastosowania metody dedukcji naturalnej w dowo-
dzeniu prostych formul. Podobnie jak w przypadku metody sekwentéw, dowdd (albo
ogblniej derywacja) ma strukture drzewa: wierzcholki drzewa sa etykietowane for-

236

mutami, a tuki — przejscia pomigdzy wierzchotkami — odpowiadaja zastosowaniu od-
powiednich regut.
Przyklad 11.4
Ponizszej przedstawia si¢ drzewa dowodu dla trzech prostych formul. Pierwsza
formuta ma postaé: aA = B A .

[a/\ﬂﬁ]l (/\ E)[a/:xﬁ]l (/\ E)

(1)

Pna (=’11)

aAfB=BAra

W dowodzie tym korzysta si¢ dwukrotnie tylko z jednego, tego samego zalozenia,
ze o A B. Zalozenia sq numerowane. Po prawej stronie kazdego przejscia podaje
si¢ symbol wykorzystywanej reguly. Dodatkowo, w tych przypadkach, gdy wyko-
rzystanie reguly wiaze si¢ z wykorzystaniem i usunigciem wprowadzonego zatoze-
| nia, podaje si¢ numer tego zalozenia. |

Przyklad 11.5

Kolejny dowod dotyczy formuty o = ——a. Tym razem wykorzystuje si¢ dwa za-

lozenia: xoraz -

(@], [-al (=)
false
(=)
1
(=1,

| o=
Przyklad 11.6
Ostatni przyktfad, najbardziej ztozony, dotyczy formuly: ~(a & —a). W dowodzi
przyjmuje sig¢, ze rownowaznosci przedstawia si¢ jako koniunkcje implikacji, tzn.
formuta a & P jest skrocong forma zapisu (@ = f) A (8= «). Stad biorg si¢ wy-
prowadzenia:

a& p a& p
a=p f=a

Ze wzgledu na wymiary wywodu pominigto komentarze dotyczace stosowanych
regut pozostawiajac tylko numeracj¢ zalozen i wskazania tych miejsc, w ktérych
zalozenia zostaly wykorzystane.

237

- @) a=-a (@l
false (—1) @ = —al; - -
24 : —o=a false (—11)
a 5 :
false
—-(a &) (_‘13)

Przedstawione przyklady pozwalaja na tatwiejsze zrozumienie kolejnych poje¢. Pierw-
szym z nich jest pojecie derywacji. Derywacja jest drzewem, ktorego wierzcholki sg
etykietowane formutami. Dalej, takie drzewa bedzie oznaczane symbolem D.

Definicja 11.3

Zbiorem derywacji nazywa si¢ zbidr DER, ktory jest zdefiniowany rekursywnie
w sposéb nastgpujacy:

(1) Drzewo ztozone z jednego wierzcholka etykietowanego formuta jest derywacja.

D D’

... D D'’ a B
(2) Jezeli € DER, € DER,to € DER
o B anp

D D
anp an

€ DER oraz
a B

ﬂeDER

D
(3) Jezeli € DER, to
anp

o]

o D
(4) Jezeli De DER, to —P— ¢ DER
a=p
()
D D
D D'
(5) Jezeli € DER, € DERIV,t0 & 2=B prr
o a=p
D
false

€ DER

D
(6) Jezeli ¢ € DER, to
e

als a

238

(04 [—‘a]

D
(7) Jezeli D €DER,to € DER
false
false
o
Formuta, ktéra jest korzeniem drzewa derywacji nazywa si¢ wnioskiem. Lis¢émi drze-

wa sa zalozenia. Zalozenia moga by¢ zamknigte (skreslone) albo otwarte.
Definicja 11.4

Relacja @ g o pomigdzy zbiorem formul @ oraz formuta @, zdefiniowana naste-
pujaco: istnieje pewna derywacja, w ktorej @ stanowi zbior nie skreslonych zato-
zen, zas « jest wnioskiem, jest nazywana relacjq derywacji.

System dedukcji naturalnej dla rachunku kwantyfikatoréw jest rozszerzeniem zbioru regut
dla rachunku zdan o dodatkowe reguty wprowadzania i eliminacji kwantyfikatora ogélnego:

Vxeq

(Y EB)r—7 ol =1]

)
Vxeo
W regule (V I) wymaga si¢, aby zmienna x nie wystgpowata jako zmienna wolna
w zadnym z zalozen, od ktérych zalezy formuta ¢, natomiast w regule (V E) wymaga
si¢, aby term ¢ byl wolny w formule a ze wzglgdu na zmienng x. Wymagania te sa
istotne, gdyz — jak pokazuja ponizsze przyklady — ich niespetnienie prowadzi do fat-
szywych wnioskow, czyli narusza semantyczng poprawno$¢ systemu.
Przyktad 11.7

Rozpatruje si¢ nastgpujace drzewo dowodu:

[x=0],
—— (V1)
Vxe(x=0)
=1)
(x=0)=Vxe(x=0) W
Vxe((x=0)= Vxe(x=0)) (VE)

0=0)= Vxe(x=0)

L Powodem absurdalnego wmosku Jest mepoprawne zastosowanie reguty (V I). |

Przyklad 11 8

B : |
Nlepoprawne zastosowanie regu{y (V E) prowadzi do nastgpujacego wywodu:

[‘v’xoﬁ\'/y o(x= y)]l (VE)
—Vye(x=y)lx:=y]
=0
Vxe—Vye(x=y)=-Vye(y=y)

239

Kolejny przyklad jest ilustracja poprawnego stosowania regut wprowadzania i elimi-
nacji kwantyfikatora ogélnego.

Przyklad 11.9

W dowodzie dwukrotnie wykorzystuje si¢ regul¢ eliminacji i wprowadzania

kwantyfikatora ogdlnego. Podczas eliminacji podstawienia tozsamosciowe za
zmienne x, y zachowuja odpowiednie wymogi. Podobnie podczas wprowadzania
kwantyfikatoréw sa zachowane odpowiednie wymogi, gdyz zmienne x, y nie maja
wolnych wystapien w wykorzystywanym zatozeniu.

[vxevye p(x, y)]l

(VE)

vy e p(x, y) [x 2= x] VE)
p(x, y) [y = y] 1)
Vxe p(x,y) 1)

VyeVxe p(x,y) =1)

VxeVye p(x,y)= VyeVxe p(x,y)
Pojecie zbioru derywacji i relacji derywacji zdefiniowane dla rachunku zdan w oczy-
wisty sposob uogdlnia si¢ dla rachunku kwantyfikatoréw. Podobnie jak dla systemu
Hilberta, dla dowolnego zbioru formut @ i formuly o zachodzi twierdzenie o seman-
tycznej niesprzecznosci i semantycznej zupetnosci:

Twierdzenie 11.3

® g a wtedy i tylko wtedy, gdy @ E .

11.4. Wlasnosci metalogiczne rachunku kwantyfikatorow

Logika klasyczna oparta na rachunku kwantyfikatoréw jest scharakteryzowana przez jezyk
o dobrze zdefiniowanej sktadni i semantyce oraz przez system dowodzenia.

Systemy dowodzenia rdznia si¢ od siebie doborem aksjomatow i regut i wynikajacym
z tego sposobem konstrukcji dowodéw twierdzen. Maja natomiast pewne wspolne
wlasnosci. Przedstawione systemy dowodzenia sa semantycznie niesprzeczne i se-
mantycznie zupeine. Dodatkowo, co jest uznawane za szczegdlna wlasnos¢ logiki kla-
sycznej, nie istniejg algorytmy dowodzenia oparte na tych systemach, ktére gwaran-
towalyby, ze w skonczonej liczbie krokéw mozna rozstrzygaé, czy dowolna formuta
jest, czy nie jest tautologia. Rachunek logiki klasycznej, doktadniej rachunek kwanty-
fikatoréw jest nierozstrzygalny, a scislej, jest czesciowo nierozstrzygalny. Oznacza to,

240

ze dla dowolnej formutly, jezeli formuta jest tautologia, to istnieje algorytm, ktory
w skonczonej liczbie krokdw zawsze to potwierdzi, natomiast w przypadku przeciw-
nym, gdy formutla nie jest tautologia, taki algorytm nie istnieje. Rozstrzygalne moga
by¢ natomiast pewne fragmenty rachunku logicznego, na przyklad rozstrzygalne sa
rachunek zdan, jednoargumentowy rachunek kwantyfikatoréw.

Jezyk logiki pozwala na budowanie teorii elementarnych (rozdziat 8), stuzacych do
opisu wybranego fragmentu interesujacego Swiata. Jezyk teorii elementarnej charakte-
ryzuje si¢ przyjeciem specyficznej sygnatury jezyka formalnego, to jest symboli funk-
cyjnych i symboli predykatéw, oraz specyficznej interpretacji (badz klasy interpreta-
cji) tych symboli. Specyfika interpretacji wyraza si¢ przez ustalenie zbioru formut
spetnialnych w tej interpretacji. Wyr6znione formuly nazywa si¢ aksjomatami specy-
ficznymi teorii. Formutly teorii stuza do opisu specyficznych wlasnosci obiektéw na-
lezacych do wybranego fragmentu §wiata. System dowodzenia pozwala natomiast na
dowodzenie tego, czy pewne formuly wyrazaja, czy nie wyrazaja, wiasnosci zacho-
dzacych w wybranym fragmencie $wiata.

Okazuje sig, co pokazal Godel, ze dostatecznie bogate teorie maja specyficzne wila-
snosci, ktére wskazujg na ograniczenia metody aksjomatycznej. Chodzi o teorie, ktore
pozwalaja zbudowa¢ arytmetyke liczb naturalnych, a wigc o prawie wszystkie nietry-
wialne teorie majace praktyczne zastosowania.

Ograniczenie nazywane niezupelnosciq teorii — pierwsze twierdzenie Godla — pole-
ga na tym, ze istnieja w takiej teorii zdania spetnione, ktdre nie sa twierdzeniami
teorii. Inaczej: dla teorii tej klasy nie istnieje semantycznie zupetny system dowo-
dzenia.

Drugie ograniczenie odnosi si¢ do niesprzecznosci teorii. Niesprzecznos¢ oznacza, ze
teoria nie zawiera takiej formuly ¢, ze o oraz —« sa twierdzeniami teorii. Z drugiego
twierdzenia Godla wynika, ze dla teorii zawierajacych arytmetyke liczb naturalnych
nie mozna poda¢ takiego dowodu niesprzecznosci, ktory korzystatby wylacznie ze
Srodkdéw tej teorii. Inaczej: na gruncie danej teorii nie mozna poda¢ dowodu jej nie-
sprzecznosci.

Twierdzenia Godla maja znaczenie historyczne i filozoficzne. Znaczenie historyczne
polega na tym, ze zostal obalony program Hilberta sformulowany na poczatku XX
wieku, ktérego mysla przewodnia byto zbudowanie teorii sformalizowanej, obejmuja-
cej cala matematyke, i udowodnienie jej za pomoca prostych srodkdéw logicznych.
Cala matematyka zawiera oczywiscie arytmetyke liczb naturalnych, a zatem nie mozna
udowodni¢ jej zupelnosci i niesprzecznosci. Znaczenie filozoficzne bierze si¢ stad, ze
twierdzenia Godla wskazuja na ograniczono$¢ podejscia aksjomatycznego. Pesymi-
styczna interpretacja tego faktu sprowadza si¢ do stwierdzenia, ze istniejg ,,nieprzekra-
czalne granice rozumu ludzkiego”, podczas gdy interpretacja optymistyczna wskazuje
wilasnie na przewagg rozumowania umystu ludzkiego nad wnioskowaniem prowadzo-
nym w ramach systeméw sformalizowanych. Interpretacja twierdzenn Godla na gruncie

241

informatyki wskazuje na ograniczono$¢ tego, co mozna policzy¢ za pomoca komputera,
gdyz wszystko to, co moze wykona¢ komputer da si¢ wyrazi¢ w pewne;j teorii elemen-
tarnej. Wynika tez z tego poglad, ze komputery nie beda w stanie catkowicie zastapi¢
czfowieka w podejmowanych przez niego rozumowaniach i decyzjach.

Cwiczenia

1. Korzystajac z systemu dowodzenia Hilberta dowies¢, ze nastepujace formuly sa
twierdzeniami:

a) v x

b) (= —0) = ~«x

c) VxeVyep(x,y) & VyeVxep(x,y)

d) 3x @ p(x) v g(x)) & (3x @ p(x)) v (Fx * g(x))

2. Wykorzystujac system dedukcji naturalnej Gentzena pokazac, ze tautologiami sa formuty:

a) (= P)= ((B= Y= (-y=0))

b)(ra= 0=«

c) av-«a

d@=9=(B=2n=(@vB=7)

e) (Vx ¢ p(x) & q(x)) = ((Vx @ p(x)) & (Vx @ g(x)))
f) (Vx @ p(x) & g(x)) = ((3x ® p(x)) & (Fx © g(x)))
g) dx eVy e p(x, y) = Vy e dx p(x, y)

3. Uzupehi¢ system dedukcji naturalnej przez wyprowadzenie regut eliminacji i wpro-
wadzania spéjnikéw:

a) dysjunkcji,

b) rownowaznosci,
c) NOR,

d) NAND.

12. Inne logiki

12.1. Wstep

Logika klasyczna omawiana w poprzednich rozdziatach jest jadrem wszelkich lo-
gik. Jej rozwdj w XX wieku wynikal gtéwnie z potrzeby rozwiazywania probleméw
z zakresu podstaw matematyki. Ogdlniej mozna stwierdzi¢, ze motywacje tworzenia
nowych logik byty podyktowane — po pierwsze — chgcig ogarnigcia mozliwie szero-
kiej klasy wypowiedzi spotykanych nie tylko w jezyku matematyki, ale i w jezyku
naturalnym, i — po drugie — identyfikacja i ujgciem w formalne ramy sposobow
wnioskowania stosowanych przez ludzi. Wraz z poszerzaniem si¢ zastosowan in-
formatyki powstaty nowe inspiracje dla rozwoju logiki. Wynikaja one, na przyktad,
z zastosowan systemow ekspertowych lub rozwoju lingwistyki matematycznej
i zwiazanej z nia konstrukcjg systemow automatycznego ttumaczenia jezykow na-
turalnych.

W tym rozdziale przedstawia si¢ podstawowe informacje tylko o niektérych logikach
nieklasycznych — logikach wielowartosciowych i modalnych [Bolc, Borodziewicz,
Wojcik 1991], [Gabbay 1998]. Logiki modalne stanowia bardzo szeroka grupg logik.
Za ich szczegodlne przypadki mozna uwaza¢, omawiane w dalszej czg¢sci rozdziatu,
logiki temporalne [Gabbay 1998], [Klimek 1999], a takze, do pewnego stopnia, logiki
intuicjonistyczne [Gabbay 1998].

Krétko tez wspomina si¢ o logikach niemonotonicznych [Gabbay 1998]. Omawia sig
tylko przestanki stanowiace inspiracj¢ ich powstawania. Logiki te, obecnie intensyw-
nie rozwijane, maja bezposredni zwiazek z zastosowaniami — z bazami wiedzy i sys-
temami ekspertowymi. Charakterystycznym wyrdznikiem dla tych logik jest to, ze
proponuja one pewne sposoby wnioskowania w sytuacji posiadania niepetnej lub nie-
pewnej informacji.

Przegladem nie sa objete wszystkie galgzie logiki. Nie omawia sig, na przyktad, logik
relewantnych, ktore probuja ostabi¢ ograniczenie logiki klasycznej polegajace na tym,
ze ocena prawdziwosci zdan zlozonych zalezy tylko od prawdziwosci ich czgsci skta-
dowych (wlasno$¢ ekstensjonalnosci — por. rozdziat 1), a pomija zupetnie tresci wyra-

243

zane przez te sktadowe, a wlasnie uwzglgdnienie zwiazkéw tresciowych jest szcze-
golnie wazne w systemach ekspertowych.

Szeroka, cho¢ nie wyczerpujaca prezentacj¢ roznych logik zawieraja pozycje ency-
klopedyczne [Marciszewski 1987], [Marciszewski 1988].

Z podziatem nauk na sciste i empiryczne wiaze si¢ podzial metod wnioskowania na
dedukcyjne i indukcyjne. Podstawa nauk empirycznych sa obserwacje interesuja-
cych zjawisk i procesow. Obserwacje te czgsto dostarczaja informacji czastkowych,
zwykle obarczonych biedami pomiaréw. Dlatego wnioskowania oparte na takich
danych prowadza do niepewnych lub niepelnych wnioskéw. Dodatkowo, nie zaw-
sze z gory wiadomo, jak takie wnioskowanie prowadzi¢. Przyktadowo, prowadzac
po raz pierwszy pewien eksperyment nie zawsze wiadomo, jakich mozna si¢ spo-
dziewaé nastepstw. W metodologii nauk empirycznych rozwaza sig¢ specyficzne ro-
dzaje logik, migdzy innymi tak zwane logiki indukcji [Mortimer 1982]. Ogdlne za-
mierzenie logik indukcji wiaze si¢ ze sposobem uzyskiwania na podstawie danych
eksperymentalnych mozliwie najlepszej teorii, ktéra tltumaczytaby zwiazki pomig-
dzy obserwowanymi faktami, a takze — jeszcze lepiej — pozwalataby na przewidy-
wanie dotychczas nie obserwowanych faktow. Oczywiscie taki ogdlny mechanizm
nie istnieje. Mozliwe jest natomiast poréwnywanie réznych konkretnych mechani-
zmow i ocenianie stopnia ich wiarogodnosci. Logiki indukcji nie nalezy utozsamiaé
z uzywanym wczesniej pojeciem indukcji matematycznej czy strukturalne;j.

12.2. Logiki wielowartosSciowe

Logiki wielowartosciowe maja poczatek w latach dwudziestych XX wieku, kiedy Lu-
kasiewicz” jako pierwszy przedstawit propozycje logiki tréjwartosciowej. Prace nad
logikami wielowartosciowymi podejmowali migdzy innymi Post, Sobocinski, Stupec-
ki. Lukasiewicz opisat cala rodzing skonczenie wielowartosciowych logik L, dla n =
3, 4, ..., oraz jedna nieskonczenie wartosciowq logikg Lyx,. Zbiorem wartosci logicz-
nych logiki L, jest zbidr:

An =4 {0, 1/(n-1), ..., (n-2)/(n-1), 1} dlan=3,4, ...

Ponizej przedstawia si¢ tylko rachunek zdan w logice L;. W tej logice interpretacja
znanych spéjnikéw logiki klasycznej: =, A, v, &, — jest wyrazona tabela 12.1:

25 Jan Lukasiewicz (1878-1956).

244

Tabela 12.1
b a=b anb avb a&sb —a
a 0| % |1 0 Va 1 0 Ya 1 0 %) 1
0 1 1 1 0 0 0 0 %) 1 1 Va 0 1
| Y 1 1 0 Va Va %) %) 1 Va 1 Va Va
1 0| % |1 0 Va 1 1 1 1 0 Y2 1 0

Opracowanie logiki L; wiazalo si¢ z nadawaniem wartosci logicznej zdaniom odno-
szacym si¢ do przyszlosci. Zdania o przyszlosci moga wyraza¢ fakty, ktore zajda lub
nie zajda, na przyklad:

W 2100 roku ludzie bedq mieszka¢ na Marsie.

Zdanie takie wypowiadane w obecnej chwili nie jest ani prawdziwe, ani falszywe,
nadaje si¢ mu wigc wartos¢ "2, co wyraza nasza niewiedzg o przysztosci. Wartos¢ 2
moze by¢ takze interpretowana inaczej jako: niezdefiniowane, nieokreslone albo jako
brak danych.

Pierwsza aksjomatyka Lukasiewicza byta oparta na spojnikach implikacji i negacji.
Inne znane spojniki — koniunkcji, dysjunkcji i rownowaznosci — byly definiowane
przez implikacj¢ i negacje, tak samo jak w logice klasyczne;j.

Zestaw spdjnikdw logicznych zlozony z implikacji, negacji uzupelniony stata logiczna
2 jest systemem funkcjonalnie petnym, tzn. za ich pomocg mozna wyrazi¢ dowolne
inne spdjniki logiczne w L;.

Aksjomatyka rachunku zdan tréjelementowej logiki Lukasiewicza (opracowana przez
Lukasiewicza, Tarskiego i Wajsberga) skiada si¢ z nastgpujacych aksjomatow:

a) g=pP=29q)

b) p=q9=>(g=nN=>@p=r)
¢) (p=-p)=p)=p

d) (g=-p)=@P=9)

e) (p=q9=q9=>(q=>p)=Dp)
f) (p=9 =@=p)=(@=>p)

oraz z dwoéch reguk:
Reguly odrywania: z formut o oraz @ = f§ wnioskujemy f, czyli:
a,a=f

B

Reguly podstawiania: z formuly o, w ktorej wystgpuje zmienna zdaniowa a, wnio-
skujemy to, co otrzymamy w rezultacie podstawienia dowolnej formuty 8 za kazde
wystapienie zmiennej a, czyli:

245

(04

afa =]

Przedstawiony zestaw aksjomatéw nie jest minimalny, gdyz ostatni aksjomat jest za-
lezny od aksjomatéw poprzednich. System ten jest semantycznie niesprzeczny i se-
mantycznie zupetny.

Poza oméwionymi, do logik wielowartosciowych mozna zaliczy¢ m.in. rowniez logiki
prawdopodobienstwa i logiki rozmyte.

12.3. Logiki modalne

Niech bgda dane trzy zdania:

Ksiqzka lezy na stole. (D
Ksiqzka lezy na podtodze. @)
Ksiqzka nieruchomo (bez podparcia) utrzymuje si¢ w powietrzu. (3)

Jesli zatozy¢, ze wypowiedzi te odnosza si¢ do sytuacji w jakims$ pomieszczeniu na
Ziemi, to zdania (1) oraz (2) moga by¢ prawdziwe lub falszywe, natomiast zdanie (3)
bedzie zawsze fatszywe. Nie jest bowiem mozliwe w zadnym pomieszczeniu ziem-
skim, aby ksigzka zajmowata trwale nieruchome potozenie. Rozréznienie migdzy sy-
tuacjami zwigzanymi ze zdaniami (1) i (2) a zdaniem (3) stanie si¢ bardziej wyrazne,
gdy rozpatruje si¢ pewne ich modyfikacje:

Mozliwe, ze ksiqzka lezy na stole. 4)
Mozliwe, ze ksiqzka lezy na podlodze. 5)
Mozliwe, ze ksiqzka nieruchomo (bez podparcia) utrzymuje si¢ w powietrzu. (6)

Zdania (4) i (5) sa oczywiscie prawdziwe, a zdanie (6) jest falszywe. Przytoczone
oceny prawdziwosci zdan odnosza si¢ do zjawisk w bezposrednio otaczajacym nas
swiecie. Te same zdania odniesione do zjawisk zachodzacych na przykiad w swiecie
obserwowanym przez kosmonautéw w pojezdzie kosmicznym bedg miaty inne oceny,
zwlaszcza zdanie (6) stanie si¢ prawdziwe. Warto tez zwrdci¢ uwage na to, ze nawet
osoba przebywajaca na powierzchni Ziemi bylaby gotowa uznaé prawdziwo$¢ zdania
(6), gdyby tylko wiedziata, ze loty kosmiczne sa osiagalne.

Zdania sa przyktadami tak zwanych wypowiedzi modalnych — wystgpujacy w nich
zwrot: mozliwe jest, ze o jest przyktadem operatora modalnego. Symbolicznie jest on
zapisywany ¢a. Wypowiedz dualna: konieczne jest, ze «, jest symbolicznie zapisy-

246

wany Oc. Takie zwroty spotyka si¢ czgsto w wypowiedziach formutowanych w jezy-
ku naturalnym. Pomig¢dzy obu zwrotami zachodzi zwigzek semantyczny:

go=—9
Symbole o oraz ¢ sa traktowane jako jednoargumentowe operatory logiczne.
Uwaga

Logiki modalne korzeniami siggaja czasow Arystotelesa. Nowozytne badania
podjat na poczatku XX wieku C. I. Lewis, ktory pojecie mozliwosci wykorzystat
w celu rozréznienia migdzy implikacja materialng a implikacja $cista. Implikacja
materialna, zdefiniowana w klasycznym rachunku zdan, ma utomno$¢ (patrz roz-
dzial 1), ktora na podstawie falszywej przestanki pozwala na wyprowadzenie do-
wolnego wniosku. Wady tej nie ma implikacja Scista (symbol =) zdefiniowana
przez Lewisa jako:

P >q =dar < (P AQ)
czyli, ze g wynika $cisle z p wtedy i tylko wtedy, gdy nie jest mozliwe, by jedno-
cze$nie prawdziwe byto p i falszywe ¢. Definicja ta odroznia implikacjg $cista od
materialnej, ktorej definicjq jest:

P = q =4t (P A G).

Implikacja $cista usuwa niektdre paradoksy implikacji materialnej, ale nadal pozo-
stawia prawdziwe formutly, ktére do takich paradoksow sig¢ zalicza, na przyktad:

p=p=q9 @=>p)=(@q=q) PpA-p)2q @Vv-p)=2q
Z punktu widzenia sktadni, logiki modalne sa rozszerzeniem j¢zyka formalnego lo-
giki klasycznej. W definiowaniu semantyki logik modalnych przyjmuje si¢ po-
wszechnie podejscie S. Kripkego, oparte na pojeciu zbioru mozliwych stanéw (lub
Swiatéw). Podejscie to przedstawia si¢ ponizej, na przyktadzie zdaniowej logiki
modalnej.

Alfabet modalnego jezyka rachunku zdan skfada si¢ z nastgpujacych jednostek leksy-
kalnych:

e symboli stalych logicznych reprezentowanych przez napisy true oraz false;

o przeliczalnej liczby symboli zmiennych zdaniowych,

e symboli spdjnikéw logicznych klasycznego rachunku zdan: —, A, v, =, &,
e symboli spdjnikow logicznych modalnych: 0,9,

e symboli nawiaséw: (,).

Zbiér formul modalnego rachunku zdan FORM jest definiowany rekursywnie:

e symbole zmiennych zdaniowych oraz symbole statych logicznych sa formutami
elementarnymi; zbidr zmiennych zdaniowych bgdzie oznaczony symbolem V;

247

e jezeli o oraz f sa formutami, to formutami zlozonymi sa napisy:
—a, (= B), (aa), (av B), (ae P), oa, O

Semantyka jezyka jest okreslana w strukturze Kripkego.

Definicja 12.1

Modelem Kripkego nazywa si¢ trojke K = <S, p, v>, gdzie S jest dowolnym zbio-
rem nazywanym zbiorem standw (lub Swiatow), p C S* jest relacja binarng nazy-
wang relacja osiqgalnosci stanéw (Swiatdw), v : V X § — Logiczne jest funkcja
wartosciujqcq zmienne zdaniowe w kazdym ze stanow.

Jezeli <s, s">€ p, to stan s” nazywa sig stanem osiagalnym ze stanu s.

Dziedzing interpretacji formut jest, tak samo jak w klasycznym rachunku zdan, zbiér
wartosci Logiczne. Semantyka modalnego rachunku zdan zachowuje interpretacj¢ kla-
sycznych spojnikow logicznych. Funkcja wartosciowania v jest uogdlnieniem odpo-
wiedniej funkcji wartosciujacej v, ktora byta wprowadzona przy definiowaniu semantyki
klasycznego rachunku zdan. Réznica polega na tym, ze w modalnym rachunku zdan
wartosciowanie zmiennej zdaniowej zalezy dodatkowo od stanu. W réznych stanach
wartosciowania tej samej zmiennej mogg by¢ rézne, podczas gdy w klasycznym ra-
chunku zdan wartosciowanie zmiennej jest tylko jedno — inaczej: w klasycznym ra-
chunku zdan ma si¢ do czynienia tylko z jednym stanem.

Niech e FORM dowolna formula oraz s€§ bedzie dowolnym stanem. Interpretacja
formuly a przy wartosciowaniu v w stanie s, zapisywana INT,(c), jest definiowana
rekursywnie wzgledem struktury sktadniowe;j:

a)INT, ((p) =aer v(p,), dla zmiennej zdaniowej p

b) INT, ((true) =4 P

¢) INT, ((false) =4 F

d) INT, (= Q) =4er mINT, (@)

e) INT, (¢t B) =4er INT, (@) - INT, (), dla spdjnika binarnego <€ {A, v, =, &}

f) INT, (0Q@) =4 P wtedy i tylko wtedy, gdy dla dowolnego stanu s” osiggalnego ze
stanu s zachodzi INT, () =P

g) INT, (O) =q4r P wtedy i tylko wtedy, gdy istnieje stan s” osiagalny ze stanu s,
dla ktérego zachodzi INT,y () =P

Wyzej przedstawiona semantyka, w zaleznosci od konkretnych zastosowan, moze by¢
jeszcze zawgzana przez narzucenie dodatkowych postulatéw. Moga one mie¢ postac
formut-aksjomatow, ktére powinny by¢ spetniane w jezyku. W zaleznosci od zestawu
takich aksjomatéw wyrdznia si¢ rézne rodzaje logik modalnych. Przyktadami takich
formut sa:

o(a= B) = (oa= of)
o= o«

248

o= o
o= 0oQ
Ca= oo«
o= o
ooa= ooQ

Omawiane wyzej modalnosci okresla si¢ mianem modalnosci aletycznych. Modalno-
$ci moga mie¢ takze inne interpretacje. W zaleznosci od przyjgtej interpretacji, mo-
dalnosci czyta si¢ w rozny sposéb i ma si¢ do czynienia z réznymi rodzajami logik
modalnych.

Przykladowo, pojgciem centralnym logiki deontycznej jest pojecie obowiazku, for-
muly oo oraz O« odczytuje si¢ jako: jest obowiqzkowe to, ze oraz jest dozwolone
lo, Ze Q.

Logika epistemiczna odnosi si¢ do aktéw lub stanéw poznawczych, operuje pojgciami
takimi jak widzie¢, wierzy¢, uznawac. Stad formuly oo oraz O o odczytuje sig¢ jako:
Jjest wiarygodne to, ze o oraz jest niewiarygodne to, ze C.

W logice temporalnej przedmiotem zainteresowania sa wypowiedzi, ktére uwzgled-
niaja zwiazki czasowe — formuly o oraz ¢« czyta si¢ jako: zawsze zachodzi « oraz
czasem zachodzi c.

Obszerniejsze omowienie logik modalnych i ich zwiazkdw z logika klasyczna przed-
stawia ksigzka [Szatas 1992].

12.4. Logiki temporalne

Przedmiotem logik temporalnych sa wypowiedzi, ktére uwzgledniajq czas. Ttem, na
ktérym rozpatruje si¢ wypowiedzi, jest struktura czasowa. Zbior standw S w modelu
Kripkego K = <S, p, v> jest tu interpretowany jako zbiér chwil czasowych — oznacza-
ny 7, a relacja osiggalnosci p jest interpretowana jako uporzadkowanie chwil w sensie
chwila wczesniejsza-pozniejsza — oznaczana <.

Strukturq czasowq nazywa sie parg SC = <T, <>, gdzie <C T? jest relacja porzadku.
g J

W zaleznosci od ustalen dotyczacych struktury czasowej otrzymuje si¢ rézne rodzaje
logik temporalnych.

Jezeli < jest relacja porzadku czgsciowego (to znaczy jest zwrotna, antysymetryczna
i przechodnia), to mamy do czynienia ze struktura czasu rozgalezionego, a jesli jest

249

relacja porzadku liniowego (to znaczy jest zwrotna, antysymetryczna, przechodnia
1 spdjna), to mamy do czynienia ze strukturg czasu liniowego.

Strukturg czasowg nazywa si¢ cigglq, gdy:
VheTeVheTe heTe (11 h=> X A1)
dyskretng prawostronnie, gdy:

VtHeToVheTo((tiSt2A 1 #)=
(e To(tist3 A 11 # BIATNE TO(HSty A i A 13 # 1))

dyskretnq lewostronnie, gdy:

VHheTeVheTo(t)<t2 A 11 #)=
(AneTo(tixsta A t3#) A AETO(t4<tL A 34 A 137 1))

Przyktadem zbioru, na ktérym mozna zbudowac¢ struktur¢ ciagla jest zbior liczb wy-
miernych, a dyskretng — zbidr liczb naturalnych.

W dalszych rozwazaniach zaktada si¢ dyskretng (lewo- i prawostronnie) strukture
czasu liniowego. Dla ustalenia uwagi przyjmuje sig¢, ze zbior chwil jest zbiorem
liczb naturalnych, a relacja osiggalnosci jest relacja < w zbiorze liczb naturalnych,
n < m oznacza: chwila n nie jest pozniejsza od chwili m. Zatem struktura czasowa
jest parg <Nat, < >.

Zostanie przedstawiony rachunek zdan liniowej logiki temporalnej PLTL (ang. Pro-
positional Linear Temporal Logic). Logika jest logika czasu przysziego, co oznacza,
ze formuly wyrazaja pewne wiasnosci, ktére odnosza si¢ do przysztosci, poczynajac
od ustalonej chwili odniesienia. Zostala ona opracowana przez Manng i Pnueliego na
poczatku lat osiemdziesigtych, [Manna, Pnueli 1992], [Manna, Pnueli 1995], z prze-
znaczeniem do specyfikacji i weryfikacji wlasnosci programow.

Sktadnia logiki PLTL rézni si¢ od sktadni modalnego rachunku zdan przedstawionego
w poprzednim podrozdziale tylko tym, ze wprowadza dwa dodatkowe spdjniki mo-
dalne: jednoargumentowy operator next i dwuargumentowy until. Spdjniki te stuza
wygodniejszemu wyrazaniu pewnych wlasnosci, ktére mozna rowniez wyrazié za po-
moca pozostatych spojnikow.

Zbidr formut FORM logiki PLTL jest definiowany rekursywnie:

¢ symbole zmiennych zdaniowych oraz statych logicznych sa formutami,
e jezeli cxoraz B sq formutami, to formutami sa rowniez:
-, (a= B), (an P), (av B), (ae B), o, O, next o, (o until B).

Interpretacja formuly temporalnej jest definiowana — tak samo jak w przypadku mo-
dalnego rachunku zdan — wzgledem struktury czasowej <Nat, < > i wartosciowania v.
Modelem dla formut temporalnych jest wige trojka <Nat, <, v>.

250

Niech ace FORM bedzie dowolng formutla oraz ne Nat bedzie dowolng chwila. Inter-
pretacja formuly « przy wartosciowaniu v w chwili n, zapisywana INT, (), jest defi-
niowana rekursywnie wzgledem struktury sktadniowe;j:

a) INT, ,(p) =ger v(p, n), dla zmiennej zdaniowej p

b) INT, ,(true) =4 P

c) INT, ,(false) =4 F

d) INT, (=) =get —INT, (@)

e) INT, (& - B) =uet INT, ,(€%) < INT, ,(B), gdzie € {A, v, =, &}

f) INT, (0) =gt P wtedy i tylko wtedy, gdy dla dowolnej chwili m takiej, ze
n < m zachodzi INT, () =P

g) INT, (O) =ger P wtedy i tylko wtedy, gdy istnieje chwila m taka, ze n < m,
dla ktérej zachodzi INT, ,(c) = P

h) INT, .(nexta) =¢r P wtedy i tylko wtedy, gdy dla chwili n + 1 zachodzi
INT, () =P

i) INT, ,(c until B) =¢r P wtedy i tylko wtedy, gdy istnieje chwila j > 0 taka, ze
zachodzi INT, /(8) = P oraz dla kazdej chwili i <j zacho-
dzi INT, () = P.

Formuta ¢, ktérej interpretacja INT, () = P dla dowolnego wartosciowania v i do-
wolnej chwili n jest tautologia logiki PLTL. Formul¢ taka nazywa si¢ tez prawem
logiki.

Warto zwréci¢ uwagge na spojnik until. Za jego pomoca mozna bytoby wyrazi¢ spoj-
niki o oraz ¢. Mianowicie:

OO =g true until o
Qo =y until false

Formuty logiki PLTL pozwalaja na zwarte wyrazenie ztozonych wlasnosci. Na przy-
ktad:

ofu formula czytana: zawsze mozliwe o, wyraza wlasnosé¢, ze kiedykolwiek
w przyszfosci formula «a stanie si¢ falszywa, to jest pewne, ze kiedy$
w dalszej przysztosci stanie si¢ znowu prawdziwa.

Soa formula czytana: kiedys koniecznie o, wyraza wlasnos¢, ze w przysztosci
istnieje taka chwila, od ktorej formuta o bedzie prawdziwa.

Oto przykfady niektorych kategorii praw:
Prawa dualizmu

00 & 0o
O—0 & oo
next QL <= — next«

251

Prawa introspektywnosci

o= o

a= o

(e until B) = (v P)
B = (auntil B)

Prawa idempotencji
ooo & 0A
OO = O
Prawa rozdzielnosci

o(a A B) & (oa) A (@f)
Olav B) & (o) v (OP)

Prawa przemiennosci

(O next o) & (next 0Q)
(O next @) & (next Q)
next (o until B) & (next o) until (next)

Prawa dolqczania

(can Of) = O(anP)
(oa A next B) = next (ax A B)
(a A (B until y)) = (ax A B) until (a A Y)

Dla logik temporalnych byly opracowane rdézne systemy aksjomatyzacji. Jeden
z pierwszych przykladow aksjomatyzacji logiki PLTL pochodzi z [Gab 98] i sklada
si¢ z nastgpujacych aksjomatow:

a) o(a= B) = (ca= aofl)

b) next ot & — nexto

c) next (¢ = P) = (next a = next 3)

d) oax = (next o A next o)

e) 0(a = next Q) = (next ¢ = 0OK)

) (o until B) = Of
) (a until B) < (next B v (nexta A next (¢ until 5)))

oraz reguf odrywania, podstawiania i generalizacji:
Regula generalizacji: z formuty o wnioskuje sig, ze oo, czyli:

o
ox

System ten jest semantycznie niesprzeczny i semantycznie zupetny.

252

12.5. Logiki intuicjonistyczne

Sktadnia logiki intuicjonistycznej jest taka sama jak logiki klasycznej. Roznica wy-
nika ze sposobu podejscia do oceny prawdziwosci zdan. W logice intuicjonistycznej
podejscie to opiera si¢ na specyficznej interpretacji spojnikoéw logicznych i kwanty-
fikatoréw podanej przez Heytinga® — jednego z twércéw tej logiki, ktéry przedsta-
wil pierwszy system aksjomatyczny dla intuicjonistycznego rachunku zdan. Jej
podstawa jest intuicja, ze stwierdzi¢ prawdziwos¢ zdania to tyle co posiadaé dowod
dla tego zdania.

Logika intuicjonistyczna jest jedna z logik konstruktywnych. Ilustracja roznic w sto-
sunku do logiki klasycznej jest dowdd twierdzenia:

Istnieja dwie liczby niewymierne a i b takie, ze a” jest wymierne.

Dowdd twierdzenia jest niekonstruktywny: albo («/E)ﬁjest wymierne i wtedy a =b =
«/5, albo (\/E)ﬁjest niewymierne i wtedy a = (\/5)‘5, b= «/5 Z dowodu wynika,
ze liczby istnieja, ale oczywiscie nie wiadomo, jakie sq to liczby.

W interpretacji Heytinga prawdziwos¢ formut w logice intuicjonistycznej jest rozu-

miana w sposob nastgpujacy:
e Prawdziwos¢ formuly a A b oznacza fakt posiadania dowodu d, dla formuly a
oraz dowodu dj dla formuty b. Dowod formuty a A b jest zatem para <d,, dp>.

e Dowdéd formuty a v b to konstrukcja, ktéra wybiera jedng z dwoch formut i daje
dowdd wybranej formuty.

Dowod formuty a = b to konstrukcja, ktora kazdemu dowodowi d, formuty
a przyporzadkowuje dowdd d,(d,,) formuty b.

Dowdd formuty —a to dowdd dla formuly a = false, czyli konstrukcja tworzaca
dowdd sprzecznosci z kazdego dowodu majacego by¢ dowodem formuty a.

Dowdd formuty Jxe p(x) to konstrukcja, ktéra polega na wskazaniu pewnego
obiektu n (z danej dziedziny rozwazan) i podaniu dowodu dla formuty p(n).

Dowdéd formuty Vxe p(x) to konstrukcja, ktora dla kazdego obiektu n (z danej
dziedziny rozwazan) podaje dowdd dla formuty p(n).

Aksjomatyzacja Heytinga dla intuicjonistycznego rachunku zdan sktada si¢ z naste-
pujacych aksjomatow:

% A. Heyting (1898-1980).

253

(Na=(ana)

2)(anb)= (bra)
B)(anb)={(anc)= (b Arc))
@((a= b)Aab=0c)=@=70)
B)b=(a=b)
G)an(a=b)=b

(Ma= (av Db)
8)avb)=(bva)

@ (a=c)A b= c))= ((av b)=¢))
(10) ma= (a=b)

(11) ((a= b) A (a= —b)) = —a

Jedyna regulq jest reguta odrywania.

Wszystkie prawa intuicjonistycznego rachunku zdan sg rowniez prawami logiki kla-
sycznej, ale nie odwrotnie: sg tautologie logiki klasycznej, ktore nie sa prawami logiki
intuicjonistycznej. Przyktadami takich formut sa:

—ava
——ad = da

Dolaczenie jednej z nich do zestawu wyzej podanych aksjomatow datoby rachunek
rownowazny logice klasycznej. W interpretacji intuicjonistycznej przyjgcie, na przy-
klad, formuly —a v a jako aksjomatu oznaczaloby, ze dla dowolnej formuty posiada
si¢ dowdd jej prawdziwosci lub dowdd jej fatszywosci.

Pokrewne podejécie przedstawit A. Kotmogorow”’, ktéry zaproponowal, aby zdania
w logice intuicjonistycznej traktowac jako problemy lub zadania. Z zadaniem kojarzy
si¢ sposob jego rozwigzania. W logice klasycznej wypowiedzi, ktéra jest zdaniem,
przypisuje si¢ wartos¢ prawdy albo falszu, natomiast w logice intuicjonistycznej za-
daniu przypisuje si¢ rozwigzanie albo bezsensownosé, czyli brak mozliwosci rozwia-
zania. Inaczej: oceng logiczng zadania jest jego konstruktywne rozwiazanie albo bez-
sensownos¢ zadania. Niech bgda dane nast¢pujace przyklady zadan [Turski 1988]:

1. Znalez¢ cztery liczby calkowite x, y, z, n takie, ze: X"+ y" =" dlan > 2.

2. Udowodni¢ fatszywos¢ wielkiego twierdzenia Fermata.

3. Przeprowadzi¢ okrag przez trzy zadane punkty p, g, r, nie postugujac si¢ innymi
narzg¢dziami niz cyrklem i linijka.

4. Zaktadajac, ze znany jest jeden pierwiastek rownania: ax® + bx + ¢ = 0 znalezé
drugi pierwiastek tego réwnania.

5. Zakfadajac, ze liczba 7 jest wymierna, 7 = m/n, znalez¢ podobne wyrazenia dla
liczby e.

27 Andriej Nikolajewicz Kolmogorow (1903-1987).

254

Rozwiazanie zadania 1 oznacza rozwigzanie zadania 2, natomiast odwrotnie tak by¢
nie musi, gdyz mozliwe byloby rozwigzanie zadania 2 przez sprowadzenie do
sprzecznosci, bez podawania kontrprzyktadu. Zadania 3 i 4 sa oczywiscie rozwiazy-
walne, natomiast zadanie 5 jest bezsensowne, gdyz zatozenie o wymiernosci liczby
7 jest niemozliwe do spetnienia.

Jednym ze sposobdw wyrazania semantyki formut logiki intuicjonistycznej jest mo-
del Kripkego, wprowadzony juz wczesniej przy omawianiu logik modalnych. Mo-
del ten wygodnie opisa¢ w terminach procesu nabywania wiedzy w kolejnych
chwilach (etapach).

Jak poprzednio, model Kripkego jest trojka K = <, <, v>, gdzie S jest dowolnym
zbiorem chwil (etapéw), < jest relacja porzadku czgsciowego nad S, v: VX S — Lo-
giczne jest funkcja wartosciujacg zmienne zdaniowe w kazdej z chwil. Dodatkowo
wymaga sig, aby funkcja wartosciujaca spetniata nastgpujacy warunek:

jezeli s < t, to v(a, s) = v(a, t), dla dowolnego ae V.

Warunek ten oznacza, ze jezeli w pewnej chwili (etapie) s€ S wartosciowanie zmien-
nej a€V stanie si¢ prawdziwe, to pozostanie ono prawdziwe we wszystkich nastep-
nych chwilach 7€ § (etapach) procesu nabywania wiedzy. Poniewaz porzadek < jest
czgSciowy, a wigc nie musi by¢ porzadkiem liniowym, istniejg rozne drogi nabywania
wiedzy.

Niech ae FORM begdzie dowolna formuly intuicjonistycznego rachunku zdan oraz
se S bedzie dowolng chwila. Interpretacja formuly o przy wartosciowaniu v w chwili
s, zapisywana INT, (), jest definiowana rekursywnie wzgledem struktury skta-
dniowej:

a) INT, (a) =g P wtt v(a, s) =P, dlaaeV,

b) INT, (v B) =gt P wtt INT,(c) =P lub INT, ((B) =P,

¢) INT, (A PB) =4t P wtt INT, () =P oraz INT, () =P,

d) INT, (0= f3) =¢er P wtt dla dowolnej chwili ¢ takiej, ze s < ¢, zachodzi
INT, (c) =P oraz INT, (f3) =P,

e) INT, (—Q) =4t P wtt dla dowolnej chwili ¢ takiej, ze s < #, nie zachodzi
INT, (o) =P,

Uzyty tu symbol wtt jest skrétem zwrotu wredy i tylko wtedy, gdy.

Formuta « jest tautologia wtedy i tylko wtedy, gdy INT, (&) = P dla dowolnego war-
tosciowania v i dowolnej chwili s.

Latwo sprawdzi¢, ze jesli S = {0, 1}, v(a, 0) = F oraz v(a, 1) = P, to formuta —a v a
nie jest tautologia, gdyz nie zachodzi INT, y(—a v a) = P, co z kolei wynika z tego, ze
nie zachodzi INT, y(a) = P ani INT, o(—a) = P.

255

12.6. O logikach niemonotonicznych

Rozpatrywane dotychczas logiki maja wspdlng wlasnos¢ okreslang mianem monoto-
nicznosci. Oznacza to, ze jezeli o jest konsekwencja sktadniowa pewnego zbioru for-
mut @, symbolicznie ® + ¢, to « jest rowniez konsekwencja sktadniowa dowolnego
rozszerzenia zbioru @, symbolicznie ® U I' + «, gdzie I jest dowolnym zbiorem for-
mut, czyli:

jezeli® o, to P UT +

Wiasno$¢ monotonicznosci jest zachowana w tych wszystkich praktycznych sytu-
acjach, gdy wnioskowanie na podstawie pewnego zbioru przestanek opiera si¢ na za-
lozeniu, ze dysponuje si¢ pelng wiedza o fragmencie opisywanego $wiata — zalozenie
o zamknietosci $wiata (rozdzial 10). Zalozenie takie nie zawsze jest prawdziwe, gdyz
mamy czgsto do czynienia z informacja niepetng lub niepewna.

Na przyktad, rozpatrzmy dwie bazy danych: rozklad odjazdéw pociagéw z danej stacji
oraz ksiazke telefoniczng. Jezeli na rozkladzie pociagdw odjezdzajacych nie znaj-
dziemy miejscowosci, do ktorej chcemy jechaé, to znaczy, ze nie ma do niej bezpo-
sredniego pociagu. Jezeli w ksiazce telefonicznej nie znajdziemy nazwiska znajome-
go, to nie znaczy, ze nie posiada on telefonu, gdyz ksigzka moze by¢ nieaktualna lub
telefon moze by¢ zastrzezony. W przypadku rozkladu jazdy pociagow zalozenie o za-
mknietosci $wiata jest uzasadnione, natomiast nie jest tak w przypadku ksiazki telefo-
nicznej.

We wnioskowaniach stosowanych na co dzien stosuje si¢ reguty wnioskowania oparte
na posiadanej wiedzy oraz niewiedzy. Przyktadami regut, ktére na takich podstawach
wyprowadzajg rézne przeciwstawne rodzaje wnioskow sa:

Jezeli nie ma dowodu winy podejrzanego, to nalezy uznac, ze jest on niewinny.

Jezeli nadlatuje samolot i nie mozna wykluczy¢, ze jest to samolot wroga (nie ma
dowodu, ze jest to ,,swoj” samolot), to nalezy uznac, ze jest to samolot wroga
(i zestrzelic).

Whioski wyprowadzane na podstawie tych regut moga okaza¢ si¢ sprzeczne z dodat-
kowo ujawnionymi faktami — nowymi informacjami o podejrzanym, wynikami ogle-
dzin stragconego samolotu.

Przedstawione reguly wnioskowania okresla si¢ jako reguly domnieman. Maja one
czgsto postaé:

o, UNLESS ()
Y

256

gdzie UNLESS(f) oznacza: nie jest mozliwe wyprowadzenie . Logika stosujaca re-
guly o takiej postaci narusza wlasnos¢ monotonicznosci. Na przyktad, na podstawie
reguly:
UNLESS («)
B

mozna stwierdzi¢, ze @+ f3, ale { o} vf3.

Przeglad réznych podejs¢ do wnioskowania w sytuacji niepetnej informacji i zwia-
zanych z nimi probleméw mozna znalez¢ na przyktad w [Bolc, Borodziewicz, Wéj-
cik 1991].

W sytuacji posiadania wiedzy niepewnej powstaje problem niejednoznacznosci wnio-
skowania. Na przyklad, jaki wniosek wyprowadzi¢ przy zatozeniu posiadania naste-
pujacej wiedzy:

e Kwakierzy sq na ogol pacyfistami.
® Republikanie na ogol nie sq pacyfistami.
e Nixon jest kwakierem i republikaninem.

Rownie uzasadniony jest kazdy z dwoch nasuwajacych si¢ wnioskow, ale nie sg moz-
liwe jednoczes$nie dwa wnioski.

Z podobng niejednoznacznoscig ma do czynienia lekarz, gdy na podstawie badan pa-
cjenta okazuje sig, ze moze by¢ on chory na jedng z kilku chordb.

Whnioskowanie w takich przypadkach opiera si¢ na analizie scenariuszy postgpowania,
ktéremu towarzyszy dokonanie wyboréw — podejmowanie decyzji. Praktycznie chodzi o
oceng skutkéw (koszt) podejmowanych decyzji. Stosuje si¢ rozne podejscia do takich
ocen oparte, na przyktad, na miarach probabilistycznych lub miarach rozmytych. W lo-
gikach probabilistycznych miarg logicznej wartosci zdania jest prawdopodobienstwo
jego prawdziwosci, a w logikach rozmytych miarami sa rozmyte wartosci prawdy.

Przeglad réznych podejs¢ do wnioskowania w sytuacji niepewnej informacji
i zwigzanych z nimi problemdéw mozna znalez¢ na przyktad w [Bolc, Borodziewicz,
Wojcik 1991].

Cwiczenia

1. Ktéra z podanych definicji jest poprawng definicja implikacji w logice Lj:

a) p= q=gsmin(l, 1 +p—q)

257

b)p = q =grmax(l -p,1-q)
)p=q =gsrmin(l,1-p + q)

2. Czy formuly p = q oraz —p v g sa rownowazne w logice L;?

3. Ktére z podanych formut sa tautologiami temporalnej logiki zdan:

a)g=@P=7q)
b)prg=q
Ao@PAag=q)
do@=@C@E=9)

4. Pokaza¢, ze dla formuly og temporalnej logiki zdan nie istnieje rownowazna jej
formuta skfadajaca si¢ wylacznie ze spdjnikdw A,v oraz —.

5. Ktére z podanych formut sg tautologiami intuicjonistycznego rachunku zdan:

a) —pvp

C)p=>—1—|p
d@e=9vi@=p)
e)pA—qg=>-(pVg)

LITERATURA

[1] ADAMOWICZ Z., ZBIERSKI P., 1991, Logika matematyczna, PWN.
[2] APT K., OLDEROG E.-R., 1991, Verification of Sequential and Concurrent Programs, Springer
Verlag.
[3] ARBIB M.A., 1968, Mdzg, maszyna, matematyka, PWN.
[4] BANERIJI P.B. (ed.), 1990, Formal Techniques in Artificial Intelligence. A Sourcebook, North-
Holland.
[5] BICARREGUI J.C., FITZGERALD J.S., LINDSAY P.A.,, MOORE R., RITCHIE B., 1994, Proof
in VDM: A Practitioners Guide, Springer Verlag.
[6] BOCHENSKI I.M,, 1992, Wspotczesne metody myslenia, Wydawnictwo ,,W drodze”.
[7] BOCHENSKI J.M., 1993, Logika i filozofia. Wybér pism, PWN.
[8] BOLC L., BORODZIEWICZ W., WOICIK M., 1991, Podstawy przetwarzania informacji niepew-
nej i niepetnej, PWN.
[9] BORZYSZKOWSKI A.M., SOKOLOWSKI S., 1995, Matematyczne podstawy informatyki, EFP,
Poznan.
[10] BUBNICKI Z., 1990, Wstep do systeméw ekspertowych, PWN.
[11] CARNAP R., 1990, Logiczna sktadnia jezyka, PWN.
[12] DAVIS P.J., HERSH R., 1994, Swiat matematyki, PWN.
[13] DEMBINSKI P., MALUSZYNSKI 1., 1981, Matematyczne metody definiowania jezykow progra-
mowania, WNT.
[14] EHRIG H., MAHR B., 1985, Fundamentals of Algebraic Specifications, Springer-Verlag.
[15] FITTING M., 1990, First-order logic and automated theorem proving, Springer-Verlag.
[16] GABBAY D., 1998, Elementary Logics: A procedural perspective, Prentice Hall.
[17] HUNTER G., 1982, Metalogika, PWN.
[18] HARRISON M.A., 1973, Wstep do teorii sieci przelqczajqcych i automatéw, PWN.
[19] HUZAR Z., KURZYNSKI M., SAS J.,, 1994, Rule-Based Pattern Recognition with Learning, Ofi-
cyna Wydawnicza Politechniki Wroctawskiej.
[20] GERSTIG J.L., 1993, Mathematical Structures for Computer Science, Computer Science Press.
[21] GRZEGORCZYK A., 1975, Zarys logiki matematycznej, PWN.
[22] GRZEGORCZYK A., 1983, Zarys arytmetyki teoretycznej, PWN.
[23] KACPRZYK J., 1986, Zbiory rozmyte w analizie systemowej, PWN.
[24] KELLY J., 1997, The Essence of Logic, Prentice Hall.
[25] KLIMEK R., 1999, Wprowadzenie do logiki temporalnej, Wydawnictwa AGH.
[26] KOWALSKI R., 1989, Logika w rozwiqzywaniu zadan, WNT.
[27) KOTARBINSKI T., 1985, Wyktady = dziejéw logiki, PWN.
[27] MANNA Z., PNUELI A., 1992, Temporal Verification of Reactive Systems: Specification, Sprin-
ger-Verlag.
[28] MANNA Z., PNUELI A., 1995, Temporal Verification of Reactive Systems: Verification, Springer-
Verlag.
[29] MARCISZEWSKI W. (red.), 1987, Logika formalna. Zarys encyklopedyczny z zastosowaniem do
informatyki i lingwistyki, PWN.
[30] MARCISZEWSKI W. (red.), 1988, Mala encyklopedia logiki, Ossolineum.
[31] MAREK W., ONYSZKIEWICZ J., 1975, Elementy logiki i teorii mnogosci w zadaniach, PWN.
[32] MORTIMER H., 1982, Logika indukcji, PWN.

260

[33] MOSTOWSKI A.W., PAWLAK Z., 1970, Logika dla inzynieréw, PWN.

[34] MURAWSKI R, 1995, Filozofia matematyki. Zarys dziejow. PWN.

[35] NISSANKE N., 1999, Introductory Logic and Sets Theory for Computer Scientists, Addison-
Wesley Longam.

[36] PAWLAK Z., 1991, Rough Sets, Theoretical Aspects of Reasoning about Data, Kluwer Academic
Publishers.

[37] PENROSE R., 1996, Nowy umyst cesarza — o komputerach, umysle i prawach fizyki, PWN.

[38] POGORZELSKI W., 1981, Klasyczny rachunek kwantyfikatoréw. Zarys teorii. PWN.

[39] RASIOWA H., 1998, Wstep do matematyki wspotczesnej, PWN.

[40] RUTKOWSKA D., PILINSKI M., RUTKOWSI L., 1997, Sieci neuronowe, algorytmy genetyczne i
systemy rozmyte, PWN.

[41]) SHEPARD D., An Introduction to Formal Specification with Z and VDM, McGraw-Hill, 1995.

[42] SLUPECKI J., HALKOWSKA K., PIROG-RZEPECKA K., 1978, Logika i teoria mnogosci, PWN.

[43] SOCHER-AMBROSIUS R., JOHANN P., 1996, Deduction Systems, Springer-Verlag.

[44] SZALAS A., 1992, Zarys dedukcyjnych metod automatycznego wnioskowania, Akademicka Oficy-
na Wydawnicza RM.

[45] TURSKI W.M., 1988, Logiki nieklasyczne (dla informatyka pracujqcego), Materialy V Jesiennej
Szkoly PTI, 103-132, Polskie Towarzystwo Informatyczne.

[46] WOICICKIR., 1982, Wykiady z metodologii nauk, PWN.

[47] TYUGU E.C., 1989, Programowanie z bazq wiedzy, WNT.

(48] WOICIK M., 1991, Zasada rezolucji. Metoda automatycznego wnioskowania. PWN.

INDEKS

Aksjomaty 11, 85, 86,87, 172, 173, 174, 175,
176, 179, 192, 193, 194, 196, 197, 199, 200,
202, 204, 211, 212, 220, 227, 228, 229, 230,
231, 232, 233, 240, 244, 245, 247, 251, 252

- specyficzne 173

alfabet 78, 79, 93, 95, 96, 97, 98, 107, 110,
116, 128, 129, 150, 151, 153, 168, 246

algebra 110, 116, 117, 119, 120, 121, 122,
123, 124, 125, 126, 127, 132

- Boole’a 121, 122, 127

- nad sygnaturg 123, 190

—terméw 125, 126, 127

algebry definiowanie wartosciowe 121
—homomorfizm 124, 125

—nos$nik 110

— operacje albo dziatania 110

— podobne 123

—state 110

— sygnatura 122

- wielorodzajowe 111, 118, 125

algorytm 24, 34, 61, 75, 76, 77, 78, 79, 81,
100, 102, 134, 140, 141, 167, 168, 194, 195,
196, 197, 200, 201, 204, 205, 209, 212, 213,
216, 217, 218, 219, 220, 221, 230, 240
alternatywa 14, 128, 148, 150

antysymetria 52, 174, 248, 249

Bijekcja 57, 58

Ciag 31, 34, 36, 37, 91, 92, 93, 97, 98, 99,
103, 104, 106, 130, 132, 138, 147, 187, 195,
202, 221, 230, 231, 232

continuum 75

Definicja w postaci normalnej 37

derywacja 228, 229, 231, 232, 236, 237, 238,
239

— formut 228

domknigcia jgzyka 96

dowdd 164, 180, 198, 199, 228, 231, 236, 252,
253

- nie wprost 180

— wprost 179, 180

drzewo 104, 105, 186, 187, 188, 196, 200,
201, 235, 237,238

—dowodu 187, 189, 190, 194, 196, 199, 200,
201, 204, 236, 238

—wywodu 105

dysjunkcja 14, 111, 128, 139, 141, 142, 150,
167, 192, 206, 241, 244

—elementarna 139

dysjunkcyjna posta¢ normalna 139, 140
dziedzina 48, 57, 58, 116, 117, 123, 157, 159,
170, 173, 252

—interpretacji 131, 132, 159, 160, 161, 169,
176, 183, 189, 200, 201, 203, 211, 213, 223,
247

Ekstensjonalnos¢ 15, 31, 34, 60, 172, 242

Faktor klauzuli 219

filozofia logiki 11, 12

falsz 11, 15, 16, 19, 32, 62, 124, 131, 132, 135,
143, 147, 148, 156, 162, 177, 178, 184, 188,
191, 253

formuta postaci kanoniczne 138, 140, 141, 210
— interpretacji 133, 161

— — przy wartosciowaniu 133

— otwarta 156

— réwnowazna semantycznie 133

- spelnialna 162, 163, 173, 207, 209, 212, 213,
214, 219, 222, 225, 240

— spetniona w modelu 162, 163

— zamknigta 156

formuly atomowe 129, 151, 153, 158
—elementarne 129, 130, 132, 144, 145, 146,
147, 202, 214, 246

—rachunku zdan 129, 134, 141, 144, 146, 147,
148, 149, 184, 206, 209, 246, 254

262

- semantycznie réwnowazne 141, 163

— ukonkretnienie 158

— ukonkretnione 214, 215

—zlozone 129, 144, 147, 151, 230, 247

- zdaniowe 16, 26 130

funkcja 39, 56, 91, 92, 97, 103, 108, 109, 110,
111, 112, 113, 115, 116, 117, 119, 123, 124,
125, 154, 155, 157, 158, 160, 161, 170, 171,
175,177, 178, 191, 211

-.na’ 57

— catkowicie okreslona 57,112

- czg¢$ciowo okreslona 57

- interpretacji bazowej 131, 132

- obcigcia 63

—obliczalna 81

—odwrotna 58, 103

— ogdlnie rekurencyjna 85

— pierwotnie rekurencyjna 82

— rekurencyjna 81

- réznowartosciowa 57

—stala 56

— wartos$ciowa zmiennych 132, 160, 211, 247,
254

- wzajemnie jednoznaczna 57, 125

— zero-argementowa 56, 109

- zdaniowa 15, 16, 25, 34

funkcji argument 56

— definicja ekstensjonalna 60

— —intensjonalna 60

—nazwa 56

— skladnia sekwencyjnego 61

— sygnatura 56

— warto$¢ 56

Graf antysymetryczny 104

— przechodni 104

— przeciwsymetryczny 104

— przeciwzwrotny 103

— symetryczny 103

—zwrotny 103

— skierowany 102

gramatyka bez ograniczen 101
— bezkontekstowa 97, 101, 105, 130, 145
—klasy 0 11, 101

--1 101,102

--3 101,102

—regularna 101

— skladniowo wieloznaczna 106
— struktur frazowych 101

— bezkontekstowa 97

— jezyka formalnego 97, 130

Hipoteza Turinga 77
— Turinga-Posta 77

Implikacja 14, 15, 22, 27, 37, 128, 135, 138,
141, 150, 164, 167, 168, 184, 185, 186, 191,
193, 196, 200, 222, 229, 232, 233, 234, 235,
236, 244, 246

— materialna 244, 246

—$cisla 244, 246

— matematyczna 21

inferencja 179, 228

iniekcja 57

inkluzja 37, 101

interpretacja formut 161, 165, 181, 191, 247,
250, 254

- symboli funkcyjnych 159, 160, 162, 176, 201
— — predykatywnych 160, 178, 188, 201, 211
—terméw 159, 161, 169, 171, 181

Jednostki leksykalne 128, 131, 150, 154, 246
jezyk formalny 29, 91, 95, 96, 97, 98, 99, 100,
107, 108, 128, 129, 130, 131, 145, 150, 152,
172, 240, 246

— — generowany przez gramatyke 98, 101, 102,
108, 145, 149

— kwantyfikatoréw pierwszego rz¢du 152

— przedmiotowy 29

Klasa abstrakcji 53

klauzula 139, 206, 207, 208, 209, 210, 214,
219, 220, 221, 222, 223, 224, 225

— Horna 221, 222

— pusta 206, 207, 208, 209, 210, 220, 221, 222,
223,224

kongruencja 126

koniunkcja 14, 111, 139, 140, 141, 142, 148,
150, 167, 186, 192, 193, 195, 199, 206, 222,
234,235, 236, 244

— elementarna 139, 140, 142

koniunkcyjna posta¢ normalna 128, 139, 140,
149, 205, 206

konkatenacja j¢zyka 96

—stow 93, 94, 96

konsekwencja dowodowa (skiadniowa) 19, 21
— logiczna (semantyczna) 21, 24, 173, 179, 180,
206, 207, 220, 221, 222

— sktadniowa 19, 21, 179, 229, 255

konwencja prefiksowa 57

— przedrostkowa 57

krotki 45

—n- 46

kwantyfikacja egzystencjonalna 16, 211, 212
—ogdlna 16,212,214

- szczegbdlowa 16, 211,212

kwantyfikatory o ograniczonym zakresie 176

Lemat Koéniga 104, 201

- o podstawieniu 181, 199

liczby kardynalne 75

literat 139, 206, 207, 208, 209, 214, 219, 222
—negatywny 139, 221, 222

— pozytywny 139, 221, 222

— komplementarny 206, 208, 209, 219

logika 4, 8, 11, 12, 24, 25, 240, 242, 243, 244,
245, 248, 249, 250, 252, 253, 254, 256
—formalna 11, 12, 13, 16, 18

—klasyczna 9, 12, 13, 24, 128, 228, 230, 239,
242, 243, 245, 248, 252, 253

— matematyczna 11, 12

— symboliczna 11, 12

logiki deontyczne 248

— epistemiczne 248

— intuicjonistyczne 228, 242,252, 253

— modalne 242, 245, 246, 248, 253

— nieklasyczne 24, 173, 227, 230, 242

— niemonotoniczne 25, 242, 255

— temporalne 242, 248, 249, 251

- wielowartosciowe 25, 242, 243, 245

Maszyna Turinga 77, 78

matematyka 4, 8,9, 12, 77, 227, 240, 242
metajezyk 29, 33, 35,37, 131, 133, 162, 164
metoda zerojedynkowa 134, 135, 136, 148,
184

263

metodologia 11, 243

model j¢zyka rachunku kwantyfikatoréw 160,
175

- Kripkego 247, 248, 254

multizbiér 68

Nalozenie 30

negacja 14, 111, 128, 138, 139, 140, 141, 142,
150, 167, 192, 194, 195, 202, 206, 214, 223,
224, 229, 233, 234, 235, 244

notacja BNF 98

- odwrotna polska 57
— wrostkowa (infiksowa) 57, 82, 110, 117

Odwzorowanie 56, 92, 96, 97, 157
operacja minimum efektywnego 82, 84, 85
— rekursji prostej 82, 84, 90

operacje modyfikacji przez podstawienie 62
— obcigcia 62

— warunkowego wyboru 62

operacji deklaracja 122, 123, 125, 126

Paradoks Russella 31, 35

pary uporzadkowane 45, 94

permutacja 58

podformula 129, 134, 137, 140, 147, 152, 167,
184, 185, 233

podgraf 103

podstowo 93, 94, 95, 116, 129

podstawianie terméw 157

podtermy 116, 118, 216

poprawno$¢ semantyczna 180, 196, 199, 208,
220

posta¢ normalna skolimowska 205, 210
potggowanie jezyka 96

podzbiér 37, 38, 40, 42, 43, 70, 72, 74, 75, 76,
78, 79, 86, 95, 97, 100, 103, 108, 142, 155,
168, 173, 219

prawa de Morgana 41, 42, 135, 138, 142, 165,
188

- idempotentnosci 136, 251

- logiczne 135, 138, 250, 253
—lacznosei 40, 136, 138

- podwdjnego zaprzeczenia 135, 138

— przemianowania kwantyfikatoréw 165
— przemiennosci 40, 136, 251

264

- przestawiania kwantyfikatoréw 166

- rachunku kwantyfikatoréw 165

—-—zdan 135

- rozdzielczosci 40,136, 138, 251

— — kwantyfikatoréw 165

- rozkladu kwantyfikatoréw 166

- uproszczen 136, 138

— zaprzeczenia implikacji 135

— —réwnowaznosci 135

prawda 15, 16, 20, 32, 124, 131, 132, 143, 147,
148, 156, 162, 177, 178, 191, 200, 201, 213, 253,
256

prawo kontrapozycji 135

—implikacji 135, 138

— sprzecznosci 136

- wylaczonego $rodka 136, 138

predykat identycznosci 171

—réwnosci 171, 173, 175, 176

produkcja 94, 95, 97, 98, 99, 101, 102, 105,
106, 108, 130

produkt kartezjanski 47, 92

——uogdlniony 47

przechodno$¢ 45, 52, 138, 148, 172, 174
przeciwdziedzina 48, 157

przeciwsymetria 52, 104

przeciwzwrotno$¢ 52, 103

przedrostkowa posta¢ normalna 147, 166, 167,
168, 178, 211, 212

przeksztatcenia 13, 98, 141,212,219
przestanki 17, 19, 20, 21, 22, 77, 193, 197,
198, 199, 207, 208, 210, 220, 221, 230, 235,
242, 246, 255

Rachunek kwantyfikatoréw 11, 147, 150, 151,
152, 153, 159, 160, 162, 165, 166, 167, 168,
170, 172, 174, 175, 176, 177, 179, 181, 188,
189, 190, 195, 204, 205, 210, 214

— —drugiego rzgdu 152

— — nierozstrzygalny 239

- predykatow z identycznoscia 171
——zréwnoscig 171

—sekwentéow Gentzena 179, 184, 192, 196,
200, 204, 205, 221

—zdan 128, 129, 130, 131, 132, 133, 134, 135,
141, 144, 145, 146, 147, 149, 152, 159, 162,
165, 188, 206, 209, 218, 219, 220, 228, 229,
232, 234, 238, 239, 240, 243, 244, 246, 247,

249, 252, 253, 254, 257

reguta odrywania 207, 229, 230, 231, 232, 235,
244,251, 253

— podstawiania (zastapienia) 229, 244

- przechodnosci 138

— przepisywania 94, 101

—rezolucji 205, 207, 208, 208, 209, 210, 219,
220, 221, 222,223

- rezolucji schemat 219

— uogdlniania 233, 234

— zastapienia 137

reguly 13, 128, 229, 230, 232, 233, 235, 236,
238, 241

— domnieman 255

—eliminacji 192, 193, 194, 196, 199, 200, 202,
203

— wnioskowania 173, 179, 192, 207, 220, 227,
228,229,231, 255

— wyprowadzenia 179

relacja binarna 47, 88, 102, 247

— czgsciowo porzadkujaca 54

— identycznosciowa 55

— leksykograficzne zlozenie 55

- liniowego porzadku 54

—nazwa 48

—odwrotna 48

— porzadku 54, 248, 249, 254

— quasi-porzadkujaca 54

— sygnatura 48

- tozsamos$ciowa 55

—typ 48

relacji domknigcie R wzglgdem wtlasnosci P 55
— funkcja charakterystyczna 64

— przechodnie domknigcie 55

— zwrotne domknigcie 55

— — przechodnie (tranzytywne) domknigcie
55

rezolwenta 207, 208, 209, 219, 220, 222, 223
rozstrzygalno$¢ problemu 134

rownos¢ 8, 35, 38, 39, 42, 43, 59, 72, 82, 92,
102, 121, 122, 124, 171, 173, 174, 175, 176,
183, 188

rownowaznos¢ 14, 37, 53, 88, 89, 103, 119,
120, 125, 126, 133, 134, 135, 137, 138, 141,
148, 149, 150, 160, 163, 164, 165, 167, 188,
191, 192, 195, 196, 211, 212, 215, 222, 225,
233, 236, 241, 244

—relacja 53,76

Schemat aksjomatéw 174, 192, 229, 231, 233
— modus ponendo ponens 17

- modus tollendo ponens 17

— wnioskowania 13,17, 18

sekwent 8, 9, 179, 180, 184, 185, 186, 187,
190, 191, 192, 194, 196, 197, 198, 199, 200,
201, 204, 205, 228, 235

- spelnialny uniwersalnie 191, 197, 199
——wmodelu 191

semantyczna poprawno$¢ systemu dowodzenia
180, 196, 199, 238

— zupetnos¢ systemu dowodzenia 200
semantycznie niesprzeczne 234, 239,245, 251
—zupelne 196, 200, 203, 234, 239, 240, 245,
251

semantyka 7, 11, 131, 132, 133, 151, 159, 171,
172, 176, 184, 190, 208, 239, 246, 247, 254
singleton 31, 218

skolemizacja 211, 212

slowa 92, 93, 94, 95, 96, 97, 98, 100, 102, 105,
106, 107, 116, 149, 128, 129, 153

spojniki logiczne interpretacja gléwna 111, 132
— — - standardowa 132

spojnos¢ 52

stale logiczne 128, 132, 151, 191, 229, 233,
235, 244, 246, 249

struktura czasowa 248, 249

superpozycja 51, 61

surjekcja 57

sygnatura j¢zyka rachunku kwantyfikatorow 151,
176

sylogizm 17

— warunkowy 19, 27

symbol niezdefiniowany 57

— poczatkowy 97, 98, 99, 102, 105

— przeciazony 45, 110

symbole funkcyjne 110, 150, 151, 154, 159,
160, 162, 168, 169, 174, 175, 176, 177, 200,
201, 211, 212, 213, 215, 216, 225, 240

— kwantyfikatoréw 150, 152, 170

— nieterminalne 97

- predykatéw 150, 151, 152, 160, 167, 170,
171, 175, 176, 177, 178, 183, 188, 189, 200,
201, 211, 214, 225, 240

- spéjnikéw logicznych 128, 131, 132, 150,
169, 246

265

—terminalne 97, 105

— zmiennych indywidualnych 150, 225

— —zdaniowych 128, 129, 132, 246, 249
symetria 45, 52

system dedukcji naturalnej 227, 228, 238, 241
———Gentzena 180, 196, 199, 205, 227, 234,
241

- dedukceyjny 13, 179, 227

— dowodzenia Hilberta 9, 228, 227

— — sekwentéw Gentzena 192

systemy Hilberta 227, 228, 229, 230, 232, 233,
234, 239, 241

Sciezka w grafie 103, 106

Tautologia 133, 134, 135, 136, 137, 138, 148,
149, 162, 163, 164, 165, 172, 173, 184, 186,
187, 188, 189, 194, 195, 196, 200, 201, 203,
204, 207, 221, 233, 239, 240, 241, 250, 253
teoria Zermelo-Fraenkla 85

teorie elementarne 172, 175, 240

— nieelementarne 175

— niesprzecznos$¢ 240

— niezupelnosé 240

term wolny w formule 158

terméw unifikacja 214

termy 116, 117, 118, 119, 120, 121, 125, 126,
127, 132, 144, 150, 151, 153, 154, 155, 157,
158, 159, 161, 169, 170, 171, 172, 181, 182,
184, 193, 194, 195, 196, 198, 200, 201, 202,
203, 214, 216, 217, 238

—state 116,117,119, 120

—warto$¢ 119

twierdzenie o dedukcji 164, 180, 231, 232,
234

Unifikator 214, 218, 219, 220, 224, 225
— najbardziej ogélny 216, 220

Wartosciowanie zmiennych 116, 118, 132,
134, 160, 178, 181, 184, 185, 187, 188, 189,
191, 247, 254

wielozbidér 68, 69, 72, 89

wlasnos¢ ekstensjonalnosdci 172, 242

wnioski 17, 172, 180, 184, 193, 199, 200, 226,
228, 230, 235, 238, 243, 246, 255, 256

/‘(\EK "%\(skaz'nik zwiazania 152, 154

.)
[O Biblioteka X

\ 2,

b

G >/
\\; towna </
. 2/
N N

wykres Venna 40

wypowiedzi 10, 12, 34, 35, 132, 162, 177, 242,
245, 246, 253

wyrazenie funkcyjne (term) 59, 83

—wolne 155
—zmiennej 154
- zwiazane 155

Zalozenie o zmiennos$ci Swiata 223, 255

zasada indukcji matematycznej 22, 23, 28

— — strukturalnej 146, 147, 152, 153

— rekursji strukturalnej 144

———dla formut 153

———dlaterméw 153

zasi¢g kwantyfikatora 152, 155, 166
zawieranie 37, 38, 72

zbidr 29, 30, 31, 32, 33, 35, 36, 37, 38, 40, 43,
91, 92, 93, 96, 97, 98, 99, 100, 102, 103, 107,
108, 109, 111, 113, 114, 116, 123, 125, 127,
156, 157, 163, 164, 165, 169, 173, 177, 150,
152, 179, 180, 190, 192, 193, 195, 200, 201,
205, 206, 207, 209, 210, 216, 217, 218, 219,
220, 221, 223, 224, 225, 227, 228, 229, 230,
232,234,237, 238, 239, 243, 246, 247, 249
zbidr anonimowy 32

— ciggdw nieskonczonych 91

— —skonczonych 91

— definicja rekursywna 33

— definiowanie przez funkcj¢ zdaniowg 35

— docelowy 57

— ekstensjonalne definiowanie 34

—elementu 30, 232

— formut nad sygnatura 151

— — semantyczna konsekwencja 163

— identycznosci 38

—ilorazowy 53, 88, 89

- liczb catkowitych 88, 183, 189
——naturalnych 33, 74, 81, 87, 110, 124, 146,
249

——wymiernych 89, 211, 249

— nieprzeliczalny 74

- obraz 52

- potggowy 38, 74

— przeciwobraz 52

— przekréj 39

— przeliczalny 74, 80

- przyblizony 72

——wzgledem relacji R 73

- pusty 31, 86

- rekurencyjnie przeliczalny 81

- rekurencyjny 81

- rozlaczny 40

—rozmyty 70

- réwnolicznosci 39, 74

—réwnosci 38

- réznica 39

— spojnikéw logicznych funkcjonalnie petny 141,
142,229, 234

— — minimalny 142

—suma 39

— termdw nad sygnaturg 151

— zrodlowy 57

zdania 20, 129, 156, 224, 228, 240, 244, 245,
246, 252, 253, 256

—logiczne 13,15

— proste 13,27

- zlozone 14,15, 18, 19, 20, 27

zlozenie 51, 82, 108, 116, 158, 215, 233
zupelno$¢ semantyczna 180, 196, 200, 203,
221, 240, 234

zwrot kwantyfikacyjny 16

—modalny 16

zwrotnos$¢ 45, 52, 65,172

W ksigzce tej przedstawiono podstawowe dziaty logiki klasycznej w spo-
sob odpowiadajacy potrzebom poczatkujacych informatykow. Nawigzano do
zagadnien informatyki, miedzy innymi przez przedstawienie jezyka logiki tak,
jak opisuje sie jezyki programowania — z wyraznym wyroéznieniem skfadni
i semantyki. Potozono nacisk na prezentacje tych systemoéw dowodzenia, ktére
pozwalaja na algorytmizowanie procesu dowodzenia twierdzen. Zawartosc¢
ksiazki, poza wstepem (rozdziat 1), mozna podzieli¢ na trzy czesci. Czesé
pierwsza (rozdziaty 2-6) jest wprowadzeniem do elementarnych poje¢ z za-
kresu teorii mnogosci. W czesci drugiej (rozdziaty 7-10) przedstawiono sktad-
nie i semantyke jezyka klasycznego rachunku zdan i rachunku kwantyfikato-
row, oraz rachunek sekwentow Gentzena i regute rezolucji, jako podstawowe
systemy dowodzenia twierdzen. Czes¢ trzecia (rozdziaty 10, 11) zawiera prze-
glad innych systemoéw dowodzenia i wprowadzenie do logik nieklasycznych
wykorzystywanych w zastosowaniach informatyki.

Ksigzka jest przeznaczona gtoéwnie dla studentow pierwszych lat informa-
tyki uczelni technicznych. Moga z niej rowniez korzystac¢ studenci lat star-
szych innych kierunkow, zainteresowani opanowaniem logicznych podstaw
majacych zastosowanie w- informatyce.

Wydawnictwa Politechniki Wroctawskiej
sg do nabycia w nastepujacych ksiegarniach:
,Politechnika”

Wybrzeze Wyspianskiego 27, 50-370 Wroctaw
bud. A-1 PWr., tel. (0-71) 320-25-34;

»rech” -
plac Grunwaldzki 13, 50-377 Wroctaw
bud. D-1 PWr., tel. (0-71) 320-32-52
Prowadzimy sprzedaz wysytkowa

ISBN 83-7085-625-X

Raport dostępności

		Nazwa pliku:

		Huzar_elementy_logiki_dla_informatykow.pdf

		Autor raportu:

		

		Organizacja:

		

[Wprowadź informacje osobiste oraz dotyczące organizacji w oknie dialogowym Preferencje > Tożsamość.]

Podsumowanie

Sprawdzanie napotkało na problemy, które mogą uniemożliwić pełne wyświetlanie dokumentu.

		Wymaga sprawdzenia ręcznego: 2

		Zatwierdzono ręcznie: 0

		Odrzucono ręcznie: 0

		Pominięto: 1

		Zatwierdzono: 28

		Niepowodzenie: 1

Raport szczegółowy

		Dokument

		Nazwa reguły		Status		Opis

		Flaga przyzwolenia dostępności		Zatwierdzono		Należy ustawić flagę przyzwolenia dostępności

		PDF zawierający wyłącznie obrazy		Zatwierdzono		Dokument nie jest plikiem PDF zawierającym wyłącznie obrazy

		Oznakowany PDF		Zatwierdzono		Dokument jest oznakowanym plikiem PDF

		Logiczna kolejność odczytu		Wymaga sprawdzenia ręcznego		Struktura dokumentu zapewnia logiczną kolejność odczytu

		Język główny		Zatwierdzono		Język tekstu jest określony

		Tytuł		Zatwierdzono		Tytuł dokumentu jest wyświetlany na pasku tytułowym

		Zakładki		Niepowodzenie		W dużych dokumentach znajdują się zakładki

		Kontrast kolorów		Wymaga sprawdzenia ręcznego		Dokument ma odpowiedni kontrast kolorów

		Zawartość strony

		Nazwa reguły		Status		Opis

		Oznakowana zawartość		Zatwierdzono		Cała zawartość stron jest oznakowana

		Oznakowane adnotacje		Zatwierdzono		Wszystkie adnotacje są oznakowane

		Kolejność tabulatorów		Zatwierdzono		Kolejność tabulatorów jest zgodna z kolejnością struktury

		Kodowanie znaków		Zatwierdzono		Dostarczone jest niezawodne kodowanie znaku

		Oznakowane multimedia		Zatwierdzono		Wszystkie obiekty multimedialne są oznakowane

		Miganie ekranu		Zatwierdzono		Strona nie spowoduje migania ekranu

		Skrypty		Zatwierdzono		Brak niedostępnych skryptów

		Odpowiedzi czasowe		Zatwierdzono		Strona nie wymaga odpowiedzi czasowych

		Łącza nawigacyjne		Zatwierdzono		Łącza nawigacji nie powtarzają się

		Formularze

		Nazwa reguły		Status		Opis

		Oznakowane pola formularza		Zatwierdzono		Wszystkie pola formularza są oznakowane

		Opisy pól		Zatwierdzono		Wszystkie pola formularza mają opis

		Tekst zastępczy

		Nazwa reguły		Status		Opis

		Tekst zastępczy ilustracji		Zatwierdzono		Ilustracje wymagają tekstu zastępczego

		Zagnieżdżony tekst zastępczy		Zatwierdzono		Tekst zastępczy, który nigdy nie będzie odczytany

		Powiązane z zawartością		Zatwierdzono		Tekst zastępczy musi być powiązany z zawartością

		Ukrywa adnotacje		Zatwierdzono		Tekst zastępczy nie powinien ukrywać adnotacji

		Tekst zastępczy pozostałych elementów		Zatwierdzono		Pozostałe elementy, dla których wymagany jest tekst zastępczy

		Tabele

		Nazwa reguły		Status		Opis

		Wiersze		Zatwierdzono		TR musi być elementem potomnym Table, THead, TBody lub TFoot

		TH i TD		Zatwierdzono		TH i TD muszą być elementami potomnymi TR

		Nagłówki		Zatwierdzono		Tabele powinny mieć nagłówki

		Regularność		Zatwierdzono		Tabele muszą zawierać taką samą liczbę kolumn w każdym wierszu oraz wierszy w każdej kolumnie

		Podsumowanie		Pominięto		Tabele muszą mieć podsumowanie

		Listy

		Nazwa reguły		Status		Opis

		Elementy listy		Zatwierdzono		LI musi być elementem potomnym L

		Lbl i LBody		Zatwierdzono		Lbl i LBody muszą być elementami potomnymi LI

		Nagłówki

		Nazwa reguły		Status		Opis

		Właściwe zagnieżdżenie		Zatwierdzono		Właściwe zagnieżdżenie

Powrót w górę

