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Wykaz oznaczen i skrotow:

AND - operator binarny lub logiczny “”
ADP — kwas adenozynodifosforowy
EEG - elektroencefalografia

FFT — szybka transformacja Fouriera
FSM- maszyna skonczonych stanow
HCM- zespoty komorek Hebba

IAF- model neuronu pulsujgcego

IMPL — nazwa modeli sieci neuronowych pierwszego symulatora w jezyku Borand
C++

LSM — maszyna cieklych stanow

MDI- aplikacja wykonana w technice obstugi wielu dokumentéw

OCO - czestotliwo$¢ odpalen neuronu z ostatniego okresu pomiarowego

OR — operator binarny lub logiczny “lub”

PNN — pulsujgca sie¢ neuronowa

PRA — mechanizm samoregulacji obejmujgcy prog, refrakcje i moment aktywacji
PRISM — jeden z symulatoréw sieci pulsujgcych neuronowych

RTCWSS - przetwarzanie danych w czasie rzeczywistym bez dazenia do osiggniecia

stanu ustalonego
SFC —tancuchy synchronicznych pobudzen
SCO - s$rednia czestotliwo$é odpalen neuronu

SNN — nazwa modeli sieci neuronowych symulatora obstugujacego tryb chroniony

procesora w jezyku Visual C++

SOM- samoorganizowalna mapa, technika neuronowa
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XOR - operator negacja “albo”

ZSCO = SCO-0OCO - zmiana czestotliwosci pracy neuronu
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1. Wstep

Natura czesto zadziwiata badaczy swojg doskonatoscig. Na szczegdlng uwage
zastuguje uktad nerwowy, ktéry pomimo szybkiego rozwoju informatyki jest
obecnie niedoscignionym ideatem. Fascynacja jego modelowaniem zaczeta sie
dos¢ dawno, jednakze czesto spektakularne sukcesy oraz potrzeba
zastosowan technicznych sprowadzata badania na obszary odlegte wzorcowi
(np. burzliwy rozwdj metod back-propagation). Nienaturalne zatozenia
dotyczyty wiekszosci cech sieci neuronowych: budowy neuronu, mechanizmu
pracy i uczenia neuronu, struktury sieci, rodzaju przesylanych sygnatéw
miedzyneuronowych, formy wprowadzanych danych wej$ciowych oraz
wymuszanych odpowiedzi. Swiadomie wykonywane posuniecia odchodzenia
od modelowania biologicznego modelu neuronu czesto prowadzity w ,$lepe
uliczki”, co zamrazato prace na ditugie lata, po czym startowano z innego
punktu rokujgcego okreslone techniczne nadzieje, zatem sytuacja sie
powtarzata.

Jednakze rownolegle prowadzone sg biocybernetyczne badania z zakresu
neurofizjologii polegajgce na budowaniu mozliwie wiernego modelu neuronu i
sieci neuronowej. Sama neurofizjologia dostarcza nam ogromnej masy faktow,
czesto pozostajgcych zupetnie bez zwigzku z przetwarzaniem informacji w
neuronie. Naturalny neuron posiada bowiem wiele réwnolegtych procesoéw i nie
wszystkie z nich sg zwigzane z przetwarzaniem informacji np. funkcje
metaboliczne komorki. Modelowanie cech nie posiadajgcych jakichkolwiek
zwigzkéw z przetwarzaniem informacji jest niepozgdane w tym przypadku,
poniewaz nastepuje zwykle wydtuzenie czasu symulacji, jest potrzebne uzycie
wiekszej mocy obliczeniowej, oraz powoduje przestonienie istoty modelu.
Podstawowym zadaniem jest wiec selekcja znanych faktéw dotyczacych
neurondw, ich dekompozycja w modelu oraz sprawdzenie podczas symulaciji.
Bazowym zatozeniem symulowanych modeli jest fakt, iz odpowiedz aktywnego
neuronu jest pojedynczym impulsem o statej maksymalnej amplitudzie. Modele
tego typu zostaty okreslone w ostatnich latach etykietkg pulsujgcych sieci
neuronowych oraz nastgpit silny ich rozwoj, pomimo ze nie majg obecnie zbyt
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wielu zastosowan technicznych. Zjawisko to swiadczy o tym, ze jest widziana
szansa jakosciowego skoku w przetwarzaniu informacji przy pomocy tej
techniki. Pierwszorzednymi wtasciwosciami tego podejscia jest bardzo wysokie
zréwnoleglenie procesow przetwarzania, wykorzystanie informacji zawartych w
pojedynczych impulsach, gubionych podczas operowania na danych
pochodzacych tylko ze statystyk aktywnosci danego wyjscia (np. perceptron
bazuje na tej zasadzie), mozliwos¢ wykorzystania chwilowego stanu sieci
i uktadu aktywnych neuronéw do modyfikowania procesu przetwarzania oraz
bardzo krotkiego czasu odpowiedzi takiego systemu na zdarzenia krytyczne
czasowo. Kilka symulacji przeprowadzonych w tej pracy potwierdza te
wiasciwosci.

Patrzac na prowadzone prace z pewnej perspektywy, oraz biorgc pod
uwage fakt dostarczania przez fizjologdw uktadu nerwowego ogromnej masy
nieuporzgdkowanych danych, zaleznosci i korelacji pomiedzy réznymi
procesami wewnatrz neuronu i sieci, czes¢ badaczy utrzymuje stanowisko, ze
nie da sie stworzy¢ modelu uktadu nerwowego idgc od tej strony (bottom-up),
pomimo ze teoretycznie ta metoda umozliwia wykrywanie witasnosci na coraz
wyzszych poziomach organizacji sieci. Przeszkodg jest wtasnie ogrom réznych
danych i wzajemnych zaleznosci, czesto jeszcze w fazie niezweryfikowanych
hipotez, ktére w tej metodzie stawatyby sie elementami testowanego systemu,
aby zapewni¢ przebadanie catej przestrzeni mozliwych hipotetycznych modeli.
Proponujg oni natomiast obserwacje poszczegdlnych partii mézgu, okreslenie
ich funkcji oraz wzajemnych potgczen, z kolei kreowanie w miare spdjnych
hipotez, ktére powinny by¢é w nastepnym etapie poddawane weryfikacji np.
poprzez symulacje. Podejscie to wydaje sie metodologicznie dobre oraz ma
jedng zasadniczg zalete: posiadajgc hipoteze mozemy okresli¢ jakich efektow
sie spodziewamy oraz mozemy wczesnie wykonac aparat to mierzacy. Wada tej
metody jest niewatpliwie trudnos$¢ tworzenia hipotez, w szczegolnosci spojnych.

Swiatowa literatura na dzien rozpoczecia badan w do$¢ skromnym
zakresie porusza temat powstawiania w pulsujgcej sieci neuronowej pamieci
dtugo- lub krotko- terminowej. Nie znalaztem zadnego opracowania
opisujgcego kompletny i weryfikowalny model wyksztatcajacy pamieci dtugo—
i krotko— terminowg w czasie rownolegtego procesu pracy i uczenia z lokalng

reguta uczenia. Samo pojecie pulsujgcej sieci neuronowej nie byto zbyt
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popularne do 1996 roku. W wielu pracach odnoszono sie do pojedynczych
neurondw o takiej konstrukcji nazywajac je odpalajgcymi sie lub pulsujgcymi.
Same prace réwniez dotyczyty zwykle poszczegdlnych neurondw, ich
zachowania oraz mozliwosci reprezentowania sie danych w tego typu sieciach.
Mozna przyja¢, ze bardzo bliska przedmiotowi praca ukazata sie w 1998 roku
[138] i bardziej przypominata sie¢ Hopfielda z neuronem wzorowanym na
pulsujgcym. SieC pracowata w trybie synchronicznym, ale nadano juz wtasciwg
powage dynamicznej reprezentacji informacji, jakg byty tam wytgcznie sygnaty
miedzyneuronowe, dokonano analizy procesow z nimi zwigzanych i przypisano
im funkcje pamieci. Sie¢ nie przetwarzata kolejnych danych wej$ciowych
podczas pracy, choC autor juz dwa lata wczesniej brat takg teoretyczng
mozliwos¢ pod uwage [114], oraz nie miata algorytmu uczenia zdefiniowanego
na pracujacej sieci.

Praca [4] choC nie odnosi sie bezposrednio do pamieci, zawiera analize
wielu czynnikdw z nig zwigzanych: wptyw potgczen rekurencyjnych, opis
dynamiki sieci, metody modyfikacji synaps i ich wptyw na cato$¢ dziatania sieci.
Autorzy zwracajg duzg uwage na zgodnos¢ modelu z biologicznym wzorcem, a
teoretyczne wnioski popierajg wynikami z symulacji. Zatozenia tego
opracowania sg spojne z podejsciem IMPL.

Model kory mézgowej zostat omowiony w dos$¢ obszernej publikacji [21].
Bazuje on na synchronicznych tarcuchach pobudzen (SFC) w przeciwienstwie
do modeli zespotéw komérek Hebba (HCA). Zawierat on wiele pozadanych
czynnikéw jak np. statg srednig czestotliwos¢ pracy sieci (przy przyjetych 10 tys
neuronach) i jednoczesnie stany synchroniczne, stabilno$¢ pracy, algorytm
modyfikacji wag, a przede wszystkim konkurencyjnos¢ poszczegdinych
synchronicznych tancuchow pobudzen w walce o przyporzadkowanie danego
wzorca do klasy reprezentowanej przez swoj tancuch. Pomimo wielu
podobnych elementéw (w tym np. podobnego kroku symulacji) i obszernosci
materiatu dotyczacego tego modelu nie wudato sie zweryfikowaé go
doswiadczalnie w tej pracy.

Celem pracy jest zbudowanie modelu neuronu pulsujgcej sieci
neuronowej, bazujgcego na wytycznych neurofizjologicznych, w ktérej zostang
zaobserwowane zjawiska odwzorowywania sygnatu wejsciowego w strukturze
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sieci. Zapisana w ten sposob informacja powinna by¢ uzyteczna w procesie
przetwarzania kolejnych sygnatéw np. pod wzgledem klasyfikaciji.

Teza pracy: Istnieje model neuronu spetniajacy wymagania podane w
celu pracy. Kodowanie wzorca w pamieci dtugo- i krotko- terminowej wymaga
zroznicowania funkcji wielu neuronéw w sieci i ich wspotpracy (synergii),
pomimo iz posiadajg one bardzo podobne sygnaty wejsciowe.

Zakres pracy to symulacja komputerowa budowanych modeli, ktéra jest
podstawowym kryterium oceny sprawnosci dziatania sieci w tej pracy oraz
potwierdzeniem odpowiedniego wyboru zbioru modelowanych cech. Prace nad
modelami mogty przebiega¢ kilkoma torami, dlatego w rozdziale drugim zostata
omowiona metodologia podejscia do przedmiotu tej pracy oraz motywacja jej
wyboru. Rozdziat trzeci zawiera zebrane z réznych zrédet informacje na temat
budowy oraz dziatania naturalnego neuronu, omodwione pod katem
wykorzystania ich w modelach sieci neuronowej. Bazowe zatozenia modeli,
przyjeta platforma sprzetowa symulatora oraz budowa samego symulatora
zawiera rozdziat czwarty. Przedstawia on rowniez system interfejséw pomiedzy
jadrem sztucznej sieci neuronowej a srodowiskiem modelu. Rozdziat pigty
zawiera wyniki i opisy przeprowadzonych symulacji. Ze wzgledu na swag
obszernos¢ zostat podzielony na trzy podstawowe podrozdziaty dotyczace
odpowiednio prostych modeli binarnych, modeli uwzgledniajgcych symulacje
tadunkéw postsynaptycznych oraz modeli uwzgledniajacych symulacje
tadunkéw postsynaptycznych o duzej liczbie neuronéw. Nie bez przyczyny te
dwa ostatnie typy modeli omowione sg osobno, gdyz wystepujg w nich zupetnie
inne efekty synergii pracy neurondw, do ich oceny zastosowano nowe
mechanizmy, a samo drastyczne zwiekszenie liczby neurondéw wymagato
zbudowania nowego symulatora. Rozdziat szésty odnosi efekty przedstawione
w poprzednim rozdziale do literatury wspdtczesnej. Prace konczy

podsumowanie oraz spis literatury.
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2. Metodologia pracy

Zakres niniejszej pracy, uwzgledniajgc analize, zaprojektowanie oraz
implementacje specjalizowanych symulatoréw, miesci sie w pojeciu informatyki.
Sam modelowany obiekt, jakim jest neuron lub grupa neurondéw interaktywnie
reagujgca na bodzce z otoczenia oraz przesytajace dane do niego wkracza na
obrzeza biocybernetyki, ktéra jest naukg o sterowaniu, w szczegdlnosci
samosterowaniu, uktadéw biologicznych. Dodatkowo mozna stwierdzi¢, iz
zakres biologiczny zostat tutaj zawezony tylko do neurofizjologii. Jak wiemy, ta
czes¢ biocybernetyki jest naukg przyrodnicza opartg na obserwacji i formalnie
nie ma mozliwosci udowodnienia obserwacji. Reguty ustala sie na podstawie
odpowiednio duzej liczby przeprowadzonych doswiadczen oraz interpretacji
wynikow przy pomocy przyjetych aparatéw statystycznych. Postepowanie takie
nie jest jednak w dalszym ciggu formalnym dowodem. Z drugiej strony,
informatyka zawiera elementy teorii, jednak dotyczg one w wiekszosci bliskich
matematyce numerycznych metod przetwarzania lub przetwarzania
symbolicznego. Samo tworzenie oprogramowania, jakim w tej pracy jest
budowanie i kompilowanie specjalizowanego symulatora dla kazdego
badanego modelu, jak do tej pory nie ma dobrej teorii. Uzyteczne stajg sie w
tym przypadku réznego rodzaju metodologie programowania, jednakze one tez
nie dajg mozliwosci formalnego udowodnienia poprawnosci programu, w tym
przypadku - symulatora. Oczywiscie istnieja metody formalne udowadniania
poprawnosci oprogramowania, jednakze przy stosowanym tu stopniu
ztlozonosci sa zupetnie nieprzydatne, czego potwierdzenie uzyskujemy w
bardziej zaawansowanych metodologiach. Z tych dwdch powoddw wynika, iz
dowdd formalny dziatania takiego systemu jest praktycznie niemozliwy,
szczegolnie jesli miatby dotyczy¢ jakiej$ ogodlnej klasy modeli (trudnosci
dodatkowo z wyspecyfikowaniem i formalnym opisem cech wspdlnych i
niezaleznych od cech jednostkowych modelu) lub kazdego modelu z osobna
(duza ilos¢ dowodow).

Z drugiej strony, gdyby zostat stworzony wysoce pojemny, szybki w
dziataniu oraz optymalnie wykorzystujacy swojg historie model pamieci dtugo-
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i krotko- terminowej i jedynym jego problemem bytby jego formalny dowdd,
oznaczatoby to niebywaty sukces. Jak do tej pory model taki nie istnieje, a caty
ciezar badan pulsujgcych sieci neuronowych skupia sie nad doborem
odpowiednich cech do modelowania, co jest celem tej pracy.

Ramy obszaru, w ktérym prowadzone sg badania, sg zatem ograniczone z
jednej strony zbiorem znanych cech neuronu i sieci, ktére przektadane sg do
modelu. Z drugiej strony znajac pozadany efekt mozna skonstruowac¢ aparat
badajgcy istnienie badanej przez nas cechy wyzszego poziomu, ktérg w tym
przypadku jest pamie¢ dtugo- i krétko- terminowa. Poniewaz istnienie pamieci
moze by¢ stwierdzone wtedy, kiedy ona funkcjonuje (a w szczegdlnosci -
funkcjonuje dobrze), a prace polegajg wtasnie na jej skonstruowaniu, zatem na
podstawie danych zebranych tym ww. aparatem badajgcy nie mégtby podjac
decyzji ustalajgcej kierunek dalszych badan, szczegdlnie w najistotniejszych,
pierwszych etapach konstruowania modelu. Nie jest mozliwe zatem
prowadzenie badan tg metoda, ze wzgledu na zbyt wiele stopni swobody
modelu. W tym momencie zostata przyjeta nastepujgca hipoteza, ktora
przyniosta efekty w praktyce. Otdz, jeden neuron jest w stanie zawrze¢ znikome
ilosci informacji, poniewaz sita sieci polega na ilosci potgczen
miedzyneuronowych, i tam nalezy sie spodziewa¢ zasobéw pamieci. Zeby tego
typu pamie¢ mogta powstac, neurony muszg sie komunikowaé ze sobg oraz ich
zachowanie musi wykazywac jakikolwiek porzadek. Méwimy w tym przypadku o
efekcie synergii neuronow. Jak pokazujg doswiadczenia, przy stosunkowo
matej ilosci neurondéw (do 10 000 szt.), jedna z trzech podstawowych metod
bazuje na analizie wykresu sredniej czestotliwosci aktywnych neuronéw, a w
szczegolnosci opiera sie na pewnych okresowosciach w nim. Ten wyznacznik
jest podstawowym, automatycznym testem, ktéry wraz z obserwacjg matrycy
wag oraz matrycy potencjatow postsynaptyczynch, o ile dany model takowe
posiada, przesadza o jakosci modelu. (rozdziat 5.4)

Obszar badania ograniczyliSmy zatem do zbioru cech biologicznych
neuronu, implementowanych w modelu celem osiggniecia maksymalizacji
wartosci mierzonego parametru (np. wariancji wartosci sredniej czestotliwosci
odpalen neuronéw pulsujacej sieci jako funkcji czasu), wykrywanego
okreslonym  narzedziem (np. modutem  przeliczajgco-wizualizujgcym
zbudowanego symulatora). Dodatkowo zbiér modelowanych cech zostat
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rozszerzony o hipotetyczne cechy (np. normalizacja wag synaptycznych,
gromadzenie statystyki zmiany czestotliwosci pulsowania oraz
wykorzystywanie jej podczas procesu uczenia, zatozenia warunkowej
modyfikacji wag synaptycznych itp.), ktére neuron moze posiadaé, a nie sg
obecnie znane (w podobny sposob wykryto np. istnienie synaps hamowania, co
zostato pézniej potwierdzone przez neurofizjologéw).

W pracy uzyte jest potgczenie tych dwdch metod, wstepujgcej oraz
zstepujacej. W pierwszej znane fakty fizjologiczne implementowane sg w
modelu oraz przeprowadzana jest symulacja. Opcja ta jest wybierana, gdy nie
jestedmy w stanie nic przypuszcza¢ o dalszych efektach prac. Druga metoda,
polegajaca na doborze symulowanych elementéw pod katem osiggniecia celu /
hipotezy, jest uzywana w etapach, w ktérych model wymaga pewnego
poprawienia i jestedSmy w stanie wnioskowa¢ o brakujgcej albo nadmiarowej
cesze ze zbioru symulowanych elementow.

Stuszno$¢ podjetego podczas rozpoczynania doswiadczen tej pracy
kroku mozna po czasie uwiarygodni¢ identycznymi stwierdzeniami czotowych
badaczy tej dziedziny T. Natschlagera, H. Markrama, i W. Maassa 2003 [141].

Praca, cho¢ gtéwnie wykorzystuje fizjologie i w mniejszym stopniu
anatomie neuronu, przekracza granice biocybernetyki wkraczajgc na pole
informatyki nie tylko na obszarze konstrukcji symulatora. Dzieje sie tak rowniez
w momencie, gdy model zgodnie z celem pracy zaczyna wykazywac
wiasciwosci zwigzane z zaistnieniem pamieci krotko- lub dtugo- terminowe).
Obserwowanie pamieci odbywa sie podczas sprawdzania jej funkcjonowania,
czyli jej zapisywania, odczytywania, przechowywania, gromadzenia czy
przetwarzania danych, co stanowi kluczowe zagadnienia informatyki.

Przy pracy z sieciami neuronowymi istnienie pamieci jest zwigzane z
okreslong funkcjonalnoscia np. uzyciem sieci jako klasyfikatora. Dla
usystematyzowania, zawezenia i ukierunkowania badan w powyzszym
obszarze zostaty przyjete nastepujace cztery kryteria definiujgce zgodnosc

sygnatu wejsciowego z wyuczonym wzorcem:
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1) Definicja pokrycia zupetnego wzorca

yvtn

3yeCVne(l2,...N| F|P, X ,,,|=F

Pn’Pn) (1)

gdzie:

N - ilo$¢ wektoréw wzorca

P, - n'ty wektor wzorca

P — wzorzec

C — zbidr liczb catkowitych

X:- wektor sygnatu wejsciowego w chwili . Czas w modelu jest
zdefiniowany dyskretnie. Kolejna warto$¢ catkowita f oznacza przesuniecie sie
w modelowane;j sieci o ok. 1,85 ms.

t,y - wartosci nalezace do dziedziny czasu

F(P,X)- funkcja pokrycia n'tego wektora wzorca przez wektor wejsciowy
w chwili t zgodnie z nastepujaca definicja:

Pn_[an,l ’an 2 'a”'L)
X=(.X_, X X, X X,

Xn_ Xn,1%n,2 xn‘L) (2)
x,a€l0,1 |
L 1 Qan'[:l /\xl)l,l =

def . F|P,X,|=2.|-1 ®a,=1 Ax,,=0
i=1 ' '
0 ©a =0

Funkcja F wykazuje pewng niesymetrycznos¢ zwigzang z mniejszym
wptywem na jej warto$¢ pol przyjmujagcych we wzorcu warto$é zero.
Wyjasnienie tego zatozenia znajduje sie w rozdziale 5.1.1, a jego interpretacje
zawiera rys. 14.

Zgodnie z definicja (1) sygnat wejsciowy musi by¢ idealnie
zsynchronizowany w czasie przetwarzania catego wzorca oraz zachowywac

zgodnosc kolejnych wektorow w mysl funkcji F.
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2) Definicja pokrycia wzorca na zdefiniowanym poziomie

3yeCVne(l,2,...N| F|P,.X ,,,|>cF|P,.P,

¢ —ulamek wiasciwy (3)

yt+n n’

Definicjia (3) w przeciwienstwie do (1) nie wymaga petnej zgodnosci
poszczegodlnych wektoréw sygnatu wejsciowego z wzorcem, lecz akceptuje
poziom wyznaczony przez parametr c. Synchronizacja i kolejno$¢ wektorow

musi by¢ w petni zachowana, podobnie jak w (1).

3) Definicja pokrycia wzorca przy okreslonej tolerancji nieliniowos$ci podstawy
czasu lub deformacji sygnatu wejsciowego w wymiarze czasu

3yeC Je€ll,2,...N|Vne(l,2,...N|3gel12,...e] F(P, X, |=F|P,P,
(4)
Definicja (4) pozwala sygnatowi wejSciowemu na zmiany w
synchronizacji na odcinkach czasowych wyznaczonych przez parametr e.
Dopuszczalna jest roéwniez zmiana kolejnosci wektorow w tym zakresie,

natomiast zgodno$¢ odpowiednich wektorow musi by¢ petna.

4) Definicja pokrycia wzorca przy okreslonej tolerancji nieliniowosci podstawy
czasu lub deformacji sygnatu wejsciowego w wymiarze czasu przy zatozeniu

zdefiniowanego stopnia pokrycia wzorca

JyeC Je€(l,2,...N|Vne(l,2,...N|]3g€(1,2,...e| F|P, X ., |>cF|P,P,

\ /

c—utamek wiasciwy
(5)

Ostatnia definicja (5) zgodnosci sygnatu wejsciowego z wzorcem wydaje
sie najlepiej opisywac rzeczywistos¢ z wymienionych powyzej. Dopuszczone sg
przesuniecia czasowe sygnatu lub nierdbwnomiernosci do poziomu
wyznaczonego parametrem e, oraz stopien zgodnosci poszczegodlnych
wektorow moze by¢ mniejszy niz w (4) i definiowany parametrem c.

W praktyce parametr e moze przyjmowac¢ nawet dos¢ duze wartosci, ale
mniejsze od N, o ile y jest momentem rozpoczecia sygnatu podobnego do

wzorca. Zatozenie, ze y wskazuje srodek sygnatu podobnego do wzorca jest
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formalnie precyzyjniejsze. Jesli wystepuje zmiana kolejnosci dwoch wektorow,

ich odlegto$¢ nie powinna przekracza¢ 8 ms.
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3. Elementy budowy neuronu oraz opis zjawisk fizjologicznych

zwigzanych z tematem pracy

3.1 Elektrofizjologia oraz budowa neuronu

Podstawowym elementem budulcowym uktadu nerwowego jest neuron.

! Wickna cterentne

M A orostvene 2
Rys. 1. Cialo komorki otoczone btona komorkowa z

zaznaczonymi kolbkami synaptycznymi

Jest on komorka, czyli
grudkg cytoplazmy
zawierajgcg jadro, otoczong
btong komodrkowa. (rys. 1)
Btona komdrkowa jest cienkg
submikroskopowg  warstwg
biatkowo-lipidowa. Ciata
ttuszczowe i biatka tworzag
bardzo cienkg molekularng
btone, ktéra ma zdolno$¢ do

wybidrczego przepuszczania

pewnych substancji. Mozliwe jest wiec zréznicowanie stezen jonéw wewnatrz

komoérki  wzgledem otoczenia. Pierwszoplanowe znaczenia majg anion
chlorkowy CI- oraz kation sodowy Na*. Kation sodowy wystepuje w $rodowisku

zewnetrznym
komorki w stezeniu
dziesieciokrotnie
wiekszym niz we
wnetrzu. Jon
potasowy K*

natomiast wystepuje

Rys.2. Neurony uwidocznione barwieniem metoda Golgiego W stezeniu

trzydziestokrotnie

wiekszym we wnetrzu komorki niz na zewnatrz. Stezenia sg utrzymywane przez

tzw. pompe sodowg. Wydatek energetyczny komorki jest konieczny nie tylko,

aby utrzymac¢ gradient stezen, ale réwniez gradient elektrochemiczny. Jest on
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zwigzany z nastepujgcq zaleznoscig: we wnetrzu komoérki znajdujg sie biatka,
ktére posiadajg stosunkowo liczne grupy kwasne -COOH. Po dysocjacji w
roztworze wodnym jon H* odtgczony od grupy karboksylowej moze zgodnie z
gradientem stezen przenikaC przez btone komoérkowa, poniewaz jest bardzo
maty. Moze by¢ on wyparty rowniez przez jon sodowy lub potasowy. Jon
potasowy w poréwnaniu z uwodnionym jonem sodowym jest na tyle maty, ze
moze przenikaC przez btone komodrkowa. Jony potasowe zobojetniajg ujemne
grupy karboksylowe we wnetrzu komorki, tworzac sole potasowe biatek.
Gradient stezen natomiast powoduje tendencje do uciekania tych jonow z
komarki. Tak wiec kationy potasowe oscylujg przez btone komdrkowg w efekcie
wypadkowej sit gradientu stezen oraz gradientu elektrochemicznego, tak ze
pewna ilos¢ jonow K* jest zawsze poza komorka. We wnetrzu komorki
wzgledng przewage posiadajg wiec tadunki ujemne -COO-. Wykazywany
potencjat spoczynkowy pomiedzy wnetrzem komorki a powierzchnig
zewnetrzng btony jest réwny ok. -70 mV. Poniewaz ta réznica wywotana jest

oscylacjg kationéw K*, méwimy o baterii potasowe;.

3.2 Zmiany potencjatu komorki

Potencjat spoczynkowy neuronu ulega niewielkim wahaniom zwigzanym
z metabolizmem komoérki. Jednak moze on znacznie zmieni¢ swojg chwilowg
warto$¢ pod wptywem pracy synaps, znajdujgcych sie na powierzchni komorki.
Substancja chemiczna zwana neuromediatorem moze spowodowac zmiane
stanu btony i tym samym catej komorki. Wyrézni¢ mozna dwa typy
neuromediatoréw: hamujgce i pobudzajgce. Mediator hamujacy powoduje
uszczelnienie btony komérkowej i w rezultacie réznica potencjatow pomiedzy
wnetrzem i otoczeniem jeszcze bardziej wzrasta. Przeciwnie dzieje sie pod
wptywem  mediatora  pobudzajgcego. Btona komodrkowa staje  sie
przepuszczalna dla jondw sodowych i w rezultacie réznica potencjatow maleje.
Jesli pod wptywem dziatah mediatoréw synaptycznych potencjat komorki zmieni
sie z -70 mV do ok. -59 mV (rys. 3 A,B), zwanego potencjatem generatorowym,
to btona komérkowa zmienia swoje wiasciwosci separacyjne. Staje sie ona

catkowicie przezroczysta dla kationéw w zwigzku z wystepowaniem dodatniego
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sprzezenia zwrotnego: zwiekszenie potencjatu komérki powoduje wzrost
przepuszczalnosci btony i odwrotnie, czyli wzrost przepuszczalnosci btony
powoduje zwiekszenie potencjatu komodrki. W wyniku tego procesu komorka
osigga potencjat iglicowy ok. +50 mV. Potencjat ten bardzo szybko spada, az
osiggniety zostanie stan ponizej potencjatu pierwotnego. Stan ten zwany jest
hiperpolaryzacjg. Caly proces pobudzenia jonowego wraz z okresem
hiperpolaryzacji tworzacej refrakcje bezwzgledng btony trwa okoto 2 ms, czyli w
ciggu sekundy moze powsta¢ nawet 500 potencjatéw iglicowych, srednio
jednak powstaje ich 200-300.

Fobudzenie .
s \A:““ " ""’: :

doplyrwr I A o ' .

p ﬁﬁ—il{ozpl

gtodé potenciatu

Stan pobudzenia ywacyinego

Hatnowanie

ﬁ._.m.__,\\\ .

Stan hamowania

Rys.3. Trzy podstawowe procesy pracujacej komorki nerwowej. A- stan spoczynku, B-

stan pobudzenia C- stan hamowania

Jesli komoérka jest w fazie generowania potencjatu iglicowego, to nie
reaguje na dochodzgce do nigj inne sygnaty. Dzieje sie tak réwniez przez ok. 2
ms po tym fakcie. Okres ten nazywamy refrakcjg bezwzgledna, poniewaz w tym
czasie nie jest mozliwe powstanie kolejnego potencjatu iglicowego. W ciggu
nastepnych ok. 8 ms juz ma te mozliwos¢, jednak warunki aktywacji sg
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trudniejsze do spetnienia. W tym czasie komodrka wraca do stanu
spoczynkowego i jej sita reagowania na bodzce jest mniejsza. Rozkiad
potencjatéw jest podobny jak w przypadku hamowania, co prezentuje to rys. 3
fragment C. Okres ten jest nazwany refrakcjg wzgledna.

Po depolaryzacji w komérce jest nadmiar jonédw sodowych. Cze$¢ z nich
zostaje usunieta przez dziatanie pompy sodowej, a wiekszos¢ pozostatych
dostaje sie do neurytu tworzac fale biegnacg wzdtuz widkna osiowego.

Nalezy zwrdci¢ uwage, ze komoérka moze by¢ pobudzona do potencjatu
mniejszego niz generatorowy. Jest ona wtedy w stanie pobudzenia
podprogowego. Ma wowczas te wiasciwose, ze tatwiej reaguje na nastepne
bodzce pobudzajgce. W zaleznosci od fazy pracy komodrki suma pobudzen
musi mie¢ okreslong wartos¢, aby wygenerowany zostat potencjat iglicowy.
Wystepujg trzy fazy pracy: depolaryzacja, hiperpolaryzacja oraz stan
przecietny. Podczas hiperpolaryzacji pobudzenie komorki jest trudniejsze niz
podczas stanu przecietnego, poniewaz wymagana jest znacznie wieksza ilo$¢

neuromediatora pobudzajgcego.

3.3 Neuron jako uktad przeliczeniowy

Pierwszoplanowym
czynnikiem
modyfikujacym site
oddziatywania synaps na
polaryzacje komorki jest
czynnik przestrzenny.
Synapsy zaréwno
pobudzajgce, jak i
hamujgce zlokalizowane
na ciele komorki majg

wieksze znaczenie

bodzcotwdrcze niz

Rys.4. Przyktadowy rozklad potencjatow we wngtrzu

synapsy na odlegtych

komorki aleznosci od typu synaps
s YPH SYRAp krancach dendrytow (rys.
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4). Wigze sie to ze stabym oddziatywaniem na zmiane potencjatu komorki
nawet mocno spolaryzowanych synaps z odlegtych dendrytow. Jednak, jezeli
jest spetniony drugoplanowy czynnik - czynnik czasowy, oddziatywania
polaryzacyjne dendrytéw nabierajg nowej jakosci. Jesli jednoczesnie, lub z
drobnym przesunieciem czasowym, podrazniona zostanie wiekszo$¢ synaps
pobudzajgcych, to nastapi aktywacja (odpalenie) neuronu, czyli wygenerowany
zostanie impuls iglicowy.

Mozemy wiec uogodlni¢, ze neuron dokonuje czasowo-przestrzennego
sumowania arytmetycznego docierajgcych bodzcéw podprogowych. Omawiane
stany spoczynku i pobudzenia nalezg do zjawisk elektrycznych, z tym ze nalezy
podkresli¢, ze nie chodzi tu o przeptyw pradu elektrycznego niosgcego energie
ze zrodia do celu, ale o przesuniecie jondw, propagujgce sie podobnie jak efekt
domina, gdzie kazda komodrka podlega prawom witasnego, osobnego bilansu

energetycznego.

3.4 Czynniki modyfikujgce prace neuronu

Neuron jest wrazliwy na wiele substancji chemicznych. Mogg one
istotnie zmienia¢ prace neuronu (np. C2HsOH). Jedng z najwazniejszych klas
tego typu stanowi rozlane pobudzenie/ hamowanie, poniewaz pozostawia Slady
w strukturze neuronowej na diugi czas. Jest ono czynnikiem potrafigcym
zmienia¢ wagi synaptyczne, czyli site oddziatywania, w zakresie od zaniku do
kilkunastokrotnego zwiekszenia oraz pozostawi¢ taki stan po swoim zaniku.
Proces zmieniajacy wagi jest stosunkowo dtugotrwaty i zachodzi podczas
odpalania sie neuronu. Mozna go opisa¢ nastepujgco: Jesli neurony sg
poddane dziataniu rozlanego pobudzenia i podczas tego odpalajg sie (gdyz
pracujg aktywnie caty czas), to droga impulsu zostaje udrozniona. Neuron
zostaje jeszcze bardziej uwrazliwiony na docierajgce do niego sygnaty poprzez
zwiekszenie odpowiednich synaps. Obserwujemy zjawisko torowania [58].

Przeciwnie dziata rozlane hamowanie. Podczas odpalania neurony
zmniejszajg wartosci wag aktywnych synaps. Po dtuzszym czasie neuron nie
jest wrazliwy na pobudzenia z odpowiednich synaps. Zjawisko to nazywamy

blokowaniem.
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3.5 Analiza zjawisk fizjologicznych pod katem wykorzystania w modelach

sieci neuronowej

Pomimo tak dobrej znajomosci okreslonych zjawisk
elektrofizjologicznych neuronu, niektdre procesy nie sa w ogdle wyjasniane.
Jak wykazaty pierwsze symulacje, reguta Hebba nie przystawata do uczenia
synaps hamujacych. [rozdziat 5] Nalezatoby sie wiec zastanowi¢, czy
hamowanie presynaptyczne oraz odpowiadajgca mu struktura synaps
wyksztatca sie w procesie uczenia, czy jest ona zdeterminowana genetycznie?
Jesli w procesie uczenia, to w jakim? Mozna przypuszczac, ze nie moze to by¢
wytgcznie okreslone genetycznie, poniewaz organizm zywy wykazuje duze
mozliwo$ci uczenia, w tym na pewno znalaztyby sie funkcje niemonotoniczne.

Jak twierdzi znany

o ] sygnhat
specjalista z tej blokuj ——
dziedziny, prof. ' " wstawkowy
Ryszard

__ sygnat 3
Tadeusiewicz, pobudzajacy
(Konferencja  PAN S

Wroctaw 1996) nie  neuron .~ '

byta znana presynépiyeany
jakakolwiek spéjna kanaty ~ 1°NY  \g
waphiowe Yapniowe
praca na temat
powstawania  lub Rys.5. Synapsa hamowania presynaptycznego

pochodzenia

synaps hamujacych (rys. 5), mimo ze synapsy hamowania presynaptycznego
sg widoczne w preparatach i byly badane elektrochemicznie przez J. Ecclesa
[53], za co otrzymat nagrode Nobla. Mozna przypuszczaé, ze w synapsie
hamowania presynaptycznego wystepuje mechanizm torowania w przypadku
aktywnosci neuronu pobudzajgcego oraz wstawkowego (hamujgcego). Czy
torowanie to wystepuje na linii neuron pobudzajgcy - neuron pobudzany, czy
tez na linii neuron pobudzajacy - neuron wstawkowy, jesli neuron pobudzany

nie odpalit sie, pozostaje to nadal w fazie domystow.
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Petniejsze zamodelowanie pewnych zjawisk fizjologicznych w sztuczne;
sieci neuronowej ma na celu mozliwe najlepsze nasladowanie biologicznego
pierwowzoru, z drugiej zas strony pozwoli by¢ moze wyjasni¢ pewne fakty
biologiczne. Selekcji materiatu tego rozdziatu oraz niektérych generalizacji
dokonata neurolog i fizjolog prof. Ludmita Borodulin- Nadzieja. Nierozwigzanym
problemem jest metoda uczenia synaps hamujgcych, zaréwno hamowania
presynaptycznego, jak i bezposredniego. Fakt, ktéry rzuca $wiatto na ten temat
to uwarunkowanie genetyczne struktury uktadu nerwowego. Jesli chodzi o
procent synaps pobudzajgcych i hamujgcych uwarunkowanych genetycznie w
stosunku do posiadajgcych mozliwosci adaptacji w procesie uczenia, to mozna
faktycznie wyrdzni¢ dwie grupy neurondéw zwigzanych z tym podziatem: te ktére
rosng wytacznie ze schematem zapisanym genetycznie, oraz te z wiekszymi
mozliwosciami adaptacyjnymi. Pierwsza grupa jest odpowiedzialna za ogding
strukture uktadu. Sg w niej elementy, bez ktorych organizm skazany bytby na
zagtade oraz inne wazne grupy tgczace stosunkowo bardzo odlegte osrodki
(co$ w rodzaju magistral). Szacuje sie genetyczne uwarunkowanie na ok. 80%
liczby neurondéw w najprostszych partiach uktadu nerwowego. Sam modzg ze
wzgledu na swojg plastycznos¢ oraz ztozonosc¢ nie jest przebadany.

Wysoce pozgdane byloby poznanie stosunku ilosci synaps
pobudzajgcych do hamujgcych. Znane sa jedynie szacunkowe dane
pochodzace z ostatnich lat. Mozna oceni¢ to ze wzgledu na ilos¢ choréb

A— ciato komégki ruchowe; wystepujacych w  obu
pobudzeniowa e Synapsa  nrzypadkach
N ..—hamulcowa _
- - zwigzanych
z mediatorami
/ pobudzajgcymi
|
i hamujgcymi.
N Prawdopodobnie na
EE0n Z komérka : .
- y,:g;/ o e hamowanle zuzywane
Renshawa Jjest ~ 60% energii
przetwarzania lub wiecej.

do efektorow 4, Jest to wskazéwka, jak

; ; ; wazny jest to proces.
Rys.6. Hamowanie bezposrednie przez komoérke y s

Pewne whnioski
wstawkowa Renshawa
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dotyczace uczenia w kierunku blokowania (zmniejszania warto$ci wag) mozna
wyciggng¢ obserwujgc dziatanie rozlanego hamowania. Droga impulsu moze
stawac sie mniej drozna w wyniku tego procesu, jednak caty czas dotyczy to
tylko synaps pobudzajgcych. Wptyw rozlanego pobudzenia / hamowania na
neurony jest znany (lub wydaje sie by¢ znanym). Do cato$ciowego przebadania
tego mechanizmu brakuje niestety jednej niemalze podstawowej rzeczy: jaki
mechanizm steruje generowaniem rozlanego pobudzenia / hamowania? Czy
jest on sterowany tylko chemicznie, czy rowniez elektrycznie? Brak odpowiedzi
na to pytanie komplikuje wysnuwanie hipotez na temat metod uczenia catych
sieci (aby wystgpita jakakolwiek synergia neuronéw). Sam proces hamowania
impulséw  elektrycznych  jest natomiast znany. Sita  hamowanie
presynaptycznego jest ustalana w procesach chemicznych. Sam proces
hamowania jest procesem elektrycznym. Aspekt chemiczny podczas
pojedynczego aktu hamowania jest pomijalny, gdyz nie moze on hamowac tak
skutecznie (dtugo i doktadnie) jak hiperpolaryzacja. Znana jest tez funkcja
pomiedzy potencjatem z neuronu hamujgcego a skutecznoscig hamowania.
Byta ona badana kilka lat temu na podstawie prac Ecclesa przez doktoranta
prof. Tadeusiewicza - Janusza Majewskiego [157]. Jego symulacje potwierdzajg
przydatnos¢ liniowej aproksymacji skutecznosci hamowania wzgledem
potencjatu hamujgcego. Gdy poréwnamy ilosciowo oba typy hamowania
synaptycznego: hamowania presynaptycznego oraz typu komorek Renshawa,
dziatajgcych bezposrednio depolaryzacyjnie na btone (rys. 6]), to znakomita
wiekszos$¢ jest typu pierwszego. Typ drugi wystepuje jedynie w kilku miejscach
uktadu nerwowego i jest wysoce zdeterminowany genetycznie, poniewaz
wystepuje wysoka powtarzalnos¢ tych elementéw u réznych osobnikéw. W
literaturze podawany jest schemat samoblokowalnego wejscia (rys.7]), typu
hamowania presynaptycznego. Jest to schemat stabilizatora czestotliwosci,
obrazuje np. hamowanie oboczne na siatkbwce. Po analizie dochodzi sie do
wniosku, ze akson neuronu C musi mie¢ wilasciwosci hamowania
bezposredniego, gdyz w przeciwnym wypadku uktad ulegtby nie konczgcemu
sie wzbudzeniu. Oznacza to, ze jedna komodrka moze otrzymywac sygnaty
hamujgce réznych typow!

Hipoteza dziedziczenia umiejetnosci nabytych mogtaby rzuci¢ pewne

dwiatto na uwarunkowanie genetyczne budowy organizmdw, jednak
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mechanizmu takiego do tej pory
nie wykryto. Jedynym obecnie
uznawanym procesem
dokonujgcym  przystosowywania
sie gatunku do srodowiska jest
selekcja naturalna. Jest to jednak

wysoce zastanawiajgce, ze
wzgledu na statystycznie
obserwowane szybsze

przebieganie procesu adaptacji.
Omawiane dane statystyczne sg
niestety niekompletne. Rys.7. Schemat samoblokowalnego wejscia

Powr6émy zndéw do pojedynczych neurondw. W jakim stopniu mozna
zagwarantowac¢ binarnos¢ przesytanych sygnatéw miedzyneuronowych, czy na
wyjéciu moga pojawiac sie inne stany? Sygnat na wyjsciu moze przybierac
pewne wartosci réwniez podczas nieodpalania sie neuronu. Napiecia te nie
przekraczaja jednak 1 mV (mniej niz 1/100 amplitudy potencjatu sygnatu
iglicowego), czyli prawdziwa jest teza o ich binarnosci. Sg one zwigzane
bardziej z metabolizmem komdrki niz z faktycznym przetwarzaniem.

Jesli przesledzimy ukiad nerwowy pod katem zakresu sprzezen
zwrotnych, generatoréw i ich odpowiednikéw, to okazuje sie ze sprzezenia
zwrotne wystepujg na wszystkich szczeblach szczegotowosci. W wiekszosci sg
to sprzezenia ujemne, ale wykryto réwniez dodatnie (nie mowigc o
sprzezeniach wewnatrz neuronu). Jesli chodzi o generatory to wystepujg one
dosy¢ czesto, np. jako elementy sprzezen zwrotnych. Ogdlnie mowigc sg one
czesto zalezne. Oprécz tego mozemy znalezC w mozgu stabilizatory(!)
czestotliwosci. Istnieje jeden wyspecjalizowany obszar zajmujacy sie gtownie
pobudzaniem okreslonych partii (nadajgcy zmienne tempo pracy kazdemu
osobnemu modutowi mézgu). Zwany jest on uktadem siatkowatym. Nadaje on
tempo pracy moézgu (sen, koncentracja uwagi). Sie¢ neuronowa nie moze
wygenerowa¢ impulsu sama z siebie (z wyjatkiem specjalizowanej struktury
sterujgcej sercem). Istnieje wiec wiele zabezpieczen, aby w mézgu nie zabrakto
pobudzen. Chwilowy brak odpalen wszystkich neuronéw jest rownoznaczny ze

Smiercia.
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Wazng role w budowaniu modeli majg réowniez statystyczne dane na
temat pracy neurondw, czestotliwosci pracy oraz ich czuto$¢ na zmiany
czestotliwosci podczas sumowania czasowego. Co prawda nie mozna
oszacowac jaki procent neurondéw odpala sie w ciggu podanego odcinka
czasowego i tym podobnych przydatnych statystyk, ale kazde znane parametry
muszg by¢ wykorzystane. Maksymalna czestotliwo$¢ ograniczona jest
refrakcjg, ale wynosi nawet 1000 Hz w niektérych typach neuronéw. Cztowiek
jednak styszy i 8000 Hz, a po przesunieciach fazowych potrafi identyfikowac
kierunek. Jak sie okazuje, obie w.w. jakosci sq przetwarzane przez osobne
uktady neuronowe i nie ma tu zadnej sprzecznosci. Rzuca to jednak pewne
$wiatto, iz w sytuacjach skrajnych natura stosuje nieintuicyjne rozwigzania, a
ignorowanie ich istnienia moze doprowadzi¢ do btednych wnioskow.

Jesli chodzi o doktadnos¢ sumowania, to nie jest ona doktadnie
zbadana. Rozpatrujgc poszczegdélne elementy sumowania potencjatdw w
neuronie nalezy uwzgledni¢, iz kazdy neuron tego uktadu posiada mozliwosci
adaptacyjne. Poza tym wystepuje rdéwniez zjawisko habituacji, czyli
selekcjonowanie powtarzajgcych sie informacji. Stopien habituacji jest
prawdopodobnie ustalany genetycznie. Zwykle neurony za receptorami
posiadajg czestotliwosci pulsowania rzedu 20 - 200 Hz (Czestotliwos¢
graniczna sygnatu jest znacznie wieksza ze wzgledu na stromy przebieg
"iglicy"). Réwnie waznym elementem jest czuto$¢ neurondw, przy czym nalezy
ja réwniez rozpatrzy¢ jako funkcje czestotliwosci. Zmiana czestotliwosci o
pewng warto$¢ jest w granicy btedu, gdy nie wywota zmian w funkcjonowaniu
sieci. Trudno oceni¢, jaka jest czutoS¢ neurondéw na zmiane czestotliwosci
wejsciowej. Z pewnych przestanek wynika, ze moze tu wystepowac wrazliwos¢
na dos$¢ subtelne przesuniecia fazowe (np. przy mechanizmie lokalizacji zrodta
dzwieku w styszeniu dwuusznym). Zwykle przyjmuje sie, ze btad dziatania
analogowych mechanizméw w sieci (sumowanie czasowe w synapsach) jest
rzedu 1 - 5%.

Mozna prébowaé budowaé zatozenia dwdch réznych koncepcji maszyn
neuronowych. W pierwszej wiekszo$C neuronow jest ciggle pobudzana
(chociaz podprogowo), w drugim panowataby ‘pustka elektryczna’' z krazgcymi
pojedynczymi impulsami. Natura jest blizsza temu pierwszemu modelowi.
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Pomijane przez neurofizjologie, a posiadajgce znaczenie dla modelu jest
réwniez wzajemne oddziatywanie na siebie pracujgcych neurondéw. Wigza sie z
tym posrednio dynamiczne zmiany potencjatéw otoczenia neurondéw oraz
zmiany stezen zwigzkéw chemicznych (np. tlenek azotu) wptywajgce na
dziatanie sgsiadéw oraz zmiany plastycznosci (szybkosci) uczenia sgsiaddw -
neuronéw. Mowigc ‘sasiad’ mamy na mysli wzajemne fizyczne potozenie
neurondw w przestrzeni. W naturalnych sieciach, jak wiadomo, przestrzen ta
jest tréjwymiarowa. W modelu przestrzen musi by¢ sztucznie i do$¢ dowolnie
zdefiniowana, ale po jej zdefiniowaniu musi by¢ konsekwentnie przestrzegana.
Fizjologicznie zmiany plastyczno$ci uczenia sasiadow neuronu aktywnego sg
ttumaczone obecnie przenikaniem przestrzennym tlenku azotu miedzy
neuronami. Wzajemne oddziatywania neurondéw byty rozwazane przez ks.
Sedlaka [151], nie sg to jednak dane czysto fizjologiczne. Faktem jest, ze
istnieja zaleznosci pomiedzy os$rodkami np.: Jezeli czujemy gtdéd, to
systematyczny wzrost czestotliwosci odpalen neuronéw w tym osrodku
powoduje zmniejszanie Sredniej czestotliwosci odpalen w innych osrodkach,
tak ze po jakims czasie jestesmy juz tylko w stanie mysle¢ o gtodzie, w zadnym
przypadku o pieknie.

Nalezatoby rozpatrzy¢ réwniez problem uczenia wysokopoziomowego i
zjawiska z tym skorelowane. Na pewno bezposredni zwigzek ma czestotliwos¢
uktadu siatkowatego. Pobudza on rdézne czesci mdzgu zmuszajgc go do
podwyzszonej aktywacji. Uktad siatkowaty jest natomiast pobudzany iloscig
réznorodnych bodzcéw docierajacych do mézgu. Pod wzgledem chemicznym
zasada torowania jest jedna. Generowanie okreslonych faz (np. udrazniania /
hamowania) jest zwigzane z utrzymaniem homeostazy i jest sterowane korg
mozgowa, a mozdzek to kontroluje. Dziedzina rozpatrujgca cztowieka nie jako
obiekt, lecz jako proces (approach system) ma za ambicje zbadacC prawa
rzadzgce homeostazg. Ogdlng zasadq dziatajacg w zdrowych organizmach jest

optymalizacja zuzycia energii oraz wykonywanej pracy.
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Wréémy do  synaps
hamujacych. Bardzo wazng
role (jak sie okazato na
podstawie prac z IMPLS5B,
IMPLG) [24] petnig rozne typy
hamowania impulséw w
sieciach  neuronowych. W
przyrodzie znane sg obecnie
dwa podstawowe typy
hamowania, ktérym warto sie
jest przyjrze¢ ze szczegodlng
uwagg pod katem
biochemicznym oraz
wystepowania w organizmie.
Mozna znalez¢ je
jednoczesnie w  uktadach
nerwowych.

Rys.8. Motoneurony alfa oraz komorki Renshawa w

odruchu obronnym zginania

Pierwszym z nich jest synapsa posiadajgca neuromediator hamujgcy
[58] str.573, [156] str.115. Przy aktywacji tego uktadu hiperpolaryzacja wnetrza
komorki (a czesto tylko dendrytu) moze zmale¢ z —-60mV do -75mV. Tego typu

synapsy wystepuja przede wszystkim na ciele komorki (soma) lub na

dendrytach w czesci zblizonej do $rodka komorki. Powstaty wiec w procesie

&7 T 1
B X
23

Rys.9. Budowa $limaka Aplysia

dos¢  skomplikowanym  (np.
uczenia), gdyz inne ich
umiejscowienie nie dawatoby
odpowiedniego dziatania, a z
punktu widzenia anatomii jest
ono réwnie prawdopodobne.
Hamowanie to moze wptywac
selektywnie na okreslone
synapsy, ale réwniez ma wptyw

na cate pobudzenie komérki. Jako przyktad biologiczny mozna podac¢ niektore

elementy sterujace np. motoneurony alfa w okolicy rogéw brzusznych. W

uktadzie tym wystepuje hamowanie generowane przez charakterystyczng
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komorke wstawkowg Renshawa na rys. 8 oznaczong symbolem R. Ma ona za
zadanie stabilizacje i pracuje w petli sprzezenia zwrotnego ujemnego (rys. 8).
Doktadniejszy opis dziatania jest nastepujacy: motoneuron alfa produkuje
acetylocholine, ktéra przez swoje kolaterale zakonczone w komorce
wstawkowe] bedzie jg pobudza¢. Ona z kolei wytworzy glikol (do
neuromediatoréw hamujgcych nalezy réwniez substancja GABA czyli kwas
gamma-aminomastowy), ktéry ma za zadanie hiperpolaryzacje motoneuronu.
Drugim typem hamowania jest wejscie hamujace (Noxious stimulus).
Zapobiega wytworzeniu sie pobudzenia postsynaptycznego wprowadzajgc
hiperpolaryzacje w synapsie. Hamowanie to jest wytacznie selektywne. Dzieje
sie tak dlatego, ze noxious stimulus dziata serotoning na gospodarke cAMP we

.wiasciwej synapsie” (Sensory

stimulus). Zablokowanie NEURON SZLAK NEURONALNY
. czuciowy AKTYWOWANY
neuromediatora powoduje PRZEZ BODZIEC

OKOLICA
zablokowanie drogi dla KONWERGENCJE SYFONA : WARUNKOWY

propagacji sygnatu. Uktady  NEURON

. CZuCiowy
tego typu wykryto w slimaku - (-
OKOUCA\ - L0} OKOLICA
LAplysia” [rys. 9]. [68] str. 693 OGONA SKRZELA

[158] str. 56. Slimak Aplysia },

californica jest jednym

.
S52LAK NEURONALNY

ierwszych niebanalnych pod
pi zy I y poa AKTYWOWANY NEURON

wzgledem ztozonosci uktadu gggazA%ﬁg'z(IggN RUCHOWY

nerwowego obiektem Aney DROGA NIE-
Wsm%ggv% ' AKTYWOWANA

przebadanym co do neuronu. / ( KONTROLNA )

Posiada on tylko 20 000  QOCA NEURON
neuronéw i to w dodatku  PLASZCZA CEUGIEY
wyjatkowo duzych. Jego uktad Rys.10. Schemat odruchu §limaka Aplysia
nerwowy posiada  odruch

chowania skrzeli, oraz mozliwosci kojarzenia prymitywnych faktéw. Dlatego stat
sie réwniez wdziecznym obiektem badan nad mechanizmami uczenia. Na
podstawie analiz biochemicznych neuronu mozna wyrdzni¢ kilka
mechanizmoéw uczenia w uktadzie nerwowym. Niektore zaleznosci mogg byé

powigzane z synapsami hamowania. Zgodnie z zasadg Donalda O. Hebba z
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1949 roku, aby doszto do wzmocnienia sity potgczeh pomiedzy neuronami,
muszg one sie pobudzac¢ jednoczesnie.

Po badaniach Aplysia w 1963 roku zaproponowano pewng modyfikacje
tej reguty. Moze dojs¢ do wzmocnienia potgczenia réwniez bez aktywowania
neuronu postsynaptycznego. Mechanizm ten wymaga jednak jednoczesnej
aktywacji innego neuronu (najczesciej wstawkowego torowania). Proces ten
mozna opisa¢ nastepujgco: pod wptywem bodzca bezwarunkowego nastepuje
aktywacja

PRESYNAPTYCZNY
NEURON CZUuciowy

ZWIEKSZENIE UWALNIANIA
NEUROTRANSMITERA

odpowiadajgcego mu

FOSFOLIPAZA A .
szlaku neuronowego i

NEURON

WSTAWKOWY j - W rezultacie
- _ RECEPTOR DLA
s " \ 4 % /

SEROTONINY pobudzenie neuronu

CYKLICZNY wstawkowego. Ten z

CYKLAZA . —
zatezna kolei  za pomocg
Ob CYKLICZ-

NEGOAMP  serotoniny  powoduje

E:mmq aktywacje cyklazy

HKALMODULINA -

adenylanowe;j w
neuronie czuciowym.
Jesli jest on akurat w
tym momencie
pobudzany, to wzrasta
stezenie jonoéw
Rys.11. Mechanizm warunkowania klasycznego u Aplysia wapniowyen.  Laezq
sie one z kalmoduling
i z kolei te z cyklazg
adenylowa. Aktywujac ten enzym zwieksza sie synteza cAMP i dalsze reakcje
sq fatwe do przewidzenia (aktywacja kinaz biatkowych i zwiekszenie
wydzielania neurotransmitera). Tak wiec istnieje zasada kojarzenia nie objeta
przez Hebba. Rys. 10 przedstawia schemat ogdiny drég neuronalnych odruchu
warunkowego i bezwarunkowego chowania skrzela. Procesy zachodzgce w
synapsie w okolicach skrzela, oméwione powyzej, prezentuje rys. 11.
Wymieniony wyzej mechanizm wystepuje w trakcie uczenia
nieswiadomego. Ukiad nerwowy jest w stanie zapamieta¢ kolejnos¢ czasowg

wystepowania okreslonych bodzcow (potencjalnych warunkowych) oraz
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skorelowac¢ je z okreslonymi efektorami bez udziatu $wiadomosci cztowieka.
Natomiast zasada Hebba wystepuje w neuronach zaliczanych do obszaru
zwanego hipokampem. Jest to twor, ktdry posiada trzy gtéwne drogi neuronaine
i jest w stanie kojarzy¢ informacje z dtuzszego czasu. Jest to tez jedyny uktad w
mozgu potrafigcy zapisac¢ te informacje do pamieci dtugotrwatej abstrakcyjnej.
Jego dziatanie jest zwigzane ze Swiadomoscia, gdyz jezeli jakiego$ wydarzenia
nie spostrzezemy to oznacza, ze hipokamp nie zadziatat efektywnie.
Wydarzenie takie nie bedzie nam sie mogto nigdy przypomnie¢ (pomimo, ze
informacja o nim przewedrowata przez znaczng czes$¢ naszego mozgu),
poniewaz nie przeszta przez ,ukfad zapisu do pamieci”.

Mozna okreslic dwa typy pamieci niskiego poziomu, jakg moze
dysponowac¢ model sieci neuronowej:
1. pamie¢ krotkotrwata - jest to pamie¢, w ktérej gtdwng role petnig krazace w
sieci impulsy w sprzezeniach zwrotnych oraz warto$ci potencjatow
postsynaptycznych w neuronach w danej chwili czasu. Jednoczes$nie proces
zapamietywania jest bardzo szybki. Moze wystarczy¢ jeden, dwa sygnaty
wejsciowe, aby zaistniata informacja w tej pamieci. Réwnie szybko moze ulega¢
kasowaniu.
2. pamieg¢ ditugotrwata - dziatanie tej formy pamieci oparte jest na zmianach
wartosci wag synaptycznych. Proces zapamietywania (w tym wypadku uczenia)
jest diugotrwaty. Modyfikacja wag podczas dziatania sieci jest stosunkowo
niewielka, dlatego uczenie wymaga diugotrwatej prezentacji wzorcow
wejsciowych. Ten rodzaj pamieci opiera sie na tworzeniu struktury potaczen
miedzyneuronowych. Same pojedyncze sygnaty nie majg tu statystycznie
duzego znaczenia. Sygnaly pojawiajg sie jedynie podczas dostepu do

informacji.
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4. Zatozenia modeli pulsujacych sztucznych sieci neuronowych

4.1 Zatozenia podstawowe budowanych modeli

Modele sztucznych sieci neuronowych zostaty konstruowane ze szczegdlnym

zwrdceniem uwagi na nastepujgce elementy:

e sztuczna sie¢ neuronowa powinna posiada¢ wiasciwosci maszyny z
pamiecig, w przeciwienstwie do ograniczania sie do przeksztatcen
funkcyjnych aktualnych danych wejsciowych

e rozproszony algorytm uczenia wyksztatcajgcego pamie¢ diugo- i krétko-
terminowg. Poprzez rozproszonos¢ rozumie sie autonomiczno$¢ pracy
pojedynczego elementu, w tym przypadku neuronu, zaréwno w procesach
pracy jak i uczenia. Pojedynczy neuron ma zatem dostep do czesci zbioru
wszystkich danych systemu. Dane docierajgce do neuronu mozna podzieli¢
na dwie grupy. Pierwsza zawiera informacje pochodzace z sasiedztwa
neuronu, np. neurondw z ktérymi istnieje potaczenie synaptyczne. Druga
grupa to dane dotyczgce globalnego stanu sieci (np. modelowaniu rozlanego
pobudzenia), oraz w jakims zakresie, danych wejsciowych catego systemu .

e wysoka roéwnolegto$¢ procesdw uczenia i przetwarzania. Jest ona
zapewniona przez odpowiednio zorganizowany przeptyw danych w modelu.

e tania przenosnos¢ do postaci sprzetowej, (brak szybkich magistral, niskie
czestotliwosci pracy elementdw, powtarzalnos¢ schematu)

e tolerancja sieci na uszkodzenia neuronow.

4.2 Symulator oraz jego platforma sprzetowa

Badane modele zostaty podzielone na dwie grupy i roboczo nazwane IMPL i
SNN, adekwatnie do uzytego symulatora: modele binarne IMPL 1 - 4 i modele
z symulacjg tadunkéw postsynaptycznych IMPL § - 8 oraz SNN 9 — 12.
Symulacje zostaty przeprowadzone na specjalnie skonstruowanych pod kazdg
grupe sieci symulatorach bazujgcych na platformie PC. Pierwszy z nich (IMPL)
dziata w $rodowisku BORLAND C pod dyskowym systemem operacyjnym.
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Drugi jest w petni 32 bitowy, dziatajacy w srodowisku chronionym MS Windows,
oparty o MS Visual C++, zwany dalej SNN. Oba symulatory charakteryzujg sie
wysokg specjalizacjg oraz przystosowaniem do tej dziedziny. Rdéwniez inni
badacze [141] podazyli w strone specjalizowania symulatoréw w ostatnich
latach z powodu ograniczonosci mozliwosci np. Matlaba. Obiekt symulowany,
jego wiasciwosci oraz algorytm zachowania, jest zapisywany w jezyku C a
nastepnie kompilowany razem z symulatorem. Wytworzony kod jest catkowicie
kodem zapisanym w jezyku maszynowym procesora, zatem podczas symulacji
nie wystepujg zadne procesy z zakresu interpretacji obiektu, co znacznie
przyspiesza symulacje. Wewnatrz symulatora wystepuja odpowiednie moduty,
ktére przygotowujg dane wejsciowe do sieci z probkowanego sygnatu
dzwiekowego (normalizacja, FFT, kodowanie czestotliwosciowe), oraz
procedury, ktére umozliwiajg rekonstrukcje dzwieku z wyjscia sieci, czyli
zakodowanego czestotliwosciowo widma FFT. Wszystkie operacje sag
przeprowadzane z archiwizowaniem wynikow posrednich. Mozemy je otrzymac
w postaci plikow.

Formalny zapis przeksztatcen wstepnych sygnatu ma nastepujacag

postac:

V ,=FFT (W (t,t+k))

def .G x, )=\, 1 Wizs - Wit Do =R*,Pe=0,1f : x,, <x;, =
:>|G(xi.t,‘)|SlG(xi,l:)l (6)
Yijt wivj‘,E[O,l |

Xt:(wl,l aWa e ee ’WL,I,t)

X1+k:(wl,k,r‘wj,k,1’ .. ,wL_k,)
gdzie:
W(t t+k) — pierwotny ciggty sygnat wejsciowy z przedziatu czasowego (t,t+k)
FFT - funkcja realizujgca szybka transformacje Fouriera
V: — wektor o L wspétrzednych zawierajacy wynik FFT z chwili t+k
G — funkcja zachowujgca monotonicznos¢ wzgledem dtugosci wektora
wyjsciowego
X; — wektor wejsciowy do pulsujacej sieci neuronowej w chwili ¢
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Symulator SNN umozliwia ponadto state monitorowanie matrycy wag
oraz potencjatow postsynaptycznych zaréwno podczas pracy jak i uczenia
sieci. Obie matryce mozna oglada¢é w postaci graficznej oraz mozemy
przemieszczac sie po nich uzywajgc myszki. Aktualny stan sieci, wag, progoéw,
potencjatdéw postsynaptycznych oraz rozktadu sygnatéw miedzyneuronowych
moze by¢ w dowolnym kroku nagrany do pliku, co umozliwia powroty do
ciekawszych stanow sieci oraz kontynuowanie do$wiadczenia rozpoczynajgc z
tego stanu. Symulator monitoruje czestotliwo$¢ odpalen neuronéw w sieci oraz
przedstawia to na automatycznie skalowanym wykresie. Podczas symulacji

mozemy wstrzymywac procesy uczenia, zaburza¢ sekwencje wejsciowe itp.

4.2.1 Okno aplikacji Symulatora SNN

Przyktadowe okno symulatora przedstawione jest na rys. 12. Aplikacja
wykonana jest w technice MDI. Symulator moze jednoczes$nie symulowac
dziatanie wielu sieci neuronowych przetwarzajgcych te same dane lub inne, co
jest ustawiane przy uruchamianiu danego okienka za pomocg definiowania
pliku wejsciowego i wyjsciowego danej sieci. Przyktadowe okienko aplikacji
symulatora zawiera dwa dokumenty. Pierwsze zawiera siec, ktorej wizualizacja
matrycy wag zostata wybrana w lewym okienku dialogowym i automatycznie
wyswietlona nad prawym spliterem. Ponizej znajduje sie wykres czestotliwosci
neuronoéw z pierwszych dwustu krokow symulacji. Okno dialogowe podaje nam
réwniez maksymalng liczbe odpalonych jednoczesnie neurondéw oraz numer
aktualnie przetwarzanego wektora wejsciowego. W menu gtdwnym widzimy
rozwinietq kolumne odpowiedzialng za cztery przeksztatcenia przystosowujgce
sygnat do formatu uzytecznego przez modelowang sie¢, co zostanie

szczegotowo omowione w nastepnej sekcji.
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Rys. 12 — Okno aplikacji symulatora SNN z dwiema réwnolegle symulowanymi sieciami

neuronowymi.

4.2.2 Konstrukcja modelu

Niezaleznie od przyjetego symulatora (IMPL czy SNN) jadro modelu
sktadajgce sie z kilku obiektow, w mysl metodologii programowania
obiektowego, jest identyczne. Jedynie metody tych obiektéw zwigzane z
interfejsem uzytkownika majg inng tres¢, ze wzgledu na zupetnie inne
mozliwosci obu platform. Réznicg symulatora SNN wzgledem IMPL réwniez jest
mozliwos¢ uzycia zasobow wirtualnych systemu operacyjnego, jak i mozliwosci
zaadresowania i uzywania duzych, ciggtych segmentéw danych. Pojemnos$é
pamieci wirtualnej czy kilkakrotnie wieksze zmienne indeksujace w rezultacie
przektadajg sie na zwiekszenie ilosciowe elementow powtarzalnych

modelowanego obiektu takich jak poszczegolne neurony lub sieci. Pomimo, ze
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wystepuje tu jedynie zmiana iloSsciowa wzgledem IMPL, efekty synergii
neurondw w takich sieciach nabierajg jakosciowo innych wiasciwosci, co jest
omowione w rozdziale 5.3.

Symulator SNN zawiera nastepujace klasy obiektéw:

11§ CawaySpliterFrame
#1-®S CColoriew

™8 CEnterDIg

#-&8 Clnputview

- &8 CMainDoc

®® COMPLEX

R CSplitterFrame
- BN CTextView
#-®8 CTrans
- * CViewE xtpp
®% DPCOMPLEX
B8 i

B Meuron
B Siec

Globals

Samo jadro systemu tworza klasy ,Neuron”, ,Siec” oraz .fff". Sg one
wspolne dla symulatora SNN i IMPL. Klasa CTrans wystepuje tylko w
symulatorze SNN i zapewnia automatyczng konwersje dzwieku poprzez kilka
transformacji do postaci akceptowalnej przez pulsujgcg sie¢ neuronowg
zgodnie z wzorem (6). Pozostate klasy stuza do komunikacji z uzytkownikiem
np. okna dialogowe, okna wyswietlajgce matryce wag oraz potencjatow
postsynaptycznych, wykresy czestotliwosci odpalen neuronéw i matryce
aktywnych neurondw na tle sieci. Ich szczeg6étowe omawianie wydaje sie by¢ w
tym miejscu niecelowe. Podczas trwania symulacji odpowiednie przetgczniki
zlokalizowane w oknie dialogowym pozwalajg uzytkownikowi symulatora na
szybkga zmiane prezentacji dynamicznie zmieniajacej sie zawartosci sieci
neuronowej (np. matrycy wag czy potencjatdow postsynaptycznych) za pomocg
myszki.

Najmniejszym wystepujagcym obiektem jest neuron. Posiada on
nastepujgce metody:

Str. 36



- ®:8 Neuron

: i § aktywacial)

i & dumplFILE */)

Lo dziala)

L @ init])

v @ ladui(FILE )

i & namalul_graficzniglint %, int v, int dlx, int diy)
& namalul_na_bitmapie(COC *pDC, CRect rect, char co, CRect clipRect)
-~ § MNeuron[)

i § Neuron[sygnal *tab_wejsc, int ident)

& “Meuron()

- § odpal_sie(int akbpwacia)

- § oscyloskop_pre(int =, int v, int dix, int diy)
i 8 oscyloskop_zsco(int x, int v, int dlx, int diy)
----- § podaj_wyjscie()

$ poprawka_hamowanial)

i § Serialize[Carchive &ar)

B ucz_sig()

- § ucz_sie_gdy_nie_odpaleniefint akt)

-~ § ucz_sie_gdy_odpalenie(int aktywacia)
L. & ustaw_rozlaniefint roz)

‘o § zrzuc(FILE *f)

Najistotniejsze metody zwigzane z pracg neuronu to funkcja aktywacja(),
wyliczajaca aktualne pobudzenie neuronu, zwracajgca informacje o
przekroczeniu progu. Warto$¢ jej liczona jest na podstawie wartosci
potencjatéw postsynaptycznych oraz odpowiednich im wag. Metoda dziataj()
uzywajac tej funkcji podejmuje decyzje o przekazaniu sterowania metodom
ucz_sie_gdy odpalenie() i ucz_sie_gdy nie_odpalenie(). Niezaleznie od tego
wyboru, w kazdym kroku symulacji wywotywana jest metoda ucz_sig(), ktora
zmienia rowniez wartosci wag i progu np. aby nie dopusci¢ do wytaczenia sie
neuronu z pracy sieci z powodu zbyt wysokiej wartosci wylosowanego progu.
Dziatania tych metod opisane sg formutami matematycznymi (np. rozdziat
5.3.2). Jedng z metod istotnych przy testowaniu synaps hamujacych jest
poprawka_hamowania() — metoda zapobiega powstawaniu niedozwolonych
synaps w danym modelu np. synaps hamowania presynaptycznego z kilkoma
synapsami hamujgcymi itp.

Atrybuty obiektu neuron, wymienione juz po czesci, jak prog czy wartosci

postsynaptyczne, przedstawia kompletna lista:

Str. 37



~~~~~~ §debu§_akt '
...... @ faza

. & g okt

AAAAA @ gr_progs
L @ OT_25CO0

..... g id

L @ MiBLICZSIE
------ § oco

o 9 prawdop

~~~~~~ @ rozlanie
Lo @ 3C0
e g wagi
@ Wejscie
§ Wyjscie

Neuron posiada swoj identyfikator id uzywany przy obstudze
autoasocjacji potgczen. Wartos¢ refrakcji przechowywana jest w zmiennej
refrakcja, a w przypadku modelowania tylko refrakcji bezwzglednej uzywana
jest zmienna faza. Glob_wej jest wskaznikiem na bufor wyj$¢ neurondw,
stanowigcy jednoczesnie tablice wartosci sygnatéw wejsciowych do sieci, w tym
do kazdego neuronu. W ten sposdb praca neurondw jest synchroniczna.
Wejscie stanowi tablice wartosci potencjatdw wygenerowanych przez impuls
wejsciowy na synapsie o odpowiednim indeksie oraz uwzglednia pozostatosci
potencjatdw po poprzednich impulsach tej synapsy. Powstate w ten sposéb
warto$ci sg mnozone przez wartosci wagi o tych samych indeksach przez
funkcje obliczajgcg aktywacje. Neuron zbiera tez statystyki na temat swojej
aktywnosci w dalszej i blizszej przesztosci w zmiennych sco i oco. Ich réznica
okresla ostatnig tendencje i jest przechowywana w atrybucie zsco. Rozlanie
wraz z wartoscig aktualnego zsco jest elementem modyfikujgcym kierunek
zmian czestotliwosci, do ktérego dgzy algorytm uczenia neuronu.
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Obiektem nadrzednym wzgledem Neuronu jest Sie¢. Koncentruje ona
dowolnie wielkg ustalong liczbe neurondw w zakresie umozliwianym przez
platforme sprzetowa. Poniewaz struktura sieci umozliwia potgczenia kazdy z
kazdym, obiekt Sie¢ musi wygenerowac neurony o odpowiedniej ilosci synaps,
aby kazdy neuron mogt obstugiwac sygnaty z wszystkich neurondw sieci, w tym
swoj sygnat, oraz wszystkie wejscia globalne do systemu (do sieci).

Metody obiektu Siec:

b @ dziala(int illosc_cykli = 1]

b @ init)

------ § kasu_wejscial)

Lo @ komuniku()

o @ konfiguruj[char *sci, int masz)

i @ laduj[FILE *f)

f @ nagral_naglowek(FILE f)

- $ nagral_sig(]

‘. § namalul_bitmape[CDC *pDC, char co. CRect clipRect]
------ $ namalul_araficznie(]

------ & namalul_tasme[COC *pDC, CRect clipRect)
Lo @ odczytal_naglowek[FILE *f)

- § przegladni__generacie(FILE *f)

...... & sem_pl)

L @ sem_v()

----- & Senalize[CaArchive &ar]

L @ Siec[sygnal *twej, syagnal *Eawyi)

o @ TSiec()

« & uruchom_kazdy_neuron(]

~ & ustaw_dobroc[unsigned int dob)

~ & ustaw_rozlanie(int roz)

& wez_dobroc()

& wez_rozlanie()

S @ znajdz()

- @ znajdz_numer_nauczone]_sieciFILE *f)
o & zrzuclFILE *)

Konstruktor sieci generujgc odpowiednie neurony przekazuje im
wskaznik na bufor sygnatéw wyjsciowych neuronéw. Metoda init() ustawia
parametry startowe wag, progu, faz i innych zmiennych neuronu przy pomocy
identycznej metody obiektu Neuron. Po tych operacjach Sie¢ jest w stanie
wykonywaé¢ metode dziafaj(), co sprowadza sie do wywotania przeliczenia
kazdego neuronu  (uruchom_kazdy neuron()) oraz aktualizacji buforow

wejsciowych zgodnie z przeliczonymi warto$ciami wyj$¢ neurondéw (metoda:
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komunikuj()). Obiekt Sie¢ posiada poza tym kilka metod wizualizacyjnych oraz
procedury archiwizacji i przegladu drzewa generacji sieci. Zasoby Sieci nie
bedace Neuronami sprowadzajg sie do zmiennych organizujacych
przegladanie drzewa generacji oraz archiwizacje sieci i z powodu mato
istotnego znaczenia dla modelu nie bedg omawiane.

Na uwage zastuguje rowniez klasa CTrans. Wykorzystuje on obiekt fft

oraz zawiera nastepujgce wlasne metody:

-= U CTrans

e § bfmi)
- @[ CTrans(]]
...... & ~CTrans(]
----- § na_fourieral)
§ z_fouriera()

- § zbim)

Sprobkowany sygnat podlega Szybkiej Transformacji Fouriera w
metodzie na_fouriera() i w rezultacie powstajg wektory o wspotrzednych
stanowigcych wartosci energii przypadajacej na dany przedziat czestotliwosci.
Wspoirzedne tego wektora sg z kolei kodowane na binarne wektory o tej samej
ilosci wspétrzednych za pomocg dos¢ dowolnej ale monotonicznej funkcji w
metodzie bfm() Taki format danych jest mozliwy do podania na wejscie
omawianego modelu sieci. Aby mozliwa byta obserwacja proceséw
zachodzacych w sieci za pomoca dzwieku zostaty opracowane rowniez
transformacje odwrotne do wymienionych powyzej o nazwach zbfm() oraz
z fouriera() w wyniku ktérych wyjscie sieci moze byC z powrotem

przeksztatcone w sygnat (np. dzwiekowy).

4.3 Nowe jakosci w pulsujacej sieci neuronowej

4.3.1 Kodowane danych wejsciowych w pulsujgcej sieci neuronowej

Gtéwnym zatozeniem pulsujgcych sieci neuronowych jest forma

przekazywanego sygnatu miedzyneuronowego, okreslona jako impuls o
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zdefiniowanym przebiegu. W znakomitej wiekszosci sieci oraz we wszystkich
modelach tej pracy zostata zatozona identycznos¢ tych impulséw, co oznacza
brak mozliwosci zmian amplitudy sygnatu. Fakt ten jest potwierdzony przez
fizjologie. Istnieja réwniez podejscia z modulacja amplitudy do PNN (Pulsed
Neural Network [112] — Pulsujgce Sieci Neuronowe), ktére nie sg omdéwione w
tej pracy.

Zaktadajgc kodowanie impulsowe, obok metod fazowych, zwykle
zastanawiamy sie nad kodowaniem czestotliwo$sciowym. Aby nie doprowadzi¢
do nieporozumien warto zda¢ sobie sprawe, ze uzywane czute mierniki czesto
przeprowadzajg pomiar czestotliwosci w okreslonej liczbie kolejnych impulséw.
Nalezy w tym miejscu uscisli¢ dla kazdego modelu techniczny sposob
mierzenia czestotliwosci, poniewaz zwykle jako pomiar czestotliwosci
traktujemy ilo$¢ impulséw w jednostce czasu. Kolejng niescistoscia, ktéra moze
wkras¢ sie pod pojecie czestotliwosci odpalen, bywa zwykle nie czestotliwos¢
odpalen neuronu, ale $rednia czestotliwos¢ odpalen grupy lub wszystkich
neurondéw sieci. W odniesieniu do odpowiedzi sieci neuronowej podczas badan
mozemy tez méwic¢ o czestotliwosci wyjscia sieci z jednego doswiadczenia, lub
$redniej czestotliwosci wyjscia sieci z kilku identycznych préb. Ta ostatnia
metoda jest dos¢ czesto wybierana, szczegdlnie wtedy, kiedy odpowiedz sieci
jest zaledwie kilkoma impulsami i pojedyncze wyniki charakteryzujg sie dos¢
duzymi btedami. W krancowych przypadkach niektérzy badacze dla
udowodnienia swoich hipotez podajg czestotliwos¢ wyliczong jako odwrotnosc
czasu pomiedzy dwoma odpaleniami neuronu, co w istocie rzeczy jest btedem.
Zwracajgc uwage, ktéra z ww. metod mierzenia czestotliwosci zostata uzyta
(np. przez neurofizjologdéw), oszczedzamy czas nad szukaniem potencjalnych
btedéw w modelu sieci.

Przy kodowaniu impulsowym mozemy nada¢ znaczenie wielu
czynnikom, nie tylko czestotliwo$ci. Najprostszg metodg jest dekompozycja
binarnej danej na pojedynczy impuls, oznaczajgcy wystgpienie danego
abstraktu. Drugim czynnikiem, ktéry moze zawiera¢ informacje, jest czas, ktory
uptywa do pierwszego pojawienia sie impulsu (np. wzgledem ostatniego
odpalenia sie danego neuronu). Standardowo podczas kodowania
czestotliwosciowego w okreslonym odcinku czasu dt nalezy umiesci¢ taka

liczbe impulséw x, aby stosunek x/dt byt réwny zadanej czestotliwosci.
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Whprowadzajac nieréwnomiernosci w rozmieszczeniu tych impulséw (o ile to
mozliwe), mozemy jednoczesnie kodowac dodatkowe dane. Nieréwnomiernosci
rozktadu impulséw mozna formowac tak, zeby byly one skorelowane z
nierownomiernosciami z innych wejs¢ lub nie, w ten sposdb sie¢ moze
przypisa¢ okreslone wejscia do jednej klasy. Widac tu juz powolne przejscie do
metod kodowania fazowego. Podstawowg metodg tej kategorii jest
generowanie ramki synchronizujgcej. W tej ramce w odpowiednim momencie
jest umieszczany impuls. Neuron na podstawie przesuniecia wzgledem ramki
okresla jego faze i te warto$¢ dalej przetwarza. Jest tez mozliwe kodowanie
danych na kilku wejsciach neuronu. Wtedy tez wygodnie jest uzy¢ przesunie¢
czasowych impulséw na réznych wejSciach neuronu do przedstawienia
okreslonych abstraktow. Oczywiscie nie bez znaczenia jest tez czas pomiaru.
Jak wykazujg badania najwiecej informacji niosg pomiary realizowane w
okresach od 100 ms do 500 ms.

Powyzszy przeglad nie wyczerpuje oczywiscie wszystkich metod
kodowania pojedynczego wejscia uzywanych w PNN (wystepujg np. metody
mieszane), stanowi jedynie przeglad najpopularniejszych. W badanych
modelach uzywana jest standardowe kodowanie czestotliwosciowe przy
zatozeniu okreslonego odcinka czasowego oraz kodowanie bezposrednie przy
pomocy pojedynczego impulsu (np. przy uczeniu prostych funkgji binarnych).

Po zdefiniowaniu najnizszej warstwy kodowania danych nalezy okreslic i
przystosowa¢ strumien informacji wejsciowych do formatu akceptowanego
przez sie¢. Proces ten jest zalezny w kazdym przypadku od rodzaju
przetwarzanych informacji i czesto przesadza o powodzeniu catego
przedsiewziecia. Polega on na wyeliminowaniu, o ile to mozliwie,
symbolicznos$ci informaciji i skonstruowaniu w zamian odpowiedniej przestrzeni
wartosci. Przez znakomitg wiekszo$¢ badaczy jest on robiony intuicyjnie, a
jedynie wieloletnie doswiadczenie specjalisty sprawia, ze wybrana funkcja
przeksztatcajgca dane wejsciowe na przestrzenn danych wejscia sieci, jest
zwykle w tej roli nie najgorsza [52]. Btedy przy wyborze tej funkcji mogg by¢ w
okreslonym zakresie niwelowane poprzez samg sieC neuronowa, jednakze
okupione jej dodatkowym naktadem pracy. Biorgc pod uwage, iz pulsujgce sieci
neuronowe znakomicie nadajg sie do przetwarzania sygnatéw, sztandarowym
btedem z omawianego tematu jest reprezentacja probek sygnatu w systemie
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dwojkowym i podanie ich w takiej postaci do sieci. Jak wiemy, system dwojkowy
jest kodem, czyli symbolem, a nie badang wartoscia, ktérg on przedstawia. W
przypadku kiedy informacja wejsciowa z natury jest symboliczna, np. kolor,
definiowanie przestrzeni wejscia powinno by¢ powigzane z potencjalnym
znaczeniem danego abstraktu, o ile posiadamy jakiekolwiek hipotezy na ten
temat.

Po zbadaniu, czy przetwarzane dane nie majg wasciwosci
symbolicznych, lub po opracowaniu odpowiedniego przeksztatcenia, celem
zoptymalizowania pracy sieci nalezy oceni¢, czy przypadkiem zbyt duzy
strumien informacji nie koncentruje sie na jednym lub kilku wejsciach do sieci
pozostawiajgc wejscia spoza tego zbioru z bardzo matg iloscig informacji. Moze
to prowadzi¢ w krétkim okresie do przetrenowania zbyt utylizowanych wejs¢
oraz zastéj w uczeniu. Jest to dos¢ powazny problem i nie ma na niego
uniwersalnej recepty. Z pomocg, obok doswiadczenia obecnie posiadanego w
tej dziedzinie, przychodzi czesto natura i jej rozwigzania np. w przypadku
przetwarzania dzwieku warto oba kanaty dzwiekowe poddac¢ okresleniu
amplitudy, normalizacji, przeksztatceniu Fouriera i z kolei wynik tego
przeksztatcenia oraz wielko$¢ amplitudy dostosowa¢ do formatu danych
wybranego przy danym modelu sieci, czyli analogicznemu przeksztatceniu do

realizowanego w biologicznym uchu.

4.3.2 Efekt synchronizacji lokalnej oraz wptyw szumow

W procesie przetwarzania w PNN (Pulsed Neural Network — Pulsujgca
sie¢ Neuronowa) mamy czesto do czynienia z nastepujgcym zjawiskiem: w
zaleznosci od funkcji petnionej w sieci oraz od aktualnie przetwarzanych
danych neuron X odpala sie z okreslong czestotliwoscia. W sagsiedztwie X
znajduje sie neuron Y, ktéry posiada czes$¢ synaps do identycznych neurytow
co neuron X. Jesli neurony petnig podobne funkcje w sieci, a réznica polega na
tym, iz przetwarzajg dane z troche innego obszaru wejsciowego (np. inna czgsc
siatkdwki), to zwykle $rednia czestotliwos¢ pracy X i Y sg podobne. Jesli faza
tych odpalen wynosi & # 0 oraz gdy zostanie aktywowany region wspalny, tzn.

do obu neurondéw dotrze impuls x w chwili t*, to kolejne mierzone czasy
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pomiedzy odpaleniami wyniosg &, gdzie & < 8. Jest to zjawisko, ktére moze
by¢ wykorzystane w procesie przetwarzania oraz uczenia: neurony posiadajace
bardziej zblizone fazy odpalern mogg wzmacnia¢ bardziej wzajemne synapsy
niz synapsy do neurondéw o innych fazach. Logiczng interpretacjg moze byé
hipoteza, iz skoro dane pochodzace z dwdch réznych zrédet nigdy nie zbiegajg
sie w tym samym czasie, to znaczy ze one s niezalezne i nie powinny byc¢
syntezowane. | odwrotnie - jesli dwa niezalezne zrédta informacji zwykle
aktywujg sie w tym samym czasie, to znaczy iz prawdopodobnie dotycza tego
samego zdarzenia.

Sam mechanizm neuronowy wystepujacy w tym zjawisku jest dosc
prosty. Podczas gdy sygnat x dociera do neuronéw X i Y, X oraz Y sg w
okreslonej fazie aktywacji. Automatycznie dodatkowy sygnat powoduje
jednoczesny szybszy wzrost potencjatu aktywacji w obu neuronach wzgledem
sytuacji poczatkowej. Szybszy wzrost potencjatu aktywacji powoduje wiekszy
kat nachylenia funkcji potencjatu aktywacji wzgledem osi czasu (druga
pochodna tej funkcji jest w tym momencie dodatnia). Jesli w czasie
oddziatywania sygnatu x neurony przekroczg swoje progi, to czas pomiedzy ich
odpaleniami bedzie mniejszy wzgledem poprzedniego. Obrazuje zdarzenie rys
13.

..............................

g-~" --- . -

Rys.13. Mechanizm synchronizacji momentéw odpalef neuronéw

Rozwazanie przeprowadzone powyzej, podobnie jak kolejne w dalszej
czesci pracy, pomimo iz operujg na pojedynczych neuronach i pojedynczych
okresach majg znaczenie statystyczne, a uproszczenie to jest uzyte celem
wyjasnienia samej istoty zjawiska. W naturze napotykamy na réznego rodzaju
szumy oraz zaktocenia i nie da si¢ tego faktu zignorowac, a by¢ moze ma on
tez wptyw na sam proces przetwarzania i uczenia. Po pierwsze, wartos¢ progu
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danego neuronu moze by¢ zaktdécana tzn. zdarzajg sie odpalenia neuronu gdy
nie zostanie osiggniety potencjat progowy, jak i braki odpalen nawet po
przekroczeniu wartosci progowej (wliczajgc refrakcje). Po drugie, mechanizm
integracji sygnatow moze by¢ zaktécany réznymi czynnikami, szczegdlnie tymi,
ktére dziatajg na btone komodrkowg. Moze wystgpi¢ wtedy sumowanie w
,zaszumionym” fragmencie btony i wynik moze by¢ inny niz zwykle. Moze
nastgpi¢ tez przesuniecie sygnatdw sumowanych w czasie, co niesie z sobg
nieprzewidywalne wyniki pracy neuronu. Po trzecie, szum moze by¢ réwniez
wynikiem niezupetnego wykasowania potencjatow postsynaptycznych podczas
odpalenia neuronu. Startowanie z akumulacjg potencjatéw nie od stanu

zerowego moze zaburzy¢ zaréwno czestotliwos¢ pracy jak i jej faze.
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5. Symulacje wybranych proceséw fizjologicznych pod katem
wyksztatcania pamieci diugo- i krotkotrwatej

5.1 Modele binarne

5.1.1 Modele IMPL1 i IMPL2 - podstawowe elementy budowy, dziatania oraz

metod uczenia

Budowa tych modeli jest po cze$ci wzorowana na binarnych pamieciach
Hopfield'a [63]. Ich dziatanie jest prawie identyczne, z tym Zze kolejne dane
wejsciowe sa przetwarzane przed osiggnieciem stanu ustalonego. W ten
sposéb dynamiczny rozktad impulséw w czasie przetwarzania moze
interferowa¢ sie z danymi wejsciowymi. Gtéwnym elementem modelu jest
metoda uczenia bez nauczyciela, inna niz przyjmowana w pamieci Hopfield'a.
Ma ona niestety jeszcze wady.

Zatozenia IMPL1 sg bardzo ubogie i nalezy je zaliczy¢ do bazowych
zatozen kolejnych modeli. Jednym z elementow wystepujacych we wszystkich
omawianych symulacjach IMPL jest sposob kodowania danych podawanych do
sieci. Polega on na tym, ze elementarna dana wprowadzana do sieci (O lub 1)
reprezentowana jest przez wektor dwuelementowy. Ma on zrédta w fizjologii i
na takim tez przyktadzie zostanie wyjasniony. Rozpatrzymy percepcje ciepta i
zimna przez organizm. Gdy receptor ciepta przestaje wysyta¢ sygnaty o tym
fakcie, nie oznacza to wystgpienia zimna w srodowisku, poniewaz za wykrycie
zimna odpowiedzialny jest inny receptor. W ten sposéb mozemy wyznaczy¢
tabele standw (rys. 14), ktéra bedzie stosowana do kodowania. Oczywiscie nie

wszystkie naturalne abstrakty wejsciowe wymagajg takiego kodowania.

Wartos¢ bitu Reprezentacja opis Wspoinym
0 (0,1) zero elementem  modeli
1 (1,0) jeden
(0,0) stan dozwolony IMPL jest rowniez
1,1) stan zabroniony i
typ sygnatow

Rys. 14. Tabela kodowania sygnatow
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przesytanych miedzy neuronami. Majg te samg semantyke i forme jak dane
podawane do sieci.

Cechg charakterystyczng jest tez symulowana réwnolegto$¢ pracy
neuronéw. W przypadku sieci ze sprzezeniami zwrotnymi pobudzenie neuronu
jest funkcjg wartosci wyj$¢ innych neurondéw. Aby zatem wyniki pracy sieci nie
byty zalezne od kolejnosci przeliczania neurondw, zastosowane zostaty bufory
przechowujace stan z danego kwantu czasu symulacji az do nastepnego.
Podczas pracy neuron korzysta z obrazu sieci zapamietanego w buforach.
Gwarantuje to symulacje réwnolegtosci.

Analizowane sieci neuronowe oparte na metodzie uczenia wytgcznie za
pomocg modyfikacji wag (IMPL1 — tak zostat nazwany pierwszy model) zgodnie

Z ponizszym wzorem:

L teey. >
- =W, teey;, 01

i1
W c@yﬂSOJ

wi;: - wartosc r'tej wagi neuronu j w chwili ¢, -W< w;;, <W
y;t - wartos¢ wyjscia neuronu j w chwili £,
¢, W — stata modelu o wartosci dodatniej

miaty nastepujace wtasciwosci:

e wigczaly sprzezenia zwrotne, blokujgce poprawne dziatanie sieci: nie zostaty
zauwazone zadne efekty synergii neurondw, nie zauwazono zadnego
zwigzku danych wejsciowych z warto$ciami wag,

e zbytnio poszerzaly rozpoznawane klasy abstrakcji, po dtuzszym czasie
prawie kazdy cigg wejsciowy byt akceptowany,

e wigczaty sprzezenia w obrebie pojedynczego neuronu,

e niektére neurony przez caty czas pozostawaty nieaktywne,

Aby uniknaé¢ pojawiajgcych sie cech znanych z IMPL1, w zatozeniach
modelu IMPL2 oprécz ww. elementéw wspolnych zawarto:

e architekture sieci umozliwiajgcej sprzezenia zwrotne 2z  wyjatkiem
autoasocjacyjnych,

¢ dwa podstawowe typy budowy synaps,

¢ metode uczenia zdefiniowang na tej strukturze,
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¢ refrakcje bezwzgledna.

W rezultacie otrzymuje sie monolityczng strukture sieci, w ktérej np.
warstwy to rzecz wytgcznie umowna. Kazdy neuron ma dostep do wszystkich
danych wejsciowych sieci. Zamodelowano dwa rodzaje synaps. Pierwszy
opisuje synapsy pobudzajgce, drugi - hamujgce analogiczne do synapsy
hamulcowej komorki wstawkowej Renshawa. Nie wystepuje tu synapsa
hamowania presynaptycznego. Model nie zawiera symulacji gromadzenia sie
tadunkéw postsynaptycznych. Refrakcja bezwzgledna w tym modelu oznacza,
ze neuron przez n taktéw po odpaleniu, nie odpala sie lub kwant czasu
symulacji jest rowny czasowi refrakcji bezwzglednej. Ta druga opcja przyjeta
jest w wigkszosci modeli. Uczenie realizuje sie podczas pracy sieci zgodnie z
nastepujgcymi zasadami:

e podczas odpalenia neuronu modyfikujg sie wagi synaps aktualnie

pobudzanych zgodnie ze wzorem (8).

WUPLC‘:’W >0

) —_—
Wiji+1 Wije— Cc>w1ﬂ<0 I (8)

rnd|0,1, -1 |=w, =0
L

gdzie :
rnd() - funkcja losowa o rozkfadzie ptaskim
¢ — parametr z przedziatu (W/1000, W/5). Najlepsze wyniki osiggano dla (W/100,W/30).

Wagi synaps niepobudzanych (x;;,~=0) nie modyfikujg sie. Zmienia sie
natomiast prég podczas odpalenia zgodnie ze wzorem (9).

2. Wiy *y

h. . . =lh. 4 @yj,,>0 (9)

Jitt+1 gt k

h,—a=y,; =<0

gdzie :
hj: - wartos¢ progu neuronu j w chwili ¢
wi;: - wartos¢ i'tej wagi neuronu j w chwili ¢

xi; - wartosé i'tego wejscia neuronu j w chwili ¢
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y;t - warto$¢ wyjscia neuronu j w chwili ¢
a — stata dodatnia proporcjonalna do ¢ * /, ale kilka rzedéw mniejsza. Najciekawsze zachowania
modelu zaobserwowano dla wartosci 2,3 rzedow mniejszej.

k — stata dodatnia wieksza od 1. Najlepsze wtasciwosci zaobserwowano dla wartosci k=3.

e w wypadku nie odpalenia sie modyfikowany jest jedynie prog. Jest on
zmniejszany.

W tak zdefiniowanym modelu wida¢ wyrazng synergie neuronow.
Wspodtpraca ich prowadzi bowiem do powstania w strukturze sieci automatu
zsynchronizowanego z sekwencjg wejsciowa. Model ten zostat zaprojektowany
z myslg o silnej polaryzacji wag neuronéw. Po kilku do kilkunastu tysiecy
przeliczeniach kazdego neuronu (jesli nie wpadniemy w minimum lokalne)
otrzymujemy dwa typy wag synaptycznych
a) (0, 10% W)

b) (90% W, W), gdzie W jest maksymalng mozliwg wartoscig wagi.

Mozemy zatem zaznaczy¢ jedynie zbiér B={w;: w>0.9 *W} na mapie potaczen
neurondw, a zbior A ={w; w;<0.1 *W} traktowaé jako brak potaczenia do
neuronu za ktérego odpowiada synapsa z wagq w;. Prog natomiast wptywa w
ten sposéb na dziatanie neuronu, ze mozliwe jest jego uproszczenie do bramki
AND z czasem przeliczenia rownym 2 ms. Otrzymujemy wiec schemat
elektryczny omawianego automatu.

Przy zastosowaniu uczenia ze zmiang progu (IMPL2) w obrebie tego
modelu mozna zaobserwowacd, ze sie¢ odzwierciedla w swojej strukturze
czesciej pojawiajgce sie wzorce (doktadna analiza wymienionego
przeksztatcenia znajduje sie w rozdziale 5.1.1.1), nie wpada w sprzezenia
bezwyj$ciowe (wiekszo$¢ moze by¢ przerwana przez zmiang danych
wejsciowych). Réwniez jesli chodzi o stopien wykorzystania sieci, to jest on
wiekszy (nie ma neurondw, ktére nigdy nie zadziatajg). Negatywnym
elementem sg zastoje i wzbudzenia sieci przekraczajgce czesto 50 cykli
symulatora w poczatkowym okresie uczenia, co mozemy zapisac¢ nastepujgco:

3t 3pel0,1 | 3g>50 V j Vke(t,t+q)NN y,,=p (10)
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Podsumowujgc - model IMPL2, po uproszczeniu zapiséw i nie tracacy ww.
wiasciwos$ci, mozemy przedstawi¢ formalnie w nastepujgcy sposéb:

I-1
l = Z Wi *¥X,>h g,
Yitr1™— =0
4 I-1 (11)

0 @Z Wi ¥, <h
=0

gdzie:
h;: - warto$¢ progu neuronu j w chwili ¢
w;;: - wartos¢ r'tej wagi neuronu j w chwili ¢

Xij: - wartos¢ i'tego wejscia neuronu j w chwili ¢
Xijer1 " Zis (12)

Z, <Ii<L
Vi &=L

1

Zi =

gdzie:
Z;— wartos¢ itego wejscia do sieci w chwili ¢
L — ilos¢ wejs¢ do sieci. Kolejne wejscia sieci skojarzone sg z kolejnymi
indeksami synaps rozpoczynajgc od najmniejsze;.

Potaczenia rekurencyjne z wyj$¢ neurondw trafiajg na wejsSciowe
synapsy o indeksie réownym indeksie neuronu wyjsciowego powiekszonym o

ilo$¢ wejsc¢ do sieci L.

I=L+J
0 <j<J (14)

J — ilo$¢ neurondw w sieci

I —ilo$¢ synaps neuronu
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Z Wi ¥, —h;,
Byer={ By, I *¥,>0 (15)

hjvt—aﬁyj‘,SO

Wijt+1—

(16)

Wity >0
W —cey;,<0

gdzie:
a,c,k — state danego modelu o proporcjach jak w (9).

Warunek aktywacji neuronu przedstawia wzor nr 11. Formuta nr 12 i 13 opisuje
strukture sieci oraz mechanizm buforowania pomiedzy wejsciem oraz wyjsciem
neuronéw. Modyfikacja wag (wzoér nr 16) oraz zmiany progéw (wzoér nr 15) sg

elementami mechanizmu uczenia.
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5.1.1.1 Przyktadowe doswiadczenia

Pierwsze doswiadczenie dotyczy uczenia ciggu dwuwektorowego.

Podczas dziatania sieci prezentowane byty wektory wejsciowe {(0,1), (1,0)}. W

Pejacial 8 8

WNET anPur

~~o

Rys.15. Stan poczatkowy

Cczasie procesu uczenia,
ktory  jest  wykonywany
réwnolegle z pracg sieci,
mozemy zauwazy¢ kilka faz.
Beda one kolejno omawiane
oraz prezentowane na
rysunkach. Kazdy rysunek
ma podobny wyglad:
neurony sg reprezentowane
jako tréjkaty, przy czym
narysowane linig ciggtg
oznaczajg, ze w danym

kroku symulacji sg one

aktywne. Dane wejsciowe sg reprezentowane linig o poczatku pod napisem
NET INPUT i odpowiednim potozeniu. W gdrnej czesci rysunku sg wypisane

NET

iUy

=

>

Rys.16. Pierwsza faza uczenia

elementy wektora
wejsciowego. Synapsy
pobudzajgce sq

obrazowane okregami przy
wejsciu do neuronu,
hamujgce - kwadratami.
Rys. 15 przedstawia stan
poczatkowy. Neurony nie
posiadajg potgczen
zwrotnych, gdyz  wagi
wylosowane sg z waskiego
przedziatu bliskiemu 0. Brak
jest sygnatéw wejsciowych
(net input). Neurony
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narysowane przerywang kreskg oznaczajg, ze nie byly one aktywne w tym

cyklu.
Pierwsza faza uczenia

Sl sy 4 &8
Hejseia: 1 8

jest  zaprezentowana na

rys. 16 . Wszystkie neurony
: T~ sq aktywne, wyksztatcajg
41 S5 SUN. bardzo duzo potaczen

zwrotnych, ignorujac

jednoczesnie wejscia

sieciowe, ktore sg aktywne

stosunkowo rzadko w

> poréwnaniu do

N—— czestotliwosci aktywacji
pozostatych neuronow.
Rys. 17. Przejécie do stanu biernego Biorgc pod uwage algorytm

uczenia dla neuronu nie ma
znaczenia, czy sygnaty pochodzg od innych neurondw, czy tez sg one
sygnatami wejsciowymi sieci. W tej fazie prog rosnie asymptotycznie do
wartosci aktywacji neuronu. Gdy proces osiggnie moment, w ktérym dojdzie do
matej réznicy miedzy wartoscig progu a wartoscig aktywacji, sygnaty wejsciowe

maja wpltyw na aktywacje
teppclsr 1.8 (moga ja zwiekszyé), co

pocigga za sobg

zwiekszenie progu. Brak

| danego sygnatu
, gy i wejéciowego bedzie mogt

wptyng¢ na  wytlaczenie

R

- . neuronu.
P et Rys. 17 przedstawia

przejscie ze stanu aktywacji

_______
=

do stanu biernego. Zostat

NEV aPuy

wytgczony drugi neuron.
Duza ilos¢ potgczen

Rys.18. Faza nieaktywno$ci neuronow
zwrotnych  pociggnie za
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sobg wylgczenie catej sieci. Jednoczesnie w tej fazie (przejsciowej) nastepuje

uczenie sieci. Wszystkie aktywne neurony (4 w tym przypadku) odnotowujg na

swoich wagach zachowanie drugiego neuronu.

NEY 1y

Rys.19. Wiaczenie si¢ odpowiedniego neuronu

———————————

SO== ==tk

————————

T
T

+
|
I

7T
T

HET INPUT

------------

Rys.20. Uwrazliwienie wybranego neuronu na bodziec

wejSciowy

Rys. 18 przedstawia faze
nieaktywnosci.  Jedynym
procesem w tym czasie jest
opadanie progow, co

nastepuje  powoli, aby
drobne réznice w aktywacji
neurondw mogty by¢ uzyte
do uczenia podczas
przechodzenia do kolejnej
sieci.

fazy aktywacji

Stosunkowo powolne
opadanie progobw ma za
zadanie
rozsynchronizowac
momenty pierwszych
aktywacji neurondow.
Wptynie to korzystnie na
zréznicowanie klas
wzorcow rozpoznawanych
przez rézne neurony.
Jeden z neurondw jako
pierwszy zaczat sie
aktywowac - rys. 19. Jest
on zaznaczony na rysunku
jako drugi neuron od gory,
jest to ten sam, ktory
najwczesniej sie wytgczyt.
Neuron ten  wyksztatcit

potgczenie  ujemne do

neuronu 4, oznaczone prostokatem. Jest to w tym modelu bez znaczenia dla

przetwarzania.
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Jak wida¢ na rysunku 20 wyksztatcit sie neuron z podtgczeniem do

wejscia zewnetrznego

sieci, gdyz byto ono

jedynym wejsciem z

2555 e B sygnalem dostepnym w

T 0 czasie  aktywacji  tego

____________ «a neuronu, w jego stanach
*;f;;—_‘_—_—_‘_—_:—_:—_:—_:—_‘_—_‘_—_:—_:—_:—_:—jf"‘:\\ ol dziatania. Pozostate

L ___________________________:L\g\‘\’/ ‘ neurony pozostawaty caty
>* " ; czas nieaktywne, wskutek
*»,qv czego ich wagi nie byty
modyfikowane. Jest  to

gl poczatek procesu

Rys.21. Kolejna faza dtuzszej nieaktywacji neuronow Speealizagineunsnon:
Kolejna faza nieaktywacji
jest  przedstawiona na

rysunku 21. Jak wida¢ sie¢ powoli sie organizuje, tzn. rézne klasy
rozpoznawanych wzorcéw pojawiajacych sie w czasie przyporzadkowujg sig
réznym neuronom.

Po kilku lub kilkunastu

fazach  wzbudzen  oraz

nieaktywacji, wartosci wag

1 > ulegaja silnej polaryzaciji.
*’ Oznacza to zakonczenie

procesu uczenia w tym

modelu. Jednoczesnie

>‘ synchronizacja z sekwencjg

wejsciowg tez jest ustalana

podczas uczenia. Na rys.

BET INPUT

22 sieC juz pracuje, jednak
Rys.22. Zakoficzenie procesu uczenia neurony nie sg podzielone
wyraznie na dwie klasy.

Klasa neurondéw charakteryzuje sie jednoczesnym pobudzeniem. Jak mozna
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sqdzi¢, pierwsza klasa bedzie reprezentowana przez neurony 1, 4 i 5 liczac od

gory, klasa druga przez neuron 2 i 3.

Neuron nr 2 ma pewng wiasciwos¢ bezposrednio zwigzang ze swojg klasa.
Mianowicie uwrazliwit sie na

drugie wejScie sieciowe,

ktére powoduje jego

odpalanie. Neuron 3

. natomiast uwrazliwit

i e synapse potaczenia
g1 ' ) neuronu . Poniewaz
o neuron 5 nalezy do

pierwszej klasy, a neuron 3
>_ odpala sie chwile péznigj i
sekwencja wejsciowa jest

"""""""""""""""""" dwuelementowa, to

Rys.23. Pierwsza faza pracy sieci AligmatcEnls  MOUIgR = S

zostaje przyporzadkowany

do drugiej klasy. Mechanizm klasyfikacji w obu przypadkach dziatat w rézny
sposo6b. Kolejne fazy pracy i uczenia spowodujg powolne upodobnianie sie

neuronu 2 i 3 w swojej budowie i funkgji.
Rysunki 23 oraz 24

WAgREA S przedstawiajg sie¢ podczas

pracy. Mimo, iz proces

uczenia ciagle trwa, nie

f, wptywa to juz na dalsze

zmiany w sieci. Oznacza to

zakonczenie procesu

uczenia. Neurony zgrupowaty

sie w dwie klasy, dokfadnie

tyle ma bowiem sekwencja

wejsciowa. Oba elementy

NET LRPUY

cyklu powtarzajg sie na
zmiane. Gdy  zabraknie

Rys.24. Druga faza pracy sieci .
jednego Z sygnatow
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wejsciowych do sieci, nastepuje wylgczenia sprzezen zwrotnych (stan
nieaktywacji). Efektem tego doswiadczenia jest wyksztatcenie sie automatu
zsynchronizowanego z ciggiem wejsciowym.

Nalezy tez zwréci¢ uwage, ze wynik mato zalezy od wylosowanych wartosci
poczatkowych wag. Proces uczenia jest zbiezny.

Jesli przeanalizujemy zalezno$¢ ilosci wejs¢ i predkosci uczenia, to ilos¢
wejs¢ w tym modelu moze by¢ dowolnie duza. Sie¢ bedzie dziatata réwnie
skutecznie. Nie jest to pokazane na przyktadzie, gdyz bytoby to mato czytelne.
Wydtuzenie czasu uczenia jest powodowane najczescie] przez wydtuzenie
sekwencji, zwtaszcza gdy elementy tej sekwencji sie powtarzaja.

Ztozono$¢ przeprowadzonego powyzej doswiadczenie jest niewielka, ale

pozwolito  ono [Czas Wejécie 1 Wejscie 2
. 1 0 1
k
pokKazaC procesy 5 1 0 1
zachodzace w [3 0 1 |

sieci podczas
uczenia i pracy. Rys.25. Prosta sekwencia wejsciowa z przyktadu do IMPL2
Sie¢ podobnie sie zachowuje w przypadku innych, wiekszych problemow.
Przyktadem prostego automatu powstatego w strukturze IMPL2 moze by¢ siec¢
o podobnej strukturze jak wyzej, na wejscia ktérej podano inng sekwencje
wejsciowq.
Prosta sie¢ 5

neuronéw i 2 - - |
wejs¢ bedzie @ I
[—

mozliwa do

B3

przeanalizowania D —

bez stosowania [

programow

pomocniczych. Rys.26. Schemat elektryczny powstalego automatu
Przyktadowa sekwencja tréjelementowa jest okreslona jest w tabeli rys. 25.
Schemat powstaty w sieci pod wplywem sekwencyjnie pojawiajgcego sie
wzorca przedstawia rys 26. Znajduja sie tam tylko 4 bramki, poniewaz pigta
byta nadmiarowa (dublowata bramke nr 3) i nie zostata naniesiona dla

zachowania przejrzystosci rysunku.
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Pierwsza bramka B1 tego automatu opdznia cigg pobudzen pochodzacych z

wejscia W2 tak, aby

bramka druga B2 wykryta
iloczyn W1(2)*"W2(1). W
chwili 3 (rys. 27) wynik ten

(0.0, 01.1)

QOO (o

jest obliczony,

jednoczesnie pojawia sie (0.00.0.1]
. . (0.1.0.1)
pobudzenie na wejsciu

W2, co z kolei wykrywa

(0.0).(1.0)

trzecia bramka B3.

N

Czwarta bramka B4 czeka

na ten sygnat oraz
sprawdza czy ostatnie Rys. 27. Schemat powstalego automatu

dwa razy wystgpito pobudzenie na W2. Pomys$iny wynik jest przesytany na nie
omowione dotychczas wejscie bramki B2. W ten spos6b powstaje zachowanie
historii w petli bramek trzech B2,B3 i B4. Doktadnie bowiem tyle wektoréw
wejsciowych ma przyktadowa sekwencja wejsciowa.

Wszelkie mozliwe operacje w sieci niezbedne do identyfikacji ciggu
wejsciowego przeprowadzane sg z maksymalng rownolegtoscia, co jest cechg
bardzo pozgdang. Proces uczenia i przetwarzania jest catkowicie rozproszony.
Po diuzszym czasie uczenia nie obserwuje sie neurondw nieaktywnych (nie
odpalajagcych sie nigdy). Dublujg one inne neurony, mimo to w tym modelu nie
wptywa to na potencjalne zwiekszenie odpornosci sieci na uszkodzenia lub
wadliwg prace, w zwigzku z wysokg polaryzacjg potgczen miedzyneuronowych.

Model IMPL2 nie wymaga wydtuzenia czasu uczenia, gdy zwiekszamy
ilos¢ wejs¢. Zalezy on natomiast od dtugosci sekwencji wejsciowej. Proces
uczenia jest zbiezny w ok. 85% dla sekwencji kilkuwektorowych . Nalezy
zwréci¢ uwage na to, ze pozostawienie czesci nadmiarowej (wiecej neurondéw
niz faktycznie potrzebnych bramek do zbudowania danego automatu) wptywa
korzystnie na skrécenie czasu uczenia. Przeciwnie, jesli dtugos¢ sekwenciji
wejsciowej jest wieksza od pojemnosci sieci, to generowane sg rozwigzania
czesciowe, wyrdzniane klasy sekwencji wzorcow uznawanych za poprawne sg
szersze od docelowych np. jezeli sekwencja zawiera podsekwencje (a,b,c,d,e) i
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b = d to sekwencje (a,b,e), (a,b,c,b,c), (a,b,c,b,e) itp. bedg prawdopodobnie
réwniez rozpoznawane jako prawidtowe wzorce wejsciowe.

W wyniku przeprowadzonych do$wiadczen nowego znaczenia nabierajg
niektére pytania z zakresu fizjologii. Do jednych z najwazniejszych nalezy
stwierdzenie faktu pochodzenia synaps hamowania. Czy hamowanie sygnatéw
(reprezentowane w tym modelu jako wagi ujemne) moze by¢ wyksztatcone
podczas uczenia? Jak wykazujg badania tego modelu (zgodnie z jego
zatozeniami), potgczenia ujemne sg dyskryminowane i zanikajgce. Moze to by¢
wynikiem przyjetej metody uczenia. Na podstawie dziatania rzeczywistego
neuronu wydaje sie, ze hamowanie synaptyczne powstaje w przypadku, gdy
odpali sie neuron presynaptyczny i nie odpali sie neuron postsynaptyczny. W
takim przypadku waga potgczenia powinna male¢. Nasuwa sie pytanie, czy w
tym przypadku sie¢ nie zacznie zapominac to, co sie przed chwilg nauczyta.
Gdy sie¢ pracuje, ale nie rozpoznaje niczego, postepujg procesy zapominania
wyrazajace sie w zmniejszaniu wartosci wag dodatnich.

Podczas badania wyzej wymienionych modeli sieci, mozna zauwazy¢ ze
majg one zdolnosci do zapamietywania cyklicznego pojawiania sie impulséw w
czasie (z wejs¢ ze srodowiska lub z wyjs¢ z innych neurondéw). Model ten ma
natomiast mate szanse nauczy¢ sie rozpoznawania ciggow pojawiajgcych sie w
spos6éb asynchroniczny. Taki stan rzeczy spowodowany moze byC przez
przewage znaczenia stanu sieci (to znaczy impulséw w sieci) nad znaczeniem
warto$ci wag. Wydaje sie to by¢ rowniez niezgodne ze wzorcem biologicznym.
Podstawowe pytanie dotyczy wiec sposobu zapamietywania informacji w sieci.

Do negatywnych cech tego modelu nalezy nastepujgca wtasciwosé. Po
obnizeniu progéw sie¢ wchodzi w pobudzenie i wtedy uczy sie intensywnie.
Uczy sie, a wcale wtedy nie musi wchodzi¢ na wejscie sieci cigg pojawiajacy
sie asynchronicznie, ktéry powinien by¢ zapamietany. Wejscia te (przewaznie
nieaktywne w chwili uczenia) sg odtgczane. W ten sposéb tracona jest ta i tak
minimalna zapamietana informacja na temat rozpoznawanego ciggu.
Informacja nie ma szans kumulowac sie.

Kolejnym zaobserwowanym faktem jest wykorzystywanie przez siec
wszystkich neuronéw. Poszczegdlne fragmenty sieci sg dublowane i w ten
spos6b powstaje nadmiarowo$¢, co w przysztosci nalezy wykorzysta¢ do
bardziej niezawodnej pracy sieci ( realizacja w postaci uktadu elektronicznego).
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Obecnie niezawodnos$¢ z tego powodu nie jest podniesiona (nie ma ona
znaczenia, poniewaz zaktadamy ze pracuje na niezawodnym komputerze).

Podsumowujac IMPL2 ma cechy pamieci krétko- i diugo- terminowe;,
ktérej nie posiadat model IMPL1. Pamiec¢ ta nie jest pozbawiona pewnych
mankamentow, jak np. niemozliwos¢ rejestrowania sygnatéw pojawiajgcych sie
asynchronicznie. Jednak pamie¢ krétkoterminowa, prezentowana w tym modelu
przez cigg wektorow wyj$¢ neurondw w kolejnych krokach symulacji, moze
reprezentowa¢ dane wejsciowe sieci bedace ciggiem pojawiajgcym sie
sekwencyjnie. Zmiana danych wejsciowych, sekwencji wejsciowej oznacza w
tym przypadku (zgodnie z tabelg kodowania) niezgodno$¢ ze wzorcem,
wykrywang przez sie¢. Efektem wykrycia niezgodnosci ze wzorcem wejsciowym
jest ciag wektoréw zerowych na wyjsciu sieci (wektory wyjSciowe sg binarne).

Pamie¢ diugoterminowa jest umiejscowiona w wartosciach wag
synaptycznych miedzyneuronowych oraz wejsciowych sieci. Wyksztatca sie
ona pod wptywem pojawiajgcego sie sekwencyjnie ciggu wektoréow uczacych.
W niej zapisana jest informacja na temat zaleznosci wykrytych przez sie¢ w
ciggu wektoréw wejsciowych. Sie€ uzywajgc obu rodzajéw pamieci jest w stanie
stwierdzi¢, czy pojawiajacy sie wektor wejSciowy nalezy do wyuczonej
sekwencji wejSciowej oraz czy pojawit sie w odpowiednim momencie (np. czy
wektory nie zostaty zamienione miejscami).

Z perspektywy czasu mozna przypuszczac, czy forma przetwarzania
zaobserwowana w tym bardzo prostym modelu IMPL2 (jak prawidtowe
uzywanie sprzezen zwrotnych, spojnos¢ jednostki, odrebnos$¢ czesci
przetwarzajgcej sieci od czesci nieaktywnej) nie jest zalgzkiem modelu

podstawowej jednostki obliczeniowej mézgu'[141], jesli nie jest nig sam neuron.

5.1.2 Model IMPL3 - uczenie podczas okresu nieaktywnosci

Model ten miat za zadanie sprawdzenie jednej z hipotez uczenia sieci, w
ktérych uczenie neurondéw nie ograniczatoby sie wytgcznie do momentéw
odpalen neuronéw. Neurony mogq sie uczy¢ rowniez podczas okresow
nieodpalen. Zostat zmodyfikowany algorytm uczenia. Bylo to rowniez $cisle

" tzw. microcircuit
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powigzane z problemem niewyksztatcania w procesie uczenia w poprzednich

modelach znaczacych wag ujemnych. Zmiang w poréwnaniu do poprzedniego

modelu jest to, ze podczas odpalenia wagi ujemne aktywnych synaps sa

zwiekszane i daza do 0. Natomiast podczas nieodpalenia, wagi aktywnych

synaps sg zmniejszane (teoretyczna mozliwos¢ powstania wag ujemnych).

Algorytm dziatania neuronu mozna przedstawi¢ nastepujgco:

a) w przypadku odpalenia nastepuje

zwiekszenie wag aktywnych synaps

X,1>0 2w, =w, _,ta (17)

zwiekszenie wag ujemnych nieaktywnych synaps

xi.r—l =( /\wi,t—] <0 = Wf,/:Wi,r—I ta (1 8)

zmniejszenie wag dodatnich nieaktywnych synaps

Xy1=0 AW, >0 2w, =w,,_,—a (19)

b) w przypadku nieodpalenia nastepuje

zmniejszenie wag aktywnych synaps

Xp1>0 =w, =w,,_

1—b (20)

it

pozostawienie bez zmian nieaktywnych synaps

X;21=0 2w, =w, _, (21)

gdzie: a,b - wspoétczynniki uczenia.
W modelu tym jak i w poprzednim mozemy wyrozni¢ wystepujgce po

sobie fazy wzbudzen i

e nieaktywnosci w podobnych
proporcjach. Podobnie
réwniez wygladaty
mechanizmy uczenia.
Jednak podczas
nieaktywnosci sieci, gdy sie¢
otrzymywata  sygnalty z
wejscia nastepowato ich
wytgczanie (tzn. wagi byty

e zmnigjszane do 0 a
nastepnie do wartosci -

Rys.28. Pierwsza z faz cyklu pracy modelu IMPL3 ~ MIN_WAGI) i ustawianie
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odpowiednich wag na ujemne. Wagi na potgczeniach zwrotnych miedzy
neuronami pozostawaly bez zmian i w ten sposéb zachowywaty duze
znaczenie, co jest wysoce niepozgadane. Wagi wytworzone na sprzezeniach
zwrotnych majg zbyt duze wartosci w pordwnaniu do wag sygnatéw
wejsciowych sieci, aby nastepowat poprawny proces uczenia. Siec
wyksztatcata wagi ujemne, ale jej praca byta beznadziejna: proces uczenia nie
byt zbiezny, byt okresowy. Podczas aktywacji neurondéw potgczenia ujemne
zanikaty i pojawialy sie dodatnie, podczas nieaktywacji proces przebiegat
odwrotnie.

Wejscia: 0 1 Model ten zostat

przeksztatcony w inny, w

ktérym wczesniej obliczana

waga byta tylko kierunkiem

zmian prawdziwej wagi o

jednostke. Model ten ma

dziwne zachowania, po

czgsci  wydawatoby  sie
chaotyczne i nie zostat
> jeszcze dostatecznie

NET TNPUT przetestowany [

przeanalizowany.
Rys.29. Druga z faz cyklu pracy modelu IMPL3 Badania tego modelu nie
potwierdzity istnienia
efektow synergii neuronéw. Badania pamigci w tym modelu majg wigc wynik

negatywny.

5.1.3 Model IMPL4 - interpretacja rozlanego pobudzenia.

Dotychczasowe modele neurondw nie zaktadaty zadnego zwigzku
dziatania neuronu z otoczeniem. Neuron miat wbudowane funkcje, ktore miaty
na celu jego adaptacie do danych wejsciowych. Tak dziatat, gdy
doprowadzali$my do jego synchronizacji z sekwencjg wejsciowa. Nie byto za to
zadnej mozliwosci bezposredniego wptywu na to czego i kiedy neuron bedzie
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sie uczyt. Pewne efekty moze przynies¢ potgczenie dziatania neuronu ze
Srodowiskiem oraz wprowadzenie funkcji oceny poprawnosci dziatania.

Jedng z metod mozliwg do wykorzystania w tym przypadku jest stosowanie
rozlanego pobudzenia/ hamowania. Dziatanie rozlanego pobudzenia mozna
traktowa¢ podobnie jak funkcji btedu w metodach wstecznej propagacii, ale jego
interpretacja jest inna. Przyjmuje ona wartosci ze zbioru {-1,0,+1}. Wartosci te
oznaczajg;

k =-1 - bledne dziatanie sieci,

k = +1 - poprawne,

k=0 - brak oceny sieci.

Na podstawie tego sygnatu, ktéry musi by¢ generowany spoza sieci
neuronowej, nastepuje modyfikacja procesu uczenia. Sygnat ten ukierunkowuje
uczenie w okreslong strone. W tym rozumieniu mozna sygnat ten interpretowac
nastepujgaco :

k =-1 hamowanie uczenia wtasciwego (np. reguta Hebba)

k = +1 przyspieszanie uczenia wiasciwego

k=0 obojetny

By¢ moze wazng cechg jest usrednione dziatanie rozlanego pobudzenia,
tzn. sygnat ten powinien dziata¢ z dosy¢ duzg bezwtadnoscig. Jest to bardziej
ogolna ocena dziatania, a nie ocena konkretnego przypadku.

Analiza wptywu

rozlanego pobudzania na .,
_ _ Sie¢ Neuronowa
proces uczenia jest

przeprowadzona ponizej. Ze

wzgledu na  ziozonosc¢

wejscie

oroslAm

algorytmu dziatania modelu,

Funkc'f oceny

jest on dostepny w catosci w

formie elektroniczne;. SI'(}dOWiSkO

Proces uczenia rozpoczyna

si¢ od losowego ustawienia Rys.30. Zalezno$¢ uczenia wzgledem $rodowiska
neurondw (losowe wagi ich

potgczen). Neurony pracujg niepoprawnie. Wazne jest, aby mialy szanse
odpali¢ sie. Zapewnia to mechanizm podobny jak w IMPL3, polegajacy na
zmianie wag. Neuron zapamietuje jakie wejScia doprowadzity do jego
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pobudzenia tylko wtedy, gdy warto$¢ rozlanego pobudzenia jest wieksza lub
rowna 0. Gdy k=+1 zmiana wag bedzie o X% wieksza, co spowoduje
faworyzowanie przez sie¢ takiego stanu. Wplywowi rozlanego pobudzenia
podlegajg wszystkie neurony sieci, dlatego bedg uczone wszystkie neurony
odpowiedzialne za powstanie odpowiedzi w sieci.

Nalezy okresli¢ funkcje oceny dziatania sieci. Funkcje oceny trzeba
traktowac¢ jako zewnetrzny sygnat oceny generowany na podstawie dziatania
sieci w perspektywie dosyC¢ dtugiego okresu. Z drugiej strony jest to sygnat
kierunkujacy dziatanie sieci, dlatego mozna go traktowac jako znak pochodnej
funkcji oceny. Jesli uktad wykazuje poprawe dziatania do jej poprzedniego
stanu, to nastepuje przyspieszenie uczenia. W tym momencie sie¢ neuronowa
bedzie optymalizowata tak swoje dziatanie, aby funkcja oceny osiggata
maksimum. Istnieje oczywiscie mozliwos¢ znalezienia lokalnego maksimum
funkcji oceny (zamiast pozgdanego maksimum globalnego), ale gdy zatozymy,
ze rozwigzanie nie jest ztozonym problem (w celach testowych), mozna to
zbagatelizowac.

Implementacja modelu IMPL4 zawiera modut nadrzedny wzgledem
modutu uczenia. Sg to pierwsze kroki z rozlanym pobudzeniem. Dziatanie
neuronu byfo nastepujace:

Jesli k=1 i neuron sie nie odpali, to sie uczy.

Jesli k=-1 i neuron sie odpali, to sie uczy, gdzie k oznacza wartos¢
rozlanego pobudzenia.

Uczenie natomiast zostato rozszerzone o modyfikacje o progu. Od progu
jest odejmowana warto$¢ k. Wagi synaps aktywnych zmieniajg sie¢ zgodnie z
zatozeniami rozlanego pobudzenia/ hamowania. Po pierwszych prébach
okazato sie, ze sie¢ jako pierwsza z badanych sieci prawidtowo operowata na
wagach ujemnych. Posiadata mozliwosci wyuczenia sie funkcji logicznych
niemonotonicznych. Przyktadowa funkcja (tutaj negacja implikacji) o
skomplikowaniu

j1 Wej 2 Wyj
'1'p 5 . e podobnemu funkcji XOR
p- jest zaprezentowana na
3 0 1 0
sunku 31.
4 1 1 0 1Y SEIEE
Proby wuczenia modelu
Rys.31. Przyktadowa funkcja niemonotoniczna IMPL4  funkcja ~ XOR
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zakonczyly sie niestety niepowodzeniem. Prawdopodobnie jest to efektem
ztego rozumienia wptywu rozlanego pobudzenia na neurony.

Po przeprowadzonych doswiadczeniach symulowania sieci
neuronowych mozna wyciggng¢ dwa wnioski dotyczagce modelu IMPL4:

e rozlane pobudzenie rzeczywiscie powoduje ukierunkowanie uczenia.
¢ nie ma tendencji do tworzenia bardziej ztozonych uktadéw neuronalnych.

Uczenie tg metodq jest ograniczone tylko do jednego neuronu. Nie
nastepuje podziat funkcji neuronéw w sieci, lecz kazdy probuje rozwigzywaé
caty problem sam. Podczas uczenia powinny wyksztatca¢ sie szlaki neuronalne
wielu neurondw rozwigzujacych dany problem.

Nalezy wiec opracowa¢ nowg metode modyfikacji wag i progu, ktora
wykorzystywataby skutecznie informacje zawarte w pobudzeniu rozlanym.
Najprawdopodobniej model ten zazebia sie z kumulowaniem impulséw jako
tadunkéw na wejsciach neuronu i wtedy moze mieC dopiero pozadane
dziatanie. Dziatanie rozlanego pobudzenia opiera sie $cisle na ztozeniu
operowania sygnatami s$rednimi. Wtedy prawdopodobnie mozliwa bedzie
specjalizacja grup neuronow.

W modelu nie wystepuje pamie¢ krotkotrwata, poniewaz efekty synergii
neuronéw sg niewielkie, lub ich nie ma (zalezy od problemu). Praca neuronu
wyjsciowego jest stymulowana rozlanym pobudzeniem/ hamowaniem, tak ze
potrafi on rozwigzywa¢ roéwniez problemy funkcji niemonotonicznych.
Informacja zawarta w jego wagach moze by¢ bardzo prostg formag pamieci
diugotrwatej na temat korelacji rozlanego pobudzenia oraz danych

wejsciowych.

5.1.4 Wnioski z do$wiadczen oraz wstepne zatozenia projektowania kolejnych
modeli IMPL

Kolejne modele majg za zadanie poprawiC bftedne zatozenia |
niedociggniecia modeli sieci wykryte w eksperymentach. Poprawy wymaga
sposéb zmian wag neuronu, aby umozliwi¢ powstawanie wag ujemnych. W
przeciwnym wypadku nalezy dowie$¢, ze nie sg one konieczne. Kolejnym
elementem jest rozdzielenie pamieci na dwa odrebne rodzaje pamigci:
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krotkotrwatg i diugotrwatg. Na tym etapie sie¢ wydaje sie dysponowac jedynie
pamiecig krétkotrwatg i ulotng. Ulotnos¢ polega na tym, ze trudno jest utrzymac
zapamietany stan. Kazdy niepoprawny impuls powoduje utrate pamieci.
Powinien réwniez zosta¢ wyodrebniony proces uczenia sie, spos$réd czasu
istnienia sieci. Moze to by¢ osiagniete przez sztywne okreslenie czasu uczenia
lub przez przyjecie zatozenia, ze neurony bedg ptynnie traci¢é mozliwos¢
uczenia sie wraz z uptywem czasu. Drugg metode zrealizowa¢ mozna przez
okreslenie prawdopodobienstwa zmiany danej wagi. Jes$li nie ulega ona
zmianom przez pewien okres czasu to mozna zatozyC, ze jej wartos¢ jest
ustabilizowana i nie powinno sie jej zbytnio zmienia¢. Kolejng potrzebng rzeczag
jest wprowadzenie modelowania uptywu czasu do modelu sieci. Umozliwi to
modulowanie sity impulsu czestotliwoscig jego powstawania. Powstawanie
aktywacji poprzez odbieranie impulséw bedzie uwarunkowane czasem. Impulsy
nie bedg musiaty wystepowac jednoczesnie poniewaz pobudzenie neuronu
opadac¢ bedzie dopiero po pewnym czasie.

Jak wynika z obserwacji uktadu nerwowego cztowieka, sie¢ neuronowa
powinna przeprowadza¢ dos$C wyrazng selekcje sygnatow pojawiajgcych sie
zbyt czesto. Sygnaty te nie powinny byC przesytane do warstw wyzszych.
Naturalnym przyktadem moze by¢ receptor dzwiekowy. Neurony wystepujace
za mechanizmem rozktadu Fouriera biezacego dzwieku w uchu sg
odpowiedzialne za okreslony ton. Jesli dana czestotliwos¢ trwa diuzszy okres
czasu cztowiek przestaje na dany dzwiek reagowac. Nie jest zauwazane tez
zanikniecie danego dzwieku. Jest to zachowanie sieci, dajgce odpowiednie
$wiatto na dziatanie pojedynczego neuronu. Wtasciwosci te powinny posiadac
réwniez modele sieci. Powinno to wptyng¢ na zmniejszenie znaczenia sprzezen
zwrotnych, a skoncentrowanie sie na przetwarzaniu sygnatéw pojawiajgcych
sie asynchronicznie, co jest wysoce potrzebne w tym modelu.

Sie¢ aby petni¢ bardziej skomplikowane funkcje, musi by¢ podzielona na
okreslone czes$ci zwane modutami. Mozna przyja¢ takg definicje, ze modut
rozpoznaje okreslony ciag danych wejsciowych, jesli wystepuje w nim co
najmniej jeden neuron pobudzany tylko po wystgpieniu rozpoznawanego ciggu.

Aby sie¢ skutecznie rozpoznawata sekwencje niepotrzebna jest
rownolegto$¢ przetwarzania w module. Praktycznie w chwili t przetwarzania
okreslonego ciggu w pojedynczym module znaczenie ma tylko jeden neuron
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(jesli wyeliminujemy nadmiarowos¢; dotyczy to modeli binarnych). Mozna to
zaobserwowaé w  doswiadczeniach.  Skonstruowanie  odpowiedniego
pobudzania neurondéw, wymuszonego np. fazami pracy lub potozeniem
geometrycznym moze wptyng¢ na bardziej szeregowe przetwarzanie oraz
zmniejszenie nadmiarowos$ci. Jesli te mechanizmy zadziatajg to powstang
odpowiednie linie przetwarzania bodzcow wejsciowych. Jesli bedg one
pracowa¢ w tym samym czasie symulacji (co jest juz wykonane) i bedzie
wystepowata korelacja miedzy odpowiednimi liniami przetwarzania, to powinno
by¢ to zaznaczone w strukturze sieci po odpowiednim czasie. Aby
ukierunkowaé prace modutu mozna uzy¢ globalnego sygnatu, oceniajacego
prace sieci. Ma on odpowiednik w naturalnej sieci zwany rozlanym
pobudzeniem lub  rozlanym  hamowaniem. Nalezy  wyszczegolni¢
specjalizowane pobudzenia dla kazdego modutu. Ma to za =zadanie
przeprowadzanie selekcjowanego uczenia, tak jak to w naturze selekcjonujg
odpowiednie neurotransmitery i substancje na nie wptywajgce (obnizajace lub
zwiekszajgce aktywacje).

Jedng z metod budowania modutéw moze by¢ potozenie geometryczne

neuronéw w zdefiniowanej przestrzeni. Na pewno nie bedzie to 'zwykta'

przestrzen, ESS

1 1> 2 1> <3 2>

Hyjscie
ER Hygranie sieci

EAAA
D
NWWW
[ )

poniewai liczenie <2 2> 9 8> 18 9> <11 18>
odlegtosci

wymagatoby

operacji zbyt dtugo

trwajacych SIEC sygnafy: ¢ 1,

1EC dob»gc : 4
d=8 pr=268 wy=1l w:
d=1 pr=138 wy=1 H
pr=247 wy=1

pr=232 wy=1
Pr=256 wy=1

(pierwiastki). W

£€LCE
AAAAA
NON | O
PWOUIN

przestrzeni tej

bedzie okreslona Rys.32. Fragment drzewa genealogicznego metody ewolucyjne;

funkcja propagagji para (xx , yy) oznacza: Xx-nr sieci yy-numer przodka sieci
zaburzenia pola elektrostatycznego, co bedzie  wptywato na
prawdopodobienstwo aktywacji sasiednich neuronéw. Mozna tez ograniczy¢
ilo$¢ synaps do blizszego lub dalszego sgsiedztwa.

Gdy okreslony model bedzie posiadat pamie¢ krotko- i dtugoterminowg
oraz efektywnie jg wykorzystywat, bedzie poddany uczeniu wedtug

opracowywanej metody ewolucyjnej (nie zawartej w pracy). Prawdopodobnie w
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tej metodzie konieczne bedzie wprowadzenie okreslonych operatoréw
wymuszajacych wiekszg modutowos¢ sieci. Pokrétce metode te mozna
przedstawi¢ nastepujgco. W procesie wstepnym zostaje ustalona maksymalna
liczba potomkdéw danej sieci. Przez potomka rozumie sie sie¢ poddang
modyfikacji w procesie uczenia przez okreslony czas. Potomek jest podczas
dziatania (i uczenia jednoczesnie) poddawany kolejnym testom sprawdzajgcym
jego poprawnos¢ (przystosowane do srodowiska, rozwigzywanie zadanego
problemu funkcyjnego itp.). Testy funkcyjne przeprowadzane sg w losowej
kolejnosci, aby sie¢ nie nauczyta sie sekwencji. Zostaje policzona ilo$¢
trafnych odpowiedzi na testy - jest to dobro¢ sieci. Nastepnie dobro¢ sieci
zostaje poréwnana z dobrocig innych sieci. Z wszystkich wczesniegj
wygenerowanych sieci wybrana zostaje sie¢, ktdra charakteryzuje sie najlepszg
dobrocia, pod warunkiem, ze maksymalna liczba potomstwa danej sieci nie
zostaje przekroczona. Dana sie¢ moze mie¢ wielu potomkow, ale tylko z tego,
ktéry ma najlepsza dobroC tworzony jest nowy potomek. Jesli potomek daje
gorsze wyniki od przodka to jest generowany nastepny potomek tego przodka.
Jesli wszyscy potomkowie dajg gorsze wyniki, to tworzony jest nastepny ,brat”
przodka. Proces ten mozna w kazdym momencie przeanalizowa¢ za pomoca
drzewa genealogicznego sieci. Fragment przyktadowego drzewa jest

przedstawiony na rys. 32.

5.2 Modele z symulowaniem przeptywu tadunkéw

Jak wykazujg badania, jedynym zjawiskiem ktére moze zmieni¢ wartosc
wagi synapsy zarowno w kierunku zwigkszajgcym, jak i zmniejszajgcym o
tysigce procent jest zjawisko torowania. Prawdopodobnie jest to podstawowy
mechanizm uczenia. Torowanie jest zalezne od sygnatu wejsciowego, jednak
usrednionego w pewnym okresie czasu oraz od rozlanego pobudzenia/
hamowania. Aby symulacja komputerowa tych zjawisk byta zblizona do
procesow naturalnych, nalezy w duzym stopniu zblizy¢ sie do modelu ciggtego.
Nie nalezy jednak przesadza¢ z doktadnoscig modelu, gdyz prawdopodobnie
nie wptywa to drastycznie na jakos¢ obserwowanych zjawisk, a moze
spowodowa¢ sytuacje, ze na w miare szybkiej maszynie bedzie mozliwa
symulacja 1 neuronu, a nie catej sieci neuronowej. Zjawisko uczenia mozna
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obserwowac na przyktadzie 1 neuronu, ale fakt dgzenia pojedynczego neuronu
do okreslonego rozwigzania nie oznacza, ze sie¢ sktadajgca sie z takich
elementéw bedzie jako catos¢ rowniez do czego$ dazyta.

5.2.1 IMPLS5 - uproszczony ciggty model komérki nerwowe;j

Celem prawidtowego zaobserwowania zjawisk zwigzanych =z
kumulowaniem tadunkéw w neuronach oraz ich wzajemnych zaleznosci,
najlepiej uzy¢ modelu ciggtego. Jednak nie wszystkie zjawiska tego modelu
posiadajg te¢ sam ciezar gatunkowy. Aby praca sieci mozliwa byta do
symulowania, przyjgeto w IMPL5 kwantowanie czasu co okres rowny
potowicznemu roztadunkowi potencjatu postsynaptycznego. Jest to ok. 1,8 ms.
Synapse mozna zaprezentowa¢ schematem rys. 33. Elementy R7 i R2 to
rezystory, C1 to
kondensator. Okresla on

o— = o
Wejscle z Wyjsele x
przechodzacego przez R
Lo

synapse, jednak nie

nam deformacje sygnatu

Cl

wyznacza ksztattu

sygnatu. Upraszczajac —— ——
to przeksztatcenie przy

zachowaniu  zdolnosci Rys. 33 - Model synapsy - schemat elektryczny
sumowania czasowego oraz przyblizonym krokiem czasowym réwnym 2 ms

kumulowanie tadunku postsynaptycznego mozemy przedstawi¢ nastepujgco:

ity (22)

X i;t— wartos¢ itego wyjscia z synapsy neuronu j w chwili ¢

z,;— wartos¢ itego wejscia do synapsy neuronu j z innego neuronu w chwili
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Jesli prébki sygnatu wyjSciowego z neuronu w kolejnych taktach
przedstawiatyby sie nastepujaco:
0,16, 8,4,2 1,000, .. to 50 -

potencjat postsynaptyczny 40 -
. i o |
miatby wartosci: v
0, 16, 18, 10, 8. 4, 2, 1, 0, « 20 1
czyli jego ksztatt nawet po s
zamodelowaniu roztadowywania 9 e iy
Oms Zms 4ms 6ms 8ms

w czasie posiada bigd w czas od ostatniego odpalenia
poczatkowej  fazie  [16,16].

Najlepszym rozwigzaniem jest Rys.34. Refrakcja jako modyfikacja progu
wiec trwanie sygnatu wyrazona w mV
wyjéciowego przez 1 takt: 50, O,

0, ..., wtedy potencjat postsynaptyczny przyjmie wartosci: 25,12,6,3,1,0.

W celu zamodelowania zwtoki w pracy komorki nerwowej, rownej ok. 2
ms, nie trzeba stosowal zadnych dodatkowych elementéw w algorytmie,
poniewaz neurony przeliczane sg co takt, czyli posiadajg wymagane
opdznienie. Poza tym przy tej ziarnistosci czasu mozna przyjg¢ brak zwitoki na
propagacji sygnatu w aksonie.

Kolejnym elementem zamodelowanym jest refrakcja wzgledna. Wymaga
ona odpowiedniej implementacji. Refrakcja jest sitag blokujaca pobudzanie sie
komoérki bezposrednio po pobudzeniu i jest zmienna w czasie. Mozna jg
wyrazi¢ jako chwilowe zwigkszenie wartosci progu o x mV. W tym modelu w
kolejnych taktach bedzie ona réwna: nieskonczonosc, 9, 2, 1, 0, (rys. 34) czyli
neuron ma duze szanse wzbudzac sie co 6ms, a nawet co 4ms, gdyz neuron N;
jest aktywny (odpala sie), jesli w danym momencie zachodzi nierownosc:

I
; WiJ,r*xiJ,:>hj,/+"(dt;-J) (23)

gdzie:
h;: - warto$¢ progu neuronu j w chwili ¢
wije - warto$¢ 'tej wagi neuronu j w chwili ¢

xi;+ - wartos¢ i'tego wejscia neuronu j w chwili ¢
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r(dt,;) -wartos¢ funkcji refrakcji, gdy odpalenie neuronu j wystgpito df czasu temu. Dla 0<df<1ms
modeluje refrakcje bezwzgledna.
df,;- czas, ktéry uptyngt od ostatniego odpalenia neuronu j

Refrakcja nie jest jedynym czynnikiem wptywajgcym na powodowanie
przerw pomiedzy odpaleniami okreslonego neuronu, gdyz podczas odpalenia
neuron roztadowuje sie tzn. jego potencjat postsynaptyczny jest réwny 0 lub
nawet ujemny w modelu (tzn. <-59mV wewnatrz komérki). Aby ponownie sie
wyzwoli¢, potencjat musi wzrosng¢ do wartosci ponadprogowej, co musi trwac
okreslony czas.

Wszystkie powyzsze wartosci parametrow modelu zostaty dobrane tak,
aby:

e synapsa otrzymujgca sygnat z duzg czestotliwoscia miata potencjalne
szanse pobudzenia neuronu,

e wystepowaty sumowania sygnatéw roznych synaps tego samego neuronu
przesunietych w czasie,

e pobudzenie neuronu bylo adekwatne do czestotliwosci impulsow

Ve jscia: 50 @ wyjsciowych.
’ Przyktad wzrostu
i pobudzenia
postsynaptycznego przy

pobudzaniu tylko jednej

synapsy Z duzg

intensywnoscig

(maksymalng

czestotliwosciag) obrazuje

----- rysunek  35. Semantyka

symboli z rysunku jest

NETOINSLY

podobna do poprzednio

Rys.35. Efekty draznienia jednej synapsy z duza omowionych. Poza tym z
czestotliwodcia lewej  strony  kazdego

neuronu znajduje sie

oscylogram pobudzenia neuronu oraz wartos¢ sumy progu i refrakcji. Poniewaz
warto$¢ progu jest prawie stata w tak krotkim czasie, wzgledne zmiany
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oznaczajg wptyw refrakcji. Neurony 3 i 4 (od gory, gdzie pierwszy neuron nie
jest zaznaczony, poniewaz zawsze byt pobudzany podprogowo, zgodnie z
odpowiadajgcym mu oscylogramem) tadowaty sie do$¢ szybko pod wptywem
pobudzen 6 synapsy (pierwsze wejscie z zewnatrz do sieci). Neuron 3 wyzwolit
sie pierwszy i z powodu wzajemnych sprzezen w neuronie 4 mozna
zaobserwowac wyrazny ‘pik’ w potencjale postsynaptycznym.

Oscylogram 36 prezentuje inng klase zaleznos$ci czasowych. Pobudzane
byty dwie synapsy jednego neuronu w réznych odstepach czasowych. Na
wykresie widnieje 5 akcji.

1. pobudzenie od synapsy B (pierwszej z lewej)

2. pobudzenie od synapsy A

3. pobudzenie synapsy B + 4ms przerwy + pobudzenie synapsy A

4. pobudzenie synapsy B + 2ms przerwy + pobudzenie synapsy A

5. pobudzenie synapsy B + pobudzenie synapsy A

Jak wida¢ na oscylogramie tylko w przypadku 4 i 5 wystgpito odpalenie
neuronu. Granica rozbieznosci czasowych pobudzen wywotujgcych pobudzenie
wynosi ok. 3ms. Sie¢ ma wiec potencjalne mozliwosci okreslania
przynaleznosci wzorca do okreslonej klasy abstrakcji réwniez pod katem tego

kryterium.
e
1 e S5 A4 D W modelu IMPL5 mozna

zaobserwowa¢ nie  spotykane

3
3
s

wczesniej zachowania sieci.

Wszystkie dotychczasowe modele

sieci miaty tendencje do wpadania

w cykle podczas uczenia Ilub

Rys.36. Pobudzanie dwoch synaps z
o g e minima lokalne. Dopiero podanie

RSl R = odpowiednio spreparowanych
danych uczacych (w miare réwnomiernie i losowo roztozonych) zapewniato
odpowiednio duze prawdopodobienstwo nauczenia. Okazuje sie, ze ten model
ma zupetnie inne wiasciwosci. Wykazuje zachowania z pogranicza chaosu
deterministycznego. Nawet po dtuzszym przebywaniu w cyklu uczenia moze z
niego wyjs¢. W pracy sieci mozna zauwazyC wyraznie powtarzajgce sie
sekwencje porozdzielane wstawkami chaotycznymi, aczkolwiek

deterministycznymi.
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Poniewaz sie¢ pracuje obecnie bardziej w oparciu o czestotliwosci niz
pojedyncze sygnaty -wystgpita potrzeba okreslenia odpowiednich metod
oceniania sieci. Pierwsza jest nazwana ,dobrze/ zle” i jest ona zwigzana z
interpretacjg pobudzenia rozlanego, gdzie przyjmuje sie, ze pobudzenie k(t) ma
trzy stany {-1,0,1}. Odpowiadajg one nastepujacym zjawiskom: hamowaniu,
zwanemu rowniez blokowaniem, brakowi oceny oraz pobudzeniu. Trudno
jednak zgodzi¢ sie z takg kategoryczng interpretacjg, bowiem sie¢ neuronowa

Ve jscia: B 500 nawet po osiggnieciu
¢ okreslonego

wymaganego poziomu

dziatania moze nadal
sie doucza¢, co jest
| pominiete w te]
koncepciji.
' Prawdopodobnie
zbadanie mechanizmu
powstawania
pobudzenia rozlanego
moze uzupetni¢ ten
model.

Inng interpretacjg

.- -- -
' I'n\
a

) L}
.3
o
s ’
'
'
X ‘
] ’
kl
i

rozlanego pobudzenia

mET moze by¢ metoda
.lepiej/ gorzej”. W

Rys.37. Prosta sie¢ z przyktadowymi oscylogramami z poréwnaniu do
elementami chaosu poprzedniej  metody

mozliwa jest

rozbudowa w dwdch kierunkach:
e pozostawienie obiektu neuronu bez zmian, wprowadzenie mechanizmu
réznicujgcego wyniki do algorytmu oceniajgcego,
e zmiana algorytmu dziatania neuronu, zwigzana z inng interpretacjg
rozlanego pobudzenia (wspot. k(t)).
Ta druga opcja ma te =zalete, ze mozliwe jest wykorzystanie
indywidualnych stanéw dynamicznych neurondéw do modyfikacji mechanizmu
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uczenia. Wydaje sie, ze moze to wptyna¢ na lepszg wspodtprace neurondéw w
rozwigzywaniu okreslonego zadania.

Przyktadowy algorytm uczenia neuronu przy wybraniu drugiej opcji musi
zawieraC pewne statystyki na temat pracy neuronu. Aby wagi mogly byc¢
odpowiednio wyliczane pod wptywem k(t) interpretowanym ‘lepiej / gorzej’,
kazdy neuron powinien pamigtac swojg $rednig czestotliwo$¢ odpalania (SCO)
oraz ostatnig srednig czestotliwos¢ odpalania (OCO), np. w czasie (t-d,t), gdzie
t- chwila obecna, d- ilos¢ krokéw symulatora w ktérych liczona jest OCO.
Zmiana sredniej czestotliwosci odpalen (ZSCO) jest rowna wiec réznicy OCO
oraz SCO.

ZSCO =0CO - SCO (24)

e SCO reprezentuje Srednig czestotliwos¢ odpalen w ostatnich stu kilkunastu
cyklach.

e OCO jest $rednig czestotliwoscig odpalen w ostatnich kilkunastu taktach.

e ZSCO=0CO-SCO i jest zmiang czestotliwosci odpalen.

W zaleznos$ci od wyliczonego ZSCO mozemy przeprowadzac uczenie,
zgodnie z zasadami:
e (ZSCO>0ik=+1) lub (ZSCO <0i k =-1) -> torowanie
e (ZSCO>0ik=-1) lub (ZSCO <0 k = +1)-> blokowanie

Udroznienie polega na zmodyfikowaniu wag aktywnych synaps o
wielkos¢ wprost proporcjonalng do iloczynu wejscia x(f) oraz k(t) liczonym w
okreslonym czasie, oraz obnizeniu progu. Blokowanie jest podobne, lecz prég
zostaje podniesiony. Jak wynika z tego algorytmu, synapsy nigdy nieaktywne
nie sg zmieniane w procesie uczenia. Aby wyuczona sie¢ nie popadata w
dziwne zachowania w zmienionym Srodowisku musi z czasem nastepowac
zanik takich synaps, czyli np. wyzerowanie wag. Proces ten jest réwniez
zamodelowany, jego wzorce mozna odnalez¢ w przyrodzie.

Poniewaz z synapsami hamowania presynaptycznego w poprzednich
modelach byly duze problemy, jest tu zamodelowany hipotetyczny mechanizm
pozaneuronowy. W dotychczasowych modelach hamowanie presynaptyczne (o
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ile byto implementowane) miato by¢ jednym z elementéw wykonywanych przez
neuron. Realizacja zaktadata istnienie wag ujemnych, ktére w wyniku uczenia
zwiekszalyby swoje wartosci bezwzgledne. Mimo sprawdzenia wielu metod
uczenia, nie udato sie znalez¢ algorytmu pracy i uczenia neuronu, ktory
umiatby zarzgdzac siecig z takimi zatozeniami. By¢ moze problem tkwi nie w
algorytmie, lecz w strukturze sieci. Moze wagi ujemne (rozumiane
standardowo, ze x;*w;<0, ktory to iloczyn powoduje zmniejszenie globalnego
pobudzenia komérki) nie sg podstawowym typem synaps, lecz miegjsce te
powinny zajmowac synapsy hamowania presynaptycznego. Jesli tak, to musi
by¢ to mechanizm wystepujgcy poza neuronem, ktdrego miejsce wystepowania
nalezy zaznaczy¢ w algorytmie. Hipotetyczny model hamowania
presynaptycznego mozna przedstawi¢ nastepujaco: Jezeli waga w; < 0 i w
chwili t wystepuje pobudzenie synapsy nr j, to sktadnik pobudzenia (liczonego
standardowo) wi.1* x+s nie powinien by¢ wliczany do globalnego pobudzenia
neuronu, lub mozna zastosowac¢ zalezno$¢ liniowa. Jesli w; dotyczy ostatniej
synapsy neuronu to z przyczyn formalnych mechanizm ten nie dziata, lub
hamuje sygnat x; , co z globalnego punktu widzenia nie ma jakos$ciowego
znaczenia. Wyksztatcanie zas tego typu synaps ma szanse zaistnie¢ podczas
uczenia w procesie torowania, a nie hamowania, jak mozna by poczatkowo
przypuszcza¢. Jest to podstawowa nowosC¢ wzgledem poprzednich metod.
Zaréwno synapsy hamowania, jak i pobudzania, wyksztatcatyby sie podczas
torowania, podczas blokowania oba typy synaps ulegatyby zanikaniu. Jest to
intuicyjnie zgodne z traktowaniem pobudzenia rozlanego jako oceny pracy
sieci. Blokowanie oznacza w tym wypadku negatywne tendencje w dazeniu
sieci do rozwigzania. Torowanie oznacza ocene pozytywng, sie¢ bedzie dazy¢
dalej w tym samym kierunku. Synapsy hamowania presynaptycznego mozna
ustawi¢ w sieci poprzez wylosowanie wag ujemnych (warunkujgce hamowanie
presynaptyczne) przed procesem uczenia i pozostawiC je bez mozliwosci
zmiany znaku. Wartos¢ bezwzgledna tych wag jest natomiast zmieniana w
procesie uczenia.

W zwigzku z tym, ze zaszta potrzeba przebadania kilku wariantéw w
ramach wyzej przyjetych zatozen, z modelu IMPL5 powstaty pochodne IMPL5A,
IMPL5B i IMPL5C. Zostang omowione skrétowo dwa pierwsze. Czesci
algorytméw symulacyjnych zastaty pogrupowane w moduty podstawowych
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algorytméw uczenia. W ponizej przedstawionych doswiadczeniach, zwigzanych

z metodami uczenia sieci neuronowych oraz pojedynczych neurondéw,

omoéwione sg rozne algorytmy. Majg one jednak pewne czesci (moduty)

wspolne, ktérych okreslenie utatwi dalszg analize. Moduty te sg zwigzane z

wywotaniem ich w réznych momentach pracy neuronu. Blokowo mozna to

przedstawi¢ nastepujgco:

1. Obliczenie roztadowania sie tadunkéw postsynaptycznych w zwigzku z
symulacjg czasu.

2. Modut uczenia nr 1.

3. Obliczenie pobudzenia neuronu, jesli nie wystepuje odpalenie to przejscie
do punktu 6.

4. Modut uczenia nr 2.

5. Symulacja zmian tadunkéw podczas odpalenia.

6. Obliczenie niezbednych statystyk.

Modut uczenia nr 1 to zasadniczy element modelujgcy zjawisko
torowania. Wystepuje on niezaleznie od odpalania neuronu. Dziatanie jest
$cisle zwigzane z przekazanym z zewnatrz sieci parametrem k - rozlanym
pobudzeniem/ hamowaniem. Jednak ostateczna interpretacja parametru k nie
miesci sie w tych granicach. Jednakowo wazny wptyw na mechanizmy uczenia
kazdego neuronu majg lokalnie obliczane statystyki, ktére to dopiero wraz z
parametrem k przesadzajg o kierunku uczenia. Udroznienie przeptywu

tadunkéw nastepuje, gdy spetniony jest warunek:

k>0 Azsco=0 Vk<0 Azsco<0 (25)

zas blokowanie, gdy:
k>0 Azsco<0 V k<0 Azsco=0 (26)

Modut uczenia nr 2 jest uaktywniany podczas odpalenia neuronu. Ma on
za zadanie wylgczanie synaps, ktére prawie nigdy nie sg aktywne, a wagi na
nich majg na tyle duze wartosci, ze przypadkowe sygnaty mogtyby zaktécac
prace. Jest to uzupetnienie modutu pierwszego, ktéry zajmuje sie tylko

synapsami aktywnymi.
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5.2.2 IMPL5A - rozlane pobudzenie, wykorzystanie historii odpalen neuronu

Model ten wyposazony jest jedynie w modut uczenia nr 2, czyli posiada

nastepujace zatozenia:

e uczenie tylko podczas odpalenia neuronu,

e uczenie tylko synaps pobudzanych,

e brak modyfikacji progu,

e uczenie na podstawie rozlanego pobudzenia / hamowania (w zaleznosci od
historii kazdego neuronu),

Doswiadczenia przeprowadzone na kilku neuronach nie byty
jednoznaczne, sie¢ nie wpadata w sprzezenia bezwyjsciowe lub stany ‘ciszy’,
ale jej funkcjonowanie nie dazyto do rozwigzania. Efekty synergiczne nie
zostaly dostrzezone. Nie mozna zatem mowi¢ o wystepowaniu pamieci krotko-

ani diugotrwatej w tym modelu.

5.2.3 IMPL5B- modut uczenia podczas odpalenia oraz podczas nieaktywnosci

Model ten zostat wzbogacony w stosunku do IMPL5A o modut uczenia nr
1. Nieaktywne synapsy majg szanse zanikng¢ podczas aktywacji neuronu.
Progi nadal nie sq zmieniane. Wyznaczanie wspotczynnika k dla sieci nie jest
sprawg tatwg. W tym modelu wyglada to nastepujgco (jesli chodzi o
odwzorowania funkcyjne):

20> 0 Azsco<(0 =k=-—1
z0>0 Azsco>0 =k=1
z0<0 Azsco<0 =k=1
z0<0 Azsco>0 =k=—1
z0=0 Azsco<0 An>0 =2k=—1 (27)
z0=0 Azsco=0 An>0 =k=1
z0=0 Azsco<0 An=0 =>k=1
gdzie: z0=0 Azsco=0 An=0 =>k=—1
e zo(t) = zo(t-2) - zo(t-1) - zmiana oczekiwanego wyjscia (teoretycznego) przy
zmianie danych wej$ciowych
e n - sygnat wyj$ciowy oczekiwany ze zbioru {0,1}

* k- ustawienie wspétczynnika rozlania k
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W momencie rozpoczynania pracy sieci pojawia sie sztucznie
wprowadzony okres, w ktérym zablokowane sg procesy uczenia, a jedynym
zadaniem w tym czasie jest ustalenie sie statystyk SCO i OCO. W poprzednich
modelach nie wystepowaty fazy takie jak: dziatanie i uczenie, ale byty one
jednoczesne. Tutaj sytuacja nieco sie zmienia. Wystepuja na zmiane fazy
uczenia i testowania(dziatania), ale uczenie wykonywane jest na dziatajace;
sieci. Algorytm wyglada nastepujaco:

1. wprowadzenie losowych danych wejsciowych (ustalanie statystyk),

2. podawanie okreslonych danych wejsciowych (testowanie),

3. wprowadzenie rozlanego pobudzenia (uczenie) oraz praca,

4. powrd6t do punktu 2 lub 1,

Wazne jest, aby punkt 3 wystepowat bezposrednio po 2, i nie bylo w tym
miejscu innych dziatan.

Model ten ma problemy w uczeniu funkcji AND (iloczynu logicznego). W
modelu IMPL2 nie nastepowato prawidtowe uczenie neurondw, ktére powinny
wykonywa¢ operacje OR (sume logiczng). W tym modelu jest odwrotnie.
Bramki OR wyksztatcajq sie, natomiast nie wystepujg AND’y. Jest to zwigzane z
przyjeta logikg sieci. O ile w IMPL2 bylo to tatwo wyttumaczalne
(asymptotycznym dagzeniem progu do aktywacji ) to tu mozna prébowac
wyjasni¢ ten problem nastepujgco: punkty 1-4 opisujg stany, w jakich moze
znalez¢ sie neuron podczas pracy. Sytuacje te sg réwnie prawdopodobne. W
kazdym punkcie nastepuje pewna modyfikacja wag wejsciowych, w zaleznosci
od danych wejsciowych oraz ZSCO, zgodnie z algorytmem uczenia.

1. wejscie = (0,0) - neuron sie nie uczy, bo (a) nie ma aktywnych synaps, (b)
neuron sie nie odpala,

2. wejscie = (1,0)

e jesli sie odpala, to zmniejszane sg obie wagi,

» jesli sie nie odpala, to zmniejszana jest waga przy aktywnej synapsie,

3. wejscie = (0,1)

e jak w punkcie 2,

4. wejscie = (1,1)

e wzmacniane sg oba wejscia, czyli zwiekszane sg wartosci wag obu synaps
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Po dituzszym czasie szanse zwiekszania sie wag synaptycznych sag nikte, bo
$rednia zmiana wagi zgodnie z punktami 1-4 wynosi
I 1 1 1 1
0 *1—2*1 —Z*7+Z*1 <0 (28)
co jest potwierdzalne doswiadczalnie.

Testowanie wplywu torowania i blokowania przeprowadzono w kilku
wariantach. Aby oceni¢ skrajne warunki pracy sieci przetestowano jg przy
trwajgcym caly czas pobudzeniu rozlanym oraz w drugim przypadku, przy
rozlanym hamowaniu. W pierwsze] klasie doswiadczen wszystkie sieci
niezaleznie od stanu poczatkowego po dtuzszym czasie wpadaty w sprzezenia
zwrotne. W pierwszej fazie kazdy neuron ustawit swoje wagi na wartosci
maksymalne lub zero. Gdy ZSCO po pewnym czasie osiggneto 0 wszystkie
wagi ustawity sie na wartosci zblizone do maksymalnych przyjetych w modelu.
W drugiej klasie sie¢ zachowywata sie aperiodycznie, nie dazyta do
catkowitego wygaszenia. Jednoczesnie neurony nie wyksztatcaty okreslonych
rozpoznawanych wzorcow, ale ich wagi oscylowaty w okolicach zera. Jest to
prawidtowe, gdyz neurony dazyty do zmiany swojego ZSCO. Innymi stowy, gdy
w neuron zaczat odpalac sie rzadziej, to dazyt do zwiekszenia tej czestotliwosci
i odwrotnie. Powyzsze fakty $wiadczg o statystycznie prawidtowym
oddziatywaniu rozlanego pobudzenia na neurony i prace sieci, zgodnie z
zatozeniami.

Omawiany model jest kolejnym posrednim krokiem w kierunku budowy
maszyny z pamiecig. Wykazuje on pewne wiasciwosci w przeksztatcaniu
sygnatu wejsciowego na jego wewnetrzng reprezentacje, nie wykorzystujac
przy tym jeszcze mechanizméw zwigzanych z modyfikacjami progéw. Siec¢
potrafi podobnie jak model IMPL2 odpowiedzie¢ sekwencjg zsynchronizowang
z ciggiem wejsciowym, nie dochodzac do osiggnigcia synchronizacji za pomocg
mechanizméw uczenia (IMPL2), ale wynika to juz z jej zasady dziatania.
Wplywa to znacznie na szybko$¢ procesu synchronizacji. Najczestszg
niedoskonatos$cig jest tu wpadanie w bezwyjSciowe sprzezenia zwrotne
(ok.25% doswiadczen).

Analizujgc pamie¢ diugoterminowg w tym modelu, nalezy zauwazy¢ ze
posiada te samg ideg co IMPL2, jednak inng budowe. Roznica polega na tym,
ze IMPL2 operowat logicznymi bramkami AND, ten zas model - bramkami OR.
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Potencjalne mozliwosci obu modeli sg rowne, poniewaz stosujemy przyjetg
wczesniej tabele kodowania sygnatow wejsciowych. Problem dotyczy w tym
przypadku sygnatéw miedzyneuronowych. Czy sie¢ moze na nich réwnie
skutecznie operowac¢ jak w IMPL2? Trudno jest to poréwnaé, poniewaz
rozwazany model jest ciggty (mimo iz przesytane informacje miedzyneuronowe
sg binarne) i nie jest sprawg oczywistg przeksztatcanie go w cyfrowy schemat
elektroniczny.

Pamie¢ krotkoterminowa jest reprezentowana w tym modelu przez
rozktad potencjatédw postsynaptycznych oraz stany neurondéw (np. stany
aktywacji). W poréwnaniu do IMPL2 ma te przewage, ze z powodu mozliwosci
gromadzenia potencjatow podprogowych szybciej zyskuje synchronizacje z
danymi wejsciowymi. Pojawia sie natomiast problem przedefiniowania samej
istoty reprezentowania danych przez automat neuronowy. Ogdlnie mowiac,
ciggi wyjsciowe nie tworza zdefiniowanego ciggu, ale mozna ustali¢
prawdopodobienstwa okreslonych ciggéw wyjsciowych jako odpowiedzi na
odpowiednie ciggi wejsciowe. Sie¢ realizuje okreslone przeksztatcenie.

W czasie doswiadczen okazato sie, ze podczas zmian w wielkosci sieci
zmieniajg sie wiasciwosci pracy neurondéw. W przypadku wigkszych sieci
bowiem refrakcja ma statystycznie zbyt mate znaczenie. O ile z badan
biologicznych wynika, ze refrakcja powinna wynosi¢ 9,2,1,0 mV (w kwantach
czasu tego modelu = 1,8 ms), to druga strona w tej nieréwnosci

akt>prog+refrakcja, gdzie ‘akt’ to globalne pobudzenie neuronu liczone jako

akt= Z Wi*X,‘/ w (29)

i#id

gdzie:

0<i<ILOSC_SYGNALOW +1 - ilo$¢ danych wejsciowych sieci,

id - numer aktualnego neuronu,

x; - warto$¢ potencjatu postsynaptycznego,

w; - warto$¢ i-tej wagi,

W- maksymalna dopuszczalna wartos¢ wagi
nie odpowiada biologicznemu pobudzeniu, ze wzgledu na sumowanie
geometryczne na btonie komodrki potencjatdw pobudzenia catkowitego [158].
Statystycznie suma uwzgledniajgca geometrig¢ btony tych potencjatow jest na
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pewno mniejsza. Lepszym przyblizeniem Natury bedzie kolejne

przeskalowanie:
akt_sk=akt/ILOSC_SYGNALOW, (30)

Waznym elementem tej pracy jest uwzglednianie w modelu zjawisk

fizjologicznych. Mozna wiec teraz probowac¢ odnies¢ zachowania modeli IMPL

Rys.38. Prawidlowe oscylogramy komérek nerwowych

do statystycznych
danych fizjologicznych z
rozdziatu  pierwszego.
Modele IMPL majg

pewne cechy
naturalnych sieci
neuronowych.

Oscylogramy zebrane z
IMPL5 Swiadczg
niewatpliwie o wielu

niepozgdanych

procesach, np. jest zbyt

wiele korelacji w catej
sieci, czyli sprzezen
zwrotnych  dodatnich.
Jesli w naturalnych sieciach neuronowych Iekarze obserwujg takie
makroskopowo obserwowalne zachowania w EEG (rys. 38), to s one objawem
patologicznym. Nalezy tu zauwazy¢, ze sie¢ przechodzi w stany wysokie
aktywacji a nastepnie dtugich wyciszen. Przechodzenie miedzy tymi stanami
jest konieczne, lecz nie powinny one trwac tak diugo. Rozwigzaniem tego
problemu jest prawdopodobnie wbudowanie ‘zegara neuronowego’ (na wzor
uktadu siatkowatego) oraz uwzglednienie centralnego sterowania uktadu
limbicznego. Sam fakt istnienia neuronowego zegara i stabilizatora
czestotliwo$ci méwi duzo o budowie pojedynczego neuronu oraz moze
zweryfikowac przyjeta kwantyzacje czasu.

Jak wynika z przeprowadzonych doswiadczen zmniejszenie nacisku na

uczenie w momencie aktywnosci neuronu zmniejszyto  faktycznie
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prawdopodobienstwo standw bezwyjsciowych (tzn. takich, w ktérych neurony
wcale sie nie odpalaty, albo caty czas odpalaty sie ze swojg maksymalng
czestotliwoscia). Zniszczone zostaty jednak efekty synergiczne w sieci, czyli
jedna z najistotniejszych wtasnosci sieci neuronowej. Uczenie podczas
odpalania neuronéw wydaje sie wiec by¢ podstawowg i nienaruszalng zasads.
Potwierdzajg to réwniez badania neurofizjologdéw. Jakie wiec typy uczenia w
odniesieniu do okreslonych struktur neuronowych nalezatoby rozwazy¢, aby
nie oming¢ zadnego waznego aspektu? W kolejnych modelach

zaprezentowano kilka mozliwych koncepcji podziatu.

5.2.4 Model IMPLG6 - kilka koncepcji synaps

W zwigzku z potrzebg usystematyzowania algorytméw uczenia, mozna
je pogrupowa¢ wzgledem struktur, na ktérych one operujg. Zatem algorytm
uczenia moze by¢ zwigzany z:

e Synapsg hamujacq (typu komérki Renshawa). Petni ona znaczacg funkcje w
stabilizowaniu czestotliwosci. Ani reguta Hebba, ani proponowane przez
badaczy modyfikacje, nie gwarantujg skutecznego uczenia, ktére wptywatoby
na zwiekszenie synergii w pracy neuronow.

¢ Synapsa pobudzajacq. Tutaj model wydaje sie by¢ najprostszy. Algorytmem
uczenia w tym przypadku moze by¢ reguta Hebba.

e Utatwianiem presynaptycznym. Jest to synapsa w ktorej wystepujg trzy
mozliwe drogi przeptywu impulsu. Dwie wejsciowe i jedna wyjsciowa. Jest to
stosunkowo dobrze zbadane i jest rowniez okreslony cze$ciowo mechanizm
uczenia. O ile jest znany wplyw neuronu modulujgcego na zmiane wagi
synapsy neuronu czuciowego i postsynaptycznego, to nieopisany jest proces
wyksztatcajgcy wage w synapsie aksonowo -aksonowe;.

W tym momencie warto oméwic role tlenu azotu w procesie uczenia (i
zwigzanych z nim reakgji), gdyz niewatpliwie jest on zwigzany z synapsg
utatwienia presynaptycznego, a mozliwe, ze jest to proces o jeszcze szerszym
zasiegu. Zamodelowanie tego procesu mogtoby si¢ przyczyni¢ do powstania
pewnej cechy samoorganizowalnosci (na podobienstwo SOM) oraz
prymitywnego kojarzenia faktéw posiadajgcych korelacje czasowg. Sam
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hipotetyczny mechanizm wyglada nastepujgco: Dtugotrwata depolaryzacja
btony znosi blokade kanatu jonowego, przez ktéry naptywajq jony wapniowe do
neuronu postsynaptycznego. Wzrost poziomu wapnia powoduje aktywacje
kinaz biatkowych i w rezultacie indukcji LTP. Neuron postsynaptyczny
wypuszcza wsteczny przekaznik - tlenek azotu, ktéry to z kolei dziata
wzmacniajgco na prace zakonczen presynaptycznych, poniewaz wydzielana
jest wieksza ilos¢ neurotransmitera (kwasu glutaminowego). Wydzielany jest on
pod wptywem cyklazy guanylowej albo transferazy ADP-rybozylowej. Jest to

zobrazowane na rysunku 39.

Nawet jesli ten mechanizm okaze sie nieprawdziwy, to i tak musi by¢
jaki$ jego odpowiednik spetniajgcy te podstawowe funkcje, jak plastycznosé,
samoorganizowalnos¢, utatwienie presynaptyczne. W tej pracy mechanizm ten
z powodu niekompletnosci wzorca do modelowania, nie jest symulowany.

e Hamowaniem presynaptycznym. Budowa synapsy jest podobna jak w
powyzszym punkcie. Reakcje chemiczne sg réwniez podobne, ale powodujg
hamowanie. Czyzby wiec jeden typ anatomiczny spetniat dwie funkcje?
Pytanie pozostaje na razie bez odpowiedzi. Nie znane sg tez odpowiednie
metody uczenia. By¢ moze s one powigzane z utatwieniami

presynaptycznymi.
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Rys.39. Hipoteza dwukierunkowosci synaps

Jak mozna zauwazy¢, zarysowuje sie w tych wszystkich elementach pewna

symetria. Wszystkie te przypadki wystepujg w uktadzie nerwowym i potrafig

dostraja¢ sie (uczy¢) w tym srodowisku. Po doktadniejszym przeanalizowaniu
tych przypadkéw, bedzie mozna sie pokusi¢ na okreslenie pewnej ogdine;
metody uczenia (o ile nie koliduje ona z uwarunkowaniami genetycznymi).
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Gtéwna czes¢ procesu uczenia w tym modelu zostata z powrotem
przeniesiona na moment odpalania neuronu, a jako catos$¢ - sie¢ posiada zalety
poprzednich modeli (tzn. nie wpada w stany bezwyjSciowe sprzezenia
zwrotnego lub zaniku impulséw, a jezeli to w nieporéwnywalnie matym stopniu).
Uczenie ma zalety typu IMPL2, sie¢ potrafi sie organizowaé. W wielu
doswiadczeniach okazywato sie, ze nawet po odigczeniu sygnatdw
wejsciowych po sieci krgzyty impulsy, co nie zdarzato sie w IMPL2. Jesli chodzi
o korelacje zmian $rednich czestotliwosci odpalen, to zostata ona w duzym
stopniu zmniejszona. Zalety te zostaly uzyskane za pomocg modelowania
lokalnej synapsy hamowania presynaptycznego z mechanizmem uczenia
zapozyczonym z identycznego elementu anatomicznego, ale o innej funkc;ji:
synapsy utatwiania presynaptycznego. Pozostate synapsy uczg sie wedtug
zmodyfikowanej dla wag ujemnych reguty Hebba, przedstawionej ponize;.

Znaczenie symboli uzytych w ponizszych wzorach:

i- liczba naturalna

w;, - i'ta waga neuronu w chwili £,

Xt - sygnat wej$ciowy neuronu odpowiedni i'tej wadze w chwili ¢,
L - ilos¢ sygnatow wejsciowych neuronu,

S,-S — maksymalna i minimalna wartos¢ wagi,

M - stata okreslajgca wielkos¢ modyfikacji wag,

Modut nr 2 przeprowadza proces zmniejszania wag nieuzywanych:

Vi<L x;,=0 Aw,,>0 =w
Yi<L x;, =0 Aw, <0 =>w

=W, -1
=W, +1

i+ 1

(31)

L+ 1

Modut nr 1 — udraznianie:

Y i<L x, >0 Aw, >0 Aw, <S—M =w,

i+l it

Vi<L x,>0 Aw, <0 Aw, 2=S+M=w,  =w, ~M |

i+l it

Fragment odpowiedzialny za uczenie synaps aksonowo - aksonowych znajduje
sie w czesci kodu programu nie zwigzanego z czasem odpalania neuronu.
Neuron postsynaptyczny nie musi sie w tym przypadku odpalac¢, a to on jest
odpowiedzialny za modelowanie lokalnego hamowania. Aby nastgpito uczenie
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wedtug tego schematu wystarczy aktywacja neuronu modulujgcego (tu
hamujgcego) oraz pobudzajgcego. Mozna to przedstawi¢ nastepujgcg

zaleznoscia:

<S—M=>

Vi<L-1 x,>0 Ax,, >0 Aw, <0 Aw, 2—-S+tM Aw, <

Wit L, t+1 =wi+1,t+M /\wi,t+1 :wi,l_M

1

(33)

Model IMPL6 posiada lepsze wilasciwosci synergiczne neurondéw niz
IMPL5, skutkiem czego pamieC krotko- jak i dtugoterminowa ma lepsze
wiasciwosci tzn. na jej wyksztatcenie potrzeba mniej czasu symulacji oraz
znacznie wiekszy procent doswiadczenn jest udanych (gtéwnie dzieki
modelowaniu synaps hamowania presynaptycznego z metodg uczenia
zaczerpnietg z synapsy utatwiania presynaptycznego). Typ oraz budowa tych
pamieci sg identyczne jak w IMPL5. W tym modelu jako pierwszym mozna
zaobserwowacé pamie¢ krotkotrwatg utrzymujaca sie pewien czas, rowniez po

skonczeniu rozpoznawanej sekwencji wejsciowej sieci.

5.2.5 IMPLY - préba zebrania pozytywnych cech modeli ciggtych IMPL

Oproécz elementdéw wspdlinych dla modeli ciggtych IMPL7 zawiera symulacje:

e dwdch typdw synaps,

e odpowiednich dla danych struktur metod uczenia oraz pracy,

e okresowego wytgczania sprzezen zwrotnych,

o refrakcji wzglednej i bezwzglednej.

tadunek postsynaptyczny roztadowuje sie wedtug funkcji wyktadniczej, zgodnie
z zatozeniami modelu ciggtego. Jesli synapsa jest dostatecznie czesto
aktywowana (sygnaty przesytane miedzy neuronami majg wartosci binarne), to
wystepuje na niej sumowanie czasowe. Moze sie zdarzyC, ze dostatecznie
czeste draznienie jednej synapsy wywota odpalenie neuronu. Roztadowywanie
sie tadunkdéw postsynaptycznych moze przebiega¢ rowniez w trybie
natychmiastowym. Sytuacja ta wystepuje w momencie aktywacji neuronu
postsynaptycznego. Po odpaleniu sie komérka nie posiada juz wczesniej
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gromadzonych tadunkdéw elektrycznych. Proces gromadzenia tadunku zaczyna
sie od poczatku.

W modelu wystepujg dwa rodzaje synaps: pobudzajgca oraz hamujgca.
Ta druga jest typu hamowania presynaptycznego, tzn. w tej synapsie znajdujg
sie elementy (dwa aksony i dendryt) nalezace do trzech réznych neurondw.
Dziatanie takiej synapsy polega na tym, iz pojawienie sie potencjatu na aksonie
hamujacym wptywa blokujgco na przeptyw impulsu na drodze akson
pobudzajgcy - dendryt. Przyjmuje sie, ze blokowanie jest wprost proporcjonalne
do potencjatu na aksonie blokujgcym.

Praca neuronu polega na sumowaniu arytmetycznym wszystkich
potencjatéw na synapsach po uwzglednieniu hamowania oraz poréwnania te;
wartosci z sumg progu oraz wartosci refrakcji. Jesli neuron sie odpali, to wysyta
impuls zerujac jednoczes$nie potencjalty na synapsach. Wystany impuls
powoduje powstanie nowych potencjatébw postsynaptycznych w innych
neuronach o wartosci proporcjonalnej do odpowiednich wag.

Algorytm uczenia mozna podzieli¢ na 3 czesci:

1) wykonywany w kazdym takcie symulaciji

2) wykonywany podczas odpalenia neuronu

3) wykonywany podczas nieaktywnosci neuronu.
Punkt pierwszy dotyczy uczenia synaps hamujgcych. Jesli zostato wykryte
hamowanie presynaptyczne niezaleznie od stanu neuronu, to sita hamowania

zostaje wzmacniana.

i1, @ (34)

x;,>0 Ax >0 Aw, <0 =>w, w

i1 Wi T AW,

i+ 1,1 l+1,t+l:

jesli

gdzie:
a - stata okreslajgca predkos¢ uczenia. (np. 5)

Xt - warto$¢ potencjatu na synapsie nr i w chwili t (0-50mV)
w; - warto$¢ wagi synapsy nr i w chwili { <-128,127>

W punkcie drugim zawarty jest proces dazenia wartosci wag do 0 w przypadku
nieaktywnych synaps, zaréwno pobudzajacych, jak i hamujgcych. Prog dazy
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asymptotycznie, rosngco do okreslonego utamka (wtasciwego) aktywacji.
Zwiekszane sg wagi aktywnych synaps pobudzajgcych i hamujacych.

x;,=0 = w,, ,=w, —bx*sign(w,,)
Wit =Wi,t+a*Sign<wi,t> (35)
h,+1=h,+(c*z wi_,*xl-',—h,)/dj

jesli ix >0 =

gdzie:

b - stata okreslajgca predkos¢ zmniejszania wag, zwykle o rzad wielkosci mniejsza od statej a
c - stata, najlepiej utamek wtasciwy ok. 0.66

d - stata, np.3

hy — wartos¢ progu w chwili ¢

sign() - funkcja signum

Punkt trzeci stuzy jedynie do modyfikacji progu w kierunku malejgcym.

ht+1=hr_f (36)

gdzie:
f - stata, np. 0,01

Bardzo wazng role w algorytmie uczenia petnig proporcje zmian wag,
wywotywane roznymi przyczynami np. modyfikacja progu w tym punkcie ma
dwa rzedy mniejsze znaczenie, niz wykrywanie hamowania lub wzmacnianie
synaps aktywnych podczas odpalenia.

Poréwnujgc modele IMPL2 i IMPL7 mozna powiedzie¢, ze IMPL2
wyksztatcat zbyt waska klase rozpoznawanych wzorcow. Wiasciwosci
generalizacji byly dosy¢ ubogie. Zostato to poprawione przez wprowadzenie
dodatkowych zatozen w modelu IMPL7. Zachowany zostat typ synergii
neuronéw obserwowany w IMPL2, lecz zmieniona zostata skala
przetwarzanych danych. Podstawowg prezentacjg danej wejsciowej nie jest
pojedyncze pobudzenie synapsy, lecz cata seria pobudzen zgromadzonych na
przestrzeni okre$lonego odcinka czasu. Jest to jednoczesnie krok wykonany w
kierunku zblizenia sie do zjawisk znanych z badan fizjologicznych. Sie¢ o takiej
strukturze posiada wysokie zdolnosci do generalizacji. Przypisuje ona rézng
waznos¢ dla réznych elementéw wzorcdw wejsciowych tzn. klasyfikuje cechy
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rozpoznawanych wzorcow na pierwszorzedne, drugorzedne itd., Wiasnos¢ ta
jest mozliwa do osiagniecia dzieki gromadzeniu sie w neuronach statystyk na
temat ciggéw wejsciowych odzwierciedlonych w wagach. Przetwarzanie
wykazuje cechy wysokiej rownolegtosci. Pod wzgledem niezawodnosci tez
wystgpita poprawa w stosunku do IMPL2. Zniszczenie losowo wybranych
neurondw nie wptywa tak drastycznie na prace, jak miato to miejsce w modelu
IMPL2. Okupione to zostato zwiekszeniem ilosci neurondw w pracujgcej sieci
niezbednych do przetworzenia podobnej ilosci informacji oraz wytagczeniem
czesciowym sprzezen zwrotnych, gdyz zmieniona zostata skala danych
wejsciowych. Zwiekszenie ztozonosci sieci modelu IMPL7 powoduje
jednoczesnie okresowe zachowania z pogranicza chaosu deterministycznego,
co mozna w naturalny sposdb wykorzystaC do wychodzenia z miniméw
lokalnych btedu rozwigzania.

Model IMPL7 zostat sprawdzony réwniez pod katem mozliwosci
zbudowania z tak zdefiniowanych neuronéw uktadéw znanych z fizjologii jak:
stabilizator czestotliwosci, komparator czestotliwosci, generator
wzbudzany pobudzeniem. Doswiadczenia wypadty pozytywnie!

Omawiany model jest pewng probg zebrania pozytywnych cech IMPLS |
6, oraz ich uogdlnienia. Pamie¢ krétko- i diugotrwata ma wiasciwosci zblizone

do IMPL6. Zadnych istotnie nowych zjawisk nie zaobserwowano.
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5.3 Efekty synergii w sieciach o duzej ztozonosci

Omowione wyzej doswiadczenia dotyczyty do$C ograniczonej liczby
neuronodw, zwykle kilkunastu (nigdy nie wiecej niz sto), co byto ograniczeniem
szybkiego symulatora IMPL. Przy kilkudziesieciu neuronach - obserwacje
zachowania sieci w tym symulatorze jest bardzo zmudne i mato efektywne.
Biorgc pod uwage, iz niektére efekty mogg by¢ zauwazone przy okreslonej
pojemnosci pamieci krotkoterminowej (np. kojarzenie przesunie¢ czasowych
sygnatu), zostat zaprojektowany, wykonany i przetestowany mocniejszy
symulator o nazwie SNN. Umozliwia on uzycie catych zasobéw PC, zaréwno
pamieci jak i procesora, poniewaz jest on mocno skalowalny. Na prostym PC
166 MHz i 64MBRAM przy uzyciu SNN jest mozliwa symulacja nawet do 10 000
neurondw z wigczong symulacjg tadunkéw. Jest tez bardziej pomocny przy
obserwacji oraz analizie tak duzej sieci. Dla poréwnania symulator LSM [141] ,
bedacy modutem napisanym w C++ do Matlaba w 2003 roku symuluje 1000
neurondw, ale tylko 100 tys. synaps. SNN juz przy 500 neuronach posiada
ponad 2,5 raza wiecej synaps.

Ocenmy maksymalng pojemnos¢ pamieci krétkoterminowej sieci o
wielkosci n  neuronéw. W skrajnym przypadku kazdemu tadunkowi
postsynaptycznemu mozemy przypisa¢ 1 bit. Poniewaz sieC posiada strukture
potaczen ,kazdy z kazdym”, ilo$¢ synaps wynosi V=n*n. Dla n=400, V=160000
bitéw, co daje 20000 bajtéw. Jest to pojemnos¢ bardzo duza, lecz praktycznie
nie do wykorzystania przez sie¢ w obecnych modelach, ze wzgledu na
trudno$¢ sterowania sprzezeniami zwrotnymi bezposrednimi oraz posrednimi.
Po uwzglednieniu tego faktu oraz wyeliminowaniu autoasocjacyjnosci neuronu
otrzymujemy V=(n-1)*n/2. (dla n=400, V=9975 bajtow). W tym momencie
ocenilismy maksymalng pojemnos¢ pamieci krotkotrwatej, przy zatozeniu ze
kazdy potencjat postsynaptyczny reprezentuje jeden bit. Doswiadczenia
wykazujg, ze efektywnie z tego jest uzywane jedynie 10% objetosci, poniewaz
potencjaty postsynaptyczne sg uzywane do generalizacji rozwigzan, czyli kilka
potencjatow reprezentuje jeden element (bit) przetwarzanego wzorca. Drugim
faktem jest duza nadmiarowos¢ sieci w wiekszosci modeli, szczegolnie w scisle
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okreslonych obszarach matrycy wagowej, co zostanie = omodwione na
przyktadzie modelu SNN.

Wymieniony wyzej utamek uzytecznej pamieci ma jednak inne znaczenie
niz mozna sie spodziewa¢. Sie¢ nie ma koniecznosci pamietania
przetwarzanych danych ze stuprocentowg doktadnoscig. Wiasciwie
$wiadczytoby to o braku przetwarzania wzorca. W pamieci krétkoterminowe;j
znajduje sie zatem przetworzona reprezentacja sygnatu zgodnie z pamiecig
dtugoterminowg powstata z chwilowych danych wejsciowych.

Str. 91



5.3.1 Modele SNN10 - podstawowe zaleznos$ci w sieciach o duzej liczbie

neuronéw

Przenoszac modele sieci
oraz neuronéw z poprzednich -
doswiadczen do bardziej
ztozonego srodowiska
napotykamy na kilka trudnosci,

zwigzanych z samag strukturg

sieci. Znaczny przyrost ilosci

q

synaps zwieksza wariancje

aktywacji, co za tym idzie,

funkcja zmiany progu musi

t iz}

Rys. 40 — Reakcja SNN10a na powtarzajace sig¢

dane wejsciowe.

uwzgledniac¢ ten fakt. Model SNN10a zostat przeniesiony z IMPL 7 i wykazywat

stabg aktywno$¢ na dane wejsciowe. Na rys. 40 mozna zauwazy¢, iz

odpowiedz sieci po wyuczeniu wzorca nie jest wyrazna, mimo iz reaguje silnie

na niektére elementy wzorca (tutaj: jego poczatek). Objawia sie to wzglednie

f(Hz)

=

t(ms)

Rys. 41 — Model SNNI10c wykazuje sig
niezwykle silng polaryzacja. Kategoryczno$é
odpowiedzi tego modelu jest okupiona matymi

zdolno$ciami do generalizacji.

duzg iloscig odpalen
neuronow. Na wykresie
czestotliwosci  widzimy  trzy
takie momenty.

Po wstepnej analizie funkcje
modyfikacji progu ustalono na
bardzo szybko dazacg do
aktywaciji. Potencjaty
postsynaptyczne zostaty
usuniete z algorytmu uczenia,
pozostaty jedynie w procesie
pracy. Model (SNN10b) po
wyuczeniu wzorca wykazywat

wysokg $rednig czestotliwos¢ odpalenn neurondéw, a na dane wejSciowe

reagowat zmniejszeniem tej czestotliwosci.
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Odpowiednikiem IMPL 2 w obecnym symulatorze jest SNN10c.

Wytaczono w nim catkowicie symulacje potencjatéw postsynaptycznych oraz

i [Nnumer synapsy]

| [numer neuronu|

¥
Rys. 42 — Poréwnanie matryc wag modelu SNN10c (po prawej) oraz SNN10d (po
lewej). Mozna zauwazy¢, iz obszar wewnatrz matrycy SNN10d nie zakodowat

zadnych danych. Dodatkowo zauwazamy wigksza integracj¢ danych w SNN10c.

wyeliminowano wagi -~
ujemne. Model podobnie IS eyl
jak  IMPL2 nie ma
zdolnosci do generalizacji,
jednak tatwiej
synchronizuje sie z
sekwencjg wejsciowg, Co z
pewnoscig jest wynikiem

| [numer neuronu]

braku sprzezen zwrotnych.

¥

Neuron tego  modelu
Rys. 43 — SNN10e — wngtrze matrycy wag nie jest

komunikuje sie ze swoim
puste.

sgsiedztwem o okreslone;
wielkosci oraz z globalnym wejsciem sieci. Sie¢ jest w stanie przetwarzac

znacznie dluzsze sekwencje wejsciowe oraz czas uczenia jest znacznie
krétszy. Model ten bedzie wyjsciowym do kolejnych modyfikaciji.

Przy obecnych zatozeniach rozszerzenie sasiedztwa neuronu do
wielkosci maksymalnej nie przynosi zadnych zmian (SNN10d). Duze zmiany
powoduje wigczenie symulacji potencjatdw postsynaptycznych (SNN10e). W
tym modelu pobudzenie nie przemieszcza sie juz swobodnie, a synchronizacja
bywa gubiona. Dzieje sie tak, iz naptywajgce dane globalne sg w stanie w
dowolnym momencie zinterferowaC sie z wczesniejszymi danymi. Oznacza to
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niedopasowanie algorytmu uczenia. Zmniejszenie w tym momencie sgsiedztwa

nie rozwigzuje problemu,

gdyz co prawda sygnat T
wejsciowy nie jest w stanie ”Hz}
zinterferowac sie z

poprzednimi danymi v
(SNN10f), ale poprzez sieé

przebiegajg ma)

samowyindukowane Rys. 44 — Odpowiedz SNN10f
impulsy nie zwigzane z

danymi wejsciowymi, ktore wprowadzajg algorytm uczenia na zie $ciezki

(minima lokalne).

Pomocniczg w

tym momencie ? . E ]‘ w 1 4]

okazuje stata :

charakteryzujgca

wielkos¢ modyfikaciji

wagi w procesie . '
' »

uczenia. Jej znaczne e
zmniejszenie Rys. 45 — SNN10g — odpowiedz czestotliwosciowa sieci na
powoduje PEWNE | 3 wzorce i jeden zaklocony

zestrojenie systemu i

sie¢ jest w stanie odwzorowywac sekwencje wejsciowg zaréwno z, jak i bez
wigczonych potencjatéw postsynaptycznych (SNN10g). Rys. 45 obrazuje test
przeprowadzony na tym modelu, poddajgcy sie¢ prébie wprowadzenia
nieprawidtowych danych pomiedzy prawidtowymi wzorcami. Jak mozna
zaobserwowac na wykresie czestotliwosci, widaC wyrazng reakcje odrzucenia
danych podczas przetwarzania trzeciej serii wektoréw. Widoczny spadek
czestotliwosci do zera oznacza jednoczesnie zerwanie synchronizacji.

Aby bardziej kategorycznie odrézni¢ wzorce od podobnych im sekweng;ji
wejsciowych w modelu SNN10h wytgczono refrakcje, mechanizm uczenia
neuronu skupiono na jego pierwszym odpaleniu, utrzymano do$é skromne
sgsiedztwo neuronu oraz symulacje tadunkéw postsynaptycznych. Efekt
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zamierzony zostat osiggniety. Ucierpialy jednak na tym zdolnosci do

generalizacji.

Aby temu zapobiec,
nalezy powrotem przenies¢
ciezar uczenia na wszystkie
odpalenia neuronu, a nie tylko
pierwsze (SNN10i). Jak
obserwujemy na  wykresie
Sredniej czestotliwosci odpalen,
wzorzec jest zapisywany w
matrycy wag, jednak poczatek

i [numer synapsy]

| [numer neuronu]

Y

Rys. 46 — Matryca wag modelu SNN10i

o

sieci jest atakowany stosunkowo duzg liczbg danych i po okreslonym czasie sie

| [numer neuronu]

]

I [numer synapsy)

Rys. 47 — Matryca wag modelu SNN10j

rozprogramowuije (rys. 46). Zacierana jest zatem informacja o poczatku wzorca,

a poniewaz sie¢ dziata bardzo kategorycznie, wzorzec nie jest rozpoznawany

ponownie. Cata sie¢ czeka na wystartowanie neurondw poczatkowych,

podczas gdy one sg w tym momencie przeprogramowane.
Skonstruowanie modelu posredniego pomiedzy SNN10h i SNN10i nie

jest zadowalajgce. Co prawda sie¢ potrafi rozpozna¢ wzorzec ponownie, zatem
ma mozliwosci rekonstrukcji wzorca, jednak procesy rozprogramowujace
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poczatek sieci sg tylko znacznie spowolnione. Co za tym idzie, po dtuzszej
pracy nie dziata ona prawidtowo (SNN10j). Na rys. 47 widzimy wyraznie
ciemniejsze miejsca na przekatnej o wzglednie duzych powierzchniach.
Oznacza to, iz w tych miejscach nawet przy przetwarzaniu poprawnego wzorca
synchronizacja moze zosta¢ zerwana, poniewaz ciemniejsze miejsca wskazujg
na wagi o nizszych wartosciach.

Aby zmniejszy¢ efekt odrzucania wektoréw nieznacznie odbiegajacych
od wzorca zostata zmieniona funkcja modyfikacji progu, z dgzacej do aktywaciji
na dgzacq do 4/5 z aktywacji (SNN10k), jednak dopiero wytaczenie potencjatow

postsynaptycznych ~ (SNN10I)

przywrécito stabilno$¢ A »

zapamietania wzorca.
Posiadajgc  wymienione

mozliwosci  operowania na
danych wejsciowych przy

pomocy modelu sieci [ a— m ‘
neuronowe;j nalezy sie

zastanowi¢ nad parametryzacja_ Rys. 48 — Procesy rozprogranlowujqce SNNIOj

niektérych cech przetwarzania

t(ms)

jak stopien generalizacji rozwigzan, zalezno$¢ obecnie przetwarzanych danych
od wczesniejszego kontekstu, stopien integracji danych przypadajacych na
synapse / neuron pochodzacej z wzorca wejsciowego.

Pierwszy parametr mozna scharakteryzowac w najprostszym przypadku
poprzez procent zgodnych elementéw wektora z wektorem wzorcowym. W
ogolnosci, kazdemu elementowi wektora jest przypisana warto$¢ oznaczajgca
istotno$¢ danego bitu danych i te wartosci sq uzywane do wyliczenia zgodnosci
ze wzorcem.

Kontekst w wielu implementacjach jest traktowany jako dodatkowy
wektor wejsciowy, wyliczany poprzez sie¢ w poprzedniej iteracji i podawany w
kolejnej do okreslonych wejs¢ sieci. Przy tej strukturze sieci, mozna
powiedzie¢, ze nie ma takiego $cistego podziatu, poniewaz zabronione sg
sprzezenia zwrotne, zatem kazdy neuron ma dostep tylko do wynikow obliczen
neurondw o mniejszych indeksach. Cecha, ktérg w tym punkcie chcemy

operowac, jest istotno$¢ kontekstu przy przetwarzaniu kolejnego wektora
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wejsciowego. W skrajnych wypadkach pozadane jest: przy ignorowaniu
kontekstu — uznanie danych za zgodnych ze wzorcem, gdy x ostatnich
wektoréw wejsciowych jest zgodne z x ostatnimi wektorami wzorca; przy
priorytetowaniu kontekstu — uznanie danych za niezgodnych ze wzorcem, jesli
pierwszy wektor danych i wzorca nie byt identyczny.

Trzecig cechg sieci, na ktéra powinna by¢ mozliwa do ustalenia, to
srednia ilos¢ neurondéw kodujgca jeden wektor wejsciowy. Jak pokazujg
doswiadczenia, ma to bezposredni zwigzek z pracg sieci i jej zdolnos$ciami do
uogolniania rozwigzania. W skrajnym przypadku jeden wektor wejSciowy
powinien by¢ kodowany na jednym neuronie. Idac w przeciwnym kierunku,
jednemu wektorowi wejsciowemu powinno odpowiadaé x neurondéw, x>1.

Pierwsza proba sparametryzowania ww. cech oraz przeksztatcenia ich
na parametry budowy sieci zostaty przeprowadzone w modelu SNN10m. Jak
sie okazuje, zmiana wielkosci sasiedztwa danego neuronu ma bezposredni
wptyw na drugg i trzecig ceche, a posrednio réwniez i na pierwszg (gtéwnie
poprzez trzecig). Model ten przetestowano przy bardzo matym parametrze
sgsiedztwa poczawszy od wartosci Z=2, oznaczajgcej mozliwosé potaczenia sie
z sobg samym oraz swoim poprzednikiem. Poniewaz autoasocjacyjnosc¢ jest tez
zabroniona, neuron posiada mozliwosci przetwarzania jedynie kontekstu
pochodzgcego od jego poprzednika, oraz oczywiscie ma dostep do aktualnie
przetwarzanego wzorca wejsciowego. Warunek taki znacznie zmniegjsza
predkos¢ przeptywu informacji przez sie¢, a biorgc pod uwage, iz dane
wejsciowe naptywajq ze statq predkoscia, stopien ich koncentracji w sieci musi
by¢ wiekszy i tak faktycznie jest.

Kontekst w tym modelu tez zachowuje sie zupetnie inaczej niz w
poprzednim. Nalezy pamietac, sygnaty miedzyneuronowe majg postac binarna,
a caty kontekst jest przekazywany z jednego neuronu do nastepujgcego po nim
w postaci jednego takiego sygnatu. Oznacza to, iz moze on zawierac
informacje na temat zgodnosci poprzednich wektoréw danych ze wzorcem na
wybranym poziomie zgodnos$ci lub nie i jest to w tym przypadku informacja
binarna, bez mozliwosci przekazania parametru o stopniu zgodnosci itp.
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Stopien koncentracji informacji mozemy oceni¢ nastepujgco: jak zostato
zatozone w modelu, dane sg podawane do wej$¢ w kolejnych punktach
czasowych, odlegtych od siebie czasem refrakcji pojedynczego neuronu
(wigksze czestotliwosci po prostu fizycznie poprzez neuron nie mogg byé
przetwarzane) przyjetym jako 2 ms. W tym samym czasie informacja w sieci o
zgodnosci wektora z wzorcem jest w stanie przejs¢ droge tylko do jednego

(kolejnego)

neuronu. Oznacza
to, iz jeden wektor ﬁ fHz)
musi by¢ kodowany

na jednym /
neuronie. Po

przegladnieciu

poszczegdlnych ‘—JA '
neuronéw oraz b .

poréwnaniu  wag tims)

synaps Rys. 49 — SNN10m — odpowiedz sieci przedstawiona na
odpowiedzialnych wykresie $redniej czgstotliwosci odpalen neuronéow $wiadczy
za potaczenia z o mozliwosci startowania impulsu synchronizacji z

wejsciem  SIeCt - Z | pominigeiem kontekstu lub nawet poczatku wzorca.
wzorcem, widac

wyraznie odbicie wyuczonego wzorca na tych synapsach.

Jak wida¢ na rys. 49 dane wejsciowe sg w stanie wygenerowac¢ impuls
oznaczajgcy zwykle zgodnos¢ poprzednich wektoréw ze wzorcem, nawet gdy
taka zaleznos$¢ nie wystgpita. Dzieje sie tak szczegdlnie wtedy, kiedy przez
diuzszy czas wejscie sieci jest nieaktywne i wszystkie tego typu impulsy
zanikng. Zjawisko to jest pozagdane, zgodnie z wymienionymi  wyzej
zatozeniami i Swiadczy o mozliwosci ustalania wptywu kontekstu na proces
przetwarzania. Tym przypadku jest on krancowo maty. Przy zatozeniach
przyjetych w SNN10m kontekst jest reprezentowany jako jeden bit. Oczywiscie
waga synapsy w kolejnym neuronie odpowiedzialna za utrzymanie kontekstu
moze by¢ duza, ale statystyczne ilos¢ bitdbw przenoszacych kontekst w
pierwszych krokach uczenia przesgdza o priorytecie tej informacji. Doktadniej
analizujgc prace sieci, przektada sie to na stosunek ilosci bitéw kontekstu do
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ilosci wejs¢ sieci (co jest rownowazne z iloscig bitow wejscia sieci danego
momentu w czasie). W badanym modelu stosunek ten wynosi 1/12. Pamietajac,
iz prog podczas odpalenia neuronu w przyjetym modelu modyfikuje sie zgodnie

Ze wzorem:

4
hj,1+ 1= Z Wik X5, *"5' (37)

1

gdzie:

h;: - wartos¢ progu neuronu j w chwili ¢

w;;: - wartos¢ r'tej wagi neuronu j w chwili ¢
X - wartosc¢ i'tego wejscia neuronu j w chwili ¢

| [numer neuronu]

[numer synapsy

Rys. 50 — Matryca potencjatow postsynaptycznych

mozemy wywnioskowac, iz kontekst nie jest niezbedny do odpalenia neuronu, a
co sie za tym kryje, do odpalenia impulsu oznaczajgcego zgodny kontekst. W
dalszej czesci pracy, ze wzgledu na specyfike przemieszczania sie tego
impulsu pobudzajgcego kolejne neurony w kolejnych chwilach czasowych,
bedzie on nazywany impulsem synchronizujgcym. Dodatkowo przy
rozbudowanym kontekscie (kilku lub kilkunastobitowym), ktéry podlega pod te
same prawa co impuls synchronizujgcy, zbidr propagujacych sie aktywac;i
neurondéw tworzy fale synchronizujgca. Propagujace sie impulsy kontekstu sg
dobrze obserwowalne na matrycy potencjatéw postsynaptycznych, poniewaz
powodujg efekt przeptywu przez sie¢ ,fali” potencjatéw postsynaptycznych - rys.

50.
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Opisany efekt widziany na matrycy potencjatéw postsynaptycznych ma
bardzo duze znaczenie podczas przeprowadzania dos$wiadczen. Podczas
procesu uczenia nie od razu mamy do czynienia z przeptywem takiej fali.
Organizacja neurondéw trwa czasami dos¢ diugo oraz nastepujg rozne
przegrupowania, co za tym idzie sygnaty propagujg sie np. tylko przez krotki
odcinek sieci, albo gasng w réznych nieokreslonych momentach, lub sygnaty
powstajg w roznych miejscach sieci i odpalenia nastepujg asynchronicznie, nie
tworzac zwartej grupy i tym bardziej propagujacej sie fali. Na tej podstawie po
okreslonej liczbie krokéw symulacji jest podejmowana decyzja, czy model
wykazuje efekty synergii neurondw i czy doswiadczenie warto kontynuowad.

W modelu SNN10n sasiedztwo zostato zwigkszone do Z=7, co jest

réwniez do$¢ matg wartoscig. Predkos¢ propagacji informacji w sieci zostaje

F e
f (Hz)

L L

t [ms)

Rys. 51 — Wykres czgstotliwoséci neuronow modelu SNN10n
automatycznie zwiekszona, stopien integracji informacji na element sieci jest

zmniejszony. Na wykresie sredniej czestotliwosci odpalen mozna zauwazy¢, ze
wielkosci te nie rosng tak liniowo jak w poprzednim modelu, ale nastepujg
gwattowne spadki czestotliwosci. Oznacza to zwiekszenie priorytetu kontekstu.
Doktadniej analizujgc, wzorzec wejsciowy posiadat element okresowy wewnatrz
swojej struktury. Jest to do$¢ trudne zadanie dla sieci neuronowej, poniewaz
dos$¢ tatwa jest pomytka, w ktérym momencie przetwarzania wzorca aktualnie
sie¢ sie znajduje. Poniewaz zgodnosc¢ jest do$C duza, wykres czestotliwosci
wskazuje ich wzrost. Jednakze w odpowiednim momencie (po zakonczeniu
wewnetrznej okresowosci wektorow wzorca) czestotliwo$¢ spada do wartosci,

ktéra jeszcze oznacza zgodnos¢ ze wzorcem (rys. 51). Gdyby zgodnosé
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danych ze wzorcem byta nieprawdziwa, czestotliwo$é odpalen spadatby do
czestotliwosci bliskiej zero.

Wprowadzona w modelu SNN10j cecha, polegajgca na kilkukrotnie
silniejszym uczeniu neuronu przy jego pierwszym odpaleniu pozwolita uzyskac
wiele zamierzonych efektéw oraz przyspieszy¢ wiele doswiadczen, jednakze
ogranicza wtasciwosci generalizacji metawzorca, ze wzgledu na zbyt silne
wyuczenie pierwszych danych, (pierwszego przedstawienia wzorca, co nie
musi by¢ reprezentatywne). Wylgczenie tej cechy sieci nie jest procesem
banalnym, jakby wygladato to pozornie, poniewaz moze zosta¢ zaburzony
porzgdek synchronizacji np. przy drugiej prezentacji przedstawiciela wzorca.
Cykliczne wzajemne zaburzanie synchronizacji poprzez dwa po czesci

sprzeczne

o,

i [numer synapsy)

przedstawienia
wzorca zwykle nie

prowadzg do
uogolnienia
rozwigzania.
Oczywiscie
pozostaje do

rozstrzygniecia

| [Nnumer neuronu)

problem, czy az tak

Y

Rys. 52 — Efekty synergii neuronéw widziane na matrycy
wag modelu SNN10r

rézne dwa

przedstawienia

wzorca mozna

uzna¢ jako przedstawienia wzorca? Z zatozenia, wektory bedace
przedstawieniami wzorca powinny by¢ podobne. W modelach od SNN10;
pierwszy pokazany wzorzec byt zdecydowanie wiodgcym, kolejne
dostosowywaty sie do pierwszego. W modelu SNN100 zlikwidowano te zasade,
a dodatkowo jako podstawowy mechanizm generalizacji- wigczono symulacje
tadunkéw postsynaptycznych, refrakcje oraz zwiekszono sgsiedztwo neuronu.
Nie udato sie wykry¢ w tym modelu efektéw synergii neurondéw, nawet przy
wytgczeniu sterowania wartoscig progu. W modelu SNN10p pracg progu oraz
predkosciami jego zmian dokonano pewnego strojenia systemu, jednak dalej
nie mozna stwierdzi¢ jego jakiejkolwiek pracy jako catosci. Poniewaz wszystkie
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wprowadzone elementy do modelu sg pozadane, ale nie wystepuje jakakolwiek
synergia neuronow, pierwszym elementem do strojenia systemu musi by¢
algorytm zarzadzania pracg progu neuronu. Poniewaz statyczne funkcje
zostaty w duzej mierze przebadane i nie przyniosty rezultatu, kolejnym krokiem
moze by¢ uzaleznienie zmian progu od innych parametréw neuronu. Biorgc
pod uwage fakt, iz prog jest elementem pamieci dlugoterminowej, jego
modyfikacje muszg by¢ odwracalne. Oznacza to, iz chwilowa zmiana progu
musi zosta¢ po dtuzszym czasie anulowana. Zatem planowane zmiany progu
muszg mie¢ te sama nature co refrakcja, tylko odbywac sie zaréwno w strone
wzrostu jak i obnizania wartosci progu.

Niepozadang cechg SNN10p jest okresowy brak pobudzen wystepujacy
po wzbudzeniu sieci (i dopasowaniu sie neuronéw do pracy podczas
wzbudzenia). Zgodnie z faktami neurofizjologicznymi, kazdy neuron musi sie
odpala¢ chociazby z okreslong minimalng czestotliwoscig, nie mogg natomiast
nastepowac diuzsze okresy braku aktywacji. Biorgc pod uwage, iz mozemy
zmodyfikowac funkcje refrakcji oraz znamy kierunek jej zmian (ma prowadzi¢ do
utrzymania minimalnej czestotliwosci odpalen neuronu), oznacza to iz funkcja
refrakcji w okreslonym czasie df dgzy do przeciwnej wartosci progu. Zatézmy
wstepnie liniowos¢ tego procesu. Dodatkowo zmniejszmy tempo wzrostu progu

w chwilach odpalen zgodnie ze wzorem:

: Z

— W... %x...—h.

54 i Ny ey
h. h. - (38)

gt 1 = gt 3

gdzie:
h;: - wartos¢ progu neuronu j w chwili ¢
w;j; - wartos¢ r'tej wagi neuronu j w chwili ¢

xi;¢ - wartos¢ i'tego wejscia neuronu j w chwili ¢
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Po doswiadczalnie dobranym df w modelu SNN10r

mozna

zaobserwowac pewng samoorganizowalnos¢ neurondw (rys. 52) ale pojawit sie

nowy jakosciowo problem. Ot6z zgodnie z zatozonym celem, neurony powinny

il

¥

Rys.

SNN 10t sa potwierdzeniem hipotezy

i [numer synapsy|

| [numer neuronu]

53 — Niezerowe warto$ci wag wejsciowych systemu w modelu

utrzymywac okreslong minimalng czestotliwos¢. Jesli natomiast

dane

wejsciowe sieci statystycznie bedq miaty maty udziat podczas aktywaciji
neuronow (np. gdy czestotliwos¢ pobudzen z wejscia systemu bedzie mniejsza

niz omawiana
minimalna
czestotliwosc
pracy
neuronu) od
moze dojs¢ do
odtgczenia
przez sie¢
sygnatow
wejsciowych,
co
obserwujemy
w SNN10r.

A
f(Hz)

=

t (ms)

Rys. 54 — SNN10s na bardzo krotka sekwencjg wejsciowa
odpowiada czgstotliwoscia o rownie krotkim okresie — model

pracuje prawidtowo
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Dla potwierdzenia hipotezy o zaleznos$ciach czestotliwosciowych fm oraz
fd w modelu SNN10s zostaty przygotowane i podane do sieci sygnaty
wejsciowe o stosunkowo duzym $rednim pobudzeniu. Niektore wejscia zostaty
z dodatkowg sita nasycone pobudzeniami (SNN10t — rys. 52). Jak mozna
zauwazy¢ na wykresy s$redniej czestotliwosci odpalen neurondéw sieci, okres
wyréwnat sie z okresem czestotliwosci prezentacji wzorca, rys 53, co oznacza,
ze neurony podzielity sie na liczbe klas odpowiednig wzorcowi. Wystapity
zatem efekty synergii, czyli hipoteza sie potwierdzita i zidentyfikowali$my
problem do rozwigzania.

Podsumowujac serie modeli SNN10 obserwujemy w nich wiele
ciekawych procesow, niemozliwych do zauwazenia przy mniejszej skali
symulowanej sieci. Odkrycie zaleznosci panujgcych w takiej strukturze moéwi
wiele na temat przetwarzania informacji w takiej strukturze oraz pozwala
sterowa¢ niektorymi jej parametrami np. SNN10m. Jak pokazujg
doswiadczenia, strojeniu wymaga duza liczba parametréw, chociaz wiekszos$é
procesu strojenia udaje sie zautomatyzowa¢. Generalnie modele SNN10
charakteryzujg sie dos¢ matg wrazliwoscig na niektére réznice w sygnale

wejsciowym, co jest jednym z wazniejszych watkéw badan kolejnej serii SNN11.
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5.3.2 Modele SNN11 — préba znalezienia optymalnego algorytmu uczenia

Modele SNN11 bazujg na modelu wyjSciowym posiadajgcym
nastepujgce cechy: sagsiedztwo neuronu jest zdefiniowane jako trzykrotna
wartos¢ wejs¢ do systemu, symulacja tadunkéw postsynaptycznych jest
wtgczona, nie ma priorytetu uczenia w pierwszych odpaleniach neuronu, prog
rosnie dos¢ wolno do utamka z aktywacji zgodnie ze wzorem

4 )
EZ Wi,j,z*)‘i,j,z_hj,z (39)

/
! 3

e, =hj‘t+
gdzie:

h;¢ - wartos¢ progu neuronu j w chwili ¢
w;;: - warto$¢ rtej wagi neuronu j w chwili ¢

xi;¢ - wartos¢ i'tego wejscia neuronu j w chwili ¢

Siec jest traktowana danymi o duzej koncentracji sygnatow.

Jak zostato powiedziane we wnioskach poprzedniego paragrafu, modele
SNN10 powinny zosta¢ wyposazone w mechanizm, ktéry bardziej szczegétowo
analizowatby cechy wzorca. W modelach SNN11 ciezar prac zostanie skupiony
na algorytmie uczenia.

Podczas transformacji modeli przystosowujgcej je do symulowania
tadunkéw postsynaptycznych zarowno wyliczanie aktywacji jak i modyfikacji
wag zostato oparte na ww. wartosciach tadunkéw. O ile podczas wyliczania
aktywacji warto$¢ tadunku byta w dos¢ oczywisty sposdb uzyta (wzér), o tyle
podczas poprawki wag nadal byta traktowana binarnie czyli inaczej gdy na
synapsie nie byto zadnego tadunku i inaczej gdy byt chociaz minimalny
tadunek. W modelach SNN okres utrzymywania sie fadunku na synapsie
wynosi ok. 14 ms, zanim uzyta rozdzielczo$¢ liczb wykaze warto$¢ 0.
Prowadzito to przy przyjetym kroku réwnym 2 ms do powstania ok. 7 razy
wiekszej ilosci aktywacji synaps w sieci, co bez wcze$niejszego strojenia
algorytmu uczenia prowadzi do szybkiego wzrostu wag oraz ogdlnego
wzbudzenia. Pierwszg probg zminimalizowania tego efektu jest zwiekszanie
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wag proporcjonalnie do potencjatu postsynaptycznego okreslonej synapsy.
Poniewaz tadunek zawsze ulega czesciowemu roztadowaniu w czasie, wzrosty
wag zostaly znacznie spowolnione (SNN11a), co jednak nie rozwigzato
problemu, m.in. dlatego, iz wagi ujemne zanikaty, gdyz zgodnie algorytmem
uczenia tej postaci — mogty tylko rosngg.

W modelu SNN11b z tego powodu zostata okreslona warto$¢ minimalna
tadunku q, ponizej ktérego synapse uczono w kierunku hamowania. W modelu
tym wystepujg dwie przeciwstawne sity, ktére mogg zmieni¢ warto$¢ synapsy
zarowno w gore jak i w dot. Niestety pomimo wielu préb nie udato sie ustali¢
prawidtowej wartosci g, by¢C moze ona nie istnieje. Moze o tym $wiadczy¢ fakt
istotnej nieliniowosci uczenia zwigzanej z wartoscia q, nie majacej
odpowiednika w naturze. Ot6z wartosci tadunku bliskie g, ale mniejsze od q
powodujg podczas odpalenia bardzo duze zmniejszenie wartosci wagi.
Zupetnie odwrotnie dzieje sie dla q bliskiego 0. Mozna przyja¢, iz zatozenie
modyfikacji wagi proporcjonalnie do potencjatu postsynaptycznego w
potagczeniu z zaburzeniem wprowadzanym przez ustalong warto$¢ q nie
przynosi zamierzonego efektu oraz odbiega znaczgco od natury, zatem ta
droga badan zostanie w tym punkcie zakonczona.

Nie oznacza to, iz proporcjonalnos¢ szybkosci uczenia synaps do

e

i [numer synapsy|

| [numer neuronu]

Y

Rys. 55 — SNN11d — polaryzacja wag do$¢ mata, ale wida¢
wyrazny postep wzgledem SNN1la-c

tadunkéw na nich zgromadzonych jest skazana na niepowodzenie.
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Rozwigzaniem, ktére wprowadza wiele ograniczen, ale moze przynies¢ dobre
efekty w walce ze zjawiskiem spotkanym w SNN11a, jest normalizacja wag po
kazdym odpaleniu neuronu.

w nj.t :pj,t* Wj,t
Wj,t:(wl,j,l“""wlj,t (40)
(Wn ) )=1
It

gdzie:
Whn;; — wektor wag j-tego neuronu po normalizacji
W;: - warto$¢ wektora wag j-tego neuronu w chwili f po
modyfikacjach w czasie uczenia
p;: — liczba rzeczywista

W ten sposdb zachowujemy petng liniowos¢ uczenia dla wszystkich

potencjatow,

¢

I [numer synapsy|

tracimy
mozliwos¢
operowania
na wagach
ujemnych,
jednakze
mozemy z

gory ustali¢

j [numer neuronu|

0golng
aktywnos$¢ ¥
ron , )
SLIEHT Rys. 56 — Matryca wag SNN11g zawiera elementy $wiadczace o
NN11c).
(S °) podziale neuron6w na kilka réznych grup
Dodatkowo

pojawito sie kilka mankamentéw ze skalowaniem sieci, np. neurony na
poczatku sieci, ktdre z zatozenia struktury wykorzystujg tylko czes¢ synaps, na
tych synapsach ustawity bardzo wysokie wagi, poniewaz pozostate byly
nieuzywane. W modelu SNN11d zwigkszono wartosci docelowe progu zgodnie

Ze wzorem
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(41)

7
gz WX h
— 1
B gy =g+ .
gdzie:
h;: - wartos¢ progu neuronu j w chwili ¢
wij: - wartos¢ r'tej wagi neuronu j w chwili t

xij - wartos¢ i'tego wejscia neuronu j w chwili ¢

oraz zwiekszono o 20% wartos¢ maksymalnej modyfikacji wagi, co
spowodowato wieksze stopniowanie i uwypuklenie wptywu wartosci potencjatow
postsynaptycznych. Efekty wida¢ na matrycy wag jako zwiekszenie polaryzacji
wzgledem poprzedniego modelu (rys. 55)

Model SNN11e zawierat nowy element w postaci wylosowanych wag

o

[numer synapsy]

SRR
N
AR

| [numer neuronu]

Y
Rys. 57 — Zmiany w modelu SNN11h spowodowaly znaczne

urozmaicenie matrycy wag wzgledem SNN11g

poczatkowych. Element ten okazat sie zupetnie nieistotny dla pracy sieci.
Zwiekszenie sgsiedztwa w SNN11f wywotato podobne efekty jak w modelach
SNN10. Gtéwnym mankamentem stat sie zbyt maty udziat sygnatow
wejsciowych w ogdélnym pobudzeniu sieci. Jednak zmieniajgc funkcje

modyfikacji progu —
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h

gdzie:

Gl

ZW,-- X =1 =i
| ~ i it (42)
it 3

hj: - wartos¢ progu neuronu j w chwili ¢

w;;; - wartos¢ r'tej wagi neuronu j w chwili ¢

Xt - wartos¢ i'tego wejscia neuronu j w chwili ¢

oraz  modyfikujgc
mechanizm
normalizacji,
okreslajgc sume wag
neuronu jako zatozong
wartos¢ i zmniejszajgc
ja wzgledem
poprzedniego modelu,
w SNN11g uzyskano
znacznie lepsze wyniki
a efekty  synergii
neuronow mozemy
obserwowac na
matrycy wag rys. 56.
Lekkie  zwiekszenie
réznorodnosci
neurondéw zostaje tez
uzyskane w SNN11h
poprzez zwiekszenie
statej oznaczajacq
maksymalng
modyfikacje wagi
podczas odpalenia.
Rys. 57.

:
[numer synapsy]

| [numer neuronu|

¥
Rys. 58 — Duze jednolite powierzchnie w matrycy wag
modelu SNN11i $wiadcza o jego matych mozliwosciach

przetwarzania danych wejsciowych

At

[numer synapsy|

| [numer neuronu|

¥
Rys. 59 — Matryca wag modelu SNN11j w poczatkowym

stadium przetwarzania, wczesny etap uczenia
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Przetwarzane dane wejSciowe o wzglednie duzej czestotliwosci,
wprowadzone jeszcze podczas probleméw w SNN10 zostaty zmienione na
dane o znacznie dluzszym okresie i mniejszej czestotliwosci Sredniej odpalen
neuronow, co zblizyto model do naturalnego. W modelu SNN11i zmniejszono
jednoczes$nie maksymalng mozliwg modyfikacje wagi podczas odpalenia do
wielkosci uzywanej w SNN11g. Rys. 58 nie wykazuje zadnych efektow synergii.
Jednakze w wylgczajac w obecnym modelu mechanizm wczesniej uzywany do
strojenia czestosci odpalen (zmodyfikowana funkcja refrakcji) i pozostawiajac

A |

f[Hz)

A i i it s s ot e A A A A A Br A AAAA -

t [ms)

Rys. 60 — Pierwsze efekty synergii sa najwyrazniej zauwazalne na wykresie $redniej

czestotliwo$ei odpalen neuronéw w sieci

pozostate elementy jak w : >
SNN11i  otrzymujemy  model . | Inumer syrepsy
SNN11j, ktory posiada

wiasciwosci powolnej i

systematycznej

samoorganizowalnosci,  nawet

przy utrzymaniu danych

wejéciowych o wzglednie matej
czestotliwosci i  stosunkowo
duzym okresie, do ktorej to

j [Nnumer neuronu)

cechy dazyliSmy w ostatnim

okresie doswiadczen. '
Poniewaz SNN11j

wykazuje sie ciekawymi

Rys.61 — Matryca wag modelu SNNI11j po

dtuzszym okresie uczenia
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wiasciwosciami, jego algorytm uczenia kryje dos¢ duze mozliwosci a dziatajgca
i uzyteczna w tym zestawieniu symulacja tadunkdéw postsynaptycznych daje
szerokie mozliwosci do uogodlniania rozwigzania, zostat on poddany kilku
bardziej zaawansowanym probom polegajagcym na zbadaniu predkosci

!

dostosowania
sie do nowego
wzorca, 0 Fibz)
duzym
podobienstwie
do
pierwotnego
wzorca.

Interesujgcym : JJ ;
—‘-&AB&M =

w tym
b [ms]

przypadku jest
as Rys. 62 — Odpowiedz sieci podczas adaptacji do nowego wzorca
CZ

o podobnej budowie

dostosowania

sie sieci, a wiasciwie najistotniejsza jest tu proporcja tego czasu do okresu
podawanego wzorca. Drugim doswiadczeniem jest predkos¢ synchronizacji z
danymi podanymi do sieci asynchronicznie o zawartosci zgodnej ze wzorcem.
Jest to jednoczes$nie parametr méwigcy o szybkosci rozpoznawania.

W pierwszym doswiadczeniu dane wejsciowe zostaly uszczuplone
wzgledem ﬁ
wzorca o jedng f(Hz)

aktywacje. SieC

posiada ciggtg |E E
zdolno$¢  do H H ?

adaptacji, |
poniewaz ma j J
witgczony " i -
t[mis)
algorytm
Rys. 63 — Odpowiedz sieci podczas adaptacji do nowego
uczenia. Na Y POWICS podcz ptacj Wego wzorca

o podobnej budowie

wykresie rys.62

obserwujemy, iz po pieciu prezentacjach danych odpowiedz sieci stata sie
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identyczna do wczesniej wywotywanej przez wzorzec. Wynik ten mozna uznacé
za bardzo dobry. W drugim doswiadczeniu jako danych uzyto juz nowo
wyuczonego wzorca. Wyuczony wzorzec zostat podany do sieci zupetnie
asynchronicznie, bez zadnej sekwencji startowej. Sie¢ odpowiedziata peing
moca juz przy pierwszej prezentacji danych. Jest to na tego typu model bardzo
dobry wynik.(por. IMPL2). Sytuacje te obrazuje rysunek Rys. 63.

Testujgc réznego typu dane wejsciowe, mozna zauwazy¢, iz w modelu
SNN11j wystepuje pewna nieefektywnos¢ pracy niektérych obszaréw
neurondow. Jest to zjawisko, ktore zostato juz wczesniej zidentyfikowane,
polegajace na niedopasowaniu systemu normalizacji wag do ilosci mozliwych
uzytych synaps ze wzgledéw struktury, ograniczen w sprzezeniach itp.
Ustawiajgc wspotczynnik sumy wartosci wag na wzglednie duzym poziomie

niszczymy

2 <
i [numer synapsy]

przetwarzanie
sieciowe juz
na samym
poczatku

sieci, gdyz
poczatkowe
neurony
wszystkie
uzywane wagi

J [numer neuronu|

ustawiajg na

wartosci '

wysokie, a
. | Rys. 64 — Odpowiedz sieci podczas adaptacji do nowego wzorca
same z kolei
o podobnej budowie

generujg
sygnaly zupetnie nie przydatne podczas przetwarzania, wprowadzajgc do
systemu zbedne szumy. Ustawienie natomiast mniejszych wartosci
wspotczynnika sumy wagi powoduje sytuacje w ktdrej neurony znajdujgce sie w
ostatnich partiach sieci, ktére posiadajg kilkaset aktywnych synaps, nie sg
wstanie zréznicowa¢ wag w sposob odpowiedni prawidtowej pracy.
Zapobiegajac temu zjawisku, w modelu SNN 11k zostaje dla kazdego
neuronu obliczony wspotczynnik aktywnych synaps. Wspdtczynnik ten
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modyfikuje z kolei docelowg sume wszystkich wag. Jest to widoczne jako
réownomierne roztozenie wag na matrycy wag rys. 64. Modyfikacja ta umozliwia
przetwarzanie wiekszych wzorcow przy tej samej wielkosci sieci.

Formalny opis neuronu powstatego modelu SNN11k mozemy

przedstawi¢ nastepujgco:

1 @}: _’LL>h (i)

V1= o1 (43)
ljt <h + t
Oﬁlz(“) W*I r(j )

gdzie:

h;: - wartos¢ progu neuronu j w chwili ¢
r(j,t) — wartos¢ refrakcji neuronu j w chwili ¢
w;;: - warto$¢ r'tej wagi neuronu j w chwili ¢

X - wartosc¢ i'tego wejscia neuronu j w chwili ¢

Xun= 4, (44)
g Z,, =Ii<L
W)y eizl (45)

gdzie:
Z y— wartosc¢ i'tego wejscia do sieci w chwili ¢
L —ilo$¢ wejs¢ do sieci

I=L+J

0 <j<J (46)

ViV jNiow, <W
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Z WX~ hy,
1

hjp={h;,+ T «y;>0 (47)
hj,—a=y; =<0
\
- _ | Wixbxx, =y ,,>0 (48)

ijt+1 [ Wi yj,zs 0
gdzie:

c; — parametr staty danego neuronu
a,k — state danego modelu

b — wspotczynnik zalezny

Warto zwréci¢ uwage na wzor nr 44. Pomimo jego prostoty jest on
wyznacznikiem podstawy czasu catego modelu, co ma podstawowe znaczenie
w sieciach pulsujgcych. Opisuje on zachowanie sie potencjatu
postsynaptycznego w synapsie z uwzglednieniem docierajgcych nowych
pobudzen oraz uptywajgcego czasu. W praktyce, krok symulacji zostat tak
dobrany, aby ten wzér byt mozliwie prosty, co ma bezposredni wptyw na czas

symulacji.

5.3.3 Unikalny automatyczny mechanizm dostrajania neuronu

Jak juz zostato wspomniane przy omawianiu wynikow poszczegoinych
symulacji, neurony modeli SNN oraz czesci IMPL posiadajg wiele zaleznosci
funkcyjnych pomiedzy wartoscia progu, amplitudy refrakcji oraz wartosci
aktywacji liczonej podczas aktywacji neuronu. Te zaleznosci funkcyjne tworzg w
modelach SNN specjalnie dla nich opracowane mechanizmy autoregulacji
nazwane PRA. Skrét posiada swa geneze w pierwszych literach nazw obiektow
uczestniczacych w mechanizmie, czyli ,prog, refrakcja i aktywacja”. Jest to, jak
do tej pory, unikalny mechanizm wystepujacy w SNN, ktérego odpowiednika nie
udato sie odnalez¢ w literaturze. W poczatkowym okresie konstruowania ww.
mechanizmu byty to niespdjne atrapy przystosowujgce nadmiarowe neurony do
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zmiany swojej funkcji w sieci, lub, przede wszystkim, zmuszajgce neurony
nieuzywane do wykonania jakiejkolwiek akcji, ktéra mogtaby doprowadzi¢ do
wkomponowania nigdy lub bardzo rzadko aktywnego neuronu w strukture sieci,
a w rezultacie powstato z tego bardzo finezyjne narzedzie. Podstawowym
trikiem byto systematyczne lub losowe zmniejszanie wartosci progu takich
neuronéw o bardzo mate wartosci (IMPL2). Neuron zatem miat szanse
powolnego zblizania warunku aktywacji do jego spetnienia oraz wystartowanie
algorytmu uczenia w tym bardzo ciekawym z punktu widzenia zawartosci
synaps momencie, ktéry to praktycznie przesadzat o catej przysztosci neuronu,
jego funkgciji i klastrze do ktérego zostat przyporzgdkowany lub ktéry wtasnie on
stworzyt. Kolejnym mechanizmem autoregulujgcym, zapobiegajacym zbyt
mocnym lub bezwyjSciowym sprzezeniom zwrotnym jest modyfikowanie
wartosci progu o wartos¢ proporcjonalng do réznicy wartosci aktywacji i progu
podczas momentu aktywacji. Wspodtczynnik proporcjonalnosci byt dobierany
empirycznie (i zwykle jego warto$¢ wynoszaca 3 przynosita najlepsze efekty).
Wyjscie ze sprzezenia w dos¢ krotkim czasie jest podstawowym warunkiem, w
przeciwnym razie pamie¢ dtugoterminowa zdekomponowana na wagi
synaptyczne ulega zniszczeniu. Kolejnym elementem jest wprowadzenie
refrakcji. Powoduje ona dodatkowg dynamike w sieci . W naturalny sposéb
rozbija ona dodatnie sprzezenia zwrotne, czynigc je znacznie stabszymi. Do tej
pory nie zostato okreslone jednoznacznie, czy jej dziatanie jest pozytywne w
procesach przetwarzania informacji?, na pewno jednak zmienia dziatanie sieci.
Mozna stwierdzi¢, ze refrakcja w modelach IMPL i SNN wprowadza elementy
losowe, co z jednej strony powoduje réznicowanie neurondw, przyczyniajgc sie
do powstawania wiekszej ilosci klastrow, z drugiej strony zmniejsza predkos$é
lub zabrania neuronowemu wektorowi wag dazy¢ w okreslonym kierunku,
przesuwajgc jego momenty aktywacji wzgledem pierwotnych. Refrakcja rozbija
dodatnie = sprzezenia  zwrotne,  jednakze powoduje powstawanie
nieoczekiwanych i powtarzajgcych sie innych sprzezen powstatych z rozbicia
sprzezenia globalnego. Walka z nieoczekiwanymi sprzezeniami jest bardzo
trudna i zawsze wprowadza mniejsze lub wieksze spustoszenia zaréwno w
pamieci krotko- jak i dtugo- terminowej. Badaniem dynamiki zachowania sieci
nie podlegajacej uczeniu oraz jej przechodzeniem ze stanu synchronicznych

2 z wyjatkiem jednej zaleznosci, ktora zostanie opisana w tym rozdziale
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niezaleznych odpalen do stanu synchronicznej aktywacji jako funkcji ilosci
potagczen zwrotnych, zaréwno dodatnich jak i ujemnych, oraz s$rednich
czestotliwosci odpalen neurondw zajeli sie Y. Aviel, C. Mehring, M. Abeles i D.
Horn w pracy [14]. Nie mozna zatem jednoznacznie okresli¢ przydatnosci
wprowadzenia refrakcji do modelu, jednakze w modelach z refrakcjg zostat
zaobserwowany w tej pracy nastepujacy schemat zaleznosci, ktérego opisu nie
znalaztem w omawianej powyzej literaturze, a ktéry ma bardzo istotne
znaczenie dla procesow informacyjnych neuronu. Wszystkie wymienione
elementy zaczety funkcjonowac zgodnie z nastepujgcym schematem:
1.wartos¢ progu neuronu zmodyfikowana o warto$¢ refrakcji dazy
(zgodnie z wybrang arbitralnie w danym modelu funkcjg) chwilowo do
wartosci progu, aby po okreslonym czasie refrakcja przyjeta wartosé 0.
Wartosci chwilowe amplitudy refrakcji sa zwykle proporcjonalne do
progu dla danego neuronu, aby refrakcja miata réwnie duze
oddziatywanie ~w neuronach zaréwno bardzo aktywnych i
przyporzadkowanych do wyrdzniania okreslonej klasy abstrakcji jak i
neurondw niedotrenowanych.
2.refrakcja wptywa bezposrednio na moment pobudzenia neuronu, a
doktadniej na jego przesuniecie w czasie wzgledem momentu
pobudzenia, ktory bytby wyliczony bez uwzglednienia warto$ci refrakgji
3.pobudzenie neuronu wyznacza moment liczenia catkowitej aktywadji,
ktora to aktywacja bedzie przekazana do algorytmu uczenia. Jesli
moment pobudzenia zostat nieznacznie przesuniety, warto$¢ aktywaciji
moze by¢ rézna od tej z pierwotnego momentu (ale musza by¢ spetnione
warunki aktywacji, czyli przekroczenia progu zmodyfikowanego o
refrakcje), a co wazniejsze, wektor aktywnych synaps moze mieé
zupetnie inng wartosc.
4.zmieniona wzgledem pierwotnej warto$¢ aktywacji wplywa
bezposrednio na modyfikacje progu, poniewaz zwykle warto$¢ progu
dazy do wartosci aktywacji lub do wartosci proporcjonalnej do aktywac;ji
Jak mozna zauwazy¢, w dalszym ciggu najwazniejsze pozostajg dane
wejsciowe wyznaczajgce zgrubnie moment pobudzenia neuronu, jednakze ww.
mechanizm stabilizuje czestotliwos$¢ pracy neuronu, a co wazniejsze — aktywnie

wptywa na informacje zapisang w pamieci krotko- a przede wszystkim dtugo-

Str. 116



terminowej. Kolejnos¢ przyczynowo-skutkowa tworzy liste elementéw
dziatajacych w silnej petli sprzezenia zwrotnego, a jest to kolejno: ,prdg,
refrakcja, aktywacja®’, gdzie kolejne elementy powigzane sg silnymi
zaleznosciami funkcyjnymi, umozliwiajac powstanie finezyjnego mechanizmu

synchronizujgcego pulsujgca sie¢ neuronowag z danymi wejsciowymi.

54 Kryteria weryfikacji algorytméw uczenia oraz pomiary ich

skutecznosci

Dazac do zobiektywizowania poréwnan jakosci poszczegdlnych modeli i
przys$pieszenia eliminacji modeli nie rokujgcych nadziei na powstanie w nich
pamieci diugo- lub krotko- terminowej zostaty opracowane trzy metody
pozwalajgce przeprowadzi¢ te operacje w sposéb automatyczny.

Pierwsza z nich bazuje na wykresie ilosci odpalen neuronéw w czasie
pracy (i uczenia) sieci. Pamietajgc, ze symulacja sieci odbywa sie ze
zdefiniowanym krokiem réwnym 2ms, kazdemu takiemu okresowi mozemy
przypisaC okreslong liczbe neurondw, ktore ulegty aktywacji w tym okresie.
Podczas tego testu wzorzec lub cigg testowy powinien byC¢ przedstawiany sieci
cyklicznie.

Pomocniczo zdefiniujemy funkcje G badajacq korelacje :

T[
def.Gla,b|=copy|zlatt),z[b+1]] (49)
t=0

gdzie:
T; — czas trwania wzorca
z(t) — liczba odpalonych neuronéw w kroku symulacji nr t

Gltg.t;|>G |ty 1. (50)

(t.=t,)>T 1 1€t 1, 1y ... (51)
gdzie:
1, - chwila rozpoczecia prezentacji wzorca
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We wzorze (50) zaktadamy, ze sygnat nie bedacy wzorcem jest od niego
statystycznie rézny w mysl kryterium (1),(3),(4) lub (5).

Jezeli wystgpi korelacja pomiedzy iloscig odpalonych neurondw oraz
aktualnym wektorem wzorca np. pojawig sie pewne okresowos$ci na wykresie
czestotliwosci odpalen neurondw i okres bedzie rowny czasowi trwania wzorca
mozemy stwierdzi¢, ze sieC wykazuje oznaki prawidtowej reakcji na wzorzec.
Zbadanie tej wiasciwosci pozwala stwierdzi¢, ze sieC¢ nie wpadta w globalne,
niekonczace sie sprzezenie zwrotne.

Metoda ta nie moze by¢ stosowana podczas kilku pierwszych prezentaciji
zbioru uczacego lub wzorca, kiedy nastepuje wstepne organizowanie sie sieci,
co czesto prowadzi do bardzo burzliwych reakcji sieci.

Jesli korelacja istnieje mozemy pokusi¢ sie o sprawdzenie tendencji jej

zmian:
G tys 1180} =G trtes) =, (52)

W ten sposob otrzymujemy kolejny parametr z tej metody. Jesli stopien
korelacji z czasem wzrasta, oznacza to, ze badany algorytm jest lepszy niz
moglismy oceni¢ w pierwszych pomiarach. Predkos¢ wzrostu korelacji daje nam
trzeci parametr:

cln=cn _cn—-l (53)

Parametry mogq by¢ uzyte do "
automatycznego poréwnywania
jakosci poszczegdlnych algorytmow
uczenia. Przyktadowy wykres
przedstawia rys. 65 [24]

Ad aadAsAnAsAANNAAA >

{ms)

Drugie kryterium oceny jakosci Rys. 65 — Wykres czgstotliwoéci podczas

algorytméw opiera sie na analizie udanego procesu uczenia

zmian zachodzacych w matrycy
potencjatéw postsynaptycznych podczas uczenia sieci oraz w mapie aktywnych
neurondw w kazdym kolejnym kroku symulacji. Zaréwno na matrycy
potencjatéw, jak i na mapie aktywnych neuronéw, mozemy zaobserwowac mniej
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lub bardziej skoncentrowang fale odpowiednio potencjatéw postsynaptycznych

o wysokiej wartosci lub pobudzonych neurondéw, co mozemy zapisaé

nastepujgco:
YV t:t—t,<T, Abe(l, 1
0:45=0 |55 (54)
ol :q,;,>0
gdzie:

g» — warto$¢ tadunku postsynaptycznego rtej synapsy jtego
neuronu w chwili
d — stata bliska 1 np. d =0.9

Mierzenie spojnosci fali uformowanej w sieci, w mysl wzoru (54), w
odpowiedzi na na wzorzec lub cigg testowy moze by¢ kolejnym parametrem

poréwnawczym.

Trzecia metoda jest Scisle zwigzana z modyfikacjami matrycy wag
synaptycznych. Przy zatozeniu sasiedztwa neurondw oraz ilosci klas, na ktére
podzielity sie neurony w procesie specjalizacji swojej funkcji w procesie
dekompozycji problemu globalnego, nastepujacy wzor szacuje stopien
rozdrobnienia klas:

J-11-1

’ (55)

V= (ij 11_/[

WZI*J =0 =1

Uzywanie trzeciej metody powinno by¢ poprzedzone uzyciem dwoch
poprzednich w odniesieniu do danego modelu, o ile to jest mozliwe, a w
szczegolnosci pierwszej. Wysoka warto$¢ parametru v oznacza dobrg jako$¢
algorytmu uczenia.

Dos¢ ciekawe procesy prowadzgce do wyksztatcenia sie duzej liczby
klas neuronéw mozemy réwniez obserwowaC w postaci wizualnej,

przeksztatcajgc matryce wag do postaci czarno-biatej bitmapy, gdzie
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odpowiedni stopien zaciemnienia danego punktu jest odpowiedni do wartosci
wagi reprezentowanej synapsy. Jezeli po okreslonym czasie pracy sieci
bitmapa bedzie zawierata wiele detali i nieregularnych ksztattéw - oznacza to
iz algorytm rokuje nadzieje na wyksztatcenie pamieci dlugoterminowej.

Zgodnie z zatozonymi kryteriami pokrycia wzorca (rozdziat drugi) przez
sygnat wejsciowy zostaty spreparowane odpowiednie dane testowe oraz
przeprowadzone symulacje celem obiektywnego zweryfikowania skutecznosci
oceny wyzej wymienionych trzech metod. Jako obowigzujgce i nie preferujace
okreslonego typu sieci kryterium danych wejsciowych wybrano (3), gdyz
modele sieci posiadajgce symulacje tadunkéw postsynaptycznych znacznie
lepiej radzg sobie z nieliniowoscig podstawy czasu (4),(5), szczegdlnie gdy
lokalne zaburzenie nie przekracza 8 ms, co w modelu przektada sie na e<4.
Modele te wykazujg bardzo duzg tolerancje nawet na zmiane kolejnosci
wektoréw w ww. okresie. Kazdy rodzaj sieci byt testowany od czterdziestu do
stu razy. Wyniki zostalty zamieszczone w tabeli 66. Mafa sie¢ zostata
zdefiniowana jako zbiér mniej niz 30 neurondw. Duza siec¢ byta testowana na
zbiorze 400 i 4000 neurondw.

Rodzaj sieci/ Metoda pierwsza, Metoda druga, Metoda trzecia, |

kryterium bazujgca na ilosci|bazujgca na|bazujgca na

weryfikacyjne odpalen istnieniu fali matrycy wag
tadunkéw

Mata sie¢ binarna a) nieuzyteczna b) nieuzyteczna |c) 0,570 |

Duza sie¢ binarna d) 0,963 e) nieuzyteczna |f) 0,9375

Sieci z symulacjg

tadunkéw

postsynaptycznych g) 0,978 h) 0,989 i) 0,945

Sieci z symulacjg

refrakcji j) 0,905 k) nie uzyteczna |1) 0,554

Sieci z symulacjg

tadunkow

postsynaptycznych

oraz refrakg;ji m) 0,932 n) 0,988 0) 0,629

Tabela 66 — Wyniki skuteczno$ci metod weryfikacji algorytméw uczenia
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Objasnienie skrajnych przypadkéw testu i btednych przyporzadkowan:

a) Takie rodzaje sieci majg matg maksymalng czestotliwo$¢ odpalen neuronéw
ze wzgledu na matg ich ilos¢. Czyni to te metode stosunkowo mato czuta.

b) Sie¢ jest zbyt mata aby mdéc méwi¢ o skoncentrowaniu tadunkéw na danym
obszarze i wytworzeniu przesuwajgcej sie fali.

c) Bardzo stabe wyniki tej metody w przypadku matych sieci sg skutkiem
akceptowania duzej liczby btednych algorytméw. Mata matryca wag powoduje
dos$¢ matg skale rozpietosci parametru d obarczong wzglednie duzym btedem
statystycznym.

d) Jedynie kilka sieci o bardzo matej amplitudzie czestotliwosci odpalen udato
sie btednie zaakceptowac jako dobre. Sieci te transmitowaty dane z wejscia do
wyjscia bez jakichkolwiek transformaciji, nie posiadaty pamieci.

e) Metoda badania potencjatéw postsynaptycznych moze by¢ uzyta tylko do
sieci, ktore je posiadaja.

f) Kilka sieci z matg iloscig detali w matrycy wag z powodu zbyt prostego
wzorca posiadato prawidtowo dziatajgcy algorytm, a zostato odrzuconych.
Jednoczesnie zdarzyto sie kilka algorytmow nie wyksztatcajgcych pamieci, a
bardzo réznicujgcych matryce wag, ktére metoda btednie zaakceptowata.

g) Podobnie jak w d)

h) Jedna sie¢ nie wykazywata koncentracji tadunkéw tworzacych fale, ale
jednoczesnie wykazywata wtasciwosci pamieci krotkoterminowej, co oznacza,
ze algorytm uczenia byt poprawny, a zostat odrzucony przez te metode.

i) Podobnie jak w f)

j) Kilka sieci posiadajgcych niskg wartos¢ czestotliwosci odpalen neurondw,
ktére przesytaly sygnaty wejsciowe bezposrednio na wyjscie, zostato btednie
zaakceptowanych. Jednoczes$nie pomyiki zdarzyly sie réwniez w przeciwnym
kierunku, tzn. refrakcja stabilizowata czestotliwosciowg odpowiedz sieci i kilka
prawidtowo dziatajacych algorytmoéw zostato odrzuconych.

k) Podobnie jak w e)

l) Dynamiczny model refrakcji zaburza w pewnym stopniu integralnosc
sgsiedztwa w topologicznym podejsciu, poniewaz potrafi ono by¢ podzielone
np. na dwa obszary sasiedztwa wzajemnie sie przeplatajgce i zajmujagce ten
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sam obszar. Logicznie sg jednak dwoma niezaleznymi sgsiedztwami. Jesli
sgsiedztwa sie pokrywajgce nalezg do roznych klas neuronéw - powstaje
bardzo zréznicowana matryca wag, co nie jest proporcjonalne do ilosci
faktycznych klas wyksztatconych w sieci. Metoda nie jest akceptowalna dla tej
struktury sieci.

m) Kilka sieci wykazywato spetnienie tego kryterium, ale ich algorytm uczenia
utykat w pewnym punkcie i nie doprowadzat skutecznie do powstania pamieci,
co oznaczato btedng klasyfikacje tego kryterium. Jeden model sieci o zlym
algorytmie uczenia spetnit kryterium przez przypadek — nie byto to powtarzalne
w przyjetej prébce.

n) Podobnie jak w h)

0) Podobnie jak w I)

Podsumowujgc  wyniki pomiaréw skutecznosci metod weryfikacji
algorytmdéw uczenia mozemy jednoznacznie powiedzie¢, ze zadna z metod nie
nadawata sie do weryfikacji dziatania matych sieci neuronowych, posiadajgcych
do kilkudziesieciu neurondéw. Metoda druga, z natury rzeczy, nie ma mozliwosci
operowania na sieciach nie posiadajgcych wigczonej symulacji potencjatow
postsynaptycznych. Metoda trzecia wypadta bardzo stabo przy sieciach z
modelowaniem refrakcji wzglednej i bezwzglednej. Wiekszos¢ tych przypadkow
dotyczy zatem albo przypadkéw mato ciekawych lub skrajnych np. uzycie takich
metod do badania matych sieci jest pewnym przerostem narzedzi nad
potrzebami, lub brak mozliwosci obserwaciji fali potencjatéw postsynaptycznych
w miejscach nie posiadajgcych tych potencjatéw. W pozostatych przypadkach
skutecznos$¢ metod jest bardzo wysoka, maksymalnie siegajgca niemalze 99%,
a oscylujgca dla réznych testéow na poziomie 96-97%! Co wazniejsze, dotyczy
to wiasnie najbardziej obiecujgcych obszaréw badan, czyli sieci duzych,
posiadajgcych modelowanie tadunkéw synaptycznych. Nawet w przypadku
analizy sieci wykorzystujgcych rozne rodzaje refrakcji, ktore z zatozenia
wykazujg wieksze zréznicowanie i sg trudniejsze do weryfikacji, metody z grupy
pierwszej i drugiej wykazujg skutecznos¢ pomiedzy 90 a 98%. Tworzac kryteria
wykorzystujagce jednoczes$nie po dwie lub trzy metody mozemy jeszcze

zwiekszy¢ precyzje weryfikacji algorytmow.
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5.5 Zestawienie skladowych modeli oraz algorytmoéw uczenia

a) Warunek aktywacji neuronu

gdzie:

-1 \
W.. kX,
1 s z Lt Lt >/

—0 W1 1j'l+r<j’t)
Yir1= . (56)
¢ lwijt*xijl
, ] o)l Y
0@1_:20 a1 <hictrii)

h;: - wartoS¢ progu neuronu j w chwili ¢

r(j,t) — wartosc¢ refrakcji neuronu j w chwili ¢
w;j: - warto$¢ r'tej wagi neuronu j w chwili ¢
Xi;¢ - wartos¢ i'tego wejscia neuronu j w chwili ¢
W- maksymalna warto$¢ wagi

I- ilos¢ synaps kazdego neuronu

Refrakcja przyjmowata wartosci:

e funkcji statej o wartosci zero, gdy refrakcja nie byta modelowana

e funkgji przyjmujacej wartosci nieskonczonos$¢,9,4,2,1,0 mV dla
danego neuronu j liczgc dyskretnie w kolejnych krokach symulacji
o dtugosci 2 ms i poczatku w momencie aktywacji neuronu

e malejacej funkgcji linowej (w tym réwniez przyjmujacej wartosci
ujemne) o wartosci poczatkowej w momencie odpalenia neuronu
zaleznej od wartosci jego aktywacji. Nachylenie funkcji jest
zalezne od warto$ci progu, tak ze po ustalonej dla danego

modelu ilosci krokéw osigga warto$¢ przeciwng do progu.
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b) Przeptyw fadunkow przez synapse

Przeptyw tadunkéw przez synapse i ich akumulacja po stronie
postsynaptyczne;j jest Scisle zwigzana z krokiem symulacji. Przy kroku rownym
2ms mozemy przyjac:

e brak symulacji tadunkéw postsynaptycznych
e zgodnie ze wzorem:

X

Xy =+ (57)

i1 2 it

c) Wejscie danych do systemu

. = Z, =i<L
Yo VineizL 8)
gdzie:
Z — warto$c¢ itego wejscia do sieci w chwili ¢
L —ilo$¢ wejs¢ do sieci
I=L+J
0 <j<J (59)
ViV Vi ow, SW
d) Zmiennos¢ progu neuronu
1
_ g Z W kX, —hj,
By =) by 4= =y,>0 (60)
hj_,—aﬁyj_,:O

gdzie:
g — stata modelu, utamek wtasciwy lub 1
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k — stata modelu, k>1
a — stata modelu
Parametr g jest wyznacznikiem, jak szerokie klasy abstrakcji mogg
zosta¢ wyksztatcone podczas procesu uczenia. Im parametr ten jest blizszy 1,
tym bardziej klasa bedzie pokrywata jedynie zbiér uczgacy. Wartos$¢ nie powinna
by¢ nizsza niz 0,3.
Parametr k definiuje tempo zmian progu. W wielu modelach przektada
sie to bezposrednio na czutos¢ sieci na drobne zmiany sygnatu wejsciowego.
Im k przybiera wieksza wartos¢, tym model staje sie czulszy, ale tym wolniej

przebiega uczenie.
e) Zmiany wag synaptycznych

W tym punkcie nie da sie przedstawi¢ uogdlnienia. Modyfikacje wag to
jedna z najwazniejszych czesci modelu odpowiedzialna za powstawanie
pamieci dtugoterminowej, a jednoczesnie jedna z najszerszych pdl do
zbadania. Wystepujg tu rdzne algorytmy, poczgwszy od modelujgcych
hamowanie i torowanie, modyfikacji opartych o wyliczenia zmian czestotliwosci
odpalen neurondw, sprawdzajgcych hipotezy synaps hamujgcych i hamowania
presynaptycznego, co zostato omowione przy poszczegolnych modelach.
Mozemy jednak z duzym przyblizeniem powiedziec, ze wartosci wag zwykle sg
proporcjonalne do swoich poprzednich wartosci oraz sygnatu wejsciowego (w
tej pracy w wiekszosci reprezentowanego przez potencjat postsynaptyczny).

_ Wi,j,z*b*xi,j,z@yj.z>o ]

Wi ™

wi,j,f‘:yj.ts 0 J (61)
gdzie:
c; — parametr staty danego neuronu
a,k — state danego modelu

b — wspoétczynnik zalezny

Wektor wag danego neuronu moze by¢ normalizowany. O ile na temat
zwiekszania sie wag w procesie uczenia jest sporo hipotez, o tyle bazujgcych
na danych fizjologicznych i dotyczgcych zmniejszania jest znacznie mniej.
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Normalizacja tego wektora wydaje sie by¢ biologicznie uzasadniona, jako
odzwierciedlajgca fizyczne mozliwosci czutosci neuronu. W praktyce proces
powinien by¢ nieco sparametryzowany, aby zachowaé odpowiednig rozpietos$¢

wartosci wag:

—| Py *wW * %2y, >0

w; jt+1
o Pii*w,,=y,;,=0
Wj,,:(wl’j', ...... Wl,j,t) (62)
- w
(Wj,r+1): (]11 *—q—
gdzie:

W, — wektor wag j-tego neuronu

p;: — liczba rzeczywista

I, =S¢ +Sy — liczba synaps neuronu uzywanych w danym modelu
zgodnie ze wzorem (63)

g- stata modelu

f) Sgsiedztwo oraz dozwolony stopien sprzezen zwrotnych

Podstawowg wifasnoscig pulsujgcej sieci neuronowej, bez ktérej
zawtadniecia nie mozna kroczy¢ w strone wyksztalcania pamieci, jest
utrzymanie stanu asynchronicznych pobudzen podczas procesu uczenia. Jak
zostato opisane w poprzednich rozdziatach, zachowanie tej stabilnosci jest
trudne w sieciach ze sprzezeniami zwrotnymi. Natomiast wyeliminowanie
sprzezen zwrotnych diametralnie zmienitoby mozliwosci sieci i zblizyto do
prostych sieci warstwowych jednokierunkowych przeliczajgcych okreslona
funkcje.

Doswiadczenia wskazuja, ze priorytetowa okazuje sie w tym zakresie
struktura sieci, tzn.:

e definicja sgsiedztwa w przyjetym monolicie,

e zasieg i ilo$¢ synaps do neurondw o mniejszych identyfikatorach

e fakt istnienia w strukturze mozliwosci ciggtego przekazywania kontekstu

do sasiednich obszardéw.
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Uzasadnienie tych tez wyjasniam w odwrotnej kolejnosci niz zostaty
wymienione. Rekurencyjna sie¢ pulsujgca ma predyspozycje do zachowan
synchronicznych. Jesli owa wtasno$¢ zostanie wykorzystana do synchronizacji
z danymi wejsciowymi i bedzie dotyczyta catej sieci, inne stabsze sprzezenia
zwrotne nie bedg w stanie “przebi¢ sie” w ggszczu tych sprzezen i bedg
okresowo przerywane przez petle silniejsze, z czasem doprowadzajgc do
zanikniecia tych stabych poprzez przejecie ich neurondéw do swoich funkciji.
Wazne jest w tym przypadku, aby sasiedztwo zdefiniowane w strukturze
tworzyto spéjny twoér, np. w najprostszym przypadku byto linowe.

Druga wiasnos¢ wymaga okreslenia potencjalnej ilosci sprzezen
zwrotnych. Aby odrézni¢ synapsy zwrotne od utrzymujacych pierwotny kierunek
w architekturze monolitycznej kazdemu neuronowi przyporzadkowano jego
identyfikator, bedacy kolejng liczbg naturalng. Synapsy do neurondw o
mniejszym identyfikatorze sgq synapsami zwrotnymi. Ich iloS¢ jest okreslona.
Zasieg oznacza maksymalng réznice wartosci identyfikatorow neuronéw
posiadajgcych synapse zwrotng. Oczywiscie ww. definicje ma tylko charakter
umowny na cele tego rozumowania. Zaréwno ilos¢ jak i zasieg synaps
zwrotnych przektadajg sie na stabilnos¢ pracy sieci w stanie asynchronicznym.

Przechodzgc do punktu pierwszego mozemy znalez¢ dopetnienie
konstrukcji. Sasiedztwo wiasnie, budowane celem koncentracji okreslonych
funkcji sieci w okreslonym topologicznie obszarze, jest jednoczesnie scisle
zwigzane z zasiegiem i iloscig synaps, w tym zaréwno przeptywu danych do
przodu jak i do tytu (do neurondéw o wyzszych i o nizszych identyfikatorach
wzgledem identyfikatora neuronu wysytajgcego sygnat). Wynika z tego, ze za
witasciwosci dynamiczne sieci odpowiada definicja sasiedztwa w modelu.

W testowanych modelach sasiedztwo byto definiowane w oparciu o

identyfikator neuronu j i miato nastepujgca postac:

0 <i</

J—=8p<isj+S (63)

gdzie:
| —ilos¢ synaps neuronu
j — identyfikator neuronu
Sp — sgsiedztwo dolne
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Sc — sagsiedztwo gorne

W  wiekszosci modeli sasiedztwo byto definiowane asymetrycznie.
Parametr Sp przybierat zwykle wartos¢ réwng /, cho¢ cze$¢ modeli miato nawet
zawezane np. do 12. Sg zwykle wynosit kilkanascie procent z liczby synaps,
cho¢ byty testowane modele z tym parametrem o wartosci od 1 do /.

W modelach ze zdefiniowanym sgsiedztwem tadunki synaps o indeksie i
spoza zakresu okreslonego wzorem (63) nie byty brane do liczenia aktywadgji

oraz nie dokonywano modyfikacji wag im odpowiednich.
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6. Poréwnanie badanych modeli do znanych z literatury

6.1 Wytyczne teorii przetwarzania przy pomocy PNN w czasie

rzeczywistym bez stanéw ustalonych

Analizujgc literature Swiatowg, dotyczgcg podmiotu tej pracy, mozna
zauwazy¢, ze fakty wynikajgce z przedstawionych symulacji i publikowane na
konferencjach zostaty potwierdzone przez niezaleznych badaczy w latach
1995-2001, a cze$¢ nadal jest przedmiotem analiz. Do podstawowych
problemédw mozna zaliczy¢ teorie budowy synapsy, algorytmu dziatania
synapsy oraz jej modyfikacji w procesie uczenia, dynamiki pracy systemu
ztozonego z duzej liczny neurondw (wiekszo$c¢ interesujgcych efektéw powstaje
przy liczbie neurondéw wiekszej od kilku tysiecy), oraz $cisle z nim zwigzanego
algorytmu uczenia.

Problemem fundamentalnym teorii systeméw bazujgcych na motorze
pulsujgcych sieci neuronowych jest koniecznos¢ zmiany podejscia do sieci
neuronowych jako mniej lub bardziej wyrafinowanej funkcji i uznanie dynamiki
sieci oraz braku koniecznosci osiggania stanu ustalonego jako podstawy do
skonstruowania brakujgcej w tym miejscu teorii. Jej brak, o ktérym zostato
wyraznie powiedziane w 1996 roku [24]® jako teorii (a wilasciwie jej braku)
przetwarzania w czasie rzeczywistym bez standw ustalonych, doczekat sie
wstepnego opracowania w pazdzierniku 2001 roku przez Thomasa
Natshlager’a oraz Wolfganga Maass'a [131], co prawdopodobnie wptynie na
zintensyfikowanie prac w tym zakresie przez rozne osrodki badajgce PNN.
Powstate opracowanie ,Neurony pulsujgce i wstep do maszyny skonczonych
standéw” [131] nie tylko mowi o duzej pustce w tym obszarze, ale proponuje
stosunkowo prostg teorie, ktéra przystaje do sieci jednokierunkowych. W tej
samej pracy jest podkreslona rowniez rola lokalnej reguty uczenia, co w
przysztosci powinno by¢ fundamentem algorytmu uczenia. Przedstawiony

3 [24] — w rozdziale 3.4: ,Stan dynamiczny sieci moze byé réwniez reprezentacjg danych
wejsciowych, o ile zapewni sie mechanizmy to wykorzystujgce.” oraz w rozdziale 4 wraz z
przyktadami dziatajgcych tego typu systemow, powstatych w procesie uczenia, bazujgcym na

lokalnej regule uczenia.
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model neuronu pulsujgcego przez Natschlagera posiada bardzo duze
podobienstwa do modeli z symulacja tadunkéw postsynaptycznych
prezentowanych w poprzednich rozdziatach: praca synapsy, refrakcja
bezwzgledna i wzgledna. Waznym wktadem [131] jest tez usystematyzowanie
poje¢ poprzez podanie ich definicji oraz ujednolicenie stownictwa w zakresie
opisu PNN jako maszyny skonczonych stanéw. Pulsujgca sie¢ neuronowa jest
w tym rozumieniu maszyng przeksztatcajgca cigg wejsciowy w cigg wyjsciowy
na biezgco, nie arbitralnie lecz uzywajgc w tym procesie skonczonej liczby
stanéw wewnetrznych maszyny skonczonych stanéw (FSM). Jest to bardzo
istotne z tego punktu widzenia, iz nie traktuje sie tu dynamiki sieci jako co$
tymczasowego, co$ czego celem jest doprowadzenie do ustabilizowania sie
(jesli proces bedzie zbiezny) i okreslenia wyniku, jak np. w sieci Hopfielda, ale
sie¢ jako proces staje sie gtdwnym obiektem zainteresowania. Sie¢ nie jest tu
tez automatem, ktéry odrzuca lub akceptuje okreslone cigagi wejsciowe (jak
maszyna Turinga). Spojrzenie jest znacznie szersze.

Wczesniejsza praca W. Maassa z 1996 roku [114], najbardziej zblizona
do tego tematu (PNN jako FSM), zawiera formalne metody przeksztatcenia
maszyny w pulsujgca sie¢ neuronowa, ale proces ten nie ma nic wspolnego z
algorytmem uczenia. Nie zawiera tez praktycznej realizacji, jedynie teoretyczny
proces na potrzeby oszacowania mozliwosci sieci. Ponadto wyniki byty tez
niezgodne z przestankami biologicznymi np. nie zatozono jakiejkolwiek
redundancji, nienaturalnie ztozona funkcja pojedynczego neuronu w systemie
itp., co sprawia, ze zbytnio odbiegata od naturalnego wzorca PNN. Praca
przedstawia natomiast formalne dowody na potencjaing moc PNN jako
maszyny. Dowody te obrazujg, jak duze mozliwosci posiada mechanizm PNN
np. w jednym z nich jest pokazane, jak maszyna Turinga moze by¢
przeksztatcona i emulowana przez PNN. Jest to zatem wazna cegietka w teorii
dziatania PNN.

W Swietle rysujgcych sie wymagan stawianych przez wspoétczesnie
powstajacg teorie przetwarzania w czasie rzeczywistym przy pomocy
pulsujgcych sieci neuronowych bez osiggania standéw ustalonych (ostatnio
opisywanego skrotem RTCWSS) warto cofng¢ sie do klasycznych architektur
sieci i okresli¢ ich pozytywne i negatywne cechy pod katem mozliwosci
zastosowania w modelach pulsujgcych. Siecig najbardziej przypominajgcg w
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swym dziataniu PNN ze sprzezeniami zwrotnymi jest popularna sie¢ Hopfielda
[63]. Jej atutem jest wystepowanie sprzezen zwrotnych i w rezultacie procesu
dynamicznego przetwarzania po podaniu danych wejsciowych. Jest to cecha,
ktérg posiadajg naturalne sieci neuronowe i wysoce pozytywna w swietle w.w.
teorii. Jednak podczas tego procesu nie sq przetwarzane przez sie¢ kolejne
dane wejsciowe, jakby to wynikato z wzorca biologicznego. Kolejna partia
danych moze by¢ przetworzona w nastepnym cyklu pracy sieci, a on nastepuje
po osiggnieciu stanu ustalonego w cyklu biezgcym, gdzie czas trwania cyklu
nie jest dodatkowo stalty ani tatwo przewidywalny. Nie jest to zatem
przetwarzanie w czasie rzeczywistym. Poza tym oczekuje sie, ze sie¢
Hopfielda osiggnie stan ustalony i to oznacza zakonczenie przetwarzania.
Samo odtgczanie wejSC sieci po pobraniu wzorca wejsciowego jest tworem
bardzo sztucznym, nie moéwigc o tym, ze aby zapewnié¢ zbieznosc
przetwarzania musza by¢ spetnione okreslone warunki wag, czesto mozliwe do
sprawdzenia tylko centralnie (sprzeczne z Iokalng regutg uczenia).
Ograniczenia te wynikaja z faktu, ze za wszelkg cene jest zapewniana
zbieznos¢ przetwarzania do stanu ustalonego, co zgodnie z teorig RTCWSS
nie jest konieczne.

W maszynie Boltzmana [159] podczas pracy wystepuje proces
dynamiczny, jego efekty dziatania sg pozadane w rozumieniu RTCWSS.
Jednak maszyna ta posiada ten mankament, ze zgodnie z uogodlnionym
algorytmem uczenia podanym przez Hintona i Sejnowskiego [61] wymaga
scentralizowanego zgromadzenia statystyk na temat sieci oraz wyliczenia
poprawek wag. Jest to w konflikcie z lokalng regutg uczenia, gdyby sie¢ miata
uczy¢ sie podczas pracy. Efektem zakonczenia przetwarzania jest tez stan
réwnowagi, podobnie jak w sieci Hopfielda. Stan ustalony nie moze by¢ formg
reprezentacji danych zmiennych w czasie.

Klasycznym przyktadem braku nauczyciela w sieciach neuronowych jest
mapa cech Kohonena [77], a wiasciwie jej pierwowzor - sie¢ Wilshawa i von der
Malsburga, ktéra dodatkowo nie wymaga przetwarzania scentralizowanego i
jest zgodna z lokalng reguta uczenia. Zarébwno samoorganizowalnos¢ jak i
decentralizacja przydatna w RTCWSS ma swoj pierwowzér w naturze,
doktadniej nasladowanie przyrody w odwzorowaniach swiata zmystow

organizméw w ich korze modzgowej np. potaczenia kory moézgowej z okiem
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tworzg mape reintopowa, z uchem - mape tonotopowa, z receptorami dotyku -
mape somatosensoryczng. Samoorganizowalnos¢ tych map jest osiggnieta
poprzez wzajemne oddziatywanie neurondw w zakresie pracy i uczenia. Sita
wzajemnego oddziatywania jest funkcjg zwang ,kapeluszem meksykanskim”
[79] str.79, ktérej argumentem jest odlegtos¢ na zdefiniowanej przestrzeni.
Naturalna przestrzen jest tréjwymiarowa, nie jest ona jednak jedyng przydatng
w tej sytuacji. Pomimo, ze samoorganizowalnos¢ nie jest jednoznacznie
zwigzana z RTCWSS, powinna stanowic¢ jej nieroztaczng czes¢, zwltaszcza ze
zostata tutaj uzyta pozadana lokalna regufa uczenia.

Bardzo interesujaca jest, wspotczesnie powstata do modelu SNN, praca
Massa i Natschlagera [133]. Jest ona rozwinieciem poprzedniej pracy [131]
dotyczacej przetwarzania informacji bez koniecznosci osiggania stanow
ustalonych w pulsujacych sieciach neuronowych (RTCWSS). Postepowosc tej
pracy jest ogromna. Zwykle likwidujac konieczno$¢ dazenia do stanu
ustalonego pierwszym przychodzacym na mys| abstraktem odpowiednim jest
powstanie okreslonego atraktora z wektoréw generowanych przez wyjscie sieci
lub przez wektor aktywnych neurondéw sieci. Tak rowniez mozemy
domniemywaé byto w poprzedniej pracy tych autoréw, jak i we wszystkich
zaprezentowanych modelach IMPL. | jest to btgd spowodowany
prawdopodobnie ukrytym dazeniem do zamodelowania stanu ustalonego
przystajgcego do pracujgcego modelu PNN. Zgodnie z zatozeniami, nie jest
potrzebny (a doktadniej - jest niedozwolony) jakikolwiek stan ustalony, aby
przetwarza¢ zmienne w czasie informacje za pomocg tego typu struktury. W
pracy jest podjeta préba zdefiniowania alternatywnego paradygmatu wzgledem
stanéw ustalonych w pojeciu Maszyny Turinga lub atraktorow sieci
neuronowych. Paradygmat odrzuca koniecznos¢ sekwencyjnych przej$c¢
pomiedzy $cisle zdefiniowanymi dyskretnymi stanami wewnetrznymi. Co wiecej,
proponowana maszyna nie posiada $cisle okreslonych stanéw wewnetrznych i
jest to jak najbardziej uzasadnione — mowi nam o tym neurobiologia. Jako
model PNN proponowana jest maszyna ciektych stanéw (LSM) [150], ktéra w
swej postaci jest bardzo dobrym odzwierciedleniem proceséw wystepujacych w
PNN. LSM posiada natomiast uniwersalng moc obliczeniowg (przy spetnieniu
kilku warunkéw) niezalezng od jej fizycznej implementacji. Wiasnosci LSM
zatem przenosza sie na PNN. W zamian poprzednio uzywanego abstraktu
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atraktora w PNN powstajg tutaj dwa nowe kryteria wystarczajace do
kompletnego przetwarzania danych, mianowicie: zdolno$¢ separacji danych
oraz zdolnosc uogdlniania (aproksymowania).

Zdolno$¢ separacji danych przejawia sie réznymi trajektoriami stanow
wewnetrznych pod wptywem réznych ciggéw wejsciowych.

Zdolnos$¢ aproksymaciji jest wyznaczana za pomoca jakosci mechanizmu
przeksztatcajgcego okreslong grupe zmian standéw wewnetrznych w jeden
okreslony cigg wyjsciowy. Grup zmian standw wewnetrznych, =z
przyporzadkowanym im ciggiem wyjsciowym, moze by¢ wiele.

Do$¢ wazng zmiang jest réwniez podejScie do autoasocjacyjnosci
neuronu oraz mozliwosci tworzenia sprzezen zwrotnych. W poprzedniej pracy
na temat RTCWSS [131] domyslenie gtbwna uwaga zostata skupiona na
sieciach jednokierunkowych. Dla tego typu sieci jesteSmy w stanie obecnie
zaimplementowa¢ dos¢ efektywne metody algorytmu uczenia, w
przeciwienstwie do sieci ze sprzezeniami zwrotnymi. Jednakze sieci z petlami
zwrotnymi majg potencjalnie nieporownywalnie wieksze mozliwosci zaréwno
pod wzgledem efektywnosci pracy sieci, ilosci przeksztatcern matematycznych
mozliwych w odpowiednio licznej grupie neurondéw oraz zupetnosci mozliwych
przeksztatcen sygnatu wejsciowego. Problemem jest natomiast dopasowanie
algorytmu uczenia, co zostato szczegdtowo omawiane przy modelach SNN.
Zmiana polega na domysinym zatozeniu, ze sie¢ powinna mie¢ bardzo duzo
matych obwodéw sprzezenia zwrotnego, (szacunkowo ok. 80% synaps
powinna pracowa¢ w takich obwodach). Zwieksza to diametralnie dynamike
zachowania takiej sieci, niestety autorzy nie podaja, jak powinna pracowac taka
struktura. Wydaje sie to samym sednem probleméw PNN i wyzwaniem dla
wszystkich badaczy tego obszaru. Opracowanie przystajgcego do tej struktury
algorytmu uczenia spetni warunki stawiane LSM i wyzwoli w PNN uniwersalng
moc obliczeniowg. Zgodnie z symulacjami omdwionymi w poprzednich
rozdziatach wydaje sie, ze jednak liczba obwoddw sprzezenia zwrotnego
powinna by¢ ok. czterokrotnie mniejsza.

Z drugiej strony nalezy mie¢ na uwadze, ze jesli to sie powiedzie,
powstata maszyna z mocg obliczeniowg bedzie na tyle rézna od znanych nam
obecnie komputeréw, ze prawdopodobnie nigdy ona nie zastgpi PC a jedynie
go uzupetni (lub odwrotnie — technika PC bedzie jej uzupetnieniem). Przemawia
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za tym wysoka dynamika systemu i zwigzane z tym ryzyko nieprzewidywalnosci
przy okreslonych ciggach wejsciowych oraz okreslonych stanach
wewnetrznych. Wydaje sie tez, ze sktadowanie baz danych w ktérych
wymagana jest stuprocentowa doktadnos¢, bedzie tez niemozliwe lub co
najmniej okupione nieproporcjonalnie duzym naktadem pracy takiej sieci i
znacznie wyzszym niz w przypadku klasycznego przetwarzania.

Warto w tym miejscu zaznaczy¢, ze nie tylko technika PNN natrafita na
problemy z teorig przetwarzania informacji w ostatnich latach. Prace nad
skonstruowaniem komputera DNA wprowadzajg nas w analogiczne dylematy.
tancuch kwasu DNA w komorce jest przetwarzany réwnolegle w wielu
miejscach, podobnie jak w wielu miejscach informacja jest przetwarzana przez
réwnolegle pracujgce neurony. Juz obecnie mozemy zaprogramowac taki
komputer DNA aby okreslit, czy w danym ciggu jest np. parzysta liczba zer, czy
cigg sie zaczyna i/lub konczy okreslonym symbolem itp. Nikt jednak nie planuje
zastosowa¢ tego do skonstruowania PC, pomimo ze technika ta w wielu
miejscach moze mie¢ mozliwosci nigdy nie osiggalne przez prosta linie rozwoju
obecnych PC.

Odchodzenie w wielu dziedzinach od koncepcji komputera zgodnego z
maszyng Turinga potwierdza zapotrzebowanie na nowe teorie przetwarzania

informaciji.

6.2 Inne pulsujace systemy neuronowe — teoretyczne i zaimplementowane

Pulsujagce sieci neuronowe to bardzo obiecujacy dziat sieci
neuronowych, pomimo iz w zastosowaniach aplikacyjnych technika ta obecnie
przegrywa z klasycznym podejsciem SN lub nawet z algorytmami nie
neuronowymi. Opisane w tej pracy symulacje tworzg cigqg doswiadczen
powigzanych ze sobg zwigzkami przyczyno-wynikowymi. W naturalny sposéb
stanowig niezalezng linie pulsujacych sieci neuronowych wzgledem prac
innych badaczy zajmujacych sie tym tematem. Pomimo, ze model tworzy
odpowiednio dobrany zbiér zaimplementowanych cech i odpowiednie proporcje
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zwykle stanowig o jego mocy, mozliwe jest tez poréwnywanie poszczegdlnych
elementéw wystepujgacych w modelach réznych autoréw.

Jak pokazujg najnowsze badania, sam neuron zintegrowany i pulsujacy
powszechnie uznawany obecnie jako bazowy (IAF), zostat juz w 1907 roku
opracowany przez Lapicque! [1]. Zaproponowat on do$¢ prostg synapse
sktadajgca sie z kondensatora i rezystora potagczonego réwnolegle do
potencjatu zewnetrznego. Nie znat on oczywiscie wszystkich procesow
wystepujacych w neuronie, ale zaproponowat witasnie neuron typu IAF,
pomijajac np. zmiennos¢ przeptywnosci membrany w zaleznos$ci od aktualnego
jej potencjatu. Przydatnos¢ tego modelu mozna oceni¢ dopiero obecnie, po tak
dtugim czasie, poniewaz coraz wiecej procesow neuronu wydaje sie nie mieé
zwigzku z przetwarzaniem informacji. Weryfikacja takich faktéw nie jest tatwa i
wymaga wielu doswiadczen, aby pokusic¢ sie o stwierdzenie, ze wlasciwos$é x
oraz y nie majg ze sobg zwigzku, lub ze wystepujace zaleznosci nie majg
znaczenia w interesujgcych nas procesach.

Jednym z pierwszych symulatoréw, w ktérym potwierdzono fale
okreslonej czestotliwosci koncentrujgce sie topologicznie w okreslonym miejscu
sieci, jest PRISM [71]. Fakt przeptywu np. fali potencjatéw postsynaptycznych,
jako cechy swiadczacej o skutecznym przetwarzaniu danych, zostat oméwiony
w modelach SNN i jest symptomem wystgpienia synergii neuronéw oraz
procesu kreowania pamieci krotkoterminowej. System PRISM* zawiera
elementy zmiany synapsy, uwarunkowane jej historig w systemie, uzywane do
rozpoznawania statycznego wzorca np. liter. Zastosowanie proceséw Markowa
przy modyfikacji synapsy daje dos¢ duze mozliwosci, ale prawdopodobnie nie
jest wystarczajgce, poniewaz nie tylko informacje docierajgce do synapsy majg
wptyw na zmiane jej wagi. Brak zaleznosci czasowych lub chwilowych w tym
systemie znacznie ogranicza mozliwosci sieci neuronowej. Natomiast cechg
wyrézniajacg ten system jest przyjete kryterium przy okreslaniu odpowiedzi
sieci (zarowno pozytywne] jak i negatywnej), mianowicie: koncentracji
impulséw o kreslonym miejscu sieci: ,Mathematically the wave packet is
created when a group of waves all near the same frequency clumps together.
The wave packet represents a region where a localized concentration of
energy occurs. We're assuming that the coherent, energetic synapses filled

* PRISM: http://www.neuralmachines.com/prism/prism.htm#Prism
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with all kinds of neural dynamics can be modelled by this mathematical
construct.”™ (,Matematycznie, pakiet fal powstaje gdy grupa fal o podobnej
czestotliwosci koncentruje sie wspodlnie. Pakiet fal reprezentuje region gdzie
wystepuje wymieniona koncentracja energii. Zaktadamy, ze spgjne,
energetyczne synapsy wraz z réznymi typami dynamiki neuronu mogg byc¢
modelowane przez ten konstrukt”). Jest to cechg dos$¢ rzadko do tej pory
spotykang a jednoczes$nie wspding z modelami SNN. Oznacza to uzycie
podobnych mechanizméw klasyfikujgcych w obu rozwigzaniach.

Poréwnujgc SNN do wspétczesnych mu symulatoréw, mozna powiedzie¢, ze
osiggnieta skala sieci w modelach SNN przy ztozonosci pojedynczego neuronu
(np. symulacja potencjatéw postsynaptycznych) oraz spetnieniu zatozen
neuronu typu IAF w tym czasie stawia prace [26] na pionierskiej pozycji, a
zastosowanie PNN z ww. mechanizmami do rozpoznawania wzglednie duzych
ilosci danych wejéciowych (pojedyncze dzwieki, sylaby) [28] w 1998r nie
znajduje odbicia w literaturze. Wspétczesne jej aplikacje sieciowe nie wykazujg
globalnych efektow synergicznych, a ich zasade dziatania ([112] str. 310)°
mozna raczej oprze¢ w tych przypadkach na idei sieci komorkowe;
dostosowanej do =zatozen PNN, co niewatpliwie nie jest pozgdanym
przeznaczeniem PNN. Nie liczac prac teoretycznych wiekszos¢ doswiadczen
tego okresu prowadzona jest na pojedynczych neuronach. Niektore z nich sg
bardzo nowatorskie (np. postepowe prace z 1997 roku Axela Janke [75], Tima
Schoenauera,...), ale nie sg w stanie okresli¢ dynamiki sieci ztozonej z wielu
neurondéw. Z drugiej strony prace na wiekszych zbiorach neuronéw nie
wykorzystujg globalnych wifasciwosci sieciowych celem przetwarzania
informaciji. Jako przyktad tego typu obiektu przeanalizujmy sie¢ skonstruowang
przez wybitnych badaczy Horn'a i Opher’a [71] w 1997 roku, sktadajacq sie z
150 neuronéw (150IAF) o topologii identycznej do zatozonej w tej pracy. Po
okreslonym czasie symulacji neurony wpadaty w sprzezenie zwrotne i momenty
odpalen neurondw, zgodnie z regutg opisang w rozdziale 4.3.2, zblizaty sie do
siebie, by po dtuzszym czasie doprowadzi¢ do wzajemnej synchronizacji. W
przypadku ustawienia stosunkowo duzej ilosci wag ujemnych sprzezenia nie
miaty charakteru dodatniego i efekt synchronizacji nie nastgpowat. Zachowania

5 PRISM http://www.neuralmachines.com/prism/neural.htm|
6 sekcja autorstwa Lindblad z 1997 roku
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te sg znane juz z modeli IMPL [24], przy czym sieC¢ 150lIAF nie przetwarzata
zadnych danych wejsciowych! Dziato sie tak, gdyz nie zapewniono zadnych
mechanizméw likwidacji sprzezenia oraz réznicowania neurondéw. Oczywiscie
nie sg to elementy proste do wkomponowania w model. W IMPL2 byta to
odpowiednia praca progu, natomiast w modelach SNN odpowiednie
mechanizmy synchronicznego pobudzenia lokalnego (a nie jak 150IAF —
globalnego) tworzone podczas pracy sieci opierajac sie na mozliwosci uzycia
funkcyjnych zaleznosci od sasiedztwa neuronu. 150 IAF nie posiada algorytmu
uczenia, poniewaz model nie wychodzi ze sprzezenia (nawet czesciowo), a jest
to podstawg do opracowania algorytmu uczenia.

Przesuwajagc sie do roku 2000 mozna stwierdzi¢, iz prace profesora
Davida Horn wraz z wspétpracownikami (w tym Nir Levy, Eytan Ruppin, Sharon
Levanda, Isaac Meilijson, Ofer Hendin, Mishy V. Tsodyks) z osrodkiem w Tel
Aviv'ie stanowig obecnie mocng podstawe do badan sieci sktadajgcych sie
pulsujgcych oraz zintegrowanych neuronéw. Tego typu Kkonstrukcje sag
stosunkowo bliskie modelom SNN z dostepnych w literaturze i internecie pod
wzgledem budowy, cech oraz efektéw dziatania, a co najwazniejsze —
wystepuje tu réwniez zgodnos¢é w metodologii dziatania. W modelu 150 IAF z
1997 roku w przeciggu ostatnich 4 lat Opher i Horn wraz z zespotem
wprowadzit wiele zmian. Wzmocnita sie tez platforma sprzetowa a rozmiar 150
neuronow jest do$¢ swobodnie przekraczany. Analizujgc jedng z ostatnich prac
[86] tego os$rodka mozna wywnioskowa¢ na jakim poziome zostaty
zrealizowane poszczegdolne mechanizmy modelu |AF oraz wykaza¢ mocne
strony modeli SNN.

Sama dynamika sieci, szczegélnie w modelu rozwijanym przez Horn’a i
wspodtpracownikéw (nieco uproszczonych neuronach IAF [14]), byta i jest dos¢
powaznym problemem z powodu praktycznego bi-stabilnego stanu ich
systemu, tj. asynchronicznie i niezaleznie odpalajgcych sie neuronéw lub petnej
synchronizacji przy wysokiej aktywnosci neuronéw. Tak naprawde
interesujgcym stanem jest wiasnie stan posredni, tzn. wyzwalanie sie
pojedynczych lub skoniczonych serii synchronicznych ciggow odpalen. Jak
wykazano w pracy [14] z 2003 roku, przy zatozeniu, ze neurony sg potgczone w
sposdb dos$¢ losowy oraz wystepuje duza ich liczba i sie¢ jest stosunkowo

gesta (a tak jest w przyrodzie), mozna przyja¢ ze wyjscie z systemu w dos¢
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matym stopniu zalezy od pojedynczego neuronu. Poniewaz wyjscie z sieci przy
wielu potgczeniach zwrotnych jest tez praktycznie tym samym, co odpowiednie
neurony otrzymujg na swoje synapsy, mozna rozwigza¢ réwnanie w ktorych
zrownamy warto$¢ wyjscia i wejscia, co jest warunkiem granicznym
utrzymywania stabilnosci sieci. Jak wynika z obliczen, czestotliwo$¢ pracy
neurondéw nie ma wptywu na stabilnos¢ pracy sieci. Jak sie mozna domyslacg,
jest ona juz efektem, a nie warunkiem. Sama stabilno$¢ i zdolno$¢ do
wygenerowania pojedynczych fal synchronicznych pobudzen zalezy natomiast
od proporcji synaps pracujacych w sprzezeniach zwrotnych, zaréwno ujemnych
jak i dodatnich, do catej ilosci synaps. Oczywiscie jest to cenne spostrzezenie,
ale elementem potrzebnym w tym systemie bytby algorytm uczenia
zachowujacy te proporcje. Jak wiadomo, wystepujg tu bardzo duze ktopoty tych
algorytmow, gdyz bardzo czesto korelujg dane pochodzgce wtasnie z wtasnych
sprzezen (np. przesunietych o jaki$ wektor w czasie poprzez przejscie sygnatu
przez kilka czy kilkanascie szeregowo pracujgcych neurondw), co jest
zjawiskiem bardzo negatywnym. W tej pracy autorzy nie proponujg zadnego
algorytmu uczenia. Warto jednak zwréci¢ uwage, ze symulowana sieC byta
do$¢ duza, ok. 10-20 razy wieksza od mozliwosci SNN, co w duzym zakresie
poprawia wyniki statystycznych obserwacji i czyni je jeszcze bardziej realnymi.
Z drugiej strony neurony tego modelu zostaty jeszcze bardziej uproszczone (w
tym réwniez wzgledem SNN) i cho¢ autorzy wyciagajg wnioski dla sieci IAF, nie
do konca mozna sie z tym zgodzi¢. By¢ moze wnioski bedg prawdziwe réwniez
dla IAF, ale w.w. symulacje nie pozwalajg tego powiedzie¢. Z pewnoscig tak
mocne zredukowanie budowy neuronu i jednoczesnie zwiekszenie liczby
neurondw jest obszarem interesujgcym do przebadania. Mozna powiedzie¢ -
jest jakby kolejnym krokiem, bardziej radykalnym, niz uproszczenie
klasycznego neuronu do pulsujgcego, cho¢ nie wiadomo czy stusznym.
Zaréwno sie¢ IAF jak i SNN posiada strukture potgczen umozliwiajacg
sprzezenia zwrotne. Neurony jednej jak i drugiej sieci posiadajg specjalny
mechanizm catkujgcy sygnat wejsciowy w czasie na swoich synapsach, co
zapewnia fizyczng baze dla pamieci krétkoterminowej, liczonej w kilkunastu
milisekundach. Ze wzgledu na przyspieszenie symulacji (oraz zmniejszenie
zajetosci pamieci) twoércy IAF réwniez (podobnie jak w SNN) uzywajg

wiekszych czestotliwosci wejsciowych i w rezultacie miedzyneuronowych niz
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wystepujgce naturalnie. ,As a result the span of the kernel is somewhat smaller
than the experimentally observed ones. In future more realistic neuronal
dynamics one should aim for both larger time-span of the kernel and lower
sustained firing rates of excitatory neurones, thus getting closer to experimental
observations.” [86] str. 5. (,W rezultacie okres podstawowy jest troche
mniejszy niz obserwowany eksperymentalnie. W przysziosci dla bardziej
realistycznej dynamiki neuronéw powinien by¢ wydtuzony oraz zmniejszona
stata czestotliwos¢ odpalania pobudzonych neuronéw. W ten sposéb zblizymy
sie obserwacji eksperymentalnych”). Oszczedno$¢ pamieci wynika z
nastepujgcego  faktu: uzywanie wiekszych czestotliwosci umozliwia
zakodowanie wiekszej ilosci danych jednostce czasu, zatem pamiec
krotkoterminowa o krotszym czasie pamietania (proporcjonalnym do
zwiekszenia czestotliwosci wzgledem naturalnych) ma takie same mozliwosci.
Zabieg ten w sumie doprowadza do bardziej efektywnego wykorzystywania
neuronéw pod wzgledem przetwarzania informacji, jednakze moze powodowac
inne komplikacje zwigzane z oddalaniem sie od naturalnego wzorca, jak np.
potrzebe przeskalowania innych statych wystepujacych w modelu, zmniejszenie
tolerancji na uszkodzenia sieci itp. Podstawe algorytmu uczenia obu typow
neurondw jest reguta Hebba oraz testowane sg jej czasowo zalezne
modyfikacje. Zmieniajagc podstawe czasu musimy uwzgledni¢ jej rdznice
analizujgc wyniki pracy pamieci krotkoterminowej, poniewaz z definicji pamiec
ta jest nieroztgcznie zwigzana z uptywem czasu. Z drugiej strony zwiekszanie
czestotliwosci celem zwiekszenia efektywnos$ci sieci nie moze postepowaé w
nieskonczono$¢, a nieprzekraczalng granice wyznacza tu dyskretny krok
symulacji. Dla modeli SNN jest on réwny 2 ms.

Problem skalowania podstawy czasu nie jest do chwili obecnej
rozwigzany i rykoszetem odbija sie w innych aspektach sieci np. niezbednej
wielkosci sieci do okreslonego zadania. Bo czy faktycznie natura pozwolitaby
na kodowanie sekwencji na tym wiekszej liczbie neurondéw im wolniejsza dana
sekwencja by byta (jej zmiennos¢)? Poprzez predkos$¢ sekwencji rozumiemy
ilos¢ poszczegolnych zdarzen wystepujacych w sekwencji w przyjetej jednostce
czasu. Zdarzeniem moze by¢ np. zmiana tonu czy uderzenie w kolejny klawisz
instrumentu klawiszowego. Prawdg jest tez, ze wolniejsze sekwencje sg
trudniejsze do zapamigtania (potocznie moéwi sie, ze szybkie rytmy tatwiej
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,wpadajg w ucho”). Ptaki i podobnie rozwiniete zwierzeta wydajac dzwieki nie
zmieniajg nigdy tempa (z kilkoma wyjgtkami). By¢ moze zapamietywanie,
poréwnywanie i odtwarzanie z pamieci sekwencji o réznej podstawie taktujgcej
wymaga wiekszego zaangazowania naturalnej sieci neuronowej, a w przypadku
prostych sieci jest to niewykonalne. Pozostaje zatem konstruowanie hipotez,
jak to natura realizuje.

Zardéwno przedstawione modele sieci IAF jak i SNN majg problemy z
zapamietaniem kilku zapisow w tym samym miejscu sieci, poniewaz zbyt czesto
dochodzi do us$rednienia wzorcow w pamieci sieci. Jest to tzw. problem
multipamieci w PNN, nad ktérym prowadzone sg obecnie intensywne prace.

Rezultatem pracy sieci IAF jak i SNN, jak do tej pory, jest
wygenerowanie dynamicznego atraktora w przestrzeni pobudzen neurondw.
Jak juz zostato wspomniane w poprzednim rozdziale, atraktor nie jest dobrym
reprezentantem wyniku przetwarzania, jednakze przeprowadzone
doswiadczenia symulacyjne SNN w latach 1996-1999 bazowaty wtasnie na
takim podejsciu. Natomiast nawet szczegotowa analiza atraktora (stopien
powtarzalnosci okreslonych czesci lub catych wektordw, okres tych powtdrzen,
tendencje zmian, usrednianie statystyczne...) dostarcza ogromnej ilosci
informacji na temat proceséw przebiegajacych wewnatrz sieci. Sam fakt
skupienia sie na analizie atraktora w tym czasie, jego powstawaniu, stabilnosci
itp. jest pierwsza jaskdtka, ze on sam nie jest efektem przetwarzania.
Dodatkowo obserwacja matrycy wag uzupetnia wiedze o przetwarzaniu sieci
PNN.

W tym momencie zauwazamy wyrazne roznice w ztozonosci tej matrycy
sieci IAF Horn’a z 2000 r. (zwanej dalej IAF) oraz SNN. O ile IAF jest w stanie
wygenerowa¢ podczas pracy przyktadowe pie¢ klastrow neurondw ([86] str.9)
(IMPL2 miato juz te mozliwosci, do$wiadczenie rozdziat 5.1.1.1), o tyle SNN
moze generowac ich dowolnie wiele nie zmniejszajgc szans osiggniecia celu
ani nie powiekszajac ztozonosci obliczeniowej. Na tym praktycznie konczy sie
moc algorytmu uczenia IAF. Oznacza to w skali ktorej operujemy, iz wzorcem
dla IAF jest sygnat sinusoidalny o statej czestotliwosci (tutaj z przedziatu 100-
500 Hz). Zawarto$¢ informacji w takim sygnale jest oczywiscie niewielka.
Oczywiscie istnieje mozliwo$¢ ustawienia wag przed rozpoczeciem pracy sieci
IAF. Wtedy mamy sposobnos¢ otrzymania dowolnie skomplikowanej matrycy
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wag oraz zaobserwowania pracy sieci z tg matrycg. Niestety nie mozemy w tym
przypadku wykona¢ sedna doswiadczenia, tzn. uwolnienia modyfikacji wag
zgodnie z przyjetym algorytmem uczenia, co potwierdza autor: ,In fact, if we
allow synaptic learning to occur under the same conditions listed above, the
learning process will destroy the segmented synaptic matrix structure and
merge the two cell-assemblies.” ([86] str. 17) (W praktyce, gdy zezwolimy na
uczenie synaptyczne zgodnie z przyjetymi regutami, proces uczenia zniszczy
posegmentowang strukture oraz potaczy obie grupy komérek”).

W modelach SNN praca wag nie jest blokowana, a co istotnigjsze — tak
wzglednie skomplikowane matryce wag powstaty w wyniku dziatania sieci, a w
tym algorytmu uczgcego, rowniez bazujgcego na regule Hebba. Oczywiscie
opracowanie takiego algorytmu, bazujgcego na regule Hebba, nie byto
trywialne i wymagato dos$¢ pokaznej serii doswiadczen, omowionych w tej
pracy. Algorytm uczenia SNN potrafi odwzorowa¢ dowolnie dtugi wzorzec
wejsciowy w matrycy wag neurondw, oczywiscie pod warunkiem spetnienia
wymagan pamieciowych (np. wzorzec 500 wektorow 12 elementowych jest w
stanie reprezentowaé¢ 1 sekunde dzwieku, czyli przecietny wyraz). Nie potrafi
tego wykonac IAF, gdzie jak mozna przypuszcza¢ na podstawie doswiadczen z
modelami IMPL, dtugo$¢ wzorca nie powinna przekracza¢ 5-6 wektorow, a
doswiadczenia z dtuzszymi wzorcami w az ok. 96%-98% koncza sie
niepowodzeniami.

Kolejnym dos¢ istotnym elementem SNN wzgledem IAF jest traktowanie
wzorca jako danych pojawiajacych sie w czasie pracy sieci. IAF dos¢ scisle
trzyma sie linii wytyczonej przez sie¢ Hopfield'a, pomimo zastosowania jako
podstawowych elementéow neurondw pulsujgcych. Kierunek ten zapewnia
komfort zwigzany ze zbieznoscig przetwarzania itp. natomiast ogranicza site
neurondw pulsujgcych, ktére z samej zasady swojego dziatania wymagajg
pracy w czasie. Pomimo, iz Horn i jego wspotpracownicy przetamali w ostatnich
pracach opory przed dopuszczeniem niesymetrycznosci w matrycy wag, o tyle
wzorzec o okreslonej wielkosci musi by¢ podany w catosci w jednym momencie,
poniewaz tylko taki mechanizm ta sie¢ posiada. Jesli chodzi o wzorzec
zwigzany z sekwencyjnym podawaniem do sieci, to w przypadku IAF[86] jest to
ton o ustalonej czestotliwosci z zakresu 100-500 Hz, ew. po pewnych
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przerébkach IAF model mogtby przetwarza¢ prawdopodobnie kilkuwektorowe
wzorce (np. 5 wektorowe).

W tak ztiozonych systemach, oraz o tak duzym stopniu dynamiki, nie
tylko wymienione wyzej cechy majg znaczenie. Analizujgc wczesniejsze prace
Horn’a oraz badaczy z nim wspétpracujacych [71] mozemy dowiedzie¢ sie
wiecej szczegotdw na temat drugoplanowych cech modeli oraz pewnych
zatozen konstrukcyjnych. W pracy ,Associative Memory and Segmentation in
an Oscillatory Neural Model of the Olfactory Bulb” [60] jest poruszony problem
budowy systemu pod katem wykorzystania go jako pamieci asocjacyjnej. Jest to
do$¢ wczesna praca i nie mozemy powiedzie¢, ze podstawowym elementem
jest tu juz zintegrowany neuron pulsujacy pomimo wprowadzenia dodatkowych
cech. Zaréwno mechanizm dziatania jak i uczenia bazuje na zatozeniach sieci
Hopfielda z 1982 r [64]. Sie¢ skonstruowano z dwdch istotnych warstw (oraz
trzeciej pomocniczej), pierwszej dokonujgcej wstepnego poréwnania, oraz
drugiej dziatajgcej jako mechanizm klasyfikujacy. Sie¢ o wielkosci ok. 1000
neuronéw umozliwiata zapamietanie tylko dwédch wzorcéw. Elementem wartym
szczegolnego podkreslenia tej pracy byto traktowanie wyjscia systemu jako
atraktora, w przeciwienstwie do oczekiwania stanu ustalonego. Byt to pierwszy

duzy krok jak owe czasy i niezbedny przy pracy z pulsujgcymi sieciami

neuronowymi

ONL Periglomerular
. . : cells
nie dazacymi
do stanu

GL
ustalonego.
Bardzo EFL
interesujace MCL T T U

P i to Latecal
podejscie do GCL Mitcal axons olfactory tract
tematu i
przetwarzania
Rys. 7.1 — Model sieci o warstwowej strukturze ziarnistej

pulsacyjnego

sostale (,,Olfactory Bulb layered architecture” [60]). Zaznaczone warstwy:

ONL nerwy wechowe, GL kegpki nerwowe, EPL  sploty

zewnetrzne, MCL komorki dwudzielne, GCL komérki ziarniste.

zaprezentowane w pracy ,Temporal Coding in an Olfactory Oscillatory
Model’[144]. Pomimo iz wiekszo$¢ zagadnien jest przedyskutowana tylko na
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podstawie rozwazan teoretycznych, nie traktuje sie w tej pracy sieci neuronowej
jako rodzaju pamieci, ale jako pewne przeksztatcenie sygnatu wejsciowego w
wyjéciowy, jako filtr o okreslonych mozliwosciach. Jest to zupetnie odmienne
podejscie do tematu niz w poprzednio wymienionej pracy, i jak sam autor
wskazuje — dos¢ bliskie wzorcom biologicznym. Brak wykorzystywania pamieci
krotkoterminowej podczas przetwarzania oraz brak spdjnosci z poprzednimi
pracami uniemozliwia zastosowania wypracowanych wczesniej mechanizmow,
co z kolei znacznie ogranicza dyskutowane potencjalne mozliwosci tego
rozwigzania. Jak wskazujg modele SNN jest to produktywne podej$cie do
zagadnienia, pod warunkiem ujednolicenia teorii pamieci oraz jednoczesnego
przetwarzania z nie nadzorowanym uczeniem.

Istotna jest tez praca z 2000 roku Davida Horn'a i jego
wspotpracownikow pod tytutem: ,Neuronal Regulation and Hebbian Learning”
[50] w ktorej autor stwierdza miedzy innymi: ,Hebbian mechanisms per-se fail
to provide robust and effective learning, both in supervised and unsupervised
scenarios”, ,Hebbian learning leads to poor associative memory capacity that
does not grow with the size of the network” (,Reguta Hebba nie dostarcza
silnego i efektywnego uczenia zaréwno w uczeniu z nauczycielem jak i bez".
,Reguta Hebba prowadzi do stabej pamieci autoasocjacyjnej, ktérej pojemnosé
nie rosnie wraz ze wzrostem sieci neuronowej”). Pomimo wielkiego autorytetu
pracy Hebb'a zgadzam sie z tg opinig, o czym $wiadczy odrzucenie czystej
zasady Hebb’a poczawszy od modelu SNN11a [1999] poprzez wprowadzenie
normalizacji wag synaptycznych. Horn réwniez proponuje identyczne
posuniecie, a jako jego zalety wymienia:

e zwiekszenie pojemnosci pamieci

e mozliwos¢ powstrzymywania dodatniej petli sprzezenia wzrostu wag
uczenia regutg Hebba

e mozliwo$¢ powstawania przypadkowych potgczern miedzyneuronowych,
czego nie zapewniat paradygmat Hebba!

e modelowanie degradacji pamieci powodowanej procesami metabolitycznymi
e wiekszg zgodnoscig z wzorcem biologicznym (np. wzrost wagi jest

ograniczony)
W tej pracy autor jednak nie podaje jak uzy¢ tego mechanizmu w najbardziej
przydatnym zestawieniu - w srodowisku, w ktérym neuron ma dostep tylko do
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swojego otoczenia i do informacji w nim zawartych. Doktadniej, autor nie widzi
szybkiej mozliwosci adaptacji: ,These observations show that it is difficult to
implement effective learning with local synapse-specific learning rules”
(,Obserwacje pokazujg, ze trudnym do zaimplementowania jest efektywny
algorytm uczenia bazujgcy na regutach uczenia uwzgledniajgcych lokalng
specyfikacie synapsy”). Efektywne uczenie wymaga uwzglednienia w
omawianym algorytmie liczby odpalanych neuronéw w sieci w danym
momencie, co jest globalnym parametrem sieci, a nie lokalnym. Zatem
pojedynczy neuron nie posiada dostepu do tego parametru. Jak wynika z prac
nad modelami SNN11, zaimplementowanie algorytmu uczenia spetniajgcego te
ostre warunki i bazujgcego wytacznie na lokalnych danych jest mozliwe
(lokalna reguta uczenia).

Pewng konsekwencjg sceptycznego podejscia do mozliwosci adaptacji
algorytmu uczenia typu czasu rzeczywistego w sieciach opartych o neurony
IAF stato sie przyczyng potozenia nacisku przez D. Horna na inne obszary
badan tych modeli, w tym szczegdlnosci ich dynamiki oraz pojemnosci, czego
dowodem jest praca [15]. W tym modelu synapsy nie modyfikujg sie zaréwno w
zakresie kierunku potgczen jak i sity przewodzenia. Wzmocnienie potaczenia
pomiedzy neuronami, o ile taka konieczno$¢ wystgpi, realizowana jest poprzez
zwielokrotnienie synapsy. Moze sie tak zdarzy¢, gdy dany neuron uczestniczy
w odtwarzaniu nie tylko jednego wzorca zapamietanego w sieci. Wprowadzenie
wzorcow do sieci odbywa sie jednorazowo przed przystgpieniem sieci do pracy
poprzez obliczenie wartosci synaps, podobnie jak w przypadku sieci Hopfielda.
Dos¢ istotna modyfikacjg jest ustalenie wartosci wag (tym bardziej, ze
wszystkie wagi maja te samg wartos¢ w tym modelu), jako funkcji ilosci synaps
pobudzajgcych, co ma diametralny wptyw na dynamike pracy sieci. Przyjeto
tutaj, ze waga jest funkcjg pierwiastkowg o argumencie ilosci ww. synaps.
Zalozeniem ustawienia synaps jest reguta, ze neuron nie uczestniczacy w
przetwarzaniu aktualnego wzorca powinien otrzymywa¢ zwykle aktywacje
podprogowa, z kilkkoma wyjatkami zwigzanymi z pracg neuronow w tle. Autor
definiuje przydatne pojecie tzw. Asynchronus State (AS) czyli stan
asynchroniczny sieci, w ktérym neurony odpalajg sie stosunkowo rzadko i dos¢
losowo w poréwnaniu do stanu synchronicznego (Synchronus State), ktory jest
traktowany jako zjawisko niekorzystne, jesli czas jego trwania przekroczy
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zadany okres krytyczny - przyjmowany tu jako 100 do 300 ms. Podejscie takie
jest jak najbardziej uzasadnione, gdyz przy omawianych modelach i
wielkosciach sieci IAF pomiedzy 1000 a 100 000 neuronéw stan
synchronicznego pobudzenia trwajgcy duzej prawdopodobnie nigdy by sie nie
zakonczyt w sposob samoczynny. Najciekawsze stany natomiast to sg stany
przejsciowe ze stanu asynchronicznego do synchronicznego, a zjawiska temu
towarzyszace moéwig duzo o naturze pamieci. Jesli sie¢ pracujgca w trybie
asynchronicznym posiada wyuczony wzorzec (tutaj wpisany na state) to przy
rozpoznaniu wzorca wejsciowego przez kilkaset milisekund pracuje w stanie
synchronicznym, zwiekszajgc jednoczes$nie $rednig czestotliwo$¢ odpalen
neurondw w sieci. Zjawiska te byty oméwione podczas analizy zjawisk modeli
SNN tej pracy. W szczegolnosci wartym podkreslenia jest fakt, ze SNN
zapamietuje wzorzec podczas pracy i nauki w czasie rzeczywistym, czemu
towarzyszy rownolegte i systematyczne wytwarzanie w sieci coraz
mocniejszych  (pochtaniajgcych wiecej neurondéw i trwajacych diuzej)
skonczonych standéw synchronicznych, czego omawiana praca D.Horna nie
zawiera. Zgodnie natomiast z autorem uwazam, ze podejscie zaprezentowane
w [33], polegajagce na odzyskiwaniu zawartosci pamieci w trybie
synchronicznego statego pobudzenia jest mozliwe, aczkolwiek nie jest to
kierunek rozwoju, ktéry bytby obiecujacy.

Badajgc dynamike sieci autor pokusit sie nie tyko o zapewnienie
warunku na strukture oraz ilo§¢ synaps, zabraniajgcego powstawanie
samoistne stanu synchronicznego, ale réwniez skonstruowat dodatkowy balans
w postaci dodatkowe] warstwy neuronéw hamujgcych (nazwanych warstwg
cieni). Tak skonstruowang sie¢, o dodatkowej ilosci sygnatéw hamujgcych
pojawiajacych sie jednoczesnie ze wzmozong aktywnoscig neurondw
pobudzajgcych, nazwano podwdjnie zbalansowang siecig (Double Balanced
Network). Oczywiscie warstwa cieni w aktywny sposéb zapobiega powstawaniu
stanu synchronicznego, jednakze podobnie jak poprzednie warunki, nie jest
pewnym rozwigzaniem, a dodatkowo konstrukcja jest coraz odleglejsza od
wzorcdw naturalnych, co moze wprowadzi¢ badania w Slepg uliczke. Warstwa
cieni jest przydatna gtéwnie przy bardzo mocnym, cho¢ krétkim (np. 5 ms),

pobudzeniu wejscia sieci.
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Autor systematyzuje jednoczesnie dwa podejscia przeplatajace sie w
konstrukcjach IAF, mianowicie SFC oraz HCA (ij. synfire chains (SFC) oraz
Hebbian cell assemblies (HCA)) oraz przydatne stownictwo, np. potgczenia
synaptyczne ,do przodu” w modelach SFC zostaty nazwane tancuchami, a
sama propagujgca sie tg ,doling” grupa pobudzen - ,synfire wave” lub po
porostu falg. Pomimo, ze HCA wykazujg sie wiekszg gestoscig zapamietywanej
informacji, SFC stajg sie coraz czestszym obiektem badan, co niewatpliwie
$wiadczy o poktadanych w nich nadziejach. Wszystkie modele SNN tej pracy
wspieraty strukture SFC podczas symulacji, cho¢ majg potencjalna mozliwos¢
pracy zaréwno w SFC, jak i HCA.

Dos¢ ciekawg analize, wykazujagca duzg moc zintegrowanego,
pulsujgcego neuronu, przeprowadzono w pracy [118] z 1999 roku. Analiza
zostata przeprowadzona, zgodnie z tytutem, pod katem opracowania algorytmu
uczenia, wykorzystujgcego fakt zawarty w twierdzeniu 4.2 i rozwiniety w 4.3 tej
pracy, a mianowicie, ze problem integralnosci dla neuronu z binarnymi
opdznieniami oraz ustalonymi wagami jest NP-zupetny. W szczegdle, jezeli
pojedynczy neuron posiada przynajmniej opoOznienie jednostkowe, z
odpowiedniej liczby neurondw mozemy skonstruowac¢ odpowiednie do zadania
opdznienie i zsynchronizowanie dwoch lub wiekszej ilosci przesunietych w
czasie ciggéw danych celem ich dalszej obrdbki. Autor nie proponuje jednak
zadnego algorytmu uczenia. Stwierdza natomiast, ze jest to duze wyzwanie, a
szczegolnie trudne bytoby udowodnienie poprawnos$ci takiego algorytmu. Tezy
te jak najbardziej potwierdzajg doswiadczenia tej pracy przeprowadzone na
symulatorze IMPL! Algorytm uczenia w IMPL, cho¢ niedoskonaty, pokazat ze
jest w stanie skorelowa¢ i przeprowadzi¢ operacje logiczne na danych
pojawiajgcych sie na wejsciach systemu z przesunieciem czasowym.
Dodatkowo IMPL posiada sprzezenia zwrotne, dzieki czemu moze sie
synchronizowa¢ z sekwencjg powtarzalng, natomiast przyktady tej pracy [118]
znajdujace sie w rozdziale trzecim $wiadczg, ze domys$lnie zatozono
jednokierunkowos$¢ przeptywu danych w sieci. Interesujgca i warta podkreslenia
jest natomiast kolejna préba zdefiniowania, co w neuronie pulsujgcym jest
cyfrowe, a co analogowe. Oczywiscie, w wiekszosci jest to kwestia interpretacii,
czy operujemy na pojedynczych impulsach, czy na czestotliwo$ciach, ktére te
impulsy wystepujace w okreslonych odstepach czasu tworzg. W tym przypadku
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potrzebujemy tez funkcji przeksztatcajgcej te czestotliwosci w abstrakty, ktére
ona reprezentuje. Mozemy zatem definiowac¢ neurony o analogowych wejsciach
i cyfrowym wyjsciu albo odwrotnie, zupetnie binarne itp.

Waznym elementem neuronu pulsujgcego, $cisle zwigzanym z
algorytmem uczenia i w rezultacie tworzgcym pamiec¢ krotko- i dlugoterminows.,
ktérego nie sposéb nie potraktowa¢ specjalnie, jest pojedyncza synapsa — jej
praca, parametry transmisji, gromadzone dane statystyczne dotyczace jej
historii, modyfikacje wagi itd. W modelach SNN wystepuja teoretycznie 3
rodzaje synaps: synapsa pobudzajgca, synapsa hamujgca oraz synapsa
hamowania presynaptycznego. W tej ostatniej wystepujg 2 aksony i jeden
dendryt. Skuteczne przetwarzanie danych udato sie zaobserwowac jedynie na
pierwszej z wymienionych synaps (przy zatozeniu struktury PNN oraz statego
ksztattu impulsu wysytanego przez neuryt). ldentyczng ilo$¢ typéw synaps
(nazwane F1,F2 i F3) proponujg Maass oraz Natschlager w pracy [132].
Proponowane jest jednak inne sparametryzowanie synapsy - poprzez trzy
zmienne charakteryzujgce jej dynamike, nazwanymi U,FD (prawdopodobnie
inspiracjg tego podejscia byta praca [126]). Zmienne te przesadzajg o typie
danej synapsy. Zmienne te sa ciggte, co oznacza, ze istniejg rézne typy synaps
posrednich tgczacych w réznym stopniu cechy synaps skrajnych. Podejscie
takie jest o tyle ciekawe, iz definiuje nam stosunkowo rézne synapsy, wszystkie
pracujgce w polaryzacji dodatniej. Zadna z nich nie dokonuje hamowania
innych sygnatéw czy bezposredniego ujemnego wptywu na potencjat
wewnatrzkomorkowy neuronu postsynaptycznego. Jedyna synapsa z w.w.
trzech, nazwana depresyjng (F2), najbardziej przyjmujgca role synapsy
hamujgcej tak naprawde ja nie jest. Jej dziatanie mozna polega na
zmniejszeniu czutosci przez okreslony czas po otrzymaniu pobudzenia, ale
proces ten dotyczy tylko impulséw docierajacych do tej wiasnie synapsy. Nie
jest to zatem synapsa hamujgca. Pamietajgc o ktopotach algorytmoéw uczenia
synaps hamujacych, powstaje tu nowa przestrzen do zagospodarowania przez
algorytmy uczenia synaps pobudzajgcych. Pomimo mnogosci takich
algorytméw autor nie przystosowuje zadnego z nich do tej struktury. Podaje
jedynie metody czgstkowych optymalizacji synaps do zdefiniowanych ciggow
wejsciowych charakterystycznych dla ,skrajnych” synaps. Mozna przypuszczac,
ze algorytm uczenia, o ile powstanie, bedzie modyfikowat w synapsie tylko
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wymienione parametry U,FD. Przygladajac sie tym parametrom mozemy
uznac¢, ze U jest odpowiednikiem wagi, natomiast FD — sg wyrazone w ms i
definiujg dynamike synapsy, jej reakcje na skupiong badz rozproszong w czasie
serie bodzcow. Autor natomiast bardzo doktadnie opracowat ciggi optymalnie
pobudzajgce synapse przy ustalonych parametrach U,D,F. Ciagi te zostaty
wyliczone przy pomocy metod optymalizacyjnych i mozna je uzna¢ za swoiste
klucze do synaps, tzn. np. 3 rézne dendryty odbierajgce sygnat z jednego
neurytu mogq by¢é w miare selektywnie pobudzane. Praca tez jest zgodna z
przestankami biologicznymi, gdyz obserwujemy w uktadzie nerwowym rézne
modulacje i konfiguracje impulséw przy zachowaniu okreslonej czestotliwosci
(w granicach btedu oraz przy wyborze odpowiednio duzego okna czasowego).
Wydaje sie zatem prawdopodobne, ze informacja moze by¢ rowniez kodowana
w ten sposob.

Omawiajgc synapse nalezy ujaC kwestie jej znaczenia jako pamigci
tymczasowej, reprezentowanej przez stan tadunku postsynaptycznego.
Sekwencja wejsciowa synapsy jest transformowana w warto$¢ tadunku
uwzgledniajgc parametry danej synapsy np. jak poprzednio zaproponowane
U,FD. Analiza zaleznosci odwrotnej tzn. okreslania ciggu wejsciowego przy
znanych parametrach synapsy jest przeprowadzona w pracy [111]. Z
twierdzenia 2.1 tej pracy wynika, ze nie mozna jednoznacznie okresli¢
sekwencji wejsciowej na podstawie wartosci potencjatu oraz parametréw
synapsy, nawet jesli znamy ilos¢ impulséw k>=3. Przy k<3 sytuacja jest
znacznie prostsza, ale jednoczesnie mato interesujgca. Potencjat
postsynaptyczny jest zalezny od impulsow docierajgcych do synapsy w
ostatnich kilkuset milisekundach [111], a jest ich zwykle co najmniej kilkanascie.
Fakt nieistnienia funkcji przeksztatcenia odwrotnego nie przesadza oczywiscie
o braku mozliwosci uzycia potencjatdbw postsynaptycznych jako pamieci
krotkoterminowej. Jak wskazujg doswiadczenia — fakt ten jest jak najbardziej
potwierdzalny. Nalezy jednak pamieta¢ o tym twierdzeniu, poniewaz rzuca ono
pewne $wiatto na strukture pamieci krotkoterminowe;.

W pracy [141] przedstawiona jest koncepcja wprowadzenia sigmoidalne;
funkcji przepuszczalnosci btony komorkowej synapsy w zaleznosci od
przeptywajgcego przez nig tadunku. Cato$¢ dotyczy synapsy neuronu
pulsujgcego, co dodatkowo komplikuje sytuacje i rodzi pytanie, czy
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przypadkiem nie zostata wprowadzona nieliniowos¢ przetwarzania w neuronie
podwdjnie, gdyz neuron pulsujgcy juz takowg posiada, ze wzgledu na
symulacje potencjatow postsynaptycznych. W modelu tym mozna
zaobserwowaé jeden element zupetnie nietestowany w SNN. Synapsy
pobudzane zaréwno przed, jak i krétko po momencie aktywacji (+/- 50ms)
neuronu sg silnie modyfikowane przez algorytm uczenia. Trudno ocenié
korzy$ci z tego zjawiska, jednakze moze to by¢ wtasciwos¢ przydatna. W
modelach SNN tylko synapsy bedace przyczyng wywotania impulsu
postsynaptycznego silnie byly modyfikowane wykonaniem procedury uczenia.
Zaktadajgc prawidiowe dziatanie synapsy i jej gromadzenie fadunku,
wiasciwosé ta moze przyczyni¢ sie do kojarzenia sygnatéw, ktére co prawda nie
dotarty na czas do danej synapsy, ale sg zwigzane z dang klasa.

Przedstawiony powyzej przeglad literatury dotyczy jedynie prac najblizej
zwigzanych z tematem pamieci w pulsujgcych sieciach neuronowych, gdyz
specjalizacja w zakresie uzycia sygnatdow ptynacych wstecznie jest dosé
waska. Jednoczesnie pokazuje wiele szczegotowych elementdw, ktore w
przysztosci moga tworzy¢ z mniejszym lub wiekszym powodzeniem sprawny
system przetwarzania informacji - system o globalnych efektach synergicznych
neurondéw oraz zawierajgcy w sobie rozne formy reprezentacji swojego
$rodowiska zewnetrznego (pamie¢ dtugo- i krétko- terminowa) z mozliwoscig
przetwarzania zapisanych w swojej pamieci informacji. Nie jest obecnie
mozliwe okreslenie wagi kazdego z elementéw lub przeprowadzenia petnej ich
klasyfikacji, ale mozna pokusi¢ sie na podstawie tej pracy o nastepujacy
podziat opisanych pulsujacych sieci neuronowych wzgledem
wykorzystania potencjatéw postsynaptycznych:

® sieci zawierajgce neurony bez symulacji tadunkéw postsynaptycznych
® sieci zawierajgce neurony z symulacjg tadunkéw postsynaptycznych
e uzytg do pracy neuronu
e uzytg do pracy neuronu oraz w algorytmie uczenia
e metody progowe
e metody proporcjonalne
Potencjat postsynaptyczny jako pewna forma przedstawienia historii danej
synapsy jest mozliwy do zapisania za pomocg kilku bitéw informacji, a jego

wykorzystanie moze diametralnie zmieni¢ prace sieci. Moze on by¢ uzyty
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podczas przetwarzania danych przez neuron, przy obliczaniu globalnego
pobudzenia , jak réwniez podczas wyliczania poprawek wag. Poniewaz tadunek
postsynaptyczny, bedacy odpowiedzig synapsy na pobudzenie neuronu, ma
warto$¢ nieujemng (nie uwzgledniajgc procesdow podczas refrakgcji
bezwzglednej i przy ustalonym poziome potencjatu ,0”) wynikajg z tego pewne
komplikacje. Stosujgc mechanizmy uczenia bazujagce na regule Hebb'a -
brakuje procesu przeciwnego do zwiekszania wag. Pierwszym rozwigzaniem
jest przyjecie okreslone] wartosci tadunku jako warto$ci progowej synapsy.
tadunki nie przekraczajgce tej wartosci mogg byC traktowane jako “zero” w
my$l reguty Hebba. Rozwigzanie to moze operowaé roéwniez na wagach
ujemnych, cho¢ efektywne wykorzystanie wag ujemnych nie zostato
eksperymentalnie potwierdzone w tej pracy. Alternatywng metodg jest
modyfikowanie proporcjonalne wag do ich fadunkéw postsynaptycznych. Jest to
zgodne z regutg Hebb'a, ale znany problem zmniejszania wag pozostaje [8].
Do$¢ dobrym podejsciem jest normalizacja wektora wag bezposrednio po
poprawkach wprowadzonych algorytmem uczenia. Na podstawie tej pracy
metody zmniejszania wag i/lub umozliwiajgce powstawanie wag
ujemnych mozemy podzieli¢ na:
modyfikacje reguty Hebba
normalizacja wektora wag po kazdej iteracji algorytmu uczenia

Pierwsze podejscie jest o tyle lepsze o tyle, iz umozliwia powstanie wag
ujemnych. Jednakze w potaczeniu z bardzo istotnym mechanizmem
samoregulacji neuronu opracowanym w modelach IMPL oraz SNN nazwanym
PRA’, moze prowadzi¢ do powstawania neuronéw o warto$ciach ujemnych
progu. Neurony takie obecnie bardzo szybko uciekajg spod kontroli algorytmu
uczenia i niszczg efekty synergii (we wszystkich zbadanych modelach, w
ktérych takie neurony powstaty).

Drugie podejscie, polegajace na normalizacji wektora wag, co prawda nie
wspiera powstania wag ujemnych, jednak jak pokazujg modele SNN11 oraz
najnowsze publikacje (np. [50]) — posiada wiele niezbitych atutéw oraz staje sie
coraz bardziej popularny. Zastosowanie tego mechanizmu w modelu SNN11 i
wszystkich nastepnych jest niezbitym i potwierdzonym dowodem na
postepowos¢ mysli zawartej w skonstruowanych modeli SNN. Praca [50] jest

" Mechanizm PRA zostat oméwiony w rozdziale 5.3.3.
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datowana dopiero na wrzesiern 2000 roku, gdzie modele SNN posiadatly te
ceche od ponad 2 lat.

Str. 151



7. Podsumowanie

Przyroda w swym geniuszu czesto zadziwiata ludzi oraz dawata i daje
inspiracie do nasladowania. Jak wynika z przeprowadzonych dos$wiadczen,
modelowanie struktur znanych z fizjologii moze dostarczy¢ nie tylko ciekawych
faktbw do symulacji, ale i rzuca¢ pewne swiatto na sam przedmiot
modelowania. Przyktadowo, posrednio z przeprowadzonych symulacji wynika,
ze powstawanie naturalnego moézgu musi przebiega¢ réwnolegle z jego praca
w takim zakresie, w jakim on istnieje. W przeciwnym razie ulegtby krétszemu,
dtuzszemu lub nieskonczonemu wzbudzeniu. W kazdym z tych przypadkéw
skutki dla organizmu moglyby by¢ katastrofalne. Whnioski takie mozna
wyciggngé na podstawie réznych form synergii w pracy neurondw
zaprezentowanych w modelach IMPL oraz SNN. Nie sg one pozbawione
mankamentéw, jednak juz niektére wiasciwosci, jak kumulowanie informacji w
czasie w sieci, rownolegtos¢ przetwarzania, niezawodnos¢ i wysokie
rozproszenie przetwarzania wskazuje na potrzebe dogtebnego przebadania
tych zjawisk. Wiasciwosci te wskazujg perspektywe w budowaniu tego typu
uktadoéw elektronicznych o niskich kosztach i wysokiej szybkosci pracy.

Rozwazajgc wiasciwosci adaptacyjne nalezy zauwazyC, ze maszyny
potrafigce odpowiednio sie zachowywa¢ w roéznych Srodowiskach mozna
budowa¢ wykorzystujac rézne podejscia do sztucznej inteligencji. Nabywanie
wiedzy w systemach ekspertowych jest bardzo trudne, inaczej niz w przypadku
sieci neuronowych, poniewaz konstruowanie bazy wiedzy jest niezwykle
zmudne nawet dla wysokiej klasy specjalistow. Maszyna na tym miejscu radzi
sobie jeszcze gorzej. Sie€ neuronowa potrafi natomiast budowac reprezentacije
$rodowiska, nawet z pozornie sprzecznych danych, posiada réwniez zdolnosci
do generalizacji, co mozna zaobserwowa¢ w modelach SNN. Cechy te lezg
bowiem juz w naturze struktur neuronowych. Jednakze obecnie technika
neuronowa z réznych przyczyn nie doprowadzita do zbudowanie takiej sieci
neuronowej, ktéra swobodnie wyksztatcitaby w procesie uczenia i operowataby

podczas pracy na abstraktach, ktére powszechnie znamy z wiedzy werbalnej.
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Duzg przewagg sieci neuronowych wzgledem klasycznych algorytmow
jest rownolegtos¢ przetwarzania. Jest ona omowiona na przyktadzie kilku sieci
w rozdziale 5.1.1.1. Przetwarzanie jest niemal perfekcyjnie réwnolegte.
Zwieksza to znacznie mozliwosci obliczeniowe przy zastosowaniu tej samej
technologii wykonania. Warto zauwazy¢, ze neurony uktadu nerwowego
cztowieka pracujg zwykle z czestotliwoscig do 500 Hz (max. 1000 Hz), a
najszybsze obecne komputery czesto przegrywajg w rozmaitych testach. Na
niezwyktg réwnolegtos¢ pracy naturalnych sieci neuronowych wskazuje fakt, ze
niektére reakcje uktadu nerwowego sg bardzo szybkie (np. impuls jest w stanie
pokonac droge réwng 10 neuronom), a w odpowiedzi sg uwzglednione wyniki z
wysokich abstrakcji np. z analizy figur przestrzennych, zasady etyki itp. Z dosy¢
duzym zapasem mozna oceni¢, ze przyspieszenie z powodu réwnolegtosci
przetwarzania bedzie bardzo duze, szczegdlnie w procesach rozpoznawania,
widzenia przestrzennego itp.

Réwniez swg naturalng rozproszonos¢ przetwarzania naturalne sieci
neuronowe wykorzystaty do poprawienia swojej niezawodnosci. Systemy
scentralizowane posiadajg wiele zalet, jednak ogranicza je moc jednostki
centralnej. Jezeli ma ona wiasciwosci czesciowo réwnolegte, to trudno jest to
wykorzysta¢ do okreslonego zadania. Poza tym jednostka przetwarzajgca jest
wrazliwa na btedy i uszkodzenia, ktére czesto doprowadzajg do przerwania
pracy catego systemu. Przetwarzanie w sieciach neuronowych jest wyjatkowo
wysoko rozproszone, a odpornos¢ na uszkodzenia lezy takze w ich naturze,
poniewaz elementy podstawowe (neurony) sg wysoce zawodne. Potwierdzajg
to badania modeli ciggtych, w przeciwienstwie do binarnych.

Przetwarzanie danych jest uwarunkowane procesem uczenia. W
sztucznych sieciach bardzo czesto najpierw sieC uczy sie, a po osiggnieciu
okreslonego poziomu nadaje sie do przetwarzania. Inaczej wyglada to w
przypadku sieci naturalnych. Procesy uczenia oraz pracy przebiegajg
réwnolegle oraz oddziatywajg na siebie, cho¢ jak wiemy w réznych proporcjach
w roéznych okresach rozwoju organizmu. Bez cechy réwnolegtosci uczenia i
przetwarzania juz model IMPL2 nie wykazywatby Zzadnych efektéw synergii
neurondw, co jest niezbednym elementem wytworzenia pamieci. Jest to jedna
z wazniejszych cech naturalnych sieci, ktérej zamodelowanie daje szanse na

zblizenie sie ku naturze. Procesy uczenia i pracy powinny przebiega¢ w
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modelu réwnolegle, aczkolwiek z rézng intensywnoscig. Intensywnos¢ uczenia
moze by¢ wyznaczona jako funkcja przystosowania do srodowiska, co byto
wstepnie testowane w modelu IMPL5A. Rdéwnie wazna jest rozproszonos$é
procesu uczenia naturalnej sieci. Wplywa to korzystnie na mozliwosc
implementacji sprzetowej, oraz na zgodnos¢ z przyjetymi zatozeniami. Jednym
z wazniejszych zatozen pracy byto niewykorzystywanie centralnych
mechanizméw uczenia. W pracy zostatlo pokazane, ze jest mozliwe
zbudowanie algorytmu uczenia spetniajgcego te zatozenia.

Naturalna sie¢ neuronowa wydaje sie byC najlepszym przyktadem do
nasladowania, zwtaszcza jesli mamy perspektywe budowania uktadéw
scalonych tego typu. Modele IMPL i SNN sg réwniez konstruowane pod tym
katem. Do ostatecznej weryfikacji dziatania pozytywnie ocenionych modeli
wymagane bedzie uzycie wielkiej liczby neurondéw. Wigze sie z tym dtugi czas
symulacji. Jedng z mozliwosci jest sprawdzanie uktadu w postaci
elektronicznej. Zatozenia projektu majg za zadanie umozliwi¢ przeniesienie
modelu do schematu elektronicznego mozliwie niskim kosztem. Zastosowanie
mechanizméw odpornosci na btedy w przetwarzaniu umozliwia zwiekszenie
skali integracji (nie jest wymagana niezawodnos¢ podstawowych elementéw
przetwarzajgcych) oraz umozliwi w przysztosci zastosowanie najnowszych choé
zawodnych technologii (moze np. nanokomputeréw, opartych na utozeniu
przestrzennym okreslonych atomdéw).

Praca jest krokiem w kierunku maszyn z pamiecig zrealizowanych w
technice neuronowej, wzorowanych na przestankach z psychologii
fizjologicznej. Nie daje ona ostatecznej recepty na takg maszyne, ale wskazuje
jak mogtaby ona funkcjonowa¢ (RTCWSS), jak mogg by¢ reprezentowane dane
pochodzace z $rodowiska w takiej maszynie np. maszynie ciektych standw.
Zapozyczajgc z medycyny takie terminy jak pamiec krotko- i dtugoterminowa z
dosy¢ dobrym rezultatem dajg sie one dopasowa¢ do okreslonych zjawisk w
symulowanych sieciach neuronowych. Z pewnoscig modele sg jeszcze dalekie
od wzorca biologicznego, ale niektére cechy pamieci krotkoterminowej, jak
ulotnos¢ i zaleznos¢ od pamieci dtugoterminowej, wydajq sie zgadzac¢ z faktami
fizjologicznymi.

W pracy mozna znalez¢ modele sieci neuronowych charakteryzujgce sie
wystepowaniem wysokiej réwnolegtosci proceséw uczenia oraz przetwarzania,

Str. 154



modele zawierajgce pamieC krétko- jak i dtugoterminowag oraz rozproszone
metody uczenia. W zadnym z modeli nie wystepujg elementy szczegdlnie
kosztowne w realizacji sprzetowe.

Ostatnie modele serii IMPL nie byty wytacznie obiektami badan, ale
nakreslity wytyczne potomnych modeli SNN, ktére moga zawiera¢ znacznie
wieksze ilosci neurondw oraz zawierajg mechanizmy skalujace. Do szczegdlnie
interesujgcych wskazéwek mozna zaliczy¢ sprawdzenie dwukierunkowosci
synaps oraz dynamiki pracy synapsy, szczegolnie przy synapsach hamowania
presynaptycznego, okreslenie metody uczenia oraz formy reprezentowania
informacji w sieci neuronowe;.

Modele SNN okazaty sie do$¢ trudnymi do zestrojenia, jednakze po serii
wielu préb udato sie zorganizowa¢ neurony uzywajgc dosC precyzyjnie
dziatajgcego mechanizmu PRA, stanowigcym jedng z najmocniejszych stron
tych modeli. SNN mozna obecnie stosowa¢ w aplikacjach typu przetwarzanie
sygnatéw, dzwieku oraz innych danych ktérych natura jest zmienna w czasie.
Jednoczes$nie podczas wprowadzania sygnatu do sieci jest juz mozliwosc
odczytania odpowiedzi czesciowe] przed zakonczeniem strumienia danych,
poniewaz sie¢ ta pracuje tym samym czasie i nie wymaga kompletnosci danych
do rozpoczecia procesu przetwarzania. Jest to bardzo istotny krok wzgledem
innych podej$¢, gdzie problemy segmentacji danych, nie wystepujace w
modelach SNN, czesto skupiaty w sobie ponad potowe procesu przetwarzania
np. w procesach klasyfikacji.

Cel pracy zostat osiggniety. Modele zawierajg jedynie elementy, ktére
albo sg bezposrednio potwierdzone przez neurofizjologie, lub zachodzi
przypuszczenie, ze zostang odkryte. Nie zostaty implementowane Zzadne
mechanizmy i cechy, ktére bylyby definitywnie wykluczone w naukach
biologicznych. Sie¢ jest wykonana w technice neurondw pulsujgcych. Sygnat
wejsciowy jest kodowany w strukturze sieci na rézne sposoby. Kazdy model
SNN posiadat pewng indywidualng reprezentacje pamietanych danych, co jest
omoéwione przy poszczegolnych modelach. W fazie weryfikacji zapamietane
informacje byly bazg do poréwnania nadchodzacych danych z wzorcem
odtworzonym z zapamietanych szczegotow. Wynik tego poréwnania w
zaleznos$ci od modelu jest binarny lub ciggty, a warto$¢ wyniku jest mozliwa do
zaobserwowania w postaci przedstawionych w pracy trzech prezentacji:
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wykresu w czasie chwilowej czestotliwosci odpalen wszystkich neurondéw sieci,
wielkosci przeptywajgcej przez sie¢ fali potencjatéw postsynaptycznych oraz
istnienia krgzgcego impulsu synchronizacji z danymi wejsciowymi, w przypadku
odpowiedzi binarnej systemu.

Teza pracy, réwniez zostata potwierdzona, a dowodem jest chocby
istnienie modelu SNN11j. Neuron tego modelu spetnia warunki wymagane w
tezie pracy. Kodowanie wzorca w pamigci dtugo- i krétkoterminowej w tym
modelu réznicuje funkcje neurondéw w sieci oraz wymaga wspotpracy pomiedzy
nimi. Neurony otrzymujg identyczne dane wprowadzane do systemu oraz
oczywiscie posiadajg potaczenia miedzyneuronowe.

Przyjete neurofizjologiczne obostrzenia, minimalizacja ztozonosci
neuronu pod wzgledem przysztej mozliwosci implementacji sprzetowej przy
wysokiej liczbie modelowanych proceséw, oraz fakt zupetnego braku teorii
przetwarzania bez stanow ustalonych, w tym réwniez w odniesieniu do
pulsujgcych sieci neuronowych, w czasie, w ktéorym przeprowadzono
konstrukcje i symulacje nowoczesnych jak na wspotczesny im okres modeli
SNN, jest duzym osiggnieciem. Ale jak to w tej dziedzinie bywa, wymagania
szybko rosng. Nastepnym krokiem, ktérego diugosci obecnie okresli¢ nie
sposob, jest problem wkomponowania mulipamieci w sie¢ typu pulsujacego.
Prawdopodobnie bedzie to wymagato scistego powigzania algorytmu uczenia
ze zdefiniowang przestrzenig sieci neuronowej oraz wyodrebnienia osobnych
sprzezen zwrotnych w tak zwanych mikrokomdrkach (mikrokolumnach)
pamieci, co mam nadzieje bedzie kolejnym etapem rozwoju sieci bazujgcych na

symulatorze SNN.
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8. INDEKS

acetylocholina - ester kwasu octowego i choliny, neurohormon produkowany
na stykach  (synapsach) oraz  zakonczeniach nerwéw  uktadu
parasympatycznego (autonomiczny uktad nerwowy) i neuronéw ruchowych
tworzacych ptytki nerwowo-miesniowe. Acetylocholina dziata pobudzajgco na
miesnidwke gtadkag (tkanka miesniowa) naczyn krwionosnych (powodujgc ich
rozkurcz obniza ci$nienie krwi), przewodu pokarmowego (zwieksza
perystaltyke) i drog oddechowych (wywotuje skurcz oskrzeli), a takze hamujgco
na miesien sercowy (zwalnia czynnos¢ serca), pobudza czynnos$¢ wydzielniczg
gruczotow trawiennych i gruczotéw drég oddechowych (zwieksza wydzielanie
$luzu). Jest rozktadana przez enzym esteraze acetylocholinowg
(cholinesteraze). Pochodne acetylocholiny majg zastosowanie jako leki.
dendryt - wypustka drzewkowata komorki nerwowej doprowadzajgca bodzce
do tejze komdrki. Dendryty sasiednich komdérek nerwowych taczg sie ze sobg
Za pomocg synaps.

istota biala - biata substancja, obszary mézgu i rdzenia kregowego zbudowane
z aksondw oraz oligodendrocytéw, czyli gleju skgpokomérkowego (tkanka
glejowa). Nie wystepujg w niej ciata neurondéw. Aksony otoczone sg ostonkg
mielinowa, ktdéra nadaje im biaty kolor. Wtdkna istoty biatej tworzg drogi
nerwowe fgczace poszczegolne struktury uktadu nerwowego w jedng
funkcjonalng catos¢.

istota szara - szara substancja, substancja wystepujagca w mozgu i rdzeniu
kregowym (obok istoty biatej). W kresomodzgowiu miesci sie na zewnatrz istoty
biatej i zbudowana jest z ciat komdrek nerwowych (neuron) tworzacych kore
moézgu i moézdzku oraz osrodki podkorowe (jadra podkorowe), natomiast w
rdzeniu przedtuzonym istota szara potozona jest wewnetrznie. Réwniez w
rdzeniu kregowym lezy wewnatrz istoty biatej, wyrdznia sie w niej na przekroju
rogi przednie, skad biorg poczatek witdkna ruchowe przednich korzeni
ruchowych, i rogi tylne, do ktérych wnikajg wtdkna czuciowe korzeni tylnych.
komoérka Schwanna — komorka nalezaca do tkanki glejowej, tworzaca ostonki
nerwowe: ostonke Schwanna i ostonke mielinowg. Ostonka Schwanna powstaje
zawsze jako pierwsza i jest utworzona z cytoplazmy (otaczajacej dookota

wiékno nerwowe) szeregowo utozonych komérek Schwanna. Ten typ ostonki
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petni nie tylko funkcje izolacyjne ale réwniez wspomaga metabolicznie
otaczany akson. Ostonka mielinowa powstaje tylko na wibknach, ktére
wczesniej miaty juz ostonke Schwanna. Jest ona zbudowana z wielokrotnie
okreconego wokdt aksonu podwaojnego fatdu btony komdrkowe;.

neuron, neurocyt - razem ze swoimi wypustkami - dendrytami, ktérych jest
zazwyczaj wiecej niz jeden | zawsze jednym neurytem (aksonem),
przystosowana do przewodzenia i przetwarzania, a takze wytwarzania bodzcéw
nerwowych. Charakteryzuje sie tym, ze przewodzi bodzce zawsze w jednym
kierunku od dendrytéw do ciata komorki (perikarionu) i z komérki dalej przez
neuryt (wypustke osiowq).

Komorki nerwowe mozna podzieli¢ ze wzgledu na:

a) ksztatt ich perikarionu oraz obszaru utworzonego przez wypustki (dendryty i
neuryt) na: neurony ziarniste, gwiazdziste, piramidowe i gruszkowate.

b) liczbe wypustek i wyrézniamy tu neurony: wielobiegunowe (najczesciej
wystepujace), dwubiegunowe (np.: w siatkbwce, btonie wechowej),
pseudojednobiegunowe (komérki zwojowe) i jednobiegunowe (bardzo rzadko
wystepujace u kregowcow).

Wypustki nerwowe sg odizolowane od otoczenia ostonkami nerwowymi.
Natomiast caty neuron (perikarion jak i jego wypustki) jest pokryty wypustkami
astrocytow (tkanka glejowa), ktoére biorg udziat w jego procesach
metabolicznych i regeneracyjnych.

neuryt — akson, zwany rowniez widknem osiowym (nerwowe) - wypustka
neuronu, zwykle diuga (od kilku mikrometréow do ponad 1 m), przez ktérg
przewodzone sg i przekazywane dalszym komoérkom impulsy nerwowe. Peczek
tysiecy aksonow tworzy nerw.

pamieé - jeden z podstawowych procesdéw psychicznych, dzieki ktéremu
osobnik gromadzi informacje i zdobywa doswiadczenie co wpltywa na jego
aktualne zachowania. Do podstawowych funkcji pamieci naleza:
zapamietywanie, przechowywanie i odpamietywanie (przypominanie).
Zapamietywanie polega na wytworzeniu w wyzszych osrodkach nerwowych
$ladu pamieciowego i kojarzeniu nowych informacji z wytworzonymi wczesniej
$ladami pamieciowymi. Przechowywanie to utrzymywanie sie w ukladzie
nerwowym  zapamietanego materiatu. Odpamietywanie  polega na
aktywizowaniu sladéw pamieciowych i przybiera¢c moze forme przypomnienia,
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rozpoznania lub reprodukcji. Ze wzgledu na czas pamietania, wyréznia sie: 1)
pamie¢ bezposrednig (krétkotrwatg) - pamietanie bodzcéw bezposrednio po ich
zadziataniu. 2) pamie¢ dlugotrwata - pamietanie bodzcéw, przedmiotow,
czynnosci przez dtugi a czasem nieograniczony okres czasu.

pamieé¢ dlugotrwata - dziatanie tej formy pamieci oparte jest na zmianach
wartosci wag synaptycznych. Proces zapamigtywania (w tym wypadku uczenia)
jest diugotrwaty. Modyfikacja wag podczas dziatania sieci jest stosunkowo
niewielka, dlatego uczenie wymaga dlugotrwatej prezentacji wzorcéw
wejsciowych. Ten rodzaj pamieci opiera sie na tworzeniu struktury potgczen
miedzyneuronowych. Same pojedyncze sygnaty nie majg tu statystycznie
duzego znaczenia. Sygnaty pojawiajg sie jedynie podczas proby dostepu do
informacii.

pamie¢ krotkotrwata - jest to pamie¢, w ktdrej gtdwnag role petnig krazace w
sieci impulsy w sprzezeniach zwrotnych oraz warto$ci potencjatéw
postsynaptycznych w neuronach w danej chwili czasu. Jednoczesnie proces
zapamietywania jest bardzo szybki. Moze wystarczy¢ jeden, dwa sygnaty
wejsciowe, aby zaistniata informacja w tej pamieci. Rownie szybko moze ulegaé
kasowaniu.

sie¢ neuronowa - urzgdzenie techniczne lub algorytm, ktérego dziatanie
wzorowane jest w pewnym stopniu na dziataniu sieci zwierzecych komorek
nerwowych. Zazwyczaj sktada sie z siatki potagczonych ze sobg elementéw, z
ktérych kazdy posiada pewng liczbe wejs¢ i wyjs¢ lub symuluje dziatanie takiej
siatki. Wyjscia z poszczegdlnych elementéw sg potaczone z wejsciami innych.
Zalezno$¢ pomiedzy wejsciami i wyjsciami jest modyfikowana dla kazdego
elementu z osobna w procesie tzw. uczenia sieci. Nauczona sie¢ przetwarza
informacje poprzez powielanie sygnatdbw pomiedzy elementami. Zalezno$¢
pomiedzy sygnatem wejsciowym a wyjsciowym jest nastepnie interpretowana
jako rozwigzanie jakiegos problemu.

serotonina - C10H120N2, 5-hydroksytryptamina, enteramina, 5-HT, hormon
tkankowy, pochodna tryptofanu. Jest wydzielana przez btone $luzowa jelit oraz
neuroprzekaznikiem w neuronach moézgowych. W tkankach obwodowych
zweza naczynia krwiono$ne i powoduje skurcz miesni gtadkich macicy i
przewodu pokarmowego. Metylowe pochodne serotoniny majg dziatanie
halucynogenne (omamy). Rozktad serotoniny jest katalizowany przez
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monoaminooksydaze (MAQO). Serotonina ma wplyw na osrodkowy i obwodowy
uktad nerwowy np.: dziata przeciwdepresyjnie (depresja), jest odpowiedzialna
za sen fizjologiczny.

synapsa - (gr. synapsis ‘potaczenie’) biol. ztacze miedzy komdrkami
nerwowymi w osrodkowym uktadzie nerwowym, w zwojach nerwowych oraz
miedzy komodrkg nerwowg a komorkg efektora; s. jest miejscem, w ktdrym

zachodzi przekazywanie pobudzenia jednej komorki na druga.
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Zalacznik nr 1 - Opis formatéw danych

Dane przetwarzane w tej pracy, z powodu ich objetosci, zostaty
zatgczone w formie cyfrowej na dotgczonej ptycie CD.

Plyta zawiera réwniez kody zrédtowe poszczegoinych modeli IMPL, SNN
oraz kody zrodtowe odpowiednich tym modelom symulatorow.

Symulator IMPL oraz SNN operuje na rdéznych formatach danych
zwigzanych z dodatkowymi informacjami zawartymi w odpowiednich plikach, co
nie oznacza, ze wspolna idea dotyczaca kodowania zgodnie ze wzorem (6) nie
zostata zachowana.

Zatgczona ptyta CD zawiera przyktadowe dane wejsciowe uzyte w pracy
w formacie wejsciowego sygnatu dzwiekowego oraz kolejnych jego
przeksztatcen. Symulator SNN posiada rowniez zaimplementowane procedury
odtwarzania sygnatu dzwiekowego z formatu danych jakim operuje pulsujaca
sie¢ neuronowa. Poniewaz przeksztatcenie to przebiega w kilku etapach,
zatgczone sg réowniez pliki zawierajace dane z poszczegolnych transformacii.

Precyzujgc format danych docierajgcy do sieci neuronowej, ktory
powstaje po przetworzeniu sprobkowanego sygnatu dzwiekowego (np.
fonetycznej reprezentacji cyfr od zera do dziewie€¢) mozemy zauwazyC, ze
pomimo zdefiniowania klasy funkcji G we wzorze (6) w dalszym ciqgu jest
stosunkowo duza swoboda w okresleniu jej danej reprezentacji. Wazne jest
dodatkowo, aby funkcja byta monotoniczna, najlepiej niemalejgca, w miare
liniowo przeksztatcajgca wartosci dziedziny na przeciwdziedzineg, a przedziaty
w ktérych funkcja jest funkcjg stata - rownej dlugosci oraz réwnomiernie
rozmieszczone w dziedzinie. Dodatkowo, warto$ci 1 oraz 0 powinny byc¢
wzglednie réwnomiernie rozmieszczone w wektorze wyjsciowym.

Przeptyw danych w symulatorze oraz odpowiednie pliki sg nastepujace:

1) sygnat dzwiekowy .pcm
2) wyniki FFT fft
3) modulacja zgonie z (6) — wejscie do sieci .bfm
4) wyjscie z sieci .bfm
5) wyliczenie energii w przedziatach widma it
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6)

ztozenie sygnatu dzwiekowego .pcm

Pliki zawieraja dane zgodnie z opisanymi przeksztatceniami, bez

formatujgcych struktur nagtéwkowych. Wiekszos¢ modeli byta testowana z

uzyciem podziatu widma sygnatu wejsciowego na dwanascie przedziatow

czestotliwosci, co

implikuje dwanascie wejs¢ do systemu zawierajgcego

pulsujgca sie¢ neuronowa.

Symulator potrafi przechowywac sie¢ wraz z jej stanem dynamicznym

(m.in. wartoscig

refrakcji neurondw, konfiguracja aktywnych neurondw,

biezacym wektorem przetwarzanych danych wejsciowych itp.) w pliku typu

.SNN.

Plik ten ma nastepujacy format:

1)
2
3
4

)
)
)
o)

stowo “Dokument”

wskaznik na biezacy wektor przetwarzanych danych
stowo “Sie¢”

zawarto$¢ buforéw miedzy wejsciem a wyjsciem neuronow
sekcja powtarzajgca sie zgodnie z iloscig neurondéw:
stowo “Neuron”

wektor wag

wartos¢ progu

wartosc¢ refrakcji

K .=

faza pracy neuronu
6. wartos¢ blokady uczenia

W odpowiednich katalogach na zatgczonej ptycie znajdujg sie:

1)

przeksztatcenia wejsciowe — zbior plikdbw obrazujgcy
kolejne etapy przetwarzania dzwiekowego sygnatu
wejsciowego, oraz przetwarzanie obrazujace proces
odwrotny. Procedury wykonujace przetwarzanie dostepne
sg jako samodzielny program lub jako odpowiednie funkcje
wywotywane z symulatora SNN.

modele IMPL — zawiera katalogi i archiwa modeli sieci
szesnastobitowego symulatora IMPL. W odpowiednich
plikach w jezyku C++ mozna znalezé poszczegodlne

implementacje.
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3)

4)

modele SNN - podobnie jak wyzej, ale dotyczy
trzydziestodwubitowego  symulatora  SNN.  Archiwa
zawierajg implementacje poszczegdinych modeli.

katalog roboczy symulatora — zawiera pliki wejsciowe do
sieci jak i pliki wyjsciowe, oba typu .bfm; pliki definiujgce
stan réznych modeli sieci w roznych stadiach symulacji
oraz pliki poszczegdlnych transformacji dzwiekowego
sygnatu wejsciowego.
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