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Wykaz oznaczeń i skrótów:

AND - operator binarny lub logiczny “i”

ADP - kwas adenozynodifosforowy

EEG - elektroencefalografia

FFT - szybka transformacja Fouriera

FSM- maszyna skończonych stanów

HCM- zespoły komórek Hebba

IAF- model neuronu pulsującego

IMPL - nazwa modeli sieci neuronowych pierwszego symulatora w języku Borand 

C++

LSM - maszyna ciekłych stanów

MDI- aplikacja wykonana w technice obsługi wielu dokumentów

OCO - częstotliwość odpaleń neuronu z ostatniego okresu pomiarowego

OR - operator binarny lub logiczny “lub”

PNN - pulsująca sieć neuronowa

PRA- mechanizm samoregulacji obejmujący próg, refrakcję i moment aktywacji

PRISM - jeden z symulatorów sieci pulsujących neuronowych

RTCWSS - przetwarzanie danych w czasie rzeczywistym bez dążenia do osiągnięcia 

stanu ustalonego

SFC - łańcuchy synchronicznych pobudzeń

SCO - średnia częstotliwość odpaleń neuronu

SNN - nazwa modeli sieci neuronowych symulatora obsługującego tryb chroniony 

procesora w języku Visual C++

SOM- samoorganizowalna mapa, technika neuronowa
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XOR - operator negacja “albo”

ZSCO = SCO-OCO - zmiana częstotliwości pracy neuronu
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1. Wstęp

Natura często zadziwiała badaczy swoją doskonałością. Na szczególną uwagę 
zasługuje układ nerwowy, który pomimo szybkiego rozwoju informatyki jest 

obecnie niedoścignionym ideałem. Fascynacja jego modelowaniem zaczęła się 

dość dawno, jednakże często spektakularne sukcesy oraz potrzeba 

zastosowań technicznych sprowadzała badania na obszary odległe wzorcowi 

(np. burzliwy rozwój metod back-propagation). Nienaturalne założenia 

dotyczyły większości cech sieci neuronowych: budowy neuronu, mechanizmu 

pracy i uczenia neuronu, struktury sieci, rodzaju przesyłanych sygnałów 

międzyneuronowych, formy wprowadzanych danych wejściowych oraz 
wymuszanych odpowiedzi. Świadomie wykonywane posunięcia odchodzenia 

od modelowania biologicznego modelu neuronu często prowadziły w „ślepe 

uliczki”, co zamrażało prace na długie lata, po czym startowano z innego 

punktu rokującego określone techniczne nadzieje, zatem sytuacja się 

powtarzała.

Jednakże równolegle prowadzone są biocybernetyczne badania z zakresu 

neurofizjologii polegające na budowaniu możliwie wiernego modelu neuronu i 

sieci neuronowej. Sama neurofizjologia dostarcza nam ogromnej masy faktów, 
często pozostających zupełnie bez związku z przetwarzaniem informacji w 

neuronie. Naturalny neuron posiada bowiem wiele równoległych procesów i nie 

wszystkie z nich są związane z przetwarzaniem informacji np. funkcje 

metaboliczne komórki. Modelowanie cech nie posiadających jakichkolwiek 
związków z przetwarzaniem informacji jest niepożądane w tym przypadku, 

ponieważ następuje zwykle wydłużenie czasu symulacji, jest potrzebne użycie 

większej mocy obliczeniowej, oraz powoduje przesłonienie istoty modelu. 

Podstawowym zadaniem jest więc selekcja znanych faktów dotyczących 

neuronów, ich dekompozycja w modelu oraz sprawdzenie podczas symulacji. 

Bazowym założeniem symulowanych modeli jest fakt, iż odpowiedź aktywnego 

neuronu jest pojedynczym impulsem o stałej maksymalnej amplitudzie. Modele 

tego typu zostały określone w ostatnich latach etykietką pulsujących sieci 

neuronowych oraz nastąpił silny ich rozwój, pomimo że nie mają obecnie zbyt 
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wielu zastosowań technicznych. Zjawisko to świadczy o tym, że jest widziana 

szansa jakościowego skoku w przetwarzaniu informacji przy pomocy tej 

techniki. Pierwszorzędnymi właściwościami tego podejścia jest bardzo wysokie 

zrównoleglenie procesów przetwarzania, wykorzystanie informacji zawartych w 

pojedynczych impulsach, gubionych podczas operowania na danych 

pochodzących tylko ze statystyk aktywności danego wyjścia (np. perceptron 

bazuje na tej zasadzie), możliwość wykorzystania chwilowego stanu sieci 
i układu aktywnych neuronów do modyfikowania procesu przetwarzania oraz 

bardzo krótkiego czasu odpowiedzi takiego systemu na zdarzenia krytyczne 

czasowo. Kilka symulacji przeprowadzonych w tej pracy potwierdza te 

właściwości.
Patrząc na prowadzone prace z pewnej perspektywy, oraz biorąc pod 

uwagę fakt dostarczania przez fizjologów układu nerwowego ogromnej masy 
nieuporządkowanych danych, zależności i korelacji pomiędzy różnymi 

procesami wewnątrz neuronu i sieci, część badaczy utrzymuje stanowisko, że 

nie da się stworzyć modelu układu nerwowego idąc od tej strony (bottom-up), 

pomimo że teoretycznie ta metoda umożliwia wykrywanie własności na coraz 

wyższych poziomach organizacji sieci. Przeszkodą jest właśnie ogrom różnych 

danych i wzajemnych zależności, często jeszcze w fazie niezweryfikowanych 

hipotez, które w tej metodzie stawałyby się elementami testowanego systemu, 
aby zapewnić przebadanie całej przestrzeni możliwych hipotetycznych modeli. 

Proponują oni natomiast obserwację poszczególnych partii mózgu, określenie 

ich funkcji oraz wzajemnych połączeń, z kolei kreowanie w miarę spójnych 

hipotez, które powinny być w następnym etapie poddawane weryfikacji np. 

poprzez symulacje. Podejście to wydaje się metodologicznie dobre oraz ma 

jedną zasadniczą zaletę: posiadając hipotezę możemy określić jakich efektów 

się spodziewamy oraz możemy wcześnie wykonać aparat to mierzący. Wadą tej 

metody jest niewątpliwie trudność tworzenia hipotez, w szczególności spójnych.

Światowa literatura na dzień rozpoczęcia badań w dość skromnym 

zakresie porusza temat powstawiania w pulsującej sieci neuronowej pamięci 

długo- lub krótko- terminowej. Nie znalazłem żadnego opracowania 

opisującego kompletny i weryfikowalny model wykształcający pamięci długo- 

i krótko- terminową w czasie równoległego procesu pracy i uczenia z lokalną 

regułą uczenia. Samo pojecie pulsującej sieci neuronowej nie było zbyt 
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popularne do 1996 roku. W wielu pracach odnoszono się do pojedynczych 

neuronów o takiej konstrukcji nazywając je odpalającymi się lub pulsującymi. 

Same prace również dotyczyły zwykle poszczególnych neuronów, ich 

zachowania oraz możliwości reprezentowania się danych w tego typu sieciach. 

Można przyjąć, że bardzo bliska przedmiotowi praca ukazała się w 1998 roku 

[138] i bardziej przypominała sieć Hopfielda z neuronem wzorowanym na 

pulsującym. Sieć pracowała w trybie synchronicznym, ale nadano już właściwą 

powagę dynamicznej reprezentacji informacji, jaką były tam wyłącznie sygnały 

międzyneuronowe, dokonano analizy procesów z nimi związanych i przypisano 

im funkcję pamięci. Sieć nie przetwarzała kolejnych danych wejściowych 

podczas pracy, choć autor juz dwa lata wcześniej brał taką teoretyczną 

możliwość pod uwagę [114], oraz nie miała algorytmu uczenia zdefiniowanego 

na pracującej sieci.

Praca [4] choć nie odnosi się bezpośrednio do pamięci, zawiera analizę 

wielu czynników z nią związanych: wpływ połączeń rekurencyjnych, opis 

dynamiki sieci, metody modyfikacji synaps i ich wpływ na całość działania sieci. 
Autorzy zwracają dużą uwagę na zgodność modelu z biologicznym wzorcem, a 

teoretyczne wnioski popierają wynikami z symulacji. Założenia tego 

opracowania są spójne z podejściem IMPL.

Model kory mózgowej został omówiony w dość obszernej publikacji [21], 

Bazuje on na synchronicznych łańcuchach pobudzeń (SFC) w przeciwieństwie 

do modeli zespołów komórek Hebba (HCA). Zawierał on wiele pożądanych 
czynników jak np. stałą średnią częstotliwość pracy sieci (przy przyjętych 10 tys 

neuronach) i jednocześnie stany synchroniczne, stabilność pracy, algorytm 

modyfikacji wag, a przede wszystkim konkurencyjność poszczególnych 

synchronicznych łańcuchów pobudzeń w walce o przyporządkowanie danego 

wzorca do klasy reprezentowanej przez swój łańcuch. Pomimo wielu 

podobnych elementów (w tym np. podobnego kroku symulacji) i obszerności 

materiału dotyczącego tego modelu nie udało się zweryfikować go 

doświadczalnie w tej pracy.

Celem pracy jest zbudowanie modelu neuronu pulsującej sieci 

neuronowej, bazującego na wytycznych neurofizjologicznych, w której zostaną 

zaobserwowane zjawiska odwzorowywania sygnału wejściowego w strukturze 
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sieci. Zapisana w ten sposób informacja powinna być użyteczna w procesie 

przetwarzania kolejnych sygnałów np. pod względem klasyfikacji.

Teza pracy: Istnieje model neuronu spełniający wymagania podane w 

celu pracy. Kodowanie wzorca w pamięci długo- i krótko- terminowej wymaga 

zróżnicowania funkcji wielu neuronów w sieci i ich współpracy (synergii), 

pomimo iż posiadają one bardzo podobne sygnały wejściowe.

Zakres pracy to symulacja komputerowa budowanych modeli, która jest 

podstawowym kryterium oceny sprawności działania sieci w tej pracy oraz 

potwierdzeniem odpowiedniego wyboru zbioru modelowanych cech. Prace nad 

modelami mogły przebiegać kilkoma torami, dlatego w rozdziale drugim została 

omówiona metodologia podejścia do przedmiotu tej pracy oraz motywacja jej 

wyboru. Rozdział trzeci zawiera zebrane z różnych źródeł informacje na temat 

budowy oraz działania naturalnego neuronu, omówione pod kątem 

wykorzystania ich w modelach sieci neuronowej. Bazowe założenia modeli, 

przyjęta platforma sprzętowa symulatora oraz budowa samego symulatora 

zawiera rozdział czwarty. Przedstawia on również system interfejsów pomiędzy 

jądrem sztucznej sieci neuronowej a środowiskiem modelu. Rozdział piąty 

zawiera wyniki i opisy przeprowadzonych symulacji. Ze względu na swą 

obszerność został podzielony na trzy podstawowe podrozdziały dotyczące 

odpowiednio prostych modeli binarnych, modeli uwzględniających symulację 
ładunków postsynaptycznych oraz modeli uwzględniających symulację 

ładunków postsynaptycznych o dużej liczbie neuronów. Nie bez przyczyny te 

dwa ostatnie typy modeli omówione są osobno, gdyż występują w nich zupełnie 

inne efekty synergii pracy neuronów, do ich oceny zastosowano nowe 

mechanizmy, a samo drastyczne zwiększenie liczby neuronów wymagało 

zbudowania nowego symulatora. Rozdział szósty odnosi efekty przedstawione 

w poprzednim rozdziale do literatury współczesnej. Pracę kończy 

podsumowanie oraz spis literatury.
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2. Metodologia pracy

Zakres niniejszej pracy, uwzględniając analizę, zaprojektowanie oraz 

implementację specjalizowanych symulatorów, mieści się w pojęciu informatyki. 
Sam modelowany obiekt, jakim jest neuron lub grupa neuronów interaktywnie 

reagująca na bodźce z otoczenia oraz przesyłające dane do niego wkracza na 

obrzeża biocybernetyki, która jest nauką o sterowaniu, w szczególności 
samosterowaniu, układów biologicznych. Dodatkowo można stwierdzić, iż 

zakres biologiczny został tutaj zawężony tylko do neurofizjologii. Jak wiemy, ta 

część biocybernetyki jest nauką przyrodniczą opartą na obserwacji i formalnie 

nie ma możliwości udowodnienia obserwacji. Reguły ustala się na podstawie 

odpowiednio dużej liczby przeprowadzonych doświadczeń oraz interpretacji 

wyników przy pomocy przyjętych aparatów statystycznych. Postępowanie takie 

nie jest jednak w dalszym ciągu formalnym dowodem. Z drugiej strony, 

informatyka zawiera elementy teorii, jednak dotyczą one w większości bliskich 

matematyce numerycznych metod przetwarzania lub przetwarzania 

symbolicznego. Samo tworzenie oprogramowania, jakim w tej pracy jest 

budowanie i kompilowanie specjalizowanego symulatora dla każdego 

badanego modelu, jak do tej pory nie ma dobrej teorii. Użyteczne stają się w 

tym przypadku różnego rodzaju metodologie programowania, jednakże one też 

nie dają możliwości formalnego udowodnienia poprawności programu, w tym 

przypadku - symulatora. Oczywiście istnieją metody formalne udowadniania 

poprawności oprogramowania, jednakże przy stosowanym tu stopniu 

złożoności są zupełnie nieprzydatne, czego potwierdzenie uzyskujemy w 

bardziej zaawansowanych metodologiach. Z tych dwóch powodów wynika, iż 

dowód formalny działania takiego systemu jest praktycznie niemożliwy, 

szczególnie jeśli miałby dotyczyć jakiejś ogólnej klasy modeli (trudności 

dodatkowo z wyspecyfikowaniem i formalnym opisem cech wspólnych i 

niezależnych od cech jednostkowych modelu) lub każdego modelu z osobna 

(duża ilość dowodów).

Z drugiej strony, gdyby został stworzony wysoce pojemny, szybki w 

działaniu oraz optymalnie wykorzystujący swoją historię model pamięci długo- 
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i krótko- terminowej i jedynym jego problemem byłby jego formalny dowód, 

oznaczałoby to niebywały sukces. Jak do tej pory model taki nie istnieje, a cały 

ciężar badań pulsujących sieci neuronowych skupia się nad doborem 
odpowiednich cech do modelowania, co jest celem tej pracy.

Ramy obszaru, w którym prowadzone są badania, są zatem ograniczone z 

jednej strony zbiorem znanych cech neuronu i sieci, które przekładane są do 

modelu. Z drugiej strony znając pożądany efekt można skonstruować aparat 

badający istnienie badanej przez nas cechy wyższego poziomu, którą w tym 

przypadku jest pamięć długo- i krótko- terminowa. Ponieważ istnienie pamięci 

może być stwierdzone wtedy, kiedy ona funkcjonuje (a w szczególności - 

funkcjonuje dobrze), a prace polegają właśnie na jej skonstruowaniu, zatem na 

podstawie danych zebranych tym ww. aparatem badający nie mógłby podjąć 

decyzji ustalającej kierunek dalszych badań, szczególnie w najistotniejszych, 

pierwszych etapach konstruowania modelu. Nie jest możliwe zatem 

prowadzenie badań tą metodą, że względu na zbyt wiele stopni swobody 

modelu. W tym momencie została przyjęta następująca hipoteza, która 
przyniosła efekty w praktyce. Otóż, jeden neuron jest w stanie zawrzeć znikome 

ilości informacji, ponieważ siła sieci polega na ilości połączeń 

międzyneuronowych, i tam należy się spodziewać zasobów pamięci. Żeby tego 

typu pamięć mogła powstać, neurony muszą się komunikować ze sobą oraz ich 

zachowanie musi wykazywać jakikolwiek porządek. Mówimy w tym przypadku o 

efekcie synergii neuronów. Jak pokazują doświadczenia, przy stosunkowo 

małej ilości neuronów (do 10 000 szt.), jedna z trzech podstawowych metod 

bazuje na analizie wykresu średniej częstotliwości aktywnych neuronów, a w 

szczególności opiera się na pewnych okresowościach w nim. Ten wyznacznik 

jest podstawowym, automatycznym testem, który wraz z obserwacją matrycy 

wag oraz matrycy potencjałów postsynaptyczynch, o ile dany model takowe 

posiada, przesądza o jakości modelu, (rozdział 5.4)

Obszar badania ograniczyliśmy zatem do zbioru cech biologicznych 

neuronu, implementowanych w modelu celem osiągnięcia maksymalizacji 

wartości mierzonego parametru (np. wariancji wartości średniej częstotliwości 

odpaleń neuronów pulsującej sieci jako funkcji czasu), wykrywanego 

określonym narzędziem (np. modułem przeliczająco-wizualizującym 

zbudowanego symulatora). Dodatkowo zbiór modelowanych cech został 
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rozszerzony o hipotetyczne cechy (np. normalizacja wag synaptycznych, 

gromadzenie statystyki zmiany częstotliwości pulsowania oraz 

wykorzystywanie jej podczas procesu uczenia, założenia warunkowej 

modyfikacji wag synaptycznych itp.), które neuron może posiadać, a nie są 

obecnie znane (w podobny sposób wykryto np. istnienie synaps hamowania, co 

zostało później potwierdzone przez neurofizjologów).

W pracy użyte jest połączenie tych dwóch metod, wstępującej oraz 

zstępującej. W pierwszej znane fakty fizjologiczne implementowane są w 

modelu oraz przeprowadzana jest symulacja. Opcja ta jest wybierana, gdy nie 

jesteśmy w stanie nic przypuszczać o dalszych efektach prac. Druga metoda, 

polegająca na doborze symulowanych elementów pod kątem osiągnięcia celu / 

hipotezy, jest używana w etapach, w których model wymaga pewnego 

poprawienia i jesteśmy w stanie wnioskować o brakującej albo nadmiarowej 

cesze ze zbioru symulowanych elementów.

Słuszność podjętego podczas rozpoczynania doświadczeń tej pracy 

kroku można po czasie uwiarygodnić identycznymi stwierdzeniami czołowych 

badaczy tej dziedziny T. Natschlagera, H. Markrama, i W. Maassa 2003 [141],

Praca, choć głównie wykorzystuje fizjologię i w mniejszym stopniu 
anatomię neuronu, przekracza granice biocybernetyki wkraczając na pole 

informatyki nie tylko na obszarze konstrukcji symulatora. Dzieje się tak również 

w momencie, gdy model zgodnie z celem pracy zaczyna wykazywać 

właściwości związane z zaistnieniem pamięci krótko- lub długo- terminowej. 

Obserwowanie pamięci odbywa się podczas sprawdzania jej funkcjonowania, 

czyli jej zapisywania, odczytywania, przechowywania, gromadzenia czy 
przetwarzania danych, co stanowi kluczowe zagadnienia informatyki.

Przy pracy z sieciami neuronowymi istnienie pamięci jest związane z 

określoną funkcjonalnością np. użyciem sieci jako klasyfikatora. Dla 

usystematyzowania, zawężenia i ukierunkowania badań w powyższym 

obszarze zostały przyjęte następujące cztery kryteria definiujące zgodność 

sygnału wejściowego z wyuczonym wzorcem:
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1) Definicja pokrycia zupełnego wzorca

3jecv„e|u,...^| F(p_,T,ł,)-p(p„p_) (1) 

gdzie:
N - ilość wektorów wzorca

Pn, - n'ty wektor wzorca

P - wzorzec

C - zbiór liczb całkowitych

X(- wektor sygnału wejściowego w chwili t. Czas w modelu jest 

zdefiniowany dyskretnie. Kolejna wartość całkowita t oznacza przesunięcie się 

w modelowanej sieci o ok. 1,85 ms.

t,y- wartości należące do dziedziny czasu
F(PnXt)- funkcja pokrycia n'tego wektora wzorca przez wektor wejściowy 

w chwili t zgodnie z następującą definicją:

,P2,P3,...,PN]
^n~[an,l ’an,2 ' ' " ,an,l] 

x=[...x_2x_lx0xlx2 |
^n=[xnA,xn2,...,xnL] (2)

L 1 <=>ani = l Axmi = l j 
def.F[Pn,Xm]=X -1 ~an=\ Axmi=0 

1=1 o

Funkcja F wykazuje pewną niesymetryczność związaną z mniejszym 
wpływem na jej wartość pól przyjmujących we wzorcu wartość zero. 

Wyjaśnienie tego założenia znajduje się w rozdziale 5.1.1, a jego interpretację 

zawiera rys. 14.

Zgodnie z definicją (1) sygnał wejściowy musi być idealnie 

zsynchronizowany w czasie przetwarzania całego wzorca oraz zachowywać 

zgodność kolejnych wektorów w myśl funkcji F.
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2) Definicja pokrycia wzorca na zdefiniowanym poziomie

By&C\fn^\,2,...N\ F[Pn,Xy+n]>cF[Pn,Pn] 
c — ułamek właściwy (3)

Definicja (3) w przeciwieństwie do (1) nie wymaga pełnej zgodności 

poszczególnych wektorów sygnału wejściowego z wzorcem, lecz akceptuje 

poziom wyznaczony przez parametr c. Synchronizacja i kolejność wektorów 

musi być w pełni zachowana, podobnie jak w (1).

3) Definicja pokrycia wzorca przy określonej tolerancji nieliniowości podstawy 

czasu lub deformacji sygnału wejściowego w wymiarze czasu

SyeC 3ee(l,2,...iV]VnG[l,2(...Af]Bg€(l>2)...e} F(Pn ,X y+g}=F[P n,P

(4)
Definicja (4) pozwala sygnałowi wejściowemu na zmiany w 

synchronizacji na odcinkach czasowych wyznaczonych przez parametr e. 

Dopuszczalna jest również zmiana kolejności wektorów w tym zakresie, 

natomiast zgodność odpowiednich wektorów musi być pełna.

4) Definicja pokrycia wzorca przy określonej tolerancji nieliniowości podstawy 

czasu lub deformacji sygnału wejściowego w wymiarze czasu przy założeniu 

zdefiniowanego stopnia pokrycia wzorca

3y&C 3e&\\,2,...N]Xfn&[\,2,...N\3g&\\,2,...e\ F[Pn ,X y+g}>cF[P n,P n) 
c —ułamek właściwy

W

Ostatnia definicja (5) zgodności sygnału wejściowego z wzorcem wydaje 

się najlepiej opisywać rzeczywistość z wymienionych powyżej. Dopuszczone są 

przesunięcia czasowe sygnału lub nierównomierności do poziomu 

wyznaczonego parametrem e, oraz stopień zgodności poszczególnych 

wektorów może być mniejszy niż w (4) i definiowany parametrem c.

W praktyce parametr e może przyjmować nawet dość duże wartości, ale 

mniejsze od N, o ile y jest momentem rozpoczęcia sygnału podobnego do 

wzorca. Założenie, że y wskazuje środek sygnału podobnego do wzorca jest 

Str. 15



formalnie precyzyjniejsze. Jeśli występuje zmiana kolejności dwóch wektorów, 

ich odległość nie powinna przekraczać 8 ms.
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3. Elementy budowy neuronu oraz opis zjawisk fizjologicznych 
związanych z tematem pracy

3.1 Elektrofizjologia oraz budowa neuronu

Podstawowym elementem budulcowym układu nerwowego jest neuron.

Rys. 1. Ciało komórki otoczone błoną komórkową z

zaznaczonymi kolbkami synaptycznymi

Jest on komórką, czyli 

grudką cy to plazmy

zawierającą jądro, otoczoną 

błoną komórkową, (rys. 1) 

Błona komórkowa jest cienką 

submikroskopową warstwą 

białkowo-lipidową. Ciała 

tłuszczowe i białka tworzą 

bardzo cienką molekularną 

błonę, która ma zdolność do 

wybiórczego przepuszczania

pewnych substancji. Możliwe jest więc zróżnicowanie stężeń jonów wewnątrz 
komórki względem otoczenia. Pierwszoplanowe znaczenia mają anion 

chlorkowy Cl’ oraz kation sodowy Na+. Kation sodowy występuje w środowisku 

Rys.2. Neurony uwidocznione barwieniem metodą Golgiego

zewnętrznym 

komórki w stężeniu 

dziesięciokrotnie 

większym niż we 

wnętrzu. Jon 

potasowy K+ 

natomiast występuje 

w stężeniu
trzydziestokrotnie

większym we wnętrzu komórki niż na zewnątrz. Stężenia są utrzymywane przez 

tzw. pompę sodową. Wydatek energetyczny komórki jest konieczny nie tylko, 

aby utrzymać gradient stężeń, ale również gradient elektrochemiczny. Jest on 
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związany z następującą zależnością: we wnętrzu komórki znajdują się białka, 

które posiadają stosunkowo liczne grupy kwaśne -COOH. Po dysocjacji w 

roztworze wodnym jon H+ odłączony od grupy karboksylowej może zgodnie z 

gradientem stężeń przenikać przez błonę komórkową, ponieważ jest bardzo 

mały. Może być on wyparty również przez jon sodowy lub potasowy. Jon 
potasowy w porównaniu z uwodnionym jonem sodowym jest na tyle mały, że 

może przenikać przez błonę komórkową. Jony potasowe zobojętniają ujemne 

grupy karboksylowe we wnętrzu komórki, tworząc sole potasowe białek. 

Gradient stężeń natomiast powoduje tendencje do uciekania tych jonów z 

komórki. Tak więc kationy potasowe oscylują przez błonę komórkową w efekcie 

wypadkowej sił gradientu stężeń oraz gradientu elektrochemicznego, tak że 

pewna ilość jonów K+ jest zawsze poza komórką. We wnętrzu komórki 

względną przewagę posiadają więc ładunki ujemne -COO. Wykazywany 

potencjał spoczynkowy pomiędzy wnętrzem komórki a powierzchnią 

zewnętrzną błony jest równy ok. -70 mV. Ponieważ ta różnica wywołana jest 

oscylacją kationów K+, mówimy o baterii potasowej.

3.2 Zmiany potencjału komórki

Potencjał spoczynkowy neuronu ulega niewielkim wahaniom związanym 

z metabolizmem komórki. Jednak może on znacznie zmienić swoją chwilową 

wartość pod wpływem pracy synaps, znajdujących się na powierzchni komórki. 

Substancja chemiczna zwana neuromediatorem może spowodować zmianę 

stanu błony i tym samym całej komórki. Wyróżnić można dwa typy 

neuromediatorów: hamujące i pobudzające. Mediator hamujący powoduje 

uszczelnienie błony komórkowej i w rezultacie różnica potencjałów pomiędzy 

wnętrzem i otoczeniem jeszcze bardziej wzrasta. Przeciwnie dzieje się pod 

wpływem mediatora pobudzającego. Błona komórkowa staje się 

przepuszczalna dla jonów sodowych i w rezultacie różnica potencjałów maleje. 

Jeśli pod wpływem działań mediatorów synaptycznych potencjał komórki zmieni 

się z -70 mV do ok. -59 mV (rys. 3 A,B), zwanego potencjałem generatorowym, 

to błona komórkowa zmienia swoje właściwości separacyjne. Staje się ona 

całkowicie przeźroczysta dla kationów w związku z występowaniem dodatniego 
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sprzężenia zwrotnego: zwiększenie potencjału komórki powoduje wzrost 

przepuszczalności błony i odwrotnie, czyli wzrost przepuszczalności błony 

powoduje zwiększenie potencjału komórki. W wyniku tego procesu komórka 

osiąga potencjał iglicowy ok. +50 mV. Potencjał ten bardzo szybko spada, aż 

osiągnięty zostanie stan poniżej potencjału pierwotnego. Stan ten zwany jest 
hiperpolaryzacją. Cały proces pobudzenia jonowego wraz z okresem 

hiperpolaryzacji tworzącej refrakcję bezwzględną błony trwa około 2 ms, czyli w 

ciągu sekundy może powstać nawet 500 potencjałów iglicowych, średnio 

jednak powstaje ich 200-300.

Rys.3. Trzy podstawowe procesy pracującej komórki nerwowej. A- stan spoczynku, B- 

stan pobudzenia C- stan hamowania

Jeśli komórka jest w fazie generowania potencjału iglicowego, to nie 

reaguje na dochodzące do niej inne sygnały. Dzieje się tak również przez ok. 2 

ms po tym fakcie. Okres ten nazywamy refrakcją bezwzględną, ponieważ w tym 

czasie nie jest możliwe powstanie kolejnego potencjału iglicowego. W ciągu 

następnych ok. 8 ms już ma tę możliwość, jednak warunki aktywacji są 
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trudniejsze do spełnienia. W tym czasie komórka wraca do stanu 

spoczynkowego i jej siła reagowania na bodźce jest mniejsza. Rozkład 

potencjałów jest podobny jak w przypadku hamowania, co prezentuje to rys. 3 

fragment C. Okres ten jest nazwany refrakcją względną.

Po depolaryzacji w komórce jest nadmiar jonów sodowych. Część z nich 

zostaje usunięta przez działanie pompy sodowej, a większość pozostałych 

dostaje się do neurytu tworząc falę biegnącą wzdłuż włókna osiowego.

Należy zwrócić uwagę, że komórka może być pobudzona do potencjału 

mniejszego niż generatorowy. Jest ona wtedy w stanie pobudzenia 

podprogowego. Ma wówczas tę właściwość, że łatwiej reaguje na następne 

bodźce pobudzające. W zależności od fazy pracy komórki suma pobudzeń 

musi mieć określoną wartość, aby wygenerowany został potencjał iglicowy. 

Występują trzy fazy pracy: depolaryzacja, hiperpolaryzacja oraz stan 

przeciętny. Podczas hiperpolaryzacji pobudzenie komórki jest trudniejsze niż 

podczas stanu przeciętnego, ponieważ wymagana jest znacznie większa ilość 

neuromediatora pobudzającego.

3.3 Neuron jako układ przeliczeniowy

Rys.4. Przykładowy rozkład potencjałów we wnętrzu

komórki w zależności od typu synaps

Pierwszoplanowym 

czynnikiem 

modyfikującym siłę 

oddziaływania synaps na 

polaryzację komórki jest 

czynnik przestrzenny. 

Synapsy zarówno 

pobudzające, jak i 

hamujące zlokalizowane 

na ciele komórki mają 

większe znaczenie 

bodźcotwórcze niż 

synapsy na odległych 

krańcach dendrytów (rys.
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4). Wiąże się to ze słabym oddziaływaniem na zmianę potencjału komórki 

nawet mocno spolaryzowanych synaps z odległych dendrytów. Jednak, jeżeli 

jest spełniony drugoplanowy czynnik - czynnik czasowy, oddziaływania 

polaryzacyjne dendrytów nabierają nowej jakości. Jeśli jednocześnie, lub z 

drobnym przesunięciem czasowym, podrażniona zostanie większość synaps 

pobudzających, to nastąpi aktywacja (odpalenie) neuronu, czyli wygenerowany 

zostanie impuls iglicowy.

Możemy więc uogólnić, że neuron dokonuje czasowo-przestrzennego 
sumowania arytmetycznego docierających bodźców podprogowych. Omawiane 

stany spoczynku i pobudzenia należą do zjawisk elektrycznych, z tym że należy 

podkreślić, że nie chodzi tu o przepływ prądu elektrycznego niosącego energię 

ze źródła do celu, ale o przesunięcie jonów, propagujące się podobnie jak efekt 

domina, gdzie każda komórka podlega prawom własnego, osobnego bilansu 

energetycznego.

3.4 Czynniki modyfikujące pracę neuronu

Neuron jest wrażliwy na wiele substancji chemicznych. Mogą one 

istotnie zmieniać pracę neuronu (np. C2H5OH). Jedną z najważniejszych klas 

tego typu stanowi rozlane pobudzenie/ hamowanie, ponieważ pozostawia ślady 

w strukturze neuronowej na długi czas. Jest ono czynnikiem potrafiącym 

zmieniać wagi synaptyczne, czyli siłę oddziaływania, w zakresie od zaniku do 

kilkunastokrotnego zwiększenia oraz pozostawić taki stan po swoim zaniku. 

Proces zmieniający wagi jest stosunkowo długotrwały i zachodzi podczas 

odpalania się neuronu. Można go opisać następująco: Jeśli neurony są 

poddane działaniu rozlanego pobudzenia i podczas tego odpalają się (gdyż 

pracują aktywnie cały czas), to droga impulsu zostaje udrożniona. Neuron 

zostaje jeszcze bardziej uwrażliwiony na docierające do niego sygnały poprzez 

zwiększenie odpowiednich synaps. Obserwujemy zjawisko torowania [58].

Przeciwnie działa rozlane hamowanie. Podczas odpalania neurony 

zmniejszają wartości wag aktywnych synaps. Po dłuższym czasie neuron nie 

jest wrażliwy na pobudzenia z odpowiednich synaps. Zjawisko to nazywamy 

blokowaniem.
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3.5 Analiza zjawisk fizjologicznych pod kątem wykorzystania w modelach 

sieci neuronowej

Pomimo tak dobrej znajomości określonych zjawisk 

elektrofizjologicznych neuronu, niektóre procesy nie są w ogóle wyjaśniane. 

Jak wykazały pierwsze symulacje, reguła Hebba nie przystawała do uczenia 
synaps hamujących, [rozdział 5] Należałoby się więc zastanowić, czy 
hamowanie presynaptyczne oraz odpowiadająca mu struktura synaps 

wykształca się w procesie uczenia, czy jest ona zdeterminowana genetycznie? 

Jeśli w procesie uczenia, to w jakim? Można przypuszczać, że nie może to być 

wyłącznie określone genetycznie, ponieważ organizm żywy wykazuje duże 
możliwości uczenia, w tym na pewno znalazłyby się funkcje niemonotoniczne.

Jak twierdzi znany 

specjalista z tej 

dziedziny, prof. 

Ryszard 
Tadeusiewicz, 

(Konferencja PAN 

Wrocław 1996) nie 

była znana

jakakolwiek spójna 

praca na temat 

powstawania lub 

pochodzenia 

sygnał

Rys. 5. Synapsa hamowania presynaptycznego

synaps hamujących (rys. 5), mimo że synapsy hamowania presynaptycznego 

są widoczne w preparatach i były badane elektrochemicznie przez J. Ecclesa 

[53], za co otrzymał nagrodę Nobla. Można przypuszczać, że w synapsie 

hamowania presynaptycznego występuje mechanizm torowania w przypadku 

aktywności neuronu pobudzającego oraz wstawkowego (hamującego). Czy 

torowanie to występuje na linii neuron pobudzający - neuron pobudzany, czy 

też na linii neuron pobudzający - neuron wstawkowy, jeśli neuron pobudzany 

nie odpalił się, pozostaje to nadal w fazie domysłów.
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Pełniejsze zamodelowanie pewnych zjawisk fizjologicznych w sztucznej 

sieci neuronowej ma na celu możliwe najlepsze naśladowanie biologicznego 
pierwowzoru, z drugiej zaś strony pozwoli być może wyjaśnić pewne fakty 

biologiczne. Selekcji materiału tego rozdziału oraz niektórych generalizacji 

dokonała neurolog i fizjolog prof. Ludmiła Borodulin- Nadzieja. Nierozwiązanym 

problemem jest metoda uczenia synaps hamujących, zarówno hamowania 

presynaptycznego, jak i bezpośredniego. Fakt, który rzuca światło na ten temat 

to uwarunkowanie genetyczne struktury układu nerwowego. Jeśli chodzi o 

procent synaps pobudzających i hamujących uwarunkowanych genetycznie w 

stosunku do posiadających możliwości adaptacji w procesie uczenia, to można 

faktycznie wyróżnić dwie grupy neuronów związanych z tym podziałem: te które 

rosną wyłącznie ze schematem zapisanym genetycznie, oraz te z większymi 

możliwościami adaptacyjnymi. Pierwsza grupa jest odpowiedzialna za ogólną 

strukturę układu. Są w niej elementy, bez których organizm skazany byłby na 

zagładę oraz inne ważne grupy łączące stosunkowo bardzo odległe ośrodki 

(coś w rodzaju magistral). Szacuje się genetyczne uwarunkowanie na ok. 80% 

liczby neuronów w najprostszych partiach układu nerwowego. Sam mózg ze 

względu na swoją plastyczność oraz złożoność nie jest przebadany.

Wysoce pożądane byłoby poznanie stosunku ilości synaps 

pobudzających do hamujących. Znane są jedynie szacunkowe dane

ciało komórki ruchowej
pochodzące z ostatnich lat. Można ocenić to ze

Rys.6. Hamowanie bezpośrednie przez komórkę 

wstawkową Renshawa

względu na ilość chorób 

występujących w obu 
przypadkach

- związanych 

z mediatorami 

pobudzającymi 

i hamującymi.

Prawdopodobnie na 

hamowanie zużywane 

jest 60% energii 

przetwarzania lub więcej. 

Jest to wskazówka, jak 

ważny jest to proces. 

Pewne wnioski 
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dotyczące uczenia w kierunku blokowania (zmniejszania wartości wag) można 

wyciągnąć obserwując działanie rozlanego hamowania. Droga impulsu może 

stawać się mniej drożna w wyniku tego procesu, jednak cały czas dotyczy to 

tylko synaps pobudzających. Wpływ rozlanego pobudzenia / hamowania na 

neurony jest znany (lub wydaje się być znanym). Do całościowego przebadania 

tego mechanizmu brakuje niestety jednej niemalże podstawowej rzeczy: jaki 

mechanizm steruje generowaniem rozlanego pobudzenia / hamowania? Czy 
jest on sterowany tylko chemicznie, czy również elektrycznie? Brak odpowiedzi 

na to pytanie komplikuje wysnuwanie hipotez na temat metod uczenia całych 

sieci (aby wystąpiła jakakolwiek synergia neuronów). Sam proces hamowania 
impulsów elektrycznych jest natomiast znany. Siła hamowanie 

presynaptycznego jest ustalana w procesach chemicznych. Sam proces 

hamowania jest procesem elektrycznym. Aspekt chemiczny podczas 

pojedynczego aktu hamowania jest pomijalny, gdyż nie może on hamować tak 

skutecznie (długo i dokładnie) jak hiperpolaryzacja. Znana jest też funkcja 

pomiędzy potencjałem z neuronu hamującego a skutecznością hamowania. 

Była ona badana kilka lat temu na podstawie prac Ecclesa przez doktoranta 

prof. Tadeusiewicza - Janusza Majewskiego [157]. Jego symulacje potwierdzają 
przydatność liniowej aproksymacji skuteczności hamowania względem 

potencjału hamującego. Gdy porównamy ilościowo oba typy hamowania 

synaptycznego: hamowania presynaptycznego oraz typu komórek Renshawa, 

działających bezpośrednio depolaryzacyjnie na błonę (rys. 6]), to znakomita 

większość jest typu pierwszego. Typ drugi występuje jedynie w kilku miejscach 

układu nerwowego i jest wysoce zdeterminowany genetycznie, ponieważ 

występuje wysoka powtarzalność tych elementów u różnych osobników. W 

literaturze podawany jest schemat samoblokowalnego wejścia (rys.7]), typu 

hamowania presynaptycznego. Jest to schemat stabilizatora częstotliwości, 

obrazuje np. hamowanie oboczne na siatkówce. Po analizie dochodzi się do 

wniosku, że akson neuronu C musi mieć właściwości hamowania 

bezpośredniego, gdyż w przeciwnym wypadku układ uległby nie kończącemu 

się wzbudzeniu. Oznacza to, że jedna komórka może otrzymywać sygnały 

hamujące różnych typów!

Hipoteza dziedziczenia umiejętności nabytych mogłaby rzucić pewne 

światło na uwarunkowanie genetyczne budowy organizmów, jednak
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mechanizmu takiego do tej pory 

nie wykryto. Jedynym obecnie 

uznawanym procesem

dokonującym przystosowywania 

się gatunku do środowiska jest 

selekcja naturalna. Jest to jednak 

wysoce zastanawiające, ze 

względu na statystycznie 

obserwowane szybsze

przebieganie procesu adaptacji. 

Omawiane dane statystyczne są 

niestety niekompletne. Rys.7. Schemat samoblokowalnego wejścia

Powróćmy znów do pojedynczych neuronów. W jakim stopniu można 

zagwarantować binarność przesyłanych sygnałów międzyneuronowych, czy na 

wyjściu mogą pojawiać się inne stany? Sygnał na wyjściu może przybierać 

pewne wartości również podczas nieodpalania się neuronu. Napięcia te nie 
przekraczają jednak 1 mV (mniej niż 1/100 amplitudy potencjału sygnału 

iglicowego), czyli prawdziwa jest teza o ich binarności. Są one związane 

bardziej z metabolizmem komórki niż z faktycznym przetwarzaniem.

Jeśli prześledzimy układ nerwowy pod kątem zakresu sprzężeń 

zwrotnych, generatorów i ich odpowiedników, to okazuje się że sprzężenia 

zwrotne występują na wszystkich szczeblach szczegółowości. W większości są 

to sprzężenia ujemne, ale wykryto również dodatnie (nie mówiąc o 
sprzężeniach wewnątrz neuronu). Jeśli chodzi o generatory to występują one 

dosyć często, np. jako elementy sprzężeń zwrotnych. Ogólnie mówiąc są one 

często zależne. Oprócz tego możemy znaleźć w mózgu stabilizatory(l) 

częstotliwości. Istnieje jeden wyspecjalizowany obszar zajmujący się głównie 

pobudzaniem określonych partii (nadający zmienne tempo pracy każdemu 

osobnemu modułowi mózgu). Zwany jest on układem siatkowatym. Nadaje on 

tempo pracy mózgu (sen, koncentracja uwagi). Sieć neuronowa nie może 

wygenerować impulsu sama z siebie (z wyjątkiem specjalizowanej struktury 

sterującej sercem). Istnieje więc wiele zabezpieczeń, aby w mózgu nie zabrakło 

pobudzeń. Chwilowy brak odpaleń wszystkich neuronów jest równoznaczny ze 

śmiercią.

Str. 25



Ważną rolę w budowaniu modeli mają również statystyczne dane na 

temat pracy neuronów, częstotliwości pracy oraz ich czułość na zmiany 

częstotliwości podczas sumowania czasowego. Co prawda nie można 

oszacować jaki procent neuronów odpala się w ciągu podanego odcinka 

czasowego i tym podobnych przydatnych statystyk, ale każde znane parametry 

muszą być wykorzystane. Maksymalna częstotliwość ograniczona jest 

refrakcją, ale wynosi nawet 1000 Hz w niektórych typach neuronów. Człowiek 

jednak słyszy i 8000 Hz, a po przesunięciach fazowych potrafi identyfikować 

kierunek. Jak się okazuje, obie w.w. jakości są przetwarzane przez osobne 

układy neuronowe i nie ma tu żadnej sprzeczności. Rzuca to jednak pewne 

światło, iż w sytuacjach skrajnych natura stosuje nieintuicyjne rozwiązania, a 

ignorowanie ich istnienia może doprowadzić do błędnych wniosków.

Jeśli chodzi o dokładność sumowania, to nie jest ona dokładnie 

zbadana. Rozpatrując poszczególne elementy sumowania potencjałów w 

neuronie należy uwzględnić, iż każdy neuron tego układu posiada możliwości 

adaptacyjne. Poza tym występuje również zjawisko habituacji, czyli 
selekcjonowanie powtarzających się informacji. Stopień habituacji jest 

prawdopodobnie ustalany genetycznie. Zwykle neurony za receptorami 

posiadają częstotliwości pulsowania rzędu 20 - 200 Hz (Częstotliwość 

graniczna sygnału jest znacznie większa ze względu na stromy przebieg 

"iglicy"). Równie ważnym elementem jest czułość neuronów, przy czym należy 

ją również rozpatrzyć jako funkcję częstotliwości. Zmiana częstotliwości o 

pewną wartość jest w granicy błędu, gdy nie wywoła zmian w funkcjonowaniu 

sieci. Trudno ocenić, jaka jest czułość neuronów na zmianę częstotliwości 

wejściowej. Z pewnych przesłanek wynika, że może tu występować wrażliwość 

na dość subtelne przesunięcia fazowe (np. przy mechanizmie lokalizacji źródła 
dźwięku w słyszeniu dwuusznym). Zwykle przyjmuje się, że błąd działania 

analogowych mechanizmów w sieci (sumowanie czasowe w synapsach) jest 

rzędu 1 - 5%.
Można próbować budować założenia dwóch różnych koncepcji maszyn 

neuronowych. W pierwszej większość neuronów jest ciągle pobudzana 

(chociaż podprogowo), w drugim panowałaby ‘pustka elektryczna’ z krążącymi 

pojedynczymi impulsami. Natura jest bliższa temu pierwszemu modelowi.
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Pomijane przez neurofizjologię, a posiadające znaczenie dla modelu jest 

również wzajemne oddziaływanie na siebie pracujących neuronów. Wiążą się z 

tym pośrednio dynamiczne zmiany potencjałów otoczenia neuronów oraz 

zmiany stężeń związków chemicznych (np. tlenek azotu) wpływające na 

działanie sąsiadów oraz zmiany plastyczności (szybkości) uczenia sąsiadów - 

neuronów. Mówiąc ‘sąsiad’ mamy na myśli wzajemne fizyczne położenie 

neuronów w przestrzeni. W naturalnych sieciach, jak wiadomo, przestrzeń ta 

jest trójwymiarowa. W modelu przestrzeń musi być sztucznie i dość dowolnie 

zdefiniowana, ale po jej zdefiniowaniu musi być konsekwentnie przestrzegana. 

Fizjologicznie zmiany plastyczności uczenia sąsiadów neuronu aktywnego są 

tłumaczone obecnie przenikaniem przestrzennym tlenku azotu między 

neuronami. Wzajemne oddziaływania neuronów były rozważane przez ks. 

Sedlaka [151], nie są to jednak dane czysto fizjologiczne. Faktem jest, że 

istnieją zależności pomiędzy ośrodkami np.: Jeżeli czujemy głód, to 

systematyczny wzrost częstotliwości odpaleń neuronów w tym ośrodku 

powoduje zmniejszanie średniej częstotliwości odpaleń w innych ośrodkach, 
tak że po jakimś czasie jesteśmy już tylko w stanie myśleć o głodzie, w żadnym 

przypadku o pięknie.
Należałoby rozpatrzyć również problem uczenia wysokopoziomowego i 

zjawiska z tym skorelowane. Na pewno bezpośredni związek ma częstotliwość 

układu siatkowatego. Pobudza on różne części mózgu zmuszając go do 

podwyższonej aktywacji. Układ siatkowaty jest natomiast pobudzany ilością 

różnorodnych bodźców docierających do mózgu. Pod względem chemicznym 

zasada torowania jest jedna. Generowanie określonych faz (np. udrażniania / 

hamowania) jest związane z utrzymaniem homeostazy i jest sterowane korą 

mózgową, a móżdżek to kontroluje. Dziedzina rozpatrująca człowieka nie jako 

obiekt, lecz jako proces (approach system) ma za ambicje zbadać prawa 

rządzące homeostazą. Ogólną zasadą działającą w zdrowych organizmach jest 

optymalizacja zużycia energii oraz wykonywanej pracy.
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Wróćmy do synaps 

hamujących. Bardzo ważną 

rolę (jak się okazało na 
podstawie prac z IMPL5B, 

IMPL6) [24] pełnią różne typy 

hamowania impulsów w 
sieciach neuronowych. W 

przyrodzie znane są obecnie 

dwa podstawowe typy 

hamowania, którym warto się 

jest przyjrzeć ze szczególną 
uwagą pod kątem 

biochemicznym oraz

występowania w organizmie. 

Można znaleźć je 

jednocześnie w układach 

nerwowych.

Rys.8. Motoneurony alfa oraz komórki Renshawa w

odruchu obronnym zginania

Pierwszym z nich jest synapsa posiadająca neuromediator hamujący 

[58] str.573, [156] str. 115. Przy aktywacji tego układu hiperpolaryzacja wnętrza 

komórki (a często tylko dendrytu) może zmaleć z -60mV do -75mV. Tego typu 

synapsy występują przede wszystkim na ciele 

dendrytach w części zbliżonej do środka komórki.

komórki (soma) lub na

Powstały więc w procesie

Rys.9. Budowa ślimaka Aplysia

dość skomplikowanym (np. 

uczenia), gdyż inne ich 

umiejscowienie nie dawałoby 

odpowiedniego działania, a z 

punktu widzenia anatomii jest 

ono równie prawdopodobne. 

Hamowanie to może wpływać 

selektywnie na określone 

synapsy, ale również ma wpływ 

na całe pobudzenie komórki. Jako przykład biologiczny można podać niektóre 

elementy sterujące np. motoneurony alfa w okolicy rogów brzusznych. W 

układzie tym występuje hamowanie generowane przez charakterystyczną 

Str. 28



komórkę wstawkową Renshawa na rys. 8 oznaczoną symbolem R. Ma ona za 

zadanie stabilizację i pracuje w pętli sprzężenia zwrotnego ujemnego (rys. 8). 

Dokładniejszy opis działania jest następujący: motoneuron alfa produkuje 

acetylocholinę, która przez swoje kolaterale zakończone w komórce 

wstawkowej będzie ją pobudzać. Ona z kolei wytworzy glikol (do 

neuromediatorów hamujących należy również substancja GABA czyli kwas 

gamma-aminomasłowy), który ma za zadanie hiperpolaryzację motoneuronu.

Drugim typem hamowania jest wejście hamujące (Noxious stimulus). 
Zapobiega wytworzeniu się pobudzenia postsynaptycznego wprowadzając 

hiperpolaryzację w synapsie. Hamowanie to jest wyłącznie selektywne. Dzieje 

się tak dlatego, że noxious stimulus działa serotoniną na gospodarkę cAMP we
„właściwej synapsie” (Sensory

stimulus).

neuromediatora
Zablokowanie

powoduje
zablokowanie drogi dla

propagacji sygnału.

tego typu wykryto w

„Aplysia” [rys. 9]. [58] 
[158] str. 56. Ślimak

str. 693

Aplysia

californica jest jednym z

pierwszych niebanalnych pod AKTYWOWANY

względem złożoności układu
nerwowego obiektem

przebadanym co do neuronu.

Posiada on tylko 20 000

czuciowy

SZLAK NEURONALNY

/OKOLICA 
SKRZELA

PRZEZ BODZIEC 
BEZWARUNKOWY

AKTYWOWANY 
PRZEZ BODZIEC 

WARUNKOWY

Układy 

ślimaku

OKOLICA
KONWERGENCJE syfona

NEURON
CZUCIOWY

OKOLICA \ 
OGONA \

NEURON SZLAK NEURONALNY

OKOLICA
BRZEGU

PŁASZCZA

DROGA NIE- 
AKTYWOWANA 
(KONTROLNA)

NEURON 
RUCHOWY

NEURON 
CZUCIOWY

NEURON 
WSTAWKOWY

neuronów to w dodatku

wyjątkowo dużych. Jego układ Rys. 10. Schemat odruchu ślimaka Aplysia

nerwowy posiada odruch 

chowania skrzeli, oraz możliwości kojarzenia prymitywnych faktów. Dlatego stał 

się również wdzięcznym obiektem badań nad mechanizmami uczenia. Na 

podstawie analiz biochemicznych neuronu można wyróżnić kilka 

mechanizmów uczenia w układzie nerwowym. Niektóre zależności mogą być 

powiązane z synapsami hamowania. Zgodnie z zasadą Donalda O. Hebba z 
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1949 roku, aby doszło do wzmocnienia siły połączeń pomiędzy neuronami, 

muszą one się pobudzać jednocześnie.

Po badaniach Aplysia w 1963 roku zaproponowano pewną modyfikację 

tej reguły. Może dojść do wzmocnienia połączenia również bez aktywowania 

neuronu postsynaptycznego. Mechanizm ten wymaga jednak jednoczesnej 

aktywacji innego neuronu (najczęściej wstawkowego torowania). Proces ten
można opisać następująco: pod wpływem bodźca bezwarunkowego następuje

PRESYNAPTYCZNY
NEURON CZUCIOWY

RECEPTOR DLA 
SEROTONINY

ZWIĘKSZENIE UWALNIANIA 
NEUROTRANSMITE RA

K1NAZA 
BIAŁKOWA 
ZALEŻNA 
OD CYKLICZ­
NEGO AMP

KINAZA 
BIAŁKOWA C

NEURON 
WSTAWKOWY

KANAŁ 
WAPNIOWY

PĘCHERZYKI 
ZAWIERAJĄCE 
NEUROTRANS- 

MITER

CYKLAZA . 
ADENYLANOWA

KANAŁ
POTASOWY

MIEJSCE 
UWALNIANIA 

NEUROTRANS- 
MITEHA

KANAł
WAPNIOWY

KALMODULINA

CYKLICZNY 
AMP

py JONY 
S WAPNIOWE

FOSFOLIPAZA A2

DIACYLOGLICEROL

Rys. 11. Mechanizm warunkowania klasycznego u Aplysia

aktywacja 

odpowiadającego mu 

szlaku neuronowego i 

w rezultacie

pobudzenie neuronu 

wstawkowego. Ten z 

kolei za pomocą 

serotoniny powoduje 

aktywacje cyklazy 

adenylanowej w 

neuronie czuciowym. 
Jeśli jest on akurat w 

tym momencie
pobudzany, to wzrasta 

stężenie jonów 
wapniowych. Łączą 

się one z kalmoduliną

i z kolei te z cyklazą

adenylową. Aktywując ten enzym zwiększa się synteza cAMP i dalsze reakcje 

są łatwe do przewidzenia (aktywacja kinaz białkowych i zwiększenie 

wydzielania neurotransmitera). Tak więc istnieje zasada kojarzenia nie objęta 

przez Hebba. Rys. 10 przedstawia schemat ogólny dróg neuronalnych odruchu 

warunkowego i bezwarunkowego chowania skrzela. Procesy zachodzące w 

synapsie w okolicach skrzela, omówione powyżej, prezentuje rys. 11.

Wymieniony wyżej mechanizm występuje w trakcie uczenia 

nieświadomego. Układ nerwowy jest w stanie zapamiętać kolejność czasową 

występowania określonych bodźców (potencjalnych warunkowych) oraz 
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skorelować je z określonymi efektorami bez udziału świadomości człowieka. 

Natomiast zasada Hebba występuje w neuronach zaliczanych do obszaru 

zwanego hipokampem. Jest to twór, który posiada trzy główne drogi neuronalne 

i jest w stanie kojarzyć informacje z dłuższego czasu. Jest to też jedyny układ w 

mózgu potrafiący zapisać tę informację do pamięci długotrwałej abstrakcyjnej. 

Jego działanie jest związane ze świadomością, gdyż jeżeli jakiegoś wydarzenia 

nie spostrzeżemy to oznacza, że hipokamp nie zadziałał efektywnie. 

Wydarzenie takie nie będzie nam się mogło nigdy przypomnieć (pomimo, że 
informacja o nim przewędrowała przez znaczną część naszego mózgu), 

ponieważ nie przeszła przez „układ zapisu do pamięci”.

Można określić dwa typy pamięci niskiego poziomu, jaką może 

dysponować model sieci neuronowej:

1. pamięć krótkotrwała - jest to pamięć, w której główną rolę pełnią krążące w 

sieci impulsy w sprzężeniach zwrotnych oraz wartości potencjałów 

postsynaptycznych w neuronach w danej chwili czasu. Jednocześnie proces 

zapamiętywania jest bardzo szybki. Może wystarczyć jeden, dwa sygnały 
wejściowe, aby zaistniała informacja w tej pamięci. Równie szybko może ulegać 

kasowaniu.

2. pamięć długotrwała - działanie tej formy pamięci oparte jest na zmianach 

wartości wag synaptycznych. Proces zapamiętywania (w tym wypadku uczenia) 

jest długotrwały. Modyfikacja wag podczas działania sieci jest stosunkowo 

niewielka, dlatego uczenie wymaga długotrwałej prezentacji wzorców 

wejściowych. Ten rodzaj pamięci opiera się na tworzeniu struktury połączeń 

międzyneuronowych. Same pojedyncze sygnały nie mają tu statystycznie 

dużego znaczenia. Sygnały pojawiają się jedynie podczas dostępu do 
informacji.
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4. Założenia modeli pulsujących sztucznych sieci neuronowych

4.1 Założenia podstawowe budowanych modeli

Modele sztucznych sieci neuronowych zostały konstruowane ze szczególnym 

zwróceniem uwagi na następujące elementy:

• sztuczna sieć neuronowa powinna posiadać właściwości maszyny z 

pamięcią, w przeciwieństwie do ograniczania się do przekształceń 
funkcyjnych aktualnych danych wejściowych

• rozproszony algorytm uczenia wykształcającego pamięć długo- i krótko­

terminową. Poprzez rozproszoność rozumie się autonomiczność pracy 

pojedynczego elementu, w tym przypadku neuronu, zarówno w procesach 

pracy jak i uczenia. Pojedynczy neuron ma zatem dostęp do części zbioru 

wszystkich danych systemu. Dane docierające do neuronu można podzielić 

na dwie grupy. Pierwsza zawiera informacje pochodzące z sąsiedztwa 

neuronu, np. neuronów z którymi istnieje połączenie synaptyczne. Druga 

grupa to dane dotyczące globalnego stanu sieci (np. modelowaniu rozlanego 

pobudzenia), oraz w jakimś zakresie, danych wejściowych całego systemu .

• wysoka równoległość procesów uczenia i przetwarzania. Jest ona 

zapewniona przez odpowiednio zorganizowany przepływ danych w modelu.

• tania przenośność do postaci sprzętowej, (brak szybkich magistral, niskie 

częstotliwości pracy elementów, powtarzalność schematu)

• tolerancja sieci na uszkodzenia neuronów.

4.2 Symulator oraz jego platforma sprzętowa

Badane modele zostały podzielone na dwie grupy i roboczo nazwane IMPL i 

SNN, adekwatnie do użytego symulatora: modele binarne IMPL 1 - 4 i modele 

z symulacją ładunków postsynaptycznych IMPL 5 - 8 oraz SNN 9-12. 

Symulacje zostały przeprowadzone na specjalnie skonstruowanych pod każdą 
grupę sieci symulatorach bazujących na platformie PC. Pierwszy z nich (IMPL) 

działa w środowisku BORLAND C pod dyskowym systemem operacyjnym.
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Drugi jest w pełni 32 bitowy, działający w środowisku chronionym MS Windows, 

oparty o MS Visual C++, zwany dalej SNN. Oba symulatory charakteryzują się 

wysoką specjalizacją oraz przystosowaniem do tej dziedziny. Również inni 

badacze [141] podążyli w stronę specjalizowania symulatorów w ostatnich 

latach z powodu ograniczoności możliwości np. Matlaba. Obiekt symulowany, 

jego właściwości oraz algorytm zachowania, jest zapisywany w języku C a 

następnie kompilowany razem z symulatorem. Wytworzony kod jest całkowicie 

kodem zapisanym w języku maszynowym procesora, zatem podczas symulacji 

nie występują żadne procesy z zakresu interpretacji obiektu, co znacznie 

przyśpiesza symulację. Wewnątrz symulatora występują odpowiednie moduły, 
które przygotowują dane wejściowe do sieci z próbkowanego sygnału 

dźwiękowego (normalizacja, FFT, kodowanie częstotliwościowe), oraz 

procedury, które umożliwiają rekonstrukcję dźwięku z wyjścia sieci, czyli 

zakodowanego częstotliwościowe widma FFT. Wszystkie operacje są 

przeprowadzane z archiwizowaniem wyników pośrednich. Możemy je otrzymać 

w postaci plików.

Formalny zapis przekształceń wstępnych sygnału ma następującą 

postać:

V =FFT [W 

V t = [X\,t’X2,r 'XL,t\

x1/,...xA/gIR+

: xi.^xi.^
WHG(x;.J|<|G[x.J| 

w e(o,l |

gdzie:

W(t,t+k) - pierwotny ciągły sygnał wejściowy z przedziału czasowego (t,t+k) 

FFT -funkcja realizująca szybką transformację Fouriera

Vt- wektor o L współrzędnych zawierający wynik FFT z chwili t+k

G - funkcja zachowująca monotoniczność względem długości wektora 

wyjściowego

Xf-wektor wejściowy do pulsującej sieci neuronowej w chwili t
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Symulator SNN umożliwia ponadto stałe monitorowanie matrycy wag 
oraz potencjałów postsynaptycznych zarówno podczas pracy jak i uczenia 

sieci. Obie matryce można oglądać w postaci graficznej oraz możemy 

przemieszczać się po nich używając myszki. Aktualny stan sieci, wag, progów, 

potencjałów postsynaptycznych oraz rozkładu sygnałów międzyneuronowych 

może być w dowolnym kroku nagrany do pliku, co umożliwia powroty do 

ciekawszych stanów sieci oraz kontynuowanie doświadczenia rozpoczynając z 

tego stanu. Symulator monitoruje częstotliwość odpaleń neuronów w sieci oraz 

przedstawia to na automatycznie skalowanym wykresie. Podczas symulacji 

możemy wstrzymywać procesy uczenia, zaburzać sekwencje wejściowe itp.

4.2.1 Okno aplikacji Symulatora SNN

Przykładowe okno symulatora przedstawione jest na rys. 12. Aplikacja 

wykonana jest w technice MDL Symulator może jednocześnie symulować 

działanie wielu sieci neuronowych przetwarzających te same dane lub inne, co 

jest ustawiane przy uruchamianiu danego okienka za pomocą definiowania 

pliku wejściowego i wyjściowego danej sieci. Przykładowe okienko aplikacji 

symulatora zawiera dwa dokumenty. Pierwsze zawiera sieć, której wizualizacja 

matrycy wag została wybrana w lewym okienku dialogowym i automatycznie 

wyświetlona nad prawym spliterem. Poniżej znajduje się wykres częstotliwości 

neuronów z pierwszych dwustu kroków symulacji. Okno dialogowe podaje nam 

również maksymalną liczbę odpalonych jednocześnie neuronów oraz numer 

aktualnie przetwarzanego wektora wejściowego. W menu głównym widzimy 

rozwiniętą kolumnę odpowiedzialną za cztery przekształcenia przystosowujące 

sygnał do formatu użytecznego przez modelowaną sieć, co zostanie 

szczegółowo omówione w następnej sekcji.
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Rys. 12 - Okno aplikacji symulatora SNN z dwiema równolegle symulowanymi sieciami

neuronowymi.

4.2.2 Konstrukcja modelu

Niezależnie od przyjętego symulatora (IMPL czy SNN) jądro modelu 

składające się z kilku obiektów, w myśl metodologii programowania 

obiektowego, jest identyczne. Jedynie metody tych obiektów związane z 

interfejsem użytkownika mają inną treść, ze względu na zupełnie inne 

możliwości obu platform. Różnicą symulatora SNN względem IMPL również jest 

możliwość użycia zasobów wirtualnych systemu operacyjnego, jak i możliwości 

zaadresowania i używania dużych, ciągłych segmentów danych. Pojemność 

pamięci wirtualnej czy kilkakrotnie większe zmienne indeksujące w rezultacie 

przekładają się na zwiększenie ilościowe elementów powtarzalnych 

modelowanego obiektu takich jak poszczególne neurony lub sieci. Pomimo, że 
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występuje tu jedynie zmiana ilościowa względem IMPL, efekty synergii 

neuronów w takich sieciach nabierają jakościowo innych właściwości, co jest 

omówione w rozdziale 5.3.

Symulator SNN zawiera następujące klasy obiektów:

CColorView
Ś CEnterDlg
Ś ClnpuMew
Ś CMainDoc

COMPLEK
CSplitterFrame
CT extView 

E-*T| CT rans

CViewExApp 
Ś "^1 DPCOMPLEX 
Ś - fft

Neuron
Ś-"Ts Siec
E-LJ Globals

Samo jądro systemu tworzą klasy „Neuron", „Siec” oraz „fft”. Są one 

wspólne dla symulatora SNN i IMPL. Klasa CTrans występuje tylko w 

symulatorze SNN i zapewnia automatyczną konwersję dźwięku poprzez kilka 

transformacji do postaci akceptowalnej przez pulsującą sieć neuronową 

zgodnie z wzorem (6). Pozostałe klasy służą do komunikacji z użytkownikiem 

np. okna dialogowe, okna wyświetlające matryce wag oraz potencjałów 

postsynaptycznych, wykresy częstotliwości odpaleń neuronów i matryce 

aktywnych neuronów na tle sieci. Ich szczegółowe omawianie wydaje się być w 

tym miejscu niecelowe. Podczas trwania symulacji odpowiednie przełączniki 

zlokalizowane w oknie dialogowym pozwalają użytkownikowi symulatora na 

szybką zmianę prezentacji dynamicznie zmieniającej się zawartości sieci 

neuronowej (np. matrycy wag czy potencjałów postsynaptycznych) za pomocą 

myszki.

Najmniejszym występującym obiektem jest neuron. Posiada on 

następujące metody:
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* Neuron
- $ aktywacjaf)
- $ dump[FILE 1)

$ dzialajO
- $ init()
- 0 laduj(FILE "f)

namaluj_graficznie[int x, int y, int dlx, int dly)
- namalui_na_bitmapie(CDC xpDC, CRect rect, char co, CRect clipRect)
- § Neuron()
- 0 Neuron(sygnal “lab_wejsc, int ident)
■ $ ~Neuron()
- $ odpal_sie(int aktywacja]

0 oscyloskop_pre(int x, int y, int dlx, int dly)
$ oscyloskop_zsco(int x, inty, int dlx, int dly)

■ § podaj_wyi$cie()
- poprawka_hamowania()

0 SerializefCArchiYe &ar)
- $ ucz_$ie()
- ucz_sie_gdy_nie_odpalenie(int akt)
- $ ucz_sie_gdy_odpalenie(int aktywacja)

§ ustaw_rozlanie(int roz)
- • 0 zrzucfFILE “f)

Najistotniejsze metody związane z pracą neuronu to funkcja aktywacja(), 

wyliczająca aktualne pobudzenie neuronu, zwracająca informację o 

przekroczeniu progu. Wartość jej liczona jest na podstawie wartości 
potencjałów postsynaptycznych oraz odpowiednich im wag. Metoda działaj() 

używając tej funkcji podejmuje decyzję o przekazaniu sterowania metodom 

ucz_się_gdy_odpalenie() i ucz_się_gdy_nie_odpalenie(). Niezależnie od tego 

wyboru, w każdym kroku symulacji wywoływana jest metoda ucz_się(), która 

zmienia również wartości wag i progu np. aby nie dopuścić do wyłączenia się 

neuronu z pracy sieci z powodu zbyt wysokiej wartości wylosowanego progu. 

Działania tych metod opisane są formułami matematycznymi (np. rozdział 
5.3.2). Jedną z metod istotnych przy testowaniu synaps hamujących jest 

poprawka_hamowania() - metoda zapobiega powstawaniu niedozwolonych 

synaps w danym modelu np. synaps hamowania presynaptycznego z kilkoma 

synapsami hamującymi itp.

Atrybuty obiektu neuron, wymienione już po części, jak próg czy wartości 

postsynaptyczne, przedstawia kompletna lista:
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... debugLakt 

...  faza 
  glob_wej 
  gr_akt 

gr_akts 
■.. gcprog

gr_prog$ 
..  gr_zsco 

■■■• id 
•••• nieuczsie

oco 
..  prawdop

próg 
■ ■ refrakcja

■■ rozlanie
SCO 
wagi 

■ wejście 
■ • wyjście 

zsco

Neuron posiada swój identyfikator id używany przy obsłudze 

autoasocjacji połączeń. Wartość refrakcji przechowywana jest w zmiennej 

refrakcja, a w przypadku modelowania tylko refrakcji bezwzględnej używana 

jest zmienna faza. Glob_wej jest wskaźnikiem na bufor wyjść neuronów, 

stanowiący jednocześnie tablicę wartości sygnałów wejściowych do sieci, w tym 

do każdego neuronu. W ten sposób praca neuronów jest synchroniczna. 

Wejście stanowi tablicę wartości potencjałów wygenerowanych przez impuls 

wejściowy na synapsie o odpowiednim indeksie oraz uwzględnia pozostałości 

potencjałów po poprzednich impulsach tej synapsy. Powstałe w ten sposób 

wartości są mnożone przez wartości wagi o tych samych indeksach przez 

funkcję obliczającą aktywację. Neuron zbiera też statystyki na temat swojej 

aktywności w dalszej i bliższej przeszłości w zmiennych sco i oco. Ich różnica 
określa ostatnią tendencję i jest przechowywana w atrybucie zsco. Rozlanie 

wraz z wartością aktualnego zsco jest elementem modyfikującym kierunek 

zmian częstotliwości, do którego dąży algorytm uczenia neuronu.
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Obiektem nadrzędnym względem Neuronu jest Sieć. Koncentruje ona 

dowolnie wielką ustaloną liczbę neuronów w zakresie umożliwianym przez 

platformę sprzętową. Ponieważ struktura sieci umożliwia połączenia każdy z 

każdym, obiekt Sieć musi wygenerować neurony o odpowiedniej ilości synaps, 
aby każdy neuron mógł obsługiwać sygnały z wszystkich neuronów sieci, w tym 

swój sygnał, oraz wszystkie wejścia globalne do systemu (do sieci).

Metody obiektu Sieć:

B - Siec 
j j.. $ dump(FILE xf) 

dzialaj(int ilosc_cykli = 1 ) 
init()

i i... kasuLwejsciaO
i j... komunikuj()
| i... konfiguruj(char xsci, int masz)
| |... $ laduj(FILE xf)

| i... nagraj_naglowek(FILE xf)
| i... nagraLsie()

:  namaluLbitmape(CDC xpDC, char co, CRect clipRect) 
i i... namaluLgraficznief)
j i... namaluj_tasme(CDC xpDC, CRect clipRect)
j odczytaLnaglowek(FILE xf)

$ przegladniLgeneracje(FILE xf) 
j i $ sem_p()
| $ sem_v()
| Serialize(CArchive &ar)

$ Siec(sygnal x&wej„ sygnał x&wyj) 
j j  $ ~Siec()
i j  0 uruchom_kazdy_neuron()

$ ustaw_dobroc(unsigned int dob)
| |... ustaw_rozlanie(int roz)
j j... $ wez_dobroc()
i $ wez_rozlanie() 
j j... znajdz()
; znajdz_numer_nauczonei_sieci(FILE xf)
| |... $ zrzucfFILE xf)

Konstruktor sieci generując odpowiednie neurony przekazuje im 

wskaźnik na bufor sygnałów wyjściowych neuronów. Metoda init() ustawia 

parametry startowe wag, progu, faz i innych zmiennych neuronu przy pomocy 

identycznej metody obiektu Neuron. Po tych operacjach Sieć jest w stanie 

wykonywać metodę działaj(), co sprowadza się do wywołania przeliczenia 
każdego neuronu (uruchom_każdy_neuron()') oraz aktualizacji buforów 

wejściowych zgodnie z przeliczonymi wartościami wyjść neuronów (metoda: 
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komunikuj()). Obiekt Sieć posiada poza tym kilka metod wizualizacyjnych oraz 

procedury archiwizacji i przeglądu drzewa generacji sieci. Zasoby Sieci nie 

będące Neuronami sprowadzają się do zmiennych organizujących 

przeglądanie drzewa generacji oraz archiwizację sieci i z powodu mało 

istotnego znaczenia dla modelu nie będą omawiane.

Na uwagę zasługuje również klasa CTrans. Wykorzystuje on obiekt fft 

oraz zawiera następujące własne metody:

CT rans 
bfm() 

j... CTransp 
.. ~CTrans() 

na_fouriera() 
i... z_fouriera()

Spróbkowany sygnał podlega Szybkiej Transformacji Fouriera w 

metodzie na_fouriera() i w rezultacie powstają wektory o współrzędnych 

stanowiących wartości energii przypadającej na dany przedział częstotliwości. 

Współrzędne tego wektora są z kolei kodowane na binarne wektory o tej samej 

ilości współrzędnych za pomocą dość dowolnej ale monofonicznej funkcji w 

metodzie bfm() Taki format danych jest możliwy do podania na wejście 

omawianego modelu sieci. Aby możliwa była obserwacja procesów 

zachodzących w sieci za pomocą dźwięku zostały opracowane również 

transformacje odwrotne do wymienionych powyżej o nazwach zbfm() oraz 

z_fouriera() w wyniku których wyjście sieci może być z powrotem 

przekształcone w sygnał (np. dźwiękowy).

4.3 Nowe jakości w pulsującej sieci neuronowej

4.3.1 Kodowane danych wejściowych w pulsującej sieci neuronowej

Głównym założeniem pulsujących sieci neuronowych jest forma 

przekazywanego sygnału międzyneuronowego, określona jako impuls o 

Str. 40



zdefiniowanym przebiegu. W znakomitej większości sieci oraz we wszystkich 

modelach tej pracy została założona identyczność tych impulsów, co oznacza 

brak możliwości zmian amplitudy sygnału. Fakt ten jest potwierdzony przez 

fizjologię. Istnieją również podejścia z modulacją amplitudy do PNN (Pulsed 

Neural Network [112] - Pulsujące Sieci Neuronowe), które nie są omówione w 

tej pracy.
Zakładając kodowanie impulsowe, obok metod fazowych, zwykle 

zastanawiamy się nad kodowaniem częstotliwościowym. Aby nie doprowadzić 

do nieporozumień warto zdać sobie sprawę, że używane czułe mierniki często 

przeprowadzają pomiar częstotliwości w określonej liczbie kolejnych impulsów. 

Należy w tym miejscu uściślić dla każdego modelu techniczny sposób 

mierzenia częstotliwości, ponieważ zwykle jako pomiar częstotliwości 

traktujemy ilość impulsów w jednostce czasu. Kolejną nieścisłością, która może 

wkraść się pod pojęcie częstotliwości odpaleń, bywa zwykle nie częstotliwość 
odpaleń neuronu, ale średnia częstotliwość odpaleń grupy lub wszystkich 

neuronów sieci. W odniesieniu do odpowiedzi sieci neuronowej podczas badań 

możemy też mówić o częstotliwości wyjścia sieci z jednego doświadczenia, lub 

średniej częstotliwości wyjścia sieci z kilku identycznych prób. Ta ostatnia 

metoda jest dość często wybierana, szczególnie wtedy, kiedy odpowiedź sieci 

jest zaledwie kilkoma impulsami i pojedyncze wyniki charakteryzują się dość 

dużymi błędami. W krańcowych przypadkach niektórzy badacze dla 

udowodnienia swoich hipotez podają częstotliwość wyliczoną jako odwrotność 
czasu pomiędzy dwoma odpaleniami neuronu, co w istocie rzeczy jest błędem. 

Zwracając uwagę, która z ww. metod mierzenia częstotliwości została użyta 
(np. przez neurofizjologów), oszczędzamy czas nad szukaniem potencjalnych 

błędów w modelu sieci.
Przy kodowaniu impulsowym możemy nadać znaczenie wielu 

czynnikom, nie tylko częstotliwości. Najprostszą metodą jest dekompozycja 

binarnej danej na pojedynczy impuls, oznaczający wystąpienie danego 

abstraktu. Drugim czynnikiem, który może zawierać informację, jest czas, który 

upływa do pierwszego pojawienia się impulsu (np. względem ostatniego 

odpalenia się danego neuronu). Standardowo podczas kodowania 

częstotliwościowego w określonym odcinku czasu df należy umieścić taka 

liczbę impulsów x, aby stosunek x/dt był równy zadanej częstotliwości.
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Wprowadzając nierównomierności w rozmieszczeniu tych impulsów (o ile to 

możliwe), możemy jednocześnie kodować dodatkowe dane. Nierównomierności 

rozkładu impulsów można formować tak, żeby były one skorelowane z 

nierównomiernościami z innych wejść lub nie, w ten sposób sieć może 

przypisać określone wejścia do jednej klasy. Widać tu już powolne przejście do 

metod kodowania fazowego. Podstawową metodą tej kategorii jest 

generowanie ramki synchronizującej. W tej ramce w odpowiednim momencie 

jest umieszczany impuls. Neuron na podstawie przesunięcia względem ramki 

określa jego fazę i tę wartość dalej przetwarza. Jest też możliwe kodowanie 

danych na kilku wejściach neuronu. Wtedy też wygodnie jest użyć przesunięć 

czasowych impulsów na różnych wejściach neuronu do przedstawienia 

określonych abstraktów. Oczywiście nie bez znaczenia jest też czas pomiaru. 

Jak wykazują badania najwięcej informacji niosą pomiary realizowane w 

okresach od 100 ms do 500 ms.

Powyższy przegląd nie wyczerpuje oczywiście wszystkich metod 

kodowania pojedynczego wejścia używanych w PNN (występują np. metody 

mieszane), stanowi jedynie przegląd najpopularniejszych. W badanych 

modelach używana jest standardowe kodowanie częstotliwościowe przy 
założeniu określonego odcinka czasowego oraz kodowanie bezpośrednie przy 

pomocy pojedynczego impulsu (np. przy uczeniu prostych funkcji binarnych).
Po zdefiniowaniu najniższej warstwy kodowania danych należy określić i 

przystosować strumień informacji wejściowych do formatu akceptowanego 

przez sieć. Proces ten jest zależny w każdym przypadku od rodzaju 

przetwarzanych informacji i często przesądza o powodzeniu całego 

przedsięwzięcia. Polega on na wyeliminowaniu, o ile to możliwie, 

symboliczności informacji i skonstruowaniu w zamian odpowiedniej przestrzeni 

wartości. Przez znakomitą większość badaczy jest on robiony intuicyjnie, a 

jedynie wieloletnie doświadczenie specjalisty sprawia, że wybrana funkcja 

przekształcająca dane wejściowe na przestrzeń danych wejścia sieci, jest 

zwykle w tej roli nie najgorsza [52], Błędy przy wyborze tej funkcji mogą być w 

określonym zakresie niwelowane poprzez samą sieć neuronową, jednakże 

okupione jej dodatkowym nakładem pracy. Biorąc pod uwagę, iż pulsujące sieci 

neuronowe znakomicie nadają się do przetwarzania sygnałów, sztandarowym 

błędem z omawianego tematu jest reprezentacja próbek sygnału w systemie 
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dwójkowym i podanie ich w takiej postaci do sieci. Jak wiemy, system dwójkowy 

jest kodem, czyli symbolem, a nie badaną wartością, którą on przedstawia. W 

przypadku kiedy informacja wejściowa z natury jest symboliczna, np. kolor, 

definiowanie przestrzeni wejścia powinno być powiązane z potencjalnym 

znaczeniem danego abstraktu, o ile posiadamy jakiekolwiek hipotezy na ten 

temat.
Po zbadaniu, czy przetwarzane dane nie mają właściwości 

symbolicznych, lub po opracowaniu odpowiedniego przekształcenia, celem 

zoptymalizowania pracy sieci należy ocenić, czy przypadkiem zbyt duży 

strumień informacji nie koncentruje się na jednym lub kilku wejściach do sieci 

pozostawiając wejścia spoza tego zbioru z bardzo małą ilością informacji. Może 

to prowadzić w krótkim okresie do przetrenowania zbyt utylizowanych wejść 

oraz zastój w uczeniu. Jest to dość poważny problem i nie ma na niego 

uniwersalnej recepty. Z pomocą, obok doświadczenia obecnie posiadanego w 

tej dziedzinie, przychodzi często natura i jej rozwiązania np. w przypadku 

przetwarzania dźwięku warto oba kanały dźwiękowe poddać określeniu 

amplitudy, normalizacji, przekształceniu Fouriera i z kolei wynik tego 

przekształcenia oraz wielkość amplitudy dostosować do formatu danych 

wybranego przy danym modelu sieci, czyli analogicznemu przekształceniu do 

realizowanego w biologicznym uchu.

4.3.2 Efekt synchronizacji lokalnej oraz wpływ szumów

W procesie przetwarzania w PNN (Pulsed Neural Network - Pulsująca 

sieć Neuronowa) mamy często do czynienia z następującym zjawiskiem: w 

zależności od funkcji pełnionej w sieci oraz od aktualnie przetwarzanych 

danych neuron X odpala się z określoną częstotliwością. W sąsiedztwie X 

znajduje się neuron Y, który posiada część synaps do identycznych neurytów 

co neuron X. Jeśli neurony pełnią podobne funkcje w sieci, a różnica polega na 

tym, iż przetwarzają dane z trochę innego obszaru wejściowego (np. inna część 

siatkówki), to zwykle średnia częstotliwość pracy X i Y są podobne. Jeśli faza 

tych odpaleń wynosi 5^0 oraz gdy zostanie aktywowany region wspólny, tzn. 

do obu neuronów dotrze impuls x w chwili tpre, to kolejne mierzone czasy 
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pomiędzy odpaleniami wyniosą 3, gdzie 8 < 8. Jest to zjawisko, które może 

być wykorzystane w procesie przetwarzania oraz uczenia: neurony posiadające 

bardziej zbliżone fazy odpaleń mogą wzmacniać bardziej wzajemne synapsy 

niż synapsy do neuronów o innych fazach. Logiczną interpretacją może być 

hipoteza, iż skoro dane pochodzące z dwóch różnych źródeł nigdy nie zbiegają 

się w tym samym czasie, to znaczy że one są niezależne i nie powinny być 

syntezowane. I odwrotnie - jeśli dwa niezależne źródła informacji zwykle 

aktywują się w tym samym czasie, to znaczy iż prawdopodobnie dotyczą tego 

samego zdarzenia.

Sam mechanizm neuronowy występujący w tym zjawisku jest dość 

prosty. Podczas gdy sygnał x dociera do neuronów X i Y, X oraz Y są w 

określonej fazie aktywacji. Automatycznie dodatkowy sygnał powoduje 

jednoczesny szybszy wzrost potencjału aktywacji w obu neuronach względem 

sytuacji początkowej. Szybszy wzrost potencjału aktywacji powoduje większy 

kąt nachylenia funkcji potencjału aktywacji względem osi czasu (druga 

pochodna tej funkcji jest w tym momencie dodatnia). Jeśli w czasie 

oddziaływania sygnału x neurony przekroczą swoje progi, to czas pomiędzy ich 

odpaleniami będzie mniejszy względem poprzedniego. Obrazuje zdarzenie rys 

13.

Rys. 13. Mechanizm synchronizacji momentów odpaleń neuronów

Rozważanie przeprowadzone powyżej, podobnie jak kolejne w dalszej 

części pracy, pomimo iż operują na pojedynczych neuronach i pojedynczych 

okresach mają znaczenie statystyczne, a uproszczenie to jest użyte celem 

wyjaśnienia samej istoty zjawiska. W naturze napotykamy na różnego rodzaju 

szumy oraz zakłócenia i nie da się tego faktu zignorować, a być może ma on 

też wpływ na sam proces przetwarzania i uczenia. Po pierwsze, wartość progu 
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danego neuronu może być zakłócana tzn. zdarzają się odpalenia neuronu gdy 

nie zostanie osiągnięty potencjał progowy, jak i braki odpaleń nawet po 

przekroczeniu wartości progowej (wliczając refrakcję). Po drugie, mechanizm 

integracji sygnałów może być zakłócany różnymi czynnikami, szczególnie tymi, 

które działają na błonę komórkową. Może wystąpić wtedy sumowanie w 

„zaszumionym” fragmencie błony i wynik może być inny niż zwykle. Może 

nastąpić też przesunięcie sygnałów sumowanych w czasie, co niesie z sobą 

nieprzewidywalne wyniki pracy neuronu. Po trzecie, szum może być również 

wynikiem niezupełnego wykasowania potencjałów postsynaptycznych podczas 

odpalenia neuronu. Startowanie z akumulacją potencjałów nie od stanu 

zerowego może zaburzyć zarówno częstotliwość pracy jak i jej fazę.
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5. Symulacje wybranych procesów fizjologicznych pod kątem 
wykształcania pamięci długo- i krótkotrwałej

5.1 Modele binarne

5.1.1 Modele IMPL1 i IMPL2 - podstawowe elementy budowy, działania oraz 

metod uczenia

Budowa tych modeli jest po części wzorowana na binarnych pamięciach 

Hopfield'a [63]. Ich działanie jest prawie identyczne, z tym że kolejne dane 
wejściowe są przetwarzane przed osiągnięciem stanu ustalonego. W ten 

sposób dynamiczny rozkład impulsów w czasie przetwarzania może 

interferować się z danymi wejściowymi. Głównym elementem modelu jest 

metoda uczenia bez nauczyciela, inna niż przyjmowana w pamięci Hopfield'a. 

Ma ona niestety jeszcze wady.

Założenia IMPL1 są bardzo ubogie i należy je zaliczyć do bazowych 

założeń kolejnych modeli. Jednym z elementów występujących we wszystkich 

omawianych symulacjach IMPL jest sposób kodowania danych podawanych do 

sieci. Polega on na tym, że elementarna dana wprowadzana do sieci (0 lub 1) 

reprezentowana jest przez wektor dwuelementowy. Ma on źródła w fizjologii i 

na takim też przykładzie zostanie wyjaśniony. Rozpatrzymy percepcję ciepła i 

zimna przez organizm. Gdy receptor ciepła przestaje wysyłać sygnały o tym 

fakcie, nie oznacza to wystąpienia zimna w środowisku, ponieważ za wykrycie 

zimna odpowiedzialny jest inny receptor. W ten sposób możemy wyznaczyć 

tabelę stanów (rys. 14), która będzie stosowana do kodowania. Oczywiście nie 

wszystkie naturalne abstrakty wejściowe wymagają takiego kodowania.

Rys. 14. Tabela kodowania sygnałów sygnałów

Wartość bitu Reprezentacja
------------ —------------ Wspólnym

0 (0,1) zero elementem modeli
1 (1,0) jeden

(0,0) stan dozwolony IMPL jest również
(1,1) stan zabroniony
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przesyłanych między neuronami. Mają tę samą semantykę i formę jak dane 

podawane do sieci.

Cechą charakterystyczną jest też symulowana równoległość pracy 

neuronów. W przypadku sieci ze sprzężeniami zwrotnymi pobudzenie neuronu 
jest funkcją wartości wyjść innych neuronów. Aby zatem wyniki pracy sieci nie 

były zależne od kolejności przeliczania neuronów, zastosowane zostały bufory 

przechowujące stan z danego kwantu czasu symulacji aż do następnego. 

Podczas pracy neuron korzysta z obrazu sieci zapamiętanego w buforach. 

Gwarantuje to symulację równoległości.

Analizowane sieci neuronowe oparte na metodzie uczenia wyłącznie za 

pomocą modyfikacji wag (IMPL1 - tak został nazwany pierwszy model) zgodnie 

z poniższym wzorem:

wij.t+c^yj.t>Q
wij.m (7)

Wij.t - wartość /"tej wagi neuronu j w chwili t, -l4/< w^t < 14/ 

yj.t - wartość wyjścia neuronu j w chwili t, 

c, 14/- stała modelu o wartości dodatniej

miały następujące właściwości:

• włączały sprzężenia zwrotne, blokujące poprawne działanie sieci: nie zostały 

zauważone żadne efekty synergii neuronów, nie zauważono żadnego 

związku danych wejściowych z wartościami wag,

• zbytnio poszerzały rozpoznawane klasy abstrakcji, po dłuższym czasie 

prawie każdy ciąg wejściowy był akceptowany,

• włączały sprzężenia w obrębie pojedynczego neuronu,

• niektóre neurony przez cały czas pozostawały nieaktywne,

Aby uniknąć pojawiających się cech znanych z IMPL1, w założeniach 

modelu IMPL2 oprócz ww. elementów wspólnych zawarto:

• architekturę sieci umożliwiającej sprzężenia zwrotne z wyjątkiem 

autoasocjacyjnych,

• dwa podstawowe typy budowy synaps,

• metodę uczenia zdefiniowaną na tej strukturze,
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• refrakcję bezwzględną.

W rezultacie otrzymuje się monolityczną strukturę sieci, w której np. 

warstwy to rzecz wyłącznie umowna. Każdy neuron ma dostęp do wszystkich 

danych wejściowych sieci. Zamodelowano dwa rodzaje synaps. Pierwszy 

opisuje synapsy pobudzające, drugi - hamujące analogiczne do synapsy 

hamulcowej komórki wstawkowej Renshawa. Nie występuje tu synapsa 

hamowania presynaptycznego. Model nie zawiera symulacji gromadzenia się 

ładunków postsynaptycznych. Refrakcja bezwzględna w tym modelu oznacza, 

że neuron przez n taktów po odpaleniu, nie odpala się lub kwant czasu 

symulacji jest równy czasowi refrakcji bezwzględnej. Ta druga opcja przyjęta 

jest w większości modeli. Uczenie realizuje się podczas pracy sieci zgodnie z 
następującymi zasadami:

• podczas odpalenia neuronu modyfikują się wagi synaps aktualnie 

pobudzanych zgodnie ze wzorem (8).

w..
u>z+1

wiJ.t+c~wiJ.'>0

rnd[0,\
(8)

gdzie:

rnd() - funkcja losowa o rozkładzie płaskim

c - parametr z przedziału (W/1000, W/5). Najlepsze wyniki osiągano dla (W/100,W/30).

Wagi synaps niepobudzanych (x,j,fO) nie modyfikują się. Zmienia się 

natomiast próg podczas odpalenia zgodnie ze wzorem (9).

hj.ra^yj.t-°

(9)

gdzie:

hj,t - wartość progu neuronu j w chwili t 

Wij.t - wartość ftej wagi neuronu j w chwili t

Xij,t - wartość i’tego wejścia neuronu w chwili t
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- wartość wyjścia neuronu j w chwili t

a - stała dodatnia proporcjonalna do c * /, ale kilka rzędów mniejsza. Najciekawsze zachowania 

modelu zaobserwowano dla wartości 2,3 rzędów mniejszej.

k- stała dodatnia większa od 1. Najlepsze właściwości zaobserwowano dla wartości k=3.

• w wypadku nie odpalenia się modyfikowany jest jedynie próg. Jest on 

zmniejszany.

W tak zdefiniowanym modelu widać wyraźną synergię neuronów. 

Współpraca ich prowadzi bowiem do powstania w strukturze sieci automatu 

zsynchronizowanego z sekwencją wejściową. Model ten został zaprojektowany 

z myślą o silnej polaryzacji wag neuronów. Po kilku do kilkunastu tysięcy 

przeliczeniach każdego neuronu (jeśli nie wpadniemy w minimum lokalne) 

otrzymujemy dwa typy wag synaptycznych 

a) (0, 10% W)
b) (90% W, W), gdzie W jest maksymalną możliwą wartością wagi.

Możemy zatem zaznaczyć jedynie zbiór B={w,: w,>0.9 *W} na mapie połączeń 

neuronów, a zbiór A ={w,: w,<0.1 *W} traktować jako brak połączenia do 

neuronu za którego odpowiada synapsa z wagą w,. Próg natomiast wpływa w 

ten sposób na działanie neuronu, że możliwe jest jego uproszczenie do bramki 

AND z czasem przeliczenia równym 2 ms. Otrzymujemy więc schemat 

elektryczny omawianego automatu.
Przy zastosowaniu uczenia ze zmianą progu (IMPL2) w obrębie tego 

modelu można zaobserwować, że sieć odzwierciedla w swojej strukturze 

częściej pojawiające się wzorce (dokładna analiza wymienionego 

przekształcenia znajduje się w rozdziale 5.1.1.1), nie wpada w sprzężenia 

bezwyjściowe (większość może być przerwana przez zmianę danych 

wejściowych). Również jeśli chodzi o stopień wykorzystania sieci, to jest on 

większy (nie ma neuronów, które nigdy nie zadziałają). Negatywnym 

elementem są zastoje i wzbudzenia sieci przekraczające często 50 cykli 
symulatora w początkowym okresie uczenia, co możemy zapisać następująco:

Br B^e(0,l ) B^>50 V; VMu+$)nN yjk=p
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Podsumowując - model IMPL2, po uproszczeniu zapisów i nie tracący ww. 

właściwości, możemy przedstawić formalnie w następujący sposób:

1
i=0

gdzie:

hjit - wartość progu neuronu /w chwili t

Wij,t - wartość /"tej wagi neuronu / w chwili t
Xij,t - wartość i’tego wejścia neuronu j w chwili t

(12)

Z.
(13)

gdzie:

Z/,f- wartość /lego wejścia do sieci w chwili t

L - ilość wejść do sieci. Kolejne wejścia sieci skojarzone są z kolejnymi 

indeksami synaps rozpoczynając od najmniejszej.

Połączenia rekurencyjne z wyjść neuronów trafiają na wejściowe 
synapsy o indeksie równym indeksie neuronu wyjściowego powiększonym o 

ilość wejść do sieci L.

I=L+J
0 <j<J (14)

J - ilość neuronów w sieci 

/ - ilość synaps neuronu
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-—-k----------------y^

hj,ra~yj,t^

(15)

wi,j,t+c^yj,t>Q 

wij,rc^yj.t-Q (16)

gdzie:

a,c,k - stałe danego modelu o proporcjach jak w (9).

Warunek aktywacji neuronu przedstawia wzór nr 11. Formuła nr 12 i 13 opisuje 

strukturę sieci oraz mechanizm buforowania pomiędzy wejściem oraz wyjściem 

neuronów. Modyfikacja wag (wzór nr 16) oraz zmiany progów (wzór nr 15) są 

elementami mechanizmu uczenia.
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5.1.1.1 Przykładowe doświadczenia

Pierwsze doświadczenie dotyczy uczenia ciągu dwuwektorowego.

Podczas działania sieci prezentowane były wektory wejściowe {(0,1), (1,0)}. W

JtNPUT

Rys. 15. Stan początkowy

czasie procesu uczenia, 
który jest wykonywany 

równolegle z pracą sieci, 

możemy zauważyć kilka faz. 
Będą one kolejno omawiane 

oraz prezentowane na 

rysunkach. Każdy rysunek 
ma podobny wygląd:

neurony są reprezentowane 
jako trójkąty, przy czym 

narysowane linią ciągłą 

oznaczają, że w danym 

kroku symulacji są one

aktywne. Dane wejściowe są reprezentowane linią o początku pod napisem

NET INPUT i odpowiednim położeniu. W górnej części rysunku są wypisane

Rys. 16. Pierwsza faza uczenia

elementy wektora

wejściowego. Synapsy

pobudzające są

obrazowane okręgami przy 

wejściu do neuronu, 

hamujące - kwadratami.

Rys. 15 przedstawia stan 

początkowy. Neurony nie 

posiadają połączeń 

zwrotnych, gdyż wagi 

wylosowane są z wąskiego 

przedziału bliskiemu 0. Brak 

jest sygnałów wejściowych 

(net input). Neurony
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narysowane przerywaną kreską oznaczają, że 

cyklu.

Stejscia: i 8

Rys. 17. Przejście do stanu biernego 

znaczenia, czy sygnały pochodzą od innych

nie były one aktywne w tym

Pierwsza faza uczenia 

jest zaprezentowana na 

rys. 16 . Wszystkie neurony 

są aktywne, wykształcają 

bardzo dużo połączeń 

zwrotnych, ignorując 

jednocześnie wejścia 

sieciowe, które są aktywne 

stosunkowo rzadko w 

porównaniu do

częstotliwości aktywacji 

pozostałych neuronów. 

Biorąc pod uwagę algorytm 

uczenia dla neuronu nie ma 
neuronów, czy też są one 

sygnałami wejściowymi sieci. W tej fazie próg rośnie asymptotycznie do 
wartości aktywacji neuronu. Gdy proces osiągnie moment, w którym dojdzie do 

małej różnicy między wartością progu a wartością aktywacji, sygnały wejściowe 
mają wpływ na aktywację 

(mogą ją zwiększyć), co

; i pOCiąga Z3 SOÓą

_______ i; zwiększenie progu. Brak

i I danego sygnału

wejściowego będzie mógł 

wpłynąć na wyłączenie
I--''' neuronu.

|T T----------- i 4J Rys. 17 przedstawia 

przejście ze stanu aktywacji

i i i do stanu biernego. Został
£NPUT 

wyłączony drugi neuron.

„ „ . , , . , Duża ilość połączeń
Rys. 18. Faza nieaktywnosci neuronów

zwrotnych pociągnie za 
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sobą wyłączenie całej sieci. Jednocześnie w tej fazie (przejściowej) następuje

uczenie sieci. Wszystkie aktywne neurony (4 w tym przypadku) odnotowują na 

swoich wagach zachowanie drugiego neuronu.

ii i

Rys. 19. Włączenie się odpowiedniego neuronu

Rys. 18 przedstawia fazę 

nieaktywności. Jedynym 

procesem w tym czasie jest 

opadanie progów, co 

następuje powoli, aby 

drobne różnice w aktywacji 
neuronów mogły być użyte 

do uczenia podczas 

przechodzenia do kolejnej 

fazy aktywacji sieci. 

Stosunkowo powolne 

opadanie progów ma za 

zadanie 

rozsynchronizować

momenty pierwszych 

aktywacji neuronów. 

Wpłynie to korzystnie na 
zróżnicowanie klas 

wzorców rozpoznawanych 

przez różne neurony.

Jeden z neuronów jako 

pierwszy zaczął się 

aktywować - rys. 19. Jest 

on zaznaczony na rysunku 

jako drugi neuron od góry, 

jest to ten sam, który

Rys.20. Uwrażliwienie wybranego neuronu na bodziec 

wejściowy

najwcześniej się wyłączył. 

Neuron ten wykształcił 

połączenie ujemne do

neuronu 4, oznaczone prostokątem. Jest to w tym modelu bez znaczenia dla 

przetwarzania.
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Jak widać na rysunku 20 wykształcił się neuron z podłączeniem do

wejścia zewnętrznego 

sieci, gdyż było ono 
jedynym wejściem z 

sygnałem dostępnym w 

czasie aktywacji tego 

neuronu, w jego stanach 

działania. Pozostałe 

neurony pozostawały cały 

czas nieaktywne, wskutek 

czego ich wagi nie były 

modyfikowane. Jest to 

początek procesu

Rys.21. Kolejna faza dłuższej nieaktywacji neuronów specjalizacji neuronów.

Kolejna faza nieaktywacji

jest przedstawiona na

rysunku 21. Jak widać sieć powoli się 

rozpoznawanych wzorców pojawiających się

organizuje, tzn. różne klasy 

w czasie przyporządkowują się 

różnym neuronom.

Po kilku lub kilkunastu 
fazach wzbudzeń oraz

nieaktywacji, wartości wag 
ulegają silnej polaryzacji. 

Oznacza to zakończenie 

procesu uczenia w tym 

modelu. Jednocześnie

Rys.22. Zakończenie procesu uczenia

synchronizacja z sekwencją 

wejściową też jest ustalana 

podczas uczenia. Na rys. 

22 sieć już pracuje, jednak 

neurony nie są podzielone 

wyraźnie na dwie klasy.

Klasa neuronów charakteryzuje się jednoczesnym pobudzeniem. Jak można
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sądzić, pierwsza klasa będzie reprezentowana przez neurony 1, 4 i 5 licząc od 

góry, klasa druga przez neuron 2 i 3.

Neuron nr 2 ma pewną właściwość bezpośrednio związaną ze swoją klasą.

Wiję:' Jft * 1 8

Rys.23. Pierwsza faza pracy sieci

Mianowicie uwrażliwił się na 

drugie wejście sieciowe, 

które powoduje jego 

odpalanie. Neuron 3 
natomiast uwrażliwił

synapsę połączenia 

neuronu 5. Ponieważ 

neuron 5 należy do 

pierwszej klasy, a neuron 3 

odpala się chwilę później i 

sekwencja wejściowa jest 

dwuelementowa, to

automatycznie neuron 3 

zostaje przyporządkowany

do drugiej klasy. Mechanizm klasyfikacji w obu przypadkach działał w różny 

sposób. Kolejne fazy pracy i uczenia spowodują powolne upodobnianie się 

neuronu 2 i 3 w swojej budowie i funkcji.

Rys.24. Druga faza pracy sieci

Rysunki 23 oraz 24 

przedstawiają sieć podczas 
pracy. Mimo, iż proces 

uczenia ciągle trwa, nie 

wpływa to już na dalsze 
zmiany w sieci. Oznacza to 

zakończenie procesu 

uczenia. Neurony zgrupowały 

się w dwie klasy, dokładnie 

tyle ma bowiem sekwencja 

wejściowa. Oba elementy 

cyklu powtarzają się na 

zmianę. Gdy zabraknie 

jednego z sygnałów 
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wejściowych do sieci, następuje wyłączenia sprzężeń zwrotnych (stan 

nieaktywacji). Efektem tego doświadczenia jest wykształcenie się automatu 

zsynchronizowanego z ciągiem wejściowym.

Należy też zwrócić uwagę, że wynik mało zależy od wylosowanych wartości 

początkowych wag. Proces uczenia jest zbieżny.

Jeśli przeanalizujemy zależność ilości wejść i prędkości uczenia, to ilość 

wejść w tym modelu może być dowolnie duża. Sieć będzie działała równie 

skutecznie. Nie jest to pokazane na przykładzie, gdyż byłoby to mało czytelne. 

Wydłużenie czasu uczenia jest powodowane najczęściej przez wydłużenie 

sekwencji, zwłaszcza gdy elementy tej sekwencji się powtarzają.

Złożoność przeprowadzonego powyżej doświadczenie jest niewielka, ale

sieci podczas

pozwoliło ono 

pokazać procesy 

zachodzące w

Czas Wejście 1 Wejście 2
1 0 1
2 1 0
3 0 1

Rys.25. Prosta sekwencja wejściowa z przykładu do IMPL2uczenia i pracy.
Sieć podobnie się zachowuje w przypadku innych, większych problemów. 

Przykładem prostego automatu powstałego w strukturze IMPL2 może być sieć 

o podobnej strukturze jak wyżej, na wejścia której podano inną sekwencję 

wejściową.

Prosta sieć 5 

neuronów i 2 

wejść będzie 

możliwa do 

przeanalizowania 

bez stosowania 

programów 

pomocniczych.

Przykładowa sekwencja

Rys.26. Schemat elektryczny powstałego automatu

trójelementowa jest określona jest w tabeli rys. 25.

Schemat powstały w sieci pod wpływem sekwencyjnie pojawiającego się 

wzorca przedstawia rys 26. Znajdują się tam tylko 4 bramki, ponieważ piąta 

była nadmiarowa (dublowała bramkę nr 3) i nie została naniesiona dla 

zachowania przejrzystości rysunku.
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Rys. 27. Schemat powstałego automatu

Pierwsza bramka B1 tego automatu opóźnia ciąg pobudzeń pochodzących z 
wejścia W2 tak, aby 

bramka druga B2 wykryła 

iloczyn W1(2)*W2(1). W 

chwili 3 (rys. 27) wynik ten 

jest obliczony,

jednocześnie pojawia się 

pobudzenie na wejściu 

W2, co z kolei wykrywa 
trzecia bramka B3. 

Czwarta bramka B4 czeka 

na ten sygnał oraz 

sprawdza czy ostatnie 

dwa razy wystąpiło pobudzenie na W2. Pomyślny wynik jest przesyłany na nie 

omówione dotychczas wejście bramki B2. W ten sposób powstaje zachowanie 

historii w pętli bramek trzech B2,B3 i B4. Dokładnie bowiem tyle wektorów 
wejściowych ma przykładowa sekwencja wejściowa.

Wszelkie możliwe operacje w sieci niezbędne do identyfikacji ciągu 

wejściowego przeprowadzane są z maksymalną równoległością, co jest cechą 

bardzo pożądaną. Proces uczenia i przetwarzania jest całkowicie rozproszony. 
Po dłuższym czasie uczenia nie obserwuje się neuronów nieaktywnych (nie 

odpalających się nigdy). Dublują one inne neurony, mimo to w tym modelu nie 

wpływa to na potencjalne zwiększenie odporności sieci na uszkodzenia lub 

wadliwą pracę, w związku z wysoką polaryzacją połączeń międzyneuronowych.

Model IMPL2 nie wymaga wydłużenia czasu uczenia, gdy zwiększamy 

ilość wejść. Zależy on natomiast od długości sekwencji wejściowej. Proces 

uczenia jest zbieżny w ok. 85% dla sekwencji kilkuwektorowych . Należy 

zwrócić uwagę na to, że pozostawienie części nadmiarowej (więcej neuronów 

niż faktycznie potrzebnych bramek do zbudowania danego automatu) wpływa 

korzystnie na skrócenie czasu uczenia. Przeciwnie, jeśli długość sekwencji 

wejściowej jest większa od pojemności sieci, to generowane są rozwiązania 

częściowe, wyróżniane klasy sekwencji wzorców uznawanych za poprawne są 

szersze od docelowych np. jeżeli sekwencja zawiera podsekwencje (a,b,c,d,e) i 
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b = d to sekwencje (a,b,e), (a,b,c,b,c), (a,b,c,b,e) itp. będą prawdopodobnie 

również rozpoznawane jako prawidłowe wzorce wejściowe.

W wyniku przeprowadzonych doświadczeń nowego znaczenia nabierają 

niektóre pytania z zakresu fizjologii. Do jednych z najważniejszych należy 

stwierdzenie faktu pochodzenia synaps hamowania. Czy hamowanie sygnałów 

(reprezentowane w tym modelu jako wagi ujemne) może być wykształcone 

podczas uczenia? Jak wykazują badania tego modelu (zgodnie z jego 

założeniami), połączenia ujemne są dyskryminowane i zanikające. Może to być 

wynikiem przyjętej metody uczenia. Na podstawie działania rzeczywistego 

neuronu wydaje się, że hamowanie synaptyczne powstaje w przypadku, gdy 
odpali się neuron presynaptyczny i nie odpali się neuron postsynaptyczny. W 

takim przypadku waga połączenia powinna maleć. Nasuwa się pytanie, czy w 

tym przypadku sieć nie zacznie zapominać to, co się przed chwilą nauczyła. 

Gdy sieć pracuje, ale nie rozpoznaje niczego, postępują procesy zapominania 

wyrażające się w zmniejszaniu wartości wag dodatnich.

Podczas badania wyżej wymienionych modeli sieci, można zauważyć że 

mają one zdolności do zapamiętywania cyklicznego pojawiania się impulsów w 

czasie (z wejść ze środowiska lub z wyjść z innych neuronów). Model ten ma 
natomiast małe szanse nauczyć się rozpoznawania ciągów pojawiających się w 

sposób asynchroniczny. Taki stan rzeczy spowodowany może być przez 

przewagę znaczenia stanu sieci (to znaczy impulsów w sieci) nad znaczeniem 

wartości wag. Wydaje się to być również niezgodne ze wzorcem biologicznym. 
Podstawowe pytanie dotyczy więc sposobu zapamiętywania informacji w sieci.

Do negatywnych cech tego modelu należy następująca właściwość. Po 

obniżeniu progów sieć wchodzi w pobudzenie i wtedy uczy się intensywnie. 

Uczy się, a wcale wtedy nie musi wchodzić na wejście sieci ciąg pojawiający 

się asynchronicznie, który powinien być zapamiętany. Wejścia te (przeważnie 

nieaktywne w chwili uczenia) są odłączane. W ten sposób tracona jest ta i tak 

minimalna zapamiętana informacja na temat rozpoznawanego ciągu. 

Informacja nie ma szans kumulować się.

Kolejnym zaobserwowanym faktem jest wykorzystywanie przez sieć 

wszystkich neuronów. Poszczególne fragmenty sieci są dublowane i w ten 

sposób powstaje nadmiarowość, co w przyszłości należy wykorzystać do 

bardziej niezawodnej pracy sieci (realizacja w postaci układu elektronicznego).
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Obecnie niezawodność z tego powodu nie jest podniesiona (nie ma ona 

znaczenia, ponieważ zakładamy że pracuje na niezawodnym komputerze).

Podsumowując IMPL2 ma cechy pamięci krótko- i długo- terminowej, 

której nie posiadał model IMPL1. Pamięć ta nie jest pozbawiona pewnych 

mankamentów, jak np. niemożliwość rejestrowania sygnałów pojawiających się 

asynchronicznie. Jednak pamięć krótkoterminowa, prezentowana w tym modelu 

przez ciąg wektorów wyjść neuronów w kolejnych krokach symulacji, może 

reprezentować dane wejściowe sieci będące ciągiem pojawiającym się 

sekwencyjnie. Zmiana danych wejściowych, sekwencji wejściowej oznacza w 

tym przypadku (zgodnie z tabelą kodowania) niezgodność ze wzorcem, 

wykrywaną przez sieć. Efektem wykrycia niezgodności ze wzorcem wejściowym 

jest ciąg wektorów zerowych na wyjściu sieci (wektory wyjściowe są binarne).

Pamięć długoterminowa jest umiejscowiona w wartościach wag 

synaptycznych międzyneuronowych oraz wejściowych sieci. Wykształca się 

ona pod wpływem pojawiającego się sekwencyjnie ciągu wektorów uczących. 

W niej zapisana jest informacja na temat zależności wykrytych przez sieć w 
ciągu wektorów wejściowych. Sieć używając obu rodzajów pamięci jest w stanie 

stwierdzić, czy pojawiający się wektor wejściowy należy do wyuczonej 
sekwencji wejściowej oraz czy pojawił się w odpowiednim momencie (np. czy 

wektory nie zostały zamienione miejscami).

Z perspektywy czasu można przypuszczać, czy forma przetwarzania 

zaobserwowana w tym bardzo prostym modelu IMPL2 (jak prawidłowe 

używanie sprzężeń zwrotnych, spójność jednostki, odrębność części 

przetwarzającej sieci od części nieaktywnej) nie jest zalążkiem modelu 

podstawowej jednostki obliczeniowej mózgu1[141], jeśli nie jest nią sam neuron.

1 tzw. microcircuit

5.1.2 Model IMPL3 - uczenie podczas okresu nieaktywności

Model ten miał za zadanie sprawdzenie jednej z hipotez uczenia sieci, w 

których uczenie neuronów nie ograniczałoby się wyłącznie do momentów 

odpaleń neuronów. Neurony mogą się uczyć również podczas okresów 

nieodpaleń. Został zmodyfikowany algorytm uczenia. Było to również ściśle 
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powiązane z problemem niewykształcania w procesie uczenia w poprzednich 

modelach znaczących wag ujemnych. Zmianą w porównaniu do poprzedniego 

modelu jest to, że podczas odpalenia wagi ujemne aktywnych synaps są 

zwiększane i dążą do 0. Natomiast podczas nieodpalenia, wagi aktywnych 

synaps są zmniejszane (teoretyczna możliwość powstania wag ujemnych).

Algorytm działania neuronu można przedstawić następująco:

a) w przypadku odpalenia następuje
zwiększenie wag aktywnych synaps

^wi.rwi,t-i+a (17)

zwiększenie wag ujemnych nieaktywnych synaps

=0 Awu-i <0 wi,t =wi,t-i+a (18)

zmniejszenie wag dodatnich nieaktywnych synaps

xu-i=0 Aw,7-i>0 ^wi,rwi,t-ra (19)

b) w przypadku nieodpalenia następuje

zmniejszenie wag aktywnych synaps

*u-i>0 (20)

pozostawienie bez zmian nieaktywnych synaps

^-i=0 ^wi,rwi.t-i (21)

gdzie: a,b - współczynniki uczenia.

W modelu tym jak i w poprzednim możemy wyróżnić występujące po 

Uejscia: 1 0

Rys.28. Pierwsza z faz cyklu pracy modelu IMPL3

sobie fazy wzbudzeń i 

nieaktywności w podobnych 
proporcjach. Podobnie 

również wyglądały

mechanizmy uczenia. 

Jednak podczas

nieaktywności sieci, gdy sieć 

otrzymywała sygnały z 
wejścia następowało ich 

wyłączanie (tzn. wagi były 

zmniejszane do 0 a 

następnie do wartości - 

MIN_WAGI) i ustawianie 
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odpowiednich wag na ujemne. Wagi na połączeniach zwrotnych między 

neuronami pozostawały bez zmian i w ten sposób zachowywały duże 

znaczenie, co jest wysoce niepożądane. Wagi wytworzone na sprzężeniach 

zwrotnych mają zbyt duże wartości w porównaniu do wag sygnałów 

wejściowych sieci, aby następował poprawny proces uczenia. Sieć 

wykształcała wagi ujemne, ale jej praca była beznadziejna: proces uczenia nie 

był zbieżny, był okresowy. Podczas aktywacji neuronów połączenia ujemne 

zanikały i pojawiały się dodatnie, podczas nieaktywacji proces przebiegał 

odwrotnie.

Wejścia: 0 1

Rys.29. Druga z faz cyklu pracy modelu IMPL3

Model ten został 
przekształcony w inny, w 

którym wcześniej obliczana 

waga była tylko kierunkiem 

zmian prawdziwej wagi o 

jednostkę. Model ten ma 

dziwne zachowania, po 

części wydawałoby się 

chaotyczne i nie został 

jeszcze dostatecznie 

przetestowany i
przeanalizowany.

Badania tego modelu nie 

potwierdziły istnienia

efektów synergii neuronów. Badania pamięci w tym modelu mają więc wynik 

negatywny.

5.1.3 Model IMPL4- interpretacja rozlanego pobudzenia.

Dotychczasowe modele neuronów nie zakładały żadnego związku 

działania neuronu z otoczeniem. Neuron miał wbudowane funkcje, które miały 

na celu jego adaptację do danych wejściowych. Tak działał, gdy 

doprowadzaliśmy do jego synchronizacji z sekwencją wejściową. Nie było za to 

żadnej możliwości bezpośredniego wpływu na to czego i kiedy neuron będzie 
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się uczył. Pewne efekty może przynieść połączenie działania neuronu ze 

środowiskiem oraz wprowadzenie funkcji oceny poprawności działania.

Jedną z metod możliwą do wykorzystania w tym przypadku jest stosowanie 

rozlanego pobudzenia/ hamowania. Działanie rozlanego pobudzenia można 

traktować podobnie jak funkcji błędu w metodach wstecznej propagacji, ale jego 

interpretacja jest inna. Przyjmuje ona wartości ze zbioru {-1,0,+1}. Wartości te 
oznaczają:

k = -1 - błędne działanie sieci,
k = +1 - poprawne,

k = 0 - brak oceny sieci.

Na podstawie tego sygnału, który musi być generowany spoza sieci 

neuronowej, następuje modyfikacja procesu uczenia. Sygnał ten ukierunkowuje 

uczenie w określoną stronę. W tym rozumieniu można sygnał ten interpretować 
następująco :

k = -1 hamowanie uczenia właściwego (np. reguła Hebba)

k = +1 przyspieszanie uczenia właściwego
k = 0 obojętny

Być może ważną cechą jest uśrednione działanie rozlanego pobudzenia, 
tzn. sygnał ten powinien działać z dosyć dużą bezwładnością. Jest to bardziej 

ogólna ocena działania, a nie ocena konkretnego przypadku.
Analiza wpływu 

rozlanego pobudzania na 
proces uczenia jest 

przeprowadzona poniżej. Ze 

względu na złożoność 

algorytmu działania modelu, 

jest on dostępny w całości w 

formie elektronicznej. 

Proces uczenia rozpoczyna 

się od losowego ustawienia 

neuronów (losowe wagi ich 
Rys.30. Zależność uczenia względem środowiska

połączeń). Neurony pracują niepoprawnie. Ważne jest, aby miały szansę 

odpalić się. Zapewnia to mechanizm podobny jak w IMPL3, polegający na 

zmianie wag. Neuron zapamiętuje jakie wejścia doprowadziły do jego 
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pobudzenia tylko wtedy, gdy wartość rozlanego pobudzenia jest większa lub 

równa 0. Gdy k=+1 zmiana wag będzie o X% większa, co spowoduje 

faworyzowanie przez sieć takiego stanu. Wpływowi rozlanego pobudzenia 

podlegają wszystkie neurony sieci, dlatego będą uczone wszystkie neurony 

odpowiedzialne za powstanie odpowiedzi w sieci.

Należy określić funkcję oceny działania sieci. Funkcję oceny trzeba 

traktować jako zewnętrzny sygnał oceny generowany na podstawie działania 

sieci w perspektywie dosyć długiego okresu. Z drugiej strony jest to sygnał 
kierunkujący działanie sieci, dlatego można go traktować jako znak pochodnej 

funkcji oceny. Jeśli układ wykazuje poprawę działania do jej poprzedniego 

stanu, to następuje przyspieszenie uczenia. W tym momencie sieć neuronowa 

będzie optymalizowała tak swoje działanie, aby funkcja oceny osiągała 

maksimum. Istnieje oczywiście możliwość znalezienia lokalnego maksimum 

funkcji oceny (zamiast pożądanego maksimum globalnego), ale gdy założymy, 

że rozwiązanie nie jest złożonym problem (w celach testowych), można to 

zbagatelizować.
Implementacja modelu IMPL4 zawiera moduł nadrzędny względem 

modułu uczenia. Są to pierwsze kroki z rozlanym pobudzeniem. Działanie 

neuronu było następujące:

Jeśli k=1 i neuron się nie odpali, to się uczy.
Jeśli k=-1 i neuron się odpali, to się uczy, gdzie k oznacza wartość 

rozlanego pobudzenia.
Uczenie natomiast zostało rozszerzone o modyfikację o progu. Od progu 

jest odejmowana wartość k. Wagi synaps aktywnych zmieniają się zgodnie z 

założeniami rozlanego pobudzenia/ hamowania. Po pierwszych próbach 

okazało się, że sieć jako pierwsza z badanych sieci prawidłowo operowała na 

wagach ujemnych. Posiadała możliwości wyuczenia się funkcji logicznych 

niemonotonicznych. Przykładowa funkcja (tutaj negacja implikacji) o 
skomplikowaniu 

podobnemu funkcji XOR 
jest zaprezentowana na 

rysunku 31.

Próby uczenia modelu 

IMPL4 funkcją XORRys.31. Przykładowa funkcja niemonotoniczna

Lp wej 1 Wej 2 Wyj
1 0 0 0
2 1 0 ?iilll iii 11
3 0 1 0
4 1 1 0
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zakończyły się niestety niepowodzeniem. Prawdopodobnie jest to efektem 

złego rozumienia wpływu rozlanego pobudzenia na neurony.

Po przeprowadzonych doświadczeniach symulowania sieci 

neuronowych można wyciągnąć dwa wnioski dotyczące modelu IMPL4: 

• rozlane pobudzenie rzeczywiście powoduje ukierunkowanie uczenia.

• nie ma tendencji do tworzenia bardziej złożonych układów neuronalnych.

Uczenie tą metodą jest ograniczone tylko do jednego neuronu. Nie 

następuje podział funkcji neuronów w sieci, lecz każdy próbuje rozwiązywać 

cały problem sam. Podczas uczenia powinny wykształcać się szlaki neuronalne 

wielu neuronów rozwiązujących dany problem.

Należy więc opracować nową metodę modyfikacji wag i progu, która 

wykorzystywałaby skutecznie informacje zawarte w pobudzeniu rozlanym. 

Najprawdopodobniej model ten zazębia się z kumulowaniem impulsów jako 

ładunków na wejściach neuronu i wtedy może mieć dopiero pożądane 

działanie. Działanie rozlanego pobudzenia opiera się ściśle na złożeniu 

operowania sygnałami średnimi. Wtedy prawdopodobnie możliwa będzie 

specjalizacja grup neuronów.
W modelu nie występuje pamięć krótkotrwała, ponieważ efekty synergii 

neuronów są niewielkie, lub ich nie ma (zależy od problemu). Praca neuronu 

wyjściowego jest stymulowana rozlanym pobudzeniem/ hamowaniem, tak że 

potrafi on rozwiązywać również problemy funkcji niemonotonicznych. 

Informacja zawarta w jego wagach może być bardzo prostą formą pamięci 

długotrwałej na temat korelacji rozlanego pobudzenia oraz danych 

wejściowych.

5.1.4 Wnioski z doświadczeń oraz wstępne założenia projektowania kolejnych 

modeli IMPL

Kolejne modele mają za zadanie poprawić błędne założenia i 

niedociągnięcia modeli sieci wykryte w eksperymentach. Poprawy wymaga 

sposób zmian wag neuronu, aby umożliwić powstawanie wag ujemnych. W 

przeciwnym wypadku należy dowieść, że nie są one konieczne. Kolejnym 

elementem jest rozdzielenie pamięci na dwa odrębne rodzaje pamięci: 
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krótkotrwałą i długotrwałą. Na tym etapie sieć wydaje się dysponować jedynie 

pamięcią krótkotrwałą i ulotną. Ulotność polega na tym, że trudno jest utrzymać 

zapamiętany stan. Każdy niepoprawny impuls powoduje utratę pamięci. 

Powinien również zostać wyodrębniony proces uczenia się, spośród czasu 

istnienia sieci. Może to być osiągnięte przez sztywne określenie czasu uczenia 

lub przez przyjęcie założenia, że neurony będą płynnie tracić możliwość 

uczenia się wraz z upływem czasu. Drugą metodę zrealizować można przez 

określenie prawdopodobieństwa zmiany danej wagi. Jeśli nie ulega ona 

zmianom przez pewien okres czasu to można założyć, że jej wartość jest 

ustabilizowana i nie powinno się jej zbytnio zmieniać. Kolejną potrzebną rzeczą 

jest wprowadzenie modelowania upływu czasu do modelu sieci. Umożliwi to 

modulowanie siły impulsu częstotliwością jego powstawania. Powstawanie 

aktywacji poprzez odbieranie impulsów będzie uwarunkowane czasem. Impulsy 

nie będą musiały występować jednocześnie ponieważ pobudzenie neuronu 

opadać będzie dopiero po pewnym czasie.

Jak wynika z obserwacji układu nerwowego człowieka, sieć neuronowa 

powinna przeprowadzać dość wyraźną selekcję sygnałów pojawiających się 

zbyt często. Sygnały te nie powinny być przesyłane do warstw wyższych. 
Naturalnym przykładem może być receptor dźwiękowy. Neurony występujące 

za mechanizmem rozkładu Fouriera bieżącego dźwięku w uchu są 

odpowiedzialne za określony ton. Jeśli dana częstotliwość trwa dłuższy okres 

czasu człowiek przestaje na dany dźwięk reagować. Nie jest zauważane też 
zaniknięcie danego dźwięku. Jest to zachowanie sieci, dające odpowiednie 

światło na działanie pojedynczego neuronu. Właściwości te powinny posiadać 

również modele sieci. Powinno to wpłynąć na zmniejszenie znaczenia sprzężeń 

zwrotnych, a skoncentrowanie się na przetwarzaniu sygnałów pojawiających 

się asynchronicznie, co jest wysoce potrzebne w tym modelu.

Sieć aby pełnić bardziej skomplikowane funkcje, musi być podzielona na 

określone części zwane modułami. Można przyjąć taką definicję, że moduł 

rozpoznaje określony ciąg danych wejściowych, jeśli występuje w nim co 

najmniej jeden neuron pobudzany tylko po wystąpieniu rozpoznawanego ciągu.

Aby sieć skutecznie rozpoznawała sekwencje niepotrzebna jest 

równoległość przetwarzania w module. Praktycznie w chwili t przetwarzania 

określonego ciągu w pojedynczym module znaczenie ma tylko jeden neuron 
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(jeśli wyeliminujemy nadmiarowość; dotyczy to modeli binarnych). Można to 

zaobserwować w doświadczeniach. Skonstruowanie odpowiedniego 

pobudzania neuronów, wymuszonego np. fazami pracy lub położeniem 

geometrycznym może wpłynąć na bardziej szeregowe przetwarzanie oraz 

zmniejszenie nadmiarowości. Jeśli te mechanizmy zadziałają to powstaną 

odpowiednie linie przetwarzania bodźców wejściowych. Jeśli będą one 

pracować w tym samym czasie symulacji (co jest już wykonane) i będzie 

występowała korelacja między odpowiednimi liniami przetwarzania, to powinno 

być to zaznaczone w strukturze sieci po odpowiednim czasie. Aby 

ukierunkować pracę modułu można użyć globalnego sygnału, oceniającego 

pracę sieci. Ma on odpowiednik w naturalnej sieci zwany rozlanym 

pobudzeniem lub rozlanym hamowaniem. Należy wyszczególnić 

specjalizowane pobudzenia dla każdego modułu. Ma to za zadanie 

przeprowadzanie selekcjowanego uczenia, tak jak to w naturze selekcjonują 

odpowiednie neurotransmitery i substancje na nie wpływające (obniżające lub 

zwiększające aktywację).
Jedną z metod budowania modułów może być położenie geometryczne 

neuronów w zdefiniowanej przestrzeni. Na pewno nie będzie to 'zwykła'

przestrzeń, 

ponieważ liczenie 

odległości 

wymagałoby 

operacji zbyt długo 

trwających
i

(pierwiastki). W

ESC HyjscieENT ER Wy br ani e sieciCl 1> <2 1> <3 2) (4 3)(5 3) <6 3) (7 2) £.8 7) <9 8) <18 9) (11 18)

IEC sygnały: ( 1, 1, 1, 1, 1, 8, 8,)IEC dobroć :4 d=0 pp=268 wy=l u: (62,8) (62,8) (73,8) (75,8) (76,8) (8,8) (1,8)a=l pr=130 wy=l w: (-5$,8) (5^,0) (67,0) (67,0) (69,0) (1,0) (0,0)d=2 pr=247 wy=l w: (78,6) (75,6) (75,6) (59,6) (69,6) (8,6) (8,6)d=3 pr=232 wy=l w: (63,8) (62,8) (62,8) (64,8) (69,8) (8,8) (8,8)d=4 pr=256 wy=l u: (76,8) (62,8) (74,8) (78,8) (72,8) (8,8) (1,8)
przestrzeni tej

będzie określona 

funkcja propagacji 

zaburzenia pola

Rys.32. Fragment drzewa genealogicznego metody ewolucyjnej 

para (xx , yy) oznacza: xx-nr sieci yy-numer przodka sieci

elektrostatycznego, co będzie wpływało na

prawdopodobieństwo aktywacji sąsiednich neuronów. Można też ograniczyć 

ilość synaps do bliższego lub dalszego sąsiedztwa.
Gdy określony model będzie posiadał pamięć krótko- i długoterminową 

oraz efektywnie ją wykorzystywał, będzie poddany uczeniu według 

opracowywanej metody ewolucyjnej (nie zawartej w pracy). Prawdopodobnie w 
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tej metodzie konieczne będzie wprowadzenie określonych operatorów 

wymuszających większą modułowość sieci. Pokrótce metodę tę można 

przedstawić następująco. W procesie wstępnym zostaje ustalona maksymalna 

liczba potomków danej sieci. Przez potomka rozumie się sieć poddaną 

modyfikacji w procesie uczenia przez określony czas. Potomek jest podczas 

działania (i uczenia jednocześnie) poddawany kolejnym testom sprawdzającym 

jego poprawność (przystosowane do środowiska, rozwiązywanie zadanego 

problemu funkcyjnego itp.). Testy funkcyjne przeprowadzane są w losowej 

kolejności, aby sieć nie nauczyła się sekwencji. Zostaje policzona ilość 

trafnych odpowiedzi na testy - jest to dobroć sieci. Następnie dobroć sieci 

zostaje porównana z dobrocią innych sieci. Z wszystkich wcześniej 

wygenerowanych sieci wybrana zostaje sieć, która charakteryzuje się najlepszą 

dobrocią, pod warunkiem, że maksymalna liczba potomstwa danej sieci nie 

zostaje przekroczona. Dana sieć może mieć wielu potomków, ale tylko z tego, 

który ma najlepszą dobroć tworzony jest nowy potomek. Jeśli potomek daje 

gorsze wyniki od przodka to jest generowany następny potomek tego przodka. 

Jeśli wszyscy potomkowie dają gorsze wyniki, to tworzony jest następny „brat” 

przodka. Proces ten można w każdym momencie przeanalizować za pomocą 

drzewa genealogicznego sieci. Fragment przykładowego drzewa jest 

przedstawiony na rys. 32.

5.2 Modele z symulowaniem przepływu ładunków

Jak wykazują badania, jedynym zjawiskiem które może zmienić wartość 

wagi synapsy zarówno w kierunku zwiększającym, jak i zmniejszającym o 

tysiące procent jest zjawisko torowania. Prawdopodobnie jest to podstawowy 

mechanizm uczenia. Torowanie jest zależne od sygnału wejściowego, jednak 

uśrednionego w pewnym okresie czasu oraz od rozlanego pobudzenia/ 

hamowania. Aby symulacja komputerowa tych zjawisk była zbliżona do 

procesów naturalnych, należy w dużym stopniu zbliżyć się do modelu ciągłego. 

Nie należy jednak przesadzać z dokładnością modelu, gdyż prawdopodobnie 

nie wpływa to drastycznie na jakość obserwowanych zjawisk, a może 

spowodować sytuację, że na w miarę szybkiej maszynie będzie możliwa 

symulacja 1 neuronu, a nie całej sieci neuronowej. Zjawisko uczenia można 
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obserwować na przykładzie 1 neuronu, ale fakt dążenia pojedynczego neuronu 

do określonego rozwiązania nie oznacza, że sieć składająca się z takich 

elementów będzie jako całość również do czegoś dążyła.

5.2.1 IMPL5 - uproszczony ciągły model komórki nerwowej

Celem prawidłowego zaobserwowania zjawisk związanych z 

kumulowaniem ładunków w neuronach oraz ich wzajemnych zależności, 

najlepiej użyć modelu ciągłego. Jednak nie wszystkie zjawiska tego modelu 
posiadają tę sam ciężar gatunkowy. Aby praca sieci możliwa była do 

symulowania, przyjęto w IMPL5 kwantowanie czasu co okres równy 
połowicznemu rozładunkowi potencjału postsynaptycznego. Jest to ok. 1,8 ms. 

Synapsę można zaprezentować schematem rys. 33. Elementy R1 i R2 to 
rezystory, C1 to 

kondensator. Określa on 

nam deformację sygnału 

przechodzącego przez 

synapsę, jednak nie 

wyznacza kształtu 

sygnału. Upraszczając 

to przekształcenie przy 

zachowaniu zdolności 

sumowania czasowego oraz przybliżonym krokiem czasowym równym 2 ms 

kumulowanie ładunku postsynaptycznego możemy przedstawić następująco:

(22)

.. 33 - Model - schemat

x ij,t- wartość /tego wyjścia z synapsy neuronu j w chwili t

wartość /'tego wejścia do synapsy neuronu j z innego neuronu w chwili t
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Jeśli próbki sygnału wyjściowego z neuronu w kolejnych taktach

przedstawiałyby się następująco: 

0, 16, 8, 4, 2, 1, 0, 0, 0, ... to 

potencjał postsynaptyczny 

miałby wartości:

0, 16, 16, 10, 6, 4, 2, 1, 0.....  
czyli jego kształt nawet po 

zamodelowaniu rozładowywania 

w czasie posiada błąd w 

początkowej fazie [16,16], 
Najlepszym rozwiązaniem jest 

więc trwanie sygnału 

wyjściowego przez 1 takt: 50, 0,

czas od ostatniego odpalenia

Rys.34. Refrakcja jako modyfikacja progu 

wyrażona w mV

0...... wtedy potencjał postsynaptyczny przyjmie wartości: 25,12,6,3,1,0.

W celu zamodelowania zwłoki w pracy komórki nerwowej, równej ok. 2 

ms, nie trzeba stosować żadnych dodatkowych elementów w algorytmie, 

ponieważ neurony przeliczane są co takt, czyli posiadają wymagane 

opóźnienie. Poza tym przy tej ziarnistości czasu można przyjąć brak zwłoki na 

propagacji sygnału w aksonie.

Kolejnym elementem zamodelowanym jest refrakcja względna. Wymaga 
ona odpowiedniej implementacji. Refrakcja jest siłą blokującą pobudzanie się 

komórki bezpośrednio po pobudzeniu i jest zmienna w czasie. Można ją 

wyrazić jako chwilowe zwiększenie wartości progu o x mV. W tym modelu w 

kolejnych taktach będzie ona równa: nieskończoność, 9, 2, 1, 0, (rys. 34) czyli 

neuron ma duże szanse wzbudzać się co 6ms, a nawet co 4ms, gdyż neuron Nj 

jest aktywny (odpala się), jeśli w danym momencie zachodzi nierówność:

/-i
Z Wij.t*XiJ.t>h j,t+r^dtrj} 

i=0
(23)

gdzie:

hj,t - wartość progu neuronu j w chwili t 

wij.t - wartość ftej wagi neuronu j w chwili t

Xij.t - wartość i’tego wejścia neuronu j w chwili t 
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r(dtrj) -wartość funkcji refrakcji, gdy odpalenie neuronu j wystąpiło df czasu temu. Dla 0<dt< 1 ms 

modeluje refrakcję bezwzględną.

dtrJ- czas, który upłynął od ostatniego odpalenia neuronu j

• występowały sumowania sygnałów różnych 

przesuniętych w czasie,

• pobudzenie neuronu było adekwatne

Uejscia: 50 0

Refrakcja nie jest jedynym czynnikiem wpływającym na powodowanie 

przerw pomiędzy odpaleniami określonego neuronu, gdyż podczas odpalenia 

neuron rozładowuje się tzn. jego potencjał postsynaptyczny jest równy 0 lub 

nawet ujemny w modelu (tzn. <-59mV wewnątrz komórki). Aby ponownie się 

wyzwolić, potencjał musi wzrosnąć do wartości ponadprogowej, co musi trwać 

określony czas.

Wszystkie powyższe wartości parametrów modelu zostały dobrane tak, 
aby: 

• synapsa otrzymująca sygnał z dużą częstotliwością miała potencjalne 

szanse pobudzenia neuronu, 

/naps tego samego neuronu 

o częstotliwości impulsów 

wyjściowych.

Przykład wzrostu

pobudzenia 

postsynaptycznego przy

pobudzaniu tylko jednej

synapsy z dużą

intensywnością 
(maksymalną 

częstotliwością) obrazuje 

rysunek 35. Semantyka 

symboli z rysunku jest 
podobna do poprzednio 

omówionych. Poza tym z 

lewej strony każdego 

neuronu znajduje się 

oscylogram pobudzenia neuronu oraz wartość sumy progu i refrakcji. Ponieważ 

wartość progu jest prawie stała w tak krótkim czasie, względne zmiany 

Rys.35. Efekty drażnienia jednej synapsy z dużą 

częstotliwością
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oznaczają wpływ refrakcji. Neurony 3 i 4 (od góry, gdzie pierwszy neuron nie 

jest zaznaczony, ponieważ zawsze był pobudzany podprogowo, zgodnie z 

odpowiadającym mu oscylogramem) ładowały się dość szybko pod wpływem 

pobudzeń 6 synapsy (pierwsze wejście z zewnątrz do sieci). Neuron 3 wyzwolił 

się pierwszy i z powodu wzajemnych sprzężeń w neuronie 4 można 
zaobserwować wyraźny 'pik' w potencjale postsynaptycznym.

Oscylogram 36 prezentuje inną klasę zależności czasowych. Pobudzane 

były dwie synapsy jednego neuronu w różnych odstępach czasowych. Na 
wykresie widnieje 5 akcji.

1. pobudzenie od synapsy B (pierwszej z lewej)
2. pobudzenie od synapsy A

3. pobudzenie synapsy B + 4ms przerwy + pobudzenie synapsy A 

4. pobudzenie synapsy B + 2ms przerwy + pobudzenie synapsy A 

5. pobudzenie synapsy B + pobudzenie synapsy A

Jak widać na oscylogramie tylko w przypadku 4 i 5 wystąpiło odpalenie 

neuronu. Granica rozbieżności czasowych pobudzeń wywołujących pobudzenie 

wynosi ok. 3ms. Sieć ma więc potencjalne możliwości określania 

przynależności wzorca do określonej klasy abstrakcji również pod kątem tego 
kryterium.

W modelu IMPL5 można 
zaobserwować nie spotykane 

wcześniej zachowania sieci. 

Wszystkie dotychczasowe modele 

sieci miały tendencje do wpadania 

w cykle podczas uczenia lub 

minima lokalne. Dopiero podanie 

odpowiednio spreparowanych

danych uczących (w miarę równomiernie i losowo rozłożonych) zapewniało 

odpowiednio duże prawdopodobieństwo nauczenia. Okazuje się, że ten model 

ma zupełnie inne właściwości. Wykazuje zachowania z pogranicza chaosu 

deterministycznego. Nawet po dłuższym przebywaniu w cyklu uczenia może z 

niego wyjść. W pracy sieci można zauważyć wyraźnie powtarzające się 

sekwencje porozdzielane wstawkami chaotycznymi, aczkolwiek 

deterministycznymi.

Rys.36. Pobudzanie dwóch synaps z 

przesunięciem czasowym
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Ponieważ sieć pracuje obecnie bardziej w oparciu o częstotliwości niż 

pojedyncze sygnały -wystąpiła potrzeba określenia odpowiednich metod 

oceniania sieci. Pierwsza jest nazwana „dobrze/ źle” i jest ona związana z 

interpretacją pobudzenia rozlanego, gdzie przyjmuje się, że pobudzenie k(t) ma 

trzy stany {-1,0,1}. Odpowiadają one następującym zjawiskom: hamowaniu, 

zwanemu również blokowaniem, brakowi oceny oraz pobudzeniu. Trudno 

jednak zgodzić się z taką kategoryczną interpretacją, bowiem sieć neuronowa

Wejścia: O 500 
>

nawet po osiągnięciu 

określonego 

wymaganego poziomu 

działania może nadal 

się douczać, co jest 

pominięte w tej 

koncepcji.

Prawdopodobnie 

zbadanie mechanizmu 

powstawania 

pobudzenia rozlanego 
może uzupełnić ten 

model.

Inną interpretacją 

rozlanego pobudzenia 
może być metoda 

„lepiej/ gorzej”. W
Rys.37. Prosta sieć z przykładowymi oscylogramami z 

elementami chaosu
porównaniu do 

poprzedniej metody 

możliwa jest

rozbudowa w dwóch kierunkach:

• pozostawienie obiektu neuronu bez zmian, wprowadzenie mechanizmu 

różnicującego wyniki do algorytmu oceniającego,

• zmiana algorytmu działania neuronu, związana z inną interpretacją

rozlanego pobudzenia (współ. k(t)).

Ta druga opcja ma tę zaletę, że możliwe jest wykorzystanie 

indywidualnych stanów dynamicznych neuronów do modyfikacji mechanizmu 
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uczenia. Wydaje się, że może to wpłynąć na lepszą współpracę neuronów w 

rozwiązywaniu określonego zadania.

Przykładowy algorytm uczenia neuronu przy wybraniu drugiej opcji musi 

zawierać pewne statystyki na temat pracy neuronu. Aby wagi mogły być 

odpowiednio wyliczane pod wpływem k(t) interpretowanym ‘lepiej / gorzej’, 

każdy neuron powinien pamiętać swoją średnią częstotliwość odpalania (SCO) 

oraz ostatnią średnią częstotliwość odpalania (OCO), np. w czasie (t-d,t), gdzie 

t- chwila obecna, d- ilość kroków symulatora w których liczona jest OCO. 

Zmiana średniej częstotliwości odpaleń (ZSCO) jest równa więc różnicy OCO 
oraz SCO.

ZSCO = OCO - SCO (24)

• SCO reprezentuje średnią częstotliwość odpaleń w ostatnich stu kilkunastu 

cyklach.

• OCO jest średnią częstotliwością odpaleń w ostatnich kilkunastu taktach.

• ZSCO=OCO-SCO i jest zmianą częstotliwości odpaleń.

W zależności od wyliczonego ZSCO możemy przeprowadzać uczenie, 

zgodnie z zasadami:

• (ZSCO > 0 i k = +1) lub (ZSCO < 0 i k = -1) -> torowanie

• (ZSCO > 0 i k = -1) lub (ZSCO < 0 i k = +1 )-> blokowanie

Udrożnienie polega na zmodyfikowaniu wag aktywnych synaps o 

wielkość wprost proporcjonalną do iloczynu wejścia x(t) oraz k(t) liczonym w 

określonym czasie, oraz obniżeniu progu. Blokowanie jest podobne, lecz próg 

zostaje podniesiony. Jak wynika z tego algorytmu, synapsy nigdy nieaktywne 

nie są zmieniane w procesie uczenia. Aby wyuczona sieć nie popadała w 

dziwne zachowania w zmienionym środowisku musi z czasem następować 

zanik takich synaps, czyli np. wyzerowanie wag. Proces ten jest również 

zamodelowany, jego wzorce można odnaleźć w przyrodzie.

Ponieważ z synapsami hamowania presynaptycznego w poprzednich 

modelach były duże problemy, jest tu zamodelowany hipotetyczny mechanizm 

pozaneuronowy. W dotychczasowych modelach hamowanie presynaptyczne (o 
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ile było implementowane) miało być jednym z elementów wykonywanych przez 

neuron. Realizacja zakładała istnienie wag ujemnych, które w wyniku uczenia 

zwiększałyby swoje wartości bezwzględne. Mimo sprawdzenia wielu metod 

uczenia, nie udało się znaleźć algorytmu pracy i uczenia neuronu, który 

umiałby zarządzać siecią z takimi założeniami. Być może problem tkwi nie w 

algorytmie, lecz w strukturze sieci. Może wagi ujemne (rozumiane 
standardowo, że x*Wi<0, który to iloczyn powoduje zmniejszenie globalnego 

pobudzenia komórki) nie są podstawowym typem synaps, lecz miejsce te 

powinny zajmować synapsy hamowania presynaptycznego. Jeśli tak, to musi 

być to mechanizm występujący poza neuronem, którego miejsce występowania 

należy zaznaczyć w algorytmie. Hipotetyczny model hamowania 

presynaptycznego można przedstawić następująco: Jeżeli waga w, < 0 i w 

chwili t występuje pobudzenie synapsy nr i, to składnik pobudzenia (liczonego 

standardowo) wi+i* x i+i nie powinien być wliczany do globalnego pobudzenia 

neuronu, lub można zastosować zależność liniową. Jeśli w, dotyczy ostatniej 

synapsy neuronu to z przyczyn formalnych mechanizm ten nie działa, lub 

hamuje sygnał , co z globalnego punktu widzenia nie ma jakościowego 

znaczenia. Wykształcanie zaś tego typu synaps ma szansę zaistnieć podczas 

uczenia w procesie torowania, a nie hamowania, jak można by początkowo 

przypuszczać. Jest to podstawowa nowość względem poprzednich metod. 

Zarówno synapsy hamowania, jak i pobudzania, wykształcałyby się podczas 

torowania, podczas blokowania oba typy synaps ulegałyby zanikaniu. Jest to 
intuicyjnie zgodne z traktowaniem pobudzenia rozlanego jako oceny pracy 

sieci. Blokowanie oznacza w tym wypadku negatywne tendencje w dążeniu 

sieci do rozwiązania. Torowanie oznacza ocenę pozytywną, sieć będzie dążyć 

dalej w tym samym kierunku. Synapsy hamowania presynaptycznego można 

ustawić w sieci poprzez wylosowanie wag ujemnych (warunkujące hamowanie 

presynaptyczne) przed procesem uczenia i pozostawić je bez możliwości 

zmiany znaku. Wartość bezwzględna tych wag jest natomiast zmieniana w 

procesie uczenia.

W związku z tym, że zaszła potrzeba przebadania kilku wariantów w 

ramach wyżej przyjętych założeń, z modelu IMPL5 powstały pochodne IMPL5A, 

IMPL5B i IMPL5C. Zostaną omówione skrótowo dwa pierwsze. Części 

algorytmów symulacyjnych zastały pogrupowane w moduły podstawowych 
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algorytmów uczenia. W poniżej przedstawionych doświadczeniach, związanych 

z metodami uczenia sieci neuronowych oraz pojedynczych neuronów, 

omówione są różne algorytmy. Mają one jednak pewne części (moduły) 

wspólne, których określenie ułatwi dalszą analizę. Moduły te są związane z 

wywołaniem ich w różnych momentach pracy neuronu. Blokowo można to 

przedstawić następująco:
1. Obliczenie rozładowania się ładunków postsynaptycznych w związku z 

symulacją czasu.

2. Moduł uczenia nr 1.

3. Obliczenie pobudzenia neuronu, jeśli nie występuje odpalenie to przejście 

do punktu 6.

4. Moduł uczenia nr 2.

5. Symulacja zmian ładunków podczas odpalenia.

6. Obliczenie niezbędnych statystyk.

Moduł uczenia nr 1 to zasadniczy element modelujący zjawisko 

torowania. Występuje on niezależnie od odpalania neuronu. Działanie jest 

ściśle związane z przekazanym z zewnątrz sieci parametrem k - rozlanym 

pobudzeniem/ hamowaniem. Jednak ostateczna interpretacja parametru k nie 

mieści się w tych granicach. Jednakowo ważny wpływ na mechanizmy uczenia 

każdego neuronu mają lokalnie obliczane statystyki, które to dopiero wraz z 

parametrem k przesądzają o kierunku uczenia. Udrożnienie przepływu 

ładunków następuje, gdy spełniony jest warunek:

k>Q /\zsco>0 Vk<0 /\zsco<0 (25)

zaś blokowanie, gdy:
k>Q /\zsco<0 V k<Q Azsco>0 (26)

Moduł uczenia nr 2 jest uaktywniany podczas odpalenia neuronu. Ma on 

za zadanie wyłączanie synaps, które prawie nigdy nie są aktywne, a wagi na 

nich mają na tyle duże wartości, że przypadkowe sygnały mogłyby zakłócać 

pracę. Jest to uzupełnienie modułu pierwszego, który zajmuje się tylko 

synapsami aktywnymi.
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5.2.2 IMPL5A- rozlane pobudzenie, wykorzystanie historii odpaleń neuronu

Model ten wyposażony jest jedynie w moduł uczenia nr 2, czyli posiada 

następujące założenia:

• uczenie tylko podczas odpalenia neuronu,

• uczenie tylko synaps pobudzanych,

• brak modyfikacji progu,

• uczenie na podstawie rozlanego pobudzenia / hamowania (w zależności od 

historii każdego neuronu),

Doświadczenia przeprowadzone na kilku neuronach nie były 

jednoznaczne, sieć nie wpadała w sprzężenia bezwyjściowe lub stany ‘ciszy’, 

ale jej funkcjonowanie nie dążyło do rozwiązania. Efekty synergiczne nie 

zostały dostrzeżone. Nie można zatem mówić o występowaniu pamięci krótko- 

ani długotrwałej w tym modelu.

5.2.3 IMPL5B- moduł uczenia podczas odpalenia oraz podczas nieaktywności

Model ten został wzbogacony w stosunku do IMPL5A o moduł uczenia nr

1. Nieaktywne synapsy mają szansę zaniknąć podczas aktywacji neuronu. 
Progi nadal nie są zmieniane. Wyznaczanie współczynnika k dla sieci nie jest 

sprawą łatwą. W tym modelu wygląda to następująco (jeśli chodzi o 

odwzorowania funkcyjne):
zo>0 azsco<Q =>k= — l 
zo>0 Azsco>0 =>£=1 
zo<0 Azsco<0 =>k=l

zo<0 Azsco>0 ^k= — 1
zo=0 Azsco<0 Aw>0 =>k= — l @7)
zo=0 Azsco>0 A«>0 =>k=l 
zo=0 Azsco<0 An=0 =>k=l 

. ■ zo=0 Azsco>Q Am = 0 =^k= — 1gdzie:

• zo(t) = zo(t-2) - zo(t-1) - zmiana oczekiwanego wyjścia (teoretycznego) przy 

zmianie danych wejściowych

• n - sygnał wyjściowy oczekiwany ze zbioru {0,1}

• k - ustawienie współczynnika rozlania k
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W momencie rozpoczynania pracy sieci pojawia się sztucznie 

wprowadzony okres, w którym zablokowane są procesy uczenia, a jedynym 

zadaniem w tym czasie jest ustalenie się statystyk SCO i OCO. W poprzednich 

modelach nie występowały fazy takie jak: działanie i uczenie, ale były one 

jednoczesne. Tutaj sytuacja nieco się zmienia. Występują na zmianę fazy 

uczenia i testowania(działania), ale uczenie wykonywane jest na działającej 
sieci. Algorytm wygląda następująco:

1. wprowadzenie losowych danych wejściowych (ustalanie statystyk),

2. podawanie określonych danych wejściowych (testowanie),

3. wprowadzenie rozlanego pobudzenia (uczenie) oraz praca,

4. powrót do punktu 2 lub 1,

Ważne jest, aby punkt 3 występował bezpośrednio po 2, i nie było w tym 

miejscu innych działań.

Model ten ma problemy w uczeniu funkcji AND (iloczynu logicznego). W 

modelu IMPL2 nie następowało prawidłowe uczenie neuronów, które powinny 

wykonywać operację OR (sumę logiczną). W tym modelu jest odwrotnie. 
Bramki OR wykształcają się, natomiast nie występują AND’y. Jest to związane z 

przyjętą logiką sieci. O ile w IMPL2 było to łatwo wytłumaczalne 
(asymptotycznym dążeniem progu do aktywacji ) to tu można próbować 

wyjaśnić ten problem następująco: punkty 1-4 opisują stany, w jakich może 

znaleźć się neuron podczas pracy. Sytuacje te są równie prawdopodobne. W 

każdym punkcie następuje pewna modyfikacja wag wejściowych, w zależności 
od danych wejściowych oraz ZSCO, zgodnie z algorytmem uczenia.

1. wejście = (0,0) - neuron się nie uczy, bo (a) nie ma aktywnych synaps, (b) 

neuron się nie odpala,

2. wejście = (1,0)

• jeśli się odpala, to zmniejszane są obie wagi,

• jeśli się nie odpala, to zmniejszana jest waga przy aktywnej synapsie, 

3. wejście = (0,1)

• jak w punkcie 2,

4. wejście = (1,1)

• wzmacniane są oba wejścia, czyli zwiększane są wartości wag obu synaps
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Po dłuższym czasie szanse zwiększania się wag synaptycznych są nikłe, bo 

średnia zmiana wagi zgodnie z punktami 1-4 wynosi

0 *— *1 *1 <0 (28)4 4 4 2 4 V '

co jest potwierdzalne doświadczalnie.

Testowanie wpływu torowania i blokowania przeprowadzono w kilku 

wariantach. Aby ocenić skrajne warunki pracy sieci przetestowano ją przy 

trwającym cały czas pobudzeniu rozlanym oraz w drugim przypadku, przy 

rozlanym hamowaniu. W pierwszej klasie doświadczeń wszystkie sieci 

niezależnie od stanu początkowego po dłuższym czasie wpadały w sprzężenia 

zwrotne. W pierwszej fazie każdy neuron ustawił swoje wagi na wartości 

maksymalne lub zero. Gdy ZSCO po pewnym czasie osiągnęło 0 wszystkie 

wagi ustawiły się na wartości zbliżone do maksymalnych przyjętych w modelu. 

W drugiej klasie sieć zachowywała się aperiodycznie, nie dążyła do 

całkowitego wygaszenia. Jednocześnie neurony nie wykształcały określonych 

rozpoznawanych wzorców, ale ich wagi oscylowały w okolicach zera. Jest to 

prawidłowe, gdyż neurony dążyły do zmiany swojego ZSCO. Innymi słowy, gdy 

w neuron zaczął odpalać się rzadziej, to dążył do zwiększenia tej częstotliwości 

i odwrotnie. Powyższe fakty świadczą o statystycznie prawidłowym 

oddziaływaniu rozlanego pobudzenia na neurony i pracę sieci, zgodnie z 

założeniami.

Omawiany model jest kolejnym pośrednim krokiem w kierunku budowy 

maszyny z pamięcią. Wykazuje on pewne właściwości w przekształcaniu 
sygnału wejściowego na jego wewnętrzną reprezentację, nie wykorzystując 

przy tym jeszcze mechanizmów związanych z modyfikacjami progów. Sieć 

potrafi podobnie jak model IMPL2 odpowiedzieć sekwencją zsynchronizowaną 

z ciągiem wejściowym, nie dochodząc do osiągnięcia synchronizacji za pomocą 

mechanizmów uczenia (IMPL2), ale wynika to już z jej zasady działania. 

Wpływa to znacznie na szybkość procesu synchronizacji. Najczęstszą 

niedoskonałością jest tu wpadanie w bezwyjściowe sprzężenia zwrotne 

(ok.25% doświadczeń).

Analizując pamięć długoterminową w tym modelu, należy zauważyć że 

posiada tę samą ideę co IMPL2, jednak inną budowę. Różnica polega na tym, 

że IMPL2 operował logicznymi bramkami AND, ten zaś model - bramkami OR.
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Potencjalne możliwości obu modeli są równe, ponieważ stosujemy przyjętą 

wcześniej tabelę kodowania sygnałów wejściowych. Problem dotyczy w tym 

przypadku sygnałów międzyneuronowych. Czy sieć może na nich równie 

skutecznie operować jak w IMPL2? Trudno jest to porównać, ponieważ 

rozważany model jest ciągły (mimo iż przesyłane informacje międzyneuronowe 
są binarne) i nie jest sprawą oczywistą przekształcanie go w cyfrowy schemat 

elektroniczny.

Pamięć krótkoterminowa jest reprezentowana w tym modelu przez 

rozkład potencjałów postsynaptycznych oraz stany neuronów (np. stany 

aktywacji). W porównaniu do IMPL2 ma tę przewagę, że z powodu możliwości 

gromadzenia potencjałów podprogowych szybciej zyskuje synchronizację z 

danymi wejściowymi. Pojawia się natomiast problem przedefiniowania samej 

istoty reprezentowania danych przez automat neuronowy. Ogólnie mówiąc, 

ciągi wyjściowe nie tworzą zdefiniowanego ciągu, ale można ustalić 

prawdopodobieństwa określonych ciągów wyjściowych jako odpowiedzi na 

odpowiednie ciągi wejściowe. Sieć realizuje określone przekształcenie.
W czasie doświadczeń okazało się, że podczas zmian w wielkości sieci 

zmieniają się właściwości pracy neuronów. W przypadku większych sieci 

bowiem refrakcja ma statystycznie zbyt małe znaczenie. O ile z badań 

biologicznych wynika, że refrakcja powinna wynosić 9,2,1,0 mV (w kwantach 

czasu tego modelu = 1,8 ms), to druga strona w tej nierówności 

akt>prog+refrakcja, gdzie ‘akt’ to globalne pobudzenie neuronu liczone jako 

akt= wt *xjl W
i id

(29)

gdzie:
0<i<ILOŚĆ_SYGNALOW +1 - ilość danych wejściowych sieci, 

id - numer aktualnego neuronu, 

Xi - wartość potencjału postsynaptycznego, 

Wi - wartość i-tej wagi, 

W- maksymalna dopuszczalna wartość wagi

nie odpowiada biologicznemu pobudzeniu, ze względu na sumowanie 

geometryczne na błonie komórki potencjałów pobudzenia całkowitego [158]. 
Statystycznie suma uwzględniająca geometrię błony tych potencjałów jest na 
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pewno mniejsza. Lepszym przybliżeniem Natury będzie kolejne 

przeskalowanie:

akt_sk=akt/ILOSC_SYGNALOW; (30)

Ważnym elementem tej pracy jest uwzględnianie w modelu zjawisk 

fizjologicznych. Można więc teraz próbować odnieść zachowania modeli IMPL 

do statystycznych 

danych fizjologicznych z 

rozdziału pierwszego. 

Modele IMPL mają 

pewne cechy

naturalnych sieci

neuronowych.

Oscylogramy zebrane z 

IMPL5 świadczą 

niewątpliwie o wielu 

niepożądanych 

procesach, np. jest zbyt 

wiele korelacji w całej 
sieci, czyli sprzężeń

zwrotnych dodatnich. 

Jeśli w naturalnych sieciach neuronowych lekarze obserwują takie 

makroskopowo obserwowalne zachowania w EEG (rys. 38), to są one objawem 

patologicznym. Należy tu zauważyć, że sieć przechodzi w stany wysokiej 

aktywacji a następnie długich wyciszeń. Przechodzenie między tymi stanami 

jest konieczne, lecz nie powinny one trwać tak długo. Rozwiązaniem tego 

problemu jest prawdopodobnie wbudowanie ‘zegara neuronowego' (na wzór 

układu siatkowatego) oraz uwzględnienie centralnego sterowania układu 

limbicznego. Sam fakt istnienia neuronowego zegara i stabilizatora 

częstotliwości mówi dużo o budowie pojedynczego neuronu oraz może 

zweryfikować przyjętą kwantyzację czasu.

Jak wynika z przeprowadzonych doświadczeń zmniejszenie nacisku na 

uczenie w momencie aktywności neuronu zmniejszyło faktycznie 
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prawdopodobieństwo stanów bezwyjściowych (tzn. takich, w których neurony 

wcale się nie odpalały, albo cały czas odpalały się ze swoją maksymalną 

częstotliwością). Zniszczone zostały jednak efekty synergiczne w sieci, czyli 

jedna z najistotniejszych własności sieci neuronowej. Uczenie podczas 

odpalania neuronów wydaje się więc być podstawową i nienaruszalną zasadą. 

Potwierdzają to również badania neurofizjologów. Jakie więc typy uczenia w 

odniesieniu do określonych struktur neuronowych należałoby rozważyć, aby 

nie ominąć żadnego ważnego aspektu? W kolejnych modelach 

zaprezentowano kilka możliwych koncepcji podziału.

5.2.4 Model IMPL6 - kilka koncepcji synaps

W związku z potrzebą usystematyzowania algorytmów uczenia, można 

je pogrupować względem struktur, na których one operują. Zatem algorytm 

uczenia może być związany z:

• Synapsą hamującą (typu komórki Renshawa). Pełni ona znaczącą funkcję w 

stabilizowaniu częstotliwości. Ani reguła Hebba, ani proponowane przez 

badaczy modyfikacje, nie gwarantują skutecznego uczenia, które wpływałoby 

na zwiększenie synergii w pracy neuronów.

• Synapsą pobudzającą. Tutaj model wydaje się być najprostszy. Algorytmem 

uczenia w tym przypadku może być reguła Hebba.

• Ułatwianiem presynaptycznym. Jest to synapsa w której występują trzy 

możliwe drogi przepływu impulsu. Dwie wejściowe i jedna wyjściowa. Jest to 

stosunkowo dobrze zbadane i jest również określony częściowo mechanizm 

uczenia. O ile jest znany wpływ neuronu modulującego na zmianę wagi 

synapsy neuronu czuciowego i postsynaptycznego, to nieopisany jest proces 

wykształcający wagę w synapsie aksonowo -aksonowej.

W tym momencie warto omówić rolę tlenu azotu w procesie uczenia (i 

związanych z nim reakcji), gdyż niewątpliwie jest on związany z synapsą 

ułatwienia presynaptycznego, a możliwe, że jest to proces o jeszcze szerszym 

zasięgu. Zamodelowanie tego procesu mogłoby się przyczynić do powstania 

pewnej cechy samoorganizowalności (na podobieństwo SOM) oraz 

prymitywnego kojarzenia faktów posiadających korelację czasową. Sam 
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hipotetyczny mechanizm wygląda następująco: Długotrwała depolaryzacja 

błony znosi blokadę kanału jonowego, przez który napływają jony wapniowe do 

neuronu postsynaptycznego. Wzrost poziomu wapnia powoduje aktywację 

kinaz białkowych i w rezultacie indukcji LTP. Neuron postsynaptyczny 

wypuszcza wsteczny przekaźnik - tlenek azotu, który to z kolei działa 

wzmacniająco na pracę zakończeń presynaptycznych, ponieważ wydzielana 

jest większa ilość neurotransmitera (kwasu glutaminowego). Wydzielany jest on 

pod wpływem cyklazy guanylowej albo transferazy ADP-rybozylowej. Jest to 

zobrazowane na rysunku 39.

Nawet jeśli ten mechanizm okaże się nieprawdziwy, to i tak musi być 

jakiś jego odpowiednik spełniający te podstawowe funkcje, jak plastyczność, 

samoorganizowalność, ułatwienie presynaptyczne. W tej pracy mechanizm ten 

z powodu niekompletności wzorca do modelowania, nie jest symulowany.

• Hamowaniem presynaptycznym. Budowa synapsy jest podobna jak w 

powyższym punkcie. Reakcje chemiczne są również podobne, ale powodują 

hamowanie. Czyżby więc jeden typ anatomiczny spełniał dwie funkcje? 

Pytanie pozostaje na razie bez odpowiedzi. Nie znane są też odpowiednie 

metody uczenia. Być może są one powiązane z ułatwieniami 

presynaptycznym i.
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Rys.39. Hipoteza dwukierunkowości synaps

Jak można zauważyć, zarysowuje się w tych wszystkich elementach pewna 

symetria. Wszystkie te przypadki występują w układzie nerwowym i potrafią 

dostrajać się (uczyć) w tym środowisku. Po dokładniejszym przeanalizowaniu 

tych przypadków, będzie można się pokusić na określenie pewnej ogólnej 

metody uczenia (o ile nie koliduje ona z uwarunkowaniami genetycznymi).
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Główna część procesu uczenia w tym modelu została z powrotem 

przeniesiona na moment odpalania neuronu, a jako całość - sieć posiada zalety 

poprzednich modeli (tzn. nie wpada w stany bezwyjściowe sprzężenia 

zwrotnego lub zaniku impulsów, a jeżeli to w nieporównywalnie małym stopniu). 

Uczenie ma zalety typu IMPL2, sieć potrafi się organizować. W wielu 

doświadczeniach okazywało się, że nawet po odłączeniu sygnałów 

wejściowych po sieci krążyły impulsy, co nie zdarzało się w IMPL2. Jeśli chodzi 

o korelację zmian średnich częstotliwości odpaleń, to została ona w dużym 

stopniu zmniejszona. Zalety te zostały uzyskane za pomocą modelowania 

lokalnej synapsy hamowania presynaptycznego z mechanizmem uczenia 

zapożyczonym z identycznego elementu anatomicznego, ale o innej funkcji: 

synapsy ułatwiania presynaptycznego. Pozostałe synapsy uczą się według 

zmodyfikowanej dla wag ujemnych reguły Hebba, przedstawionej poniżej.

Znaczenie symboli użytych w poniższych wzorach: 
i- liczba naturalna

Wi,t - i’ta waga neuronu w chwili t,

xi.t - sygnał wejściowy neuronu odpowiedni i'tej wadze w chwili t, 

L - ilość sygnałów wejściowych neuronu, 

S,-S - maksymalna i minimalna wartość wagi, 

M - stała określająca wielkość modyfikacji wag,

Moduł nr 2 przeprowadza proces zmniejszania wag nieużywanych:

V i<L xi t =0 A w. t >0 w. l+ j =w. t -1
Vi<L xit—Q/\wit<G =wjZ + l (31)

Moduł nr 1 - udrażnianie:

Vi<L x,z>0 Aw(/>0 Mvit<S — M ^wit+x =wit+M 
V i<L xit>0 /\wit<0 /\wit>—S+M =>wit+-l=wi—M (32)

Fragment odpowiedzialny za uczenie synaps aksonowo - aksonowych znajduje 

się w części kodu programu nie związanego z czasem odpalania neuronu. 

Neuron postsynaptyczny nie musi się w tym przypadku odpalać, a to on jest 

odpowiedzialny za modelowanie lokalnego hamowania. Aby nastąpiło uczenie 
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według tego schematu wystarczy aktywacja neuronu modulującego (tu 

hamującego) oraz pobudzającego. Można to przedstawić następującą 

zależnością:

Xf i<L — \ x.,>0 Ar,, ,>0 Aw.,<0 Aw > — S+M Aw. <5 — M =>1,1 lt 1,1 1,1 1,1 IT1J ( J 
w,+1,^1 =wi+l,t+M Awi,l+1 =w.rM

Model IMPL6 posiada lepsze właściwości synergiczne neuronów niż 

IMPL5, skutkiem czego pamięć krótko- jak i długoterminowa ma lepsze 

właściwości tzn. na jej wykształcenie potrzeba mniej czasu symulacji oraz 

znacznie większy procent doświadczeń jest udanych (głównie dzięki 

modelowaniu synaps hamowania presynaptycznego z metodą uczenia 

zaczerpniętą z synapsy ułatwiania presynaptycznego). Typ oraz budowa tych 

pamięci są identyczne jak w IMPL5. W tym modelu jako pierwszym można 

zaobserwować pamięć krótkotrwałą utrzymującą się pewien czas, również po 

skończeniu rozpoznawanej sekwencji wejściowej sieci.

5.2.5 IMPL7 - próba zebrania pozytywnych cech modeli ciągłych IMPL

Oprócz elementów wspólnych dla modeli ciągłych IMPL7 zawiera symulację:

• dwóch typów synaps,

• odpowiednich dla danych struktur metod uczenia oraz pracy,

• okresowego wyłączania sprzężeń zwrotnych,

• refrakcji względnej i bezwzględnej.

Ładunek postsynaptyczny rozładowuje się według funkcji wykładniczej, zgodnie 

z założeniami modelu ciągłego. Jeśli synapsa jest dostatecznie często 

aktywowana (sygnały przesyłane między neuronami mają wartości binarne), to 

występuje na niej sumowanie czasowe. Może się zdarzyć, że dostatecznie 

częste drażnienie jednej synapsy wywoła odpalenie neuronu. Rozładowywanie 

się ładunków postsynaptycznych może przebiegać również w trybie 

natychmiastowym. Sytuacja ta występuje w momencie aktywacji neuronu 

postsynaptycznego. Po odpaleniu się komórka nie posiada już wcześniej 
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gromadzonych ładunków elektrycznych. Proces gromadzenia ładunku zaczyna 

się od początku.

W modelu występują dwa rodzaje synaps: pobudzająca oraz hamująca. 

Ta druga jest typu hamowania presynaptycznego, tzn. w tej synapsie znajdują 

się elementy (dwa aksony i dendryt) należące do trzech różnych neuronów. 

Działanie takiej synapsy polega na tym, iż pojawienie się potencjału na aksonie 

hamującym wpływa blokujące na przepływ impulsu na drodze akson 

pobudzający - dendryt. Przyjmuje się, że blokowanie jest wprost proporcjonalne 

do potencjału na aksonie blokującym.

Praca neuronu polega na sumowaniu arytmetycznym wszystkich 

potencjałów na synapsach po uwzględnieniu hamowania oraz porównania tej 

wartości z sumą progu oraz wartości refrakcji. Jeśli neuron się odpali, to wysyła 

impuls zerując jednocześnie potencjały na synapsach. Wysłany impuls 

powoduje powstanie nowych potencjałów postsynaptycznych w innych 

neuronach o wartości proporcjonalnej do odpowiednich wag.

Algorytm uczenia można podzielić na 3 części:

1) wykonywany w każdym takcie symulacji

2) wykonywany podczas odpalenia neuronu
3) wykonywany podczas nieaktywności neuronu.

Punkt pierwszy dotyczy uczenia synaps hamujących. Jeśli zostało wykryte 
hamowanie presynaptyczne niezależnie od stanu neuronu, to siła hamowania 

zostaje wzmacniana.

jeśli Xil>° (34)

gdzie:

a - stała określająca prędkość uczenia, (np. 5)

Xi.t - wartość potencjału na synapsie nr /w chwili t (0-50mV)

Wi,t - wartość wagi synapsy nr i w chwili t <-128,127>

W punkcie drugim zawarty jest proces dążenia wartości wag do 0 w przypadku 

nieaktywnych synaps, zarówno pobudzających, jak i hamujących. Próg dąży 
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asymptotycznie, rosnąco do określonego ułamka (właściwego) aktywacji.
Zwiększane są wagi aktywnych synaps pobudzających i hamujących.

*łZ=0 => w/z+7=w/z-d*szgn(wiz)

jeśli */;>0

ht+ x=ht+(c*^ wit*xit -h^/ d

gdzie:

b - stała określająca prędkość zmniejszania wag, zwykle o rząd wielkości mniejsza od stałej a

c - stała, najlepiej ułamek właściwy ok. 0.66

d - stała, np.3

ht - wartość progu w chwili t

sign() - funkcja signum

Punkt trzeci służy jedynie do modyfikacji progu w kierunku malejącym.

^rf (36)

gdzie:

f - stała, np. 0,01

Bardzo ważną rolę w algorytmie uczenia pełnią proporcje zmian wag, 

wywoływane różnymi przyczynami np. modyfikacja progu w tym punkcie ma 
dwa rzędy mniejsze znaczenie, niż wykrywanie hamowania lub wzmacnianie 

synaps aktywnych podczas odpalenia.

Porównując modele IMPL2 i IMPL7 można powiedzieć, że IMPL2 

wykształcał zbyt wąską klasę rozpoznawanych wzorców. Właściwości 

generalizacji były dosyć ubogie. Zostało to poprawione przez wprowadzenie 

dodatkowych założeń w modelu IMPL7. Zachowany został typ synergii 

neuronów obserwowany w IMPL2, lecz zmieniona została skala 

przetwarzanych danych. Podstawową prezentacją danej wejściowej nie jest 

pojedyncze pobudzenie synapsy, lecz cała seria pobudzeń zgromadzonych na 

przestrzeni określonego odcinka czasu. Jest to jednocześnie krok wykonany w 

kierunku zbliżenia się do zjawisk znanych z badań fizjologicznych. Sieć o takiej 

strukturze posiada wysokie zdolności do generalizacji. Przypisuje ona różną 

ważność dla różnych elementów wzorców wejściowych tzn. klasyfikuje cechy 
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rozpoznawanych wzorców na pierwszorzędne, drugorzędne itd., Własność ta 
jest możliwa do osiągnięcia dzięki gromadzeniu się w neuronach statystyk na 

temat ciągów wejściowych odzwierciedlonych w wagach. Przetwarzanie 

wykazuje cechy wysokiej równoległości. Pod względem niezawodności też 

wystąpiła poprawa w stosunku do IMPL2. Zniszczenie losowo wybranych 

neuronów nie wpływa tak drastycznie na pracę, jak miało to miejsce w modelu 

IMPL2. Okupione to zostało zwiększeniem ilości neuronów w pracującej sieci 

niezbędnych do przetworzenia podobnej ilości informacji oraz wyłączeniem 

częściowym sprzężeń zwrotnych, gdyż zmieniona została skala danych 

wejściowych. Zwiększenie złożoności sieci modelu IMPL7 powoduje 

jednocześnie okresowe zachowania z pogranicza chaosu deterministycznego, 

co można w naturalny sposób wykorzystać do wychodzenia z minimów 

lokalnych błędu rozwiązania.

Model IMPL7 został sprawdzony również pod kątem możliwości 

zbudowania z tak zdefiniowanych neuronów układów znanych z fizjologii jak: 

stabilizator częstotliwości, komparator częstotliwości, generator 
wzbudzany pobudzeniem. Doświadczenia wypadły pozytywnie!

Omawiany model jest pewną próbą zebrania pozytywnych cech IMPL5 i 
6, oraz ich uogólnienia. Pamięć krótko- i długotrwała ma właściwości zbliżone 

do IMPL6. Żadnych istotnie nowych zjawisk nie zaobserwowano.
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5.3 Efekty synergii w sieciach o dużej złożoności

Omówione wyżej doświadczenia dotyczyły dość ograniczonej liczby 

neuronów, zwykle kilkunastu (nigdy nie więcej niż sto), co było ograniczeniem 

szybkiego symulatora IMPL. Przy kilkudziesięciu neuronach - obserwacje 

zachowania sieci w tym symulatorze jest bardzo żmudne i mało efektywne. 

Biorąc pod uwagę, iż niektóre efekty mogą być zauważone przy określonej 
pojemności pamięci krótkoterminowej (np. kojarzenie przesunięć czasowych 

sygnału), został zaprojektowany, wykonany i przetestowany mocniejszy 

symulator o nazwie SNN. Umożliwia on użycie całych zasobów PC, zarówno 

pamięci jak i procesora, ponieważ jest on mocno skalowalny. Na prostym PC 
166 MHz i 64MBRAM przy użyciu SNN jest możliwa symulacja nawet do 10 000 

neuronów z włączoną symulacją ładunków. Jest też bardziej pomocny przy 
obserwacji oraz analizie tak dużej sieci. Dla porównania symulator LSM [141], 

będący modułem napisanym w C++ do Matlaba w 2003 roku symuluje 1000 

neuronów, ale tylko 100 tys. synaps. SNN już przy 500 neuronach posiada 

ponad 2,5 raza więcej synaps.

Oceńmy maksymalną pojemność pamięci krótkoterminowej sieci o 

wielkości n neuronów. W skrajnym przypadku każdemu ładunkowi 

postsynaptycznemu możemy przypisać 1 bit. Ponieważ sieć posiada strukturę 

połączeń „każdy z każdym”, ilość synaps wynosi V=n*n. Dla n=400, V=160000 

bitów, co daje 20000 bajtów. Jest to pojemność bardzo duża, lecz praktycznie 

nie do wykorzystania przez sieć w obecnych modelach, ze względu na 

trudność sterowania sprzężeniami zwrotnymi bezpośrednimi oraz pośrednimi. 

Po uwzględnieniu tego faktu oraz wyeliminowaniu autoasocjacyjności neuronu 

otrzymujemy V=(n-1)*n/2. (dla n=400, V=9975 bajtów). W tym momencie 

oceniliśmy maksymalną pojemność pamięci krótkotrwałej, przy założeniu że 

każdy potencjał postsynaptyczny reprezentuje jeden bit. Doświadczenia 

wykazują, że efektywnie z tego jest używane jedynie 10% objętości, ponieważ 

potencjały postsynaptyczne są używane do generalizacji rozwiązań, czyli kilka 

potencjałów reprezentuje jeden element (bit) przetwarzanego wzorca. Drugim 

faktem jest duża nadmiarowość sieci w większości modeli, szczególnie w ściśle 
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określonych obszarach matrycy wagowej, co zostanie omówione na 

przykładzie modelu SNN.

Wymieniony wyżej ułamek użytecznej pamięci ma jednak inne znaczenie 

niż można się spodziewać. Sieć nie ma konieczności pamiętania 
przetwarzanych danych ze stuprocentową dokładnością. Właściwie 

świadczyłoby to o braku przetwarzania wzorca. W pamięci krótkoterminowej 

znajduje się zatem przetworzona reprezentacja sygnału zgodnie z pamięcią 
długoterminową powstała z chwilowych danych wejściowych.
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5.3.1 Modele SNN10 - podstawowe zależności w sieciach o dużej liczbie 
neuronów

Przenosząc modele sieci 

oraz neuronów z poprzednich 

doświadczeń do bardziej 

złożonego środowiska
napotykamy na kilka trudności, 

związanych z samą strukturą 

sieci. Znaczny przyrost ilości 

synaps zwiększa wariancję 

aktywacji, co za tym idzie, 
funkcja zmiany progu musi 

uwzględniać ten fakt. Model SNNIOa został przeniesiony z IMPL 7 i wykazywał 
słabą aktywność na dane wejściowe. Na rys. 40 można zauważyć, iż 

f(Hzl

IH

Rys. 40 - Reakcja SNNIOa na powtarzające się 

dane wejściowe.

odpowiedź sieci po wyuczeniu wzorca nie jest wyraźna, mimo iż reaguje silnie 

na niektóre elementy wzorca (tutaj: jego początek). Objawia się to względnie

I (ms)

Rys. 41 - Model SNNIOc wykazuje się 

niezwykle silną polaryzacją. Kategoryczność 

odpowiedzi tego modelu jest okupiona małymi 

zdolnościami do generalizacji.

dużą ilością odpaleń

neuronów. Na wykresie 

częstotliwości widzimy trzy 

takie momenty.

Po wstępnej analizie funkcję 

modyfikacji progu ustalono na 

bardzo szybko dążącą do 

aktywacji. Potencjały

postsynaptyczne zostały 

usunięte z algorytmu uczenia, 

pozostały jedynie w procesie 

pracy. Model (SNN10b) po 

wyuczeniu wzorca wykazywał 

wysoką średnią częstotliwość odpaleń neuronów, a na dane wejściowe 

reagował zmniejszeniem tej częstotliwości.
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Odpowiednikiem IMPL 2 w obecnym symulatorze jest SNNIOc.

Wyłączono w nim całkowicie symulacje potencjałów postsynaptycznych oraz

Rys. 42 - Porównanie matryc wag modelu SNNIOc (po prawej) oraz SNNIOd (po 

lewej). Można zauważyć, iż obszar wewnątrz matrycy SNNIOd nie zakodował

żadnych danych. Dodatkowo zauważamy większą integrację danych w SNNIOc.

wyeliminowano wagi 

ujemne. Model podobnie 

jak IMPL2 nie ma 

zdolności do generalizacji, 

jednak łatwiej

synchronizuje się z 

sekwencją wejściową, co z 

pewnością jest wynikiem 

braku sprzężeń zwrotnych. 

Neuron tego modelu 

komunikuje się ze swoim 

sąsiedztwem o określonej 

wielkości oraz z globalnym wejściem sieci. Sieć jest w stanie przetwarzać 

znacznie dłuższe sekwencje wejściowe oraz czas uczenia jest znacznie 

krótszy. Model ten będzie wyjściowym do kolejnych modyfikacji.

Przy obecnych założeniach rozszerzenie sąsiedztwa neuronu do 
wielkości maksymalnej nie przynosi żadnych zmian (SNNIOd). Duże zmiany 

powoduje włączenie symulacji potencjałów postsynaptycznych (SNNIOe). W 

tym modelu pobudzenie nie przemieszcza się już swobodnie, a synchronizacja 

bywa gubiona. Dzieje się tak, iż napływające dane globalne są w stanie w 

dowolnym momencie zinterferować się z wcześniejszymi danymi. Oznacza to
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Rys. 45 - SNNIOg - odpowiedź częstotliwościowa sieci na 

3 wzorce i jeden zakłócony

niedopasowanie algorytmu uczenia. Zmniejszenie w tym momencie sąsiedztwa 
nie rozwiązuje problemu, 
gdyż co prawda sygnał 

wejściowy nie jest w stanie 

zinterferować się z 
poprzednimi danymi 

(SNNIOf), ale poprzez sieć 

przebiegają 

samowyindukowane 

impulsy nie związane z 

danymi wejściowymi, które wprowadzają algorytm uczenia na złe ścieżki 

(minima lokalne).

Pomocniczą w 

tym momencie

okazuje stała 
charakteryzująca 

wielkość modyfikacji 

wagi w procesie 

uczenia. Jej znaczne 

zmniejszenie 

powoduje pewne 

zestrojenie systemu i 

sieć jest w stanie odwzorowywać sekwencję wejściową zarówno z, jak i bez 

włączonych potencjałów postsynaptycznych (SNNIOg). Rys. 45 obrazuje test 

przeprowadzony na tym modelu, poddający sieć próbie wprowadzenia 

nieprawidłowych danych pomiędzy prawidłowymi wzorcami. Jak można 

zaobserwować na wykresie częstotliwości, widać wyraźną reakcję odrzucenia 

danych podczas przetwarzania trzeciej serii wektorów. Widoczny spadek 

częstotliwości do zera oznacza jednocześnie zerwanie synchronizacji.

Aby bardziej kategorycznie odróżnić wzorce od podobnych im sekwencji 

wejściowych w modelu SNNIOh wyłączono refrakcję, mechanizm uczenia 

neuronu skupiono na jego pierwszym odpaleniu, utrzymano dość skromne 

sąsiedztwo neuronu oraz symulację ładunków postsynaptycznych. Efekt
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zamierzony został osiągnięty, 

generalizacji.

Aby temu zapobiec, 

należy powrotem przenieść 

ciężar uczenia na wszystkie 

odpalenia neuronu, a nie tylko 

pierwsze (SNNIOi). Jak 

obserwujemy na wykresie 

średniej częstotliwości odpaleń, 

wzorzec jest zapisywany w 

matrycy wag, jednak początek 

Ucierpiały jednak na tym zdolności do

Rys. 46 - Matryca wag modelu SNN1 Oi

sieci jest atakowany stosunkowo dużą liczbą danych i po określonym czasie się

rozprogramowuje (rys. 46). Zacierana jest zatem informacja o początku wzorca, 

a ponieważ sieć działa bardzo kategorycznie, wzorzec nie jest rozpoznawany 

ponownie. Cała sieć czeka na wystartowanie neuronów początkowych, 

podczas gdy one są w tym momencie przeprogramowane.

Skonstruowanie modelu pośredniego pomiędzy SNNIOh i SNNIOi nie 

jest zadowalające. Co prawda sieć potrafi rozpoznać wzorzec ponownie, zatem 

ma możliwości rekonstrukcji wzorca, jednak procesy rozprogramowujące 
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Rys. 48 - Procesy rozprogramowujące SNNIOj

początek sieci są tylko znacznie spowolnione. Co za tym idzie, po dłuższej 

pracy nie działa ona prawidłowo (SNNIOj). Na rys. 47 widzimy wyraźnie 

ciemniejsze miejsca na przekątnej o względnie dużych powierzchniach. 

Oznacza to, iż w tych miejscach nawet przy przetwarzaniu poprawnego wzorca 

synchronizacja może zostać zerwana, ponieważ ciemniejsze miejsca wskazują 

na wagi o niższych wartościach.

Aby zmniejszyć efekt odrzucania wektorów nieznacznie odbiegających 

od wzorca została zmieniona funkcja modyfikacji progu, z dążącej do aktywacji 

na dążącą do 4/5 z aktywacji (SNNIOk), jednak dopiero wyłączenie potencjałów 
postsynaptycznych (SNN10I) 

przywróciło stabilność

zapamiętania wzorca.

Posiadając wymienione 

możliwości operowania na 

danych wejściowych przy 

pomocy modelu sieci 

neuronowej należy się 

zastanowić nad parametryzacją 
niektórych cech przetwarzania 

jak stopień generalizacji rozwiązań, zależność obecnie przetwarzanych danych 
od wcześniejszego kontekstu, stopień integracji danych przypadających na 

synapsę / neuron pochodzącej z wzorca wejściowego.
Pierwszy parametr można scharakteryzować w najprostszym przypadku 

poprzez procent zgodnych elementów wektora z wektorem wzorcowym. W 

ogólności, każdemu elementowi wektora jest przypisana wartość oznaczająca 

istotność danego bitu danych i te wartości są używane do wyliczenia zgodności 

ze wzorcem.
Kontekst w wielu implementacjach jest traktowany jako dodatkowy 

wektor wejściowy, wyliczany poprzez sieć w poprzedniej iteracji i podawany w 

kolejnej do określonych wejść sieci. Przy tej strukturze sieci, można 

powiedzieć, że nie ma takiego ścisłego podziału, ponieważ zabronione są 

sprzężenia zwrotne, zatem każdy neuron ma dostęp tylko do wyników obliczeń 

neuronów o mniejszych indeksach. Cechą, którą w tym punkcie chcemy 

operować, jest istotność kontekstu przy przetwarzaniu kolejnego wektora
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wejściowego. W skrajnych wypadkach pożądane jest: przy ignorowaniu 

kontekstu - uznanie danych za zgodnych ze wzorcem, gdy x ostatnich 

wektorów wejściowych jest zgodne z x ostatnimi wektorami wzorca; przy 

priorytetowaniu kontekstu - uznanie danych za niezgodnych ze wzorcem, jeśli 
pierwszy wektor danych i wzorca nie był identyczny.

Trzecią cechą sieci, na która powinna być możliwa do ustalenia, to 

średnia ilość neuronów kodująca jeden wektor wejściowy. Jak pokazują 

doświadczenia, ma to bezpośredni związek z pracą sieci i jej zdolnościami do 

uogólniania rozwiązania. W skrajnym przypadku jeden wektor wejściowy 
powinien być kodowany na jednym neuronie. Idąc w przeciwnym kierunku, 

jednemu wektorowi wejściowemu powinno odpowiadać x neuronów, x>1.

Pierwsza próba sparametryzowania ww. cech oraz przekształcenia ich 

na parametry budowy sieci zostały przeprowadzone w modelu SNNIOm. Jak 

się okazuje, zmiana wielkości sąsiedztwa danego neuronu ma bezpośredni 

wpływ na drugą i trzecią cechę, a pośrednio również i na pierwszą (głównie 

poprzez trzecią). Model ten przetestowano przy bardzo małym parametrze 

sąsiedztwa począwszy od wartości Z=2, oznaczającej możliwość połączenia się 

z sobą samym oraz swoim poprzednikiem. Ponieważ autoasocjacyjność jest też 

zabroniona, neuron posiada możliwości przetwarzania jedynie kontekstu 

pochodzącego od jego poprzednika, oraz oczywiście ma dostęp do aktualnie 
przetwarzanego wzorca wejściowego. Warunek taki znacznie zmniejsza 

prędkość przepływu informacji przez sieć, a biorąc pod uwagę, iż dane 
wejściowe napływają ze stałą prędkością stopień ich koncentracji w sieci musi 

być większy i tak faktycznie jest.

Kontekst w tym modelu też zachowuje się zupełnie inaczej niż w 

poprzednim. Należy pamiętać, sygnały międzyneuronowe mają postać binarną, 

a cały kontekst jest przekazywany z jednego neuronu do następującego po nim 

w postaci jednego takiego sygnału. Oznacza to, iż może on zawierać 

informację na temat zgodności poprzednich wektorów danych ze wzorcem na 

wybranym poziomie zgodności lub nie i jest to w tym przypadku informacja 

binarna, bez możliwości przekazania parametru o stopniu zgodności itp.
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t (ms)

Rys. 49 - SNNIOm - odpowiedź sieci przedstawiona na 

wykresie średniej częstotliwości odpaleń neuronów świadczy 

o możliwości startowania impulsu synchronizacji z 

pominięciem kontekstu lub nawet początku wzorca.

Stopień koncentracji informacji możemy ocenić następująco: jak zostało 

założone w modelu, dane są podawane do wejść w kolejnych punktach 

czasowych, odległych od siebie czasem refrakcji pojedynczego neuronu 

(większe częstotliwości po prostu fizycznie poprzez neuron nie mogą być 

przetwarzane) przyjętym jako 2 ms. W tym samym czasie informacja w sieci o 

zgodności wektora z wzorcem jest w stanie przejść drogę tylko do jednego 
(kolejnego) 

neuronu. Oznacza 

to, iż jeden wektor 

musi być kodowany 

na jednym

neuronie. Po 

przeglądnięciu 

poszczególnych 

neuronów oraz

porównaniu wag
synaps 

odpowiedzialnych 

za połączenia z 

wejściem sieci z 

wzorcem, widać 

wyraźnie odbicie wyuczonego wzorca na tych synapsach.

Jak widać na rys. 49 dane wejściowe są w stanie wygenerować impuls 

oznaczający zwykle zgodność poprzednich wektorów ze wzorcem, nawet gdy 

taka zależność nie wystąpiła. Dzieje się tak szczególnie wtedy, kiedy przez 

dłuższy czas wejście sieci jest nieaktywne i wszystkie tego typu impulsy 

zanikną. Zjawisko to jest pożądane, zgodnie z wymienionymi wyżej 

założeniami i świadczy o możliwości ustalania wpływu kontekstu na proces 

przetwarzania. Tym przypadku jest on krańcowo mały. Przy założeniach 

przyjętych w SNNIOm kontekst jest reprezentowany jako jeden bit. Oczywiście 

waga synapsy w kolejnym neuronie odpowiedzialna za utrzymanie kontekstu 

może być duża, ale statystyczne ilość bitów przenoszących kontekst w 

pierwszych krokach uczenia przesądza o priorytecie tej informacji. Dokładniej 

analizując pracę sieci, przekłada się to na stosunek ilości bitów kontekstu do 
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ilości wejść sieci (co jest równoważne z ilością bitów wejścia sieci danego 

momentu w czasie). W badanym modelu stosunek ten wynosi 1/12. Pamiętając, 

iż próg podczas odpalenia neuronu w przyjętym modelu modyfikuje się zgodnie 
ze wzorem:

. 4
= (37)

gdzie:

hj,t - wartość progu neuronu/ w chwili t
Wi^t - wartość /’tej wagi neuronu j w chwili t

Xij,t - wartość i’tego wejścia neuronu j w chwili t

możemy wywnioskować, iż kontekst nie jest niezbędny do odpalenia neuronu, a 

co się za tym kryje, do odpalenia impulsu oznaczającego zgodny kontekst. W 

dalszej części pracy, że względu na specyfikę przemieszczania się tego 

impulsu pobudzającego kolejne neurony w kolejnych chwilach czasowych, 

będzie on nazywany impulsem synchronizującym. Dodatkowo przy 

rozbudowanym kontekście (kilku lub kilkunastobitowym), który podlega pod te 

same prawa co impuls synchronizujący, zbiór propagujących się aktywacji 

neuronów tworzy falę synchronizującą. Propagujące się impulsy kontekstu są 

dobrze obserwowalne na matrycy potencjałów postsynaptycznych, ponieważ 

powodują efekt przepływu przez sieć „fali” potencjałów postsynaptycznych - rys. 

50.
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Opisany efekt widziany na matrycy potencjałów postsynaptycznych ma 

bardzo duże znaczenie podczas przeprowadzania doświadczeń. Podczas 

procesu uczenia nie od razu mamy do czynienia z przepływem takiej fali. 

Organizacja neuronów trwa czasami dość długo oraz następują różne 

przegrupowania, co za tym idzie sygnały propagują się np. tylko przez krótki 

odcinek sieci, albo gasną w różnych nieokreślonych momentach, lub sygnały 

powstająw różnych miejscach sieci i odpalenia następują asynchronicznie, nie 

tworząc zwartej grupy i tym bardziej propagującej się fali. Na tej podstawie po 
określonej liczbie kroków symulacji jest podejmowana decyzja, czy model 

wykazuje efekty synergii neuronów i czy doświadczenie warto kontynuować.

W modelu SNNIOn sąsiedztwo zostało zwiększone do Z=7, co jest 

również dość małą wartością. Prędkość propagacji informacji w sieci zostaje

automatycznie zwiększona, stopień integracji informacji na element sieci jest 

zmniejszony. Na wykresie średniej częstotliwości odpaleń można zauważyć, że 

wielkości te nie rosną tak liniowo jak w poprzednim modelu, ale następują 

gwałtowne spadki częstotliwości. Oznacza to zwiększenie priorytetu kontekstu. 

Dokładniej analizując, wzorzec wejściowy posiadał element okresowy wewnątrz 

swojej struktury. Jest to dość trudne zadanie dla sieci neuronowej, ponieważ 

dość łatwa jest pomyłka, w którym momencie przetwarzania wzorca aktualnie 

sieć się znajduje. Ponieważ zgodność jest dość duża, wykres częstotliwości 

wskazuje ich wzrost. Jednakże w odpowiednim momencie (po zakończeniu 

wewnętrznej okresowości wektorów wzorca) częstotliwość spada do wartości, 

która jeszcze oznacza zgodność ze wzorcem (rys. 51). Gdyby zgodność 
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danych ze wzorcem była nieprawdziwa, częstotliwość odpaleń spadałby do 
częstotliwości bliskiej zero.

Wprowadzona w modelu SNNIOj cecha, polegająca na kilkukrotnie 

silniejszym uczeniu neuronu przy jego pierwszym odpaleniu pozwoliła uzyskać 

wiele zamierzonych efektów oraz przyśpieszyć wiele doświadczeń, jednakże 

ogranicza właściwości generalizacji metawzorca, ze względu na zbyt silne 

wyuczenie pierwszych danych, (pierwszego przedstawienia wzorca, co nie 

musi być reprezentatywne). Wyłączenie tej cechy sieci nie jest procesem 

banalnym, jakby wyglądało to pozornie, ponieważ może zostać zaburzony 

porządek synchronizacji np. przy drugiej prezentacji przedstawiciela wzorca. 

Cykliczne wzajemne zaburzanie synchronizacji poprzez dwa po części 
sprzeczne 

przedstawienia 

wzorca zwykle nie 

prowadzą do 

uogólnienia 

rozwiązania. 

Oczywiście 

pozostaje do 

rozstrzygnięcia 
problem, czy aż tak 

różne dwa
przedstawienia 

wzorca można 

uznać jako przedstawienia wzorca? Z założenia, wektory będące 

przedstawieniami wzorca powinny być podobne. W modelach od SNNIOj 

pierwszy pokazany wzorzec był zdecydowanie wiodącym, kolejne 

dostosowywały się do pierwszego. W modelu SNNIOo zlikwidowano tę zasadę, 

a dodatkowo jako podstawowy mechanizm generalizacji- włączono symulację 

ładunków postsynaptycznych, refrakcję oraz zwiększono sąsiedztwo neuronu. 

Nie udało się wykryć w tym modelu efektów synergii neuronów, nawet przy 

wyłączeniu sterowania wartością progu. W modelu SNNIOp pracą progu oraz 

prędkościami jego zmian dokonano pewnego strojenia systemu, jednak dalej 

nie można stwierdzić jego jakiejkolwiek pracy jako całości. Ponieważ wszystkie 

Rys. 52 - Efekty synergii neuronów widziane na matrycy 

wag modelu SNNIOr
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wprowadzone elementy do modelu są pożądane, ale nie występuje jakakolwiek 

synergia neuronów, pierwszym elementem do strojenia systemu musi być 

algorytm zarządzania pracą progu neuronu. Ponieważ statyczne funkcje 

zostały w dużej mierze przebadane i nie przyniosły rezultatu, kolejnym krokiem 

może być uzależnienie zmian progu od innych parametrów neuronu. Biorąc 

pod uwagę fakt, iż próg jest elementem pamięci długoterminowej, jego 

modyfikacje muszą być odwracalne. Oznacza to, iż chwilowa zmiana progu 

musi zostać po dłuższym czasie anulowana. Zatem planowane zmiany progu 

muszą mieć tę samą naturę co refrakcja, tylko odbywać się zarówno w stronę 
wzrostu jak i obniżania wartości progu.

Niepożądaną cechą SNNIOp jest okresowy brak pobudzeń występujący 

po wzbudzeniu sieci (i dopasowaniu się neuronów do pracy podczas 

wzbudzenia). Zgodnie z faktami neurofizjologicznymi, każdy neuron musi się 

odpalać chociażby z określoną minimalną częstotliwością, nie mogą natomiast 

następować dłuższe okresy braku aktywacji. Biorąc pod uwagę, iż możemy 

zmodyfikować funkcję refrakcji oraz znamy kierunek jej zmian (ma prowadzić do 
utrzymania minimalnej częstotliwości odpaleń neuronu), oznacza to iż funkcja 

refrakcji w określonym czasie dt dąży do przeciwnej wartości progu. Załóżmy 
wstępnie liniowość tego procesu. Dodatkowo zmniejszmy tempo wzrostu progu 

w chwilach odpaleń zgodnie ze wzorem:

hj.‘+1 =hj.t+ i
(38)

gdzie:

hj,t - wartość progu neuronu j w chwili t 

Wijft - wartość /"tej wagi neuronu j w chwili t

Xi,j,t - wartość i’tego wejścia neuronu j w chwili t
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Po doświadczalnie dobranym dt w modelu SNNIOr można 

zaobserwować pewną samoorganizowalność neuronów (rys. 52) ale pojawił się 

nowy jakościowo problem. Otóż zgodnie z założonym celem, neurony powinny

f
Rys. 53 - Niezerowe wartości wag wejściowych systemu w modelu 

SNNIOt są potwierdzeniem hipotezy

utrzymywać określoną minimalną częstotliwość. Jeśli natomiast dane 

wejściowe sieci statystycznie będą miały mały udział podczas aktywacji 
neuronów (np. gdy częstotliwość pobudzeń z wejścia systemu będzie mniejsza 

niż omawiana 

minimalna 

częstotliwość 

pracy 

neuronu) od 
może dojść do 

odłączenia 

przez sieć 

sygnałów 

wejściowych, 

co 

obserwujemy 

w SNNIOr.

Rys. 54 - SNNIOs na bardzo krótką sekwencję wejściową 

odpowiada częstotliwością o równie krótkim okresie - model 

pracuje prawidłowo

Str. 103



Dla potwierdzenia hipotezy o zależnościach częstotliwościowych fm oraz 

fd w modelu SNNIOs zostały przygotowane i podane do sieci sygnały 

wejściowe o stosunkowo dużym średnim pobudzeniu. Niektóre wejścia zostały 

z dodatkową siłą nasycone pobudzeniami (SNNIOt - rys. 52). Jak można 

zauważyć na wykresy średniej częstotliwości odpaleń neuronów sieci, okres 

wyrównał się z okresem częstotliwości prezentacji wzorca, rys 53, co oznacza, 

że neurony podzieliły się na liczbę klas odpowiednią wzorcowi. Wystąpiły 

zatem efekty synergii, czyli hipoteza się potwierdziła i zidentyfikowaliśmy 

problem do rozwiązania.

Podsumowując serię modeli SNN10 obserwujemy w nich wiele 

ciekawych procesów, niemożliwych do zauważenia przy mniejszej skali 

symulowanej sieci. Odkrycie zależności panujących w takiej strukturze mówi 

wiele na temat przetwarzania informacji w takiej strukturze oraz pozwala 

sterować niektórymi jej parametrami np. SNNIOm. Jak pokazują 

doświadczenia, strojeniu wymaga duża liczba parametrów, chociaż większość 

procesu strojenia udaje się zautomatyzować. Generalnie modele SNN10 

charakteryzują się dość małą wrażliwością na niektóre różnice w sygnale 

wejściowym, co jest jednym z ważniejszych wątków badań kolejnej serii SNN11.
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5.3.2 Modele SNN11 - próba znalezienia optymalnego algorytmu uczenia

Modele SNN11 bazują na modelu wyjściowym posiadającym 

następujące cechy: sąsiedztwo neuronu jest zdefiniowane jako trzykrotna 

wartość wejść do systemu, symulacja ładunków postsynaptycznych jest 

włączona, nie ma priorytetu uczenia w pierwszych odpaleniach neuronu, próg 
rośnie dość wolno do ułamka z aktywacji zgodnie ze wzorem

------- 3------------

gdzie:

hj,t - wartość progu neuronu j w chwili t 

Wij,t - wartość Ztej wagi neuronu j w chwili t

Xij,t - wartość i’tego wejścia neuronu j w chwili t

(39)

Sieć jest traktowana danymi o dużej koncentracji sygnałów.

Jak zostało powiedziane we wnioskach poprzedniego paragrafu, modele 

SNN 10 powinny zostać wyposażone w mechanizm, który bardziej szczegółowo 

analizowałby cechy wzorca. W modelach SNN11 ciężar prac zostanie skupiony 

na algorytmie uczenia.

Podczas transformacji modeli przystosowującej je do symulowania 

ładunków postsynaptycznych zarówno wyliczanie aktywacji jak i modyfikacji 

wag zostało oparte na ww. wartościach ładunków. O ile podczas wyliczania 

aktywacji wartość ładunku była w dość oczywisty sposób użyta (wzór), o tyle 

podczas poprawki wag nadal była traktowana binarnie czyli inaczej gdy na 

synapsie nie było żadnego ładunku i inaczej gdy był chociaż minimalny 

ładunek. W modelach SNN okres utrzymywania się ładunku na synapsie 

wynosi ok. 14 ms, zanim użyta rozdzielczość liczb wykaże wartość 0. 

Prowadziło to przy przyjętym kroku równym 2 ms do powstania ok. 7 razy 

większej ilości aktywacji synaps w sieci, co bez wcześniejszego strojenia 

algorytmu uczenia prowadzi do szybkiego wzrostu wag oraz ogólnego 

wzbudzenia. Pierwszą próbą zminimalizowania tego efektu jest zwiększanie 
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wag proporcjonalnie do potencjału postsynaptycznego określonej synapsy. 

Ponieważ ładunek zawsze ulega częściowemu rozładowaniu w czasie, wzrosty 

wag zostały znacznie spowolnione (SNNUa), co jednak nie rozwiązało 

problemu, m.in. dlatego, iż wagi ujemne zanikały, gdyż zgodnie algorytmem 

uczenia tej postaci - mogły tylko rosnąć.

W modelu SNN11b z tego powodu została określona wartość minimalna 

ładunku q, poniżej którego synapsę uczono w kierunku hamowania. W modelu 

tym występują dwie przeciwstawne siły, które mogą zmienić wartość synapsy 

zarówno w górę jak i w dół. Niestety pomimo wielu prób nie udało się ustalić 

prawidłowej wartości q, być może ona nie istnieje. Może o tym świadczyć fakt 

istotnej nieliniowości uczenia związanej z wartością q, nie mającej 

odpowiednika w naturze. Otóż wartości ładunku bliskie q, ale mniejsze od q 

powodują podczas odpalenia bardzo duże zmniejszenie wartości wagi. 

Zupełnie odwrotnie dzieje się dla q bliskiego 0. Można przyjąć, iż założenie 

modyfikacji wagi proporcjonalnie do potencjału postsynaptycznego w 
połączeniu z zaburzeniem wprowadzanym przez ustaloną wartość q nie 

przynosi zamierzonego efektu oraz odbiega znacząco od natury, zatem ta 

droga badań zostanie w tym punkcie zakończona.

Nie oznacza to, iż proporcjonalność szybkości uczenia synaps do

ładunków na nich zgromadzonych jest skazana na niepowodzenie.
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Rozwiązaniem, które wprowadza wiele ograniczeń, ale może przynieść dobre 

efekty w walce ze zjawiskiem spotkanym w SNN11a, jest normalizacja wag po 

każdym odpaleniu neuronu.

nj.rPj.t* W jt

....
(>M=1

(40)

gdzie:
Wn7,( - wektor wag/-tego neuronu po normalizacji

Wy,f - wartość wektora wag /-tego neuronu w chwili t po 

modyfikacjach w czasie uczenia

Pj,t — liczba rzeczywista

W ten sposób zachowujemy pełną liniowość uczenia dla wszystkich 

potencjałów, 

tracimy 

możliwość 

operowania 

na wagach 

ujemnych, 

jednakże 
możemy z 

góry ustalić 

ogólną 

aktywność 

neuronu 

(SNN11C). 

Dodatkowo 
pojawiło się kilka mankamentów ze skalowaniem sieci, np. neurony na 

początku sieci, które z założenia struktury wykorzystują tylko część synaps, na 

tych synapsach ustawiły bardzo wysokie wagi, ponieważ pozostałe były 

nieużywane. W modelu SNN11d zwiększono wartości docelowe progu zgodnie 

ze wzorem
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(41)

gdzie:
hj,t - wartość progu neuronu j w chwili t

Wij,t - wartość /"tej wagi neuronu j w chwili t
Xij,t - wartość i'tego wejścia neuronu j w chwili t

oraz zwiększono o 20% wartość maksymalnej modyfikacji wagi, co 

spowodowało większe stopniowanie i uwypuklenie wpływu wartości potencjałów 

postsynaptycznych. Efekty widać na matrycy wag jako zwiększenie polaryzacji 

względem poprzedniego modelu (rys. 55)

początkowych. Element ten okazał się zupełnie nieistotny dla pracy sieci. 

Zwiększenie sąsiedztwa w SNN11f wywołało podobne efekty jak w modelach 

SNN10. Głównym mankamentem stał się zbyt mały udział sygnałów 

wejściowych w ogólnym pobudzeniu sieci. Jednak zmieniając funkcję 

modyfikacji progu -
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-hj,t

hj.^ =hj.t+~---------------------- ;-------------------------- (42)

gdzie:

hj.t - wartość progu neuronu j w chwili t
Wjj,t - wartość /"tej wagi neuronu j w chwili t 

wartość i’tego wejścia neuronu j w chwili t

oraz modyfikując 

mechanizm 

normalizacji, 

określając sumę wag 

neuronu jako założoną 

wartość i zmniejszając 
ją względem

poprzedniego modelu, 

w SNN11g uzyskano 

znacznie lepsze wyniki 

a efekty synergii 

neuronów możemy 

obserwować na 

matrycy wag rys. 56. 

Lekkie zwiększenie 

różnorodności 
neuronów zostaje też 

uzyskane w SNN11h 

poprzez zwiększenie 

stałej oznaczającą 

maksymalną 

modyfikację wagi 

podczas odpalenia. 

Rys. 57.

Rys. 58 - Duże jednolite powierzchnie w matrycy wag 

modelu SNNlli świadczą o jego małych możliwościach 

przetwarzania danych wejściowych

Ił

Rys. 59 - Matryca wag modelu SNNllj w początkowym 

stadium przetwarzania, wczesny etap uczenia
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Przetwarzane dane wejściowe o względnie dużej częstotliwości, 

wprowadzone jeszcze podczas problemów w SNN 10 zostały zmienione na 

dane o znacznie dłuższym okresie i mniejszej częstotliwości średniej odpaleń 

neuronów, co zbliżyło model do naturalnego. W modelu SNN11i zmniejszono 

jednocześnie maksymalną możliwą modyfikację wagi podczas odpalenia do 

wielkości używanej w SNN11g. Rys. 58 nie wykazuje żadnych efektów synergii. 

Jednakże w wyłączając w obecnym modelu mechanizm wcześniej używany do 

strojenia częstości odpaleń (zmodyfikowana funkcja refrakcji) i pozostawiając 

Rys. 60 - Pierwsze efekty synergii są najwyraźniej zauważalne na wykresie średniej 

częstotliwości odpaleń neuronów w sieci

pozostałe elementy jak w 
SNN11i otrzymujemy model 

SNN11j, który posiada 

właściwości powolnej i 

systematycznej 

samoorganizowalności, nawet 

przy utrzymaniu danych 

wejściowych o względnie małej 

częstotliwości i stosunkowo 

dużym okresie, do której to 

cechy dążyliśmy w ostatnim 

okresie doświadczeń.

Ponieważ SNN11j 

wykazuje się ciekawymi

----*
Inumer synapsy]

Rys.61 - Matryca wag modelu SNNllj po

dłuższym okresie uczenia
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właściwościami, jego algorytm uczenia kryje dość duże możliwości a działająca 

i użyteczna w tym zestawieniu symulacja ładunków postsynaptycznych daje 

szerokie możliwości do uogólniania rozwiązania, został on poddany kilku

bardziej zaawansowanym próbom polegającym na zbadaniu prędkości 

dostosowania 

się do nowego 

wzorca, o 

dużym 

podobieństwie 

do 

pierwotnego 

wzorca.

Interesującym 

w tym 

przypadku jest 

czas 
dostosowania 

się sieci, a właściwie najistotniejsza jest tu proporcja tego czasu do okresu 
podawanego wzorca. Drugim doświadczeniem jest prędkość synchronizacji z 

danymi podanymi do sieci asynchronicznie o zawartości zgodnej ze wzorcem. 

Jest to jednocześnie parametr mówiący o szybkości rozpoznawania.

W pierwszym doświadczeniu dane wejściowe zostały uszczuplone

względem 

wzorca o jedną 

aktywację. Sieć 

posiada ciągłą

zdolność 

adaptacji, 
ponieważ 

włączony 

algorytm 

uczenia.

do

ma

Na

wykresie rys.62

Rys. 63 - Odpowiedź sieci podczas adaptacji do nowego wzorca 

o podobnej budowie

obserwujemy, iż po pięciu prezentacjach danych odpowiedź sieci stała się
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identyczna do wcześniej wywoływanej przez wzorzec. Wynik ten można uznać 

za bardzo dobry. W drugim doświadczeniu jako danych użyto już nowo 

wyuczonego wzorca. Wyuczony wzorzec został podany do sieci zupełnie 

asynchronicznie, bez żadnej sekwencji startowej. Sieć odpowiedziała pełną 

mocą już przy pierwszej prezentacji danych. Jest to na tego typu model bardzo 
dobry wynik.(por. IMPL2). Sytuację tę obrazuje rysunek Rys. 63.

Testując różnego typu dane wejściowe, można zauważyć, iż w modelu 
SNN11j występuje pewna nieefektywność pracy niektórych obszarów 

neuronów. Jest to zjawisko, które zostało już wcześniej zidentyfikowane, 

polegające na niedopasowaniu systemu normalizacji wag do ilości możliwych 
użytych synaps ze względów struktury, ograniczeń w sprzężeniach itp. 

Ustawiając współczynnik sumy wartości wag na względnie dużym poziomie 
niszczymy 

przetwarzanie 

sieciowe już 

na samym 

początku 

sieci, gdyż 

początkowe 

neurony 

wszystkie 

używane wagi 
ustawiają na 

wartości 

wysokie, a 

same z kolei 

generują 

sygnały zupełnie nie przydatne podczas przetwarzania, wprowadzając do 
systemu zbędne szumy. Ustawienie natomiast mniejszych wartości 

współczynnika sumy wagi powoduje sytuację w której neurony znajdujące się w 

ostatnich partiach sieci, które posiadają kilkaset aktywnych synaps, nie są 

wstanie zróżnicować wag w sposób odpowiedni prawidłowej pracy.

Zapobiegając temu zjawisku, w modelu SNN 11 k zostaje dla każdego 

neuronu obliczony współczynnik aktywnych synaps. Współczynnik ten 
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modyfikuje z kolei docelową sumę wszystkich wag. Jest to widoczne jako 

równomierne rozłożenie wag na matrycy wag rys. 64. Modyfikacja ta umożliwia 

przetwarzanie większych wzorców przy tej samej wielkości sieci.

Formalny opis neuronu powstałego modelu SNN11k możemy 
przedstawić następująco:

gdzie:

hj,t - wartość progu neuronu/ w chwili t 

r(j,t) - wartość refrakcji neuronu j w chwili t 

Wij,t - wartość /'tej wagi neuronu j w chwili t 

Xijrt - wartość i’tego wejścia neuronu j w chwili t

(44)

Z.
(45)

gdzie:

Z,(- wartość /'tego wejścia do sieci w chwili t 

L - ilość wejść do sieci

I=L+J
0 <j<J
\/t\/ j\/i wiit<WJ hj, *

(46)
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hj.^~-------------~k--------------- ~ 0

hj.-a^yj,t^

(47)

(48)

gdzie:
Cj- parametr stały danego neuronu 

a,k - stałe danego modelu 

b - współczynnik zależny

Warto zwrócić uwagę na wzór nr 44. Pomimo jego prostoty jest on 

wyznacznikiem podstawy czasu całego modelu, co ma podstawowe znaczenie 

w sieciach pulsujących. Opisuje on zachowanie się potencjału 

postsynaptycznego w synapsie z uwzględnieniem docierających nowych 

pobudzeń oraz upływającego czasu. W praktyce, krok symulacji został tak 

dobrany, aby ten wzór był możliwie prosty, co ma bezpośredni wpływ na czas 

symulacji.

5.3.3 Unikalny automatyczny mechanizm dostrajania neuronu

Jak już zostało wspomniane przy omawianiu wyników poszczególnych 

symulacji, neurony modeli SNN oraz części IMPL posiadają wiele zależności 

funkcyjnych pomiędzy wartością progu, amplitudy refrakcji oraz wartości 

aktywacji liczonej podczas aktywacji neuronu. Te zależności funkcyjne tworzą w 

modelach SNN specjalnie dla nich opracowane mechanizmy autoregulacji 

nazwane PRA. Skrót posiada swą genezę w pierwszych literach nazw obiektów 

uczestniczących w mechanizmie, czyli „próg, refrakcja i aktywacja”. Jest to, jak 

do tej pory, unikalny mechanizm występujący w SNN, którego odpowiednika nie 

udało się odnaleźć w literaturze. W początkowym okresie konstruowania ww. 

mechanizmu były to niespójne atrapy przystosowujące nadmiarowe neurony do 
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zmiany swojej funkcji w sieci, lub, przede wszystkim, zmuszające neurony 

nieużywane do wykonania jakiejkolwiek akcji, która mogłaby doprowadzić do 

wkomponowania nigdy lub bardzo rzadko aktywnego neuronu w strukturę sieci, 

a w rezultacie powstało z tego bardzo finezyjne narzędzie. Podstawowym 

trikiem było systematyczne lub losowe zmniejszanie wartości progu takich 

neuronów o bardzo małe wartości (IMPL2). Neuron zatem miał szansę 

powolnego zbliżania warunku aktywacji do jego spełnienia oraz wystartowanie 

algorytmu uczenia w tym bardzo ciekawym z punktu widzenia zawartości 

synaps momencie, który to praktycznie przesądzał o całej przyszłości neuronu, 

jego funkcji i klastrze do którego został przyporządkowany lub który właśnie on 

stworzył. Kolejnym mechanizmem autoregulującym, zapobiegającym zbyt 

mocnym lub bezwyjściowym sprzężeniom zwrotnym jest modyfikowanie 

wartości progu o wartość proporcjonalną do różnicy wartości aktywacji i progu 

podczas momentu aktywacji. Współczynnik proporcjonalności był dobierany 

empirycznie (i zwykle jego wartość wynosząca 3 przynosiła najlepsze efekty). 

Wyjście ze sprzężenia w dość krótkim czasie jest podstawowym warunkiem, w 
przeciwnym razie pamięć długoterminowa zdekomponowana na wagi 

synaptyczne ulega zniszczeniu. Kolejnym elementem jest wprowadzenie 

refrakcji. Powoduje ona dodatkową dynamikę w sieci . W naturalny sposób 

rozbija ona dodatnie sprzężenia zwrotne, czyniąc je znacznie słabszymi. Do tej 

pory nie zostało określone jednoznacznie, czy jej działanie jest pozytywne w 

procesach przetwarzania informacji2, na pewno jednak zmienia działanie sieci. 
Można stwierdzić, że refrakcja w modelach IMPL i SNN wprowadza elementy 

losowe, co z jednej strony powoduje różnicowanie neuronów, przyczyniając się 

do powstawania większej ilości klastrów, z drugiej strony zmniejsza prędkość 

lub zabrania neuronowemu wektorowi wag dążyć w określonym kierunku, 

przesuwając jego momenty aktywacji względem pierwotnych. Refrakcja rozbija 

dodatnie sprzężenia zwrotne, jednakże powoduje powstawanie 

nieoczekiwanych i powtarzających się innych sprzężeń powstałych z rozbicia 

sprzężenia globalnego. Walka z nieoczekiwanymi sprzężeniami jest bardzo 

trudna i zawsze wprowadza mniejsze lub większe spustoszenia zarówno w 

pamięci krótko- jak i długo- terminowej. Badaniem dynamiki zachowania sieci 

nie podlegającej uczeniu oraz jej przechodzeniem ze stanu synchronicznych 

2 z wyjątkiem jednej zależności, która zostanie opisana w tym rozdziale
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niezależnych odpaleń do stanu synchronicznej aktywacji jako funkcji ilości 

połączeń zwrotnych, zarówno dodatnich jak i ujemnych, oraz średnich 

częstotliwości odpaleń neuronów zajęli się Y. Aviel, C. Mehring, M. Abeles i D. 

Horn w pracy [14], Nie można zatem jednoznacznie określić przydatności 

wprowadzenia refrakcji do modelu, jednakże w modelach z refrakcją został 

zaobserwowany w tej pracy następujący schemat zależności, którego opisu nie 

znalazłem w omawianej powyżej literaturze, a który ma bardzo istotne 

znaczenie dla procesów informacyjnych neuronu. Wszystkie wymienione 

elementy zaczęły funkcjonować zgodnie z następującym schematem:

1 .wartość progu neuronu zmodyfikowana o wartość refrakcji dąży 
(zgodnie z wybraną arbitralnie w danym modelu funkcją) chwilowo do 

wartości progu, aby po określonym czasie refrakcja przyjęła wartość 0. 

Wartości chwilowe amplitudy refrakcji są zwykle proporcjonalne do 

progu dla danego neuronu, aby refrakcja miała równie duże 

oddziaływanie w neuronach zarówno bardzo aktywnych i 

przyporządkowanych do wyróżniania określonej klasy abstrakcji jak i 
neuronów niedotrenowanych.

2 .refrakcja wpływa bezpośrednio na moment pobudzenia neuronu, a 

dokładniej na jego przesunięcie w czasie względem momentu 

pobudzenia, który byłby wyliczony bez uwzględnienia wartości refrakcji 
3.pobudzenie neuronu wyznacza moment liczenia całkowitej aktywacji, 

która to aktywacja będzie przekazana do algorytmu uczenia. Jeśli 

moment pobudzenia został nieznacznie przesunięty, wartość aktywacji 

może być różna od tej z pierwotnego momentu (ale muszą być spełnione 

warunki aktywacji, czyli przekroczenia progu zmodyfikowanego o 

refrakcję), a co ważniejsze, wektor aktywnych synaps może mieć 

zupełnie inną wartość.

4 .zmieniona względem pierwotnej wartość aktywacji wpływa

bezpośrednio na modyfikację progu, ponieważ zwykle wartość progu 

dąży do wartości aktywacji lub do wartości proporcjonalnej do aktywacji 

Jak można zauważyć, w dalszym ciągu najważniejsze pozostają dane 

wejściowe wyznaczające zgrubnie moment pobudzenia neuronu, jednakże ww. 

mechanizm stabilizuje częstotliwość pracy neuronu, a co ważniejsze - aktywnie 

wpływa na informację zapisaną w pamięci krótko- a przede wszystkim długo­
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terminowej. Kolejność przyczynowo-skutkowa tworzy listę elementów 

działających w silnej pętli sprzężenia zwrotnego, a jest to kolejno: „próg, 

refrakcja, aktywacja”, gdzie kolejne elementy powiązane są silnymi 

zależnościami funkcyjnymi, umożliwiając powstanie finezyjnego mechanizmu 

synchronizującego pulsującą sieć neuronową z danymi wejściowymi.

5.4 Kryteria weryfikacji algorytmów uczenia oraz pomiary ich 

skuteczności

Dążąc do zobiektywizowania porównań jakości poszczególnych modeli i 

przyśpieszenia eliminacji modeli nie rokujących nadziei na powstanie w nich 

pamięci długo- lub krótko- terminowej zostały opracowane trzy metody 

pozwalające przeprowadzić te operacje w sposób automatyczny.

Pierwsza z nich bazuje na wykresie ilości odpaleń neuronów w czasie 

pracy (i uczenia) sieci. Pamiętając, że symulacja sieci odbywa się ze 

zdefiniowanym krokiem równym 2ms, każdemu takiemu okresowi możemy 

przypisać określoną liczbę neuronów, które uległy aktywacji w tym okresie. 

Podczas tego testu wzorzec lub ciąg testowy powinien być przedstawiany sieci 

cyklicznie.
Pomocniczo zdefiniujemy funkcję G badającą korelację :

Ti
def.G[aJ)}=corr[z[a+t],z{b+t]} (49)

r=0

gdzie:
Ti- czas trwania wzorca

z(t) - liczba odpalonych neuronów w kroku symulacji nr t

G[t0.t,]>G[t0,tz) (50)

(51)

gdzie:

t„ - chwila rozpoczęcia prezentacji wzorca
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\Ne wzorze (50) zakładamy, że sygnał nie będący wzorcem jest od niego 

statystycznie różny w myśl kryterium (1),(3),(4) lub (5).
Jeżeli wystąpi korelacja pomiędzy ilością odpalonych neuronów oraz 

aktualnym wektorem wzorca np. pojawią się pewne okresowości na wykresie 

częstotliwości odpaleń neuronów i okres będzie równy czasowi trwania wzorca 

możemy stwierdzić, że sieć wykazuje oznaki prawidłowej reakcji na wzorzec. 

Zbadanie tej właściwości pozwala stwierdzić, że sieć nie wpadła w globalne, 

niekończące się sprzężenie zwrotne.

Metoda ta nie może być stosowana podczas kilku pierwszych prezentacji 

zbioru uczącego lub wzorca, kiedy następuje wstępne organizowanie się sieci, 

co często prowadzi do bardzo burzliwych reakcji sieci.

Jeśli korelacja istnieje możemy pokusić się o sprawdzenie tendencji jej 

zmian:

(52)

W ten sposób otrzymujemy kolejny parametr z tej metody. Jeśli stopień 

korelacji z czasem wzrasta, oznacza to, że badany algorytm jest lepszy niż 

mogliśmy ocenić w pierwszych pomiarach. Prędkość wzrostu korelacji daje nam 

trzeci parametr: 

Parametry mogą być użyte do 

automatycznego porównywania 
jakości poszczególnych algorytmów 

uczenia. Przykładowy wykres 

przedstawia rys. 65 [24]

(53)

IW

IM

Rys. 65 - Wykres częstotliwości podczas 

udanego procesu uczenia

Drugie kryterium oceny jakości 

algorytmów opiera się na analizie 

zmian zachodzących w matrycy

potencjałów postsynaptycznych podczas uczenia sieci oraz w mapie aktywnych 

neuronów w każdym kolejnym kroku symulacji. Zarówno na matrycy 

potencjałów, jak i na mapie aktywnych neuronów, możemy zaobserwować mniej
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lub bardziej skoncentrowaną falę odpowiednio potencjałów postsynaptycznych 

o wysokiej wartości lub pobudzonych neuronów, co możemy zapisać 

następująco:

Xft:t-tn<TI 3óe[l,l}

£ [o -w/=0 >d*J (54)

gdzie:

ąyt - wartość ładunku postsynaptycznego /'tej synapsy /tego

neuronu w chwili t

d - stała bliska 1 np. d = 0.9

Mierzenie spójności fali uformowanej w sieci, w myśl wzoru (54), w 

odpowiedzi na na wzorzec lub ciąg testowy może być kolejnym parametrem 
porównawczym.

Trzecia metoda jest ściśle związana z modyfikacjami matrycy wag 

synaptycznych. Przy założeniu sąsiedztwa neuronów oraz ilości klas, na które 

podzieliły się neurony w procesie specjalizacji swojej funkcji w procesie 

dekompozycji problemu globalnego, następujący wzór szacuje stopień 

rozdrobnienia klas:

v= (55)

Używanie trzeciej metody powinno być poprzedzone użyciem dwóch 

poprzednich w odniesieniu do danego modelu, o ile to jest możliwe, a w 

szczególności pierwszej. Wysoka wartość parametru u oznacza dobrą jakość 

algorytmu uczenia.

Dość ciekawe procesy prowadzące do wykształcenia się dużej liczby 

klas neuronów możemy również obserwować w postaci wizualnej, 

przekształcając matrycę wag do postaci czarno-białej bitmapy, gdzie 
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odpowiedni stopień zaciemnienia danego punktu jest odpowiedni do wartości 

wagi reprezentowanej synapsy. Jeżeli po określonym czasie pracy sieci 

bitmapa będzie zawierała wiele detali i nieregularnych kształtów - oznacza to 

iż algorytm rokuje nadzieje na wykształcenie pamięci długoterminowej.

Zgodnie z założonymi kryteriami pokrycia wzorca (rozdział drugi) przez 

sygnał wejściowy zostały spreparowane odpowiednie dane testowe oraz 

przeprowadzone symulacje celem obiektywnego zweryfikowania skuteczności 

oceny wyżej wymienionych trzech metod. Jako obowiązujące i nie preferujące 

określonego typu sieci kryterium danych wejściowych wybrano (3), gdyż 

modele sieci posiadające symulacje ładunków postsynaptycznych znacznie 
lepiej radzą sobie z nieliniowością podstawy czasu (4),(5), szczególnie gdy 

lokalne zaburzenie nie przekracza 8 ms, co w modelu przekłada się na e<4. 

Modele te wykazują bardzo dużą tolerancję nawet na zmianę kolejności 

wektorów w ww. okresie. Każdy rodzaj sieci był testowany od czterdziestu do 

stu razy. Wyniki zostały zamieszczone w tabeli 66. Mała sieć została 

zdefiniowana jako zbiór mniej niż 30 neuronów. Duża sieć była testowana na 

zbiorze 400 i 4000 neuronów.

Tabela 66 - Wyniki skuteczności metod weryfikacji algorytmów uczenia

Rodzaj sieci/ 

kryterium 

weryfikacyjne

Metoda pierwsza, 

bazująca na ilości 
odpaleń

Metoda druga, 

bazująca na

istnieniu fali

ładunków

Metoda trzecia, 

bazująca na 

matrycy wag

Mała sieć binarna a) nieużyteczna b) nieużyteczna c) 0,570
Duża sieć binarna d) 0,963 e) nieużyteczna f) 0,9375
Sieci z symulacją 

ładunków 

postsynaptycznych g) 0,978 h) 0,989 i) 0,945
Sieci z symulacją 

refrakcji j) 0,905 k) nie użyteczna 1) 0,554
Sieci z symulacją 

ładunków 
postsyna ptycznych 

oraz refrakcji m) 0,932 n) 0,988 o) 0,629
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Objaśnienie skrajnych przypadków testu i błędnych przyporządkowań:

a) Takie rodzaje sieci mają małą maksymalną częstotliwość odpaleń neuronów 

ze względu na małą ich ilość. Czyni to tę metodę stosunkowo mało czułą.

b) Sieć jest zbyt mała aby móc mówić o skoncentrowaniu ładunków na danym 

obszarze i wytworzeniu przesuwającej się fali.

c) Bardzo słabe wyniki tej metody w przypadku małych sieci są skutkiem 

akceptowania dużej liczby błędnych algorytmów. Mała matryca wag powoduje 

dość małą skalę rozpiętości parametru d obarczoną względnie dużym błędem 

statystycznym.

d) Jedynie kilka sieci o bardzo małej amplitudzie częstotliwości odpaleń udało 

sie błędnie zaakceptować jako dobre. Sieci te transmitowały dane z wejścia do 

wyjścia bez jakichkolwiek transformacji, nie posiadały pamięci.

e) Metoda badania potencjałów postsynaptycznych może być użyta tylko do 

sieci, które je posiadają.

f) Kilka sieci z małą ilością detali w matrycy wag z powodu zbyt prostego 

wzorca posiadało prawidłowo działający algorytm, a zostało odrzuconych. 

Jednocześnie zdarzyło się kilka algorytmów nie wykształcających pamięci, a 

bardzo różnicujących matrycę wag, które metoda błędnie zaakceptowała.

g) Podobnie jak w d)

h) Jedna sieć nie wykazywała koncentracji ładunków tworzących falę, ale 

jednocześnie wykazywała właściwości pamięci krótkoterminowej, co oznacza, 

że algorytm uczenia był poprawny, a został odrzucony przez tę metodę.

i) Podobnie jak w f)

j) Kilka sieci posiadających niską wartość częstotliwości odpaleń neuronów, 

które przesyłały sygnały wejściowe bezpośrednio na wyjście, zostało błędnie 
zaakceptowanych. Jednocześnie pomyłki zdarzyły się również w przeciwnym 

kierunku, tzn. refrakcja stabilizowała częstotliwościową odpowiedź sieci i kilka 

prawidłowo działających algorytmów zostało odrzuconych.

k) Podobnie jak w e)

I) Dynamiczny model refrakcji zaburza w pewnym stopniu integralność 

sąsiedztwa w topologicznym podejściu, ponieważ potrafi ono być podzielone 

np. na dwa obszary sąsiedztwa wzajemnie się przeplatające i zajmujące ten 
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sam obszar. Logicznie są jednak dwoma niezależnymi sąsiedztwami. Jeśli 

sąsiedztwa się pokrywające należą do różnych klas neuronów - powstaje 

bardzo zróżnicowana matryca wag, co nie jest proporcjonalne do ilości 

faktycznych klas wykształconych w sieci. Metoda nie jest akceptowalna dla tej 

struktury sieci.

m) Kilka sieci wykazywało spełnienie tego kryterium, ale ich algorytm uczenia 

utykał w pewnym punkcie i nie doprowadzał skutecznie do powstania pamięci, 

co oznaczało błędną klasyfikacje tego kryterium. Jeden model sieci o złym 

algorytmie uczenia spełnił kryterium przez przypadek - nie było to powtarzalne 

w przyjętej próbce.

n) Podobnie jak w h) 

o) Podobnie jak w I)

Podsumowując wyniki pomiarów skuteczności metod weryfikacji 

algorytmów uczenia możemy jednoznacznie powiedzieć, że żadna z metod nie 

nadawała się do weryfikacji działania małych sieci neuronowych, posiadających 

do kilkudziesięciu neuronów. Metoda druga, z natury rzeczy, nie ma możliwości 
operowania na sieciach nie posiadających włączonej symulacji potencjałów 

postsynaptycznych. Metoda trzecia wypadła bardzo słabo przy sieciach z 

modelowaniem refrakcji względnej i bezwzględnej. Większość tych przypadków 

dotyczy zatem albo przypadków mało ciekawych lub skrajnych np. użycie takich 

metod do badania małych sieci jest pewnym przerostem narzędzi nad 

potrzebami, lub brak możliwości obserwacji fali potencjałów postsynaptycznych 
w miejscach nie posiadających tych potencjałów. W pozostałych przypadkach 

skuteczność metod jest bardzo wysoka, maksymalnie sięgająca niemalże 99%, 

a oscylująca dla różnych testów na poziomie 96-97%! Co ważniejsze, dotyczy 

to właśnie najbardziej obiecujących obszarów badań, czyli sieci dużych, 

posiadających modelowanie ładunków synaptycznych. Nawet w przypadku 

analizy sieci wykorzystujących różne rodzaje refrakcji, które z założenia 

wykazują większe zróżnicowanie i są trudniejsze do weryfikacji, metody z grupy 

pierwszej i drugiej wykazują skuteczność pomiędzy 90 a 98%. Tworząc kryteria 

wykorzystujące jednocześnie po dwie lub trzy metody możemy jeszcze 

zwiększyć precyzje weryfikacji algorytmów.
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5.5 Zestawienie składowych modeli oraz algorytmów uczenia

a) Warunek aktywacji neuronu

1
y wij,l*xi
%

y
h w*i

(56)

gdzie:

hj.t - wartość progu neuronu j w chwili t

r(j,t) - wartość refrakcji neuronu / w chwili t

Wij,t - wartość ftej wagi neuronu j w chwili t

Xij,t - wartość i’tego wejścia neuronu j w chwili t

W- maksymalna wartość wagi

I- ilość synaps każdego neuronu

Refrakcja przyjmowała wartości:

• funkcji stałej o wartości zero, gdy refrakcja nie była modelowana

• funkcji przyjmującej wartości nieskończoność,9,4,2,1,0 mV dla 

danego neuronu j licząc dyskretnie w kolejnych krokach symulacji 

o długości 2 ms i początku w momencie aktywacji neuronu

• malejącej funkcji linowej (w tym również przyjmującej wartości 

ujemne) o wartości początkowej w momencie odpalenia neuronu 

zależnej od wartości jego aktywacji. Nachylenie funkcji jest 

zależne od wartości progu, tak że po ustalonej dla danego 

modelu ilości kroków osiąga wartość przeciwną do progu.
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b) Przepływ ładunków przez synapsę

Przepływ ładunków przez synapsę i ich akumulacja po stronie 

postsynaptycznej jest ściśle związana z krokiem symulacji. Przy kroku równym 

2ms możemy przyjąć:

• brak symulacji ładunków postsynaptycznych

• zgodnie ze wzorem:

(57)

c) Wejście danych do systemu

Z it<=>i<L
(58)

gdzie:

Z»- wartość /'tego wejścia do sieci w chwili t 

L - ilość wejść do sieci

I=L+J
0 < j< J

J hj, *

(59)

d) Zmienność progu neuronu

(60)

gdzie:
g - stała modelu, ułamek właściwy lub 1 
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k- stała modelu, k>1 

a - stała modelu

Parametr g jest wyznacznikiem, jak szerokie klasy abstrakcji mogą 

zostać wykształcone podczas procesu uczenia. Im parametr ten jest bliższy 1, 

tym bardziej klasa będzie pokrywała jedynie zbiór uczący. Wartość nie powinna 

być niższa niż 0,3.
Parametr k definiuje tempo zmian progu. W wielu modelach przekłada 

się to bezpośrednio na czułość sieci na drobne zmiany sygnału wejściowego. 

Im k przybiera większa wartość, tym model staje się czulszy, ale tym wolniej 

przebiega uczenie.

e) Zmiany wag synaptycznych

W tym punkcie nie da się przedstawić uogólnienia. Modyfikacje wag to 

jedna z najważniejszych części modelu odpowiedzialna za powstawanie 

pamięci długoterminowej, a jednocześnie jedna z najszerszych pól do 

zbadania. Występują tu różne algorytmy, począwszy od modelujących 

hamowanie i torowanie, modyfikacji opartych o wyliczenia zmian częstotliwości 

odpaleń neuronów, sprawdzających hipotezy synaps hamujących i hamowania 

presynaptycznego, co zostało omówione przy poszczególnych modelach. 

Możemy jednak z dużym przybliżeniem powiedzieć, że wartości wag zwykle są 

proporcjonalne do swoich poprzednich wartości oraz sygnału wejściowego (w 
tej pracy w większości reprezentowanego przez potencjał postsynaptyczny).

(61)

gdzie:
Cj - parametr stały danego neuronu 

a,k - stałe danego modelu 

b - współczynnik zależny

Wektor wag danego neuronu może być normalizowany. O ile na temat 

zwiększania się wag w procesie uczenia jest sporo hipotez, o tyle bazujących 

na danych fizjologicznych i dotyczących zmniejszania jest znacznie mniej.
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Normalizacja tego wektora wydaje się być biologicznie uzasadniona, jako 

odzwierciedlająca fizyczne możliwości czułości neuronu. W praktyce proces 

powinien być nieco sparametryzowany, aby zachować odpowiednią rozpiętość 
wartości wag:

p. .,*w. .,*x. ..o y .,>0W = ij.t ij,t z J.t

^j,r = lwl, — (62)

gdzie:

Wp - wektor wag j-tego neuronu

Pj,t- liczba rzeczywista

la =SG +Sd- liczba synaps neuronu używanych w danym modelu 
zgodnie ze wzorem (63)

g- stała modelu

f) Sąsiedztwo oraz dozwolony stopień sprzężeń zwrotnych

Podstawową własnością pulsującej sieci neuronowej, bez której 

zawładnięcia nie można kroczyć w stronę wykształcania pamięci, jest 

utrzymanie stanu asynchronicznych pobudzeń podczas procesu uczenia. Jak 

zostało opisane w poprzednich rozdziałach, zachowanie tej stabilności jest 

trudne w sieciach ze sprzężeniami zwrotnymi. Natomiast wyeliminowanie 

sprzężeń zwrotnych diametralnie zmieniłoby możliwości sieci i zbliżyło do 

prostych sieci warstwowych jednokierunkowych przeliczających określona 

funkcję.

Doświadczenia wskazują, że priorytetowa okazuje sie w tym zakresie 

struktura sieci, tzn.:

• definicja sąsiedztwa w przyjętym monolicie,

• zasięg i ilość synaps do neuronów o mniejszych identyfikatorach

• fakt istnienia w strukturze możliwości ciągłego przekazywania kontekstu 

do sąsiednich obszarów.
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Uzasadnienie tych tez wyjaśniam w odwrotnej kolejności niż zostały 

wymienione. Rekurencyjna sieć pulsująca ma predyspozycje do zachowań 
synchronicznych. Jeśli owa własność zostanie wykorzystana do synchronizacji 

z danymi wejściowymi i będzie dotyczyła całej sieci, inne słabsze sprzężenia 

zwrotne nie będą w stanie “przebić się” w gąszczu tych sprzężeń i będą 

okresowo przerywane przez pętle silniejsze, z czasem doprowadzając do 

zaniknięcia tych słabych poprzez przejęcie ich neuronów do swoich funkcji. 

Ważne jest w tym przypadku, aby sąsiedztwo zdefiniowane w strukturze 

tworzyło spójny twór, np. w najprostszym przypadku było linowe.

Druga własność wymaga określenia potencjalnej ilości sprzężeń 

zwrotnych. Aby odróżnić synapsy zwrotne od utrzymujących pierwotny kierunek 

w architekturze monolitycznej każdemu neuronowi przyporządkowano jego 

identyfikator, będący kolejną liczbą naturalną. Synapsy do neuronów o 

mniejszym identyfikatorze są synapsami zwrotnymi. Ich ilość jest określona. 

Zasięg oznacza maksymalną różnicę wartości identyfikatorów neuronów 

posiadających synapsę zwrotną. Oczywiście ww. definicje ma tylko charakter 
umowny na cele tego rozumowania. Zarówno ilość jak i zasięg synaps 

zwrotnych przekładają się na stabilność pracy sieci w stanie asynchronicznym.

Przechodząc do punktu pierwszego możemy znaleźć dopełnienie 

konstrukcji. Sąsiedztwo właśnie, budowane celem koncentracji określonych 
funkcji sieci w określonym topologicznie obszarze, jest jednocześnie ściśle 

związane z zasięgiem i ilością synaps, w tym zarówno przepływu danych do 
przodu jak i do tyłu (do neuronów o wyższych i o niższych identyfikatorach 

względem identyfikatora neuronu wysyłającego sygnał). Wynika z tego, że za 

właściwości dynamiczne sieci odpowiada definicja sąsiedztwa w modelu.

W testowanych modelach sąsiedztwo było definiowane w oparciu o 

identyfikator neuronu j i miało następującą postać:

0 <i<Jj-SD<l<J+Sa (63)

gdzie:

I - ilość synaps neuronu 

j- identyfikator neuronu 

Sd - sąsiedztwo dolne
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SG - sąsiedztwo górne

W większości modeli sąsiedztwo było definiowane asymetrycznie. 

Parametr SD przybierał zwykle wartość równą I, choć część modeli miało nawet 

zawężane np. do 12. Sg zwykle wynosił kilkanaście procent z liczby synaps, 

choć były testowane modele z tym parametrem o wartości od 1 do /.

W modelach ze zdefiniowanym sąsiedztwem ładunki synaps o indeksie i 

spoza zakresu określonego wzorem (63) nie były brane do liczenia aktywacji 

oraz nie dokonywano modyfikacji wag im odpowiednich.
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6. Porównanie badanych modeli do znanych z literatury

6.1 Wytyczne teorii przetwarzania przy pomocy PNN w czasie 

rzeczywistym bez stanów ustalonych

Analizując literaturę światową, dotyczącą podmiotu tej pracy, można 

zauważyć, że fakty wynikające z przedstawionych symulacji i publikowane na 

konferencjach zostały potwierdzone przez niezależnych badaczy w latach 

1995-2001, a część nadal jest przedmiotem analiz. Do podstawowych 

problemów można zaliczyć teorię budowy synapsy, algorytmu działania 

synapsy oraz jej modyfikacji w procesie uczenia, dynamiki pracy systemu 
złożonego z dużej liczny neuronów (większość interesujących efektów powstaje 

przy liczbie neuronów większej od kilku tysięcy), oraz ściśle z nim związanego 

algorytmu uczenia.

Problemem fundamentalnym teorii systemów bazujących na motorze 

pulsujących sieci neuronowych jest konieczność zmiany podejścia do sieci 

neuronowych jako mniej lub bardziej wyrafinowanej funkcji i uznanie dynamiki 

sieci oraz braku konieczności osiągania stanu ustalonego jako podstawy do 

skonstruowania brakującej w tym miejscu teorii. Jej brak, o którym zostało 

wyraźnie powiedziane w 1996 roku [24]3 jako teorii (a właściwie jej braku) 

przetwarzania w czasie rzeczywistym bez stanów ustalonych, doczekał się 

wstępnego opracowania w październiku 2001 roku przez Thomasa 

Natshlager’a oraz Wolfganga Maass’a [131], co prawdopodobnie wpłynie na 

zintensyfikowanie prac w tym zakresie przez różne ośrodki badające PNN. 
Powstałe opracowanie „Neurony pulsujące i wstęp do maszyny skończonych 

stanów” [131] nie tylko mówi o dużej pustce w tym obszarze, ale proponuje 

stosunkowo prostą teorię, która przystaje do sieci jednokierunkowych. W tej 

samej pracy jest podkreślona również rola lokalnej reguły uczenia, co w 

przyszłości powinno być fundamentem algorytmu uczenia. Przedstawiony 

3 [24] - w rozdziale 3.4: „Stan dynamiczny sieci może być również reprezentacją danych 

wejściowych, o ile zapewni się mechanizmy to wykorzystujące.” oraz w rozdziale 4 wraz z 

przykładami działających tego typu systemów, powstałych w procesie uczenia, bazującym na 

lokalnej regule uczenia.
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model neuronu pulsującego przez Natschlagera posiada bardzo duże 

podobieństwa do modeli z symulacją ładunków postsynaptycznych 

prezentowanych w poprzednich rozdziałach: praca synapsy, refrakcja 

bezwzględna i względna. Ważnym wkładem [131] jest też usystematyzowanie 

pojęć poprzez podanie ich definicji oraz ujednolicenie słownictwa w zakresie 

opisu PNN jako maszyny skończonych stanów. Pulsująca sieć neuronowa jest 

w tym rozumieniu maszyną przekształcająca ciąg wejściowy w ciąg wyjściowy 

na bieżąco, nie arbitralnie lecz używając w tym procesie skończonej liczby 

stanów wewnętrznych maszyny skończonych stanów (FSM). Jest to bardzo 

istotne z tego punktu widzenia, iż nie traktuje się tu dynamiki sieci jako coś 
tymczasowego, coś czego celem jest doprowadzenie do ustabilizowania się 

(jeśli proces będzie zbieżny) i określenia wyniku, jak np. w sieci Hopfielda, ale 

sieć jako proces staje się głównym obiektem zainteresowania. Sieć nie jest tu 

też automatem, który odrzuca lub akceptuje określone ciągi wejściowe (jak 

maszyna Turinga). Spojrzenie jest znacznie szersze.

Wcześniejsza praca W. Maassa z 1996 roku [114], najbardziej zbliżona 

do tego tematu (PNN jako FSM), zawiera formalne metody przekształcenia 

maszyny w pulsującą sieć neuronową, ale proces ten nie ma nic wspólnego z 

algorytmem uczenia. Nie zawiera też praktycznej realizacji, jedynie teoretyczny 

proces na potrzeby oszacowania możliwości sieci. Ponadto wyniki były też 
niezgodne z przesłankami biologicznymi np. nie założono jakiejkolwiek 

redundancji, nienaturalnie złożona funkcja pojedynczego neuronu w systemie 
itp., co sprawia, że zbytnio odbiegała od naturalnego wzorca PNN. Praca 

przedstawia natomiast formalne dowody na potencjalną moc PNN jako 

maszyny. Dowody te obrazują, jak duże możliwości posiada mechanizm PNN 

np. w jednym z nich jest pokazane, jak maszyna Turinga może być 

przekształcona i emulowana przez PNN. Jest to zatem ważna cegiełka w teorii 

działania PNN.
W świetle rysujących się wymagań stawianych przez współcześnie 

powstającą teorię przetwarzania w czasie rzeczywistym przy pomocy 

pulsujących sieci neuronowych bez osiągania stanów ustalonych (ostatnio 

opisywanego skrótem RTCWSS) warto cofnąć się do klasycznych architektur 

sieci i określić ich pozytywne i negatywne cechy pod kątem możliwości 

zastosowania w modelach pulsujących. Siecią najbardziej przypominającą w 
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swym działaniu PNN ze sprzężeniami zwrotnymi jest popularna sieć Hopfielda 

[63]. Jej atutem jest występowanie sprzężeń zwrotnych i w rezultacie procesu 

dynamicznego przetwarzania po podaniu danych wejściowych. Jest to cecha, 

którą posiadają naturalne sieci neuronowe i wysoce pozytywna w świetle w.w. 

teorii. Jednak podczas tego procesu nie są przetwarzane przez sieć kolejne 

dane wejściowe, jakby to wynikało z wzorca biologicznego. Kolejna partia 

danych może być przetworzona w następnym cyklu pracy sieci, a on następuje 

po osiągnięciu stanu ustalonego w cyklu bieżącym, gdzie czas trwania cyklu 
nie jest dodatkowo stały ani łatwo przewidywalny. Nie jest to zatem 

przetwarzanie w czasie rzeczywistym. Poza tym oczekuje się, że sieć 

Hopfielda osiągnie stan ustalony i to oznacza zakończenie przetwarzania. 

Samo odłączanie wejść sieci po pobraniu wzorca wejściowego jest tworem 

bardzo sztucznym, nie mówiąc o tym, że aby zapewnić zbieżność 

przetwarzania muszą być spełnione określone warunki wag, często możliwe do 

sprawdzenia tylko centralnie (sprzeczne z lokalną regułą uczenia). 

Ograniczenia te wynikają z faktu, że za wszelką cenę jest zapewniana 
zbieżność przetwarzania do stanu ustalonego, co zgodnie z teorią RTCWSS 

nie jest konieczne.

W maszynie Boltzmana [159] podczas pracy występuje proces 

dynamiczny, jego efekty działania są pożądane w rozumieniu RTCWSS. 
Jednak maszyna ta posiada ten mankament, że zgodnie z uogólnionym 

algorytmem uczenia podanym przez Hintona i Sejnowskiego [61] wymaga 

scentralizowanego zgromadzenia statystyk na temat sieci oraz wyliczenia 

poprawek wag. Jest to w konflikcie z lokalną regułą uczenia, gdyby sieć miała 

uczyć się podczas pracy. Efektem zakończenia przetwarzania jest też stan 

równowagi, podobnie jak w sieci Hopfielda. Stan ustalony nie może być formą 

reprezentacji danych zmiennych w czasie.

Klasycznym przykładem braku nauczyciela w sieciach neuronowych jest 

mapa cech Kohonena [77], a właściwie jej pierwowzór - sieć Wilshawa i von der 

Malsburga, która dodatkowo nie wymaga przetwarzania scentralizowanego i 

jest zgodna z lokalną regułą uczenia. Zarówno samoorganizowalność jak i 

decentralizacja przydatna w RTCWSS ma swój pierwowzór w naturze, 

dokładniej naśladowanie przyrody w odwzorowaniach świata zmysłów 

organizmów w ich korze mózgowej np. połączenia kory mózgowej z okiem 
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tworzą mapę reintopową, z uchem - mapę tonotopową, z receptorami dotyku - 

mapę somatosensoryczną. Samoorganizowalność tych map jest osiągnięta 

poprzez wzajemne oddziaływanie neuronów w zakresie pracy i uczenia. Siła 

wzajemnego oddziaływania jest funkcją zwaną „kapeluszem meksykańskim” 

[79] str.79, której argumentem jest odległość na zdefiniowanej przestrzeni. 

Naturalna przestrzeń jest trójwymiarowa, nie jest ona jednak jedyną przydatną 

w tej sytuacji. Pomimo, że samoorganizowalność nie jest jednoznacznie 

związana z RTCWSS, powinna stanowić jej nierozłączną część, zwłaszcza że 

została tutaj użyta pożądana lokalna reguła uczenia.
Bardzo interesująca jest, współcześnie powstała do modelu SNN, praca 

Massa i Natschlagera [133]. Jest ona rozwinięciem poprzedniej pracy [131] 

dotyczącej przetwarzania informacji bez konieczności osiągania stanów 

ustalonych w pulsujących sieciach neuronowych (RTCWSS). Postępowość tej 

pracy jest ogromna. Zwykle likwidując konieczność dążenia do stanu 

ustalonego pierwszym przychodzącym na myśl abstraktem odpowiednim jest 

powstanie określonego atraktora z wektorów generowanych przez wyjście sieci 
lub przez wektor aktywnych neuronów sieci. Tak również możemy 

domniemywać było w poprzedniej pracy tych autorów, jak i we wszystkich 
zaprezentowanych modelach IMPL. I jest to błąd spowodowany 

prawdopodobnie ukrytym dążeniem do zamodelowania stanu ustalonego 

przystającego do pracującego modelu PNN. Zgodnie z założeniami, nie jest 

potrzebny (a dokładniej - jest niedozwolony) jakikolwiek stan ustalony, aby 

przetwarzać zmienne w czasie informacje za pomocą tego typu struktury. W 

pracy jest podjęta próba zdefiniowania alternatywnego paradygmatu względem 

stanów ustalonych w pojęciu Maszyny Turinga lub atraktorów sieci 

neuronowych. Paradygmat odrzuca konieczność sekwencyjnych przejść 

pomiędzy ściśle zdefiniowanymi dyskretnymi stanami wewnętrznymi. Co więcej, 

proponowana maszyna nie posiada ściśle określonych stanów wewnętrznych i 

jest to jak najbardziej uzasadnione - mówi nam o tym neurobiologia. Jako 

model PNN proponowana jest maszyna ciekłych stanów (LSM) [150], która w 

swej postaci jest bardzo dobrym odzwierciedleniem procesów występujących w 

PNN. LSM posiada natomiast uniwersalną moc obliczeniową (przy spełnieniu 

kilku warunków) niezależną od jej fizycznej implementacji. Własności LSM 

zatem przenoszą się na PNN. W zamian poprzednio używanego abstraktu 
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atraktora w PNN powstają tutaj dwa nowe kryteria wystarczające do 

kompletnego przetwarzania danych, mianowicie: zdolność separacji danych 

oraz zdolność uogólniania (aproksymowania).

Zdolność separacji danych przejawia się różnymi trajektoriami stanów 

wewnętrznych pod wpływem różnych ciągów wejściowych.

Zdolność aproksymacji jest wyznaczana za pomocą jakości mechanizmu 

przekształcającego określoną grupę zmian stanów wewnętrznych w jeden 

określony ciąg wyjściowy. Grup zmian stanów wewnętrznych, z 

przyporządkowanym im ciągiem wyjściowym, może być wiele.

Dość ważną zmianą jest również podejście do autoasocjacyjności 

neuronu oraz możliwości tworzenia sprzężeń zwrotnych. W poprzedniej pracy 

na temat RTCWSS [131] domyślenie główna uwaga została skupiona na 

sieciach jednokierunkowych. Dla tego typu sieci jesteśmy w stanie obecnie 

zaimplementować dość efektywne metody algorytmu uczenia, w 

przeciwieństwie do sieci ze sprzężeniami zwrotnymi. Jednakże sieci z pętlami 

zwrotnymi mają potencjalnie nieporównywalnie większe możliwości zarówno 

pod względem efektywności pracy sieci, ilości przekształceń matematycznych 

możliwych w odpowiednio licznej grupie neuronów oraz zupełności możliwych 

przekształceń sygnału wejściowego. Problemem jest natomiast dopasowanie 

algorytmu uczenia, co zostało szczegółowo omawiane przy modelach SNN. 

Zmiana polega na domyślnym założeniu, że sieć powinna mieć bardzo dużo 

małych obwodów sprzężenia zwrotnego, (szacunkowo ok. 80% synaps 

powinna pracować w takich obwodach). Zwiększa to diametralnie dynamikę 

zachowania takiej sieci, niestety autorzy nie podają jak powinna pracować taka 

struktura. Wydaje się to samym sednem problemów PNN i wyzwaniem dla 

wszystkich badaczy tego obszaru. Opracowanie przystającego do tej struktury 

algorytmu uczenia spełni warunki stawiane LSM i wyzwoli w PNN uniwersalną 

moc obliczeniową. Zgodnie z symulacjami omówionymi w poprzednich 

rozdziałach wydaje się, że jednak liczba obwodów sprzężenia zwrotnego 

powinna być ok. czterokrotnie mniejsza.

Z drugiej strony należy mieć na uwadze, że jeśli to się powiedzie, 

powstała maszyna z mocą obliczeniową będzie na tyle różna od znanych nam 

obecnie komputerów, że prawdopodobnie nigdy ona nie zastąpi PC a jedynie 

go uzupełni (lub odwrotnie - technika PC będzie jej uzupełnieniem). Przemawia 
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za tym wysoka dynamika systemu i związane z tym ryzyko nieprzewidywalności 

przy określonych ciągach wejściowych oraz określonych stanach 

wewnętrznych. Wydaje się też, że składowanie baz danych w których 

wymagana jest stuprocentowa dokładność, będzie też niemożliwe lub co 

najmniej okupione nieproporcjonalnie dużym nakładem pracy takiej sieci i 

znacznie wyższym niż w przypadku klasycznego przetwarzania.

Warto w tym miejscu zaznaczyć, że nie tylko technika PNN natrafiła na 

problemy z teorią przetwarzania informacji w ostatnich latach. Prace nad 

skonstruowaniem komputera DNA wprowadzają nas w analogiczne dylematy. 

Łańcuch kwasu DNA w komórce jest przetwarzany równolegle w wielu 

miejscach, podobnie jak w wielu miejscach informacja jest przetwarzana przez 

równolegle pracujące neurony. Już obecnie możemy zaprogramować taki 
komputer DNA aby określił, czy w danym ciągu jest np. parzysta liczba zer, czy 

ciąg się zaczyna i/lub kończy określonym symbolem itp. Nikt jednak nie planuje 

zastosować tego do skonstruowania PC, pomimo że technika ta w wielu 

miejscach może mieć możliwości nigdy nie osiągalne przez prosta linię rozwoju 

obecnych PC.

Odchodzenie w wielu dziedzinach od koncepcji komputera zgodnego z 

maszyną Turinga potwierdza zapotrzebowanie na nowe teorie przetwarzania 

informacji.

6.2 Inne pulsujące systemy neuronowe - teoretyczne i zaimplementowane

Pulsujące sieci neuronowe to bardzo obiecujący dział sieci 

neuronowych, pomimo iż w zastosowaniach aplikacyjnych technika ta obecnie 

przegrywa z klasycznym podejściem SN lub nawet z algorytmami nie 

neuronowymi. Opisane w tej pracy symulacje tworzą ciąg doświadczeń 

powiązanych ze sobą związkami przyczyno-wynikowymi. W naturalny sposób 

stanowią niezależną linię pulsujących sieci neuronowych względem prac 

innych badaczy zajmujących się tym tematem. Pomimo, że model tworzy 

odpowiednio dobrany zbiór zaimplementowanych cech i odpowiednie proporcje 
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zwykle stanowią o jego mocy, możliwe jest też porównywanie poszczególnych 
elementów występujących w modelach różnych autorów.

Jak pokazują najnowsze badania, sam neuron zintegrowany i pulsujący 

powszechnie uznawany obecnie jako bazowy (IAF), został już w 1907 roku 

opracowany przez Lapicque! [1]. Zaproponował on dość prostą synapsę 

składająca się z kondensatora i rezystora połączonego równolegle do 

potencjału zewnętrznego. Nie znał on oczywiście wszystkich procesów 

występujących w neuronie, ale zaproponował właśnie neuron typu IAF, 
pomijając np. zmienność przepływności membrany w zależności od aktualnego 

jej potencjału. Przydatność tego modelu można ocenić dopiero obecnie, po tak 

długim czasie, ponieważ coraz więcej procesów neuronu wydaje się nie mieć 

związku z przetwarzaniem informacji. Weryfikacja takich faktów nie jest łatwa i 

wymaga wielu doświadczeń, aby pokusić się o stwierdzenie, że właściwość x 

oraz y nie mają ze sobą związku, lub że występujące zależności nie mają 

znaczenia w interesujących nas procesach.

Jednym z pierwszych symulatorów, w którym potwierdzono fale 

określonej częstotliwości koncentrujące się topologicznie w określonym miejscu 

sieci, jest PRISM [71], Fakt przepływu np. fali potencjałów postsynaptycznych, 
jako cechy świadczącej o skutecznym przetwarzaniu danych, został omówiony 

w modelach SNN i jest symptomem wystąpienia synergii neuronów oraz 

procesu kreowania pamięci krótkoterminowej. System PRISM4 zawiera 

elementy zmiany synapsy, uwarunkowane jej historią w systemie, używane do 

rozpoznawania statycznego wzorca np. liter. Zastosowanie procesów Markowa 

przy modyfikacji synapsy daje dość duże możliwości, ale prawdopodobnie nie 

jest wystarczające, ponieważ nie tylko informacje docierające do synapsy mają 
wpływ na zmianę jej wagi. Brak zależności czasowych lub chwilowych w tym 

systemie znacznie ogranicza możliwości sieci neuronowej. Natomiast cechą 

wyróżniającą ten system jest przyjęte kryterium przy określaniu odpowiedzi 

sieci (zarówno pozytywnej jak i negatywnej), mianowicie: koncentracji 
impulsów o kreślonym miejscu sieci: „Mathematically the wave packet is 

created when a group of waves all near the same frequency clumps together. 

The wave packet represents a region where a localized concentration of 

energy occurs. We're assuming that the coherent, energetic synapses filled 

4 PRISM: http://www.neuralmachines.eom/prism/prism.html#Prism
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with all kinds of neural dynamics can be modelled by this mathematical 

construct.”5 („Matematycznie, pakiet fal powstaje gdy grupa fal o podobnej 

częstotliwości koncentruje się wspólnie. Pakiet fal reprezentuje region gdzie 

występuje wymieniona koncentracja energii. Zakładamy, że spójne, 

energetyczne synapsy wraz z różnymi typami dynamiki neuronu mogą być 

modelowane przez ten konstrukt”). Jest to cechą dość rzadko do tej pory 

spotykaną a jednocześnie wspólną z modelami SNN. Oznacza to użycie 
podobnych mechanizmów klasyfikujących w obu rozwiązaniach.

5 PRISM http://www. neuralmachines.com/prism/neural.html

6 sekcja autorstwa Lindblad z 1997 roku

Porównując SNN do współczesnych mu symulatorów, można powiedzieć, że 

osiągnięta skala sieci w modelach SNN przy złożoności pojedynczego neuronu 

(np. symulacja potencjałów postsynaptycznych) oraz spełnieniu założeń 

neuronu typu IAF w tym czasie stawia pracę [26] na pionierskiej pozycji, a 

zastosowanie PNN z ww. mechanizmami do rozpoznawania względnie dużych 

ilości danych wejściowych (pojedyncze dźwięki, sylaby) [28] w 1998r nie 

znajduje odbicia w literaturze. Współczesne jej aplikacje sieciowe nie wykazują 

globalnych efektów synergicznych, a ich zasadę działania ([112] str. 310)6 

można raczej oprzeć w tych przypadkach na idei sieci komórkowej 

dostosowanej do założeń PNN, co niewątpliwie nie jest pożądanym 

przeznaczeniem PNN. Nie licząc prac teoretycznych większość doświadczeń 

tego okresu prowadzona jest na pojedynczych neuronach. Niektóre z nich są 

bardzo nowatorskie (np. postępowe prace z 1997 roku Axela Jankę [75], Tima 

Schoenauera,...), ale nie są w stanie określić dynamiki sieci złożonej z wielu 
neuronów. Z drugiej strony prace na większych zbiorach neuronów nie 

wykorzystują globalnych właściwości sieciowych celem przetwarzania 

informacji. Jako przykład tego typu obiektu przeanalizujmy sieć skonstruowaną 

przez wybitnych badaczy Horn’a i Opher'a [71] w 1997 roku, składającą się z 

150 neuronów (150IAF) o topologii identycznej do założonej w tej pracy. Po 

określonym czasie symulacji neurony wpadały w sprzężenie zwrotne i momenty 

odpaleń neuronów, zgodnie z regułą opisaną w rozdziale 4.3.2, zbliżały się do 

siebie, by po dłuższym czasie doprowadzić do wzajemnej synchronizacji. W 

przypadku ustawienia stosunkowo dużej ilości wag ujemnych sprzężenia nie 

miały charakteru dodatniego i efekt synchronizacji nie następował. Zachowania 
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te są znane już z modeli IMPL [24], przy czym sieć 150IAF nie przetwarzała 

żadnych danych wejściowych! Działo się tak, gdyż nie zapewniono żadnych 

mechanizmów likwidacji sprzężenia oraz różnicowania neuronów. Oczywiście 

nie są to elementy proste do wkomponowania w model. W IMPL2 była to 

odpowiednia praca progu, natomiast w modelach SNN odpowiednie 

mechanizmy synchronicznego pobudzenia lokalnego (a nie jak 150IAF - 

globalnego) tworzone podczas pracy sieci opierając się na możliwości użycia 

funkcyjnych zależności od sąsiedztwa neuronu. 150 IAF nie posiada algorytmu 

uczenia, ponieważ model nie wychodzi ze sprzężenia (nawet częściowo), a jest 

to podstawą do opracowania algorytmu uczenia.

Przesuwając się do roku 2000 można stwierdzić, iż prace profesora 

Davida Horn wraz z współpracownikami (w tym Nir Levy, Eytan Ruppin, Sharon 

Levanda, Isaac Meilijson, Ofer Hendin, Mishy V. Tsodyks) z ośrodkiem w Tel 

Aviv'ie stanowią obecnie mocną podstawę do badań sieci składających się 

pulsujących oraz zintegrowanych neuronów. Tego typu konstrukcje są 

stosunkowo bliskie modelom SNN z dostępnych w literaturze i Internecie pod 

względem budowy, cech oraz efektów działania, a co najważniejsze - 

występuje tu również zgodność w metodologii działania. W modelu 150 IAF z 
1997 roku w przeciągu ostatnich 4 lat Opher i Horn wraz z zespołem 

wprowadził wiele zmian. Wzmocniła się też platforma sprzętowa a rozmiar 150 
neuronów jest dość swobodnie przekraczany. Analizując jedną z ostatnich prac 

[86] tego ośrodka można wywnioskować na jakim poziome zostały 

zrealizowane poszczególne mechanizmy modelu IAF oraz wykazać mocne 

strony modeli SNN.

Sama dynamika sieci, szczególnie w modelu rozwijanym przez Horn’a i 

współpracowników (nieco uproszczonych neuronach IAF [14]), była i jest dość 

poważnym problemem z powodu praktycznego bi-stabilnego stanu ich 

systemu, tj. asynchronicznie i niezależnie odpalających się neuronów lub pełnej 

synchronizacji przy wysokiej aktywności neuronów. Tak naprawdę 
interesującym stanem jest właśnie stan pośredni, tzn. wyzwalanie się 

pojedynczych lub skończonych serii synchronicznych ciągów odpaleń. Jak 

wykazano w pracy [14] z 2003 roku, przy założeniu, że neurony są połączone w 

sposób dość losowy oraz występuje duża ich liczba i sieć jest stosunkowo 

gęsta (a tak jest w przyrodzie), można przyjąć że wyjście z systemu w dość 
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małym stopniu zależy od pojedynczego neuronu. Ponieważ wyjście z sieci przy 

wielu połączeniach zwrotnych jest też praktycznie tym samym, co odpowiednie 

neurony otrzymują na swoje synapsy, można rozwiązać równanie w których 

zrównamy wartość wyjścia i wejścia, co jest warunkiem granicznym 

utrzymywania stabilności sieci. Jak wynika z obliczeń, częstotliwość pracy 

neuronów nie ma wpływu na stabilność pracy sieci. Jak się można domyślać, 

jest ona już efektem, a nie warunkiem. Sama stabilność i zdolność do 

wygenerowania pojedynczych fal synchronicznych pobudzeń zależy natomiast 

od proporcji synaps pracujących w sprzężeniach zwrotnych, zarówno ujemnych 

jak i dodatnich, do całej ilości synaps. Oczywiście jest to cenne spostrzeżenie, 

ale elementem potrzebnym w tym systemie byłby algorytm uczenia 

zachowujący te proporcje. Jak wiadomo, występują tu bardzo duże kłopoty tych 

algorytmów, gdyż bardzo często korelują dane pochodzące właśnie z własnych 

sprzężeń (np. przesuniętych o jakiś wektor w czasie poprzez przejście sygnału 

przez kilka czy kilkanaście szeregowo pracujących neuronów), co jest 

zjawiskiem bardzo negatywnym. W tej pracy autorzy nie proponują żadnego 

algorytmu uczenia. Warto jednak zwrócić uwagę, że symulowana sieć była 

dość duża, ok. 10-20 razy większa od możliwości SNN, co w dużym zakresie 

poprawia wyniki statystycznych obserwacji i czyni je jeszcze bardziej realnymi. 

Z drugiej strony neurony tego modelu zostały jeszcze bardziej uproszczone (w 
tym również względem SNN) i choć autorzy wyciągają wnioski dla sieci IAF, nie 

do końca można się z tym zgodzić. Być może wnioski będą prawdziwe również 

dla IAF, ale w.w. symulacje nie pozwalają tego powiedzieć. Z pewnością tak 

mocne zredukowanie budowy neuronu i jednocześnie zwiększenie liczby 

neuronów jest obszarem interesującym do przebadania. Można powiedzieć - 

jest jakby kolejnym krokiem, bardziej radykalnym, niż uproszczenie 

klasycznego neuronu do pulsującego, choć nie wiadomo czy słusznym.

Zarówno sieć IAF jak i SNN posiada strukturę połączeń umożliwiającą 

sprzężenia zwrotne. Neurony jednej jak i drugiej sieci posiadają specjalny 

mechanizm całkujący sygnał wejściowy w czasie na swoich synapsach, co 

zapewnia fizyczną bazę dla pamięci krótkoterminowej, liczonej w kilkunastu 

milisekundach. Ze względu na przyśpieszenie symulacji (oraz zmniejszenie 

zajętości pamięci) twórcy IAF również (podobnie jak w SNN) używają 

większych częstotliwości wejściowych i w rezultacie międzyneuronowych niż 

Str. 138



występujące naturalnie. „As a result the span of the kernel is somewhat smaller 

than the experimentally observed ones. In futurę morę realistic neuronal 

dynamics one should aim for both larger time-span of the kernel and lower 

sustained firing rates of excitatory neurones, thus getting closer to experimental 

observations.” [86] str. 5. („W rezultacie okres podstawowy jest trochę

mniejszy niż obserwowany eksperymentalnie. W przyszłości dla bardziej 

realistycznej dynamiki neuronów powinien być wydłużony oraz zmniejszona 

stała częstotliwość odpalania pobudzonych neuronów. W ten sposób zbliżymy 

się obserwacji eksperymentalnych”). Oszczędność pamięci wynika z 

następującego faktu: używanie większych częstotliwości umożliwia 
zakodowanie większej ilości danych jednostce czasu, zatem pamięć 

krótkoterminowa o krótszym czasie pamiętania (proporcjonalnym do 

zwiększenia częstotliwości względem naturalnych) ma takie same możliwości. 

Zabieg ten w sumie doprowadza do bardziej efektywnego wykorzystywania 

neuronów pod względem przetwarzania informacji, jednakże może powodować 

inne komplikacje związane z oddalaniem się od naturalnego wzorca, jak np. 
potrzebę przeskalowania innych stałych występujących w modelu, zmniejszenie 

tolerancji na uszkodzenia sieci itp. Podstawę algorytmu uczenia obu typów 

neuronów jest reguła Hebba oraz testowane są jej czasowo zależne 

modyfikacje. Zmieniając podstawę czasu musimy uwzględnić jej różnice 
analizując wyniki pracy pamięci krótkoterminowej, ponieważ z definicji pamięć 

ta jest nierozłącznie związana z upływem czasu. Z drugiej strony zwiększanie 

częstotliwości celem zwiększenia efektywności sieci nie może postępować w 

nieskończoność, a nieprzekraczalną granicę wyznacza tu dyskretny krok 

symulacji. Dla modeli SNN jest on równy 2 ms.

Problem skalowania podstawy czasu nie jest do chwili obecnej 

rozwiązany i rykoszetem odbija się w innych aspektach sieci np. niezbędnej 

wielkości sieci do określonego zadania. Bo czy faktycznie natura pozwoliłaby 

na kodowanie sekwencji na tym większej liczbie neuronów im wolniejsza dana 

sekwencja by była (jej zmienność)? Poprzez prędkość sekwencji rozumiemy 

ilość poszczególnych zdarzeń występujących w sekwencji w przyjętej jednostce 

czasu. Zdarzeniem może być np. zmiana tonu czy uderzenie w kolejny klawisz 

instrumentu klawiszowego. Prawdą jest też, że wolniejsze sekwencje są 

trudniejsze do zapamiętania (potocznie mówi się, że szybkie rytmy łatwiej 
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„wpadają w ucho”). Ptaki i podobnie rozwinięte zwierzęta wydając dźwięki nie 

zmieniają nigdy tempa (z kilkoma wyjątkami). Być może zapamiętywanie, 

porównywanie i odtwarzanie z pamięci sekwencji o różnej podstawie taktującej 

wymaga większego zaangażowania naturalnej sieci neuronowej, a w przypadku 

prostych sieci jest to niewykonalne. Pozostaje zatem konstruowanie hipotez, 

jak to natura realizuje.

Zarówno przedstawione modele sieci IAF jak i SNN mają problemy z 

zapamiętaniem kilku zapisów w tym samym miejscu sieci, ponieważ zbyt często 
dochodzi do uśrednienia wzorców w pamięci sieci. Jest to tzw. problem 

multipamięci w PNN, nad którym prowadzone są obecnie intensywne prace.

Rezultatem pracy sieci IAF jak i SNN, jak do tej pory, jest 

wygenerowanie dynamicznego atraktora w przestrzeni pobudzeń neuronów. 

Jak już zostało wspomniane w poprzednim rozdziale, atraktor nie jest dobrym 

reprezentantem wyniku przetwarzania, jednakże przeprowadzone 

doświadczenia symulacyjne SNN w latach 1996-1999 bazowały właśnie na 

takim podejściu. Natomiast nawet szczegółowa analiza atraktora (stopień 
powtarzalności określonych części lub całych wektorów, okres tych powtórzeń, 

tendencje zmian, uśrednianie statystyczne...) dostarcza ogromnej ilości 
informacji na temat procesów przebiegających wewnątrz sieci. Sam fakt 

skupienia się na analizie atraktora w tym czasie, jego powstawaniu, stabilności 

itp. jest pierwszą jaskółką, że on sam nie jest efektem przetwarzania. 

Dodatkowo obserwacja matrycy wag uzupełnia wiedzę o przetwarzaniu sieci 

PNN.

W tym momencie zauważamy wyraźne różnice w złożoności tej matrycy 

sieci IAF Horn’a z 2000 r. (zwanej dalej IAF) oraz SNN. O ile IAF jest w stanie 

wygenerować podczas pracy przykładowe pięć klastrów neuronów ([86] str.9) 

(IMPL2 miało już te możliwości, doświadczenie rozdział 5.1.1.1), o tyle SNN 

może generować ich dowolnie wiele nie zmniejszając szans osiągnięcia celu 

ani nie powiększając złożoności obliczeniowej. Na tym praktycznie kończy się 

moc algorytmu uczenia IAF. Oznacza to w skali której operujemy, iż wzorcem 

dla IAF jest sygnał sinusoidalny o stałej częstotliwości (tutaj z przedziału 100- 

500 Hz). Zawartość informacji w takim sygnale jest oczywiście niewielka. 

Oczywiście istnieje możliwość ustawienia wag przed rozpoczęciem pracy sieci 

IAF. Wtedy mamy sposobność otrzymania dowolnie skomplikowanej matrycy 
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wag oraz zaobserwowania pracy sieci z tą matrycą. Niestety nie możemy w tym 

przypadku wykonać sedna doświadczenia, tzn. uwolnienia modyfikacji wag 
zgodnie z przyjętym algorytmem uczenia, co potwierdza autor: „In fact, if we 

allow synaptic learning to occur under the same conditions listed above, the 

learning process will destroy the segmented synaptic matrix structure and 

merge the two cell-assemblies.” ([86] str. 17) (W praktyce, gdy zezwolimy na 

uczenie synaptyczne zgodnie z przyjętymi regułami, proces uczenia zniszczy 
posegmentowaną strukturę oraz połączy obie grupy komórek”).

W modelach SNN praca wag nie jest blokowana, a co istotniejsze - tak 

względnie skomplikowane matryce wag powstały w wyniku działania sieci, a w 

tym algorytmu uczącego, również bazującego na regule Hebba. Oczywiście 

opracowanie takiego algorytmu, bazującego na regule Hebba, nie było 

trywialne i wymagało dość pokaźnej serii doświadczeń, omówionych w tej 

pracy. Algorytm uczenia SNN potrafi odwzorować dowolnie długi wzorzec 

wejściowy w matrycy wag neuronów, oczywiście pod warunkiem spełnienia 

wymagań pamięciowych (np. wzorzec 500 wektorów 12 elementowych jest w 

stanie reprezentować 1 sekundę dźwięku, czyli przeciętny wyraz). Nie potrafi 

tego wykonać IAF, gdzie jak można przypuszczać na podstawie doświadczeń z 

modelami IMPL, długość wzorca nie powinna przekraczać 5-6 wektorów, a 

doświadczenia z dłuższymi wzorcami w aż ok. 96%-98% kończą się 
niepowodzeniami.

Kolejnym dość istotnym elementem SNN względem IAF jest traktowanie 

wzorca jako danych pojawiających się w czasie pracy sieci. IAF dość ściśle 

trzyma się linii wytyczonej przez sieć Hopfield’a, pomimo zastosowania jako 

podstawowych elementów neuronów pulsujących. Kierunek ten zapewnia 

komfort związany ze zbieżnością przetwarzania itp. natomiast ogranicza siłę 

neuronów pulsujących, które z samej zasady swojego działania wymagają 

pracy w czasie. Pomimo, iż Horn i jego współpracownicy przełamali w ostatnich 

pracach opory przed dopuszczeniem niesymetryczności w matrycy wag, o tyle 

wzorzec o określonej wielkości musi być podany w całości w jednym momencie, 

ponieważ tylko taki mechanizm ta sieć posiada. Jeśli chodzi o wzorzec 

związany z sekwencyjnym podawaniem do sieci, to w przypadku IAF[86] jest to 

ton o ustalonej częstotliwości z zakresu 100-500 Hz, ew. po pewnych 
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przeróbkach IAF model mógłby przetwarzać prawdopodobnie kilkuwektorowe 

wzorce (np. 5 wektorowe).

W tak złożonych systemach, oraz o tak dużym stopniu dynamiki, nie 

tylko wymienione wyżej cechy mają znaczenie. Analizując wcześniejsze prace 

Horn’a oraz badaczy z nim współpracujących [71] możemy dowiedzieć się 

więcej szczegółów na temat drugoplanowych cech modeli oraz pewnych 

założeń konstrukcyjnych. W pracy „Associative Memory and Segmentation in 

an Oscillatory Neural Model of the Olfactory Bulb” [60] jest poruszony problem 
budowy systemu pod kątem wykorzystania go jako pamięci asocjacyjnej. Jest to 

dość wczesna praca i nie możemy powiedzieć, że podstawowym elementem 

jest tu już zintegrowany neuron pulsujący pomimo wprowadzenia dodatkowych 

cech. Zarówno mechanizm działania jak i uczenia bazuje na założeniach sieci 

Hopfielda z 1982 r [64], Sieć skonstruowano z dwóch istotnych warstw (oraz 

trzeciej pomocniczej), pierwszej dokonującej wstępnego porównania, oraz 

drugiej działającej jako mechanizm klasyfikujący. Sieć o wielkości ok. 1000 

neuronów umożliwiała zapamiętanie tylko dwóch wzorców. Elementem wartym 

szczególnego podkreślenia tej pracy było traktowanie wyjścia systemu jako 

atraktora, w przeciwieństwie do oczekiwania stanu ustalonego. Był to pierwszy 

duży krok jak owe czasy i niezbędny przy pracy z pulsującymi sieciami 

neuronowymi 

nie dążącymi 

do stanu 
ustalonego. 

Bardzo 

interesujące 

podejście do 

tematu 

przetwarzania 

pulsacyjnego 

zostało 

Periglome miar 
cells

Rys. 7.1 - Model sieci o warstwowej strukturze ziarnistej 

(„Olfactory Bulb layered architecture” [60]). Zaznaczone warstwy: 

ONL nerwy węchowe, GL kępki nerwowe, EPL sploty 

zewnętrzne, MCL komórki dwudzielne, GCL komórki ziarniste, 

w pracy „Temporal Coding in an Olfactory Oscillatoryzaprezentowane

Model”[144]. Pomimo iż większość zagadnień jest przedyskutowana tylko na 
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podstawie rozważań teoretycznych, nie traktuje się w tej pracy sieci neuronowej 

jako rodzaju pamięci, ale jako pewne przekształcenie sygnału wejściowego w 

wyjściowy, jako filtr o określonych możliwościach. Jest to zupełnie odmienne 

podejście do tematu niż w poprzednio wymienionej pracy, i jak sam autor 

wskazuje - dość bliskie wzorcom biologicznym. Brak wykorzystywania pamięci 

krótkoterminowej podczas przetwarzania oraz brak spójności z poprzednimi 

pracami uniemożliwia zastosowania wypracowanych wcześniej mechanizmów, 

co z kolei znacznie ogranicza dyskutowane potencjalne możliwości tego 

rozwiązania. Jak wskazują modele SNN jest to produktywne podejście do 

zagadnienia, pod warunkiem ujednolicenia teorii pamięci oraz jednoczesnego 

przetwarzania z nie nadzorowanym uczeniem.

Istotna jest też praca z 2000 roku Davida Horn’a i jego 

współpracowników pod tytułem: „Neuronal Regulation and Hebbian Learning” 

[50] w której autor stwierdza między innymi: „Hebbian mechanisms per-se fail 

to provide robust and effective learning, both in supervised and unsupervised 

scenarios”, „Hebbian learning leads to poor associative memory capacity that 
does not grow with the size of the network” („Reguła Hebba nie dostarcza 

silnego i efektywnego uczenia zarówno w uczeniu z nauczycielem jak i bez”. 

„Reguła Hebba prowadzi do słabej pamięci autoasocjacyjnej, której pojemność 

nie rośnie wraz ze wzrostem sieci neuronowej”). Pomimo wielkiego autorytetu 

pracy Hebb’a zgadzam się z tą opinią, o czym świadczy odrzucenie czystej 

zasady Hebb’a począwszy od modelu SNN11a [1999] poprzez wprowadzenie 
normalizacji wag synaptycznych. Horn również proponuje identyczne 

posunięcie, a jako jego zalety wymienia: 

• zwiększenie pojemności pamięci

• możliwość powstrzymywania dodatniej pętli sprzężenia wzrostu wag 

uczenia regułą Hebba

• możliwość powstawania przypadkowych połączeń międzyneuronowych, 

czego nie zapewniał paradygmat Hebba!

• modelowanie degradacji pamięci powodowanej procesami metabolitycznymi 

• większą zgodnością z wzorcem biologicznym (np. wzrost wagi jest 

ograniczony)

W tej pracy autor jednak nie podaje jak użyć tego mechanizmu w najbardziej 

przydatnym zestawieniu - w środowisku, w którym neuron ma dostęp tylko do 
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swojego otoczenia i do informacji w nim zawartych. Dokładniej, autor nie widzi 

szybkiej możliwości adaptacji: „These observations show that it is difficult to 

implement effective learning with local synapse-specific learning rules” 

(„Obserwacje pokazują, że trudnym do zaimplementowania jest efektywny 

algorytm uczenia bazujący na regułach uczenia uwzględniających lokalną 

specyfikację synapsy”). Efektywne uczenie wymaga uwzględnienia w 

omawianym algorytmie liczby odpalanych neuronów w sieci w danym 

momencie, co jest globalnym parametrem sieci, a nie lokalnym. Zatem 

pojedynczy neuron nie posiada dostępu do tego parametru. Jak wynika z prac 

nad modelami SNN11, zaimplementowanie algorytmu uczenia spełniającego te 

ostre warunki i bazującego wyłącznie na lokalnych danych jest możliwe 

(lokalna reguła uczenia).
Pewną konsekwencją sceptycznego podejścia do możliwości adaptacji 

algorytmu uczenia typu czasu rzeczywistego w sieciach opartych o neurony 

IAF stało się przyczyną położenia nacisku przez D. Horna na inne obszary 

badań tych modeli, w tym szczególności ich dynamiki oraz pojemności, czego 
dowodem jest praca [15], W tym modelu synapsy nie modyfikują się zarówno w 

zakresie kierunku połączeń jak i siły przewodzenia. Wzmocnienie połączenia 

pomiędzy neuronami, o ile taka konieczność wystąpi, realizowana jest poprzez 

zwielokrotnienie synapsy. Może się tak zdarzyć, gdy dany neuron uczestniczy 

w odtwarzaniu nie tylko jednego wzorca zapamiętanego w sieci. Wprowadzenie 

wzorców do sieci odbywa się jednorazowo przed przystąpieniem sieci do pracy 

poprzez obliczenie wartości synaps, podobnie jak w przypadku sieci Hopfielda. 

Dość istotna modyfikacją jest ustalenie wartości wag (tym bardziej, że 

wszystkie wagi maja tę samą wartość w tym modelu), jako funkcji ilości synaps 

pobudzających, co ma diametralny wpływ na dynamikę pracy sieci. Przyjęto 

tutaj, że waga jest funkcją pierwiastkową o argumencie ilości ww. synaps. 

Założeniem ustawienia synaps jest reguła, że neuron nie uczestniczący w 

przetwarzaniu aktualnego wzorca powinien otrzymywać zwykle aktywację 

podprogową, z kilkoma wyjątkami związanymi z pracą neuronów w tle. Autor 

definiuje przydatne pojęcie tzw. Asynchronus State (AS) czyli stan 

asynchroniczny sieci, w którym neurony odpalają się stosunkowo rzadko i dość 

losowo w porównaniu do stanu synchronicznego (Synchronus State), który jest 

traktowany jako zjawisko niekorzystne, jeśli czas jego trwania przekroczy 
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zadany okres krytyczny - przyjmowany tu jako 100 do 300 ms. Podejście takie 

jest jak najbardziej uzasadnione, gdyż przy omawianych modelach i 

wielkościach sieci IAF pomiędzy 1000 a 100 000 neuronów stan 

synchronicznego pobudzenia trwający dużej prawdopodobnie nigdy by się nie 

zakończył w sposób samoczynny. Najciekawsze stany natomiast to są stany 

przejściowe ze stanu asynchronicznego do synchronicznego, a zjawiska temu 

towarzyszące mówią dużo o naturze pamięci. Jeśli sieć pracująca w trybie 

asynchronicznym posiada wyuczony wzorzec (tutaj wpisany na stałe) to przy 

rozpoznaniu wzorca wejściowego przez kilkaset milisekund pracuje w stanie 
synchronicznym, zwiększając jednocześnie średnią częstotliwość odpaleń 

neuronów w sieci. Zjawiska te były omówione podczas analizy zjawisk modeli 

SNN tej pracy. W szczególności wartym podkreślenia jest fakt, że SNN 

zapamiętuje wzorzec podczas pracy i nauki w czasie rzeczywistym, czemu 

towarzyszy równoległe i systematyczne wytwarzanie w sieci coraz 

mocniejszych (pochłaniających więcej neuronów i trwających dłużej) 

skończonych stanów synchronicznych, czego omawiana praca D.Horna nie 

zawiera. Zgodnie natomiast z autorem uważam, że podejście zaprezentowane 

w [33], polegające na odzyskiwaniu zawartości pamięci w trybie 
synchronicznego stałego pobudzenia jest możliwe, aczkolwiek nie jest to 

kierunek rozwoju, który byłby obiecujący.

Badając dynamikę sieci autor pokusił się nie tyko o zapewnienie 

warunku na strukturę oraz ilość synaps, zabraniającego powstawanie 
samoistne stanu synchronicznego, ale również skonstruował dodatkowy balans 

w postaci dodatkowej warstwy neuronów hamujących (nazwanych warstwą 

cieni). Tak skonstruowaną sieć, o dodatkowej ilości sygnałów hamujących 

pojawiających się jednocześnie ze wzmożoną aktywnością neuronów 

pobudzających, nazwano podwójnie zbalansowaną siecią (Double Balanced 

Network). Oczywiście warstwa cieni w aktywny sposób zapobiega powstawaniu 

stanu synchronicznego, jednakże podobnie jak poprzednie warunki, nie jest 

pewnym rozwiązaniem, a dodatkowo konstrukcja jest coraz odleglejsza od 

wzorców naturalnych, co może wprowadzić badania w ślepą uliczkę. Warstwa 

cieni jest przydatna głównie przy bardzo mocnym, choć krótkim (np. 5 ms), 

pobudzeniu wejścia sieci.
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Autor systematyzuje jednocześnie dwa podejścia przeplatające się w 

konstrukcjach IAF, mianowicie SFC oraz HCA (tj. synfire chains (SFC) oraz 

Hebbian celi assemblies (HCA)) oraz przydatne słownictwo, np. połączenia 

synaptyczne „do przodu” w modelach SFC zostały nazwane łańcuchami, a 

sama propagująca się tą „doliną” grupa pobudzeń - „synfire wave” lub po 

porostu falą. Pomimo, że HCA wykazują się większą gęstością zapamiętywanej 

informacji, SFC stają się coraz częstszym obiektem badań, co niewątpliwie 

świadczy o pokładanych w nich nadziejach. Wszystkie modele SNN tej pracy 

wspierały strukturę SFC podczas symulacji, choć mają potencjalna możliwość 

pracy zarówno w SFC, jak i HCA.

Dość ciekawą analizę, wykazującą dużą moc zintegrowanego, 

pulsującego neuronu, przeprowadzono w pracy [118] z 1999 roku. Analiza 

została przeprowadzona, zgodnie z tytułem, pod kątem opracowania algorytmu 

uczenia, wykorzystującego fakt zawarty w twierdzeniu 4.2 i rozwinięty w 4.3 tej 

pracy, a mianowicie, że problem integralności dla neuronu z binarnymi 
opóźnieniami oraz ustalonymi wagami jest NP-zupełny. W szczególe, jeżeli 

pojedynczy neuron posiada przynajmniej opóźnienie jednostkowe, z 

odpowiedniej liczby neuronów możemy skonstruować odpowiednie do zadania 

opóźnienie i zsynchronizowanie dwóch lub większej ilości przesuniętych w 

czasie ciągów danych celem ich dalszej obróbki. Autor nie proponuje jednak 
żadnego algorytmu uczenia. Stwierdza natomiast, że jest to duże wyzwanie, a 

szczególnie trudne byłoby udowodnienie poprawności takiego algorytmu. Tezy 
te jak najbardziej potwierdzają doświadczenia tej pracy przeprowadzone na 

symulatorze IMPL! Algorytm uczenia w IMPL, choć niedoskonały, pokazał że 

jest w stanie skorelować i przeprowadzić operacje logiczne na danych 

pojawiających się na wejściach systemu z przesunięciem czasowym. 

Dodatkowo IMPL posiada sprzężenia zwrotne, dzięki czemu może się 

synchronizować z sekwencją powtarzalną, natomiast przykłady tej pracy [118] 

znajdujące się w rozdziale trzecim świadczą, że domyślnie założono 

jednokierunkowość przepływu danych w sieci. Interesująca i warta podkreślenia 

jest natomiast kolejna próba zdefiniowania, co w neuronie pulsującym jest 

cyfrowe, a co analogowe. Oczywiście, w większości jest to kwestia interpretacji, 

czy operujemy na pojedynczych impulsach, czy na częstotliwościach, które te 

impulsy występujące w określonych odstępach czasu tworzą. W tym przypadku 
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potrzebujemy tez funkcji przekształcającej te częstotliwości w abstrakty, które 

ona reprezentuje. Możemy zatem definiować neurony o analogowych wejściach 

i cyfrowym wyjściu albo odwrotnie, zupełnie binarne itp.

Ważnym elementem neuronu pulsującego, ściśle związanym z 

algorytmem uczenia i w rezultacie tworzącym pamięć krótko- i długoterminową., 

którego nie sposób nie potraktować specjalnie, jest pojedyncza synapsa - jej 

praca, parametry transmisji, gromadzone dane statystyczne dotyczące jej 

historii, modyfikacje wagi itd. W modelach SNN występują teoretycznie 3 

rodzaje synaps: synapsa pobudzająca, synapsa hamująca oraz synapsa 

hamowania presynaptycznego. W tej ostatniej występują 2 aksony i jeden 

dendryt. Skuteczne przetwarzanie danych udało się zaobserwować jedynie na 

pierwszej z wymienionych synaps (przy założeniu struktury PNN oraz stałego 

kształtu impulsu wysyłanego przez neuryt). Identyczną ilość typów synaps 

(nazwane F1,F2 i F3) proponują Maass oraz Natschlager w pracy [132], 

Proponowane jest jednak inne sparametryzowanie synapsy - poprzez trzy 

zmienne charakteryzujące jej dynamikę, nazwanymi U,F,D (prawdopodobnie 

inspiracją tego podejścia była praca [126]). Zmienne te przesądzają o typie 

danej synapsy. Zmienne te są ciągłe, co oznacza, że istnieją różne typy synaps 
pośrednich łączących w różnym stopniu cechy synaps skrajnych. Podejście 

takie jest o tyle ciekawe, iż definiuje nam stosunkowo różne synapsy, wszystkie 
pracujące w polaryzacji dodatniej. Żadna z nich nie dokonuje hamowania 

innych sygnałów czy bezpośredniego ujemnego wpływu na potencjał 

wewnątrzkomórkowy neuronu postsynaptycznego. Jedyna synapsa z w.w. 

trzech, nazwana depresyjną (F2), najbardziej przyjmująca rolę synapsy 

hamującej tak naprawdę ją nie jest. Jej działanie można polega na 

zmniejszeniu czułości przez określony czas po otrzymaniu pobudzenia, ale 

proces ten dotyczy tylko impulsów docierających do tej właśnie synapsy. Nie 

jest to zatem synapsa hamująca. Pamiętając o kłopotach algorytmów uczenia 

synaps hamujących, powstaje tu nowa przestrzeń do zagospodarowania przez 

algorytmy uczenia synaps pobudzających. Pomimo mnogości takich 

algorytmów autor nie przystosowuje żadnego z nich do tej struktury. Podaje 

jedynie metody cząstkowych optymalizacji synaps do zdefiniowanych ciągów 

wejściowych charakterystycznych dla „skrajnych” synaps. Można przypuszczać, 

że algorytm uczenia, o ile powstanie, będzie modyfikował w synapsie tylko 
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wymienione parametry U,F,D. Przyglądając się tym parametrom możemy 

uznać, że U jest odpowiednikiem wagi, natomiast F,D - są wyrażone w ms i 

definiują dynamikę synapsy, jej reakcje na skupioną bądź rozproszoną w czasie 

serię bodźców. Autor natomiast bardzo dokładnie opracował ciągi optymalnie 

pobudzające synapsę przy ustalonych parametrach U,D,F Ciągi te zostały 

wyliczone przy pomocy metod optymalizacyjnych i można je uznać za swoiste 

klucze do synaps, tzn. np. 3 różne dendryty odbierające sygnał z jednego 
neurytu mogą być w miarę selektywnie pobudzane. Praca też jest zgodna z 

przesłankami biologicznymi, gdyż obserwujemy w układzie nerwowym różne 

modulacje i konfiguracje impulsów przy zachowaniu określonej częstotliwości 

(w granicach błędu oraz przy wyborze odpowiednio dużego okna czasowego). 

Wydaje się zatem prawdopodobne, że informacja może być również kodowana 

w ten sposób.

Omawiając synapsę należy ująć kwestię jej znaczenia jako pamięci 

tymczasowej, reprezentowanej przez stan ładunku postsynaptycznego. 

Sekwencja wejściowa synapsy jest transformowana w wartość ładunku 

uwzględniając parametry danej synapsy np. jak poprzednio zaproponowane 

U,F,D. Analiza zależności odwrotnej tzn. określania ciągu wejściowego przy 

znanych parametrach synapsy jest przeprowadzona w pracy [111], Z 

twierdzenia 2.1 tej pracy wynika, że nie można jednoznacznie określić 
sekwencji wejściowej na podstawie wartości potencjału oraz parametrów 

synapsy, nawet jeśli znamy ilość impulsów k>=3. Przy k<3 sytuacja jest 

znacznie prostsza, ale jednocześnie mało interesująca. Potencjał 

postsynaptyczny jest zależny od impulsów docierających do synapsy w 

ostatnich kilkuset milisekundach [111], a jest ich zwykle co najmniej kilkanaście. 

Fakt nieistnienia funkcji przekształcenia odwrotnego nie przesądza oczywiście 

o braku możliwości użycia potencjałów postsynaptycznych jako pamięci 

krótkoterminowej. Jak wskazują doświadczenia - fakt ten jest jak najbardziej 

potwierdzalny. Należy jednak pamiętać o tym twierdzeniu, ponieważ rzuca ono 

pewne światło na strukturę pamięci krótkoterminowej.

W pracy [141] przedstawiona jest koncepcja wprowadzenia sigmoidalnej 

funkcji przepuszczalności błony komórkowej synapsy w zależności od 

przepływającego przez nią ładunku. Całość dotyczy synapsy neuronu 

pulsującego, co dodatkowo komplikuje sytuację i rodzi pytanie, czy 
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przypadkiem nie została wprowadzona nieliniowość przetwarzania w neuronie 

podwójnie, gdyż neuron pulsujący już takową posiada, ze względu na 

symulację potencjałów postsynaptycznych. W modelu tym można 

zaobserwować jeden element zupełnie nietestowany w SNN. Synapsy 

pobudzane zarówno przed, jak i krótko po momencie aktywacji (+/- 50ms) 

neuronu są silnie modyfikowane przez algorytm uczenia. Trudno ocenić 

korzyści z tego zjawiska, jednakże może to być właściwość przydatna. W 

modelach SNN tylko synapsy będące przyczyną wywołania impulsu 
postsynaptycznego silnie były modyfikowane wykonaniem procedury uczenia. 

Zakładając prawidłowe działanie synapsy i jej gromadzenie ładunku, 

właściwość ta może przyczynić się do kojarzenia sygnałów, które co prawda nie 

dotarły na czas do danej synapsy, ale są związane z daną klasą.

Przedstawiony powyżej przegląd literatury dotyczy jedynie prac najbliżej 

związanych z tematem pamięci w pulsujących sieciach neuronowych, gdyż 

specjalizacja w zakresie użycia sygnałów płynących wstecznie jest dość 

wąska. Jednocześnie pokazuje wiele szczegółowych elementów, które w 
przyszłości mogą tworzyć z mniejszym lub większym powodzeniem sprawny 

system przetwarzania informacji - system o globalnych efektach synergicznych 

neuronów oraz zawierający w sobie różne formy reprezentacji swojego 

środowiska zewnętrznego (pamięć długo- i krótko- terminowa) z możliwością 

przetwarzania zapisanych w swojej pamięci informacji. Nie jest obecnie 

możliwe określenie wagi każdego z elementów lub przeprowadzenia pełnej ich 

klasyfikacji, ale można pokusić się na podstawie tej pracy o następujący 

podział opisanych pulsujących sieci neuronowych względem 

wykorzystania potencjałów postsynaptycznych:
• sieci zawierające neurony bez symulacji ładunków postsynaptycznych

• sieci zawierające neurony z symulacją ładunków postsynaptycznych

• użytą do pracy neuronu

• użytą do pracy neuronu oraz w algorytmie uczenia

• metody progowe

• metody proporcjonalne

Potencjał postsynaptyczny jako pewna forma przedstawienia historii danej 

synapsy jest możliwy do zapisania za pomocą kilku bitów informacji, a jego 

wykorzystanie może diametralnie zmienić pracę sieci. Może on być użyty 
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podczas przetwarzania danych przez neuron, przy obliczaniu globalnego 

pobudzenia , jak również podczas wyliczania poprawek wag. Ponieważ ładunek 

postsynaptyczny, będący odpowiedzią synapsy na pobudzenie neuronu, ma 

wartość nieujemną (nie uwzględniając procesów podczas refrakcji 

bezwzględnej i przy ustalonym poziome potencjału „0”) wynikają z tego pewne 

komplikacje. Stosując mechanizmy uczenia bazujące na regule Hebb’a - 

brakuje procesu przeciwnego do zwiększania wag. Pierwszym rozwiązaniem 

jest przyjęcie określonej wartości ładunku jako wartości progowej synapsy. 

Ładunki nie przekraczające tej wartości mogą być traktowane jako “zero” w 

myśl reguły Hebba. Rozwiązanie to może operować również na wagach 

ujemnych, choć efektywne wykorzystanie wag ujemnych nie zostało 

eksperymentalnie potwierdzone w tej pracy. Alternatywną metodą jest 

modyfikowanie proporcjonalne wag do ich ładunków postsynaptycznych. Jest to 

zgodne z regułą Hebb’a, ale znany problem zmniejszania wag pozostaje [8]. 

Dość dobrym podejściem jest normalizacja wektora wag bezpośrednio po 

poprawkach wprowadzonych algorytmem uczenia. Na podstawie tej pracy 

metody zmniejszania wag i/lub umożliwiające powstawanie wag 

ujemnych możemy podzielić na:
• modyfikacje reguły Hebba

• normalizacja wektora wag po każdej iteracji algorytmu uczenia

Pierwsze podejście jest o tyle lepsze o tyle, iż umożliwia powstanie wag 

ujemnych. Jednakże w połączeniu z bardzo istotnym mechanizmem 
samoregulacji neuronu opracowanym w modelach IMPL oraz SNN nazwanym 

PRA7, może prowadzić do powstawania neuronów o wartościach ujemnych 

progu. Neurony takie obecnie bardzo szybko uciekają spod kontroli algorytmu 

uczenia i niszczą efekty synergii (we wszystkich zbadanych modelach, w 

których takie neurony powstały).

7 Mechanizm PRA został omówiony w rozdziale 5.3.3.

Drugie podejście, polegające na normalizacji wektora wag, co prawda nie 

wspiera powstania wag ujemnych, jednak jak pokazują modele SNN11 oraz 

najnowsze publikacje (np. [50]) - posiada wiele niezbitych atutów oraz staje się 

coraz bardziej popularny. Zastosowanie tego mechanizmu w modelu SNN11 i 

wszystkich następnych jest niezbitym i potwierdzonym dowodem na 

postępowość myśli zawartej w skonstruowanych modeli SNN. Praca [50] jest 
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datowana dopiero na wrzesień 2000 roku, gdzie modele SNN posiadały tę 

cechę od ponad 2 lat.
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7. Podsumowanie

Przyroda w swym geniuszu często zadziwiała ludzi oraz dawała i daje 

inspiracje do naśladowania. Jak wynika z przeprowadzonych doświadczeń, 

modelowanie struktur znanych z fizjologii może dostarczyć nie tylko ciekawych 

faktów do symulacji, ale i rzucać pewne światło na sam przedmiot 

modelowania. Przykładowo, pośrednio z przeprowadzonych symulacji wynika, 

że powstawanie naturalnego mózgu musi przebiegać równolegle z jego pracą 

w takim zakresie, w jakim on istnieje. W przeciwnym razie uległby krótszemu, 

dłuższemu lub nieskończonemu wzbudzeniu. W każdym z tych przypadków 

skutki dla organizmu mogłyby być katastrofalne. Wnioski takie można 

wyciągnąć na podstawie różnych form synergii w pracy neuronów 

zaprezentowanych w modelach IMPL oraz SNN. Nie są one pozbawione 

mankamentów, jednak już niektóre właściwości, jak kumulowanie informacji w 
czasie w sieci, równoległość przetwarzania, niezawodność i wysokie 

rozproszenie przetwarzania wskazuje na potrzebę dogłębnego przebadania 
tych zjawisk. Właściwości te wskazują perspektywę w budowaniu tego typu 

układów elektronicznych o niskich kosztach i wysokiej szybkości pracy.

Rozważając właściwości adaptacyjne należy zauważyć, że maszyny 

potrafiące odpowiednio się zachowywać w różnych środowiskach można 

budować wykorzystując różne podejścia do sztucznej inteligencji. Nabywanie 

wiedzy w systemach ekspertowych jest bardzo trudne, inaczej niż w przypadku 

sieci neuronowych, ponieważ konstruowanie bazy wiedzy jest niezwykle 

żmudne nawet dla wysokiej klasy specjalistów. Maszyna na tym miejscu radzi 

sobie jeszcze gorzej. Sieć neuronowa potrafi natomiast budować reprezentację 

środowiska, nawet z pozornie sprzecznych danych, posiada również zdolności 

do generalizacji, co można zaobserwować w modelach SNN. Cechy te leżą 

bowiem już w naturze struktur neuronowych. Jednakże obecnie technika 

neuronowa z różnych przyczyn nie doprowadziła do zbudowanie takiej sieci 

neuronowej, która swobodnie wykształciłaby w procesie uczenia i operowałaby 

podczas pracy na abstraktach, które powszechnie znamy z wiedzy werbalnej.
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Dużą przewagą sieci neuronowych względem klasycznych algorytmów 

jest równoległość przetwarzania. Jest ona omówiona na przykładzie kilku sieci 

w rozdziale 5.1.1.1. Przetwarzanie jest niemal perfekcyjnie równoległe. 

Zwiększa to znacznie możliwości obliczeniowe przy zastosowaniu tej samej 

technologii wykonania. Warto zauważyć, że neurony układu nerwowego 

człowieka pracują zwykle z częstotliwością do 500 Hz (max. 1000 Hz), a 

najszybsze obecne komputery często przegrywają w rozmaitych testach. Na 

niezwykłą równoległość pracy naturalnych sieci neuronowych wskazuje fakt, że 

niektóre reakcje układu nerwowego są bardzo szybkie (np. impuls jest w stanie 

pokonać drogę równą 10 neuronom), a w odpowiedzi są uwzględnione wyniki z 

wysokich abstrakcji np. z analizy figur przestrzennych, zasady etyki itp. Z dosyć 

dużym zapasem można ocenić, że przyśpieszenie z powodu równoległości 

przetwarzania będzie bardzo duże, szczególnie w procesach rozpoznawania, 

widzenia przestrzennego itp.

Również swą naturalną rozproszoność przetwarzania naturalne sieci 

neuronowe wykorzystały do poprawienia swojej niezawodności. Systemy 

scentralizowane posiadają wiele zalet, jednak ogranicza je moc jednostki 

centralnej. Jeżeli ma ona właściwości częściowo równoległe, to trudno jest to 
wykorzystać do określonego zadania. Poza tym jednostka przetwarzająca jest 

wrażliwa na błędy i uszkodzenia, które często doprowadzają do przerwania 

pracy całego systemu. Przetwarzanie w sieciach neuronowych jest wyjątkowo 

wysoko rozproszone, a odporność na uszkodzenia leży także w ich naturze, 
ponieważ elementy podstawowe (neurony) są wysoce zawodne. Potwierdzają 
to badania modeli ciągłych, w przeciwieństwie do binarnych.

Przetwarzanie danych jest uwarunkowane procesem uczenia. W 

sztucznych sieciach bardzo często najpierw sieć uczy się, a po osiągnięciu 

określonego poziomu nadaje się do przetwarzania. Inaczej wygląda to w 

przypadku sieci naturalnych. Procesy uczenia oraz pracy przebiegają 

równolegle oraz oddziaływają na siebie, choć jak wiemy w różnych proporcjach 

w różnych okresach rozwoju organizmu. Bez cechy równoległości uczenia i 

przetwarzania już model IMPL2 nie wykazywałby żadnych efektów synergii 

neuronów, co jest niezbędnym elementem wytworzenia pamięci. Jest to jedna 

z ważniejszych cech naturalnych sieci, której zamodelowanie daje szansę na 

zbliżenie się ku naturze. Procesy uczenia i pracy powinny przebiegać w 
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modelu równolegle, aczkolwiek z różną intensywnością. Intensywność uczenia 

może być wyznaczona jako funkcja przystosowania do środowiska, co było 

wstępnie testowane w modelu IMPL5A. Równie ważna jest rozproszoność 

procesu uczenia naturalnej sieci. Wpływa to korzystnie na możliwość 

implementacji sprzętowej, oraz na zgodność z przyjętymi założeniami. Jednym 

z ważniejszych założeń pracy było niewykorzystywanie centralnych 

mechanizmów uczenia. W pracy zostało pokazane, że jest możliwe 

zbudowanie algorytmu uczenia spełniającego te założenia.

Naturalna sieć neuronowa wydaje się być najlepszym przykładem do 

naśladowania, zwłaszcza jeśli mamy perspektywę budowania układów 

scalonych tego typu. Modele IMPL i SNN są również konstruowane pod tym 

kątem. Do ostatecznej weryfikacji działania pozytywnie ocenionych modeli 

wymagane będzie użycie wielkiej liczby neuronów. Wiąże się z tym długi czas 

symulacji. Jedną z możliwości jest sprawdzanie układu w postaci 

elektronicznej. Założenia projektu mają za zadanie umożliwić przeniesienie 

modelu do schematu elektronicznego możliwie niskim kosztem. Zastosowanie 
mechanizmów odporności na błędy w przetwarzaniu umożliwia zwiększenie 

skali integracji (nie jest wymagana niezawodność podstawowych elementów 

przetwarzających) oraz umożliwi w przyszłości zastosowanie najnowszych choć 

zawodnych technologii (może np. nanokomputerów, opartych na ułożeniu 

przestrzennym określonych atomów).

Praca jest krokiem w kierunku maszyn z pamięcią zrealizowanych w 

technice neuronowej, wzorowanych na przesłankach z psychologii 

fizjologicznej. Nie daje ona ostatecznej recepty na taką maszynę, ale wskazuje 

jak mogłaby ona funkcjonować (RTCWSS), jak mogą być reprezentowane dane 

pochodzące z środowiska w takiej maszynie np. maszynie ciekłych stanów. 

Zapożyczając z medycyny takie terminy jak pamięć krótko- i długoterminowa z 

dosyć dobrym rezultatem dają się one dopasować do określonych zjawisk w 

symulowanych sieciach neuronowych. Z pewnością modele są jeszcze dalekie 

od wzorca biologicznego, ale niektóre cechy pamięci krótkoterminowej, jak 

ulotność i zależność od pamięci długoterminowej, wydają się zgadzać z faktami 

fizjologicznymi.

W pracy można znaleźć modele sieci neuronowych charakteryzujące się 

występowaniem wysokiej równoległości procesów uczenia oraz przetwarzania, 
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modele zawierające pamięć krótko- jak i długoterminową oraz rozproszone 

metody uczenia. W żadnym z modeli nie występują elementy szczególnie 

kosztowne w realizacji sprzętowej.

Ostatnie modele serii IMPL nie były wyłącznie obiektami badań, ale 

nakreśliły wytyczne potomnych modeli SNN, które mogą zawierać znacznie 

większe ilości neuronów oraz zawierają mechanizmy skalujące. Do szczególnie 

interesujących wskazówek można zaliczyć sprawdzenie dwukierunkowości 

synaps oraz dynamiki pracy synapsy, szczególnie przy synapsach hamowania 

presynaptycznego, określenie metody uczenia oraz formy reprezentowania 

informacji w sieci neuronowej.
Modele SNN okazały się dość trudnymi do zestrojenia, jednakże po serii 

wielu prób udało się zorganizować neurony używając dość precyzyjnie 

działającego mechanizmu PRA, stanowiącym jedną z najmocniejszych stron 

tych modeli. SNN można obecnie stosować w aplikacjach typu przetwarzanie 

sygnałów, dźwięku oraz innych danych których natura jest zmienna w czasie. 

Jednocześnie podczas wprowadzania sygnału do sieci jest już możliwość 

odczytania odpowiedzi częściowej przed zakończeniem strumienia danych, 

ponieważ sieć ta pracuje tym samym czasie i nie wymaga kompletności danych 

do rozpoczęcia procesu przetwarzania. Jest to bardzo istotny krok względem 

innych podejść, gdzie problemy segmentacji danych, nie występujące w 

modelach SNN, często skupiały w sobie ponad połowę procesu przetwarzania 

np. w procesach klasyfikacji.
Cel pracy został osiągnięty. Modele zawierają jedynie elementy, które 

albo są bezpośrednio potwierdzone przez neurofizjologię, lub zachodzi 

przypuszczenie, że zostaną odkryte. Nie zostały implementowane żadne 

mechanizmy i cechy, które byłyby definitywnie wykluczone w naukach 

biologicznych. Sieć jest wykonana w technice neuronów pulsujących. Sygnał 

wejściowy jest kodowany w strukturze sieci na różne sposoby. Każdy model 

SNN posiadał pewną indywidualną reprezentacje pamiętanych danych, co jest 

omówione przy poszczególnych modelach. W fazie weryfikacji zapamiętane 

informacje były bazą do porównania nadchodzących danych z wzorcem 

odtworzonym z zapamiętanych szczegółów. Wynik tego porównania w 

zależności od modelu jest binarny lub ciągły, a wartość wyniku jest możliwa do 

zaobserwowania w postaci przedstawionych w pracy trzech prezentacji: 
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wykresu w czasie chwilowej częstotliwości odpaleń wszystkich neuronów sieci, 

wielkości przepływającej przez sieć fali potencjałów postsynaptycznych oraz 

istnienia krążącego impulsu synchronizacji z danymi wejściowymi, w przypadku 

odpowiedzi binarnej systemu.

Teza pracy, również została potwierdzona, a dowodem jest choćby 

istnienie modelu SNN11j. Neuron tego modelu spełnia warunki wymagane w 

tezie pracy. Kodowanie wzorca w pamięci długo- i krótkoterminowej w tym 
modelu różnicuje funkcje neuronów w sieci oraz wymaga współpracy pomiędzy 

nimi. Neurony otrzymują identyczne dane wprowadzane do systemu oraz 

oczywiście posiadają połączenia międzyneuronowe.

Przyjęte neurofizjologiczne obostrzenia, minimalizacja złożoności 
neuronu pod względem przyszłej możliwości implementacji sprzętowej przy 

wysokiej liczbie modelowanych procesów, oraz fakt zupełnego braku teorii 

przetwarzania bez stanów ustalonych, w tym również w odniesieniu do 

pulsujących sieci neuronowych, w czasie, w którym przeprowadzono 

konstrukcje i symulacje nowoczesnych jak na współczesny im okres modeli 

SNN, jest dużym osiągnięciem. Ale jak to w tej dziedzinie bywa, wymagania 

szybko rosną. Następnym krokiem, którego długości obecnie określić nie 

sposób, jest problem wkomponowania mulipamięci w sieć typu pulsującego. 

Prawdopodobnie będzie to wymagało ścisłego powiązania algorytmu uczenia 
ze zdefiniowaną przestrzenią sieci neuronowej oraz wyodrębnienia osobnych 

sprzężeń zwrotnych w tak zwanych mikrokomórkach (mikrokolumnach) 

pamięci, co mam nadzieję będzie kolejnym etapem rozwoju sieci bazujących na 

symulatorze SNN.
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8. INDEKS
acetylocholina - ester kwasu octowego i choliny, neurohormon produkowany 

na stykach (synapsach) oraz zakończeniach nerwów układu 

parasympatycznego (autonomiczny układ nerwowy) i neuronów ruchowych 

tworzących płytki nerwowo-mięśniowe. Acetylocholina działa pobudzająco na 
mięśniówkę gładką (tkanka mięśniowa) naczyń krwionośnych (powodując ich 

rozkurcz obniża ciśnienie krwi), przewodu pokarmowego (zwiększa 

perystaltykę) i dróg oddechowych (wywołuje skurcz oskrzeli), a także hamująco 

na mięsień sercowy (zwalnia czynność serca), pobudza czynność wydzielniczą 

gruczołów trawiennych i gruczołów dróg oddechowych (zwiększa wydzielanie 

śluzu). Jest rozkładana przez enzym esterazę acetylocholinową 

(cholinesterazę). Pochodne acetylocholiny mają zastosowanie jako leki.

dendryt - wypustka drzewkowata komórki nerwowej doprowadzająca bodźce 
do tejże komórki. Dendryty sąsiednich komórek nerwowych łączą się ze sobą 

za pomocą synaps.
istota biała - biała substancja, obszary mózgu i rdzenia kręgowego zbudowane 

z aksonów oraz oligodendrocytów, czyli gleju skąpokomórkowego (tkanka 
glejowa). Nie występują w niej ciała neuronów. Aksony otoczone są osłonką 

mielinową, która nadaje im biały kolor. Włókna istoty białej tworzą drogi 
nerwowe łączące poszczególne struktury układu nerwowego w jedną 

funkcjonalną całość.

istota szara - szara substancja, substancja występująca w mózgu i rdzeniu 

kręgowym (obok istoty białej). W kresomózgowiu mieści się na zewnątrz istoty 

białej i zbudowana jest z ciał komórek nerwowych (neuron) tworzących korę 

mózgu i móżdżku oraz ośrodki podkorowe (jądra podkorowe), natomiast w 

rdzeniu przedłużonym istota szara położona jest wewnętrznie. Również w 

rdzeniu kręgowym leży wewnątrz istoty białej, wyróżnia się w niej na przekroju 

rogi przednie, skąd biorą początek włókna ruchowe przednich korzeni 

ruchowych, i rogi tylne, do których wnikają włókna czuciowe korzeni tylnych.

komórka Schwanna - komórka należąca do tkanki glejowej, tworząca osłonki 

nerwowe: osłonkę Schwanna i osłonkę mielinową. Osłonka Schwanna powstaje 

zawsze jako pierwsza i jest utworzona z cytoplazmy (otaczającej dookoła 

włókno nerwowe) szeregowo ułożonych komórek Schwanna. Ten typ osłonki 
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pełni nie tylko funkcje izolacyjne ale również wspomaga metabolicznie 

otaczany akson. Osłonka mielinowa powstaje tylko na włóknach, które 

wcześniej miały już osłonkę Schwanna. Jest ona zbudowana z wielokrotnie 

okręconego wokół aksonu podwójnego fałdu błony komórkowej.

neuron, neurocyt - razem ze swoimi wypustkami - dendrytami, których jest 

zazwyczaj więcej niż jeden i zawsze jednym neurytem (aksonem), 

przystosowana do przewodzenia i przetwarzania, a także wytwarzania bodźców 

nerwowych. Charakteryzuje się tym, że przewodzi bodźce zawsze w jednym 

kierunku od dendrytów do ciała komórki (perikarionu) i z komórki dalej przez 

neuryt (wypustkę osiową).

Komórki nerwowe można podzielić ze względu na:

a) kształt ich perikarionu oraz obszaru utworzonego przez wypustki (dendryty i 

neuryt) na: neurony ziarniste, gwiaździste, piramidowe i groszkowate.

b) liczbę wypustek i wyróżniamy tu neurony: wielobiegunowe (najczęściej 

występujące), dwubiegunowe (np.: w siatkówce, błonie węchowej), 

pseudojednobiegunowe (komórki zwojowe) i jednobiegunowe (bardzo rzadko 

występujące u kręgowców).

Wypustki nerwowe są odizolowane od otoczenia osłonkami nerwowymi. 

Natomiast cały neuron (perikarion jak i jego wypustki) jest pokryty wypustkami 

astrocytów (tkanka glejowa), które biorą udział w jego procesach 
metabolicznych i regeneracyjnych.

neuryt - akson, zwany również włóknem osiowym (nerwowe) - wypustka 
neuronu, zwykle długa (od kilku mikrometrów do ponad 1 m), przez którą 

przewodzone są i przekazywane dalszym komórkom impulsy nerwowe. Pęczek 

tysięcy aksonów tworzy nerw.

pamięć - jeden z podstawowych procesów psychicznych, dzięki któremu 

osobnik gromadzi informacje i zdobywa doświadczenie co wpływa na jego 

aktualne zachowania. Do podstawowych funkcji pamięci należą: 

zapamiętywanie, przechowywanie i odpamiętywanie (przypominanie). 

Zapamiętywanie polega na wytworzeniu w wyższych ośrodkach nerwowych 

śladu pamięciowego i kojarzeniu nowych informacji z wytworzonymi wcześniej 

śladami pamięciowymi. Przechowywanie to utrzymywanie się w układzie 

nerwowym zapamiętanego materiału. Odpamiętywanie polega na 

aktywizowaniu śladów pamięciowych i przybierać może formę przypomnienia, 
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rozpoznania lub reprodukcji. Ze względu na czas pamiętania, wyróżnia się: 1) 

pamięć bezpośrednią (krótkotrwałą) - pamiętanie bodźców bezpośrednio po ich 

zadziałaniu. 2) pamięć długotrwałą - pamiętanie bodźców, przedmiotów, 

czynności przez długi a czasem nieograniczony okres czasu.

pamięć długotrwała - działanie tej formy pamięci oparte jest na zmianach 

wartości wag synaptycznych. Proces zapamiętywania (w tym wypadku uczenia) 

jest długotrwały. Modyfikacja wag podczas działania sieci jest stosunkowo 

niewielka, dlatego uczenie wymaga długotrwałej prezentacji wzorców 
wejściowych. Ten rodzaj pamięci opiera się na tworzeniu struktury połączeń 

międzyneuronowych. Same pojedyncze sygnały nie mają tu statystycznie 

dużego znaczenia. Sygnały pojawiają się jedynie podczas próby dostępu do 

informacji.

pamięć krótkotrwała - jest to pamięć, w której główną rolę pełnią krążące w 

sieci impulsy w sprzężeniach zwrotnych oraz wartości potencjałów 

postsynaptycznych w neuronach w danej chwili czasu. Jednocześnie proces 

zapamiętywania jest bardzo szybki. Może wystarczyć jeden, dwa sygnały 

wejściowe, aby zaistniała informacja w tej pamięci. Równie szybko może ulegać 

kasowaniu.

sieć neuronowa - urządzenie techniczne lub algorytm, którego działanie 

wzorowane jest w pewnym stopniu na działaniu sieci zwierzęcych komórek 
nerwowych. Zazwyczaj składa się z siatki połączonych ze sobą elementów, z 

których każdy posiada pewną liczbę wejść i wyjść lub symuluje działanie takiej 

siatki. Wyjścia z poszczególnych elementów są połączone z wejściami innych. 

Zależność pomiędzy wejściami i wyjściami jest modyfikowana dla każdego 

elementu z osobna w procesie tzw. uczenia sieci. Nauczona sieć przetwarza 

informację poprzez powielanie sygnałów pomiędzy elementami. Zależność 

pomiędzy sygnałem wejściowym a wyjściowym jest następnie interpretowana 

jako rozwiązanie jakiegoś problemu.

serotonina - C10H12ON2, 5-hydroksytryptamina, enteramina, 5-HT, hormon 

tkankowy, pochodna tryptofanu. Jest wydzielana przez błonę śluzową jelit oraz 

neuroprzekaźnikiem w neuronach mózgowych. W tkankach obwodowych 

zwęża naczynia krwionośne i powoduje skurcz mięśni gładkich macicy i 

przewodu pokarmowego. Metylowe pochodne serotoniny mają działanie 

halucynogenne (omamy). Rozkład serotoniny jest katalizowany przez 
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monoaminooksydazę (MAO). Serotonina ma wpływ na ośrodkowy i obwodowy 

układ nerwowy np.: działa przeciwdepresyjnie (depresja), jest odpowiedzialna 

za sen fizjologiczny.

synapsa - (gr. synapsis ‘połączenie’) biol. złącze między komórkami 
nerwowymi w ośrodkowym układzie nerwowym, w zwojach nerwowych oraz 

między komórką nerwową a komórką efektora; s. jest miejscem, w którym 

zachodzi przekazywanie pobudzenia jednej komórki na drugą.
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Załącznik nr 1 - Opis formatów danych

Dane przetwarzane w tej pracy, z powodu ich objętości, zostały 

załączone w formie cyfrowej na dołączonej płycie CD.
Płyta zawiera również kody źródłowe poszczególnych modeli IMPL, SNN 

oraz kody źródłowe odpowiednich tym modelom symulatorów.

Symulator IMPL oraz SNN operuje na różnych formatach danych 

związanych z dodatkowymi informacjami zawartymi w odpowiednich plikach, co 

nie oznacza, że wspólna idea dotycząca kodowania zgodnie ze wzorem (6) nie 

została zachowana.

Załączona płyta CD zawiera przykładowe dane wejściowe użyte w pracy 

w formacie wejściowego sygnału dźwiękowego oraz kolejnych jego 

przekształceń. Symulator SNN posiada również zaimplementowane procedury 

odtwarzania sygnału dźwiękowego z formatu danych jakim operuje pulsująca 
sieć neuronowa. Ponieważ przekształcenie to przebiega w kilku etapach, 

załączone są również pliki zawierające dane z poszczególnych transformacji.

Precyzując format danych docierający do sieci neuronowej, który 

powstaje po przetworzeniu spróbkowanego sygnału dźwiękowego (np. 
fonetycznej reprezentacji cyfr od zera do dziewięć) możemy zauważyć, że 

pomimo zdefiniowania klasy funkcji G we wzorze (6) w dalszym ciągu jest 
stosunkowo duża swoboda w określeniu jej danej reprezentacji. Ważne jest 

dodatkowo, aby funkcja była monofoniczna, najlepiej niemalejąca, w miarę 

liniowo przekształcająca wartości dziedziny na przeciwdziedzinę, a przedziały 

w których funkcja jest funkcją stałą - równej długości oraz równomiernie 

rozmieszczone w dziedzinie. Dodatkowo, wartości 1 oraz 0 powinny być 

względnie równomiernie rozmieszczone w wektorze wyjściowym.

Przepływ danych w symulatorze oraz odpowiednie pliki są następujące:

1) sygnał dźwiękowy .pcm

2) wyniki FFT .fft

3) modulacja zgonie z (6) - wejście do sieci .bfm

4) wyjście z sieci .bfm

5) wyliczenie energii w przedziałach widma .fft
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6) złożenie sygnału dźwiękowego .pcm

Pliki zawierają dane zgodnie z opisanymi przekształceniami, bez 

formatujących struktur nagłówkowych. Większość modeli była testowana z 

użyciem podziału widma sygnału wejściowego na dwanaście przedziałów 

częstotliwości, co implikuje dwanaście wejść do systemu zawierającego 

pulsująca sieć neuronową.
Symulator potrafi przechowywać sieć wraz z jej stanem dynamicznym 

(m.in. wartością refrakcji neuronów, konfiguracją aktywnych neuronów, 

bieżącym wektorem przetwarzanych danych wejściowych itp.) w pliku typu 

.SNN.
Plik ten ma następujący format:

1) słowo “Dokument”

2) wskaźnik na bieżący wektor przetwarzanych danych

3) słowo “Sieć”

4) zawartość buforów miedzy wejściem a wyjściem neuronów

5) sekcja powtarzająca się zgodnie z ilością neuronów:
1. słowo “Neuron”

2. wektor wag

3. wartość progu

4. wartość refrakcji
5. faza pracy neuronu

6. wartość blokady uczenia

W odpowiednich katalogach na załączonej płycie znajdują się:

1) przekształcenia wejściowe - zbiór plików obrazujący 

kolejne etapy przetwarzania dźwiękowego sygnału 

wejściowego, oraz przetwarzanie obrazujące proces 

odwrotny. Procedury wykonujące przetwarzanie dostępne 

są jako samodzielny program lub jako odpowiednie funkcje 

wywoływane z symulatora SNN.

2) modele IMPL - zawiera katalogi i archiwa modeli sieci 

szesnastobitowego symulatora IMPL. W odpowiednich 

plikach w języku C++ można znaleźć poszczególne 

implementacje.
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3) modele SNN - podobnie jak wyżej, ale dotyczy

trzydziestodwubitowego symulatora SNN. Archiwa 

zawierają implementacje poszczególnych modeli.

4) katalog roboczy symulatora - zawiera pliki wejściowe do 

sieci jak i pliki wyjściowe, oba typu .bfm; pliki definiujące 

stan różnych modeli sieci w różnych stadiach symulacji 

oraz pliki poszczególnych transformacji dźwiękowego 

sygnału wejściowego.
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		Listy





		Nazwa reguły		Status		Opis



		Elementy listy		Zatwierdzono		LI musi być elementem potomnym L



		Lbl i LBody		Zatwierdzono		Lbl i LBody muszą być elementami potomnymi LI



		Nagłówki





		Nazwa reguły		Status		Opis



		Właściwe zagnieżdżenie		Zatwierdzono		Właściwe zagnieżdżenie










Powrót w górę

