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Preface

Image processing has become a critical component in contemporary science and
technology and has numerous applications ranging from nanotechnologies, as-
tronomy, medicine, vision psychology, remote sensing, security screening, and
military industry to the digital communication technologies.

This book is about the problem of image characterization and analysis via
the domain-based descriptors utilizing the mathematical theory of moments and
orthogonal polynomial bases. The moments and orthogonal polynomials are clas-
sical concepts in mathematical analysis and statistics not only due to their sim-
plicity and own elegance but also for the extraordinary range of subjects and
applications where they have illuminated. In fact they may fulfill the well known
Occam’s Razor principle saying that “when you have two competing theories
which make exactly the same predictions, the one that is simpler is the better.”

There already exist a number of monographs in the general area of image
analysis and in image feature selection and image descriptors in particular [63,
112,160,161,203]. These books give excellent overview of the various concepts of
image descriptor techniques and include good illustrations of applications. The
aim of this text is to complement the existing research in several ways. Firstly,
we focus on a specific class of image descriptors stemming from the theory of
moments and orthogonal polynomials of two variables as well as the theory of
invariance. Secondly, we give the fundamental accuracy analysis of the introduced
moment descriptors. This includes assessing the performance of the descriptors
with respect to common data deformations such as discretization and noise. We
also examine an error due to the geometric nature of the image plane and this is
referred to as the geometric error. This type of error is explained by finding the
connection between the accuracy issue with the analytic number theory of lattice
point approximations.

Several new techniques to increase the accuracy and efficiency of moment
descriptors are also proposed. We utilize these results for solving the problem of
reconstruction of noisy images from orthogonal moments. The theory developed
reveals fundamental trade-offs between the aforementioned types of errors. This
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leads to the issue of an intrinsic dimensionality of a feature vector which yields
an optimal representation of an image.

The obtained fundamental results are employed to tackle two important prob-
lems of image analysis. The first one concerns symmetry detection. Detection of
symmetries and symmetry-based representations constitute important practical
issues that have not received much attention in the image analysis literature.
We develop formal statistical procedures to test symmetries existing in an image
observed in the presence of noise. In the second application we propose a novel
watermarking system able to cope with geometric transformations. Watermark-
ing algorithms form a critical part of modern multimedia systems where data
hiding and copyright protection issues are very essential.

The present monograph relies entirely on the original results of the author
and his collaborators. Here we list the salient features of this monograph:

• A detailed overview of the problem of invariant object descriptors is given
with main emphasis on the issues of accurate numerical computation and noise
sensitivity.

• Properties of a class of orthogonal moments stemming from the theory of clas-
sical orthogonal polynomials are thoroughly examined. This includes questions
of numerical efficiency, reconstruction power from the computed moments, ro-
bustness to noise, and automatic selection of optimal number of moments

• An extension of the above results to the case of generalized moments and
orthogonal moments calculated in the digital domain is given.

• Properties of radial orthogonal moments are examined. A thorough error
analysis of the moments is conducted including numerical error, the accuracy
in the presence of noise, and geometric error. In the latter case the error
analysis is explained by relating the accuracy issue to the analytic number
theory of lattice point approximations.

• The reconstruction power of radial moments is studied and optimal conver-
gence rates for image recovery from moments are derived.

• Fast and high quality algorithms for computing radial moments are derived
and empirically tested.

• Statistical methodology, utilizing the theory of radial moments, for testing
image symmetry is developed. This includes testing image rotational and re-
flectional symmetries. The limit distributions for test statistics are established.

• A novel watermarking system, utilizing the theory of radial moments, is pro-
posed. The system exhibits high robustness to geometric attacks, noise, filter-
ing, and data compression. Watermark imbedding and extraction algorithms
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are developed. Extensive empirical tests on the system accuracy are conducted.

The book is organized as follows. In Chapter 1 we give an introduction to
basic issues related to image descriptors and moment descriptors especially. The
heart of this book is Chapters 2 through 4, in which original results on the
accuracy analysis of orthogonal moment descriptors are presented. In particular,
Chapter 2 is devoted to the image analysis by orthogonal moments stemming from
the theory of classical orthogonal polynomials. On the other hand, Chapters 3
and 4 are concerned with a class of radial polynomials of the invariant form. The
importance and basic properties of this class of moment descriptors are discussed
in Chapter 3, whereas Chapter 4 examines the reconstruction properties of the
radial invariant moments. Chapter 5 gives a careful treatment of the problem of
efficient and accurate computation of the radial invariant moments. Chapters 6
and 7 show that many of the basic ideas developed in Chapters 2 through 4 have
immediate applications in two important problems of image processing. Hence
in Chapter 6 we develop the statistical theory for testing an image symmetry.
Chapter 7, in turn, is concerned with an application of radial moments to the
problems of data hiding and watermarking. All of the aforementioned results are
based on the original contributions and ideas of the author and his collaborators.

Over the years, my own work has benefited greatly from the advice and sup-
port of a number of friends and colleagues with interest in ideas of non-parametric
estimation, pattern recognition and imaging. There are too many names to list
here, but special mention is due to Prof. W�lodzimierz Greblicki who has in-
troduced me to these research areas. Without his help and encouragement my
consciousness would be still today in a narrow, finite dimensional “parametric”
world. Our collaboration has resulted in numerous joint papers on pattern recog-
nition, non-parametric estimation, and nonlinear system identification.

I would also like to thank Prof. Ewaryst Rafaj�lowicz, who has been a great
source of helpful advice and who has encouraged me to write this book. We
have been involved in a number of joint research projects concerning smooth-
ing techniques in signal sampling, non-parametric control charts, and pattern
recognition.

Important contributions to the ideas addressed in this book have been made
by a succession of research collaborators and students. This, in particular, in-
cludes Prof. Zygmunt Hasiewicz who has contributed greatly to my research pa-
pers in the area of nonlinear system identification and wavelet modeling. Fur-
thermore, Prof. Uli Stadtmüller has been a great host during my several visits
to the University of Ulm. We have developed a fruitful long standing research
collaboration in the areas of non-parametric modeling for signal analysis and
statistics.
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I am deeply indebted to Prof. Zygmunt Hasiewicz and Prof. Adam Krzyżak
for a careful review of this book. I am also grateful to Prof. Adam Krzyżak, Dr.
Yongqing Xin, Prof. Simon Liao, Dr. Hajo Holzmann, Prof. Andrzej Kozek, and
Prof. Pradeepa Yahampath for joint research papers and numerous discussions.

Finally, but by no means least, I would like to thank Mount-first Ng for
helping me with a number of typesetting problems. I also thank Mrs. Elżbieta
Żurawska-�Luczyńska for being a very supportive and patient editor.

Research presented in this monograph was partially supported by the Polish
Foundation for Science and NSERC of Canada.



Chapter 1

Object Representation in
Feature Spaces:
Moment-Based Techniques

An overview of moment-based methods for invariant representation of the struc-
ture of complex objects, such as images, is presented. The aim of the invariant
representation is to characterize an object and all its affine transformed ver-
sions by a point in a high-dimensional feature space obtained from Cartesian or
orthogonal moments. These methods are derived from the general theory of mo-
ments and orthogonal polynomials which is widely used throughout mathematics,
physics and statistics. A basic moment theory is reviewed with main emphasis
on a class of orthogonal moments. We discuss both Cartesian (geometric) and
orthogonal moments. The moment representation methods are discussed with
respect to invariance, symmetry and sensitivity to noise and discretization. The
fundamental problem of image reconstruction from moments is introduced.

1.1. Introduction

When analyzing complex objects as images, it is vital to have a simple, effective,
robust, computationally efficient approach that can represent salient object fea-
tures. One way of achieving this task is to manually select a number of important
characteristics that are directly related to the objective of a study, as for instance
face characteristics in the face recognition problem. Such a strategy is clearly ap-
plication dependent and difficult to automatize. The feature extraction approach
aims at representing an object as a point in a finite dimensional space (feature
space) such that different views of the object correspond to the same point in
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Feature Space

AA A

Object Space

Figure 1.1: A feature space for 2D objects obtained by translation, scaling, and
rotation of the original image

the feature space. In Fig. 1.1 we illustrate this concept by showing the original
image and its two versions obtained through translation, scaling, and rotation.

The feature space representation of an image has several advantages. First,
we obtain a significant reduction of dimensionality without loosing important
information about the original object. If the representation is carefully chosen
we can also obtain features which are relatively insensitive to noise and occlu-
sion. In fact, a class of orthogonal moment descriptors, examined extensively in
this book, can efficiently compress an original, e.g., 64 × 64 = 4096-dimensional
image to several nearly independent components. Moments have been used to
distinguish between shapes of different characters, aircrafts, chromosomes, and
industrial parts [161], [160]. Furthermore, this type of image features provides
a complete object representation that is invariant to similarity transformations.
The principal issue, being thoroughly examined in this book, of the feature space
representation is the capability of reconstruction of the original object from a
finite and often noisy set of object descriptors. This is the inverse problem which
is typically ill-posed and requires some regularization methods.
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1.2. Geometric Moments

Simple geometric properties of an image such as area, position, and orientation
can be easily computed from a set of linear functionals of the image called ge-
ometric moments. Hence let f : Ω ⊂ R2 → R, Ω being some compact set, be
an image function describing a real scene, such that 0 ≤ f(x, y) represents an
intensity of the image at a spatial position (x, y) ∈ Ω, where Ω is often called the
image plane.

We define the (p, q)-th moment of f(x, y) as follows

mpq =
∫∫

Ω
xpyqf(x, y)dxdy. (1.1)

A set of moments up to order N consists of all moments mpq such that 0 ≤ p+q ≤
N and if (p, q) are non-negative integers then the set contains (N + 1)(N + 2)/2
elements. The moments up to order two provide basic geometric characteristics
of f(x, y). In fact m00 defines the total mass of f(x, y), whereas the moments
(m00,m10,m01) are sufficient to calculate the center of mass of the image f(x, y),
i.e.,

x =
m10

m00
, y =

m01

m00
. (1.2)

Assuming that the image is somewhat elongated we can also find the orienta-
tion of the image defined as the axis of least inertia, i.e., the line for which the

integral
∫∫

Ω
r2(x, y)f(x, y)dxdy is minimum, where r(x, y) is the perpendicular

distance from the point (x, y) to the line sought after. It can be easily shown
that the axis of least inertia can be obtained from the second order moments
(m20,m11,m02) [199]. Higher order moments can provide additional detailed in-
formation about the image such as an orientation of the axis of least inertia and
symmetry properties. The above geometric concepts have particularly simple in-
terpretation for binary images, i.e., when f(x, y) = 1D(x, y), where D is a subset
of Ω and 1D(x, y) is the indicator function of D.

It is also worth mentioning that moments can be easily calculated from pro-
jections of the image. In fact, it is known that the horizontal, vertical, and
diagonal projections contain all the information needed to compute the moments
{mpq, 0 ≤ p + q ≤ 2}. These moments, in turn, provide all the information that
we need to obtain the position and orientation of the planar image. This fact is
fundamental to tomographic reconstruction in medical imaging [33,157].

A central moment corresponding to mpq is defined as follows

μpq =
∫∫

Ω
(x− x)p(y − y)qf(x, y)dxdy. (1.3)
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The central moments are equivalent to the regular geometric moments of an image
that has been shifted such that the image centroid (x, y) is at the origin. As a
result, central moments are invariant to translations of the image. Throughout
the book, without loss of generality, we will assume that the origin coincides
with the centroid of the image, i.e., mpq will be identified with μpq. The use
of moments for image analysis and object recognition was initiated by Hu [101]
and described in great detail in [160, 199, 203]. It is also worth mentioning that
moments play an important role in the various branches of mathematics such as
analysis, probability theory, and statistics, see [137] for a comprehensive overview
of the moment theory from viewpoint of mathematics.

Moment Invariants

As we have already observed the central moments are invariant to the image
translation. It is a fundamental problem in image analysis to find image descrip-
tors which are invariant under general affine transformations of the image plane[

x′

y′

]
=
[
α a
b β

] [
x
y

]
+
[
x0

y0

]
. (1.4)

It is easy to show that the following normalized central moments

νpq =
μpq

μ
1+(p+q)/2
00

, p+ q ≥ 2 (1.5)

are scale-invariant, i.e., invariant under transformation (1.4) with a = b = 0.
A significant step in finding moment invariants under transformation (1.4) was

made by Hu [101], who employing the general theory of algebraic invariants [164]
derived the following first seven invariant moments

ψ1 = μ20 + μ02, (1.6)
ψ2 = (μ20 − μ02)2 + 4μ2

11, (1.7)
ψ3 = (μ30 − 3μ12)2 + (3μ21 − μ03)2, (1.8)
ψ4 = (μ30 + μ12)2 + (μ21 + μ03)2, (1.9)
ψ5 = (μ30 − 3μ12)(μ30 + μ12)[(μ30 + μ12)2 − 3(μ21 + μ03)2]

+ (3μ21 − μ03)(μ21 + μ03)[3(μ30 + μ12)2 − (μ21 + μ03)2], (1.10)
ψ6 = (μ20 − μ02)[(μ30 + μ12)2 − (μ21 + μ03)2]

+ 4μ11(μ30 + μ12)(μ21 + μ03), (1.11)
ψ7 = (3μ21 − μ03)(μ30 + μ12)[(μ30 + μ12)2 − 3(μ21 + μ03)2]

− (μ30 − 3μ12)(μ21 + μ03)[3(μ30 + μ12)2 − (μ21 + μ03)2], (1.12)
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where we assumed that μ00 = 1, i.e., that instead of the moments {νpq} we can
equivalently use {μpq}. The descriptors ψ1, . . . , ψ7 are supposed to be invariant
under transformation (1.4) but they are actually invariant under shifting, scaling
and rotation transformations. This class of transformations does not include,
e.g., a shear transformation. The shear transformation parallel to the x-axis is
represented (as in (1.4)) by the following matrix[

1 a
0 1

]
. (1.13)

The corrected version of Hu’s invariant moments was established in [202] (and
rediscovered in [50]). The following set is composed of the first four affine trans-
formation invariants

I1 = (μ20μ02 − μ2
11)/μ4

00, (1.14)
I2 = (μ2

30μ
2
03 − 6μ30μ21μ12μ03 + 4μ30μ

3
12 + 4μ03μ

3
21

− 3μ2
21μ

2
12)/μ10

00, (1.15)
I3 = (μ20μ21μ03 − μ20μ

2
12 − μ11μ30μ03 + μ11μ21μ12 + μ02μ30μ12

− μ02μ
2
21)/μ7

00, (1.16)
I4 = (μ3

20μ
2
03 − 6μ2

20μ11μ12μ03 − 6μ2
20μ02μ21μ03 + 9μ2

20μ02μ
2
12

− 18μ20μ11μ02μ21μ12 − 8μ3
11μ30μ03 − 6μ20μ

2
02μ30μ12

+ 12μ20μ
2
11μ21μ03 + 6μ20μ11μ02μ30μ03 + 9μ20μ

2
02μ

2
21

+ 12μ2
11μ02μ30μ12 − 6μ11μ

2
02μ30μ21 + μ3

02μ
2
30)/μ11

00. (1.17)

It is worth noting that the above moment invariants are given as a highly non-
linear composition of the geometric moments up to order three. The invariants
based on higher order moments have also been obtained, e.g., employing geomet-
ric moments up to the ninth-order we can generate 52 moment invariants [143].
In practice, however, we use (due to sensitivity to noise) lower order invariants.
There have also been recent developments in defining invariant moments with
respect to a linear blurring operation [48,49,51–53].

There are a number of limitations in the practical use of the aforementioned
moment invariants. In fact the following is a list of their shortcomings.

• Due to the small number of invariants it is difficult to use them in representing
complex objects. This is an important issue is some applications, e.g., in digital
watermarking systems we require a large number of object descriptors in order
to embed a robust watermark, see Section 7 for a discussion of this problem.
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• The nonlinear nature of the invariants makes them potentially unstable. A
small error in the computation of {μpq} may result in unpredictable errors of
the invariants. This is a particularly serious issue when we observe the image
in the presence of noise.

• The geometric moments are defined for analog images, and so are the invari-
ants ψ1, ..., ψ7 and I1, ..., I4. For digital images, the invariance property is only
approximately satisfied due to numerical error involved in moment computa-
tion [144].

• For images revealing a certain type of symmetry a number of moments are
equal to zero. For instance, for images symmetric about the y-axis, i.e., when
f(x, y) = f(−x, y), (x, y) ∈ Ω = [−1, 1]2, we have μ11 = μ12 = μ30 = 0. This
leads to a great reduction in the number of non-zero invariants. In the extreme
case of rotationally symmetric objects all of the seven Hu’s invariants are zero.

1.3. Orthogonal Moments

The geometric moments are formed using a monomial basis set {xpyq}. This is
a complete set of functions on Ω but not orthogonal. The lack of orthogonal-
ity of {xpyq} results in high correlation between corresponding moments {mpq}
yielding a highly redundant representation of the image. Since different powers
of xpyq differ very little from each other therefore the geometric moments {mpq}
have a great difficulty in distinguishing between different patterns. Teague [219]
proposed a simple idea of overcoming the above shortcomings of {mpq} by re-
placing {xpyq} by a complete orthogonal polynomial system {Vpq(x, y)}. The
orthogonality of {Vpq(x, y)} means that we have∫∫

Ω
Vpq(x, y)Vp′q′(x, y)w(x, y)dxdy = 0

for all (p, q) �= (p′, q′), where w(x, y) is the weight function.
There are several ways of constructing two-variable counterparts of orthogonal

polynomials [126]. The simplest strategy is to take the direct product of two
systems of orthogonal polynomials in one variable. Hence let {Pp(x)} be the
orthogonal polynomial basis with respect to the weight function w1(x) which is
defined on the set Ω1. Similarly, let {Qq(y)} be the orthogonal polynomial basis
with respect to the weight function w2(y) which is defined on the set Ω2 and let
Ω = Ω1 × Ω2. Then it can be shown that

Vpq(x, y) = Pp(x)Qq(y) (1.18)
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is the orthogonal polynomial of degree p+ q with respect to the weight function
w1(x)w2(y) which is defined on Ω. Hence {Pp(x)Qq(y), p, q = 0, 1, . . . } constitutes
the orthogonal polynomial basis on Ω.

More general orthogonal polynomial bases with respect to the weight function
w(x, y) can be obtained [126] by applying the Gram-Schmidt orthogonalization
process to the sequence of monomials

1, x, y, x2, xy, y2, x3, x2y, . . . .

The orthogonal polynomial of order p + q is defined as the polynomial with the
highest term xpyq obtained in the orthogonalization process.

The following two important cases of orthogonal polynomial bases are exam-
ined thoroughly in this book.

1. Classical orthogonal polynomials in two variables. Here Ω = [−1, 1]2 and in
(1.18) {Pp(x)}, {Qq(y)} are classical orthogonal polynomials like Legendre,
Chebyshev, Gegenbauer, and Jacobi polynomials [206, 217]. The classical
one-variable orthogonal polynomials share a number of fundamental prop-
erties. One of them is the basic three-term recurrence relation which must
be satisfied by any classical one-variable orthogonal polynomial, i.e., we
have

Pk+1(x) = (x− αk)Pk(x) − βkPk−1(x), k = 0, 1, . . . , (1.19)

where P−1(x) = 0, P0(x) = 1 and αk, βk are constants. This formula yields
efficient algorithms for generating the classical orthogonal polynomials and
consequently designing two dimensional orthogonal polynomials according
the prescription given in (1.18).

2. Radial orthogonal functions. Here Ω = {(x, y) : x2 + y2 ≤ 1} is the unit
disk and the general form of radial orthogonal functions is the following

Vpq(x, y) = Rpq(ρ)ejqθ, (1.20)

where ρ =
√
x2 + y2, θ = arctan(y/x), and Rpq(ρ) is a polynomial in ρ.

This particular form of orthogonal functions originates from the seminal
work of Bhatia and Wolf [13], who gave a procedure for constructing poly-
nomials which form complete sets on the unit disk and are invariant in form
with respect to rotation of axes. It was proved in [13] that each such set
must be of the form as in (1.20) with q being an integer positive, nega-
tive or zero and the polynomial Rpq(ρ) is of degree p, containing no power
of ρ lower than |q|; moreover Rpq(ρ) is either an even or odd polynomial
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depending on whether q is even or odd. The specific form of polynomial
Rpq(ρ) depends on the choice of the radial weight function w(ρ) with respect
to which the functions Vpq(x, y) are orthogonal. See Section 3 for further
discussion of this issue.

The above considerations give the following definition of orthogonal moments
with respect to the orthogonal complete polynomial system {Vpq(x, y)}.

λpq =
∫∫

Ω
Vpq(x, y)f(x, y)w(x, y)dxdy. (1.21)

The issue of invariance for orthogonal moments can be resolved in various ways.
First, one can find a relationship between orthogonal moments and geometric
moments. Then we can use the theory of invariants discussed in Section 1.2 in
order to find the corresponding invariants in the orthogonal moments domain. A
simpler solution for translation- and scale-invariance can be obtained by shifting
and scaling the image prior to the computation of the orthogonal moments. As we
have already pointed out in Section 1.2 in order to get such a normalization we
need to evaluate the geometric moments {m00,m10,m01}. An important issue
of rotational invariance remains to be addressed for the case of the classical
orthogonal polynomial based moments defined by (1.18) and (1.21). On the other
hand the radial orthogonal function based moments defined by (1.20) and (1.21
possess the inherent rotational invariance property. This is a primary reason for
successful applications of the radial orthogonal moments in image representation
and classification.

1.4. Shape From Moments

In practical applications of the theory of object descriptors one can only determine
a finite number of them and then believe that the obtained features uniquely
represent an image. This is generally not the case and in particular the uniqueness
does not hold for the geometric moments. In fact it is well known that there exists
an infinite variety of functions whose first N geometric moments coincide and a
unique reconstruction of the image function f(x, y) is impossible. Nevertheless,
various approximation procedures exist [112] which aim at constructing a specific
image function gN (x, y), e.g., a polynomial of order N , such that∫∫

Ω
xpyqgN (x, y)dxdy = mpq, 0 ≤ p+ q ≤ N,

where {mpq} are known moments of f(x, y).
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The problem of whether the geometric moments can uniquely represent a
single-variable function f(x) defined on a finite interval is a classical topic in the
approximation theory and is called the Hausdorff moment problem [224]. Hence

let mp =
∫ 1

0
xpf(x)dx, p = 0, 1, . . . be the moments of a nonnegative integrable

function f(x) defined on [0, 1]. Hausdorff proved [224] that the following

∂rmp =
r∑

l=0

(−1)l

(
r

l

)
mp+l > 0, p, r = 0, 1, 2, . . . (1.22)

is the necessary and sufficient condition for a unique representation of a given
function f(x) by its moments and more importantly this condition assures that
for a given sequence {mp} (satisfying (1.22)) there exists a unique nonnegative
f(x) integrable on [0, 1] whose moments coincide with {mp}. The sequence {mp}
satisfying (1.22) is called completely monotonic.

The extension of the Hausdorff moment problem to the case of functions of
two variables was made in [99] where condition (1.22) is replaced by its two-
dimensional counterpart

∂r
1∂

h
2mpq > 0, r, h, p, q = 0, 1, 2, . . . , (1.23)

where the operator ∂r
1 is defined as in (1.22) and applies to the first subscript p,

and the second operator ∂h
2 applies independently to the second subscript q.

The Hausdorff moment theorem asserts that from an infinite set of completely
monotonic moments {mpq} we can uniquely find the image function f(x, y). This
inverse problem, however, is not well posed. In fact, the inverse of the mapping

f 	−→ {mpq}

is not continuous [218]. Hence replacing {mpq} by {mpq + εpq}, where {εpq} is
an arbitrarily small positive sequence, may result in the image function fε(x, y)
which is arbitrarily far from f(x, y). This ill-posedness of the inverse moment
problem has resulted in a number of regularization type solutions [218].

This instability of the inverse moment problem can be partially circumvented
if one restricts the class of image functions. Hence let us consider a class of binary
images f(x, y) = 1G(x, y), where G is an L-sided simply connected polygonal
region in the image plane (see Fig. 1.2) with the L vertices represented by the
complex numbers z1, z2, . . . , zL.

The following interesting result concerning the aforementioned polygons was
proved by Davies in [30].
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Figure 1.2: Planar object of the polygonal shape

Theorem 1.1. Let z1, z2, . . . , zL designate the vertices of an L-sided simply con-
nected polygon G in the plane. Then we can find constants a1, a2, . . . , aL depend-
ing upon z1, z2, . . . , zL but independent of h(z), such that for all h(z) analytic in
the closure of G, ∫∫

G
h′′(z)dxdy =

L∑
j=1

ajh(zj), (1.24)

where z = x+ jy and h′′(z) is the second derivative of h(z).

Using h(z) = zp in Theorem 1.1 we can readily obtain the following funda-
mental relationship

τp = p(p− 1)cp =
L∑

j=1

ajz
p
j , (1.25)

where cp =
∫∫

G
zpdxdy is the p-th complex moment of the L-sided polygonal

region G, and τ0 = τ1 = 0. It was shown in [157] that we can uniquely recon-
struct G from the moments c0, c1, . . . , c2L−3 or equivalently from the numbers
τ0, τ1, . . . , τ2L−1. Various reconstruction algorithms based on the Davies theorem
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have been reported in [62,65,86]. The issue of robustness to noise and discretiza-
tion of the proposed algorithms remains to be addressed, see [61] for a recent
study of this problem.

The above discussion on the shape recovery from the classical geometric mo-
ments reveals once again the serious limitations of this type of image descriptors.
Having the choice of base functions for defining moments one can expect to be able
to improve the reconstruction properties by employing the orthogonal moments
{λpq} introduced in (1.21). Indeed, the reconstruction strategy from orthogonal
moments is very straightforward and does not need any regularization. Hence
we simply represent an image by a partial sum of its orthogonal expansion with
respect to the basis {Vpq(x, y)}. If the orthogonal moments up to order N are
used then the reconstruction formula takes the following form

fN (x, y) =
N∑

p=0

p∑
q=0

λp−q,qVp−q,q(x, y), (1.26)

where it was assumed that the orthogonal basis {Vpq(x, y)} is normalized, i.e.,∫∫
Ω
|Vpq(x, y)|2w(x, y)dxdy = 1 for all (p, q).

The reconstruction method fN (x, y) requires the total (N + 1)(N + 2)/2 or-
thogonal moments and can converge to the true image f(x, y) as N increases.
In fact the general theory of orthogonal expansions [206, 217] says that if the

image function is square integrable on Ω, i.e, that
∫∫

Ω
|f(x, y)|2w(x, y)dxdy <∞

then due to Parseval’s formula we have the following expression for the global
reconstruction error∫∫

Ω
|fN (x, y) − f(x, y)|2w(x, y)dxdy =

∞∑
p=N+1

p∑
q=0

|λp−q,q|2. (1.27)

Hence we can readily conclude that the reconstruction error tends to zero, i.e.,∫∫
Ω
|fN (x, y) − f(x, y)|2w(x, y)dxdy → 0 as N → ∞. (1.28)

Thus we can easily establish the convergence of the reconstruction method fN (x, y)
to any image f(x, y) of the L2(Ω) class. The rate at which the error tends to
zero depends on the assumed image model. There are several deterministic image
models that prevail in the literature. These mathematical models are approxi-
mates of real images to a certain degree of faithfulness. The space of functions
of bounded variations has had a fundamental impact on image analysis since the
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publication of the well-known work of Rudin, Osher, and Fatemi [205]. This
image model permits the existence of jumps, edges, and local oscillations in a
function and yet it is mathematically tractable. Thus the class of bounded vari-
ation functions indeed models faithfully natural images. This is the model which
is used throughout this monograph.

An alternate approach for assessing the accuracy of the reconstruction method
can be based on establishing the pointwise convergence, i.e., that fN (x, y) →
f(x, y) as N → ∞ at every point (x, y) ∈ Ω. This is typically a much more
difficult question and can only be resolved for some particular orthogonal basis
{Vpq(x, y)}.

Let us finally state that the issue of image reconstruction from object de-
scriptors is crucial since it allows us to visually verify that a sufficient number of
features is used to capture the essential structure of the image. This fundamental
problem is thoroughly examined in this monograph.

1.5. Discretization and Noise Sensitivity

Thus far we have assumed that one has the ability to observe the image f(x, y)
assumed to be a measurable function defined on Ω. In practical applications of
image analysis one has to implement any algorithm in the digital domain. Hence
the image function f(x, y) is only observed at discrete points. Let {(xi, yj) :
1 ≤ i, j ≤ n} be an n × n array of pixels, i.e., (xi, yj) is the centre point of
the (i, j)th pixel. We assume that all pixels are squares with the width Δ, i.e.,
xi − xi−1 = yj − yj−1 = Δ, and the (i, j)th pixel is defined as the square

cij = [xi − Δ/2, xi + Δ/2] × [yj − Δ/2, yj + Δ/2]. (1.29)

As a result of the sampling process applied to the image plane we have only the
digitized version {f(xi, yj), 1 ≤ i, j ≤ n} of the image function f(x, y). Conse-
quently one has to reconsider the aforementioned theory of moment invariants
for digital images. It is clear that the invariant properties can hold only ap-
proximately for {f(xi, yj), 1 ≤ i, j ≤ n} and it is an important issue to obtain
an accurate digital approximate of the true moments. This classical problem of
numerical integration [31, 40] has been rarely addressed in the context of object
invariants, see [117, 144, 220] for some results and Sections 2 and 5 for detailed
discussion of this subject.

The simplest approximation (still commonly used in many applications) to
compute the geometric moments is the following

m̃pq = Δ2
∑

(xi,yj)∈Ω

f(xi, yj)x
p
i y

q
j . (1.30)
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For the orthogonal moments the analogous formula is as follows

λ̃pq = Δ2
∑

(xi,yj)∈Ω

f(xi, yj)Vpq(xi, yj)w(xi, yj). (1.31)

Clearly these are not very accurate approximations of mpq, λpq, respectively. It is
worth mentioning that the main focus in the moment invariant literature has been
on the development of methods and specialized hardware for fast calculation of
the approximations m̃pq, λ̃pq [7,11,27,29,45,58,103,114,141,142,156,159,198,208,
236, 246]. The issue of the high precision approximations of the true invariants
has been greatly ignored. The first attempt concerning this problem was made
in [220] and [144]. In the latter contribution the approximation to mpq was given
in the form

mpq =
∑

(xi,yj)∈Ω

f(xi, yj)
∫∫

cij

xpyqdxdy, (1.32)

where the factor
∫∫

cij

xpyqdxdy can be efficiently evaluated. The errors resulting

from these approximations depend not only on the type of the approximation
scheme but also on the geometry of the support set Ω. In Sections 2 and 4 we
establish a detailed accuracy analysis of various approximation algorithms.

There is yet another important source of error commonly appearing in prac-
tical situations, i.e., our original digital image data {f(xi, yj) : 1 ≤ i, j ≤ n} are
often observed in the presence of noise. Hence we observe the following noisy
version of f(xi, yj)

g(xi, yj) = f(xi, yj) + z(xi, yj), 1 ≤ i, j ≤ n, (1.33)

where z(xi, yj) is a zero mean additive noise process. The noise process z(xi, yj)
has typically a finite variance and is covariance stationary, i.e., the covariance
function of z(xi, yj) has the following form

cov(z(x, y), z(x′, y′)) = ρ
(√

(x− x′)2 + (y − y′)2
)
, (1.34)

where ρ(t) is an even function.
The issue which arises now is how one can estimate moment descriptors from

noisy data. A natural method is to use plug-in approach which replaces the pure
digital data {f(xi, yj) : 1 ≤ i, j ≤ n} by the noisy one {g(xi, yj), 1 ≤ i, j ≤ n}.
This would lead to the following counterparts of (1.30) and (1.31)

m̂pq = Δ2
∑

(xi,yj)∈Ω

g(xi, yj)x
p
i y

q
j (1.35)
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and
λ̂pq = Δ2

∑
(xi,yj)∈Ω

g(xi, yj)Vpq(xi, yj)w(xi, yj), (1.36)

respectively.
It is worth noting that both estimates are unbiased versions of m̃pq and λ̃pq,

i.e., Em̂pq = m̃pq and Eλ̂pq = λ̃pq. Having formed the estimates of mpq and
λpq we can consider the problem of image reconstruction from moments. As we
have already pointed out the reconstruction of an image from noisy version of
the geometric moments is ill-posed and virtually impossible. This is in striking
contrast with the orthogonal moments, where the reconstruction algorithm from
digital and noisy images is straightforward. Indeed, using (1.26) we can easily
form the following reconstruction method

f̂N (x, y) =
N∑

p=0

p∑
q=0

λ̂p−q,qVp−q,q(x, y), (1.37)

for some estimate λ̂pq of λpq, e.g., like the one given in (1.36).
A simple conclusion which can be drawn from the convergence result in (1.28)

is that the more moments are taken into account the more accurate approxima-
tion of the true image can be obtained. This is not the case for reconstruction
algorithms utilizing the approximated values of λpq. In fact, by virtue of Parse-
val’s formula applied to f̂N (x, y) we obtain the following counterpart of (1.27)∫∫

Ω
|f̂N (x, y) − f(x, y)|2w(x, y)dxdy

=
N∑

p=0

p∑
q=0

|λ̂p−q,q − λp−q,q|2 +
∞∑

p=N+1

p∑
q=0

|λp−q,q|2. (1.38)

Hence the reconstruction error consists of two parts. The first one is due to
the imprecision of estimating the true moments {λpq}, whereas the second one
is a result of using a finite number of moments. Furthermore the first term
increases with N , while the second one decreases. This yields a well-known trade-
off phenomenon between the estimation and approximation errors. As a result
there is an optimal value of N yielding the best optimal reconstruction. This
number defines an intrinsic feature vector dimensionality representing an object.
It is worth mentioning that the problem of finding the optimal dimensionality of
patterns is fundamental in designing classification systems [38].
In Chapters 3 and 4 we establish the asymptotic theory of finding the optimal
N for various types of orthogonal moment descriptors. Our theory models the
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performance of reconstruction procedures on grids which become increasingly
fine, i.e., when Δ → 0.

The reconstruction algorithm given in (1.37) falls into the category of non-
parametric estimation methods since we do not assume any parametric knowledge
of a class of image functions taken into account, see [39, 41, 95, 210, 230] for an
overview of non-parametric estimation techniques. In our case the parameter N
plays the role of the smoothing sequence controlling the aforementioned trade-
offs and, as we have already mentioned, has to be selected suitably in order to
define a reconstruction method being able to converge to an image function which
belongs to some non-parametric function space.

The field of non-parametric estimation has found a great number of appli-
cations in science and engineering and this book can be viewed as an extension
of this subject to the problem of image analysis. See [80–99, 128, 150–157, 200,
201, 203–254] for the various applications of non-parametric methods in signal
processing, system identification, pattern recognition and image processing.

1.6. Conclusions

In this chapter, an overview of moment type image descriptors has been con-
ducted. In particular, we have described the basic concepts of geometric mo-
ments, moment invariants, and orthogonal moments. The fundamental issue of
recovering an image shape from moments is discussed. This is followed by the
examination of the problem of the moment descriptor robustness to discretization
and noise.
Moment descriptors are region-based image features as they use all information
about the image, i.e., both the image contour and its content unlike the so-called
contour-based descriptors such as Fourier descriptors [130,139] which merely use
information about the image boundary. As such they have a number of limita-
tions. First they are sensitive to noise and occlusions because they use a small
part of image information. Furthermore in many applications, e.g., face recogni-
tion, shape content is more important than the contour. Extensive comparative
numerical studies performed in [203, 226] for the problem of off-line recognition
of characters and in [251] for the problem of image retrieval suggest that object
descriptors based on moments and especially orthogonal moments are the best
choices. The methodology developed in this book gives a theoretical support to
these empirical findings.



Chapter 2

Image Analysis by Orthogonal
Moments

In this chapter a class of moment descriptors stemming from the theory of clas-
sical orthogonal polynomials is introduced. We examine basic properties of both
orthogonal and geometric moments including the issues of numerical efficiency,
reconstruction power from the computed moments, robustness to noise, and au-
tomatic selection of optimal number of moments. In particular, the influence
of discretization and noise on the accuracy of moment descriptors is thoroughly
investigated. Several new numerical techniques that enhance the accuracy and
efficiency of orthogonal moment descriptors are proposed. An improved method
for calculating the classical geometric moments is also given. We utilize these
results for the problem of image reconstruction from orthogonal moments based
on a class of classical orthogonal polynomials. The automatic selection of an
optimal number of moments is also discussed.

An extension of the above results to the case of generalized moments and
orthogonal moments calculated in the digital domain is given.

The main contributions of this chapter are the following:

• An improved estimation technique for high accuracy calculation of geometric
moments is proposed.

• Bounds for the precision of the estimates are established.

• An improved technique for high accuracy calculation of orthogonal Legendre
moments is proposed.

• The bounds for the precision of the estimates of Legendre moments are derived.

27
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• The issue of a fast calculation of Legendre moments is examined.

• An algorithm for image recovery from Legendre moments is introduced and
its asymptotic analysis is investigated.

• Numerical studies are carried out to confirm the basic theory.

• An estimate of geometric moments from noisy images is proposed. The statis-
tical accuracy of the estimates is evaluated.

• An estimate of Legendre moments from noisy images is proposed.

• The reconstruction power of the Legendre moment based image estimate is
evaluated. The optimal rate of convergence for the mean integrated squared
reconstruction error is established.

• Algorithms for automatic selection of optimal number of moments are pro-
posed.

• The aforementioned theory is further extended to a general class of orthogonal
moments.

• Orthogonal moments calculated in the digital domain are discussed.

2.1. Introduction

As was pointed out an essential issue in the field of pattern analysis is the recogni-
tion of objects and characters regardless of their positions, sizes, and orientations.
Moments and functions of moments have been extensively employed as the in-
variant global features of an image in pattern recognition, image classification,
target identification, and scene analysis, see [160, 199] and the references cited
therein.

Generally, these features are invariant under image translation, scale change,
and rotation only when they are computed from the original non-distorted analog
two-dimensional image. In practice, one observes the digitized, quantized, and
often noisy version of the image and the invariance properties are satisfied only
approximately. A digital image is obtained by two operations, i.e., by sampling an
analog image on a discrete grid followed by the quantization of its amplitude using
a finite number of bits. It is worth mentioning that the quantization process can
be represented by the image plus noise model [112] and this case is fully covered
by the theory developed in this book.

The error analysis and analytic characterization of moment descriptors have
been rarely investigated. Some studies concerning the discretization error in the
case of geometric moments were performed by Teh and Chin [220], see [117] for
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a general theory of digitization errors in computer vision. The vulnerability of
moments against noise process has been examined in [1, 173, 221]. In all these
studies, only continuous image models have been taken into account, i.e., the
discretization error has been greatly ignored.

In this chapter, the detailed analysis of the discretization error occuring in mo-
ment computing is carried out. Several new techniques to increase the accuracy
and efficiency of moments are proposed. Both the classical geometric moments
and orthogonal moments are taken into consideration. Based on the progress
made in moment computing, the inverse moment problem of reconstruction of an
image from a finite set of moments based on a class of the classical orthogonal
polynomials is examined. It is carried out both for discrete and noisy data. This
yields a delicate problem of selecting an optimal number of moments from the
digital and noisy image. This issue is tackled by cross-validation based selection
techniques. Finally we also give a brief introduction to more recently studied
discrete orthogonal moments.

2.2. Geometric Moments

Geometric moments are the most commonly used region-based object descriptors,
see [160,199,203] for an overview of the subject. Let us recall that the geometric
moment of order (p, q) is defined as:

mpq =
∫ +1

−1

∫ +1

−1
xp yq f(x, y) dxdy, (2.1)

where we assume that the image function f(x, y) is defined on the square Ω =
[−1, 1]2.

If an analog original image function f(x, y) is digitized into its discrete version
{f(xi, yj)} with an n× n array of pixels, the double integration of (2.1) must be
approximated by summation. Here (xi, yj) is the centre point of the (i, j) pixel.
A commonly used prescription to compute mpq from a digital image is defined as

m̃pq = Δ2
n∑

i=1

n∑
j=1

xp
i y

q
j f(xi, yj), (2.2)

where Δ = xi −xi−1 = yj − yj−1 is the sampling interval. A number of fast algo-
rithms and hardware implementations for determining m̃pq have been proposed,
see, e.g., [24, 29, 141, 199], and [249]. It is clear, however, that m̃pq is not a very
accurate estimate of mpq, particularly when the moment order (p, q) increases.
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The piecewise constant approximation of f(x, y) in (2.1) yields the following
approximation of mpq

m̂pq =
n∑

i=1

n∑
j=1

hpq(xi, yj) f(xi, yj), (2.3)

where

hpq(xi, yj) =
∫ xi+

Δ
2

xi−Δ
2

∫ yj+
Δ
2

yj−Δ
2

xp yq dxdy (2.4)

represents the integration of xpyq over the (i, j) pixel.
It is worth noting that if f(x, y) is assumed to be a piecewise constant function

over the given pixel set, then
m̂pq = mpq.

In practice, however, f(x, y) can be any positive bivariate function and then,
clearly, m̂pq �= mpq.

In the following theorem we evaluate the approximation error |m̂pq −mpq| for
images which are bounded variation (BV) functions on Ω.

The total variation of f(x, y) is defined as

TV(f) =
∫∫

Ω

{∣∣∣∣∂f(x, y)
∂x

∣∣∣∣+ ∣∣∣∣∂f(x, y)
∂y

∣∣∣∣} dxdy, (2.5)

where the derivatives are meant in the generalized sense [254] . A function f(x, y)
with TV(f) <∞ is said to have bounded variation [60]. The class BV allows the
existence of jumps and edges being important features of most natural images.
For instance the binary image 1G(x, y) ∈ BV, provided that the boundary of the
region G is smooth.

Theorem 2.1. Let the image function f ∈ BV(Ω). Then

|m̂pq −mpq| ≤
(

4fmax TV(f)
(2p+ 1)(2q + 1)

) 1
2

Δ, (2.6)

where fmax = max
(x,y)∈Ω

f(x, y).

The proof of this inequality is given in the Appendix.
Inequality (2.6) shows that the error between m̂pq and mpq decreases as the

pixel length Δ becomes smaller. Interestingly, |m̂pq − mpq| also decreases as
the moment order (p, q) increases. The latter property does not hold for the
approximation in (2.2) (see Theorem 2.2 in this section).
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It is also worth noting that in a general case, f(xi, yj) in (2.3) is not the value
of f(x, y) at the point (xi, yj), but it should be considered as a quantized level of
f(x, y) at the pixel (i, j), see [117] for a basic discussion of quantization error in
computer vision problems.

The next result describes the error caused by m̃pq as an estimate of mpq.

Theorem 2.2. Let the assumptions of Theorem 2.1 hold. Then for p, q ≥ 1,

|m̃pq −mpq| ≤
fmax

2
(pΔ + qΔ) +

(
4fmax TV(f)

(2p+ 1)(2q + 1)

) 1
2

Δ. (2.7)

The proof of Theorem 2.2 is similar to the proof of Theorem 2.1 and is omitted,
see also [144,173].

It should be noted that the second term on the right-hand side of (2.7) is just
the bound for |m̂pq −mpq|. The first term on the right-hand side of (2.7) is an
additional bias of m̃pq caused by the poorer approximation of the integral in (2.1)
and it is an increasing function of the moment order (p, q).

Remark 2.1. Theorem 2.1 and Theorem 2.2 give the approximation error of m̂pq

and m̃pq, respectively, under rather general assumption about the image f(x, y).
Some stronger conditions imposed on the smoothness of f(x, y) would lead to
tighter bounds for the approximation error. For example, for f(x, y) being a
piecewise constant function, we can easily obtain that

|m̃pq −mpq| ≤ C1Δ2,

where C1 = C1(p, q) is an increasing function of (p, q), and

|m̂pq −mpq| ≤ C2Δ2,

where C2 is independent of (p, q).

Furthermore, it is straightforward to observe from (2.4) that

hpq(xi, yj) =
1

(p+ 1)(q + 1)

[(
xi +

Δ
2

)p+1

−
(
xi −

Δ
2

)p+1
]

·
[(

yj +
Δ
2

)q+1

−
(
yj −

Δ
2

)q+1
]
. (2.8)

It is clear that the approximation in (2.2) corresponds to

hpq(xi, yj) = xp
i y

q
j Δ2. (2.9)
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Applying the binomial expansion to (2.8), one can rewrite hpq(xi, yj) as follows

hpq(xi, yj) =
4

(p+ 1)(q + 1)

p+1∑
l=1

q+1∑
t=0

(
p+ 1
l

)(
q + 1
t

)

· xp+1−l
i yq+1−t

j

(
Δ
2

)l+t

, (2.10)

where
p+1∑
l=1

q+1∑
t=0

stands for the summation with respect to the odd values of l and

t. Plugging this into (2.3), changing variables and recalling the definition of m̃pq,
we obtain

m̂pq =
4

(p+ 1)(q + 1)

p+1∑
l=1

q+1∑
t=1

(
p+ 1

p+ 1 − l

)(
q + 1

q + 1 − t

)

· Δl+t−2

2l+t
m̃p+1−l,q+1−t. (2.11)

It is interesting to note that the above formula is of the form of the convolution
operator. In fact, defining for all odd values of (l, t) the following sequences

alt =
Δl+t−2

2l+t
, (2.12)

blt =
(
p+ 1
l

)(
q + 1
t

)
m̃lt, (2.13)

we can rewrite (2.11) as

m̂pq =
4

(p+ 1)(q + 1)
{alt} ∗ {blt}, (2.14)

where ∗ is the two-dimensional (p+1)(q+1)-point discrete convolution operator.
The representation in (2.14) allows us to adapt a number of existing fast com-
putation techniques for {m̃lt}, see [24,29,141,199,249], to our modified moments
m̂pq.

The algebraic moment invariants, due originally to Hu [101], see also [203],
require the knowledge of all mpq’s for p+ q ≤ 3. Owing to (2.11), we can obtain
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the following list of relationships between {m̃pq} and {m̂pq} for p+ q ≤ 3

m̂00 = m̃00; m̂10 = m̃10; m̂01 = m̃01;

m̂20 = m̃20 +
Δ2

12
m̃00; m̂02 = m̃02 +

Δ2

12
m̃00; m̂11 = m̃11;

m̂30 = m̃30 +
Δ2

4
m̃10; m̂21 = m̃21 +

Δ2

12
m̃01; m̂12 = m̃12 +

Δ2

12
m̃10;

m̂03 = m̃03 +
Δ2

4
m̃01.

Furtermore, the first three leading terms in (2.11) are

m̂pq = m̃pq +
q(q − 1)

24
Δ2m̃p,q−2 +

p(p− 1)
24

Δ2m̃p−2,q +O(Δ4). (2.15)

This again explains that the approximation error resulting in the use of m̃pq’s
quickly gets out of control when the moment order increases. Obviously, when
the moments of higher order are involved, the problem of the accurate numerical
approximation must be addressed prior to any efficient numerical or hardware
implementations.

The above discussion forms the basis for our studies concerning the digital
approximation for orthogonal moment descriptors. We use orthogonal moments
due to the fact that they possess better reconstruction power than geometrical
moments and they attain a zero value of redundancy measures [1,173,219,221]. In
particular, Legendre and Gegenbauer orthogonal moments are examined. We use
both types of moments due to their direct connection to the geometric moments.
In the case of Gegenbauer orthogonal moments we can obtain a further refinement
in the accuracy by selecting a scaling factor appearing in the definition of the
Gegenbauer polynomials. The methodology presented can also be extended to
other types of moments known in the literature [219,221].

2.3. Legendre Moments

The Legendre moment of order (p, q) is defined as

λpq =
∫ +1

−1

∫ +1

−1
Pp(x)Pq(y) f(x, y)dxdy, (2.16)

where the p-th order Legendre polynomial is given by the Rodrigues formula

Pp(x) =
1

2pp!
dp

dxp
(x2 − 1)p, x ∈ [−1, 1].
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See [206], for basic properties of the Legendre polynomials.
Hence, λpq generalizes mpq in the sense that the monomial xpyq is replaced by

the orthogonal polynomial Pp(x)Pq(y) of the same order. In Fig. 2.1 we depict
a collection of the Legendre polynomials {Pp(x)Pq(y)} for (p, q) ∈ {(2, 0), (0, 2),
(2, 1); (4, 0), (2, 2), (4, 4)}.
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Figure 2.1: Density plots of Pp(x)Pq(y) for
(p, q) ∈ {(2, 0), (0, 2), (2, 1); (4, 0), (2, 2), (4, 4)}

Similarly to the case of the geometric moments, we can approximate λpq by

λ̂pq =
n∑

i=1

n∑
j=1

hpq(xi, yj) f(xi, yj), (2.17)

where

hpq(xi, yj) =
∫ xi+

Δ
2

xi−Δ
2

∫ yj+
Δ
2

yj−Δ
2

Pp(x)Pq(y) dxdy. (2.18)

The equation in (2.18) is a counterpart of (2.4). It is common, however, in
the computer vision literature to use a simpler approximation of λpq of the form

λ̃pq = Δ2
n∑

i=1

n∑
j=1

Pp(xi)Pq(yj)f(xi, yj). (2.19)

The approximation properties of λ̃pq are similar to m̃pq in (2.2), i.e., λ̃pq is inferior
to λ̂pq. The following theorem describes a result concerning the accuracy of λ̂pq.
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Theorem 2.3. Let the assumptions of Theorem 2.1 hold. Then

|λ̂pq − λpq| ≤
(

4
(2p+ 1)(2q + 1)

fmax TV(f)
) 1

2

Δ. (2.20)

The proof of this theorem is similar to the proof of Theorem 2.1 and therefore
it is omitted, see also [144,173].

It should also be remarked that for a class of piecewise constant image func-
tions over Ω, we can show that

|λ̂pq − λpq| ≤ α
1√
pq

Δ2, (2.21)

for some constant α being independent of (p, q) and Δ. This should be compared
with the result in Remark 2.1.

Although we can obtain an explicit formula for hpq(xi, yj) in (2.18), analo-
gously as in (2.8) (see the discussion below) we wish to use some techniques of
numerical integration [31] since for other orthogonal moments such formulas are
not feasible. In particular, the alternative extended Simpson’s rule is used in our
numerical examples to approximate the integral in (2.18) [31].
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Figure 2.2: The error E versus the moment order for five different numerical
integration rules applied to a constant image

To show a potential benefit from the use of such numerical techniques, we
assume that the image function f(x, y) for all (x, y) has the same constant value
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a. In such a case, all Legendre moments should be equal to zero except λ00 = 4a.
We use the sum of all squared Legendre moments up to the order p+ q ≤ Nmax

(except p = q = 0) as the measure of approximation error, i.e.,

E =
Nmax∑
p=0

p∑
q=0

λ̂2
p−q,q − λ̂2

00. (2.22)

Clearly, the smaller the E value in (2.22), the better the performance of the
approximation. Five different numerical integration rules, I = 3, I = 8, I =
13, I = 18, and I = 23 are employed. The factor I stands for the number of
points within a given pixel required to evaluate the integral in (2.18). All E’s
are listed in Table 2.1 and illustrated in Fig. 2.2. The highest Legendre moment
order used in this experiment is 56, i.e., Nmax = 56.

Only the E’s which are less than 1.0 are presented in Fig. 2.2. Each E
increases very sharply after the moment order is over a certain number. As
expected, the higher accuracy approximation rules perform better than the lower
ones.

2.3.1. Numerical Efficiency

As we have already pointed out, when the higher order Legendre polynomials
{Pp(x)Pq(y)} are involved we need an efficient method for generating {Pp(x)}.
For small values of p, the three-term recurrence formula [206]

Pp+1(x) =
2p+ 1
p+ 1

xPp(x) − p

p+ 1
Pp−1(x) (2.23)

with P0(x) = 1 and P1(x) = x can be used. For larger values of p and larger im-
ages, however, we have avoided (2.23) and our computations have been based on
the look-up table approach, i.e., the Legendre polynomials up to the order 55 have
been generated. Alternatively, we can employ the asymptotic approximations for
Pp(x), e.g., the first order Laplace’s formula [206,217]

Pp(cos θ) =
√

2(πp sin θ)−1/2 cos((p+ 1/2)θ − π/4) +O(p−3/2),

for 0 < θ < π.
Numerical techniques for generating orthogonal polynomials can be found

in [57].
The discussion in the previous section reveals that the Legendre moments of

the digital image {f(xi, yj)} can be obtained from the formulas in (2.17) and
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Table 2.1: The approximation error E for different
integration rules indexed by I being the number of points

which are equally spaced apart inside a single pixel

Order I = 3 I = 8 I = 13 I = 18 I = 23
12 0.00003
14 0.00039
16 0.00308
18 0.01780
20 0.07873 0.00002
22 0.27537 0.00009
24 0.77483 0.00036 0.00001
26 1.77074 0.00122 0.00002
28 0.00373 0.00008 0.00001
30 0.01027 0.00024 0.00002
32 0.02562 0.00064 0.00005 0.00001
34 0.05822 0.00160 0.00012 0.00002
36 0.12126 0.00372 0.00029 0.00004
38 0.23284 0.00807 0.00068 0.00010
40 0.42134 0.01779 0.00190 0.00043
42 0.73673 0.04279 0.00728 0.00294
44 1.15393 0.07487 0.01208 0.00436
46 0.11278 0.01524 0.00458
48 0.16089 0.01773 0.00459
50 0.22783 0.02100 0.00469
52 0.32621 0.02745 0.00469
54 0.47053 0.04105 0.00499
56 0.67317 0.06711 0.00695

(2.18). This can be done by numerical integration or they can be even calculated
explicitly. In fact, employing the identity [206]∫ x

−1
Pp(u)du =

1
2p+ 1

{Pp+1(x) − Pp−1(x)}

we can easily evaluate the factor hpq(xi, yj) in (2.18) as follows

hpq(xi, yj) =
1

(2p+ 1)(2q + 1)
{(Pp+1(xi + Δ/2)

− Pp+1(xi − Δ/2))(Pp−1(xi + Δ/2)
− Pp−1(xi − Δ/2))}{(Pq+1(yj + Δ/2)
− Pq+1(yj − Δ/2))(Pq−1(yj + Δ/2) − Pq−1(yj − Δ/2))}.
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2.4. Image Reconstruction from Moments

In the previous sections, several problems of accuracy and efficiency in computing
individual moments have been addressed. To verify their global properties, the
problem of the image reconstruction from moments should be examined. As has
been pointed out, however, the recovery of an image from the geometric moments
is strongly ill-posed and computationally expensive [218]. On the other hand, the
reconstruction from orthogonal moments does not need regularization, it adds the
individual components of each order to generate the reconstructed image. Hence,
in this section, we discuss the problem of the image reconstruction from the
Legendre moment descriptors.

A problem which is raised here can be stated as follows: if only a finite set of
moments of an image are given, how well can we reconstruct the image?

The Legendre polynomials {Pp(x)} constitute a complete orthogonal set on
the interval [−1, 1], i.e.,∫ +1

−1
Pp(x)Pq(x) dx =

2
2p+ 1

δpq, (2.24)

where δpq is the Kronecker function, i.e., δpq = 1 if p = q and 0 otherwise.
Consequently it can be shown [126] that {Pp(x)Pq(y)} is an orthogonal basis

on Ω = [−1, 1]2. Hence provided that f(x, y) is in the L2(Ω) space, we can
represent the image function f(x, y) as a formal infinite series expansion

f(x, y) =
∞∑

p=0

p∑
q=0

τp−q,q λp−q,q Pp−q(x)Pq(y), (2.25)

where the Legendre moment λpq of f(x, y) of order (p, q) is defined in (2.16) and

τpq =
(2p+ 1)(2q + 1)

4
(2.26)

is the normalizing sequence due to (2.24).
In practice, however, one has to truncate infinite series in (2.25). If only the

Legendre moments of order smaller than Nmax are given, the function f(x, y) can
be approximated by a truncated series

f(x, y)  fNmax(x, y) =
Nmax∑
p=0

p∑
q=0

τp−q,q λp−q,q Pp−q(x)Pq(y). (2.27)
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Furthermore, λpq’s must be replaced by their approximations given by (2.17),
yielding the following reconstruction scheme

f̂Nmax(x, y) =
Nmax∑
p=0

p∑
q=0

τp−q,q λ̂p−q,q Pp−q(x)Pq(y). (2.28)

This is actually the basic equation used in the image reconstruction via the Leg-
endre moments. It is important to note that when the given order Nmax is to be
increased, the previously determined λ̂pq’s do not change.

2.4.1. Reconstruction Error Analysis

To measure the error between the original image and its reconstructed version,
the following global L2 distance is employed

Error(f̂Nmax) =
∫ 1

−1

∫ 1

−1
[f̂Nmax(x, y) − f(x, y)]2dxdy, (2.29)

where Nmax is the number of moments involved in reconstruction, and f̂Nmax(x, y)
represents the reconstructed image from f(x, y). Let us note that Error(f̂Nmax)
represents the energy of the error image f̂Nmax(x, y) − f(x, y).

Due to (2.28) and (2.25), we obtain

f̂Nmax(x, y) − f(x, y) =
Nmax∑
p=0

p∑
q=0

τp−q,q [λ̂p−q,q − λp−q,q]Pp−q,q(x)Pq(y)

−
∞∑

p=Nmax+1

p∑
q=0

τp−q,qλp−q,qPp−q,q(x)Pq(y). (2.30)

Then, by virtue of Parseval’s formula and (2.24), we have

Error(f̂Nmax) =
Nmax∑
p=0

p∑
q=0

τp−q,q[λ̂p−q,q − λp−q,q]2

+
∞∑

p=Nmax+1

p∑
q=0

τp−q,qλ
2
p−q,q. (2.31)

As is seen from (2.31), the reconstruction error Error(f̂Nmax) consists of two parts.
The first part is due to the discrete approximation of the true moments {λpq},
while the second one is a result of using a finite number of moments. It is clear



40

that the first term in (2.31) increases as Nmax → ∞, whereas the second one
tends to zero as Nmax → ∞.

With the improved moment methods introduced and examined in the previ-
ous sections, we can reduce the discrete approximation error (quantified by the
first term in (2.31)) to a tolerable low level. The experimental results of image
reconstruction via Legendre moments, which will be presented in the next sec-
tion, will indicate that when the maximum given order Nmax reaches a certain
value, f̂Nmax(x, y) can be very close to the original image function f(x, y).

2.4.2. Experimental Results

In the experiments, a set of five Chinese characters, shown in Fig. 2.3, are used as
the test images. Each image consists of 24×24 pixels and the range of graylevels
for each pixel is 32. All characters have the gray level 11 and the background
has the value 21. The normalized mean square error between the original image

Figure 2.3: Five original Chinese characters used in image reconstruction via the
Legendre moments. From left to right are C1, C2, C3, C4, and C5

f(x, y) and the reconstructed image f̂Nmax(x, y) is defined by

e2Nmax
=

Error(f̂Nmax)∫∫
Ω

[f(x, y)]2dxdy

=

∫∫
Ω

[f̂Nmax(x, y) − f(x, y)]2dxdy∫∫
Ω

[f(x, y)]2dxdy
, (2.32)

which is considered as a measure of the image reconstruction ability.
The alternative extended Simpson’s rule with order I = 23 is applied to

compute the Legendre moments in this experiment. Table 2.2 and Fig. 2.6 show
the e2Nmax

values from the reconstructed Chinese characters from order 2 up to
order 56. It should be noted that the e2Nmax

decreases monotonically in the cases
of all five characters.
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Table 2.2: The values of normalized reconstruction errors for the
five reconstructed Chinese characters.

Order C1 C2 C3 C4 C5

2 0.047615 0.045822 0.046409 0.043936 0.044973
4 0.046324 0.045556 0.045387 0.043429 0.043358
6 0.045428 0.043609 0.044421 0.041650 0.042230
8 0.042815 0.040956 0.043409 0.041143 0.040772
10 0.040362 0.039399 0.041322 0.038537 0.039932
12 0.038164 0.037170 0.037279 0.036748 0.037710
14 0.032964 0.034942 0.034077 0.033165 0.034441
16 0.030828 0.032760 0.030799 0.030356 0.032472
18 0.027089 0.029455 0.028143 0.026889 0.029127
20 0.024840 0.025035 0.025198 0.023493 0.026409
22 0.021336 0.021264 0.022372 0.021577 0.023423
24 0.017141 0.019605 0.019870 0.019955 0.020928
26 0.014513 0.016060 0.017691 0.018034 0.018245
28 0.012146 0.012868 0.014819 0.015282 0.015386
30 0.010568 0.010343 0.012224 0.012753 0.012617
32 0.008775 0.008540 0.009367 0.010563 0.010127
34 0.007346 0.007377 0.007456 0.008500 0.008573
36 0.006547 0.006526 0.006485 0.007162 0.007298
38 0.005348 0.005645 0.005668 0.006265 0.006336
40 0.004564 0.004769 0.004799 0.005378 0.004980
42 0.003996 0.004293 0.004219 0.004653 0.004322
44 0.003504 0.003734 0.003576 0.004111 0.003786
46 0.003217 0.003181 0.003165 0.003584 0.003199
48 0.003048 0.002869 0.002811 0.003041 0.002865
50 0.002607 0.002613 0.002728 0.002691 0.002647
52 0.002408 0.002321 0.002394 0.002605 0.002384
54 0.002408 0.002556 0.002451 0.002332 0.002419
56 0.002377 0.002602 0.002415 0.002271 0.002176

Fig. 2.4 shows the original Chinese character C1 and its reconstructed pat-
terns. The first image on the first row illustrates the original image of the char-
acter C1. The second column to the ninth column of the first row display its
reconstructed patterns with order 6, 8, 10, 12, 14, 16, 18 and 20; the second
and third rows show the reconstructed character C1 with order 22 up to 56,
respectively.

Fig. 2.5 shows the five original Chinese characters and their reconstructed
patterns from the higher order Legendre moments. The first column illustrates
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Figure 2.4: The Chinese character C1 and its reconstructed patterns
based on the Legendre moments

five original characters. The second column to the ninth column display the
reconstructed patterns of all characters in the first column with order 28, 32,
36, 40, 44, 48, 52 and 56, respectively. Clearly, the numerical results shown in
Table 2.2 and Fig. 2.6 are concordant with the visual results presented in Fig. 2.5.

2.5. Moment Descriptors for Noisy Images

In the previous sections we have examined the accuracy of moment descriptors
computed from discrete, noise-free data. In most practical situations, however,
one observes noisy version of an image and would like to characterize the original
image via moments.

Hence, our aim in this section is to study properties of moments from noisy
data

g(xi, yj) = f(xi, yj) + z(xi, yj), (2.33)

1 ≤ i, j ≤ n, where z(x, y) is zero mean, uncorrelated random error with a
finite variance σ2. We use the uncorrelated noise model in order to simplify
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Figure 2.5: Five Chinese characters and their reconstructed patterns
utilizing the Legendre moments.
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our mathematical derivations. The extension to a noise model of the spatially
stationary structure is possible and leads to similar conclusions.

The geometric moments m̃pq and m̂pq are now defined as in (2.2) and (2.3)
with f(xi, yj) replaced by g(xi, yj).

Hence we have

m̃pq = Δ2
n∑

i=1

n∑
j=1

xp
i y

q
j g(xi, yj), (2.34)

m̂pq =
n∑

i=1

n∑
j=1

hpq(xi, yj) g(xi, yj), (2.35)

where hpq(xi, yj) is given in (2.4).
To verify the robustness of m̃pq, m̂pq against the random additive noise, let us

evaluate the variance of both approximations. This is presented in the following
theorem.

Theorem 2.4. Let the image function f(x, y) be sampled according to (2.33).
Then

var(m̂pq) ≤ 4σ2

(2p+ 1)(2q + 1)
Δ2, (2.36)

var(m̃pq) ≤ σ2

(
4

(2p+ 1)(2q + 1)
+pΔ+qΔ

)
Δ2. (2.37)

The proof of Theorem 2.4 can be found in [144,173].
From the above result it follows that m̃pq is more vulnerable to noise than

m̂pq.

Remark 2.2. Using the technique similar as in the proof of Theorem 2.4, one
can also show that both cov(m̃pq, m̃rs) and cov(m̂pq, m̂rs) are of order

σ2 (1 − (−1)p+r+1)(1 − (−1)q+s+1)
(p+ r + 1)(q + s+ 1)

Δ2 (2.38)

as Δ → 0.

The result in (2.38) is, however, asymptotic in nature, whereas Theorem 2.4
gives the bounds for any Δ.

As for the Legendre moments, the formula in (2.17) takes now the following
form

λ̂pq =
n∑

i=1

n∑
j=1

hpq(xi, yj)g(xi, yj), (2.39)
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with hpq(xi, yj) defined in (2.18).
Using the results of [144,173], we can obtain the following bounds concerning

the variance of λ̂pq.

Theorem 2.5. Let the conditions of Theorem 2.4 hold. Then

var(λ̂pq) ≤ 4σ2

(2p+ 1)(2q + 1)
Δ2. (2.40)

Remark 2.3. It can also be demonstrated that

cov(λ̂pq, λ̂rs) 
4σ2

(2p+ 1)(2q + 1)
Δ2δprδqs (2.41)

as Δ → 0.

This result shows a striking difference between the geometric and orthogonal
moments as far as the noise robustness is concerned. The orthogonal moments
are uncorrelated, whereas the geometric moments are correlated.

It is also worth noting that the results of Theorem 2.5 and Remark 2.3 should
be contrasted with those obtained in [221] where the variance of λ̂pq is an increas-
ing function of the moment order. Such a difference is due to a normalization
used in [173] for defining λpq which gives preference to other moment descriptors.

Taking Remark 2.2 and Remark 2.3 into account, we can conclude that the
variability of m̂pq and λ̂pq seems to be identical. Nevertheless, as has already
been pointed out the reconstruction techniques based on the orthogonal moments
outperform those using the geometric moment descriptors. The reconstruction
issue in the case of noisy and discrete data is examined in the next section.

2.6. Image Reconstruction from Noisy Data

Taking (2.28) and (2.39) into account, it is natural to define reconstruction tech-
nique from the Legendre moments as follows

f̂Nmax(x, y) =
Nmax∑
p=0

p∑
q=0

τp−q,qλ̂p−q,qPp−q(x)Pq(y), (2.42)

where λ̂pq is given in (2.39).
As the performance measure for f̂Nmax(x, y), we use the integrated squared

error Error(f̂Nmax) given in (2.29).
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Proceeding as in (2.31), we can easily obtain

Error(f̂Nmax) =
Nmax∑
p=0

p∑
q=0

τp−q,q(λ̂p−q,q − λp−q,q)2

+
∞∑

p=Nmax+1

p∑
q=0

τp−q,qλ
2
p−q,q. (2.43)

Since λ̂pq is a random variable, let us evaluate the expected value of Error(f̂Nmax).
It is plain that this requires the evaluation the term (λ̂p−q,q − λp−q,q)2 in (2.43).

It is clear that

E(λ̂p−q,q − λp−q,q)2 = var(λ̂p−q,q) + (Eλ̂p−q,q − λp−q,q)2.

This yields the following decomposition of the expected value of the error

E(Error(f̂Nmax)) =
Nmax∑
p=0

p∑
q=0

τp−q,q var(λ̂p−q,q)

+
Nmax∑
p=0

p∑
q=0

τp−q,q(Eλ̂p−q,q − λp−q,q)2 +
∞∑

p=Nmax+1

p∑
q=0

τp−q,qλ
2
p−q,q. (2.44)

Every component in the decomposition is due to different type of distortions
present in the image. The first term in (2.44) is merely caused by the noise
process. The second term is due to the discretization error and it has already been
examined in Section 3. Finally, the last term in (2.44) represents the truncation
error caused by the fact that our reconstruction technique in (2.42) uses the
moments up to the order Nmax only.

Recalling the results of Theorem 2.3, Theorem 2.5 and the fact that the total
number of moments used in (2.42) is (Nmax + 1)(Nmax + 2)/2, we can easily
evaluate the first two terms in (2.44). This yields the following result.

Theorem 2.6. Let the assumptions of Theorem 2.3 and Theorem 2.5 hold. Then

E(Error(f̂Nmax)) ≤ σ2 (Nmax + 1)(Nmax + 2)
2

Δ2

+ fmax TV(f)
(Nmax + 1)(Nmax + 2)

2
Δ2 + TR(Nmax), (2.45)

where TR(Nmax) represents the last term in (2.44).
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Remark 2.4. The first two terms in (2.45) are of the same order. This is due to
the fact that we employ the bound given in Theorem 2.3. For smooth images, see
Remark 2.1 and (2.21), the second term in (2.45) will be of order O((NmaxΔ2)2).

Let us note again that TR(Nmax) → 0 as Nmax → ∞. This reveals an
apparent trade-off in (2.45) since the first two terms tend to infinity as Nmax →
∞. Hence, these two factors are working against each other indicating that the
expected reconstruction error E(Error(f̂Nmax)) will initially decrease as Nmax is
increasing to a certain optimal value N∗

max and then it will increase to infinity.
A specific value of N∗

max depends on the speed at which TR(Nmax) tends to
zero. This rate is controlled by the smoothness of the image function f(x, y).
To illustrate this let f(x, y) be a pure step edge image along the y-axis with the
values f1 and f2 on opposite sides of the edge. An involved but straightforward
algebra yields

TR(Nmax) ≤ (f1 − f2)2

2π
1

Nmax
. (2.46)

One can generalize this example to the case of bounded variation functions. In-
deed, using the fact [206]∣∣∣∣∫ x

−1
Pp(u)du

∣∣∣∣ ≤ 4√
π(p+ 1)3/2

for |x| ≤ 1 and by some algebra we can obtain the following bound for the
Legendre moment

|λpq| ≤ c(p+ 1)−3/2(q + 1)−3/2,

where c depends on TV(f) - the total variation of f(x, y).
All these considerations and some algebra give the following rate of decay of

the approximation error.

Theorem 2.7. Let the image function f ∈ BV(Ω). Then

TR(Nmax) = O

(
1

Nmax

)
.

Combining this result with the result of Theorem 2.6 we can readily obtain
the following result on the accuracy of the reconstruction algorithm.

Theorem 2.8. Let the image function f satisfy the conditions of Theorem 2.6
and Theorem 2.7. Then selecting

N∗
max = αΔ− 2

3 ,
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we obtain

E Error(f̂N∗
max

) = O(Δ
2
3 ). (2.47)

Remark 2.5. The rate of convergence derived in (2.47) is relatively slow. This
is due to both the richness of the class of bounded variation functions and the
two-dimensional nature of the image function f(x, y). The former requirement
limits the decay of the truncation error, whereas the latter one makes the vari-
ance term larger. Faster rates can be obtained either by increasing the smooth-
ness of the image function f(x, y) or using some one-dimensional approxima-
tions of f(x, y). The first choice is rather unacceptable in image analysis since
images are inherently discontinuous due to the presence of edges. Regarding the
second alternative we can, e.g., represent f(x, y) by an additive function, i.e.,
f(x, y) = f1(x) + f2(y), for some single-variable functions f1(x), f2(y). Then
using the results of this chapter and some methodology borrowed from [97] we
can show that the reconstruction error is of order O(Δ) for all bounded variation
images of the additive form. This is clearly much faster rate than that given in
(2.47). Yet another interesting avenue could be based on the remarkable theorem
of Kolmogorov and Arnold [151] which says that every continuous bivariate func-
tion on the square [−1, 1]2 is a sum of at most five functions of the following form
f(x, y) = g(u(x)+v(y)), where g(·), u(·), v(·) are univariate continuous functions.

This representation for bivariate continuous functions combined with the de-
composition of the bounded variation functions into the continuous part and the
pure edge part would yield “building block” for powerful univariate representations
of images. This issue is left for future research.

Since the constant α appearing in Theorem 2.8 depends on the unknown
image, the proposed N∗

max cannot be used in practice. A practical problem arises
how to evaluate N∗

max directly from the available data. This issue is discussed in
the next section.

In order to verify the aforementioned properties, the Chinese character C1 is
employed as the testing pattern in our experiments. Fig. 2.7 shows the trend of
the integrated squared reconstruction error Error(f̂Nmax) averaged over 10 runs.
The noise process is assumed to be Gaussian with σ2 = 4.0. As expected, the error
first decreases, reaches minimum at Nmax = 35 and then increases. Table 2.3 lists
the numerical values of Error(f̂Nmax) which is named as I(N). Fig. 2.8 illustrates
the noisy version of the Chinese character C1 and its reconstructed images from
order 4 up to order 56, from left to right, first row to last row, respectively.

From equation (2.45), it can be easily concluded that when the level of noise
increases, the optimal number of moments N∗

max minimizing the reconstruction
error becomes smaller. An experiment was designed to obtain further insight into
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Figure 2.7: Reconstruction error Error(f̂Nmax) versus Nmax, σ2 = 4.0, Δ2 = 0.083 . . .

this observation and this is illustrated in Fig. 2.9. The same Chinese character
C1 and the noise model shown in (2.33) are employed. The result is averaged
over 10 runs and the noise varies from σ2 = 4.0 to σ2 = 25.0. It is interesting to
note that N∗

max can be unaltered over some intervals of σ2.

2.7. Data-Driven Selection of Number of Moments

The aforementioned results clearly show that there exists an optimal number
of moments N∗

max which minimizes the reconstruction error Error(f̂Nmax). This
number, however, depends on the unknown f(x, y) and the usally unknown σ2.

A simple heuristics for selecting Nmax could rely on displaying images f̂Nmax

for Nmax = 0, 1, 2, . . . and assessing their quality by some subjective criteria. It
is worth noting that our reconstruction algorithm in (2.28) has a very simple
structure for its updating from Nmax − 1 to Nmax.

In fact by virtue of (2.28), we have

f̂Nmax(x, y) = f̂Nmax−1(x, y) +
Nmax∑
s=0

τNmax−s,sλ̂Nmax−s,sPNmax−s(x)Ps(y). (2.48)

Although this approach can be satisfied in some cases, it is more important to



50

Figure 2.8: Noisy version of the character C1, with σ2 = 4.0, and its reconstructed
versions from Legendre moments of orders 4–56

propose a rigorous and automatic technique which can estimate N∗
max directly

from the available data.
Such a problem can be tackled by using the well-established in statistics cross-

validation methodology [41, 92], see [90, 173, 223] for a few studies of these tech-
niques in computer vision problems. We will discuss a number of prescriptions
for automatic selection of Nmax.

It is clear that Error(f̂Nmax) can be written as∫∫
Ω
f̂ 2

Nmax
(x, y)dxdy− 2

∫∫
Ω
f̂Nmax(x, y)f(x, y)dxdy+

∫∫
Ω
f2(x, y)dxdy. (2.49)

Since the last term is independent of Nmax and by virtue of Parseval’s formula
the minimization of Error(f̂Nmax) is equivalent to taking the minimizer of the
following criterion

S(Nmax) =
Nmax∑
p=0

p∑
q=0

τp−q,qλ̂
2
p−q,q − 2

Nmax∑
p=0

q∑
p=0

τp−q,qλ̂p−q,qλp−q,q. (2.50)
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Table 2.3: Square reconstruction error Error(f̂Nmax) = I(N)
with σ2 = 4.0

Order I(N) Order I(N) Order I(N)
3 1.628e+01 21 9.928e+00 39 6.099e+00
4 1.604e+01 22 9.110e+00 40 6.193e+00
5 1.587e+01 23 9.067e+00 41 6.217e+00
6 1.586e+01 24 8.097e+00 42 6.323e+00
7 1.544e+01 25 7.924e+00 43 6.377e+00
8 1.518e+01 26 7.556e+00 44 6.529e+00
9 1.439e+01 27 7.101e+00 45 6.660e+00
10 1.421e+01 28 6.939e+00 46 6.814e+00
11 1.403e+01 29 6.718e+00 47 6.898e+00
12 1.369e+01 30 6.610e+00 48 7.046e+00
13 1.256e+01 31 6.349e+00 49 7.223e+00
14 1.219e+01 32 6.359e+00 50 7.386e+00
15 1.183e+01 33 6.219e+00 51 7.444e+00
16 1.175e+01 34 6.243e+00 52 7.606e+00
17 1.093e+01 35 6.065e+00 53 7.818e+00
18 1.065e+01 36 6.103e+00 54 7.982e+00
19 1.020e+01 37 6.069e+00 55 8.258e+00
20 1.003e+01 38 6.105e+00 56 8.407e+00
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Figure 2.9: Optimal number of moments N∗
max versus the noise variance
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The cross-validation techniques require estimating

λ̂pqλpq = ηpq,

say, from two non-overlapping sets of data. This can be carried out in a number
of ways. For example, one could determine a simple estimate of λpq, called λpq,
based only on data coming from a small window, and discard that data when

computing the main estimate of λpq, called ̂̃λpq.
This would lead to the following estimate of S(Nmax)

Ŝ(Nmax) =
Nmax∑
p=0

p∑
q=0

τp−q,q
̂̃
λ

2

p−q,q − 2
Nmax∑
p=0

p∑
q=0

τp−q,q
̂̃
λp−q,qλp−q,q.

We refer to [90] for some theoretical development of this approach in the context
of the image restoration problem. On the other hand in [173] the leave-one-out
approach has been used yielding the following estimate of ηpq

η̂pq =
n∑

i=1

n∑
j=1

g(xi, yj)λ̂pq,ijhpq(xi, yj),

where λ̂pq,ij is the leave-one-out version of λ̂pq and it can be approximately de-
termined as

λ̂pq − Δ2(∂x g)(xi, yj).

Here (∂x g)(x, y) is an estimate of
∂f(x, y)
∂x

obtained from the data {g(xi, yj)}.

Some theoretical properties of this estimate have been established in [173].
Let us observe that both aforementioned techniques do not use any prior

knowledge about the noise model and about the true image.
For a large class of images (Remark 2.4) the second term in the decomposition

in (2.44) is of the smaller order than the first one. In such a case and due
to Theorem 2.6 the minimization of E(Error(f̂Nmax)) is equivalent to seeking a
minimum of the following criterion

L(Nmax) = σ2 (Nmax + 1)(Nmax + 2)
2

Δ2 −
Nmax∑
p=0

p∑
q=0

τp−q,q λ
2
p−q,q. (2.51)

An empirical version of L(Nmax) requires estimation of λ2
pq and σ2. For the latter

problem, see [89] and [223]. On the other hand, the term λ2
pq due again to the

cross-validation principle can be estimated by
n∑

i=1

n∑
j=1

n∑
l=1

n∑
t=1

g(xi, yj) g(xl, yt)hpq(xi, yj)hpq(xl, yt),
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where the summation is carried out for all (i, j) �= (l, t). Plugging this into (2.51)
yields an estimate of L(Nmax). No theoretical properties of such selector of Nmax

are known. It is worth noting that Nmax minimizing (2.50) is a function of the
data at hand, whereas a minimizer of L(Nmax) depends on f(x, y), σ2 and Δ.

Yet another class of cross-validation techniques make use of the residual sum
of squares function

RSS(Nmax) = Δ2
n∑

i=1

n∑
j=1

(g(xi, yj) − f̂Nmax(xi, yj))2.

Minimization of RSS(Nmax) leads to an unacceptably large value of Nmax. The
so-called generalized cross-validation approach [41,230] uses the penalized version
of RSS(Nmax).

Hence, a criterion for selecting Nmax is of the following form

GCV (Nmax) = RSS(Nmax)Φ(Nmax), (2.52)

where the penalty Φ(Nmax) can be chosen as

Φ(Nmax) =
(

1 − γ(σ2)
(Nmax + 1)(Nmax + 2)

2
Δ2

)−α

,

where α > 0 and γ(σ2) is a non-decreasing function of σ2. See [92] for a detailed
discussion of such selectors in the context of nonparametric curve estimation.

2.8. Generalized Orthogonal Moments

Teague [219] has first introduced a class of orthogonal moments utilizing the
theory of classical orthogonal polynomials. In particular he employed Legendre
and Zernike polynomials and the corresponding moments which have been exten-
sively used in numerous applications since then. In the previous sections we have
studied the Legendre polynomials and moments which represent a special type
of classical orthogonal polynomials [217]. In the subsequent section we wish to
explore a larger class of classical orthogonal polynomials called Gegenbauer poly-
nomials or ultraspherical polynomials [217]. This class is characterized by the
presence of the scaling parameter which can define a larger class of orthogonal
polynomials. Indeed the Legendre and other previously introduced orthogonal
moments are obtained as special cases of the Gegenbauer moments.

We argue that a reconstruction formula based on the Gegenbauer polynomials
and corresponding moments can achieve an improved performance by selecting
the scaling factor which yields the minimum of the reconstruction error.
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Furthermore, the scaling parameter may provide a trade-off between global
and local image features. In fact, a large value of the parameter gives a purely
local representation of an image, whereas its small values correspond to classical
global moments.

The classical orthogonal moments attain a zero value of redundancy measures
and, in addition, the reconstruction procedure as we have pointed out does not
need regularization as it simply adds up the individual contributions of each
moment. These favourable properties of the orthogonal moments have lead to a
number of studies on computational, theoretical and application aspects of this
type of moments [144,145,173,180,221,226]. In particular, the fundamental issues
concerning the error analysis, accuracy, and noise sensitivity have been examined
for the Legendre and Zernike moments [144,145,173,180].

Recently a new type of orthogonal moments [158,248] generated by orthogonal
polynomials of a discrete variable has been introduced. The main goal of these
studies was to overcome the problem of sampling error. This is an interesting
alternative assuming that a true image is discrete with a fixed degree of spatial
resolution. If the resolution, however, is increased then one has to recalculate
the discrete orthogonal polynomials. This is not the case with analog orthogonal
functions which are able to copy with any degree of resolution. In the concluding
section of this chapter we give a brief critical overview of the discrete orthogonal
moments with main emphasis on the reconstruction problem from noisy images.

2.9. Gegenbauer Moments

A class of orthogonal moments examined in this chapter originates from the so-
called Gegenbauer polynomials {Gp(x, λ)} [217] which can be computed from the
following recurrence formula

(p+ 1)Gp+1(x, λ) = 2(p+ λ)xGp(x, λ) − (p+ 2λ− 1)Gp−1(x, λ) (2.53)

for p = 1, 2, . . . , where G0(x, λ) = 1, G1(x, λ) = 2λx, −1 ≤ x ≤ 1 and λ > −0.5
is the scaling factor. The polynomials {Gp(x, λ)} are orthogonal with respect to
the weight function w(x) = (1 − x2)λ−1/2, i.e.,∫ 1

−1
w(x)Gp(x, λ)Gq(x, λ)dx = δp,qCp(λ), (2.54)

where the normalized constant Cp(λ) is given by

Cp(λ) =
√
π

Γ(λ+ 1/2)
Γ(λ)(p+ λ)

Gp(1, λ).
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The scaling factor λ > −0.5 can define a large class of orthogonal polynomials.
In fact, Gp(x, 0.5) is the Legendre polynomial of the pth order and this case
was considered in the previous sections. The case {Gp(x, 1}) defines the class of
Chebyshev polynomials of the second kind [217]. The case Gp(x, 0) should be
understood as follows

Gp(x, 0) = lim
λ→0

1
λ
Gp(x, λ) =

2
p
Tp(x), p ≥ 1, (2.55)

with G0(x, 0) = 1, where Tp(x) are the Chebyshev polynomials of the first kind.
Yet a different limiting case occurs if λ→ ∞. Then it can be shown [217] that

lim
λ→∞

Gp(x, λ)
Gp(1, λ)

= xp. (2.56)

This formula explains the scaling role played by λ as it gives a local representation
of a function by the Gegenbauer moments, see the discussion on this issue at the
end of this section.

The orthogonality and completeness of {Gp(x, λ)} allows us to represent an
image via a truncated Gegenbauer series. First let us note that Gp(x, λ)Gq(y, λ)
defines the 2-D Gegenbauer polynomial of order p+ q. Fig. 2.10 depicts density
plots of Gp(x, λ)Gq(y, λ) for a few combinations of (p, q) with λ = 0.7.

Figure 2.10: Gegenbauer polynomials Gp(x, 0.7)Gq(y, 0.7) for
(p, q) ∈ {(8, 6), (3, 3), (3, 6); (6, 3), (1, 7), (7, 1)}

Using the fact that {Gp(x, λ)Gq(y, λ)} forms an orthogonal and basis on Ω =
[−1, 1]2 one can represent an image function f(x, y) in the following way

fN (x, y) =
N∑

p=0

p∑
q=0

τp−q,qAp−q,q(λ)Gp−q(x, λ)Gq(y, λ), (2.57)
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where τpq = (Cp(λ)Cq(λ))−1 is the normalizing factor and Apq is the (p, q) Gegen-
bauer moment of f(x, y) which is defined by

Apq(λ) =
∫ 1

−1

∫ 1

−1
f(x, y)Gp(x, λ)Gq(y, λ)w(x)w(y)dxdy. (2.58)

It should be expected that the representation in (2.57) can converge to the
true image by making N sufficiently large. If, however, we define an upper limit
to N , then it is less obvious that the approximation error can be minimized by
an optimum choice of the scale factor λ. In fact for small and moderate values of
λ we have a global representation of f(x, y) in terms of the Gegenbauer moments
defined in (2.58). On the other hand if λ → ∞ then by (2.56) and by some
tedious but straightforward algebra we can show that the (p, q) term in (2.57)
tends to

1
p!

(
x
∂

∂x
+ y

∂

∂y

)p

f(0, 0), (2.59)

being the pth term in the Taylor’s expansion of f(x, y) about the point (0, 0). Here
it has been assumed that f(x, y) is smooth, i.e., it has derivatives up to the order
N . As a consequence of this result we can obtain that limλ→∞ fN (x−x0, y− y0)
is the Nth order Taylor’s expansion of f(x, y) about the point (x0, y0). Hence
for large λ we obtain a purely local approximation of the image function. This
intuitive explanation seems to indicate that there is λ yielding the best possible
representation of a given image by the Gegenbauer moments. We demonstrate
experimentally in this section that this is really the case.

2.10. Image Reconstruction from Gegenbauer
Moments

In practice one can only observe a digital and noisy version of the image function
and has to calculate corresponding moments. Hence let {g(xi, yj), 1 ≤ i, j ≤ n}
be a noisy version of f(x, y) observed over the n × n array of pixels with the
sampling period Δ. Here the noise model for obtaining g(xi, yj) is the same as
that examined in Section 2.5, i.e., g(xi, yj) = f(xi, yj) + z(xi, yj), see (2.33).

Then analogously as in Section 2.5 we can define the following estimate of
Apq(λ)

Âpq(λ) =
n∑

i=1

n∑
j=1

hp,q(xi, yj)g(xi, yj), (2.60)

where
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hp,q(xi, yj) =
∫ xi+Δ/2

xi−Δ/2

∫ yj+Δ/2

yj−Δ/2
Gp(x, λ)Gq(y, λ)w(x)w(y)dxdy (2.61)

represents the weighted integration of Gp(x, λ)Gq(y, λ) over the (i, j) pixel. The
integral appearing in (2.61) can be evaluated by high precision numerical inte-
gration formulas mentioned in Section 2.3. The simplest strategy to estimate the
integral is the one point formula Δ2Gp(xi, λ)Gq(yj , λ)w(xi)w(yj).

The performance of the moment descriptors Âpq(λ) is best assessed by means
of the image reconstruction. Thus plugging (2.61) into (2.57) yields our recon-
struction formula from the first N Gegenbauer moments

f̂N (x, y) =
N∑

p=0

p∑
q=0

τp−q,qÂp−q,q(λ)Gp−q(x, λ)Gq(y, λ). (2.62)

The mean integrated-squared error of f̂N (x, y) − f(x, y) can serve as a natural
measure of assessing the performance of our reconstruction formula, i.e.,

Err(N,λ) = E

∫ 1

−1

∫ 1

−1
(f̂N (x, y) − f(x, y))2w(x)w(y)dxdy. (2.63)

Due to Parseval’s identity the error Err(N,λ) can be decomposed into three
unrelated terms, i.e., the noise error

ErrZ(N,λ) =
N∑

p=0

p∑
q=0

τp−q,q var(Âp−q,q(λ)),

the discretization error

ErrD(N,λ) =
N∑

p=0

p∑
q=0

τp−q,q(EÂp−q,q(λ) −Ap−q,q(λ))2,

and the approximation error

ErrA(N,λ) =
∞∑

p=N+1

p∑
q=0

τp−q,qA
2
p−q,q(λ).

Arguing as in Section 2.6 it can be easily shown that both the noise ErrZ(N,λ)
and discretization errors ErrD(N,λ) are of order Δ2(N + 1)(N + 2)/2 provided
that the image function is in the class BV(Ω). These upper bounds are uniform
with respect to the scaling parameter λ.
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On the other hand the approximation error ErrA(N,λ) decreases with N
and is a complicated function of λ. Nevertheless, under some mild regularity
conditions on f(x, y) it is conjectured that there is λ which minimizes ErrA(N,λ).
Clearly such an optimal λ depends not only on f(x, y) but also on the number
of moments N used for reconstruction. It is still an open problem of how to
evaluate optimal λ for a large class of image functions and arbitrary values of
N . The fact that the approximation error can be optimized with respect to the
scaling parameter λ is due to the amount of local information contributing to
the overall approximation error. In fact, we have pointed out that for large λ we
may obtain local moment descriptors, whereas small λ is useful for the global,
Legendre type, moments. This observation could lead to an interesting localized
version of moments being sensitive to boundaries. Accordingly, we may compute
the moments of a differentiated image (like the magnitude of the image gradient)
instead of the original image. This could be compared to differential invariants
used for recognition of a planar curve regardless of the point of view from which
the curve is seen [234].

Analogously as in Section 2.6 we can show that the approximation error
ErrA(N,λ) as a function of N decays at least as fast as O(N−1) for all images
with bounded variation. This gives an optimal choice of N of order N� = αΔ−2/3

yielding Err(N�, λ) = O(Δ2/3). Again these are upper bounds and the depen-
dence on λ has been ignored. Nevertheless, the aforementioned discussion reveals
that large values of λ yield localized moments which can be sensitive to noise.
This may lead to another trade-off in selecting an optimal λ.

Figure 2.11: Image reconstruction of letter “E” with N = 16 and λ = 4, λ = 0.7

To illustrate the above discussion let us consider a simple numerical problem
of reconstruction of the letters “E” and “A” on a 60 × 60 pixel grid, i.e., when
Δ = 1/30. The maximal number of the moments taken is N = 16. Fig. 2.11
shows the reconstruction of the letter “E” for λ = 4, λ = 0.7 by the estimate
f̂N (x, y). Fig. 2.12 depicts the reconstruction of the letter “A” for λ = 0, λ = 0.7.
In both examples we have observed noise free pictures. The reconstruction error
Err(16, λ) versus λ is displayed in Fig. 2.13. It is apparent that there is λ
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Figure 2.12: Image reconstruction of letter “A” with N = 16 and λ = 0, λ = 0.7
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Figure 2.13: The reconstruction error for letters “E”, “A” versus λ, with N = 16

minimizing the error. Surprisingly the optimal λ� = 0.7 is the same for both
patterns under examination. Experiments were performed for reconstruction of
other letters giving the optimal λ� in the range [0.6, 0.8]. Recall that λ = 0.5
corresponds to the Legendre moments.

2.11. Discrete Orthogonal Moments

Thus far we have considered the image model assuming that a true image function
f(x, y) is analog and belongs the class of functions of bounded variation. This
assumption plays an important role in our theoretical developments and is also
crucial in the current mathematical theory of image analysis. Consequently our
asymptotic analysis of the moment accuracy and reconstruction power is mod-
eled on grids with increasing resolution. There have been recent studies [158,248]
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on moment descriptors utilizing orthogonal polynomials on a finite set of points.
Hence an image model is an array of n × n pixels defined, without loss of gen-
erality, on the set Ω = {(i, j), 0 ≤ i, j ≤ n}. Thus we have the digital image
{f(x, y), (x, y) ∈ Ω}.

The orthogonal system on Ω is defined as {Pp(x)Pq(y), 0 ≤ p, q ≤ n} for
(x, y) ∈ Ω, where the orthogonality of {Pp(x), 0 ≤ p ≤ n} is defined as follows

n∑
x=0

Pp(x)Pq(x) = Cp(n)δpq.

Here Cp(n) =
n∑

x=0

P 2
p (x) is the normalizing constant.

Consequently we can represent the digital image {f(x, y), 0 ≤ x, y ≤ n} by
the following expansion employing the first (T + 1)2 discrete moments

fT (x, y) =
T∑

p=0

T∑
q=0

τpqλpqPp(x)Pq(y), (x, y) ∈ Ω, (2.64)

where τpq = (Cp(n)Cq(n))−1 is the normalizing constant and

λpq =
n∑

i=0

n∑
j=0

f(i, j)Pp(i)Pq(j)

defines the (p, q) order discrete moment with respect to the basis {Pp(x)Pq(y), 0 ≤
p, q ≤ n}.

A concrete example of {Pp(x), 1 ≤ p ≤ n} is a discrete analog of Legendre
orthogonal polynomials

Pp(x) =
p∑

s=0

(−1)s

(
p

s

)(
p+ s

s

)
n(n− 1) . . . (n− s+ 1)

x[s]

for 0 ≤ p ≤ n and 0 ≤ x ≤ n, where x[s] = x(x−1) . . . (x−s+1) with x[0] = 1. In
particular, P0(x) = 1, P1(x) = 1−2x/n, P2(x) = 1−6x/n+6x(x−1)/(n(n−1)).

Computational and experimental studies of the discrete orthogonal moments
for noise free images have been worked out in [158,248]. No reconstruction aspects
of the proposed moments have been given.

It is clear that for the reconstruction formula in (2.64) the squared error

Err(fT ) =
n∑

x=0

n∑
y=0

(fT (x, y) − f(x, y))2
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does not have any discretization component.
Nevertheless, if we apply fT (x, y) for noisy image (with f(i, j) replaced by

g(i, j) = f(i, j) + z(i, j)) then using the techniques developed in this section we
can show that the variance term of the error is σ2(T+1)2. This is an unacceptably
large value and reveals that the algorithm fT (x, y) cannot behave well for noisy
images. One way of overcoming this difficulty is to smooth noisy data {g(i, j), 0 ≤
i, j ≤ n} before they are applied in the reconstruction process. This leads to
a modified class of discrete moments deserving further studies. It is also worth
mentioning that the issue of obtaining invariant features from discrete orthogonal
moments remains open.

2.12. Conclusions

In this chapter, we have developed the basic methodology for the problems of
accuracy and efficiency in moment computing. Both geometric and orthogonal
moments were examined although the main emphasis was given to the latter
class. Based on the improved moment computing techniques, image reconstruc-
tion algorithms based on the Legendre and Gegenbauer moments from discrete
and noise data were proposed. The delicate problem of selecting an optimal num-
ber of moments from the available data has been examined. A discussion of this
issue based on the cross-validation methodology has been provided. In summary
the following main results have been obtained.

• The numerical techniques for high quality calculation of geometric and orthog-
onal moments have been proposed.

• Bounds on the precision of the proposed estimates have been established.

• The algorithms for image recovery from Legendre moments have been proposed
and their asymptotic analysis has been investigated.

• Numerous simulation studies have been carried out to confirm our basic theory.

• The estimates of geometric and orthogonal moments from noisy images have
been defined and their statistical accuracy has been evaluated.

• The rate of convergence of the Legendre moment based image estimate has
been evaluated.

• Various algorithms for automatic selection of optimal number of moments have
been derived.

• The aforementioned theory has been further extended to a general class of
orthogonal moments and moments calculated in the digital domain.
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2.13. Appendix

Proof of Theorem 2.1
Let

Aij =
[
xi −

Δ
2
, xi +

Δ
2

]
×
[
yj −

Δ
2
, yj +

Δ
2

]
denote the (i, j) pixel.

First let us observe that

mpq =
n∑

i=1

n∑
j=1

∫∫
Aij

f(x, y)xpyqdx dy.

By this and the Cauchy-Schwartz inequality, we obtain

|m̂pq−mpq| ≤ 2((2p+1)(2q+1))−
1
2 ·

⎛⎝ n∑
i=1

n∑
j=1

∫∫
Aij

(f(xi, yj) − f(x, y))2dx dy

⎞⎠ 1
2

.

The term in brackets does not exceed
n∑

i=1

n∑
j=1

Oscij(f)
∫∫

Aij

|f(xi, yj) − f(x, y)|dxdy ≤ fmax TV(f)Δ2,

where

Oscij(f) = sup{|f(w1, w2) − f(z1, z2)| : (w1, w2), (z1, z2) ∈ Aij}

is the oscillation of f(x, y) over the pixel Aij . Since
n∑

i=1

n∑
j=1

Oscij(f) = TV(f)

the proof of Theorem 2.1 has been completed. �



Chapter 3

Image Analysis by Orthogonal
Radial Moments

In this chapter we consider the problem of image characterization, representa-
tion, and reconstruction utilizing a class of orthogonal and complete polynomials
defined over a unit disk often referred to as the Zernike polynomials. This is
carried out by projecting the input image onto the space spanned by the Zernike
polynomials yielding the concept of Zernike moments. This class of moments
has a distinctive property of being invariant to rotations and reflections and thus
it has found a number of important applications in pattern recognition, image
analysis, ophthalmology, medical imaging, optical engineering, and watermark-
ing. Furthermore, this orthogonal set defines the MPEG-7 standard for visual
shape descriptors. In this chapter an introduction to computational and recon-
struction aspects of Zernike moments is given. We illustrate our discussion by
numerous numerical studies.

In summary, the main contributions of this chapter are the following:

• Basic analytical properties of orthogonal radial polynomials being invariant in
form are reviewed.

• Invariant properties of Zernike moments are derived. This includes the invari-
ance for rotations and reflections.

• An improved technique for high quality calculation of Zernike moments is
proposed.

• The error analysis of the numerical estimate of the Zernike moment is carried
out.

63
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• A connection between the accuracy problem and the analytic number theory
of lattice points is established.

• High order numerical integration methods for Zernike moments computing are
developed.

• Bounds for the precision of given estimates are established.

• Modified Zernike moments with the reduced geometric error are proposed.

• Numerical studies are carried out to confirm the basic theory.

3.1. Introduction

Teague [219] has suggested the use of orthogonal moments in image analysis
based on a certain class of orthogonal polynomials to overcome the aforemen-
tioned shortcomings associated with the geometric moments. In particular, he
has proposed to use the orthogonal moments defined in terms of the Legen-
dre and Zernike polynomials. A number of studies on the use of the Legen-
dre and Zernike moments in shape analysis and classification have been carried
out [8, 121, 122, 199, 219, 221, 226]. Nevertheless, the error analysis and analytic
characterization of the orthogonal moments have been rarely investigated. In the
previous chapter the vulnerability of the orthogonal Legendre moments against
discretization and noise have been examined, see also [173] and [144]. The Leg-
endre moments, however, despite their good reconstruction properties, are not
invariant to rotations. The Zernike orthogonal moments, being invariant to ro-
tations and reflections, have been suggested to be an attractive alternative [219].
This set of orthogonal functions has been introduced by Zernike [250] as a basic
tool for representation of a wavefront function for optical systems with circular
pupils. Since then the radial polynomials have been found important in ap-
plications ranging from pattern recognition, shape analysis, optical engineering,
medical imaging to eye diagnostic [18,33,102,107–109]. Recently, under the name
of an angular radial transform, moments based on radial orthogonal polynomials
have been adopted in MPEG-7 as a basic region-based shape descriptor [17].

Furthermore, in numerous empirical studies on radial orthogonal moments,
like Zernike, it has been found that they are the best choices for object rep-
resentation, see in particular [226] for such recommendations in the context of
character recognition, and [251] in the field of shape retrieval.

Radial orthogonal moments are defined on the unit circle, i.e., the image
plane is D = {(x, y) : x2 +y2 ≤ 1}. This geometry of image plane is natural for a
number of natural images including the analysis of data from positron scanning
devices [33, 115, 157], the diffraction theory of optical aberrations [18, 102, 250],
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invariant pattern recognition [1, 101, 121, 173, 228, 232], image analysis [124, 127,
144,145,173,199,219,221], and statistical models of circular data [22]. In Fig. 3.1
we depict some examples of circular type images.

Figure 3.1: Examples of natural images of the circular form

In this chapter, we introduce the problem of computational and reconstruc-
tion properties of radial moments. First of all we give formulas for computing
the radial moments from discrete data and describe the main sources of errors
in their evaluation. In particular, the numerical accuracy of the radial moments
computing is examined. In this respect, some new techniques utilizing various
two-dimensional numerical integration methods for increasing the overall accu-
racy of the radial moments are proposed. We illustrate our findings by showing
the reconstruction performance of the radial moments. As has been indicated
in the previous chapter our main emphasis is on the problem of accuracy. Fast
algorithms for calculating the radial moments have been proposed elsewhere,
see [159].

3.2. Orthogonal Radial Polynomials

In order to define a class of radial orthogonal moments, we need to introduce the
concept of corresponding orthogonal radial functions. Such a set of functions,
denoted by V (x, y), is defined on the unit disk D = {(x, y) : x2 + y2 ≤ 1} and
assumed to be invariant with respect to any rotation

x′ = x cos θ + y sin θ,
y′ = −x sin θ + y cos θ.

The invariance is meant as the property that when the rotation is applied, each
element of the set is transformed into an element of the same form, i.e.,

V (x, y) = A(θ)V (x′, y′), (3.1)
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where A(θ) is a continuous function of θ with period 2π in θ and satisfies the initial
condition A(0) = 1. The function V (x, y) which meets (3.1) is said to be invariant
in form. The following fundamental result concerning invariant polynomials was
proved in [13].

Theorem 3.1. A polynomial V (x, y) of degree p will be invariant in form if and
only if when expressed in polar coordinates (ρ, θ) is of the form

Vpq(ρ cos θ, ρ sin θ) = Rpq(ρ)ejqθ,

where q is an integer being positive, negative, or zero and Rpq(ρ) is a polynomial
in ρ of degree p, containing no power of ρ lower than |q|. Moreover, Rpq(ρ) is an
even or odd polynomial according to whether q is even or odd.

It is clear that there are infinitely many sets of invariant polynomials which
meet the condition of Theorem 3.1. For example, we can obtain such functions
by the orthogonalization procedure of the linearly independent functions

ρ|q|ejqθ, ρ|q|+γejqθ, ρ|q|+2γejqθ, ..., (3.2)

with respect to a weight function w(ρ), 0 ≤ ρ ≤ 1 and where 0 < γ.
To narrow the class of admissible invariant functions characterized by The-

orem 3.1 we choose the circle polynomial Rpq(ρ) obtained by orthogonalization
procedure with γ = 2 and w(ρ) = 1. This yields only one set of invariant poly-
nomials called the Zernike functions. We shall use the Zernike functions due to
their unique properties and importance in applications. Indeed it was proved
in [13] that the following conditions uniquely characterize the Zernike invariant
functions, i.e., there is one and only one set which is:

• orthogonal on the unit disk,

• contains only such polynomials which are invariant in form,

• contains a polynomial for each permissible pair of values of p (degree) and
q (angular dependence), i.e., for integer values of p and q such that p ≥ 0,
q ≥ 0, q < 0, p ≥ |q|, and p− |q| is even.

Hence let the (p, q) order Zernike function be defined as follows

Vpq(x, y) = Rpq(ρ) exp(jqθ), x2 + y2 ≤ 1, (3.3)

where ρ =
√
x2 + y2 is the length of the vector from the origin to the pixel (x, y),

and θ = arctan(y/x) is the angle between the vector and the x axis. In (3.3),
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Rpq(ρ) is a polynomial in ρ of degree p ≥ 0, containing no power of ρ lower than
|q|. The degree p and the angular dependence q satisfy the above constraints.

It is worth noting that the case γ = 1 and w(ρ) = 1 in (3.2) gives the so-called
pseudo-Zernike invariant functions. For this class of invariant functions the set
of permissible pairs (p, q) must be such that p ≥ |q| and the corresponding radial
function Zpq(ρ) is related to the Zernike radial function Rpq(ρ) by the identity
ρZpq(ρ2) = R2p+1,2q+1(ρ) [13].

The Zernike functions besides being invariant with respect to rotations have
the following properties which we will find useful in our considerations.

1. They are orthogonal on the unit disk, i.e., the orthogonality relation for
{Vpq(x, y)} is ∫∫

D
V ∗

pq(x, y)Vp′q′(x, y)dxdy =
π

p+ 1
δpp′δqq′ (3.4)

or in polar coordinates∫ 2π

0

∫ 1

0
V ∗

pq(ρ, θ)Vp′q′(ρ, θ)ρdρdθ =
π

p+ 1
δpp′δqq′ , (3.5)

where the asterisk denotes the complex conjugate.

The even and odd versions of Vpq(x, y) are Rpq sin(qθ) and Rpq cos(qθ),
respectively.

2. Using the above property we obtain the orthogonality relation for the radial
polynomials {Rpq(ρ)}∫ 1

0
Rpq(ρ)Rp′q(ρ)ρdρ =

1
2(p+ 1)

δpp′ . (3.6)

3. An explicit expression for the radial Zernike polynomial Rpq(ρ) is given by

Rpq(ρ) =
(p−|q|)/2∑

l=0

(−1)l (p− l)!

l!
(

p+|q|
2 − l

)
!
(

p−|q|
2 − l

)
!
ρp−2l, (3.7)

with Rp,−q(ρ) = Rpq(ρ) and Rpq(−ρ) = (−1)qRpq(ρ).

4. The polynomial Rpq(ρ) is closely related to the classical Jacobi polynomials
[13,33,126,217] according to the relation

Rpq(ρ) = ρ|q|P (0,|q|)
s (2ρ2 − 1), (3.8)
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where s = (p−|q|)/2 and P (α,β)
n (x) is the Jacobi polynomial of order n with

the parameter (α, β). The Jacobi polynomials {P (α,β)
n (x)} are orthogonal on

the interval [−1, 1] with respect to the weight function (1−x)α(1+x)β, α >
−1, β > −1, [217].

The identity in (3.8) implies that if p = |q| then

Rpp(ρ) = ρp, (3.9)

while for q = 0 we have

Rp0(ρ) = Pp/2(2ρ2 − 1), (3.10)

where Ps(x) is the s-th order classical Legendre polynomial defined on
[−1, 1], [206,217].

5. The Jacobi polynomials, being in the class of classical polynomials, obey a
three-term recurrence formula. Using this fact and (3.8) we can write the
following recurrence relation for Rpq(ρ)

A1Rp+2,q(ρ) = (A2ρ
2 +A3)Rpq(ρ) +A4Rp−2,q(ρ), (3.11)

with Rq−2,q(ρ) = 0, Rqq(ρ) = ρq, and where

A1 = 2p
(
p+ q

2
+ 1
)(

p− q

2
+ 1
)
,

A2 = 2p(p+ 1)(p+ 2),

A3 = −q2(p+ 1) − p(p+ 1)(p+ 2),

A4 = −2
(
p+ q

2

)(
p− q

2

)
(p+ 2).

In Fig. 3.2 we depict density plots of the Zernike functions Vpq(x, y), i.e., we plot
V20(x, y), Im V22(x, y), Re V31(x, y), V40(x, y), Re V42(x, y), Re V84(x, y), where
Re z, Im z are the real and imaginary parts of the complex number z. In Fig. 3.3
we depict two Rpq(ρ) polynomials represented by three-dimensional plots.

Remark 3.1. The following functions

Fnm(x, y) = P
(m+1/2,m+1/2)
n−m (x)Pm

(
y√

1 − x2

)
(1 − x2)m/2,

m = 0, 1, ..., n;n = 0, 1, 2, ...
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Figure 3.2: Zernike functions
{V20(x, y), ImV22(x, y), ReV31(x, y);V40(x, y), ReV42(x, y), ReV84(x, y)}
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Figure 3.3: Radial polynomials Rpq(x, y) for (a) p = 4, q = 0, and (b) p = 12, q = 0.

define the orthonormal and complete system in L2(D), see [126] and references
cited therein. Observe, however, that this set is not in the form of (3.3) and
thus is not invariant. In [228] a class of orthogonal functions on D referred to
as disk-harmonics has been proposed. They are eigenfunctions of the Laplacian
operator confined to D. This class is of the invariant form as in Theorem 3.1
with Rpq(ρ) = Jq(2πlpqρ), where Jq(t) is the q-th order Bessel function of the
first kind. Here lpq is a sequence of numbers that must be selected appropriately
in order to assure orthogonality and completeness. We refer to [116, 228] and
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references cited therein for some theory and applications of such orthogonal bases.
Observe, however, that this set has no simple connections to classical orthogonal
systems and therefore its analytical properties are difficult to establish.

Finally let us also mention another interesting property of the Zernike func-
tions. It has been shown in [211] that the generalization of the concept of prolate
functions to the circular domain leads to a class of functions being closely related
to the Zernike radial polynomials Rpq(ρ).

3.3. Zernike Moments

The completeness and orthogonality of {Vpq(x, y)} allow us to represent any
square integrable image function f(x, y) defined on the unit disk in the following
series

f(x, y) =
∞∑

p=0

p∑
q=−p

τpApqVpq(x, y), p− |q| = even, (3.12)

where, due to (3.4), τp = (p + 1)/π is the normalizing constant and Apq is the
Zernike moment of order p with repetition q, i.e.,

Apq =
∫∫

D
f(x, y)V ∗

pq(x, y)dxdy. (3.13)

Recalling (3.3), the polar coordinates version of Apq takes the following form

Apq =
∫ 2π

0

∫ 1

0
f̃(ρ, θ)Rpq(ρ) exp(−jqθ)ρdρdθ. (3.14)

where f̃(ρ, θ) = f(ρ cos θ, ρ sin θ). The above representation for the Zernike mo-
ments allows us to infer about their behavior under different symmetry conditions
on f(x, y). Throughout the whole book we assume that the origin of the coordi-
nate system is the center of image symmetry. Hence if f(x, y) is symmetrical for
every direction θ, i.e., f̃(ρ, θ) is an even function of θ, then we have

Apq =
∫ 2π

0

∫ 1

0
f̃(ρ, θ) cos(qθ)Rpq(ρ)ρdρdθ.

Hence in this case Apq is a real number.
The fundamental property of the Zernike functions and consequently coef-

ficients {Apq} is their rotational invariance, i.e., the rotational invariance of
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{|Apq|} takes place. Hence if f(x, y) is rotated through the angle α, then us-
ing (3.14) we can obtain that the Zernike coefficient Ar

pq of the rotated image
f̃ r(ρ, θ) = f̃(ρ, θ − α) is given by

Ar
pq = e−jqαApq. (3.15)

This identity explains the role played by the angular repetition q. Hence if q = 2
then Apq is repeated twice while the image is rotated through 360◦.

Similarly for the reflected function f(−x,−y) the Zernike moment is equal to
(−1)qApq. Generally, when the image is reflected across a line rotated through
the angle β the Zernike moment changes in the following way

Arefl
pq = e−j2qβA∗

pq, (3.16)

where z∗ is the conjugate of z.
Thus, the magnitudes of {Apq} can be used as invariant features with re-

spect to all rotations and reflections. In fact it is common in object recog-
nition to use {|Apq|, p ≥ |q|} for a few values of (p, q) as a feature vector.
See [1, 121, 124, 145, 199, 219, 231] and the references cited therein for applica-
tions of Zernike coefficients in various aspects of pattern recognition. Let us also
mention that formula (3.15) can be used to estimate the rotation angle α [124]
from the reference pattern and its rotated version. This can also serve as a tool
for estimating the symmetry of images. That latter topic will be explored in
Chapter 6.

The aforementioned favorable properties of the Zernike moments are valid as
long as one uses a true analog image function. In practice, the Zernike moments
have to be computed from sampled data. Thus let us define the following discrete
version of Apq over the pixel set {(xi, yj), 1 ≤ i ≤ n, 1 ≤ j ≤ n} with the pixel
width Δ

Âpq =
∑∑
x2

i +y2
j≤1

hpq(xi, yj)f(xi, yj), (3.17)

where

hpq(xi, yj) =
∫ xi+

Δ
2

xi−Δ
2

∫ yj+
Δ
2

yj−Δ
2

V ∗
pq(x, y)dxdy (3.18)

represents the integration of V ∗
pq(x, y) over the (i, j) pixel. Since the image func-

tion is defined over the unit disk, the summation in (3.17) takes into account
only those pixels whose centers fall completely inside the circle. It is important
to observe that even if f(x, y) = 1 for all (x, y) ∈ D, then

Âpq �= Apq. (3.19)
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This is in sharp contrast with the digital approximation for the geometric and
Legendre moments for which there is equality in (3.19), see [144] and Chapter 2
in this monograph.

Hence, there is an inherent error in computing Âpq related to the circular
nature of the support of {Vpq(x, y)}. In what follows we refer to such an error as
the geometric error. For a general image function, not necessarily constant, the
error between Âpq and Apq can be decomposed as follows

Epq = Âpq −Apq = Eg
pq + En

pq, (3.20)

where Eg
pq is the geometric error and En

pq is the numerical error related to the need
of numerical integration in (3.18). The geometric and numerical error components
of the overall error (3.20) are examined in the following section and further studied
in Chapter 4 in the context of the image reconstruction problem.

3.4. Error Analysis

In this section, we examine the accuracy of the estimate Âpq. Two inherent
sources of error in Âpq are found, i.e., the geometric and numerical errors.

Geometric Error

In order to reveal the fundamental nature of the geometric error, let us consider
the following expression

G(Δ) = Δ2
∑∑
x2

i +y2
j∈D

1 − π. (3.21)

Let us observe that this is equal to Â00 − A00 provided that f(x, y) = 1 for all

(x, y) ∈ D. In fact let us observe that
∫∫

D
V ∗

pq(x, y)dxdy = π, V ∗
00(x, y) = 1 and

that in our case the unit disk is located in the square [−1, 1]2 which is composed
of n2 pixels, i.e., Δ = 2/n.

The term G(Δ) is not equal to zero due to the fact that if the center of a pixel
falls inside the border of the unit disk {(x, y) : x2 + y2 ≤ 1}, this pixel is used
in the computation of the Zernike moments, otherwise, the pixel is discarded.
Therefore, the area used for the moment computing is not equal to the area of
the unit disk. Fig. 3.4 shows the union of the pixels whose centers fall inside the
unit circle. Note that some pixels are not entirely inside the circle; on the other
hand, some parts of the circle are not covered by the pixels.
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Figure 3.4: Lattice-point approximation of a circular region

The quantity K(Δ) =
∑

x2
i +y2

j∈D 1 in (3.21) denotes the number of the points
{(xi, yj) : 1 ≤ i, j ≤ n} inside the unit circle. Hence G(Δ) can be rewritten as
follows

G(Δ) = Δ2K(Δ) − π. (3.22)

Formula (3.22) fully describes the nature of the geometric error and it is crucial
to know the size of G(Δ), i.e., how fast G(Δ) tends to zero as Δ → 0. Since the

term Δ2K(Δ) can be approximated by an integral
∫∫

D
dxdy = π, therefore the

quantity G(Δ) in (3.22) plays the role of a remainder term of this approximation.
The evaluation of the magnitude of G(Δ) as Δ → 0 is not a trivial problem.
Nevertheless it turns out that quantity G(Δ) has been extensively examined in
the analytic number theory with the relation to the so-called lattice points of a
circle problem due originally to Gauss [104,110,119]. Gauss’ problem concerning
the number of points inside a circle is to determine the correct order of magnitude
of G(Δ) as Δ → 0. First of all, it is known after Gauss that G(Δ) = O(Δ).
This result was improved by Sierpiński in 1906 to the form of G(Δ) = O(Δ4/3).
Generally G(Δ) = O(Δ2(1−θ)), 1/4 < θ ≤ 1/2 with the following significant steps
in the history of finding the smallest possible θ:
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• Gauss (1834), θ = 1/2 = 0.5

• Sierpiński (1906), θ = 1/3 = 0.3333...

• Walfisz (1927), θ = 163/494 = 0.329959514...

• Titchmarsh (1935), θ = 15/46 = 0.326086957...

• Hua (1942), θ = 13/40 = 0.325

• Iwaniec and Mozzochi (1988), [110], θ = 7/22 = 0.318181818...

• Huxley (2002), [104,106], θ = 131/416 = 0.3149038...

Hardy’s conjecture says that the value of θ can be arbitrary close to θ = 1/4 =
0.25. It is also known that θ = 1/4 is impossible. This still remains an open
problem in analytic number theory. See Chapter 4 for further discussion and
[104,106,110,119].

Hence we have the following result for the size of G(Δ)

G(Δ) = O(Δγ), 1 ≤ γ < 3/2, (3.23)

with γ = 285/208 due to the latest result of Huxley [106].
The relationship ofG(Δ) to the geometric error in the decomposition proposed

in (3.20) is described by the following result.

Theorem 3.2. Let f ∈ L2(D) be a bounded function on D. Then for any
admissible pair (p, q) we have

|Eg
pq| ≤ f min

({
π

p+ 1

} 1
2

|G(Δ)|1/2, |G(Δ)|
)
, (3.24)

where G(Δ) is defined in (3.22) and f = maxx,y f(x, y).

The proof of Theorem 3.2 can be found in the Appendix where we also give
the precise formula for Eg

pq. Let us observe that the bound is controlled by
the geometric factor G(Δ) and the degree p of the Zernike moment. Hence we
have two terms in the bound for the geometric error. The first one is of order√
G(Δ)/p, whereas the second one is just G(Δ). The first term dominates if only

p > cΔ−γ/4, c being some constant, assuming that G(Δ) = O(Δγ).
The rate of decaying of Eg

pq is limited by the best possible result for the lattice
approximation of the unit circle. By virtue of Hardy’s conjecture, the rate for
Eg

pq can never exceed O(Δ3/4−δ min(p−1/2,Δ3/4−δ)) for an arbitrary small δ > 0.
With the best possible result known so far due to Huxley [106], the geometric
error is of order

|Eg
pq| = O(Δ285/416 min(p−1/2,Δ285/416)). (3.25)
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Once again the bound is O(p−1/2Δ285/416) if p > n285/832 = n0.3425...., otherwise
we have the bound O(Δ285/208).

Numerical Error

The numerical error is caused by the need of calculating accurately two dimen-
sional integrals appearing in the definition of Apq. The following result describes
the size of the numerical error in the decomposition proposed in (3.20) for a wide
class of image functions.

Theorem 3.3. Let f ∈ L2(D) be a function of bounded variation on D. Then
for any admissible pair (p, q) we have

|En
pq| ≤

{
fπ

p+ 1
TV(f)

} 1
2

Δ, (3.26)

where TV(f) is the total variation of f , f = maxx,y f(x, y).

The proof of Theorem 3.3 can be found in the Appendix where we also give the
precise formula for En

pq. It is worth noting that the bound for the numerical error
can be further improved if stronger than the bounded variation assumption on the
image function f(x, y) is imposed, e.g., that f(x, y) has a number of derivatives.
Then the rate of decreasing of En

pq can be faster than O(Δ). Nevertheless from
practical point of view, we need to evaluate the factor hpq(xi, yj) defined in (3.18).
For small values of q and p, this can be done by a direct integration in (3.18).
For moderate and large values of p and q, some numerical integration techniques
are needed.

The simplest strategy is the one dimensional integration rule to approximate
hpq(xi, yj) given by

hpq(xi, yj)  Δ2V ∗
pq(xi, yj) (3.27)

with the approximation error of order O(Δ4).
Multidimensional integration rules of order L are of the following form

hpq(xi, yj)  Δ2
L∑

l=1

wlV
∗
pq(ul, vl), (3.28)

where {(ul, vl), 1 ≤ l ≤ L} is a set of design points belonging to the (i, j)
pixel centered at (xi, yj) and {wl, 1 ≤ l ≤ L} is a set of weights [40]. With
an appropriate selection of the design points and weights, one can reduce the
approximation error in (3.28) to O

(
Δ2(L+1)

)
and therefore to achieve a subpixel

accuracy.
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For the simplicity of notation, let us denote by (±1,±1) the corner points
of the individual pixel. Then the 5-dimensional cubature formula for calculating∫ 1

−1

∫ 1

−1
V (x, y)dxdy for some function V (x, y) is given by

C5(V ) =
1
3
{8V (0, 0) + V (0, 1) + V (1, 0) + V (0,−1) + V (−1, 0)}. (3.29)

This is illustrated in Fig. 3.5a.

(a) (b)

Figure 3.5: 5-dimensional cubature formulas I and II

Yet another type of the 5-dimensional cubature formula, which is shown in
Fig. 3.5b, is defined as follows:

C5(V ) =
4
3
{−V (0, 0) + V (0, 0.5) + V (0.5, 0) + V (0,−0.5) + V (−0.5, 0)}. (3.30)

The number of nodes in each pixel can be increased further to achieve even
higher accuracy. An example is to use the 13-dimensional cubature formula,
whose nodes are shown in Fig. 3.6.

Figure 3.6: 13-dimensional cubature formula

Two different ways of calculating weights yield the following formulas referred
to as the 13-D(I) and 13-D(II) integration methods, respectively

C13(V ) =
1
45

{120V (0, 0) + 8[V (1, 1) + V (1,−1) + V (−1,−1) + V (−1, 1)]

+ 16[V (0.5, 0.5) + V (0.5,−0.5) + V (−0.5,−0.5) + V (−0.5, 0.5)]
− 9[V (0, 1) + V (1, 0) + V (0,−1) + V (−1, 0)]}, (3.31)
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and

C13(V ) =
1
45

{104V (0, 0) + 4[V (1, 1) + V (1,−1) + V (−1,−1) + V (−1, 1)]

+ 16[V (0.5, 0.5) + V (0.5,−0.5) + V (−0.5,−0.5) + V (−0.5, 0.5)]
− [V (0, 1) + V (1, 0) + V (0,−1) + V (−1, 0)]}. (3.32)

See [31] for further details on the above two-dimensional numerical integration
techniques.

Generally the higher dimensional integration rules are more accurate for cal-
culating two dimensional integrals. It should, however, be noted that this is
not the case in our situation since we are dealing with circular area. In fact for
multi-dimensional cubature formulas, some V ∗

pq(ul, vl) used in the computation of
hpq(xi, yj) do not satisfy the restriction of u2

l +v2
l ≤ 1. For example, there are 40,

16, and 140 design points falling outside the unit disk for 5-dimensional formula I,
5-dimensional formula II, and 13-dimensional formulas, respectively. Note that
there is no such difficulty with the 1-dimensional rule in (3.27). Nevertheless, a
certain form of truncation applied to the multi-dimensional integration formulas
can lead to their substantial improvement. Indeed, let us redefine the Zernike
moment in (3.17) in the following form

Âpq(γ) =
∑∑

x2
i +y2

j≤1−η

hpq(xi, yj)f(xi, yj), (3.33)

where η is a small adjustable parameter. Note that Âpq(0) = Âpq. The choice

η =
Δ√

2
implies that only pixels completely falling into the unit circle are taken

into account in (3.33). This, however, increases the geometric error, i.e., leads to
poorer digital approximation of the circle. A less conservative choice takes the
following form

η =
Δ
2

+ ε, (3.34)

where ε is a small number, e.g., ε = 0.0001. With this choice, the number of
the design points falling outside the unit disk will be reduced to 16, 0, 68 for the
5-dimensional formula I, 5-dimensional formula II, and 13-dimensional formulas,
respectively. We will show the efficiency of the above modification of the Zernike
moments in Section 5. Moreover, in Chapter 5 we are giving a high precision
method for computing Apq.

3.4.1. Image Reconstruction from Zernike Moments

Combining the results of Theorems 3.2 and 3.3 we can readily obtain the following
bound for |Âpq −Apq|.
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Theorem 3.4. Under the assumptions of Theorems 3.2 and 3.3 we have

|Âpq −Apq| ≤
{

fπ

p+ 1
TV(f)

}1/2

Δ

+ f |G(Δ)|1/2 min

({
π

p+ 1

} 1
2

, |G(Δ)|1/2

)
. (3.35)

Hence with the help of the best known result from the analytic number theory,
see (3.25), we obtain

|Âpq −Apq| = O(p−1/2Δ) +O
(

Δ285/416 min(p−1/2,Δ285/416)
)
. (3.36)

For small fixed values of p the above bound is of order O(Δ), i.e., it is con-
trolled by the discretization error. Nevertheless, as we have already mentioned
this error can be greatly reduced by applying higher order numerical integra-
tion methods yielding the discrertization error of order O(ΔL), L ≥ 2. Hence
we can conclude that the geometric error actually dominates the magnitude of
|Âpq −Apq|, i.e., we have

|Âpq −Apq| = O(Δ285/208) (3.37)

for all finite p.
As has already been mentioned, in order to assess the performance of a set of

image descriptors, one can look at their reconstruction power. Using (3.12) and
replacing Apq with Âpq, we can define the following reconstruction algorithm

f̂T (x, y) =
T∑

p=0

p∑
q=−p

τpÂpqVpq(x, y), p− |q| = even, (3.38)

where T is the truncation parameter informing us how many moments are taken
into account.

The energy of the error image f̂T (x, y) − f(x, y) can serve as a natural per-
formance measure for f̂T (x, y), i.e.,

Error(f̂T ) =
∫∫

D
|f̂T (x, y) − f(x, y)|2dxdy. (3.39)

Owing to Parseval’s formula, we obtain the following decomposition for Error(f̂T )

Error(f̂T ) =
T∑

p=0

p∑
q=−p

τp|Âpq −Apq|2 +
∞∑

p=T+1

p∑
q=−p

τp|Apq|2 = DT + FT , (3.40)
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where p−|q| = even. Note that the term FT is a result of using a finite number of
moments in the reconstruction algorithm. It is also clear that DT increases with
T , whereas FT decreases with T . This reveals that there is T ∗ which minimizes
an apparent trade-off between the terms in (3.40). A precise analysis of the
reconstruction error will be given in Chapter 4.
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Figure 3.7: Error(f̂T ) versus T for a = 1, b = 0, (a) n = 32, (b) n = 256

Instead of giving a general theory of the reconstruction problem we have eval-
uated the error formula in (3.40) for the following discontinuous image function
of the radial form

f(x, y) =

{
a x2 + y2 ≤ η2,

b η2 < x2 + y2 ≤ 1,
(3.41)

where 0 < η < 1 and, without loss of generality, a > b.

In this case it can be calculated after tedious but otherwise straightforward
algebra that the truncation error is bounded by

FT ≤ 8(a− b)2

T
. (3.42)

Furthermore noting that f = a and V (f) = a − b, we have evaluated the first
term in (3.40). Fig. 3.7 plots the bound versus T with a = 1, b = 0, and n =
32, n = 256. Note that T minimizing the bound for (3.40) is equal to 6 and 20
for n = 32 and n = 256, respectively. The optimal choice of T says how many
moments should be taken into account in order to achieve the smallest possible
reconstruction error.
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3.5. Experimental Results

A set of five Chinese characters are employed as the test images. Each image
is of the size of 24 × 24 pixels and the range of graylevels for each pixel is 32,
where all characters have the gray level 11 and the background has the value 21.
Fig. 3.8 illustrates these five Chinese characters projected onto the unit disk.

Figure 3.8: Five original Chinese characters used in image reconstruction via Zernike
moments. From left to right are C1, C2, C3, C4, and C5

3.5.1. Traditional Zernike Moment Method

Here we calculate Apq employing the simplest 1-dimensional integration formula.
The normalized mean square error

Error(f̂T ) =

∫∫
D
|f(x, y) − f̂(x, y)|2dxdy∫∫

D
[f(x, y)]2dxdy

(3.43)

is adopted here as a measure of the accuracy of the reconstructed images.

Figure 3.9: Reconstructed patterns of the character C1 based on the Zernike moments
of order 14, 16, 18, 20, 22, 24, 26, 28, and 30

The Chinese character C1 is used as the test image. Fig. 3.9 illustrates the
reconstructed images of C1. The first pattern is reconstructed from moments of
order 14, then from left to right are the reconstructed images from moments of
order 16, 18, 20, 22, 24, 26, 28, and 30, respectively.

3.5.2. Modified Zernike Moment Method

We have introduced a modified version Âpq(η) of the Zernike moments in (3.33)
of Section 3.2. In our experiment, the parameter η is chosen as η = Δ/2+0.0001.
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For the sake of comparison, the same Chinese character C1 is employed as the
test image, and the normalized mean square error defined in (3.43) is used.

Fig. 3.10 shows the Error(f̂T ) values for all five types of numerical integra-
tion formulas as a function of the moment order. Fig. 3.10 indicates that all five
integration techniques perform better than the simple 1-dimensional integration
formula in the traditional Zernike moment method. Among the applied integra-
tion techniques, the 5-dimensional formula II which is shown in Fig. 3.5 (b), is
superior to the other techniques and therefore seems to be the best candidate for
the image reconstruction for this specific situation.
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Figure 3.10: The normalized reconstruction error for the reconstructed character C1

via the proposed Zernike moment technique with five numerical integration formulas

The reason why the 5-dimensional formula II provides better result is that
with the new condition for the Zernike moments, all nodes used in this formula
fall inside the unit disk. For the 5-dimensional formula I and the 13-dimensional
formulas, we have 16 and 68 nodes falling outside the unit disk, respectively.

The reconstructed images of the character C1 with five integration formulas
are shown in Fig. 3.11. The first row shows the reconstructed patterns from
the 1-dimensional integration formula, whereas the second, third, fourth, and
fifth show 5-dimensional formulas I and II, 13-dimensional formulas I, and II,
correspondingly. All images in the first column are reconstructed from moment
of order 10, then from left to right we show results based on moments of order
15, 20, 25, 30, 35, and 40.

By using the 5-dimensional integration formula II, we reconstructed all five
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Figure 3.11: Reconstructed patterns of the character C1 utilizing the modified
method and five different integration rules. From left to right, the results based on

moments of order 10, 15, 20, 25, 30, 35, and 40

Figure 3.12: Utilizing the 5-dimensional integration formula II, the five Chinese
characters and their reconstructed patterns via the modified Zernike moments of order

20, 24, 28, 32, 36, 40, 44, and 48

Chinese characters shown in Fig. 3.8 with the Zernike moments of orders from
20 to 48. Fig. 3.12 depicts the reconstructed images.
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3.6. Conclusions

In this chapter, we have studied the accuracy problem for Zernike moments deter-
mined from discrete data observed on the n×n pixels image domain. It has been
observed that two kinds of errors determine the accuracy of Zernike moments
computing, i.e., the numerical error related to the usual need of calculating ac-
curately two dimensional integrals and the geometric error being a distinctive
feature of Zernike moments. We have shown that the geometric error plays a
critical role for the accuracy of the Zernike moment computing. Employing the
latest results from the analytic number theory on the lattice points of a circle,
we have established that the accuracy of an estimate of the Zernike moment of
order p is O(Δ285/416 min(p−1/2,Δ285/416)). This result allows us to evaluate the
integrated squared error of the reconstruction technique based on the maximum
T estimated Zernike moments. This issue will be addressed in detail in Chapter 4.

The results established in this chapter can be further extended to other classes
of radial polynomials of the invariant form. In fact an analogous theory can be
carried out for the pseudo-Zernike polynomials introduced in Section 3.2. Fur-
thermore, one can generalize the class of radial polynomials by introducing a
tuning parameter which may yield a more flexible class of invariant radial mo-
ments. In fact the representation in (3.8) can be replaced by ρ|q|P (α,|q|)

s (2ρ2 − 1),
where α > −1 is the tuning parameter. For α = 0 we obtain the classical Zernike
polynomials. The reconstruction properties of moments using such generalized
orthogonal bases, however, are rather unknown and this is left for future studies.

In summary we have obtained in this chapter the following main results:

• Basic analytical and invariant properties of orthogonal radial polynomials have
been established. In particular, the orthogonal radial Zernike polynomials have
been examined.

• An improved technique for high quality calculation of Zernike moments has
been proposed.

• The error analysis of the numerical estimate of the Zernike moment has been
carried out.

• The fundamental connection between the geometric error and the analytic
number theory of lattice points has been established.

• High order numerical integration methods for Zernike moments computing
have been developed.

• Bounds for the precision of the proposed estimates have been established.
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• Modified Zernike moments with the reduced geometric error have been pro-
posed.

• Numerical studies have been carried out to illustrate our basic theory.

3.7. Appendix

Proof of Theorem 3.2 and Theorem 3.3

Let D = {(x, y) : x2 + y2 ≤ 1} be the unit disk. Let pij denote the (i, j) pixel
at (xi, yj). Note that the single pixel has the area 4/n2, where n2 is the total
number of pixels.

Redefining the (p, q) Zernike polynomial as Vpq(x, y) on D and zero otherwise,
we can decompose Apq as follows

Apq =
∑∑
x2

i +y2
j∈D

∫∫
pij

f(x, y)V ∗
pq(x, y)dxdy +

∫∫
O(Δ)

f(x, y)V ∗
pq(x, y)dxdy, (3.44)

where O(Δ) is the region being the intersection of D with the union of those
pixels whose centers and corners fall outside the circle.

Using (3.44), we can write the following decomposition for Âpq −Apq

Âpq −Apq =
∑∑
x2

i +y2
j∈D

∫∫
pij

(f(xi, yj) − f(x, y))V ∗
pq(x, y)dxdy

−
∫∫

O(Δ)
f(x, y)V ∗

pq(x, y)dxdy. (3.45)

The first term of this decomposition defines the numerical error En
pq, while the

second the geometric error Eg
pq, i.e.,

En
pq =

∑∑
x2

i +y2
j∈D

∫∫
pij

(f(xi, yj) − f(x, y))V ∗
pq(x, y)dxdy, (3.46)

Eg
pq = −

∫∫
O(Δ)

f(x, y)V ∗
pq(x, y)dxdy. (3.47)

Let us first consider the term En
pq. By virtue of Cauchy-Schwartz inequality for
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integrals and sums, we have

|En
pq| ≤

∑∑
x2

i +y2
j∈D

{ ∫∫
pij∩D

(f(xi, yj) − f(x, y))2 dxdy
∫∫

pij

∣∣∣V ∗
pq(x, y)

∣∣∣2dxdy} 1
2

≤

⎧⎪⎨⎪⎩
∑∑
x2

i +y2
j∈D

∫∫
pij∩D

(f(xi, yj) − f(x, y))2 dxdy
∫∫

D

∣∣∣V ∗
pq(x, y)

∣∣∣2dxdy
⎫⎪⎬⎪⎭

1
2

.

Arguing as in the proof of Theorem 1 in [144], we can show that for f being a
bounded variation function, we have∑∑

x2
i +y2

j∈D

∫∫
pij∩D

(f(xi, yj) − f(x, y))2 dxdy ≤ f TV(f)
n2

,

where TV(f) is the total variation of f and f = maxx,y f(x, y).
Furthermore, due to the normalization we have∫∫

D

∣∣∣V ∗
pq(x, y)

∣∣∣2dxdy =
π

p+ 1
.

All these considerations lead to

|En
pq| ≤

{
πfV (f)
p+ 1

Δ2

} 1
2

. (3.48)

This proves Theorem 3.3.
Let us now take the geometric error Eg

pq into account. By Cauchy-Schwartz
inequality, we have

∣∣∣Eg
pq

∣∣∣ ≤ { ∫∫
O(Δ)

f2(x, y)dxdy
∫∫

D

∣∣∣V ∗
pq

∣∣∣2dxdy} 1
2

≤ f

{
π

p+ 1
|O(Δ)|

} 1
2

,

(3.49)
where |O(Δ)| is the area of the set O(Δ). The discussion in Section 3.1 yields an
important observation that

|O(Δ)| ≤ |G(Δ)|,
where G(Δ) is the remainder term of the lattice approximation of D, see (3.22).

An alternative bound for Eg
pq results from (3.47) and the fact that |Vpq(x, y)| ≤

1, i.e., we have
Eg

pq ≤ f |O(Δ)| ≤ f |G(Δ)|.
This proves the bound given in Theorem 3.2. �



Chapter 4

Reconstruction Aspects of
Orthogonal Radial Moments

In this chapter we consider the problem of image reconstruction from the or-
thogonal radial moments introduced in Chapter 3. An image function f(x, y)
defined on the unit disk is observed in the presence of noise at discrete points of
a regular square grid. An estimate of f(x, y) based on the Zernike orthogonal
radial functions over the unit disk is proposed. This class of functions has a
distinctive property of being invariant to rotation of axes about the origin of co-
ordinates yielding therefore a rotationally invariant estimate. For radial functions
the orthogonal set has a particularly simple form being related to the classical
Legendre polynomials. We give the statistical accuracy analysis of the proposed
estimate of f(x, y) in the sense of the L2 metric. It is found that there is an
inherent limitation in the precision of the estimate due to the geometric nature
of a circular domain. This is explained by relating the accuracy issue to the cele-
brated problem in the analytic number theory called the lattice points of a circle.
The accuracy of the reconstruction method for images with certain symmetry
properties, like radiality, is examined.

In summary, the main contributions of this chapter are the following:

• Basic approximation properties of the Zernike orthogonal radial polynomials
are established.

• The behavior of Zernike moments for images with various symmetry and struc-
tural conditions is extensively examined. This includes radial images and im-
ages of the additive form.

• An image reconstruction formula from the Zernike orthogonal radial polyno-
mials is introduced and its reconstruction power is thoroughly examined.

87
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• The detailed error analysis of the reconstruction algorithm is carried out. This
includes the noise diminishing property and the imprecision of the Zernike
moment calculation due to the geometric and discretization errors.

• The fundamental bound for the truncation reconstruction error is established.
The bound holds for all images which belong to a class of functions of bounded
variation.

• The rates for the mean integrated squared error are derived. The rates for
important special cases of radial and additive images are given.

• The problem of data-driven selection of the optimal number of moments is
discussed.

4.1. Introduction

Let us consider the image model introduced in Chapter 3, i.e., let f(x, y) be
an image function of the class L2(D) defined over the unit disk D = {(x, y) :
x2 + y2 ≤ 1}. In this chapter we address the problem of recovering f(x, y)
from the orthogonal radial moments examined in Chapter 3 when only noisy and
discrete data are available. Hence let

Zij = f(xi, yj) + εij , (xi, yj) ∈ D, 1 ≤ i, j,≤ n (4.1)

be the observed data record, where {εij} is a zero mean, finite variance, spatially
uncorrelated noise process. Let σ2 denote the variance of εij . We assume that the
data are observed on a square grid of edge width Δ, i.e., xi−xi−1 = yj−yj−1 = Δ.

As we have already noted we consider functions on the circular domain since
it is a common situation in a wide range of applications. Nevertheless, no the-
ory on the reconstruction accuracy of radial moments in such a setting has been
develolped so far. In this chapter we propose an estimation technique for re-
covering f ∈ L2(D) utilizing the Zernike orthogonal basis on D. Although it is
possible to construct a number of orthogonal systems on D [126], the Zernike
orthogonal functions [13, 18, 33, 250] possess some unique properties. First of
all they are invariant in form with respect to orthogonal transformations of
the (x, y)-plane yielding a popular class of invariant features in object recogni-
tion [1, 101,121,124,127,144,145,173,199,219,221,228,232]. Second the Zernike
functions have properties similar to both classical trigonometric series and Jacobi
polynomials and they define a minimal set of permissible functions [13]. Further-
more, Radon transforms of the Zernike functions are also orthogonal [33]. The
latter plays a fundamental role in tomographic reconstruction of objects from
their projections [33, 115, 150, 157]. It is also worth mentioning that the Zernike
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orthogonal basis has recently found applications in ophthalmology for corneal
imaging allowing eye-care providers to fit contact lenses and glasses [207].

In this chapter the accuracy analysis of the proposed estimate of f(x, y) based
on Zernike functions is carried out. Let f̂T (x, y) be an estimate of f(x, y) derived
from data record (4.1) which utilizes the first T Zernike functions. We give
bounds for the mean integrated squared error (MISE)

MISE(f̂T ) = E

∫∫
D

∣∣∣f̂T (x, y) − f(x, y)
∣∣∣2 dxdy (4.2)

for a large class of functions belonging to L2(D). This includes bounded variation
functions, radial functions, and functions of a specific structural form. This
analysis reveals the dependence of the error on the truncation point T , image
smoothness, noise characteristics, sampling rate Δ and the circular geometry of
the support of f(x, y). This is quantified by decomposing the MISE(f̂T ) into the
variance, bias, discretization and geometric error components. The first three
factors are standard in the non-parametric curve estimation theory and yield the
well studied variance/bias/discretization trade-off [39, 210]. The geometric error
is caused by the fact that our reconstruction problem is confined to a unit circle
and some lattice squares along the circular domain may be either included or
excluded. This kind of error is quantified by using the celebrated problem in the
analytic number theory referred to as lattice points of a circle due originally to
Gauss [87, 104–106, 110, 235]. We show that the geometric error, although not
dominant in the asymptotic theory, has an important influence on the overall
performance of our reconstruction method. This is a distinctive feature of the
function reconstruction problem on a circular domain.

4.2. Orthogonal Bases on D

In this sub - section we give an essential information about the Zernike orthogonal
functions which will be employed further. A detailed discussion of this subject
can be found in Chapter 3.

First of all, an important property of the Zernike orthogonal functions is that
the radial polynomial Rpq(ρ) is closely related to the classical Jacobi polynomials
[13,33,126,217] according to the relation

Rpq(ρ) = ρ|q|P (0,|q|)
s (2ρ2 − 1), (4.3)

where s = (p− |q|)/2 and P (α,β)
n (x) is the Jacobi polynomial of order n with the

parameter (α, β).
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Figure 4.1: Radial section of Rpq(ρ) for (p, q) = (8, 0) (bold line)
and (p, q) = (9, 1) (light line)

The identity in (4.3) implies that if p = |q| then

Rpp(ρ) = ρp, (4.4)

while for q = 0 we have
Rp0(ρ) = Pp/2(2ρ2 − 1), (4.5)

where Ps(x) is the s-th order classical Legendre polynomial defined on [−1, 1],
[206,217]. It is also known [205] that

|Pn(x)| < 1,−1 < x < 1. (4.6)

For our further considerations it is useful to know the growth of the polynomial
Rpq(ρ). First let us recall the fact that P (α,β)

n (x) attains its maximum in [−1, 1]
at one of the end-points [44, p. 168]. Hence observing that P (0,|q|)

s (1) = 1,

P (0,|q|)
s (−1) = (−1)s

(
s+ q
s

)
 sq

and then using (4.3) and (4.6), we obtain the following useful bound for Rpq(ρ)

|Rpq(ρ)| ≤ 1, (4.7)

with Rpq(1) = 1.
Fig. 4.1 confirms the above bounds by showing the radial section of Rpq(ρ)

for (p, q) = (8, 0) and (p, q) = (9, 1).
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4.3. Function Approximation by Zernike Functions

The completeness and orthogonality of {Vpq(x, y)} allow us to represent any f ∈
L2(D) by the following series

∞∑
p=0

p∑
q=−p

τpApqVpq(x, y), (4.8)

where the summation is carried out for all (p, q) satisfying (3.12) and where, due
to (3.4), τp = (p+ 1)/π is the normalizing constant. The Fourier coefficient Apq

of order p with repetition q is given by

Apq =
∫∫

D
f(x, y)V ∗

pq(x, y)dxdy. (4.9)

Recalling (3.3), we can obtain the following useful polar coordinate version of
(4.9)

Apq =
∫ 2π

0

∫ 1

0
f(ρ cos θ, ρ sin θ)Rpq(ρ)e−jqθρdρdθ. (4.10)

Denoting f̃(ρ, θ) = f(ρ cos θ, ρ sin θ) and observing that f̃(ρ, θ) is 2π-periodic in
θ we can rewrite (4.10) in the following equivalent form

Apq = 2π
∫ 1

0
cq(ρ)Rpq(ρ)ρdρ, (4.11)

where

cq(ρ) =
1

2π

∫ 2π

0
f̃(ρ, θ)e−jqθdθ (4.12)

is the usual q-th Fourier coefficient of the function ϕ(θ) = f̃(ρ, θ).
The above identities allow us to draw inference about the coefficient Apq under

different symmetry conditions put on the image function f(x, y). This issue was
discussed in Section 3.3 and will be further examined in Chapter 6.

It is important for further studies to evaluate the form of Apq for various
classes of functions defined on D. Let us first consider an important class of
radial functions, i.e., let f(x, y) be a function of ρ2 = x2 + y2 only; write it as
g(ρ2). In this case it is easy to observe that cq(ρ) defined in (4.12) is given by

cq(ρ) = g(ρ2)1(q = 0),

where 1(A) denotes the indicator function of a set A.



92

By this and (4.5) we have

Apq = 2π
∫ 1

0
g(ρ2)Pp/2(2ρ2 − 1)ρdρ1(q = 0). (4.13)

More general case to the above is when f(x, y) is elliptically contoured, i.e.,

f(x, y) = g

(
(x, y)Σ−1

(
x
y

))
(4.14)

for some non-singular matrix Σ and a single variable function g(t). In particular
let

Σ =
(

1 τ
τ 1

)
where τ plays the role of the “correlation” coefficient between the variables x and
y. Assuming |τ | < 1, we observe that (4.14) becomes

f(x, y) = g

(
x2 + y2 − 2xyτ

1 − τ2

)
. (4.15)

Note that for τ = 0 the Zernike coefficient Apq of function (4.14) is given by
(4.13). For general τ , Apq is defined in (4.11) with

cq(ρ) =
1

2π

∫ 2π

0
g

(
ρ2(1 − τ sin 2θ)

1 − τ2

)
e−jqθdθ. (4.16)

It is interesting to know the behavior of Apq as a function of τ . Expanding (4.16)
into Taylor series about τ = 0 and after some tedious algebra we can obtain that

Apq = ap + τ2bp +O(τ4), (4.17)

where

ap = 2π
∫ 1

0
g(ρ2)Rp0(ρ)ρdρ

and

bp = π

∫ 1

0

[
1
2
g(2)(ρ2)ρ2 + 2g(1)(ρ2)

]
Rp0(ρ)ρ3dρ− π

2

∫ 1

0
g(2)(ρ2)Rp4(ρ)ρ5dρ.

Here it has been assumed that g(t) possesses two continuous derivatives. Clearly
the term ap is identical to (4.13) and as we have already explained, it represents
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the Zernike coefficient for radial functions. It is interesting to observe that ex-
pansion (4.17) does not possess a linear term with respect to τ . Generally all
terms with odd powers of τ are zero, provided that corresponding higher order
derivatives of g(t) exist.

Let us now assume that g(t) is Lipschitz, i.e., that

|g(u) − g(v)| ≤M |u− v|α, for M > 0 and 0 < α ≤ 1. (4.18)

Then it can be easily shown that

|Apq − ap| ≤ 2πM
(

2|τ |
1 − τ2

)α ∫ 1

0
|Rpq(ρ)|ρ2α+1dρ. (4.19)

This result gives the bound for the distance between the Zernike coefficients of
functions defined in (4.15) and the corresponding coefficients of radial function
g(ρ2).

Result (4.19) can be viewed as an example of more general concept of the
radial approximation of a given class of functions. Hence let R(D) ⊂ L2(D) be a
class of radial functions in L2(D). Then it can be shown [247] that the orthogonal
projection of L2(D) onto R(D) is of the form

h(ρ2) =
1

2π

∫ 2π

0
f(ρ cos θ, ρ sin θ)dθ. (4.20)

Hence h(ρ2) represents the best radial approximation of f ∈ L2(D) and conse-
quently there is a unique decomposition

f = h+ r, (4.21)

where h ∈ R(D) and r is orthogonal to h, i.e.,∫ 2π

0

∫ 1

0
h(ρ2)r(ρ, θ)ρdρdθ = 0.

Remark 4.1. It is interesting to note that the orthogonal projection of the in-
variant function Vpq(x, y) in (3.3) onto R(D) is given by Rp0(ρ).

It is of some interest to evaluate the size of the term r in (4.21). For the
function class defined in (4.15), it can be easily shown that

‖f − h‖≤M

√
π

2α+ 1

(
2τ

1 − τ2

)α

,

where the function g(ρ2) in (4.15) satisfies (4.18). Here ‖·‖ is the L2(D) norm.
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Yet another important functional class [37] consists of functions which can be
decomposed into separate angle and radial components of the following form

f̃(ρ, θ) =
L∑

s=1

ϕs(ρ2)ψs(θ), (4.22)

for some measurable functions ϕs(ρ2), ψs(θ), s = 1, ..., L.
A simple algebra shows that the Zernike coefficients for this class of functions

have the following form

Apq = 2π
L∑

s=1

cs,qBpq(s), (4.23)

where cs,q is the q-th Fourier coefficient (see (4.12)) of the angle component ψs(θ)
and

Bpq(s) =
∫ 1

0
ϕs(ρ2)Rpq(ρ)ρdρ.

It can be easily shown that for the orthogonal projection h(ρ2) of class (4.22)
onto R(D) we have the following bound

‖f − h‖ ≤M
(2π)α+1/2

(α+ 1)

⎧⎨⎩
∫ 1

0

(
L∑

s=1

ϕs(ρ2)

)2

ρdρ

⎫⎬⎭
1/2

,

where it is assumed that all ψs(θ), s = 1, ..., L satisfy (4.18). On the other hand,
a bound in terms of the global L2 variation of ψs(θ), s = 1, ..., L is of the form

‖f − h‖ ≤ 4
√

2/3

⎧⎨⎩
∫ 1

0

(
L∑

s=1

‖ψ(1)
s ‖ |ϕs(ρ2)|

)2

ρdρ

⎫⎬⎭
1/2

. (4.24)

For the proof of this result see [180] .

Remark 4.2. The class of functions defined in (4.22) is important since it is
known that it defines a dense subset in L2([0, 2π] × [0, 1]). In fact the set of all
finite linear combinations

L∑
s=1

ϕs(ρ2)ψs(θ), ϕs ∈ L2([0, 1]), ψs ∈ L2([0, 2π])

is dense in L2([0, 2π] × [0, 1]).
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A special interesting case of class (4.22) is the additive model

f̃(ρ, θ) = ϕ(ρ2) + ψ(θ) (4.25)

for some measurable functions ϕ(ρ2) and ψ(θ). See [97] for an extensive overview
of the theory and applications of such models in the statistical inference. It
should be noted that both (4.21) and (4.25) describe additive models in the
polar coordinate system. This should be contrasted with a counterpart of (4.25),
f(x, y) = f1(x) + f2(y), in the (x, y) coordinates.

The Zernike coefficient for f̃(ρ, θ) in (4.25) takes the following form

Apq = 1(q = 0)2π
∫ 1

0
ϕ(ρ2)Rp0(ρ)ρdρ+

∫ 2π

0
ψ(θ)e−jqθdθ

∫ 1

0
Rpq(ρ)ρdρ. (4.26)

It is also clear that the orthogonal projection of class (4.25) onto R(D) is given
by

h(ρ2) = ϕ(ρ2) +
1

2π

∫ 2π

0
ψ(θ)dθ.

The distance between f in (4.25) and h(ρ2) is bounded by

‖f − h‖ ≤ 4√
3
‖ψ(1) ‖ .

The proof of this bound is similar to (4.24). The interpretation of the above
inequality and that in (4.24) is that if oscillations in the angular components
{ψs} are small then f is closer to h.

Let us also mention the class of ridge functions with L directions δ0, ..., δL−1

f(x, y) =
L−1∑
l=0

gl(x cos(δl) + y sin(δl)), (4.27)

where {gl(t), l = 0, ..., L−1} are some single variable functions defined on [−1, 1].
This class of functions plays an important role in projection-based approxima-

tion of multidimensional functions [37,150]. In particular it has been shown [150]
that any polynomial of degree L − 1 in x and y can be represented by (4.27)
provided that {gl(t), l = 0, ..., L − 1} are single variable polynomials of degree
L−1 and δ0, ..., δL−1 are distinct directions. Furthermore the ridge functions can
be used as a powerful tool for approximating radial functions and functions with
smooth angular behavior [37].
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It is straightforward to show that the Zernike coefficient for (4.27) takes the
following form

Apq =
L−1∑
l=0

e−jqδl

∫ 1

0

{∫ 2π

0
gl(ρ cos θ) cos(qθ)dθ

}
ρRpq(ρ)dρ.

This formula can be further simplified assuming a specific form of ridge functions
{gl(t), l = 0, ..., L−1}. In particular for {gl(t), l = 0, ..., L−1} being polynomials
of degree not greater than L− 1, it can be easily shown that Apq = 0 for q ≥ L.

Due to (4.20) we also note that the orthogonal projection of the class of ridge
functions onto R(D) is of the form

h(ρ2) =
1

2π

L−1∑
l=0

∫ 2π

0
gl(ρ cos(θ − δl))dθ.

For gl(t) satisfying (4.18), the L2 distance between h(ρ2) and f(x, y) in (4.27) is
bounded by

‖f − h‖ ≤ LM(2π)α+1/2

√
2(α+ 1)3/2

.

On the other hand, a bound on ‖ f − h ‖ in terms of the global variability of
{gl(t)} is given by

‖f − h‖ ≤ 4
√

2/3

⎧⎨⎩
∫ 1

0

∣∣∣∣∣
L−1∑
l=0

(∫ 2π

0

∣∣∣g(1)
l (ρ cos(γ − αl))

∣∣∣2 dγ)1/2
∣∣∣∣∣
2

ρ3dρ

⎫⎬⎭
1/2

.

The proof of this fact can be obtained in the analogous way as the proof of (4.24).

To illustrate the richness of the above classes of image functions we give in
Fig. 4.2 some examples. Hence we draw the density plots of the radial image
function f1(x, y) = sin(10ρ) + cos(10ρ), the additive image function in the polar
coordinates f2(x, y) = sin(10ρ)+cos(10θ), and the additive image function in the
Cartesian coordinates f3(x, y) = sin(10x) + cos(10y). Our developments in this
chapter reveal that the Zernike based reconstruction method can easily recover
functions like f1(x, y) and f2(x, y). The function f3(x, y) on the other hand would
be more suitable for the Lagrange moments based reconstruction algorithms.
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Figure 4.2: Examples of image functions: radial image function, additive image
function in the (ρ, θ)-coordinates, additive image function in the (x, y)-coordinates

4.4. The Reconstruction Algorithm

Let us now consider the problem of estimating f(x, y), where f ∈ L2(D), given
noisy data generated from observation model (4.1). Let us assume that lattice
points {(xi, yj), 1 ≤ i, j ≤ n} from D are located at the center of the lattice
squares. Fig. 3.4 in Section 3.4 shows the geometry of lattice points.

The first task is to estimate the Zernike coefficients Apq defined in (4.9). Using
a piecewise approximation of f(x, y) over the lattice squares we can define the
following estimate of Apq

Âpq =
∑∑
(xi,yj)∈D

wpq(xi, yj)Zij , (4.28)

where

wpq(xi, yj) =
∫ xi+

Δ
2

xi−Δ
2

∫ yj+
Δ
2

yj−Δ
2

V ∗
pq(x, y)dxdy.

It is also assumed that Vpq(x, y) is defined on D by (3.3), (3.7), and is zero
otherwise. Let us observe that

EÂpq =
∑∑
(xi,yj)∈D

wpq(xi, yj)f(xi, yj)

is just a numerical approximation of the integral representing Apq over the lattice.
It is worth noting that if f(x, y) = 1 for all (x, y) ∈ D then we have EÂpq �=

Apq. Such an unusual phenomenon does not hold for functions defined over the
rectangular domain. In our case we are dealing with the circular domain and the
lattice squares cannot fill the circle perfectly. This problem will be examined in
detail in Section 4.5.
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Representation (4.8) and formula (4.28) yield the following estimate of f(x, y),
(x, y) ∈ D

f̂T (x, y) =
T∑

p=0

p∑
q=−p

τpÂpqVpq(x, y), (4.29)

for p− |q| being even, τp = (p+ 1)/π.
Estimate (4.29) is a standard orthogonal series estimate defined by a trun-

cation parameter T . Let us observe that there are (T + 1)(T + 2)/2 terms in
(4.29).

Remark 4.3. Let us note that due to the invariant form of Vpq(x, y) our estimate
is rotationally invariant. Hence when any rotation x′ = x cos(φ) + y sin(φ), y′ =
−x sin(φ) + y cos(φ) is applied, the estimate f̂T (x′, y′) is transformed into an
estimate of the same form, i.e.,

f̂T (x′, y′) =
T∑

p=0

p∑
q=−p

τpÂpqe
−jqφVpq(x, y).

To the best of author’s knowledge no classical curve estimation method possesses
this useful property.

For the class of radial functions f(x, y) = g(ρ2) considered in Section 4.3, our
estimate can have a reduced complexity due to formula (4.13). In fact we can
define the following estimate of g(ρ2)

ĝT (ρ2) =
T∑

l=0

τ2lÂ2lR2l(ρ), (4.30)

where

Â2l = 2π
n∑

i=1

Z̃i

∫ ρi+
Δ√
2

ρi− Δ√
2

R2l(ρ)ρdρ (4.31)

is the estimate of Apq in (4.13) with p = 2l. Here we denote R2l(ρ) = Pl(2ρ2−1),
where Pl(t) is the l-th Legendre polynomial.

Furthermore {Z̃i} are observations at the lattice points taken along the di-

agonal direction ρi =
√
x2

i + y2
i ≤ 1. Hence the actual number of points taken

into account is of order n. It is also clear that one can use other directions like
ρi = |xi| or ρi = |yi|.
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Remark 4.4. In order to utilize the radial invariance of f(x, y) = g(ρ2) we
can group data points according to their distance from the origin. Such groups
define the ring regions dividing the disk. The data from a given group could be
summarized by, e.g., their average and this would give an alternative definition
of {Z̃i} used in obtaining an estimate of A2l. This approach uses all the data
points and leads to the reduced variance of the corresponding estimate Â2l.

The performance of f̂T (x, y) is measured by MISE(f̂T ) defined in (4.2). By
virtue of (3.4) and Parseval’s formula we obtain the following decomposition of
MISE(f̂T )

MISE(f̂T ) = VAR(f̂T ) + BIAS2(f̂T ),

where

VAR(f̂T ) =
∫∫

D
E
∣∣∣f̂T (x, y) − Ef̂T (x, y)

∣∣∣2 dxdy
=

T∑
p=0

p∑
q=−p

τpE|Âpq − EÂpq|2 (4.32)

is the integrated variance, whereas

BIAS2(f̂T ) =
∫∫

D

∣∣∣Ef̂T (x, y) − f(x, y)
∣∣∣2 dxdy

=
T∑

p=0

p∑
q=−p

τp

∣∣∣EÂpq −Apq

∣∣∣2 +
∞∑

p=T+1

p∑
q=−p

τp|Apq|2

= DG(f̂T ) + TR(f̂T ) (4.33)

is the integrated squared bias.
The term TR(f̂T ) is a bias caused by the truncation at T . The term DG(f̂T )

measures the discretization and geometric errors in estimating the coefficient
Apq. We show in Section 4.5 that DG(f̂T ) can be further decomposed into the
discretization error D(f̂T ) that reflects a usual need of numerical approximation
of the integral and the geometric error G(f̂T ) being a distinctive feature of our
estimation problem. The geometric error measures the accuracy of the lattice
approximation of the circular domain. It turns out that this approximation is
described by a celebrated problem in the analytic number theory on the number
of lattice points inside a circle [87, 105]. The contribution of each term in (4.32)
and (4.33) to the overall error MISE(f̂T ) is examined in Section 4.5.
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Concerning the estimate ĝT (ρ2) in (4.30) and (4.31), let us first observe that

MISE(ĝT ) = 2π
∫ 1

0

∣∣ĝT (ρ2) − g(ρ2)
∣∣2 ρdρ.

This is decomposed as follows

MISE(ĝT ) =
T∑

l=0

τ2lE|Â2l − EÂ2l|2 +
T∑

l=0

τ2l|EÂ2l −A2l|2 +
∞∑

l=T+1

τ2l|A2l|2

= VAR(ĝT ) +D(ĝT ) + TR(ĝT ), (4.34)

where A2l is Apq in (4.13) with p = 2l.
It should be noted that in the case of radial functions the geometric error

does not appear.
The estimation problem studied in this book falls into the category of non-

parametric curve estimation since we do not assume any parametric knowledge of
a class of functions taken into account. We use the orthogonal expansion approach
utilizing a very specific class of rotationally invariant polynomials and possessing
some other aforementioned unique properties. In the statistical literature on this
subject [39, 91, 127, 210] one can find other non-parametric methods for function
recovering. For example, one could apply the popular kernel estimate

f̃b(x, y) =
∑∑
(xi,yj)∈D

Zij

∫ xi+
Δ
2

xi−Δ
2

∫ yj+
Δ
2

yj−Δ
2

Kb(x− u, y − v)dudv, (4.35)

where Kb(x, y) = b−2K(b−1x, b−1y), b > 0 is a bandwidth parameter and K(x, y)

is a bivariate kernel function such that
∫∫

D
K(x, y)dxdy = 1.

Using arguments developed in this chapter one can argue that the accuracy
of the kernel estimate may be comparable to our method. Nevertheless, the
accuracy of the kernel estimate depends not only on the choice of the bandwidth
b but also on the choice of the kernel function. Indeed, the order (quantified
by the number of vanishing moments) of the kernel function must be selected
according to the smoothness of the unknown function. It is also known that the
kernel estimate suffers from the boundary effect [39], i.e., at a boundary kernel
mass falls outside the support of the function to be estimated and is lost. This
effect will be further amplified by the presence of the inherent geometric error
caused by the circular nature of the domain of estimated functions. It is not
clear either whether the kernel estimate can have the property similar to (4.13)
allowing us to construct an estimate of reduced complexity for the important class
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of radial functions. Moreover, the kernel estimate is not invariant to rotations.
As we have already mentioned the Zernike basis has been a popular technique
in optical pattern recognition and medical imaging where one uses a few Zernike
coefficients {Âpq} to define a feature space in order to summarize complex data
efficiently. Clearly the kernel estimate cannot be used for such applications.

4.5. Accuracy Analysis

In this section, we examine the components of MISE(f̂T ) appearing in decompo-
sitions (4.32), (4.33), and (4.34). All the proofs can be found in the Appendix.
In Section 4.5, we deal with the stochastic component of the error quantified by
the term VAR(f̂T ). Then the truncation error will be evaluated followed by the
detailed analysis of the discretization and geometric errors. In the final subsec-
tion we summarize all the obtained results by giving the evaluation of the overall
error MISE(f̂T ). Throughout the most part of this chapter we use observation
model (4.1). Nevertheless, in Section 5.5 we extend our results to the model with
non-homogeneous variance.

Variance

Let us recall that the integrated variance term is given by the following formula

VAR(f̂T ) =
T∑

p=0

p∑
q=−p

τpE|Âpq − EÂpq|2, (4.36)

for p− |q| being even.
The bound for this term is given in the following lemma.

Lemma 4.1. Let the observation model (4.1) be in force and let the noise process
{εij} be uncorrelated with zero mean and variance σ2. Then for estimate (4.28)
and (4.29), we have

VAR(f̂T ) ≤ σ2Δ2(T + 1)(T + 2)/2.

The proof of this bound, see [180], reveals that

E|Âpq − EÂpq|2 ≤ σ2Δ2 π

p+ 1
.

Using the arguments as in Section 4.5, see also the discussion below (4.65), we
can show that
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E|Âpq − EÂpq|2 = σ2Δ2 π

p+ 1
+O(Δ2+α),

where 1 ≤ α < 3/2 describes the geometric error.
The counterpart of Lemma 4.1, see [180], for the class of radial functions takes

the following form.

Lemma 4.2. Let the observation model (4.1) be in force and let the noise process
{εij} be uncorrelated with zero mean and variance σ2. Then for estimate (4.30)
and (4.31), we have

VAR(ĝT ) ≤ 2
√

2πσ2Δ(T + 1).

Remark 4.5. In Remark 4.4 we have suggested that for radial functions we
should use a ring type of data grouping which utilizes all data points. It can be
shown that this leads to an improved order of VAR(ĝT ), i.e., instead of VAR(ĝT ) =
O(ΔT ) we have VAR(ĝT ) = O(Δ2T ).

Truncation Error

Owing to (4.32) the truncation for f̂T is given by

TR(f̂T ) =
∞∑

p=T+1

p∑
q=−p

τp|Apq|2, p− |q| = even (4.37)

whereas for ĝT by

TR(ĝT ) =
∞∑

l=T+1

τ2l|A2l|2. (4.38)

It is clear that TR(f̂T ) → 0, TR(ĝT ) → 0 as T → ∞, and the rate at which
TR(f̂T ) → 0, TR(ĝT ) → 0 will be determined by the degree of smoothness of the
functions being approximated by the Zernike functions expansion.

Let us consider the class BV(Ω) of functions of bounded variation on the
set Ω, i.e., functions which have finite variations in the amplitude as well as the
length of the contours along which they occur. Let us recall that we say that
f ∈ BV(Ω) if the total variation

TV(f) =
∫∫

Ω
| � f(x, y)|dxdy, (4.39)

is finite. Here the modulus of the gradient is defined as

| � f(x, y)| =
∣∣∣∣∂f(x, y)

∂x

∣∣∣∣+ ∣∣∣∣∂f(x, y)
∂y

∣∣∣∣ .



103

It is important to observe that the class BV(Ω) can admit discontinuous func-
tions. In this case the derivatives are meant in the general distribution sense.
For example, if f(x, y) = 1A(x, y) is the characteristic function of a set A hav-
ing piecewise smooth boundary ∂A, then TV(f) is equal to the length of ∂A.
It is worth noting that contrary to the one-dimensional case the bivariate func-
tion belonging to BV(Ω) needs not be bounded [129, 254]. Various definitions of
bounded variation functions of many variables can be found in [60, 93, 129, 254].
In particular in this book we use the concept of bounded variation for functions
of two variables due to Hardy [93]. It is also worth noting that the class BV(Ω)
has recently been extensively used in image analysis [154,205].

The following result gives the approximation error of the Zernike functions
expansion for functions which belong to the class BV(Ω). Let us recall the no-
tation f̃(ρ, θ) = f(ρ cos θ, ρ sin θ) for (ρ, θ) ∈ Ω, where Ω = [0, 1] × [0, 2π]. It is
clear that the requirement f ∈ BV(D) is equivalent to f̃ ∈ BV(Ω).

Lemma 4.3. Let f̃ ∈ BV(Ω) and let f be bounded. Then we have

TR(f̂T ) ≤ d

T + 1
,

where d depends on TV(f).

The proof of this important result is given in the Appendix.
The condition of bounded variation for the class of functions of the additive

form introduced in (4.22) can be easily verified. In fact function (4.22) is in
BV(Ω) if ϕs ∈ BV([0, 1]) and ψs ∈ BV([0, 2π]), s = 1, ..., L. The ridge functions
in (4.27) are in BV(Ω) if each gl(t) belongs to BV([−1, 1]).

Regarding the case of radial functions let us assume that g(ρ2) is in BV([0, 1]).
The following lemma, see [180], gives a bound for TR(ĝT ).

Lemma 4.4. Let g ∈ BV([0, 1]). Then we have

TR(ĝT ) ≤ 8(g + TV(g))
T + 1/2

,

where TV(g) is the total variation of g(t) on [0, 1] and g = maxt∈[0,1] |g(t)|.

Lemmas 4.3 and 4.4 hold for functions of bounded variation. This class allows
functions that are discontinuous, which is often the case in image processing
applications. Let us consider a class of Lipschitz continuous functions, i.e.,

|f(x, y) − f(x′, y′)| ≤ L{|x− x′|α + |y − y′|α}, 0 < α ≤ 1

for (x, y), (x′, y′) ∈ D and a positive constant L.
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To evaluate the truncation error for this case one can use the known re-
sults [224] concerning the best polynomial approximation of Lipschitz continuous
functions. This yields the following bound

TR(f̂T ) ≤ a1

(T + 1)2α−1
, (4.40)

where α > 1/2 and the constant a1 depends on L. Similarly if one assumes that

all partial derivatives
∂ i+jf(x, y)
∂xi∂yj

, i + j ≤ r exist and that
∂ rf(x, y)
∂xi∂yj

, i + j = r

are Lipschitz (with α = 1) then

TR(f̂T ) ≤ a2

(T + 1)2r+1
, (4.41)

where the constant a2 depends on the L2-norms of
∂ i+jf(x, y)
∂xi∂yj

, i+ j = r and the

Lipschitz constant L.
The bounds in (4.40) and (4.41) can be improved in some special cases. For

example, result (4.40) can be improved in the case of radial functions as it is
shown in the following lemma, see [180] for the proof.

Lemma 4.5. Let g(1) ∈ L2([0, 1]). Then we have

TR(ĝT ) ≤ β

(T + 1)2
,

where

β = π

∫ 1

0
t(1 − t)|g(1)(t)|2dt.

Hence we have the rate O(T−2) which should be compared with O(T−1) in
(4.40) for α = 1.

The rate in Lemma 4.5 can also be extended to the class of additive functions
defined in (4.25), i.e., the functions of the following form

f̃(ρ, θ) = ϕ(ρ2) + ψ(θ). (4.42)

Formula (4.26) gives the Zernike coefficient for the additive functions. The first
term in (4.26) is identical to the Zernike coefficient of radial functions. As for
the second term it can be proved [180] that it is exponentially small. Hence the
angular component in (4.42) plays a smaller role than the radial one in the overall
approximation error. This is formalized in the following lemma.
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Lemma 4.6. Let f(x, y) be of the additive form (4.42). Let ψ ∈ L2([0, 2π]) and
let ϕ(1) ∈ L2([0, 1]). Then we have

TR(f̂T ) ≤ c1
(T + 1)2

+ c2 exp(−c3T ),

for some positive constants c1, c2, and c3.

It should be noted that the constant c1 can be selected as 4β, where β is given
in Lemma 4.5. To get further insight into the order of the approximation error
let us consider a specific class of functions defined on D.

Example 4.1. Let f(x, y) be radial, denote this by f(x, y) = g(x2 + y2). First,
consider the function

g1(t) = (2t)μ, 0 ≤ t ≤ 1, μ > 0. (4.43)

It is clear that g1 ∈ BV([0, 1]) and also satisfies the condition of Lemma 4.5 if
μ > 1/2.

The discussion in Section 4.3 shows, see (4.13), that for radial functions we
need to evaluate the following integral∫ 1

0
g1(t)Pk(2t− 1)tdt, (4.44)

where Pk(x) is the k-th order Legendre polynomial.
Using the result in [10] we can show that (4.44) is of order O

(
(k + 1)−2(μ+1)

)
.

This being applied in (4.38) yields

TR(ĝT ) = O((T + 1)−2(2μ+1)). (4.45)

In the same way we can argue that for the function g2(t) = (2(1− t))μ, 0 ≤ t ≤ 1,
μ > 0, the rate in (4.45) holds. It should be noted that both g1(t) and g2(t) are
monotonic on [0, 1].

Let us now consider the function g3(t) = |2(t−1/2)|μ, 0 ≤ t ≤ 1, μ > 0 which
is not monotonic but convex on [0, 1]. Again using [10] we can obtain that the
integral in (4.44) is of order O

(
(k + 1)−(μ+3/2)

)
and consequently we have

TR(ĝT ) = O((T + 1)−(2μ+1)).

This is a twice slower rate than in (4.45). Nevertheless, the above rates are faster
than predicted by our bounds. Hence we can conjecture that for a large class of
image functions, e.g., being convex, monotonic functions, we can improve our
rates.
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The following characteristic represents the class of discontinuous piecewise
constant functions

g4(t) = a1{t≤γ}(t) + b1{γ<t}(t), (4.46)

where 0 < γ < 1 and, without loss of generality, a > b. Note that g4 ∈ BV([0, 1])
with TV(g4) = a− b. A tedious but otherwise straightforward algebra making use
of some properties of the Legendre polynomials [206] yields the following bound∣∣∣∣∫ 1

0
g4(t)Pk(2t− 1)tdt

∣∣∣∣ ≤ TV(g4)√
π(2k + 1)

√
k + 2

.

This leads to

TR(ĝT ) ≤ 8(a− b)2

T + 1
.

This is consistent with the general result given in Lemma 4.4.
Let us finally consider the case of an unbounded function and neither being

in BV([0, 1]). Hence let

g5(t) =
1

|2(t− 1/2)|μ , 0 ≤ t ≤ 1.

It is clear that g5 ∈ L2([0, 1]) if only 0 < μ < 1/2. Some algebra shows that∣∣∣∣∫ 1

0
g5(t)Pk(2t− 1)tdt

∣∣∣∣ = O((k + 1)3/2−μ).

Hence we obtain

TR(ĝT ) = O((T + 1)−(1−2μ)), 0 < μ < 1/2.

This is clearly a very slow rate of convergence.

Geometric and Discretization Errors

In order to explain the nature of the geometric error let us consider the indicator
function of D, i.e., f(x, y) = 1D(x, y). Then we obtain

EÂpq −Apq =
∑∑
(xi,yj)∈D

wpq(xi, yj) −
∫∫

D
V ∗

pq(x, y)dxdy.

Noting that
∫∫

D
V ∗

pq(x, y)dxdy = π if only p = q = 0 and
∫∫

D
V ∗

pq(x, y)dxdy = 0

otherwise, it suffices to consider the case p = q = 0, i.e.,

EÂ00 −A00 =
∑∑
(xi,yj)∈D

w00(xi, yj) − π. (4.47)



107

The above term is not equal to zero due to the fact that if the center of a
lattice square falls inside the border of the unit disk D, this square is used in the
computation of the estimate Âpq otherwise, the square is discarded. Therefore,
the area used for computing Âpq is not equal to the area of the unit disk. Fig. 3.4
shows the union of the squares whose centers fall inside the unit circle. Note that
some squares are not entirely inside the circle; on the other hand, some parts
of the circle are not covered by the squares. This boundary region is shown in
Fig. 4.3 where only the geometric error within the unit disk is depicted.

Figure 4.3: The boundary region defining the geometric error

Recalling that V ∗
00(x, y) = 1 we can rewrite (4.47) as follows

EÂ00 −A00 = Δ2K(Δ) − π, (4.48)

where
K(Δ) =

∑∑
(xi,yj)∈D

1

denotes the number of the points {(xi, yj) : 1 ≤ i, j ≤ n} inside the unit circle.
As we shall see formula (4.48) fully describes the geometric error. Hence let

us define, similarly as in Chapter 3, the following number

G(Δ) = Δ2K(Δ) − π. (4.49)
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Since our theory models the performance of function recovery on the grid which
becomes increasingly fine therefore it is crucial to know the size of G(Δ), i.e.,
how fast G(Δ) tends to zero as Δ → 0.

As we have already noticed the quantity G(Δ) has been extensively examined
in the analytic number theory with the relation to the so-called lattice points of
a circle problem due originally to Gauss [87,104–106,110,235].

We have observed that we have G(Δ) = O(Δα), 1 ≤ α < 3/2 where α = 3/2
is impossible and the best result so far due to Huxley is the following bound [106]

G(Δ) = O(Δ285/208). (4.50)

It has been conjectured that the value of α can be arbitrary close to α = 3/2 This
still remains an open problem in the analytic number theory, see [87,105,106,235].

Hence the conjectured rate is of order

G(Δ) = O(Δ3/2−ε). (4.51)

A numerical study has been conducted to evaluate G(Δ) for a large range of Δ.
In Fig. 4.4 we depict |G(Δ)| as a function of n = 2/Δ for 10 ≤ n ≤ 128, i.e.,
0.015625 ≤ Δ ≤ 0.2.

0 20 40 60 80 100 120 140
0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 4.4: The geometric error |G(Δ)| versus n, 10 ≤ n ≤ 128, n = 2/Δ

The oscillatory behavior of G(Δ) can be observed with the error taking both
positive and negative values. However, the positive values (around 78%) are more
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frequent than the negative ones. Since the number G(Δ) influences the accuracy
of the estimate Âpq, therefore Âpq is more likely to be positively biased. We refer
to [55] for similar numerical results concerning the evaluation of G(Δ).

Let us now consider the term DG(f̂T ) in (4.6), i.e.,

DG(f̂T ) =
T∑

p=0

p∑
q=−p

τp|EÂpq −Apq|2.

To evaluate this term it suffices to consider the difference EÂpq −Apq. First it is
an important observation that EÂpq −Apq can be decomposed into two separate
components describing the discretization and geometric errors, i.e.,

EÂpq −Apq = Dpq(f̂T ) +Gpq(f̂T ), (4.52)

where

Dpq(f̂T ) =
∑∑
(xi,yj)∈D

∫∫
pij∩D

(f(xi, yj) − f(x, y))V ∗
pq(x, y)dxdy (4.53)

and

Gpq(f̂T ) = −
∫∫

Θ(Δ)
f(x, y)V ∗

pq(x, y)dxdy. (4.54)

Here pij denotes the (i, j) lattice square centered at (xi, yj) and Θ(Δ) is the
region being the intersection of D with the union of those grid squares whose
centers (xi, yj) fall outside the circle, see Fig. 4.3.

The magnitude of the discretization error is given in the following lemma,
see [180] for the proof.

Lemma 4.7. Let f ∈ BV(D) and let f be bounded. Then for any admissible pair
(p, q) we have

|Dpq(f̂T )| ≤
{

fπ

p+ 1
TV(f)

}1/2

Δ,

where TV(f) is the total variation of f and f = maxx,y |f(x, y)|.

The magnitude of the discretization error can be further reduced assuming a
bit stronger conditions on f(x, y). Hence if f(x, y) is Lipschitz of order 1 then by
a simple modification of the proof of Lemma 4.7, we obtain∣∣∣Dpq(f̂T )

∣∣∣ ≤ c
Δ3/2

(p+ 1)1/2
(4.55)
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for some constant c.
The discretization error for the estimate ĝT (ρ2) in (4.30) is described in the

following lemma. See [180] for the proof.

Lemma 4.8.

(a) Let g ∈ BV([0, 1]). Then

|EÂ2k −A2k| ≤ 2π{TV(g)g}1/2

(
Δ

2k + 1

)1/2

.

(b) Let g(1) ∈ L2([0, 1]). Then

|EÂ2k −A2k| ≤
{

2
∫ 1

0

∣∣∣g(1)(t)
∣∣∣2 dt}1/2 Δ

(2k + 1)1/2
.

Let us now turn to the geometric error expressed by formula (4.54). It is
important to observe that the area of the region Θ(Δ) in (4.54) is bounded by
the error of the lattice approximation of D defined in (4.49), i.e., we have

Area (Θ(Δ)) ≤ |G(Δ)|. (4.56)

Using the arguments as in Section 3.4 we obtain the following result.

Lemma 4.9. Let f ∈ L2(D) be a bounded function on D. Then for any admis-
sible pair (p, q) we have

|Gpq(f̂T )| ≤ f |G(Δ)|1/2 min

({
π

p+ 1

} 1
2

, |G(Δ)|1/2

)
.

Hence the geometric error depends on the lattice approximation factor G(Δ)
introduced in (4.49). Using the best known bound so far on the decay of G(Δ)
due to Huxley [106] we obtain

|Gpq(f̂T )| = O
(

Δ285/416 min(p−1/2,Δ285/416)
)
. (4.57)

Lemma 4.7 and Lemma 4.9 yield the following result concerning the discretization
and geometric term DG(f̂T ).

Lemma 4.10. Let f ∈ BV(D) and let f be bounded. Then we have

DG(f̂T ) ≤ (T + 1)(T + 2)f TV(f)Δ2

+ f
2|G(Δ)|min

(
(T + 1)(T + 2),

1
π
T (T + 1)(T + 2)|G(Δ)|

)
.
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Thus with the best known result [106] on the lattice approximation of circle
we obtain

DG(f̂T ) = O(T 2Δ2) +O
(

min(T 2Δ285/208, T 3Δ285/104)
)
. (4.58)

The following lemma summarizes the analogous results for radial functions.
This is implied by Lemma 4.8 and formula (4.34).

Lemma 4.11.

(a) Let the conditions of Lemma 4.8 (a) hold. Then we have

D(ĝT ) ≤ c1Δ(T + 1).

(b) Let the conditions of Lemma 4.8 (b) hold. Then we have

D(ĝT ) ≤ c2Δ2(T + 1).

Using the bounds obtained in Lemma 4.8 the constants c1, c2 are given by
c1 = 4πV (g)g, and c2 = 2 ‖g(1) ‖2 /π.

MISE

Taking into consideration the aforementioned results one can now easily evaluate
the overall estimation error MISE(f̂T ). In fact combining Lemmas 4.1, 4.3, and
4.10 we obtain:

Theorem 4.1. Let f ∈ L2(D) ∩ BV(D) and f be bounded. Then we have

MISE(f̂T ) ≤ σ2Δ2(T + 1)(T + 2)/2 + (T + 1)(T + 2)f TV(f)Δ2 +
d

T + 1

+ f
2|G(Δ)|min

(
(T + 1)(T + 2), π−1T (T + 1)(T + 2)|G(Δ)|

)
, (4.59)

for some positive constant d.

Remark 4.6. Formula (4.59) shows an apparent trade-off between the variance,
the discretization, geometric errors, and the truncation error. Thus using the best
known bound on the decay of G(Δ) due to Huxley [106] we obtain

MISE(f̂T ) = O(T 2Δ2) +O(min(T 2Δ285/208, T 3Δ285/104)) +
d

T + 1
. (4.60)

It is important to note that although the overall error is dominated asymptotically
by the variance term and the truncation error, we cannot ignore the geometric
error in practical application of the Zernike moments.
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Formula (4.60) leads to the following asymptotic rate of convergence for
MISE(f̂T ).

Corollary 4.1. Under the conditions of Theorem 4.1 we have

MISE(f̂T ∗) = O(Δ2/3), (4.61)

with the truncation parameter selected as T ∗ = aΔ−2/3.

We can conjecture that (4.61) represents the best possible rate of any linear
nonparametric recovering technique for the problem of estimating an image of
the class BV(D).

Note also that for the selected T ∗ = aΔ−2/3 the contribution from the geo-
metric error is of order O(T ∗3Δ285/104) = O(Δ77/104). This should be compared
with the rate of the decay of the variance term and the truncation error being
O(Δ2/3).

The MISE(f̂T ) for images satisfying the condition leading to the approxima-
tion error in (4.41) is of the following order

MISE(f̂T ) = O(Δ
2(2r+1)
2r+3 ) (4.62)

with the truncation parameter selected as

T ∗ = aΔ− 2
2r+3 .

Hence we can conjecture that for smooth functions, the optimal rate of conver-
gence is of the order

MISE(f̂T ) = O
(
Δ2−ε

)
.

The rate given in (4.62) can be improved if some structural properties of f(x, y)
are exploited. In fact Lemma 4.6 shows that TR(f̂T ) for the class of additive
functions is of order O(T−2). By this, Lemma 4.2 and the result in (4.58) we
obtain

MISE(f̂T ) = O (Δ)

with T selected as T ∗ = aΔ−1/2.
Let us now turn to the case of radial functions, i.e., let us consider the accuracy

of the estimate ĝT . Recalling Lemmas 4.2, 4.4, and 4.8 we obtain:

Theorem 4.2.

(a) Let g ∈ BV([0, 1]). Then we have

MISE(ĝT ) ≤ 2
√

2πσ2(T +1)Δ+4πV (g)g(T +1)Δ+8(V (g)+g)(T +1/2)−1.
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(b) If in turn g(1) ∈ L2([0, 1]) then

MISE(ĝT ) ≤ 2
√

2πσ2(T + 1)Δ + 2π−1 ‖g(1) ‖2 (T + 1)Δ2

+ 4−1π ‖g(1) ‖2 (T + 1)−2, (4.63)

where ‖g(1) ‖ is the L2([0, 1]) norm of g(1).

The last term in (4.63) is derived from the bound in Lemma 4.5 by observing
that β ≤ 4−1π ‖g(1) ‖2. Direct minimization of the bounds in Theorem 4.2 yields
the following result concerning the rate of convergence.

Corollary 4.2. Under the condition of Theorem 4.2 (a) we have

MISE(ĝT ) = O(Δ1/2)

with the truncation parameter selected as T ∗ = aΔ−1/2.
In turn under the condition of Theorem 4.2 (b) we obtain

MISE(ĝT ) = O(Δ2/3)

with the truncation parameter selected as T ∗ = aΔ−1/3.

The above rates can be improved if one applies the ring data grouping strategy
suggested in Remark 4.4. In fact using Remark 4.5 we obtain the following result.

Corollary 4.3. Under the condition of Theorem 4.2 (a) we have

MISE(ĝT ) = O (Δ)

with the truncation parameter selected as T ∗ = aΔ−1.
In turn under the condition of Theorem 4.2 (b) we obtain

MISE(ĝT ) = O(Δ4/3)

with the truncation parameter selected as T ∗ = aΔ−2/3.

Example 4.2. To illustrate the above results we plot in Fig 4.5 the bound in
(4.59). We use σ2 = 0.1 with the signal to noise ratio equal 10, hence f = 1,
V (f) = 1, and also d = 1. We take Δ = 2/n with n = 990. In this case our
numerical studies (partially illustrated in Fig. 4.5) show that G(Δ) is of order
0.000323477. It is seen that the optimal value of the truncation parameter is
given by T ∗ = 10. In the same plot we depict bound (4.59) with the bias term
d/(T + 1) replaced by d/(T + 1)3. This corresponds to functions with all partial
derivatives of order one satisfying the Lipschitz condition, see (4.41). It can be
observed that now T ∗ = 4.
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Figure 4.5: MISE(f̂T ) versus T , 1 ≤ T ≤ 30 for two different classes of functions

Remark 4.7. In practice it is of great importance to know how the truncation
parameter T should be chosen for a given, finite sample size. For some general
results on data driven selection of smoothing and regularization parameters in
nonparametric curve estimation we refer to [39] and the references cited therein.
In our context one could use the well-studied cross-validation method seeking TCV

which minimizes

CV (T ) = Δ2
n∑

i=1

n∑
j=1

{
Zij − f̂T,ij(xi, yj)

}2
,

where f̂T,ij(x, y) is an estimate of the same type as f̂T (x, y) except that it is
computed without data value ((xi, yj), Zij). It should be noted that in the definition
of {wpq(xr, ys)} in (4.28) we have to integrate over two pixels in the case of pixels
adjacent to the pixel (xi, yj). The CV (T ) criterion corresponds to squared error

SE(T ) = Δ2
n∑

i=1

n∑
j=1

{
f̂T (xi, yj) − f(xi, yj)

}2
,

which measures the discrepancy between f̂T (x, y) and f(x, y) on the grid points.
Let TSE be the truncation value minimizing SE(T ). It is an interesting problem
to assess the accuracy of TCV as an estimate of TSE. Using the results of this
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chapter and techniques developed in [92] we can show that

TCV

TSE
= 1 +O(Δ1/3),

in probability.

4.6. Generalizations

Thus far we have considered rather classical observation model defined in (4.1).
In a number of applications of image analysis, one is confronted with the so-called
signal dependent noise model, see [112] and references cited therein. Hence (4.1)
is replaced by

Zij = f(xi, yj) +
√
s(xi, yj)εij , (xi, yj) ∈ D, 1 ≤ i, j ≤ n, (4.64)

where s(x, y) is a non-negative function representing the inhomogeneity of the
noise process. Examples include the film grain noise, where s(x, y) = f2/3(x, y)
and the multiplicative noise model where s(x, y) = f2(x, y). It is clear that this
type of noise model is going merely to influence the variance of the estimate
f̂T (x, y). Hence the term VAR(f̂T ) in decomposition (4.33) has to be examined.
Proceeding as in the proof of Lemma 4.1 we can obtain

var(Âpq) = σ2
∑∑
(xi,yj)∈D

∣∣∣∣∣
∫∫

pij∩D
V ∗

pq(x, y)dxdy

∣∣∣∣∣
2

s(xi, yj). (4.65)

Using arguments as in (4.52), i.e., observing that∫∫
D
|Vpq(x, y)|2 s(x, y)dxdy =

∑∑
(xi,yj)∈D

∫∫
pij∩D

|Vpq(x, y)|2 s(x, y)dxdy

+
∫∫

Θ(Δ)
|Vpq(x, y)|2 s(x, y)dxdy

we can approximate the sum in (4.65) as follows

Δ2

(∫∫
D
|Vpq(x, y)|2 s(x, y)dxdy + ξpq(Δ)

)
, (4.66)

where ξpq(Δ) is the error term of the approximation. Clearly ξpq(Δ) is of order
G(Δ). The dependence of VAR(f̂T ) on G(Δ), however, is weaker than in the bias
term as G(Δ) contributes in (4.66) to the second order effect.
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The results of this chapter can also be extended to other directions. For
instance one can consider the 3-D counterpart of the Zernike functions which finds
applications in 3-D computer vision, computer graphics, and crystallography. In
fact the following

V m
pq (x, y, z) = Rpq(ρ)Yqm(θ, ϑ)

is a complete and orthogonal set of functions in L2(B), where B is the 3-D unit
ball. Here ρ is the radial component and θ, ϑ are angular variables. In the above
formula Yqm(θ, ϑ) is the spherical harmonic defined as

Yqm(θ, ϑ) = CqmP
m
q (cos θ)ejmϑ,

where Cqm is the normalizing constant, and Pm
q (x) denotes an associated Leg-

endre polynomial [217]. Spherical harmonics form a Fourier basis on the sphere
analogously as {ejmθ} does on a circle.

The problem of lattice points which is critical for our developments has also
been studied for B. Hence let K(Δ) have the meaning as in (4.49), i.e., it is the
number of lattice cubes falling into B. Then it is known that [12,87,105,235]

Δ3K(Δ) = 4π/3 +O(Δ2).

It is a rather surprising result that the geometric error in the 3-D case is of lower
order than the one for the 2-D circle.

4.7. Conclusions

In this chapter we have presented a basic theory of function recovery defined on
the circular domain. The estimate based on a class of invariant orthogonal func-
tions has been proposed and its statistical properties have been evaluated. Vari-
ous bounds for the mean integrated squared error have been demonstrated. These
bounds have been obtained by decomposing the error into four non-interfering
terms that reflect different errors such as the amount of noise in the data, the
discretization error, the geometric error, and the approximation term. In fact the
estimate Âpq of the Zernike moment Apq is decomposed as follows

Âpq = Apq + (Âpq − EÂpq) + (EÂpq −Apq), (4.67)

where the first term in the brackets represents the stochastic component of Âpq,
whereas the second term in the brackets is the bias term of Âpq. We show that
EÂpq −Apq can be decomposed further into the geometric and numerical errors.
The stochastic term is O(Δ) (in probability), whereas the numerical error is
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O(Δβ), where β ≥ 1 depends on the smoothness of f(x, y). The geometric error
on the other hand can never exceed Δ3/2. The best known result on the circle
lattice problem [87, 104, 105] yields the geometric error of order O

(
Δ285/208

)
.

Although our results are based on upper bounds, we believe that the orders of
convergence rates are correct and that the geometric error is an inherent factor
of any function reconstruction problem defined on non-rectangular domain.

In fact, we can define orthogonal polynomial basis on general convex domains
[126]. In particular, the elliptical and triangular (or convex polygons in general)
domains (see Fig. 4.6) are important in computer vision, graphics, and medical
imaging. Our theory can be extended to these cases by noting that there exist
corresponding lattice point approximations. In the case of an ellipse E the lattice
points approximation reads as

Δ2
∑

(xi,yj)∈E
1 = |E| +O(Δ15/11),

whereas for a triangle T we have

Δ2
∑

(xi,yj)∈T
1 = |T | +O(Δ),

where |E| and |T | stand for the area of E and T , respectively. Lattice approx-
imation results concerning other convex domains in R2 can be found in [104]
and [105].

Then, using the above results and techniques developed in this chapter we can
show that the reconstruction error MISE(f̂ET ) for the ellipse is of order O(Δ2/3),
i.e., it is identical to that for the circular domain. This is due to the fact that
the geometric error is of the second order importance compared to the variance
term. This is in striking contrast with the triangular domain where the error
MISE(f̂TT ) is of order O(Δ1/2). Indeed, the geometric error in the decomposition
of MISE(f̂TT ) is O(T 3Δ2) which dominates the variance term being O(T 2Δ2).

Generally, we can conjecture that for convex domains with smooth boundaries
(like ellipse) the geometric error is not the dominant factor, whereas for the convex
domains with non-smooth boundaries (like polygons) the reconstruction error is
solely dominated by the geometric error.

We have also observed that the geometric error can be eliminated for the case
of radial functions for which the Zernike coefficients take a particularly simple
form (formula (4.13)) allowing one to define the simplified estimate ĝT , see (4.30).
In practice, however, it is difficult to verify whether the observed data in (4.1)
represent a radial function. It is interesting to note, however, that property
(4.13) allows us to form a simple statistical test to verify the radiality of the
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Figure 4.6: Smooth (ellipse) and non-smooth (triangle) convex domains

underlying image. In Chapter 6 we develop formal testing procedures for verifying
the radiality of an image function observed in the presence of noise. On the other
hand, in Chapter 5 we develop an efficient algorithm for computing the Zernike
moments which entirely eliminates the geometric error.

Our estimate based on the radial polynomials, being global functions in na-
ture, suffers degradation in accuracy due to the geometric error. To alleviate
the error one could use local multiresolution/wavelet expansions [111, 154] with
possible different spatial scales. The issue of invariance, however, remains still
open as standard wavelet expansions do not have this desirable property. This
topic is left for future studies.

In summary, the following results have been obtained in this chapter:

• Basic approximation properties of the Zernike orthogonal radial polynomials
have been established.

• The behavior of Zernike moments for images with various symmetry and struc-
tural conditions has been examined. This includes radial images and images
of the additive form.

• An image reconstruction formula from the Zernike orthogonal radial polyno-
mials has been introduced.

• The detailed error analysis of the reconstruction algorithm has been carried
out. This includes the noise diminishing property and the imprecision of the
Zernike moment calculation due to the geometric and discretization errors.

• The fundamental bound for the truncation reconstruction error has been es-
tablished.

• The rates for the mean integrated squared error have been derived.

• The problem of data-driven selection of the optimal number of moments has
been discussed.
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4.8. Appendix

For further considerations we shall need the following two auxiliary results.

Lemma 4.12. Let h(x, y) satisfy the following conditions:

h(x, y) ≥ 0,
h(x, y) − h(x, η) ≥ 0, for all y ≥ η,

h(x, y) − h(ξ, y) ≥ 0, for all x ≥ ξ,

h(x, y) − h(x, η) − h(ξ, y) + h(ξ, η) ≥ 0, for all x ≥ ξ and y ≥ η. (4.68)

(a) Any function f(x, y) whose variation in [a,A] × [b, B] is finite may be ex-
pressed in the form

f(x, y) = f1(x, y) − f2(x, y),

where f1 and f2 satisfy conditions (4.68).

(b) Let g(x, y) be a finite and integrable function on [a,A]×[b, B], and let f(x, y)
satisfy conditions (4.68). Then∫ A

a

∫ B

b
f(x, y)g(x, y)dxdy = f(A−, B−)

∫ A

ξ

∫ B

η
g(x, y)dxdy,

where a ≤ ξ ≤ A, b ≤ η ≤ B.

These results were proved originally in [93] and are not easily accessible in
standard books on multivariate calculus. Note that the result in (a) represents
a counterpart of the classical decomposition of a univariate function of bounded
variation as a difference of two non-decreasing and positive functions. On the
other hand, the part (b) is a generalization of the second mean-value theorem to
the case of two dimensional functions.

Proof of Lemma 4.3. Let TV(f) denote the total variation of f(x, y) and let
f = maxx,y |f(x, y)|. By virtue of Lemma 4.12 (a) and (4.10) we can write

Apq =
∫ 2π

0

∫ 1

0
f̃1(ρ, θ)Rpq(ρ)e−jqθρdρdθ −

∫ 2π

0

∫ 1

0
f̃2(ρ, θ)Rpq(ρ)e−jqθρdρdθ,

(4.69)
where f̃1(ρ, θ) and f̃2(ρ, θ) are functions defined over the rectangle [0, 2π] × [0, 1]
satisfying conditions (4.68). A quick inspection of the decomposition given in [93]
reveals that 0 ≤ f̃1(ρ, θ) ≤ 2f + 3 TV(f), 0 ≤ f̃2(ρ, θ) ≤ 2f + 3 TV(f). Using the
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bound for Rpq(ρ) established in (4.7) one can observe that g(ρ, θ) = Rpq(ρ)e−jqθρ
is a finite and integrable function on [0, 2π] × [0, 1]. Thus by Lemma 4.12 (b) we
can rewrite (4.69) as follows

Apq = c

{∫ 2π

ξ1

∫ 1

η1

Rpq(ρ)e−jqθρdρdθ −
∫ 2π

ξ2

∫ 1

η2

Rpq(ρ)e−jqθρdρdθ

}
, (4.70)

where c = 2f + 3 TV(f) and 0 ≤ ξ1, ξ2 ≤ 2π, 0 ≤ η1, η2 ≤ 1. Assuming, without
loss of generality, that ξ1 ≤ ξ2 and η1 ≤ η2 we can conclude that (4.70) is equal
to

c

{∫ ξ2

ξ1

∫ 1

η1

Rpq(ρ)e−jqθρdρdθ +
∫ 2π

ξ2

∫ η2

η1

Rpq(ρ)e−jqθρdρdθ

}
. (4.71)

Noting that 1[ξ1,ξ2](θ) and 1[ξ1,2π](θ) are functions of bounded variation on
[0, 2π] and using the result in [9] we have∣∣∣∣∫ ξ2

ξ1

e−jqθdθ

∣∣∣∣ = O

(
1

q + 1

)
and

∣∣∣∣∫ 2π

ξ1

e−jqθdθ

∣∣∣∣ = O

(
1

q + 1

)
. (4.72)

By this and (4.71) it suffices to evaluate the integral∫ η

0
Rpq(ρ)ρdρ, (4.73)

for 0 ≤ η ≤ 1.
Using (4.3) we find that (4.73) is equal to

1
4

∫ 2η2−1

−1

(
t+ 1

2

)|q|/2

P (0,|q|)
s (t)dt,

where s = (p− |q|)/2. This in turn is equal to

0.5η|q|+2

∫ 1

0
y|q|/2P (0,|q|)

s (2η2y − 1)dy.

Using the identity in [14, p. 848] and some algebra we can find that the last
integral is of the order

O

(
1

(p+ 1)
√
p− |q| + 1

)
.
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This combined with (4.72) yields

|Apq| = O

(
1

(q + 1)(p+ 1)
√
p− |q| + 1

)
.

Consequently

TR(f̂T ) =
∞∑

p=T+1

p∑
q=−p

p+ 1
π

|Apq|2

≤ c1

∞∑
p=T+1

p∑
q=0

1
(p+ 1)(p− q + 1)(q + 1)2

. (4.74)

To evaluate the above double sum let us split the inner sum in (4.74) as follows

p∑
q=0

1
(p− q + 1)(q + 1)2

=
p/2∑
q=0

1
(p− q + 1)(q + 1)2

(4.75)

+
p∑

q=p/2+1

1
(p− q + 1)(q + 1)2

. (4.76)

It is clear that the first term on the right-hand side of (4.76) is bounded by

1
(p/2 + 1)

∞∑
q=0

1
(q + 1)2

=
π2

3
1

p+ 2
.

The second term in (4.76) is bounded by

∞∑
q=p/2+1

1
(q + 1)2

≤ 2
p+ 2

.

Consequently the sum on the right-hand side of (4.74) does not exceed(
π2

3
+ 2
) ∞∑

p=T+1

1
(p+ 1)(p+ 2)

≤
(
π2

3
+ 2
)

1
T + 1

.

This concludes the proof of Lemma 4.3. �



Chapter 5

Accurate Computation of
Orthogonal Radial Moments

An effective numerical algorithm for high precision computation of the radial
Zernike moments is presented. Thus far we have shown that there inevitably
exist two (provided that noisy-free image is observed) kinds of errors limiting the
precision of computation of radial moments, i.e., geometric error and numerical
integration error. While the latter error is common to all moment based image
analysis methods utilizing a certain type of discretization algorithms of an analog
image, the former is unique to non-rectangular image domains. It is proved in this
chapter that both geometric error and numerical integration error can be greatly
reduced by adopting polar coordinates. This reduction is obtained at the expense
of introducing the Cartesian-polar interpolation procedure which, however, has
a negligible effect on the overall accuracy of the proposed method. We describe
in detail our approach including the derivation of formulas for computation of
Zernike moments under the polar coordinate system, the polar pixel arrange-
ment scheme and the image conversion via interpolation. The effect of image
interpolation on the accuracy of Zernike moments is also analyzed. Both theo-
retical and numerical comparisons are made between the proposed method and
commonly used techniques. The results show the polar approach to be greatly
advantageous.

5.1. Introduction

As we have noted in the previous chapters the radial Zernike type orthogonal
moments (ZMs) possess distinguished characteristics such as the magnitude in-
variance to image rotations and reflections making them an excellent choice for a
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number of applications in pattern recognition, image analysis, digital watermark-
ing, medical imaging, and ophthalmology. In all these applications, inaccurate
computation methods for ZMs derivation have been employed. Some fundamen-
tal aspects of the Zernike moments have been investigated in Chapters 3 and
4 concerning their accuracy and the reconstruction power. There, it has been
demonstrated that for noisy free images we have two types of inherent errors,
namely geometric error and numerical integration error. It is clear that these
errors limit some attractive properties of ZMs. For instance, the property of
magnitude invariance to image rotation depends heavily on the accuracy of ZMs.
With the existing methods of computing ZMs, some of the moment magnitudes
are not truly rotationally invariant.

In this chapter we introduce a highly accurate method for the Zernike moment
computing based on the polar coordinates. A detailed numerical algorithm that is
both computationally efficient and accurate is developed. It is shown that if ZMs
are calculated in polar coordinates rather than in conventional Cartesian coordi-
nates, the loss of accuracy due to geometric error and numerical integration error
can be greatly reduced. We present a detailed description of the new approach
including the derivation of formulas for ZMs computation in the polar coordi-
nates system, the polar pixel arrangement scheme and the image conversion via
interpolation. In our approach the error introduced due to the Cartesian-polar
image interpolation has a minimal effect on the overall accuracy of the proposed
method. As a result, the invariance properties of ZMs are greatly preserved. Fur-
thermore, we can use, without any loss in the accuracy, ZMs of very high orders
which may have important consequences in patter recognition problems.

This chapter is organized as follows. In Section 5.2, we discuss the accuracy
issue in terms of geometric and numerical integration errors in the conventional
method of ZMs computation. In Section 5.3, the main idea of the polar approach
is formulated. This includes the principles of the algorithm, a novel and practical
disk partitioning scheme to facilitate our method, and a proper image resampling
technique. Theoretical and empirical evaluation of our algorithm is given in Sec-
tion 5.4 and Section 5.5, respectively. The summary and concluding remarks are
given in Section 5.6.

It is also worth noting that in the literature dealing with pattern recognition
strong emphasis has been given to the problem of finding fast algorithms for cal-
culation of moment descriptors [114,159,160]. We believe that the accuracy issue
should be addressed before introducing any fast algorithm.
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5.2. Traditional Methods of Zernike Moment
Computation

Let us recall that for a continuous image function f(x, y), the Zernike moment
of order n with repetition m is defined as

Anm =
∫∫

D
f(x, y)V ∗

nm(x, y)dxdy, (5.1)

where the double integral is performed over the unit disk D = {(x, y) : x2 + y2 ≤
1}, and Vnm(x, y) is a Zernike function defined as

Vnm(x, y) = Rnm(ρ)ejmθ, (5.2)

where ρ =
√
x2 + y2, θ = tan−1(y/x). Here n is a non-negative integer and m

is an integer such that n − |m| is even and non-negative. The radial Zernike
polynomial Rnm(ρ) is defined by the following formula

Rnm(ρ) =
(n−|m|)/2∑

s=0

(−1)s(n− s)!ρn−2s

s!
(
n+ |m|

2
− s

)
!
(
n− |m|

2
− s

)
!
. (5.3)

For digital images, (5.1) cannot be applied directly. Now assume that an
N × N image matrix F (i, j), i = 1, ..., N, j = 1, ..., N , is given. In order to
compute its Zernike moments, one has to map F (i, j) onto another function
f(xi, yj) defined on [−1, 1]2, such that f(xi, yj) = F (i, j), i = 1, ..., N, j = 1, ..., N ,
where xi = (2i−N − 1)/N and yj = (2j−N − 1)/N . Without loss of generality,
it is assumed that f(xi, yj) is a function with all its pixels inside the unit circle.
The following formula for approximating Anm has been proposed in Chapter 3

Ãnm =
∑

i

∑
j

wnm(xi, yj)f(xi, yj), (5.4)

where the values of i and j are taken such that (xi, yj) ∈ D, as shown in Fig. 5.1,
and

wnm(xi, yj) =
∫ xi+

Δ
2

xi−Δ
2

∫ yj+
Δ
2

yj−Δ
2

V ∗
nm(x, y)dxdy, (5.5)

where Δ = 2/N is the pixel width/height. For the computation of the factor
wnm(xi, yj), some methods of numerical integration can be applied. The most
commonly used formula, which is apparently the simplest and least accurate, is
the following

wnm(xi, yj) ≈ Δ2V ∗
nm(xi, yj). (5.6)
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Some more complex numerical techniques, based on the multidimensional cuba-
ture algorithms, were discussed in Chapter 3 in order to improve the accuracy of
computing wnm(xi, yj).

Figure 5.1: An illustration of the Cartesian pixel grid for computing Zernike moments

Nevertheless, as pointed out in Chapter 3, the accuracy of Zernike moments
computed by formula (5.4) suffers from two sources of errors, namely geometric
error and numerical integration error. The former is due to the fact that the
total area covered by all the square pixels involved in the computation of Zernike
moments via (5.4) is not exactly the unit disk, as illustrated by the ragged border
in Fig. 5.1. The latter results from the numerical integration by an approximation
formula like (5.6). Although some techniques can be deployed (see Chapter 3) to
alleviate the inherent accuracy problem, the aforementioned errors can never be
eradicated provided that the computation of Zernike moments is performed with
the Cartesian coordinate system.

5.3. Zernike Moments in Polar Coordinates

The cause of errors in computing ZMs by formula (5.4) lies in the adoption of
Cartesian coordinates for the computation, which is justified by the fact that dig-
ital images are represented by square pixels. However, this practice of computing
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does not take into account the circular nature of Zernike polynomials. In this
section we present an algorithm for computation of ZMs in polar coordinates, in
which neither geometric error nor numerical integration error (represented by the
integral in (5.5)) is present.

Principles

To remove geometric error and numerical integration error in ZMs computation,
we need to take into account the circular nature of the Zernike functions. It is
intuitive that geometric error can be avoided by using non-square pixels, whose
areas add up to that of the unit disk. Furthermore, we can use an analyti-
cal method instead of numerical approximations for the pixel-wise integration
of basis functions, which is accurate and efficient in moment computation [45].
Equation (5.2) shows that Zernike polynomials can be naturally expressed in
polar coordinates (ρ, θ). This suggests that adoption of polar coordinates could
facilitate the computation of ZMs. For this purpose, we rewrite the definition of
Zernike moment (5.1) in its equivalent form based on polar coordinates

Anm =
∫ 2π

0

∫ 1

0
f̃(ρ, θ)Rnm(ρ)e−jmθρdρdθ, (5.7)

where f̃(ρ, θ) = f(ρ cos θ, ρ sin θ). Let the image f̃(ρ, θ) be approximated by a
piecewise constant function f̂(ρ, θ) defined over a set of concentric sectors Ωuv

which meet the following two criteria⋃
(u,v)

Ωuv = D, (5.8)

and

Ωuv ∩ Ωu′v′ = ∅ ∀ (u, v) �= (u′, v′). (5.9)

Consequently we can define the following approximate of Anm

Ânm =
∑

u

∑
v

f̂(ρuv, θuv)ωnm(ρuv, θuv), (5.10)

where f̂(ρuv, θuv) is the estimated image intensity over Ωuv, centered at (ρuv, θuv),
and the double summation is performed over all the sectors inside the unit disk.
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The factor ωnm(ρuv, θuv) is an integral over Ωuv, i.e.,

ωnm(ρuv, θuv) =
∫∫

Ωuv

Rnm(ρ)e−jmθρdρdθ

=
∫ ρ

(e)
uv

ρ
(s)
uv

Rnm(ρ)ρdρ
∫ θ

(e)
uv

θ
(s)
uv

e−jmθdθ, (5.11)

where ρ(s)
uv and ρ(e)

uv denote the starting and ending radii of Ωuv respectively, while
θ
(s)
uv and θ

(e)
uv denote the starting and ending angles of Ωuv respectively. Fig. 5.2

illustrates the variables introduced above. The formula in (5.11) is the product
of two integrals, whose exact values can be easily obtained analytically.

uv

)(s
uv )(e

uv 1

1

0

)(s
uv

)(e
uv

),( uvuv 

Figure 5.2: The sector Ωuv representing a polar pixel. The point (ρuv, θuv) defines the
location of Ωuv, where ρuv =

(
ρ
(s)
uv + ρ

(e)
uv

)
/2 and θuv =

(
θ
(s)
uv + θ

(e)
uv

)
/2

Hence by virtue of (5.3) we have

∫ ρ
(e)
uv

ρ
(s)
uv

Rnm(ρ)ρdρ

=
(n−|m|)/2∑

�=0

(−1)�(n− �)![(ρ(e)
uv )n−2�+2 − (ρ(s)

uv )n−2�+2]

(n− 2�+ 2)�!(n+|m|
2 − �)!(n−|m|

2 − �)!
. (5.12)

and ∫ θ
(e)
uv

θ
(s)
uv

e−jmθdθ =

⎧⎨⎩
j
m [e−jmθ

(e)
uv − e−jmθ

(s)
uv ], m �= 0,

θ
(e)
uv − θ

(s)
uv , m = 0.

(5.13)
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Combining (5.10), (5.11), (5.12) and (5.13), we obtain the estimated formula
for ZMs of f(·, ·), without introducing any geometric and numerical integration
errors.

A Polar Pixel Structure for ZMs Computation

As we have already noted, in order to eliminate geometric and numerical integra-
tion errors, we must represent {f(xi, yj)} over the polar sectors satisfying condi-
tions (5.8) and (5.9). If we imagine each sector as a fan-shaped pixel whose value
is determined by that of its central point, then the question arises of what should
be the arrangement of these fan-shaped pixels. There are numerous schemes sat-
isfying conditions (5.8) and (5.9). An example of the most obvious structure is
shown in Fig. 5.3, in which the unit disk is uniformly divided along both the
radial and angular directions. This scheme has the advantage of easy implemen-
tation. However, it behaves poorly in terms of image representation. This is
due to the fact that the areas of the sectors vary greatly, and it is impossible
to achieve both efficiency and accuracy of information representation. In fact, if
the inner sectors are required to be large enough to represent image information
efficiently, the outer sectors are too large to accurately represent the original im-
age information. On the other hand, if the outer sectors are required to be small
enough to accurately represent the image information, then there are too many
inner sectors for the scheme to be efficient.

To overcome the aforementioned problems of the partition scheme shown in
Fig. 5.3, we need to design a more appropriate tiling. The following criteria are
used for finding a suitable polar pixel partition of the image plane.

• All the sector areas should be approximately equal. Note that in Cartesian
coordinates all pixels are of equal size.

• The number of polar pixels inside the unit circle should not be smaller than
that of the Cartesian pixels inside the unit circle, so that the necessary image
resolution could be maintained without loss of information.

• The polar pixels should be as “squared” as possible, i.e., the lengths of the
borders of a sector should be close enough, so that the image distortion due
to the coordinate system conversion could be kept at a low level.

• In order to facilitate the storage and computation processes, the polar pixel
structure should be as simple and regular as possible,

Following these guidelines, we propose a pixel arrangement scheme illustrated
in Fig. 5.4. The details of this structure are listed below.
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Figure 5.3: An example of a tentative polar pixel grid for efficient computation of
Zernike moments

• The unit disk is uniformly divided along the radial direction into U sections,
with the separating circles located at {k/U, k = 1, ..., U}.

• The k-th ring-shaped section is equally divided into (2k− 1)V sectors by radii
starting from the origin, with angles {(i−1)2π/((2k−1)V ), i = 1, ..., (2k−1)V }.
V is the number of sectors contained in the innermost section.

It can be shown by a simple algebra that the unit disk is divided into V U2

sectors, each of which has an area of π/(V U2). The values of U and V should
be set properly. A low value of V U2 is advantageous in terms of computation
and implementation, but may represent inadequately the image information. On
the other hand, a high value of V U2 is beneficial for representation of the image,
but entails heavy workload. In practice, we recommend setting V = 4 and
N/2 ≤ U ≤ N for an N ×N image.

Equipped with the above introduced scheme of the polar pixel arrangement,
the formula for ZM computation in (5.10) can be further rewritten as

Ânm =
U∑

u=1

(2u−1)V∑
v=1

f̂(ρuv, θuv)
∫∫

Ωuv

Rnm(ρ)e−jmθρdρdθ, (5.14)

where the integral can be explicitly evaluated using (5.12) and (5.13).
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Figure 5.4: The proposed structure of polar pixel tiling for efficient computation of
Zernike moments

Image Representation in Polar Coordinates

We have seen in the previous section that computing ZMs in polar coordinates
results in neither geometric error nor numerical integration error, provided that
the image plane is partitioned by a certain polar pixel structure as in Fig. 5.4.
However, in practice, a digital image is defined by a set of square Cartesian pixels,
as shown in Fig. 5.1. It can be verified that the locations of most of the polar
pixels do not coincide with those of the Cartesian pixels. Therefore, we have
to derive the polar counterpart of a given Cartesian image before computing
its ZMs in polar coordinates. This issue can be resolved by applying an image
interpolation procedure.

There are a number of existing image interpolation techniques [16, 120, 153]
which we can use to determine the values of polar pixels. The simplest and
least accurate one is the nearest point interpolation, by which the value of a
polar pixel is set to that of the closest Cartesian pixel. Another technique is
the bilinear interpolation, which determines the value of a point by the linearly
weighted average of the four neighboring pixel values. The bilinear technique
yields better image quality, and has been widely used in many applications. A
more advanced approach, which we adopt in our work, is bicubic interpolation
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[21, 120, 153]. In this method the 16 neighboring pixels are used to compute
the value of an interpolated point. This usually yields a smooth image with
very small interpolation error. The 1-D kernel function representing the bicubic
interpolation is a cubic spline

h(x) =

⎧⎪⎪⎨⎪⎪⎩
3
2
|x|3 − 5

2
|x|2 + 1, |x| ≤ 1,

−1
2
|x|3 +

5
2
|x|2 − 4|x| + 2, 1 < |x| ≤ 2,

0, otherwise.

(5.15)

The interpolated value of {f(xi, yj)} at Ωuv can be obtained based on the 2-D
cubic convolution between the image function {f(xi, yj)} and the kernel h(x)h(y),
i.e.,

f̂(ρuv, θuv)

=
a+2∑

i=a−1

b+2∑
j=b−1

f(xi, yj)h
(
ρuv cos θuv − xi

Δ

)
h

(
ρuv sin θuv − yj

Δ

)
,(5.16)

where a =
⌊
ρuv cos θuv

Δ

⌋
+ N/2 and b =

⌊
ρuv sin θuv

Δ

⌋
+ N/2, and Δ = 2/N is

the pixel width.
Clearly we could apply more advanced interpolation methods which require

an additional pre-filtering step [16]. This might further improve the accuracy
of our method at the expense of increased computational workload. Simulation
results presented in this chapter indicate that the bicubic interpolant gives a
proper trade-off between the accuracy and the computational complexity.

5.4. The Accuracy Analysis of the Algorithm

As we have shown in the previous section, the proposed polar approach avoids en-
tirely both geometric error and numerical integration error in computing Zernike
moments. If a digital image is represented directly by a grid of pixels structured
as in Fig. 5.4, its Zernike moments can be computed accurately by the proposed
algorithm without incurring on the aforementioned errors. In practice, however,
an image is defined over the square grid and it is necessary to convert it into its
polar coordinates counterpart. This conversion is done through an interpolation
procedure like the formula in (5.16) resulting in some interpolation error.

In this section we describe the influence of the interpolation error on the
accuracy of the estimate Ânm defined in (5.10). To this end let us consider the
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estimate Ânm with f̂(ρ, θ) being any interpolation scheme which has the following
degree of accuracy

max
(ρ,θ)

|f̂(ρ, θ) − f̃(ρ, θ)| ≤ CΔp, (5.17)

where Δ is the pixel width and p ≥ 1 characterizes the degree of accuracy of
the interpolant. In (5.17) the constant C depends on the smoothness of the
image function f(·, ·) and an interpolation kernel of the applied interpolant. It
is known that p = 1 corresponds to the nearest-neighbour algorithm, and p = 2
to the linear interpolation, whereas the cubic convolution method meets (5.17)
with p = 3, [21, 120, 153]. It is worth mentioning that pre-filtering interpolation
algorithms [16] can satisfy (5.17) with p > 3, provided that appropriate smoothing
conditions of the image function are met.

Let us consider the estimate Ânm in (5.10) with the general linear interpola-
tion scheme f̂(ρuv, θuv). We wish to evaluate the size of the difference between
Ânm and the true Zernike moment Anm. To do so we assume that the analog
image function f(x, y) is in the class of functions of bounded variation on D. The
following theorem shows that the difference Ânm −Anm is of order max(Δp,Δ).

Theorem 5.1. Let f(·, ·) be a function of bounded variation on D. Let Ânm,
defined in (5.10), be the estimate of Anm utilizing the general interpolation scheme
which satisfies assumption (5.17). Then we have

|Ânm −Anm| ≤
(

π

n+ 1

)1/2 {
8C2Δ2p + 4fmax TV(f)Δ2

}1/2
, (5.18)

where TV(f) is the total variation of f(·, ·) over D and fmax = max(x,y)∈D f(x, y).

The proof of this theorem can be found in the Appendix. The bound in (5.18)
contains two unrelated terms. The first one, being of order O(Δp), characterizes
the applied interpolation scheme of order p. On the other hand, the second
term in (5.18) is of order O(Δ) and describes the discretization error in replacing
the integral in (5.7) by the sum appearing in (5.10). This term can be reduced
by putting some further smoothness conditions on f(·, ·). In fact, if f(·, ·) is
differentiable then the term O(Δ2) in (5.18) is replaced by the term of order
O(Δ3). Hence under the assumption of Theorem 5.1 we have

Ânm = Anm + C1(n+ 1)−1/2Δ, (5.19)

for some positive constant C1 depending on f(·, ·).
Thus we can conclude that the interpolation error is of the second order of im-
portance to the discretization error.
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It is worth noting that due to the result in Chapter 3, the square grid based
method given in (5.4) and (5.5) exhibits the following error

Ãnm = Anm + C2(n+ 1)−1/2Δ + C3 min((n+ 1)−1/2Δα/2,Δα), (5.20)

where 1 ≤ α < 3/2 is the exponent characterizing the lattice points approxima-
tion of a circle, with the best known α = 285/208, see Chapter 3. C2, C3 are
positive constants depending on f(·, ·). For image functions possessing the first
derivative, the result in (5.19) improves to O(Δ3/2), whereas the second term on
the right-hand-side of (5.20) remains the same.

Thus, we have obtained the qualitative result that the proposed method is
more accurate than any method based on the square partition of the image plane.

5.5. Empirical Evaluation of the Algorithm Accuracy

In this section, the empirical effectiveness of the proposed polar approach is inves-
tigated. We illustrate it from three different perspectives, namely, the moment
magnitudes of a constant image, the image reconstruction from a finite set of
computed ZMs, and ZM magnitude invariance to image rotation.

Improvement of Zernike Moment Accuracy

To illustrate the accuracy of ZM computation, we use a 128 × 128 image with a
constant intensity value 127 as the test image, to which both the conventional
Cartesian method defined by (5.4) and (5.6) and the proposed polar method are
applied. The reason we choose the constant image is that, in theory, all its true
ZMs Anm = 0 except that A0,0 = 127. Therefore by looking at the magnitudes of
the computed moments, we can assess the accuracy of the algorithm. Considering
ZMs’ symmetry property, Anm = A∗

n,−m, here we are only concerned with the
Anm with m ≥ 0.

First, the constant image’s ZMs with orders between 1 and 40 are calculated
based on the conventional Cartesian method, and placed in the following order

{Ã1,1, Ã2,0, Ã2,2, Ã3,1, Ã3,3, Ã4,0, Ã4,2, . . . , Ã40,40}.
Fig. 5.5 depicts the magnitudes of these ZMs as a function of their index numbers.
It can clearly be seen that many ZMs computed in this way have considerable
magnitudes, which reflect the inaccuracy of the Cartesian method.

Then, the same group of ZMs is calculated with the proposed polar method.
The result is shown in Fig. 5.6, in which the magnitudes of all the moments are
below O(10−10). Comparing Fig. 5.5 and Fig. 5.6, one immediately concludes
that the proposed approach is greatly superior to the conventional method.
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Figure 5.5: The magnitudes of ZMs with orders between 1 and 40, of a 128 × 128
constant image function, computed with the Cartesian method

Improvement of Image Reconstruction

Image reconstruction from a finite number of moments, L, can be performed with
the following formula:

f̂(x, y) =
L∑

i=1

[ÂnimiVnimi(x, y) + 1(mi �= 0)Âni,−miVni,−mi(x, y)], (5.21)

where 1(·) is the indicator function. It was shown in Chapter 4 that the recon-
struction error consists of two parts. One part of the error is due to the finite value
of L, and the other comes from the inaccuracy of the computed ZMs Ânm. The
former can be reduced by increasing L, while the latter was shown to be inevitable
due to the inherent geometric and numerical integration errors [145,180]. As we
have already shown above, the loss of moment accuracy brought by geometric
error and numerical integration error that used to be inherent in the Cartesian
method can now be significantly reduced in polar coordinates. Therefore the re-
construction error due to the inaccuracy of Ânm can be greatly improved. This
has been verified by simulation results. We use the 128× 128 Lena image, shown
in Fig. 5.7a, to illustrate the image reconstruction performance. The Zernike
moments up to the order of 200 are computed with the conventional Cartesian
approach and the proposed polar approach, respectively. Then the computed
moments are used to reconstruct images. Fig. 5.8 depicts some of the images
reconstructed with the Cartesian system-based moments, while Fig. 5.9 displays
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Figure 5.6: The magnitudes of ZMs with orders between 1 and 40, of a 128 × 128
constant image function, computed with the proposed polar method

(a) (b)

Figure 5.7: The test images. (a) Original 128 × 128 image of Lena. (b) Lena image
rotated through 15◦

the images reconstructed with the polar system-based moments. It can be seen
from Fig. 5.8 that some erroneous pixels along the border of the unit circle are
very obtrusive in the images based on Cartesian ZMs, and the number of er-
roneous pixels increases quickly as the moment order increases. However, such
erroneous pixels do not exist in the images based on Polar ZMs.

To compare qualitatively the performances of the two approaches in terms of
image reconstruction, we have experimented on more different numbers of ZMs
for image recovery. Specifically, ZMs up to orders {n = 2i}100

i=0 were used to
reconstruct the image respectively. The quality of each reconstructed image is
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Figure 5.8: Image reconstruction from ZMs computed in the Cartesian coordinate
system. First row from left to right: images reconstructed from ZMs up to order 20, 40,
60, 80 and 100 respectively. Second row from left to right: images reconstructed from

ZMs up to order 120, 140, 160, 180 and 200, respectively

measured in terms of peek signal-to-noise ratio (PSNR), which is defined by

PSNR(f, f̂) = 10 log10

f 2
max

σ2
e

, (5.22)

where f is the original image and f̂ is the reconstructed image, both with dimen-
sions N ×N , fmax is the maximum pixel value of image f , and

σ2
e =

1
N2

N∑
i=1

N∑
j=1

[f̂(xi, yj) − f(xi, yj)]2 (5.23)

is the average squared error. The test results are shown in Fig. 5.10, from which
two important conclusions can be drawn. Firstly, for low orders of ZMs, ap-
proximately n < 20, the quality of the reconstructed images via the polar ZMs
is similar to that of the reconstructed images via the Cartesian ZMs. But as
n becomes larger, the former gets significantly better than the latter. Secondly,
the quality of the polar ZM-reconstructed images increases monotonically with n.
However, in the Cartesian case, as n increases to a certain point, approximately
40, the image quality reaches its maximum value. After this maximum value, the
image quality deteriorates. This is because the reconstruction error incurred by
geometric and numerical integration errors increases with n, and at some point it
outweighs the quality gain from the population increase of ZMs [145, 180]. Such
picking effect is also present for the proposed method but the deterioration of the
image quality appears for a very high moment order.
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Figure 5.9: Image reconstruction from ZMs computed in the polar coordinate system.
First row from left to right: images reconstructed from ZMs up to order 20, 40, 60, 80
and 100 respectively. Second row from left to right: images reconstructed from ZMs up

to order 120, 140, 160, 180 and 200, respectively

Improvement of ZMs Rotational Invariance

If an image f(x, y) is rotated through α degrees counterclockwise we have demon-
strated in Chapter 3 that the Zernike moment of the resulting image, A(α)

nm, is
related to that of the original image by

A(α)
nm = Anme

−jmα. (5.24)

This leads to the well known rotational invariance property |A(α)
nm| = |Anm|, which

holds if ZMs are accurate. However, if ZMs are computed from discrete data, this
property holds only approximately. Therefore, an inspection of ZM’s magnitude
change before and after image rotation reveals the accuracy of moment com-
putation. Let |Â| and |Â(r)| denote the estimated moment magnitudes of the
digital image before and after rotation, respectively. We are interested in the
error ΔÂ = |Â(r)| − |Â|. As an example, the image of Lena is rotated through
15◦ to become the image shown in Fig. 5.7b. Fig. 5.11a depicts ΔÃ in the case of
the Cartesian approach, while Fig. 5.11b illustrates ΔÂ resulting from the polar
approach. It is clear that the polar ZMs greatly outperform the Cartesian ZMs
in terms of the rotational invariance property.

To quantitatively evaluate the improvement of magnitude invariance, we de-
fine the mean-square-error of ZMs magnitudes as

MSE(|Â|, |Â(r)|) =
1
L

L∑
i=1

(|Ânimi | − |Â(r)
nimi

|)2, (5.25)
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Figure 5.10: The image reconstruction quality in terms of PSNR as a function of the
order of Zernike moments

where L is the number of ZMs involved in the evaluation. Depicted in Fig. 5.12
are MSE(|Â|, |Â(r)|) in the cases of both the Cartesian approach and the polar
approach. We have experimented with rotation angles from 0◦ to 90◦, with a 2.25◦

interval. For each rotation angle, we computed the first 256 ZMs of the rotated
image with both Cartesian approach and polar approach respectively, and then
obtained the corresponding MSE values according to (5.25). The advantage of
the polar approach is evident. To be more specific, the ratio of two average MSEs,
MSECartesian/MSEpolar ≈ 61.66.

5.6. Conclusions

In this chapter we have proposed a novel approach for high precision computation
of Zernike moments for digital images. In contrast to the traditional Cartesian
coordinates-based methods, this approach is designed within the polar coordinate
system. Detailed aspects of the algorithm, such as the lattice structure of polar
pixels and the generation of the polar image from its Cartesian counterpart, have
been investigated. It was shown that with this algorithm, the two inherent kinds
of errors from which the Cartesian method suffers are greatly reduced. For a
digital image given in a Cartesian format, the accuracy of its Zernike moments is
determined by the interpolation scheme involved. Our empirical and theoretical
results show that the interpolation error is of the second order importance in the
overall error.

A series of experimental results were described, and they have verified the
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Figure 5.11: The magnitude differences between the first 256 ZMs of the two images
shown in Fig. 5.7. (a) The results from the conventional Cartesian approach. (b) The

results from the proposed polar approach

superiority of the proposed approach. It is worth noting, however, that the
presented results have been obtained for noise-free images. If we observe an
image in the presence of noise our method should be slightly modified. Indeed,
the interpolation procedure cannot be longer used since noise interpolation is
a highly undesirable practice. Instead one must apply some kind of smoothing
procedure, e.g., cubic smoothing splines should replace the bicubic interpolation
method.

5.7. Appendix

Proof of Theorem 5.1
Let us first observe that

Ânm −Anm =
U∑

u=1

(2u−1)V∑
v=1

∫∫
Ωuv

[f̂(ρuv, θuv)− f̃(ρ, θ)]Rnm(ρ)e−jmθρdρdθ. (5.26)

By Cauchy-Schwarz inequality we obtain

|Ânm −Anm| ≤
{∫∫

D
|Rnm(ρ)e−jmθ|2ρdρdθ

}1/2

×

⎧⎨⎩
U∑

u=1

(2u−1)V∑
v=1

∫∫
Ωuv

|f̂(ρuv, θuv) − f̃(ρ, θ)|2ρdρdθ

⎫⎬⎭
1/2

. (5.27)
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Figure 5.12: Mean-square-error of ZMs magnitudes of the images in Fig. 5.7a and
Fig. 5.7b versus the rotation angle

Since
∫∫

D
|Rnm(ρ)e−jmθ|2ρdρdθ =

π

n+ 1
, there remains the second term in

(5.27) to be considered.
Let us notice that∫∫

Ωuv

|f̂(ρuv, θuv) − f̃(ρ, θ)|2ρdρdθ ≤ L1 + L2, (5.28)

where

L1 = 2
∫∫

Ωuv

|f̂(ρuv, θuv) − f̃(ρuv, θuv)|2ρdρdθ, (5.29)

and

L2 = 2
∫∫

Ωuv

|f̃(ρuv, θuv) − f̃(ρ, θ)|2ρdρdθ. (5.30)

By virtue of (5.17)
L1 ≤ 2C2Δ2pΔ2, (5.31)

where, without loss of generality, we assume that the area of Ωuv is not greater
than Δ2.

Concerning the term L2, we have

L2 ≤ 2 Osc
Ωuv

(f̃)
∫∫

Ωuv

|f̃(ρuv, θuv) − f̃(ρ, θ)|ρdρdθ

≤ 4fmax Osc
Ωuv

(f̃)Δ2, (5.32)
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where
Osc
Ωuv

(f̃) = max
(ρ,θ),(ρ′,θ′)∈Ωuv

{|f̃(ρ, θ) − f̃(ρ′, θ′)|}

is the oscillation of f̃(ρ, θ) over the sector Ωuv, and fmax = max(x,y)∈D f(x, y).
Substituting (5.28), (5.31) and (5.32) into (5.27), and noting that

TV(f) =
U∑

u=1

(2u−1)V∑
v=1

Osc
Ωuv

(f̃) (5.33)

we can obtain the following bound

|Ânm −Anm| ≤
(

π

n+ 1

)1/2 {
8C2Δ2p + 4fmax TV(f)Δ2

}1/2
. (5.34)

This proves the assertion of Theorem 5.1. �



Chapter 6

Testing Image Symmetry

In this chapter we examine an important application of the developed theory
of radial moments, namely the problem of assessing whether an observed image
may possess a certain type of symmetry. Formal statistical tests are constructed
for finding a possible symmetry in an image observed under noise. We consider
image invariance models with respect to reflections or rotations through rational
angles, as well as joint invariance under both reflections and rotations. Fur-
thermore, we propose a test for radiality, i.e., for checking whether the image
function depends solely on the radius and not on the angle. These symmetry
relations can be simply expressed as restrictions for the Zernike moments of the
image function. Therefore, our test statistics are based on checking whether the
estimated Zernike coefficients approximately satisfy the restrictions claimed. We
derive the asymptotic distribution of the test statistics under both the hypothesis
of symmetry and the fixed alternatives. The former result is used to construct
asymptotic level-α tests for the hypothesis, while the latter can be employed for
estimating the power of the test or for the purpose of validating symmetry. A
theory of limiting distributions of generalized quadratic forms is employed.

6.1. Introduction

Symmetry plays an important role in image understanding and recognition. In
fact, symmetric patterns are common in nature and the detection of an image
symmetry can be utilized for designing effcient algorithms for object recognition,
robotic manipulation, image animation, and image compression. It is clear that
symmetric objects should be easier to recognize than non-symmetric ones and
symmetry represents information redundancy which may be used to overcome
occlusions and noise. For example, in the face recognition problem it would be

143
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very useful to validate an approximate reflection symmetry with respect to a
vertical axis of symmetry, Fig. 6.1 illustrates this concept.

Figure 6.1: Reflection symmetry of a human face

What does it mean to say that the image f(x, y) is symmetric? Symmetry
can be defined in terms of a combination of certain geometric transformations
which when applied to a given planar image, yield a result indistinguishable from
the original object. There are two basic symmetry types, namely rotational and
reflection symmetries. Indeed, a finite non-periodic 2-D pattern may exhibit only
these two kinds of symmetries.

An image shows rotational symmetry of order d, d being an integer, if it is
invaraint to rotations of π/d, and its integer multiplies about the center of mass
of the object. In particular, d = 1 corresponds to the requirement that

rf(x, y) = f(x, y), (6.1)

where rf(x, y) = f(−x,−y) is the image rotation through an angle π. Yet another
important case of rotational symmetry is when d = ∞, i.e., when we have

inv f(x, y) = f(x, y), (6.2)

where inv f(x, y) = g(
√
x2 + y2) for some univariate function g(·).

An image shows reflectional symmetry if it is invariant to reflection with
respect to one or more lines called axes of symmetry. If there is only one axis
of symmetry and it aligns with the y-axis the reflectional symmetry is defined as
follows

τf(x, y) = f(x, y), (6.3)

where τf(x, y) = f(−x, y). Fig. 6.2 illustrates the aforementioned types of image
symmetry.
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AE
(a) (b)

Figure 6.2: Examples of basic image symmetries: (a) reflection symmetry
(b) rotation symmetry with d = 3.

A number of algorithms have been proposed for automatic detection and
classification of rotational and reflectional symmetries in planar images [56, 125,
155,238]. Most of the symmetry detectors utilize the image brightness or gradient
information and they may be very sensitive to noise. Furthermore, the methods
proposed assume that the image under examination is symmetric with respect to
one of the aforementioned types. In practice, however, we do not have access to
such a knowledge as we merely observe a noisy and digitized version of the original
image. Thus, even if the original image is symmetric, its observed counterpart
may not appear to be invariant to rotation and reflection operations. We therefore
need formal statistical testing techniques to validate the existing symmetry in an
image.

In this chapter we propose a systematic appraoch to testing an image symme-
try utilizing the class of radial moments introduced in Chapter 3. In particular,
we examine the symmetries defined in (6.1), (6.2), and (6.3). Furthermore test-
ing the joint invariance under both reflections and rotations is investigated. Note
that in the case of reflectional symmetry we make an assumption that the axis
of symmetry (if an object is actually symmetric) is unique and defined by the y-
axis. In general the axis of symmetry must be estimated and we refer to [56,155]
for efficient, although ad hoc, algorithms for finding all the axes of symmetry of
symmetric planar objects.

We define our test statistics employing natural properties of the radial mo-
ments for the aforementioned symmetries. The statistics are in the form of the
L2 norm of the estimated radial moments with a suitable selected trunacation
number. The established limit theorems allow us to design rigorous methods for
testing symmetries of planar images observed in the presence of noise over a grid
of pixels. Our tests are non-parametric as they do not need any prior knowledge
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of the image shape and content. They are based on the region-based orthogonal
moment descriptors and therefore in the case of rejecting the null hypothesis on
the image symmetry they can still be used as a reconstruction method. This al-
lows us to obtain a great deal of information about the image even if it has been
classified to be non-symmetrical. This is a unique property of our testing method
not shared by the existing algorithms for detecting symmetry in grey level im-
ages. Our theoretical developments leading to construction of formal statistical
tests are based on the theory of the asymptotic behavior of quadratic forms of
independent random variables.

The observation model of the image function is analogous to that given in
Chapter 4. Hence let f ∈ L2(D) and take the noisy data

Zi,j = f(xi, yj) + εi,j , (xi, yj) ∈ D, 1 ≤ i, j ≤ n, (6.4)

where the noise process {εi,j} is an i.i.d. random sequence with zero mean, finite
variance Eε2i,j = σ2 and finite fourth moment. We assume that the data are
observed on a symmetric square grid of edge width Δ, i.e., xi−xi−1 = yi−yi−1 =
Δ and xi = −xn−i+1, yi = −yn−i+1. Note that n is of order 1/Δ.

The question of symmetry of certain quantities is also relevant in statistical
models. Such symmetry can simplify statistical inference, or it might be of inter-
est in itself. For example, in linear as well as nonparametric regression models,
it is important to know whether the error distribution is symmetrical around
zero, since this can increase the efficiency of estimation as well as the quality of
asymptotic approximations by the normal distribution, see, e.g., [34, 42, 95, 163].
Furthermore, one might also be interested in the symmetry of an unknown re-
gression function, or in the symmetry of an unknown density of an i.i.d. sample
of observations, and tests for these problems have been proposed in the literature
as well [3, 138]. Nevertheless, testing symmetries in multi-dimensional functions
has not been done yet.

6.2. The Zernike Orthogonal Basis

In this section we introduce relevant concepts and notation related to the Zernike
polynomials and their approximation properties. We also define the correspond-
ing image reconstruction formula. For extensive discussion of these concepts we
refer to Chapters 2 and 4.
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Zernike Polynomials and Function Approximation

The Zernike orthogonal polynomials are given by

Vpq(x, y) = Rpq(ρ) ejqθ, (x, y) ∈ D, (6.5)

where ρ =
√
x2 + y2, θ = arctan(y/x), j is the imaginary unit, and Rpq(ρ) is the

radial Zernike polynomial defined explicitly in Chapter 3. The indices (p, q) have
to satisfy

p ≥ 0, |q| ≤ p, p− |q| even, (6.6)

and we will call such pairs (p, q) admissible. The Zernike polynomials satisfy the
orthogonality relation, see Chapter 3, which implies that

‖Vpq‖2 = π/(p+ 1) = np, (6.7)

where ‖ · ‖ is the L2(D)-norm.
In Chapter 3, see also [13], we noted that the Zernike polynomials are char-

acterized as the unique orthogonal basis of L2(D) consisting of invariant polyno-
mials of the general form (6.5), which contain a polynomial for every admissible
pair (p, q) in (6.6), where p is the degree of Rpq(ρ) and q is the index of angular
dependence. Several useful properties of the radial Zernike polynomials Rpq(ρ)
have been listed in Chapter 3. In particular, we will need the property that
|Rpq(ρ)| ≤ 1.

Since the family {Vpq(x, y)} for admissible (p, q) forms a complete and orthog-
onal system in L2(D), we can expand a function f ∈ L2(D) into a Fourier series

f(x, y) =
∞∑

p=0

p∑
q=−p

n−1
p Apq(f)Vpq(x, y). (6.8)

Here and in the following the summation is only taken over admissible pairs (p, q).
The norming factor n−1

p arises due to (6.7), and the Fourier coefficient Apq(f) is
defined by

Apq(f) =
∫∫

D
f(x, y)V ∗

pq(x, y) dx dy.

Introducing the notation

f̃(ρ, θ) = f(ρ cos θ, ρ sin θ)

by using polar coordinates, one obtains

Apq(f) = 2π
∫ 1

0
cq(ρ, f)Rpq(ρ) ρ dρ, (6.9)
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where

cq(ρ, f) =
1

2π

∫ 2π

0
f̃(ρ, θ)e−iqθ dθ.

We will also need Parseval’s formula for the Zernike basis, i.e., for f ∈ L2(D) we
have that

‖f‖2 =
∞∑

p=0

p∑
q=−p

n−1
p |Apq(f)|2. (6.10)

Image Reconstruction

The observational model we employ in this chapter is similar to the one used in
Chapter 4. Hence, let f ∈ L2(D) and suppose that we have data

Zi,j = f(xi, yj) + εi,j , (xi, yj) ∈ D, 1 ≤ i, j ≤ n, (6.11)

where the noise process {εi,j} is an i.i.d. random sequence with zero mean, finite
variance Eε2i,j = σ2 and finite fourth moment, see (6.4).

The design points are illustrated in Fig. 3.4. As we have already noted, along
the boundary of the disc, some lattice squares are included and some are excluded.
When reconstructing f(·, ·), this gives rise to an additional error, called geometric
error, see Chapter 3. This error can be quantified by using the celebrated problem
in analytic number theory referred to as lattice points of the circle [104,106].

In the following we shall work with a discretized version of the Zernike mo-
ments, since we observe the function f(·, ·) in model (6.4) only on the discrete
grid of points (xi, yj), i, j = 1, . . . , n. Hence, consider the weights

wpq(xi, yj) =
∫∫

Πij

V ∗
pq(x, y) dxdy, (6.12)

where Πij = [xi − Δ/2, xi + Δ/2] × [yj − Δ/2, yj + Δ/2] denotes the pixel cen-
tered at (xi, yj). Another, even simpler version of the weights is

wpq(xi, yj) = Δ2V ∗
pq(xi, yj). (6.13)

The expansion (6.8) can be used to construct a truncated series estimator for
f(·, ·) in model (6.4). To this end estimate the Zernike moment Apq(f) by

Âpq(f) =
∑

(xi,yj)∈D

wpq(xi, yj)Zi,j , (6.14)
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where the weights are given by (6.12) or (6.13). A reconstruction algorithm of
the image function f(·, ·) is then given by

f̂N (x, y) =
N∑

p=0

p∑
q=−p

n−1
p Âpq(f)Vpq(x, y),

where N is a smoothing parameter which determines the number of terms in the
truncated Fourier series. The mean integrated square error properties of f̂N (x, y)
are discussed in Chapter 4, for general information on truncated series estimators
see, e.g., [95].

6.3. Testing Rotational Symmetries

In this section we discuss how to design statistical tests for verifying rotational
symmetries of f ∈ L2(D). We consider both d-fold rotations as well as rotational
invariance, i.e., the limit case d = ∞.

d-Fold Rotations

Let us consider a rotation rd through an angle of π/d for d ∈ N. Since (̃rdf)(ρ, θ) =
f̃(ρ, π/d+ θ), from (6.9) it easily follows that

Apq(rdf) = ejπq/dApq(f). (6.15)

Now consider the hypothesis
Hrd : rdf = f (6.16)

that the image f is invariant under the rotation rd. Expanding both sides of
(6.16) into a series with respect to the Zernike basis, we see that it is equivalent
to Apq(rdf) = Apq(f) for all admissible pairs (p, q). In view of (6.15), this is
equivalent to

Hrd : Apq(f) = ejπq/dApq(f) for all admissible pairs (p, q).

Therefore, a natural way to test the hypothesis Hrd is via the statistic

T rd
N =

1
4

N∑
p=0

p∑
q=−p

n−1
p

∣∣1 − ejπq/d
∣∣2 ∣∣Âpq(f)

∣∣2, (6.17)

where the norming factor 1/4 is used for convenience. We will study explicitly
the two most important special cases, d = 1, i.e., rotation through π, and d = 2,
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rotation through π/2. In principle, one could derive similar results for general
rotations of the form π/d, d ≥ 3. However, in this case, additional technical
difficulties will arise since the rectangular design is no longer invariant under rd
for d ≥ 3.

Since for d = 1 we have ejπq = (−1)|q|, the terms in (6.17) for even q (or
equivalently even p) disappear. Therefore, the statistic in this case reads

T r1
N =

N∑
p=0,p odd

p∑
q=−p

n−1
p

∣∣Âpq(f)
∣∣2.

The following theorem presents the asymptotic distribution of the statistic T r1
N

under the hypothesis Hr1 as well as under a fixed alternative. The notation L→
stands for the weak convergence (convergence in distribution).

Theorem 6.1. Let the hypothesis Hr1 : r1f = f hold. If Δ → 0, N → ∞ such
that ΔN7 → 0, then we have that

1
Δ2
√
a(N)

(
T r1

N − σ2Δ2a(N)
) L→ N(0, 2σ4), (6.18)

where N(0, σ2) denotes the normal law with mean zero and variance σ2 and

a(N) =
{

N(N + 2)/4 : N even,
(N + 1)(N + 3)/4 : N odd.

(6.19)

Under a fixed alternative r1f �= f , suppose that f ∈ Cs(D) for s ≥ 2. If
ΔN2s+1 → ∞ and N3/2Δγ−1 → 0, where γ = 285/208 is as in Lemma 6.2,
we have

1
Δ
(
T r1

N − ‖f − r1f‖2/4
) L→ N(0, σ2‖f − r1f‖2). (6.20)

For the proof of Theorem 6.1 see the Appendix where also some technical
lemmas are given.

Remark 6.1. Let us comment on the results of Theorem 6.1. First note that
different rates appear under the hypothesis in (6.18) and under fixed alternatives
in (6.20). This is due to the fact that T r1

N is, under the hypothesis, a quadratic
statistic, but under a fixed alternative an additional linear term arises which dom-
inates the asymptotic expansion, see [34] for a discussion of similar phenomenon
in the case of testing symmetry of univariate non-parametric regression functions.

Let us also comment on the conditions for the smoothing parameter N , which
determines the number of terms in the truncated Zernike series. The condition
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ΔN7 → 0, used under the hypothesis, is rather restrictive, and is due to the
approximate orthogonality of the discretized Zernike polynomials as it is estab-
lished in Lemma 6.1. In contrast, the optimal choice of N for estimation of a
smooth function f ∈ C1(D), as was shown in Chapter 4 and [180], is of order
N ∼ Δ−50/146+ε. However, our condition can be relaxed if we assume a more ac-
curate orthogonal design. In fact, if we have exact orthogonality, then ΔN2 → 0
is sufficient for (6.18) to continue to hold. Also note that under the hypothe-
sis, we make no assumption on the smoothness of the image function f(x, y), in
particular it might have edges.

Under a fixed alternative, the condition N3/2Δγ−1 → 0 is equivalent to N4+cΔ →
0, c = 0.0519 . . ., so that this condition and N2s+1Δ → ∞ can be fulfilled simul-
taneously for s ≥ 2.

Let us now consider the problem of testing the invariance under the rotation
r2 through an angle π/d, d = 2. Here, the factor

∣∣1 − ejπq/d
∣∣2 in (6.17) becomes

∣∣1 − jq
∣∣2 =

⎧⎨⎩
4 : q ≡ 2 mod 4,
0 : q ≡ 0 mod 4,
2 : q ≡ 1, 3 mod 4.

Therefore, the statistic T r2
N can be written as

T r2
N =

1
2

N∑
p=0,p odd

p∑
q=−p

n−1
p

∣∣Âpq(f)
∣∣2 +

N∑
p=0

∑
q≡2 mod 4

n−1
p

∣∣Âpq(f)
∣∣2.

The following theorem gives the asymptotic distribution of the test statistic T r2
N

both under the hypothesis r2f = f and the fixed alternative r2f �= f .

Theorem 6.2. Let the hypothesis Hr2 : r2f = f hold. If Δ → 0, N → ∞ such
that ΔN7 → 0, then we have that

1
Δ2
√
a(N)/4 + b(N)

(
T r2

N − σ2Δ2
(
a(N)/2 + b(N)

)) L→ N
(
0, 2σ4

)
,

where a(N) is given in (6.19), and b(N) is equal to the number of admissible
(p, q) with q ≡ 2 mod 4 and p ≤ N .

Under a fixed alternative r2f �= f , suppose that f ∈ Cs(D) for s ≥ 2. If
ΔN2s+1 → ∞ and N3/2Δγ−1 → 0, where γ = 285/208 is as in Lemma 6.2, we
have that

1
Δ
(
T r2

N − ‖f − r2f‖2/4
) L→ N(0, σ2‖f − r2f‖2).
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The proof of Theorem 6.2 is very similar to that of Theorem 6.1 and is there-
fore omitted.

Let us, however, point to the fact that the design (xi, yj), i, j = 1, . . . , n, is
also invariant under the rotation r2. Note that in the statistic T r2

N , more Zernike
coefficients occur than in T r1

N , which is to be expected since Hr2 imposes more
restrictions than Hr1 .

Implementation Issues

Theorems 6.1 and 6.2 can be used to construct an asymptotic level α test for the
hypotheses Hr1 and Hr2 , respectively. Let us discuss Hr1 , the discussion for Hr2

being completely analogous.
It is easy to see that the hypothesis Hr1 is rejected if

T r1
N > u1−αΔ2

√
2a(N)σ̂2 + Δ2a(N)σ̂2. (6.21)

Here u1−α denotes the 1 − α quantile of the standard normal distribution, and
σ̂2 is an estimate of the variance σ2. To get σ̂2, one can use a difference based
estimator

σ̂2 =
1

C(Δ)

∑
(xi,yj)∈D

1
4

((
Zi,j − Zi+1,j

)2 +
(
Zi,j − Zi,j+1

)2)
,

where the sum is taken over all (xi, yj) ∈ D where (xi+1, yj) ∈ D and (xi, yj+1) ∈
D, and C(Δ) is the number of terms in this restricted sum. One can show that
if the image function f is Lipschitz continuous, then σ̂2 − σ2 = OP

(
Δ
)
. In this

case, (6.18) continues to hold if σ2 is replaced by the estimator σ̂2, and (6.21) is
indeed an asymptotically valid level α test decision. For detailed information on
difference-based estimators in higher dimensions see [162].

The asymptotic distribution (6.20) of the test statistic T r1
n under a fixed

alternative can be used in various ways. One is to estimate the power of the test.
In fact, we have that for β ∈ (0, 1),

P
(
σ̂‖f − r1f‖Δu1−β + ‖f − r1f‖2/4 ≤ T r1

N

)
≈ β.

Using the decision rule (6.21), we see that for the power β we get asymptotically

β = 1 − Φ

(
σ̂Δ(u1−α

√
2a(N) + a(N))

‖f − r1f‖
− ‖f − r1f‖

4σ̂Δ

)
,

where Φ(·) is the distribution function of the standard normal random variable.
Observing that the first term in brackets tends to zero and estimating ‖f − r1f‖
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by 2
√
T r1

N , we get as an estimate for the power β

β̂ = 1 − Φ

(
−
√
T r1

N

2σ̂Δ

)
.

Another use of (6.20) is to validate the symmetry of the image f under r1 by
testing the hypothesis

Ht : ‖f − r1f‖ > t against Kt : ‖f − r1f‖ ≤ t,

for t > 0. See [35] for further details on such testing problems.

Testing Radiality

Now let us consider the problem of building a statistical test for verifying ro-
tational invariance of f , i.e., whether f is a function of the radius ρ only, i.e.,
f̃(ρ, θ) = g(ρ) for some univariate function g(ρ). Expressed in terms of the
Zernike polynomials, a function f ∈ L2(D) is rotationally invariant if and only if

Apq(f) = 0 for every q �= 0. (6.22)

This is easily deduced from the definition of the Zernike coefficients (6.9), see
Chapter 4. The orthogonal projection inv f of a function f ∈ L2(D) onto the
space of rotationally invariant functions is therefore given by

inv f(x, y) =
∞∑

p=0, p even

n−1
p Ap,0(f)Vp,0(x, y),

and the L2 distance between f and inv f is

‖f − inv f‖2 =
∞∑

p=0

p∑
q=−p,q �=0

n−1
p |Apq(f)|2. (6.23)

Consider the hypothesis H inv that the function f is rotationally invariant,

H inv : inv f = f.

Then, in order to test H inv, it is natural to consider the statistic

T inv
N =

N∑
p=1

p∑
q=−p,q �=0

n−1
p

∣∣Âpq(f)
∣∣2.

The asymptotic distribution of T inv
N is presented in the following theorem.
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Theorem 6.3. Let the hypothesis H inv hold. If Δ → 0, N → ∞ such that
ΔN7 → 0, then we have

1
Δ2
√
a(N)

(
T inv

N − σ2Δ2a(N)
) L→ N(0, 2σ4), (6.24)

where

a(N) =

{
(N2 + 2N)/2 : N even,

(N + 1)2/2 : N odd.

Under a fixed alternative inv f �= f , suppose that f ∈ Cs(D) for s ≥ 2. If
ΔN2s+1 → ∞ and N3/2Δγ−1 → 0, where γ = 285/208 is as in Lemma 6.2, we
have that

1
Δ
(
T inv

N − ‖f − inv f‖2
) L→ N(0, 4σ2‖f − inv f‖2). (6.25)

The proof of this theorem is similar to that of Theorem 6.1 and is therefore
omitted. Testing procedures based on Theorem 6.3 can now be implemented in
a completely analogous fashion as discussed above.

General Rotations

In this section we discussed tests for invariance under specific rotations, namely
d-fold rotations and rotational invariance. However, these are essentially all pos-
sibilities for rotational invariance in two dimensions. Let us consider a general
rational rotation through an angle of d1π/d2 for d1, d2 ≥ 1 coprime. Then the
condition of invariance of an image under the rotation d1π/d2 is equivalent to
invariance under π/d2, since both reflections generate the same finite groups of
rotations. As for an irrational rotation, say through xπ, x irrational, it is well
known that the orbit of any point on a circle of radius ρ is dense on this cir-
cle. Hence, invariance under an irrational rotation is very close to rotational
invariance (for continuous images f , it is equivalent).

6.4. Testing Reflection and Joint Symmetries

Reflections

In this section we discuss how to test f ∈ L2(D) in model (6.4) for symmetries
with respect to certain reflections. First let us consider the reflection τ at the
y-axis, defined by τf(x, y) = f(−x, y), (x, y) ∈ D. In polar coordinates, this is
equivalent to

(̃τf)(ρ, θ) = f
(
ρ cos(π − θ), ρ sin(π − θ)

)
= f̃(ρ, π − θ).
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A simple computation shows that cq(ρ, τf) = (−1)|q|c−q(ρ, f) and that Rpq(ρ) =
Rp,−q(ρ), therefore in view of (6.9) we have

Apq(τf) = (−1)|q|Ap,−q(f). (6.26)

Now consider the hypothesis that the image f is invariant under the reflection τ ,
i.e.,

Hτ : τf = f,

which using (6.26) can be expressed in terms of Zernike moments as Apq(f) =
(−1)|q|Ap,−q(f) for admissible (p, q). Therefore a natural test statistic is

T τ
N =

N∑
p=0

p∑
q=−p

n−1
p

∣∣Âpq(f) + (−1)|q|+1Âp,−q(f)
∣∣2.

The following theorem gives the asymptotic distribution of T τ
N under the hypoth-

esis Hτ as well as under a fixed alternative.

Theorem 6.4. Let the hypothesis Hτ : τf = f hold. If Δ → 0, N → ∞ such
that ΔN7 → 0, then we have

1
Δ2
√

(N + 1)(N + 2)

(
T τ

N − σ2Δ2(N + 1)(N + 2)
) L→ N(0, 8σ4). (6.27)

Under a fixed alternative τf �= f , suppose that f ∈ Cs(D) for some s ≥ 2. If
ΔN2s+1 → ∞ and N3/2Δγ−1 → 0, where γ = 285/208 is as in Lemma 6.2, we
have that

1
Δ
(
T τ

N − ‖f − τf‖2
) L→ N(0, 16σ2‖f − τf‖2). (6.28)

The proof of this theorem is somehow similar to that of Theorem 6.1 and is
therefore omitted.

Analogous test statistics and asymptotic results as in Theorem 6.4 can in
principle be deduced for reflections with respect to arbitrary axis through the
origin. In particular, for reflection with respect to the x-axis or one of the di-
agonals, similar results hold true. This is due to the fact that the design is also
invariant under these reflections.

Joint Symmetries

In this section we wish to consider an important practical problem of testing joint
symmetries, i.e., testing symmetry with respect to several transformations. For
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example, consider testing the invariance under the reflections with respect to the
x-axis and y-axis. These transformations are denoted by τx and τy, respectively.

Since τxτy = r1 and r1τy = τx, the group generated by {τx, τy} is the same
as that generated by {τy, r1}. Therefore, one can also design tests for invariance
with respect to the reflection τy and the rotation r1. In general, a group generated
by two reflections can always be generated by a reflection and a rotation. Since
we already have test statistics for the hypotheses Hr1 and Hτy , we could test
the joint hypothesis Hτy ,r1 = Hr1 ∧Hτy based on the theory of multiple testing
procedures, see [100] for an introduction to the theory of multiple testing.

For example, the Bonferroni procedure tests separately both hypotheses Hr1

and Hτy to the level α/2. If at least one is rejected at this level, the compound
hypothesis Hτy ,r1 can be rejected at a level α.

This two-step approach, however, is not optimal and it is important to con-
struct a test statistic which directly tests the composite hypothesis Hτy ,r1 . In
fact, such tests often outperform multiple testing procedures in terms of power.
To this end let L2(τy, r1) ⊂ L2(D) be the subspace of images in L2(D) invariant
under τy and r1. Then the orthogonal projection πτy ,r1 onto L2(τy, r1) is given
by

πτy ,r1(f)(x, y) =
∑

p even

p∑
q=−p

n−1
p

(
Apq(f) + (−1)|q|Ap,−q(f)

2

)
Vpq(x, y).

The test statistic can now be easily defined by estimating the distance ‖f −
πτy ,r1f‖2. Expressing this in terms of Zernike moments leads to the following
test statistic

T
τy ,r1

N =
N∑

p=0,p odd

p∑
q=−p

n−1
p

∣∣Âpq(f)
∣∣2

+
1
4

N∑
p=0,p even

p∑
q=−p

n−1
p

∣∣Âpq(f) + (−1)|q|+1Âp,−q(f)
∣∣2.

For this test statistic we have the following asymptotic result.

Theorem 6.5. Let the compound hypothesis Hτy ,r1 : τyf = f and r1f = f hold.
If Δ → 0, N → ∞ such that ΔN7 → 0, then we have that

1
Δ2
√
a(N)

(
T

τy ,r1

N − σ2Δ2a(N)
) L→ N(0, 2σ4),

where
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a(N) =

⎧⎪⎨⎪⎩
(N + 2)2

8
+
N(N + 2)

4
N even,

(N + 1)2

8
+

(N + 1)(N + 3)
4

N odd.

Under a fixed alternative τyf �= f or r1f �= f suppose that f ∈ Cs(D) for s ≥ 2.
If ΔN2s+1 → ∞ and N3/2Δγ−1 → 0, where γ = 285/208 is as in Lemma 6.2, we
have that

1
Δ
(
T

τy ,r1

N − ‖f − πτy ,r1f‖2
) L→ N(0, 4σ2‖f − πτy ,r1f‖2).

The proof of this theorem is somehow similar to that of Theorem 6.1 and is
therefore omitted.

Testing procedures based on the result of Theorem 6.5 can now be imple-
mented in a completely analogous fashion as in Section 6.3.

6.5. Conclusions

We have examined the basic class of symmetries which are common in natural im-
ages, i.e., rotational and reflection symmetries. We have mostly been focusing on
testing an individual type of symmetry. In Section 6.4, however, a testing proce-
dure for verifying several reflections has been developed. Generally, a challenging
problem arises of testing a compound hypothesis on several possible symmetries
occurring simultaneously. This requires advanced tools to be provided by the
theory of multiple-hypothesis and this topic deserves further studies.

Yet there are other possible symmetries appearing in visual objects. For
instance, in Fig. 6.3 the image of the yin and yang is shown which originates
from ancient Chinese philosophy and metaphysics and which describes two primal
opposing but complementary forces found in all things in the universe. Yin, the
darker element, is passive, dark, feminine, downward-seeking, and corresponds
to the night; yang, the brighter element, is active, light, masculine, upward-
seeking and corresponds to the day. This image is a nonlinear counterpart of
a skew-symmetric function for which f(y, x) = −f(x, y), where the minus sign
corresponds to the operation of changing the image color. The latter describes
the skew symmetry with respect to the line y = x, whereas the image of the yin
and yang is skew symmetric with respect to a nonlinear boundary.

6.6. Appendix

Before proving Theorem 6.1 we need two auxiliary results. The first result gives
an approximation error of the discrete version of the orthogonality property of
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Figure 6.3: The image of the yin and yang

the Zernike functions.

Lemma 6.1. Let for some admissible pairs (p, q), (p′, q′),

I(Δ) =
∑

(xi,yj)∈D

w∗
pq(xi, yj)wp′q′(xi, yj),

where wpq(xi, yj) is defined either in (6.12) or in (6.13). Then we have for some
c1, c2 > 0 that

I(Δ) = Δ2npδpp′δqq′ + c1Δ3+α + c2
(√

p+ |q| +
√
p′ + |q′|

)
Δ5/2, (6.29)

where α can be selected as α = 77/208 = 0.37019 . . ..

The proof of this lemma, being somehow technical, is based on the results
obtained in Chapter 4. The factor α describes the contribution of the geometric
error examined extensively in Chapter 3.

The following lemma describes the discretization error of Parseval’s formula
when the Zernike moment Apq(f) is estimated by Âpq(f).

Lemma 6.2. Let f ∈ Cs(D) be the class of functions having s continuous partial
derivatives. Let Âpq(f) be the estimate of the Zernike coefficient defined in (6.14)
and let

SN =
N∑

p=0

∑
|q|≤p

n−1
p

∣∣EÂpq(f)
∣∣2.

Then we have

SN = ‖f‖2 +O
(
NΔ3/2 +N3/2Δγ +N−(2s+1)

)
,

where γ = 285/208 describes the contribution of the geometric error, see Chap-
ter 3 and [106].
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Remark 6.2. Let f ∈ BV(D) be the class of functions of bounded variation on
D. Then the result in Lemma 6.2reads as follows, see Chapter 4 and [180],

SN = ‖f‖2 +O
(
NΔ3/2 +N3/2Δγ +N−1

)
.

Proof of Theorem 6.1. For admissible (p, q) with odd q, we have for the weights
in both (6.12) and (6.13) that wpq(xi, yj) = (−1)|q|wpq(xn−i+1, yn−j+1). This is
evident for (6.13). As for (6.12), first note that the rotated version −Πij of the
pixel Πij is again a pixel, namely the pixel Πn−i+1,n−j+1. Now use the fact that
wpq(xi, yj) = Apq

(
1Πij

)
and (6.15). Then it follows that for admissible (p, q) with

odd p,

Âpq(f) =
∑

(xi,yj)∈D

wpq(xi, yj)
(
f(xi, yj) + εi,j

)
,

where

f(x, y) =
(
f(x, y) − f(−x,−y)

)
/2.

Set

m(ij),(kl) =
∑
(p,q)

n−1
p wpq(xi, yj)w∗

pq(xk, yl),

where here and for the rest of the proof all sums involving (p, q)’s are taken over
admissible pairs with 0 ≤ p ≤ N and odd p. We obtain

T r1
N =

∑
(xi,yj),(xk,yl)∈D

εi,j εk,lm(ij),(kl) + 2
∑

(xi,yj),(xk,yl)∈D

f(xi, yj) εk,lm(ij),(kl)

+
∑

(xi,yj),(xk,yl)∈D

f(xi, yj) f(xk, yl)m(ij),(kl)

= S1,N + S2,N + S3,N . (6.30)

First assume that the hypothesis Hr1 is true. Then we have that S2,N =
S3,N = 0, and we only have to study S1,N . Note that for the vectors vpq =(
wpq(xi, yj)

)
(xi,yj)∈D

, from Lemma 6.1 it follows that

vT∗
pq vp′q′ = Δ2npδp,p′δq,q′ +O

(
Δ5/2(p1/2 + |q|1/2 + p′1/2 + |q′|1/2)

)
, (6.31)

where the constant in O(·) is independent of p, q, p′, q′.
The matrix of coefficients M =

(
m(ij),(kl)

)
(i,j),(k,l)∈D

can be written as

M =
∑
(p,q)

n−1
p vpq v

T∗
pq . (6.32)
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Then using (6.31) we have for the expectation

ES1,N = σ2trM = σ2
∑
(p,q)

n−1
p tr(vT∗

pq vpq)

= σ2
∑
(p,q)

n−1
p

(
Δ2np +O

(
Δ5/2(p1/2 + |q|1/2

))
= σ2Δ2a(N) +O

(
Δ5/2N7/2

)
. (6.33)

Here trA denotes the trace of a square matrix A, and a(N) is the number (defined
in (6.19)) of terms in the sum

∑
(p,q) with p being odd. Next decompose

S1,N =
∑

(xi,yj)∈D

ε2i,j m(i,j),(i,j) +
∑

(xi,yj) �=(xk,yl)∈D

εi,jεk,lm(ij),(kl)

= S1,1,N + S1,2,N .

First note that

ES1,2,N = ES1,2,NS1,1,N = 0, ES1,N = ES1,1,N ,

where the formula for ES1,N is given in (6.33).
Using the fact that |wpq(x, y)| ≤ Δ2, we can estimate the variance of S1,1,N

as follows

Var S1,1,N ≤ E
(
ε21,1 − σ2

)2 ∑
(p1,q1)

∑
(p2,q2)

n−1
p1
n−1

p2∑
(xi,yj)∈D

|wp1q1(xi, yj)|2|wp2q2(xi, yj)|2 = O
(
Δ6N6

)
. (6.34)

Now let us evaluate the variance of S1,2,N . Let DM denote the diagonal matrix
consisting of the diagonal elements of M . Then

Var S1,2,N = 2σ4tr(M −DM )2 = 2σ4
(
trM2 − trD2

M

)
= 2σ4trM2 +O(Δ6N6), (6.35)

where we used (6.34) in the last step.
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Furthermore a tedious algebra shows that

trM2 =
∑

(p1,q1)

∑
(p2,q2)

n−1
p1
n−1

p2
|vT∗

p1,q1
vp2,q2 |2

=
∑

(p1,q1)

∑
(p2,q2)

n−1
p1
n−1

p2

(
Δ2npδp1,p2δq1,q2

+O
(
Δ5/2(p1/2

1 + |q1|1/2 + p
1/2
2 + |q2|1/2)

))2
=
∑
(p,q)

Δ4 +
∑
(p,q)

n−1
p Δ9/2O

(
p1/2 + |q|1/2

)
+
∑

(p1,q1)

∑
(p2,q2)

n−1
p1
n−1

p2
Δ5O

(
p1 + |q1| + p2 + |q2|

)
= a(N)Δ4 +O(Δ9/2N7/2) +O(Δ5N7).

Using this, (6.35) and ΔN5 → 0, we finally get

Var S1,2,N ∼ 2σ4Δ4a(N). (6.36)

This is of higher order than the variance of S1,1,N , therefore S1,2,N dominates the
asymptotics.

To evaluate its asymptotic distribution, we use Theorem 5.2 of de Jong [32].
To check Condition 1 of this theorem, we compute

max
(xi,yj)∈D

∑
(xk,yl)∈D

|m(ij),(kl)|2

= max
(xi,yj)∈D

∑
(p1,q1)

∑
(p2,q2)

n−1
p1
n−1

p2
wp1q1(xi, yj)w∗

p2q2
(xi, yj)

∑
(xk,yl)∈D

w∗
p1q1

(xk, yl)wp2q2(xk, yl)

= O(Δ6N6) = o
(
Δ4N2

)
.

Then Condition 2 of Theorem 5.2 in [32] will be automatically satisfied (one could
choose K(Δ) = N in Condition 2 of [32]) since the sequence {εi,j} is i.i.d.

In order to check Condition 3 in [32] we have to bound the spectral value of
the matrix M defined in (6.32). First note that

M2 =
∑

(p1,q1)

∑
(p2,q2)

n−1
p1
n−1

p2
vp1q1(v∗Tp1q1

vp2q2)v∗Tp2q2
.
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Applying (6.31) yields

M2 = Δ2M

+ Δ5/2
∑

(p1,q1)

∑
(p2,q2)

n−1
p1
n−1

p2
vp1q1v

∗,T
p2q2

O
(√
p1 +

√
q1 +

√
p2 +

√
q2
)
, (6.37)

where the summation is taken over (p1, q1) �= (p2, q2).
Let λ be an eigenvalue of the symmetric matrix M corresponding to the unit

length eigenvector u. Noting that M2u = λ2u, we have from (6.37) that

λ2u = Δ2λu+ Δ5/2
∑

(p1,q1)

∑
(p2,q2)

n−1
p1
n−1

p2
vp1q1v

∗,T
p2q2

uO
(√
p1 +

√
q1 +

√
p2 +

√
q2
)
.

Subtracting and taking the norm gives

λ2 − Δ2λ

= Δ5/2O

⎛⎝ ∑
(p1,q1)

∑
(p2,q2)

n−1
p1
n−1

p2
‖vp1q1v

∗,T
p2q2

‖
(√
p1 +

√
q1 +

√
p2 +

√
q2
)⎞⎠ . (6.38)

From (6.31) we obtain

‖vpq‖2 = npΔ2 +O
(
Δ5/2(

√
p+
√

|q|)
)
.

Thus

‖vp1q1v
∗T
p2q2

‖ ≤ ‖vp1q1‖‖vp2q2‖

= O
(√

np1np2Δ2 +
√
np1

(
p
1/4
2 + |q1/4

2 |
)
Δ9/4

+
√
np2

(
p
1/4
1 + |q1/4

1 |
)
Δ9/4 +

(
p
1/4
1 + |q1/4

1 |
)(
p
1/4
2 + |q1/4

2 |
)
Δ5/2

)
.

Using this bound in (6.38), after some tedious but straightforward algebra we
obtain the formula

λ(λ− Δ2) = Δ5/2O(Δ2N11/2 + Δ9/4N25/4 + Δ5/2N7)
= O(Δ9/2N11/2 + Δ19/4N25/4 + Δ5N7). (6.39)

By solving the above quadratic equation, we get

|λ| = Δ2 +O
(
Δ9/4N11/4

)
.
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Since we have already shown that Var S1,N = O(Δ4N2), Condition 3 of de Jong
[32] is evaluated as follows

|λ|√
Var S1,N

=
1
N

+O(Δ1/4N7/4).

Since ΔN7 → 0, and all estimates are uniform over the eigenvalues of M , this
finishes the proof of the first part of Theorem 6.1.

Now let us consider the case of an alternative hypothesis, i.e., r1f �= f . Let
us start with the non-stochastic term S3,N in (6.30). First note that

S3,N =
∑
(p,q)

n−1
p

∣∣EÂ(f)
∣∣2.

Then by virtue of Lemma 6.2 with f(x, y) replaced by f(x, y), we have

S3,N = ‖f − r1f‖2/4 +O
(
NΔ3/2 +N3/2Δγ +N−(2s+1)

)
. (6.40)

Next let us evaluate the variance of S2,N . Note first that

VarS2,N = 4σ2
∑

(xi,yj)∈D

⎛⎝ ∑
(xk,yl)∈D

f(xk, yl)m(ij),(kl)

⎞⎠2

.

By expanding the formula in brackets and recalling the definition of the matrix
M we obtain

VarS2,N = 4σ2f
T
M2f, (6.41)

where the vector f is defined by f =
(
f(xi, yj)

)
(xi,yj)∈D

. The proof of the first

part of the theorem, see formula (6.39), reveals that

M2 = Δ2M +O(Δ9/2N11/2).

This and (6.41) gives

Var S2,N = 4σ2Δ2f
T
Mf + f

T
f O
(
Δ9/2N11/2

)
.

Observing that fT
Mf = S3,N and using (6.40) we obtain

Var S2,N = σ2Δ2‖f − r1f‖2 +O
(
NΔ7/2 +N3/2Δγ+2 + Δ2N−(2s+1)

)
+ ‖f‖2O

(
Δ9/2N11/2

)
.
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Hence Var S2,N is of order Δ2, and S2,N dominates the quadratic term S3,N .
Furthermore the second term in (6.40) is negligible, even after dividing by the
standard deviation Δ.

Finally, we check Lyapunov’s condition. We shall show that

Eε411
∑

(xk,yl)∈D

∣∣∣∑(xi,yj)∈D f(xi, yj)m(ij),(kl)

∣∣∣4(
Var S2,N

)2 → 0. (6.42)

The interior sum in the denominator can be evaluated as follows (see Chapter 4
and [180])∑

(xi,yj)∈D

f(xi, yj)m(ij),(kl) =
∑
(p,q)

w∗
pq(xk, yl)n−1

p

∑
(xi,yj)∈D

f(xi, yj)wpq(xi, yj)

=
∑
(p,q)

w∗
pq(xk, yl)n−1

p

(
Apq(f) +O(Δγ)

)
. (6.43)

From the proof of Lemma 4.3 in Chapter 4, see also [180], we have

|Apq(f)| = O

(
1

(|q| + 1)(p+ 1)
√
p− |q| + 1

)
.

Using this we estimate the numerator in (6.42) by

∑
(xk,yl)∈D

∣∣∣∣∣∣
∑

(xi,yj)∈D

f(xi, yj)m(ij),(kl)

∣∣∣∣∣∣
4

= O
(
(N log(N))4Δ6 + Δ8γ+6N12

)
,

and since Var S2,N is of order Δ2, (6.42) is O((N log(N))4Δ2+Δ8γ+2N12), which
tends to zero since N3/2Δγ−1 → 0. This completes the proof of Theorem 6.1.



Chapter 7

Orthogonal Radial Moments
for Data Hiding

This chapter concerns the application of the orthogonal radial moments to the
multimedia problem of data hiding. We have already examined the invariant
properties of the orthogonal radial moments and found that the invariance holds
only approximately due to the inaccuracies in their computation. In this chap-
ter we identify a subset of radial moments which are suitable for the problem of
data hiding in the presence of geometric attacks. In applications of data hiding,
the embedded signal robustness to geometric transformations and lossy compres-
sion is often considered to be crucial, though difficult to achieve. We present a
data hiding algorithm based on the radial Zernike and pseudo-Zernike moments.
By distinguishing between hardly-invariant Zernike/pseudo-Zernike and nearly-
invariant Zernike/pseudo-Zernike moments, we select only the latter for data
hiding to guarantee its geometric robustness. For data embedding, dither mod-
ulation is employed to quantize the magnitudes of the selected Zernike/pseudo-
Zernike moments. For data extraction, a minimum distance decoder is applied
to estimate the embedded data. Simulation results show that the embedded in-
formation can be extracted at low error rates, robust against typical geometric
manipulations such as rotation, flipping, scaling, and aspect ratio change, as well
as a variety of other distortions such as lossy compression, additive noise and
lowpass filtering.

7.1. Introduction

Digital watermarking is the process of embedding some hidden information in
a digital medium, such as an image, an audio signal and a video signal, by

165
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modifying the medium slightly, and later extracting the embedded information
from the modified medium for some purposes. The embedded signal is called
a watermark, and the original medium is called the host signal or cover signal,
while the modified medium is termed a watermarked signal.

Digital watermarking has attracted considerable attention in both academic
and industry communities in the past decade, because it is regarded as a promis-
ing means to address problems related to digital media in a variety of ways.
The primary application of digital watermarking is copyright protection. The
drastic development of new technologies, such as the advent of the Internet and
recordable compact disk, makes it extremely easy to disseminate and duplicate
multimedia contents, which brings about copyright infringement. Under such cir-
cumstances, the producer of a multimedia work can use a watermark as a proof
to claim authorship or ownership. Another important application of digital wa-
termarking is authentication of multimedia content. With the wide spread use of
various multimedia editing software, it is a simple matter to modify the contents
of a multimedia work. A watermark can be used as an effective means to verify
the integrity of a work. A digital watermark can also be useful in tracing the
source of illegal copies of multimedia works. Furthermore, a digital watermark
can be applied for other purposes such as device control and signal multiplexing.
As an example, a typical watermarking process is shown in Fig. 7.1, where the
cover signal is an image and the message to be embedded is a logo. A secret key is
often used in a watermarking system for security reasons. A watermarked signal
often undergoes attacks, either intentional or unintentional, before it is used for
watermark extraction. Because of the attacks, the extracted message is likely to
contain some errors.

WM 
encoder

Attacks

WM 
extractor

Figure 7.1: Illustration of the watermarking process



167

The fundamental task in designing a watermarking system is to address some
conflicting requirements including watermark transparency, watermark robust-
ness and information capacity etc [28]. Among various problems occurring in
image watermarking, robustness against geometric transformations such as im-
age rotation and scaling is considered to be the most challenging one. It is a
well known fact [28] that many existing image watermarking algorithms are vul-
nerable to this kind of attacks. There have been some preliminary approaches
in addressing this issue [4–6, 43, 123, 148, 197, 229, 239]. Among the various tech-
niques available in the literature, we are most interested in the invariant aspects
of watermarking, which are based on the invariance property of some image fea-
tures. O’Ruanaidh et al. [165] first reported an elegant approach to the design
of rotation-scaling-translation (RST) invariant watermarks in the Fourier-Mellin
domain. First, discrete Fourier transform (DFT) is applied to get the translation-
invariant magnitudes of Fourier coefficients, which is followed by a log-polar trans-
form plus another DFT, resulting in scaling and rotation invariant magnitudes
of Fourier-Mellin coefficients. Based on a similar idea, Lin et al. [148] designed
a 1-D watermark whose detection statistic is invariant to image translation and
scaling, but non-invariant to image rotation. A known issue associated with log-
polar-based algorithms is that the image quality usually suffers greatly from the
inherent instability of the inverse log-polar mapping. Yet another direction based
on moment invariants has been explored for image watermarking in Alghoniemy
et al. [5, 6]. They have utilized a set of geometric moment-based invariants, due
originally to Hu [101], see also Chapter 1, to design a zero-bit watermark, which
is robust against geometric manipulations and filtering, etc. The discussion in
Chapter 1 points to a number of limitations of the geometric moment invariants.
First, there are too few of them, which makes the embedding of a multibit wa-
termark virtually impossible. Moreover, the nonlinear nature of the invariants
makes them potentially unstable and they are ill-posed in terms of the image
reconstruction.

The Zernike moments were reported as watermark features by Farzam et
al. [43] to achieve watermark robustness to rotation, additive noise and JPEG
compression. More recently, in [123], a zero-bit watermark has been embedded
by modifying a Zernike feature vector consisting of some Zernike moments with
orders less than five. Nevertheless, the proposed Zernike moment-based water-
marking algorithms have employed poor approximates of the Zernike coefficients
yielding an imperfect invariance property.

In this chapter, following our analysis of the uneven invariance property of
Zernike/pseudo-Zernike moments (ZMs/PZMs), we focus on the investigation of
a data hiding scheme with good robustness to geometric distortions and other
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common attacks. Unlike other watermarking algorithms dealing with zero-bit
watermarks, our algorithm works with multibit watermarks. This is realized by
quantizing the magnitudes of the selected ZMs/PZMs through quantization index
modulation [23] to embed an array of bits. We modify the magnitudes of high
order ZMs/PZMs, in an attempt to embed a large data payload and simultane-
ously, to achieve watermark robustness to geometric distortions. In particular,
rotation, scaling and flipping, as well as some other forms of attacks such as
additive noise and lossy compression are taken into consideration. We obtain a
watermarked image by combining the reconstructed components from the modi-
fied moments and those left intact. In watermark extraction, the same group of
selected ZMs/PZMs are computed from the possibly distorted (attacked) image,
and the array of bits is retrieved from the invariant magnitudes of the ZMs/PZMs
using a minimum distance decoder.

This chapter is organized as follows. In Section 7.2, some preliminaries are
given, including the introduction of Zernike/pseudo-Zernike polynomials and cor-
responding moments (ZMs/PZMs) and we discuss their invariance properties.
The imperfect rotational invariance of ZMs/PZMs in the case of digital images is
analyzed in Section 7.3. Subsequently we describe our watermark embedding and
extraction algorithms in Section 7.4 and Section 7.5 respectively. In Section 7.6
we present a variety of simulation results which illustrate the effectiveness of the
proposed algorithm. We discuss some additional aspects related to our algorithm
in Section 7.7. Finally, conclusions are given in Section 7.8.

7.2. Zernike and Pseudo-Zernike Moments

Zernike/Pseudo-Zernike Polynomials

Let us recall that the Zernike basis is a set of complete and orthogonal functions
on the unit disk D defined by the following rotationally invariant form [18,250]

Vnm(x, y) = Rnm(ρ)ejmθ, (7.1)

where ρ =
√
x2 + y2, θ = tan−1(y/x). Here n is a non-negative integer and m

is an integer that takes positive, negative, or zero values such that n − |m| is
even and non-negative. The radial Zernike polynomial Rnm(ρ) is defined by the
following formula

Rnm(ρ) =
(n−|m|)/2∑

s=0

(−1)s(n− s)!ρn−2s

s!
(

n+|m|
2 − s

)
!
(

n−|m|
2 − s

)
!
. (7.2)
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A modified version of Zernike basis is the so-called pseudo-Zernike basis [13,
221], which is also a set of complete and orthogonal functions on D, and has
the same invariant form as (7.1) with two exceptions. One is that m is only
restricted to be |m| ≤ n, and the other is that the radial polynomial Rnm(ρ) is
defined differently as the following

Rnm(ρ) =
n−|m|∑
s=0

(−1)s(2n+ 1 − s)! ρn−s

s! (n+ |m| + 1 − s)! (n− |m| − s)!
. (7.3)

Zernike/Pseudo-Zernike Moments

Like any other orthogonal and complete basis, the Zernike/pseudo-Zernike basis
can be used to decompose an analog image function f(x, y):

f(x, y) =
∞∑

n=0

∑
m

AnmVnm(x, y), (7.4)

where the second summation is taken with respect to all permissible values of m.
In (7.4) Anm is the Zernike/pseudo-Zernike moment of order n with repetition
m, which is defined as follows

Anm =
n+ 1
π

∫∫
D
f(x, y)V ∗

nm(x, y)dxdy, (7.5)

where * denotes complex conjugate. Let us note that for the simplicity of future
notation we have slightly modified the definition of Anm by incorporating the
normalizing factor (n+ 1)/π.

For digital images, (7.5) cannot be applied directly. Let us assume an M ×M
image matrix F (i, j), i = 1, ...,M, j = 1, ...,M . In order to compute its Zernike
moments, one has to map F (i, j) into the function f(xi, yj) defined on [−1, 1]2,
such that f(xi, yj) = F (i, j), i = 1, ...,M, j = 1, ...,M , where xi = (2i−M−1)/M
and yj = (2j−M−1)/M . The Zernike moment of f(xi, yj) is computed as follows

Ânm =
n+ 1
π

M∑
i=1

M∑
j=1

hnm(xi, yj)f(xi, yj), (7.6)

where the values of i and j are taken such that x2
i + y2

j ≤ 1, and

hnm(xi, yj) =
∫ xi+δ/2

xi−δ/2

∫ yj+δ/2

yj−δ/2
V ∗

nm(x, y)dxdy, (7.7)
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where δ = 2/M . The factor hnm(xi, yj) can be computed by using a number
of numerical techniques discussed in Chapter 3. In this chapter, we adopt the
following most commonly used estimate of Anm

Ânm =
n+ 1
π

δ2
M∑
i=1

M∑
j=1

V ∗
nm(xi, yj)f(xi, yj). (7.8)

We have to point out that the ZMs/PZMs of discrete images computed by formula
(7.8) are not very accurate. As analyzed in Chapters 3 and 4, there are two sources
of errors, namely geometric and numerical integration errors. The former is due
to the fact that the areas covered by the pixels involved in the computation of
moments never sum up exactly to the area of the unit disk. The latter comes
from the approximation of the integral defining Anm.

Due to the close similarity of Zernike moments and pseudo-Zernike moments,
we do not differentiate between their denotations. We denote by Anm both ZMs
and PZMs, and Vnm(x, y) defines both the Zernike and pseudo-Zernike polyno-
mials. Furthermore, in our considerations we are mostly concerned with digital
images and the estimate Ânm will be simply denoted by Anm, unless otherwise
stated.

The Invariance Properties of Zernike/Pseudo-Zernike Moments

The reason we use ZMs/PZMs for image watermarking is that they have some
very important properties, i.e., their magnitudes are invariant under image rota-
tion and image flipping. We now elaborate on these properties.

Rotation Invariance

If image f(x, y) is rotated through an angle α then it can be shown that the
ZMs/PZMs of the resulting image are

A(α)
nm = Anme

−jmα. (7.9)

This leads to |A(α)
nm| = |Anm|. Therefore, if a watermark is inserted in the mag-

nitudes of ZMs/PZMs, it is robust to rotation. Note that this property holds
perfectly in the case of analog images. For the discrete version of ZMs/PZMs,
typically computed by formula (7.8), this property has to be compromised to
some extent. We have a detailed analysis of this problem in the next section.
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Flipping Invariance

Consider another interesting property of ZMs/PZMs with respect to image flip-
ping, either horizontal or vertical. Let the horizontally flipped version of the
digital image f(xu, yv) be defined as f (hf)(xu, yv) = f(−xu, yv) and the corre-
sponding discrete ZMs/PZMs be denoted by A(hf)

nm . Also let the vertically flipped
version of the image f(xu, yv) be f (vf)(xu, yv) = f(xu,−yv) with the correspond-
ing discrete ZMs/PZMs A(vf)

nm . Then we have

A(hf)
nm = k

∑
{(xu,yv)∈D}

V ∗
nm(xu, yv)f (hf)(xu, yv)

= k
∑

{(xu,yv)∈D}
Rnm(ρ)e−jmθf(−xu, yv)

= k
∑

{(xu,yv)∈D}
Rnm(ρ)e−jm(π−θ)f(xu, yv)

= k
∑

{(xu,yv)∈D}
(−1)mRnm(ρ)ejmθf(xu, yv)

= (−1)mA∗
nm (7.10)

where k = δ2(n+ 1)/π.
Similarly,

A(vf)
nm = k

∑
{(xu,yv)∈D}

V ∗
nm(xu, yv)f (vf)(xu, yv)

= k
∑

{(xu,yv)∈D}
Rnm(ρ)e−jmθf(xu,−yv)

= k
∑

{(xu,yv)∈D}
Rnm(ρ)e−jm(−θ)f(xu, yv)

= k
∑

{(xu,yv)∈D}
Rnm(ρ)ejmθf(xu, yv)

= A∗
nm. (7.11)

Thus in either case, the magnitudes of the discrete ZMs/PZMs do not change,
i.e., |A(hf)

nm | = |Anm| and |A(vf)
nm | = |Anm|. This property is of significance in

watermarking applications, since image flipping is an easy and effective form of
attack to which many existing watermarking algorithms are vulnerable.
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Scaling Invariance

In this chapter by scaling we mean image resizing. Although in theory ZMs/PZMs
are not invariant to image scaling, we can still obtain approximate scaling invari-
ance in practice, either by changing the unit disk region accordingly or resizing
the image to a canonical size, provided that the unit disk is made to cover the
same contents of the image. It is worth noting that this property holds well
only when the image is scaled moderately. When the image is scaled to a much
smaller size, this property has to be compromised due to the loss of information.
However, in many applications, including the watermarking scenarios, it is true
that images are scaled only slightly.

7.3. Approximate Invariance of ZMs/PZMs
of Digital Images

As stated above, for digital images, we can only obtain an approximate version of
ZMs/PZMs, and hence the invariance property of the moment magnitudes holds
only approximately. What we are concerned with is how close this approximation
is. We argue that the magnitude invariance of a particular ZM/PZM depends on
its computation accuracy. We have observed that under (7.8), different moments
have different levels of computation accuracy. For example, assume we have an
128 × 128 image of a constant graylevel 127. Based on (7.8), we have calculated
its ZMs and PZMs up to order 10, whose magnitudes are shown in Table 7.1
and Table 7.2 respectively. In theory, all the ZMs/PZMs of this image except
A00 should be zero, but in fact we can see from these tables that a number of
moments deviate from zero, and some of them even have considerable magnitudes.
In general, we have the following results.

Theorem 7.1. The Zernike/pseudo-Zernike moments of a constant image f(xi, yj) =
T , computed by formula (7.8), are

Anm =

⎧⎨⎩
T (1 +O(δγ)), if n = m = 0,
�= 0, if n �= 0 and m = 4k, k ∈ Z,
0, otherwise,

where 1 ≤ γ < 3/2 is the exponent characterizing the geometric error, see Chap-
ter 3.

This theorem is significant for invariant watermarking intended for robustness
against geometric distortions. From this theorem, we know that not all the
ZMs/PZMs of a discrete image can be accurately computed. The Anm with
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m = 4i, i being an integer, are not accurate and hence |Anm| are not invariant
to image rotation. Therefore they are not suitable for invariant watermarking.

Table 7.1: Magnitudes of Zernike moments up to order 10 for
a 128 × 128 constant image

m = 0 1 2 3 4 5 6 7 8 9 10
n = 0 127.24

1 0
2 0.7083 0
3 0 0
4 1.1689 0 0.0049
5 0 0 0
6 1.6117 0 0.0004 0
7 0 0 0 0
8 2.0287 0 0.0136 0 0.2140
9 0 0 0 0 0

10 2.4110 0 0.0375 0 0.2169 0

Table 7.2: Magnitudes of pseudo-Zernike moments up to order 10 for
a 128 × 128 constant image

m = 0 1 2 3 4 5 6 7 8 9 10
n = 0 127.24

1 0.4728 0
2 0.7044 0 0
3 0.9329 0 0 0
4 1.1482 0 0 0 0.0049
5 1.3682 0 0 0 0.0002 0
6 1.5486 0 0 0 0.0080 0 0
7 1.7667 0 0 0 0.0203 0 0 0
8 1.8816 0 0 0 0.0377 0 0 0 0.2140
9 2.1156 0 0 0 0.0612 0 0 0 0.1993 0

10 2.1188 0 0 0 0.0918 0 0 0 0.1704 0 0

7.4. Watermark Embedding

The structure of the watermark embedder is depicted in Fig. 7.2. The main ideas
are explained below.
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Figure 7.2: The structure of the watermark embedder

Structure of Embedded Bit Sequence

The embedded bit array consists of two parts, as indicated in Fig. 7.3. The
first part is an I-bit auxiliary sequence (b1...bI), which is followed by the second
part, a J-bit informative sequence (bI+1...bI+J). The auxiliary part is a fixed
bit sequence, known to both the watermark embedder and watermark extractor,
whose purpose is to facilitate the determination of the unit disk. Due to the
possible geometric distortions, such as image resizing and scaling, it is crucial for
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the watermark extractor to have the exact knowledge of the image region covered
by the unit disk in order to extract the informative bits. We address this issue by
embedding the fixed auxiliary bit sequence (b1...bI). When the adopted region
is not the correct unit disk region, the extracted auxiliary bit sequence (b′1...b

′
I)

displays randomness, and thus does not agree well with the embedded sequence
(b1...bI). On the contrary, if the unit disk region is adopted correctly, the two
sequences match well. It can be shown that the probability that a uniformly
distributed random bit sequence (b′1...b

′
I) matches the fixed sequence (b1...bI) at

more than H bit positions is

P (I,H) = 2−I
I∑

i=H

(
I

i

)
. (7.12)

For example, if the given sequence is 16 bit long, and an extracted bit sequence
matches it at 14 bit positions, we are almost sure that the correct unit disk region
is adopted, because P (16, 14) ≈ 2.1 × 10−3, meaning that the probability of a
non-unit disk region is only 2.1 × 10−3.

b1 bI bI+1 bI+J

I auxiliary bits J informative bits

Length of embedded bit sequence L = I + J

. . . . . . . . . . . .

Figure 7.3: The structure of the embedded bit sequence

Selection of ZMs/PZMs

We consider three factors in selection of moments for data hiding. Firstly, as
shown in the previous section, the combination of geometric error and numerical
error makes the computation of some ZMs/PZMs inaccurate, thus compromising
their invariance property. As a result, some ZMs/PZMs can be computed more
accurately, hence more suitable for invariant data hiding than others. According
to Theorem 7.1, all Anm’s with repetition m = 4i, i being an integer, have
to be ruled out for data hiding. Secondly, due to the rounding errors which
become more and more significant as the order increases, there exists a certain
value Nmax, which makes a ZM/PZM Anm with n > Nmax inaccurate, even if
m �= 4i. Therefore only those Anm’s with n ≤ Nmax are reliable and selected for
data hiding. In our experiments, we set Nmax = 44 for Zernike moments and set
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Nmax = 23 for pseudo-Zernike moments. Thirdly, due to the conjugate symmetry
A∗

nm = An,−m, only about half of ZMs/PZMs have independent magnitudes, and
in practice we only choose those Anm’s with m ≥ 0. Considering all these factors,
the set of applicable ZMs/PZMs can be denoted by S = {Anm, n ≤ Nmax,m ≥
0,m �= 4i}. The cardinalities of S can be readily obtained with straightforward
algebra

|S|ZM =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3N2

max + 8Nmax)/16, if Nmax = 4i,
(3N2

max + 10Nmax + 3)/16, if Nmax = 4i+ 1,
(3N2

max + 8Nmax + 4)/16, if Nmax = 4i+ 2,
(3N2

max + 10Nmax + 7)/16, if Nmax = 4i+ 3,

(7.13)

where i is any nonnegative integer, and

|S|PZM =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3N2

max + 6Nmax)/8, if Nmax = 4i,
(3N2

max + 6Nmax − 1)/8, if Nmax = 4i+ 1,
(3N2

max + 6Nmax)/8, if Nmax = 4i+ 2,
(3N2

max + 6Nmax + 3)/8, if Nmax = 4i+ 3,

(7.14)

where i is also any nonnegative integer.

Modification of ZMs/PZMs

We adopt dither modulation for the modification of ZMs/PZMs. Dither modula-
tion is a special form of quantization index modulation, which was first proposed
for data hiding in [23]. With a base quantizer q(·), the dither modulation function
is defined as

fDM (x;m) = q(x− d(m)) + d(m) (7.15)

where x is a scalar variable to be quantized, m is a message symbol to be em-
bedded in x, and d(m) is the dither scalar associated with m. Dither modulation
has such a property that the quantization cells and reconstruction points of any
given quantizer are shifted versions of the quantization cells and reconstruction
points of any other quantizer. Due to this special structure of quantizers, dither
modulation has the advantage of easy implementation. In this chapter, we use
binary dither modulation, i.e., m ∈ {0, 1}, and one independent magnitude of
ZM/PZM is to carry a bit of information. In practice an independent magnitude
of ZM/PZM can be used to carry more than one bits, or more than one indepen-
dent magnitudes of ZMs/PZMs to carry one bit, which we will discuss later. In
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this chapter a uniform scalar quantizer is adopted as our base quantizer q(·), i.e.,

q(x) =
[ x

Δ

]
Δ, (7.16)

where [·] is the rounding operation, Δ is the step size of quantization.
Assume there is a bit sequence b = (b1, ..., bL), L ≤ |S| and bi ∈ {0, 1}, to

be embedded in an image f(xi, yj), i, j = 1, 2, ...,M . For the sake of security, we
use a secret key K1 to pseudorandomly choose L ZMs/PZMs from S to form a
moment vector Z = (Ap1q1 , ..., ApLqL), where Apiqi is some Anm in S.

Now each bit from b is to be embedded into an element of Z via dither
modulation. The magnitudes of Apiqi , i = 1, ..., L are quantized, producing a new
vector Z̃ = (Ãp1q1 , ..., ÃpLqL), where Ãpiqi is the dither quantized version of Apiqi

according to (7.15) and (7.16), satisfying

|Ãpiqi | = fDM (|Apiqi |, bi)

=
[ |Apiqi | − di(bi)

Δ

]
Δ + di(bi), i = 1, ..., L (7.17)

where di(·) is the dither function for the i-th quantizer satisfying di(1) = di(0) +
Δ/2. The dither vector (d1(0), ..., dL(0)), whose elements are uniformly dis-
tributed over [0,Δ], is pseudorandomly generated with another key K2, which
is used to further increase the secrecy and security of the embedded signal.

The modified ZMs/PZMs are now readily calculated as

Ãpiqi =
|Ãpiqi |
|Apiqi |

Apiqi , i = 1, ..., L. (7.18)

It is worth noting that in quantizing each Apiqi , if qi �= 0, its conjugate
Api,−qi must be quantized simultaneously to ensure they always have the same
magnitudes, so that the reconstructed image is real.

Determination of the Quantization Step Size

In order to use the modified ZMs/PZMs defined in (7.17) we must decide on
the size of the quantization step Δ. Let us note that Δ determines the tradeoff
between the visibility and robustness of a watermark. Indeed, a larger Δ gives
better watermark robustness, but makes the watermark more visible. In practice,
the value of Δ can be decided based on the required quality of a watermarked
image. Here we use the peek signal-to-noise ratio (PSNR) defined as

PSNR(f, f̃) = 10 log10

2552

σ2
e

, (7.19)
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where f is the original image and f̃ is the watermarked version of f , and

σ2
e =

1
M2

M∑
i=1

M∑
j=1

[f̃(xi, yj) − f(xi, yj)]2 (7.20)

is the average square error, whose relationship to Δ is expressed by the following
theorem.

Theorem 7.2. Let {Apkqk
}L

k=1 be a selected set of Zernike/pseudo-Zernike mo-
ments of the digital image {f(xi, yj)}. Suppose that the set is dither-modulated by
(7.17) generating a watermarked image {f̃(xi, yj)}. Then assuming the high res-
olution quantization case the expected value of the average square error σ2

e defined
in (7.20) is given by

Eσ2
e =

πΔ2

24

L∑
k=1

(pk + 1)−1 +O(M−2). (7.21)

Owing to this theorem, for a required PSNR (in dB), we can find an approx-
imate value of the quantization step Δ as follows

Δ = 255

[
10

PSNR
10

π

24

L∑
i=1

(pi + 1)−1

]−0.5

. (7.22)

Formation of the Watermarked Image

The reconstructed watermarked image is composed of two parts. One part is the
image components contributed by the moments not selected, which is

frem(xi, yj) = f(xi, yj) − fZ(xi, yj), (7.23)

where the second term is the image components contributed by the selected mo-
ments before they are changed,

fZ(x, y) =
L∑

i=1

[ApiqiVpiqi(x, y) +Api,−qiVpi,−qi(x, y)]. (7.24)

The other part is the image components contributed by those modified mo-
ments

f
eZ
(x, y) =

L∑
i=1

[ÃpiqiVpiqi(x, y) + Ãpi,−qiVpi,−qi(x, y)]. (7.25)
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Therefore we obtain a watermarked image by combining the two parts

f̃(xi, yj) = frem(xi, yj) + f
eZ
(xi, yj). (7.26)

Due to the linearity of the image reconstruction process, (7.25) can be rewrit-
ten as

f
eZ
(x, y) =

L∑
i=1

(Apiqj + εpiqj )Vpiqi(x, y) +
L∑

i=1

(Api,−qj + εpi,−qj )Vpi,−qi(x, y)

= w(x, y) +
L∑

i=1

[ApiqiVpiqi(x, y) +Api,−qiVpi,−qi(x, y)] (7.27)

where εpiqi = Ãpiqi − Apiqi and εpi,−qi = Ãpi,−qi − Api,−qi are the quantization
noise signals of the moments Apiqi and Api,−qi respectively, and

w(x, y) =
L∑

i=1

[εpiqiVpiqi(x, y) + εpi,−qiVpi,−qi(x, y)] (7.28)

is the reconstructed watermark signal, which results from the quantization noise
of the selected ZMs/PZMs.

Therefore (7.26) turns into

f̃(xi, yj) = frem(xi, yj) + fZ(xi, yj) + w(xi, yj)
= f(xi, yj) + w(xi, yj). (7.29)

7.5. Data Extraction

The process of watermark extraction is shown in Fig. 7.4. Suppose there is a
test image f ′(xi, yj), which is a distorted version of f̃(xi, yj) after some possible
manipulations, such as rotation and scaling. Our goal is to get an estimate,
b̂ = (̂b1, ..., b̂L), of the hidden bit sequence from f ′(xi, yj) at a low error rate.
First, with the same keyK1 as in the process of watermark insertion, the identities
of ZMs/PZMs involved in the data embedding process can be determined, which
is denoted by [(p1, q1), ..., (pL, qL)]. The subsequent data extraction process can
be described by the following two steps.

Locating the Unit Disk Region

The exact location of a unit disk region on the test image is crucial for the ex-
traction of the embedded data. To facilitate the search for the unit disk region,
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Figure 7.4: The structure of the watermark extractor

we have to use the embedded auxiliary bit sequence. For an assumed unit disk
region, we extract the first I bits (b′1...b

′
I), and then compare it to the known

sequence (b1...bI). As stated before, if the two sequences match well, the as-
sumption of the unit disk region is correct. Otherwise the search process has to
continue until the two sequences match well.
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Informative Data Extraction

Once the unit disk region is found, we can proceed to the extraction of the
informative data. First the relevant moment vector Z′ = (A′

pI+1qI+1
, ..., A′

pLqL
)

is computed. Then with the same key K2 as in the embedder, the same two
dither vectors (d1(0), ..., dL(0)) and (d1(1), ..., dL(1)) are re-generated. Using the
same quantizer as in (7.17), we quantize the magnitude of each A′

piqi
with the

two corresponding dithers respectively,

|A′
piqi

|j =
[ |A′

piqi
| − di(j)
Δ

]
Δ + di(j), (7.30)

where i = I+1, ..., L, j = 0, 1, |A′
piqi

|j denotes the quantized value of |A′
piqi

| with
dither di(j), and [·] is the rounding operation.

By comparing the distances between |A′
piqi

| and its two quantized versions,
we obtain the estimate of the bit embedded into |Apiqi |

b̂i = arg min
j∈{0,1}

(|A′
piqi

|j − |A′
piqi

|)2, i = I + 1, ..., L. (7.31)

which is so-called minimum distance decoder.

7.6. Simulation Results

In this section we examine the robustness of the proposed watermarking algorithm
to various forms of attacks. Unless otherwise stated, the test images are 256×256
with 256 graylevels, and the unit disk is chosen such that it is fully inside an image
and touches the four borders. As an example, Fig. 7.6 is the watermarked version
of Fig. 7.6, in which an array of 128 bits is embedded, while Fig. 7.6 is the absolute
difference between Fig. 7.6 and Fig. 7.6, multiplied by 25 for better display.

The Quality of Watermarked Images

The PSNR of a watermarked image is determined by two main factors. On the
one hand, given a fixed number of bits to be embedded, the PSNR is determined
by the quantization step size Δ of the dither modulation imposed on the mag-
nitudes of ZM/PZM. A larger Δ leads to a stronger watermark, but results in a
lower PSNR, and vice versa. On the other hand, given a fixed Δ or watermark
strength, the number of bits to be embedded decides the PSNR of the water-
marked image. The more bits embedded, the lower is the value of PSNR. The
relationship between PSNR and these two factors is clearly reflected in Fig. 7.6a
and Fig. 7.6b, which are the experimental results from ZM-based and PZM-based
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(a) (b) (c)

Figure 7.5: An example of using the proposed algorithm.
(a) Original Lena image of size 256 × 256. (b) Lena watermarked with 128 bits.

(c) Exaggerated difference of (b) and (a)

algorithms respectively. Every data point in these two figures is the average of
100 individual tests. It can be verified that Fig. 7.6a and Fig. 7.6b exactly agree
with Theorem 7.2.
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Figure 7.6: The quality of watermarked images is affected by the number of bits
embedded and the quantization step size Δ. (a) ZM-based watermarking results.

(b) PZM-based watermarking results

In all our experiments, we chose quantization step size Δ such that the re-
sulting PSNR > 40dB, which guarantees a good watermark transparency.



183

Robustness to Image Rotation

We are particularly interested in the watermark performance, i.e., the bit error
rate (BER), under the attack of image rotation. We used Fig. 7.7a as the test
image, and 160-bit long random sequences as the information to embed. The
quantization step sizes Δ were set such that an average PSNR ≈ 42.5 dB and
46.4 dB for ZM-based and PZM-based algorithms respectively. Fifteen differ-
ent rotation angles θ = {3◦, 6◦, ..., 45◦} were tried. The rotated version of each
watermarked image was computed via bilinear interpolation and the resulting
additional black borders were partially cropped so that the image sizes remained
the same. Fig. 7.7b is an example of the rotated images. To obtain the BER at
a certain rotation angle θ, 100 different randomly generated bit sequences were
tried and the BER was taken as the average of the 100 cases. Fig. 7.7c shows the
simulation results, both for ZM-based algorithm and the PZM-based algorithm,
illustrated by the dotted line and the solid line respectively, from which we see
an excellent watermark robustness to image rotation with the maximum BER at
O(10−3). It can also be seen from the figure that BER is related irregularly with
θ.
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Figure 7.7: Watermark robustness to rotation. (a) Original baboon image of
size 256 × 256. (b) Baboon watermarked with 160 bits followed by a 15◦

rotation. (c) BER as a function of rotation angles

Robustness to Image Scaling

Image scaling is another common form of geometric attacks. We looked at BERs
under 16 different scaling levels. A 256 × 256 watermarked image was scaled
to smaller sizes, ranging from 128 × 128 to 248 × 248 with an interval 8 of side
length. Fig. 7.8a is an example of the scaled images. Prior to watermark ex-
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Figure 7.8: Watermark robustness to image scaling. (a) A scaling example:
watermarked Lena image scaled by 75% of side length. (b) BER as a function of scaled

image size in the case of ZM-based watermarking. (c) BER as a function of scaled
image size in the case of PZM-based watermarking

traction, the scaled images were scaled back to the size 256 × 256. It is worth
noting that although they were scaled back to their original sizes, the images were
quite different from their unscaled versions due to the double scaling transforms
they underwent. The scaling operation was performed via bilinear interpolation.
Fig. 7.8b shows the results for embedding 80 bits and 160 bits by ZM-based wa-
termarking, while Fig. 7.8c gives the results for embedding 80 bits and 160 bits
by PZM-based watermarking. Each data point in the figures is the average of
100 test results on different randomly generated bit sequences. The figure shows
a trend that BER decreases as the scaling lessens and information amount drops.

Robustness to Image Flipping

Image flipping, either horizontal or vertical, is a very easy attack to perform. In
fact, it is so effective that many existing watermarking algorithms perform poorly
for this type of attack. Shown in Fig. 7.9a is a watermarked image. Fig. 7.9b
is the horizontally flipped version of Fig. 7.9a, while Fig. 7.9c is the vertically
flipped version of Fig. 7.9a. As mentioned above, the proposed approach is
inherently immune, and hence perfectly robust against such an attack. In all the
experiments with this kind of attack, both for ZM-based scheme and PZM-based
scheme, BER = 0.

Robustness to Image Compression

With the wide-spread use of image compression standard JPEG, lossy compres-
sion is a highly common form of image processing. We looked at BERs under



185

(a) (b) (c)

Figure 7.9: Watermark robustness to image flipping. (a) Watermarked image of F16.
(b) Fig. (a) horizontally flipped. (c) Fig. (a) vertically flipped

different JPEG compression levels with quality factors from 20 to 90 with an
interval of 2. Fig. 7.10b shows the results for embedding 64, 128 and 256 bits
respectively in the image of Fig. 7.6 by means of ZM-based algorithm while
Fig. 7.10c shows the results for embedding 64, 128 and 160 bits respectively in
the same source image via PZM-based scheme. Each data point in the figures
is the average of 100 individual results, which were obtained from 50 different
randomly generated bit sequences. It can be seen that BERs decrease rapidly as
the quality factor increases and the number of bits embedded drops. Considering
that a JPEG quality factor less than 50 gives an obviously degraded image and
hence is unlikely to be used by an attacker in practice, the robustness to JPEG
lossy compression is remarkable in our algorithms.

Robustness to Lowpass Filtering

Lowpass filters are a family of filters that are commonly applied in image pro-
cessing [63], including averaging filters and Gaussian filters etc., and therefore,
lowpass filters are of interest to watermark designers. We introduce here the test
results on the watermarked images undergoing Gaussian filtering. The test image
is Lena image, the payload is 128 bits, and the average PSNR ≈ 41.7 dB. Shown
in Fig. 7.11a is an example of Gaussian filtered watermarked image with 5×5
window and σgf = 0.9, which is apparently blurred. We recorded BERs under
different levels of filter strength, σgf , ranging from 0.5 to 2 with an interval of
0.1. Fig. 7.11b shows the results for the ZM-based watermarking scheme, while
Fig. 7.11c illustrates the results for the PZM-based algorithm. In both cases,
3×3, 5×5 and 7×7 window sizes of the Gaussian filters were tried. For every
data point in the figures, 50 different bit sequences were generated and tested on
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Figure 7.10: Watermark robustness to JPEG lossy compression.
(a) Watermarked Lena image compressed by JPEG with quality factor 20.

(b) BER as a function of JPEG quality factor in the case of ZM-based watermarking.
(c) BER as a function of JPEG quality factor in the case of PZM-based watermarking

the watermarked images, and then the average of 50 individual results was taken.
The results display excellent watermark robustness to lowpass filtering. No error
was observed when σgf < 0.9.

(a)

0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

Δ
gf

 : standard deviation of Gaussian filter

B
it 

er
ro

r 
ra

te

7 Δ 7 window size
5 Δ 5 window size
3 Δ 3 window size

(b)

0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12

Δ
gf

 : standard deviation of Gaussian filter

B
it 

er
ro

r 
ra

te

7 Δ 7 windows size
5 Δ 5 windows size
3 Δ 3 windows size

(c)

Figure 7.11: Watermark robustness to Gaussian filtering. (a) An example:
Watermarked Lena image after a Gaussian filtering with a 5×5 window size and

σgf = 0.9. (b) BER as a function of the standard deviation of the filter in the case of
ZM-based watermarking. (c) BER as a function of the standard deviation of the filter

in the case of PZM-based watermarking

Robustness to Additive Noise

Additive Gaussian noise is considered here to be an attack because it approx-
imately models some interferences the watermarked images may undergo. We
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recorded BERs under different levels of noise whose standard deviations range
from 0 to 15 with an interval of 0.5. Fig. 7.12b and Fig. 7.12c show the results
for ZM-based and PZM-based algorithms respectively, embedding 64, 96 and 128
bits in the image of Fig. 7.6, with PSNR ≈ 42 dB in each case. For every data
point in the figures, 100 different matrices of pseudo-random Gaussian noise were
tested on the watermarked image, and then the average of 100 individual results
was taken. The figures show that the algorithm has an outstanding performance
on the attack of additive Gaussian noise. In all our tests, we found no error when
σ < 5. Even with σ = 10, BER ≤ O(10−4) if the payload is 128 bits or less.
It is worth noting that when σ = 5, the attacked image displays obvious quality
degradation, as shown in Fig. 7.12a, which means that an attacker has to control
the noise strength such that σ < 5 in order to keep the value of the watermarked
image.
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Figure 7.12: Watermark robustness to additive Gaussian noise. (a) An example:
Watermarked Lena image with Gaussian noise, σ = 5. (b) BER as a function of the
standard deviation of AWGN in the case of ZM-based watermarking. (c) BER as a

function of the standard deviation of AWGN in the case of PZM-based watermarking

Stirmark Test Results

Now we evaluate the watermark robustness to some of the attacks provided by the
Stirmark 3.1 benchmarking tool [136]. We used the images shown in Fig. 7.13
as original images of a 512 × 512 size each. The unit disk was made to cover
the central circular region whose diameter is 256 pixels. The auxiliary sequence
used to detect the unit disk contains 16 bits, while the information to embed
is 64 randomly generated bits. Each of the test images, after the 80 bits are
embedded, is fed into the Stirmark tool. Then Stirmark performed various attacks
on the watermarked image, and produced a series of attacked images. We used
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the JPEG-compressed version of these attacked images for data extraction and
recorded the number of erroneous bits for each image. The average bit error
rates over all the test images are listed in Table 7.3, where −1 denotes failure
to extract the embedded data. It can be seen that the proposed algorithm has
excellent robustness to image rotation, scaling, cropping and JPEG compression
with quality factors over 20; it has good robustness to image aspect ratio change,
mild removal of lines and JPEG with very low quality factors. However, the
embedded data cannot be extracted in several cases including excessive scaling,
cropping, and shearing.

Table 7.3: Stirmark test results
Attack type Average BER
Remove 17 rows and 5 columns 0.0430
Remove 5 rows and 1 columns 0.0605
Cropping 10% 0
Cropping 20% 0
Cropping 50% 0
Cropping 75% -1
Gaussian filtering 3x3 0
JPEG 15 0.0137
JPEG 20 0.0039
JPEG 25-90 0
Change aspect ratio x:0.80 y:1.00 0.0020
Change aspect ratio x:0.90 y:1.00 0
Change aspect ratio x:1.00 y:1.10 0.0137
Rotation -0.25 0.0215
Rotation -2.00 0
Rotation 10.00 0
Rotation 90.00 0
Scale 0.25 -1
Scale 0.50 0.0020
Scale 0.75 0
Scale 0.90 0
Scale 1.50 0
Scale 2.00 0
Sharpening 3x3 0.1328
Shearing x:5.00 y:0.00 -1
Stirmark random bend -1
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7.13: Original test images. (a) Lena. (b) Baboon. (c) F-16. (d) Fishing boat.
(e) Elaine. (f) Watch. (g) Peppers. (h) Sailboat

7.7. Discussion

Comparison of ZM Watermarks with PZM Watermarks

The presented simulation results utilizing the ZM/PZM-based algorithms show
that their performances are quite close in most cases. It is necessary, however, to
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point out that in all the experiments, we set the quantization steps such that for
the same experiment, the two algorithms would output watermarked images of the
same quality. For example, in the case of 128-bit watermark, we set Δ = 2 for the
ZM-based algorithm while Δ = 1.6 for the PZM-based algorithm, such that both
algorithms produced watermarked images with PSNR ≈ 42 dB. If we use the same
Δ value for the two algorithms, the PZM-based watermarks notably outperform
the ZM-based watermarks in terms of robustness, but at the cost of lower quality
of watermarked images. The reason for this is that for the same number of bits to
be embedded, fewer lower order moments get involved in ZM-based watermarks
than in PZM-based watermarks, because there are approximately twice as many
PZMs as ZMs due to the constraint n− |m| = even on ZMs. Roughly speaking,
low order moments, which are low-frequency image components in nature, have
stronger impacts on the image quality than high order moments, but have better
robustness to signal distortions such as lowpass filtering and lossy compression.

The Detection of the Unit Disk Region

It is crucial that the unit disk region should be located correctly for the extraction
of the embedded data. As stated before, the auxiliary bit sequence is deployed to
facilitate the search for the region. In our experiments, we use finite steps of trial
for the detection of the unit disk. In theory it is possible to design an algorithm
to locate the unit disk in an elegant way, because the modified ZMs/PZMs of the
disk region have distinguishing properties due to quantization. This interesting
issue will be addressed elsewhere.

Extension to M-ary Dither Modulation

In the case of large payload, e.g., 512 bits, we can use one independent ZM/PZM
magnitude to carry more than 1 bit information. The dither modulation does
not have to be binary, as we have shown in the previous sections, but it can
rather be M -ary in general, i.e., a set of M quantizers can be used, for which
equation (7.15) still applies, where m ∈ {0, 1, ...,M − 1}. Obviously with M -ary
dither modulation, an independent magnitude of ZM/PZM carries log(M) bits
of information. There is a price to pay for this gain of payload. At the same level
of watermark-induced distortion, M -ary dither modulation gives higher bit error
rates than binary dither modulation. This is an effective approach to the increase
of data capacity of watermarks. A rigorous theoretical derivation of information
capacity of ZM/PZM-based watermarks can be performed following the results
obtained by some researchers, see [23].

On the other hand, in the case of small payload, more than one ZM/PZM
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magnitudes can combine to carry 1 bit information in order to gain extra wa-
termark robustness. If l independent moment magnitudes are employed to carry
one bit, and binary dither modulation is performed on each of the magnitudes,
then the 1-D minimum distance decoder represented by equation (7.31) would
be replaced by an l-D minimum distance decoder. As a result, the watermark
robustness (BER) is improved.

7.8. Conclusions

In this chapter we have illustrated the benefits of using the radial Zernike type
orthogonal moments to the problem of data hiding and watermarking. Using
a suitable subset of the moments, we have proposed a multibit watermarking
scheme relying on the quantization-based modification of ZMs/PZMs. By quan-
tizing the magnitudes of a group of selected ZMs/PZMs, hundreds of bits can
be embedded into an image imperceptibly. An auxiliary bit sequence is used to
address the location of the unit disk region in a distorted image. It has been
shown that the embedded informative bit sequence can be extracted at low or
even zero error rates from a distorted watermarked image. Experimental results
show that the embedded data are robust against typical geometric distortions,
such as image rotation, scaling, flipping, cropping and aspect ratio change, as well
as other common attacks such as lossy compression, additive noise and lowpass
filtering.



Chapter 8

Concluding Remarks

The method of orthogonal moments, examined in this book, provides a robust
technique for representing an arbitrary image by a finite set of unique features.
The technique has an appealing mathematical simplicity and is very versatile
and flexible for dealing with various problems of image analysis. The fundamen-
tal property of moment descriptors is the easiness of including the concept of
invariance. In fact, invariance can be achieved through the theory of algebraic
invariants or can be directly embedded into moments. The latter case has been
extensively examined in this book. Indeed, Chapter 3 has been concerned with
a class of radial polynomials being of the invariant form. Next, in Chapter 4
we have examined the reconstruction properties of the radial invariant moments.
Furthermore, in Chapter 5 we have described the efficient algorithm for accu-
rate computation of the radial invariant moments. These findings have been
extensively utilized in Chapters 6 and 7, where we have developed a statistical
theory for testing image symmetry and robust algorithms for data hiding and
watermarking, respectively.

The present monograph relies entirely on the original contributions of the
author and his collaborators. These results have been widely published in various
international journals and conference proceedings. Nevertheless, we have also
presented new solutions and modified the existing theory. For example, Chapter
6 describes a novel approach to image symmetry detection combining the theory
of radial invariant moments and modern statistical techniques for nonparametric
lack-of-fit tests. Furthermore, Chapter 7 describes a robust and highly efficient
watermarking system based on our theory. Hence, the following is a summary of
the original results presented in this monograph.

• Properties of a class of orthogonal moments stemming from the theory of clas-
sical orthogonal polynomials have been thoroughly examined. This includes
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issues of numerical efficiency, reconstruction power from the computed mo-
ments, robustness to noise, and automatic selection of an optimal number of
moments.

• The extension of the above results to the case of generalized moments and
orthogonal moments calculated in the digital domain has been given.

• Properties of radial orthogonal moments have been examined. A thorough
error analysis of the moments has been conducted including numerical error,
the accuracy in the presence of noise, and geometric error. In the latter case
the error analysis has been performed by relating the accuracy issue to the
analytic number theory of lattice point approximations.

• The reconstruction power of radial moments has been studied and optimal
convergence rates for image recovery from moments have been derived.

• Fast and high precision algorithms for computing radial moments have been
derived and empirically tested.

• Statistical methodology for testing image symmetry, utilizing the theory of
radial moments and nonparametric statistical tests has been developed. This
includes testing image rotational and reflectional symmetries as well as the
compound symmetries. The limit distributions for test statistics have been
established both under the null hypothesis and its fixed alternative.

• A novel watermarking system, utilizing the theory of radial moments, has been
proposed. The system exhibits high robustness to geometric attacks, noise,
filtering, and data compression. Watermark imbedding and extraction algo-
rithms have been developed. Extensive empirical tests on the system accuracy
have been performed.

The results of this book can form a basis for addressing other interesting prob-
lems in the theory and practice of image and shape representation. First, moment
descriptors are global features and a certain form of their localization would be
beneficial in recognition of occluding objects and objects with missing parts. In
Chapter 2 we have briefly suggested some solution to this issue. Furthermore, in
their present form, moment descriptors do not include any a priori knowledge
about an image. We have, however, noted that radial moments can naturally
incorporate some image constrains such as the radiality and symmetry. These
properties have been extensively employed in Chapter 6, where the problem of
testing an image symmetry has been studied.

In many applications an image is observed from various orientations and po-
sitions and collection of such images can be thought of as a manifold in the
high-dimensional image space. It becomes an essential task to estimate the un-
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derlying parameters (e.g., rotations) from the sequence of images. This problem
has recently attracted a great deal of attention [222] and can also be approached
from the point of view of the theory of moment invariants. In particular, the
radial moments can serve as a natural tool for recovering the unknown rotation
of an underlying set of images, see [124], [116] for some preliminary studies in
this direction.

Finally, throughout the book we have assumed the white noise model. The
behavior of moment descriptors in the presence of correlated noise and noise with
long-range dependence would be of great interest.
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[96] Hasiewicz Z., Pawlak M., and Śliwiński P., Nonparametric identification of
nonlinearities in block-oriented systems by orthogonal wavelets with com-
pact support, IEEE Transactions on Circuits and Systems - I, 52:427–442,
February 2005.

[97] Hastie T.J. and Tibshirani R.J., Generalized Additive Models, Chapman
and Hall, London, 1990.

[98] Hatamian M., A real-time two-dimensional moment generating algorithm
and its single chip implementation, IEEE Transactions on Acoustics,
Speech, and Signal Processing, 34(3):546–553, 1986.

[99] Hildebrandt T.H. and Schoenberg I.J., On linear functional operations and
the moment problem for a finite interval in one or several dimensions, An-
nals of Mathematics, 34:317–328, 1933.

[100] Hsu J.C., Multiple Comparisons – Theory and Methods, Chapman and Hall,
London, 1996.



205

[101] Hu M.K., Visual problem recognition by moment invariant, IRE Transac-
tions on Information Theory, 8:179–187, February 1962.

[102] Hu P.H., Stone J., and Stanley T., Applications of Zernike polynomials
to atmospheric propagation problems, Journal of the Optical Society of
America A, 6:1595–1608, 1989.

[103] Hussain B. and Kabuka M.R., Real-time system for accurate three-
dimensional position determination and verification, IEEE Transactions
on Robotics and Automation, 6:31–43, 1990.

[104] Huxley M.N., Exponential sums and lattice points, Proceedings of the Lon-
don Mathematical Society, 60:471–502, 1990.

[105] Huxley M.N., Area, Lattice Points, and Exponential Sums, Clarendon
Press, Oxford, 1996.

[106] Huxley M.N., Integer points, exponential sums and the Riemann zeta func-
tion, in Number Theory for the Millennium, volume II, pages 275–290,
Peters, London, 2002.

[107] Iskander D.R., Collins M.J., and Davis B., Optimal modeling of corneal
surfaces with Zernike polynomials, IEEE Transactions on Biomedical En-
gineering, 48(1):87–95, 2001.

[108] Iskander D.R., Collins M.J., Morelande M.R., and Zhu M., Analyzing the
dynamic wavefront aberrations in the human eye, IEEE Transactions on
Biomedical Engineering, 51(11):1969–1980, 2004.

[109] Iskander D.R., Morelande M.R., Collins M.J., and Davis B., Modeling of
corneal surfaces with radial polynomials, IEEE Transactions on Biomedical
Engineering, 49(4):320–328, 2002.

[110] Iwaniec H. and Mozzochi C.J., On the divisor and circle problems, Journal
of Number Theory, 29:60–93, 1988.

[111] Jacob M., Blu T., and Unser M., An exact method for computing the
area moments of wavelet and spline curves, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23:633–642, 2001.

[112] Jain A.K., Fundamentals of Digital Image Processing, Prentice Hall, En-
glewood Cliffs, New York, 1989.



206

[113] Jaklic A. and Solina F., Moments of superellipsoids and their application
to range image registration, IEEE Transactions on Systems, Man, and
Cybernetics – Part B, 33:648–657, 2003.

[114] Jiang X.Y. and Bunke H., Simple and fast computation of moments, Pattern
Recognition, 24(8):801–806, 1991.

[115] Jones M.C. and Silverman B.W., An orthogonal series density estimation
approach to reconstructing positron emission tomography images, Journal
of Applied Statistics, 16:177–191, 1989.

[116] Kakarala A.A. and Cadzow J., Estimation of phase for noisy linear phase
signals, IEEE Transactions on Signal Processing, 44:2483–2497, 1996.

[117] Kamgar-Parsi B. and Kamgar-Parsi B., Evaluation of quantization error
in computer vision, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11(9):929–940, September 1989.

[118] Kanaya N., Iiguni Y., and Maeda H., 2-D DOA estimation method using
Zernike moments, Signal Processing, 82:521–526, 2002.

[119] Karatsuba A.A., Basic Analytic Number Theory, Springer-Verlag, Berlin,
1993.

[120] Keys R.G., Cubic convolution interpolation for digital image processing,
IEEE Transactions ASSP, 29(6):1153–1160, 1981.

[121] Khotanzad A. and Hong Y.H., Invariant image recognition by Zernike mo-
ments, IEEE Transactions on Pattern Analysis and Machine Intelligence,
12:489–498, 1990.

[122] Khotanzad A. and Hong Y.H., Rotation invariant image recognition using
features selected via a systematic method, Pattern Recognition, 23:1089–
1101, 1990.

[123] Kim H.S. and Lee H.K., Invariant image watermark using Zernike mo-
ments, IEEE Transactions on Circuits and Systems for Video Technology,
13(8):766–775, 2003.

[124] Kim W.Y. and Kim Y.S., Robust rotation angle estimator, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 21:768–773, 1999.

[125] Kiryath N. and Gofman Y., Detecting symmetry in grey level images: the
global optimization approach, International Journal of Computer Vision,
29:29–45, 1998.



207

[126] Koornwinder T., Two-variable analogues of the classical orthogonal polyno-
mials, chapter Theory and Applications of Special Functions, pages 435–
495, Academic Press, New York, 1975.

[127] Korostelev A.P. and Tsybakov A.B., Minimax Theory of Image Reconstruc-
tion, Springer-Verlag, Berlin, 1993.

[128] Kozek A. and Pawlak M., Universal consistency of kernel nonparametric
M-estimators, Statistics and Probability Letters, 58:343–353, 2002.

[129] Kronrod A.S., On functions of two variables, Uspehi Math. Nauk, 5:24–134,
1950.
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[131] Krzyżak A. and Pawlak M., Universal consistency results for Wolverton-
Wagner regression function estimates with applications in discrimination,
Problems of Control and Information Theory, 12:33–42, 1983.
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