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Abstract: Unavoidable ions in flotation pulp play a critical role in modulating the selective activation or
depression of target minerals. This review systematically examines the behavior of Ca?* and Mg?* in
mineral flotation. Their primary sources in the pulp are first outlined. Fundamental mechanisms
governing their interactions with mineral surfaces are then discussed to establish a theoretical basis for
interpreting their flotation behaviors. The activating, depressing, and dispersing effects of these ions on
various mineral surfaces are provided, highlighting their multifaceted functions. In addition, strategies
to mitigate the adverse impacts of Ca2* and Mg?* are evaluated. This review is intended to guide the
optimization of flotation processes, improve the separation efficiency, and provide theoretical and
practical insights for mineral processing.
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1. Introduction

As a key technology in the modern mineral processing industry, froth flotation is highly dependent on
the physicochemical properties of mineral surfaces and the aqueous chemistry of the pulp environment
(Li and Gao, 2018; Bai et al., 2023). Within complex mineral pulp systems, the presence of metal ions
critically influences the flotation efficiency through their adsorption and interfacial transformations
(Gao et al., 2021a; Sun et al., 2021a; Yu et al., 2024). In recent years, the increasing ore complexity and
widespread recycling of process water have led to the accumulation of these ions, adversely affecting
the recovery of target minerals. Understanding the multiphase interfacial interactions among metal ions,
minerals, flotation reagents, and air bubbles has therefore become essential in flotation chemistry
research.

Metal ions in flotation pulps, originating primarily from mineral dissolution, recirculation of process
water, and reagent addition (Lai et al., 2020; Kuang et al., 2021; Rankin et al., 2025), critically influence
flotation efficiency through interfacial processes. These ions modify critical mineral surface properties
through adsorption, complexation, and precipitation, collectively forming a synergistic “ions-minerals-
reagents” system. Among them, Ca?* and Mg?* deserve particular attention due to their distinctive
aqueous chemistry. For example, these ions can form hydrophilic hydroxy complexes or precipitate
films on mineral surfaces such as pyrite and galena, thereby depressing these sulfide minerals (Bulut
and Yenial, 2016; Ruan et al., 2018). Conversely, they could also activate silicate minerals like quartz and
feldspar under specific pH conditions by generating surface active sites (Huang et al., 2021). Moreover,
Ca?* and Mg?* adsorption would modulate particle dispersion and aggregation by altering the electrical
double-layer, directly impacting pulp rheology and flotation selectivity. Despite significant advances in
understanding the role of metal ions in mineral flotation, research on Ca2* and Mg?* has largely been
confined to single-mineral systems.
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This review bridges the gap by systematically elucidating the sources, interfacial mechanisms, and
multi-dimensional roles (depression, activation, and dispersion) of these ions. By integrating multi-scale
analysis with targeted regulation strategies, this work provides critical theoretical insights to optimize
flotation performance and improve complex ore separation. The findings advance the development of
green and sustainable mineral processing technologies.

2. Sources of metal ions

Metal ions in flotation pulp originate from multiple sources, including process water, mechanical
crushing and grinding, mineral dissolution, and reagent addition. These ions subsequently modify
mineral surface properties through physicochemical adsorption and surface precipitation. Additionally,
these ions modulate the reagent adsorption by forming complexes or enhancing surface reactivity,
thereby activating or depressing the floatability of target minerals.

2.1. Dissolution of grinding media

During the grinding process, iron ions (Fe?* and Fe3*) are released into the pulp through mechanical
friction and chemical corrosion between grinding media and mineral particles. The electrochemical
potential difference between steel media and sulfide minerals (such as chalcopyrite and pyrite)
generates local galvanic couples. This phenomenon intensifies electrochemical corrosion and promotes
metal ion release. These dissolved ions markedly influence mineral surface reactivity and alter redox
potential and solution chemistry of the pulp environment. Furthermore, sulfur species on sulfide
mineral surfaces are oxidized through galvanic interactions, diminishing their natural hydrophobicity.
Concurrently, through the adsorption or precipitation of Fe2* and FeOOH species generated by
electrochemical corrosion, the surface charge properties are modified, thereby influencing the
subsequent interfacial interactions. These processes collectively depress the flotation selectivity of
sulfide minerals through surface passivation, increased reagent consumption, and electrical double-
layer compression (Fig. 1) (Mu et al., 2020; Zhang et al., 2020; Zhu et al., 2023). By comparing steel and
ceramic grinding media, Zhao et al. (Zhao et al., 2022) demonstrated that the galvanic interaction
between iron-based media and chalcopyrite would intensify the surface oxidation of chalcopyrite,
promoting the adsorption of FeOOH and copper-cyanide complexes compared to ceramic grinding, as
confirmed by XPS and ToF-SIMS. These surface modifications would reduce hydrophobicity and
diminish collector adsorption, thereby significantly depressing chalcopyrite floatability when ground
in steel mills. In contrast, Cao et al. (Cao et al., 2021) reported that cassiterite ground with stainless steel
showed improved flotation performance compared to ground with ceramic media due to the adsorption
of dissolved iron species, which shifted zeta potential positively and enhanced the adsorption of
salicylhydroxamic acid through the increased active sites and reduced electrostatic repulsion.
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Fig. 1. Local cell (a, b) and galvanic couple (c) interactions between chalcopyrite and grinding media (Zhang et al.,
2020)
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2.2. Metal ions from mineral dissolution or oxidation

The oxidation and dissolution of mineral surfaces could release metal ions into pulps, thereby
significantly influencing separation efficiency (Cao et al., 2018; Irannajad et al., 2019; Wang et al., 2020a;
Wang et al., 2020b; Xu et al., 2022).

Feng et al. (Feng et al., 2023) reported that lead ions released from the grinding and separation of
zinc minerals could activate smithsonite by bonding with the oxygen sites, enhancing xanthate
adsorption and improving flotation recovery (Fig. 2). During the reverse flotation process of
phosphorite, dissolution of Ca2* and Mg2* would increase the hydrophobicity of flotation concentrate,
while the hydrolysate of Fe3* and Al** would adsorb on mineral surfaces, blocking the oleate adsorption
sites and reducing the hydrophobicity of flotation concentrate (Fig.3) (Cheng et al., 2024). Copper sulfide
minerals usually undergo surface oxidation when their surfaces are exposed to air or liquid media
during storage, grinding and flotation, resulting in the release of ions and self-activation phenomena.
Deng et al. (Deng et al., 2014) observed that the dissolution of chalcopyrite itself and the rupture of
secondary fluid inclusions would significantly increase the concentration of Cu?*, enhancing the surface
reactivity through interactions with sulfur atoms. These phenomena would be conducive to increasing
the flotation rate under certain conditions. Similarly, Zhu et al. (Zhu et al., 2019) combined DFT and
experiments to demonstrate that Fe and Ca ions, which exist in the lithium feldspar lattice in the form
of isomorphous substitution, were released into the pulp through lattice fracture during grinding and
participate in interfacial reactions mediated by solution chemistry and surface processes. Moreover,
Moimane et al. (Moimane et al., 2020) reported that the floatability of both chalcopyrite and chalcocite
would be severely depressed with the increased oxidation by H>O,, with recoveries declining from 89.3%
t0 5.95% and from 97.5% to 1.80%, respectively, and that chalcocite exhibits greater oxidation sensitivity
than chalcopyrite.
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Fig. 2. Lead-activated promotion of sulfide and xanthate adsorption on smithsonite surface (Feng et al., 2023).
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Fig. 3. The role of metal ions in modifying mineral surfaces wettability (Cheng et al., 2024)
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2.3. Contribution of process water

Dissolved metal ions in process water represent a significant external source influencing flotation
systems. Metal ions such as Ca2*, Mg?*, Na*, and K*, commonly found in industrial and recirculated
water, could modulate the pulp chemistry by adjusting pH or interacting with flotation reagents (Corin
et al.,, 2024; Duan et al., 2024; Hwang et al., 2024; Zhou et al., 2024; Rankin et al., 2025). Studies indicate
that Ca?*, Mg2?* and SO42 in recycled water markedly affect the flotation selectivity of sulfide minerals
through surface charge modification. Specifically, adsorption of Ca2*, Mg?* could reduce the surface
electronegativity of galena and sphalerite, thereby enhancing their floatability. In contrast, SO in
solution would adsorb on galena and pyrite through competitive adsorption, increasing the surface
negativity (Bulut and Yenial, 2016). The increasing adoption of seawater and intensified water recycling
in flotation have made ionic accumulation a critical issue (Jeldres et al., 2016; Peng et al., 2020; Acufa et
al., 2024; Ramirez-Madrid et al., 2024; Song et al., 2024a; Wang and Peng, 2014). Song et al. (Song et al.,
2022; Song et al., 2024b) demonstrated that seawater could achieve higher separation efficiency between
galena and pyrite compared to deionized water. This enhancement was attributed to the synergistic
effects of Ca?* and Mg?*, which function through surface hydroxylation and compression of the
electrical double layer.

2.4. Metal ions from flotation reagents

Flotation reagents frequently consist of inorganic metal salts that dissociate upon addition into the pulp,
releasing the corresponding metal and inorganic ions to modify mineral surface properties or interact
with other reagents (Tian et al., 2019a; Tian et al., 2019b). As a widely used pH regulator, lime could
significantly alter the aqueous chemistry of flotation pulp system (McCormick et al., 2002; Sun et al.,
2023). While it effectively adjusts the optimal alkalinity, Ca2* is inevitably introduced into the pulp and
accumulates through water recycling. This accumulation would facilitate unintended surface
precipitation and hydroxide complexation, adversely affecting the selective separation of the target
minerals (Zanin et al., 2019). In sulfide ore flotation, metal ions could act as activators by reconstituting
surface chemistry. For instance, Cu?* could enhance the collector adsorption on pyrite surface, thereby
improving its floatability (Pecina et al., 2006). In contrast, the precipitates formed from Cu2* and Fe3* on
molybdenite surfaces significantly depress its flotation (Yang et al., 2019). During the separation of
fluorite from quartz, combined depressants comprising sodium silicate and metal ions, such as Fe3*,
Cu?* or AI**, could hinder the quartz activation by Ca?*, subsequently reducing the collector adsorption
and preventing quartz from entering into the fluorite concentrate (He et al., 2022).

The sources of metal ions in flotation systems are diverse. Externally, they are mainly introduced
through process water and the addition of flotation reagents. Internally, they are sourced from the
surface oxidation and dissolution of minerals. A thorough investigation of these metal ions and their
interfacial behaviors is essential. It will mitigate the adverse effects of unavoidable ions, improve
flotation selectivity, and provide a scientific foundation for the optimizing flotation parameters.

3. Mechanisms of metal ions in mineral flotation

As critical interface-active components, metal ions critically influence the mineral floatability through
multiple mechanisms in flotation systems. This section elaborates on their specific functions from three
principal aspects.

3.1. Direct interaction between metal ions and minerals

Metal ions interact with mineral surfaces primarily through two mechanisms. First, metal ions could
adsorb onto mineral surfaces through electrostatic attraction, modifying the mineral surface charge
properties. For example, Ca?* adsorbs onto hydroxylated scheelite surfaces through electrostatic
attraction (Dong et al., 2019; Zhang et al., 2019), forming a competitive adsorption layer, leading to the
inhibition of subsequent adsorption of dodecylamine. Similarly, whereas electrostatic repulsion hinders
carboxymethyl cellulose (CMC) adsorption on chlorite, Ca2* and Cu?* in solution could enhance the
adsorption of CMC through distinct pathways. At pH 9, Ca?* could facilitate CMC adsorption on
chlorite by reducing the electrostatic repulsion through charge neutralization between Ca?* and CMC,
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increasing CMC adsorption capacity. In contrast, Cu?* could adsorb directly onto chlorite surface,
providing new binding sites for CMC and lowering zeta potentials of both CMC and chlorite surfaces,
thereby facilitating CMC adsorption capacity (Feng et al., 2013).

Second, metal ions can also adsorb onto mineral surfaces through ion exchange or lattice substitution.
As illustrated in Fig. 4, Cu?* could replace Zn?* on sphalerite surface through redox reactions, forming
copper sulfide species that enhance collector adsorption. This process would increase the
hydrophobicity of sphalerite surface, thereby enhancing its flotation efficiency (Gerson et al., 1999;
Pattrick et al., 1999; Ejtemaei and Nguyen, 2017). Similarly, Pb?* is widely recognized as an activator in
the flotation of scheelite and calcite (Wei et al., 2018; Wang et al., 2019; Yao et al., 2022). According to
Yu et al., Pb?* would substitute Ca?* in the scheelite lattice through isomorphous replacement, which is
mainly caused by their similar ionic radius (Yu et al., 2015). The thermodynamic analysis shows that
the solubility product of PbWO, (pKsp=10.08) is significantly lower than that of CaWO, (pKsp=9.3),
indicating a stronger tendency for PbWO precipitate formation. Consequently, Pb2* could stabilize on
the mineral surfaces through substitution of Ca2?* in both scheelite and calcite.

Oxidation: S*" to S”

Reduction: Cu?* to Cu™

Step 1: Ion Exchange (Zn/Cu) Step 2:
Fig. 4. Cu2* adsorption process on the sphalerite surface (Ejtemaei and Nguyen, 2017)

3.2. Hydrolysis and complexation of metal ions

Two primary hypotheses have been proposed to explain the role of metal ions in mineral flotation. The
first involves the formation of metal-hydroxy complexes through coordination with OH- in pulp (Wu
et al.,, 2022). These complexes can undergo dehydroxylation condensation reactions with oxygen-
containing minerals, creating specific adsorption sites that interact with flotation reagents, as illustrated
in Fig. 5 (Gao et al., 2017). This interfacial regulation mechanism was initially established by Fuerstenau
et al. in studies of the quartz flotation system, highlighting the crucial role of metal ions in mediating
the reagent-mineral interactions (Fuerstenau et al., 1965; Fuerstenau and Cummins, 1967). Individual
metal ions (in the order of Ba2*>Fe3¥*>Ca?") significantly enhanced OHA adsorption and flotation
recovery of bastnasite by forming N-M(OH) coordination bonds between the hydrolysis products of the
metal ions and the nitrogen atom in OHA, while mixed ions inhibited OHA adsorption due to
competitive effects. DFT calculations revealed a reduced adsorption energy and a dual-site adsorption
model involving both Ce-O and M-O bonds. This study clarifies these opposing mechanisms and
elucidates the role of metal ions as an “adsorption bridge” at the atomic orbital and chemical bond levels
(Liu et al., 2024). Similarly, Luo et al. (Luo and Chen, 2022) demonstrated that dihydroxy complexes
could adsorb more readily and stably onto quartz surface compared to monohydroxy complexes.

Fig. 5. Formation of metal ion-hydroxy complex on mineral surface (Gao et al., 2017)
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The second mechanism entails the adsorption of metal ions through surface precipitation, which
alters the efficacy of reagents on flotation (Fig. 6) (Paiva et al., 2011; Gao et al., 2017; Suyantara et al.,
2018). Species distribution diagrams indicate that most metal ions hydrolyze into precipitates under
alkaline conditions (Hoseinian et al., 2023; Liu et al., 2023). During sphalerite flotation, Cu?* could be
used as an activator through the formation of Cu,S surface products. However, under alkaline
conditions, it would be hydrolyzed into Cu(OH). precipitate, which would chemisorb onto sphalerite
surface and reduce its floatability (Zhao et al., 2021). The dominant species of metal ions existing in
solution are critically influenced by pH. For example, Pb?* and PbOH* dominate in weakly acidic
environments, whereas Pb(OH): precipitates prevail under alkaline conditions (Yu et al., 2023; Miao et
al.,, 2024). Thus, pulp pH is a critical factor in determining the dominant species and their subsequent

effects on flotation.
(a) (b)

Fig. 6. Formation of metal hydroxide precipitate on mineral surface (Gao et al., 2017)

In mineral flotation systems, the speciation of metal hydroxy complexes depends critically on
solution pH. Under acidic conditions, metal ions would form positively charged hydroxy complexes
through hydroxide coordination, which would adsorb onto mineral surfaces through chemisorption.
As the pH value increases to neutral range, the enhanced hydroxylation would promote
polycondensation, leading to the formation of colloidal hydroxide precipitate. Under strongly alkaline
conditions, the excessive OH- would further transform these hydrolyzed products into negatively
charged hydroxy complexes. As illustrated by the composition diagram of Al** in Fig. 7 (Zhang et al.,
2023), AI(OH)?* and Al(OH)>* dominate at pH 1-4. Above pH 4, the concentration of AI(OH),*, AI(OH)
and AP+ in solution would decrease sharply, while AI(OH); precipitate emerges and rapidly becomes
the predominant species. With further increase in alkalinity, AI(OH)s becomes the dominant soluble
species.
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Fig. 7. Composition diagram of aluminum ion in solution (Zhang et al., 2023)



7 Physicochem. Probl. Miner. Process., 61(6), 2025, 214828

3.3. Interaction between metal ions and flotation reagents

Metal ions in pulp could interact directly with the flotation reagents. This interaction modifies reagent
properties or forms metal-reagent complexes, significantly influencing flotation performance (Chen,
2021; Wei et al., 2021; Dong et al., 2023; Zhao et al., 2024). For example, the addition of Fe?* could enhance
the depressive effect of sodium silicate. When applied in an optimal ratio, the combination of Fe?* and
sodium silicate would exhibit stronger selective adsorption and depression compared to silicate alone
(Deng et al., 2018). Ultrasonic pretreatment could promote the oxidation of Fe?* to Fe3* on ilmenite and
olivine surfaces, while exhibiting minimal impact on titanaugite. This selective oxidation facilitates the
preferential adsorption of sodium oleate (NaOL) onto Fe(OH)s species formed on ilmenite surface.
Concurrently, ultrasonic pretreatment would release a large amount of Ca2* and Mg?* from the surfaces
of titanaugite and olivine into the pulp, reducing the surface active sites and diminishing oleate
adsorption. These changes collectively improve the separation of ilmenite from titanaugite and olivine
(Fang et al., 2020). Studies indicate that Fe3* inhibits the sulfuration flotation of smithsonite by forming
weak and unstable Fe-S bonds, accompanied by a surface hydration film that hinders HS- adsorption
on the mineral surface. These combined effects reduce the active sites available for collector attachment
on smithsonite surface (Luo et al., 2022). In systems activated with copper sulfate, Cu(OH), adsorbed
on mineral surfaces could react with xanthate to form an unstable complex that readily decomposes,
thereby reducing the mineral surface hydrophobicity (Leppinen, 1990). Conversely, in spodumene
flotation, the presence of Ca?* could promote the formation of colloidal oleate complexes that strongly
adsorb onto the spodumene surface, enhancing its surface hydrophobicity (Gao et al., 2021b). Pb2* could
react with benzohydroxamic acid (BHA) to form a complex of Pb2*/Pb(OH)*-BHA (Fig. 8), which
exhibits enhanced collecting capacity compared to the sequential addition of Pb?* and BHA (Tian et al.,
2017; Tian et al., 2018).

one newly generated
water molecule

Fig. 8. Proposed adsorption mechanism of HO-Pb-BHA on cassiterite at pH 8-9 (Tian et al., 2018)

Metal ions could significantly influence mineral flotation through multiple mechanisms, including
electrostatic interactions with the mineral surfaces, ion exchange, hydroxy complex formation, and
hydroxide precipitation. Additionally, the reactions between metal ions and flotation reagents also
critically influence flotation performance.

4. Influence of Ca?* and Mg?* in mineral flotation

As the most common divalent metal ions in flotation systems, Ca2* and Mg?* are widely derived from
ores, process water and flotation reagents. These ions critically influence flotation performance by
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modulating mineral surface properties and reagent interactions, thereby affecting both selectivity and
separation efficiency. This section examines the roles of Ca2* and Mg?* in mineral flotation, emphasizing
their activation, depression and dispersion effects, and discusses strategies to mitigate their adverse
impacts.

4.1. Depression of Ca?* and Mg2*

In certain flotation processes, the presence of Ca?* and Mg?* could significantly hinder the selective
separation of minerals. This section details the depression mechanisms of Ca2* and Mg?* in flotation.

Solution chemistry analysis indicates that Ca2* and Mg?* predominantly exist as free ions at pH 3-7.
Under alkaline conditions at pH 10-11, Ca(OH)* and Mg(OH)* become the dominant species (Yao et al.,
2024). When Ca?* adsorbs on sillimanite in the presence of dodecylammonium chloride, it could reduce
the mineral surface zeta potential, thereby significantly diminishing the electrostatic attraction between
dodecylammonium and the mineral. This would result in decreased adsorption of dodecylammonium
and weakened surface hydrophobicity (Chen et al., 2017). In wolframite flotation systems, Ca?* and
Mg?2* could adsorb on wolframite surface through physisorption and increase the zeta potential, thereby
interfering with Pb2* activation and inhibiting the consequent adsorption of fatty acid (Shang and Zhou,
2018). Alkaline conditions promote the hydrolysis of Ca?* and Mg?*, leading to hydroxy complexes or
colloidal hydroxide precipitates. These species would adsorb onto mineral surfaces, thereby modifying
their electrochemical properties and altering the interaction between reagents and minerals (Zhou et al.,
2020). Additionally, the adsorption of these hydrolyzed species inhibit subsequent reagent adsorption
by forming hydrophilic surface films (Hirajima et al., 2016).

Beyond direct hydrolysis, Ca?* and Mg2* could also interact with other ions derived from minerals
to affect mineral flotation behavior. For example, Ca2* could react with MoO,? at molybdenite edges to
form calcium molybdate precipitates, depressing its floatability (Wan et al., 2017; Sun et al., 2021b). Due
to the similarities in ionic size between Ca2*/Na* and Ba?*/K*, divalent cations are able to replace
monovalent ions in feldspar lattices through isomorphous replacement. Thus, slight increases in Ca2*
concentration would promote its preferential adsorption onto Na-feldspar surface through ion
exchange, significantly reducing the surface zeta potential. This would effectively inhibit the adsorption
of amine collectors, facilitating the separation between Na-feldspar and K-feldspar (Demir et al., 2003).

Reagent consumption by Ca?* and Mg?* represents another depression mechanism on mineral
flotation. Surface chemistry studies indicate that Ca2* adsorption would depress the high-iron sphalerite
flotation by competitively occupying surface active sites (Fig. 9), hindering the activation of Cu?* and
reducing the xanthate adsorption through electrostatic screening (Zhang et al., 2021). Furthermore,
isomorphous substitution of Fe in sphalerite lattice obviously enhances the adsorption of Ca2* through
surface charge redistribution, which synergistically reduces the mineral floatability by passivating
active sites and compressing the electrical double-layer. In phosphate ore flotation, Ca2* dissolved from
phosphorite would react with SO42 to form the calcium sulfate precipitates. These precipitates would
adsorb onto dolomite surfaces, reducing the available active sites for oleate adsorption and
consequently depressing dolomite hydrophobicity in NaOL system (Fig. 10) (Chen et al., 2022). The
interaction of Mg?* in phosphate flotation system is regulated by the ion concentration. At low
concentrations, it would form Mg3(PO4). precipitates that activate phosphate surfaces and enhance the
collector adsorption. In contrast, above a critical concentration, excessive Mg?* consumes oleate and
forms a dense Mg(OH) layer that strongly depresses flotation (Li and Zhang, 2013). As a common
depressant, CMC would react with metal ions, such as Cu?* and Ca?*, through distinct mechanisms
(Burdukova et al., 2008; Feng et al., 2013). Ca?* could neutralize the surface charge on CMC, facilitating
its adsorption on chlorite and talc. In contrast, Cu?* would adsorb directly onto chlorite surface,
reducing surface charge of both the mineral and CMC, diminishing electrostatic repulsion and
enhancing adsorption density.

As shown in Table 1, depression of mineral flotation by Ca?* and Mg2* occurs mainly through
multiple mechanisms. First, they could adsorb on mineral surfaces, altering surface charge properties
and thereby weakening electrostatic interactions with collectors. Second, Ca?*, Mg?+ and their hydroxy
complexes compete with target minerals for reagent coordination, effectively consuming flotation
reagents. Additionally, under highly alkaline conditions, these ions would form hydrophilic hydroxide
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precipitates and adsorb on mineral surfaces, enhancing surface hydrophilicity. Concurrently, Ca2* and
Mg2?* could also compete with activating metal ions and collectors for mineral surface active sites,
thereby hindering their adsorption. These synergistic interactions would collectively depress the
floatability of the target minerals.
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Table 1. Primary mechanisms in metal ion-induced depression of minerals

Mineral Ions Primary Mechanism References

Forms calcium molybdate precipitates, covering surface
Molybdenite Ca2+ Wan et al.,, 2017
active sites.

Competitively occupies surface sites, hindering Cu2+
Sphalerite Caz+ Zhang et al., 2021
activation and reducing xanthate adsorption.

Forms a dense Mg(OH): layer at high concentrations,
Dolomite Mg2+ Li and Zhang, 2013
hindering oleate adsorption.

Adsorbs via ion exchange, reduces surface zeta potential,
Na-Feldspar Ca2+ Demir et al., 2003
and inhibits amine collector adsorption.

Physisorption interferes with Pb2* activation and Shang and Zhou,
Wolframite  Ca2*/Mg?2*
subsequent fatty acid adsorption. 2018

Adsorption reduces surface zeta potential, weakening
Sillimanite Ca2+ ] ] ) Chen et al., 2017
electrostatic attraction to dodecylammonium.
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4.2, Activation of Ca?* and Mg?*

In addition to their depressive roles, Ca2* and Mg?* could also activate the mineral surfaces or enhance
reagent performance by modulating the solution chemistry.

For instance, the adsorption of Ca?* and Mg?* generates additional active sites on smithsonite
surfaces, intensifying the collector interaction and facilitating the adsorption layer formation, thereby
improving the smithsonite recovery (Aratjo and Lima, 2017). In lepidolite flotation, the adsorption of
Mg?* could enhance NaOL adsorption through combined electrostatic and coordinative mechanisms.
The surface charge modulation would increase the density of active sites to enhance collector adsorption,
and in parallel, the interaction with Al, F and O sites induces mineral surface hydroxylation and
reconstruction. XPS analysis confirms that these processes would effectively lower the energy barrier
for NaOL adsorption and promote the hydrophobic film formation (Xu et al., 2024). Owing to its
stronger polarization ability, Mg?* forms more stable colloidal Mg-OOCR complexes than Ca2* (Fig. 11).
In a-BDDA anion collector system, the presence of Ca?*, Mg?* and Cu?* would selectively activate
spodumene during the flotation separation from quartz and feldspar, whereas Fe3* would non-
selectively activate all three minerals and hinder the selectivity. Ca?* and Mg?* would adsorb onto
spodumene primarily as free ions, while Cu?* would adsorb as the hydrolyzed species Cu(OH)*. Owing
to their stronger adsorption affinity, Ca2* and Mg2* exhibit superior adsorption and activation than Cu?*,
reaching maximum activation at pH 12.5 and 10.0 respectively (Liu et al.,, 2015; Xie et al., 2021).
Furthermore, in sodium oleate systems, Mg2* exhibits stronger activation of quartz than Ca2* below pH
8, whereas this trend reverses above pH 10 (Nie et al., 2023).
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Fig. 11. Influence of NaOL on the adsorption of Mg2+* and Ca2* on lepidolite and quartz (Xu et al., 2024)

Ca?* could not adsorb significantly onto cassiterite or quartz surfaces and hardly affect their
floatability under acidic conditions. However, at pH 9.1, excessive Ca?* is extensively hydrolyzed,
forming Ca(OH)* and initiating Ca(OH), precipitate. These hydrolysis products would react with
oxygen sites on quartz surface and markedly enhance its floatability (Feng et al., 2018). Both Ca2?* and
Mg?* could form hydroxo complexes such as [M(OH)]*, which adsorb onto quartz surface through
chemisorption (Tang et al., 2024a). This process induces a positive shift in surface potential and creates
active sites on the mineral surface, promoting the oriented adsorption of HAY collectors through the
synergistic effect of the electrostatic-hydrogen bond interactions. Consequently, quartz hydrophobicity
and flotation efficiency are improved (Zhou et al., 2014). Besides, the role of Ca?* hydrolysis products
in quartz flotation varies with pH. At a Ca2* concentration of 0.5x10-3 mol/L, Ca(OH)* serves as the
primary activating species across pH 4-12, whereas Ca(OH), precipitate dominates above pH 13,
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depressing quartz flotation (Shi et al., 2001; Cong et al., 2018; Liu et al., 2020). Through adsorption
energy calculations and structure parameter analysis, Wang et al. identified the hollow site of Si centers
and the top site of O atoms as the primary adsorption sites on quartz (101) surface. As illustrated in Fig.
12, Ca?* in aqueous solution primarily forms hydrated complexes like [Ca(HxO)4** and
[Ca(OH)(H20)s3]*, wherein Ca?* and surface O atoms accept electrons from O atoms in water ligands
(Wang et al., 2018).

Ca(H,0)* Ca(H,0),> . Ca(H,0),>*

&

(i) Ca(H,0),* Ca(H,0).>

Ca(OH)(H,0)" Ca(OH)(H,0),"

A

(11) Ca(OH)(H,0),* Ca(OH)(H,0),* Ca(OH)(H,0),

Fig. 12. Equilibrium geometries of hydration structures of Ca2* (i) and Ca(OH)" (ii). (Ca: green; H: white) (Wang
etal., 2018)
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As shown in Table 2, Ca2* and Mg?* would form hydroxo complexes such as [M(OH)]* or hydroxide
precipitates through hydrolysis under alkaline conditions, which adsorb onto mineral surfaces through
chemisorption. This process significantly increases the density of surface active sites and enhances the
binding capacity for anionic collectors like fatty acids. Consequently, these interfacial chemical
modifications would promote collector adsorption and enhance surface hydrophobicity, thereby
activating the mineral surface.

Table 2. Primary mechanisms in metal ion-induced activation of minerals

Mineral Ions Primary Mechanism References

Q /M 2 I lyd] ()Xy C()lllplexes pl ()\/ide aCtiVe Sites, p[O X Otillg t] 1e Llu et al., 2015,
uartz Ca2 g
adsor ptl on ()f anionic COHeCtOI S. Xle et al., 202 l

Hydrolyzes to Ca(OH)* under alkaline conditions, enhancing
Cassiterite Ca2+ Feng et al., 2018
collector adsorption on the quartz surface.

Provides additional active sites, intensifying collector Aratjo and
Smithsonite ~ Ca2*/Mg2* ]
interaction and facilitating adsorption layer formation. Lima, 2017

Modulates surface charge and induces hydroxylation, lowering
Lepidolite Mg2+ Xu et al., 2024
the energy barrier for NaOL adsorption.

4.3. Effect of Ca?* and Mg?* on mineral particles dispersion

Ca?* and Mg?* in pulp not only function as activators or depressants in flotation but also modulate the
interparticle interactions by altering mineral surface charge properties.

The species, valence, and pH-dependent speciation of metal ions critically control the dispersion
and agglomeration of micro-fine wolframite. Divalent and trivalent metal ions significantly promote
the agglomeration of micro-fine wolframite particles by destabilizing suspensions, primarily through
the adsorption of hydroxide or hydroxy complex species (Kuang et al., 2022). Under weakly alkaline
conditions, electrostatic repulsion dominates the interaction between galena and calcite particles due to
their negatively charged surfaces, preventing the hetero-aggregation. However, adsorption of the
hydrolyzed Ca(OH)* species onto galena surfaces would neutralize its surface charge and facilitate the
hetero-aggregation between particles through the electrostatic interactions (Wang et al., 2024). The
dispersion behavior of aluminosilicate minerals is strongly pH-dependent in the presence of Ca?* and
Mg?*. Under acidic conditions, these ions exert minimal influence on the dispersion stability, whereas
under alkaline conditions, their hydrolyzed species would adsorb and strongly disrupt the dispersion
stability, leading to particle agglomeration (Zhou et al., 2011; Ejtemaei et al., 2016; Guo et al., 2023).
Similarly, the dispersion behavior of kaolinite is also strongly affected by pH value in the presence of
Ca?* and Mn?*. These ions would adsorb specifically onto kaolinite surface, reducing surface negative
charge and enhancing the adsorption of polyacrylamide (PAM) flocculant, thereby optimizing the
flocculation efficiency (Mpofu et al., 2003).

In acidic media, Ca?* and Mg?* could adsorb onto muscovite surfaces through electrostatic
interactions, increasing the surface charge density and enhancing the electrostatic repulsion, thereby
improving the dispersion stability. Under alkaline conditions, these ions would form hydroxy
complexes that adsorb onto muscovite surface and induce the flocculation through bridging
mechanisms (Fig. 13) (Tang et al., 2016). The dissolution of dolomite would release Ca?* and Mg?* into
the pulp, where they subsequently adsorb onto dolomite surfaces as hydroxy complexes or hydroxide
precipitates. This adsorption would reduce the interaction energy barrier between dolomite particles,
promoting aggregation through bridging and destabilizing the dispersion behavior of dolomite. A
comparative study (Tang et al.,, 2024b; Tang and Luo, 2025) revealed that Ca2* and Mg?* distinctly
influence starch gelatinization and hematite flocculation. Low concentrations of Mg2* (<4 mmol/L)
could enhance flocculation by forming moderate cross-linking bridges with starch carboxyl groups,
enlarging flocs and accelerating settling. In contrast, Ca2* consistently inhibited starch gelatinization,
increasing turbidity, reducing viscosity, and impairing floc formation and settling. These results
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highlight the critical role of cation type and concentration in starch-based flocculation performance.
Furthermore, Mg?* exhibits a stronger destructive effect on particle dispersion than Ca?* due to the
lower solubility product of its hydroxides, leading to a more pronounced aggregation under the
equivalent concentration (Fang, 1998; Yuan et al., 2024). Additionally, the adsorption of most ions could
also compress the electric double layer, modifying mineral surface potential and further enhancing the
mineral particle aggregation. Although Ca?* and Mg?* generally lack mineral-specific selectivity, their
effects depend strongly on the ion concentration and solution chemistry (Xu et al., 2017; Guo et al., 2003;
Liu et al., 2022).

- — —
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Fig. 13. Bridging effect of hydroxy complex (Tang et al., 2016)

4.4. Elimination of adverse effects in mineral flotation

In mineral flotation, Ca?* and Mg?* exhibit dual interfacial behavior. The adsorption of Ca?* and Mg?*
selectively enhances the hydrophobicity of target minerals while depressing gangue minerals, thereby
offering valuable applications in mineral flotation. Conversely, non-selective coordination with non-
target minerals would lead to ineffective reagent consumption and impaired separation efficiency,
necessitating the mitigation of these adverse effects.

The fluoride precipitation method removes Ca?* and Mg?* from pulp by forming low-solubility
precipitates such as CaF, and MgF (Su et al., 2016; Zhao et al., 2019; Pei et al., 2024). Alternatively,
carbonate addition could facilitate the removal of these ions through the precipitation of CaCO; and
MgCO:s. During the removal of Ca?* and Mg?* from Mn?2* solution, stepwise precipitation of Ca?* and
Mg?* could be achieved through crystal phase control using carbonate (Lin et al., 2016). A synergistic
CaO-NaxCOs precipitation process enables efficient ion removal in seawater-based systems through the
collaborative optimization of pH adjustment and the carbonate dosing (Jeldres et al., 2017). Additionally,
the addition of tripolyphosphate could chelate Ca2?* to form stable soluble complexes, thereby mitigating
its coagulating effect (Sun et al., 2010b). In sulfide ore flotation recirculation water, high concentrations
of Ca?* and SO4? could be treated by adding CaO and amorphous Al(OH); to promote the formation of
ettringite precipitation through coordinated regulation (Guerrero-Flores et al., 2022). These approaches
transform harmful ions into functional materials, enabling their secondary utilization. Beyond
precipitation, chelation and complexation would offer another practical strategy for mitigating the
adverse effects through the interaction between specific reagents and metal ions. The addition of sodium
hexametaphosphate could react with Ca2* strongly, forming a highly soluble and stable complex species
(Bustos-Flores et al., 2021). Similarly, chelating reagents such as BATPA could reduce Ca2* adsorption,
thereby alleviating its depressive effect on magnesite flotation (Luo et al., 2017).

Precipitation and complexation are the two primary strategies to mitigate the adverse effects of Ca2*
and Mg?*. The precipitation method enables a nearly complete removal by converting the soluble ions
into insoluble solid phases. However, careful control is required to prevent the adsorption of
precipitates onto mineral surfaces, which could otherwise interfere with flotation performance.



14 Physicochem. Probl. Miner. Process., 61(6), 2025, 214828

5. Conclusion

A fundamental understanding of Ca2* and Mg?* is crucial for advancing flotation technology, offering

both theoretical and practical benefits. Based on a thorough analysis of their primary sources and

interfacial interaction mechanisms, this work provides a systematic examination of the roles of Ca2* and

Mg?+.

(1) Metal ions influence the flotation performance through multiple mechanisms, including electrostatic
adsorption, lattice substitution, formation of hydroxy complexes or hydroxide precipitates, and
interactions with flotation reagents.

(2) The interfacial behavior of Ca?* and Mg?* in mineral flotation is governed by both pH and reagent
chemistry. Adsorption of these metal ions can obviously modify surface charge properties, leading
to particle dispersion or aggregation. Under alkaline conditions, hydroxide precipitates could
further promote particle settling through bridging effects.

(3) Chemical precipitation and complexation represent the predominant strategies for mitigating the
adverse effects of Ca?* and Mg2*. These methods employ specific reagents to convert ions into
insoluble precipitates or stable complexes, reducing their concentration and effectively minimizing
interference in flotation.

(4) Based on the established understanding of Ca?* and Mg?* roles in flotation systems, future research
should focus on the development of Al-assisted technologies for predicting and regulating ionic
behavior, and the design of environmentally reagents with specific affinity for Ca?* and Mg?*. These
technological advances will significantly improve separation efficiency for complex refractory ores,
supporting the evolution toward environmentally sustainable flotation operations.
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