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ERRATA. VOL. II.

Page 3, line

73,

5, read

14, „

i. p. 25 instead

60

of xxxi. p. 30.

76.

188, 27 P-

191, 8,

(181) 

cPF
P* = P dydz

p. (189).

P dxdy '

„ 201, „ 10, insert II after the differential operator in equation (18).

In the Bakerian Lecture at page 18, line 21, the value of - r* is given as 1112'8, where J
r is the radius of each of the movable discs used in the experiments on Viscosity. But with 
the value of the diameter as given at page 4, line 14, this number should be 1220'8. The 
values of the quantity A in the fourth line of the Table given at page 19 should therefore all be 
increased by 108. The values of Q, the quantity in the fifth line, increase in the same proportion 
as the values of A. Hence according to equations (23) and (24) the values of the coefficient 
of Viscosity, will be smaller than they appear in the text and will approximate to those obtained 
by more recent experiments. The above inaccuracy in the numerical reductions was pointed out by 
Mr Leahy, Pembroke College, Cambridge.



[From the Philosophical Transactions, Vol. clvi.]

XXVII. The Bakerian Lecture.—On the Viscosity or Internal Friction 
of Air and other Gases.

Received November 23, 1865,—Read February 8, 1866.

The gaseous form of matter is distinguished by the great simplification 
which occurs in the expression of the properties of matter when it passes into 
that state from the solid or liquid form. The simplicity of the relations between 
density, pressure, and temperature, and between the volume and the number 
of molecules, seems to indicate that the molecules of bodies, when in the gaseous 
state, are less impeded by any complicated mechanism than when they subside 
into the liquid or solid states. The investigation of other properties of matter 
is therefore likely to be more simple if we begin our research with matter 
in the form of a gas.

The viscosity of a body is the resistance which it offers to a continuous 
change of form, depending on the rate at which that change is effected.

All bodies are capable of having their form altered by the action of suf
ficient forces during a sufficient time. M. Kohlrausch*  has shewn that torsion 
applied to glass fibres produces a permanent set which increases with the time 
of action of the force, and that when the force of torsion is removed the fibre 
slowly untwists, so as to do away with part of the set it had acquired. 
Softer solids exhibit the phenomena of plasticity in a greater degree but the 
investigation of the relations between the forces and their effects is extremely 
difficult, as in most cases the state of the solid depends not only on the forces 
actually impressed on it, but on all the strains to which it has been subjected 
during its previous existence.

* “Ueber die elaatische Nachwerkung bei der Torsion,” Pogg. Ann. cxix. 1863.
VOL. II. ]



2 ON THE VISCOSITY OR INTERNAL FRICTION

Professor W. Thomson*  has shewn that something corresponding to internal 
friction takes place in the torsional vibrations of wires, but that it is much 
increased if the wire has been previously subjected to large vibrations. I have 
also found that, after heating a steel wire to a temperature below 120°, its 
elasticity was permanently diminished and its internal friction increased.

* Proceedings of the Royal Society, May 18, 1865.
+ Liquids : Poiseuille, Mem. de Savants Etrangers, 1846. Gases : Graham, Philosophical Transactions, 

1846 and 1849.
+ Baily, Phil. Trans. 1832; Bessel, Berlin Acad. 1826 ; Dubuat, Principes d’Hydratdique, 1786. All 

these are discussed in Professor Stokes’s paper “ On the Effect of the Internal Friction of Fluids on the 
Motion of Pendulums,” Cambridge Phil. Trans, vol. IX. pt. 2 (1850).

§ Coulomb, Mem. de I’Institut national, in. p. 246; 0. E. Meyer, Pogg. Ann. cxm. (1861) p. 55, and 
Crelic's Journal, Bd. 59.

|| Helmholtz and Pietrowski, Sitzungsberichte der k. k. Akad. April, 1860.

Ihe viscosity of fluids has been investigated by passing them through
capillary tubes t, by swinging pendulums in them J, and by the torsional vibra
tions of an immersed disk§, and of a sphere filled with the fluid ||.

Ihe method of transpiration through tubes is very convenient, especially 
for comparative measurements, and in the hands of Graham and Poiseuille it 
has given good results, but the measurement of the diameter of the tube is 
difficult, and on account of the smallness of the bore we cannot be certain that 
the action between the molecules of the gas and those of the substance of the 
tubes does not affect the result. The pendulum method is capable of great 
accuracy, and I believe that experiments are in progress by which its merits 
as a means of determining the properties of the resisting medium will be tested. 
The method of swinging a disk in the fluid is simple and direct. The chief 
difficulty is the determination of the motion of the fluid near the edge of the 
disk, which introduces very serious mathematical difficulties into the calculation 
of the result. Ihe method with the sphere is free from the mathematical 
difficulty, but the weight of a properly constructed spherical shell makes it un
suitable for experiments on gases.

In the experiments on the viscosity of air and other gases which I propose 
to describe, I have employed the method of the torsional vibrations of disks, 
but instead of placing them in an open space, I have placed them each between 
two parallel fixed disks at a small but easily measurable distance, in which 
case, when the period of vibration is long, the mathematical difficulties of deter
mining the motion of the fluid are greatly reduced. I have also used three 
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disks instead of one, so that there are six surfaces exposed to friction, which 
may be i educed to two by placing the three disks in contact, without altering 
the weight of the whole or the tune of vibration. The apparatus was con
structed by Mr Becker, of Messrs Elliott Brothers, Strand.

Description of the. Apparatus.
Plate XXI. p. 30, fig. 1 represents the vacuum apparatus one-eighth of the 

actual size. MQRS is a strong three-legged stool supporting the whole. The 
top [MM) is in the form of a ring. EE is a brass plate supported by the ring 
MM. I he under surface is ground truly plane, the upper surface is strengthened 
by ribs cast in the same piece with it. The suspension-tube AC is screwed 
into the plate EE, and is 4 feet in height. The glass receiver N rests on a 
wooden ring PP with three projecting pieces which rest on the three brackets 
QQ, of which two only are seen. The upper surfaces of the brackets and the 
under surfaces of the projections are so bevilled off, that by slightly turning the 
wooden ring in its own plane the receiver can be pressed up against the plate 
EE.

F, G, H, K are circular plates of glass of the form represented in fig. 2. 
Each has a hole in the centre 2 inches in diameter, and three holes near the 
circumference, by which it is supported on the screws LL.

Fig. G represents the mode of supporting and adjusting the glass plates. 
LL is one of the screws fixed under the plate EE. aS is a nut, of which the 
upper part fits easily in the hole in the glass plate F, while the under part 
is of larger diameter, so as to support the glass plate and afford the means of 
turning the nut easily by hand. These nuts occupy little space, and enable 
the glass disks to be brought very accurately to their proper position.

ACE, fig. 1, is a siphon barometer, closed at A and communicating with 
the interior of the suspension-tube at B. The scale is divided on both sides, 
so that the difference of the readings gives the pressure within the apparatus. 
T is a thermometer, lying on the upper glass plate. F is a vessel containing 
pumice-stone soaked in sulphuric acid, to dry the air. Another vessel, containing 
caustic potash, is not shewn. D is a tube with a stopcock, leading to the air- 
pump or the gas generator. C is a glass window, giving a view of the suspended 
mirror d.

For high and low temperatures the tin vessel (fig. 10) was used. When 
the receiver was exhausted, the ring P was removed, and the tin vessel raised

1—2



4 ON THE VISCOSITY OR INTERNAL FRICTION

so as to envelope the receiver, which then rested on the wooden support YY. 
The tin vessel itself rested, by means of projections on the brackets QQ. The 
outside of the tin vessel was then well wrapped up in blankets, and the top 
of the brass plate EE covered with a feather cushion; and cold water, hot 
water, or steam was made to flow through the tin vessel till the thermometer T, 
seen through the window IF, became stationary.

The moveable parts of the apparatus consist of—
The suspension-piece a, fitting air-tight into the top of the tube and holding 

the suspension-wire by a clip, represented in fig. 5.
The axis cdek, suspended to the wire by another clip at C.
The wire was a hard-drawn steel wire, one foot of which weighed 2'6 grains.
The axis carries the plane mirror d, by which its angular position is observed 

through the window C, and the three vibrating glass disks f, g, h, represented 
in fig. 3. Each disk is 10‘56 inches diameter and about '07G thick, and has 
a hole in the centre 75 diameter. They are kept in position on the axis by 
means of short tubes of accurately known length, which support them on the 
axis and separate them from each other.

The whole suspended system weighs three pounds avoirdupoise.
In erecting the apparatus, the lower part of the axis ek is screwed off. 

The fixed disks are then screwed on, with a vibrating disk lying between each. 
Tubes of the proper lengths are then placed on the lower part of the axis 
and between the disks. The axis is then passed up from below through the 
disks and tubes, and is screwed to the upper part at e. The vibrating 
disks are now hanging by the wire and in their proper places, and the fixed 
disks are brought to their proper distances from them by means of the adjusting 
nuts.

ns is a small piece of magnetized steel wire attached to the axis.
When it is desired to set the disks in motion, a battery of magnets is 

placed under N, and so moved as to bring the initial arc of vibration to the 
proper value.

Fig. 4 is a brass ring whose moment of inertia is known. It is placed 
centrically on the vibrating disk by means of three radial wires, which keep 
it exactly in its place.

Fig. 7 is a tube containing two nearly equal weights, which slide inside 
it, and whose position can be read off by verniers.
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The ring and the tube are used in finding the moment of inertia of the 
vibrating apparatus.

The extent and duration of the vibrations are observed in the ordinary 
way by means of a telescope, which shews the reflexion of a scale in the 
mirror d. ihe scale is on a circular arc of six feet radius, concentric with the 
axis of the instrument. The extremities of the scale correspond to an arc of 
vibration of 19° 36', and the divisions on the scale to 17. The readings are 
usually taken to tenths of a division.

Method, of Observation.

When the instrument was properly adjusted, a battery of magnets was 
placed on a board below N, and reversed at proper intervals till the arc of 
vibration extended slightly beyond the limits of the scale. The magnets were 
then removed, and any accidental pendulous oscillations of the suspended disks 
were checked by applying the hand to the suspension-tube. The barometer and 
thermometer were then read off, and the observer took his seat at the telescope 
and wrote down the extreme limits of each vibration as shewn by the numbers 
on the scale. At intervals of five complete vibrations, the time of the transits 
of the middle point of the scale was observed (see Table I.). When the ampli
tude decreased rapidly, the observations were continued throughout the experi
ment ; but when the decrement was small, the observer generally left the room 
for an hour, or till the amplitude was so far reduced as to furnish the most 
accurate results.

In observing a quantity which decreases in a geometrical ratio in equal 
times, the most accurate value of the rate of decrement will be deduced from a 
comparison of the initial values with values which are to these in the ratio 
of e to 1, where e = 271828, the base of the Napierian system of logarithms. 
In practice, however, it is best to stop the experiment somewhat before the 
vibrations are so much reduced, as the time required would be better spent in 
beginning a new experiment.

In reducing the observations, the sum of every five maxima and of the 
consecutive five minima was taken, and the differences of these were written as 
the terms of the series the decrement of which was to be found.

In experiments where the law of decrement is uncertain, this rough method 
is inapplicable, and Gauss’s method must be applied; but the series of amplitudes
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in these experiments is so accurately geometrical, that no appreciable difference 
between the results of the two methods would occur.

The logarithm of each term of the series was then taken, and the mean 
logarithmic decrement ascertained by taking the difference of the first and last, 
of the second and last but one, and so on, multiplying each difference by the 
interval of the terms, and dividing the sum of the products by the sum of 
the squares of these intervals. Thus, if fifty observations were taken of the 
extreme limits of vibration, these were first combined by tens, so as to form 
five terms of a decreasing series. The logarithms of these terms were then 
taken. Twice the difference of the first and fifth of these logarithms was then 
added to the difference of the second and third, and the result divided by 
ten for the mean logarithmic decrement in five complete vibrations.

The times were then treated in the same way to get the mean time of 
five vibrations. The numbers representing the logarithmic decrement, and the 
time for five vibrations, were entered as the result of each experiment*.

* See Table II.
r The total moment of the resistances never exceeded that of the weight of grain acting at the edge 

of the disks.

The series found from ten different experiments were examined to discover 
any departure from uniformity in the logarithmic decrement depending on the 
amplitude of vibration. The logarithmic decrement was found to be constant 
in each experiment to within the limits of probable error; the deviations from 
uniformity were sometimes in one direction and sometimes in the opposite, and 
the ten experiments when combined gave no evidence of any law of increase 
or diminution of the logarithmic decrement as the amplitudes decrease. The 
forces which retard the disks are therefore as the first power of the velocity, 
and there is no evidence of any force varying with the square of the velocity, 
such as is produced when bodies move rapidly through the air. In these 
experiments the maximum velocity of the circumference of the moving disks 
was about inch per second. The changes of form in the air between the 
disks were therefore effected very slowly, and eddies were not produced t.

The retardation of the motion of the disks is, however, not due entirely 
to the action of the air, since the suspension wire has a viscosity of its own, 
which must be estimated separately. Professor W. Thomson has observed great 
changes in the viscosity of wires after being subjected to torsion and longi
tudinal strain. The wire used in these experiments had been hanging up for
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some months before, and had been set into torsional vibrations with various 
weights attached to it, to determine its moment of torsion. Its moment of 
torsion and its viscosity seem to have remained afterwards nearly constant, till 
steam was employed to heat the lower part of the apparatus. Its viscosity 
then increased, and its moment of torsion diminished permanently, but when 
the apparatus was again heated, no further change seems to have taken place. 
During each course of experiments, care was taken not to set the disks vibrating 
beyond the limits of the scale, so that the viscosity of the wire may be 
supposed constant in each set of experiments.

In order to determine how much of the total retardation of the motion is 
due to the viscosity of the wire, the moving disks were placed in contact with 
each other, and fixed disks were placed at a measured distance above and 
below them. Ihe weight and moment of inertia of the system remained as 
before, but the part of the retardation of the motion due to the viscosity of 
the air was less, as there were only two surfaces exposed to the action of the 
air instead of six. Supposing the effect of the viscosity of the wire to remain 
as before, the difference of retardation is that due to the action of the four 
additional strata of air, and is independent of the value of the viscosity of the 
wire.

In the experiments which were used in determining the viscosity of air, 
five different arrangements were adopted.

Arrangement 1. Three disks in contact, fixed disks at 1 inch above and below.
” ,, „ „ 0'5 inch.
,, 3. Three disks, each between two fixed disks at distance 0'683.
’’ 4' >« „ „ „ „ 0'425.
’’ 51 » » „ „ „ 0'18475.

By comparing the results of these different arrangements, the coefficient 
of viscosity was obtained, and the theory at the same time subjected to a 
rigorous test.

Definition of the Coefficient of Viscosity.

Ihe final result of each set of experiments was to determine the value of 
the coefficient of viscosity of the gas in the apparatus. This coefficient may be 
best defined by considering a stratum of air between two parallel horizontal
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planes of indefinite extent, at a distance a from one another. Suppose the 
upper plane to be set in motion in a horizontal direction with a velocity of 
v feet per second, and to continue in motion till the air in the different parts 
of the stratum has taken up its final velocity, then the velocity of the air 
will increase uniformly as we pass from the lower plane to the upper. If the 
air in contact with the planes has the same velocity as the planes themselves, 

then the velocity will increase - feet per second for every foot we ascend.

The friction between any two contiguous strata of air will then be equal 
to that between either surface and the air in contact with it. Suppose that 
this friction is equal to a tangential force / on every square foot, then

where p is the coefficient of viscosity, v the velocity of the upper plane, and 
a the distance between them.

If the experiment could be made with the two infinite planes as described, 
we should find p at once, for

fa p——.

In the actual case the motion of the planes is rotatory instead of recti
linear, oscillatory instead of constant, and the planes are bounded instead of 
infinite.

It will be shewn that the rotatory motion may be calculated on the same 
principles as rectilinear motion; but that the oscillatory character of the motion 
introduces the consideration of the inertia of the air in motion, which causes 
the middle portions of the stratum to lag behind, as is shewn in fig. 8, where 
the curves represent the successive positions of a line of particles of air, which, 
if there were no motion, would be a straight line perpendicular to the planes.

The fact that the moving planes are bounded by a circular edge introduces 
another difficulty, depending on the motion of the air near the edge being 
different from that of the rest of the air.

The lines of equal motion of the air are shewn in fig. 9.
The consideration of these two circumstances introduces certain corrections 

into the calculations, as will be shewn hereafter.
In expressing the viscosity of the gas in absolute measure, the measures
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of all velocities, forces, &c. must be taken according to some consistent system 
of measurement.

If L, M, T represent the units of length, mass, and time, then the dimen
sions of f (a pressure per unit of surface) are a is a length, and u
is a velocity whose dimensions are LT~\ so that the dimensions of p are 
L-'MT-'.

Thus if p. be the viscosity of a gas expressed in inch-grain-second measure, 
and p the same expressed in foot-pound-minute measure, then

p. 1 inch 1 pound 1 second । 
p.' 1 foot 1 grain ' 1 minute

According to the experiments of MM. Helmholtz and Pietrowski*, the 
velocity of a fluid in contact with a surface is not always equal to that of 
the surface itself, but a certain amount of actual slipping takes place in certain 
cases between the surface and the fluid in immediate contact with it. In the 
case which we have been considering, if vo is the velocity of the fluid in 
contact with the fixed plane, and / the tangential force per unit of surface, then 

/=<™o>
where cr is the coefficient of superficial friction between the fluid and the par
ticular surface ovei which it flows, and depends on the nature of the surface as 
well as on that of the fluid. The coefficient a is of the dimensions L'MT'. 
If v, be the velocity of the fluid in contact with the plane which is moving 
with velocity v, and if q- be the coefficient of superficial friction for that plane,

The internal friction of the fluid itself i8

Hence v—f /I q. 1 4.
\<r <r p) •

If we make M = and ■£ = £', then
O' rr '

VOL. II.
Sitzunysbericktc der k. k. Ahad. April 1860.

2
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or the friction is equal to what it would have been if there had been no 
slipping, and if the interval between the planes had been increased by ft + p. 
By changing the interval between the planes, a may be made to vary while 
3 + /T remains constant, and thus the value of /3 + /T may be determined. In 
the case of air, the amount of slipping is so small that it produces no appre
ciable effect on the results of experiments. In the case of glass surfaces rubbing 
on air, the probable value of ft, deduced from the experiments, was ft = ‘0027 
inch. The distance between the moving surfaces cannot be measured so accu
rately as to give this value of ft the character of an ascertained quantity. The 
probability is rather in favour of the theory that there is no slipping between 
air and glass, and that the value of ft given above results from accidental 
discrepancy in the observations. I have therefore preferred to calculate the 
value of p on the supposition that there is no slipping between the air and 
the glass in contact with it.

The value of p depends on the nature of the gas and on its physical 
condition. By making experiments in gas of different densities, it is shewn 
that p remains constant, so that its value is the same for air at 0’5 inch and 
at 30 inches pressure, provided the temperature remains the same. This will 
be seen by examining Table IV., where the value of L, the logarithm of the 
decrement of arc in ten single vibrations, is the same for the same temperature, 
though the density is sixty times greater in some cases than in others. In 
fact the numbers in the column headed L' were calculated on the hypothesis 
that the viscosity is independent of the density, and they agree very well with 
the observed values.

It will be seen, however, that the value of L rises and falls with the 
temperature, as given in the second column of Table IV. These temperatures 
range from 51° to 74" Fahr., and were the natural temperatures of the room 
on different days in May 1865. The results agree with the hypothesis that 
the viscosity is proportional to (461° +0), the temperature measured from absolute 
zero of the air-thermometer. In order to test this proportionality, the tempe
rature was raised to 185° Fahr, by a current of steam sent round the space 
between the glass receiver and the tin vessel. The temperature was kept up 
for several hours, till the thermometer in the receiver became stationary, before 
the disks were set in motion. The ratio of the upper temperature (185° F.) 
to the lower (51°), measured from — 461° F., was •

1-2605.
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The ratio of the viscosity at the upper temperature to that at the lower was 
1-2624,

which shews that the viscosity is proportional to the absolute temperature very 
nearly. The simplicity of the other known laws relating to gases warrants 
us in concluding that the viscosity is really proportional to the temperature, 
measured from the absolute zero of the air-thennometer.

These relations between the viscosity of air and its pressure and temperature 
are the more to be depended on, since they agree with the results deduced 
by Mr. Graham from experiments on the transpiration of gases through tubes 
of small diameter. The constancy of the viscosity for all changes of density 
when the temperature is constant is a result of the Dynamical Theory of 
Gases'-, whatever hypothesis we adopt as to the mode of action between the 
molecules when they come near one another. The relation between viscosity 
and temperature, however, requires us to make a particular assumption with 
respect to the force acting between the molecules. If the molecules act on one 
another only at a determinate distance by a kind of impact, the viscosity will 
be as the square root of the absolute temperature. This, however, is certainly 
not the actual law. If, as the experiments of Graham and those of this paper 
shew, the viscosity is as the first power of the absolute temperature, then in 
the dynamical theory, which is framed to explain the facts, we must assume
that the force between two molecules is proportional inversely to the fifth
power of the distance between them. The present paper, however, does not
profess to give any explanation of the cause of the viscosity of air, but only
to determine its value in different cases.

Experiments were made on a few other gases besides dry air.
Damp air, over water at 70’ F. and 4 inches pressure, was found by the 

mean of three experiments to be about one-sixtieth part less viscous than dry 
air at the same temperature.

Dry hydrogen was found to be much less viscous than air, the ratio of 
its viscosity to that of air being -5156.

A small proportion of air mixed with hydrogen was found to produce a 
large increase of viscosity, and a mixture of equal parts of air and hydrogen 
has a viscosity nearly equal to H of that of air.

The ratio of the viscosity of dry carbonic acid to that of air was found 
to be ’859.

* “ Illustrations of the Dynamical Theory of Gases,” Philosophical Magazine, Jan. I860.

2—2
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It appears from the experiments of Mr. Graham that the ratio of the 
transpiration time of hydrogen to that of air is ’4855, and that of carbonic 
acid to air ‘807. These numbers are both smaller than those of this paper. 
I think that the discrepancy arises from the gases being less pure in my 
experiments than in those of Graham, owing to the difficulty of preventing air 
from leaking into the receiver during the preparation, desiccation, and admission 
of the gas, which always occupied at least an hour and a half before the 
experiment on the moving disks could be begun.

It appears to me that for comparative estimates of viscosity, the method 
of transpiration is the best, although the method here described is better 
adapted to determine the absolute value of the viscosity, and is less liable to 
the objection that in fine capillary tubes the influence of molecular action 
between the gas and the surface of the tube may possibly have some effect.

The actual value of the coefficient of viscosity in inch-grain-second measure, 
as determined by these experiments, is

•00001492(461’4-0).
At 62’F. p = -007802.

Professor Stokes has deduced from the experiments of Baily on pendulums 
^ = •116,

V P
which at ordinary pressures and temperatures gives

p = -00417,

or not much more than half the value as here determined. I have not found 
any means of explaining this difference.

In metrical units and Centigrade degrees

p = -01878(1 4- -003650).

M. O. E. Meyer gives as the value of p in centimetres, grammes, and 
seconds, at 18’ C.,

•000360.

This, when reduced to metre-gramme-second measure, is
/x = '0360.

I make p, at 18’ C., = ’0200.
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Hence the value given by Meyer is 1*8 times greater than that adopted in 
this paper.

M. Meyer, however, has a different method of taking account of the dis
turbance of the air near the edge of the disk from that given in this paper. 
He supposes that when the disk is very thin the effect due to the edge is
proportional to the thickness, and he has given in Crelle’s Journal a vindication
of this supposition. I have not been able to obtain a mathematical solution
of the case of a disk oscillating in a large extent of fluid, but it can easily
be shewn that there will be a finite increase of friction near the edge of the 
disk due to the want of continuity, even if the disk were infinitely thin. I 
think therefore that the difference between M. Meyer’s result and mine is to 
be accounted for, at least in part, by his having under-estimated the effect of 
the edge of the disk. The effect of the edge will be much less in water than 
in air, so that any deficiency in the correction will have less influence on the 
results for liquids which are given in M. Meyer’s very valuable paper.

Mathematical Theory of the Experiment.

A disk oscillates in its own plane about a vertical axis between two fixed 
horizontal disks, the amplitude of oscillation diminishing in geometrical pro
gression, to find what part of the retardation is due to the viscosity of the 
air between it and the fixed disks.

That part of the surface of the disk which is not near the edge may be 
treated as part of an infinite disk, and we may assume that each horizontal 
stratum of the fluid oscillates as a whole. In fact, if the motion of every 
part of each stratum can be accounted for by the actions of the strata above 
and below it, there will be no mutual action between the parts of the stratum, 
and therefore no relative motion between its parts.

Let 0 be the angle which defines the angular position of the stratum which 
is at the distance y from the fixed disk, and let r be the distance of a point 

dQ 1
of that stratum from the axis, then its velocity will be r , and the tangential 

force on its lower surface arising from viscosity will be on unit of surface

d'O .
dydt ............  (O'
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The tangential force on the upper surface will be
/ d'0 d30 , \

11 \dydt + d^dt(^Jr

and the mass of the stratum per unit of surface is pdy, so that the equation 
of motion of each stratum is

^0 d'0
P de p dtfdt ......................................... (2)’

which is independent of r, shewing that the stratum moves as a whole.
The conditions to be satisfied are, that when y = 0, 0 = 0; and that when 
d0 = Ce~u cos (nt + a) ........................................ (3).

The disk is suspended by a wire whose elasticity of torsion is such that 
the moment of torsion due to a torsion 0 is 1^0, where I is the moment 
of inertia of the disks. The viscosity of the wire is such that an angular 

1 . d0 . . , - h
velocity is resisted by a moment 21k -y-. The equation of motion of the 
disks is then

1 ^+2i^+^+NAii ..........w-
where A = j2irrfdr = ^irrt, the moment of inertia of each surface, and 2V is the 
number of surfaces exposed to friction of air.

The equation for the motion of the air may be satisfied by the solution 
0 = e’“ {e™ cos (nt + qy) - e'™ cos (nt - qy)}.(5),

Provided 2pq = P^..................................................(6),

and q'-p^P1.............................................. (7);

and in order to fulfil the conditions (3) and (4),
2ln(l - k)(e^ + e-”* - 2cos 2qb) = NAp{(pn - Iq)(^-e'^) + (qn + Ip) 2sin276}.. .(8). 

Expanding the exponential and circular functions, we find
2lb(l - k) =NAp{l -^cl + ^(n1 - 3?) + ^(nd - ?) + “nW -

where c = — P
P

/ = observed Napierian logarithmic decrement of the amplitude in unit of 
time,

k the part of the decrement due to the viscosity of the wire.
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When the oscillations are slow as in these experiments, when the disks 
are near one another, and when the density is small and the viscosity large, 
the series on the right-hand side of the equation is rapidly convergent.

When the time from rest to rest was thirty-six seconds, and the interval 
between the disks 1 inch, then for air of pressure 29’9 inches, the successive 
terms of the series were

1'0 — 0'00508 +0'24866 +0'00072 +0'00386 = 1'24816;
but when the pressure was reduced to 1'44 inch, the series became

1'0-0'0002448 +'0005768+ '00000008+ '00000002 = 1'0003321.
The series is also made convergent by diminishing the distance between 

the disks. When the distance was '1847 inch, the first two terms only were 
sensible. When the pressure was 29'29, the series was

1-'000858 +'000278 = 1-'00058.
At smaller pressures the series became sensibly =1.
The motion of the air between the two disks is represented in fig. 8, 

where the upper disk is supposed fixed and the lower one oscillates. A row 
of particles of air which when at rest form a straight line perpendicular to the 
disks, will when in motion assume in succession the forms of the curves 1, 2, 
3, 4, 5, 6. If the ratio of the density to the viscosity of the air is very 
small, or if the time of oscillation is very great, or if the interval between 
the disks is very small, these curves approach more and more nearly to the 
form of straight lines.

ihe chief mathematical difficulty in treating the case of the moving disks 
arises from the necessity of determining the motion of the air in the neigh
bourhood of the edge of the disk. If the disk were accompanied in its motion 
by an indefinite plane ring surrounding it and forming a continuation of its 
surface, the motion of the air would be the same as if the disk were of 
indefinite extent; but if the ring were removed, the motion of the air in the 
neighbourhood of the edge would be diminished, and therefore the effect of its 
viscosity on the parts of the disk near the edge would be increased. The 
actual effect of the air on the disk may be considered equal to that on a disk 
of greater radius forming part of an infinite plane.

Since the correction we have to consider is confined to the space imme
diately surrounding the edge of the disk, we may treat the edge as if it were 
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the straight edge of an infinite plane parallel to xz, oscillating in the direction 
of z between two planes infinite in every direction at distance 6. Let w be 
the velocity of the fluid in the direction of z, then the equation of motion is*

dw (d?w d2w\ , .
........................(1(»-

with the conditions w = 0 when y = ±b........................................ (11),
and w=Ccos7^ when y = Q, and x is positive....(12).

I have not succeeded in finding the solution of the equation as it stands, 
but in the actual experiments the time of oscillation is so long, and the space 

between the disks is so small, that we may neglect t and the equation 

is reduced to 
d'w d'w _ 
da? dy*

with the same conditions. For the method of treating these conditions I am 
indebted to Professor W. Thomson, who has shewn me how to transform 
these conditions into another set with which we are more familiar, namely, 
w = 0 when x = 0, and w=l when y = 0, and x is greater than +1, and w— — 1 
when x is less than — 1. In this case we know that the lines of equal values 
of w are hyperbolas, having their foci at the points y = 0, $=±1, and that 
the solution of the equation is

w = - sin-1 -1—r*.......................................  (14)
it 2 ' '

where r„ r, are the distances from the foci.

If we put <£ = - log {7(ri + r»)’ — 4 + t*i+r,}........................(15),
IT

then the lines for 
hyperbolas, and

which </> is constant will be ellipses orthogonal to the

^4-^ = 0- 

da? + dy* ’ ........................................ (16);

and the resultant of the friction on any are of a curve will be proportional

* Professor Stokes “ On the Theories of the Internal Friction of Fluids in Motion, <fcc.,” Cambridge
Phil. Trans. Vol. vin. 
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to fa~fa> where fa is the value of </> at the beginning, and fa at the end 
of the given arc.

In the plane y = Q, when x is very great, <^ = -log4x, and when x=l,

? log 2, so that the whole friction between x = 1 and a very distant point 
7T

ois -log2x.
7T

Now let io and </> be expressed in terms of r and 0, the polar co-ordinates 
with respect to the origin as the pole; then the conditions may be stated thus:

When 0=±~, w — Q. When 0 = 0 and r greater than 1, w— 1. When 

0 = 77 and r greater than 1, w— — 1.

Now let x', y be rectangular co-ordinates, and let 

y' = ^b0 and x' = -blogr.................................(17),

and let w and </> be expressed in terms of x' and y \ the differential equa
tions (13) and (16) will still be true; and when y = ±&, w = 0, and when 
y' = 0 and x' positive, w=l.

When x'
* 2 2

is great, ^ = -|— log 4, and when x = 0, <£ = - log 2, so that the b TT 77
whole friction on the surface is

^ + |log2............................................ (18),

which is the same as if a portion whose breadth is — log,2 had been added 
7T

to the surface at its edge.

The curves of equal velocity are represented in fig. 9 u> v> w> x> 'J- 
They pass round the edge of the moving disk AB, and have a set of asymp
totes U, V, W, X, Y, arranged at equal distances parallel to the disks.

The curves of equal friction are represented at o, p, q, s> form
of these curves approximates to that of straight lines as we pass to the left 
of the edge of the disk.

VOL. II. 3
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The dotted vertical straight lines 0, P, Q, R, S, T represent the position 
of the corresponding lines of equal friction if the disk AB had been accom
panied by an extension of its surface in the direction of B. The total friction
on AB, or on any of the curves u, v, w, &c., is equal to that on a surface
extending to the point C, on the supposition that the moving surface has an
accompanying surface which completes the infinite plane.

In the actual case the moving disk is not a mere surface, but a plate 
of a certain thickness terminated by a slightly rounded edge. Its section may 
therefore be compared to the curve uu rather than to the axis AB.

The total friction on the curve is still equal to that on a straight line 
extending to C, but the velocity corresponding to the curve u is less than that 
corresponding to the line AB.

If the thickness of the disk is 2/3, and the distance between the fixed 
disks = 2b, so that the distance of the surfaces is b — the breadth of the strip 
which must be supposed to be added to the surface at the edge will be

a = “ log. 10 {log10 2 + log10 sin j ...................... (19).

In calculating the moment of friction on this strip, we must suppose it to 
be at the same distance from the axis as the actual edge of the disk. Instead 

of A = -P in equation (9), we must therefore put A =-P+2irPa, and instead z z
of b we must put b — ^.

The actual value of for each surface in inches = 1112'8. z
The value of I in inches and grains was 175337.

It was determined by comparing the times of oscillation of the axis and 
disks without the little magnet, with the times of the brass ring (fig. 4) and 
of the tube and weights (fig. 7). Four different suspension wires were used in 
these experiments.

The following Table gives the numbers required for the calculation of each 
of the five arrangements of the disks.

* This result is applicable to the calculation of the electrical capacity of a condenser in the form of a 
disk between two larger disks at equal distance from it.
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Arrangement Case 1 Case 2 Case 3 Case 4 Case 5

N = number of surfaces .............. 2 2 6 6 6b- p = distance of surfaces........... 1-0 0-5 0-683 0-425 04847Srrr’a = effect of edge .................. 446-09 235-0 292-95 186-7 86-1
A = whole moment of each surface 
if A O

1558-9 1347-8 1405-75 1299-5 1198-9

2 76log, 10 ............................... •003815 •007398 •015110 •022448 •047640

If I is the Napierian logarithmic decrement per second, and L the observed 
decrement of the common logarithm (to base 10) of the arc in time T, then

£ = ZTlogI0e....................  (20).
If n is the coefficient of t in the periodic terms, and T the time of five 
complete vibrations,

nT=10n............... . ................................... (21).
Let K=kTlogue ............................................ (22), 

then A is the part of the observed logarithmic decrement due to the viscosity 
of the wire, the yielding of the instrument, and the friction of the air on the 
axis, and is the same for all experiments as long as the wire is unaltered.

Let p0 be the value of p at temperature zero, p that at any other 
temperature 0, then if p is proportional to the temperature from absolute zero,

P = (l +a0)po........................................... (23),
where a is the coefficient of expansion of air per degree.

Equation (9) may now be written in the form 

^Q(l+x)(l+a0) T+K=L.(24),
where 1+x is the series in equation (9), x being in most cases small, and may 
be calculated from an approximate value of p0.

Ihe values of Q are to be taken from the Table according to the arrange
ment of disks in the experiment.

In this way I have combined the results of forty experiments on dry air 
in order to determine the values of p0 and K. Seven of these had the first 
arrangement, six had the second, six the third, nine the fourth, and twelve 
the fifth.

3—2
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The values of Q for the five cases are roughly in the proportions of 1 2 4,
6, 12, so that it is easy to eliminate K and find p0. I had reason, however, to 
believe that the value of K was altered at a certain stage of the experiments 
when steam was first used to heat the air in the receiver. I therefore intro
duced two values of A, A, and K,, into the experiments before and after this 
change respectively. Ihe values of A, and A, deduced from these experiments 
were

In ten single vibrations. 

^ = •01568
A;=-01901.

The value of p in inch-grain-second measure at temperature &' Fahrenheit 
is for air

p =-00001492 (461°-|-^).

The value of L was then calculated for each experiment and compared with 
the observed value. In this way the error of mean square of a single experi
ment was found. The probable error of p, as determined from the equations, 
was calculated from this and found to be 0'36 per cent, of its value.

In order to estimate the value of the evidence in favour of there being a 
finite amount of slipping between the disks and the air in contact with them, 
the value of L for each of the forty experiments was found on the supposition 
that

£ = •0027 inch and p = (-000015419) (461° +0°).

Ihe error of mean square for each observation was found to be slightly 
greater than in the former case; the probable error of £ was 40 per cent., and 
that of p = l'6 per cent.

I have no doubt that the true value of £ is zero, that is, there is no • 
slipping, and that the original value of p is the best.

As the actual observations were very numerous, and the reduction of them 
would occupy a considerable space in this paper, I have given a specimen of 
the actual working of one experiment.

Table I. shews the readings of the scale as taken down at the time of 
observation, with the times of transit of the middle point of the scale after



OF AIR AND OTHER GASES. 21

the fifth and sixth readings, with the sum of ten successive amplitudes deduced 
therefrom.

Table II. shews the results of this operation as extended to the rest of 
experiment 62, and gives the logarithmic decrement for each successive period 
of ten semivibrations, with the mean time and corresponding mean logarithmic 
decrement.

Table III. shews the method of combining forty experiments of different 
kinds. I he observed decrement depends on two unknown quantities, the viscosity 
of air and that of the wire.

The experiments are grouped together according to the coefficients of p 
and A that enter into them, and when the final results have been obtained, 
the decrements are calculated and compared with the results of observation. 
The calculated sums of the decrements are given in the last column.

Table IV. shews the results of the twelve experiments with the fifth arrange
ment. I hey are arranged in groups according to the pressure of the air, and 
it will be seen that the observed values of L are as independent of the pressure 
as the calculated values, in which the pressure is taken into account only in 
calculating the value of x in the fifth column. By arranging the values of 
L — L in order of temperature, it was found that within the range of atmo
spheric temperature during the course of the experiments the relation between 
the viscosity of air and its temperature does not perceptibly differ from that 
assumed in the calculation. Finally, the experiments were arranged in order of 
time, to determine whether the viscosity of the wire increased during the experi
ments, as it did when steam was first used to heat the apparatus. There did 
not appear any decided indication of any alteration in the wire.

Table V. gives the resultant value of M in terms of the different units 
which are employed in scientific measurements.

Note, added February 6, 1866.—In the calculation of the results 
experiments, I made use of an erroneous value of the moment of inertia 
disks and axis = 1'012 of the true value, as determined by six series of 
ments with four suspension wires and two kinds of auxiliary weights 

of the 
of the 
experi- 

The
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numbers in the coefficients of in in Table IV. are therefore all too large, and 
the value of p. is also too large in the same proportion, and should be

/x =-00001492 (461° + 0.

The same error ran through all the absolute values in other parts of the 
paper as sent in to the Royal Society, but to save trouble to the reader I 
have corrected them where they occur.

Table I.—Experiment 62. Arrangement 5. Dry air at pressure 0'55 inch.
Temperature 68° F. May 9, 1865.

Greater 
scale reading

Time 
8h+

Less 
scale reading Time

8309
111 8

1740
III 8

8071 1968
7852 27 42-4 2180 28 18-8
7650 2377
7460 ........... 2561

Sum of greater readings 39342
Sum of less do. 10826

........... 10826

Difference 28516 = sum of 10 amplitudes.

The observations were continued in the same way till five sets of readings 
of this kind were obtained. The following were the results.

Table II.

Times Sum of ten amplitudes Logarithm Log. decrement

h m s
3 28 0'6 28516 4-4550886 0-1587745

34 3-2 19784 4-2963141 0 1585171
40 5-8 13734 4-1377970 0-1587041
46 8'6 9530 3-9790929 0-1596806
52 11-2 6598 3-8194123

Results of experiment 62. Mean time of ten vibrations — 362 66
Mean log. decrement . .' = ® ^^8574
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Table III.

Equations from which p for air was determined; W “ 461°+^’

Number of 
experiments Arrangement Result of observation Result of calculation

3. 1 6-3647 m + 3 A'=-00023167 •00022779
3. 2 ll-2893»i+ 3 A =-00028280 •00030214
6. 4 71-2412 m + 6A, =-00135467 •00133897
4. 1 8-7221 m+ 4A=-00034562 •00034127
3. 2 11-6680 nt + 3A* =-00031505 •00033335

12. 5 297-7880 in + 12A* = -00511708 •00512666
3. 4 36-0551 m+ 3AZ = 00069607 •00070159
6. 3 48-8911 m+ 6A, =-00108215 •00105333

Final result p* = '00001510 (461°+ 0) with probable error 0'36 per cent.
K, = -0000439, K, = -0000524.

Table IV.—Experiments with Arrangement 5.

* This is the result derived from these equations, which is 1 -2 per cent too large.

No. of 
experi
ment

Absolute 
tempe
rature 
461° -t-tf

Pressure, 
in inches 

of mercury

Time of 
five double 
swings, in 

seconds

Correction for 
inertia of air 

(1 + ®) 
in equation (24)

L = decrement of logarithm 
of arc in ten single vibrations

Diff. L-L'
L' calculated L observed

62. 529 0-55 362-66 •15719 •15886 +167
516 0-50 362-80

1 - -0000157 j
•15378 •15260 -11880. 527 0-56 364-04 •15648 •15946 + 279

63. 527-5 5-57 362-72 •15680 •15628 - 52
64. 535 5-97 362-94

1 - -000157 j
•15875 •15838 - 3781. 516 5-52 363-80 •15379 •15389 + 10

65. 524 25-58 362-64 •15555 •15422 -133
71. 513 19-87 362-50

1 --000486 j
•15299 •15144 -155

72. 514-5 20-31 362-86 •15338 ■15269 - 69
75. 517 29-90 363-8 •15398 •15377 - 21
76. 512-5 29-76 362-89

1--00058 j
•15280 •15146 -134

79. 521 28-22 363-9 •15502 •15510 + 8
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Table V.—Results.

Coefficient of viscosity in dry air. Units—the inch, grain, and second, and 
Fahrenheit temperature,

M = -00001492 (461 + 0) = -006876 + ‘00001490.
At 60° F. the mean temperature of the experiments, p = -007763. Taking 

the foot as unit instead of the inch, p. = '000179 (461 + 0). In metrical units 
(metre, gramme, second, and Centigrade temperature),

P = -01878(1 + -003650).
I he coefficient of viscosity of other gases is to be found from that of air 

by multiplying p by the ratio of the transpiration time of the gas to that of 
air as determined by Graham*.

Postscript.—Received December 7, 1865.

Since the above paper was communicated to the Royal Society, Professor 
Stokes has directed my attention to a more recent memoir of M. O. E. Meyer, 
“Ueber die innere Reibung der Gase,” in Poggendorff’s Annalen, cxxv. (1865). 
M. Meyer has compared the values of the coefficient of viscosity deduced from 
the experiments of Baily by Stokes, with those deduced from the experiments 
of Bessel and of Girault. These values are -000104, -000275, and '000384 
respectively, the units being the centimetre, the gramme, and the second. 
M. Meyer’s own experiments were made by swinging three disks on a vertical 
axis in an air-tight vessel. The disks were sometimes placed in contact, and 
sometimes separate, so as to expose either two or six surfaces to the action 
of the air. The difference of the logarithmic decrement of oscillation in these 
two arrangements was employed to determine the viscosity of the air.

The effects of the resistance of the air on the axis, mirror, &c., and of 
the viscosity of the suspending wires are thus eliminated.

The calculations are made on the supposition that the moving disks are 
so far from each other and from the surface of the receiver which contains 
them, that the effect of the air upon each is the same as if it were in an 
infinite space.

At the distance of 30 millims., and with a period of oscillation of fourteen 
seconds, the mutual effect of the disks would be very small in air at the

* Philosophical Transactions, 1849.
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ordinary pressure. In November 1863 I made a series of experiments with an 
arrangement of three brass disks placed on a vertical axis exactly as in 
M. Meyer’s experiments, except that I had then no air-tight apparatus, and 
the disks were protected from currents of air by a wooden box only.

I attempted to determine the viscosity of air by means of the observed 
mutual action between the disks at various distances. I obtained the values 
of this mutual action for distances under 2 inches, but I found that the results 
were so much involved with the unknown motion of the air near the edge of 
the disks, that I could place no dependence on the results unless I had a 
complete mathematical theory of the motion near the edge.

In M. Meyer’s experiments the time of vibration is shorter than in most 
of mine. This will diminish the effect of the edge in comparison with the total 
effect, but in rarefied air both the mutual action and the effect of the edge 
are much increased. In his calculations, however, the effect of the three edges 
of the disks is supposed to be the same, whether they are in contact or sepa
rated. This, I think, will account for the large value which he has obtained 
for the viscosity, and for the fact that with the brass disks which vibrate in 
14 seconds, he finds the apparent viscosity diminish as the pressure diminishes, 
while with the glass disks which vibrate in 8 seconds it first increases and then 
diminishes. ♦

M. Meyer concludes that the viscosity varies much less than the pressure, 
and that it increases slightly with increase of temperature. He finds the value 
of /x in metrical units (centimetre-gramme-second) at various temperatures,

Temperature. Viscosity.
80-3 C. -000333

21°-5 C. -000323
34°-4 C. -000366

In my experiments, in which fixed disks are interposed between the moving 
ones, the calculation is not involved in so great difficulties; and the value of p. 
is deduced directly from the observations, whereas the experiments of M. Meyer 
give only the value of Jpp, from which p, must be determined. For these 
reasons I prefer the results deduced from experiments with fixed disks inter
posed between the moving ones.

M. Meyer has also given a mathematical theory of the internal friction of 
gases, founded on the dynamical theory of gases. I shall not say anything of 
this part of his paper, as I wish to confine myself to the results of experiment.
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XXVIII. On the Dynamical Theory of Gases.

(Received May 16,—Read May 31, 1866.)

Theories of the constitution of bodies suppose them either to be continuous 
and homogeneous, or to be composed of a finite number of distinct particles or 
molecules.

In certain applications of mathematics to physical questions, it is convenient 
to suppose bodies homogeneous in order to make the quantity of matter in each 
differential element a function of the co-ordinates, but I am not aware that any 
theory of this kind has been proposed to account for the different properties 
of bodies. Indeed the properties of a body supposed to be a uniform plenum 
may be affirmed dogmatically, but cannot be explained mathematically.

Molecular theories suppose that all bodies, even when they appear to our 
senses homogeneous, consist of a multitude of particles, or small parts the 
mechanical relations of which constitute the properties of the bodies. Those 
theories which suppose that the molecules are at rest relative to the body may 
be called statical theories, and those which suppose the molecules to be in 
motion, even while the body is apparently at rest, may be called dynamical 
theories.

If we adopt a statical theory, and suppose the molecules of a body kept at 
rest in their positions of equilibrium by the action of forces in the directions 
of the lines joining their centres, we may determine the mechanical properties 
of a body so constructed, if distorted so that the displacement of each molecule 
is a function of its co-ordinates when in equilibrium. It appears from the mathe
matical theory of bodies of this kind, that the forces called into play by a 
small change of form must alwayg bear a fixed proportion to those excited by 
a small change of volume.
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Now we know that in fluids the elasticity of form is evanescent, while 
that of volume is considerable. Hence such theories will not apply to fluids. 
In solid bodies the elasticity of form appears in many cases to be smaller in 
proportion to that of volume than the theory gives*,  so that we are forced 
to give up the theory of molecules whose displacements are functions of their 
co-ordinates when at rest, even in the case of solid bodies.

* In glass, according to Dr Everett’s second series of experiments (1866), the ratio of the elasticity of 
form to that of volume is greater than that given by the theory. In brass and steel it ‘ 1 ' 
March 7, 1867.

The theory of moving molecules, on the other hand, is not open to these 
objections. The mathematical difficulties in applying the theory are considerable, 
and till they are surmounted we cannot fully decide on the applicability of the 
theory. We are able, however, to explain a great variety of phenomena by the 
dynamical theory which have not been hitherto explained otherwise.

The dynamical theory supposes that the molecules of solid bodies oscillate 
about their positions of equilibrium, but do not travel from one position to 
another in the body. In fluids the molecules are supposed to be constantly 
moving into new relative positions, so that the same molecule may travel from 
one part of the fluid to any other part. In liquids the molecules are supposed 
to be always under the action of the forces due to neighbouring molecules 
throughout their course, but in gases the greater part of the path of each 
molecule is supposed to be sensibly rectilinear and beyond the sphere of sensible 
action of the neighbouring molecules.

I propose in this paper to apply this theory to the explanation of various 
properties of gases, and to shew that, besides accounting for the relations of 
pressure, density, and temperature in a single gas, it affords a mechanical 
explanation of the known chemical relation between the density of a gas and 
its equivalent weight, commonly called the Law of Equivalent Volumes. It also 
explains the diffusion of one gas through another, the internal friction of a gas, 
and the conduction of heat through gases.

The opinion that the observed properties of visible bodies apparently at rest 
are due to the action of invisible molecules in rapid motion is to be found in 
Lucretius. In the exposition which he gives of the theories of Democritus as 
modified by Epicurus, he describes the invisible atoms as all moving downwards 
with equal velocities, which, at quite uncertain times and places, suffer an 
imperceptible change, just enough to allow of occasional collisions taking place 

4—2
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between the atoms. These atoms he supposes to set small bodies in motion by 
an action of which we may form some conception by looking at the motes in 
a sunbeam. The language of Lucretius must of course be interpreted according 
to the physical ideas of his age, but we need not wonder that it suggested 
to Le Sage the fundamental conception of his theory of gases, as well as lus 
doctrine of ultramundane corpuscles.

Professor Clausius, to whom we owe the most extensive developments of 
the dynamical theory of gases, has given* a list of authors who have adopted 
or given countenance to any theory of invisible particles in motion. Of these, 
Daniel Bernoulli, in the tenth section of his Hydrodynamics, distinctly explains 
the pressure of air by the impact of its particles on the sides of the vessel 
containing it.

Clausius also mentions a book entitled Deux Traits de Physique Mecanique, 
publids par Pierre Prevost, comme simple Editeur du premier et comme Auteur 
du second, Genbve et Paris, 1818. The first memoir is by G. Le Sage, who 
explains gravity by the impact of “ultramundane corpuscles” on bodies. These 
corpuscles also set in motion the particles of light and various ethereal media, 
which in their turn act on the molecules of gases and keep up their motions. 
His theory of impact is faulty, but his explanation of the expansive force of 
gases is essentially the same as in the dynamical theory as it now stands.
The second memoir, by Prevost, contains new applications of the principles of
Le Sage to gases and to light. A more extensive application of the theory of
moving molecules was made by Herapathf. His theory of the collisions of
perfectly hard bodies, such as he supposes the molecules to be, is faulty, 
inasmuch as it makes the result of impact depend on the absolute motion of 
the bodies, so that by experiments on such hard bodies (if we could get them) 
we might determine the absolute direction and velocity of the motion of the 
earth j. This author, however, has applied his theory to the numerical results 
of experiment in many cases, and his speculations are always ingenious, and 
often throw much real light on the questions treated. In particular, the theory 
of temperature and pressure in gases and the theory of diffusion are clearly 
pointed out.

* PoggendorfFs Annalen, Jan. 18G2. Translated by G. C. Foster, B.A., Phil. Mag. June, 1862.
t Mathematical Physics, kc., by John Herapath, Esq. 2 vols. London: Whittaker and Co., and 

Herapath’s Railway Journal Office, 1847.
| Mathematical Physics, kc., p. 134.
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Dr Joule*  has also explained the pressure of gases by the impact of their 
molecules, and has calculated the velocity which they must have in order to 
produce the pressure observed in particular gases.

* Some Remarks on Heat and the Constitution of Elastic Fluids, Oct. 3, 1848.
+ Phil. Mag. Feb. 1859.
J “Illustrations of the Dynamical Theory of Gases,” Phil. Mag. 18G0, January and July.
§ Poggendorff, Jan. 1862; Phil. Mag. Juno, 1862.
|| “ Uober die innere Reibung dor Gaso” (Poggendorff, Vol. cxxv. 1865).

It is to Professor Clausius, of Zurich, that we owe the most complete 
dynamical theory of gases. His other researches on the general dynamical theory 
of heat are well known, and his memoirs On the kind of Motion which we call 
Heat, are a complete exposition of the molecular theory adopted in this paper. 
After reading his investigation f of the distance described by each molecule 
between successive collisions, I published some propositions J on the motions and 
collisions of perfectly elastic spheres, and deduced several properties of gases, 
especially the law of equivalent volumes, and the nature of gaseous friction. I 
also gave a theory of diffusion of gases, which I now know to be erroneous, 
and there were several errors in my theory of the conduction of heat in gases 
which M. Clausius has pointed out in an elaborate memoir on that subject §.

M. O. E. Meyer H has also investigated the theory of internal friction on 
the hypothesis of hard elastic molecules.

In the present paper I propose to consider the molecules of a gas, not 
as elastic spheres of definite radius, but as small bodies or groups of smaller 
molecules repelling one another with a force whose direction always passes very 
nearly through the centres of gravity of the molecules, and whose magnitude 
is represented very nearly by some function of the distance of the centres of 
gravity. I have made this modification of the theory in consequence of the 
results of my experiments on the viscosity of air at different temperatures, and 
I have deduced from these experiments that the repulsion is inversely as the 
fifth power of the distance.

If we suppose an imaginary plane drawn through a vessel containing a great 
number of such molecules in motion, then a great many molecules will cross 
the plane in either direction. The excess of the mass of those which traverse 
the plane in the positive direction over that of those which traverse it in the 
negative direction, gives a measure of the flow of gas through the plane in 
the positive direction.
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If the plane be made to move with such a velocity that there is no excess 
of flow of molecules in one direction through it, then the velocity of the plane 
is the mean velocity of the gas resolved normal to the plane.

Ihere will still be molecules moving in both directions through the plane, 
and carrying with them a certain amount of momentum into the portion of 
gas which lies on the other side of the plane.

Ilie quantity of momentum thus communicated to the gas on the other 
side of the plane during a unit of time is a measure of the force exerted on 
this gas by the rest. This force is called the pressure of the gas.

If the velocities of the molecules moving in different directions were inde
pendent of one another, then the pressure at any point of the gas need not 
be the same in all directions, and the pressure between two portions of gas 
sepai ated by a plane need not be perpendicular to that plane. Hence, to 
account for the observed equality of pressure in all directions, we must suppose 
some cause equalizing the motion in all directions. This we find in the deflection 
of the path of one particle by another when they come near one another. 
Since, however, this equalization of motion is not instantaneous, the pressures 
in all diiections are perfectly equalized only in the case of a gas at rest, but 
w hen the gas is in a state of motion, the want of perfect equality in the 
pressures gives rise to the phenomena of viscosity or internal friction. The 
phenomena of viscosity in all bodies may be described, independently of hypo
thesis, as follows:—

A distortion or strain of some kind, which we may call S, is produced in 
the body by displacement. A state of stress or elastic force which we may 
call E is thus excited. Ihe relation between the stress and the strain may 
be written F=ES, where E is the coefficient of elasticity for that particular 
kind of strain. In a solid body free from viscosity, F will remain =ES, and

dF dS
dt dt'

If, however, the body is viscous, A will not remain constant, but will tend to 
disappear at a rate depending on the value of F, and on the nature of the 
body. If we suppose this rate proportional to F, the equation may be written

dF„dS_F 
dt ~ dt T' 
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which will indicate the actual phenomena in an empirical manner. For if S 
be constant,

F=ESe^,

shewing that F gradually disappears, so that if the body is left to itself it 
gradually loses any internal stress, and the pressures are finally distributed as 
in a fluid at rest.

dSIf -j- is constant, that is, if there is a steady motion of the body which 

continually increases the displacement,

F=ET~ + CeT, at

shewing that F tends to a constant value depending on the rate of displace
ment. The quantity ET, by which the rate of displacement must be multiplied 
to get the force, may be called the coefficient of viscosity. It is the product 
of a coefficient of elasticity, E, and a time T, which may be called the “ time 
of relaxation ” of the elastic force. In mobile fluids T is a very small fraction 
of a second, and E is not easily determined experimentally. In viscous solids 
T may be several hours or days, and then E is easily measured. It is possible 
that in some bodies T may be a function of F, and this would account for 
the gradual untwisting of wires after being twisted beyond the limit of perfect 
elasticity. For if T diminishes as F increases, the parts of the wire furthest 
from the axis will yield more rapidly than the parts near the axis during the 
twisting process, and when the twisting force is removed, the wire will at first 
untwist till there is equilibrium between the stresses in the inner and outer 
portions. These stresses will then undergo a gradual relaxation; but since the 
actual value of the stress is greater in the outer layers, it will have a more 
rapid rate of relaxation, so that the wire will go on gradually untwisting for 
some hours or days, owing to the stress on the interior portions maintaining 
itself longer than that of the outer parts. This phenomenon was observed by 
Weber in silk fibres, by Kohlrausch in glass fibres, and by myself in steel wires.

In the case of a collection of moving molecules such as we suppose a gas 
to be, there is also a resistance to change of form, constituting what may be 
called the linear elasticity, or “ rigidity ” of the gas, but this resistance gives 
way and diminishes at a rate depending on the amount of the force and on 
the nature of the gas.
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Suppose the molecules to be confined in a rectangular vessel with perfectly 
elastic sides, and that they have no action on one another, so that they never 
strike one another, or cause each other to deviate from their rectilinear paths. 
Then it can easily be shewn that the pressures on the sides of the vessel due 
to the impacts of the molecules are perfectly independent of each other, so that 
the mass of moving molecules will behave, not like a fluid, but like an elastic 
solid. Now suppose the pressures at first equal in the three directions perpen
dicular to the sides, and let the dimensions a, b, c of the vessel be altered 
by small quantities, 8a, 86, 8c.

Then if the original pressure in the direction of a was p, it will become 

P
8b 
b

8c' 
c

or if there is no change of volume,
^P_ -9 

p a ’

shewing that in this case there is a “longitudinal” elasticity of form of which 
the coefficient is 2p. The coefficient of “Rigidity” is therefore =p.

this rigidity, however, cannot be directly observed, because the molecules 
continually deflect each other from their rectilinear courses, and so equalize the 
pressure in all directions. The rate at which this equalization takes place is 
great, but not infinite; and therefore there remains a certain inequality of 
pressure which constitutes the phenomenon of viscosity.

I have found by experiment that the coefficient of viscosity in a given gas 
is independent of the density, and proportional to the absolute temperature, so 

that if ET be the viscosity, ET <x .
P

But E=p, therefore 7, the time of relaxation, varies inversely as the density 
and is independent of the temperature. Hence the number of collisions pro
ducing a given deflection which take place in unit of time is independent of 
the temperature, that is, of the velocity of the molecules, and is proportional 
to the number of molecules in unit of volume. If we suppose the molecules 
hard elastic bodies, the number of collisions of a given kind will be proportional 
to the velocity, but if we suppose them centres of force, the angle of deflection 
will be smaller when the velocity is greater; and if the force is inversely as 
the fifth power of the distance, the number of deflections of a given kind will 
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be independent of the velocity. Hence I have adopted this law in making my 
calculations.

The effect of the mutual action of the molecules is not only to equalize 
the pressure in all directions, but, when molecules of different kinds are present, 
to communicate motion from the one kind to the other. I formerly shewed 
that the final result in the case of hard elastic bodies is to cause the average 
vis viva of a molecule to be the same for all the different kinds of molecules. 
Now the pressure due to each molecule is proportional to its vis viva, hence 
the whole pressure due to a given number of molecules in a given volume will 
be the same whatever the mass of the molecules, provided the molecules of 
different kinds are permitted freely to communicate motion to each other.

When the flow of vis viva from the one kind of molecules to the other 
is zero, the temperature is said to be the same, Hence equal volumes of 
different gases at equal pressures and temperatures contain equal numbers of 
molecules.

This result of the dynamical theory affords the explanation of the “law of 
equivalent volumes” in gases.

We shall see that this result is true in the case of molecules acting as 
centres of force. A law of the same general character is probably to be found 
connecting the temperatures of liquid and solid bodies with the energy possessed 
by their molecules, although our ignorance of the nature of the connexions 
between the molecules renders it difficult to enunciate the precise form of the law.

The molecules of a gas in this theory are those portions of it which move 
about as a single body. These molecules may be mere points, or pure centres 
of force endowed with inertia, or the capacity of performing work while losing 
velocity. They may be systems of several such centres of force, bound together 
by their mutual actions, and in this case the different centres may either be 
separated, so as to form a group of points, or they may be actually coincident, 
so as to form one point.

Finally, if necessary, we may suppose them to be small solid bodies of a 
determinate form; but in this case we must assume a new set of forces binding 
the parts of these small bodies together, and so introduce a molecular theory 
of the second order. The doctrines that all matter is extended, and that no 
two portions of matter can coincide in the same place, being deductions from 
our experiments with bodies sensible to us, have no application to the theory 
of molecules.

VOL. II. 5
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Ihe actual energy of a moving body consists of two parts, one due to the 
motion of its centre of gravity, and the other due to the motions of its parts 
lelative to the centre of gravity. If the body is of invariable form, the motions 
of its parts relative to the centre of gravity consist entirely of rotation, but 
if the parts of the body are not rigidly connected, their motions may consist 
of oscillations of various kinds, as well as rotation of the whole body.

The mutual interference of the molecules in their courses will cause their 
energy of motion to be distributed in a certain ratio between that due to the 
motion of the centre of gravity and that due to the rotation, or other internal 
motion. If the molecules are pure centres of force, there can be no energy of 
rotation, and the whole energy is reduced to that of translation; but in all 
other cases the whole energy of the molecule may be represented by 
where £ is the ratio of the total energy to the energy of translation. The 
ratio £ will be different for every molecule, and will be different for the same 
molecule after every encounter with another molecule, but it will have an 
average value depending on the nature of the molecules, as has been shown 
by Clausius. Ihe value of £ can be determined if we know either of the 
specific heats of the gas, or the ratio between them.

The method of investigation which I shall adopt in the following paper, 
is to determine the mean values of the following functions of the velocity of 
all the molecules of a given kind within an element of volume:__

(a) the mean velocity resolved parallel to each of the coordinate axes;
the mean values of functions of two dimensions of these component 

velocities ;
W the mean values of functions of throe dimensions of these velocities.

The rate of translation of the gas, whether by itself, or by diffusion through 
another gas is given by («) the pressure of the gas on any plane, whether 
normal or tangential to the plane, is given by (0), and the rate of 
of heat through the gas is given by (y). conduction

a different

I propose to determine the variations of these quantities, due, 1st, to the 
encounters of the molecules with others of the same system or of a different 
system; 2nd, to the action of external forces such as gravity; and 3rd to the 
passage ol molecules through the boundary of the element of volume

I shall then apply these calculations to the determination of the statical 
cases of the final distribution of two gases under the action of gravity the
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equilibrium of temperature between two gases, and the distribution of tempe
ra ure in a vertical column. These results are independent of the law of force 
etween the molecules. I shall also consider the dynamical cases of diffusion, 

viscosity, and conduction of heat, which involve the law of force between the 
molecules.

On the Mutual Action of Two Molecules.

Let the masses of these molecules be M„ M2, and let their velocities 
resolved in three directions at right angles to each other be £1,17, £ and 

Vi> Ci’ The components of the velocity of the centre of gravity of the two 
molecules will be

^+^Mt ^Mi+^i C,M, + CiMt
M,+M, ’ M1+Mt ’ M'+M, ’

The motion of the centre of gravity will not be altered by the mutual
action of the molecules, of whatever nature that action may be. We ma' 
therefore take the centre of gravity as the origin of a system of coordinates 
moving parallel to itself with uniform velocity, and consider the alteration of 
the motion of each particle with reference to this point as origin.

If we regard the molecules as simple centres of force, then each molecule 
will describe a plane curve about this centre of gravity, and the two curves 
will be similar to each other and symmetrical with respect to the line of apses. 
If the molecules move with sufficient velocity to carry them out of the sphere 
of their mutual action, their orbits will each have a pair of asymptotes inclined

7Tat an angle - — 6 to the

will be at a distance bx 
distance &3, where

line

from
of apses. The asymptotes of the orbit of M, 

the centre of gravity, and those of M, at a

The distance between two

Mf^Mf,.

parallel asymptotes, one in each orbit, will be
b = b2 + b,.

If, while the two molecules are still beyond each other’s action, we draw 
a straight line through Mt in the direction of the relative velocity of M to 
M2, and draw from M, a perpendicular to this line, the length of this perpen-

5—2 
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dicular will be b, and the plane including b and the direction of relative motion 
will be the plane of the orbits about the centre of gravity.

When, after their mutual action and deflection, the molecules have again 
reached a distance such that there is no sensible action between them, each 
will be moving with the same velocity relative to the centre of gravity that 
it had before the mutual action, but the direction of this relative velocity will 
be turned through an angle 20 in the plane of the orbit.

The angle 0 is a function of the relative velocity of the molecules and of 
b, the form of the function depending on the nature of the action between 
the molecules.

If we suppose the molecules to be bodies, or systems of bodies, capable of 
rotation, internal vibration, or any form of energy other than simple motion of 
translation, these results will be modified. The value of 0 and the final velocities 
of the molecules will depend on the amount of internal energy in each molecule 
before the encounter, and on the particular form of that energy at every instant 
during the mutual action. We have no means of determining such intricate 
actions in the present state of our knowledge of molecules, so that we must 
content ourselves with the assumption that the value of 0 is, on an average, 
the same as for pure centres of force, and that the final velocities differ from 
the initial velocities only by quantities which may in each collision be neglected, 
although in a great many encounters the energy of translation and the internal 
energy of the molecules arrive, by repeated small exchanges, at a final ratio, 
which We shall suppose to be that of 1 to /3-1.

We may now determine the final velocity of after it has passed beyond 
the sphere of mutual action between itself and M„.

Let V be the velocity of M. relative to then the components of V are 
fi“"fa> ^i £1 Ca-

The plane of the orbit is that containing V and b. Let this plane be 
inclined to a plane containing V and parallel to the axis of ®; then, since 
the direction of V is turned round an angle 20 in the plane of the’ orbit, 
while its magnitude remains the same, we may find the value of A after the 
encounter. Calling it

* __________

+ + {(fs — fi) 2 siir0 + sin 20 cos </>}....... j
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There will be similar expressions for the components of the final velocity 
of Mx in the other coordinate directions.

If we know the initial positions and velocities of M^ and M, we can 
determine V, the velocity of M^ relative to If,; b the shortest distance between 

and M, if they had continued to move with uniform velocity in straight 
lines; and </> the angle which determines the plane in which V and b lie. 
From V and b we can determine 6, if we know the law of force, so that the 
problem is solved in the case of two molecules.

When we pass from this case to that of two systems of moving molecules, 
we shall suppose that the time during which a molecule is beyond the action 
of other molecules is so great compared with the time during which it is 
deflected by that action, that we may neglect both the time and the distance 
described by the molecules during the encounter, as compared with the time 
and the distance described while the molecules are free from disturbing force. 
We may also neglect those cases in which three or more molecules are within 
each other’s spheres of action at the same instant.

On the Mutual Action of Two Systems of Moving Molecules.

Let the number of molecules of the first kind in unit of volume be W,, 
the mass of each being Mx. The velocities of these molecules will in general 
be different both in magnitude and direction. Let us select those molecules 
the components of whose velocities lie between

f* and & + df!» and y. + d^, £ and & + d^,
and let the number of these molecules be dN,. The velocities of these molecules 
will be very nearly equal and parallel.

On account of the mutual actions of the molecules, the number of mole
cules which at a given instant have velocities within given limits will be 
definite, so that

dNt=f d^dy^ .................................... (2).
We shall consider the form of this function afterwards.

Let the number of molecules of the second kind in unit of volume be 
and let dN, of these have velocities between ^2andf3 + (^a, « and n+dn

and L + dC where
d^ff^Qd^d^
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The velocity of any of the dN\ molecules of the first system relative to 
the dNt molecules of the second system is V, and each molecule will in 
the time Si describe a relative path V8t among the molecules of the second 
system. Conceive a space bounded by the following surfaces. Let two cylindrical 
surfaces have the common axis V8t and radii b and b + db. Let two planes 
be drawn through the extremities of the line PSi perpendicular to it. Finally, 
let two planes be drawn through FSi making angles and tfr + d^ with a plane 
through V parallel to the axis of x. Then the volume included between the 
four planes and the two cylindric surfaces will be Vbdbd<f>8t.

If this volume includes one of the molecules then during the time Si 
there will be an encounter between and M,, in which b is between b and 
b + db, and </> between </> and i^ + d^.

Since there are dNx molecules similar to and dN\ similar to J/, in unit 
of volume, the whole number of encounters of the given kind between the two 
systems will be

VbdbdtftdN^N,.

Now let Q be any property of the molecule such as its velocity in a 
given direction, the square or cube of that velocity or any other property of the 
molecule which is altered in a known manner by an encounter of the given 
kind, so that Q becomes Q' after the encounter, then during the time 8t a 
certain number of the molecules of the first kind have Q changed to Q', while 
the remainder retain the original value of Q, so that

8QdNx = (O' - Q) Vbdbd^tdN.dN,,

or = ® VbdbdtdN^dN,............................ (3).

Here refers to the alteration in the sum of the values of Q for the

dN\ molecules, due to their encounters of the given kind with the dN, molecules

of the second sort. In order to determine the value of the rate of
Ob

alteration of Q among all the molecules of the first kind, we must perform 
the following integrations :—

1st, with respect to <£ from <£ = 0 to <^ = 2tt.

2nd, with respect to b from 6=0 to 6 = «. These operations win give 
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the results of the encounters of every kind between the dN. and dNt mole
cules.

3rd, with respect to dN„ or / (&?£) d^d-r^dt*.
4th, with respect to dN„ or f d^dVid^.
These operations require in general a knowledge of the forms of f and f„

1st. Integration with respect to </).

Since the action between the molecules is the same in whatever plane it 

takes place, we shall first determine the value of in several cases,
making Q some function of F and £.

(a) Let Q = & and Q' = ^\, then 
if

J o (Fi - F) (F - F) 4* sin’ 0.........................(4).

(0) Let Q = F’ and Q' = Fia, 
MJ u (f ? - F’) d^=[(F - F) WF+XF) 871 Sin’ 0+Mt

+ (F-F)’-2(F-F)’}7rsin’2^....... (5).
By transformation of coordinates we may derive from this

1, (fw, - m =(Er+s )• 1 8,r sin'6
........(6), 

with similar expressions for the other quadratic functions of F V> &
(?) Let Q = F(F’+^ + F*), and Q'= fx (F7 + < ? + £7); then putting 

Fa+it + F’ = F;, FF+m+FF = U, Fa++Fa = K’> 
and (F - F)’ + Ofc ~ 7)’ + (F -F)’ = F’, we find

4„sin. »{(f,-f,)7,'+2f,(F- I?)}
J 0 i “r dyi a

+ (iff (8tt sin’ 0-3n sin’ 20) 2 (F - F) (U~
Z J - <7)-

+ (8,r ein3 +27r s*n’

+ (H) (8?r S^n’ ” 2?r sln> 2^) 2 
j III .J
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These are the principal functions of £ g, t whose changes we shall have to 
consider; we shall indicate them by the symbols a, fl, or y, according as the 
function of the velocity is of one, two, or three dimensions.

2nd. Integration with respect to b.

We have next to multiply these expressions by bdb, and to integrate with 
respect to b from b = 0 to b = oo. We must bear in mind that 0 is a function 
of b and V, and can only be determined when the law of force is known. 
In the expressions which we have to deal with, 0 occurs under two forms 
only, namely, sin'0 and sin3 20. If, therefore, we can find the two values of

BL = kirbdb sin30, and n6dfcsin320 ... (8)Jo Jo ............... '
we can integrate all the expressions with respect to b. 

and B, will be functions of V only, the form of which we can determine
only in particular cases, after we have found 0 as a function of b and V.

Determination of 0 for certain laws of Force.

Let us assume that the force between the molecules Mt and M., is repul
sive and varies inversely as the nth power of the distance between them, the 
value of the moving force at distance unity being then we find by the 
equation of central orbits,

n n y_______ dx
2 ~ o / 2 /x\n->...............................  (9)’

where x = -, or the ratio of b to the distance of the molecules at a given 

time: x is therefore a numerical quantity; a is also a numerical quantity and 
is given by the equation

.......................................(10)-

The limits of integration are x = Q and x=af where x' is the least positive 
root of the equation
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It is evident that 0 is a function of a and n, and when n is known 0 
may be expressed as a function of a only.

Also .........................(12);
( r df-L ^Jj-L j I

so that if we put 
«an I

Ay = Mirada sin1 0, A3 = irada sin’ 26......................(13),
J 0 Jo

A, and A, will be definite numerical quantities which may be ascertained when 
n is given, and By and B3 may be found by multiplying A, and A3 by

[K{My + M^
1 MyMt J

Before integrating further we have to multiply by V, so that the form in 
which V will enter into the expressions which have to be integrated with respect 
to dNy and dN3 will be

It will be shewn that we have reason from experiments on the viscosity 
of gases to believe that n = 5. In this case V will disappear from the expres
sions of the form (3), and they will be capable of immediate integration with 
respect to dN\ and dN,.

If we assume n = 5 and put a4 = 2 cot’ 2^ and x = Jl - tan’</> cos»/»,
IT

7T _____  P d\j)
~ — 0 = dcoa 2</> • / . - r—
2 r Jo vl— sm sm ...............................(14),

= J cos 2^ Ft^,

where ^iln* is the complete elliptic function of the first kind and is given in 
Legendre’s Tables. I have computed the following Table of the distance of the 
asymptotes, the distance of the apse, the value of 0, and of the quantities whose 
summation leads to A, and Ar

VOL. II. 6
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Aj = /47racZa sin3 0= 2'6595....................................(15),

1 ■

0 b Distance 
of apse e sin2 0 

sin2 20
sin220
sin2 20

0 /
0 0 infinite infinite

0 /
0 0 0 0

5 0 2381 2391 0 31 •00270 •01079
10 0 1658 1684 1 53 •01464 •03689
15 0 1316 1366 4 47 •02781 •11048
20 0 1092 1172 8 45 •05601 •21885
25 0 916 1036 14 15 •10325 •38799
30 0 760 931 21 42 •18228 •62942
35 0 603 845 31 59 •31772 •71433
40 0 420 772 47 20 •55749 1-02427
41 0 374 758 51 32 •62515 •96763
42 0 324 745 56 26 •70197 ■85838
43 0 264 732 62 22 •78872 •67868
44 0 187 719 70 18 •88745 •40338
44 30 132 713 76 1 •94190 •21999
45 0 0 707 90 0 1-00000 •00000

At = jTrada sin3 20 = 1'3682................................... (16).

The paths described by molecules about a centre 
of force /S', repelling inversely as the fifth power of 
the distance, are given in the figure.

The molecules are supposed to be originally 
moving with equal velocities in parallel paths, and 
the way in which their deflections depend on the 
distance of the path from is shewn by the dif
ferent curves in the figure.

3rd. Integration with respect to dN...

We have now to integrate expressions involving various functions of £, r,.
and V with respect to all the molecules of the second sort. We may 

write the expression to be integrated
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where Q is some function of £ rj, C, &c., already determined, and f is the 
function which indicates the distribution of velocity among the molecules of the 
second kind.

In the case in which n — 5, V disappears, and we may write the result 

of integration

where Q is the mean value of Q for all the molecules of the second kind, 
and is the number of those molecules.

If, however, n is not equal to 5, so that V does not disappear, we should 
require to know the form of the function /, before we could proceed further 
with the integration.

The only case in which I have determined the form of this function is 
that of one or more kinds of molecules which have by their continual encoun
ters brought about a distribution of velocity such that the number of molecules 
whose velocity lies within given limits remains constant. In the Philosophical 
Magazine for January 1860, I have given an investigation of this case, founded 
on the assumption that the probability of a molecule having a velocity resolved 
parallel to x lying between given limits is not in any way affected by the 
knowledge that the molecule has a given velocity resolved parallel to y. As 
this assumption may appear precarious, I shall now determine the form of the 
function in a different manner.

On the Final Distribution of Velocity among the Molecules of Two Systems acting 
on one another according to any Law of Force.

brom a given point O let lines be drawn representing in 
direction and magnitude the velocities of every molecule of /*
either kind in unit of volume. The extremities of these lines / 
will be distributed over space in such a way that if an ele- / / 
ment of volume dV be taken anywhere, the number of such
lines which will terminate within dV will be f(f)dV, where *
r is the distance of d V from O.

Let OA = a be the velocity of a molecule of the first kind, and OB = b 
that of a molecule of the second kind before they encounter one another, then

6—2
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BA will be the velocity of A relative to B; and if we divide AB in G 
inversely as the masses of the molecules, and join OG, OG will be the velocity 
of the centre of gravity of the two molecules.

Now let OA = a and OB' = b' be the velocities of the two molecules after 
the encounter, GA = GA and GB = GB', and A'GB? is a straight line not 
necessarily in the plane of OAB. Also AGA' = 20 is the angle through which 
the relative velocity is turned in the encounter in question. The relative motion 
of the molecules is completely defined if we know BA the relative velocity 
before the encounter, 20 the angle through which BA is turned during the 
encounter, and the angle which defines the direction of the plane in which 
BA and B'A lie. All encounters in which the magnitude and direction of BA, 
and also 0 and fy, lie within certain almost contiguous limits, we shall class 
as encounters of the given kind. The number of such encounters in unit of 
time will be

n^de............................. . .................. (17),
where n, and n, are the numbers of molecules of each kind under consideration, 
and F is a function of the relative velocity and of the angle 0, and de depends 
on the limits of variation within which we class encounters as of the same kind.

Now let A describe the boundary of an element of volume dV while AB 
and A'B' move parallel to themselves, then B, A', and B' will also describe 
equal and similar elements of volume.

The number of molecules of the first kind, the lines representing the vele- 
cities of which terminate in the element dV at A, will be

n,=f(a)d V................................................(i8).
The number of molecules of the second kind which have velocities corresponding 
to OB will be r t,

dV............................................. (19);
and the number of encounters of the given kind between these two sets of 
molecules will be

X(“)/.(b)(dP)’»........................................(20)

The lines representing the velocities of these molecules after encounters of n. 
given^kind wdl terminate within elements of volume at A' and Jr, each equal
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In like manner we should find for the number of encounters between 
molecules whose original velocities corresponded to elements equal to dV described 
about A' and B', and whose subsequent velocities correspond to elements equal 
to dV described about A and B,

f (dV'fFde......................................... (21)>
where F ie the same function of If A’ and A’GA that F is of BA and AGA'. 
F is therefore equal to F'.

When the .number of pairs of molecules which change their velocities from 
OA, OB to OA, OB' is equal to the number which change from OA', OB' 
to OA, OB, then the final distribution of velocity will be obtained, which 
will not be altered by subsequent exchanges. This will be the case when

Z W* (&) =/ W/* W ..................................... (22).
Now the only relation between a, b and a, b' is

+ + .................................(23),

whence we obtain f (a) = / (6) = ................................(24),
where = MJ32 ...............................................(25).

By integrating d‘ d^dy d^, and equating the result to N„ we
obtain the value of Cv If, therefore, the distribution of velocities among N, 
molecules is such that the number of molecules whose component velocities are 
between f and g+dfc, f] and rj + drj, and £ and £ + is

V _?±’,±C 
dN,= —he d^d-qd^............................... .(26'),

a tt* '

then this distribution of velocities will not be altered by the exchange of 
velocities among the molecules by their mutual action.

This is therefore a possible form of the final distribution of velocities. It 
is also the only form; for if there were any other, the exchange between 
velocities represented by OA and OA' would not be equal. Suppose that the 
number of molecules having velocity OA' increases at the expense of' OA. 
Then since the total number of molecules corresponding to OA' remains constant, 
OA must communicate as many to OA", and so on till they return to OA.

Hence if OA, OA', OA", &c. be a series of velocities, there will be a 
tendency of each molecule to assume the velocities OA, OA', OA", &c. in order, 
returning to OA. Now it is impossible to assign a reason why the successive 
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velocities of a molecule should be arranged in this cycle, rather than in the 
reverse order. If, therefore, the direct exchange between OA and OA' is not 
equal, the equality cannot be preserved by exchange in a cycle. Hence the 
direct exchange between OA and OA is equal, and the distribution we have 
determined is the only one possible.

This final distribution of velocity is attained only when the molecules have 
had a great number of encounters, but the great rapidity with which the 
encounters succeed each other is such that in all motions and changes of 
the gaseous system except the most violent, the form of the distribution of 
velocity is only slightly changed.

When the gas moves in mass, the velocities now determined are com
pounded with the motion of translation of the gas.

When the differential elements of the gas are changing their figure, being 
compressed or extended along certain axes, the values of the mean square of 
the velocity will be different in different directions. It is probable that the 
form of the function will then be

Z(W= (•’ * ............................... (27),
apyrr 

where a, fl, y are slightly different. I have not, however, attempted to investi
gate the exact distribution of velocities in this case, as the theory of motion 
of gases does not require it.

When one gas is diffusing through another, or when heat is being conducted 
through a gas, the distribution of velocities will be different in the positive 
and negative directions, instead of being symmetrical, as in the case we have 
considered. The want of symmetry, however, may be treated as very small in 
most actual cases.

The principal conclusions which we may draw from this investigation are 
as follows. Calling a the modulus of velocity,

1st. The mean velocity is

2nd. The mean square of the

3rd. The mean value of f3 is

velocity is = - a’

(28).

(29).

(30).
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4th. The mean value of is = ............................................(31).
5th. The mean value of is ^ = ^a*.............................................. (32).
6th. When there are two systems of molecules

=   (33),
whence Mxv* = M^................................................ (34),

or the mean vis viva of a molecule will be the same in each system. This 
is a very important result in the theory of gases, and it is independent of the 
nature of the action between the molecules, as are all the other results relating 
to the final distribution of velocities. We shall find that it leads to the law 
of gases known as that of Equivalent Volumes.

Variation of Functions of the Velocity due to encounters between the Molecules.

We may now proceed to write down the values of 8Q 
'St in the different

cases. We shall indicate the mean value of any quantity for all the molecules 
of one kind by placing a bar over the symbol which represents that quantity 
for any particular molecule, but in expressions where all such quantities are to 
be taken at their mean values, we shall, for convenience, omit the bar. We 
shall use the symbols 8j and 8, to indicate the effect produced by molecules of 
the first kind and second kind respectively, and 8., to indicate the effect of 
external forces. We shall also confine ourselves to the case in which n = 5, 
since it is not only free from mathematical difficulty, but is the only case which 
is consistent with the laws of viscosity of gases.

In this case V 
on the first,

disappears, and we have for the effect of the second system

& = A- 0 ................ <36>-
where the functions of £ y, £ in J ((/ — Q) dxfi must be put equal to their mean 
values for all the molecules, and or At must be put for A according as 
sin’ 0 or sin’ 20 occurs in the expressions in equations (4), (5), (6), (7). We 
thus obtain

it = [MMM+Jfa)} N^i............................................(36);
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+jx 1 - c - zg - £)}
....... (37);

f V N^Mt VA fnir^ 1si ~tK<(<+^,)j x+M1^
(U + f.,,)} - jf, (£ _ _ ,,)].

. .s,e,v; r k u r____  ,
w sr " TORS}/ ^H-{f.-f.rl-+2f.(u- v.y

M
+ K+M, ~ 3A^ 2 & ~ (U~

M. '........ (39),
+^+W,(221i+2^^p 

/ M \’ -1
+ \Mt+MJ ^a' ~ 2*>2 & ~ « Fj

using the symbol 5. to indicate variations arising from the action of molecules 
of the second system.

These are the values of the rate of variation of the mean values of 
fi’, fph, and &V*, for the molecules of the first kind due to their encounters 

with molecules of the second kind. In all of them we must multiply up all 
functions of £ rj, and take the mean values of the products so found. As 
this has to be done for all such functions, I have omitted the bar over each 
function in these expressions.

To find the rate of variation due to the encounters among the particles of 
the same system, we have only to alter the suffix w into w throughout, and to 
change A, the coefficient of the force between M, and M, into that of the 
force between two molecules of the first system. We thus find

/a\ 8lfl _ A
( ) & “°..............................................................................................................................................................................................................................................

“ (2®?) + + ........... (41);

= (2^’) ^^>3 ....................................................(42);
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SAP f K \ ___M = w) ................... . ...........................(43).

These quantities must be added to those in equations (36) to (39) in order 
to get the rate of variation in the molecules of the first kind due to their 
encounters with molecules of both systems. When there is only one kind of 
molecules, the latter equations give the rates of variation at once.

On the Action of External Forces on a System of Moving Molecules.

We shall suppose the external force to be like the force of gravity, pro
ducing equal acceleration on all the molecules. Let the components of the force 
in the three coordinate directions be X, Y, Z. Then we have by dynamics for 
the variations of If, and £P due to this cause,

<“) X................................................(44);

<=2fX.............................................................(45);

......................................................(46);

W S^ = 2f(fX+>!r+£Z)+XP....................... (47);

where S3 refers to variations due to the action of external forces.

On the lotal rate of change of the different functions of the velocity of the mole
cules of the first system arising from their encounters with molecules of both 
systems and from the action of external forces.

To find the total rate of change arising from these causes, we must add
W W 8.Q■&-’ and V’

the quantities already found. We shall find it, however, most convenient in 
the remainder of this investigation to introduce a change in the notation, and 
to substitute for

£ V> and £, u + £, v + y, and w + C.........................(48),
VOL. II. 7
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where u, v, and w are so chosen that they are the mean values of the com
ponents of the velocity of all molecules of the same system in the immediate 
neighbourhood of a given point. We shall also write

MiN\ — plt .... .. .. ..........................................(40),
where pt and Pi are the densities of the two systems of molecules, that is, the 
mass in unit of volume. We shall also write

( K V / K \i 
WJ ” + = k> and [2^) = kj........... (50);

P" pi> and k are quantities the absolute values of which can be deduced 
from experiment. We have not as yet experimental data for determining
X N, or a:

We thus find for the rate of change of the various functions of the velocity,

(a) ............... . ...................... . ................................... (51);

W 8t “ + + kpi t2*41

+ At (v, - Vl + wt - w' - 2ua - u*)}

+ A^ (rf + - 2£’ + v- + - 2^)}

also
g J /

8t ^AiP^Vi + kpi (2A, - 3A,) (ut - «,) fa - vx) 

ko.
+ M, + M, ~ -^i^i) - 3AiMi + ^2)}

............... (53).

(y) As the expressions for the variation of functions of three dimensions 
in mixed media are complicated, and as we shall not have occasion to use 
them, I shall give the case of a single medium, 
£
8f (^’ + + UJ) = - 3klP1Aa + + + x + +

+ 2Y^Vl + 2Z^...................... (54).
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Theory of a Medium composed of Moving Molecules

We shall suppose the position of every moving molecule referred to three 
rectangular axes, and that the component velocities of any one of them, resolved 
in the directions of x, y, z, are

u + & V + q, u> + £,
where u, v, w are the components of the mean velocity of all the molecules 
which are at a given instant in a given element of volume, and £ y, £ are 
the components of the relative velocity of one of these molecules with respect 
to the mean velocity.

The quantities u, v, w may be treated as functions of x, y, z, and t, in 
which case differentiation will be expressed by the symbol d. The quantities 
£ £, being different for every molecule, must be regarded as functions of t
for each molecule. Their variation with respect to t will be indicated by the 
symbol S.

The mean values of ? and other functions of £ v, £ for all the molecules 
in the element of volume may, however, be treated as functions of x v z 
and t.

If we consider an element of volume which always moves with the velocities 
u, v, w, we shall find that it does not always consist of the same molecules, 
because molecules are continually passing through its boundary. We cannot 
therefore treat it as a mass moving with the velocity u, v, w, as is done in 
hydrodynamics, but we must consider separately the motion of each molecule. 
When we have occasion to consider the variation of the properties of this element 
during its motion as a function of the time we shall use the symbol 9

We shall call the velocities u, v, w the velocities of translation of the medium, 
and £ g, C the velocities of agitation of the molecules.

Let the number of molecules in the element dx dy dz be N dx dy dz, then 
we may call N the number of molecules in unit of volume. If M is the mass 
of each molecule, and p the density of the element, then

MN=p.......................................  ...(55).

Transference of Quantitios across a Plane Area.
We must next consider the molecules which pass through a given plane 

°f unit area in unit of time, and determine the quantity of matter, of momentum

7—2
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of heat, 4c. which is transferred from the negative to the positive side of this 
plane in unit of time.

We shall first divide the JV molecules in unit of volume into classes 
<iccoi mg to the value of £ and £ for each, and we shall suppose that the 
num er of molecules in unit of volume whose velocity in the direction of x lies 
between £ and ^+d^, v and v + dv, £ and C + d^ is dN, dN will then be a 
function of the component velocities, the sum of which being taken for all the 
molecules will give W the total number of molecules. The most probable form 
of this function for a medium in its state of equilibrium is

,,, N _^±?’±c
dN=^le “ ................................... (56).

In the present investigation we do not require to know the form of this 
function.

Now let us consider a plane of unit area perpendicular to x moving with 
a velocity of which the part resolved parallel to x is u'. The velocity of the 
plane relative to the molecules we have been considering is u— (u+£), and since 
there are dN of these molecules in unit of volume it will overtake

{u'-(u + $} dN
such molecules in unit of time, and the number of such molecules passing 
from the negative to the positive side of the plane, will be

(u+ £-«') dN.
Now let Q be any property belonging to the molecule, such as its mass, 
momentum, vis viva, &c., which it carries with it across the plane, Q being 
supposed a function of £ or of £, and £, or to vary in any way from one 
molecule to another, provided it be the same for the selected molecules whose 
number is dN, then the quantity of Q transferred across the plane in the 
positive direction in unit of time is

+ Q QdN,
or {u-u'^QdN+^QdN.................................... (57).

Il we put QN for fQdN, and $QN for \£QdN, then we may call Q the 
mean value of Q, and £Q the mean value of ^Q, for all the particles in the 
element of volume, and we may write the expression for the quantity of Q 
which crosses the plane in unit of time

(u-u)QN+^QN........................................ (58).
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(a) Transference of Matter across a Plane—Velocity of the Fluid.

To determine the quantity of matter which crosses the plane, make Q equal 
to M the mass of each molecule; then, since M is the same for all molecules 
of the same kind, M=M; and since the mean value of f is zero, the expres
sion is reduced to

(u-u')MN=(u-u']p ....................................(59).
If u = u, or if the plane moves with velocity u, the whole excess of matter 
transferred across the plane is zero; the velocity of the fluid may therefore be 
defined as the velocity whose components are u, v, w.

(^) Transference of Momentum across a Plane—System of Pressures at any 
point of the Fluid.

The momentum of any one molecule in the direction of x is M(u + ^. 
Substituting this for Q, we get for the quantity of momentum transferred 
across the plane in the positive direction

{U-U) up + ^-p ..........................................(60).

If the plane moves with the velocity u, this expression is reduced to fp. 
where £a represents the mean value of

This is the whole momentum in the direction of x of the molecules projected 
from the negative to the positive side of the plane in unit of time. The 
mechanical action between the parts of the medium on opposite sides of the 
plane consists partly of the momentum thus transferred, and partly of the 
direct attractions or repulsions between molecules on opposite sides of the plane 
The latter part of the action must be very small in gases, so that we may 
consider the pressure between the parts of the medium on opposite sides of the 

as entirely due to the constant bombardment kept up between them 
will also be a transference of momentum in the directions of y and 
the same plane,

There 
across

(u — u') Vp + ^qp........................................
and (u — u) wp 4- Qp.....................................

where and ££ represent the mean values of these products.

(61), 
(62),
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If the plane moves with the mean velocity u of the fluiq ^ie ^otal force 
exerted on the medium on the positive side by the projection of molecules into 
it from the negative side will be

a normal pressure ^p in the direction of $
a tangential pressure ^p in the direction of y^

and a tangential pressure ^p in the direction of z.

If X, Y, Z are the components of the pressure on unit of area of a plane 
whose direction cosines are Z, m, n,

X=l^p + m^yp + n^p 
Y~ Igyp + m^p 4- ny^p • 
Z = l&p + myCp + n^p

When a gas is not in a state of violent motion the pressures in 
tions are nearly equal, in which case, if we put

f’p + ^p + Cp = 3p........... . .........................

(63).

all direc-

(64),
the quantity p will represent the mean pressure at a given point, and g!p ^p 
and gp will differ from p only by small quantities; y^p, ^p> and gyp will then 
be also small quantities with respect to p.

Energy in the. Medium—Actual Heat.

The actual energy of any molecule depends partly on the velocity of its 
centre of gravity, and partly on its rotation or other internal motion with respect 
to the centre of gravity. It may be written

^M {(u + gy + (v + + (w + {)*} + ^EM.........................(65),
where ^EM is the internal part of the energy of the molecule, the form of 
which is at present unknown. Summing for all the molecules in unit of volume 
the energy is

| (u* + & + p + % (f + y3 + f) p + ^Ep........................... (66).

The first term gives the energy due to the motion of translation of the 
medium in mass, the second that due to the agitation of the centres of gravity 
of the molecules, and the third that due to the internal motion of the parts of 
each molecule.
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If we assume with Clausius that the ratio of the mean energy of internal 
motion to that of agitation tends continually towards a definite value (/8 — 1), 
we may conclude that, except in very violent disturbances, this ratio is always 
preserved, so that

^=(^-l)(^+^+^) .................................... (67).

The total energy of the invisible agitation in unit of volume will then be
^(^ + ^ + 0................................................(68),

or .................................................................. (69).

This energy being in the form of invisible agitation, may be called the 
total heat in the unit of volume of the medium.

(?) Transference of Energy across a Plane—Conduction of Heat.

Putting Q = (fa + rf + C) M, and u = u'.................... . .......... (70),

we find for the quantity of heat carried over the unit of area by conduction 
in unit of time

........................................ (71),

whei 0 f, &c, indicate the mean values of e, &c. They are always small 
quantities.

On the Rate of Variation of Q in an Element of Volume, Q being any property 
of the Molecules in that Element.

Let Q be the value of the quantity for any particular molecule, and Q 
the mean value of Q for all the molecules of the same kind within the element.

The quantity Q may vary from two causes. The molecules within the 
element may by their mutual action or by the action of external forces produce 
an alteration of Q, or molecules may pass into the element and out of it, and 
so cause an increase or diminution of the value of Q within it. If we employ 
the symbol 3 to denote the variation of Q due to actions of the first kind on 
the individual molecules, and the symbol 0 to denote the actual variation of Q 
in an element moving with the mean velocity of the system of molecules under 
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consideration, then by the ordinary investigation of the increase or diminution 
of matter in an element of volume as contained in treatises on Hydrodynamics

d _ __ (I _ _ ’............... (^2)>
~^v~ w+QN+

where the last three terms are derived from equation (59) and two similar 
equations, and denote the quantity of Q which flows out of an element of volume, 
that element moving with the velocities u, v, w'. If we perform the differen
tiations and then make u =u, v =v, and w' = w, then the variation will be that 
in an element which moves with the actual mean velocity of the system of 
molecules, and the equation becomes

StyN i Z) AT dv dw\ d »AT\ । / zTAT\ >t\ SO+ M + ® + di

Equation of Continuity.

Put Q = M the mass of a molecule; M is unalterable, and we have, 
putting MN=p, 

dp , /du dv dw\
St ? \dx dy^ dz] ............................... (^4),

which is the ordinary equation of continuity in hydrodynamics, the element 
being supposed to move with the velocity of the fluid. Combining this equa
tion with that from which it was obtained, we find

.................... (75), 

a more convenient form of the general equation.

Equations of Motion (a).

To obtain the Equation of Motion in the direction of x, put Q = Mfu +£) 
the momentum of a molecule in the direction of x.

80
We obtain the value of from equation (51), and the equation may be 

written

+ ^ + dy (P^ + dz
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In this equation the first term denotes the efficient force per unit of volume, 
the second the variation of normal pressure, the third and fourth the variations 
of tangential pressure, the fifth the resistance due to the molecules of a different 
system, and the sixth the external force acting on the system.

The investigation of the values of the second, third, and fourth terms 
must be deferred till we consider the variations of the second degree.

Condition of Equilibrium of a Mixture of Gases.

In a state of equilibrium u^ and ut vanish, pf? becomes and the tan
gential pressures vanish, so that the equation becomes

.......................................................................................................................................

which is the equation of equilibrium in ordinary hydrostatics.

This equation, being true of the system of molecules forming the first medium 
independently of the presence of the molecules of the second system, shews 
that if several kinds of molecules are mixed together, placed in a vessel and 
acted on by gravity, the final distribution of the molecules of each kind will 
be the same as if none of the other kinds had been present. This is the same 
mode of distribution as that which Dalton considered to exist in a mixed 
atmosphere in equilibrium, the law of diminution of density of each constituent 
gas being the same as if no other gases were present.

This result, however, can only take place after the gases have been left 
for a considerable time perfectly undisturbed. If currents arise so as to mix 
the strata, the composition of the gas will be made more uniform throughout.

Ihe result at which we have arrived as to the final distribution of gases, 
when left to themselves, is independent of the law of force between the 
molecules.

Diffusion of Gases.

If the motion of the gases is slow, we may still neglect the tangential 
pressures. Ihe equation then becomes for the first system of molecules

/
P‘ 1” ffj, ~ (wa — wi) "b Epi......................... (78),

VOL. II. 8
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and for the second, 

^~u»)+XPt.(79).
Uu CL JU

In all cases of quiet diffusion we may neglect the first term of eacp 
equation. If we then put Pi+p^p, and pt + pt = p, we find by adding,

............................ <8»)-
If we also put p,u, +ptua—pu, then the volumes transferred in opposite direc
tions across a plane moving with velocity u will be equal, so that

(xPl......................(81).

Here p, (tq — u) is the volume of the first gas transferred in unit of time 
across unit of area of the plane reduced to pressure unity, and at the actual 
temperature; and pa (u — ua) is the equal volume of the second gas transferred 
across the same area in the opposite direction.

The external force X has very little effect on the quiet diffusion of gases 
in vessels of moderate size. We may therefore leave it out in our definition 
of the coefficient of diffusion of two gases.

When two gases not acted on by gravity are placed in different parts of 
a vessel at equal pressures and temperatures, there will be mechanical equi
librium from the first, and u will always be zero. This will also be approxi
mately true of heavy gases, provided the denser gas is placed below the lighter. 
Mr Graham has described in his paper on the Mobility of Gases*,  experiments 
which were made under these conditions. A vertical tube had its lower tenth 
part filled with a heavy gas, and the remaining nine-tenths with a lighter gas.

* Philosophical Transactions, 1863.

After the lapse of a known time the upper tenth part of the tube was shut
off, and the gas in it analyzed, so as to determine the quantity of the heavier
gas which had ascended into the upper tenth of the tube during the given time.

In this case we have w = 0...............................................(82),

___ PiP*  1 dp,
^1Ul p.p.JcA^p dx ......................................(83),
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and by the equation of continuity, 

..................................... <84>-

whence _ P^P* 2 &P' /ok\.
dt ppjcAx p dx?....................................'

or if we put Z) = —2
P'pfiA, p ’ 

.(SO-

The solution of this equation is

Pi = Cx + Cie~nWt cos (nx + a) + &c............................. (87).

If the length of the tube is a, and if it is closed at both ends,
_ — If'I)

Pi= Q+ C,e~ * ‘cos — + 0^'* 'cos 2—+ &c.......................(88),
a a ' '

where C„ C2, C2 are to be determined by the condition that when 2 = 0, Pi—p, 
from x — 0 to x = ~^a, and pt = 0 from x = to x = a. The general expression
for the case in which the first gas originally extends from x = 0 to x — b, and 
in which after a time t the gas from x = 0 to x = c is collected, is

2d f . nb . ire 1 . 2irb 2ttc 1p~a + ^c\e sin-—-sin -+&c.|...... (89),

where is the proportion of the first gas to the whole in the portion from 

x = 0 to x = c.

In Mr Grahams experiments, in which one-tenth of the tube was filled 
with the first gas, and the proportion of the first gas in the tenth of the tube 
at the other end ascertained after a time t, this proportion will be

Pi_ I 20 J • 3 w -s>—_ _m»’d \
p-10 81n 10 “ sm'2jj+e “• sin'S ...(90).

We find for a series of values of & taken at equal intervals of time T 
p ’

where T—1°& ^0 a’
IOtt’ D'

8—2
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co

Time.
p ’

0 0
T •01193

2T •02305
3T •03376
iT •04366
5T •05267
6T •06072
8T •07321

10T •08227
12T •08845

‘10000
Mr Graham’s experiments on carbonic acid and air, when compared with this 
Table, give T=500 seconds nearly for a tube 0‘57 metre long. Now

n logf 10 a’
10^ T ............................................ (91),

whence D = -0235

for carbonic acid and air, in inch-grain-second measure.

Definition of the Coefficient of Diffusion.

D is the volume of gas reduced to unit of pressure which passes in unit 
of time through unit of area when the total pressure is uniform and equal to p, 
and the pressure of either gas increases or diminishes by unity in unit of 
distance. D may be called the coefficient of diffusion. It varies directly as the 
square of the absolute temperature, and inversely as the total pressure p.

The dimensions of D are evidently DTf where L and T are the standards 
of length and time.

In considering this experiment of the interdiffusion of carbonic acid and 
air, we have assumed that air is a simple gas. Now it is well known that 
the constituents of air can be separated by mechanical means, such as passing 
them through a porous diaphragm, as in Mr Graham’s experiments on Atmolysis.
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The discussion of the interdiffusion of three or more gases leads to a much 
more complicated equation than that which we have found for two gases, and 
it is not easy to deduce the coefficients of interdiffusion of the separate gases. 
It is therefore to be desired that experiments should be made on the inter
diffusion of every pair of the more important pure gases which do not act 
chemically on each other, the temperature and pressure of the mixture being 
noted at the time of experiment.

Mr Graham has also published in Brande’s Journal for 1829, pt. 2, p. 74, 
the results of experiments on the diffusion of various gases out of a vessel 
through a tube into air. The coefficients of diffusion deduced from these ex
periments are—

Air and Hydrogen........................... ‘026216
Air and Marsh-gas .......................... ‘010240
Air and Ammonia........................... ‘00962
Air and Olefiant gas....................... ‘00771
Air and Carbonic acid ................... ‘00682
Air and Sulphurous acid ............... ‘00582
Air and Chlorine ............................. ‘00486

The value for carbonic acid is only one third of that deduced from the 
experiment with the vertical column. The inequality of composition of the 
mixed gas in different parts of the vessel is, however, neglected; and the dia
meter of the tube at the middle part, where it was bent, was probably less 
than that given.

Those experiments on diffusion which lasted ten hours, all give smaller 
values of D than those which lasted four hours, and this would also result 
from the mixture of the gases in the vessel being imperfect.

Interdiffusion through a small hole.

When two vessels containing different gases are connected by a small hole, 
the mixture of gases in each vessel will be nearly uniform except near the 
hole; and the inequality of the pressure of each gas will extend to a distance 
from the hole depending on the diameter of the hole, and nearly proportional 
to that diameter.
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Hence in the equation 
. dp. , . ,

P1 ~dt + dx = ^P'P*  (U*- U^+Xp........................... (92)

* Trans. Royal Society of Edinburgh, Vol. xn. p. 222.

the term will vary inversely as the diameter of the hole, while ut and u, 

will not vary considerably with the diameter.

Hence when the hole is very small the right-hand side of the equation 
may be neglected, and the flow of either gas through the hole will be inde
pendent of the flow of the other gas, as the term kAp^^u^ — u^ becomes com
paratively insignificant.

One gas therefore will escape through a very fine hole into another nearly 
as fast as into a vacuum; and if the pressures are equal on both sides, the 
volumes diffused will be as the square roots of the specific gravities inversely, 
which is the law of diffusion of gases established by Graham*.

Variation of the invisible agitation (£).

By putting for Q in equation (75) 

Q=y {S+£)’+fa+if+fa.+-1) +4’)}........(93),

and eliminating by means of equations (76) and (52), we find 

* ■

+ (dx + dz) + Mi ^dy + dx) + + P^ + P'^

+M*  + pw'+pM+Mi+pM+p^ ’",(94)’

- W {fa- +fa - +fa, -

+ 34 +C) - 34 (+4’)]

In this equation the first term represents the variation of invisible agitation 
or heat; the second, third, and fourth represent the cooling by expansion; the 
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fifth, sixth, and seventh the heating effect of fluid friction or viscosity; and 
the last the loss of heat by conduction. The quantities on the other side of 
the equation represent the thermal effects of diffusion, and the communication 
of heat from one gas to the other.

The equation may be simplified in various cases, which we shall take in 
order.

1st. Equilibrium of Temperature between two Gases.—Law of Equivalent Volumes.

We shall suppose that there is no motion of translation, and no transfer 
of heat by conduction through either gas. The equation (94) is then reduced 
to the following form,

If we put
M If

+ + and +W+W" Q,........  <96),

3 91-Am find 9T(ft-a)=-^“i,(Jw.+X/>A)(&-a)........... (97),

or Q.-Q^Ce^, where + ........ (98).

If, therefore, the gases are in contact and undisturbed, (f anj q 
rapidly become equal. Now the state into which two bodies corne by exchange 
of invisible agitation is called equilibrium of heat or equality of temperature- 
Hence when two gases are at the same temperature,

& = ................................................ (99),

or 1 = 21 = ^(^ + ^a+^)

=___

P*
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Hence if the pressures as well as the temperatures be the same in two 
gases,

= ...... ................ (100),
Pi Pi"

or the masses of the individual molecules are proportional to the density of 
the gas.

This result, by which the relative masses of the molecules can be deduced 
from the relative densities of the gases, was first arrived at by Gay-Lussac 
from chemical considerations. It is here shewn to be a necessary result of the 
Dynamical 1 heory of Gases; and it is so, whatever theory we adopt as to 
the nature of the action between the individual molecules, as may be seen by 
equation (34), which is deduced from perfectly general assumptions as to the 
nature of the law of force.

We may therefore henceforth put for where s„ are the specific 

gravities of the gases referred to a standard gas.

Il we use 0 to denote the temperature reckoned from absolute zero of a 
gas thermometer, the mass of a molecule of hydrogen, 703 its mean square 
of velocity at temperature unity, s the specific gravity of any other gas referred 
to hydiogen, then the mass of a molecule of the other gas is

.................................................(loi).

Its mean square of velocity, V* = - V-0 (102)

Pressure of the gas, p = ^Pgyi (103)

We may next determine the amount of cooling by expansion.

Cooling by Expansion.

Let the expansion be equal in all directions, then 

du _dv _dw _ i Sp 
dx~ dy~ dz 3^ st.(104)«

and dy and a11 termR of unsymmetrical form will be zero.
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ass of gas is of the same temperature throughout there will be 
no conduction of W, and the equation (94) will become

...................................... (105),

or
...............................................................................

or <0 - _ 2

& ~ 3£ p (107).

which gives the relation between the density and the temperature in a gas 
expanding without exchange of heat with other bodies. We also find

^P _ ^P u 70
P P + 0

_ 2 + 3/3 dp 
3/3 p " 

which gives the relation between the pressure and the density.

(108),

Specijic Heat of Unit of Mass at Constant Volume.

The total energy of agitation of unit of mass is ^Vl = ^E, or

If, now, additional energy in the form of heat be communicated to it without 
changing its density, 

dE^^^P^O ,11M
2 p 2 p 0................... . .............. (110)-

Hence the specific heat of unit of mass of constant volume is in dynamical 
measure

^E 3# p
> = 2 p0............................................(Hl).

VOL. II. 9
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Specific Heat of Unit of Mass at Constant Pressure.

By the addition of the heat dE the temperature was raised 30 and the 
pressure dp. Now, let the gas expand without communication of heat till the 
pressure sinks to its former value, and let the final temperature be 0 + d'O. 
The temperature will thus sink by a quantity dO — d'O, such that

30-3'0 _ 2 dp 2 30
0 ’ ” 2 + 30 p “2 + 30 0 ’

whence ........................................(112);
0 2 + 30 0 v '

and the specific heat of unit of mass at constant pressure is

The ratio of the specific heat at constant pressure to that of constant volume 
is known in several cases from experiment. We shall denote this ratio by

y = 2 + 30
7 30 (114),

whence .............................................(115).

The specific heat of unit of volume in ordinary measure is at constant volume

and at constant pressure

1 P_ 
y — 1 JO (H6),

y p_ 
y— 1 JO (H7)>

where J is the mechanical equivalent of unit of heat.

From these expressions Dr Rankine*  has calculated the specific heat of air, 
and has found the result to agree with the value afterwards determined ex
perimentally by M. Regnaultt.

* Transactions of the Royal Society of Edinburgh, Vol. xx. (1850). 
f Comptes Rendus, 1853.
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Thermal Effects of Diffusion.

If two gases are diffusing into one another, then, omitting the terms rela
ting to heat generated by friction and to conduction of heat, the equation (94) 
gives

3 _ , 9 _ i^. . (du. dv. dw\zP' dt +V1 + ++V1 + ^+P\dx + dy+dz)

+P* ^lx + ly + ffz) = ~ ...(118).

By comparison with equations (78), and (79), the right-hand side of this equa 
tion becomes

A' (p1uI + pM,) + Y (pM + pm) + Z (pM + p3wa)

dx dy dz dy

3 3
~ Oh2 + v? + «-’/) - — (u? 4- v,‘ + w,’)

The equation (118) may now be written

^P' It + + + & + + + IP* + + w’’+ & & + V* + &’)}
ul UL *J

= Ar (pm + p2u.2) + K (pm + PM,) + Z (pm, + pm3) -
\ ax ay dz /,

...(119).

The whole increase of energy is therefore that due to the action of the 
external forces minus the cooling due to the expansion of the mixed gases. 
If the diffusion takes place without alteration of the volume of the mixture, 
the heat due to the mutual action of the gases in diffusion will be exactly 
neutralized by the cooling of each gas as it expands in passing from places 
where it is dense to places where it is rare.

9—2
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Determination of the Inequality of Pressure in different directions due to the
Motion of the Medium.

Let us put pf/ =p, + q, and pf^p^ + q,............................. (120).
Then by equation (52),

8t MtA,Ptqt -—{^M^A, + 3M^p^-k(3At - 2A^^~^

-kPP> (A~(2w*~*~v>~v* ~w>-
...(121),

the last term depending on diffusion; and if we omit in equation (75) terms 
of three dimensions in £ v, which relate to conduction of heat, and neglect 
quantities of the form ^yp and p^-px when not multiplied by the large coeffi
cients k, kt, and k„ we get

, o du o /du du dw
(122).

If the motion is not subject to any very rapid changes, as in all cases
except that of the propagation of sound, we may neglect —. In a simrle 

dt °
system of molecules

8t “ .(123),

whence
3kAtp

du dv dw 
~dx dy dz, (124).

If we make , 1 p .
i U,? ......................................... <I2s)>

will be Ilie coefficient of viscosity, and we shall have by equation (120),

„ (du , /du dv dw\\ '

„ a „ (dv , /du dv dwW

c (dv^ , [du , dv , dw\\

.................. (126);
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and by transformation of co-ordinates we obtain

[dv dw\'

(dw , du\

fdu dv\ 
p^=~^\dv + di),

69

(127)-

I hese are the values of the normal and tangential stresses in a simple gas 
when the variation of motion is not very rapid, and when p, the coefficient 
of viscosity, is so small that its square may be neglected.

Equations of Motion corrected for Viscosity.

•Substituting these values in the equation of motion (76), we find

P * +dx + + ^Tx\^ + dy+dzrXp-''^2^

with two other equations which may be written down with symmetry. The 
form of these equations is identical with that of those deduced by Poisson* 
from the theory of elasticity, by supposing the strain to be continually relaxed 
at a rate proportional to its amount. The ratio of the third and fourth terms 
agrees with that given by Professor Stokes-f.

If we suppose the inequality of pressure which we have denoted by q to 
exist in the medium at any instant, and not to be maintained by the motion 
of the medium, we find, from equation (123),

q^Ce-^^ .................................................  (129)
= Ce~^ if T=

3kA,p p (130);

the stress q is therefore relaxed at a rate proportional to itself, so that
8g _ 8< 

q~T..........
..(131).

We may call 1' the modulus of the time of relaxation.

* Journal de VEcole Polytechnique, 1829, Tom. xiii. Cali. xx. p. 139.
t “ On the Friction of Fluids in Motion and the Equilibrium and Motion of Elastic Solids,” Canibridye 

Phil. Trans. Vol. vin. (1845), p. 297, equation (2).
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If we next make Jc — 3, so that the stress (j does not become relaxed, the 
medium will be an elastic solid, and the equation

^(p^—p) du (du dv , dw\~ * + 2P di-iP fa + dy + fa) -0................<l32>

may be written £^p„-p) + 2p g-Jp (* + + _0................(133),

where a, fl, y are the displacements of an element of the medium, and pIX 
is the normal pressure in the direction of a?. If we suppose the initial value 
of this quantity zero, and p^ originally equal to p, then, after a small dis
placement,

(da dfl dy\ da P-=P-pfa+% + fa-2Pdx............................ <134>:

and by transformation of co-ordinates the tangential pressure
(da dfl\ ,

P”=~Pfa+fa)......................... W
The medium has now the mechanical properties of an elastic solid, the

rigidity of which is p, while the cubical elasticity is fp*.
The same result and the same ratio of the elasticities would be obtained 

if we supposed the molecules to be at rest, and to act on one another with 
forces depending on the distance, as in the statical molecular theory of elas
ticity. The coincidence of the properties of a medium in which the molecules 
are held in equilibrium by attractions and repulsions, and those of a medium 
in which the molecules move in straight lines without acting on each other 
at all, deserve notice from those who speculate on theories of physics.

The fluidity of our medium is therefore due to the mutual action of the 
molecules, causing them to be deflected from their paths.

The coefficient of instantaneous rigidity of a gas is therefore p •>
The modulus of the time of relaxation is T L... (13G)
The coefficient of viscosity is p —pT J

Now p varies as the density and temperature conjointly, while T varies 
inversely as the density.

Hence p varies as the absolute temperature, and is independent of the 
density.

* Camb. PhU. Trans. Vol. VIII. (1845), p. 311, equation (29).
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This result is confirmed by the experiments of Mr Graham on the Tran
spiration of Gases*,  and by my own experiments on the Viscosity or Internal 
Friction of Air and other Gases f.

* Philosophical Transactions, 1846 and 1849.
+ Proceedings of the Royal Society, February 8, 1866; Philosophical Transactions, 1866, p. 249.
+ Philosophical Magazine, January 1860. [Vol. I. xx.]
§ Poggendorff’s Annalen, 1865.
|| “ On the effect of the Internal Friction of Fluids on the motion of Pendulums,” Cambridge Transac

tions, Vol. ix. (1850), art. 79.

The result that the viscosity is independent of the density, follows from 
the Dynamical Theory of Gases, whatever be the law of force between the 
molecules. It was deduced by myself J from the hypothesis of hard elastic 
molecules, and M. O. E. Meyer § has given a more complete investigation on 
the same hypothesis.

The experimental result, that the viscosity is proportional to the absolute 
temperature, requires us to abandon this hypothesis, which would make it vary 
as the square root of the absolute temperature, and to adopt the hypothesis 
of a repulsive force inversely as the fifth power of the distance between the 
molecules, which is the only law of force which gives the observed result.

Using the foot, the grain, and the second as units, my experiments give 
for the temperature of 62° Fahrenheit, and in dry air,

/i = 0-0936.

If the pressure is 30 inches of mercury, we find, using the same units, 
^ = 477360000.

Since ,pT=nt w find that the modulus of the time of relaxation of 
rigidity in air of this pressure and temperature is

TWO Tycoon a second-
Ibis time is exceedingly small, even when compared with the period of 

vibration of the most acute audible sounds ; so that even in the theory of 
sound we may consider the motion as steady during this very short time, and 
use the equations we have already found, as has been done by Professor Stokes ||.
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Viscosity of a Mixture of Gases.

In a complete mixture of gases, in which there is no diffusion going on, 
the velocity at any point is the same for all the gases.

Putting .............................(137),

equation (122) becomes

(2MlAl + 3MtAt)ptq1-k(3At-2A1) ......(138).

Similarly,

P>U= ~ + 3-^4a)p/Za — k(3At — 2A,) pjp..... (139).

Since p=p,+pt and q = ql + q„ where p and q refer to the mixture, we 
shall have

pU= — q — -fa + q,), 
where p is the coefficient of viscosity of the mixture.

If we put st and s, for the specific gravities of the two gases, referred 
to a standard gas, in which the values of p and p at temperature 0 and p 
and p„

Epf+Fp^+Gp;__
pf. ’ 3AfxsxEp^Hpxpt^3A^Gp;......................(140)>

where p is the coefficient of viscosity of the mixture, and

*1 -f- d,

F= 3A, (k^ + k£) - (3 A, - 2A,) k - ‘A
Si + S2

G = -^ (2^ + 3^,)
OV 7

H = SA^s, (Sk^A, + 2VAJ

(141).

This expression is reduced to px when pa = 0, and to p, when px = Q. For 
other values of px and pt we require to know the value of k, the coefficient 
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of mutual interference of the molecules of the two gases. This might be 
deduced from the observed values of for mixtures, but a better method is 
by making experiments on the. interdiffusion of the two gases. The experi
ments of Graham on the transpiration of gases, combined with my experiments 
on the viscosity of air, give as values of k, for air, hydrogen, and carbonic acid,

Air.................... ^1= 4-81 x 10’“,
Hydrogen........ £, = 142’8 x 10”, 
Carbonic acid... k^ = 3'9 x 10'°

The experiments of Graham in 1863, referred to at page 58, on the inter
diffusion of air and carbonic acid, give the coefficient of mutual interference 
of these gases,

Air and carbonic acid.......k = 5-2x10'°;
and by taking this as the absolute value of k, and assuming that the ratios 
of the coefficients of interdiffusion given at page 76 are correct, we find

Air and hydrogen.......k= 29’8 x 10'“.

These numbers are to be regarded as doubtful, as we have supposed air to 
be a simple gas in our calculations, and we do not know the value of k between 
oxygen and nitrogen. It is also doubtful whether our method of calculation 
applies to experiments such as the earlier observations of Mr Graham.

I have also examined the transpiration-times determined by Graham for 
mixtures of hydrogen and carbonic acid, and hydrogen and air, assuming a 
value of k roughly, to satisfy the experimental results about the middle of 
the scale. It will be seen that the calculated numbers for hydrogen and car
bonic acid exhibit the peculiarity observed in the experiments, that a small 
addition of hydrogen increases the transpiration-time of carbonic acid, and that 
in both series the times of mixtures depend more on the slower than on the 
quicker gas.

The assumed values of k in these calculations were—
For hydrogen and carbonic acid k = 12*5 x 10'“,
For hydrogen and air............... £=18-8x10'“;

and the results of observation and calculation are, for the times of transpiration 
of mixtures of—

vol. n. 10
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Hydrogen and Carbonic acid Observed Calculated Hydrogen and Air Observed Calculated

100 0 •4321 •4375 100 0 •4434 •4375
97-5 2-5 •4714 •4750 95 5 •5282 •5300
95 5 •5157 •5089 90 10 •5880 •6028
90 10 •5722 •5678 75 25 •7488 •7438
75 25 •6786 •6822 50 50 •8179 •8488
50 . 50 •7339 •7652 25 75 •8790 •8946
25 75 •7535 •7468 10 90 •8880 •8983
10 90 •7521 •7361 5 95 •8960 •8996
0 100 •7470 •7272 0 100 •9000 ■9010

The numbers given are the ratios of the transpiration-times of mixtures to 
that of oxygen as determined by Mr Graham, compared with those given by the 
equation (140) deduced from our theory.

Conduction of Heat in a Single Medium (y).

The rate of conduction depends on the value of the quantity 

where and denote the mean values of those functions of £ £ for
all the molecules in a given element of volume.

As the expressions for the variations of this quantity are somewhat compli
cated in a mixture of media, and as the experimental investigation of the con
duction of heat in gases is attended with great difficulty, I shall confine myself 
here to the discussion of a single medium.

Putting
Q = M (u + £) {u’ + vi + w‘ + 2u£ + 2^ + 2wC + (£ + if + ?)}........... (! 42),

and neglecting terms of the forms and f3 and when not multiplied by 
the large coefficient klt we find by equations (75), (77), and (54),

* .................... (143).
- W = - 3*,/W If + f,’ + ff)

The first term of this equation may be neglected, as the rate of conduction 
will rapidly establish itself. The second term contains quantities of pour
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sions in £ t/, whose values will depend on the distribution of velocity among 
the molecules. If the distribution of velocity is that which we have proved to 
exist when the system has no external force acting on it and has arrived at 
its final state, we shall have by equations (29), (31), (32),

........................................ (144),

?V= = ........................................(145),
r

........................................ (146);

and the equation of conduction may be written

5^ 5,7? = - + ft’ + St....................... (147).

[Addition made December 17, 1866.]

[Final Equilibrium of Temperature  J]

[The left-hand side of equation (147), as sent to the Royal Society, con
tained a term 2(/3—1)--^, the result of which was to indicate that a column 

p ax
of air, when left to itself, would assume a temperature varying with the height, 
and greater above than below. The mistake arose from an error*  in equation 
(143). Equation (147), as now corrected, shews that the flow of heat depends 
on the variation of temperature only, and not on the direction of the variation 
of pressure. A vertical column would therefore, when in thermal equilibrium, 
have the same temperature throughout.

* The last term on the left-hand side was not multiplied by /?.

When I first attempted this investigation I overlooked the fact that is 
not the same as If. fa, and so obtained as a result that the temperature 
diminishes as the height increases at a greater rate than it does by expansion 
when air is carried up in mass. This leads at once to a condition of instability, 

10—2
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which is inconsistent with the second law of thermodynamics. I wrote to 
Professor Sir W. Thomson about this result, and the difficulty I had met with, 
but presently discovered one of my mistakes, and arrived at the conclusion 
that the temperature would increase with the height. This does not lead to 
mechanical instability, or to any self-acting currents of air, and I was in some 
degree satisfied with it. But it is equally inconsistent with the second law of 
thermodynamics. In fact, if the temperature of any substance, when in thermic 
equilibrium, is a function of the height, that of any other substance must be 
the same function of the height. For if not, let equal columns of the two 
substances be enclosed in cylinders impermeable to heat, and put in thermal 
communication at the bottom. Il, when in thermal equilibrium, the tops of 
the two columns are at different temperatures, an engine might be worked 
by taking heat from the hotter and giving it up to the cooler, and the 
refuse heat would circulate round the system till it was all converted into 
mechanical energy, which is in contradiction to the second law of thermo
dynamics. «

The result as now given is, that temperature in gases, when in thermal 
equilibrium, is independent of height, and it follows- from what has been said 
that temperature is independent of height in all other substances.

If we accept this law of temperature as the actual one, and examine our 
assumptions, we shall find that unless = we should have obtained a
different result. Now this equation is derived from the law of distribution of 
velocities to which we wete led by independent considerations. We may there
fore regard this law of temperature, if true, as in some measure a confirmation 
of the law of distribution of velocities.]

Coefficient of Conductivity.

If C is the coefficient of conductivity of the gas for heat, then the quantity 
of heat which passes through unit of area in unit of time measured as me
chanical energy, is

dO 3 p* dO
dx ,J p^O dx (148).

by equation (147).
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Substituting for 3 its value in terms of y by equation (115), and for A. 
its value in terms of by equation (125), and calling pn and 0O the simul
taneous pressure, density, and temperature of the standard gas, and s the spe
cific gravity of the gas in question, we find

ft 5...............
For air we have y= 1'409, and at the temperature of melting ice, or 

274 6C. above absolute zero, A = 918'6 feet per second, and at 16°'6 C., 

= 0'0936 in foot-grain-second measure. Hence for air at 16»'6C. the conduc
tivity for heat is

C-W.............................................. (150).
Ihat is to say, a horizontal stratum of air one foot thick, of which the upper 
surface is kept at 17° C„ and the lower at 16»C., would in one second transmit 
through every square foot of horizontal surface a quantity of heat the mechanical 
energy of which is equal to that of 2344 grains moving at the rate of one foot 
per second.

Principal Forbes* has deduced from his experiments on the conduction of 
heat in bars, that a plate of wrought iron one foot thick, with its opposite 
surfaces kept TO. different in temperature, would, when the mean temperature 
is 25" C., transmit in one minute through every square foot of surface as much 
heat as would raise one cubic foot of water O°'O127 C.

Now the dynamical equivalent in foot-grain-second measure of the heat 
required to raise a cubic foot of water 1°C. is 1'9157 x 10”.

It appears from this that iron at 25° C. conducts heat 3525 times better 
than air at 16°'6 C.

M. Clausius, from a different form of the theory, and from a different value 
of p, found that lead should conduct heat 1400 times better than air. Now 
iron is twice as good a conductor of heat as lead, so that this estimate is not 
far different from that of M. Clausius in actual value.

In reducing the value of the conductivity from one kind of measure to 
another, we must remember that its dimensions are MLT-’, when expressed in 
absolute dynamical measure.

* “ Experimental Inquiry into the Laws of the Conduction of Heat in Bars,” Edinburgh Transactions,
1861—62.
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Since all the quantities which enter into the expression for C are constant 
except p, the conductivity is subject to the same laws as the viscosity, that is, 
it is independent of the pressure, and varies directly as the absolute tempera
ture. The conductivity of iron diminishes as the temperature increases.

Also, since y is nearly the same for air, oxygen, hydrogen, and carbonic 
oxide, the conductivity of these gases will vary as the ratio of the viscosity 
to the specific gravity. Oxygen, nitrogen, carbonic oxide, and air will have 
equal conductivity, while that of hydrogen will be about seven times as great.

a of y for carbonic acid is 1*27, its specific gravity is 11 of 
oxygen, and its v18Cosity A of that of oxygen. The conductivitv of ? •
acid for heat is therefore about J of i-K <• p . .V f carbonic

oi mat of oxygen or of air.



[From the Proceedings of the Royal Society, No. 91, 1867.]

XXIX. On the Theory of the Maintenance of Electric Currents by Mechanical 
Work without the use of Permanent Magnets.

The machines lately brought before the Royal Society by Mr Siemens 
and Professor Wheatstone consist essentially of a fixed and a moveable electro
magnet, the coils of which are put in connexion by means of a commutator.

The electromagnets in the actual machines have cores of soft iron, which 
greatly increase the magnetic effects due to the coils ; but, in order to simplify 
the expression of the theory as much as possible, I shall begin by supposing 
the coils to have no cores, and, to fix our ideas, we may suppose them in 
the form of rings, the smaller revolving within the larger on a common 
diameter.

Ihe equations of the currents in two neighbouring circuits are given in 
my paper “ On the Electromagnetic Field*,’’ and are there numbered (4) and (5),

£=Rx + i (Lx + My), 
(it

v=Sy+Tt

where x and y are the currents, £ and y the electromotive forces, and R and $ 
the resistances in the two circuits respectively. L and N are the coefficients 
of self-induction of the two circuits, that is, their potentials on themselves 
when the current is unity, and M is their coefficient of mutual induction, 
which depends on their relative position. In the electromagnetic system of 
measurement, L, M, and N are of the nature of lines, and R and S are 
velocities. L may be metaphorically called the “electric inertia” of the first 
circuit, N that of the second, and L+2M+N that of the combined circuit.

* Philosophical Transactions, 1865, p. 469.
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Let us first take the case of the two circuits thrown into one, and the 
two coils relatively at rest, so that M is constant. Then

(R + S) x + ~ (L + 2M+ N) x = 0.............................(1),

_ n+s
whence x = x,p~L+ill+Nt (2)

where x0 is the initial value of the current. This. expression shews that the 
current, if left to itself in a closed circuit, will gradually decay.

If we put ....................................... (3),
t

then x = x^' ................................................. (4).

The value of the time t depends on the nature of the coils. In coils of 
similar outward form, t varies as the square of the linear dimension, and
inversely as the resistance of unit of length of a wire whose section is the
sum of the sections of the wires passing through unit of section of the coil.

In the large experimental coil used in determining the B.A. unit of re
sistance in 1864, t was about -01 second. In the coils of electromagnets t is
much greater, and when an iron core is inserted there is a still greater in
crease.

Let us next ascertain the effect of a sudden change of position in the 
secondary coil, which alters the value of M from M, to M* in a time t„-t , 
during which the current changes from x, to x,. Integrating ’equation (1) with 
respect to t, we get

(R + S) I xdt + (L + 2M1 + N)x1-(L + 2M1 + N)xl = 0............... (5).

If we suppose the time so short that we may neglect the first term in com
parison with the others, we find, as the effect of a sudden change of position,

(L + 2M3 + N)xi = (L+2M1 + N)x1.......................... (6).

This equation may be interpreted in the language of the dynamical theory, 
by saying that the electromagnetic momentum of the circuit remains the same 
after a sudden change of position. To ascertain the effect of the commutator, 
let us suppose that, at a given instant, currents x and y exist in the two 
coils, that the two coils are then made into one circuit, and that x' is the 
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current in the circuit the instant after completion; then the same equation (1) 
gives

(L+2M+N)x' = (L+M)x+(N+M)y......................... (7).
The equation shews that the electromagnetic momentum of the completed 

circuit is equal to the sum of the electromagnetic momenta of the separate coils 
just before completion.

The commutator may belong to one of four different varieties, according to 
the order in which the contacts are made and broken. If A, Ji be the ends 
of the first coil, and C, D those of the second, and if we enclose in brackets 
the parts in electric connexion, we may express the four varieties as in the 
following Table:—

(!) (2) (3) (4)
(AC) (BD) (AC) (BD) (AC) (BD) (AC) (BD) 

(ABCD) (ABC) (D) (A) (BCD) (A) (B) (C) (D)
(AD) (BC) (ABCD) (ABCD) (AD) (BC) 

(AD) (BC) (AD) (BC)

In the first kind the circuit of both coils remains uninterrupted ; and when 
the operation is complete, two equal currents in opposite directions are com
bined into one. In this case, therefore, y = — x, and

(L+2M+N) x'=(L — N) x....................................(8).

When there are iron cores in the coils, or metallic circuits in which inde
pendent currents can be excited, the electrical equations are much more com
plicated, and contain as many independent variables as there can be independent 
electromagnetic quantities. I shall therefore, for the sake of preserving simplicity, 
avoid the consideration of the iron cores, except in so far as they simply in
crease the values of L, M, and N.

I shall also suppose that the secondary coil is at first in a position in 
which M=0, and that it turns into a position in which M= -M, which will 
increase the current in the ratio of L + N to L — 2M+N.

The commutator is then reversed. This will diminish the current in a ratio 
depending on the kind of commutator.

The secondary coil is then moved so that M changes from M to 0, which 
will increase the current in the ratio of L + 2M+N to L + N\

VOL. II. 11
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During the whole motion the current has also been decaying at a rate 
which varies according to the value of L + 2M+N; but since M varies from 
+ M to — M, we may, in a rough theory, suppose that in the expression for 
the decay of the current M=0.

If the secondary coil makes a semirevolution in time T, then the ratio of 
the current xlf after a semirevolution, to the current x0 before the semirevolution, 
will be

where L + N T -----
7? + S (9).

and r is a ratio depending on the kind of commutator.
For the first kind,

r L-2M+N

By increasing the speed, T may be indefinitely diminished, so that the 
question of the maintenance of the current depends ultimately on whether r is 
greater or less than unity. When is greater than 1 or less than —1, the 
current may be maintained by giving a sufficient speed to the machine; it will 
be always in one direction in the first case, and it will be a reciprocating current 
in the second,

When r lies between 4-1 and —1, no current can be maintained.
Let there be p windings of wire in the first coil and q windings in the 

second, then we may write
L = lp\ M=mpq, N^nq*............................... (11),

where I, m, n are quantities depending on the shape and relative position of 
the coils. Since L — 2M 4- N must always be a positive quantity, being the 
coefficient of self-induction of the whole circuit, — and therefore LN—M'1 
must be positive. When the commutator is of the first kind, the ratio r is 
greater than unity, provided pm is greater than qn; and when

£ = A + /1-7^ 
q m\ \J In)'

(12),

which is the maximum value of r.
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When the ratio of p to q lies between that of n to m and that of in to I, 
r lies between +1 and —1, and the current must decay; but when qil is less 
than qm, a reciprocating current may be kept up, and will increase most rapidly 
when

p _ n L / m*\

/ ™s\—4(‘-SU...... ■......................<13>-
When the commutator is of the second kind, the first step is to close both 

circuits, so as to render the currents in them independent. The second circuit 
is then broken, and the current in it is thus stopped. This produces an effect 
on the first circuit by induction determined by the equation

Lx + My = Lx' + My'........ ................................(14).

In this case M = — M^ y = x, and y = 0, so that

(L — M) x — Lx'............................................(15);

where x is the original, and x' the new value of the current.

The next step is to throw the circuits into one, M being now positive. 
If x" be the current after this operation,

(L + M)x' = (L + 2M+N)x".......................(1G).

The whole effect of this commutator is therefore to multiply the current by 
the ratio

D-M1 
L^L^M+N)'

The whole effect of the semirotation is to multiply the current by the ratio

L + 2M+N
L-2M+N’

The total effect of a semirevolution supposed instantaneous is to multiply the 
current by the ratio

D-M1
r~L(L-2M+N)‘

11—2
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If p and q be the number of windings in the first and second coils respec
tively, the ratio r becomes

r=___ Vp'-rntf___ .
J (Ip2 — 2mpq + nq2) *

which is greater than 1, provided 2lmp is greater than (ln + m2)q. When

we have for the maximum value of r,

r = 1 + —,--------------- —------ — .
" o , n m 

\m,+ l 6l2+m I

In the experiment of Professor Wheatstone, in which the ends of the 
primary coil were put in permanent connexion by a short wire, the equations 
are more complicated, as we have three currents instead of two to consider. 
The equations are

+ it ^Lx + = Sy + ^(Mx + Ny) = Qz+ — ]&...;........... (17),

x + y + z = Q............................................(18),

where Q, K, and z are the resistance, self-induction, and current in the short 
wire. The resultant equations are of the second degree; but as they are only 
true when the magnetism of the cores is considered rigidly connected with the 
currents in the coils, an elaborate discussion of them would be out of place 
in what professes to be only a rough explanation of the theory of the experi
ments.

Such a rough explanation appears to me to be as follows:—
Without the shunt, the current in the secondary coil is always in rigid 

connexion with that in the primary coil, except when the commutator is 
changing. With the shunt, the two currents are in some degree independent; 
and the secondary coil, whose electric inertia is small compared with that of 
the primary, can have its current reversed and varied without being clogged 
by the sluggish primary coil.
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On the other hand, the primary coil loses that part of the total current 
which passes through the shunt; but we know that an iron core, when highly 
magnetized, requires a great increase of current to increase its magnetism, 
whereas its magnetism can be maintained at a considerable value by a current 
much less powerful. In this way the diminution in resistance and self-induction 
due to the shunt may more than counterbalance the diminution of strength in 
the primary magnet.

Also, since the self-induction of the shunt is very small, all instantaneous 
currents will run through it rather than through the electromagnetic coils, and 
therefore it will receive more of the heating effect of variable currents than 
a comparison of the resistances alone would lead us to expect.



[Extracted from The Quarterly Journal of Pure and Applied Mathematics, No. 32, 1867.]

XXX. On the Equilibrium of a Spherical Envelope.

I propose to determine the distribution of stress in an indefinitely thin 
and inextensible spherical sheet, arising from the action of external forces applied 
to it at any number of points on its surface.

Notation. Let two systems of lines, cutting each other at right angles, be 
drawn upon any surface, and let their equations be

(zyz) = & and (xyz) = H, 

where each curve is found by putting G or II equal to a constant, and com
bining it with the equation of the surface itself, which we may denote by 

^(xyz}~S.

Now let G be made constant, and let II vary, and let dS, be the element 
ol length of the curve (G = constant) intercepted between the two curves for

which II varies by dH, then ~ will be a function of II and

In the same way, making dS3 an element of the curve 

may determine as a function of II and G.

Now let the element dS3 experience a stress, consisting 
the direction in which G increases, and Y in the direction
creases, acting on the positive side of the linear element dSu and equal and 
opposite forces acting on the negative side. These will constitute a longitudinal 
tension normal to dSu which we shall denote by

p^dSf

G.

(II = constant)

of a force X 
in which IT

we

in
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and a shearing force on the element, which we shall call

Pa ~d~S1

In like manner, if the element dS.2 is acted on by forces Y' and X', it 
will experience on its positive side a tension and a shearing force, the values 
of which will be

Pa~dSt Md p^^

That the moments of these forces on the elements of area dS„ dSa may 
vanish,

Pn =Pm
or the shearing force on dS2 must be equal to that on dSr

When there is no shearing force, then pn and are called the principal 
stresses at the point, and if pa vanishes everywhere, the curves, (G = constant) 
and (7Z= constant), are called lines of principal stress. In this case the con
ditions of equilibrium of the element dS^S, are

dpn dSt , . d^
dG dH + ^P" p^ dGdH~°........ (O’
dp„ dSa , d’S,
dll dG^Pa P^ dGdII~®................................ (2)>

p^+p^ = Ni-Ni 
r, r. (3).

The first and second of these equations are the conditions of equilibrium 
in the directions of the first and second lines of principal tension respectively.

The third equation is the condition of equilibrium normal to the surface; 
r, and r, are the radii of curvature of normal sections touching the first and 
second lines of principal stress. They are not necessarily the principal radii of 
curvature. W. is the normal pressure of any fluid on the surface from the side 
on which r, and r, are reckoned positive, and W is the normal pressure on the 
other side. r

If the systems of curves G and II uWnnrl r r • • 1, , , i- p , ’ instead of being lines of principal stress,
had been hues of curvature, we should still have had the same equation (3), 
but r, and r. would have been the principal radii of curvature, and and p’
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would have been the tensions in the principal planes of curvature, and not 
necessarily principal tensions.

In the case of a spherical surface not acted on by any fluid pressure, 
r, = r2, and ^ = ^ = 0, so that the third equation becomes

Pn+P» = 0............................................... (4),
whence we obtain from the first and second equations

„ fdH\* n (dGV , .
“ 01 \dSJ “ \dSj “ ........................... (5)»

where C, is a function of II, and C, of G. If then we draw two lines of 
the system (71=constant) at such a distance that (dS^ = (db)’ at any point 
where (dhy is constant, this equation will continue true through the whole 
length of these lines, that is, the principal stresses will be inversely as the
square of the distance between the consecutive lines of stress. Since this is
true of both sets of lines, we may assume the form of the functions G and
II, so that they not only indicate lines of stress, but give the value of the
stress at any point by the equations

(dH^ [dG\* . .
2,11 \dSJ -\dSj-~^...............................<6)’

where (7Z= constant) is a line of principal tension, and (Cr = constant) a line of 
principal pressure.

If we now draw on the spherical surface lines corresponding to values of G 
differing by unity, and also lines corresponding to values of II differing by 
unity, these two systems of lines will intersect everywhere at right angles, and 
the distance between two consecutive lines of one system will be equal to the 
distance between two consecutive lines of the other, and the principal stresses 
will be in the directions of the lines, and inversely as the square of the 
intervals between them.

Now if two systems of lines can be drawn on a surface so as to fulfil 
these conditions, we know from the theory of electrical conduction in a sheet 
of uniform conductivity, that if one set of the curves are taken as equipotential 
lines, the other set will be lines of flow, and that the two systems of lines 
will give a solution of some problem relating to the flow of electricity through 
a conducting sheet. But we know that unless electricity be brought to some 
point of the sheet, and carried off at anoiher point, there can be no flow of
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electricity in the sheet. Hence, if such systems of lines exist, there must
be some singular points, at which all the lines of flow meet, and at which
dH 
dS~ is infinite.

If dH . 
dS, 18 nowhere infinite, there can be no systems of lines at all,

and if dH 
dS, is infinite at any point, there is an infinite stress at that point,

which can only be maintained by the action of an external force applied at that 
point.

Hence a spherical surface, to which no external forces are applied, must 
be free from stress, and it can easily be shewn from this that, when the external 
forces are given, there can be only one system of stresses in the surface.

This is not true in the case of a plane surface. In a plane surface, 
equation (3) disappears, and we have only two differential equations connecting 
the stresses at any point, which are not sufficient to determine the distribution 
of stress, unless we have some other conditions, such as the equations of elas
ticity, by which the question may be rendered determinate.

The simplest case of a spherical surface acted on by external forces is that 
in which two equal and opposite forces P are applied at the extremities of a 
diameter. There will evidently be a tension along the meridian lines, com
bined with an equal and opposite pressure along the parallels of latitude, and 
the magnitude p of either of these stresses will be

P 
— lira sin2 6............................................ 

where a is the radius of the sphere, P the force at the poles, and 6 the 
angular distance of a point of the surface from the pole. If is the longitude, 
and if r, and r, are the rectilineal distances of a point from the two poles 
respectively, and if we make

T 
G=\ogt~ and H=<J>..................................... (8),

then G and II will give the lines of principal stress, and 

_ p (<w\* _ p/uk 
V 2ira \dSj 2na \dSj . '

vol. n. 12
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To pass from this case to that in which the two forces are applied at 
any points, I shall make use of the following property of inverse surfaces.

If a surface of any form is in equilibrium under any system of stresses, 
and if lines of principal stress be drawn on it, then if a second surface be the 
inverse of the first with respect to a given point, and if lines be drawn on 
it which are inverse to the lines of principal stress in the first surface, and 
if along these lines stresses are applied which are to those in the corresponding 
point of the first surface inversely as the squares of their respective distances 
from the point of inversion, then every part of the second surface will either 
be in equilibrium, or will be acted on by a resultant force in the direction 
of the point of inversion.

For, if we compare corresponding elements of lines of stress in the two 
surfaces, we shall find that the forces acting on them are in the same plane 
with the line through the point of inversion, and make equal angles with it. 
1 he moment of the force on either element about the point of inversion is 
therefore as the product of the length of the element, into its distance 
from the point of inversion into the intensity of the stress. But the length 
of the element is as its distance, and the stress is inversely as the square of 
the distance, therefore the moments of the stresses about the point of inversion 
are equal, and in the same plane. If now any pox-tion of the first surface is 
in equilibrium, it will be in equilibrium as regards moments about the point 
of inversion. The corresponding portion of the second surface will also be in 
equilibrium as regards moments about the point of inversion. It is therefore 
either in equilibrium, or the resultant force acting on it passes through the 
point of inversion.

Now let the first surface be a sphere; we know that the second surface 
is also a sphere. In the first surface the condition of equilibrium normal to 
the surface is pn+pa = 0. In the second surface the stresses are to those 
in the first in the inverse ratio of the squares of the distances. Hence in 
the second surface also, 2>11 + 2i22 = 0, or there is equilibrium in the direction of 
the normal. But we have seen that the resultant, if any, is in the radius 
vector. Therefore, if we except the limiting case in which the radius vector 
is perpendicular to the normal, the equilibrium is complete in all directions.

We may now, by inverting the spherical surface, pass from the case of 
a sphere acted on by a pair of tensions applied at the extremities of a
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diameter to that in which the forces are applied at the extremities of any 
chord of the sphere, subtending at the centre an angle = 2a. The lines of tension 
will be circles passing through the extremities of the chord. Let the angle 
which one of these circles makes with the great circle through these points 
be 1 lie angle </> is the same as the corresponding angle in the inverse 
surface.

The lines of pressure, being orthogonal to these, will be circles whose 
planes if produced pass through the polar of the chord. Let r„ r* be the 
distances of any point on the sphere from the extremities of the chord, then 
V •
— is constant for each of these circles, and has the same value as it has in 

the inverse surface. Hence, if we make

G = loge^ and II (10),

G and II will give the lines of principal stress, and the absolute value of the 
stress at any point will be

/’ sin a fdGV /’ sin a /(UI y
(11).2ua \dSj 2ira \dSt

If we draw tangent planes to the sphere at the extremities of the chord, 
and if qv qt are the perpendiculars from any point of the spherical surface 
on these planes, it is easy to shew that at that point

If any number of forces, forming a system in equilibrium, be applied at 
different points of a spherical envelope, we may proceed as follows. First 
decompose the system of forces into a system of pairs of equal and opposite 
forces acting along chords of the sphere. To do this, if there are n forces 
applied at n points, draw a number of chords, which must be at least 3(n-2), 
so as to render all the points rigidly connected. Then determine the tension 
along each chord due to the external forces. If too many chords have been 
drawn, some of these tensions will involve unknown quantities. The n forces 
will now be transformed into as many pairs of equal and opposite forces as 
chords have been drawn.

12—2
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Next find the distribution of stress in the spherical surface due to each 
of these pairs of forces, and combine them at every point by the rules for the 
composition of stress*.  The result will be the actual distribution of stress, and 
if any unknown forces have been introduced in the process, they will disappear 
from the result.

* Rankin’s Applied Mechanics, p. 82.
+ Philosophical Transactions, 1863, Part I. p. 49.

The calculation of the resultant stress from the component stresses, when 
these are given in terms of unsymmetrical spherical co-ordinates of different 
systems, would be very difficult; I shall therefore shew how to effect the same 
object by a method derived from Mr Airy’s valuable paper, “ On the strains 
in the interior of beamst.”

If we place the point of inversion on the surface of the sphere, the in
verse surface is a plane, and if p^, and represent the components of
stress in the plane referred to rectangular axes, we have for equilibrium

4-^ = 0.......................................... (13),
dx dy ' '

............................................(14).
dx dy v '

These equations are equivalent to the following:
dF dF dF . ,

Pxt~ dy" Pxy~ dxdy' Pm~ d^........................... <15)’

where F is any function whatever of x and y.

The form of the function F cannot, in the case of a plane, be determined 
from the equations of equilibrium, as strains may exist independently of ex
ternal forces. To solve the question we require to know not only the original 
strains, but the law of elasticity of the plane sheet, whether it is uniform, or 
variable from point to point, and in different directions at the same point. 
When, however, we have found two solutions of F corresponding to different 
cases, we can combine the results by simple addition, as the expressions (equa
tion 15) are linear in form.

In the case of two forces acting on a sphere, let A, B (fig. 29) be the 
points corresponding to the points of application in the inverse plane; AP = r„
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= r» angle APB = XAT=(j), Bisect AB in C, and draw PD perpendicular 
to AB. Then the line of tension at P is a circle through A and B, for which 
</> is constant, and the line of pressure is an orthogonal circle for which the 
ratio of rt to n is constant, and the angle </> and the logarithms of the ratio 
of r, to r, differ from the corresponding quantities in the sphere only by con
stants. We may therefore put

P sin a 
Pn~

Psin a (dH\a
2ird \dSj " ~Pa’

where the values of G and II are the same as in equations (8) and (10).
Transforming these principal stresses into their components, we get

_ Psin a (dG' _dG 2\
2nd \dx dy / .................................... (16),

_ Psin a dG dG
xv 2nd dx dy............................................ (17),

P sin a 
2nd (18).

From the relations between G and H
dG dH , j- = —-j- and dx dy

whence

we have 
dG_dH 
dy “ dx 
dGI d'H 
da? dy*

(19),

(20).

Pw ~ Ma _ ^la' 
,dy dx ,

d'G d*G n , ^+^ = ° and

The values of the component stresses, being expressed as functions of the 
second degree in G, cannot be compounded by adding together the corresponding 
values of G, we must, therefore, in order to express them as linear functions, 
find a value of F, such that

d*F _ P sin a 
dy* — 2nd Pxx (21).

We shall then have, by differentiation with respect to x, and integration 
with respect to y,

and

_Psina dgdg
dxdy 2nd dx dy ^d\x) 

d^F Psina (/dG\ (dGW . 
dx* ~ 2nd vda:/

(22),

(23).
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d3/’_
inCe da? dy* ~ 'n this case, the arbitrary functions must be zero, and 

we have J to. find the value of F from that of G by ordinary integration of (21).

F=^™± f^B-AC, AP pd J27ra { AC ogBP+ AC (angle AP^] (24),

or if the co-ordinates of A and 13 are (a„ 6,) and
,, P sin aF= —-----

2770
(2z - a, _ a;) + (2y-b,-b,) (b,-bt)

(«a - + (b, - b^f
(2y - 6, - b,) (a3 - a.) - (2x - a, - a,) (b, - bt) 

+ («.-«. y+(b,-by ' - '

xlog (x-ay + ^y-ty 
(.r -a.^ + (y~b2)J

tan'1 —tan-1, x — a,
If we obtain the values of F for all the different pairs of forces acting 

on the sphere, and add them together, we shall find a new value of F, the 
second differential coefficients of which, with respect to x and y will give a 
system of components of stress in the plane, which, being transferred to the 
sphere by the process of inversion, will give the complete solution of the 
problem in the case of the sphere.

We have now solved the problem in the case of any number of forces 
applied to points of the spherical surface, and all other cases may be reduced 
to this, but it is worth while to notice certain special cases.

If two equal and opposite twists be applied at any two points of the 
sphere, we can determine the distribution of stress. For if we put

G = log -1 + $ and H = log — — </>
1’1 (26),

the equations of equilibrium will still hold, and the principal stresses at any 
point will be inclined 45° to those in the case already considered.

If M be the moment of the couple in a plane perpendicular to the chord, 
the absolute value of the principal stresses at any point is

M sin a
P~ M (27).

In figure 30 are represented the stereographic projections of the principal 
lines of stress in the cases which we have considered. When a tension is 
applied along the chord AB, the lines of tension are the circles through AB,
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and the lines of pressure are the circles orthogonal to them. These circles are 
so drawn in the figure that the differences of the values of G and II are ^ir.

The spiral lines which pass through the intersections of these circles are 
the principal lines of stress in the case of twists applied to the spherical 
surface at the extremities of the chord AI3.

In the case ol a sphere acted on by fluid pressure, if the pressure is a 
function of the distance from a given point, we may take the line joining 
that point with the centre of the sphere as an axis, and then the lines of 
equal fluid pressure will be circles, and the fluid pressure N will be a function 
of 6, the angular distance from the pole. If we suppose the total effect of 
pressure balanced jby a single force at the opposite pole, then we shall have 
for the equilibrium of the segment, whose radius is 6,

re
2 sin* 0pn = a N sin 20d0.................................... (28),

J 0

and pm = Na-pn,

to determine pn the tension in the meridian, and p.a that in the parallels of 
latitude.



[From the Proceedings of the Royal Society of Edinburgh, Session 1867—68.]

XXXI. On the best Arrangement for producing a Pure Spectrum on a Screen.

In experiments on the spectrum, it is usual to employ a slit through 
which the light is admitted, a prism to analyse the light, and one or more 
lenses to bring the rays of each distinct kind to a distinct focus on the screen. 
The most perfect arrangement is that adopted by M. Kirchhoff, in which two 
achromatic lenses are used, one before and the other after the passage of the 
light through the prism, so that every pencil consists of parallel rays while 
passing through the prism.

But when the observer has not achromatic lenses at his command, or when, 
as in the case of the highly refrangible rays, or the rays of heat, he is re
stricted in the use of materials, it may still be useful to be able to place 
the lenses and prism in such a way as to bring the rays of all colours to 
their foci at approximately the same distance from the prism.

We shall first examine the effect of the prism in changing the conver- 
gency or divergency of the pencils passing through it, and then that of the 
lens, so that by combining the prism and the lens we may cause their defects 
to disappear.

When a pencil of light is refracted through a plane surface, its convergency 
or divergency is less in that medium which has the greatest refractive index; 
and this change is greater as the angle of incidence is greater, and also as 
the index of refraction is greater.

When the pencil passes through a prism its convergency or divergency 
will be diminished as it enters, and will be increased when it emerges, and 
the emergent pencil will be more or less convergent or divergent than the 
incident one, according as the angle of emergence is greater or less than that of 
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incidence. This effect will increase with the difference of these angles and with 
the refractive index.

When the angle of incidence is cQual to that of emergence the convergence 
of the pencil is unaltered, but since the more refrangible rays have the greatest 
angle of emergence, their convergency or divergency will be greater than that 
of the less refrangible rays.

This effect will be increased by making the angle of incidence less, and 
that of emergence greater; and it will be diminished by increasing the angle 
of incidence, that is, by turning the prism round its edge towards the slit. If 
the angle of the prism is not too great, the convergency or divergency of all 
the pencils may be made the same (approximately) by turning the prism in this 
way.

This correction, however, diminishes the separation of the colours. It is 
inapplicable to a prism of large angle, and it takes no account of the chromatic- 
aberration of the lens. By altering the arrangement, the lens may be made to 
correct the prism. The effect of a convex lens is to increase the convergency, and 
to diminish the divergency, of every pencil; but the change is greatest on the 
most refrangible rays. The prism, except when its base is very much turned 
towards the slit, makes the highly refrangible rays more convergent or more 
divergent than the less refrangible rays, according as they were convergent or 
divergent originally. If the rays pass through the prism before they reach the 
lens, the pencils will be divergent at incidence, and the more refrangible will 
be most divergent at emergence. If they then fall on the lens, they will be 
more converged than the rest; so that by a proper arrangement all may be 
brought to their foci at approximately the same distance. If the violet rays 
come to their focus first, we must turn the base of the prism more towards the 
light, and vice versa.

We proceed to the numerical calculation of the proper arrangement.

To find the variation of position of the focus of light passed through a prism 
as dependent on the nature of the light.

vol. H. 13
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Let p be the index of refraction of the prism, a its angle, </>, and the 
angles of incidence and emergence, 0, and 0., the angles of the ray within the 
prism with the normals to the first and second surfaces, 8 the difference of these 
angles—then by geometry

^ + ^ = a, 0,-0a = 8, 
and by the law of refraction,

sin ^, = p, sin sin </>a = p, sin 0.,,
is constant, being the angle of incidence for all kinds of light, but the other 

angles vary with p, so that

____ sjn 0, d0, _ sin 0, sin a 
dp, pcos 0,’ dp. p.008 0,’ dp cos 0, cos </>, ’

The last expression gives the dispersion, or breadth of the spectrum, and 
shews that it increases as the base of the prism is turned from the light.

As the slit is parallel to the edge of the prism, we have only to consider 
the primary foci of the pencils when we wish to render the image distinct.

Let v, be the distance of the focus of incident light from the prism, v, 
that of the emergent light, and u that within the prism, all measured to the 
right, then by the ordinary formula,

v, _ u u _
COS3 </>, p COS' 0, ’ p cos3 0, cos3 </>, ’

1’1 COS3 0, cos3 </>., = V, COS3 0., COS3 </>,.

'faking the differential coefficient of the logarithms of these quantities,
1 dy, _ 2 sin 0, d0, _ 2 sin ^a dfa _ 1 dy., 2 sin 0, d0, 
v, dp. cos 0, dp cos <^a dp v, dp cos 0., dp ’
1 dy, — 1 dv, 2 sin sin a _ 2 sin* 0, _ 2 sin 0, sin 0,
v, dp v, dp cos 0, cos3 </>., p cos3 0, p cos 0, cos 0,'

Substituting for these angles their values in terms of a and 8 we find

1 dv, 1 dv, _ 4 sin a (/i3—1) sin a —sin 3{1+p,3cos (a —8)}
dp dp (cos a + cos 8)3 ’ 1 — I/*3 {1 — cos (a — 8)}

The quantity on the right of this equation is always positive, unless the 
value of 8 exceeds that given by the equation

(p* — 1) sin a = sin 8 {1 + p' cos (a — 8)}.
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If /x=15 and a = 60°, then 3 = 22° 52', that is, the ray within the prism 
makes an angle of 11° 26' with the base, which corresponds to an angle of 
incidence 82=50', or the incident ray is inclined 7’10' to the face of the prism.

It two lenses are used, of the same material with the prism, we may 
correct the defects of the prism without turning it so far from its position of 
least deviation.

Let a be the distance of the slit from the prism, and b that of the screen 
from the prism. Let f be the focal length of the lens between the prism 
and slit, and ft that of the lens between the prism and the screen, then the 
condition of a flat image is

1 dv, _ 1 dr, _ 1 M M 
v, dp ~ dp ~ p - i v;+ fj ’

Let us first find the conditions of a flat spectrum 8 = o.

When 8 = o, i\ = vv and we obtain the conditions

1_ 1 _ 1 _ 1 __ /I 1\ (1 +cos a)’ {1 — ^p' (1 — cos a)} _ /I 1\
a Z fi \a b) 4 (/a —l)*(/x+1) sin’a \a b/ :

from which f and ft may be found in terms of known quantities.

When a, the angle of the prism, is 60°, then
^-p^

If we now make /x=l-5 we find c=‘5O25, and

1 -4975 -5025
Z~ “ 6 ’
1 1-5025 , -5025

If a = ^-b, the first lens may be dispensed with, and the second lens will 
correct the defects of the prism.

* [These lenses are supposed to be close to the edge of the prism.]
13—2
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If a is greater in proportion to b, a concave lens must be placed in front 
of the prism. The most convenient arrangement will be that in which the 
prism is placed in the position of least deviation, and the lens placed between 
the prism and the screen, while the distance from the slit to the prism is to 
that between the prism and the screen as 1—c is to c. For quartz, in which 
^ = 1-584 for the ordinary ray, *=2-53, so that the best arrangement is 

a =1'536, or the lens should be placed on the side next the screen, and the 
distance from the slit which admits the light to the prism should be about 
one and a half times the distance from the prism to the screen.



[From the Proceedings of the London Mathematical Society, Vol. II.]

XXXII. The Construction of Stereograms of Surfaces.

To make a surface visible, lines must be drawn upon it; and to exhibit 
the nature of the surface, these lines ought to be traced on the surface ac
cording to some principle, as for instance the contour lines and lines of greatest 
slope on a surface may be drawn. Monge represents surfaces to the eye by 
their two systems of lines of curvature, which have the advantage of being 
independent of the direction assumed for the co-ordinate axes. For stereoscopic 
representation it is necessary to choose curves which are easily followed by the 
eye, and which are sufficiently different in form to prevent a curve of the 
one figure from being visually united with any other than the corresponding 
curve in the other figure. I have found the best way in practice to be as 
follows:—First determine how many curves are to be drawn on the surface, 
and at what intervals, and find the numerical values of the co-ordinates of 
points on these curves. A convenient method of drawing the figures according 
to Cartesian co-ordinates is to draw an equilateral triangle, find its centre of 
gravity, and take a point about of the side of the triangle distant hori
zontally from the centre of gravity as the origin, and the lines joining this 
point with the angles as unit axes. For the other figure, the point must be 
taken on the opposite side of the centre of gravity. I have found that this 
rule gives a convenient amount of relief to the figures. When the co-ordinates 
of a point are easily expressed in terms of tetrahedral co-ordinates x, y, z, w, 
I draw the two lines (x = 0, y = 0) and (z = 0, w = 0) in both figures. By means 
of a sector I. divide the first line in P in the ratio of z to w, and the second 
in Q in the ratio of x to y; I then lay a rule along the line PQ (without 
drawing the line) and divide PQ in the ratio of x + y to z + w, in order to find 
the point 11 in the figure. By drawing the two lines once for all in each 
figure, and performing the same process of finding ratios in each figure, we get 
each point without making any marks on the paper, which come to be very 
troublesome in complicated figures. In this way I have drawn the figures of 
cyclides, &c.



[Proceedings of the London Mathematical Society, Vol. n.]

XXXIII. On Reciprocal Diagrams in Space, and their relation to 
Airy's Function of Stress.

Let F be any function of the co-ordinates x, y, z of a point in space, and 
let £, y, £ be another system of co-ordinates which we may suppose referred 
to axes parallel to the axes of x, y, z, but at such a distance (in thought) 
that figures referred to x, y, z do not interfere with the figures referred to y, C

We shall call the figure or figures referred to x, y, z the First Diagram, 
and those referred to £, y, I, the Second Diagram.

Let the connection between the two diagrams be expressed thus—

-dF r~ — 
dx' dy ’ dz ’

When the form of F is known, £ y and £ may be found for every value 
of x, y, z, and the form of the second diagram fixed.

To complete the second diagram, let a function </> of £ y, £ be found from 
the equation

^=x^+yT] + zC-F;
then it is easily shewn that

d<l> z-di 
d^' J~dV' df

Hence the first diagram is determined from the second by the same process 
that the second is determined from the first. They are therefore Reciprocal 
Diagrams both as regards their form and their functions.

But reciprocal diagrams have a mechanical significance which is capable 
of extensive applications, from the most elementary graphic methods for calcu
lating the stresses of a roof to the most intricate questions about the internal
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molecular forces in solid bodies. I shall indicate two independent methods of 
representing internal stress by means of reciprocal diagrams.

, I . ’
First Method. Let a, b be any two contiguous points in the first diagram 

and a, ft the corresponding points in the second. Let an element of area be 
described about ab perpendicular to it. Then if the stress per unit of area on

this surface is compounded of a tension parallel to and equal to P^ and 
ab

a pressure parallel to ab and equal to P dF
Ax'

dF dF\ 
dy‘ dp) P being a constant

introduced for the sake of homogeneity, then a state of internal stress defined 
in this way will keep every point of the first figure in equilibrium.

The components of stress, as thus defined, will be

*•“P P’ p‘"P’

_ P d „ dFPy‘ dydz' dzdx' Pxv~Pd^ji

and these are easily shewn to fulfil the conditions of equilibrium.
If any number of states of stress can be represented in this way, they 

can be combined by adding the values of their functions (F), since the quan
tities are linear. This method, however, is applicable only to certain states of 
stress; but if we write

® „ dC dA dA dB
lxx dP^dy" Pvv dd^dP’ P”~Pf+dP' 

dA _ dB PC
P-~ T^di' P"~ li&

we get a general method at the expense of using three functions A, B, C, 
and of giving up the diagram of stress.

Second Method. Let a be any element of area in the first diagram, and 
a the corresponding area in the second. Let a uniform normal pressure equal 
to 1 pei unit of area act on the area a, and let a force equal and parallel 
to the resultant of this pressure act on the area a, then a state of internal 
stress in the first figure defined in this way will keep every point of it in 
equilibrium.
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The components of stress as thus defined will be

= p[(^ d^F _pfd*FdF  dF A

* “On Strains in the Interior of Beams.” Phil. Trans. 1863.

PxI \dy*  dS~dydz\)’ Pw \d? dd ~ fadi) ’

d*F \
“ \dd dy1 dxdy) ’

p^pL^i p =p(^L d'F #F dF\
vl \dz dx dxdy d^ dy dz) ’ * a \dx dy dy dz dy*  dzdx)'

_p( d^F dF _d'F dF\
Pxy \dydzdzdx dz*  dxdy/

This is a more complete, though not a perfectly general, representation of 
a state of stress ; but as the functions are not linear, it is difficult of application.

If however we confine ourselves to problems in two dimensions, either 
method leads to the expression of the three components of stress in terms of 
the function introduced by the Astronomer-Royal*.

dF „dF
Pxx 1 dy1 ’ Pxv~ P dxdy' Pvv~P da?'

Here y^, F+^xf+yy,

and if cd) and be corresponding lines, the whole stress across the line ab 
is perpendicular to aft and equal to Pa^.



[From the Proceedings of the Royal Society, No. 100, 1868.]

XXXIV, On Governors.

A Governor is a part of a machine by means of which the velocity of 
the machine is kept nearly uniform, notwithstanding variations in the driving
power or the resistance.

Most governors depend on the centrifugal force of a piece connected with 
a shaft of the machine. When the velocity increases, this force increases, and 
either increases the pressure of the piece against a surface or moves the piece, 
and so acts on a break or a valve.

In one class of regulators of machinery, which we may call moderators*, 
the resistance is increased by a quantity depending on the velocity. Thus in 
some pieces of clockwork the moderator consists of a conical pendulum revolving 
within a circular case. When the velocity increases, the ball of the pendulum 
presses against the inside of the case, and the friction checks the increase of 
velocity.

In Watt s governor for steam-engines the arms open outwards, and so 
contract the aperture of the steam-valve.

In a water-break invented by Professor J. Thomson, when the velocity is 
increased, water is centrifugally pumped up, and overflows with a great velocity, 
and the work is spent in lifting and communicating this velocity to the water.

In all these contrivances an increase of driving-power produces an increase 
of velocity, though a much smaller increase than would be produced without 
the moderator.

But if the part acted on by centrifugal force, instead of acting directly 
on the machine, sets in motion a contrivance which continually increases the

* See Mr C. W. Siemens “On Uniform Rotation,” Phil. Trans. 1866, p. 657.
VOL. II. 14
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resistance as long as the velocity is above its normal value, and reverses its 
action when the velocity is below that value, the governor will bring the 
velocity to the same normal value whatever variation (within the working limits 
of the machine) be made in the driving-power or the resistance.

I propose at present, without entering into any details of mechanism, to 
direct the attention of engineers and mathematicians to the dynamical theory 
of such governors.

It will be seen that the motion of a machine with its governor consists 
in general of a uniform motion, combined with a disturbance which may be 
expressed as the sum of several component motions. These components may be 
of four different kinds :—

1. The disturbance may continually increase.
2. It may continually diminish.
3. It may be an oscillation of continually increasing amplitude.
4. It may be an oscillation of continually decreasing amplitude.
The first and third cases are evidently inconsistent with the stability of 

the motion; and the second and fourth alone are admissible in a good governor. 
This condition is mathematically equivalent to the condition that all the possible 
roots, and all the possible parts of the impossible roots, of a certain equation 
shall be negative.

I have not been able completely to determine these conditions for equations 
of a higher degree than the third; but I hope that the subject will obtain 
the attention of mathematicians.

The actual motions corresponding to these impossible roots are not generally 
taken notice of by the inventors of such machines, who naturally confine their 
attention to the way in which it is designed to act; and this is generally 
expressed by the real root of the equation. If, by altering the adjustments of 
the machine, its governing power is continually increased, there is generally a 
limit at which the disturbance, instead of subsiding more rapidly, becomes an 
oscillating and jerking motion, increasing in violence till it reaches the limit of 
action of the governor. This takes place when the possible part of one of the 
impossible roots becomes positive. The mathematical investigation of the motion 
may be rendered practically useful by pointing out the remedy for these distur
bances.

This has been actually done in the case of a governor constructed by Mr 
Fleeming Jenkin, with adjustments, by which the regulating power of the
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governor could be altered. By altering these adjustments the regulation could 
be made more and more rapid, till at last a dancing motion of the governor, 
accompanied with a jerking motion of the main shaft, shewed that an alteration 
had taken place among the impossible roots of the equation.

I shall consider three kinds of governors, corresponding to the three kinds 
of moderators already referred to.

In the first kind, the centrifugal piece has a constant distance from the 
axis of motion, but its pressure on a surface on which it rubs varies when the 
velocity varies. In the moderator this friction is itself the retarding force. In 
the governor this surface is made moveable about the axis, and the friction 
tends to move it; and this motion is made to act on a break to retard the 
machine. A constant force acts on the moveable wheel in the opposite direction 
to that of the friction, which takes off the break when the friction is less than 
a given quantity.

Mr Jenkin’s governor is on this principle. It has the advantage that the 
centrifugal piece does not change its position, and that its pressure is always 
the same function of the velocity. It has the disadvantage that the normal 
velocity depends in some degree on the coefficient of sliding friction between 
two surfaces which cannot be kept always in the same condition.

In the second kind of governor, the centrifugal piece is free to move further 
from the axis, but is restrained by a force the intensity of which varies with 
the position of the centrifugal piece in such a way that, if the velocity of 
rotation has the normal value, the centrifugal piece will be in equilibrium in 
every position. If the velocity is greater or less than the normal velocity, the 
centrifugal piece will fly out or fall in without any limit except the limits of 
motion of the piece. But a break is arranged so that it is made more or less 
powerful according to the distance of the centrifugal piece from the axis, and 
thus the oscillations of the centrifugal piece are restrained within narrow limits.

Governors have been constructed on this principle by Sir W. Thomson and 
by M. Foucault. In the first, the force restraining the centrifugal piece is that of 
a spring acting between a point of the centrifugal piece and a fixed point at 
a considerable distance, and the break is a friction-break worked by the reaction 
of the spring on the fixed point.

In M. Foucault’s arrangement, the force acting on the centrifugal piece is 
the weight of the balls acting downward, and an upward force produced by 

14—2 
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weights acting on a combination of levers and tending to raise the balls. The 
resultant vertical force on the balls is proportional to their depth below the 
centre of motion, which ensures a constant normal velocity. The break is:— 
in the first place, the variable friction between the combination of levers and 
the ring on the shaft on which the force is made to act; and, in the second 
place, a centrifugal air-fan through which more or less air is allowed to pass, 
according to the position of the levers. Both these causes tend to regulate the 
velocity according to the same law.

The governors designed by the Astronomer-Royal on Mr Siemens’s principle 
for the chronograph and equatorial of Greenwich Observatory depend on nearly 
similar conditions. The centrifugal piece is here a long conical pendulum, not 
far removed from the vertical, and it is prevented from deviating much from a 
fixed angle by the driving-force being rendered nearly constant by means of a 
differential system. The break of the pendulum consists of a fan which dips 
into a liquid more or less, according to the angle of the pendulum with the 
vertical. The break of the principal shaft is worked by the differential apparatus; 
and the smoothness of motion of the principal shaft is ensured by connecting it 
with a fly-wheel.

In the third kind of governor a liquid is pumped up and thrown out over 
the sides of a revolving cup. In the governor on this principle, described by 
Mr C. W. Siemens, the cup is connected with its axis by a screw and a spring, 
in such a way that if the axis gets ahead of the cup the cup is lowered and 
more liquid is pumped up. If this adjustment can be made perfect, the normal 
velocity of the cup will remain the same through a considerable range of 
driving-power.

It appears from the investigations that the oscillations in the motion must 
be checked by some force resisting the motion of oscillation. This may be done 
in some cases by connecting the oscillating body with a body hanging in a 
viscous liquid, so that the oscillations cause the body to rise and fall in the liquid.

To check the variations of motion in a revolving shaft, a vessel filled with 
viscous liquid may be attached to the shaft. It will have no effect on uniform 
rotation, but will check periodic alterations of speed.

Similar effects are produced by the viscosity of the lubricating matter in 
the sliding parts of the machine, and by other unavoidable resistances; so that 
it is not always necessary to introduce special contrivances to check oscillations.
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I shall call all such resistances, if approximately proportional to the velocity, 
by the name of “ viscosity,” whatever be their true origin.

In several contrivances a differential system of wheel-work is introduced 
between the machine and the governor, so that the driving-power acting on the 
governor is nearly constant.

I have pointed out that, under certain conditions, the sudden disturbances 
of the machine do not act through the differential system on the governor, or 
vice versa. When these conditions are fulfilled, the equations of motion are not 
only simple, but the motion itself is not liable to disturbances depending on 
the mutual action of the machine and the governor.

Distinction between Moderators and Governors.

In regulators of the first kind, let P be the driving-power and R the 
resistance, both estimated as if applied to a given axis of the machine. Let V 

be the normal velocity, estimated for the same axis, and the actual velocity, 

and let 3/ be the moment of inertia of the whole machine reduced to the 
given axis.

Let the governor be so arranged as to increase the resistance or diminish 
the driving-power by a quantity F — V V then the equation of motion will be 

................................

When the machine has obtained its final rate the first term vanishes, and

Hence, if P is increased or R diminished, the velocity will be permanently 
increased. Regulators of this kind, as Mr Siemens*  has observed, should be 
called moderators rather than governors.

* “ On Uniform Rotation,” Phil. Trans. 1866, p. 657.
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/dx \In the second kind of regulator, the force F ( T - V), instead of being 

applied directly to the machine, is applied to an independent moving piece, B, 
which continually increases the resistance, or diminishes the driving-power, by 
a quantity depending on the whole motion of B.

If y represents the whole motion of B, the equation of motion of B is
d ( ndy\ „ [dx T_\ , .

.......................................................................................................

and that of M

................... W-
where G is the resistance applied by B when B moves through one unit of space.

We can integrate the first of these equations at once, and we find 
B^-F(x-Vt).......................................(5);

so that if the governor B has come to rest x = Vt, and not only is the velocity 
of the machine equal to the normal velocity, but the position of the machine 
is the same as if no disturbance of the driving-power or resistance had taken 
place.

• Jenkin’s Governor.—In a governor of this kind, invented by Mr Fleeming 
Jenkin, and used in electrical experiments, a centrifugal piece revolves on the 
principal axis, and is kept always at a constant angle by an appendage which 
slides on the edge of a loose wheel, B, which works on the same axis. The 
pressure on the edge of this wheel would be proportional to the square of the 
velocity; but a constant portion of this pressure is taken off by a spring which 
acts on the centrifugal piece. The force acting on B to turn it round is therefore

at
and if we remember that the velocity varies within very narrow limits, we may 
write the expression

F 7^
\dt t

where J1 is a new constant, and 7, is the lowest limit of velocity within which 
the governor will act.
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Since this force necessarily acts on B in the positive direction, and since 
it is necessary that the break should be taken off as well as put on, a weight 
W is applied to B, tending to turn it in the negative direction; and, for a 
reason to be afterwards explained, this weight is made to hang in a viscous 
liquid, so as to bring it to rest quickly.

The equation of motion of B may then be written
rJdx ttA nr / »FJ=F{dt-r')-Y^-w................................<«)>

where Y is a coefficient depending on the viscosity of the liquid and on other 
resistances varying with the velocity, and TV is the constant weight.

Integrating this equation with respect to t, we find 

B^F(.x-r/)-Yy-Wt.................................(7).

If B has come to rest, we have

or the position of the machine is affected by thkt of the governor, but the 
final velocity is constant, and

TV 
.(9), 

where V is the normal velocity.

The equation of motion of the machine itself is 

...................

This must be combined with equation (7) to determine the motion of the 
whole apparatus. The solution is of the form

x = A^ + A^ + Aten,t 4- Vt................................ (11),
where n„ n„ n, are the roots of the cubic equation

MBn3 + (MY+ FB)n3 + BYn + FG^0....................... (12).

If n be a pair of roots of this equation of the form athen the 
part of x corresponding to these roots will be of the form

eat cos (&Z + /3).
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If a is a negative quantity, this will indicate an oscillation the amplitude 
of which continually decreases. If a is zero, the amplitude will remain constant, 
and if a is positive, the amplitude will continually increase.

One root of the equation (12) is evidently a real negative quantity. The 
condition that the real part of the other roots should be negative is

(F Y\Y G
+ B) B ~ B^0, P0Sl^lve quantity.

this is the condition of stability of the motion. If it is not fulfilled there 
will be a dancing motion of the governor, which will increase till it is as great 
as the limits of motion of the governor. To ensure this stability, the value of 
) must be made sufficiently great, as compared with G, by placing the weight 
II in a viscous liquid if the viscosity of the lubricating materials at the axle 
is not sufficient.

To determine the value of F, put the break out of gear, and fix the 
moveable wheel; then, if V and V' be the velocities when the driving-power 
is P and P',

F=

lo determine G, let the governor act, and let y and y' be the positions 
of the break when the driving-power is P and P', then

G^ ^,. 
y-y

General Theory of Chronometric Centrifugal Pieces.

Sir IK Thomson’s and M. Foucault's Governors__ Let A be the moment of 
inertia of a revolving apparatus, and 0 the angle of revolution. The equation 
of motion is

d f . d&\ 
dt\ dt) (1).

where L is the moment of the applied force round the axis.
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Now, let A be a function of another variable </> (the divergence of the 
centrifugal piece), and let the kinetic energy of the whole be

where B may also be a function of if the centrifugal piece is complex.

If we also assume that P} the 
function of then the force tending

•11 i dPgravity, springs, &c., will be .

potential energy of the apparatus, is a 
to diminish <f>, arising from the action of

The whole energy, kinetic and potential, is

Differentiating with respect to t, we find

/jl dA +1dB- d^\ 4. dP\ □ A dO d'O n dA d^ 1 
dt\^ d<f> dt\ d^ dt\ + d^) + A dt de + B dt de |

= L d0 = de (dA de di <P0\ ' 
dt \d^ dt dt +A de) _

whence we have, by eliminating Z,

£ (b = 1 dA 9 dB d Pdt \ dt) - d^ dt\ ■ d(j> dt\ d(j> ’

(2).

(3),

... (4
I he first two terms on the right-hand side indicate a force tending to 

increase (f>, depending on the squares of the velocities of the main shaft and 
of the centrifugal piece. Ibe force indicated by these terms may be called the 
centrifugal force.

If the apparatus is so arranged that 

■^-i^to’-l-const.  ........................ (5),

where to is a constant velocity, the equation becomes

dt^dt) - d^^dt '“j^d^d^.............................(

VOL. II. 15
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In this case the value of cannot remain constant unless the angular 
velocity is equal to w.

A shaft with a centrifugal piece arranged on this principle has only one 
velocity of rotation without disturbance. If there be a small disturbance, the 
equations for the disturbance 0 and may be written

dA 
dt3

debO) -J dt (7),

df
dA dO
d^> dt~^ (8).

The period of such small disturbances is ~ (ABY* revolutions of the shaft. 

They will neither increase nor diminish if there are no other terms in the 
equations.

To convert this apparatus into a governor, let us assume viscosities A 
and Y in the motions of the main shaft and the centrifugal piece, and a 

resistance applied to the main shaft. Putting <n = K, the equations be

come

M + Xdi + k -rt+G^L (9).

dt* dt dt = 0 (10).

The condition of stability of the motion indicated by these equations is 
that all the possible roots, or parts of roots, of the cubic equation

ABn3 + (A Y + BX) n3 + (XY + K3) n + GK= 0 ................... (11)
shall be negative; and this condition is

(j + ^) (XY + ^)>GK...............................(12).

Combination of Governors.—If the break of Thomson’s governor is applied 
to a moveable wheel, as in Jenkin’s governor, and if this wheel works a 
steam-valve, or a more powerful break, we have to consider the motion of 
three pieces. Without entering into the calculation of the general equations of
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motion of these pieces, we may confine ourselves to the case of small distur 
bances, and write the equations

. d'O v A -yo + A dt -T^ + J^ = P

^do 
dt K dt = 0

c^+z dxb
= 0

(13),

where 0, are the angles of disturbance of the main shaft, the centrifugal 
arm, and the moveable wheel respectively. A, B, C their moments of inertia 
X, Y, Z the viscosity of their connexions, K is what was formerly denoted by 

o, and T and J are the powers of Thomson’s and Jenkin’s breaks respectively.

The resulting equation in n is of the form

Kn+T
—K Bn+ Y

0
0
Cn- 4- Zn

(14),= 0

or IX Y Z\
n' + nAA+B+Crn' UscU+T+z)+z§

+ n3 KTZ KT J _ 
+ n ABC^ ABC~§

(15).

C

I have not succeeded in determining completely the conditions of stability 
of the motion from this equation; but I have found two necessary conditions, 
which are in fact the conditions of stability of the two governors taken 
separately. If we write the equation 

n’ + rn* + sn +1 = 0 (16),
then, in order that the possible parts of all the roots shall be negative, it is 
necessary that

pq>r and ps>t.......................................(17).

I am not able to shew that these conditions are sufficient. This compound 
governor has been constructed and used.

15—2
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On the Motion of a Liquid in a Tube revolving about a Vertical Axis.

Mr C. IK Siemens’s Liquid Governor.—Let p be the density of the fluid, k 
the section of the tube at a point whose distance from the origin measured 
along the tube is s, r, v, z the co-ordinates of this point referred to axes fixed 
with respect to the tube, Q the volume of liquid which passes through any 
section in unit of time. Also let the following integrals, taken over the whole 
tube, be

\pkVds = A, \pr'dO = B, \p~ds = C.............................. (1),

the lower end of the tube being in the axis of motion.

Let </> be the angle of position of the tube about the vertical axis, then 
the moment of momentum of the liquid in the tube is

H-a'Q+BQ.................................(2).

The moment of momentum of the liquid thrown out of the tube in unit of 
time is

dll' d^> r
-$- = ?•• <?a+Pj<?coSa................................(3),

where r is the radius at the orifice, k its section, and a the angle between the 
direction of the tube there and the direction of motion.

The energy of motion of the fluid in the tube is

................ ................. (4).
The energy of the fluid which escapes in unit of time is

- f + =) + oog +i C........... (5)

The work done by the prime mover in turning the shaft in unit nf r o uuib or time is
Td^_d^/dII dIT\
J dt dt\dt + dt ) ....................................(G).

The work spent on the liquid in unit of time is

dW dW' 
dt + dt '
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Equating this to the work done, we obtain the equations of motion

A + B + + P [C0S “®= L...............................(7) ’

B<dt + Gddt+^ £ V + = °................... (8).

These equations apply to a tube of given section throughout. If the fluid 
is in open channels, the values of A and C will depend on the depth to 
which the channels are filled at each point, and that of k will depend on the 
depth at the overflow.

In the governor described by Mr C. W. Siemens in the paper already 
referred to, the discharge is practically limited by the depth of the fluid at 
the brim of the cup.

The resultant force at the brim is f=^f +cuV3.

If the brim is perfectly horizontal, the overflow will be proportional to xi 
(where x is the depth at the brim), and the mean square of the velocity relative 
to the brim will be proportional to x, or to Qi.

If the breadth of overflow at the surface is proportional to xn, where x is the 
height above the lowest point of overflow, then Q will vary as xn+i, and the mean 
square of the velocity of overflow relative to the cup as a; or as —3L.

Qn
If n = —then the overflow and the mean square of the velocity are both 

proportional to x.

From the second equation we find for the mean square of velocity 

Q1 2 , „dQ\ ,4’ „ n ,-p^de^dV^dT ....................... «•)•

If the velocity of rotation and of overflow is constant, this becomes

= + ...............<10>'
From the first equation, supposing, as in Mr Siemens’s construction, that 

cos a = 0 and B = 0, we find
^0% (11).
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In Mr Siemens’s governor there is an arrangement by which a fixed rela
tion is established between L and z,

L=-Sz................................................(12),

whence Q = -2gh + ^ ............................... (13).
tv Cvt O CvO

If the conditions of overflow can be so arranged that the mean square of

the velocity, represented by , is proportional to Q, and if the strength of A’
the spring which determines $ is also arranged so that 

............................................M

the equation will become, if <Zgh = a?ri,

.............. <15)'
which shews that the velocity of rotation and of overflow cannot be constant 
unless the velocity of rotation is co.

The condition about the overflow is probably difficult to obtain accurately 
in practice; but very good results have been obtained within a considerable range 
of driving-power by a proper adjustment of the spring. If the rim is uniform, 
there will be a maximum velocity for a certain driving-power. This seems to 
be verified by the results given at p. 667 of Mr Siemens’s paper.

If the flow of the fluid were limited by a hole, there would be a minimum 
velocity instead of a maximum.

Ihe differential equation which determines the nature of small disturbances 
is in general of the fourth order, but may be reduced to the third by a 
proper choice of the value of the mean overflow.

Theory of Differential Gearing.

In some contrivances the main shaft is connected with the governor by a 
wheel or system of wheels which are capable of rotation round an axis, which 
is itself also capable of rotation about the axis of the main shaft. These two 
axes may be at right angles, as in the ordinary system of differential bevel 
wheels; or they may be parallel, as in several contrivances adapted to clockwork.
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• r ?present the angular p0Siti°n about each of these axes respec
tively, 0 that of the mam shaft, and that of the governor; then 0 and </> 
are linear functions of £ and and the motion of any point of the system can 
be expressed in terms either of £ and r/ or of 0 and </>.

Let the velocity of a particle whose mass is m resolved in the direction of 
x be

dx d£ . dri 
dt ~P1di + q'di (1).

with similar expressions for the other co-ordinate directions, putting suffixes 
2 and 3 to denote the values of p and q for these directions. Then Lagrange’s 
equation of motion becomes

ssf+1*8’ - (a>+§ sj/+S &)=o.................... (2).

where g and H are the forces tending to increase f and r) respectively, no 
force being supposed to be applied at any other point.

Now putting 

and 

the equation becomes

8x =pfi^ + qt8r), 

d?x d‘£ d’-n 
de~P''dt1 + (h~dp

(3),

(4),

+ (H - 8, = 0...(5);

and since and 8rj are independent, the coefficient of each must be zero.1 

If we now put

S(mp’)=Z, Z(mpq) = M, ........................(g),

where p'^ + p^ + p^, pq = 4- p^„ and q^q^q^ + q!,

the equations of motion will be

.................. w.
.................. <8>-

If the apparatus is so arranged that M=0, then the two motions will be 
independent of each other; and the motions indicated by £ anj will be about 
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conjugate axes—that is, about axes such that the rotation round one of them 
does not tend to produce a force about the other.

Now let 0 be the driving-power of the shaft on the differential system, 
and that of the differential system on the governor; then the equation of 
motion becomes

...... 0);\ (viz Ctu / \ CCu C v C J

and if

and if we put L‘ =LPi + 2MPR +NR '
M' = LPQ + M (PS+ QR) + NRS 
N'=LQ* + 2MQS + NW

the equations of motion in 0 and </> will be

Q + PZ + Q^L'^+M'^ 
dt- T dt1

<b + RZ + SH = M ’ + N' W
tit* At*

(10),

(11),

(12).

If — 0, then the motions in 0 and </> will be independent of each other. 
If Jf is also 0, then we have the relation

LPQ + MRS=0........................................... (13);
and if this is fulfilled, the disturbances of the motion in 0 will have no effect 
on the motion in The teeth of the differential system in gear with the 
main shaft and the governor respectively will then correspond to the centres of 
percussion and rotation of a simple body, and this relation will be mutual.

In such differential systems a constant force, H, sufficient to keep the 
governor in a proper state of efficiency, is applied to the axis r/, and the 
motion of this axis is made to work a valve or a break on the main shaft 
of the machine. H in this case is merely the friction about the axis of £ 
If the moments of inertia of the different parts of the system are so arranged 
that M = 0, then the disturbance produced by a blow or a jerk on the machine 
will act instantaneously on the valve, but will not communicate any impulse to 
the governor.



[From the Philosophical Magazine, for May, 1868.]

XXXV. “ Experiment in Magneto-Electric Induction.”

IN A LETTER TO W. R. GROVE, F.R.S*

8, Palace Gardens Terrace, W.
March 27, 1868.

Dear Sir,
Since our conversation yesterday on your experiment on magneto

electric induction^, I have considered it mathematically, and now send you the 
result. I have left out of the question the secondary coil, as the peculiar effect 
you observed depends essentially on the strength of the current in the primary 
coil, and the secondary sparks merely indicate a strong alternating primary 
current. The phenomenon depends on the magneto-electric machine, the electro
magnet, and the condenser.

The machine produces in the primary wire an alternating electromagnetic 
force, which we may compare to a mechanical force alternately pushing and 
pulling at a body.

The resistance of the primary wire we may compare to the effect of a 
viscous fluid in which the body is made to move backwards and forwards.

The electromagnetic coil, on account of its self-induction, resists the starting 
and stopping of the current, just as the mass of a large boat resists the efforts 
of a man trying to move it backwards and forwards.

The condenser resists the accumulation of electricity on its surface, just as 
a railway-buffer resists the motion of a carriage towards a fixed obstacle.

* Communicated by Mr W. R. Grove, F.R.S.
+ See Phil. Mag. 8. 4. March 1868, p. 184.

VOL. II. 16
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Now let us suppose a boat floating in a viscous fluid, and kept in its 
place by buffers fore and aft abutting against fixed obstacles, or by elastic 
ropes attached to fixed moorings before and behind. If the buffers were away, 
the mass of the boat would not prevent a man from pulling the boat along 
with a long-continued pull; but if the man were to push and pull in alter
nate seconds of time, he would produce very little motion of the boat. The 
buffers will effectually prevent the man from moving the boat far from its 
position by a steady pull; but if he pushes and pulls alternately, the period 
of alternation being not very different from that in which the buffers would 
cause the boat to vibrate about its position of equilibrium, then the force which 
acts in each vibration is due, partly to the efforts of the man, but chiefly to 
the resilience of the buffers, and the man will be able to move the boat much 
further from its mean position than he would if he had pushed and pulled at 
the same rate at the same boat perfectly free.

Thus, when an alternating force acts on a massive body, the extent of the 
displacements may be much greater when the body is attracted towards a 
position of equilibrium by a force depending on the displacement than when 
the body is perfectly free.

The electricity in the primary coil when it is closed corresponds to a free 
body resisted only on account of its motion; and in this case the current 
produced by an alternating force is small. When the primary coil is interrupted 
by a condenser, the electricity is resisted with a force proportional to the 
accumulation, and corresponds to a body whose motion is restrained by a spring; 
and in this case the motion produced by a force which alternates with sufficient 
rapidity may be much greater than in the former case. I enclose the mathe
matical theory of the experiment, and remain,

Yours truly,
J. CLERK MAXWELL.

Mathematical Theory of the Experiment.

Let M be the revolving armature of the magneto-electric machine, N, S 
the poles of the magnets, x the current led through the coil of the electro
magnet R, and interrupted by the condenser C. Let the plates of the condenser 
be connected by the additional conductor y.
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Let M sin 0 be the value of the potential of the magnets on the coil of 
the armature; then if the armature revolves with the angular velocity n, the 
electromotive force due to the machine is Mn cos nt.

Let R be the resistance of the wire which forms the coil of the armature 
M and that of the fixed electromagnet.

Let L be the coefficient of self-induction, or the “ electromagnetic mass ” of 
these two coils taken together.

Let x be the value of the current in this wire at any instant, then Lx 
will be its “ electromagnetic momentum.”

Let C be the capacity of the condenser, and P the excess of potential of 
the upper plate at any instant, then the quantity of electricity on the upper 
plate is CP.

Let p be the resistance of the additional conductor, and y the current in 
it. We shall neglect the self induction of this current.

We have then for this conductor,
p=py.................................................(1)-

For the charge of the condenser, 
^dP i xCS-X~V................................................<2)-

For the current x,
dx Mncos nt 4-Rx+ L - +P = Q.................................(3).(lu

If we assume
x-Acos (nt + a),

we find ___________ W(1 + CPpV)
p3 {(1 — LCny+RW} + 2Rp + R‘ + Ln* ’ 

1 .^R+p—LCpn'a = C0t ‘75-----Cot —---- , /-Cpn RCpn + Ln,
16—2
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The quantity of the alternating current is determined by A ; and the value 
of a only affects the epoch of the maximum current. If we make p = 0, the 
effect is that of closing the circuit of x, and we find

J/’n’
A ~Tv+LW'

This expression shews that the condenser has no effect when the current 
is closed.

If we make p = oo, the effect is that of removing the conductor y, and 
thus breaking the circuit. In this case

This expression gives a greater value of A than when the circuit is closed, 
provided ^CLn^ is greater than unity, which may be ensured by increasing the 
capacity of the condenser, the self-induction of the electromagnetic coil, or the 
velocity of rotation.

If CL\i = 1, the expression is reduced to

This is the greatest effect which can be produced with a given velocity, and 
is the same as if the current in the coil had no “electromagnetic momentum.”

If the electromagnet has a secondary coil outside the primary coil so as 
to form an ordinary induction-coil, the intensity of the secondary current will 
depend essentially on that of the primary which has just been found. Although 
the reaction of the secondary current on the primary coil will introduce a 
greater complication in the mathematical expressions, the remarkable phenomenon 
described by Mr Grove does not require us to enter into this calculation, as 
the secondary sparks observed by him are a mere indication of what takes 
place in the primary coil.



[From the Philosophical Transactions, Vol, CLVin.]

XXXVI. On a Method of Making a Direct Comparison of Electrostatic with
Electromagnetic Force; with a Note on the Electromagnetic Theory of Light.

Received June 10,—Read June 18, 1868.

There are two distinct and independent methods of measuring electrical 
quantities with reference to received standards of length, time, and mass.

The electrostatic method is founded on the attractions and repulsions be
tween electrified bodies separated by a fluid dielectric medium, such as air; 
and the electrical units are determined so that the repulsion between two small 
electrified bodies at a considerable distance may be represented numerically by 
the product of the quantities of electricity, divided by the square of the distance.

The electromagnetic method is founded on the attractions and repulsions 
observed between conductors carrying electric currents, and separated by air; 
and the electrical units are determined so that if two equal straight conductors 
are placed parallel to each other, and at a very small distance compared with 
their length, the attraction between them may be represented numerically by 
the product of the currents multiplied by the sum of the lengths of the 
conductors, and divided by the distance between them.

These two methods lead to two different units by which the quantity of 
electricity is to be measured. The ratio of the two units is an important 
physical quantity, which we propose to measure. Let us consider the relation 
of these units to those of space, time, and force (that of force being a function 
of space, time, and mass).

In the electrostatic system we have a force equal to the product of two 
quantities of electricity divided by the square of the distance. The unit of 
electricity will therefore vary directly as the unit of length, and as the square 
root of the unit of force.
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In the electromagnetic system we have a force equal to the product of two 
currents multiplied by the ratio of two lines. The unit of current in this 
system therefore varies as the square root of the unit of force; and the unit 
of electrical quantity, which is that which is transmitted by the unit current 
in unit of time, varies as the unit of time and as the square root of the unit 
of force.

The ratio of the electromagnetic unit to the electrostatic unit is therefore 
that of a certain distance to a certain time, or, in other words, this ratio is a 
velocity; and this velocity will be of the same absolute magnitude, whatever 
standards of length, time, and mass we adopt.

The electromagnetic value of the resistance of a conductor is also a quantity 
of the nature of a velocity, and therefore we may express the ratio of the two 
electrical units in terms of the resistance of a known standard coil; and this 
expression will be independent of the magnitude of our standards of length, 
time and mass.

In the experiments here described no absolute measurements were made, 
either of length, time, or mass, the ratios only of these quantities being in
volved ; and the velocity determined is expressed in terms of the British Asso
ciation Unit of Resistance, so that whatever corrections may be discovered to 
be applicable to the absolute value of that unit must be also applied to the 
velocity here determined.

A resistance-coil whose resistance is equal to about 28'8 B. A. units would 
represent the velocity derived from the present experiments in a manner inde
pendent of all particular standards of measure.

The importance of the determination of this ratio in all cases in which 
electrostatic and electromagnetic actions are combmed is obvious. Such cases 
occur in the ordinary working of all submarine telegraph-cables, in induction- 
coils, and in many other artificial arrangements. But a knowledge of this ratio 
is, I think, of still greater scientific importance when we consider that the 
velocity of propagation of electromagnetic disturbances through a dielectric medium 
depends on this ratio, and, according to my calculations*, is expressed by the 
very same number.

The first numerical determination of this quantity is that of Weber and 
Kohlrauscht, who measured the capacity of a condenser electrostatically by

* “A Dynamical Theory of the Electromagnetic Field,” Philosophical Transactions, 1865.
+ Pogg, Ann. Aug. 1856, Bd. xcix. p. 10.
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comparison with the capacity of a sphere of known radius, and electromag- 
netically by passing the discharge from the condenser through a galvanometer.

The Electrical Committee of the British Association have turned their 
attention to the means of obtaining an accurate measurement of this velocity, 
and for this purpose have devised new forms of condensers and contact-breakers; 
and Sir William Thomson has obtained numerical values of continually increasing 
accuracy by the constant improvement of his own methods.

A velocity which is so great compared with our ordinary units of space 
and time is probably most easily measured by steps, and by the use of several 
different instruments; but as it seemed probable that the time occupied in the 
construction and improvement of these instruments would be considerable, I 
determined to employ a more direct method of comparing electrostatic with 
electromagnetic effects.

I should not, however, have been able to do this, had not Mr Gassiot, 
with his usual liberality, placed at my disposal his magnificent battery of 2600 
cells charged with corrosive sublimate, with the use of his laboratory to work in.

To Mr Willoughby Smith I am indebted for the use of his resistance
coils, giving a resistance of more than a million B. A. units, and to Messrs 
Forde and Fleeming Jenkin for the use of a galvanometer and resistance-coils, 
a bridge and a key for double contacts.

Mr C. Hockin, who has greatly assisted me with suggestions since I first 
devised the experiment, undertook the whole work of the comparison of the 
currents by means of the galvanometer and shunts. He has also tested the 
resistances, and in fact done everything except the actual observation of equi
librium, which I undertook myself.

The electrical balance itself was made for me by Mr Becker.
The electrostatic force observed was that between two parallel disks, of 

which one, six inches diameter, was insulated and maintained at a high 
potential, while the other, four inches diameter, was at the same potential as 
the case of the instrument.

In order to insure a known quantity of electricity on the surface of this 
disk, it was surrounded by the “guard-ring” introduced by Sir W. Thomson, 
so that the surface of the disk when in position and that of the guard-ring 
were in one plane, at the same potential, and separated by a very narrow 
space. In this way the electrical action on the small disk was equal to that 
due to a uniform distribution over its front surface, while no electrical action 
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could exist at its sides or back, as these were at the same potential with the 
surrounding surfaces.

The large disk was mounted on a slide worked by a micrometer-screw. 
The small disk was suspended on one arm of a torsion-balance so that in its 
position of equilibrium its surface and that of the guard-ring were in one plane.

If Ji is the difference of potential between the two disks in electromag
netic measure, the attraction between them is

— - 8v3 b’................................................................. V1)’

where a is the radius of the small disk, & its distance from the large one, 
and v is the velocity representing the ratio of the electromagnetic to the elec
trostatic unit of electricity.

The electromagnetic force observed was the repulsion between two circular 
coils, of which one was attached to the back of the suspended disk, and the 
other was placed behind the large disk, being separated from it by a plate of 
glass and a layer of Hooper s compound. A current was made to pass through 
these coils in opposite directions, so as to produce a repulsion

= 2imn y'............................................. (2),

where n and n' are the number of windings of each coil, y is the current, and

............................... (8)
2Va1aa ' "

where e = sin y = —7 ....................................

a, and cta are the mean radii of the coils, and V the mean distance of their 
planes, and Ec and Fe are the complete elliptic functions for modulus c = siny.

When b' is small compared with a', becomes very nearly ~.

If we take into account the fact that the section of each coil is of sensible 
area, this formula would require correction; but in these coils the depth was 
made equal to the breadth of the section, whence it follows, by the differential 
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equation of the potential of two coils, given at p. 508 * of my paper on the 
Electromagnetic Field,

cW 1 dM 
da? db* a da .................................

(a'a\
1 -11! -/ J , where a' is the depth

of the coil—a correction which is in this case about 1 —•000926.

A. Suspended disk and coil.
A'. Counterpoise disk and coil.
0. Fixed disk and coil.
Br Great battery. Ba. Small battery.
Gr Primary coil of galvanometer.
Ga. Secondary coil. R. Great resistance.
T. Torsion head ami tangent screw.

K. Double key. g. Graduated glass scale. 
C'. Electrode of fixed disk.

x. Current through R. 
x'. Current through Gr 
y. Current through the

S. Shunt.

x — x'. Current through S. 
three coils and Ga.

M. Mercury cup.

One quarter of the micrometer-box, disks, and coils is cut away to shew the interior. The case of the 
instrument is not shewn. The galvanometer and shunts were 10 feet from the Electric Balance.

* [Vol. i. p. 591.]
VOL. II. 17
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The suspended coil, besides the repulsion due to the fixed coil, experiences 
a couple due to the action of terrestrial magnetism. To balance this couple, 
a coil exactly similar was attached to the other arm of the torsion-balance, 
and the current in the second coil was made to flow in the opposite direction 
to that in the first. When the current was made to flow through both coils, 
no effect of terrestrial magnetism could be observed.

The torsion-balance consisted of a light brass frame, to which the suspended 
coils and disks were attached so that the centre of each coil was about eight 
inches from the vertical axis of suspension. This frame was suspended by a 
copper wire (No. 20), the upper end of which was attached to the centre of 
a torsion head, graduated, and provided with a tangent screw for small angular 
adjustments. The torsion head was supported by a hollow pillar, the base of 
which was clamped to the lid of the instrument so as to admit of small 
adjustments in every direction.

The fixed disk and coil were mounted on a slide worked by a micrometer
screw, and were protected by a cylindrical brass box, the front of which, 
forming the guard-ring, 7 inches in diameter, had a circular aperture 4’26 inches 
diameter, within which the suspended disk, 4'13 inches diameter, was free to 
move, leaving an interval of '0G5 of an inch between the disk and the aper
ture. A glass scale with divisions of of an inch was attached to the 
suspended disk on the side which was not electrified, and this was viewed by 
a microscope attached to the side of the instrument and provided with cross 
wires at the focus.

The disk worked by the micrometer was carefully adjusted by the maker, 
so as to be parallel to the inner surface of the guard-ring, or front face of 
the micrometer-box. This front face of the micrometer-box, when in position 
in the instrument, was made vertical by means of three adjusting screws. 
The suspended disk was then pressed against the fixed disk by means of a 
slight spring, and the fixed disk was gradually moved forward by the micro
meter-screw, while at the same time the graduated scale was observed through 
the microscope. In this way the graduations on the scale were compared with 
the readings of the micrometer. This wtls continued till the large disk came 
into contact with the guard-ring at one point, when the regularity of the 
motion was interrupted. A very small motion was then sufficient to bring the 
whole circumference of the disk into contact with the guard-ring, when the 
motion ceased altogether. This motion was not much more than one-thousandth 
of an inch.
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This disk was then brought to the position of first contact, and the 
microscope was adjusted so that a known division of the glass scale was 
bisected by the cross wires. A small piece of silvered glass was fastened to 
the outside of the guard-ring, and another to the back of the suspended disk • 
and these were adjusted so as to be in one plane, and to give a continuous 
image of reflected objects when the disks were in contact and the surface of 
the suspended disk was therefore in the plane of the surface of the guard
ring. The fixed disk was then screwed back, and the torsion-balance was 
adjusted so that the suspended disk when in equilibrium was in precisely the 
same position as before. This was tested by observing the coincidence of the 
zero division of the glass scale with the cross wires of the microscope, and 
by examining the reflections from the two pieces of silvered glass. The torsion
balance could be moved bodily in any horizontal direction by adjusting the 
base of the pillar; it could be raised or lowered by a winch, and it could 
be turned about any horizontal axis by sliding weights, and round the vertical 
axis by a tangent screw of the torsion head. In this way the position of 
equilibrium of the suspended disk could be made to coincide with the plane 
of the guard-ring to the thousandth of an inch; and the adjustment when 
made continued very good from day to day, soft copper wire, stretched straight, 
not having the tendency to untwist gradually which I have observed in steel 
wire. The weight of the torsion piece was about 1 lb. 3 oz., and the time of 
a double oscillation about fourteen seconds. The oscillations of the suspended 
disk, when near its sighted position, were found to subside very rapidly, the 
energy of the motion being expended in pumping the air through the narrow 
aperture between the guard-plate and the suspended disk.

The electrical arrangements were as follows:—

One electrode of Mr Gassiot’s great battery was connected with a key. 
When the key was pressed connexion was made to the fixed disk, and thence, 
through Mr Willoughby Smith’s resistance-coils, to a point where the current 
was divided between the principal coil of the galvanometer and a shunt, S, 
consisting of Mr Jenkin’s resistance-coils. These partial currents reunited at a 
point where they were put in connexion with the other electrode of the battery, 
with the case of the instrument, and with the earth.

Another battery was employed to send a current through the coils. One 
electrode of this battery was connected with a second contact piece of the 

17—2 
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key, so that, when the key was pressed, the current went first through the 
secondary coil of the galvanometer, consisting of thirty windings of thick wire, 
then through the fixed coil, then to the suspension wire, and so through the 
two suspended coils to the brass frame of the torsion-balance and the suspended 
disk. A stout copper wire, well amalgamated, hanging from the centre of the 
torsion-balance into a cup of mercury, made metallic communication to the case, 
to earth, and to the other electrode of the battery.

When these arrangements had been made, the observer at the microscope, 
when the suspended disk was stationary at zero, made simultaneous contact 
with both batteries by means of the key. If the disk was attracted, the 
great battery was the more powerful, and the micrometer was worked so as 
to increase the distance of the disk. If the disk was repelled, the fixed disk 
had to be moved nearer to the suspended disk, till a distance was found at 
which, when the scale was at rest and at zero, no effect was produced by
the simultaneous action of the batteries. With the forces actually employed
the equilibrium of the scale at zero was unstable; so that when the adjust
ment was nearly perfect the force was always directed from zero, and contacts
had to be made as the scale was approaching zero, in such a way as to
bring it to rest, if possible, at zero.

In the meantime the other observer at the galvanometer was taking 
advantage of these contacts to alter the shunt S, till the effects of the two 
currents on the galvanometer-needle balanced each other.

When a satisfactory case of equilibrium had been observed simultaneously 
at the galvanometer and at the torsion-balance, the micrometer-reading and the 
resistance of the shunt were set down as the results of the experiment.

The chief difficulties experienced arose from the want of constancy in the 
batteries, the ratio of the currents varying very rapidly after first making 
contact. I think that by increasing considerably the resistance of the great 
battery-circuit, the current could be made more uniform.

When a sufficient number of experiments on equilibrium had been made, 
a current was made to pass through the secondary coil of the galvanometer, 
and was then divided between a shunt of 31 units BA and the primary coil 
of the galvanometer with a resistance S' added. S' was then varied till the 
needle was in equilibrium. In this way the magnetic effects of the two coils 
were compared.

The resistance of the galvanometer and of all the coils were tested by 
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Mr Hockin, who also made all the observations with the galvanometer and its 
adjusting shunts.

To determine v from these experiments, we have first, since the attraction 
is equal to the repulsion,

E a* t2 A
wb^*1™ ^y'........................................

If x is the current of the great battery passing through the great resistance 
R, and if x of this passes through the galvanometer whose resistance is G, 
and x — x' through the shunt S to earth, then

E=^Rx+Gx'................................................(7),
and Gx' = S(x-x').............................................. (8).
Also if is the magnetic effect of the principal coil of the galvanometer, 
and that of the secondary coil, then when the needle is in equilibrium

9^=9^.................................................... (9).
In the comparison of the coils of the galvanometer, if xt and are the 

currents through each, we have
9ixi=g^.................................................. (io).

But yx is divided into two parts, of which xx passes through the galvan
ometer G and the shunt S', and the other, y, — x', passes through the shunt 
of 31 Ohms. Hence

x1(G + S')=(y1-xt)31....................................(11).
brom these equations we obtain as the value of v,

v_ 1 ° (RGa. Da. r\ 31 t x6<21 \~S^R^G) G^E^x...............(12)>

an equation containing only known quantities on the right-hand side. Of these, 
n and n' are the numbers of windings on the two coils, a is the mean of 
the radii of the suspended disk and the aperture, b is the distance between 

the fixed disk and the suspended disk, is found from a, and a„ the mean 

radu of the coils, and b’ their mean distance by equation (3).
R is the great resistance, G that of the galvanometer, S that of the shunt 

m the principal experiment, and S' that of the additional resistance in the com
parison of galvanometer-coils.
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In this expression the only quantities which must be determined in 
absolute measure are the resistances. The other quantities which must be 
measured are the ratios of the radius of the disk to its distance from the 
fixed disk, and the ratio of the radius of the coils to the distance between 
them. Ihese ratios and the number of windings in the coils are of course 
abstract numbers.

In the experiments, 
w=144 n' = 121
a = 2-0977 inches. , a'= 1-934 inch.

Io determine a, the circumference of every layer of the coils was measured 
with watch-spring, the thickness of which was -008 inch.

One turn of the micrometer-screw was found by Mr Hockin to be equal 
to '0202 inch. If m is the micrometer-reading in terms of the screw,

b = m—12'70, ^ = m + 26-31.
In terms of the micrometer measure we have for a and a', 

' a =103'85 turns, a'= 9575 turns.
The resistances were determined by Mr Hockin as follows :

72=1 102 000 Ohms.
G= 4G 220 „

The experiments were made for two days, using a small battery charged 
with bichromate of potash. The current due to this battery was found to 
diminish so rapidly that a set of Grove’s cells was used on the third day, 
which was found to be more constant than the great battery. A proper com
bination of the two batteries would perhaps produce a current which would 
diminish according to the same law as that of the great battery. Another 
difficulty arose from the fact that when the connexions were made, but before 
the key was pressed, if the micrometer was touched by the hand the disk was 
attracted. This I have not been able satisfactorily to account for, except by 
leakage of electricity from the great battery through the floor. When the 
micrometer was not touched, the disk remained at its proper zero. In certain 
experiments I kept my hand always on the micrometer in order to be able 
to adjust it more accurately. These experiments gave a value of v much too 
small, on account of the additional attraction. When I discovered the attraction,
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I took care to make the observations without touching the micrometer, and 
took advantage of the attraction to check the oscillations of the disk. The 
experiments in which these precautions were taken agree together as well as 
I could expect, and lead me to think that, with the experience I have acquired, 
still better results might be obtained by the same method. It must be borne 
in mind that none of the results were calculated till after the conclusion of all 
the experiments, and that the rejected experiments were condemned on account 
of errors observed while they were being made.

Any leakage arising from want of insulation of the fixed disk would 
introduce no error, as the difference of potentials between the two disks is 
measured by the current in the galvanometer, through a known resistance, 
independently of any leakage.

All that is essential to accuracy is that the position of equilibrium before 
making contact should be at true zero, the same as when there is no electrical 
action, and that this equilibrium should not be disturbed when simultaneous 
contact is made with both batteries.

Experiments on May 8. S' = 1710 Ohms.

Number of 
experiment

Great 
battery-cells

Small 
battery-cells

Distance of disks 
by micrometer

Resistance of 
shunt S

Value of v in 
Ohms

1 1000 6 12'41 6870 28-5912 1000 6 12'36 6940 28-430
8* 1800 8 16-99 5074 28-886
9 1800 8 17-02 5110 28-686

10 1800 8 19-91 4430 28-910
11 1800 7 20-07 4410 28-850
12 2600 9 25-08 3700 28-762
13 2600 9 25-12 3690 28-795
14 2600 9 25-29 3680 28-735
15 2600 9 25-18 3690 28752
16 2600 9 25-19 3695 28-709
17 1800 7 19-69 4435 29-474

Mean value of v = 28798 Ohms, or B. A. units, 
or 288,000,000 metres per second, 
or 179,000 statute miles per second.

The “ probable error ” is about one-sixth per cent.

* In experiment 8 Mr Hockin and I changed places.
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Experiments 3, 4, 5, 6, 7 were rejected on account of the micrometer 
being touched during the observation of equilibrium. These experiments gave 
an average value of v= 27'39.

The value of v derived from these experiments is considerably smaller than 
that which was obtained by MM. Weber and Kohlrausch, which was 31'074 
Ohms, or 310,740,000 metres per second.

Their method involved the determination of the electrostatic capacity of a 
condenser, the electrostatic determination of its potential when charged, and 
the electromagnetic determination of the quantity of electricity discharged through 
a galvanometer.

Ihe capacity of the condenser was measured by dividing its charge repeat
edly with a sphere of known radius. Now, since all condensers made with 
solid dielectrics exhibit the phenomena of “electric absorption,” this method 
would give too large a value for the capacity, as the condenser would become 
recharged to a certain extent after each discharge, so that the repeated division 
of the chaige would have too small an effect on the potential. The capacity 
being overestimated, the number of electrostatic units in the discharge would 
be overestimated, and the value of v would be too great.

In pointing out this as a probable source of error in the experiments of 
MM. Weber and Kohlrausch, I mean to indicate that I have such confidence 
in the ability and fidelity with which their investigation was conducted, that 
I am obliged to attribute the difference of their result from mine to a phe
nomenon the nature of which is now much better understood than when their 
experiments were made.

On the other hand, the result of present experiments depends on the 
accuracy of the experiments of the Committee of the British Association on 
Electric Resistance. The B. A. unit is about 8'8 per cent, larger than that 
determined by Weber in 1862, and about 1'2 per cent, less than that derived 
by Dr Joule from his experiments on the dynamical equivalent of heat by 
comparing the heating effects of direct mechanical agitation with those of electric 
currents.

I believe that Sir William Thomson’s experiments, not yet published, give 
a value of v not very different from mine. His method, I believe, also depends 
on the value of the B. A. unit.

The lowest estimate of the velocity of light, that of the late M. Foucault, is 
298,000,000 metres per second.



A COMPARISON OF THE ELECTRIC UNITS, &C. 137

Note on the Electromagnetic Theory of Light.

In a paper on the Electromagnetic Field* some years ago, I laid before 
the Royal Society the reasons which led me to believe that light is an elec
tromagnetic phenomenon, the laws of which can be deduced from those of 
electricity and magnetism, on the theory that all these phenomena are affections 
of one and the same medium. Two papers appeared in Poggendorff’s Anna- 
len, for 1867, bearing on the same subject. The first, by the late eminent 
mathematician Bernhardt Riemann, was presented in 1858 to the Royal Society 
of Gottingen, but was withdrawn before publication, and remained unknown 
till last year. Riemann shews that if for Laplace’s equation we substitute

“ a2A3 V + a’^Trp = 0.................................(13),

F being the electrostatic potential, and a a velocity, the results will agree 
with known phenomena in all parts of electrical science. This equation is equi
valent to a statement that the potential V is propagated through space with 
a certain velocity. The author, however, seems to avoid making explicit 
mention of any medium through which the propagation takes place, but he 
shews that this velocity is nearly, if not absolutely, equal to the known velocity 
of light.

The second paper, by M. Lorenz, shews that, on Weber’s theory, periodic 
electric disturbances would be propagated with a velocity equal to that of light. 
The propagation of attraction through space forms part of this hypothesis also, 
though the medium is not explicitly recognised.

From the assumptions of both these papers we may draw the conclusions, 
first, that action and reaction are not always equal and opposite, and second, 
that apparatus may be constructed to generate any amount of work from its 
resources.

For let two oppositely electrified bodies A and B travel along the line 
joining them with equal velocities in the direction AB, then if either the 
potential or the attraction of the bodies at a given time is that due to their 
position at some former time (as these authors suppose), B, the foremost body, 
will attract A forwards more than A attracts B backwards.

* Philosophical Transactions, 1865, p. 459. [Vol. i. p. 527.]
VOL. II. 18
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Now let A and B be kept asunder by a rigid rod.
The combined system, if set in motion in the direction AB, will pull in 

that direction with a force which may either continually augment the velocity, 
or may be used as an inexhaustible source of energy.

I think that these remarkable deductions from the latest developments of 
Weber and Neumann’s theory can only be avoided by recognizing the action of 
a medium in electrical phenomena.

The statement of the electromagnetic theory of light in my former paper 
was connected with several other electromagnetic investigations, and was there
fore not easily understood when taken by itself. I propose, therefore, to state 
it in what I think the simplest form, deducing it from admitted facts, and 
shewing the connexion between the experiments already described and those 
which determine the velocity of light.

The connexion of electromagnetic phenomena may be stated in the following 
manner.

Theorem A—If a closed curve be drawn embracing an electric current, 
then the integral of the magnetic intensity taken round the closed curve is 
equal to the current multiplied by 4tt.

The integral of the magnetic intensity may be otherwise defined as the 
work done on a unit magnetic pole carried completely round the closed curve.

This well-known theorem gives us the means of discovering the position 
and magnitude of electric currents, when we can ascertain the distribution of 
magnetic force in the field. It follows directly from the discovery of CErsted.

Theorem B.—If a conducting circuit embraces a number of lines of mag
netic force, and if, from any cause whatever, the number of these lines is
diminished, an electromotive force will act round the circuit, the total amount
of which will be equal to the decrement of the number of lines of magnetic
force in unit of time.

The number of lines of magnetic force may be otherwise defined as the 
integral of the magnetic intensity resolved perpendicular to a surface, multiplied 
by the element of surface, and by the coefficient of magnetic induction, the 
integration being extended over any surface bounded by the conducting circuit.

This theorem is due to Faraday, as the discoverer both of the facts and 
of this mode of expressing them, which I think the simplest and most com
prehensive.
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Theorem C.—When a dielectric is acted on by electromotive force it ex
periences what we may call electric polarization. If the direction of the elec
tromotive force is called positive, and if we suppose the dielectric bounded by 
two conductors, A on the negative, and B on the positive side, then the 
surface of the conductor A is positively electrified, and that of B negatively.

If we admit that the energy of the system so electrified resides in the 
polarized dielectric, we must also admit that within the dielectric there is a 
displacement of electricity in the direction of the electromotive force, the amount 
of this displacement being proportional to the electromotive force at each point, 
and depending also on the nature of the dielectric.

The energy stored up in any portion of the dielectric is half the product 
of the electromotive force and the electric displacement, multiplied by the volume 
of that portion.

It may also be shewn that at every point of the dielectric there is a 
mechanical tension along the lines of electric force, combined with an equal 
pressure in all directions at right angles to these lines, the amount of this 
tension on unit of area being equal to the amount of energy in unit of volume.

I think that these statements are an accurate rendering of the ideas of 
Faraday, as developed in various parts of his “ Experimental Researches.”

Theorem D.—When the electric displacement increases or diminishes, the 
effect is equivalent to that of an electric current in the positive or negative 
direction.

Thus, if the two conductors in the last case are now joined by a wire, 
there will be a current in the wire from A to B.

At the same time, since the electric displacement in the dielectric is 
diminishing, there will be an action electromagnetically equivalent to that of an 
electric current from B to A through the dielectric.

According to this view, the current produced in discharging a condenser 
is a complete circuit, and might be traced within the dielectric itself by a 
galvanometer properly constructed. I am not aware that this has been done, 
so that this part of the theory, though apparently a natural consequence of 
the former, has not been verified by direct experiment. The experiment would 
certainly be a very delicate and difficult one.

Let us now apply these four principles to the electromagnetic theory of 
light, considered as a disturbance propagated in plane waves.

18—2



140 A COMPARISON OF THE ELECTRIC UNITS

Let the direction of propagation be taken as the axis of z, and let all 
the quantities be functions of z and of t the time; that is, let every portion 
of any plane perpendicular to z be in the same condition at the same instant.

Let us also suppose that the magnetic force is in the direction of the 
axis of y, and let be the magnetic intensity in that direction at any point.

Let the closed curve of Theorem A consist of a parallelogram in the 
plane yz, two of whose sides are b along the axis of y, and z along the axis 
of z. The integral of the magnetic intensity taken round this parallelogram is 
b (J30 — fl), where fl„ is the value of fl at the origin.

Now let p be the quantity of electric current in the direction of x per 
unit of area taken at any point, then the whole current through the parallelo
gram will be

I bpdz, 
J o 

and we have by (A),
b (fl, — fl) = 4tt f bpdz.

J o
If we divide by b and differentiate with respect to z, we find

............................................. (14).

Let us next consider a parallelogram in the plane of xz, two of whose
sides are a along the axis of x, and z along the axis of z.

If P is the electromotive force per unit of length in the direction of x,
then the total electromotive force round this parallelogram is a^P — P^.

If p is the coefficient of magnetic induction, then the number of lines of 
force embraced by this parallelogram will be

f3 
ctpfldz, 

J o
and since by (B) the total electromotive force is equal to the rate of dimi
nution of the number of lines in unit of time,

<1 P a(P-P0)=_" apfldz.
M J o

Dividing by a and differentiating with respect to z, we find
dP_ dfl

dz ~ dt................ (15).
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Let the nature of the dielectric be such that an electric displacement j 
is produced by an electromotive force P,

P-V- (16).

where k is a quantity depending on the particular dielectric, which may be 
called its “electric elasticity.”

Finally, let the current p, already considered, be supposed entirely due 
to the variation of f, the electric displacement, then

2 dt (17).

We have now four equations, (14), (15), (16), (17), between the four 
quantities ft, p, P, and f. If we eliminate p, P, and f, we find

If we put

d^ft k
dt? Atth dz*
Jl. = p............

477/X

(18).

(10).

the well-known solution of this equation is 
0 = 6 (z-70 + ^(z+70.(20),

shewing that the disturbance is propagated with the velocity 7.
The other quantities p, P, and f can be deduced from /3.

Thus, if ^ = ccos ^(z- 70

C . 2tT . vr t 
^=2X8inT(«-^0

P = cpVC0B^(z-Vt) 
K

f= —p- cos ~ (z - 7047rr X ' ’

(21)-

I have in the next place to shew that the velocity V is the same 
quantity as that found from the experiments on electricity.

For this purpose let us consider a stratum of air of thickness b bounded 
by two parallel plane conducting surfaces of indefinite extent, the difference 
of whose potentials is E.
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The

The

electromotive force per unit of length between the surfaces is 

electric displacement is f= { P.
fc

I he energy in unit of volume and the tension along the lines of force 
per unit of area is | Pf.

The attraction X on an area mr of either surface is

If this area is separated by a small interval from the rest of the plane 
surface, as in the experiment, and if this interval is small compared with the 
radius of the disk, the lines of force belonging to the disk will be separated 
from those belonging to the rest of the surface by a surface of revolution, 
the section of which, at any sensible distance from the surface, will be a circle 
whose radius is a mean between those of the disk and the aperture. This 
radius must be taken for a in the equation (22)*.

Let us next consider the magnetic force near a long straight conductor 
carrying a current y. Ihe magnetic force will be in the direction of a tangent 
to a circle whose axis is the current; and the intensity will be uniform round 
this circle. If the radius is b, and the magnetic intensity the integral 
round the circle will be 27r6^ = 47ry by (2I).

Hence 0 = 2 f.................................................... (23).

Let a wire carrying a current y' be placed parallel to the first at a 
distance b, and let us consider a portion of this wire of length I. This portion 
will be urged across the lines of magnetic force, and the electromagnetic force 
Y will be equal to the product of the length of the portion, multiplied by

8 ] 2
+ , where a is a quantity which cannot exceed —(°«~ ai)-

* [Note added Dec. 28, 1868.—I have since found that if a, is the radius of the disk, and aa that of 
the aperture of the guard-ring, and b the distance from the large fixed disk, then we must substitute for

Al • • 1tne more approximate expression

-J. C. M.]
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the current and by the number of lines which it crosses per unit of distance 
through which it moves, or, in symbols,

Y=ly'^ 
n I , 

=^byy
............................................ (24).

If the two wires instead of being straight are circular, of radius a", and 
if b' the distance between them is very small compared with the radius, the 
attraction will be the same as if they were straight, and will be

v 2ira , . x
1 .......................................... (25).

When b' is not very small compared with a', we must use the equation 
2A(3) to calculate the value of by elliptic integrals.

Making X = Y and comparing with equation (G), we find

but, by (19), P-A.

Hence v = yV..................................................... (27),
where v is the electromagnetic ratio and V is the velocity of light.

But since all the experiments are made in air, for which p is assumed equal 
to unity, as the standard medium with which all others are compared, we have 
finally

v= V.........................................................(28),
or the number of electrostatic units in one electromagnetic unit of electricity is 
numerically equal to the velocity of light.



[Extracted from The Quarterly Journal of Pure and Applied Mathematics, No, 34, 1867.]

XXXVII. On the Cyclide.

In optical treatises, the primary and secondary foci of a small pencil are 
sometimes represented by two straight lines cutting the axis of the pencil at 
right angles in planes at right angles to each other. Every ray of the pencil 
is supposed to pass through these two lines, thus forming what M. Pluker^ 
has called a congruence of the first order.

The system of rays, as thus defined, does not fulfil the essential condi
tion of all optical pencils, that the rays shall have a common wave-surface, 
for no surface can be drawn which shall cut all the rays of such a pencil 
at right angles.

Sir W. It. Hamilton has shewn, that the primary and secondary foci are 
in general the points of contact of the ray with the surface of centres of 
the wave-surface, which forms a double caustic surface. If we select a pencil 
of rays corresponding to a given small area on the wave-surface, their points 
of contact will lie on two small areas on the two sheets of the caustic 
surface. Ihe sections of the pencil by planes perpendicular to its axis will 
appear, when the pencil is small enough, as two short straight lines in planes 
perpendicular to each other.

I propose to determine the form of the wave-surface, when one or both 
of the so-called focal lines is really a line, and not merely the projection of 
a small area of a curved surface.

Let us first determine the condition that all the normals of a surface 
may pass through one fixed curve.

Let R be a point on the surface, and RP a normal at P, meeting the 
fixed curve at P. Let PT be a tangent to the fixed curve at P, and RPT 
a plane through R and PT.

* Philosophical Transactions, 1864.
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Of the two lines of curvature through li, the first touches the plane 
RPT, and the second is perpendicular to it. Hence, if the plane RPT turn 
about the tangent PT as an axis, it will always be normal to the second 
line of curvature. The second line of curvature is therefore a circle, and PT 
passes through its centre perpendicular to its plane.

All the normals belonging to the second line of curvature are of equal 
length, and equally inclined to PT, so that they may be considered either 
as the generating lines of a right cone whose axis is the tangent to the 
fixed curve, or as the radii of a sphere whose centre is at P, and which 
touches the surface all along the line of curvature.

The surface may therefore be defined as the envelope of a series of 
spheres, whose centres lie on the fixed curve, and whose radii vary according 
to any law.

If the normal passes through two fixed curves, the surface must also be 
the envelope of a second series of spheres whose centres lie on the second 
fixed curve, and each of which touches all the spheres of the first series.

If we take any three spheres of the first series, the surface may be 
defined as the envelope of all the spheres which touch the three given spheres 
in a continuous manner.

This is the definition given by Dupin, in his Applications de G6ometne 
(p. 200), of the surface of the fourth order called the Cyelide, because both 
series of its lines of curvature are circles.

If the three fixed spheres be given, they may either be all on the same 
side (inside or outside) of the touching sphere, or any one of the three may 
be on the opposite side from the other two. There are thus four different 
series of spheres which may be described touching the same three spheres, 
but we cannot pass continuously from one series to another, and the normals 
to the four corresponding cyclides pass through different fixed curves.

Let us next consider the nature of the two fixed curves. Since all the 
normals pass through both curves, and since all those which pass through a 
point P are equally inclined to the tangent at P, the second curve must 
lie on a right cone. If now the point P be taken so that its distance from 
a point Q in the second curve is a minimum, then PQ will be perpendicular 
to PT, and the right cone will become a plane, therefore the second curve is 
a plane conic. In the same way we may shew, that the first curve is a plane 
conic.

VOL. II. 19
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The two curves are therefore plane conics, such that the cone whose base 
is one of the conics, and its vertex any point of the other, is a right cone. 
The conics are therefore in planes at right angles to each other, and the foci 
of one are the vertices of the transverse axis of the other. We shall call these 
curves the focal conics of the cyclide.

Let the equations to a point on an ellipse be
x = ccosa, y = (c’— 6’)1 sin a, z = 0............................(1),

where a is the eccentric angle, and let the equations to a point on the 
hyperbola be

x = b sec B, y = 0, z = (c’ — by tan B.......................... (2),
where B is an angle, then these two conics fulfil the required conditions. For 
uniformity, we shall sometimes make use of the hyperbolic functions

cos = (e3 + e"p), and sinfy8=^ (e* — e-p).................... (3),
and we shall suppose ft and B so related, that

cos hft = sec B, whence sin hft = tan B] , .
sec hft = cos B, tan hft = sin B J

The equations to a point in the hyperbola may then be written
x — bcoshft, y = 0, z = (c’ — by sinhft.......................... (5).

Construction of the Cyclide by Points. First Method.

Let P be a point on the ellipse, Q a point on the hyperbola, then 
PQ = c sec B — b cos a.(6).

Now take on PQ a point R, so that
PR = r — b cos a........................................... (7),

or QR = r — c&ecB............................................ (8), 

where r is a constant, then if a and B vary, R will give a system of points 
on the cyclide (bcf.

For if P be fixed while Q varies, R will describe a circle, and if Q be 
fixed while P varies, R will describe another circle, and these circles cut at 
right angles, and are both at right angles to PQR at their intersection, and
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since P and Q are any points on the conics, the whole system of circles will 
form a cyclide.

The circle corresponding to P a fixed point on the ellipse, is in a plane 
which cuts that of xz along the line

x=^> y=Q...............................................(9)»

and makes with it an angle

The circle corresponding to Q a fixed point in the hyperbola, is in a 
plane which cuts that of xy along the line

CT 
x~J)y Z~Q.............................................. (10),

and makes with it an angle
tan-1 -L sin .

Hence the planes of all the circles of either series pass through one of two 
fixed lines, which are at right angles to each other, and at a minimum distance 

c° —
= 7’ —5— .

Ihe line ol intersection of the planes of the two circles through the point 
R will therefore pass through both the fixed lines at points S and T, where 
the co-ordinates of are

cr (c^ — b^X = T' ^^tana, 2 = 0............................. (11),

and those of T,
br (c* - b'Vx=~, y = 0, 2=-^——sinJ?..........................(12),
•I c

and it is easily shewn that

Hence, we deduce the following
19—2
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Second Construction by Points.

Draw the two fixed, lines, and find points and T given by equations (11) 
and (12), then draw ST, and cut it in Ji, so that the ratio of the segments is 
that given by equation (13). Ji will be a point on the cyclide.

This construction is very convenient for drawing any projection of the 
cyclide, as the distances are measured along the projections of the fixed lines, 
and the line ST can be divided in the required ratio by means of a ruler 
and “ sector,” without making any marks on the paper, except the position of 
the required point Ji.

In this way I have drawn stereoscopic diagrams of four varieties of the 
cyclide, viewed from a position nearly in the line

x = y=z, 
shewing the circles corresponding to various values of a and B*.

* Note on a Heal-Image Stereoscope. In ordinary stereoscopes the virtual images of two pictures are 
superposed, and the observer, looking through two lenses, or prisms, or at two mirrors, sees the figure 
apparently behind the optical apparatus. In a stereoscope, which I have had made by Elliott Brothers, 
the observer looks at a real image of the pictures, which appears in front of the instrument, and he is not 
conscious of using any optical apparatus.

This stereoscope consists of a frame to support the double picture, which may be a common stereoscopic 
slide inverted. One foot from this a frame is placed, containing side by side two convex lenses of half a 
foot focal length, and having their centres distant one and a quarter inches horizontally. One foot beyond 
these is placed a convex lens of two-thirds of a foot focal length and three inches diameter.

The observer stands about two feet from the large lens, so that with the right eye he sees an image of 
the left-hand picture, and with the left eye an image of the righthand picture.

These images are formed by pencils which pass centrically through the two small lenses respectively, 
so that they are free from distortion, and they appear to be nearly at the same distance as the large lens, 
so that the observer fixing his eyes on the frame of the large lens sees the combined figures at once.

The figures of the cyclide, though constructed for this stereoscope, may be used with an ordinary 
stereoscope, or they may be united by squinting, which is a very effective method.

On the Forms of the Cyclide.

We shall suppose b and c to be given, and trace the effect of giving 
different values to r. Since the cyclides corresponding to negative values of r 
differ from those corresponding to equal positive values merely by having the
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positive and negative ends of the axis of x reversed, we need study the positive 
values only.

(1) When r lies between zero and b, the section in the plane of the 
ellipse consists of two circles, whose centres are the foci, and which intersect at 
a point of the ellipse. The section in the plane of the hyperbola consists of 
two circles exterior to each other, whose centres are the vertices of the ellipse. 
The cyclide itself consists of two lobes exterior to each other, of which the 
negative one is the largest, and increases with r, while the positive lobe 
decreases. Each lobe terminates in two conical points, where it meets the other 
lobe. Ihe cone of contact at these singular points is a right cone, whose axis 
is the tangent to the ellipse, and whose semi-vertical angle is

Ihe whole figure resembles two pairs of horns, each pair joined together 
by their bases, and the two pairs touching at the tips of the horns. Figure I.* 
represents a cyclide of this kind. The continuous curves represent the lines 
of curvature of both series. The dotted curves represent the ellipse and hyper
bola through which the normals pass, and the dotted straight lines repre
sent the axis of x, and the two straight lines through which the planes of 
the circles pass.

(2) When r lies between b and c, the cyclide consists of a single sheet 
in the form of a ring, the section of which is greatest on the negative side. 
Figure IL represents a cyclide of this kind.

(3) When r is greater than c, the cyclide again consists of two sheets, 
the one within the other, meeting each other in two conical points which are 
situated on the positive branch of the hyperbola. The semi-vertical angle at 
these points, is

cos'1 'r* — cM
'f-b*) '

Ihere is also in all forms of the cyclide, a singular tangent plane which 

touches the cyclide along a circle corresponding to Figure III. repre-

* [Page 159], 
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aents such a cyclide. The outer sheet with its circles of contact and re-entering 
conical points, and the inner spindle with its conical points meeting those of 
the outer sheet, have a certain resemblance to the outer and inner sheets 
of Fresnel’s Wave-Surface; and, if we bear in mind that the wave-surface 
has four such singular points while the cyclide has only two, we may find 
Figure TIL useful in forming an idea of the singular points of the wave-surface.

If we give to r all values from 4-00 to - 00, the cyclide assumes the 
forms (3), (2), (1), ( — 1), ( — 2), ( — 3) in succession, and every point of space 
is traversed four times by the surface. For when r is infinite, any given 
point R is within the spindle or inner sheet of (3). As r diminishes, the 
spindle contracts, and when r = c it vanishes; so that for a certain value, r„ 
greater than c, the surface of the spindle passes through the point R.

At this instant the outer sheet of the cyclide is still beyond R, but as 
r diminishes, the surface contracts, and finally vanishes when r=—b, before 
which it must have passed through a value for which the surface passes
through R. At this instant the surface may have the form either of the outer 
sheet of (3), or of the ring cyclide of one sheet (2), or of the negative lobe 
of (1).

The positive lobe of (1) begins to appear when r becomes less than b, and 
increases as r diminishes, till when r= — b it becomes a ring, and when r = —c 
it becomes the outer sheet of the cyclide ( — 3).

This surface, therefore, for some value, r„ of r, passes through the point R. 
This value r, is necessarily less than rv

When r=—c the interior sheet of (-3) is developed, and increases in
definitely as r diminishes, so that for some value, rv of r, which is less than 
r„ the point R is on the surface of this interior sheet. We thus see that the 
cyclide may be said to have four sheets, though not more than two can be 
real at once. These four sheets touch at three conical points.

The first sheet, corresponding to rn is the interior lobe of the cyclide (3), 
and always touches the second sheet at a conical point on the positive branch 
of the hyperbola.

The second sheet, corresponding to r„ has three different forms, being either 
the outer sheet of (3), the ring cyclide of one sheet (2), or the negative lobe 
of (1). When the first sheet exists, it meets it at a conical point on the 
positive hyperbola, and when the third sheet exists, it meets it at a conical 
point on the ellipse.
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The third sheet, corresponding to has also three different forms. It 
may be either the positive lobe of (1), the ring cyclide ( — 2), or the outer 
sheet of (— 3). In the first case it has a conical point on the ellipse where 
it meets the second sheet. In the second case it has no conical point, and 
in the third it meets the fourth sheet in a conical point on the negative 
hyperbola.

The fourth sheet is the interior spindle of the cyclide ( — 3), and always 
meets the third sheet at a conical point on the negative hyperbola.

Parabolic Cijclules.

When the values of b, c, r, and x are each increased by the same quan
tity, and if this quantity is indefinitely increased, the two conics become in 
the limit two parabolas in perpendicular planes, the focus of one being the vertex 
of the other, and the cyclide becomes what we may call the parabolic cyclide.

When r lies between b and c, the cyclide consists of one infinite sheet, 
lying entirely between the planes x = 2b — r and x = 2c — r. The portions of space 
on the positive and negative side of the sheet are linked together as the earth 
and the air are linked together by a bridge, the earth, of which the bridge 
forms part, embracing the air from below, and the air embracing the bridge 
from above. In fact the earth and bridge form a ring of which one side is 
much larger than the other.

A parabolic ring cyclide in which 2r = & + e, is represented in Figure IV.
When r does not lie between b and c, the cyclide consists of a lobe with 

two conical points, and an infinite sheet with two conical points meeting those 
of the lobe.

Surfaces of Revolution.

When b = Q, the cyclide is the surface formed by the revolution of a circle 
of radius r about a line in its own plane distant c from the centre. If r is 
less than c, the form is that of an anchor ring. If r is greater than c, the 
surface consists of an outer and an inner sheet, meeting in two conical points. 
When b = c, the cyclide resolves itself into two spheres, which touch externally 
it r is less than b, and internally if r is greater than b. When b = c = Q, the 
two spheres become one.
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If the origin be transferred to. a conical point, and if the dimensions of 
the figure be then indefinitely increased, the cyclide becomes ultimately a right 
cone, having the same conical angle as the original cyclide. If b = c, the cone 
becomes a plane.

If b remains finite, while c, r, and x are each increased by the same 
indefinitely great quantity, the cyclide ultimately becomes a right cylinder, whose 
radius is r — c.

Inversion of the Oyclide.

Since every sphere, when inverted by means of the reciprocals of the radii 
drawn to a fixed point, becomes another sphere, every cyclide similarly inverted 
becomes another cyclide. There is, however, a certain relation between the 
parameters of the one cyclide and those of the other, namely

^-b3 _r'3-b'3
r1 — c3 ~ r'3 — c'3.............  (14)’

If the point of inversion be taken on either of the circles 

^ + ^_2^ + &’ + r3-c’ = 0, z = 0.(16),

or ^ + s»_2^-6’-r’+c’ = 0, y = b................... (17),

the cyclide will become a surface of revolution in which b = 0, and
r3 c3 — ^ 
f3 “ e^b3

if the point of inversion be on the first circle, or 
r3 _r3 — b3 
c'3 - c'-b3 ................................ (19)

if it be on the second.
When r is less than c, the first circle is real; and when r is greater 

than b, the second circle is real. In the ring-cyclide r is between b and c, 
and the cyclide can be transformed into an anchor ring in two different ways.
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If the cyclide has conical points, and if one of them be made the point 
of inversion, the cyclide becomes a right cone, whose semi-vertical angle is 

'b^-r^h ,
-j—) n r is less thanCos-1 b, or cos'1 'r* — c’V

r1 — b‘. f is greater than b.

If the point of inversion be at any other point of the surface, the cyclide 
becomes a parabolic cyclide.

If the point of inversion be x = , y = Q, z = 0, the cyclide is inverse to 

itself.

On the Conjugate Isothermal Functions on the Cyclide.

Definition. If on any surface two systems of curves be drawn, each 
individual curve being defined by the value of a parameter corresponding to it, 
and if the two systems of curves intersect everywhere at right angles, and if 
the intercept of a curve of the second system between two consecutive curves 
of the first system has the same ratio to the intercept of a curve of the first 
system between two consecutive curves of the second, as the difference of the 
parameters of the two curves of the first system has to the difference of the 
parameters of the two curves of the second system, then the two systems of 
curves are called conjugate isothermal lines, and the two parameters conjugate 
isothermal functions. If the surface be now supposed to be a uniform con
ducting lamina placed between non-conducting media, one set of these lines will 
be isothermal for heat or equipotential for electricity, and the other set will 
be lines of flow. (See Laimi on Isothermal Functions.)

I his property of lines on a surface is not changed by inversion.

In the cyclide, we find the intercept ds of a line of curvature of the first 
system is

j r—ccoshB . .... ,
— ~~—T o i (c — b V da............................ /201c cos hp — b cos a ' '

and the intercept dst of a line of curvature of the second system is

7 r — b cos a , ,
c cos hft — b cos a ' ' *

20
VOL. II.
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If now 0 be a function of a, and </> of /3, such that
dst _ d0 
ds., d<j> ’

then 0 and </> will be conjugate isothermal functions.

If 0 = k [----f----- and
J r — b cos a

'___ dp
r — ccos lip (22),

the condition will be satisfied. If r is greater than b, we find
0 _(rl — b^ sin a

an(r* —&’)* b — r cos a (23).

It is more useful to have a expressed in terms of 0, thus :

sin a =
^-^‘sin^

“■--------0 
r + bcos

cos a = (24).

If r is less than b, we have only to write the hyperbolic functions of 
. 0

—nn instead of the circulai’ functions of 7-5—, and to write (b — r )4 for

Similarly, we obtain for the relation between P and </>, when r is greater 
than c,

(r3 — c3)4 sin h 
tan B = sin hp - ----------------(r3 — c3)4

r + c cos h p-c3)4

c + r cos A 
sec B = cos hp = ' , ........................... (25).

r + ccoa/i—?—4

When r is less than c we must substitute (c‘ —r2)4 for (r’-c*)‘ and turn 
the hyperbolic functions into circular functions.

—— 0—
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Having found these conjugate isothermal 
them any number of other pairs, as 0, and </>n

functions we may deduce from 
where

df^ _ d^ dd^ _ d^ 
d0~ d<}> and d^= “ d0 (26).

On Confocal Cyclides.

A system of cyclides in. which the focal ellipse and hyperbola remain the 
same, while r has various values, may be called a confocal system. This system 
of cyclides and the two systems of right cones which have their vertices in 
one conic and pass through the other, form three systems of orthogonal surfaces, 
and therefore intersect along their lines of curvature. By inversion we may get 
three systems of cyclides intersecting orthogonally.

A system of confocal cyclides may also be considered as a system of wave 
surfaces in an isotropic medium, corresponding to a pencil of rays, each ray of 
which intersects the two focal conics. Each cyclide corresponds to a certain 
value of r, which we may call the length of the ray of that cyclide.

Now let us consider the system of confocal conicoids, whose equation is of 
the form

p-f-b^f-^ .....................................

By putting p = c, we get the ellipse

2=0........................ <28)-
By putting p = b, we get the hyperbola

y = Q.........................................

These two conics therefore belong to the system and may be called its focal 
conics. If, with any point Ji for vertex, we draw cones through the ellipse and 
hyperbola, these will be confocal cones, whose three axes are normal to the 
three conicoids of the system which pass through Ji. The two cones will inter
sect at right angles along four generating lines rM r„ r3, ru which are normal 
to four cyclides passing through the point R.

20—2
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The normal to the ellipsoid through R will he the real axis of the cone 
which passes through the ellipse, and will bisect the angle between r, and 
and also that between r, and rv If the ellipsoid were reflective, a ray incident 
in the direction 1\ would be reflected in the direction of r, reversed; hence, 
by the wave theory, r, + r, is constant for the ellipsoid. At the point of the 
ellipsoid (p = constant) where it is cut by the axis of x}

x = p,

rl = x + c, 

r^x — c.

So that the equation of the ellipsoid (r = constant) may be expressed in terms 
of 1\ and r, thus:

rl + r, = 2p..................................................(30).

Ihe normal to the ellipsoid also bisects the angle between r, and vt) whence we 
deduce another form of the equation of the same ellipsoid

r» + rt=-2p................................................ (31).
Hence, the general relation among the values of r

ri + ^ + r, + r4 = 0............................................. (32).

The normal to the hyperboloid of one sheet (^constant) bisects the angle 
between r, and r„ and also that between r, and r., whence we obtain the 
equations

r.+r.-^o .....................................(33).

The normal to the hyperboloid of two sheets (r = constant) bisects the angles 
between rt and r„ and between rt and rt, whence

r^+rt = 2v= ......................................(34j

These are the equations to the conicoids in terms of the four rays „f the iL 
The equations to the four cychdes in terms of elliptic co-ordinates are easily 
deduced from them r J

ri ~ p + p — v 
ri= p — p + v 
r*~ —p + p + v
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Since the quantities p, c> p, fr, v> p

are in descending order of magnitude, it is evident that

p, r„ -p, rt 
are also in descending order of magnitude.

The general equation to the cyclide in elliptic co-ordinates is

0’— P — P + u) (r ~ p + p — v)(r + p — p — v)(r + p + p + v) = 0...... (3G),

which may be expressed in Cartesian co-ordinates thus:

4- if 4- z’ -rf - 2 (x’ +f1) (If + c’) - 2 (f - z*) (ca - &’) 4- 8bcrx 4- (o’ - bf = 0...(37).

When b = c there are two focal points F and F' and the values of ^he 
four rays are

?'] = RF + c 

rt= — RF — c)
The equation of the ellipsoid 

2p = i\ + rt = RF+ RF'.(39)

in this case expresses the property of the prolate spheroid, that the sum of the 
distances of any point from the two foci is constant.

In like manner, the equation
r, + r, = 2p = RF' - RF.................................... (40)

expresses the property of the hyperboloid of revolution of two sheets, that the 
difference of the focal distances is constant.

In order to extend a property analogous to this to the other conicoids, let 
us conceive the following mechanical construction :

Suppose the focal ellipse and hyperbola represented by thin smooth wires, 
and let an indefinite thin straight rod always rest against the two curves, and 
let r be measured along the rod from a point fixed in the rod. Let a string 
whose length is b + c be fastened at one end to the negative focus of the ellipse 
and at the other to the point ( + b) of the rod, and let the string slide on the 
ellipse at the same point as the rod rests on it. To keep the string always 
tight let another equal string pass from the positive focus of the ellipse round 
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the curve to the point (— 6) of the rod. These strings will determine the point 
of the rod which rests on any given point of the ellipse.

Let the rod also rest on the hyperbola, so that either the positive portion 
of the rod rests on the positive branch of the hyperbola, or the negative portion 
of the rod rests on the negative branch.

Then the point r of the rod lies in the surface of the cyclide whose para
meter is r, and as the rod is made to slide on the ellipse and hyperbola, the 
point r will explore the whole surface of the cyclide.

If we consider any point of space II, the rod will pass through it in four 
different positions corresponding to the four intersections of the cones whose 
vertex is II passing through the ellipse and hyperbola.

The first position, r„ corresponds to the first sheet of the cyclide which 
passes through II. If we denote the intersection of the rod with the ellipse by 
E, and its intersection with the positive and negative branches of the hyperbola 
by + 11 and — II, then the order of the intersections will be in this case

E, +11, R.

The second position, r„ corresponds to the second sheet, and the order of 
intersections is either

E, R, +H or -II, E, 11.

The third position, rz, corresponds to the third sheet, and the order of the 
intersections is either

II, E, +11, or -II, R, E.

The fourth position, r„ corresponds to the fourth sheet, and the order of the 
intersections is

R, -II, E, 
the letters being always arranged in the order in which r increases.

The complete system of rays is an example of a linear congruence of the 
fourth order.

Now if two rods, each fulfilling the above conditions, intersect at II in any 
two of these four positions, and if a string of sufficient length be fastened to a 
sufficiently distant negative point of the first rod, be passed round the point 11, 
and be fastened to a sufficiently distant negative point of the second rod, and if
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the two rods be then moved always keeping the string tight at the point of 
intersection R, then R will trace out a conicoid.

If the rods are in the first and second positions, or in the third and fourth, 
the conicoid will be an ellipsoid.

If the rods are in the first and third positions, or in the second and fourth, 
the conicoid will be an hyperboloid of one sheet.

If the rods are in the first and fourth positions, or in the second and third, 
the conicoid will be an hyperboloid of two sheets.

In the parabolic confocal system, the fourth sheet of the cyclide is a plane, 
and rt is parallel to the axis of x. Hence if rays parallel to the axis of a 
paraboloid are reflected by the surface, they will all pass through the two focal 
parabolas of the system, and the wave surface after reflexion will be a cyclide, 
and if the rays are twice reflected, they will become again parallel to the axis.



[From the Edinburgh Royal Society Proceedings, Vol. vn.]

XXXVIII. On a Bow seen on the Surface of Ice.

On the 26th of January, about noon, I observed the appearance of a 
coloured bow on the frozen surface of the ditch which surrounds S. John’s 
College, Cambridge. Its appearance and position seemed to correspond with those 
of an ordinary primary rainbow. I at once made a rough measurement of the 
angle on the board of a book which I had with me, and then borrowed from 
Dr Parkinson, President of S. John’s College, a sextant with which I found 
that the angle between the bright red and the shadow of the large mirror 
was 41° 50', and that for bright blue 40° 30'. The angle for the extreme red 
of the primary bow, as given in Parkinson’s Optics, is 42° 20', and that for 
violet 40” 32'. The bows formed by ice crystals are seen on the same side as 
the sun, and not on the opposite side. I suppose the bow which I saw to be 
formed by small drops of water lying on the ice. If the lower part of each 
drop were flattened, so as to bring the point at which the reflexion takes 
place nearer to the points of incidence and emergence, the effect would be of 
the same kind as that of a diminution of the index of refraction—that is, the 
angle of the bow would be increased. How a drop of water can lie upon ice 
without wetting it, and losing its shape altogether, I do not profess to explain.

Only a small part of the ice presented this appearance. It was best seen 
when the incident and emergent rays were nearly equally inclined to the 
horizontal. The ice was very thin, and I was not able to get near enough 
to the place where the bow appeared to see if the supposed water drops really 
existed.



[From the Transaction of the Royal Society of Edinburgh, Vol. xxvi.]

XXXIX. On Reciprocal Figures, Frames, and Diagrams of Forces.

(Received 17th Dec. 1869; read 7th Feb. 1870.)

Two figures are reciprocal when the properties of the first relative to the 
second are the same as those of the second relative to the first. Several kinds 
of reciprocity are known to mathematicians, and the theories of Inverse Figures 
and of Polar Reciprocals have been developed at great length, and have led to 
remarkable results. I propose to investigate a different kind of geometrical 
reciprocity, which is also capable of considerable development, and can be ap
plied to the solution of mechanical problems.

A Frame may be defined geometrically as a system of straight lines con
necting a number of points. In actual structures these lines are material pieces, 
beams, rods, or wires, and may be straight or curved; but the force by which 
each piece resists any alteration of the distance between the points which it joins 
acts in the straight line joining those points. Hence, in studying the equilibrium 
of a frame, we may consider its different points as mutually acting on each 
other with forces whose directions are those of the lines joining each pair of 
points. When the forces acting between the two points tend to draw them 
together, or to prevent them from separating, the action along the joining line 
is called a Tension. When the forces tend to separate the points, or to keep 
them apart, the action along the joining line is called a Pressure.

If we divide the piece joining the points by any imaginary section, the 
resultant of the whole internal force acting between the parts thus divided will
be mechanically equivalent to the tension or pressure of the piece. Hence, in
order to exhibit the mechanical action of the frame in the most elementary
manner, we may draw it as a skeleton, in which the different points are joined
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by straight lines, and we may indicate by numbers attached to these lines the 
tensions or pressures in the corresponding pieces of the frame.

The diagram thus formed indicates the state of the frame in a way which 
is geometrical as regards the position and direction of the forces, but arith
metical as regards their magnitude.

But, by assuming that a line of a certain length shall represent a force 
of a certain magnitude, we may represent every force completely by a line. 
This is done in Elementary Statics, where we are told to draw a line from 
the point of application of the force in the direction in which the force acts, 
and to cut off as many units of length from the line as there are units of 
force in the force, and finally to mark the end of the line with an arrow
head, to shew that it is a force and not a piece of the frame, and that it 
acts in that direction and not the opposite.

By proceeding in this way, we should get a system of arrow-headed forces 
superposed on the skeleton of the frame, two equal and opposite arrows for 
every piece of the frame.

To test the equilibrium of these forces at any point of concourse, we 
should proceed by the construction of the parallelogram of forces, beginning 
with two of the forces acting at the point, completing the parallelogram, and 
drawing the diagonal, and combining this with the third force in the same way, 
till, when all the forces had been combined, the resultant disappeared. We 
should thus have to draw three new lines, one of which is an arrow, in taking 
in each force after the first, leaving at last not only a great number of useless 
lines, but a number of new arrows, not belonging to the system of forces, and 
only confusing to any one wishing to verify the process.

To simplify this process, we are told to construct the Polygon of Forces, 
by drawing in succession lines parallel and proportional to the different forces, 
each line beginning at the extremity of the last. If the forces acting at the 
point are in equilibrium, the polygon formed in this way will be a closed one.

Here we have for the first time a true Diagram of Forces, in which every 
force is not only represented in magnitude and direction by a straight line, 
but the equilibrium of the forces is manifest by inspection, for we have only 
to examine whether the polygon is closed or not. To secure this advantage, 
however, we have given up the attempt to indicate the position of the force, 
for the sides of the polygon do not pass through one point as the forces do. 
We must, therefore, give up the plan of representing the frame and its forces 
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in one diagram, and draw one diagram of the frame and a separate diagram 
of the forces. By this method we shall not only avoid confusion, but we shall 
greatly simplify mechanical calculations, by reducing them to operations with 
the parallel ruler, in which no useless lines are drawn, but every line repre
sents an actual force.

A Diagram of Forces is a figure, every line of which represents in mag
nitude and direction the force acting along a piece of the frame.

To express the relation between the diagram of the frame and the dia
gram of forces, the lines of the frame should each be indicated by a symbol, 
and the corresponding lines of the diagram of forces should be indicated by 
the same symbol, accented if necessary.

We have supposed the corresponding lines to be parallel, and it is neces
sary that they should be parallel when the frame is not in one plane; but 
if all the pieces of the frame are parallel to one plane, we may turn one of 
the diagrams round a right angle, and then every line will be perpendicular 
to the corresponding line.

If any number of lines meet at the same point in the frame, the corre
sponding lines in the diagram of forces form a closed polygon.

It is possible, in certain cases, to draw the diagram of forces so that if 
any number of lines meet in a point in the diagram of forces, the corre
sponding lines in the frame form a closed polygon.

In such cases, the two diagrams are said to be reciprocal in the sense in
which we use it in this paper. If either diagram be taken as representing the
frame, the lines of the other diagram will represent a system of forces which,
if applied along the corresponding pieces of the frame, will keep it in equi
librium.

The properties of the “triangle” and “polygon" of forces have been long 
known, and a “diagram” of forces has been used in the case of the “funi
cular polygon,” but I am not aware of any more general statement of the 
method of drawing diagrams of forces before Professor Rankine applied it to 
frames, roofs, &c., in his Applied Mechanics, p. 137, &c. The “polyhedron of 
forces,” or the proposition that forces acting on a point perpendicular and pro
portional to the areas of the faces of a polyhedron are in equilibrium, has, I 
believe, been enunciated independently at various times, but the application of 
this principle to the construction of a diagram of forces in three dimensions 
was first made by Professor Rankine in the Philosophical Magazine, Feb. 1864.

21—2
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In the Philosophical Magazine for April 1864, I stated some of the properties 
of reciprocal figures, and the conditions of their existence, and shewed that 
any plane rectilinear figure which is a perspective representation of a closed 
polyhedron with plane faces has a reciprocal figure. In Sept. 1867, I communi
cated to the British Association a method of drawing the reciprocal figure, 
founded on the theory of reciprocal polars*.

I have since found that the construction of diagrams of forces in which 
each force is represented by one line, had been independently discovered by 
Mr W. P. Taylor, and had been used by him as a practical method of deter
mining the forces acting in frames for several years before I had taught it in 
King’s College, or even studied it myself. I understand that he is preparing 
a statement of the application of the method to various kinds of structures in 
detail, so that it can be made use of by any one who is able to draw one 
line parallel to another.

Professor Fleeming Jenkin, in a paper recently published by the Society, 
has fully explained the application of the method to the most important cases 
occurring in practice.

In the present paper I propose, first, to consider plane diagrams of frames 
and of forces in an elementary way, as a practical method of solving questions 
about the stresses in actual frameworks, without the use of long calculations.

I shall then discuss the subject in a theoretical point of view, and give a 
method of defining reciprocal diagrams analytically, which is applicable to 
figures either of two or of three dimensions.

Lastly, I shall extend the method to the investigation of the state of 
stress in a continuous body, and shall point out the nature of the function of 
stress first discovered by the Astronomer Royal for stresses in two dimensions, 
extending the use of such functions to stresses in three dimensions.

On Reciprocal Plane Rectilinear Figures.

Definition.—Two plane rectilinear figures are reciprocal when they consist 
of an equal number of straight lines, so that corresponding lines in the two 
figures are at right angles, and corresponding lines which meet in a point in 
the one figure form a closed polygon in the other.

* [See pp. 169 and 188].
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Note.—It is often convenient to turn one of the figures round in its own 
plane 90°. Corresponding lines are then parallel to each other, and this is 
sometimes more convenient in comparing the diagrams by the eye.

Since every polygon in the one figure has three or more sides, every 
point in the other figure must have three or more lines meeting in it. Since 
every line in the one figure has two, and only two, extremities, every line in 
the other figure must be a side of two, and only two, polygons. If either of 
these figures be taken to represent the pieces of a frame, the other will repre
sent a system of forces such that, these forces being applied as tensions or 
pressures along the corresponding pieces of the frame, every point of the frame 
will be in equilibrium.

The simplest example is that of a triangular frame without weight, ABC, 
jointed at the angles, and acted on by three forces, P, Q, li, applied at the 
angles. The directions of these three forces must meet in a point, if the frame 
is in equilibrium. We shall denote the lines of the figure by capital letters, 
and those of the reciprocal figure by the corresponding small letters; we shall 
denote points by the lines which meet in them, and polygons by the lines 
which bound them.

Here, then, are three lines, A, B, C, forming a triangle, and three other
lines, P, Q, R, drawn from the angles and meeting in a point. Of these
forces let that along P be given. Draw the first line p of the reciprocal
diagram parallel to P, and of a length representing, on any convenient scale,
the force along P. The forces along P, Q, R are in equilibrium, therefore, if 
from one extremity of p we draw q parallel to Q, and from the other 
extremity r parallel to R, so as to form a triangle pqr, then q and r will 
represent on the same scale the forces along Q and R.

To determine whether these forces are tensions or pressures, make a point 
travel along p in the direction in which the force in P acts on the point of
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concourse of PQR, and let the point travel in the same direction round the 
polygon pqr. Then, the direction in which the point travels along any side 
of the polygon will be the direction in which the force acts along the corre
sponding piece of the frame on the point of concourse. If it acts from the 
point of concourse, the force is a tension; if towards it, it is a pressure.

The other extremity of P meets B and C, and the forces along these 
three pieces are in equilibrium. Hence, if we draw a triangle, having p for 
one side and lines parallel to B and C for the others, the sides of this triangle 
will represent the three forces.

Such a triangle may be described on either side of p, the two together 
would form a parallelogram of forces; but the theory of reciprocal figures indi
cates that only one of these triangles forms part of the diagram of forces.

The rule for such cases is as follows :—Of the two extremities of p, one 
corresponds to the closed figure PRB, and the other to the closed figure PQC, 
these being the polygons of which P is a side in the first figure.

We must, therefore, draw b parallel to B from the intersection of p and r, 
and not from the other extremity, and we must draw c parallel to C from 
the intersection of p and q.

We have now a second triangle, pbc, corresponding to the forces acting at 
the point of concourse of P, B, C. To determine whether these forces are 
tensions or pressures, we must make a point travel round pbc, so that its 
course along p is in the opposite direction to its course round pqr, because the 
piece P acts on the points PBC and PQR with equal and opposite forces.

If we now consider the equilibrium of the point of concourse of QC and A, 
we shall find that we have determined two of these forces by the lines q and c, 
and that the third force must be represented by the line a which completes the 
triangle qca.

We have now constructed a complete diagram of forces, in which each 
force is represented by a single line, and in which the equilibrium of the forces 
meeting at any point is expressed visibly by the corresponding lines in the 
other figure forming a closed polygon.

There are in this figure six lines, having four points of concourse, and 
forming four triangles. To determine the direction of the force along a given 
line at any point of concourse, we must make a point travel round the cor
responding polygon in the other figure in a direction which is positive with 
respect to that polygon. For this purpose it is desirable to name the polygons 
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in a determinate order of their sides, so arranged that, when we arrive at the 
same side in naming the two polygons which it divides, we travel along it in 
opposite directions. For instance, if pqr be one of the polygons, the others are 
pbc, qca, rab.

Note.—It may be observed, that after drawing the lines p, q, r, b, c with 
the parallel ruler, the line a was drawn by joining the points of concourse of 
q, r and b, c; but, since it represents the force in A, a is parallel to A. 
Hence the following geometrical theorem:—

If the lines PQR, drawn from the angles of the triangle ABC, meet in a 
point, then if pqr be a triangle with its corresponding sides parallel to P, Q, R, 
and if a, b, c be drawn from its corresponding angles parallel to A, B, C, the 
lines a, b, c will meet in a point.

A geometrical proof of this is easily obtained by finding the centres of the 
four circles circumscribing the triangles ABC, AQR, BRP, CPQ, and joining 
the four centres thus found by six lines.

These lines meet in the four centres, and are perpendicular to the six 
lines, A, B, C; P, Q, R', but by turning them round 90° they become parallel 
to the corresponding lines in the original figure.

The diagram formed in this way is definite in size and position, but any 
figure similar to it is a reciprocal diagram to the original figure. I have 
explained the construction of this, the simplest diagram of forces, more at 
length, as I wish to shew how, after the first line is drawn and its extremities 
fixed on, every other line is drawn in a perfectly definite position by means of 
the parallel ruler.

In any complete diagram of forces, those forces which act at a given point 
in the frame form a closed polygon. Hence, there will be as many closed 
polygons in the diagram as there are points in the frame. Also, since each 
piece of the frame acts with equal and opposite forces on the two points which 
form its extremities, the force in the diagram will be a side of two different 
polygons. These polygons might be drawn in any positions relatively to each 
other; but, in the diagrams here considered, they are placed so that each force 
is represented by one line, which forms the boundary between the two polygons 
to which it belongs.

If we regard the polygons as surfaces, rather than as mere outlines, every 
polygon will be bounded at every point of its outline by other polygons, so
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that the whole assemblage of polygons will form a continuous surface, which 
must either be an infinite surface or a closed surface.

The diagram cannot be infinite, because it is made up of a finite number 
of finite lines representing finite forces. It must, therefore, be a closed surface 
returning on itself, in such a way that every point in the plane of the diagram 
either does not belong to the diagram at all, or belongs to an even number 
of sheets of the diagram.

Any system of polygons, which are in contact with each other externally, 
may be regarded as a sheet of the diagram. When two polygons are on the 
same side of the line, which is common to them, that line forms part of the 
common boundary of two sheets of the diagram. If we reckon those areas 
positive, the boundary of which is traced in the direction of positive rotation 
round the area, then all the polygons in each sheet will be of the same sign as 
the sheet, but those sheets which have a common boundary will be of opposite 
sign. At every point in the diagram there will be the same number of positive 
as of negative sheets, and the whole area of the positive sheets will be equal to 
that of the negative sheets.

The diagram, therefore, may be considered as a plane projection of a closed 
polyhedron, the faces of the polyhedron being surfaces bounded by rectilinear 
polygons, which may or may not, as far as we yet know, lie each in one plane.

Let us next consider the plane projection of a given closed polyhedron. 
If any of the faces of this polyhedron are not plane, we may, by drawing 
additional lines, substitute for that face a system of triangles, each of which is 
necessarily in a plane. We may, therefore, consider the polyhedron as bounded 
by plane faces. Every angular point of this polyhedron will be defined by its 
projection on the plane and its height above it.

Let us now take a fixed point, which we shall call the origin, and draw 
from it a perpendicular to the plane. We shall call this line the axis. If we 
then draw from the origin a line perpendicular to one of the faces of the poly
hedron, it will cut the plane at a point which may be said to correspond to the 
projection of that face. From this point draw a line perpendicular to the plane, 
and take on this line a point whose distance from the plane is equal to that 
of the intersection of the axis with the face of the polyhedron produced, but on 
the other side of the plane. This point in space will correspond to the face of 
the polyhedron. By repeating this process for every face of the polyhedron, we 
shall find for every face a corresponding point with its projection on the plane.
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To every edge of the polyhedron will correspond the line which joins the 
points corresponding to the two faces which meet in that edge. Each of these 
lines is perpendicular to the projection of the other; for the perpendiculars 
from the origin to the two faces, lie in a plane perpendicular to the edge in 
which they meet, and the projection of the line corresponding to the edge is 
the intersection of this plane with the plane of projection. Hence, the edge is 
perpendicular to the projection of the corresponding line. The projection of the 
edge is therefore perpendicular to the projection of the corresponding line, and 
therefore to the corresponding line itself. In this way we may draw a diagram 
on the plane of projection, every line of which is perpendicular to the corre
sponding line in the original figure, and so that lines which meet in a point 
in the one figure form a closed polygon in the other.

If, in a system of rectangular co-ordinates, we make z = 0 the plane of pro
jection, and x = 0, y = Q, z = c the fixed point, then if the equation of a plane be 

z = Ax + By+C, 
the co-ordinates of the corresponding point will be

£=cA, y = cB, £=-C, 
and we may write the equation

c (z + £) = x^+yy.
If we suppose g, y, £ given as the co-ordinates of a point, then this equa

tion, considering x, y, z as variable, is the equation of a plane corresponding 
to the point.

If we suppose x, y, z the co-ordinates of a point, and yy £ as variable, 
the equation will be that of a plane corresponding to that point.

Hence, if a plane passes through the point xyz, the point corresponding 
to this plane lies in the plane corresponding to the point xyz.

These points and planes are reciprocally polar in the ordinary sense with 
respect to the paraboloid of revolution

2cz = a:’ + y*.

We have thus arrived at a construction for reciprocal diagrams by con
sidering each as a plane projection of a plane-sided polyhedron, these polyhedra 
being reciprocal to one another, in the geometrical sense, with respect to a cer
tain paraboloid of revolution.

VOL. II. 22
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Each of the diagrams must fulfil the conditions of being a plane projection 
of a plane-sided polyhedron, for if any of the sides of the polyhedron of which 
it is the projection are not plane, there will be as many points corresponding 
to that side as there are different planes passing through three points of the 
side, and the other diagram will be indefinite.

Relation between the Number of Edges, Summits, and Faces of Polyhedra.

It is manifest that after a closed surface has been divided into separate 
faces by lines drawn upon it, every new line drawn from a point in the system, 
either introduces one new point into the system, or divides a face into two 
parts, according as it is drawn to an isolated point, or to a point already 
connected with the system. Hence the sum of points and faces is increased 
by one for every new line. If the closed surface is acyclic, or simply connected*, 
like that of a solid body without any passage through it, then, if from any 
point we draw a closed curve on the surface, we divide the surface into two 
faces. We have here one line, one point, and two faces. Hence, if e be the 
number of lines, s the number of points, and f the number of faces, then in 
general

e—s—f=m

* See Riemann, Crelle's Journal, 1857, Lehrsdtie aus der analysis situs, for space of two dimen
sions; also Cayley on the Partitions of a Close, Phil. Mag. 1861; Helmholtz, Crelle’s Journal, 1858, 
Wirbelbewegung, for the application of the idea of multiple continuity to space of three dimensions; 
J. B. Listing, Gottingen Trans., 1861, Der Census Haumlicher Complexe, a complete treatise on the 
subject of Cyclosis and Periphraxy.

On the importance of this subject see Gauss, IKerke, V. 605, “Von der Geometria Situs die 
Leibnitz ahnte und in die nur einem Paar Geometern (Euler und Vandermonde) einen schwachen 
Blick zu thun vergonnt war, wissen und haben wir nach anderthalbhundert Jahren noch nicht viel 
mehr wie nichts.”

Note added March 14, 1870.—Since this was written, I have seen Listing’s Census. In his 
notation, the surface of an n-ly connected body (a body with n — 1 holes through it) is (2n — 2) 
cyclic. If 2n — 2 = K, expresses the degree of cyclosis, then Listing’s general equation is—

» - (e - K,) + (/- X* + arg) -(y- K„ + w3 - w) = 0, 
where s is the number of points, e the number of lines, K, the number of endless curves, f the number 
of faces, At the number of degrees of cyclosis of the faces, w, the number of periphractic or closed 
faces, v the number of regions of space, Kt the number of degrees of cyclosis, zy their number of 
degrees of periphraxy or the number of regions which they completely surround, and to is to be put 
= 1 or = 0, according as the system does or does not extend to infinity.
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when m remains constant, however many lines be drawn. But in the case of a 
simple closed surface

m = — 2.
If the closed surface is doubly connected, like that of a solid body with a 

hole through it, then if we draw one closed curve round the hole, and another 
closed curve through the hole, and round one side of the body, we shall have 
e = 2, s=l, /=!, so that m = 0. If the surface is n-ly connected, like that of 
a solid with n — 1 holes through it, then we may draw n closed curves round 
the n — 1 holes and the outside of the body, and n — 1 other closed curves each 
through a hole and round the outside of the body.

We shall then have 4(n —1) segments of curves terminating in 2(n—1) 
points and dividing the surface into two faces, so that e = 4(n-l), s = 2(n —1), 
and f=2, and

e — s —/= 2n — 4, 
and this is the general relation between the edges, summits, and faces of a 
polyhedron whose surface is n-ly connected.

The plane reciprocal diagrams, considered as plane projections of such poly- 
hedra, have the same relation between the numbers of their lines, points, and 
polygons. It is manifest that since

Ci = e2, 5,=/, and/^s,,
where the suffixes refer to the first and second diagrams respectively

Mi = n„ 
or the two diagrams are connected to the same degree.

On the Degrees oj Freedom and Constraint of Frames.

To determine the positions of s points in space, with reference to a given 
origin and given axes, 3s data are required; but since the position of the origin 
and axes involve G data, the number of data required to determine the relative 
position of s points is 3s —6.

If, therefore, the lengths of 3s —6 lines joining selected pairs of a system 
of s points be given, and if these lengths are all independent of each other, then 
the distances between any other pair of points will be determinate, and the 
system will be rigidly connected.

22—2
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If, however, the lines are so chosen that those which join pairs of points of 
a system of / of the points are more than 3s' — 6 in number, the lengths of 
these lines will not be independent of each other, and the lines of this partial 
system will only give 3s' — 6 independent data to determine the complete system.

In a system of s points joined by e lines, there will in general be 3s —G —e 
=P degrees of freedom, provided that in every partial system of s' points joined 
by e lines, and having in itself p' degrees of freedom, p' is not negative. If in 
any such system p is negative, we may put q — —p, and call q the number of 
degrees of constraint, and there will be q equations connecting the lengths of 
the lines; and if the system is a material one, the stress along each piece will 
be a function of q independent variables. Such a system may be said to have 
(1 degrees of constraint. If p' is negative in any partial system, then the de
grees of freedom of the complete system are p— p', where p and p' are got 
from the number of points and lines in the complete and partial systems. If « 
points are connected by e lines, so as to form a polyhedron of f faces, enclosing 
a space n times connected, and if each of the faces has m sides, then

We have also 
and 

whence
* ' ' \ mJ

If all the faces of the polyhedron are triangles, m = 3, and we have

p = 6 (1 — n).

If n = l, or in the case of a simply connected polyhedron with triangular 
faces, p = o, that is to say, such a figure is a rigid system, which would be no 
longer rigid if any one of its lines were wanting. In such a figure, if made of 
material rods forming a closed web of triangles, the tensions and pressures in 
the rods would be completely determined by the external forces applied to the 
figure, and if there were no external force, there would be no stress in the rods.

In a closed surface of any kind, if we cover the surface*  with a system 
of curves which do not intersect each other, and if we draw another system

* On the Bending of Surfaces, by J. Clerk Maxwell. Cambridge Transactions, 1856. [Vol. I. p. 80.]

3s — e=p + 6, 

„ . 6



AND DIAGRAMS OF FORCES. 173

intersecting these, and a third system passing diagonally through the intersec
tions of the other two, the whole surface will be covered with small curvilinear 
triangles, and if we now substitute for the surface a system of rectilinear 
triangles having the same angular points, we shall have a polyhedron with 
triangular faces differing infinitely little from the surface, and such that the 
length of any line on the surface differs infinitely little from that of the corre
sponding line on the polyhedron. We may, therefore, in all questions about the 
transformation of surfaces by bending, substitute for them such polyhedra with 
triangular faces.

We thus find with respect to a simply connected closed inextensible surface 
—1st, That it is of invariable form*;  2nd, That the stresses in the surface 
depend entirely on the external applied forces]-; 3rd, That if there is no external 
force, there is no stress in the surface.

* This has been shewn by Professor Jellett, Trans. R.I.A., Vol. xxn. p. 377.
+ On the Equilibrium of a Spherical Envelope, by J. C. Maxwell. Quarterly Journal of Mathe

matics, 1867. [Vol. II. p. 86.]

In the limiting case of the curved surface, however, a kind of deformation 
is possible, which is not possible in the case of the polyhedron. Let us suppose 
that in some way a dimple has been formed on a convexo-convex part of the 
surface, so that the edge of the dimple is a plane closed curve, and the 
dimpled part is the reflexion in this plane of the original form of the surface. 
Then the length of any line drawn on the surface will remain unchanged.

Now let the dimple be gradually enlarged, so that its edge continually 
changes its position. Every line on the surface will still remain of the same 
length during the whole process, so that the process is possible in the case of 
an inextensible surface. In this way such a surface may be gradually turned 
outside in, and since the dimple may be formed from a mere point, a pressure 
applied at a single point on the outside of an inextensible surface will not be 
resisted, but will form a dimple which will increase till one part of the surface 
comes in contact with another.

In the case of closed surfaces doubly connected, p = — G, that is, such sur
faces are not only rigid, but are capable of internal stress, independent of 
external forces, and the expression of this stress depends on six independent 
variables.
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In a polyhedron with triangular faces, if a number of the edges be taken 
away so as to form a hole with ev sides, the number of degrees of freedom is

p = - Qn + 3.
Hence, in order to make an n-ly connected polyhedron simply rigid without 
stress, we may cut out the edges till we have formed a hole having 6n-3 
edges. The system will then be free from stress, but if any more edges be 
removed, the system will no longer be rigid.

Since in the limiting case of the inextensible surface, the smallest hole 
may be regarded as having an infinite number of sides, the smallest hole made 
in a closed inextensible surface connected to any degree will destroy its rigidity. 
Its flexibility, however, may be confined within very narrow limits.

In the case of a plane frame of s points, we have 2s data required to 
determine the points with reference to a given origin and axes; but since 3 
arbitrary data are involved in the choice of origin and axis, the number of 
data required to determine the relative position of s points in a plane is 2s —3.

If we know the lengths of e lines joining certain pairs of these points, 
then in general the number of degrees of freedom of the frame will be

p = 2s — e — 3.

If, however, in any partial system of s' points connected by e lines, the 
quantity p =2s -e -3 be negative, or in other words, if a part of the frame 
be self-strained, this partial system will contribute only 2s' — 3 equations inde
pendent of each other to the complete system, and the whole frame will have 
p—p' degrees of freedom.

In a plane frame, consisting of a single sheet, every element of which is 
triangular, and in which the pieces form three systems of continuous lines, as 
at p. 173, if the frame contains e pieces connecting s points, s' of which are 
on the circumference of the frame and s, in the interior, then

3s — s — e 4-3.

Hence p = — (s — s') = — s1(

a negative quantity, or such a frame is necessarily stiff; and if any of the 
points are in the interior of the frame, the frame has as many degrees of 
constraint as there are interior points—that is, the stresses in each piece will be 
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functions of s, variables, and s, pieces may be removed from the frame without 
rendering it loose.

If there are n holes in the frame, so that s' points lie on the circum
ference of the frame or on those of the holes, and s, points lie in the interior, 
the degree of stiffness will be

—p = Si + 3n.
If a plane frame be a projection of a polyhedron of f faces, each of m sides, 
and enclosing a space n times connected, then

mf = 2e, 
e — s—f=2n — 4, 

2s — e =p 4- 3, 

whence p = 5 - 4n+fl--'U
\ m/

If all the faces are quadrilaterals m=4 and p = 5 — 4n, or a plane frame which 
is the projection of a closed polyhedron with quadrilateral faces, has one degree 
of freedom if the polyhedron is simply connected, as in the case of the pro
jection of the solid bounded by six quadrilaterals, but if the polyhedron be 
doubly connected, the frame formed by its plane projection will have three 
degrees of stiffness. (See Diagram II.)

Theorem. If every one of a system of points in a plane is in equilibrium 
under the action of tensions and pressures acting along the lines joining the 
points, then if we substitute for each point a small smooth ring through which
smooth thin rods of indefinite length corresponding to the lines are compelled
to pass, then, if to each rod be applied a couple in the plane, whose moment 
is equal to the product of the length of the rod between the points multiplied 
by the tension or pressure in the former case, and tends to turn the rod in
the positive or the negative direction, according as the force was a tension or
a pressure, then every one of the system of rings will be in equilibrium. For 
each ring is acted on by a system of forces equal to the tensions and pres
sures in the former case, each to each, the whole system being turned round 
a right angle, and therefore the equilibrium of each point is undisturbed.

Theorem. In any system of points in equilibrium in a plane under the 
action of repulsions and attractions, the sum of the products of each attraction-
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multiplied by the distance of the points between which it acts, is equal to 
the sum of the products of the repulsions multiplied each by the distance of 
the points between which it acts.

For since each point is in equilibrium under the action of a system of 
attractions and repulsions in one plane, it will remain in equilibrium if the 
system of forces is turned through a right angle in the positive direction. If 
this operation is performed on the systems of forces acting on all the points, 
then at the extremities of each line joining two points we have two equal 
forces at right angles to that line and acting in opposite directions, forming 
a couple whose magnitude is the product of the force between the points and 
their distance, and whose direction is positive if the force be repulsive, and 
negative if it be attractive. Now since every point is in equilibrium these two 
systems of couples are in equilibrium, or the sum of the positive couples is 
equal to that of the negative couples, which proves the theorem.

In a plane frame, loaded with weights in any manner, and supported by 
vertical thrusts, each weight must be regarded as attracted towards a horizontal 
base line, and each support of the frame as repelled from that line. Hence 
the following rule;

Multiply each load by the height of the point at which it acts, and each 
tension by the length of the piece on which it acts, and add all these 
products together.

Then multiply the vertical pressures on the supports of the frame each by 
the height at which it acts, and each pressure by the length of the piece on 
which it acts, and add the products together. This sum will be equal to the 
former sum.

If the thrusts which support the frame are not vertical, their horizontal 
components must be treated as tensions or pressures borne by the foundations 
of the structure, or by the earth itself.

The importance of this theorem to the engineer arises from the circum
stance that the strength of a piece is in general proportional to its section, so 
that if the strength of each piece is proportional to the stress which it has 
to bear, its weight will be proportional to the product of the stress multiplied 
by the length of the piece. Hence these sums of products give an estimate of 
the total quantity of material which must be used in sustaining tension and 
pressure respectively.
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The following method of demonstrating this theorem does not require the 
consideration of couples, and is applicable to frames in three dimensions.

Let the system of points be caused to contract, always remaining similar 
to its original form, and with its pieces similarly situated, and let the same 
forces continue to act upon it during this operation, so that every point is 
always in equilibrium under the same system of forces, and therefore no work 
is done by the system of forces as a whole.

Let the contraction proceed till the system is reduced to a point. Then 
the work done by each tension is equal to the product of that tension by the 
distance through which it has acted, namely, the original distance between the 
points. Also the work spent in overcoming each pressure is the product of 
that pressure by the original distance of the points between which it acts; and 
since no work is gained or lost on the whole, the sum of the first set of 
products must be equal to the sum of the second set. In this demonstration 
it is not necessary to suppose the points all in one plane. This demonstration 
is mathematically equivalent to the following algebraical proof:—

Let the co-ordinates of the n different points of the system be xy^, 
x^y^, xpypzp, &c., and let the force between any two points p, q, be Ppq) 
and their distance rM, and let it be reckoned positive when it is a pressure, 
and negative when it is a tension, then the equation of equilibrium of any 
point p with respect to forces parallel to x is

~x^+ (xp ~x^+ &c. + (xp -Xv)^ + &c. = 0,

or generally, giving t all values from 1 to n,

Multiply this equation by xp. There are n such equations, so that if each is 
multiplied by its proper co-ordinate and the sum taken, we get

and adding the corresponding equations in y and z, we get

^ptrpt) — ^>

which is the algebraic expression of the theorem.
VOL. II. 23
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General Theory of Diagrams of Stress in Three Dimensions.

First Method of Representing Stress in a Body.

Definition. A diagram of stress is a figure having such a relation to a 
body under the action of internal forces, that if a surface A, limited by a 
closed curve, is drawn in the body, and if the corresponding limited surface a 
be drawn in the diagram of stress, then the resultant of the actual internal 
forces on the positive side of the surface A in the body is equal and parallel 
to the resultant of a uniform normal pressure p acting on the positive side of 
the surface a in the diagram of stress.

Let x, y, z be the co-ordinates of any point in the body, £, £ those of
the corresponding point in the diagram of stress, then £ y, £ are functions of 
x> y, z, the nature of which we have to ascertain, so that the internal forces 
in the body may be in equilibrium. For the present we suppose no external 
forces, such as gravity, to act on the particles of the body. We shall consider 
such forces afterwards.

Theorem I. If any closed surface is described in the body, and if the stress 
on any element of that surface is equal and parallel to the pressure on the 
corresponding element of surface in the diagram of stress, then the resultant stress 
on the whole closed surface will vanish; for the corresponding surface in the 
diagram of stress is a closed surface, and the resultant of a uniform normal 
pressure p on every element of a closed surface is zero by hydrostatics.

It does not, however, follow that the portion of the body within the 
closed surface is in equilibrium, for the stress on its surface may have a re
sultant moment.

Theorem 2.—To ensure equilibrium of every part of the body, it is neces
sary and sufficient that

_dF dF
dx' V~dy’ ^~dz’

where F is any function of x, y, and z.
Let us consider the elementary area in the body dydz. The stress acting 

on this area will be a force equal and parallel to the resultant of a pressure p 
acting on the corresponding element of area in the diagram of stress. Resolving
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this pressure in the directions of the co-ordinate axes, we find the three com
ponents of stress on dydz, which we may call p^ydz, p^dydz, and p„dydz, 
each equal to p multiplied by the area of the projection of the corresponding 
element of the diagram of stress on the three co-ordinate planes. Now, the 
projection on the plane yz, is

/dy d£ dy dt\ , ,
\dy dz dz dy) Z'

Hence we find for the component of stress in the direction of x 
n =n((h(H dyd£\ 
lxx 1\dydz~ dzdy) ’

which we may write for brevity at present
pzx=pJ(y, C; y, z).

Similarly, 
P^pJ^ V, z\ p^pJ^, y\ y, z).

In the same way, we may find the components of stress on the areas 
dzdx and dxdy—

Pvz=pJ^> z> x)> Pw=PJ^ x), PVi=pJ^, y‘, z, x), 
Pzz=PJ(p> x> y\ Ptv=PJ& x> y), pa = pj^, y; x, y).

Now, consider the equilibrium of the parallelepiped dxdydz, with respect 
to the moment of the tangential stresses about its axes.

The moments of the forces tending to turn this elementary parallelepiped 
about the axis of x are

dzdxpyz. dy - dxdypzy . dz.
To ensure equilibrium as respects rotation about the axis of x, we must have

Pyz = Pw
Similarly, for the moments about the axes of y and z, we obtain the equa
tions

Pzx~Pxi and p^p^
Now, let us assume for the present

dx ”
^-=Bt+C„
dy 8 ”

^ = B.-C„ 
dz

dx-^ ”
ch = A 
dy

^ = Bl+C1, 
dz

dx dy
^ = A 
dz ’•

23—2
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Then the equation pVz=Pw becomes

or

p = p (dC _ dl di\
“ \dz dx dxdz) 1 \dxdy dydx)

& - C,) (B, - C) - A {B. + = (Bt + Q (B, + Q - A. (B, - C,),
0 = ^IC'I + 7?3C3 + Z?aCs.

Similarly, from the two other equations of equilibrium we should find
Q = A3Ci + B1Ca + BsC1, 
0=AiCt+BtCl+BlCr

From these three equations it follows that^ = 0, C2 = 0, Cs = o.
Hence dv = dZ dC = d^ d^ _d^

dz dy’ dx dz’ dy~dx’
and {dx + ydy+^dz is a complete differential of some function, F, of x, 
whence it follows that

y and z.

t_dF dF y dF 
dx’ v dy’ dz’

F may be called the function of stress, because when it is known, the diagram 
of stress may be formed, and the components of stress calculated. The form 
of the function F is limited only by the conditions to be fulfilled at the 
bounding surface of the body.

The six components of stress expressed in terms of F are
P =p[il.(^_(d^y\ _n[d'Fd'F (d'F\'\ (d'F dF' (#F\A 

p\d^ \dydzH’Pw-p\dz^-\d^)\’P^P[^d^-^

p =p(^±F_d'F d?F\ (d'F d'F d'F d'F \
' \dzdxdxdy d^dydz)’ln P \dxdy dydz dtf d^) ’

/ d'F d'F _ d'F d'F \ 
P \dydz dzdx dz' dxdy) '

If dz=Z‘ F becomes Airy’s Unction of stress in two dimensions, and we have

d’F d'F p
p,=p^ p^-p^-

The system of stress in three dimensions deduced in this way from any 
function, F, satisfies the equations of equilibrium of internal stress. It is not, 
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however, a general solution of these equations, as may be easily seen by taking 
the case in which p„ and pyt are both zero at all points. In this c;me, since 
there is no tangential action in planes parallel to xy, the stresses p^ and 
pm in each stratum must separately fulfil the conditions of equilibrium, 

d . d n d , d 
dxPac^dyPtv~^' diPxv + tyPm = ()'

L’he complete solution of these equations is, as we have seen, 
cP/ dy dy

Pxx~dy" P*-~fady> P^3af'

where y is any function of x and y, the form of which may be different for 
every diffeient value of z, so that we may regard f as a perfectly general 
function of x, y, and z.

Again, if we consider a cylindrical portion of the body with its generating 
lines parallel to z, we shall see that there is no tangential action parallel to z 
between this cylinder and the rest of the body. Hence the longitudinal stress 
in this cylinder must be constant throughout its length, and is independent of 
the stress in any other part of the body.

Hence PU = <HX> y),
where </> is a function of x and y only, but 
expressing the stresses in terms of F under 
find that if F is a perfectly general function of

dF - n a d"F dxdz ’ and dydz~®'

may be any such function. But 
the conditions p„ = 0, pyl = Q, we 
® and y

whence it follows that — nnd dF e
dx dy are functions of x and y only, and that

is a function of z only. Hence

F=G + Z,
when G is a function of x and y only and 7 n r e
components of stress are a funch°n « only, and the

„ _&Gd'Z 
dy1 dz' lm~Pd^d^i P“~p {d^G d'G

[c/x’ dy‘
Pv, = 0,

d'G y] 
sixdy) J

Pzz=Q, d'G d'Z = — p-j-- , -7-
dxdy dz1 ’
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Here the function f which determines the stress in the strata parallel to xy is

Now, this function is not sufficiently general, for instead of being any 
function of x, y, and z, it is the product of a function of x and y multiplied 
by a function of z.

Besides this, though the value of pa is, as it ought to be, a function of x 
and y only, it is not of the most general form, for it depends on G, the 
function which determines the stresses p„, p^ and Pvv, whereas the value of 
Pa may be entirely independent of the values of these stresses. In fact, the 
equations give

\dz'j '
This method, therefore, of representing stress in a body of three dimen

sions is a restricted solution of the equations of equilibrium.

On Reciprocal Diagrams in Three Dimensions.

Let us consider figures in two portions of space, which we shall call respec
tively the first and the second diagrams. Let the co-ordinates of any point in 
the first diagram be denoted by x, y, z, and those of the corresponding point in 
the second by £ y, C measured in directions parallel to x, y, z respectively. 
Let F be a quantity varying from point to point of the first figure in any 
continuous manner; that is to say, if A, B are two points, and R, F„ the 
values of F at those points; then, if B approaches A without limit, the value 
of R approaches that of Ft without limit. Let the co-ordinates (£ Q of a 
point in the second diagram be determined from x, y, z, those of the corre
sponding point in the first by the equations

= dF dF
dx’ dy ’ dz (1).

This is equivalent to the statement, that the vector (p) of any point in the 
second diagram represents in direction and magnitude the rate of variation of F 
at the corresponding point of the first diagram.
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Next, let us determine another function, </>, from the equation 
+ = ........................................ (2),

</>, as thus determined, will be a function of x, y, and z, since £ y, C are 
known in terms of these quantities. But, for the same reason, is a function 
of £ y, C Differentiate $ with respect to £ considering x, y, and z functions 
of V, C

^-x + ^dx^dy .[dz dF 
dC ^driCdf'

Substituting the values of £ y, C from (1)
d^ = ,x,dF dx dF dy’ dF dz dF 
d^ dx d^ dy dr dz d^~ d^

, dF dF
~X + d(~d{
— X.

Differentiating </> with respect to y and £, we get the three equations 
x^ ^-d^

d^ y~dy‘ Z~d(, (3),

or the vector (r) of any point in the first diagram represents in direction and 
magnitude the rate of increase of </> at the corresponding point of the second 
diagram.

Hence the first diagram may be determined from the second by the same 
process that the second was determined from the first, and the two diagrams, 
each with its own function, are reciprocal to each other.

The relation (2) between the functions expresses that the sum of the func
tions for two corresponding points is equal to the product of the distances of 
these points from the origin multiplied by the cosine of the angle between the 
directions of these distances.

Both these functions must be of two dimensions in space. Let F be a 
linear function of xyz, which has the same value and rate of variation as F 
has at the point

.................
Ihe value of F orjgin jg f0Und by putting x, y, and z = o

F = Fo-x9ryoy-^= ~<!>................................. (5),
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or the value of at the origin is equal and opposite to the value of </> at 
the point f, y, £.

If the rate of variation of F is nowhere infinite, the co-ordinates £ £, 
of the second diagram must be everywhere finite, and vice versa. Beyond the 
limits of the second diagram the values of x, y, z, in terms of £ y, must 
be impossible, and therefore the value of </> is also impossible. Within the 
limits of the second diagram, the function </> has an even number of values at 
every point, corresponding to an even number of points in the first diagram, 
which correspond to a single point in the second.

To find these points in the first diagram, let p be the vector of a given 
point in the second diagram, and let surfaces be drawn in the first diagram 
for which F is constant, and let points be found in each of these surfaces at 
which the tangent plane is perpendicular to p, these points will form one or 
more curves, which must be either closed or infinite, and the points on these 
curves correspond to the points in the second diagram which lie in the 
direction of the vector p. If p be the perpendicular from a point in the first 
diagram on a plane through the origin perpendicular to p, then all those points 

on these curves at which -. = p correspond to the given point in the second 

diagram. Now, since this point is within the second diagram, there are values
dFof p both greater and less than the given one; and therefore is 

absolute maximum nor an absolute minimum value. Hence there are 

neither an 

in general
an even number of points on the curve or curves which correspond to the 
given point. Some of these points may coincide, but at least two of them 
must be different, unless the given point is at the limit of the second diagram.

Let us now consider the two reciprocal diagrams with their functions, and 
ascertain in what the geometrical nature of their reciprocity consists.

(1) Let the first diagram be simply the point Pu (x„ yu z,), at which 
F=FU then in the other diagram

= x^+y.y+z^-F,

or a point in one diagram is reciprocal to a space in the other, in which the 
function </> is a linear function of the co-ordinates.
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(2) Let the first diagram contain a second point P3, (x3, yv at which 
F—F„ then we must combine equation (G) with

^=x3^y3y+z3t-F3..................................... (7),
whence eliminating

fa-x3) £+ fa—y3)y + fa-zj t = Fx-Fv

If rn is the length of the line drawn from the first point Px to the second 
P,; and if laml3nl3 are its direction cosines, this equation becomes

l^+muy+n13C=F^, 
'12

or the reciprocal of the two points Px and P3 is a plane, perpendicular to the 
line joining them, and such that the perpendicular from the origin on the plane 
multiplied by the length of the line PXP3 is equal to the excess of F. over F,.

(3) Let there be a third point P3 in the first diagram, whose co-ordinates 
are x„ y3, z, and for which F=F3\ then we must combine with equations (G) 
and (7)

= xa^ + y3y 4- z& - F3......................................(8).

The reciprocal of the three points P„ P3, P, is a straight line perpen
dicular to the plane of the three points, and such that the perpendicular on 
this line from the origin represents, in direction and magnitude, the rate of 
most rapid increase of F in the plane PXP3P3, F being a linear function of the 
co-ordinates whose values at the three points are those given.

(4) Let there be a fourth point Pt for which F=FV

The reciprocal of the four points is a single point, and the line drawn
from the origin to this point represents, in direction and magnitude, the rate
of greatest increase of F, supposing F such a linear function of xyz that its
values at the four points are those given. The value of at this point is
that of F at the origin.

Let us next suppose that the value of F is continuous, that is, that F 
does not vary by a finite quantity when the co-ordinates vary by infinitesimal 
quantities, but that the form of the function </> is discontinuous, being a different 
linear function of xyz in different parts of space, bounded by definite surfaces.

VOL. II. 24
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The bounding surfaces of these parts of space must be composed of planes. 
For let the linear functions of xyz in contiguous portions of space be

F. = ajc + + y^ _
then at the bounding surface, where F^ — F.

+ + ................... (9^
and this is the equation of a plane.

Hence the portion of space in which any particular form of the value of F 
holds good must be a polyhedron or cell bounded by plane faces, and therefore 
having straight edges meeting in a number of points or summits.

Every face is the boundary of two cells, every edge belongs to three or 
more cells, and to two faces of each cell.

Every summit belongs to at least four cells, to at least three faces of each 
cell, and to two edges of each face.

The whole space occupied by the diagram is divided into cells in two 
different ways, so that every point in it belongs to two different cells, and 
has two values of F and its derivatives.

The reciprocal diagram is made up of cells in the same way, and the 
reciprocity of the two diagrams may be thus stated :—

1. Every summit in one diagram corresponds to a cell in the other.
The radius vector of the summit represents the rate of increase of the 

function within the cell, both in direction and magnitude.

The value of the function at the summit is equal and opposite to the 
value which the function in the cell would have if it were continued under the 
same algebraical form to the origin.

2. Every edge in the one diagram corresponds to a plane face in the 
other, which is the face of contact of the two cells corresponding to the two 
extremities of the edge.

The edge in the one diagram is perpendicular to the face in the other.
The distance of the plane from the origin represents the rate of increase 

of the function along the edge.
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3. Every face in the one diagram corresponds to an edge in which as 
many cells meet as there are angles in the face, that is, at least three. Every 
face must belong to two, and only two cells, because the edge to which it 
corresponds has two, and only two extremities.

4. Every cell in the one diagram corresponds to a summit in the other. 
Every face of the cell corresponds and is perpendicular to an edge having an 
extremity in the summit. Since every cell must have four or more faces, every 
summit must have four or more edges meeting there.

Every edge of the cell corresponds to a face having an angle in the summit. 
Since every cell has at least six edges, every summit must be the point of 
concourse of at least six faces, which are the boundaries of cells.

Every summit of the cell corresponds to a cell having a solid angle at 
the summit. Since every cell has at least four summits, every summit must be 
the meeting place of at least four cells.

Mechanical Reciprocity of the Diagrams.

If along each of the edges meeting in a summit forces are applied pro
portional to the areas of the corresponding faces of the cell in the reciprocal 
diagram, and in a direction which is always inward with respect to the cell, 
then these forces will be in equilibrium at the summit.

This is the “Polyhedron of Forces,” and may be proved by hydrostatics.
If the faces of the cell form a single closed surface which does not inter

sect itself, it is easy to understand what is meant by the inside and outside 
of the cell; but if the surface intersects itself, it is better to speak of the 
positive and negative sides of the surface. A cell, or portion of a cell, bounded 
by a closed surface, of which the positive side is inward, may be called a 
positive cell. If the surface intersects itself, and encloses another portion of 
space with its negative side inward, that portion of space forms a negative cell. 
If any portion of space is surrounded by n sheets of the surface of the same 
cell with their positive side inward, and by m sheets with their negative side 
inward, the space enclosed in this way must be reckoned n — m times.

In passing to a contiguous cell, we must suppose that its face in contact 
with the first cell has its positive surface on the opposite side from that of 

24—2
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the first cell. In this way, by making the positive side of the surface con
tinuous throughout each cell, and by changing it when we pass to the next 
cell, we may settle the positive and negative side of every face of every cell, 
the sign of every face depending on which of the two cells it is considered 
for the moment to belong to.

If we now suppose forces of tension or pressure applied along every edge of 
the first diagram, so that the force on each extremity of the edge is in the 
direction of the positive normal to the corresponding face of the cell corre
sponding to that extremity, and proportional to the area of the face, then these 
pressures and tensions along the edges will keep every point of the diagram 
in equilibrium.

Another way of determining the nature of the force along any edge of 
the first diagram, is as follows :—

Round any edge of the first diagram draw a closed curve, embracing it 
and no other edge. However small the curve is, it will enter each of the 
cells which meet in the edge. Hence the reciprocal of this closed curve will 
be a plane polygon whose angles are the points reciprocal to these cells taken 
in order. The area of this polygon represents, both in direction and magnitude, 
the whole force acting through the closed curve, that is, in this case the stress 
along the edge. If, therefore, in going round the angles of the polygon, we 
travel in the same direction of rotation in space as in going round the closed 
curve, the stress along the edge will be a pressure; but if the direction is 
opposite, the stress will be a tension.

This method of expressing stresses in three dimensions comprehends all 
cases in which Rankine’s reciprocal figures are possible, and is applicable to 
certain cases of continuous stress. That it is not applicable to all such cases 
is easily seen by the example of p (189).

On Reciprocal Diagrams in two Dimensions.

If we make F a function of x and y only, all the properties already 
deduced for figures in three dimensions will be true in two; but we may form 
a more distinct geometrical conception of the theory by substituting cz for F
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and c£ for </>. 
diagrams

We have then for the equations of relation between the two

dz 
dx ’ ^dy

dt, 
X~CT^ dy

..................................................... (io).
dz'

xg+yy = cz + cC

These equations are equivalent to the following definitions :__
Let z in the first diagram be given as a function of x and y, z will lie 

on a surface of some kind. Let x„ y0 be particular values of x and y, and 
let za be the corresponding value of z. Draw a tangent plane to the surface at 
the point xt, y0, zQ, and from the point f=0, ^ = 0, £ = — c; in the second 
diagram draw a normal to this tangent plane. It will cut the plane £ = 0 at 
the point & y corresponding to xy, and the value of £ is equal and opposite 
to the segment of the axis of z cut off by the tangent plane. The two 
surfaces may be defined as reciprocally polar (in the ordinary sense) with respect 
to the paraboloid of revolution

a’ + y* = 2cz..................  (11),

and the diagrams are the projections on the planes of xy and £y of points and 
lines on these surfaces.

If one of the surfaces is a plane-faced polyhedron, the other will also be a 
plane-faced polyhedron, every face in the one corresponding to a point in the 
other, and every edge in the one corresponding to the line joining the points 
corresponding to the faces bounded by the edge. In the projected diagrams 
every line is perpendicular to the corresponding line, and lines which meet in 
a point in one figure form a closed polygon in the other.

These are the conditions of reciprocity mentioned at p. 169, and it now 
appears that if either of the diagrams is a projection of a plane-faced poly
hedron, the other diagram can be drawn. If the first diagram cannot be a 
projection of a plane-faced polyhedron, let it be a projection of a polyhedron 
whose faces are polygons not in one plane. These faces must be conceived to 
be filled up by surfaces, which are either curved or made up of different plane 
portions. In the first case the polygon will correspond not to a point, but to 



190 RECIPROCAL FIGURES, FRAMES,

a finite portion of a surface; in the second, it will correspond to several points, 
so that the lines, which correspond to the edges of such a polygon, will termi
nate in several points, and not in one, as is necessary for reciprocity.

Second Method of representing Stress in a Body.

Let a, b be any two consecutive points in the first diagram, distant s, 
and a, /3 the corresponding points in the second, distant a, then if the direc
tion cosines of the line ab are I, in, n and those of a/3, X, p, v

. , d^ dt- dfak = sl ~ + sin -f - +sn ~dx dy dz
,dn dp dr>an = st -f-+ sm+ sn dx dy dz ‘................................ (12).

7, d£av = st^r+ sm ~+sn ~ dx dy dz
Hence

+ lm + ....... (13).\dy dx] ' '

If we put lX + mp + nv-cose, where e is the angle between s and a, and if 
we take three sets of values of I, m, n, corresponding to three directions at 
right angles to each other, we find

~ cos e, + ~ cos e, + — cos e.
*1

+ + ^F
dx dy dz dx2 dy^ dz* (14).

Hence this quantity depends only on the position of the point, and not 
on the directions of s„ su s„ or of x, y, z, let us call it ^'F.

Now, let us take an element of area perpendicular to s, and let us sun 
pose that the stress on this element is compounded of a normal pressure 

and a tension parallel to a- and equal to p - .
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By the rules for the composition of stress, we have for the components 
of the force on this element, in terms of the six components of stress

X = lpxx + mp^ + np„ = p Ib'F-X ?
s,

= Ip** + mPw + nPvt =p (m^F-u - 
\ s (15).

Z = lp„ + mpvl + npa = p ( n&F-v- 
\ s

Hence,

Pxx =p (^F—
\ dx,

/A2r, d'F 
=p =v(—+™X\

P\dy' + dz')

Pxx P Pm~P( > P»=p

d'F 
p*~ pdxdy’

By substituting these

d'F d'F 
. da? + dy\

v -_nd'F diF
P“~ Pdzdx' P-^-P^Ty 

values in the equations of equilibrium 
. dP*y ,dp„

dx + d7+dr=0’ &c.................... (17).
it is manifest that they are fulfilled for any value of F.

The most general solution 
in the values

of these equations of equilibrium is contained

_d?B d'C d'C d'A 
P-~dz'+dy" P^d^ + ^>

lvl dydz' 1” dzdx>

d'A d'B\
1>u~ dy' + d^ 

d'C
Pxv~ dxdy

(18).

By making ABC pF we get a case which, though restricted in its 
generality, has remarkable properties with respect to diagrams of stress. We 
have seen that a distribution of stress according to the definition above (16), 
is consistent with itself, and will keep a body in equilibrium. Since the 
stresses are linear functions of F, any two systems of stress can be compounded 
by adding their respective functions, a process not applicable to the first method 
of representation by areas.

Let us ascertain what kind of stress is represented in this way in the 
case of the system of cells already considered.
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Since F in each cell is a linear function of x, y, z, there can be no stress 
at any point within it. Let us take a and b two contiguous points in different 
cells, then a and ft will be the points at a finite distance to which these cells 
are reciprocal, and ^F=-^, which becomes infinite when ab vanishes.

ab
If a and b are in the surface bounding the cells, a and /3 coincide. Hence 

there is a stress in this surface, uniform in all directions in the plane of the 
surface, and such that the stress across unit of length drawn on the surface is 
proportional to the distance between the points which are reciprocal to the two 
cells bounded by the surface, and this stress is a tension or a pressure according 
as the two points are similarly or oppositely situated to the two cells.

The kind of equilibrium corresponding to this case is therefore that of a 
system of liquid films, each having a tension like that of a soap bubble, 
depending on the nature of the fluid of which it is composed. If all the films 
are composed of the same fluid, their tensions must be equal, and all the edges 
of the reciprocal diagram must be equal.

On Airy's Function of Stress.

Mr Airy, in a paper “On the Strains in the Interior of Beams*, ” was, I 
believe, the first to point out that, in any body in equilibrium under the action 
of internal stress in two dimensions, the three components of the stress in any 
two rectangular directions are the three second derivatives, with respect to these 
directions, of a certain function of the position of a point in the body.

* Phil. Trans. 1863.

This important simplification of the theory of the equilibrium of stress in 
two dimensions does not depend on any theory of elasticity, or on the mode 
in which stress arises in the body, but solely on the two conditions of equi
librium of an element of a body acted on only by internal stress

d d n 3 d d n v
dx^+d^0’ and ................... <19)’

whence it follows that
d’F d’F , _d’F ..

Pxx~df' Pxy~ dxdy' p<^ dx?...........W’
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where F is a function of x and y, the form of which is (as far as these 
equations are concerned) perfectly arbitrary, and the value of which at any 
point is independent of the choice of axes of co-ordinates. Since the stresses 
depend on the second derivatives of F, any linear function of x and y may be 
added to F without affecting the value of the stresses deduced from F. Also 
since the stresses are linear functions of F, any two systems of stress may be 
mechanically compounded by adding the corresponding values of F.

Ihe importance of Airys function in the theory of stress becomes even 
more manifest when we deduce from it the diagram of stress, the co-ordinates 
of whose points are

e_dF „ . dF 
and ........ ....................... (21).

for if s be the length of any curve in the original figure, and a that of the 
corresponding curve in the diagram of stress, and if Xds, Yds are the com
ponents of the whole stress acting on the element ds towards the right hand 
of the curve s

_ d^F dy . d^ dy , d^ .

and Y<h=-p„'^dS=-^^<ls^^ds^d ............... <22)'
ds dx1 ds dx ds da

Hence the stress on the right hand side of the element ds of the original 
curve is represented, both in direction and magnitude, by the corresponding 
element da of the curve in the diagram of stress, and, by composition, the 
resultant stress on any finite arc of the first curve s is represented in direction 
and magnitude by the straight line drawn from the beginning to the end of 
the corresponding curve a.

If P» P, are the principal stresses at any point, and if P^ is inclined a 
to the axis of x, then the component stresses are

VOL. II.

Pxx = P} cos’ a + Pa sin2 a ■ 
Pxy = {P1 — P,) sin a cos a ■ 
Pw = Pj sin2 a 4- P^ cos2 a.

(23).

25
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Hence tan 2a =

PF
_pTV dxdy

Pxx -pn “ d:F _d:F 
da? dy*

• . n , d'F PF
x + Pxx+Pyy~dP+dy> 

P^p^-p^™™

(24).

Consider the area bounded by a closed curve s, and let us determine the sur
face integral of the sum of the principal stresses over the area within the curve. 
The integral is

....................... (25).

By a well-known theorem, corresponding in two dimensions to that of Green in 
three dimensions, the latter expression becomes, when once integrated,

dF dx dF dy 
~dy ds dx ds

or f/..dx dy\ .
.............................W-

These line integrals are to be taken round the closed curve s. If we take 
a point in the curve s as origin in the original body, and the corresponding 
point in a as origin in the diagram of stress, then £ and y are the compo
nents of the whole stress on the right hand of the curve from the origin to 
a given point. If p denote the line joining the origin with the point gy, then 
p will represent in direction and magnitude the whole stress on the arc a.

The line integral may now be interpreted as the work done on a point 
which travels once round the closed curve s, and is everywhere acted on by a 
force represented in direction and magnitude by p. We may express this 
quantity in terms of the stress at every point of the curve, instead of the 
resultant stress on the whole arc, as follows:

For integrating (27) by parts it becomes,
- [(a + y ds = - f(Xx +Yy)ds........................(28),
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or if Rds is the actual stress on ds, and r is the radius vector of ds and 
if R makes with r an angle e, we obtain the result

JKPj +Pa) dxdy = - ^Rr cos e. ds........................... ^9)

This line integral, therefore, which depends only on the stress acting on 
the closed curve s, is equal to the surface integral of the sum of the principal 
stresses taken over the whole area within the curve.

If there is no stress on the curve s acting from without, then the surface 
integral vanishes. This is the extension to the case of continuous stress of the 
theorem, given at p. 176, that the algebraic sum of all the tensions multiplied 
each by the length of the piece in which it acts is zero for a system in 
equilibrium. In the case of a frame, the stress in each piece is longitudinal, 
and the whole pressure or tension of the piece is equal to the longitudinal 
stress multiplied by the section, so that the integral H^P^ PJ dxdy for each 
piece is its tension multiplied by its length.

If the closed curve s is a small circle, the corresponding curve a will be 
an ellipse, and the stress on any diameter of the circle will be represented in 
direction and magnitude by the corresponding diameter of the ellipse. Hence, 
the principal axes of the ellipse represent in direction and magnitude the prin
cipal stresses at the centre of the circle.

Let us next consider the surface integral of the product of the principal 
stresses at every point taken over the area within the closed curve s.

.............(30)

= (h\ i 7
J J \dx dy dy dx) X 

or by transformation of variables
= ^dy.

Hence the surface integral of the product of the principal stresses within 
the curve is equal to the area of the corresponding curve o- in the diagram of 
stress, and therefore depends entirely on the external stress on the curve s. 
Ihis is seen from the construction of the curve o- in the diagram of stress, 
since each element da- represents the stress on the corresponding element ds of 
the original curve.

25—2
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of t “ eqUatiOn8 °f “ of the body by § W

dP dU dT 
dx dy dz 
^U.dQ dS 
dx dy dz 
dTdSdIi 
dx dy dz

If we assume three functions A, B, C, such that

and put

s=_fA
dydz'

x_dV
d^'

T~ — d 
dzdx ’

y_d7 
dy'

U--™
dxdy

7 dV 
Z~ dz

(2),

then a sufficiently general solution of the eauations nf tk • •
putting U equations ot equilibrium is given by

dz' dy

' Ji" * (3).

R^^-V 
dy* da?

I am not awaie of any method of finding other relations between the com
ponents of stress without making further assumptions. The most natural assump
tion to make is that the stress arises from elasticity in the body. I shall 
confine myself to the case of an isotropic body, such that it can be deprived 
of all stress and strain by a removal of the applied forces. In this case, if 
a, fl, y are the components of displacement, and n the coefficient of rigidity, 
the equations of tangential elasticity are, by equation (G), §§ G70 and G94 of 
Thomson and Tait,

a = (J^ + d7 = lS= 1 d'A
dz dy n 11 dydz (4),
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with similar equations for & and c. A sufficiently general solution of these 
equations is given by putting

(5).

The equations of longitudinal elasticity are of the form given in § G93,
P = (k + W^- + (k-$n) + ........................... (6),

' d ' dx ' 3 ' \dy dz) x '

where k is the co-efficient of cubical elasticity, with similar equations for Q 
and R. Substituting for P, a, ft and y in equation (6) their values from (3) 
and (5),

2n
PB PC 

b dz’ + dy*
PA _PB 
dx? dx?

_d?C\ 
dx?)
PB _PC _PA PC _P A _PB\ 
, dy* dy* dy* dz* dz* dz? / *

If we put
d*A d*B d*C , d* d* P 

and

this equation becomes

(k + 3 «) + ^P + △’£) - (k + ^n) 2p-2nV = 2n^A................ (7).

We have also two other equations differing from this only in having Ji 
and C instead of A on the right hand side. Hence equating the three expres
sions on the right hand side we find

PA = ^B = ^-C=D\ say, ................................. (8),

(& + n) 2p = (3k + 2n) 3D’ - tn V............................... (9),

P+Q + R^ = 6k ............................ (io).
2 3k 4- n 3k 4- 2n

1 hese equations are useful when we wish to determine the stress rather 
than the strain in a body. For instance, if the co-efficients of elasticity, k 
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and n, are increased in the same ratio to any extent, the displacements of 
the body are proportionally diminished, but the stresses remain the same, and, 
though their distribution depends essentially on the elasticity of the various 
parts of the body, the values of the internal forces do not contain the co
efficients of elasticity as factors.

There are two cases in which the functions may be treated as functions of 
two variables.

The first is when there is no stress, or a constant pressure in the direction 
of z, as in the case of a stratum originally of uniform thickness, in the direc
tion of z, the thickness being small compared with the other dimensions of 
the body, and with the rate of variation of strain.

The second is when there is no strain, or a uniform longitudinal strain in 
the direction of z, as in the case of a prismatic body whose length in the 
direction of z is very great, the forces on the sides being functions of x 
and y only.

In both of these cases S=0
P — d'C

~ dy' V'

and T— 0, so that we may write
U= _ — G. Q = d^G _y /iil

dxdy' ® dP ................’’

This method of expressing the stresses in two dimensions was first given 
by the Astronomer Royal, in the Philosophical Transactions for 18G3. We shall 
write F instead of C, and call it Airy’s Function of Stress in Two Dimensions.

Let us assume two functions, G and II, such that

and V-™ ........... (12)
dxdy dxdy................. ’

then by Thomson and Tait, § 694, if a is the displacement in the direction of x 

..'...(13).

Case I.—If R = Q this becomes
da
dx

d'G .

Integrating with respect to x we find the following equation for

2n £ f d'G d'G
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where F is a function of y only, 
direction of y, Similarly for the displacement ft in the

...... <i5>’
where X is a function of x only. Now the shearing stress U depends on 
shearing strain and the rigidity, or

the

U=n (10.

Multiplying both sides 
(14), and (15),

of this equation by 2(o-+l) and substituting from (11),

d'G d*G-- 9 d'G d*G .
d^dy' di/ a d^dy^ dx'^^ dll ^H\ 

dx2 dy2/
dX dY ,,_x

Hence Y<t + ^ + —- ==h-nAx \ ho\
[dx2 dy2/ dx+dy ( \da?+dy2)................... (18)’

an equation which must be fulfilled by G when the body is originally without 
strain.

Case II.—In the second case, in which there is no strain in the direction 
of z, we have

~=7?-o-(P+Q) = o.........................................(19).

Substituting for R in (13), and dividing by o-+l,
2n S -(1 - F - aQ - dtdy {<1 - ') - "■ ........... (20).

with a similar equation for ft. Proceeding as in the former case, we find

__ + S^g4- ~ it
<lx dy2J dx dy 1 — o- \cZa5* dy") (21)

This equation is identical with that of the first case, with the exception of 
the coefficient of the part due to II, which depends on the density of the 
body, and the value of o-, the ratio of lateral expansion to longitudinal com
pression.

Hence, if the external forces are given in the two cases of no stress and 
no strain in the direction of z, and if the density of the body or the intensity

VOL. IL 9k 
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of the force acting on its substance is in the ratio of a to (1-cr)’ in the 
two cases, the internal forces will be the same in every part, and will be 
independent of the actual values of the coefficients of elasticity, provided the 
strains are small. The solutions of the cases treated by Mr Airy, as given in 
his paper, do not exactly fulfil the conditions deduced from the theory of 
elasticity. In fact, the consideration of elastic strain is not explicitly introduced 
into the investigation. Nevertheless, his results are statically possible, and 
exceedingly near to the truth in the cases of ordinary beams.

As an illustration of the theory of Airy’s Function, let us take the case of

(22).

In this case we have for the co-ordinates of the point in the diagram corre 
ponding to (xy)

dF
^=^=^’cos(^"-1)^ -^-'8111(2^-1)0......... (23),

and for the components of stress

d*F , ) ........
p^ “ d^ ” (2p ~1) ^ ’ sin (2^> - 2) 0 

J
:e G^cospO, and II=l^,ainpe...........................

then
\dx dy i / pw ~ Pxx 

(2p-l)2^$
dx dy lx»

.......................(26).

Hence the curves for which G and IT l- , 
principal stress, and the stress at a„v point ’“r °f
the distance between the consecutive curies G or 7^ “ 7 “ °f

If we make 
then we must have

^-pcos^ and y=psin^ ) 
P = and ^ = (2p-l)0j (27).

If we put 2 for then 1 + 1 = 2 and (2^ -1) (2g - 1) = 1,
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so that if f, g, h in the diagram of stress correspond to F, G, H in the 
original figure, we have

f~ 2^P''1 cos 2^, <7 = p7cos A=^p’sing0............... (28).

Case of a Uniform Horizontal Beam.

As an example of the application of the condition that the stresses must 
be such as are consistent with an initial condition of no strain, let us take the 
case of a uniform rectangular beam of indefinite length placed horizontally with 
a load = It per unit of length placed on its upper surface, the weight of the 
beam being k per unit of length. Let us suppose the beam to be supported 
by vertical forces and couples in a vertical plane applied at the ends; but 
let us consider only the middle portion of the beam, where the conditions 
applicable to the ends have no sensible effect. Let the horizontal distance x
be reckoned from the vertical plane where there is no shearing force, and let 
the planes where there is no moment of bending be at distances ±a0 from 
the origin. Let y be reckoned from the lower edge of the beam, and let b

be the depth of the beam. Then, if U = dxdy is the shearing stress, the total

vertical shearing force through a vertical section at distance x is

and this must be equal and opposite to the weight of the beam and load 
from 0 to x, which is evidently (h + k) x.

Hence, dx= ~ + Where = 1....................(29).

From this we find the vertical stress

+ by-----+ +

The vertical stress is therefore a function of y only. It must vanish at 
the lower side of the beam, where y = 0, and it must be -h on the upper side 
of the beam, where y = b. The shearing stress U must vanish at both sides 
of the beam, or 0'(y) = O, when y = 0, and when y = b.

26—2
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The simplest form of </>(//) which will satisfy these conditions is

‘A(y) = ^.(3^-2^.

Hence we find the following expression for the function of stress by integrating 
(29) with respect to x,

.............................(30),

where a is a constant introduced in integration, and depends on the manner 
in which the beam is supported. From this we obtain the values of the 
vertical, horizontal, and shearing stresses,

n d'F k k ,
Q= ....................... (31).

d'Y
+ dy'..................... (32),

rr d'F h + k .
u=-dxdy=^xy^ (33).

The values of Q and of U, the vertical and the shearing stresses, as 
given by these equations, are perfectly definite in terms of h and k, the load 
and the weight of the beam per unit of length. The value of P, the hori
zontal stress, however, contains an arbitrary function Y, which we propose to 
find from the condition that the beam was originally unstrained. We therefore 
determine a and /3, the horizontal and vertical displacement of any point (x, y), 
by the method indicated by equations (13), (14), (15)
2n (o- + I) a = {(3a’x - a?) (6 - 2y) - ax (Gby' - 2/)} - a ^xy + x Y' (34),

7 7

2n (a 4-1) 0 = - {(by* - iy*) + 3<r (a2 - + (35),
where X' is a function of x only, and Y' of y only. Deducing from these 
displacements the shearing strain, and comparing it with the value of the shearing 
stress, U, we find the equation

{Ga'x-2^+12x (by-y')} +a’'' x = x + +
b ' * 9 " b dy' dx dy...........

H“Ce ................................................(37),

= + ^=0.............. (38).
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If the total longitudinal stress across any vertical section of the beam is zero 

the value of must be the same when y = Q and when y = b. From this 

condition we find the value of P by equation (32)

{3 («a - o’) + 2y* - 2by - P} (b - 2y).................... (39).

The moment of bending at any vertical section of the beam is
■b

o pydy = (h + £) {i (^ - aa) + iP).............................(40).

This becomes zero when x = ±a„ where

«oa = «’-Fa............................................(41).
If we wish to compare this case with that of a beam of finite length sup
ported at both ends and loaded uniformly, we must make the moment of 
bending zero at the supports, and the length of the beam between the supports 
must therefore be 2a„. Substituting a„ for a in the value of P, we find

P = k -3^4- 2yJ - 2by + >6’) (b - 2y)....................(42).

If we suppose the beam to be cut off just beyond the supports, and sup
ported by an intense pressure over a small area, we introduce conditions into 
the problem which are not fulfilled by this solution, and the investigation of 
which requires the use of Fourier’s series. In order that our result may be 
true, we must suppose the beam to extend to a considerable distance beyond 
the supports on either side, and the vertical forces to be applied by means 
of frames clamped to the ends of the beam, as in Diagram Vet, so that the 
stresses arising from the discontinuity at the extremities are insensible in the 
part of the beam between the supports.

This expression differs from that given by Mr Airy only in the terms in 
the longitudinal stress P depending on the function Y, which was introduced 
in order to fulfil the condition that, when no force is applied, the beam is 
unstrained. The effect of these terms is a maximum when y ='127886, and is 
then equal to (h + k) '314, or less than a third of the pressure of the beam 
and its load on a flat horizontal surface when laid upon it so as to produce a 
uniform vertical pressure h + k.
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EXPLANATION OF THE DIAGRAMS (Plates I. II. III.).

Diagrams I a. and I b. illustrate the necessity of the condition of the possibility of reciprocal 
diagrams, that each line must be a side of two, and only two, polygons. Diagram I a. is a skeleton of 
a frame such, that if the force along any one piece be given, the force along any other piece may bo 
determined. But the piece A forms a side of four triangles, NF1I, NG I, NJL, and NKM, so that if 
there could be a reciprocal diagram, the line corresponding to N would have four extremities, which is 
impossible. In this case we can draw a diagram of forces in which the forces II, I, J, and K are each 
represented by two parallel lines.

Diagrams Ila. and 116. illustrate the case of a frame consisting of thirty-two pieces, meeting four 
and four in sixteen points, and forming sixteen quadrilaterals. Diagram II a. may be considered as a plane 
projection of a polyhedron of double continuity, which we may describe as a quadrilateral frame consisting 
of four quadrilateral rods, of which the ends are bevelled so as to fit exactly. The projection of this 
frame, considered as a plane frame, bus three degrees of stiffness, so that three of the forces may be 
arbitrarily assumed.

In the reciprocal diagram II b. the lines are drawn by the method given at p. 1G8, so that each line 
is perpendicular to the corresponding line in the other figure. To make the corresponding lines parallel 
we have only to turn one of the figures round a right angle.

Diagrams III a. and III b. illustrate the principle as applied to a bridge designed by Professor F. 
Jenkin. The loads Q, Qt, &c., are placed on the upper series of joints, and A, As, &c., on the lower 
series. The diagram III b. gives the stresses due to both sets of loads, the vertical lines of loads being 
different for the two series.

Diagrams IV a. and IV b. illustrate the application of Airy’s Function to the construction of 
diagrams of continuous stress.

IV a. represents a cylinder exposed to pressure in a vertical and horizontal direction, and to 
tension in directions inclined 45" to these. The lines marked a, b, c, &c., are lines of pressure, and 
those marked o, p, q, are lines of tension. In this case the lines of pressure and tension are rectangular 
hyperbolas, the pressure is always equal to the tension, and varies inversely as the square of the 
distance between consecutive curves, or, what is the same thing, directly as the square of the distance 
from the centre.

IV b. represents the reciprocal diagram corresponding to the upper quadrant of the former one. The 
stress on any line in the first diagram is represented in magnitude and direction by the corresponding line 
in the second diagram, the correspondence being ascertained by that of the corresponding systems of lines 
a, b, c, &c., and o, p, q, &C.

We may also consider IV b. as a sector of a cylinder of 270", exposed to pressure along the lines 
a, b, c, and to tension along o, p, q, the magnitude of the stress being in this case r \ The upper 
quadrant of IV a. is in this case the reciprocal figure. This figure illustrates the tendency of any 
strained body to be ruptured at a re-entering angle, for it is plain that at the angle the stress becomes 
indefinitely great.
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In diagram IV a.:—

/ = |r4 cos 40, G = Jr’ cos 20, II = Jr2sin 2d.

In diagram IV b.:—

/= |p3 cos 4 </>, <7 = |p* cos f </>, A = |p*8in|<£.

Diagrams V a. and V b. illustrate Airy’s theory of stress in beams.

V a. is the beam supported at G and D by means of bent pieces clamped to the ends of the beam 
at A and B, at such a distance from G and D, that the part of the beam between C and D is free from 
the local effects of the pressures of the clamps at A and B. The beam is divided into six strata by 
horizontal dotted lines, marked 1, 2, 3, 4, 5, 6, and into sixteen vertical slices by vertical lines marked 
a, b, c, <fcc.

The corresponding lines in the diagram V b. are marked with corresponding figures and letters. The 
stress across any line joining any two points in V a. is represented in magnitude by the line in V b., joining 
corresponding points, and is perpendicular to it in direction.

These illustrations of the application of the graphic method to cases of continuous stress, are 
intended rather to show the mathematical meaning of the method, than as practical aids to the engineer. 
In calculating the stresses in frames, the graphic method is really useful, and is less liable to accidental 
errors than the method of trigonometrical calculation. In cases of continuous stress, however, the 
symbolical method of calculation is still the best, although, as I have endeavoured to show in this 
paper, analytical methods may be explained, illustrated, and extended by considerations derived from 
the graphic method.



[From the London Mathematical Society’s Proceedings. Vol. III.]

XL. On the Displacement in a Case of Fluid Motion.

In most investigations of fluid motion, we consider the velocity at any 
point of the fluid as defined by its magnitude and direction, as a function of 
the coordinates of the point and of the time. We are supposed to be able to 
take a momentary glance at the system at any time, and to observe the velo
cities ; but are not required to be able to keep our eye on a particular molecule 
during its motion. This method, therefore, properly belongs to the theory of a 
continuous fluid alike in all its parts, in which we measure the velocity by the 
volume which passes through unit of area rather than by the distance travelled 
by a molecule in unit of time. It is also the only method applicable to the 
case of a fluid, the motions of the individual molecules of which are not expres
sible as functions of their position, as in the motions due to heat and diffusion. 
W hen similar equations occur in the theory of the conduction of heat or elec
tricity, we are constrained to use this method, for we cannot even define what is 
meant by the continued identity of a portion of heat or electricity.

1 he molecular theory, as it .supposes each molecule to preserve its identity, 
requires for its perfection a determination of the position of each molecule at 
any assigned time. As it is only in certain cases that our present mathematical 
resources can effect this, I propose to point out a very simple case, with the 
results.

Let a cylinder of infinite length and of radius a move with its axis parallel 
to z, and always passing through the axis of x, with a velocity V, uniform or 
variable, in the direction of x, through an infinite, homogeneous, incompressible, 
perfect fluid. Let r be the distance of any point in the fluid from the axis
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of the cylinder; then it is easy to shew that, if a?0 is the value of x for the 
axis of the cylinder, and x that of the point, and

j a z /and =

I </» will satisfy the conditions of the velocity-potential, and that of the 
stream function* ; and, since the expression for ifi does not contain the time, 
its value will remain constant for a molecule during the whole of its motion.

If we consider the position of a particle as determined by the values of 
z, r, and t/r, then z and ip will remain constant during the motion, and we have 
only to find r in terms of the time. For this purpose we observe that, if we 
put in polar coordinates, it becomes

I (i • aV = 1 — ) r sin 0, 
\ r J

and 6 cos 0
dt r d0 \

Expressing cos 0 in terms of r and this becomes 

dr V
+ + a4}.

If we make + ^)+ ^ = 2fi, and ^ = c,

then £ will be the value of y when the axis of the cylinder is abreast of the 
particle, and

and if we now use instead of r a new angular variable x such that 

sin v = £ = + ± 'A
* r 2r

Ihe velocity potential is a quantity such that its rate of variation along any line is equal to 
the velocity of the fluid resolved in the same direction. Whenever the motion of the fluid is irro- 
tational, there is a velocity-potential.

The stieam function exists in every case of the motion of an incompressible fluid in two dimen
sions, and is such that the total instantaneous flow across any curve, referred to unit of time is 
equal to the difference of the values of the stream function at the extremities of the curve.

VOL. II. 27
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then we can express \Vdt or jr0 in terms of elliptic functions of the first and 
second kinds,

J Vdl = x.=3 cot x 7(1 _ </■ sin’ x)+0 (x) - F, (x)),

where the position of the axis of the cylinder is expressed in terms of the 
position of a molecule with respect to it.

Now let us take a molecule originally on the axis of y, at a distance 77 
from the origin, and let the cylinder begin to move from an infinite distance 
on the negative side of the axis of x; then

^ = 7], and 2/3 = 7(4a’ + 7f)4-77, and ^ = c;

and when the cylinder has passed from negative infinity to positive infinity in 
the direction of x, then the coordinates of the molecule will be

X^F~E^nnd 
vG vc

It appears from this expression, that after the passage of the cylinder every 
particle is at the same distance as at first from the plane of xz, but that it 
is carried forward in the direction of the motion of the cylinder by a quantity 
which is infinite when y = 0, but finite for all other values of y.

The motion of a particle at any instant is always inclined to the axis of 
x at double the inclination of the line drawn to the axis of the cylinder. 
Hence it is in the forward direction till the inclination of this line is 45°, 
backward from 45° to 135°, and forward again afterwards. The forward motion 
is slower than the backward motion, but lasts for a longer time, and it appears 
that the final displacement of every particle is in the forward direction. It 
follows from this that the condition fulfilled by the fluid at an infinite distance 
is not that of being contained in a fixed vessel; for in that case there would 
have been, on the whole, a displacement backwards equal to that of the cylinder 
forwards. The problem actually solved differs from this only by the application 
of an infinitely small forward velocity to the infinite mass of fluid such as to 
generate a finite momentum.

In drawing the accompanying figures, I began by tracing the stream-lines 
in Fig. 1, p. 211, by means of the intersections of a system of straight lines equi
distant and parallel to the axis, with a system of circles touching the axis at
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Fig. 1.
Fluid flowing past a fixed cylinder.

27—2
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the origin and having their radii as the reciprocals of the natural numbers. 
(See Prof. Rankine’s Papers on Stream-Lines in the Phil. Trans.)

The cylinder is § inch radius, and the stream-lines are originally inch 
apart.

I then calculated the coordinates, x and y, of the final form of a transverse 
straight line from the values of the complete elliptic functions for values of c 
corresponding to every 5°. The result is given in the continuous curve on the 
left of Fig. 2, p. 213.

I then traced the path of a particle in contact with the cylinder from the 
equation

_2.ro
tan ^0 = e~ a ,

where x = x0 4- a cos 0 and y=-a sin 6.

The form of the path is the curve nearest the axis in Fig. 3. The dots 
indicate the positions at equal intervals of time.

The paths of particles not in contact with the cylinder might be calculated 
from Legendre’s tables for incomplete functions, which I have not got.

I have therefore drawn them by eye so as to fulfil the following con
ditions :—

The radius

with a, becomes

The paths of particles at a great distance from the axis are therefore very 
nearly circles.

To draw the paths -of intermediate particles, I observed that their two 
extremities must lie at the same distance from the axis of x as the asymptote 
of a certain stream-line, and the middle point of the path at a distance equal 
to that of the same stream-line when abreast of the cylinder; and, finally, that 
the distance between the extremities is the same as that given in Fig. 2.

In this way I drew the paths of different particles in Fig. 3. I then 
transferred these to Fig. 2, to shew the paths of a series of particles, originally 
in a straight line, and finally in the curve already described.

c x • , a y ot curvature is A -z-. ,a’sina0 + y’ which, when y is large compared

. a* neuriy - .
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I then laid Fig. 1 on Fig. 2, and drew, through the intersections of the 
stream-lines and the paths of the corresponding particles in the fluid originally

Fig. 2.
Tilths of particles of the fluid when a cylinder moves through it.

Fig. 3.
1 aths of particles at different distances from the cylinder: radius of cylinder, § inch. At great 

distances (/?) the path is a circle of radius and in this circle tan
Jp * P
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at rest, the lines which shew the form taken by a line of particles originally 
straight as it flows past the cylinder. This method, however, does not give 
the point where the line crosses the axis of x. I therefore calculated this 
from the equation

7* — fl
x = r + la log —-— ,2 °r + a 

calculating r for values of x differing by | inch.
The curves thus drawn appear to be as near the truth as I could get 

without a much greater amount of labour.
If a maker of “ marbled ” paper were to rule the surface of his bath with 

straight lines of paint at right angles, and then to draw a cylindrical ruler 
through the bath up to the middle, and apply the painted lines to his paper, 
he would produce the design of Fig. 1, p. 211.



[From the British Association Report, Vol. XL.]

XLI. Address to the Mathematical and Physical Sections of the British 
Association.

[Liverpool, September 15, 1870.]

At several of the recent Meetings of the British Association the varied, 
and important business of the Mathematical and Physical Section has been 
introduced by an Address, the subject of which has been left to the selection 
of the President for the time being. The perplexing duty of choosing a subject 
has not, however, fallen to me.

Professor Sylvester, the President of Section A at the Exeter Meeting, 
gave us a noble vindication of pure mathematics by laying bare, as it were, 
the very working of the mathematical mind, and setting before us, not the 
array of symbols and brackets which form the armoury of the mathematician, 
or the dry results which are only the monuments of his conquests, but the 
mathematician himself, with all his human faculties directed by his professional 
sagacity to the pursuit, apprehension, and exhibition of that ideal harmony 
which he feels to be the root of all knowledge, the fountain of all pleasure, 
and the condition of all action. The mathematician has, above all things, an 
eye for symmetry; and Professor Sylvester has not only recognized the sym
metry formed by the combination of his own subject with those of the former 
Presidents, but has pointed out the duties of his successor in the following 
characteristic note:—

“ Mr Spottiswoode favoured the Section, in his opening Address, with a com
bined history of the progress of Mathematics and Physics; Dr. Tyndall’s address 
was virtually on the limits of Physical Philosophy; the one here in print,” says 
Prof. Sylvester, “ is an attempted faint adumbration of the nature of Mathe
matical Science in the abstract. What is wanting (like a fourth sphere resting 
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on three others in contact) to build up the Ideal Pyramid is a discourse on 
the Relation of the two branches (Mathematics and Physics) to, their action 
and reaction upon, one another, a magnificent theme, with which it is to be 
hoped that some future President of Section A will crown the edifice and make 
the Tetralogy (symbolizable by A + A', A, A', AA') complete.”

The theme thus distinctly laid down for his successor by our late President 
is indeed a magnificent one, far too magnificent for any efforts of mine to 
realize. I have endeavoured to follow Mr Spottiswoode, as with far-reaching 
vision he distinguishes the systems of science into which phenomena, our know
ledge of which is still in the nebulous stage, are growing. I have been carried 
by the penetrating insight and forcible expression of Dr Tyndall into that 
sanctuary of minuteness and of power where molecules obey the laws of their 
existence, clash together in fierce collision, or grapple in yet more fierce embrace, 
building up in secret the forms of visible things. I have been guided by Prof. 
Sylvester towards those serene heights

“ Where never creeps a cloud, or moves a wind, 
Nor ever falls the least white star of snow, 
Nor ever lowest roll of thunder moans, 
Nor sound of human sorrow mounts to mar 
Their sacred everlasting calm.”

But who will lead me into that still more hidden and dimmer region where 
Thought weds Fact, where the mental operation of the mathematician and the 
physical action of the molecules are seen in their true relation? Does not the 
way to it pass through the very den of the metaphysician, strewed with the 
remains of former explorers, and abhorred by every man of science? It would 
indeed be a foolhardy adventure for me to take up the valuable time of the 
Section by leading you into those speculations which require, as we know, 
thousands of years even to shape themselves intelligibly.

But we are met as cultivators of mathematics and physics. In our daily 
work we are led up to questions the same in kind with those of metaphysics; 
and we approach them, not trusting to the native penetrating power of our 
own minds, but trained by a long-continued adjustment of our modes of thought 
to the facts of external nature.

As mathematicians, we perform certain mental operations on the symbols of 
number or of quantity, and, by proceeding step by step from more simple to 
more complex operations, we are enabled to express the same thing in many 
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different forms. The equivalence of these different forms, though a necessary 
consequence of self-evident axioms, is not always, to our minds, self-evident; 
but the mathematician, who by long practice has acquired a familiarity with 
many of these forms, and has become expert in the processes which lead from 
one to another, can often transform a perplexing expression into another which 
explains its meaning in more intelligible language.

As students of Physics we observe phenomena under varied circumstances, 
and endeavour to deduce the laws of their relations. Every natural phenomenon 
is, to our minds, the result of an infinitely complex system of conditions. 
What we set ourselves to do is to unravel these conditions, and by viewing 
the phenomenon in a way which is in itself partial and imperfect, to piece 
out its features one by one, beginning with that which strikes us first, and 
thus gradually learning how to look at the whole phenomenon so as to obtain 
a continually greater degree of clearness and distinctness. In this process, the 
feature which presents itself most forcibly to the untrained inquirer may not be 
that which is considered most fundamental by the experienced man of science; 
for the success of any physical investigation depends on the judicious selection 
of what is to be observed as of primary importance, combined with a voluntary 
abstraction of the mind from those features which, however attractive they 
appear, we are not yet sufficiently advanced in science to investigate with profit.

Intellectual processes of this kind have been going on since the first for
mation of language, and are going on still. No doubt the feature which strikes 
us first and most forcibly in any phenomenon, is the pleasure or the pain 
which accompanies it, and the agreeable or disagreeable results which follow 
after it. A theory of nature from this point of view is embodied in many of 
our words and phrases, and is by no means extinct even in our deliberate 
opinions.

It was a great step in science when men became convinced that, in order 
to understand the nature of things, they must begin by asking, not whether 
a thing is good or bad, noxious or beneficial, but of what kind is it? and 
how much is there of it? Quality and Quantity were then first recognized as 
the primary features to be observed in scientific inquiry.

As science has been developed, the domain of quantity has everywhere 
encroached on that of quality, till the process of scientific inquiry seems to have 
become simply the measurement and registration of quantities, combined with 
a mathematical discussion of the numbers thus obtained. It is this scientific 

vol. n. 28 
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method of directing our attention to those features of phenomena which may 
be regarded as quantities which brings physical research under the influence of 
mathematical reasoning. In the work of the Section we shall have abundant 
examples of the successful application of this method to the most recent con
quests of science; but I wish at present to direct your attention to some of 
the reciprocal effects of the progress of science on those elementary conceptions 
which are sometimes thought to be beyond the reach of change.

If the skill of the mathematician has enabled the experimentalist to see 
that the quantities which he has measured are connected by necessary relations, 
the discoveries of physics have revealed to the mathematician new forms of 
quantities which he could never have imagined for himself.

Of the methods by which the mathematician may make his labours most 
useful to the student of nature, that which I think is at present most im
portant is the systematic classification of quantities.

The quantities which we study in mathematics and physics may be classified 
in two different ways.

The student who wishes to master any particular science must make himself 
familiar with the various kinds of quantities which belong to that science. When 
he understands all the relations between these quantities, he regards them as 
forming a connected system, and he classes the whole system of quantities together 
;is belonging to that particular science. This classification is the most natural 
from a physical point of view, and it is generally the first in order of time.

But when the student has become acquainted with several different sciences, 
he finds that the mathematical processes and trains of reasoning in one science

be made a most useful help in the study of the other.
When he examines into the reason of this, he finds that in the two 

sciences he has been dealing with systems of quantities, in which the mathe
matical forms of the relations of the quantities are the same in both systems, 
though the physical nature of the quantities may be utterly different.

He is thus led to recognize a classification of quantities on a new principle, 
according to which the physical nature of the quantity is subordinated to its 
mathematical form. This is the point of view which is characteristic of the 
mathematician; but it stands second to the physical aspect in order of time, 
because the human mind, in order to conceive of different kinds of quantities, 
must have them presented to it by nature.
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I do not here refer to the fact that all quantities, as such, are subject 
to the rules of arithmetic and algebra, and are therefore capable of being sub
mitted to those dry calculations which represent, to so many minds, their only 
idea of mathematics.

The human mind is seldom satisfied, and is certainly never exercising its 
highest functions, when it is doing the work of a calculating machine. What 
the man of science, whether he is a mathematician or a physical inquirer, 
aims at is, to acquire and develope clear ideas of the things he deals with. 
For this purpose he is willing to enter on long calculations, and to be for a 
season a calculating machine, if he can only at last make his ideas clearer.

But if he finds that clear ideas are not to be obtained by means of pro
cesses the steps of which he is sure to forget before he has reached the 
conclusion, it is much better that he should turn to another method, and try 
to understand the subject by means of well-chosen illustrations derived from 
subjects with which he is more familiar.

We all know how much more popular the illustrative method of exposition 
is found, than that in which bare processes of reasoning and calculation form 
the principal subject of discourse.

Now a truly scientific illustration is a method to enable the mind to grasp 
some conception or law in one branch of science, by placing before it a con
ception or a law in a different branch of science, and directing the mind to 
lay hold of that mathematical form which is common to the corresponding ideas 
in the two sciences, leaving out of account for the present the difference 
between the physical nature of the real phenomena.

The correctness of such an illustration depends on whether the two systems 
of ideas which are compared together are really analogous in form, or whether, 
in other words, the corresponding physical quantities really belong to the same 
mathematical class. When this condition is fulfilled, the illustration is not only 
convenient for teaching science in a pleasant and easy manner, but the recog
nition of the formal analogy between the two systems of ideas leads to a 
knowledge of both, more profound than could be obtained by studying each 
system separately.

There are men who, when any relation or law, however complex, is put 
before them in a symbolical form, can grasp its full meaning as a relation 
among abstract quantities. Such men sometimes treat with indifference the 
further statement that quantities actually exist in nature which fulfil this 
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relation. The mental image of the concrete reality seems rather to disturb
than to assist their contemplations.

But the great majority of mankind are utterly unable, without long 
training, to retain in their minds the unembodied symbols of the pure mathe
matician, so that, if science is ever to become popular, and yet remain scientific, 
it must be by a profound study and a copious application of those principles 
of the mathematical classification of quantities which, as we have seen, lie at 
the root of every truly scientific illustration.

There are, as I have said, some minds which can go on contemplating with 
satisfaction pure quantities presented to the eye by symbols, and to the mind 
in a form which none but mathematicians can conceive.

There are others who feel more enjoyment in following geometrical forms, 
which they draw on paper, or build up in the empty space before them.

Others, again, are not content unless they can project their whole physical 
energies into the scene which they conjure up. They learn at what a rate the 
planets rush through space, and they experience a delightful feeling of exhila
ration. They calculate the forces with which the heavenly bodies pull at one 
another, and they feel their own muscles straining with the effort.

To such men momentum, energy, mass are not mere abstract expressions 
of the results of scientific inquiry. They are words of power, which stir their 
souls like the memories of childhood.

For the sake of persons of these different types, scientific truth should be 
presented in different forms, and should be regarded as equally scientific, whether 
it appears in the robust form and the vivid colouring of a physical illustration, 
or in the tenuity and paleness of a symbolical expression.

Time would fail me if I were to attempt to illustrate by examples the 
scientific value of the classification of quantities. 1 shall only mention the name 
of that important class of magnitudes having direction in space which Hamilton 
has called vectors, and which form the subject-matter of the Calculus of Qua
ternions, a branch of mathematics which, when it shall have been thoroughly 
understood by men of the illustrative type, and clothed by them with physical 
imagery, will become, perhaps under some new name, a most powerful method 
of communicating truly scientific knowledge to persons apparently devoid of the 
calculating spirit.

Ihe mutual action and reaction between the different departments of human 
thought is so interesting to the student of scientific progress, that, at the risk 
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of still further encroaching on the valuable time of the Section, I shall say a 
few words on a branch of physics which not very long ago would have been 
considered rather a branch of metaphysics. I mean the atomic theory, or, as 
it is now called, the molecular theory of the constitution of bodies.

-^ot many years ago if we had been asked in what regions of physical 
science the advance of discovery was least apparent, we should have pointed 
to the hopelessly distant fixed stars on the one hand, and to the inscrutable 
delicacy of the texture of material bodies on the other.

Indeed, if we are to regard Comte as in any degree representing the 
scientific opinion of his time, the research into what takes place beyond our 
own solar system seemed then to be exceedingly unpromising, if not altogether 
illusory.

Ihe opinion that the bodies which we see and handle, which we can set 
in motion or leave at rest, which we can break in pieces and destroy, are 
composed of smaller bodies which we cannot see or handle, which are always 
in motion, and which can neither be stopped nor broken in pieces, nor in any 
way destroyed or deprived of the least of their properties, was known by the 
name of the Atomic theory. It was associated with the names of Democritus, 
Epicurus, and Lucretius, and was commonly supposed to admit the existence 
only of atoms and void, to the exclusion of any other basis of things from the 
universe.

In many physical reasonings and mathematical calculations we are accustomed 
to argue as if such substances as air, water, or metal, which appear to our 
senses uniform and continuous, were strictly and mathematically uniform and 
continuous.

We know that we can divide a pint of water into many millions of 
portions, each of which is as fully endowed with all the properties of water 
as the whole pint was; and it seems only natural to conclude that we might 
go on subdividing the water for ever, just as we can never come to a limit 
in subdividing the space in which it is contained. We have heard how Faraday 
divided a grain of gold into an inconceivable number of separate particles, and 
we may see Dr Tyndall produce from a mere suspicion of nitrite of butyle 
an immense cloud, the minute visible portion of which is still cloud, and there
fore must contain many molecules of nitrite of butyle.

But evidence from different and independent sources is now crowding in upon 
us which compels us to admit that if we could push the process of subdivision 
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still further we should come to a limit, because each portion would then contain 
only one molecule, an individual body, one and indivisible, unalterable by any 
power in nature.

Even in our ordinary experiments on very finely divided matter we find 
that the substance is beginning to lose tjie properties which it exhibits when 
in a large mass, and that effects depending on the individual action of mole
cules are beginning to become prominent.

The study of these phenomena is at present the path which leads to the 
development of molecular science.

That superficial tension of liquids which is called capillary attraction is one 
of these phenomena. Another important class of phenomena are those which 
are due to that motion of agitation by which the molecules of a liquid or gas 
are continually working their way from one place to another, and continually 
changing their course, like people hustled in a crowd.

On this depends the rate of diffusion of gases and liquids through each 
other, to the study of which, as one of the keys of molecular science, that 
unwearied inquirer into nature’s secrets, the late Prof. Graham, devoted such 
arduous labour.

The rate of electrolytic conduction is, according to Wiedemann’s theory, 
influenced by the same cause; and the conduction of heat in fluids depends 
probably on the same kind of action. In the case of gases, a molecular theory 
has been developed by Clausius and others, capable of mathematical treatment, 
and subjected to experimental investigation; and by this theory nearly every 
known mechanical property of gases has been explained on dynamical principles; 
so that the properties of individual gaseous molecules are in a fair way to 
become objects of scientific research.

Nov\ Mi Stoney has pointed out" that the numerical results of experiments 
on gases lender it piobable that the mean distance of their particles at the 
ordinary temperature and pressure is a quantity of the same order of magnitude 
as a millionth of a millimetre, and Sir William Thomson has since'f' shewn, by 
several independent lines of argument, drawn from phenomena so different in 
themselves as the electrification of metals by contact, the tension of soap- 
bubbles, and the friction of air, that in ordinary solids and liquids the average 
distance between contiguous molecules is less than the hundred-millionth, and 
greater than the two-thousand-millionth of a centimetre.

* Phil. Mag. Aug. 1868. t Nature, March 31, 1870.
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These, of course, are exceedingly rough estimates, for they are derived from 
measurements some of which are still confessedly very rough; but if, at the 
present time, we can form even a rough plan for arriving at results of this 
kind, we may hope that, as our means of experimental inquiry become more 
accurate and more varied, our conception of a molecule will become more definite, 
so that we may be able at no distant period to estimate its weight with a 
greater degree of precision.

A theory, which Sir W. Thomson has founded on Helmholtz’s splendid 
hydrodynamical theorems, seeks for the properties of molecules in the ring
vortices of a uniform, frictionless, incompressible fluid. Such whirling rings may 
be seen when an experienced smoker sends out a dexterous puff of smoke into 
the still air, but a more evanescent phenomenon it is difficult to conceive. 
This evanescence is owing to the viscosity of the air; but Helmholtz has shewn 
that in a perfect fluid such a whirling ring, if once generated, would go on 
whirling for ever, would always consist of the very same portion of the fluid 
which was first set whirling, and could never be cut in two by any natural 
cause. The generation of a ring-vortex is of course equally beyond the power 
of natural causes, but once generated, it has the properties of individuality, 
permanence in quantity, and indestructibility. It is also the recipient of impulse 
and of energy, which is all we can affirm of matter; and these ring-vortices 
are capable of such varied connexions and knotted self-involutions, that the 
properties of differently knotted vortices must be as different as those of diffe
rent kinds of molecules can be.

If a theory of this kind should be found, after conquering the enormous 
mathematical difficulties of the subject, to represent in any degree the actual 
properties of molecules, it will stand in a very different scientific position from 
those theories of molecular action which are formed by investing the molecule 
with an arbitrary system of central forces invented expressly to account for the 
observed phenomena.

In the vortex theory we have nothing arbitrary, no central forces or occult 
properties of any other kind. We have nothing but matter and motion, and when 
the vortex is once started its properties are all determined from the original 
impetus, and no further assumptions are possible.

Even in the present undeveloped state of the theory, the contemplation 
of the individuality and indestructibility of a ring-vortex in a perfect fluid 
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cannot fail to disturb the commonly received opinion that a molecule, in order 
to be permanent, must be a very hard body.

In fact one of the first conditions which a molecule must fulfil is, ap
parently, inconsistent with its being a single hard body. We know from those 
spectroscopic researches which have thrown so much light on different branches 
of science, that a molecule can be set into a state of internal vibration, in 
which it gives off to the surrounding medium light of definite refrangibility— 
light, that is, of definite wave-length and definite period of vibration. The 
fact that all the molecules (say, of hydrogen) which we can procure for our 
experiments, when agitated by heat or by the passage of an electric spark, 
vibrate precisely in the same periodic time, or, to speak more accurately, that 
their vibrations are composed of a system of simple vibrations having always 
the same periods, is a very remarkable fact.

I must leave it to others to describe the progress of that splendid series 
of spectroscopic discoveries by which the chemistry of the heavenly bodies has 
been brought within the range of human inquiry. I wish rather to direct 
your attention to the fact that, not only has every molecule of terrestrial 
hydrogen the same system of periods of free vibration, but that the spectro
scopic examination of the light of the sun and stars shews that, in regions 
the distance of which we can only feebly imagine, there are molecules vibrating 
in as exact unison with the molecules of terrestrial hydrogen as two tuning
forks tuned to concert pitch, or two watches regulated to solar time.

Now this absolute equality in the magnitude of quantities, occurring in all 
parts of the universe, is worth our consideration.

The dimensions of individual natural bodies are either quite indeterminate, 
as in the case of planets, stones, trees, &c., or they vary within moderate 
limits, as in the case of seeds, eggs, &c.; but even in these cases small quanti
tative differences are met with which do not interfere with the essential 
properties of the body.

Even crystals, which are so definite in geometrical form, are variable with 
respect to their absolute dimensions.

Among the works of man we sometimes find a certain degree of uniformity.
There is a uniformity among the different bullets which are cast in the 

same mould, and the different copies of a book printed from the same type.
If we examine the coins, or the weights and measures, of a civilized 

country, we find a uniformity, which is produced by careful adjustment to 
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standards made and provided by the state. The degree of uniformity of these 
national standards is a measure of that spirit of justice in the nation which 
has enacted laws to regulate them and appointed officers to test them.

This subject is one in which we, as a scientific body, take a warm 
interest; and you are all aware of the vast amount of scientific work which 
has been expended, and profitably expended, in providing weights and measures 
for commercial and scientific purposes.

The earth has been measured as a basis for a permanent standard of 
length, and every property of metals has been investigated to guard against 
any alteration of the material standards when made. To weigh or measure any 
thing with modern accuracy, requires a course of experiment and calculation 
in which almost every branch of physics and mathematics is brought into 
requisition.

Yet, after all, the dimensions of our earth and its time of rotation, though, 
relatively to our present means of comparison, very permanent, are not so by 
any physical necessity. The earth might contract by cooling, or it might be 
enlarged by a layer of meteorites falling on it, or its rate of revolution might 
slowly slacken, and yet it would continue to be as much a planet as before.

But a molecule, say of hydrogen, if either its mass or its time of vibration 
were to be altered in the least, would no longer be a molecule of hydrogen.

If, then, we wish to obtain standards of length, time, and mass which 
shall be absolutely permanent, we must seek them not in the dimensions, or 
the motion, or the mass of our planet, but in the wave-length, the period of 
vibration, and the absolute mass of these imperishable and unalterable and 
perfectly similar molecules.

When we find that here, and in the starry heavens, there are innumerable 
multitudes of little bodies of exactly the same mass, so many, and no more, 
to the grain, and vibrating in exactly the same time, so many times, and no more, 
in a second, and when we reflect that no power in nature can now alter in 
the least either the mass or the period of any one of them, we seem to have 
advanced along the path of natural knowledge to one of those points at which 
we must. accept the guidance of that faith by which we understand that 
“ that which is seen was not made of things which do appear.”

One of the most remarkable results of the progress of molecular science 
is the light it has thrown on the nature of irreversible processes—processes, 
that is, which always tend towards and never away from a certain limiting

VOL. II. h
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state. Thus, if two gases be put into the same vessel, they become mixed, 
and the mixture tends continually to become more uniform. If two unequally 
heated portions of the same gas are put into the vessel, something of the 
kind takes place, and the whole tends to become of the same temperature. 
If two unequally heated solid bodies be placed in contact, a continual approxi
mation of both to an intermediate temperature takes place.

In the case of the two gases, a separation may be effected by chemical means; 
but in the other two cases the former state of things cannot be restored by 
any natural process.

In the case of the conduction or diffusion of heat the process is not only 
irreversible, but it involves the irreversible diminution of that part of the whole 
stock of thermal energy which is capable of being converted into mechanical work.

This is Thomson’s theory of the irreversible dissipation of energy, and it is 
equivalent to the doctrine of Clausius concerning the growth of what he calls 
Entropy.

The irreversible charactei' of this process is strikingly embodied in Fourier’s 
theory of the conduction of heat, where the formulae themselves indicate, for 
all positive values of the time, a possible solution which continually tends to 
the form of a uniform diffusion of heat.

But if we attempt to ascend the stream of time by giving to its symbol 
continually diminishing values, we are led up to a state of things in which 
the formula has what is called a critical value; and if we inquire into the 
state of things the instant before, we find that the formula becomes absurd.

We thus arrive at the conception of a state of things which cannot be 
conceived as the physical result of a previous state of things, and we find 
that this critical condition actually existed at an epoch not in the utmost 
depths of a past eternity, but separated from the present time by a finite interval.

This idea of a beginning is one which the physical researches of recent 
times have brought home to us, more than any observer of the course of 
scientific thought in former times would have had reason to expect.

But the mind of man is not, like Courier’s heated body, continually settling 
down into an ultimate state of quiet uniformity, the character of which we 
can already predict; it is rather like a tree, shooting out branches which adapt 
themselves to the new aspects of the sky towards which they climb, and roots 
which contort themselves among the strange strata of the earth into which they 
delve. To us who breathe only the spirit of our own age, and know only the
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characteristics of contemporary thought, it is as impossible to predict the general 
tone of the science of the future as it is to anticipate the particular discoveries 
which it will make.

Physical research is continually revealing to us new features of natural 
processes, and we are thus compelled to search for new forms of thought 
appropriate to these features. Hence the importance of a careful study of those 
relations between Mathematics and Physics which determine the conditions under 
which the ideas derived from one department of physics may be safely used in 
forming ideas to be employed in a new department.

The figure of speech or of thought by which we transfer the language and 
ideas of a familiar science to one with which we are less acquainted may be 
called Scientific Metaphor.

Thus the words Velocity, Momentum, Force, &c. have acquired certain precise 
meanings in Elementary Dynamics. They are also employed in the Dynamics 
of a Connected System in a sense which, though perfectly analogous to the 
elementary sense, is wider and more general.

These generalized forms of elementary ideas may be called metaphorical 
terms in the sense in which every abstract term is metaphorical. The charac
teristic of a truly scientific system of metaphors is that each term in its 
metaphorical use retains all the formal relations to the other terms of the 
system which it bad in its original use. The method is then truly scientific— 
that is, not only a legitimate product of science, but capable of generating 
science in its turn.

there are certain electrical phenomena, again, which are connected together 1 
by relations of the same form as those which connect dynamical phenomena. 
Io apply to these the phrases of dynamics with proper distinctions and pro
visional reservations is an example of a metaphor of a bolder kind; but it is 
a legitimate metaphor if it conveys a true idea of the electrical relations to 
those who have been already trained in dynamics.

Suppose, then, that we have successfully introduced certain ideas belonging 
to an elementary science by applying them metaphorically to some new class 
of phenomena. It becomes an important philosophical question to determine in 
what degree the applicability of the old ideas to the new subject may be 
taken as evidence that the new phenomena are physically similar to the old.

The best instances for the determination of this question are those in 
which two different explanations have been given of the same thing.

29—2
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The most celebrated case of this kind is that of the corpuscular and the 
undulatory theories of light. Up to a certain point the phenomena of light 
are equally well explained by both; beyond this point, one of them fails.

To understand the true relation of these theories in that part of the field 
where they seem equally applicable we must look at them in the light which 
Hamilton has thrown upon them by his discovery that to every brachistochrone 
problem there corresponds a problem of free motion, involving different velocities 
and times, but resulting in the same geometrical path. Professor Tait has 
written a very interesting paper on this subject.

According to a theory of electricity which is making great progress in 
Germany, two electrical particles act on one another directly at a distance, 
but with a force which, according to Weber, depends on their relative velocity, 
and according to a theory hinted at by Gauss, and developed by Riemann, 
Lorenz, and Neumann, acts not instantaneously, but after a time depending 
on the distance. The power with which this theory, in the hands of these 
eminent men, explains every kind of electrical phenomena must be studied in 
order to be appreciated.

Another theory of electricity, which I prefer, denies action at a distance 
and attributes electric action to tensions and pressures in an all-pervading medium, 
these stresses being the same in kind with those familiar to engineers, and the 
medium being identical with that in which light is supposed to be propagated.

Both these theories are found to explain not only the phenomena by the 
aid of which they were originally constructed, but other phenomena, which 
were not thought of or perhaps not known at the time; and both have inde
pendently arrived at the same numerical result, which gives the absolute 
velocity of light in terms of electrical quantities.

That theories apparently so fundamentally opposed should have so large 
a field of truth common to both is a fact the philosophical importance of which 
we cannot fully appreciate till we have reached a scientific altitude from which 
the true relation between hypotheses so different can be seen.

I shall only make one more remark on the relation between Mathematics 
and Physics. In themselves, one is an operation of the mind, the other is a 
dance of molecules. The molecules have laws of their own, some of which we 
select as most intelligible to us and most amenable to our calculation. We 
form a theory from these partial data, and we ascribe any deviation of the 
actual phenomena from this theory to disturbing causes. At the same time we 
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confess that what we call disturbing causes are simply those parts of the true 
circumstances which we do not know or have neglected, and we endeavour in 
future to take account of them. We thus acknowledge that the so-called dis
turbance is a mere figment of the mind, not a fact of nature, and that in 
natural action there is no disturbance.

But this is not the only way in which the harmony of the material with 
the mental operation may be disturbed. The mind of the mathematician is 
subject to many disturbing causes, such as fatigue, loss of memory, and hasty 
conclusions; and it is found that, from these and other causes, mathematicians 
make mistakes.

I am not prepared to deny that, to some mind of a higher order than 
ours, each of these errors might be traced to the regular operation of the laws 
of actual thinking; in fact we ourselves often do detect, not only errors of 
calculation, but the causes of these errors. This, however, by no means alters 
our conviction that they are errors, and that one process of thought is right 
and another process wrong.

One of the most profound mathematicians and thinkers of our time, the 
late George Boole, when reflecting on the precise and almost mathematical 
character of the laws of right thinking as compared with the exceedingly per
plexing though perhaps equally determinate laws of actual and fallible thinking, 
was led to another of those points of view from which Science seems to look 
out into a region beyond her own domain.

“We must admit,” he says, “that there exist laws” (of thought) “which 
even the rigour of their mathematical forms does not preserve from violation. 
We must ascribe to them an authority, the essence of which does not consist 
in power, a supremacy which the analogy of the inviolable order of the natural 
world in no way assists us to comprehend.”



[From the Report of the British Association, 1870.]

XLII. On Colour-vision at different points of the Retina.

It has long been known that near that point of the retina where it is 
intersected by the axis of the eye there is a yellowish spot, the existence of 
which can be shewn not only by the ophthalmoscope, but by its effect on 
vision. At the Cheltenham Meeting in 1856 the author pointed out a method 
of seeing this spot by looking at that part of a very narrow spectrum which 
lies near the line F. Since that time the spot has been described by Helmholtz 
and others; and the author has made a number of experiments, not yet pub
lished, in order to determine its effects on colour-vision.

One of the simplest methods of seeing the spot was suggested to the 
author by Prof. Stokes. It consists in looking at a white surface, such as that 
of a white cloud, through a solution of chloride of chromium made so weak that 
it appears of a bluish-green colour. If the observer directs his attention to 
what he sees before him before his eyes have got accustomed to the new tone of 
colour, he sees a pinkish spot like a wafer on a bluish-green ground; and this 
spot is always at the place he is looking at. The solution transmits the red 
end of the spectrum, and also a portion of bluish-green light near the line F. 
The latter portion is partially absorbed by the spot, so that the red light has 
the preponderance.

Experiments of a more accurate kind were made with an instrument the 
original conception of which is due to Sir Isaac Newton, and is described in 
his Lectiones Opticce, though it does not appear to have been actually constructed 
till the author set it up in 1862, with a solid frame and careful adjustments. 
It consists of two parts, side by side. In the first part, ■white light is dis
persed by a prism so as to form a spectrum. Certain portions of this spectrum 
are selected by being allowed to pass through slits in a screen. These selected 
portions are made to converge on a second prism, which unites them into a
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single beam of light, in which state they enter the eye. The second part of 
the instrument consists of an arrangement by which a beam of light from the 
very same source is weakened by two reflections from glass surfaces, and enters 
the eye alongside of the beam of compound colours.

ihe instrument is formed of three rectangular wooden tubes, the whole 
length being about nine feet. It contains two prisms, two mirrors, and six 
lenses, which are so adjusted that, in spite of the very different treatment to 
which the two portions of a beam of light are subjected, they shall enter the 
eye so as to form exactly equal and coincident images of the source of light. 
In fact, by looking through the instrument a man’s face may be distinctly 
seen by means of the red, the green, or the blue light which it emits, or by 
any combination of these at pleasure.

The arrangement of the three slits is made by means of six brass slides, 
which can be worked with screws outside the instrument; and the breadth of 
the slits can be read off with a gauge very accurately.

In each observation three colours of the spectrum are mixed and so adjusted 
that their mixture is so exactly equivalent to the white light beside it, that 
the line which divides the two can no longer be seen.

It is found that in certain cases, when this adjustment is made so as to 
satisfy one person, a second will find the mixed colour of a green hue, while 
to a third it will appear of a reddish colour, compared with the white beam.

But, besides this, it is found that the mixed colour may be so adjusted 
that, if we look directly at it, it appears red, while if we direct the eye away 
from it, and cast a sidelong glance at it, we. see it green. The cause of this 
is the yellow spot, which acts somewhat as a piece of yellow glass would do,
absorbing certain kinds of light more than others; and the difference between
different persons arises from different intensities of the absorbing spot. It is
found in persons of every nation, but generally stronger in those of dark com
plexion. The degree of intensity does not seem to depend so much on the 
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colour of the hair or the iris of the individual, as to run through families 
independent of outward complexion.

1 he same difference is found between different colour-blind persons; so that 
in the comparison of their vision with that of the normal eye, persons should 
be selected for comparison who have the yellow spot of nearly the same intensity.

In my own eye the part of the spectrum from A to E is seen decidedly 
better by the central part of the retina than by the surrounding parts. Near F 
this is reversed, and the central part gives a sensation of about half the 
intensity of the rest. Beyond G the central part is again the most sensitive, 
and it is decidedly so near II.

Before I conclude I wish to direct the attention of those who wish to 
study colour to the exceedingly simple and beautiful series of experiments 
described by Mr W. Benson in his works on colour. By looking through a prism 
at the black and white diagrams in his book, any one can see more of the 
true relations of colour than can be got from the most elaborately coloured 
theoretical arrangements of tints.



[From the Philosophical Magazine for December, 1870.]

XLIII. On Hills and Dales.

To the Editors of the Philosophical Magazine and Journal.

Gentlemen,
I find that in the greater part of the substance of the following

paper I have been anticipated by Professor Cayley, in a memoir “ On Contour 
and Slope Lines,” published in the Philosophical Magazine in 1859 (S. 4. Vol. 
xvm. p. 264). An exact knowledge of the first elements of physical geography, 
however, is so important, and loose notions on the subject are so prevalent, 
that I have ho hesitation in sending you what you, I hope, will have no 
scruple in rejecting if you think it superfluous after what has been done by 
Professor Cayley.

Glenlair, Dalbeattie,

I am, Gentlemen,

Your obedient Servant,

J. CLERK MAXWELL.

October 12, 1870.

1. On Contour-lines and Measurement of Heights.

The results of the survey of the surface of a country are most conveniently 
exhibited by means of a map on which are traced contour-lines, each contour-line 
representing the intersection of a level surface with the surface of the earth, 
and being distinguished by a numeral which indicates the level surface to 
which it belongs.

When the extent of country surveyed is small, the contour-lines are defined
VOL. II. 30
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with sufficient accuracy by the number of feet above the mean level of the 
sea; but when the survey is so extensive that the variation of the force of 
gravity must be taken into account, we must adopt a new definition of the 
height of a place in order to be mathematically accurate. If we could deter
mine the exact form of the surface of equilibrium of the sea, so as to know 
its position in the interior of a continent, we might draw a normal to this 
surface from the top of a mountain, and call this the height of the mountain. 
This would be perfectly definite in the case when the surface of equilibrium 
is everywhere convex; but the lines of equal height would not be level 
surfaces.

Level surfaces are surfaces of equilibrium, and they are not equidistant. 
The only thing which is constant is the amount of work required to rise from 
one to another. Hence the only consistent definition of a level surface is 
obtained by assuming a standard station, say, at the mean level of the sea 
at a particular place, and defining every other level surface by the work 
required to raise unit of mass from the standard station to that level surface. 
This work must, of course, be expressed in absolute measure, not in local foot
pounds.

At every step, therefore, in ascertaining the difference of level of two 
places, the surveyor should ascertain the force of gravity, and multiply the 
linear difference of level observed by the numerical value of the force of gravity.

The height of a place, according to this system, will be defined by a 
number which represents, not a lineal quantity, but the half square of the 
velocity which an unresisted body would acquire in sliding along any path from 
that place to the standard station. This is the only definition of the height 
of a place consistent with the condition that places of equal height should be 
on the same level. If by any means we can ascertain the mean value of 
gravity along the line of force drawn from the place to the standard level 
surface, then, if we divide the number already found by this mean value, we 
shall obtain the length of this line of force, which may be called the linear 
height of the place.

On the Forms of Contour-lines,

Let us begin with a level surface entirely within the solid part of the 
earth, and let us suppose it to ascend till it reaches the bottom of the deepest 



HILLS AND DALES. 235

sea. At that point it will touch the surface of the earth; and if it continues 
to ascend, a contour-line will be formed surrounding this bottom (or Immit, as 
it is called by Professor Cayley) and enclosing a region of depression. As the 
level surface continues to ascend, it will reach the next deepest bottom of the 
sea; and as it ascends it will form another contour-line, surrounding this point, 
and enclosing another region of depression below the level surface. As the level 
surface rises these regions of depression will continually expand, and new ones 
will be formed corresponding to the different lowest points of the earth’s 
surface.

At first there is but one region of depression, the whole of the rest of 
the earth’s surface forming a region of elevation surrounding it. The number 
of regions of elevation and depression can be altered in two ways.

1st. Two regions of depression may expand till they meet and so run 
into one. If a contour-line be drawn through the point where they meet, it 
forms a closed curve having a double point at this place. This contour-line 
encloses two regions of depression. We shall call the point where these two 
regions meet a Bar.

It may happen that more than two regions run into each other at once. 
Such cases are singular, and we shall reserve them for separate consideration.

2ndly. A region of depression may thrust out arms, which may meet each 
other and thus cut off a region of elevation in the midst of the region of 
depression, which thus becomes a cyclic region, while a new region of elevation 
is introduced. The contour-line through the point of meeting cuts off two 
regions of elevation from one region of depression, and the point itself is called 
a Pass. There may be in singular cases passes between more than two regions 
of elevation.

3rdly. As the level surface rises, the regions of elevation contract and at 
last are reduced to points. These points are called Summits or Tops.

Relation between the Number of Summits and Passes.

At first the whole earth is a region of elevation. For every new region 
of elevation there is a Pass, and for every region of elevation reduced to a 
point there is a Summit. And at last the whole surface of the earth is a 
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region of depression. Hence the number of Summits is one more than the 
number of Passes. If S is the number of Summits and P the number of passes,

S=P+1.

Relation between the Number of Bottoms and Bars.

For every new region of depression there is a Bottom, and for every 
diminution of the number of these regions there is a Bar. Hence the number 
of Bottoms is one more than the number of Bars. If I is the number of 
Bottoms or Immits and B the number of Bars, then

I = B+l.
Iiom this it is plain that if, in the singular cases of passes and bars, we 

reckon a pass as single, double, or ?i-ple, according as two, three, or n +1 
legions of elevation meet at that point, and a bar as single, double, or n-ple, 
as two, three, or n +1 regions of depression meet at that point, then the 
census may be taken as before, giving each singular point its proper number. 
If one region of depression meets another in several places at once, one of 
these must be taken as a bar and the rest as passes.

1 he whole of this theory applies to the case of the maxima and minima 
of a function of two variables which is everywhere finite, determinate, and 
continuous. The summits correspond to maxima and the bottoms to minima. 
If there are p maxima and q minima, there must be p + q — 2 cases of stationary 
values which are neither maxima nor minima. If we regard those points in 
themselves, we cannot make any distinction among them; but if we consider 
the regions cut off by the curves of constant value of the function, we may 
call p — 1 of them false maxima and q — 1 of them false minima.

On Functions of Three Variables.

If we suppose the three variables to be the three co-ordinates of a point, 
and the regions where the function is greater or less than a given value to be 
called the positive and the negative regions, then, as the given value increases, 
for every negative region formed there will be a minimum, and the positive 
region will have an increase of its periphraxy. For every junction of two dif
ferent negative regions there will be a false minimum, and the positive region
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will have a diminution of its periphraxy. Hence if there are 7 true minima 
there will be ([ — 1 false minima.

There are different orders of these stationary points according to the number 
of regions which meet in them. The first order is when two negative regions 
meet surrounded by a positive region, the second order when three negative 
regions meet, and so on. Points of the second order count for two, those of 
the third for three, and so on, in this relation between the true minima and 
the false ones.

In like manner, when a negative region expands round a hollow part and 
at last surrounds it, thus cutting off a new positive region, the negative region 
acquires periphraxy, a new positive region is formed, and at the point of contact 
there is a false maximum.

When any positive region is reduced to a point and vanishes, the negative 
region loses periphraxy and there is a true maximum. Hence if there are p 
maxima there are p — 1 false maxima.

But these are not the only forms of stationary points ; for a negative 
region may thrust out arms which may meet in a stationary point. The negative 
and the positive region both become cyclic. Again, a cyclic region may close 
in so as to become acyclic, forming another kind of stationary point where the 
ring first fills up. If there are r points at which cyclosis is gained and r 
points at which it is lost, then we know that

/r = r ;
but we cannot determine any relation between the number of these points and 
that of either the true or the false maxima and minima.

If the function of three variables is a potential function, the true maxima 
are points of stable equilibrium, the true minima points of equilibrium unstable 
in every direction, and at the other stationary points the equilibrium is stable 
in some directions and unstable in others.

On Lines of Slope.
Lines drawn so as to be everywhere at right angles to the contour-lines 

are called lines of slope. At every point of such a line there is an upward 
and a downward direction. If we follow the upward direction we shall in 
general reach a summit, and if we follow the downward direction we shall in 
general reach a bottom. In particular cases, however, we may reach a pass or 
a bar.
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On Hills and Dales.

Hence each point of the earth's surface has a line of slope, which begins 
at a certain summit and ends in a certain bottom. Districts whose lines of 
slope run to the same bottom are called Basins or Dales. Those whose lines 
of slope come from the same summit may be called, for want of a better name, 
Hills.

Hence the whole earth may be naturally divided into Basins or Dales, and 
also, by an independent division, into hills, each point of the surface belonging 
to a certain dale and also to a certain hill.

On Watersheds and Watercourses.

Dales are divided from each other by Watersheds, and Hills by Watercourses.
To draw these lines, begin at a pass or a bar. Here the ground is level, 

so that we cannot begin to draw a line of slope; but if we draw a very small 
closed curve round this point, it will have highest and lowest points, the 
number of maxima being equal to the number of minima, and each one more 
than the index number of the pass or bar. From each maximum point draw 
a line of slope upwards till it reaches a summit. This will be a line of Water
shed. From each minimum point draw a line of slope downwards till it reaches 
a bottom. This will be a line of Watercourse. Lines of Watershed are the 
only lines of slope which do not reach a bottom, and lines of Watercourse 
are the only lines of slope which do not reach a summit. All other lines of 
slope diverge from some summit and converge to some bottom, remaining 
throughout their course in the district belonging to that summit and that 
bottom, which is bounded by two watersheds and two watercourses.

In the pure theory of surfaces there is no method of determining a line 
of watershed or of watercourse, except by first finding a pass or a bar and 
drawing the line of slope from that point. In nature, water actually trickles 
down the lines of slope, which generally converge towards the mathematical 
watercourses, though they do not actually join them ; but when the streams 
increase in quantity, they join and excavate courses for themselves; and these 
actually run into the main watercourse which bounds the district, and so cut 
out a river-bed, which, whether full or empty, forms a visible mark on the 
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earth s surface. No such action takes place at a watershed, which therefore 
generally remains invisible.

Iheie is another difficulty in the application of the mathematical theory, 
on account of the principal regions of depression being covered with water, so 
that very little is known about the positions of the singular points from which 
the lines of watershed must be drawn to the summits of hills near the coast. 
A complete division of the dry land into districts, therefore, requires some 
knowledge of the form of the bottom of the sea and of lakes.

On the Number of Natural Districts.

Let Pi be the number of single passes, p, that of double passes, and so on. 
Let bv b„ &c. be the numbers of single, double, &c. bars. Then the number 
of summits will be, by what we have proved,

1 +p1 + 2^a + &c., 
and the number of bottoms will be

I — 1 + &, + 2&, + &c.
The number of watersheds will be

IT= 2 +p^ + 3 (b, +pt) + &c.
The number of watercourses will be the same.

Now, to find the number of faces, we have by Listing’s rule
P-L + F-R = 0,

where P is the number of points, L that of lines, F that of faces, and R 
that of regions, there being in this case no instance of cyclosis or periphraxy. 
Here R =2, viz. the earth and the surrounding space; hence

F=L-P + 2.

If we put L equal to the number of watersheds, and P equal to that of 
summits, passes, and bars, then 7' is the number of Dales, which is evidently 
equal to the number of bottoms.

If we put L for the number of watercourses, and P for the number of 
passes, bars, and bottoms, then F is the number of Hills, which is evidently 
equal to the number of summits.
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If we put £ equal to the whole number of lines, and P equal to the 
whole number of pOinfg> we find that j? the number of natural districts 
named from a hill and a dale together, is equal to IK, the number of water
sheds or watercourses, or to the whole number of summits, bottoms, passes, 
and bars diminished by 2.

Chart of an Inland Basin.

A. A> A. A- 
s„ st. 

p» 
Pv A. p* p« Pi. 

A Bt Ac.
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Dotted line.

Lowest points, Bottoms or Immits. 
Highest points, Tops or Summits. 
Bars between regions of depression. 
Passes between regions of elevation. 
Lines of Watercourse.
Lines of Watershed.
Oontour-lines.



XLIV. Introductory Lecture on Experimental Physics.

The University of Cambridge, in accordance with that law of its evolution, 
by which, while maintaining the strictest continuity between the successive 
phases of its history, it adapts itself with more or less promptness to the 
requirements of the times, has lately instituted a course of Experimental 
Physics. This course of study, while it requires us to maintain in action all 
those powers of attention and analysis which have been so long cultivated in 
the University, calls on us to exercise our senses in observation, and our hands 
in manipulation. The familiar apparatus of pen, ink, and paper will no longer be 
sufficient for us, and we shall require more room than that afforded by a seat at 
a desk, and a wider area than that of the black board. We owe it to the 
munificence of our Chancellor, that, whatever be the character in other respects 
of the experiments which we hope hereafter to conduct, the material facilities 
for their full development will be upon a scale which has not hitherto been 
surpassed.

The main feature, therefore, of Experimental Physics at Cambridge is the 
Devonshire Physical Laboratory, and I think it desirable that on the present 
occasion, before we enter on the details of any special study, we should con
sider by what means we, the University of Cambridge, may, as a living body, 
appropriate and vitalise this new organ, the outward shell of which we expect 
soon to rise before us. The course of study at this University has always 
included Natural Philosophy, as well as Pure Mathematics. To diffuse a sound 
knowledge of Physics, and to imbue the minds of our students with correct 
dynamical principles, have been long regarded as among our highest functions, 
and very few of us can now place ourselves in the mental condition in which 
even such philosophers as the great Descartes were involved in the days before 
Newton had announced the true laws of the motion of bodies. Indeed the 
cultivation and diffusion of sound dynamical ideas has already effected a great 
change in the language and thoughts even of those who make no pretensions 
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to science, and we are daily receiving fresh proofs that the popularisation of 
scientific doctrines is producing as great an alteration in the mental state of 
society as the material applications of science are effecting in its outward life. 
Such indeed is the respect paid to science, that the most absurd opinions may 
become current, provided they are expressed in language, the sound of which 
recals some well-known scientific phrase. If society is thus prepared to receive 
all kinds of scientific doctrines, it is our part to provide for the diffusion and 
cultivation, not only of true scientific principles, but of a spirit of sound 
criticism, founded on an examination of the evidences on which statements 
apparently scientific depend.

When we shall be able to employ in scientific education, not only the 
trained attention of the student, and his familiarity with symbols, but the 
keenness of his eye, the quickness of his ear, the delicacy of his touch, and 
the adroitness of his fingers, we shall not only extend our influence over a 
class of men who are not fond of cold abstractions, but, by opening at once 
all the gateways of knowledge, we shall ensure the association of the doctrines 
of science with those elementary sensations which form the obscure background 
of all our conscious thoughts, and which lend a vividness and relief to ideas, 
which, when presented as mere abstract terms, are apt to fade entirely from 
the memory.

In a course of Experimental Physics we may consider either the Physics 
or the Experiments as the leading feature. We may either employ the experi
ments to illustrate the phenomena of a particular branch of Physics, or we 
may make some physical research in order to exemplify a particular experimental 
method. In the order of time, we should begin, in the Lecture Room, with 
a course of lectures on some branch of Physics aided by experiments of illus
tration, and conclude, in the Laboratory, with a.course of experiments of research.

Let me say a few words on these two classes of experiments,—Experiments 
of Illustration and Experiments of Research. The aim of an experiment of 
illustration is to throw light upon some scientific idea so that the student may 
be enabled to grasp it. The circumstances of the experiment are so arranged 
that the phenomenon which we wish to observe or to exhibit is brought into 
prominence, instead of being obscured and entangled among other phenomena, as 
it is when it occurs in the ordinary course of nature. To exhibit illustrative 
experiments, to encourage others to make them, and to cultivate in every 
way .the ideas on which they throw light, forms an important part of our duty.
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The simpler the materials of an illustrative experiment, and the more familiar 
they are to the student, the more thoroughly is he likely to acquire the idea 
which it is meant to illustrate. The educational value of such experiments is 
often inversely proportional to the complexity of the apparatus. The student 
who uses home-made apparatus, which is always going wrong, often learns more 
than one who has the use of carefully adjusted instruments, to which he is apt 
to trust, and which he dares not take to pieces.

It is very necessary that those who are trying to learn from books the 
facts of physical science should be enabled by the help of a few illustrative 
experiments to recognise these facts when they meet with them out of doors. 
Science appears to us with a very different aspect after we have found out 
that it is not in lecture rooms only, and by means of the electric light pro
jected on a screen, that we may witness physical phenomena, but that we may 
find illustrations of the highest doctrines of science in games and gymnastics, 
in travelling by land and by water, in storms of the air and of the sea, and 
wherever there is matter in motion.

This habit of recognising principles amid the endless variety of their action 
can never degrade our sense of the sublimity of nature, or mar our enjoyment 
of its beauty. On the contrary, it tends to rescue our scientific ideas from 
that vague condition in which we too often leave them, buried among the 
other products of a lazy credulity, and to raise them into their proper position 
among the doctrines in which our faith is so assured, that we are ready at all 
times to act on them.

Experiments of illustration may be of very different kinds. Some may be 
adaptations of the commonest operations of ordinary life, others may be carefully 
arranged exhibitions of some phenomenon which occurs only under peculiar 
conditions, dhey all, however, agree in this, that their aim is to present some 
phenomenon to the senses of the student in such a way that he may associate 
with it the appropriate scientific idea. When he has grasped this idea, the 
experiment which illustrates it has served its purpose.

In an experiment of research, on the other hand, this is not the principal 
aim. It is true that an experiment, in which the principal aim is to see what 
happens under certain conditions, may be regarded as an experiment of research 
by those who are not yet familiar with the result, but in experimental 
researches, strictly so called, the ultimate object is to measure something which 
we have already seen—to obtain a numerical estimate of some magnitude.
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Experiments of this class—those in which measurement of some kind is 
involved, are the proper work of a Physical Laboratory. In every experiment 
we have first to make our senses familiar with the phenomenon, but we must 
not stop here, we must find out which of its features are capable of measure
ment, and what measurements are required in order to make a complete 
specification of the phenomenon. We must then make these measurements, 
and deduce from them the result which we require to find.

This characteristic of modern experiments—that they consist principally of 
measurements,—is so prominent, that the opinion seems to have got abroad, 
that in a few years all the great physical constants will have been approxi
mately estimated, and that the only occupation which will then be left to men 
of science will be to carry on these measurements to another place of decimals.

If this is really the state of things to which we are approaching, our 
Laboratory may perhaps become celebrated as a place of conscientious labour 
and consummate skill, but it will be out of place in the University, and ought 
rather to be classed with the other great workshops of our country, where equal 
ability is directed to more useful ends.

But we have no right to think thus of the unsearchable riches of creation, 
or of the untried fertility of those fresh minds into which these riches will 
continue to be poured. It may possibly be true that, in some of those fields 
of discovery which lie open to such rough observations as can be made without 
artificial methods, the great explorers of former times have appropriated most 
of what is valuable, and that the gleanings which remain are sought after, 
rather for their abstruseness, than for their intrinsic worth. But the history 
of science shews that even during that phase of her progress in which she 
devotes herself to improving the accuracy of the numerical measurement of 
quantities with which she has long been familiar, she is preparing the materials 
for the subjugation of new regions, which would have remained unknown if 
she had been contented with the rough methods of her early pioneers. I might 
bring forward instances gathered from every branch of science, shewing how 
the labour of careful measurement has been rewarded by the discovery of new 
fields of research, and by the development of new scientific ideas. But the 
history of the science of terrestrial magnetism affords us a sufficient example 
of what may be done by Experiments in Concert, such as we hope some day 
to perform in our Laboratory.

That celebrated traveller, Humboldt, was profoundly impressed with the 
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scientific value of a combined effort to be made by tbe observers of all nations, 
to obtain accurate measurements of the magnetism of the earth; and we owe 
it mainly to his enthusiasm for science, his great reputation and his wide
spread influence, that not only private men of science, but the governments of 
most of the civilised nations, our own among the number, were induced to 
take part in the enterprise. But the actual working out of the scheme, and 
the arrangements by which the labours of the observers were so directed as to 
obtain the best results, we owe to the great mathematician Gauss, working along 
with Weber, the future founder of the science of electro-magnetic measurement, 
in the magnetic observatory of Gottingen, and aided by the skill of the 
instrument-maker Leyser. These men, however, did not work alone. Numbers 
of scientific men joined the Magnetic Union, learned the use of the new instru
ments and the new methods of reducing the observations; and in every city 
of Europe you might see them, at certain stated times, sitting, each in his 
cold wooden shed, with his eye fixed at the telescope, his ear attentive to the 
clock, and his pencil recording in his note-book the instantaneous position of 
the suspended magnet.

Bacon’s conception of “ Experiments in concert ” was thus realised, the 
scattered forces of science were converted into a regular army, and emulation 
and jealousy became out of place, for the results obtained by any one observer 
were of no value till they were combined with those of the others.

The increase in the accuracy and completeness of magnetic observations 
which was obtained by the new method, opened up fields of research which 
were hardly suspected to exist by those whose observations of the magnetic 
needle had been conducted in a more primitive manner. We must reserve for 
its proper place in our course any detailed description of the disturbances to 
which the magnetism of our planet is found to be subject. Some of these 
disturbances are periodic, following the regular courses of the sun and moon. 
Others are sudden, and are called magnetic storms, but, like the storms of 
the atmosphere, they have their known seasons of frequency. The last and 
the most mysterious of these magnetic changes is that secular variation by 
which the whole character of the earth, as a great magnet, is being slowly 
modified, while the magnetic poles creep on, from century to century, along 
their winding track in the polar regions.

We have thus learned that the interior of the earth is subject to the 
influences of the heavenly bodies, but that besides this there is a constantly 
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progressive change going on, the cause of which is entirely unknown. In each 
of the magnetic observatories throughout the world an arrangement is at work, 
by means of which a suspended magnet directs a ray of light on a prepared 
sheet of paper moved by clockwork. On that paper the never-resting heart of 
the earth is now tracing, in telegraphic symbols which will one day be inter
preted, a record of its pulsations and its flutterings, as well as of that slow 
but mighty working which warns us that we must not suppose that the inner 
history of our planet is ended.

But this great experimental research on Terrestrial Magnetism produced 
lasting effects on the progress of science in general. I need only mention one 
or two instances. The new methods of measuring forces were successfully applied 
by Weber to the numerical determination of all the phenomena of electricity, 
and very soon afterwards the electric telegraph, by conferring a commercial 
value on exact numerical measurements, contributed largely to the advancement, 
as well as to the diffusion of scientific knowledge.

But it is not in these more modern branches of science alone that this 
influence is felt. It is to Gauss, to the Magnetic Union, and to magnetic 
observers in general, that we owe our deliverance from that absurd method of 
estimating forces by a variable standard which prevailed so long even among 
men of science. It was Gauss who first based the practical measurement of 
magnetic force (and therefore of every other force) on those long established 
principles, which, though they are embodied in every dynamical equation, have 
been so generally set aside, that these very equations, though correctly given 
in our Cambridge textbooks, are usually explained there by assuming, in addition 
to the variable standard of force, a variable, and therefore illegal, standard of 
mass.

Such, then, were some of the scientific results which followed in this case 
from bringing together mathematical power, experimental sagacity, and manipu
lative skill, to direct and assist the labours of a body of zealous observers. If 
therefore we desire, for our own advantage and for the honour of our University, 
that the Devonshire Laboratory should be successful, we must endeavour to 
maintain it in living union with the other organs and faculties of our learned 
body. We shall therefore first consider the relation in which we stand to 
those mathematical studies which have so long flourished among us, which deal 
with our own subjects, and which differ from our experimental studies only in 
the mode in which they are presented to the mind.
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There 
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is no more powerful method for introducing knowledge into the 
that of presenting it in as many different ways as we can. When 
after entering through different gateways, effect a junction in the 

the mind, the position they occupy becomes impregnable. Opticians 
tell us that the mental combination of the views of an object which we obtain 
from stations no further apart than our two eyes is sufficient to produce in 
our minds an impression of the solidity of the object seen ; and we find that 
this impression is produced even when we are aware that we are really looking 
at two flat pictures placed in a stereoscope. It is therefore natural to expect that 
the knowledge of physical science obtained by the combined use of mathematical 
analysis and experimental research will be of a more solid, available, and enduring 
kind than that possessed by the mere mathematician or the mere experimenter.

But what will be the effect on the University, if men pursuing that course 
of reading which has produced so many distinguished Wranglers, turn aside to 
work experiments ? Will not their attendance at the Laboratory count not 
merely as time withdrawn from their more legitimate studies, but as the intro
duction of a disturbing element, tainting their mathematical conceptions with 
material imagery, and sapping their faith in the formulae of the textbooks? 
Besides this, we have already heard complaints of the undue extension of our 
studies, and of the strain put upon our questionists by the weight of learning 
which they try to carry with them into the Senate-House. If we now ask 
them to get up their subjects not only by books and writing, but at the same 
time by observation and manipulation, will they not break down altogether? 
The Physical Laboratory, we are told, may perhaps be useful to those who 
are going out in Natural Science, and who do not take in Mathematics, but to 
attempt to combine both kinds of study during the time of residence at the 
University is more than one mind can bear.

No doubt there is some reason for this feeling. Many of us have already 
overcome the initial difficulties of mathematical training. When we now go on 
with our study, we feel that it requires exertion and involves fatigue, but we 
are confident that if we only work hard our progress will be certain.

Some of us, on the other hand, may have had some experience of the 
routine of experimental work. As soon as we can read scales, observe times 
focus telescopes, and so on, this kind of work ceases to require any great 
mental effort. We may perhaps tire our eyes and weary our backs, but we do 
not greatly fatigue our minds.
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It is not till we attempt to bring the theoretical part of our training into 
contact with the practical that we begin to experience the full effect of what 
Faraday has called “mental inertia”—not only the difficulty of recognising, 
among the concrete objects before us, the abstract relation which we have 
learned from books, but the distracting pain of wrenching the mind away from 
the symbols to the objects, and from the objects back to the symbols. This 
however is the price we have to pay for new ideas.

But when we have overcome these difficulties, and successfully bridged over 
the gulph between the abstract and the concrete, it is not a mere piece of 
knowledge that we have obtained: we have acquired the rudiment of a perma
nent mental endowment. When, by a repetition of efforts of this kind, we have 
more fully developed the scientific faculty, the exercise of this faculty in detecting 
scientific principles in nature, and in directing practice by theory, is no longer 
irksome, but becomes an unfailing source of enjoyment, to which we return so 
often, that at last even our careless thoughts begin to run in a scientific 
channel.

I quite admit that our mental energy is limited in quantity, and I know 
that many zealous students try to do more than is good for them. But the 
question about the introduction of experimental study is not entirely one of 
quantity. It is to a great extent a question of distribution of energy. Some 
distributions of energy, we know, are more useful than others, because they are 
more available for those purposes which we desire to accomplish.

Now in the case of study, a great part of our fatigue often arises, not 
from those mental efforts by which we obtain the mastery of the subject, but 
from those which are spent in recalling our wandering thoughts; and these 
efforts of attention would be much less fatiguing if the disturbing force of 
mental distraction could be removed.

This is the reason why a man whose soul is in his work always makes 
more progress than one whose aim is something not immediately connected with 
his occupation. In the latter case the very motive of which he makes use to 
stimulate his flagging powers becomes the means of distracting his mind from 
the work before him.

There may be some mathematicians who pursue their studies entirely for 
their own sake. Most men, however, think that the chief use of mathematics 
is found in the interpretation of nature. Now a man who studies a piece of 
mathematics in order to understand some natural phenomenon which he has
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seen, or to calculate the best arrangement of some experiment which he means 
to make, is likely to meet with far less distraction of mind than if his sole 
aim had been to sharpen his mind for the successful practice of the Law, or to 
obtain a high place in the Mathematical Tripos.

I have known men, who when they were at school, never could see the 
good of mathematics, but who, when in after life they made this discovery, 
not only became eminent as scientific engineers, but made considerable progress 
in the study of abstract mathematics. If our experimental course should help 
any of you to see the good of mathematics, it will relieve us of much anxiety, 
for it will not only ensure the success of your future studies, but it will make 
it much less likely that they will prove injurious to your health.

But why should we labour to prove the advantage of practical science to 
the University? Let us rather speak of the help which the University may 
give to science, when men well trained in mathematics and enjoying the advan
tages of a well-appointed Laboratory, shall unite their efforts to carry out some 
experimental research which no solitary worker could attempt.

At first it is probable that our principal experimental work must be the 
illustration of particular branches of science, but as we go on we must add to 
this the study of scientific methods, the same method being sometimes illustrated 
by its application to researches belonging to different branches of science.

We might even imagine a course of experimental study the arrangement of 
which should be founded on a classification of methods, and not on that of the 
objects of investigation. A combination of the two plans seems to me better 
than either, and while we take every opportunity of studying methods, we shall 
take care not to dissociate the method from the scientific research to which it 
is applied, and to which it owes its value.

We shall therefore arrange our lectures according to the classification of the 
principal natural phenomena, such as heat, electricity, magnetism and so on.

In the laboratory, on the other hand, the place of the different instruments 
will be determined by a classification according to methods, such as weighing 
and measuring, observations of time, optical and electrical methods of observa
tion, and so on.

The determination of the experiments to be performed at a particular time 
must often depend upon the means we have at command, and in the case of 
the more elaborate experiments, this may imply a long time of preparation, during
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which the instruments, the methods, and the observers themselves, are being 
gradually fitted for their work. When we have thus brought together the 
requisites, both material and intellectual, for a particular experiment, it may 
sometimes be desirable that before the instruments are dismounted and the 
observers dispersed, we should make some other experiment, requiring the same 
method, but dealing perhaps with an entirely different class of physical phe
nomena.

Our principal work, however, in the Laboratory must be to acquaint our
selves with all kinds of scientific methods, to compare them, and to estimate 
their value. It will, I think, be a result worthy of our University, and more 
likely to be accomplished here than in any private laboratory, if, by the free 
and full discussion of the relative value of different scientific procedures, we 
succeed in forming a school of scientific criticism, and in assisting the develop
ment of the doctrine of method.

But admitting that a practical acquaintance with the methods of Physical 
Science is an essential part of a mathematical and scientific education, we may 
be asked whether we are not attributing too much importance to science alto
gether as part of a liberal education.

Fortunately, there is no question here whether the University should con
tinue to be a place of liberal education, or should devote itself to preparing 
young men for particular professions. Hence though some of us may, I hope, 
see reason to make the pursuit of science the main business of our lives, it 
must be one of our most constant aims to maintain a living connexion between 
our work and the other liberal studies of Cambridge, whether literary, philological, 
historical or philosophical.

There is a narrow professional spirit which may grow up among men of 
science, just as it does among men who practise any other special business. 
But surely a University is the very place where we should be able to over
come this tendency of men to become, as it were, granulated into small worlds, 
which are all the more worldly for their very smallness. We lose the ad
vantage of having men of varied pursuits collected into one body, if we do not 
endeavour to imbibe some of the spirit even of those whose special branch of 
learning is different from our own.

It is not so long ago since any man who devoted himself to geometry, 
or to any science requiring continued application, was looked upon as necessarily 
a misanthrope, who must have abandoned all human interests, and betaken 
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himself to abstractions so far removed from the world of life and action that 
he has become insensible alike to the attractions of pleasure and to the claims 
of duty.

In the present day, men of science are not looked upon with the same 
awe or with the same suspicion. They are supposed to be in league with the 
material spirit of the age, and to form a kind of advanced Radical party among 
men of learning.

We are not here to defend literary and historical studies. We admit that 
the proper study of mankind is man. But is the student of science to be 
withdrawn from the study of man, or cut off from every noble feeling, so long 
as he lives in intellectual fellowship with men who have devoted their lives to 
the discovery of truth, and the results of whose enquiries have impressed them
selves on the ordinary speech and way of thinking of men who never heard 
their names ? Or is the student of history and of man to omit from his con
sideration the history of the origin and diffusion of those ideas which have 
produced so great a difference between one age of the world and another ?

It is true that the history of science is very different from the science of 
history. We are not studying or attempting to study the working of those 
blind forces which, we are told, are operating on crowds of obscure people, 
shaking principalities and powers, and compelling reasonable men to bring events 
to pass in an order laid down by philosophers.

The men whose names are found in the history of science are not mere 
hypothetical constituents of a crowd, to be reasoned upon only in masses. We 
recognise them as men like ourselves, and their actions and thoughts, being 
more free from the influence of passion, and recorded more accurately than those 
of other men, are all the better materials for the study of the calmer parts 
of human nature.

But the history of science is not restricted to the enumeration of success
ful investigations. It has to tell of unsuccessful inquiries, and to explain why 
some of the ablest men have failed to find the key of knowledge, and how 
the reputation of others has only given a firmer footing to the errors into 
which they fell.

The history of the development, whether normal or abnormal, of ideas is 
of all subjects that in which we, as thinking men, take the deepest interest. 
But when the action of the mind passes out of the intellectual stage, in which 
truth and error are the alternatives, into the more violently emotional states of 
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anger and passion, malice and envy, fury and madness; the student of science, 
though he is obliged to recognise the powerful influence which these wild forces 
have exercised on mankind, is perhaps in some measure disqualified from pursuing 
the study of this part of human nature.

But then how few of us are capable of deriving profit from such studies. 
We cannot enter into full sympathy with these lower phases of our nature 
without losing some of that antipathy to them which is our surest safeguard 
against a reversion to a meaner type, and we gladly return to the company of 
those illustrious men who by aspiring to noble ends, whether intellectual or 
practical, have risen above the region of storms into a clearer atmosphere, where 
there is no misrepresentation of opinion, nor ambiguity of expression, but where 
one mind comes into closest contact with another at the point where both 
approach nearest to the truth.

I propose to lecture during this term on Heat, and, as our facilities for 
experimental work are not yet fully developed, I shall endeavour to place before 
you the relative position and scientific connexion of the different branches of the 
science, rather than to discuss the details of experimental methods.

We shall begin with Thermometry, or the registration of temperatures, and 
Calorimetry, or the measurement of quantities of heat. We shall then go on 
to Thermodynamics, which investigates the relations between the thermal pro
perties of bodies and their other dynamical properties, in so far as these relations 
may be traced without any assumption as to the particular constitution of these 
bodies.

The principles of Thermodynamics throw great light on all the phenomena 
of nature, and it is probable that many valuable applications of these principles 
have yet to be made; but we shall have to point out the limits of this 
science, and to shew that many problems in nature, especially those in which 
the Dissipation of Energy comes into play, are not capable of solution by the 
principles of Thermodynamics alone, but that in order to understand them, we 
are obliged to form some more definite theory of the constitution of bodies.

Two theories of the constitution of bodies have struggled for victory with 
various fortunes since the earliest ages of speculation: one is the theory of a 
universal plenum, the other is that of atoms and void.

The theory of the plenum is associated with the doctrine of mathe
matical continuity, and its mathematical methods are those of the Differential
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Calculus, which is the appropriate expression of the relations of continuous 
quantity.

The theory of atoms and void leads us to attach more importance to the 
doctrines of integral numbers and definite proportions; but, in applying dynamical 
principles to the motion of immense numbers of atoms, the limitation of our 
faculties forces us to abandon the attempt to express the exact history of each 
atom, and to be content with estimating the average condition of a group of 
atoms large enough to be visible. This method of dealing with groups of atoms 
which I may call the statistical method, and which in the present state of our 
knowledge is the only available method of studying the properties of real bodies 
involves an abandonment of strict dynamical principles, and an adoption of the 
mathematical methods belonging to the theory of probability. It is probable 
that important results will be obtained by the application of this method, which 
is as yet little known and is not familiar to our minds. If the actual history 
of Science had been different, and if the scientific doctrines most familiar to 
us had been those which must be expressed in this way, it is possible that 
we might have considered the existence of a certain kind of contingency a self- 
evident truth, and treated the doctrine of philosophical necessity as a mere 
sophism.

About the beginning of this century, the properties of bodies were investi
gated by several distinguished French mathematicians on the hypothesis that 
they are systems of molecules in equilibrium. The somewhat unsatisfactory nature 
of the results of these investigations produced, especially in this country, a 
reaction in favour of the opposite method of treating bodies as if they were, 
so far at least as our experiments are concerned, truly continuous. This method, 
in the hands of Green, Stokes, and others, has led to results, the value of which 
does not at all depend on what theory we adopt as to the ultimate constitution 
of bodies.

One -very important result of the investigation of the properties of bodies 
on the hypothesis that they are truly continuous is that it furnishes us with 
a test by which we can ascertain, by experiments on a real body, to what 
degree of tenuity it must be reduced before it begins to give evidence that its 
properties are no longer the same as those of the body in mass. Investigations 
of this kind, combined with a study of various phenomena of diffusion and of 
dissipation of energy, have recently added greatly to the evidence in favour of 
the hypothesis that bodies are systems of molecules in motion.
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I hope to be able to lay before you in the course of the term some of 
the evidence for the existence of molecules, considered as individual bodies 
having definite properties. The molecule, as it is presented to the scientific 
imagination, is a very different body from any of those with which experience 
has hitherto made us acquainted.

In the first place its mass, and the other constants which define its 
properties, are absolutely invariable; the individual molecule can neither grow 
nor decay, but remains unchanged amid all the changes of the bodies of which 
it may form a constituent.

In the second place it is not the only molecule of its kind, for there are 
innumerable other molecules, whose constants are not approximately, but abso
lutely identical with those of the first molecule, and this whether they are 
found on the earth, in the sun, or in the fixed stars.

By what process of evolution the philosophers of the future will attempt 
to account for this identity in the properties of such a multitude of bodies, 
each of them unchangeable in magnitude, and some of them separated from 
others by distances which Astronomy attempts in vain to measure, I cannot 
conjecture. My mind is limited in its power of speculation, and I am forced 
to believe that these molecules must have been made as they are from the 
beginning of their existence.

I also conclude that since none of the processes of nature, during their 
varied action on different individual molecules, have produced, in the course of 
ages, the slightest difference between the properties of one molecule and those 
of another, the history of whose combinations has been different, we cannot 
ascribe either their existence or the identity of their properties to the operation 
of any of those causes which we call natural.

Is it true then that our scientific speculations have really penetrated 
beneath the visible appearance of things, which seem to be subject to gene
ration and corruption, and reached the entrance of that world of order, and per
fection, which continues this day as it was created, perfect in number and 
measure and weight ?

We may be mistaken. No one. has as yet seen or handled an individual 
molecule, and our molecular hypothesis may, in its turn, be supplanted by some 
new theory of the constitution of matter; but the idea of the existence of 
unnumbered individual things, all alike and all unchangeable, is one which cannot 
enter the human mind and remain without fruit.
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But what if these molecules, indestructible as they are, turn out to be not 
substances themselves, but mere affections of some other substance?

According to Sir W. Thomson’s theory of Vortex Atoms, the substance of 
which the molecule consists is a uniformly dense plenum, the properties of which 
are those of a perfect fluid, the molecule itself being nothing but a certain 
motion impressed on a portion of this fluid, and this motion is shewn, by a 
theorem due to Helmholtz, to be as indestructible as we believe a portion of 
matter to be.

If a theory of this kind is true, or even if it is conceivable, our idea of 
matter may have been introduced into our minds through our experience of those 
systems of vortices which we call bodies, but which are not substances, but 
motions of a substance; and yet the idea which we have thus acquired of 
matter, as a substance possessing inertia, may be truly applicable to that fluid 
of which the vortices are the motion, but of whose existence, apart from the 
vortical motion of some of its parts, our experience gives us no evidence 
whatever.

It has been asserted that metaphysical speculation is a thing of the past, 
and that physical science has extirpated it. The discussion of the categories of 
existence, however, does not appear to be in danger of coming to an end in 
our time, and the exercise of speculation continues as fascinating to every fresh 
mind as it was in the days of Thales.



[From the Proceedings of the Cambridge Philosophical Society, Vol. n.]

XLV. On the Solution of Electrical Problems by the Transformation 
of Conjugate Functions*.

The general problem in electricity is to determine a function which shall 
have given values at the various surfaces which bound a region of space, and 
which shall satisfy Laplace’s partial differential equation at every point within 
this region. The solution of this problem, when the conditions are arbitrarily 
given, is beyond the power of any known method, but it is easy to find any 
number of functions which satisfy Laplace’s equation, and from any one of these 
we may find the form of a system of conductors for which the function is a 
solution of the problem.

The only known method for transforming one electrical problem into another 
is that of Electric Inversion, invented by Sir William Thomson; but in problems 
involving only two dimensions, any problem of which we know the solution 
may be made to furnish an inexhaustible supply of problems which we can solve.

The condition that two functions a and /3 of x and y may be conjugate is
a + V — l/3=.F(a: + 7 — ly).

This condition may be expressed in the form of the two equations
da dfi_ da d/3 
dx dy~ ’ dy dx~®’

If a denotes the “ potential function,” ft is the “ function of induction.” 
As examples of the method, the theory of Thomson’s Guard Ring and that 
of a wire grating, used as an electric screen, were illustrated by drawings of 
the lines of force and equipotential surfaces.

[The authors treatment of this subject and a full explanation of the examples mentioned in 
the text will be found in the chapter on Conjugate Functions in his treatise on Electricity and 
Magnetism.]



[From the Proceedings of the London Mathematical Society, Vol. in. No. 34.]

XL VI. On the Mathematical Classification of Physical Quantities.

The first part of the growth of a physical science consists in the discovery 
of a system of quantities on which its phenomena may be conceived to depend. 

1 he next stage is the discovery of the mathematical form of the relations 
between these quantities. After this, the science may be treated as a mathe
matical science, and the verification of the laws is effected by a theoretical 
investigation of the conditions under which certain quantities can be most 
accurately measured, followed by an experimental realisation of these conditions, 
and actual measurement of the quantities.

It is only through the progress of science in recent times that we have 
become acquainted with so large a number of physical quantities that a classifi
cation of them is desirable.

One very obvious classification of quantities is founded on that of the 
sciences in which they occur. Thus temperature, pressure, density, specific heat, 
latent heat, &c., are quantities occurring in the theory of the action of heat on 
bodies.

But the classification which I now refer to is founded on the mathematical 
or formal analogy of the different quantities, and not on the matter to which 
they belong. Thus a finite straight line, a force, a velocity of rotation, &c., 
are quantities, differing in their physical nature, but agreeing in their mathe
matical form. We may distinguish the two methods of classification by calling 
the first a physical, and the second a mathematical classification of quantities.

A knowledge of the mathematical classification of quantities is of great use 
both to the original investigator and to the ordinary student of the science 
The most obvious case is that in which we learn that a certain system of 
quantities in a new science stand to one another in the same mathematical
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relations as a certain other system in an old science, which has already been 
reduced to a mathematical form, and its problems solved by mathematicians.

Thus, when Mossotti observed that certain quantities relating to electro
static induction in dielectrics had been shewn by Faraday to be analogous to 
certain quantities relating to magnetic induction in iron and other bodies, he 
was enabled to make use of the mathematical investigation of Poisson relative 
to magnetic induction, merely translating it from the magnetic language into 
the electric, and from French into Italian.

Another example, by no means so obvious, is that which was originally 
pointed out by Sir William Thomson, of the analogy between problems in 
attractions and problems in the steady conduction of heat, by the use of which 
we are able to make use of many of the results of Fourier for heat in explaining 
electrical distributions, and of all the results of Poisson in electricity in explaining 
problems in heat.

But it is evident that all analogies of this kind depend on principles of a 
more fundamental nature; and that, if we had a true mathematical classification 
of quantities, we should be able at once to detect the analogy between any 
system of quantities presented to us and other systems of quantities in known 
sciences, so that we should lose no time in availing ourselves of the mathe
matical labours of those who had already solved problems essentially the same.

All quantities may be classed together in one respect, that they may be 
defined by means of two factors, the first of which is a numerical quantity, and 
the second is a standard quantity of the same kind with that to be defined.

Thus number may be said to rule the whole world of quantity, and the 
four rules of arithmetic may be regarded as the complete equipment of the 
mathematician.

Position and form, which were formerly supposed to be in the exclusive 
possession of geometers, were reduced by Descartes to submit to the rules of 
arithmetic by means of that ingenious scaffolding of co-ordinate axes which he 
made the basis of his operations.

Since this great step was taken in mathematics, all quantities have been 
treated in the same way, and presented to the mind by means of numbers or 
symbols which denote numbers, so that as soon as any science has been 
thoroughly reduced to the mathematical form, the solution of problems in that 
science, as a mental process, is supposed (at least by the outer world) to be 
carried on without the aid of any of the physical ideas of the science.
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I need not say that this is not true, and that mathematicians, in solving 
physical problems, are very much aided by a knowledge of the science in which 
the problems occur.

At the same time, I think that the progress of science, both in the way of 
discovery, and in the way of diffusion, would be greatly aided if more attention 
were paid in a direct way to the classification of quantities.

A most important distinction was drawn by Hamilton when he divided the 
quantities with which he had to do into Scalar quantities, which are completely 
represented by one numerical quantity, and Vectors, which require three numerical 
quantities to define them.

Ihe invention of the calculus of Quaternions is a step towards the know
ledge of quantities related to space which can only be compared for its impor
tance, with the invention of triple co-ordinates by Descartes. The ideas of this 
calculus, as distinguished from its operations and symbols, are fitted to be of 
the greatest use in all parts of science.

We may imagine another step in the advancement of science to be the 
invention of a method, equally appropriate, of conceiving dynamical quantities. 
As our conceptions of physical science are rendered more vivid by substituting 
for the mere numerical ideas of Cartesian mathematics the geometrical ideas of 
Hamiltonian mathematics, so in the higher sciences the ideas might receive a 
still higher development if they could be expressed in language as appropriate 
to dynamics as Hamilton’s is to geometry.

Another advantage of such a classification is, that it guides us in the use 
of the four rules of arithmetic. We know that we must not apply the rules 
of addition or subtraction unless the quantities are of the same kind. In certain 
cases we may multiply or divide one quantity by another, but in other cases 
the result of the process is of no intellectual value.

It has been pointed out by Professor Rankine that the physical quantity 
called Energy or Work can be conceived as the product of two factors in many 
different ways.

MT/The dimensions of this quantity are , where L, M, and T represent

the concrete units of length, time, and mass. If we divide the energy into two 
factors, one of which contains L", both factors will be scalars. If, on the other 
hand, both factors contain L, they will be both vectors. The energy itself is 
always a scalar quantity.
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Thus, if we take the mass and the square of the velocity as the factors, 
as is done in the ordinary definitions of vis-viva or kinetic energy, both factors 
are scalar, though one of them, the square of the velocity, has no distinct physical 
meaning.

Another division into apparently scalar factors is that into volume and 
hydrostatic pressure, though here we must consider the volume, not in itself, 
but as a quantity subject to increase and diminution, and this change of volume 
can only occur at the surface, and is due to a variation of the surface in the 
direction of the normal, so that it is not a scalar but a vector quantity. The pressure 
also, though the abstract conception of a hydrostatic pressure is scalar, must be 
conceived as applied at a surface, and thus becomes a directed quantity or vector.

Ihe division of the energy into vector factors affords results always capable 
of satisfactory interpretation. Of the two factors, one is conceived as a tendency 
towards a certain change, and the other as that change itself.

Ibus the elementary definition of Work regards it as the product of a force 
into the distance through which its point of application moves, resolved in the 
direction of the force. In the language of Quaternions, it is the scalar part of 
the product of the force and the displacement.

Ihese two vectors, the force and the displacement, may be regarded as 
types of many other pairs of vectors, the products of which have for their 
scalar part some form of energy.

Thus, instead of dividing kinetic energy into the factors “mass” and “square 
of velocity,” the latter of which has no meaning, we may divide it into “mo
mentum” and “velocity,” two vectors which, in the dynamics of a particle, are 
in the same direction, but, in generalized dynamics, may be in different direc
tions, so that in taking their product we must remember the rule for finding 
the scalar part of it.

But it is when we have to deal with continuous bodies, and quantities 
distributed in space, that the general principle of the division of energy into 
two factors is most clearly seen.

When we regard energy as residing intrinsically in a body, we may measure 
its intensity by the amount contained in unit of volume. This is, of course, a 
scalar quantity.

Of the factors which compose it, one is referred to unit of length, and the 
other to unit of area. This gives what I regard as a very important distinction 
among vector quantities.
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Vectors which are referred to unit of length I shall call Forces, using the 
word in a somewhat generalized sense, as we shall see. The operation of taking 
the integral of the resolved part of a force in the direction of a line for 
eveiy element of that line, has always a physical meaning. In certain cases the 
result of the integration is independent of the path of the line between its 
extremities. The result is then called a Potential.

Vectors which are referred to unit of area I shall call Fluxes. The opera
tion of taking the integral of the resolved part of a flux perpendicular to a 
surface for every element of the surface has always a physical meaning. In 
certain cases the result of the integration over a closed surface is independent, 
within certain restrictions, of the position of the surface. The result then 
expresses the Quantity of some kind of matter, either existing within the surface, 
or flowing out of it, according to the physical nature of the flux.

In many physical cases, the force and the flux are always in the same 
direction, and proportional to each other. The one is therefore used as the 
measure of the other, their symbols degenerate into one, and their ideas become 
confounded together. One of the most important mathematical results of the 
discovery of substances having different physical properties in different directions, 
has been to enable us to distinguish between the force and the flux, by letting 
us see that their directions may be different.

Thus, in the ordinary theory of fluids, in which the only motion considered 
is that which we can directly perceive, we may define the velocity equally well 
in two different ways. We may define it with reference to unit of length, as 
the number of such units described by a particle in unit of time; or we may 
define it with reference to unit of area, as the volume of the fluid which 
passes through unit of area in unit of time. If defined in the first way it 
belongs to the category of forces ; if defined in the second way, to the category 
of fluxes. b J

if we endeavour to develope a more complete theory of fluids, which 
shall take into account the facts of diffusion, where one fluid has a different 
velocity from another in the same place; or if we accept the doctrine, that the 
molecules of a fluid, in virtue of the heat of the substance, are in a state of 
agitation; then though we may give a definition of the velocity of a single mole
cule with reference to unit of length, we cannot do so for the fluid; and "the only 
way we have of defining the motion of the fluid is by considering it as a flux, 
and measuring it by the mass of the fluid which flows through unit of area.
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This distinction is still more necessary when we come to heat and electricity 
The flux of heat or of electricity cannot be even thought of in any way except 
as the quantity which flows through a given area in a given time. To form a 
conception of the velocity, properly so called, of either agent, would require 
us to conceive heat or electricity as a continuous substance having a known 
density.

We must therefore consider these quantities as fluxes. The forces corre
sponding to them are, in the case of heat, the rate of variation of temperature, 
and, in the case of electricity, the rate of variation of potential.

I have said enough to point out the distinction between forces and fluxes. 
In statical electricity the resultant force at a point is the rate of variation of 
potential, and the flux is a quantity, hitherto confounded with the force, which 
I have called the electric displacement.

In magnetism the resultant force is also the rate of variation of the 
potential, and the flux is what Faraday calls the magnetic induction, and is 
measured, as Thomson has shewn, by the force on a unit pole placed in a narrow 
crevasse cut perpendicular to the direction of magnetization of the magnet. I 
shall not detain the Society with the explanation of these quantities, but I 
must briefly state the nature of a ratio of a force to a flux in its most general 
form.

When one vector is a function of another vector, the ratio of the first to 
the second is, in general, a quaternion which is a function of the second 
vector.

When, if the second vector varies in magnitude only, the first is always 
proportional to it, and remains constant in direction, we have the important 
case of the function being a linear one. The first vector is then said to be a 
linear and vector function of the second. If a, y are the Cartesian compo
nents of the first vector, and a, b, c those of the second, then

a = ?'1a + 9's&+p1c,

y = gaa+p^ + r,c,

where the coefficients p, q, r are constants. When the p's are equal to the 
corresponding q’s, the function is said to be self-conjugate. It may then be 
represented geometrically as the relation between the radius vector from the 
centre of an ellipsoid, and the perpendicular on the tangent plane.
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We may remark that even here, where we may seem to have reached a 

purer air, uncontaminated by physical applications, one vector is essentially a 
line, while the other is defined as the normal to a plane, as in all the other 
pairs of vectors already mentioned*.

Another distinction among physical vectors is founded on a different prin
ciple, and divides them into those which are defined with reference to translation 
and those which are defined with reference to rotation. The remarkable analogies 
between these two classes of vectors is well pointed out by Poinsot in his 
treatise on the motion of a rigid body. But the most remarkable illustration of 
them is derived from the two different ways in which it is possible to contem
plate the relation between electricity and magnetism.

Helmholtz, in his great paper on Vortex Motion, has shewn how to construct 
an analogy between electro-magnetic and hydro-kinetic phenomena, in which 
magnetic force is represented by the velocity of the fluid, a species of translation, 
while electric current is represented by the rotation of the elements of the fluid. 
He does not propose this as an explanation of electro-magnetism; for though 
the analogy is perfect in form, the dynamics of the two systems are different.

According to Ampere and all his followers, however, electric currents are 
regarded as a species of translation, and magnetic force as depending on rotation. 
I am constrained to agree with this view, because the electric current is 
associated with electrolysis, and other undoubted instances of translation, while 
magnetism is associated with the rotation of the plane of polarization of light, 
which, as Thomson has shewn, involves actual motion of rotation.

The Hamiltonian operator PV, applied to any vector function, converts it 
from translation to rotation, or from rotation to translation, according to the kind 
of vector to which it is applied.

I shall conclude by proposing for the consideration of mathematicians certain 
phrases to express the results of the Hamiltonian operator △. I should be 
greatly obliged to anyone who can give me suggestions on this subject, as I 
feel that the onomastic power is very faint in me, and that it can be success
fully exercised only in societies.

V is the operation i ~ 4. £
dx J dy dz

where i, j, k are unit vectors parallel to x, y, z respectively. The result of

* The subject of linear equations in quaternions has been developed by Professor Tait, in several 
communications to the Royal Society of Edinburgh.
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performing this operation twice on any subject is the well known operation (of 
Laplace)

v5=-^3 +—+
Yds? d y dz‘) ‘

The discovery of the square root of this operation is due to Hamilton; 
but most of the applications here given, and the whole development of the 
theory of this operation, are due to Prof. Tait, and are given in several papers, 
of which the first is in the Proceedings of the Royal Society of Edinburgh, 
April 28, 1862, and the most complete is that on “Green’s and other allied 
Theorems,” Transactions of the Royal Society of Edinburgh, 1869—70.

And, first, I propose to call the result of Va (Laplace’s operation with the 
negative sign) the Concentration of the quantity to which it is applied.

For if Q be a quantity, either scalar or vector, which is a function of the 
position of a point; and if we find the integral of Q taken throughout the 
volume of a sphere whose radius is r; then, if we divide this by the volume 
of the sphere, we shall obtain Q, the mean value of Q within the sphere. If 
Qo is the value of Q at the centre of the sphere, then, when r is small, 

_—

or the value of Q at the centre of the sphere exceeds the mean value of Q 
within the sphere by a quantity depending on the radius, and on V2Q. Since, 
therefore, V2Q indicates the excess of the value of Q at the centre above its 
mean value in the sphere, I shall call it the concentration of Q.

If Q is a scalar quantity, its concentration is, of course, also scalar. Thus, 
if Q is an electric potential, V!Q is the density of the matter which produces 
the potential.

If Q is a vector quantity, then both Qo and Q are vectors, and is 
also a vector, indicating the excess of the uniform force Q. applied to the whole 
substance of the sphere above the resultant of the actual force Q acting on all 
the parts of the sphere.

Let us next consider the Hamiltonian operator V. First apply it to a scalar 
function P. The quantity ^P is a vector, indicating the direction in which P 
decreases most rapidly, and measuring the rate of that decrease. I venture, with 
much diffidence, to call this the slope of P. Lamd calls the magnitude of VP 
the “first differential parameter” of P, but its direction does not enter into his 
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conception. We require a vector word, which shall indicate both direction and 
magnitude, and one not already employed in another mathematical sense. I have 
taken the liberty of extending the ordinary sense of the word slope from topo
graphy, where only two independent variables are used, to space of three 
dimensions.

If a represents a vector function, Ver may contain both a scalar and a 
vector part, which may be written SVa and Fv<r.

I propose to call the scalar part the Convergence of o-, because, if a closed 
surface be described about any point, the surface integral of a-, which expresses 
the effect of the vector a considered as an inward flux through the surface, is 
equal to the volume integral of Sy a throughout the enclosed space. I think, 
therefore, that the convergence of a vector function is a very good name for the 
effect of that vector function in carrying its subject inwards towards a point.

But v<r has, in general, also a vector portion, and I propose, but with 
great diffidence, to call this vector the Curl or Version of the original vector 
function.

It represents the direction and magnitude of the rotation of the subject 
matter carried by the vector a. I have sought for a word which shall neither, 
like Rotation, Whirl, or Twirl, connote motion, nor, like Twist, indicate a helical 
or screw structure which is not of the nature of a vector at all.

CONVERGENCE. CONVERGENCE AND CURL.

If we subtract from the general value of the vector function a- its value 
cr0 at the point P, then the remaining vector cr-a. will, when there is pure 
convergence, point towards P. When there is pure curl, it will point tan
gentially round P; and when there is both convergence and curl, it will point 
in a spiral manner.

The following statements are true :—
The slope of a scalar function has no curl.
The curl of a vector function has no convergence.
VOL. II. 34
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Ihe convergence of the slope of a scalar function is its concentration.
The concentration of a vector function is the slope of its convergence, 

together with the curl of its curl.
The quaternion expressions, of which the above statements are a translation, 

were given by Prof. Tait, in his paper in the Proceedings of the Royal Society 
of Edinburgh, April 28th, 18G2; but for the more complete mathematical treat
ment of the operator v, see a very able paper by Prof. Tait, “ On Green’s 
and other Allied Theorems” (Transactions of the Royal Society of Edinburgh, 
1870), and another paper in the Proceedings of the Royal Society of Edinburgh, 
for 1870—71, p. 318.



[From the Proceedings of the Royal Institution of Great Britain, Vol. vi.]

XLVII. On Colour Vision.

All vision is colour vision, for it is only by observing differences of colour 
that we distinguish the forms of objects. I include differences of brightness 
or shade among differences of colour.

It was in the Royal Institution, about the beginning of this century, that 
Thomas Young made the first distinct announcement of that doctrine of the 
vision of colours which I propose to illustrate. We may state it thus:__We 
are capable of feeling three different colour-sensations. Light of different kinds 
excites these sensations in different proportions, and it is by the different 
combinations of these three primary sensations that all the varieties of visible 
colour are produced. In this statement there is one word on which we must 
fix our attention. That word is, Sensation. It seems almost a truism to say 
that colour is a sensation; and yet Young, by honestly recognising this ele
mentary truth, established the first consistent theory of colour. So far as I 
know, Thomas Young was the first who, starting from the well-known fact that 
there are three primary colours, sought for the explanation of this fact, not in 
the nature of light, but in the constitution of man. Even of those who have 
written on colour since the time of Young, some have supposed that they ought 
to study the properties of pigments, and others that they ought to analyse 
the rays of light. They have sought for a knowledge of colour by examining 
something in external nature—something out of themselves.

Now, if the sensation which we call colour has any laws, it must be 
something in our own nature which determines the form of these laws; and I 
need not tell you that the only evidence we can obtain respecting ourselves 
is derived from consciousness.

The science of colour must therefore be regarded as essentially a mental
34—2
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science. It differs from the greater part of what is called mental science in 
the large use which it makes of the physical sciences, and in particular of 
optics and anatomy. But it gives evidence that it is a mental science by the 
numerous illustrations which it furnishes of various operations of the mind.

In this place we always feel on firmer ground when we are dealing with 
physical science. I shall therefore begin by shewing how we apply the dis
coveries of Newton to the manipulation of light, so as to give you an oppor
tunity of feeling for yourselves the different sensations of colour.

Before the time of Newton, white light was supposed to be of all known 
things the purest. When light appears coloured, it was supposed to have 
become contaminated by coming into contact with gross bodies. We may still 
think white light the emblem of purity, though Newton has taught us that 
its purity does not consist in simplicity.

We now form the prismatic spectrum on the screen [exhibited], These are 
the simple colours of which white light is always made up. We can distinguish 
a great many hues in passing from the one end to the other; but it is when 
we employ powerful spectroscopes, or avail ourselves of the labours of those 
who have mapped out the spectrum, that we become aware of the immense 
multitude of different kinds of light, every one of which has been the object 
of special study. Every increase of the power of our instruments increases in 
the same proportion the number of lines visible in the spectrum.

All light, as Newton proved, is composed of these rays taken in different 
proportions. Objects which we call coloured when illuminated by white light, 
make a selection of these rays, and our eyes receive from them only a part 
of the light which falls on them. But if they receive only the pure rays of 
a single colour of the spectrum they can appear only of that colour. If I 
place this disk, containing alternate quadrants of red and green paper, in the 
red rays, it appears all red, but the red quadrants brightest. If I place it in 
the green rays both papers appear green, but the red papei’ is now the darkest. 
This, then, is the optical explanation of the colours of bodies when illuminated 
with white light. They separate the white light into its component parts, 
absorbing some and scattering others.

Here are two transparent solutions [exhibited], One appears yellow, it 
contains bichromate of potash; the other appears blue, it contains sulphate of 
copper. If I transmit the light of the electric lamp through the two solutions 
at once, the spot on the screen appears green. By means of the spectrum we 
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shall be able to explain this. The yellow solution cuts off the blue end of 
the spectrum, leaving only the red, orange, yellow, and green. The blue solution 
cuts off the red end, leaving only the green, blue, and violet. The only light 
which can get through both is the green light, as you see. In the same way 
most blue and yellow paints, when mixed, appear green. The light which falls 
on the mixture is so beaten about between the yellow particles and the blue 
that the only light which survives is the green. But yellow and blue light 
when mixed do not make green, as you will see if we allow them to fall on 
the same part of the screen together.

It is a striking illustration of our mental processes that many persons have 
not only gone on believing, on the evidence of the mixture of pigments, that 
blue and yellow make green, but that they have even persuaded themselves 
that they could detect the separate sensations of blueness and of yellowness 
in the sensation of green.

We have availed ourselves hitherto of the analysis of light by coloured 
substances. We must now return, still under the guidance of Newton, to the 
prismatic spectrum. Newton not only

“Untwisted all the shining robe of day,”

but shewed how to put it together again. We have here a pure spectrum, 
but instead of catching it on a screen we allow it to pass through a lens 
large enough to receive all the coloured rays. These rays proceed, according 
to well-known principles in optics, to form an image of the prism on a screen 
placed at the proper distance. This image is formed by rays of all colours, 
and you see the result is white. But if I stop any of the coloured rays the 
image is no longer white, but coloured; and if I only let through rays of 
one colour, the image of the prism appears of that colour.

I have here an arrangement of slits by which I can select one, two, or 
three portions of the light of the spectrum, and allow them to form an image 
of the prism while all the rest are stopped. This gives me a perfect command 
of the colours of the spectrum, and I can produce on the screen every possible 
shade of colour by adjusting the breadth and the position of the slits through 
which the light passes. I can also, by interposing a lens in the passage of 
the light, shew you a magnified image of the slits, by which you will see the 
different kinds of light which compose the mixture.

The colours are at present red, green, and blue, and the mixture of the 
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three colours is, as you see, nearly white. Let us try the effect of mixing 
two of these colours. Red and blue form a fine purple or crimson, green and 
blue form a sea-green or sky-blue, red and green form a yellow.

Here again we have a fact not universally known. No painter, wishing to 
produce a fine yellow, mixes his red with his green. The result would be a 
very dirty drab colour. He is furnished by nature with brilliant yellow pigments, 
and he takes advantage of these. When he mixes red and green paint, the 
red light scattered by the red paint is robbed of nearly all its brightness by 
getting among particles of green, and the green light fares no better, for it 
is sure to fall in with particles of red paint. But when the pencil with which 
we paint is composed of the rays of light, the effect of two coats of colour 
is very different. The red and the green form a yellow of great splendour, 
which may be shewn to be as intense as the purest yellow of the spectrum.

I have now arranged the slits to transmit the yellow of the spectrum. 
You see it is similar in colour to the yellow formed by mixing red and green. 
It differs from the mixture, however, in being strictly homogeneous in a physical 
point of view. The prism, as you see, does not divide it into two portions 
as it did the mixture. Let us now combine this yellow with the blue of the 
spectrum. The result is certainly not green; we may make it pink if our 
yellow is of a warm hue, but if we choose a greenish yellow we can produce 
a good white.

You have now seen the most remarkable of the combinations of colours— 
the others differ from them in degree, not in kind. I must now ask you to 
think no more of the physical arrangements by which you were enabled to see 
these colours, and to concentrate your attention upon the colours you saw, that 
is to say on certain sensations of which you were conscious. We are here 
surrounded by difficulties of a kind which we do not meet with in purely 
physical inquiries. We can all feel these sensations, but none of us can describe 
them. They are not only private property, but they are incommunicable. We 
have names for the external objects which excite our sensations, but not for 
the sensations themselves.

When we look at a broad field of uniform colour, whether it is really 
simple or compound, we find that the sensation of colour appears to our con
sciousness as one and indivisible. We cannot directly recognise the elementary 
sensations of which it is composed, as we can distinguish the component notes 
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of a musical chord. A colour, therefore, must be regarded as a single thing, 
the quality of which is capable of variation.

To bring a quality within the grasp of exact science, we must conceive it 
as depending on the values of one or more variable quantities, and the first 
step in our scientific progress is to determine the number of these variables 
which are necessary and sufficient to determine the quality of a colour. We 
do not require any elaborate experiments to prove that the quality of colour 
can vary in three and only in three independent ways.

One way of expressing this is by saying, with the painters, that colour 
may vary in hue, tint, and shade.

The finest example of a series of colours, varying in hue, is the spectrum 
itself. A difference in hue may be illustrated by the difference between adjoining 
colours in the spectrum. The series of hues in the spectrum is not complete; 
for, in order to get purple hues, we must blend the red and the blue.

Tint may be defined as the degree of purity of a colour. Thus, bright 
yellow, buff, and cream-colour, form a series of colours of nearly the same hue, 
but varying in tint. The tints, corresponding to any given hue, form a series, 
beginning with the most pronounced colour, and ending with a perfectly neutral 
tint.

Shade may be defined as the greater or less defect of illumination. If 
we begin with any tint of any hue, we can form a gradation from that colour 
to black, and this gradation is a series of shades of that colour. Thus we 
may say that brown is a dark shade of orange.

Ihe quality of a colour may vary in three different and independent ways. 
We cannot conceive of any others. In fact, if we adjust one colour to another, 
so as to agree in hue, in tint, and in shade, the two colours are absolutely 
indistinguishable. There are therefore three, and only three, ways in which a 
colour can vary.

I have purposely avoided introducing at this stage of our inquiry anything 
which may be called a scientific experiment, in order to shew that we may 
determine the number of quantities upon which the variation of colour depends 
by means of our ordinary experience alone.

Here is a point in this room: if I wish to specify its position, I may do 
80 ^7 giving the measurements of three distances—namely, the height above the 
floor, the distance from the wall behind me, and the distance from the wall 
at my left hand.
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This is only one of many ways of stating the position of a point, but 
it is one of the most convenient. Now, colour also depends on three things. 
If we call these the intensities of the three primary colour sensations, and if 
we are able in any way to measure these three intensities, we may consider 
the colour as specified by these three measurements. Hence the specification of 
a colour agrees with the specification of a point in the room in depending on 
three measurements.

Let us go a step farther and suppose the colour sensations measured on 
some scale of intensity, and a point found for which the three distances, or 
co-ordinates, contain the same number of feet as the sensations contain degrees 
of intensity. Then we may say, by a useful geometrical convention, that the 
colour is represented, to our mathematical imagination, by the point so found 
in the room; and if there are several colours, represented by several points, the 
chromatic relations of the colours will be represented by the geometrical rela
tions of the points. This method of expressing the relations of colours is a 
great help to the imagination. You will find these relations of colours stated 
in an exceedingly clear manner in Mr Benson’s Manual of Colour one of the 
very few books on colour in which the statements are founded on legitimate 
experiments.

There is a still more convenient method of representing the relations of 
colours by means of Young’s triangle of colours. It is impossible to represent 
on a plane piece of paper every conceivable colour, to do this requires space of 
three dimensions. If, however, we consider only colours of the same shade— 
that is, colours in which the sum of the intensities of the three sensations is 
the same, then the variations in tint and in hue of all such colours may be 
represented by points on a plane. For this purpose we must draw a plane 
cutting off equal lengths from the three lines representing the primary sensations. 
The part of this plane within the space in which we have been distributing our 
colours will be an equilateral triangle. The three primary colours will be at the 
three angles, white or gray will be in the middle, the tint or degree of purity 
of any colour will be expressed by its distance from the middle point, and its 
hue will depend on the angular position of the line which joins it with the 
middle point.

Thus the ideas of tint and hue can be expressed geometrically on Young’s 
triangle. To understand what is meant by shade we have only to suppose the 
illumination of the whole triangle increased or diminished, so that by means of
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this adjustment of illumination Young’s triangle may be made to exhibit every 
variety of colour. If we now take any two colours in the triangle and mix 
them in any proportions, we shall find the resultant colour in the line joining 
the component colours at the point corresponding to their centre of gravity.

I have said nothing about the nature of the three primary sensations, or 
what particular colours they most resemble. In order to lay down on paper 
the relations between actual colours, it is not necessary to know what the 
primary colours are. We may take any three colours, provisionally, as the 
angles of a triangle, and determine the position of any other observed colour 
with respect to these, so as to form a kind of chart of colours.

Of all colours which we see, those excited by the different rays of the 
prismatic spectrum have the greatest scientific importance. All light consists 
either of some one kind of these rays, or of some combination of them. The 
colours of all natural bodies are compounded of the colours of the spectrum. If 
therefore we can form a chromatic chart of the spectrum, expressing the relations 
between the colours of its different portions, then the colours of all natural 
bodies will be found within a certain boundary on the chart defined by the 
positions of the colours of the spectrum.

But the chart of the spectrum will also help us to the knowledge of the 
nature of the three primary sensations. Since every sensation is essentially a 
positive thing, every compound colour-sensation must be within the triangle of 
which the primary colours are the angles. In particular, the chart of the spec
trum must be entirely within Young’s triangle of colours, so that if any colour 
in the spectrum is identical with one of the colour-sensations, the chart of the 
spectrum must be in the form of a line having a sharp angle at the point 
corresponding to this colour.

I have already shewn you how we can make a mixture of any three of 
the colours of the spectrum, and vary the colour of the mixture by altering 
the intensity of any of the three components. If we place this compound 
colour side by side with any other colour, we can alter the compound colour 
till it appears exactly similar to the other. This can be done with the greatest 
exactness when the resultant colour is nearly white. I have therefore constructed 
an instrument which I may call a colour-box, for the purpose of making 
matches between two colours. It can only be used by one observer at a time 
and it requires daylight, so I have not brought it with me to-night. It is 
nothing but the realisation of the construction of one of Newton’s propositions

VOL. II. 35
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in his Lectiones Optica, where he shews how to take a beam of light, to 
separate it into its components, to deal with these components as we please by 
means of slits, and afterwards to unite them into a beam again. The observer 
looks into the box through a small slit. He sees a round field of light con
sisting of two semicircles divided by a vertical diameter. The semicircle on the 
left consists of light which has been enfeebled by two reflexions at the surface 
of glass. That on the right is a mixture of colours of the spectrum, the positions 
and intensities of which are regulated by a system of slits.

The observer forms a judgment respecting the colours of the two semicircles. 
Suppose he finds the one on the right hand redder than the other, he says so, 
and the operator, by means of screws outside the box, alters the breadth of 
one of the slits, so as to make the mixture less red; and so on, till the right 
semicircle is made exactly of the same appearance as the left, and the line of 
separation becomes almost invisible.

When the operator and the observer have worked together for some time, 
they get to understand each other, and the colours are adjusted much more 
rapidly than at first.

When the match is pronounced perfect, the positions of the slits, as indicated 
by a scale, are registered, and the breadth of each slit is carefully measured by 
means of a gauge. The registered result of an observation is called a “ colour 
equation.” It asserts that a mixture of three colours is, in the opinion of the 
observer (whose name is given), identical with a neutral tint, which we shall call 
Standard White. Each colour is specified by the position of the slit on the 
scale, which indicates its position in the spectrum, and by the breadth of the 
slit, which is a measure of its intensity.

In order to make a survey of the spectrum we select three points for 
purposes of comparison, and we call these the three Standard Colours. The 
standard colours are selected on the same principles as those which guide the 
engineer in selecting stations for a survey. They must be conspicuous and 
invariable and not in the same straight line.

In the chart of the spectrum you may see the relations of the various 
colours of the spectrum to the three standard colours, and to each other. It 
is manifest that the standard green which I have chosen cannot be one of the 
true primary colours, for the other colours do not all lie within the triangle 
formed by joining them. But the chart of the spectrum may be described as con
sisting of two straight lines meeting in a point. This point corresponds to a green 
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about a fifth of the distance from b towards F. This green has a wave length 
of about 510 millionths of a millimetre by Ditscheiner’s measurement. This green 
is either the true primary green, or at least it is the nearest approach to it 
which we can ever see. Proceeding from this green towards the red end of 
the spectrum, we find the different colours lying almost exactly in a straight 
line. This indicates that any colour is chromatically equivalent to a mixture of 
any two colours on opposite sides of it, and in the same straight line. The 
extreme red is considerably beyond the standard red, but it is in the same 
straight line, and therefore we might, if we had no other evidence, assume the 
extreme red as the true primary red. We shall see, however, that the true 
primary red is not exactly represented in colour by any part of the spectrum. 
It lies somewhat beyond the extreme red, but in the same straight line.

On the blue side of primary green the coloui’ equations are seldom so 
accurate. The colours, however, lie in a line which is nearly straight. I have 
not been able to detect any measurable chromatic difference between the extreme 
indigo and the violet. Ihe colours of this end of the spectrum are represented 
by a number of points very close to each other. We may suppose that the 
primary blue is a sensation differing little from that excited by the parts of the 
spectrum near G.

Now, the first thing which occurs to most people about this result is that 
the division of the spectrum is by no means a fair one. Between the red and 
the green we have a series of colours apparently very different from either, and 
having such marked characteristics that two of them, orange and yellow, have 
received separate names. The colours between the green and the blue, on the 
other hand, have an obvious resemblance to one or both of the extreme colours, 
and no distinct names for these colours have ever become popularly recognised.

I do not profess to reconcile this discrepancy between ordinary and scientific 
experience. It only shews that it is impossible by a mere act of introspection 
to make a true analysis of our sensations. Consciousness is our only authority; 
but consciousness must be methodically examined in order to obtain any trust
worthy results.

I have here, through the kindness of Professor Huxley, a picture of the 
structure upon which the light falls at the back of the eye. There is a minute 
structure of bodies like rods and cones or pegs, and it is conceivable that the 
mode in which we become aware of the shapes of things is by a consciousness 
which differs according to the particular rods on the ends of which the light 
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falls, just as the pattern on the web formed by a Jacquard loom depends on the 
mode in which the perforated cards act on the system of moveable rods in that 
machine. In the eye we have on the one hand light falling on this wonderful 
structure, and on the other hand we have the sensation of sight. We cannot 
compare these two things; they belong to opposite categories. The whole of 
Metaphysics lies like a great gulf between them. It is possible that discoveries 
in physiology may be made by tracing the course of the nervous disturbance

“Up the fine fibres to the sentient brain;”

but this would make us no wiser than we are about those colour-sensations 
which we can only know by feeling them ourselves. Still, though it is impossible 
to become acquainted with a sensation by the anatomical study of the organ 
with which it is connected, we may make use of the sensation as a means of 
investigating the anatomical structure.

A remarkable instance of this is the deduction of Helmholtz's theory of 
the structure of the retina from that of Young with respect to the sensation 
of colour. Young asserts that there are three elementary sensations of coloui’; 
Helmholtz asserts that there are three systems of nerves in the retina, each 
of which has for its function, when acted on by light or any other disturbing 
agent, to excite in us one of these three sensations.

No anatomist has hitherto been able to distinguish these three systems of 
nerves by microscopic observation. But it is admitted in physiology that the 
only way in which the sensation excited by a particular nerve can vary is by 
degrees of intensity. The intensity of the sensation may vary from the faintest 
impression up to an insupportable pain; but whatever be the exciting cause,
the sensation will be the same when it reaches the same intensity. If this
doctrine of the function of a nerve be admitted, it is legitimate to reason from 
the fact that colour may vary in three different ways, to the inference that
these three modes of variation arise from the independent action of three differ
ent nerves or sets of nerves.

Some very remarkable observations on the sensation of colour have been 
made by M. Sigmund Exner in Professor Helmholtz’s physiological laboratory at 
Heidelberg. While looking at an intense light of a brilliant colour, he exposed 
his eye to rapid alternations of light and darkness by waving his fingers before 
his eyes. Under these circumstances a peculiar minute structure made its 
appearance in the field of view, which many of us may have casually observed.
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M. Exner states that the character of this structure is different according to 
the colour of the light employed. When red light is used a veined structure 
is seen; when the light is green, the field appears covered with minute black 
dots, and when the light is blue, spots are seen, of a larger size than the 
dots in the green, and of a lighter colour.

Whether these appearances present themselves to all eyes, and whether 
they have for their physical cause any difference in the arrangement of the 
nerves of the three systems in Helmholtz’s theory I cannot say, but I am 
sure that if these systems of nerves have a real existence, no method is more 
likely to demonstrate their existence than that which M. Exner has followed.

Colour Blindness.
The most valuable evidence which we possess with respect to colour vision 

is furnished to us by the colour-blind. A considerable number of persons in 
every large community are unable to distinguish between certain pairs of colours 
which to ordinary people appear in glaring contrast. Dr Dalton, the founder 
of the atomic theory of chemistry, has given us an account of his own case.

The true nature of this peculiarity of vision was first pointed out by Sir 
John Herschel in a letter written to Dalton in 1832, but not known to the 
world till the publication of Dalton’s Life by Dr Henry. The defect consists 
in the absence of one of the three primary sensations of colour. Colour-blind 
vision depends on the variable intensities of two sensations instead of three. 
The best description of colour-blind vision is that given by Professor Pole in 
his account of his own case in the Phil. Trans., 1859.

In all cases which have been examined with sufficient care, the absent 
sensation appears to resemble that which we call red. The point P on the 
chart of the spectrum represents the relation of the absent sensation to the 
colours of the spectrum, deduced from observations with the colour box furnished 
by Professor Pole.

If it were possible to exhibit the colour corresponding to this point on the 
chart, it would be invisible, absolutely black, to Professor Pole. As it does 
not lie within the range of the colours of the spectrum we cannot exhibit it; 
and, in fact, colour-blind people can perceive the extreme end of the spectrum 
which we call red, though it appears to them much darker than to us, and 
does not excite in them the sensation which we call red. In the diagram of 
the intensities of the three sensations excited by different parts of the spectrum, 
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the upper figure, marked P, is deduced from the observations of Professor Pole; 
while the lower one, marked K, is founded on observations by a very accurate 
observer of the normal type.

The only difference between the two diagrams is that in the upper one 
the red curve is absent. The forms of the other two curves are nearly the 
same for both observers. We have great reason therefore to conclude that the 
colour sensations which Professor Pole sees are what we call green and blue. 
This is the result of my calculations; but Professor Pole agrees with every 
other colour-blind person whom I know in denying that green is one of his 
sensations. The colour-blind are always making mistakes about green things and 
confounding them with red. The colours they have no doubts about are cer
tainly blue and yellow, and they persist in saying that yellow, and not green, 
is the colour which they are able to see.

To explain this discrepancy we must remember that colour-blind persons 
learn the names of colours by the same method as ourselves. They are told 
that the sky is blue, that grass is green, that gold is yellow, and that soldiers’ 
coats are red. They observe difference in the colours of these objects, and they 
often suppose that they see the same colours as we do, only not so well. But 
if we look at the diagram we shall see that the brightest example of their 
second sensation in the spectrum is not in the green, but in the part which 
we call yellow, and which we teach them to call yellow. The figure of the 
spectrum below Professor Pole’s curves is intended to represent to ordinary eyes 
what a colour-blind person would see in the spectrum. I hardly dare to draw your 
attention to it, for if you were to think that any painted picture would enable you 
to see with other people’s vision I should certainly have lectured in vain.

On the Yellow Spot.
Experiments on colour indicate very considerable differences between the 

vision of different persons, all of whom are of the ordinary type. A colour, 
for instance, which one person on comparing it with white will pronounce 
pinkish, another person will pronounce greenish. This difference, however, does 
not arise from any diversity in the nature of the colour sensations in different 
persons. It is exactly of the same kind as would be observed if one of the 
persons wore yellow spectacles. In fact, most of us have near the middle of 
the retina a yellow spot through which the rays must pass before they reach 
the sensitive organ: this spot appears yellow because it absorbs the rays near 
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the line A, which are of a greenish-blue colour. Some of us have this spot 
strongly developed. My own observations of the spectrum near the line F are 
of very little value on this account. I am indebted to Professor Stokes for 
the knowledge of a method by which anyone may see whether he has this 
yellow spot. It consists in looking at a white object through a solution of 
chloride of chromium, or at a screen on which light which has passed through 
this solution is thrown [exhibited]. This light is a mixture of red light with 
the light which is so strongly absorbed by the yellow spot. When it falls on 
the ordinary surface of the retina it is of a neutral tint, but when it falls on 
the yellow spot only the red light reaches the optic nerve, and we see a red 
spot floating like a rosy cloud over the illuminated field.

Very few persons are unable to detect the yellow spot in this way. The 
observer A, whose colour equations have been used in preparing the chart of 
the spectrum, is one of the very few who do not see everything as if through 
yellow spectacles. As for myself, the position of white light in the chart of 
the Spectrum is on the yellow side of true white even when I use the outer 
parts of the retina; but as soon as I look direct at it, it becomes much 
yellower, as is shewn by the point WC. It is a curious fact that we do not 
see this yellow spot on every occasion, and that we do not think white objects
yellow. But if we wear spectacles of any colour for some time, or if we live
in a room lighted by windows all of one colour, we soon come to recognize
white paper as white. This shews that it is only when some alteration takes
place in our sensations, that we are conscious of their quality.

There are several interesting facts about the colour sensation which I can 
only mention briefly. One is that the extreme parts of the retina are nearly 
insensible to red. If you hold a red flower and a blue flower in your hand 
as far back as you can see your hand, you will lose sight of the red flower, 
while you still see the blue one. Another is, that when the light is diminished 
red objects become darkened more in proportion than blue ones. The third is, 
that a kind of colour blindness in which blue is the absent sensation can be 
produced artificially by taking doses of Santonine. This kind of colour blindness 
is described by Dr Edmund Bose, of Berlin. It is only temporary, and does 
not appear to be followed by any more serious consequences than headaches. 
I must ask your pardon for not having undergone a course of this medicine, 
even for the sake of becoming able to give you information at first hand about 
colour blindness.



[From the Transactions of the Royal Society of Edinburgh, Vol. xxvi.]

XLVIII. On the Geometrical Mean Distance of Two Figures on a Plane.

[Received January 5th; read January 15th, 1872.]

There are several problems of great practical importance in electro-magnetic 
measurements, in ■which the value of a quantity has to be calculated by taking 
the sum of the logarithms of the distances of a system of parallel wires from a 
given point. The calculation is in some respects analogous to that in which 
we find the potential at a point due to a given system of equal particles, by 
adding the reciprocals of the distances of the particles from the given point. 
There is this difference, however, that whereas the reciprocal of a line is com
pletely defined when we know the unit of length, the logarithm of a line has no 
meaning till we know not only the unit of length, but the modulus of the system 
of logarithms.

In both cases, however, an additional clearness may be given to the state
ment of the result by dividing, by the number of wires in the first case, and
by the number of particles in the second. The result in the first case is the 
logarithm of a distance, and in the second it is the reciprocal of a distance; 
and in both cases this distance is such that, if the whole system were con
centrated at this distance from the given point, it would produce the same 
potential as it actually does.

In the first case, since the logarithm of the resultant distance is the arith
metical mean of the logarithms of the distances of the various components of 
the system, we may call the resultant distance the geometrical mean distance of 
the system from the given point.

In the second case, since the reciprocal of the resultant distance is the 
arithmetical mean of the reciprocals of the distances of the particles, we may 
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call the resultant distance the harmonic mean distance of the system from the 
given point.

I he practical use of these mean distances may be compared with that of 
several artificial lines and distances which are known in Dynamics as the radius 
of gyration, the length of the equivalent simple pendulum, and so on. The 
result of a process of integration is recorded, and presented to us in a form 
which we cannot misunderstand, and which we may substitute in those ele
mentary formulae which apply to the case of single particles. If we have any 
doubts about the value of the numerical co-efficients, we may test the expression 
for the mean distance by taking the point at a great distance from the system, 
in which case the mean distance must approximate to the distance of the centre 
of gravity.

Ibus it is well known that the harmonic mean distance of two spheres, each 
of which is external to the other, is the distance between their centres, and that 
the harmonic mean distance of any figure from a thin shell which completely 
encloses it is equal to the radius of the shell.

I shall not discuss the harmonic mean distance, because the calculations 
which lead to it are well known, and because we can do very well without it. 
I shall, however, give a few examples of the geometric mean distance, in order 
to shew its use in electro-magnetic calculations, some of which seem to me to 
be rendered both easier to follow and more secure against error by a free use 
of this imaginary line.

If the co-ordinates of a point in the first of two plane figures be x and y, 
and those of a point in the second f and tj, and if r denote the distance between 
these points, then Ji, the geometrical mean distance of the two figures, is 
defined by the equation

log Ji. f Hf dxdyd^d-q = /J/J log r dxdyd^drj.
The following are some examples of the results of this calculation :—
(1) Let AB be a uniform line, and O a point 

not in the line, and let OJ1 be the perpendicular 
from 0 on the line A Ji, produced if necessary, then 
if Ji is the geometric mean distance of O from the 
line AB,

36

AB. (log 72 + 1) = PB . log OB — PA log OA + OJ). AOB.
VOL. II.
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(2) Ihe geometrical mean distance of P, a point in the line itself, from A Ji 
is found from the equation

A Ji (log R +1) = PH log PB - PA log PA.

When P lies between A and B, PA must be taken negative, but in taking the 
logarithm of PA we regard I*A as a positive numerical quantity.

(3) If R is the geometric mean distance between two finite lines AB and 
CD, lying in the same straight line,

AB .CD (2 log R + 3) = AD1 log AD + BC log BC- A C‘ log A C-BD1 log BD.

(4) If AB coincides with CD, we find for the geometric mean distance 
of all the points of AB from each other

7£ = ^lI?e-8.

(5) If R is the geometric mean distance of the 
rectangle ABCD from the point 0 in its plane, and 
J‘OR and QOS are parallel to the sides of the 
rectangle through 0,

.1 BCD (2 log R + 3) = 20 J^. OQ log OA + 2OQ. OR log OJi 
+ 20Ji. OS log OC A 2OS. OP log OD 
A OPODO A aOQ‘.A6B
+ OR? . B6C + OS2 . COD

(6) It Ji is the geometric mean of the distances 
of all the points of the rectangle ABCD from each 
other,

i p_i An .AB2 AC RC‘AC °SAC i AJP^ n DC

When the rectangle is a square, whose side —a, 

log R = log a + 3 log 2 + - — ff 

= log a — 0'8050806, 
R = 0-44705 a.
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(7) The geometric mean distance of a circular line of radius a, from a 
point in its plane at a distance r from the centre, is r if the point be without 
the circle, and a if the point be within the circle.

(8) The geometric mean distance of any figure from a circle which com
pletely encloses it is equal to the radius of the circle. The geometric mean 
distance of any figure from the annular space between two concentric circles, 
both of which completely enclose it, is II, where

(a/ — a,’) (log 11 + o) = a, log a, — al log a2, 
a, being the radius of the outer circle, and a^ that of the inner. The geometric 
mean distance of any figure from a circle or an annular space between two 
concentric circles, the figure being completely external to the outer circle, is 
the geometric mean distance of the figure from the centre of the circle.

(9) The geometric mean distance of all the points of the annular space 
between two concentric circles from each other is R, where

(a/ - a,2)2 (log R - log a,) = | (3aa2 - a*) (al - al) - at* log -1.

When a„ the radius of the inner circle, vanishes, we find 
R = ae~t.

When a,, the radius of the inner circle, becomes nearly equal to a„ that of the 
outer circle,

Il = av
As an example of the application of this method, let us take the case of a 

coil of wire, in which the wires are arranged so that the transverse section of 
the coil exhibits the sections of the wires arranged in square order, the distance 
between two consecutive wires being D, and the diameter of each wire cl.

Let the whole section of the coil be of dimensions which are small com
pared with the radius of curvature of the wires and let 
the geometrical mean distance of the section from itself 
be R.

Let it be required to find the coefficient of induction 
of this coil on itself, the number of windings being n.

1st. If we begin by supposing that the wires fill up 
the whole section of the coil, without any interval of 
insulating matter, then if M is the coefficient of induc-

3G—2
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tion of a linear circuit of the same shape as the coil on a similar parallel cir
cuit at a distance R, the coefficient of induction of the coil on itself will be

riM.

2nd. The current, however, is not uniformly distributed over the section. 
It is confined to the wires. Now the coefficient of self-induction of a unit of 
length of a conductor is

C— 2 log R,

where C is a constant depending on the form of the axis of the conductor, and 
R is the mean geometric distance of the section from itself.

Now for a square of side D,

log A = log D +1 log 2 + ~

and for a circle of diameter d

log R, = log d — log 2 —

Hence log =log +f log 2 +1 ,

and the coefficient of self-induction of the cylindric wire exceeds that of the 
square wire by

2 {log J+ 0-1380606} 

per unit of length.

3rd. We must also compare the mutual induction between the cylindric 
wire and the other cylindric wires next it with that between the square wire 
and the neighbouring square wires. The geometric mean distance of two 
squares side by side is to the distance of their centres of gravity as 0'99401 is 
to unity.

The geometric mean distance of two squares placed corner to corner is to 
the distance between their centres of gravity as 1'0011 is to unity.

Hence the correction for the eight wires nearest to the wire considered is

~ 2 x (0'01971).
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Ihe correction for the wires at a greater distance is less than one-thousandth 
per unit of length.

Ihe total self-induction of the coil is therefore

n2Jf+2Z {log ^+0-11835},
Cv

where n is the number of windings, and I the length of wire.

For a circular coil of radius = a

M = 4tt« (log 8a - log Ji — 2), 
where R is the geometrical mean distance of the section of the coil from itself.



[From the Proceedings of the Royal Society, No. 132, 1872.]

XLIX. On the Induction of Electric Currents in an Infinite Plane Sheet of 
Uniform Conductivity.

1. When, on account of the motion or the change of strength of any 
magnet or electro-magnet, a change takes place in the magnetic field, electro
motive forces are called into play, and, if the material in which they act is a 
conductor, electric currents are produced. This is the phenomenon of the induc
tion of electric currents, discovered by Faraday.

I propose to investigate the case in which the conducting substance is in 
the form of a thin stratum or sheet, bounded by parallel planes, and of indefi
nite extent. A system of magnets or electro-magnets is supposed to exist on 
the positive side of this sheet, and to vary in any way by changing its position 
or its intensity. We have to determine the nature of the currents induced in 
the sheet, and their magnetic effect at any point, and, in particular, their 
reaction on the electro-magnetic system which gave rise to them. The induced 
currents are due, partly to the direct action of the external system, and partly 
to their mutual inductive action; so that the problem appears, at first sight, 
somewhat difficult.

2. The result of the investigation, however, may be presented in a re
markably simple form, by the aid of the principle of images which was first 
applied to problems in electricity and hydrokinetics by Sir W. Thomson. The 
essential part of this principle is, that we conceive the state of things on the 
positive side of a certain closed or infinite surface (which is really caused by 
actions having their seat on that surface) to be due to an imaginary system on 
the negative side of the surface, which, if it existed, and if the action of the 
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surface were abolished, would give rise to the actual state of things in the 
space on the positive side of the surface.

The state of things on the positive side of the surface is expressed by a 
mathematical function, which is different in form from that which expresses the 
state of things on the negative side, but which is identical with that which 
would be due to the existence, on the negative side, of a certain system which 
is called the Image.

The image, therefore, is what we should arrive at by producing, as it were, 
the mathematical function as far as it will go; just as, in optics, the virtual 
image is found by producing the rays, in straight lines, backwards from the place 
where their direction has been altered by reflexion or refraction.

3. The position of the image of a point in a plane surface is found by
drawing a perpendicular from the point to the surface and producing it to an 
equal distance on the other side of the surface. If the image is of the same
sign as the point, as it is in hydrokinetics when the surface is a rigid plane, it
is called a positive image. If it is of the opposite sign, as in statical electricity, 
when the surface is a conductor, it is called a negative image. The image of a 
conducting circuit is reckoned positive when the electric current flows in the 
corresponding directions through corresponding parts of the object and the imao-e. 
The image is reckoned negative when the direction of the current is reversed.

In the case of the plane conducting sheet, the imaginary system on the 
negative side of the sheet is not the simple image, positive or negative, of the 
real magnet or electro-magnet on the positive side, but consists of a moving 
train of images, the nature of which we now proceed to define.

4. Let the electric resistance of a rectangular portion of the 
length is a, and whose breadth is 2ira, be R.

sheet whose

R is to be measured on the electro-magnetic system, and is therefore a 
velocity, the value of which is independent of the magnitude of the line a 
[If p denotes the specific resistance of the material of the sheet for a unit

cube, and if c is the thickness of the sheet, then R = -^-;
2irc and if denotes

the specific resistance of the sheet for a unit (or any other) square, R — Z n 
2?T
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5. Let us begin by dividing the time into a num
ber of equal intervals, each equal to The smaller 
we take these intervals the more accurate will be the . • • O
definition of the train of images which we shall now 
describe. _________________

G. At a given time t, let a positive image of the 
magnet or electro-magnet be formed on the negative 
side of the sheet.

As soon as it is formed, let this image begin to 
move away from the sheet in the direction of the 
normal, with the velocity li, its form and intensity 
remaining constantly the same as that which the 
magnet had at the time t.

After an interval 8t, that is to say, at the time t -f- 8t, let a negative
image, equal in magnitude and opposite in sign to this positive image, be formed 
in the original position of the positive image, and let it then begin to move along 
the normal, after the positive image, with the velocity li. The interval of time 
between the arrival of these images at any point will be 8t, and the distance 
between corresponding points will be U8t.

7. Leaving this pair of images to pursue their endless journey, let us 
attend to the real magnet, or electro-magnet, as it is at the time t + 8t. At 
this instant let a new positive image be formed of the magnet in its new 
position, and let this image also travel in the direction of the normal with the 
velocity li, and be followed after an interval of time 8t by a corresponding 
negative image. Let these operations be repeated at equal intervals of time, 
each of these intervals being equal to Si.

8. Thus at any given instant there will be a train or trail of images, 
beginning with a single positive image, and followed by an endless succession of 
pairs of images. This trail, when once formed, continues unchangeable in form 
and intensity, and moves as a whole away from the conducting sheet with 
the constant velocity li.

9. If we now suppose the interval of time 8t to be diminished without 
limit, and the train to be extended without limit in the negative direction, so 
as to include all the images which have been formed in all past time, the 
magnetic effect of this imaginary train at any point on the positive side of the 
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conducting sheet will be identical with that of the electric currents which 
actually exist in the sheet.

Before proceeding to prove this statement, let us take notice of the form 
which it assumes in certain cases.

10. Let us suppose the real system to be an electro-magnet, and that its 
intensity, originally zero, suddenly becomes I, and then remains constant. At 
this instant a positive image is formed, which begins to travel along the 
normal with velocity R. After an interval 8t another positive image is formed; 
but at the same instant a second negative image is formed at the same place, 
which exactly neutralizes its effect. Hence the result is, that a single positive 
image travels by itself along the normal with velocity R. The magnetic effect of 
this image on the positive side of the sheet is equivalent to that of the currents 
of induction actually existing in the sheet, and the diminution of this effect, as 
the image moves away from the sheet, accurately represents the effect of the 
currents of induction, which gradually decay on account of the resistance of the 
sheet. After a sufficient time, the image is so distant that its effects are no 
longer sensible on the positive side of the sheet. If the current of the electro
magnet be now broken, there will be no more images; but the last negative 
image of the train will be left unneutralized, and will move away from the sheet 
with velocity R. The currents in the sheet will therefore be of the same 
magnitude as those which followed the excitement of the electro-magnet, but in 
the opposite direction.

11, It appears from this that, when the electro-magnet is increasing in 
intensity, it will be acted on by a repulsive force from the sheet, and when 
its intensity is diminishing, it will be attracted towards the sheet.

It also appears that if any system of currents is produced in the sheet 
and then left to itself, the effect of the decay of the currents, as observed at 
a point on the positive side of the sheet, will be the same as if the sheet, with 
its currents remaining constant, had been carried away in the negative direction 
with velocity R.

12. If a magnetic pole of strength m is brought from an infinite distance 
along a normal to the sheet with a uniform velocity v towards the sheet, it 
will be repelled with a force

w5 v
4z2 R + v’

where z is the distance from the sheet at the given instant.
VOL. II. 37
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This formula will not apply to the case of the pole moving away from the 
sheet, because in that case we must take account of the currents which are 
excited when the pole begins to move, which it does when near the sheet.

13. If the magnetic pole moves in a straight line parallel to the sheet, 
with uniform velocity v, it will be acted on by a force in the opposite direction 
to its motion, and equal to

m* JR’ + tf + R — v . . . .... .
4za (J^+^+Ry *

Besides this retarding force, it is acted on by a force repelling it from the 
sheet, equal to

m2 v1

14. If the pole moves uniformly in a circle, the trail is in the form of a 
helix, and the calculation of its effect is more difficult; it is easy, however, to 
see that, besides the retarding force and the repelling force, there is also a force 
towards the centre of the circle.

15. It is shewn, in my treatise On Electricity and Magnetism (Vol. n. 
Art. GOO), that the currents in any system are the same, whether the conducting 
system or the inducing system be in motion, provided the relative motion is 
the same. Hence the results already given are directly applicable to the case 
of Arago’s rotating disk, provided the induced currents are not sensibly affected 
by the limitation arising from the edge of the disk. These will introduce other 
sets of images, which we shall not now investigate.

16. The greater the resistance of the sheet, whether from its thinness or 
from the low conducting-power of its material, the greater is the velocity R. 
Hence in most actual cases R is very great compared with v the velocity of 
the external system, and the trail of images is nearly normal to the sheet, and 
the induced currents differ little from those which arise from the direct action 
of the external system (see § 1).

17. If the conductivity of the sheet were infinite, or its resistance zero, 
R would be zero. The images, once formed, would remain stationary, and all 
except the last formed positive image would be neutralized. Hence the trail 
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would be reduced to a single positive image, and the sheet would exert a repul- 

sive force on the pole, whether the pole be in motion or at rest.QZ
I need not say that this case does not occur in nature as we know it. 

Something of the kind is supposed to exist in the interior of molecules in 
Weber’s Theory of Diamagnetism.

Mathematical Investigation.

18. Let the conducting sheet coincide with the plane of xy, and let its 
thickness be so small that we may neglect the variation of magnetic force at 
different points of the same normal within its substance, and that, for the same 
reason, the only currents which can produce sensible effects are those which are 
parallel to the surface of the sheet.

Current-function.

19. We shall define the currents in the sheet by means 
function This function expresses the quantity of electricity 

of the current- 
which, in unit

of time, crosses from right to left a curve drawn from a point at infinity to 
the point P.

This quantity will be the same for any two curves drawn from this point 
to P, provided no electricity enters or leaves the sheet at any point between 
these curves. Hence </> is a single-valued function of the position of the point P.

The quantity which crosses the element ds of any curve from right to left is 
d</> i-r ds. ds

By drawing ds first perpendicular to the axis of x, and then perpendicular 
to the axis of y, we obtain for the components of the electric current in the 
directions of x and of y respectively

_d<l> d$
U dy ’ V dx (1).

The curves for which </> is constant are called current lines.

20. The annular portion of the sheet included between the current lines 
and ^> + 8^ is a conducting circuit round which an electric current of strength

37—2
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3$ is flowing in the positive direction, that is, from x towards y. Such a 
circuit is equivalent in its magnetic effects to a magnetic shell of strength 8</», 
having the circuit for its edge*.

* W. Thomson, “Mathematical Theory of Magnetism,” Phil. Trans. 1850.

The whole system of electric currents in the sheet will therefore be equi
valent to a complex magnetic shell, consisting of all the simple shells, defined 
as above, into which it can be divided. The strength of the equivalent complex 
shell at any point will be

We may suppose this shell to consist of two parallel plane sheets of 
imaginary magnetic matter at a very small distance c, the surface-density being 

on the positive sheet, and — on the negative sheet.

21. To find the magnetic potential due to this complex plane shell at 
any point not in its substance, let us begin by finding P, the potential at the 
point (f, y, £) due to a plane sheet of imaginary magnetic matter whose surface
density is </>, and which coincides with the plane of xy. The potential due to 

the positive sheet whose surface-density is and which is at a distance on

the positive side of the plane of xy, is

That due to the negative sheet, at a distance on the negative side of the 
plane of xy is

“c + + &c-)-

Hence the magnetic potential of the shell is 

................................................
This, therefore, is the value of the magnetic potential of the current-sheet at 
any given point on the positive side of it. Within the sheet there is no 
magnetic potential, and at any point (£ _£) On the negative side of the
sheet the potential is equal and of opposite sign to that at the point (£ y, £) 
on the positive side.
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22. At the positive surface the magnetic potential is

F=-^=2^........................................... (3)-

At the negative surface 
dP n 
d^^2^.(4

The normal component of magnetic force at the positive surface is 

_____dV d'P
7 d^~ dC.................................’...... ”

In the case of the magnetic shell, the magnetic force is discontinuous at 
the surface; but in the case of the current-sheet this expression gives the value 
of y within the sheet itself, as well as in the space outside.

23. Let F, G, II be the components of the electro-magnetic momentum at 
any point in the sheet, due to external electro-magnetic action as well as to 
that of the currents in the sheet, then the electromotive force in the direction 
of x is

dF dty 
dt dx ’

where is the electric potential*; and by Ohm’s law this is equal to au, 
where o- is the specific resistance of the sheet.

Hence (ru=~-(^
dt dx

Similarly, au= -
dt dy

Let the external system be such that its magnetic potential is represented 
i dp
by ~ , then the actual magnetic potential will be

..............................(4

............................................w

F=^(P.+P), G^-^P.+P), H=0....................(8).

* “Dynamical Theory of the Electromagnetic Field,’’ Phil. Trans. 1865, p. 483.
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Hence equations (G) become, by introducing the stream-function </> from (1),

o- - . (P + 7’1 — —dy dtdy' dx
— a^^sz jL___(p । p\

dx dtdx' '+1 '~dy .
A solution of these equations is

(9).
-----^(^’o + T’), ^constant............................ (10).

Substituting the value of </> in terms of P, as given in equation (4), 

2^-4^).....................................

The quantity —-2?T 
call it R> then

is evidently a velocity; let us therefore for conciseness

dP dPdP0 
dz dt dt (12).

24. Let Po be the value of P„ at the time t — r, and at a point on the 
negative side of the sheet, whose co-ordinates are x, y, (z-Jir), and let

Q=lP;dr............................................. (13).
J 0

At the upper limit when r is infinite P' vanishes. Hence at the lower limit, 
when r = 0 and P^ = P^ we must have

but by equation (12)

..........................................(14)
dt dz ' '

dP._ dP ndP 
dt dt dz.....................................

1\

Hence the equation will be satisfied if we make

dQ d f 
P- (io)-

25. This, then, is a solution of the problem. Any other solution must 
differ from this by a system of closed currents, depending on the initial state 
of the sheet, not due to any external cause, and which therefore must decay
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rapidly. Hence, since we assume an eternity of past time, this is the only 
solution of the problem.

This solution expresses P, a function due to the action of the induced 
current, in terms of P', and through this of P„, a function of the same bind 
due to the external magnetic system. By differentiating P and Pt with respect 
to z, we obtain the magnetic potential, and by differentiating them with respect 
to t, we obtain, by equation (10), the current-function. Hence the relation 
between P and P„, as expressed by equation (16), is similar to the relation 
between the external system and its trail of images as expressed in the descrip
tion of these images in the first part of this paper (§§ 6, 7, 8, 9), which is 
simply an explanation of the meaning of equation (16) combined with the 
definition of P' in § 24.

Note to the preceding Paper.

At the time when this paper was written, I was not able to refer to two 
papers by Prof. Felici, in Tortolini’s Annali di Scienze for 1853 and 1854, in 
which he discusses the induction of currents in solid homogeneous conductors and 
in a plane conducting sheet, and to two papers by E. Jochmann in Crelle’s 
Journal for 1864, and one in Poggendorff’s Annalen for 1864, on the currents 
induced in a rotating conductor by a magnet.

Neither of these writers have attempted to take into account the inductive 
action of the currents on each other, though both have recognised the existence 
of such an action, and given equations expressing it. M. Felici considers the 
case of a magnetic pole placed almost in contact with a rotating disk. E. 
Jochmann solves the case in which the pole is at a finite distance from the 
plane of the disk. He has also drawn the forms of the current-lines and of 
the equipotential lines, in the case of a single pole, and in the case of two 
poles of opposite name at equal distances from the axis of the disk, but on 
opposite sides of it, and has pointed out why the current-lines are not, as 
Matteucci at first supposed, perpendicular to the equipotential lines, which he 
traced experimentally.

I am not aware that the principle of images, as described in the paper 
presented to the Boyal Society, has been previously applied to the phenomena 
of induced currents, or that the problem of the induction of currents in an 
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infinite plane sheet has been solved, taking into account the mutual induction 
of these currents, so as to make the solution applicable to a sheet of any degree 
of conductivity.

The statement in equation (10), that the motion of a magnetic system 
does not produce differences of potential in the infinite sheet, may appear some
what strange, since we know that currents may be collected by electrodes 
touching the sheet at different points. These currents, however, depend entirely 
on the inductive action on the part of the circuit not included in the sheet; 
for if the whole circuit lies in the plane of the sheet, but is so arranged as not 
to interfere with the uniform conductivity of the sheet, there will be no dif
ference of potential in any part of the circuit. This is pointed out by Felici, 
who shews that when the currents are induced by the instantaneous magnetiza
tion of a magnet, these currents are not accompanied with differences of potential 
in different parts of the sheet.

When the sheet is itself in motion, it appears, from Art. GOO of my treatise 
On Electricity and Magnetism, that the electric potential of any point, as 
measured by means of the electrodes of a fixed circuit, is

, / „dx ~dy rTiz\

.dxdydz
where lit’ dt’ dt are components of the velocity of the part of the sheet
to which the electrode is applied.

In the case of a 
becomes

sheet revolving with velocity w about the axis of z, this

xfj = a>

Note 2.—The velocity R for a copper plate of best quality 1 millimetre in 
thickness is about 25 metres per second. Hence it is only for very small velo
cities of the apparatus that we can obtain any approximation to the true result 
by neglecting the mutual induction of the currents.—Feb. 13.



[From the Proceedings of the London Mathematical Society, Vol. iv.]

L. On the Condition that, in the Transformation of any Figure by Curvilinear 
Co-ordinates in Three Dimensions, every Angle in the new Figure shall be 
equal to the corresponding Angle in the original Figure.

[Read May 9th, 1872.]

In the corresponding problem in two dimensions, the only condition is 

x + ^ly=f^+J-\y).(1),

where x, y are the co-ordinates in one system, and £, y in the other.

In three dimensions the solution is more restricted.

Let x, y, z be functions of £ y, £; then the point in the system x, y, z, 
for which f is constant, will be in a certain surface, and by giving £ a series 
of values we obtain a series of such surfaces. There will be two other series of 
surfaces, corresponding to y and £ respectively. If in the second system £ y, C 
are rectangular co-ordinates, the surfaces corresponding to £ y, C in the first 
system will intersect at right angles. The condition of this is

dxdx dydy dzdz 
dy dC + dyTl, + d^dl = Q

with two other equations in £ and £ and £ and y.

If we now write a’ = f^Y + /W + (d^ 
\df/ + W W

_ /dxV + /dyV + /dzV 
\dy/ \dy/ \dy/

, /dxV /dyV , (dzV 7 ~ \dtj + \dd + W .

VOL. II.

(2),

(3);

38
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and dg is the intercept of the line (^ = const., £ = const.) cut off between the 
surfaces f and £+dg.

The angle e, at which a line whose co-ordinates are functions of p cuts a 
line whose co-ordinates are functions of q, is found from the equation

da: dx dy dy' dz dz 
dp dq dp dq + dp dq

o^JZ^Y i Z^y V Z^z W f Z^V . Z^yY . fdzw^~C° [\dp/ + \dp) + \dp) J {\dg/ + \dq) + \dq) J ........(4)’

Expressing this in terms of y, and £, it becomes

dp dq dp dq dp dq

In order that the angle e, at which these lines intersect in the system 
(a:, y, z), should be always equal to the angle e, at which the corresponding 
lines in the system (£ y, C) intersect, it is necessary and sufficient that

a = ^ = y....................................................(6),
for these are the conditions that equations (4) and (5) should be of the same 
form.

Now consider the quadrilateral ABCD, cut off from

Since the three sets of surfaces are orthogonal, their intersections are lines 
of curvature, by Dupin’s Theorem. Hence AB is a line of curvature of the



CURVILINEAR CO-ORDINATES IN THREE DIMENSIONS. 299

surface y, drawn parallel to a. Hence the normals at A and B will intersect 
at some point 0. Let us call OA, the radius of curvature of in the plane 
of a, then

AB : DC :: R^ ; R^ + AD.

Hence similarly

dy dy

These values of the radii of curvature are true for any system of orthogonal 
surfaces, but since in this case a = y, we find

or the principal radii of curvature of the surface y are equal to each other at 
every point of the surface. Hence the surfaces y must be spherical.

Since a = ^ = y, the other families of surfaces £ and £ must also be spherical.

Now take one of the points where three spherical surfaces meet at right 
angles for the origin, and invert the system. These spheres when inverted 
become three planes intersecting at right angles, and the other spheres become 
spheres, each intersecting at right angles two of these planes. Hence their 
centres lie in the lines of intersection of the planes. Let a, b, c be the distances, 
from the point of intersection of the three planes, of the centres of spheres 
belonging each to one of the three systems, and let their radii be p, q, r 
respectixely. then the conditions that these spheres intersect at right angles

are f+i* = &+<?, S +p> = c’ + a2, p2 + f = a' + b2,

whence p2 = a2, f = b2, ?^ = c’;

or all the spheres pass through the origin, and each system has a common 
tangent plane. Hence if we take these three planes as co-ordinate planes, and 
write

x2 + f + z2 = r2,
^ + T + ^ = p-

we have rp = R~, a constant quantity,

X y z

38—2
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whence .ft ft
y-v?

t ft ft Y 7?
t = z -r;

p 7 P^R-p-

It appears from this that the only method of transforming a figure of three 
dimensions, so that every angle in the system shall remain of the same mag
nitude, is the method of inversion or of reciprocal radii vectores.

[Reference may be made to “ Methodes de Transformation en Geometric 
et en 1 hysique mathematique, par J. N. Haton de Goupilli&re, especially § vii.; 
Journal de I'Ecole Polytechnique, Tom. xxv., p. 188.]



[From Nature, Vol. vn.]

Li. Reprint of Papers on Electrostatics and Magnetism. By Sir W. Thomson, 
D.C.L., LL.D., F.R.S., F.R.S.E., Fellow of St Peter’s College, Cambridge, 
and Professor of Natural Philosophy in the University of Glasgow. (London: 
Macmillan and Co., 1872.)

To obtain any adequate idea of the present state of electro-magnetic science 
We must study these papers of Sir W. Thomson’s. It is true that a great deal 
of admirable work has been done, chiefly by the Germans, both in analytical 
calculation and in experimental researches, by methods which are independent 
of, or at least different from, those developed in these papers, and it is the 
glory of true science that all legitimate methods must lead to the same final 
results. But if we are to count the gain to science by the number and value 
of the ideas developed in the course of the inquiry, which preserve the results 
of former thought in a form capable of being employed in future investigation, 
we must place Sir W. Thomsons contributions to electro-magnetic science on 
the very highest level.

One of the most valuable of these truly scientific, or science-forming ideas, 
is that which forms the subject of the first paper in this collection. Two 
scientific pioblcms, each of the highest order of difficulty, had hitherto been 
considered from quite different points of view. Cavendish and Poisson had 
investigated the distribution of electricity on conductors on the hypothesis that 
the pai tides of electricity exert on each other forces which vary inversely as 
the square of the distance between them. On the other hand Fourier had 
investigated the laws of the steady conduction of heat on the hypothesis that 
the flow of heat from the hotter parts of a body to contiguous parts which 
are colder is proportional to the rate at which the temperature varies from 
point to point of the body. The physical ideas involved in these two problems 
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are quite different. In the one we have an attraction acting instantaneously 
at a distance, in the other heat creeping along from hotter to colder parts. 
The methods of investigation were also different. In the one the force on a 
given particle of electricity has to be determined as the resultant of the 
attraction of all the other particles. In the other we have to solve a certain 
partial differential equation which expresses a relation between the rates of 
variation of temperature in passing along lines drawn in three different direc
tions through a point. Thomson, in this paper, points out that these two 
problems, so different, both in their elementary ideas and their analytical 
methods, are mathematically identical, and that, by a proper substitution of 
electrical for thermal terms in the original statement, any of Fourier’s wonderful 
methods of solution may be applied to electrical problems. The electrician has 
only to substitute an electrified surface for the surface through which heat is 
supplied, and to translate temperature into electric potential, and he may at 
once take possession of all Fourier’s solutions of the problem of the uniform 
flow of heat.

To render the results obtained in the prosecution of one branch of inquiry 
available to the students of another is an important service done to science, 
but it is still more important to introduce into a science a new set of ideas, 
belonging, as in this case, to what was, till then, considered an entirely uncon
nected science. This paper of Thomson’s, published in February 1842, when he 
was a very young freshman at Cambridge, first introduced into mathematical 
science that idea of electrical action carried on by means of a continuous 
medium which, though it had been announced by Faraday, and used by him 
as the guiding idea of his researches, had never been appreciated by other men 
of science, and was supposed by mathematicians to be inconsistent with the 
laws of electrical action, as established by Coulomb, and built on by Poisson. 
It was Thomson who pointed out that the ideas employed by Faraday under 
the names of Induction, Lines of Force, &c., and implying an action transmitted 
from one part of a medium to another, were not only consistent with the 
results obtained by the mathematicians, but might be employed in a mathe
matical form so as to lead to new results. One of these new results, which 
was, we have reason to believe, obtained by this method, though demonstrated 
by Thomson by a very elegant adaptation of Newton’s method in the theory 
of attraction, is the “Method of Electrical Images,” leading to the “Method 
of Electrical Inversion.”
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Poisson had already, by means of Laplace’s powerful method of spherical 
harmonics, determined, in the form of an infinite series, the distribution of 
electricity on a sphere acted on by an electrified system. No one, however, 
seems to have observed that when the external electrified system is reduced 
to a point, the resultant external action is equivalent to that of this point, 
together with an imaginary electrified point within the sphere, which Thomson 
calls the electric image of the external point.

Now if in an infinite conducting solid heat is flowing outwards uniformly 
from a very small spherical source, and part of this heat is absorbed at another 
small spherical surface, which we may call a sink, while the rest flows out in 
all directions through the infinite solid, it is easy, by Fourier’s methods, to 
calculate the stationary temperature at any point in the solid, and to draw 
the isothermal surfaces. One of these surfaces is a sphere, and if, in the 
electrical problem, this sphere becomes a conducting surface in connection with 
the earth, and the external source of heat is transformed into an electrified 
point, the sink will become the image of that point, and the temperature and 
flow of heat at any point outside the sphere will become the electric potential 
and resultant force.

Thus 1 homson obtained the rigorous solution of electrical problems relating 
to spheres by the introduction of an imaginary electrified system within the 
sphere. But this imaginary system itself next became the subject of exami
nation, as the result of the transformation of the external electrified system by 
reciprocal radii vectores. By this method, called that of electrical inversion, the 
solution of many new problems was obtained by the transformation of problems 
already solved. A beautiful example of this method is suggested by Thomson 
in a letter to M. Liouville, dated October 8, 1845, and published in Liouville’s 
Journal, for 1845, but which does not seem to have been taken up by any 
mathematician, till 1 homson himself, in a hitherto unpublished paper (No. xv. 
of the book before us), wrote out the investigation complete. This, the most 
remarkable problem of electrostatics hitherto solved, relates to the distribution 
of electricity on a segment of spherical surface, or a bowl, as Thomson calls 
it, under the influence of any electrical forces. The solution includes a very 
important case of a flat circular dish, and of an infinite flat screen with a 
circular hole cut out of it.

If, however, the mathematicians were slow in making use of the physical 
method of electric inversion, they were more ready to appropriate the geometrical 
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idea of inversion by reciprocal radii vectores, which is now well known to all 
geometers, having been, we suppose, discovered and re-discovered repeatedly, 
though, unless we are mistaken, most of these discoveries are later than 1845, 
the date of Thomson’s paper.

But to return to physical science, we have in No. Vil. a paper of even 
earlier date (1843), in which Thomson shews how the force acting on an elec
trified body can be exactly accounted for by the diminution of the atmospheric 
pressure on its electrified surface, this diminution being everywhere proportional 
to the square. of the electrification per unit of area. Now this diminution of 
pressure is only another name for that tension along the lines of electric force, 
by means of which, in Faraday’s opinion, the mutual action between electrified 
bodies takes place. This short paper, therefore, may be regarded as the germ 
of that course of speculation by which Maxwell has gradually developed the 
mathematical significance of Faraday’s idea of the physical action of the lines 
of force.

We have dwelt, perhaps at too great length, on these youthful contributions 
to science, in order to shew how early in his career, Thomson laid a solid 
foundation for his future labours, both in the development of mathematical 
theories and in the prosecution of experimental research. Mathematicians how
ever will do well to take note of the theorem in No. xm., the applications 
of which to various branches of science will furnish them, if they be diligent, 
both occupation and renown for some time to come.

We must now turn to the next part of this volume, in which the 
mathematical electrician, now established as a Professor at Glasgow, turns his 
attention to the practical and experimental work of his science. In such work 
the mathematician, if he succeeds at all, proves himself no mere mathematician, 
but a thoroughly furnished man of science. And first we have an account of 
that research into atmospheric electricity which created a demand for electro
meters ; then a series of electrometers of gradually improving species; and lastly, 
an admirable report on electrometers and electrostatic measurements, in which 
the results of many years’ experience are given in a most instructive and 
scientific form. In this report the different instruments are not merely described, 
but classified, so that the student is furnished with the means of devising a 
new instrument to suit his own wants. He may also study, in the recorded 
history of electrometers, the principles of natural selection, the conditions of the 
permanence of species, the retention of rudimentary organs in manufactured
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articles, and the tendency to reversion to older types in the absence of scientific 
control.

A good deal of Sir W. Thomson’s practical electrical work is not referred 
to in this volume. It is to be hoped that he will yet find time to give some 
account of his many admirable telegraphic contrivances in galvanometers, sus
pended coils, and recording instruments, and to complete this collection by his 
papers on electrolysis, measurement of resistance, electric qualities of metals, 
thermo-electricity, and electro-magnetism in general*.

The second division of the book contains the theory of magnetism.
The first paper, communicated to the Royal Society in 1849 and 1850, is 

the best introduction to the theory of magnetism that we know of. The 
discussion of particular distributions of magnetisation is altogether original, and 
prepares the way for the theory of electro-magnets which follows. This paper 
on electro-magnets is interesting as having been in manuscript for twenty-three 
years, during which time a great deal has been done both at home and abroad 
on the same subject, but without in any degree trenching upon the ground 
occupied by Thomson in 1847. Though in these papers we find several formidable 
equations bristling with old English capitals, the reader will do well to observe 
that the most important results are often obtained without the use of this 
mathematical apparatus, and are always expressed in plain scientific English.

As regards the most interesting of all subjects, the history of the develop
ment of scientific ideas—we know of few statements so full of meaning as the 
note at p. 419 relating to Ampere’s theory of magnetism, as depending on 
electric currents, flowing in circuits within the molecules of the magnet; he 
goes on to say: “From twenty to five-and-twenty years ago, when the materials 
of the present compilation were worked out, I had no belief in the reality of 
this theory; but I did not then know that motion is the very essence of what 
has been hitherto called matter. At the 1847 meeting of the British Association 
in Oxford, I learned from Joule the dynamical theory of heat, and was forced 
to abandon at once many, and gradually from year to year all other, statical 
preconceptions regarding the ultimate causes of apparently statical phenomena.”

After a short, but sufficient, proof that the magnetic rotation of the plane 
of polarised light discovered by Faraday implies an actual rotatory motion of 
something, and that this motion is part of the phenomenon of magnetism, he

* [See Mathematical and Physical Papers, by Sir W. Thomson, Vol. i., Cambridge University 
Press, 1882.]

VOL. II. 39
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adds. The explanation of all phenomena of electro-magnetic attraction or 
iepulsion, and of electro-magnetic induction, is to be looked for simply in the 
inertia and pressure of the matter of which the motions constitute heat. Whether 
this matter is or is not electricity, whether it is a continuous fluid interper
meating the spaces between molecular nuclei, or is itself molecularly grouped; 
or whether all matter is continuous, and molecular heterogeneousness consists in 
finite vortical or other relative motions of contiguous parts of a body; it is 
impossible to decide, and perhaps in vain to speculate, in the present state of 
science.”

Ihe date of these remarks is 1856. In 1861 and 1862 appeared Maxwell’s 
“theory of molecular vortices applied to magnetism, electricity, &c.” which may 
be considered as a development of Thomson’s idea in a form which, though 
rough and clumsy compared with the realities of nature, may have served its 
turn as a provisional hypothesis.

The concluding sections of the book before us are devoted to illustrations 
of magnetic force derived from the motion of a perfect fluid. They are not 
put foiwaid as explanations of magnetic force, for in fact the forces are of 
the opposite kind to those of magnets. They belong more properly to that 
remarkable extension of the science of hydrokinetics which was begun by 
Helmholtz and so ably followed up by Thomson himself.

Ihe conception of a perfectly homogeneous, incompressible frictionless fluid 
is as essential a part of pure dynamics as that of a circle is of pure geometry. 
It is true that the motions of ordinary fluids are very imperfect illustrations 
of those of the perfect fluid. But it is equally true that most of the objects 
which we are pleased to call circles are very imperfect representations of a true 
circle.

Neither a perfect fluid nor a perfect circle can be formed from the materials 
which we deal with, for they are assemblages of molecules, and therefore not 
homogeneous except when regarded roughly in large masses. The perfect circle 
is truly continuous and the perfect fluid is truly homogeneous.

It follows, however, from the investigations of Helmholtz and Thomson that 
if a motion of the kind called rotational is once set up in the fluid, the portion 
of the fluid to which this motion is communicated, retains for ever, during all 
its wanderings through the fluid mass, the character of the motion thus impressed 
on it.

This vortex then, as Helmholtz calls it, be it large or small, possesses that
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character of permanence and individuality which we attribute to a material 
molecule, while at the same time it is capable, while retaining its essential 
characteristics unchanged both in nature and value, of changing its form in an 
infinite variety of ways, and of executing the vibrations which excite those rays 
of the spectrum by which the species of the molecule may be discovered. It 
would puzzle one of the old-fashioned little round hard molecules to execute 
vibrations at all. Uiere was no music in those spheres.

But besides this application of hydrokinetics to this new conception of the 
old atom, there is a vast field of high mathematical inquiry opened up by the 
papers of Helmholtz and Thomson. It is to be hoped that the latter will soon 
complete his papers on J ortex Motion and give them to the world. But wliy 
does no one else work in the same field ? Has the multiplication of symbols 
put a stop to the development of ideas ?

39—2



[From the Proceedings of the Cambridge Philosophical Society, Vol. n, 1876.]

LIL On the Proof of the Equations of Motion of a Connected System.

To deduce from the known motions of a system the forces which act on it 
is the primary aim of the science of Dynamics. The calculation of the motion 
when the forces are known, though a more difficult operation, is not so impor
tant, nor so capable of application to the analytical method of physical science.

The expressions for the forces which act on the system in terms of the 
motion of the system were first given by Lagrange in the fourth section of 
the second part of his Mecanique Analytique. Lagrange’s investigation may be 
regarded from a mathematical point of view as a method of reducing the dy
namical equations, of which there are originally three for every particle of the 
system, to a number equal to that of the degrees of freedom of the system. 
In other words it is a method of eliminating certain quantities called reactions 
from the equations.

The aim of Lagrange was, as he tells us himself, to bring dynamics under 
the power of the calculus, and therefore he had to express dynamical relations in 
terms of the corresponding relations of numerical quantities.

In the present day it is necessary for physical inquirers to obtain clear ideas 
in dynamics that they may be able to study dynamical theories of the physical 
sciences. We must therefore avail ourselves of the labours of the mathematician 
and selecting from his symbols those which correspond to conceivable physical 
quantities, we must retranslate them into the language of dynamics.

In this way our words will call up the mental image, not of certain 
operations of the calculus, but of certain characteristics of the motion of bodies.

The nomenclature of dynamics has been greatly developed by those who in 
recent times have expounded the doctrine of the Conservation of Energy and 
it will be seen that most of the following statement is suggested by the investi
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gations in Thomson and Tait’s Natural Philosophy, especially the method of 
beginning with the case of impulsive forces.

*1 have applied this method in such a way as to get rid of the explicit 
consideration of the motion of any part of the system except the co-ordinates or 
variables on which the motion of the whole depends. It is important to the 
student to be able to trace the way in which the motion of each part is 
determined by that of the variables, but I think it desirable that the final equa
tions should be obtained independently of this process. That this can be done is 
evident from the fact that the symbols by which the dependence of the motion 
of the parts on that of the variables was expressed, are not found in the final 
equations.

The whole theory of the equations of motion is no doubt familiar to mathe
maticians. It ought to be so, for it is the most important part of their science 
in its application to matter. But the importance of these equations does not 
depend on their being useful in solving problems in dynamics. A higher function 
which they must discharge is that of presenting to the mind in the clearest 
and most general form the fundamental principles of dynamical reasoning.

In forming dynamical theories of the physical sciences, it has been a too 
frequent practice to invent a particular dynamical hypothesis and then by means 
of the equations of motion to deduce certain results. The agreement of these 
results with real phenomena has been supposed to furnish a certain amount of 
evidence in favour of the hypothesis.

The true method of physical reasoning is to begin with the phenomena and 
to deduce the forces from them by a direct application of the equations of 
motion. The difficulty of doing so has hitherto been that we arrive, at least 
during the first stages of the investigation, at results which are so indefinite 
that we have no terms sufficiently general to express them without introducing 
some notion not strictly deducible from our premisses.

It is therefore very desirable that men of science should invent some method 
of statement by which ideas, precise so far as they go, may be conveyed to the 
mind, and yet sufficiently general to avoid the introduction of unwarrantable 
details.

For instance, such a method of statement is greatly needed in order to 
express exactly what is known about the undulatory theory of light.

♦ [In tiie Author’s treatise On Electricity and Magnetism, Vol. n. Part iv. Chap. V., the reader 
will find the subject treated at length from the point of view advocated in the text.]



[From the Proceedings of the Cambridge Philosophical Society, Vol. n., 187G.]

LIII. On a Problem in the Calculus of Variations in which the solution 
is discontinuous.

The rider on the third question in the Senate-House paper of Wednesday, 
January 15, 1| to 4, was set as an example of discontinuity introduced into 
a problem in a way somewhat different, I think, from any of those discussed 
in Mr Todhunter’s essay*.  In some of Mr Todhunter’s cases the discontinuity 
was involved or its possibility implied in the statement of the problem, as when 
a curve is precluded from transgressing the boundary of a given region, or where 
its curvature must not be negative. In the case of figures of revolution con
sidered as generated by a plane curve revolving about a line in its plane, this 
forms a boundary of the region within which the curve must lie, and therefore 
often forms part of the curve required for the solution.

* Researches in the Calculus of Variations, etc.
[The question referred to was set in 1873, and is as follows If the velocity of a carriage along 

a road is proportional to the cube of the cosine of the inclination of the road to the horizon, determine 
the path of quickest ascent from the bottom to the top of a hemispherical hill, and shew that it consists 
of the spherical curve described by a point of a great circle which rolls on a small circle described about 
the pole with a radius ?, together with an arc of a great circle. How is the discontinuity introduced 

into this problem ?]

In the problem now before us there is no discontinuity in the statement, 
and it is introduced into the problem by the continuous change of the co
efficients of a certain equation as we pass along the curve. At a certain point 
the two roots of this equation which satisfy the minimum condition coalesce 
with each other and with a maximum root. Beyond this point the root which 
formerly indicated a maximum indicates a minimum, and the other two roots 
become impossible.



[From the Proceedings of the Royal Institution of Great Britain, Vol. VII.]

LIV. On Action at a Distance.

I have no new discovery to bring before you this evening. I must ask 
you to go over very old ground, and to turn your attention to a question 
which has been raised again and again ever since men began to think.

The question is that of the transmission of force. We see that two bodies 
at a distance from each other exert a mutual influence on each other’s motion. 
Does this mutual action depend on the existence of some third thing, some 
medium of communication, occupying the space between the bodies, or do the 
bodies act on each other immediately, without the intervention of anything else ?

The mode in which Faraday was accustomed to look at phenomena of this 
kind differs from that adopted by many other modern inquirers, and my special 
aim will be to enable you to place yourselves at Faraday’s point of view, and to 
point out the scientific value of that conception of lines of force which, in his 
hands, became the key to the science of electricity.

When we observe one body acting on another at a distance, before we 
assume that this action is direct and immediate, we generally inquire whether 
there is any material connection between the two bodies; and if we find strings, 
or rods, or mechanism of any kind, capable of accounting for the observed 
action between the bodies, we prefer to explain the action by means of these 
intermediate connections, rather than to admit the notion of direct action at a 
distance.

Thus, when we ring a bell by means of a wire, the successive parts of 
the wire are first tightened and then moved, till at last the bell is rung at 
a distance by a process in which all the intermediate particles of the wire have 
taken part one after the other. We may ring a bell at a distance in other 
ways, as by forcing air into a long tube, at the other end of which is a 
cylinder with a piston which is made to fly out and strike the bell. We 
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may also use a wire; but instead of pulling it, we may connect it at one end 
with a voltaic battery, and at the other with an electro-magnet, and thus ring 
the bell by electricity.

Here are three different ways of ringing a bell. They all agree, however, 
in the circumstance that between the ringer and the bell there is an unbroken 
line of communication, and that at every point of this line some physical 
process goes on by which the action is transmitted from one end to the other. 
Ihe process of transmission is not instantaneous, but gradual; so that there is 
an interval of time after the impulse has been given to one extremity of the 
line of communication, during which the impulse is on its way, but has not 
reached the other end.

It is clear, therefore, that in many cases the action between bodies at a 
distance may be accounted for by a series of actions between each successive 
pair of a series of bodies which occupy the intermediate space; and it is asked, 
by the advocates of mediate action, whether, in those cases in which we cannot 
perceive the intermediate agency, it is not more philosophical to admit the 
existence of a medium which we cannot at present perceive, than to assert that 
a body can act at a place where it is not.

To a person ignorant of the properties of air, the transmission of force by 
means of that invisible medium would appear as unaccountable as any other 
example of action at a distance, and yet in this case we can explain the whole 
process, and determine the rate at which the action is passed on from one 
portion to another of the medium.

Why then should we not admit that the familiar mode of communicating 
motion by pushing and pulling with our hands is the type and exemplification 
of all action between bodies, even in cases in which we can observe nothing 
between the bodies which appears to take part in the action ?

Here for instance is a kind of attraction with which Professor Guthrie
has made us familiar. A disk is set in vibration, and is then brought near a
light suspended body, which immediately begins to move towards the disk, as 
if drawn towards it by an invisible cord. What is this cord ? Sir W. Thomson
has pointed out that in a moving fluid the pressure is least where the velocity
is greatest. The velocity of the vibratory motion of the air is greatest nearest 
the disk. Hence- the pressure of the air on the suspended body is less on the 
side nearest the disk than on the opposite side, the body yields to the greater 
pressure, and moves toward the disk,
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Ihe disk, therefore, does not act where it is not. It sets the air next it 
in motion by pushing it, this motion is communicated to more and more distant 
portions of the air in turn, and thus the pressures on opposite sides of the 
suspended body are rendered unequal, and it moves towards the disk in conse
quence of the excess of pressure. The force is therefore a force of the old 
school a case of vis a tergo—a shove from behind.

Ihe advocates of the doctrine of action at a distance, however, have not 
been put to silence by such arguments. What right, say they, have we to 
assert that a body cannot act where it is not ? Do we not see an instance of 
action at a distance in the case of a magnet, which acts on another magnet not 
only at a distance, but with the most complete indifference to the nature of 
the matter which occupies the intervening space ? If the action depends on 
something occupying the space between the two magnets, it cannot surely be a 
matter of indifference whether this space is filled with air or not, or whether 
wood, glass, or copper, be placed between the magnets.

Besides this, Newton’s law of gravitation, which every astronomical obser
vation only tends to establish more firmly, asserts not only that the heavenly 
bodies act on one another across immense intervals of space, but that two 
portions of matter, the one buried a thousand miles deep in the interior of 
the earth, and the other a hundred thousand miles deep in the body of the 
sun, act on one another with precisely the same force as if the strata beneath 
which each is buried had been non-existent. If any medium takes part in 
transmitting this action, it must surely make some difference whether the space 
between the bodies contains nothing but this medium, or whether it is occupied 
by the dense matter of the earth or of the sun.

But the advocates of direct action at a distance are not content with 
instances of this kind, in which the phenomena, even at first sight, appear to 
favour their doctrine. They push their operations into the enemy’s camp, and 
maintain that even when the action is apparently the pressure of contiguous 
portions of matter, the contiguity is only apparent—that a space always inter
venes between the bodies which act on each other. They assert, in short, that 
so far from action at a distance being impossible, it is the only kind of action 
which ever occurs, and that the favourite old vis a tergo of the schools has no 
existence in nature, and exists only in the imagination of schoolmen.

The best way to prove that when one body pushes another it does not 
touch it, is to measure the distance between them. Here are two glass lenses, 
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one of which is pressed against the other by means of a weight. By means 
of the electric light we may obtain on the screen an image of the place where 
the one lens presses against the other. A series of coloured rings is formed on 
the screen. These rings were first observed and first explained by Newton. 
The particular colour of any ring depends on the distance between the surfaces 
of the pieces of glass. Newton formed a table of the colours corresponding to 
different distances, so that by comparing the colour of any ring with Newton’s 
table, we may ascertain the distance between the surfaces at that ring. The 
colours are arranged in rings because the surfaces are spherical, and therefore 
the interval between the surfaces depends on the distance from the line joining 
the centres of the spheres. The central spot of the rings indicates the place 
where the lenses are nearest together, and each successive ring corresponds to 
an increase of about the 4000th part of a millimetre in the distance of the 
surfaces.

The lenses are now pressed together with a force equal to the weight of 
an ounce; but there is still a measurable interval between them, even at the 
place where they are nearest together. They are not in optical contact. To 
prove this, I apply a greater weight. A new colour appears at the central 
spot, and the diameters of all the rings increase. This shews that the surfaces 
are now nearer than at first, but they are not yet in optical contact, for if 
they were, the central spot would be black. I therefore increase the weights, 
so as to press the lenses into optical contact.

But what we call optical contact is not real contact. Optical contact indi
cates only that the distance between the surfaces is much less than a wave
length of light. To shew that the surfaces are not in real contact, I remove 
the weights. The rings contract, and several of them vanish at the centre. 
Now it is possible to bring two pieces of glass so close together, that they 
will not tend to separate at all, but adhere together so firmly, that when torn 
asunder the glass will break, not at the surface of contact, but at some other 
place. The glasses must then be many degrees nearer than when in mere optical 
contact.

Thus we have shewn that bodies begin to press against each other whilst 
still at a measurable distance, and that even when pressed together with great 
force they are not in absolute contact, but may be brought nearer still, and 
that by many degrees.

Why, then, say the advocates of direct action, should we continue to 
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maintain the doctrine, founded only on the rough experience of a pre-scientific 
age, that matter cannot act where it is not, instead of admitting that all the 
facts from which our ancestors concluded that contact is essential to action were 
in reality cases of action at a distance, the distance being too small to be 
measured by their imperfect means of observation?

If ve aie ever to discover the laws of nature, we must do so by obtaining 
the most accurate acquaintance with the facts of nature, and not by dressing 
up in philosophical language the loose opinions of men who had no know
ledge of the facts which throw most light on these laws. And as for those 
who introduce ffitherial, or other media, to account for these actions, without 
any diiect evidence of the existence of such media, or any clear understanding 
of how the media do their work, and who fill all space three and four times 
over with aetheis of different sorts, why the less these men talk about their 
philosophical scruples about admitting action at a distance the better.

If the progress of science were regulated by Newton’s first law of motion, 
it would be easy to cultivate opinions in advance of the age. We should only 
have to compare the science of to-day with that of fifty years ago; and by 
producing, in the geometrical sense, the line of progress, we should obtain the 
science of fifty years hence.

The progress of science in Newton’s time consisted in getting rid of the 
celestial machinery with which generations of astronomers had encumbered the 
heavens, and thus “ sweeping cobwebs off the sky.”

though the planets had already got rid of their crystal spheres, they were 
still swimming in the vortices of Descartes. Magnets were surrounded by 
effluvia, and electrified bodies by atmospheres, the properties of which resembled 
in no respect those of ordinary effluvia and atmospheres.

When Newton demonstrated that the force which acts on each of the 
heavenly bodies depends on its relative position with respect to the other 
bodies, the new theory met with violent opposition from the advanced philoso
phers of the day, who described the doctrine of gravitation as a return to the 
exploded method of explaining everything by occult causes, attractive virtues, 
and the like.

Newton himself, with that wise moderation which is characteristic of all his 
speculations, answered that he made no pretence of explaining the mechanism 
by which the heavenly bodies act on each other. To determine the mode in 
which their mutual action depends on their relative position was a great step 
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in science, and this step Newton asserted that he had made. To explain the 
process by which this action is effected was a quite distinct step, and this 
step Newton, in his Pnncipia, does not attempt to make.

But so far was Newton from asserting that bodies really do act on one 
another at a distance, independently of anything between them, that in a 
letter to Bentley, which has been quoted by Faraday in this place, he says :—

“ It is inconceivable that inanimate brute matter should, without the media
tion of something else, which is not material, operate upon and affect other 
matter without mutual contact, as it must do if gravitation, in the sense of 
Epicurus, be essential and inherent in it........That gravity should be innate, 
inherent, and essential to matter, so that one body can act upon another at 
a distance, through a vacuum, without the mediation of anything else, by and 
through which their action and force may be conveyed from one to another, is 
to me so great an absurdity, that I believe no man who has in philosophical 
matters a competent faculty of thinking can ever fall into it.”

Accordingly, we find in his Optical Queries, and in his letters to Boyle, 
that Newton had very early made the attempt to account for gravitation by 
means of the pressure of a medium, and that the reason he did not publish 
these investigations “ proceeded from hence only, that he found he was not 
able, from experiment and observation, to give a satisfactory account of this 
medium, and the manner of its operation in producing the chief phenomena of 
nature*. ”

* Maclaurin’s Account of .Newton's Discoveries.

Ihe doctrine of direct action at a distance cannot claim for its author the 
discoverer of universal gravitation. It was first asserted by Roger Cotes, in 
his preface to the Pnncipia, which he edited during Newton’s life. According 
to Cotes, it is by experience that we learn that all bodies gravitate. We do 
not learn in any other way that they are extended, movable, or solid. Gravi
tation, therefore, has as much right to be considered an essential property of 
matter as extension, mobility, or impenetrability.

And when the Newtonian philosophy gained ground in Europe, it was the 
opinion of Cotes rather than that of Newton that became most prevalent, till 
at last Boscovich propounded his theory, that matter is a congeries of mathe
matical points, each endowed with the power of attracting or repelling the 
others according to fixed laws. In his world, matter is unextended, and contact 
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is impossible. He did not forget, however, to endow his mathematical points 
with inertia. In this some of the modern representatives of his school have 
thought that he “had not quite got so far as the strict modern view of 
‘ matter ’ as being but an expression for modes or manifestations of ‘ force ’ *.”

But if we leave out of account for the present the development of the 
ideas of science, and confine oui- attention to the extension of its boundaries, we 
shall see that it was most essential that Newton’s method should be extended 
to every branch of science to which it was applicable—that we should investi
gate the forces with which bodies act on each other in the first place, before 
attempting to explain how that force is transmitted. No men could be better 
fitted to apply themselves exclusively to the first part of the problem, than 
those who considered the second part quite unnecessary.

Accordingly Cavendish, Coulomb, and Poisson, the founders of the exact 
sciences of electricity and magnetism, paid no regard to those old notions of 
“ magnetic effluvia ” and “ electric atmospheres,” which had been put forth in 
the previous century, but turned their undivided attention to the determination 
of the law of force, according to which electrified and magnetized bodies attract 
or repel each other. In this way the true laws of these actions were dis
covered, and this was done by men who never doubted that the action took 
place at a distance, without the intervention of any medium, and who would 
have regarded the discovery of such a medium as complicating rather than as 
explaining the undoubted phenomena of attraction.

We have now arrived at the great discovery by Orsted of the connection 
between electricity and magnetism. Orsted found that an electric current acts 
on a magnetic pole, but that it neither attracts it nor repels it, but causes it 
to move round the current. He expressed this by saying that “the electric 
conflict acts in a revolving manner.”

The most obvious deduction from this new fact was that the action of the 
current on the magnet is not a push-and-pull force, but a rotatory force, and 
accordingly many minds were set a-speculating on vortices and streams of aether 
whirling round the current.

But Ampbre, by a combination of mathematical skill with experimental 
ingenuity, first proved that two electric currents act on one another, and then 
analysed this action into the resultant of a system of push-and-pull forces 
between the elementary parts of these currents.

* Review of Mrs Somerville, Saturday Review, Feb. 13, 1869.
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The formula of Ampbre, however, is of extreme complexity, as compared 
with Newtons law of gravitation, and many attempts have been made to resolve 
it into something of greater apparent simplicity.

I have no wish to lead you into a discussion of any of these attempts to 
improve a mathematical formula. Let us turn to the independent method of 
investigation employed by Faraday in those researches in electricity and mag
netism which have made this Institution one of the most venerable shrines of 
science.

No man ever more conscientiously and systematically laboured to improve 
all his powers of mind than did Faraday from the very beginning of his 
scientific career. But whereas the general course of scientific method then con
sisted in the application of the ideas of mathematics and astronomy to each new 
investigation in turn, Faraday seems to have had no opportunity of acquiring 
a technical knowledge of mathematics, and his knowledge of astronomy was 
mainly derived from books.

Hence, though he had a profound respect for the great discovery of Newton, 
he regarded the attraction of gravitation as a sort of sacred mystery, which, 
as he was not an astronomer, he had no right to gainsay or to doubt, his 
duty being to believe it in the exact form in which it was delivered to him. 
Such a dead faith was not likely to lead him to explain new phenomena by 
means of direct attractions.

Besides this, the treatises of Poisson and Ampbre are of so technical a 
form, that to derive any assistance from them the student must have been 
thoroughly trained in mathematics, and it is very doubtful if such a training 
can be begun with advantage in mature years.

Thus Faraday, with his penetrating intellect, his devotion to science, and 
his opportunities for experiments, was debarred from following the course of 
thought which had led to the achievements of the French philosophers, and 
was obliged to explain the phenomena to himself by means of a symbolism 
which he could understand, instead of adopting what had hitherto been the 
only tongue of the learned.

This new symbolism consisted of those lines of force extending themselves 
in every direction from electrified and magnetic bodies, which Faraday in his 
mind’s eye saw as distinctly as the solid bodies from which they emanated.

The idea of lines of force and their exhibition by means of iron filings 
was nothing new. They had been observed repeatedly, and investigated mathe
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matically as an interesting curiosity of science. But let us hear Faraday 
himself, as he introduces to his reader the method which in his hands became 
so powerful*.

* Exp. lies. 3284.

“It would be a voluntary and unnecessary abandonment of most valuable 
aid if an experimentalist, who chooses to consider magnetic power as represented 
by lines of magnetic force, were to deny himself the use of iron filings. By 
their employment he may make many conditions of the power, even in com
plicated cases, visible to the eye at once, may trace the varying direction of 
the lines of force and determine the relative polarity, may observe in which 
direction the power is increasing or diminishing, and in complex systems may 
determine the neutral points, or places where there is neither polarity nor 
power, even when they occur in the midst of powerful magnets. By their use 
probable results may be seen at once, and many a valuable suggestion gained 
for future leading experiments.”

Experiment on Lines of Force.

In this experiment each filing becomes a little magnet. The poles of oppo
site names belonging to different filings attract each other and stick together, 
and more filings attach themselves to the exposed poles, that is, to the ends 
of the row of filings. In this way the filings, instead of forming a confused 
system of dots over the paper, draw together, filing to filing, till long fibres 
of filings are formed, which indicate by their direction the lines of force in 
every part of the field.

The mathematicians saw in this experiment nothing but a method of exhibit
ing at one view the direction in different places of the resultant of two forces, 
one directed to each pole of the magnet; a somewhat complicated result of 
the simple law of force.

But Faraday, by a series of steps as remarkable for their geometrical 
definiteness as for their speculative ingenuity, imparted to his conception of these 
lines of force a clearness and precision far in advance of that with which the 
mathematicians could then invest their own formulae.

In the first place, Faraday’s lines of force are not to be considered merely 
as individuals, but as forming a system, drawn in space in a definite manner 
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so that the number of the lines which pass through an area, say of one square 
inch, indicates the intensity of the force acting through the area. Thus the 
lines of force become definite in number. The strength of a magnetic pole is 
measured by the number of lines which proceed from it; the electro-tonic state 
of a circuit is measured by the number of lines which pass through it.

In the second place, each individual line has a continuous existence in 
space and time. When a piece of steel becomes a magnet, or when an electric 
current begins to flow, the lines of force do not start into existence each in 
its own place, but as the strength increases new lines are developed within 
the magnet or current, and gradually grow outwards, so that the whole system 
expands from within, like Newton’s rings in our former experiment. Thus every 
line of force preserves its identity during the whole course of its existence, 
though its shape and size may be altered to any extent.

I have no time to describe the methods by which every question relating 
to the forces acting on magnets or on currents, or to the induction of currents 
in conducting circuits, may be solved by the consideration of Faraday’s lines of 
force. In this place they can never be forgotten. By means of this new 
symbolism, faraday defined with mathematical precision the whole theory of 
electro-magnetism, in language free from mathematical technicalities, and appli
cable to the most complicated as well as the simplest cases. But Faraday did 
not stop here. He went on from the conception of geometrical lines of force 
to that of physical lines of force. He observed that the motion which the 
magnetic or electric force tends to produce is invariably such as to shorten 
the lines of force and to allow them to spread out laterally from each other. 
He thus perceived in the medium a state of stress, consisting of a tension, 
like that of a rope, in the direction of the lines of force, combined with a 
pressure in all directions at right angles to them.

This is quite a new conception of action at a distance, reducing it to a 
phenomenon of the same kind as that action at a distance which is exerted 
by means of the tension of ropes and the pressure of rods. When the muscles 
of our bodies are excited by that stimulus which we are able in some unknown 
way to apply to them, the fibres tend to shorten themselves and at the same 
time to expand laterally. A state of stress is produced in the muscle, and the 
limb moves. This explanation of muscular action is by no means complete. 
It gives no account of the cause of the excitement of the state of stress, nor 
does it even investigate those forces of cohesion which enable the muscles to 
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support this stress. Nevertheless, the simple fact, that it substitutes a kind of 
action which extends continuously along a material substance for one of which 
we know only a cause and an effect at a distance from each other, induces 
us to accept it as a real addition to our knowledge of animal mechanics.

For similar reasons we may regard Faraday’s conception of a state of stress 
in the electro-magnetic field as a method of explaining action at a distance by 
means of the continuous transmission of force, even though we do not know 
how the state of stress is produced.

But one of Faraday’s most pregnant discoveries, that of the magnetic 
rotation of polarised light, enables us to proceed a step farther. The phe
nomenon, when analysed into its simplest elements, may be described thus:— 
Of two circularly polarised rays of light, precisely similar in configuration, but 
rotating in opposite directions, that ray is propagated with the greater velocity 
which rotates in the same direction as the electricity of the magnetizing 
current.

It follows from this, as Sir W. Thomson has shewn by strict dynamical 
reasoning, that the medium when under the action of magnetic force must be 
in a state of rotation—that is to say, that small portions of the medium, 
which we may call molecular vortices, are rotating, each on its own axis, the 
direction of this axis being that of the magnetic force.

Here, then, we have an explanation of the tendency of the lines of mag
netic force to spread out laterally and to shorten themselves. It arises from 
the centrifugal force of the molecular vortices.

The mode in which electromotive force acts in starting and stopping the 
vortices is more abstruse, though it is of course consistent with dynamical 
principles.

We have thus found that there are several different kinds of work to be 
done by the electro-magnetic medium if it exists. We have also seen that 
magnetism has an intimate relation to light, and we know that there is a theory 
of light which supposes it to consist of the vibrations of a medium. How is 
this luminiferous medium related to our electro-magnetic medium ?

It fortunately happens that electro-magnetic measurements have been made 
from which we can calculate by dynamical principles the velocity of progagation 
of small magnetic disturbances in the supposed electro-magnetic medium.

This velocity is very great, from 288 to 314 millions of metres per second, 
•according to different experiments. Now the velocity of light, according to

vol. n. 41
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Foucaults experiments, is 298 millions of metres per second. In fact, the different 
determinations of either velocity differ from each other more than the estimated 
velocity of light does from the estimated velocity of propagation of small electro
magnetic disturbance. But if the luminiferous and the electro-magnetic media 
occupy the same place, and transmit disturbances with the same velocity, what 
reason have we to distinguish the one from the other ? By considering them 
as the same, we avoid at least the reproach of filling space twice over with 
different kinds of sether.

Besides this, the only kind of electro-magnetic disturbances which can be 
propagated through a non-conducting medium is a disturbance transverse to the 
direction of propagation, agreeing in this respect with what we know of that 
disturbance which we call light. Hence, for all we know, light also may be an 
electro-magnetic disturbance in a non-conducting medium. If we admit this, the 
electro-magnetic theory of light will agree in every respect with the undulatory 
theory, and the work of Thomas Young and Fresnel will be established on a 
firmer basis than ever, when joined with that of Cavendish and Coulomb by 
the key-stone of the combined sciences of light and electricity—Faraday’s great 
discovery of the electro-magnetic rotation of light.

The vast interplanetary and interstellar regions will no longer be regarded 
as waste places in the universe, which the Creator has not seen fit to fill with 
the symbols of the manifold order of His kingdom. We shall find them to be 
already full of this wonderful medium; so full, that no human power can remove 
it from the smallest portion of space, or produce the slightest flaw in its 
infinite continuity. It extends unbroken from star to star; and when a molecule 
of hydrogen vibrates in the dog-star, the medium receives the impulses of these 
vibrations; and after carrying them in its immense bosom for three years, 
delivers them in due course, regular order, and full tale into the spectroscope 
of Mr Huggins, at Tulse Hill.

But the medium has other functions and operations besides bearing light 
from man to man, and from world to world, and giving evidence of the absolute 
unity of the metric system of the universe. Its minute parts may have rotatory 
as well as vibratory motions, and the axes of rotation form those lines of 
magnetic force which extend in unbroken continuity into regions which no eye 
has seen, and which, by their action on our magnets, are telling us in language 
not yet interpreted, what is going on in the hidden underworld from minute 
to minute and from century to century.
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And. these lines must not be regarded as mere mathematical abstractions. 
Ihey are the directions in which the medium is exerting a tension like that 
of a rope, or rather, like that of our own muscles. The tension of the medium 
in the direction of the earth’s magnetic force is in this country one grain 
weight on eight square feet. In some of Dr Joule’s experiments, the medium 
has exerted a tension of 200 lbs. weight per square inch.

But the medium, in virtue of the very same elasticity by which it is able 
to transmit the undulations of light, is also able to act as a spring. When 
properly wound up, it exerts a tension, different from the magnetic tension, by 
which it draws oppositely electrified bodies together, produces effects through 
the length of telegraph wires, and when of sufficient intensity, leads to the 
rupture and explosion called lightning.

these are some of the already discovered properties of that which has 
often been called vacuum, or nothing at all. They enable us to resolve several 
kinds of action at a distance into actions between contiguous parts of a con
tinuous substance. Whether this resolution is of the nature of explication or 
complication, I must leave to the metaphysicians.
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LV. Elements of Natural Philosophy. By Professors Sir W. Thomson and 
P. G. Tait. Clarendon Press Series. (Macmillan and Co., 1873.)

Natural Philosophy, which is the good old English name for what is 
now called Physical Science, has been long taught in two very different ways. 
One method is to begin by giving the student a thorough training in pure 
mathematics, so that when dynamical relations are afterwards presented to him 
in the form of mathematical equations, he at once appreciates the language, if 
not the ideas, of the new subject. The progress of science, according to this 
method, consists in bringing the different branches of science in succession under 
the power of the calculus. When this has been done for any particular science, 
it becomes in the estimation of the mathematician like an Alpine peak which 
has been scaled, retaining little to reward original explorers, though perhaps 
still of some use, as furnishing occupation to professional guides.

The other method of diffusing physical science is to render the senses 
familiar with physical phenomena, and the ear with the language of science, till 
the student becomes at length able both to perform and to describe experiments 
of his own. The investigator of this type is in no danger of having no more 
worlds to conquer, for he can always go back to his former measurements, and 
carry them forward to another place of decimals.

Each of these types of men of science is of service in the great work of 
subduing the earth to our use, but neither of them can fully accomplish the 
still greater work of strengthening their reason and developing new powers of 
thought. The pure mathematician endeavours to transfer the actual effort of 
thought from the natural phenomena to the symbols of his equations, and the 
pure experimentalist is apt to spend so much of his mental energy on matters 
of detail and calculation, that he has hardly any left for the higher forms 
of thought. Both of them are allowing themselves to acquire an unfruitful
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familiarity with the facts of nature, without taking advantage of the opportunity 
of awakening those powers of thought which each fresh revelation of nature is 
fitted to call forth.

There is, however, a third method of cultivating physical science, in which 
each department in turn is regarded, not merely as a collection of facts to be 
co-ordinated by means of the formulas laid up in store by the pure mathe
maticians, but as itself a new mathesis by which new ideas may be developed.

Every science must have its fundamental ideas—modes of thought by which 
the process of our minds is brought into the most complete harmony with the 
process of nature—and these ideas have not attained their most perfect form 
as long as they are clothed with the imagery, not of the phenomena of the 
science itself, but of the machinery with which mathematicians have been 
accustomed to work problems about pure quantities.

Poinsdt has pointed out several of his dynamical investigations as instances 
of the advantage of keeping before the mind the things themselves rather than 
arbitrary symbols of them; and the mastery which Gauss displayed over every 
subject which he handled is, as he said himself, due to the fact that he never 
allowed himself to make a single step, without forming a distinct idea of the 
result of that step.

The book before us shews that the Professors of Natural Philosophy at 
Glasgow and Edinburgh have adopted this third method of diffusing physical 
science. It appears from their preface that it has been since 1863 a text-book 
in their classes, and that it is designed for use in schools and in the junior 
classes in Universities. The book is therefore primarily intended for students 
whose mathematical training has not been carried beyond the most elementary 
stage.

The matter of the book however bears but small resemblance to that of 
the treatises usually put into the hands of such students. We are very soon 
introduced to the combination of harmonic motions, to irrotational strains, to 
Hamilton’s characteristic function, &c., and in every case the reasoning is con
ducted by means of dynamical ideas, and not by making use of the analysis 
of pure quantity.

The student, if he has the opportunity of continuing his mathematical 
studies, may do so with greater relish when he is able to see in the mathe
matical equations the symbols of ideas w’hich have been already presented to 
his mind in the more vivid colouring of dynamical phenomena. The differential 
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calculus, for example, is at once recognised as the method of reasoning applicable 
to quantities in a state of continuous change. This is Newton’s conception of 
Fluxions, and all attempts to banish the ideas of time and motion from the 
mind must fail, since continuity cannot be conceived by us except by following 
in imagination the course of a point which continues to exist while it moves 
in space.

The arrangement of the book differs from that which has hitherto been 
adopted in text-books. It has been usual to begin with those parts of the 
subject in which the idea of change, though implicitly involved in the very 
conception of force, is not explicitly developed so as to bring into view the 
different configurations successively assumed by the system. For this reason, 
the first place has generally been assigned to the doctrine of the equilibrium 
of forces and the equivalence of systems of forces. The science of pure statics, 
as thus set forth, is conversant with the relations of forces and of systems of 
forces to each other, and takes no account of the nature of the material systems 
to which they may be applied, or whether these systems are at rest or in 
motion. The concrete illustrations usually given relate to systems of forces in 
equilibrium, acting on bodies at rest, but the equilibrium of the forces is 
established by reasoning which has nothing to do with the nature of the body, 
or with its being at rest.

Ihe practical reason for beginning with statics seems to be that the student 
is not supposed capable of following the changes of configuration which take 
place in moving systems. He is expected, however, to be able to follow trains 
of reasoning about forces, the idea of which can never be acquired apart from 
that of motion, and which can only be thought of apart from motion by a 
process of abstraction.

Professors 1 homson and Tait, on the contrary, begin with kinematics, the 
science of mere motion considered apart from the nature of the moving body 
and the causes which produce its motion. This science differs from geometry 
only by the explicit introduction of the idea of time as a measurable quantity. 
(Ihe idea of time as a mere sequence of ideas is as necessary in geometry as 
in every other department of thought.) Hence kinematics, as involving the 
smallest number of fundamental ideas, has a metaphysical precedence over statics, 
which involves the idea of force, which in its turn implies the idea of matter 
as well as that of motion.

In kinematics, the conception of displacement comes before that of velocity, 
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which is the rate of displacement. And here we cannot but regret that the 
authors, one of whom at least is an ardent disciple of Hamilton, have not at 
once pointed out that every displacement is a vector, and taken the opportunity 
of explaining the addition of vectors as a process, which, applied primarily to 
displacements, is equally applicable to velocities, or the rates of change of 
displacement, and to accelerations, or the rates of change of velocities. For it 
is only in this way that the method of Newton, to which we are glad to see 
that our authors have reverted, can be fully understood, and the “parallelogram 
of forces” deduced from the “parallelogram of velocities.” Another conception 
of Hamilton s, however, that of the hodograph, is early introduced and employed 
with great effect. 1 he fundamental idea of the hodograph is the same as that 
of vectors in general. Ihe velocity of a body, being a vector, is defined by 
its magnitude and direction, so that velocities may be represented by straight 
lines, and these straight lines may be moved parallel to themselves into whatever 
position is most suitable for exhibiting their geometrical relations, as for instance 
in the hodograph they are all drawn from one point. The same idea is made 
use of in the theorems of the “triangle” and the “polygon” of forces, and 
in the more general method of “diagrams of stress,” in which the lines which 
represent the stresses are drawn, not in the positions in which they actually 
exist, but in those positions which most fully exhibit their geometrical relations. 
We are sorry that a certain amount of slight is thrown on these methods in 
§ 411, where a different proposition is called the true triangle of forces.

It is when a writer proceeds to set forth the first principle of dynamics 
that his true character as a sound thinker or otherwise becomes conspicuous. 
And here we are glad to see that the authors follow Newton, whose Leges 
Moths, more perhaps than any other part of his great work, exhibit the 
unimproveable completeness of that mind without a flaw.

We would particularly recommend to writers on philosophy, first to deduce 
from the best philosophical data at their command a definition of equal intervals 
of time, and then to turn to § 212, where such a definition is given as a 
logical conversion of Newton’s First Law.

But it is in the exposition of the Third Law, which affirms that the actions 
between bodies are mutual, that our authors have brought to light a doctrine, 
which, though clearly stated by Newton, remained unknown to generations of 
students and commentators, and even when acknowledged by the whole scientific 
world was not known to be contained in a paragraph of the Principia till it 
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was pointed out by our authors in an article on “ Energy ” in Good Words, 
October 1862.

Our limits forbid us from following the authors as they carry the student 
through the theories of varying action, kinetic force, electric images, and elastic 
solids. We can only express our sympathy with the efforts of men, thoroughly 
conversant with all that mathematicians have achieved, to divest scientific truths 
of that symbolic language in which the mathematicians have left them, and to 
clothe them in words, developed by legitimate methods from our mother tongue, 
but rendered precise by clear definitions, and familiar by well-rounded statements.

Mathematicians may flatter themselves that they possess new ideas which 
mere human language is as yet unable to express. Let them make the effort 
to express these ideas in appropriate words without the aid of symbols, and 
if they succeed they will not only lay us laymen under a lasting obligation, 
but, we venture to say, they will find themselves very much enlightened during 
the process, and will even be doubtful whether the ideas as expressed in 
symbols had ever quite found their way out of the equations into their minds.



[From the Proceedings of the London Mathematical Society, Vol. iv.]

LVI. On the Theory of a System of Electrified Conductors, and other Physical 
Theories involving Homogeneous Quadratic Functions.

[Read April 10th, 1873.]

The theory of homogeneous functions of the second degree is useful in 
several parts of natural philosophy.

The general form of such a function may be written 
.................................... (1), 

r=n 8~n
or more concisely Vx = i S S ...................................... (1*Y,

r=l

in which each term consists of a product of two out of n variables x„ ...xn, 
which may or may not be different, and of a coefficient A„ belonging to that 
pair of variables.

Differentiating V with respect to each of the n variables in succession, we 
get n new quantities ... of the form

dx~^ .......................................... (2)-

Multiplying each £ by its corresponding x> and taking half the sum of the 
products, we obtain a second expression for V

.............................................(3).

Since each of the n quantities £ is a linear function of the n variables x 
we may, by solving the n equations of the form (2), obtain expressions for 
each x in terms of the £’s

..................................W;
42VOL. II.
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and by substituting these values of the a:'s in (3), we obtain a third expression 
for V,

.................. <6>-
The first and last of these expressions for V are distinguished by the 

suffixes x and £ in order to shew that the first is expressed in terms of the 
variables x and the last in terms of the variables £ The coefficients A and a 
may be functions of any number, m, of variables. Let yt be one of these 
variables.

Since I , and 1 f are three different expressions for the same quantity,

K+F.-ZF-SM,)........................................(6).
r=l

If we now suppose the three sets of variables x, £ and y to vary in any 
consistent manner, and remember that K, is a function of the x’s and y’s, V( of 
the f s and y’s, and V of the ofs and f s, we find

Ihe thiee sets of variations 8x, 8£ and 8y are not independent of each 
other, for if the variations 8y and either of the other sets be given, the other 
set may be determined. Hence we cannot immediately deduce any definite 
results from this equation. But we know, from equation (2), that the coefficients 
of the variations 8x vanish of themselves, and the remaining variations Sf and 8?/ 
are all independent of each other, so that we may equate the coefficient of each 
of them to zero. We thus obtain two sets of equations,

d7f
(8),

and dy, + dy, ............................................... (9).= 0

In this purely algebraical theory of quadratic functions, of the two sets of 
variables x and £, either may be taken as the primary set. In the physical 
applications of the theory, however, the variables form two classes which are not 
interchangeable.

thus, in kinetics, the variables are the components of velocity and those of 
momentum; in the theory of elasticity, they are stresses and strains; in electro
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magnetism, they are electric currents and the “electrotonic state” of circuits; 
and in electrostatics, they are the potentials and the charges of conductors.

Now, if a change takes place in the configuration of the system, by which 
the energy (whether potential or kinetic) of the system is diminished, while the 
momenta, the strains, the electrotonic states, or the charges remain constant, the 
displacement will be aided by a force of such a magnitude that the work done 
by the force during the displacement is equal to the diminution of the energy 
of the system.

For the momenta, the strains, the electrotonic states, and the charges do not 
require for their maintenance the application of energy from without the system.

The same change of configuration, if effected under the condition that the 
velocities, stresses, potentials, or electric currents remain constant, would, by 
equation (9), increase the energy of the system by exactly the same amount as 
it was diminished in the former case. The work done by the system during 
the displacement will be the same as before, so that energy must in this case be 
supplied from without to an amount double of this work, in order to satisfy 
these new conditions.

For it is only by external compulsion that the velocities of the system can 
be maintained constant when the configuration changes. Work must be done on 
an elastic system to keep the stress constant while the strain varies. The 
currents in a conducting circuit tend to vary when the electrotonic state of the 
circuit varies, and can only be kept constant by battery power. The same 
agency must be employed to maintain the potential of a conductor constant 
during the displacement of the system of conductors.

Hence, when momenta, strains, electrotonic states, or charges are maintained 
constant, the internal forces of the system tend to produce displacements which 
would diminish the energy of the system.

If, on the other hand, the velocities, stresses, electric currents, or potentials 
are maintained constant, the internal forces tend to produce displacements 
which would increase the energy of the system.

this distinction between the two sets of physical quantities is of great 
importance in the theory of classification of such quantities. The characteristic 
of the first set is inherent persistence. Any persistence which we may observe 
in the second set is only apparent, and arises from the second set being 
functions of the first set when the configuration of the system either does 
not vary or is not such as to cause a variation of the coefficients A and a.
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[From the Proceedings of the London Mathematical Society, Vol. IV.]

LVIL On the Focal Lines of a Refracted Pencil.

[Read April 10th, 1873.]

Hamilton lias shewn, by means of his Characteristic Function, that in 
whatever manner a pencil may be refracted, the rays always pass through two 
focal lines, the planes through which and the axis of the pencil are at right 
angles to each other. The same method leads to the following geometrical 
construction for finding the focal lines of any thin pencil after refraction through 
a curved surface, the focal lines of the incident pencil and the nature of the 
curvature of the surface being given.

1. The characteristic 
the axis of z, and whose 
yz at distances a and b 
origin

function of a thin pencil whose axis coincides with 
rays pass through focal lines in the planes of xz and 
from the origin respectively, is for points near the

V=K+p \ 2a 2b) (1).

If we turn this system of rays round the axis of z, through an angle </. 
reckoned from x towards y, the expression for V becomes

where

V=K+li
2 A 2B 20)

2 = ^cos’^ + lsin’</,

11. 12^ = - sin’cos’^>

(2).

(3)-

1
C - — sin 2<b a b r
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If we now turn the system round the axis of yt through an angle 0 
from z towards x, we find

TZ „ f n n sc2 cos2 0 if xycos0

_ (2ac cos 0 4- z sin 0) z sin 0 yz sin 01 
“2Z ’ .......

2. Now consider two portions of a pencil, close to the origin but in 
different media, whose indices of refraction are p.,, respectively, and let the 
coefficients belonging to these portions be distinguished by corresponding suffixes 
(i and ,)•

Let the media be separated by the surface whose equation is

Then, since the characteristic function is continuous at this surface, we 
have the condition V,— F, = 0 when z has the value given in (5).

Substituting this value of z in the expressions for F, and K, and neglecting 
terms of the third degree in x and y, we obtain

2 A 2B + 2C) cos 0, - p., cos 02) + X sin 0, — p2 sin 0.)

Zx2 008=0, if xycoseS Zx2cos20, if xyco&0\

That the term in x may vanish, we must have 

p., sin 0, = sin 0a.(7),
the ordinary law of refraction.

Equating to zero the coefficients of a?, y*, and xy, we find 

cos2 0, cos2 0, 1 z , n x a x
Ji, 0, ~ ^6, = Z (cot ft - cot ft)............................ (»).

” B^T0, = 2 («* ft ~ ft)............................ (9)'

~ (cot ft -cot ft).......................... (10).
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Find

for A,

for B, 

for C,

3. These relations of the quantities A, B, C may be found by the fol
lowing construction:—

Let IO be the incident and OR the refracted ray, and let ON be the 
normal to the surface; NOI=0U NOR = 0V

the points A, B, C, whose co-ordinates are
j cos’ 0t — cos’ 0, . cos’ 0t cot 0x — cos’ 0t cot .

X-A COtA-COtS, • ------- cotg,-cot»,.........................(n);

® = 0, z = B.......................................................  (12);
x = C C0S ~ cos — O cos c°t — cos c0^ 

cot Oy — cot 01 ’ " cot 01 — cot 02

The positions of these points depend only on the form of the surface and 
on the directions of the axes of the incident and refracted pencil. The point 
B is absolutely fixed, being the centre of curvature of a normal section of the 
surface perpendicular to the plane of refraction.

Let OA„ OB„ OCi be the values of Au B„ Ct for the incident ray. To 
find the corresponding quantities for the refracted ray, draw the straight lines 
AA„ BBlt CCi intersecting the refracted ray in A2, B„ Cr OAU OBV and OC.t 
are the required values of A,, Bv Cv

When any of these quantities becomes infinite, the line must be drawn 
in a given direction. For A„ Bu or Cx infinite, it must be parallel to the 
incident ray. For A,, B,, or C, infinite, it must be parallel to the refracted 
ray. For B infinite, it must be parallel to the normal; for A infinite, it must 
make with the normal an angle whose tangent is

cos’ Qi — cos’^, , ,
cos’ 0i cot 0i - cos^, cot 0,....................................  ’
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and for C infinite the tangent of the angle must be

cos 0, — cos 02____
cos ^cot 0, — cos ^.cot 0.. (15).

11 the plane of refraction cuts the surface along a line of curvature, 
C = oo, and if one of the focal lines of the incident pencil is in the plane of 
refraction, C,= x. The points A„ B2 then coincide with the focal lines of the 
incident pencil, and A3, Bs with those of the refracted pencil.

1 hat Aj may coincide with B„ and A„ with Bt, the line joining both pairs 
of points must be on the line AB. There is therefore one, and only one, point 
on the axis of the incident pencil from which a pencil may diverge so that, 
after refraction, it still diverges from or converges to a single point.

4. When the quantity C has a finite value, the plane of refraction is not 
a plane of symmetry, and we have to deduce the quantities a, b, $ from 
A, B, C. The following construction enables us to pass from either of these 
systems to the other:—

Let OA, OB, OC be the values of A, B, C.

Draw A A' perpendicular and equal to AO. Join BA', and produce to D, 
a point on the perpendicular to OA through O. Cut off OD' equal to OD, 
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but in the opposite direction. Join D'A, and produce to P, where D'A 
meets BD.

Join CD, and draw OQ perpendicular to CD from 0.
Make Od, Od' each equal to OQ. Draw dP, d'P cutting OA in 6 and a. 

Bisect the angle DOQ by OB.
Then Oa=a, Ob = b, and DOE = fa the angle which the first focal line 

makes with the plane of xz.

5. If a, b, and </> are given, the construction is easily reversed, thus:
Let Oa — a, Ob = b, and DOE = ^>.
Draw aa perpendicular and equal to aO. Draw ba' cutting OD, the per

pendicular to aO from 0 in d. Cut oft’ Od' equal and opposite to Od. Draw 
d'a cutting bd in P.

Draw OQ-Od so that the angle DOE=OEQ.
Draw CQD perpendicular to OQ, cutting Oa in C and Od in D.
Make OD equal and opposite to OD. Draw DP, D'P cutting Oa in B 

and A.
Then OA = A, OB = B, and OC=C.

G. If therefore the given data be the radii of curvature of the refracting 
surface and the angle, <£, which the plane of incidence makes with the prin
cipal section whose curvature is a, we may determine A, B, C for the refracting 
surface.

Then from a, and bu the distances of the focal lines of the incident pencil, 
and the angle which a, makes with the plane of incidence, we must find 
Av B„ C, foi' the incident pencil.

From these data, by § 4, we must determine A„ B„ Ct for the refracted 
pencil, and from these a„ b„ and far

I have not been able to obtain any simpler construction for the general 
case of a refracted pencil.

7. For a pencil after passing through any series of surfaces the construction 
is necessarily more complex, as ten constants are involved in the general term 
of the second degree of the characteristic function, which is of the form

F = ^x? + ^by* + c^y, + + }b.^ + c.^ +px,x, + qx^ + ry^ + sy,yt;
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and if

and
and we put

K = M + ^y- + ,
V, = ^A^ + iBjj,1 + C^, 
D = (Al + al) + +

(A2 - a,) D +p* (Bt + &,) + r’ (A2 + a,) - 2pr (Q + c,) = 0, 

(A-b2) D + q' {B, 4- b2) + s’ {A, + a,) - 2qs (C2 + c.) = 0, 

(C2 - ct) D +pq (Bt + + rs (A, + a,) - (ps + qr) (Ct + = 0.

These equations enable us to determine A„ B2, C2 when A„ Bu Ct are 
given.

Here we must observe that the quantities A, B, C, &c., do not represent 
lines, as in the first part of this paper, but the reciprocals of lines.

vol. it. 43



[From Nature, Vol. vni.]

LVIH. An Essay on the Mathematical Principles of Physics, &c. By the Rev.
James Challis, M.A., F.R.S., F.R.A.S., Plumian Professor of Astronomy and 
Experimental Philosophy in the University of Cambridge, and Fellow of 
Trinity College. (Cambridge : Deighton, Bell, and Co., 1873.)

This Essay is a sort of abstract or general account of the mathematical 
and physical researches on which the author has been so long engaged, portions 
of which have appeared from time to time in the Philosophical Magazine, and 
also in his larger work on the “ Principles of Mathematics and Physics.” It 
is always desirable that mathematical results should be expressed in intelligible 
language, as well as in the symbolic form in which they were at first obtained, 
and we have to thank Professor Challis for this Essay, which though, or rather 
because, it hardly contains a single equation, sets forth his system more clearly 
than has been done in some of his previous mathematical papers.

The aim of this Essay, and of the author’s long-continued labours, is to 
advance the theoretical study of Physics. He regards the material universe as 
“a vast and wonderful mechanism, of which not the least wonderful quality is, 
its being so constructed that we can understand it.” The Book of Nature, in 
fact, contains elementary chapters, and, to those who know where to look for 
them, the mastery of one chapter is a preparation for the study of the next. 
The discovery of the calculation necessary to determine the acceleration of a 
particle whose position is given in terms of the time led to the Newtonian 
epoch of Natural Philosophy. The study from the cultivation of which our 
author looks for the “inauguration of a new scientific epoch,” is that of the 
motion of fluids, commonly called Hydrodynamics. The scientific method which 
he recommends is that described by Newton as the “foundation of all philo
sophy,” namely, that the properties which we attribute to the least parts of
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matter must be consistent with those of which experiments on sensible bodies 
have made us cognizant.

The world, according to Professor Challis, is made up of atoms and aether. 
The atoms are spheres, unalterable in magnitude, and endowed with inertia, but 
with no other property whatever. The aether is a perfect fluid, endowed with 
inertia, and exerting a pressure proportional to its density. It is truly con
tinuous (and therefore does not consist of atoms), and it fills up all the 
interstices of the atoms.

Here, then, we have set before us with perfect clearness the two con
stituents of the universe: the atoms, which we can picture in our minds as 
so many marbles; and the aether, which behaves exactly as air would do if 
Boyle’s law were strictly accurate, if its temperature were invariable, if it were 
destitute of viscosity, and if gravity did not act on it.

We have no difficulty, therefore, in forming an adequate conception of the 
properties of the elements from which we have to construct a world. The 
hypothesis is at least an honest one. It attributes to the elements of things 
no properties except those which we can clearly define. It stands, therefore, 
on a different scientific level from those waxen hypotheses in which the atoms 
are endowed with a new system of attractive or repulsive forces whenever a 
new phenomenon has to be explained.

But the task still before us is a herculean one. It is no less than to 
explain all actions between bodies or parts of bodies, whether in apparent 
contact or at stellar distances, by the motions of this all-embracing aether, and 
the pressure thence resulting.

One kind of motion of the aether is evidently a wave-motion, like that of 
sound-waves in air. How will such waves affect an atom ? Will they propel 
it forward like the driftwood which is flung upon the shore, or will they draw 
it back like the shingle which is carried out by the returning wave? Or will 
they make it oscillate about a fixed position without any advance or recession 
on the whole ?

We have no intention of going through the calculations necessary to solve 
this problem. They are not contained in this Essay, and Professor Challis 
admits that he has been unable to determine the absolute amount of the 
constant term which indicates the permanent effect of the waves on an atom. 
This is unfortunate, as it gives us no immediate prospect of making those 
numerical comparisons with observed facts which are necessary for the verification 
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of the theory. Let us, however, suppose this purely mathematical difficulty 
surmounted, and let us admit with Professor Challis that if the wave-length 
of the undulations is very small compared with the diameter of the atom, the 
atom will be urged in the direction of wave-propagation, or in other words 
repelled from the origin of the waves. If on the other hand the wave-length 
is very great compared with the diameter of the atom, the atom will be urged 
in the direction opposite to that in which the waves travel, that is, it will 
be attracted towards the source of the waves.

ihe amount of this attraction or repulsion will depend on the mean of 
the square of the velocity of the periodic motion of the particles of the aether, 
and since the amplitude of a diverging wave is inversely as the distance from
the centre of divergence, the force will be inversely as the square of this
distance, according to Newton’s law.

We must remember, however, that the problem is only imperfectly solved,
as we do not know the absolute value of this force, and we have not yet
arrived at an explanation of the fact that the attraction of gravitation is in 
exact proportion to the mass of the attracted body, whatever be its chemical 
nature. (See p. 36.)

Admitting these results, and supposing the great ocean of tether to be 
traversed by waves, these waves impinge on the atoms, and are reflected in 
the form of diverging waves. These, in their turn, beat other atoms, and cause 
attraction or repulsion, according as their wave-length is great or small. Thus 
the waves of shortest period perform the office of repelling atom from atom, 
and rendering their collision for ever impossible. Other waves, somewhat longer, 
bind the atoms together in molecular groups. Others contribute to the elasticity 
of bodies of sensible size, while the long waves are the cause of universal 
gravitation, holding the planets in their courses, and preserving the most ancient 
heavens in all their freshness and strength. Then besides the waves of Eether, 
our author contemplates its streams, spiral and otherwise, by which he accounts 
for electric, magnetic, and galvanic phenomena.

Without pretending to have verified all or any of the calculations on which 
this theory is based, or to have compared the electric, magnetic, and galvanic phe
nomena, as described in the Essay, with those actually observed, we may venture 
to make a few remarks upon the theory of action at a distance here put forth.

The explanation of any action between distant bodies by means of a clearly 
conceivable process going on in the intervening medium is an achievement of 
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the highest scientific value. Of all such actions, that of gravitation is the most 
universal and the most mysterious. Whatever theory of the constitution of 
bodies holds out a prospect of the ultimate explanation of the process by which 
gravitation is effected, men of science will be found ready to devote the whole 
remainder of their lives to the development of that theory.

The only theory hitherto put forth as a dynamical theory of gravitation 
is that of Lesage, who adopts the Lucretian theory of atoms and void.

Gravitation on this theory is accounted for by the impact of atoms of 
incalculable minuteness, which are flying through the heavens with inconceivable 
velocity and in every possible direction. These “ ultramundane corpuscules ” 
falling on a solitary heavenly body would strike it on every side with equal 
impetus, and would have no effect upon it in the way of resultant force. If, 
however, another heavenly body were in existence, each would screen the other 
from a portion of the corpuscular bombardment, and the two bodies would be 
attracted to each other. The merits and the defects of this theory have been 
recently pointed out by Sir W. Thomson. If the corpuscules are perfectly elastic 
one body cannot protect the other from the storm, for it will reflect exactly 
as many corpuscules as it intercepts. If they are inelastic, as Lesage supposes, 
what becomes of them after collision ? Why are not bodies always growing by 
the perpetual accumulation of them ? How do they get swept away ? and what 
becomes of their energy ? Why do they not volatilise the earth in a few 
minutes ? I shall not enter on Sir W. Thomson’s improvement of this theory, 
as it involves a different kind of hydrodynamics from that cultivated in the 
Essay, but in whatever way we regard Lesage’s theory, the cause of gravitation 
in the universe can be represented only as depending on an ever fresh supply 
of something from without.

Though Professor Challis has not, as far as we can see, stated in what 
manner his sethereal waves are originally produced, it would seem that on his 
theory also the primary waves, by whose action the waves diverging from the 
atoms are generated, must themselves be propagated from somewhere outside the 
world of stars.

On either theory, therefore, the universe is not even temporarily automatic, 
but must be fed from moment to moment by an agency external to itself.

If the corpuscules of the one theory, or the oethereal waves of the other, 
were from any cause to be supplied at a different rate, the value of every 
force in the universe would suffer change.
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On both theories, too, the preservation of the universe is effected only by the 
unceasing expenditure of enormous quantities of work, so that the conservation 
of energy in physical operations, which has been the subject of so many 
measurements, and the study of which has led to so many discoveries, is 
apparent only, and is merely a kind of “moveable equilibrium” between supply 
and destruction.

It may seem a sort of anticlimax to descend from these highest heavens 
of invention down to the “equations of condition” of fluid motion. But it 
would not be right to pass by the fact that the fluids treated of in this Essay 
are not in all respects similar to those met with elsewhere. In all their motions 
they obey a law, which our author was the first to lay down, in addition— 
or perhaps in some cases in opposition—to those prescribed for them by Lagrange, 
Poisson, &c.

It is true that a perfect fluid, originally at rest, and afterwards acted on 
only by such forces as occur in nature, will freely obey this law, and that not 
only in the form laid down by Professor Challis, in which its rigour is partially 
relaxed by the introduction of an arbitrary factor, but in its original severe 
simplicity, as the condition of the existence of a velocity-potential.

But, on the one hand, problems in which the motion is assumed to violate 
this condition have been solved by Helmholtz and Sir W. Thomson, who tell 
us what the fluid will then do; and, on the other hand, Professor Challis’s 
fluid is able, in virtue of the new equation, to transmit plane waves consisting 
of transverse displacements. As this is what takes place in the luminiferous 
aether, other physicists refuse to regard that aether as a fluid, because, according 
to their definition, the action between any contiguous portions of a fluid is 
entirely normal to the surface which separates them.

It is not necessary, however, for us to say any more on this subject, as 
the Essay before us does not contain, in an explicit form, the equation referred 
to, but is devoted rather to the exposition of those wider theories of the 
constitution of matter and the phenomena of nature, some of which we have 
endeavoured to describe.



[From Nature, Vol. vin.]

LIX. On Loschmidt's Experiments on Diffusion in relation to the Kinetic 
Theory of Gases.

The kinetic theory asserts that a gas consists of separate molecules, each 
moving with a velocity amounting, in the case of hydrogen, to 1,800 metres 
per second. This velocity, however, by no means determines the rate at which 
a group of molecules set at liberty in one part of a vessel full of the gas 
will make their way into other parts. In spite of the great velocity of the 
molecules, the direction of their course is so often altered and reversed by 
collision with other molecules, that the process of diffusion is comparatively a 
slow one.

The first experiments from which a rough estimate of the rate of diffusion 
of one gas through another can be deduced are those of Graham*. Professor 
Loschmidt, of Vienna, has recentlyf made a series of most valuable and accurate 
experiments on the interdiffusion of gases in a vertical tube, from which he 
has deduced the coefficient of diffusion of ten pairs of gases. These results I 
consider to be the most valuable hitherto obtained as data for the construction 
of a molecular theory of gases.

There are two other kinds of diffusion capable of experimental investigation, 
and from which the same data may be derived, but in both cases the experi
mental methods are exposed to much greater risk of error than in the case 
of diffusion. Ihe first of these is the diffusion of momentum, or the lateral 
communication of sensible motion from one stratum of a gas to another. This 
is the explanation, on the kinetic theory, of the viscosity or internal friction 
of gases. The investigation of the viscosity of gases requires experiments of 
great delicacy, and involving very considerable corrections before the true

* Brande's Journal for 1829, pt. ii. p. 74, “On the Mobility of Gases,” Phil. Trane. 1863.
t Sitzb. d. k. Akad. d. Wissench. 10 Miirz. 1870.
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coefficient of viscosity is obtained. Thus the numbers obtained by myself in 1865 
are nearly double of those calculated by Prof. Stokes from the experiments 
of Baily on pendulums, but not much more than half those deduced by 0. E. 
Meyer from his own experiments. The other kind of diffusion is that of the 
energy of agitation of the molecules. This is called the conduction of heat. 
The experimental investigation of this subject is confessedly so difficult, that 
it is only recently that Prof. Stefan of Vienna*,  by means of a very ingenious 
method, has obtained the first experimental determination of the conductivity 
of air. This result is, as he says, in striking agreement with the kinetic 
theory of gases.

* Sitzb. d. It. Akad. Feb. 22, 1872.

The experiments on the interdiffusion of gases, as conducted by Prof. 
Loschmidt and his pupils, appear to be far more independent of disturbing 
causes than any experiments on viscosity or conductivity. The interdiffusing 
gases are left to themselves in a vertical cylindrical vessel, the heavier gas 
being underneath. No disturbing effect due to currents seems to exist, and the 
results of different experiments with the same pair of gases appear to be very 
consistent with each other.

They prove conclusively that the coefficient of diffusion varies inversely as 
the pressure, a result in accordance with the kinetic theory, whatever hypo
thesis we adopt as to the nature of the mutual action of the molecules during 
their encounters.

They also shew that the coefficient of diffusion increases as the temperature 
rises, but the range of temperature in the experiments appears to be too small 
to enable us to decide whether it varies as T*,  as it should be according to the 
theory of a force inversely as the fifth power of the distance adopted in my 
paper in the Phil. Trans. 1866, or as Ti as it should do according to the 
theory of elastic spherical molecules, which was the hypothesis originally developed 
by Clausius, by myself in the Phil. Mag. 1860, and by 0. E. Meyer.

In comparing the coefficients of diffusion of different pairs of gases, Prof. 
Loschmidt has made use of a formula according to which the coefficient of 
diffusion should vary inversely as the geometric mean of the atomic weights 
of the two gases. I am unable to see any ground for this hypothesis in the 
kinetic theory, which in fact leads to a different result, involving the diameters 
of the molecules, as well as their masses. The numerical results obtained by 
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Prof. Loschmidt do not agree with his formula in a manner corresponding to 
the accuracy of his experiments. They agree in a very remarkable manner with 
the formula derived from the kinetic theory.

I have recently been revising the theory of gases founded on that of the 
collisions of elastic spheres, using, however, the methods of my paper on the 
dynamical theory of gases {Phil. Trans. 1866) rather than those of my first 
paper in the Phil. Mag., 1860, which are more difficult of application, and 
which led me into great confusion, especially in treating of the diffusion of 
gases.

The coefficient of interdiffusion of two gases, according to this theory, is

2 76tt N \1 .................................

where wx and w, are the molecular weights of the two gases, that of hydrogen 
being unity.

is the distance between the centres of the molecules at collision in centi
metres.

V is the velocity of mean square ’ of a molecule of hydrogen at 0’ C.
/ 3y 7
“0 = 185,900 centimetres per second.

N is the number of molecules in a cubic centimetre at 0°C. and 76 cm. B. 
(the same for all gases).

Da is the coefficient of interdiffusion of the two gases in
° second

measure.

We may simplify this expression by writing

a " 27677 W’ a”~T)~ J— + — ................................ (2).

Heie a is a quantity the same for all gases, but involving the unknown 
number N.

o- is a quantity which may be deduced from the corresponding experiment 
of M. Loschmidt. We have thus

VOL. II.
sn = acrl3 .................................................(3),

44
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or the distance between the centres of the molecules at collision is proportional 
to the quantity o-, which may be deduced from experiment.

If dx and dt are the diameters of the two molecules,

- i (di + dt).Hence if d=a8..........a^^+s,)....................................................... (4).
Now M. Loschmidt has determined D for the six pairs of gases which 

can be formed from Hydrogen, Oxygen, Carbonic Oxide, and Carbonic Acid. The 
six values of ar deduced from these experiments ought not to be independent, 
since they may be deduced from the four values of 8 belonging to the two 
gases. Accordingly we find, by assuming

Table I.

3(H) = 1-739 
3 (O) = 2-283 
8 (CO) = 2-461 
8 (CO.) = 2-775

Calculated 
i(«i+as)

Observed

A A A A . 1 
V -O V U>! w.

For H and 0 2-011 1-992
For H and CO 2-100 2-116
For H and CO 2-257 2-260
For 0 and CO 3-372 2'375
For 0 and CO, 2-529 2545
For CO and CO 2-618 2-599

Note.—Ihese numbers must be multiplied by 0‘G to reduce them to (centi
metre-second) measure from the (metre-hour) measure employed by Loschmidt.

The agreement of these numbers furnishes, I think, evidence of considerable 
strength in favour of this form of the kinetic theory, and if it should be 
confirmed by the comparison of results obtained from a greater number of pairs 
of gases it will be greatly strengthened.

Evidence, however, of a higher order may be furnished by a comparison 
between the results of experiments of entirely different kinds, as for instance, 
the coefficients of diffusion and those of viscosity. If p. denotes the coefficient
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of viscosity, and p the density of a gas at O'C. and 760 mm. B„ the theory 
glves 2 /21

P a * w d*................................................ .

so that the following relation exists between the viscosities 
their coefficient of interdiffusion—■

n — 2 X+M
pJ

of two gases and

(6).
Calculating from the data of Table I., the viscosities of the and rnm 
paring them with those found by 0. E. Meyer and by myself, and reducing all 
to centimetre, gramme, second measure, and 0°C._

Table II.

Coefficient of Viscosity.

Gas. Loschmidt. 0. E. Meyer. Maxwell.

H 
0

CO 
CO,

0-000116 
0 000270 
0000217 
0-000214

0000134 
0-000306 
0-000266
0 000231

0-000097

0 000161

The numbers given by Meyer are greater than those derived from Loschmidt. 
Mine, on the other hand, are much smaller. I think, however, that of the 
three, Loschmidt’s are to be preferred as an estimate of the absolute value 
of the quantities, while those of Meyer, derived from Graham’s experiments, 
oiay possibly give the ratios of the viscosities of different gases more correctly. 
Loschmidt has also given the coefficients of interdiffusion of four other pairs 
of gases, but as each of these contains a gas not contained in any other pair, 
I have made no use of them.

In the form of the theory as developed by Clausius, an important part 
is played by a quantity called the mean length of the uninterrupted path of a44—2
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molecule, or, 
culations, is

Its value in

more concisely, the mean path. Its value, according to my cal-

Z= 1 - = 1*
•J^N &

tenth-metres (1 metre xlO-10) is

Table III.
For Hydrogen . • 965 Tenth-metres at 0°C. and 760 B.
For Oxygen 560
For Carbonic Oxide . 482
For Carbonic Acid . 430

(The wave-length of the hydrogen ray F is 4,8 G1 tenth-metres, or about ten 
times the mean path of a molecule of carbonic oxide.)

We may now proceed for a few steps on more hazardous ground, and 
inquire into the actual size of the molecules. Prof. Loschmidt himself in his 
paper “Zur Grosse der Luftmolecule ” (Acad. Vienna, Oct. 12, 1865), was the 
first to make this attempt. Independently of him and of each other, Mr G. J. 
Stoney (Phil. Mag., Aug. 1868), and Sir W. Thomson (Nature, March 31, 1870), 
have made similar calculations. We shall follow the track of Prof. Loschmidt.

The volume of a spherical molecule is p s’, where s is its diameter. Hence 

if N is the number of molecules in unit of volume, the space actually filled 

by the molecules is -Nt?.J 6

This, then, would be the volume to which a cubic centimetre of the gas 
would be reduced if it could be so compressed as to leave no room whatever 
between the molecules. This, of course, is impossible; but we may, for the 
sake of clearness, call the quantity

................................................. (8)

* The difference between this value and that given by M. Clausius in his paper of 1858, arises 
from his assuming that all the molecules have equal velocities, while I suppose the velocities to be 
distributed according to the “ law of errors.”
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the ideal coefficient of condensation. The actual coefficient of condensation, when 
the gas is reduced to the liquid or even the solid form, and exposed to the 
greatest degree of cold and pressure, is of course greater than e.

Multiplying equations (7) and (8), we find

s = 6 J 2d................................................. (9),
where s is the diameter of a molecule, e the coefficient of condensation, and 
I the mean path of a molecule.

Of these quantities, we know I. approximately already, but with respect 
to e we only know its superior limit. It is only by ascertaining whether calcu
lations of this kind, made with respect to different substances, lead to consistent 
results, that we can obtain any confidence in our estimates of e.

M. Lorenz Meyer*  has compared the “molecular volumes” of different 
substances, as estimated by Kopp from measurements of the density of these 
substances and their compounds, with the values of s’ as deduced from experi
ments on the viscosity of gases, and has shewn that there is a considerable 
degree of correspondence between the two sets of numbers.

* Annalen d. Chemie u. Pharmacie v. Supp. bd. 2, Heft (1867).

The “molecular volume” of a substance here spoken of is the volume in 
cubic centimetres of as much of the substance in the liquid state as contains 
as many molecules as one gramme of hydrogen. Hence if p0 denote the density 
of hydrogen, and b the molecular volume of a substance, the actual coefficient 
of condensation is

= .................................................... (10).
These “molecular volumes” of liquids are estimated at the boiling-points of 

the liquids, a very arbitrary condition, for this depends on the pressure, and 
there is no reason in the nature of things for fixing on 760 mm. B. as a 
standard pressure merely because it roughly represents the ordinary pressure 
of our atmosphere. What would be better, if it were not impossible to obtain 
it, would be the volume at — 273° C. and oo B.

But the volume relations of potassium with its oxide and its hydrated 
oxide as described by Faraday seem to indicate that we have a good deal yet 
to learn about the volumes of atoms.
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If, however, for our immediate purpose, we assume the smallest molecular 
volume of oxygen given by Kopp as derived from a comparison of the volume 
of tin with that of its oxide and put

b (0 = 16) = 27, 
we find for the diameters of the molecules—

Table IV.
Hydrogen .
Oxygen 
Carbonic Oxide 
Carbonic Acid .

5-8 tenth-metres.
7-6
8-3
93

The mass of a molecule of hydrogen on this assumption is

4'6 x 10 gramme.

The number of molecules in a cubic centimetre of any gas at O’C. and 
760 mm. B. is

-V=19 x 10“

Hence the side of a cube which, on an average, would contain one molecule 
would be

-V'* = 37 tenth-metres.
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LX. On the Final State of a System of Molecules in motion subject to forces 
of any kind.

Let perfectly elastic molecules of different kinds be in motion within a 
vessel with perfectly elastic sides, and let each kind of molecules be acted on 
by forces which have a potential, the form of which may be different for 
different kinds of molecules.

Let x, y, z be the co-ordinates of a molecule, M, and £ y, I the com
ponents of its velocity, and let it be required to determine the number of 
molecules of a given kind which, on an average, have their co-ordinates between 
x and x + dx, y and y + dy, z and z + dz, and also their component velocities 
between £ and ^+d^, y and y + dy, and £ and C+d£. This number must 
depend on the co-ordinates and the components of velocities and on the limits 
of these quantities. We may therefore write it

dN=f{x, y, z, £ y, dxdydzdgdydl............................ (1).

We shall begin by investigating the manner in which this quantity depends 
on the components of velocity, before we proceed to determine in what way it 
depends on the co-ordinates.

If we distinguish by suffixes the quantities corresponding to different kinds 
of molecules, the whole number of molecules of the first and second kind within 
a given space which have velocities within given limits may be written

ff^, Vu Q d^^.......................................(2),

aad = ................................ (3).

The number of pairs which can be formed by taking one molecule of each 
kind is n^. nr
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Let a pair of molecules encounter each other, and after the encounter let 
their component velocities be CC 17/, C and CC rj', The nature of the 
encounter is completely defined when we know & —t/j —^i, & the velocity
of the second molecule relative to the first before the encounter, and x,— xu 
y3 —z« —the position of the centre of the second molecule relative to the 
first at the instant of the encounter. When these quantities are given,

— and the components of the relative velocity after the encounter,
are determinable.

Hence putting a, /3, y for these relative velocities, and a, 6, c for the 
relative positions, we find for the number of molecules of the first kind having 
velocities between the limits £ and & + d£ &c., which encounter molecules of 
the second kind having velocities between the limits & and + &c., in such
a way that the relative velocities lie between a and a + cZa, &c., and the relative 
positions between a and a + da, &c.

/> (£» 0 dC^V^C-f (f» Ci) d£drjd£. <}> (abca^y) dadbdcdadfidy... (4),
and after the encounter the velocity of J/, will be between the limits C' and 
C' + dC, &c. and that of Mt between the limits C' and ^ + d^, &c.

The differences of the limits of velocity are equal for both kinds of mole
cules, and both before and after the encounter.

When the state of motion of the system is in its permanent condition, 
as many pairs of molecules change their velocities from F,, F, to F/, F/ as 
from F,, F, to V„ F„ and the circumstances of the encounter in the one case 
are precisely similar to those in the second. Hence, omitting for the sake of 
brevity the quantities dg, &c., and </>, which are of the same value in the two 
cases, we find

fi (fu Ci)f (&» ^3, Q=f (Ci, Vi> Ci)f(& Vi> Ci')................ (5), 

writing log/(f, V> C) = F(MV\ I, m, n)................................(6),

where I, m, n are the direction-cosines of the velocity, V, of the molecule M.

Taking the logarithm of both sides of equation (5),
F. (M. V^n.) + F, (M, = F. (Mi V^mM) + F, (M, ...(7).

The only necessary relation between the variables before and after the 
encounter is

M. V?+M, V?=VC+M, VC...................................(8).
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If the right-hand side of the equations (7) and (8) are constant, the left
hand sides will also be constant; and since l„ m„ n, are independent of I, m, n, 
we must have

= AM. V? and F2 = AM. V?................................. (9),
where A is a quantity independent of the components of velocity, or

........................................ (10), 

........................................(11).
This result as to the distribution of the velocities of the molecules at a 

given place is independent of the action of finite forces on the molecules during 
their encounter, for such forces do not affect the velocities during the infinitely 
short time of the encounter.

We may therefore write equation (1)

dN = d^drjdidxdydz.............................(12),

where C is a function of x. y, z which may be different for different kinds 
of molecules, while A is the same for every kind of molecule, though it may, 
for aught we know as yet, vary from one place to another.

Let us now suppose that the kind of molecules under consideration are 
acted on by a force whose potential is The variations of x, y, z arising from
the motion of the molecules during a time 8t are

3a: = ^, 8y = 7)8t, 8z = £8t................................. (13),

and those of £ £ in the same time due to the action of the force, are

87)=--^ 8t, 8C=--^8t......................(14).
dx 1 dy dz ' ’

If we make c = logC.........................................  (15),

..............<16)-
The variation of this quantity due to the variations So;,, 8y., 8z„ 8 g., 8y„ 8^, is

v dx ' dy * dz) \ dx ' dy dz/
_ IMA dA . y dA\ _

+ Jf(^+^+D + 8t.
VOL. II. 45
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Since the number of the molecules does not vary during their motion, this 
quantity is zero, whatever the values of £ -q, C- Hence we have in virtue of the
last term

— = 0 — = 0 — — 0 dx dy V’ dz (18),

or A is constant throughout the whole region traversed by the molecules.

Next, comparing the first and second terms, we find 
.(19).

We thus obtain as the complete form of dN 
dN, = dxdydzd^dydC........................(20),

when A is an absolute constant, the same for every kind of molecule in the 
vessel, but B, belongs to the first kind only. To determine these constants, 
we must integrate this quantity with respect to the six variables, and equate 
the result to the number of molecules of the first kind. We must then, by 
integrating dNt -J-M, (g* + ^,3 + £/ + 2^) determine the whole energy of the system, 
and equate it to the original energy. We shall thus obtain a sufficient number 
of equations to determine the constant A, common to all the molecules, and 
B„ Bv &c. those belonging to each kind.

The quantity A is essentially negative. Its value determines that of the

mean kinetic energy of all the molecules in a given place, which is 

therefore, according to the kinetic theory, it also determines the 
of the medium at that place. Hence, since A„ in the permanent 

~^A’ and 

temperature 
state of the

system, is the same for every part of the system, it follows that the tempera
ture is everywhere the same, whatever forces act upon the molecules.

The number of molecules of the first kind in the element dxdydz,

- jY dxdydz...................................(21).

The effect of the force whose potential is is therefore to cause the
molecules of the first kind to accumulate in greater numbers in those parts of 
the vessel towards which the force acts, and the distribution of each different 
kind of molecules in the vessel is determined by the forces which act on them 
in the same way as if no other molecules were present. This agrees with 
Dalton’s doctrine of the distribution of mixed gases.





[From Nature, Vol. Vin.]

LXI. Faraday.

[Michael Faraday, born September 22, 1791, died August 25, 1867.]

With this number of Nature we present to our subscribers the first of 
what we hope will be a long series of Portraits of Eminent Men of Science.

This first portrait is one of Faraday, engraved on steel, by Jeens, from a 
photograph by Watkins. Those who had the happiness of knowing Faraday 
best will best appreciate the artist’s skill—he has indeed surpassed himself, for 
the engraving is more life-like than the photograph. We could ill spare such 
a memorial of such a man, one in which all the beautiful simplicity of his 
life beams upon us. There is no posturing here I

There is no need that we should accompany the portrait with a memoir 
of Faraday. Bence Jones, Tyndall, and Gladstone have already lovingly told the 
story of the grand and simple life which has shed and will long continue to 
shed such lustre on English Science, and their books have carried the story 
home to millions; nor is there any need that we should state why we have 
chosen to commence our series with Faraday; everybody will acknowledge the 
justice of our choice.

But there is great need just now that some of the lessons to be learnt 
from Faraday’s life should be insisted upon, and we regard it as a fortunate 
circumstance that we have thus the opportunity of insisting upon them while 
our Scientific Congress is in session, and before the echoes of the Address of 
the President of the British Association for the Advancement of Science have 
died away.

In the first place, then, we regard Faraday at once as the most useful 
and the most noble type of a scientific man. The nation is bigger and stronger 
in that Faraday has lived, and the nation would be bigger and stronger still 
were there more Faradays among us now. Professor Williamson, in his admirable 

45—2 
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address, acknowledges that the present time is “momentous.” In truth the 
question of the present condition of Science and the ways of improving it, is 
occupying men’s minds more than it has ever done before; and it is now 
conceded on all sides that this is a national question, and not only so, but 
one of fundamental importance. Now what is the present condition of English 
Science ? It is simply this, that while the numbers of our professors and their 
emoluments are increasing, while the number of students is increasing, while 
practical instruction is being introduced and text-books multiplied, while the 
number and calibre of popular lecturers and popular writers in Science is 
increasing, original research, the fountain-head of a nation’s wealth, is decreasing.

Now a scientific man is useful as such to a nation according to the amount 
of new knowledge with which he endows that nation. This is the test which 
the nation, as a whole, applies, and Faraday’s national reputation rests on it. 
Let the nation know then that the real difficulty at present is this; we want 
more Faradays; in other words more men working at new knowledge.

It is refreshing to see this want so clearly stated in the Presidential 
Address:

“ The first thing wanted for the work of advancing science is a supply of 
well-qualified workers. The second thing is to place and keep them under the 
conditions most favourable to their efficient activity. The most suitable men 
must be found while still young, and trained to the work. Now I know only 
one really effectual way of finding the youths who are best endowed by nature 
for the purpose; and that is to systematise and develop the natural conditions 
which accidentally concur in particular cases, and enable youths to rise from 
the crowd.

“ Investigators, once found, ought to be placed in the circumstances most 
favourable to their efficient activity.

“ The first and most fundamental condition for this is, that their desire for 
the acquisition of knowledge be kept alive and fostered. They must not merely 
retain the hold which they have acquired on the general body of their science; 
they ought to strengthen and extend that hold, by acquiring a more complete 
and accurate knowledge of its doctrines and methods; in a word, they ought 
to be more thorough students than during their state of preliminary training.

“They must be able to live by their work, without diverting any of their 
energies to other pursuits; and they must feel security against want, in the 
event of illness or in their old age.
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“They must be supplied with intelligent and trained assistants to aid in 
the conduct of their researches, and whatever buildings, apparatus, and materials 
may be required for conducting those researches effectively.

“The desired system must therefore provide arrangements favourable to the 
maintenance and development of the true student-spirit in investigators, while 
providing them with permanent means of subsistence, sufficient to enable them 
to feel secure and tranquil in working at science alone, yet not sufficient to 
neutralise their motives for exertion; and at the same time it must give them 
all external aids, in proportion to their wants and powers of making good use 
of them.”

Whether the scheme proposed by Dr Williamson to bring such a state of 
things about will have the full success he anticipates is a matter of second- 
rate importance; what is of importance is, that the need of some scheme is 
now fully recognised.

So far the remarks we have made have been suggested by Faraday’s 
usefulness. It is to be hoped that the nobleness of his simple, undramatic life, 
will live as long in men’s memories as the discoveries which have immortalised 
his name. Here was no hunger after popular applause, no jealousy of other 
men’s work, no swerving from the well-loved, self-imposed task of “working, 
finishing, publishing.”

“ The simplicity of his heart, his candour, his ardent love of the truth his 
fellow-interest in all the successes, and ingenuous admiration of all the discoveries 
of others, his natural modesty in regard to what he himself discovered, his 
noble soul—independent and bold—all these combined, gave an incomparable 
charm to the features of the illustrious physicist.”

Such was his portrait as sketched by Dumas, a man cast in the same 
mould. All will recognise its truth. Can men of science find a nobler exemplar 
on which to fashion their own life? Nay, if it were more widely followed than 
it is, should we not hear less of men falling away from the “brilliant promise” 
of their youth, tempted by “fees,” or the “applications of Science,” or the 
advantages attendant upon a popular exposition of other men’s work ? Should 
we not hear a little less frequently than we do that research is a sham, and 
that all attempts to aid it savour of jobbery ?

Lastly we may consider Faraday’s place in the general history of Science; 
this is far from easy. Our minds are still too much occupied with the memory 
of the outward form and expression of his scientific work to be able to compare 
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him aright with the other great men among whom we shall have to place 
him.

Every great man of the first rank is unique. Each has his own office and 
his own place in the historic procession of the sages. That office did not exist 
even in the imagination, till he came to fill it, and none can succeed to his 
place when he has passed away. Others may gain distinction by adapting the 
exposition of science to the varying language of each generation of students, but 
their true function is not so much didactic as pedagogic—not to teach the use 
of phrases which enable us to persuade ourselves that we understand a science, 
but to bring the student into living contact with the two main sources of 
mental growth, the fathers of the sciences, for whose personal influence over 
the opening mind there is no substitute, and the material things to which 
their labours first gave a meaning.

Faraday is, and must always remain, the father of that enlarged science of 
electro-magnetism which takes in at one view, all the phenomena which former 
inquirers had studied separately, besides those which Faraday himself discovered 
by following the guidance of those convictions, which he had already obtained, 
of the unity of the whole science.

Before him came the discovery of most of the fundamental phenomena, the 
electric and magnetic attractions and repulsions, the electric current and its 
effects. fhen came Cavendish, Coulomb, and Poisson, who by following the 
path pointed out by Newton, and making the forces which act between bodies 
the principal object of their study, founded the mathematical theories of electric 
and magnetic forces. 1 hen Orsted discovered the cardinal fact of electro-magnetic 
force, and Ampere investigated the mathematical laws of the mechanical action 
between electric currents.

Thus the field of electro-magnetic Science was already very large when 
Faraday first entered upon his public career. It was so large that to take in 
at one view all its departments required a stretch of thought for which a 
special preparation was necessary. Accordingly, we find Faraday endeavouring 
in the first place to obtain, from each of the known sources of electric action, 
all the phenomena which any one of them was able to exhibit. Having thus 
established the unity of nature of all electric manifestations, his next aim was 
to form a conception of electrification, or electric action, which would embrace 
them all. For this purpose it was necessary that he should begin by getting 
rid of those parasitical ideas, which are so apt to cling to every scientific term, 
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and to invest it with a luxuriant crop of connotative meanings flourishing at 
the expense of the meaning which the word was intended to denote. He 
therefore endeavoured to strip all such terms as “ electric fluid,” “ current,” and 
‘attraction of every meaning except that which is warranted by the phenomena 

themselves, and to invent new terms, such as “electrolysis,” “electrode,” “di
electric,” which suggest no other meaning than that assigned to them by their 
definitions.

He thus undertook no less a task than the investigation of the facts, the 
ideas, and the scientific terms of electro-magnetism, and the result was the 
remodelling of the whole according to an entirely new method.

That old and popular phrase, “ electric fluid,” which is now, we trust, 
banished for ever into the region of newspaper paragraphs, had done what it 
could to keep men’s minds fixed upon those particular parts of bodies where 
the “ fluid ” was supposed to exist.

Faraday, on the other hand, by inventing the word “ dielectric,” has 
encouraged us to examine all that is going on in the air or other medium 
between the electrified bodies.

It is needless to multiply instances of this kind. The terms, field of force, 
lines of force, induction, &c., are sufficient to recall them. They all illustrate 
the general principles of the growth of science, in the particular form of which 
Faraday is the exponent.

We have, first, the careful observation of selected phenomena, then the 
examination of the received ideas, and the formation, when necessary, of new 
ideas; and, lastly, the invention of scientific terms adapted for the discussion 
of the phenomena in the light of the new ideas.

Ihe high place which we assign to Faraday in electro-magnetic science may 
appear to some inconsistent with the fact that electro-magnetic science is an 
exact science, and that in some of its branches it had already assumed a 
mathematical form before the time of Faraday, whereas Faraday was not a 
professed mathematician, and in his writings we find none of those integrations 
of differential equations which are supposed to be of the very essence of an 
exact science. Open Poisson and Ampdre, who went before him, or Weber and 
Neumann, who came after him, and you will find their pages full of symbols, 
not one of which Faraday would have understood. It is admitted that Faraday 
made some great discoveries, but if we put these aside, how can we rank his 
scientific method so high without disparaging the mathematics of these eminent men ?
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It is true that no one can essentially cultivate any exact science without 
understanding the mathematics of that science. But we are not to suppose that 
the calculations and equations which mathematicians find so useful constitute 
the whole of mathematics. The calculus is but a part of mathematics.

The geometry of position is an example of a mathematical science established 
without the aid of a single calculation. Now Faraday’s lines of force occupy 
the same position in electro-magnetic science that pencils of lines do in the 
geometry of position. They furnish a method of building up an exact mental 
image of the thing we are reasoning about. The way in which Faraday made 
use of his idea of lines of force in co-ordinating the phenomena of magneto
electric induction* shews him to have been in reality a mathematician of a 
very high order—one from whom the mathematicians of the future may derive 
valuable and fertile methods.

For the advance of the exact sciences depends upon the discovery and 
development of appropriate and exact ideas, by means of which we may form 
a mental representation of the facts, sufficiently general, on the one hand, to 
stand for any particular case, and sufficiently exact, on the other, to warrant 
the deductions we may draw from them by the application of mathematical 
reasoning.

From the straight line of Euclid to the lines of force of Faraday this has 
been the character of the ideas by which science has been advanced, and by 
the free use of dynamical as well as geometrical ideas we may hope for a 
further advance. The use of mathematical calculations is to compare the results 
of the application of these ideas with our measurements of the quantities 
concerned in our experiments. Electrical science is now in the stage in which 
such measurements and calculations are of the greatest importance.

We are probably ignorant even of the name of the science which will be 
developed out of the materials we are now collecting, when the great philosopher 
next after Faraday makes his appearance.

♦ To estimate the intensity of Faraday’s scientific power, we cannot do better than read the first 
and second series of his Regf-archea and compare them, first, with the statements in Bence Jones’s Life 
of Faraday, which tells us the tales of the first discovery of the facts, and of the final publication 
of the results, and second, with the whole course of electro-magnetic science since, which has added 
no new idea to those set forth, but has only verified the truth and scientific value of every one of 
them.



[From Nature, Vol. VIII.]

LXI I. Molecules *.

* A Lecture delivered before the British Association at Bradford.
VOL. II.

An atom is a body which cannot be cut in two. A molecule is the 
smallest possible portion of a particular substance. No one has ever seen or 
handled a single molecule. Molecular science, therefore, is one of those branches 
of study which deal with things invisible and imperceptible by our senses, and 
which cannot be subjected to direct experiment.

The mind of man has perplexed itself with many hard questions. Is 
space infinite, and if so in what sense ? Is the material world infinite in 
extent, and are all places within that extent equally full of matter? Do atoms 
exist, or is matter infinitely divisible?

The discussion of questions of this kind has been going on ever since men 
began to reason, and to each of us, as soon as we obtain the use of our 
faculties, the same old questions arise as fresh as ever. They form as essential 
a part of the science of the nineteenth century of our era, as of that of the 
fifth century before it.

We do not know much about the science organisation of Thrace twenty- 
two centuries ago, or of the machinery then employed for diffusing an interest 
in physical research. There were men, however, in those days, who devoted 
their lives to the pursuit of knowledge with an ardour worthy of the most 
distinguished members of the British Association; and the lectures in which 
Democritus explained the atomic theory to his fellow-citizens of Abdera realised, 
not in golden opinions only, but in golden talents, a sum hardly equalled even 
in America.

To another very eminent philosopher, Anaxagoras, best known to the world 
as the teacher of Socrates, we are indebted for the most important service to 
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the atomic theory, which, after its statement by Democritus, remained to be 
done. Anaxagoras, in fact, stated a theory which so exactly contradicts the 
atomic theory of Democritus that the truth or falsehood of the one theory 
implies the falsehood or truth of the other. The question of the existence or 
non-existence of atoms cannot be presented to us this evening with greater 
clearness than in the alternative theories of these two philosophers.

1 ake any portion of matter, say a drop of water, and observe its properties. 
Like every other portion of matter we have ever seen, it is divisible. Divide 
it in two, each portion appears to retain all the properties of the original drop, 
and among others that of being divisible. The parts are similar to the whole 
in every respect except in absolute size.

Now go on repeating the process of division till the separate portions of 
water are so small that we can no longer perceive or handle them. Still we 
have no doubt that the sub-division might be carried further, if our senses 
were more acute and our instruments more' delicate. Thus far all are agreed, 
but now the question arises, Can this sub-division be repeated for ever?

According to Democritus and the atomic school, we must answer in the 
negative. After a certain number of sub-divisions, the drop would be divided 
into a number of parts each of which is incapable of further sub-division. We 
should thus, in imagination, arrive at the atom, which, as its name literally 
signifies, cannot be cut in two. This is the atomic doctrine of Democritus, 
Epicurus, and Lucretius, and, I may add, of your lecturer.

According to Anaxagoras, on the other hand, the parts into which the drop 
is divided are in all respects similar to the whole drop, the mere size of a 
body counting for nothing as regards the nature of its substance. Hence if 
the whole drop is divisible, so are its parts down to the minutest sub-divisions, 
and that without end.

The essence of the doctrine of Anaxagoras is that parts of a body are 
in all respects similar to the whole. It was, therefore, called the doctrine 
of Homoiomereia. Anaxagoras did not of course assert this of the parts of 
organised bodies such as men and animals, but he maintained that those inor
ganic substances which appear to us homogeneous are really so, and that the 
universal experience of mankind testifies that every material body, without 
exception, is divisible.

The doctrine of atoms and that of homogeneity are thus in direct con
tradiction.
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But we must now go on to molecules. Molecule is a modern word. It does 

not occur in Johnson's Dictionary. The ideas it embodies are those belonging 
to modern chemistry.

A drop of water, to return to our former example, may be divided into 
a certain number, and no more, of portions similar to each other. Each of 
these the modern chemist calls a molecule of water. But it is by no means 
an atom, for it contains two different substances, oxygen and hydrogen, and by 
a certain process the molecule may be actually divided into two parts, one 
consisting of oxygen and the other of hydrogen. According to the received 
doctrine, in each molecule of water there are two molecules of hydrogen and 
one of oxygen. Whether these are or are not ultimate atoms I shall not 
attempt to decide.

We now see what a molecule is, as distinguished from an atom.
A molecule of a substance is a small body such that if, on the one hand, a 

number of similar molecules were assembled together they would form a mass 
of that substance, while on the other hand, if any portion of this molecule 
were removed, it would no longer be able, along with an assemblage of other 
molecules similarly treated, to make up a mass of the original substance.

Every substance, simple or compound, has its own molecule. If this molecule 
be divided, its parts are molecules of a different substance or substances from 
that of which the whole is a molecule. An atom, if there is such a thing, 
must be a molecule of an elementary substance. Since, therefore, every molecule 
is not an atom, but every atom is a molecule, I shall use the word molecule 
:is the more general term.

I have no intention of taking up your time by expounding the doctrines 
of modern chemistry with respect to the molecules of different substances. It 
is not the special but the universal interest of molecular science which encourages 
me to address you. It is not because we happen to be chemists or physicists 
or specialists of any kind that we are attracted towards this centre of all 
material existence, but because we all belong to a race endowed with faculties 
which urge us on to search deep and ever deeper into the nature of things.

We find that now, as in the days of the earliest physical speculations, 
all physical researches appear to converge towards the same point, and every 
inquirer, as he looks forward into the dim region towards which the path of 
discovery is leading him, sees, each according to his sight, the vision of the 
same Quest. 46—2



3G4 MOLECULES.

One may see the atom as a material point, invested and surrounded by 
potential forces. Another sees no garment of force, but only the bare and 
utter hardness of mere impenetrability.

But though many a speculator, as he has seen the vision recede before 
him into the innermost sanctuary of the inconceivably little, has had to confess 
that the quest was not for him, and though philosophers in every age have 
been exhorting each other to direct their minds to some more useful and 
attainable aim, each generation, from the earliest dawn of science to the present 
time, has contributed a due proportion of its ablest intellects to the quest of 
the ultimate atom.

Our business this evening is to describe some researches in molecular 
science, and in particular to place before you any definite information which 
has been obtained respecting the molecules themselves. The old atomic theory, 
as described by Lucretius and revived in modern times, asserts that the molecules 
ot all bodies are in motion, even when the body itself appears to be at rest. 
These motions of molecules are in the case of solid bodies confined within so 
narrow a range that even with our best microscopes we cannot detect that they 
alter their places at all. In liquids and gases, however, the molecules are not 
confined within any definite limits, but work their way through the whole mass, 
even when that mass is not disturbed by any visible motion.

I his process of diffusion, as it is called, which goes on in gases and liquids 
and even in some solids, can be subjected to experiment, and forms one of the 
most convincing proofs of the motion of molecules.

Now the recent progress of molecular science began with the study of the 
mechanical effect of the impact of these moving molecules when they strike 
against any solid body. Of course these flying molecules must beat against what
ever is placed among them, and the constant succession of these strokes is, according 
to our theory, the sole cause of what is called the pressure of air and other gases.

This appears to have been first suspected by Daniel Bernoulli, but he had not 
the means which we now have of verifying the theory. The same theory was 
afterwards brought forward independently by Lesage, of Geneva, who, however, 
devoted most of his labour to the explanation of gravitation by the impact of 
atoms. Ihen Herapath, in his Mathematical Physics, published in 1847, made a 
much more extensive application of the theory to gases, and Dr Joule, whose 
absence from our meeting we must all regret, calculated the actual velocity of 
the molecules of hydrogen.
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The further development of the theory is generally supposed to have 

begun with a paper by Kronig, which does not, however, so far as I can see, 
contain any improvement on what had gone before. It seems, however, to have 
drawn the attention of Professor Clausius to the subject, and to him we owe 
a very large part of what has been since accomplished.

We all know that air or any other gas placed in a vessel presses against 
the sides of the vessel, and against the surface of any body placed within it. 
On the kinetic theory this pressure is entirely due to the molecules striking 
against these surfaces, and thereby communicating to them a series of impulses 
which follow each other in such rapid succession that they produce an effect 
which cannot be distinguished from that of a continuous pressure.

If the velocity of the molecules is given, and the number varied, then since 
each molecule, on an average, strikes the sides of the vessel the same number 
of times, and with an impulse of the same magnitude, each will contribute an 
equal share to the whole pressure. The pressure in a vessel of given size is 
therefore proportional to the number of molecules in it, that is to the quantity 
of gas in it.

This is the complete dynamical explanation of the fact discovered by Robert 
Boyle, that the pressure of air is proportional to its density. It shews also 
that of different portions of gas forced into a vessel, each produces its own 
part of the pressure independently of the rest, and this whether these portions 
be of the same gas or not.

Let us next suppose that the velocity of the molecules is increased. Each 
molecule will now strike the sides of the vessel a greater number of times in 
a second, but, besides this, the impulse of each blow will be increased in the 
same proportion, so that the part of the pressure due to each molecule 
will vary as the square of the velocity. Now the increase of velocity cor
responds, on our theory, to a rise of temperature, and in this way we can 
explain the effect of warming the gas, and also the law discovered by Charles 
that the proportional expansion of all gases between given temperatures is the 
same.

The dynamical theory also tells us what will happen if molecules of different 
masses are allowed to knock about together. The greater masses will go slower 
than the smaller ones, so that, on an average, every molecule, great or small, 
will have the same energy of motion.

Ihe proof of this dynamical theorem, in which I claim the priority, has 



36G MOLECULES.

recently been greatly developed and improved by Dr Ludwig Boltzmann. The 
most important consequence which flows from it is that a cubic centimetre of 
every gas at standard temperature and pressure contains the same number of 
molecules. This is the dynamical explanation of Gay Lussac’s law of the 
equivalent volumes of gases. But we must now descend to particulars, and 
calculate the actual velocity of a molecule of hydrogen.

A cubic centimetre of hydrogen, at the temperature of melting ice, and at 
a pressure of one atmosphere, weighs 0’00008954 grammes. We have to find 
at what rate this small mass must move (whether altogether or in separate 
molecules makes no difference) so as to produce the observed pressure on the 
sides of the cubic centimetre. This is the calculation which was first made by 
Dr Joule, and the result is 1,859 metres per second. This is what we are 
accustomed to call a great velocity. It is greater than any velocity obtained 
in artillery practice. The velocity of other gases is less, as you will see by 
the table, but in all cases it is very great as compared with that of bullets.

We have now to conceive the molecules of the air in this hall flying about 
in all directions, at a rate of about seventeen miles in a minute.

If all these molecules were flying in the same direction, they would con
stitute a wind blowing at the rate of seventeen miles a minute, and the only 
wind which approaches this velocity is that which proceeds from the mouth of 
a cannon. How, then, are you and I able to stand here ? Only because the 
molecules happen to be flying in different directions, so that those which strike 
against our backs enable us to support the storm which is beating against our 
faces. Indeed, if this molecular bombardment were to cease, even for an instant, 
our veins would swell, our breath would leave us, and we should, literally, 
expire. But it is not only against us or against the walls of the hall that 
the molecules are striking. Consider the immense number of them, and the 
fact that they are flying in every possible direction, and you will see that 
they cannot avoid striking each other. Every time that two molecules come 
into collision, the paths of both are changed, and they go off in new directions. 
Thus each molecule is continually getting its course altered, so that in spite 
of its great velocity it may be a long time before it reaches any great distance 
from the point at which it set out.

I have here a bottle containing ammonia. Ammonia is a gas which you 
can recognise by its smell. Its molecules have a velocity of six hundred metres 
per second, so that if their course had not been interrupted by striking against 
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the molecules of air in the hall, everyone in the most distant gallery would 
have smelt ammonia before I was able to pronounce the name of the gas. But 
instead of this, each molecule of ammonia is so jostled about by the mole
cules of air, that it is sometimes going one way and sometimes another, and 
like a hare which is always doubling, though it goes a great pace, it makes 
very little progress. Nevertheless, the smell of ammonia is now beginning to 
be perceptible at some distance from the bottle. The gas does diffuse itself 
tl trough the air, though the process is a slow one, and if we could close up 
every opening of this hall so as to make it air-tight, and leave everything to 
itself for some weeks, the ammonia would become uniformly mixed through every 
part of the air in the hall.

This property of gases, that they diffuse through each other, was first 
remarked by Priestley. Dalton shewed that it takes place quite independently 
of any chemical action between the inter-diffusing gases. Graham, whose 
researches were especially directed towards those phenomena which seem to 
throw light on molecular motions, made a careful study of diffusion, and obtained 
the first results from which the rate of diffusion can be calculated.

Still more recently the rates of diffusion of gases into each other have 
been measured with great precision by Professor Loschmidt of Vienna.

He placed the two gases in two similar vertical tubes, the lighter gas being 
placed above the heavier, so as to avoid the formation of currents. He then 
opened a sliding valve, so as to make the two tubes into one, and after leaving 
the gases to themselves for an hour or so, he shut the valve, and determined 
how much of each gas had diffused into the other.

As most gases are invisible, I shall exhibit gaseous diffusion to you by 
means of two gases, ammonia and hydrochloric acid, which, when they meet, 
form a solid product. The ammonia, being the lighter gas, is placed above the 
hydrochloric acid, with a stratum of air between, but you will soon see that 
the gases can diffuse through this stratum of air, and produce a cloud of white 
smoke when they meet. During the whole of this process no currents or any 
other visible motion can be detected. Every part of the vessel appears as calm 
as a jar of undisturbed air.

But, according to our theory, the same kind of motion is going on in calm 
air as in the inter-diffusing gases, the only difference being that we can trace 
the molecules from one place to another more easily when they are of a different 
nature from those through which they are diffusing.
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If we wish to form a mental representation of what is going on among 
the molecules in calm air, we cannot do better than observe a swarm of bees, 
when every individual bee is flying furiously, first in one direction and then 
in another, while the swarm, as a whole, either remains at rest, or sails slowly 
through the air.

In certain seasons, swarms of bees are apt to fly off to a great distance, 
and the owners, in order to identify their property when they find them on 
other people’s ground, sometimes throw handfulls of flour at the swarm. Now 
let us suppose that the flour thrown at the flying swarm has whitened those 
bees only which happened to be in the lower half of the swarm, leaving those 
in the upper half free from flour.

If the bees still go on flying hither and thither in an irregular manner, 
the floury bees will be found in continually increasing proportions in the upper 
part of the swarm, till they have become equally diffused through every part 
of it. But the reason of this diffusion is not because the bees were marked 
with flour, but because they are flying about. The only effect of the marking 
is to enable us to identify certain bees.

We have no means of marking a select number of molecules of air, so 
as to trace them after they have become diffused among others, but we may 
communicate to them some property by which we may obtain evidence of their 
diffusion.

For instance, if a horizontal stratum of air is moving horizontally, molecules 
diffusing out of this stratum into those above and below will carry their 
horizontal motion with them, and so tend to communicate motion to the 
neighbouring strata, while molecules diffusing out of the neighbouring strata 
into the moving one will tend to bring it to rest. The action between the 
strata is somewhat like that of two rough surfaces, one of which slides over 
the other, rubbing on it. Friction is the name given to this action between 
solid bodies; in the case of fluids it is called internal friction, or viscosity.

It is, in fact, only another kind of diffusion—a lateral diffusion of momentum, 
and its amount can be calculated from data derived from observations of the 
first kind of diffusion, that of matter. The comparative values of the viscosity 
of different gases were determined by Graham in his researches on the tran
spiration of gases through long narrow tubes, and their absolute values have 
been deduced from experiments on the oscillation of discs by Oscar Meyer and 
myself.
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Another way of tracing the diffusion of molecules through calm air is to 
heat the upper stratum of the air in a vessel, and to observe the rate at 
which this heat is communicated to the lower strata. This, in fact, is a third 
kind of diffusion that of energy, and the rate at which it must take place 
was calculated from data derived from experiments on viscosity before any direct 
experiments on the conduction of heat had been made. Professor Stefan, of 
Vienna, has recently, by a very delicate method, succeeded in determining the 
conductivity of air, and he finds it, as he tells us, in striking agreement with 
the value predicted by the theory.

All these three kinds of diffusion—the diffusion of matter, of momentum, 
and of energy are carried on by the motion of the molecules. The greater 
the velocity of the molecules and the further they travel before their paths are 
altered by collision with other molecules, the more rapid will be the diffusion. 
Now we know already the velocity of the molecules, and therefore, by experiments 
on diffusion, we can determine how far, on an average, a molecule travels without 
striking another. Professor Clausius, of Bonn, who first gave us precise ideas 
about the motion of agitation of molecules, calls this distance the mean path 
of a molecule. I have calculated, from Professor Loschmidt’s diffusion experi
ments, the mean path of the molecules of four well-known gases. The average 
distance travelled by a molecule between one collision and another is given in 
the table. It is a very small distance, quite imperceptible to us even with 
our best microscopes. Boughly speaking, it is about the tenth part of the 
length of a wave of light, which you know is a very small quantity. Of 
course the time spent on so short a path by such swift molecules must be 
very small. I have calculated the number of collisions which each must undergo 
in a second. They are given in the table and are reckoned by thousands of mil
lions. No wonder that the travelling power of the swiftest molecule is but small, 
when its course is completely changed thousands of millions of times in a second.

The three kinds of diffusion also take place in liquids, but the relation 
between the rates at which they take place is not so simple as in the case 
of gases. The dynamical theory of liquids is not so well understood as that 
of gases, but the principal difference between a gas and a liquid seems to be 
that in a gas each molecule spends the greater part of its time in describing 
its free path, and is for a very small portion of its time engaged in encounters 
with other molecules, whereas, in a liquid, the molecule has hardly any free 
path, and is always in a state of close encounter with other molecules.

vol. ii. 47
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Hence in a liquid the diffusion of motion from one molecule to another 
takes place much more rapidly than the diffusion of the molecules themselves, 
for the same reason that it is more expeditious in a dense crowd to pass on 
a letter from hand to hand than to give it to a special messenger to work 
his way through the crowd. I have here a jar, the lower part of which contains 
a solution of copper sulphate, while the upper part contains pure water. It 
has been standing here since Friday, and you see how little progress the blue 
liquid has made in diffusing itself through the water above. The rate of 
diffusion of a solution of sugar has been carefully observed by Voit. Comparing 
his results with those of Loschmidt on gases, we find that about as much 
diffusion takes place in a second in gases as requires a day in liquids.

The rate of diffusion of momentum is also slower in liquids than in gases, 
but by no means in the same proportion. The same amount of motion takes 
about ten times as long to subside in water as in air, as you will see by what 
takes place when I stir these two jars, one containing water and the other air. 
There is still less difference between the rates at which a rise of temperature 
is propagated through a liquid and through a gas.

In solids the molecules are still in motion, but their motions are confined 
within very narrow limits. Hence the diffusion of matter does not take place 
in solid bodies, though that of motion and heat takes place very freely. 
Nevertheless, certain liquids can diffuse through colloid solids, such as jelly and 
gum, and hydrogen can make its way through iron and palladium.

We have no time to do more than mention that most wonderful molecular 
motion which is called electrolysis. Here is an electric current passing through 
acidulated water, and causing oxygen to appeal' at one electrode and hydrogen 
at the other. In the space between, the water is perfectly calm; and yet two 
opposite currents of oxygen and of hydrogen must be passing through it. The 
physical theory of this process has been studied by Clausius, who has given 
reasons for asserting that in ordinary water the molecules are not only moving, 
but every now and then striking each other with such violence that the oxygen 
and hydrogen of the molecules part company, and dance about through the 
crowd, seeking partners which have become dissociated in the same way. In 
ordinary water these exchanges produce, on the whole, no observable effect; but 
no sooner does the electromotive force begin to act than it exerts its guiding 
influence on the unattached molecules, and bends the course of each toward its 
proper electrode, till the moment when, meeting with an unappropriated molecule 
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of the opposite kind, it enters again into a more or less permanent union with 
it till it is again dissociated by another shock. Electrolysis, therefore, is a 
kind of diffusion assisted by electromotive force.

Another branch of molecular science is that which relates to the exchange 
oi molecules between a liquid and a gas. It includes the theory of evaporation 
and condensation, in which the gas in question is the vapour of the liquid, and 
also the theory of the absorption of a gas by a liquid of a different substance. 
The researches of Dr Andrews on the relations between the liquid and the 
gaseous state have shewn us that though the statements in our elementary 
text-books may be so neatly expressed as to appear almost self-evident, their 
true interpretation may involve some principle so profound that, till the right 
man has laid hold of it, no one ever suspects that any thing is left to be 
discovered.

These, then, are some of the fields from which the data of molecular 
science are gathered. We may divide the ultimate results into three ranks, 
according to the completeness of our knowledge of them.
, To the first rank belong the relative masses of the molecules of different 
gases, and their velocities in metres per second. These data are obtained from 
experiments on the pressure and density of gases, and are known to a high 
degree of precision.

In the second rank we must place the relative size of the molecules of 
different gases, the length of their mean paths, and the number of collisions 
in a second. These quantities are deduced from experiments on the three 
kinds of diffusion. Their received values must be regarded as rough approxi
mations till the methods of experimenting are greatly improved.

There is another set of quantities which we must place in the third rank, 
because our knowledge of them is neither precise, as in the first rank, nor 
approximate, as in the second, but is only as yet of the nature of a probable 
conjecture. These are:—The absolute mass of a molecule, its absolute diameter, 
and the number of molecules in a cubic centimetre. We know the relative 
masses of different molecules with great accuracy, and we know their relative 
diameters approximately. From these we can deduce the relative densities of 
the molecules themselves. So far we are on firm ground.

The great resistance of liquids to compression makes it probable that their 
molecules must be at about the same distance from each other as that at which 
two molecules of the same substance in the gaseous form act on each other 
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during an encounter. This conjecture has been put to the test by Lorenz Meyer, 
who has compared the densities of different liquids with the calculated relative 
densities of the molecules of their vapours, and has found a remarkable cor
respondence between them.

Now Loschmidt has deduced from the dynamical theory the following 
remarkable proportion:—As the volume of a gas is to the combined volume of 
all the molecules contained in it, so is the mean path of a molecule to one
eighth of the diameter of a molecule.

Assuming that the volume of the substance, when reduced to the liquid 
form, is not much greater than the combined volume of the molecules, we obtain 
from this proportion the diameter of a molecule. In this way Loschmidt, in 
1865, made the first estimate of the diameter of a molecule. Independently 
of him and of each other, Mr Stoney in 1868, and Sir W. Thomson in 1870, 
published results of a similar kind, those of Thomson being deduced not only 
in this way, but from considerations derived from the thickness of soap-bubbles, 
and from the electric properties of metals.

According to the I able, which I have calculated from Loschmidt’s data, 
the size of the molecules of hydrogen is such that about two millions of them 
in a row would occupy a millimetre, and a million million million million of 
them would weigh between four and five grammes.

In a cubic centimetre of any gas at standard pressure and temperature 
there are about nineteen million million million molecules. All these numbers
of the third rank are, I 
conjectural. In order to 
obtained in this way, we 
of independent data than 
lead to consistent results.

need not tell you, to be regarded as at present 
warrant us in putting any confidence in numbers 
should have to compare together a greater number
we have as yet obtained, and to shew that they

Thus far we have been considering molecular science as an inquiry into 
natural phenomena. But though the professed aim of all scientific work is to 
unravel the secrets of nature, it has another effect, not less valuable, on the 
mind of the worker. It leaves him in possession of methods which nothing 
but scientific work could have led him to invent; and it places him in a 
position from which many regions of nature, besides that which he has been 
studying, appear under a new aspect.

The study of molecules has developed a method of its own, and it has 
also opened up new views of nature.
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When Lucretius wishes us to form a mental representation of the motion 
of atoms, he tells us to look at a sunbeam shining through a darkened room 
(the same instrument of research by which Dr Tyndall makes visible to us the 
dust we breathe), and to observe the motes which chase each other in all 
directions through it. This motion of the visible motes, he tells us, is but a 
result of the far more complicated motion of the invisible atoms which knock 
the motes about. In his dream of nature, as Tennyson tells us, he

“ Saw the flaring atom-streams 
And torrents of her myriad universe, 
Ruining along the illimitable inane, 
Fly on to clash together again, and make 
Another and another frame of tilings 
For ever.”

And it is no wonder that he should have attempted to burst the bonds of 
Fate by making his atoms deviate from their courses at quite uncertain times 
and places, thus attributing to them a kind of irrational free will, which on 
his materialistic theory is the only explanation of that power of voluntary 
action of which we ourselves are conscious.

As long as we have to deal with only two molecules, and have all the 
data given us, we can calculate the result of their encounter; but when we 
have to deal with millions of molecules, each of which has millions of encounters 
in a second, the complexity of the problem seems to shut out all hope of a 
legitimate solution.

1 he modern atomists have therefore adopted a method which is, I believe, 
new in the department of mathematical physics, though it has long been in 
use in the section of Statistics. When the working members of Section F get 
hold of a report of the Census, or any other document containing the numerical 
data of Economic and Social Science, they begin by distributing the whole 
population into groups, according to age, income-tax, education, religious belief, 
or criminal convictions. Ihe number of individuals is far too great to allow of 
their tracing the history of each separately, so that, in order to reduce their 
labour within human limits, they concentrate their attention on a small number 
of artificial groups. The varying number of individuals in each group, and not 
the varying state of each individual, is the primary datum from which they work.

This, of course, is not the only method of studying human nature. We 
may observe the conduct of individual men and compare it with that conduct 
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which their previous character and their present circumstances, according to the 
best existing theory, would lead us to expect. Those who practise this method 
endeavour to improve their knowledge of the elements of human nature in much 
the same way as an astronomer corrects the elements of a planet by comparing 
its actual position with that deduced from the received elements. The study 
of human nature by parents and schoolmasters, by historians and statesmen, is 
therefore to be distinguished from that carried on by registrars and tabulators, 
and by those statesmen who put their faith in figures. The one may be called 
the historical, and the other the statistical method.

The equations of dynamics completely express the laws of the historical 
method as applied to matter, but the application of these equations implies a 
perfect knowledge of all the data. But the smallest portion of matter which 
we can subject to experiment consists of millions of molecules, not one of which 
ever becomes individually sensible to us. We cannot, therefore, ascertain the 
actual motion of any one of these molecules; so that we are obliged to abandon 
the strict historical method, and to adopt the statistical method of dealing with 
large groups of molecules.

The data of the statistical method as applied to molecular science are the 
sums of large numbers of molecular quantities. In studying the relations between 
quantities of this kind, we meet with a new kind of regularity, the regularity 
of averages, which we can depend upon quite sufficiently for all practical 
purposes, but which can make no claim to that character of absolute precision 
which belongs to the laws of abstract dynamics.

Thus molecular science teaches us that our experiments can never give us 
anything more than statistical information, and that no law deduced from them 
can pretend to absolute precision. But when we pass from the contemplation 
of our experiments to that of the molecules themselves, we leave the world of 
chance and change, and enter a region where everything is certain and im
mutable.

The molecules are conformed to a constant type with a precision which is 
not to be found in the sensible properties of the bodies which they constitute. 
In the first place, the mass of each individual molecule, and all its other 
properties, are absolutely unalterable. In the second place, the properties of 
all molecules of the same kind are absolutely identical.

Let us consider the properties of two kinds of molecules, those of oxygen 
and those of hydrogen.
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We can procure specimens of oxygen from very different sources—from the 
air, from water, from rocks of every geological epoch. The history of these 
specimens has been very different, and if, during thousands of years, difference 
of circumstances could produce difference of properties, these specimens’ of oxygen 
would shew it.

In like manner we may procure hydrogen from water, from coal, or, as 
Graham did, from meteoric iron, lake two litres of any specimen of hydrogen, 
it will combine with exactly one litre of any specimen of oxygen, and will 
form exactly two litres of the vapour of water.

Now if, during the whole previous history of either specimen, whether 
imprisoned in the rocks, flowing in the sea, or careering through unknown 
regions with the meteorites, any modification of the molecules had taken place, 
these relations would no longer be preserved.

But we have another and an entirely different method of comparing the 
properties of molecules. The molecule, though indestructible, is not a hard rigid 
body, but is capable of internal movements, and when these are excited, it 
emits rays, the wave-length of which is a measure of the time of vibration 
of the molecule.

By means of the spectroscope the wave-lengths of different kinds of light 
may be compared to within one ten-thousandth part. In this way it has been 
ascertained, not only that molecules taken from every specimen of hydrogen in 
our laboratories have the same set of periods of vibration, but that light, having 
the same set of periods of vibration, is emitted from the sun and from the 
fixed stars.

We are thus assured that molecules of the same nature as those of our 
hydrogen exist in those distant regions, or at least did exist when the light 
by which we see them was emitted.

From a comparison of the dimensions of the buildings of the Egyptians 
with those of the Greeks, it appears that they have a common measure. Hence, 
even if no ancient author had recorded the fact that the two nations employed 
the same cubit as a standard of length, we might prove it from the buildings 
themselves. We should also be justified in asserting that at some time or other 
a material standard of length must have been carried from one country to the 
other, or that both countries had obtained their standards from a common source.

But in the heavens we discover by their light, and by their light alone, 
stars so distant from each other that no material thing can ever have passed 
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rom one to another; and yet this light, which is to us the sole evidence of 
tie existence of these distant worlds, tells us also that each of them is built 
up of molecules of the same kinds as those which we find on earth. A 
molecule of hydrogen, for example, whether in Sirius or in Arcturus, executes 
its vibrations in precisely the same time.

Each molecule, therefore, throughout the universe, bears impressed on it the 
stamp of a metric system as distinctly as does the metre of the Archives at 
Paris, or the double royal cubit of the Temple of Karnac.

No theory of evolution can be formed to account for the similarity of 
molecules, for evolution necessarily implies continuous change, and the molecule 
is incapable of growth or decay, of generation or destruction.

None of the processes of Nature, since the time when Nature began, have 
produced the slightest difference in the properties of any molecule. We are 
therefore unable to ascribe either the existence of the molecules or the identity 
of their properties to the operation of any of the causes which we call natural.

On the other hand, the exact equality of each molecule to all others of 
the same kind gives it, as Sir John Herschel has well said, the essential 
character of a manufactured article, and precludes the idea of its being eternal 
and self-existent,

thus we have been led, along a strictly scientific path, very near to the 
point at which Science must stop. Not that Science is debarred from studying 
the internal mechanism of a molecule which she cannot take to pieces, any 
more than from investigating an organism which she cannot put together. But 
in tracing back the history of matter Science is arrested when she assures 
herself, on the one hand, that the molecule has been made, and on the other, 
that it has not been made by any of the processes we call natural,

Science is incompetent to reason upon the creation of matter itself out of 
nothing. We have reached the utmost limit of our thinking faculties when we 
have admitted that because matter cannot be eternal and self-existent it must 
have been created.

It is only when we contemplate, not matter in itself, but the form in 
which it actually exists, that our mind finds something on which it can lay 
hold.

That matter, as such, should have certain fundamental properties—that it 
should exist in space and be capable of motion, that its motion should be 
persistent, and so on, are truths which may, for anything we know, be of 
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the kind which metaphysicians call necessary. We may use our knowledge of 
such truths for purposes of deduction, but we have no data for speculating as 
to their origin.

But that there should be exactly so much matter and no more in every 
molecule of hydrogen is a fact of a very different order. We have here a 
particular distribution of matter—a collocation—to use the expression of Dr 
Chalmers, of things which we have no difficulty in imagining to have been 
arranged otherwise.

The form and dimensions of the orbits of the planets, for instance, are not 
determined by any law of nature, but depend upon a particular collocation of 
matter. The same is the case with respect to the size of the earth, from 
which the standard of what is called the metrical system has been derived. 
But these astronomical and terrestrial magnitudes are far inferior in scientific 
importance to that most fundamental of all standards which forms the base 
of the molecular system. Natural causes, as we know, are at work, which 
tend to modify, if they do not at length destroy, all the arrangements and 
dimensions of the earth and the whole solar system. But though in the course 
of ages catastrophes have occurred and may yet occur in the heavens, though 
ancient systems may be dissolved and new systems evolved out of their ruins, 
the molecules out of which these systems are built—the foundation stones of 
the material universe—remain unbroken and unworn.

They continue this day as they were created—perfect in number and 
measure and weight, and from the ineffaceable characters impressed on them 
we may learn that those aspirations after accuracy in measurement, truth in 
statement, and justice in action, which we reckon among our noblest attributes 
as men, are ours because they are essential constituents of the image of Him 
who in the beginning created, not only the heaven and the earth, but the 
materials of which heaven and earth consist.

VOL. II. 48
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Table of Molecular Data.

Hydrogen. Oxygon. Carbonic 
oxido.

Carbonic 
acid.

Mass of molecule (hydrogen =1) 1 16 14 22

Rank I. Velocity (of mean square) metres per ) 
second at 0° C. 1859 465 497 396

Mean path, tenth-metres 965 560 482 379

Rank II. Collisions in a second (millions) 17750 7646 9489 9720
Diameter, tenth-metres 5-8 7-6 8-3 93

Rank III. Mass, twenty-fifth grammes 46 736 644 1012

Table of Diffusion. (Centimetre)3 
Second measure.

Ah-

Calculated.
H k O 0-7086
H k CO 0-6519
H k CO, 0-5575
O k CO 0-1807
Ok CO, 0-1427

CO k CO, 0-1386
H 1-2990
O 0-1884
CO 0-1748
CO, 01087

Observed.
0-7214
0’6422
05558
0-1802
0-1409
0-1406'
1-49
0-213
0-212
0-117

Diffusion of matter observed by Loschmidt.

Diffusion of momentum (Graham and Meyer).

Copper
Iron
Cane Sugar in water 
(Or in a day
Salt in water

0-2561
l-077> Diffusion of temperature observed by Stefan. 
0-183)
0 00000365) v ..0-3144) J Voit
0-00000116 Fick.



[From the Proceedings of the Royal Society, No. 148, 1873.]

LXIII. On Double Refraction in a Viscous Fluid in Motion.

According to Poisson’s* theory of the internal friction of fluids, a viscous 
fluid behaves as an elastic solid would do if it were periodically liquefied for an 
instant and solidified again, so that at each fresh start it becomes for the 
moment like an elastic solid free from strain. The state of strain of certain 
transparent bodies may be investigated by means of their action on polarized 
light. This action was observed by Brewster, and was shewn by Fresnel to be 
an instance of double refraction.

In 18GG I made some attempts to ascertain whether the state of strain in 
a viscous fluid in motion could be detected by its action on polarized light. I 
had a cylindrical box with a glass bottom. Within this box a solid cylinder 
could be made to rotate. The fluid to be examined was placed in the annular 
space between this cylinder and the sides of the box. Polarized light was 
thrown up through the fluid parallel to the axis, and the inner cylinder was 
then made to rotate. I was unable to obtain any result with solution of gum or 
sirup of sugar, though I observed an effect on polarized light when I compressed 
some Canada balsam which had become very thick and almost solid in a bottle.

It is easy, however, to observe the effect in Canada balsam, which is so 
fluid that it very rapidly assumes a level surface after being disturbed. Put 
some Canada balsam in a wide-mouthed square bottle; let light, polarized in a 
vertical plane, be transmitted through the fluid; observe the light through a 
Nicol’s prism, and turn the prism so as to cut off the light; insert a spatula 
in the Canada balsam, in a vertical plane passing through the eye. Whenever 
the spatula is moved up or down in the fluid, the light reappears on both 
sides of the spatula; this continues only so long as the spatula is in motion. 
As soon as the motion stops, the light disappears, and that so quickly that I 
have hitherto been unable to determine the rate of relaxation of that state of 
strain which the light indicates.

If the motion of the spatula in its own plane, instead of being in the plane

* Journal de VEcole Poly technique, tome xiii. cah. xx. (1829).
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of polarization, is inclined 45° to it, no effect is observed, shewing that the axes 
of strain are inclined 45° to the plane of shearing, as indicated by the theory.

I am not aware that this method of rendering visible the state of strain 
of a viscous fluid has been hitherto employed; but it appears capable of furnishing 
important information as to the nature of viscosity in different substances.

Among transparent solids there is considerable diversity in their action on 
polarized light. If a small portion is cut from a piece of unannealed glass at a 
place where the strain is uniform, the effect on polarized light vanishes as soon 
as the glass is relieved from the stress caused by the unequal contraction of 
the parts surrounding it.

But if a plate of gelatine is allowed to dry under longitudinal tension, a 
small piece cut out of it exhibits the same effect on light as it did before, 
shewing that a state of strain can exist without the action of stress. A film of 
gutta percha which has been stretched in one direction has a similar action on 
light. If a circular piece is cut out of such a stretched film and warmed, it 
contracts in the direction in which the stretching took place.

The body of a sea-nettle has all the appearance of a transparent jelly; and 
at one time I thought that the spontaneous contractions of the living animal 
might be rendered visible by means of polarized light transmitted through its body. 
But I found that even a very considerable pressure applied to the sides of the 
sea-nettle produced no effect on polarized light, and I thus found, what I might 
have learned by dissection, that the sea-nettle is not a true jelly, but consists 
of cells filled with fluid.

On the other hand, the crystalline lens of the eye, as Brewster observed, 
has a strong action on polarized light when strained either by external pressure 
or by the unequal contraction of its parts as it becomes dry.

I have enumerated these instances of the application of polarized light to 
the study of the structure of solid bodies as suggestions with respect to the 
application of the same method to liquids so as to determine whether a given 
liquid differs from a solid in having a very small “rigidity,” or in having a 
small “time of relaxation”*,  or in both ways. Those which, like Canada balsam, act 
strongly on polarized light, have probably a small “ rigidity,” but a sensible “ time 
of relaxation.” Those which do not shew this action are probably much more 
“ rigid,” and owe their fluidity to the smallness of their “ time of relaxation.”

* The “ time of relaxation ” of a substance strained in a given manner is the time required 
for the complete relaxation of the strain, supposing the rate of relaxation to remain the same as 
at the beginning of this time.



[From the Proceedings of the London Mathematical Society, Vol. vi.]

LXIV. On Hamilton's Characteristic Function for a Narrow Beam of Light.

[Read January 8th, 1874.]

Hamilton’s characteristic function V is an expression for the time of pro
pagation of light from the point whose co-ordinates are rcn yn z, to the point 
whose co-ordinates are x,, y2, z,. It is a function of these six co-ordinates of 
the two points. The axes to which the co-ordinates are referred may be 
different for the two points.

In isotropic media the differential equation of V may be written 
/£F\a j /dV\' , (dV\* ,
\dx) + \df =»*....................................(0.

where p is the slowness of propagation at a point in the medium whose co" 
ordinates are x, y, z, and is a function of these co-ordinates. If the time of 
propagation through the unit of length in vacuum be taken as the unit of 
time, then /a is the index of refraction of the medium.

Ihe form of the equation in doubly refracting media, as given by Hamilton, 
is not required for our present purpose.

Let OPQR be the path of a ray of light. Let the part OP be in a homo
geneous medium whose index of refraction is p„ and 
let QR be in a homogeneous medium whose index Fig' L
of refraction is pr Between P and Q the ray may ------
pass through any combination of media, singly or 
doubly refracting.

Let us consider the characteristic function from a point near to OP in the 
first medium to a point near to QR in the second.
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Let the position of the first point be referred to rectangular axes, the 
origin of which is at P} and the axis of zl drawn in the direction PO. The 
axes of x, and yl may be turned at pleasure round that of z, into the position 
most suitable for our calculations.

Let the position of the second point be referred to Q as origin, to QR 
as axis of z,, and to axes of x, and y2 the position of which is of course 
independent of that chosen for xu yx.

Let the ray from the first point O' fa, yu zt) to the second point IV fa, yu z,) 
pass through P> fa, 0), and 0).

We have then ................................................... (2).

Here =pPP’=+fa ■_ +z;.................
and = ^dV = fa - &)’ + (y, - y.^ + z*........................ (4).

Also

V -v I a dV, dV „ dV dV d’V

+ *„ d'V . ,d>Vd^dy,+ dy? + d^ + d&dy, + dy?

. d'V #V d?V , d'V 
d^a + W d^dya + dy^a + dy,dy

(5).
+ terms involving higher powers and products of &, yu ya

Writing, for the sake of brevity, single symbols for the differential coefficients, 
we obtain for the value of VffK up to the terms of the second degree inclusive

M+* {(x, - f,)•+(,, _ ,,)•) + Mg {(x. - f.)’ + (y, - >;,)■} ■

+ +f^a+g.,i)a +4- l^y* (G).
+P^3 + qfa ++ sy,ya + + c2^y2 +

e supposing the course of the ray to be
broken at P' anj (y ulauu ln an arbitrary manner.
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For the actual course of the ray the value of Vm must be stationary as 
regards variations of Hence, differentiating with respect to these
variables, we obtain the four equations

^4-^^ +
\ V

^x + p^ + «x f

+1
< zj ’/id- + &

1

i 
£II

............(7).
+ + («a+-

\ zj £+ c^ ^a= M. -“Z

+ 4- c£t 4-
k Za/ <3

 
“l

l

•F
l*

*
1

I_
__

__
_

Since OPQR is a ray of the system, the co-ordinates y,; y,;
y„ vanish together. Hence f = g, =ft = y, = 0, and if we write A for the deter

minant

Ox + — 
Z,

Ci P <1

Cx \ + &
Z.

r s

P r a3+^ 
za Ct

1 s Ct &a + ^ 
Za

(8).

VaR. = V0B4-W 4- + w; 1......... (10);
++wj,++Wa+

Then *x
/ <ZA . d^\

4-
 

* 
i? / d^ cZA\
\ Xtdp dq)

A - dA\ + 1^ / d\ d^X
^■s; + yidbj ( X1 dr + y'dd

■............. (9)-/ . d^ 
y' dr j>+ 7 za

/ dA 
Xldat

i d^\ 
1 ^J1dcj

/ d^. d&\ 4- z.
(i cZA\

\x'^+ yi ds) + MJ

Substituting in (6), we obtain
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where

This is

nr _h Mi* K____ ]
^z^z^da^ ^dc/ A~Z1 z^db^

_ dS' db
2Z&A dp ’ 2z.zA dq* , „

. ‘ ...........(11).
to = _ ® =

Sz^A dr ’ 2z,z,A ds *
= ^_]^_d^ a =___dk p3 j^d^

3 za z^da,' Vs 2z^dca' za z^dba

the most general form of Hamilton’s characteristic function for a pair 
of points, each of which is near the principal ray. It is a homogeneous 
function of the second degree in x,, x„ y„ the coefficients of which are 
functions of zl and za.

By turning the axes of xt and ya about zl} and those of xa and ya about za, 
we may get rid of two of the ten terms, and so reduce the expression to 
eight.

<
We may, foi example, get rid of ca and c„ and so of and Ga; but since, 

*n Vj j Penc^s ^^g two focal lines, terms may enter which must
be added to 6, and this transformation is not of much use.

It is bettei to begin by getting rid of q and r, by turning xt and y, 
round zlt through an angle 0lt such that

^20^-^^ 
1 ^ + 2a-ra-s’.............

and also turning xa and ya round za, through an angle 0a, such that

1 tan 2g,____^rs 
p' + ^ — q^—S2........

(12),

(13).

For these new axes the values of s and r are reduced to zero.

As an instance of the use of the characteristic function, let us find the 
form of the emergent pencil when that of the incident pencil is given.

• h'C F®nera* Form of the characteristic function of a pencil, whose axis is the 
axis of z, is

_ _ xv y* 
~2A 2C~2B (14),
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us in the Proceedings of the London Mathematical Society, Vol. iv., p. 337 (1873); 
where A, Ji, C are lines from which, by the construction there given, a and b, 
the co-ordinates of the focal lines, and <j>, the angle which the line a makes 
with the plane xz, may be deduced.

Ihe quantities a„ &c., which occur as the coefficients of the characteristic 
function, are the reciprocals of lines.

Let Oi=ai+_, ^, = ^4-1-, 71=Cx + L.
_ 1 o , 1 ,1 ' ................ ...... (15).

0-j a, + , p, o2-j- , y, —

also let aj3, — yf = 8„ and afj — y* = 8,

The condition that the incident pencil defined by A,, B,, C, should be 
conjugate to the emergent pencil defined by A,, B„ C„ is that the value of 
the characteristic function must be the same for all rays of the pencil. Now 
a particular ray of the pencil may be defined either by the co-ordinates x„ y„ z, 
of a point through which it passes in the first medium, or by x„ y„ z, those of 
a point through which it passes in the second medium. In the first case, the 
coefficients of x^, x,y„ and y' will vanish, and in the second those of xj, x^y„ 
and yf If the one set of conditions is fulfilled, the other set will be fulfilled 
also. Hence we may write the conditions either in the form

^=0 d* = o.................................  
da, dp, ' dy, (16),

or in the form

where

— = o dA = o — = 0................................. 
da, dp, dy, (17),

A a. ?! P <1
7i A r s

P r y.
J s y» A

(18),

= 8,3, - a,a^ + 2ay,rs - aM + 2y,a,qs - 2yy, (Ps + P'} + 2ylP2pr| 19y
- P^ - 2p,y^q ~PM + (Ps ~P'T

VOL. H. 49
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The conditions of conjugate pencils may therefore be written, either
a.8, = ^p' - ^pr + 

= frP'1 “ Yi (Ps + ?r) + ................................

or in a form derived from this by exchanging the suffixes , and

(20),

and

If the axes of co-ordinates are turned so that q and r vanish,

A = 8,8, - - 2y ̂ ps - +p*&............................ (21),

^i=^ip2 '
yA= -y^ps - 

= a,®3
(22).

If we write a^X.p, y^Z^ps}
= X2p, ^-Y^, y, = Z, Jps)

then X,, 11> will be inverse to X2, Y2, Za, and will satisfy the equations

+ —1, ^A.,4-1,2^ = 0)
^1^2 + I 11 a = 1, A^ + I j = Oj

(24).

Fig. 3.

The relations between the quantities Yt, Zx and Xa, Yt, Z„ are shewn 
in the annexed figure (Fig. 2).

Let AR = X2 and RB^YX in the same straight line, and R0 = Zi perpen
dicular to AB. With O as centre and unity as radius describe a circle.

Draw CB' the polar of A, and CA' the polar of B, with respect to this 
circle. these lines meet BO and AO in B' and A' respectively. Join A'B' 
cutting RO in ft. Then B'R' = X2, ftA'^Y,, and Oft^Z.,.
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Since OR' is measured downwards, Zs is negative in the case represented 
by the figure. It is manifest that Xlt Y„ and Z, may be found from X,, Y,, 
Z„ by the same process.

The relation between the quantities A, B, C and X, Y, Z is shewn in 
Fig. 3.

Let a be one of the first three oi' the last three of the ten coefficients of 
the characteristic function

Since a is the reciprocal of a line, let BP represent the line - .

Draw PT perpendicular to BP so that PT is to the unit line as a to p.
Then, if PA=A, the line ATC will cut off from the line BC perpen

dicular to BA a part BC equal to X. For

BC=-+ =-p A .p p
In this way X may be found when A is known, or A when X is known.

The same method gives the relations between B and Y and between C and Z.
The geometrical process for finding the focal lines of the emergent pencil, 

when those of the incident pencil are given, is therefore as follows:__
From the distances ax and 6, of the focal lines, and the angle between 

the first of them and the plane of x^, deduce, by the method given in a 
former communication (Vol. iv., p. 337), A„ Blt and C*.

* [Page 337, Vol. II, of this Edition.]

From A,, Blt Clt find, by the construction of Fig. 3, A\, Ylt and Z,.
From Xt, 1 j, Z„ find, by the construction of Fig. 2, Y,, and Z,.
From F„ Z„ find A,, B„ Ct.
From A„ B„ C„ find aa, &„ <£,.

Thus far we have been considering the most general case of a pencil 
passing through any number of media between P and Q, through surfaces of 
any form, the media before incidence at P and after emergence at Q being 
isotropic. When some of these media are doubly refracting, there may be two 
or more emergent pencils corresponding to one incident pencil. Our investigation 
is applicable only to one of these emergent pencils at a time. Each emergent 
pencil must be treated separately.
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In certain cases of practical importance the characteristic function may be 
greatly simplified. For instance, when the axis ray is refracted in one plane 
through the prisms of a spectroscope, the same positions of the axes of x and y 
which make q and r vanish, also make <\ and c2 vanish. The determinant A may 
now be written as the product of two factors

W-4 {M ... <2s’>

If we write u,= p* — a3at ’ »3 =
r"2 i

pJb
H — s'-b^ ’ va — s1 — btb3

yi P^P P^P
p* — axa2 ’ p' — a3a2

& =
/I,S

S^-bK ’ s? — b^

(27),

the characteristic function becomes

V = Fpg + + p& 4" Mi (z2 R3) xt 4- (z^ — x2 (,/iMn 
(zi — (Zj — U3) —Jiji

1 M. (z» - y" 4- (z, - v,) y3 - (y,^ 4- gpj yy, 
“ ^-^(zt-v2)-gxg2

Since in this case the terms of the characteristic function which involve 
xt and x3 are separated from those which involve y, and y„ we may consider 
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either apart from the other. In the case of an optical instrument symmetrical 
about its axis,

^1 = ^, u3 = v3, f = g„ and f-gt............................ (29).
Let Z, be the tangents of the angles which the incident and emergent rays, 
projected on the plane of xz, make with the axis of z.

dV

(^-u^-uj-ff 
dz.

................................ (30),

I, =
(«!-«,) (Za-«a)-Z/a (31).

If the incident ray is parallel to the axis, lx = 0, and the equation of the 
emergent ray is

(za-«a)x1-/^ = 0 ......................................... (32).
The emergent ray cuts the plane of yz where

Z» = Wa.................................................. (33).
This therefore is the position of the second principal focus.

When za = ua+/„ = ............................................ (34),
or the ray is at the same distance from the plane of yz as before incidence. 
This gives the position of the second principal plane.

Its distance from the second principal focus is f, which is called the 
second principal focal length.

When Za = wa+/i and o;a = 0, l^lt..................................(35),
or every ray which passes through this point is equally inclined to the plane 
of yz before and after passing through the instrument. This point is called the 
second focal centre.

The distance of the emergent ray from the axis of z, when z=za, is given 
by the equation

f^ = (z. - M.) x, -1, {(z, - u,) (z, - U.) -ff}.......................(36).
When (z, - u}) (z, - u.) -ff = o.....................................(37),

the tenn multiplied by I, vanishes. Hence all the rays which pass through the 
point (x„ z,) pass through (sca, za), whatever their inclination to the axis. The 
points z, and xJt za are therefore conjugate foci, and x, is the image of x,.
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In. this case x, - z*~u* = 
zi (38);

or, in words,—The distance of the object from, the axis is to the distance of 
the image from the axis as the distance of the object from the first principal 
focus is to the first principal focal length, or as the second principal focal 
length is to the distance of the image from the second principal focus.

Let h, be the distance at which an object of diameter must be placed 
from the eye that it may subtend an angle equal to that which it subtends 
when placed at z„ and seen through the instrument by an eye at z.,

or

1^ = '— when ^ = 0, or h, = ........................ (39),

dx,dx„

h' .................................... (40)-

The quantity h, is that which occurs in Cotes’ Theorem, and to which 
Smith gives the name of the “apparent distance.”

Differentiating h. with respect to z. and za, we find 
dh. _z, — u, dh, _ z, — u, d'h, _ 1
dz. ~ f ’ dz„ “ ~f, ’ dz,dzt ~ fi (41).

When the focal length is infinite, the instrument becomes a telescope, and the 
characteristic function is

V=V+ + similar term in y.

Here m is the angular magnification, and u., u, are the co-ordinates of any 

two conjugate foci. The linear magnification is and the elongation is



[from the Cambridge Philosophical Proceedings, Vol. II.]

LXV. On the Relation of Geometrical Optics to other parts of Mathematics 
and Physics.

1 he study of geometrical optics may be made more interesting to the 
mathematician by treating the relation between the object and the image by 
the methods used in the geometry of homographic figures. The whole theory 
of images formed by simple or compound instruments when aberration is not 
considered is thus reduced to simple proportion, and this is found very con
venient in the practical work of arranging lenses for an experiment, in order 
to produce a given effect.

As a preparation for physical optics the same elementary problems may be 
treated by Hamilton’s method of the Characteristic Function. This function 
expresses, in terms of the co-ordinates of two points, the time taken by light 
in travelling from the one to the other, or more accurately the distance through 
which light would travel in a vacuum during this time, which we may call 
the reduced path of the light between the two points. The relation between 
this reduced path and the quantity which occurs in Cotes’ celebrated but little 
known theorem, is called by Dr Smith the “apparent distance.” The relations 
between the “ apparent distance ” and the positions of the foci conjugate to the 
two points, the principal foci and the principal focal lengths, were explained *;  
and the general form of the characteristic function for a narrow pencil in the 
plane of xr was shewn to be

* [i.e. to the Cambridge Philosophical Society at a meeting when the results of the foregoing 
paper LXIV. were communicated.]

7- F.+nr.+w.+i
^-a^^-a^-ff, 
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where rlt r. are measured from the instrument in opposite directions along the 
axis of the pencil in the media p., p., respectively, and a;,, are perpendicular 
to the axis.

au a.j are the values of rlt rt, for the principal foci, and f, f„ the prin
cipal focal lengths, and

If - a. = f, = £,

the last term of V assumes the form -, and an infinite number of possible 

paths exist between the points fa, r.), and fa, r^, which are therefore con
jugate foci.

Differentiating V with respect to x. and x., we obtain

dx.dx, ~ D (ri-a,) + &c.,

1) is the quantity in Cotes’ Theorems which Dr Smith calls the Apparent 
Distance, or the distance at which the object must be placed that it may 
subtend the same angle as when viewed through the instrument.

We have also
dD

1 dr. a? r., , dD 
f^d^. = ^-r..



[From Nature, Vol. x.]

LXVI. Plateau on Soap-Bubbles*.

On an Etruscan vase in the Louvre figures of children are seen blowing 
bubbles. Those children probably enjoyed their occupation just as modern 
children do. Our admiration of the beautiful and delicate forms, growing and 
developing themselves, the feeling that it is our breath which is turning dirty 
soap-suds into spheres of splendour, the fear lest by an irreverent touch we 
may cause the gorgeous vision to vanish with a sputter of soapy water in our 
eyes, our wistful gaze as we watch the perfected bubble when it sails away 
from the pipe’s mouth to join, somewhere in the sky, all the other beautiful 
things that have vanished before it, assure us that, whatever our nominal age 
may be we are of the same family as those Etruscan children.

Here, for instance, we have a book, in two volumes, octavo, written by 
a distinguished man of science, and occupied for the most part with the theory 
and practice of bubble-blowing. Can the poetry of bubbles survive this ? Will 
not the lovely visions which have floated before the eyes of untold generations 
collapse at the rude touch of Science, and “yield their place to cold material 
laws”? No, we need go no further than this book and its author to learn 
that the beauty and mystery of natural phenomena may make such an impres
sion on a fresh and open mind that no physical obstacle can ever check the 
course of thought and study which it has once called forth.

M. Plateau in all his researches seems to have selected for his study those 
phenomena which exhibit some remarkable beauty of form or colour. In the 
zeal with which he devoted himself to the investigation of the laws of the 
subjective impressions of colour, he exposed his eyes to an excess of light, and

* Statique experimentale et theorique dee Liquides soumie aux eeules Forces moleculaires. Par J. 
Plateau, Professeur ii I'UniversitG de Gand, &c. (Paris, Gauthier-Villars; London, Triibner & Co. • 
Gand et Leipzig, F. Clemm. 1873.)

VOL. II. ca
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has ever since been blind. But in spite of this great loss he has continued 
for many years to carry on experiments such as those described in this book, 
on the forms of liquid masses and films, which he himself can never either see 
or handle, but from which he gathers the materials of science as they are 
furnished to him by the hands, eyes, and minds of devoted friends.

So perfect has been the co-operation with which these experiments have 
been carried out, that there is hardly a single expression in the book to 
indicate that the measures which he took and the colours with which he was 
charmed were observed by him, not in the ordinary way, but through the 
mediation of other persons.

Which, now, is the more poetical idea—the Etruscan boy blowing bubbles 
for himself, or the blind man of science teaching his friends how to blow them, 
and making out by a tedious process of question and answer the conditions 
of the forms and tints which he can never see ?

But we must now attempt to follow our author as he passes from phe
nomena to ideas, from experiment to theory.

The surface which forms the boundary between a liquid and its vapour is 
the seat of phenomena on the careful study of which depends much of our 
future progress in the knowledge of the constitution of bodies. To take the 
simplest case, that of a liquid, say water, placed in a vessel which it does not 
fill, but which contains nothing else. The water lies at the bottom of the 
vessel, and the upper part, originally empty, becomes rapidly filled with the 
vapour of water. The temperature and the pressure—the quantities on which 
the thermal and statical relations of any body to external bodies depend—are 
the same for the water and its vapour, but the energy of a milligramme of 
the vapour greatly exceeds that of a milligramme of the water. Hence the energy 
of a milligramme of water-substance is much greater when it happens to be in 
the upper part of the vessel in the state of vapour, than when it happens 
to be in the lower part of the vessel in the state of water.

Now we find by experiment that there is no difference between the phe
nomena in one part of the liquid and those in another part except in a region 
close to the surface and not more than a thousandth or perhaps a millionth 
of a millimetre thick. In the vapour also, everything is the same, except 
perhaps in a very thin stratum close to the surface. The change in the value 
of the energy takes place in the very narrow region between water and vapour. 
Hence the energy of a milligramme of water is the same all through the mass
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of the water except in a thin stratum close to the surface, where it is some
what greater; and the energy of a milligramme of vapour is the same all 
through the mass of vapour except close to the surface, where it is probably 
less.

The whole energy of the water is therefore, in the first place, that due 
to so many milligrammes of water; but besides this, since the water close to 
the surface has an excess of energy, a correction, depending on this excess, 
must be added. Thus we have, besides the energy of the water reckoned per 
milligramme, an additional energy to be reckoned per square millimetre of 
surface.

The energy of the vapour may be calculated in the same way at so much 
per milligramme, with a deduction of so much per square millimetre of surface. 
The quantity of vapour, however, which lies within the region in which the 
energy is beginning to change its value is so small that this deduction per 
square millimetre is always much smaller than the addition which has to be 
made on account of the liquid. Hence the whole energy of the system may 
be divided into three parts, one proportional to the mass of liquid, one to the 
mass of vapour, and the third proportional to the area of the surface which 
separates the liquid from the vapour.

If the system is displaced by an external agent in such a way that the 
area of the surface of the liquid is increased, the energy of the system is 
increased, and the only source of this increase of energy is the work done by 
the external agent. There is therefore a resistance to any motion which causes 
the extension of the surface of a liquid.

On the other hand, if the liquid moves in such a way that its surface 
diminishes, the energy of the system diminishes, and the diminution of energy 
appears in the form of work done on the external agent which allows the 
surface to diminish. Now a surface which tends to diminish in area and which 
thus tends to draw together any solid framework which forms its boundary, 
is said to have surface-tension. Surface-tension is measured by the force acting 
on one millimetre of the boundary edge. In the case of water at 20° C., the 
tension is, according to M. Quincke, a force of 8'253 milligrammes weight per 
millimetre.

M. Plateau hardly enters into the theoretical deduction of the surface
tension from hypotheses respecting the constitution of bodies. We have there
fore thought it desirable to point out how the fact of surface-tension may be

50—2 



39G PLATEAU ON SOAP-BUBBLES.

deduced from the known fact that there is a difference in energy between a 
liquid and its vapour, combined with the hypothesis, that as a milligramme of 
the substance passes from the state of a liquid within the liquid mass, to that 
of a vapour outside it, the change of its energy takes place, not instantaneously, 
but in a continuous manner.

M. van der Waals, whose academic thesis, Over de Continuiteit van den 
Gas en Vloeistoftoestand*,  is a most valuable contribution to molecular physics, 
has attempted to calculate approximately the thickness of the stratum within 
which this continuous change of energy is accomplished, and finds it for water 
about 0'0000003 millimetre.

* Leiden: A. W. SijthofF, 1873.

Whatever we may think of these calculations, it is at least manifest that 
the only path in which we may hope to arrive at a knowledge of the size 
of the molecules of ordinary matter is to be traced among those phenomena 
which come into prominence when the dimensions of bodies are greatly reduced, 
:is in the superficial layer of a liquid.

But it is in the experimental investigation of the effects of surface-tension 
on the form of the surface of a liquid that the value of M. Plateau’s book is to 
be found. He uses two distinct methods. In the first he prepares a mixture 
of alcohol and water which has the same density as olive oil, then introducing 
some oil into the mixture and waiting till it has, by absorption of a small 
portion of alcohol into itself, become accommodated to its position, he obtains a 
mass of oil no longer under the action of gravity, but subject only to the 
surface-tension of its boundary. Its form is therefore, when undisturbed, 
spherical, but by means of rings, disks, &c., of iron, he draws out or com
presses his mass of oil into a number of different figures, the equilibrium and 
stability of which are here investigated, both experimentally and theoretically.

The other method is the old one of blowing soap-bubbles. M. Plateau, 
however, has improved the art, first by finding out the best kind of soap and 
the best proportion of water, and then by mixing his soapy water with 
glycerine. Bubbles formed of this liquid will last for hours, and even days.

By forming a frame of iron wire and dipping it into this liquid he forms 
a film, the figure of which is that of the surface of minimum area which has 
the frame for its boundary. This is the case when the air is free on both 
sides of the film. If, however, the portions of air on the two sides of the film 
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are not in continuous communication, the film is no longer the surface of absolute 
minimum area, but the surface which, with the given boundary, and inclosing a 
given volume, has a minimum area.

M. Plateau has gone at great length into the interesting but difficult ques
tion of the conditions of the persistence of liquid films. He shews that the 
surface of certain liquids has a species of viscosity distinct from the interior 
viscosity of the mass. This surface-viscosity is very remarkable in a solution of 
saponine. 1 here can be no doubt that a property of this kind plays an impor
tant part in determining the persistence or collapse of liquid films. M. Plateau, 
however, considers that one of the agents of destruction is the surface-tension, 
and that the persistence mainly depends on the degree in which the surface
viscosity counteracts the surface-tension. It is plain, however, that it is rather 
the inequality of the surface-tension than the surface-tension itself which acts as 
a destroying force.

It has not yet been experimentally ascertained whether the tension varies 
according to the thickness of the film. The variation of tension is certainly 
insensible in those cases which have been observed.

If, as the theory seems to indicate, the tension diminishes when the thick
ness of the film diminishes, the film must be unstable, and its actual persistence 
would be unaccountable. On the other hand, the theory has not as yet been 
able to account for the tension increasing as the thickness diminishes.

One of the most remarkable phenomena of liquid films is undoubtedly the 
formation of the black spots, which were described in 1G72 by Hooke, under 
the name of holes.

Fusinieri has given a very exact account of this phenomenon as he observed 
it in a vertical film protected from currents of air. As the film becomes thinner, 
owing to the gradual descent of the liquid of which it is formed, certain portions 
become thinner than the rest, and begin to shew the colours of thin plates. 
These little spots of colour immediately begin to ascend, dragging after them 
a sort of train like the tail of a tadpole. These tadpoles, as Fusinieri calls 
them, soon begin to accumulate near the top of the film, and to range them
selves in horizontal bands according to their colours, those which have the 
colour corresponding to the smallest thickness ascending highest.

In this way the colours become arranged in horizontal bands in beautiful 
gradation, exhibiting all the colours of Newton’s scale. When the frame of the 
film is made to oscillate, these bands oscillate like the strata formed by a 
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series of liquids of different densities. This shews that the film is subject to 
dynamical conditions similar to those of such a liquid system. The liquid is 
subject to the condition that the volume of each portion of it is invariable, 
and the motion arises from the fact that by the descent of the denser portions 
(which is necessarily accompanied by the rise of the rarer portions) the gravi
tational potential energy of the system is diminished. In the case of the film, 
the condition which determines that the descent of the thicker portions shall 
entail the rise of the thinner portions must be that each portion of the film 
offers a special resistance to an increase or diminution of area. This resistance 
probably forms a large part of the superficial viscosity investigated by M. Plateau, 
which retards the motion of his magnetic needle, and evidently is far greater 
than the viscosity of figure, in virtue of which the film resists a shearing motion.

The coloured bands gradually descend from the top of the film, presenting 
at first a continuous gradation of colour, but soon a remarkable black, or nearly 
black, band begins to form at the top of the film, and gradually to extend 
itself downwards. The lower boundary of this black band is sharply defined. 
There is not a continuous gradation of colour according to the arrangement in 
Newton’s table, but the black appears in immediate contact with the white 
or even the yellow of the first order, and M. Fusinieri has even observed it 
in contact with bands of the third order.

Nothing can shew more distinctly that there is some remarkable change 
in the physical properties of the film, when it is of a thickness somewhat greater 
than that of the black portion. And in fact the black part of the film is in 
many other respects different from the rest. It is easy, as Leidenfrost tells us, 
to pass a solid point through the thicker part of the film, and to withdraw 
it, without bursting the film, but if anything touches the black part, the film 
is shattered at once. The black portion does not appear to possess the mobility 
which is so apparent in the coloured parts. It behaves more like a brittle solid, 
such as a Prince Rupert’s drop, than a fluid. Its edges are often very irregular, 
and when the curvature of the film is made to vary, the black portions some
times seem to resist the change, so that their surface has no longer the same 
continuous curvature as the rest of the bubble. We have thus numerous indi
cations of the great assistance which molecular science is likely to derive from 
the study of liquid films of extreme tenuity.

We have no time or inclination to discuss M. Plateau’s work in a critical 
spirit. The directions for making the experiments are very precise, and if some



PLATEAU ON SOAP-BUBBLES. 399

times they appear tedious on account of repetitions, we must remember that it 
is by words, and words alone, that the author can learn the details of the 
experiment which he is performing by means of the hands of his friends, and 
that the repetition of phrases must in his case take the place of the ordinary 
routine of a careful experimenter. The description of the results of mathematical 
investigation, which is a most difficult but at the same time most useful species 
of literary composition, is a notable feature of this book, and could hardly be 
better done. The mathematical researches of Lindeldf, Lamarle, Scherk, Riemann, 
&c., on surfaces of minimum area, deserve to be known to others besides pro
fessed mathematicians, and M. Plateau deserves our thanks for giving us an 
intelligible account of them, and still more for shewing us how to make them 
visible with his improved soap-suds.

In the speculative part of the book, where the author treats of the causes 
of the phenomena, there is of course more room for improvement, as there 
always must be when a physicist is pushing his way into the unknown regions 
of molecular science. In such matters everything human, at least in our century, 
must be very imperfect, but for the same reason any real progress, however 
small, is of the greater value.



[From Nature, Vol. X.]

LXVIL Groves “ Correlation of Physical Forces*."

* The Correlation of Physical Forces. Sixth edition. With other Contributions to Science. By 
the Hon. Sir W. R. Grove, M.A., F.R.S., one of the judges of the Court of Common Pleas. (London: 
Longmans, 1874.)

There are few instances in which anyone whose life has not been exclu
sively scientific has made such valuable contributions to science as those of Sir 
W. R. Grove. His nitric acid battery, to the invention of which he was led, 
not by accident, but by a course of reasoning, which in the year 1839 was as 
new as it was original, is a contribution to science the value of which is proved 
by its still surviving and continuing in daily use in every laboratory as1 the 
most powerful generator of electric currents, while hundreds of batteries invented 
since that of Grove have fallen into disuse, and become extinct in the struggle 
for scientific existence.

The gas battery, though not of such practical importance, is still of great 
scientific interest, and the collection which we have before us of those contri
butions to science which took the form of papers, tempts us to indulge in 
speculations as to the magnitude of the results which would have accrued 
to science if so powerful a mind could have been continuously directed with 
undivided energy towards some of the great questions of physics.

But the main feature of the volume is that from which it takes its name, 
the essay on the Correlation of Physical Forces, the views contained in which 
were first advanced in a lecture at the London Institution in January 1842, 
printed by the proprietors, and subsequently more fully developed in a course 
of lectures in 1843, published in abstract in the Literary Gazette. This essay 
has a value peculiai’ to itself. Though it has long ago accomplished the main 
point of its scientific mission to the world, it will always retain its place in 
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the memory of the student of human thought, as one of the documents which 
serv e foi the construction of the history of science.

It is not by discoveries only, and the registration of them by learned 
societies, that science is advanced. The true seat of science is not in the 
volume of Transactions, but in the living mind, and the advancement of science 
consists in the direction of men’s minds into a scientific channel; whether this 
is done by the announcement of a discovery, the assertion of a paradox the 
invention of a scientific phrase, or the exposition of a system of doctrine It 
is for the historian of science to determine the magnitude and direction of the 
impulse communicated by either of these means to human thought.

But what we require at any given epoch for the advancement of science 
is not merely to set men thinking, but to produce a concentration of thought 
in that part of the field of science which at that particular season ought to be 
cultivated. In the history of science we find that effects of this kind have often 
been produced by suggestive books, which put into a definite, intelligible, and 
communicable form, the guiding ideas that are already working in the minds 
of men of science, so as to lead them to discoveries, but which they cannot yet 
shape into a definite statement.

In the first half of the present century, when what is now called the 
principle of the conservation of energy was as yet unknown by name, it “flung 
its vague shadow back from the depths of futurity,” and those who had greater 
or less understanding of the times sketched out with greater or less clearness 
their view of the form into which science was shaping itself.

Some of these addressed themselves to the advanced cultivators of science, 
speaking, of course, in learned phraseology; but others appealed to a larger 
audience, and spoke in language which they could understand. Mrs Somerville’s 
book on the “Connection of the Physical Sciences” was published in 1834, and 
had reached its eighth edition in 1849. This fact is enough to shew that there 
already existed a widespread desire to be able to form some notion of physical 
science as a whole.

But when we examine her book in order to find out the nature of the 
connexion of the physical sciences, we are at first tempted to suppose that it is 
due to the art of the bookbinder, who has bound into one volume such a quantity 
of information about each of them. What we find, in fact, is a series of expo- 
sitions of different sciences, but hardly a word about their connexion. The little 
that is said about this connexion has reference to the mutual dependence of
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the different sciences on each other, a knowledge of the elements of one being 
essential to the successful prosecution of another. Thus physical astronomy 
requires a knowledge of dynamics, and the practical .astronomer must learn a 
certain amount of optics in order to understand atmospheric refraction and the 
adjustment of telescopes. The sciences are also shewn to have a common method, 
namely, mathematical analysis; so that analytical methods invented for the in
vestigation of one science are often useful in another.

The unity shadowed forth in Mrs Somerville’s book is therefore a unity of 
the method of science, not a unity of the processes of nature.

Sir W. Grove’s essay may be fairly called a popular book, as it has reached 
its sixth edition. It is, therefore, not merely a record of the speculations of 
the author, but an index of the state of scientific thought among a large number 
of readers. It has not the universal facility and occasional felicity of exposition 
which distinguish Mrs Somerville’s writings. No one could use it as a text
book of any science, or even as an aid to the cultivation of the art of scientific 
conversation. The design of the book is to shew that of the various forms of 
energy existing in nature, any one may be transformed into any other, the one 
form appearing as the other disappears. This is what is meant in the essay 
by the “correlation of the physical forces,” and the whole essay is an exposition 
of this fact, each of the physical forces in turn being taken as the starting- 
point, and employed as the source of all the others.

We are sorry that we are not at present able to refer to the early reviews 
of the essay as indicating the reception given to the doctrine by the literary 
and scientific public at the time of its original publication. It has certainly 
exercised a very considerable effect in moulding the mass of what is called 
scientific opinion, that is to say, the influence which determines what a scientific 
man shall say when he has to make a statement about a science which he does 
not understand. Many things in the essay which were then considered contrary 
to scientific opinion, and were therefore objected to, have since then become 
themselves part of scientific opinion, so that the objections now appear unin
telligible to the rising generation of the scientific public.

Helmholtz's essay “On the Conservation of Force,” published in 1847, un
doubtedly masters a far greater step in science, but the immediate influence 
was confined to a small number of trained men of science, and it had little 
direct effect on the public mind.

The various papers of Mayer contain matter calculated to awaken an interest 
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in the transformation of energy even in persons not exclusively devoted to science, 
but they were long unknown in this country, and produced little direct effect, 
even in Germany, at the time of their publication.

Ihe lapid development of thermodynamics, and of other applications of the 
principle of the conservation of energy, at the beginning of the second half of 
this century, belongs to a later stage of the history of science than that with 
which we have to do.

Io form a just estimate of the value of Sir W. Grove’s work we must 
regard it as the instrument by which certain scientific ideas were diffused over 
a large area, in language sufficiently appropriate to prevent misapprehension, and 
yet sufficiently familiar to be listened to by persons who would recoil with horror 
from any statement in which literary convention is sacrificed to precision.

It is worth while, however, to take note of the progress of evolution by 
which the words of ordinary language are gradually becoming differentiated and 
rendered scientifically precise. I he fathers of dynamical science found a number 
of words in common use expressive of action and the results of action, such as 
force, power, action, impulse, impetus, stress, strain, work, energy, &c. They also 
had in their minds a number of ideas to be expressed, and they appropriated 
these words as they best could to express these ideas. But the equivalent 
words Force Vis, Kraft, came most easily to hand, so that we find them com
pelled to carry almost all the ideas above mentioned, while the other words 
which might have borne a portion of the load were long left out of scientific 
language, and retained only their more or less vague meanings as ordinary words.

Thus we have the expressions F7s accekratrix, Vis motrix, Vis viva, Vis 
mortua, and even 17s inertia, in every one of which, except the second and 
fourth, the word Vis is used in a sense radically different from that in which 
it is used in the other expressions.

Confusion may perhaps be avoided in scientific works when read by scientific 
students, by means of a careful appropriation of epithets such as those which 
distinguish the meanings of the word Fis, but as soon as science becomes popu
larised, unless its nomenclature is reformed and arranged upon a better principle, 
the ideas of popular science will be more confused than those of so-called popular 
ignorance.

Thus the “ Physical Forces,” whose correlation is discussed in the essay 
before us, are Motion, Heat, Electricity, Light, Magnetism, Chemical Affinity, and 
“other modes of force.” According to the definition of force, as it has been

51—2 
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laid down during the last two centuries in treatises on dynamics, not one of 
these, except perhaps chemical affinity, can be admitted as a force. According 
to that definition, “ force is that which produces change of motion, and is 
measured by the change of motion produced.”

Newton himself reminds us that force exists only so long as it acts. Its 
eflects may remain, but the force itself is essentially transitive. Hence, when 
we meet with such phrases as Conservation of Force, Persistence of Force, 
and the like, we must suppose the word Force to be used in a sense radically 
different from that adopted by scientific men from Newton downwards. In all 
these cases, and in the phrase “The Physical Forces” as applied to heat, we 
are now, thanks to Dr Thomas Young, able to use the word Energy instead 
of Force, for this word, according to its scientific definition as “ the capacity 
for performing work,” is applicable to all these cases. The confusion has extended 
even to the metaphorical use of the word Force. Thus, it may be a legitimate 
metaphor to speak of the force of public opinion as being brought to bear on 
a statesman so as to exert an overpowering pressure upon him, because here 
we have an action tending to produce motion in a particular direction; but 
when we speak of “the Queen’s Forces,” we use the term in a sense as 
unscientific as when we speak of the Physical Forces. The author, in his con
cluding remarks, points out the confusion of terms which embarrassed him in 
his endeavours to enunciate scientific propositions, on account of the imper
fection of scientific language. This, he tells us, “ cannot be avoided without a 
neology which I have not the presumption to introduce or the authority to 
enforce.”

Such a confession, proceeding from so great a master of the art of “ putting 
things,” is a most valuable testimony to the importance of the study and 
special cultivation of scientific language; and a comparison of many passages in 
the essay with the corresponding statements in more recent books of far inferior 
power, will shew how much may be gained by the successful introduction of 
appropriate neologies. What appeared mysterious and even paradoxical to the 
giant, labouring among rough-hewn words, dwindles into a truism in the eyes 
of the child, born heir to the palace of truth, for the erection of which the 
giant has furnished the materials.

Thus the appropriation of the word “Mass” to denote the quantity of 
matter as defined by the amount of force required to produce a given accelera
tion, has placed the students of the present day on a very different level from 
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those who had to puzzle out the meaning of the phrase Vis inertia} by com
bining the explanation of Vis as force, with that of inertia as laziness. In the 
same way the word “ stress ” as an equivalent for “ action and reaction,” and 
as a generic name for pressure, tension, &c., will save future generations a great 
deal of trouble ; and the distinction between the possession of energy and the 
act of doing work, which is now so familiar to us, would have obviated several 
objections to the doctrine of the essay, which are founded on statements in 
which the production of one form of energy and the maintenance of another are 
treated as if they were operations of the same kind. We read at p. 163:— 

1 hus, a voltaic battery, decomposing water in a voltameter, while the same 
current is employed at the same time to make (maintain) an electromagnet, 
gives nevertheless in the voltameter an equivalent of gas, oi* decomposes an 
equivalent of an electrolyte for each equivalent of decomposition in the battery 
cells, and will give the same ratios if the electro-magnet be removed.”

Here the maintenance of a magnet is a thing of a different order from 
the decomposition of an electrolyte; the first is maintenance of energy, the other 
is doing work. This is well explained in the essay; but if appropriate language 
had been used from the first, the objection could never have been put into form.



[From Nature, Vol. x.]

LXVIir. On the application of Kirchhoff's Rules for Electric Circuits to the 
Solution of a Geometrical Problem.

The geometrical problem is as follows :—Let it be required to arrange a 
system of points so that the straight lines joining them into rows and columns 
shall form a network such that the sum of the squares of all these joining 
lines shall be a minimum, the first and last points of the first and last row 
being any four points given in space. The network may be regarded as a 
kind of extensible surface, each thread of which has a tension in each segment 
proportioned to the length of the segment. The problem is thus expressed as 
a statical problem, but the direct solution would involve the consideration of a 
large number of unknown quantities.

This number may be greatly reduced by means of the analogy between 
this problem and the electrical problem of determining the currents and po
tentials in the case of a network of wire having square meshes, one corner of 
which is kept at a unit potential, while that of the other three corners is zero. 
This problem having been solved by Kirchhoffs method, the position of any 
point P in the geometrical problem with reference to the given points A, B, 
C, D, is by finding the values of the potentials pa, pb, pe, pt of the corre
sponding point in the electric problem when the corners a, b, c, d respectively 
are those of unit potential. The position of P is then found by supposing 
p„, Pb, Ik, Pt placed at A, B, C, D respectively, and determining P as the 
centre of gravity of the four masses.



[From Nature, Vol. X.]

LXIX. Van der IVdctZs on the Continuity of the Gaseous and Liquid States*.

That the same substance at the same temperature and pressure can exist 
in two very different states, as a liquid and as a gas, is a fact of the highest 
scientific importance, for it is only by the careful study of the difference be
tween these two states, the conditions of the substance passing from one to the 
other, and the phenomena which occur at the surface which separates a liquid 
from its vapour, that we can expect to obtain a dynamical theory of liquids. 
A dynamical theory of “ perfect ” gases is already in existence ; that is to say, 
we can explain many of the physical properties of bodies when in an extremely 
rarefied state by supposing their molecules to be in rapid motion, and that 
they act on one another only when they come very near one another. A 
molecule of a gas, according to this theory, exists in two very different states 
during alternate intervals of time. During its encounter with another molecule, 
an intense force is acting between the two molecules, and producing changes 
in the motion of both. During the time of describing its free path, the mole
cule is at such a distance from other molecules that no sensible force acts 
between them, and the centre of mass of the molecule is therefore moving with 
constant velocity and in a straight line.

If we define as a perfect gas a system of molecules so sparsely scattered 
that the aggregate of the time which a molecule spends in its encounters with 
other molecules is exceedingly small compared with the aggregate of the time 
which it spends in describing its free paths, it is not difficult to work out the 
dynamical theory of such a system. For in this case the vast majority of the 
molecules at any given instant are describing their free paths, and only a small

Over de Continuiteit van den Gas en Vloeistofloestand. Academisch proefsckrifl. Door Johannes 
Diderik van der Waals. (Leiden: A. W. Sijthofl', 1873.)
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fraction of them are in the act of encountering each other. We know that 
dining an encounter action and reaction are equal and opposite, and we assume, 
with Clausius, that on an average of a large number of encounters the pro
portion in which the kinetic energy of a molecule is divided between motion 
of translation of its centre of mass and motions of its parts relative to this 
point approaches some definite value. This amount of knowledge is by no means 
sufficient as a foundation for a complete dynamical theory of what takes place 
during each encounter, but it enables us to establish certain relations between 
the changes of velocity of two molecules before and after their encounter.

While a molecule is describing its free path, its centre of mass is moving 
with constant velocity in a straight line. The motions of parts of the molecule 
relative to the centre of mass depend, when it is describing its free path, only 
on the forces acting between these parts, and not on the forces acting between 
them and other molecules which come into play during an encounter. Hence 
the theory of the motion of a system of molecules is very much simplified if 
we suppose the space within which the molecules are free to move to be so 
large that the number of molecules which at any instant are in the act of 
encountering other molecules is exceedingly small compared with the number of 
molecules which are describing their free paths. The dynamical theory of such 
a system is in complete agreement with the observed properties of gases when 
in an extremely rare condition.

But if the space occupied by a given quantity of gas is diminished more 
and more, the lengths of the free paths of its molecules will also be diminished, 
and the number of molecules which are in the act of encounter will bear a 
larger proportion to the number of those which are describing free paths, till at 
length the properties of the substance will be determined far more by the 
nature of the mutual action between the encountering molecules than by the 
nature of the motion of a molecule when describing its free path. And we 
actually find that the properties of the substance become very different after 
it has reached a certain degree of condensation. In the rarefied state its pro
perties may be defined with considerable accuracy in terms of the laws of Boyle, 
Charles, Gay-Lussac, Dulong and Petit, &c., commonly called the “ gaseous 
laws.” In the condensed state the properties of the substance are entirely 
different, and no mode of stating these properties has yet been discovered 
having a simplicity and a generality at all approaching to that of the “ gaseous 
laws.” According to the dynamical theory this is to be expected, because in 
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the condensed state the properties of the substance depend on the mutual 
action of molecules when engaged in close encounter, and this is determined 
by the particular constitution of the encountering molecules. We cannot there- 
fore extend the dynamical theory from the rarer to the denser state of sub
stances without at the same time obtaining some definite conception of the 
nature of the action between molecules when they are so closely packed that 
each molecule is at every instant so near to several others that forces of great 
intensity are acting between them.

Ihe experimental data for the study of the mutual action of molecules 
are principally of two kinds. In the first place we have the experiments of 
Regnault and others on the relation between the density, temperature, and 
pressure of various gases. Ihe field of research has been recently greatly 
enlarged by Dr Andrews in his exploration of the properties of carbonic acid 
at very high pressures. Experiments of this kind, combined with experiments 
on specific heat, on the latent heat of expansion, or on the thermometric effect 
on gases passing through porous plugs, furnish us with the complete theory 
of the substance, so far as pure thermodynamics can carry us.

For the further study of molecular action we require experiments on the 
rate of diffusion. There are three kinds of diffusion—that of matter, that of 
visible motion, and that of heat. The inter-diffusion of gases of different kinds, 
and the viscosity and thermal conductivity of a gaseous medium, pure or mixed, 
enable us to estimate the amount of deviation which each molecule experiences 
on account of its encounter with other molecules.

M. Van der Waals, in entering on this very difficult inquiry, has shewn 
his appreciation of its importance in the present state of science ; many of his 
investigations are conducted in an extremely original and clear manner; and 
ho is continually throwing out new and suggestive ideas; so that there can be 
no doubt that his name will soon be among the foremost in molecular science.

He does not, however, seem to be equally familiar, as yet, with all parts 
of the subject, so that in some places, where he has borrowed results from 
Clausius and others, he has applied them in a manner which appears to me 
erroneous.

He begins with the very remarkable theorem of Clausius, that in stationary 
motion the mean kinetic energy of the system is equal to the mean virial. 
As in this country the importance of this theorem seems hardly to be appre
ciated, it may be as well to explain it a little more fully.

vol. ii. 52
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When the motion of a material system ig such that the sum of the 
moments of inertia of the system about three axes at right angles to each 
other through its centre of mass does not vary by more than small quantities 
from a constant value, the system is said to be in a state of stationary motion. 
Ihe motion of the solar system satisfies this condition, and so does the motion 
of the molecules of a gas contained in a vessel.

The kinetic energy of a particle is half the product of its mass into the 
square of its velocity, and the kinetic energy of a system is the sum of the 
kinetic energy of its parts.

When an attraction or repulsion exists between two points, half the pro
duct of this stress into the distance between the two points is called the 
Virial of the stress, and is reckoned positive when the stress is an attraction, 
and negative when it is a repulsion. The virial of a system is the sum of 
the virial of the stresses which exist in it.

If the system is subjected to the external stress of the pressure of the 
sides of a vessel in which it is contained, the amount of virial due to this 
external stress is three halves of the product of the pressure into the volume 
of the vessel.

The virial due to internal stresses must be added to this.
The theorem of Clausius may now be written—

IS (mv1) = %pV+(Rr).
The left-hand member denotes the kinetic energy.
On the right hand, in the first term, p is the external pressure on unit 

of area, and V is the volume of the vessel.
The second term represents the virial arising from the action between every 

pair of particles, whether belonging to different molecules or to the same mole
cule. R is the attraction between the particles, and r is the distance between 
them. The double symbol of summation is used because every pair of points 
must be taken into account, those between which there is no stress contributing 
of course, nothing to the virial.

As an example of the generality of this theorem, we may mention that 
in any framed structure consisting of struts and ties, the sum of the products 
of the pressure in each strut into its length, exceeds the sum of the products 
of the tension of each tie into its length, by the product of the weight of 
the whole structure into the height of its centre of gravity above the founda
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tions. (See a paper on “ Reciprocal Figures, &c.” Trans. R. S. Edin., Vol. xxvi. 
p. 14. 1870.)*

In gases the virial is very small compared with the kinetic energy. Hence, 
if the kinetic energy is constant, the product of the pressure and the volume 
remains constant, this is the case for a gas at constant temperature. Hence 
we might be justified in conjecturing that the temperature of any one gas is 
determined by the kinetic energy of unit of mass.

Ihe theory of the exchange of the energy of agitation from one body to 
another is one of the most difficult parts of molecular science. If it were 
fully understood, the physical theory of temperature would be perfect. At 
present we know the conditions of thermal equilibrium only in the case of 
gases in which encounters take place between only a pair of molecules at once. 
In this case the condition of thermal equilibrium is that the mean kinetic 
energy due to the agitation of the centre of mass of a molecule is the same, 
whatever be the mass of the molecule, the mean velocity being consequently 
less for the more massive molecules.

With respect to substances of more complicated constitution, we know, as 
jet, nothing of the physical condition on which their temperature depends, 
though the researches of Boltzmann on this subject are likely to result in some 
valuable discoveries.

M. Van der Waals seems, therefore, to be somewhat too hasty in assuming 
that the temperature of a substance is in every case measured by the energy 
of agitation of its individual molecules, though this is undoubtedly the case 
with substances in the gaseous state.

Assuming, however, for the present that the temperature is measured by 
the mean kinetic energy of a molecule, we obtain the means of determining the 
virial by observing the deviation of the product of the pressure and volume 
from the constant value given by Boyle’s law.

It appears by Dr Andrews experiments that when the volume of carbonic 
acid is diminished, the temperature remaining constant, the product of the 
volume and pressure at first diminishes, the rate of diminution becoming more 
and more rapid as the density increases. Now, the virial depends on the 
number of pairs of molecules which are at a given instant acting on one 
another, and this number in unit of volume is proportional to the square of 
the density. Hence the part of the pressure depending on the virial increases

* [Vol. n. P. 176.] 
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as the square of the density, and since, in the case of carbonic acid, it 
diminishes the pressure, it must be of the positive sign, that is, it must arise 
from attraction between the molecules.

But if the volume is still further diminished, at a certain point lique
faction begins, and from this point till the gas is all liquefied no increase of 
pressure takes place. As soon, however, as the whole substance is in the liquid 
condition, any further diminution of volume produces a great rise of pressure, so 
that the product of pressure and volume increases rapidly. This indicates negative 
virial, and shews that the molecules are now acting on each other by rejiulsion.

This is what takes place in carbonic acid below the temperature of 30'92° C. 
Above that temperature there is first a positive and then a negative virial, 
but no sudden liquefaction.

Similar phenomena occur in all the liquefiable gases. In other gases we are 
able to trace the existence of attractive force at ordinary pressures, though the 
compression has not yet been carried so far as to shew any repulsive force. 
In hydrogen the repulsive force seems to prevail even at ordinary pressures. 
This gas has never been liquefied, and it is probable that it never will be 
liquefied, as the attractive force is so weak.

We have thus evidence that the molecules of gases attract each other at 
a certain small distance, but when they are brought still nearer they repel 
each other. This is quite in accordance with Boscovich’s theory of atoms as 
massive centres of force, the force being a function of the distance, and 
changing from attractive to repulsive, and back again several times, as the 
distance diminishes. If we suppose that when the force begins to be repulsive 
it increases very rapidly as the distance diminishes, so as to become enormous 
if the distance is less by a very small quantity than that at which the force 
first begins to be repulsive, the phenomena will be precisely the same as those 
of smooth elastic spheres.

M. Van der Waals makes his molecules elastic spheres, which, when not in 
contact, attract each other. His treatment of the “ molecular pressure ” arising 
from their attraction seems ingenious, and on the whole satisfactory, though he 
has not attempted a complete calculation of the attractive virial in terms of 
the law of force.

His treatment of the repulsive virial, however, shews a departure from the 
principles on which his investigation is founded. He considers the effect of the 
size of the molecules in diminishing the length of their “free paths,” and he 



OF THE GASEOUS AND LIQUID STATES. 413

shews that this effect, in the case of very rare gases, is the same as if the 
volume of the space in which the molecules are free to move had been 
diminished by four times the sum of the volumes of the molecules themselves. 
He then substitutes for V, the volume of the vessel in Clausius’ formula, this 
volume diminished by four times the molecular volume, and thus obtains the 
equation—

(p + p,)(P-6) = 2?(l + aO>

where p is the externally applied pressure, y is the molecular pressure 

arising from attraction between the molecules, which varies as the square of 
the density, or inversely as the square of the volume. The first factor is thus 
what he considers the total effective pressure. V is the volume of the vessel, 
and & is four times the volume of the molecules. The second factor is there
fore the “effective volume” within which the molecules are free to move.

The right-hand member expresses the kinetic energy, represented by the 
absolute temperature, multiplied by a quantity, 11, constant for each gas.

The results obtained by M. Van der Waals by a comparison of this equa
tion with the determinations of Regnault and Andrews are very striking, and 
would almost persuade us that the equation represents the true state of the 
case. But though this agreement would be strong evidence in favour of the 
accuracy of an empirical formula devised to represent the experimental results, 
the equation of M. Van der Waals, professing as it does to be derived from 
the dynamical theory, must be subjected to a much more severe criticism.

It appears to me that the equation does not agree with the theorem of 
Clausius on which it is founded.

In that theorem p is the pressure of the sides of the vessel, and V is 
the volume of the vessel. Neither of these quantities is subject to correction.

The assumption that the kinetic energy is determined by the temperature 
is true for perfect gases, and we have no evidence that any other law holds 
for gases, even near their liquefying point.

The only source of deviation from Boyle’s law is therefore to be looked 
for in the term (Hr), which expresses the virial. The effect of the repul
sion of the molecules, causing them to act like elastic spheres, is therefore to 
be found by calculating the virial of this repulsion.



VAN DER WAALS ON THE CONTINUITY414

Neglecting the effect of attraction, I find that the effect of the impulsive 
repulsion reduces the equation of Clausius to the form—

P V= 3^ W) (1 - 2 log. (1 - 8 +17 - &c.U , 
I \ O- cr /]

where a is the density of the molecules and p the mean density of the medium.
Ihe form of this equation is quite different from that of M. Van der 

Waals, though it indicates the effect of the impulsive force in increasing the 
piessure. It takes no account of the attractive force, a full discussion of which 
would carry us into considerable difficulties.

At a constant temperature the effect of the attractive virial is to diminish 
the pressure by a quantity varying as the square of the density, as long as 
the encounters of the molecules are, on the whole, between two at a time, 
and not between three or more. The effect of the attraction in deflecting the 
paths of the molecules is to make the number of molecules which at any given 
instant are at distances between r and r + dr of each other greater than the 
number in an equal volume at a greater distance in the proportion of the 
velocities corresponding to these distances. As the temperature rises, the volume 
being constant, the ratio of these velocities approaches to unity, so that the 
distribution of molecules according to distance becomes more uniform, and the 
virial is thus diminished.

If there is a virial arising from repulsive forces acting through a finite 
distance, a rise of temperature will increase the amount of this kind of virial.

Hence a rise of temperature at constant volume will produce a greater 
increase of pressure than that given by the law of Charles.

The isothermal lines at higher temperatures will exhibit less of the dimi
nution of pressure due to attraction, and as the density increases will shew 
more of the increase of pressure due to repulsion.

I must not, however, while taking exception to part of the work of 
M. Van der Waals, forget to add that to him alone are due the suggestions 
which led me to examine the theory of virial more carefully in order to explore 
the continuity of the liquid and the gaseous states.

I cannot now enter into the comparison of his theoretical results with the 
experiments of Andrews, but I would call attention to the able manner in 
which he expounds the theory of capillarity, and to the remarkable phenomena 
of the surface-tension of gases which he tells (p. 38) has been observed by
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Bosscha in tobacco smoke. As tobacco smoke is simply warm air with a slight 
excess of carbonic acid carrying solid particles along with it, the change of 
properties at the surface of the cloud must be very slight compared with that 
at the surface where two really different gases first come together. If, there
fore, the phenomenon observed by Bosscha is a true instance of surface-tension 
we may expect to discover much more striking phenomena at the meeting-place 
of different gases, if we can make our observations before the surface of dis
continuity has been obliterated by the inter-diffusion of the gases.



[From Cambridge Philosophical Society Proceedings, Vol. n. 365.]

LXX. On the Centre of Motion of the Eye.

The series of positions which the eye assumes as it is rolled horizontally 
have been investigated by Donders (Donders and Doijer, Derde Jaarlijksch 
Verslag betr. het Nederlandsch Gasthuis voor Ooglijders, Utrecht, 18G2), and 
recently by Mr J. L. Tupper (Proc. R. S., June 18, 1874). The chief difficulty 
in the investigation consists in fixing the head while the eyeball moves. 
The only satisfactory method of obtaining a system of co-ordinates fixed with 
reference to the skull is that adopted by Helmholtz (Ilandbuch der Physiolo- 
gischen Optik, p. 517), and described in his Croonian Lecture.

A piece of wood, part of the upper surface of which is covered with 
warm sealingwax, is placed between the teeth and bitten hard till the sealing- 
wax sets and forms a cast of the upper teeth. By inserting the teeth into 
their proper holes in the sealingwax the piece of wood may at any time be 
placed in a determinate position relatively to the skull.

By this device of Helmholtz the patient is relieved from the pressure of 
screws and clamps applied to the skin of his head, and he becomes free 
to move his head as he likes, provided he keeps the piece of wood between 
his teeth.

If we can now adjust another piece of wood so that it shall always have 
a determinate position with respect to the eyeball, we may study the motion 
of the one piece of wood with respect to the other as the eye moves about.

For this purpose a small mirror is fixed to a board, and a dot is marked
on the mirror. If the eye, looking straight at the image of its own pupil
in the mirror, sees the dot in the centre of the pupil, the normal to the
mirror through the dot is the visual axis of the eye—a determinate line.

A right-angled prism is fixed to the board near the eye in such a position
that the eye sees the image of its own cornea in profile by reflexion, first
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at the prism, and then at the mirror. A vertical line is drawn with black 
sealingwax on the surface of the prism next the eye, and the board is moved 
towards or from the eye till this line appears as a tangent to the front of 
the cornea, while the dot still is seen to cover the centre of the image of 
the pupil. The only way in which the position of the board can now vary 
with respect to the eye is by turning round the line of vision as an axis, 
and this is prevented by the board being laid on a horizontal platform carried 
by the teeth.

If now the eye is brought into two different positions and the board 
moved on the platform, so as to be always in the same position relative to 
the eye, we have to find the centre about which the board might have 
turned so as to get from one position to the other.

For this purpose two holes are made in the platform, and a needle thrust 
through the holes is made to prick a card fastened to the upper board. We 
thus obtain two pairs of points, AB for the first position, and ab for the 
second.

The ordinary rule for determining the centre of motion is to draw lines 
bisecting Aa and Bb at right angles. The intersection of these is the centre 
of motion. This construction fails when the centre of motion is in or near 
the line AB, for then the two lines coincide. In this case we may produce 
AB and ab till they meet, and draw a line bisecting the angle externally. 
This line will pass through the centre of motion as well as the other two, 
and when they coincide it intersects them at right angles.
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[From Nature, Vol. XI.]

LXXI. On the Dynamical Evidence of the Molecular Constitution of Bodies*.

* A lecture delivered at the Chemical Society, Feb. 18, by Prof. Clerk-Maxwell, F.R.S.

When any phenomenon can be described as an example of some general 
principle which is applicable to other phenomena, that phenomenon is said to be 
explained. Explanations, however, are of very various orders, according to the 
degree of generality of the principle which is made use of. Thus the person 
who first observed the effect of throwing water into a fire would feel a certain 
amount of mental satisfaction when he found that the results were always 
similar, and that they did not depend on any temporary and capricious anti
pathy between the water and the fire. This is an explanation of the lowest 
order, in which the class to which the phenomenon is referred consists of other 
phenomena which can only be distinguished from it by the place and time of 
their occurrence, and the principle involved is the very general one that place 
and time are not among the conditions which determine natural processes. On 
the other hand, when a physical phenomenon can be completely described as a 
change in the configuration and motion of a material system, the dynamical 
explanation of that phenomenon is said to be complete. We cannot conceive 
any further explanation to be either necessary, desirable, or possible, for as soon 
as we know what is meant by the words configuration, motion, mass, and force, 
we see that the ideas which they represent are so elementary that they cannot 
be explained by means of anything else.

The phenomena studied by chemists are, for the most part, such as have 
not received a complete dynamical explanation.

Many diagrams and models of compound molecules have been constructed. 
These are the records of the efforts of chemists to imagine configurations of 
material systems by the geometrical relations of which chemical phenomena may
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be illustrated or explained. No chemist, however, professes to see in these 
diagrams anything more than symbolic representations of the various degrees of 
closeness with which the different components of the molecule are bound 
together.

In astronomy, on the other hand, the configurations and motions of the 
heavenly bodies are on such a scale that we can ascertain them by direct 
observation. Newton proved that the observed motions indicate a continual 
tendency of all bodies to approach each other, and the doctrine of universal 
gravitation which he established not only explains the observed motions of our 
system, but enables us to calculate the motions of a system in which the 
astronomical elements may have any values whatever.

When we pass from astronomical to electrical science, we can still observe 
the configuration and motion of electrified bodies, and thence, following the 
strict Newtonian path, deduce the forces with which they act on each other; 
but these forces are found to depend on the distribution of what wc call 
electricity. To form what Gauss called a “ construirbar Vorstellung” of the in
visible process of electric action is the great desideratum in this part of science.

In attempting the extension of dynamical methods to the explanation of 
chemical phenomena, we have to form an idea of the configuration and motion 
of a number of material systems, each of which is so small that it cannot be 
directly observed. We have, in fact, to determine, from the observed external 
actions of an unseen piece of machinery, its internal construction.

The method which has been for the most part employed in conducting 
such inquiries is that of forming an hypothesis, and calculating what would 
happen if the hypothesis were true. If these results agree with the actual 
phenomena, the hypothesis is said to be verified, so long, at least, as some one 
else does not invent another hypothesis which agrees still better with the phe
nomena.

The reason why so many of our physical theories have been built up by 
the method of hypothesis is that the speculators have not been provided with 
methods and terms sufficiently general to express the results of their induction 
in its early stages. They were thus compelled either to leave their ideas vague 
and therefore useless, or to present them in a form the details of which could 
be supplied only by the illegitimate use of the imagination.

In the meantime the mathematicians, guided by that instinct which teaches 
them to store up for others the irrepressible secretions of their own minds, 
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had developed with the utmost generality the dynamical theory of a material 
system.

Of all hypotheses as to the constitution of bodies, that is surely the most 
warrantable which assumes no more than that they are material systems, and 
proposes to deduce from the observed phenomena just as much information about 
the conditions and connections of the material system as these phenomena can 
legitimately furnish.

When examples of this method of physical speculation have been properly 
set forth and explained, we shall hear fewer complaints of the looseness of the 
reasoning of men of science, and the method of inductive philosophy will no 
longer be derided as mere guess-work.

It is only a small part of the theory of the constitution of bodies which 
has as yet been reduced to the form of accurate deductions from known facts. 
Io conduct the operations of science in a perfectly legitimate manner, by means 
of methodised experiment and strict demonstration, requires a strategic skill 
which we must not look for, even among those to whom science is most in
debted for original observations and fertile suggestions. It does not detract from 
the merit of the pioneers of science that their advances, being made on unknown 
giound, aie often cut off, for a time, from that system of communications 
with an established base of operations, which is the only security for any per
manent extension of science.

In studying the constitution of bodies we are forced from the very be
ginning to deal with particles which we cannot observe. For whatever may be 
our ultimate conclusions as to molecules and atoms, we have experimental proof 
that bodies may be divided into parts so small that we cannot perceive them.

Hence, if we are careful to remember that the word particle means a small 
part of a body, and that it does not involve any hypothesis as to the ultimate 
divisibility of matter, we may consider a body as made up of particles, and 
we may also assert that in bodies or parts of bodies of measurable dimensions, 
the number of particles is very great indeed.

The next thing required is a dynamical method of studying a material 
system consisting of an immense number of particles, by forming an idea of their 
configuration and motion, and of the forces acting on the particles, and deducing 
from the dynamical theory those phenomena which, though depending on the 
configuration and motion of the invisible particles, are capable of being observed 
in visible portions of the system.
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Ihe dynamical principles necessary for this study were developed by the 
fathers of dynamics, from Galileo and Newton to Lagrange and Laplace; but 
the special adaptation of these principles to molecular studies has been to a 
great extent the work of Prof. Clausius of Bonn, who has recently laid us 
under still deeper obligations by giving us, in addition to the results of his 
elaborate calculations, a new dynamical idea, by the aid of which I hope we 
shall be able to establish several important conclusions without much symbolical 
calculation.

I he equation of Clausius, to which I must now call your attention, is of 
the following form:

Here p denotes the pressure of a fluid, and V the volume of the vessel 
which contains it. Ihe product pH, in the case of gases at constant tempera- 
tuie, remains, as Boyles Law tells us, nearly constant for different volumes 
and pressures. This member of the equation, therefore, is the product of two 
quantities, each of which can be directly measured.

Ihe other member of the equation consists of two terms, the first depending 
on the motion of the particles, and the second on the forces with which they 
act on each other.

ihe quantity T is the kinetic energy of the system, or, in other words, 
that part of the energy which is due to the motion of the parts of the 
system.

Ihe kinetic energy of a particle is half the product of its mass into the 
square of its velocity, and the kinetic energy of the system is the sum of the 
kinetic energy of its parts.

In the second term, r is the distance between any two particles, and Ji 
is the attraction between them. (If the force is a repulsion or a pressure, Ji 
is to be reckoned negative.)

The quantity ^Jir, or half the product of the attraction into the distance 
across which the attraction is exerted, is defined by Clausius as the virial of 
the attraction. (In the case of pressure or repulsion, the virial is negative.)

The importance of this quantity was first pointed out by Clausius, who, by 
giving it a name, has greatly facilitated the application of his method to phy
sical exposition.

The virial of the system is the sum of the virials belonging to every pair 
of particles which exist in the system. This is expressed by the double sum 
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5S(|^r), which indicates that the value of ^Rr is to be found for every pair 
of particles, and the results added together.

Clausius has established this equation by a very simple mathematical pro
cess, with which I need not trouble you, as we are not studying mathematics 
to-night. We may see, however, that it indicates two causes which may affect 
the pressure of the fluid on the vessel which contains it: the motion of its 
particles, which tends to increase the pressure, and the attraction of its particles, 
which tends to increase the pressure.

We may therefore attribute the pressure of a fluid either to the motion 
of its particles or to a repulsion between them.

Let us test by means of this result of Clausius the theory that the pres
sure of a gas arises entirely from the repulsion which one particle exerts on 
another, these particles, in the case of gas in a fixed vessel, being really at rest.

In this case the virial must be negative, and since by Boyle’s Law the 
product of pressure and volume is constant, the virial also must be constant, 
whatever the volume, in the same quantity of gas at constant temperature. 
It follows from this that Rr, the product of the repulsion of two particles 
into the distance between them, must be constant, or in other words that the 
repulsion must be inversely as the distance, a law which Newton has shewn 
to be inadmissible in the case of molecular forces, as it would make the action 
of the distant parts of bodies greater than that of contiguous parts. In fact, 
we have only to observe that if Rr is constant, the virial of every pair of 
particles must be the same, so that the virial of the system must be propor
tional to the number of pairs of particles in the system—that is, to the 
square of the number of particles, or in other words to the square of the 
quantity of gas in the vessel. The pressure, according to this law, would not 
be the same in different vessels of gas at the same density, but would be 
greater in a large vessel than in a small one, and greater in the open air than 
in any ordinary vessel.

The pressure of a gas cannot therefore be explained by assuming repulsive 
forces between the particles.

It must therefore depend, in whole or in part, on the motion of the particles.
If we suppose the particles not to act on each other at all, there will be 

no virial, and the equation will be reduced to the form

Vp^T.
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If M is the mass of the whole quantity of gas, and c is the mean square of 
the velocity of a particle, we may write the equation—

Vp =
or in words, the product of the volume and the pressure is one-third of the 
mass multiplied by the mean square of the velocity. If we now assume, what 
we shall afterwards prove by an independent process, that the mean square of 
the velocity depends only on the temperature, this equation exactly represents 
Boyle’s Law.

But we know that most ordinary gases deviate from Boyle’s Law, especially 
at low temperatures and great densities. Let us see whether the hypothesis 
of forces between the particles, which we rejected when brought forward as the 
sole cause of gaseous pressure, may not be consistent with experiment when 
considered as the cause of this deviation from Boyle’s Law.

When a gas is in an extremely rarefied condition, the number of particles 
within a given distance of any one particle will be proportional to the density 
of the gas. Hence the virial arising from the action of one particle on the 
rest will vary as the density, and the whole virial in unit of volume will vary 
as the square of the density.

Calling the density p, and dividing the equation by V, we get—

where A is a quantity which is nearly constant for small densities.
Now, the experiments of liegnault shew that in most gases, as the density 

increases the pressure falls below the value calculated by Boyle’s Law. Hence 
the virial must be positive; that is to say, the mutual action of the particles 
must be in the main attractive, and the effect of this action in diminishing 
the pressure must be at first very nearly as the square of the density.

On the other hand, when the pressure is made still greater the substance 
at length reaches a state in which an enormous increase of pressure produces 
but a very small increase of density. This indicates that the virial is now 
negative, or, in other words, the action between the particles is now, in the 
main, repulsive. We may therefore conclude that the action between two par
ticles at any sensible distance is quite insensible. As the particles approach 
each other the action first shews itself as an attraction, which reaches a maxi
mum, then diminishes, and at length becomes a repulsion so great that no 
attainable force can reduce the distance of the particles to zero.
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The relation between pressure and density arising from such an action 
between the particles is of this kind.

As the density increases from zero, the pressure at first depends almost 
entirely on the motion of the particles, and therefore varies almost exactly as 
the pressure, according to Boyle’s Law. As the density continues to increase, 
the effect of the mutual attraction of the particles becomes sensible, and this 
causes the rise of pressure to be less than that given by Boyle’s Law. If 
the temperature is low, the effect of attraction may become so large in pro
portion to the effect of motion that the pressure, instead of always rising as 
the density increases, may reach a maximum, and then begin to diminish.

At length, however, as the average distance of the particles is still further 
diminished, the effect of repulsion will prevail over that of attraction, and the 
pressure will increase so as not only to be greater than that given by Boyle’s 
Law, but so that an exceedingly small increase of density will produce an 
enormous increase of pressure.

Hence the relation between pressure and volume may be represented by 
the curve ABCDEFG, where the horizontal ordinate represents the volume, 
and the vertical ordinate represents the pressure.

As the volume diminishes, the pressure increases up to the point C, then 
diminishes to the point E, and finally increases without limit as the volume 
diminishes.

We have hitherto supposed the experiment to be conducted in such a 
way that the density is the same in every part of the medium. This, how
ever, is impossible in practice, as the only condition we can impose on the 
medium from without is that the whole of the medium shall be contained 
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within a certain vessel. Hence, if it is possible for the medium to arrange 
itself so that part has one density and part another, we cannot prevent it from 
doing so.

Now the points B and F represent two states of the medium in which 
the pressure is the same but the density very different. The whole of the 
medium may pass from the state B to the state F, not through the inter
mediate states CDE, but by small successive portions passing directly from the 
state B to the state F. In this way the successive states of the medium as 
a whole will be represented by points on the straight line BF, the point B 
representing it when entirely in the rarefied state, and F representing it when 
entirely condensed. This is what takes place when a gas or vapour is liquefied.

Under ordinary circumstances, therefore, the relation between pressure and 
volume at constant temperature is represented by the broken line ABFG. If, 
however, the medium when liquefied is carefully kept from contact with vapour, 
it may be preserved in the liquid condition and brought into states represented 
by the portion of the curve between F and E. It is also possible that methods 
may be devised whereby the vapour may be prevented from condensing, and 
brought into states represented by points in BC.

The portion of the hypothetical curve from C to E represents states which 
are essentially unstable, and which cannot therefore be realised.

Now let us suppose the medium to pass from B to along the hypo
thetical curve BCDEF in a state always homogeneous, and to return along 
the straight line FB in the form of a mixture of liquid and vapour. Since 
the temperature has been constant throughout, no heat can have been trans
formed into work. Now the heat transformed into work is represented by the 
excess of the area FDE over BCD. Hence the condition which determines 
the maximum pressure of the vapour at given temperature is that the line 
BF cuts off equal areas from the curve above and below.

The higher the temperature, the greater the part of the pressure which 
depends on motion, as compared with that which depends on forces between 
the particles. Hence, as the temperature rises, the dip in the curve becomes 
less marked, and at a certain temperature the curve, instead of dipping, merely 
becomes horizontal at a certain point, and then slopes upward as before. This 
point is called the critical point. It has been determined for carbonic acid 
by the masterly researches of Andrews. It corresponds to a definite temperature, 
pressure and density.

vol. ii. 54
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At higher temperatures the curve slopes upwards throughout, and there is 
nothing corresponding to liquefaction in passing from the rarest to the densest 
state.

Ihe molecular theory of the continuity of the liquid and gaseous states 
forms the subject of an exceedingly ingenious thesis by Mr Johannes Diderick 
van der Waals", a graduate of Leyden. There are certain points in which I 
think he has fallen into mathematical errors, and his final result is certainly 
not a complete expression for the interaction of real molecules, but his attack 
on this difficult question is so able and so brave, that it cannot fail to give 
a notable impulse to molecular science. It has certainly directed the attention 
of more than one inquirer to the study of the Low-Dutch language in which 
it is written.

The purely thermodynamical relations of the different states of matter do 
not belong to our subject, as they are independent of particular theories about 
molecules. I must not, however, omit to mention a most important American 
contribution to this part of thermodynamics by Prof. Willard Gibbsf, of Yale 
College, U.S., who has given us a remarkably simple and thoroughly satisfactory 
method of representing the relations of the different states of matter by means 
of a model. By means of this model, problems which had long resisted the 
efforts of myself and others may be solved at once.

Let us now return to the case of a highly rarefied gas in which the 
pressure is due entirely to the motion of its particles. It is easy to calculate 
the mean square of the velocity of the particles from the equation of Clausius, 
since the volume, the pressure, and the mass are all measurable quantities. 
Supposing the velocity of every particle the same, the velocity of a molecule 
of oxygen would be 461 metres per second, of nitrogen 492, and of hydrogen 
1844, at the temperature of 0°C.

1 he explanation of the pressure of a gas on the vessel which contains it 
by the impact of its particles on the surface of the vessel has been suggested 
at various times by various writers. The fact, however, that gases are not ob
served to disseminate themselves through the atmosphere with velocities at all 
approaching those just mentioned, remained unexplained, till Clausius, by a

* Over de continuiteit van den gas en vloeistoftoestand. (Leiden : A. W. Sijthoff, 1873.)
+ “ A method of geometrical representation of the thermodynamic properties of substances by means 

of surfaces.” Transactions of the Connecticut Academy of Arts and Sciences, Vol. n. Part 2.
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thorough study of the motions of an immense number of particles, developed 
the methods and ideas of modern molecular science.

Io him we are indebted for the conception of the mean length of the 
path of a molecule of a gas between its successive encounters with other 
molecules. As soon as it was seen how each molecule, after describing an 
exceedingly short path, encounters another, and then describes a new path in 
a quite different direction, it became evident that the rate of diffusion of gases 
depends not merely on the velocity of the molecules, but on the distance they 
travel between each encounter.

I shall have more to say about the special contributions of Clausius to 
molecular science. The main fact, however, is, that he opened up a new field 
of mathematical physics by shewing how to deal mathematically with moving 
systems of innumerable molecules.

Clausius, in his earlier investigations at least, did not attempt to determine 
whether the velocities of all the molecules of the same gas are equal, or whether, 
if unequal, there is any law according to which they are distributed. He 
therefore, as a first hypothesis, seems to have assumed that the velocities are 
equal. But it is easy to see that if encounters take place among a great 
number of molecules, their velocities, even if originally equal, will become un
equal, for, except under conditions which can be only rarely satisfied, two 
molecules having equal velocities before their encounter will acquire unequal 
velocities after the encounter. By distributing the molecules into groups ac
cording to their velocities, we may substitute for the impossible task of following 
every individual molecule through all its encounters, that of registering the 
increase or decrease of the number of molecules in the different groups.

By following this method, which is the only one available either experi
mentally or mathematically, we pass from the methods of strict dynamics to 
those of statistics and probability.

When an encounter takes place between two molecules, they are transferred 
from one pair of groups to another, but by the time that a great many en
counters have taken place, the number which enter each group is, on an average, 
neither more nor less than the number which leave it during the same time. 
When the system has reached this state, the numbers in each group must be 
distributed according to some definite law.

As soon as I became acquainted with the investigations of Clausius, I 
endeavoured to ascertain this law.
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The result which I published in 1860 has since been subjected to a more 
strict investigation by Dr Ludwig Boltzmann, who has also applied his method 
to the study of the motion of compound molecules. The mathematical investi
gation, though, like all parts of the science of probabilities and statistics, it is 
somewhat difficult, does not appear faulty. On the physical side, however, it 
leads to consequences, some of which, being manifestly true, seem to indicate 
that the hypotheses are well chosen, while others seem to be so irreconcilable 
with known experimental results, that we are compelled to admit that some
thing essential to the complete statement of the physical theory of molecular 
encounters must have hitherto escaped us.

I must now attempt to give you some account of the present state of these 
investigations, without, however, entering into their mathematical demonstration.

I must begin by stating the general law of the distribution of velocity 
among molecules of the same kind.

If we take a fixed point in this diagram and draw from this point a line, 
representing in direction and magnitude the velocity of a molecule, and make 
a dot at the end of the line, the position of the dot will indicate the state of 
motion of the molecule.

If we do the same for all the other molecules, the diagram will be dotted 
all over, the dots being more numerous in certain places than in others.

1 he law of distribution of the dots may be shewn to be the same as that 
which prevails among errors of observation or of adjustment.

Ihe dots in the diagram before you may be taken to represent the velocities 
of molecules, the different observations of the position of the same star, or the 
bullet-holes round the bull s-eye of a target, all of which are distributed in the 
same manner.

I he velocities of the molecules have values ranging from zero to infinity, 
so that in speaking of the average velocity of the molecules we must define 
what we mean.

The most useful quantity for purposes of comparison and calculation is called 
the “ velocity of mean square. It is that velocity whose square is the average 
of the squares of the velocities of all the molecules.

Ibis is the velocity given above as calculated from the properties of different 
gases. A molecule moving with the velocity of mean square has a kinetic 
energy equal to the average kinetic energy of all the molecules in the medium, 
and if a single mass equal to that of the whole quantity of gas were moving 
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with this velocity, it would have the same kinetic energy as the gas actually 
has, only it would be in a visible form and directly available for doing work.

If in the same vessel there are different kinds of molecules, some of greater 
mass than others, it appears from this investigation that their velocities will be 
so distributed that the average kinetic energy of a molecule will be the same, 
whether its mass be great or small.

Diagram of Velocities.

Here we have perhaps the most important application which has yet been 
made of dynamical methods to chemical science. For, suppose that we have 
two gases in the same vessel. The ultimate distribution of agitation among the 
molecules is such that the average kinetic energy of an individual molecule is 
the same in either gas. This ultimate state is also, as we know, a state of 
equal temperature. Hence the condition that two gases shall have the same 
temperature is that the average kinetic energy of a single molecule shall be the 
same in the two gases.



430 THE DYNAMICAL EVIDENCE OF THE

Now, we have already shewn that the pressure of a gas is two-thirds of the 
kinetic energy in unit of volume. Hence, if the pressure as well as the tem
perature be the same in the two gases, the kinetic energy per unit of volume 
is the same, as well as the kinetic energy per molecule. There must, therefore, 
be the same number of molecules in unit of volume in the two gases.

This result coincides with the law of equivalent volumes established by Gay 
Lussac. Ibis law, however, has hitherto rested on purely chemical evidence, 
the relative masses of the molecules of different substances having been deduced 
from the proportions in which the substances enter into chemical combination. 
It is now demonstrated on dynamical principles. The molecule is defined as 
that small portion of the substance which moves as one lump during the motion 
of agitation. This is a purely dynamical definition, independent of any experi
ments on combination.

The density of a gaseous medium, at standard temperature and pressure, 
is proportional to the mass of one of its molecules as thus defined.

We have thus a safe method of estimating the relative masses of molecules 
of different substances when in the gaseous state. This method is more to be 
depended on than those founded on electrolysis or on specific heat, because our 
knowledge of the conditions of the motion of agitation is more complete than 
our knowledge of electrolysis, or of the internal motions of the constituents of 
a molecule.

I must now say something about these internal motions, because the greatest 
difficulty which the kinetic theory of gases has yet encountered belongs to this 
part of the subject.

We have hitherto considered only the motion of the centre of mass of the 
molecule. We have now to consider the motion of the constituents of the 
molecule relative to the centre of mass.

If we suppose that the constituents of a molecule are atoms, and that each 
atom is what is called a material point, then each atom may move in three 
different and independent ways, corresponding to the three dimensions of space, 
so that the number of variables required to determine the position and con
figuration of all the atoms of the molecule is three times the number of atoms.

It is not essential, however, to the mathematical investigation to assume 
that the molecule is made up of atoms. All that is assumed is that the position 
and configuration of the molecule can be completely expressed by a certain 
number of variables.



MOLECULAR CONSTITUTION OF BODIES. 431

Let us call this number n.
Of these variables, three are required to determine the position of the 

centre of mass of the molecule, and the remaining n-3 to determine its con
figuration relative to its centre of mass.

Io each of the n variables corresponds a different kind of motion.
1 he motion of translation of the centre of mass has three components.
The motions of the parts relative to the centre of mass have n — 3 com

ponents.
The kinetic energy of the molecule may be regarded as made up of two 

parts that of the mass of the molecule supposed to be concentrated at its 
centre of mass, and that of the motions of the parts relative to the centre 
of mass. 1 he first part is called the energy of translation, the second that of 
rotation and vibration. Ihe sum of these is the whole energy of motion of the 
molecule.

The pressure of the gas depends, as we have seen, on the energy of translation 
alone. The specific heat depends on the rate at which the whole energy, kinetic 
and potential, increases as the temperature rises.

Clausius had long ago pointed out that the ratio of the increment of the 
whole energy to that of the energy of translation may be determined if we 
know by experiment the ratio of the specific heat at constant pressure to that 
at constant volume.

He did not. however, attempt to determine A prion the ratio of the two 
parts of the energy, though he suggested, as an extremely probable hypothesis, 
that the average values of the two parts of the energy in a given substance 
always adjust themselves to the same ratio. He left the numerical value of this 
ratio to be determined by experiment.

In 1860 I investigated the ratio of the two parts of the energy on the 
hypothesis that the molecules are elastic bodies of invariable form. I found to 
my great surprise, that whatever be the shape of the molecules, provided they 
are not perfectly smooth and spherical, the ratio of the two parts of the energy 
must be always the same, the two parts being in fact equal.

This result is confirmed by the researches of Boltzmann, who has worked 
out the general case of a molecule having n variables.

He finds that while the average energy of translation is the same for 
molecules of all kinds at the same temperature, the whole energy of motion 
is to the energy of translation as n to 3.
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For a rigid body n = 6, which makes the whole energy of motion twice the 
energy of translation.

But if the molecule is capable of changing its form under the action of 
impressed forces, it must be capable of storing up potential energy, and if the 
forces are such as to ensure the stability of the molecule, the average potential 
energy will increase when the average energy of internal motion increases.

Hence, as the temperature rises, the increments of the energy of translation, 
the energy of internal motion, and the potential energy are as 3, (n —3), and e 
respectively, where e is a positive quantity of unknown value depending on the 
law of the force which binds together the constituents of the molecule.

When the volume of the substance is maintained constant, the effect of 
the application of heat is to increase the whole energy. We thus find for the 
specific heat of a gas at constant volume— 

where p0 and 1^, are the pressure and volume of unit of mass at zero centi
grade, or 273° absolute temperature, and J is the dynamic equivalent of heat. 
The specific heat at constant pressure is

In gases whose molecules have the same degree of complexity the value of 
n is the same, and that of e may be the same.

If this is the case, the specific heat is inversely as the specific gravity, 
according to the law of Dulong and Petit, which is, to a certain degree of 
approximation, verified by experiment.

But if we take the actual values of the specific heat as found by Regnault 
and compare them with this formula, we find that n + e for air and several 
other gases cannot be more than 4’9. For carbonic acid and steam it is greater. 
We obtain the same result if we compare the ratio of the calculated specific 
heats

2 + n + e
n + e

with the ratio as determined by experiment for various gases, namely, 1'408.
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And here we are brought face to face with the greatest difficulty which 
the molecular theory has yet encountered, namely, the interpretation of the 
equation n + e = 4 • 9.

If we suppose that the molecules are atoms—mere material points, incapable 
of rotatory energy or internal motion—then n is 3 and e is zero, and the ratio 
of the specific heats is 1’6G, which is too great for any real gas.

But we learn from the spectroscope that a molecule can execute vibrations 
of constant period. It cannot therefore be a mere material point, but a system 
capable of changing its form. Such a system cannot have less than six variables. 
This would make the greatest value of the ratio of the specific heats 1'33, which 
is too small for hydrogen, oxygen, nitrogen, carbonic oxide, nitrous oxide, and 
hydrochloric acid.

But the spectroscope tells us that some molecules can execute a great many 
different kinds of vibrations. They must therefore be systems of a very con
siderable degree of complexity, having far more than six variables. Now, every 
additional variable introduces an additional amount of capacity for internal 
motion without affecting the external pressure. Every additional variable, there
fore, increases the specific heat, whether reckoned at constant pressure or at 
constant volume.

So does any capacity which the molecule may have for storing up energy 
in the potential form. But the calculated specific heat is already too great 
when we suppose the molecule to consist of two atoms only. Hence every 
additional degree of complexity which we attribute to the molecule can only 
increase the difficulty of reconciling the observed with the calculated value of 
the specific heat.

I have now put before you what I consider to be the greatest difficulty 
yet encountered by the molecular theory. Boltzmann has suggested that we 
are to look for the explanation in the mutual action between the molecules 
and the aetherial medium which surrounds them. I am afraid, however, that 
if we call in the help of this medium, we shall only increase the calculated 
specific heat, which is already too great.

The theorem of Boltzmann may be applied not only to determine the dis
tribution of velocity among the molecules, but to determine the distribution of 
the molecules themselves in a region in which they are acted on by external 
forces. It tells us that the density of distribution of the molecules at a point 

iff
where the potential energy of a molecule is is proportional to e «* where 0 is 
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the absolute temperature, and k is a constant for all gases. It follows from 
this, that if several gases in the same vessel are subject to an external force 
like that of gravity, the distribution of each gas is the same as if no other 
gas were present. This result agrees with the law assumed by Dalton, according 
to which the atmosphere may be regarded as consisting of two independent 
atmospheres, one of oxygen, and the other of nitrogen; the density of the 
oxygen diminishing faster than that of the nitrogen, as we ascend.

this would be the case if the atmosphere were never disturbed, but the 
effect of winds is to mix up the atmosphere and to render its composition more 
uniform than it would be if left at rest.

Another consequence of Boltzmann’s theorem is, that the temperature tends 
to become equal throughout a vertical column of gas at rest.

In the case of the atmosphere, the effect of wind is to cause the tem
perature to vary as that of a mass of air would do if it were carried vertically 
upwards, expanding and cooling as it ascends.

But besides these results, which I had already obtained by a less elegant 
method and published in 18GG, Boltzmann’s theorem seems to open up a path 
into a region more purely chemical. For if the gas consists of a number of 
similar systems, each of which may assume different states having different 
amounts of energy, the theorem tells us that the number in each state is

• i -Aproportional to e «• where is the energy, 0 the absolute temperature, and k a 
constant.

It is easy to see that this result ought to be applied to the theory of 
the states of combination which occur in a mixture of different substances. But 
as it is only during the present week that I have made any attempt to do 
so, I shall not trouble you with my crude calculations.

I have confined my remarks to a very small part of the field of molecular 
investigation. I have said nothing about the molecular theory of the diffusion 
of matter, motion, and energy, for though the results, especially in the diffusion 
of matter and the transpiration of fluids are of great interest to many chemists, 
and though from them we deduce important molecular data, they belong to a 
part of our study the data of which, depending on the conditions of the en
counter of two molecules, are necessarily very hypothetical. I have thought it 
better to exhibit the evidence that the parts of fluids are in motion, and to 
describe the manner in which that motion is distributed among molecules of 
different masses.
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To shew that all the molecules of the same substance are equal in mass, 
we may refer to the methods of dialysis introduced by Graham, by which two 
gases of different densities may be separated by percolation through a porous 
plug.

If in a single gas there were molecules of different masses, the same process 
of dialysis, repeated a sufficient number of times, would furnish us with two 
portions of the gas, in one of which the average mass of the molecules would 
be greater than in the other. The density and the combining weight of these 
two portions would be different. Now, it may be said that no one has carried 
out this experiment in a sufficiently elaborate manner for every chemical sub
stance. But the processes of nature are continually carrying put experiments 
of the same kind; and if there were molecules of the same substance nearly 
alike, but differing slightly in mass, the greater molecules would be selected in 
preference to form one compound, and the smaller to form another. But hy
drogen is of the same density, whether we obtain it from water or from a 
hydrocarbon, so that neither oxygen nor carbon can find in hydrogen molecules 
greater or smaller than the average.

Ihe estimates which have been made of the actual size of molecules are 
founded on a comparison of the volumes of bodies in the liquid or solid state, 
with their volumes in the gaseous state. In the study of molecular volumes 
we meet with many difficulties, but at the same time there are a sufficient 
number of consistent results to make the study a hopeful one.

Ihe theory of the possible vibrations of a molecule has not yet been studied 
as it ought, with the help of a continual comparison between the dynamical 
theoiy and the evidence of the spectroscope. An intelligent student, armed 
with the calculus and the spectroscope, can hardly fail to discover some important 
fact about the internal constitution of a molecule.

I he observed transparency of gases may seem hardly consistent with the 
results of molecular investigations.

A model of the molecules of a gas consisting of marbles scattered at dis
tances bearing the proper proportion to their diameters, would allow very little 
light to penetrate through a hundred feet.

But if we remember the small size of the molecules compared with the 
length of a wave of light, we may apply certain theoretical investigations of 
Loid Bayleigli s about the mutual action between waves and small spheres, 
which shew that the transparency of the atmosphere, if affected only by the 

55—2 
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presence of molecules, would be far greater than we have any reason to believe 
it to be.

A much more difficult investigation, which has hardly yet been attempted, 
relates to the electric properties of gases. No one has yet explained why dense 
gases are such good insulators, and why, when rarefied or heated, they permit 
the discharge of electricity, whereas a perfect vacuum is the best of all insulators.

It is true that the diffusion of molecules goes on faster in a rarefied gas, 
because the mean path of a molecule is inversely as the density. But the 
electrical difference between dense and rare gas appears to be too great to be 
accounted for in this way.

But while I think it right to point out the hitherto unconquered difficulties 
of this molecular theory, I must not forget to remind you of the numerous 
facts which it satisfactorily explains. We have already mentioned the gaseous 
laws, as they are called, which express the relations between volume, pressure, 
and temperature, and Gay Lussac’s very important law of equivalent volumes. 
The explanation of these may be regarded as complete. The law of molecular 
specific heats is less accurately verified by experiment, and its full explanation 
depends on a more perfect knowledge of the internal structure of a molecule 
than we as yet possess.

But the most important result of these inquiries is a more distinct con
ception of thermal phenomena. In the first place, the temperature of the 
medium is measured by the average kinetic energy of translation of a single 
molecule of the medium. In two media placed in thermal communication, the 
temperature as thus measured tends to become equal.

In the next place, we learn how to distinguish that kind of motion which 
we call heat from other kinds of motion. The peculiarity of the motion called 
heat is that it is perfectly irregular; that is to say, that the direction and 
magnitude of the velocity of a molecule at a given time cannot be expressed as 
depending on the present position of the molecule and the time.

In the visible motion of a body, on the other hand, the velocity of the 
centre of mass of all the molecules in any visible portion of the body is the 
observed velocity of that portion, though the molecules may have also an irregular 
depending agitation on account of the body being hot.

In the transmission of sound, too, the different portions of the body have 
a motion which is generally too minute and too rapidly alternating to be directly 
observed. But in the motion which constitutes the physical phenomenon of sound, 
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the velocity of each portion of the medium at any time can be expressed as 
depending on the position and the time elapsed; so that the motion of a medium 
during the passage of a sound-wave is regular, and must be distinguished from 
that which we call heat.

If, however, the sound-wave, instead of travelling onwards in an orderly 
manner and leaving the medium behind it at rest, meets with resistances which 
fritter away its motion into irregular agitations, this irregular molecular motion 
becomes no longer capable of being propagated swiftly in one direction as sound, 
but lingers in the medium in the form of heat till it is communicated to 
colder parts of the medium by the slow process of conduction.

The motion which we call light, though still more minute and rapidly 
alternating than that of sound, is, like that of sound, perfectly regular, and 
therefore is not heat. What was formerly called Radiant Heat is a phenomenon 
physically identical with light.

When the radiation arrives at a certain portion of the medium, it enters 
it and passes through it, emerging at the other side. As long as the medium 
is engaged in transmitting the radiation it is in a certain state of motion, 
but as soon as the radiation has passed through it, the medium returns to its 
former state, the motion being entirely transferred to a new portion of the 
medium.

Now, the motion which we call heat can never of itself pass from one 
body to another unless the first body is, during the whole process, hotter than 
the second. The motion of radiation, therefore, which passes entirely out of one 
portion of the medium and enters another, cannot be properly called heat.

We may apply the molecular theory of gases to test those hypotheses about 
the luminiferous aether which assume it to consist of atoms or molecules.

Those who have ventured to describe the constitution of the luminiferous 
aether have sometimes assumed it to consist of atoms or molecules.

The application of the molecular theory to such hypotheses leads to rather 
startling results.

In the first place, a molecular aether would be neither more nor less than 
a gas. We may, if we please, assume that its molecules are each of them 
equal to the thousandth or the millionth part of a molecule of hydrogen, and 
that they can traverse freely the interspaces of all ordinary molecules. But, as 
we have seen, an equilibrium will establish itself between the agitation of the 
ordinary molecules and those of the aether. In other words, the aether and the 
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bodies in. it will tend to equality of temperature, and the aether will be subject 
to the ordinary gaseous laws as to pressure and temperature.

Among other properties of a gas, it will have that established by Dulong 
and Petit, so that the capacity for heat of unit of volume of the aether 
must be equal to that of unit of volume of any ordinary gas at the same 
pressure. Its presence, therefore, could not fail to be detected in our experi- 
ments on specific heat, and we may therefore assert that the constitution of 
the aether is not molecular.



[From the Proceedings of the London Mathematical Society, Vol. VI. No. 83.]

LXXII. On the Application of Hamilton's Characteristic Function to the Theory 
of an Optical Instrument symmetrical about its axis.

[Read April 8th, 1875.]

When a ray of light passes from the point (a:,, yu z^ to the point 
(xa, Vn za) through any series of media, the line-integral V=jpds may be defined 
as the distance which light would travel in vacuum in the Rome time as it 
travels from (a?,, z,) to (cc2, y^ za).

Calling this the reduced distance between (xlf yu z^ and (xa, za), Hamil
ton’s Characteristic Function may be defined as the value of the reduced distance 
between two points expressed in terms of the co-ordinates of these points.

It is not necessary that the co-ordinates of the two points should be 
referred to the same system of axes. In treating of optical instruments we 
shall reckon z, and za in opposite directions along the axis, and from different 
planes of reference. We shall, however, make the axes of x, and x. parallel to 
each other in what follows.

Let a ray from the point Pfx„ 0, z,) pass through the first plane of 
reference at the point R, (a„ b„ 0), through the second plane of reference at 
Ri (aa, b2) 0), and reach the point P2 (xu 0, za);

then, putting 
and

pji?=fa - th)’+
PJ{2 = (xa — 0^ + ba + z2 = r,J ............................... (1 )> 
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and the characteristic function from P, to R^-V (a function of a„ aa, 6a), 
the reduced path from P1 to P, is

UV+W.........................................(2).

This quantity is stationary with respect to variations of an b,, at, therefore, 
differentiating with respect to these variables, we get

a. — x.dV „ b. dV
—+^0’

a,-x, , dV 6a , dV -- 2 + t~ = 0, = 
ra dat r r, db.

If and P, are conjugate foci for rays in the plane of xz, the reduced 
path is stationary in passing from one ray to the next by simultaneous variation 
of ax and aa.

L f1

U r? /

Hence d'Vl , , d'V , n+ j— dal+-j- ,-aaa = 0aa/J da^a*
d'V , n

+ -t—a dai+-r—r- da, = 0c/a/J daxdat 1

....(4

Eliminating dax and da, from these equations, and putting 0 for the angle 
between the ray and the axis, we find

—1 cos’^j 4- 7, da?) \ra C°S ’ da?) yda/laj (5),

an equation connecting the values of ra and ra for conjugate primary focal lines 
formed by rays in the plane of xz.

For rays in a plane perpendicular to that of xz, we obtain the relation 
of r? and r? for the secondary focal lines, by passing from one ray to the next 
by simultaneous variation of b^ and 6a,

whence

(6),

(?)•
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Hie form of this equation differs from that for the primary focal lines 
only by the omission of cos’ 0, and by substituting b for a.

From these equations we obtain the following values of the cardinal points 
of the ray in the primary and secondary plane:

Let — c-*x D=. i
da* ’ dajda^ ’ da* ’ B —AC

A'= ^V D'— 1
db*’ ~ db^db^ ° ~db*> n ~B^AdC'_

Value of i\ at 1st principal focus 
Value of r2 at 2nd principal focus 
1st principal focal length 
2nd principal focal length

Primary. 
gt = ^CD cos^, 
g2 = p..2AD cos202 
f = cos 0, cos 02 
f2 = p.BD cos 0, cos 02

Secondary. 
gt^CD’ 
g^^A'D'

f^^D'

(9).

In tracing the axis of the pencil, we may, as a first approximation, neglect 
the square of 0.

Let it cross the axis before incidence at Hlf and after emergence at II„ 

where Hx is beyond the first principal focus, and H2 is af2 beyond the 

second principal focus.
Let it cut the first and second principal planes at a distance f from the 

axis. Then, since these planes are at distances / and f within the principal foci, 
tan^=^ “ , tan0a=£-^—.(io),

Ji 1 +a J 2 1 + a ' '
£ (C \ £ (A \

“,=i+a\B+7....................<n’-

Let 
foci,

the object and image be respectively f and /3/\ beyond the principal

Z'~(b + ’ Z“~^* ^B + .....................(12)’

............... <13)‘
We shall next determine the relation between the curvature of the object 

and that of the image.
vol. ii. 56
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Let their curvatures be concave towards the instrument, their radii being 
and respectively, then,

Z1-^B + /3/ 2^+&c’’ z^=f-\b+^I2R+^c...............(i4)-

We must now insert these values in equation (5), but, for the sake of 
simplicity, we shall suppose the planes of reference to pass through the principal 
foci.

We now find

(16),1 2R/ Z*~P^ 211,

a3 = (17).1 + a

Hamilton s function for a symmetrical instrument is of flip farm
V = *21 (a* + &,’) + SB (aA++*6 + b;)

+ (a? + + %b + &,&,)’ + |c (a^ + by
+P(a,at 4- b,b,) (a* + b/) + ^q (a* + b?) + b
+ r (a,3 + b^ (a,aa + b,^)................................................. q

Differentiating, and making b, and b., zero, we find
A = 91 + 3aa, + Gra^ 4- (b 4- q) aj
B — SB + 2ra, 4- (26 4- 2</) c^a, 4- 3^(< a (j g
C- 6 + (b + q) a, + Gqia,^ + 3caa’

A' = 21 + aa^ + 2ra,at + qa^
B' = SB + ra, + ba,a2 +2^ • ...... ^0)
C" = 6 4- qa^ 4- 2paa"- 4- ca'.

If the planes of reference pass through the principal
21 = 0 and 6 = 0............... ^1)

Substituting in equations (5) and (7), and putting

- 2pa^a -&)- 2qa^ 4- 2r (a _ ...........

.....................................
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^■e find 1 i
ASA f°r ^ie Pr™ary image

fj.Jp + = U+ 17 for the secondary image.......

I he condition of distinctness is U=Q.

That the image of a flat object may be flat as well as distinct,

U=Q and 17=0

443

(24),
(25).
(2G).

Form of the Characteristic Function for a Spherical Refracting Surface.

Let the planes of reference pass through the 
principal foci.

Let BC—s be the radius, then

AB=J^t BA^-!^ 
P»~P1 p3~pl

If the co-ordinates of P, are a„ b___ .
” P^-Pi’

P, „ a,, b„ , ^-p,
P » °> &, z,

and if P3P = r3 and PP2 = r2, then
P^y + p2r3,

under the condition that 
b, when

7 is stationary with respect to variations of 

a’+fc’ + ^-z)’^.
This gives the following values of a and b:

a = a1 + «a + X1a1 + X2aa + &c.,
b = b1 + b1+ Xf, + X^ + &c., 

when

= 28^^ d" &») + 2pi p2 (ala2 + bft) + p2 (p/ — + Pi) (aa5 + ^/)}s

+ 6?) + 2pK ^a, + bf3) 4- p2’^ + &,*)};
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whence we get, as the value of y to terms of the fourth order,
T_ pi + pi 1.
1 = * ~ ~ +W

’ P? ^pi + m?) («? 4- W + Sp,^ (pi + pi) (w 4- 6,6,)’'

^-p.
^ipi

+pi(pi + 3pi) (ai + biy
■ + 4/x, (pi3 4- ip^ 4- pi) (a^ + b^i) (ai + bi) 

+ P^P? (7 pi ~ GPiPi + (ai + M +
b + Apt (pi + 2p,"p.2 + pi) (ai 4- bi) (a^ 4- W)

Hence the coefficients in the general equations (18), (19), (20), (22), (23) are 
as follows :

2l = 0, S3 6 = 0,s

o 1^2

P-i1^ U +



[From the Encyclopccdia Britannica.]

LXXIII. Atom.

Atom (aropos) is a body which cannot be cut in two. The atomic theory 
is a theory of the constitution of bodies, which asserts that they are made up 
of atoms. The opposite theory is that of the homogeneity and continuity of 
bodies, and asserts, at least in the case of bodies having no apparent organisa
tion, such, for instance, as water, that as we can divide a drop of water into 
two parts which are each of them drops of water, so we have reason to believe 
that these smaller drops can be divided again, and the theory goes on to assert 
that there is nothing in the nature of things to hinder this process of division 
from being repeated over and over again, times without end. This is the 
doctrine of the infinite divisibility of bodies, and it is in direct contradiction 
with the theory of atoms.

The atomists assert that after a certain number of such divisions the parts 
would be no longer divisible, because each of them would be an atom. The 
advocates of the continuity of matter assert that the smallest conceivable body 
has parts, and that whatever has parts may be divided.

In ancient times Democritus was the founder of the atomic theory, while 
Anaxagoras propounded that of continuity, under the name of the doctrine of 
homoeomeria ('O/xow/xepia), or of the similarity of the parts of a body to the 
whole. The arguments of the atomists, and their replies to the objections of 
Anaxagoras, are to be found in Lucretius.

In modern times the study of nature has brought to light many properties 
of bodies which appear to depend on the magnitude and motions of their 
ultimate constituents, and the question of the existence of atoms has once more 
become conspicuous among scientific inquiries.

We shall begin by stating the opposing doctrines of atoms and of con 
tinuity before giving an outline of the state of molecular science as it now 
exists. In the earliest times the most ancient philosophers whose speculations 
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are known to us seem to have discussed the ideas of number and of continuous 
magnitude, of space and time, of matter and motion, with a native power of 
thought which has probably never been surpassed. Their actual knowledge, 
however, and their scientific experience were necessarily limited, because in their 
flays the records of human thought were only beginning to accumulate. It is 
probable that the first exact notions of quantity were founded on the considera
tion of number. It is by the help of numbers that concrete quantities are 
practically measured and calculated. Now, number is discontinuous. We pass 
from one number to the next per salt am. The magnitudes, on the other hand, 
which we meet with in geometry, are essentially continuous. The attempt to 
apply numerical methods to the comparison of geometrical quantities led to the 
doctrine of incommensurables, and to that of the infinite divisibility of space. 
Meanwhile, the same considerations had not been applied to time, so that in 
the days of Zeno of Elea time was still regarded as made up of a finite number 
of “moments,” while space was confessed to be divisible without limit. This 
was the state of opinion when the celebrated arguments against the possibility 
of motion, of which that of Achilles and the tortoise is a specimen, were 
propounded by Zeno, and such, apparently, continued to be the state of opinion 
till Aristotle pointed out that time is divisible without limit, in precisely the 
same sense that space is. And the slowness of the development of scientific 
ideas may be estimated from the fact that Bayle does not see any force in 
this statement of Aristotle, but continues to admire the paradox of Zeno. 
(Bayles Dictionary, art. “Zeno”.) Thus the direction of true scientific progress 
was for many ages towards the recognition of the infinite divisibility of space 
and time.

It was easy to attempt to apply similar arguments to matter. If matter 
is extended and fills space, the same mental operation by which we recognise 
the divisibility of space may be applied, in imagination at least, to the matter 
which occupies space. From this point of view the atomic doctrine might be 
regarded as a relic of the old numerical way of conceiving magnitude, and the 
opposite doctrine of the infinite divisibility of matter might appear for a time 
the most scientific. The atomists, on the other hand, asserted very strongly 
the distinction between matter and space. The atoms, they said, do not fill 
up the universe; there are void spaces between them. If it were not so, 
Lucretius tells us, there could be no motion, for the atom which gives way 
first must have some empty place to move into.
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“ Quapropter locus est intactus, inane, vacansque.
Quod si non esset, nulla ratione moveri
Res possent; namque, officium quod corporis exstat, 
Officere atque obstare, id in omni tempore adesset 
Omnibus : baud igitur quicquam procedere posset, 
Principium quoniam cedendi nulla daret res.” De Rerum Natura, I. 335.

The opposite school maintained then, as they have always done, that there 
is no vacuum—that every part of space is full of matter, that there is a 
universal plenum, and that all motion is like that of a fish in the water, 
which yields in front of the fish because the fish leaves room for it behind.

“ Cedere squamigeris latices nitentibus aiunt 
Et liquidas aperire vias, quia post loca pisces 
Linquant, quo possint cedontes confluere undw.” I. 373.

In modern times Descartes held that, as it is of the essence of matter to 
be extended in length, breadth, and thickness, so it is of the essence of 
extension to be occupied by matter, for extension cannot be an extension of 
nothing.

“Ac proinde si qureratur quid fiet, si Deus auferat omne corpus quod in aliquo vase continetur, 
et nullum aliud in ablati locum venire permittat? respondendum est, vasis latera sibi invicem hoc ipso 
fore contigua. Cum enim inter duo corpora nihil interjacet, necesse est ut se mutuo tangant, ac 
manifesto repugnat ut distent, sive ut inter ipsa sit distantia, et tamen ut ista distantia sit nihil; 
quia omnis distantia est modus extensionis, et ideo sine substantia extensa esse non potest.”

Principia, u. 18.

This identification of extension with substance runs through the whole of 
Descartes’s works, and it forms one of the ultimate foundations of the system 
of Spinoza. Descartes, consistently with this doctrine, denied the existence of 
atoms as parts of matter, which by their own nature are indivisible. He seems 
to admit, however, that the Deity might make certain particles of matter 
indivisible in this sense, that no creature should be able to divide them. These 
particles, however, would be still divisible by their own nature, because the 
Deity cannot diminish his own power, and therefore must retain his power of 
dividing them. Leibnitz, on the other hand, regarded his monad as the ultimate 
element of everything.

There are thus two modes of thinking about the constitution of bodies, 
which have had their adherents both in ancient and in modern times. They 
correspond to the two methods of regarding quantity—the arithmetical and the 
geometrical. To the atomist the true method of estimating the quantity of
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matter in a body is to count the atoms in it. The void spaces between the 
atoms count for nothing. To those who identify matter with extension, the 
volume of space occupied by a body is the only measure of the quantity of 
matter in it.

Of the different forms of the atomic theory, that of Boscovich may be taken 
as an example of the purest monadism. According to Boscovich matter is made 
up of atoms. Each atom is an indivisible point, having position in space, capable 
of motion in a continuous path, and possessing a certain mass, whereby a certain 
amount of force is required to produce a given change of motion. Besides this 
the atom is endowed with potential force, that is to say, that any two atoms 
attract or repel each other with a force depending on their distance apart. The 
law of this force, for all distances greater than say the thousandth of an inch, 
is an attraction varying as the inverse square of the distance. For smaller 
distances the force is an attraction for one distance and a repulsion for another, 
according to some law not yet discovered. Boscovich himself, in order to obviate 
the possibility of two atoms ever being in the same place, asserts that the 
ultimate force is a repulsion which increases without limit as the distance 
diminishes without limit, so that two atoms can never coincide. But this 
seems an unwarrantable concession to the vulgar opinion that two bodies cannot 
co-exist in the same place. This opinion is deduced from our experience of the 
behaviour of bodies of sensible size, but we have no experimental evidence that 
two atoms may not sometimes coincide. For instance, if oxygen and hydrogen 
combine to form water, we have no experimental evidence that the molecule of 
oxygen is not in the very same place with the two molecules of hydrogen. Many 
persons cannot get rid of the opinion that all matter is extended in length, 
breadth, and depth. This is a prejudice of the same kind with the last, arising 
from our experience of bodies consisting of immense multitudes of atoms. The 
system of atoms, according to Boscovich, occupies a certain region of space in 
virtue of the forces acting between the component atoms of the system and 
any other atoms when brought near them. No other system of atoms can 
occupy the same region of space at the same time, because, before it could do 
so, the mutual action of the atoms would have caused a repulsion between the 
two systems insuperable by any force which we can command. Thus, a number 
of soldiers with firearms may occupy an extensive region to the exclusion of 
the enemy’s armies, though the space filled by their bodies is but small. In 
this way Boscovich explained the apparent extension of bodies consisting of
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atoms, each of which is devoid of extension. According to Boscovich’s theory, 
all action between bodies is action at a distance. There is no such thing in 
nature as actual contact between two bodies. When two bodies are said in 
ordinary language to be in contact, all that is meant is that they are so near 
together that the repulsion between the nearest pairs of atoms belonging to 
the two bodies is very great.

Thus, in Boscovich’s theory, the atom has continuity of existence in time 
and space. At any instant of time it is at some point of space, and it is never 
in more than one place at a time. It passes from one place to another along 
a continuous path. It has a definite mass which cannot be increased or di
minished. Atoms are endowed with the power of acting on one another by 
attraction or repulsion, the amount of the force depending on the distance 
between them. On the other hand, the atom itself has no parts or dimensions. 
In its geometrical aspect it is a mere geometrical point. It has no extension 
in space. It has not the so-called property of Impenetrability, for two atoms 
may exist *in the same place. This we may regard as one extreme of the 
various opinions about the constitution of bodies.

The opposite extreme, that of Anaxagoras—the theory that bodies apparently 
homogeneous and continuous are so in reality—is, in its extreme form, a theory 
incapable of development. To explain the properties of any substance by this 
theory is impossible. We can only admit the observed properties of such sub
stance as ultimate facts. There is a certain stage, however, of scientific progress 
in which a method corresponding to this theory is of service. In hydrostatics, 
for instance, we define a fluid by means of one of its known properties, and 
from this definition we make the system of deductions which constitutes the 
science of hydrostatics. In this way the science of hydrostatics may be built 
upon an experimental basis, without any consideration of the constitution of a 
fluid as to whether it is molecular or continuous. In like manner, after the 
French mathematicians had attempted, with more or less ingenuity, to construct 
a theory of elastic solids from the hypothesis that they consist of atoms in 
equilibrium under the action of their mutual forces, Stokes and others shewed 
that all the results of this hypothesis, so far at least as they agreed with 
facts, might be deduced from the postulate that elastic bodies exist, and from 
the hypothesis that the smallest portions into which we can divide them are 
sensibly homogeneous. In this way the principle of continuity, which is the 
basis of the method of Fluxions and the whole of modern mathematics, may

vol. ii. 57 



450 ATOM.

be applied to the analysis of problems connected with material bodies by 
assuming them, for the purpose of this analysis, to be homogeneous. All that 
is required to make the results applicable to the real case is that the smallest 
portions of the substance of which we take any notice shall be sensibly of the 
same kind. Thus, if a railway contractor has to make a tunnel through a hill 
of gravel, and if one cubic yard of the gravel is so like another cubic yard 
that for the purposes of the contract they may be taken as equivalent, then, 
in estimating the work required to remove the gravel from the tunnel, he may, 
without fear of error, make his calculations as if the gravel were a continuous 
substance. But if a worm has to make his way through the gravel, it makes 
the greatest possible difference to him whether he tries to push right against 
a piece of gravel, or directs his course through one of the intervals between 
the pieces; to him, therefore, the gravel is by no means a homogeneous and 
continuous substance.

In the same way, a theory that some particular substance, say water, is 
homogeneous and continuous may be a good working theory up to a certain 
point, but may fail when we come to deal with quantities so minute or so 
attenuated that their heterogeneity of structure comes into prominence. Whether 
this heterogeneity of structure is or is not consistent with homogeneity and 
continuity of substance is another question.

The extreme form of the doctrine of continuity is that stated by Descartes, 
who maintains that the whole universe is equally full of matter, and that this 
matter is all of one kind, having no essential property besides that of extension. 
All the properties which we perceive in matter he reduces to its parts being 
movable among one another, and so capable of all the varieties which we can 
perceive to follow from the motion of its parts (Principia, n. 23). Descartes’s 
own attempts to deduce the different qualities and actions of bodies in this way 
are not of much value. More than a century was required to invent methods
of investigating the conditions of the motion of systems of bodies such as
Descartes imagined. But the hydrodynamical discovery of Helmholtz that a 
vortex in a perfect liquid possesses certain permanent characteristics, has been
applied by Sir W. Thomson to form a theory of vortex atoms in a homogeneous,
incompressible, and frictionless liquid, to which we shall return at the proper 
time.
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Outline of Modern Molecular Science, and in particular of the Molecular Theory 
of Gases.

We begin, by assuming that bodies are made up of parts, each of which 
is capable of motion, and that these parts act on each other in a manner 
consistent with the principle of the conservation of energy. In making these 
assumptions, we are justified by the facts that bodies may be divided into 
smaller parts, and that all bodies with which we are acquainted are conservative 
systems, which would not be the case unless their parts were also conservative 
systems.

We may also assume that these small parts are in motion. This is the 
most general assumption we can make, for it includes, as a particular case, the 
theory that the small parts are at rest. The phenomena of the diffusion of 
gases and liquids through each other shew that there may be a motion of the 
small parts of a body which is not perceptible to us.

We make no assumption with respect to the nature of the small parts_  
whether they are all of one magnitude. We do not even assume them to have 
extension and figure. Each of them must be measured by its mass, and any 
two of them must, like visible bodies, have the power of acting on one another 
when they come near enough to do so. The properties of the body, or medium 
are determined by the configuration and motion of its small parts.

The first step in the investigation is to determine the amount of motion 
which exists among the small parts, independent of the visible motion of the 
medium as a whole. For this purpose it is convenient to make use of a 
general theorem in dynamics due to Clausius.

When the motion of a material system is such that the time average of 
the quantity S (mx1) remains constant, the state of the system is said to be 
that of stationary motion. When the motion of a material system is such that 
the sum of the moments of inertia of the system, about three axes at right 
angles through its centre of mass, never varies by more than small quantities 
from a constant value, the system is said to be in a state of stationary motion.

The kinetic energy of a particle is half the product of its mass into the 
square of its velocity, and the kinetic energy of a system is the sum of the 
kinetic energy of all its parts.

57—2
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When an attraction or repulsion exists between two points, half the 
product of this stress into the distance between the two points is called the 
virial of the stress, and is reckoned positive when the stress is an attraction, 
and negative when it is a repulsion. The virial of a system is the sum of
the virials of the stresses which exist in it. If the system is subjected to
the external stress of the pressure of the sides of a vessel in which it is
contained, this stress will introduce an amount of virial where p is the 
pressure on unit of area and V is the volume of the vessel.

1 he theorem of Clausius may now be stated as follows :—In a material 
system in a state of stationary motion the time-average of the kinetic energy 
is equal to the time-average of the virial. In the case of a fluid enclosed in a 
vessel

where the first term denotes the kinetic energy, and is half the sum of 
the product of each mass into the mean square of its velocity. In the 
second term, p is the pressure on unit of surface of the vessel, whose volume 
is V, and the third term expresses the virial due to the internal actions 
between the parts of the system. A double symbol of summation is used, 
because every pair of parts between which any action exists must be taken 
into account. We have next to shew that in gases the principal part of the 
pressure arises from the motion of the small parts of the medium, and not 
from a repulsion between them.

In the first place, if the pressure of a gas arises from the repulsion of 
its parts, the law of repulsion must be inversely as the distance. For, con
sider a cube filled with the gas at pressure p, and let the cube expand till 
each side is n times its former length. The pressure on unit of surface ac

cording to Boyle’s law is now --, and since the area of a face of the cube 

is n‘ times what it was, the whole pressure on the face of the cube is - of 

its original value. But since everything has been expanded symmetrically, the 
distance between corresponding parts of the air is now n times what it was, 
and the force is n times less than it was. Hence the force must vary inversely 
as the distance.

But Newton has shewn (Principia, Book i. Prop. 93) that this law is 
inadmissible, as it makes the effect of the distant parts of the medium on a
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particle greater than that of the neighbouring parts. Indeed, we should arrive 
at the conclusion that the pressure depends not only on the density of the air 
but on the foun and dimensions of the vessel which contains it, which we 
know not to be the case.

If, on the other hand, we suppose the pressure to arise entirely from the 
motion of the molecules of the gas, the interpretation of Boyle’s law becomes 
very simple. For, in this case

(me).

The first term is the product of the pressure and the volume, which ac
cording to Boyles law is constant for the same quantity of gas at the same 
temperature. The second term is two-thirds of the kinetic energy of the system, 
and we have every leason to believe that in gases when the temperature is 
constant the kinetic energy of unit of mass is also constant. If we admit 
that the kinetic energy of unit of mass is in a given gas proportional to the 
absolute temperature, this equation is the expression of the law of Charles as 
well as of that of Boyle, and may be written_

pV^RO,
where 6 is the temperature reckoned from absolute zero, and R is a constant. 
Ihe fact that this equation expresses with considerable accuracy the relation 
between the volume, pressure, and temperature of a gas when in an extremely 
rarified state, and that as the gas is more and more compressed the deviation 
from this equation becomes more apparent, shews that the pressure of a gas is 
due almost entirely to the motion of its molecules when the gas is rare, and 
that it is only when the density of the gas is considerably increased that the 
effect of direct action between the molecules becomes apparent.

I he effect of the direct action of the molecules on each other depends on
the number of pairs of molecules which at a given instant are near enough to
act on one another. The number of such pairs is proportional to the square
of the number of molecules in unit of volume, that is, to the square of the 
density of the gas. Hence, as long as the medium is so rare that the encounter 
between two molecules is not affected by the presence of others, the deviation 
from Boyle’s law will be proportional to the square of the density. If the 
action between the molecules is on the whole repulsive, the pressure will be 
greater than that given by Boyle’s law. If it is, on the whole, attractive, the 
pressure will be less than that given by Boyle’s law. It appears, by the ex-
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periments of Regnault and others, that the pressure does deviate from Boyle’s 
law when the density of the gas is increased. In the case of carbonic acid 
and other gases which are easily liquefied, this deviation is very great. In all 
cases, however, except that of hydrogen, the pressure is less than that given 
by Boyle’s law, shewing that the virial is on the whole due to attractive forces 
between the molecules.

Another kind of evidence as to the nature of the action between the 
molecules is furnished by an experiment made by Dr Joule. Of two vessels, 
one was exhausted and the other filled with a gas at a pressure of 20 atmo
spheres ; and both were placed side by side in a vessel of water, which was 
constantly stirred. The temperature of the whole was observed. Then a com
munication was opened between the vessels, the compressed gas expanded to 
twice its volume, and the work of expansion, which at first produced a strong 
current in the gas, was soon converted into heat by the internal friction of 
the gas. When all was again at rest, and the temperature uniform, the 
temperature was again observed. In Dr Joule’s original experiments the ob
served temperature was the same as before. In a series of experiments, con
ducted by Dr Joule and Sir W. Thomson on a different plan, by which the 
thermal effect of free expansion can be more accurately measured, a slight 
cooling effect was observed in all the gases examined except hydrogen. Since 
the temperature depends on the velocity of agitation of the molecules, it 
appears that when a gas expands without doing external work the velocity of 
agitation is not much affected, but that in most cases it is slightly diminished. 
Now, if the molecules during their mutual separation act on each other, their 
velocity will increase or diminish according as the force is repulsive or attractive. 
It appears, therefore, from the experiments on the free expansion of gases, 
that the force between the molecules is small but, on the whole, attractive.

Having thus justified the hypothesis that a gas consists of molecules in 
motion, which act on each other only when they come very close together 
during an encounter, but which, during the intervals between their encounters 
which constitute the greater part of their existence, are describing free paths, 
and are not acted on by any molecular force, we proceed to investigate the 
motion of such a system.

The mathematical investigation of the properties of such a system of 
molecules in motion is the foundation of molecular science. Clausius was the 
first to express the relation between the density of the gas, the length of 
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the free paths of its molecules, and the distance at which they encounter 
each other. Ho assumed, however, at least in his earlier investigations, that 
the velocities of all the molecules are equal. The mode in which the veloci
ties aie distributed was first investigated by the present writer, who shewed 
that in the moving system the velocities of the molecules range from zero to 
infinity, but that the number of molecules whose velocities lie within given 
limits can be expressed by a formula identical with that which expresses in the 
theory of enois the number of errors of observation lying within corresponding 
limits. Ihe proof of this theorem has been carefully investigated by Boltz
mann , who has strengthened it where it appeared weak, and to whom the method 
of taking into account the action of external forces is entirely due.

Ihe mean kinetic energy of a molecule, however, has a definite value, which 
is easily expressed in terms of the quantities which enter into the expression 
for the distribution of velocities. The most important result of this investi
gation is that when several kinds of molecules are in motion and acting on 
one another, the mean kinetic energy of a molecule is the same whatever be 
its mass, the molecules of greater mass having smaller mean velocities. Now, 
when gases are mixed their temperatures become equal. Hence we conclude 
that the physical condition which determines that the temperature of two 
gases shall be the same is that the mean kinetic energies of agitation of the 
individual molecules of the two gases are equal. This result is of great im
portance in the theory of heat, though we are not yet able to establish any 
similar result for bodies in the liquid or solid state.

In the next place, we know that in the case in which the whole pressure 
of the medium is due to the motion of its molecules, the pressure on unit 
of area is numerically equal to two-thirds of the kinetic energy in unit of 
volume. Hence, if equal volumes of two gases are at equal pressures the 
kinetic energy is the same in each. If they are also at equal temperatures 
the mean kinetic energy of each molecule is the same in each. If, therefore, 
equal volumes of two gases are at equal temperatures and pressures, the 
number of molecules in each is the same, and therefore, the masses of the two 
kinds of molecules are in the same ratio as the densities of the gases to 
which they belong.

This statement has been believed by chemists since the time of Gay- 
Lussac, who first established that the weights of the chemical equivalents of

* Sitzungsberickte der K. K. Akad., Wien, 8th Oct. 1868.
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different substances are proportional to the densities of these substances when in 
the form of gas. The definition of the word molecule, however, as employed 
in the statement of Gay-Lussac’s law is by no means identical with the defi
nition of the same word as in the kinetic theory of gases. The chemists 
ascertain by experiment the ratios of the masses of the different substances in 
a compound. From these they deduce the chemical equivalents of the different 
substances, that of a particular substance, say hydrogen, being taken as unity. 
The only evidence made use of is that furnished by chemical combinations. It 
is also assumed, in order to account for the facts of combination, that the reason 
why substances combine in definite ratios is that the molecules of the substances 
are in the ratio of their chemical equivalents, and that what we call combination 
is an action which takes place by a union of a molecule of one substance to 
a molecule of the other.

This kind of reasoning, when presented in a proper form and sustained by 
proper evidence, has a high degree of cogency. But it is purely chemical 
reasoning; it is not dynamical reasoning. It is founded on chemical experience, 
not on the laws of motion.

Our definition of a molecule is purely dynamical. A molecule is that 
minute portion of a substance which moves about as a whole, so that its 
parts, if it has any, do not part company during the motion of agitation of 
the gas. The result of the kinetic theory, therefore, is to give us information 
about the relative masses of molecules considered as moving bodies. The con
sistency of this information with the deductions of chemists from the phenomena 
of combination, greatly strengthens the evidence in favour of the actual existence 
and motion of gaseous molecules.

Another confirmation of the theory of molecules is derived from the experi
ments of Dulong and Petit on the specific heat of gases, from which they 
deduced the law which bears their name, and which asserts that the specific 
heats of equal weights of gases are inversely as their combining weights, or, in 
other words, that the capacities for heat of the chemical equivalents of different 
gases are equal. We have seen that the temperature is determined by the 
kinetic energy of agitation of each molecule. The molecule has also a certain 
amount of energy of internal motion, whether of rotation or of vibration, but 
the hypothesis of Clausius, that the mean value of the internal energy always 
bears a proportion fixed for each gas to the energy of agitation, seems highly 
probable and consistent with experiment. The whole kinetic energy is there-
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fore equal to the energy of agitation multiplied by a certain factor. Thus the 
energy communicated to a gas by heating it is divided in a certain proportion 
between the energy of agitation and that of the internal motion of each 
molecule. For a given rise of temperature the energy of agitation, say of a 
million molecules, is increased by the same amount whatever be the gas. The 
heat spent in raising the temperature is measured by the increase of the 
whole kinetic energy. The thermal capacities, therefore, of equal numbers of 
molecules of different gases are in the ratio of the factors by which the energy 
of agitation must be multiplied to obtain the whole energy. As this factor 
appears to be nearly the same for all gases of the same degree of atomicity, 
Dulong and Petit’s law is true for such gases.

Another result of this investigation is of considerable importance in rela
tion to certain theories , which assume the existence of aethers or rare media 
consisting of molecules very much smaller than those of ordinary gases. Ac
cording to our result, such a medium would be neither more nor less than a gas. 
Supposing its molecules so small that they can penetrate between the molecules 
of solid substances such as glass, a so-called vacuum would be full of this 
rare gas at the observed temperature, and at the pressure, whatever it may 
be, of the aetherial medium in space. The specific heat, therefore, of the 
medium in the so-called vacuum will be equal to that of the same volume of 
any other gas at the same temperature and pressure. Now, the purpose for 
which this molecular tether is assumed in these theories is to act on bodies by 
its pressure, and for this purpose the pressure is generally assumed to be very 
great. Hence, according to these theories, we should find the specific heat of 
a so-called vacuum very considerable compared with that of a quantity of air 
filling the same space.

We have now made a certain definite amount of progress towards a com
plete molecular theory of gases. We know the mean velocity of the molecules 
of each gas in metres per second, and we know the relative masses of the 
molecules of different gases. We also know that the molecules of one and the 
same gas are all equal in mass. For if they are not, the method of dialysis, 
as employed by Graham, would enable us to separate the molecules of smaller 
mass from those of greater, as they would stream through porous substances 
with greater velocity. We should thus be able to separate a gas, say hydrogen, 
into two portions, having different densities and other physical properties,

* See Gustav Huusemann, Die Atoms und ihrs Bewegungsn. 1871. (H. G. Mayer.)
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different combining weights, and probably different chemical properties of other 
kinds. As no chemist has yet obtained specimens of hydrogen differing in this 
way from other specimens, we conclude that all the molecules of hydrogen 
are of sensibly the same mass, and not merely that their mean mass is a statis
tical constant of great stability.

But as yet we have not considered the phenomena which enable us to 
form an estimate of the actual mass and dimensions of a molecule. It is to 
Clausius that we owe the first definite conception of the free path of a molecule 
and of the mean distance travelled by a molecule between successive encounters. 
He shewed that the number of encounters of a molecule in a given time is
proportional to the velocity, to the number of molecules in unit of volume,
and to the square of the distance between the centres of two molecules when 
they act on one another so as to have an encounter. From this it appears 
that if we call this distance of the centres the diameter of a molecule, and
the volume of a sphere having this diameter the volume of a molecule, and
the sum of the volumes of all the molecules the molecular volume of the gas, 
then the diameter of a molecule is a certain multiple of the quantity obtained 
by diminishing the free path in the ratio of the molecular volume of the gas 
to the whole volume of the gas. The numerical value of this multiple differs 
slightly, according to the hypothesis we assume about the law of distribution 
of velocities. It also depends on the definition of an encounter. When the 
molecules are regarded as elastic spheres we know what is meant by an 
encounter, but if they act on each other at a distance by attractive or 
repulsive forces of finite magnitude, the distance of their centres varies during 
an encounter, and is not a definite quantity. Nevertheless, the above state
ment of Clausius enables us, if we know the length of the mean path and 
the molecular volume of gas, to form a tolerably near estimate of the diameter 
of the sphere of the intense action of a molecule, and thence of the number 
of molecules in unit of volume and the actual mass of each molecule. To 
complete the investigation we have, therefore, to determine the mean path and 
the molecular volume. The first numerical estimate of the mean path of a 
gaseous molecule was made by the present writer from data derived from the 
internal friction of air. There are three phenomena which depend on the 
length of the free path of the molecules of a gas. It is evident that the 
greater the free path the more rapidly will the molecules travel from one 
part of the medium to another, because their direction will not be so often 
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altered by encounters with other molecules. If the molecules in different parts 
o tie me lum aie of different kinds, their progress from one part of the 
me Him to another can be easily traced by analysing portions of the medium taken 
rom i erent paces. Ihe rate of diffusion thus found furnishes one method 

of estimating the length of the free path of a molecule. This kind of diffusion 
goes on not only between the molecules of different gases, but among the 
molecules of the same gas, only in the latter case the results of the diffusion 
cannot be tiaced by analysis. But the diffusing molecules carry with them 
in their free paths the momentum and the energy which they happen at a 
given instant to have. Ihe diffusion of momentum tends to equalise the 
apparent motion of different parts of the medium, and constitutes the pheno
menon called the internal friction or viscosity of gases. The diffusion of energy 
tends to equalise the temperature of different parts of the medium, and 
constitutes the phenomenon of the conduction of heat in gases.

These three phenomena-the diffusion of matter, of motion, and of heat 
in gases—have been experimentally investigated,-the diffusion of matter by 
Graham and Loschmidt, the diffusion of motion by Oscar Meyer and Clerk 
Maxwell, and that of heat by Stefan.

These three kinds of experiments give results which in the present im
perfect state of the theory and the extreme difficulty of the experiments, 
especially those on the conduction of heat, may be regarded as tolerably con
sistent with each other. At the pressure of our atmosphere, and at the 
temperature of melting ice, .the mean path of a molecule of hydrogen is about 
the 10,000th of a millimetre, or about the fifth part of a wave-length of 
green light. The mean path of the molecules of other gases is shorter than 
that of hydrogen.

The determination of the molecular volume of a gas is subject as yet to 
considerable uncertainty. The most obvious method is that of compressing the 
gas till it assumes the liquid form. It seems probable, from the great resist
ance of liquids to compression, that their molecules are about the same 
distance from each other as that at which two molecules of the same substance 
in the gaseous form act on each other during an encounter. If this is the 
case, the molecular volume of a gas is somewhat less than the volume of the 
liquid into which it would be condensed by pressure, or, in other words, the 
density of the molecules is somewhat greater than that of the liquid.

Now, we know the relative weights of different molecules with great
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accuracy, and, from a knowledge of the mean path, we can calculate their 
relative diameters approximately. From these we can deduce the relative 
densities of different kinds of molecules. The relative densities so calculated 
have been compared by Lorenz Meyer with the observed densities of the liquids 
into which the gases may be condensed, and he finds a remarkable correspond
ence between them. There is considerable doubt, however, as to the relation 
between the molecules of a liquid and those of its vapour, so that till a 
larger number of comparisons have been made, we must not place too much 
reliance on the calculated densities of molecules. Another, and perhaps a more 
refined, method is that adopted by M. Van der Waals, who deduces the 
molecular volume from the deviations of the pressure from Boyle’s law as the 
gas is compressed.

The first numerical estimate of the diameter of a molecule was that made 
by Loschmidt in 1865 from the mean path and the molecular volume. Inde
pendently of him and of each other, Mr Stoney, in 1868, and Sir W. Thomson, 
in 1870, published results of a similar kind—those of Thomson being deduced 
not only in this way, but from considerations derived from the thickness of 
soap bubbles, and from the electric action between zinc and copper.

The diameter and the mass of a molecule, as estimated by these methods, 
are, of course, very small, but by no means infinitely so. About two millions 
of molecules of hydrogen in a row would occupy a millimetre, and about two 
hundred million million million of them would weigh a milligramme. These 
numbers must be considered as exceedingly rough guesses; they must be 
corrected by more extensive and accurate experiments as science advances; 
but the main result, which appears to be well established, is that the deter
mination of the mass of a molecule is a legitimate object of scientific research, 
and that this mass is by no means immeasurably small.

Loschmidt illustrates these molecular measurements by a comparison with 
the smallest magnitudes visible by means of a microscope. Nobert, he tells us, 
can draw 4000 lines in the breadth of a millimetre. The intervals between 
these lines can be observed with a good microscope. A cube, whose side is 
the 4000th of a millimetre, may be taken as the minimum, visibile for observers 
of the present day. Such a cube would contain from 60 to 100 million 
molecules of oxygen or of nitrogen; but since the molecules of organised 
substances contain on an average about 50 of the more elementary atoms, we 
may assume that the smallest organised particle visible under the microscope 
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contains about two million molecules of organic matter. At least half of every 
living organism consists of water, so that the smallest living being visible 
under the microscope does not contain more than about a million organic 
molecules. Some exceedingly simple organism may be supposed built up of 
not more than a million similar molecules. It is impossible, however, to conceive 
so small a number sufficient to form a being furnished with a whole system 
of specialised organs.

Ihus molecular science sets us face to face with physiological theories. 
It forbids the physiologist from imagining that structural details of infinitely 
small dimensions can furnish an explanation of the infinite variety which exists 
in the properties and functions of the most minute organisms.

A microscopic germ is, we know, capable of development into a highly 
organised animal. Another germ, equally microscopic, becomes, when developed, 
an animal of a totally different kind. Do all the differences, infinite in number, 
which distinguish the one animal from the other, arise each from some dif
ference in the structure of the respective germs? Even if we admit this as 
possible, we shall be called upon by the advocates of Pangenesis to admit 
still greater marvels. lor the microscopic germ, according to this theory, is 
no mere individual, but a representative body, containing members collected
from every rank of the long-drawn ramification of the ancestral tree, the number 
of these members being amply sufficient not only to furnish the hereditary
characteristics of every organ of the body and every habit of the animal from 
birth to death, but also to afford a stock of latent gemmules to be passed
on in an inactive state from germ to germ, till at last the ancestral peculiarity
which it represents is revived in some remote descendant.

Some of the exponents of this theory of heredity have attempted to elude 
the difficulty of placing a whole world of wonders within a body so small 
and so devoid of visible structure as a germ, by using the phrase structureless 
germs". Now, one material system can differ from another only in the con
figuration and motion which it has at a given instant. To explain differences 
of function and development of a germ without assuming differences of structure 
is, therefore, to admit that the properties of a germ are not those of a purely 
material system.

The evidence as to the nature and motion of molecules, with which we 
have hitherto been occupied, has been derived from experiments upon gaseous

* See F. Galton, “On Blood Relationship,” proc, Poy. Soo., june 13, 1872.
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media, the smallest sensible portion of which contains millions of millions of 
molecules. The constancy and uniformity of the properties of the gaseous 
medium is the direct result of the inconceivable irregularity of the motion of 
agitation of its molecules. Any cause which could introduce regularity into the 
motion of agitation, and marshal the molecules into order and method in their 
evolutions, might check or even reverse that tendency to diffusion of matter 
motion, and energy, which is one of the most invariable phenomena of nature 
and to which Thomson has given the name of the dissipation of energy.

Thus, when a sound-wave is passing through a mass of air, this motion 
is of a certain definite type, and if left to itself the whole motion is passed on 
to other masses of air, and the sound wave passes on, leaving the air behind 
it at rest. Heat, on the other hand, never passes out of a hat body except 
to enter a colder body, so that the energy of sound-waves, or any other form 
of energy which is propagated so as to pass wholly out of one portion of 
the medium and into another, cannot be called heat.

We have now to turn our attention to a class of molecular motions, which 
are as remarkable for their regularity as the motion of agitation is for its 
irregularity.

It has been found, by means of the spectroscope, that the light emitted 
by incandescent substances is different according to their state of condensation. 
When they are in an extremely rarefied condition the spectrum of their light 
consists of a set of sharply-defined bright lines. As the substance approaches 
a denser condition the spectrum tends to become continuous, either by the 
lines becoming bioader and less defined, or by new lines and bands appearing 
between them, till the spectrum at length loses all its characteristics and 
becomes identical with that of solid bodies when raised to the same tem
perature.

Hence the vibrating systems, which are the source of the emitted light, 
must be vibrating in a different manner in these two cases. AVhen the spectrum 
consists of a number of bright lines, the motion of the system must be com
pounded of a corresponding number of types of harmonic vibration.

In order that a bright line may be sharply defined, the vibratory motion 
which produces it must be kept up in a perfectly regular manner for some 
hundreds or thousands of vibrations. If the motion of each of the vibrating 
bodies is kept up only during a small number of vibrations, then, however 
regular may be the vibrations of each body while it lasts, the resultant dis
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turbance of the luminiferous medium, when analysed by the prism, will be 
found to contain, besides the part due to the regular vibrations, other motions, 
depending on the starting and stopping of each particular vibrating body, 
which will become manifest as a diffused luminosity scattered over the whole 
length of the spectrum. A spectrum of bright lines, therefore, indicates that 
the vibrating bodies when set in motion are allowed to vibrate in accordance 
with the conditions of their internal structure for some time before they are 
again interfered with by external forces.

It appears, therefore, from spectroscopic evidence that each molecule of a 
rarefied gas is, during the greater part of its existence, at such a distance 
from all other molecules that it executes its vibrations in an undisturbed and 
regular manner. 1 his is the same conclusion to which we were led by con
siderations of another kind at p. 452.

We may therefore regard the bright lines in the spectrum of a gas as 
the result of the vibrations executed by the molecules while describing their 
fiee paths. When two molecules separate from one another after an encounter, 
each of them is in a state of vibration, arising from the unequal action on 
different parts of the same molecule during the encounter. Hence, though the 
centie of mass of the molecule describing its free path moves with uniform 
velocity, the parts of the molecule have a vibratory motion with respect to 
the centre of mass of the whole molecule, and it is the disturbance of the 
luminiferous medium communicated to it by the vibrating molecules which 
constitutes the emitted light.

We may compare the vibrating molecule to a bell. When struck, the 
bell is set in motion. Ibis motion is compounded of harmonic vibrations of 
many different periods, each of which acts on the air, producing notes of as 
many different pitches. As the bell communicates its motion to the air, these 
vibrations necessarily decay, some of them faster than others, so that the 
sound contains fewer and fewer notes, till at last it is reduced to the funda
mental note of the bell "'. If we suppose that there are a great many bells 
precisely similar to each other, and that they are struck, first one and then 
another, in a perfectly irregular manner, yet so that, on an average, as many 
bells aie struck in one second of time as in another, and also in such a way 

. . Pait of the energy of motion is, in the case of the bell, dissipated in the substance of the bell
in virtue of the viscosity of the metal, and assumes the form of heat, but it is not necessary, for the 
purpose of illustiation, to take this cause of the decay of vibrations into account.
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that, on an average, any one bell is not again struck till it has ceased to 
vibrate, then the audible result will appear a continuous sound, composed of 
the sound emitted by bells in all states of vibration, from the clang of the 
actual stroke to the final hum of the dying fundamental tone.

But now let the number of bells be reduced while the same number of 
strokes are given in a second. Each bell will now be struck before it has 
ceased to vibrate, so that in the resulting sound there will be less of the 
fundamental tone and more of the original clang, till at last, when the peal is 
reduced to one bell, on which innumerable hammers are continually plying 
their strokes all out of time, the sound will become a mere noise, in which 
no musical note can be distinguished.

In the case of a gas we have an immense number of molecules, each of 
which is set in vibration when it encounters another molecule, and continues 
to vibrate as it describes its free path. The molecule is a material system, 
the parts of which are connected in some definite way, and from the fact that 
the bright lines of the emitted light have always the same wave-lengths, we 
learn that the vibrations corresponding to these lines are always executed in 
the same periodic time, and therefore the force tending to restore any part of 
the molecule to its position of equilibrium in the molecule must be propor
tional to its displacement relative to that position.

From, the mathematical theory of the motion of such a system, it appears 
that the whole motion may be analysed into the following parts, which may 
be considered each independently of the others :—In the first place, the centre 
of mass of the system moves with uniform velocity in a straight line. This 
velocity may have any value. In the second place, there may be a motion of 
rotation, the angular momentum of the system about its centre of mass re
maining during the free path constant in magnitude and direction. This angular 
momentum may have any value whatever, and its axis may have any direction. 
In the third place, the remainder of the motion is made up of a number of 
component motions, each of which is an harmonic vibration of a given type. 
In each type of vibration the periodic time of vibration is determined by the 
nature of the system, and is invariable for the same system. The relative 
amount of motion in different parts of the system is also determinate for each 
type, but the absolute amount of motion and the phase of the vibration of 
each type are determined by the particular circumstances of the last encounter, 
and may vary in any manner from one encounter to another.
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T le values of the periodic times of the different types of vibration are 
given by the roots of a certain equation, the form of which depends on the 
nature of the connections of the system. In certain exceptionally simple cases, 
as, for instance, in that of a uniform string stretched between two fixed points, 
the loots of the equation are connected by simple arithmetical relations, and 
if the internal structure of a molecule had an analogous kind of simplicity, we 
might expect to find in the spectrum of the molecule a series of bright lines, 
whose wave-lengths are in simple arithmetical ratios.

But if we suppose the molecule to be constituted according to some dif
ferent type, as, for instance, if it is an elastic sphere, or if it consists of a 
finite number of atoms kept in their places by attractive and repulsive forces, 
the roots of the equation will not be connected with each other by any simple 
relations, but each may be made to vary independently of the others by a 
suitable change of the connections of the system. Hence, we have no right to 
expect any definite numerical relations among the wave-lengths of the bright 
lines of a gas.

Ihe bright lines of the spectrum of an incandescent gas are therefore due 
to the harmonic vibrations of the molecules of the gas during their free paths. 
The only effect of the motion of the centre of mass of the molecule is to 
alter the time of vibration of the light as received by a stationary observer. 
When the molecule is coming towards the observer, each successive impulse 
will have a shorter distance to travel before it reaches his eye, and therefore 
the impulses will appear to succeed each other more rapidly than if the mole
cule were at rest, and the contrary will be the case if the molecule is receding 
from the observer. The bright line corresponding to the vibration will there
fore be shifted in the spectrum towards the blue end when the molecule is 
approaching, and towards the red end when it is receding from the observer. 
By observations of the displacement of certain lines in the spectrum, Dr Huggins 
and others have measured the rate of approach or of recession of certain stars 
with respect to the earth, and Mr Lockyer has determined the rate of motion 
of tornadoes in the sun. But Lord Rayleigh has pointed out that according 
to the dynamical theory of gases the molecules are moving hither and thither 
with so great velocity that, however narrow and sharply-defined any bright line 
due to a single molecule may be, the displacement of the line towards the 
blue by the approaching molecules, and towards the red by the receding mole
cules, will produce a certain amount of widening and blurring of the line in
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the spectrum, so that there is a limit to the sharpness of definition of the 
lines of a gas. The widening of the lines due to this cause will be in pro
portion to the velocity of agitation of the molecules. It will be greatest for 
the molecules of smallest mass, as those of hydrogen, and it will increase with 
the temperature. Hence the measurement of the breadth of the hydrogen lines, 
such as C or P in the spectrum of the solar prominences, may furnish evidence 
that the temperature of the sun cannot exceed a certain value.

On the Theory of Vortex Atoms.

The equations which form the foundations of the mathematical theory of 
Huid motion were fully laid down by Lagrange and the great mathematicians 
of the end of last century, but the number of solutions of cases of fluid 
motion which had been actually worked out remained very small, and almost 
all of these belonged to a particular type of fluid motion, which has been 
since named the irrotational type. It had been shewn, indeed, by Lagrange, 
that a perfect fluid, if its motion is at any time irrotational, will continue in 
all time coming to move in an irrotational manner, so that, by assuming that 
the fluid was at one time at rest, the calculation of its subsequent motion may 
be very much simplified.

It was reserved for Helmholtz to point out the very remarkable properties 
of rotational motion in a homogeneous incompressible fluid devoid of all viscosity. 
We must first define the physical properties of such a fluid. In the first place, 
it is a material substance. Its motion is continuous in space and time, and 
if we follow any portion of it as it moves, the mass of that portion remains 
invariable. Ihese properties it shares with all material substances. In the next 
place, it is incompressible. The form of a given portion of the fluid may change, 
but its volume remains invariable; in other words, the density of the fluid 
remains the same during its motion. Besides this, the fluid is homogeneous, or 
the density of all parts of the fluid is the same. It is also continuous, so 
that the mass of the fluid contained within any closed surface is always exactly 
proportional to the volume contained within that surface. This is equivalent 
to asserting that the fluid is not made up of molecules; for, if it were, the 
mass would vary in a discontinuous manner as the volume increases continuously, 
because first one and then another molecule would be included within the closed
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surface. Lastly, it is a perfect fluid, or, in other words, the stress between 
one portion and a contiguous portion is always normal to the surface which 
separates these portions, and this whether the fluid is at rest or in motion.

We have seen that in a molecular fluid the interdiffusion of the molecules 
causes an interdiffusion of motion of different parts of the fluid, so that 
the action between contiguous parts is no longer normal but in a direction 
tending to diminish their relative motion. Hence the perfect fluid cannot be 
molecular.

All that is necessary in order to form a correct mathematical theory of 
a material system is that its properties shall be clearly defined and shall be 
consistent with each other. This is essential; but whether a substance having 
such properties actually exists is a question which comes to be considered 
only when we propose to make some practical application of the results of the 
mathematical theory. The properties of our perfect liquid are clearly defined 
and consistent with each other, and from the mathematical theory we can 
deduce remarkable results, some of which may be illustrated in a rough way 
by means of fluids which are by no means perfect in the sense of not being 
viscous, such, for instance, as air and water.

The motion of a fluid is said to be irrotational when it is such that if a 
spherical portion of the fluid were suddenly solidified, the solid sphere so formed 
would not be rotating about any axis. When the motion of the fluid is rota
tional the axis and angular velocity of the rotation of any small part of the 
fluid are those of a small spherical portion suddenly solidified.

The mathematical expression of these definitions is as followsLet u, v, w 
be the components of the velocity of the fluid at the point (a;, y, 2), and let

_ dv div _ dw du _ du dv
dz dy' dx dz' ^~dy dx.......................

then a, £, y are the components of the velocity of rotation of the fluid at the 
point (x, y, z). The axis of rotation is in the direction of the resultant of 
a, fi, and y, and the velocity of rotation, co, is measured by this resultant.

A line drawn in the fluid, so that at every point of the line

1 dx = 1 c Iy _ 1 dz _ 1 
a ds fids yds co........................................(-)>

where s is the length of the line up to the point x, y, z, is called a vortex
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line. Its direction coincides at every point with that of the axis of rotation 
of the fluid.

We may now 
fluid which at any

prove the theorem of Helmholtz, that the points of the 
instant lie in the same vortex line continue to lie in the

same vortex line during the whole motion of the fluid.
The equations of motion of a fluid are of the form

3u dp dV „ 
? 8t dx^? dx ~ ........................................ (3),

when p is the density, which in the case of our homogeneous incompressible 
g

fluid we may assume to be unity, the operator represents the rate of varia

tion of the symbol to which it is prefixed at a point which is carried forward 
with the fluid, so that

8u du du . du . du
8t~ dt^U dx V dy^W dz

p is the pressure, and V is the potential of external forces. There are two 
other equations of similar form in y and z. Differentiating the equation in y 
with respect to z, and that in z with respect to y, and subtracting the second 
from the first, we find

d 8v d 8w .
dz 8t dy 8t ........................................... '

Performing the differentiations and remembering equations (1) and also the 
condition of incompressibility,

du dv div 
dx dy dz (6),

n , 8a du du , du
w ........................................(4

Now, let us suppose a vortex line drawn in the fluid so as always to 
begin at the same particle of the fluid. The components of the velocity of this 
point are u, v, iv. Let us find those of a point on the moving vortex line at 
a distance ds from this point where

ds= uda................................................(g).
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The co-ordinates of this point are

x + ada, y + ^da, z + yda...........................(9),

and the components of its velocity are
8a 7 8B , 3y 7 

u + St V St W + St (10)-
Consider 
write it

the first of these components. In virtue of equation (7) we may

or

du j du n, du ju + -y- ada + j- pda + -r- yda.......... dx dy dz *

du dx , . du dy , du dz
«+j-t- ctcr + -j- -r~ da+ ^~ j-da dx da dy da dz da

(11).
(12).

or u + ^r da.....................................................................(13).
da ' '

But this represents the value of the component u of the velocity of the fluid 
itself at the same point, and the same thing may be proved of the other 
components.

Hence the velocity of the second point on the vortex line is identical 
with that of the fluid at that point. In other words, the vortex line swims 
along with the fluid, and is always formed of the same row of fluid particles. 
The vortex line is therefore no mere mathematical symbol, but has a physical 
existence continuous in time and space.

By differentiating equations (1) with respect to x, y, and z respectively, 
and adding the results, we obtain the equation—

da d^ dy 
dx dy dz (14).

This is an equation of the same form with (6), which expresses the con
dition of flow of a fluid of invariable density. Hence, if we imagine a fluid, 
quite independent of the original fluid, whose components of velocity are a, /3, y, 
this imaginary fluid will flow without altering its density.

Now, consider a closed curve in space, and let vortex lines be drawn in 
both directions from eveiy point of this curve. These vortex lines will form 
a tubular surface, which is called a vortex tube or a vortex filament. Since the 
imaginary fluid flows along the vortex lines without change of density, the 
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quantity which in unit of time flows through any section of the same vortex 
tube must be the same. Hence, at any section of a vortex tube the product 
of the area of the section into the mean velocity of rotation is the same. 
This quantity is called the strength of the vortex tube.

A vortex tube cannot begin or end within the fluid; for, if it did, the 
imaginary fluid, whose velocity components are a, /3, y, would be generated from 
nothing at the beginning of the tube, and reduced to nothing at the end of it. 
Hence, if the tube has a beginning and an end, they must lie on the surface 
of the fluid mass. If the fluid is infinite the vortex tube must be infinite, or 
else it must return into itself.

We have thus arrived at the following remarkable theorems relating to a 
finite vortex tube in an infinite fluid :—(l) It returns into itself, forming a 
closed ring. We may therefore describe it as a vortex ring. (2) It always 
consists of the same portion of the fluid. Hence its volume is invariable. (3) 
Its strength remains always the same. Hence the velocity of rotation at any 
section varies inversely as the area of that section, and that of any segment 
varies directly as the length of that segment. (4) No part of the fluid which 
is not originally in a state of rotational motion can ever enter into that state, 
and no part of the fluid whose motion is rotational can ever cease to move 
rotationally. (5) No vortex tube can ever pass through any other vortex tube, 
or through any of its own convolutions. Hence, if two vortex tubes are linked 
together, they can never be separated, and if a single vortex tube is knotted 
on itself, it can never become untied. (6) The motion at any instant of every 
part of the fluid, including the vortex rings themselves, may be accurately 
represented by conceiving an electric current to occupy the place of each vortex 
ring, the strength of the current being proportional to that of the ring. The 
magnetic force at any point of space will then represent in direction and mag
nitude the velocity of the fluid at the corresponding point of the fluid.

These properties of vortex rings suggested to Sir William Thomson* the 
possibility of founding on them a new form of the atomic theory. The con
ditions which must be satisfied by an atom are—permanence in magnitude, 
capability of internal hiotion or vibration, and a sufficient amount of possible 
characteristics to account for the difference between atoms of different kinds.

The small hard body imagined by Lucretius, and adopted by Newton, was 
invented for the express purpose of accounting for the permanence of the pro-

* “ On Vortex Atoms,” Proc. Roy. Soc. Edin., 18th February, 1867. 
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perties of bodies. But it fails to account for the vibrations of a molecule as 
revealed by the spectroscope. We may indeed suppose the atom elastic, but 
this is to endow it with the very property for the explanation of which, as 
exhibited in aggregate bodies, the atomic constitution was originally assumed. 
The massive centres of force imagined by Boscovich may have more to recom
mend them to the mathematician, who has no scruple in supposing them to be 
invested with the power of attracting and repelling according to any law of the 
distance which it may please him to assign. Such centres of force are no 
doubt in their own nature indivisible, but then they are also, singly, incapable 
of vibration. To obtain vibrations we must imagine molecules consisting of 
many such centres, but, in so doing, the possibility of these centres being 
separated altogether is again introduced. Besides, it is in questionable scientific 
taste, after using atoms so freely to get rid of forces acting at sensible dis
tances, to make the whole function of the atoms an action at insensible distances.

On the other hand, the vortex ring of Helmholtz, imagined as the true 
form of the atom by Thomson, satisfies more of the conditions than any atom 
hitherto imagined. In the first place, it is quantitatively permanent, as regards 
its volume and its strength,—two independent quantities. It is also qualita
tively permanent as regards its degree of implication, whether “ knottedness ” 
on itself or “linkedness” with other vortex rings. At the same time, it is 
capable of infinite changes of form, and may execute vibrations of different 
periods, as we know that molecules do. And the number of essentially dif
ferent implications of vortex rings may be very great without supposing the 
degree of implication of any of them very high.

But the greatest recommendation of this theory, from a philosophical point 
of view, is that its success in explaining phenomena does not depend on the 
ingenuity with which its contrivers “save appearances,” by introducing first one 
hypothetical force and then another. When the vortex atom is once set in 
motion, all its properties are absolutely fixed and determined by the laws of 
motion of the primitive fluid, which are fully expressed in the fundamental 
equations. The disciple of Lucretius may cut and carve his solid atoms in the 
hope of getting them to combine into worlds; the follower of Boscovich may 
imagine new laws of force to meet the requirements of each new phenomenon; 
but he who dares to plant his feet in the path opened up by Helmholtz and 
Thomson has no such resources. His primitive fluid has no other properties than 
inertia, invariable density, and perfect mobility, and the method by which the 
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motion of this fluid is to be traced is pure mathematical analysis. The diffi
culties of this method are enormous, but the glory of surmounting them would 
be unique.

There seems to be little doubt that an encounter between two vortex 
atoms would be in its general character similar to those which we have already 
described. Indeed, the encounter between two smoke rings in air gives a very 
lively illustration of the elasticity of vortex rings.

But one of the first, if not the very first desideratum in a complete theory 
of matter is to explain—first, mass, and second, gravitation. To explain mass 
may seem an absurd achievement. We generally suppose that it is of the essence 
of matter to be the receptacle of momentum and energy, and even Thomson, 
in his definition of his primitive fluid, attributes to it the possession of mass. 
But according to Thomson, though the primitive fluid is the only true matter, 
yet that which we call matter is not the primitive fluid itself, but a mode 
of motion of that primitive fluid. It is the mode of motion which constitutes 
the vortex rings, and which furnishes us with examples of that permanence and 
continuity of existence which we are accustomed to attribute to matter itself. 
The primitive fluid, the only true matter, entirely eludes our perceptions when 
it is not endued with the mode of motion which converts certain portions of 
it into vortex rings, and thus renders it molecular.

In Thomson’s theory, therefore, the mass of bodies requires explanation. We 
have to explain the inertia of what is only a mode of motion, and inertia is 
a property of matter, not of modes of motion. It is true that a vortex ring 
at any given instant has a definite momentum and a definite energy, but to 
shew that bodies built up of vortex rings would have such momentum and 
energy as we know them to have is, in the present state of the theory, a 
very difficult task.

It may seem hard to say of an infant theory that it is bound to explain 
gravitation. Since the time of Newton, the doctrine of gravitation has been 
admitted and expounded, till it has gradually acquired the character rather of 
an ultimate fact than of a fact to be explained.

It seems doubtful whether Lucretius considers gravitation to be an essential 
property of matter, as he seems to assert in the very remarkable lines—

“ Nam si tantundem est in lante glomere, quantum
Corporis in plumbo est, tantundem pendere par est:
Corporis officium est quoniam premere omnia deorsum.”—De lierum Natura, I. 3G1.
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If this is the true opinion of Lucretius, and if the downward flight of the 

atoms arises, in his view, from their own gravity, it seems very doubtful whether 
he attributed the weight of sensible bodies to the impact of the atoms. The 
latter opinion is that of Le Sage, of Geneva, propounded in his Lucrece New- 
tonien, and in his lutite de Physique Mecanique, published, along with a second 
treatise of his own, by Pierre Prevost, of Geneva, in 1818*.  The theory of 
Le Sage is that the gravitation of bodies towards each other is caused by the 
impact of streams of atoms flying in all directions through space. These atoms 
he calls ultramundane corpuscules, because he conceives them to come in all 
directions from regions far beyond that part of the system of the world which 
is in any way known to us. Ue supposes each of them to be so small that 
a collision with another ultramundane corpuscule is an event of very rare occur
rence. It is by striking against the molecules of gross matter that they dis
charge their function of drawing bodies towards each other. A body placed by 
itself in free space and exposed to the impacts of these corpuscules would be 
bandied about by them in all directions, but because, on the whole, it receives 
as many blows on one side as on another, it cannot thereby acquire any sensible 
velocity. But if there are two bodies in space, each of them will screen the 
other from a certain proportion of the corpuscular bombardment, so that a 
smaller number of corpuscules will strike either body on that side which is next 
the other body, while the number of corpuscules which strike it in other direc
tions remains the same.

* See also Constitution de la Matiire, &c., par le P. Leray, Paris, 1869.

Each body will therefore be urged towards the other by the effect of the 
excess of the impacts it receives on the side furthest from the other. If we 
take account of the impacts of those corpuscules only which come directly from 
infinite space, and leave out of consideration those which have already struck 
mundane bodies, it is easy to calculate the result on the two bodies, supposing 
their dimensions small compared with the distance between them.

The force of attraction would vary directly as the product of the areas of 
the sections of the bodies taken normal to the distance and inversely as the 
square of the distance between them.

Now, the attraction of gravitation varies as the product of the masses of 
the bodies between which it acts, and inversely as the square of the distance 
between them. If, then, we can imagine a constitution of bodies such that 
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the effective areas of the bodies are proportional to their masses, we shall make 
the two laws coincide. Here, then, seems to be a path leading towards an 
explanation of the law of gravitation, which, if it can be shewn to be in 
other respects consistent with facts, may turn out to be a royal road into the 
very arcana of science.

Le Sage himself shews that, in order to make the effective area of a body, 
in virtue of which it acts as a screen to the streams of ultramundane cor
puscules, proportional to the mass of the body, whether the body be large or 
small, we must admit that the size of the solid atoms of the body is exceed
ingly small compared with the distances between them, so that a very small 
proportion of the corpuscules are stopped even by the densest and largest bodies. 
We may picture to ourselves the streams of corpuscules coming in every direc
tion, like light from a uniformly illuminated sky. We may imagine a material 
body to consist of a congeries of atoms at considerable distances from each other, 
and we may represent this by a swarm of insects flying in the air. To an 
observer at a distance this swarm will be visible as a slight darkening of the 
sky in a certain quarter. This darkening will represent the action of the 
material body in stopping the flight of the corpuscules. Now, if the proportion 
ot light stopped by the swarm is very small, two such swarms will stop nearly 
the same amount of light, whether they are in a line with the eye or not, but 
if one of them stops an appreciable proportion of light, there will not be so 
much left to be stopped by the other, and the effect of two swarms in a line 
with the eye will be less than the sum of the two effects separately.

Now, we know that the effect of the attraction of the sun and earth on 
the moon is not appreciably different when the moon is eclipsed than on other 
occasions when full moon occurs without an eclipse. This shews that the number 
of the corpuscules which are stopped by bodies of the size and mass of the 
earth, and even the sun, is very small compared with the number which pass 
straight through the earth or the sun without striking a single molecule. To 
the streams of corpuscules the earth and the sun are mere systems of atoms 
scattered in space, which present far more openings than obstacles to their recti
linear flight.

Such is the ingenious doctrine of Le Sage, by which he endeavours to 
explain universal gravitation. Let us try to form some estimate of this con
tinual bombardment of ultramundane corpuscules which is being kept up on all 
sides of us.
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We hav e seen that the sun stops but a very small fraction of the cor- 

puscules which enter it. The earth, being a smaller body, stops a still smaller 
proportion of them. The proportion of those which are stopped by a small 
body, say a 1 lb. shot, must be smaller still in an enormous degree, because its 
thickness is exceedingly small compared with that of the earth.

Now, the weight of the ball, or its tendency towards the earth, is produced, 
according to this theory, by the excess of the impacts of the corpuscules which 
come from above over the impacts of those which come from below, and have 
passed through the earth. Either of these quantities is an exceedingly small 
fraction of the momentum of the whole number of corpuscules which pass through 
the ball in a second, and their difference is a small fraction of either, and yet 
it is equivalent to the weight of a pound. The velocity of the corpuscules 
must be enormously greater than that of any of the heavenly bodies, other
wise, as may easily be shewn, they would act as a resisting medium opposing 
the motion of the planets. Now, the energy of a moving system is half the 
product of its momentum into its velocity. Hence the energy of the corpuscules, 
which by their impacts on the ball during one second urge it towards the earth, 
must be a number of foot-pounds equal to the number of feet over which a 
corpuscule travels in a second, that is to say, not less than thousands of millions. 
But this is only a small fraction of the energy of all the impacts which the 
atoms of the ball receive from the innumerable streams of corpuscules which fall 
upon it in all directions.

Hence the rate at which the energy of the corpuscules is spent in order 
to maintain the gravitating property of a single pound, is at least millions of 
millions of foot-pounds per second.

What becomes of this enormous quantity of energy? If the corpuscules, 
after striking the atoms, fly off with a velocity equal to that which they had 
before, they will carry their energy away with them into the ultramundane 
regions. But if this be the case, then the corpuscules rebounding from the body 
in any given direction will be both in number and in velocity exactly equiva
lent to those which are prevented from proceeding in that direction by being 
deflected by the body, and it may be shewn that this will be the case what
ever be the shape of the body, and however many bodies may be present in 
the field. Thus, the rebounding corpuscules exactly make up for those which 
are deflected by the body, and there will be no excess of the impacts on any 
other body in one direction or another. 60—2
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Ihe explanation of gravitation, therefore, falls to the ground if the cor- 
puscules are like perfectly elastic spheres, and rebound with a velocity of 
separation equal to that of approach. If, on the other hand, they rebound with 
a smaller velocity, the effect of attraction between the bodies will no doubt 
be produced, but then we have to find what becomes of the energy which 
the molecules have brought with them but have not carried away.

If any appreciable fraction of this energy is communicated to the body in 
the form of heat, the amount of heat so generated would in a few seconds 
raise it, and in like manner the whole material universe, to a white heat.

It has been suggested by Sir W. Thomson that the corpuscules may be 
so constructed as to cany off their energy with them, provided that part of 
their kinetic energy is transformed, during impact, from energy of translation 
to energy of rotation or vibration. For this purpose the corpuscules must be 
material systems, not mere points. Thomson suggests that they are vortex 
atoms, which are set into a state of vibration at impact, and go oft’ with a 
smaller velocity of translation, but in a state of violent vibration. He has also 
suggested the possibility of the vortex corpuscule regaining its swiftness and 
losing part of its vibratory agitation by communion with its kindred cor
puscules in infinite space.

We have devoted more space to this theory than it seems to deserve, 
because it is ingenious, and because it is the only theory of the cause of 
gravitation which has been so far developed as to be capable of being attacked 
and defended. It does not appear to us that it can account for the tem
perature of bodies remaining moderate while their atoms are exposed to the 
bombardment. The temperature of bodies must tend to approach that at 
which the average kinetic energy of a molecule of the body would be equal 
to the average kinetic energy of an ultramundane corpuscule.

Now, suppose a plane surface to exist which stops all the corpuscules. 
The pressure on this plane will be p = NMu* where M is the mass of a cor
puscule, N the number in unit of volume, and u its velocity normal to the 
plane. Now, we know that the very greatest pressure existing in the universe 
must be much less than the pressure p, which would be exerted against a body 
which stops all the corpuscules. We are also tolerably certain that N, the 
number of corpuscules which are at any one time within unit of volume is 
small compared with the value of N for the molecules of ordinary bodies. 
Hence, Mu~ must be enormous compared with the corresponding quantity for 
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ordinary bodies, and it follows that the impact of the corpuscules would raise 
all bodies to an enormous temperature. We may also observe that according 
to this theory the habitable universe, which we are accustomed to regard as 
the scene of a magnificent illustration of the conservation of energy as the 
fundamental principle of all nature, is in reality maintained in working order 
only by an enormous expenditure of external power, which would be nothing 
less than ruinous if the supply were drawn from anywhere else than from the 
infinitude of space, and which, if the contrivances of the most eminent mathe
maticians should be found in any respect defective, might at any moment tear 
the whole universe atom from atom.

We must now leave these speculations about the nature of molecules and 
the cause of gravitation, and contemplate the material universe as made up of 
molecules. Every molecule, so far as we know, belongs to one of a definite 
number of species. The list of chemical elements may be taken as repre
senting the known species which have been examined in the laboratories. 
Several of these have been discovered by means of the spectroscope, and more 
may yet remain to be discovered in the same way. The spectroscope has also 
been applied to analyse the light of the sun, the brighter stars, and some of 
the nebulae and comets, and has shewn that the character of the light 
emitted by these bodies is similar in some cases to that emitted by terres
trial molecules, and in others to light from which the molecules have absorbed 
certain rays. In this way a considerable number of coincidences have been 
traced between the systems of lines belonging to particular terrestrial sub
stances and corresponding lines in the spectra of the heavenly bodies.

Ihe value of the evidence furnished by such coincidences may be estimated 
by considering the degree of accuracy with which one such coincidence may be 
observed. Ihe interval between the two lines which form Fraunhofer’s line D
is about the five hundredth part of the interval between 
hoffs scale. A discordance between the positions of two 
the tenth part of this interval, that is to say, the five 
the length of the bright part of the spectrum, would be 

B and G on Kirch- 
lines amounting to 
thousandth part of 
very perceptible in

a spectroscope of moderate power. We may define the power of the spectro
scope to be the number of times which the smallest measurable interval is 
contained in the length of the visible spectrum. Let us denote this by p. In 
the case we have supposed p will be about 5000.

If the spectrum of the sun contains n lines of a certain degree of inten-
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sity, the probability that any one line of the spectrum of a gas will coincide 
with one of these n lines is 

1-6 --
\ P. ~P

l_n-JL 1
2 p

and when p is large compared with n, this becomes nearly If there are
P

r lines in the spectrum of the gas, the probability that each and every one 

shall coincide with a line in the solar spectrum is approximately ~. Hence, 

in the case of a gas whose spectrum contains several lines, we have to com
pare the results of two hypotheses. If a large amount of the gas exists in 
the sun, we have the strongest reason for expecting to find all the r lines in 
the solar spectrum. If it does not exist, the probability that r lines out of 
the n observed lines shall coincide with the lines of the gas is exceedingly 
small. If, then, we find all the r lines in their proper places in the solar 
spectrum, we have very strong grounds for believing that the gas exists in the 
sun. I he probability that the gas exists in the sun is greatly strengthened 
if the character of the lines as to relative intensity and breadth is found to 
correspond in the two spectra.

The absence of one or more lines of the gas in the solar spectrum tends 
of course to weaken the probability, but the amount to be deducted from the 
probability must depend on what we know of the variation in the relative 
intensity of the lines when the temperature and the pressure of the gas are 
made to vary.

Coincidences observed, in the case of several terrestrial substances, with 
several systems of lines in the spectra of the heavenly bodies, tend to increase 
the evidence for the doctrine that terrestrial substances exist in the heavenly 
bodies, while the discovery of particular lines in a celestial spectrum which do 
not coincide with any line in a terrestrial spectrum does not much weaken 
the general argument, but rather indicates either that a substance exists in the 
heavenly body not yet detected by chemists on earth, or that the temperature 
of the heavenly body is such that some substance, undecomposable by our 
methods, is there split up into components unknown to us in their separate 
state.

We are thus led to believe that in widely-separated parts of the visible 
universe molecules exist of various kinds, the molecules of each kind having 
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their various periods of vibration either identical, or so nearly identical that our 
spectroscopes cannot distinguish them. We might argue from this that these 
molecules are alike in all other respects, as, for instance, in mass. But it is 
sufficient for our present purpose to observe that the same kind of molecule, 
say that of hydrogen, has the same set of periods of vibration, whether we 
procure the hydrogen from water, from coal, or from meteoric iron, and that 
light, having the same set of periods of vibration, comes to us from the sun, 
from Sirius, and from Arcturus.

The same kind of reasoning which led us to believe that hydrogen exists 
in the sun and stars, also leads us to believe that the molecules of hydrogen 
in all these bodies had a common origin. For a material system capable of 
vibration may have for its periods of vibration any set of values whatever. 
The probability, therefore, that two material systems, quite independent of each 
other, shall have, to the degree of accuracy of modern spectroscopic measure
ments, the same set of periods of vibration, is so very small that we are 
forced to believe that the two systems are not independent of each other. 
When, instead of two such systems, we have innumerable multitudes all 
having the same set of periods, the argument is immensely strengthened.

Admitting, then, that there is a real relation between any two molecules 
of hydrogen, let us consider what this relation may be.

We may conceive of a mutual action between one body and another 
tending to assimilate them. Two clocks, for instance, will keep time with each 
other if connected by a wooden rod, though they have different rates if they 
were disconnected. But even if the properties of a molecule were as capable 
of modification as those of a clock, there is no physical connection of a suffi
cient kind between Sirius and Arcturus.

There are also methods by which a large number of bodies differing from 
each other may be sorted into sets, so that those in each set more or less 
resemble each other. In the manufacture of small shot this is done by making 
the shot roll down an inclined plane. The largest specimens acquire the greatest 
velocities, and are projected farther than the smaller ones. In this way the 
various pellets, which differ both in size and in roundness, are sorted into 
different kinds, those belonging to each kind being nearly of the same size, 
and those which are not tolerably spherical being rejected altogether.

If the molecules were originally as various as these leaden pellets, and 
were afterwards sorted into kinds, we should have to account for the dis
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appearance of all the molecules which did not fall under one of the very limited 
number of kinds known to us; and to get rid of a number of indestructible 
bodies, exceeding by far the number of the molecules of all the recognised 
kinds, would be one of the severest labours ever proposed to a cosmoo-onist.

It is well known that living beings may be grouped into a certain number 
of species, defined with more or less precision, and that it is difficult or im
possible to find a series of individuals forming the links of a continuous chain 
between one species and another. In the case of living beings, however, the 
generation of individuals is always going on, each individual differing more or 
less from its parents. Each individual during its whole life is undergoing 
modification, and it either survives and propagates its species, or dies early, 
accordingly as it is more or less adapted to the circumstances of its environ
ment. Hence, it has been found possible to frame a theory of the distribution 
ot organisms into species by means of generation, variation, and discriminative 
destruction. But a theory of evolution of this kind cannot be applied to the 
case of molecules, for the individual molecules neither are born nor die, they 
have neither parents nor offspring, and so far from being modified by their en
vironment, we find that two molecules of the same kind, say of hydrogen, 
have the same properties, though one has been compounded with carbon and 
buried in the earth as coal for untold ages, while the other has been “oc
cluded” in the iron of a meteorite, and after unknown wanderings in the 
heavens has at last fallen into the hands of some terrestrial chemist.

Ihe process by which the molecules become distributed into distinct species 
is not one of which we know any instances going on at present, or of which 
we have as yet been able to form any mental representation. If we suppose 
that the molecules known to us are built up each of some moderate number 
of atoms, these atoms being all of them exactly alike, then we may attribute 
the limited number of molecular species to the limited number of ways in 
which the primitive atoms may be combined so as to form a permanent system.

But though this hypothesis gets rid of the difficulty of accounting for the 
independent origin of different species of molecules, it merely transfers the diffi
culty from the known molecules to the primitive atoms. How did the atoms 
come to be all alike in those properties which are in themselves capable of 
assuming any value ?

If we adopt the theory of Boscovich, and assert that the primitive atom 
is a mere centre of force, having a certain definite mass, we may get over the 
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difficulty about the equality of the mass of all atoms by laying it down as 
a doctrine which cannot be disproved by experiment, that mass is not a 
quantity capable of continuous increase or diminution, but that it is in its 
own nature discontinuous, like number, the atom being the unit, and all masses 
being multiples of that unit. We have no evidence that it is possible for the 
ratio of two masses to be an incommensurable quantity, for the incommen
surable quantities in geometry are supposed to be traced out in a continuous 
medium. If matter is atomic, and therefore discontinuous, it is unfitted for 
the construction of perfect geometrical models, but in other respects it may 
fulfil its functions.

But even if we adopt a theory which makes the equality of the mass of 
different atoms a result depending on the nature of mass rather than on any 
quantitative adjustment, the correspondence of the periods of vibration of actual 
molecules is a fact of a different order.

We know that radiations exist having periods of vibration of every value 
between those corresponding to the limits of the visible spectrum, and probably 
far beyond these limits on both sides. The most powerful spectroscope can 
detect no gap or discontinuity in the spectrum of the light emitted by incan
descent lime.

The period of vibration of a luminous particle is therefore a quantity which 
in itself is capable of assuming any one of a series of values, which, if not 
mathematically continuous, is such that consecutive observed values differ from 
each other by less than the ten thousandth part of either. There is, therefore, 
nothing in the nature of time itself to prevent the period of vibration of a 
molecule from assuming any one of many thousand different observable values. 
That which determines the period of any particular kind of vibration is the 
relation which subsists between the corresponding type of displacement and the 
foice of restitution thereby called into play, a relation involving constants of 
space and time as well as of mass.

It is the equality of these space- and time-constants for all molecules of 
the same kind which we have next to consider. AVe have seen that the very 
different circumstances in which different molecules of the same kind have been 
placed have not, even in the course of many ages, produced any appreciable 
diffeience in the values of these constants. If, then, the various processes of 
nature to which these molecules have been subjected since the world began 
have not been able in all that time to produce any appreciable difference 
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between the constants of one molecule and those of another, we are forced 
to conclude that it is not to the operation of any of these processes that the 
uniformity of the constants is due.

The formation of the molecule is therefore an event not belonging to that 
order of nature under which we live. It is an operation of a kind which is 
not, so far as we are aware, going on on earth or in the sun or the stars, 
either now or since these bodies began to be formed. It must be referred to 
the epoch, not of the formation of the earth or of the solar system, but of 
the establishment of the existing order of nature, and till not only these 
worlds and systems, but the very order of nature itself is dissolved, we have 
no reason to expect the occurrence of any operation of a similar kind.

In the present state of science, therefore, we have strong reasons for be
lieving that in a molecule, or if not in a molecule, in one of its component 
atoms, we have something which has existed either from eternity or at least 
from times anterior to the existing order of nature. But besides this atom, 
there are immense numbers of other atoms of the same kind, and the constants 
of each of these atoms are incapable of adjustment by any process now in 
action. Each is physically independent of all the others.

Whether or not the conception of a multitude of beings existing from all 
eternity is in itself self-contradictory, the conception becomes palpably absurd 
when we attribute a relation of quantitative equality to all these beings. We 
are then forced to look beyond them to some common cause or common origin 
to explain why this singular relation of equality exists, rather than any one 
of the infinite number of possible relations of inequality.

Science is incompetent to reason upon the creation of matter itself out 
of nothing. We have reached the utmost limit of our thinking faculties when 
we have admitted that, because matter cannot be eternal and self-existent, it 
must have been created. It is only when we contemplate not matter in itself, 
but the form in which it actually exists, that our mind finds something on 
which it can lay hold.

That matter, as such, should have certain fundamental properties, that it 
should have a continuous existence in space and time, that all action should 
be between two portions of matter, and so on, are truths which may, for 
aught we know, be of the kind which metaphysicians call necessary. We may 
use our knowledge of such truths for purposes of deduction, but we have no 
data for speculating on their origin.
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But the equality of the constants of the molecules is a fact of a very 
different order. It arises from a particular distribution of matter, a collocation, 
to use the expression of Dr Chalmers, of things which we have no difficulty in 
imagining to have been arranged otherwise. But many of the ordinary instances 
of collocation are adjustments of constants, which are not only arbitrary in 
their own nature, but in which variations actually occur;
pointed out that these adjustments are beneficial to living 
therefore instances of benevolent
which are not conducive to the 
tend to their destruction, and to 
adjustment not beneficial.

The constitution of an atom,

design, it is replied that 
growth and multiplication
the removal thereby of the

however, is such as

and when it is 
beings, and are 
those variations

evidence
beings 

of any

to render it, so far as
we can judge, independent of all the dangers arising from the struggle for 
existence. 1 lausible reasons may, no doubt, be assigned for believing that if 
the constants had varied from atom to atom through any sensible range, the 
bodies formed by aggregates of such atoms would not have been so well fitted
for the construction of the world as the bodies which actually exist. But as 
we have no experience of bodies formed of such variable atoms this must remain 
a bare conjecture.

Atoms have been compared by Sir J. Herschel to manufactured articles, 
on account of their uniformity. The uniformity of manufactured articles may 
be traced to very different motives on the part of the manufacturer. In 
certain cases it is found to be less expensive as regards trouble, as well as 
cost, to make a great many objects exactly alike than to adapt each to its 
special requirements. Thus, shoes for soldiers are made in large numbers without 
any designed adaptation to the feet of particular men. In another class of 
cases the uniformity is intentional, and is designed to make the manufactured 
article more valuable. Thus, Whitworth’s bolts are made in a certain number 
of sizes, so that if one bolt is lost, another may be got at once, and accurately 
fitted to its place. The identity of the arrangement of the words in the 
different copies of a document or book is a matter of great practical importance, 
and it is more perfectly secured by the process of printing than by that of 
manuscript copying.

In a third class not a part only but the whole of the value of the object 
arises from its exact conformity to a given standard. Weights and measures 
belong to this class, and the existence of many well-adjusted material standards 
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of weight and measure in any country furnishes evidence of the existence of 
a system of law regulating the transactions of the inhabitants, and enjoining 
in all professed measures a conformity to the national standard.

There are thus three kinds of usefulness in manufactured articles—cheap
ness, serviceableness, and quantitative accuracy. Which of these was present 
to the mind of Sir J. Herschel we cannot now positively affirm, but it was 
at least as likely to have been the last as the first, though it seems more 
probable that he meant to assert that a number of exactly similar things cannot 
be each of them eternal and self-existent, and must therefore have been made, 
and that he used the phrase “ manufactured article ” to suggest the idea of 
their being made in great numbers.



[From the Encyclopaedia Britannica.]

LXXIV. Attraction.

1 hat the different parte of a material system influence each other’s mo
tions is a matter of daily observation. In some cases we cannot discover any 
material connection extending from the one body to the other. We call these 
cases of action at a distance, to distinguish them from those in which we can 
trace a continuous material bond of union between the bodies. The mutual 
action between two bodies is called stress. When the mutual action tends to 
bring the bodies nearer, or to prevent them from separating, it is called tension 
or attraction. When it tends to separate the bodies, or to prevent them from 
approaching, it is called pressure or repulsion. The names tension and pressure 
are used when the action is seen to take place through a medium. Attraction 
and repulsion are reserved for cases of action at a distance. The configuration 
of a material system can always be defined in terms of the mutual distances 
of the parts of the system. Any change of configuration must alter one or 
more of these distances. Hence the force which produces or resists such a 
change may be' resolved into attractions or repulsions between those parts of 
the system whose distance is altered.

There has been a great deal of speculation as to the cause of such forces, 
one of them, namely, the pressure between bodies in contact, being supposed 
to be more easily conceived than any other kind of stress. Many attempts 
have therefore been made to resolve cases of apparent attraction and repulsion 
at a distance into cases of pressure. At one time the possibility of attraction 
at a distance was supposed to be refuted by asserting that a body cannot act 
where it is not, and that therefore all action between different portions of 
matter must be by direct contact. To this it was replied that we have no 
evidence that real contact ever takes place between two bodies, and that, in 
fact, when bodies are pressed against each other and in apparent contact we 
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may sometimes actually measure the distance between them, as when one piece 
of glass is laid on another, in which case a considerable pressure must be ap
plied to bring the surfaces near enough to shew the black spot of Newton’s 
rings, which indicates a distance of about a ten thousandth of a millimetre. If, 
in order to get rid of the idea of action at a distance, we imagine a ma
terial medium through which the action is transmitted, all that we have done 
is to substitute for a single action at a great distance a series of actions at 
smaller distances between the parts of the medium, so that we cannot even 
thus get rid of action at a distance.

Ihe study of the mutual action between the parts of a material system 
has, in modem times, been greatly simplified by the introduction of the idea 
of the energy of the system. The energy of the system is measured by the 
amount of work which it can do in overcoming external resistances. It depends 
on the present configuration and motion of the system, and not on the manner 
in which the system has acquired that configuration and motion. A complete 
knowledge of the manner in which the energy of the system depends on its 
configuration and motion, is sufficient to determine all the forces acting between 
the parts of the system. For instance, if the system consists of two bodies, 
and if the energy depends on the distance between them, then if the energy 
increases when the distance increases, there must be attraction between the 
bodies, and if the energy diminishes when the distance increases, there must 
be repulsion between them. In the case of two gravitating masses m and m' 

at a distance r, the part of the energy which depends on r is — . We

may therefore express the fact that there is attraction between the two bodies 
by saying that the energy of the system consisting of the two bodies increases 
when their distance increases. The question, therefore, Why do the two bodies 
attract each other? may be expressed in a different form. Why does the 
energy of the system increase when the distance increases ?

But we must bear in mind that the scientific or science-producing value of 
the efforts made to answer these old standing questions is not to be measured 
by the prospect they afford us of ultimately obtaining a solution, but by their 
effect in stimulating men to a thorough investigation of nature. To propose a 
scientific question presupposes scientific knowledge, and the questions which 
exercise men’s minds in the present state of science may very likely be such 
that a little more knowledge would shew us that no answer is possible. Ihe 



ATTRACTION. 487
scientific value of the question, How do bodies act on one another at a dis
tance ? is to be found in the stimulus it has given to investigations into the 
properties of the intervening medium.

Newton, in his Principia, deduces from the observed motions of the hea
venly bodies the fact that they attract one another according to a definite law. 
This he gives as a result of strict dynamical reasoning, and by it he shews 
how not only the more conspicuous phenomena, but all the apparent irregu
larities of the celestial motions are the calculable results of a single principle. 
In his Principia he confines himself to the demonstration and development of 
this great step in the science of the mutual action of bodies. He says nothing 
there about the means by which bodies gravitate towards each other. But his 
mind did not rest at this point. We know that he did not believe in the 
direct action of bodies at a distance.

“ It is inconceivable that inanimate brute matter should, without the mediation of something else 
which is not material, operate upon and affect other matter without mutual contact, ns it must do 
if gravitation in the sense of Epicurus be essential and inherent in it...That gravity should be innate, 
inherent, and essential to matter, so that one body can act upon another at a distance, through a 
vacuum, without the mediation of anything else, by and through which their action and force may be 
conveyed from one to another, is to me so great an absurdity, that I believe no man, who has in 
philosophical matters a competent faculty of thinking, can ever fall into it.”—Letter to Bentley.

And we also know that he sought for the mechanism of gravitation in the 
properties of an aethereal medium diffused over the universe.

“ It appears, from his letters to Boyle, that this was his opinion early, and if he did not publish 
it sooner it proceeded from hence only, that he found ho was not able, from experiment and obser
vation, to give a satisfactory account of this medium and the manner of its operation in producing 
the chief phenomena of nature*.”

In his Optical Queries, indeed, he shews that if the pressure of this 
medium is less in the neighbourhood of dense bodies than at great distances 
from them, dense bodies will be drawn towards each other, and that if the 
diminution of pressure is inversely as the distance from the dense body the 
law will be that of gravitation. The next step, as he points out, is to account 
for this inequality of pressure in the medium; and as he was not able to do 
this, he left the explanation of the cause of gravity as a problem to succeeding 
ages. As regards gravitation the progress made towards the solution of the 
problem since the time of Newton has been almost imperceptible. Faraday

* Maclaurin’s account of Sir Isaac Newton’s discoveries. 
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shewed that the transmission of electric and magnetic forces is accompanied by 
phenomena occurring in every part of the intervening medium. He traced the 
lines of force through the medium; and he ascribed to them a tendency to 
shorten themselves and to separate from their neighbours, thus introducing the 
idea of stress in the medium in a different form from that suggested by Newton; 
for, whereas Newton’s stress was a hydrostatic pressure in every direction, 
Faraday’s is a tension along the lines of force, combined with a pressure in 
all normal directions. By shewing that the plane of polarisation of a ray of 
light passing through a transparent medium in the direction of the magnetic 
force is made to rotate, Faraday not only demonstrated the action of magnetism 
on light, but by using light to reveal the state of magnetisation of the medium, 
he “ illuminated,” to use his own phrase, “ the lines of magnetic force.”

From this phenomenon Thomson afterwards proved, by strict dynamical 
reasoning, that the transmission of magnetic force is associated with a rotatory 
motion of the small parts of the medium. He shewed, at the same time, how 
the centrifugal force due to this motion would account for magnetic attraction.

A theory of this kind is worked out in greater detail in Clerk Maxwell’s 
Treatise on Electricity and Magnetism. It is there shewn that, if we assume 
that the medium is in a state of stress, consisting of tension along the lines 
of force and pressure in all directions at right angles to the lines of force, 
the tension and the pressure being equal in numerical value and proportional 
to the square of the intensity of the field at the given point, the observed 
electrostatic and electromagnetic forces will be completely accounted for.

The next step is to account for this state of stress in the medium. In 
the case of electromagnetic force we avail ourselves of Thomson’s deduction 
from Faraday’s discovery stated above. We assume that the small parts of the 
medium are rotating about axes parallel to the lines of force. The centrifugal 
force due to this rotation produces the excess of pressure perpendicular to the 
lines of force. Ihe explanation of electrostatic stress is less satisfactory, but 
there can be no doubt that a path is now open by which we may trace to 
the action of a medium all forces which, like the electric and magnetic forces, 
vary inversely as the square of the distance, and are attractive between bodies 
of different names, and repulsive between bodies of the same names.

The force of gravitation is also inversely as the square of the distance, 
but it differs from the electric and magnetic forces in this respect, that the bodies 
between which it acts cannot be divided into two opposite kinds, one positive 
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and t ie other negative, but are in respect of gravitation all of the same kind, 
and t at the force between them is in every case attractive. To account for 
such a force by means of stress in an intervening medium, on the plan adopted 
for electric and magnetic forces, we must assume a stress of an opposite kind 
from that already mentioned. We must suppose that there is a pressure in 
the direction of the lines of force, combined with a tension in all directions 
at right angles to the lines of force. Such a state of stress would, no doubt, 
account for the observed effects of gravitation. We have not, however, been 
able hitherto to imagine any physical cause for such a state of stress. It is 
easy to calculate the amount of this stress which would be required to account 
for the actual effects of gravity at the surface of the earth. It would require 
a pressure of 37,000 tons weight on the square inch in a vertical direction, 
combined with a tension of the same numerical value in all horizontal directions. 
The state of stress, therefore, which we must suppose to exist in the invisible 
medium, is 3000 times greater than that which the strongest steel could sup
port.

Another theory of the mechanism of gravitation, that of Le Sage, who 
attributes it to the impact of “ultramundane corpuscles,” has been already 
discussed in the article Atom, supra, p. 473.

Sir William Thomson1' has shewn that if we suppose all space filled with 
a uniform incompressible fluid, and if we further suppose either that material 
bodies are always generating and emitting this fluid at a constant rate, the 
fluid flowing off to infinity, or that material bodies are always absorbing and 
annihilating the fluid, the deficiency flowing in from infinite space, then, in 
either of these cases, there would be an attraction between any two bodies 
inversely as the square of the distance. If, however, one of the bodies were 
a generator of the fluid and the other an absorber of it, the bodies would repel 
each other.

Here, then, we have a hydrodynamical illustration of action at a distance, 
which is so far promising that it shews how bodies of the same kind may 
attract each other. But the conception of a fluid constantly flowing out of a 
body without any supply from without, or flowing into it without any way 
of escape, is so contradictory to all our experience, that an hypothesis, of 
which it is an essential part, cannot be called an explanation of the phenomenon 
of gravitation.

* Proceedings of the Royal Society of Edinburgh, 7th Feb. 1870.
vol. n. 62
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Dr Robert Hooke, a man of singular inventive power, in 1671 endea
voured to trace the cause of gravitation to waves propagated in a medium. 
He found that bodies floating on water agitated by waves were drawn towards 
the centre of agitation*. He does not appear, however, to have followed up 
this observation in such a way as to determine completely the action of waves 
on an immersed body.

Professor Challis has investigated the mathematical theory of the effect of 
waves of condensation and rarefaction in an elastic fluid on bodies immersed 
in the fluid. He found the difficulties of the investigation to be so great that 
he has not been able to arrive at numerical results. He concludes, however, 
that the effect of such waves would be to attract the body towards the centre 
of agitation, or to repel it from that centre, according as the wave’s length 
is very large or very small compared with the dimensions of the body. Prac
tical illustrations of the effect of such waves have been given by Guyot, Schell
bach, Guthrie, and Thomson!.

A tuning-fork is set in vibration, and brought near a delicately suspended 
light body. The body is immediately attracted towards the tuning-fork. If the 
tuning-fork is itself suspended, it is seen to be attracted towards any body 
placed near it.

Sir W. Thomson has shewn that this action can in all cases be explained 
by the general principle that in fluid motion the average pressure is least 
where the average energy of motion is greatest. Now, the wave-motion is 
greatest nearest the tuning-fork, the pressure is therefore least there; and the 
suspended body being pressed unequally on opposite sides, moves from the side 
of greater pressure to the side of less pressure, that is towards the tuning-fork. 
He has also succeeded in producing repulsion in the case of a small body 
lighter than the surrounding medium.

It is remarkable that of the three hypotheses, which go some way towards 
a physical explanation of gravitation, every one involves a constant expenditure 
of work. Le Sage’s hypothesis of ultramundane corpuscles does so, as we have 
shewn in the article Atom. That of the generation or absorption of fluid 
requires, not only constant expenditure of work in emitting fluid under pressure, 
but actual creation and destruction of matter. That of waves requires some 
agent in a remote part of the universe capable of generating the waves.

* Posthumous Works, edited by R, Waller, pp. xiv. and 184
+ Philosophical Magazine, June, 1871.
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According to such hypotheses we must regard the processes of nature not 
“ illustrations of the great principle of the conservation of energy, but as 
instances in which, by a nice adjustment e 1 • .this principle, an apparent connection of C P0™" ."g6™88 not 8ubJeCt t0 

forced to conclude that the explanation of ” raa“tamed' Hence, we are 
be found in any of these hypotheses. 6 Ca ° ° gravitation is not to
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LXXV. On Bows 'method of drawing diagrams in graphical statics with 
illustrations from Peaucellier’s linkage.

The use of Diagrams is a particular instance of that method of symbols 
which is so powerful an aid in the advancement of science.

A diagram differs from a picture in this respect, that in a diagram no 
attempt is made to represent those features of the actual material system which 
are not the special objects of our study.

Thus when we are studying the internal equilibrium of a particular piece 
of a structure or a machine, we require to know its shape and dimensions, and 
the specification of these may often be made easier by means of a drawing of 
the piece.

But when we are studying the equilibrium of a framework composed of 
such pieces jointed together, in which each piece acts only by tension or by 
pressure between its extremities, it is not necessary to know whether a particular 
piece is straight or curved or what may be the form of its section. In order, 
therefore, to exhibit the structure of the frame in the most elementary manner 
we may draw it as a skeleton in which the different joints are connected by 
straight lines. The tension or pressure of each piece may be indicated on such 
a diagram by numbers attached to the line which represents that piece in the 
diagram. The stresses in the frame would thus be indicated in a way which 
is geometrical as regards the position and direction of the forces, but arithmetical 
as regards their magnitude.

But a purely geometrical representation of a force has been made use of 
from the earliest beginnings of mechanics as a science. The force is represented 
by a straight line drawn from the point of application of the force, in the 
direction of the force, and containing as many units of length as there are 
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units of force in the force. The end of the line is marked by an arrow-head 
to shew in which direction the force acts.

According to this method each force is drawn in its proper position in 
the diagram which represents the configuration of the system. Such a diagram 
might be useful as a record of the results of calculation of the magnitude of 
the forces, but it would be of no use in enabling us to test the correctness 
of the calculation. It would be of less use than the diagram in which the 
magnitudes of the forces were indicated by numbers.

But we have a geometrical method of testing the equilibrium of any set 
of forces acting at a point by drawing in series a set of lines parallel and 
proportional to these forces. If these lines form a closed polygon the forces 
are in equilibrium. We might thus form a set of polygons of forces, one for 
each joint of the frame. But in so doing we give up the principle of always 
drawing the line representing a force from its point of application, for all the 
sides of a polygon cannot pass through the same point as the forces do.

We also represent every stress twice over, for it appears as a side of both 
the polygons corresponding to the two joints between which it acts.

But if we can arrange the polygons in such a way that the sides of any 
two polygons which represent the same force coincide with each other, we may 
form a diagram in which every stress is represented in direction and magnitude, 
though not in position, by a single line, which is the common boundary of the 
two polygons which represent the points of concourse of the pieces of the frame.

Here we have a pure diagram of forces, in which no attempt is made to 
represent the configuration of the material system, and in which every force 
is not only represented in direction and magnitude by a straight line, but the 
equilibrium of the forces is manifest by inspection, for we have only to examine 
whether each polygon is closed or not.

The relations between the diagram of the frame and the diagram of stress 
are as follows:

To every piece in the frame corresponds a line in the diagram of stress 
which represents in magnitude and direction the stress acting on that piece.

To every joint of the frame corresponds a closed polygon in the diagram, 
and the forces acting at that joint are represented by the sides of the polygon 
taken in a certain cyclical order. The cyclical order of the sides of two adjacent 
polygons is such that their common side is traced in opposite directions in 
going round the two polygons.
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When to every point of concourse of the lines in the diagram of stress 
corresponds a closed polygon in the skeleton of the frame, the two diagrams 
are said to be reciprocal.

The first extensions of the method of diagrams of forces to other cases 
than that of the funicular polygon were given by Rankine in his Applied 
Mechanics (1857).

The method was independently applied to a large number of cases by 
Mr W. P. Taylor, a practical draughtsman in the office of the well-known con
tractor Mr J. B. Cochrane. I pointed out the reciprocal properties of the 
diagram in 18G4, and in 1870 shewed the relations of this method to Airy’s 
function of stress and other mathematical methods.

Prof. Fleeming Jenkin has given a number of applications of the method 
to practice, Trans. R. S. E., Vol. xxv.

Cremona * has deduced the construction of the reciprocal figures from the 
theory of the two linear components of a wrench.

Culmann in his Graphische Statik makes great use of diagrams of forces, 
some of which, however, are not reciprocal.

M. Maurice Levy in his Statique Graphique (Paris, 1874) has treated the 
whole subject in an elementary and complete manner.

Mr R. H. Bow, C.E., F.R.S.E., in a recent work On the Economics of 
Construction in relation to Framed Structures (Spon, 1873), has materially 
simplified the process of drawing a diagram of stress reciprocal to a given frame 
acted on by any system of equilibrating external forces.

Instead of lettering the joints of the frame as is generally done, or the 
pieces of the frame as was my own custom, he places a letter in each of 
the polygonal areas enclosed by the pieces of the frame, and also in each of 
the divisions of the surrounding space as separated by the lines of action of 
the external forces.

When one piece of the frame crosses another, the point of intersection is 
treated as if it were a real joint, and the stresses of each of the intersecting 
pieces are represented twice in the diagram of stress, as the opposite sides of the 
parallelogram which represents the forces at the point of intersection. Thus 
the point V in figures 1 and 3, p. 495, is represented by the parallelogram 
BDCE in figure 2, and the point A in figure 2 is represented by the 
parallelogram PRQS in figures 1 and 3.

* Le figure reciprocity nella statica grafica (Milano, 1872).
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Peaucelliers linkage consists of the four equal pieces forming the jointed 
rhombus PQRS together with two equal arms OS and OR.

When these arms are longer than the sides of the rhombus the linkage 
is said to be positive; when they are shorter the linkage is said to be negative.

When Peaucelliers linkage is employed as a machine it is acted on by 
three forces, applied respectively at the fulcrum O, and the two tracing poles 
Q and S.
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These three forces, if in equilibrium, must meet in some point T. We 
may therefore suppose them to be stresses in three new pieces OT, QT, ST, 
which will complete the frame.

Let us suppose that both O and T are outside the rhombus, and that 
OS intersects PT in the point V, and let us apply Bow’s method to construct 
the diagram of stress reciprocal to this frame.

If we letter the areas as follows, putting

A for the rhombus PRQS,
B for the triangle PSV,
C for the triangle OTV, 
D for the quadrilateral ORPV, 
E for the quadrilateral QSVT,

and F for the space outside the frame,

then, in the diagram of stress, the stresses of the four sides of the rhombus 
will meet in A, and since the opposite sides of the rhombus are parallel, the 
lines EA and AD will be in one straight line, and the lines BA and AF 
will also be in a straight line.

Also since in the frame the pieces OR and OS are equal, the angles 
ORP, PSV are equal, and the corresponding angles FDA, ABE must be equal, 
and therefore the quadrilateral BEFD can be inscribed in a circle, and therefore 
the angles FEA, DBA are equal, and the corresponding angles in the frame 
TQS, SPV are equal, and therefore PT is equal to QT.

If, therefore, 0 is in one diagonal of the rhombus, T must be in the 
other diagonal.

The diagram of stress is completed by drawing EC parallel to BD, and 
DC parallel to BE, and joining FC.

This diagram therefore consists of a parallelogram BDCE, a diagonal ED, 
a point F in the circle passing through FBD, and four lines drawn from F 
to the angles of the parallelogram.

If we now begin with the diagram of stress, and proceed to construct a 
frame reciprocal to it, the form of the frame will be different according to the
cyclical direction in which the sides of the rhombus PRQS are lettered. If
in the one case we have the points O and T both outside the rhombus as
in fig. 1, in the other 0 and T will both be within the rhombus as in fig. 3.
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The stresses in the corresponding pieces of fig. 1 and fig. 3 are ail equal if 
they are equal in any pair of them.

If in the frames represented in fig. 1 and fig. 3, we consider that the 
pieces OS and 1 P cross one another at F without intersecting, we have six 
points O, P, Q, Rt S, T joined by nine lines. Now in general if p points in 
a plane are joined by 2p — 3 lines the figure is simply stiff, that is to say 
the form of the figure is determined by the lengths of the lines, and there are 
no necessary relations between the lengths of the lines.

But in Peaucellier’s linkage the length of any line, as OT, is determined 
when those of the other eight are given. For if a is the length of a side 
of the rhombus, b the length of either arm Oli or OS, c the length of either 
arm TP or TQ, then if OT—d,

d^b'+c' — a*.

Hence if any one of the nine pieces of the linkage be removed, the motion 
of the remaining eight will be the same as before, and a given stress in any 
one of the nine will produce stresses in each of the other eight which are 
determinate in magnitude when the configuration of the linkage is given, though 
they alter during the motion of the linkage.

VOL. II. 63



[From the Proceedings of the Cambridge Philosophical Society, Vol. n., 1876.]

LXXVI. On the Equilibrium of Heterogeneous Substances.

The thermodynamical problem of the equilibrium of heterogeneous substances 
was first attacked by Kirchoii in 1855, who studied the properties of mixtures 
of sulphuric acid with water, and the density of the vapour in equilibrium with 
the mixture. His method has recently been adopted by C. Neumann in his 
Vorlesungen uber die mechanische Theorie der Warme (Leipzig, 1875). Neither 
of these writers, however, makes use of two of the most valuable concepts in 
Thermodynamics, namely, the intrinsic energy and the entropy of the substance.

It is probably for this reason that their methods do not readily give an 
explanation of those states of equilibrium which are stable in themselves, but 
which the contact of certain substances may render unstable.

I therefore wish to point out to the Society the methods adopted by 
Professor J. Willard Gibbs of Yale College, published in the Transactions of 
the Academy of Sciences of Connecticut, which seem to me to throw a new 
light on Thermodynamics.

He considers the intrinsic energy (e) of a homogeneous mass consisting of 
n kinds of component matter to be a function of n + 2 variables, namely, the 
volume of the mass v, its entropy y, and the n masses, mu of its
component substances.

Each of these variables represents a physical quantity, the value of which, 
for a material system, is the sum of its values for the parts of the system.

By differentiating the energy with respect to each of these variables (con
sidered as independent), we obtain a set of n + 2 differential coefficients which 
represent the intensity of various properties of the substance. Thus,
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= -p, where p is the pressure of the substance;

d^6’ where 3 is the temperature on the thermodynamic scale;

dmf2^’ where Pi is the potential of the component (mJ with respect to the 
compound mass.

Each of the component substances has therefore a potential with respect 
to the whole mass.

Ihe idea of the potential of a substance is, I believe, due to Prof. Gibbs. 
His definition is as follows:—

If to any homogeneous mass we suppose an infinitesimal quantity of any 
substance to be added, the mass remaining homogeneous, and its entropy and 
volume remaining unchanged, the increase of the energy of the mass, divided 
by the mass of the substance added, is the potential of that substance in the 
mass considered.

Ihe condition of the stable equilibrium of the mass is expressed by Prof. 
Gibbs in either of the two following ways:

I. For the eqiiilibrium of any isolated system it is necessary and sufficient 
that in all possible variations of the state of the system which do not alter its 
energy, the variation of its entropy shall either vanish or be negative.

II. lor the equilibrium of any isolated system it is necessary and sufficient 
that in all possible, variations of the state of the system which do not alter its 
entropy, the variation of the energy shall either vanish or be positive.

The variations here spoken of must not involve the transportation of any 
matter through any finite distance.

It follows from this that the quantities 6, p, pi...pn must have the same 
values in all parts of the mass. For if not, heat will flow from places of 
higher to places of lower temperature, the mass as a whole will move from 
places of higher to places of lower pressure, and each of the several component 
substances will pass from places where its potential is higher to places where 
it is lower, if it can do so continuously.

Hence 1 rof. Gibbs shews that if ®, P, Mx...Mn are the values of 6, p, pt...p 
for a given phase of the compound, and if the quantity

K=e — ®y + Pv — M,m, — &c. — Mnmn, 
63—2
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is zero for the given fluid, and is positive for every other phase of the same 
components, the condition of the given fluid will be stable.

If this condition holds for all variations of the variables the fluid will be 
absolutely stable, but if it holds only for small variations but not for certain 
finite variations, then the fluid will be stable when not in contact with matter 
in any of those phases for which K is positive, but if matter in any one of 
these phases is in contact with it, its equilibrium will be destroyed, and a 
portion will pass into the phase of the substance with which it is in contact.

Thus in Professor F. Guthrie’s experiments, a solution of chloride of calcium 
of 37 per cent, was cooled to a temperature somewhat below — 37° C. without 
solidification.

In this state, however, the contact of three different solids determines three 
different kinds of solidification. A piece of ice causes ice to separate from the 
fluid. A piece of the cryohydrate of chloride of calcium determines the formation 
of cryohydrate from the fluid, and the anhydrous salt causes a precipitation of 
anhydrous salt.

I he phase of the fluid is such that K is positive for all phases differing 
slightly from its own phase, and its equilibrium is therefore stable, but for 
certain widely different phases, namely, ice, cryohydrate and anhydrous salt, 
K is negative.

If none of these substances are in contact with the fluid, the fluid cannot 
alter in phase without a transport of matter through a finite distance, and is 
therefore stable; but if any one of them is in contact with the fluid, part of 
the fluid is enabled to pass into a phase in which K is negative. The con
ditions of consistent phases are that the values of 0, p, and K are
equal for all phases which can coexist in equilibrium, the surface of contact 
being plane.

This was illustrated by Mr Main s experiments on co-existent phases of 
mixtures of chloroform, alcohol and water.



[From Nature, Vol. XIV.]

LXXVII. Diffusion of Gases through Absorbing Substances.

I he importance of the exact study of the motions of gases, not only as 
a method of distinguishing one gas from another, but as likely to increase our 
knowledge of the dynamical theory of gases, was pointed out by Thomas Graham. 
Graham himself studied the most important phenomena, and distinguished from 
each other those in which the principal effect is due to different properties of 
gases.

Ihe motion of large masses of the gas approximates to that of a perfect 
fluid having the same density and pressure as the gas. This is the case with 
the motion of a single gas when it flows through a large hole in a thin 
plate from one vessel into another in which the pressure is less. The result 
in this case is found to be in accordance with the principles of the dynamics 
of fluids. This was approximately established by Graham, and the more accurate 
formula, in which the thermodynamic properties of the gas are taken into 
account, has been verified by the experiments of Joule and Thomson. {Proc. 
R. S., May, 185G.)

When the orifice is exceedingly small, it appears from the molecular theory 
of gases that the total discharge may be calculated by supposing that there 
are two currents in opposite directions, the quantity flowing in each current 
being the same as if it had been discharged into a vacuum.

For different gases the volume discharged in a given time, reduced to 
standard pressure and temperature, is proportional to—

x
Js0

where p is the actual pressure, s is the specific gravity, and 0 the temperature 
reckoned from — 274’C.
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When the gases in the two vessels are different, each gas is discharged 
according to this law independently of the other.

These phenomena, however, can be observed only when the thickness of the 
plate and the diameter of the aperture are very small.

When this is the case, the distance is very small between a point in the 
first vessel where the mixed gas has a certain composition, and a point in the 
second vessel where the mixed gas has a quite different composition, so that 
the velocity of diffusion through the hole between these two points is large 
compared with the velocity of flow of the mixed gas arising from the difference 
of the total pressures in the two vessels.

When the hole is of sensible magnitude this distance is larger, because 
the region of mixed gases extends further from the hole, and the effects of 
diffusion become completely masked by the effect of the current of the gas 
in mass, arising from the difference of the total pressures in the two vessels. 
In this latter case the discharge depends only on the nature of the gas in 
the vessel of greater pressure, and on the resultant pressures in the two vessels. 
It consists entirely of the gas of the first vessel, and there is no appreciable 
counter current of the gas of the other vessel.

Hence the experiments on the double current must be made either through 
a single very small aperture, as in Graham’s first experiment with a glass vessel 
accidentally cracked, or through a great number of apertures, as in Graham’s 
latei experiments with porous septa of plaster of Paris or of plumbago.

ith such septa the following phenomena are observed :—

When the gases on the two sides of the septum are different, but have the 
same piessuie, the reduced volumes of the gases diffused in opposite directions 
through the septum are inversely as the square roots of their specific gravities.

If one 01 both of the vessels is of invariable volume, the interchange of 
gas will cause an inequality of pressure, the pressure becoming greater in the 
vessel which contains the heavier gas.

If a vessel contains a mixture of gases, the gas diffused from the vessel through 
.1 porous septum will contain a larger proportion of the lighter gas, and the pro- 
poition of the heavier gas remaining in the vessel will increase during the process.

Ihe rate of flow of a gas through a long capillary tube depends upon the 
viscosity or internal friction of the gas, a property quite independent of its 
specific gravity.
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The phenomena of diffusion studied by Dr v. Wroblewski are quite distinct 
from any of these. Ihe septum through which the gas is observed to pass is 
apparently quite free from pores, and is indeed quite impervious to certain 
gases, while it allows others to pass.

It was the opinion of Graham that the substance of the septum is capable 
of entering into a more or less intimate combination with the substance of the 
gas; that on the side where the gas has greatest pressure the process of 
combination is always going on; that at the other side, where the pressure of 
the gas is smaller, the substance of the gas is always becoming dissociated from 
that of the septum; while in the interior of the septum those parts which 
are richer in the substance of the gas are communicating it to those which 
are poorer.

Ihe rate at which this diffusion takes place depends therefore on the power 
of the gas to combine with the substance of the septum. Thus if the septum 
be a film of water or a soap-bubble, those gases will pass through it most 
rapidly which are most readily absorbed by water, but if the septum be of 
caoutchouc the order of the gases will be different. The fact discovered by 
St Claire-Deville and 1 roost that, certain gases can pass through plates of red- 
hot metals, was explained by Graham in the same manner.

1' ranz Exner * has studied the diffusion of gases through soap-bubbles, and 
finds the rate of diffusion is directly as the absorption-coefficient of the gas, 
and inversely as the square root of the specific gravity.

* Pogg. Ann., Bd. 155.
t Leber das Gleichgewicht u. d. Diffusion von Gasgemengen. Sitzb. der k. Akad. (Wien), Jan 5

Stefan t in his first paper on the diffusion of gases has shewn that a law 
of this form is to be expected, but he says that he will not go further into 
the problem of the motion of gases in absorbing medium, as it ought to form 
the subject of a separate investigation.

Dr v. Wroblewski has confined himself to the investigation of the relation 
between the rate of diffusion and the pressure of the diffusing gas on the two 
sides of the membrane. The membrane was of caoutchouc, 0 0034 cm. thick. 
It was almost completely impervious to air. The rate at which carbonic acid 
diffused through the membrane was proportional to the pressure of that gas, 
and was independent of the pressure of the air on the other side of the
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membrane, provided this air was from carbonic acid. The connexion between 
this result and Henry’s law of absorption is pointed out.

The time of diffusion of hydrogen through caoutchouc is 3-6 times that of 
an equal volume of carbonic acid. The diffusion of a mixture of hydrogen and 
carbonic acid takes place as if each gas diffused independently of the other 
at a rate proportional to the part of the pressure which is due to that gas.

We hope that Dr v. Wroblewski will continue his researches, and make 
a complete investigation of the phenomena of diffusion through absorbing sub
stances.



[From the Kensington Museum Handbook, pp. 1—21.]

LXXVIII. General considerations concerning Scientific Apparatus.

1. Experiments.

The aim of Physical Science is to observe and interpret natural phenomena.
Of natural phenomena, some—as, for example, those of astronomy—are not 

subject to our control, and in the study of these we can make use only of 
the method of Observation. When, however, we can cause the phenomenon to 
be repeated under various conditions, we are in possession of a much more 
powerful method of investigation—that of Experiment.

An Experiment, like every other event which takes place, is a natural 
phenomenon; but in a Scientific Experiment the circumstances are so arranged 
that the relations between a particular set of phenomena may be studied to 
the best advantage.

In designing an Experiment the agents and phenomena to be studied are 
marked off from all others and regarded as the Field of Investigation. All 
agents and phenomena not included within this field are called Disturbing 
Agents, and their effects Disturbances; and the experiment must be so arranged 
that the effects of these disturbing agents on the phenomena to be investigated 
shall be as small as possible.

We may afterwards change the field of our investigation, and include 
within it those phenomena which in our former investigation we regarded as 
disturbances. Ihe experiments must now be designed so as to bring into 
prominence the phenomena which we formerly tried to get rid of. When we 
have in this way ascertained the laws of the disturbances, we shall be better 
prepared to make a more thorough investigation of what we began by regarding 
as the principal phenomena.

vol. n.
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Thus, in experiments where we endeavour to detect or to measure a force 
by observing the motion which it produces in a movable body, we regard 
Friction as a disturbing agent, and we arrange the experiment so that the 
motion to be observed may be impeded as little as possible by friction.

2. Apparatus.

Everything which is required in order to make an experiment is called 
Apparatus.

A piece of apparatus constructed specially for the performance of experiments 
is called an Instrument.

Apparatus may be designed to produce and exhibit a particular phenomenon, 
to eliminate the effects of disturbing agents, to regulate the physical conditions 
of the phenomenon, or to measure the magnitude of the phenomenon itself.

In many experiments, special apparatus is required for all these purposes, 
but certain pieces of apparatus are used in a great variety of experiments, and 
there are whole classes of instruments which have certain principles of con
struction in common.

Thus, in all instruments in which motion is to be produced there must 
be a prime mover or driving power, and a train of mechanism to connect the 
prime mover with the body to be moved; and in many cases additional apparatus 
is necessary—such as a break to destroy the superfluous energy of the prime 
mover, or a reservoir to store up its energy when not required; and we may 
have special apparatus to measure the force transmitted, the velocity produced, 
or the work done, or to regulate them by automatic governors.

We may make a somewhat similar classification of the functions of apparatus 
belonging to other physical sciences—such as Electricity, Heat, Light, Sound, &c.

3. General Principle of the Construction of Apparatus.

There are certain primary requisites, however, which are common to all 
instruments, and which therefore are to be carefully considered in designing or 
selecting them. The fundamental principle is, that the construction of the 
instrument should be adapted to the use that is to be made of it, and in 
particular, that the parts intended to be fixed should not be liable to become 
displaced; that those which ought to be movable should not stick fast; that 
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parts which have to be observed should not be covered up or kept in the 
dark; and that pieces intended to have a definite form should not be disfigured 
by warping, straining, or wearing.

It is therefore desirable, before we enter on the classification of instruments 
according to the phenomena with which they are connected, to point out a 
few of the principles which must be attended to in all instruments.

Each solid piece of an instrument is intended to be either fixed or movable, 
and to have a certain definite shape. It is acted on by its own weight, and 
other forces, but it ought not to be subjected to unnecessary stresses, for these 
not only diminish its strength, but (what for scientific purposes may be much 
more injurious) they alter its figure, and may, by their unexpected changes 
during the course of an experiment, produce disturbance or confusion in the 
observations we have to make.

We have, therefore, to consider the methods of relieving the pieces of an 
instrument from unnecessary strain, of securing for the fixed parts a determinate 
position, and of ensuring that the movable parts shall move freely, yet without 
shake.

This we may do by attending to the well-known fact in kinematics—“ A 
Rigid Body has Six Degrees of Freedom.”

A rigid body is one whose form does not vary. The pieces of our instru
ments are solid, but not rigid. They are liable to change of form under stress, 
but such change of form is not desirable, except in certain special parts, such 
as springs.

Hence, if a solid piece is constrained in more than six ways it will be 
subject to internal stress, and will become strained or distorted, and this in 
a manner which, without the most exact micrometrical measurements, it would 
be impossible to specify.

In instruments which are exposed to rough usage it may sometimes be 
advisable to secure a piece from becoming loose, even at the risk of straining 
and jamming it; but in apparatus for accurate work it is essential that the 
bearings of every piece should be properly defined, both in number and in position.

4. Methods of placing an Instrument in a Definite Position.

When an instrument is intended to stand in a definite position on a fixed 
base it must have six bearings, so arranged that if one of the bearings were 

64—2 
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removed the direction in which the corresponding point of the instrument would 
be left free to move by the other bearings must be as nearly as possible 
normal to the tangent plane at the bearing.

(This condition implies that, of the normals to the tangent planes at the 
bearings, no two coincide; no three are in one plane, and either meet in a 
point or are parallel; no four are in one plane, or meet in a point, or are 
parallel, or, more generally, belong to the same system of generators of an 
hyperboloid of one sheet. The conditions for five normals and for six are more 
complicated.)^

These conditions are satisfied by the well-known method of forming on the 
fixed base three V grooves, whose sides are inclined 45° to the base, and whose 
directions meet in a point at angles of 120°. The instrument has three feet; 
the end of each foot is, roughly speaking, conical, but so rounded off*  that it 
taars against the two sides of the groove, and cannot reach the bottom. The 
instrument has thus six solid bearings, and is kept in its place by its weight, 
without being subjected to any unnecessary strain.

* See Ball on the Theory of Screws.

Sir William Thomson, who has bestowed much attention on this subject, 
has adopted a somewhat different arrangement in some of his instruments. A 
triangular hole, like that formed by pressing an angle of a cube into a mass 
of clay, is formed in the base, and a V groove is cut in a direction passing 
through the centre of the hole. The three feet of the instrument are all rounded, 
but of different lengths. The longest stands in the triangular hole, and has 
three bearings; the second stands in the V groove, and has two bearings; and 
the third stands on the horizontal plane of the base, and has one bearing. 
There are thus six bearings in all. This method, though it does not give so 
large a margin of stability as the method of three grooves, has this advantage, 
that as each of the three feet is differently formed, it is impossible to put 
any but the proper foot into the hole without detecting the mistake.

5. Bearings of Mirrors.

In mounting mirrors it is especially important to attend to the number 
and position of their bearings, for any stress on the mirror spoils its figure, 
and renders it useless for accurate work.
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For small mirrors it is best to make one face of the mirror rest against 

three solid bearings, and to keep it in contact with these by three spring 
bearings placed exactly opposite to them against the other face of the mirror. 
These will prevent any displacement of the mirror out of its proper plane The 
bearings against the edges of the mirror, by which it is prevented from shifting 
in its own plane, are, in the case of small mirrors, of less importance.

When the mirror is large, as in the case of the speculum of a large 
telescope, a greater number of bearings is required to prevent the mirror from 
becoming strained by its own weight; but in all cases the number of fixed 
bearings at the back of the mirror must be three and only three, otherwise 
any warping of the framework will entirely spoil the figure of the surface.

G. Bearings of Standards of Length.

It is of the greatest importance that the standard measure of length, by 
which the national unit of length is defined, should not be exposed to strain.

The box in which the standard yard is kept in the Exchequer Chamber 
is provided with bearings, the positions of which have been arranged so that 
the bar may rest on them with as little strain throughout its substance as is 
consistent with the fact that it is a heavy body.

7. On the Bearings of Movable Parts.

The most important kinds of motion with one degree of freedom are, 
(1) Rotation round an axis; (2) Motion of translation without rotation; and 
(3) Screw motion, in which a definite rotation about an axis corresponds to a 
definite motion of translation along that axis.

For one degree of fieedom five solid bearings are required, the sixth con
dition being supplied by that part of the instrument which regulates the motion 
of the piece.

Ihe construction of pieces capable of rotation about an axis is better 
understood than any other department of mechanism.

In astronomical instruments, four of the bearings are supplied by the two 
Y’s on which the cylindrical end-pieces of the axle rest, and the fifth by the 
longitudinal pressure of a bearing against one end of the axle, or a shoulder 
formed upon it. Ihe weight of the instrument is generally sufficient to keep 
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it in contact with its bearings; but when the weight is so great that the 
pressure on the bearings is likely to injure them, the greater part of the weight 
is supported by auxiliary bearings, the pressure of which is regulated by counter
poises or springs, leaving only a moderate pressure to be borne by the true 
bearings.

8. Translation.

Motion of translation in a fixed direction, without rotation.
This kind of motion is required for pieces which slide along straight fixed 

pieces, as the verniers and microscopes of measuring apparatus, such as catheto
meters and micrometers, the slide-rests of lathes, the pistons of steam-engines 
and pumps, &c.

When a tripod stand is to have a motion of this kind in a horizontal 
plane, two of its feet may be made to slide in a V groove, while the third 
rests on the horizontal plane.

When a cylindrical rod is to have a longitudinal motion, it must be made 
to bear against two fixed Y’s, and must be prevented from rotating on its 
axis by a bearing, connected either with the cylinder or the fixed piece, which 
slides on a surface whose plane passes through the axis of the cylinder.

When, as in cathetometers and other measuring apparatus, a piece has to 
slide along a bar, the five bearings of the piece may be arranged so that 
three of them form a triangle on one face of the bar, while the two others 
rest against an adjacent face of the bar, the line joining these two being in 
the direction of motion. These bearings may be kept tight, without the possi
bility of jamming, by means of spring bearings against the other sides of the bar.

9. Parallel Motion by Linkwork.

In all these methods of guiding a piece by sliding contact, there is a 
considerable waste of energy by friction. In many cases, however, this is of 
little moment, compared with the errors depending on the necessary imperfection 
of the guiding surfaces, arising not only from original defects of workmanship 
but from straining and wearing during use.

It is true that great advances have been made, and notably by Sir J. 
\\ hitworth, in the art of forming truly plane and cylindric surfaces; but even 
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these are liable to become altered, not only by wear but by strain and by 
inequalities of temperature, so that it is never safe to depend upon the perfect 
accuracy of the fitting of a large bearing surface, except when the pressure is 
very great.

In linkwork, on the other hand, the relative motion of any two pieces 
at their mutual bearing is one of pure rotation about a well-turned axle. The 
extent of the sliding surfaces is thus reduced to a minimum, so that less 
power is lost by friction, and the workmanship of such bearings can be brought 
much nearer to perfection than that of any other kind of fittings. Hence, in 
all prime movers and other machines, in which waste of power by friction is 
to be avoided, and even in those in which great accuracy is required, it is 
desirable, if it is possible, to guide the motion by linkwork.

The so-called “ Parallel Motion ” invented by James Watt was the first 
attempt to guide a motion of translation by means of link work; but though 
the motion as thus guided is very nearly rectilinear, it is not exactly so. 
Various other contrivances have been invented since the time of Watt, as, for 
instance, that fitted to the engines of the Gorgon by Mr Seaward; but all of 
them involved either a deviation from true rectilinear motion, or a sliding 
contact on a plane surface, and it was generally supposed by mathematicians 
that a true rectilinear motion, guided by pure linkwork, was a geometrical 
impossibility.

It was in the year 1864 that M. Peaucellier published his invention of an 
exact parallel motion by pure linkwork, and thus opened up the path to a 
very great extension of the science of mechanism, and its practical applications. 
The linkwork motions constructed by M. Garcia, Mr Penrose, and others, and 
the extensions of the theory of linkwork by Sylvester, Hart, and Kempe, are 
now well known, but they could not be fully described within our present limits.

10. Screw Motion.

The adjustments of instruments are to a great extent made by means of 
screws. In the case of levelling screws, which bear the weight of an instru
ment, the thread of the screw is always in contact with its proper bearing 
in the nut; but in micrometer screws it is necessary to secure this contact 
by means of a spring. This spring is sometimes made to bear against the end 
of the screw, or a shoulder turned upon it; but this arrangement causes a 
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variable pressure as the screw moves forward. A much better arrangement is 
to make the spring bear, not against the screw itself, but against a nut which 
is free to move on the screw, but which is prevented from turning round by a 
proper bearing. This movable nut always remains at the same distance from 
the fixed one, so that the pressure of the spring remains constant. This is 
the arrangement of the micrometer screws in Sir W. Thomson’s electrometers.

11. On Contrivances for securing Freedom of Motion.

In many instruments there is a movable part or indicator, the position or 
motion of which is to be observed in order to deduce therefrom some conclusion 
with respect to the force which acts upon it. This force may be the weight 
of a body, or an attractive or repulsive force of any kind; but, besides the 
force we are investigating, the resistance called Friction is always acting as a 
disturbing force.

If the magnitude and direction of the force of friction were at all times 
accurately known, this would be of less consequence; but the amount of friction 
is liable to sudden alterations, owing to causes which we can often neither 
suspect nor detect, so that the only way in which we can make any approach 
to accuracy is by diminishing as much as possible the effect of friction. The 
modes by which this is effected are of two kinds. Whenever there is sliding 
contact, there is friction; and wherever there is complete freedom of motion 
there must be sliding contact; but by making the extent of the sliding motion 
small compared with the motion of the indicating part, we may reduce the effect 
of friction to a very small part of the whole effect.

This is done in rotating parts by diminishing the size of the axle, and 
by supporting it on friction-wheels; and in toothed wheels by keeping the 
bearings of the teeth as near as possible to the line of centres, or more perfectly 
by cutting the teeth obliquely, as in Hooke’s teeth* A compass needle is 
balanced on a fine point, and the extent of the bearing is so small that a 
very small force applied to either end of the needle is sufficient to turn it round.

In all these instances the effect of friction is reduced by diminishing the 
extent of the sliding motion.

In balances and other levers the bearing of the lever is in the form of 
a prism, called a knife-edge, having an angle of about 120°; the edge of this

* Communicated to the Royal Society in 1G66. See Willis’s Principles of Mechanism, 1870, p. 53. 
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prism is accurately ground to a straight line, and rests on a plane horizontal 
surface of agate.

The relative motion in this case is one of rolling contact.
In another class of instruments sliding and rolling are entirely done away 

with, and sufficient freedom of motion is secured by the pliability of certain 
solid parts.

Thus many pendulums are hung, not on knife-edges, but on pieces of 
watch-spring, and torsion balances are suspended by metallic wires or by silk 
fibres. The motion of the piece is then affected by the elastic force of the 
suspension apparatus, but this force is much more regular in its action than 
friction, and its effects can be accurately taken account of, and a proper cor
rection applied to the observed result.

12. The Torsion Rod, or Balance of Torsion.

The balance of torsion has been of the greatest benefit to modern science 
in the measurement of small forces. The first instrument of the kind was that 
constructed by the Rev. John Michell, formerly Woodwardian Professor of Geology 
at Cambridge, in order to observe the effect of the attraction of a pair of 
large lead balls on a pair of smaller balls hung from the extremities of the 
rod of the balance. Michell, however, died before he had opportunity to make 
the experiment, and his apparatus came into the hands of Professor F. J. H. 
Wollaston, and was transmitted by him to Henry Cavendish. Cavendish 
greatly improved the apparatus, "' and successfully measured the attraction of the 
balls, and thus determined the density of the earth.f

The experiment has since been repeated by Reich and Baily. In the mean
time, however, independently of Michell, and before Cavendish had actually 
used the instrument, Coulomb J had invented a torsion balance, by which he 
established the laws of the attraction and repulsion of electrified and magnetic 
bodies.

* Cavendish’s apparatus now belongs to the Royal Institution.
t Philosophical Transactions, 1798,
J Mem. de I'Academie, 1784, <fcc.

VOL. II. 65
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13. Bifil ar Suspension.

The elastic force of torsion of a wire, though much more regular than the 
force of friction, is subject to alterations arising from hitherto unknown causes, 
but probably depending on facts in the previous history of the wire, such as 
its having been subjected to twists and other strains before it was hung up. 
Hence it is sometimes better to employ another mode of suspension, in which 
the force of restitution depends principally on the weight of the suspended parts.

The body is suspended by two wires or fibres, which are close together 
and nearly vertical, and are so connected by a pulley that their tensions are 
equal. The body is in equilibrium when the two fibres are in the same plane. 
When the body is turned about a vertical axis, the tension of the fibres produces 
a force tending to turn the body back towards its position of equilibrium; and 
this force is very regular in its action, and may be accurately determined by 
proper experiments.

This arrangement, which is called the Bifilar suspension, was invented by 
Gauss and Weber for their magnetic apparatus. It was afterwards used by 
Baily in his experiments on the attraction of balls.

14. Methods of Reading.

Ihe observed position of the indicating part of an instrument is recorded 
as the Reading. io ascertain the position of the indicating part of the 
instrument various methods have been adopted. The commonest method is to 
make the indicating part in the form of a light needle, the point of which 
moves near a graduated circle. The position of the needle is estimated by 
observing the position of its point with respect to the divisions of the scale.

giving the needle two points at opposite extremities of a diameter, and 
observing the position of both points, we may eliminate the errors arising from 
the want of coincidence between the centre of the graduated circle and the 
axis of motion of the needle.

This is the method adopted in ordinary magnetic compasses. As it is 
necessary for freedom of motion that the point of the needle should not be in 
actual contact with the graduated limb,'the reading will be affected by any 
change in the position of the eye of the observer. The error thus introduced 
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is called the error of Parallax. In some instruments, therefore, the observation 
is made through an eye-hole in a definite position. A better plan, however, is 
to place a plane mirror under the needle, and in taking the reading to place 
the eye so that the needle appears to cover its own reflexion in the mirror.

15. Spiegel-Ablesung, or Mirror-Reading.

A still more accurate method is that invented by Poggendorff, and used 
by Gauss and Weber in their magnetic observations. A small plane mirror is 
attached to the indicating piece, so as to turn with it about its axis, which 
we may suppose vertical. A divided scale is placed so as to be perpendicular 
to this axis, and so that a normal to the scale at its middle point passes 
through the axis. The image of this scale by reflexion in the mirror is observed 
by means of a telescope having a vertical wire in the plane of distinct vision. 
As the indicating piece turns about its axis, the image of the scale passes 
across the field of view of the telescope, and the coincidence of the image of 
any division of the scale with the vertical wire of the telescope may be observed.

The error of parallax is entirely got rid of by this method, for the two 
optical images whose relative position is observed are in the same plane.

Another method of using the mirror is to reverse the direction of the rays 
of light by removing the eye-piece of the telescope, and putting the flame of 
a lamp in its place. The light emerging from the object-glass falls on the 
mirror, and is reflected so as to form on the scale a somewhat confused image 
of the flame, with a distinct image of the vertical wire crossing it. The reading 
is made by observing the position on the scale of the image of the vertical 
wire. In many instruments the telescope is dispensed with, and the mirror is 
a concave one, as in Thomson’s reflecting galvanometer.

Some German writers distinguish this method of using the mirror and scale 
with a lamp as the objective method, the method in which the observer looks 
through the telescope being called the subjective method. The objective method 
is the only one adapted for the photographic registration of the readings.

1G. Ramsden’s Ghost.

To ascertain the exact position of an instrument with respect to a plumb- 
line without touching the line, Ramsden fixed a convex lens to a part of his

G5—2
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instrument, and placed a wire so that when the instrument was in its proper 
position the image of the plumb-line formed by the lens exactly coincided with 
the fixed wire. By moving the instrument till this coincidence was observed, 
the instrument was adjusted to its proper position. This contrivance was long 
known as “Ramsden’s Ghost.” It is, in fact, a simple form of the reading 
microscope; and there is no better method of ascertaining that a delicately- 
suspended object is exactly in its proper place.

17. Collimating Telescope.

If two telescopes are made to face one another, and if the cross-wires of 
the first, as seen through the second, appear to coincide with the cross-wires 
of the second, the optic axes of the two instruments are parallel. This mode 
of ascertaining parallelism is used in practical astronomy, and is called the method 
of collimating telescopes, or of collimators.

It is also used in the Kew portable magnetometer. The magnet is hollow, 
and carries a lens at one end and a scale at the other, at the principal focus 
of the lens. The magnet is thus a collimating telescope, and is observed by 
means of a telescope mounted on a divided circle. The disadvantage of this 
method is, that when the magnet is deflected, the scale soon passes out of the 
field of view, and the observer has to shift his telescope, in order to get a 
new reading.

18. Three Classes of Readings.

We may, in fact, arrange instruments in three classes, according to the 
method of reading them.

In the self-recording class the observer leaves the instrument to itself, and 
examines the record at his own convenience.

In those which depend on eye observations alone, the observer must be 
there to look at the indicator of the instrument, but he does not touch it.

In the third class, which depend on eye and hand, the observer, before 
taking the reading, must make some adjustment of the instrument.

19. Functions of Instruments.

The foregoing remarks apply to the constituent parts of instruments, without 
reference to the special department of science to which they belong.
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The classification of special instruments will be best understood if we arrange 
those belonging to each department of science according to their respective 
functions; some of these functions having instruments corresponding to them 
in several departments of science, while others are peculiar to one department.

All the physical sciences relate to the passage of energy, under its various 
forms, from one body to another; but Optics and Acoustics are often represented 
as relating to the sensations of sight and hearing. These two sciences, in fact, 
have a physiological as well as a physical aspect, and therefore some parts of 
them have less analogy with the purely dynamical sciences.

The most important functions belonging to instruments, or elements of 
instruments, are as follows :—

1. The Source of energy. The energy involved in the phenomenon we 
are studying is not, of course, produced from nothing, but it enters 
the apparatus at a particular place, which we may call the Source.

2. The channels or distributors of energy, which carry it to the places 
where it is required to do work.

3. The restraints, which prevent it from doing work when it is not 
required.

4. The reservoirs in which energy is stored up till it is required.
5. Apparatus for allowing superfluous energy to escape.
G. Regulators for equalising the rate at which work is done.
7. Indicators, or movable pieces, which are acted on by the forces under 

investigation.
8. Fixed scales on which the position of the indicator is read off.

Thus in solid machinery we have—

1. Prime movers.
2, Trains of mechanism.
3. Fixed framework.
4. Fly-wheels, springs, weights raised.
5. Friction breaks.
6. Governors, pendulums, balance springs in watches.
7. Dynamometers, Strophometers, Watt’s indicator, chronographs, &c.
8. Scales for these indicators. Standards of length and mass. Astro

nomical standard of time.
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For the phenomena depending on fluid pressure we have—
1. Pumps, condensing and rarifying syringes, Orsted’s Piezometer, Andrews’s 

apparatus for high pressure.
2. Pipes and tubes.
3. Packing, washers, caoutchouc tubes, paraffin joints; fusion and other 

methods of making joints tight.
4. Air chambers, water reservoirs, vacuum chambers.
5. Safety valves.
G. Governors by Siemens and others, Cavailld-Col’s regulator for organ 

blast.
7. Pressure-gauges, barometers, manometers, sphygmographs, &c.; areometers, 

and specific gravity bottles ; current meters, gas meters.
8. Scales for these gauges.

For thermal phenomena—
1. Furnaces, blow-pipe flames, freezing mixtures, solar and electric heat.
2. Hot water pipes, copper conductors.
3. Non-conducting packing, cements, clothing, &c.; steam-jackets, and 

ice-jackets.
4. Regenerators, heaters, &c.
5. Condensers and safety valves.
G. Thermostats, (1) by regulation of gas; (2) by boiling a liquid of known 

composition.
7. Thermometers. Pyrometers, Thermoelectric Pile, Siemens’ resistance 

thermometer; Calorimeters.
8. Standard temperatures: as those of melting ice, boiling water, &c.

For electric phenomena—

I. Electric machines, frictional machine, electrophorus, Holtz’ machine; 
voltaic batteries, thermo-electric batteries, magneto-electric machines.

2. Wires and other metallic conductors; armatures of magnets.
3. Insulators.
4. Leyden jars and other “ condensers; ” secondary batteries or cells of 

polarization; magnets, and electro-magnets.
5. Rheostats, lightning conductors, &c.
6. Guthrie’s voltastat, regulators of electric lamps, &c.
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7. Electroscopes and electrometers, Coulomb’s torsion balance, voltameters, 
galvanometers and electrodynamometers, magnetometers.

8. Standards of resistance, capacity, electro-motive force, &c., as the Ohm, 
the microfarad, L. Clark’s voltaic constant cell.

From the physical, as distinguished from the physiological point of view, 
the science of Acoustics relates to the excitement of vibrations and the propa
gation of waves in solids, liquids, and gases, and that of Optics to the excitement 
of vibrations, and the propagation of radiation, in the luminiferous medium.

brom the physiological point of view, only those waves in ordinary matter 
are considered which excite in us the sensation of Sound, though waves which 
do not excite this sensation can be detected and studied by appropriate methods.

In the physiological treatment of Optics, only those radiations are considered 
which excite in us the sensation of Light, though other radiations can be 
detected and studied by their thermal, chemical, and even mechanical effects.

Vibrations and Waves.

Physical Aspect of Acoustics.

1.

2.

3.

Sources. Vibrations of various bodies.
Air—Organ pipes, resonators and other wind instruments.

Heed instruments.
The Siren.

Strings . . . Harp, &c.
Membranes . . . Drum, &c.
Plates . . . Gong, &c.
Hods .... Tuning-fork, &c.

Distributors. Air . . Speaking tubes, stethoscopes, &c.
Wood, . Sounding rods.
Metal, . Wires.

Pugging of floors, &c.
4.
5.
6.

Reservoirs. Resonators, Organ Pipes, Sounding-boards.
Dampers of pianofortes.
Regulators. Organ Swell.

7.
8.

Detectors, the ear; Sensitive Flames, Membranes, Phonautographs, &c. 
Tuning-forks, pitch-pipes, and musical scales.
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Hearing.

Physiological Aspect of Acoustics.

Apparatus for determining the conditions__
1. Of the audibility of sounds.
2. Of the perception of the distinction of sounds.
3. Of the harmony or discord of simultaneous sounds.
4. Of the melodious succession of sounds.
5. Of the timbre of sounds, and of the distinction of vowel sounds.
6. Of the time required for the perception of the sensation of sound.

Radiation.

Physical Aspect of Optics.

1. Sources of Radiation. Heated bodies, solid, liquid, and gaseous. 
Solid. Heated by a blow-pipe as in the oxy-hydrogen limelight.

Heated by their own combustion, as in the magnesium light 
and glowing coals.

Heated by an electric current, as the carbon electrodes of 
the electric lamp.

Heated by concentrated radiation from other sources, as in 
the phenomenon called Calescence.

Liquid, as in hot fused metals and other bodies.
Gaseous. Heated by their own combustion, as in flames.

Heated by a Bunsen burner, as the sodium light.
Heated by the voltaic arc.
Heated by the induction spark.

2. Distributors. Burning mirrors and lenses, condensing lenses for solar 
microscopes, magic lanterns, &c., lighthouse apparatus; telescopes, 
microscopes, &c.

3. Selectors. Absorbing media and coloured bodies in general, prisms 
and spectroscopes, ruled gratings, &c.: tourmalines, Nicol’s prisms, 
and other polarizers.
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4. Phosphorescent, fluorescent, and calescent bodies.
5. Opaque screens, diaphragms, and slits.
6. Regulators. The iris of the eye.
7. Photometers, photographic apparatus, actinometer, thermopile, Bunsen 

and Roscoe s photometer, selenium photometer, Crookes’ radiometer, 
and other instruments.

8. Fraunhofer’s lines of reference, and maps of the spectrum. Standard 
sperm candle, burning 120 grains of sperm per hour.

Sight.

Physiological Aspect of Optics.

Apparatus for determining the conditions of—
1. The visibility of objects, with respect to size, illumination, &c.
2. The perception of the distinction of objects.
3. The perception of colour, as depending on the composition of the 

light coming from the object.

Apparatus for comparing the intensity of luminous impressions, as depending 
on the intensity of the exciting cause and on the time during which it has 
acted, and for tracing the course of the development of a luminous impression 
from its first excitation to its final decay and extinction.

Ophthalmometers, for measuring the dimensions of the eye and determining 
its motions; and for ascertaining the two limits of distinct vision.

Ophthalmoscopes, for illuminating and observing the interior of the eye.

Biological Apparatus.

1. For measuring the ingesta, egesta, and weight of living beings
2. For testing the strength of animals and measuring the work done 

by them.
3. For measuring the heat which they generate.
4. For determining the conditions of fatigue of muscles.
5. For investigating the phenomena of the propagation of impulses through 

the nerves, and of the excitement of muscular action
VOL. II.
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6. For tracing and registering the rhythmic action of the circulatory and 
respiratory operations—cardiographs, sphygmographs, stethoscopes, &c.

7. Marey’s apparatus for registering the paces of men, horses, &c., and 
the actions of birds and insects during flight.

8. Instruments for illuminating and rendering visible parts within the 
living body—ophthalmoscopes, laryngoscopes, &c.—and arrangements 
for transmitting light through parts' of the living body.

9. Instruments for varying the electrical state of the body—induction 
coils, &c.

10. Instruments for determining the electric state of living organs— 
galvanometers with proper electrodes, electrometers, &c.



[From the Kensington Museum Hand Book}

LXXIX. Instruments connected with Fluids.

In countries where the fertility of the soil is capable of being greatly 
increased by artificial irrigation, the attention of all ingenious persons is naturally 
directed to devising means whereby the labour of raising water may be diminished. 
Hence we find that in China and in India, but especially in Egypt, great 
progress was made in the art of producing and guiding the motion of water.

Ihe first pump worked by a piston of which we have any account seems 
to be that invented by Ctesibius of Alexandria, about 130 B.c.

Ihe construction of this pump, as described by Vitruvius, resembles that 
of the modern fire-engine. It had two barrels, which discharged the water 
alternately into a closed vessel, the upper part of which contained air. This 
air-chamber acted as a reservoir of energy, and equalised the pressure under 
which the water was emitted from the discharge pipe.

Hero, a scholar of Ctesibius, invented a number of ingenious machines. He 
delighted in curious combinations of siphons, by which fountains were made to 
play under unusual circumstances. We should call such machines toys, but though 
to us they have no longer any scientific value, we must regard them as among 
the first instances of apparatus constructed not in order to minister directly 
to man’s necessities or luxuries, but to excite or to satisfy his curiosity with 
respect to the more unusual phenomena of nature.

From the time of Ctesibius and Hero to that of Galileo (1600) pumps were 
constructed chiefly for useful, as distinguished from scientific, purposes, and con
siderable skill was developed in the art of forming the barrel and piston so 
as to work with a certain degree of accuracy.

Galileo shewed that the reason why water ascends in a sucking pump is 
not that Nature abhors a vacuum, but that the pressure of the atmosphere 
acts on the free surface of the water, and that this pressure will force the 
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water only to a height of 34 feet; for when this height is reached, the water 
rises no further, and this shews either that the pressure of the atmosphere is 
balanced by that of the column of water, or else that Nature has become 
reconciled to a vacuum.

From this time the production of a vacuum became the scientific object 
aimed at by a great number of inventors. Torricelli, the pupil of Galileo, in 
1G42, made the greatest step in this direction, by filling with mercury a tube 
closed at one end and then inverting the tube with its open end in a vessel 
of mercury. If the tube was long enough the mercury fell, leaving an empty 
space at the top of the tube. The vacuum obtained by filling a vessel with 
mercury and removing the mercury without admitting any other matter is hence 
called the Torricellian vacuum. Torricelli, therefore, gave us at once the mercury - 
pump and the barometer, though the subsequent history of these two instruments 
is very different.

A little before 1654 Otto Von Guericke, of Magdeburg, first applied the 
principle of the common pump to the production of a vacuum. The fitting of 
the pistons of the pumps of those days, however, though sufficiently water-tight, 
was by no means air-tight. He therefore began by filling a vessel with water 
and then removing the water by a water-pump. In his experiments he met 
with many failures, but he continued to improve his apparatus till he could 
not only exhibit most of the phenomena now shewn in exhausted receivers, 
but till he had discovered the reason of the imperfection of the vacuum when 
water was used to keep the pump air-tight.

“In the year 1658 Hooke finished an air-pump for Boyle, in whose laboratory 
he was an assistant; it was more convenient than Guericke’s, but the vacuum 
was not so perfect; yet Boyle’s numerous and judicious experiments gave to 
the exhausted receiver of the air-puinp the name of the Boylean vacuum, by 
which it was long known in the greatest part of Europe. Hooke’s air-pump 
had two barrels, and with some improvements by Hauksbee it remained in use 
until the introduction of Smeaton’s pump, which, however, has not wholly 
superseded it*. ”

* Thomas Young’s Lectures on Nat. Phil, (1807). Lecture xxx.

The history of the air-pump after this time relates chiefly to the con
trivances for insuring the working of the valves when the pressure of the 
remaining air is no longer sufficient to effect it, and to methods of rendering



INSTRUMENTS CONNECTED WITH FLUIDS. 525
the working parts air-tight without introducing substances the vapour of which 
would continue to fill the otherwise empty space.

There is one form of air-pump, however, which we must notice, as in it 
all packing and lubricating substances are dispensed with. This is the air-pump 
constructed by M. Deleuil, of Paris *, in which the pistons are solid cylinders 
of considerable length, and are not made to fit tightly in the barrels of the 
pump. No grease or lubricating substance is used, and the pistons work easily 
and smoothly in the barrels. The space between the piston and the barrel 
contains air, but the internal friction of the air in this narrow space is so great 
that the rate at which it leaks into the exhausted part of the barrel is not 
comparable with the rate at which the pump is exhausting the air from the 
receiver. It has been shewn by the present writer that the internal friction 
of air is not diminished even when its density is greatly reduced. It is for 
this reason that this pump works satisfactorily up to a very considerable degree 
of exhaustion.

Pumps of the type already described are still used for the rapid exhaustion 
of large vessels, but since the physical properties of extremely rarefied gases 
have become the object of scientific research, the original method of Torricelli 
has been revived under various forms.

Thus we have one set of mercury-pumps in which the mercury is alternately 
made to fill a certain chamber completely and to drive out whatever gas may 
be in it, and then to flow back leaving the chamber empty.

Sprengel’s pump is the type of the other set. The working part is a vertical 
glass tube longer than the height of the barometer, and so narrow that a 
small portion of mercury placed in it is compelled by its surface-tension to fill 
the whole section of the tube. The mercury is introduced into this tube from 
a funnel at the top through a small India-rubber tube regulated by a pinch
cock, so that the mercury falls in small detached portions, each of which drives 
before it any air which may be in the tube till it escapes into a mercury- 
trough, into which the bottom of the tube dips.

The vessel to be exhausted is connected to a tube which enters at the 
side of the vertical tube near the top. Any air or other gas which may be 
in the vessel expands into the vacuum left in the vertical tube between suc
cessive portions of the falling mercury, and is driven down the tube by the 
next portion of mercury into the mercury-trough, where it may be collected.

* Comptes Rendus, t. lx. p. 571. Carl’s Ropertorium.
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As long as the rarefaction of the air is not very great the quantity of 
air which is included between successive portions of mercury is sufficient to act 
as a sort of buffer, but as the rarefaction increases the portions of mercury 
come together more abruptly, and produce a sound which becomes sharper as 
the vacuum becomes more perfect.

After the mercury-pump has been in action for some hours the quantity 
of matter remaining in the vessel is very small. If the tubes have been joined 
by means of caoutchouc connections there is a trace of gaseous matter emitted 
by the caoutchouc. It is therefore necessary, when a very perfect vacuum is 
desired, to make all the joints “ hermetical ” by fusing the glass. Still, however, 
there remains a trace of matter. The vapour of mercury is, of course, present, 
and the sides of the glass vessel retain water very strongly, and part with 
it very slowly, when all other matter is removed.

By passing a little strong sulphuric acid through the pump along with the 
mercury, vapours both of mercury and of water may be in great measure 
removed.

MM. Kundt and Warburg have got rid of an additional quantity of water
substance by heating the vessel to as high a temperature as the glass will 
bear while the pump was kept in action.

A method which has been long in use for getting a good vacuum is to 
place in the vessel a stick of fused potash, and to fill it with carbonic acid, 
and, after exhausting as much as possible, to seal up the vessel. The potash 
is then heated, and when it has again become cold, most of the remaining 
carbonic acid has combined with the potash.

Another method, employed by Professor Dewar, is to place in a compart
ment of the vessel a piece of freshly heated cocoa-nut charcoal, and to heat 
it strongly during the last stages of the exhaustion by the mercury-pump. 
The vessel is then sealed up, and as the charcoal cools it absorbs a very large 
proportion of the gases remaining in the vessel.

The interior of the vessel, after exhaustion, is found to be possessed of 
very remarkable properties.

One of these properties furnishes a convenient test of the completeness of 
the exhaustion. The vessel is provided with two metallic electrodes, the ends 
of which within the vessel are within a quarter of an inch of each other. When 
the vessel contains air at the ordinary pressure a considerable electromotive 
force is required to produce an electric discharge across this interval. As the 



INSTRUMENTS CONNECTED WITH FLUIDS. 527

exhaustion proceeds the resistance to the discharge diminishes till the pressure 
is reduced to that of about a millimetre of mercury. When, however, the 
exhaustion is made very perfect the discharge cannot be made to take place 
between the electrodes within the vessel, and the spark actually passes through 
several inches of air outside the vessel before it will leap the small interval 
in the empty vessel. A vacuum, therefore, is a stronger insulator of electricity 
than any other medium.

MM. Kundt and Warburg have experimented on the viscosity of the air 
remaining after exhaustion, and on its conductivity for heat. They find that 
it is only when the exhaustion is very perfect that the viscosity and con
ductivity begin sensibly to diminish, even when the stratum of the medium 
experimented on is very thin.

But the most remarkable phenomenon hitherto observed in an empty space 
is that discovered by Mr Crookes. A light body is delicately suspended in an 
exhausted vessel, and the radiation from the sun, or any other source of light 
or heat, is allowed to fall on it. The body is apparently repelled and moves 
away from the side on which the radiation falls.

This action is the more energetic the greater the perfection of the vacuum. 
When the pressure amounts to a millimetre or two the repulsion becomes very 
feeble, and at greater pressures an apparent attraction takes place, which, how
ever, cannot be compared either in regularity or in intensity to the repulsion 
in a good vacuum.

From these instances we may see what important scientific discoveries may 
be looked for in consequence of improvements in the methods of obtaining a 
vacuum.



[From Nature, Vol. xiv.]

LXXX. Wheicell’s Writings and Correspondence.

We frequently hear the complaint that as the boundaries of science are 
widened its cultivators become less of philosophers and more of specialists, each 
confining himself with increasing exclusiveness to the area with which he is 
familiar. This is probably an inevitable result of the development of science, 
which has made it impossible for any one man to acquire a thorough knowledge 
of the whole, while each of its sub-divisions is now large enough to afford 
occupation for the useful work of a lifetime. The ablest cultivators of science 
are agreed that the student, in order to make the most of his powers, should 
ascertain in what field of science these powers are most available, and that he 
should then confine his investigations to this field, making use of other parts 
of science only in so far as they bear upon his special subject.

Accordingly we find that Dr Whewell, in his article in the Encyclopedia, 
Metropolitans, on “Archimedes and Greek Mathematics,” says of Eratosthenes, 
who, like himself, was philologer, geometer, astronomer, poet, and antiquary: 
“ It is seldom that one person attempts to master so many subjects without 
incurring the charge and perhaps the danger of being superficial."

It is probably on account of the number and diversity of the kinds of 
intellectual work in which Dr Whewell attained eminence that his name is most 
widely known. Of his actual performances the “ History ” and the “ Philosophy 
of the Inductive Sciences ” are the most characteristic, and this because his 
practical acquaintance with a certain part of his great subject enabled him the 
better to deal with those parts which he had studied only in books, and to 
describe their relations in a more intelligent manner than those authors who 
have devoted themselves entirely to the general aspect of human knowledge 
without being actual workers in any particular department of it.
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But the chief characteristic of Dr Whewell’s intellectual life seems to have 
been the energy and perseverance with which he pursued the development of 
each of the great ideas which had in the course of his life presented itself to 
him. Of these ideas some might be greater than others, but all were large.

Ihe special pursuit, therefore, to which he devoted himself was the elabora
tion and the expression of the ideas appropriate to different branches of 
knowledge. The discovery of a new fact, the invention of a theory, the solution 
of a problem, the filling up of a gap in an existing science, were interesting 
to him not so much for their own sake as additions to the general stock of 
knowledge, as for their illustrative value as characteristic instances of the 
processes by which all human knowledge is developed.

To watch the first germ of an appropriate idea as it was developed either 
in his own mind or in the writings of the founders of the sciences, to frame 
appropriate and scientific words in which the idea might be expressed, and then 
to construct a treatise in which the idea should be largely developed and the 
appropriate words copiously exemplified—such seems to have been the natural 
channel of his intellectual activity in whatever direction it overflowed. When 
any of his great works had reached this stage he prepared himself for some 
other labour, and if new editions of his work were called for, the alterations 
which he introduced often rather tended to destroy than to complete the unity 
of the original plan.

Mr Todhunter has given us an exhaustive account of Dr Whewell’s writings 
and scientific work, and in this we may easily trace the leading ideas which 
he successively inculcated as a writer. We can only share Mr Todhunter’s regret 
that it is only as a writer that he appears in this book, and it is to be 
hoped that the promised account of his complete life as a man may enable us 
to form a fuller conception of the individuality and unity of his character, which 
it is hard to gather from the multifarious collection of his books.

Dr Whewell first appears before us as the author of a long series of 
text-books on Mechanics. His position as a tutor of his College, and the 
interest which he took in University education, may have induced him to spend 
more time in the composition of elementary treatises than would otherwise have 
been congenial to him, but in the prefaces to the different editions, as well 
as in the introductory chapters of each treatise, he shews that sense of the 
intellectual and educational value of the study of first principles which dis
tinguishes all his writings. It is manifest from his other writings, that the 
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composition of these text-books, involving as it did a thorough study of the 
fundamental science of Dynamics, was a most appropriate training for his 
subsequent labours in the survey of the sciences in their widest extent.

“ It has always appeared to me,” says Mr Todhunter, “ that Mr Whewell would have been of 
great benefit to students if he had undertaken a critical revision of the technical language of Mechanics. 
This language was formed to a great extent by the early writers at an epoch when the subject was 
imperfectly understood, and many terms were used without well-defined meanings. Gradually the 
language has been improved, but it is still open to objection.”

In after years, when his authority in scientific terminology was widely 
recognised, we find Faraday, Lyell, and others applying to him for appropriate 
expressions for the subject-matter of their discoveries, and receiving in reply 
systems of scientific terms which have not only held their place in technical 
treatises, but are gradually becoming familiar to the ordinary reader.

“ Is it not true,” Dr Whewell asks in his Address to the Geological Society, 
“ in our science as in all others, that a technical phraseology is real wealth, 
because it puts in our hands a vast treasure of foregone generalisations ? ”

Perhaps, however, he felt it less difficult to induce scientific men to adopt 
a new term for a new idea than to persuade the students and teachers of a 
University to alter the phraseology of a time-honoured study.

But even in the elementary treatment of Dynamics, if we compare the 
text-books of different dates, we cannot fail to recognise a marked progress. 
1 hose by Dr Whewell were far in advance of any former text-books as regards 
logical coherence and scientific accuracy, and if many of those which have been 
published since have fallen behind in these respects, most of them have intro
duced some slight improvement in terminology which has not been allowed to 
be lost.

Dr Whewell’s opinion with respect to the evidence of the fundamental 
doctrines of mechanics is repeatedly inculcated in his writings. He considered 
that experiment was necessaiy in order to suggest these truths to the mind, 
but that the doctrine when once fairly set before the mind is apprehended by 
it as strictly true, the accuracy of the doctrine being in no way dependent 
on the accuracy of observation of the result of the experiment.

He therefore regarded experiments on the laws of motion as illustrative 
experiments, meant to make us familiar with the general aspect of certain phe
nomena, and not as experiments of research from which the results are to be 
deduced by careful measurement and calculation.
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Thus experiments on the fall of bodies may be regarded as experiments of 
research into the laws of gravity. We find by careful measurements of times 
and distances that the intensity of the force of gravity is the same whatever 
be the motion of the body on which it acts. We also ascertain the direction 
and magnitude of this force on different bodies and in different places. All 
this can only be done by careful measurement, and the results are affected by 
all the errors of observation to which we are liable.

The same experiments may be also taken as illustrations of the laws of 
motion. Ihe performance of the experiments tends to make us familiar with 
these laws, and to impress them on our minds. But the laws of motion cannot 
be proved to be accurate by a comparison of the observations which we make, 
for it is only by taking the laws for granted that we have any basis for our 
calculations. We may ascertain, no doubt, by experiment, that the acceleration 
of a body acted on by gravity is the same whatever be the motion of that 
body, but this does not prove that a constant force produces a constant accele
ration, but only that gravity is a force, the intensity of which does not depend 
on the velocity of the body on which it acts.

Ihe truth of Dr Whewell’s principle is curiously illustrated by a case in 
which he persistently contradicted it. In a paper communicated to the Philo
sophical Society of Cambridge, and reprinted at the end of his Philosophy of 
the Inductive Sciences, Dr Whewell conceived that he had proved, a priori, that 
all matter must be heavy. He was well acquainted with the history of the 
establishment of the law of gravitation, and knew that it was only by careful 
experiments and observations that Newton ascertained that the effect of irravi- 
tation on two equal masses is the same whatever be the chemical nature of 
the bodies, but in spite of this he maintained that it is contrary not only to 
observation but to reason, that any body should be repelled instead of attracted 
by another, whereas it is a matter of daily experience, that any two bodies 
when they are brought near enough, repel each other.

The fact seems to be that, finding the word weight employed in ordinary 
language to denote the quantity of matter in a body, though in scientific language 
it denotes the tendency of that body to move downwards, and at the same 
time supposing that the word mass in its scientific sense was not yet sufficiently 
established to be used without danger in ordinary language, Dr Whewell en
deavoured to make the word weight carry the meaning of the word mass. Thus 
he tells us that “ the weight of the whole compound must be equal to the 
weights of the separate elements.”
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On this Mr Todhunter very properly observes:
“Of course there is no practical uncertainty as to this principle; but Dr Who well seems to allow 

his readers to imagine that it is of the same nature as the axiom that ‘two straight lines cannot 
inclose a space.’ There is, however, a wide difference between them, depending on a fact which 
Dr Whewell has himself recognised in another place (see vol. I. p. 224). The truth is, that strictly 
speaking the weight of the whole compound is not equal to the weight of the separate elements; 
for the weight depends upon the position of the compound particles, and in general by altering 
the position of the particles, the resultant effect which we call weight is altered, though it may 
be to an inappreciable extent.”

It is evident that what Dr Whewell should have said was : “ The mass of 
the whole compound must be equal to the sum of the masses of the separate 
elements.” This statement all would admit to be strictly true, and yet not a 
single experiment has ever been made in order to verify it. All chemical 
measurements are made by comparing the weights of bodies, and not by com
paring the forces required to produce given changes of motion in the bodies; 
and as we have just been reminded by Mr Todhunter, the method of comparing 
quantities of matter by weighing them is not strictly correct.

Thus, then, we are led by experiments which are not only liable to error, 
but which are to a certain extent erroneous in principle, to a statement which 
is universally acknowledged to be strictly true. Our conviction of its truth must 
therefore rest on some deeper foundation than the experiments which suggested 
it to our minds. The belief in and the search for such foundations is, I think, 
the most characteristic feature of all Dr Whewell’s work.



[From the British Association Report, 187G.]

LXXXI. On Ohm’s Lazu.

The service rendered to electrical science by Dr G. S. Ohm can only be 
rightly estimated when we compare the language of those writers on electricity 
who were ignorant of Ohm s law with that of those who have understood 
and adopted it.

By the former, electric currents are said to vary as regards both their 
“quantity” and their “intensity,” two qualities the nature of which was very 
imperfectly explained by tedious and vague expositions.

In the writings of the latter, after the elementary terms “Electromotive 
Force,” “Strength of Current,” and “Electric Resistance” have been defined, 
the whole doctrine of currents becomes distinct and plain.

Ohm’s law may be stated thus:
The electromotive force which must act on a homogeneous conductor in 

order to maintain a given steady current through it, is numerically equal to 
the product of the resistance of the conductor into the strength of the current 
through it. If, therefore, we define the resistance of a conductor as the ratio 
of the numerical value of the electromotive force to the numerical value of 
the strength of the current, Ohm’s law asserts that this ratio is constant— 
that is, that its value does not depend on that of the electromotive force or 
of the current.

The resistance, as thus defined, depends on the nature and form of the 
conductor, and on its physical condition as regards temperature, strain, &c.; 
but if Ohm’s law is true, it does not depend on the strength of the current.

Ohm's law must, at least at present, be considered a purely empirical 
one. No attempt to deduce it from pure dynamical principles has as yet 
been successful; indeed Weber’s latest theoretical investigations* on this subject 
have led him to suspect that Ohm’s law is not true, but that, as the electro-

* Pogg. Ann. 1875. 
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motive force increases without limit, the current increases slower and slower, 
so that the “ resistance,” as defined by Ohm’s law, would increase with the 
electromotive force. On the other hand, Schuster* has described experiments 
which lead him to suspect a deviation from Ohm’s law, but in the opposite 
direction, the resistance being smaller for great currents than for small ones.

Lorentzt, of Leyden, has also proposed a theory according to which Ohm’s 
law would cease to be true for rapidly varying currents. The rapidity of 
variation, however, which, as he supposes, would cause a perceptible deviation 
from Ohm’s law, must be comparable with the rate of vibration of light, so 
that it would be impossible by any experiments other than optical ones to 
test this theory.

The conduction of electricity through a resisting medium is a process in 
which part of the energy of an electric current, flowing in a definite direc
tion, is spent in imparting to the molecules of the medium that irregular 
agitation which we call heat. To calculate from any hypothesis as to the 
molecular constitution of the medium at what rate the energy of a given 
current would l>e spent in this way, would require a far more perfect know
ledge of the dynamical theory of bodies than we at present possess. It is 
only by experiment that we can ascertain the laws of processes of which we 
do not understand the dynamical theory.

We therefore define, as the resistance of a conductor, the ratio of the 
numerical value of the electromotive force to that of the strength of the 
current, and we have to determine by experiment the conditions which affect 
the value of this ratio.

Thus if E denotes the electromotive force acting from one electrode of the 
conductor to the other, C the strength of the current flowing through the 
conductor, and R the resistance of the current, we have by definition

R = ->
C

and if II is the heat generated in the time t, and if J is the dynamical 
equivalent of heat, we have by the principle of conservation of energy

JH=ECt = RCit = ~ t.

* Report of British Association, 1874.
+ Over de Terugkaatsing en Breking van het Licht. Leiden 1875
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The quantity R, which we have defined as the resistance of the conductor, 
can be determined only by experiment. Its value may therefore, for any thing 
we know, be affected by each and all of the physical conditions to which the 
conductor may be subjected.

Thus we know that the resistance is altered by a change of the tempe
rature of the conductor, and also by mechanical strain and by magnetization.

The question which is now before us is whether the current itself is or 
is not one of the physical conditions which may affect the value of the 
resistance; and this question we cannot decide except by experiment.

Let us therefore assume that the resistance of a given conductor at a 
given temperature is a function of the strength of the current. Since the 
resistance of a conductor is the same for the same current in whichever 
direction the current flows, the expression for the resistance can contain only 
even powers of the current.

Let us suppose, therefore, that the resistance of a conductor of unit length 
and unit section is

r (1 +sc’ + s'c4-|-&c.),
where r is the resistance corresponding to an infinitely small current, and 
c is the current through unit of section, and s, s', &c. are small coefficients to 
be determined by experiment. The coefficients s, s', &c. represent the deviations 
from Ohm’s law. If Ohm’s law is accurate, these coefficients are zero; also if 
e is the electromotive force acting on this conductor,

e = rc (1 + sc’ + s'c* + &c.).
Now let us consider another conductor of the same substance whose length 
is L and whose section is A; then if E is the electromotive force on this 
conductor, and e that on unit of length,

E = Le.
Also if C be the current through the conductor and c that through unit of 
area,

C=Ac.

Hence the resistance of this conductor will be
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Now let us suppose two conductors of the same material but of different 
dimensions arranged in series and the same current passed through both :

„ _ Lar / so \
Ri~ Aa V+A? + &c-)’

where the suffixes indicate to which conductor the quantities belong. The 
ratio of the resistances is

Hence if Ohms law is not true, and if, therefore, any of the quantities s, s', 
&c. have sensible values, the ratio of the resistances will depend on the strength 
of the current.

Now the ratio of two resistances may be measured with great accuracy 
by means of Wheatstone’s bridge.

We therefore arrange the bridge so that one branch of the current passes 
first through a very fine wire a few centimetres long, and then through a 
much longer and thicker wire of about the same resistance. The other branch 
of the current passes through two resistances, equal to each other, but much 
greater than the other two, so that very little of the heating-effect of the 
current is produced in these auxiliary resistances.

The bridge is formed by connecting the electrodes of a galvanometer, one 
to the junction of the fine wire and the thick one, and the other to a point 
between the other two resistances.

We have thus a method of testing the ratio of the resistances of the 
fine wire to that of the thick one; and by passing through the bridge some
times a feeble current and sometimes a powerful one, we might ascertain if 
the ratio differed in the two cases.

But this direct method is rendered useless by the fact that the current 
generates heat, which raises the temperature of both wires, but that of the 
thin wire most rapidly; and this makes it impossible to compare the effects 
of strong and weak currents through a conductor at one and the same 
temperature.
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It is also useless to work with weak currents, as the effect depends on 

the square of the current, and is so small as to have escaped observation in 
all ordinary experiments.

Again, if we were to use a single very strong current acting for a very 
short time, we should not be able to observe the galvanometer in a satis
factory manner. In fact it was found in the experiment that currents which 
lasted for a sixtieth part of a second produced a heating-effect which interfered 
with the measurements. The experiment was therefore arranged so that a 
strong current and a weak one were passed through the bridge alternately; 
and when the bridge was so arranged that the galvanometer was in equili
brium, the direction of the weaker current was reversed. If Ohm’s law were 
not true, the condition of equilibrium for strong currents would be different 
from that for weaker ones, so that when the weak currents were reversed 
there would be no longer equilibrium. Since, in point of fact, the reversal 
of the weaker currents did not affect the equilibrium, it follows that the 
bridge was in equilibrium for the weaker currents as well as for the stronger 
ones, and therefore tire conditions were the same for both, and Ohm’s law 
is true to within the limits of error of the experiment*.

[* The mode in which the actual strength of the currents was measured and the limits of 
error ascertained are described in the Report which follows the above by Mr Chrystal, now Pro
fessor of Mathematics at Edinburgh University.,]
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LXXXIL On the protection of buildings from lightning.

Most of those who have given directions for the construction of lightning- 
conductors have paid great attention to the upper and lower extremities of 
the conductor. They recommend that the upper extremity of the conductor 
should extend somewhat above the highest part of the building to be protected, 
and that it should terminate in a sharp point, and that the lower extremity 
should be carried as far as possible into the conducting strata of the ground, 
so as to “make” what telegraph engineers call “a good earth.”

The electrical effect of such an arrangement is to tap, as it were, the 
gathering charge by facilitating a quiet discharge between the atmospheric 
accumulation and the earth. The erection of the conductor will cause a some
what greater number of discharges to occur at the place than would have 
occurred if it had not been erected; but each of these discharges will be 
smaller than those which would have occurred without the conductor. It is 
probable, also, that fewer discharges will occur in the region surrounding the 
conductor.

It appears to me that these arrangements are calculated rather for the 
benefit of the surrounding country and for the relief of clouds labouring under 
an accumulation of electricity, than for the protection of the building on which 
the conductor is erected.

What we really wish is to prevent the possibility of an electric discharge 
taking place within a certain region, say in the inside of a gunpowder manu
factory. If this is clearly laid down as our object, the method of securing it 
is equally clear.

An electric discharge cannot occur between two bodies, unless the difference 
of their potentials is suiliciently great, compared with the distance between them. 
If, therefore, we can keep the potentials of all bodies within a certain region 
equal, or nearly equal, no discharge will take place between them. We may 
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secure this by connecting all these bodies by means of good conductors, such 
as copper wire ropes, but it is not necessary to do so, for it may be shewn 
by experiment that if every part of the surface surrounding a certain region 
is at the same potential, every point within that region must be at the same 
potential, provided no charged body is placed within the region.

It would, therefore, be sufficient to surround our powder-mill with a con
ducting material, to sheathe its roof, walls, and ground-floor with thick sheet 
copper, and then no electrical effect could occur within it on account of any 
thunderstorm outside. There would be no need of any earth connection. We 
might even place a layer of asphalte between the copper floor and the ground, 
so as to insulate the building. If the mill were then struck with lightning, 
it would remain charged for some time, and a person standing on the ground 
outside and touching the wall might receive a shock, but no electrical effect 
would be perceived inside, even on the most delicate electrometer. The poten
tial of everything inside with respect to the earth would be suddenly raised 
or lowered as the case might be, but electric potential is not a physical con
dition, but only a mathematical conception, so that no physical effect would be 
perceived.

It is therefore not necessary to connect large masses of metal such as 
engines, tanks, &c., to the walls, if they are entirely within the building. If, 
however, any conductor, such as a telegraph wire or a metallic supply-pipe for 
water or gas comes into the building from without, the potential of this con
ductor may be different from that of the building, unless it is connected with 
the conducting-shell of the building. Hence the water or gas supply pipes, if 
any enter the building, must be connected to the system of lightning con
ductors, and since to connect a telegraph wire with the conductor would render 
the telegraph useless, no telegraph from without should be allowed to enter 
a powder-mill, though there may be electric bells and other telegraphic appa
ratus entirely within the building.

I have supposed the powder-mill to be entirely sheathed in thick sheet 
copper. This, however, is by no means necessary in order to prevent any 
sensible electrical effect taking place within it, supposing it struck by lightning. 
It is quite sufficient to inclose the building with a network of a good conduct
ing substance. For instance, if a copper wire, say No. 4, B.W.G. (0'238 inches 
diameter), were carried round the foundation of the house, up each of the 
corners and gables and along the ridges, this would probably be a sufficient
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protection for an ordinary building against any thunderstorm in this climate. 
The copper wire may be built into the wall to prevent theft, but should be 
connected to any outside metal such as lead or zinc on the roof, and to metal 
rain-water pipes. In the case of a powder-mill it might be advisable to make 
the network closer by carrying one or two additional wires over the roof and 
down the walls to the wire at the foundation. If there are water or gas
pipes which enter the building from without, these must be connected with 
the system of conducting-wires, but if there are no such metallic connections 
with distant points, it is not necessary to take any pains to facilitate the 
escape of the electricity into the earth.

Still less is it advisable to erect a tall conductor with a sharp point in 
order to relieve the thunder-clouds of their charge.

It is hardly necessary to add, that it is not advisable, during a thunder
storm, to stand on the roof of a house so protected, or to stand on the ground 
outside and lean against the wall.



[From the Encyclopaedia Britannica.]

LXXXIII. Capillary Action.

A tube, the bore of which is so small that it will only admit a hair 
(papilla), is called a capillary tube. When such a tube of glass, open at both 
ends, is placed vertically with its lower end immersed in water, the water is 
observed to rise in the tube, and to stand within the tube at a higher level 
than the water outside. The action between the capillary tube and the water 
has been called Capillary Action, and the name has been extended to many 
other phenomena which have been found to depend on properties of liquids 
and solids similar to those which cause water to rise in capillary tubes.

The forces which are concerned in these phenomena are those which act 
between neighbouring parts of the same substance, and which are called forces 
of cohesion, and those which act between portions of matter of different kinds, 
which are called forces of adhesion. These forces are quite insensible between 
two portions of matter separated by any distance which we can directly measure. 
It is only when the distance becomes exceedingly small that these forces be
come perceptible. Quincke*  has made experiments to determine the greatest 
distance at which the effect of these forces is sensible, and he finds for various 
substances distances about the twenty-thousandth part of a millimetre.

* Pogg. Ann., cxxxvil. p. 402. f Pogg. Ann., ci. p. 551. J Died 1519.
§ Physico-Mechanical Experiments, London, 1709, pp. 139—169; and Phil. Trans., 1711 and 1712.

Poggendorfft tells us that Leonardo da Vinci J must be considered as the 
discoverer of capillary phenomena.

The first accurate observations of the capillary action of tubes and glass 
plates were made by Hauksbee§. He ascribes the action to an attraction be
tween the glass and the liquid. He observed that the effect was the same in 
thick tubes as in thin, and concluded that only those particles of the glass 
which are very near the surface have any influence on the phenomenon.
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Dr Jurin* shewed that the height at which’ the liquid is suspended 
depends on the section of the tube at the surface of the liquid, and is inde
pendent of the form of the lower part of the tube. He considered that the 
suspension of the liquid is due to “the attraction of the periphery or section 
of the surface of the tube to which the upper surface of the water is con
tiguous and coheres.” From this he shews that the rise of the liquid in tubes 
of the same substance is inversely proportional to their radii.

Newton devotes the 31st query in the last edition of his Opticks to 
molecular forces, and instances several examples of the cohesion of liquids, such 
as the suspension of mercury in a barometer tube at more than double the 
height at which it usually stands. This arises from its adhesion to the tube, 
and the upper part of the mercury sustains a considerable tension, or negative 
pressure, without the separation of its parts. He considers the capillary phe
nomena to be of the same kind, but his explanation is not sufficiently explicit 
with respect to the nature and the limits of the action of the attractive force.

It is to be observed that, while these early speculators ascribe the phe
nomena to attraction, they do not distinctly assert that this attraction is 
sensible only at insensible distances, and that for all distances which we can 
directly measure the force is altogether insensible. The idea of such forces, 
however, had been distinctly formed by Newton, who gave the first example
of the calculation of the effect of such forces in his theorem on the alteration
of the path of a light-corpuscle when it enters or leaves a dense body.

Clairautf appears to have been the first to shew the necessity of taking
account of the attraction between the parts of the fluid itself in order to
explain the phenomena. He does not, however, recognise the fact that the 
distance at which the attraction is sensible is not only small but altogether 
insensible.

SegnerJ introduced the very important idea of the surface-tension of liquids, 
which he ascribed to attractive forces, the sphere of whose action is so small 
“ut nullo adhuc sensu percipi potuerit.” In attempting to calculate the effect 
of this surface-tension in determining the form of a drop of the liquid, Segner 
took account of the curvature of a meridian section of the drop, but neglected 
the effect of the curvature in a plane at right angles to this section.

* Phil. Trans., 1718, No. 355, p. 739, and 1719, No. 363, p. 1083.
t Clairaut, Theorie de la Figure de la Terre, Paris, 1808, pp. 105, 128.
+ Segner, Comment. Soc. Reg. Getting., I. (1751), p, 301.
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But the idea of surface-tension introduced by Segner had a most important 
effect on the subsequent development of the theory. We may regard it as a 
physical fact established by experiment in the same way as the laws of the 
elasticity of solid bodies. We may investigate the forces which act between 
finite portions of a liquid in the same way as we investigate the forces which 
act between finite portions of a solid. The experiments on solids lead to certain 
laws of elasticity expressed in terms of coefficients, the values of which can 
be determined only by experiments on each particular substance. Various 
attempts have also been made to deduce these laws from particular hypotheses 
as to the action between the molecules of the elastic substance. We may 
therefore regard the theory of elasticity as consisting of two parts. The first 
part establishes the laws of the elasticity of a finite portion of the solid sub
jected to a homogeneous strain, and deduces from these laws the equations of 
the equilibrium and motion of a body subjected to any forces and displace
ments. The second part endeavours to deduce the facts of the elasticity of a 
finite portion of the substance from hypotheses as to the motion of its con
stituent molecules and the forces acting between them.

In like manner we may by experiment ascertain the general fact that the 
surface of a liquid is in a state of tension similar to that of a membrane 
stretched equally in all directions, and prove that this tension depends only 
on the nature and temperature of the liquid and not on its form, and from 
this as a secondary physical principle we may deduce all the phenomena 
of capillary action. This is one step of the investigation. The next step 
is to deduce this surface-tension from an hypothesis as to the molecular
constitution of the liquid and of the bodies that surround it. The scientific
importance of this step is to be measured by the degree of insight which
it affords or promises into the molecular constitution of real bodies by the 
suggestion of experiments by which we may discriminate between rival molecular 
theories.

In 175G Leidenfrost*  shewed that a soap-bubble tends to contract, so that 
if the tube with which it was blown is left open the bubble will diminish 
in size and will expel through the tube the air which it contains. He attri
buted this force, however, not to any general property of the surfaces of liquids, 
but to the fatty part of the soap which he supposed to separate itself from 

* De aquoc communis nonnullis qualitatibus tractalus, Duisburg.
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the other constituents of the solution, and to form a thin skin on the outer 
face of the bubble.

In 1787 Monge* asserted that “by supposing the adherence of the par
ticles of a fluid to have a sensible effect only at the surface itself and in the 
direction of the surface it would be easy to determine the curvature of the 
surfaces of fluids in the neighbourhood of the solid boundaries which contain 
them; that these surfaces would be lintearice of which the tension, constant 
in all directions, would be everywhere equal to the adherence of two particles, 
and the phenomena of capillary tubes would then present nothing which could 
not be determined by analysis.” He applied this principle of surface-tension 
to the explanation of the apparent attractions and repulsions between bodies 
floating on a liquid.

In 1802 Leslie! gave the first correct explanation of the rise of a liquid 
in a tube by considering the effect of the attraction of the solid on the very 
thin stratum of the liquid in contact with it. He does not, like the earlier 
speculators, suppose this attraction to act in an upward direction so as to 
support the fluid directly. He shews that the attraction is everywhere normal 
to the surface of the solid. The direct effect of the attraction is to increase 
the pressure of the stratum of the fluid in contact with the solid, so as to 
make it greater than the pressure in the interior of the fluid. The result of 
this pressure if unopposed is to cause this stratum to spread itself over the 
surface of the solid as a drop of water is observed to do when placed on a 
clean horizontal glass plate, and this even when gravity opposes the action, as 
when the drop is placed on the under surface of the plate. Hence a glass 
tube plunged into water would become wet all over were it not that the 
ascending liquid film carries up a quantity of other liquid which coheres to it, 
so that when it has ascended to a certain height the weight of the column 
balances the force by which the film spreads itself over the glass. This ex
planation of the action of the solid is equivalent to that by which Gauss 
afterwards supplied the defect of the theory of Laplace, except that, not being 
expressed in terms of mathematical symbols, it does not indicate the mathe
matical relation between the attraction of individual particles and the final 
result. Leslie’s theory was afterwards treated according to Laplace’s mathe
matical methods by James Ivory in the article on capillary action, under the

* Memoiree de VAcad. dee Sciences, 1787, p. 506.
+ Philosophical Magazine, 1802, Vol. xiv. p. 193.
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heading Fluids, Elevation of,” in the supplement to the fourth edition of the 
Encyclopedia Britannica, published in 1819.

In 1804 Ihomas Young*  founded the theory of capillary phenomena on 
the principle of surface-tension. He also observed the constancy of the angle 
of contact of a liquid surface with a solid, and shewed how from these two 
principles to deduce the phenomena of capillary action. His essay contains the 
solution of a great number of cases, including most of those afterwards solved 
by Laplace, but his methods of demonstration, though always correct, and often 
extremely elegant, are sometimes rendered obscure by his scrupulous avoidance 
of mathematical symbols. Having applied the secondary principle of surface
tension to the various particular cases of capillary action, Young proceeds to 
deduce this surface-tension from ulterior principles. He supposes the particles 
to act on one another with two different kinds of forces, one of which, the 
attractive force of cohesion, extends to particles at a greater distance than 
those to which the repulsive force is confined. He further supposes that the 
attractive force is constant throughout the minute distance to which it extends, 
but that the repulsive force increases rapidly as the distance diminishes. He 
thus shews that at a curved part of the surface, a superficial particle would 
be urged towards the centre of curvature of the surface, and he gives reasons 
for concluding that this force is proportional to the sum of the curvatures of 
the surface in two normal planes at right angles to each other.

* Essay on the “Cohesion of Fluids,” Philosophical Transactions, 1805, p. 65, 
+ Mecanique Celeste, supplement to the tenth book, published in 1806.

VOL. II. G9

The subject was next taken up by Laplace t. His results are in many 
respects identical with those of Young, but his methods of arriving at them 
are very different, being conducted entirely by mathematical calculations. The 
form into which he has thrown his investigation seems to have deterred many 
able physicists from the inquiry into the ulterior cause of capillary phenomena, 
and induced them to rest content with deriving them from the fact of surface
tension. But for those who wish to study the molecular constitution of bodies 
it is necessary to study the effect of forces which are sensible only at insen
sible distances; and Laplace has furnished us with an example of the method 
of this study which has never been surpassed. Laplace investigates the force 
acting on the fluid contained in an infinitely slender canal normal to the 
surface of the fluid arising from the attraction of the parts of the fluid out
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side the canal. He thus finds for the pressure at a point in the interior of 
the fluid an expression of the form

>P = K+ 2H(r + I?) •

where K is a constant pressure, probably very large, which, however, does not 
influence capillary phenomena, and therefore cannot be determined from observa
tion of such phenomena; II is another constant on which all capillary phenomena 
depend; and R and II are the radii of curvature of any two normal sections 
of the surface at right angles to each other.

In the first part of our own investigation we shall adhere to the symbols 
used by Laplace, as we shall find that an accurate knowledge of the physical 
interpretation of these symbols is necessary for the further investigation of the 
subject. In the Supplement to the Theory of Capillary Action, Laplace deduces 
the equation of the surface of the fluid from the condition that the resultant 
force on a particle at the surface must be normal to the surfiice. His expla
nation, however, of the rise of a liquid in a tube is based on the assumption 
of the constancy of the angle of contact for the same solid and fluid, and of 
this he has nowhere given a satisfactory proof. In this supplement Laplace 
gives many important applications of the theory, and compares the results with 
the experiments of Gay-Lussac.

The next great step in the treatment of the subject was made by Gauss*. 
The principle which he adopts is that of virtual velocities, a principle which 
under his hands was gradually transforming itself into what is now known as 
the principle of the conservation of energy. Instead of calculating the direction 
and magnitude of the resultant force on each particle arising from the action 
of neighbouring particles, he forms a single expression which is the aggregate 
of all the potentials arising from the mutual action between pairs of particles. 
This expression has been called the force-function. With its sign reversed it 
is now called the potential energy of the system. It consists of three parts, 
the first depending on the action of gravity, the second on the mutual action 
between the particles of the fluid, and the third on the action between the 
particles of the fluid and the particles of a solid or fluid in contact with it.

Ihe condition of equilibrium is that this expression (which we may for 
the sake of distinctness call the potential energy) shall be a minimum. This

* Principia generalia Thoria Figura Fluidorum in statu ^guilibrii (Giittingen, 1830), or Werke, 
v. 29 (Gottingen, 1867).
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condition when worked out gives not only the equation of the free surface in 
the form already established by Laplace, but the conditions of the angle of 
contact of this surface with the surface of a solid.

Gauss thus supplied the principal defect in the great work of Laplace. 
He also pointed out more distinctly the nature of the assumptions which we 
must make with respect to the law of action of the particles in order to be 
consistent with observed phenomena. He did not, however, enter into the ex
planation of particular phenomena, as this had been done already by Laplace. 
He points out, however, to physicists the advantages of the method of Segner 
and Gay-Lussac, afterwards carried out by Quincke, of measuring the dimen
sions of large drops of mercury on a horizontal or slightly concave surface, 
and those of large bubbles of air in transparent liquids resting against the 
under side of a horizontal plate of a substance wetted by the liquid.

In 1831 Poisson published his Nouvelle Thcorie de I'Action Capillaire. 
He maintains that there is a rapid variation of density near the surface of a 
liquid, and he gives very strong reasons, which have been only strengthened 
by subsequent discoveries, for believing that this is the case. He then pro
ceeds to an investigation of the equilibrium of a fluid on the hypothesis of 
uniform density, and he arrives at the conclusion that on this hypothesis none 
of the observed capillary phenomena would take place, and that, therefore, 
Laplace’s theory, in which the density is supposed uniform, is not only insuffi
cient but erroneous. In particular he maintains that the constant pressure K, 
which occurs in Laplace’s theory, and which on that theory is very large, 
must be in point of fact very small, but the equation of equilibrium from 
which he concludes this is itself defective. Laplace assumes that the liquid 
has uniform density, and that the attraction of its molecules extends to a 
finite though insensible distance. On these assumptions his results are certainly 
right, and are confirmed by the independent method of Gauss, so that the 
objections raised against them by Poisson fall to the ground. But whether 
the assumption of uniform density be physically correct is a very different 
question, and Poisson has done good service to science in shewing how to 
carry on the investigation on the hypothesis that the density very near the 
surface is different from that in the interior of the fluid.

The result, however, of Poisson’s investigation is practically equivalent to 
that already obtained by Laplace. In both theories the equation of the liquid 
surface is the same, involving a constant JI, which can be determined only by 
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experiment. The only difference is in the manner in which this quantity II 
depends on the law of the molecular forces and the law of density near the 
surface of the fluid, and as these laws are unknown to us we cannot obtain 
any test to discriminate between the two theories.

We have now described the principal forms of the theory of capillary 
action during its earlier development. In more recent times the method of 
Gauss has been modified so as to take account of the variation of density 
near the surface, and its language has been translated in terms of the modern 
doctrine of the conservation of energy *.

* See Prof. Betti, Teoria della Capillarity: Nuovo Cimento, 1867 ; a memoir by M. Stahl, 
“ Ueber einige Punckte in der Theorie der Capillarerscheinungen,” Pogg. Ann., cxxxix. p. 239 (1870); 
and M. Van der Waal’s Over de Continuiteit van den Gas- en Vloeistoftoestand. The student will 
find a good account of the subject from a mathematical point of view in Professor Challis’s 
“ Report on the Theory of Capillary Attraction,” Brit. Ass. Report, iv. p. 253 (1834).

t M. Plateau, Statique experimentale et theorique des liquides.
t Mem. de l’Acad. Roy. de Bdgique, xxxvil. (1873).

M. Plateau f, who has himself made the most elaborate study of the 
phenomena of surface-tension, has adopted the following method of getting rid 
of the effects of gravity: He forms a mixture of alcohol and water of the 
same density as olive oil. He then introduces a quantity of oil into the 
mixture. It assumes the form of a sphere under the action of surface-tension 
alone. He then, by means of rings of iron-wire, disks, and other contrivances, 
alters the form of certain parts of the surface of the oil. The free portions 
of the surface then assume new forms depending on the equilibrium of surface
tension. In this way he has produced a great many of the forms of equilibrium 
of a liquid under the action of surface-tension alone, and compared them with 
the results of mathematical investigation. He has also greatly facilitated the 
study of liquid films by shewing how to form a liquid, the films of which 
will last for twelve or even for twenty-four hours. The debt which science 
owes to M. Plateau is not diminished by the fact that, while investigating 
these beautiful phenomena, he has never himself seen them. He lost his sight 
long ago in the pursuit of science, and has ever since been obliged to depend 
on the eyes and the hands of others.

M. Van der MensbruggheJ has also devised a great number of beautiful 
illustrations of the phenomena of surface-tension, and has shewn their connection 
with the experiments of Mr Tomlinson on the figures formed by oils dropped 
on the clean surface of water.
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M. Dupr<5 in his 5th, 6th, and 7 th Memoirs on the Mechanical Theory 

of Heat (Atm. de Chimie et de Physique, 1866 to 1868) has done much to
wards applying the principles of thermodynamics to capillary phenomena, and 
the experiments of his son are exceedingly ingenious and well devised, tracing 
the influence of surface-tension in a great number of very different circumstances, 
and deducing from independent methods the numerical value of the surface
tension. The experimental evidence which M. Duprd has obtained bearing on 
the molecular structure of liquids must be very valuable, even if many of our 
present opinions on this subject should turn out to be erroneous.

M. Quincke^ has made a most elaborate series of experiments on the tension 
of the surfaces separating one liquid from another and from air.

M. Liidtget has experimented on liquid films, and has shewn how a film 
of a liquid of high surface-tension is replaced by a film of lower surface-tension. 
He has also experimented on the effects of the thickness of the film, and has 
come to the conclusion that the thinner a film is, the greater is its tension. 
This result, however, has been tested by M. Van der Mensbrugghe, who finds 
that the tension is the same for the same liquid whatever be the thickness, 
as long as the film does not burst. The phenomena of very thin liquid films 
deserve the most careful study, for it is in this way that we are most likely 
to obtain evidence by which we may test the theories of the molecular structure 
of liquids.

Sir W. Thomson J has investigated the effect of the curvature of the 
surface of a liquid on the thermal equilibrium between the liquid and the 
vapour in contact with it. He has also calculated the effect of surface-tension 
on the propagation of waves on the surface of a liquid, and has determined 
the minimum velocity of a wave, and the velocity of the wind when it is just 
sufficient to disturb the surface of still water §.

Theory of Capillary Action.

When two different fluids are placed in contact, they may either diffuse 
into each other or remain separate. In some cases diffusion takes place to a 
limited extent, after which the resulting mixtures do not mix with each other.

* Pogg. Ann., cxxxix. (1870), p. 1. + Hid. p. 620.
J Proceedings R. S., Edinburgh, February 7, 1870.
§ Philosophical Magazine, November, 1871.
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The same substance may be able to exist in two different states at the same 
temperature and pressure, as when water and its saturated vapour are con
tained in the same vessel. The conditions under which the thermal and 
mechanical equilibrium of two fluids, two mixtures, or the same substance in 
two physical states in contact with each other, is possible belong to thermo
dynamics. All that we have to observe at present is that, in the cases in 
which the fluids do not mix of themselves, the potential energy of the system 
must be greater when the fluids are mixed than when they are separate.

It is found by experiment that it is only very close to the bounding 
surface of a liquid that the forces arising from the mutual action of its parts 
have any resultant effect on one of its particles. The experiments of Quincke 
and others seem to shew that the extreme range of the forces which produce 
capillary action lies between a thousandth and a twenty thousandth part of 
a millimetre.

We shall use the symbol e to denote this extreme range, beyond which 
the action of these forces may be regarded as insensible. If x denotes the 
potential energy of unit of mass of the substance, we may treat x as sensibly 
constant except within a distance e of the bounding surface of the fluid. In 
the interior of the fluid it has the uniform value Xr In like manner the 
density, p, is sensibly equal to the constant quantity p„, which is its value 
in the interior of the liquid, except within a distance e of the bounding surface. 
Hence if V is the volume of a mass 31 of liquid bounded by a surface whose 
area is S, the integral

ffjpdxdydz ......................................... (1),

where the integration is to be extended throughout the volume V, may be 
divided into two parts by considering separately the thin shell or skin extend
ing from the outer surface to a depth e, within which the density and other 
properties of the liquid vary with the depth, and the interior portion of the 
liquid within which its properties are constant.

Since e is a line of insensible magnitude compared with the dimensions of 
the mass of liquid and the principal radii of curvature of its surface, the 
volume of the shell whose surface is and thickness e will be Se, and that 
of the interior space will be K— St.

If we suppose a normal v less than e to be drawn from the surface $ 
into the liquid, we may divide the shell into elementary shells whose thick
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ness is dv, in each of which the density and other properties of the liquid 
will be constant.

Ihe volume of one of these shells will be Sdv. Its mass will be Spdv. 
The mass of the whole shell will therefore be sf pdv, and that of the interior 

J 0
part of the liquid (V—Se^p^. We thus find for the whole mass of the liquid 

lp0~s[ (p0-p) dv.(2).
J o

To find the potential energy we have to integrate

........................................(3)-

Substituting yp for p in the process we have just gone through, we find

E = Vxopo-sf (Xopo-Xp)^ ................................ (4)-
J o

Multiplying equation (2) by and subtracting it from (4),

E-Pdv................................. (5).

In this expression M and x» are both constant, so that the variation of 
the right hand side of the equation is the same as that of the energy E, 
and expresses that part of the energy which depends on the area of the 
bounding surface of the liquid. We may call this the surface energy.

The symbol x expresses the energy of unit of mass of the liquid at a 
depth v within the bounding surface. When the liquid is in contact with a 
rare medium, such as its own vapour or any other gas, x is greater than x», 
and the surface energy is positive. By the principle of the conservation of 
energy, any displacement of the liquid by which its energy is diminished will 
tend to take place of itself. Hence if the energy is the greater, the greater 
the area of the exposed surface, the liquid will tend to move in such a way 
as to diminish the area of the exposed surface, or in other words, the exposed 
surface will tend to diminish if it can do so consistently with the other 
conditions. This tendency of the surface to contract itself is called the surface
tension of liquids.

M. DupnS has described an arrangement by which the surface-tension of 
a liquid film may be illustrated.
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LJc cO
Fig. 1.

A piece of sheet metal is cut out in the form A A (fig. 1). A very fine 
slip of metal is laid on it in the position BB, and the whole is dipped into 

a solution of soap, or M. Plateau’s glycerine mixture. 
When it is taken out the rectangle A ACC is filled up 
by a liquid film. This film, however, tends to contract 
on itself, and the loose strip of metal BB will, if it 
is let go, be drawn up towards A A, provided it is 
sufficiently light and smooth.

Let T be the surface-energy per unit of area; then the energy of a 
surface of area S will be ST. If, in the rectangle A ACC, AA=a, and CC=b, 
its area is S = ab, and its energy Tab. Hence if F is the force by which 
the slip BB is pulled towards A A,

F-^T<A-Ta............................................ («),

or the force arising from the surface tension acting on a length a of the strip 
is Ta, so that T represents the surface-tension acting transversely on every 
unit of length of the periphery of the liquid surface. Hence if we write

T = [ (x~Xo)Pdv......................................... (7),
J o

we may define T either as the surface-energy per unit of area, or as the 
surface-tension per unit of contour, for the numerical values of these two 
quantities are equal.

If the liquid is bounded by a dense substance, whether liquid or solid, the 
value of x may be different from its value when the liquid has a free surface. 
If the liquid is in contact with another liquid, let us distinguish quantities 
belonging to the two liquids by suffixes. We shall then have

E, - ^Xo, = & f (Xl - Xoi) pfa.................................. (8),
J o

E*— — S l (x, — p.dv,.....................................(9).
J 0

Adding these expressions, and dividing the second member by S, we obtain 
for the tension of the surface of contact of the two liquids

/**1 / fr*
= \Xi~ X^ Pidvi + (to ~ X^ P^........................(10).

J 0 Jo
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If this quantity is positive, the surface of contact will tend to contract, 

and the liquids will remain distinct. If, however, it were negative, the dis
placement of the liquids which tends to enlarge the surface of contact would 
be aided by the molecular forces, so that the liquids, if not kept separate by 
gravity, would at length become thoroughly mixed. No instance, however, of 
a phenomenon of this kind has been discovered, for those liquids which mix 
of themselves do so by the process of diffusion, which is a molecular motion, 
and not by the spontaneous puckering and replication of the bounding surface, 
as would be the case if T were negative.

It is probable, however, that there are many cases in which the integral 
belonging to the less dense fluid is negative. If the denser body be solid we 
can often demonstrate this; for the liquid tends to spread itself over the 
surface of the solid, so as to increase the area of the surface of contact, even 
although in so doing it is obliged to increase the free surface in opposition 
to the surface-tension. Thus water spreads itself out on a clean surface of glass. 
This shews that I (x~X^ P^v must be negative for water in contact with glass.

On the Tension of Liquid Films.

The method already given for the investigation of the surface-tension of 
a liquid, all whose dimensions are sensible, fails in the case of a liquid film, 
such as a soap-bubble. In such a film it is possible that no part of the liquid 
may be so far from the surface as to have the potential and density corre
sponding to what we have called the interior of a liquid mass, and measurements 
of the tension of the film when drawn out to different degrees of thinness 
may possibly lead to an estimate of the range of the molecular forces, or at 
least of the depth within a liquid mass, at which its properties become sensibly 
uniform. We shall therefore indicate a method of investigating the tension of 
such films.

Let 5 be the area of the film, M its mass, and E its energy; a the 
mass, and e the energy of unit of area; then

VOL. II.

M= Sa 
E—Se.
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Let us now suppose that by some change in the form of the boundary 
of the film its area is changed from £ to + dS. If its tension is T the 
work required to effect this increase of surface will be TdS, and the energy 
of the film will be increased by this amount. Hence

TdS=dE

= Sde + edS....................................... (13).
But since M is constant, 

dM- Sda- + adS = 0 ..................................... (14).

Eliminating dS from equations (13) and (14), and dividing by S, we find

T=e~^............................................(15).

In this expression a denotes the mass of unit of area of the film, and 
e the energy of unit of area.

If we take the axis of z normal to either surface of the film, the radius 
of curvature of which we suppose to be very great compared with its thick
ness c, and if p is the density, and y the energy of unit of mass at 
then

depth z,

w,

(17).

and

Both p and y are functions of z, the values of which remain the same 
when z — c is substituted for z. If the thickness of the film is greater than 
2e, there will be a stratum of thickness c-2e in the middle of the film, 
within which the values of p and y will be p, and y0. In the two strata 
on either side of this the law, according to which p and y depend on the 
depth, will be the same as in a liquid mass of large dimensions. Hence in 
this case

<r=(c-2e)pt + 2 pdv....................................(18),

e = (c~2e)x<>Po + 2 XP^ (19).
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da de, de
fc-P" d^^' da~^'

ft fe
T= 2 XP^~2Xo P^v>

J 0 J 0

( e= 2l(x~X»)p^...............................................................(20).

Hence the tension of a thick film is equal to the sum of the tensions of 
its two surfaces as already calculated (equation 7). On the hypothesis of 
uniform density we shall find that this is true for films whose thickness 
exceeds e.

The symbol x is defined as the energy of unit of mass of the substance. 
A knowledge of the absolute value of this energy is not required, since in 
every expression in which it occurs it is under the form that is to
say, the difference between the energy in two different states. The only cases, 
however, in which we have experimental values of this quantity are when the 
substance is either liquid and surrounded by similar liquid, or gaseous and sur
rounded by similar gas. It is impossible to make direct measurements of the 
properties of particles of the substance within the insensible distance e of the 
bounding surface.

When a liquid is in thermal and dynamical equilibrium with its vapour, 
then if p and are the values of p and x for the vapour, and p„ and x„ 
those for the liquid,

X~X« = ’^-p (21)

where J is the dynamical equivalent of heat, L is the latent heat of unit of 
mass of the vapour, and p is the pressure. At points in the liquid very near 
its surface it is probable that x is greater than x» and at points in the gas 
very near the surface of the liquid it is probable that x is less than X> hut 
this has not as yet been ascertained experimentally, We shall therefore en
deavour to apply to this subject the methods used in Thermodynamics, and 
where these fail us we shall have recourse to the hypotheses of molecular 
physics.

70—2
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We have next to determine the value of in terms of the action between 
one particle and another. Let us suppose that the force between two particles 
m and 111 at the distance f is

I C\ 
F=min' (/) ....................................... (22),

being reckoned positive when the force is attractive. The actual force between 
the particles arises in part from their mutual gravitation, which is inversely 

Cas the square of the distance. This force is expressed by It is easy

to shew that a force subject to this law would not account for capillary action. 
W e shall, therefore, in what follows, consider only that part of the force which 
depends on </> (f), where </> (f) is a function of y which is insensible for al 1 
sensible values of f, but which becomes sensible and even enormously great 
when f is exceedingly small.

If we next introduce a new function of f and write

<A(/)#=n(y) (23).

then 7?wn II (_/) will represent (1) the work done by the attractive force on 
the particle m, while it is brought from an infinite distance from m' to the 
distance y from m ; or (2) the attraction of a particle in on a narrow straight 
lod resolved in the direction of the length of the rod, one extremity of the 
rod being at a distance y from m, and the other at an infinite distance, the 
mass of unit of length of the rod being m'. The function n (y) is also in
sensible for sensible values of f, but for insensible values of f it may become 
sensible and even very great.

If we next write

/K(/)df=^(z)........................................ (24),

then 2irm<nli(z) will represent (1) the work done by the attractive force while 
a particle m is brought from an infinite distance to a distance z from an 
infinitely thin stratum of the substance whose mass per unit of area is o-; 
(2) the attraction of a particle m placed at a distance z from the plane surface 
of an infinite solid whose density is cr.
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Let us examine the case in which the particle m is 
placed at a distance z from a curved stratum of the sub
stance, whose principal radii of Curvature are Ji, and B,. 
Let P (fig. 2) be the particle and PB a normal to the 
surface. Let the plane of the paper be a normal section 
of the surface of the stratum at the point B, making an 
angle ai with the section whose radius of curvature is 7?,. 
Then if O is the centre of curvature in the plane of the 
paper, and BO=u,

1 _ cos’ w sin* a» 
u~~IiT + ~^ ...................... (25).

Let POQ=6, PO = r, PQ=f, BP = Z>
f, = u‘ + r, — 2urco3 0 .................................... (26).

The element of the stratum at Q may be expressed by 
cru’ sin 0 dO dt», 

or expressing dO in terms of df by (26),

<7 -fdfdu.

Multiplying this by m and by nf -we obtain for the work done by the 
attraction of this element when m is brought from an infinite distance to P,

u
ma- -/n (/) dfda>.

Integrating with respect to y from f~z to f=a, where a is a line very 
great compared with the extreme range of the molecular force, but very small 
compared with either of the radii of curvature, we obtain for the work

I 14J r {'/'(*)-'A (a)} dm, 

and since is an insensible quantity we may omit it. We may also write 
u z ,-=1+- + ^

since z is very small compared with u, and expressing u in terms of w 
(25), we find

i r \ fi , /cos’ w sin’ aA) . . . C 1 /1 . 1 XIJ. +-^-^^ = 277^^)11 + 2^^ + ^]-.

by
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This then expresses the work done by the attractive forces when a particle 
is brought from an infinite distance to the point P at a distance z from 

a stratum whose surface-density is cr, and whose principal radii of curvature 
are A, and P2.

To find the work done when in is brought to the point P in the neigh
bourhood of a solid body, the density of which is a function of the depth v 
below the surface, we have only to write instead of a- pdz, and to integrate

/•oo

27rm (z) dz 4- mn 
J ~

where, in general, we must suppose p a function of z. This expression, when 
integrated, gives (1) the work done on a particle in while it is brought from 
an infinite distance to the point P, or (2) the attraction on a long slender 
column normal to the surface and terminating at P, the mass of unit of 
length of the column being m. In the form of the theory given by Laplace, 
the density of the liquid was supposed to be uniform. Hence if we write

K = 277 I Ip (z) dz, II=2ir Zip (z) dz, 
Jo Jo

the pressure of a column of the fluid itself terminating at the surface will be

P-1A + 2 II ,

and the work done by the attractive forces when a particle m is brought to 
the surface of the fluid from an infinite distance will be

mp
If we write

J ip(z)dz = 0(z),

then 2mnp0(z) will express the work done by the attractive forces, while a 
particle m is brought from an infinite distance to a distance z from the plane 
surface of a mass of the substance of density p and infinitely thick. The 
function 0 (z) is insensible for all sensible values of z. For insensible values it 
may become sensible, but it must remain finite even when z = 0, in which case 
0(o)=a:
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If / is the potential energy of unit of mass of the substance in vapour, 
then at a distance z from the plane surface of the liquid

X~X -2irp0 (z).
At the surface

X = x' — 2^0 (0).
At a distance z within the surface

X~X ~ 4irp0 (Q)+ 2np0(z).
If the liquid forms a stratum of thickness c, then

X = X - ^Pe (0) + 2irp0 (z) + 27rp0 (z - c).

The surface-density of this stratum is a- = cp. The energy per unit of 
area is

Cc 
c = XP^Z>

J 0

r c
= cp{x~ ^PG (0)} + 27rp2 0 (z) dz + 2up2 0(c-z) dz. 

Jo Jo
Since the two sides of the stratum are similar the last two terms are 

equal, and
, , Ce

e = cP {x ~ ^P^ (o)} 4- 47rp3 I 0 (z) dz.
J 0

Differentiating with respect to c, we find
der 
de 
de 
d^pbt- ^PG (0)}+(c).

Hence the surface-tension
rpT=e-a^-

Integrating the first term within brackets by parts, it becomes

c0 (c)-0^(0)-
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ddRemembering that 0 (0) is a finite quantity, and that (z), we findf 0T= inp1 z\fj (z) dz.
J o

When c is greater than e this is equivalent to 211 in the equation of Laplace. 
Hence the tension is the same for all films thicker than e, the range of the 
molecular forces. For thinner films

dT= 
de inp2c\(i (c).

Hence if i/i (c) is positive, the tension and the thickness will increase together. 
Now 2nmp^ (c) represents the attraction between a particle m and the plane 
surface of an infinite mass of the liquid, when the distance of the particle out
side the surface is c. Now, the force between the particle and the liquid is 
certainly, on the whole, attractive; but if between any two small values of 
c it should be repulsive, then for films whose thickness lies between these 
values the tension will increase as the thickness diminishes, but for all other 
cases the tension will diminish as the thickness diminishes.

We have given several examples in which the density is assumed to be 
uniform, because Poisson has asserted that capillary phenomena would not take 
place unless the density varied rapidly near the surface. In this assertion we 
think he was mathematically wrong, though in his own hypothesis that the 
density does actually vary, he was probably right. In fact, the quantity inp'K, 
which we may call with Van der Waals the molecular pressure, is so great 
for most liquids (5000 atmospheres for water), that in the parts near the sur
face, where the molecular pressure varies rapidly, we may expect considerable 
variation of density, even when we take into account the smallness of the 
compressibility of liquids.

Ihe pressure at any point of the liquid arises from two causes, the external 
pressure P to which the liquid is subjected, and the pressure arising from the 
mutual attraction of its molecules. If we suppose that the number of molecules 
within the range of the attraction of a given molecule is very large, the part 
of the pressure arising from attraction will be proportional to the square of 
the number of molecules in unit of volume, that is, to the square of the 
density. Hence we may write

p = P + Ap'....................................................(1), .
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where A is a constant. But by the equations of equilibrium of the liquid

Hence
and
where B is another constant.

dp= -pdx..............................................
— pdx = 2Apdp................

X-x = 2Ap-2B..........................................

Near the plane surface of a liquid we may assume p a function of z. We 
have then for the value of x at the point where z = c,

/ + *X~X = 2^ p(^)^(z-c)dz ...................v.(5),
where e is the range beyond which the attraction of a mass of liquid bounded 
by a plane surface becomes insensible. The value of x depends, therefore, on 
those values only of p which correspond to strata for which z is nearly equal 
to c. We may, therefore, expand p in terms of z — c, or writing x for z — c,

. fdp\ , a? /d?p\ P~P’+X{£)v> + 2\£)IA+lut.............................. (6).

where the suffix (c) denotes that in the quantity to which it is applied after 
differentiation, z is to be made equal to c. We may now write

r+<
X — X — 2wp(c) (x) dx + 2tt (x) dx

xty (x) dx + &c............... (7).
The function (x) has equal values for 4- x and - x. Hence j x"i/» (x) dx 

vanishes if n is odd.

But if we write 
f+< 1 [+*Jf=7r $ (x) dx, B = -ir x”^ (x) dx, 

J —• J-I

M= 11.2.3.4 7T I x4^ (x) dx, &c.

This is the expression for x on the hypothesis that the value of p can 
be expanded in a series of powers of z — c within the limits z — e and z + e. It

VOL. ii. 71
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is only when the point P is within the distance € of the surface of the liquid 
that this ceases to be possible.

If we now substitute for X value from equation (4), we obtain

2 Ap -2B = 2Kp + 2Z + 23/'^ + &c.,
r az’ az4

a linear differential equation in p, the solution of which is

P = 3-^+ Cie"*’ + + Cf”,

where nt, na, n3, ni are the roots of the equation

Mn* + Ln2 + K—A = Q.

The coefficient M is less than cL, where e is the range of the attractive 
force. Hence we may consider M very small compared with L. If we neglect 
M altogether,

If we assume a quantity a such that a2K=2L, we may call a the average 
range of the molecular forces. If we also take b, so that bn=\, we may call 
b the modulus of the variation of the density near the surface.

Our calculation hitherto has been made on the hypothesis that a is small 
when compared with b, and in that case we have found that a’ : b2 :: A — K : K.

But it appears from experiments on liquids that A — K is in general large 
when compared with K, and sometimes very large. Hence we conclude, first, 
that the hypothesis of our calculation is incorrect, and, secondly, that the 
phenomena of capillary action do not in any very great degree depend on the 
variation of density near the surface, but that the principal part of the force 
depends on the finite range of the molecular action.

In the following table, Ap is half the cubical elasticity of the liquid, and 
Kp the molecular pressure, both expressed in atmospheres (the absolute value 
of an atmosphere being one million in centimetre-gramme-second measure, see 
below, p. 589). p is the density, T the surface-tension, and a the average range 
of the molecular action, as calculated by Van der Waals from the values of 
T and K.
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The unit in which a is expressed is 1cm. x 10“’; a is therefore the twenty- 

millionth part of a centimetre for mercury, the thirty-millionth for water, and 
the forty-millionth part for alcohol. Quincke, however, found by direct experi
ment that certain molecular actions were sensible at a distance of a two- 
hundred-thousandth part of a centimetre, so that we cannot regard any of these 
numbers as accurate.

AP P T a

Ether ............................ 4600 1300 •73 18 29
Alcohol ........................ 5500 2100 •79 25-5 25
Bisulphide of Carbon... 16000 2900 1-27 321 23
Water............................ 22200 5000 1 81 31
Mercury........................ 542000 22500 13-54 540 49

On Surface-tension.

Definition.—The tension of a liquid surface across any line drawn on the 
surface is normal to the line, and is the same for all directions of the line, 
and is measured by the force across an element of the line divided by the 
length of that element.

Experimental Laws of Surface-tension.

1. For any given liquid surface, as the surface which separates water from 
air, or oil from water, the surface-tension is the same at every point of the 
surface and in every direction. It is also practically independent of the curva
ture of the surface, although it appears from the mathematical theory that 
there is a slight increase of tension where the mean curvature of the surface 
is concave, and a slight diminution where it is convex. The amount of this 
increase and diminution is too small to be directly measured, though it has 
a certain theoretical importance in the explanation of the equilibrium of the 
superficial layer of the liquid where it is inclined to the horizon.

2. The surface-tension diminishes as the temperature rises, and when the 
temperature reaches that of the critical point at which the distinction between 
the liquid and its vapour ceases, it has been observed by Andrews that the
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capillary action also vanishes. The early writers on capillary action supposed 
that the diminution of capillary action was due simply to the change of density 
corresponding to the rise of temperature, and, therefore, assuming the surface
tension to vary as the square of the density, they deduced its variations from 
the observed dilatation of the liquid by heat. This assumption, however, does 
not appear to be verified by the experiments of Brunner and Wolff on the 
rise of water in tubes at different temperatures.

3. The tension of the surface separating two liquids which do not mix 
cannot be deduced by any known method from the tensions of the surfaces 
of the liquids when separately in contact with air.

When the surface is curved, the effect of the surface-tension is to make 
the pressure on the concave side exceed the pressure on the convex side by 

+ where 1 is the intensity of the surface-tension and Rlf R^ are 

the radii of curvature of any two sections normal to the surface and to each 
other.

If three fluids which do not mix are in contact with each other, the three 
surfaces of separation meet in a line, straight or curved. 
Let 0 (fig. 3) be a point in this line, and let the 

b plane of the paper be supposed to be normal to the 
line at the point 0. The three angles between the

b Oa \ tangent planes to the three surfaces of separation at 
the point 0 are completely determined by the tensions 

\ of the three surfaces. For if in the triangle abc the
Q side ab is taken so as to represent on a given scale

_. „ the tension of the surface of contact of the fluids a
Fig. 3.

and b, and if the other sides be and ca are taken so 
as to represent on the same scale the tensions of the surfaces between b and 
c and between c and a respectively, then the condition of equilibrium at 0 
for the corresponding tensions It, P, and Q is that the angle HOP shall be 
the supplement of abc, POQ of bca, and, therefore, QOR of cab. Thus the 
angles at which the surfaces of separation meet are the same at all parts of 
the line of concourse of the three fluids. When three films of the same liquid 
meet, their tensions are equal, and, therefore, they make angles of 120° with 
each other. The froth of soap-suds or beat-up eggs consists of a multitude 
of small films which meet each other at angles of 120°.o
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If four fluids, a, b, c, d, meet in a point O, and if a tetrahedron ABCD 
is formed so that its edge AB represents the tension of the surface of contact 
of the liquids a and b, BC that of b and c, and so on; then if we place 
this tetrahedron so that the face ABC is normal to the tangent at O to the 
line of concourse of the fluids abc, and turn it so that the edge AB is normal 
to the tangent plane at O to the surface of contact of the fluids a and b, 
then the other three faces of the tetrahedron will be normal to the tangents 
at 0 to the other three lines of concourse of the liquids, and the other five 
edges of the tetrahedron will be normal to the tangent planes at 0 to the 
other five surfaces of contact.

If six films of the same liquid meet in a point the corresponding tetra
hedron is a regular tetrahedron, and each film, where it meets the others, has 
an angle whose cosine is Hence if we take two nets of wire with 
hexagonal meshes, and place one on the other so that the point of concourse 
of three hexagons of one net coincides with the middle of a hexagon of the 
other, and if we then, after dipping them in Plateau’s liquid, place them 
horizontally, and gently raise the upper one, we shall develop a system of 
plane laminae arranged as the walls and floors of the cells are arranged in a 
honeycomb. We must not, however, raise the upper net too much, or the 
system of films will become unstable.

When a drop of one liquid, B, is placed on the surface of another, A,
the phenomena which take place depend on the relative magnitude of the three
surface-tensions corresponding to the surface between A and air, between B 
and air, and between A and B. If no one of these tensions is greater than
the sum of the other two, the drop will assume the form of a lens the
angles which the upper and lower surfaces of the lens make with the free 
surface of A and with each other being equal to the external angles of the 
triangle of forces. Such lenses are often seen formed by drops of fat floating 
on the surface of hot water, soup, or gravy. But when the surface-tension of 
A exceeds the sum of the tensions of the surfaces of contact of B with air 
and with A, it is impossible to construct the triangle of forces, so that equi
librium becomes impossible. The edge of the drop is drawn out by the surface
tension of A with a force greater than the sum of the tensions of the two 
surfaces of the drop. The drop, therefore, spreads itself out, with great velocity 
over the surface of A till it covers an enormous area, and is reduced to such 
extreme tenuity that it is not probable that it retains the same properties of 
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surface-tension which it has in a large mass. Thus a drop of train oil will 
spread itself over the surface of the sea till it shews the colours of thin plates. 
These rapidly descend in Newton’s scale and at last disappear, shewing that 
the thickness of the film is less than the tenth part of the length of a wave 
of light. But even when thus attenuated, the film may be proved to be pre
sent, since the surface-tension of the liquid is considerably less than that of 
pure water. This may be shewn by placing another drop of oil on the surface. 
This drop will not spread out like the first drop, but will take the form of 
a flat lens with a distinct circular edge, shewing that the surface-tension of 
what is still apparently pure water is now less than the sum of the tensions 
of the surfaces separating oil from air and water.

The spreading of drops on the surface of a liquid has formed the subject 
of a very extensive series of experiments by Mr Tomlinson. M. Van der 
Mensbrugghe has also written a very complete memoir on this subject*.

p When a solid body is in contact with two fluids, the surface 
of the solid cannot alter its form, but the angle at which the 

b 3C surface of contact of the two fluids meets the surface of the solid
depends on the values of the three surface-tensions. If a and b 
are the two fluids and c the solid then the equilibrium of the

a tensions at the point 0 depends only on that of thin components
Fig. 4. parallel to the surface, because the surface-tensions normal to the 

surface are balanced by the resistance of the solid. Hence if the 
angle ROQ (fig. 4) at which the surface of contact OP meets the solid is 
denoted by a,

-T^-cos a = 0, 
whence

T — T 

cosa= % 
-* ab

As an experiment on the angle of contact only gives us the difference of the 
surface-tensions at the solid surface, we cannot determine their actual value. 
It is theoretically probable that they are often negative, and may be called 
surface-pressures.

The constancy of the angle of contact between the surface of a fluid and 
a solid was first pointed out by Dr Young, who states that the angle of 
contact between mercury and glass is about 140’. Quincke makes it 128’ 52'.

* Sur la Tension Superftcielle des Liquides, Bruxelles, 1873.
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If the tension of the surface between the solid and one of the fluids ex
ceeds the sum of the other two tensions, the point of contact will not be in 
equilibrium, but will be dragged towards the side on which the tension is 
greatest. If the quantity of the first fluid is small it will stand in a drop 
on the surface of the solid without wetting it. If the quantity of the second 
fluid is small it will spread itself over the surface and wet the solid. The 
angle of contact of the first fluid is 180° and that of the second is zero.

If a drop of alcohol be made to touch one side of a drop of oil on a 
glass plate, the alcohol will appear to chase the oil over the plate, and if a 
drop of water and a drop of bisulphide of carbon be placed in contact in a 
horizontal capillary tube, the bisulphide of carbon will chase the water along 
the tube. In both cases the liquids move in the direction in which the surface
pressure at the solid is least.

On the Rise of a Liquid in a Tube.

Let a tube (fig. 5) whose internal radius is r, made of a solid substance c, 
be dipped into a liquid a. Let us suppose that the angle of contact for this 
liquid with the solid c is an acute angle. This 
implies that the tension of the free surface of 
the solid c is greater than that of the surface 
of contact of the solid with the liquid a. Now 
consider the tension of the free surface of the 
liquid a. All round its edge there is a tension 
T acting at an angle a with the vertical. The 
circumference of the edge is 2trr, so that the 
resultant of this tension is a force 2irr7'cos a
acting vertically upwards on the liquid. Hence Fig'
the liquid will rise in the tube till the weight of the vertical column between 
the flee surface and the level of the liquid in the vessel balances the resultant 
of the surface-tension. The upper surface of this column is not level, so that 
the height of the column cannot be directly measured, but let us assume that 
h is the mean height of the column, that is to say, the height of a column 
of equal weight, but with a flat top. Then if r is the radius of the tube at 
the top of the column, the volume of the suspended column is m^h, and its 
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weight is irpgr'h, when p is its density and g the intensity of gravity. 
Equating this force with the resultant of the tension

irpg^h = ZnrTcos a,

or ^gTcosa
P9r

Hence the mean height to which the fluid rises is inversely as the radius of 
the tube. For water in a clean glass tube the angle of contact is zero, and

h = — .
P9r

For mercury in a glass tube the angle of contact is 128’ 52', the cosine of 
which is negative. Hence when a glass tube is dipped into a vessel of mercury, 
the mercury within the tube stands at a lower level than outside it.

Rise of a Liquid between Two Plates.

When two parallel plates are placed vertically in a liquid the liquid rises 
between them. If we now suppose fig. 5 to represent a vertical section per
pendicular to the plates, we may calculate the rise of the liquid. Let I be 
the breadth of the plates measured perpendicularly to the plane of the paper, 
then the length of the line which bounds the wet and the dry parts of the 
plates inside is I for each surface, and on this the tension T acts at an angle 
a to the vertical. Hence the resultant of the surface-tension is 21 Teos a. If 
the distance between the inner surfaces of the plates is a, and if the mean 
height of the film of fluid which rises between them is h, the weight of fluid 
raised is pghla. Equating the forces—

pghla = 2lTcos a,

. , SZcosawhence h, =----------.
P9^

This expression is the same as that for the rise of a liquid in a tube, except 
that instead of r, the radius of the tube, we have a the distance of the plates.
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Form of the Capillary Surface.

Ihe foim of the surface of a liquid acted on by gravity is easily deter- • 
mined if we assume that near the part considered the line of contact of the 
surface of the liquid with that of the solid bounding it is straight and hori
zontal, as it is when the solids which constrain the liquid are bounded by 
surfaces formed by horizontal and parallel generating lines. This will be the 
case, for instance, near a flat plate dipped into the liquid. If we suppose these 
generating lines to be normal to the plane of the paper then all sections of 
the solids parallel to this plane will be equal and similar to each other, and 
the section of the surface of the liquid will be of the same form for all such 
sections.

Let us 
distant one 
two points 
the surface

consider the portion of the 
unit of length. Let P„ P.
of the surface; 0lt 02f the inclination of 
to the horizon at P, and P2; y, the

liquid between two parallel sections 
(fig. 6) be

heights of P, and P2 above the level of the liquid 
at a distance from all solid bodies. The pressure at 
any P°iut of the liquid which is above this level is 
negative unless another fluid as, for instance, the air, 
presses on the upper surface, but it is only the differ
ence of pressures with which we have to do, because Fig. 6.

two equal pressures on opposite sides of the surface produce no effect.
We may, therefore, write for the pressure at a height y

p= -pgy, 
where p is the density of the liquid, or if there are two fluids the excess of 
the density of the lower fluid over that of the upper one.

The forces acting on the portion of liquid P.P^A, are—first, the hori
zontal pressures, — and ^pgyf; second, the surface-tension T acting at 
Pi and P2 in directions inclined and 02 to the horizon. Resolving horizontally 
we find—

T (cos 02 - COS 0t) 4- fap (yj - y^ = 0,

whence cos 0, = cos 0t - fapy» + y2\

VOL. II. 72
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or if we suppose Pt fixed and Pt variable, we may write 

cos 0 = £ + constant.

This equation gives a relation between the inclination of the curve to the 
horizon and the height above the level of the liquid.

Resolving vertically we find that the weight of the liquid raised above the 
level must be equal to T (sin 0, — sin 0,), and this is therefore equal to the area 
PlPiArA1 multiplied by gp. The form of the capillary surface is identical with 
that of the “elastic curve,” or the curve formed by a uniform spring originally 
straight, when its ends are acted on by equal and opposite forces applied either 
to the ends themselves or to solid pieces attached to them. Drawings of

the different forms of the curve may be found in 
Thomson and Tait’s Natural Philosophy, Vol. i. 
p. 455.

We shall next consider the rise of a liquid 
between two plates of different materials for which 
the angles of contact are a, and a.,, the distance

F18, 7- between the plates being a, a small quantity. Since
the plates are very near one another we may use the following equation of 
the surface as an approximation:—

whence

whence we obtain

y = hl + Ax + Bp 

h^h^Aa + Ba2,

cot a, = — A 

cot a^ = A + 2Ba

T(cos a, + cos a.,) = pga (1^ + Aa + ^BA2),

T clh, = — (cos a, + cos a,) + j (2 cot a, - cot a.,),! I
T CL

h3 = — (cos a, + cos a.) + (2 cot a., - cot a,). pga' G
Let X be the force which must be applied in a horizontal direction to either 
plate to keep it from approaching the other, then the forces acting on the first
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plate are T+X in the 
direction. Hence

For the second plate

negative direction, and T sin a, 4- ^gpl^ in the positive

A = | gph? - T (1 - sin a,)

A=\gph' — T(l— sin a.,).
Hence X = | gp (h* + hf) - 2’ {1 -1 (sin a, + sin a,)},

or, substituting the values of 1^ and hn

X = 4 —5 (cos a, + cos a..)2 — 2'{1 — £ (sin a, + sin a.,) — (cos a, + cos cu) (cot a, + cot a.,)}, 
pga

the remaining terms being negligible when a is small. The force, therefore, with 
which the two plates are drawn together consists first of a positive part, or 
in other words an attraction, varying inversely as the square of the distance, 
and second, of a negative part or repulsion independent of the distance. Hence 
in all cases except that in which the angles a, and a, are supplementary to 
each other, the force is attractive when a is small enough, but when cos a| 
and cos aa are of different signs, as when the liquid is raised by one plate, 
and depressed by the other, the first term may be so small that the repulsion 
indicated by the second term comes into play. The fact that a pair of plates 
which repel one another at a certain distance may attract one another at a 
smaller distance was deduced by Laplace from theory, and verified by the 
observations of the Abbd Hally.

A Drop between Two Plates.

If a small quantity of a liquid which wets glass be introduced between 
two glass plates slightly inclined to each other, it will run towards that part 
where the glass plates are nearest together. When the liquid is in equilibrium 
it forms a thin film, the outer edge of which is all of the same thickness. 
H (I is the distance between the plates at the edge of the film and II the

atmospheric pressure, the pressure of the liquid in the film is II
d 

and if A is the area of the film between the plates and B its circumference, 
the plates will be pressed together with a force

2A 2’cos a + BT sin a, 72—2
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and this, whether the atmosphere exerts any pressure or not. The force thus 
produced by the introduction of a drop of water between two plates is enormous, 
and is often sufficient to press certain parts of the plates together so power
fully as to bruise them or break them. When two blocks of ice are placed 
loosely together so that the superfluous water which melts from them may 
drain away, the remaining water draws the blocks together with a force suffi
cient to cause the blocks to adhere by the process called Regelation.

In many experiments bodies are floated on the surface of water in order 
that they may be free to move under the action of slight horizontal forces. 
Thus Newton placed a magnet in a floating vessel and a piece of iron in 
another in order to observe their mutual action, and Ampere floated a voltaic 
battery with a coil of wire in its circuit in order to observe the effects of 
the earth’s magnetism on the electric circuit. When such floating bodies come 
near the edge of the vessel they are drawn up to it, and are apt to stick 
fast to it. There are two ways of avoiding this inconvenience. One is to grease 
the float round its water-line so that the water is depressed round it. This, 
however, often produces a worse disturbing effect, because a thin film of grease 
spreads over the water and increases its surface-viscosity. The other method 
is to fill the vessel with water till the level of the water stands a little 
higher than the rim of the vessel. The float will then be repelled from the 
edge of the vessel. Such floats, however, should always be made so that the 
section taken at the level of the water is as small as possible.

Phenomena arising from the Variation of the Surface-tension.

Pure water has a higher surface-tension than that of any other substance 
liquid at ordinary temperatures except mercury. Hence any other liquid if 
mixed with water diminishes its surface-tension. For example, if a drop of 
alcohol be placed on the surface of water, the surface-tension will be diminished 
from 80, the value for pure water, to 25, the value for pure alcohol. The 
surface of the liquid will therefore no longer be in equilibrium, and a current 
will be formed at and near the surface from the alcohol to the surrounding 
water, and this current will go on as long as there is more alcohol at one 
part of the surface than at another. If the vessel is deep, these currents will 
be balanced by counter currents below them, but if the depth of the water 
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is only two or three millimetres, the surface-current will sweep away the whole 
of the water, leaving a dry spot where the alcohol was dropped in. This 
phenomenon was first described and explained by Professor James Thomson, 
who also explained a phenomenon, the converse of this, called the “ tears of 
strong wine.”

If a wine glass be half-filled with port wine the liquid rises a little up 
the side of the glass as other liquids do. The wine, however, contains alcohol 
and water, both of which evaporate, but the alcohol faster than the water, so 
that the superficial layer becomes more watery. In the middle of the vessel 
the superficial layer recovers its strength by diffusion from below, but the film 
adhering to the side of the glass becomes more watery, and therefore has a 
higher surface-tension than the surface of the stronger wine. It therefore creeps 
up the side of the glass dragging the strong wine after it, and this goes on 
till the quantity of fluid dragged up collects into a drop and runs down the 
side of the glass.

1 he motion of small pieces of camphor floating on water arises from the 
gradual solution of the camphor. If this takes place more rapidly on one side 
of the piece of camphor than on the other side, the surface-tension becomes 
weaker where there is most camphor in solution, and the lump, being pulled 
unequally by the surface-tensions, moves off in the direction of the strongest 
tension, namely, towards the side on which least camphor is dissolved.

If a drop of ether is held near the surface of water the vapour of ether 
condenses on the surface of the water, and surface-currents are formed flowing 
in every direction away from under the drop of ether.

If we place a small floating body in a shallow vessel of water and wet 
one side of it with alcohol or ether, it will move off with great velocity and 
skim about on the surface of the water, the part wet with alcohol being always 
the stern. &

The surface-tension of mercury is greatly altered by slight changes in the 
state of the surface. The surfiwe-tension of pure mercury is so great that it 
is very iflicult to keep it clean, for every kind of oil or grease spreads over 
it at once.

But the most remarkable effects of change of surface-tension are those pro- 
duced by what is called the electric polarization of the surface. The tension 
of the surface of contact of mercury and dilute sulphuric acid depends on the 
electromotive force acting between the mercury and the acid. If the electro
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motive force is from the acid to the mercury the surface-tension increases; if 
it is from the mercury to the acid, it diminishes. Faraday observed that a 
large drop of mercury, resting on the flat bottom of a vessel containing dilute 
acid, changes its form in a remarkable way when connected with one of the 
electrodes of a battery, the other electrode being placed in the acid. When 
the mercury is made positive it becomes dull and spreads itself out; when it 
is made negative it gathers itself together and becomes bright again. M. Lipp
mann, who has made a careful investigation of the subject, finds that exceed
ingly small variations of the electromotive force produce sensible changes in 
the surface-tension. The effect of one Daniell’s cell is to increase the tension 
from 30'4 to 40‘G. He has constructed a capillary electrometer by which 
differences of electric potential less than 0’01 of that of a Daniell’s cell can 
be detected by the difference of the pressure required to force the mercury to 
a given point of a fine capillary tube. He has also constructed an apparatus 
in which this variation in the surface-tension is made to do work and drive 
a machine. He has also found that this action is reversible, for when the 
area of the surface of contact of the acid and mercury is made to increase, 
an electric current passes from the mercury to the acid, the amount of elec
tricity which passes while the surface increases by one square centimetre being 
sufficient to decompose ‘000013 grammes of water.

On the Forms of Liquid Films which are Figures of Revolution.

A Spherical Soap-bubble.

A soap-bubble is simply a small quantity of soap-suds spread out so as 
to expose a large surface to the air. The bubble, in fact, has two surfaces, 
an outer and an inner surface, both exposed to air. It has, therefore, a certain 
amount of surface-energy depending on the area of these two surfaces. Since 
in the case of thin films the outer and inner surfaces are approximately equal, 
we shall consider the area of the film as representing either of them and 
shall use the symbol T to denote the energy of unit of area of the film,’ both 
surfaces being taken together. If T' is the energy of a single surface of the 
liquid, T the energy of the film is 27”. When by means of a tube we blow 
air into the inside of the bubble we increase its volume and therefore its 
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surface, and at the same time we do work in forcing air into it, and thus 
increase the energy of the bubble.

That the bubble has energy may be shewn by leaving the end of the tube 
open. The bubble will contract, forcing the air out, and the current of air 
blown through the tube may be made to deflect the flame of a candle. If the 
bubble is in the form of a sphere of radius r this material surface will have 
an area

N = 47T?’3 ................................................. (1).
If T be the energy corresponding to unit of area of the film the surface-energy 
of the whole bubble will be

ST~ iirTT............................................. (2).
The increment of this energy corresponding to an increase of the radius from 
r to r+dr is therefore

TdS= 8irrTdr ............................................. (3).
Now this increase of energy was obtained by forcing in air at a pressure 
greater than the atmospheric pressure, and thus increasing the volume of the 
bubble.

Let n be the atmospheric pressure and II +p the pressure of the air 
within the bubble. The volume of the sphere is

V=^................................................ (4),
and the increment of volume is

dV = im^dr............................................... (5)
Now if we suppose a quantity of air already at the pressure n+p, the work 
done in forcing it into the bubble is pdV. Hence the equation of work and 
energy is

pdV= Tds................................................(6^
or irrp^dr = 8-m'drT.......................... .................(7),

or P = ................................................. (8).

This, therefore, is the excess of the pressure of the air within the bubble over 
that of the external air, and it is due to the action of the inner and outer 
surfaces of the bubble. We may conceive this pressure to arise from the ten
dency which the bubble has to contract, or in other words from the surface
tension of the bubble.
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If to increase the area of the surface requires the expenditure of work, 
the surface must resist extension, and if the bubble in contracting can do work, 
the surface must tend to contract. The surface must therefore act like a sheet 
of india-rubber when extended both in length and breadth, that is, it must 
exert surface-tension. The tension of the sheet of india-rubber, however, de
pends on the extent to which it is stretched, and may be different in different 
directions, whereas the tension of the surface of a liquid remains the same 
however much the film is extended, and the tension at any point is the same 
in all directions.

Ihe intensity of this surface-tension is measured by the stress which it 
exerts across a line of unit length. Let us measure it in the case of the 
spherical soap-bubble by considering the stress exerted by one hemisphere of 
the bubble on the other, across the circumference of a great circle. This stress 
is balanced by the pressure p acting over the area of the same great circle: 
it is therefore equal to TrPp. To determine the intensity of the surface-tension 
we have to divide this quantity by the length of the line across which it acts, 
which is in this case the circumference of a great circle 2tt/’. Dividing m^p 
by this length we obtain ^pr as the value of the intensity of the surface
tension, and it is plain from equation 8 that this is equal to T. Hence the 
numerical value of the intensity of the surface-tension is equal to the numerical 
value of the surface-energy per unit of surface. We must remember that since 
the film has two surfaces the surface-tension of the film is double the tension 
of the surface of the liquid of which it is formed.

To determine the relation between the surface-tension and 
the pressure which balances it when the form of the surface 
is not spherical, let us consider the following case:—

Let fig. 8 represent a section through the axis Cc of a 
soap-bubble in the form of a figure of revolution bounded by 
two circular disks A H and ab, and having the meridian section 
APa. Let PQ be an imaginary section normal to the axis. 
Let the radius of this section PR be y, and let PT, the 
tangent at P, make an angle a with the axis.

Let us consider the stresses which are exerted across this 
imaginary section by the lower part on the upper part. If 
the internal pressure exceeds the external pressure by p,

Fig. 8. there is in the first place a force iry^p acting upwards arising 
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from the pressure p over the area of the section. In the next place, there is 
the surface-tension acting downwards, but at an angle a with the vertical, 
across the circular section of the bubble itself, whose circumference is 2ny, and 
the downward force is therefore 2iryT cos a.

Now these forces are balanced by the external force which acts on the 
disk ACB, which we may call F. Hence equating the forces which act on 
the portion included between ACB and PRQ

infp — 2tt?/7’cos a = - F..................................... (9).

If we make CR = z, and suppose z to vary, the shape of the bubble of course 
remaining the same, the values of y and of a will change, but the other 
quantities will be constant. In studying these variations we may if we please 
take as our independent variable the length s of the meridian section AP 
reckoned from A. Differentiating equation 9 with respect to s we obtain, after 
dividing by 2tt as a common factor

Now

(10).

dy 
^ = sin a....................................... (11).

The radius of curvature of the meridian section is

B = — 
da. (12).

The radius of curvature of a normal section of the surface at right angles to 
the meridian section is equal to the part of the normal cut off by the axis, 
which is

cos a
Hence dividing equation 10 by ysina, we find

(13).

P (14).
This equation which gives the pressure in terms of the prinoipal
tore, though here proved only in the case of a surface of revolution must be 
true of all surfaces. For the curvature of any snrAnp ’

V0L n y rlace at a given point may 
73
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be completely defined in terms of the positions of its principal normal sections 
and their radii of curvature.

Before going further we may deduce from equation 9 the nature of all 
the figures of revolution which a liquid film can assume. Let us first deter
mine the nature of a curve, such that if it is rolled on the axis its origin 
will trace out the meridian section of the bubble. Since at any instant the 
rolling curve is rotating about the point of contact with the axis, the line 
drawn from this point of contact to the tracing point must be normal to the 
direction of motion of the tracing point. Hence if N is the point of contact, 
NP must be normal to the traced curve. Also, since the axis is a tangent 
to the rolling curve, the ordinate PR is the perpendicular from the tracing 
point P on the tangent. Hence the relation between the radius vector and 
the perpendicular on the tangent of the rolling curve must be identical with 
the relation between the normal PN and the ordinate PR of the traced curve. 
If we write r for PN, then y = r cos a, and equation 9 becomes

This relation between ij and r is identical with the relation between the per
pendicular from the focus of a conic section on the tangent at a given point 
and the focal distance of that point, provided the transverse and conjugate axes 
of the conic are 2a and 2b respectively, where

T Pa = —, and b*=—. p irp

Hence the meridian section of the film may be traced by the focus of such 
a conic, if the conic is made to roll on the axis.

On the Different Forms of the Meridian Line.

(1) When the conic is an ellipse the meridian line is in the form of a 
series of waves, and the film itself has a series of alternate swellings and con
tractions as represented in figs. 8 and 9. This form of the film is called the 
unduloid.

•X I
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(la.) When the ellipse becomes a circle, the meridian line becomes a 

straight line parallel to the axis, and the film passes into the form of a 
cylinder of revolution.

(16.) As the ellipse degenerates into the straight line joining its foci, the 
contracted parts of the unduloid become narrower, till at last the figure becomes 
a series of spheres in contact.

27’In all these cases the internal pressure exceeds the external by — where
Ct

a is the semi-transverse axis of the conic. The resultant of the internal pres
sure and the surface-tension is equivalent to a tension along the axis, and the 
numerical value of this tension is equal to the force due to the action of this 
pressure on a circle whose diameter is equal to the conjugate axis of the 
ellipse.

(2) When the conic is a parabola the meridian line is a catenary (fig. 10), 
the internal pressure is equal to the external pressure, and the tension along 
the axis is equal to lirTm where m is the distance of the vertex from the 
focus.

Fig. 11.—Nodoid.Fig. 9.—Unduloid. Fig. 10.—Catenoid.

(3) When the conic is a hyperbola the meridian line is in the form of 
a looped curve (fig. 11). The corresponding figure of the film is called the 
nodoid. The resultant of the internal pressure and the surface-tension is equiva
lent to a pressure along the axis equal to that due to a pressure p acting 
on a circle whose diameter is the conjugate axis of the hyperbola.

When the conjugate axis of the hyperbola is made smaller and smaller, 
the nodoid approximates more and more to the series of spheres touching each 
other along the axis. When the conjugate axis of the hyperbola increases with
out limit, the loops of the nodoid are crowded on one another, and each 
becomes more nearly a ring of circular section, without, however, ever reaching 
this form. The only closed surface belonging to the series is the sphere.

73—2
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These figures of revolution have been studied mathematically by Poisson*,  
Goldschmidtt, Lindelbf and Moignoj, Delaunayll, Lamarle§, Beeri, and Mann
heim**,  and have been produced experimentally by Plateautt in the two different 
ways already described.

* Nouvelle theorie de taction capillaire (1831).
f Determinatio superficiei minima) rotations curves data duo puncta jungentis circa datum axem 

or tee (Gottingen, 1831).
f Lemons de calcul des variations (Paris, 1861).
|| “ Sur la surface de revolution dont la courbure moyenne est constante,” Liouville's Journal, vi.
§ “Th6orie geometrique des rayons et centres de courbure,” Bullet, de I'Acad, de Belgique, 1857.
51 Tractatus de Theoria Mathematica Pluvnomenorum in Liquidis actione gravitatis detractis obser- 

vatorum (Bonn, 1857).
** Journal I’Institut, No. 1260.
ft Statique experimentale et theorique des liquides.

The limiting conditions of the stability of these figures have been studied 
both mathematically and experimentally. We shall notice only two of them, 
the cylinder and the catenoid.

Stability of the Cylinder.

The cylinder is the limiting form of the unduloid when the rolling ellipse 
becomes a circle. When the ellipse differs infinitely little from a circle, the 

equation of the meridian line becomes approximately y = a + c sin - where c is 

small. This is a simple harmonic wave-line, whose mean distance from the axis 
is a, whose wave-length is 2ira, and whose amplitude is c. The internal pres- 

71
sure corresponding to this unduloid is as before p = -. Now consider a

portion of a cylindric film of length x terminated by two equal disks of radius r 
and containing a certain volume of air. Let one of these disks be made to 

approach the other by a small quantity dx. The 
film will swell out into the convex part of an 
unduloid, having its largest section midway between 
the disks, and we have to determine whether the 
internal pressure will be greater or less than before. 
If A and C (fig. 12) are the disks, and if x the 
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distance between the disks is equal to irr half the wave-length of the harmonic 
curve, the disks will be at the points where the curve is at its mean distance 

Tfrom the axis, and the pressure will therefore be — as before. If A„ C, are 

the disks, so that the distance between them is less than 7rr, the curve must 
be produced beyond the disks before it is at its mean distance from the axis. 
Hence in this case the mean distance is less than r, and the pressure will be 

Tgreater than —. If, on the other hand, the disks are at A, and (?„ so that the 

distance between them is greater than irr, the curve will reach its mean dis
tance from the axis before it reaches the disks. The mean distance will there- 

71
fore be greater than r, and the pressure will be less than —. Hence if one 

of the disks be made to approach the other, the internal pressure will be 
increased if the distance between the disks is less than half the circumference 
of either, and the pressure will be diminished if the distance is greater than 
this quantity. In the same way we may shew that if the distance between 
the disks is increased, the pressure will be diminished or increased according 
as the distance is less or more than half the circumference of either.

Now let us consider a cylindric film contained between two equal fixed disks 
A and B, and let a third disk, C, be placed midway between. Let C be slightly 
displaced towards A. If AC and CB are each less than half the circumference 
of a disk the pressure on C will increase on the side of A and diminish on 
the side of B. The resultant force on C will therefore tend to oppose the 
displacement and to bring C back to its original position. The equilibrium of 
C is therefore stable. It is easy to shew that if C had been placed in any 
other position than the middle, its equilibrium would have been stable. Hence 
the film is stable as regards longitudinal displacements. It is also stable as 
regards displacements transverse to the axis, for the film is in a state of 
tension, and any lateral displacement of its middle parts would produce a re
sultant force tending to restore the film to its original position. Hence if the 
length of the cylindric film is less than its circumference, it is in stable equi
librium. But if the length of the cylindric film is greater than its circumference, 
and if we suppose the disk C to be placed midway between A and B, and 
to be moved towards A, the pressure on the side next A will diminish, and 
that on the side next B will increase, so that the resultant force will tend to 
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increase the displacement, and the equilibrium of the disk C is therefore un
stable. Hence the equilibrium of a cylindric film whose length is greater than 
its circumference is unstable. Such a film, if ever so little disturbed, will 
begin to contract at one section and to expand at another, till its form ceases 
to resemble a cylinder, if it does not break up into two parts which become 
ultimately portions of spheres.

Instability of a Jet of Liquid.

When a liquid flows out of a vessel through a circular opening in the 
bottom of the vessel, the form of the stream is at first nearly cylindrical though 
its diameter gradually diminishes from the orifice downwards on account of the 
increasing velocity of the liquid. But the liquid after it leaves the vessel is 
subject to no forces except gravity, the pressure of the air, and its own surface- 
tension. Of these gravity has no effect on the form of the stream except in 
drawing asunder its parts in a vertical direction, because the lower parts are 
moving faster than the upper parts. The resistance of the air produces little 
disturbance until the velocity becomes very great. But the surface-tension, 
acting on a cylindric column of liquid whose length exceeds the limit of stability, 
begins to produce enlargements and contractions in the stream as soon as the 
liquid has left the orifice, and these inequalities in the figure of the column 
go on increasing till it is broken up into elongated fragments. These fragments 
as they are falling through the air continue to be acted on by surface-tension. 
They therefore shorten themselves, and after a series of oscillations in which 
they become alternately elongated and flattened, settle down into the form of 
spherical drops.

This process, which we have followed sis it takes place on an individual 
portion of the falling liquid, goes through its several phases at different dis
tances from the orifice, so that if we examine different portions of the stream 
as it descends, we shall find next the orifice the unbroken column, then a 
series of contractions and enlargements, then elongated drops, then flattened 
drops, and so on till the drops become spherical.
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Stability of the Catenoid.

When the internal pressure is equal to the external, the film forms a
surface of which the mean curvature at every point is zero. The only surface
of revolution having this property is the catenoid formed by the revolution of 
a catenary about its directrix. This catenoid, however, is in stable equilibrium
only when the portion considered is such that the tangents to the catenary
at its extremities intersect before they reach the directrix.

To prove this, let us consider the catenary as the form of equilibrium of 
a chain suspended between two fixed points A and B. Suppose the chain 
hanging between A and B to be of very great length, then the tension at 
A or B will be very great. Let the chain be hauled in over a peg at A. 
At first the tension will diminish, but if the process be continued the tension 
will reach a minimum value and will afterwards increase to infinity as the 
chain between A and B approaches to the form of a straight line. Hence for 
every tension greater than the minimum tension there are two catenaries pass
ing through A and B. Since the tension is measured by the height above
the directrix these two catenaries have the same directrix. Every catenary 

between them has its directrix higher, and every catenary lying beyond 
them has its directrix lower than that of the two catenaries.

Now let us consider the surfaces of revolution formed by this system of 
catenaries revolving about the directrix of the two catenaries of equal tension. 
We know that the radius of curvature of a surface of revolution in the plane 
normal to the meridian plane is the portion of the normal intercepted by the 
axis of revolution.

The radius of curvature of a catenary is equal and opposite to the por
tion of the normal intercepted by the directrix of the catenary. Hence a 
catenoid whose directrix coincides with the axis of revolution has at every point 
its principal radii of curvature equal and opposite, so that the mean curvature 
of the surface is zero.

The catenaries which lie between the two whose direction coincides with 
the axis of revolution generate surfaces whose radius of curvature convex 
towards the axis in the meridian plane is less than the radius of concave 
curvature. The mean curvature of these surfaces is therefore convex towards the 
axis. The catenaries which lie beyond the two generate surfaces whose radius
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of curvature convex towards the axis in the meridian plane is greater than 
the radius of concave curvature. The mean curvature of these surfaces is, 
therefore, concave towards the axis.

Now if the pressure is equal on both sides of a liquid film, if its mean 
curvature is zero, it will be in equilibrium. This is the case with the two 
catenoids. If the mean curvature is convex towards the axis the film will 
move from the axis. Hence if a film in the form of the catenoid which is 
nearest the axis is ever so slightly displaced from the axis it will move further 
from the axis till it reaches the other catenoid.

If the mean curvature is concave towards the axis the film will tend to 
approach the axis. Hence if a film in the form of the catenoid which is 
nearest the axis be displaced towards the axis, it will tend to move further 
towards the axis and will collapse. Hence the film in the form of the catenoid 
which is nearest the axis is in unstable equilibrium under the condition that 
it is exposed to equal pressures within and without. If, however, the circular 
ends of the catenoid are closed with solid disks, so that the volume of air 
contained between these disks and the film is determinate, the film will be 
in stable equilibrium however large a portion of the catenary it may consist of.

The criterion as to whether any given catenoid is stable or not may be 
obtained as follows.

Let PA BQ and ApqB (fig. 13) be two catenaries having the same direc- 
trix and intersecting in A and B. Draw Pp and 
Qq touching both catenaries, Pp and Qq will 

, J intersect at T, a point in the directrix; for since
y/5 any catenary with its directrix is a similar figure 

to any other catenary with its directrix, if the 
 / directrix of the one coincides with that of the 
\---- / other the centre of similitude must lie on the

____________ V________ common directrix. Also, since the curves at P
T and p are equally inclined to the directrix, P

Flg' 18‘ and p are corresponding points and the line Pp
must pass through the centre of similitude. Similarly Qq must pass through 
the centre of similitude. Hence T, the point of intersection of Pp and Qq, 
must be the centre of similitude and must be on the common directrix. Hence 
the tangents at A and B to the upper catenary must intersect above the 
directrix, and the tangents at A and B to the lower catenary must intersect 
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below the directrix. The condition of stability of a catenoid is therefore that 
the tangents at the extremities of its generating catenary must intersect before 
they reach the directrix.

Stability of a Plane Surface.

We shall next consider the limiting conditions of stability of the horizontal 
surface which separates a heavier fluid above from a lighter fluid below. Thus 
in an experiment of M. Duprez* a vessel containing olive oil is placed with 
its mouth downwards in a vessel containing a mixture of alcohol and water, 
the mixture being denser than the oil. The surface of separation is in this 
case horizontal and stable, so that the equilibrium is established of itself 
Alcohol is then added very gradually to the mixture till it becomes lighter 
than the oil. The equilibrium of the fluids would now be unstable if it were 
not for the tension of the surface which separates them, and which when the 
orifice of the vessel is not too large, continues to preserve the stability of the 
equilibrium.

When the equilibrium at last becomes unstable, the destruction of equili
brium takes place by the lighter fluid ascending in one part of the orifice and 
the heavier descending in the other. Hence the displacement of the surface 
to which we must direct our attention is one which does not alter the volume 
of the liquid in the vessel, and which therefore is upward in one part of the 
surface and downward in another. The simplest case is that of a rectangular 
orifice in a horizontal plane, the sides being a and 6.

Let the surface of separation be originally in the plane of the orifice, and 
let the co-ordinates x and y be measured from one corner parallel to the sides 
a and b respectively, and let z be measured upwards. Then if p be the 
density of the upper liquid, and a that of the lower liquid, and P the original 
pressure at the surface of separation, then when the surface receives an upward 
displacement z, the pressure above it will be P — pgz, and that below it will 
be P — a-gz, so that the surface will be acted on by an upward pressure (p — a}gz.
Now if the displacement 

planes parallel to xz and

z be everywhere very small, the curvature 

yz will be and respectively; and

in the

if T is

* “Sur un cas particulier de IMquilibre des liquides,” par F. Duprez, Nouveaux item, do I’Acad, 
de Belgique, 1851 et 1854.

VOL. II. 74
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the surface-tension the whole upward force will be
d'z d*z\ 
da? dyy

If this quantity is of the same sign as z, the displacement will be increased, 
and the equilibrium will be unstable. If it is of the opposite sign from z, 
the equilibrium will be stable. The limiting condition may be found by put
ting it equal to zero. One form of the solution of the equation, and that 
which is applicable to the case of a rectangular orifice, is

z = Csin/fz sin qy.

Substituting in the equation we find the condition

f + ce stable.
(?’ + g*) T — (p — a) (j = < 0 neutral. 

t-”0 unstable.

That the surface may coincide with the edge of
rectangle, whose sides are a and b, we must have

the orifice, which is a

pa = mir, qb = nir,

when m and n are integral numbers. Also, if m and n are both unity, the 
displacement will be entirely positive, and the volume of the liquid will not 
be constant. That the volume may be constant, either n oi- m must be an 
even number. We have, therefore, to consider the conditions under which 

cannot be made negative. Under these conditions the equilibrium is stable for 

all small displacements of the surface. The smallest admissible value of —; + ”, 

is A + 7-5 > where a is the longer side of the rectangle. Hence the condition of 
a2 b 

stability is that
T~ ^^9

is a positive quantity. When the breadth b is less than 
a may be unlimited.

-—v— the length
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When the orifice is circular of radius a, the limiting value of a i8 z 
where z is the least root of the equation

2 7, _, _ za . z* z’ . .
z w 2. 4+ 2.4* .6 2.4*.6*.8+ C’’

The least root of this equation is
z = 3’83171.

If A is the height to which the liquid will rise in a capillary tube of 
unit radius, then the diameter of the largest orifice is

2a = 3'8317 724
= 5-4188 Jh.

M. Duprez found from his experiments
2a = 5-485 Jh.

Effect of Surface-tension on the Velocity of Waves*.

When a series of waves are propagated on the surface of a liquid, the 
surface-tension has the effect of increasing the pressure at the crests of the 
waves and diminishing it in the troughs. If the wave-length is X, the equa
tion of the surface is

y = b sin 2tt -.

The pressure due to the surface-tension T is
, dy _ 47r J 
dd X1P~-1 Ty.

This pressure must be added to the pressure due to gravity gpy. Hence the 
waves will be propagated as if the intensity of gravity had been 

instead of g. Now it is shewn in hydrodynamics that the velocity of propa
gation of waves in deep water is that acquired by a heavy body falling through 
half the radius of the circle whose circumference is the wave-length, or

/kg MT
N 2tt kp ’

♦ See Sir W. Thomson, “ Hydrokinetic Solutions and Observations," Phil. Mag., Nov. 1871.
74—2
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This velocity is a minimum when 

and the minimum value is

For waves whose length from crest to crest is greater than X, the prin
cipal force concerned in the motion is that of gravitation. For waves whose 
length is less than X the principal force concerned is that of surface-tension. 
Sir William Thomson proposes to distinguish the latter kind of waves by the 
name of ripples.

When a small body is partly immersed in a liquid originally at rest, and 
moves horizontally with constant velocity F, waves are propagated through the 
liquid with various velocities according to their respective wave-lengths. In front 
of the body the relative velocity of the fluid and the body varies from F 
where the fluid is at rest, to zero at the cutwater on the front surface of the 
body. The waves produced by the body will travel forwards faster than the 
body till they reach a distance from it at which the relative velocity of the 
body and the fluid is equal to the velocity of propagation corresponding to the 
wave-length. The waves then travel along with the body at a constant dis
tance in front of it. Hence at a certain distance in front of the body there 
is a series of waves which are stationary with respect to the body. Of these, 
the waves of minimum velocity form a stationary wave nearest to the front 
of the body. Between the body and this first wave the surface is compara
tively smooth. Then comes the stationary wave of minimum velocity, which is 
the most marked of the series. In front of this is a double series of stationary 
waves, the gravitation waves forming a series increasing in wave-length with 
their distance in front of the body, and the surface-tension waves or ripples 
diminishing in wave-length with their distance from the body, and both sets 
of waves rapidly diminishing in amplitude with their distance from the body.

If the current-function of the water referred to the body considered as 
origin is »//, then the equation of the form of the crest of a wave of velocity 
w, the crest of which travels along with the body, is 

d^ = wds
where ds is an element of the length of the crest. To integrate this equation 
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for a solid of given form is probably difficult, but it is easy to see that at 
some distance on either side of the body, where the liquid is sensibly at rest, 
the crest of the wave will approximate to an asymptote inclined to the path 

of the body at an angle whose sine is -p, where w is the velocity of the 
wave and V is that of the body.

Ihe crests of the different kinds of waves will therefore appear to diverge 
as they get further from the body, and the waves themselves will be less and 
less perceptible. But those whose wave-length is near to that of the wave of 
minimum velocity will diverge less than any of the others, so that the most 
marked feature at a distance from the body will be the two long lines of 
ripples of minimum velocity. If the angle between these is 20, the velocity 
of the body is w sec 0, where w for water is about 23 centimetres per second.

Tables of Surface-tension.

In the following tables the units of length, mass, and time are the centi
metre, the gramme, and the second, and the unit of force is that which if 
it acted on one gramme for one second would communicate to it a velocity of 
one centimetre per second:—

Table of Surface-Tension at 20°C. (Quincke).

Liquid. Specific 
Gravity.

Tension of surface sepa
rating the liquid from

Anglo of contact with glass 
in presence of

Air. W atcr. Mercury. Air. Water. Mercury.

Water............................................. 1 81 418 25° 3°' ono o'
Mercury......................................... 13-5432 540 418 51° 8' OA° O'

2b o

Bisulphide of Carbon.................... 1-2687 32-1 4 1 -75 372-5 32° 16'
o

1 V R'
...

Chloroform.................................... 1-4878 30-6 29-5 399
1<J O ...

Alcohol ......................................... 0-7906 25-5 399 25° 12'
•.. ...

Olive Oil......................................... 0-9136 36-9 20-56 335 21’ 50' 17° A *70 0/
Turpentine.................................... 0-8867 29-7 11-55 250-5 37° 44' 37° 44'

2

Petroleum ..................................... 0-7977 31-7 27-8 284 36’ 20' 40° 4g'
4/ 2

Hydrochloric Acid........................ 1-1 70-1 377
...

Solution of Hyposulphite of Soda 1-1248 77-5 ... 442-5 23" 20' ... 10’ 42'

Olive oil and alcohol, 12'2.
Olive oil and aqueous alcohol (sp. g. '9231, tension of free surface 25-5), 6’8, angle 87° 48'
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Quincke has determined the surface-tension of a 
their point of fusion or solidification. His method 
form of a large drop standing on a plane surface, 
flat surface of the drop, and k that of the point 
vertical, then

T-HK-^gp..

great many substances near 
was that of observing the 
If 7k is the height of the 
where its tangent plane is

Surface-Tensions of Liquids at their Point of Solidification. From Quincke..

Substance.
1

Temperature of 
Solidification. Surface-Tension.

Platinum ........................................ 2000° C. 1658
Gold ................................................. 1200° 983
Zinc ................................................. 360° 860
Tin................................................... 230° 587Mercury........................................... - 40° 577Lead................................................. 330° 448
Silver.................. ............................ 1000° 419
Bismuth........................................... 265° 382
Potassium...................... . ................ 58° 364
Sodium............................................. 90° 253
Antimony........................................ 432° 244
Borax .............................................. 1000“ 212
Carbonate of Soda ......................... 1000“ 206
Chloride of Sodium........................ ... 114
Water ......................  ..................... 0" 86-2
Selenium ........................................ 217“ 70-4Sulphur............................................. 111’ 41-3
Phosphorus .................................... 43’ 41-1
Wax................................................. 68’ 33-4

Quincke finds that for several series of substances the surface-tension is 

nearly proportional to the density, so that if we call (K- k)*=~ the specific 

cohesion, we may state the general results of his experiments as follows:__
The bromides and iodides have a specific cohesion about half that of mercury. 

The nitrates, chlorides, sugars, and fats, as also the metals, lead, bismuth, and 
antimony, have a specific cohesion nearly equal to that of iftertury. Water, 
the carbonates and sulphates, and probably phosphates, and the metals, platinum, 
gold, silver, cadmium, tin, and copper have a specific cohesion double that of 
mercury. Zinc, iron, and palladium, three times that of mercury, and sodium, 
six times that of mercury.
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Relation of Surface-tension to Temperature.

It appears from the experiments of Brunner and of Wolff on the ascent 
of water in tubes that at the temperature f centigrade

T=75’20 (1 -0-00187<);
= 7G’O8 (1 — 0’002« + 0’00000415^), for a tube ’0234G cm. diameter (Wolff)- 
= 77’34 (1 —0-0018K), for a tube ’03098 cm. diameter (Wolff).

Sir W. Thomson has applied the principles of Thermodynamics to deter
mine the thermal effects of increasing or diminishing the area of the free surface 
of a liquid, and has shewn that in order to keep the temperature constant 
while the area of the surface increases by unity, an amount of heat must be 
supplied to the liquid which is dynamically equivalent to the product of the 
absolute temperature into the decrement of the surface-tension per degree of 
temperature. We may call this the latent heat of surface-extension.

It appears from the experiments of Brunner and Wolff that at ordinary 
temperatures the latent heat of extension of the surface of water is dynamically 
equivalent to about half the mechanical work done in producing the surface
extension.



[From Nature, Vol. XV.]

LXXXIV. Hermann Ludwig Ferdinand Helmholtz.

The contributions made by Helmholtz to mathematics, physics, physiology, 
psychology, and aesthetics, are well known to all cultivators of these various 
subjects. Most of those who have risen to eminence in any one of these 
sciences have done so by devoting their whole attention to that science ex
clusively, so that it is only rarely that the cultivators of different branches can 
be of service to each other by contributing to one science the skill they have 
acquired by the study of another.

Hence the ordinary growth of human knowledge is by accumulation round 
a number of distinct centres. The time, however, must sooner or later arrive 
when two or more departments of knowledge can no longer remain independent 
of each other, but must be fused into a consistent whole. But though men 
of science may be profoundly convinced of the necessity of such a fusion, the 
operation itself is a most arduous one. For though the phenomena of nature 
are all consistent with each other, we have to deal not only with these, but 
with the hypotheses which have been invented to systematise them; and it 
by no means follows that because one set of observers have laboured with all 
sincerity to reduce to order one group of phenomena, the hypotheses which 
they have formed will be consistent with those by which a second set of 
observers have explained a different set of phenomena. Each science may appear 
tolerably consistent within itself, but before they can be combined into one, 
each must be stripped of the daubing of untempered mortar by which its parts 
have been prematurely made to cohere.

Hence the operation of fusing two sciences into one generally involves much 
criticism of established methods, and the explosion of many pieces of fancied 
knowledge which may have been long held in scientific reputation.

Most of those physical sciences which deal with things without life have 
either undergone this fusion or are in a fair state of preparation for it, and 
the form which each finally assumes is that of a branch of dynamics.
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Many cultivators of the biological sciences have been impressed with the 
conviction that for an adequate study of their subject a thorough knowledge 
of dynamical science is essential. But the manner in which some of them have 
cut and pared at the facts in order to bring the phenomena within the rano-e 
of their dynamics, has tended to throw discredit on all attempts to apply 
dynamical methods to biology.

We purpose to make a few remarks on a portion of the scientific work 
of Helmholtz, who is himself the most illustrious example not merely of ex
tensive acquaintance with science combined with thoroughness, but of a thorough
ness which of itself demands the mastery of many sciences, and in so doing 
makes its mark on each.

Hermann Ludwig Ferdinand Helmholtz was born August 31, 1821, at 
Potsdam, where his father, Ferdinand Helmholtz, was Professor of the Gymnasium. 
His mother, Caroline Penn, was of an emigrated English family. His father’s 
means would not admit of his studying science otherwise than as a medical 
student. He therefore became a military surgeon, and continued in that posi
tion till the end of 1848, when he was appointed Assistant of the Anatomical 
Museum of Berlin, and Teacher of Anatomy at the Academy of Arts. In the 
following year he went to Konigsberg, in Prussia, as Professor of Physiology. 
In 1856 he became Professor of Anatomy and Physiology at the University of 
Bonn; in 1859, Professor of Physiology at the University of Heidelberg; and, 
in 1871, Professor of Natural Philosophy to the University of Berlin.

It was during his career as a military surgeon that he published his cele
brated essay on The Conservation of Energy.

The science of dynamics has been so long established, that it is hardly 
conceivable, that any addition to its fundamental principles should yet remain 
to be made. But in the application of pure dynamics to actual bodies a great 
deal remains to be done. The great work for the men of science of the pre
sent age is to extend our knowledge of the motion of matter from those 
instances in which we can see and measure the motion to those in which our 
senses are unable to trace it. Foi’ this purpose we must avail ourselves of 
such principles of dynamics as are applicable to cases in which the precise 
nature of the motion cannot be directly observed, and we must also discover 
methods of observation by which effects which indicate the nature of the un
seen motion may be measured. It is unnecessary here to refer to the labours 
of the different men of science who, each in his own way, have contributed

vol. n. 75 
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by experiment, calculation, or speculation, to the establishment of the principle 
of the conservation of energy; but there can be no doubt that a very great 
impulse was communicated to this research by the publication in 1847, of 
Helmholtz’s essay Ueber die Erhaltung der Kraft, which we must now (and 
correctly, as a matter of science) translate Conservation of Energy, though in 
the translation which appeared in Taylor’s Scientific Memoirs, the word Kraft 
was translated Force in accordance with the ordinary literary usage of that 
time.

In this essay Helmholtz shewed that if the forces acting between material 
bodies were equivalent to attractions or repulsions between the particles of these 
bodies, the intensity of which depends only on the distance, then the con
figuration and motion of any material system would be subject to a certain 
equation, which, when expressed in words, is the principle of the conservation 
of energy.

Whether this equation applies to actual material systems is a matter which 
experiment alone can decide, but the search for what was called the perpetual 
motion has been carried on for so long, and always in vain, that we may now 
appeal to the united experience of a large number of most ingenious men, any 
one of whom, if he had once discovered a violation of the principle, would 
have turned it to most profitable account.

Besides this, if the principle were in any degree incorrect, the ordinary 
processes of nature, carried on as they are incessantly and in all possible com
binations, would be certain now and then to produce observable and even 
startling phenomena, arising from the accumulated effects of any slight diver
gence from the principle of conservation.

But the scientific importance of the principle of the conservation of energy 
does not depend merely on its accuracy as a statement of fact, nor even on 
the remarkable conclusions which may be deduced from it, but on the fertility 
of the methods founded on this principle.

Whether our work is to form a science by the colligation of known facts, 
or to seek for an explanation of obscure phenomena by devising a course of 
experiments, the principle of the conservation of energy is our unfailing guide. 
It gives us a scheme by which we may arrange the facts of any physical 
science as instances of the transformation of energy from one form to another. 
It also indicates that in the study of any new phenomenon our first inquiry 
must be, How can this phenomenon be explained as a transformation of energy ?
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What is the original form of the energy ? What is its final form ? and What 
are the conditions of transformation ?

1 o appreciate the full scientific value of Helmholtz’s little essay on this 
subject, we should have to ask those to whom we owe the greatest discoveries 
in thermodynamics and other branches of modern physics, how many times they 
have read it over, and how often during their researches they felt the weighty 
statements of Helmholtz acting on their minds like an irresistible driving-power.

We come next to his researches on the eye and on vision, as they are 
given in his book on Physiological Optics. Every modern oculist will admit 
that the ophthalmoscope, the original form of which was invented by Helmholtz, 
has substituted observation for conjecture in the diagnosis of diseases of the 
inner parts of the eye, and has enabled operations on the eye to be made 
with greater certainty.

But though the ophthalmoscope is an indispensable aid to the oculist, a 
knowledge of optical principles is of still greater importance. Whatever optical 
information he had was formerly obtained from text-books, the only practical 
object of which seemed to be to explain the construction of telescopes. They 
were full of very inelegant mathematics, and most of the results were quite 
inapplicable to the eye.

The importance to the physiologist and the physician of a thorough know
ledge of physical principles has often been insisted on, .but unless the physical 
principles are presented in a form which can be directly applied to the com
plex structures of the living body, they are of very little use to him; but 
Helmholtz, Bonders, and Listing, by the application to the eye of Gauss’s 
theory of the cardinal points of an instrument, have made it possible to acquire 
a competent knowledge of the optical effects of the eye by a few direct 
observations.

But perhaps the most important service conferred on science by this great 
work consists in the way in which the study of the eye and vision is made 
to illustrate the conditions of sensation and of voluntary motion. In no depart
ment of research is the combined and concentrated light of all the sciences 
more necessary than in the investigation of sensation. The purely subjective 
school of psychologists used to assert that for the analysis of sensation no 
apparatus was required except what every man carries within himself, for, since 
a sensation can exist nowhere except in our own consciousness, the only possible 
method for the study of sensations must be an unbiased contemplation of our 

75—2 
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reduces to an intelligible and systematic form the laborious and intricate in
vestigations of several independent theorists, so as to compare them with each 
other and with experiment.

But we must not dwell on isolated papers, each of which might have been 
taken for the work of a specialist, though few, if any, specialists could have 
treated them in so able a manner. We prefer to regard Helmholtz as the 
author of the two great books on Vision and Hearing, and now that we are 
no longer under the sway of that irresistible power which has been bearing 
us along through the depths of mathematics, anatomy, and music, we may 
venture to observe from a safe distance the whole figure of the intellectual 
giant as he sits on some lofty cliff watching the waves, great and small, as 
each pursues its independent course on the surface of the sea below.

“I must own,” ho says, “that whenever I attentively observe this spectacle, it awakens in 
me a peculiar kind of intellectual pleasure, because hero is laid open before the bodily eye what 
in the case of the waves of the invisible atmospheric ocean, can bo rendered intelligible only to 
the eye of the understanding, and by the help of a long series of complicated propositions 
(Tmiempjindungen, p. 42.) 1 1

Helmholtz is now in Berlin, directing the labours of able men of science 
in his splendid laboratory. Let us hope that from his present position he will 
again take a comprehensive view of the waves and ripples of our intellectual 
progress, and give us from time to time his idea of the meaning of it all



[From the Proceedings of the Cambridge Philosophical Society, Vol. hi. 1877.]

LXXXV. On a Paradox in the Theory of Attraction.

Let A,A2 be a straight line, P a point in the same, A], A”, corresponding points 
in the segments PA„ PAr

Let the distances of these points from the origin 0 measured in the positive 
o  .v,p x, A,

a

direction be a„ a,, p, xlt x2, respectively, and let the equation of correspondence 
between x, and x2 be

^-p ^-p p-x2 p-a2 ..............' /•

If x, and x2 vary simultaneously,
dx,__ _ dx, 

\p _ x,)’.................... (2)’

Hence x, and x, move in opposite directions, and the lengths of the 
corresponding elements dx, and dx2 (considered both positive) are as the squares 
of their respective distances from the point P.

If therefore AB is a uniform rod of matter attracting inversely as the 
square of the distance, the attractions of the corresponding elements on a 
particle at the point P will be equal and opposite.

Now by giving values to x„ varying continuously from a, to p, we may obtain 
a corresponding series of values of x2, varying from a, to p, and since every 
corresponding pair of elements dx, and dx, exert equal and opposite attractions 
on a particle at P, we might conclude that the attraction of the whole segment 
A,I on a particle at P is equal and opposite to that of the segment A.P on the 
same particle.
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But it is still more evident that if A,P is the greater of the two segments, 
•tnd if we cut oft Pa = PA, the attractions of Pa and PA, on the particle at 

will be equal and opposite. But the attraction of PA, exceeds that of Pa 
hy the attraction of the part a/la, therefore the attraction of PA, exceeds 
that of PA, by a finite quantity, contrary to our first conclusion.

Hence our first conclusion is wrong, and for this reason. The attractions 
of any two corresponding segments ^4^ and A,X, are exactly equal, but 
however near the corresponding points A, and X, approach to P, the attraction 
of each of the parts X,P and X,P on P is infinite, but that of X,P exceeds 
that of X,P by a constant quantity, equal to the attraction of A,a on P.

This method of corresponding elements leads to a very simple investigation 
of the distribution on straight lines, circular and elliptic disks and solid spheres 
and ellipsoids of fluids repelling according to any power of the distance.

The problem has been already solved by Green*  in a far more general 
manner, but at the same time by a far more intricate method.

* George Green. “ Mathematical Investigations concerning the laws of the Equilibrium of Fluids 
analogous to the electric fluid, with other similar researches.” Transactions of the Cambridge Philosophical 
Society, 1833. (Read Nov. 12, 1832.) Ferrers’ Edition of Green’s Papers, p. pg

We have, as before, for corresponding values of x, and a,

x^-p a^-p P~x, p-a,

Transposing

Multiplying
(x1-q,)(x1-«3) =

\x,-p}'(a,-p)Xp-a,) Xp-x^^-p^p-a. .̂.....................I8)’

If we write (a, — x,) (x, — a,) = y,........................................ (4)

(al-x3)(a;3-a3) = y.; .......................................

we find from equation (3) x^p _ p- x, 
yi y. (c).

Let p„ p, be the densities and s„ s, the sections of the rod at the 
corresponding points A, and A3, and let the repulsion of the matter of the 
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rod vary inversely as the nth power of the distance, then the condition of 
equilibrium of a particle at P under the action of the elements dx, and — dx, is

p.s.dx, (xl-p)-n= -p^dx, (p-x^............................ (7).
Eliminating dx, and dxa by means of equation (2), we find

P^-p) (p _................................ (8),
and from this by means of equation (6) we obtain

P^-n = p^~n............................................ (9),
as the condition of equilibrium between the elements.

The condition of equilibrium is therefore satisfied for every pair of elements 
by making

ps^~n = constant = C ................................... (10).

In a uniform rod s is constant, so that the distribution of density is 
given by the equation

P=Cyn^................................................ (11).

If n = 2, as in the case of electricity, the density is uniform.

We have already shewn that when the density is uniform a particle not 
at the middle of the rod cannot be in equilibrium, but on the other hand 
any finite deviation from uniformity of density would be inconsistent with 
equilibrium. We may therefore assert that the distribution of the fluid when 
in equilibrium is not absolutely uniform, but is least at the middle of the 
rod, while at the same time the deviation from uniformity is less than any 
assignable quantity.

If the force is independent of the distance, n = 0 and

P = Q/” ...............................................(12),
or if r is the distance from the middle of the rod, 2l being the length of the rod,

P = ................................................(13)’

If C were finite, the whole mass would be infinite. Hence if the mass of 
fluid in the rod is finite it must be concentrated into two equal masses and placed 
at the two ends of the rod.

VOL. II. 7G



602 ON A PARADOX IN THE THEORY OF ATTRACTION.

Let us next consider a disk on which two chords are drawn intersecting
at the point P at a small angle 0, and let corresponding elements be taken
of the two sectors so formed;

In this case the section of either sector is proportional to the distance of
the element from the point of intersection, and therefore the two sections are
proportional to the values of y at the two elements; Hence if pjf~n is constant, 
the particle at the point of intersection will be in equilibrium.

If the edge of the disk is the ellipse whose equation is

= .......................... . .............. (14),a’ tr ' '
and if at any point within it

.................... . .......... . ...... <«)•

and if the length of a diameter parallel to the given chord is 2d, then the 
value of y for any point of the chord is

....... . .................... . .................. (16).
Hence if p=Cpn~3........ .................... ....................(17),
a particle placed at any point of the disk will be in equilibrium under the 
action of any pair of sectors formed by chords intersecting at that point, and 
therefore it will be absolutely in equilibrium.

When as in the case of electricity, n = 2,

P=Cp~l......... ;..................................... (18),
the known law of distribution of density;

If the repulsion were inversely as the distance, the fluid would be accu
mulated in the ciicumfeience of the disk, leaving the rest entirely empty.

If the force were inversely as the cube of the distance, the density would 
be uniform over the surface of the disk.

Lastly, let us consider a solid ellipsoid, the equation of the surface being

o’ 6’ e ■ 
and at any point within it let
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At any point of a chord drawn parallel to a diameter whose length is 2d 
the value of y is pd, °

If. y e consider a double cone of small angular aperture whose vertex is 
at a given point, and whose axis is this chord, the sections at two correspond
ing elements are in the ratio of the squares of the distances of the elements 
from the given point, and therefore in the ratio of the values of p' at these 
elements. Hence the condition to be satisfied is

’ pp*~n = C, a constant.
If this condition be fulfilled the fluid will be in equilibrium at every point 

of the ellipsoid.

If n = 2, p=Cp~'

is the condition of equilibrium. But if C is finite the whole mass of the fluid 
in the ellipsoid if distributed according to this law of density would be infinite. 
Hence if the whole quantity of fluid is finite it must be accumulated entirely 
on the surface, and the interior will be entirely empty, as we know already.

If the force is inversely as the fourth power of the distance the density 
within the ellipsoid will be uniform.
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[From the Proceedings of the Cambridge Philosophical Society, Vol. in. 1877.]

LXXXVI. On Approximate Multiple Integration between Limits by Summation.

It is often desirable to obtain the approximate value of an integral taken 
between limits in cases in which, though we can ascertain the value of the 
quantity to be integrated for any given values of the variables, we are not 
able to express the integral as a mathematical function of the variables.

A method of deducing the result of a single integration between limits 
from the values of the quantity corresponding to a series of equidistant values 
of the independent variable was invented by Cotes in 1707, and given in his 
Lectures in 1709. Newton’s tract Methodus Dijferentialis (see Horsley’s edition 
of Newton’s Works (1779), Vol. I. p. 521) was published in 1711.

Cotes’ rules are given in his Opera Miscellanea, edited by Dr Robert Smith, 
and placed at the end of his Ilamwnia Mensurarum. He gives the proper 
multipliers for the ordinates up to eleven ordinates, but he gives no details 
of the method by which he ascertained the values of these multipliers.

Gauss, in his Methodus nova Integralium Valores per Approximationem 
Inveniendi (Gottingische gelehrte Anzeigen, 1814, Sept. 26, or Werke, in. 202) 
shews how to calculate Cotes’ multipliers, and goes on to investigate the case 
in which the values of the independent variable are not supposed to be equi
distant, but are chosen so as with a given number of values to obtain the 
highest degree of approximation.

He finds that by a proper choice of the values of the variable the value 
of the integral may be calculated to the same degree of approximation as would 
be obtained by means of double the number of equidistant values.

The equation, the roots of which give the proper values of the variable, 
is identical in form with that which gives the zero values of a zonal spherical 
harmonic.
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Double Integration.

1 here is a particular kind of double integration which can be treated in 
a somewhat similar manner, namely, when the quantity to be integrated is a 
function of a linear function of the two independent variables.

Thua if 1= P [”'udxdy............................................ (1),
J J th

where u is a function of r, and
r = a + bx + cy............ .................................(2),

X “ 1 + x^ + I p (x, - x^...................................(3),

y = ^^ + yt) + ^q(y1-y1)................................... (4),

^=i(x»~^i)(yt-yl) J udpdq............................. (5).

If we write
a + i^(xt+xl)+ic(yt+y1)...............................(6),

{x^-x^............................................. (7),

c^-y,)............................................ (8),

^Pp+yq................................................... (9),
we may consider u as a function of £ of yie form

M=i4» + ‘U + AC + &c................................. ,...(10),
*/_J y4)+&c- --(H)-

Now let be the value of u
ux and u\
u, and u\

and if we assume

corresponding to £ = 0,

1-^-x^ (yt y^ {R^++ + R + + &c j.......

/= (^ - x^ (y, - y,) + 27?, + 2Z?3 + &c ++ 2^a+&c + &c । . 
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then since the form of the function u, and therefore the values of the coefficients 
Ao, A,, A3, &c. must be considered entirely arbitrary, we may equate the 
coefficients of A„, &c. in equations (11) and (13) as follows:

R. + 2R. + 27?a + &c. =1 = Bo,

ZR& + 2R,^ + &C. = I p +1 / = B.,
2RX: + 2 R& + &c. = I +1 ^y +1y =B„
2R^ + 2R& + &c. = | + fry + fry + i y = B„
2Rl^ + 2 R^ + &c. = J- fr+$ fry + y fry + * fry+%y=B„ 

&c.

If we write S, for the sum of all the values of C,
S, for the sum of all products such as £7,
£...........................................................C, C,

then for r terms
B^ - B,Sr_, + BsSr., - &c. (- )* Br+l = 0,
B.^ - B^ + BtSr„t - &c. (- )r Br„ = 0,

Br+lSr - B,^ + Br+iSr_3 - &c. (-)' B„^ = 0,

a set of r equations, from which the quantities Rlt Rt have been eliminated, 
and from which we may determine the r quantities Sl...Sr, and the values 
of £ are then given as the roots of the equation

C-S^ + S^-kc. (^-Y‘Sr = 0.
Thus if we have three values of £ they should be

£» = 0, Ci = ± [3^ + 10/3y + 3y4J [5^+ 5/]^,

^ + 5^/ + / 
0 5 3^+10^/ +3/’

If /3 = y=l,
C« = 0,
^o = T^»

^ + 2^ + ^‘ ^S^+lO^y + By4’
£,= ±71,

When the quantity to be integrated is a perfectly general function of 
variables we must proceed in a different manner.
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We may begin as before by transforming the double integral into one 
between the limits ± 1 foi both variables, so that

f ^P^................. (1 )•

Let — (un) denote the sum of the eight values of u corresponding to the 
following eight systems of values of p and q,

(«n» (-a„, bn), (—an) -bn);

(bn, an), (b,„ -an), (-bn, a„), -an),

and let us assume that the value of the integral is of the form

1= + ^(u.) + &C. + Jin^un)} ............(2).

The values of the coefficients Ji, a and b are to be deduced from equations 
formed by equating the sum of the terms in paq^ in this expression with the 
integral

................................(3).

Only those terms in which both a and /? are even will require to be 
considered, for the symmetrical distribution of the values of p and y ensures 
that the terms in which either a or /3 is odd must disappear.

Also since the expression is symmetrical with respect to ya and q, the 
term in ppqa will give an equation identical with that in p^.

We may therefore write down the equations at once, leaving out the factor 
p'q* common to each term, but writing it at the side to indicate how the 
equation was obtained. There are a+1 equations in the first group, in which 
^ = 0,

py S|M] =4,

PV + =f,

pW ^WPn+qn^ =$,

p'i spw+?.*)]
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There are a-1 equations in the second group, in which ^ = 2, 
4

P'l' $ Qn ] — 3 3 ■

4
P*<f S [RnPnln (pn + ?n )J — 5 . 3 •

4
P^ *2* $ (P» )]= (2a—?1). 3 *

There will be a-3 equations in which /3 = 4, and so on. Hence if a is 
even, the whole number of equations is

If a is odd, the number is
(a + l)(a + 3)

4

To satisfy these equations we have in general, for each group of values 
of u, three disposable quantities, R, p and q.

If, however, the central ordinate be selected it will constitute the first 
group, and will introduce only one disposable quantity, namely R„.

Also, if ordinates lying on the axes of p or of q be chosen, the groups 
so formed contain only two disposable quantities, one of the ordinates being 
zero.

Also for ordinates lying on the diagonals, q=p, so that for these also 
there are only two disposable quantities.

Thus if a = 3, the number of equations is —~ = 6 ; and if we select the 

central ordinate, giving one disposable quantity, a group of four points on the 
axes, giving two disposable quantities, and a group of eight points giving 
three disposable quantities, we shall be able to satisfy the six equations, and 
to form an expression for the integral which will be correct for any function 
not exceeding the seventh degree.

We assume
( C udpdq = Pu0+QX(uPiO) + RX(u9tr)......................... ..(4).
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The equations are

P + 4Q+81? = 4, 
Qp’ + 27?(9’ + ?;,) = f, 
Qp^ + 'ZR^ + r4) = * 
Qp'i + 2R((f + ^ = ^ 

iRq^^^, 
Rq'r'(tf + r>) = ^.

The solution of these equations gives 
^5 = », p = ±0-5855571,
<7’ = f[l +(A)‘3 q= ±0'9294971,

r= ±0'57969554,
Q=^2> =

The positions of the thirteen points are given in the annexed figure.

Triple Integration.
In extending this method to triple integration we meet with the curious 

result, that in certain cases the solution indicates that we are to employ 
values of the function some of which correspond to values of the variables 
outside the limits of integration.
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Thus if we endeavour to determine twenty-eeven sets of values of 
and r, w,th a corresponding set of multipliers, so as to express the \ 
the triple integral in the form Ue of

Ca [b fc

J - J - J (Up) + QS (Uq) + JiS (Ur)}.......... (1)

where u0 denotes the value of u when x = y = z = 0 • 

t(u ) denotes the sum of the six values of u for which

x— ±P<t, 0, 0,
y=®, ±pd, o, 
2 =0, 0, ±pc-,

X(u4) denotes the sum of the twelve values of u for which 

® = 0, ±qa, ±qa, 

y= ±qb, 0, ± qb,
z = ±qc, ±qc, 0;

and 2(«r) denotes the sum of the eight values of u for which 
x= ±ra, 

y = ±rb, 
z = ±rc, 

where the signs may be taken in any order.

The equations to be satisfied in order that equation (1) may be satisfied 
for any function of x, y and z of not more than seven dimensions are

O + 6P +12<? +8P =8, 
2Pp‘ + %Qq' + 8RP = f, 

27y + 8CV + 872^=8, 

iPp’ + 8 Qq*+^R^ = 
4Qq* + 8RP = ^, 
iQ(f + 8RrB = -^s, 

8RP = &.
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The solution of these equations gives two systems of values:
First System. Second System.

£.=* + (*)*. 
Pi

71

^=I[2+(B)*J.

£=H13+4(H)*], p-$[13-4(H)*].* 2
^ = 0-969773, p, = 2-638430.
<7,= 1’119224, 7S = 0-602526.
r^O-652817, ^ = 0-855044.
O. = -2-856446, O,= -7'999462.
P.= 1-106789, P3= 0-000513.
Q.= 0'032304, Q,= 1-238514.
R.= 0-478508, 0-094777.

In the first system qt is greater than unity, and in the second system 
is greater than unity, so that in either case one set of the values of u 

corresponds to values of the variables outside of the limits of integration.

This, of course, renders the method useless in determining the integral 
from the measured values of the quantity u, as when we wish to determine 
the weight of a brick from the specific gravities of samples taken from 27 
selected places in the brick, for we are directed by the method to take some 
of the samples from places outside the brick.

But this is not the case contemplated in the mathematical enunciation. 
All that we have proved is that if u be a function of x, y, z of not more 
than seven dimensions, our method will lead to a correct value, and of course 
we can determine the value of such a function for any values of the variables, 
whether they lie within the limits of integration or not.

77—2



[From the Proceedings of the Cambridge Philosophical Society. Vol. in. Pt. in.]

LXXXVII. On the Unpublished, Electrical Papers of the Hon. Henry Cavendish.

Cavendish published only two papers relating to electricity, “ An attempt 
to explain some of the principal Phenomena of Electricity by Means of an 
Elastic Fluid” {Phil. Trans. 1771, pp. 584—677), and “An account of some 
Attempts to imitate the Effects of the Torpedo by Electricity ” {Phil. Trans. 
for 1776, pp. 196—225). He left behind him, however, some twenty packets 
of manuscript on mathematical and experimental electricity. These were 
placed by the then Earl of Burlington, now Duke of Devonshire, in the 
hands of the late Sir William Snow Harris, who appears to have made “ an 
abstract of them with a commentary of great value on their contents.” This 
was sent to Dr George Wilson when he was preparing his Life of Cavendish 
(WorA» of the Cavendish Society, Vol. i. London, 1851). It was afterwards 
returned to Sir W. S. Harris, but I have not been able to learn whether 
it is still in existence. The Cavendish manuscripts, however, were placed in 
my hands by the Duke of Devonshire in 1874, and they are now almost 
ready for publication.

They may be divided into three classes :

(A) Mathematical propositions, intended to follow those in the paper of 
1771, and numbered accordingly. Some of these are important as shewing the 
clear ideas of Cavendish with respect to what we now call charge, potential, 
and the capacity of a conductor; but the great improvements in the mathe
matical treatment of electricity since the time of Cavendish have rendered 
others superfluous.

We come next to an account of the experiments on which the mathe- 
matical theory was founded. This is a manuscript fully prepared for the press, 
and since it refers to the second part of the published paper of 1771 as “the 
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second part of this Work,” it must have been intended to be published as a 
book, along with a reprint of that paper. It contains no dates, but as it 
refers to experiments which we know were made in 1773, it must have been 
written after that time, but I do not think later than 1775.

It forms a scientifically arranged treatise on electricity. A manuscript entitled 
“ Thoughts concerning electricity ” seems to form a kind of introduction to 
this treatise, for it contains several important definitions and hypotheses which 
are not afterwards repeated.

Next comes the fundamental experiment, in which it is proved that a 
conducting sphere insulated within a hollow conducting sphere does not become 
charged when the hollow sphere is charged and the inner sphere is made to 
communicate with it.

Cavendish proves that if this is the case, the law of force must be that 
of the inverse square, and also that if the index instead of being 2 had 
been 2±-^y, method would have detected the charge on the inner sphere.

The experiment has been repeated this summer by Mr MacAlister of St 
John’s College with a delicate quadrant electrometer capable of detecting a 
charge many thousand times smaller than Cavendish could detect by his straw 
electrometer, so that we may now assert that the index cannot exceed or 
fall short of 2 by the millionth of a unit.

The second experiment is a repetition of this, using one parallelepiped within 
another instead of the two spheres.

He then describes his apparatus for comparing the charges of different 
bodies, or, as we should say, their capacities.

He first shews (Exp. 3) that the charge, communicated to a body con
nected to another body at a great distance by a fine wire, does not depend 
on the form of the wire, or on the point where it touches the body.

Exp. 4 is on the capacities of bodies of the same shape and size but of 
different substances.

Exp. 5 compares the capacity of two circles with that of another of twice 
the diameter.

Exp. 6 compares the capacity of two short wires with that of a long one
Exp. 7 compares the capacities of bodies of different forms, the most im

portant of which are a disk and a sphere.
Exp 8 compares the charge of the middle of three parallel plates with 

that of the outer plates
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In the next part of his researches he investigates the capacities of con
densers formed of plates of different kinds of glass, rosin, wax, shellac, &c. 
coated with disks of tinfoil, and also of plates of air between two flat con
ductors. He finds that the electricity spreads on the surface of the plate 
beyond the tinfoil coatings, and he investigates most carefully the extent of 
this spreading, and how it depends on the strength of the electrification.

After correcting for the spreading, he finds that for coated plates of the 
same substance the observed capacity is proportional to the computed capacity, 
but it is always several times greater than the computed capacity, except in 
the case of plates of air. Cavendish thus anticipated Faraday in the discovery 
of the specific inductive capacity of dielectrics, and in the measurement of 
this quantity for different substances.

For these experiments Cavendish constructed a large number of coated 
plates with capacities so arranged that by combining them he could measure 
the capacity of any conductor from a sphere 12'1 inches diameter to his large 
battery of 49 Leyden jars. He expressed the capacity of any conductor in 
what he calls “inches of electricity,” that is to say the diameter of a sphere 
of equal capacity expressed in inches.

'fhe details and dates of the experiments referred to in this work are 
contained in three volumes of experiments in the years 1771, 1772 and 1773, 
in a separate collection of “Measurements” and in a paper entitled “Results,” 
in which the experiments of different days are compared together. Besides these 
there are experiments of other kinds which are not described in the treatise.

The most important of these experiments are those on the electric re
sistance of different substances, which were continued to the year 1781.

He compares the resistance of solutions of sea salt of various strengths 
from saturation to 1 in 20000, and measures the diminution of resistance as 
the temperature rises. He also compares the resistance of solutions of sea salt 
with that of solutions containing chemical equivalents of other salts in the 
same quantity of water. He finds the resistance of distilled water to be very 
great, and much greater for fresh distilled water than for distilled water kept 
for some time in a glass bottle.

I have compared Cavendish’s results with those recently obtained by 
Kohlrausch, and find them all within 10 per cent, and many much nearer.

Cavendish also investigates the relation between the resistance and the 
velocity of the current, and finds the power of the velocity to be by dif-
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ferent experiments 1'08, 1-03, 0’976 and 1, and he finally concludes that 
the resistance is as the first power of the velocity, thus anticipating Ohm’s 
Law.

The general accuracy of these results is the more remarkable when we 
consider the method by which they were obtained, forty years before the 
invention of the galvanometer.

Every comparison of two resistances was made by Cavendish by connecting 
one end of each resistance-tube with the external coatings of a set of equally 
charged Leyden jars and touching the jars in succession with a piece of metal 
held in one hand, while with a piece of metal in the other hand he touched 
alternately the ends of the two resistances. He thus compared the sensation 
of the shock felt when the one or the other resistance in addition to the 
resistance of his body was placed in the path of the discharge. His results 
therefore are derived from the comparison of the sensations produced by an 
enormous number of shocks passed through his own body.

The skill which he thus acquired in the discrimination of shocks was so 
great that he is probably accurate even when he tells us that the shock 
when taken through a long thin copper wire wound on a large reel was 
sensibly greater than when taken direct. The experiment is certainly worth 
repeating, to determine whether the intensification of the physiological effect 
on account of the oscillatory character of the discharge through a coil would 
in any case compensate for the weakening effect of the resistance of the coil. 
But I have not hitherto succeeded in obtaining this result. Indeed on com
paring the shock through two coils of equal resistance, one of which had far 
more self-induction than the other, I found the shock sensibly feebler through 
the coil of large self-induction.



[From the Encyclopedia Britannica.]

LXXXVIIL Constitution of Bodies.

The question whether the smallest parts of which bodies are composed are 
finite in number, or whether, on the other hand, bodies are infinitely divisible, 
relates to the ultimate constitution of bodies, and is treated of in the article 
Atom.

The mode in which elementary substances combine to form compound sub
stances is called the chemical constitution of bodies, and is treated of in 
Chemistry.

The mode in which sensible quantities of matter, whether elementary or 
compound, are aggregated together so as to form a mass having certain observed 
properties, is called the physical constitution of bodies.

Bodies may be classed in relation to their physical constitution by con
sidering the effects of internal stress in changing their dimensions. When a 
body can exist in equilibrium under the action of a stress which is not uniform 
in all directions it is said to be solid.

When a body is such that it cannot be in equilibrium unless the stress 
at every point is uniform in all directions, it is said to be fluid.

There are certain fluids, any portion of which, however small, is capable 
of expanding indefinitely, so as to fill any vessel, however large. These are 
called gases. There are other fluids, a small portion of which, when placed in 
a large vessel, does not at once expand so as to fill the vessel uniformly, but 
remains in a collected mass at the bottom, even when the pressure is removed. 
These fluids are called liquids.

When a liquid is placed in a vessel so large that it only occupies a 
part of it, part of the liquid begins to evaporate, or in other words it passes 
into the state of a gas, and this process goes on either till the whole of the 
liquid is evaporated, or till the density of the gaseous part of the substance 
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has reached a certain limit. The liquid and the gaseous portions of the sub
stance are then in equilibrium. If the volume of the vessel be now made 
smaller, part of the gas will be condensed as a liquid, and if it be made larger, 
part of the liquid will be evaporated as a gas.

The processes of evaporation and condensation, by which the substance 
passes from the liquid to the gaseous, and from the gaseous to the liquid state, 
are discontinuous processes, that is to say, the properties of the substance are 
very different just before and just after the change has been effected. But this 
difference is less in all respects the higher the temperature at which the change 
takes place, and Cagniard de la Tour in 1822* first shewed that several sub
stances, such as ether, alcohol, bisulphide of carbon, and water, when heated 
to a temperature sufficiently high, pass into a state which differs from the 
ordinary gaseous state as much as from the liquid state. Dr Andrews has 
since! made a complete investigation of the properties of carbonic acid both 
below and above the temperature at which the phenomena of condensation and 
evaporation cease to take place, and has thus explored as well as established 
the continuity of the liquid and gaseous states of matter.

For carbonic acid at a temperature, say of 0° C., and at the ordinary pressure 
of the atmosphere, is a gas. If the gas be compressed till the pressure rises 
to about 40 atmospheres, condensation takes place, that is to say, the substance 
passes in successive portions from the gaseous to the liquid condition.

If we examine the substance when part of it is condensed, we find that 
the liquid carbonic acid at the bottom of the vessel has all the properties of 
a liquid, and is separated by a distinct surface from the gaseous carbonic acid 
which occupies the upper part of the vessel.

But we may transform gaseous carbonic acid at 0° C. into liquid carbonic 
acid at 0° C. without any abrupt change, by first raising the temperature of 
the gas above 30°.92 C. which is the critical temperature, then raising the 
pressure to about 80 atmospheres, and then cooling the substance, still at high 
pressure, to zero.

During the whole of this process the substance remains perfectly homo
geneous. There is no surface of separation between two forms of the substance, 
nor can any sudden change be observed like that which takes place when the 
gas is condensed into a liquid at low temperatures; but at the end of the

* Awnales de Chimie, 2"" sC>rie, xxi. et xxn.
t Phil. Trans. 1869, p. 575.
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process the substance is undoubtedly in the liquid state, for if we now diminish 
the pressure to somewhat less than 40 atmospheres the substance will exhibit 
the ordinary distinction between the liquid and the gaseous state, that is to 
say, part of it will evaporate, leaving the rest at the bottom of the vessel, 
with a distinct surface of separation between the gaseous and the liquid parts.

The passage of a substance between the liquid and the solid state takes place 
with various degrees of abruptness. Some substances, such as some of the more 
crystalline metals, seem to pass from a completely fluid to a completely solid 
state very suddenly. In some cases the melted matter appears to become 
thicker before it solidifies, but this may arise from a multitude of solid crystals 
being formed in the still liquid mass, so that the consistency of the mass be
comes like that of a mixture of sand and water, till the melted matter in 
which the crystals are swimming becomes all solid.

There are other substances, most of them colloidal, such that when the 
melted substance cools it becomes more and more viscous, passing into the 
solid state with hardly any discontinuity. This is the case with pitch.

The theory of the consistency of solid bodies will be discussed in the article 
Elasticity, but the manner in which a solid behaves when acted on by 
stress furnishes us with a system of names of different degrees and kinds of 
solidity.

A fluid, as we have seen, can support a stress only when it is uniform in 
all directions, that is to say, when it is of the nature of a hydrostatic pressure.

There are a great many substances which so far correspond to this defini
tion of a fluid that they cannot remain in permanent equilibrium if the stress 
within them is not uniform in all directions.

In all existing fluids, however, when their motion is such that the shape 
of any small portion is continually changing, the internal stress is not uniform 
in all directions, but is of such a kind as to tend to check the relative motion 
of the parts of the fluid.

This capacity of having inequality of stress called into play by inequality 
of motion is called viscosity. All real fluids are viscous, from treacle and tar 
to water and ether and air and hydrogen.

When the viscosity is very small the fluid is said to be mobile, like water 
and ether.

When the viscosity is so great that a considerable inequality of stress, 
though it produces a continuously increasing displacement, produces it so. slowly 
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that we can hardly see it, we are often inclined to call the substance a solid, 
and even a hard solid. Thus the viscosity of cold pitch or of asphalt is so 
great that the substance will break rather than yield to any sudden blow, and 
yet if it is left for a sufficient time it will be found unable to remain in
equilibrium under the slight inequality of stress produced by its own weight,
but will flow like a fluid till its surface becomes level.

If, therefore, we define a fluid as a substance which cannot remain in
permanent equilibrium under a stress not equal in all directions, we must call 
these substances fluids, though they are so viscous that we can walk on them 
without leaving any footprints.

If a body, after having its form altered by the application of stress, tends 
to recover its original form when the stress is removed, the body is said to 
be elastic.

The ratio of the numerical value of the stress to the numerical value of 
the strain produced by it is called the coefficient of elasticity, and the ratio of 
the strain to the stress is called the coefficient of pliability.

There are as many kinds of these coefficients as there are kinds of stress 
and of strains or components of strains produced by them.

If, then, the values of the coefficients of elasticity were to increase without 
limit, the body would approximate to the condition of a rigid body.

We may form an elastic body of great pliability by dissolving gelatine or 
isinglass in hot water and allowing the solution to cool into a jelly. By 
diminishing the proportion of gelatine the coefficient of elasticity of the jelly 
may be diminished, so that a very small force is required to produce a large 
change of form in the substance.

When the deformation of an elastic body is pushed beyond certain limits 
depending on the nature of the substance, it is found that when the stress 
is i emoved it does not return exactly to its original shape, but remains per
manently deformed. Ihese limits of the different kinds of strain are called the 
limits of perfect elasticity.

1 here are other limits which may be called the limits of cohesion or of 
tenacity, such that when the deformation of the body reaches these limits the 
body breaks, tears asunder, or otherwise gives way, and the continuity of its 
substance is destroyed.

A body which can have its form permanently changed without any flaw 
or break taking place is called mild. When the force required is small the

78—2
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body is said to be soft; when it is great the body is said to be tough. A 
body which becomes flawed or broken before it can be permanently deformed 
is called brittle. When the force required is great the body is said to be 
hard.

The stiffness of a body is measured by the force required to produce a 
<>iven amount of deformation.

Its strength is measured by the force required to break or crush it.
We may conceive a solid body to approximate to the condition of a fluid 

in several different ways.
If we knead fine clay with water, the more water we add the softer does 

the mixture become till at last we have water with particles of clay slowly 
subsiding through it. This is an instance of a mechanical mixture the con
stituents of which separate of themselves. But if we mix bees-wax with oil, 
or rosin with turpentine, we may form permanent mixtures of all degrees of 
softness, and so pass from the solid to the fluid state through all degrees of 
viscosity.

We may also begin with an elastic and somewhat brittle substance like 
gelatine, and add more and more water till we form a very weak jelly which 
opposes a very feeble resistance to the motion of a solid body, such as a spoon, 
through it. But even such a weak jelly may not be a true fluid, for it may 
be able to withstand a very small force, such as the weight of a small mote. 
If a small mote or seed is enclosed in the jelly, and if its specific gravity is 
different from that of the jelly, it will tend to rise to the top or sink to the 
bottom. If it does not do so we conclude that the jelly is not a fluid but 
a solid body, very weak, indeed, but able to sustain the force with which the 
mote tends to move.

It appears, therefore, that the passage from the solid to the fluid state 
may be conceived to take place by the diminution without limit either of the
coefficient of rigidity, or of the ultimate strength against rupture, as well as
by the diminution of the viscosity. But whereas the body is not a true fluid 
till the ultimate strength, or the coefficient of rigidity, is reduced to zero, it
is not a true solid as long as the viscosity is not infinite.

Solids, however, which are not viscous in the sense of being capable of 
an unlimited amount of change of form, are yet subject to alterations depend
ing on the time during which stress has acted on them. In other words, the 
stress at any given instant depends, not only on the strain at that instant, 



CONSTITUTION OF BODIES. 621

but on the previous history of the body. Thus the stress is somewhat greater 
when the strain is increasing than when it is diminishing, and if the strain 
is continued for a long time, the body, when left to itself, does not at once 
return to its original shape, but appears to have taken a set, which, however, 
is not a permanent set, for the body slowly creeps back towards its original 
shape with a motion which may be observed to go on for hours and even 
weeks after the body is left to itself.

Phenomena of this kind were pointed out by Weber and Koldrausch {Pogg. 
Ann. Bd. 54, 119 and 128), and have been described by O. E. Meyer {Pogg. 
Ann. Bd. 131, 108), and by Maxwell {Phil. Trans. 1866, p. 249), and a theory 
of the phenomena has been proposed by Dr L. Boltzmann {Wiener Sitzungs- 
berichte, 8th October 1874).

The German writers refer to the phenomena by the name of “elastische 
Nachwirkung,” which might be translated “elastic reaction” if the word reaction 
were not already used in a different sense. Sir W. Thomson speaks of the 
viscosity of elastic bodies.

The phenomena are most easily observed by twisting a fine wire suspended 
from a fixed support, and having a small mirror suspended from the lower end, 
the position of which can be observed in the usual way by means of a tele
scope and scale. If the lower end of the wire is turned round through an 
angle not too great, and then left to itself, the mirror makes oscillations, the 
extent of which may be read off on the scale. These oscillations decay much 
more rapidly than if the only retarding force were the resistance of the air, 
shewing that the force of torsion in the wire must be greater when the twist 
is increasing than when it is diminishing. This is the phenomenon described 
by Sir W. Thomson under the name of the viscosity of elastic solids. But 
we may also ascertain the middle point of these oscillations, or the point of 
temporary equilibrium when the oscillations have subsided, and trace the varia
tions of its position.

If we begin by keeping the wire twisted, say for a minute or an hour, 
and then leave it to itself, we find that the point of temporary equilibrium is 
displaced in the direction of twisting, and that this displacement is greater the 
longer the wire has been kept twisted. But this displacement of the point of 
equilibrium is not of the nature of a permanent set, for the wire, if left to 
itself, creeps back towards its original position, but always slower and slower. 
This slow motion has been observed by the writer going on for more than a 
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week, and he also found that if the wire was set in vibration the motion of 
the point of equilibrium was more rapid than when the wire was not in vibration.

We may produce a very complicated series of motions of the lower end 
of the wire by previously subjecting the wire to a series of twists. For in
stance, we may first twist it in the positive direction, and keep it twisted for 
a day, then in the negative direction for an hour, and then in the positive 
direction for a minute. When the wire is left to itself the displacement, at 
first positive, becomes negative in a few seconds, and this negative displacement 
increases for some time. It then diminishes, and the displacement becomes 
positive, and lasts a longer time, till it too finally dies away.

The phenomena are in some respects analogous to the variations of the 
surface temperature of a very large ball of iron which has been heated in a 
furnace for a day, then placed in melting ice for an hour, then in boiling 
water for a minute, and then exposed to the air; but a still more perfect 
analogy may be found in the variations of potential of a Leyden jar which 
has been charged positively for a day, negatively for an hour, and positively 
again for a minute*.

* See Dr Hopkinson, “ On the Residual Charge of the Leyden Jar,” Proc. /i. S. xxiv. 408, 
March 30, 1876.

t See Wiedemann’s Galvanwmus, vol. II. p. 567.

The effects of successive magnetization on iron and steel are also in many 
respects analogous to those of strain and electrification f.

The method proposed by Boltzmann for representing such phenomena mathe
matically is to express the actual stress, Lw, in terms not only of the actual 
strain, O^, but of the strains to which the body has been subjected during 
all previous time.

His equation is of the form
>•00

A=K0t — (o) 0t -udto,
J o

where co is the interval of time reckoned backwards from the actual time t to 
the time t — w, when the strain Ot-U existed, and \p (co) is some function of 
that interval.

We may describe this method of deducing the actual state from the pre
vious states as the historical method, because it involves a knowledge of the 
previous history of the body. But this method may be transformed into another,
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in which the present state is not regarded as influenced by any state which 
has ceased to exist. For if we expand 0t_u by Taylor’s theorem,

n co2 d20
1.2 de — &c.

and if we also write

A = I (to) dot, 13 = 
J 0

then equation (1) becomes

a)^ (w) da), C= 
o

—— i/j (w) da), &c. o 1 • 2

L = (K-A)e + B^-a^+^.

where no symbols of time are subscribed, because all the quantities refer to 
the present time.

This expression of Boltzmann’s, however, is not in any sense a physical 
theory of the phenomena; it is merely a mathematical formula which, though 
it represents some of the observed phenomena, fails to express the phenomenon 
of permanent deformation. Now we know that several substances, such as 
gutta-percha, India-rubber, &c., may be permanently stretched when cold, and 
yet when afterwards heated to a certain temperature they recover their original 
form. Gelatine also may be dried when in a state of strain, and may recover 
its form by absorbing water.

We know that the molecules of all bodies are in motion. In gases and 
liquids the motion is such that there is nothing to prevent any molecule from 
passing from any part of the mass to any other part; but in solids we must 
suppose that some, at least, of the molecules merely oscillate about a certain 
mean position, so that, if we consider a certain group of molecules, its con
figuration is never very different from a certain stable configuration, about which 
it oscillates.

This will be the case even when the solid is in a state of strain, pro
vided the amplitude of the oscillations does not exceed a certain limit, but if 
it exceeds this limit the group does not tend to return to its former configu
ration, but begins to oscillate about a new configuration of stability, the strain 
in which is either zero, or at least less than in the original configuration.

The condition of this breaking up of a configuration must depend partly 
on the amplitude of the oscillations, and partly on the amount of strain in 
the original configuration ; and we may suppose that different groups of mole
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cules, even in a homogeneous solid, are not in similar circumstances in this 
respect.

Thus we may suppose that in a certain number of groups the ordinary 
agitation of the molecules is liable to accumulate so much that every now and 
then the configuration of one of the groups breaks up, and this whether it is 
in a state of strain or not. We may in this case assume that in every second 
a certain proportion of these groups break up, and assume configurations cor
responding to a strain uniform in all directions.

If all the groups were of this kind, the medium would be a viscous fluid.
But we may suppose that there are other groups, the configuration of which 

is so stable that they will not break up under the ordinary agitation of the 
molecules unless the average strain exceeds a certain limit, and this limit may 
be different for different systems of these groups.

Now if such groups of greater stability are disseminated through the sub
stance in such abundance as to build up a solid framework, the substance will 
be a solid, which will not be permanently deformed except by a stress greater 
than a certain given stress.

But if the solid also contains groups of smaller stability and also groups 
of the first kind which break up of themselves, then when a strain is applied 
the resistance to it will gradually diminish as the groups of the first kind 
break up, and this will go on till the stress is reduced to that due to the 
more permanent groups. If the body is now left to itself, it will not at once 
return to its original form, but will only do so when the groups of the first 
kind have broken up so often as to get back to their original state of strain.

Ibis view of the constitution of a solid, as consisting of groups of mole
cules some of which are in different circumstances from others, also helps to 
explain the state of the solid after a permanent deformation has been given 
to it. In this case some of the less stable groups have broken up and assumed 
new configurations, but it is quite possible that others, more stable, may still 
retain their original configurations, so that the form of the body is determined 
by the equilibrium between these two sets of groups; but if, on account of 
rise of temperature, increase of moisture, violent vibration, or any other cause, 
the breaking up of the less stable groups is facilitated, the more stable groups 
may again assert their sway, and tend to restore the body to the shape it 
had before its deformation.



[From the Encyclopcedia Britannica}

LXXXIX. Diffusion.

Some liquids, such as mercury and water, when placed in contact with 
each other do not mix at all, but the surface of separation remains distinct, 
and exhibits the phenomena described under Capillary Action. Other pairs 
oi liquids, such as chloroform and water, mix, but only in certain proportions. 
Ihe chloroform takes up a little water, and the water a little chloroform; 
but the two mixed liquids will not mix with each other, but remain in con
tact separated by a surface shewing capillary phenomena. The two liquids are 
then in a state of equilibrium with each other. The conditions of the equi
librium of heterogeneous substances have been investigated by Professor J. 
Willard Gibbs in a series of papers published in the Transactions of the Con
necticut Academy of Arts and Sciences, Vol. in. part I. p. 108. Other pairs 
of liquids, and all gases, mix in all proportions.

When two fluids are capable of being mixed, they cannot remain in equi
librium with each other; if they are placed in contact with each other the 
piocess of mixture begins of itself, and goes on till the state of equilibrium 
is attained, which, in the case of fluids which mix in all proportions, is a 
state of uniform mixture.

Thia process of mixture is called diffusion. It may be easily observed by 
taking a glass jar ball full of water and pouring a strong solution of a 
coloured salt, such os sulphate of copper, through a long-stemmed funnel, so 
as to occupy the lower part of the jar. If the jar is not disturbed we may 
trace the process of diffusion for weeks, months, or years, by the gradual rise 
of the colour into the upper part of the jar. and the weakening of the colour 
in the lower part.

This, howeyei, is not a method capable of giving accurate measurements 
o ie composition o t ic quid at different depths in the vessel. For more

VOL. II. 
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exact determinations we may draw off a portion from a given stratum of the 
mixed liquid, and determine its composition either by chemical methods or by 
its specific gravity, or any other property from which its composition may be 
deduced.

But as the act of removing a portion of the fluid interferes with the 
process of diffusion, it is desirable to be able to ascertain the composition of 
any stratum of the mixture without removing it from the vessel. For this 
purpose Sir W. Thomson places in the jar a number of glass beads of different 
densities, which indicate the densities of the strata in which they are observed 
to float. Ihe principal objection to this method is, that if the liquids contain 
air or any other gas, bubbles are apt to form on the glass beads, so as to 
make them float in a stratum of less density than that marked on them.

M. Voit has observed the diffusion of cane-sugar in water by passing a 
ray of plane-polarized light horizontally through the vessel, and determining 
the angle through which the plane of polarization is turned by the solution 
of sugar. I bis method is of course applicable only to those substances which 
cause rotation of the plane of polarized light.

Another method is to place the diffusing liquids in a hollow glass prism, 
with its refracting edge vertical, and to determine the deviation of a ray of 
light passing through the prism at different depths. The ray is bent down
wards on account of the variable density of the mixture, as well as towards 
the thicker part of the prism; but by making it pass as near the edge of 
the prism as possible, the vertical component of the refraction may be made 
veiy small; and by placing the prism within a vessel of water having parallel 
sides of glass, we can get rid of the constant part of the deviation, and are 
able to use a prism of large angle, so as to increase the part due to the 
diffusing substance. At the same time we can more easily control and register 
the temperature.

The laws of diffusion were first investigated by Graham. The diffusion of 
gases has recently been observed with great accuracy by Loschmidt, and that 
of liquids by Fick and by Voit.

Diffusion as a Molecular Motion.

If we observe the process of diffusion with our most powerful microscopes, 
we cannot follow the motion of any individual portions of the fluids. We
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cannot point out one place in which the lower fluid is ascending, and another 
in which the upper fluid is descending. There are no currents visible to us, 
and the motion of the material substances goes on as imperceptibly as the 
conduction of heat or of electricity. Hence the motion which constitutes dif
fusion must be distinguished from those motions of fluids which we can trace 
by means of floating motes. It may be described as a motion of the fluids, 
not in mass but by molecules.

When we reason upon the hypothesis that a fluid is a continuous homo
geneous substance, it is comparatively easy to define its density and velocity; 
but when we admit that it may consist of molecules of different kinds, we 
must revise our definitions. We therefore define these quantities by considering 
that part of the medium which at a given instant is within a certain small 
region surrounding a given point. This region must be so small that the 
properties of the medium as a whole are sensibly the same throughout the 
region, and yet it must be so large as to include a large number of mole
cules. We then define the density of the medium at the given point as the 
mass of the medium within this region divided by its volume, and the 
velocity of the medium as the momentum of this portion of the medium 
divided by its mass.

If we consider the motion of the medium relative to an imaginary surface 
supposed to exist within the region occupied by the medium, and if we define 
the flow of the medium through the surface as the mass of the medium 
which in unit of time passes through unit of area of the surface, then it 
follows from the above definitions that the velocity of the medium resolved 
in the direction of the normal to the surface is equal to the flow divided by 
the density. If we suppose the surface itself to move with the same velo
city as the fluid, and in the same direction, there will be no flow through it.

Having thus defined the density, velocity, and flow of the medium as a 
whole, or, as it is sometimes expressed, “in mass,” we may now consider one 
of the fluids which constitute the medium, and define its density, velocity, 
and flow in the same way. The velocity of this fluid may be different from 
that of the medium in mass, and its velocity relative to that of the medium 
is the velocity of diffusion which we have to study.

79—2
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Di ffusion of Gases according to the Kinetic Theory.

So many of the phenomena of gases are found to be explained in a con
sistent manner by the kinetic theory of gases, that we may describe with 
considerable probability of correctness the kind of motion which constitutes 
diffusion in gases. We shall therefore consider gaseous diffusion in the light 
of the kinetic theory before we consider diffusion in liquids.

A gas, according to the kinetic theory, is a collection of particles or mole
cules which are in rapid motion, and which, when they encounter each other, 
behave pretty much as elastic bodies, such as billiard balls, would do if no 
energy were lost in their collisions. Each molecule travels but a very small 
distance between one encounter and another, so that it is every now and then 
altering its velocity both in direction and magnitude, and that in an exceed
ingly irregular manner.

ihe result is that the velocity of any molecule may be considered as com
pounded of two velocities, one of which, called the velocity of the medium, 
is the same for all the molecules, while the other, called the velocity of agi
tation, is irregular both in magnitude and in direction, though the average 
magnitude of the velocity may be calculated, and any one direction is just as 
likely as any other.

The result of this motion is, that if in any part of the medium the
molecules are more numerous than in a neighbouring region, more molecules 
will pass from the first region to the second than in the reverse direction,
and for this reason the density of the gas will tend to become equal in all 
parts of the vessel containing it, except in so far as the molecules may be 
crowded towards one direction by the action of an external force such as
gravity. Since the motion of the molecules is very swift, the process of
equalization of density in a gas is a very rapid one, its velocity of propaga
tion through the gas being that of sound.

Let us now consider two gases in the same vessel, the proportion of the 
gases being different in different parts of the vessel, but the pressure being 
everywhere the same. The agitation of the molecules will still cause more 
molecules of the first gas to pass from places where that gas is dense to 
places where it is rare than in the opposite direction, but since the second 
gas is dense where the first one is rare, its molecules will be for the most 
part travelling in the opposite direction. Hence the molecules of the two 
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gases will encounter each other, and every encounter will act as a check to 
the process of equalization of the density of each gas throughout the mixture.

■Ihe interdiffusion of two gases in a vessel is therefore a much slower 
piocess than that by which the density of a single gas becomes equalized, 
though it appears from the theory that the final result is the same, and that 
each gas is distributed through the vessel in precisely the same way as if no 
other gas had been present, and this even when we take into account the 
effect of gravity.

If we apply the ordinary language about fluids to a single gas of the 
mixture, we may distinguish the forces which act on an element of volume 
as follows :—

1st. Any external force, such as gravity or electricity.
2nd. Ihe difference of the pressure of the particular gas on opposite sides 

of the element of volume. [The pressure due to other gases is to be con
sidered of no account.]

3rd. The resistance arising from the percolation of the gas through the 
other gases which are moving with different velocity.

The resistance due to encounters with the molecules of any other gas is 
proportional to the velocity of the first gas relative to the second, to the 
product of their densities, and to a coefficient which depends on the nature 
of the gases and on the temperature. The equations of motion of one gas of 
a mixture are therefore of the form

8 'f/ d
Pi - XiPi + C^pfUi - U1) + Cupipfa - W.) + &c. = 0,

g
where the symbol of operation prefixed to any quantity denotes the time

variation of that quantity at a point which moves along with that medium 
which is distinguished by the suffix (,), or more explicitly

8, d d d d

In the state of ultimate equilibrium ut = u, = &c. = 0, and the equation is 
reduced to

^-xPl=o,
dx

which is the ordinary form of the equations of equilibrium of a single fluid.
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Hence, when the process of diffusion is complete, the density of each gas at 
any point of the vessel is the same as if no other gas were present.

If V\ is the potential of the force which acts on the gas, and if in the 
equation p^k^, k, is constant, as it is when the temperature is uniform, 
then the equation of equilibrium becomes

7. 4. _ nkldx + dx P1~0,

the solution of which is
a h.

Hence if, as in the case of gravity, V is the same for all gases, but k is 
different for different gases, the composition of the mixture will be different 
in different parts of the vessel, the proportion of the heavier gases, for which 
k is smaller, being greater at the bottom of the vessel than at the top. It 
would be difficult, however, to obtain experimental evidence of this difference 
of composition except in a vessel more than 100 metres high, and it would 
be necessary to keep the vessel free from inequalities of temperature for more 
than a year, in order to allow the process of diffusion to advance to a state 
even half-way towards that of ultimate equilibrium. The experiment might, 
however, be made in a few minutes by placing a tube, say 10 centimetres 
long, on a whirling apparatus, so that one end shall be close to the axis, 
while the other is moving at the rate, say, of 50 metres per second. Thus 
il equal volumes of hydrogen and carbonic acid were used, the proportion of 
hydrogen to carbonic acid would be about greater at the end of the tube 
nearest the axis. Ihe experimental verification of the result is important, as 
it establishes a method of effecting the partial separation of gases without the 
selective action of chemical agents.

Let us next consider the case of diffusion in a vertical cylinder. Let mt 
be the mass of the first gas in a column of unit area extending from the 
bottom of the vessel to the height x, and let be the volume which this 
mass would occupy at unit pressure, then

^771, = ^,

P.

c/ttIj
Piui =

dm^ 
dt ’

dt\ 
dx ’ dt
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and the equation of motion becomes
1

dfy dvx 
da? dt

d^i dvt 31 d2vx
~ dt1 dx J da?

-Y dv^ 
K dx

+ *Al + &c.=0
kjct\dt dx dt dx)

If we add the corresponding equations together for all the gases, we find 
that the terms in Cl2 destroy each other, and that if the medium is not 
affected with sensible currents the first term of each equation may be neg
lected. In ordinary experiments we may also neglect the effect of gravity, so 
that we get 

d3 , .

or v1 + v2=px,

where p is the uniform pressure of the mixed medium. Hence 

dv, dv, dv, dv. 
Ol--ai and -&=p~di-

and the equation becomes

da? k£? dt ’

an equation, the form of which is identical with the well-known equation for 
the conduction of heat. We may write it

dt da? ’
I) is called the coefficient of diffusion. It is equal to 

kxk,

It therefore varies inversely as the total pressure of the medium, and if the 
coefficient of resistance, Cu, is independent of the temperature, it varies directly 
•is the product k,k„ i.e., as the square of the absolute temperature. It is 
piobable, however, that the effect of temperature is not so great as this would 
make it.



632 DIFFUSION.

In liquids D probably depends on the proportion of the ingredients of the 
mixed medium as well as on the temperature. The dimensions of 7) are Z/7'-1 
where L is the unit of length and T the unit of time.

The values of the coefficients of diffusion of several pairs of gases have 
been determined by Loschmidt*. They are referred in the following table to 
the centimetre and the second as units, for the temperature o°C. and the 
pressure of 76 centimetres of mercury.

Carbonic acid and air
Carbonic acid and hydrogen 
Oxygen and hydrogen
Carbonic acid and oxygen .
Carbonic acid and carbonic oxide 
Carbonic acid and marsh gas 
Carbonic acid and nitrous oxide 
Sulphurous acid and hydrogen 
Oxygen and carbonic oxide 
Carbonic oxide and hydrogen

D 
0-1423 
0-5558 
07214 
0-1409 
0-1406 
0-1586 
0'0983 
0-4800 
0-1802 
06422

Diffusion in Liquids.

The nature of the motion of the molecules in liquids is less understood 
than in gases, but it is easy to see that if there is any irregular displacement 
among the molecules in a mixed liquid, it must, on the whole, tend to cause 
each component to pass from places where it forms a large proportion of the 
mixture to places where it is less abundant. It is also manifest that any 
relative motion of two constituents of the mixture will be opposed by a 
resistance arising from the encounters between the molecules of these com
ponents. The value of this resistance, however, depends, in liquids, on more 
complicated conditions than in gases, and for the present we must regard it 
as a function of all the physical properties of the mixture at the given place, 
that is to say, its temperature and pressure, and the proportions of the 
different components of the mixture.

* Imperial Academy of Vienna, 10th March, 1870.
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The coefficient of interdiffusion of two liquids must therefore be considered 
as depending on all the physical properties of the mxiture according to laws 
which can be ascertained only by experiment.

Thus Fick has determined the coefficient of diffusion for common salt in 
water to be 0-00000116, and Voit has found that of cane-sugar to be 
0'00000365.

It appears from these numbers that in a vessel of the same size the 
process of diffusion of liquids requires a greater number of days to reach a 
given stage than the process of diffusion of gases in the same vessel requires 
seconds.

When we wish to mix two liquids, it is not sufficient to place them in 
the same vessel, for if the vessel is, say, a metre in depth, the lighter liquid 
will lie above the denser, and it will be many years before the mixture 
becomes even sensibly uniform. We therefore stir the two liquids together, 
that is to say, we move a solid body through the vessel, first one way, then 
another, so as to make the liquid contents eddy about in as complicated a 
manner as possible. The effect of this is that the two liquids, which originally 
foimed two thick horizontal layers, one above the other, are now disposed in 
thin and excessively convoluted strata, which, if they could be spread out, 
would cover an immense area. The effect of the stirring is thus to increase 
the area over which the process of diffusion can go on, and to diminish the 
distance between the diffusing liquids; and since the tune required for diffusion 
varies as the square of the thickness of the layers, it is evident that by a 
moderate amount of stirring the process of mixture which would otherwise 
require years may be completed in a few seconds. That the process is not 
instantaneous is easily ascertained by observing that for some time after the 
stirring the mixture appears full of streaks, which cause it to lose its trans
parency. This arises from the different indices of refraction of different portions 
of the mixture which have been brought near each other by stirring. The 
surfaces of separation are so drawn out and convoluted, that the whole mass 
has a woolly appearance, for no ray of light can pass through it without being 
turned many times out of its path.

Graham observed that the diffusion both of liquids and gases takes place 
through porous solid bodies, such as plugs of plaster of Paris or plates of 
pressed plumbago, at a rate not very much less than when no such body is 
interposed, and this even when the solid partition is amply sufficient to check

VOL. II. 80
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all ordinary currents, and even to sustain a considerable difference of pressure 
on its opposite sides.

But there is another class of cases in which a liquid or a gas can pass 
through a diaphragm, which is not, in the ordinary sense, porous. For instance, 
when carbonic acid gas is confined in a soap bubble it rapidly escapes. The 
gas is absorbed at the inner surface of the bubble, and forms a solution of 
carbonic acid in water. This solution diffuses from the inner surface of the 
bubble, where it is strongest, to the outer surface, where it is in contact 
with air, and the carbonic acid evaporates and diffuses out into the atmosphere. 
It is also found that hydrogen and other gases can pass through a layer of 
caoutchouc. Graham shewed that it is not through pores, in the ordinary 
sense, that the motion takes place, for the ratios are determined by the 
chemical relations between the gases and the caoutchouc, or the liquid film.

According to Graham’s theory, the caoutchouc is a colloid substance,—that 
is, one which is capable of combining, in a temporary and very loose manner, 
with indeterminate proportions of certain other substances, just as glue will 
form a jelly with various proportions of water. Another class of substances, 
which Graham called crystalloid, are distinguished from these by being always 
of definite composition, and not admitting of these temporary associations. 
When a colloid body has in different parts of its mass different proportions 
of water, alcohol, or solutions of crystalloid bodies, diffusion takes place through 
the colloid body, though no part of it can be shewn to be in the liquid state.

On the other hand, a solution of a colloid substance is almost incapable 
of diffusion through a porous solid, or another colloid body. Thus, if a solu
tion of gum and salt in water is placed in contact with a solid jelly of gelatine 
and alcohol, alcohol will be diffused into the gum, and salt and water will 
be diffused into the gelatine, but the gum and the gelatine will not diffuse 
into each other.

There are certain metals whose relations to certain gases Graham explained 
by this theory. For instance, hydrogen can be made to pass through iron and 
palladium at a high temperature, and carbonic oxide can be made to pass 
through iron. The gases form colloidal unions with the metals, and are diffused 
through them as water is diffused through a jelly. Root has lately found 
that hydrogen can pass through platinum, even at ordinary temperatures.

By taking advantage of the different velocities with which different liquids 
and gases pass through parchment-paper and other solid bodies, Graham was
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enabled to effect many remarkable analyses. He called this method the method
of Dialysis.

Diffusion and Evaporation, Condensation, Solution, and Absorption.

The rate of evaporation of liquids is determined principally by the rate 
of diffusion of the vapour through the air or other gas which lies above the 
liquid. Indeed, the coefficient of diffusion of the vapour of a liquid through 
air can be determined in a rough but easy manner by placing a little of the 
liquid in a test tube, and observing the rate at which its weight diminishes 
by evaporation day by day. For at the surface of the liquid the density of 
the vapour is that corresponding to the temperature, whereas at the mouth 
of the test tube the air is nearly pure. Hence, if p be the pressure of the 
vapour corresponding to the temperature, and p = kp, and if m be the mass 
evaporated in time t, and diffused into the air through a distance h *, then

& _ khm
~~P^'

This method is not, of course, applicable to vapours which are rarer than 
the superincumbent gas.

The solution of a salt in a liquid goes on in the same way, and so does 
the absorption of a gas by a liquid.

These processes are all accelerated by currents, for the reason already ex
plained.

The processes of evaporation and condensation go on much more rapidly when 
no air or other non-condensible gaS is present. Hence the importance of the 
air-pump in the steam engine.

Relation betiveen Diffusion of Matter and Diffusion of Heat.

The same motion of agitation of the molecules of gases which causes two 
gases to diffuse through each other also causes two portions of the same gas 
to diffuse through each other, although we cannot observe this kind of diffusion, 
because we cannot distinguish the molecules of one portion from those of the

* h should be taken equal to the height of the tube above the surface of the liquid, together 
with about | of the diameter of the tube.—See Clerk Maxwell’s Electricity, Art. 309. 80—2 
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other when they are once mixed. If, however, the molecules of one portion 
have any property whereby they can be distinguished from those of the other, 
then that property will be communicated from one part of the medium to an 
adjoining part, and that either by convection—that is by the molecules them
selves passing out of one part into the other, carrying the property with 
them—or by transmission—that is by the property being communicated from 
one molecule to another during their encounters. The chemical properties by 
which different substances are recognized are inseparable from their molecules, 
so that the diffusion of such properties can take place only by the trans
ference of the molecules themselves, but the momentum of a molecule in any 
given direction and its energy are also properties which may be different in 
different molecules, but which may be communicated from one molecule to 
another. Hence the diffusion of momentum and that of energy through the 
medium can take place in two different ways, whereas the diffusion of matter 
can take place only in one of these ways.

In gases the great majority of the particles, at any instant, are describing 
free paths, and it is therefore possible to shew that there is a simple numerical 
relation between the coefficients of the three kinds of diffusion,—the diffusion 
of matter, the lateral diffusion of velocity (which is the phenomenon known as 
the internal friction or viscosity of fluids), and the diffusion of energy (which 
is called the conduction of heat). But in liquids the majority of the molecules 
are engaged at close quarters with one or more other molecules, so that the 
transmission of momentum and of energy takes place in a far greater degree 
by communication from one molecule to another) than by convection by the 
molecules themselves. Hence the ratios of the coefficient of diffusion to those 
of viscosity and thermal conductivity are much smaller in liquids than in gases.

Theory of the Wet Bulb Thermometer.

The temperature indicated by the wet bulb thermometer is determined in 
great part by the relation between the coefficients of diffusion and thermal 
conductivity. As the water evaporates from the wet bulb heat must be sup
plied to it by convection, conduction, or radiation. This supply of heat will 
not be sufficient to maintain the temperature constant till the temperature of 
the wet bulb has sunk so far below that of the surrounding air and other
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bodies that the flow of heat due to the difference of temperature is equal to 
the latent heat of the vapour which leaves the bulb.

The use of the wet bulb thermometer as a means of estimating the 
humidity of the atmosphere was employed by Hutton*  and Leslief, but the 
formula by which the dew-point is commonly deduced from the readings of the 
wet and dry thermometers was first given by Dr ApjohnJ.

* Playfair’s “Life of Hutton,” Edinburgh Transactions, Vol. V. p. 67, note.
t Encyc. Brit., 8th cd. Vol. 1. “Dissertation Fifth,” p. 764.
J Trans. Royal Irish Academy, 1834.

Dr Apjohn assumes that, when the temperature of the wet bulb is sta
tionary, the heat required to convert the water into vapour is given out by 
portions of the surrounding air in cooling from the temperature of the atmo
sphere to that of the wet bulb, and that the air thus cooled becomes saturated 
with the vapour which it receives from the bulb.

Let in be the mass of a portion of air at a distance from the wet bulb, 
its temperature, pa the pressure due to the aqueous vapour in it, and P the 

whole pressure.
If o- is the specific gravity of aqueous vapour (referred to air), then the 

mass of water in this portion of air is 2° <rm.

Let this portion of air communicate with the wet bulb till its temperature 
sinks to that of the wet bulb, and the pressure of the aqueous vapour in 
it rises to that corresponding to the temperature 0,.

The quantity of vapour which has been communicated to the air is
/ x <nn{P^-P^-p,

and if L is the latent heat of vapour at the temperature 0,, the quantity of 
heat required to produce this vapour is

(Pi-p^-p-L.

According to Apjohn’s theory, this heat is supplied by the mixed air and 
vapour in cooling from 0„ to 6,.

If $ is the specific heat of the air (which will not be sensibly different 
from that of dry air), this quantity of heat is
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Equating the two values we obtain 
no

Here 24 is the pressure of the vapour in the atmosphere. The tempera
ture—for which this is the maximum pressure—is the dew-point, and p. is the 
maximum pressure corresponding to the temperature 0, of the wet bulb. Hence 
this formula, combined, with tables of the pressure of aqueous vapour, enables 
us to find the dew-point from observations of the wet and dry bulb thermo
meters.

We may call this the convection theory of the wet bulb, because we 
consider the temperature and humidity of a portion of air brought from a 
distance to be affected directly by the wet bulb without communication either 
of heat or of vapour with other portions of air.

Dr Everett has pointed out as a defect in this theoiy, that it does not 
explain how the air can either sink in temperature or increase in humidity 
unless it comes into absolute contact with the wet bulb. Let us, therefore, 
consider what we may call the conduction and diffusion theory in calm air, 
taking into account the effects of radiation.

The steady conduction of heat is determined by the conditions—
0 = 0, at a great distance from the bulb,
6 = 01 at the surface of the bulb,

V50 = O at any point of the medium.

The steady diffusion of vapour is determined by the conditions— 
P=Po at a great distance from the bulb, 
p=Pi at the surface of the bulb,

^'p = 0 at any point of the medium.

Now, if the bulb had been an electrified conductor, the conditions with 
respect to the potential would have been

F=0 at a great distance,
V= Vt at the surface,

V2F=0 at any point outside the bulb.
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Hence the solution of the electrical problem leads to that of the other 
two. For if V is the potential at any point,

^ = ^ + (^1-^)^, P=Po + (Pi-p.)y^

If 7; is the electric charge of the conductor

J J CIV 

where the double integral is extended over the surface of the bulb, and civ 
is an element of a normal to the surface.

If II is the flow of heat in unit of time from the bulb,

77=-7f[f^JS
J J dv 

and if Q is the flow of aqueous vapour from the bulb,

K J J dv

where k is the ratio of the pressure of aqueous vapour to its density.
If C is the electrical capacity of the bulb, E=CVl,

11= iuCk (0t — 0^ Q _ (pt —p^.

The heat which leaves the bulb by radiation to external objects at tem
perature 0„ may be written

A = 47? ^-0^, 

where A is the surface of the bulb and 7? the coefficient of radiation of unit of 
surface.

When the temperature becomes constant
EQ + 77 + A =

PS [7f ar ।

I his formula gives the result of the theory of diffusion, conduction, and 
radiation in a still atmosphere. It differs from the formula of the convection 
theory only by the factor in the last term.
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The first part of this factor is certainly less than unity, and probably

about 77.

If the bulb is spherical and of radius r, A = 4irr* and C=r, so that the
Rr 

pSD’second part is

Hence, the larger the wet bulb, the greater will be the ratio of the effect 
of radiation to that of conduction. If, on the other hand, the air is in motion, 
this will increase both conduction and diffusion, so as to increase the ratio of 
the first part to the second. By comparing actual observations of the dew
point with Apjohn’s formula, it has been found that the factor should be 
somewhat greater than unity. According to our theory it ought to be greater 
if the bulb is larger, and smaller if there is much wind.

Relation between Diffusion and Electrolytic Conduction.

Electrolysis (see separate article) is a molecular movement of the con. 
stituents of a compound liquid in which, under the action of electromotive force, 
one of the components travels in the positive and the other in the negative 
direction, the flow of each component, when reckoned in electrochemical equiva
lents, being in all cases numerically equal to the flow of electricity.

Electrolysis resembles diffusion in being a molecular movement of two 
currents in opposite directions through the same liquid; but since the liquid 
is of the same composition throughout, we cannot ascribe the currents to the 
molecular agitation of a medium whose composition varies from one part to 
another as in ordinary diffusion, but we must ascribe it to the action of the 
electromotive force on particles having definite charges of electricity.

The force, therefore, urging an electro-chemical equivalent of either com
ponent, or ion, as it is called, in a given direction is numerically equal to the 
electromotive force at a given point of the electrolyte, and is therefore com
parable with any ordinary force. The resistance which prevents the current 
from rising above a certain value is that arising from the encounters of the 
molecules of the ion with other molecules as they struggle forward through 
the liquid, and this depends on their relative velocity, and also on the nature 
of the ion, and of the liquid through which it has to flow.
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The average velocity of the ions will therefore increase, till the resistance 
they meet with is equal to the force which urges them forward, and they will 
thus acquire a definite velocity proportional to the electric force at the point, 
but depending also on the nature of the liquid.

If the resistance of the liquid to the passage of the ion is the same for 
different strengths of solution, the velocity of the ion will be the same for 
different strengths, but the quantity of it, and therefore the quantity of elec
tricity which passes in a given time, will be proportional to the strength of 
the solution.

Now, Kohlrausch has determined the conductivity of the solutions of many 
electrolytes in water, and he finds that for very weak solutions the conductivity 
is proportional to the strength. When the solution is strong the liquid through 
which the ions struggle can no longer be considered sensibly the same as pure 
water, and consequently this proportionality does not hold good for strong 
solutions.

Kohlrausch has determined the actual velocity in centimetres per second 
of various ions in weak solutions under an electro-motive force of unit value. 
From these velocities he has calculated the conductivities of weak solutions of 
electrolytes different from those of which he made use in calculating the velocity 
of the ions, and he finds the results consistent with direct experiments on 
those electrolytes.

It is manifest that we have here important information as to the resist
ance which the ion meets with in travelling through the liquid. It is not 
easy, however, to make a numerical comparison between this resistance and any 
results of ordinary diffusion, for, in the first place, we cannot make experiments 
on the diffusion of ions. Many electrolytes, indeed, are decomposed by the 
current into components, one or both of which are capable of diffusion, but 
these components, when once separated out of the electrolyte, are no longer 
ions—they are no longer acted on by electric force, or charged with definite 
quantities of electricity. Some of them, as the metals, are insoluble, and there
fore incapable of diffusion; others, like the gases, though soluble in the liquid 
electrolyte, are not, when in solution, acted on by the current.

Besides this, if we accept the theory of electrolysis proposed by Clausius, 
the molecules acted on by the electro-motive force are not the whole of the 
molecules which form the constituents of the electrolyte, but only those which 
at a given instant are in a state of dissociation from molecules of the other

VOL. II. R1
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kind, being forced away from them temporarily by the violence of the molecular 
agitation. If these dissociated molecules form a small proportion of the whole, 
the velocity of their passage through the medium must be much greater than 
the mean velocity of the whole, which is the quantity calculated by Kohlrausch.

On Processes by which the Mixture and Separation of Fluids can be 
effected in a Reversible Manner.

A physical process is said to be reversible when the material system can 
be made to return from the final state to the original state under conditions 
which at every stage of the reverse process differ only infinitesimally from the 
conditions at the corresponding stage of the direct process.

All other processes are called irreversible.
Thus the passage of heat from one body to another is a reversible process 

if the temperature of the first body exceeds that of the second only by an 
infinitesimal quantity, because by changing the temperature of either of the 
bodies by an infinitesimal quantity, the heat may be made to flow back again 
from the second body to the first.

But if the temperature of the first body is higher than that of the second 
by a finite quantity, the passage of heat from the first body to the second 
is not a reversible process, for the temperature of one or both of the bodies 
must be altered by a finite quantity before the heat can be made to flow 
back again.

In like manner the interdiffusion of two gases is in general an irreversible 
process, for in order to separate the two gases the conditions must be very 
considerably changed. For instance, if carbonic acid is one of the gases, we 
can separate it from the other by means of quicklime; but the absorption of 
carbonic acid by quicklime at ordinary temperatures and pressures is an irre
versible process, for in order to separate the carbonic acid from the lime it 
must be raised to a high temperature.

In all reversible processes the substances which are in contact must be 
in complete equilibrium throughout the process; and Professor Gibbs has shewn 
the condition of equilibrium to be that not only the temperature and the 
pressure of the two substances must be the same, but also that the potential 
of each of the component substances must be the same in both compounds, 
and that there is an additional condition which we need not here specify.
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Now, we may obtain complete equilibrium between quicklime and the 
mixture containing carbonic acid if we raise the whole to a temperature at 
which the pressure of dissociation of the carbonic acid in carbonate of lime is 
equal to the pressure of the carbonic acid in the mixed gases. By altering 
the temperature or the pressure very slowly we may cause carbonic acid to 
pass from the mixture to the lime, or from the lime to the mixture, in such 
a manner that the conditions of the system differ only by infinitesimal quan
tities at the corresponding stages of the direct and the inverse processes. The 
same thing may be done at lower temperatures by means of potash or soda.

If one of the gases can be condensed into a liquid, and if during the 
condensation the pressure is increased or the temperature diminished so slowly 
that the liquid and the mixed gases are always very nearly in equilibrium, 
the separation and mixture of the gases can be effected in a reversible 
manner.

The same thing can be done by means of a liquid which absorbs the 
gases in different proportions, provided that we can maintain such conditions as 
to temperature and pressure as shall keep the system in equilibrium during the 
whole process.

If the densities of the two gases are different, we can effect their partial 
separation by a reversible process which does not involve any of the actions 
commonly called chemical. We place the mixed gases in a very long horizontal 
tube, and we raise one end of the tube till the tube is vertical. If this is 
done so slowly that at every stage of the process the distribution of the two 
gases is sensibly the same as it would be at the same stage of the reverse 
process, the process will be reversible, and if the tube is long enough the 
separation of the gases may be carried to any extent.

In the Philosophical Magazine for 1876, Lord Rayleigh has investigated 
the thermodynamics of diffusion, and has shewn that if two portions of different 
gases are given at the same pressure and temperature, it is possible, by 
mixing them by a reversible process, to obtain a certain quantity of work. 
At the end of the process the two gases are uniformly mixed, and occupy a 
volume equal to the sum of the volumes they occupied when separate, but 
the temperature and pressure of the mixture are lower than before.

The work which can be gained during the mixture is equal to that which 
would be gained by allowing first one gas and then the other to expand 
from its original volume to the sum of the volumes ; and the fall of temperature 

81—2 
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and pressure is equal to that which would be produced in the mixture by 
taking away a quantity of heat equivalent to this work.

If the diffusion takes place by an irreversible process, such as goes on 
when the gases are placed together in a vessel, no external work is done, 
and there is no fall of temperature or of pressure during the process.

We may arrive at this result by a method which, if not so instructive 
as that of Lord Rayleigh, is more general, by the use of a physical quantity 
called by Clausius the Entropy of the system.

The entropy of a body in equilibrium is a quantity such that it remains 
constant if no heat enters or leaves the body, and such that in general the 
quantity of heat which enters the body is

where <f> is the entropy, and 0 the absolute temperature.
The entropy of a material system is the sum of the entropy of its parts.
In reveisible processes the entropy of the system remains unchanged, but 

in all irreversible processes the entropy of the system increases.
Ihe increase of entropy involves a diminution of the available energy of 

the system, that is to say, the total quantity of work which can be obtained 
from the system. This is expressed by Sir W. Thomson by saying that a 
certain amount of energy is dissipated.

1 he quantity of energy which is dissipated in a given process is equal to 

where is the entropy at the beginning, and that at the end of the 
process, and is the temperature of the system in its ultimate state, when 
no more work can be got out of it.

When we can determine the ultimate temperature we can calculate the 
amount of energy dissipated by any process; but it is sometimes difficult to 
do this, whereas the increase of entropy is determined by the known states 
of the system at the beginning and end of the process.

1 he entropy of a volume v, of a gas at pressure px and temperature 0, 
exceeds its entropy where its volume is v„ and its temperature 0„ by the quantity

Hence if volumes v, and v, of two gases at the same temperature and pressure
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are mixed so as to occupy a volume + v, at the same temperature and 
pressure, the entropy of the system increases during the process by the quantity

p f 1 ^i + v3 , , v. + v,]
’ j-

Since in this case the temperature does not change during the process, we 
may calculate the quantity of energy dissipated by multiplying the gain of 
entropy by the temperature, and we thus find for the dissipation

Pv> loS ~ + Pv> los —’

or the sum of the work which would be done by the two portions of gas if 
each expanded under constant temperature to the volume +

It is greatest when the two volumes are equal, in which case it is 
1'386 jw, where p is the pressure and v the volume of one of the portions.

Let us now suppose that we have in a vessel two separate portions of 
gas of equal volume, and at the same pressure and temperature, with a 
movable partition between them. If we remove the partition the agitation of 
the molecules will carry them from one side of the partition to the other in 
an irregular manner, till ultimately the two portions of gas will be thoroughly and 
uniformly mixed together. This motion of the molecules will take place whether 
the two gases are the same or different, that is to say, whether we can 
distinguish between the properties of the two gases or not.

If the two gases are such that we can separate them by a reversible 
process, then, as we have just shewn, we might gain a definite amount of 
work by allowing them to mix under certain conditions; and if we allow them 
to mix by ordinary diffusion, this amount of work is no longer available, but 
is dissipated for ever. If, on the other hand, the two portions of gas are 
the same, then no work can be gained by mixing them, and no work is 
dissipated by allowing them to diffuse into each other.

It appears, therefore, that the process of diffusion does not involve dis
sipation of energy if the two gases are the same, but that it does if they can 
be separated from each other by a reversible process.

Now, when we say that two gases are the same, we mean that we cannot 
distinguish the one from the other by any known reaction. It is not probable, 
but it is possible, that two gases derived from different sources, but hitherto 
supposed to be the same, may hereafter be found to be different, and that a
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method may be discovered of separating them by a reversible process. If this 
should happen, the piocess of interdiffusion which we had formerly supposed 
not to be an instance of dissipation of energy would now be recognized as 
such an instance.

It follows from this that the idea of dissipation of energy depends on 
the extent of our knowledge. Available energy is energy which we can direct 
into any desired channel. Dissipated energy is energy which we cannot lay 
hold of and direct at pleasure, such as the energy of the confused agitation 
of molecules which we call heat. Now, confusion, like the correlative term 
order, is not a property of material things in themselves, but only in relation 
to the mind which perceives them. A memorandum-book does not, provided it 
is neatly written, appear confused to an illiterate person, or to the owner who 
understands it thoroughly, but to any other person able to read it appears to 
be inextricably confused. Similarly the notion of dissipated energy could not 
occur to a being who could not turn any of the energies of nature to his 
own account, or to one who could trace the motion of every molecule and 
seize it at the right moment. It is only to a being in the intermediate stage, 
who can lay hold of some forms of energy while others elude his grasp, that 
energy appears to be passing inevitably from the available to the dissipated 
state.



[From the Encyclopaedia Britannicai]

XC. Diagrams.

A diagram is a figure drawn in such a manner that the geometrical 
relations between the parts of the figure help us to understand relations between 
other objects. A few have been selected for description in this article on account 
of their greater geometrical significance.

Diagrams may be classed according to the manner in which they are 
intended to be used, and also according to the kind of analogy which we 
recognize between the diagram and the thing represented.

Diagrams of Illustration.

The diagrams in mathematical treatises are intended to help the reader 
to follow the mathematical reasoning. The construction of the figure is defined 
in words so that even if no figure were drawn the reader could draw one 
for himself. The diagram is a good one if those features which form the 
subject of the proposition are clearly represented. The accuracy of the drawing 
is therefore of smaller importance than its distinctness.

Metrical Diagrams.

Diagrams are also employed in an entirely different way—namely, for 
purposes of measurement. The plans and designs drawn by architects and 
engineers are used to determine the value of certain real magnitudes by 
measuring certain distances on the diagram. For such purposes it is essential 
that the drawing be as accurate as possible.

We therefore class diagrams as diagrams of illustration, which merely 
suggest certain relations to the mind of the spectator, and diagrams drawn to 
scale, from which measurements are intended to be made.
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Methods in which diagrams are used for purposes of measurement are called 
Graphical methods.

Diagrams of illustration, if sufficiently accurate, may be used for purposes 
of measurement; and diagrams for measurement, if sufficiently clear, may be 
used for purposes of demonstration.

Ihere are some diagrams or schemes, however, in which the form of the 
parts is of no importance, provided their connections are properly shewn. Of 
this kind are the diagrams of electrical connections, and those belonging to 
that department of geometry which treats of the degrees of cyclosis, periphraxy, 
linkedness, and knottedness.

Diagrams purely Graphic and mixed Symbolic and Graphic.

Diagrams may also be classed either as purely graphical diagrams, in which 
no symbols are employed except letters or other marks to distinguish particular 
points of the diagrams, and mixed diagrams, in which certain magnitudes are 
represented, not by the magnitudes of parts of the diagram, but by symbols, 
such as numbers written on the diagram.

Ibus in a map the height of places above the level of the sea is often 
indicated by marking the number of feet above the sea at the corresponding 
places on the map.

Ihere is another method in which a line called a contour line is drawn 
through all the places in the map whose height above the sea is a certain 
number of feet, and the number of feet is written at some point or points 
of this line.

By the use of a series of contour lines, the height of a great number of 
places can be indicated on a map by means of a small number of written 
symbols. Still this method is not a purely graphical method, but a partly 
symbolical method of expressing the third dimension of objects on a diagram 
in two dimensions.

Diagrams in Pairs.

In order to express completely by a purely graphical method the relations 
of magnitudes involving more than two variables, we must use more than one 
diagram. Thus in the arts of construction we use plans and elevations and
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sections through different planes, to specify the form of objects having three 
dimensions.

In such systems of diagrams we have to indicate that a point in one 
diagram corresponds to a point in another diagram. This ig generally done by 
marking the corresponding points in the different diagrams with the same letter. 
If the diagrams are drawn on the same piece of paper we may indicate 
corresponding points by drawing a line from one to the other, taking care 
that this line of correspondence is so drawn that it cannot be mistaken for 
a real line in either diagram.

In the stereoscope the two diagrams, by the combined use of which the 
form of bodies in three dimensions is recognized, are projections of the bodies 
taken from two points so near each other that, by viewing the two diagrams 
simultaneously, one with each eye, we identify the corresponding points intuitively.

The method in which we simultaneously contemplate two figures, and 
recognize a correspondence between certain points in the one figure and certain 
points in the other, is one of the most powerful and fertile methods hitherto 
known in science. Thus in pure geometry the theories of similar, reciprocal, 
and inverse figures have led to many extensions of the science. It is sometimes 
spoken of as the method or principle of Duality.

Diagrams in Kinematics.

The study of the motion of a material system is much assisted by the 
use of a series of diagrams representing the configuration, displacement, and 
acceleration of the parts of the system.

Diagram, of Configuration.

In considering a material system it is often convenient to suppose that 
we have a record of its position at any given instant in the form of a diagram 
of configuration.

Ihe position of any particle of the system is defined by drawing a straight 
line oi vector from the origin, or point of reference, to the given particle. 

1 he position of the particle with respect to the origin is determined by the 
magnitude and direction of this vector.

VOL. II. nn
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If in the diagram we draw from the origin (which need not be the same 
point of space as the origin for the material system) a vector equal and 
parallel to the vector which determines the position of the particle, the end 
of this vector will indicate the position of the particle in the diagram of 
configuration.

If this is done for all the particles, we shall have a system of points in 
the diagram of configuration, each of which corresponds to a particle of the 
material system, and the relative positions of any pair of these points will be 
the same as the relative positions of the material particles which correspond 
to them.

We have hitherto spoken of two origins or points from which the vectors 
are supposed to be drawn—one for the material system, the other for the 
diagram. These points, however, and the vectors drawn from them, may now 
be omitted, so that we have on the one hand the material system and on 
the other a set of points, each point corresponding to a particle of the system, 
and the whole representing the configuration of the system at a given instant.

This is called a diagram of configuration.

Diagram of Displacement.
Let us next consider two diagrams of configuration of the same system, 

corresponding to two different instants.
We call the first the initial configuration and the second the final con

figuration, and the passage from the one configuration to the other we call the 
displacement of the system. We do not at present consider the length of 
time during which the displacement was effected, nor the intermediate stages 
through which it passed, but only the final result—a change of configuration. 
To study this change we construct a diagram of displacement.

Let A, B, C be the points in the initial diagram of configuration, and 
A', B', C' be the corresponding points in the final diagram of configuration.

From o, the origin of the diagram of displacement, draw a vector oa 
equal and parallel to AA', ob equal and parallel to BB', oc to CC', and so on.

The points, a, b, c, &c., will be such that the vector ab indicates the 
displacement of b relative to a, and so on. The diagram containing the points 
a, b, c, &c., is therefore called the diagram of displacement.

In constructing the diagram of displacement we have hitherto assumed 
that we know the absolute displacements of the points of the system. For
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we are required to draw a line equal and parallel to AA', which we cannot 
do unless we know the absolute final position of A, with respect to its initial 
position. In this diagram of displacement there is therefore, besides the points 
a, b, c, &c., an origin, o, which represents a point absolutely fixed in space. 
This is necessary because the two configurations do not exist at the same 
time; and therefore to express their relative position we require to know a 
point which remains the same at the beginning and end of the time.

But we may construct the diagram in another way which does not assume 
a knowledge of absolute displacement or of a point fixed in space.

Assuming any point and calling it a, draw ak parallel and equal to BlA1 
in the initial configuration, and from k draw kb parallel and equal to A„B., 
in the final configuration. It is easy to see that the position of the point b 
relative to a will be the same by this construction as by the former construction, 
only we must observe that in this second construction we use only vectors 
such as A,B„ AtB„ which represent the relative position of points both of 
which exist simultaneously, instead of vectors such as A^,, B^B,, which express 
the position of a point at one instant relative to its position at a former 
instant, and which therefore cannot be determined by observation, because the 
two ends of the vector do not exist simultaneously.

It appears therefore that the diagram of displacements, when drawn by 
the first construction includes an origin o, which indicates that we have assumed 
a knowledge of absolute displacements. But no such point occurs in the second 
construction, because we use such vectors only as we can actually observe. 
Hence the diagram of displacements without an origin represents neither more 
nor less than all we can ever know about the displacement of the material 
system.

Diagram of Velocity.

If the relative velocities of the points of the system are constant, then 
the diagram of displacement corresponding to an interval of a unit of time 
between the initial and the final configuration is called a diagram of relative 
velocity.

Il the relative velocities are not constant, we suppose another system in 
which the velocities are equal to the velocities of the given system at the 
given instant and continue constant for a unit of time. The diagram of dis- 
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placements for this imaginary system is the required diagram of relative velocities 
of the actual system at the given instant.

It is easy to see that the diagram gives the velocity of any one point 
relative to any other, but cannot give the absolute velocity of any of them.

Diagram of Acceleration.

By the same process by which we formed the diagram of displacements 
from the two diagrams of initial and final configuration, we may form a diagram 
of changes of relative velocity from the two diagrams of initial and final velocities. 
This diagram may be called that of total accelerations in a finite interval of time.

By the same process by which we deduced the diagram of velocities from 
that of displacements we may deduce the diagram of rates of acceleration from 
that of total acceleration.

We have mentioned this system of diagrams in elementary kinematics 
because they are found to be of use especially when we have to deal with 
material systems containing a great number of parts, as in the kinetic theory 
of gases. The diagram of configuration then appears as a region of space 
swarming with points representing molecules, and the only way in which we 
can investigate it is by considering the number of such points in unit of 
volume in different parts of that region, and calling this the density of the gas.

In like manner the diagram of velocities appears as a region containing 
points equal in number but distributed in a different manner, and the number 
of points in any given portion of the region expresses the number of molecules 
whose velocities lie within given limits. We may speak of this as the velocity
density.

Path and Hodograph.

When the number of bodies in the system is not so great, we may 
construct diagrams each of which represents some property of the whole course 
of the motion.

Thus if we are considering the motion of one particle relative to another, 
the point on the diagram of configuration which corresponds to the moving 
particle will trace out a continuous line called the path of the particle.

On the diagram of velocity the point corresponding to the moving particle 
will trace another continuous line called the hodograph of the particle.



DIAGRAMS. G53

The hodograph was invented and used with great success by Sir W. R. 
Hamilton as a method of studying the motions of bodies.

Diagrams of Stress.

Graphical methods are peculiarly applicable to statical questions, because 
the state of the system is constant, so that we do not need to construct a 
series of diagrams corresponding to the successive states of the system.

The most useful of these applications relates to the equilibrium of plane 
framed structures. Two diagrams are used, one called the diagram of the 
frame and the other called the diagram of stress.

Ihe structure itself consists of a number of separable pieces or links jointed 
together at their extremities. In practice these joints have friction, or may 
be made purposely stiff, so that the force acting at the extremity of a piece 
may not pass exactly through the axis of the joint; but as it is unsafe to 
make the stability of the structure depend in any degree upon the stiffness 
oi joints, we assume in our calculations that all the joints are perfectly smooth, 
and therefore that the force acting on the end of any link passes through the 
axis of the joint.

The axes ol the joints of the structure are represented by points in the 
diagram of the frame.

The link which connects two joints in the actual structure may be of 
any shape, but in the diagram of the frame it is represented by a straight 
line joining the points representing the two joints.

If no force acts on the link except the two forces acting through the 
centres of the joints, these two forces must be equal and opposite, and their 
direction must coincide with the straight line joining the centres of the joints.

If the force acting on either extremity of the link is directed towards 
the other extremity, the stress on the link is called pressure and the link is 
called a strut. If it is directed away from the other extremity, the stress
on the link is called tension and the link is called a tie.

In this case, therefore, the only stress acting in a link is a pressure or
a tension in the direction of the straight line which represents it in the
diagram of the frame, and all that we have to do is to find the magnitude 
of this stress.

In the actual structure, gravity acts on every part of the link, but in
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the diagram we substitute for the actual weight of the different parts of the 
link, two weights which have the same resultant acting at the extremities of 
the link.

We may now treat the diagram of the frame as composed of links without 
weight, but loaded at each joint with a weight made up of portions of the 
weights of all the links which meet in that joint.

If any link has more than two joints we may substitute for it in the 
diagram an imaginary stiff frame, consisting of links, each of which has only 
two joints.

The diagram of the frame is now reduced to a system of points, certain 
pairs of which are joined by straight lines, and each point is in general acted 
on by a weight or other force acting between it and some point external to 
the system.

To complete the diagram we may represent these external forces as links, 
that is to say, straight lines joining the points of the frame to points external 
to the frame. Thus each weight may be represented by a link joining the 
point of application of the weight with the centre of the earth.

But we can always construct an imaginary frame having its joints in the 
lines of action of these external forces, and this frame, together with the real 
frame and the links representing external forces, which join points in the one 
frame to points in the other frame, make up together a complete self-strained 
system in equilibrium, consisting of points connected by links acting by pressure 
or tension. We may in this way reduce any real structure to the case of a 
system of points with attractive or repulsive forces acting between certain pairs 
of these points, and keeping them in equilibrium.

The direction of each of these forces is sufficiently indicated by that of 
the line joining the points, so that we have only to determine its magnitude.

We might do this by calculation, and then write down on each link the 
pressure or the tension which acts in it.

We should in this way obtain a mixed diagram in which the stresses 
are represented graphically as regards direction and position, but symbolically 
as regards magnitude.

But we know that a force may be represented in a purely graphical 
manner by a straight line in the direction of the force containing as many 
units of length as there are units of force in the force. The end of this line 
is marked with an arrow head to shew in which direction the force acts.
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According to this method each force is drawn in its proper position in 
the diagram of configuration of the frame. Such a diagram might be useful 
as a record of the result of calculation of the magnitude of the forces, but 
it would be of no use in enabling us to test the correctness of the calculation.

But we have a graphical method of testing the equilibrium of any set of 
forces acting at a point. We draw in series a set of lines parallel and pro
portional to these forces. If these lines form a closed polygon the forces are in 
equilibrium. We might in this way form a series of polygons of forces, one for 
each joint of the frame. But in so doing we give up the principle of drawing 
the line representing a force from the point of application of the force, for all 
the sides of the polygon cannot pass through the same point, as the forces do.

We also represent every stress twice over, for it appears as a side of both 
the polygons corresponding to the two joints between which it acts.

But if we can arrange the polygons in such a way that the sides of any 
two polygons which represent the same stress coincide with each other, we 
may form a diagram in which every stress is represented in direction and 
magnitude, though not in position, by a single line which is the common 
boundary of the two polygons which represent the joints at the extremities 
of the corresponding piece of the frame.

We have thus obtained a pure diagram of stress in which no attempt is 
made to represent the configuration of the material system, and in which every 
force is not only represented in direction and magnitude by a straight line, 
but the equilibrium of the forces at any joint is manifest by inspection, for 
we have only to examine whether the corresponding polygon is closed or not.

The relations between the diagram of the frame and the diagram of stress 
are as follows :—

To every link in the frame corresponds a straight line in the diagram of 
stress which represents in magnitude and direction the stress acting in that link.

To every joint in the frame corresponds a closed polygon in the diagram, 
and the forces acting at that joint are represented by the sides of the polygon 
taken in a certain cyclical order. The cyclical order of the sides of the two 
adjacent polygons is such that their common side is traced in opposite directions 
in going round the two polygons.

The direction in which any side of a polygon is traced is the direction 
of the force acting on that joint of the frame which corresponds to the polygon, 
and due to that link of the frame which corresponds to the side.
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This determines whether the stress of the link is a pressure or a tension
If we know whether the stress of any one link is a pressure or a tension, 

this determines the cyclical order of the sides of the two polygons corresponding 
to the ends of the links, and therefore the cyclical order of all the polygons, 
and the nature of the stress in every link of the frame

Definition of Reciprocal Diagrams.

When to every point of concourse of the lines in the diagram of stress 
corresponds a closed polygon in the skeleton of the frame, the two diagrams 
are said to be reciprocal.

The first extensions of the method of diagrams of forces to other cases 
than that of the funicular polygon were given by Rankine in his Applied 
Mechanics (1857). Ihe method was independently applied to a large number 
of cases by Mr W. P. Taylor, a practical draughtsman in the office of the 
well-known contractor Mr J. B. Cochrane, and by Professor Clerk Maxwell in 
his lectures in King’s College, London. In the Phil. Mag. for 1864 the latter 
pointed out the reciprocal properties of the two diagrams, and in a paper on 
“ Reciprocal Figures, Frames, and Diagrams of Forces,” Trans. R. S. Edinburgh, 
Vol. xxvi. (1870), he shewed the relation of the method to Airy’s function of 
stress and to other mathematical methods.

Professor Fleeming Jenkin has given a number of applications of the method 
to practice (Trans. R. S. Edin., Vol. xxv.).

Cremona (Le figure reciproche nella statica grafica, Milan, 1872) has deduced 
the construction of reciprocal figures from the theory of the two components 
of a wrench as developed by Mobius.

Culmann, in his Graphische Statik, makes great use of diagrams of forces, 
some of which, however, are not reciprocal.

M. Maurice Levy in his Statique Graphique (Paris, 1874) has treated the 
whole subject in an elementary but copious manner.

Mr R. H. Bow, C.E., F.R.S.E., in his work on The Economics of Construction 
in relation to Framed Structures, 1873, has materially simplified the process of 
drawing a diagram of stress reciprocal to a given frame acted on by a system 
of equilibrating external forces.

Instead of lettering the joints of the frame, as is usually done, or the 
links of the frame, as was the writer’s custom, he places a letter in each of
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the polygonal areas inclosed by the links of the frame, and also in each of 
the divisions of surrounding space as separated by the lines of action of the 
external forces.

When one link of the frame crosses another, the point of apparent 
intersection of the links is treated as if it were a real joint, and the stresses 
o eac i of the intersecting links are represented twice in the diagram of 
stress, as the opposite sides of the parallelogram which corresponds to the 
point of intersection.

Fia. 1. Diagram of Configuration.

Flo. 2. Diagram of Stress.

This method is followed in the lettering of the diagram of configuration 
(fig. 1), and the diagram of stress (fig. 2) of the linkwork which Professor 
Sylvester has called a quadruplane.

In fig. 1 the real joints are distinguished from the places where one link 
appears to cross another by the little circles 0, P, Q, R, S, T, V.

The four links RSTV form a “contraparallelogram” in which RS—TV and 
RV=ST.

The triangles ROS, RPV, TQS are similar to each other. A foui-th triangle 
(TNV), not drawn in the figure, would complete the quadruplane. The four
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points 0, P, N, Q form a parallelogram whose angle POQ is constant and 
equal to n — SOR. The product of the distances OP and OQ is constant.

The linkwork may be fixed at 0. If any figure is traced by P, Q will 
trace the inverse figure, but turned round 0 through the constant angle POQ.

In the diagram forces Pp, Qq are balanced by the force Oo at the fixed 
point. The forces Pp and Qq are necessarily inversely as OP and OQ, and 
make equal angles with those lines.

Every closed area formed by the links or the external forces in the diagram 
of configuration is marked by a letter which corresponds to a point of concourse 
of lines in the diagram of stress.

The stress in the link which is the common boundary of two areas is 
represented in the diagram of stress by the line joining the points corresponding 
to those areas.

When a link is divided into two or more parts by lines crossing it, the 
stress in each part is represented by a different line for each part, but as the 
stress is the same throughout the link these lines are all equal and parallel. 
Thus in the figure the stress in RV is represented by the four equal and 
parallel lines III, FG, DE, and AB.

If two areas have no part of their boundary in common the letters cor
responding to them in the diagram of stress are not joined by a straight 
line. If, however, a straight line were drawn between them, it would represent 
in direction and magnitude the resultant of all the stresses in the links which 
are cut by any line, straight or curved, joining the two areas.

hor instance the areas F and C in fig. 1 have no common boundary, and 
the points I and C in fig. 2 are not joined by a straight line. But every 
path from the area F to the area C in fig. 1 passes through a series of other 
areas, and each passage from one area into a contiguous area corresponds to 
a line drawn in the diagram of stress. Hence the whole path from F to C 
in fig. 1 corresponds to a path formed of lines in fig. 2 and extending from 
/' to C, and the resultant of all the stresses in the links cut by the path is 
represented by FC in fig. 2.

Automatic Description of Diagrams.
I here are many other kinds of diagrams in which the two co-ordinates of 

a point in a plane are employed to indicate the simultaneous values of two 
related quantities.
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If a sheet of paper is made to move, say horizontally, with a constant 
known velocity, while a tracing point is made to move in a vertical straight 
line, the height varying as the value of any given physical quantity, the point 
will trace out a curve on the paper from which the value of that quantity 
at any given time may be determined.

This principle is applied to the automatic registration of phenomena of all 
kinds, from those of meteorology and terrestrial magnetism to the velocity of 
cannon-shot, the vibrations of sounding bodies, the motions of animals, voluntary 
and involuntary, and the currents in electric telegraphs.

Indicator-Diagram,.

In Watt’s indicator for steam-engines the paper does not move with a 
constant velocity, but its displacement is proportional to that of the piston of 
the engine, while that of the tracing point is proportional to the pressure of 
the steam. Hence the co-ordinates of a point of the curve traced on the 
diagram represent the volume and the pressure of the steam in the cylinder. 
The indicator-diagram not only supplies a record of the pressure of the steam 
at each stage of the stroke of the engine, but indicates the work done by the 
steam in each stroke by the area inclosed by the curve traced on the diagram.

The indicator-diagram was invented by James Watt as a method of estimating 
the work done by an engine. It was afterwards used by Clapeyron to illustrate 
the theory of heat, and this use of it was greatly developed by Hankine in 
his work on the steam-engine.

Ihe use of diagrams in thermodynamics has been very completely illustrated 
by Prof. J. Willard Gibbs (Connecticut Acad. Sci., Vol. in.), but though his 
methods throw much light on the general theory of diagrams as a method of 
study, they belong rather to thermodynamics than to the present subject.
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[From Nature, Vol. xvn.]

XCL Tait's “ Thermodynamics.”

This book, as we are told in the preface, has grown out of two articles 
contributed in 1864 by Prof. Tait to the North British Review. This journal, 
about that time, inserted a good many articles in which scientific subjects were 
discussed in scientific language, and in which, instead of the usual attempts 
to conciliate the unscientific reader by a series of relapses into irrelevant and 
incoherent writing, his attention was maintained by awakening a genuine interest 
in the subject.

The attempt was so far successful that the publishers of the Review were 
urged by men of science, especially engineers, to reprint these essays of Prof. 
Tait, but the Revieiv itself soon afterwards became extinct.

Prof. Tait added to the two essays a mathematical sketch of the funda
mental principles of thermodynamics, and in this form the book was published 
in 1868. In the present edition, though there are many additions and improve
ments, the form of the book is essentially the same.

Whether on account of these external circumstances, or from internal 
causes, it is impossible to compare this book either with so-called popular 
treatises or with those of a more technical kind.

In the popular treatise, whatever shreds of the science are allowed to 
appear, are exhibited in an exceedingly diffuse and attenuated form, apparently 
with the hope that the mental faculties of the reader, though they would 
reject any stronger food, may insensibly become saturated with scientific phraseo
logy, provided it is diluted with a sufficient quantity of more familiar language. 
In this way, by simple reading, the student may become possessed of the 
phrases of the science without having been put to the trouble of thinking a 
single thought about it. The loss implied in such an acquisition can be estimated 
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only by those who have been compelled to unlearn a science that they might 
at length begin to learn it.

The technical treatises do less harm, for no one ever reads them except 
under compulsion. From the establishment of the general equations to the end 
of the book, every page is full of symbols with indices and suffixes, so that 
there is not a paragraph of plain English on which the eye may rest.

Prof. Tait has not adopted either of these methods. He serves up his 
strong meat for grown men at the beginning of the book, without thinking 
it necessary to employ the language either of the nursery or of the school; 
while for younger students he has carefully boiled down the mathematical 
elements into the most concentrated form, and has placed the result at the 
end as a bonne bouche, so that the beginner may take it in all at once, and 
ruminate upon it at his leisure.

A considerable part of the book is devoted to the history of thermo
dynamics, and here it is evident that with Prof. Tait the names of the founders 
of his science call up the ideas, not so much of the scientific documents they 
have left behind them in our libraries, as of the men themselves, whether he 
recommends them to our reverence as masters in science, or bids us beware 
of them as tainted with error. There is no need of a garnish of anecdotes 
to enliven the dryness of science, for science has enough to do to restrain the 
strong human nature of the author, who is at no pains to conceal his own 
idiosyncrasies, or to smooth down the obtrusive antinomies of a vigorous mind 
into the featureless consistency of a conventional philosopher.

Thus, in the very first page of the book, he denounces all metaphysical 
methods of constructing physical science, and especially any cl priori decisions 
as to what may have been or ought to have been. In the second page he 
does not indeed give us Aristotle’s ten categories, but he lays down four of 
his own:—matter, force, position, and motion, to one of which he tells us, 
“ it is evident that every distinct physical conception must be referred,” and 
then before we have finished the page we are assured that heat does not 
belong to any of these four categories, but to a fifth, called energy.

This sort of writing, however unlike what we might expect from the con
ventional man of science, is the very thing to rouse the placid reader, and 
startle his thinking powers into action.

Prof. Tait next handles the caloric theory, but instead of merely shewing 
up its weak points and then dismissing it with contempt, he puts fresh life 
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into it by giving (in the new edition) a characteristic extract from Dr Black’s 
lectures, and proceeds to help the calorists out of some of their difficulties, by 
generously making over to them some excellent hints of his own.

The history of thermodynamics has an especial interest as the development 
of a science, within a short time and by a small number of men, from the 
condition of a vague anticipation of nature to that of a science with secure 
foundations, clear definitions, and distinct boundaries.

The earlier part of the history has already provoked a sufficient amount 
of discussion. We shall therefore confine our remarks to the methods employed 
for the advancement of the science by the three men who brought the theory 
to maturity.

Of the three founders of theoretical thermodynamics, Rankine availed him
self to the greatest extent of the scientific use of the imagination. His 
imagination, however, though amply luxuriant, was strictly scientific. Whatever 
he imagined about molecular vortices, with their nuclei and atmospheres, was 
so clearly imaged in his mind s eye, that he, as a practical engineer, could 
see how it would work.

However intricate, therefore, the machinery might be which he imagined 
to exist in the minute parts of bodies, there was no danger of his going 
on to explain natural phenomena by any mode of action of this machinery 
which was not consistent with the general laws of mechanism. Hence, though 
the construction and distribution of his vortices may seem to us as complicated 
and arbitrary as the Cartesian system, his final deductions are simple, necessary, 
and consistent with facts.

Certain phenomena were to be explained. Rankine set himself to imagine 
the mechanism by which they might be produced. Being an accomplished 
engineer, he succeeded in specifying a particular arrangement of mechanism 
competent to do the work, and also in predicting other properties of the 
mechanism which were afterwards found to be consistent with observed facts.

As long as the training of the naturalist enables him to trace the action 
only of particular material systems without giving him the power of dealing 
with the general properties of all such systems, he must proceed by the method 
so often described in histories of science—he must imagine model after model 
of hypothetical apparatus till he finds one which will do the required work. 
If this apparatus should afterwards be found capable of accounting for many 
of the known phenomena, and not demonstrably inconsistent with any of them, 
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he is strongly tempted to conclude that his hypothesis is a fact, at least 
until an equally good rival hypothesis has been invented. Thus Rankine*,  
long after an explanation of the properties of gases had been founded on the 
theory of the collisions of molecules, published what he supposed to be a 
proof that the phenomena of heat were invariably due to steady closed streams 
of continuous fluid matter.

• “ On the Second Law of Thermodynamics,” Phil. Mag. Oct. 18G5, § 12, p. 244; but in his 
paper on the Thermal Energy of Molecular Vortices, Trans. U.S. Edin. xxv. p. 557 [18G9], he 
admits that the explanation of gaseous pressure by the impacts of molecules has been proved to 
be possible.

The scientific career of Rankine was marked by the gradual development 
of a singular power of bringing the most difficult investigations within the range 
of elementary methods. In his earlier papers, indeed, he appears as if battling 
with chaos, as he swims, or sinks, or wades, or creeps, or flies,

“ And through the palpable obscure finds out
His uncouth way

but he soon begins to pave a broad and beaten way over the dark abyss, and 
his latest writings shew such a power of bridging over the difficulties of science, 
that his premature death must have been almost as great a loss to the diffusion 
of science as it was to its advancement.

The chapter on thermodynamics in his book on the steam-engine was the 
first published treatise on the subject, and is the only expression of his views 
addressed directly to students.

In this book he has disencumbered himself to a great extent of the hypothesis 
of molecular vortices, and builds principally on observed facts, though he, in 
common with Clausius, makes several assumptions, some expressed as axioms, 
others implied in definitions, which seem to us anything but self-evident. As 
an example of Rankine’s best style we may take the following definition :_

“ A perfect gas is a substance in such a condition that the total pressure exerted by any 
number of portions of it, at a given temperature, against the sides of a vessel in which they 
are enclosed, is the sum of the pressures which each portion would exert if enclosed in the vessel 
separately at the same temperature.”

Here we can form a distinct conception of every clause of the definition, 
but when we come to Rankine’s Second Law of Thermodynamics we find 
that though, as to literary form, it seems cast in the same mould, its actual 
meaning is inscrutable.
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“ The Second Law of Thermodynamics.—If the total actual heat of a homogeneous and uniformly 
hot substance be conceived to be divided into any number of equal parts, the effects of those 
parts in causing work to be performed are equal.”

We find it difficult enough, even in 1878, to attach any distinct meaning 
to the total actual heat of a body, and still more to conceive this heat 
divided into equal parts, and to study the action of each of these parts; but 
as if our powers of deglutition were not yet sufficiently strained, Rankine follows 
this up with another statement of the same law, in which we have to assert 
our intuitive belief that—

“If the absolute temperature of any uniformly hot substance be divided into any number of 
equal parts, the effects of those parts in causing work to be performed are equal.”

The student who thinks that he can form any idea of the meaning of this 
sentence is quite capable of explaining on thermodynamical principles what 
Mr Tennyson says of the great Duke :—

“ Whose eighty winters freeze with one rebuke 
All great self-seekers trampling on the right.”

Prof. Clausius does not ask us to believe quite so much about the heat 
in hot bodies. In his first memoir, indeed, he boldly dismisses one supposed 
variety of heat from the science. Latent heat, he tells us, “is not only, as 
its name imports, hidden from our perceptions, but has actually no existence;” 
“it has been converted into work.”

But though Clausius thus gets rid of all the heat which, after entering 
a body, is expended in doing work, either exterior or interior, he allows a 
certain quantity to remain in the body as heat, and this remnant of what 
should have been utterly destroyed lives on in a sort of smouldering existence, 
breaking out now and then with just enough vigour to mar the scientific coherence 
of what might have been a well compacted system of thermodynamics.

Prof. Tait tells us:—
“ The source of all this sort of speculation, which is as old as the time of Crawford and 

Irvine—and which was countenanced to a certain extent even by Rankine—is the assumption that 
bodies must contain a certain quantity of actual, or thermometric, heat. We are quite ignorant 
of the condition of energy in bodies generally. We know how much goes in, and how much 
comes out, and we know whether at entrance or exit it is in the form of heat or of work. But 
that is all.”

If we define thermodynamics, as I think we may now do, as the investi
gation of the dynamical and thermal properties of bodies, deduced entirely
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from what are called the First and Second laws of Thermodynamics, without 
any hypotheses as to the molecular constitution of bodies, all speculations as 
to how much of the energy in a body is in the form of heat are quite out 
of place.

Prof. Tait, however, does not seem to have noticed that Prof. Clausius, in 
a footnote to his sixth memoir*,  tells us what he means by the heat in a 
body. In the middle of a sentence we read:—

* Hirst’s translation, p. 230, German edition, 1804, p. 258, “wirklich vorhandene Warme, d.h. 
die lebendige Kraft seiner Molecularbewegungen.”

VOL. II.

“........tlie heat actually l,re8cnt in a unit wei8ht the substance in question-in other words, 
the vis viva of its molecular motions”.......

Ibus the doctiine that heat consists of the vis viva of molecular motions, 
and that it does not include the potential energy of molecular configuration— 
the most important doctrine, if true, in molecular science—is introduced in a 
footnote under cover of the unpretending German abbreviation “d.h.”

Pi of. Clausius is himself the principal founder of the kinetic theory of 
gases. The theory of the exchanges of the energy of collections of molecules 
was afterwards developed by Boltzmann to a much greater extent than had 
been done by Clausius, and it appears from his investigations that whether we 
suppose the molecules to be acted on by forces towards fixed centres or not, 
the condition of equilibrium of exchange of energy, or in other words the 
condition of equality of temperature of two bodies, is that the average kinetic 
energy of translation of a single molecule is the same in both bodies.

We may therefore define the temperature of a body as the average kinetic 
energy of translation of one of its molecules multiplied into a constant which 
is the same for all bodies. If we also define the total heat of the body as 
the sum of the whole kinetic energy of its molecules, then the total heat 
must be equal to the temperature multiplied into the number of molecules, 
and by the ratio of the whole kinetic energy to the energy of translation, 
and divided by the above constant.

Ihe kinetic theory ol gases has therefore a great deal to say about what 
Bankine and Clausius call the actual heat of a body, and if we suppose that 
molecules never coalesce or split up, but remain constant in number, then we 
may also assert, all experiments notwithstanding, that the real capacity for 
heat (as defined by Clausius) is constant for the same substance in all conditions.

84
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Rankine, indeed, probably biassed by the results of experiments, allowed that 
the real specific heat of a substance might be different in different states of 
aggregation, but Clausius has clearly shewn that this admission is illogical, 
and that if we admit any such changes, we had better give up real specific 
heat altogether.

Statements of this kind have their legitimate place in molecular science, 
where it is essential to specify the dynamical condition of the system, and to 
distinguish the kinetic energy of the molecules from the potential energy of 
their configuration; but they have no place in thermodynamics proper, in which 
we deal only with sensible masses and their sensible motions.

Both Rankine and Clausius have pointed out the importance of a certain 
function, the increase or diminution of which indicates whether heat is entering 
or leaving the body. Rankine calls it the thermodynamic function, and Clausius 
the entropy. Clausius, however, besides inventing the most convenient name 
for this function, has made the most valuable developments of the idea of 
entropy, and in particular has established the most important theorem in the 
whole science,—that when heat passes from one body to another at a lower 
temperature, there is always an increase of the sum of the entropy of the two 
bodies, from which it follows that the entropy of the universe must always 
be increasing.

He has also shewn that if the energy of a body is expressed as a 
function of the volume and the entropy, then its pressure (with sign reversed) 
and its temperature are the differential coefficients of the energy with respect 
to the volume and the entropy respectively, thus indicating the symmetrical 
relations of the five principal quantities in thermodynamics.

But Clausius, having begun by breaking up the energy of the body into 
its thermal and ergonal content, has gone on to break up its entropy into 
the transformational value of its thermal content and the disgregation.

Thus both the energy and the entropy, two quantities capable of direct 
measurement, are broken up into four quantities, all of them quite beyond 
the reach of experiment, and all this is owing to the actual heat which 
Clausius, after getting rid of the latent heat, suffered to remain in the body.

Sir William Thomson, the last but not the least of the three great founders, 
does not even consecrate a symbol to denote the entropy, but he was the 
first to clearly define the intrinsic energy of a body, and to him alone are due 
the ideas and the definitions of the available energy and the dissipation of
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energy. He has always been most careful to point out the exact extent of 
the assumptions and experimental observations on which each of his statements 
is based, and he avoids the introduction of quantities which are not capable 
of experimental measurement. It is therefore greatly to be regretted that his 
memoirs on the dynamical theory of heat have not been collected and reprinted 
in an accessible form, and completed by a formal treatise, in which his method 
of building up the science should be exhibited in the light of his present 
knowledge.

The touchstone of a treatise on thermodynamics is what is called the second 
law.

Rankine, as we have seen, founds it on statements which may or may not 
be true, but which cannot be considered as established in the present state 
of science.

The second law is introduced by Clausius and Thomson as an axiom on which 
to found Carnot’s theorem that the efficiency of a reversible engine is at least as 
great as that of any other engine working between the same limits of temperature.

If an engine of greater efficiency exists, then, by coupling this engine with 
Carnot’s engine reversed, it is possible to restore to the hot body as much heat 
as is taken from it, and at the same time to do a certain amount of work.

If with Carnot we suppose heat to be a substance, then this work would 
be performed in direct violation of the first law—the principle of the conser
vation of energy. But if we regard heat as a form of energy, we cannot apply 
this method of reductio ad absurdum, for the work may be derived from the 
heat taken from the colder body.

Clausius supposes all the work gained by the first engine to be expended 
in driving the second. There is then no loss or gain of heat on the whole, 
but heat is taken from the cold body, and an equal quantity communicated to 
the hot body, and this process might be carried on to an indefinite extent.

In order to assert the impossibility of such a process in a form of words 
having sufficient verisimilitude to be received as an axiom, Clausius, in his 
first memoir, simply says that this process “contradicts the general deportment 
of heat, which everywhere exhibits the tendency to equalize differences of 
temperature, and therefore to pass from the warmer to the colder body *. ”

* Und das widerspricht dem sonstigen Verhalten der Warme, indem sie liberal! das Bestreben 
zeigt, vorkommende Temperaturdifferenzen auszugleichen und also aus den wiirmeren Korpern in die 
kiilteren iiberzugehen. 84—2
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In its obvious and sti’ict sense no axiom can be more irrefragable. Even 
in the hypothetical process, the impossibility of which it was intended to 
assert, every communication of heat is from a warmer to a colder body. 
When the heat is taken from the cold body it flows into the working substance 
which is at that time still colder. The working substance afterwards becomes 
hot, not by communication of heat to it, but by change of volume, and when 
it communicates heat to the hot body it is itself still hotter.

It is therefore hardly correct to assert that heat has been transmitted or 
transferred from the colder to the hotter body. There is undoubtedly a transfer 
of energy, but in what form this energy existed during its middle passage is 
a question for molecular science, not for pure thermodynamics.

In a note added in 18G4 Clausius states the principle in a modified form, 
“ that heat cannot of itself pass from a colder to a warmer body ” * and finally, 
in the new edition of his Theory of Heat (187G) he substitutes for the words 
“of itself” the expression “without compensationf.”

* Dass die Wiirme nicht von selbst aus einem kalteren in einem warmeren Korper iiber- 
gehen kann.

t Ein Wiirmeilbergang aus einem kalteren in einem warmeren Korper kann nicht obne Com
pensation Statt finden.

With respect to the first of these emendations we must remember that 
the words “ of itself ” are not intended to exclude the intervention of any kind 
of self-acting machinery, and it is easy, by means of an engine which takes 
in heat from a body at 200° C., and gives it out at 100° to drive a freezing 
machine so as to take heat from water at 0°, and so freeze it, and also a 
friction break so as to generate heat in a body at 500°. It would therefore 
be necessary to exclude all bodies except the hot body, the cold body, and 
the working substance, in order to exclude exceptions to the principle.

By the introduction of the second expression, “ without compensation,” com
bined with a full interpretation of this phrase, the statement of the principle 
becomes complete and exact; but in order to understand it we must have a 
previous knowledge of the theory of transformation-equivalents, or in other 
words of entropy, and it is to be feared that we shall have to be taught 
thermodynamics for several generations before we can expect beginners to receive 
as axiomatic the theory of entropy.

Thomson, in his “Third Paper on the Dynamical Theory of Heat” (Trans. 
11. S. Edin. xx. p. 265, read March 17, 1851), has stated the axiom as follows :—
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It is impossible, by means of inanimate material agency, to derive mechanical effect from any 
portion of matter by cooling it below the temperature of the coldest of surrounding objects.”

Without some further restriction this axiom cannot be considered as true, 
for by allowing air to expand we may derive mechanical effect from it by 
cooling it below the temperature of the coldest of surrounding objects.

If we make it a condition that the material agency is to be left in the 
same state at the end of the process as it was at first, and also that the 
mechanical effect is not to be derived from the pressure of the hot or of the 
cold body, the axiom will be rendered strictly true, but this brings us back 
to a simple re-assertion of Carnot’s principle, except that it is extended from 
heat engines to all other kinds of inanimate material agency.

It is probably impossible to reduce the second law of thermodynamics to 
a form as axiomatic as that of the first law, for we have reason to believe 
that though true, its truth is not of the same order as that of the first law.

1 he first law is an extension to the theory of heat of the principle of 
conservation of energy, which can be proved mathematically true if real bodies 
consist of matter “as per definition,” acted on by forces having potentials.

The second law relates to that kind of communication of energy which 
we call the transfer of heat as distinguished from another kind of communication 
of energy which we call work. According to the molecular theory the only 
difference between these two kinds of communication of energy is that the 
motions and displacements which are concerned in the communication of heat 
are those of molecules, and are so numerous, so small individually, and so 
irregular in their distribution, that they quite escape all our methods of obser
vation ; whereas when the motions and displacements are those of visible bodies 
consisting of great numbers of molecules moving altogether, the communication 
of energy is called work.

Hence we have only to suppose our senses sharpened to such a degree 
that we could trace the motions of molecules as easily as we now trace those 
of large bodies, and the distinction between work and heat would vanish, for 
the communication of heat would be seen to be a communication of energy of 
the same kind as that which we call work.

The second law must either be founded on our actual experience in dealing 
with real bodies of sensible magnitude, or else deduced from the molecular theory 
of these bodies, on the hypothesis that the behaviour of bodies consisting of 
millions of molecules may be deduced from the theory of the encounters of
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encounters to be distributed according to the
frequency of different kinds of 
laws of probability.
a statistical, not a mathematical, 
bodies we deal with consist of

pairs of molecules, by supposing the relative

The truth of the second law is therefore 
truth, for it depends on the fact that the 
millions of molecules, and that we never can

Sir William Thomson* has shewn how to calculate the probability "oT the 
occurrence within a given time of a given amount of deviation from the most 
probable distribution of a finite number of molecules of two different kinds 
in a vessel, and has given a numerical example of a particular case of the 
diffusion of gases.

The same method might be extended to the diffusion of heat by conduction, 
and the diffusion of motion by internal friction, which are also processes by 
which energy is dissipated in consequence of the motions and encounters of 
the molecules of the system.

The tendency of these motions and encounters is in general towards a 
definite state, in which there is an equilibrium of exchanges of the molecules 
and their momenta and energies between the different parts of the system.

If we restrict our attention to any one molecule of the system, we shall 
find its motion changing at every encounter in a most irregular manner.

If we go on to consider a finite number of molecules, even if the system 
to which they belong contains an infinite number, the average properties of this 
group, though subject to smaller variations than those of a single molecule, are 
still every now and then deviating very considerably from the theoretical mean 
of the whole system, because the molecules which form the group do not submit 
their procedure as individuals to the laws which prescribe the behaviour of 
the average or mean molecule.

Hence the second law of thermodynamics is continually being violated, and 
that to a considerable extent, in any sufficiently small group of molecules 
belonging to a real body. As the number of molecules in the group is increased, 
the deviations from the mean of the whole become smaller and less frequent; 
and when the number is increased till the group includes a sensible portion 
of the body, the probability of a measurable variation from the mean occurring 
in a finite number of years becomes so small that it may be regarded as 
practically an impossibility.

* “On the Kinetic Theory of the Dissipation of Energy,” Proc. R.S. Edin., February 16, 1874, 
Vol. vni. p. 323, also in Nature, Vol. ix. p. 441.
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this calculation belongs of course to molecular theory and not to pure 
thermodynamics, but it shews that we have reason for believing the truth of 
the second law to be of the nature of a strong probability, which, though it 
falls short of certainty by less than any assignable quantity, is not an absolute 
certainty.

Several attempts have been made to deduce the second law from purely 
dynamical principles, such as Hamilton’s principle, and without the introduction 
of any element of probability. If we are right in what has been said above, 
no deduction of this kind, however apparently satisfactory, can be a sufficient 
explanation of the second law. Indeed some of them have already indicated 
their unsoundness by leading to determinations of physical quantities which 
have no existence, such as the periodic time of the alternations of the volume 
of particular gases*.

* Szily, Phil. Mag., October, 1876 ; Clausius, Pogg. Ann. cxlii. p. 433 • Pogg. Ann. cxlvi. 
P- 585, May, 1872; J. J. Muller, Pogg- Ann. clh. p. 105.



[From the Proceedings of the London Mathematical Society, Vol. ix.]

XCII. On the Electrical Capacity of a long narrow Cylinder, and of a Disk of 
sensible Thickness.

The distribution of electricity in equilibrium on a straight line without 
breadth is a uniform one. We may expect, therefore, that the distribution on 
a cylinder will approximate to uniformity as the radius of the cylinder diminishes.

Let 2l be the length of the cylinder, and b its radius.
Let x be measured along the axis from the middle point of the axis, and 

let y be the distance of any point from the axis.
Let X be the linear density on the curved surface of the cylinder; that 

is, let Xdx be the charge on the annular element dx.
Let a be the surface-density on the flat ends.
Then, at a point on the axis for which £=x, the potential (i//) is

(+i (b Cb
h[(^-x)t+b,]~idx + 27r <n)[(l — f)" + y,]~i dy+ 2n cry [(Z + £)5 + yTJ dy, 

J -l Jo Jo J
the first integral being extended over the curved surface, and the other two 
over the positive and negative flat ends respectively.

If the electricity is in equilibrium in the cylinder, ip must be constant 
for all points within the cylinder, and therefore for all points on the axis.

Also, by Art. 144 of Electricity and Magnetism, if is constant for all 
points on the axis, it is constant for all points within the surface of the 
cylinder.

If we suppose X and a constant,

t/i = Xlog + 2ff0- (/ +f2 _ 21), 
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where / and f, are the distances of the point (£) on the axis from the positive 
and negative edges of the curved surface.

At the middle of the axis, 
£=0, and f=f = Jl‘ + b\

^«» = 2X log + 4770- (/-

At either end of the axis, % = l, f^b, nearly,

= X log y + 2TT(rb.

Just within the cylinder, when £ is just less than I, 

= -xf|-^ + 2tto- = 0 by hypothesis, 
axy) \o j)

Hence 2nb<r = X,
or the density on the end must be equal to that on the curved surface.

The whole charge is therefore E=2irba (2l + b).

, / . 2lb\
The greatest potential is = 2t7Pct ( 2 log

The smallest potential is that at the curved edge, and is approximately
7 A 4Z 2\ ypM = 2nba(log-j) +-);

and the capacity must lie between
E 2l + b , E 2l + b 

an

These are the limits between which Cavendish shews that the capacity 
must lie. When the cylinder is very narrow, the upper limit is nearly double 
the lower, so that we cannot obtain in this way any approximation to the 
true value.

To obtain an approximation, we may make use of the following method, 
in which we neglect the effect of the flat ends, and consider the cylinder as 
a hollow tube :—

VOL. II. 85
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Let Q be the potential energy of any arbitrary distribution of electricity 
on the cylinder,

j -i

The charge is

Let us now suppose this charge to distribute itself so as to pass into 
the state of equilibrium; then the potential will become uniform, anj equal, 
say, to t/i0, and Q0 = ^qE.

If K is the capacity of the conductor, 

E=K^, and

Since Q, the potential energy due to any arbitrary distribution of the 
charge, may be greater, but cannot be less, than Qo, the energy of the same 
charge in equilibrium, the capacity may be greater, but cannot be less, than

This inferior limit of the capacity is greater than that derived from the 
maximum value of the potential, and, as we shall see, often gives a very close 
approximation to the truth. Thus, if we suppose, in the case of the cylinder, 
X to be uniform,

E=2X1, Q = 2X’Z flog

where /‘ = 4Z’ + &*. For a long narrow cylinder,

1 4/ i 
log J -1

To obtain a closer approximation, let us suppose the distribution to be of 
any form, and to be expressed in the form of a series of harmonics.

The potential due to any such distribution at a given point may be 
expressed in terms of spherical harmonics of the second kind. See Ferrers’ 
Spherical Harmonics, Chap. v.
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If we write ® = xa_ 1 rt~Ti2 I ’ ^T’

where r, and r, are the distances of a given point from the ends of the line 
and if the linear density is expressed by

where Pt is the zonal harmonic of degree i, then the potential at the given
point (a, /3) is xlJ = tAiQi(a)

where Qi is the zonal harmonic of the second kind, and is of the form

Q. W=p. («) log +A(«).

where Pi (a.) is a rational function of a of (i— 1) degrees, and is such that 
Q. (a) vanishes when a is infinite, thus:

\ i a+1

Qt (®) = al°g^“2’

/q 1\ a+1

/5 3 \ 1 ® +1 r s , 4
S'

At a point at a very small distance b from the line, if we write 

+1 — £ , ino.r’ + "hi = log—+loB—J—•

the potential due to the distribution whose linear density is

is approximately

L-2(i-
85—2

^i^AiPi
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the same degree of approximation,

thus, if —-^o»

x _ j /s _ i\
? 2/’

. /5 a? 3 £c\
2 Z/’

. (5.7 x* 3.5 a;’ 3\
4\ 8 i*" 4 ?+8y;

then approximately

^ = A|(Z-2), 

/a P i \

^’“^2? 2l)\ 3/*

,(5.7? 3.5? 3\( 25\
**MTrTf+5A ir

If we write 8 „ , (4Z’ + 6’)1 + 2Z • ii o i ,for log ------ , or approximately 2 = log , we find, to

j -1),

J J -§A0A2l,

1 X,^f=2A',l^t~^,

J K^= -^AJ,

J X^d^ —^AjAJ,

J \ U U / V/
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Determining A, so as to make J (Xo + XJ (U + ^2) d^ a minimum, and re

membering that E = 2lA^ we find

A =A 12 lo6\ 101’
30

and we obtain as a second approximation

2-1-A—1—
36 „_101

30

Unless the length of the cylinder considerably exceeds 7'245 times its 
diameter, this approximation is of little use, for this ratio makes J, infinite. 
It shews, however, that when the ratio of the length to the diameter increases 
without limit, the electric density becomes more nearly uniform, and the 
expression for K„ approximates to the true capacity.

We may go on to a third approximation by determining A^ and A, so that 

(Xo + X, + X4) (»/>0 + shall be a minimum ; whence

3373
A = A $___________ G3°

\ 30/V 1260/ 196

2-157
A = A J)____________ 210________

4 °20AAV« G989\ 45 ’
\ 30/V 1260/ 196

and

g — 1 _ — ____ Z_________ _ ______________________ \ ----- --------------- ;-------------- :
36 101 400 /„ ioi\r/ lOlWo 6989\ 45

30 k '30/L\ “"SO/\ 12Go/ 196
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When 2 is very great, the distribution of electricity is expressed by the 
equation

which shews that, as the ratio of the length to the diameter increases, the 
density becomes more nearly uniform, and the deviation from uniformity becomes 
more confined to the parts near the ends of the cylinder.

Io indicate the character of the approximation, I have calculated 2 and 
the three terms of the denominator of K, for different values of the ratio of 
I to &. When this ratio is less than 100, the third term is unavailable.

i _
j 2 1st term. 2nd term. 3rd term.

10 3'68888.2'68888— 0'43151
20 4'38203.3'38203-0'13680
30 4'78749.3'78749 - 0'09775
50 5'29832.4'29832 - 0'07191

100 5'99146.4'99146 — 0 05291 -0'13566
1000 8'29405.7'29405-0'02818-0'00892.

Examples of the application of the method to the calculation of the 
capacities of a cylinder in presence of a plane conducting surface, and in 
presence of another equal cylinder, will be given in the notes to the forth
coming edition of Cavendish’s Electrical Researches, as illustrations of measure
ments made by Cavendish in 1771.

Electric Capacity of a Disk of sensible Thickness.

We may apply the same method to determine the capacity of a disk of 
radius a and thickness b, b being very small compared with a.

We may begin by supposing that the density on the flat surfaces is the 
same as when the disk is infinitely thin.

Let a and /3 be the elliptic co-ordinates of a given point with respect to 
the lower disk, or in other words let the greatest and least distances of the 
point from the edge of the disk be a(a + /3) and a(a —/3).
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1'he distance of the given point from the axis is

r = aa^.................................................... (1),
and its distance from the plane of the lower disk isz = .......................................................... (2).

If we write = a‘-rt.......................................  (3), 
then, if A^ is the charge of the upper disk, distributed as when undisturbed 
by the lower disk, the density at any point is

cr=^L_ ................................................
2‘n-d‘p

If A, is the charge of the lower disk, also undisturbed, the potential at
the given point due to it is 

x// = A1a~I cosec'1 a .(5),
or, if we write &’ = /+! .................................................(6),

= ^-tan-^') .................................... (7).

We have next to find the relation between p and y when the given 
point is in the upper disk, and therefore z = b.

Equation (2) becomes &’ = ay (1 — j82) ............................................ (8)

and .................................................... (9),
, V . b'

or P=^-y+a-............................................(”>)■

Since the given point is or. the upper disk, and since b is small, p must 

be between 1 and 0, and y between - and ; and between those limits we 

may write, as a sufficient approximation for our purpose,

y=y=«L +wJLp+wJ ............. (“)•
We have now to find the value of the surface integral of fhe product of 

the density into the potential taken over the upper disk, or

f /tt P \I 2irrdru-^ = A1A2a~1 (- — I -tan-’ydp)..........
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Substituting the value of tan-1y from (11), the integral in (12) becomes

A^a'1 (a - - fl + "I log [Tf) + | ....................(13).
I2 a |_ W J L\6/ J J

The corresponding quantity for the action of the upper disk on itself is 
got by putting A^A, and 6 = 0, and is

................................................. (14).4
In the actual case, A1 = A1 = ^E, when E is the whole charge; and the 

lower limit of the capacity is therefore

..........................(15);

but since we have assumed that b is very small compared with a, we may 
express our result with sufficient accuracy in the form

K=l(a+kb^l).......................... <16)’
77 \ Z77 U/

or, the capacity of two equal disks is equal to that of a single disk whose 

circumference exceeds that of either disk by b log .

If the space between the disks is filled up, so as to form a single disk 
of sensible thickness, there will be a certain charge on the cylindric surface; 
but, at the same time, the charge on the inner sides of the disks will vanish, 
and that on the outer sides of the disks will be diminished, so that the capacity 
of a disk of sensible thickness is very little greater than that given by (16).



[From the Philosophical Transactions of the Royal Society, Part I. 1879.]

XCIIL On Stresses in Purified Gases arising from Inequalities of Temperature.

1. In this paper I have followed the method given in my paper “On 
the Dynamical Theory of Gases” (Phil. Trans., 1867, p. 49). I have shewn 
that when inequalities of temperature exist in a gas, the pressure at a given 
point is not the same in all directions, and that the difference between the 
maximum and the minimum pressure at a point may be of considerable magnitude 
when the density of the gas is small enough, and when the inequalities of 
temperature are produced by small * solid bodies at a higher or lower temperature 
than the vessel containing the gas.

2. The nature of this stress may be thus defined:—Let the distance from 
a given point, measured in a given direction, be denoted by h; then the space-

* The dimensions of the bodies must be of the same order of magnitude as a certain length 
X, which may be defined as the distance travelled by a molecule with its mean velocity during 
the time of relaxation of the medium.

The time of relaxation is the time in which inequalities of stress would disappear if the rate 
at which they diminish were to continue constant. Hence

\*p/ p \^ppj
On the hypothesis that the encounters between the molecules resemble those between “ rigid 

elastic ” spheres, the free path of a molecule between two successive encounters has a definite 
meaning, and if I is its mean value,

;=^(^y=^X=1178X.
2 WppJ o

So that the mean path of a molecule may be taken as representing what we mean by “small".
If the force between the molecules is supposed to be a continuous function of the distance, 

the free path of a molecule has no longer a definite meaning, and we must fall back on the 
quantity X, as defined above.

VOL. II. 86
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variation of the temperature for a point moving along this line will be denoted 

by -nr. and the space-variation of this quantity along the same line by
LU L

There will, in general, be a particular direction of the line h for which
dll' 

is a maximum, another for which it is a minimum, and a third for which it is 
a maximum-minimum. These three directions are at right angles to each other, 
and are the axes of principal stress at the given point; and the part of the 
stress arising from inequalities of temperature is, in each of these principal axes, 

d'O
pO dh''

where p is the coefficient of viscosity, p the density, and 0 the absolute 
temperature.

3. Now for dry air at 15°C., /x = l’9xl0 4 in centimetre-gramme-second 
1measure, and = -0'315, where p is the pressure, the unit of pressure being 

one dyne per square centimetre, or nearly one-millionth part of an atmosphere.
If a sphere of 2a centimetres in diameter is T degrees centigrade hotter 

than the air at large distances from it, then, when there is a steady flow 
of heat, the temperature at a distance of r centimetres from the centre will be 

n a Ta , d'O 2Ta 
r dr 1*

Hence, at a distance of r centimetres from the centre of the sphere, the 
pressure in the dii ection of the radius arising from inequality of temperature 
will be

Ta n „ ,
^,5 °’G3 dynes per square centimetre.

4. In Mr Crookes’ experiments the pressure, p, was often so small that 
this stress would be capable, if it existed alone, of producing rapid motion 
in a radiometer.

Indeed, if we were to consider only the normal part of the stress exerted 
on solid bodies immersed in the gas, most of the phenomena observed by 
Mr Crookes could be readily explained.

5. Let us take the case of two small bodies symmetrical with respect 
to the axis joining their centres of figure. If both bodies are warmer than
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the air at a distance from them, then, in any section perpendicular to the 
axis joining their centres, the point where it cuts this line will have the 
highest temperature, and there will be a flow of heat outwards from this 
axis in all directions.

d29

Hence „„ will be positive for the axis, and it will be a line of maximum 
die

pressure, so that the bodies will repel each other.
If both bodies are colder than the air at a distance, everything will be 

reversed; the axis will be a line of minimum pressure, and the bodies will 
attract each other.

If one body is hotter and the other colder than the air at a distance, 
the effect will be smaller, and it will depend on the relative sizes of the 
bodies, and on their exact temperatures, whether the action is attractive or 
repulsive.

6. If the bodies are two parallel disks very near to each other, the 
central parts will produce very little effect, because between the disks the 

temperature varies uniformly, and = 0. Only near the edges will there be 
Cl lb

any stress arising from inequality of temperature in the gas.

7. If the bodies are encircled by a ring having its axis in the line 
joining the bodies, then the repulsion between the two bodies, when they are 
warmer than the air in general, may be converted into attraction by heating 
the ring so as to produce a flow of heat inwards towards the axis.

8. If a body in the form of a cup or bowl is warmer than the air, the 
distribution of temperature in the surrounding gas is similar to the distribution 
of electric potential near a body of the same form, which has been investigated 

by Sir W. Ihomson. Near the convex surface the value of is nearly the 
die J

same as if the body had been a complete sphere, namely 2T^i, where T is 

the excess of temperature, and a is the radius of the sphere. Near the 
concave surface the variation of temperature is exceedingly small.

Hence the normal pressure will be greater on the convex surface than 
on the concave surface, and if we were to neglect the tangential pressures we 
might think this an explanation of the motion of Mr Crookes’ cups.

86—2
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Since the expressions for the stress are linear as regards the temperature, 
everything will be reversed when the cup is colder than the surrounding air.

9. In a spherical vessel, if the two polar regions are made hotter than the 
equatorial zone, the pressure in the direction of the axis will be greater than 
that parallel to the equatorial plane, and the reverse will be the case if the 
polar regions are made colder than the equatorial zone. ‘

10. All such explanations of the observed phenomena must be subjected 
to careful criticism. They have been obtained by considering the normal 
stresses alone, to the exclusion of the tangential stresses, and it is much 
easier to give an elementary exposition of the former than of the latter. 
If, however, we go on to calculate the forces acting on any portion of the 
gas in virtue of the stresses on its surface, we find that when the flow 
of heat is steady, these forces are in equilibrium. Mr Crookes tells us that 
there is no molar current or wind in his radiometer vessels. It is not easy 
to prove this by experiment, but it is satisfactory to find that the system 
of stresses here described as arising from inequalities of temperature will not, 
when the flow of heat is steady, generate currents.

11. Consider, then, the case in which there are no currents of gas but 
a steady flow of heat, the condition of which is

d'0 d'O d'O 
da? + dy' dz' ~

(In the absence of external forces such as gravity, and if the gas in contact 
with solid bodies does not slide over them, this is always a solution of the 
equations, and it is the only permanent solution.) In this case the equations 
of motion shew that every particle of the gas is in equilibrium under the stresses 
acting on it. Hence, any finite portion of the gas is also in equilibrium; 
also, since the stresses are linear functions of the temperature, if we superpose 
one system of temperatures on another, we also superpose the corresponding 
systems of forces.

Now the system of temperatures due to a solid sphere of uniform tem
perature immersed in the gas, cannot of itself give rise to any force tending 
to move the sphere in one direction rather than in another. Let the sphere 
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be placed within the finite portion of gas which, as we have said, is already 
in equilibrium. The equilibrium will not be disturbed. We may introduce 
any number of spheres at different temperatures into the portion of gas, so as 
to form a body of any shape, heated in any manner, and when the flow of 
heat has become steady the whole system will be in equilibrium.

12. How, then, are we to account for the observed fact that forces act 
between solid bodies immersed in rarified gases, and this, apparently, as long 
as inequalities of temperature are maintained ?

I think we must look for an explanation in the phenomenon discovered in 
the case of liquids by Helmholtz and Piotrowski *, and for gases by Kundt and 
Warburgt, that the fluid in contact with the surface of a solid must slide 
over it with a finite velocity in order to produce a finite tangential stress.

The theoretical treatment of the boundary conditions between a gas and 
a solid is difficult, and it becomes more difficult if we consider that the gas 
close to the surface is probably in an unknown state of condensation. We 
shall therefore accept the results obtained by Kundt and Warburg on their 
experimental evidence.

They have found that the velocity of sliding of the gas over the surface 
due to a given tangential stress varies inversely as the pressure.

The coefficient of sliding for air on glass was found to be G = 8 
P 

centimetres, where p is the pressure in millionths of an atmosphere. Hence 
at ordinary pressures G is insensible, but in the vessels exhausted by Mr Urookes 
it may be considerable.

Hence, if close to the surface of a solid there is a tangential stress S 
acting on a surface parallel to that of the body in a direction h parallel 
to that surface, there will also be a sliding of the gas in contact with the 

SG solid over its surface in the direction h with a finite velocity =— .

13. I have not attempted to enter on the calculation of the effect of 
this sliding motion, but it is easy to see that if we begin with the case in 
which there is no sliding, the instantaneous effect of permission being given

• Wiener Sitzb., xl. 1860, p. 607.
t Pogg. Ann., civ. 1875, p. 337.
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to the gas to slide must be to diminish the action of all tangential stresses 
on the surface, without affecting the normal stresses, and in course of time 
to set up currents sweeping over the surfaces of solid bodies, thus completely 
destroying the simplicity of our first solution of the problem.

14. When external forces, such as gravity, act on the gas, and when the 
thermal phenomena produce differences of density in different parts of the vessel, 
then the well-known convection currents are set up. These also interfere with 
the simplicity of the problem and introduce very complicated effects. All that 
we know is that the rarer the gas and the smaller the vessel the less is 
the effect of the convection currents, so that in Mr Crookes’ experiments 
they play a very small part.

We now proceed to the calculations:—

(l) Encounter between Two Molecules.

The motion of the two molecules after an encounter depends on their 
motion before the encounter, and is capable of being determined by purely 
dynamical methods. If the encounter of the molecules does not cause rotation 
or vibration in the individual molecules, then the kinetic energy of the centres 
of mass of the two molecules must be the same after the encounter as it was 
before.

'1 his will be true on the average, even if the molecules are complex 
systems capable of rotation and internal vibration, provided the temperature is 
constant. If, however, the temperature is rising, the internal energy of the 
molecules is, on the whole, increasing, and therefore the energy of translation 
of their centres of mass must be, on an average, diminishing at every encounter. 
The reverse will be the case if the temperature is falling.

But however important this consideration may be in the theory of specific 
heat and that of the conduction of heat, it has only a secondary bearing on 
the question of the stresses in the medium; and as it would introduce great 
complexity and much guesswork into our calculations, I shall suppose that the 
gas here considered is one the molecules of which do not take up any sensible 
amount of energy in the form of internal motion. Kundt and Warburg* 
have shewn that this is the case with mercury gas.

* Pogg. Ann., clvii. 1876, p. 353.
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Let the masses of the molecule be M, and and their velocity
components f„ anci respectively. Let V be the velocity of
Mx relative to Mv

Before the encounter let a straight line be drawn through Mx parallel to 
V, and let a perpendicular 6 be drawn from to this line. The magnitude 
and direction of b and V will be constant as long as the motion is undisturbed.

During the encounter the two molecules act on each other. If the force 
acts in the line joining their centres of mass, the product bV will remain 

. constant, and if the force is a function of the distance, V and therefore b 
will be of the same magnitude after the encounter as before it, but their 
directions will be turned in the plane of V and b through an angle 20, this 
angle being a function of b and V, which vanishes for values of b greater 
than the limit of molecular action. Let the plane through V and b make an 
angle with the plane through V parallel to x, then all values of $ are
equally probable.

If f, be the value of after the encounter, 
3Lf + jjr + ((f. - f>) 2 sin’ 0 + - rtf + sin 20 cos... (1).

When the two molecules are of the same kind, ^=1, and in the

pi esent investigation of a single gas we shall assume this to be the case.
If we use the symbol 8 to indicate the increment of any quantity due 

to an encounter, and if we remember that all values of </> are equally probable, 
so that the aveiage value of cos </> and of cos’</> is zero, and that of cos’</> 
is we find

=0.........................................................................................(2)

$ (fi + f.) = — [3 (fa — _ pj sin« ff co8» 0.................................... (3)

3 (fi + fa) = -1 q. [-3 _ ^y _ pj 8jni> 0 cosa g................
From these by transformation of coordinates we find

8 (f^ + M = - 3 (£ - Q sin, 0 C08> 0................................ (5)
S(f^i3 + U5) = -1 [9 + _ 3 +

- (& + f3) (6^a + F2)] sin’ 0 cos’ 0....................(G)
8 +uo = - 4 [9 (f,^, + f.,,0 - 3(«.+UC. + fox+uc.

+ f^i^ + f^)] sin’ 0 cos’ 0.......... (7).
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{Application of Spherical Harmonics to the Theory of Gases.

If we suppose the direction of the velocity of M. relative to to be 
indicated by the position of a point P on a sphere, which we may call the 
sphere of reference, then the direction of the relative velocity after the encounter 
will be indicated by a point P', the angular distance PH being 26 so that 
the point P' lies in a small circle, every position in which is equally probable.

We have to calculate the effect of an encounter upon certain functions of 
the six velocity-components .of the two molecules. These six quantities may 
be expressed m terras of the three velocity-components of the centre of mass 
of the two molecules (say u, v, w), the relative velocity of If with respect 
to 34 which we caff V, and the two angular coordinates which indicate the 
direction of V. During the encounter, the quantities u, v, w and V remain the 
same, but the angular coordinates are altered from those of P to those of P" on 
the sphere of reference.

Whatever be the form of the function of £, we may
consider it expressed in the form of a series of spherical harmonics of the 
angular coordinates, their coefficients being functions of u, v, w, V, and we 
have only to determine the effect of the encounter upon the value of the 
spherical harmonics, for their coefficients are not changed.

Let ) ( be the value at P of the surface harmonic of order n in the 
series considered.

After the encounter, the corresponding term becomes what YM becomes 
at the point 1 , and since all positions of P in a circle whose centre is P
are equally probable, the mean value of the function after the encounter must
depend on the mean value of the spherical harmonic in this circle.

Now the mean value of a spherical harmonic of order n in a circle, the
cosine of whose radius is p, is equal to the value of the harmonic at the pole of 
the circle multiplied by 1 111 (/x), the zonal harmonic of order n, and amplitude p.

Hence, after the encounter, Y(n becomes y<"> pw (p), and if Fn is the 
corresponding part of the function to be considered, and 8Fn the increment of 
Fn arising from the encounter, 8Fn = Fn (PM (/x) — 1).

This is the mean increment of Fn arising from an encounter in which 
cos 20 = p. The rate of increment is to be found from this by multiplying it
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by the number of encounters of each molecule per second in which p lies 
between p and p + dp, and integrating for all values of M from -1 to +1.

This operation requires, in general, a knowledge of the law of force be
tween the molecules, and also a knowledge of the distribution of velocity 
among the molecules.

When, as in the present investigation, we suppose both the molecules to 
be of the same kind, and take both molecules into account in the final 
summation, the spherical harmonics of odd orders will disappear, so that if we 
restrict our calculations to functions of not more than three ' dimensions, the 
effect of the encounters will depend on harmonics of the second order only, in 
which case ^(p) - 1 = § (f- 1) = 8ina 20.— Note added May, 1879.]

(2) Number of Encounters in Unit of Time.

We now abandon the dynamical method and adopt the statistical method. 
Instead of tracing the path of a single molecule and determining the effects 
of each encounter on its velocity-components and their combinations, we fix 
our attention on a particular element of volume, and trace the changes in 
the average values of such combinations of components for all the molecules 
which at a given instant happen to be within it. The problem which now 
presents itself may be stated thus: to determine the distribution of velocities 
among the molecules of any element of the medium, the current-velocity and 
the temperature of the medium being given in terms of the coordinates and 
the time. Ihe only case in which this problem has been actually solved is 
that in which the medium has attained to its ultimate state, in which the 
temperature is uniform and there are no currents.

Denoting by
dN =ji (£ y, £, x, y, z, t) dgdyd^dxdydz

the number of molecules of the kind Mx which at a given instant are within 
the element of volume dxdydz, and whose velocity-components lie between the 
limits ^±^d^, y±^ly, C±^d^ Boltzmann has shewn that the function f must 
satisfy the equation

VOL. II.

df
11 dz

df 
d^

df 
dy.

+ IIId&dy&Jbdbldt^ ............... (8)

87
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wheie /„ f' denote what / becomes when in place of the velocity-com
ponents of before the encounter we put those of before the encounter, 
an t lose of Mx and JI, after the encounter, respectively, and the integration 
is extended to all values of and b and of the velocity-com
ponents of the second molecule M.,.

It is impossible, in general, to perform this integration without a know- 
•ledge, not only of the law of force between the molecules, but of the form 
of the functions f, f„ f', f', which have themselves to be found by means of 
the equation.

It is only for particular cases, therefore, that the equation has hitherto 
been solved.

If the medium is surrounded by a surface through which no communica
tion of energy can take place, then one solution of the equation is given by 
the conditions 

and
df df v^f v df

which give
(9)

where is the potential of the force whose components are Xt, Yv Zt, and 
Ai is a constant which may be different for each kind of molecules in the 
medium, but h is the same for all kinds of molecules.

This is the complete solution of this problem, and is independent of any 
hypothesis as to the manner in which the molecules act on each other during 
an encounter. The quantity h which occurs in this expression may be deter

mined by finding the mean value of f*, which is . Now in the kinetic 

theory of gases,
p^=p = lip6............................................. (10)

where p is the pressure, p the density, 0 the absolute temperature, and Ji a 
constant for a given gas. Hence

hr™.............................<u>-
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We shall suppose, however, with Boltzmann, that in a medium in which there 
are inequalities of temperature and of velocity

dN= W{1 + F(£v, Q ......................(12)
where F is a rational function of v, which we shall suppose not to 
contain terms of more than three dimensions, and is the same function as 
in equation (9).

Now consider two groups of molecules, each defined by the velocity- 
components, and let the two groups be distinguished by the suffixes Q and 
(,). We have to estimate the number of encounters of a given kind between 
these two groups in a unit of volume in the time 8?, those encounters only 
being considered for which the limits of 6 and are b±^b and ^±ld^

Let us first suppose that both groups consist of mere geometrical points 
which do not interfere with each other’s motion. The group d^ is moving 
through the group dNt with the relative velocity V, and we have to find 
how many molecules of the first group approach a molecule of the second group 
in a manner which would, if the molecules acted on each other, produce an 
encounter of the given kind. This will be the case for every molecule of the 
first group which passes through the area bdbd^ in the time 8t. The number 
of such molecules is dN^Vbdbd^t for every molecule of the second group, 
so that the whole number of pairs which pass each other within the given 
limits is

Vbdbd^dN.dN^t,

and if we take the time 8t small enough, this will be the number of encounters 
of the real molecules in the time 8t.

(3) Effect of the Encounters.

AVe have next to estimate the effect of these encounters on the average 
values of different functions of the velocity-components. The effect of an indi
vidual encounter on these functions for the pair of molecules concerned is 
given in equations (3), (4), (5), (G), (7), each of which is of the form

8P = Q sin" 0 cos’ 0 ....................................... (13)

where P and Q are functions of the velocity-components of the two molecules, 
87—2 
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and if we wi ite 1 for the average value of P for the N molecules in unit 
of volume, then taking the sum of the effects of the encounters_

tbP = NZP............................................... (14).
We thus find

JJ JJJJ J Jq sin’ 6 cos’ OVbdbdtyfjlZjdT^^ ...(15).

Now, since 6 is a function of b and V, the definite integral

V J J b sin’ 0 co^Odbd^ = B
................................ (16)

will be a function of V only.

If the molecules are “ rigid-elastic ” spheres of diameter s,
B^^V................................................ (17).

If they repel each other with a force inversely as the fifth power of the 
distance, so that at a distance r the force is kv~\ then

/2kM . 
................................

where At is the numerical quantity T3682. In this case B is independent of V.

The experiments of 0. E. Meyer*, Kundt and Warburgt, PulujJ, Von 
Obermayer§, Eilhard Wiedemann [|, and Holman T, shew that the viscosity of 
air varies according to a lower power of the absolute temperature than the 
first, probably the 0'77 power. If the viscosity had varied as the first power 
of the absolute temperature, B would have been independent of V. Though 
this is not the case, we shall assume, for the sake of being able to effect the 
integrations, that B is independent of V.

We shall find it convenient to write for B, 

B = -2-
SNp ................................................ (19)

where p is the hydrostatic pressure, 2V the number of molecules in unit of

* Pogg. Ann., 1873, Bd. 148, p. 222. f Ibid. 1876, Bd. 159, p. 403.
+ Wiener Sitz., 1874 and 1876. § Ibid. 1875.
|| Arch, des Sci. Phys, et Nat., 1876, t. 56, p. 273.
II American Academy of Arts and Sciences, June 14, 1876. Phil. May., s. 5, vol. 3, No. 16,

Feb., 1877. 
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volume, and p a new coefficient which we shall afterwards find to be the 
coefficient of viscosity.

Equation (15) may now be written

s'=^11 fill WvMM...................... (20)

where the integrations are all between the limits — oo and + oo, and /, and /, 
are of the form

/={! + F(f, V) £)} ............................ (21)
(f. V’ Q being small compared with unity.

We may write F in the form

F= (2hy (af++ y£) + 2h + +0^$ + ya^ +
+ W* + W + + MW
+ i^av"^ + + a^y^)................................................(22)

where each combination of the symbols a/3y is to be taken as a single in
dependent symbol, and not as a product of the component symbols.

(4) Mean Values of Combinations of g, tj, £.

To find the mean value of any function of £ v, £ for all the molecules 
in the element, we must multiply this function by f and integrate with respect 
to £ Tj, and £.

If the non-exponential factor of any term contains an odd power of any 
of the variables, the corresponding part of the integral will vanish, but if 
it contains only even powers, each even power, such us 2n, will introduce a 
factor

^(2n-l)(2n^3)...;..31

into the corresponding part of the integral.

First, let the function be 1, then

1 = JJ............................................ (23)
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or
1 = 1 +|(a’ + ^ + /)........................................ (24)

which gives the condition
a’ + /3’ + y’ = 0 ............................................ (25).

Let us next find the mean value of f in the same way, denoting the result 
by the symbol £

^=(R0)i [a +1 (a’ + a^ + ay3)]............................... (26).

Since in what follows we shall denote the velocity-components of each 
molecule by u + g, v + tj, w + C where u, v, w are the velocity-components of 
the centre of mass of all the molecules within the element, it follows that the 
mean values of £ £ are each of them zero. We thus obtain the equations

a +1 (a3 + a/33 + ay3) = 0
/3 + l (a^ + ^ + ^ = 0 ■ 
y + |(a3y +/^y + ys) = 0

(5) Rates of Decay of these Mean Values.
If any term of Q in equation (20) contains symbols belonging to one 

group alone of the molecules, the corresponding term of the integral may be 
found from the above table, but if it contains symbols belonging to both

................................(27).

Remembering these conditions, we find that the mean values of combina
tions of two, three, and four dimensions are of the forms

f3 =J?0(l + a3)' 

6 = R0^ 

f = ^0)^
■................

&1C = (R^^v.

= 3/^(1 +2a’)
= 31^/3

^^W^+a’ + jS3)

« = Wy

(28)

(29)

(30).
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groups we must consider the sextuple integral (20). But we shall not find 
it necessary to do this for terms of not more than three dimensions, for in 
these, if both groups of symbols occur, the index of one of them must be 
odd, and the integral vanishes.

We thus find from equations (3), (4), (5), (6), and (7)

8 3 p 3
&a =~aa ....................................................... (31)

8 _ n
s ....................................................... (32)t
8 I )St = 2 I “ 2a> + + ............................... (33)

8 18ia^ =i;^(»'-8«^+ar)................................... (34)

..................................................(35).

[Any rational homogeneous function of £ r/ £ is either a solid harmonic, or 
a solid harmonic multiplied by a positive integral power of (f ■ 4- 4. or may 
be expressed as the sum of a number of terms of these forms.

If we express any one of these terms as a function of u, v w V and 
the angular coordinates of V, we can determine the rate of change of each of 
the spherical harmonics of the angular coordinates,

If we then transform the expression back to its original form as a function 
of and if we add the corresponding functions for both
molecules, we shall obtain an expression for the rate of change of the original 
function.

Thus among the terms of two dimensions we have the five conjugate solid 
harmonics

6b &
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Ihe late of increase of each of these arising from the encounters of the 

molecules is found by multiplying it by — . We may therefore call the 
p p

“modulus of the time of relaxation” of this class of functions.

ihe function f + js not changed by the encounters.

Homogeneous functions of three dimensions are either solid harmonics of 
the thiid older or solid harmonics of the first order multiplied by f + ^’ + C1, 
or combinations of these.

Ihe time modulus for solid harmonics of the third order is —Note 
2 u 

added May, 1879.]

That of £ v, or multiplied by F + + is -£.
3 /i

(6) Effect of External Forces.

The only effect of external forces is expressed by equations of the form

ihe average values of £ y, £ and their combinations are not affected by 
external forces.

(7) Variation of Mean Values within an Element of Volume.

We have employed the symbol 8 to denote the variation of any quantity 
within an element, arising either from encounters between molecules or from 
the action of external forces.

There is a third way, however, in which a variation may occur, namely, 
by molecules entering the element or leaving it, carrying their properties 
with them.

We shall use the symbol 3 to denote the actual variation within a specified 
element.

If MQ is the average value of any quantity for each molecule within the 
element, then the quantity in unit of volume is pQ. We have to trace the 
variation of pQ.
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We begin with an element of volume moving with the velocity-com
ponents U, V, W, then by the ordinary investigation of the “equation of 
continuity ”

£[<M+^[<?('‘+^]d4W(v+,_n]+£[e(w+{~^

If after performing the differentiations we make U = u, V=v, W=w, the 
equation becomes for an element moving with the velocity (u, v, w)

5 x (du , dv dw\ , d . d . ~ , d , 831 + pQ \H +di +a) + H ^ + di W = Q -(38).

(8) Equation of Density.

Let us first make Q=l, then, since the mass of a molecule is invariable, 
the equation becomes

(du dv dw\
()t ? \c&c dy^ dz) ~ .................................(39),

which is the ordinary “equation of continuity.”
Eliminating by means of this equation the second term of the general 

equation (38) we obtain the more convenient form—

p +£ +di +i ’p ........................(to).
(9) Equations of Motion.

Putting Q — u + ^, this equation becomes 

f'l + £ + du + & W=pX .....................(41)

where any combination of the symbols f, { is to be taken as the average 
value of that combination.

Substituting their values as given in (28)
P ^ + B^6'>+R + $(pM] =pX......(42),

winch is one of the three ordinary equations of motion of a medium in which 
stresses exist.

VOL. II.
88



698 STRESSES IN RARIFIED GASES

(10) Terms of Two Dimensions.

Put Q = (u + g)\ Since the resulting equation is true whatever be the values 
of u, v, w, we may, after differentiation, put each of these quantities equal to 
zero. We shall thus obtain the same result which we might have obtained 
by elimination between this and the former equations. We find

% n >^du , n du , n du d . d , . d 8

or by substituting the mean values of these quantities from (29)

(^ I+* +

with two other equations of similar form.
Similarly we obtain by putting Q = ( u + (v+rj)

+ R + ...(45)

with two other equations of like form for fry and ya.

(11) Terms of Three Dimensions.

Putting Q-(» + f) and in the final equation making u=v=w=0 and 

eliminating by (41) we find

wol-p I e....... m—4 ,
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which gives

+ SK-pO ™ + 3Rp0 (a* + ay + ^p0^ ^0)

d^P0<^ + ^Pd<^ =p (^)’^ (-2a’ + a^ + a/)...(47).

Since the combinations of a^y represent small numerical quantities, we 
may at this stage of the calculation, when we are dealing with terms of the 
third order, neglect terms involving them, except when they are multiplied 
by the large coefficient p/p. The equation may then be written approxi
mately :—

slfpe di - p w s 5(-2a’++...................... («)■

Similarly, by putting Q — (u + ^) we obtain the approximate equation

^P9 ^ = p W “ 8a^ + ....................... (49)>

and in the same way we find

^P9 dx = p I{ + ......................(50)-

(12) Approximate Values of Terms of Three Dimensions.

From equations (48), (49), and (50), we find
, 9p/Ilfd0 3p/Rfd0

“ = -2p W <&’ = ~2pU/ S

From which by substitution we obtain

9 p /R'V d0 „ 3p/Jl\*d0
P 2p\e)dV’ a^^=-2p\e)d^

, 9p/R\*d0 , m 3p(R\*d0
2p\0)dz’ 2p\0Jdz

..................(51).

The value of afiy is of a smaller order of magnitude, and we do not 
require it in this investigation.

88—2
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(13) Equation of Temperature.

Adding the three equations of the form (44), and omittin<* fprmq con e \ / * Q Vd 111O vUll”
taining small quantities of two dimensions, and also products of differential 

coefficients such as , we find

M bp (dW d20 d20\ 2 0
M 2p [dx* + df+ dz2) + 3 p ft.................................... (52)-

Ihe first term of the second member represents the rate of increase of 
temperature due to conduction of heat, as in Fourier’s Theory, and the second 
term represents the increase of temperature due to increase of density. We 
must remember that the gas here considered is one for which the ratio of 
the specific heats is 1'6.

(14) Stresses in the Gas.

Subtracting one-third of the sum of the three equations from (44), we 
obtain

pd! = + TO (T0\
dx ^{dx dy+ dz) + \0drf+ 2 p0\dj? + dy' + dz1) (53).

This equation gives the excess of the normal pressure in x above the 
mean hydrostatic pressure p. The first two terms of the second member 
represent the effect of viscosity in a moving fluid, and are identical with those 
given by Professor Stokes (Cambridge Transactions, Vol. vni., 1845, p. 297). 
Ihe last two terms represent the part of the stress which arises from inequality 
of temperature, which is the special subject of this paper.

Iheie aie two other equations of similar form for the normal stresses in 
y and z.

Ihe tangential stress in the plane xy is given by the equation 
o (du dv\ ii? d?0 ........... <54>-

IIku <ue two other equations of similar form for the tangential stresses 
in the planes of yz and zx.
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(15) Final Equations of Motion.

We are now prepared to complete the equations of motion by inserting in 
(42) the values of the quantities aa, a,3, ay, and we find for the equation in x

du dp _ fd^u d^u dau\ 1 d /du dv dw\
Pdt +dx PW + dyl+ dz^ + 3fJ'dx\d^ + d^+ dz)

9 d (dW d20 d^\ „
+ 2 p0 dx \d^ + dy* + dz*/ pX ...........................

If we write
, 1 /du . dv dw\

P + 3p \dx + dy^ dz)
9 (d'0
2pd\d^

w dp
dy* + dz7) ............ (56)

9 p.dO 23u3p 
~P + Y0dt ~\^pdt (57)

or, if the pressure p is constant, so that pdO 4- Odp = 0

, 10 u d0
.................................................................(58)

then the equation (55) may be written

du dp'
p dt dx p

/dht d7u c?u\ _
\d^ + d^ + d^)~pA ........................ (59).

If there are no external forces such as gravity, then one solution of the 
equations is

u = v = w = 0, p' = constant, 

and if the boundary conditions are such that this solution is consistent with 
them, it will become the actual solution as soon as the initial motions, if any 
exist, have subsided. This will be the case if no slipping is possible between 
the gas and solid bodies in contact with it.

But if such slipping is possible, then wherever in the above solution there 
is a tangential stress in the gas at the surface of a solid or liquid, there 
cannot be equilibrium, but the gas will begin to slide over the surface till 
the velocity of sliding has produced a frictional resistance equal and opposite 
to the tangential stress. When this is the case the motion may become steady.
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I have not, however, attempted to enter into the calculation of the state of 
steady motion.

[I have recently applied the method of spherical harmonics, as described 
in the notes to sections (1) and (5), to carrying the approximations two 
orders higher. I expected that this would have involved the calculation of 
two new quantities, namely, the rates of decay of spherical harmonics of the 
fourth and sixth orders, but I found that, to the order of approximation 
required, all harmonics of the fourth and sixth orders may be neglected, so 
that the rate of decay of harmonics of the second order, the time-modulus 
of which is p+p, determines the rate of decay of all functions of less than 
6 dimensions.

Ihe equations of motion, as here given (equation 55) contain the second 
derivatives of u, v, w, with respect to the coordinates, with the coefficient /x. 
I find that in the more approximate expression there is a term containing 
the fourth derivatives of u, v, w, with the coefficient p? 4- pp.

Ihe equations of motion also contain the third derivatives of 0 with the 
coefficient p' + p0. Besides these terms, there is another set consisting of the 
filth derivatives of 0 with the coefficient p,4 + p'pO-

It appears from the investigation that the condition of the successful use 

of this method of approximation is that I should be small, where denotes 

differentiation with respect to a line drawn in any direction. In other words, 
the properties of the medium must not be sensibly different at points within 
a distance of each other, comparable with the “ mean free path ” of a molecule. 
—Note added June, 1879.]
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APPENDIX.

(Added May, 1879.)

In the paper as sent in to the Royal Society, I made no attempt to 
express the conditions which must be satisfied by a gas in contact with a 
solid body, for I thought it very unlikely that any equations I could write 
down would be a satisfactory representation of the actual conditions, especially 
as it is almost certain that the stratum of gas nearest to a solid body is in 
a very different condition from the rest of the gas.

One of the referees, however, pointed out that it was desirable to make 
the attempt, and indicated several hypothetical forms of surfaces which might 
be tried. I have therefore added the following calculations, which are carried 
to the same degree of approximation as those for the interior of the gas.

It will be seen that the equations I have arrived at express both the 
fact that the gas may slide over the surface with a finite velocity, the 
previous investigations of which have been already mentioned;* and the fact 
that this velocity and the corresponding tangential stress are affected by 
inequalities of temperature at the surface of the solid, which give rise to a 
force tending to make the gas slide along the surface from colder to hotter 
places.

This phenomenon, to which Professor Osborne Reynolds has given the 
name of Thermal Transpiration, was discovered entirely by him. He was the 
first to point out that a phenomenon of this kind was a necessary consequence 
of the Kinetic I heory of Gases, and he also subjected certain actual phenomena, 
of a somewhat different kind, indeed, to measurement, and reduced his measure
ments by a method admirably adapted to throw light on the relations between 
gases and solids.

It was not till after I had read Professor Reynolds’ paper that I began 
to reconsider the surface conditions of a gas, so that what I have done is 
simply to extend to the surface phenomena the method which I think most 
suitable for treating the interior of the gas. I think that this method is, in

* Sect. 12 of introJuctiou.
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some respects, better than that adopted by Professor Reynolds, while I admit 
that his method is sufficient to establish the existence of the phenomena, though 
not to afford an estimate of their amount.

The method which I have adopted throughout is a purely statistical one. 
It considers the mean values of certain functions of the velocities within a 
given element of the medium, but it never attempts to trace the motion of a 
molecule, not even so far as to estimate the length of its mean path. Hence 
all the equations are expressed in the forms of the differential calculus, in 
which the phenomena at a given place are connected with the space variations 
of certain quantities at that place, but in which no quantity appears which 
explicitly involves the condition of things at a finite distance from that place.

The particular functions of the velocities which are here considered are 
those of one, two, and three dimensions. These are sufficient to determine 
approximately the principal phenomena in a gas which is not very highly 
rarified, and in which the space-variations within distances comparable to X are 
not very great.

The same method, however, can be extended to functions of higher degrees, 
and by a sufficient number of such functions any distribution of velocities, 
however abnormal, may be expressed. The labour of such an approximation is 
considerably diminished by the use of the method of spherical harmonics as 
indicated in the note to Section I. of the paper.

On the Conditions to be Satisfied by a Gas at the Surface of a Solid Body.

As a first hypothesis, let us suppose the surface of the body to be a 
perfectly elastic smooth fixed surface, having the apparent shape of the solid, 
without any minute asperities.

In this case, every molecule which strikes the surface will have the normal 
component of its velocity reversed, while the other components will not be 
altered by impact.

The rebounding molecules will therefore move as if they had come from 
an imaginary portion of gas occupying the space really filled by the solid, and 
such that the motion of every molecule close to the surface is the optical 
reflection in that surface of the motion of a molecule of the real gas.

In this case we may speak of the rebounding molecules close to the surface 
as constituting the reflected gas. All directed properties of the incident gas 
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are reflected, or, as Professor Listing might say, perverted in the reflected gas; 
that is to say, the properties of the incident and the reflected gas are sym
metrical with respect to the tangent plane of the surface.

The incident and reflected gas together constitute the actual gas close to 
the surface. The actual gas, therefore, cannot exert any stress on the surface, 
except in the direction of the normal, for the oblique components of stress in 
the incident and reflected gas will destroy one another.

Since gases can actually exert oblique stress against real surfaces, such 
surfaces cannot be represented as perfectly reflecting surfaces.

If a molecule, whose velocity is given in direction and magnitude, but 
whose line of motion is not given in position, strikes a fixed elastic sphere, 
its velocity after rebound may with equal probability be in any direction.

Consider, therefore, a stratum in which fixed elastic spheres are placed so 
far apart from one another that any one sphere is not to any sensible extent 
protected by any other sphere from the impact of molecules, and let the 
stratum be so deep that no molecule can pass through it without striking one 
or more of the spheres, and let this stratum of fixed spheres be spread over 
the surface of the solid we have been considering, then every molecule which 
comes from the gas towards the surface must strike one or more of the spheres, 
after which all directions of its velocity become equally probable.

When, at last, it leaves the stratum of spheres and returns into the gas, 
its velocity must of course be from the surface, but the probability of any 
particular magnitude and direction of the velocity will be the same as in a 
gas at rest with respect to the surface.

The distribution of velocity among the molecules which are leaving the 
surface will therefore be the same as if, instead of the solid, there were a 
portion of gas at rest, having the temperature of the solid, and a density 
such that the number of molecules which pass from it through the surface in 
a given time is equal to the number of molecules of the real gas outside 
which strike the surface.

To distinguish the molecules, which, after being entangled in the stratum 
of spheres, afterwards return into the surrounding gas, we shall call them, 
collectively, the absorbed and evaporated gas.

If the spheres are so near together that a considerable part of the surface 
of each sphere of the outer layer is shielded from the direct impact of the 
incident molecules by the spheres which lie next to it, then if we call that

VOL. II. 8 9
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point of each sphere which lies furthest from the solid the pole of the sphere, 
a greater proportion of molecules will strike any one of the outer layer of 
spheres near its pole than near its equator, and the greater the obliquity of 
incidence of the molecule, the greater will be the probability that it will strike 
a sphere near its pole.

The direction of the rebounding molecule will no longer be with equal 
probability in all directions, but there will be a greater probability of the 
tangential part of its velocity being in the direction of the motion before 
impact, and of its normal part being opposite to the normal part before 
impact.

The condition of the molecules which leave the surface will therefore be 
intermediate between that of evaporated gas and that of reflected gas, approach
ing most nearly to evaporated gas at normal incidence and most nearly to 
reflected gas at grazing incidence.

If the spheres, instead of being hard elastic bodies* are supposed to act 
on the molecules at finite, though small distances, and if they are so close 
together that their spheres of action intersect, then the gas which leaves the 
surface will be still more like reflected gas, and less like evaporated gas.

We might also consider a surface on which there are a great number of 
minute asperities of any given form, but since in this case there is consider
able difficulty in calculating the effect when the direction of rebound from the 
first impact is such as to lead to a second or third impact, I have preferred 
to treat the surface as something intermediate between a perfectly reflecting 
and a perfectly absorbing surface, and, in particular, to suppose that of every 
unit of area a portion f absorbs all the incident molecules, and afterwards 
allows them to evaporate with velocities corresponding to those in still gas at 
the temperature of the solid, while a portion 1 —f perfectly reflects all the 
molecules incident upon it.

We shall begin by supposing that the surface is the plane yz, and that
the gas is on that side of it for which x is positive.

The incident molecules are those which, close to the surface, have their
normal component of velocity negative. We shall distinguish these molecules
by the suffix (,). For these, and these only, is negative.

The rebounding molecules are those which have £ positive. We shall 
distinguish them by the suffix Q. Those which are evaporated will be further 
distinguished by an accent.
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Symbols without any mark refer to the whole gas, incident, reflected, and 
evaporated, close to the surface.

The quantity of gas which is incident on unit of surface in unit of time 
is -p^

Of this quantity the fraction 1-/ is reflected, so that the sign of f is 
reversed, and the fraction / is evaporated, the mean value of £ in evaporated 
gas being where the accent distinguishes symbols belonging to unpolarized
gas at rest relative to the surface, and having the temperature, of 
the solid.

Equating the quantity of gas which is incident on the absorbing part of the 
surface to that which is evaporated from it, we have

fp^x +fp' ^' = 0............................................................... (GO).
Equating the whole quantity of gas which leaves the surface to the reflected 

and evaporated portions
P& = (/- 1) pxtx +fp& ................................... (61).

If we next consider the momentum of the molecules in the direction of 
y, that of the incident molecules is p^. A fraction (1 -/) of this is reflected 
and becomes (1 —/) and a fraction / of it is absorbed and then evaporated,
the mean value of y being now — v, namely, the velocity of the surface rela
tively to the gas in contact with it.

The momentum of the evaporated portion in the direction of y is there
fore —fp^v, and this, together with, the reflected portion, makes up the whole 
momentum which is leaving the surface, or

P^ = (/- 1) Px^xVx ~fp&v ............................... (62).
Eliminating fp.:^ between equations (61) and (62)

(1 -/) Px^x + p^ + [(1 -/) P& + ps&] =0................... (63).
The values of functions of £ y and £ for the incident molecules are to 

be found by multiplying the expression in equation (22) by the given function, 
and integrating with respect to f between the limits — oo and 0, and with 
respect to y and £ between the limits ± oo.

The values of .the same functions for the molecules which are leaving the 
surface are to be found by integrating with respect to £ from 0 to oo.

We must remember, however, that since there is an essential discontinuity 
in the conditions of the gas at the surface, the expression in equation (22) is 

89—2 
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a much less accurate approximation to the actual distribution of velocities in 
the gas close to the surface than it is in the interior of the gas We must, 
therefore, consider the surface conditions at which we arrive in this way as 
liable to important corrections when we shall have discovered more powerful 
methods of attacking the problem.

For the present, however, we consider only terms of three dimensions or 
less, and we find

p^-pm  ̂
p^ p(2^)-‘(7^)‘(l+|a’)J................................(64)

= ^pROa.^ - (2tt)-1 Rdd/S} 
Pi&h = hpR0a.fi + hp (2tt)”1 R6d^\ ...........................

Substituting these expressions in equation (G3), and neglecting a’ in com 
parison with unity, we find

(2 -/) P^afi +f pROd^ + 2/(2tt)-* (1 + la’) (RO? pv = Q ...(66).

If we write
G=4p(2tt)‘ (pp)'^- .̂.................................. (67)

and substitute for aft and a"ft their values as given in equations (54) and (51), 
and divide by 2 (pp)1, equation (66) becomes

v-g(~ — - £\dx ZpOdxdy) IpOdy u .......................

If there is no inequality of temperature, this equation is reduced to

If, therefore, the gas at a finite distance from the surface is moving 
parallel to the surface, the gas in contact with the surface will be sliding over 
it with the finite velocity v, and the motion of the gas will be very nearly 
the same as if the stratum of depth G had been removed from the solid and 
filled with the gas, there being now no slipping between the new surface of 
the solid and the gas in contact with it.

The coefficient G was introduced by Helmholtz and Piotrowski under the 
name of (Rcitungs-coefficieTit, or coefficient of slipping. The dimensions of G are 

hpR0a.fi
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those of a line, and its ratio to I, the mean free path of a molecule, is given 
by the equation

G=l^1......... .................................................W

Kundt and Warburg found that for air in contact with glass, G = 2l, 
whence we find f=i, or the surface acts as if it were half perfectly reflecting 
and half perfectly absorbent. If it were wholly absorbent, G — ^l.

It is easy to write down the surface conditions for a surface of any form.
Let the direction-cosines of the normal v be I, m, n, and let us write 

d „ , d d d 
7 tor —F n ~y~ •

up dx dy dz

We then find as the surface conditions

-Imv 
dv 4 pu \dx dv) \ dv)

v-G rK1 + f^ + 4G?^ = 0 ■
dv J ±p0\dy dv)\ dv)

w-G~ [(I-n^w- nlu-nmv\ + \^ (.0 + iG^\ = Q
dv J 4 p0 \dz dv) \ dv)

...(71).

In each of these equations the first term is one of the velocity-components 
of the gas in contact with the surface, which is supposed fixed; the second 
term depends on the slipping of the gas over the surface, and the third term 
indicates the effect of inequalities of temperature of the gas close to the 
surface, and shows that in general there will be a force urging the gas from 
colder to hotter parts of the surface.

Let us take as an illustration the case of a capillary tube of circular 
section, and for the sake of easy calculation we shall suppose that the motion 
is so slow, and the temperature varies so gradually along the tube that we 
may suppose the temperature uniform throughout any one section of the tube.

Taking the axis of the tube for that of z, we have for the condition of 
steady motion parallel to the axis

(72).
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we find
Since everything is symmetrical about the axis, if we write r9 for 

as the solution of this equation
1 dp

4p dz ............................................ (73).

If 
tube in

At

Q denotes the quantity of gas which passes through a section of the 
unit of time

Q = 2ir\pwrdr

..................... (74>-
I

the inner surface of the tube we have r = a, and
. 1 dp ,w = A + ~~ -4 -a ip dz

also

_£_+_L^
irpa? 8p dz .................................... (75)

dw _ 1 dp
dv — 2p dz ............................................ (76).

The last of equations (71) may therefore be written

irpd‘
+ ^p^ + iG(^ dp 3 p d0 

dz 4 p0 dz~ .........................(77).

Equation (77) gives the relation between the quantity of gas which passes 
through any section of the tube, the rate of variation of pressure, and the 
rate of variation of temperature in passing along the axis of the tube.

If the pressure is uniform there will 
the hotter end of the tube, and if there 
increase from the colder to the hotter end

be a flow of gas from the colder to 
is no flow of gas the pressure will 
of the tube.

These effects of the variation of temperature in a tube have been pointed 
out by Professor Osborne Reynolds as a result of the Kinetic Theory of Gases, 
and have received from him the name of thermal Transpiration : a name in 
strict analogy with the use of the word Transpiration by Graham.

But the phenomenon actually observed by Professor Reynolds in his ex
periments was the passage of gas through a porous plate, not through a 
capillary tube ; and the passage of gases through porous plates, as was shown 
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by Graham, is of an entirely different kind from the passage of gases through 
capillary tubes, and is more nearly analogous to the flow of a gas through a 
small hole in a thin plate.

When the diameter of the hole and the thickness of the plate are both 
small compared with the length of the free path of a molecule, then, as Sir 
William Thomson has shown, any molecule which comes up to the hole on 
either side will be in very little danger of encountering another molecule before 
it has got fairly through to the other side.

Hence the flow of gas in either direction through the hole will take place 
very nearly in the same manner as if there had been a vacuum on the other 
side of the hole, and this whether the gas on the other side of the hole is 
of the same or of a different kind.

If the gas on the two sides of the plate is of the same kind but at 
different temperatures, a phenomenon will take place which we may call thermal 
effusion.

The velocity of the molecules is proportional to the square root of the 
absolute temperature, and the quantity which passes out through the hole is 
proportional to this velocity and to the density. Hence, on whichever side the 
product of the density into the square root of the temperature is greatest, 
more molecules will pass from that side than from the other through the 
hole, and this will go on till this product is equal on both sides of the hole. 
Hence the condition of equilibrium is that the density must be inversely as 
the square root of the temperature, and since the pressure is as the product 
of the density into the temperature, the pressure will be directly proportional 
to the square root of the absolute temperature.

Ihe theory of thermal effusion through a small hole in a thin plate is 
therefore a very simple one. It does not involve the theory of viscosity at all.

Ihe finer the pores of a porous plate, and the rarer the gas which effuses 
through it, the more nearly does the passage of gas through the plate corre
spond to what we have called effusion, and the less does it depend on the 
viscosity of the gas.

The coarser the pores of the plate and the denser the gas, the further 
does the phenomenon depart from simple effusion, and the more nearly does it 
approach to transpiration through a capillary tube, which depends altogether on 
viscosity.
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To return to the case of transpiration through a capillary tube. When 
the temperature is uniform

+ ................................... (78).o/x az \ a J '

By experiments on capillary tubes of glass, MM. Kundt and Warburg 
found* for the value of G for air at different pressures and at from 17°C. 
to 27° C.,

g
Cr = - centimetres............................................(79)

where p is the pressure in dynes per square centimetre, which is nearly the 
same as in millionths of an atmosphere. For hydrogen on glass

15 (7 =—centimetres ........................................ (80).

When there is no flow of gas in a tube in which the temperature varies 
from end to end, the pressure is greater at the hot end than at the cold 
end. Putting Q = 0 we have

dO^^t + lGa ........................................(81>-

The quantity 6 is just double of that calculated in section (3) of the 

introduction, and is therefore in C.G.S. measure 0'63 xp for dry air at 15° C. 
Let us suppose a = 0'01 centimetre, and the pressure 40 millimetres of mercury, 
then G= '00016 centimetre.

If one end of the tube is kept at 0°C. and the other at 100° C., the 
pressure at the hot end will exceed that at the cold end by about 1'2 
millionths of an atmosphere.

The difference of pressure might be increased by using a tube of smaller 
bore and air of smaller density, but the effect is so small that though the 
theoretical proof of its existence seems satisfactory, an experimental verification 
of it would be difficult.

* Pogg. Ann., July, 1876.



[From the Cambridge Philosophical Society's Transactions, Vol. XII.]

XCIV. On Boltzmann’s Theorem on the average distribution of energy in a system 
of maternal points.

Dr Ludwig Boltzmann, in his “Studien uber das Gleichgewicht der 
lebendigen Kraft zwischen bewegten materiellen Punkten ” \_Sitzb. d. k. Akad. 
Wien, Bd. lviii., 8 Oct. 1868], has devoted his third section to the general 
solution of the problem of the equilibrium of kinetic energy among a finite 
number of material points. His method of treatment is ingenious, and, as far 
as I can see, satisfactory, but I think that a problem of such primary importance 
in molecular science ought to be scrutinized and examined on every side, so 
that as many persons as possible may be enabled to follow the demonstration, 
and to know on what assumptions it rests. This is more especially necessary 
when the assumptions relate to the degree of irregularity to be expected in 
the motion of a system whose motion is not completely known.

Mr H. W. Watson, in his Treatise on the Kinetic Theory of Gases*, has 
developed with great clearness the steps of the investigation of the distribution 
of energy among a set of particles which are supposed to act on each other 
oidy at very small distances. The particles may be acted on by external forces 
such as gravity, but it is expressly stipulated that the time during which a 
particle is encountering other particles is very small compared with the tune ‘ 
during which there is no sensible action between it and other particles; and 
also that the time during which a particle is simultaneously within the distance 
of molecular action of more than one other particle may be neglected.

Now this method of treating the question, however necessary it may be 
in the subsequent investigation of the processes of diffusion, &c. in gases, is 
inapplicable to the theory of the equilibrium of temperature in liquids and

* Clarendon Press Series, 1876.
VOL. II. 90
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solids, for in these bodies the particles are never free from the action of 
neighbouring particles. It is true that in following the steps of the investi
gation, as given either by Boltzmann or by Watson, it is difficult, if not 
impossible, to see where the stipulation about the shortness and the isolation 
of the encounters is made use of. We may almost say that it is introduced 
rather for the sake of enabling the reader to form a more definite mental 
image of the material system than as a condition of the demonstration. Be 
this as it may, the presence of such a stipulation in the enunciation of the 
problem cannot fail to leave in the mind of the reader the impression of a 
corresponding limitation in the generality of the solution.

In the theorem of Boltzmann which we have now to consider there is no 
such limitation. The material points may act on each other at all distances, 
and according to any law which is consistent with the conservation of energy, 
and they may also be acted on by any forces external to the system provided 
these also are consistent with that law.

The only assumption which is necessary for the direct proof is that the 
system, if left to itself in its actual state of motion, will, sooner or later, pass 
through every phase which is consistent with the equation of energy.

Now it is manifest that there are cases in which this does not take place. 
'1 he motion of a system not acted on by external forces satisfies six equations 
besides the equation of energy, so that the system cannot pass through those 
phases, which, though they satisfy the equation of energy, do not also satisfy 
these six equations.

Again, there may be particular laws of force, as for instance that according 
to which the stress between two particles is proportional to the distance between 
them, for which the whole motion repeats itself after a finite time. In such 
cases a particular value of one variable corresponds to a particular value of 
each of the other variables, so that phases formed by sets of values of the 
variables which do not correspond cannot occur, though they may satisfy the 
seven general equations.

But if we suppose that the material particles, or some of them, occasionally 
encounter a fixed obstacle such as the sides of a vessel containing the 
then, except for special forms of the surface of this obstacle, each encounter 
will introduce a disturbance into the motion of the system, so that it will 
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pass from one undisturbed path into another. The two paths must both satisfy 
the equation of energy, and they must intersect each other in the phase for 
which the conditions of encounter with the fixed obstacle are satisfied, but they 
are not subject to the equations of momentum. It is difficult in a case of such 
extreme complexity to arrive at a thoroughly satisfactory conclusion, but we may 
with considerable confidence assert that except for particular forms of the surface 
of the fixed obstacle, the system will sooner or later, after a sufficient number 
of encounters, pass through every phase consistent with the equation of energy.

I shall begin with the case in which the system is supposed to be contained 
within a fixed vessel, and shall afterwards consider the case of a free system, 
or of a system contained in a vessel rotating uniformly about an axis which 
itself moves uniformly in a straight line.

I have found it convenient, instead of considering one system of material 
particles, to consider a large number of systems similar to each other in all 
respects except in the initial circumstances of the motion, which are supposed 
to vary from system to system, the total energy being the same in all. In 
the statistical investigation of the motion, we confine our attention to the number 
of these systems which at a given time are in a phase such that the variables 
which define it lie within given limits.

If the number of systems which are in a given phase (defined with respect 
to configuration and velocity) does not vary with the time, the distribution of 
the systems is said to be steady.

It is shewn that if the distribution is steady, a certain function of the 
variables must be constant for all phases belonging to the same path. If the 
path passes through all phases consistent with the equation of energy, this 
function must be constant for all such phases. If however there are phases 
consistent with the equation of energy, but which do not belong to the same 
path, the value of the function may be different for such phases.

But whether we are able or not to prove that the constancy of this 
function is a necessary condition of a steady distribution, it is manifest that 
if the function is initially constant for all phases consistent with the equation 
of energy, it will remain so during the motion. This therefore is one solution, 
if not the only solution, of the problem of a steady distribution.

Now we know from the empirical laws of the diffusion of heat that the 
problem of the equilibrium of temperature in an isolated material system has

90—2
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°n y °ne solutlon- But we have found one solution of the problem 
of equilibrium of energy in a system of material points in motion. If, therefore, 
the real material system in which the equilibrium of temperature takes place 
is capable of being accurately represented by a system of material points (as 
defined in pure dynamics) acting on each other according to determinate, though 
unknown, laws, then the mathematical condition of the equilibrium of energy 
must be the dynamical representative of the physical condition of the equality 
of temperature.

It appears from the theorem that in the ultimate state of the system the 
average kinetic energy of two given portions of the system must be in the 
ratio of the number of degrees of freedom of those portions. This, therefore, 
must be the condition of the equality of temperature of the two portions of the 
system.

Hence at a given temperature the total kinetic energy of a material system 
must be the product of the number of degrees of freedom of that system 
into a constant which is the same for all substances at that temperature, being 
in fact the temperature on the thermodynamic scale multiplied by an absolute 
constant.

If the temperature, therefore, is raised by unity, the kinetic energy is 
increased by the product of the number of degrees of freedom into the absolute 
constant.

The observed specific heat of the body, expressed in dynamical measure, is 
the increment of the total energy when the temperature is increased by unity. 
The observed specific heat cannot therefore be less than the product of the 
number of degrees of freedom into the absolute constant, unless the potential 
energy diminishes as the temperature rises.

Dynamical Specification of the motion.

We shall begin by supposing the material system to be of the most general 
type, having its configuration determined by the n variables q^ q....q^ anj p.g 
motion determined by the corresponding momenta pv pt...pn. The state of the 
system at any instant is completely defined if we know the values of these 
2n variables for that instant.

We shall suppose the forces acting between the parts of the system to 
be of the most general kind consistent with the conservation of energy. This 



OF ENERGY in a system of material points. 717

may be expressed by defining V, the potential energy of the system, as a 
function of the variables which define the configuration.

The kinetic energy of the system is denoted by T. We shall suppose it 
to be expressed in terms of the g’s and p’s as in Hamilton’s method. The 
total energy is denoted by

E=V+T................................................ (1),
and is a constant during the motion of the system.

Hamilton’s equations of motion for this system are

dt ~ dpr ................................................ 1 ’’

dpr _ dE 
dt — dqr .............................................(3),

where qr and pr are the co-ordinate and the momentum corresponding to each 
other.

Let us now consider a finite motion of the system. Let the initial co
ordinates and momenta be distinguished by accented letters, and the final co
ordinates and momenta by the same letters unaccented.

To define completely such a motion requires 2n+l variables to be given. 
These may be the n initial co-ordinates, the n initial momenta, and the time 
occupied by the motion.

There is another method however in which the 2n +1 variables are the 
n initial co-ordinates, the n final co-ordinates, and the total energy. When 
these quantities are given there are in general only a finite number of possible 
motions.

Definition of the “Action” of the system during the motion.

Twice the time integral of the kinetic energy, taken from the beginning 
to the end of the motion, and expressed in terms of the initial and final 
co-ordinates and of the total energy, is called the “Action” of the system 
during the motion. If we denote it by A,

A = l2!Tdt ................................................ (4),

and is expressed as a function of q'...qn', q^.-q^ and E.
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It is shewn in treatises on dynamics* that
dA

~Pr (5),

and dA
dqr Pr (6).

Hence dp^ _ d'A _ dp, 
dq, dq'dq, dq' .................................... (7).

The indices r and s in this equation may be the same or different.
Also if t' and t 
of the motion,

are the values of the time at the beginning and at the end

dE~ t-t' ................................................ (8).

Hence (») ^d “ A ........................(10).
dE dqr v ’ dE dq, ' '

In the course of our investigation we shall have to compare the product 
of the differentials of the co-ordinates and momenta at the beginning of the 
motion with the corresponding product at the end of the motion. We shall 
write for brevity ds = dq....dqn for the product of the differentials of the co
ordinates, and d(j- = dpl...dpn for the product of the differentials of the momenta, 
and we shall use the product ds' ds dE as a middle term in comparing ds' da'dt' 
with dsdadt.

Now

where

ds' da' dt' = ds' ds dEt±(^.......
\dq. dqn dE)

S ± dt’\
\dq........ dqn dEj

denotes the functional determinant

* Thomson and Tait’s Natural Philosophy, § 330.

dp.' dp.' dp^
dq/ “ dqn ’ dE

dp,' dp: dp:
dq. ’ ” dqn * dE

dt' dt' dt'
dq.' - dqn’ dE
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Substituting for the elements of this determinant their values as given by 
equations (7), (9), and (10) it becomes

dq. ’
dpn 
dq;’

dt 
dq;

dp. dpn dt ............................(13)-
dqn ’ dqn’ d'/u
dp, dpn dt
dE' "• dE’ dE

Now the rows in this determinant are the same as the columns in the former 
one; the accented and unaccented letters being exchanged and the signs of 
all the elements changed. We may therefore express the relation between the 
two determinants in the abbreviated form

(dp; dpn' dt'\ v.+1 y (dp. dpn dt\
~ * \dq........ dqn dE) “ (“ > * ± \dq;.......dqn' 'dE)......... (1

Hence ds' da' dt' = ds' dsdEt±l^-.......
\dq. dqn dE)

= (- )n+W ds dEt ± .......
\dq. dq^ dE)

= ^ — )n+'da ds dt

= dsdadt ....................................................... (15).

If we suppose the time, t — t', to be given, dt = dt' and 

ds' da' = ds da............................................ (16),

or dq).......dq,;dp)....... dpn' = dq........ dqndp........ dpn ........... (17).

The initial state of the system is a function of 2n variables. We have 
hitherto supposed these to be the n co-ordinates and the n momenta, but 
since the total energy E is a function of these variables we may substitute 
for one of the momenta, say pt, it9 value in terms of the n co-ordinates, 
the n — 1 remaining momenta, and E, and thus express every quantity we
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have to deal with in terms of the latter set of variables. Then since by 
equation (2)

dE dq' . z 
dp'~ dt ~?1 .....................................

d,h.......dpx.............. dp^~dq'....... dq^ dpx....... dp^dE —

Similarly we find for the final state of the system

(is),

..(19).

dqx.......dqndpx....... dpn = dq. dqndp,.......dpn dE
71

(20)-

The left-hand members of these equations have been proved equal, and in 
the right-hand members dE is the same at the beginning and end of the 
motion. Dividing out dE we find

dti.......d^dp3'.....dp: ± = dqx.........dqndpa........dpn I .........(21).
'zi .71

This equation is applicable to the case in which the total energy is supposed 
not to vary from one particular instant of the motion to another, and in which, 
therefore, the 2n variables are no longer independent, but, being subject to the 
equation of energy, are reduced to 2n—1.

Statistical Specification.

We have hitherto, in speaking of a phase of the motion of the system, 
supposed it to be defined by the values of the n co-ordinates and the n momenta. 
We shall call the phase so defined the phase (pq\ We shall now adopt a 
wider definition by saying that the system is in the phase (axb) whenever the 
values of the co-ordinates are such that q. is between bx and bx + dbx, qt between 
b. and b^ + db,, and so on; also p3 between a, and a2 + cZa2, and so on. The 
limits of the first component of momentum, plt are not specified, because the value 
ol px is not independent of the other variables, being given in terms of E 
and the other 2n -1 variables in virtue of the equation of energy.

1 he quantities a, b are of the same kind as p and q respectively, only 
they are not supposed to vary on account of the motion of the system. In 
the statistical method of investigation, we do not follow the system during 
its motion, but we fix our attention on a particular phase, and ascertain whether
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the system is in that phase or not, and also when it enters the phase and 
when it leaves it.

Boltzmann defines the probability of the system being in the phase (a^) 
as the ratio of the aggregate time during which it is in that phase to the 
whole time of the motion, the whole time being supposed to be very great. 
I prefer to suppose that there are a great many systems the properties of 
which are the same, and that each of these is set in motion with a different 
set of values for the n co-ordinates and the n — 1 momenta, the value of the 
total energy A being the same in all, and to consider the number of these 
systems which, at a given instant, are in the phase (a^). The motion of each 
system is of course independent of the other systems.

Let A7 be the whole number of systems, and let the number of these 
which, at the time t, are in the phase (a^) be denoted by 2V (a„ b, t). The 
aim of the statistical method is to express N (a„ b, t) as a function of A7, 
of the co-ordinates and momenta with their limits, and of t. It is manifest 
that N can only enter the function as a factor, for the different systems do 
not act on each other. Also any differential as da or db can only enter as 
a factor, for the number of systems within any phase must vary in the ratio 
of the interval between the limits of that phase. We may therefore write

N(afit)=Nf(at,....... a„, b..........bn, t)da,....... dandbt....... dbn......(22), 
where we have to determine the form of the function /

We shall now follow the motion of these systems from the time t', when 
we begin to watch the motion, to the time t when we cease to watch it.

Since the systems which at the time t form the group Nfa, b, t) are 
individually the same systems which at the time t' formed the group N (a^, b', t') 
wo have

N{au b, 0 = A7«, b', t) ................................ (23),
or W.......0^------db^Nf^....... t^da^....... dbn' ............ (24).

But by equation (21)
da........ dbn {by^da;....... </&nz(M'1 .................... (25).

Hence /(aa.......t)b^f^....... f) C............................ (26),
where C is a constant for all phases of the same motion, and we may write 

...........................  (27), 
and A7 (an b, t) = N C (by* da2.......dbn .....................(28).

VOL. n. 9!
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If the distribution of the N systems in the different phases is such that 
the number in a given phase does not vary with the time, the distribution 
is said to be steady. The condition of this is that C must be constant for 
all phases belonging to the same path. It will require further investigation to 
determine whether or not this path necessarily includes all phases consistent 
with the equation of energy.

If, however, we assume that the original distribution of the systems according 
to the different phases is such that C is constant for all phases consistent 
with the equation of energy, and zero for all phases which that equation shows 
to be impossible, then the law of distribution will not change with the time, 
and C will be an absolute constant.

We have therefore found one solution of the problem of finding a steady 
distribution. Whether there may be other solutions remains to be investigated.

Let N (6) denote the number of systems in which q^ is between bx and 
b^db^ qt between b2 and ba + dbt, and so on, and qn between bn and bn + dbn, 
the momenta not being specified otherwise than by their being consistent with 
the equation of energy, then

— JNfa, b)da3...dan............................(29),

the integration being extended to all values of the momenta consistent with 
the equation of energy.

Io simplify the integration let us suppose the variables transformed so that 
the kinetic energy is expressed in terms of the squares of the component momenta, 

T= I ai + Ma a? + • • • + M» an) .(30),
where are the transformed momenta, and are functions of the
co-ordinates, which we may call moments of mobility, and which, in the case 
of material points, are the reciprocals of the masses.

Now let us assume
........................................ (31),

M»-i^n-1’ = M„(^n3-an2) ..................  (32),

=mU^-? - a.-?) ............................(33),

........................................... (34).
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Then by the equation of energy
M^MA’-a,’)........................................ (35).

Of these quantities, An is a function of the co-ordinates only, because J? is 
given and V is a function of the co-ordinates, An_2 is a function of the co
ordinates and an, An_, of the co-ordinates and of an and an_„ and so on.

Also by equation (2)
i dT

= ........................................(36).
To integrate the expression

ft / —

we begin by integrating with respect to a,, thus

J C^da^j C^^^-a^da,....................... (37),

the limits of integration being ±A2. The result is

............................ (as).

For the next integration we have 

^A,'yda.= [\(A,'-a,‘)}>da,= ® A'..................... (39).
J J -A, 1 #

Hence after r integrations, r being any number less than n, the result is 
(r(|))r+1 . r-l

NC >._l i {piPt• 'Mr+i) ‘ dar+i...da,Tdbl...dbn........ (40).
r—

Putting r — n— 1 and remembering that p.nAn* = 2E — 2F, we find

V(fc)=A'cl^W(w...^ .................... (41).
r -

This is the number of systems whose configuration is specified by the 
variables ^...b^ while the momenta may have any values consistent with the 
equation of energy.

91—2
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The quantity E—V, which occurs in this equation, is, by equation (1), 
equal in magnitude to T, the kinetic energy of the system. The quantity T, 
however, is defined explicitly in terms of the velocities or the momenta of the 
system, whereas E— V does not involve these quantities explicitly, but is 
expressed as a function of the configuration.

We shall find it convenient, however, especially in the study of more 
complicated problems, to remember that the number of systems in a given 
configuration is a function of the kinetic energy corresponding to that configuration.

If the kinetic energy is not expressed as a' sum of squares, but in the 
more general form,

T=|[ll] a/+[12] a1aJ + &c.
+ i[22] a* + [23] + &c.............................. (42),

where the quantities denoted by [11] &c. are functions of the co-ordinates 
which we may call the moments and products of mobility of the system ; 
then since the discriminant

[Hl 
[21],

[12], 
[22], [2n]

(43)
[n2], [nn]

is an invariant, its value is the same when T is reduced to a sum of. . . , . ouiu ui squares,
in which case all the elements except those in the principal diagonal of the 
determinant vanish, and we have

............................................................................................................ ...

and we may write the value of N (6),

» a-< (25-2 V^'<a,...db...............(45)
r \2/

If the system consists of n material particles, whose masses are m 
then the number of degrees of freedom is n = 3n and 1" '

/A^ = p., = /^J = nl11■, and so on................(46)
Hence in this case we may write

[2B-2P]^ db....db. ............(47)
F \ 2 /
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These expressions give the number of systems in a given configuration 
only when E —V is positive for that configuration, for since the kinetic energy 
is necessarily positive, the potential energy cannot exceed the total energy. 
For configurations specified in such a way that if they existed V would be 
greater than E, the value of N (b) is zero.

The value of N (6) is also zero for configurations which, though they make 
V less than E, cannot be reached by a continuous path from the original 
configuration without passing through configurations which make V greater than E.

We shall return to this expression for the number of systems in a com
pletely specified configuration, but in the mean time it will be useful to 
consider how many of these systems have one of their momenta, pn, between 
given limits. In this way we shall be able to determine completely the 
average distribution of momentum among the variables without making any 
assumptions about the nature of the system which might limit the generality 
of our results.

In order to find the number of systems in the configuration (b) for which 
one of the momenta, say pn, lies between an and an + dan, we must stop 
before the last integration. Putting r = n-2 in equation (40)

W = dandbl...dbn......(48).
\ 2 ]

The whole number of systems in configuration (&) is given by (45). Hence 
the proportion of these systems for which an lies between an and an + cZa„ is

9-4 pAA n~8

...................... (49).

\ ^ /
If we write 

.............................................. (50)> 
then &n denotes the part of the kinetic energy arising from the momentum an. 
The proportion of the systems in configuration (6) for which bn is between An 
and &„4-cW:n is
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Since any one of the variables may be taken for qn, the law of distribution 
of values of the kinetic energy is the same for all the variables. The mean 
value of the kinetic energy corresponding to any variable is

7)-|T .................................... (52).

The maximum value is T=nK................................................ (53).

The mean value of kr is
1.3. ..2r-l■------------------ ---- -  nr Ar................................... (54).n ,n + 2...n + 2r — 2 ' '

When n is very large, the expression (51) approximates to

............................................(“)■

Recapitulation.

The result of our investigation may therefore be stated as follows:
(a) We begin by considering a set of material systems which satisfy the 

geneial equations of dynamics (2) and (3), and the equation of energy (1). If 
in these systems the distribution of configurations satisfies equation (45), and 
the distiibution of motion satisfies equation (51), these equations will continue 
to be satisfied during the subsequent motion of the system. One result of 
equation (51), to which we shall have to refer, is that the average kinetic 
energy corresponding to any one of the variables is the same for every one 
of the variables of the system.

(^) We now turn our attention to a system of real bodies enclosed in 
.i rigid vessel impervious to matter and to heat. We know by experiment that 
in such a system the temperature cannot remain steady in every part unless 
the temperature of every part of the system is the same, and that this condition 
is necessary in whatever manner the configuration of the system may be varied 
by altering the position and mean density of the portions of sensible size into 
which we are able to divide it.

Now if the system of real bodies is a material system which satisfies the 
equations of dynamics, and if equations (45) and (51) are also satisfied, the 

of the system will, as we have shewn, (a), be steady in every respect, 
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and therefore in respect of temperature. Hence by (/3) the temperature of every 
part of the system must be the same.

Uierefore if equations (45) and (51) are satisfied, the condition of equality 
of temperature is also satisfied.

But the condition of equality of temperature does not depend on the 
configuration of the system, for though we can alter the configuration by external 
constraint we cannot prevent the temperature from becoming equalized. It does 
not depend, therefore, on equation (45). We must therefore conclude, that if 
equation (51) is satisfied, the condition of equality of temperature is also satisfied, 
or, in other words, that equation (51) is the condition of equality of temperature.

Hence when two parts of a system have the same temperature, the average 
kinetic energy corresponding to any one of the variables belonging to these 
parts must be the same.

If the system is a gas or a mixture of gases not acted on by external 
forces, the theorem that the average kinetic energy of a single molecule is the 
same for molecules of different gases is not sufficient to establish the condition 
of equilibrium of temperature between gases of different kinds such as oxygen 
and nitrogen, because when the gases are mixed we have no means of ascer
taining the temperature of the oxygen or of the nitrogen separately. We can 
only ascertain the temperature of the mixture by putting a thermometer into it.

We cannot legitimately assert that the temperatures of the oxygen and 
of the nitrogen must be equal because they are in contact with each other, 
for the only way in which we can conceive the oxygen or the nitrogen as 
existing in the mixture is by picturing the medium as a system of molecules, 
and as soon as we begin to see the molecules distinctly, heat becomes resolved 
into motion.

But since our investigation is equally applicable to a system of any kind, 
provided only it satisfies the equations of dynamics, we may suppose it to 
consist of pure oxygen and pure nitrogen separated by a solid diaphragm, 
the solid diaphragm consisting of molecules capable of motion, but acting on 
each other with forces which are sufficient to prevent any molecule from getting 
far apart from its neighbours except under the action of disturbing forces 
greater than any which would occur in a system at the given temperature. 
In this system, though the oxygen and the nitrogen cannot mix, each can make 
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an exchange of molecular energy with the surface molecules of the diaphragm 
and exchanges of energy can go on within the solid diaphragm itself without 
any exchange of molecules between distant parts of the diaphragm.

Hence, in this system, the average kinetic energy of a molecule of oxygen 
will become equal to that of a molecule of nitrogen in the final state of the 
system, that is to say, when the temperatures of all parts of the system have 
become equal, and since in that final state we have pure oxygen on one side 
and pure nitrogen on the other, we can verify the equality of temperature by 
means of a thermometer, and we can now assert that the temperatures, not 
only of oxygen and nitrogen, but of all bodies, are equal when the average 
kinetic energy of a single molecule of each of these substances is the same.

Approximate value of the probability when V is small compared with E.

To find the number of systems the configuration of which is specified as 
regards the limits of certain of the variables while the other variables are left 
undetermined, we should have to integrate the expressions in equations (41), 
(45), or (47) with respect to each of the undetermined variables in succession, 
the integrations being extended to all values of these variables which are 
consistent with the equation of energy.

These integrations cannot be performed unless the potential energy of the 
system is a known function of the variables which determine its configuration. 
We cannot therefore in general continue the integration so as to determine 
the number of systems in which the limits are specified for some, but not all, 
of the variables.

But when the number of variables is very great, and when the potential 
energy of the specified configuration is very small compared with the total 
energy of the system, we may obtain a useful approximation to the value of 

w -2
\E — FJ 2 in an exponential form, for if we write, as in equation (53), E = nK,

n-2 n-2 n-2, /. F\
^E^e^ kK'

h~2 V
= E* e"“............................................(56),

nearly, provided n is very great and V is small compared with E. The 
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expression is no longer approximate when V is nearly as great as E, and it 
does not vanish, as it ought to do, when V=E.

Hence when the potential energy of the system in the given configuration 
is very small compared with its kinetic energy, we may use the approximately 
correct statement, that the number of systems in a given configuration is 
inversely proportional to the exponential function, the index of which is half 
the potential energy of the system in the given configuration divided by the 
average kinetic energy corresponding to each variable of the system.

If we divide the system into any two parts, A and B, we may consider 
V, the potential energy of the whole system, as made up of three parts, 
VA and the potential energy of A and B, each on itself, and W, that of 
B with respect to A.

When, as in the case of a gas, the parts of a system are in a great 
degree independent of each other, the average values of VA and may be 
treated as constants, and the variations of V will be the same as those of W, 
so that the variable part of the exponential function will be reduced to

w 
.................................................(57).

If we suppose that A denotes a single molecule of a particular kind of 
gas, and that B denotes all the other molecules, of whatever kind, in the 
system, then, since there are many molecules similar to A, we may pass, from 
the number of systems in which A is within a given element of volume, to 
the average number of molecules similar to A which are within that element, 
or, in other words, the average density of the gas A within that element.

We may therefore interpret the expression (57) as asserting that the density 
of a particular kind of gas at a given point is inversely proportional to the 
exponential function whose index is half the potential energy of a single 
molecule ol the gas at that point, divided by the average kinetic energy 
corresponding to a variable of the system.

We must remember that since the centre of mass of a molecule is 
determined by three variables, the mean kinetic energy of agitation of the 
centre of mass of a molecule is three times the quantity K which denotes 
the mean kinetic energy of a single variable.

VOL. II.
92
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Part II. A Free system.

In a material system not acted on by external forces the motion satisfies 
six equations besides the equation of energy, so that we must not include in 
our integration all the phases which satisfy the equation of energy, but only 
those of them which also satisfy these six equations.

In what follows, we shall suppose the system to consist of n particles, 
whose masses are m^.m^ and whose co-ordinates x, y, z, and velocity-components 
u, v, w, are distinguished by the same suffix as the particle to which they belong.

Let us now consider a system consisting of s of these particles, and write 
m1+m1 + &c. + m, = M, .................................... (5g),

+ m.^ + &c. + m,x, = M,X„'
+n^/t+&c.+m,y, = M,Y„ . ........................... (59),
+ m^ + &c. + = M,Z„

-~n M, will be the mass of the minor system and X„ Y„ Z, the co-ordinates 
of its centre of mass. If we also write

mlul 4- &c. 4- m,u, = M, U,, 1 
m^ 4- &c. 4- m,v, = M, V„ I-................................
mlwl4- &c. 4- m,w, = M, W„ ]

- z^) 4- &c. 4- m,(y,w, - z,v,) = F,4- M,( Y,W, - Z, V,),' 
m^u. - x^) 4- &c. 4- m, (z,u, - x,w,) = G, 4- M,(Z,U, -X,Wt), ■ ...(61), 
"h (x^ - y^ 4- &c. 4- m, (x,v, - y,^) = II, 4- M, (X, V, - Y, U,),

then U„ V„ W, will be the velocity-components of the centre of mass, and 
F„ G„ JI, the components of angular momentum round this point.

We shall also write

^m^u; 4- v* 4- w/) 4- &c. 4- +vI+w;) = T,................. (62).

The seven conditions satisfied by the whole system are that the seven 
quantities Un, 1 n, JPn, Fn, Gn) IIn and are constant during the motion.

Under these conditions the 3/i momentum-components are not independent. 
We shall therefore transform equation (17) into one in which the differentials
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of the first seven velocity-components are replaced by the differentials of the 
seven constants.

The functional determinant is found by differentiating the seven quantities 
K>, Ku ^Ku Fn, Gn, Hn and E with respect to the momenta mxux, mxvx, 

m3wt; and maua. We thus obtain1, 0, 0, o, Zu -y» uxo, 1, o, -Zu 0, Xx,o, 0, 1, -Xx, o, wx1, o, 0, o, za, -y» u. = △.......................(63),o, 1, 0, Zu o,o, 0, 1, -x3t o, w31, 0, 0, o, z„ -y„ . u3

which we may write ^=arart3....................................(64),

where a = (yx-ya) (za-z3) - (y3-y3) fa -za)........................... (65),

or twice the projection on the plane of yz of the triangle whose vertices are 
m„ m2, and m3, and

= (tq-u3) (xx-x3) + (v,- v3) (yx-y^ + (w,- wa) fa-za)....... (66),

or the rate of increase of the distance between mx and m3 multiplied into that 
distance.

In a system composed of material particles, each component of momentum 
is equal to the corresponding velocity-component multiplied into the mass of 
the particle. We may therefore write px=mxux and so on, and since the masses 
are invariable we may omit them from both members of equation (17), and write it 

dx'.. .dz^ dux. ..dw^ — dxx.. .dzndux.. .dwn...................... (67).

But dUdVd}VdFdGdHdE = mx m3 m3 ar'^duxdvxdwxduadv3dw3du3 
-mxm.^m3 ar^ rx3dux....... du3...................... (68).

Hence te;..^dv; d^................
mx m3 m3 a r 12 r lt mxm3maarx2rx3 ' ‘

and equation (29) becomes

r
n-7

C(mx m3 m3araru)~'dv3...dwn ................ (70).

92—2
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We shall find it useful in what follows to define the energy of internal 
motion as the excess of the whole kinetic energy of the system over that 
which it would have if it were moving like a rigid body with the same con
figuration, and the same components of momentum and of angular momentum.

If we suppose the internal motion of the system to be destroyed in a 
very short time by internal forces, so that the configuration is not sensibly 
altered during the process, then the work done by the system against these 
forces is the measure of the energy of internal motion.

Writing T for the kinetic energy referred to the origin, K for that of 
the mass moving with the velocity of the centre of mass, J for the kinetic 
energy due to the rotation of the system as a rigid body, and I for the 
energy of internal motion, we have

where
I=T-K-J .................................................... (71),
r=S[im(^+v’.}-w3)]...................................... (72),
K^M^-yV^+W') .................................... (73),
J— i (^ + Gq + Hr)........................................ (74),

where p, q, r are the components of angular velocity with respect to the 
axes of x, y, z and are related to F, G, II by the equations

Ap — Nq — Mr = F, 
-Np + Bq- Lr = G, 
— Mp— Lq+ Cr=H,

where

aF— nG — mH=p, 
-nF+bG- UI=q, 
—mF— IG+ cH=r,

...........(75).

A = [(y- y)’-i-(z-Z)3]
B = ^m l(z-Zy + (x-X)^ 
C^m^x-X^ + ^y-Y)^

Writing for the sake of brevity

L = tm (y-Y)(z-Z) 
M^tm (z—Z)(x—X) 
N^m^x-X^y-Y)

...(76).

A, -N,
-N, B,
-M, -L,

-M 
- L

C
d^

a, 
- n, 
— m,

the relations between the moments and products 
inertia will be given by equations of the forms

— n, — m
b, - I

— I, c
........... (77),

of mobility and those of

D =

aD = BC-D Ad^bc-P
ID = - MN-AL, Ld=—mn — cd, ■..............

Dd = \.
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If we write
£=u - U +qz-ry' 
y = v — V + rx —pz 
^=10— IK +py — qx

..................................... (79),

then £ y, I will be the velocity-components of a particle with respect to 
axes passing through the centre of mass of the system and rotating with the 
angular velocity whose components are p, q, r. We may therefore call £ y, £ 
the velocity-components of the internal motion. If the system were to become 
rigid, the internal motion would become zero. The energy of internal motion 
may be expressed in terms of £ y, thus:_

(80).

We have now to express the energy of internal motion of a system of 
s-1 particles in terms of the quantities U, V, W, F, G, II and T belonging 
to the system of s particles, together with the position and velocity of the 
3th particle.

To avoid the repetition of suffixes we shall distinguish quantities belonging 
to the minor Bystem of ,-l particles by accented letters, and quantities 
belonging to the complete system of , particles and the particle m. by unaccented 
letters. We shall also write

Mm 
~M

We thus find M'^M-m
M A = MX—mx
M U = MU —mu, 

F'=F-n(y~ Y) (w- W} + y,{z-ZUv- 7) 
A =A-n(y-Y)a-n(z-z)' 
L'^L-p^y- Y) (z — Z) 
r ~ Y-^m (ua + v’ + w’)
AZ = /f+^[(^-w)’+(P-*09 + (^^

+1 pvnrpssi 6 °f ^ie axes reference is arbitrary, we may simplify 
for6 the axis°nof & rS f°r tllQ centre of mass of tlie system M, and 

e me passing through the particle m. We may also turn 
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the axes of x and y about that of z till A becomes a maximum th* 
of which is ’ tlle condition

LM+ CN= 0.
We shall also reckon velocities with reference to the centrP aP

the system M. °f ma8S of

With these simplifications we

A'= A — pz3

find
G' = G — puz
B'=B—pz3
M’ = M

ir=ii) 
a=c

b' =

a
1 — apz 
_b_

1 — bpz3

c' = c + /az2 m3
l-bpz2 1—apz3) ’

1 — bpz3 
, m 

w --------i1 — apz 

n' = n = Q,

(82).a =

D' = D{1- apz3) (1 - bpz3).

We are now able to calculate the energy of rotation, J', of the minor 
system:

2 J' = a'F'3 + b'G'3 + c'H'3 - 2l'G'H' - Zm'H'F' - 2nF'G'

[y^ - 2vpz {Fa - Hm)+/*z’ {Fa - IImy] = 2J+-----------i1 — apz

1 — bpz3 [u^pz- + 2upz {Gb - IF) + p^{Gb- IF)3]

(83),
• (84).

Combining these results and reducing we find for the energy of internal 
motion of the system M'

I' = I- }p{l- b^yi (w - Gb + IF)3 - ip (1 - apz3)-^ {V-Fa + Hl)3 - ipW\..{85).

Hence Ir^dudvdiv^--------—■■ ■ .iJJJ \ 2 /
the integration being extended to all values of M> and w which make I' 
positive.

Now {1-apz3) (1 -bpz3) = ^, and this is an invariant.
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Hence in general, whatever axes we choose,

JJJ[d4_/ A-J 1 I,_*du,dv,dwt = \ 4 /

(87).

lor the system consisting of the two particles ?«i and m, the energy of 
rotation is 

................................ (88),

and the energy of internal motion is

•4—1 ............................................. (89).

Hence we may write equation (70)

^(b)=P C(m*matmaa1ra)-1(2-^-'\ iI2~idv,...dwn............ (90).

We have first to express Z3 in terms of quantities having the suffix r

If we make the plane of yz pass through the three particles mt, m3, 
so that the origin coincides with their centre of mass and has the same velocity, 
and the axis of z passes through ?n„ then a is twice the area of the triangle 
whose vertices are mlt m, and ma,

KT   p 1 -^4^3 /"* Z7 rr tt

z,vs, G3-G3---^~z3ua, Ha=Ha......... (91),

a?n3«,= Ga (yt-y^ + II, («,-z3)................................ (92),

7 J4W, , Mama za\ 
H nr I 1 + ... ... .. s I

^Gaza y .L. MJ^z, yi _
\ nilmarj+M,mazJ J 4 ^-d93)-

We have now to integrate

dvadwa,

extending the integration to all values of v„ and w, which make Ia positive, and
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remembering that equation (92) shews that ut is independent of w
The result is

^1, ^dvtdwt = M’r W 
r<l? W ' ..........(94).

Now for the three particles mu m,, mit

D3 = —^?a- pa’m3mt + r„s+ rja- ..................... (05).

where ra, and r13 are the distances between the particles, and a i3 the area 
of the triangle m3m3m3.

Also (m^r^ + M^z?).......... (9 g ).

We may now write equation (90) in the form

AT(6) = J8 duv..dwn............. (97).

Continuing the integration by equation (87) we find
S»-8 /ril\3n-6 . , , 3b-8

W) = 2 * c (m,■.J4~‘Z>„~‘Z„~r.............

\ 2 /

(08).

where /„ is what we have defined as the energy of internal motion of the 
system, or the work which the system would do, in virtue of its motion, 
against the system of internal forces which would be called into play if the 
distances between the parts of the material system were in an insensibly small 
time to become invariable.

In order to determine the number of systems in a given configuration for 
which the velocity-components of the particle m„ lie between the limits 
u±^du, v±%dv, w±^dw, we must form the expression for N (b, un, vn, w„) 
by stopping short before the last triple integration.

We thus find N (6, un, vn, wn)
Sn-ll Irfi-ll3"-’ s 3 1 Rn-U

r \ 9 )
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If, as in equations (82) to (8G), we suppose the origin of co-ordinates to 
be the centre of mass of the whole system, the axis of z to pass through 
the particle mB, and the axes of x and y to be in the directions of the 
principal axes of the section of the momental ellipsoid normal to z, then writing 

^u-qz, v = v+pz, t = w.............................. (100),
so that £ y, £ are the velocity-components of mn relative to axes moving as 
the system would do if it were then to become rigid, with the angular velocity 
whose components are p, q, rt we may write

(1 ~ bp.Z2y'^ — (1 —ap.Zi)~17]i — lll.Zt........... (101).
The sum of the last three terms of this expression, with its sign taken positive, 
represents the part of the internal motion of the system which is due to the 
fact that the particle wn is moving with the relative velocity whose components 
are £ y, £.

We may also define it as the work which would be done by the particle 
against the internal forces of the system, if these forces were suddenly to 

become such as to render the whole system rigid in an infinitely short time.

Comparing this result with that obtained in equation (48), we see that 
the law of distribution of the velocities of the particle mn is the same as 
what it would be in a fixed vessel containing n-2 particles, provided that we 
substitute for u', v\ w3 the quantities (l-^)-^, (1-a/tz3)-^, f respectively.

Hence the mean square of the velocity in the direction of the line joining 
the particle with the centre of mass is the same at all points of the system, 
but the mean square of the velocity in other directions is less than this in 
the ratio of 1-ap.z2 to 1, where z is the perpendicular from the centre of mass 
on the line of relative motion of the particle, and a is the moment of mobility 
of the system about an axis through the centre of mass and normal to the 
plane through that centre and the line of motion.

When the product of the mass of the particle into the square of its 
distance fiom the centre is so small that it may be neglected in comparison 
with the moments of inertia of the system, then quantities like a/iz3 and by.? 
may be neglected in respect of unity, and we may assert that the mean square 
of the relative, velocity, for a particle of given mass, is the same in all directions 
and at all points of the system; but that for different particles it varies
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inversely as their masses; so that the average energy of motion relative to 
the moving axes is the same for particles of all kinds throughout the system.

We have already learned from equation (98) that in a free system of n 
particles the number of cases in which the system is in a given configuration, 
or, in othei words, the probability of that configuration, is proportional to the 
g _g
—- power of the energy of internal motion corresponding to that configuration.

We have next to consider the manner in which this probability depends 
on the position of a particular particle, say of the last particle, mn.

Let Inl* denote the energy of internal motion of the complete system when 
vin is at the centie of mass of the system and is without any velocity relative 
to that centre. It is manifest that in this case mn contributes nothing towards 
the energy of internal motion.

Now let mn be carried from the centre of mass to the point (0, 0, z) and 
left there without any velocity (that is, let u = v = w = 0).

Let W be the work which must be done against the forces of the system 
to effect this transference, then since the total energy of the system and the 
three angular momenta must be maintained constant, we shall have after this 
displacement, for the energy of internal motion of the remaining n — 1 particles,

1^ = 1 W........................................ (102).
But by equation (85)

A= A-i + (1 — ^z3) ’ (u — qzy + jjj, (1 —a/iz1)'1 (v+pz)*+|/iw’...(103).

Substituting the value of from equation (102), and remembering that 
u = v = w = 0, we find for the energy of internal motion in the new configuration

= ~ +1# (1 ~ ^z3)"1 q'z* + |p(1 - apz2) ...............(104).

The probability, therefore, of a configuration in which, the positions of all 

the other particles being given, that of mn is varied, is proportional to 
In being given by equation (104).

When, as in the case of a gas, there are a great many particles similar 
to mn, ve may speak of the density of the medium consisting of such particles 
in the element dxdydz. In this case, however, for reasons already given, neglect
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the quantities apz" and 6/xz2, and we may write m for p. We may also choose 
our axes in the manner which is most convenient. We shall therefore make 
the axis of z that round which the system, if it were rendered rigid, would 
rotate with velocity co, and we shall suppose this axis to be vertical, as 
otherwise a steady motion under the action of gravity could not exist, and we 
shall denote the horizontal distance from this axis by r.

We may now write for the density of the gas at the point (z, r)
3/1-8 

P = Po[l + (2Z„("))’l(»iwV-2myz)] 3 ...................... (105),
where p„ is the density at the origin.

When n is a very large number and when the second term of the binomial 
is very small compared with unity, we may write for this the exponential expression

- —
P = P»e ......................................... (10G).

If w0 is the mass of a molecule of hydrogen, will be the mass of a 
molecule of the kind of gas considered, where p is the chemical equivalent of 
the gas.

Also if 7 is the temperature on the centigrade scale, and a the coefficient 
of dilatation of a perfect gas, then since the “ velocity of mean square ” of 
agitation of the molecules of hydrogen at O’C. is 1-844x 10’ centimetres per 
second, the kinetic energy of agitation of a system containing n molecules of 
any kind will be

iw0n(l-844)’10“(l+aZ),
and the difference between this and the energy of internal motion may be 
neglected.

We thus find for the density at any point

..................................... (JOT).

Let us now consider a tube of uniform section placed on a whirling table 
so that one. end, zl, of the tube coincides with the axis while the other end, 
77, revolves about the axis with the angular velocity co. The linear velocity 
of B is coz, and we shall suppose, for the sake of easy calculation, that this 
ve ocity is one-tent i of the velocity of agitation of the molecules of hydrogen.

93—2
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The velocity of the end B would be 184’4 metres per second. If the tube 
contains hydrogen at 0°C., the ratio of the density of the gas at B to the 
density at A will be Or approximately 1+^p

If it contains a gas whose chemical equivalent is p,, the ratio will be

If the tube contains hydrogen and carbonic acid, and if a certain volume 
of the tube at A contains 200 parts of hydrogen and 200 of carbonic acid, 
then an equal volume of the tube at B will contain 201 parts of hydrogen 
and 222 parts of carbonic acid.

The time during which the experiment would require to be continued in 
order to obtain a given degree of approximation to the ultimate distribution 
of the mixed gases varies as the square of the length of the tube.

1 hus in Loschmidt s experiments on the diffusion of gases he used a tube 
about a metre long, and continued his experiments from half an hour to an 
hour in order to obtain the results from which he could best deduce the 
coefficient of diffusion.

In these experiments the inequalities of distribution of hydrogen and 
carbonic acid were reduced to less than a third part of their original value 
in half an hour, and if the experiment had gone on for two hours the 
differences from the ultimate distribution would have been reduced to a hundredth 
part of their original value.

We may therefore consider two hours as ample time for an experiment 
on the ultimate distribution of these two gases in a tube one metre in length.

But if we make the whirling tube 20 centimetres long, the differences of 
distribution from the ultimate distribution would be reduced to a hundredth 
part of their original value in a twenty-fifth part of the time, that is to say 
in 4 minutes 48 seconds.

If it were found more convenient to have bulbs on the ends of the tubes, 
so as to be able to secure the gas at each end before it got mixed up by 
the violent commotion arising from the stopping of the whirling tube, we 
should have to allow a longer time for the whirling.
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In order to obtain a similar distribution of tbe two gases in a vertical 
tube by tbe action of gravity the tube would require to be 1720 metres high, 
and in order to obtain the same degree of approximation to the ultimate 
distribution we should have to let the experiment go on for 675 years, 
carefully preserving the tube during that time from all inequalities of tempera
ture, which, by causing convection-currents, would continually mix up the gases 
and prevent their partial separation.



[From Nature, Vol. XVIII.]

XCV. The Telephone (Rede Lecture').

When, about two years ago, news came from the other side of the 
Atlantic that a method had been invented of transmitting, by means of 
electricity, the articulate sounds of the human voice, so as to be heard 
hundreds of miles away from the speaker, those of us who had reason to 
believe that the report had some foundation in fact, be^an to exercise our • • • O
imaginations in picturing some triumph of constructive skill—something as far 
surpassing Sir William Thomson’s Siphon Recorder in delicacy and intricacy as 
that is beyond a common bell-pull. When at last this little instrument appeared, 
consisting, as it does, of parts, everyone of which is familiar to us, and capable 
of being put together by an amateur, the disappointment arising from its 
humble appearance was only partially relieved on finding that it was really 
able to talk.

But perhaps the telephone, though simple in respect of its material and 
construction, may involve some recondite physical principle, the study of which 
might worthily occupy an hour’s time of an academic audience: I can only 
say that I have not yet met anyone acquainted with the first elements 
of electricity who has experienced the slightest difficulty in understanding the 
physical process involved in the action of the telephone. I may even go 
further, and say that I have never seen a printed article on the subject, even 
in the columns of a newspaper, which shewed a sufficient amount of mis
apprehension to make it worth preserving—a proof that among scientific subjects 
the telephone possesses a very exceptional degree of lucidity.

However, if the telephone has something to say for itself, it would seem 
hardly necessary for me to take up your time with any tedious introduction. 
It is unfortunate, however, that up to the present time the telephone has kept 
all his more perfect utterances to be whispered into the privileged ear of a 
single listener. When he is older, he may get more accustomed to public 
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speaking, but if we force him, in his present immature state, to exert his voice 
beyond what is good for him, it may sound rather too like the pot quarrelling 
with the kettle, and may call for the criticism with which Mr Tennyson’s 
Princess complimented the disguised Prince on his “ Song of the Swallow: ”—

“ Not for thee, she said,
O Bulbul, any rose of Gulistan
Shall burst her veil: marsh divers rather, maid, 
Shall croak thee sister, or the meadow crake 
Grate her harsh kindred in the grass.”

Is it for this, then, that we are to forsake the luncheons and lawn tennis 
and all the engrossing studies of the May Term, and to assemble in this 
solemn hall, where the very air seems thick with the accumulation of unsolved 
problems, or else redolent of the graces of innumerable congregations ?

It is not by concentrating our minds on any problem, however important, 
but rather by encouraging them to expand, that we shall best fulfil the intention 
of Sir Robert Rede when he founded this lecture.

It would be as useless as it would be tedious to try to explain the 
various parts of this small instrument to persons in every part of the Senate 
House. I shall, therefore, consider the telephone as a material symbol of the 
widely separated departments of human knowledge, the cultivation of which has 
led, by as many converging paths, to the invention of this instrument by 
Professor Graham Bell.

For whatever may be said about the importance of aiming at depth 
rather than width in our studies, and however strong the demand of the present 
age may be for specialists, there will always be work, not only for those who 
build up particular sciences and write monographs on them, but for those who 
open up such communications between the different groups of builders as will 
facilitate a healthy interaction between them. And in a university we are 
especially bound to recognise not only the unity of science itself, but the 
communion of the workers in science. We are too apt to suppose that we are 
congregated here merely to be within reach of certain appliances of study, such 
as museums and laboratories, libraries and lecturers, so that each of us may 
study what he prefers. I suppose that when the bees crowd round the flowers 
it is for the sake of the honey that they do so, never thinking that it is 
the dust which they are carrying from flower to flower which is to render 
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possible a more splendid array of flowers, and a busier crowd of bees, in the 
years to come. We cannot, therefore, do better than improve the shining hour 
in helping forward the cross-fertilization of the sciences.

Before we go further, I wish to express my obligation to Mr Garnett for 
the able assistance he has given me. He has not only collected the apparatus 
before you, but constructed some of it himself. But for him, I might have 
given you some second-hand information about telephones. He has made it 
possible for you to hear something yourselves. I have also to thank Mr Gower, 
who has brought his telephone harp, and Mr Middleton, who has contributed 
several instruments of his own invention.

We shall begin with the telephone in its most obvious aspect, as an 
instrument depending on certain physical principles.

The apparatus consists of two instruments, the transmitter and the receiver, 
doubly connected by a circuit capable of conducting electricity. The speaker 
talks to the transmitter at one end of the line, and at the other end of the 
line the listener puts his ear to the receiver, and hears what the speaker says.

The process in its two extreme stages is so exactly similar to the old- 
fashioned method of speaking and hearing that no preparatory practice is 
required on the part of either operator.

We must not, however, fall into the error of confounding the principle of 
the electric telephone with that of other contrivances for increasing the distance 
at which a conversation may be carried on. In all these the principle is the 
same as in the ordinary transmission of sound through the air. The different 
portions of matter which intervene between the speaker and the hearer take 
part, in succession, in a certain mechanical process. Each receives a certain 
motion from the portion behind it and communicates a precisely similar motion 
to the portion in front of it, in doing which it gives out all the energy it 
received, and is again reduced to rest.

The medium which takes part in this process may be the open air, or air 
confined in a long tube, or some other medium such as a brick wall, as when 
we hear what goes on in the next house, or a long wooden rod, or a metal 
wire, or even a stretched string. In all these it is by the actual motion of 
the successive portions of the medium that the message is transmitted.

In the electric telephone there is also a medium extending from the one 
instrument to the other. It is a copper wire, or rather two wires forming a 
closed circuit. But it is not by any motion of the copper that the message 
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is transmitted. The copper remains at rest, but a variable electric current 
flows to and fro in the circuit.

It is this which distinguishes the electric telephone from the ordinary- 
speaking tube, and from the transmission of vibrations along wooden rods by 
which Sir Charles Wheatstone used to cause musical instruments to sound in 
a mysterious manner without any visible performer.

On the other hand, we have to distinguish the principle of the articulating 
telephone from that ot a great number of electrical contrivances which produce 
visible or audible signals at a distance. Most of these depend on the alternate 
transmission and interruption of an electric current. In some part of the 
circuit a piece of apparatus is introduced corresponding to this instrument which 
is called a key. Whenever two pieces of metal, called the contact pieces, touch 
each other, the current flows from the one to the other, and so round the 
circuit. Whenever the contact pieces are separated the current is interrupted, 
and the effects of this alternation of current and no current may be made to 
produce signals at any other part of the circuit.

In the Morse system of signalling, currents of longer and of shorter duration 
are called dashes and dots respectively, and by combinations of these the 
symbols of letters are formed. Ihe rate at which these little currents succeed 
one another depends on the rate at which the operator can work the key, 
and may be increased by mechanical methods till the receiving clerk can no 
longer distinguish the symbols.

But the capability of the telegraph wire for transmitting signals is by no 
means exhausted; as the rapidity of the succession is increased, the ear ceases 
to distinguish them as separate signals, but begins to recognise the impression 
it receives as that of a musical tone, the pitch of which depends on the 
number of currents in a second.

Tuning folks driven by electricity were used by Helmholtz in his researches 
on the vowel sounds, and the periodically intermittent current which they 
furnish is recognised as a most valuable agent in physical and physiological 
research. Ihe tuning forks are of the most massive construction, and the 
succession of currents goes on with the most inflexible regularity, so that 
whenever we have occasion to follow the march of a process which takes place 
in a short time, such as the vibration of a violin string or the twitch of a 
living muscle, the tuning fork becomes our appropriate timepiece.

Apparatus of this kind, however, the merit of which is its regularity, is quite 
vol. n. 94 
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incapable of adapting itself to the transmission of variable tones such as those 
of a melody.

The first successful attempt to transmit variable tones by electricity was 
made by Philip Reis, a teacher in a school at Friedrichsdorf, near Homburg. 
On October 21, 1861, Reis showed his instrument, which he called a telephone, 
to the Physical Society of Frankfort on the Main. He succeeded in transmitting 
melodies which were distinctly heard about the room.

The transmitter of Reis’s telephone is essentially a make and break key 
of so delicate a construction that the sound-waves in the air are able to 
work it.

Ihe air vibrations set in motion a stretched membrane like a drumhead, 
with a piece of platinum fastened to it. This piece of platinum, when vibrating, 
strikes against another piece of platinum, and so completes the circuit every 
time contact is made.

At every point of the circuit there is thus a series of currents corresponding 
in numbei to the vibrations of the drumhead, and by causing these to pass 
through the coil of an electromagnet, the armature of the electromagnet is 
attracted every time the current passes, and if the armature is attached to a 
resonator of any kind, the succession of tugs will set it in vibration, and cause 
it to emit a sound, the pitch of which is the same as that of the note sung 
into the transmitter at the other end of the line.

[ Mr Gower here played the “ March of the Men of Harlech ” on the 
telephone haip placed in the Geological Museum. The instrument consists of 
a set of steel reeds worked by percussion, which make and break contact on 
the battei y circuit, of which the primary wire of an induction coil forms part. 
Ihe receivers aie woiked by the secondary current. There were four receivers, 
one of them liof. Bells original one, placed in different parts of the Senate-house.]

If the pitch of a sound were the only quality which we are able to 
distinguish, the problem of telephony would have received its complete solution 
in the instrument of Reis. But the human ear is so constructed, and we 
ourselves are so trained by continual practice, that we recognise distinctions 
in sound of a far more subtle character than that of pitch; and these finer 
distinctions have become so much more important for the purposes of human 
intercourse than the musical distinction of pitch, that many persons can detect 
the slightest variation in the pronunciation of a word who are comparatively 
indifferent to the variations of a melody.
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Now, the telephone of Prof. Graham Bell is an articulating telephone, 
which can transmit not only melodies sung to it, but ordinary speech, and 
that so faithfully that we can often recognise the speaker by his voice as 
heard through the telephone. How is this effected ? It is manifest that if by 
any means we can cause the tinned plate of the receiving instrument to vibrate 
in precisely the same manner as that of the transmitter, the impression on the 
ear will be exactly the same as if it had been placed at the back of the 
plate of the transmitter, and the words will be heard as if spoken at the 
other side of a tinned plate.

But this implies an exact correspondence, not only in the number of 
vibrations, but in the type of each vibration.

Now, if the electrical part of the process consisted merely of alternations 
between current and no current, the receiving instrument could never elicit 
from it the semblance of articulate speech. If the alternations were sufficiently 
regular, they would produce a sound of a recognisable pitch, which would be 
very rough music if the pitch were low, but might be less unendurable if the 
pitch were high; still, at the best, it would be like playing a violin with a 
saw instead of a bow.

What we want is not a sudden starting and stopping of the current, but 
a continuous rise and fall of the current, corresponding in every gradation and 
inflexion to the motion of the air agitated by the voice of the speaker.

Prof. Graham Bell has recounted the many unsuccessful attempts which he 
made to produce undulatory currents instead of mere intermittent ones. He 
had, of course, to give up altogether the method of making and breaking 
contact. Every method involving impact of any kind, whether between electric 
contact pieces or between the sounding parts of the instrument, introduces 
discontinuity of motion, and therefore precludes a faithful reproduction of 
speech.

In the ultimate form which the telephone in his hands assumed, the electric 
current is not merely regulated but actually generated by the aerial vibrations 
themselves.

The electric principle involved in Bell’s telephone is that of the induction 
of electric currents discovered by Faraday in 1831. Faraday’s own statement 
of this principle has been before the scientific world for nearly half a century, 
but has never been improved upon.

Consider first a conducting circuit, that is to say, a wire which after any
94—2 
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number of convolutions returns into itself. Round such a circuit an electric 
current may flow, and will flow if there is an electromotive force to drive it.

Consider next a line of magnetic force, such a line as you see here made 
visible by sprinkling iron filings on a sheet of paraffin paper. This line, as 
Faraday also first showed, is a line returning into itself, or, as the mathema
ticians would say, it is a closed curve.

Now, if there are two closed curves in space, they must either embrace 
one another so as to be linked together, or they must not embrace each other.

If the line of force as well as the circuit were made of wire, and if it 
embraced the copper circuit, it would be impossible to unlink them without 
cutting one or other of the wires. But the line of force is more like one of 
Milton’s spirits, which cannot

“In their liquid texture mortal wound
Receive, no more than can the fluid air.”

Now, if the copper circuit or the lines of force move relatively to each 
other, then in general some of the lines of force which originally embraced the 
circuit will cease to embrace it, or else some of those which did not embrace 
it will become linked with it.

J or every line of force which ceases to embrace the circuit there is a 
certain amount of positive electromotive force, which, if unopposed, will generate 
a current in the positive direction, and for every new line which embraces 
the circuit there is a negative electromotive force, causing a negative current.

In Bell s telephone the circuit forms a coil round a small core of soft iron 
fastened to the end of a steel magnet. Now lines of magnetic force pass more 
freely through iron than through any other substance. They will go out of 
their way in order to pass through iron instead of air. Hence a large proportion 
of the lines of force belonging to the magnet pass through the iron core, and, 
therefore, through the coil, even though there is no iron beyond the core, so 
that they have to complete their circuit through air.

But if another piece of soft iron is placed near the end of the core it 
will afford greater facilities for lines which have passed through the core to 
complete their circuit, and so the lines belonging to the magnet will crowd 
still closer together to take advantage of an easy passage through the core 
and the iron beyond it. If then the iron is moved nearer to the core, there 
will be an increase in the number of such lines, and, therefore, a negative 
current in the circuit. If it is moved away there will be a diminution in the
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number of lines, and a positive current m the circuit. Tins principle was 
employed by Page in the construction of one of the earliest magneto-electric 
machines, but it was reserved for Prof. Bell to discover that the vibrations of 
a tinned iron plate, set in motion by the voice, would produce such currents 
in the circuit as to set in motion a similar tinned plate at the other end of 
the line.

It will help us to appreciate the fertility of that germ of science which 
Faraday first detected and developed if we recollect that year after year he 
had employed the powerful batteries and magnets and delicate galvanometers of 
the Royal Institution to obtain evidence of what he all along hoped to discover 

the production of a current in one circuit by a current in another, but all 
without success, till at last he detected the induced current as a transient 
phenomenon, to be observed only at the instant of making or breaking the 
primary circuit.

In less than half a century, and by the aid of no second Faraday, but 
in the course of the ordinary growth of scientific principles, this germ, so 
barely caught by Faraday, has developed on the one hand into the powerful 
currents which maintain the illumination of the lighthouses on our coasts; and 
on the other, into these currents of the telephone which produce an audible 
effect, though the engine that drives them is itself driven by the tremors of a 
child’s voice.

Prof. Tait has recently measured the absolute strength of these telephone 
currents. He produced them by means of a tuning fork vibrating in front of 
the coil of the transmitter. Before the transmitted note ceased to be audible 
at the other end of the line he measured by means of a microscope the 
amplitude of the vibrations of the fork.

He then placed a very delicate galvanometer in the circuit and found what 
deflection was produced by a measured motion of the fork.

Finally he measured the deflection of the galvanometer produced by a small 
electromotive force of known magnitude. He thus found that the telephone 
currents produced an audible effect when reversed 500 times a second, though 
then strength was no greater than what a Grove’s cell would send through a 
million megohms, about a thousand million times less than the currents used 
in ordinary telegraphic work.

One great beauty of Prof. Bell’s invention is that the instruments at the 
two ends of the line are precisely alike. When the tin plate of the transmitter
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approaches the core of its bobbin it produces a current in the circuit, which 
has also to circulate round the bobbin of the receiver, and thus the core of the 
receiver is rendered more or less magnetic, and attracts its tin plate with greater 
or smaller force. Thus the tin plate of the receiver reproduces on a smaller 
scale, but with perfect fidelity, every motion of the tin plate of the transmitter.

This perfect symmetry of the whole apparatus—the wire in the middle, 
the two telephones at the end of the wire, and the two gossips at the ends 
of the telephones—may be very fascinating to a mere mathematician, but it 
would not satisfy an evolutionist of the Spencerian type, who would consider 
anything with both ends alike to be an organism of a very low type, which 
must have its functions differentiated before any satisfactory integration can 
take place.

Accordingly, many attempts have been made, by differentiating the function 
of the transmitter from that of the receiver, to overcome the principal limitation 
to the power of the telephone. As long as the human voice is the sole motive 
power of the apparatus it is manifest that what is heard at one end must 
be fainter than what is spoken at the other. But if the vibration set up by 
the voice is used no longer as the source of energy, but merely as a means 
of modulating the strength of a current produced by a voltaic battery, then 
there will be no necessary limitation of the intensity of the resulting sound, 
so that what is whispered to the transmitter may be proclaimed orc rotundo 
by the receiver.

A result of this kind has already been obtained by Mr Edison by means 
of a transmitter in which the sound vibrations produce a varying pressure on 
a piece of carbon, which forms part of the electric circuit. The greater the 
pressure, the smaller is the resistance due to the insertion of the carbon, and 
therefore the greater is the current in the circuit.

I have not yet seen Mr Edison’s transmitter, but the microphone of Prof. 
Hughes is an application of carbon and other substances to the construction 
of a transmitter, which modulates the intensity of a battery current in more 
or less complete accordance with the sound-vibrations it receives. The energy 
of the sound produced is no longer limited by that of the original sound. All 
that the original sound does is to draw supplies of energy from the battery, 
so that a very feeble sound may give rise to a considerable effect. Thus, when 
a fly walks over the table of the microphone the sound of his tramp may be 
heard miles off.
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Indeed, the microphone seems to open up several new lines of research. 
We shall have London physicians performing stethoscopic auscultations on patients 
in all parts of the kingdom. Ihe Entomological Society have been much interested 
by Mr Wood-Mason s discovery of a stridulating apparatus in scorpions. Perhaps 
ere long a microphone, placed in a nest of tropical scorpions, may be connected 
up to a receiver in the apartments of the society, so as to give the members 
and their musical friends an opportunity of deciding whether the musical taste 
of the scorpion resembles that of the nightingale or that of the cat.

I have said that the telephone is an instance of the benefit to be derived 
from the cross-fertilization of the sciences. Now this is an operation which 
cannot be performed by merely collecting treatises on the different sciences, and 
binding them up into an encyclopedia. Science exists only in the mind, and 
the union of the sciences can take place only in a living person.

Now, Prof. Graham Bell, the inventor of the telephone, is not an electrician 
who has found out how to make a tin plate speak, but a speaker, who, to 
gain his private ends, has become an electrician. He is the son of a very 
remarkable man, Alexander Melville Bell, author of a book called “Visible 
Speech,” and of other works relating to pronunciation. In fact, his whole life 
has been employed in teaching people to speak. He brought the art to such 
perfection that, though a Scotchman, he taught himself in six months to speak 
English, and I regret extremely that when I had the opportunity in Edinburgh 
I did not take lessons from him. Mr Melville Bell has made a complete 
analysis and classification of all the sounds capable of being uttered by the 
human voice, from the Zulu clicks to coughing and sneezing; and he has 
embodied his results in a system of symbols, the elements of which are not 
taken from any existing alphabet, but are founded on the different configurations 
of the organs of speech.

The capacities of this new mode of representing speech have been put to 
the test by Mr Alexander J. Ellis, author of “ The Essentials of Phonetics,” 
a gentleman who has studied the whole theory of speech acoustically, philologically, 
and historically. He describes the result in a letter to The Reader:—

“ The mode of procedure was as followsMr Bell sent his two sons, who 
were to read the writing, out of the room—it is interesting to know that the 
elder, who read all the words in this case, had only had five weeks’ instruction 
in the use of the alphabet—and I dictated slowly and distinctly the sounds which 
1 wished to be written. They consisted of a few words in Latin, pronounced 



752 THE TELEPHONE.

first as at Eton, then as in Italy, and then according to some theoretical 
notions of how the Latins might have uttered them. Then came some English 
provincialisms and affected pronunciations, the words ’ how odd ’ being given in 
several distinct ways. Suddenly German provincialisms were introduced; then 
discriminations of sounds often confused. Some Arabic, some Cockney English, 
with an introduced Arabic guttural, some mispronounced Spanish, and a variety 
of shades of vowels and diphthongs.

“ The result was perfectly satisfactory—that is, Mr Bell wrote down my 
queer and purposely exaggerated pronunciations and mispronunciations, and 
delicate distinctions, in such a manner that his sons, not having heard them, 
so uttered them as to surprise me by the extremely correct echo of my own 
voice.......Accent, tone, drawl, brevity, indistinctness were all reproduced with 
surprising accuracy. Being on the watch, I could, as it were, trace the 
alphabet in the lips of the readers. I think, then, that Mr Bell is justified 
in the somewhat bold title which he has assumed for his mode of writing— 
‘Visible speech.’ I only hope that for the advantage of linguists, such an 
alphabet may soon be made accessible, and that, for the intercourse of nations, 
it may be adopted generally, at least for extra-European nations, as for the 
Chinese dialect and the several extremely diverse Indian languages, where such 
an alphabet would rapidly become a great social and political engine.”

The inventor of the telephone was thus prepared, by early training in the 
practical analysis of the elements of speech, to associate whatever scientific 
knowledge he might afterwards acquire with those elementary sensations and 
actions, which each of us must learn from himself, because they lie too deep 
within us to be described to others. This training was put to a very severe 
test, when, at the request of the Boston Board of Education, Prof. Graham 
Bell conducted a series of experiments with his father’s system in the Boston 
School for the Deaf and Dumb. I cannot conceive a nobler application of the 
scientific analysis of speech, than that by which it enables those to whom all 
sound is

“expunged and rased
And wisdom at one entrance quite shut out,”

not only to speak themselves, but to read by sight what other people are saying. 
The successful result of the experiments at Boston is not only the most 
valuable testimonial to the father’s system of visible speech, but an honour
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which the inventor of the telephone may well consider as the highest he has 
attained.

An independent method of research into the process of speech was employed
by Wheatstone, Willis, and Kempelen, the aim of which was to imitate the
sounds of the human voice by means of artificial apparatus. This apparatus 
was in some cases modelled so as to represent as nearly as possible the form
as well as the functions of the organs of speech, but it was found that an
equally good imitation of the vocal sounds could be obtained from apparatus 
the form of which had no resemblance to the natural organs.

Several isolated facts of considerable importance were established by this 
method, but the whole theory of speaking and hearing has been so profoundly 
modified by Helmholtz and Donders, that much of what was advanced before 
their time has come to possess only an historical interest.

Among all the recent steps in the progress of science, I know none of 
which the truly scientific or science-producing consequences are likely to be so 
influential as the rise ol a school of physiologists, who investigate the conditions 
of our sensations by producing on the external senses impressions, the physical 
conditions of which can be measured with precision, and then recording the 
verdict of consciousness as to the similarity or difference of the resulting sensa
tions.

Prof. Helmholtz, in his recent address as Rector of the University of Berlin, 
lays great stress on that personal interaction between living minds, which I 
have already spoken of as essential to the life of a University. “ I appreciate,” 
he says, “ at its full value this last advantage, when, looking back, I recall 
my student days, and the impression made upon us by a man like Johannes 
Muller, the physiologist. When one finds himself in contact with a man of 
the first order, the entire scale of one’s intellectual conceptions is modified for 
life; contact with such a man is perhaps the most interesting thing life may 
have to offer.”

Now, the form in which Johannes Muller stated what we may regard as 
the germ which fertilized the physiology of the senses is this, that the difference 
in the sensations due to different senses does not depend upon the actions 
which excite them, but upon the various nervous arrangements which receive 
them.

To accept this statement out of a book, as a matter of dead faith, may not 
be difficult to an easy-going student; but when caught like a contagion, as

VOL. n. 95
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Helmholtz caught it, from the lipa of the living teacher, it has become the 
guiding principle of a life of research.

No man has done more than Helmholtz to open up paths of communication 
between isolated departments of human knowledge; and one of these, lying in 
a more attractive region than that of elementary psychology, might be explored 
under exceptionally favourable conditions, by some of the fresh minds now 
coming up to Cambridge.

Helmholtz, by a series of daring strides, has effected a passage for himself 
over that untrodden wild between acoustics and music—that Serbonian bog 
where whole armies of scientific musicians and musical men of science have 
sunk without filling it up.

We may not be able even yet to plant our feet in his tracts and follow 
him right across. That would require the seven league boots of the German 
colossus; but to help us in Cambridge we have the Board of Musical Studies, 
vindicating for music its ancient place in a liberal education. On the physical 
side we have Lord Rayleigh laying the foundation deep and strong in his 
Theory of Sound. On the aesthetic side we have the University Musical 
Society doing the practical work, and in the space between, those conferences 
of Mr Sedley Taylor, where the wail of the siren draws musician and mathematician 
together down into the depths of their sensational being, and where the gorgeous 
hues of the phoneidoscope are seen to seethe and twine and coil like the

“ Dragon bougha and elvish emblemings ”

on the gates of that city where
“ an ye heard a music, like enow 

They are building still, seeing the city is built 
To music, therefore never built at all, 
And therefore built for ever.”

The special educational value of this combined study of music and acoustics 
is that more than almost any other study it involves a continual appeal to 
what we must observe for ourselves.

The facts are things which must be felt; they cannot be learned from any 
description of them.

All this has been said more than two hundred years ago by one of our 
own prophets—William Harvey, of Gonville and Caius College. “For whosoever 
they be that read authors, and do not by the aid of their own senses, abstract 
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true representations of the things themselves (comprehended in the author’s 
expressions) they do not represent true ideas, but deceitful idols and phantasms, 
by which they frame to themselves certain shadows and chimaeras, and all their 
theory and contemplation (which they call science) represents nothing but waking 
men’s dreams and sick men’s phrensies.”

Prof. Maxwell was assisted in his practical demonstrations by Mr Garnett, 
of St John’s College.

95—2



[From Nature, Vol. xix.]

XC VI. —Paradoxical Philosophy *.

On opening this book, the general appearance of the pages, and some of 
the phrases on which we happened to light made us somewhat doubtful whether 
it lay within our jurisdiction, as it is not the practice of Nature to review 
either novels or theological works.

In the dedication, however, the book is described as an account of the 
Proceedings of a learned society, a species of literature which we are under a 
special vow to rescue from oblivion, even when, as in this case, the proceed
ings are those of one of those jubilee meetings, in which learned men seem 
to aim rather at being lively than scientific.

On the title-page itself there is no name to indicate whether the author 
is one of those who by previous conviction have rendered themselves liable to 
our surveillance, but on the opposite page we find The Unseen Universe; or, 
Physical Speculations on a Future State, to which this book is a “Sequel,” 
ascribed to the well-known names of Balfour Stewart and P. G. Tait.

Mr Browning has expressed his regret that the one volume in which 
Rafaelle wrote his sonnets, and the one angel which Dante was drawing when 
he was interrupted by “ people of importance,” are lost to the world. We 
shall therefore make the most of> our opportunity when two eminent men of 
science, “driven,” as they tell us, “by the exigencies of the subject,” have 
laid down all the instruments of their art, shaken the very chalk from their 
hands, and, locking up their laboratories, have betaken themselves to those 
blissful country seats where Philonous long ago convinced Hylas that there 
can be no heat in the fire and no matter in the world; and where in more 
recent times, Peacock and Mallock have brought together in larger groups the 
more picturesque of contemporary opinions.

In this book we do not indeed catch those echoes of well-known voices 
in which the citizens of the “New Republic” tell us how they prefer to

* Paradoxical Philosophy. A Sequel to The Unseen Universe (London: Macmillan & Co., 1878). 
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regard themselves as thinking, taking care, all the while, that no actual thought 
shall disturb their enjoyment of the luxury of extravagant opinion. The 
members of the Paradoxical Society, with their guest, Dr Hermann Stoffkraft, 
aie fai too earnest to adopt this pose of mind, but they exhibit that sympathy 
in fundamentals overlaid with variety in opinions which is one of the main 
conditions of good-fellowship. Dr Stoffkraft, in spite of his name and of his 
office as the single-handed opponent of the thesis of the book, makes it his 
chief care so to brandish his materialistic weapons as not to hurt the feelings 
of his friends; and when, near the end of the book, he gets a little out of 
temper, it is about matters with which a materialist, as such, has no concern.

As the book is not a novel there is no literary reason for not telling 
“ what became of the Doctor, as narrated in the last chapter. He goes to 
Strathkelpie Castle to take part in an investigation of spiritualistic phenomena. 
He begins by detecting the mode in which one young lady performs her spirit- 
rapping, but forthwith falls into an “electro-biological” courtship of another, 
and, this proving successful, he is persuaded by his wife and her priest to 
renounce the black arts in the lump as works of the foul fiend; and then 
we are told that, having quieted his spirit by a few evolutions in four 
dimensions, he has now settled down to compose his Exposition of the Relations 
between Religion and Science, which he intends to be a thoroughly matured 
production.

The Doctor—and, indeed, most of the other characters—are no mere 
materialised spirits, or opinions labelled with names of the Euphranor and 
Alciphron type. They do not reduce their subject to a caput mortuum by an 
exhaustive treatment, but take care, like well-bred people, to drop it and pass 
on to another before we have time to suspect that the last word has been 
said.

We cannot accuse the authors of leading us through the mazy paths of 
science only to entrap us into some peculiar form of theological belief. On the 
contrary, they avail themselves of the general interest in theological dogmas 
to imbue their readers at unawares with the newest doctrines of science. There 
must be many who would never have heard of Carnot’s reversible engine, if 
they had not been led through its cycle of operations while endeavouring to 
explore the Unseen Universe. No book containing so much thoroughly scientific 
matter would have passed through seven editions in so short a time without 
the allurement of some more human interest.
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Nor need we fear to draw down on Nature the admonition which fell on 
the inner ear of the poet—

“ Thou pratest here where thou art least;
This faith hath many a purer priest, 
And many an abler voice than thou.”

For even those words and phrases which seemed at first sight to remove the 
book from the field of our criticism, are found on a nearer view to have 
acquired a new, and indeed a paradoxical sense, for which no right of sanctuary 
can be claimed. >

The words on the title-page: “ In te, Domine, speravi, non confundar in 
aetemum,” may recall to an ordinary reader the aspiration of the Hebrew 
Psalmist, the closing prayer of the “Te Deum,” or the dying words of Francis 
Xavier; and men of science, as such, are not to be supposed incapable either 
of the nobler hopes or of the nobler fears to which their fellow-men have 
attained. Here, however, we find these venerable words employed to express 
a conviction of the perpetual validity of the “ Principle of Continuity,” enforced 
by the tremendous sanction, that if at any place or at any time a single 
exception to that principle were to occur, a general collapse of every intellect 
in the universe would be the inevitable result. ,

There are other well-known words in which St Paul contrasts things seen 
with things unseen. These also are put in a prominent place by the authors 
of the Unseen Universe. What, then, is the Unseen to which they raise their 
thoughts ?

In the first place the luminiferous aether, the tremors of which are the 
dynamical equivalent of all the energy which has been lost by radiation from 
the various systems of grosser matter which it surrounds. In the second place 
a still more subtle medium, imagined by Sir William Thomson as possibly 
capable of furnishing an explanation of the properties of sensible bodies; on 
the hypothesis that they are built up of ring vortices set in motion by some 
supernatural power in a frictionless liquid: beyond which we are to suppose an 
indefinite succession of media, not hitherto imagined by any one, each mani
foldly more subtle than any of those preceding it. To exercise the mind in 
speculations on such media may be a most delightful employment for those who 
are intellectually fitted to indulge in it, though we cannot see why they should 
on that account appropriate the words of St Paul.
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Nature is a journal of science, and one of the severest tests of a scientific 
mind is to discern the limits of the legitimate application of scientific methods. 
We shall therefore endeavour to keep within the bounds of science in speaking 
of the subject-matter of this book, remembering that there are many things 
in heaven and earth which, by the selection required for the application of 
our scientific methods, have been excluded from our philosophy.

No new discoveries can make the argument against the personal existence 
of man after death any stronger than it has appeared to be ever since men 
began to die, and no language can express it more forcibly than the words 
of the Psalmist:—

“ His breath goeth forth, he returneth to his earth; in that very day his 
thoughts perish.”

Physiology may supply a continually increasing number of illustrations of 
the dependence of our actions, mental as well as bodily, on the condition of 
our material organs, but none of these can render any more certain those facts 
about death which our earliest ancestors knew as well as our latest posterity 
can ever learn them.

Science has, indeed, made some progress in clearing away the haze of 
materialism which clung so long to men’s notions about the soul, in spite of 
their dogmatic statements about its immateriality. No anatomist now looks 
forward to being able to demonstrate my soul by dissecting it out of my pineal 
gland, or to determine the quantity of it by the process of double weighing. 
The notion that the soul exerts force lingered longer. We find it even in the 
late Isaac Taylor’s Physical Theory of a Future State. It was admitted that 
one body might set another in motion; but it was asserted that in every case, 
if we only trace the chain of phenomena far enough back, we must come to 
a body set in motion by the direct action of a soul.

It would be rash to assert that any experiments on living beings have as 
yet been conducted with such precision as to account for every foot-pound of 
work done by an animal in terms of the diminution of the intrinsic energy of 
the body and its contents; but the principle of the conservation of energy has 
acquired so much scientific weight during the last twenty years that no physio
logist would feel any confidence in an experiment which shewed a considerable 
difference between the work done by an animal and the balance of the account 
of energy received and spent.

Science has thus compelled us to admit that that which distinguishes a 
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living body from a dead one is neither a material thing, nor that more refined 
entity, a “form of energy.” There are methods, however, by which the applica
tion of energy may be directed without interfering with its amount. la the 
soul like the engine-driver, who does not draw the train himself, but, by means 
of certain valves, directs the course of the steam so as to drive the engine 
forward or backward, or to stop it ?

The dynamical theory of a conservative material system shews us, however, 
that in general the present configuration and motion determine the whole course 
of the system, exceptions to this rule occurring only at the instants when the 
system passes through certain isolated and singular phases, at which a strictly 
infinitesimal force may determine the course of the system to any one of a finite 
number of equally possible paths, as the pointsman at a railway junction directs 
the train to one set of rails or another. Prof. B. Stewart has expounded a 
theory of this kind in his book on The Conservation of Energy, and MM. de 
St Venant and Boussinesq have examined the corresponding phase of some 
purely mathematical problems.

The science which rejoices in the name of “ Psychophysik ” has made con
siderable progress in the study of the phenomena which accompany our sensations 
and voluntary motions. We are taught that many of the processes which we 
suppose entirely under the control of our own will are subject to the strictest 
laws of succession, with which we have no power of interfering; and we are 
shewn how to verify the conclusions of the science by deducing from it methods 
of physical and mental training for ourselves and others.

Thus science strips off, one after the other, the more or less gross 
materialisations by which we endeavour to form an objective image of the soul, 
till men of science, speculating, in their non-scientific intervals, like other men 
on what science may possibly lead to, have prophesied that we shall soon have 
to confess that the soul is nothing else than a function of certain complex 
material systems.

Men of science, however, are but men, and therefore occasionally contemplate 
their souls from within. Those who, like Du Bois-Reymond, cannot admit that 
sensation or consciousness can be a function of a material system, are led to 
the conception of a double mind.

“ On the one side the acting, inventing, unconscious material mind, which puts the muscles 
into motion, and determines the world’s history; this is nothing else but the mechanics of atoms, 
and is subject to the causal law, and on the other side the inactive, contemplative, remembering, 
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fancying, conscious, immaterial mind, which feels pleasure and pain, love, and hate; this one lies 
outside of the mechanics of matter, and cares nothing for cause and effect.”

We might ask Prof. Du Bois-Reymond, which of these it is that does right 
or wrong, and knows that it is his act, and that he is responsible for it, but 
we must go on to the other view of the case, which Dr Stoffkraft alludes to 
at p. 78, although by some law of the Paradoxical, he is not allowed to pursue 
a subject which might have afforded excellent sport to the Society.

“ I feel myself compelled to believe,” says the learned Doctor, “ that all 
kinds of matter have their motions accompanied with certain simple sensations. 
In a word, all matter is, in some occult sense, alive.”

This is what we may call the “ levelling up ” policy, and it has been 
expounded with great clearness by Prof, von Niigeli in a lecture, of which a 
translation was given in Nature, Vol. xvi. p. 531.

He can draw no line across the chain of being, and say that sensation 
and consciousness do not extend below that line. He cannot doubt that everv 
molecule possesses something related, though distantly, to sensation, “ since each 
one feels the presence, the particular condition, the peculiar forces of the other, 
and, accordingly, has the inclination to move, and under circumstances really 
begins to move—becomes alive as it wereIf, therefore, the molecules feel 
something which is related to sensation, then this must be pleasure if they can 
respond to attraction and repulsion, i.e. follow their inclination or disinclination; 
it must be displeasure if they are forced to execute some opposite movement, 
and it must be neither pleasure nor displeasure if they remain at rest.”

Prof, von Niigeli must have forgotten his dynamics, or he would have 
remembered that the molecules, like the planets, move along like blessed gods. 
They cannot be disturbed from the path of their choice by the action of any 
forces, for they have a constant and perpetual will to render to every force 
precisely that amount of deflexion which is due to it. Their condition must, 
therefore, be one of unmixed and unbroken pleasure.

But even if a man were built up of thinking atoms would the thoughts 
of the man have any relation to the thoughts of the atoms? Those who try 
to account for mental processes by the combined action of atoms do so, not bv 
the thoughts of the atoms, but by their motions.

Dr Stoffkraft explains the origin of consciousness at p. 77 and at p. 107. 
We recommend to his attention Mr Herbert Spencer’s statement in his Principles 
of Psychology, § 179, where he shews in a most triumphant manner how, under

vol. ii. 96
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certain circumstances, “there must arise a consciousness.” Such statements, care
fully studied, may contribute to the further progress of science in the path 
which we have been describing, by shewing more clearly that consciousness 
cannot be the result of a plexus of nervous communications any more than of 
a congeries of plastidule souls.

Personality is often spoken of as if it were another name for the continuity 
of consciousness as reproduced in memory, but it is impossible to deal with 
personality as if it were something objective that we could reason about. My 
knowledge that I am is quite independent of my recollection that I was, and 
also of my belief that, for a certain number of years, I have never ceased to 
be. But as soon as we plunge into the abysmal depths of personality we get 
beyond the limits of science, for all science, and, indeed, every form of human 
speech, is about objects capable of being known by the speaker and the hearer. 
Whenever we pretend to talk about the Subject we are really dealing with an 
Object under a false name, for the first proposition about the Subject, namely, 
“ I am,” cannot be used in the same sense by any two of us, and therefore 
can never become part of science at all.

The progress of science, therefore, so far as we have been able to follow 
it, has added nothing of importance to what has always been known about the 
physical consequences of death, but has rather tended to deepen the distinction 
between the visible part, which perishes before our eyes, and that which we 
are ourselves, and to shew that this personality, with respect to its nature as 
well as to its destiny, lies quite beyond the range of science.



[From Encyclopaedia Britannica.]

XCVIL Ether.

Ether, or ^Ether (adOrip, probably from alOa, I burn, though Plato in his 
Cratilus (410, b) derives the name from its perpetual motion—on dec Oct ^epi 
top depa p&nv, dude^p Sucauos du KaXoiro), a material substance of a more 
subtle kind than visible bodies, supposed to exist in those parts of space which 
are apparently empty.

The hypothesis of an aether has been maintained by different speculators 
for very different reasons. To those who maintained the existence of a plenum 
as a philosophical principle, nature’s abhorrence of a vacuum was a sufficient 
reason for imagining an all-surrounding aether, even though every other 
argument should be against it. To Descartes, who made extension the sole 
essential property of matter, and matter a necessary condition of extension, 
the bare existence of bodies apparently at a distance was a proof of the 
existence of a continuous medium between them.

But besides these high metaphysical necessities for a medium, there were 
more mundane uses to be fulfilled by aethers. Others were invented for 
the planets to swim in, to constitute electric atmospheres and magnetic effluvia, 
to convey sensations from one part of our bodies to another, and so on, till 
all space had been filled three or four times over with aethers. It is only 
when we remember the extensive and mischievous influence on science which 
hypotheses about aethers used formerly to exercise, that we can appreciate the 
horror of aethers which sober-minded men had during the 18 th century, and 
which, probably as a sort of hereditary prejudice, descended even to the late 
Mr John Stuart Mill.

The disciples of Newton maintained that in the fact of the mutual gravi
tation of the heavenly bodies, according to Newton’s law, they had a complete 
quantitative account of their motions; and they endeavoured to follow out the 
path which Newton had opened up by investigating and measuring the attrac- 

96—2 
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tions and repulsions of electrified and magnetic bodies, and the cohesive forces 
in the interior of bodies, without attempting to account for these forces.

Newton himself, however, endeavoured to account for gravitation by dif
ferences of pressure in an aether (see Art. Attraction*, Vol. m. p. 64); but 
he did not publish his theory, “ because he was not able from experiment and 
observation to give a satisfactory account of this medium, and the manner of 
its operation in producing the chief phenomena of nature.”

On the other hand, those who imagined aethers in order to explain phe
nomena could not specify the nature of the motion of these media, and could 
not prove that the media, as imagined by them, would produce the effects 
they were meant to explain. The only aether ■which has survived is that 
which was invented by Huygens to explain the propagation of light. The 
evidence for the existence of the luminiferous aether has accumulated as addi
tional phenomena of light and other radiations have been discovered; and the 
properties of this medium, as deduced from the phenomena of light, have been 
found to be precisely those required to explain electromagnetic phenomena.

Function of the ather in the propagation of radiation.—The evidence for 
the undulatory theory of light will be given in full, under the Article on 
Light, but we may here give a brief summary of it so far as it bears on 
the existence of the aether.

That light is not itself a substance may be proved from the phenomenon 
of interference. A beam of light from a single source is divided by certain 
optical methods into two parts, and these, after travelling by different paths, 
are made to reunite and fall upon a screen. If either half of the beam is 
stopped, the other falls on the screen and illuminates it, but if both are allowed 
to pass, the screen in certain places becomes dark, and thus shews that the 
two portions of light have destroyed each other.

Now, we cannot suppose that two bodies when put together can annihilate 
each other; therefore light cannot be a substance. What we have proved is 
that one portion of light can be the exact opposite of another portion, just 
as + a is the exact opposite of —a, whatever a may be. Among physical 
quantities we find some which are capable of having their signs reversed, and 
others which are not. Thus a displacement in one direction is the exact 
opposite of an equal displacement in the opposite direction. Such quantities

* [p. 485 of the present vol.] 
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are the measures, not of substances, but always of processes taking place in a 
substance. We therefore conclude that light is not a substance but a process 
going on in a substance, the process going on in the first portion of light 
being always the exact opposite of the process going on in the other at the 
same instant, so that when the two portions are combined no process goes 
on at all. To determine the nature of the process in which the radiation of 
light consists, we alter the length of the path of one or both of the two 
portions of the beam, and we find that the light is extinguished when the 
difference of the length of the paths is an odd multiple of a certain small 
distance called a half wave-length. In all other cases there is more or less 
light; and when the paths are equal, or when their difference is a multiple 
of a whole wave-length, the screen appears four times as bright as when one 
portion of the beam falls on it. In the ordinary form of the experiment these 
different cases are exhibited simultaneously at different points of the screen, 
so that we see on the screen a set of fringes consisting of dark lines at 
equal intervals, with bright bands of graduated intensity between them.

If we consider what is going on at different points in the axis of a beam 
of light at the same instant, we shall find that if the distance between the 
points is a multiple of a wave-length the same process is going on at the 
two points at the same instant, but if the distance is an odd multiple of 
half a wave-length the process going on at one point is the exact opposite 
of the process going on at the other.

Now, light is known to be propagated with a certain velocity (3’004x 10” 
centimetres per second in vacuum, according to Cornu). If, therefore, we sup
pose a movable point to travel along the ray with this velocity, we shall 
find the same process going on at every point of the ray as the moving point 
reaches it. If, lastly, we consider a fixed point in the axis of the beam, we 
shall observe a rapid alternation of these opposite processes, the interval of time 
between similar processes being the time light takes to travel a wave-length.

These phenomena may be summed up in the mathematical expression 
u = A cos (nt —px + a)

which gives u, the phase of the process, at a point whose distance measured 
from a fixed point in the beam is x, and at a time t.

We have determined nothing as to the nature of the process. It may 
be a displacement, or a rotation, or an electrical disturbance, or indeed any 
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physical quantity which is capable of assuming negative as well as positive 
values. Whatever be the nature of the process, if it is capable of being 
expressed by an equation of this form, the process going on at a fixed point 

is called a vibration; the constant A is called the amplitude; the time — is 
n 

called the period; and nt—px + a is the phase.

The configuration at a given instant is called a wave, and the distance —
P 

is called the wave-length. The velocity of propagation is When we contem

plate the different parts of the medium as going through the same process in 
succession, we use the word undulatory to denote this character of the process 
without in any way restricting its physical nature.

A further insight into the physical nature of the process is obtained from 
the fact that if the two rays are polarized, and if the plane of polarization 
of one of them be made to turn round the axis of the ray, then when the 
two planes of polarization are parallel the phenomena of interference appear as 
above described. As the plane turns round, the dark and light bands become 
less distinct, and when the planes of polarization are at right angles, the 
illumination of the screen becomes uniform, and no trace of interference can be 
discovered.

Hence the physical process involved in the propagation of light must not 
only be a directed quantity or vector capable of having its direction reversed, 
but this vector must be at right angles to the ray, and either in the plane 
of polarization or perpendicular to it. Fresnel supposed it to be a displace
ment of the medium perpendicular to the plane of polarization. Maccullagh and 
Neumann supposed it to be a displacement in the plane of polarization. The 
comparison of these two theories must be deferred till we come to the phenomena 
of dense media.

The process may, however, be an electromagnetic one, and as in this case 
the electric displacement and the magnetic disturbance are perpendicular to each 
other, either of these may be supposed to be in the plane of polarization.

All that has been said with respect to the radiations which affect our 
eyes, and which we call light, applies also to those radiations which do not 
produce a luminous impression on our eyes, for the phenomena of interference 
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hundredth of the wave-length, we have Ap= , or about

have been observed, and the wave-lengths measured, in the case of radiations, 
which can be detected only by their heating or by their chemical effects.

Elasticity, tenacity, and density of the cether.—Having so far determined the 
geometrical character of the process, we must now turn our attention to the 
medium in which it takes place. We may use the term aether to denote this 
medium, whatever it may be.

In the first place, it is capable of transmitting energy. The radiations which 
it transmits are able not only to act on our senses, which of itself is evidence 
of work done, but to heat bodies which absorb them; and by measuring the 
heat communicated to such bodies, the energy of the radiation may be calculated.

In the next place this energy is not transmitted instantaneously from the 
radiating body to the absorbing body, but exists for a certain time in the 
medium.

If we adopt either Fresnel’s or Maccullagh’s form of the undulatory theory, 
half of this energy is in the form of potential energy, due to the distortion of 
elementary portions of the medium, and half in the form of kinetic energy, 
due to the motion of the medium. We must therefore regard the aether as 
possessing elasticity similar to that of a solid body, and also as having a finite 
density. If we take Pouillet’s estimate of 1’7633 as the number of gramme
centigrade units of heat produced by direct sunlight falling on a square centi
metre in a minute, this is equivalent to 1’234x 10° ergs per second. Dividing 
this by 3’004 x 10"’, the velocity of light in centimetres per second, we get for 
the energy in a cubic centimetre 4T x 10"’ ergs. Near the sun the energy in 
a cubic centimetre would be about 46,000 times this, or 1’886 ergs. If we 
further assume, with Sir W. Thomson, that the amplitude is not more than one

—; so that we have— 16
Energy per cubic centimetre ...............................  = |p7My= 1’886 ergs.*

* [The numbers in this column are incorrectly deduced from the data. They should be 1-886, 
60-352, 965-632 and 1'07 x 10-18.]

Greatest tangential stress per square centimetre = pV"Ap =30’176 dynes.
Coefficient of rigidity of ether ...........................  — py*  =842’8.
Density of aether .................................................... = p =9’36xl0-1’.
Ihe coefficient of rigidity of steel is about 8 x 10n, and that of glass 

2’4 x 10".



768 ETHER.

If the temperature of the atmosphere were everywhere 0° C., and if it were 
in equilibrium about the earth supposed at rest, its density at an infinite distance 
from the earth would be 3 x 10‘3" which is about T8 x IO327 times less than 
the estimated density of the aether. In the regions of interplanetary space the 
density of the aether is therefore very great compared with that of the at
tenuated atmosphere of interplanetary space, but the whole mass of aether 
within a sphere whose radius is that of the most distant planet is very small 
compared with that of the planets themselves*.

The (Ether distinct from gross matter.—When light travels through the 
atmosphere it is manifest that the medium through which the light is propagated 
is not the air itself, for in the first place the air cannot transmit transverse 
vibrations, and the normal vibrations which the air does transmit travel about 
a million times slower than light. Solid transparent bodies, such as glass 
and crystals, are no doubt capable of transmitting transverse vibrations, but 
the velocity of transmission is still hundreds of thousand times less than that 
with which light is transmitted through these bodies. We are therefore obliged 
to suppose that the medium through which light is propagated is something 
distinct from the transparent medium known to us, though it interpenetrates 
all transparent bodies and probably opaque bodies too.

The velocity of light, however, is different in different transparent media, 
and we must therefore suppose that these media take some part in the process, 
and that their particles are vibrating as well as those of the tether, but the 
energy of the vibrations of the gross particles must be very much smaller 
than that of the aether, for otherwise a much larger proportion of the incident 
light would be reflected when a ray passes from vacuum to glass or from 
glass to vacuum than we find to be the case.

Relative motion of the (ether.—We must therefore consider the aether within 
dense bodies as somewhat loosely connected with the dense bodies, and we 
have next to inquire whether, when these dense bodies are in motion through 
the great ocean of aether, they carry along with them the aether they con
tain, or whether the aether passes through them as the water of the sea 
passes through the meshes of a net when it is towed along by a boat. If 
it were possible to determine the velocity of light by observing the time it 
takes to travel between one station and another on the earth’s surface, we

* See Sir W. Thomson, Trans. R. S. Edin, Vol. xxi. p. 60. 
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might, by comparing the observed velocities in opposite directions, determine 
the velocity of the aether with respect to these terrestrial stations. All 
methods, however, by which it is practicable to determine the velocity of light 
from terrestrial experiments depend on the measurement of the time required 
for the double journey from one station to the other and back again, and the 
increase of this time on account of a relative velocity of the mther equal to 
that of the earth in its orbit would be only about one hundred millionth 
part of the whole time of transmission, and would therefore be quite insensible.

Ihe theory of the motion of the aether is hardly sufficiently developed to 
enable us to form a strict mathematical theory of the aberration of light, 
taking into account the motion of the aether. Professor Stokes, however, has 
shewn that, on a very probable hypothesis with respect to the motion of the 
aether, the amount of aberration would not be sensibly affected by that motion.

The only practicable method of determining directly the relative velocity of 
the aether with respect to the solar system is to compare the values of the 
velocity of light deduced from the observation of the eclipses of Jupiter’s satellites 
when Jupiter is seen from the earth at nearly opposite points of the ecliptic.

Arago proposed to compare the deviation produced in the light of a star 
after passing through an achromatic prism when the direction of the ray within 
the prism formed different angles with the direction of motion of the earth 
in its orbit. If the aether were moving swiftly through the prism, the deviation 
might be expected to be different when the direction of the light was the 
same as that of the aether, and when these directions were opposite.

The present writer* arranged the experiment in a more practicable manner 
by using an ordinary spectroscope, in which a plane mirror was substituted 
lor the slit of the collimator. The cross wires of the observing telescope were 
illuminated. The light from any point of the wire passed through the object
glass and then through the prisms as a parallel pencil till it fell on the
object-glass of the collimator, and came to a focus at the mirror, where it was 
reflected, and after passing again through the object-glass it formed a pencil 
passing through each of the prisms parallel to its original direction, so that
the object-glass of the observing telescope brought it to a focus coinciding
with the point of the cross wires from which it originally proceeded. Since

* Phil. Irana. clviii. (1868), p. 532. [Communicated by Prof. Maxwell to Dr Huggins and 
included by him in his paper on the spectra of some of the stars and nebula,'.]

VOL. II.
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the image coincided with the object, it could not be observed directly, but by 
diverting the pencil by partial reflection at a plane surface of glass, it was 
found that the image of the finest spider line could be distinctly seen, though 
the light which formed the image had passed twice through three prisms of 
GO0. The apparatus was first turned so that the direction of the light in first 
passing through the second prism was that of the earth’s motion in its orbit. 
The apparatus was afterwards placed so that the direction of the light was 
opposite to that of the earth’s motion. If the deviation of the ray by the 
prisms was increased or diminished for this reason in the first journey, it would 
be diminished or increased in the return journey, and the image would appear 
on one side of the object. When the apparatus was turned round it would 
appear on the other side. The experiment was tried at different times of the 
year, but only negative results were obtained. We cannot, however, conclude 
absolutely from this experiment that the aether near the surface of the earth 
is carried along with the earth in its orbit, for it has been shown by Professor 
Stokes * that according to Fresnel’s hypothesis the relative velocity of the aether 
within the prism would be to that of the aether outside inversely as the 
square of the index of refraction, and that in this case the deviation would 
not be sensibly altered on account of the motion of the prism through the aether.

Fizeaut, however, by observing the change of the plane of polarization of 
light transmitted obliquely through a series of glass plates, obtained what he 
supposed to be evidence of a difference in the result when the direction of 
the ray in space was different, and Angstrom obtained analogous results by 
diffraction. The writer is not aware that either of these very difficult experi
ments has been verified by repetition.

In another experiment of M. Fizeau, which seems entitled to greater con
fidence, he has observed that the propagation of light in a stream of water takes 
place with greater velocity in the direction in which the water moves than 
in the opposite direction, but that the change of velocity is less than that 
which would be due to the actual velocity of the water, and that the 
phenomenon does not occur when air is substituted for water. This experiment 
seems rather to verify Fresnel’s theory of the aether; but the whole question 
of the state of the luminiferous medium near the earth, and of its connexion 
with gross matter, is very far as yet from being settled by experiment.

* Phil. Mag. 1846, p. 53. + Ann. da Chimie et de Physique, Feb. 1860.
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Function of the ather in electromagnetic phenomena,—Faraday conjectured 
that the same medium which is concerned in the propagation of light might 
also be the agent in electromagnetic phenomena. “ For my own part,” he says, 
“considering the relation of a vacuum to the magnetic force, and the general 
character of magnetic phenomena external to the magnet, I am much more 
inclined to the notion that in the transmission of the force there is such an 
action, external to the magnet, than that the effects are merely attraction and 
repulsion at a distance. Such an action may be a function of the aether; 
for it is not unlikely that, if there be an aether, it should have other uses 
than simply the conveyance of radiation*.” This conjecture has only been 
strengthened by subsequent investigations.

Electrical energy is of two kinds, electrostatic and electrokinetic. We 
have reason to believe that the former depends on a property of the medium 
in virtue of which an electric displacement elicits an electromotive force in the 
opposite direction, the electromotive force for unit displacement being inversely 
as the specific inductive capacity of the medium.

The electrokinetic energy, on the other hand, is simply the energy of the 
motion set up in the medium by electric currents and magnets, this motion not 
being confined to the wires which carry the currents, or to the magnet, but 
existing in every place where magnetic force can be found.

Electromagnetic Theory of Light.—The properties of the electromagnetic 
medium are therefore as far as we have gone similar to those of the lumi
niferous medium, but the best way to compare them is to determine the 
velocity with which an electromagnetic disturbance would be propagated through 
the medium. If this should be equal to the velocity of light, we would have 
strong reason to believe that the two media, occupying as they do the same 
space, are really identical. The data for making the calculation are furnished 
by the experiments made in order to compare the electromagnetic with the 
electrostatic system of units. The velocity of propagation of an electromagnetic 
disturbance in air, as calculated from different sets of data, does not differ 
more from the velocity of light in air, as determined by different observers, 
than the several calculated values of these quantities differ among each other.

If the velocity of propagation of an electromagnetic disturbance is equal 
to that of fight in other transparent media, then in non-magnetic media the

* Experimented Researches, 3075.
97—2 
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specific inductive capacity should be equal to the square of the index of 
refraction.

Boltzmannhas found that this is very accurately true for the gases which 
he has examined. Liquids and solids exhibit a greater divergence from this 
relation, but we can hardly expect even an approximate verification when we 
have to compare the results of our sluggish electrical experiments with the 
alternations of light, which take place billions of times in a second.

The undulatory theory, in the form which treats the phenomena of light 
as the motion of an elastic solid, is still encumbered with several difficultiesf.

The first and most important of these is that the theory indicates the possi
bility of undulations consisting of vibrations normal to the surface of the wave. 
The only way of accounting for the fact that the optical phenomena which 
would arise from these waves do not take place is to assume that the aether 
is incompressible.

Ihe next is that, whereas the phenomena of reflection are best explained 
on the hypothesis that the vibrations are perpendicular to the plane of polari
zation, those of double refraction require us to assume that the vibrations are 
in that plane.

The third is that, in order to account for the fact that in a doubly re
fracting crystal the velocity of rays in any principal plane and polarized in 
that plane is the same, we must assume certain highly artificial relations among 
the coefficients of elasticity.

The electromagnetic theory of light satisfies all these requirements by the 
single hypothesis £ that the electric displacement is perpendicular to the plane of 
polarization. No normal displacement can exist, and in doubly refracting crystals 
the specific dielectric capacity for each principal axis is assumed to be equal 
to the square of the index of refraction of a ray perpendicular to that axis, 
and polarized in a plane perpendicular to that axis. Boltzmann § has found 
that these relations are approximately true in the case of crystallized sulphur,

* Wiener Sitzb., 23 April, 1874.
+ See Prof. Stokes, “ Report on Double Refraction,” British Ass. Report, 1862, p. 253.
J Over de theorie der terugkaatsing en breking van het licht,—Academisch Proefschrift door H. A. 

Lorentz. Arnhem, K. van der Zande, 1875.
§ “Ueber die Verschiedenheit dor Dielektricitiitsconstante des krystallisirten Schwefels nach verschie- 

dcnen Richtungen,” by Ludwig Boltzmann, Wiener Sitzb., 8th Oct., 1874.
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a body having three unequal axes. The specific dielectric capacity for these 
axes are respectively

4773 3-970 3 811
and the squares of the indices of refraction

4'576 3-886 3'591

Physical constitution of the (Ether.——What is the ultimate constitution of the 
aether ? is it molecular or continuous ?

We know that the aether transmits transverse vibrations to very great 
distances without sensible loss of energy by dissipation. A molecular medium, 
moving under such conditions that a group of molecules once near together 
remain near each other during the whole motion, may be capable of trans
mitting vibrations without much dissipation of energy, but if the motion is 
such that the groups of molecules are not merely slightly altered in configura
tion but entirely broken up, so that their component molecules pass into new 
types of grouping, then in the passage from one type of grouping to another 
the energy of regular vibrations will be frittered away into that of the irregular 
agitation which we call heat.

We cannot therefore suppose the constitution of the tether to be like that 
of a gas, in which the molecules are always in a state of irregular agitation, 
for in such a medium a transverse undulation is reduced to less than one five
hundredth of its amplitude in a single wave-length. If the tether is molecular, 
the grouping of the molecules must remain of the same type, the configuration 
of the groups being only slightly altered during the motion.

Mr S. Tol ver Preston* has supposed that the aether is like a gas whose 
molecules very rarely interfere with each other, so that their mean path is far 
greater than any planetary distances. He has not investigated the properties 
of such a medium with any degree of completeness, but it is easy to see that 
we might form a theory in which the molecules never interfere with each 
other’s motion of translation, but travel in all directions with the velocity of 
light; and if we further suppose that vibrating bodies have the power of im
pressing on these molecules some vector property (such as rotation about an 
axis) which does not interfere with their motion of translation, and which is 
then carried along by the molecules, and if the alternation of the average

♦ Phil. Mag., Sept, and Nov. 1877.
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value of this vector for all the molecules within an element of volume he the 
process which we call light, then the equations which express this average 
will be of the same form as that which expresses the displacement in the 
ordinary theory.

It is often asserted that the mere fact that a medium is elastic or com
pressible is a proof that the medium is not continuous, but is composed of 
separate parts having void spaces between them. But there is nothing incon
sistent with experience in supposing elasticity or compressibility to be properties 
of every portion, however small, into which the medium can be conceived to 
be divided, in which case the medium would be strictly continuous. A medium, 
however, though homogeneous and continuous as regards its density, may be 
rendered heterogeneous by its motion, as in Sir W. Thomson’s hypothesis of 
vortex-molecules in a perfect liquid (see Ait. Atom)*.

The aether, if it is the medium of electromagnetic phenomena, is probably 
molecular, at least in this sense.

Sir W. Thomson t has shewn that the magnetic influence on light discovered 
by Faraday depends on the direction of motion of moving particles, and that it 
indicates a rotational motion in the medium when magnetized. See also 
Maxwell’s Electricity and Magnetism, Art. 806, &c.

Now, it is manifest that this rotation cannot be that of the medium as a 
whole about an axis, for the magnetic field may be of any breadth, and there is 
no evidence of any motion the velocity of which increases with the distance from 
a single fixed line in the field. If there is any motion of rotation, it must be a 
rotation of very small portions of the medium each about its own axis, so 
that the medium must be broken up into a number of molecular vortices.

We have as yet no data from which to determine the size or the number 
of these molecular vortices. We know, however, that the magnetic force in the 
region in the neighbourhood of a magnet is maintained as long as the steel 
retains its magnetization, and as we have no reason to believe that a steel 
magnet would lose all its magnetization by the mere lapse of time, we 
conclude that the molecular vortices do not require a continual expenditure of 
work in order to maintain their motion, and that therefore this motion does 
not necessarily involve dissipation of energy.

* [p. 445 of the present volume.] t Proceedings of the Royal Society, June, 1856.
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No theory of the constitution of the aether has yet been invented which 
will account for such a system of molecular vortices being maintained for an 
indefinite time without their energy being gradually dissipated into that irregular 
agitation of the medium which, in ordinary media, is called heat.

Whatever difficulties we may have in forming a consistent idea of the con
stitution of the aether, there can be no doubt that the interplanetary and 
interstellar spaces are not empty, but are occupied by a material substance or 
body, which is certainly the largest, and probably the most uniform body of 
which we have any knowledge.

Whether this vast homogeneous expanse of isotropic matter is fitted not 
only to be a medium of physical interaction between distant bodies, and to 
fulfil other physical functions of which, perhaps, we have as yet no conception, 
but also, as the authors of the Unseen Universe seem to suggest, to con
stitute the material organism of beings exercising functions of life and mind 
as high or higher than ours are at present, is a question far transcending the 
limits of physical speculation.



[From Nature, Vol. xx.]

XCVIII. Thomson and Tait’s Natural Philosophy.

The year 18G7 will long be remembered by natural philosophers as that 
of the publication of the first volume of “ Thomson and Tait.” They had long 
been waiting for the book, and in the preface the delay was accounted for 
by the necessity of anticipating the wants of the other three volumes, in which 
the remaining divisions of Natural Philosophy were to be treated. The reader 
was also reminded, that if in any passage he failed to appreciate the aim of 
the authors, the reason might be that what he was studying was in reality 
a prospective contrivance, the true aim of which would not become manifest 
until after the perusal of that part of the work for which it was designed to 
prepare the way.

What we have had before us now for twelve years was, the authors 
reminded us, strictly preliminary matter. The plan of the whole treatise 
could only be guessed at from the scale on which its foundations were con
structed.

In these days, when so much of the science of our best men is dribbled 
out of them in the fragmentary and imperfectly elaborated form of the memoirs 
which they contribute to learned societies, and when the work of making 
books is relegated to professional bookmakers, who understand about as much 
of one subject as of another, it was something to find that even one man of 
known power had not shrunk from so great a work; it was more when it 
appeared that two men of mark were joined together in the undertaking; and 
when at last the plan of the work was described in the preface, and the 
scale on which its foundations wiere being laid was exhibited in the vast sub
structure of Preliminary Matter, the feeling with which we began to contemplate 
the mighty whole was one in which delight was almost overpowered by awe.
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This feeling has been growing upon us during the twelve years we have 
been exploring the visible part of the work, marking its bulwarks and telling 
the rising generation what manner of a palace that must be, of which these 
are but the outworks and first line of defences, so that now, when we have 
before us the second edition of the first part of the first volume, we are 
impelled to risk the danger of criticising an unfinished work, and to say some
thing about the plan of what is already before us.

The first thing which we observe in the arrangement of the work is the 
prominence given to kinematics, or the theory of pure motion, and the large 
space devoted under this heading to what has been hitherto considered part 
of pure geometry. 1 he theory of the curvatur6 of lines and surfaces, for 
example, has long been recognised as an important branch of geometry, but 
in treatises on motion it was regarded as lying as much outside of the subject 
as the four rules of arithmetic or the binomial theorem.

The guiding idea, however, which, though it has long exerted its influence 
on the best geometers, is now for the first time boldly and explicitly put 
forward, is that geometry itself is part of the science of motion, and that it 
treats, not of the relations between figures already existing in space, but of 
the process by which these figures are generated by the motion of a point 
or a line.

We no longer, for example, consider the line AB simply as a white 
stroke on a black board, and call it indifferently AB or BA, but we conceive 
it as the tiace of the motion of a point from A to B, and we distinguish 
A as the beginning and B as the end of this trace.

This method of regarding geometrical figures seems to imply that the 
idea of motion underlies the idea of form, and is in accordance with the 
psychological doctrine which asserts that at any given instant the attention is 
confined to a single and indivisible percept, but that as time flows on the 
attention passes along a continuous series of such percepts, so that the path 
of investigation along which the mind proceeds may be described as a con
tinuous line without breadth. Our knowledge, therefore, of whatever kind, may 
be compared to that which a blind man acquires of the form of solid bodies 
by stroking them with the point of his stick, and then filling up in his 
imagination the unexplored parts of the surface according to his own notions 
about continuity and probability. The rapidity, however, with which we make 
our exploration is such that we come to think that by a single glance we

vol. n. 98 
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can thoroughly see the whole of that surface of a body which is turned 
towards us, if, indeed, we are not prepared to assert that we have seen the 
other side too, when after all, if our attention were to leave a trace behind 
it, as the point of the blind man’s stick might do, this trace would appear 
us a mere line meandering over the surface in various directions, but leaving 
between its convolutions unexplored areas, the sum of which is still equal to 
the whole surface. We are at liberty no doubt to course over the surface and 
to subdivide the meshes of the network of lines in which we envelope it, and 
to conclude that there cannot be a hole in it of more than a certain diameter, 
but no amount of investigation will warrant the conclusion, which nevertheless 
we draw at once and without a scruple, that the surface is absolutely con
tinuous and has no hole in it at all. Even when, in a dark night, a flash 
of lightning discloses instantaneously a whole landscape with trees and buildings, 
we discover these things not at once, but by perusing at our leisure the 
picture which the sudden flash has photographed on our retina.

Ihe reason why the phenomena of motion have been so long refused a 
place among the most universal and elementary subjects of instruction seems 
to be, that we have been relying too much on symbols and diagrams, to the 
neglect of the vital processes of sensation and thought.

It is no doubt much easier to represent in a diagram or a picture the 
instantaneous relations of things coexisting in space than to illustrate in a full 
and complete manner the simplest case of motion. When we have drawn our 
diagram it remains on the paper, and the student may run his mind over the 
lines in any order which pleases him. But when we are either perceiving 
real motions, or thinking about them without the aid or the encumbrance of 
a diagram, the mind is carried along the actual course of the motion, in a 
manner far more easy and natural than when it is rushing indiscriminately 
hither and thither along the lines of a diagram.

Having pursued kinematics from its elementary principles till its intricacies 
begin to be appalling, we resume the study of the elements of science in the 
opening of the chapter on “ Dynamical Laws and Principles.” It is here that 
we first have to deal with something which claims the title of Matter, and 
our authors, one of whom never misses an opportunity of denouncing meta
physical reasoning, except when he has occasion to expound the peculiarities 
of the Unconditioned, make the following somewhat pusillanimous statement:—

“We cannot, of course, give a definition of Matter which will satisfy the 
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metaphysician, but the naturalist may be content to know matter as that which 
can be perceived by the senses, or as that which can be acted upon by, or can 
exert, force.”

The authors proceed to throw out a hint about Force being a direct 
object of sense, and after telling us that the question What is matter? will 
be discussed in a future volume, in which also the Subjectivity of Force will 
be considered, they retire to watch the effect of the definition they have thrown 
into the cam]) of the naturalists.

Now all this seems to us very much out of place in a treatise on 
Dynamics. We have nothing of the kind in treatises on Geometry. We have 
no disquisitions as to whether it is by touch or by sight that we come to 
know in what way a triangle differs from a square. We have not even a 
caution that the diagrams of these figures in the book do not exactly corre
spond with their definitions. Even in kinematics, when our authors speak of 
the motion of points, lines, surfaces, and solids, though they introduce several 
modern phrases, the kind of motion they speak of is none other than that 
which Euclid recognises, when he treats of the generation of figures.

Why, then, should we have any change of method when we pass on from 
kinematics to abstract dynamics? Why should we find it more difficult to 
endow moving figures with mass than to endow stationary figures with motion ? 
The bodies we deal with in abstract dynamics are just as completely known 
to us as the figures in Euclid. They have no properties whatever except those 
which we explicitly assign to them.

Again, at p. 222, the capacity of the student is called upon to accept 
the following statement:—

“ Matter has an innate power of resisting external influences, so that 
every body, as far as it can, remains at rest or moves uniformly in a 
straight line.”

Is it a fact that “ matter” has any power, either innate or acquired, of 
resisting external influences? Does not every force which acts on a body 
always produce exactly that change in the motion of the body by whicli its 
value, as a force, is reckoned? Is a cup of tea to be accused of having an 
innate power of resisting the sweetening influence of sugar, because it persist
ently refuses to turn sweet unless the sugar is actually put into it ?

But suppose we have got rid of this Manichaean doctrine of the innate 
depravity of matter, whereby it is disabled from yielding to the influence of 
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a moving force unless that force actually spends itself upon it, what sort of 
facts are left us to be the subject-matter of abstract dynamics ?

We are supposed to have mastered so much of kinematics as to be able 
to describe all possible motions of points, lines, and figures. In so far as real 
bodies have figures and motions, we may apply kinematics to them.

The new idea appropriate to dynamics is that the motions of bodies are 
not independent of each other, but that, under certain conditions, dynamical 
transactions take place between two bodies, whereby the motions of both bodies 
are affected.

Every body and every portion of a body in dynamics is credited with a 
certain quantitative value, called its mass. The first part of our study must 
therefore be the distribution of mass in bodies. In every dynamical system 
there is a certain point, the position of which is determined by the distribution 
of mass. This point was called by Boscovich the centre of mass—a better 
name, we think, than centre of inertia, though either of these is free from 
the error involved in the term centre of gravity.

In every dynamical transaction between two bodies there must be some
thing which determines the relation between the alteration of the motions of 
the two bodies. In other words, there must be some function of the motions 
of the two bodies which remains constant during the transaction. According 
to the doctrine of abstract dynamics it is the motion of the centre of mass 
of the two bodies which is not altered on account of any dynamical trans
action between the bodies. This doctrine, if true of real bodies, gives us the 
means of ascertaining the ratio of the mass of any body to that of the body 
adopted as the standard of mass, provided we can observe the changes in the 
motions of the two bodies arising from an encounter between them.

We then confine our attention to one of the bodies, and estimate the 
magnitude of the transaction between the bodies by its effect in changing the 
momentum of that body, momentum being merely a term for a quantity mathe
matically defined in terms of mass and motion. The rate at which this change 
of momentum takes place is the numerical measure of the force acting on the 
body, and, for all the purposes of abstract dynamics, it is the force acting on 
the body.

We have thus vindicated for figures with mass, and, therefore, for force 
and stress, impulse and momentum, work and energy, their places in abstract 
science beside form and motion.
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The phenomena of real bodies are found to correspond so exactly with the 
necessary laws of dynamical systems, that we cannot help applying the language 
of dynamics to real bodies, and speaking of the masses in dynamics as if they 
were real bodies or portions of matter.

We must be careful, however, to remember that what we sometimes, even 
in abstract dynamics, call matter, is not that unknown substratum of real 
bodies, against which Berkeley directed his arguments, but something as perfectly 
intelligible as a straight line or a sphere.

Real bodies may or may not have such a substratum, just as they may 
or may not have sensations, or be capable of happiness or misery, knowledge 
or ignorance, and the dynamical transactions between them may or may not 
be accompanied with the conscious effort which the word force suggests to us 
when we imagine one of the bodies to be our own, but so long as their 
motions are related to each other according to the conditions laid down in 
dynamics, we call them, in a perfectly intelligible sense, dynamical or material 
systems.

In this, the second edition, we notice a large amount of new matter, the 
importance of which is such that any opinion which we could form within the 
time at our disposal would be utterly inadequate. But there is one point of 
vital importance in which we observe a marked improvement, namely, in the 
treatment of the generalised equations of motion.

Whatever may be our opinion about the relation of mass, as defined in 
dynamics, to the matter which constitutes real bodies, the practical interest of 
the science arises from the fact that real bodies do behave in a manner 
strikingly analogous to that in which we have proved that the mass-systems 
of abstract dynamics must behave.

In cases like that of the planets, when the motions we have to account 
for can be actually observed, the equations of Maclaurin, which are simply a 
translation of Newton’s laws into the Cartesian system of co-ordinates, are 
amply sufficient for our purpose. But when we have reason to believe that 
the phenomena which fall under our observation form but a very small part 
of what is really going on in the system, the question is not—what phenomena 
will result from the hypothesis that the system is of a certain specified kind ? 
but—what is the most general specification of a material system consistent with 
the condition that the motions of those parts of the system which we can 
observe are what we find them to be ?
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It is to Lagrange, in the first place, that we owe the method which 
enables us to answer this question without asserting either more or less than 
all that can be legitimately deduced from the observed facts. But though this 
method has been in the hands of mathematicians since 1788, when the Mecanique 
Analytique was published, and though a few great mathematicians, such as Sir 
W. R. Hamilton, Jacobi, &c., have made important contributions to the general 
theory of dynamics, it is remarkable how slow natural philosophers at large 
have been to make use of these methods.

Now, however, we have only to open any memoir on a physical subject 
in order to see that these dynamical theorems have been dragged out of the 
sanctuary of profound mathematics in which they lay so long enshrined, and 
have been set to do all kinds of work, easy as well as difficult, throughout 
the whole range of physical science.

The credit of breaking up the monopoly of the great masters of the spell, 
and making all then’ charms familiar in our ears as household words, belongs 
in great measure to Thomson and Tait. The two northern wizards were the 
first who, without compunction or dread, uttered in their mother tongue the 
true and proper names of those dynamical concepts which the magicians of old 
were wont to invoke only by the aid of muttered symbols and inarticulate 
equations. And now the feeblest among us can repeat the words of power 
and take part in dynamical discussions which but a few years ago we should 
have left for our betters.

In the present edition we have for the first time an exposition of the 
general theory of a very potent form of incantation, called by our authors the 
Ignoration of Co-ordinates. We must remember that the co-ordinates of Thomson 
and Tait are not the mere scaffolding erected over space by Descartes, but 
the variables which determine the whole motion. We may picture them as so 
many independent driving-wheels of a machine which has as many degrees of 
freedom. In the cases to which the method of ignoration is applied there are 
certain variables of the system such that neither the kinetic nor the potential 
energy of the system depends on the value of these variables, though of course 
the kinetic energy depends on their momenta and velocities. The motion of 
the rest of the system cannot in any way depend on the particular values of 
these variables, and therefore the particular values of these variables cannot 
be ascertained by means of any observation of the motion of the rest of the 
system. We have therefore no right, from such observations, to assign to them 
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any particular values, and the only scientific way of dealing with them is to 
ignore them.

But this is not all. Since these variables do not appear in the expression 
for the potential energy, there can be no force acting on them, and therefore 
their momenta are, each of them, constant, and their velocities are functions 
of the variables, but, since their own variables do not enter into the expressions, 
we may consider them as functions of the other variables, or, as they are here 
called, the retained co-ordinates, and of the constant momenta of the ignored 
co-ordinates.

From the velocities as thus expressed, together with the constant momenta, 
we obtain the contribution of the ignored co-ordinates to the kinetic energy 
of the system in terms of the retained co-ordinates and of the constant momenta 
of the ignored co-ordinates. This part of the kinetic energy, being independent 
of the velocities of the retained co-ordinates, is, as regards the retained co
ordinates, strictly positional "', and may be considered for -all experimental purposes 
as if it were a term of the potential energy. The other part of the kinetic 
energy is a homogeneous quadratic function of the velocities of the retained 
co-ordinates. In the final equations of motion neither the ignored co-ordinates 
nor their velocities appear, but everything is expressed in terms of the retained 
co-ordinates and their velocities, the coefficients, however, being, in general, 
functions of the constant momenta of the io-nored co-ordinates, o

We may regard this investigation as a mathematical illustration of the 
scientific principle that in the study of any complex object, we must fix our 
attention on those elements of it which we are able to observe and to cause 
to vary, and ignore those which we can neither observe nor cause to vary.

In an ordinary belfry, each bell has one rope which comes down through
a hole in the floor to the bellringers’ room. But suppose that each rope, in
stead of acting on one bell, contributes to the motion of many pieces of
machinery, and that the motion of each piece is determined not by the motion
of one rope alone, but by that of several, and suppose, further, that all this 
machinery is silent and utterly unknown to the men at the ropes, who can 
only see as far as the holes in the floor above them.

Supposing all this, what is the scientific duty of the men below? They 
have full command of the ropes, but of nothing else. They can give each 
rope any position and any velocity, and they can estimate its momentum by 

* The division of forces into motional and positional is introduced at p. 370.
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stopping all the ropes at once, and feeling what sort of tug each rope gives. 
If they take the trouble to ascertain how much work they have to do in 
order to drag the ropes down to a given set of positions, and to express 
this in terms of these positions, they have found the potential energy of the 
system in terms of the known co-ordinates. If they then find the tug on any 
one rope arising from a velocity equal to unity communicated to itself or to 
any other rope, they can express the kinetic energy in terms of the co-ordinates 
and velocities.

These data are sufficient to determine the motion of every one of the 
ropes when it and all the others are acted on by any given forces. This is 
all that the men at the ropes can ever know. If the machinery above has 
more degrees of freedom than there are ropes, the co-ordinates which express 
these degrees of freedom must be ignored. There is no help for it.

Of course, if there are co-ordinates for which there are no ropes, but which 
enter into the expression for the energy, then, if the motion of these co
ordinates is periodic, there will be “adynamic vibrations” communicated to the 
ropes, and by these the men below will know that there is something peculiar 
going on above them. But if they pull the ropes in proper time, they can 
either quiet these adynamic vibrations or strengthen them, so that in this case 
these co-ordinates cannot be ignored.

There are other cases, however, in which the conditions for the ignoration 
of co-ordinates strictly apply. For instance, if an opaque and apparently rigid 
body contains in a cavity within it an accurately balanced body, mounted on 
frictionless pivots, and previously set in rapid rotation, the co-ordinate which 
expresses the angular position of this body is one which we are compelled to 
ignore, because we have no means of ascertaining it. An unscientific person on 
receiving this body into his hands would immediately conclude that it was 
bewitched. A disciple of the northern wizards would prefer to say that the 
body was subject to gyrostatic domination.

Of the sections on cycloidal motions of systems, we can only here say 
that the investigation ol the constitution of molecules by means of their 
vibrations, as indicated by spectroscopic observations, will be greatly assisted by 
a thorough study of this part of the volume.

We have not space to say anything of what to many readers must be 
one of the most interesting parts of the book—that on continuous calculating 
machines, in which pure rolling friction is taken from the class of unavoidable
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evils, and raised to the rank of one of the most powerful aids to science. 
Rolling and sliding have been more than once combined in the hope of obtaining 
accurate measurements, but the combination is fatal to accuracy, and these 
new machines, one at least of which has been actually constructed and used, 
are the first in which pure rolling friction has had fair play given it as a 
method of mechanically accurate integration.

A method is also given of combining a number of disk, globe, and cylinder 
integi ators, so as to form a machine the motions of two pieces of which are 
related to each other by a differential equation of any given form. These 
machines all work in a purely statical manner, that is, in such a way that 
the kinetic energy of the system is not an essential element in the practical 
theory of the machine (as in the case of pendulums, &c.), but has to be taken 
into account only in order to estimate the magnitude of the tangential forces 
at the points of contact which might, if great enough, produce slipping between 
the surfaces. Thus, by means of a machine, which will go as slowly as may 
be necessary to keep pace with our powers of thought, motions may be 
calculated, the phases of which in nature pass before us too rapidly to be 
followed by us.

In the original preface some indications were given of what we were to 
expect in the remaining three volumes of the work. We hope that the reason 
why this part of the preface is omitted in the new edition is that the work 
will now go on so steadily that it will be unnecessary to preface performance 
by promise.
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[From Encyclopaedia Britannica.]

XCIX.—.Faraday.

Faraday, Michael, chemist, electrician, and philosopher, was born at New
ington, Surrey, 22nd September, 1791, and died at Hampton Court, 25th August, 
18G7. His parents had migrated from Yorkshire to London, where his father 
worked as a blacksmith. Faraday himself became apprenticed to Mr Riebau, 
a bookbinder. The letters written to his friend Benjamin Abbott at this time 
give a lucid account of his aims in life, and of his methods of self-culture, 
when his mind was beginning to turn to the experimental study of nature. 
In 1812 Mr Dance, a customer of his master, took him to hear four lectures 
by Sir Humphry Davy. Faraday took notes of these lectures, and afterwards 
wrote them out in a fuller form. Under the encouragement of Mr Dance, he 
wrote to Sir H. Davy, enclosing these notes. “ The reply was immediate, kind, 
and favourable.” He continued to work as a journeyman bookbinder till 1st 
March, 1813, when, at the recommendation of Sir H. Davy, he was appointed 
assistant in the laboratory of the Royal Institution of Great Britain. He 
was appointed director of the laboratory 7th February, 1825; and in 1833 
he was appointed Fullerton Professor of Chemistry in the Institution for life, 
without the obligation to deliver lectures. He thus remained in the Institu
tion 54 years. He accompanied Sir H. Davy on a tour through France, Italy, 
Switzerland, Tyrol, Geneva, etc. from October 13th, 1813, to April 23, 1815.

Faraday’s earliest chemical work was in the paths opened by Davy, to whom 
he acted as assistant. He made a special study of chlorine, and discovered two 
new chlorides of carbon. He also made the first rough experiments on the 
diffusion of gases, a phenomenon first pointed out by Dalton, the physical 
importance of which has been more fully brought to light by Graham and 
Loschmidt. He succeeded in liquifying several gases; he investigated the alloys 
of steel, and produced several new kinds of glass intended for optical purposes.
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A specimen of one of these heavy glasses afterwards became historically im
portant as the substance in which Faraday detected the rotation of the plane 
of polarization of light when the glass was placed in the magnetic field, and 
also as the substance which was first repelled by the poles of the magnet. 
He also endeavoured with some success to make the general methods of 
chemistry, as distinguished from its results, the subject of special study and of 
popular exposition. See his work on Chemical Manipulation.

But Faraday’s chemical work, however important in itself, was soon com
pletely overshadowed by his electrical discoveries. The first experiment which 
he has recorded was the construction of a voltaic pile with seven halfpence, 
seven disks of sheet zinc, and six pieces of paper moistened with salt water. 
With this pile he decomposed sulphate of magnesia (first letter to Abbott, 
July 12, 1812). Henceforward, whatever other subjects might from time to 
time claim his attention, it was from among electrical phenomena that he 
selected those problems to which he applied the full force of his mind, and 
which he kept persistently in view, even when year after year his attempts 
to solve them had been baffled.

His first notable discovery was the production of the continuous rotation 
of magnets and of wires conducting the electric current round each other. 
The consequences deducible from the great discovery of Orsted (21st July, 
1820) were still in 1821 apprehended in a somewhat confused manner even by 
the foremost men of science. Dr Wollaston indeed had formed the expectation 
that he could make the conducting wire rotate on its own axis, and in April, 
1821, he came with Sir H. Davy to the laboratory of the Royal Institution 
to make an experiment. Faraday was not there at the time, but coming in 
afterwards he heard the conversation on the expected rotation of the wire.

In July, August, and September of that year Faraday, at the request of 
Mr Phillips, the editor of the Annals of Philosophy, wrote for that journal 
an historical sketch of electro-magnetism, and he repeated almost all the ex
periments he described. This led him in the beginning of September to dis
cover the method of producing the continuous rotation of the wire round the 
magnet, and of the magnet round the wire. He did not succeed in making 
the wire or the magnet revolve on its own axis. This first success of Faraday 
in electromagnetic research became the occasion of the most painful, though 
unfounded, imputations against his honour. Into these we shall not enter, re
ferring the reader to the Life of Faraday, by Dr Bence Jones.
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We may remark, however, that although the fact of the tangential force 
between an electric current and a magnetic pole was clearly stated by Orsted, 
and clearly apprehended by Ampbre, Wollaston, and others, the realization of 
the continuous rotation of the wire and the magnet round each other was a 
scientific puzzle requiring no mean ingenuity for its original solution. For on 
the one hand the electric current always forms a closed circuit, and on the 
other the two poles of the magnet have equal but opposite properties, and 
are inseparably connected, so that whatever tendency there is for one pole to 
circulate round the current in one direction is opposed by the equal tendency 
of the other pole to go round the other way, and thus the one pole can 
neither drag the other round the wire nor yet leave it behind. The thing 
cannot be done unless we adopt in some form Faraday’s ingenious solution, by 
causing the current, in some part of its course, to divide into two channels, 
one on each side of the magnet, in such a way that during the revolution 
of the magnet the current is transferred from the channel in front of the 
magnet to the channel behind it, so that the middle of the magnet can pass 
across the current without stopping it, just as Cyrus caused his army to pass 
dryshod over the Gyndes by diverting the river into a channel cut for it in 
his rear.

We must now go on to the crowning discovery of the induction of electric 
currents.

In Dec. 1824 he had attempted to obtain an electric current by means 
of a magnet, and on three occasions he had made elaborate but unsuccessful 
attempts to produce a current in one wire by means of a current in another 
wire or by a magnet. He still persevered, and on the 29th August, 1831, he 
obtained the first evidence that an electric current can induce another in a 
different circuit. On September 23 he writes to his friend R. Phillips—“ I am busy 
just now again on electromagnetism, and think I have got hold of a good 
thing, but can’t say. It may be a weed instead of a fish that, after all 
my labour, I may at last pull up.” This was his first successful experiment. 
In nine more days of experimenting he had arrived at the results described 
in his first series of “Experimental Researches” read to the Royal Society, 
November 24, 1841.

By the intense application of his mind he had brought the new idea, in 
less than three months from its first development, to a state of perfect maturity. 
The magnitude and originality of Faraday’s achievement may be estimated by
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tracing the subsequent history of his discovery. As might be expected, it was 
at once made the subject of investigation by the whole scientific world, but 
some of the most experienced physicists were unable to avoid mistakes in 
stating, in what they conceived to be more scientific language than Faraday’s, 
the phenomena before them. Up to the present time the mathematicians who 
have rejected Faraday s method of stating his law as unworthy of the preci
sion of their science have never succeeded in devising any essentially different 
formula which shall fully express the phenomena without introducing hypotheses 
about the mutual action of things which have no physical existence, such as 
elements of currents which flow out of nothing, then along a wire, and finally 
sink into nothing again.

After nearly half a century of labour of this kind, we may say that, 
though the practical applications of Faraday’s discovery have increased and are 
increasing in number and value every year, no exception to the statement of 
these laws as given by Faraday has been discovered, no new law has been 
added to them, and Faraday’s original statement remains to this day the only 
one which asserts no more than can be verified by experiment, and the only 
one by which the theory of the phenomena can be expressed in a manner 
which is exactly and numerically accurate, and at the same time within the 
range of elementary methods of exposition.

During his first period of discovery, besides the induction of electric cur
rents, Faraday established the identity of the electrification produced in different 
ways; the law of the definite electrolytic action of the current; and the fact, upon 
which he laid great stress, that every unit of positive electrification is related in 
a definite manner to a unit of negative electrification, so that it is impossible 
to produce what Faraday called “an absolute charge of electricity” of one 
kind not related to an equal charge of the opposite kind.

He also discovered the difference of the capacities of different substances 
for taking part in electric induction, a fact which has only in recent years 
been admitted by continental electricians. It appears, however, from hitherto 
unpublished papers that Henry Cavendish had before 1773 not only disco
vered that glass, wax, rosin and shellac have higher specific inductive capacities 
than air, but had actually determined the numerical ratios of these capacities. 
This, of course, was unknown both to Faraday and to all other electricians of 
his time.

The first period of Faraday’s electrical discoveries lasted 10 years. In 1841 he
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found that he required rest, and it was not till 1845 that he entered on his 
second great period of research, in which he discovered the effect of magnetism 
on polarized light, and the phenomena of diamagnetism.

Faraday had for a long time kept in view the possibility of using a ray 
of polarized light as a means of investigating the condition of transparent 
bodies when acted on by electric and magnetic forces. Dr Bence Jones {Life 
of Faraday, vol. I. p. 362) gives the following note from his laboratory book, 
10th September, 1822:—

“ Polarized a ray of lamp-light by reflexion, and endeavoured to ascertain whether any depolarizing 
action (was) exerted on it by water placed between the poles of a voltaic battery and in a glass 
cistern; one Wollaston’s trough used; the fluids decomposed were pure water, weak solution of 
sulphate of soda, and strong sulphuric acid; none of them had any effect on the polarized light, 
either when out of or in the voltaic circuit, so that no particular arrangement of particles could be 
ascertained in this way."

Eleven years afterwards we find another entry in his note-book, on 2nd 
May, 1833 {Life by Dr Bence Jones, vol. ii. p. 29). He then tried, not only 
the effect of a steady current, but the effect on making and breaking contact.

“I do not think, therefore, that decomposing solutions or substances will be found to have (as 
a consequence of decomposition or arrangement for the time) any effect on the polarized ray. Should 
now try non-decomposing bodies, as solid nitre, nitrate of silver, borax, glass, etc. whilst solid, to see 
if any internal state induced, which by decomposition is destroyed, i.e. whether, when they cannot 
decompose, any state of electrical tension is present. My borate of glass good, and common electricity 
better than voltaic.”

On May 6 he makes further experiments, and concludes—“ Hence I see 
no reason to expect that any kind of structure or tension can be rendered 
evident, either in decomposing or non-decomposing bodies, in insulating or con
ducting states.”

Experiments similar to the last-mentioned have recently been made by Dr 
Kerr, of Glasgow, who considers that he has obtained distinct evidence of 
action on a ray of polarized light when the electric force is perpendicular to 
the ray and inclined 45° to the plane of polarization. Many physicists, how
ever, have found themselves unable to obtain Dr Kerr’s result.

At last, in 1845, Faraday attacked the old problem, but this time with 
complete success. Before we describe this result we may mention that in 
1862 he made the relation between magnetism and light the subject of his 
very last experimental work. He endeavoured, but in vain, to detect any
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change in the lines of the spectrum of a flame when, the flame was acted on 
by a powerful magnet.

I his long series of researches is an instance of his persistence. His energy 
is shewn in the way in which he followed up his discovery in the single 
instance in which he was successful. The first evidence which he obtained of 
the rotation of the plane of polarization of light under the action of mag
netism was on the 13th September, 1845, the transparent substance being his 
own heavy glass.

He began to work on August 30, 1845, on polarized light passing through 
electrolytes. After three days he worked with common electricity, trying glass, 
heavy optical glass, quartz, Iceland spar, all without effect, as on former trials. 
On September 13 he worked with lines of magnetic force. Air, flint, glass, 
rock-crystal, calcareous spar, were examined but without effect.

“ Heavy glass was expei’imented with. It gave no effects when the same magnetic poles or the 
contrary poles were on opposite sides (as respects the course of the polarized ray), nor when the 
same poles were on the same side either with the constant or intermitting current. But when con
trary magnetic poles were on the same side there was an effect produced on the polarized ray, 
and thus magnetic force and light were proved to have relations to each other. This fact will most 
likely prove exceedingly fertile, and of great value in the investigation of the conditions of natural 
force.”

He immediately goes on to examine other substances, but with “ no effect,” 
and he ends by saying, “Have got enough for to-day.” On September 18 he 
“does an excellent day’s work.” During September he had four days of work, 
and in October six, and on Gth November he sent in to the Royal Society the 
19th series of his “Experimental Researches,” in which the whole conditions 
of the phenomena are fully specified. The negative rotation in ferromagnetic 
media is the only fact of importance which remains to be discovered afterwards 
(by Verdet in 185G).

But his work for the year was not yet over. On November 3, a new 
horseshoe magnet came home, and Faraday immediately began to experiment 
on the action in the polarized ray through gases, but with no effect. The 
following day he repeated an experiment which had given no result on October 6. 
A bar of heavy glass was suspended by silk between the poles of the new 
magnet. “ When it was arranged, and had come to rest, I found I could 
aftect it by the magnetic forces and give it position.” By the Gth December 
he had sent in to the Royal Society the 20th, and on 24th December the 
21st series of his “Researches,” in which the properties of diamagnetic bodies
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are fully described. Thus these two great discoveries were elaborated, like his 
earlier one, in about three months.

The discovery of the magnetic rotation of the plane of polarized light, 
though it did not lead to such important practical applications as some of 
Faradays earlier discoveries, has been of the highest value to science, as fur
nishing complete dynamical evidence that wherever magnetic force exists there 
is matter, small portions of which are rotating about axes parallel to the 
direction of that force.

We have given a few examples of the concentration of his efforts in seeking 
to identify the apparently different forces of nature, of his far-sightedness in 
selecting subjects for investigation, of his persistence in the pursuit of what he 
set before him, of his energy in working out the results of his discoveries, and 
of the accuracy and completeness with which he made his final statement of 
the laws of the phenomenon.

Ihe characteristics of his scientific spirit lie on the surface of his work, 
and are manifest to all who read his writings. But there was another side of 
bis character, to the cultivation of which he paid at least as much attention, 
and which was reserved for his friends, his family, and his church. His letters 
and his conversation were always full of whatever could awaken a healthy interest, 
and free from anything that might rouse ill-feeling. When, on rare occasions, he 
was forced out of the region of science into that of controversy, he stated the 
facts, and let them make their own way. He was entirely free from pride and 
undue self-assertion. During the growth of his powers he always thankfully 
accepted a correction, and made use of every expedient, however humble, which 
would make his work more effective in every detail. When at length he found 
his memory failing and his mental powers declining, he gave up, without ostenta
tion or complaint, whatever parts of his work he could no longer carry on 
according to his own standard of efficiency. When he was no longer able to 
apply his mind to science, he remained content and happy in the exercise of 
those kindly feelings and warm affections which he had cultivated no less care
fully than his scientific powers.

The parents of Faraday belonged to the very small and isolated Christian 
sect which is commonly called after Robert Sandeman. Faraday himself attended 
the meetings from childhood; at the early age of 30 he made public profession 
of his faith, and during two different periods he discharged the office of elder. 
His opinion with respect to the relation between his science and his religion is 
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expressed in a lecture on mental education delivered in 1854, and printed at the 
end of his Researches in Chemistry and Physics.

“ Before entering upon the subject, I must make one distinction which, however it may appear 
to others, is to me of the utmost importance. High as man is placed above the creatures around him, 
there is a higher and far more exalted position within his view; and the ways are infinite in 
which he occupies his thoughts about the fears, or hopes, or expectations of a future life. I 
believe that the truth of that future cannot be brought to his knowledge by any exertion of his 
mental powers, however exalted they may be; that it is made known to him by other teaching 
than his own, and is received through simple belief of the testimony given. Let no one suppose for 
an instant that the self-education I am about to commend, in respect of the things of this life, 
extends to any considerations of the hope set before us, as if man by reasoning could find out God. 
It would be improper here to enter upon the subject farther than to claim an absolute distinction 
between religious and ordinary belief. I shall be reproached with the weakness of refusing to apply 
those mental operations which I think good in respect of high things to the very highest. 1 am 
content to bear the reproach. Yet even in earthly matters I believe that ‘the invisible things of 
Him from the creation of the world are clearly seen, being understood by the things that are 
made, even His eternal power and Godhead’; and I have never seen anything incompatible between 
those things of man which can be known by the spirit of man which is within him, and those 
higher things concerning his future which he cannot know, by that spirit.”

Faraday gives the following note as to this lecture :—
“These observations were delivered as a lecture before His Royal Highness the Prince Consort 

and the members of the Royal Institution on the 6th of May, 1854. They are so immediately con
nected in their nature and origin with my own experimental life, considered either as cause or 
consequence, that I have thought the close of this volume not an unfit place for their repro
duction.”

As Dr Bence Jones concludes—
“ His standard of duty was supernatural. It was not founded on any intuitive ideas of right 

and wrong, nor was it fashioned upon any outward experiences of time and place, but it was 
formed entirely on what he held to be the revelation of the will of God in the written word, 
and throughout all his life his faith led him to act up to the very letter of it.”

Published Works.—Chemical Manipulation, being Instructions to Students in Chemistry, 1 vol., 
John Murray, 1st edition 1827, 2nd 1830, 3rd 1842; Experimental Researches in Electricity, vols. 
i. and ii., Richard and John Edward Taylor, vols. I. and u. 1844 and 1847; vol. m. 1844; vol. in., 
Richard Taylor and William Francis, 1855; Experimental Researches in Chemistry and Physics, 
Taylor and Francis, 1859; Lectures on the Chemical History of a Candle (edited by W. Crookes), 
Griffin, Bohn, and Co., 1861; On the various Forces in Nature (edited by W. Crookes), Chatto and 
Windus (no date).

Biographies.—Faraday as a Discoverer, by John Tyndall, Longmans, 1st edition 1868, 2nd edition 
1870; The Life and Letters of Faraday, by Dr Bence Jones, Secretary of the Royal Institution, in 
2 vols., Longmans, 1870; Michael Faraday, by J. H. Gladstone, Ph.D., F.R.S., Macmillan, 1872.
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[From British Association Report.]

C.—Reports on Special Branches of Science.

Reports on special branches of science may be of several different types, 
corresponding to every stage of organisation, from the catalogue up to the 
treatise.

When a person is engaged in scientific research, it is desirable that he 
should be able to ascertain, with as little labour as possible, what has been 
written on the subject and who are the best authorities. The ordinary method 
is to get hold of the most recent German paper on the subject, to look up 
the references there given, and by following up the trail of each to find out 
who are the most influential authors on the subject. German papers have the 
most complete references because the machinery for docketing and arranging 
scientific papers is more developed in Germany than elsewhere.

The I1 ortschritte der Physik” gave an annual list of all papers, good 
and bad, arranged in subjects, with abstracts of the more important ones. 
Wiedemann’s “ Beibliitter ” is a more select assortment, given more in full.

I think it doubtful whether a publication of this kind, if undertaken by 
the British Association, would succeed. Lists of the titles of the proceedings • 
of Societies and of the contents of periodicals are given in Nature. These 
are useful for strictly contemporary science, and I do not think that a more 
elaborate system of collection could be kept up for long.

The intending publisher of a discovery has to examine the whole mass of 
science to see whether he has been anticipated, but the student wishes to 
read only what is worth reading. What he requires is the names of the best 
authors. The selection or election of these is constantly done by skimming 
individual authors, who indicate by the names they quote the men whose 
opinions have had most influence. But a report on the history and present
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state of a science has for its main aim to enumerate the various authors and 
to point out their relative weight, and this has been very well done in several 
British Association Reports, some of which are nearly as old as the British 
Association.

There are some branches of science whose position with respect to the 
public, or else to the educational interest, is such that treatises or text-books 
can be published on commercial principles, either as books to be read by the 
free public, or to be got up by the school public.

There is little encouragement, however, for a scientific man to write a 
treatise so long as he can, with much less trouble, produce an original memoir, 
which will be much more readily received by a learned society than the treatise 
would have been by a publisher.

The systematisation of science is therefore carried on under difficulties 
when left to itself; and I think that the experience of the British Association 
warrants the belief that its action in asking men of science to furnish reports 
has conferred benefits on science which would not otherwise have accrued to it.

There are so many valuable reports in the published volumes that I shall 
indicate only a few, the selection being founded on the direction of my own work 
rather than on any less arbitrary principle.

First, when a branch of science contains abstruse calculations as well as 
interesting experiments, it is desirable that those who cultivate the experimental 
side should be conscious that certain things have been done by the mathema
ticians. The matter to be reported on in this case is not voluminous, but it is 
hard reading, and those who are not experts require a guide.

Thus, Professor Challis in 1834 gave a most useful report on the mathe
matical investigations by Young, Laplace, Poisson, and Gauss on Capillary 
Attraction, and Professor Stokes in 1862 reports on Theories of Double Re
fraction. This report may, indeed, be accepted as an instalment of the treatises 
which, if the desire of the scientific world were law, Professor Stokes would 
long ago have written. It is meant, no doubt, as a guide to other men’s 
writings, but it is intelligible in itself without reference to those writings. Such 
a report is a full justification of the existence of the British Association, if it had 
done nothing else.

Another type of report is that of Professor Cayley on Dynamics (1857 
and 1862). This seems intended rather as a guide in reading the original 
authors than as a self-interpreting document, though, of course, besides the
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criticism and the methodical arrangement, there is much original light thrown 
on the mass of memoirs discussed in it. It will be many years before the 
value of this report will be superseded by treatises.

The Report of the Committee on Mathematical Tables deals with a subject 
which, though not so abstruse, is larger and drier than any of the preceding. 
It is, however, a most interesting as well as valuable report, and supplies in
formation which would never have been printed unless the British Association 
had asked for the Report, and which never would have been obtained if the 
author of the report had not been available.

There are several other reports which are not mere reports, but rather 
original papers preceded by a historical sketch of the subject. No special en
couragement is needed to get people to write reports of this kind.



[From the Encyclopaedia Britannica.}

CL—Harmonic Analysis.

Harmonic Analysis is the name given by Sir William Thomson and. 
Professor Tait in their treatise on Natural Philosophy to a general method of 
investigating physical questions, the earliest applications of which seem to have 
been suggested by the study of the vibrations of strings and the analysis of 
these vibrations into their fundamental tone and its harmonics or overtones.

The motion of a uniform stretched string fixed at both ends is a periodic 
motion; that is to say, after a certain interval of time, called the fundamental 
period of the motion, the form of the string and the velocity of every part 
of it are the same as before, provided that the energy of the motion has not 
been sensibly dissipated during the period.

There are two distinct methods of investigating the motion of a uniform 
stretched string. One of these may be called the wave method, and the other 
the harmonic method. The wave method is founded on the theorem that in 
a stretched string of infinite length a wave of any form may be propagated 
in either direction with a certain velocity, V, which we may define as the 
“velocity of propagation.” If a wave of any form travelling in the positive 
direction meets another travelling in the opposite direction, the form of which 
is such that the lines joining corresponding points of the two waves are all 
bisected in a fixed point in the line of the string, then the point of the 
string corresponding to this point will remain fixed, while the two waves pass 
it in opposite directions. If we now suppose that the form of the waves 
travelling in the positive direction is periodic, that is to say, that after the 
wave has travelled forward a distance I, the position of every particle of the 
string is the same as it was at first, then I is called the wave-length, and the 
time of travelling a wave-length is called the periodic time, which we shall 
denote by T, so that

1= VT.
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If we now suppose a set of waves similar to these, but reversed in position, 
to be travelling in the opposite direction, there will be a series of points, 
distant from each other, at which there will be no motion of the string; 
it will therefore make no difference to the motion of the string if we suppose 
the string fastened to fixed supports at any two of these points, and we may 
then suppose the parts of the string beyond these points to be removed, as it 
cannot affect the motion of the part which is between them. We have thus 
arrived at the case of a uniform string stretched between two fixed supports, 
and we conclude that the motion of the string may be completely represented 
as the resultant of two sets of periodic waves travelling in opposite direc
tions, their wave-lengths being either twice the distance between the fixed 
points or a submultiple of this wave-length, and the form of these waves, 
subject to this condition, being perfectly arbitrary.

To make the problem a definite one, we may suppose the initial displace
ment and velocity of every particle of the string given in terms of its distance 
from one end of the string, and from these data it is easy to calculate the 
form which is common to all the travelling waves. The form of the string 
at any subsequent time may then be deduced by calculating the positions of 
the two sets of waves at that time, and compounding their displacements.

Thus in the wave-method the actual motion of the string is considered 
as the resultant of two wave-motions, neither of which is of itself, and without 
the other, consistent with the condition that the ends of the string are fixed. 
Each of the wave-motions is periodic with a wave-length equal to twice the 
distance between the fixed points, and the one set of waves is the reverse of 
the other in respect of displacement and velocity and direction of propagation; 
but, subject to these conditions, the form of the wave is perfectly arbitrary. 
The motion of a particle of the string, being determined by the two waves which 
pass over it in opposite directions, is of an equally arbitrary type.

In the harmonic method, on the other hand, the motion of the string is 
regarded as compounded of a series of vibratory motions which may be infinite 
in number, but each of which is perfectly definite in type, and is in fact a 
particular solution of the problem of the motion of a string with its ends 
fixed.

A simple harmonic motion is thus defined by Thomson and Tait (§ 53) 
When a point Q moves uniformly in a circle, the perpendicular QP, drawn from



HARMONIC ANALYSIS. 799

its position at any instant to a fixed diameter AA' of the circle, intersects the 
diameter in a point P whose position changes by a simple harmonic motion.

Ihe amplitude of a simple harmonic motion is the range on one side or the 
other of the middle point of the course.

The period of a simple harmonic motion is the time which elapses from 
any instant until the moving-point again moves in the same direction through 
the same position.

The phase of a simple harmonic motion at any instant is the fraction of 
the whole period which has elapsed since the moving point last passed through 
its middle position in the positive direction.

In the case of the stretched string, it is only in certain particular cases 
that the motion of a particle of the string is a simple harmonic motion. In 
these particular cases the form of the string at any instant is that of a curve 
of sines having the line joining the fixed points for its axis, and passing 
through these two points, and therefore having for its wave-length either twice 
the length of the string or some submultiple of this wave-length. The ampli
tude of the curve of sines is a simple harmonic function of the time, the 
period being either the fundamental period or some submultiple of the funda
mental period. Every one of these modes of vibration is dynamically possible 
by itself, and any number of them may coexist independently of each other.

By a proper adjustment of the initial amplitude and phase of each of these 
modes of vibration, so that their resultant shall represent the initial state of 
the string, we obtain a new representation of the whole motion of the string, 
in which it is seen to be the resultant of a series of simple harmonic vibra
tions whose periods are the fundamental period and its submultiples. The 
determination of the amplitudes and phases of the several simple harmonic 
vibrations so as to satisfy the initial conditions is an example of harmonic 
analysis.

We have thus two methods of solving the partial differential equation of 
the motion of a string. The first, which we have called the wave-method, ex
hibits the solution in the form containing an arbitrary function, the nature of 
which must be determined from the initial conditions. The second, or harmonic 
method, leads to a series of terms involving sines and cosines, the coefficients 
of which have to be determined. The harmonic method may be defined in a
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more general manner as a method by which the solution of any actual problem 
may be obtained as the sum or resultant of a number of terms, each of which 
is a solution of a particular case of the problem. The nature of these par
ticular cases is defined by the condition that any one of them must be con
jugate to any other.

The mathematical test of conjugacy is that the energy of the system 
arising from two of the harmonics existing together is equal to the sum of 
the energy arising from the two harmonics taken separately. In other words, 
no part of the energy depends on the product of the amplitudes of two dif
ferent harmonics. When two modes of motion of the same system are conju
gate to each other, the existence of one of them does not affect the other.

Ihe simplest case of harmonic analysis, that of which the treatment of 
the vibrating string is an example, is completely investigated in what is known 
as Fourier’s Theorem.

Fourier’s theorem asserts that any periodic function of a single variable 
period p, which does not become infinite at any phase, can be expanded in 
the form of a series consisting of a constant term, together with a double 
series of terms, one set involving cosines and the other sines of multiples of 
the phase.

Thus if </•(£) is a periodic function of the variable £ having a period p 
then it may be expanded as follows:

</)(£) = Ao+ 2? cos Bi sin—^.......(1).

The part of the theorem which is most frequently required, and which 
also is the easiest to investigate,, is the determination of the values of the 
coefficients ?l0 A{ These are

1 (p Ao = ^ ^)d^;
p J 0 

t

. 2 (p ifAi = - cos —- dg;
PJo ' P

n 2 fP jl 1t\ • 2^^ itBi = - 6 (A) sm----- d^.
PJo^' P
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Hiis part of the theorem may be verified at once by multiplying both 

sides of (1) by by cos d$, or by sin dg, and in each case inte

grating from 0 to p.
Ihe series is evidently single-valued for any given value of f. It cannot 

therefore represent a function of f which has more than one value, or which 
becomes imaginary for any value of £ It is convergent, approaching to the 
true value of </>(£) for all values of f such that if £ varies infinitesimally 
the function also varies infinitesimally.

Sir W. Thomson, availing himself of the disk, globe, and cylinder inte
grating machine invented by his brother, Professor James Thomson, has 
constructed a machine by which eight of the integrals required for the ex
pression of Fourier’s series can be obtained simultaneously from the recorded 
trace of any periodically variable quantity, such as the height of the tide, the 
temperature of the pressure of the atmosphere, or the intensity of the different 
components of terrestrial magnetism. If it were not on account of the waste 
of time, instead of having a curve drawn by the action of the tide, and the 
curve afterwards acted on by the machine, the time axis of the machine 
itself might be driven by a clock, and the tide itself might work the second 
variable of the machine, but this would involve the constant presence of an 
expensive machine at every tidal station.

It would not be devoid of interest, had we opportunity for it, to trace 
the analogy between these mathematical and mechanical methods of harmonic 
analysis and the dynamical processes which go on when a compound ray of 
light is analysed into its simple vibrations by a prism, when a particular over
tone is selected from a complex tone by a resonator, and when the enormously 
complicated sound-wave of an orchestra, or even the discordant clamours of a 
crowd, are interpreted into intelligible music or language by the attentive 
listener, armed with the harp of three thousand strings, the resonance of 
which, as it hangs in the gateway of his ear, discriminates the multifold 
components of the waves of the aerial ocean.
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